
00x 1 Smalltalk press and clippings. 1983-2002 1 flp FRI' T
Smalltalk
Ade!e Goldberg papers 027 3938 2

X5774.2010, Box 2 102739382

.f)71-#
I. VD FS Tor C 24-4- C 11 l.,1,1 V L FLEILL L PUL L JavaRett-flit '

1 1111
JOURN AL

#336 MAY 2002

E-AA//1 p K
11-jj LL

Ir

OfflliONAL

O 621%1% ff
http:/Avww.ddi.com

r 1

r

b Image Scaling with Bresenham
3 Jly D] 13]j-'11 1,1] 3] < -f]12,1Jd]J]11'11 j i. mltk IN L° r]1]jojigu>fd J L.. I I

\ 4.. LiwiL Iril Il r-1jilldJU DE>.fs --'-i---
1.-• In 171 r

o Multiple
Hash
Functions

Ul j]-1]211] :.....

Ej-[1]J B j] 12 3 1]ji]6
 11<311@11.1112£161:
k J 6-1 9 95
 AP .9 1-1-1

UL

IUX

%131 1

05>

. i
A Dr. Dobb's

Excellence i

Programmin
Awards

A

Adele Goldberg 74 .*/ Dan ingalls

$4.95US $5.95[AN

0 71486 01051

Rubi
1 -06
IN.Lt!;a tor Mac OS x

External
SQL Rewriters

_O_1_T_ 3 1 T S
2002 VOLLME 2-. NIUE i

-i

FEATURES
DR. DOBB'§ EXCELLENCE IN PROGRAMMING AWARDS 18
.Adele Goldberg and Dan Ingulth are pioneers m object-oriented
programming in general. and the Smalkalk language m panic·ukir

IMAGE 5(AlING WITH BRESENHAM 21
by Thladmer Rienteism«
The gmphics algonthm -I'liatianer presents here is quick. produces a
quality equivalent to that of linear interpolation. and can zoom up
und down

600DHASH TABLES & MULTIPLE HASH FUNGIONS 28
b)'.1/kbitel.11#ze/,mucher
Michael-s multiple hash method produces good hash cables for
apphcations ranging fr0111 einpi>yee dataliases tc) Internet routers.

DISK THRASHING & THE PmALLS OF VIRIUAL MEMORY 34
br Bamisz 1/11£,uwk,
Disk thrashing. also knim·n as virtual memory thraskiing, is among the
more serious ioftware perkirmance problems.

EXTERNAL SQL REWRITERS 42
Pbox,grai,1,·,' 1)by Ricbord Tb and Cara Pang Pat Jobiuoi, Sito#

Database query optimizers optimize SQL slitements by generating
altern·ative execution plans to find the one with the least estimated cost.

EMBEDDED SYSTEMS

OPTIMIZING EMBEDDED LINUX 51
hy Todd Fiscber
rudd shal'(25 Hei'e[1 hilrd-w(in techniques te) aid in the embedded Linux

devekipnen[pr<x'ess

INTERNET PROGRAMMING
GENERATING JAVASCRIPT FROM PERL 59
6.1·.Wephen H.fe}ikilts
The teclinjqi,eN >lepi ien pi·r'.fent hel r)ejp)·c iu prof·jlle Uselb uith a
better Ll and reduce Ihe load on web sen·ers.

COLUMNS WORKBENCH

PROGRAMMING PARADIGMS 69 PROGRAMMER'S TOOLCHEST 64
4.lh,Awl Su,ime !181!Ni.\I; RU[$\U)«M

C PROGRAMMING 73 b, c.hn'., 71„unaf

br.-1/ bkir·ns JAVA QU 83
EMBEDDED SPACE 77 HOW DO [CORRECIZY IMPUNFATTHE equals(/ MEIHOD?
b, 61 .Wel 43· 72,1 c„/,471

DR. ECCO'SOMNIHEURIST CORNER 98 AlGORITHM AUEY 89
63· Dri'"'.% 15 -%/•L,/ki v [i IC.kl)1<·l ANI 1> KADIX hole, 03 1.IMS

'M¥14 N E TZAS'M bi NA,71 Pott'Lin

PROGRAMMER'SBOOKSHEU 100
bltpo//?1'Uku ddleoili'tecbidetcast/

]9LLING JN -niIi i;Al]
O*EKILIY 2002 BIOINFORMATICS CONFE¤4(*

41· Gn,ean V W·itson

FORUM

EDITORIAL 8

41· pute,/bau k'n·ck.91
LETTERS to
bj WN

THE NEW ADVENWRES
Of VERITY STOB 12

M 'ena 9,4

NEWS & VIEWS 14

M #ba,in„n Cocbmn
OF INTIR!51 102

bt· De/la Swle

SWAINES FLAMES 104
ba·.thchaef Su#lite

RESOURCE
CENTER

As a serv ice to tiur re.,ders
source coje and rebial 66. and

auth<* Flidelinm aw ai..ilible
.:t hip.: '..n.·.4..iin . 4.unr
ack· ii .dfo aviulable i Li .Imin·
y Inous FrP trom ftp.ddi.innl
(1).12:85-6, trtlers £„the
edmin .irticle proposal and
i,Iwitw.si£14 and Inqum- c.in
Ilt· *111 It i editorb@d,Ii.·tmii. lixt:d
t„ (,<0·51346111 or ituded [0 8·

11>bb·.r lowriud. 284 Ompus
DMir. x,n Attimi C·1 4,1,4.

1-4/ albsuiI,11<in queia(*4. CIU
'*)0·490.1214 (t'.S or Canada)

For All <*Iler c,)Untriem. 8711 05{)-
(>82-al or 61 303#,-1181.

E-iruil w|*fription quequ™i to
ckY@ne,-*liti .%3)r v.mle to l?r
84*Ujund, PO Bor 9.14
Btitilder CO *)322-61*4

Back issues nia) be pw
cluseil for $4.00 per copi
(which inclueles shipping ant!
tundlingi Rir tgue ai-Jil.(I,im# i
9%1 0-mail N i {nleD.*anp ir,in
f.ir 51 -84}41·2624. {% all *»
1144*] 11 .S und On:}da) Ar

*S:·894.-9,3, tall kilier <·Mn
Ii,es) tilek i.,ue 0Tders must

$ prep:,id Pleog., lend 74.
nae,jz ic, Di· Dribb:.Toxir,ial.
1001 * 2.trd *fee(Sinte 2<M)

l.,u·renee. K, (18(141'.27*1

Individual I>ack an:i·le mi·

19 pun·havil elt·i·minkally al
hup:. :w„,i: Ildi.com as ZZP
.ir,·hivt:

NiX! MONT»:con)Jimnits;on
.ind netw< irking is our
theme In lung.

DR OB/1 3./(.NK'•Al (ISSN 1044-189X) i pul,lishud 1111)nlhly by OW Medi., LLC., 606 Ham,on Strrel. San Fr.indkn, CA 4*)1'. 415®5-22(K) Peried,i·.ils Po,tgr Puid M 521, 3-nnri, i jnd 21 Addili,injj
mailing dfices blllCRIFUON 51195 ftir 1 vear. Ste.W) for 2 yeRB Iniernanondl oniers rviust lk· prepuld Pavnftnt mai' benuicte vt, Miweford. Vist.or Anlencan Exprew: cir #in t: S fundN dratin on
J L],5 took Canada 4/*IMexiar $7500 per yel, AM ot),er f.,rign· S7000 per Brar 1 K subs,J,Irn a>,10,11,1! Sur.liffe gi }tu*„:2,· tkndon m-,9-18-»86 POSTWASI'ER i·mi addfes. diange, Zo i¥
lk,Wi,pu,nuit, PO 8,3 561!48, El,w,Ider. CO H03214188 GST (Culadai •11 114-!239 Culad.1 14),1 Imernation:i] Publicauen, Mail Product (Caruidiwn 1),Rribulion) Ues Agieement No. 0548677
FORE!GN· NEWNSTAND DviTRIA£ 70}R: rairkli,ide ihii:1 !,enice Ir.. 30 j t<intgrifilerv 'it. Jersey oly. ;g 07*,2. 2£2332--'RJO. En,im «111(ents ¢ 2002 t, CMP ttedia LLC , unle·.5 ofhem·Me nored on
.Brifi. Irlicle, Al| rillils Emie.1

bttp://iru·u:ddj.emil DE nobbs.Jourmil. Min, 2002 5

2002 Dr. Dobh

Exceffence in
Proglning

Awar[G

0 ince 1995. I»·. /)(ibbs./c,Ii,·util h.is presenteil its Excellence
in Programming Award to individuals who. in the spirit of
ilinovation and cooperatic,n, lia\·e niade significant aititri-
liutions ti) tlie advancement of softn.irc cleirlopment. 11.ist

re,ipient, of t!,e Dr. 1)<Ab's Excellence in Pr{,gramming Award
include:

• Alexander Stepanov. developer of the C++ Standard Teniplate
I h··:n·

vaids. ttir launching Linux.
1. author of Per].
,sting. cluef .irchitect cif Java.
vest. educat<}r, auth<ir. and crypti)grapher.
all. for his work in operating systems. programming
I. .ind user interfaces.

nina. Richard Helin. John Vlissides, and Ralph.Iohn-
Drs of Design Pattents.· Lhements· gf A'eumble Object-
Soflu·,1 re-
1 R<Mum. Python creator.
ecker. for his contributions to Linux nem·orking .inc]
uff Proied.
ey, a,Ii,pitter-science author and researcher.
eilsberg, developer of Turbo Pascii and architect of
w .NET Franiework.

Tlle recipients <)f thi. year's aw·.ird. Adele G(ild-
berg .ind Dan]ngalls. are pioneers in the :11·ea of
object-oriented programming iii general. and the
hniallialk language,ind development environment
in particular. As researchers ut Xerox s Pak) Alto
Research Center I 11·\Re), Golillrrg .inl| inK:illy, each
recognized in theii· ciwn way tlic promise <,f oli-
lects. and they were in a unique position [o put
those theories int<> pr.actice in an architecture based
on olilects at even· ler·el.

• Linus Tor

• Larn· Wai

• Ronald Rj
• Garv Kild

lang,lage.·
• Erich Gai

1 xon, auth
Orieitted

i • Guido v:u
4 . Donald B

the Illy)11
• I n lientl
• Anders H

I O :ind ti

Dr. 1)<ib{)'s J(>ti,·nid. M<9, 2002 bttp.·//w u•u.ddj.cy.in

A]01(3216|1 e [.ike olileas for gralited Kxby. tliese tu·o re:eurlielb
helpeil k) liring 01)ject-odented prc,grammijig inti, the real u·orld
fur the first time almost 30 ye,irs ago. ti·(,In the highest level of
users :Hid t|kil· iillbmiation niodeling needs 1(7 tle]<A#·est levelb
of syntax. a>mplation. and efficient messilge passing

Looking back un the original work at Xerox. Goldherg litter
Naid it tackled one of the most difficult and problem-prone .steps;
iii software development-identifying term.s and relationships
as understood hy human participants of u particular situation
u·ith thii.se understood b)· a computer.

To [hut enct. Goldberg believed that:

• Interictkv, inarmelital softn·are-developnlent envircinnient> ai,ild
produce a qualitative improvenient in software-ilevel<,pment
procluctivity.

• Software could be designed in autonomous reus.,ble unith,
each corresponding to identifiable entities (conceptual .ls well
35 pli\·sical) in the problem domain that cominunicate tivoiigh
well-ck,fin¤1 interfaces.

• The model. or framen·ork, for how these units work t<,geth-
er represents b{>th a process and vocabulary for talking about
the problem doniain.

• We· stiould tilink about writing softu+are in the context of build-
ing s>· btems. r.idler [hall ili tlie context of black Ixix applications.

As early as 1977. Goldberg. along with Alan Kay, presented the
goals Ibi· the Snialltalk research efforls in a paper entitled -Per-
sonal Dynamic Media" {2EEConplite)- March 1977).She went on
t<) aut|1{)1· :Int| c·(,ailt|1(_}r niaiiy of tlie deftnitii·e tiooks on Stliallt21lk-
80 prognimming including, with David Robson, theseminal
Smalitalk-80: Be Lailgitage alld Its implememation (AddWon-
Wesley. 1989. ISBN 0201136880). as weli as nuinerous papers on
d** wamiMB Gfildliei·g edited 71),Hikton'q/Pe,Nonal trbii-
stations (ACM·'Addison-Wesley. 1988: ISBN 0201112590): coedit-
ed w,th Nlargaret Burnett and Ted Lewis t'isiml Oblect-On-e,ited
Aug/·amming (Prentice Hall. 1995: ISBN 0131723979): and colu-
tlicired 11·ith Kennetli Rubin Slicceedi,42 ti'it/, Ob/ects.· DeciSic„1
Fmmeuu,15./br/4¥#ea.Vanagement (Addison-Weslev, 1995; ISBN
0201628783).

G<,lciberg received her Ph.D. in Information Science from the
t'niversity of Chicago for work carried out jointly at Stanford
University. She also holds an honoran· doctorate from the Open
Universit)· (1'K) iii recognition of contributions to computer sci-
ence education. After more than a decade as a rehearcher and
1.ilic,rittc)17 111:1Ii.Wer at Xerox PARC, Goldlrrg becanr die found-
ing CEO of P:ircI'lace Systems. tkie !ARC spili-off that developed
commercially available object-oriented application-development
environments. Goldberg currently is founder of Netimetron. a
consulting company that focuses on dynamic knowledge man-
agement and support for project-based online cr,mmunities.

Fium 1984 to 1986. Goldberg was prebident of the ACM. re-
cipient of the 1987 ACM Systems Software Award iiking ·ith
Dan Ingalls and Alan Kay, and is an ACM Fellow. She received
PC.Wagrizine'% Lifetime Achievement Award in 1990.

I.ike Golilberg, Dan Ing:ills was an oliginal nlember of ilie PARC.
team that devek,Ix·(1 Sma[Italk. He has been the principal archi-
iect of nunierous Smalltalk virtual machines and kernel systems.
The first of these. Smalltalk-72, supported the work reported in
"PerMinal Drnamic Media." Smalltalk--76, described in ACM's
19-8 Principles of' Programming I.anguages (POPL) proceedings
(and available at http: users.ipa.net: -dwighth. smalltalk St=6
Sm,111.ilk761rograninlingS>istem.litrnl), rvas the first Illoclem %111Ltiltillk
imilenrtitatitin with Illessage s>litax. compact ccinipilecl cocie. ill-
heritance :ind efficient niessage execlition, and it.s architecture oil-
dure, in Kinalitalk-80, the major documented release (,f Smalltalk

r at Xerox. Moit re-

v he designed the
el of the Squeak
1 Smalltalk svstem.
actical Smalltalk
en in itself (For
3 information about k

uk. see

.1 P I
W Itt

mon
S(lue

ftp:.' · st.c>.uiuc.edu Smalltalk/Squeak/docs/OOPSL·\.Squeak.liuit. 1
Ingalls also invented the BitBlt graphics primitive and pop-up *
menus. and was tile principal designer of the Fabrik visual--g
pi·ogramming em·ironnient while at Apple Conipurer,

11,galls rru·eied his Bachelor's degree in physics from Han·ard 2
l'niversity, and Masters in electrical engineerinK from Stanford R
University. He is a recipient of the ACKI Once Hopper Award -
and the ACM Software Systems Award. Ingalls currently works.K
n·ith Alan Kay and other seasoned Sm:11!talkers at Viewpoints Re- 2
search Inc.. where he is working to complete an architecture for j:
modular Squeak content that is sharable over the Internet. He Z
supports an active Squeak community (htrp://www.squeak.org/)€
through his participation in e-mail discus.sions. attention to peri- E
odic releases. and other support at al[levels. He also runs #
Weather Diniensions (hup:/ 'www.WeatherDimensions.coni), ag
company that sells a weather station he designed. -

.Although Goldberg and IIIgalls worked at very different lei·-
eis. the breadth of their collaborative territory is what shaped
the final result. Ingalls says of his technical achievements, ··I
lo,·ed the challenge in efficiency and generality that it took to
make Smalltalk real. but what gives me the most satisfaction
looking back is that we built a serious system that is actually
fun to use. We had a passion, inspired by Alan. to liberate the
beauty of computer science from the barnacled past of ad hoc
engineering." Goldberg adds. ··During the PARC days. the op-
pcirtunity to work with children and other nontedinical users
kept us focused on how to use rigorously what people already
know informally about objects. But the moft thrilling experi-
ence for me was to work with ParePlace custonrrs in both large
and small companies, and see how our technology enabled
them to finallv break the 1)arrier Ix·tween 111.siness Lindet'St:lnding
and .4'tems implementation.

At Adele Goldberg's request 21Ild in Iler nitine, Dr. Dobbk
lounial is pleased to make a grin[of S 1000 to tlie Girl's Mid-
die School (http://www.girisms.org'), a San Francisco Bay Area
all-girls middle school that focubes on niath and technology. At
Dan Ingalls request and in his name. rve are happy to make a
$1000 grant to [he The Sierra Nevada Children's Museum in
Truckee. California. Please join us in honoring Adele Goldberg
and Dan Ingalls who once again remind us that a mix of teel}-
nology. innovation, vision. and cooperative spirit is fundamen-
tal to advancement in soft·ware development.

DDJ

bttp://u,it'u,ddj.com 1),.· 1)*ibb's.Journal. Mar 2002 19

Debug lava™and
C++ code side by side with Forte tools

%.
SortThread.cc

void *(*sort_func[SORT_CT])(void*} 4
{bubblesort, binary_insertion_sort. heapsort, quicksort_stub,
shakersort. straight_insertion_sort, straight_selection_sort};

- JNIEXPORT void JNICALL Java_SortThread_sort_lnum
(JNIEnv * env, jclass cl, jint sort_no) C

if (sort_status[sort_no-11 == SORT_NONEB
sort_status[sort_no-11 = SORT_SELECTED;

if (sort_status[sort_no-11 - SORT_SELECTED) {
int sen = SORT_ELEMENT_NO;
setup_sort_table((sort_no-11, sen);

}

Before:

With

Forte Tools:

Insert your print
statements; Fire-up
the lava debugger...

Stepl

setup_sort_table<)

static void setup_sort_table<int sort_type, int elements) {
int i. j.

SortThread.java

. 1

import java.lang.

*- public class SortThread extends javax.swing.JFrame {
final static int bubblesort = 15
final static int binary_insertion_sort =2;
final static int heapsort = 36
final static int quicksort = 4;
final static int shakersort = 5;
final static int straight_insertion_sort = 6;
final static int straight_selection_sort = 7;

public native void sort_proc();
public native static void sort_num(int i);
public native static void sort_reset<);

/** Creates new form SortThread •/

public SortThread() {
super("SortThread");
initeomponents();

Whetheryou are developing in lava; C++, Cor the Fortran programming language,
Sun's Forte- tools provide a comptete, end-to-end solution for developing entry-to
enterprise-class applications. And now you can use a single tool to efficiently debug
lava classes and legacy programs transparently-eliminating the need to debug
your applications with multiple tools from different vendors. This can save you a
great deal of time and effort, and increasesthe quality of your code. You can also
use the Native Connector Tool, which automatically creates bindings between java
objectsand Cor C++ [ibraries. Fora flash demonstration, go to www.sun.com/forte

*Sun
111 crovs tems

©2002 Sun Microbystenk. Inc. All rightsreserved. Sun, Sun Micro,ysten,5, the Sun to,go. lava and Forte /rerradernarki Or regiwered tradem„ks of Sun M Irosystemi. Inc. in the United St/Le, and orhercountries

T·H·E·M·E

PROGRAMMiNG
3YRICARS A --H -0

BY WILLIAM FINER AND LAURA GOULD

An environment for developing
educational software

PROGRAMM[NG BY REHEARSAL is a
visual programming environment that
nonprogrammers can use to create
educational software. lt combines many
of the qualities of computer-based
design environments with the full power
of a programming language The em-
phasis in this graphical environment is
on programming visually: only things
that can be seen can be manipulated.
The design and programming process
consists of moving -performers- around
on -stages'' and teaching them how to
interact by sending ' cues' to one
another. The system relies almost corn-
pletely on interactive graphics and
allows designers to react Immediately
to their emerging products by showing
them, at all stages of development, ex-
actly what their potential users will see.

The process is quick easy and enjoy-
able: a simple program may be con-
structed in less than half an hour. The

beginning set of 18 primitive per·
formers, each of which responds to
about 70 cues, can be extended as the

designers create new composite per-
farmers and teach them new cues.

We were motivated to undertake this
project by our desire to give program-
ming power to those who understand
how people learn: we wanted to elimi-
nate the need for programmers in the
design of educational software. Pro
gramming by Rehearsal is implemented

in the Smalltalk-80 programming en-
vironment and runs on a large fast per-
sona] machine: the Xerox 1132 Scienti
fic Information Processor (the Dorado).

COMPUTERS AND INTUITION

[n the spring of 1980 our attention was
focused on a topic we called Computers
and Intuition, It seemed to us that newly
available high-resolution computer im-
ages. combined with interactive control
over these images, constituted a new
medium for the presentation of informa-
Mon and concepts. We were particular-
ly concerned with the implications that
this interactive computer graphics
medium might have for education.

We were also thinking about how par-
adoxical it was that the computer was
often viewed as an engine for improv-
tri cognitive and analytical skills while
It might turn out that because of its

Wiltiam Finzer is a consuita,lt with the Sustem
Concepts Laboratorg at the Xerox Palo Aito
Research Center and an instructor and cup
riculum developer in the mathematics department
at San Francisco State University (1600
Holowag, San Francisco, CA 94132).

Laum Gould has been a member of the Small-
talk group at the Xerox Palo Alto Research
Center for the past seven weals. She is now Na-
tional Secretarg of Computer Professionals for
Social Responsibllitj (POB 717, Palo Alto, CA
9430[).

superlative dynamic graphics, its main
new contribution to education might be
in the enhancement of nonanalytical, in-
tuitive thought.

Such ideas were certainly not new.
Even 15 years ago, a few farseeing peo-
ple proposed that computer graphics
would have a profound effect on human
learning. As Brown and Lewis wrote in
1968, "In the same way that books sup-
port man's linear and verbal thinking,
machines will support his graphic and
intuitive thought processes- (See refer-
ence 1.) Similarly in 19691bny Oettinger
wrote -Computers are capable of pro-
foundly affecting science by stretching
human reason and Intuition. much as
telescopes or microscopes extend
human vision.7 (See reference 2.) It
seemed that now we had both the soft·
ware and hardware to realize these
visions.

From these ruminations grew the de-
sign and implementation of a system
called TRIP. which attempted to give
students an intuitive understanding of
algebra word problems through the ma
nipulation of high-resolution pictures,
(See reference 3.) TRIR imp]emented in
the Smalltalk-76 system (see reference
4) on research hardware. a Xerox Alto.
took about two months to design and
four months to implement. It was strue
tured in the form of a kit so that

[text continued on page 188)

jUNE]984 · BYTE 187

In the Rehearsal

World, onlj things
that can be seen
can be manipulated

(tal continued from page 187)
teachers could add new time-rate-dis-

tance problems fairly easily: it included
a diagram checker. an animation pack-
age, an expression evaluator, and an ex-
tensive help system. Members of the
computing profession were impressed
that we were able to bring to life such
a complex, general, graphical. yet
robust and helpful system in such a
short time. Educators. however. were

usually aghast that so much time and
effort were needed to produce a single
system and that the result was, in their
view so hmited.

After we had pilot-tested TRIP and
were thinking about what project to take
on next we realized that our interest

had shifted up one level. from the ac-
tual design of educational software to
the design of a -design environment"
for educators. As our colleagues were
busy building.the Smalltalk-80 environ-
ment (see references 5,6.7. and 81, we
undenook the task of extending and
reifying that environment to allow cup
riculum designers who did not program
to implement their own creative ideas.

DES]GNER CONTROL

The work described here is based on
the belief that it should be possible to
place the control of interactive com-
puter graphics in the hands of creative
curriculum designers, those with an
understanding of the power of such sys-
tems but not necessarily with the abil-
ity or willingness to write the complex
programs that are necessary to control
the systems.

Design and implementation constjtute
two phases of a feedback loop. In most
design situations, in which program-
ming is a separate and specialized skill.
the designer must somehow convey em
bryonic ideas to a programmer. perhaps
by sketching on paper or talking. Then
the programmer goes away to write a
program so that something shows on
the screen to which the designer can
respond. This process introduces inter-

188 BYTE- JUNE 1984

REHEARSAL

ruption, distortion. and delay of creative
design.

In the creation of educational soft-
ware it is particularly important that the
design decisions be made by someone
who understands how students learn
and what they enjoy rather than by
someone whose expertise is in how
computers work. Too much of the edu-
cational software we see today has a lot
of fancy graphics but little real learning
content. We hope that if educators have
more direct control of the computer.
they will create high-quality software.

In the environment we describe here,
the designer begins by sketching the
description, not in words or on paper,
but directly on the computer screen.
This sketching is not free-form but is
done with the aid of specially provided
graphical entities. If the designer's ideas
are rather vague the process of sketch-
ing may help to define them: if the ideas
are well defined, they can be quickly ac-
cepted, reiected, or improved. In either
case. nothing is lost in the translation
process. as the only intermediary be
tween the designer and the product is
a helpful, graphical computer system
that gives immediate response. Since
there is no waiting. the designer is in-
volved in a collaborative, creative pro-
cess in which there is minimal invest-
ment in the current production: thus a
poor production can be rejected quickly
and easily and a good one pursued and
improved.

THE REHEARSAL METAPHOR

A large, supportive design environment
needs a potent metaphor m which the
unfamiliar concepts of programming will
have familiar. real-world referents. Our
goal was that the metaphor would serve
as a guide to the designers without get-
ting in their way

Smalltalk is an object-oriented lan-
guage. This means that all the basic ele-
ments of programming-strings, num-
bers, complex data structures. control
structures, and procedures them-
selves-are treated as obiects. Objects
Interact with other objects by sending
messages Logo is an example of a pro-
gramming language with one object. a
Turtle, which can be sent a limited num-
ber of messages such as FORWARD 20.
Smalltalk has many kinds of objects that
respond to a wide variety of messages.

Our immersion in Smalltalk led us to

extend the obiect-message metaphor to
a theater metaphor in which the basic
components of a production are per-
formers: these performers interact with
one another on a stage by sending cues,
We call the design environment the
Rehearsal World and the process of
creating a production Programming by
Rehearsal

Everything in the Rehearsal World is
visit)le: there are no abstractions and
only things that can be seen can be ma-
nipulated, Almost all of the designer's
interactions with the Rehearsal World
are through the selection (with a mouse)
of some performer or of some cue to
a performer. Assuming that a designer
has the erm of an idea, the creation
of a Rehearsal World production
Involves

• Auditioning the available per-
formers by selecting thejr cues and
observing their responses to deter-
mine which are appropriate for the
planned production. If a production
involves getting the student to write
stories using pictures, the designer
might choose a text performer and
a picture performer because the
former responds to the cues setText:
and readFrom]<eyboard and the latter
responds to growBN: and followrhe-
Mouse.

• Copying the chosen performers
and placing them on a stage
• BIocking the production by resiz-
ing and moving the performers until
they are the desired size and in the
desired place.
• Rehearsing the production by
showing each performer what ao
tions it should take in response
either to student (user) input or to
cues sent by other performers,
• Storing the production away for
later retrieval.

A SCENARIO

Static words and pictures on paper are
a poor substitute for direct experience
with a dynamic interactive computer
design environment. Nevertheless, we
shall try to give the flavor of what it is
like to use the Rehearsal World through
a simple scenario involving two novice
designers, Laura and Bill. Suppose that
these designers are interested in lan
guage curriculum and would like to

[text continued on page 190)

Send 2000
Letters Per Hour via

Your Personal
Computer -

W ChargeS Pmt
Delivered in
48 hours Alf
or sooner at

26 cents a piece -LOI

using MAIL-COMI ,-%

uter' X.:
1501 N. '002elork

It:In Orill8Bea

2.COMEL

Presenting E-Com

Two years ago the
U.S. Postal Service

quiet]y announced the
E-Com® Service,
enabling specially
equipped personal

MFitt<Fi·*\# computer users to
bypass costly manual

mail preparation, by electronically submit·
ting their messages and mailing lists
directly to the Postal Service via modem.

This high speed computer originated
mail arrives at its destination within 48
hours-often less-in an attention-
grabbing blue E-Com envelope.

Announcing MAIL-COM.
Only from Digisoft Computers.

MAIL-COM is powerful software you
can use with your personal computer to
access E-Com. With your personal
computer, a modem and MA]L-COM
you cari send from 200 to 2000 letters
per hour for just 26¢ each. Typed,
addressed, folded, inserted, sealed and
delivered. Complete.

MAIL-COM is the complete integrated
software available for E-Corn operation.
It's easy to use. No special training is nec-
essary. And since Digisoft Computers
developed MAIL-COM in accordance with
U.S. Postal Service specifications, users
are guaranteed certification for use upon
purchase of MAIL-COM software.

MAIL·COM is the easiest and most
economical way to do your mailings.

MAIL-COM includes a complete letter
editor and address maintenance program,

as well as communications software. _2.
Directly interfaces with dBASE][,
Wordstar, Mai]Merge and other
databases.

Each letter in your mailing can
be identical or all can contain
variable insertions. MAIL-COM
operates all the features offered
by E-Com.

Thousands of Uses.

If you have need for fast, economical
mass mailing capabilities, MAIL-COM
puts you and E-Com together.

Use it for

. ® new product
announcements,
invitations to

press events,
invoicing, fund

raising, collection, bulletins to
your sales force, new business prospec-
ting, reactivation of customers and much,
much more. Every department in your
company will have use for MAiL·COM.

Don't Delay

With MAIL-COM you could be saving
time and money or fast, efficient E-Com
letters. MA[L·COM software is available
for the IBM PC, PCJr., Kaypro, CP/M,
Apple Il and other formats. Order today.
Call 212-734-3875.

MAIL:COM

Digisoft
-- Digisoft Computers, Inc.

(212) 734·3875
Cirde 105 on inquiry card

Retail Dealer
Inquiries Invited

Digisoft Computers Inc.
Attn: MA]LCOM Marketing
1501 Third Avenue
Mew York MY 10028

2 Yes! lwant to eliminate the 6 costhest
steps En preparing my organizations business
nia i I Please RUSH my MAIL-COM software to
me immediatelv

I'll need software [or:
U IBM PC ($195) L CP/M ($195)
C] Victor ($195) (specity disk format)
U Alpha Micro ($495) C] Other (specify)
E] Apple 11 ($195.co)
E] My check or money order is enclosed
(residents of New York State add sales tax).
U Charge my i] Visa or 21] MasterCard:

Account No F•p. Date-

Name

Arldreff

City

State 7ip

Telephoner k

: [983 Digisoft Computers, Inc

The E-COM® Service is a registered trademark of the U.S. Postal Service. MailMerge and WordStar are registered trademarks of Micropro International. dBase 11 is a
registered trademark of Ashton·Tate, Inc. IBM PC and PCJr. are registered trademarks of IBM Corp.

--

REHEARSAL

(>135%193 jieWhenever you want infor,kiallon about ar.ything ori Uie screen, pleaLe point at ZE and pre.. 5»10*32 440»
the middle mouse button (this 13 c:alled le N.iME button) The name of Lhat enlity will then **46@Wh#*iappeal ancl will follow your yacuse until you press any mouse bution. If you drop le rana %%*00/4-'#-*"Fl*on either ihis promp,Ter'i box or on 11·ie HELP button below, Uie encty will describe ilself

STAGES|%®iHELP **RESHOW 12% CLEAR *PRINT * QUITil
=21§024.Gnmimman.22 Kj€4* :Mig 32*ma.%0#4£#s*** BAR* 691* =Mje-*E.. aMM Bj#*14$10*59 ,%-:}5220*j..31%89&44§0452§.2.6.t&&40}EN,&. 6.22# A- 333 %ji<3%357-

22259

Figure I: The control panel and the prompter's box, showing an initial help messige. The icon in the corner is an eraser.

(text cwitinued from page [88)
make some sort of word game. We'll fol
low their efforts. skimming over many
of the details of their interactions with
the Rehearsal World. with an eye to
understanding some of the design deci-
sions of Programming by Rehearsal
itself. Although one person can manage
both mouse and keyboard quite well,
we'l] assume that Laura is in charge of
the mouse and Bill is typing on the key-
board. in what follows, the paragraphs
describing the action of the designers
have been italicized.

Bill and Laura know from their brief
introduction to the Rehearsal World that
all of the performers are clustered
together in troupes waiting to be audi-
tioned for parts in a production. They
know also that the Rehearsal World in-

cludes a help facility that gives
assistance and descriptive information
about how to proceed.

Laura starts by selecting the HELP
button from the control panel at the
bottom of the screen (see figure 1).
Selection of the HELP button causes the

"prompter's box" to fill immediately
with -procedural heip" suggesting
something that the designers might
want to do next. When they select HELP
initially. the procedural help message
that appears explains that they can
always obtain 'ldescriptive help" about
anything that they can see on the
screen.

The fact that everything that can be
seen is capable of sel-descripton is an
important component of the Rehearsal
World and one that makes it accessible

She finds a Text performer in the Basic
Troupe that she wants to audition to
learn what it can do. Laura starts by asle
ing it to describe itself and is told by the
he}p system that if she selects the Tat
performer. she can edit the text that it
displays. This editing is the default ac-
tion of the lat performer. Laura and Bill
spend a minute becoming familiar with
the simple editor that the Text per-
former provides

The Rehearsal World uses a three

button mouse for pointing at things on
the screen. The SELECT mouse button
causes a performer to execute its de-
fault action, The NAME button always
causes the name of the entity to appear
at the cursor point if this name is

* * PROGRAMMING

* 97 -le,-': 3.i

* E . bi,clroupe
Al % 0] tfc/r.up'

. 11 [e.&*

* m' or.... to I ' f F O I | 000000
p Tili'Ti J. 14 4.,] 1

1 I 10 r

stai L srop
B ** 1 I 1

* My Eligo,f. 4
step linder

A EyeUAL

lit#:: i hello

dropped in the promptefs box, a de-
scription of the entity appears. Finally.
the MENU button raises a pop-up menu
for the performer, enabling the designer
to send cues to it. In interacting with a
finished production, only the SELECT
button is used: that is. the NAME and
MENU buttons are not needed by the
student user.

Laura uses the MENU mouse button
to see the category menu for the Text
performer (see figure 3). Certain com-
monty used cues are at the top of this
menu in lowercase while others are

grouped under categories in upper-
case Most of the cues and categories
are shared by all performers. Only the

(tut continued om page 1921

BY REHEARSAL *

| 4

1·104, f ,

*) 1:1_1,. i twen#41 p -
AdanAL

9:45: /3\

Plor.i

to nonprogrammers.
When they ask for descriptive help

about the STAGES button. they learn
that if they select the STAGES button.
they will get a menu of troupes and pro-
ductions. Laura selects the STAGES but-
ton which presents her with a menu of
troupes and productions (see figure 2)

* ilk, E51€Tr,>]:·?The 29...T:oupt ur:ten we,bree #eilea *@1*remci R
TeN,/ro,mat Ah,Gh is /2 i.hew /.d aiumpulaw Allip* Et -4 - lmFI : . ," "*41 -orl bult),12 or the $¢,eer. ShT Un um m /221 '-here 1 al.0 0 Nllatc. 4 '1' .1. 'Aftti--/ I.--/. Cli, do,1,11?IN el].,JJ 3 2 ,1[er perrorffer w},Lrb cal .'c:,i biled wirh

* STAGES| HELP 6 r IRESHOW |CLEAR PRINT . QUIT

Figure 2: The elltire Rehearsal WorM theater, showing the STAGES menu at the left. all
the available Doupes, and a descriptive help message about the Basitfroupe.

190 BYTE · JUNE 1984

CP4

rx

3Oy
*Mt " ..'". .'

I. .1. £

You can count on 3M diskettes. Day after day.
Just like the sun, you can rely on SM diskettes every day At 3M,
reliability is built into every diskette. We've been in the computer
media business for over 30 years. And we've never settled in.
We're constantly improving and perfecting our product line, from
computer tape and data cartridges to floppy disks.
3Mdiskettes are madeat SM.That way, wehave complete control
overthe entire manufacturing process. And you can have complete
confidence in the reliability of every 3M diskette you buy.
Look in the Yellow Pages under Computer Supplies and Parts for
the 3M distributor nearest you. In Canada, write 3M Canada, Inc.,
London, Ontario. If it's worth remembering, it's worth 3M diskettes.

Circle 33] on inquiry card.
3M hears you...

Ba'i'Troii"

fijildrenze "1

Ir NAME&TITLE 1
FONTS

FORMAT M.
DISPLAY

.

a

REMOVE

4 -+ + 7 4 [CHARACTERS EN
1% DICTIONARY f.].1

Figure 3: A Basimoupe, containing a
Pxt, a Number and a Counter. and a
categorj menu for the Text performer.

(text oitinued from page 190]
categories at the bottom of the menu
lin bold) are particular to the Text
performer.

In its current prototype form. the
Rehearsal World contains 18 primitive
performers, each of whjch responds to
a standard set of 53 cues and an

average of 15 cues particular to that
performer. To understand what this
means, imagine a BASIC with a thou-
sand reserved words. This complexity
would be intolerable without a hierar-

chical organization and a simple way for
the designer to browse that organiza-
tion. The Smalltalk-80 system provides
a window, called a Browser (see figure
4), whose visua] structure reflects the
hierarchical organization of the objects
and methods in the system. [n the Re
hearsal World. functionality is organized
around performers grouped together
into troupes: the cues that each per-
former understands are grouped into
categories. The result is that designers
never have to scan too much informa·
tion at a time, and. because each level

in the hierarchy has a different screen
appearance, they never lose track of
where they are in that hierarchy

Our novice designers proceed to re
hearse the Text performer by sending
it various cues. Laura tries ¥nove and resize
and gets a pleasant surprise when the
fonts change so that the text always fits
within the performer's borders. She sel<
eds the SET category and gets a cue
sheet showing the list of cues that have

I92 BYTE • JUNE 1984

hello

1 000000 I0

POINTS <
LIST

BUTTOI.

SET

/9-3

REHEARSAL

to do with setting text (see figure 5)
Some cues. like sefrat. take parameters
that are indicated by parameter lines
next to the cue They use the help sys-
tem to discover that they can type any
string as a parameter to the set\kxt: cue.
Bill types goodbye on the parameter
line. When Laura selects the cue. <good-
bye appears in the Text performer.

They discover through rehearsal that
the senumbled cue produces a random
permutation of the characters in the
text. They enjoylooking at the different
bizarre configurations that iumbling a
word can produce and decide to ex-
plore no more. but to make a jumble
game as their first design exercise. As
often happens. interaction with the de-
sign environment itself leads to a
creative idea.

One would not expect jumbling of text
to be a basic capability of a program-
ming language. A programmer who en-
countered a need for such a function

would expect to write a simple routine.
In a design environment, however, we
expect to find a great deal of high·level
functionality chosen with care by the
implementors of the environment, so
that the designer's attention is not
diverted from the design task itself.

Laura and BIN's initial idea for their
simple production is to use two lext
performers. one to be placed above the

 Rehe=™-Corel
Rehearsal-Con,rollers arcleView
Rehearsal-Buttons Picture

Rehearsal-Clocks PictureBoxView

Mt<hbAEW#**0*0**:i Ficuirecontroller
Ine®i*17*i@t I I i-) W liI I,

Rehear551-Kernel Position

Rehearsal-Troupes Posiuonview

Rehearsal-Stages RectangleView
PerformerWorkshop
Kernel -Objecu (13;33

reverie

realForm reverse.

display Form reverse.
self displa*NewPicture.
self changed

ME 2$?220@0*@*a#**0*09*.AN@{%'

Figure 4: A Smalltalk browser showing the I
View class. its ALIER categor!£ the message
method associated with that message.

other on the stage The top lex t is to
contain the word to be jumbled and the
bottom one is to act as a soft button (a
button on the screen which, when the
student selects it with the mouse.

causes something to occur). In this case
its action will be to cause the iumbling
of the top Text (see figure 6}. Laura uses
the copg cue to put a Text performer on
an empty stage

Any existing performer can be copied.
Thus each performer acts as a pro*
totype from which other performers can
be generated: each new copy will have
exactly the same characteristics as its
prototype.

Laura and Bill use the resize cue to
make the kt performer fill most of the
top half of the stage. and then they copy
it to make a second 7*xt performer
(exactly the same size as the first) in the
bottom half of the stage Bill types the
word JUMBLE into it as this is what they
want the user to see. With the Necking
thus completed, they decide to give
each of their performers a mnemonic
name that describes its purpose. they
ca]! the performers jumbledWord and
jumbleButton. Now they are ready to
define the action of the bottom 'Iat.

which they want to act as a button.
Any performer can become a button.

By turning a performer into a button,
(tat continued on page 194)

%%*%*R =./1
milalize & release & 01 magnifyX:andY
displaying reflectOnAxis:

transformation ®-=r==1 ii §il§MMERMIMMij
accessing rouit,By:
pointa
copying

Clearing
GET & STORE

MOVE

M

*Mill#&228§%*E -illialial.

tehearsal-Graphics categora the Picture-
ramed reverse from that categorg. and the

Circle 335 on inquiry card. -

./ZE,Whaimm#69/'.; -·1,/39$4/,2,4."try,Z,94:3%1
0

1 1' 1 ' 1 .1. 1

. . 1

lt'sin aclass hy itself.

fal./../=0--0.-.--",/0-
30...'-=00.--*.=

For about 11:111tile cost ofother Unin

terrtiptible Powi·r Systinh, >·ou can
now get the same degree ofprolection
u'ith oili- Powerinaker Micro EPS. This

remark;ible new sYstem climinatch com-
puter problems causcd by blackouts,
brownouts. volige sags iii·id power-line

 norse
Providing up to 75 niinnics of con-

tinuous comput·ir-grade power, our
Powermaker Micro 1 FPS is compatible
with microcomputers and PC's. It's
fully automatic, mainten:ince-free,
portable and compact. It fits neutly
alongside or under your desk or work-
station. And because you can't always
tell when you've lost primary power,
our little UPS even fuatures an:iudible
line-loss alarm.

But best of all is the price. The Power-
maker Micro UPS is priced right and i.4
ready for inimediati· shipment. Find out
more about our Powernmker Micro iII'S

Call us at (619) 2794)831, orcontact
vour local Square D distributor.

1 10•AZ
Excettence in C¢impliter Power

SQUARE¤ COMPANY

:

1

REHEARSAL

PS;*::taw:;S:*AM*)**MMA&%%:§$:W:&%%48jm:::::*MS*AMMi#4#immtk:::::$$S:r'·-"·-'-"·-'--' Ver#*EMWmliBT- -, - V W„ L W< <-
1 -Text- SET

&*1222K»ra>:m©
 AnEmpt,Stage

jill>>

.

set·Text·:*,.6 ' goodbye;
*ti 1 03

setText.FromKeyboard 1 legbc ily iii1 mi.setReverse R m :0 --v'-'-'--'---IJ " 5

setjumbled 4%
set.Empty / JUMBLE 111

1 Eli
Figure 5: A cue sheet /or the SET catego?v of a Text performer. The string 'good®e' has *% *€E

been typed on the pammeter line of its fint cue. ** *E

IIIII

Mt -JumbleBut.tori- BUTTC
m + becomeAButton

 18 codeForButtonAct.ion:..4 [

f,179,0 Figure 6. A stage containing two Text
L-=+4, performers, Me top one showing a humbled

M word and the tottom one acting as a button
E which the user con seled to cause the
t.* jumblind to occur

% 88 performButton.Action

Figure 7. Th€ cue sheet for the BUTION I
lumbleButton. The square bruckets M the j
write some code between them.

11 -JumbleButton- BUTTO

» becomeAButton
%12: God.eyorButtonAction

k* [JumbledWord set

* DerformButton,Action

Figure 8: The code. wrillen bj watching, whi
do whenever It is selected 4 the user.

(tat amtinued from page 192]

the designers get to decide what will
happen when the user selects that per-
former One of the categories on every
category menu is BUTTON its cue sheet
contains the cue beemeABLittoN Mee
fIgure 71

After Laura sends the tecomeAButton is
cue to the lumbleButton. it no longer
responds·to selection by providing an
ecitor: instead. it simply flashes. It Is
now a soft button on the screen. but it

has no action. They must show it what
to do

They do this by using the cue codefor-

194 BYTE · IUNE 1984

11<[

85-IB:S;::22.:61:k: 8:31226:-:R: 6:2%kn:/2-6:6SR/ / R:6: Sflat6%

itegory of the performer named
mrameter Zine indkate that the designer sfloutd

Jumbled, J =%$

8$3

*8 %>8¤ 2:*3;*: 8f*@@¤0 :*::2*:0B*:***@*:0k*:*8**

ch indicates what the JumbleButton should

ButtonAGLion:Il to which every performer
responds Bill and Laura understand
that they are expected to provide a
block of code between the square
brackets to describe the action that
should occur when the user selects the
Jumble Button. The action they want is
very smple. they just want the jumbled-
Word to receive the senumbled cue. Bill
know.s that he does not have to type the
code: instead the Rehearsal World will
"watch" while they show it what to do.

To the left of each parameter line is
a tiny icon representing a closed eye.
When Laura selects it. the eye opens to

indicate that the system js indeed watch-
ing. Then Laura sends the senumbled cue
to the JumbledWord by sejectlng jr. The
code Jumbledword setjumbled ap<
peers within the square brackets of the
codeForButtonAction:l] cue of the jumb/e-
Button. and the eye closes again Bee
figure 81.

1\vo significant obstacles to learning
a programming language are mastering
the language's syntax and learning the
vocabulary In the Rehearsal World, the
designers rarely have to know either the
syntax or the vocabulary as most writ-
ing of code is done by watching. While
the eye is open, the designers rehearse
a performer and the system makes a
record of this rehearsal. The Rehearsal
World's ability to watch. in combination
with a mouse-driven interface, means
that the designers do remarkably little
typing. The designers know whether or
not the code is correct not so much by
reading it but by observing whether the
effect produced on the stage is the
desired one.

immediately after Laura sends the
codeForButtonAction:I I cue she can select
the newly defined button to see if it
behaves as expected. Each time she se}-
eds the jumbleButton. it flashes and
the jumbledWord lumbles Its text.

In a traditional programming environ-
ment, the programmer moves back and
forth between programming mode, in

(ted cont,lued on page 196)

am PUTER WAREHOU5E
CALL TOLL FREE 1-800-528-1054

PRINTERS

Blue Chip
M'%25'X52:':'2'NNES::2:Z:E:: 3*99

C-Itoh
A10-20 $499
F lo Par=[orserial . $935
55 CPS Serial or Parallel $1319
8510 paralle!(prowriteo $ 329
8510SP $455
851OSCP $525
8510 BPI $415

Computer International
Daisywrite 200Ow/481< $985

Comrex
¢82 $449
CR 2 Keyboard $ 1 5 0

Datasouth
Dt;180 $1150

[SANYO* EPSON SYSTEMS-
DUAL DRIVE S SINGLE DRIVE
SYSTEM 1525 SYSTEM s1175
SANYO MBC-555 • SANYO CRT-36 SANYO MBC-550 • SANYO
HERES GREEN MONITOR CRT-36 HI-RES GREEN
EPSON RX-80 WordStar • CalcStar MONITOR • EPSON RX-80
• Mailmerge • InfoStar • Spell Star WordStar• CalcStar
• MS-DOS • Sanyo Basic • MS-DOS • Sanyo Basic

Above with Sanyo CRT-70 Above with Sanyo CRT-70
Color Monitor S1939 Color Monitor S1629

D8220 $1499

Diablo
$815

$1699
BM $2075

$559
$559

Epson
All[}rinter Models Call

Inforunner
em . 6249

IDS
Microprism# $375
5.132 81310

Prism 132 Color 6 1 500

Juki
5100 Call

NEC
PC 8023A . .. S 385
PC-8025 $635

$775
$775

2050 $899
3510 . $1365
3550 . $1710
7710 $1900

Okidata

VIDEO TERMINALS
ADDS
2 Green . $490

vie„pointso . 8619
Altos

Smartll Call

Hazeltine
Es,)411 S475
Esprit 11 , $485
Esprit ill $575

Qume
ov, 102(.reen $535
OAmber $550
OVTHSGreer · 6840
OVTTer $850

m== 1188
Televideo
910+ . $550

$515
924 .. 3635
925 . $700
950$900
970 $985
Personal Term,nal$410

Wyse

MONITORS
Amdek
de0300 $130

. $145
31OA . $160
Cololl P[us $275

Princeton Graphic
u»12 6499

Taxan
12" Amber $125

Zenith
12" Green Screen $ 95
12'J Amber Screen $95

DISK DRIVES
Rana
Ehtel $215

$345

$;10Co,itrolier(w/Dmeonip) .. $65
1000 w/DOS (for Atar,3 6 05

DISKETTES
Maxell
410 Holy 100 . 5189
MD-2(Qty 100) $295

82A
83A
84P

84S
92

93

2350P

241OP

Panasonic
1090

1091

1092

Qume
11,40 w/interface

11/55//Interface
teller Pro 2OP

Letter Pre 208 .

Silver Reed
FXP400

Wyse 50
Call
Call

Wyse 1 00

Call Wyse 300.

Call Visual
Cal| Visua!50 Green
Call Visual 550reen
Call
Call Zenith

629

Call
Call QUADRAM
Call Quadlink

Ouadboard 64K
Qi,adboard 256K

$1369 Quadboard 1164K.
$1569 OunrlhoArd 11 PFK

COMPUTERS
Altos

Allmodels Cal]

Columbia call
Eagle

PC-2 w/Monochrome Monitor $2699
Spirit-2 .$2525
Spirit XL $3675

NEC
PC-8201ACPW . $589
PC 82(}BA 321< Ram $289
PC·8281*Recorder . 489
PC 8201 Aa) Battery Per.k $ 1 5

Sanyo
M BC 550 System $1175
MBC-565 System $ 1 525
115004/9000>rinler .. 81575

Televideo Systems
$4210

803 $1765
803H Call
1603 . $2150
806ipo . .. 84599
800 Aluserstation) . S975

$1525

Zenith

CXP500P
EXP500S

EXP550P
EXP550S

Star Micronics

$609
$609

Call
s385
$420
$480
$499

11
&

$489 Scotch
$680

$1020 744-0{Qly 100)

Elephant
S/SS/D[QI, 1001$619

$709 D/S D/D [Oly 100)

$644 MODEMS
Hayes

Smartmoden
$449 Smartmoden 1200
S265 Smartmoden 1200B
$450 Micromodem 1 0

$265 US Robotics$450
212* Autod,al

Password 1200
IBM PC Modem

Z 100 Lo w Profile $2625
$200 2-100AUl-Inone $2800

2 150 Single Drive Call
$155 Z 150 Dual Drive .. . Call

Z 15010 Megabyte , Call
$235 Z·160 S,ngle Drive Call

Z-160 Dual Drive . Call

COMMODORE
$199 64. $227
$485 ..$239
$430 1702 Monitor · · $239
$235 $274

1530 Datiselte(onlyw/64) $60
$420
$310
$320

Order Line: 1-800-528-1054

Order Processing & Other Information: 602-954-6109

==2: .. 6
Delta 10 Ca
Deitals Ca
Radix. , Ca

Tally
MT 160 L w/Traclors ..Ca
MT 180Lw/Tractors · Ca

ComPUTER 2222 E. Indian School Rd.

Phoenix, Arizona 85016

WAREHOUSE
Spirit80 .Call

Toshiba
F1350 Serial or Parallel . . S 1429
1351 Serialorparalle! 61579 Store Hours: Mon-Fri 10-5:30 Saturday 9-1 r-1 fi$775

Transtar Order Line Hours: Mon-Fri 8:30 -5:30 Saturday 9-1 6
120 Serial or Parallel . 3395 Prices reflect 3% to 5% cash discount Product shipped in factory cartons with manufacturers warranty Please add
130 Serial or Parallel . $549 $800 per orderior UPS shipping Prices&availabilitysubjecttochange without notice Sendcashlerscheckor
T315 . $449 moneyorder .all other checks will delay shipping two weeks

REHEARSAL

JumbledWor,2

I am a Text performer, I can be used to make headings, show instructions, or act .53 a labelled
button Try the cues in my SET caezory T© experiment with different. ways of seuln 2 my text,.

accept

Lane el

Jun·ibled Word

I am a word whose letters are to be Jumbled.

Everr,ime lie user ,elect,5 the JumbleButtori which iz below me on the stage,
my text w111 be rejumbled,

 accept
I cancel

Lial

K422+463=&-<4=x™:7/,M,v%-.t2/6:<exe*<44,!w.vhxw4MM6w44·.4.1MNO:UUM*·::!46UX+4«Ke*44!4+X45:¢,c«¢«€«::4,%,c,ccix€«cci:+:-W

Figure 9: The default comment assodated with everg Text performer 19* and the dited comment to be associated 04 with till performer
named JumbledWord (96)

Itat cont:nued from page 1941
which typing code is the dominant ac-
tivity, and running mode, in which test-
ing takes place Iii Programming by Re
hearsal, the designer does not feel any

** JuinLLL
k# resize /// . .w. vE

*03@ re=,h ow 11 1 i gyller»e

2% de<troy 28
/ '21831·iup ,10

30
«NAD.·IES.TITLE *

Jumble 1

shift from one mode to another

Even though their production is very
simple Laura and Bill decide to docu-
ment it They have already given the two
Text performers appropilate names:

.....6,&*/3//49 : *:(49 A>kJaimhac % Ge.i -&8 *u:anco pRal:/:Rcb.#

1....3.% 9%?11*Ill....
uw,v -vv-v3 612(EA".0/'**1

:lill/emisill#Villilillim

jumbledWord and lumbleButtton. They
use the help system to get the default
comment for the JumbledWord and edit
jt to be more specific (see figure 91.

As a designer creates new produc-
tions and new performers the Rehear-
sal World becomes more complex. The
default descriptive help messages can
be changed by the designer by simply
editing what appears in the prompter's
box and selecting the ACCEFr button.
This provides a quick and pleasant
method for providing descriptive com-
ments for productions, performers. and
cues.

It takes our two designers less time to

* Un r 0 < J UMBLE I f€*44*lf<9< produce their first jumble game than iti 4,@**f224*4%* takes to read about it. A/though they
A . **91,0. have some ideas about how to make them / SIDES/ + game more interesting and educational-POINTS te
&41 %*9?02%28%82

k<fiRBME3*ackan ':... :2:= W: Q 32:'.'Res....:Q: --;-Se:.»v»-
* BUTTON «*%%*40*-Jumbiel- STORE \11¥44 stage itself that must be instructed to
2 STORE *535*%*ELS #ve I#
 PROT ECT 02*. storeWilliName:64 'Jumble l' 41* category menu and one of its categories

4**
do the storing. The stage has its own

0% ACCESS °*%20
1.1 =10. lillillpf*.s,,16*i.&1*ZE:,i,1 FF is STORE. Theystore thefrefforts under***%*21*=***24***4*4***:& the name lumblej (see fjgure 101
0]@2 .;§*9*%8 A.Ii'$/P'"I.'.*4*4.4 4.'/mu No fixed set of functions provided in
/, IIWITIALIZE : 1*¢* 7.*WY'le-A#312970%1%@t#*4 'tillt/%91..64j.&4-,6w6QJZ,:U J,%< a design environment will ever be satis- CONVERT f* CUES ----- factory: the designers wILIalways run upb°*4§**** against the limits of that set and wish%„44*42%%*44*2232%%*%3*%%**%%%1%*ia for more capabllities The fact thatp..%.9.20;%·.0,4.*·/*64..9{84*'*4%*02*%2*gimi@*0%*@f&=24:4*$*2*2%%%&11@3&.MEN@@%11* 4®40*ada stages understand cues suggests one of

Figure 10: A stage named Iumblel; its a categorg menu and cue sheet the mechanisms for extensibility in the
tor its STORE category. Rehearsal World: every stage can be

(tert cont,Mued on page]98)

BYTE · JUNIE 1984

FEEL AT HOME WITH

Thf

lan
likE

D

plain english

Compare Plain English to any other language, as shown in the
charts above. Straight forward plain english commands, using
nouns and verbs are all that are necessary to create even the
most sophisticated programs. Eliminate the complexities and
rigid structures of the old traditional languages.

PERFECT FOR FIRST TIME PROGRAMMERS
Simple plain english statements are used to
execute commands such as graphics, colors,
sound and many more. An easy to understand
TUTORIAL and helpful REFERENCE MANUAL
(written in plain english by the way) will allowanyone to learn Plain English in as little as '5*0
four hours. e

3 first programming
guage that talks
3 you do!

IDENTIFICATION DIVISION

PROGRAM-iD

'EST
ENVIRDIMENT DIVISION

CONFIGURATION SECTION
SO UHCE- COMPUTER MC

AMOUNT . 0/.Cr-COMPU.EA RMC
INPUT-OUTPUT SECTION
f!LE-CONINDL

SELECT AR-MASTER ASSIGN TO RANOOM /u/MA//mad
hall me uslom' number? UNGANiZATION IS INDEXED

]MER NUMBER ACCESS MODE IS DYNAMIC
h,s le .51omir s name' HECDHO kEY IS CUS-OMER NUMBER

i DATA DIVISION
rpit SECTION
7 AR-MASTER LABEL RECORDS ARE STAND ARO

hal,5 Ihi C Sele and Lp Code' El AR-REC
WTATE ZIP 05(USTOMER-NUMBER Plc *14]
hlisihi cusl*,ler $ phon@numul? 05 CUSTOMER NAME P/C X)2&
HONE NUMBER 05 CUSTDMER--ADORESS Me '40!

05 CUSTOMER--CITY-STATE -aP Plc X1401
HLYPAYMENY AMouNT 05 CUSTOMER-PHONE PLC)101
yUMBER In Mle BCCOUNTS RECE,YABiE 05 CUSTOMER-PATMEN -AMOUNT * 90,

 WORKING-STMAGE SECTION
I OCEDURE DIVISION
 RESIDENT SECTION 1

STI-UP

OPEN DUTPUT AR-MASER
looP

DISPLAY ENTERCUSTOMERHUMBEAOR TOEXIT
ACCEFT CUSTOMER--NUMBER,PROMPT
IF CUSTOMER-NUMBER GD 10 END-OF-JOB
DiSPLAY ENTERCUSTOMENNIME
ACCE,q CITOMER-NAME PROMPT

2 DSPUY ENTERCUSTOMTIIADORISS
 ACCEPT CUSTOMER-ADDHESSPHUMPT

OSPLAY ENTERCUSIDMER CHY FAIZIP

ACCEPT CUSTOMER-CITY-MATE--21FPROMPT
DISPLA¥ ENTER. TELEPHONE NUMBER ,
ACCEPT CUSTOMER -PHONE PHOMPT

 DISPLAY ENTERCUSTOMERPAYMENTAMMTACCEPT CUSTOMER-PAYMENI-AM0UN1
WRITE AA-REC INVALII] KEY GO To 8AD-ADU
DISPYAY CUSTOMER NFCORD SAVED
GOTOLOOP

8AD-ADD

DISPLAY NVALID CUSTOMER
GO K LOOP

nglish CLOSE AR-M»STER
END-OF-JOB

S-Of AUN

Cobol

FREE ACCOUNTING SOFTWARE.

For a limited time only, your Plain English package will include
four accounting programs: Accounts Payable, General Ledger.
Payroll and Mailing Lists. These programs may be customized by
F" to meet your requirements.

AVAILABLE TODAY AT YOUR LOCAL COMPUTER
RETAILER ... PLAIN ENGLISH runs on all PC or

MSDOS personal computers including Tandy's Model
2000 and requires only 192K memory and one
320KB floppy drive. You can also contact us

directly for additional infor·mation, dealer
inquiries invitedIgish AVAILABLE SOON ... Spec al ser es for
software developers including Unix versions.

Systems Inc.a product or Conimon Language

100 E. SYBELIA AVE. SUITE 375 MAITLAND, FL 32751 (305) 628-5973
Circle 64 on inquiry card IUNE]984 •BYTE I97

LIST ACCOUNTS RECEWABLE 42 hk
10 REM #-ACRECORO CUSTOMER NUMBER
20 REM I--CUSTOMER NAME AND ADDRESS LOAD PROGRAM-- CUSTOMER NAME
60 DIM 8$(15)/DIM C$(20}/OiM DSI20]/*6$(8,= U
O J=U/Ofl 00 CUSTMST.2

ADDRESS

CITY STATE ZIP
40 80800 400

TELEPHONE NUMBER

00 GOGUB *00 E and MONTHLY PAYMENT

ION=0
20; LAST CUST # ENTERED WAS F AS 8$

30 ADD TO CUSTOMER FILE R verb
401 TO END PROGRAM ENTER 9999 A- CusT i 0=S MESSAGE W

 EER !HPUT CUSTI
FOLLOWNG 3 and MESSAGE W

70 00SUB 520 4 Ind INPUT
80 INPUT CUT # F MESSAGE WCD]F F =998 THEN 499 G and INPUT MIlliE'08 iF F .N THEN 220
ID N=F. GOTO P*U

MESSAGE W
INPUT CITY '

201 SEQUENCE ERROR RETYPE
* COTO'GU

MESSAGE

40 INPUT 1 St NAME AS,18] 10 and INPUT ELEP

SO]F AS-AGS 'HEN 380 11 * MESSAGI W1

60 INPUT LST NAME BS,1 161 12 and INPUT MONT

70 IF Bilt 7,=Agn 2, THEN 380 13 @fld SAVE br CUSTOMER
80 INPUT ADRS LIH1 £$,1 20, 14 and REPEAl

90 IF 0%1 2,=4$(12) THEN 301]
00!NPUT ADRS :1112 0$1120

ID IF I$(1 *eASS[1.2, THEN 380
20 INPUT TEL # 6$11.85

; 30 IF ES,< 2 =AES,1.2] THEN 380
40 INPUT MD PIT AMT G
50 <F G=999 THEN 380
60 GOSUB 420
70 GOID 150
EN.N-1
90 GOTO 170

00 IREAD#0'49#N A FAS ESC SES G
lD RETUAN
20 WRITE Al u·.9G#J A F AS a 5 83 9$ rs G
30 Km0/G=J
AO WRITE #09,96J A F AS 85 CS 0$ ES G NOMIDMIX
® REIURN
60 3-0
70 GOSUB 4?U
M GOTO 140
90 REM # CLOSE ROUTINE--

00 CLOSE MO

10 ENO

20 CS[120/= / REM 20 BLANKS
JO DS=C,/A$=C$/05=G$,E$=C$

540 RETURN

plain ei
Basic

8 ®1"Nlillilll'111'G

REHEARSAL

Norts: the Repeater performer has a
4 %0 Nepeat action. the List perfomer has a:* Rn· . > ·6:X·4: <:R·: > *·+:. * <.+ P·>·S·>·-'S *?k>.·»x >·nt:T.Y: . ,#'fM»:tt519-.:4·*:.:P?-:.¥ -'2 · % :·€ x···X >94* .JuffibleS I':M:.@%:'33.'.i".:'."". .*'.'&'SC:'3::1:TS#*34<:%19:::..1-ZV}:'9'§F,%3}it©·,·. 3 .1 selection action, and the 71=aveler per-

··· ·.3 former has a move action
:, T- - -- -- - ' ' -- '-- ' ' . - - - -- : :.5. in the jumbie5 game Laura and Bill

·X11 tH, a s dr ·· 1 i use a Ust performer to keep a #st of1 4* secret words. Since they don' t want the
1 1#* user to see the List they place it in the

, 1 93 wings fsee figure 12).11
I &% /,%:Select to get new iumole < While everything should be visible to

1 1 4%% the designers. not everything should be
i: .333....<L..„: 2222].2.-...2..CE.- .- -...- I:- C...IC:.„:.Z.RE:--5.02:CZ.*I:.-I.EJO.-1...1.- r::4 visible to the user of the production.

* I %:* Wings can hold performers waiting to
imiz appear on stage, data structures like the6 N ew : . List of secret words. or temporary vari-

:9<2: 7 111

i W 01' Cl i: 4?9 ables used in computations
A very simple game grew and pros-Type answer in here .

a>* pered as our designers implemented it,
4.:M changing in response to their new
10·· understanding of what they were doing,
19% and to the needs and interests of users

' :B: and other designers who experimented
2 with it. It became something real thatWelcome to
a> people wish to play with and from

A s 2 which Lhey can€etsome increased in-: 1 0* tuitive understanding of the rules under-
ER lying English orthography

i %
* BENEATH THE REHEARSAL WORLD

'b:% ·-···'·'···-·*:'·'·'·:.·,·>:>:*:*.<*:i:::#.i::.::s. 0 ...s:ii.t;:i - THROUGH THE TRAPDOOR
0>·>>z·<:4:S:*SY:/:t.»> >·e·«64.b»:0:€ 5:3*·b·N€·6··x·k:5'*:46:7'M:/:44:*t 5>«€':B·>St 6* xN> ->Rt·o:*<9:-ANN·© ' <-·x·%·>>x

Figure l[: An iimproved game named Jumb

(text continued from page 1961
converted into a new performer and
every stage can be taught new cues. A
designer who needs a new kind of per-
fortner can construct one by aggregat-
ing existmg performers on a stage.
teaching that stage some appropriate
new cues, and converting the result into
a new performer

There are many circumstances in
which the designers may wish to aggre-
gate performers several performers
belong together as a logical and spatial
unit a group of performers are to be
used repeatedly within a production or
in several different productions: a pro-
duction is very complex. and creating
a new performer allows a factorization
of the entire problem into smaller ones

Bill and Laura's jumble game goes
through four revisions until it finally
becomes the one shown in figure 11
This improved game contains four Text
performers and a Number performer.
The large Text at the bottom ks used
simply to give feedback to the student.

198 BYTE · JUNE [984

le 5. WA jcf! evolved Irom Jumblel.

The Text labeled "New Word" has been
turned into a button: its button action
is to cause a new secret word to be

chosen from a List and presented in
jumbled form in the top Text performer.
This performer has also been turned
into a button: its button action is to re-
iumble itself. The number of rejum-
blings is shown by the Number per-
former next to it. The Text performer in
the center of the stage is to be edited
by the student who wili type the answer
there. Every time that laxt is changed.
it will cause the answer to be checked

against the secret word and suitable
feedback to be provided. it does this by
means of its change action.

When a performer changes in some
fundamental way as when a Number
performer changes its value or a Text
performer changes its text. it executes
its change action. The default change
action of a performer is to do nothing,
but the designer can define this action
for any performer. Certain other per-
formers have additional possible ae

The Rehearsal World in some ways may
be thought of as a visible Smalltalk. Al-
though our original intention was to re-
move the need for programming at the
Smalltalk level, it is paradoxically true
that the Rehearsal World provides an
excellent entry Doint for an incipient
Smalltalk programmer. Designers may
drop through the trap)door of the Re-
hearsal World: beneath they will find all
the tools of the Smalltalk-80 program-
ming environment. A Rehearsal World
tool found there is called the Performer
Workshop It looks like a simplified
Smalltalk browser and provides amid-
level mechanism for creating new
primitive performers and defining new
cues

For each kind of performer there is a
corresponding Smalltalk class that is a
subclass of class Performer. The in-
heritance mechanism of Sma]!talk
allows the subclass to inherit the mes-
sage interface of class Performer. Each
production corresponds to a subdass
of class Stage. When designers store a
production, the Rehearsal World defines
a new subclass of class Stage. Interest

(text conlinued on page 200)

THE WY-50.

PRETTY SMALL
A IVEW GEIVERAJ j-4 TERNIINALS FROIVa&'AWL.

V

x *44/

3

:'W

Never before has anyone put so much
into something so small. The WY-50 gives
you big termjnal features without occupy-
ing your entire work-space. This took
revolutionary desjgn. Design a lot of
people couldn't accomplish for the price.
But we did.

In fact, the WY-50 introduces a new start-
dard for low-cost terminals. You get a
compact, fu 11-featured design that meets
the most advanced European ergonomic
standards. 30% more viewing area than
standard screens. And a price tag as small
as they come.
The WY-50 sells for only $695.00,

4*}1
FEATURES:

• 14' sueen.
• 80/132 column f

format.

· Soft-set up mode.
· High resolution characters.
· Low-profile keyboard.
• Industry compatible.
• Only $695.00.
For more information on the revolution

ary design, outstanding features and
unique good looks of the new WY-50,

and we'll
send you a

brochure filled with evervthing
you need to know. The WY-50. The full-
featured terminal with the small price.

WYSE Cirde 359 on inquiry card

1 1 1 1 Make the F@se Decision.
WYSE TECHNOLOGY 3040 N. Fust St., San juse,
CA 95134, 408/946-3075. TAX 910-338-2251. Outside
CA cali tal-free. 8001421 1058, m So CA 2131340 -2013.

Or .Al.91

(ext continued Pam Paige 198)
ingly a stage is so much like a performer
that class Stage is actually a subclass
of class Performer.

When designers create new per-
formers. the Rehearsal World defines a
new subclass of Performer and writes
the code for the appropriate additional
methods that the class will need for lay-
out and for cues. Because the code writ-

ten by the Rehearsal World is indistin-
guishable from code wntten by a pro-
grammer. one can inspect it and modify
it in either a Performer Workshop or a
Smalltalk browser (see figure 4).

There are two important features of
Smalltalk that are not present in the Re-
hearsal World. The first is the ability to
create a hierarchy of objects. In Small-
talk, when one constructs a new kind of
oblect-that ls. a class-one usually con

4%323 J ui rib le .,1.'f lil !2 3 t*td {te 1 s ;}§'gy. i :-: wij. :

%/i Q.$ l

m M j J Lul'll.• #IMpt,* yacht'0% i'tricky·*i fiumbled'** OEAc %%
.scissors' 5
>'pencil'

'study
44I. , program'

i'renlbte'
0,0 'honor
R. rmustard'&. . I I. *. p.s salmon'
%28 i

.8 i
0. 2i. 1 & 7

'/ W €-

:1*22 *8.
'8$161 #Il/3.* 34

'*r'.U=- 7

I I utmasdr !

¥ 1 secret word 1

31% 3%
Figure 12: The wiples of the jumble5
game. showl}10 a List performer in which the
curre}lt secret word is selected.

200 BYTE · IUNE 1984

REHEARSAL

structs it by defining a subclass of Lie
existing class that is most like the new
class]n that way the new class can in-
herit a great deal of the desired be-
havior In the Rehearsal World there is

no concept of class. A designer who
wants a new production that is similar
to an existing one can modify the exist-
ing production and store it under a dif
ferent name. A malor weakness of this
method is that modifications made to

the first production will not be auto-
matically reflected in the modified one.
In contrast, a modification made to a
Smalltalk class will be automatically
reflected in its subclasses.

The second difference between Small
talk and the Rehearsal World is that in
Smalltalk there is a distinction between
a class and an instance of that class The
class is the abstraction. an obled is
always an instance of some class. A
class may have any number of in-
stances. Any changes to the class will
be immediately reflected in all its in·
stances In the Rehearsal World, there
are no abstractions. thus no classes

Everything is visible. Any performer can
serve as a prototype and one gets new
performers through copying. What is
lost is the ability to have changes made
to the original reflected automatically in
the copies.

DEBUGGING

Ordinarily, the sooner a program gives
evidence that something is wrong, the
easier it is for the programmer to diag.
nose the problem. Designers In the Re-
hearsal World find that bugs manifest
themselves very quickly because near-
ly all state information is visible and
because the flow of control from per-
former to performer is fairly obvious to
the eye. Even so. a situation will occa-
sionally arise in which the designer car-
not easily account for some behavior on
a stage

It seems appropriate in Programming
by Rehearsal that help should come in
the form of another performer. the De-
bugger performer (see figure 13). A De-
bugger. when placed on a stage inter-
cepts all the actions that performers ex-
ecute, shows their code. and waits for
the designer to tell it to go on. While
the actions of the production are thus
halted, the designers can investigate the
cause of a problem using any of the nor·
mal Rehearsal World activities such as

opening up cue sheets and sending
cues. Additional actions that may be ini-
tiated are placed in the Debugger's
queue for later execution.

ANIMATION AND
MULTIPLE PROCESSES

An intuitively pleasing though incor-
rect, model for the Rehearsal World
would be that each performer goes
about its business independently of the
others except when it needs another
performer to answer a question or do
something. Performers would be like
people in the real world. capable of in-
dependent action but interacting
through requests. Animation. you might
think, would be easy because each per-
former would have its own rules for

moving around on the screen. In this
model, which we call the one-process-
per-performer model, each performer
would essentially have its own proces
sor for its private use. Trouble comes
when performers have to share re-
sources and coordinate that sharing.
Several schemes for dealing with these
problems have been developed over
the years

Our own solution to the problems in-
troduced by having one process per
performer was to allow each user action
to initiate a single independent process
that either runs to completion or, as
with animation, continues in an infinite
loop. A single production can, at any
given tme. have any number of different
processes running in it (Beyond that
there can be several stages on the
screen at a time, each running its own
processes.) This one-process-per-user-
action model has so far proven to be
both intuitive and powerful. though we
see it as an area where further research
is necessary.

DESIGNERS AT WORK

Since the Rehearsal World is a proto
type system, very few designers have
had a chance to experiment with it. The
first one to actually use the system was
loan Ross, a curriculum designer from
the University of Michigan Joan created
many interesting productions using the
Picture and Turtle performers. She
helped us to debug the system and to
understand how to improve it on all
levels as we prepared for a pilot study

We spent a month responding to the
(tert continued on page 202)

4

nm

4/*FA.*WA./.T' 2,4

'f ..3

International Connections
With the industry's most popular data communications program, the world '

is at your command.
' An import/export office in New Jersey can instantly check the London

market for current dollar exchange rates... send Hong Kong an updated
production schedule... printout the week's sales results from the Dallas
branch.

There's virtually no limit to how far you can reach with your microcom-
puter, ordinary telephone lines, and CROSSTALK.

Even if your own business and personal needs are closer to home, you'll
appreciate CROSSTALK's compatibility with a wide user base - smart
terminal characteristics.. total modem control... and the ability to capture
data at a high speed for later off-line editing, CROSSTALK has extras you may
not find in other programs. Data capture to memory buffer (and on-line display).
Protocol error-checking file transfer. Modem/telephone hangup, and display of elapsed
time of call. Command file power and flexibility. Remote takeover and operation. And
much more.

There is a CROSSTALK version for almost every
CP/M, CP/M-86, or IBM DOS based microcomputer CROCUALKsystem. See your dealer, or wrjte for a brochure.

MICROSTUF ® -
r 1845 The Exchange / Atlanta, Georgia 30339 / (404) 952-0267

CROSSTALK * a tradem ark of M,crostui Inc .CP/ M and CP/M 86 are trodemarksol Digital Research. Inc IBM & a trademark of International Business Machines. Inc.
Circle 224 on inquiry card JUNE 1984 · BYTE

t

1

Itext continued Fom Fage 200)
issues that loan raised as a result of her
experiences and then invited Dan
Fendel and Diane Resek. curriculum de-
signers and faculty members of the
Mathematics Department at San Fran-
cisco State University. to visit for three
days to see what they could create in
the Rehearsal World. They are very ex-

ti}fkfie··*p«EM %)39*272%*:e¤ 3.5 5:3%93 r:: p'll=, tter 1,#&$".fit::':&3.7.1'4;1f,9

REHEARSAL

perienced designers, familiar with the
power of interactive computer graphics
but they are not programmers.

We gave them a tour of the system
and within 45 minutes Dan and Diane
had taken over and were using the Re-
hearsal World themselves. They started
by investigating a simple production we
had made about probability and soon

':>'P#***+SS'>*"4·X·:1:y:·>3*:<»*4,8:-k>::&:B>,:*t

·000j

:·:>: 8 :/.8

5

50

]LEAR 1 1
x *x + 100

PLOT 11

oop terate

suggested and implemented some im-
provements They found out how it
worked by looking at the button actions
and change actions of the performers,
both on stage and in the wings. By the
end of the first afternoon. they had
turned it into a game that bore only a
slight resemblance to our original ex-
ploratory activity In the process, they
had auditioned Texts, Numbers Lists,
and Repeaters to discover their capa-
bilities. deak some with the blocking of
the stage written a fair amount of code
by watching and understood about but-
ton act:ions, change actions. and repeat
actions.

:.-89

E h Be t.Value: Loop letIndex,

*3 Point sed: x / midi + (Graph getWidth / 21,
point setY: expression evaluate / midY + (Grapht*:

E *et.Height / 2),
? E-'8:In

1% Furtlet goto: Point + Graph get.BottomLeft, 1

mi .

>:1 : 83*9?··$·:3>·% :< 2..84.4 : & B R :b>>t :> «:,·: s·x:. Sk: S 21·2 : x/.:5% S. >%%1:5§:2 k :i: >:;> :/: 4: .&$:5·%©: " :·8 :2 9 2:;3>X¢P X ;8:# x € :R"k :»>.D' :62> 5/811 *>83·;08*te"40,4/"R/Im'%1%·%ELf.tti'3:##Mu#.§·@%:x·#M:%> 3:·a:>·:·· .:R<·:2·* 'x.:05>«·· .· ··P·07:»:3:M "8 :ik< 44:%%- x; . of· · · ·

Figure 13: A stage on which a Debugger performer has been placed temporarilw so that
the designer ma, observe the code tor each successive aaron.

202 BYTE· JUNE 1984

Run Doit

Debugger

Dan and Diane spent an hour the next
morning away from the machine, de-
signing with words and a pencil. In the
course of this design session, they re-
fined their embryonic ideas for a frac·
tion game through discussion of both
the pedagogical issues and the fantasy
through which they should be trans-
mitted. They also considered which Re-
hearsal World performers they would
need in their proposed game The fan
tasy involved a cave filled with gold
dust. They envisioned the ceiling of the
cave as an irregular set of stalactites
they saw the floor as tiled The student's
problem would be to sweet:) a vertical
broom through this cave. one f;oor tile
at a time trying to collect as much gold
dust as possible without ever allowing
the broom to touch the ceiling. The
broom would stretch or shrink by a cer-
tain fractional amount which the student
would specify before each move. For ex-
ample. if the student edited the fraction
to read 2/], the broom would become
twice as tail when it moved

They had other design cAteria as well.
They wanted the game to configure it-
self differently every time the START
button was selected, and they also
wanted to make it easy for a designer
to specify an easy cave with broad floor
tiles and very little variation in the cell·
ing ora hardone They wanted to have
a score that was expressed as a percent-
age of the available gold dust they
wanted some sort of disaster to occur
if the student made the fraction too
large and the broom touched the ceil-
ing. They decided to call their produc-
tion GoldRush (see figure]4).

We found this description quite over-
whelming for an initial prolect, as we

(text colit,Mued 0,1 page 2041

COMPUTER HUTTM COMPARE
OUR

SERVICE & PRICE!

SPECIAL HARD DISK - IBM·PC & XT

OF THE le MOUNTAIN - External Syst.MONTH
5MB....$1539 10MB $179962=92:&

15MB....$2309 20MB..$2549IBM-PC & XT

10 7 20/WTape backup...........$1695CALL FOR /
PRICE 1 - MAYNARD.................CALL

MODEMS

HAYES
Smartmodem 1200 $489
Smartmodem 12008 $419

NOVATION, US ROBOTICS CALL

E

y Avt,im
COMPUTERS

PRINTERS

landon TM-100-2 DS/DD $225
PANASONIC JA 551

SHUGARTSA-455 half-high BEST
TEAC FD-568 Slimline PRICES

AMDEK halt-high
HITACHI half·high

MAYNARD ELECTRONICS
Floppy Disk Controller $169
FDC w/Par. Port $219
FDC w/Ser Port $239

SANDSTARSERIES CALL

Cl]ADRAM
Quadboard-PP,SP,C/C,Mem + S/W
Expandable to 384KCALL
Quad 512+ SP,Mem with s/w
64K...... $249
Quadcolor.................CALL

 RESEARCH
MegaPIus Il 4-Funct 64K + s/w $279
6-Pack 5-Funct 64K + s/w 2279
t/O Aus................... $129

TECMAR

Graphics 720 x 40016 colors $529

HERCULES
Hi Res Graphics 720 x 348 8359

FREDRICKS ELECTRONICS
COLORPLUS 6403.200,
16-Color +s/w...............$399

MA SYSTEMS
PC Peacock w/Par Port

MICROLOG

Baby Blue $359
Baby Blue!164<.............$575

PARADISE
Multidispjay..... $395

EPSON

FX80.......CALL FX100...CALL
brother
HR1 A Par$599
HR·15Par..................
HR-25..

DYNAX

DX-15 Par $459 Ser $489

C-ITOH

STARWRITER A-10 CALL
STARWRITER F-10 P $1095
PROWRITER 8510 SP 180 CPS $649

slkilr < MICRON#CS
Gemini 10X ... $299 15X ...$399

OKJDATA
82A...

84P
92P

93P

NEC
3510$1485 7710 $1995
3515.....$1479 7715..... $2039
3530..... $1575 7720..... $2495
3550..... $1695 7730..... $1995
2000 SeriesCALL

TOSHIBA

P1351.....................$1649
P1340......................$849

/DS, DA/SYWRITER.CALL

$459
CALL

...CALL 83A......CALL
848

BEST 92S BEST
PRICES 93S PRICES

$275

EaGle CALL

COLUMBIA
CALL DATAPRODUCTS }NC.

CORONA CALL

TAVA PC CALL

COMPAQ CALL

MONITORS
AMDEK
Video 300G . $145 300A$155
Video 310A $189
Color 11......$429 Color 11 + CALL
PGS
HX12 Hi Res RGB monitor.... BEST
MAX-12 Hi Res Mono. PRICES

SR-12 Super Hi Res RGB

SOFTWARE FOR IBM.PC

Word Perfect$299 WordStar $275
DBase N....$389 VisiCale$189
Multiplan. . .$175 Multimate...$299
MICROSOFT Word..........$269

AND LOTS MORE

CANADIAN
COMPUTER HUT

AUTHORIZED DEALER

MICROCONTEXT INC.
5253 AVE DU PARC
MONTREAL
QUE H2V4P2.

(514) 279-7291
Published Prices are for U.S.A. Only
Please call for Canadian Prices

ANY PRODUCT NOT LISTED? CALL

COMPUTER HUT ORDERS & INFORMATION ORDER-LINE ONLY
OF NEW ENGLAND INC.
101 Elm St., Nashua, NH 03060 (800) 525-5012(603)889-0666 PLEASE

All products usually m stock for immediale shipmen, and carfy lult fflanulacturers' warranty. Price subject to Change „ this ad prepared two months in advance. Youget thelowest price. We honorpersonalchecks - allow 10 days toclear. COD up to $300 add 3°4 VIsa, Maste,Card add 3°4. For shipping & insurance add 3% 01$500 min. lor small Items and $10 min for monitors, printers, atc APO & FPO orders add 12% Include phone number.
IBM is a trademark of IBM Corp. Return authorization and order status (603) 889-7625 Circle 76 on inquiry card.

11

REHEARSAL

3**124«49;24¢%#*14*i *B * »Ft©/th*3Y/Oflf£'.i 11 4 ilt
.'76· 2 1 (, 90ft(*.'4*;Ejt;%3k .3'ift/. :4'?41,«Ii#.;21¢14(>24*.ki444*32%%%3»142#4*1 2- *.? 1 i:< 1*1&4: .z k?/14 ? 4: ti'*BE '3? >o -.

Floot
Director 5 start stop

1 1 25

st 44 ' jricie
I'lociwidth TU. 1-1 1 .a ket# Mer

1 0 0 I·2! 6/.

=el 1,10 H,1.21,4 1 Re·td:.'gle

Ceiling 1834.0@ r-6.3
D irector _i. eiling Area | | Pal] .1 Heigh '

4498.06
F. D.Ii: Are.

1 *6806
1 71'•Ii- T.'p

Reel
Maker

Re,--1,12191
Re.i:.4-·
Recrail:le.
Recian '184
kecian"le€
le,Maieteo
le: tan Tle? 4
P e,·

26
becker

Ple·

11

1rl =1
stretch 0

1 1 ·st Riot Wi•it h r - MOVE! 1 GO FOR THE GOLD'

Shrink: 1 L_I Ip· 2
3741 13.3871 CORE

,:' Frilt old Br Ht i

r

2 },j.j *t24;*=*:° ' 1*4*·*85 9%€*23§$0

4*... 1.la'.;288.52 :q0*4.64%*.0, aa.:.0 .: 1..&."
I.

3//prl;49,4. .1« i
Ed.*
34% 4%%*%®%5%*24»***ft*%4491-9-*E*%%»i*443Xk** 424*4***Mbp»ze@¢83*4@411§88*81{4®111:%:it ,'% %0§€e#2?§99**%*i<¥EjWS€?3*'**»0»0*1&&04'*§*T;»\ 1 40$-2**> 9!1 4 5%

Figure 14: TAe GoldRush game and its Complicated wings, showing more performers backstage thall are on stage

Disaster I 0 2 20 0006

Director „ n-

(lex·t continued from page 202)
had expected them to embark on some-
thing at the level of the Iumble Game
described earlier Rather than starting
with a toy example for practice they
were embarking on a real-world task
after only one day s experience We wor-
Med that they had chosen something
too difficult for them to accomplish in
the remaining two days,

By lunch time they had figured out
how to use the Turtle to draw the floor.
They said, "We need a Floor Director to
be in charge of drawing the floor and
placed a button in the wings labeled
FloorDirector for that purpose They
used this same strategy to make a Ceil-
ingDirector. a Checker to test whether
or not the broom was touching the cell-
ing and a DisasterDirector in charge of
what should happen when it did. Cer-
tain performers had become if you will,
visible procedures. They Invented this
strategy on their own, led to it by the
Rehearsal World's emphasis on buttons

Next to these directors in the wings,

204 BYTE· IUNE 1984

they placed the performers that would
be needed by the directors to accom-
plish their tasks. These performers fulfil
the role of variables: since everything
in the Rehearsal World must be visible.

all variables must be represented by
performers. By grouping their per-
formers in a logical manner, they could
debug their program easily by selecting
a button, like the Cellin@Director. and
simply watching what happened. both
on stage and in the wings

Their next task was to implement the
broom (for which they used a Rec-
tangle), the START button, and the
MOVE button The action of the START

button was simply to cause the Floor-
Director and the CeilingDIrector to per-
form their button actions. The action of

the MOVE button was first to move the
broom and then to ask the Checker to
determine whether or not the broom

was touching the ceiling. If it was. it
asked the DisasterDirector to perform
its action: if it wasn't, the Checker com-
puted the score. That they had not yet

even designed the disaster didn t mat-
ter: they were using top<lown program-
ming techniques. realizing that they
could return later and replace the
empty code block of the Disaster-
Director with whatever they wanted.

By the end of the day the Floor-
Director and the Ceilin€Director were
both working properly and they could
move the broom through the cave. They
started to plan the randomness that
they wanted to build into the button ac-
tion of the START button,

The next day they made a fraction to
be edited by the user, creating it from
two Numbers and two Rectangles, one
to act as the line between the Numbers
the other to act as a frame This looked
and worked fine. but they soon dis-
covered that it was a great disadvantage
to be dealing with four independent
performers instead of a single unified
one: whenever they decided that their
fraction was the wrong size or in the
wrong place they had to resize or move

Itext conthlued on page 2065

Before Johann Sebastian Bach developed
a new method of tuning, you had to
change instruments practically every time
you wanted to change keys.Very difficult.

Before Avocet introduced its family of
cross-assemblers, developing micro-pro-
cessor software was much the same, You
needed a separate development system
for practically every type of processor.
Very difficult and very expensive.

L.ss&hi°35

But with Avocet's cross-assemblers, a
single computer can develop software for
virtually any microprocessorl Does that
put us in a league with Bach? You decide.

The Well-Tempered Cross-Assembler
Development Tools That Work
Avocet cross-assemblers are fast, reliable
and user-proven in over 3 years of actual
use. Ask NASA, IBM, XEROX orthe hun-
dreds of other organizationsthat use them.
Every time you see a new microprocessor-
based product, there's a good chance it
was developed with Avocet CrOM-
assemblers.

Avocet cross-assemblers are easy to use.
They run on any computer with CP/M'
and process assembly language for the
most popular microprocessor families.
594" disk formats available at no extra
cost include Osborne, Xerox, H-P, IBM
PC, Kaypro, North Star, Zenith,
Televideo, Otrona, DEC.

Turn Your Computer Into A
Complete Development System
Of course, there's more. Avocet has the
tools you need from start to finish to enter,

' assemble and test your software and finally
cast it in EPROM:

Text Editor VEDIT --full-screen text edi-
tor by CompuView. Makes source code
entry a snap. Full-screen text editing, plus
TECO-like macro facility for repetitive
tasks. Pre-configured for over 40 terminals
and personal computers as weI] as in user-
configurable form.
CP/M-80 version . $150
CP/M-86 or MDOS version $195
(when ordered with any Avocet product)
EPROM Programmer -- Model 7128
EPROM Programmer by GTek programs
most EPROMS without the need for per-
sonality modules. Self-contained power
supply ... accepts ASCO commands and
data from any computer through RS 232
serial interface. Cross-assembler hex ob-
jed files can be down-loaded directly
Commands include verify and read, as
well as partial programming.
PROM types supported : 2508, 2758.
2516, 2716, 2532, 2732, 2732A,
27C32, MCM8766,2564,2764,27C64,
27128,8748,8741,8749,8742,8751,
8755, plus Seeq and Xicor EEPROMS.

Avocet Target
Cross-assembler Microprocessor

XASMZ80 2-80
XASM85 8085

XASM05 6805

XASM09 6809

XASM18 1802

XASM48 8048/8041
XASM51 8051

XASM65 6502

XASM68 6800/01
XASMZ8 Z8

XASMF8 F8/3870

XASM400 COP400

XASM75 NEC 7500

Coming soon: XASM68K...68000

(Upgrade kits will be available for new
PROM types as they are introduced,)
Programmer $429
Options include:

Software Driver Package --
enhanced features, no installation
required.
CP/M-80 Version$75
[BM PC Version...........$95
RS 232 Cable$ 30
8748 family socket adaptor...$98
8751 family socket adaptor... $174
8755 family socket adaptor ... 3135

G7228 Programmer by GTek - baud
to 2400... superfast, adaptive program-
ming algorithms ... programs 2764 in one
minute.

Programmer $549

Ask us about Gang and PAL programmers.
HEXTRAN Universal HEX File Con-
verter -· Converts to and from Intel,
Motorola, MOS Technology, Mostek,
RCA, Fairchild, Tektronix, Texas
Instruments and Binary formats.
Converter, each version.......$250

CP/M-86CP/M-80
IBM PC. MSDOS"Version

Versions

$250.00
each

$200.00
each

$300.00
each

$500.00

Call Us

If you're thinking about development sys-
tems, call us for 5Ome straight talk, If we
don't have what you need, we'll help you
find out who does. If you like, we'11 even
talk about Bach.

CALL TOLL FREE 1-800-448-8500
(in the U.S. except Alaska and Hawaii)

VISA and Mastercardaccepted Allpopular dnsc formatsnow
available please spec® Prices donor include shipping and
handling call for exact quotes OEM INQUIRIES INVITED

• Trade mark 01 Digital Rese arch ' 'Trademark of Microsoft

AVOCET 1f
SYSTEMS INC,
DEPT. 684-B

804 SOUTH STATE STREET
DOVER, DELAWARE 19901
302-734-0151 TELEX 467210 ,

Circle 38 on inquiry card.
IUNE]984 ·BYTE 205

'0.\47? fr-1-'3
C 3

l.

2--

To masiter
hecomputer,
master the
software

#F Challenge your ability.
' Take charge of your 14

computer. lake pride in -
the results.

You've invested in the 7 1
computer. Now

9 invest in your-
self. Writing

your own
oftware lets

you define
»Your own

r¥ ..:-44 *¢*aillen your
1% A ' »roblen,·891¥in, re-

sources and Al you in
complete comni¢#»I at the

keyleard. It's challengins. lt's
«22 excitins. And now it's ea*ier than

0%91 ever before with Self-Study Com-
puter Courses from

Heathkit/Zenith.

Master today's most powerful
contemporary languages including Microsoft BASIC, PASCAL

AM/*MI'&*4?hm/*9**11*i
you as far as you want to go.

d"allitl*** AN'*00*0*11*

Ou r c*lorf ul catalog is *each . I

FREE! It coupon is
missing write: Heath334-182. Benton ------ - ||Company Dept li

Harbor, MI 48022.

*9

611

REHEARSAL

(tert continwed from page 204
four performers commensurately

Consequently they felt the need to
create a new Fraction performer, which
they did by placing two Numbers and
a Rectangle for the central line on an
otherwise empty stage. Since other per-
formers would need to use the values
of the numerator and denominator of
this Fraction performer, they taught this
stage the new cues getNumerator, get-
Denominator. and ge(Value. Then they told
it to convert itself into a new performer
named Fraction and promptly used it in
their production.

By the end of the third day they had
a game that worked. that they could re
spond to. that they liked. and that still
needed Improvement

An extra day of work was devoted to
adding new features. A Number per-
former called Parts was added that

could be edited by the user; its change
action was to show the broom divided
Into the number of parts indicated. This
additional piece of design arose from
their interaction with the production,
had they been working entirely from a
paper sketch, this Improvement might
not have occurred to them.

They then invited others in our re-
search center to play. Although it had
been designed for third-graders, our
colleagues found the game interesting
and fun to play They were impressed
with the quality of the game and espe
cially with the fact that the designers
were nonprogrammers. yet had im
plemented something so complicated
In only a few days.

Eventually we found some children of
an appropriate age to be students: they
also enjoyed playing the game and
spent many hours trying to make a pers
fect score. Diane now plans to reimple-
ment GoldRush at San Francisco State
using the Rehearsal World design as a
prototype t,ut changing it to run on dif
ferent hardware which might include
color and have a different pointing
mechanism.

RESEARCH QUEST]ONS

 Addre<49
, Our expenences with designers have

given us confidence that our general
.'-M ideas about how to make the power of
-1 computers accessible to nonprogram-

- · Stale ZIp - . mers are correct. We believe that inter·
CP-225

active, graphical programs could and
(tect continued o. page 2083

206 BYTE · IUNE 1984 Circle 155 on inquiry card.

DAISY-HEEL · DOT MATRIX ' THERMAL

FUJI 1 SU

You con'tbuu Finally, there is a full line of
quality printers available to

meet a variety of needs. And all
from a single manufacturer...

L,/ FUHTSU. From dependable dotmorefedbrmance matrix printing to ad-
vanced thernia] print-

ing, you can't buy more
performance for the price.

Qualitv That's Built Iii·. Fujitsu qual-tbrthefrice. ity is built into overv printer manufac-
tured. That quality translates into

high reliability (MTBF), versatile print
capability low maintenance, low noise,

- and high speeds. And Fujitsu printers are serviced by TRW, a nationwide service organization.
A Complete Printer Line: Fujitsu's dot matrix printer, with its 24
wire head, offers letter quality printing at 80 CPS. With i.ts
ability to also produce draft quality, correspondence quality and high resolution graphics, the Fujitsu DPL24 leads dot matrix
technology.

6In daisy technology, 61Fujitsu's SP830 is the fast- .---i„-. '.'
est letter quality printer
in the industry at 80 CPS. ,-
Fujitsu's SP320 daisy- -97§,3.=A-pv7:*,#'-
wheel printer also pro- -vides cost effective letter -3 /3339.YL
quality printing at medium speeds.

-·m_ .Fujitsu offers thermal printing with its TTP16printer. The low-cost printer accepts a wide variety
of papers and operates quietly at less than 50 dBA. Il
Call Us Today: Contact Fujitsu America, 4

Inc., at 408-946-8777 for the printer
distributor nearest you. -DiSTRIHUFORS: ./4,omm Computer Pinducts (415) 969-4533, ·
f714) 535-36.30, (206) 453-1136, (916) 481-1466; Allen E.dicurd..
ASNE·intes, hir. Ul 3, 328-9770, (714)552-7850, (619) 273 4771,
(8053 498-5413, four C,irm'rs 72dinehog V (602) 998-4440, (505)
821-5185, Ge,i/r, ANS<)'inti., ilk'. (.305) R.59-7450. (305) 791
8405, (813) 886-0720,6104) 998-2828, (504,367-397.5, 4205)
534 9771, (919) 227.4636, (803) 772-6786, ,901) 683-8072,
(615) 584-0281 . Hopkins Associntes, bic. (215! 828-7191, {101 1
273-2774; bdifi,id Ae«mtes. An (913) 764-797.3 (672)343

3723, (314) 397-6901. I,gon, Cm (201) 646-9222; f ine,V
Cumputer Product., in: (313) 229-7200, (216) 398-9200. (614) 451-7494, 0513) 435-7684, (616) 363-9839, (412) 922-5110. (502) 567 -5629;
ME SA hhnokwv Corp (307,948-4350; NACO Eled,in, ics Corp. 015) 699 2651, (518)899-6246, (716) 233-4490, Peak Distributors, hic.,
(An ./Winte of DWer/Centran (312)394 3380, (414) 784-9686. (.317) 247-1316, (319)363-9377; Re Dillrd,uti ,g, Dic (801) 298-2631,
(303) 455-5.360; .9295 Fiec /,<mi s, <617) 458-4100, (8(12) 638-0000, (2035 878-6800. (800) 243-2770: LISEMTM (214) 680-9700. (512) 454-3579,
(713) 91-0200, 49181 622-8740.

pERIPHERAL pRODUCTS DIVIS10N
Quality I ives

FUJITSU

Circle 142 on inquiry card.

bLI

1«$3191
WORD PROCESSING/
EorTORS

Easywriter I System
13 pakl $149

Easywrile, n Sy'stern
13 Pal,I $199

Edix/Word,x $279
Einstein Writer $199
h.,1 Word $189
Mic,osoll Word $239
Mic Tosolt Wofd /Mouse $299
Multimale $279
PeachText 5000 $199
perfect Writer/Speller $249
PES Wrle $ 95
Sarina Word 11 $329
Select Word Processof $199
Spellbinder $249
SSI Word Perlect ;Call
Su perwrlter $179
Volls writer $129
Volkswriter Deluxe $!79
The Word Plus (Oas,sl $109
WordPIus PC wilh The Boss $329
WordStar 6219
WordStaf Professinal

IWS/M M /SS/SI $369
Wordstar Options Pak

AMM/SS/S[l $189

ACCOUNTING MODULES

Ask Micro Accounling $299
BM Accounling $369
IUS EasyBusness S,stem $319
MBA Accounting $369
Open Systems Accounting $459
Peachpak 4 [Gl/AP/AR} $239
Peachtree Accounting $399
Real World Accounting $469
Star Accounting Paitner
<GL/AP/AR/PAY) $269

000 02/9 1#'

With each orde
t

Diskette
Library Case --

. with your order This attract
case protects, indexes and store
10 diskettes for quick retrieval.
Normally a $10 value, it is now

HOME/PERSONALFINANCE

Dollars anc Sense 31]9
F nAncier 11 $319
Home Accounlant Pius $ 99
Tax Preparer 84 $]89

DATABASE SYSTEMS

Alph, Dala Base
Manager 11 $179
Condor 111 S329
d Base 11 $369
DBplus 5 89
Easy Filer $219
Ff* $179
InfoStar $269
Knowledgeman $309
Perfect Filer $159
Personal Pearl $199
PFS File/PES Report $169
QuickCode $179
R base 4000 $299
T/Maker Ill $199
TIMIV $269
Versaform 3249

PROJECT MANAGEMENT
Harvard Project

Man,gemenT $289
Sultor Prolect Scheduler $229
Vis,Schedule $199

GRAPHICS

BPS Business Graphics $229
Ciartman Combo (Il&!VI $349
Chartmaster $259

dGraph $189
Fasl Graphs $199
Graphwriter Extended $429
PC Dran $239
PFS Graph $95
VisiT,end/Plot $199

EXTRA $$$ SAVING%
r, we offer discount co
0 $10 on your next ord

1-80
In New Yor

FOR YOUR
BOTTOM LINE.

4,
69 2 1279

SPREADSHEETS/MODELING
jack 2 Stall
lotus 1-2-3 $319
Mulbplan $[59
Perfect Caic $159

pak; 3 $239
Elli

VISIC,1. IV $159

LANGUAGES/UTILITIES
Access M anageT $239
Digital Research

C Compiler $2!9
Display Manager $299
Microsoft C Compiler $329
MS Basic Compiler $249
MS Fortran $239
Pascal MT+86 $249
Norton Uld,lies $ 59

COMMUNICATIONS/
PRODUCTIVITY TOOLS

Crossta k $119
Memory Shill $;9

Move It $109

Prokey 30 $ 95

HARDWARE PERIPHERALS'
AST Six Pack Plus (64k) $ 299
Quadboard (Okl $ 229
Hayes 12008 with
Smarkom $ 439

Hayes Smartmodem 1200 $ 549
Hercules Graphics Board $ 359
Epson FX 100 rinter $Ca!1
Comre• 11 Printer Scall
NEC 3550 Printer $1899
C Itoh Prowriter $ 399
C Itoh Slarwriter $1249

*Add 3% for shipping.

129 */ '299

upons worth up
er.

To Order call

0-221-1260
k State call (212) 4384057

For technical support
and information call

(212) 438-6057

Monday thru Friday
9:00 AM-7:00 PM

Sundaysavailable FREE to Softline customers

REHEARSAL

[!ext continued from Page 206)
should be built Inside an interactive.
graphical programming environment.
We believe that for such programs.
some sort of visual, spatial program-
ming will eventually supplant the cur-
rent process of writing lines of textual
code. Nevertheless, we have many un-
answered questions about the nature of
visual programming.

An important aspect of the Rehearsal
World is that everything is made visible.
only things that can be seen can be
manipulated. Thus. rather than thinking
abstractly as is necessary in most pre
gramming environments, a designer is
always thinking concretely. selecting a
particular performer. then a particular
cue. then observing the cue's instant ef-
fect. We know that much of the initial
accessibility of the system l S due to this
concrete. visual, object-oriented ap-
proach. What we don't know are its
shortcomings.

As designers create increasingly large
and sophisticated productions. they
may find it a nuisance to have to instan-
tiate everything (even temporary van·
ables) in the form of a performer. There
are problems with space on the screen
and with visual complexity. Some of
these problems are addressed by the
ability to collapse a large set of per-
formers into a single new one, which can
be made very small while st!11 retaining
its original funcbonality This helps not
only with space but with factoring the
production into significant pieces.

While beginning designers benefit
from the concreteness. more experi-
enced ones will benefit from being able
to think in more general and abstract
terms They are led to think in general
terms by the fact that all performers re-
spond to a large set of common cues
they are led to think in abstract terms
through the manipulation of Lists and
Repeaters. Still, It may be difficult to
build productions. for example, that
need to access large amounts of data.
At some point, the concieteness may
become a barrier rather than an advan-

TERMS

Checks-allow N days (ocLear Cred,¢
pfoceising-add 3% GOD *ifiers-cash
M O orcertmed check-add $300 Sh>pping
Indh/adler,g UPS,udace add$300pt¥,1025
;UPS Blue 16.00 pei /em j NY State
Residents-add apphcable saoes tax An
p.ces sumecr to change.

=
208 BYTE · IUNE 1984

1-

10:00 AM - 4:00 PM

*INL./17 Soft,ine Corpora[Ion

F ?373*fttJ°kn. N Y 7210

tage
We know that the "watching" facility

is very important to beginners and
makes it possible for them to -write
code without learning a language. But
it's really very simple and is in no way
"programming by example": it employs

(tert wpitinued opi page 210)

£,ve Your Memory Before It Blows!
Blackouts...Brownouts...Voltage Surges...Line Noise--

They Can Alter Data, Wipe Out RAM Memory,
or Damage Equipment.

The Datashield Backup Power Source Can Stand Between
Your PC and Disaster from Power Irregularities. ,

Z

HUI

Protect Yourself Four Ways
With Datashield

This rechargeable, batlery-operated unit -
with built·in surge protector - provides
maximum protection against all four
commercial power problems that can impact

your PC: power outage, power drops, voltage
spikes, and electromagnetic or radio

interference (EMI/RFI).

PC·200. Designed lor Ilexible (Oatashield /
9* PC-200

disc PC's and some hard disc styles. 1 Now...ONLY $359®

|QatashieldXT-300. Designed tor KT 300

most hard disc type i
models and color monitors-4

* Never Say Never... NOW...ONLY $499'©

t. It can happen to any PC owner. It
B probably will. Maybe italreadydid. But
I it was blamed on something else. Usten:

»t"Pfil-F-
 ·'Nearly one million Florida homes and businesses lost electricily for 15-30 minutes
. yesterday morning when a power outage... " Wall Street Journal
/ ·.,Powerline irregularities cause·problems for computers...you face hazards every
'. time you pfug in a piece of electronic equipment.,." 811€ Mkgaane

Technical Data

E,:A "Powerline associated problems are estimated to cause nearly 70% to 90% of
, malfunctions in m{Croprocessor-based equipment " FC Magazkne

Backup Time
Min 50% Load 20 Minutes

Min. 100% Load 5 Minutes
3Domputer crashes are gjving businesses major headaches. The cuiprit is sudden Output RalingblackOUZL " U.S. News & World Rep.

PC-2(10 200 Watts
XT 300 300 Watts ."Fifty percent of our service calls are power related." leteviaeo

£4,"Computer:service calls are reduced by 65% when surge protectors
Pre Used. " Digital Relail Magazine

Typical Transfer Time
PC-200 4 -sec {'h Cycle)
XT-300 1 Millisec (1/16 Cycle)

Energy Dissipation 100 Joules
0-here is one sure way to.avoid becoming a statistic: Datashield.
kThe most technologically advanced product in its class. And
the most affordable.
A.WhclfWils Once An Expef®e luxury tqpwAr,Affordable Necessity

f». 1

J¢@r,6

atasii,Wid
00!ashield iga US re istered trademark 0/ Pll Indu:lri/5 320 River Street. Santa Cruz, Califorma 95060 (408) 429·6881

J N¢40&*

m

(text Contillued #00! pme 208)
no generalizations but merely makes a
textual record of a performer being sent
a cue, perhaps with parameters. Again,
advanced designers might be led to
think abstractly rather than specifically
If the Rehearsal World provided a more
powerful watching facility that was cap-
able of some form of generalization.

In the Rehearsal World. button action
and change action are the maior mech-
anisms for expressing the interactions
of all performers, a few performers, like
the Repeater, the LIst and the Tfaveler.
have other special actions as well. De-
signers find these actions very natural
and so far have had no difficulty
describing their needs in these terms.
However, the Rehearsal World does not
provide designers with the facility to
create new types of actions for new per-
formers, and this may become a prob-
lem in the future.

The Rehearsal World supports mul-
tipie processes in such a natural way

REHEARSAL

that our designers are not surprised by
the existence of this facility as they in-
terrupt whatever they're doing to do
something else. However. we have little
experience with designers using mul-
tiple processes in some production and
expect a variety of conceptual and
mechanical difficulties to arise.

Designers express actions in a pro-
cedural fashion, instructing a performer
to send a cue under certain conditions

REFERENCES
1. Brown. Dean, and Joan Lewis ''The Pro-
cess of Conceptualization- Educational
Policy Center Research Note EPRC-6747-9.
SRI Prolect 6747 December. 1968
2 Oettinger, Anthony. with Serna Marks
Ruii. Computer, Run Cambridge MA: Harvard
University Press, 1969.
3 Gould. laura. and William Finzer 'A
Studv of TRIP: A Computer System for
Animating Time-Rate-Distance Problems' 1,1-
teniational [ournal of Ma}1-Machine Studies {1982)
17.109-126.

4. Ingalls. Daniel H. H The Smalltalk-76 Pro-

We are curious about how designers
would deal with a constrambbased
Rehearsal World in which the relation-
ships between performers were ex-
pressed in terms of conditions that
should always hold true (for example,
that the value of a Number should
always be twice that of another
Number). We hope that researchers
working on similar design environments
will explore these questions. •

gramming System: Design and Implementa-
tion. Conference Record of EAe Fifth AnMual ACM
Sgmposium 011 Pnnciples of Pmgmniming Languages.
Tucson. AZ 1978
5 BYTE August 1981
6. Goldberg. Adele. Smalltalk-80. The Interactive
Prognmming EM glron ment Reading, MA
Addisonmesley, 1984.
7 Goldberg. Adele. and David Robson
611(UWA-80 The Language (nd ity Implementateon.
Reading, MA: Addison-Wasley 1983.
8 Krasner. Glenn ed. Smallmlk-80., Bits of
Historg. Words of Advice. Reading. MA Addison
Wesley, 1983

DEALERS ONLY!
IBM PC™Compatible * SANYO
Business Computer System

STANDARD FEATURES:
-Il--**I=I

* MS DOS
0 16 Bit 8088 CPU
I SANYO BASIC
O 128K Internal Memory Alliall.ajar
I Centronics Printer Port

0 Diagnostics. Utilities. Speaker_.Ai
& Joystick Port

• 1 single sided/double density disk drive (160K)
• WordStar & CalcStar Included RETAIL-$999.Ou

MBC 555

• 2 single sided/double density disk drives (320K)
• 128K memory expandable to 256K
• WordStar, CalcStar, DataStar, InfoStar, & MallMerge Included

Also available in double sided drives

111-- MICRO EQUIPMENTCORPORATION
245 West Wieuca Rd.

MICRO·EQUIP·CORP Suite 210
Atlanta, Ga. 30342

404/843-3128

210 BYTE• IUNE 1984 Circle 389 on inquiry card

BEFORE YOU BUY
CABLE ASSEMBLIES,

*2**t:%40{6:.K. %149» i, - 41:22%3'V::42*&
Heal,y guage , I I........Uf Ano ,14Mt An* :

undeniood ----
Th,#id

*.01..--1
underhood

22 AWG
iwisted c[}nductors -

4 2mm PVC co
M.

HECK UNDER THE HOOD!
DATA SPECm cable assemblies are the very best. Each cable
is fully shielded to exceed FCC EMI/RFI emission requirements.
Furthermore, the unique P.D.T. technique is employed beneath
the hood shield for maximum integrity under the most adverse
conditions. DATA SPECrn was the first to use the P.D.T. pro-
cess, *Id cable assemblies constructed with P.D.T. carry a
lifetime warranty. DATA SPECM has interface cables for all
your requirements: Modems, Monitors, Disk Drives, and much
more. Insist on DATA SPECtm cables in the bright orange
package. Available at better computer dealers everywhere. For
more information, call or write:

91010191 t3IFIECETM
A DM,10,1 01 Allia,1¤, Re=ah Corporallon

18215 Parthenia Street, Northridge, CA 91325 (818) 701-5853

Circle 97 for Dealer Iinquiries.
Circle 98 lor End-User inquiries.

C1

9.4122 AWG *>4*

Aluminer

iver --91

¤ ATRAARTI C, N®

POWER TOOLS FOR
PROGRAMMERS

by Beau Sheil

Reprinted with permission of Datamation® Magazine, © copyright Uy Technical POblishing, ·
a Dun & Bradstreet Company, 1983-all rights reserved.

Emerging from Al labs, exploratory programming
environments can handle complex,

interactive applications that structured methods
box into a corner.

POWER TOOLS FOR
PROGRAMMERS

by Beau Sheil
.An oil conipany needs a system to monitor
and control the increasingly complex and fre-
quently changing equipment used to operate
an oil well. An electronic circuit designer
plans to augment a circuit layout program to
incorporate a variety of vaguely stated design
rules. A newspaper wants a pagelayoutsys-
tem to assist editors in balancing the inter-
locking constraint. thal govern the placement
of stories and adver'tisements. A gtivernment
agency enviion a personal workstation that
would provide a single integrated interface to
a variety of large, evolving databa€ hysten,b.

Application like these are forcing the
commercial deployment of a radically new
kind of prograniming sysum. First devel-
oped to support reiearch in artificial intelli-
gence and interactive graphic. thee new
tool and techniques are based on [hc notion
of exploratory programming. the Conbciou
intertwining of system design and implemen-
tatitin. Fueled by dramatic chang» in the cu,t
of computing. uch exploratory program-
ming environments have become a commer-
cial reality virtually overnight. No fewer than
four such systems were displayed at NCC .82
and their numbers are likely to increase rapid-
ly a, their power and range of application
become more widely appreciated.

Despite the diversity of subject mat-
ter, a common thread runs through our exam-
pie applications. They are. of course. all
large. complex programs whose implementa-
tions will require significant resources. Their
more interesting similarity. however. is that
it is extremely difficult to give complete
specifications for any of them. The reasons

E range from sheer complexity (the circuit de-
9 signer can't anticipate all the ways in which
E his design rules will interact), through contin
* ually changing requirements (the equipment
2 in the oil rig change5. as do the information
g bases that the government department is re-
 quired to consult). to the subtle human fae-
z tors issues that determine the effectiveness of
2 an interactive graphics interf'ace.
M Whatever the cause. a large prograni-
i ming project with uncertain or changing
 specifications is a particularly deadly combi-

5

tr

FEBRUARY 1983 131

/&**15*600**§*&§<2*4*18*§#§*PERi.E=5§%F&29%!EMEFEENFTIqEFFE}FEEI,

MIL
71.(DEFINE[, (F (A) (IF A Ll 2 THEN 1 ELSE A•(F 0-1}
(F)

0
72*:F 41

S e
NP AUX VP

DIET N PP V PP

73-FILES?]
LATTIOER to be dumped

plus the functions F
warit w say where the above go ? No
Ntl
74.(SETQ ORAWBETWEEN 01
(ORAWBETWEEN reset) FOLLOW/CURSOR P NP 4 p W :
0 148 r-----1
75*(EOITTREE (PARSE Ny uncle' s story [53 ItnEPEAYSTREAMI/5,137346 2

FOLLOWCH*$08 I...m,m, DET DET N '1 i

ED In.ATTICE (FOLLOW/CURSOR broken)
EDiT,REENG,0 77 SHOW PATHS FROM FOLLOW/CURSOR iEDMIL f N

78: DOES FOLLOW/CURSOR CALL DRAWBETWEEN SOMEHOW

IDITIEE
-,e? I 79 DOES FOLLOW/CURSOR CALL CRAWBETWEEN E--7 pRO

LNODE)#4.54110

-80:ORAWBETWEEN
:66
81:I ji i My uncle's story about the war will bore you to tears

1•141,-RY \SHO'll]DE fEE'JEEt
'aeEPE}«**D»--,m7!mr]

LHOOEID (NP (0*1 81 (N 8,1LNODEPOS]TION £232 . 1831
NODELABELBIT MAP IRT,7,9,TY,7,3.,
NODEFROMPOS

e
NODETOPOS (232 191)
LNODEWEDTH

LNODEHEIGHT
TOLNODES

Ln

K.=

Sil k

-h
p.

NP
e Interlifn-D

FRO•LNOOES ((pp 6.8)) r f:§
.i LNODEFONT (FONTDESDRIPTOR}/1.115550
 NODELABEL NP :
m BOXNODEri.8 NIL

ai#.b ij.28:*0: i iNA"*Mm·:i ...·:i.:. M"MA#*mws#m:E.:88"imamb"ammim:?Mi : d;:9· ::·i·:.p- /i > · 0.i .:·:i · · i:··i·fi:·i :i, :·i·§$%·i 4@1g

These two screen images show some of the
exploratory programming tools provided in
the Xeror Interlisp-D prograniming envi-
ronment. Tlie screen is divided into a series

ol- rectangular areas or windowk. each ot
which provides a view onto sonic data or
process. and which can be reshaped and
repobitioned at will by the user. When they
overlap. the occluded portion of the lower
window is automatically saved. so that it
can be restored when the overlapping win-
dow is removed. Since the display is bit-
mapped. each window can contain an arbi
trury mixture of text. lines. curves. and pic-
tures compoed of half-tones or xolids. The
image of Einstein. for instance, wa, pro-

duced by scanning a photograph and storing
it digitally.

In the typescript window (labeled
1). the user has defined a program F £ facto-

nation for conventional programming tech-
niqueN. Virtually all modern programming
methodology ij predicated on the auumption
that a prograniming project K fundamentally
a problem of implementation. rather than de-
sign. The de*11 is supposed to be decided on
first. based on specification provided by the
client: the implementation follows. Thm di-
cho[omy 14 3,0 important that it is dandard
practice to recognize that a client may have
only a partial undentanding of his needi. so
that extensive conqultationi may be required
to ensure a complete specification with which
the client will remain happy. This dialog
guarantee# a fixed specification that will fom
a stable base for an implementation.

132 DATAMATION

rial) and has then immediately run it. giving
an input of 4 and getting a result of 24.
Next, in the same window. he queries the
state of his files. finding that one file (1.AT·
TICER) has already been changed and one
function (F) haS been defined but nal asso-
ciated with any file yet. The user set; the
value of DRAWBEr-WEEN to O in conimand

74. and the system notes [hat this is a
change and adds DRAWBE·rWEEN to the set
of "changed objects" that might need to be
saved.

Then. the user run. the program
EDITTREE. giving it a pane [ree f or the sen-
tence '-My uncle'. story' about the war will
bore you to tears." Thic opens up the big
window (22) on the right in which the sen-
knee diagram is drawn. Using the mouse,
the user starts to Innve the Np node on [he

left (which is inverted to show that it is

The vast bulk of existing program-
iming practice and technology. buch ab strue-
tured design methodology. i, designed to en-
burr that the implementation does. in fact.
follow the wpecification in a controlled fabh
ion. rathern than wander off in wme unpre-
dictable direction. And for good reason.
Modern programming methi,dology A a ,ig-
nificant achievenient that hah played a major
role in preventing the kind of implementation
dibasters that often befell large programming
projects in [he 1960%.

The implementation disasters of the
1960s. however. are slowly being succeeded
by the de% ign disasters of the 19805. The pro-
ject*described above simply will not yield to

being moved).
While the move is taking place, the

user interrupts the tree editor, which sus
pends the computation and causes three
·break'' windows to appear on top of the

tower edge of the typescript. The smallest
window (3) shows the dynamic state of the
computation. which has been broken inside
a subprogram called FOL[.OW,CURSOR. The
-FOLLOWDCURSOR Frame" window (4) to
the right shows the value of the local vari-
ables bound by R)LLOW·.CI RSOR. One of
them has been selected (and so appears in-
verted) and in response. its value has been
bhown in more detail in the window (5) at
the lower left of the screen. The uer has

marked one of the component values as Aus-
picious by circling it using the mouse. In
addition. he has asked to examine the con-

tents of the BI™AP Component. which has

conventional method,- Any attempt to obtain
an exact specification from the client is
bound to fail because. as we have seen. the

client does not know and cannot anticipate
exactly what is required. Indeed. the most
.striking thing about these examplch is that the
clienti' statements of their problems are real-
ly aspirations. rather than specifications. And
since the client has no experience on which to
ground these aspirations. it is only by explor
iiig the properties of some putative solutions
that the client will find out what is really
needed. No amount of interrogation of the
client oi paper exercises will answer these
questions: one just has to try some designs to
see what works.

TOP LEVEL TYPESCRIPT WINDOW

NIL

71-(DEFINEQ <F (A) (IF A LT 2 THEN 1 ELSE A*(F A-11
i (F)

72•(F 4]
·24

73-FILES,1
LATTICER .to be dumped

plus the functions: F [JET

i' want to say where the above go ? No AN]L
8374.(SETQ ORAWBETWEEN 0] Ii... 6(DRAWBETWEEN reset) FOLLOW/CURSOR

E0
75+KEDITTREE

1 1.'7*EFIEigiR.

AUX VP

1 //11\
PP MVMP'P

1 //\1
P NP PAO P NP

3
[PARSE Ny uncle·s story [, 8 T.I;5.137346

DET DET N N

78 DOES FOLLOW/CURSOR CALL 0RAWBE1WEEN SOMEHOW
T

;PPLV

, EDZ'LATTICE

79 DOES FOLLOW/CURS OP GALL D RAW BE T WEE {YUN@i'.·; SETO NIL
:l::·:. ED InREE 80:DRAWaETWEEN [LAMBOA (1[

66

"""'m'! 81· EDIT WHERE ANY CALLS DRAWBETWEEN
iSHOWLINK

(DRAWBETWEEN (FROMPOS FRND) (TDPOS TONO "Ow

<LTSF>DEMO>LATTICER .laU

NODELST OS TOSONLY) 1. I. 0, JAM.': 1'.. 1 It' 1:.:
I...01.,S. *43 .M "S '1"3 : ;Ir TOSOIL. IS NON Ng, DRAW ©MLY THE 70 UNY·I l

NE/LABFL NCI 06)(TOLLINKS NO) do :SHOWLII* NO I NOIDEIDTONOOF TONODETD NODELST)TONDOEIrl in
DS))

COR TOSUNLY (tor FROMNDID in (FROMLLINKS ND) do (SHOWLINK <NODEM),ONODE FR 1:I,IND I[.
NO OS])

J FOLLOWORSOR

Eigri li'

/ 5.ABUT/posITIoll-*IURETT!1

.01/liDOE<
d>NODEm

.*'°°°£29?4

LNODEID (IP (DET &) (N &))
LNODEPOS!1!ON (232 . 183)

NODEFROMPOS VI
NODETOPOS (232 191)
LBODEWIDTH
LNODEHEIGHT .
TOLHOOES ET &) (N &))

16

--- lialll&&324=462&43

0 Before Z.*
FRAITOTONDI Nle.

1
(add DRAWEETWEEN 1) Flepia¢e
(DRAWBETWEEN (FROMPOS FRND)

ITOPOO TONO)

Find

bwap

DEd#
Edi,Com

Exii .t

I.*%:

)F 9.0.L NODES ((PP & &))
U LNODEFONT (FONTOESCRIPTOR}/1,1155, - -- 37 -LO Interlisp-DNODELABEL NP

i'· BOXNODEFLG NIL

l illi EN@RE@NE@%@Millimil .:mul"'Amim"Wai,bi::i ..: :.i;'"milum"m,3.§*)ES=%§im::m
opened up a bitmap edit window (6) to the
right. This shows an enlarged copy of the
actual NP image that is being moved by the
tree editor. Then. inside the largeg of the
three break windows (10) the user has abled
bonle questions about the FOL.LOW:CURSOR
subprogram that was running when he inter-
rupted. and queried the value of DRAW·
BE·1·WHEN (now 66). The SHOW PATHS com-
mand brought up the horizontal tree dia-
gram on the left (7). which hows which
subprogrami call erich other. starting at
1 ()[.LOW CURSOR.

Each node iii the call tree produced
by the SHOW PATHS cominand is an active
element [hat will respond to the user's se-
lecting it with the mouse. 111 the second
image. the ufer has selected the SHOWNODE
subprogram. which has caused source
code to be retrieved from the file (<Lisp>DE-

The consequences of approaching
problems like these ab routine imptcmenta-
tien exercises are drainiatie. First. the imple-
mentation team begins by pushing for an ex-
act specification. How long the client reststs
this coercion depends on how well he really
undentands the limits of hib own grasp of the
problem. Sooner or later. however. with
more or less ill-feeling. the client accepts a
specification and the implementation team
goes to work.

The implementors take the specifica-
tion. partition it. define a module str·ucture
that reflects this partitioning. free,e the inter-
faces between them. and repeat this process
until the problem hah been divided into a

MO.LATTICER) on the remote file server
(PHYLUM) where it was stored, and dis-
played in the ·Browser printout window''
(8) which has been opened at middle right.
User functions and extended Lisp forms
(like fbr and do) arc highlighted by qystem-
generated font changes.

By selecting nodes in the sliow
PATHS window, the user coutd alw have
edited the code or obtained a summary de-
scription of any ot- its subprograms.

instead, the user has asked (in the
break typescript window (10)) to edit
wherever anybody calls the DRAWBETWEEN
system primitive (which draws lines be-
tween two specified points}. Thib request
causef the system to consult its dynamically
maintained database of information about

user programs. wherein it finds thal the sub-
program SHOWLINK calls DRAWBETWEEN. It

large number of small. easily understand-
able, and easily implementable piecch. Con-
trol over [he implementation procep 1%
achieved by the imposition of structure.
which is then enforced by a variety of man-
agement practiceh and pr<,gramming [0010.

USE OF Since the Npecification.
INTERNAL and therefore the module

Ntructuring. is consideredRIGIDITY fixed. one of the most ef-

fuctive methods for enforcing it ih the use of
redundant descriptions and consistency
checking. Hence the importance of tech-
niques such as interface descriptions and stat-
ic type checking. which require that multiple

therefore loads the code frir SHOWLINK into

an edit window (9) that appears linder the
··Browser printout window." The y:item
then automatically finds and underlines the
first (and only) call on DRAWBETWEEN.
Note that on the previous line DRAW-
BE·rwl·EN is used as a variable {the same

variable the user set and interrogated earli-
er). The system. however. know's that this
is not a subprogram call. so it has been
skipped over. If the user were to make any
change to this subprogram in the editor. not
only would the change take effect immedi-
ately. but SHOWLINK would be marked as
needing to be updated in its file and the
information about it in the subprogram da
tabase would be updated. This. in turn.
would cause the SHOW PATHS window to be 11
repainted. as its display might no longer be
valid.

statements of various aspects of thu: design be
included in the program text. These state-
ment> allow mechanical checks that ensure

that each piece of the system remains consis-
tent with the rest. In a well-executed conven-

tional implementation project. a great deal of
internal rigidity is built into the system. en
Muring its orderly development.

The problem·. usually emerge at sys-
tem acceptance time. w'hen the client requests
not just superficial. but radical changes. ei-
ther as a result of examining the system or for
qome completely exogenous reason. From
the point of' view of conventional program-
ming practice. this indicates a failure at
specification time. The software engineer

FEBRUARY 1983 133

The implementation disasters of the 1960s are
slowly being succeeded by the design disasters of
the 1980s.

should have been more perhistent in obtaining
a fuller description of the problem. in involv-
ing all the affected partieb. etc. Thi# is often
true. Many ordinary implementation exer-
cises are brought to min because the con*
quence of the specification were never fully
agreed upon. But that's not the problem here.
The oil company couldn't anticipate the addi
lion of a piece of equipment quite different
front the device on which the specification
was based. No one knew that the layout edi-
ton would complain that it doesn't 'luci
right" now that they can no longer phrically
handle tile copy leven in retrapect it's un-
clear why they feel that way and what to do
about it). etc.. etc.. etc. Nor would any
amount of peculation by either client or *ott-
ware engineer have helped Rather. it would
have juD,t prompted an already ncrvous client
to demand whole dimenionx of flexibility
that would not in fact be needed. leaving the
iyftem Just as unprepared for the ones [hat
eventually turned ou[[u matter.

Whatever the cause. the implementa-
lion team has to revork the system to satisfy a
new, and aignificantly different, specifica
tion. That puts them in a situation that eun-
ventional programming methodology simply
ret-uses to acknowledge-<xeept as some-
thing to avoid. As a result. their program-
ming tools and methods are suddenly ot lim-
ited effectiveness. The redundant descrip-
tionh and imposed structure that were so cfr
fuctive in constraining the program to fullow
the old specification have lost none of their
efficacy-they still constrain the program to
follow the old specification. And they-re dif-
ficult [o change. The whole point of redun-
dancy is to protect [he design from a single
unintentional eharge. But it-s equally well
protected against a single intentional change.
rhus, at! the changes have to be made every·-
where. (Since this bhouid never happen.
there's no methodology to guide or program
ming tools to a»ist this process.) Of eour>e.
if the change is smal| tah it '-chould" be).
there i. no particular problem. But if it is
large enough to cut across the module struc-
ture. the implenientation teani 1-inds that it
has to fight its way out of its previous design.

Still no major problem. if thaths the
end of the matter. But it rarely is. The new
sy·Atem will suggest yet another change. And
so on. After a few iterationb of this. not only
are the client and the implementation team
not on speaking terms. but the repeated ab
aults on the module structure have likely left
it looking like spaghetti It still get, in the
way (fire wal 15 are just as impenetratie if laid
out at random as they are when laid out
straight). but has long ceased to be of any use
to anyone except to remind them of the pro-
ject' s sorry history. Increasingly, it is active-
ly subverted (enter LOOPHOLES, liNSPECA.
etc.) by programmers whofie patience is run-

136 DATAMATION

n ing th in. Even i f the design were suddenly to
stabilize (unlikely in the present atmo
phere). all [he seedx have now been sown for
an implementation disaster as well.

EXPLORE The alternative to this kind

DESIGN of predictable disaster is
not to abandon btructured

PROBLEMS design for programming
projectb that are. or can be made to be. well
defined. That would be a tremendous .tep
backward,. Instead. we should recognize thal
some applications are best thought of as de-
sign problems. rather than implementation
projects. These problems require program-
ming syste,m that allow the design to emerge
from experimentation with the program. se
that design and program develop together.
Environments in which this ib posible were
first developed in artificial intelligence and
computer graphic.. two rehearch area!. that
are particularly prone to specification instu
bitity

At first sight. artificial intelligence
might seem an unlikely source of program-
ming niethodology. But constructing pro-
grams, in particular programb that carry ou[
sonic intelligent activity, is central to anifi
cial intelligence. Since almost any intelligent
activity is likely to be poorly understood
(once a program becomes well understood we
usually cease to consider it ··intelligene).
the artificial intelligence programmer invari-
ably has to restructure hi, program many,
many times before it becomes reasonably
proficient. In addition. since inte[ligen[ac-
tivities are complex. the programs tend to he
very large. yet they are invariably built by
very small teams. often a single researcher.
Consequently. they are usually at or beyond
the manageable limits of complexity for their
implementors. in response. a variety of pro-
gramming environments babed on the L.ihp
programming language have evolved to aid in
the development of thehe large. rapidly
changing gstern..

The rapidly developing area of inter-
active graphic, has encountered bimilar prub-
lem.. Fueled by the swift drop in the Coh[of
computerb capable iii- .upporting interactive
graphics. there has been an equally swift de-
velopment of applications that make heav)
use of interactive graphic. in their user in[er-
faces. Not only was the derign of such inter-
faces almost completely virgin territory as
recently .3 10 years ago. but even now. when
there are a variety of known techniqueb
(menus. windows, etc.) fur exploiting thix
power. it is still very difficult to determine
how easy it will be to use a proposed user
interface and how well it will match the u,
er's needs and expectations in particular situ-
ations. Conhequently. complex interactive
interfaces usually require extensive empirical
testing to determine whether they are really

effective and considerable redesign to make
them SO.

While interface design has always re-
quired sonic amount of tuning. the vastly in-
creased range of possibilities available in a
full graphics system has made the design
space unmanageably large to explore without
extensive experimentation. In response. a va
riety of systemb. of which Smalltalk is the
bet known. have been developed to facilitate
thii experimentation by providing a wide
range of built-in graphical abstractions and
methods of m,difying and combining them
together into new forms.

ln contrast to conventional program-
ming technology. which restrains the pro-
grammer in the interesti of orderly develop-
ment. exploratory programining hystems
must amplify the programmer in the interests
of maximi/ing hib effectivene». Exploration
in the realm of programming can require
Jmall numbers of programniers to make a-
sentially arbitrary transformations to very
large amounts of code. Such progranimers
need programming power tools of consider-
able capacity or they will simply be buried in
detail. So. like an amplifier. their program-
ming system must magnify their necessarily
limited energy und minimize extraneous ac-
tivitles that would otherwise compete for
their attention.

SOURCES One source of such power
OF DESIGN is the use of interactive

graphics. Exploratory pro-
POWER gramming systems have
capitalized on recent developments in pcr-
sonal computing with extraordinary hpeed
The Xerox 1108 Interlisp-D sybtem. for ex-
ample. uses a large format display and a

mouse' pointing device to allow very high
bandwidth communication with the user. De-

bigners of exploratory programming environ-
ments have been quick to seize on [he power
of this combination to prnvide novel pro-
grarring [00]. ab we shall bee.

In addition to programming tools.
the personal machine environments allow
the standard Features of a professional work-
station. such a. text editing. file manage-
ment. and electronic mail. to be provided
within the programming environment itfelf.
Not only are these facilities just as effective
m enhancing the productivity of program-
mers as they are for other professionals. but
their integration into the programming envi-
ronment allows them to be used at any time
during progranlmmg. Thus, a progranlmer
who has encountered a bug can send a mes-
sage reporting it while remaining within the
debugger. perhaps including in the message
some information. like a back-trace. obtained
frozii the dynamic context.

Another source of power is to build
the important abstract operations and objects

Redundancy protects the design from
unintentional change--but it's equally well
protected against intentional change.

of some given application area directly into
the exploratory environment. All program-
ming systems do this to a certain extent; some
have remarkably rich structures for certain
domains, (e.g., the graphics abstractions em-
bedded within Smalltalk). If the abstractions
are well chosen, this approach can yield a
powerful environment for exploration within
the chosen area, because the programmer can
operate entirely in substantively meaningful
abstractions, taking advantage o f the consid-
erable amount of implementation and design'
effort that they represent.

The limitations of this approach,
however, are clear. Substantive abstractions
are necessarily effective only within a par-
ticular topic area. Even for a given area, there
is generally more than one productive way to
partition it. Embedding one set of abstrac-
tions into the programming system encour-
ages developments that fit within that view of
the world at the expense of others. Further, if
one enlarges one's area of activity even
slightly, a set of abstractions that was once
very effective may become much less so. In
that situation, unless there are effective
mechanisms for reshaping the built-in al-
stractions to suit the changed domain, users
are apt to persist with them, at the cost of
distorting their programs. Embedded abstrac-
tions, useful though they are, by themselves
enable only exploration in the small, con-
fined within the safe borders where the ab-
stractions are known to be effective. For ex-

ploration in the large, a more general source
of programming power is needed.

Of course, the exact mechanisms that
different exploratory systems propose as es-
sential sources of programming power vary
widely, and these differences are hotly de-
bated within their respective communities.
Nevertheless, despite strong surface differ-
ences, these systems share some unusual
characteristics at both the language and envi-
ronment level.

THE The key property of the
LANGUAGE programming languages

used in exploratory pro-
LEVEL gramming systems is their
emphasis on minimizing a,id deferring the
constraints placed on the programmer, in the
interests of minimizing and deferring the cost
of making large-scale program changes.
Thus, not only are the conventional structur-
ing mechanisms based on redundancy not
used,.but the languages. make extensive use
of late binding, i.e., allowing the.program-

. mer to defer commitments for as long as pos-
sible.

The clearest example is that explora-
tory environments invariably provide dynam-
ic storage allocation with automatic reclama-
tion (garbage collection). To do otherwise
imposes, an intolerable burdER on the pro-

138 DATAMATION

grammer to keep track of all the paths
through his program that might access a par-
ticular piece of storage to ensure that none of
them access or release it prematurely (and
that someone does release it eventually!).
This can only be done by careful isolation of
storage management or with considerable ad-
ministrative effort. Both are incompatible
with rapid, unplanned development, so nei-
ther is acceptable. Storage management must
be provided by the environment itself.

Other examples of late binding in-
clude the dynamic typing of variables (asso-
ciating data type information with a variable
at run-time, rather than in the program text)
and the dynamic binding of procedures. The
freedom to defer deciding the type of a value
until run-time is important because it allows
the programmer to experiment with the type
structure itself. Usually, the first few drafts
of an exploratory program implement most
data structures using general, inefficient
structures such as linked lists discriminated

(when necessary) on the basis of their con-
tents. As experience with the application
evolves, the critical distinctions that deter--
mine the type structure are themselves deter-
mined by experimentation, and may be
among the last, rather than the first, decisions
to evolve. Dynamic typing makes it easy for
the programmer to write code that keeps
these decisions as tacit as possible.

The dynamic binding of procedures
entails more than simply linking them at
load-time. It allows the programmer to
change dynamically the subproccdures in-
voked by a given piece of code, simply by
changing the run-time context. The simplest
form of this is to allow procedures to be used
as arguments or as the value of variables.
More sophisticated mechanisms allow proce-
dure values to be computed or even encapsu-
lated inside the data values on which they are
to operate. This packaging of data and proce-
dures into a single object, known as object-
oriented programming, is a very powerful
technique. For example, it provides an ele-
gant, modular solution to the problem of ge-
neric procedures (i.e., every data object can
be thought of as providing its own definition
for common actions, such as printing, which
dan be invoked in a standard way by other
procedures). For these reasons, object-ori-
.ented programming is a widely used explora-
tory programming technique and actually
forms the basic programming construct of the
Smalltalk language.

The dynamic binding of procequres
can be taken one step further when proce-
dures are represented as data structures that
can be effectively manipulated by other pro-
grams.. While this is Qf course possible to a
limited extdbt by reading and,Wiiting the fext
of program source file&, it is of much greater
signific'ance in systems that,define an explicit

representation for programs as syntax trees or
their equivalent. This, coupled with the inter-
preter or incremental compiler provided by
most exploratory programming systems, is
an extraordinarily powerful tool. Its most
dramatic application is in programs that con-
struct other programs, which they later in-
voke. This technique is often used in artificial
intelligence in situations where tile range of
possible behaviors is too large to encode effi-
ciently as data structures but can easily be
expressed as combinations ofprocedure frag-
ments. An example might be a system that
"understands" instructions given in natural
language by analyzing each input as it is re-
ceived, building a program that captures its
meaning, and then evaluating that program to
achieve the requested effect.

A BASIC . Aside from such special-
TECHNIQUE ized applications, effec-

tive methods for mechani-
EXPANDED cally manipulating proce-
dures enable two other significant develop-
ments. The first is the technique of program
development by writing interpreters for spe-
cial purpose languages. Once again, this is a
basic technique of artificial intelligence that
has much wider applicability. The key idea is
that one develops an application by designing
a special language in which the application is
relatively easy to state. Like any notation,
such a language provides a concise represen-
tation that suppresses common or uninterest-
ing features in favor of whatever the designer
decides is more important.

A simple example is the use of nota-
tions like context-free grammars (BAF) to
"metaprogram" the parsers for program-
ming languages. Similar techniques can be
used to describe, amonA other things, user
interfaces, transaction sequences, and data
transformations. Application development in
this framework is a dialectic process of de-
signing the application language and devel-
oping an interpreter for it, since both the lan-
guage and the interpreter will evolve during
development. The simplest way of doing this
is to evolve the application language out of
the base provided by the development lan-
guage. Simply bj, allowing the application
language interpreter to call the development
language interpreter, expressions from the
development language can be used wherever
the application language currently has insuf-
ficient power. As one's under'standin of the
problenh develops, the application language
becomes increasingly powerful and the nedd
to escape into the development language bb-
comes less important.

The othet result of hahidg Drpcedures
that are easily, manipulated by other proce-
dures is that it becomes easy to 8,4 program
manipulation subsystdms. This in turn has
two key consequences. First, the expjoratory

Conventional programming technology restrains
the programmer; exploratory systems amplify him.

programming language itself can grow. The
remarkable longevity of Lisp in the artificial
intelligence community is in large part due to
the language having been repeatedly ex-
tended to include modern programming lan-
guage syntax and constructions. The vast ma-
jority of these extensions were accomplished
by defining source-to-source transformations
that converted new constructions into more
conventional Lisp. The ease with which this
can be done allows each user, and even each
project, to extend the language to capture the
idioms that are found to be locally useful.

Second, the accessibility of proce-
dures to mechanical manipulation facilitates
the development of programming support
tools. All exploratory programming environ-
ments boast a dazzling profusion of program-
ming tools. To some extent, this is a virtue of
necessity, as the flexibility necessary for ex-
ploration has been gained at considerable sac-
rifice in the ability to impose structure. That
loss of structure could easily result in a com-
mensurate loss o f control by the programmer.
The programming tools of the exploratory
environment enable the programmer to reim-
pose the control that would be provided by
structure in conventional practice.

Programming tools achieve their efr
fectiveness in two quite different ways. Some
tools are simply effective viewers into the
user's program and its state. Such tools per-
mit one to find information quickly, display it
effectively, and modify it easily. A wide va-
riety of tools of this form can be seen in the
two Interlisp-D screen images (see box, p.
132), including data value inspectors (which
allow a user to look at and modify the internal
structure of an object), editors for code and
data objects, and a variety of break and trac-
ing packages. Especially when coupled with
a high bandwidth display, such viewers are
very effective programming tools.

A WIDE Theothertypeofprogram-
VARIETY ming tool is knowledge

based. Viewer-based
OF TOOLS tools, such as a program
text editor, can operate effectively with a
very limited understanding of the material
with which they deal. By contrast, knowl-
edge-based tools must know a significant
amount about the content of a user's program
and the context in which it operates. Even a
very shallow analysis of a set of programs
(e.g., which programs call which other ones)
can support a variety of effective program-
ming tools. A program browser allows a pro-
grammer to track the various dependencies
between different parts of a program by pre-
senting easy to read summaries that can be
further expanded interactively.

Deeper analysis allows more sophisti-
cated facilities. The Interlisp program analy-
zer (Masterscope) has a sufficiently detailed

142 DATAMATION

knowledge of Lisp programs that it can pro-
vide a complete static analysis of an arbitrary
Lisp program. A wide variety of tools have
been constructed that use the database pro-
vided by this analysis to answer complex
queries (which may require significant rea-
soning, such as computing the transitive cio-
sure of some property), to make systematic
changes under program control (such as mak-
ing some transformation wherever a specified
set of properties hold), or to check for a vari-
ety of inconsistent usage errors.

Finally, integrated tools provide yet
another level of power. The Interlisp system
notices whenever a program fragment is
changed (by the editor or by redefinition).
The program analyzer is then informed that
any existing analysis is invalid, so that incor-
rect answers are not given on the basis of old
information. The same mechanism is used to

notify the program management subsystem
(and eventually the user, at session end) that
the corresponding file needs to be updated. In
addition, the system will remember the pre-
vious state of the program, so that at any
subsequent time the programmer can undo
the change and retreat (in which case, of
course, all the dependent changes and notifi-
cations will also be undone). This level of
cooperation between tools not only provides
immense power to the programmer, but re-
lieves him of detail that he would otherwise

have to manage himself. The result is that
more attention can be paid to exploring the
design.

A key, but often neglected, compo-
nent of an exploratory programming system
is a set of facilities for program contraction.
The development of a true exploratory pro-
gram is design limited, so that is where the
effort has to go. Consequently, the program
is often both inefficient and inelegant when it
first achieves functional acceptability. If the
exploration were an end in itself, this might
be of limited concern. However, it is more
often the case that a program developed in an
exploratory fashion must eventually be used
in some real situation. Sometimes, the time
required to reimplement (using the prototype
program as a specification) is prohibitive.
Other times, the choice o f an exploratory sys-
tem was made to allow for expected future
upheaval, so it is essential to preserve design
flexibility. In either event, it is necessary to
be able to take the functionally adequate pro-
gram and transform it into one whose effi-
ciency is comparable to the best program one
could have written, in any language, had only
one known what one was doing at the outset.

The importance of being able to make
this post hoc optimization cannot be overem-
phasized. Without it, one's exploratory pro-
grams will always be considered toys; the
pressure to abandon the exploratory environ-
ment and start implementing in a real one will

be overwhelming; and, once that move is
made (and it is always made too soon), explo-
ration will come to an end. The requirement
for efficient implementation places two bur-
dens on an exploratory programming system.
First, the architecture must allow an efficient
implementation. For example, the obligatory
automatic storage allocation mechanism
must either be so efficient that its overhead is
negligible, or it must pennit the user to cir-
cumvent it (c. g., to allocate storage statical-
ly) when and where the design has stabilized
enough to make this optimization possible.

Second, as the performance engineer-
ing of a large system is almost as difficult as
its initial construction, the environment must
provide performance engineering tools, just
as it provides design tools. These include
good instrumentation, a first-class optimiz-
ing compiler, program manipulation tools
(including, at the very least, full functionality
compiler macros), and the ability'to add dc-
clarative information where necessary to
guide the program transformation. Note that,
usually, performance engineering takes place
not as a single "post-functionality optimiz-
ation phase," but as a continuous activity
throughout the , development, as different
parts of the system reach design stability and
are observed to be performance critical. This
is the method of progressive constraint,· the
incremental addition of constraints as and
when they arc discovered and found impor-
tant, and is a key methodology for explora-
tory development.

Both of these concerns can be most

clearly seen in the various Lisp-based sys-
tems. While, like all exploratory environ-
ments, they are often used to write code very
quickly without any concern for efficiency.
they are also used to write artificial intelli-
gence programs whose applications to real
problems are very large computations. Thus,
the ability to make these programs efficient
has long been of concern, because without it
they would never be run on any interesting
problems.

More recently, the architectures of
the new,.personal Lisp machines like the
1108 have enabled fast techniques for many
of the operations that are relatively slow in a
traditional implementation. Systems like In-
terlisp-D, which is implemented entirely in
Lisp, including all of the performance-criti-
cal system code such as the operating system,
display software, device handlers, etc., show
the level of efficiency that is now possible
within an exploratory language.

The increasing importance o f applica-
tions that are very poorly understood, both by
their clients and by their would-be implemen-
tors, will make exploratory development a
key technique for the 1980s. Radical changes
in the cost of computing power have already
made such systems cost-effective vehicles for

The programming languages used in exploratory
systems minimize and defer constraints on the programmer.

the Ateliver> of application systemi. in many
areaf. Af recently .ts fii e years ago. the t(}(,A
and language feature, we have dicu™ed re-
quired the computational power of a large
mainfranle co·.ting ah<,ut $500.Of*). Twii
year aign. equivalent facilitic, became avail-
able cin a per·Minal machine fur abiul
%1((}.{XI}. and a year later. about S50.(100.
Now. u full-•calc exploratory development
.»ler, can be had fur about $25.000. For
many application. the incremental cost haN
become vi .mall over that required to upport
conventinnal technology that the benefits of
explorati,ry developmen[(and redevelop-
ment!) are now decnive.

One con,equence of this revolution-
ary change in the cost-effectiveness of ex-
pit}ratury #y•.temb i, that our idea (,f explura-
[ory problem is going to change. Explon,·
tory prt,gramming wA developed originall>
in etinlext>, where change Was the dominant
fucttir

[here A. hliwever. clearly a spectrum
01 %pecification instability. Traditionally. the
coht of expluratory prograniming *ystem.
both iii terms of the computing power re-
quired and [he run-time inefficiencie· m

curred. confined their ube to Only the mov
volatile applicationi. Thub. the spectrum w ah

144 DATAMATION

arbitrarily dichotomized into explorator>
(very lew) and ·,tandard {the vaw nial<irity)
Unfortunatel). the reality ij that unexpected
change A tar mcire comnion in standard appli
cation. than w·e have been willing Ii, admit
Conventional prograniming techniquei grive
tu preserve a stability that IN (mlv ton often a
fiction. Since exploratory programming »'4
tern. prinvide touk that are better adapted ki
th]J uncertainty. many application. [hat are
now being treated a frandard but u hich in
fact 0eem to require inoderate le # e ls 4,1 ong o-
ing experimentation may turn out to be more
effectively developed in an explciratury envi
moment.

We can 11|vi e.,.rect to .ee a 510#4 intu-
*ion of explorn[or> development techniqua
inti) conventional practice. Many tif the pri)-
gramming [0014 of an exploratory program-
ming .ywern (in particular. the infurmatitin
gathering und viewing tools) do nal depend
on the more exploraton attribute, 01 either
language or environment und could thu, be
adapted t„ •.upport programming in conven-
Ilonal languages like FORTRAN and <1)14(,1.
Along with these tools w·il| come the ked. bil
the exploratiwy penpecti,e on language and
»tern daign. which will gradually be inc-
Firated inki ext#ting programming language·.

and by,temb. loosening Jome of the hondi
w·ith which these %>Ntemb 9, needle#*1> re-
Mriet the programmer

10 tho·,e accu>,tomed to [he preclhe.
Vmetured methods of t»nvent,unal •,ywem
developmen[. exploraton' development tech
nique· may seem mehsy. inekegant. and un
waifying. But it's a quewion of ctingnience
precisicin and inllexibility may te juit as dis-
functional in novel. uncertain hituationh ah
4]oppine and vacillation are in lamiliar.
well-defined ones. Those who admire the

ma#,ive. rigid bone •tructureh 01 dinouurs
4hould remember that iellyfi•h Vill enjoy
their ver> fecure ecological niche. *

Beau Shell Is on the research staff at
the Palo Alto Research Center of the

Xerox Corp i where he has been since
receiving his PhD in computer science
trom Harvard University in 1976. His
research interests include program-
ming systems and the psychology 01
programming. Many of these ideas
were first developed. and later pol-
jshed, in discussions with John Seely
Brown and other colleagues in cogni-
tive and instructional sciences at Xe-
rox PARC

DATAMATION
 f oblect-oriented programmingCool') technologies are the w-,ve of

the future, why hasn't Smalltalk, the
grand(laddy of (4)P languages, been
more wic{·ehhful?

After all, Snialltalk. which was devel-
oped at the Xerox PARC research labs
in [910 Alto in the mid-19703, was one
of the first languages lo reject the opera-
tor/operand, linear ftyle of more con-
ventional programming languages. Iii-
ste,id, Smalltalk uses self-contained data
structures called objects, which program-
mers can combine and reuse in their ap-
plications. Its proponents bald Smalltalk
would significantiv improve program-
mer productivity :rid make Imig-tel·rl
progtam maintenance and enhancement
easier.

Smalltalk

Grows Up
Thanks to a boost from IBM and Microsoft, and a
growing set of support tools, Smalltalk is finally
beginningtosound good to IS.

BY JEFF MOAD
But Snialitalk never really took off.]S

applications development managers
have tended to view it as a fringe lan-
guage, weak on performance and lacking
critical support features. such ah btable
databate interfaces and weli-established
development melhodologies. TIms, is
managerq have been reluctant to retrair
their (,()11()[programmers to tise S][iall-
talk. Parcllace Svstems, a spin-off from
Xerox PARC, und a few small consulting
firms were prettv much alone iii trving
toronvince Isto take Smalltalk seriously.

A Small Surge
All that may be changing, however. A

number of Is organiiations are moving
bnond experimenting or prototyping
applications with Smalltalk and are be-
girming to develop critical applications.
Several small rendor, have recentlv en-
let·ed the Sntalltalk mai·ket with products
that make the language easier to use and
more productive for large applications.
And a Parcrlace competitor has even
emerged, Digitalk Inc. of Los Angeles is
now Ulling lower cost versions of Small-
talk targeted at os /2 and Windows users.

Smalltalk is nor about to replace
COB<)1., but it is finallv naturing into a
viable choice in application develop-
ment, especially for user·s looking for a
tool to speed development of advanced
graphical user interfaces (Gl: Is) in client/
sci-ver application5.

Iliat's Smalltalk's function at Texaco
Inds oil exploration and land manage-
ment unit in liouston. According to Tex-
aco IS manager Dennib Sainoska, the
company wanted to rewrite two large
mainfranne applications, replacing dumb
terminals with Windows-based pcs and
workstations. The pes and Horkslations
would give users easieraccess to host data
via advanced GUIS. After evalilating sev-

eral computer-ai ded software engineer-
ing ((:Ast.) tools, Samoska's unit decided
to prototype and implement its new- ap-
plications using ParcP[ace's Object-
work\Sma[Italk. Now under de,elop-
ment, the applications will access Tex-
aco'sexisting 082 host database via an ap-
plication programming interface (API).

Usei·s like Samoska sm· Smalltalk takes

much of die headache out of creating ap-
plications that use such Gl 1 standards as
Windows or os/2 Presentation Man-
ager. Rather than require programmer.s
to learn and write to complicated Gul
\Pts, Smalltalk uses reusable class librar-
les that can link applicationi to the .4Pls.

FIGUncher. Fl =1-
' f#;: 3/den

Mono

Browsers . |4 tfatill#eext
1.JiliL· i . I I / 1 6l•P I ,48+Al. -

Chat.= User Interrupt
Spet.
Quit Trade/Browse)BrowserModel)>>chart:withButlon:

Trade.Browser>>stock#nalfis==9
** 11 Qplimized

** step send
se,rl,iglinglit t5.
-self]1

(13> Charterow5er new) stock ll
[3 application: self appi,cabon:
t2

i:True:[13 opent*ffi itialse:[13 openNIAnnual Button!.

'19 slem Browser

Ell .1 1UU[-LUAimgmjMNing]226%9 : ip [rade,Wind.4 Slock 3 printing i addres Trader'NindM. iki£,nd,class I] firs:Na
Emht
B·* 4 messageselectorand argumentnames1.

corment stating purpose of message·· I%
ibi . i I lemporary,ariabte names I
F F slate,nents

Annu

2.2.

SMALLTALK\OBJECT from ParcPlace
thatrun under several graphical interfaces

432

Developers can then work with an easier-
to-use set of interface-building tools.

As a dynamically compiled langiiage
built on reusable objects and a virtual in-
tertace that uses machine-independent,
intermediate code, Smalltalk is also easily
portable between the platforms it sup-
ports. Texaco, for example, is develop-
inK its new Smalltalk applications on Sun
Morkstations and is running them on pcs.

Help From The Big Boys
Smalltalk is also benefiting from re-

cent recognition from I Int and Microsoft
Corp. Recognizing that Smalltalk could
help ubers write more (>s/2 PM applied-

.4- 4
sUEr'

poly'Triders. In
ionsUation of Par(Place S

ZE-1 Close S"s* Workbench
 mader Leibs I

. At£0Unts

11-FIJackson.Bo
i i ::' [MITE· Arthur Stock 48*56]
<:, Browse Accountl Tradel aese I .%3
{9 Open NewJU 4..:il

Trading ot Adobe Systems 2
14- I i f

P . 6 11 11 0 & 27: 1,
S 1 -2 -%. -2-ailtt-.Li,t|g'«Lme k T" 1 0 - 1 '11 1,"- iM+64-40-- 4: 14 . 114%

{41 Al#
f A.

1 E :rp
*19 26 2 9 16 23 30 7 14 21 22Dec

Comparel *ktCharb I
1%91/PARIA"%%£U<'*4/*tu .Il..........6/I - .>u,/&/4/*=2

Systems can be used to build portable applications

SOFTWARE

LANGUAGES

tions, IRM endor·sed die environnicut late
last year. It signed licensing agreenients
with both ParcIlace and Digitalk. IBM is
currently attempting to integrate Small-
talk and object-oriented programming
capabilities into its AD/Cycle C.ASK archi-
Lecture. If developers at Big Blue's Pro-
gramming Systems Lab in Cary, N.C.,
are successful in integrating Smalltalk
into .AD/Cycle's information model,
there's a good chance]BM will take
the next step and declare Smalltalka Sys-
tems Application Architecture (SA.A)-
approved language, says Cliff Reeves,
nianager of Coizinioii User Acce. S for
IBM.

U THERE ARE STILL
SEVERAL MISSING
CHAPTERS IN THE
SMALLTALK STORY.

Not to be left behind, Mict osoft is mov-
ing Smalltalk into [he Windows environ-
ment. The company is working closely
with Par(Place to build low-level pro-
gram-to-program messaging links into
future versions of Windows and os/2
that could help programs written in
Smalltalk and other obJect-oriented envi-
ronments such as C+ + more easily
share objects.

Eiffel Tower Of Babble

Public support of Smalltalk by IBM and
Microsoft has given a boost to some IS
managers trving to se|1 their bosses oIl
the advantages of object-oriented pro-
gramming and Smalltalk. "It really
helps," say·s Phil Hartley, principal tech-
nologist in the Advanced Technology
Group at American Airlines Inc.'s 5.ABRE
Computer Services. Hartley's group is
currently evaluating Smalltalk along
with other object-oriented and GU[-
building tools such as C++, Eiffel and
Object COBOL. Smalltalk currently has
the strongest set of support toolS, SayS
Hartley.

Indeed, thanks to a growing number
of new Smalltalk independent software
vendors ([svs), users can now choose
from several sets of tools that extend
Smalltalk'5 functionality and ease of use.

Last year, I {igh[ands, N.}.-based Syner-
gistic Solutions Inc. started shipping its

Smalltalk Platform for Integrated Com-
puting Environments (SPICE), which in-
cludes a set of class libraries. SPICE helps
link applications written in Object-
works\Smalltalk or Digitalk's Smalltalk V
with the Sybase/Microsoft SQ[. Server
and with NetmOSor DEC-Net networking
Firotoco[inter·fices. Through the Sybase
database gateway, Smalltalk applications
can also access])82, Rdb and other data-
base management systems.

Similarly, Instantiations Inc. of Port-
land, Ore., recently started shipping
what it calls Ute Application Organizer
Plus, a set of tools that helps large Small-
talk development teams with vet·Sion
IIntriagement and code reuse. And at
|east two other small vendors, Acumen
Software of Berkeley, Calif., and Tigre
Object Systems Inc. of Santa Cruz, Calif.,
are shipping tools aimed at helping
Smalltalk developers create Gu[-based
applications on P(:, Macintosh and UNIX
platforms even more easily.

Even one mainstream language ven-
dor-Micro Focus Inc.-is getting into
the Smalltalk environment. The vendor
of COBOL development tools recently
agreed to bundle Digitall's Smalltalk V
into its Cobol Workbench to be used to
build osi/2 pM interfaces.

There are still 5everal mis5ing chapteri
in Snulltalk's stoi·y, however. Observei·s,
note that there is still no widely accepted
development methodology for Smalltalk
or for anv other object-oriented environ-
ment. In addition, many users are still
making the transition to the relational
model and structured programming
techniques. "Most []s developers] itill
don't know what to do with objects.
They're still traumatized from making
the migration to the RDBMS," says Na-
tasha Krol, application program director
at the Meta Group in Stamford, Conn.
Smalltalk also faces increasingly stiff
competition not only from other object-
oriented languages suchas C++ butalso
from Ilew Gui-building tools, such as
Easel from Eaxl Corp. and Actor from
Whitewater Group.

Still. many observers see Smalltalk
gaining maturity. Says Stuart Woodring,
an analyst with Cambridge, Mass.-based
Forrester Research Inc.: "Continued
strong support from IBM and others
could help pushit over the top." 0

Parcplace Systems

1550 Plymouth Street

Mountain View CA 94043

415.691.6700

800.759.PARC

Fox 415.691 6715

Reprinted from DATAMATION July 15, 1991
© 1991 by CAHNERS PUBLISHING COMPANY

AUGUST 1991 SMALLTALK: 10 YEARS OF OBJECTS FEATURE

V. -I Excerpted with permission. from [he Augus[1991 -cof BYTE Magazine.
Copyrighl © 1991 by McOraw Hill. Inc. New York All righs reserved.

A McGRAW-HILL PUBLICATION

Smalltalk
Yesterday, Today,

and Tomorrow
A look back and a look ahead at this innovative programming language-

first featured 10 years ago in BYTE
L. PETER DEUTSCH AND ADELE GOLDBERG

 t's been a decade since the August 1981 issue of BYTE was published. That issue provided many people with a firstcomprehensive look at the then-fabled Smalltalk programming environment. in this article, we look back at how people
thought about Smalltalk in those days. Then well look more broadly at how Smalltalk and object-oriented software technology

has progressed since then, we'11 also consider today's state of this technology and the market for it. Finally, we'11 look ahead to
objects in the year 2001, another decade hence.

1981: Sending Up the Balloon
In that BYTE issue of 10 years ago, we wanted to convey three ideas about Smalltalk and object-oriented software technology: first,
that an interactive, incremental approach to software development can produce qualitative and quantitative improvements in
productivity, second, that software should be designed in units that are as autonomous as possible; and third, that developing soft-
ware should be thought of in terms of building systems, rather than as black-box applications. The Smalltalk-80 system described in
that issue so long ago was the exemplar of these three ideas.

Smalltalk was widely known then-and yet, largely unknown. Alan Kay and others from the Xerox Palo Alto Research Center
(PARC) had been giving talks with tantalizing glimpses of the technology, but few people knew or understood its content. Thus, the
cover of BYTE's Smalltalk issue-depicting a brightly colored Smalltalk hot-air balloon leaving an isolated island-symbolized our
feeling that the time had arrived to start publicizing what we'd been doing. We believed we had new ideas that could make a real
difference in how people developed software.

Many research examples developed at PARC demonstrated that object-oriented design could produce an appealing, intuitive, and
direct mapping between objects in the real world and objects in a software implementation. We saw this as a radical breakthrough in
one of the most difficult and problem-prone steps in software development-identifying terms and relationships as understood by
human participants of a particular situation with those understood by a computer.

We believed that this simple mapping of nouns to objects was all (or most) of the story about how to design with objeCIS, and we
presented it as such in the 1981 BYTE articles. Subsequently, in examples given in our books in 1983. we demonstrated that the
power of objects applied to more than nouns. lt also applied to events and processes. But this power was not as well explained or
exploited.

The Smalltalk research project was founded on the belief that computer technologies are the key to improving communications
channels between people, in business as well as personal settings. Our activities focused on finding new ways to organize informa-
tion stored in a computer and to allow more direct access and manipulation of this information.

The Smalltalk edition of BYTE introduced our approach to managing the complex information world of modern applications. It
explained our methods for taking full advantage of new graphics and distributed computing and for improving the ability of experts
in business and personal computing to describe their world models.

In retrospect, we are pleased that much of the software community has come to agree that the object-oriented approach to soft-
ware organization is a new way to solve problems that is often better than the procedural approach. Although our ideas about
problem-to-implementation mapping were incomplete-notably given the lack of format methodologies-those ideas are widely
accepted today.

SMALLTALK

1991: A Decade of Experience
What have we learned in the past decade based on the Smalltalk
research and experience that was introduced to the public in

those 1981 BYTE arti-

cles? The first idea, asIRWTE ACTION SUMMARY we stated earlier, is
simply that a highly in-
teractive, highly incre-
mental software devel-

opment environment
can produce a qualita-
tive improvement in
software development
productivity. Even in
1981. Smalltalk sys-
tems were not the only
ones with this charac-

teristic-Lisp systems
pioneered the approach
in the early 1960s-but
they were among the
outstanding examples
and were the ones that
moved most success-

fully from proprietary
hardware to the micro-

processor mainstream. Today, the truth of this idea is widely
recognized: The suppliers of environments for more-estab-
lished languages like C, C+ + . and Ada are now aiming to pro-
vide the benefits that Smalltalk introduced a decade ago.

The second idea is the basic idea of object-oriented software
organization: that software should be designed in units that are
as autonomous as possible, should correspond to identifiable
entities in the problem domain whenever possible. and should
communicate through identified interfaces. This idea grows
out of work on modular software design that dates back, again.
to the 1960s. Object-oriented terminology adds an emphasis on
direct mapping of concepts in the problem domain to software
units, the idea of shared behavior and multiply instantiated
state, and a focus on the interfaces between the units.

The last of these (the interfaces between the software units)
makes it easy to think about systems that are configured or that
grow dynamically. Smalltalk has no monopoly on new con-
cepts, but it has been a leader in the public relations necessary
to get these concepts out into the computing mainstream.

Object-oriented software organization has a natural relation
to two current trends in software construction: combinable ap-
plications and open systems. Our interpretation of the term
open systems is that for systems to grow, evolve, and combine
gracefully, they should be constructed out of software with
published interfaces. Functional software should be designed
to be used as a component by other software, as opposed to be-
ing monolithically united with a particular interface designed
only for humans at a terminal.

The third important idea that has grown partly out of the
Smalltalk work is related to the open-systems idea-namely,
that one should always think about building software in the con-
text of building systems, rather than in the context of black-box
applications. In other words, one should examine explicitly the
nature of both the downward interfaces (the resources or facili-
ties the software uses) and the upward interfaces (the client's
use of the software) and make them as undemanding as possi-
ble. Separating functionality from the user interface, which is
the Smalltalk concept of model-presentation-interaction known
as model-view-controller, is just one application of this princi
ple-but a very Important one.

The motivation behind much of the activity in the past de-
cade was to move Smalltalk off its island and into easy avail-
ability for the general programming community. We look at

When BYTE first broke the

news about Smalltalk to the

world, there were no PC ver-

sions of the language. Now,

the principles that Smallta!k

pioneered have permeated

the microcomputer world,

and powerful versions of the

language are available for a

variety of personal computer

platforms.

this activity as being aimed at creating a credible, concrete, and
robust realization of the ideas that we could present only in shel-
tered iresearch form in 1981.

As Smalltalk has moved into the commercial world. it has
encountered the familiar phenomenon of technological life
span. A technology comes into existence on paper, often at a
university. It then progresses to research papers, research pro-
totypes, and usable research-scale artifacts. Finally, it goes
into commercial use, first by the adventurous and then by the
broad mass of users-getting adapted, extended. patched, and
transported as long as it continues to solve problems well, and
eventually getting replaced in many or all of its uses by newer
technology. Smalltalk is now in this third stage-past the scru-
tiny of the adventurous and experiencing wider commercial
adoption.

ihe motivation of

the past decade was

to move Smalltalk

off its island.

A Framework for the Future
One of the promising new concepts in object-oriented design-
being actively explored today in Smalltalk as well as in other
languages and environments-is the concept of a framework. In
an object-oriented environment that supports i nheritance, re-
usable software that implements a single concept frequently
takes the form ofa specialization hierarchy in which the super-
classes are more abstract (e.g., the Smalltalk classes Collec-
tion and Number), with certain operations deliberately left to
implementation by more concrete subclasses (e.g., Array as a
concrete subclass of a land of Collection, and Integer as a
kind of Number). These holes in the superclasses (called virtual

functions in C++ terminology) are an important part of the
design.

A framework is a generalization of this idea to a group of
classes working together. For example. the Smalltalk model-
view-controller framework consists of three abstract super-
classes that provide little more than definitions of how the con-
crete subclasses should work together, plus some bookkeeping
code and default implementations of the most common opera-
tions. You reuse a framework by writing new concrete subclass-
es and combining existing subclasses in new ways.

Another example ofa framework involves the notion of a dis-
crete event-driven simulation, in which objects interact to rep-
resent tasks, workers, locations (where tasks are carried out by
the workers), and statistically based schedules for introducing
tasks and workers. New components, specialized tasks, work-
ers, and schedules can be described in order to reuse the gener-
al framework to create specific simulations. This concept is de-
scribed fully in the book Smalltalk-80.· The Language by Adele
Goldberg and Dave Robson (Addison-Wesley, 1989).

The other Smalltalk idea receiving attention today is that
building software is building systems. Software should have the
same property as a fractal design: Assemblies built out of parts
should have the same qualitative nature (such as definable in-
ward and outward interfaces) as those parts. Developers must
realize that they cannot predict all the ways that a piece of soft-

€. Y

e ·»

SMALLTALK

ware will be used or all the ways that it will be ported to use the
facilities of new environments.

Smalltalk in the Marketplace
One of the powerful ideas that has attracted new attention as a
result of the development of object-oriented software technol-
ogy is the notion of reusable, combinable applications. Today,
this idea is promoted at three levels: (1) operating systems, such
as Unix pipes and fork/ exec; (2) window systems, by way of
interapplication communications conventions (e.g., Apple's In-
terapplication Communications, Microsoft's Dynamic Data
Exchange, and the X Window System's Inter-Client Communi-
cations Conventions Manual); and (3) independent software ar-
chitectures (including low-level ones such as Microsoft's dy-
namic link libraries and Sun Microsystems' shareable libraries,
as well as high-level ones such as Patriot Partners' Constella-
tion project and ParePlace's object model and frameworks
approach).

Many believe that the discipline of defined, published inter-
faces-wh ich the object-oriented approach naturally pro-
mates-will create a new marketplace for reusable software
components. However, from our experience with many devel-
opers and users of Smalltalk systems in many environments,
we think the key economic shift will be in a different area.

A public market is a loosely organized environment. Compo-
nents placed in a market will face a wide variety of demands,
and even well-designed components with minimally con-
strained interfaces will have trouble attracting a critical mass of
customers.

On the other hand, within a single organization, reusable
components can be developed and redesigned to span a large
fraction of their intended uses. In this way, the accumulation of
reusable code can become an important business asset and can
be treated (appropr.iately) as an investment and a capital good,
rather than simply as a cost (which is its present treatment).

In an object-oriented environment where inheritance is sup-
ported, it is not only individual components that are reused. As
we have noted, the design of interfaces between objects is often
more important than the implementation of functions within
objects. Frameworks can capture the structural design of soft-
ware objects that address a given (partial) problem domain. As
such, the frameworks developed and reused with in an organi-
zation will, over time, come to capture and eventually even de-
fine the expertise of the organization-and, as such, can con-
tribute to the organization's ability to meet its customers'
needs. (This is sometimes called comperitive advantage, but it
applies equally well in situations where competition is not
involved.)

SMALLTALK

2001: A Smalltalk Odyssey
If we look into our murky crystal ball how do we see soft-
ware's use of object technology in the next decade? How do we
see it evolving?

We hope that in 2001, objects will be boring. In comparison,
radical ideas of past decades-that system software should be
written in higher-level languages or in languages with strong
type systems. and that computers can and should be seamlessly
networked-are thoroughly accepted today. Whether to imple-
ment them is almost never an issue now. even though there is
still plenty of discussion about how to implement them well.

In the same vein, we expect that 10 years from now, the ob-
ject-oriented approach to software design and implementation
will be an accepted, standard technique used in every lan-
guage, library, database system, and operating system and will
be taught in undergraduate computer science courses at every
university. This is an issue of moving the technology further
out into the world, and no major new thinking will be needed to
accomplish it.

One significant technological advance will be that we will
free ourselves even further from equating objects with the
nouns in the problem domain. Some of the most remarkable ad-
vances in the usability of computer systems have come from
recognizing that processes, as well as things, can and should be
described. modeled. and manipulated. Therefore, we will see
software objects being used to model time, places, actions. and
events. We believe that this will lead to usability advances al-
most as dramatic as those resulting from the now-established
window/icon/mouse/pull-down interfaces that were to a large
extent inspired by the original Smalltalk work of the 1970s and
1980s. •

L. Peter Deulsch is chief scientist and Adele Goldberg is presi-
dent of ParcPlace Systems (Mountain View. CA). They can be
reached on BIX cio "editors. "

 Parc Place Systems
155() ['lvmouth Street

Mountain View CA 94043

415.691.6700

800.759.PARC

Fax 415.691.6715

Smalltalk About Windows
Ben Smith

 he Smalltalk environment has included windows since its incep-
tion. In fact, you might say that
all the popular windowing envi-

ronments grew out of the Smalltalk en-
vironment developed at Xerox Palo Alto
Research Center (PARC). But, as with
any evolving system, there are marked
differences between the progenitor and
its descendants.

Now, Smalltalk has recombined with
the newest of the window environments,
Microsoft Windows 3.0. The two major
vendors of Smalltalk implementations
for PCs have recently announced ver-
sions for Windows: Objectworks\
Smalltalk for Windows from ParcPjace

Systems, and Smalltalk/V Windows
from Digitalk. While the core of both
systems is Smalltalk, the Windows im

plementations are as different as the
philosophies of the two companies.

A Question of Consistency
ParePlace is the traditionalist. after all.

the company is the tradition. since it
spun off from the original group that de-
veloped Smalltalk at PARC. Object-
works\Smalltalk is a unique window-
ing environment with a mouse, window -

SMALLTALK

panes. scroll bars, and drop-down
menus. You can use Objectworks\
Smalltalk ona variety of platforms. and
the window layout, icons, and window
controls are always the same: the Ob-
jectworks style (see screen A).

Although this window style is not
consistent with any of the newer and
more widely used windowing systems,
it has a great deal going for it. The most
obvious feature is line wrap and rewrap:
Longlines of text are wrapped around to
the next line. breaking only between
words. When you resize a window. the
lines are rewrapped to reflect the new
window size.

Another 4istinguishing feature of
Objectworks\Smalltalk is its five-pane
system browser window. (The system
browser is the primary programming
interface for Smalltalk.) Each pane is
associated with a different function:
class category. class. message category.
message, and code editing, Each win-
dow pane has its :.wn pop-up menu of
operations. The pointers. icons. menus,
and scroll bars maintain Objectworks'
unique style on any platform.

Then there's Digitalk-the company
that released the first commercial ver-

sions of Smalltalk (for DOS and then
for Mac systems) s Small-Digitalk
talk/V Windows assumes that if you are
programming for an established win-
dow environment, then you want to to+
tally adopt that environment. In other
words. i f you developa Smalltalk/V ap-
plication for Windows, your application
should look and act like a Windows ap-
plication, not an application that merely
runs inside of (and despite) Windows.

The drawback to this attitude is that
Smalltalk/V for the Macintosh looks

and acts different from the versions for

Windows, plain DOS. and the X Win-
dow System. The distinct advantage of
Smailtalk/V forany environment is that
you can take full advantage of that envi-
ronment. Your applications will be con-
sistent with tile style guidelines for thal
environment. For example. Small-

 File List on 1.18011
liN
mager 1.

System

6,4*/Te*Scarnng "ill'll/'ll
Gi®k,co•lext Supoorl Chmacte,Altribule:
G,®Ir:·SuppeR Chmade,Compo:elKefrlel·Obiecti Chyacle,Encode;
Kernel·Oasse, DeviceForl

=$121 1:C=Sm-
Kernel·Exception Handl,W U B initance P clam
fi/A/eficekney: a„Encodm,Auay

Lf 'Deale an encode, horn the argt,ner* Values m the ar,
illage,* which repres- Chatactut Indrce, 01 the AN,
m® to the ancodng: 01 the Chalaclei: [O·ba:ed·

decodel ·• TwoG>•eS¢nng new. ¥Ered,09 lize
exode :-ldentil,D,clio,ary new enEr,codr,g,14' ii:e
1 10 *Encor,glkfiay,ee ch

Pl
I coda ©tw I

4 cod.*8.

Screen K. Objectworks/Smalltalk. capi,
a·ersions of the language that run on c

talk/V Windows has full access to the

facilities of the Windows application
programming interface, including dy
namic link libraries and Dynamic Data
Exchange.

Tools and Classes

There's more to a Smalltalk implemen-
tation than a wmdow environment and a

language; there are the programming
tools and the predefined class hierar-
chy. Smalltalk/V Windows provides
fewer tools and a simpler class hierar-
chy than Objectworks\Smalltalk for
Windows. but these limits are. in part.
overcome by optional packages, like
those from Digitalk and from

third-party vendors such as Acumen
Software. Acumen recently released a
set of "user-intertace construction kits'

that let you develop interfaces for
Smalltalk/V Mac. Smalltalk/V 286,
and Smallialk/V Windows programs-
Widgets/V Mac. Widgets/V 286, and
WindowBuilder/V, respectively.

Object Class Browser

tr-
iii - 14,C•-·- UkE ' •U·,·C•44

Browser

*Cces:Ing re,de/.
0*mier,2,

.J:/er·.Ice

181 -

u™€* - &

'£1·bated)

r

'a j release 4 Jar Window lookb ·,imilar w
ither platform

Both Windows versions of Smalltalk

maintain a text log of changes to the
Smalltalk "image" (i.e., the Smalltalk
gestalt of any moment). You can view
the Smalltalk/V version of the log with
the File utilities. With Objectworks\
Smalltalk. you can view the change log
as an object with a hierarchy that has
separate instances for changes to class-
es, to methods, and to the system.

Both products provide a method for
applying the changes of one project to
another. a necessary operation if the
system is to follow the objective of re·
usability. Both products also have an .x-
cellent debugger, as well as tools for file
management, view management, and
text management. As with all things,
their styles differ: Objectworks main-
tains its own style, and Digitalk adopts
the style of Windows.

Ben Smith is o technical edilor for
BYTE. He can be reached on BIX as
-bensmith. "

BOSNIA AS TECH TEST: DISPATCH FROM WW3.1

*ft¢1:n-:t' 49>:f'kil-"AM-
9> i-, ·: ...fliall 21.,c=.Ird'./.'-

•44:
P

rn,+,/C,
1 WANTED: HIGH TECH CEO. MUST |

BE FEARLESS, DECISIVE, FLEXIBLE, 1
ABLE TOWORKWITH SOMEVERY 1
HEAVILY CAFFEINATED GENIUSES.

L

0- 5--44/.49*

4 .' I.1
ji

»1•.ip/*

:'41*%'

1«21
I ;1§43 2

. V el

•L

- Adele

w

LE0EN63-1

BY NOW, HALF A CENTURY ALONG in the cyberage, most of
us take for granted that when we point at an icon oil our
computer screen and click the mouse, what we expect to
happen happens, flawlessly and almost instantaneously.
That's the way of technology: Yesterday's astonishment is
today's "of course." But once in a while in this everyday
process, we should stop to thank Adele Goldberg.

Goldberg, 51, is one of the lesser-known but most in-
fluential membe* of the miracle workers at what might be
called information technology's Manhattan Project, other-
wise known as the Xerox Palo Alto Research Center (PARC).
Back in the 1970s, those far-off days ofiumbering main-
frames, with Bob Taylor in the Robert Oppenheimer role,
this band of revolutionaries developed much of the tech-
nology that has produced the wired world as we know it
today, including the Dynabook (known in the
early '70s as "the Aito"), apowerful prototype
of the personal workstation, with overlapping
windows in the user interfaces that ultimately
led to Apple's Macintosh While they were at
it, they also developed Ethernet, laser printers,
and network client servers.

Goldbergy one of the few women in the field
at that time, was at PARC from 1973 to 1988 as
a laboratory and research scientist. Though her name is not
connected to a particufar invention, such as the mouse,
Goldberg's understanding of systems and the way people
work with them was a key element in PARds amazing
record. PARC mentor Alan Kay describes her work at the
lab as "nothing short of brilliant." During a remarkably
productive 15-year period, Kay says, Goldberg designed
"many of our user experiments and was central to some of
the user interface development. She also took it upon her-
self to get Smalltalk [the breakthrough object-oriented pro-
gramming language originated by Kay] out the door."

The vivacious Goldberg shrugs when asked about her
place in history as one of computing's handful of women
visionaries. "I'm the wrong person to ask about that" she
says. "At the time, I was so involved with the work I was
doing, trying to make it the best."

In 1988, spinning off her research at Xerox, jGoldberg
founded Par¢Place (now ParcPlace-Digitalk), curtently a

, $50 million company that creates ind sells tools for cor-
 porate application developers. She served as the company's.s ' chairman until April of this year and still holds about 2 %
m of the company.

The air at Xerox PARC was charged Dwith the potential sodological and philo-
sophical effects of easier computing-the
feeling that given enough power, a mouse
could roar. Goldberg, coauthor of a book called Succeeding
titb Objects: Decision Framet>orks for Project Management,
clearly hasn't relinquished her desire to change things. Since
leaving her company, she has devoted more time to pro-
jeicts aimed at the evolution of computer education in col-
leges. Computer science graduates today lack two things,
says Goldberg. «One, they know programming languages
but don't understand systems- Two, with some exceptions,
tlf€y ·are used to working alone. They don't know how to
work inteams." Currently, she is helping create new com-
puting science courses at community colleges in the Unit-

ed States and at universities abroad. She has also
been involved, as a board member and mentor,
in Cogito Learning Media, a new company
formed to provide multimedia software for sci·.
ence education.

At ease in her sunny, conimodious Palo Alto,
California, home, Goldberg gestures excitedly
when she starts talking about education. This is
where it all began for her. With a doctorate in

information science from the University of Chicago, Gold-
bergwas doing research in education technology at Stan-
ford when Kay recruited her to head the pedagogic group
at Xerox PARC. Initially, the Dy'nabook efforts were applied
to educational uses, which, happily for post-1984 comput-
er rpros, put a premium on ease of use.

During her years at PARC, Goldberg worked in local Palo
Alto schools, bringing students into the lab to experiment
·with the Alto.Kay remembers once in the mid-1970s when
she wanted to take the then-revolutionary hardware to a
nearby middle school for on-site learning experiment:s. "AL
ter going through all the work of making the first modern
personal computer for children,"Kay says. "Xerox balked."
Finally, Kay and Goldberg pulled Goldberg's station wag-
on up to the research center's front door, loaded the ma-
chines, and took them down to the school. There were no
repercussions, except for the enthusiasm of the teachers and
kids, and the machines stay€d in the schoof for a full year.

This was a pivotal moment in Goldberg's education, too,
teeching her the valuable lesson that it's better to say you're
sorry than to ask permission. The incident, says Goldberg,
£'helped start my career as a troublemaker.* -Umbme Tosi

October 7,1996 FORBES ASAP 137

-diwi-/a.KNA.w.%%»*0**@9 **f#*4@*»1%%94*%*42*414?t (> .. ». p- >„<w/»A. i.,.,% - 3'' .9
212

BOSNIA AS TECH TEST: DISPATCH FROM WW3.1 I

A ...4&%44# 04 14

F 3%
239443

463

WANTED: HIGH TECH CEO. MUST |
*RE FEARLESS, DECISIVE, FLEXIBLE fl

/ mi

ABLE TO WORK WITH SOMEVERY i
f

HEAVI LY CAFFEINATED GENIUSES.ft%
&--

° r x A

tti
.

5*Iammillimillimmi-k/92'M:lr :s<: :i w:i:: *:':»,vi:<*i »2<%»439*

2%

9>?

ffit

Adek
3%4

F

*f

4

>5*,212*i*

F J Muha

Go tri
BY NOW, HALF A CENTURY ALONG in the c¥berage. inost of
us take for granted that when we point at an icon on our
computer screen and click the mouse, what we expect to
happen happens, flawlessly and almost instantaneously.
That's the way of technology: Yesterday's astonishment is

i today's "of course." But once in a while in this everyday
 process, we should stop to thank Adele Goldberg.

Goldberg, 5 L is one of the lesser-known but most in-
fluential membets of the miracle workers at what might be
called information technologfs Manhattan Project, other-
wise known as the Xerox Palo Alto Research Center (PARC).
Back in the 19705, those far,off days of lumbering main-
frames, with Bob Taylor in the Robert Oppenheimer role,
this band of revolutionaries developed-much of the tech-
nology that has produced the wired world as we know it
today, including the Dynabook (known in the
early '7Os as "the Alto"), a powerful prototype
of the personal workstation, with overlapping
windows in the user interfaces that ultimately
led to Apple's M·acintosh. While they were at
it, they also developed Ethernet, laser printers,
and network client servers.

Goldberg, one of the few women in the'field
at that time, wak at PARC from 1973 to 1988 as
a laboratory and research scientist Though her name is not
connected to a particular invention, such as the mouse,
Goldberg's understanding of systems and the way people
work with them was a key element in PARC's amazing
record. PARC mentor Alan Kay describes her work at the
lab as "nothing short of brilliant.' During a remarkably
productive 15-year period, Kay says, Goldberg designed
"many of our user experiments and was central to some of
the user interface de:velopment. She also took it upon her-
self to get Smalltalk {the breakthrough object-oriented pro-
gramming language originated by Kay} out the door."

The vivacious Goldberg shrugs when asked about her
place in history as one of computing's handful of women
visionaries. "I'm the wrong person to ask about that," she
says. «At the time, I was so involved with the work I was
doing, uying to make it the best.>'

In 1988, spinning off her research at Xerox, Goldberg
founded Par¢Place (now ParcPjace-Digitalk), currently a
$50 million company that creates and sells tootS for cor-

 porate application developers. She served as the company's4 chairman until April of this year and still holds about 2 %
e of the company.

ba-*) e ,©99%449»%19"'t

E .% %/4 7»%*,9*7

... ,/4

The air at Xerox PARC was charged
wit:h the potential sociological and philo Wsophical effects of easier computing-the
feeling that given enough power, a mouse
could roar. Goldberg, coauthor of a book called Succeeding
tuitb Objects: Decision Frameworks .for Project Management,
clearly hasn't relinquished her desire to change things. Since
leaving her company, she has devoted more time to pro-
jects aimed at the evolution ofcomputer education in col-
leges. Computer science graduates today lack two things,
says Goldberg. "One. they know programming languages
but don't understand systems. Two, with some exceptions,
thity are used to working- alone. They don't know how to
work in teams.'> Currently, she is helping create new com-
puting science courses at community colleges in the Unit-

ed States and st universities abroad. She has also
been involved, as a board meinber and mentor,
in Cogito learning Media, a new company
formed m provide multimedia software for sci-
ence education.

At ease in her sunny, commodious Palo Alto,
California, home, Goldberg gestures excitedly
when she starts talking about education. This is
where itall began for her.\Vith, doctorate in

information science from the University of Chicago, Gold-
berg was doing research in education technology at Stan
ford when Kay recruited her to head the pedagogic group
at Xerox PARC. Initially, the Dynabook efforts were applied
to educational uses, which, happily for post-1984 comput-
er tyros, put a premium on ease of use.

During her years at PARC, Goldberg- worked in local Palo
Alto schools, bringing students into the lab to experiment
:with the-Alto. Kay remembers once in the mid-1970s when
she wanted to take the then-revolutionary hardware to a
nearby middle school for- on-site learning experiments. "Af-
ter going through ati the work of making the first modem
personal computer for children,"Kay says, «Xerox balked."
Finally, Kay and Goldberg pulled Goldberg's station wag
on up to the research center's front door, loaded the ma-
chines, ahd took them down to the school. There were no
repercussions, except for the ent:husiasm of the teachers and
kids, and t:he machines stayed in the school for afull year.

This was a pivotal moment in Goldberg's education, too,
teaching her the valuable lesson that it's better to say you're
sorry than to ask permission. The incident, says Goldberg,
"helped start my career as 3 troublemaker." -Umberto Tosi

October 7,1996 FORBES A#Ap 137

CSE 503

Judy Bamberger/James Hook
Oregon Graduate Institute

Software Process Practicum: Lessons in

Software Quality and Leadership

Course Number CSE 303

Course Title Software Process Practicum: Lessons in Software

Quality and Leadership

Instructors Judy Bamberger and James Hook

Days Mondays, Wednesdays (and one Saturday)

Times 5:00pm - 7:00pm

Room Cooley Center ((EC) 371
Number of Units 4 credits

The software process practicum is designed to immerse the working student in topics relevant to
software process improvement and quality management, and to introduce them to the
supporting theory. Topics include process management frameworks (capability maturity model,
ISO 9000), measurement for process improvement, and key team skills necessary for effective
collaborative software engineering efforts. At the end of the course the student will be able to
demonstrate that the software development process can be managed and controlled, leading to
increased software quality. In addition to lectures and in-class "labs," the class will include one

turday workshop.

OBJECTIVES f VISION

After this class, you, the students will understand and have demonstrated that:
• Software processes can be managed and controlled.

• Software engineering is a social process, too.

• You have real skills that you can apply today at work.

• You have a framework oil which to build your own educated decisions about applying
software quality principles and tools to personal, project, and corporate software activities.

• You have identified three things to improve at your own work place (or within your own
personal process), and you have begun working on them

Printed: 9/29/96 4:28 PM

© 1996 Judy Bamberger / James Hook
Page 1 CSE 503: Bibliography and Syllabus/V2.3

BibliographyAndSyllabus

1

CSE 503

Judy Bamberger/James Hook
Oregon Graduate Institute

Software Process Practicum: Lessons in
Software Quality and Leadership

To the Students:

This is a list of required and recommended books.

Readings will be derived from the three required books throughout the semester. We
will be discussing some of them as part of the class session. They present a unique view
of many of the concepts, models, and skills we will be covering - often a different view
than would be found in most computer science courses.

The recommended books will provide additional breadth and assistance throughout
the class.

We have selected these books because we believe they will be useful to you after this
course, in your work environment and in your professional activities. Your feedback
throughout the course and afterward will be appreciated.

Required Books
(1) Grady, Robert B and Caswell, Deborah L, Software Metrics: Establishing a Company-Wid

Program, PTR Prentice Hall, 1986

(2) Scholtes, Peter R et al, The TEAM Handbook, Joiner, 1998

(3) Weinberg, Gerald M, Quality Software Management, Volume 1, Systems Thinking, Dorset
House Publishing, 1993

Recommended Books

(1) Brassard, Michael, The Memory logger Plus+, GOAL/QPC, 1989

(2) Weinberg, Gerald M, Quality Software Management, Volume 2, First-Order Measurement,
Dorset House Publishing, 1993

Printed: 9/29/96 - 4:28 PM
© 1996 Judy Bamberger / James Hook

Page 2 CSE 503: Bibliography and Syllabus/V2.3
BibliographyAndSyllabus :

CSE 503

Judy Bamberger/James Hook
Oregon Graduate Institute

Software Process Practicum: Lessons in

Software Quality and Leadership

ORGANIZING FOR SUCCESS

Things „ to think about hom the beginning:
e Who would you like-on your-team? Teams are not required to keep the same members

tthroughout the entire course. However, especially once the mid-term project is begun,
this does have significant advantages. We suggest you begin now,-and think about how
you could build an excellent, effective, and high-performing team (we will be giving you
some hints, too). We also suggest that you use your first team project to try some of those
ideas, and set the tone for success.

• With which "partner organization" would you like to work? The mid-term and end-term
assignments will focus on working with what we call a "partner organization." This could
be ateam with which you work at your company or school (highly preferred), or it could be
a team we recommend to you. You will be collaboring with them to define a process and
then to create a plan to improve that process. This will involve some of their time - in the
past, it has been about 2 - 12 hours total over the entire term (depends on number of
people involved, and depth of their involvement).

Printed: 9/29/96 - 4:28 PM
© 1996 Judy Bamberger / James Hook

Page 3 CSE 503: Bibliography and Syllabus/V2.3
BibliographyAndSyllabus

CSE 503

Judy Bamberger/James Hook
Oregon Graduate Institute

Software Process Practicum: Lessons in

Software Quality and Leaders
GRADING CRITERIA

There will be individual and team assignments. We have tried to give most assignments on a
Monday, with the turn-in date generally on the following Monday. Team assignments will be
given a single grade, which will be assigned to each team member. Team assignments will have
an individual component associated with each (graded individually) to analyze team
effectiveness overall, and the individual's effectiveness within that team.

The goal of these assignments is to allow you to reinforce the concepts and skills learned in
one or more Practicum sessions.

There will be a mid-term and end-term project to be done as a team. The mid-term and end-term
projects are related (general descriptions are included in the syllabus). The mid-term project
focuses on working with a partner organization to define a software-related process using the
techniques we learn in Practicum. The end-term project focuses on working with that partner
organization to identify and plan for improvements to that process.

The goal of these projects is to allow you to synthesize the concepts and skills learned in
several Practicum sessions and practice them in a real-world setting. Past projects have
also resulted in significant benefits to the partner organization as well, a secondary goal.

There will be a final profect to be done individually. This project will be to create animprovement plan for a process in which you are involved personally - individually or as par(
a team at work or outside of work.

The goal of this project is to allow you to synthesize the information learned in Practicum
and apply it in a real-world, relevant context.

There are two un-graded elements as well.

The goal of both of these are to help us continuously improve the Practicum - both for you,
this term, and for future offerings of the Practicum.

We will be asking you to keep a Timelog - the amount of time you spend preparing for each class
(e.g., reading) and doing the homework assignments. This will have absolutely no bearing on
any grade. In fact, we will not look at it until any related assignments have been graded. We will
use this to help us assess and tune the overall workload, week-by-week, assignment-by-
assignment. A Timelog template (with instructions) is included in this syllabus.

Please turn in your Timelog sheets each class session.

We will also be asking you to keep a Journal - short notes about the readings and learnings. We
will ask to see this three times during the term. We will use this to help us assess the impact of
the readings and the messages you take from the classes. Again, this will have absolutely no
bearing on any grade, and we will not look at it until related work has been graded. We will use
this to help us identify "what works" and "what doesn't" as well as those articles, class sessions,
exercises, etc that have the most/least impact. A set of suggested items to cover in your Journal
entries is included in this syllabus. .

Please try to make your Journal entries each day, or as new learnings come to you.
Printed: 9/29/96 - 4:28 PM

© 1996 Judy Baniberger / James Hook
Page 4 CSE 503: Bibliography and Syllabus/V2.3

BibliographyAndSyllabus

CSE 303

Judy Bamberger/James Hook
Oregon Graduate Institute

Software Process Practicum: Lessons in

Software Quality and Leadership

• Homework - individual/team 20%

• Mid-term project - team 2070

Process Definition

• End-terin - team 30%

Process Improvement

• Final project 300/0

• Class participation (individual) subjective
• Timelog 00/4

* Journal 0%

We will make every effort to return homework to you within one calendar week. You will see
comments from us and the following notations in the upper right corner, with the following
meanings:

"not"; no grade noted; perhaps our instructions were not clear; goals of the
assignment were missed; please see us and let's get straightened out; OK to
rework and resubmit for success

- "minus"; does not meet minimal criteria; OK to rework and resubmit for
success

4 "check"; meets goals of homework assignment
+ "plus"; exceeds goals of homework assignment
+ + "double-plus"; exceeds our wildest dreams !!!

OFFICE HOURS and CONTACT INFORMATION

• Judy Bamberger: Monday, 7:00pm - 8:00pm at OGI and by appointment
* Jim Hook: Wednesday, 7:00pm - 8:00pm at OGI and by appointment

Judy Bamberger Jim Hook
690-1206 690-1169

bamberg@cse.ogi.edu hook@cse.ogi.edu
room Strawberry office room CSE 143

..We are here to ensure you get the most out of this class, so please come and talk to us when you
Ied to! If you use Email to communicate or ask questions, then please send it to both of us.

Printed: 9/29/96 - 4:28 PM
© 1996 Judy Bamberger / James Hook

-11111. 1

Page 5 CSE 503: Bibliography and Syllabus/V2.3
BibliographyAndSyllabus

CSE 503

Judy Bamberger/James Hook
Oregon Graduate Institute

Software Process Practicum: Lessons in

Software Quality and Leadershi

BIBLIOGRAPHY AND SYLLABUS

In the following:
(R#) means there is reading to be done before this class

In general, the reading is intended to be done to a level where you are confident
you can discuss the key themes (maybe not all the details), as we will begin many
of the classes with a discussion of the readings. The goal of assigning the
readings is to broaden your background, and to provide you with "intellectual
pointers" to key references for the class (short term) and for your future as a
professional (longer term).

Those few times where detailed understanding of the readings is required (e.g., to
prepare for a specific class discussion or a homework assignment), we will
indicate that explicitly. Whenever in doubt, one way or another, please ask.

(H#) means there is homework to prepare after this class
(H#) The asterisk () before the homework indicates there is an

individually-done assignment to be turned in

&(H#) The ampersand (&) before the homework indicates there is a team-
done assignment to be turned in (i.e.,one single assignment per team,
with all team member names on it)

(H#) The lack of any leading marking before the homework indicates this is
reading, other material. or other activities related to completing some
other homework assignment to be turned in

(JOUR) means there is a journal-related activity here

The • -ed and - -ed lists summarize the topics to be covered in this class
When you turn in your homework, please make sure the following are done:

• Please put your name clearly on the front page, and indicate which homework this is (at
least the H-number you see in the syllabus and on any relevant handouts)

• Please put page numbers on each page (hand-written is OK)
® Please type (vs hand-write) your assignments (with many papers to read, we find it difficult

and slow with a lot of hand-written papers)

- Do not spend a lot of time on formatting; just leave us enough space to write some
comments and ask some questions

• Please run some sort of spell-checker on your papers and make corrections (some of the
typographical errors significantly decrease our ability to "figure out" what you are trying to
say)

Printed: 9/29/96-4:28 PM
© 1996 Judy Bamberger / James Hook

Page 6 CSE 503: Bibliography and Syllabus/V2.3
BibliographyAndSyllabus

CSE 503

Judy Bamberger/James Hook
Oregon Graduate Institute

Software Process Practicum: I*essons in

Software Quality and Leadership

Handouts, Articles, Readings, and Other Materials Passed to Students

(1) Introduction, Ice Breaking, and Motivation

Week: 1 Class: 1 Day/Date: Key Presenter: Jim
Monday, and Judy
30 September

Readings? no

Homework? yes

• Copy of class materials

- Develop common expectations about the class
-- Communicate class mechanics

- Briefly survey "quality.
- Discuss quality in the software context by introducing an example

*(Hla) Write your "process biography" (per instructor-provided questionnaire, handed
out in class)
[turn in at class #2]

*(Hlb) Interview three software development organizations (per instructor-provided
questionnaire, handed out in class)
[turn in at class #3]

(JOUR) Write a "learning contract" for yourself - what do you want to learn; how do you
want to learn it; how, when, wherei with whom do you want to practice it; how
will you claim "success" for yourself after Practicum is over; make this your first
Journal entry

(2) Background: Statistical Process Control; Several Basic Quality Tools

Week: 1 Class: 2 Day/Date: Key Presenter: Jim J Readings? yes
and JudyWednesday, - Homework?- yes

2 October W w: (thinking only)

(R2a)

(R.2b)

(R2c)

Deming Management at Work; Mary Walton; Chapter 2, "Florida Power&
Light"
Quality Planning and Analysis - From Product Development through Use; J M
Juran and Frank M Gryna; Chapter 1, "Basic Concepts" and Chapter 2,
'Companywide Assessment of Quality"

Quality is Free; Philip B Crosby; Chapter 2, "Quality May Not Be What You
Think It Is," Chapter 3, "The Quality Management Maturity Grid," and the
Browser's Guide

hinted: 9/29/962 4:28 PM
© 1996 Judy Bamberger / James Hook

Page 7 CSE 503: Bibliography and Syllabus/V2.3
Bibliography,AndSyllabus

CSE 503 Oregon Graduate Institute
Judy Bamberger/James Hook Software Process Practicum: Lessons in

Software Quality and Leadership

(R2txt) Quality Software Management, Volume 1, Systems Thinking; Gerald M
Weinberg; Chapter 1, "What Is Quality? Why Is It Important?"

Copy of class materials

- Introduce several quality tools (brainstorming, consensus, affinity diagram,
Pareto diagram)

- Discuss classical Statistical Process Control (SPC)

- Point to other quality and management and planning tools (flowchart, check
sheet, run chart, historgram, scatter diagram; interaction digraph, tree
diagram, prioritization matrices, matrix diagram, process decision program
chart, activity network diagram)

(H2a) Begin thinking about how you wilI build your team for class projects

(3) How does the "I" fit into "TEAM"?

Week: 2 Class: 3 Day/Date: Key Presenter: Judy Readings? yes

Monday, Homework? yes
7 October

(R3a)

(R3b)

(R3c)

Social Style Profile - Feedback Booklet; Wilson Learning
Enterprise, Winter 1991/92; "Unleashing People Power - Innovation comes from
the Individual at Chaparral Steel"

Training & Development Journal, April 1991; Richard Wellins and Jill George;
"The Key to Self-Directed Teams"

(R3txt) The Team Handbook, Chapter 4, "Getting Underway

[optional] The Team Handbook, Chapter 6, "Learning to Work Together"
6 Copy of class materials

- Meeting management techniques

- Different style preferences

- Team development and growth

e Handout - "Teams Need a Common Goal" (Hagar the Horrible cartoon)

Handout - "Why Some Teams Don't Fail" (from Manage, July 1993)
*(H3a) Analyze the strengths and weaknesses of each of the social styles (per instructor-

provided scenario, handed out in class)
[turn in at class #5]

Printed: 9/29/96 - 4:28 PM
© 1996 Judy Bamberger / James Hook

Page 8 CSE 503: Bibliography and Syllabus/V2.3
BibliographyAndSyllabus

CSE 503

Judy Bamberger/James Hook
Oregon Graduate Institute

Software Process Practicum: Lessons in
Software Quality and Leadership

(H3b) treadings to be handed out in class] Please Understand Me - Character &
Temperament Types; David Keirsey and Marilyn Bates; Chapter 1, "Different
Drums and Different Drummers" and Appendix: The Sixteen Types

(HBc) [reading to be handed out in class] "MBTI Short Summary", Judy Bamberger
*(H3d) Do:the readings above; see what the instrument indicates as natural tender«cies,

and discuss (3-5 pages) how these characteristics manifest aemselves in your
team interactions at work

[turn in at class #5]

(4) Problem Solving Paradigms

Week: 2 Class: 4 Day/Date:

Wednesday,
9 October

Key Presenter: Judy Readings? yes

Homework? yes

(Rda) [optional] Problem-Solving Process; Xerox, 1992; "Participant-Guide"
(R*txt) Quality Software Management, Volume -1, Systems Thinking; Gerald M

Weinberg; Chapter 2, "Software Subcultures" and Chapter 3, "What is Needed to

• Copy of class materials

Change Patterns?"

- One problem solving model (useful tools at each phase, decision making
styles and tools)

- One-conflict resolution model (identifying, managing, and resolving conflict)
• - Handout - Role Play: Veginots (if used in class)

&(H4a) As a team, using the basic tools, discuss how you would solve the problem of
whether or not to inform the customer of a potential schedule slippage (per
instructor-provided guidelines, handed out in class)
[tum in a:t class #6]

(5) Process Definition Techniques

Week: 3 Class: 5 Day/Date:
Monday,
14 October

Key Presenter: Judy Readings? yes

Homework? optional

(R5a)

.

Managing the Sol}ware Process; Watts Humphrey; Preface, Part One, "Software
Process Maturity", Chapter 2, "The Principles of Software Process Change",
Chapter 14, "The Software Engineering Process Group", Chapter 20,
"Conclusion"

Printed: 9/29/96 - 4:28 PM
© 1996 Judy Bamberger / James Hook

Page 9 CSE 503: Bibliography and Syllabus/V2.3
BibliographyAndSyllabus

CSE 503

Judy Bamberger/James Hook
Oregon Graduate Institute

Software Process Practicum: Lessons in

Software Quality and Leadership

(R5b) IBM Systems Journal, 1985; R A Radice et al; "A Programming Process
Architecture"

Copy of class materials

- Several techniques for representing defined processes

Handout - Process Definition Examples

• Handout - "Rules of thumb for developing processes - Lessons learned from the
trenches"; Mary Sakry

*(H5a) [optional] Demonstrate the process representation and definition techniques on
the sample process description we provide (handed out in class)
[turn in at class #7]

Mid-Term Hometoork

• Define a process with your partner organization (per instructor-provided
guidelines; draft attached, handed out in class)
[turn in at class #10; make presentation at class #11]

(6) Continuation of Topic from class #5
Week: 3 Class: 6 Day/Date: Key Presenter: Judy Readings? yes

Wednesday, Homework? nothing
16 October new

Please do the following readings very carefully. The key idea to learn is the method
Weinberg uses to represent and analyze processes (the drawings with "blobs" and
annotated arrows). We will be using this in class and/or as part of a future assignment.

(R6txt) Quality Sof}ware Management, Volume 1, Systems Thinking; Gerald M
Weinberg; Chapter 4, "Control Patterns for Management" and Chapter 5,
"Making Explicit Management Models"

(7) Continuation of Topic from class #5

Week: 4 Class: 7 Day/Date:

Monday,
21 October

Key Presenter: Judy Readings? yes

Homework? nothing
new

(IOUR) Please turn in your Journals.
Please do the following readings very carefully. The key idea to learn is the method
Weinberg uses to represent and analyze processes (the drawings with "blobs" and
annotated arrows). We will be using this in class and/or as part of a future assignment. -

Printed: 9/29/96 - 4:28 PM

© 1996 Judy Bamberger / James Hook
Page 10 CSE 503: Bibliography and Syllabus/V2.3

BibliographyAndSyllabus

CSE 503

Judy Bamberger/James Hook
Oregon Graduate Institute

Software Process Practicum: Lessons in

Software Quality and Leadership

(R7txt) Quality Sotware Management, Volume 1, Systems Thinking; Gerald M
Weinberg; Chapter 6, "Feedback Effectsi' Chapter 7, "Steering Software." and
Chapter 8, "Failing to Steer"

• Note. If we complete planned in-class exercises early, we may do a student-
provided activity or an exercise based oil the Weinberg reading, or we may start
the next topic
ANNOUNCING MAJOR READING FOR class #9!!!

Select two quality models (in class) and-be prepared to present and discuss a se:t of
comparison issues (per instructor-provided criteria); this will involve careful
reading tvs detailed skimming)

(8) Capability Maturity Model for Software (CA/IM)

Week: 4 Class: 8 Day/Date: Key Presenter: Judy
(Jim is out)Wednesday,

23 October

Readings? yes

Homework? nothing
new

(R.8a)

(R8b)

(R8c)

Capability Maturity Model for Software, Version 1.1; Software Engineering
Institute; Chapter 1, "The Process Maturity Framework", Chapter 3, "Operational
Definition of the Capability Maturity Model", Appendix A, "Goals for Each Key
Process Area"

IBM Systems Journal, 1985; W S Humphrey; "The IBM large-systems software
development process: Objectives and direction" and R A Radice et at "A
programming process study"

American Programmer, September 1994; James Each, "The Immaturity of the
CMM"

- and optional readings (helpful references) --
*8(1) IEEE Sofware, July 1994; Michael K Daskalantonakis; "Achieving Higher SEI

Levels"

Copy of class materials

- Basic process management concepts

- How they apply to software engineering

- Characterization of "immature" and "mature" software engineering processes

- Five levels of maturity as defined by CMM

- Details of Repeatable Level

- Framework of CMM - applicability across many disciplines
- Some anecdotal data on ROI

Printed: 9/29/96 - 4:28 PM
© 1996 Judy Bamberger / James Hook

Page 11 CSE 503: Bibliography and Syllabus/V23
BibliographyAndSyllabus

CSE 503

Judy Bamberger/James Hook
Oregon Graduate Institute

Software Process Practicum: Lessons in

Software Quality and Leadership

(9) Quality Frameworks: Applying the Concepts to Process Improvement

Week: 5 Class: 9 Day/Date: Key Presenter: Judy Readings? yes

Monday, Homework? nothing
28 October new

(R9a)

(R9b)

(R9c)

(R9d)

International Standard, ISO 9000-3; ISO; "Quality Management and Quality
Assurance Standards - Part 3: Guidelines for the application of ISO 9001 to the
development supply and maintenance of software"

Trillium, 1994; Bell Canada; "Telecom Software Product Development Process
Capability Assessment"

Quality System Review - Guidelines, March 1995; Motorola Corporate;
"Introduction", "QSR General Scoring Maturity Matrix", "Subsystem 10 -
Software Quality Assurance" and "Scoring Reference", "Quality Policy for
Software Development"

Malcolm Baldrige National Quality Award, 1996

Completion of previous material and compare/contrast all quality models

(10) Quality Technique #1 - Formal Inspections

Week: 5 Class: 10 Day/Date: Key Presenter: Judy

Wednesday,
30 October

Readings? yes

Homework? yes

*** It's the day before Halloween; dress up; party!!1 -

(R10a) Neal Brenner; "The ST Inspection Handbook"

(R10b) IBM Systems Journal, 1976; M E Fagan; "Design and code inspections to reduce
errors in program development"

(RlOc) IEEE Software, July 1994; Robert B Grady and Tom Van Slack; "Key Lessons in
Achieving Widespread Inspection Use"

(R10d) IEEE Software, March 1994; Jack Barnard and Art Price; "Managing Code
Inspection Information"

- and optional readings (helpful references) -
(RlOe) IEEE Software, September 1993; Edward F Weller; "Lessons from Three Years of

Inspection Data"

(Rlof) IEEE Transactions on Software Engineering, July 1986; Michael E Fagan;
"Advances in Software Inspections"

Printed: 9/29/96 - 4:28 PM
© 1996 Judy Bamberger / James Hook

Page 12 CSE 503: Bibliography and Syllabus/V2.3
BibliographyAndSyllabus

CSE 503

Judy Bamberger/James Hook
Oregon Graduate Institute

Software Process Practicum: Lessons in

Software Quality and Leadership

.
(R10g) Software Validation - Inspection - testing- ver#ication - alternatives; A F

Ackerman, P J Fowler, and R G Ebenau; „Software Inspections and the Industrial
Production of Software"

(R10h) So»mre Inspection; Tom Gilb and Dorothy Graham; 'Software Inspections at
Applicon" by Barbara Spencer

• Copy of class materials

- One defined process for formal inspections
- One set of metrics that can be obtained from formal inspections
- One set of forms, guidelines, rule sheets for formal inspections

• Handout - Inspection Package
• Other handouts to support the lab will be provided as needed
(H10a) Prepare for formal inspection workshop, Saturday (use inspection lab materials,

handed out in class)
[class #11]

(11) Inspection Workshop and presentation of Mid-Term Homework: Process Definition
1 Week: 5 Class: 11 Day/Date: Key Presenter: Judy Readings? nothing

and students new
Saturday,
2 November Homework? nothing

new

End-Term Homework

e With your partner organization, define a process improvement plan for the
process you defined in the Mid-Term Homework (per instructor-provided
guidelines; draft attached,-handed out in class)
[turn in at class #16; presentation at class #17]

(12) Process Improvement Models

Week: -6 Class: 12 Day/Date:

Monday,
4 November

Key Presenter: Judy Readings? yes

Homework? optional

.

(R12a) selections from the Quality-issue of Business Week, 1991

(R12b) {optional] Total Quality Improvement System; ODI; "Quality Action Teams -
Team Member's Workbook"

Printed: 9/29/96 - 428-PM
© 1996 Judy Bamberger / James Hook

Page 13 CSE 503: Bibliography and Syllabus/V2.3
BibliographyAndSyllabus

CSE 503
Judy Bamberger/James Hook

Oregon Graduate Institute
Software Process Practicum: Lessons in

Software Quality and Leadershi

(R12c) [optional] Total Quality Improvement System; ODI; "Quality Action Teams -
Project Booklet"

(R[2txt) The Team Handbook, Chapter 5, "Building an Improvement Plan"

• Copy of class materials

- Several process improvement models and strengths of each
- Principles of action planning and "how to"

e Handout - Organizational Climate Survey, Judy Bamberger
*(H12a) [optional] Leveraging the readings from Business Week and comparing it with

your experience, discuss what appears to you to be the "top six" characteristics of
high-quality organizations
[turn in at class #14]

(13) Software Metrics

Week: 6 Class: 13 Day/Date: Key Presenter: Judy Readings? yes

Wednesday, Homework? yes
6 November

(R13a) Software Modeling and Measurement: The Goal/ Question/Metric Paradigm,
Victor R Basili

(R13b) [optional] So#ware Quality, "Software Metrics that Meet your Information
Needs," Linda Westfall

(R113txt) Software Metrics: Establishing a Company-Wide Program, by Robert B Grady and
Deborah L Caswell, chapters 5-6 and 12-15 (please use this as a minimum
guideline; we would have like to have assigned the entire book)

• Copy of class materials

- Why measure software processes

- What are some things that can be measured in software processes

- Goal, Question, Metric Paradigm

- Examples

*(H13a) Identify a problem at work and do a "detailed impact case study" and a
"subjective impact study" following Weinberg, Volume 2, sections 8 (especially
8.4 - 8.6) and 9 (especially 9.3 - 9.5) (handed out in class)
[turn in at class #15]

Printed: 9/29/96 - 4:28 PM

© 1996 Judy Bamberger / James Hook
Page 14 CSE 503: Bibliography and Syllabus/V2.3

BibliographyAndSyllabus

CSE 503

Judy Bamberger/James Hook

.

Oregon Graduate Institute
Software Process Practicum: Lessoris in

Software Quality and Leadership

Week: 7 NO CLASS Day/Date:

Monday,
11 November

Readings? nothing
new

Homework? nothing
new

Week: 7 NO CLASS Day/Date:
Wednesday,
13 November

Readings? nothing
new

Homework? nothing
new

(14) Organizational Infrastructure for Sustained Process Improvement - Leadership and
Technology Transition

Week: 8 Class: 14 t Day/Date: Key Presenter: Judy Readings? yes
Monday, w Homework? nothing
18 November new

 - (JOUR) Please turn in your Journals.
(R14a) Quality Planning-and Analysis - From Product Development through Use; J M

Juran and Frank M Gryna; Chapter 7,1'Organization for Quality" and Chapter 8,
'Developing a Quality Culture"

*14b) -The Leadership Chaltenge; James Kouzes and Barry Posher; Part One, "Knowing
What Leadership Is Really About", Chapter 1, "When Leaders Are at Their Best:
Five Practices and Ten Commitments", Chapter 2, "What Followers Expect of
Their Leaders: Knowing the Other Half of the Story", Part 7, "The Beginning of
Leadership't Chapter 13, "Become a Leader Who Cares and Makes a Difference"

(R14c) "Leading Change: Why Transformation Efforts Fail"; Harvard Business Review;
March/April 1995

(R14txt) Quality Software ··Management, Volume 1, Systems Thinking; Gerald M
Weinberg; Chapter 18, "What We've Managed to Accomplish"

• Copy of class materials

- Examined some management/leadership issues to sustain process
improvement

- Discussed key points of effective leadership

- Understand your role as leader for process improvement

. - Getting information out about improved process

- Getting improved process adopted and used
Printed: 9/29/96 - 4:28 PM Page 15 CSE 503: Bibliography and Syllabus/VZ.3
© 1996 Judy Bamberger / James Hook BibliographyAndSyllabus

CSE 503

Judy Bamberger/James Hook
Oregon Graduate Institute

Software Process Practicum: Lessons in

Software Quality and Leadership

(15) Quality Technique #2 - Quality Function Deployment (QFD)
Week: 8 Class: 15 Day/Date: Key Presenter: Judy

Wednesday,
20 November

Readings? yes

Homework? nothing
new

(R15a) Harvard Business Review, May-June 1988; John Hauser and Don Clausing; "The
House of Quality"

(R15b) "QFD for Software - Satisfying Customers"; Richard Zultner

Copy of class materials

- Increasing importance of focus on quality
- Voice of the customer

- Exercise using QFD

• Handout - Leemak, Inc; "Problems That QFD Solves"

• Handout - Leemak, Inc; "OK, So How Long Does It Really Take?"

(16) Managing Change .
Week: 9 Class: 16 Day/Date: Key Presenter: Judy Readings? yes

Monday, Homework? nothing
25 November new

(R16a) IEEE Software, January 1990; Barbara M Bouldin, "The nature of change agents"

(R16b) Harvard Business Review, January-February 1992; Robert H Schaffer and Harvey
A Thomson, "Successful Change Programs Begin with Results"

(R16c) Group and Organization Studies, SAGE Publiciations, Group and Organizational
Studies, December 1982; J Scott Armstrong, "Strategies for Implementing Change:
An Experiential Approach" (Delta process)

• Copy of class materials

- People issues about key principles of effective change

(17) Team Presents: End-Term Homework

Week: 9 Class: 17 Day/Date:

Wednesday,
27 November

Key Presenter:
students

Readings? yes

Homework? nothing
new

Printed: 9/29/96 - 4:28 PM

© 1996 Judy Bamberger / James Hook
Page 16 CSE 503: Bibliography and Syllabus/V2.3

BibliographyAndSyllabus

CSE 503

Judy Bamberger/James Hook
Oregon Graduate Institute

Software Process Practicum: Lessons in

Software Quality and Leadership

(R17a) Teaching the Elephant to Dance; James Belasco; Chapter 1, "Teaching the
Elephant to Dance - The Manager's Guid6 to Empowering Change", Chapter 2,
"Getting Ready to Change", Chapter 11, "Empower Individual Change Agents",
Chapter 12, "Change Happens - The Elephant Learns"

(R17b) Article from Wall Street Journal, 13 September 1994 on Chinese Quality
Managers

(18) Surprise !!!

Week: 10 Class: 18 Day/Date:

Monday,
2 December

Key Presenter: Jim, Readings? nothing
entire class new

gudy is out) Homework? nothing
new

(19) Review and Summary

Week: 10 Class: 19 ' Day/Date:

Monday,
4 December

Key Presenter: Readings? nothing
discussion new

Gudy is out) Homework? nothing
new

UOUR) Please turn in your Journals.

Final Project

• As an individual, define a process improvement plan for a personal project, or
organizational process in which you have a stake (per instructor-provided
guidelines, handed out in class)
[turn in to Jim Hook or Judy Bamberger at OGI no later than Thursday, 12
December 1996]

Printed: 9/29/96 -4:28 PM

© 1996 Judy Bamberger / James Hook
Page 17 CSE 503: Bibliography and Syllabus/V2.3

BibliographyAndSyllabus

.

CSE 503

Judy Bamberger/James Hook
OURNAL ENTRY IDEAS

Oregon Graduate Institute
Software Process Practicum: Lessons in

Software Quality and Leadership

Journal Entry Ideas

To the Students:

The readings we suggest are intended to meet the goal of providing growth and
broadening, rather than something we will "test" in class. To help us evaluate the
effectiveness of the readings in meeting this goal, we would like you to use a "journal" to
capture your reactions to the readings.
This is also a perfect opportunity to capture some of your thoughts about the class sessions
themselves. While we do a course evaluation at the end of the term, and while we ask for
input at various places throughout the term, we have heard from our students that they
would find it easier to capture evaluation thoughts as the class progresses. You can use
that information when it is time to do the final course evaluation.

This is your journal to keep - any way you want - hand scribbled notes and diagrams, typed :
and indexed on a computer - whatever. We will ask-to see it three times throughout the W 1
course (approximately week-4, week 7, and week 10) so we can assess where we are going
with the course. If you would rather we did not see your Journal, as it may contain private
insights, we request to meet briefly with you to assess the impact of the readings and class
sessions.

No grades will be given. No comments will be made, unless you explicitly request us to do
so. We will use your input tomake mid-course corrections and improvements in the
Practicum.

Some topics you might want to consider:
• How does a reading, homework, or class session help you meet your learning contract?
• What key points did you get out of the reading> homework, or class?
• How does this synthesize with previous readings, homeworks, and classes - what new

"ahas" came?

e What new knowledge did you gain from the reading, homework, or class?
• - What new puzzles are opening up for you- areas where you want to experiment or get

more knowledge?
• =. anything that strikes you as important at the time you write.

Pinted: 9/29/96 - 4:28 PM

© 1996 Judy Bamberger / James Hook
Page 19 CSE 503: Bibliography and Syllabus/V2.0

BibliographyAndSyllabus

.

CSE 503

Judy Baniberger/James Hook
TIMELOG TEMPLATE

Oregon Graduate Institute
Software Process Practic·um: Lessons in

Software Quality and Leadership

TIMELOG TEMPLATE

To the Students:

We would like to collect information on the time each student spent on each class
preparation and assignment. We will use this ONLY to help us evaluate and tailor the
workload we are asking from each of you. The preferred format to give us time spent is:

hours : minutes

with a granularity of 15 minutes.
We will NOT use time spent as a marking criterion in any way. It will be maintained in a
separate database, and not examined until after all marks are given for that assignment.
Our goal is to have an "achievable class" - with some planning on your part and our part.
Your providing us with this information call help us determine if we are meeting that
goal. Thank you.

Printed: 9/29/96 -4:28 PM
ID 1996 Judy Bamberger / James Hook

Page 21 CSE 503: Bibliography and Syllabus/V2.0
BibliographyAndSyllabus

CSE 503
Judy Bamberger/James Hook
TIMELOG TEMPLATE

Oregon Graduate Institute
Software Process Practicum: Lessons in

Software Quality and Leaderst:

General Information

Student Name

Class #

Readings
Reading #s

Time spent

Homework

Homework #s

Time spent

Projects (Mid-Term, End-Term, Final)
Project ID |
Time spent

Other

Description

Time spent

Complete only if turning in homework today
Homework ID

Due Date

Turn-In Date

Printed: 9/29/96 - 4:28 PM
© 1996 Judy Bamberger / James Hook

Page 22 CSE 503: Bibliography and Syllabus/V2.0
BibliographyAndSyllabus

1

CSE 503

Judy Bamberger/James Hook
HOMEWORK: Process Definition

* DRAFT *
Oregon Graduate Institute

Software Process Practicum: Lessons in

Software Quality and Leadership

Mid-Term Project: Process Definition

To the Students:

This exercise is to be done as a team. Once again, "team" is defined as about three people.
Effective meeting management and team collaboration skills are key to success of this
exercise.

This exercise builds on classes #5, #6, and #7 (process definition) and additional readings
and information about process definition. It is due, in writing, at class #10, Wednesday, 30
October 1996. Each team will present its results at class #11, Saturday, 2 November 1996, in
the afternoon.

The assignment is to produce a process definition, using the techniques and
representations we will be sharing with you this week, or others you may have used or
know. You are not constrained to follow the process we will be teaching; however> we
would like to see certain products in certain formats... all of which can be produced
multiple ways.
To do this exercise. you will need to identify two things: (1) an organization with which to
work (perhaps, your own); and (2) a process to define with that organization. If you have
any problems with this, see Jim or Judy; we will try to find an organization and a process
for your team.
If all contacts fail, Jim said that he has a few processes within PacSoft that could be defined
and improved.

• Pick a simple, bounded process within an organization - it has to involve multiple roles
(disciplines, groups).
The two examples given below indicate the "level" to which you need to go (not very
deep) and the 'breadth" across the organization you need to cover (multiple
organizations). (Note that these are written like "scenarios" not like a real process
definition; that will become clear through the lectures and readings.)
For example, managing a requirements (specification) change - customer calls, marketing
fields the call and turns it into a requirement which is passed to engineering; they analyze
it and feed impact back to their management and to marketing; -.* design / code ... the
independent test organization tests the code; defects are fed back into software engineering
... the ready-to-sh* code is configured and handed off to the release group to cut the CDs;
the CDs are passed to shipping which will pull the correct documentation, package all the
contents, and ship the product to the customer.
As another example, a customer calls the service organization with an urgent problem; the
service organization verifies it is a critical software defect files a defect report, and passes
the issue to software engineering, requesting a fas*atch; software engineering evaluates
the defect, the impact and the resources needed to make the fix; software engineering

(management allocates resources to fix the defect; the defect is fixed and a fastpatch is
.- created; peer reviews are held to verify it; service tests the fastpatch to verify it; the

inted: 9/29/96 - 4:28 PM

© 1996 Judy Bamberger / James Hook
Page 23 CSE 503: Bibliography and Syllabus/V20

BibliographyAndSyllabus

CSE 503 Oregon Graduate Institute
Judy Bamberger/James Hook * DRAFT * Software Process Practicum: Lessons in

HOMEWORK: Process Definition Software Quality and Leadership

fastpatch is baselined (captured in a configuration management system); the defect report is
updated to indicate a fastpatch was created and that it must be fixed in the next regular
software release; a tape is cut, logged in the fastpatch tracking system, and shipped to the
customer.

Your team is to turn in the following information at class #10:

(1) A process definition in all of the following representations:
- Value-added map ("context diagram")
- Time-x-role map

- EITVOX *nly three process steps required to be done EITVOX; you may do as
many as you want)

(2) A discussion of the team effectiveness, as described, to include:

- Team strengths. weaknesses
- Individual styles and how they contributed to the solution
- How decisions were made, how conflict was handled

- If you changed team members, discuss the impact

- Improvements you can make as a team, as individuals, for future team exercises
- Observations on overall team effectiveness
- How effectively you used your "together " time (e.g., meeting management)

- An indication of where you believe your team is on the Team Growth Model

You may also turn in any other "team stuff" you think would help us understand
how you operated.

Your team is to present the following information at class #11:

• How your team did the homework; the team process and organization you used - the who,
what when, where, how, why of your team process (not effectiveness; that comes later!)
[quick summary; be brief; ensure team consensus]

• What your team produced; a summary of the process your team defined - examples of all
three representations (a summary of (1) above)
[not expected to be a full presentation, simply a visual presentation to the class of what you
produced for your partner organization and what you turned into the instructors]

• Observations on the reaction of your partner organization - to the process of defining
processes, to the resultant process definition, to you as a team, etc
[reflection, observations; ensure team consensus]

e Discussion of team effectiveness (a summary of (2) above)

[short presentation to the class of what you produced as part of the assignment turned in
the instructors]

Printed: 9/29/96 - 4:28 PM
© 1996 Judy Bamberger / James Hook

Page 24 CSE 503: Bibliography and Syllabus/V2.0
BibliographyAndSyllabus

CSE 503

Judy Bamberger/James Hook
. HOMEWORK: Process Definition

* DRAFT *
Oregon Graduate Institute

Software Process Practicum: Lessons in

Software Quality and Leadership

• A brief summary (team or individual members of the team) as to the utility of process
definition techniques where you work (or have in the past, or would like to in the future).
[briefly reflect on the techniques,the processes, the experiences, and
your/team/organization's reactions]

• Be prepared to answer questions of clarification, curiousity, and envy from other students
and the instructors on the above.

Printed: 9/29/96 - 4:28 PM

© 1996 Judy Bamberger / James Hook
Page 25 CSE 503: Bibliography and Syllabus/V2.0

BibliographyAndSyllabus

CSE 503

Judy Bamberger/James Hook * DRAFT *
HOMEWORK: Process Improvement

Oregon Graduate Institute
Software Process Practicum: Lessons in

Software Quality and Leadership

End-Term Project: Process Improvement

To the Students:

This exercise is to be done as a team. Once again, "team" is defined as about three
people. Effective meeting management and team collaboration skills are key to success
of this exercise.

This exercise builds on mid-term process definition homework, class #12 (process
improvement models) and other lectures, readings> and information about process
improvement (in fact, the running theme throughout the course). Many of the
remaining classes have no homework other ·than, "factor these concepts into theerld-
termprocess improvement homework"; we intend to provide information to help you
address some of the questions we put to you. The homework is due, in writing, at class
#16, Monday, 25 November 1996. Each team will present its results at class #17,
Wednesday, 27 November 1996. 1
The assignment is to build on the process definition from-"Week Five" homework, to 1
·work with your partner organization to:

• Identify metrics that can be used to measure the performance of the process today
(to establish a baseline for improvement)

• Establish Ineasurable goals for improving the process, and
• Develop an action plan to improve the process.

The information for the team to turn in is: the process improvement/action plan.
As individuals, you will look at individual and team dynamics and effectiveness. A
Iist of topics to consider is included below.
Ille information for each individual to turn in is: a 2 -4 page discussion Of individual
and team contributions.

You are not constrained to follow the models ·we will be teaching; however, we Would
like to see certain products with certain content, which is described below. We will
provide additional templates for finished products (optional to use) at appropriate
points in the remaining classes.

To do this exercise, you will need to reconfirm the willingness of your partner
organization to continue collaboration. If you have any problems with this, see Jim or
Judy; we will try to find a partner organization for your team.

You are encouraged to use the process improvement planning process and ·template introduced
inclass #12, unless yourr partner organization has a method and/or template of its own or you
have a defined method and-templa:te of your own. If you do not use the method/template we

Aileach, please let us know what you will be using, so we can ensure the necessary components will
e covered.

Printed: 9/29/96 - 4:28 PM

© 1996 Judy Bamberger / James Hook
Page 27 CSE 503: Bibliography and Syllabus/V2.0

BibliographyAndSyllabus

CSE 503

Judy Bamberger/James Hook * DRAFT *

HOMEWORK: Process Improvement

Oregon Graduate Institute
Software Process Practicum: Lessons in

Software Quality and Leadershi

Be sure to provide us with a complete action plan - all sections. The following list provides some
additional hints and references to help with some of the sections.

1.1. Problem Statement

A set of metrics that can be used to measure the performance of the process today.

- Describe any metrics used today to measure the performance of the process, and
how they are collected, reported, and used.

- If none, describe what metrics could be used to establish a baseline so that the
organization will know on what to base its improvement. Describe how they
could be collected, reported, and used.

1.2. Vision after Success and

1.3. Goal Statement

A goal (or goals) that your partner organization would like to see for process
improvement. You are encouraged to validate the goals with your partner
organization, if they did not participate in their creation.

- Using the Goal/Question/Metric paradigm (class #13), develop the goal,
questions, and metrics. Ensure that the metrics are quantifiable (either
objectively, or subjectively; see homework/reading Weinberg, Volume 2,
Chapters 8 and 9). For each of five metrics, describe how it could be collected, what is its scale (or value), any known or suspected data integrity issues, how it
could be used to answer the questions to test achievement of the goal(s).

- Ensure that the goal(s) is a "SMART" goal (lecture #12), or discuss why they do
not need to be, or the risk incurred if they are not SMART.

11. Roll-Out/Training Plan

Consideration for "self-sustaining improvement" (aka, institutionalization factors,
discussed in classes #8 and #9)

ENABLERS for sustained improvement

• Commitment to Perform (policy, leadership needed)

• Ability to Perform (tools, training, resources needed)

ENFORCERS for sustained improvement

• Measurement and Analysis (how your proposed metrics will help demonstrate
achievement of the goal, how the organization will know to what degree the
organization is complying with the change)

e Verifying Implementation (progress/status reports to sponsoring management,
independent review, etc)

Transition considerations for the new-improved process (e.g., information
dissemination, newsletters, all-hands meetings, formal training, mentoring, browl

Printed: 9/29/96 K, 4:28 PM
© 1996 Judy Bamberger / James Hook

Page 28 CSE 503: Bibliography and Syllabus/V2.0
BibliographyAndSyllabus

CSE 503

Judy Bamberger/James Hook
HOMEWORK: Process Improvement

* DRAFT *
Oregon Graduate Institute

Software Process Practicum: Lessons in

Software Quality and Leadership

bag lunches, etc). This needs to reflect sensitivity to the culture of your partner
organization - how they learn and retain best.

Printed: 9/29/96 - 4:28 PM
© 1996 Judy Bamberger / James Hook

Page 29 CSE 503: Bibliography and Syllabus/VZ.0
Bibliography,AndSyllabus

CSE 503

Judy Bamberger/James Hook * DRAFT *

HOMEWORK: Process Improvement

Oregon Graduate Institute
Software Process Practicum: Lessons in

Software Quality and Leadership

How to Get There

You are encouraged to involve your partner organization in this as much as they can be (or want
to be). Since they are the ones who really practice the process being improved, they are likely to
have many good ideas about how to improve it. Involvement can be: brainstorming during
information/data collection; participation in the force-field analysis; reviewing intermediary
products; etc.

You are encouraged to use one or more of the process improvement or problem solving methods
discussed in class or offered as reading, unless there is another method with which you have
much experience. (In this case, please consult with the instructors ahead of time to ensure the
goals of this assignment are met.) Options include:

• The general problem solving method (and tools) from class #4 (remember to focus it on
process improvement)

• The action planning techniques discussed in class #12

• The ODI method and tools from the readings for class #12 and class discussion
• The methods and tools described in The Team Handbook, chapter 5 (one of the readings

for class #12)

Individual and Team Contributions

As individuals, please provide a discussion of your view of your contribution to your team's
effectiveness throughout the course, to include:

e Your style and how it contributed to the strength of the team
• Observations on areas where you would like to improve in team activities (styles you

might want to try; roles you might want to play, etc)

• Techniques and skills you used to keep the team moving forward, to resolve conflicts, to
be creative, etc

• How effectively you used your "together" time (e.g., meeting management)
• An indication of where you believe your team is on the Team Growth Model
• Effectiveness of team activities in reinforcing the key themes of this course

e Lessons you have learned from your class-team that you can take into your work-place-
teams

Printed: 9/29/96 - 4:28 PM

© 1996 Judy Bamberger / James Hook
Page 30 CSE 503: Bibliography and Syllabus/V2.0

BibliographyAndSyllabus

CSE 503
Judy Bamberger/James Hook
HOMEWORK: Process Improvement

* DRAFT *
Oregon Graduate Institute

Software Process Practicum: Lessons in

Software Quality and Leadership

Team Presentation

Your team is to present (30-45 minutes; depends on the total number of teams) the following
information at class #17:

• How your team did the homework; the team process and organization you used - the who,
what when, where. how, why of your team process
[quick summary; be briet ensure team consensus]

• What your team produced; a summary of the action plan
[not expected to be a full presentation, simply a visual presentation to the class of what you
produced for your partner organization and what you turned into the instructors]

e Observations on the reaction of your partner organization - to the process of improving
processes, to the resultant process improvement plan, to you as a team, etc
[reflection, observations; ensure team consensus]

• Be prepared to answer questions of clarification, curiousity, and envy from other students
and the instructors on the above.

Printed: 9/29/96 - 4:28 PM
© 1996 Judy Bamberger / James Hook

Page 31 CSE 503: Bibliography and Syllabus/V2.0
BibliographyAndSyllabus

1*oM IMARCHJ5
lo £ 1 5 J 17¥ 1

MEMORANDUM
OF CALL

TO:

C] vou WERE CALLED BY- YOU WERE VISITED BY-

OF (Organization)

PHONE NO.¤ PLEASE CALL -4 CODE/EXT. 0 FTS
¤ WILL CALL AGAIN C] IS WAITING TO SEE YOU
[] RETURNED YOUR CALL [] WISHES AN APPOINTMENT
MESSAGE

RECEIVED BY DATE TIME

63-109 STANDARD FORM 63 (Re¥. 8-76)
Prescribed by GSA

4 GPO : 1981 0 - 341-529 (117> FPMR (41 CFR) 101-11.6

record and fNe locking. semaphores,
shared memory management. and hard-
ware error recovery The version of
XENIX that you can buy depends on
your computer. XENIX 3.0 runs on the
IBM PC AT. while XENIX 2.3 runs on the
Altos. landy, and other 16-bit multiuser
computers,

THE REAL RSA ALGORITHM
..............

Charles K]uepfel's article (Implementing
Cryptographic Algorithms on Microcom-
puters," October [984, page [26) is not
based on the real RSA algorithm but on
Donald Knuth's version of it. Knuth uses

 the exponent 3 to encode a message. but
the full RSA allows any exponent that does
not share any prime factors with (p- 1).
(q- 1). Instead of having to ensure that
messages are greater than the n71/3}. one
can choose any encoding key s such that
2-5 >n and then be sure that all messages
except 0, 1, and n- 1 are thoroughly
encrypted.

The fun RSA system also allows the de-

LETTERS

coding key to be chosen for special prop-
erties and the encoding key to be de-
duced from it for instance. the decoding
key may be kept short (15 digits or so} or
close to a power of 2 for easier compute-
tion when the recipient of messages has
less computing power than the sender.

I'm not sure why Knuth's version is dif·
ferent: perhaps his knowledge of RSA was
based on an early version, before the
main paper was published: CACM.
volumes 21 and 22. pages [20-126 (1978).

] have tried running Kluepfefs example
on our own Big Integer BAS]C interpreter
on a 3-MHz 280-based CPjM machine,

with the following program:
100 INPUT N,D
110 INPUT MS

120 CD=MS-[N]3 : PRINT CD
130 MT=CD-IN]D
140 IF MS = MT THEN PRINT "OK" :

PRINT : GOTO 110
150 PRINT ERROR -';MT

Apart from problems with a misprint fri
listing 9 {a spufious T in "182818218" in
the first two occurrences of MS), the pro-

gram ran first time It took a second or so
to encode and 1[5 seconds to decode.
Our factorization program in BASIC took
2.5 minutes to factor BYTE's tele-

phone number: 13 * 4703 * 98779 -
6039249281. No doubt the IBM PC ver-
sion will be faster.

MARTIN KOCHANSKI

Spedhurst, Kent. Engiand

Charles Kluepfel replies:
At the time i wrote the program and

article, all descriptive references that I
saw to the RSA system used the power
3, induding Knuth. who in fact referenced
the same article Mr. Kochanski men-
tioned. As Knuth provided an unam-
biguous description, I felt that it was the
same as in the RSA reference, and i did
not seek that sounce. However. the Knuth
description is. indeed, based on the real
RSA algorithm, as a particular instance
of using 3 as the encoding power.

Referring now to that main paper,
wherein the power in question is de-
noted by e (as opposed to s in Kochan-

(Contlnueal)

i Art,>34 . .
I <PA CIassy Instance of SmaIItalk

> Ifyaurobjectiseasyprogramming, ourmessageis..

f,j..mmfFH=IN'- -.'e*0<*3,€0·'B*' 9.*--4c · '

 *i·&3·lit
. 97 2 ¥94.,=wa•. 4 -I- e.fb'27%-a ' .{t•,AW' :·.·

./. irk\,9 4%'/9. *0 , rted·-·7- .Dit 744*9321,211.7 . . 1£ti
21€ff[i (ficapi'. '74:· Excht·. ; I .. . 0,·L 24:97.¢.:

1 h. 7.94# c 4 7 ft.1 ?> 04 t'Q> fc ..1.A? 94.19:,6 vo'.3:4-- 44 i9*d.*W#Obt-arted'• . 4' ti'ion&Vil . 40*f
tdavelopmentenvirenmentwit**04* f

•*Aq'PQ L . 44% <lamp-bilit®14*a
44*24*tjifi%4%

. .*.f '4: 0, dip.'M@.219.#m:",i. 46.4·7f»>i)'€43·92 -31341: ,

It's powerful, fast and fun!

For IBM PCs and compatibles with 512K
bytes RAM using PC-DOS or MS-DOS.

1 YES! Please send me a copy of METHODS for $250.
1 Check- Money Order- Visa Mastercarc
1 Card # Exp. Date

1 Name

1 DieiALIC, inC. Addrels
1 City/State/Zip

5200 West Century Boulevard
Los Angeles, California 90045 (213) 645-1082 | Te[ephore C)
Smalltalk·80 15 a tradema rk of Xe rox Corporat lon. MS·DOS 18 a trad em ark d MicroBoft

Ina PC-DOS 13 a trade mark of IBM Corporation.

Signature
California residents add 6% sales tax. Outside U.S.A. add $15.00

26 BYTE · MARCH 1985 1nquiry [16

- WHAT'S NEW" : 2139';029:tte k' 7 2 , ,.

Footmouse Frees Your Hands

Footmouse, a foot- , '. :b, 2 software support,
ersatron is shipping the ;-heither special boards nor

toperated mouse for micro, 4 1 4*:Presently available for the
{computers- The manufac- 44%*IBM PC and IBM PC-compat-

09.....turet notes that the primary =lbles, versions of the Foot- .1-- -imAILI jadvantage of the Footmouse imouse for the Apple Ite.../4/./.4... is that it frees both your - -. i. Macintosh, IBM PC XT and€{43*104/>€ 4 122:
hands for data input. r: : -.€ PC AT. Ivy, Compaq, andal k Udextft ./ Footmouse reportedly r RS 232C terminals will be

 works with any software . I ij. „ avalable shortly The sue
 package that uses a cursor.»-:.gested list price is 8225,f tt emulates the keyboard : ot Contact Versatron Corp„ 103

cursor functions yet it does Jiaza St., Healdsburg, CA-
not interrupt normal cursor i,. 95448, {8003 4434550, in

./operations. Footmouse plugs FCalifornia. {800) 4354 550 or
The Footmouse doesit need special boards or software. . between the keyboard and (707) 433-8244,

the computer, requiring inquiry 609.

Multitasking, Multiuser DOS Runs with MS.DOS » --

A multitasking, multiuser
t'k operating system for
8086/8088 microcomputers
running MS-DOS has been
introduced by FORTH inc
Called polyFORTH 11, this
operating system gives you
the ability to run multiple
terminals. unlimited tasks.
and concurrent printer oper-
ations. The environment that
polyFORTH 11 creates is said
to be suitable for such in-
teractive, reakime com·

puter-control applications as
robotics, data acquisition, jimage processing and p» 4
cess control. - 1

Any number of asynchron-
ous processes running con-
currently are supported by
polyFORTH m A company
spokesperson reports that
polyFORTH 11 does not im-
pose a cap on the amount
of users supported. although
this is sublect to hardware
constraints. Further, the
spokesperson notes that
polyFORTH operates at rea-
sonable speeds. the rate of
which is dependent on the
number of processes
running.
, lasks can be assigned
private partitions, or they
may execute shared. re-
entrant routines. Active tasks

f require as little as 100 bytes
of memory and context

switches need only 14 ma-
chine-language instructions.

Several configurations of
polyFORTH [i. reflecting in-
creased capabilities and
support services. are
available for MS-DOS com-
puters. Level 3. which costs
$600. includes the operating
system, a FORTH turnkey
compiler. assembler. editor.

 Methods-for Smalltall
 ethods is a Smalltalkprogram-development

 system for the IBM PC and
f compatibles running under

DOS versions 24 21 or 3.0.
Fully compatibie with Xerox's
Smalltalk-80 language.
Methods includes nearly 100
classes which are program-
ming tools that define the
structure and behavior of
abstract data types such as
integers and points.

Smalltalk. an extensible,
object*oriented language. is
suitable for simulation and
graphical user interfaces. For
a broader discussion of
Smalltalk. see the August
1981 BYTE. -- · ...

Methods gives you access
to most of the source code
from whlch it ks built. It has
more than 2000 routines, or
methods, that you can

mathematics library. data-
base support system, utili-
ties, and source code for att
but the nucleus.

Priced at $3200. poly·
FORTH It level 4 comes with
ali the capabilities of level 3
as well as full system source
and the larger Compiler,
which is capable of generat-
ing applications that can be

Pfogramming
....''....'...'...'...*.....'.

browse through. put to use
or modify. Primitive methods
can be implemented in
assembly language.

The user interface features
a character-mapped display
pop·Up menus, and exten.
sive use of color (mono-
chrome displays are sup,
ported). Your cursor keypad
is used as if it were a
mouse. Methods also comes
with a system transcript. file
editor. and a window for
debugging.

Methods requires 512K
bytes of RAM and a pair of
360K-byte disk drives or a
hard disk. Two manuals are
supplied. The suggested
price js $250. Contact
Digitalk Inc., 5200 West Cen-
tury Bive., Los Angeles, CA
90045,1213} 645-1082.
Inquiry 611.

embedded in ROM or re-
compiling poiyFORTH itself.

All polyFORTH t[disks are
compatible with MS-DOS
and its; FORTH blocks are
maintained in data files-
Contact FORTH Inc„ 2309
Pacific Coast Highway. Her-
mosa Beach, CA 90254,

/(2 I 3) 372-8493.
Inquiry 6 10.

Peripheral Boosts
the Mac's Versatility .

M acEnhancer from
Microsoft lets you add

three different peripherals to
Apple's Macintosh. Requiring
a single Macintosh RS-422
port. MacEnhancer gives
you two RS-232C Serial
ports and a parallel printer
interface.

MacEnhancer arrives with
drivers for a number of g
popular dot-matrix and
daisyarhee! printers and
with terminal-emulation soft„
ware for accessing informa-
tion services and bulletin
boards. its list price is $249,
For further information, con-
tact Microsoft Com. 10700
Northup Way, POS 97200,

) Bellevue. WA 98009. (206)
828-7400.

flnquiry 612.
fcontinued on pee 435)

44 BYTE - MARCH 1985

1

74

LANGUAGES

f object-oriented programming
Coop) technologies ate the wave of
thefuture, why hasrft Smalltalk, the

granddaddy of nop languages, been
more successful?

After all, Smalltalk, which was devel-
opec at the Xerox PARC re.search labs
in Fato Alto in the mid-1970s, was one
of the first languages to reject the opera-
tor/operand, linear style of more con-
ventional programming languages. in-
stead,-Smalltalk USes self-contained data
structurescalled objects, whic·hprogram-
mers can combineand reuse in their ap-
plicatkns. Its proponents said Smalltalk
would rdgnificantly improve program·
mer productivity and Inake long-term
program maintenanceand enhanceinent
easier

Smalltalk

1rows Up
Than:ksto a boost from IBM and Microsoft, and a
growing set of support tools, Smalltalkisfinally
beginning to sound good to IS.

BYjEFFMOAD
But Smallialk never really took off. Is

applications.development managers
have tended to view it +as a fringe lan·
guage, weak on performance and lacking
crital support features, such as stable
database interfaces and well-established
development methodologies. Thus. Is
managers liave been 1-eluctant to retiain
their a)801. programmers to use Small-
ialk. ParcP[ace Systems, a spin-off from
Xerox PARCJ and a few small consulting
firms were pretty much alone in trying
to convince]S totake Smalltalkseriously.

A Small Surge
All thal may be changing, however. A

number of iS organizations are moving
beyond experimenting or prototyping
applications with Smalltalk and are be-
ginning to develop critical applications.
Several small vendors have recently en-
tered the Smalltalk marketwith products
tbat make the language easier to use and
more productive for large applications.
And a Par€Place compedtor has even
emerged. Digitalk I nc. of Los Angeles is
now st][ing towel· Cost versions of Small-
talktargetedatos/2and Windowsusers.

Smalltalk is not about to replace
COBOL, but it is finally maturing into a
viable choice in application develop.
ment, especially for users looking fur 29
tool to speed development of advanced
giaphical user interfaces (Guls> in dient/
server applications.

Tilat's Smalltalk's funct:ion al Texaco

Ine.'s oil exploration and land inanige-
n.en# ..t :. 11-ric+An Arear,14.# pa 716_

eral computer-aided software engineer-
ing ((ASE) tools, Samoska's unit decided
to prototype antl implement itS new ap
plications using Parcflace's Object-
works\Smalltalk. Now under develop-
ment, the applications will access Tex·
aco'sexisting 082 host database via an ap-
plication programming interface (AM).

Users like Samoska say Smalltalk takes
much of the headache out of creatingap-
plications that use such Gul standards as
Windows'of os/2 Presentation Mari-
ager. Rather than require programmers
to learn and write to complicated GUI
A Ms, Smailtalk uses reusable class librar-
ies that can link applications to the APIS.

4%419%40* MBA
?**08?:*ade
my»732»3233*3jj.1311,1,/Al.&7/&hy
& Userinterrupt I
mderBrowser{BawserModel)»chartwitt,Button

f 42,3/ra:m#,*„i,
. . .61>€;23'2·i ?*«92%·aF*elf hibb®litt5.
42»chmwsernew)*ckl1
4-»2>'4*:·*lica®*seltabpticatio<

iwilett 4**IN?UffULoknuamutton],
4,444*
FAMMAC*,luE'I*240/47 1 NEng

i#*tine,I'll"*STebt,3##1***Po#5of*sag« ,

Lal

Dovelopers- can dien work with <ineasier-
to-use set of interface-building tools.

As a dynamically compiled language
built on reusableabitas and a virtual iA.
terOce that usek machine-independent,
intermed late code, Smal][alk is also easily
portable between the platforms it-sup-
ports. Texaco, for example, is develop-
ing its-ne•Smalltalk applitationsoli Sun
workstations andis runniff* them on p(s.

Help From The Big Boys
Smalitalk is also benefiting from re-

c e, i t r e c o gi j i t i o n fr o m 1 B M : i t i c] M i .1 0 % 01 i
00 Rec:ognizing th.Rt Sm.Alulk muld
help users wi-ite more-OS/2 PM applicit.

Ad Dose Sessid Workbench INE I
-,1.. I --. Af-,4 'r-,Puoewt zx *:.k<I#*ili

.Z :i b t{{fi?:44%3fil™demreNS49«02«48*u Fl4

= E MEEmET .;Eli|1£*U»Newstfeed!4Murray. hithu¢61.[14 sck£*ssiblii
or if „j Er €24< aoselotBrowse Accountl tft< i{Trade{EFF*%J31 4%

01)enNewAccountl(1 Ofil{(lijjfEE
ADBE _[*

reading 6*Ad.66 *y*emsj of Ff f t*%93 J
J i::?0*11'39;ili·<2 53(. e.&&&.
'/3 ' · «./.(:3:1: -1

Summwi.*Vat./
'1& u lit i:,1-Li,li3. 1-JEU Ih ' -I ../AU'13.*92" 1jil %:tiei:{{'iffbji »34%23*<4§{%3%1a;<* 9:,co IS managei· Dennis Sa,11©ska, the - 48&6IE.jvi/%%944144tit ttit (Pit/<i:j . m, 21:234 3rl i i>" ' - 7 . :192'26 ?2*9 fj." 0'*57 14*5;28
company wanted to i·ewrite two large *6729%%934?1943%49%444444 4*m 4 A#&(l ™24»3%93 43%92»cE .4.
mainframe applications, replacing dunib Repe-j©=4<er««4*22j=LPf«64t«UA,4#/)w-*na,3fi{*0942 ifet,3,/F>*me®elyEW,%*g@©p314Back¢o:21%
ta-minals with Window!ebased icts and o
workstations. The Pcs and workstations
would gi ve users easier acces., 10 }lost data SMALI.TALK\OBJECT f rom P: fc PIace SYS:tems can be u<fed to build portable applications
vE,i advanced Guis, After evaluating Rev- - that fun underseveral graphical interfaces

41/1

64 DATAMATION-JULY 15,1991

,?

SOFTWARE r
LANGUAGES

Helping Smalltalk Get Big
Formoreinformation:on thetompanies mentioned inthis article and thet¢

products, circle the appropriati numbers on the Reader S€ide Card.

lions, IBM endorsed theenuronmentlate
last Year, It signed licensing agreements
with both Parcplace and Digitalk. taM-is
Currently attempting to integrate Small-
talk and object-oriented programming
CapabilitieS into its .Al)/Cvcte {ASF. ar€·179-
tecture. If developersat Big Blue:s Pro-
gramming Systems Lab in Car¥, N.C..
are suctessful in integrating Smalltalk
into AD/cycle's information model,
there's a good chance IBM Will take
the next stepand declare Smalltalk a Sys·
tems Application Architecture (SA.A)·
approved language. says Cliff Reeves,
manager of Common User Actess-for
1 BM.

[3 THERE ARE STILL
SEVERAL MISSING
CHAPTERS IN TIlt
SMALLTALK STORY.

Not to be leftbeh'nd, Microsoft'smov-
ing Sfnalltalk -nt) the Windows envirm·
ment The company is worki ig closely
with Par¢Place to build 1€W-level p·o
gram-te-prodram n ess,ging litks into

44*umen Softwareftf94:43% lf¥*tantia»
48*Eeky. Calif . 4 LF*fit<ted*nd, Ore
%*it*No. 400 t>%644@fti*¢i¢tte No.*
*Digitalk Inc. flft#,ti Mkrofocus
as Angeles 1 i ltit?Ralogro

:tcite N<% 401 33%36/.Cifc!*N/.41
354*el Com. 99ittag*Microsoft¢,
.Burlihgton. Mass fl·%93%9133edmondiW.
iti¢¢16 No. 402 /4%23%44¢i,foleN#441
44®*4¥echnologi44}ne**f*47*Madei
©M#MloPark. Calif. 39«E*%43%60#fain*(e
a#mk No.403 44%31343*i€44*69:41

future versions of Windows and 03/2
that could -help programs written in
Smalltalkandother objectorientedenvi
ronments such as C+ + more.easily
sh'ire objects.

Eiffe Tower Of Babble
Public si ppon of Smalltalk by I BM and

Mic Aohoft hi. give 1 , boo.st to some ts
111<.nagers tr '1 g to sell their bosses on
the adv-ntage. of object o--ented pro-
gnririing ind Sm-illtalk. It really
hdps ' sa>s Phil Hartley -pr'ncipal te ih

ni lnE. Sift*Sybase #nat}
Eme*Ile,¢3!if.

04 : f:43(ircle No. 408
; ine.j 9421*ynergisticSolutions inc.

Mighlands,WNJ
*Atittticircle No·409
frp.% 9944ngte Object System:s intl
ashlif{AM<<21% San:fa Cruitticard
3844% 44*ClicfeN/1410
*staimsk¢%Whitewater.Group
*f Calif %434*anstond*
S¥%09443%¢ircle>Not#11

1Source'33*i;*AA-nON

nologist in the Advanced 1*chnology
Group m American Airlines Int.'s BABRE
Computer.Servites. Hartlej's groupis
currently evaluating Smalltalk along
with other object-oriented and Gui
building tools such as C+ +, Eiffel and
Object (8801. Smalltalk currentl¥ tms
the strongest set- of S linort tools. says
Hartlev,

Indeed, o. rks 10 2 gra:'ng number
of new St, dinlk -nd<tper lent software
vt· idyrs-Ost:).'s#rs cift r ew choose
from sean] sets of 0014 th·rt extend

TheCloserYo ok So efbr

1. 74 1 .H 2. ·, 7,4 It -
.. 1/. I.¥

- , 4 n. 4
· At:. ; '.:i 2* 24 ': I 74 ..· 4 : = *: 44·ffkt

04 3!01 4.4 ' 44 742. r
r .4 . .4. 40. Rt.VI' I . .:i' Lf

= , ' i. 4? e : 4 -: 34 9'T, 244 =i.!-#
** 't : 29 + '/ 1 4 W .
:2 /1.*

94 4 ·

+44.. j I : - I /4 ,<.: 4 ' 7 " 47 ./ ¥ 32
Itj¢ ft .1 942 't

'f e.: A ti# 1+ .;. W
42 1 ».1 1 €*.'..f' .t'·94*G

...».,2: S.+r /'tr 4.4
.€+

6,-'

. '&04. '41 6 46'u,:i: 02 4 :.1 , 'f,h¥-:. = +44. · 'rk.4 J n. P >, 02, >,% b 1*40 2% - 0** *:n, 47,'4 . + 44:4
s, i·f 40 10*9. , . „-- 412 1.Ek ., .4 k1 0 1 -44.. ..16#2 0.. 444 1 I '. I

£ -.:r 2 ' i ' ir<: ' 34*.:'t :FIA ' Prmi' 34?t 9494.4 4 . ¢4
I .B ' . I I /0 f L.61 ' I -44 2, 1 4 4. 44* r '' , 1 64 .: li

: 6,-7...9,1.11.h •44,4
7-. s 4 2. g .3: 1+"4>y *4 t.

I ..:44 *- 1 246 -1.r 2, L'. 7'4* -:,·1 : 1 1 .' 'll 4. LudIe
3*§ **r'' 4fy ' -r·,4 ., 144'2» 4 2:»49.4 fit: ,- 4 :76

14: ir'44. :- ' it'fi441¢ 3 9, 99. .Ii -44 f
<Wt# 7 % : 2 .9 ': '.- Atit¢+ . .

IPdagd kiX *34:grtcreltradjmark»jf]3. C rp.

66 DATAMAi;ON--}Uly lr. 991

Smallialk's functionality and ease of use.
Last year, Highlands, Nd.-based Syner-
gistic Solutions Inc. started shipping its
Smalltalk ilatform for Integrated ('om-
puling Envil·oftmEnts-(SPICE). which iii-
clides -a set of elass libraries. SPICE. helps
link applications- Written in Object-
woiks\Kmalltalk or Digitalk's Smalltalk V
with the Sybase/Microsoft SQL Server
and with Net[1103 or DEC-Net networicing
pi-otocol interfaces. I-hrough the Sybase
(latallise gatetdy, Snnalitkilk applications
can also access 082. Rdb and other data-
base management systems.

Shnilarly, instantiations]Ac. of Pon-
land, Ore., recently started shipping
What it calls (he-Application Organizer
Plus, a *et o f tools that helps large Small·
talk development teams with version
matiagement and code reuse, And at
least two other small vendoi-s, Acurnen
Software of Berkeley, Calif., and Tigre
Object Sy st ems I n c . of Santa Cru z, Cal if..
are shipping tools aimed at helping
Smalltalk developers create (it: 1 -br sed
applications-on PC. Macintosh tind U> tx
phitforniseveii niore easily.

Even one mainstream 1-rgulge ven·

A

23.-21

OCEl„_U

412 -

dor-Micro Focus Int.-is getting into
the Smalltalk environment. The vendor
of COBOL development tools recently
'agreed to bundle Digitalk's Smalltalk V
into its Cobol Workbench to be used to
build os/2 PM interfaces.

There are still several missing chapters
In Snlailtalk's story, however. Observers,
note that there is still no wide)accepted
development methodology for Smalltalk
or for any other objectoriented environ-
ment. In addition, many users are still
making the transition to the relational
model and structured programming
techniques."Most fls-developers] still
don't know what :to do with obiats.

1%254

They're stlit traumatized from nlaking
the migration to the RDBMS," says Na-
tasha Krol, applicationprogram director
at-the Meta Group in Stamford, Conn.
Smalltalk also faces intreaKingly stiff
competition not only from other object·
orientedianguagessuchas C+ + butalso
from new GO[-building tools, such as
Easel from Easel Corp. and Actor from
Whitewater Group.

Still, many observers see Smalltalk
gaining inaturity. Says Stuart Woodring,
an anal¢-st with-Cambridge, Mass...based
Forresrer Research Ific.: ?Con[inued
strong support from IBM'and others
coult heippush itorer the top." -=3

Ihe Clearer e wer ecomes. Efthe thousands of bumnes;s solutioils for the

.\81400, Software 2000 ls ctearly· U le best. Wd ve
been declicated to the AS/100 1,latforin since

day (,ne. Aild 0111· Coopenitive researc:h and
I

1.4 1* 1 -. >4.- development relationship with IBM erair¢js:that
A . .r.LE •44 43* ·· O '* 36 7#.2; .1 -14 --4 -6 ourbusiness solutions are aailable with the very

4 / : 44 4//·4' 1$: " '*4 4 * ti ' 54* „O - 1 + ·, latest AS 400 crihancements
: 'r'SE: Jitc.Wr)#W#R? i ar) 21**7:I ' d#B'44*- ·
,t¢40{91 1*46"='4'4 *744*67 '' 29% t, ' 9,1 Our Software 3000 Series includes a COInplete

. ·· 6 • S.t' *74 -FUL 4/444 34' ::,- ™ 4 I :

' S.il' ·44- * ' - T t·' : f¢'t¥* 1 AL
0. 1.4.1. , a , milcofirtegntedfirincial human resources,

,; i rlk'., n . +t

7,=* 4*.409 1432'Pif <21*46,4' 29; i.. . 4.,
Ni,%4% 4 -1 M"; F c AE.4*05 " 1: H+* : , 4 -2 , emaroilm¢:r tal and dist rlbiltioil software U.Tal

107„™Br 2§ '01':11
al:,&':9909 : I N IL I' 4% 4.0 : '4 , 44+;4 1 '8

4,0 4 i•r .:t' 26 »124 +N; '44 : . 7 . ·4 : f provides irrairhane functioriality with PC. ease·
0,4" 9- • 1 of.upe. We al.'0 offer a suite of P(].based] coop-uid«to G "94*fi<J,2,3%,-& *Lf'i ti. 4

r. ,
entive processit* products that are designed

t.'1*.k,44* . 4£2 20* o. .: 7,4.· 11&'iN , 4 4 .. 1 *' 3+' -to hilp vouibetter plan forthefuture bybringire1 +AL -

P 47*W" + #t #.16 ' © 2,??:,48-·, : L.Pq. vottrorginizatiorM most criticaj information to
•4'*t 2, 5·** til :. .4- ::' ' 7'ai·° Ii- f it k, g" A f : the desklop. For an even closer look at what are:C .

4*4 494/4 2 4. dearly the best business s{,}UtiOTis for the AS/400,
1,17, 44 9,:' J, -44 7:, . . ':1 -44 ; *] .¥¥1 2,.

¢81] Softwai'e 2000 at (800) 388 20(10.

r-§4{!pare 2000)
®e AS/400 1414*jiessgolutic#i

Circle 2 on Reader Card

f e \j » 11 b

49

24-4 -fifti LIC+j¢»444*2/8.#..*dir'444-,0*i
«e·>m.4 Ar: 10hfUN=«'r.24 42*I· 4** 1 9%' 1 p4»4% 441> 4 %1491% { l*4 *i«1 i.,9 1 *£*4< 04 1 6 #'Ar##plk;£*ff

December 1984

ARTICLES

Ciwet: Damon Rareyor
Aurora Sy·wem, le!1% ihe
hnriguiing #toryol thi,
*01111Aa>VL·I 4-About

h C Cover'+ ott page 4

C over de,ign: loy Sinip*)11

9%&*IE.21*29»43/.9

Volume 4 Number 12 (ISSN0272·1716)

10 Guest Editor's introduction: Human Factors-Part 2
Jack D. Grime.5

13 The User Inlerrace for Sapphire
&·dA . A 1,,·6'5

The principal deiigner of the Sapphire window managerialks allout its icons :ind iwi'commaink m
[hi, wiorial on he?breen allocation package.

24 Corporate Identity for [conic Interface Design: The Graphic Design Perspective
Aaron Mari·u.9

Even with limiled raourees. it D, possible to impi:ove man·machine communication by employing the
%ame graphic design principles used in large conimercial systemf.

33 A Contex: for User Inlerface Management ' '
Dam R. Oisen. Jr.. Williom Buxion, Roger Ehich, David J. Rosik, James R. Rhyne. and
John Siberl

Succe,<.1 ul interactive graphicq sybienns allow oser& IO produce graphiel without worrying abdut lim•
they do it. Thi, interface management zool helpi s»rem developerf improve hum:m-maelline
in ieractio:14,

43 Teaching a Course on Human Factors and Computer Systems
Paul Green

A combination of lectures, discussiont videotapes, demonstrations, guesl lecturen, homework
aigignments. and projecth resulled in a coune [hal fludents and their instruelor enilinsiahtically
endoned.

48 A Report on the Vail Workshop on Human Faclors in Computer %»tems
Mkto<,/ L /1/li·ood

"W'here 41£>uld we be heading?" Po,ing thif queqion, Iliescipeciali•t# seek way, tri imprine the
relatio!]ihip between human and con,puter.

88 Index-Volume 4

DEPARTMENTS 4 About ilic Cover - Published by the IEEE Coinptiler %,iciely
6 1)liplan on Di•play
7 Call lor Papers

68 Application Brieh
71 Selective Updaic
75 New Product 5

84 Product Highlight•,
86 Pror¢Nonal Calendar IED.Ii (14 Meniber,1ip Aly,lie.,ti#,1. p. 12
87 ClaNned Ads Change·of-Addre. Form. p, 70
96 Ad,erilier/Product Index - Reade, Service Cardh, p. 97

December] 984 1

V

y.

*4 ' > y NM l 85 R?€

19

Even with' limited resources, it is possible to improve man-machine
communication by employing the same graphic design principles

used in large commercial systems.

Corporate Identity for Iconic
Interface Design:

The Graphic Design Perspective

Aaron Marcus

Aaron Marcus and Associates

As coinpitter fysteins become moreibphislicated, they
in.st remain fi·tendk, comprelensible, and effective to
Cominue to appeal te users. A crucial faclor in al] three of
these desirable attribwel A the qualiti iiI communication
beiween user :Ind machine.

Che quality Of communication k included in all of lhe
funiures commoniv felt to be found in an efleclive vyst em:
lou cos[, sophistic,med kinctionality. friendly inlerface..
and good service. ' 7 hif common thlead 01'communica·
tien affeets ilie long-ierm cofi of the s¥,lem by reducing
the nonproductive timedwing training.ind m. c of a com-
pitier qyste'in. by providmg the Ine.m. for the tner to take
advantage 01 [lic #p .tem'q Itij,clion:11 liouer, and bv
enliancm# bervice qu,tlilv Illen u:en undervand easily
how lo achieve thel, goak. Communication can be
underslood to lake· pl.,Ce Ihililigh three "thee-h": filter
/in·e.v {pre.bel,i£,lic),wil ,ind Iin;!1·tic (1:41)lan), interface,%
(11.01·-machine comm.irid/Com, 01 and Joilinlentation
dialogue), and mtic.r/,a er (plogramming and mainlenance
environments>. '

Gnod enmmunicani,n gemerally can be :Kliieved when
Ille fullowing condil,(,n\are premi:

I. Simpbeli¥- -1,1411„1 parh ot' Ilie· 44·41¢m are few in
numbe, 0, ai e 1 ierili chicativ <71 gainn·d

I li,4.11 11(10 1.11,1\·d i.11,1,1 Gil In i .imek . 'I„.1,4 1,11,1 l iu lk·\,1117 -' th.,l an
pe.lit.I in Ille /'m. itififie i·' i.cie/,4'VI .4,;4 1,•1:ti I.irm WIH 1,0
1(} 128 111,· .1!11·1, i. ,%111.1 h .,pre.ir 1 1,1 thi· 2 'ik. 4'('i/uip. rif ri„' / ./U/ .4,
n.ul / 'il/An·m r'i/ /4,· Um.···di f i.miute. (.nudin. 1.p,4/'irm. I iii 2
7/0/4'pi,//%. (\11.111,·Im. 4 .ilili,1 1,.1. 11.17 1 A 17. ty)< 11, IN' 4/98 ·179, ,11,d li
w nited m li·uvt 1 „im i lib ille re 1111 4,0,I! iiI 111, N.:[1,1 1.11 C Mwi)101·i

[.11)11* tw' 1.Inlm

2. Clarit¥-the parts of the system are evident.
3. Familiarity-Iheparts ofthesystem remindtheuser

of things already known.
4, Integrity-the system is an ordered sum of its parls,
5. Consistency-what the user knows of one part

helps in ocher parts of the system.
6. Reliability-the system responds to the user in a

I ruslworthy manner.

, 7. Responsiveness- the interactive replies of the
system are quick, polite. and helpful. 3,4

There are no simple Titles for achieving good communi-
alion because all of the conwributing factors interaci wi i
each other. Since the hublect is a broad one, this article
It)cubes on screen design ,uej from Ilic graphic design
peripecti e.

liuman-computer krcen interfaces are often an unor-
ganized sci·ics of frame·. ihal are never seen as an emily.
Once the mierface are viewed as a whole, it becomes ap-
parent Ihai one can speak of ihe '·corporate identily" of
an jiwertace-Iliat 1%, Ilie conshle,11, amcillatable siep-bv-
hle·p application or 13'pography, svinbolign, color, spatial
t.,Volit, and approach m hequencilig/Unimation that
chalnelerize a parixular grveni- 1 he term "corporate
Idemuy program" i.4 well known in file graphic de.ign
liekl, i,hich haN applied Ihe approach m the tradmonal
area< 01 i:irionerv, vehicle identiticalion, signage, and
other form% t,f coinple. communic·mion, This approach
can now be extended to the design of screens, cspeciallv
lot high-reqohirion, Iconic, multiwindow interl'ace#.

lit«>>..,<v*%19»
4:OE¢»% $ Of¢*4.<

41+

t

Graphic design and cofporate identity
programs

The systemalic appearance of typographv, symbolism.
color, layout, and sequencing constitutes a visible lan-
guage. Corporate identity programs establish the system
and record it within graphic design standardk manuals,
which, in effect become the source code for a graphic
design algorithin. (Deqi.gn manitak are well undertiood iii
the graphic design field; in fact a design manual fur daign
manuals has even been written. 3) Without reproducing a
manual here, we can delineate the main point, of a I ypic:al
manual's conventions. Thowe Coni'ent,011.b televant 10

high-resolution, iconic, multiwilidow wreen de,ign appeal
in the subsections below.

Typography, Variationk in ivpelace< should be Nin,ted
toone or two iype farnilie,- Many of the leading corporak
graphics manuals in the businew. community hane tradi

tionally emphasized a few well-Inci,inented iypc 101114.
These have proven their legibilic>, their Ilcubilin· ol
display in small text sizes and large diN,kn' .i/a, and i hei i
availabilityin many styles. The more popular 1>pet<,ce> in
clude: Baskerville, Casion, Claramond, lielie'lica, 1 mE>
Roman, and Univen. 6

Sometimes two tvpe familie are combined A typical
combination of Iwo face; might lic Helvelica and 1-ime4
Ronian or Univers and Time, Roman. thai K, a conirav

belween sans-serif and serif typeface.. Type v/.e iN abo
limited: three sizes (or a maximum or live) willice for all

1)camber 198.1

disti ict-en: rt ·11 9 footncler titles heller:- and figure
caption:. Wherever po.s'ble, shnple d'rect changes in size
of 2:1 or 3:.1 should be ts,x lo disthbi ish ihe levels of
titling sizes. '

Type appears 'r col u ns suilly one to three columns
per screen, with 40 to 60 chineters per colunin. Upper-
and lowercase letters shot Id be used wherever possible
because they are morelegble. Their legibility is due to the
greaterdifferentiationof lette, dialpeswhiehcon!,·iliuwto
the overall shape o f the word. Reading is accomplished by
recognition of word shapens much as by [he idenlifie-:i i ion
of ilidividual lelters. All capiial letter settings of le,{ mav
be used for brief titles or for emphasis, but their extensive
1,9(Clizi blow readingspeedbyasmuchas 13 perce,11: rhe
space be[ween words shouid be approximatelyone quarter
t he wid 111 of a capital M for variable width lonts, i, hile [he
space between lines may varv according it, Ilie de#gi if
me tvpe font. Generally, hail<-seril leitel·fihii> like iljose
09 Helvetica require a small anintin[of M[ra space llc-
Iween the baselines of the·leg. Forinarimum legibilic· the
line spacing shotild proili,ce ViaCCE between hine. gre:uer
man theaniount or space belween words.

The tinew theniscives mar lie unitivit'led (tagged right):
there i. no natiCCalile difterenee in their kegil,iIi!\. 1-he
dil lerence, in line length 01'uniuvified te\1 c.m c<,iI{ritiwle
to the viNital i n leresl of the wreen, bul eare nit,<1 be Inken

lo avoid Irong, ret:Jogrii/,ible JuilieN m liE rattern 1,10-
duced Ii¥ theend.of line#, Ilic¢011111111901'te\Ithemklves

should be veparated by a width at le·aM equal [o [,w woid
spaces Ii)r variable wilill, Chalicier.. hoT 111;im .Cle·IN a

1

++

149 +42 Mi---

layout of three columns pel <creen lor le\[scitings or olie
wide column on Ihe righi with a narrow column on I lie left
for marginalia K useful.

Typical choices forlype flants Hiclude roman and ilalic:
typical type weight vare bold. medium.and light, although
it is questionable whelher liglit iypclaces of sniali text size<
will be legible on most curren[high-resolulion display
screens. Typical width variations for type in text normally
include condensed. regular, and exlended; but for most
screen-presentation€, regular widths suffice. A useful set
of style variations would Ihen include medium roman,
medium ilatic. bold roman. and bold italic for content
variations in normal text setungs.

Symbolism. According t o t h e language 01 sciniol ics, :1 lie
science of signs, signs may be iconic (representational) and
symbolic {abstract), 8.9 Symbolism as used here refers
loosely lo all nonverbal signs: illustrations, photographs,
diagrams, pictograms, etc.

The concept of corporate graphics implies that al] im-
ages are designed to meet their uniqfe communication
needs, while being adjusted to produce a'vis,ual consisten-
cy throughout the sys,em. This combined approach can be
achieved by the use of a constant scale, limited size varia·
tions, the orientation of figures with respect lo text,
limited use of colors, limited variation of line weights, and
the treatment of the borders for figures or pictograms.
These visual themes heip to establish recognizability, clari-
ty, and consistency jus! as verbal or linguistic techniques
applied ta text help to promote simplicity, clarity, famil-
iarity, integrity, and consistency.

One area receiving considerable attention in the cor-
porate graphic design community is the design of logos,
ideograms, atid Ipictograms to communicate the concept
of a total business entity to guide consumers in the use of a
company's products (packaging signage), or to guide
visitors through a company's architectural environment
(architectural or urban signage), m in some fields, such as
transportation, standards have emerged. 11 Here the synt-
bolismis often characterized by a functional elegance: un-
necessary variations of curvature, line thicknesb, shape,
color, and number of parts are avoided. Many o f the most
widely recognized company trademarks are models of
good design, a fact which makes them suitable for ap-
pearance in many sizes and a variety of display media.

Color. The use of color in computer graphics has often
emphasized too many colors, even when only a few were
available. '2 The corporate graphics approach 10 color cm-
phasizes the selection of a limited set of well-chosen colors
that meet the criteria of production. the needs of the con-
tent, and the preferences or limilations of the viewers.
These colors are used repetilively to maintain consistency
across content areas and acrossdifferent display media.

The colors chosen bv a companv can be a primary fea-
lure in achieving recognition by its public. 1 f the set of
selected colors is sufficiently large, a designer can uset licm
in many forms of informational as well as marketingg
graphics. Some companies choose color schemes thai[are
very simple, while others choose nonstandard, niore sublle,
muted dow chroma) colors as their unique color identity.

26

imyoul. 7 he apprnach to 417. tuit orgalli/.Ii i, in di:11 ,!Ciel
i,ing corporale graphic devgn derive. liu,in the 1·,in,rean
ConN ruct i vi t! arl iftic mo veli te·m 11 !f t h e earK· 1 U C l u ie t h con
ttily. Abll leappinac| 1 1 ound,lur:Ii mitilheti,imaine \Cal ,
Ofthe inwritatinnallitvleol 04),raley]:1111"L· devpdmmr
Ihe 19504, i[Mic+sed an artic,ilaw. irbiernalic mcilit,1 01
assigiling area R for te,t :und ilit,grail<,11 .A . elt 1,4 the
backgrouftillield or fornial. Whenne, po.ible, Vi<U:tl
references wefe intrdetoa wliehol vrong. C.I.,11 Il'Crigni/ed
proport ions th:11 have beell lihed Mlice C 1.2>.le,il l ilite.:

1: 1.000. [lic square
1:1.414, thesquinre-root of-tivo lectangle
1:1.618. the golden reclangle
[: 1,732, [lic square-root-of-thi·ee rectangle
1:2.000. Ile dotible square

When mtilliple columin 01' 1,3,1 <i· 181:lite, :irc likd. i
designer can create moreinteresting mid Inel; compo,Iliiw,
of text and ilitistration. A tyi)it-at <creen brout migh' 1110
pose threc equal-width colunms or one narton :Ind one wide
column. Typically, a large space is lelt al the top of ihe
Screen for important ti[!ing or illubtrations. I he la>Out grid
fornis the basis for regailating the varied grouritigh tif te\1
and images. This grid is a seric,% or hori/ontal :ind vettieal
lines thal definecenain areas of the r,·een ful the poxilion·
ingof titles, text, or illustrations. The Fid ak, determino
the extent orsize oft lic.sc thure eleinen I s. 111 h i.uay thear

proach bitilds a vistial consisteney ilill) e,ery lidisible
layout. 7

While never visible in its entiret v. the prid k always pre<
ent through its effects on vistial element K of the coinposi-
tion. Even empty space is a meaningful tial I of u gridded
layout because it can restate the grid's bubdivixions of
space. The concept of the spatial tayout grill ¢111111111<i/O
diversity within limited consl raints. The grid i, a means of
e.stablishing recognizable order mid hieraretn· uithin a
complex problem of location. hhape, 91,e. and content.

Sequencing. Traditionally animation and kinetic move-
nient have not played Inaior rote# in CO,·pol.i[e de.41(11 1,17
gramS because fhe access w coill·01 hil, heen 1.ickitly m
display media. Where teniror.il deign i€ reible. i lie c·i,r
porate graphics approach again vre»e> Mmi,le, ele.11 .
modulartemporniconvructs. 1-hiquight .,prh. lili Cum-
pie, to the regillar appearance il disappearnnce Of ttemi
or the overall dramatic narraine.

Case studies

Several collice automalion s\.4[em. 11:,e :11,peared th.It
display characterivioof the Ct,Illl,1.11¢ idenlin api,wa.·11
tothedesignofthe fii,11 :In<m:tchine inicil.ice i,ilh i lininp
degrees 01'conipletion. Ilie· micir,i,rtice«,11 .b.!em> .itc

supported by high-te.iottitil'ii bil -,21·11'red :CI 'Cn:. 1.1-"
tiele er;Yininek Ihree black-:rnd nitile s™em< iii· \Cit,\

Star, the Apple 1 Ni, and the Inlian Mel.Arm

The Xero. St:ir. 'I lie Xe,„, Siat· .#:!em (re 1 igut· 1)
appeared in 1981: il emeiged from rose.itch el'furip at
Xerox PARC. Based 011 1.tililithed docuntent.. a mmilici
of the filijaamental design principleg l'iii the %1.11 in[er f.ice

lili t i.4 \

m.Ekt«444*4444i44424144»41/441:044444444424»4»43 93.47439

/-,.-..E:.-..qj: ..,5, .<imi-, ge·14 1<r ra*%**474,44:*.,1*®**14%*%14%9354.*442«***9»99%*r»*30.12»44%9 1%91t.%92f%%%*f,fp.* // * /mag Ettli,fiff€%23; 2

are known. 4 In creating a system that promoted fammari-
ty and friendliness through the simplicity, coherency, and
consistency of its interface,-th¢ designers sought to
develop a conceptual model of the system in the mind of
the user that was communicated through the visual
features oftheinterface. The corporate approach to com-

1 1 munication strives for exactly this method-to embody
functions and features into an easily graped and easily
learned system. The Xerox team articulated the desktop
metaphor on the screen to represent activities generally
handied at a desk and carried it through in the visualiza„·
tion of all desktike functions and activities. This was ac-

4 - complished through visual objects called "icons," which
have properties that are summarized for the user in easily
displayed and edited "property sheets."

By establishing global commands with consistent mean-
ings throughout the Star interface, its designers were able
to develop another systematic aspect of the display.
Several other methods were used to establish consistency:
Editing is accomplished through a single paradigm qf
operation, whether one is editing text, graphics, files, the
desktop itself, property sheets, or even programs. Retriev-*
ing information always takes place through the paradigm

of databases, and creating new objects is always achieved
through the paradigm of copying.

By reducingthe numberof parlsin the system and mini-
mizing redundancy, Star designers were able to achieve
large-scale simplicity. One important aspect of this sim-
plicity is modelessinteraction. For example, the keys of
the main keyboard are used for typing only, and special
keys are used solely For functions. Clearly separating these
keys reduces the short-term memory requirements of the
115er.

The Star {organizes the desktop screen into a space for
154 icons centered on fixed locations, eachoneinch square
or 72 x 72 pixels. The squarish icons tend to fill up their
allotted space and use small changes in their edges to com-
municate the different meanings. For example, a small
corner tipped down ort a page represents a file, while a
small extension of the top edge of a folder represents a
collection of files. Screen button; differ in the drawing of
their corners: sharp, square carriers representitems o f data
or characteristics on property sheets; rounded corners
yepresent screen buttons and tithng within the top band of
windows.

h4./*l:kg+' *- • i
/140*fk#.I:.::. :.::47 _
-4% ; i € 2 434 0 .38.'44 *1.40 y.6#T NA--- - ..e* aw»»/Ai-1 0 t ¢i.46* *f; I 114°144£,Ki·&49 5*15 *94*OL 3

1 444*4416% :; c '...'::I...--5.-72+0«4: 9 » 4 0- %:;42%39:.fA >.e:p, 24$. Uben f'06[ument"konShal,e %:2
0.'.1,.f>3*..:·117
f«*49; 2./.2.FOO t j:2::; f < 2_21
....'.:' ... I

1,4 -,2- 4 »2:» 4 20/94

q h Ov t. mu Rf f :5%11::4+ 22 1 4 141/4i 49 6 E, 1. 4 6 , 14%4**49*3.' f
6**-11.-u' I-p- . .1

a .111 OB : 1 Ea 2 9143- i- i Ir.;(:i'.ilt/'f%'/ji

Cker' b ./POI : F.6
m Elen * ront

Th#e + Gr»#
*ts

I. f

"t

2/ tilt

93 93-' 11*9454 f

t
NOK'

]K
k fflit0&84D $ R. 1 ?.4 tii 2 Ty43 -' ·5' e)40· ·f ©*.b c. **

· If)541*--'1'64*4.&448*ix.-d·ii' M Wgioill'
ffte?fr7% f 1>97 .: ,» *:pe.'i>'+-4:.. „, :.- L .f.149;ttitffi * '4
Logituallt««94'Ret:.6» »=J+491 240*520 :04>13«03€!- N *329*4*0

Figure 1. Typical screen layout for the Xerox 8010 Star Information System. Visible are some 01 the lconic screen but-tons. The icons are recognizable images of fammar office objects, such as documents, folders, tile drawers, and"in"and "out"baskets. Thewindowisat left with its title border at the topand additional symbolsappearingin the bordersat the right side and the bottomdPhotograph courtesy of Xerox Corporation.)
Decembet·] 984

LE

1

3

6

*Mug) ygler 4. MYS

1,tes *210, {satel in boots)
2**ToEd ibrtheast Total

*dinidi'-Soltheast Total
..0*1-82'-.-77-

22 r : s® rq__._.#lin Tota=Imr"Irt:-

en *2 Mr

litttiff/4144*991¢fa

fb?*41 * I

12/'377«44.1...................

1*13,01: '0 216«A,
*61#1. - 4. r 91 W#Hirt#/f/#/

FIts ¥er€ 9% above quota It
Ithat' As the figures tele¥
1* Qtr N Qtr jrd Qtr 4th Qtr
LE...312-E_._St '

4494*¢

m®*944%

Miltal: Ofit-Rk'--4:nt_...___l] : Ei
-9210==0819! 4146 1.-

Figure 2. Typicat screen layout for the Apple Lisa system. Visible are some of its iconic screen buttons, multiple
overlayed windows, title bar, and descending submenus. Each window exhibits window border symbolism.

The Star is a black-andwhite system, Color issues con-
cern how white, black, and gray are used. The desktop'
screen itself is approximately 50 percent gray. The dark
outlines of the icons and the dark outlines of windows
show up clearly against it. The interior areas of the icons
and windows are white to contrast with the background.
The top border of subwindows appears as a higher resolu-
tien gray to distinguish itself from the two other screen
elements: window contents and desktop. Black is used for
reversing screen buttons or icons that have been selected;
the selected item reverses within the old area, and a thin
white rule surrounds it. All of these details represent a par-
ticular systemwide approach to the treatment of color.

The icons of the Star appear in a fixed grid layout
measuring 14 units wide by 11 units high. Another fixed·
grid aspect of the interface is the top border of a window:
It must accommodate two rows of window titles and local

screen buttons. The remaining grid features are the right
side and bottom borders of windows: They must accom-

modate screen buttons for scrolling within the window.
A particularly characteristic feature of the systematic

approach in the Star is the standard object-command or
noun-vert sequence of selection. Entities appearing on the
screen are either acted upon or selected. Selecting entities is
a primary goal in the user's con¢eptuat model; then the
user selects the action or change of state to be effected.

The Xerox Star was a pioneering achievement in thecor-
porate identity of interface design. It represented a state-

of-the-art, object-oriented screen manipulation in a high-
resolution system. Of considerable importance to this
discussion is the effort that was undertaken to design not
only the algorithms that support the system but also tile
manner of its representation in a systemaile form. The
conventions established by the Star have already begun to
influence later systems.

The Apple Lisa. Following the Star's approach is die
Apple Lisa (see Figure 2), which appeared in January
[983.13 Like the Star, the Lisa offers a selection of
typefaces, including serif, sans-scrif, fixed-widi h. and
variable-width letters, and a half-doran variations in type
style including shadowed letters. To utilize too many of
these typefaces in the interface itself would not represent
the corporate identity approach; and the Lisa designers
wisely chose to disp[ay primarily a single size of modern
sans-serif letters in upper- and lowercase, wi[1) seteeted
screen buttons appearing in reversed type.

Some of the Xerox Star's development staff Laine to
work on the Lisa and influenced Apple's designers tb
adopt the Star's desktop concept as a unifying me[aphor.
Although the terms "iconic" and "representational- are
retativistic terms for representatiolla! or abStract Signs. in
different systems one is able to dislinguish specific dif-
ferences in approach, The icons of the Lisa are iii sonic
cases more highly representational and detailed than in the
Star, for example, in the garbage can icon that (goniewhar

1171 1· CGRA

confusingly) represents a wastebasket for unneeded files,
indentations appear along the sides of the can and even a
handle is added an the top to raise the lid. These detaRs
suggest the beginning of more illustrative or anecdotal
icons for more personalized workstations.

In the Lisa, the icons appear with their verbal equiva-
lents directly below them. The windows themselves and
the submenus that descend from the menu bar positioned
across the top of the screen show slight drop shadows that
begin to indicate an implied three-dimensional structure to
the flat workspace of the desktop screen.

A typical difference in the interface styie of the Star and
Lisa systems can be seen in the stronger window-scrolling
arrows used in both systems. In the Star the arrows are
drawn with three thin lines; in the Lisa they are thicker,
with an outline and a drop shadow. As mentioned before,
the symbolism in the Lisa is richer and more representa-
tional from a visual communications point of view. The
symbol set also begins to show some weakness as a com-
pletely designed system. For example, the reversed titles of
windows have unique ornamenta] additional lines to th,Mr
sides, an unnecessary deviation from a total corporate
ideitity approach.

Color considerations in the Lisa are similar to those in
the Star. The Lisa also uses several gray-value textures to
distinguish the primary desktop, windows, and window
borders, but the exact grays are slightly differently dis-
posed in comparison with the Star. Of special note in the
Lisa are the gray right side, gray bottom, and the white top
border of the windows.

The Apple Lisa permits a relatively unorganized loca·
tion of icons on the desktop. One strong gridded feature o f
its screen design, however, is the menu bar that appears at
the top of the screen. Submenus "pop down (rather than
up) temporarily from it and may Obscure material appear-
ing below. As formulated by both the Star and the Lisa,
the metaphor of the desktop does not include any cor-
porate standard for desk organization or windows.

The noun-verb setection paradigm of the Star has been
incorporated into the Lisa: The user selects objects first
and then the transformations intended for those objects.
As for the Star, the windows, icons, and submenus are in-
tended to appear and disappear instantaneously; if this
does not happen as intended, it is treated as a deficiency to
be hidden with whatever means available. In the Lisa, the
window that appears when an icon is pressed zooms up
from the icon position in a noticeable transition. Many
computer graphics display systems assume that faster is
always better. However, a communication-oriented ap-
proach might suggest for novice or occasional users-es-
pecially during training periods-that dissolves. fades,
wipes. and zooms might be of value in communicating the
meaning of change.

The Apple Lisa system represents a substantial refine-
ment of the ideas introduced in the Star system. In Janu
ary 1984, Apple introduced the Macintosh. 14 This low-
cost version of [he Lisa continues many of its graphics
features and makes evident the value of corporate graphic
standards for interface design. (See box on page 30.)

The Intran Metaform system. The Metaform system.
(see Figures 3 and 4) from Intran represents a modest

December 1984

Mmmmeaf

Figure 3. Prototypical screen layout, designed by Aaron Marcus
and Associates, for the Intran Metatorm system. Visible are
iconic screen buttons, an illustrative cursor, and areas for
menus and submenus.

e 4 4
E
E :: . 1 1

Eal I

-4

1.' I r.*-.. . I ' . 1% .I-<*all:€:ftp *ULL.4*4

7

Figure 4.Another screen layout torthe tntran Metaform system.

unt

30

development scale in comparison with the 30 work years of
development on the Star's interface and the 200 work
yearsclaimed forthedevelopment of the Apple Lisa. '5 In-
terface design for the Metaform system consumed only a
few work years by the time the system was announced in
December 1982. Metaform provides special-purpose soft-
ware to accomplish forms design and editing for the Xerox
9700 laser printer. The software resides on a PERQ high-
resolution display system 16 The Metaform's system-
oriented graphic designers prepared from the very begin·
ning of the project for a corporate design approach when
they proposed prototype sketches for typography and
screen layout.

The design scheme called for most screen dispiays to ac-
commodate Univers topography in a single size for alt
systems messages. Reversed type is used for selected but-

tons, Multiple.lines of type always appear stacked flush
left and ragged right, which makes the scanning of lists of
buttons and other information easier.

I conic symbolism for I he Meta form light buitons took a
special direction. The corporate graphicK convention for
primary module icons is to use narrative images that tell a
brief story about what occurs wi[hin a module of the sys-
tem. These large icons are somewhat like illuminated let-
teri in medieval manuscripts. In comparison with the Star
and the Lisa systems, Metaform's images are much more
iconic. They contain elaborated detail related to activities
and to other signs used in the system. They indicate ap-
propriate cursors and explain to the uninitiated what will
happen in the modules. Similar to the Star and the Lisa,
Metaform uses different cursors to signal system processes
and states to the user. Pen points, brushes, pencil points,

09 Oneapproach to the human·computer interface

.f>Jtmor/4IBytes,Cbmiributing Editorili: f /
f.'.3 47@46210*8*design philosophy of the Apple
t.jitMacinlosh has beenthatifwill be easyto use-so easy,

fid 4¢t, that users will betome functionally familiarwith
2 9'the machineand most ofitssoftware In just hours-This
m. Dedse·ot,use.*hilosophy, althoughr rooted In a major
r , gbmpanyt(Xerox) 13 aradical departufe from traditional

liomputer:design and puts the Macintosh in a category
i,of ,its own. I 2 >.: .

¢f b#The k416 the design 15®e way the computer inter-
4.'6626*fth the User}n humariterms instead oftheusually
Ai*yptic computer.terrns. This is not just a matterof col,
@31§4*latibbrasesfiji.the Imenuiselections; itimeans themmohicates:with the user by easily unden
tilst*%4ntlnguistmc symbots and allowsithe user to

0 4"Jy

*bezyfrf*sfhat.soon become sect
Ri€*t%*italid@844Rteralva modefis the Macintosh's
6·A®46#Wpoititingidevice»*ljowstheusertorselect

"'admmahds of locatibns,ori the screen almost by polnt„
ing a finger. To make selections on other computers,

ftheuser would normally depress special function keys
€ anddirectionatotursorimoyement_keys. The mouse,

f. hoW*er, allows the°usertomake a menu selection by
61:depressing:* single button.f k
FiftMany domputeradescribe menu lihoices withobscure
4pji,8919gy#The M®intoshilescribes them symbolical-i .Lik 4 ./ ..3/.·21 ./. i.«l -t4*1*,ipprooriate Micturet ortohi Fof example. by
Et:seled>ling a pair of scissors,the use¢ can cutouta section

of text or graphics to be used elsewhere; choosing the
 tiaerosol can turns the mouse into a can of spray paint for

tadding fine-mist shad Ing to drawings.
IOptions forthe various graphics and type styles, such

as shadIngs, fonts, and polygonal forms, are pictorially
dispiayad ton the screen-again, without any language
description. In fact, except tor menus of single words

i. that can be translated easily into all languages, the
F.:Matintosh uses no English ianguage in or on the ma-
6,.:ichine. Even its ROM contains no Englishscode, accord-
1 f.fogi® its jfabricators. Since the Macintosh is not
Efflanguage sped}fic gand utilizes a universal symbol
%¢:syst#m,titils easytto use for people of any culture (a
@*em*hdwma*eting merlts are not unintentional}.4161&,1/42«44£0 '-04*.·, t

Adding to the ease·of·use capability of the mouseand
icons is the Macintosh's high-resolution {72 pixels per
inch) display, which simulates the actual desktop work-
ing environment-complete with bulit in notepads, file
folders, calculator; and other office tools. Rather than
tight text on a dark background (As in mdst displaysto- 4
day), the Macintoshls nine-inch, 512 x 342»el screenp
mimics printed paperpagesbyreading outtlack typeon
a jight gray background. This ergonomic feature reduces
eyes strain andi; feflections from other; {nearby >light
Sources.

Integral to the: desktop simulation are the windows,
>hich can display.{ several documents: (textf and/or...
graphics) simultaneously.°They can also be moved, ex-
panded, ofshrunk.Thismeansthatnumbers, words, andi
pictures can be "cut" from memos. charts, orgraphics
and "pasted"into other documents»even those created
in separate application programm An explodingwindow
capability alows the user to scan menu options quick]%
without going through the time-consuming process of
re-creating the entire screen.

According to Apple Computer, third*ally software v
vendors will employ the Macintosh's {con/wIndow/menu
features, thereby maintaining a standards easylouse in-
teraction capability.

Macintoshphardware ls) compact; ibut:powerful#Theij
CPU/monitorassembly takes up about thesameamount
of deskspace asapleceof paper, yet its single nine.inch.
square circuit board hosts a32-bit microprocessor with a
CPU running speed of 7.83 M Hz. Standard internal mem·
Dry is 128Kof RAM and 64K of ROM. Users have the op„
lion-at $995 extra--to purchase 512K of internal
memory.

Secondary memory consists of one built·in 31*·inch
disk drive with single-sided 400K storage capacity-100
pages Of double·spaced text. In the back of the unit is a
connector port for ani additional disk drive.

The free-standing keyboard consists of 58 keys in a
fult-stroke, Selectric-slyle layout. The Macintosh's small
size allows the user to move the machine easily on his
desk and even to and from hIs :work.

Ii-1·[(CCIAA

4

B 5 1940

fE
i

1 if i :·

'gslt

i 4

31' 2 : M p ' 1
9

43 r
4..1. b

1

mil ' A 9%

.: ../

2 £ "4 , . :$#1.-N ./.
I: e :.8-**4*5:43*1@Ed/P»£»*62#1*020?3*91*

Figure 5. Examples of 'con and cursordesgns (by Aaron ¥arcus and Associate•) for the PERQ Accent operating system. All elements
of the signs have bepn carefully limited to a c·pt of marks Whal can be combined into the different forms requred for Ihe functions of the
system.

paper clips, and pointing hands all contribute to explain
ing and differentiating activities.

Color distinction: 'n Metdform are similar to those in
the Star and the Lisa. Cray ujues are used to distinguish
different areas such as light-button fields from the work
area. Gray allows both white and black to be used for
highlighting and low lighting.

' In the original Metaform design (actual implementation
differs slightly in some features), the screen is a tiled sup·
face of areas. Unlike screen layouts that permit a variety of
window areas to appear anywhere, Metaform was origi-
nelly intended to emphasize the regular appearance of
windows in fixed locations and sizes on the screen. This

feature contributes to the user's knowledge of the system
and reduces the spatial clutter associated with items ap-
pearing and disappearing.

The menu appears at the right of the screen, while the
work area appears at the left. (This could easily be reversed
for left-handed users.) By consistently locating screen
components in one place, users can be helped to learn the
layout of the system and its features more quickly. The
forms designed within the work area can be of any or-
ganization, depending upon the particular function of the
form.

With respect to sequencing, the Metaform design solved
the problem ofthe appearance of submenus after a screen-
function button had been selected by having the submenu
buttons descend from the selected item much like a win-

dow shade, while other buttons slowly rearrange them-
selves to accommodate the new functions.fin addition
selected buttons popped out three-dimensionally using a
drop-shadow technique.) Besides the visual interest that
such a small-scale animation sequence provides, the user
can see a visual representation of menu hierarchy. This
helps the novice or occasional user to comprehend the
changes that take place in screen organization and system
functionality. Clearly, for the experienced user the speed
of this feature needs to be a variable parameter so thal it
can keep pace with the user's familiarity with the system.

December 1984

From its very beginning Metaform designers intended
that the system exhibit comprehensive, systematic graphic
design in all aspects of the system: screen design, offline
user documentation, and marketing materials. Practical
limitations of implementation precluded the extent to . ,
which corporate graphic design could shape the corn-
mercial form of the system; however, the approach and its
achievements are clear. The Metaform system represents a
significandy smaller investment o f time and effort than the

other systems but indicates that corporate design stan
dards may be built effectively into a system with con-
siderably sma[ler,resources than those available for the
development of the Star, the Lisa, or the Macintosh
systems,

The Metaform approach to corporate :identity is being
carried forward in current graphic design for Accent, a
programmer's operating system on the PERQ 2. See the
article by Brad Myers in this issue of IEEE Computer
Graphics und Applications,-The more systematic ap-
proach is evident in examples of icon and cursor designs
shown in Figure 5. These signs attempt to improve Upon
the original designs developed by Myers. They simplify
and coordinate the variety of marks used toidentify and to
differentiate functions- They also attempt to equalize the
visual weight of all the signs, to reduce visual clutter, and
to utilize repetition of forms as an aid to the learning or a
new visual code.

Future developments

Although iconic interface design is just beginning to be
introduced into the commerical market, the field is
expanding rapidly as new systems based on micro-
processor technology and high-resolution display are
developed. The computer graphics industry already has
some strong, clear prototypes upon which to base new
designs. Several important issues arise that must be ex-
plored in the next stages of graphically designed interfaces:

3I

4.2 2:/2./'73 %441.,I?,9 it> «: / 24%*69693%53% UR{ 9%9:4»@24 **22%4.'...,4:&14%:244''.4,.23 e'

 .11 9,44
· iT ·.

• What is an appropriate screen format: square, ver-
tical rectangle, Or horizontal rectangle? What pro-
portions should a rectangular screen possess?

• Where should menus be located ideally: at the top,
the right edge, the bottom, or should they be floating
freely?

• Should window organization be free and unorga
nized, or shouid some defauk layouts be imposed to
aid comprehension, memory, and user efficiency?
What size and shape should windows have, and
should they have borders?

• Should function buttons, objects, and other il-
lustrative imagery be very representational 01· ab„
stract?

* What is the ideal typeface for an interface: poskive or
reversed; serif or sans serif; one size or several sizes?

• Should screen elements appear and disappear quickly
or slowly? How can dissolves, wipes, cuts, zooms,
and other cinematic techniques be incorporated cfr
rectively?

• How can color be used effectivetyto enable users to
learn more quickly and to be more efficient in
performing their tasks?

The answers to many of these questions will emerge in
the iconic interfaces that will be designed in the next few
years. Some of these systems will help establish the
conventions for the corporate design of systems in areas
other than office automation. such as CAD/CAM and
computer-aided iearning.

Current developments present an exciting challenge to
the computer system designer and the graphic designer
who can and should work together to create effective in-
terfaces for powerful computer graphics systems. As the
field of high-resolution iconic interface design matures
and adopts corporate design conventions and, eventually,
standards, the entire community of builders and users Will
benefit by being able to see and learn from successful ap-
proaches to typography, symbolism, color, layout, and se
quencing. m

References

1. Aaron Marcus, "Graphic Design for Computer Graphics,"
Proc. Intergraphics 83, Technical Session 83-2, Tokyo,
Japan, 19%3, pp. 1-9; and IEEE Computer Graphics and
Apwicationi, Vot. 3, No. 4, July 1983, pp. 63-68.

2. James D. Foleyand Andries van Dam, Fundamenm/so.f/nu
teractive Computer Graphics, AddisonXesley, Reading,
Mass„ 1982.

3. Aaron Marcus, "Designing the Face of An Interface."
IEEE Computer Graphics and Applications, No\. 1. No. 1,
January 1982, pp. 2329.

4, Davied Canfield Smith, et at., "Designing the Star User [n-
lettace," Byte: The Small Systems Journal, Vo\.1. No, 4,
April 1982, pp, 242-282

5. Ann Chaparos, Notes for a Federal Graphic Design
Mantial, Chaparos Productions, Washington. DC 20001.
1979.

6. RMI V.kthe, TypoRraphy: Ilow t©Mukeif Most ti,Bible.
Design Research international. Carmel. Ind.. 1974.

7. Joief Mueller-Brockman, Grid Snfems inGraphic Design,
Verlag Arthur Niggli, Niedeneuren, Wed Germany, 1981.

8. Umbertolito, 91 Theorv of Semitith·.4. Indiana University
Press, Bloomington, 1976.

9. Aaron Marcus, "An Introduction lo the Visual Synlax-of
Concrete Poetry," FWb/e Langloge, Vol. 8. No, 4, aritumn
1974, pp. 333-360.

10. Oil Aicher and Martin Krampen. Zeithensysteme der
ubuel/en Kommunikation, Verlagsanstatt Alexander Koch,
Stuttgart, West Germany, 1977.

11. Symbol Sigin, American inslittle of Graphic Arts. Visual
Communication Books, HaNtings House, New York, 1981.

12. Aaron Marcus, "Color: A Todl for Computer Graphics
Communication, " in The Compmer/mage. Greenberg. D.
et at., eds., Addison-Wesley, Reading, Mass., 1982, pp.
76-90.

13. Gregg Williams, "The Lisa Computer Sys,em." Byte The
Sma# Smems Journal, Vol. 8, No. 2, February I 983, pp.
33-50. '

14. Gregg Witlians, ••The Apple Macintosh Computer," Byte.·
The Small Systeins Journal Vol. 9, No. 2. February 1984,
pp 30-40ff.

15. -Metaform User's Manual;' intran Corporation, Intran
Image Management Groups 7429 Bush Lake Rd., Edina,
Minn. 55435,1984.

16. Perq 2 Users Manual, PERQ Syslems Corporation, Pitis-
burgh. Penn„ 1984.

.

Aaron Marcus is the principal of Aaron
Marcus and Associates, Berkeley, Catifor-

Frtia, an information,oriented graphic desgnfirm, specializing in effective communica-
tion for computer graphics display. Pre-
ViOUsly lie was a staff scientist in the Com-
puter Science and Mathematics Department
of Lawrence Berkeley Laboratory. From
1968-1977110 taught at Princeton University
and was a consulia,1 in coini,uler graphics

at Bell Telephone Labs, Murray Hill, New Jersey, wliere he pro-
grammed a prototype interaccive page design system. His pro-
fessionat graphic design work and computer graphics have been
exhibited. published.and awarded internationally. He has written
and lectured extensively on graphic design and on computer
graphics for professional journals and con rerenees ofboth fields.

Recently. Marcus has coauthored The Compiter /mage
published by Addison-Wesley: written Managing Acis and Con-
cepts published by the Design Arts Program, Nalional Endow-
ment for the Arts; and written Saff trhere, /nc, Vols. 1 and 2.
published by the West Coast Poetry Review. He is on the advisory
boards of Comp,Her Grophies Today ·and Informarion Design
Journal, He has consulted internationally with major computer
graphics research and development groups on the subjects of
chart, diagram, and map design: On 1[ser-friendly iconic inter-
raccs: and on program visualizationtdocumentation techniques.

Marcus received the BA in physics from Princeton Universitv
and the BFA and MFA in graphic design from Yale University
Arl School. Heisa member of the NCGA. ACM. Siggraph, Yiem
Computer Arts Society, Sigma Xi Scientific Organiiation, and
[he American Inilitule of Graphic Arts.

nie a uthornlaybecontacted at Aaron Marcus and Agsociates,
1 196 Euclid Avenue, Berkeley, CA 94708-1640.

IIi[U (G&A

Domft fall
behind with
lin obsolete
system
It's more than sad when a system is too
old to work properly-it's costly. Here's
how to recognize, and avoid, that sorry
state.

 by David Kull, Management Issues Editor

4

Obsolescence, always a creeping
phenomenon, creeps more rapidly
these days. Technological develop-
ments accelerate.

Major new' computer lines appeared
about every eight years during the
19960s and [9705; that cycle spins a[-
most twice as fast now. Other aspects
of information technology advance
just as rapidly. Meanwhile, demands
on information-resources depart-
ments multiply as businesses turn to
them more and more frequently for a
competitive edge. As systems age
more quickly, determining when they
are simply too old becomes more
difficult-and more important.

Two forces push systems toward
obsolescence-economics and func-
tionality. A system is ready for re-
placement when the costs of keeping
it exceed those of changing to an-
other, or when it cannot meet the cor-
poration's needs. Often, these forces
work in tandem. making the decision
to change a judgment that combines
the desire for improved services with
a need for cost-effectiveness.

Figuring a systems operating costs
is simple mathematics. The key is to
include a// costs. Lease payments
and depreciation are only the start.
Photo couriesy of Sperry Corporation

There are also expenses for space,
cooling. and power. The newer gener-
ations of smaller, power-efficient
cpus provide considerable savings in
these valuable commodities, some-
times making room and board for the
older models unacceptably expensive.
And costs for technical support,
which are likely to increase as a
system approaches retirement, can
become exorbitant-particularly
when a vendor discontinucs a line.
These "ancillary" costs would make
some systems uneconomical even if
you could get the systems for Free.

You must a]50 tote up expenses for
a new system. Determining them
requires careful projection.s, parti-
cularly when the new technology is
only a gleam in the manufacturer's
eye. You must monitor the choices
that are available or soon will be,
however. An old system becomes
obsolete as soon as superior alterna-
lives appear.

According to Robert V. Head,
president of CAPIT (Company for
Analysis and Planning of [nforma-
tion Technology) in Stafford, VA,
there are a number of industry
observers who can project the trends
in cost and performance for

60•44
U *9* 1

165

Obsolete Systems
(Continued from page /63J

mainframes about five years ahead
with a high degree of confidence.
Most mainframe vendors, with the
important exception of IBM, will ad-
vise customers on developments if
they sign non-disclosure agreements,
Head recommends engaging a
technology-forecasting service, such
as the Gartner Group or Yankee
Group. to help you keep up with Big
Blue.

When considering a spanking-new
system, you must give thought to the

Monitor available

options. An old system
becomes obsolete as
soon as there are

superior alternatives.

being stuck with an obsolete one by
staggering the end dates of the leases.
F. William Hoffman, a consultant
with Price Waterhouse in New Or-
leans, points out that '6]eapfrogging"
two eight-year leases is almost as
good as having four-year commit-
ments for each machine. You can

change one unit every four years as
your workload demands.

In assessing the risks of signing a
lease. a company should consider the
length of time the product line has
been on the market. The younger the
model, the less risk in making a long-
term commitment. On the other

hand, even a four-year lease would be
imprudent if the model has been on
the market six or seven years and is
about to be replaced. Hoffman tells
of a steel manufacturer that leased
two IBM 360 series processors fairly

late in the linds life cycle. Even with
moderate workload growth, Hoffman
says. the equipment was inade-
quate-and technically obsolete-
long before the lease expired.

"Don't think you can outsmart the
lessors," warns 1 [offman. "If they re
offering equipment at a very low cost,
it's for a reason."

Hoffman believes reliable, realistic
capacity planning is the key to avoid-
ing obsolescence. An organization
should review these plans annually to
be sure that the projections hold true.
Companies make some common mis-
lakes in predicting their horsepower
needs. Many times. they will under-
estimate the transaction volumes for
new online systems or the demands of
sophisticated databases and high-
level programming languages. Pro-
ressionals forget that online pro-

probability of its obsolescence. Ven-
dors recognize the shortened life
cycle of systems and have tightened
leasing arrangements accordingly.
By charging a premium for shorter-
term leases-of three or four years,
as opposed to the traditional seven---
or by jacking up the bail-out penal-
ties. they're assured of turning profits
by the time the customer starts look-
ing toward the next computer gener-
ation. The primary recourse, besides
being aware of the potential problem,
according to Robert Head, is to shop
for the best deal. For most cor-
porations, this means checking out
the plug-compatible-mainframe
manufacturers.

According to Kailash Khanna, vice
president for strategic systems plan-
ning at American Express Co. in
New York, organizations can retain
considerable flexibility in meeting
their mainframe needs. Vendors, in-
cluding] BM, describe their products
about a year before bringing them to
market, "If you're looking a year or
two ahead, you can plan to use what
you know is available or what you
expect to be available," Kailash
points out. "Then, when the time
comes, you can take the best course."

Organizations running at least two
mainframes can halve the risk of

166

Assessing the situation
Data-processing managers in American Can Co.'s metal-packaging
division recently compiled reports in the format below to assess their 32
major application systems. ('The form shown describes the kind ofinfor-
million to be gathered, rather than presenting a sample report.) The
managers passed the reports to top management, recommending re-
placements of six systems.

System Profile ,42%. ·xe
A. System Name

1. Pri mary Function: Briefly describe the system's
primary objective.

Primary User: Identify specific departments using
the system-the "owners" of the data
and reports.

2. Secondary Function: Where applicable, the system's
secondary uses. An accounts-payable
system's primary function is to
maintain the company's payable
liability and to generate payments to
vendors, A secondary use is to provide
information for tax reporting.

Secondary Lser: For an accounts-payable system. a
secondary user would be the
corporation's tax department.

3. Syslcm Age: How long has the system been in use?
4. Business Supported: Which business units or divisions use

the system?
B. Design Characteristics
Describe the system in the user's terms, emphasizing business, rather
than technical, characteristics. Give processing frequencies (daily,

COMPUTER DEC]SIONIS

ce#king,1 un] iketbatch {{oferations,
tcanl bettransferred to after-hours or{
weekend*

"An lorganizationfwill have fstable i
capatity needs or gentle fupwarE
ftrends fortiseverat°years," Hoffman
says.t"Then it{will putjin a sophistit

fca:tedtnew system and be slow to ad-
justitoft)he new dernands. Some f
organitations end up add:ing orfcon-
tverting to a new machine Every jiear"

f Companits expecting increases inf
processi:ng needs can:leave o:them.-

<seives amargin for errorby acquiring 1
icomputer near the bot:tom of a line

tof compatible machines, 4Hoffman
notes.Ifinecessary, ihey can renego-
tiatefth¢ agreenien;and migrate
upward Fairly painiessly. But those
anticipating only moderate increases o

findemandJ might dig themselves into t
a :{hole bv: signing a long-term rleast

*.>::° 4*8**UM*hi#144*fyifilifej#6
. '. 4(8*dite©f«i*0*ht**lk#;9*tmlii

%06*44*4*9#44#4*4*110 : j
fifi*{*fet#f®4t*4044%f€nkite«f
fftlfEE**4nt*ltott *haf#02**f*e
»*4*%4**4444*fl»*
**8*Et©*ttlfAE@44*f€*344*401
40*iti{ten#n**n*detet®gie***fi¢i
14**%*40*°444**fi***#fiti/.1
3*1*14*ff©fl®*44* r f
4*A®*0%././PIPITW49nn#Cf*$1
*ER¢44%*tkftd#*ti#*%4t*hefhi*
off*34@6*i%%94#te*fkh#f*€64*t

%***i***0****mtit¢**41%
glamm®*0**i*mfi¢*¢*per#01®*
ft@Jus*41%6*44*444*@44¢t»
44*»ount*ji«8* int***filnb
2*4*%1444§*144%3#161*44*tEif
t##%¢144€*4%4**v*fllit###1*41

...': . %#84*bi€966*444%6*4R¢lf*44€*fi
y.> *%****hm*aldimit*ie®*for**

2% r. Affifit@ff1*41*/upelld*Ilifel
i ***ti¢4344%44*6444%4*94*4¢Iti
. 44**foift#E*fb**i/fEi*fdkfiti*

2 ..:>.1 0%4*P«»3**«««**«****dati»3*•*2 : 7 f
. <. vfS##%44*E*R#*44«414##*f,nt#

:.i : tli64**£4*f*i@*%44*%%*dF€4£4
11 3 4 3%44%46*kfifif*444%4943*%*
ff*¢42*4*fit**fR**Efyil%%01#*i
43%30****44*%8faimf/4%*f : r .

iFEBRUARY:!984

tfoR affopfof-thetine model.
A development thal maycomplit

catecapacity planning for almottiall
dpishops fts the personal-computer

iboom. Personalj computers canj bush
mainframeneeds up or down. Some
ex],eris seet the{ possibilitytof down..
loading applications from the main..
framet Othersi see vast numbasof
personal computers, fundioning as
termitals, spumping-·datiintofthe
mainframes and fdoing soniC fpro-
ccssing fthere.jit's floofsoon to know
theistrength of Bither effect in anjor-
ganization. While observersfdisagree
overfthe degree of iinpati the perL
sona[computer: will have, they al] ac-
knowledge that it injeets atileast
some additional uncertainty into the
planhing process.

ft{Personal computers are likely io
increase capacity requirements,"

***cisi«fs€#fi411*4(**4662*4.
'35."*41 ..2: / /:.: 3 ./1.:: >:/5::p.

%%49¢24 I.li.yl.I-i&<.1P#IK
¢¢4%34**{6#*in¢«8*if*Elh@44* '
1*4*Plidit€**24§**jet¢21*4»<
*4444¢«60#4{*44%44#44*f*f.
44*3*e*ffih»*6*44%4£44*#0.
3%1*424>A*485it*tte@fi/fifid#%

516***ifillftiff«*42#k#fi,
*%*91%4*/hilti*ditii*¢444414 -

»attit«GUit€**tth*%41424:
i¢%*af€ittdmm@Atif/difd¢*f*RE
*%**kf41*44/64*tht:Uit{%118%/
*244*494«*8%#Riff#b»4** .
504%1900*t****rhaim#yfo«*f,
y#*4*1*4%*14*3*}84*fdfle#*4*92
*1*cK#1*itf#il),%4*d%%4#*1*%*P °
*44% **31*yim#%44%1%44*td© I
Pf44%44*63*dihiffdti*148*fl
i**48*fiffit#**149%14*f** 2

4{#Rs*44/Etal*ith#tte@**«41...
a#%%%€lt¢4**te*4*1*4»%*21:
*31&*ff¢%*ttmedifi¢Iti#*st*>**99i

tHoffinan sajififfthe ne*ff BMitPC
3270 makes it easyfor users to make
demands onfihe mainframe, forfekk
ample. But at this point,:the impact is
not stiongijenoughf to drainatically
affect projections. "

tRobtrt Headisees inor€volatility.
"Most assumptions} abouttcapacity
have to beihrown dut," he argues. "A
bankj kith a 2fper¢enttinereasefin
account-:a:ctivityo rates eve¢yr year fort
theipast:fl5, for example, canino
longer extrapolate thatti:fend."

it'st nottenough to keep<abrea:st of
changes in miltion-instructions-perf
secondtrates andi:s:torage{costs.
Advatices in peripherals or communi
cations can render an entiref system
obsolete. This applies to disk devices,
printers,< and other specialized addtj
ons. In the]970s, for example, a new

tgeheration fof check-soriers m:ade
<that chore much easicrt for th:ose
tbanks twith mainframes thaticould::
accommodatefthe fequited operating
sy'46m. Others had to switcli cen*al
processors{10 keep up.

A comprehensive assessment off
¢utrent system captbilities:fand
future needs{can cosiftomt$10,00040
5 1 00.000 inionsultants' fees, accord- J

jingjtoff Robert filead:.j Such fai study
ishould project about five years into
thefuture, with fairly fErm prot
jectionst¢overing the first two years,
Annuatie:viewkineed be only
thorough enough «ensurethe assess·:f
men« continued validity, Aifter affull
wridyfetiablishes a bakelme for an ent
:tite system,ia.(company might break
down its annual reviews, tocusing on
alparticular> aspect ofiechnology
each year. It might take aciost looki
at thbi operating systein: ton*yeart
mass storage the next,Fand so on.

fit's noilgood idea to havefieaset
Ffor peripherals fati due alimes othert
Uhanwhentthe mainframe commit

f:167

Obsolete Systems
4(*%811%Wed frf,ni page 167)

A mentsfexpite, hok€ver. An upgrade
finf ontpike Iof equipmentf might
*make another obsolete. 1 f the leasefon
tihe second stillf hasiyears to tun,j you
imay pay a heavy pricelfor that
fobsoles¢ence.

An organization'sr tax specialists
fshould review every kase or°purchase

agreement befoke: jifs :jigned-·but i
the atcountants should not do their

>part without the fadvice--of the tech-
inical staff. Wi[Hani Hoffnian tells of
jan electfic{ utility whose accountants
fassumed ja new inainframe had a

20-year {life--and depreciated it at
thatrate for taxj purposes. When :the
dp department found it needed a new

i system after only four years, its man-
tagersfiguredfihe utility had at least
f{Written off a Parge share ?of the-oid

machine's value. The fact that it had
j not didn't necessarily cost extra-the
fulltivalue wouldfbe; written off
eventually-·-but fmanagement's fdis-
may at the fiCCOUnting Iloss °did not
fwork in data processing's favor.

teompanics should-'novrely,too
leavily on economic analyses-inmak
ng their a:¢4uisitionidecisions. These
inalysest always fpoint to the same
sonclusion,JHoffmanfrconten:ds.

m
"Economically, a long-termlea:se will
aiways look better than a short-term
one,"he says, "and ikhe-equipmenes
useful life islong enough,' it's- always
cheaper to purchase.'!

Technical considerations, however,
often turn those seemingly sure gains
into bad bets. Hoffman describesa
cash..rich bank that took advahtage
of a good purchase price on an IBM
370/155. The 370/158 with virtual
storage came ont:o the mayket a few
months later, stashing the value of
the bankts machine. In fact,the-bank
had-to-buy a $200,000-,conversion
unit just to keep up with the new
technology.

Systems can become outdated- in
many ways, not alljof which would be
obvious to the hont¢Ghnica L pra-
fessional. Sometimes. even the -dp
staff won't recognize the problem's

extent until it'sioolate. This°happens
When an application dies aistow death
from too inuch patching. Rather than
revise a system in an orderly fashion

f as user needs change, data processing
applies "temporary" fixes. As these j
patches :add up. service declines and
maintenance costs soar. Even:tually, a
major system overhaul -will be--nec-
essary. And it will be more difficult
and° costly>tlian it Woold have: beenh
without the awkward postponements.

"The wayto avoid such a predica-
ment" advises-Kailash Khanna,-"is
by keeping in touch with users about
their needs."

Usually, an organization's dp
needs evolve, fbut occasionally they
change suddenly. American Can Co-
in Greenwich, CT, for example, re-
cently began a diversi ficatiofr-into
financial services and other non-
packaging businesses. At about fthe
same time, it began decentralizingits
data processing.

It was obvious that the metal-
packaging division,->Which had-some
cir thejoidest dp equipment itt the
cOmpany, would have to respond to
the new situation,-- accordinglto
Joseph-C. Donia, its managing--diL

9-*446*tafliftft*4*GE!*44€t*fit
44**44*44*REfiietitfut**tfo*fiWEfork¢say*(iniftjaftindusifty/ffhetio**nmin¢43**a€mationt

f Lig***itit*twei«EEP#6-*Entith*44€i*El*©FdFitfo4*dlditi@*t*oute¢slkid/r#hipt
3*4%*014ttli*tmiIPacluiditiR82%44th#t*#fpine#tisABdittiteE€tjt*hetgo€Erfi»htlhislfl/e114
1%*Rit*344**mthtfi#493%44f@%4410144*th#ttiolinmentift/te«E*»cistinifp]*nnint**dij

%*4*4%4**h*fatelitit#**%fi**%*ft#*it¢tdioht*flgivlrpolitlmiff€64*si441%9#ndlefte©tivinas
9;*t©¢94**94*393%49%193%361*%*ter#%*Aa<En#4*6%8inpttitilf*34(*%8*6*nitti

%*hiliref*44*hefi#di44*flbids*6€fc#islfit#nifdifiblell¢%199Amdng*heits*fbe@stedomit

3%6*%*f€/it¢4*ffiftit#dffet¢*1449*6*44*Evi*%*fdmptioti»%44%44£ed/ati*fotmtilinte#outtelmE#V

4*44*%*3€*4*4**di©44£€23**efatif64*14/het#*¢42¢49£*que***2****il/list?660*-·

ts#*tifiE+flit*teft*@419%9344»*TH6%%40@fdoesf«%*9411*4434(4044844i4na#Bf©I,V IBII*el

0%19 1$Zel#**Thelit#*EfikE,4ihil/gii€*jitme%*14*em#Finht@¢fpro«4*Pol®*tiontf64€iftilefatfundittl
f**itl«6*f*4740004(4jfgaft¢/0/ute**ifedn*;dis/h«4€4*%**¢47*efditrit¢%43*434%6*eaftithert
3#44*43*fif*i*ffi«4*fi44%49*R©314*Ffdyde{41%%34***46484%3*3#4ilefi#**Ut >

3.68 #VIE ' 4%,t'{244@ f (tf ff {f it tt j f B{Jffiffi Ff M tf: (Fit bi fil ({3 9% f{%4tt if %3 fjjfiltrOMPUTER DE¢lmONS

Obsolete Systems
f¢ontihized,from page }683

recioit ofj informationisysiems and
fservices. But just hoW much would ito
have td change? And in whai direct
tion wouM it have tomove7

4Toifindtthe answers, Donia de-ij
veloped a form on whithfhistsix dpi { 1

Fmanagirs {coutdi pro<fifetthe{<32itt1
systems for which they were responff 1
sible. Each syst€mirepresentedfa 3*1
major application, suchkaccountiff I
payable, account:s rectivable, andijf(il

tpay€44The toims (See the box on Page
1 66.) provided spaces for the manag- 41
ers toldesdriberFeach systern'sifun«ft:l
tions,%technical tharacieristies, aild{iff\Nhen We looked at our systems,
costs.fTh« alsofallowedtfor· bomt f somejusers were surprised at how
ments :andff recommendations. Sincet fnuch manual efforti'Was goirig iIntof

automated tasks. 'the freports}wouid be directed to : : j 21 Dania, American Can
geneel:management, the managers
used nont€4]inical language asmuch : .
asipossible.{Rather than discussfi/Of i
{input)'output)<statisti:cs, for ex--
ample, they wrote about the number 4934%49'
of thecks ptocessed. Thedata:tenter fitifttE
provided most of the descriptive in-94%99%7

{formation. The managers::alsoitalked°<sifft.i{
with endr users about their needs andjipt€ftiti concerns jbefore wrifing the tomi{ttf?93<*ments and recommendations. 431*{1 jif*%014>9*

The system-reviewtformiiprovidedff f tiE{©533% 4
f for three gene#41 recommeiidations- :::.jug:·1
fContinue the{ systemf{with normili jilulmt 9%:
imaintenance, significantly modify orf 4%141¢It
4 upgrade it, or reptate ii.fEach recom-> 42%2449%1191:411Ik
mendation Was supportedibyta dis-ttft*44%424394110*I
cussion of the related costs.jexpected 494%34%94%944%{iftl
paybacks,{ and risks. Thet managers 39"Don'tfihink you canioutsmart the
con¢Juded fhatsix of the 32fsystemstt lessors.)f they're offeringequipment
required reblacenienti<Fift j :t i j<ff jfi f ji at a very low Cost, it'S for areason.'1

Hoffman, Price Waterhbuse"Generally, thesesystemstwere not
designed for a decentralized oper- i °Donia sent the report:s 44 hi#
ation; they<weren't tresponding-to :fidivision'$ top management and-to the
users' ndeds,?'fDonia)#ays. tf{ fti{Ff:tft¢orporate dp group. Their responses<

Automated assessment
44pheitiptanninkicanieacdmpietand WormittbfedorEButdonftbe
*@eakedfhapitfataijabte*intheformotsyste»Uhatmeasurt
1*#f€mt,¢*peini¢u/PMBZdeliRleaseft, RAfr@/ITichnotionY¢
11£441%2Mete#n.EVA/pre*kitthee¢qisothird*rEupgradds,workki
loadNnirets€stand**fappjica€ok»*une*dstEmodch/tyesm
AMBMMYSfindiVM*8*temt#ndpiesenagrapMluNIVAMIAa*kilable
for#*4004**Roptio*0%thitoperni*44810%y*¢mfot4*mplier*di

*n406(kipeffokmane€*ea#utem*nlitormlortin*6rmaitoica#%743*
4%%64\51*124%43%404%24333%4213%%21941%34%392%44*f¢ircle**t

430

i}are still pending. bu€Donia is opti-
m4tic about gainingithetsup**t
11€*sers' input will helpM'Whentte
lookedi at thesesystems, some of thet
usets Wefe surprised Fatthowmuch
fmanual ieffort wastgoing into *ibt
mated tasks," he notes.

1 nformation-resourcetmanagers
should falso listen to staff toldefert
inine how up-toidate theirf systems{)
are. A compthy should not upgrade

i its machinesj justi to pleasd protf
grammers, of course. Butit should be
aware of the difficulty it wil] encoun-
ter {in attracting and keeping peopiti
Withouthaving ihe latesttte€hnical
entivements. Wil:liami Hoffmant

Adevelopment thatemay
cbm@matefcapacity
planning for almo*all
dp shops€®ipersonal-
computer boon).

points tb high turnover among profes-
sionals as one of the hidden fcostsot
obsolescence.
j¥ou sliouid also keep an eye on thef

tcompetitionk--competitors' tadvan¢es
may for¢¢you to play catch-upj**t
airlines are stilliffryingftot¢tosefthe
competitive gapfAmetican andj
United opened in the late 197044{th

otheii online reservations systcnis, for
example.
tifffjou jake to mistate:ulatein

tfiguting iyour organizationts system
need€ patticularlytits capicity 424
quirenients, it'stbest to err on th¢ side
of having °too muth power.{Anytioss
fromfoverinvesting infinformation

fiesources shoutdtfbe minimal and wiN
tprobably be recovered eventually asf
demandf catches up. Underestimates
canflead: to losses Uiatmay neve€bet

jrecouped.
"ff you don't haveuup-toUte

systems: you}may miss out on oppont
tunities,"laysiKailash Khanna. fBut
{the biggestihits cometwhent*uip-
Ement ¢an'i cope fwitt< demand44
fparticularlyfin online systemslWhen
that happens, i you mayactually be

ilosing Jr:evenutifit{} tifft: 0@f<Fifti(:{Clj

COMPUTER DECISION:S

ele

Jb

23 1

The Rixon PC212A
The Perfect Mode
For Your IBM® C
...Only $499

ffhe Rixon® P©212A offers you the only 300/12®BPS fult; duplex< cardf.*1,
i modem with auto dial and auto answer that plugs idire¢tly mm any oft *9
Ithe IRM P¢®f cardistots. Because the Rixon iP¢212A was designed ° Fts,4?
 specifically for the IBM: PC, it is loaded with user benefits.
I i*he 212X eliminates the need for an asynchronous communications

adapter card and external modem table, this
tatone saves you approximatelyJ$190. The
P€21*Afprovidesfan extra 25 pin EIA RS232

fintertace connector, attelephone jack foralternate voice operation, and a telephone line
ijack for connectioito the dial network.

WittioiZE question, the P©211A is the·f
9 imost user friendly. most reliable, and 3.8,* ...
best petforming modem for your
f IBMP¢. Antinternal microproces-
I sor jall*44 total controt: operation, . 1

and optioning of the
It*¢212A from the keyboard { 3,4 5*03

fA user friendly HELP list off 'rall interactive commandsfis (%4%42« M8 ...:44%33 ¥'stored in modem memory for I
finstant screen display. j{Justa i

 *w otihe internalfeaturesare alito/manual dialing from i
theleyboard,tauto dial the
nat numberfif the ifirst

< number is busy and instantr *
redlatonceotuntil answered. 14
Inllie eventi of power{disrup-

trion a battery back-up pro- 9944) ffla@fi4324%f©14{fff 4*fti .%,i:ti'.47:
lwith all of the communication prou

tgrams Written for the Hayes
iSmartmodemTMffsuch as
ft*¢iSSIALK.™+Al«available j
ffofuse withithe P¢2124 is the gtm:n*<im «»«°4

FRikon P¢jCOMiI,IM* a communications software pro *'Irkgram (Diskette) andinstruction manual to enhance
Ithe capabilities of thefP¢212A and the IBM PC. PC COM
p dperates With<{or replad¢§ the need forihe IBM
 AsynchronousfCommunications Support Pfogram. The pro-
 gram is very user friendly and provides single key stroke control of f
1 ait*log on:to multiplejdatabase servicesftsuch as The Sources¥& 2 as well
[as log to printer,flog to file transfer and)flow control (automatic inband
or manuationtrol).fP¢ COM I is only $49.00hif purchased at the same
1 time as ithe P¢2126. The PC212A comes with: a 2 year warranty. For
imor¢ information contactiyour nearest computer store or Nixon
direct aER¢04368-2773 and ask
t tor lon Wilson ai Ext. 472. 0 1 SAN¢*MOWESTON 1 --- -=- ---
P¢212*49...f.MS ..2.5#$499.j f"jEE:a<€avaer{INC.
ifP¢212A *ITH 404{{Ift*FOff >tf*120 Industrial Pky., Silver Spring. Md.{20904
t»¥N¢H PORToj.il . 46$539.4{: 301422-2121 (TWX 7104825-0071 TLX 8918347J
' The Rixon PC212A Card Modem

*knother Modem Good Enough To Be:CalledfRIXON j flft 43 %4

1*I *24

,--1te

Bilim.mill/.Mill.% -'tht

¢*j * [BM is a registered trademark of the
1 Internation*Bilsiness MachineICOrpl
41* ft Hayes Smartmodem is a product off*1&91; the Hayes Stack ™ Kerie&. a
2 registered trademark or Hayes
 Microcomputer Products Inc
@ + CROSSTALK 15 a trademark of
'Micrositif jnc.
A#*1#4 * PC COMI fs a irademark of
§ C RixOn Inc
 & T:he Sobirce 15 a serneemark of
4 : s Sourte Telecorhputing Corp.

:-Rk 9147&flil....2 3043B © RIXON INC. 1983:

t,

4

itt 3

€

19...f...'7ZL :

*f 44

9 44*KF#«p
i *fablm

1 9 k '4

5

ptit«1*4:

k 6

¥*090%-I=-*-9-§*0.*,11=*iATE#
6 9% >p '9% 6:: 06 6

K

%11

/1/JiI
Ats.161 4006#111

gar,dail;

f«*4424%4**444»4

.71%21"0 I <V**+**« *ati4424*4444*94
Mism muttlpt*%0*¢*4%**** &**00%#***h#@P Ma/8*VIu canlbeat thehew Line Mi*GLMI

t youlowid**MEiterMi 0*4*<**744>40 -o:nio<:;:44t:4445*9.1*1**44<3 minutes. you can> 1 ,

allowyouto nkworkyoOF*fitit*4*1 4 A.j,L.., f..ft.dlyouave.meaddtheGLMI510*your privatewire
fword prd¢es*.P¢%(ant*th#ij p *,44*ily*4*$6te#949444tkiworktd hand\€ u¢ to 8 async35re13 ifnes Ag ei multiplexing.
i 1*emeftdo4*th*%)**M037f>1*ff{0¥®ffti tij Three more reason*to switch -to
»**ch¢**0**23239%94%90*1*f 34€04004* Gandalf. Ask your tcxat Gandalf Shlek

f'be popula¢*e M*DOVS»*ff<;*IMbb#44*9944%««t» i t j*representative for details today.d€*34%94%9%443»3/8.19{fvt'192*tatil/'"lf.
Whe MhersAph i*jn'...,.. kpdiet€6 buit#343
1914«9339. »'A 2 21%i»944.si.*499% .7. 2 .*m44444fandalf*1 1 23*4<:*., vA€ 2'.: DATA 1:< it< HOST :: *43'»rj: L=-Jy«34%*f«* i pax g 31 0

F9149*49.4 t\fijtftffit°98&449*011y supported technology
13210"#*ViFRON·GEND L :

4 + ai*,w,%:f-be INI/731#ROCESSOR% c:jo:ifrom concept to customer.
9,9447 »33 2704<»49*f* M REMOTE 444 11*A¢312) 541-6060....0-1// C|k coMS#ER *mar 36*nadaf(613}226·6500?-, ,e..4/p&= MODEM

**RP#d»{0925)818484

4410«44«41«4144444 tf0 0, J i : *itmriand{0221<98»35

« «440*ike« 0: 1/ :
irfifitffifff¢44%%43%4yflf>.1:34»

1800OR 6-

MODEM

./49439..
21«wi P. ®64 :940*t-' \44

" 42,# : ..SM#)W#fek,8.4.8,6.

1

Prototyping
(Continued from Page !39)

Workable. "If the information is laid
out in vertical columns on a screen,
the user might ask, 'What if we put it
in horizontal rows'?"' says R.F. Be[-

flaver. -division manager in applica-
tion-development -technology at
AT&T Communi¢a:lions, New ¥6rk.
"in-many cases, the prototyper can
change the setup right on the screen."

The tast phase is the key to the
prototyping process, says Gary Gutt
man, president of Generation Science
Inc.. a contract-programming house
in Syosset, NY. Building a prototype
For- users,to play with before the ap-
plication is put into final production
heads off many potential problems,
from f bugs to inconveniences, and
makes for a more flexible'solution.
"In traditional development setups,
dp pros are constahtly telling users to
freeze the specs, Guttman says.
"That's liketsaying, 'Freeze the
world.' Requirements and conditions
change, and- systems have to be
responsive."

It's/during the experimentation
stage that- analysts and users proba-
bly will find critical elements they've
overlooked in the application-
"holes," in Guttman's lexicon. For
example, Guttman's staff discovered
a flaw in a security routine that
would- have prevented authorized
users from accessing data and opened
the door to unauthorized users. "We
closed that loophole before the
system went live,"he says. "Probably
the Only way we would have found>
the problem was by prototyping."
Gaining a competitive edge

Fostering better relations with
users won't be directly translatedlinto
an improvement of the bottom jine.
Nevertheless, prototypes may help to
iniprove a corporation's ability to

tompete by reducing the amount of
time needed 10 generate vital new in·
formation systems. As Higbee's, a
Cleveland-based retailer, discovered,
such benefits help produce concrete
improvements of the balance sheet.

Like many other department
stores, Higbee's has a bridal registry
.that helps the friends and relatives of
brides-to-be choose appropriate

140

wedding gifts. The registrywas kept
in a book, and it was updated-in
theory-as purchases were made.
However, says -Pat Mel ntyre, vice
president of management-informa-
tien services,: the theory was not :the
reality. "Wl were always subject
to-duplication and running two,
three, or foUr days behind,0 -he-rec
alls. fh addition, sharing information
with Higbee's- nine suburban stores
was a chore. When top management

Working with a -prototype,
programmers and users can sort out
an application's problems before
making a big commitment, says F
Warren M©Farian of Harvard.

"If you could put a price on user
satisfaction, the payoff of prototyping
would be even higher than it already

Galles. Westinghouse

.M

heard last summer that an -Akron-
based affiliate of May Department
Stores Co. (St. Louis) and the'local
outlet-for J.C.;Penney Co.<(New
York), its- main competitors. were
planning to automate their brida]
registries, it issued a directive to beat
them to- it.

"We-used Line, an application·
generator from Burroughs, to win the
race," says Mcintyre. "The software
allows you to get to the -user -a lot
faster than conventional methods."

Mcintyre's staff started by pro-
ducing a preliminary design for-the
automated bridal registry. Next, key
employees- were asked for their
Opinions and suggestions. "Our
project: manager showed the-em-
ployees real, live screens to get the
kind of feedback you dion't always get
with a blackboard discussion," recalls
Mcintyre. "We headed off problems
wewouidn't haveknown about Until
all-the work had'been done."

The first prototype was comp]eted
last August,/ and four months later,
Higbee's introduced-,its bridal

°registry-first in its market. The on-
line system, based on a Burroughs B
1955, is-now installe·d in--10: of
Higbee's 11 stores. Each store's ter-
minal displays each:prospective
bride's-preferences in-ching, silver,
and crystal as well as the items that
have-already,been purchased. A
bride-to-be's file is updated each time
a purchase-is made.

As for the payoff Mcintyre says
the jury'is still out. "Registrations ap-
Fear to be higher this year," he says.
*But we'll have to run a-full year be
fore we can measure the outcome. If
the experiences -of retailers :around
the country,a·e an indication,
Higbeel should see an increase in
wedding-gift sales. Automating a
bridal registry typically boosts bridal
revenues by 20 percent, he says.

Meanwhile, Mcintyre's staff is
considering other applications that
are appropriate for prototyping With

:Lind. "We've put in an advertising-
scheduling andicontrol system using
Linc," reports Mcintyre. The system
had been a priority;for the advertising
staff for some time, hic says.'but it

COMPUTER DECISIONS

I.

.

m

& *P- W:* U # 4 0

Pt1

:**439**WA.....W'K ' 1Fl-Y

*ff*****#40*ih*fd4failar#7: ::;

4*er*044*1*'***mifi«**44f*4tmt#*Flhdth*<4*1*t
03440*41*4*4426%{.hightikbiinga

1*.?4447/9/*44440»44*4 t.
./IM#*' 9 :73/VALM/*/SM<*.695.

4 : 3. 1469%4»» ratq .:.4 ' I

4,64 11 141'll'Zill,#MN

4
24

Prototyping
(Continued from page 140h

wasn't a corporate priority. Without
the prototypingtooi, the system
probably wouldtnever have been
completed.

Prototypes are usually constructed
with tools that are designed fof
broader tasks.: Higbee's, for example,
used an application generator to
build prototypes. Other software
packages commonly called "pro..
grammer-productivity tools" are also
appropriate for the task, including
fourth-generation languages, docu=
mentation generators, and system-
development tools.

Use.It from Higher Order Soft-
ware is another tool used-to build pro-
totypes. Its Resource Allocation Tool
permits simulation, making rapid
construction of prototypes possible.
Also, it contains a component that
speeds da'ta analysis and integration
of routines.

Other products operate on personal
computers. Excelerator from -Index
Technology Corp: runs on the IBM
Personal Computer f XT t(th¢ hard-
disk version). It generates data-flow
diagrams, structure charts, and data-
model diagrams; paints screens; ex-
tracts reports from databases; and
helps prepare documentation. Tools
like Excelerator produce the best re-
sultsif large systems are divided into
smallsections.

Ten times more work

Producing applications onitime
and to the satisfaction of users is a
worthy benefit, but prototyping can
also save money. Prototyping can
directly cut the cost of producing
applications by eliminating the-fix*it
coding common to traditionally de-
veloped systems. In addition,·-it can
dramatically faise the productivityof
datacenter staffers. indirectly saving*
money. One of his staffers is doing
eight to 10 times as much work using
prototypes as he did developing appli-
cations -via :the traditional -method,
says Ed Gaites, director -of broad·
casting inforj;nation at Westinghouse
Broadcast & Cable Inc., Milford,
CT.

Westinghouse used-a prototype to
set up a system to keep track of about

142

50,000 videotapes of TV shows it
distributes to stations across the
country. The project was for one sec-
tion of the corporation, and therefore
was not a high priority on the appli-
cations-development list. Indeed,
Gaites doubts the project would have
beenf completed via the traditional
route.

"We had been looking at Bur-
roughs' Line," recalls Gaites. "The
tape-management job, because it was
an isolated application, seemed like a
good place-to try it." A project team
began constructing a prototype in
January 1 983. Gaites and his -staff
sat with users at terminals and sdi-
cited their reactions to suggested rour-
times. "Taking the feedback, the
developers sometimes came back
with the desired changes within
hours," he says. "They could never
have made the changes so faust the old
way." The system was running three
months later.

The prototype for the videotape-
management system actually became
the "live system." says Gaites. Users
were satisfied, and there was no need
to put the prototype-into production.

Building a prototype for users to play
With before the application is put into
final production heads off many
potential problems, says Gary
Guttman, president of Generation
Science inc.

A system to administer contracts
with radio and.television stations was
developed by building a prototype
and moving it intoproduction. In that
case,-Gaites' staff built the model
system using Data Manager, a
microcomputer package from
Burroughs, and enlarged-its scope in
a full-production -system interfaced to
the corporazte-billing application.

Gaites believes the staffer who-in-
creased his productivity tenfold is
typical. Prototyping has also cut the
application,development cycle in
half. and that will help his staff re
duce Westinghouse's applications
backlog. "And if you could put a
value on user satisfaction, the payoff
would be even higher," he says.
The shortcut as solution

Gaites' experience with the video-
tape-management prototype be-
coming a live system apparently was
not unusual. ATAT had the same ex
perience with a prototype that system
developers were prepared to discard,
says R.F. Bellaver. Developers had
worked backwards to work up specifi
cations and couldn't even use all the
inherent advantages,tbut the proto
type was a hit-with the user involved.
If developers considered the proto-
type a failure, the user refused to let
it die, claimingit was the "best thing"
for his department, recalls Bellaver.

"A user may say, 'Don't bother to
do a production version. The proto-
type does what I want it to do,"" says
Joseph E Urban, associate professor
at the University of Southwestern
Louisiana.- Even if the prototype's
benefits are short-lived. users might
still be served. Some proponents be-
lieve-failed prototypes afford users an
educational -experience. Users in-
voived in their construction learn first
hand about the problems that MIS/'
dp-has been trying to explain. For
some-organizations,-the value of this
learning experience is worth the cost
of wasted time and resources and
failed prototypes.

Believer believes organizations
that use prototyping have -a better
handle on their work. "There's a. bo-

(Continued on page 1461

COMPUTER DECISIONS

..''

i* . 2% AE:j P»**444-.44*#*

OUR 21,000 LPM PRINTER
TAKESMANYFORMS.

4 «*3·043*4:0 4*I:er#.g:,:*
-....:·221

If you need high volume and flexibility, *122 4£33<%%,>P«
you should know that the DatagraphiX
9800 isn'tjust a 21,000 LPM laser printer. "2,2.. Wi /<%/fi
It also accepts the widest variety of paper >01. 1 { 4.N'=al=

form sizes of any non-impact printer, w'th :37(*fialf>34. it N *,3
form widths of 6.5" to 16"and a length *9(4»*,+ :;'iu©y'*MI'" "m 40 7.-42

1%%3.f:tiR:y?21:491*49»:plA;A'. 1- *4% 9.lum".range of 3.5"to 14."And a119800 printers *22/:1.9 4«*%73 2.2% 5*9845'eiLf¢**4*4 t . I.*feature perf-to-perf printing on paper /Igillf<40 .:ap**x#p.p<a„,# 4*",:.14weights of 16 to 110 pounds, depending 5 >MWEE:.41*£97 1 //*p itt 'Ii"Imi'"I'l,/Ill'll"/I'lll:/0,/Ill//I"I"Ir
on paper type. ;5609*'LF=*'.£;4%;>0<*..1 :924%?»-:f.

The 9800 series is an entirely j .Al' : 'f>,40 «»::°444%%Vpa 32¢ %39*g W. 4 304

new generation of non-impact, 93yf#%44 ': 9.yerte -I':I?*:@66..:f.
1%44 /(*64. jhigh speed laser printers - wRh .:I'll/ILAM

1 1 9,jf'mom functions, features, and - -j.% 44 1. 4%
reliability It offers up to 34 standard , : «»49„ 2«244character sets, with a font editor that - 1
helps you create a nearly unlimited vari- %34*4491.*r« 4
ety of fonts, logos or signatures of your i :1165:CE,6143:*#St(,i#Babplaa

0%4>pt

fiff j{«11'/
4 1244?944///'10//*A//19.

9 tif#jUFF#25?02%92.2/*2(itown design. 1
P lili

The 9800 series comes
99......Le:. 6 I .4 +

in a varietyof on-line, off-line, or on-line/ -932=.4*4%913»04»949: »f««4»tit>
off-line configurations compatible with a .uti j=:0,·»jim<-, rj«:te·· {bil .m€«an«patj

broad selection of CPUs. Off-line models 20/1/MifiENt=reer#f /F//li//I.wtoffer useroriented menu=driven software, : 14»:.:: -

hard copy log, 6250 BPI tape drives with - 1(ff LEffI*3#21ping-ponging capability and more. On-line 42 ----W.168%446.74-14 U4.*4*40..4.- i73»3**ft.EER»3models offer full IBM 3800 compatibility, 2 *,*<4.::flimmi 243249919¢
in addition to the advantages of Data-graphiX's advanced engineering. : r<193949

Combine these advanced features with i £11.191Zf #Eff: fif3%0513»f
excellent print quality and unmatchable A©=-4,<RE:*:i;»81»--242= ..32-127»9 :73
reliability, and you begin to see why
DatagraphiX is recognized as a supplier of superior
computer output management products. The full- 11 ii ta-graphil

The Computer Output Management Companyfeatured 9800 printers are available now setting a General Dynamics subsid:ary

industry standards for up-time in customer sites Dept 3515, RO. Box 82449, San Diego, CA 92138
throughout the U.S. and Canada. (800) 854-2045, Ext 5581

In California, please call (619) 291-9960, Ext. 5581
TWX· 910<335-2058

CIRCLE 62

JUNE 1984 141

Prototyping
{Continued from page {42)

nus of ongoing flexibility/' he says.
His staff builds in whiat -he calls
"change hooks," which mark sections
of code that might be changed in ihe
future. A year after the prototype is
completed, if- a user department
wants to change elements in the
system, Believer's staff can locate the
pertinent section of code more easily
than -before. Change; hooks improve
documentation for updates and

revisions. "If we bring in pro-
grammers for rewrites, they can grab
onto the hooks." Bellaver says.
"That's much faster than telling
them to search the listings for the
right sections of code."

Prototyping also has encouraged
Bellaver to appfoach large-system
development in a decentralized, more
manageable way. "For years, the
MIS/dp community has decried

systems so large that nobody fully
knew them. -Witth prototyping,"
Bellaver explains, "we can approach
development with smaller teams that
understand the projects end to end."
The teams work up models in a short
time, usually about five months. The
result of the team approach is high-
quality, efficient projects. "It'gives
staffers a sense of ownership, im-
proves the quality of their work. and

Se[ectedprototyping tools
*Vendor »49«39%246 Package 41 t a WP 49 AM*WtRequ#emehtittf€41*ticeittlifft¢irclay. t
App#ed Data:ResearcE« fADR]deal ** ° 99{491449: tiBM and P©Mififf**43{fi$200,0004%3433 7094

t{201*874490004*ff&49*j t{(Application<generatoriw u . · I :>: %»-
iBUtrough.#3I21 2%4449ff itific(Prototyper*<ft ill»B:urfoughtmain#ames.Fit %$45.DO*4293/AW&7113>, % <°¢413)*2**944991 41*ndisystem develop#*%%9 *%444%44444%44%49 find u#4793%34 % 92;.'
ByteE4331%493*339 f{t i€ogen t¢obolj :f itfil 49%0EC. NCREPrimettaft€:f$3,65044%3jtf47123 %2 6,/
(415) 5274*57 6*F iffft F:% programigenerator 41 }f, fsystems®fft*943%44%4%4*$*504 21
Computift*Cap#bill#*44 flnsight: (Tran#actiontlf„ 4%400'*49%)12741%43 9$8,50*4%49*14·{ *13&4
(415) 968-751*,t¢33%34%4 J At >prodessor) *f i 4% 44& 4 >-F %49/ IVT*%19 {421%48?**3*tft: %2%6424% 43
CullinettS*flwaral 434€Fi tEs¢ape (Developmentl
(617*329-7700»4433ft 9%and datal,ase¢f

migration aid#
<ADS/Ontine (Databaset

applications develope«

961*,40*<ECM**49»49 £$25,000«42%44171423*'
Same#ystemit <14 ttlit$40,000

fand upi
ESI Proxy (Program€' 934*41 f Burroughs mair,frames jt $19,800 %41411 (715
(904224#518*44«49 ftigenerator)#fq:flt iti Itft «9199 3433099 %MAW <to $30,000%
Generation:Smence©133 Gamma (Cobol :i iffitii{9 9(:jff tMany mainamestitt Of' $90,000»434%4{736
{516) 496*30604*49319% Jm application 19) %:5iJj) 292 1%tit ibill fJOi:?tto $206,000

generatoof

F;Assoctf t ANDEd:9ng$) Sperry mainframesil /19 i fifgil *AAW E 710
Higher Order Soffwarettiji US*Ut..(Systemt#45441& 9 DEC VAX f r $92,000 R# Mq i< 717
(617) 661-8900: it Jitt i Af »developer)·
]BM r of fil iil»« Developmenff)7f{*iti i 40 [BM systems o $407 to F f?t 444 718
Contact localisalesofticahv 49©*0gg ft { 2 r4 f rti $685/mo.
index Te«% 4111%4 *elerator; :if IBM PC XT :t j $9,500 jit *fifi{ 720
(6173 491-738*946*fittij«9<(System-design and

 »cumentation tdoll

Inforn·lattn Bu;littert€%44 1¢4¢us (Fourth IBM aftd PCMs : r{(s j$66,000fb:{ jii ft J : 719
(212} 034€44*43831%23% {fgeneration 993 9tJb)tjf i to $130,000

. language)
ManageriSoff**6201%1i iDatamanager 1 44%18¥ and P¢Ms $9,000 andkup. 721

Products,#Wflftiliff: ff{ io pc 91{Resource-management
(617)8635800%91*4 4<f Fil system)

Mathem at ics Productsb fR am is l l (Storage titit I BMEmaintranles f [<{ <}fc $45,000 « > 431: 722 %
Group fi 44014 j «tr i » and sretrieval system} k f 94449 4 j 0: i f f to $90,000

{609> 79*2600

Nastectivjiffitttft¢44 3Ufe Cycle Manager Nastec Casd 2000 $3,000 2*114 &12 fi723
{3131{ 35343300*AftfUMENT (Project manager) 0;1 sworkstation j o i c j$18,000

(including Q
workstation>

Softwate<jeleaning Hou*f fiCogen Cobol)441{ (1{{ktmtif NCR systemti fif j {t»t $3,650 {j ff 724
(513) 45146926%1944&4 144*Programj Generator«943 4 44«934%43441994&2 to $4.400

146
COMPUTER DECISIONS

UCCEL
Dallas • London • Paris • Toronto • Frankfurt • Zurich

UCCEL Corporation, Exchange Park, Dallas, TX 75235
Formerly University Computing Company. UCCEL is thetrademark of UCCEL Corporation.

CIRCLE 64

6

P N
1

9

%

97

r
y

If

4 9. % hy 1%.ret
%4,1

2 9

At.6
%

20%

. 9 juwk

inspires enthusiasm," he says.
Not ail prototypes are as successful

as the ones described by Gaites and
Bellaveri many end up in the trash
bin. But according to proponents, ex-
perimentation is part:of the game and
shouidn't betonsidered fa drawback.
"Prototyping,fisfitaited q.uicky:and
dirty, an expression [don't like," says
Gary Guttman. "Quick isn't neces-
sarily dirty or bad."

Sometimes most of the prototypes
churned out by a development staff
are chalked up to experience. Of the
five long-distance-telecommuni-
cations applications R.F.-Bellaver
has put through the prototyping
route, his staff has discarded three.
Does this low batting average distress
Bellaver? Not really, he says. His
staff's commitments to the discarded
prototypes were not heavy. Organi-
zations must be willing to sacrifice a
certain amount of time and effort to
attain the benefits-of prototyping. he
says, and those benefits outweigh the
false starts.

The inefficiency of building
models only to discard them is one of
the key concerns about prototyping.
Another is how much mainframe

computing and storage capacity
prototypes will demand. Are proto
types resource-hungry? Yes and no.
Says Westinghouse's.Ed Gaites: 9
haven't found prototypes to be re-
source hogs.- And the systems gener-
ated don't require more hafdware
than usual."

Nonetheless, cautions Joseph Ur-
ban. execution time may be-slower in
a prototype than in a production ver-
sion. in addition, prototypes some
times consume more memory
capacity than live systems. he says.
That's because a prototype isn't a
fefined product.

Bell aver cautions against be-
coming preoccupied with start-up
costs. "Even if prototyping calls for
expensive machines and software, its
worthwhile because faster applica-
lion development is what -manage-
ment is looking-for," he says.

As far as human resources go, pro
totyping doesn't impose special re-
quirements on development employ-

JUNEI984

ees.."A normal project team does the
job, says Gus Conoscente.

According to Conoscente, Gaites,
and Bellaver, managers should avoid
several pitfalls when making proto-
typing part of the development pro-
cess. Most importantly, don't try to
prototype systems that tie together
transactions in several departments.
they say. Gaites, for instance, chose
the videotape-management am}lica-
tion -to be his staffs'first-prototype
because it involved 'only one de·
partment. Under those circum-
stances, the development staff had
better control over the project and the
consequences of mistakes weren't so
large.

"Start with something simple and
self-contained, something that
doesn't have to be integrated into an-
other system," advises Conoscente.
"Choose an application of modest
size. You and your staff will learn
more quickly, and be-able-to keep

"To get started, choose an application
of modest size that doesn't have to
be integrated into another system,"

Conoscente, Bank of America

44

94%
4/4

your arms around the project. Also,
you'It reduce the risk of disaster."

If you're looking for a likely place
to start, Conoscente suggests a
marketing-information systemlit
doesn't necessarify relate to another
automated system. Inventories of
real-estate holdings or furniture are
other possibilities. Such projects have
size and simplicity to recommend
them, he says, but they also demon-
strate immediate results in functions
that are unautomated in many
organizations.

Conoscente also urges managers to
carefully enlist -user members of,
project teams. The higher the rank of
the user members, the better the
system will be, he asserts. For ex-
ample, if you'te working on a furni·
ture-inventory prototype, enlist the
manager responsible for furniture;
not a subordinate. Assign your test
analyst 16-the project as well. Low·
echeion staffers don't have a manage-
mom perspective.

Of course, not all pfogrammers
and analysts are suited to be proto-
typers. They must work closely with
users, a role that some technicians
find difficult to play. They must have
the diplomatic savvy to guide usefs
through the process. In addition. :the
prototype may imitate a system that%
different from the final version, a
possibility that users should know
about from the start. "Some dp pros
are better than others." says Believer.
TWe try to put pros with both pro"·
gramming and interpersonal skills on
our teams."

At bottom,-prototyping offers
managers an instrument to bring the
high cost of development-in time,
skills, and dollars=-under control
But some managers- believe proto-
typing is a vital tool in a distributed-
processing ·setup. -Prototyping puts
more power and control in the hands
of users, helping along the trend to-
ward decentralization. "MIS/dp
managers shouidn't feel threatened."
says Gus Conoscente. "Their rates
are changing. They may become pro-
fessional consult'ants within their
organizations-or even something
better." - -0

147

f*

444*A..../. /0
ANTIQI

j

IX Thotleverthink of that?
V V The people of ATE(I'

Communications.

People who know business.
We can help antique dealers use

our AIEr Long Distance Network so that
they can hold an auction with different
customers in up to 58 different locations.

Anywhere in the United States.
Simultaneously
So they can find out immediately

what the trade is willing to pay for a rare
antique bowl. 1

And any other items in the catalog i
mailed out beforehand. So their business, 1
in effect, is national.

Andtheycan compete as efficiently
as businesses many times their
size and sales force.
vlrhe people at ATE Communications
1 are thinking about your business in

ways you never thought of.

944

9,- m

John Sculley
Chairman € the Board, AppteWorld '87
and Chief Executive Oficer Los Angeles, Caifornia
Apple Computer, Inc. March 2,1987

Ten years ago a revolution began that changed the world. It was a revolution that
put incredibly powerful tools into the hands and minds of individuals-not computer
experts, but ordinary people who were-to discover that they could do extraordinary
things.

Revolutions require a willingness to take risks...to radically depart from
conventional wisdom.

When we reorganized Apple in the summer of 1985, we didn't abandon the legacy
of our revolutionary roots. We avoided making the safe choices just to save a company,
because the safe choices would have meant losing a dream.

A dream to build great personal computers.,.a dream to change the world by
touching the lives and minds of millions of people, especially the new genemtions that
Will inherit the 2lst century. We want to be a catalyst for change by improving the way
people think, work, organize, communicate, and learn. This isa commitment to action
and to changing the ways things are done in the world.

To accomplish this identity for Apple, we have built a work environment whefe
values are shared. Where work is fun. Where creativity and innovation are recognized
with ample resources and enthusiastic appreciation.

To create extraordinary tools for ordinary people takes extmordinary talents, We
have built a fun, exciting, and rewarding environment, with openness and a shared
vision. At Apple we seek to create a great company that-like a magnet-can attract the
best people to work for us as employees, or to work with us as independent developers,

/7*-™r

1

resellers, and user constituencies.
It is most. fitting, therefore, that AppleWorld™ be a catalyst event that brings

together talented people from a wide range of disdplines and experiences across Apple's
broad, worldwide constituent groups, The real strengths of Apple are the shared vision
we have to make a difference in the world, and the innovative products we build as
enabling technology platforms that can be used by others to do wonderfully creative
things.

There is no power on earth like an idea whose time has come. As paradigm
shifters, we offer the world alternative viewpoints on the critical issues of productivity
and learning. As we approach the 21st century, there is increasing evidence that the old
ways of doing things aren't working as well as they used to.

In the 19603, computers were envisioned as wonderful machines that would
significantly increase the productivity of large institutions. The idea was to systemize the
workflow in the institutions of government, business, and education so that complex
tasks could be done much faster.

Yet recently many leaders of institutions are realizing a curious thing: As
processing power dramatically increases and at the same time becomes less expensive,
we are failing to see a corresponding increase in the productivity of large organizations.

At Apple we see the opportunity to increase productivity through an alternative
paradigm. We choose to focus on people rather than on institutions. We seek to turn
computers into powerful, easy-to-use tools that will give individuals the chance to
discover new ways of learning, working, and communicating with each other. We want
personal computers to be a catalyst in the process of discovering new ways for people to
do things. By getting people to work better, not just faster, we believe we'll help people
to bea lot more productive. And therefore institutions will be more productive.

It comes down to just making the experience of working a lot more interesting. We
have barely begun to see how innovative third-party companies and users will be, if we
can provide them with an expanding range of incredibly exciting personal tools.

In the process of systemizing work over the last two decades, we may actually have
made work boring. It's hard to be more productive if what you are doing isn't
interesting, It's hard to be more productive if it's difficult to learn how to use the very
tools that are supposed to make work easier.

2

Just as there have been disappointments about productivity in the work place,
there are also doubts about the quality of education in our schools. The traditional view

of education has closely mirrored the requirements of an industrial age. We are now past
the transition point of becoming a global, dynamic information-intensive economy. The

fact is that young people entering this new world can expect to change jobs and even

careers several times during their lifetime. Learning must, therefore, become a lifetime

experience that is not limited by the boundaries of the institutional walls. Yet education
is still conceptualized as a structured, rule-bound process.

I know that there are many progressive educators here at AppleWorld today who

believe as I do that the best assurances for gaining a competitive position in the world are

directly dependent upon the level of commitment to innovation and resources that we as

a society provide to strengthen the quality of our education system.

In an industrial age, most jobs required repetitive manual skills. In an information
age, the best jobs will have some information content and decision-making requirement.

If people can work better and more productively, if we make work interesting,

isn't there also an opportunity to make the education experience more productive by

making learning more interesting?

We believe that personal computers have only begun to be used in ways that can
make a difference in education. We see the personal computer as a wonderful,

increasingly powerful simulation machine that can be used interactively by the student to
team at his or her own pace, with the capability of customizing to the way that is most

effective for the individual. We are inspired by the possibility of new learning concepts

built around experimentation rather than memorization. We dream of libraries of

knowledge that are at the fingertips of every student, rather than just a collection of

books in a building. Libraries of wonderful, high-quality color photographs,

high-fidelity sound, and text annotation-all accessible on a pemonal computer.

The personal computer industry has made it through its slump. We are about to
enter a period of exceptional growth and the introduction of many exciting new

products. Now more than ever we need a framework against which to judge the choices

and appreciate the opportunities ahead.
In the 1970s, data processing was the central purpose of computers. This was a time

of large mainframes locked away in high-security temperature-controlled rooms.

3

While all of us were conscious that the cost of computer processing power was

dropping dramatically, few of us realized the implications it would have on shifting the

epicenter of the industry from the mainframe to the network. Today, the giants in the

computer industry are scrambling to redefine their product lines in a distributed

processing model, as opposed to the traditional data processing paradigm.

I predict the epicenter will shift again as we discover that what we really need to do

is not just connect networks to computers, but connect information to people, For

people to-be productive on a connected network, infommtion must arrive in a
recognizable and useful form. I believe that by 1990 the epicenter will shift from
distributed processing to document processing.

We have already begun to see with desktop publishing the power of a

typeset-quality document that includes high-quality text and graphics using professional

layout tools. But until now, desktop publishing has been a stand-alone product concept,

As people begin to be connected in workgroups, the preparation of documents can
be a shared responsibility. Butwe have set avery highstandardof expectation in terms

of ease-ofuse for stand-alone desktop publishing applications that must be maintained

with workgroup solutions. AppleShare™, our new desktop communications product

offering, does exactly this.

As the critical mass of stand-alone and connected workgroups grows, so will the

market opportunity for new graphics-based software and peripherals for document

pteparation.

As workgroups have the ability to access information regardless of where it is on

the network, documents will take on an increasingly important value based on their

timeliness and on the inclusion of real-time information. As artifidal intelligence

becomes increasingly important, document processing will lead to increasingly
intelligent documents,

Document processing, however, is not limited to the printed page. It embraces the

transference of valuable, customized, and analyzed information into:enhanced graphics,
text, and layout for clear communications. In fact, some documents may never be printed

out, butonly readon a display. Conversely, printed documents must have aneasy-way of
being read into computers and indexed as archival records and source material for future

documents. I predict that inthe future 311 word processing, spreadsheet, data base,
4

charting, and communications applications will have a layout and presentation capability.

The intelligent document as a metaphor, therefore, is even more important than the

document as a physical thing.
Our goal at Apple is to make this progression toward the intelligent document

happen in a logical and consistent way. We have been committed to graphics-based

systems for years and have carefully built a systems software technology that can grow as
communications and high-perfomiance products are added. 'Ihis is possible only

because we have complete control over our computer architectures-which lets us
optimize performance without having to make comprombes. At the same time, you will
see real evidence this week that Apple has actively started to adopt important industry
standards, while helping to create others.

What is clear is that the personal computefs role will only become more important
as time goes on. With the quantity of information doubling every 2-1/2 years, we will
either learn to cope with it or be overwhelmed by it.

High-resolution graphics and superior human interface, two ideas that were
considered too radical only a year ago to be accepted as building blocks for the
mainstream of personal computing, are now emerging as two of the most important
foundation stones for the second-generation personal computer.

This is an example of how exciting technologies, independent of a framework of

understanding, are often misunderstood. But the real source of optimism for the
personal computer industry ahead is not based solely on new technologies and new

products we will introduce here today, We are seeing the convergence of a conscious,

genuine need to radically change the ways we-work, learn, and communicate, so our

institutions can be more productive and our people better educated, and so a strong,
affluent, middle-class marketplace will survive and thrive in a far more complex, global,

dynamic economy.

As graphics-based technolog:y moves into the mainstream because it is now clearly
needed by the users, we expect to see a tremendous surge of activity by third-party
companies that will be creating software applications, peripheral products, accessory
products, and communications products for our second-generation personal computers.

So we see a framework with the epicenter of the computer industry progressively
shifting from data processing to distributed processing to documentprocessing. A

5

framework where documents will become increasingly important as more and more
people are connected together over networks. A framework where documents
themselves will become increasingly more intelligent as data can be easily accessed from
anywhere, and as we move toward increasingly higher levels of perfomiance with
personal computers that can eventually handle expert systems and artificial intelligence
applications. A framework where the second-generation personal computer will play a
very significant role in merging high-performance functionality with a superior
graphics-based human interface.

It is within this framewolk that the plans and opportunities for Apple over the
coming years can best be understood.

Today you will hear about a large number of very significant products from Apple
and third-party developers that are being announced at AppleWorld '87.

For the office market, what has been the high end of our Macintosh™ line suddenly
becomes the low end of that product line.

We have expanded the perfonnance of Macintosh while now offering a choice of
compatibility with other operating environments as an option.

We are announcing a signiftcant development for AT&14 UNIX¢ that will give
high-end users the opportunity to have the same outstanding human interface on UNIX®
that many have become accustomed to using with Macintosh.

AppleShare and the related workgroup productivity communications products that
we announced in January will now have an even wider range of choice of file servers,
since AppleShare products are fully compatible with the new Macintosh computers that
we witt be announcing today.

The expanding range of Apple's product line, induding the ability to use industry
standards such as Ethernet and Token Ring to connect into host environments, will open
up new opportunities which we intend to putsue with the federal government and
high-end resellers.

But in spite of all you will see and hear about this week, it is impoitant to keep in
mind that our pipeline is still filled with even more new products to come. Before the
end of 1987 there will be more announcements, and still more in 1988.

We are even making significant progress in the development of the technologies that
we hopeto be able to use in our products in the early 1990$.

6

We are a new products company in a new products industry, and never again will
we allow Apple to get behind the productdevelopment power curve. Staying ahead of
the product-development power curve is very important for Apple in terms of the
positioning of our company, in terms of assuring strong third-party innovation with our
technologies, and in allowing us to maintain gross margins high enough to support the
significant research and development expenditures necessary to support two system
software architectures...Apple® II and Macintosh.

Apple is a company of meaningful differences, not better sameness. We intend to be
the catalyst in this industry-the catalyst that will provide the best opportunities for
others to innovate with our products: and will offer still others the chance to pioneer
new markets and new methods of selling. We strongly believe the future health forthe
entire personal computer industry lies in being able to add clear value, not in turning the
industry into a cookie cute operation for clones.

Last year people asked, *When will Apple be able to connect to them?" Next yearj I
predict the question will be, "When will they be able to connect to Apple?"

The second-generation personal computer is here. But the second-generation
personal computer is not a box. It's a consistent set of building blocks that form a
systems software architecture-an architecture that retains the elegance of the
stand-alone Macintosh and Apple IMs™ in "look and feet," yet has the industrial strength
to be able to work in a serious network and data communications world.

Not long ago, conventional wisdom held that Apple had embarked on a lonely and
dangerous course by investing so much in the Macintosh technology.

Today, as the rest of the computer industry bumps up against the ceiling of ordinary
computer technology, Apple is just beginning to realize the potential of our original idea.

While our competition's whizziest 32.bit machines can only run the same software
slightly faster, Apple computers are setting new standards of speed and performance
with totally new kinds of software.

Our revolutionary idea isnt a silicon chip ora clever twist on technology. It's a
vision of how computers can help people accomplish anything they set their minds to do.
Simply put, it's «the power to be your best.•™

And when you think how much that vision has changed our world in the past
decade, just imagine how far it can take us in the next.

7

Apple anti the Apple logo are registered trademarks of Apple Computer, Inc AppleShare, Apple OGS,
1 Appleworld,Macintosh, and'Ihe Power to Be Your Best are trademarks i Apple Computer, Inc.

UNIX isa registered trademark of AT&T.

8

!4*944%:fOV·4212;90*,614**41%3%1434et·4?3*faF*yfit<t:%tit*i
The obiect-oriented pcradigmis a programming method gaining much commercial attention°
from those who must build:advanced computer systems. lfpromisestremendous advances in
programmer productivity compared With traditionct structured programming techniques, be-
couseits bask unitis the self-contained obiect whkhcombines data undolgorithm. Propo
nents daimthat obiect-oriented programmingis more "intuitive" than previous methods and
therefore is easier to work with. With processing power and memory priced solow, a number
of companies,large und small, are creating o market for obiect-based tools.

he OOPSRevolim

193*

· BY JOHN W. VERITY

Just down the road from the general
store in Sandy Hook, Conn., past a
sweeping turn in the Pootatuck River
where all that could be heard was the
rush of a waterfall and the rustle of pine
trees, there sat, many years ago, a red
brick building that saw the beginnings of
a technological revolution.

It was there in the mid-18003, it is
said, that Charles Goodyear worked to
perfect his accidentally discovered pro-
cess for vulcanizing rubber. Vukaniza-
tion turned raw -sap from the Amazon
into a tough, versatile product that even-

tually was used in the
manufacture of auto-

7553 ' -mobile tires. Good-
·year's discovery thus

- transformed an entire
PIE'S industry.

UND The general store,circa 1831, is still there,

INTOSH - - selling everything from
hammers and Mails to

OBJECT chocolate chip cookies.
Tile old brick building

LSED. - is there, too, and one
can still hear the pines
whispering and the wa-

ten spilling overrocks outside. And, if
Toni Love,'chairnian and cofounder of
Productivity Products International
(PPI), is to be believed, there's another
revolution fomenting behind those brick
walls, one that is about to change the way
anotherindustry does business.

This revolution has no Lenin as its
fiery leader=Love's flashy white BMW
betrays strictly capitalist tendencies=
nor does it need one. This is a movement

of the people, and a worldwide one at
that. From Osio to Tokyo to Palo Alto,
thegrowingmasses, their consciousness
raised at international conferences, are

saying things that would make Marx spin
in his grave jfhe could hear them. "Class
structure," they demand. "Inheritances
for all."

If Love and others at the vanguard
of this revolution get their way, class and
inheritance will in fact become vital is-
sues for software builders everywhere.
Those are concepts key to the practice of
object-oriented programming, a tech-
nique fast becoming commercialized by
Love's venture-financed PPI, and by such
firms as AT&T, Xerox, Tektronix, and Ap-
ple. These vendors and a growing jlist of
large users claim that object-oriented
programming systems (no jone calls f
them oops yet) are already making good
on the promises that the last greatleap
forward=structured programming-
continues to make but has yet to fulfill.

Although structured methods have
clearly extended the possibilities of coin-
puter programming they have been less
than satisfactory when dealing with
large, -complex systems, particularly
those that are highly interactive and
whose specifications are therefore diffi-
cultto pindownearly inthedevelopment
cycle. Backlogs continue to grow, bugs
proliferate, deadlines are missed, main-
tenance is as tough as ever.

"Structured programming wasonly
a small help," states Love. f'It provided
only a 10% to 15% improvement in pro-
ductivity when people were really look#
ing for im provements of 10 to 15 times. "
Object-oriented programming tools, he
claims, stand ready to provide those
needed miplrovements because-they of-
fer means for a radically different, more
"intuitive" way of conceptualizing and
building systems.

Instead of -decomposing -systems
intohierarchiesofnestedboxesasortho-
dox-structured design inethods do, the
object-oriented way is to simulate the

DATAMATION O MAY), 1987 7
11 f

1 ?

r

€11 1 ¢

Fri .

32% 9: 3
j

f€ I , u

m,r : 1:1

Ir lit /1 B

t

1 9 'a': t

14 411(1,

' 1 Pr Y E ,(0% 8

11 2 :11 . 11

r

14

4

1

, 0. 2 Itt

9

5 1

fl ,

FO ? r

4111 09 J I E

J '11;' P,1

uip; 1,& :+ ,

'4 1 :I 1 1'' /; r# i

1 1

111

%

''i 1

, 11'

fill

7 11 40

'11 r

/ r

1 19 III

1 /

4 ('.1}, , , .e N .11 4
1 1

t

aw ·1

1,'

.L,„ILI

fi ,

-r=KE€2* 2-5- 2< 4--z- Uzz €-='

*%*4'.4-.W -1. 2-/ --r- ·-- _,,-7V¥4$;8%$

world in terms of cooperating "objects"
2- 6 -I°- ..2.21 E. .2 that relate by passing strictly defined

fhessages to oneanother. It's program
t*+*2·49·4 -28 stage. play," states one convinced
. 3 . - c zi. f user.ft«ft 92:·0 "Objecboriented programming is
, - the structuted programming of the

'80&," says Bjarne Stroustrup, a respect-
ed software thinkerat AT&Tand author of
its object-oriented language, C+ t. "In
the right hands it is a major tever."

"It's gigilificanUy more of a revolu-
tioh than structured design, because it

,--1 -*t.t +656 applies--to a wider variety of applica-
b . . - c.i. tions," comments David Thomas, asso-

ciate professor of computer science at
Carleton University, Ottawa.

.- Vision of e Globa[Market
1. -j : 3 l 7 Of course, the object-oriented gang

.- : may sound less than, well, less than ob-
ective when they daim their approach
improves programmers' productivity by

-: factors of 25 or more, or that it is more
- t..r:.7.-4 easilyused by "lesser trained program-

.sci,4 .2 3.32 mers, or that it finally makes possibleS..4-5.14 : 7 thereisablesoftware "components"the;*1424*Jit industry has coveted for so-long. Per-:13722.*53¤ haps most fantastic is the vision somer i 1. - . share ofa potentially global marketplace
ti te,95,3.jil for software components analogous to
3012 9 - 47 -r today's microchip arena. Love s ppi hasalready trademarked the term "soft-
Ff-8237»2 ware-IC" and is seeking partners to help
2-».1-210_..4 build such components.Surely the multibillion-dollar soft-
-2 '*r s y rj : ware business has seen more than its
j--: f.. .. I :i : share of snake oil and wonder cures tie-
2-- t. · -fi fore. Yet.the fact is thata growing num-
2-·70 - 93-21 -1 j ber of companies, some of them backed

' - by substantial capital and resources, are
C<-- . -: I- . -i successfully hawking object-oriented

z-- : r .719-7 tools. There is serious talk among soft-
ware theorists, moreover, that object-
oriented techniques will fundamentally
change the way computer systems are
conceived and designed. Large compa-
nies whose products depend heavily on
complex software--companies like w
Ericsson, AT&T, rrt, and Hewlett-Pack-
ard, to name but a few-have adopted

. -:'the technology in one form or another.
Revolutionornot, somethingisgoingon.

Tangible evidence of that some-
thing was seen in Portland, Ore., last
October when the first conference on
Objecturiented Programming, Sys-
tems, Languages, and Applications
CoopsiA) was held. Some 20 vendors
showed up fot the ACM-SIGPLAN spon-
sored conference, more than 50 papers
Conly a third of those submitted) werede-
Jiyered, and some people hoping to at-

2- 2- 1. tend had to be turned away for lack of

The OOPS
Revolution

space (just over 1,000 people got in).
.The meeting's organizers, who repte-
sented everyone from 1BM to the Central
Untelligence Agency, were surprised by
all ofthis-but only a little.

"A lot of people have been working
with object=oriented- programming for a
while now and this conference was over-
due," says OOPSLA program chairman
Danie] Ingalls, a principal engineer at Ap-
ple Computer 1nc. "The fact that we had
to turn people away shows that the area
is really growing."

"It's an unstoppable trend," de-
dates even Tom DeMarco, a noted ad-
vocate of structured methods who is
founder and a principal of the Atlantic
Systems Guild in New York.

White similar conferences have
been held recently in France and Britain,
there are other signs of object„oriented
programming's increasing acceptance.
Digital Equipment Corp., for example,

f.fli/Mfed,
SMALLTALK

' BINDS DATA
AND PROCE-
DURAL CODE
TOGETHER.

has set up an Object-Based Systems
Group in Hudson, Mass; whereit does
much of its work in artificial intelligence
and advanced programming.

Another big industry name, Xerox,
has spun out a new company, ParcP]ace
Systems in Palo Alto, which will create
and market a variety of software tools
centered around Smalltalk. That lan-
guage, developed over the past 15years
at Xerox, is considered by most observ··
ers to represent the archetype of ob-
ject-oriented programming. Xerox has
licensed Smalltalk to such firms as Tek-
.tronix, Apple, Hy, and Sun Microsystems
for use on various workstations and is
seeking more such partners, according
to Adele Goldberg, ParePlace president.

There's been activity on campus, as
well. At Brown University, mM has
helped fund a multimedia database proj-
edt whose programmingis object orient-
ed. The so-called Intermedia system
combines texts and iltustrations into a
"web of information" tliat can be
browsed, annotated, and shared among

teachers and students using worksta-
lions. Itisinteresting to note that Brown
programmed BM RTin part with software
migrated from Apple's Macintosh.

Dave Patterson, a professor at the
University of California, Berkeley, has
designed a reduced instruction set com-
puter (RISC) microprocessor designed
specifically to run Smalltalk. It's called
SOAR. Farther up the coast at Oregon
State University in Corvallis, computer
scienceinstructorTimothy Budd reports
that the first printing of his book, A Liate
Sma#talk (Addison-Wesley, Reading,
Mass., 1987), has sold out. He has also
sold about 300 copies of his Unix„based
teaching version of the language, which
goes by the same name.

In nearby Beaverton, where-Tek·
tronix sells a line of Smalitak-based
workstations, Servio .Logic Develop-
ment Corp. markets Gemstone, an
object-oriented DBMS for personal com-
puters and VAxs. Computer Corp. of
America, Cambridge, Mass., is under-
stood to be working on similar products.

Digitalk Inc., Los Angeles, sels for
$99 an impressive, homegrown version
of Smalltalk for the IBM Pc family. The
software has found extensive use at 016
vetti, the Italian ecimputermaker.

Back in Uie States, Tom Lov€s pM
claims to have installed some 2,500 coph
ies of its ObjectiverC package, aprepro·•
cessor that feeds standard C compilers
with object-based code. It also sells Vick
which interpets C and Objective-Ccode
for debugging and instructional pur-
poses. Customers include HP, Accuray,
and NASA.

A Product wilh Plutes
AT&¥ is gearing-up to push C+ +

into the commercial market after seeing
it find use at some 200 universities
worldwide, according-to Zach-Shorer,
product manager in Morristown,- NJ.
Shorer claims that overa million lines of
C+ + code exist within AT&T alone, and
that the language, even without much
push from the company, has been adapt-
ed to machines ranging from Unix work-
stations to Amdahl mainframes; a Cray
supercomputer version is in the works.
Bjjrne Stroustrup, the language's mod-
est authors says his C+ + is "spreading
like wildfire" within AT&T, where it is
used for, among other things, simulating
VLSI chips.

Key Logic, a Santa Clara offshoot of
Tymshare, will soon introduce an entireL
ly new operating system for 37(Hype
mainframes that completely replaces
MVS and competes in terms of transac-

92_3'f«T» 74 DATAMATiON O MAY T, 1987iS**22354JiJME'*72324&1%0-g·u.ge23672ppJBJg,gE¢€30*g9¢

52*INSEN=9=232*-TE==s=-==

499·428»4"hay t.if·12» 2.1 25:JUS, .jo:14 .:-3-:li .: ---4,-+-Z„-SUa,u·t--44-11. J.il'YL· -9§-2-4-6.-:.-*_.Lf»#.1124=1,14=4442&92*9*6

tion processing speed with IBM's TPF/2
(the former ACM. The software has been

5.- 294 - -written in an objectoriented version of
?2.121.3 2 t.1 PL/1, according to Key Logic president
t„- 6.4-12*225 Ann Hardly. "We couldn't have built the
97- 4.; 4 system without it," she says.

-- · The CIA has commissioned Xerox to
build a system called the Analyst, a "mui·

-f7 - timedia spreadsheet"thatenables inteili-
gence analysts to peef into numerous
textual and graphical databases at the
same time. The hush-hush system is
composed of objects.

3 .. · ·2.... "Best of the Known Techniques"
Enthusiasm abounds. "We've been

jolia convinced since 1975 that thisis the best96>2 - .of the known techniques,"says Carleton
University's David Thomas, who was

21·f.- given a private showing of Smalltalkback
«2593 then. But as he and others are quick to

point out, it's only been recently that ob-
..i jectoriented programming has become

._ commercially feasible, because it re-
 7 - quires substantiai computing resources

-7 937 to be effective. Prices for memory and
p· - 3 processing power have reached low

«4.3 enough levels, particularly in the form of-desktop workstations, that now the ba-
sics of the object-oriented technique can

Lm be taught and used throughout industry
045* and academia. "Now there are a lot of

people beavering away at this technoto·
f.:#63 re gy'" he says.
1-21' "It's definitely the wave of the fu-
.+ -t I L * ture," states Paul Cubbage, senior ana-

lyst at industry researcher Dataquest in

32/ 0
91'WAVE-u

.ETEr- 1 S A MOD,EM

2»329 . 76 OATAMATION O MAY 1, 1987

The OOPS
Revolution

San Jose. He doesn't think, however,
"that it will beat the centef of the market
until the 1990s."

indeed, even Love, who's raised
close to $3 million in venture capital to
launch PPI, believes the new methods
and languages have along way to go be-
fore they dent COBOL usage to any ex-
tent. "We won't go bust our pick on
that," he replies when asked if pm in
tends to try for the mainframe market.
Instead, the company plans to attack the
applications backlog at the "fringe,"
wheire entirety new, advanced, and often
complex systems get built. Insurance
companies that have to build their own
multimedia databases, for instance, will
be forced toadopt object-oriented·toolsif
they want to succeed, Love maintains.

lf there really is an object-oriented
revolution going on, Stnailtalkis its mani-
festo. For most people, itis thefirst thing
that comes to mind when the subject
of object-oriented programming is
broached. A productof Xerox's Palo Alto
Research Center (PARC), Smalltalk was
the brainchild of the company's brilliant
computer scientist Alan Kay. Kay's pre-
cocious vision in the earlyl 970s was of a
notebook-sized. computer with which
children and other nontechnical users
could interact graphically through a dis-
play of two-dimensional objects. The ob-
jects would reflect the machine's internal
state and coutd be manipulated to change
that state.

Dynabook, as Kay referred to his

qui-41&

Eb SO

,»BEF (RICHARDA

4-
CD.V.,

rry

h

laptop dream machine, could hot possi-
bly be-bult from the hardware or soft-
ware available back then. Nevertheless,
he and his team of researchers (whichin-
duded Ingalls and Gokiberg), built and
simulated as much of it as they could.
The fruits of their labors were a dazzling
series of innovations at PARC that helped
yield, among other things, Xerox's Alto
and Star workstations, the mousedcon-
window-bit-mapped«reen display as
the leading ideain userinterfaces (popu-
larized by the Macintosh), and Smalltalk
as a way of life.

Well, almost. Smatitalk was notjust
another programming language, one
quickly learned; it was a complete pro
gramming "environment" unlike any-
thing anyone had ever seen before. It
provided an abstract world in which the
usualy distinctboundaries between pro··
gram and operating system and between
data and progfam were blurred, a world
in which a new conception of program-

4 ming could fiourish.

Pri m ary Ca use o f Proi ed failu re
The very name of the data process-

ing industry reflects the paradigm of
procedural programming, as seen in FOR-
TRAN and COBOL programs, for instance.
Data are structured in some wayin order
thatthey maybe processedby a separate
and shifting collection of procedures. But
since there is no firm connettion be
tween these two etements (they :are
stored "without context," love -ex-
plains), a change in data structure cari
easily invalidate some or ali of a pro-
gram's routines, and vice versa. This,
say software theorists, is the primary
cause of failure in large, complex proj-
ects where no single person cah compre-
hend both data structure and program
logic in their totality. Traditional lan-
guages force programmers to rely on po-
tentially faulty assumptions about which
data types are valid for which routines.

As a result, fixes, patches, and ex-
tensions to a program tend to produce
unwanted, unpredictable side effects and
even catastrophic failures which, so far,
no amount or form of structuredmethod-
ology has been able fully to prevent. "At
about 100,000 lines [of code], things
start to break down with the old meth-
ods," states Love. "As your ability to un-
derstand a system dedines. yourability
to add toit declines as well."

In contrast, Sm,72]talk and related
languages bind data and procedural code
tightly together-inseparably, in fact-
in the form of objects. Each object con-
tains its own data, appropriately struct

M' ,#B YM: ij':11 UN "82.Ji .' Ati 'fo '.::
; fij

1. I h.· ·11£ ' :9*.·3 ..#U»: .2: f

'I /, It;

11 7 , 9

Fr't--4---/;e,gs*..,+Il=*·,pey*em-A·*·»79·0*lts/*43ij=*JNT----26.32972%25#4/,&i-3/Eff«172,/.firpf/*At
73-<fir'<re,2--214.2-.frjg--Frt<6442145+2:4'9<&242=.1-2£12-'2222*435j*rd ;p,im:*-'1,·E;20132*f»el-:22=de-t...Ew=-c=-=.·a-
varj·roN,

turedforitsparticularuse,towhichkhas
6.-20"213_. sole access and sole responsiblity for ma··
01. 1331 niputaling according to private proce-

dures. Thus, there's no chance for data
942991 3-3 and code to get out of sync with one an-
G. X16135 -other, as it were, and there is greater

1 1 f - u-possibility for building flawless pro-
-grams quickly and inaway that permits

3.1. i · -i almost endless extension and change.
With relative ease, objects can be put to-

- gether to form new systems and extend
existing ones. "You don't destroy the

sLy original [code], you just extend it and
t?Oft---42;4 build upon it," explains Jim Anderson,
5. >' .>f president of Digitalk.
---zi-1,24.24 Objects are quite different from tra-6$- r:.: u:··.4 ditional subroutines. For one thing, they

23 - 29 " reflect a deeper abstraction: by strictly
f. u- i h . tying data to code, objects actually main-
.. 12·51 +24. tain structure and context even as they

94/refoil= helpfully "hide" those qualities from the
-I.5,-2.f programmer. Moreover, they respond
- e- 7 only to certain strictly defin.ed messages

-. - ..= passed to them by other objects. Once it
*I#.-#-. -#. receives a message it knows how to han·

dle, an obj.ect takes full control of the sys-
3214113411. tem until it passes control to some other

ObjeCt Via another message. (In contrast,

.€4--..44-Lit3 0 "#PAP..46.2.,4...rA..:5246·:91% 2*91*43,24<*4*344249,0439'6
C-0-9 2.+44 WA TkMlmls.=«:·54tkh
£=31%12«2£*-== /*9Jz...../ :1.41 44 4 'r-ar<IM
-

60011,

.# &92<f7:04*60#-& 1

Managepow
and datawirini

Freebrochm
{74524-4 More telephones.a new computer,
. -c 9 2 2 new copy machine, new electrical

equipment-wires,wires every-
where.AWiremold aluminum race·
way system efficiently tucks away
those wires and cables into one
low·profile, surface·mounted race
way. It can run around the wans or
along a counter top. The satin anol

r.,2 0,_ fJ dized aluminum finish looks great,

The OOPS
Revolution

traditional "well-structured" subrou-
lines eventually pass control back to 6
mninroutine.) Theprogrammer need not
know anything about an object's internal
structure, either its data or procedures,
yet he can stillusethe objectifhe knows
the messages itcan receive and act upon.

Finally, tlle object's interface to oth-
er objects is ciearly defined and cannot
be subverted: a Smalltalk program can-
not jump suddenly into the middle of an
object in the way that a wayward FOR-
TRAN progratn might mistakenly activate
code deep within a subroutine. This
strictly defined interface, combined with
the fact that data and procedures are
sealed away from dangerous tinkering,
prompts talk of a future marketplace of
software objects, designed to be cat-
aloged and available off the shelf from
networked libraries of components.

Akeady, Artecon Inc. of Cartsbad,
Calif., sells a family of basic graphics ob-
jects designed to work in PPI's Objective-
C environment. Love ex:pects additional
sets of useful objects to become available
in such areas as communications, data-
bases, and user interfaces.

:.9?,-4-*A*-42Lm¥*448*2210*W-

entelephone
i in your facility.
·eshows how,

and it'seasy to keep that way. Talk
toyour installer about Wiremold.
Orwrite/phone for the 1-17„
brochure. 1-800-621*0049.,, 225
On Connecticut) (E@ 4.0,1-800-992-2277. L c

KIEWiremold®
1-he WiremoId Company. Electrical Division,
60 Woodlawn St . West Hartford.Cl)6110·0639.

In addition to their encapsulated na-
lure, objects gain much power froin their
ability to inhent properties and behavior.
All objects reside in a many-leveled hiet-
archy of dosses. Each object is consid-
ered an instance of its class and, like
other instances thereof, it displays the
properties and behavior of not only that
class but also those of all classes above it
in the class hierarchy, Thus, the object
"Secretariat" might be an instance of the
class "horse" and inherit properties and
behavior from the class "mammal,"
which itself would inherit from the class
"animal." Inheritance makes it possible
to define complex new objects without
the bothef of writing everything from
scratch.

meansto Tremendous Improvements
Although objects and the notions of

inheritance and class take some getting
used to-several months, at least, for
traditionally trained programmers, it is
said-theyprovide themeans for achiev.
ing tremendous improvements in pro
ductivity. For one thing, large collections
of predefined, welldocumented classes
and methods, the algorithms in an object
that act on incoming messages, can be
delivered for programmers to use as is.
Such predefined dasses maybe quite so-
phisticated, defining frequently used ob
jects like interactive windows or disk
browsers. In addition, user-defined
classes and objects may be stored away
for future use and adaptation.

Interactive systems tend to employ
sophisticated, graphical interfaces that
display a high degree of modularity and
are therefore more easily programmed
in terms ofobjects, says Beau Sheil. aXe-
rox PARC alumnus who now heads Price
Waterhouse's newly formed Technical
Center in Mento Park, Calif. (see his
"Power Tools for Programmers," Feb-
ruary 1983, p. 131).

ParePlace's Goldberg notes, too,
that the notion of objects can be easily
grasped by nonprogrammers. who can
"define their own applications and proto-
types" in terms thatare familiar to them.

"The world we see around us is
made up of objects, not subroutines,"
says one proponent. But does that make
for a revolution, a replacenlent of struc-
tured design methods? AT&T's Shore
thinks so. "We have a tiger by the tail, '
he says. But Oregon State's Budd takes a
more cautious view: "Object-oriented
programmirig is just part of a bigger rev-
olution. People arerealizing thalwe have
a plethora of languages available because
all language pafadigms are important."m

73 -=--El + a CIRCLE 39 ON READER CARD

tbilj<fC_Q-pAYL*.1987_---_ -f--,--7-- .fs#- _ t 1--.----2----;-1 -1- -r-5-- =f--261 A,-fil*4 .1=214j

F./2
Experimental Prototyping uti»an

in Smalltalk

Jim Diederich and Jack Milton
Mathematics Dept., University of California at Davis

Smalitalk promotes fearless programming.
Users cansignifickIntly alter an application-

euen the system itself - withoutfearing
unnecoverable disaste,s.

0740-7459/87/0500/0050/$01.00 ©1987 1 EEE

0

t:

17

r

Gil

t
r

KEVIN REAGAN

bject-oriented programming is
oneofthecentral programming

paradigms to emerge in this
decade. The scope of its influence can be
seen in the introduction of objects into
numerous prograniminglanguages such as
Loops, Objective-C, Object-Pascal, and
Flavors, among others. Object-oriented
concepts are also being incorporated into
existing relational database technology
Database management systems now exist
that are based on objectoriented princi-
ples, and one commercial version uses an
extension of Smalltalk for its data defini-

tien and data manipulation languages.
Additional uses and applications can be
found in the proceedings of recent con-
ferences.

Smalltalk is the principal object-
oriented language. While a more complete
discussion of Smalltalk's development is
given in the so-called Green Booki and in
the August 1981 issueof Bytemagazine, it
is important to note that Smalltalk is a
descendent of Simulaandhas its originsat
the Xerox Palo Alto Research Center in the

early 197(k It was developed by the Learn-
ing Research Groupbased largelyon ideas
of Alan Kay.

The language went through three major
versions: Smalitalk,72, Smalitalk-76, and
Smalltalk-80, which was first licensed for
use in 1983. Commercial versions of
Smalltalk are available on such worksta-

tions as thelektronix 440X series, the Sun,
and the IBM PC At Prerelease versions

have been made available for the Apple
Macintosh. An initial attempt at develop-
ing Smalltalk on minicomputers such as
the Digital Equipment Corp. VAX line was
judged unsuccessful in a multiuser envi-
ronment. However, implementations for
the MicroVAX are under development.

Smalltalk is more than just another pro-
gramming language. It offers a completely
new environment for software develop*-
ment. Many articles and books have been

IEEE SOFTWARE

th

1g

written describing the features of the
Smalltalk languageand environment, but
ourprimaryobjectiveistoconveyjusthow
d«yerent software development is in the
Smalltalk system.

Our experience; based on our work in
prototyping a database design system 2
over the past year suggests that Smalltalk
goes well beyond facilitating prograrn-
minge Indeed, it is an integral tool for
promoting experimental prototyping.
More explicitly, in our expetiments we
oftenmadesweepingchangesinthe design
system's architecturt generally with little
reprogramming effort and usually with
theintroduction of only simple bugs that
were easily identified and fixed. To a large
extent, our desire to try different
approaches was significantly influenced by
what we view as a new and emerging con-
cept in programming.

Basic concepts
Two important aspects of the object

definition in Smalltalk are encapsulation
andhierarchy.

In encapsulation (or information-
hiding),an object has its own data or local
memory, called instance variables. An
object also recognizes a set of procedures
for manipulating its local memory. These
procedures, called methods, are invoked by
sending messages to the object.

Naturally, many objects will have the
same type and will respond to the same
messages. Consequently, objects are
organized by a hierarchy of classes and
subclasses. An object responds not only to
messages defined for its class, but it can
also inherit messages from all its super-
classes.

Class definition. Figure 1 shows thedefi-
nition of two classes, Person and Student.
Person is a subclassof Object, which is the

root class ofall other classes. An instance
of the class Person Can object from the
class)willhavelocalmemory for its name,
address, and birthDate. Studentis a sub-
class of Person, and each instance of
Student will inherit name, address. and
birthDatd in addition to havinginstance
variables college, class, major, current-
Courses, and gpa.

Each instance variable will be an object,
too. butitneed notbeboundtoaparticu-
lar object class. HonorsList is aclass vari-
able. Every method of the class Student
willhaveaccess to (can read or change) the
value of this variable.

(Note the naming conventions: Com-
pound names have the first letter of each
word capitalized except for the first word.

Encapsulation and
hierarchy are two

important aspects of
object definition.

The case of the first letter o f the first word
depends on the use of the name. Thus an
instance variable for a graduate student
wouldbe graduateStudent while aclass or
a class variable would be Graduate-
Student.)

Messages. After creating the class
Person, we can develop messages that can
besent totheclass Person and to instances
of the class. For example, the existing me5-
sage, new, is inherited by the class Pefson
from its superclass Object and will create
an instance of Person. In Figure 2a. the
temporary variable person is assigned
(using the assignment symbol -) and
serves as a pointer to the object that is
created as aninstance of the class Person.

Tb give an instancea value for its name,

we can create a message, name: aString,
that can be sent to person, as Figure 2b
shows. Theobject being sent tile messages
person in this case, is called the receiver of
the message. Messages that have colon
suffixes, such as name:, take an object as
anargument, andthosewithoutcolons do
not.

A message can contain several parts,
such as add:before:, which in this form,
without arguments, is called a message
selector. It can beused to add a new object
before the current object in a list. as Fig-
ure 2c shows. Likewise, since Student is a
subelass of Person, instances of Studeht
can also be sent the message,
name: 'Stefanot

A subclass cain also reimplement and
thus override a message defined in its
superclasses. For examples the message
passing, sent to astudent might determine
if the student'sGPA is abovel.0. However,
ifwecreate asubclass Graduat¢Student of
Student, wecanaddamessagealsocalled
passing furthis subclassthatinstead deter-
mines if the GPA is above 3.0. Thus, if an
instance of GraduateStudent is sent the

message passing, the system looks to this
class and finds the message with the 3.0
condition. Likewise, if an instance of
Student is sent the message, the system uses
the message with ihe 2.0 condition.

If we changed our minds and later
wanted to use thesameconditionfor both,
wewouiddeletethemessage forGraduate-

(a) person - Person new.

(b) person name: 'Stefanot

(c) personList add: newName
before: currentName.

Id) name: aName
name-aName.

Object subclass: #Person
instance variables: ' name address birthDate '

Person subclass: #Student

instance variables: 'college class major currenteourses gpa '
class variables: 'HonorsList '

Figure 1. Class definitions.

May1987

Ce) name
tname

Figure 2.ta) Creating an instance; (b) mes-
sage modifying an i.slance variable; (c)
message with two arguments; (d) method
for the message name:; (e) method for the
message name.

51

Student. Then whenever an instance of
GraduateStudent is sent the message
passing, the system first checks its class,
and when the message is not found there
it goesup through the hierarchy to find and
execute a message with that selector.

Methods. Messages are implemented in
routines thatarecalled methods. Forexam
pk the method for assigningthe name of
ah instance of Person is quite simple, as
Figure 2d shows.The first line ofa method
always gives the form of the message. In
Figure 2d, name: is the message selector
andaNameisanargument. Theremaining
lines implement themethod. In thesecond
line the instance variable, name, of themes-
sage's receiver is ;assigned the value aNama

Similarlys Figure Ze shows the method
for the message used to retrieve the per-
son's name. Again, the first line of the
method is the form of the message. In the
second lint the instance variable, name
will be returned, as signified by the up
arrow (t), whenever the messages namt is
sent to an instance of Person.

Everytimeamessageissent toan object,
somethingisreturned. The returned value
may be significant or may merely inform
the sender that a requested action is com-
plete. This lets messages be concatenated.
For example, person birthDate month,
will return the month of person's birth
since person birthDate returns a birthDate
thathasaninstancevariablemonththatis

returned whenthe message month is sent.

Variables and scoping. To enforce the
concept of encapsulation, thereis onlyone
way to modify an instance variable of an
object - sending the object a message
Furthermore, if a variable appears in a

switchNamesWith: aPerson

ItempNamel

tempName - aPerson name.
aPerson name: name.

name + tempName.

Figure 3. A method in class Person.

52

method, it can only be one of six types:
• an instance variable in the class of

objects for which the method is defined,
• an argument of the messages
• a temporary variable local to the

method,
• a class variable,
• a pool variable, or
• a global variable.
Class variables areshared by aclass and

its subclasses, pool variables are valid
across designated classes, andglobal vari-
ables are shared by all classes.

In the method for name: in Figure 2d,
namemustbeaninstancevariable because
it is lowercase and it is in amethod defined
for instances of Person that have that
instance variablet The variable, aNarne, is

12, enforce the concept
of encapsulation, there

is only one way to
modify an instance

variable of an object.

an argument of the message There are no
temporary or other types of variables in
this method

Class, pool. and global variables are
used sparingly. Thus, in practice, wehave
a very restricted type of lexical scoping.
This strict information-hiding all but
eliminates scoping-related problems, and
names typically do not have to be modified
to avoid naming conflicts.

For example, consider the method On
Figure 3) defined for instances of Person
that when sent to a person, the receiver,
switches its name with that of Arson, the.
message's argument. Temporary variables,
suchastempNamein Figurel, aredeclared
by listing them in the vertical bars. They
exist for the messages execution life (Class
and global variables are used for longer
term storageand are notinthelocat mem
ory of instances of the class.)

Note the various uses of name. In the

first line of code, it is a message sent to
aPerson to retrieve aPerson's name, and
assigned to tempName. Because a Person is

not *ie receiver of the message switch-
NamesWith:, the only way to tetrieve its
name is to send it the message, name.

Thenextuseofnameisastheargument
ofthemessage name: in the second line of
code. In this cast because it is not declared
a temporary variable, it must represent the
instance variable of the message's receiver.
In this line, the name of aPerson ks medi-
fied to be the name of the receiver.

In the last line of code, name is the
instance variable of the receiver and is

changed to the name in tempName The
code in Figure 3 could have been written
with different names for the message setec-
ton. such as getName instead of name for
retrievinganameandsetName: insteadof
name: for storing a name.

We chose this example to illustrate the
freedom permitted by the Smalltalk lan-
guage; and this overloading of name
presehts no di fficulty in understanding to
the slightly experienced Smalltalk pro-
grammer.

There are some negative aspects to using
getName and setName:. First,

aPerson getName

is procedural in flavor while

aPerson name

is more functional and has more of a

natural-language flavors which contributes
to the readability of the code

Second, it precludes thesimple conven-
tion thatmessages withthesamenamesas
instance variables areusedto retrieve their

values, whilethosefollowed by a colon and
argumentareusedtostorethevalues. This
convention makes remembering the mes
sage selectors for instance variabies
straightforward.

Controt structures. Smalltalk control

structures are also handled via the object-
message paradigm. For example, a mes-
sage, do: aBIo¢k, can be sent tocollections
of various types to process each element.
Forexample,thecodein Figure 48 willpro-
cess each student in ciassList. The argu-
ment of the block has a colon prefix,
appears before the vertical bar, and is in
turn instantiated to each of classList's
elements.

IEEE SOFTWARE

The code following the bar is executed
for each :elementin the list and illustrates
theuseofaconditional. The condition, an
instance of fhe class Boolean, is enclosed
in parentheses and is sent the message if-
IhietifFalse:. Other conditional message
selectors are iftrue:. iffalse:, and ifi
False:ifTrue:.

Understanding objects. When working
with objects, an individual accustomed to
non-object-oriented languages may ape-
rience some unanticipated difficulties.
Most can easily be corrected oncethe sym-
ptoms are recognized.

For example; there is a tendency to take
the object paradigm too literally and con-
sider each appearance of an object asa
unique object. Certainlyin the real world,
an object can only be in one place at a time
Supposeaninstance ofthe class Card has
the instance variables suit and rank. A

hand is an Array that can hold as many as
five cards, and a deck is an Ordered-
Collection of 52 cards.

The code in Figure 4b will deal a card
and placeit at thefirstpositionin the hand.
Ifyounowinspect deckandhandusing the
inspector in Smalltalk ta tool for examin-
ing objects), you see that deck still contains
thedealtcard-andsodoeshand. Alitent

interpretation of object, that an object can
onlybeinoneplace,wouldsuggest to some
that these are distinct cards. Unfortunately
the inspector does not directly reveal
whether they are distinct or not.

Assuming they: are distinct might iead to
an attempt to set the suit and rank of the
card in ihe deck to nil to avoid redealing it,
which will result in making the card in
hand a blank card also. What in fact is

occurring is that the assignment statement
places a pointer in the variable aCard to the
same card in both collections, deck and
hand. Ihdeed, thecard exists in one place,
andaCard, deck, and handmerely provide
alternative access structures that point to it.

Fiearless programming
Whileit isdifficultto capture in an arti-

¢le the quite different sense of what itislike
to work in an object-oriented language and
environment, we will nevertheless try to
present some sense of the flavor of pro-
totyping in Smalltalk. What wewould like
to show, but can do so only partially, is that
thereis an undercurrent we characterize as
fearless programming.

Fearless programming encourages
experimentation with alternative
approaches to algorithms, application pro-
grams, and system design without the fear
of being caught up in a motass of detail
that is too painful to sort out. Moreover,
the system has arobust programming par-
adigm - the programmer can make bold
changes tothe systemitself and, even after
making significant errors, can often pro-
ceed through several different routes to
recovery without harm.

In fact, feariess programming has played
a large-part in our development of new
methods and faster algorithms for data
base normalization because it promotes
expenmentation. (We do not mean to
imply that good design can be ignored or
that good programming practices can be
violated, for even Smalltalk methods can
be created that have unanticipated side
effects or fail to be coherent and properly
modularized.)

Advantages. Naturally, the closer the
constructs in a language are to the entities
we deal with in the real world the less dif-

ficulty we lencounter in translating thereal-

classList do: [:aStudent I

(a)

world problem into a program. Object
Orientation is a majorstep in this direction,
sinceworkingwithobjectsseemsmorenat-
utal than working with constructs found in
standard languages.

For example, in a hon-object-oriented
language, if an element isretrieved from a
list or an array. as in the assignment state-
meht x:= array(5), then changes made to
x are not reflected in the contents of

array0) and vice versa. This assignment in
effect creates a duplicate element, and
duplicates can easily lead to inconsisten-
cies, since changes in one element are not
automatically reflected in changes in the
other,

This is not true when dealing with
objects. I f an object is retrieved from a list,
any changes made in the object are
reflected wherever the object is referenced.
For instance, if aCardisa temporary vari-
able and pointsat theobject thatis pointed
at inthe fifth positionofhand viathestate-
ment aCard - hand at: 3, subsequent
changes to aCard are reflected in theobject
pointed at in the fifth positioh of hand.

Consider what happens if we want to
group or sort the samecollection ofobjects
in different ways, perhaps for sequential
access via an Ordered¢ollection and for

direct access via a Dictionary. In this case,
changes made to the objects are indepen-
dentofthestructuresused to access them.

In Standard languages, you would either
have to create multiple lists, again leading
to problems associated with duplication, or
have to maintain multiplelists of pointers,
which leads to more complex coding.

(aStudent gpa > = 2.0)
iflrue: [aStudent printName]
ifFaI$e: [aStudent alertlnstructor]

hi some cases, the problem is not soeas- f aCard -deck dea]ACard.
ily diagnosed, particularly when thereare tb) hand at: 1 put: aCard.
several layers of complexity such as when
using the model-view-controller triad.
Khoshafian and©opeland discuss differ-
ent degrees of object identity.3 Figure 4. (a) Enumeration message do: and conditionals: (b) dealing a card.

May 1987 53

• 2• 244+ at·,M *M,WW>st#•e,·¥94**M Pa« 07*40*&Wit - 0,6«7%»

(Duplicatescan bemadein Smalltalk, but
they are not implicit and require sending
one of the built-in messages for copying
objects.j

The object-message paradigm and
encapsulation tend to promote a more
modular system because each message
represents a module: This is desirable
because smallermodules are easier to ere-
ate and understand. In addition. there is
also a tendency for each message to be a
coherent unit because the very notion of
sending messages focuses the development
of each method on the semantic intent of
the message.

And the reason the Smalltalk program-
mer ean focus on the intent of each mes-
sage - and is-not tempted to embed
additional functionality in messages - is
that problems of interfacing modules,
which are generally associated with
bottom-up development, are essentially
absent when working with objects and
messages. CNe view method creation as
bottom-up and class creation as
tap·down).

One reason interfacing problems are
minimal is that objects are generally passed
as arguments in messages, and their
instance variables do not explicitly appear.
Consequently, changes in an object's struc-
ture have no implications for a vast
majority of the messages in which they
occur.

For example, in Figure 3, wholesale
changesinthe structure ofthe class Person,
and even changes in the structure of its
instance variable, name (the one of pri-

jmary interest in the method), will have no
effect whatsoever on the method for
switchNamesWith:, and no changes are
required in any other method in which ihis
message selector appears.

Why? Because objects and their instance
variablesarenottyped. andihebinding of
objects to instance vatiables occurs at run-
time Late binding promotes fearless pro-
gramming because it lets the designer
postpone typing and structural decision&
notgermaneto the currentstate ofthepro-
totype· ,

lt has been our expenence that many
methods will notrequirechangesorrecom
pilation as the prototypeadvances.Those
that require recompilation are typically

small and require minimal time because
compiling is incremental.

The existence of predefined object
classes also contributes to this sense of

fearless programming in that you have a
wide selection of objects and messages to
choose from, thus gaining a considerable
head start in prototyping a system.

An additional advantage is that existing
methods can be borrowed in a variety of
ways. In some eases, the method can be
directly copied to another class without
change to its form or content. in other
cases, the message will retain the same

Whateuer problems arise
and whatever morass

you create tend to beat
highernather than lower

levels ofabstraction.

form - the message selectorsand argu-
ments remain unchanged, with only slight
modifications required in ihe method. This
often occurs when subclasses override
messages.

And, as indicated in the discussion of
Figure 3, this can be accomplished without
fear of difficulties arising from scoping or
namingconsiderations.Names donot have
to be artificially modified to distinguish
messages with the same selectors but can
be used with different classes and sub-
classes.

Perhaps the most important contribu-
tion to fearless programming, apart from
the environment, is that working with
objects and messages has important ana-
logstoworkingat thelevelof humancog
nition. Whatever problems arise and
whatever morass you create tend to be at
higher rather than 16wer levels of
abstraction.

The use of messages conveys much
about the semantics of operations on
objects, reducing theneed fordocumenta-
tion. (Other documentation requirements,
including managing hierarchies and mes-

sagess are handled by the environment.)A
great deal of clutter, unessential low-level
detail, iseliminatedfrommuch ofthecode
This is, in part, due to the existence of
predefined classes and messages.

For instancA there are various collection
classes Ontfuding Set, Bag, Ordered-
Collection, Array, and Dictionary) that
respond to the same messagi do: aBlock,
to enumerate the objects of the collection
and to operate on each in turn by execut-
ingthecodeinaBlock. Incrementingvari-
ables to process the collection is
unnecessary. (Furthermore, these struc-
turescan besubstituted foroneanotherto
improve performancein later stages of the
prototype, often without any other changes
in the code.)

In addition, objects are prepackaged
bundles toi parametersto bepassed asargu-
ments in messages and therefore tend to
reduce the number of arguments present
and to enhance the readabilityofthecoda

Example. This example demonstrates
these advantages. It is drawn from our
work on relational databases but is simpli-
fled here. We will call a functional depen-
dency a statement of the form #-b that
we can readas"aimplies b," as inproposil
tionallogic. Itis possiblethat, given acol-
lection Fof functional dependencies, some
dependencies are redundant.

Removing redundant dependencies
from Fis important in relational database
design. For example, given the collection

F={a-h,b-Ga-c,b-die-el

the third functional dependency is redun„
dam since it can be derived from the first
and second using the transitivity rule:

if a- b amdib-c,then a-c

There is a straightforward algorithm to
determine if a functional dependency is
redundant. As anillustration, to show that
the functional dependencyf = 0 - 0 is
redundant, first form F' = F - {f} (delete
f from 4

Now pass through F' as many times as
necessary to discover all attributes implied
by the left side off, {a}. All implied attrib-
utes, including 0, are placed in a collection
called closure, the closure o f u with respect
to F'.

IEEE SOFTWARE

--#t -4

 In this example, closure = {o,b,c, d} at
-the end of the passes over F: If closure
containstherightsideoff, thenfis redun
dant, which is true in this example, and it

3. is deleted from F.
f A natural starting point for developing
3 animplementationtoeliminateredundant
4 functional dependencies is to define a class
93
 called Fune:tionalDependency. This class
fi can be made a subclass ofObject because
5 no other class exists for which it would be
*t6. a natural subclass.
3.* It also seems appropriate to create two
9 instance variables to represent the left and
. right sides Ohs and rhs)of the dependency.
1 The declaration is

f Object sub©lass: #Functiona]Dependency
i instance variables: ' ths Ths '

Themethods fornew,ths:,rhs:.]hs.andrhs
f caneasily becodedtocreatean instance of
f FunctionalDependency and to set and
4 retrieve the values of its instance variables,
: respectively. We store the set o f functional
£ dependencies F in a collection named
I SetOfFDs.
€ Itis quite striking just how quickly and
: with W such little code this and other
'4 algorithms can be implemented in

i i Smalltalk,
Structural changes. Now suppose that,

after having developed the algorithm out-
lined above, we believe it would be more
efficienttomark a functional dependency
fas inactive rather than to delete it from the
SetORDs to form F' and then reinsert it
into Pif it is not redundant.

This can easily be achieved by adding a
new instance variable, active, to the class
Functiona]Dependency. No other method
defined onthis class nor anyother code in
which functional dependencies are passed
as arguments or sent existing messages
neted be changed to accommodate the
addition of the new instance variable.

active before using it in computing closure
and resetting active to true i f the functional
dependency is not redundant. At this stage,
the method for eliminating redundant
dependencies mightlook like the code in
Figure 5.

TheSetOfFDsinFigure 5 maybeanyof
several predefined classes of collections in
the Smalltalk system. Thus we can freely
change the stfucture of the SetOfFDs to
determine which gives the best perform-
ance When this method is compiled. it is
not necessary to have determined which
class the SetOfFDs comes from because of
the delayed binding.

Notethatthe functiohal dependenciesin
Fabove are not grouped by common left
sides. Some algorithms require that they be
grouped this way. One approach is to sort
SetOfFDs according to their left sides.
However,ifthe originalset must be main-
tained (to allow. for example, direct access
to functionaldependenciesif SetOfFDs is
a dictionary), we can easily create collec-
tions using existing Smalltalk classes,
denoted here as DepWithLHS(X), which
willcontain thedependencies witha com-
mon left side X.

Butsinceweareworkingwithfunctional
dependencies as objects, if a functional
dependency accessed from DepWith-
LHS(X) is made inactive, it will also be
inactive if accessed from SetOfFDs. The
change to the code in Figure 5 to accom-
modate the change in the algorithm is
straightforward.

Alsoy wehaven'tyet written the method
for computing closures, which is used in
the second line of Figure 5 by sending the
message closure to the left side of each
functional dependency, closure - eachfd
Ihs closure. Asthecodein FigureS is com„
piled, the system will notify the program·
mer and give an option to proceed and
define the missing message later.

When developing our algorithms, we
tried many approaches to computing
closures. Some were conceptually similar
but had different efficiencies, and others
were conceptually new In all cases, very lit-
tle code had to be changed to accommo-
date the different versions of closure;
Elearly no changes were required for the
code in Figure 5, andit was straight forward
to borrow extensively from one version to
the next.

While Smalltalk code may seem a bit
strange because of un familiar naming con-
ventions and syntax, it is generally true that
after some initial difficulty it seems quite
readable. Unessential details do not clut-

ter the code,as Figure 5 shows. Onlyinfre-
quently are lines needed to increment
variables; parameters are not required for
invokingroutines, as they arehidden in the
instance variables of the Objects; and ines-
sages are simple, and their names reflect
much of the semantics of what they do.

If a message is not understood by the
programmer or reader of the code, it can
be quickly examined. We do not mean to
suggest that this cannot be accomplished
in other languages, but it seems to occur
more naturally in Smalltalk.

Conceptual changes. While implement-
ing various types of closure in Smalltalk,
wediscovered a new approach to eliminat-
ing redundant functional dependencies. It
involved deactivating atl of the functional
dependenciesina given De#WithLHS¢X).
As a result, we couldn't use the instance
variable active to determine if a functional

dependency was redundant.
One of the changes required to accom-

modate this was to introduce a new
instance variable. redundant, for the class
FunctionalDependency and to set its value

Consequently, a great deal of recompil-
ing and relinking will be avoided. The
changes will be isolated to modifying the
method for the algorithm. This simply
involves replacing statements for removing
functional dependencies from SetOfFDs
to form F by statements for setting their
instance variables active to false, testing
whether a functional dependency was

May 1987

SetO,FDs do: [.eachrd I eachfd active: false.
closure + (eachfd ihs) closure.
(closure includes: (eachfd rhs))

ifFalse:[each fd active: truel].

Figure 5. Eliminating redundant dependencies.

55

%%*$4414

689*em.Brome¢
it =42< 4 # I.

brUnkedlist copying 1 a.dd:before:93«Fit[4
9 Collections-Text MappedCollection adding344%499«- addA!1: ·*

. 542>Q Collections-Array Orderedgellection removing addA\Wwst. 9,
>#* Collections-Streal Sorted¢ollection enumerating addAI[Last: - ¥1

* Collections-Suppo private addFirst'. '

2% Graphics-Primitive. --**-------- addlast: 0
mm# Instance class 1

*I
* add: newObject before: oldObject .>44

2%

X Ii@

f
A

. "Add the argument, newobject, as an element of the receiver. Put -54
f*it in the position Just preceding oldObject. Answer newObject." 04&*-i9%

1 index 1

1· 9: 4
-%4 index + self find: oldObject. 4*/2 5

self insert: newObject before: index.
tnewObject

'40. .1
3% i

. 1-1
93.:

1/

Figure 6. The system browser.

to true when a given functional depen-
deng was discovered to be redundant. (For
several reasons, we chose to save redundant
dependencies rather than discard them.)

Though this is a small change, it
nevertheless hints at how changes made at
the conceptual level can be translated
directly into messages and objects. This
shows thattheway wethink aboutentities
in an application can be translated directly
into two fundamental aspects of an object,
its attributes and its behavior. Of course,
other parts of the code in other methods
were affected by changing the semantics of
theinstance variable active. The Smalltalk

environment provides the tools to work
rapidly through the effects of these
changes.

The Smalltalk system promotes trying
alternatives. The time required to restruc
ture objects, modify methods, create new
methods, locate the effects o f changes, and
recompile the code to experiment with it,
is muchless of a factor in the cost/benefit
mtio than you would incur if working with
most standard languages.

AIso, most changes occur at a high con-
ceptual level, so it is more like working with
changes in the specification than with
changes in the code. However, we do not

56

claim that Smalltalk is close to achieving
the software engineering goal of directly
compiling specifications.

Environment
While encapsulation and hierarchy form

the basic foundations of the Smalltalk lan-
guage, it is the rich environment that lets
you work with its many classes, methods,
and messages.

In Smalltalk. there are several window
types available. These windows can be
created, moved,reshaped, collapsed, and
closed using a three-button mouse (some
systems use a single-button mouse). Mul-
tiple, overlapping windows can be on the
screen, and you can move from one win-
dow to the next to carry out different or
related tasks.

Code can be modified and run from
different kinds of windows, and applica-
tion windows can be activated and deacti-
vated. This is particularly useful i f an error
turns up while debugging an application
and recovery from within the application
is not possible.

The convenience of doing different
things in the system quickly and efficiently
Adso contributes significantly to feartess
programming. You aren't caught up in the

time-consuming cycleof doing something
in edit mode, exiting and entering compile
mode, exiting and entering run/debug
mode, exiting and returning to edit mode
to make changes. Tesler4 has discussed the
philosophy behind modeless environments
and the early Smalltalk interface.

Organization.Because thereisno single
linear command list, beginners often won-
der where the program is. Programming in
Smalltalk is mainly adding new classes and
messages, creating objects. and passing
messages. Thus, being able tomovearound
the system easily and to work with individ-
ual classes is critical to productive
Smalltalk programming. The system
classes are organized in a hierarchy withthe
class Object at the top, but you don't have
to remember the exact hierarchy while pro-
gramming because the interface provides
a convenient organization method and
access to the system classes through the sys-
tem browser, shown in Figure 6.

The system browser window contains
several panes, each with its own menu of
actions. The second pane from the left
along the top contains the name of classes,
and the fourth pane contains message
selectors. The first and third panes catego.

IEEE SOFTWARE

-I -1 j

w;g u.529ml 14»dk*04«*:fl&%***%*%*%%*Fj.§9%9%=P#>Z
I y»

pr\nt out n,.......
{f V///////////////F. + spawn..-Ic. 7

t.4 ··· spawn hierarchy
.4 L f hierarchy...'4
#/ -rize similar types of¢lasses andmessages,

respectiveli-- -· - . >,i ---comment
i In Figure 6. the category of classes protocols -firaWv.avedil selected Ondicated by reverse video) is stem-Compi FDIndexe=0nst, var rers»f-------Collections-Sequenceable. This class cat stem-Relea Fds class var refs ze
¢ egory contains classes linearly structured.One such class, OrderedCollection, is s-Strearns ,si, FUncti ClaSS refs Sing

selected inthesecond pand -interface Schema · rename -------
-- remove1 The instance/class pair at thebottom of

1 the second pane is a toggle If instance is
f

selected (as shown), what appears in the
panes tothe dghtand below willpertain to

a05113ed. it3ncersifnemChocts
4 sent tothe class, which is also considered
A an object.
. Thevanouscategories ofmessagesthat
* can be sent to instances of Ordered-
 Collection are shown in the third pane.4 Here,we have selected messages for adding
 objects to an ordered collection. The actual
5 messages for adding are in the fourth pane
6 with the message add: before: selected.
% The method for this messageis shown in

thelargepaneatthebottomofthebrowser
4 window in Figure 6.
54
11
4 Using the browser. For the most part,
4. the browser is used to create classes, create
li messages and methods, and to browse
4 through the system. Tb indicate how these
f tools can be used tomake changes, recall
, the example of working with the class
f Functiona]Dependencies. There was a
f change in the semantics of the instance
N variable active when the instance variable
£ redundant was added to the class. This
4 required examining all the methods that
4 mightbeaffected,sowewanttoreviewall
0. methods that modify or retneve the
4 , instance variable active.
€ There are several ways to do this. One
1 way is to select the class Functional-
fj Dependency in the browser. We can then
0. get a pop-up menu (Figure 7a) and select
9£A the item, inst var refs. Another pop-up
f menu appears (Figure 71,) that lists the
. instance variables for the class

FunctionalDependency. By selecting the
variable active, we get a window showing
all methods where this instance variable

i appears (Figure 74
By examining eachmethod, we seethat

4 the message active: modifies the value of
the instance variable active and the mes-

May 1987

anstaAt

ject subclass: #Functiom
instancevarlableNames:
r.las<VAriahlor,lar¥,09: "

(a)

/ class I
dDependency
'Ihs rhs active '

es ----------
Initialize

'*',,t7 accessing

-// class
apendency
5 rhS active '

ge in active's semantics requires
in the method. Whatever the
nay be, we can make them in this
its top part is shown in Figure 8)
pile the code there.
items in the menu in Figure7d -
implementers, and messages -
very effective message tracers.
Nessages with the same name (but
functionality) might be imple-

57

.:34%20% 2 43%96%99?ty?%?30*49.67*
=Syst#mler¢*384&* a / *9«if 85?0i.f

System-Compi FDindex
System-Relea. Fds
Files-Streams Functic,1
OS-Interface i Schema

Object subclass: #FunctionaID,
instanceVariableNames: 'Ih
classVariableNameS: "

pooIDictionaries: '1
category: 'DB-Design'

(b)

Figure 7. (a) Class pane menu; (b) instance variables

sage active retrieves it. After selecting the the chan,
method for active:, we can get a pop-up changes
menu in the same window (we don't have changes i
to return to fhe browser) from which we window (
can select an item, senders (see Figure 7d). and com

In this casey we are asking for all Three
methods thatuse(send)themessage active: senders,
in their code; the result is-the window can be
shown in Figure 8. By selecting each Again, tr
method. we can examinethecode toseeif different

. . 241*i

-. :ke'. I>X ' '

aol 2*3

FunctionaIDependency active
FunctionaIDependency Ihs:rhs:
Functiona]Debenden©voactive:

- : aBoolean

For browsing, a selection in the system
browser's code pane, explain,is very help-
ful. You can select any token in a methods
and theexplain selectionwillindicate what
type of token it is (class variable, global
variabld nameofamessage,andsoon)by
inserting explanatory text in reverse video
in the*method display in the code pant

active + aBoolean

(C)

pnnt out
stjawn

irs

5

:ally and semantically
)ower of the complete
ibutes significantly to
lg.
code is compiled into
m, called bytecodes,
:ed. This compilation
y as new classes, ines-
3¢iated methods are
dayed in thecodepane
compiled through the

ins a syntax errors an
e is inserted into the

. Because the message
can easily be cut. the

1, and the method can

Functiona'Dependency activ -senders
FunctionaIDependency Ihs:rh Implementc
Functionaleeber,deneviactiv

message:
L move

MM: aBootean remove
active + aBoolean

(d)

Figure 7. (c) Methods using active; (d) finding senders of active

mented in different ctasses in the system, and correct syntactk
and a given method might use messages incorrect code. The i
from other classes.Theitem, messages, can tool collection contr
be selected directly from the menu in Fig- fearless programmi,
ure 7d; itisalso a menu option for the top Smalltalk source
pane in Figute 8. Selecting it will quickly an intermediate foI
Beta menu of all messages in theselected thatis thehinterpret
method, as illustrated in Figure 9. If we is done incrementall
select any of the messages in the menu in sages, and the assi
Figureg, wewillgetanotherwindowofthe defined. Codeisdisp
type shown in Figure 8, which lists all of the browser and is
classes where a message of that name is menu for that Dane.
implemented. Wecannow select one class If the code conta
andinspectitsmethodinthelowerpaneof appropnate messag
the new window. codein reverse video

These facilities help the user browse is in reverse video, it
through the system, as wellas debug. In codecanbecorrectei
addition, the system has utilitiestoidentify be recompiled.

58

Debugging. Whilechangingtheseman-
tics of the instance variable active and

introducing the new instance variable
redundant, suppose we failed to initialize
redundant to false when creating new
instances of FunctionalDependency.This
would lead to problems, which can be
traced with the built-in debugger.

One approach is to place a halt in the
code where the problems arise On this case
the method for eliminating redundant
dependencies) and to step through the code
and examine the objects. When code is
executed, a notifier will appear on the
screen to indicate that a halt has been
encountered. You have the option to pro-
ceed past thehaltortoenter debugmoda

If you choose to debug, the window
shown in Figure IOappears, and themenu
appearing overthetop pane can be
obtained. The toppaneofthewindow con-
taihs the current activation stack - the list

of messages leading to the halt. This list
can be scrolled, and individual messages
can be selected. Codefortheselectedmes

sage is displayed in the middle pane, and
the bottom two entries in the top pane's
pop-up menu can be used to run through
a stepwise simulation of the program.

Selecting the item, step, executes the cup
rent selected message (redundant in Figure
10) and moves you to the next one
lifFalse.). Selecting the item, send. enters
the methodfor theselectedmessage,which
then displays in the middle pane and can
be treated the same way. The lower left
pane contains instance variables of the
message receiver displayed in the middle
pane, and the lower right pane contains
current values of aII temporary variables in
that method. The value of the loop varia-
ble, each, is an instance of class
FunctionaIDependency at this point.

Youcaninspectthisobject. as Figure 11
shows. The result is the window in Figure
12, where we have selected redundant,

IEEE SOFTWARE

P'¥;,«*t#** ,f'7'

Cover eliminateAftsandDeps
*Joverjeuminaterieaunaantuenendenctes
Cover linearE:iminatenedundanti:)ependencies:

eliminateRedundantnependencies

self do: [:each 1 (each active)
ifTrue: [each a.ative: false.

(each Ths isSubsetof: {each Ihs closure: self))
ifFalse: [each active: uu€III.

1 ..3%*, .. 2% ..ty#* t ...A
y>,92 »

Figure 8. Senders of active:.

whosenit value showsinthe right pane and
reveals theproblemthatredundantwasnot
initialized. Chapter 19 of the Orange
Book5 gives a more detailed description of
the debugger.

There are other ways to invoke the
debugger. For example, if a halt had not
been placed in the code, a notifier would
appear during execution upon test of the
nilvalueof redundant. Thenotifietwould
indicate that a non-Boolean receiver had
been encountered, and three options would
be available:

0) Set the value of the receiver to true
and proceed with execution.

(2) Enterthedebuggerat thepoint of the
problematic code.

0) Stop the errant process simply by
closing the debug window.

%*49*4*16*48888**ses'$86/8380,8-F*«.am*»:44.*32/948ij#*425116:*7:4«.
active
active:

*»44*49% blockdopy: 1/.1/39*92./

ntDependencies: -closure:
do:

:ies isSubsetOfl
ms

tiVe) rh5

ach *dtive: false.
aach Ths isSubset(>f: (each Ihs closure; self))

ifFalse: [each active: true]]1.

In the second case, the debugger window
has the form of the one in Figure 10, and
the programmer can proceed as above. The
debugger is aparticularly nice tool and cer-
tainly helps make runtime errors much
more tolerable during program develop-
ment. lt can be very confusing to the begin-
ner, however, as thedepths of the codeare
explored with the option send. Forexam·
plc, a user who doesn't know how system-

May 1987

Figure 9. Messages in a method.

defined control structures are implemented
could be confused bythesystem code when
it is encountered.

ModifyingSmalitalk. Fearless program-
ming gives users confidence to attempt
extensivechanges in thesystem, even ones
to the predefined classes. An example of

major restructuring from our database
project would be too detailed to develop
here, but we can give an example that has
pervasive implications for the system.

We needed various ways of writing bit-
maps of parts of the screen out to files, and
the system did not already have all the
necessary functionality. To capture bit-

59

.,. '. -,\ 64 66 4 2.- 71 0 0\ .
. '•. t«¥464 97 442*25'99 3

I ..9.:3·46* I.

f=

[*ffinfCover»elmrinatemedundanteebenden
Cover(OrderedCollection)»do:
Cover>>eliminateRedundantDopendencles
Undefine#Object»Doll:

eliminatenedundantDependencies

%==%1/2jas'/ full stack

proceed
restart

senders
implementors

messages
estep

send

Self halt.

self dot [:each 1 (each
ifFalse: [each active: false.

(each rhs isSubsetOf: (each Ihs closure: :self))
ifTrue: teach redundant: true]
ifFalse: [each active: truell].

self each

firstindax
lastindex

Figure 10. The:debugger.

maps with pop-up menus displayed at the
time of capture, we had to deactivate the
menus so they could be brought up on
screen to havetheir picture taken without
havingtheselected messagesentwhenthe
button was released.

tb achieve this, we added a class varia-

ble, Active, to the class PopUpMenu,
which governs pop-up menus, through
which essentially all actions are initiated.
If Activeis true, al! actionsthrough menus
will proceed as usual; if Active is false, a
conditionalplacedinthecodeforsending
menu messages returnsa noopvalue when

the mouse button is released, and themenu
disappears with no action taken. We then
defined a two-key sequence to toggle
Activa

This change is very powerful becauseit
covers the predominant means by which
actions are taken in the system. This also
makes it dangerous.It indeed led toseveral
interesting debugging problems, two of
which we will illustrate.

lfTrue: [each redundant: true]
ifFalse: [each active: true]11.

1 --------- a Functioi

.in#pett

Figure 11. Inspecting a·temporary variable.

iaIDependency-

Fatal error. 1 f the class variable Active

is defined, but initialization totrue or false
i neglected, its default value will be nil. If
ahything is then executed through a pop
up menu, this nil value for Active will be
encountered in the conditional code, and
a notifier will appear. The menu for this
notifier contains two options, proceed and
debug, which would ordinarily function as
described above.

In this case, however, using the middle
button to generate the pop-up menu from
which tothoosean option would result in
consultation of thesame conditional code,
which would again find diat-Active has the

60 IEEE SOFTWARE

=39

*49*4*··{4»*4»**tM#fl'M?*490, r

94*
value nil. This would generate another
notifier. which in turn would generate
another notifier if we selected proceed or
debug, and so on.

Anattemptto¢]osethiswindowwiththe
mouse and thus stop the process would
also generate anotifier. The toggle mech-
anism could not now be used to set Active
becausethatmechanism uses aconditional
based on Active being true or false. Fur-
thermore, you cannot shut down the sys-
tem because a pop-up menu is also
required to do so. The only choice in this
case would be to abort the system itself.

To guard against major damage under
such a condition, in fearless programming
you take snapshots of the entire environ-
mentfromtimeto time After an abort, the
system can immediately be recovered at the
last snapshot, and all changes in the
interim can be recovered from the changes
file

prevent extricationfrom such a predica-
ment without aborting theimagi Theper-
manent fix to this problem was relatively
straightforward. The main point is that we
changed the sysiem during an application

Infeariess programming
you take snapshots of
the entire environment

.from time to time.

run when our modifications cut too deep
- and this ability contributes to the sense
of fearless programming.

The environment in geheral - not just
the debugger - has the tools needed to
build, examine, modify, and test code.
These tools are readily available and not

limitedorconstrainedby modeorcontext.
Building, examining, modifying, and test-
ing code are all related operations. While
uging the debugger, for instance, you aren't
trapped in it, You can browse, modify code
and carry out a variety of tasks.

One measure of the Smalltalk environ-
ment's effectiveness is the extent to which

hard copy is unnecessary during applica-
tion development. Initially you use hard
copyto sketchideasand code, butas devel-
opment proceeds your work becomes vir-
tually paper'less. Theonly reason for print-
ing out code is to carry it away from the
machine or for backup. Because we have
always had to use printouts of various iter-
ations of the ¢ode in other languages, we
believe this to be a strong indication o f the
Smalltalk facilities' effectiveness.

Avoiding a system abort. Our initial
attempt to name the bitmaps we were cap.
turing illustrates a selrious problem that did '' - ..F:32322232%22-and 44*4**44
pane of a window that produced a small ----------- 11 :#*
windowtotypethenameofthemetostore - self
thebitmapin, providedthevalueof Active es lh:s *&%is false. Unfortunately. when this code is rh s
executed, the naming window that auto- . m
matically pops up uses an instance of active.
PopUPMenu, whichalsofindstharActive tedun,la:ntt
is false, and which therefore produces a # ----------- " .4.

new window asking that the naming win-dow be named. ach .Unlikethepreviousexample, theentire ach
system functionalitywasnotlostandthere IfT
was amoreetegant solution than a system

V&

abort. We can togglethevalueof Active to ifF
true with the appropriate key, activate a
system browser with a single click of the
mouse, find the offending method in class a

PopUpMenu, change the code by deleting 1 ----7----- a Functiona]Dependency *%;*
theconditionalon Active, and recompile 4.-*+Xt#>*:

the method. When we return to the run-

ning application it will use the new, j ,%02*
incrementally compiled codeandstop ask- 1 'R:*.:k

i Mism.»»ing for naming windows.
There will ofcourse be several stray win,+

dows on the screen that will have to be

closed. and there are various conditions in
different versions of Smalltalk that might Figure 12. Viewing an object.

May 1987 - 61

,;.' 4, J.i. .4+,™<W'9:/•2:fi,brie,;f2:: w> 5,393,S·p>472 J'c:y<?i'**43+»'92»**5f*i***%@*22%8¥f**#*p»*:********,,g*,****
.

9

Other window types. ln addition to the
system browser and debugger windows,
there are several other important window
types. Code written in a workspace is not
compiled into the system, sothe workspace
is generally used to try out existing mes-
sages, run applications, and develop and
testnewmethods. Afile list window is used
to interact with the underlying file system.

Some versions of Smalltalk have win-
dows to interact with modules written in
other languages. Other windows, called
system transcripts, let the system note that
actions have been accomplished or special
conditiohs have been encountered.
Another window, called a system work-
space, contains commonly needed code
segments. A template for such segments
can be modified in the system workspace
and be executed on the spot.

For example, we might know that some
class implements the message, suspend,
but not know which one. We can activate
a system workspace and locate the
template

Smalltalk browseA}1ImplementorsOft
#keywordSymbol

This can be easily edited to

Smalltalk browse,All] mplementersOf:
#suspend

k canthen be selected and executed, and
the result will be a window such as that
shown in Figure 8, which displays all
methods that implement the message
denoted by suspend.

Although Smalltalk provides,excellent
facilities to browsethe structure of classes

and objects and to examine their messages,
it does not provide adequate facilities to
examine the behavior ofa complexappli-
cation. Cunningham and Beck6 have
reported one effort to remedy this.

Misconceptions
Three Smalltaik areas are often misun.

derstood.

Performance. It is commonly believed
that the abundance of high-level features
the uniform object-message implementa-
tion, the delayed binding of variabletypes,
and the graphical capabilities of Smalltalk
yield a system with poor overall per-
formance.

62

In part, this can be attributed to the fact
that the initial prerelease copies dis-
tributed by Xerox PARC to participating
companies for refinement in the early
19808 were quite slow on different hard-
wareimplementations. It also did not help
the performance image of Smalltalk that
a major implementation on a VAX was
particularly slow in a time-shared environ-
ment, and that the project thus limited its
emphasis to implementations on worksta-
tions.7 And it is well known that an

absence of data typing and the lack of a
global optimizing compiler typically exact
heavy performance penalties.

1143 have found that
there are nonenhanced
commenial versions of
the language that are

quite fast.

Research is now under way to add per-
formance enhancements to Smalltalk. such
as improved garbage collection, faster
alternativestothebytecodeinterpreter, and
typing facilities. With a data-typing facil
ity, you could delay ali bindingduring pro-
totyping and product development for
maximum flexibility and then identify crit-
kai sections and optimize, using data typ-
ing ahd other methods of fine tuning, for
the mature application.

We have found, however, that even with-
out such enhancements, there are commer-
cial versions of the language that are quite
fast. In particular. we implemented and
tested database normalization algorithms
in MProlog and Smalltalkon a Tektronix
4404 and found Smalltalk to be about 15

times faster than MProlog. Afterperform-
ance tuning in both languages, which was
far more straightforward in Smalltalk, the
gap between the two languages roughly
quadrupled.

Justin casewesimply had a particularly
slow implementation of MProlog, we
implemented and tested one set of prove-
dures to find graphical shapes inpointsin
the plane in C, Smalltalk, and MProlog -
and the results were striking, The MProlog

program was about 80 times slower than
theeprogram, but theSmalltalk program
was a bit less than two times slower than
the C program. The only performance
enhancements we made were to correct
obvious inefficiencies in the eode.

For examples the Prolog program as
originally publisheds was 500 times slower
than theCprogfam, and witha fewrather
obvious inefficiencies made for a rather

un fair comparison. Some twiddling of the
Prolog code eliminated a large amount of
unnecessary backtracking and lowered the
ratio to 80. We also ran the C program on
a VAX 11/750, and the runtimes were
Within 15 percent of the runtimes on our
workstation.

These limited tests certainly cannot even
begin to characterize the performance of
Smalltalk relative to MProlog and C, but
they underscorewhat we had discovered:
On our workstations, Smalltalk is very
responsive during program development,
and it performs quite well on the type of
computation and data manipulation we
are using.

The performance standard, which
different versions of Smalltalk ondifferent
machines are measured by, is the lan-
guage's performance on the Xerox Dorad«
on which it is very fast. The Dorado is a
descendant oftheXerox Altoandis ahigh-
performance experimental micropro-
grammed personal computer with a
microc*ie time three times faster than the
VAX 11/780.

There are commercially available work-
stations that run special Smalltalk as fast
or faster than the Dorado. This perform-
ance is excellent and makes for an out-
standing software prototyping environ-
ment. We wouldbe willing:to pay a far big-
ger performance penalty than we now pay
in a language like C,for example, for the
productivity gains we have achieved in
Smalltalk.

Smalltalk provides system faciiities to
trace execution at varying degrees of
granularity, to time code blocks, and to
identify critical sections. There is a class
named Benchmark that contains methods
for micro and macro benchmarks to meas-

ure the relative efficiency of different byte-
code interpreters.

IEEE SOFTWARE

.'

Applications. Many commercial adver-
tisements for Smalltalk characterize it as an
artificial intelligence language* Indeed it
maybe excellent forawide variety ofarti-
ficial intelligence applications, and we are
using it to create a production system for
database design. However, it seems to be
far more general-purposd and it is not
generally considered an artificial intelli-
gence language by the artificial intelligence
community.

The object·message paradigm provides
apowerful general·purpose programming
language. The graphical capabilities pro-
vide high-level primitives not only for the
development of interfaces but for domains
that need to use graphics. Built-in classes
providean excellent foundation for many
applications.

Agoodexampleof built-in capabilities
for other purposes is a set of classes that
support discrete-event simulation. As a
descendant of Simula, Smalltalk contains
the basic mechanisms to support quasi-
parallel processing, through the classes
Process, ProcessorSeheduler, and
Semaphore. These allow process descrip-
tion and referencing, dynamically gener-
ated processes, and delimited and
sequenced active phases o f processes, with
or without reference to the concept of sys-
tem time.

Important capabilities are scheduling
and executing processes of different priori-
ties and easily suspending a process and
resuming it later. Higher priority processes
are executed before lower ones, and events
with the same priority are handled on a
firstcome, first·served basis.

Part three of the so-called Blue Book*
Smalltalk reference is devoted to discrete.
event simulation. It develops the basic
classes in addition to the buiINn ones, and
it develops several of the applications in
Birtwistle's booktosufficiently to provide
an excellent basis for simulation.

There are numerous significant errors in
the simulation code in part three of the
"corrected" first edition of the Blue Book,
but these are being repaired and some of
the code has been streamlined. One disad-
vantage of working with the simulation
ciasses isthat thedebugget does notfunc
tien well while tracing the suspensionand
resumption of processes. A simulation

May 1987

trace can be started in the debuggers but
counts of activeprocesses start to degrade,
and certain debugger windows are not
functional without coercion (such as hit-
tingtheabort key). For debugging complex
and lengthy processes, the usercannot rely
on the debugger.

Graphical paradigm. The basic para-
digm for handling:graphical applications
in Smalltalk is through the model·view-
controller triad. For the display of an
object, the object itself is considered the
model, the graphical layout is the view, and
the coordination of userinputs to examine
themodeland thedisplayisdonethrough
the controller

Simpleandcomplex nested views maybe
created and manipulated. Basic classes
handle generic views and controlIers, and
the system interface itself is handled with
theMVC, providing arichset of tools serv-
ingas models for the programmer's devel-
opment. Unfortunately, thepromised and
tong-awaited tome from Xerox PARC on
how to use the MVC has not been pub*
lished,which leaves a holeinthedocumen
tation.

Coupled with the richness of the system,
this makes learning to use the MVC a for-
midable task. Like the overall Smalltalk
system itself, the MVC is rich and power-
ful, ahd thisrichnesscontributes totheini-
tial learning difficulties.

Apparently grumbling about using the
MVC is relatively common, and it is
rumoredthatanalternativeissought. The
concept of a pluggable view removes the
need to build each application from
scratch, but it certainly does not represent
a radical departure from the MVC. Indeed,
the Apple version of Smalltalk uses

anotherApple product, MacApp. heavily
to build userinterfaces in Smalltalk - a
departure from using the MVC.

Thus, while Smalltalk contains a well-
integrated set of graphical primitives, the
beginning Smalltalk programmer should
not expect to find aquick and easy path to
developing graphical applications.

Learning experience
Smalltalk is not easy to learn, even if you

have considerable experience with standard
languages. TheBfue Book and the Orange
Book are excellent references, especially
when coupled with the extensive on-line
documentation - but they are not good
textbooks.

The Blue Book deals mainly with fear
tures of the language, while the Orange
Bookdeals with the environment. But the
system issonch andso well integrated that
it is not easy to decompose the talsk of
learning itinto subtasks. It is like the elas-
sic chicken-andlegg situation-the rich set
oftoots can beusedtoovercomethecom-
plexity of thesystem, butat the sametime
youhavetowork with the system forsome.
timebeforeseeinghow the tools can make
a significant difference in working with the
system.

We think learning Smalltalk is not like
learning alanguagebutlike learning a cul-
turd Over time, improvements in methods
of learning the system should emerge, but
the current paradigm involves intensive
reading of bothreferencebooks, browsing
the systemon line, writing your own appli-
cations, and frequently moving from one
reference or source to another. Fortunately,
learning thesystem posesonlya short-term
disadvantage, but long-term productivity
gains may beworth theinitialinvestment.

63

*Pr»t

S malitalk promotes high productiv.
tty' and reasonably low rework.
While this may serve as a general

characterization of feariess programming,
1 02 9 there are some specific characteristics to

consider in determining the extent to which
a system promotes it. Briefly, fearless pro.
gramming is:

•Referenceless. The system manages
pointers to structures (objects in
Smalltalk).

• Clutterless. The system abstracts out
low-level detail.

• Typeless. *pes need not be declared,
so design decisions can be made tlexibly.

1

Acknowledgments
We'd like to express our appreciation for the

many helpful comments by the referees.

i References
 1. Glenn Krasner, Smomalk-80: Bits of His-

tory, Words of.Advice, AddisonWestey,
Reading, Mass., 1983.

2. Jim Diedetich and Jack Milton, "Oddessy:
An Object-Oriented Database Design Sys-

0 tem," Proc. Third Int'/ Conj. bata.En:A
neering, Computer Society Press, Los
Alamitos, Calif., 1987.

3. Setrag Khoshafian and George Copeland,
*ObjectIdentity."Proe.Fin#Ann. Conf.

1 . Object.Oriented Programming Systemt
\ f , , Languages, ind Applications, ACM, N¢>N
9 1 York, 1986.

4. Larty 'reslet "The Smalltalk Environ-
ment,- Byte, Aug. 1981* pp. 904147.

5. AdeteG¢Adberg,Smalltatk-80: The Interak>
five /¥ogramming Environment, Addison·
Wesley, Reading, Mass., 1984.

6. V, trd Cunningham and Kent Beck, "A Dia-
gram for Object-Oriented Programs, Proc.
First Ann. Conf. Object-Oriented Pro·-
gramming Systems, Languages, and Appti·
corions, ACM, New York, 1986.

7. David Patterson, ··Smalltalk on a VAX,"
Smatitalk-80Newsietter, Feb. 8%4,993-4

: | f c j f) ij (available from Xerox Corp., Pato Alto,
Calif.).

t:

64

• Modeless. Actions can be taken at will
within the programming environment.

• Paperless. The system manages
documentation, and theprogrammerdoes
not rely on hard copy to maininethe work.

Certainly for experimenting with
algorithms, for rapid prototyping systems,
and for d6veloping programs that need
highly interactiveand graphicalinterfaces,
you can expect a net gain in return for the
investment of learning Smalltalk. One of
the major advantages is that the object-
message paradigm greatly helps conquer
system complexity.

While the researcher interested in

8. PSO. Swinson, "Prescriptive to Descriptive
Programming: A WayAhead for CAAD,"
Proc. Logic Programming Workshop,
Architecture Dept., Univ. of Edinburgh,
Scotland, 1980.

9. Adele Goldberg and David Robson,
Smantalk-80: TheLonguage andils Impte-
mentation, Addison-Wesley, Reading,
Mass., 1983.

10. Graham Birtwistld A System for Discrete
Event Modeling on Simula, Maeraman,
London, 1979.

,Jim Diederich is an associate professor of
mathematics at the University of California at J
Davis. His reseatch interests include database
design and object-oriented systems.

Diederich received a PhD in mathematics
fromihe University of California at Riverside.
HisamemberofACMandthe ComputerSoci-
ety of the IEEE.

4%94¢**

straightforward numbercrunching may
have little to gain in using Smalltalk, and
while there may be other classes of users
who find otherlanguages and development
environments much more suitable, we feel
that programmers in many application
areas would be well=servedby the Smalltalk
environment.

Moreover, the good performance of
some commercial systems and the
enhancements of Smalltalk under develop-
ment suggestthat Smalltalk may even have
a future niche in scientific and real-time
systems as well. Smalltalk promotes a
good, new approach to programming* 0

Jack Milton is an associate professor of
mathematics at the University of Cali fornia at
Davis. He is also an associate investigator on the
Knowledge-Based Management Systems project
at Stanford University and coordinates the Data-
base Research Seminar there. His research
interests include database design and object-
oriented systems.

Milton dd his undergraduate work at SWarth
more Cdkge and received a master'sanda PhD
in mathematics from Duke University. He is a
member of ACM and the Computer Society of
the IEEE.

Theauthors can be contacted at Math Dept.,
University of California, Davis, CA 95616.

IEEE SOFTWARE

FEATURE

Smalltalk
Yesterday, Toda

and Tomorrow
A look backanda look ahead at this innovative programming language-

first featured 10 years ago in BYTE

L. PETER DEUTSCH AND ADELE GOLDBERG

t's been a decade since the August 1981 issue of BYTE was published. That
assue provided many people with a first comprehensive look at the then-fa..
Med Smalltalk progfamming environment. In this article. we lookback at
how people thought about Smalltalk in those days. Then we'll look more

broadly at how Smalltalk and object-oriented software :technology has pro-
gressed since then; we'It also consider today's state of this technology and the
market for it. Finally, wettl look ahead to objects in the year 2001, another de··
cade hence.

1981: Sending Up the Balloon
In that BYTE issue of 10 years ago, we wanted to convey three ideas about Small-
talk and objectoriented software technology: first, that an interactive, incre
mental approach to software development can produce qualitative and quantita-
tive improvements in pmductivity; second, that software should be designed in
units that are as autonomous as possible; and third, that developing software
should be thought of in terms of building systems, rather than as black-box applir
cations. The Smalltalk-80 system described in that issue so long ago was the ex-
emplarof these three ideas.

Smalltalk was widely known then-and yet, largely unknown. Alan Kay and
others from the Xemx Palo Alto Research Center (PARC) had been giving talks
with tantalizing glimpses of the technology, but few people knew or understood
its content. Thus, the cover of BYTE's Smalltalk issue-depicting a brightly col-
ored Smalltalk hot=air balloon leaving an isolated island-symbolized our feeling
that the time had arrived to start publicizing what we'd been doing. We believed
we had new ideas that could make a real difference in how people :developed
software.

Many research examples developed at PARC demonstrated that object-oriented
design could produce an appealing, intuitive, and direct mapping between ob-
jects in the real world and objects in a software implemeniation. We saw this as a
radical breakthrough in oneofthe mostdifficultandproblem-prone steps in soft-
ware development=identifying terms and relationships as understood by human

i participants of aparticular situation with those understood by a computer.
 We believed that this simpie mapping of nouns to objects was all (ormost) of
2 the story abouthow to design with objects, and we presented it 4 such inthe 1981

108 BYTE• AUGUST 1991 ILLGTAATION. PEGGi RE E© 1991

if t

-- ---4

24

SMALLTALK

ihemotivation of
1 the past decade was

 to move Smalltalk
k

 off its island.

49 2
** 1

BYTE articles. Subsequently:,in examples given in our books
in 1983, we demonstrated that the power of objects applied to
more than nounst It also applied to events and processes. But
this power was not as well explained or exploited.

The Smalltalk research project was founded on the belief
that computer technologies are the key to improving communi.
cations channels between people, in business as well as per-
sonal settings. Our activities focused on finding new ways to
organize information stored in a computer and to allow more
direct access and manipulation of this information.

The Smalitalk edition of BYTE introduced our approach to
managing the complex infotmation world of modern applica-
tions. It explained our methods for taking full advantage of new
graphics and distributed computing and for improving the abil-
ity of experts in business and personal computing to describe
their world models.

Inretrospect, we are pleased that much of the software com-
munity has come to agree that the object-oriented approach to
software organization is a new way to solve problems that is
often better than the procedural approach. Although our ideas
about problem-to-implementation mapping were incomplete-
notably given the lack of formal methodologies=those ideas
are widely accepted today.

1991: A Decade of Experience
What have we learned in the pastdecade based on the Smalltalk
research and experience that was introduced to the public in

those 1981 BYTE arti-

13%TE ACTION SUMMARY we stated earlier, isdes? The first idea, as

simply that a highly in-
When BYTE first broke the teractive, highly incre-

mental software devel-
news about Smalltalk to the opment environment
world, there were no PC ver can produce a qualita

tive improvement in
sions of the language. Now, software development
the principles that Smalltalk productivity. Even in1981, Smalltalk sys-
pioneered have permeated tems were not the only

ones with this chante-the microcomputer world,
teristic-Lisp systems

and powerful versions of the pioneered the approach
language are available for a in the early 196Os-but

they were among the
variety of personal computer outstanding examples
platforms. and were the ones that

moved most success-

: fully from proprietary
hardware to the micro-

110 BYTE :• AUGUST 1991

processor mainstream. Today, the truth ofthisidea is widely
recognized. The suppliers of environments for more-estab-
lished languages like C, C++. and Ada are now aiming topm·
vide the benefits that Smalltalk introduced a decade ago.

The second idea is the basic idea of object-oriented software
organization: that software should be designed in units that are
as autonomous as possible, should correspond to identifiable
entities in the problem domain whenever possible, and should
communicate through identified interfaces. This idea gr·ows
out of work on modular software design that dates back, again,
to the 19605. Object-oriented terminology adds an emphasis on
direct mapping of concepts in the problem domain to software
units, the idea of shared behavior and multiply instantiated
state, and a focus on the interfaces betweentheunits.

The last of these (the interfaces between ihe software Units)
makes iteasy to think about systems that are configured or that
grow dynamically. Smalltalk has no monopoly on new con-
cepts, but it has been a leader in the public relations hecessary
ito get these concepts out into the computing mainstream,

Object-oriented software organization has a natural relation
to two current trends in software construction: combinable ap-
plications and open systems. Our interpretation of the. term
open systems is that for systems to grow, evolve, and combine
gracefully, they should be constructed out of software with
published interfaces. Functional software should be designed
to be used as a component by other software, as opposed to b¢-
ing monolithically united with a particular interface designed
only for humans at a terminal.

The third important idea that has grown partly out of the
Smalltalk work is related to the open-systems idea-namely.
that one shouldl always think about building software in the con-
text of building systems, rather than in the: context of black·box
applications. In other words, one should examine explicitly the
nature of both the downward interfaces (the resources or facili-
ties the software uses) and the upward interfaces (the client's
use:of the software) and make them as undemanding as possi-
ble. Separating functionality from the user interface. which is
the:Smalltalk concept of model-presentation-interaction known
as modet-vie»controlter, is just one application:ofthisprinci-
pie--but a very important one.

The motivation behind much of the activity in the past de-
cade was to Ino;ve Smalltalk off its island and into easy avail-
ability for the general programming community. We look at
this activity as being aimed at creating a credible, concrete, and
robust realization of the ideasthat we couldpresentonly in shel-
tered research form in 1981.

As Smalltalk has moved into the commercial world, it has
encountered Ithe familiar phenomenon of technological life
span. A technology comes into existence on paper, often at a
university. It then progresses to research papers, research pror
totypes, and usable research-scale artifacts. Finally, it goes
into commer'cial use, first by the adventurous and then by the
broad mass of users-getting adapted, extended, patched, and
transported as long as it continues to solve problems well, and
eventually getting replaced in many or all of its uses by newer
technology. Smalltalk is now in this third stage«past the scru-
tiny of the adventurous and experiencing Wider commercial
adoption. [Editor's note: Fora tookat some newproducts that
should help bring Smalltalk to a targer audience, see the text
boxes "OOP Made Visual: Digitalk's Look and Feet Kit" on
page 112 and 'Smalltalk About Windows" onpage 114.1

A Framework for the Future
One ofthe promising new concepts in object-oriented design-
be* actively explored today in Smalltalk as well as in other

3

SMALLTALK

0(
Digitalk

bjeettented programming is
highly conceptual. Based on the r
ideas of encapsulation, inheri
tance, and polymorphism, 0Op

may seem to be the headiestandleast v,
sual of programming models. But the
Look and Feel Kit from Digitalk man-
ages adifficult task: Itmakes visible the
concepts and mechanisms of OOP.

Based on the Smalltalklanguage, the
Look and Feel Kit is more than a tool
for treating:GUIS. It provides a plat-
form for creating complex object-ori
ented applications with a minimum of
coding. It can at* be ukd to int#vate
application components from a variety
of sources, wbether they'te written in
Smalltalk or another languages :cteating
a:consistent, object·*tiented user :inter,
face. The fserten at right shows an E-
mail:application in:the piocess of·being
developed.

The devel*nent envimnment, fun-
ning under Windows, has the,familiar
GUL IAn iconic palette shows availablet
categories of?rapplication «*nponents,

0

ff

)PMade Visual: p«9pt°flit} 9
alt V ' I * '4

it4*Ih#d "F'0'IIX:*Illfff
& h f. I. r ./., I
3 E."&0 Unm,an N.

'. H-£ I # 3,1 -LA.
The categori414tude444, pan&$ (1*ti**»* ;;-' 0- b.,*..
b,ittons.{*te**d to*b™ palette<lmilpm**m*i *332
is fullyfexieisi*ind/*hen apped ayodi*1;niplmay include eate&04*da*4449»it**€*41*2/*/.&71Y0*4 «
eeks, ofming con,Vone*j*wmmu%5 h c#f*[e%11(53*i..4,i*alk.:33 °<: f "'4
nicati6nw* *4*tus*FOue+31*nttfto*#4ibe*iNd*i*t**i*
gia*41,%«»»?42;:9%4<30«.944*4*****e#**CLI ' 6 45>Af#ir /seiki«*+24*f*434%y**0jjj4@**i##98¤INK##*U
ette shows *Yavailablef*#*nentsTin %6fBj**14**¢*4**i*44***it*t¢«
that grA**°*p***t*ihetRUffA»*%14*3%9*ti*%pane#cate**:brings .pf:®tion#that494%*4*4(399ff»+*9%914audetekt*fgh*hiEsj*di2***4?hdf«*fir*f***237**4%*a*mi*ttiI
window category*0*ritapplication *PANKPop*nibki *4***i**44(4**fff*1
wind,ki anddta41**standthem*34·4>obi4*4***4#4**i«LY**1*¢491/

p a m**b**4*ihibbuttoth*€*43?am64*+#*i*#*#**f#*%4**1
category *it#dI. wh*F*.essencejttfwi,v125**y/<.dr/talbilb#st
fully fundionaltap#4*944*accd*BW jebt**4*>*f@i**f#**i*1*f
sors an:0*nt,£r toot» grouping col-twire EhYdmmun9th-niS/bet#44*41

impunt,494***t4#*00*LE{Withe ted**i#* 4**#**1*thei.rece#,F:.addes* f*Ja68*ssi**mau***ttenti int 14 QW8¢*me**44**f#ebditf
inometti1#WRift¢%993«414<49% 44af*#4***©*Wi*°4bjectt)

4¢444444444' 444*4446415 1%4ttitTe *reate antapplicatioawith,the f : :c*pkt*®0*¢**08, <f,MEVmpte*#

wind»pt*****1®**49**et*a>*1888#0,-
$94:*19%»«918#1*.it o:p} yk::44 84.4../.bilt=:44*&*42;bA/21%%4*; 1 ·24%4

fomppq*G later PM

FOR MORE INFORMATION

44444%%*
Acumeti Software: §:414% 41P-GN2140:Shattuck Ave. f: ; 4 ---7--- *taI*./A1530Plymou**3 " .2 2 -
Suite 1008 ° iff itt 4 *Mbuntath**t¢**i#i35%3
Berkeley:.:(CA:94704 (415) 691-67(» - . :,.>: ...
(415> 64920601% :i < ff*: 015)6914713
fax,(415)6494*14: 9(4% jectre'*11¥60•1*4**60*77
Cir#* 11 14 en Inquiry Card. . " /:

1)1*italk, Inc
9841*irportBil¢d..
Suita 600 i tfc °f: 0 %4 fittiff '
LabAngeles, CA 90045 9:t 14 :9994 4%99·«43*394
(213)64541082 : t ft?f 4 ffimilf AN#Ili/..Fird,ZE
fanf(21*645-1306 . 1 ' J .#11:9

%99<»9«4*tit4141115 oninquily*6,4. D 22 oA %©a mi: am,>5*49*BBE

: k.: FY6* &4&*t<%44)4?jihit*954%24*341%4
a j. $. :0$ 4, :4 f I ' I flit%472;194.- . ..0 ..: 91/2. I i -JI"Wit

112 BYTE • AUGUST 1991

languages and environments-is the concept ofa framework. In
an object-oriented enviromnent that supports inheritance, re-
usable software that implements a single ¢oncept frequently
takes the formof a specialization hierarchy in which the super-
classes are niore abstract (e.g., the Smalltalk classes Collee-
tion and Number), with certain operations deliberately left to
implementation by more concrete subclasses (e.g., Array as a
concrete subclass of a kind of Collection, and Integer as a
kind of Number). These holes in the superclasses (called virtual
functions in C++ terminology) are an important part of the
design.

A framework is a generalization of this idea to a group of
classes working together. For example, the Smalltalk model-
view-controller framework consists of three abstract super
classes that provide little more than definitions of how the con,
crete subclasses should work together, plus some bookkeeping
code and default implementations of the most common opera-
tions. Youreuse a frameworkby writing new concretesubclass-
es and combining existing subclasses in new ways.

Another example of a framework involves the notion of a dis-
crete event-driven.simulation, in which objects interact to rep-
rese*tasks, workers, locations (wh6re tasks are carried Out by

SMALLTALK

H97*19909, WB 444 ... : «t <91 b ;SLX f + : 902:y>Xe.Cf%%*** 4»tbilk* **&*4164:. 3 6 6 .09**gmiw'ir<6.*j€424%3««64-83©942%*»WEr« flf iff' '{%22#49%2%% , i t %i tji i«ff< di (bf¢ ii1*y . 432: 33«f 31.:r: k:o ·*4i:44©94)34*42%(14*944*25&924·<l): 4:2 fq>5f) :300sttfat? :: 4 x€ A< ti f¢ 46;? < , : P :li iffiJ iki'OM„«of.. , . .'. *.+ I tfff 9%» te '{I f Fcall«twin* externalizes languaget ir24)bit{24 1%«14%AFKRE*n,Mat,sen#*44%44444ii¤¤ 1¢4¢t*bjecti,.By grabbing a component*Ble gomponent Qperation Layout Links you immediately see its graphical ele· 02...::{w: *37 LAFK# r 14f)11 11,9 / : --ments. Youals"Re'*fitsmess*capa-t - Ilbilities-what are usually the conceptu- 1
Mb'isehd fj jal,nongmphicalaspects€,fanobject. In H: :.MI *.td b Ridikill a programming world where code is in- i

44*ked*rough the passing of message#,
4*e *irb mide a literal, visual reprek 1

33**UB¢*06*00=dural med¢1.

le 04**f**0**lications with a minit < 1
mum ot¢*ding. Thedetermini*factor

03®143 ·

«:¥ov tan extend the wt with*lica-
g *1 = litihihis de*k*ment process is *quall :*4nd 4%01*ness of your component

-9,4 ,9 4% i . 6% J ti®***bam *reated using the Look :
94 112 6 1*1 f: an4 F,**t¢wm,Sinalkalk #Ii** 1

*71** k0,444%42?**92*?*16*2*** ,:f F *Fff ;»tm*f*ilitbn,*tthcomponentpur-9,P)4<,1/1R+'f<*ra80*4"1**illB:11* 0.it{*Ehased:f¢*third parties, and with : 1f1 F=:; fi{DLI®*imafthorbugh set of *04*0-
3.'' 11/1 0114„ 1'' " < »11'2-' «173' ti mts,i youishoukt be able to construct*did/.23 f,9 nontrivial apptications, relying mainly***44*i44*t*k**4**: . -.0/41'/imfimu:'2%55#bm.421

8/4 JII R..49 .%(63% «446»31%98**All*I I...//5/98WXf/&* / /34*44 theLoakand FaKit, Digitalk plans toDjiintu;n jibAf-AblAW :tittl#Jii ship an 1[)S/2 version in (D¢tober or Dio-.4»fpt.5.#%9ofjfdr&#QiPRit#$#P**<:24 1*44*4*44*wharyou vemoeriThspowerful interesti i e. I2*.* -*"bonet*4 68Xiii&;iti,***phyji«%41%%42*4411 '212P. 12[4 %2omect bave 5Q.i.upT .Aka-f veltiment tod shouidadd momtmt{*i*3t4*d*4i,*f#j#*%* t ftothe«**ementAnditmaywin ;bl& - j: fft:: Chit.%%NHr*0*.to*patette,ar#-id*f someconvemftoth¢»alltalk.cause.
9 t*=1**·C#44404it ° ftf-t*44%*44444* Elienullman js a fs#iifraff¢i#¢0-*2*-9HA4£#iIA# dppfg#&,i basedasso¢tate newi editor jb¥ BYTE.ibikt04%44%*41.f©ir tifijS#kian he contacted on BIX *s
*LI**'I.N¢*947•um«'f :f j ff{ ji.{ 1*'.6/b/*M./w#f'*61, 44%44*%294«94999«40994 i

Subleu r
L

lim n ft: J·rr

a,/ Debilt * 'Detorah 3.1

t

» :'DLI**4114

the workers), and statistically based schedules for introducing
tasks and workers. New components, specialized tasks, work-
ers, and schedules can be described in order to reuse the gener-
al framewotk to create specific simulations. This concept is de-
scribedfully in the bookSmalltalk-80: The Language by Adele
Goldberg and Dave Robson (Addison-Wesley. 1989).

The other Smalltalk idea ne¢eiving attention today is that
building softvare is building systems. Software should have the
same property as a fractal design: Assemblies built out of parts
should have the same qualitative nature (such as definable in-
ward and outward interfaces) as those parts. Developers must
realize that they cannot predict all the ways that a piece of soft-
ware will be used orallthe ways that it will be ported to use the
facilities ofnew environments.

Smalltalk in the Marketplace
One of tile powerful ideas that has attracted new attention as a
result of the development of object-oriented software technol
ogy is the notion of reusable, combinable applications. Today,
this idea°is promoted at three levels: (1)operating systems, such
as Unix pipes andifork/:exec; (2) window systems, by way of
interapplication communications conventions (e.g., Apple's In-

terapplication Communications, Microsoft's Dynamic Data
Exchange, and the X Window Systemts Inter-Client Communi-
cations Conventions Manual); and (3) independent software ar-
chitectures (including low-level ones such as Microsoft's dy
namiclinklibraries and Sun Microsystems' shareable libraries,
as well as highdevel ones such as Patriot Partners' Constella
tion project and ParePlace's object model and frameworks
approach).

Many believe that the discipline of defined, published inter-
faces=which the object-oriented approach naturally pro=
motes-will create a new marketplace for reusable software
components. However, from our experience with many devel-
open and users of Smalltalk systems in many environments,
wethinkthe key economic shift will be in a different area.

A public market is a loosely organizedenvironment. Compo
nents placed in a market will face a wide variety of demands,
and even well-designed components with minimally con-
strained interfaces will have trouble attracting a critical mass of
customers.

On the other hand, within a single organization, reusable
components can be developed and redesigned to span a large
fraction oftheirintended uses. In this way, the accumulation of

AUGUST 1991 * BYTE 113

SMALLTALK

Smal 11

he Smalltalk environment hasin-
cluded windows since its incep-

ttion, in fact, you mightrsay thath<
all the popular windowing envi

ronments grew out *f*Smalltalk en»
*ijronment developed at Xerartalo Alto
Reseamh Center (PARO. But, as with
any *volving sy*m. them art marked

I difft,*nces:1*i*%84 thepm,emtor and
itiq*Tadint#I.4
f*8*f#malltalk hismwmbined with

40*i**4€4* win@%*»imnme*
Miardsoft'W*k**%.0. The twomAjor

fi,ehdors>of Sm*malk implementations i
toi Pcs have rece#«an"no*need ver·
sion# ifor Windows:febjectworks\¢
Smalitalk for Wthdowsfi*Pa=Pld«
Sistems,and SmalitidkA¢*indows
tf***gitalk. Wh*»»torboth
system#*Smalltalk*Wi,idows im-
plementations art *different as the
philosophies of the two companies.

AQuestienof Consiste#*3
Pal*Placeis thetraditionalist after all,
the company is the tradition, since it
spun off fromthe original groupthatde-
veloped Smalltalk at PAR¢*Objed-

tworks\ Smalltalk *auniq*window-
ing environment with a mouse, window
phnes, jscroll bars, and drop-down
menus. You can use JObjectworks\
Smalltalkon avariety of:platforms,and
the wind@* layout,:icons, arrd uiidow
cantiol#We:always thefnme:fthe »h

9«*ki style (see scmen Al.
Althibugh thi#: window style is nott

consistent w*h ate of thenewer and
more widely: used windowing·systems,

f U.'"·• 1 24:Ir,Ff>y' r·. . 90%%*4*19<

tjAbo@1*th#*
.<2*94'.9

Obje¢12lass Browser

lage* f >11.%11#117,"1.:*
"**49::j' 0,·i. Ye: i. 1.> :*:*dit
€8*§*;*9/-);lo:rR ./.*/all/*Al

m fe€*<14
- --u=*-* #.#Mi.==rn»*%6»*+n»W= *-:./,7 b

4 ..ITAE *FE» Wr 2212.1;,P«*-f,&46#6' hi' .4* ./, 46Ar'%,39* 2#M.FA,F)AN®4%*4 /1 i %11%1
lili..1
1, %.4 C
$ %%2

scin A:2*4,4/44/3#»*Wi*4%1i*,44**41#i**Iquu :4 ' &44:tahkuak**t#k*#f#*h#0#*4*44*4944%44446%44444it Ltf»'

*Ludiapatda#WRI*hem#*te.-ss#,andt68*10-£22*BAQ»fit0*4**#mis#43*4t****»***F+»*I*5 f
**44#4

ines-44»*®ped 14 I."4»3% Nalix-- 6/-*44*.S"*&/Ap:
wi*W i*%%7:2»»¢94»93%49»93%84at 911-,1//F/26€,maan.<f.>A#c*24*ting £

f61%12&44@**41 ***hpigit#Ue'*Ai*ff:
9481*9*04,4 j*Ild....Vijlifill**ill'Ili"Ijib"Ill'ill'fbk¢*fi*%4*i 94:5789/11*1,/*40/1,Wint#71mi"/#i¢**W*A:*
M.h'll'.1 3&44?"I'll"F#*IN'li.*Aul)....#

' a#*t44*44**adi#44 feketi64*43*43%**fil*?*#44*
felbat**,Bass,mess**41*4349(*4*1*****i**¢9*___=__g< 4 '. P . f: 4349«420*ati j ..2.1.4, 't: :. s : C 4 05 W so* ©2 v pte> lt»*6236gitk

.-Il File Ust on \§180\in

t

Akf: '7

Altatky¥U»

reusable code can become an important business asset and can
be treated (approptiateIy) as an investment and a capital good,
rather than simply as a cost (which is its present treatment).

In an object-oriented environment where inheritance is sup-
ported, it is not only individual components that are reused. As
we have noted, the design of interfaces between objects is often
more important than the implementation of functions within
objects, Frameworks can capture the structural design of soft-
ware objects that address a given (partial) problem domain. As
such, the frameworks developed and reused within an organi-
zation will, over time, tonie to capture and eventually even de-
fine the expertise of the organization-and, as such, can con-
tribute to the organization's ability to meet its customers'

114 BYTE m AUGUSTI991

needs. (This is sometimes called competitive advantage, but it
applies equally well in situations where competition is not
involved.)

2001: A Smalltalk Odyssey
If we look into our murky crystal ball, how do we see soft-
ware's useof object technology in the next decade? How do we
see it evolving?

We hope that in 2001, objects will be boring. In comparison,
radical ideas of past decades-that system software should be
written in higher..level languages or in languages with strong
ty, systems, and that computers can and should be seamlessly
nerworked-are thoroughly accepted today. Whether to inlple-

1

SMALLTALK

f#togram Man
 Sma l ft a lk/V Cia s s H ie ra r chy Bro ws er
92*24.mil"lill""1""In

)Meet N <22 05!ance deepir or
Amli01*60bject 121 t; Cge de?&4
)Behanoi u- BT1
Boole« do
Ctar:Reater I

2122£212=-1 690:No
Hi<bld*3

Coh®ile, * Mert ttit
90'ttef- F.i, gE,1
elea El'.5:)1None ..:clptonilorE.

Vinswerihe firt! elemeniof·he 1.:Cery@t fi ·i
031.,?.: 6%10124'0 * 41819 :01118 ,·--ftcliat

elemenT .slhe apure9 R rroitich elet,[en
lotilke *@11,1-i: erteytiot.Elcick, 1111,r.i·i a-:r

ati do l ·element'
tabloil vdue Weipent)

imbie I eleine,41
e:maphof,Blockvai re

s4ni,mfwit-,**4@N*4
118*{.d*42 -2 1 1 'r

******%*ida*466 4*044:
t**141*™*»?*iwi *©*0%
9***4***f#****Ef

n#*4**dioff#ndlde spel£Wndo#vs#
j<sae.imen 029«»9«44.* -
4*{dh*acke/*Yatu*t'dithif.
Sm*#i*** *Em**adi**73140*st

imA»* difierlt imm **181*its·*4¢4
°Wijidak#am DOS.lnd;***int
dow System, The distinct advan»*i
Smalitalk/Vibr any enilit*mentis 04¢ 9
you dan take full advaniage of tbat :envi- i
tonmbnt/trour applica®ns.will be -6
sisteit with tliestyle guidealles «that

r i

3 ..1 ' 3 ». *y*)* . C

f2 Srnatitatkr/Workspae;¢Q

I'll./149%Whe ttle'tifim'}tilehY d.

in· -,b,ect :J
trideriable a

1%4444>4941%44%?f >e
lummy#?4/544<44 £41 :'b1%2*442*k¢ m

00@*@Hme**0*4

94*,1*4011***2*«**athpld.: Small¢I
f€¢0%*i**shasi,ilaccesE m *t
Ff®*¢**» Windo« applkation
Fp*****41*rfaUNhbluding dr
%*ijmillibklilirand and Dynamk Data
./.15

%**mde¢*asses
*Th*t%)f*dte to a Smalltalk implemen-
2%*i* th#**wind*envito#mentand a
laniudgE;ilieref are the programming

it®Is and tbejpred#fihed diass hierar-
f 8143*4111*lk/¥ Windows provides

fewh wdls and a simpler class hierar-

chy than Objectworks\Smalitalk for
Windowt but these limits are, in part,
ovekemeby :optional packages, like

4**f#*Digitalk *e the texti box
2%00#FM* *sual:ibigitalk's Lo6k
4* Ped Ki¢' onjp4ef112) and:fix,m
2%1*@p;riytvendors.60* as Acumen
jSo#wal*4Acumen rebentlyimleaied a
*t of "user-interface construction k:its"

Ith#**t *QU 4*¥¢lop interf#¢44 for
*Sj#0*41**Mae,fSmalitalk« 286,
9** SWialitaitt*Wi*tows»grams-
3*idgetst¥*tic. Widgets/V 286, and

Wind©*Builder/V. mspectively.
Both Windows versions of Smalltalk

maintain a text log r of changes to the
Smalltalk *'image" O.e., the Smalltalk
gestalt of any moment). You can view
the Smalitalk/V version Ofthe log with
th6 File Iutilities. With Objectworks\
Smalltalk, you can view the change log
as an objectiwitha hiebrardhytihat has
sepatate instances for changes to class·
es, 16 nkthods. and to**temi:
fB* p¢oducts pmvide a method for

plying the changes ofone p*>ject to
<444*4*i**a64*peration if the
sys¢cmris to bllow the objective of re-
u#ability. Both pmducts also have an ex.
c¢llenidebugger,*wellastools for file
managemetit. view management, and
textmanagement, As with all things,
thar styles differ: <Objectworks main-
rains its own style, and Digitalk adopts
the style of' Windows.

Ben Smith is a technical editor for
BYTE. He can be readhed on BIX as
"bensmith."

ment them is almost never an issue now, even though there is
still plenty of discussionabout how to implement them well.

In the same vein, we expect that 10 years from now, the ob-
ject-orientedl approach to software design and implementation
will bean accepted, standard technique used in every lan-
guage, library, database system, andoperating system and will
be taught in undergraduate computer science courses at every
university. This is an issue of moving the technology further
outintothe v.orid, and nomajornew thinking will be needed to
accomplishit

One s:ignificant technological advance will be that we will
free outseives even further flom equating objects with the
nouns in the problem domain. Some of the most remarkable ad

vances in the usability of computer systems have come from
recognizing that processes. as well as things, can and should be
described, modeled, and manipulated. Therefore, we will see
software objects being used to model time, places, actions, and
events. We believe that this wililead to usability advances al-
most as dramatic as those resulting from the now-established
window/icon/mouse/pulldown interfaces that were to a large
extent inspired by the original Smalltalk work ofthe 1970& and
1980s.m

L, Peter Deutsch is·chief scientist and Adele Goldberg is presi-
dent of Par¢Place Systenis ·(Mountain View, CA). They can be
reached on BIX do "editors."

AUGUST 1991 · BYTE 115
f

1

'

AR·}·E·C·T-O·R·i·E·N·i·E·D L·A·N·G·U·AGE·S

MACAPP:
·r

AN APPLICATION
FRAMEWORK

BY KuRT J. SCHMUCKER

This application can significantlg reduce
Macintosh pmgram development time

ONE FASCINATING and potentially
far-reaching use of object-oriented
programming is in the design of an
application framework for a personal
computer or workstat[on. Several ex-
amples of such frameworks exist, such
as the Lisa Toolkit. discussed in "Soft-
ware Frameworks" by Gregg Williams
(December 1984 BYTE). and more are
being designed all the time. This arti-
cle examines one specific application
framework for the Macintosh, Mac-
App-The Expandable Macintosh Ap
plication from Apple,

The average end user does not gen-
erally use or even know about appit-
cation frameworks. They are tools for
developers who design the Software
for end users. In theory, an applicar
tion framework can be developed for
any personal computer. However.
they are especially useful on those
with a well-defined user-interface

specification.

WHAT IS MACAPP?
The MacApp framework is basically a
complete. self-contained application
that implements most of the Macin-
tosh user-interface Standard. it has

menus that pul[down and windows
that scroll and can be moved about
the screen. it works correctly with
desk accessories and with Switcher,

and it prints on the imagewriter and
the LasetWriter. The only things miss-
ing from a complete application are
the contents of the windows and the
items on the menus. An apptication
framework is only the shell of a real
application-a shell that you can eas-
ily customize into a true application.
This customization process differen-
tjates an application framework from
a set of merely useful subroutines.

For example lefs examine the way
in which an application framework
supports undoing commands. Mac-
App knows that after you choose a
menu command. the Undo command

should reverse the effect of the com-
mand. But a general application
framework can't know how to undo

or do. all the commands. These oper-
ations are accomplished with the
dynamic binding present in an object-
oriented language. The application
framework "knows' about command

oblects and it knows that when a com·
mand is to be performed or undone.

it should send the message Dolt or
Undolt to the current command ob-

lea. The application framework
defines the basic skeleton of the ap-
plication. but it leaves the specifics-
for example the actual details of un·
doing the Double Space command-
to the command obiect. Ib build a
specific appiication from this frame-
work. you need to design only the ob-
jects that perform these specific ac-
tions and then install them into the
framework,

The framework knows in general
what a Macintosh application is sup-
posed to do. It knows how to make
the menus work. how to give up con-
trot when a desk accessory is at-
tivated. how to scroll windows. and so
on-all the things that are common to

1(011!inued)

Kurt j. Schmucker, director of educational ser-
vices for Productivit, Products international
(Severna Park Mall, H &R Block Office,
575 Richie Hi®wag. Severna Park. MD
2 i 146}. teaches seminars on objectoriented
progfamming. Kurt has written three book$
on computer scence.-including the forthcomind
Object-oriented Programming For the
Maci ntosh (Hauden. 19861.

AUGUST 086 + BYTE 189

Macintosh applications. The frame
work knows that the most recent com-
mand should be undone when you
choose the Undo menu item and that
the current selection should be high.
lighted when you activate a window.
However. it doesn't know how to re-
verse the actions of particular com-
mands or how to highlight the current
selection. The objects you install in your
customization of the application
framework determine these actions.
For example to undo the last com-
mand. the application framework
sends the message Undolt to the cur-
rent command object, The dynamic
binding of this Undolt message to a
method at run time invokes the roll-
tine you have designed to handle un-
doing this particular command, The
application framework proceeds with-
out knowing what that command, or
that selection. really is.

TCommand

1 1

MACAPP

The application framework is more
than just a skeleton with a fixed
number of pluggable slots for com-
mands and selection. Using the tech-
niques of object-oriented program.
ming. you can override every major
decision (and many minor ones}. Any
application on this framework can
take control at any decision point
in the program by overriding the
preprogrammed method to perform
a user-written applicationspecific
method.

To give it this flexibility the applica-
tion framework is set up as a group
of classes. or C]ass library, that you
can use and specialize while develop-
ing a new application. if you want
your application to behave in some
unique spedfic way. you can add
some new objects into the framework
to provide this behavior. If you don't
want anything unusual, the applica-

l'Object

TEvtHandler

111

tion framework will handle the appli-
cation correctly as is.

THE BASIC STRUCTURE OF
MA.CAPP
The class library that is MacApp con-
rains more than 30 different classes
and over 450 methods (Figure I
shows the inheritance structure of
these classes.} However. if you under·
stand the operation of just three of
these classes-TApplication. TDocu-
ment, and TView-and seven of their
methods. you wil[be able to build
your own application on top of the
MacApp framework. The class TAppli·
cation takes care of things that are the
responsibility of the application as a
whole. This includes launching the ap-
plication, sett:ing up the menu bar.
deciding which documents to display
[n the -Open Which Document?"

tcontim,ed)

1 1

TBuffer TIalkCall

TStdBuffer TATPCall

TGetRequest(all

1 1

TApplication TlblkHandler TDocument TFrame TWindow TView TPrintHandler
1 1 1

TbeskScrar#iew TTEView TCatVew TDialogitem

TDialog TRadoCIuMer TKeyHandlerTATPHandler

1 -1 1

TListener TResponder TRequester TNumbefrext

1 1 1
TRecelver TSender TDemander

Figure I: The inheritance tree W the MacApp classes.

190 BYTE • AUGUST 1986

-f

dialog box, and so on. You design
your own special subclass of TAppli·
cation, overriding whatever methods
you choose in order to specialize any
of these behaviors. One behavior you
must always override is the type of
document that holds your applica-
tion's data (the method DoMake-
Document).

The class TDocument processes
commands like Save and Close,
which are specific to each of the
documents that are open at any one

MACAPP

instant (MacApp applications can
usually deal with multiple documents
being open at once) TWO behaviors
that you must override inyour sub-
classes of TDocument are the types
of windows that display the data
stored in the document (the method
DoMakeWindows} and the contents
of the windows (the method DoMake-
Views). (The DoMake-something
MacApp methods are the ones you
must override}

The class TView takes care of every-

thing inside your windows-drawing
the images. highlighting the selection.
handling mouse interaction with
those images, and other things. TView
knows when a portion of the window
needs to be redrawn and when the
selection should be highlighted. k
doesn't know exactly how to do these
thinga It relies on you to override the
methods that supply these behaviors
in your subclasses of TView, These
methods are Draw, Highlight-
Selection, and DoMouseCommand.

r * File Edit

Figure 2:-SmallAppli'cation-the smallest MacApp application.

r * File Edit

MacApp Mouse

11 1
1:33:23

2/17/86

Calculator -

1j -Im Macftpp Mouse 1- 1

%S

.2

'4.102]rE...

Figure 3: MacApp appications tgpicallg work with multiple docu-ments and
always work correctly with desk accessoria, even multiple ones.

e·#.9*7&* .OeImI Macfttip Mouse

e

DUIZIEI
21E1E]121
2£02£3b

F f
00

DEVELOPING AN APPLICATION
1b develop a MacApp application.
you must design your own subclasses
of 1Application. TDocument, and
TView. it is traditional in MacApp pro-
gramming to name these new sub
classes so that you can easily deter-
mine their respective superclasses.
Therefore I have used the names

TSmatIApplication {a subclass of TAp-
ptication). TSmalloocument (a sub-
class of TDocument). and TSmalIView
la subdass of T\/iew).The application
is called SmallApplication. and its en-
tire source code requires only 87 lines
of Object Pascal. (For a discussion of
Obiect Pascal and other object-
oriented languages, see my article
Object-oriented Languages for the

Macintosh" on page 177.) Two print-
outs of screen shots from Smal}Appli··
cation are shownin figures 2 and 3.
I Editor's note The entire source listing for
Sma#Applicationis available in a varietg of
formats. See page 405 for detaik 1 Let s look
at two representative methods from
this application-the DoMakeViews
method of the class mmall[)ocument
and the Draw method of TSmalIView.

DoMakeVIews is one of the

methods MacApp needs to access
one of the classes designed specifical-
ly for SmallApplication. I call this kind
of method a MacApp hook method.
Listing 1 contains the full text of
SmallApplication's DoMakeViews
method. This method generates, Ini·
tializes and installs one instance of
TSmalIView. MacApp sends the
message DoMakeViews precisely so
it can obtain one of these and use it
to draw inside the window If this
method seems rather short that '13 a
common characteristic of obiect-
oriented programs. especially those

192 BYTE • AUGUST 1986

WEiN

MACAPP

Listing 1. The full text of DoMakeViews.
PROCEDURE TSmal IDocument.DoMakeViews(forPri nting: BOOLEAN)& OVERRIDE;
VAR.*mallView:·TSmallView;
BEGIN

NEW(smat IView); 1 Create a new instance of TSmal{View 1
smallview.ISmal IView(SELF): 1 Send new view object its init message }
SELF.fSma[IVIew :- smallView: 1 Install this view object in document 1

END;

Listing 2: A procedure that overrides TSmalIView's Draw method to draw a picture of a mouse.

PROCEDURE TSmaliView.Drow(area: Rect); OVERRIDE;

FUNCTION MakeRect(top, left, bottom. right: INTEGER): Rect:
VAR r: Rect;
BEGIN

SetRect(r, left, top, right, bottom);
MakeRect := r:

END:

BEGIN

PenNormal:
PaintOval(MakeRect(74, 72, 139. 127)); - Outline of the mouse head
EroseOvat(MakeRect(84, 74, 138, 125)): · Outline of the -mouse faceFram,Ovot(MakeRect(109, 84, 129, 115)): · Mouse mouth (part 1 of 2)f
EroseRect<MakeRect(109, 84, 123, 115)): · Mouse mouth (part 2 of 2) 1
Fram*Oval(MokeRect(98, 87, 107, 96)); Left eye }
From,Oval(MakeRect(98, 104, 107, 113)); Right eye }
PaintOvol(MakeRect(101, 90, 104, 93)); Left pupit 1
PaintOval(MakeRect(101. 107, 104, 110)); - t..:Right pupll 1
PaintOval(MakeRect(111, 97, 117, 103)); Nose I
PaintOval(Mak,Rect(53,-52, 91, 90)); Left ear i
PaintOval(MakeRect(53,110,91,148)): · Right ear 1

FrameRect(MakeRect(20, 20* 170, 180)): -1 A--bounding rectangle I

END;

designed to be overridden for many
different purposes. Instead of hard
coding many decisions. the designer
of a class will make each such decl-
sion a method. You can change such
a decision by creating subclasses and
overriding the appropriate method.

The -Draw method of the
TSmal]View class is a method for
which MacApp cannot possibly pro·
vide a generic version. You can't draw
anything in a window that would be
useful to all Macintosh applications.
In such cases, MacApp provides a
stub method that does nothing, a null
method. You don't have to override a
null method like you do a hook
method, but if you don't override this
one, part of your application may ap
pear to do nothing. The code in listing
2 overrides TSmatIView's Draw

method to draw a picture of a mouse.
If you continue this process for five

other methods. you will have devel-
oped Sma]!Application. an applica.
Non that draws a picture of a mouse.
Smal]Application is a stand-aione Mac
application that works correctly on
128*byte and 5121<-byte Macs, the
new Mac Plus. and the Mac XL It

works with Switcher and with any hum-
ber of desk accessories. prints on the
imagewriter and the Laserwriter. sup-
ports multiple documents, and allows
you to resize and move windows and
use menus. As trivial as the application
itself may seem, ittioes illustrate the
flexibility of the MacApp framework.

THE BENEFITS AND COSTS OF
USING MACAPP
Early studies indicate that MacApp
can reduce application development
time by a factor of four or five.
MacApp also decreases the amount
of source code you need, again by a

factor of four or five It maintains con-

ststency with respect to the Macintosh
useMnterface standard and provides
ertor handling and an interactive
debugging facility which are useful
during development. It provides -a
cohceptua] framework that lets you
concentrate on your application
rather than on Macintosh internals.

Somefeel that these gains are at the
expense of performance in the
finished application and of a large
amount of additional memory In fact.
many MacApp programs actually run
faster than their non-MacApp ver·
sions, despite the run-time overhead
of messaging. MacApp applications
are usually somewhat larger than their
non-MacApp versions-about ioK to
15K bytes. But for most end-user ap-
plications. this is not a large penalty
when weighed against the decrease in
development time. a

AUGUST [986 · BYTE 193

O·BTE·C·T-O·R+E·NT·E·D L·A·N·u·u·A·G·E·S

PROGRAMMiNG
EXPERIENCES

BY LARRY TESLER

Programmers using objectr,oriented languages
say the benefits make the learning worthwhile

WHAT [S rf UKE to write a program
in an object-oriented language? 1
posed that question to several pec>
pie who program in Objective-C,
C++, Object Pascal, and Smalltalk.
hoping to gain Insight into how dif-
ferent programmers think about
object-oriented design. Their ex-
periences had more in common than
you might ex pect,

I asked each person to describe his
project and discuss how object-
oriented programming affected its
progress. Their recollections tended
to support oft-heard c]aims that
objectoriented languages can be a
boon to large programming projects.
The software development benefits
stem from three properties of object
oriented programs: object-based
modular structure. data abstraction.
and the ability to share code through
inheritance.

The term modularitg refers to the fae
toring of a large program into units
that can be modified independently
In an object-oriented system. every
module js an object that is, a data
structure that contains the procedures
that operate upon it, Oblect-oriented
design is the process of identifying
objects that constitute a useful model

of the problem at hand. In the early
stages of designing a program, the
need M> partition the problem into ob-
jects stimulates the designers to iden-
tify Its principal constituents and to
specify their behavior and interaction.

Data abstraction is the process of
hiding a data structure behind a set
of procedures through which access
to the data is forced. In this way the
1concrete" representation chosen by
the programmer is replaced by an
'abstract" catalog of available opera-
tions, The advantage of data abstrae
Non is that at any time the program-
mer can change representations
without having to change other pro-
grams that relate to the operations.
Data abstraction is a natural concomi-

tant of object-oriented programming
because each object contains not
only its data structure but also the
procedures that operate upon it.
These procedures, often called
methods. are usually the only aspects
of the object accessible to other
objects.

All oblect-oriented languages can
share code through inheritance: that is,
object©riented languages provide the
ability to define one type of object as
a variation of an existing type The

new object type is called a subclass of
the old. and the old type a superclass
of the new type. Objects In the sub>.
class inherit all the properties of the
superclass. including the implementa
tions of methods. The subclass can
define additional methods and rede·
fine old methods by providing so-
called overrides. By Using inheritance
during the development of an oblect-
oriented program, code can be
shared among similar objects, Later.
certain kinds of enhancements can be

made simply by creating new object
types as variations of existing ones.

A WINDOWING S¥STEM
The first person i interviewed was
Gary Walker Manager of Primary In-
teraction Development in the Dis
tributed Systems Group at Burroughs
Corporation in Boulder. Colorado. He
and his group of nine programmers
were assigned the task of implement-

(Contililled)
Urru Teder. cum!ntlg Manager of Advapiced
Development at Appte Computer, previousig
managed the development of Lisa applications,
the Lisa ']bolkit, and MacApp He capt De
contacted at Apple Computer. 20525
Mariani Ave.. Dept. 5770. Cupertino. CA
95014.

AUGUST !986 •BYTE 195

'W .

PROGRAMMING
EXPERIENCES

ing a general windowing environment.
featuring menus. check boxes, but-
tons, and the other trappings of a see-
and-point user interface After con-
ducting a comparative study of the
available object©riented languages,
his group chose C++, an object-
oriented extension of C inspired by
Simula-67 and developed by Biarne
Stroustrup at Bell Laboratories in Mur-
ray Hill. New Jersey Only object-
oriented languages were considered
for the project "In a windowing
system. J Walker explained. "you want
to instantiate objects for windows,
each with its own private data. By
defining separate types of windows:as
different classes. they can inherit com.
mon characteristics and still possess
their own special properties.'

i Walker found data abstraction to be

the most significant advantage of
using C++. Smalltalk and some other
objectoriented languages force data
abstraction upon the programmer by
hiding the internal structure of one
object from other objects. For exam-
pie to move a chess piece, a Smalltalk
program must invoke a method such
as move_to. passing the destination
square as a parameter. It cannot use
anassignment statement to modify
the data structure describing the
chess pieces position. The advantage
of the restriction is that both the rep-
resentation of chess pieces and the
implementation of move_to can be
changed without having to alter the
code in other objects that access
them.

Unlike Smalltalk, Object Pascal and
C++ allow objects to access part or
al] of the internal data of other ob
jects. However. many textbooks warn
against direct data access except
when performance considerations are
paramount. Walkers group found
through experience with C++ that
interoblect direct data access is
usually a detriment to modularity. "If
you want to get at somebody else's
variables:' he said, -you should go
through access functions Imethodsl.

Another property of oblect-oriented
programs that benefited the window-
ing system project is modular struc-
ture. lt gave the designers the ability
to create what Walker calls isolated

[co,miued)

PROGRAMMING EXPERIENCES

worlds of data and functions."
Walker also suggested a more

pragmatic advantage of modularity
based on objects: cutting down on
the number of global variables in the

. program. The advantage of avoiding
global variables in an interactive sys-
tem is that multiple instances of each
Object can easily be created. It would
be quite difficult to support multiple
windows If the data describing a win-
dow resided in global variables. Ao
cording to Walker, if you follow the acl-
vice of many software engineering
books and avoid global varlables. you
usually end up passing too many pa-
rameters to functions. With C++.
Walker explained, data can be
private" to an object and all func

tions of that object can access its data
without passing parameters.

Having heard Walker mention in·
heritance as a key factor in his choice
of the object-oriented paradigm, 1
asked him for an example of its use
in the windowing system, He cited the
class Menu. a data abstraction with

several subclasses. including Vertical·
Menu. RadioButtons. and Check-
Boxes. The system displays each type
of menu a different way and the user
interacts with each a bit differently.
But all serve the same basic purpose:
They give the user choices and they
report the usefs choice to the object
in the application program.

Some methods of Menu are in-

herited by the subclasses without
modification, while others are over·
ridden by special implementations in
each subclass. An example of an in·

-1 herited method is selectiorfitle, which
returns the string containing the user's
menu choice The implementation of
selectionrtle is shared by Menu ahd
all its subclasses. An example of an

- overridden method is prompt a func·
tion whose arguments are the text
strings that represent the choices
available in the menu. For example,
my_menuprompt¢bherbert","cheese
cake","torte") specifies the choices in
a dessert menu. Each subclass ot
Menu implements its own version of
prompt. The version in the class Ver-
ticaIMenu displays a list of the strings
lin a style similar to Macintosh pull-
down menus. while the version in the
class CheckBoxes dispiays the strings

side by side with a check box beside
each one similar to Macintosh
dialogs.

The variable my_menu is declared
to be of the type Menu, but at difi
ferent times during execution its value
may refer to oblects of different sub-
classes of Menu. Whenever the
my_menu.prompt is executed. it will
invoke the version of prompt as-
sociated with the class of the object
that is currently referred to by
my_menu. This is one of several
cases where Walker's group found a
use for the so-called polymorphic
property of oblects Polymorphism
refers to the ability of one procedure
call to invoke different procedures at
run time depending on the type of
one of its parameters. m oblect-
oriented languages, polymorphism is
achieved by letting different classes
implement methods that have the
same name and formal parameters
but different implementations.

The ability of subclasses to inherit
from superclasses can also simplify
the maintenance of large object-
oriented programs. The Burroughs
team found that by making a change
to the superclass, in effect they
changed all the subclasses at once.
and if they made changes to one of
the subclasses to get distinctions they
wanted the code-in the superclass
and the other subclasses remained
safe.

Walker's group was not alohe in that
finding. 1 heard similar claims from
Seth Snyder and Daje Peterson of
Recording Studio Equipment Com-
pany: based in M]ami. Florida. who
used an object-oriented language to
imp]ement an integrated application
that controls a spectrum analyzer
while managing time billing for a re-
cording studio. According to Snyder
and Peterson, when new features had

to be added to theif program. they
were able to add them reliably with-
out any risk of affecting the perfor-
mance of features they had imple-
mented earlier.

A SH1PBOARD NAVIGATION
SYSTEM

Carl Nelson. a computer consultant in
Seattle Washington. was approached

i:OF,tinued'

1

PROGRAMMING EXPERIENCES

by a group of investors for his
assistance in building a computer-
assisted navigation system. The envi-
siGned system. to be installed on
boats in coastal waters. would consist
of a Macintosh connected to a loren.
A loran collects data on a ship's posi-
tion from a radio receiver tuhed to
three or more land-based transmit-
tera Using a combination of triangula-
tion and dead reckoning, it displays
the ship's position and bearing on a
simple (one- to threeline) display The
captain can key in the latitude and
longitude of points along the desired
course, and thereafter the loran will
display the current heading and the
distance to the next point in the
course If connected to an autopilot,
the total can command it to steer the
vessel atong the planned route.

The clients told Nelson that even
though the loran and autopilot are
mainstays of navigation for many boat
owners, the equipment can be
tedious and timeconsuming to use.
The digital information on the display
does not relate to a position on a
navigational chart at first glance A
what you see is where you are" sys-

tem-one that displays the chart on
the screen with the present course
lines superimposed on the image-
was needed. Such a system would
allow a navigator to plan a course on
the chart with a mouse and then
would transmit the coordinates elec·
tronically to the loran. Tlie system
would save time increase accuracy.
and avoid problems that arise when
incorrect coordinates are entered.

The entrepreneurs used a Thunder-
scan digitizer to transfer images of
nautical charts into MacPaint files, and
they wrote a utility program to con-
vert those files to a format usable by
the application. One of the investors
already had a Macintosh connected
to the loran on his boat and recorded

the telemetry of one days voyage on
a floppy disk. That disk enabled
Nelson to test his program in the com-
fort of his office. For testing, Nelson
used two computers. The main com-
puter displayed the chart and allowed
the course to be specified with a
mouse. The other Macintosh served
as a ban simulator. playing back the
recorded telemetry through one of its

serial ports to the main computer.
All that was left was to program the

application and the simulator. Because
he had on]y four months from project
start to public demonstration. Nelson
needed a software development en-
vironment that enabled rapid pro-
totype development and implemen-
tation, He chose MacApp, an oblect-
oriented software framework for the
Macintosh (see 'MacApp: An Appli-
cation Framework- on page 189). and
Object PascaL the only language avail-
able then {mid-1985} that could be
used with MacApp,

To understand MacApp. you must
be familiar with certain standard con-

cepts underlying Macintosh applica-
tions. including the concepts of docu-
ment. view window and command A
document in the Macintosh corre-
sponds roughly to a file in a tradi-
Monal computer, The programmer
must design a file. format for storing
it on disk and a data structure for stor-

ing it in memory The programmer
must also provide one or more ways
to represent the document visually on
the display and on the printed page.

Each different Visual tepresentation
is called a view For example an Ear·
ray of floating-point numbers can be
viewed as a tabular column of text
containing digits and decimal points,
or as a pie chart with shaded uedges
of varying size. The size of a view
often exceeds the size of the screen.
but you can see portions of it through
a window that you can scroll and
resize Using the mouse and the key-
board. you can issue commands that
change the document. The changes
are reflected in a]I views of that docu-
ment that are presently displayed.

MacApp defines the abstract
classes Document View. Window,
and Command, corresponding to the
above concepts, A class includes a set
of methods that define what the class
can cia For example, a document can
open and save. a view can draw and
print a window can resize and move.
and a command can do and undo. To
use MacApp, you must structure the
application in a modular fashion in
terms of these objects. Once that is
done, the application can inhent an
extensive library of user=interface and

(COM' Muedi

1

PROGRAMMING EXPERIENCES

error-handling facilities
According to Nelson. the framework

provided by MacApp gave him .a
structure to plug things into. As he
studied the navigation problem. he
asked himself, -What do I have in this
application that maps onto objects
supplied by MacApp?" After identify-
Ing all the concepts that mapped easi·
ly into MacApp objects, he found that
the whole user interface was ac-
counted for. The only code that re-
mained to be designed was that
which manipulated internal data strue
tures unrelated to the user interface.

in the navigation application. the
most important subclass of the class
View was easy to identify: a digitized
chart with latitude and longitude lines.
The window in which that view was
displayed was a little harder to design,
because it had to provide nonstan-
dard controls for scrolling around a
spherical world. The command ob-
jects were easily determined by
enumerating the commands available
in the user interface, such as place
mark6r and show navigation info. The
choice of document objects was not
so clear<ut,

A document in Ma¢App is an object
that manages the principal data struc-
tures of an application both in RAM
and in file storage ln Nelson's applica-
tion. several different files are
employed. including the digitized

data: earth
timek

routines: annot

ChartMarker

routines: draw chart marker

store with chart

Figure 1: An example of class hiemrchy

202 BYTE • AUGUST 1986

nautical chart image with added an-
notations. and a trip file which con-
sists mainly of the trail of coordinates
recorded during a specific voyage
Nelson had to decide whether the
document object of his application
should be of the class NauticalChart
or of the class Trip, or whether-his ap-
plication should support both kinds
of documents. He based his decision
on an analysts of the operations
associated with each type of obiect.
For example, he wanted the client to
be able to save the history of a trip
in a file and then reopen that file by
clicking an icon in the Macintosh
Finder. But he also wanted the client
to be able to open a chart file to
review the annotations that had been
made on the char't. He concluded that
both the trip and the chart are appro
priate document objects, and his ap-
plication defines both as subclasses
of Document.

The chart file consisted of a digi
tized image-plus markers indicating
significant locations such as reefs and
buoys. Once the program was runf.
ning, Nelson and his client realized
that not all markers should- beas.
sociated with the chart file it made
sense for a marker labeled "light-
house" to be stored with the chart,
but a marker labeled "caught 30 ib
salmon" really belonged with the trip
Nelson decided to divide all markers

sition

: of placement

marker

TtipMarker

routines: draw trip marker

store with trip

Marker

into two subdasses of the object class
Marker, - namely, TripMarker and
ChartMarker. He analyzed what the
two kinds of markers had in com-

mon-for example the display algo-
rithm and the routines to edit an
annotation-and implemented that
common behavior in the superdass
Marker. from which the subdasses
could inherit it. He also determined
what differentiated them-for exam-
pie the shape of the displayed icon
and the file used for storage-and in·
plemented that special behavior as
overrides in the subclasses. Nelson
called the differentiation pfocess
-pushing down the details" from
superdass to subclass {see figure 1).

A CAD SYSTEM
At Artecon inc, in Carlsbad. Califor-
nia. a group of 20 programmers led
by Dana Kammersgard used an
objec»riented language on Sun-2
and Sun-3 workstations in the devel-
opment of ArteMate an integrated
CAD and office automation system. To
make the system as portable as possi-
ble. Kammersgards graphics group
coded their routines according to an
industry standard called CKS (Graph-
ical Kernel System). GKS provides a
way to construct images by transform-
ing and combining primitive forms
such as lines, polygons. curves, and
ellipsolds. The standard specifies a
device-independent set of procedure
calls, leaving to each implementation
the tagk-of interpreting those calls in
a manner appropriate to the available
output devices.

According to Kammers€ard. his
team wanted the CAD portion of Atte-
Mate to display two-dimensional and
three-dimensional graphics on a wide
variety of plotters and screens. To ob-
tain that flexibility, an object-oriented
approach seemed best. The language
they chose for their implementation
was Oblective-C developed by Prod-
uctivity Products]nternational of
Sandy Hook. Connecticut. and avail-
able on a variety of computers and
operating systems.

The first question Karnmersgards
group addressed was how to organize
the code for a number of graphics
devices. including the CalComp 1043

fantm%43

PROGRAMMING EXPERIENCES

and 1044 and the HP 758X models.
in such a way that it could perform
both input and output to a number of
black-and-white and color display
systems including the Sun Color
Graphics Processor and the IBM
5080. The programmers decided that
each type of device should be repre-
sented by a different type of object.
Accordingly they defined Objective-
C dasses such as SunGP and Cal-
Comp1044.

At different times during program
execution, a program variable can
contain pointers to different device
classes. For example. if dev refers to
an instance of the class SunGP. the
statement dev poly_line: coordUst
invokes a device-specific method in
class SunGP to display a polygon on
the Sun screen. If dev is later assigned
a reference to a CalComp 1044, the
statement dev poly_Jine: coordList
invokes a device-specific drawing
method in the class CalComp1044 to
drive the pen plotter along a polygo-
nal path. 010 support a new device, the
the programming team can simply
define a new class without modifying
existing code.

Kammersgard says that where they
could take advantage of special hard-
ware features. they implemented a
device-specific method in the class
For example. the method poly-line
normally has to apply transformations
to the coordinates supplied in its
parameter list to account for the
visual perspective of the viewer. To
calculate these transformations In-

volves matrix multiplications. which
are time-consuming operations in a
conventionai computec Because the
Sun Graphics Processor implements
a three-dimensional transformation
pipetine in hardware the class SunGP
overrides the standard Implementa-
tion of poly-line. substituting a ver-
sion that is shorter and faster than
transformations performed wholly in
software,

Like biologists who classify life
forms into species, group similar
species into a genus. group related
genera into aciass, and soon. object-
oriented programmers design hierar-
chies of classes according to the
similarities and differences - they
perceive between objects, In the

Artecon system. specific output
devices are the species of the graph-
ics kingdom. and company product
lines ate the genera. Since different
devices from the same manufacturer
often have similar interface specifica
tions. Kammersgard's team defined
the class CalCompPlotter as a super-
class of both Ca}Comp1043 and
CalComp1044. They moved methods
common to both models up to the
superdass and left model-specific
methods in the subclasses. In a similar
fashion they added generic c]asses
like™PPiotter, SunDisplay. and
IBM50SeriesDisplay to the class
hierarchy By sharing as much code as
possible between device classes. they
were able to reduce program size and
development time considerably

The hiefarchy of device classes coh,*
tinues for two more levels. At the level
above product lines, all kinds of plot-
tem are grouped into one class, and
all kinds of interactive displays into
another: display classes implement
methods for user input while plotter
classes do not. At the highest level is
the class GKSWorkstation. which is
the ancestor of all other device
classes. At that level, device-
independent operations are imple·
mented-for example the GKS primi-
tives that change display attributes in
data structures in memory ·without
communicating to the devices

In any graphics application, another
obvious application of objects is to
represent the graphical components
of the drawing, For example. all ellip
soids ought to be instances of the
class Ellipsoid. and ·all cylinders ought
to be instances of the class Cylinder
In the Artecon system. all geometric
modeling classes are grouped to-
ether under a superclass called Geo-
metricObject. Geometric objects re-
spond to messages such as draw.
rotate. and store.

But a CAD system must do more
than a simple drawing program. It
must allow the user to indicate reta-
tionships among design components
Kammersgard s group found them-
selves adding links' to geometric ob-
jects and to other oblects within the
system. such as instances of the class
VIewPort. After awhile. riley realized

ICOMI MUF:!1

A

i

1

PROGRAMMING EXPERIENCES

that the various implementations of
links could be combined by embody-
ing Geometric_Object and ViewPort
jn a new superclass called Associa-
tivityObject An associativity object
contains a set of links and supports
operations such as add._link.
remove_link, and modify_jink. A
member of any subclass. say.
Cylinder, inherits the ability to contain
links -as well as the routines for
manipulating them. Adding the dass
AssociativityObject required a modest.
restructunng of existing code Accord-
ing to Kanlmersgard, it is common to
restructure the class hierarchy to take
advantage of newly discovered
opportunities for sharing code
through inheritance.

A KNOWLEDGE-BASED
APPLICATION
Bill Hutchison, a behavioral psychol*
ogist living in Silver Spring, Maryland,
is implementing a knowledge-based
system on the IBM PC. The system
organizes information in a way that
allows a seemingly rational response
to stimuti. After considering a number
of development systems, Hutchison
decided upon Methods. a Smalltalk
dialect developed by Digitalk Inc. of
Los Angeles. California. i spoke to
Hutchison after he had been using
Methods for four months. "1 like the
way I can think about the problem:'
he said. "1 map out the general prob-
lem in my head and can almost ex-
tract the objects from how 1 write it
down in English. 1 make an object for
each physical thing, process. or activ-
ity that] am dea[ing with.

I asked himlf Smalltalk was difficult
to learn. Hutchison, Who· has pro-
grammed extensively in assembly
language. COBOL. BASC PiL,CE and
PLANIT. said he found Smalltalk "the
most natural way- to program. He acl-
mits. however. that most of his learn-
Eng time went to mastering Smalltalk's
extensive class library Large libraries
are typical In objectoriented systems
because they are extremely easy to
build and maintain using subdassing
and inheritance. The library that
comes with Methods includes classes
that are similar in purpose to those
of MacApp. That allowed him to im-
plement the user interface of his ap-

plication easily and give it fancier
features than he had first thought
possible.

Hutchison said he structured the ap-
plication's oblects in a modular way.
Knowledge is stored in association
networks that relate situations, conclu-
sions. and responses. He first devel
oped a basic Network class able to
represent simple domains. and he
said that doing so was not as difficult
as he had expected. Later. when he
decided to tackle more difficuk prob-
lems. complex networks became sub-
classes of the basic version. The first

subclass he defined was Interaction·
Network. which adds the ability for
parts of networks to interact with each
other. That class was itself subclassed
to define MultiResponselnteraction-
Network, which permits the system to
respond along multiple dimensions.

At each stage he had to restructure
existing definitions a little to allow the
new class to inherit as much as possi-
ble from the old classes. The modular
structure ofthe application made it
easier to change one part without af·
fecting others. - Sometimes," Hutchi-
son said, 'a radical change-that I was
dreadingtook me only an hour or less
to accomplish." But Hutchison added
that to make the program that
modular, he had to develop the dis
cipline to confine knowledge of an ob-
lect's internal structure to its own
class-only after having done that
could he make changesto an object's
structure without affecting others.

OBIE¢r-ORIENTED FUTURE
Certainly object-oriented program-
ming offers a great deal to software
developers who want to manage large
software proiects or create prototypes
quickly Now that several suitable
languages are widely available. many
programmers will likely invest the time
necessary to acquire the skill of using
them, The interviews 1 conducted en-
couraged me to believe that these ian-
guages can be applied effectively in
diverse situations by people of varied
technical backgrounds. Even though
the learning curve is high, most pro-
grammers can easily exploit the full
potential -of object modularity data
abstraction. and inheritance offered
by object-oriented languages. m

1

It doesn't make sense to measure a
group's productivity by the output of 10% of its time.

There must be a better way.

MANAGING SOFTWARE
DEVELOPMENT

r by Patrick Brown
2 The real difficulty in managing software

development is the fuzzy concept of exactly
what is being managed. Development is
typically managed using a phased develop-
ment model, anda common form of pro-
ductivity measure is fhe KLOC/month. Yet
it is not clear that either phase development
models or productivity measures actually
represent development activities.

Development is often broken into
several discrete efforts, sometimes called
phases. Common phases are requirements
definition, external design, internal design,
code and unit test, and integration and sys-
tem test. Managing this process involves
the formal review of the products of each
phase.

Requirements, external design, and
internal design produce documents describ-
ing the results of analysis and design activi-
ties, constraints, assumptions, and future
work plans.

The product of code and unit test is
the delivery of tested code to the integra-
tion/system test group, Other than a check
to make sure all components have been de-
livered, this phase is normally not
reviewed.

Iiitegration and system testing usu-
ally involves exercising all or most of the
delivered system and either formal or infor-
mal evaluation of the test results. General-
ly, a sign=off or formal acceptance of the
product ends the testing period.

It is interesting to note that a num-
ber of diverse skills are required to use the
phase development process. Analysis and
design are intended to be the primary activ-
ities in the requirements and design phases.
The product being reviewed, however. is al

' ways a result of documentation skills. Doc-
umentation skills are necessary since poor

: documentation can ruin a good design. In
the code and unit test phase the products
are indeed program components that re-
quire coding and testing skills. The integra..

tion test phase has no tangible product but
requires experienced testing skills and good
data processing backgrouiId.

There are severe problems with the
phase management process. Documenta-
tion of the product is becoming an enor-
mous burden. It is not uncommon for
projects to produce design documents
thousands of pages long. Producing such
documents costs far more than any value
they may have to anybody, including the
authors. Few developmentgroups use ex-
ternal design documents after internal de-
sign efforts have been completed.

Internal design documents share the
same fate. The cost of maintaining a cur=
rent version of the document is simply too
large :to make it feasible. Most groups re-
sort to informal methods-or worse, no
method at all-to keep track of changed
designs. The document is normally of less
value to outside groups than to the authors,
Usually, an outside group wants to know
about a small part of the entire product.
Shoutd a person read a 1,100-page design
document to find the format of a single
interface?

Another significant problem with
the process is that documents are farely
compatible with one another. In many
cases the production of the external design
document is a separate effort from the re-
quirements document. Similarly, the inter-
naI design document is a separate effort
from external design. This ,makes coritinui-
ty in design difficult. It isa rare develop-
ment group that can trace every feature in a
product back to a requirements statement,
or that can demonstrate that every require-
ments statement has been satisfied by some
design component.

An approach to explaining the
problems is that while the phase process de
mands documentation, the development:
process requires information. Documenta-
tion is not a substitute for information.
This will be soundly endorsed by anyone
who has waded through a few hundred

pages of documentation looking for a pa-
rameter format.

MANAGING Additionally. emphasis
DESIGN oIl documentation en
PROCESS courages managing the

dedgn process as if it
were a publishing business. Instead of cre
ating hierarchic levels of design detail, we
are faced with the problem of publishing
design documents-volumes 1,2, and 3-
with associated draft and publishing dead-
lines. An examination ofwork plans for de-
sign groups will uncover tasks' like
"produce preliminary draft" and "edit final
draft" Maire appropriate tasks might be
"integrate all design components" and
"cross-eheck components for consistency
and completeness."

Measurements, of programming ef-
forts are imprecise at best and in many
cases probably meaningless. Though the in-
dustry recognizes a need for productivity
and quality measurements, there are no
clear ideas about what should be measured.
A commonly accepted concept of produc·
tivity is lines of code per unit time. But us-
ing lines of code (or KLOC per month)
creates a major problem in terms of consis-
tency iIi counting. A few of the variables
are different languages, comments, state-
ments vs. card images, executable state-
ments vs. all statements, and differing
levels:of complexity.

Even more important than inconsis-
tency is the questioll of whether lines of
code is an appropriate measure of software
development. Coding, the production of
lines of code, normally occupies about 10%
of project time for new development and
perhaps 1% to 3% of maintenance time.
How can it make sense to measure a
group's productivity by the output of less
than 10% of its time? Certainly the design
phase must have been productive or the
projec;t would not have been undertaken. A
true measure of productivity must account
for the activities of all phases.

APRIL 15, 1985 133

3

1* is nor uncommon for projects to produce design
documents thousands of pages long.

It may be argued that lines of code
are used as a measurement because it is the
only tangible feature of the delivered prod-
uct. This argument, however, only rein{.
forces the idea that the phase process is an
ihappropriate technique for- managing soft-
ware development. Each phase of the de-
velopment should produce some tangible,
measurable product.

Quality measurements suffer from
similar faults. Typical quality measure-
ments refer to error density and mean time
to failure. These kinds of measurements are
suitable for manufacturing environments,
but software is hot mass-produced. Error
density in software inight be analogous to
measuring fthe number of defective bricks
or the number of sticky doors in a new of-
fice building. The owner of a building is IlOt
interested in counting defective bricks, he is
interested in how well the new building
meets his business needs. Software quality
in not measured by counting defective
building blocks; it is a measure of how well
the new system meets the needs:of the bush
ness it was designed to support.

As sad as the current situation is,
the futufe promises even more problems.
Current techniques simply will not Suppoft
emerging methods of development that by-
pass many traditional phases.

Take, for example, prototyping.
Prototyping has received increasing atten-
hon in recent hterature. The theory is that
by quickly buildings model of the target
system, much of the requirements and de-
sign phase can be bypassed. If a prototype
can be built in six weeks, it makes little
sense to Spend six to eight weeks produeihg
a requirements document for the system.
Spending additional time developing corn-
prehensive external and internal design
documents about an existing system may
not make sense either.

AS CHEAP In addition, many com-
TO BUY AS panies are purchasing
DEVELOP software instead of devel-

oping it. Not only is it
nearly as cheap to buy code as to develop
new code, purchase does not require theac-
quisition and maintenance of development
resources. To what extent should a devel-
opment organization provide design infor-
mation to the software vendor? Internal
design information may not be appropriate.
External interfaces are certainty important
for custom-built systems. The traditional
phase development process does not easily
deal with such questions,

Automatic application generators
are advertised as able to increase productiv-
ity by large factors. But many generators
produce neither usable internal designs hor
1 34 DATAMATON

source code„ It is Kot reasonable to measure
the output of an application generator in
tile same fashion as We measure aprogram-
mer writing applications. Once again, the
traditional management process and tradi-
tional measurements do not easily handle
this situation.

It -woutd be nice if one management
technique could handle all kinds of devel-
opment work. Unfortunately, this is proba-
bly not feasible, but a few simple guidelines
provide at least a consistent approach to
the problems of diverse'development
methods.
• Manage what you produce.
• Measure what you produce.
•Strive for information rather than
documentation.
It would be corivehient to have one model
to use in managing software development
work.

Fig- 1 represents a minor redefii-
tion of the traditional development process.
Rather than aiming the development pro-
cess toward producing lines of code, it can
be viewed as producing a workable design
for a problem. Notice that the tr'aditional
definition and the proposed definition are
not incompatible. They are simply different
ways of tooking at the same activities.

The designi process may be rede-
fined as the specification of a design, which
will either solve a stated problem or fulfill
stated requirements. Traditionally, it was
viewed as the specification:of code that
would perform a business function to solve
the problem. The code and unit test activi
ties may be viewed as the implementation
of the design. Integration testing can be
thought of as verifying that the implemen-
tation of the design.actually meets stated
requirements.

(A word about the difference be
tWeen validation and verification. Valida-
tion ensures that ah implementation of a
design actually behaves as the design iii-
tended. Verification determines that a de-
sign has been consistently stated and
constrained throughout its life cycle. In
practice, verification should occur at every
step in the life cycle. Most programmers
confuse the two concepts but they always
perform both kinds of tests.)

Unit tests normally make sure the
program behaves the way the programmer
intended it to behave. Integration and sys
tem tests ensure that all programmers used
the same design specifications.

The redefining of the process has
several appealing aspects. It allows new
technology to enter software development.
Purchased software and application gener-
atom no longer faIl outside of the manage-
ment model. The definition ofrequirements

and the generation of specifications fallinto
the design process. Implementation simply
replaces coding with, say, purchase of soft:
ware or generation of application code.
And validation of code may or may not be
appropriate, depending upon circum-
staile€:S

Prototyping can be considered an
alternate form of design expression. A pro-
totype is a working model of the function,
interfaces, and data required for a new sys-
tem. If one considers the information con-
tained iii a prototype rather than the
method of capturing the information, then
prototyping falls into the design phase.

The redefinition of the phases focus-
ds attention on meeting the needs of the
business rather than on the act of cfeating a
document or writing a program.

Using the new definition, software
developers are now positioned to eliminate
the verification step. Typically, integration
and system testing will occupy 20% to
35% of the project development time. By
focusing attention on the desi:gn, back„end
testing maybe no longer necessary. If, over
a period of time, developers can demon-
strate that their designs are consistent and
complete prior to implementation and the
implementation can be vatidated, then veri-
fication after implementation becomes
redundant.

Efren in software will be reduced.
Estimates of errors introduced in the speci-
fications phase range from 40% to 60% of
all software errors. Increased attention to
the verification of design statements should
significantly reduce the number of errors in
the software.

MEASURING Knowing what to mea-
DESIGN sure is just as important.
PROCESSES Measuring design pro-

desses is not very well un-
derstood. Any attempt will be experimental
in nature. The best one can hope to do is to
try several alternatives and evaluate which,
if any, seem to make sense.

Hardware developers use measure-
ments such as Mips and bits perinch, which
provide some standardized idea of how
much utility is being delivered to the ¢us
tomen Software developers don't have any
standard measures of utility, nor do they
mass-produce standard products. Some
measures of delivered function have been
attempted, notably function points, Al-
though not universally accepted as a vaIid
measurement, function points are the most
widely known estimator of delivered
function.

The disadvantage of function points
is that they are imprecise and often misun
derstood. Many people perceive a function

3777737773777777777777e"»mty"»50't,P,0",smfe,+'7mieVfNEm?ml*b
i

3 . 7 . 3

I into -

raply -4 /k»499*»»a»%*44.".if tof-: R.*"4094%9<944%99%149*93%41»39.#·0><g../coe. i < %(REDEFINITION(OFIDEVELOIlot be ift*%*tit@49%45%4444%fiff¢499%21.j
144*4./Requirements.9%44*iExternal@%5YRE}n·ed an ° rtepecatio«**Asign***1 pro·· 43%54%15*Fit;j &)€f<3469*€4*al¢*.Aid//17//*#/1/Elfdion, f bf449:* I.Il*::4.4,5. i:: r.titt,r ..4..+.t:-:,w sys- 94443%'79:.: 5:%*2....F..:<..r:.p#:#M": .1.1 D - .: 6, 55'.9,1 - T»ff'.1 *F 4'- 91 COn- 1:UNEW/42%>42%234(Design specifleatioff")9/93h the.

, then 1 .:49,#im,*plt»ja,224%4329» » 7-1se.

focus- point figure to represent the function deliv-of the ered to the user.- In fact, it represents theating a t amount of function imbedded in the specif-
ie design of the systems much of the imbed-ftward f ded function may be invisible or not uti-minate lized by the user. Indeed, different designs,ration meeting the same set of requirements may3% to % have widely different function pointtie. By i ' counts.

ck-end An approach to quantifying designt over content would bea design methodologyemon- that yields consistent designs. The -data-nt and oriented design methodologies like thend the Jackson and the Warnier-Orr methodolo-m veri- - lies can be used to derive Consistent designcomes data. Several people working on the same
problem will develop very similar designsduced. using the data flow techniques. Functionals speciL : decomposition techniques often yield vastly60%-of „ .different design approaches to the sametion to problem.

shou.id The advantage of consistent designtrorsin products is that they will all deliver thesame level of detail and can be examinedfor complexity by counting the number ofo mea- transformations. Thus, a design could bejortant. measured by quantifying the number ofn pro- transformations and low-le·vel elements itNeill uit- required. The disadvantage of the data-od-imental ented design techniques is that they are un.do is to suitable for some classes of problems.which, The use of a design tool or a designlanguage would simplify the problem. If' aheasure- design is expressed in a consistent fashion,, which then some measure of its contents can beof how made. For example, PSL/PsA uses expres-the cus- sions about data objects, processes, input-ave any s/outputs, and system structure to create ado they designt database. A measure of interfaces,, Some processes, and data at several hierarchicve been levels might be used to quantify the scopenfs. Al- of adesign. Completeness amd consistencya valid can be expressed in terms of mismatchedhe most interfaces and processes, or by the data adivered process uses. SADY (structured analysis and
design technique) defines a system as a col-n points W ... lection of objects and events. It allows anyEmison- system to be described as a mapping be-4©tion tween the objects of the system and the

.6..:$6:'+.£.. 4 '2:. Ii.../*//'/'''....</''.'il,1.:'*..7'.IM/
99«»%+342%?MENTPROCESSfit**354«41»unt»««»»»924'142 Ind JUAL:111iiijon id,4.4

Offlt*%44444%(;720{mplementation»41¥er,flcation 3 :*6 2.9241Alisha varidationt f3>Ptl/: /0- 7 34:19337'f

events in the system. Measures of the scopeand consistency of the system could be de-iived from the SADT database.

DOZENS There are dozens of Ian-
OF TOOLS guages and tools avail,
AVAILABLE able. The tools not only

enable the developer tocollect data consistently, they allow him orher to manage the process over the periodof the development process. Once the:de-$ign is consistently expressed in the data-base, changes to the design can beconsistently and completely implemented.Additions or enhancements can be appliedand the database reviewed to determine
their impact on other parts of the system. Ifa hierarchy of design detail is used, eachlevel can be expanded into increasing detil
and checked for completeness, e.g., for pro-cesses without inputs, data elements thatarenot used, and so forth. The expansion ofrequirements into design and design intodetail design Will prrovide some confidencethat requirements can be traced to specificdesign features.

Measurements of the implementa-tion process will make certain that theimplemented (coded, purchased, or proto-typed) product matches the lowest level ofdesign specification. The process for per-forming these tests will vary dependingupon the kind of specifications used. A dataflow design can be validated by ensuringthat every input/output mapping is correct. An event-dnven design can be testedusing the mapping of all specified triggersand events. If the design is specified interms of logic sequences or flowcharts,thenthe test group may be reduced to attempt-ing to test logical paths through the system.
Measurements of validation can be

expressed in a relatively noncomplex man,ner if We simply make a statement aboutdesign specifications that were implement·ed incorrectly. An approach to implement-
ing such a philosophy might be organizedas follows.

• Coding milestones are the completion of

major design points instead of the complelion of programs or transactions.
• Unit test milestones afe the validation ofmajor design features.
• Errors are expressed in design featuresnot delivered or delivered incorrectly.

This approach encourages progfam-mers to be clear about the specificationsthey are trying to implement. This is im-portant because we have noted that a largeproportion of all errors are design errors. Italso encourages theinspection/review pro-cess to concentrate upon meeting the de-sign criteria rather than oil critiquingcoding styles. Finally, it provides & state-merit of errors that is of interest to thecustomer.

The customer is interested in astatement that the system works or thatparts of it don't work. A measurementshowing that there is one error per KLOd isunlikely to be of interest to a user except tomake him wonder which lines of code
aren't working. A statement that all criticalinterfaces work properly and that all minorerrors are itemized is more likely to instillconfidence in the customer. To be useful, ameasure of the validation process must ad-dress the activity of validation, not someabstract concept of error density.

Measurements of the verification
process should express some concept of theconsistency of the design across the devebopment process. Such a metric should atleast attempt to correlate initial require-ments statements and low-level designstatements. One approach might be toidentify user interfac·es in relation to require-

ments statements. Another might be toshow the expansion of design for each com-ponent in the requirements. Certainly themeasure should ensure that the interfaces
between components are statedconsistently.

ORGANIZE Any kind of comprehen-
TO REDUCE sive completeness or con.

sistency checking WouldERRORS
probably have to be auto-mated for all but very simple designs.' Inthe absence of a design tool to provideautomated verifications, it is possible to organize the design to reduce opportunity forerror.

• Hierarchy, modularity, and data indepen-dence make designs less complex and Iessaffected by changes to specifications,• Whenever possible, specify functions interms of hierarchies of data flows. input-process-output, or similar constructs ratherthan control,logic flows.
• Define interfaces between components ateach hierarchical level as soon as possible.• Consider. using a set of data access mod-

APRIL 15,1985135

*****t**,Me,*9392»2**#5YFE¥3j#

11
11

4 L fill ./1, .I *lf.0 U 'll
h 1 7
4ILL 5.- I f -1 -il

10'

f * -I - 6
11 f

A

1.m a volunte
the International Exec
Corps, a not-for-profil
with a vital mission:

We send re:ti
tivesto help compan
countnes: The execu

4 teers. We pdy their e:
H -they receive no satar
4 1 Our main pu
11 developing countries

- business. But the beti
 there. These countrie

40 percent of U.S. ex
work We do helps to,

i "#17.
O ESCj.

fh*ft

1 Join me in heip
1 developIng countries
1 the International Exec
1 Corps. For more infol
1 Albert V. Casey, Chal
' Boafd & CEO, Amen
 at 8 Stamford Forum,

Stamford, CT 06904-

 calf this number: (20

136 DATAMATiON

9 **4

/NOW-HOW. 1
[Impus

Albert V Casey
Chairman of the Board & CEO
American Airlines, Inc.

er supporter of earnings Ight here in America.
:utive Service The International Executive
. organization Service Corps has completed 8,500

projects in 72 countries. I think you
red U.S. execu should seriously consider supporting
ies in developing this effort with funds and personnel.
tives are volun- You would be in good company Over
<penses, but 800 U.S: companies have supported
y us. Our Board of Directors and Ad-
rpose is to help visory Councd includethe chief execu·
succeed in tue officers of many of Americats most

lefit doesn't stop important corporations.
s consume about When you think about corpo-
ports. So the rate giving, think about doing good
create jobs and business, as well as doing good.

International Executive

Service Corps 'mCtriclilit's not just doing good. It's doing-good business. A Ain; S»we or

ri, put,<»

rig businesses In - ,
*Ing Maine
r·nation. write to - ,
rman of the Aticir«qcan Airlines. Inc.,
RO. Box 10005,
2005. Or simply 1
3) 967-6000. ty. f'Ata 7g1

ules rather-tban imbedding accesses in
functional modules.

All of the preceding techniques will
si:mblify the verification, either manual or
automated, of the design package. '

The industry seems to be unable to
distinguish between the information need-- 4-,
ed to produce a product and the documen-
tation that is simply regurgitated iIi j
response to a request for information.
Rather than publish phase documents we
might attempt to utilize a design methodol-
ogy that captures the required information
and makes it available in easily compre- A
hended sections. Some development orga- ,
nizations are using design tools to capture
the information and then dumping the
database, editing the result, and adding mi.
nor prose sections instead of writing phase
documents.-In response to requests for spe-
cific information, it is possible to generate
reports from the database. The requester
can be sent a soft copy of the specific design
information he requested instead of an ent
tire document.

Control is a necessary part of all f
management processes. In fact, the phase
development process came about as a way I
to control software development. But the
cost of control functions is becoming dis
proportionately large in relation to the cost
of development activities.

In general, avoid control-oriented
tasks as much as possible. Try to produce
control information as a result of normal
activities. For example, by using a design
database the number of people needed to
draft and edit a review document is re=
duced. The database can be used to pro-
duce the design information, to write:the
prose, and edit the entire package. The use
of a database eliminates the need for "writ-
ing" a design document

At requirements time some kind of
review ought to be held regarding the scope
and anticipated cost of the project. During
the design phase, there may need to be a
review of the external interfaces and ex··
pected performance of:the target system. If
coding is to be done, then some sort of veri-
fication of the detail design is appropriate
before beginning coding. Certainly a vati-
dation :of the implemented system is neces-
sary before it is delivered to the customer.

While management attention has
wandered until control of the process has
become more important than delivery of
the system, the concept of the phase review
process is still sound- But shifting attention
from controlling the development process
toward managing the development of a de-
ign will provide a clear understanding of
the tasks and issues involved in-the devel-
opment process. The development process
should provide an environment in which
necessary control information can be gen-
¢rated without extra effort on the part of
the developers. ®

Patrick Brown is a programmedanalyst
in the Information Systems Group at IBM.

: 3. J'- : c 79> 81»5.04 :399*94"'9%2

% 4

4. t

14]i<.-»3

Dr. Dobb's I 2002 Dr. Dobb's Excellence in Programming Awards I M. http://www.drdobbs.com/article/printableArticle.jhtmlijsessionid=...

Share ideas with thousands of your peers

.f

Dii Dobbb
THE WORLD OF SOFfWARE DEVELOPMENT

2002 Dr. Dobb's Excellence in Programming Awards

Since 1995, Dr. Dobb's Journal has presented its Excellence in Programming Award to individuals
who, in the spirit of innovation and cooperation, have made significant contributions to the
advancement of software development.Adele Goldberg and Dan Ingalls are pioneers in object-
oriented programming in general, and the Smalltalk language in particular.

By Dr. Dobb's Journal
May 01, 2002
URL: http://www.ddj.com/184405043

Since 1995, Dr. Dobb's Journal has presented its Excellence in Programming Award to individuals who, in the
spirit of innovation and cooperation, have made significant contributions to the advancement of software
development. Past recipients of the Dr. Dobb's Excellence in Programming Award include:

• Alexander Stepanov, developer ofthe C++ Standard Template Library.

• Linus Torvalds, for launching Linux.

• Larry Wall, author of Perl.

• James Gosling, chief architect of Java.

• Ronald Rivest, educator, author, and cryptographer.

• Gary Kildall, for his work in operating systems, programming languages, and user interfaces.

• Erich Gamma, Richard Helm, John Vlissides, and Ralph Johnson, authors ofDesign Patterns: Elements of
Reusable Object-Oriented Sojtware.

• Guido van Rossum, Python creator.

• Donald Becker. for his contributions to Linux networking and the Beowulf Project.

• Jon Bentley, computer-science author and researcher.

• Anders Hejlsberg, developer of Turbo Pascal and architect of C# and the .NET Framework,

The recipients ofthis year's award, Adele Goldberg and Dan Ingalls, are pioneers in the area ofobject-oriented
programming in general, and the Smalltalk language and development environment in particular. As researchers
at Xerox's Palo Alto Research Center (PARC), Goldberg and Ingalls each recognized in their own way the
promise of objects, and they were in a unique position to put those theories into practice in an architecture based

1 of3 5/9/2010 2:40 PM

Dr. Dobb's 12002 Dr. Dobb's Excellence in Programming Awards IM... http://www.drdobbs.com/article/printableArticle-jhtmilisessionid=...

on objects at every level.

Although we take objects for granted today, these two
researchers helped to bring object-oriented programming into
the real world for the first time almost 30 years ago, from the
highest level of users and their information modeling needs to
the lowest levels of syntax, compilation, and efficient message
passing.

Looking back on the original work at Xerox, Goldberg later said
it tackled one ofthe most difficult and problem-prone steps in
software development - identifying terms and relationships as
understood by human participants of a particular situation with
those understood by a computer.

To that end, Goldberg believed that:

Adele Goldberg • Interactive, incremental software-development environments
could produce a qualitative improvement in software-

development productivity.

• Software could be designed in autonomous reusable units, each corresponding to identifiable entities
(conceptual as well as physical) in the problem domain that communicate through well-defined interfaces.

• The model, or framework, for how these units work together represents both a process and vocabulary for
talking about the problem domain.

• We should think about writing software in the context of building systems, rather than in the context of
black box applications.

As early as 1977, Goldberg, along with Alan Kay, presented the goals for the Smalltalk research efforts in a
paper entitled "Personal Dynamic Media" UEEE Computer, March 1977). She went on to author and coauthor
many ofthe definitive books on Smalltalk-80 programming including, with David Robson, the seminal
Smalltalk-80: The Language and Its Implementation (Addison-Wesley, 1989, ISBN 0201136880), as well as
numerous papers on object technology. Goldberg edited The History ofpersonal Workstations (ACM/Addison-
Wesley, 1988; ISBN 0201112590); coedited with Margaret Burnett and Ted Lewis Visual Object-Oriented
Programming (Prentice Hall, 1995; ISBN 0131723979); and coauthored with Kenneth Rubin Succeeding with
Objects. Decision Frameworks for Profect A.fanagement (Addison-Wesley, 1995; ISBN 0201628783).

Goldberg received her Ph.D. in Information Science from the University of Chicago for work carried out jointly
at Stanford University. She also holds an honorary doctorate from the Open University (UK) in recognition of
contributions to computer science education. After more than a decade as a researcher and laboratory manager
at Xerox PARC, Goldberg became the founding CEO ofParcPlace Systems, the PARC spin-offthat developed
commercially available object-oriented application-development environments. Goldberg currently is founder of
Neometron, a consulting company that focuses on dynamic knowledge management and support for
project-based online communities.

From 1984 to 1986. Goldberg was president of the ACM, recipient of the 1987 ACM Systems Software Award
along with Dan Ingalls and Alan Kay, and is an ACM Fellow. She received PC Magazine's Lifetime
Achievement Award in 1990.

Like Goldberg, Dan Ingalls was an original member ofthe PARC team that developed Smalltalk. He has been
the principal architect of numerous Smalltalk virtual machines and kernel systems. The first of these,
Smalltalk-72, supported the work reported in "Personal Dynamic Media." Smalltalk-76, described in ACM's
1978 Principles of Programming Languages (POPL) proceedings (and available at http://users.ipa.net/-dwighth

2 of3 5/9/2010 2:40 PM

Dr. Dobb's I 2002 Dr. Dobb's Excellence in Programming Awards 1 M . http://www.drdobbs.com/article/printableArticle.jhtmljsessionid=...

/smailtalk/St76/Smailtalk76ProgrammingSystem,html), was the first modern Smalltalk implementation with
message syntax, compact compiled code, inheritance and efficient message execution, and its architecture
endures in Smalltalk-80, the major documented release of Smalltalk work at Xerox. Most recently he designed
the kernel ofthe Squeak open Smalltalk system, a practical Smalltalk written in itself. (For more information
about Squeak. see ftp://st.cs.uiue.edu/Smalltalk/Squeakdges/OOPSLA.Squgak.html.) 1ngalls also invented the
BitBlt graphics primitive and Pot»uP menus, and was the principal designer of the Fabrik visual-programming
environment while at Apple Computer.

Ingalls received his Bachelor's degree in physics from Harvard
 f University, and Masters in electrical engineering from Stanford

University. He is a recipient ofthe ACM Grace Hopper Award
and the ACM Software Systems Award. Ingalls currently works

-- Research Inc., where he is working to complete an architecturewith Alan Kay and other seasoned Smalltalkers at Viewpoints

for modular Squeak content that is sharable over the Internet.
11 He supports an active Squeak community

(littp://www.squeak.org/) through his participation in e-mail
discussions, attention to periodic releases, and other support at
alllevels. He also runs Weather Dimensions

(littp:Uwww.WeatherDimensions.com/), a company that sells a

 weather station he designed.
Although Goldberg and Ingalls worked at very different levels,

Dan Ingalls the breadth oftheir collaborative territory is what shaped the
final result. Ingalls says ofhis technical achievements, "I loved

the challenge in efficiency and generality that it took to make Smalltalk real, but what gives me the most
satisfaction looking back is that we built a serious system that is actually fun to use. We had a passion, inspired
by Alan, to liberate the beauty of computer science from the barnacled past of ad hoc engineering." Goldberg
adds, "During the PARC days, the opportunity to work with children and other nontechnical users kept us
focused on how to use rigorously what people already know informally about objects. But the most thrilling
experience for me was to work with ParcPlace customers in both large and small companies, and see how our
technology enabled them to finally break the barrier between business understanding and systems
implementation."

At Adele Goldbergs request and in her name, Dr. Dobb's .Journal is pleased to make a grant of $1000 to the
Girl's Middle School (littp:/fwwy.girlsms.orgO, a San Francisco Bay Area all-girls middle school that focuses on
math and technology. At Dan Ingalls request and in his name, we are happy to make a $1000 grant to the The
Sierra Nevada Children's Museum in Truckee, California. Please join us in honoring Adele Goldberg and Dan
Ingalls who once again remind us that a mix of technology, innovation, vision, and cooperative spirit is
fundamental to advancement in software development.

DDJ

& FS. UUK'# 11 lili@ CAh{3*91(}Vv10 HEW /&

3 of3 5/9/2010 2:40 PM

09/30/91 SOFTWARE MADE SIMPLE http:Uwww.businessweek.com/1989-94/pre88/b323363.hon

P ;1401/119 SEATING
AVAILABLE NOW.

CUCK HERE FOR THE

BEST SEATS
IN THE HOUSE.

V#SA

Bug[sUBM,Wk Archives
IFC!5IFI| IW MIME | BWCONTEITS | BWAUS' |84¥DAILY|SEARCA|CONTACTUS

Return to Past BW Coiverit, Table of Contents

SOFTWARE MADE SIMPLE

Will Object-Oriented Programming Transform the
Computer [ndustry?

While ar engineering school, E,ic Beigerson learned to write computer
programs the hard way--line by bjoody line. He would spend long mghts
tediously outlining and writing lists of instructions in C, a popular but rather
touchy computer language. A sing}c typing error could blow a program
sky-hugh. And adding new functions, even to a smoothly running,
welklinderstood program? 'llhut could take weeks or months to gm right:
Even the best-made programs were usually so convoluted thal a seemingly
trivial change could screw things up. "It was gnarly," he says.

Programning didn't get any easier when Bergerson went to Shearson
Lehman Hutton Inc. in 1988. Only there was tons more pressure to do it
fast He began programming Sun Mewsystems]ne workstations for equity
arbitrageurs and found that almost everything in those systems needed
constant updating--from the details of transactions and trading strategies to
the customized "look und feel" each trader wanted for his or her screen.

Writing line after line of computer code, Bergerson hit a[1 the same snags he
had encountered at school Compounding his frustration, he learned that
down the hall in capital markets another young software hotshot, Alex
Cont was writing many of the same prugrams. Wasn't there a better way?

'LEGOBLOCKS.' There sure #as Andas soon as Bergerson and Cone
found [t, they knew that for them--and someday, the rest of the world-
prog, amming *Duld never be the same. Indeed, at the software startup they
now head, Objective Technologies]nc., pmgramming seems downright
juvenile Instead of mucking around in tangles of C code--writing arcane
stattments such as printf (·'5/cs/n". curr str>--they mainly connect boxes on
the screens of their NeXT Computer Inc workstations and fi[Un blanks In
minutes. they have industrial-strength programs that run right the first tilne
and thal can be modified without brain surgery. Says Bergerson. 27:"I
showed my mother: and she said, 'You're still playing with Lego blocks, like
when you *Fre a kidl: :'

What they're doing Is object-oriented progpamming Some say it'sjust the
latest computer buzzword, like artificial intelligence was a decade ago They
predict thal kike artificial intelligence, object-oriented programming will not
spawn a distinct new set of pToducts but will be a technique added to
conventional software.

But unlike artificial intelligence, which promised the fascinating but far-out
concept of oomputers fhat "think" object technology has an immediate,
practical payoff Already, it's helping the computer industry with its most
daunting challenge: making software easier to create, simpler to use, and far
more reliable.

That's a tall order. While computer hardware has made enormous strides,
software has been tar*ty mired in the past. Every two years or so, a new
generation of microprocemr chips anives and doubles hardware
performance, but no such breakthrough has occurred m software For the
niost part, programmers continue to cobble together software at a painfully
slow rate. As a result, corporate programmlng departments are frequently a
year or more behind. And computer makers and software suppliers often
Iniss son-e shipment dates by months

BIG PLANS The bottom line: For [ack of solhipre, many of the advances
in computer hardware go untapped. The software gap-yawning wider every
year--is one reason for slow growth in computer sales. Object prognmmillg
however, "MIl get the industry out of the alt we're in," says Phillppe Kahn.
president of Borland Internationaj Inc

Kahn and object technology's many other hoOS!¢TS predict that it will do for

1 of 5 5/9/20102:33 PM

09/30/91 SOFTWARE MADE SIMPLE http:Uwww.businessweek.com/1989-94/pre88/1,323363,htm

softwai'e what the microchip has done for hardware. Instead of mictohips,
the software revmution will be built on so-called objects-simple,
self-contained, reliable software components (box, page 92 58). Like the
microprocessor. object technology has the potential to radically change the
economies of the business··and not just in the $30 billion pa©kaged.software
industry. In an em when hardware is a commodity and software is the key
competitive technok>ig, computer makers that exploit objeet-Oriented
software best are hmely to dominate the computer industiy itself.

If you doubt that, consider the pending collaboration between IBM and
Appk Computer Inc. These blood rivals stunned the industly last summer
by announcing that they will work together. Their plans remain sketchy, but
a key goal will be to c,reate & system forobject,oriented programming that
wil! seta standard in tbe next decade--and thereby seize control of tile
industry fromMkrosoft Corp.

Object-onented technology also figures prominently in the plans of William
H Gates III, Microsoft's chainnan. In his view, every imagf, graph, or
snippet of a road map will be stored in the computer as an object. Ihe goal.
says Gates, is 'information at your fingertips'·th¢ ability to s¢ek out
compile, and summarize inforniation from myriad electronic soumes without
having to know where any of it comes from

Hoping to lead yet another technology movement, Steven P. Jobs has been
pursuing object-oriented technology ever since he launched NeXT Inc. 'the
NeXT workstation, introduced three years ago, conies complete with an
object-oriented programming langua@3 and a litxary of 100 objects that
handle such common tasks as printing, displaying informationin windows,
and handling electronic mail It has become a favorite among software
developers. Object programming says Jobs, 'is the first mat technological
shift we've had in the industry since the Macintosh:'

INFINITELY REUSABLE. The key breakthrough in object technology is
the ability to build large programs from lots of small, prefal>ricated ones
That's possible because objects completely change the traditional
mationsh* between promms and data, which have been strictly
segregated for 40 years. As the old term "data processin' implies, programs
ordinalily act on data--simple lists of munbers or customer names, for
example. An object in contrast, encapsulates programs and data m one
sell-contained unit, Whichfiltly descfibessomereal-world entity.

nink oftlie way an Apple Macintosh handles a page of in&*mation. The
page on the screen is a rudimentag object. It has data-words, numbers, and
graphs-and also the programming that lets it behave like a real page. Using
your mouse, you can pick it up, move it, file it, copy it, or even throw it
away.

This simple idea provides tfemendous benefits. Software objects can be built
to represent just about anything-from an abstract concept such as an
insurance poticy, to a specific thing or person, such as Duke Ellington,
American composer and musician, 1899-1974. More important objects can
be created that perforn certain common tasks--sorting for example. Once
perfected, such objects are infinitely reusable, so programmers don'thave to
reinvent the wheel every time. Bad Cox, who created Objective C, the
programming language that comes with NeXT machines, predicts that object
technology will be as big an advance for the Information Age as Eli
Whimefs invention of interchangeable musket parts was in the Industlial
Ag,

But soware components are more than interclangeable cogs. Because
thefre made of progamming and data, they "know" what they are and how
th¢y behave. An object called Payday, tor instance, can automatically check
with an object called Employee Roster, note any resignations or retirements,
then call over to another object called Payroll and give it a list of checks to
mint -all without human interientionUsing reusable blocks, instead of
writmg from scmtch. makes programming far faster and produces filkished
software that is more reliable and easier lo update. Reusability alone is
expected to give businesses ahuge boost in programmer productivity (box)
because eventually, only unique new functions will need to be written from
scratch. Modifying programs is also easier. When NeXT wanted to give its
workstations the ability to send faxes, for instance, it didnt have to write fax
code into each pi»gram It just added the fax pIogramming to the
workstations'Print object. Since *11 NeXT programs use that object, they
were alt instantly upgraded to communicate by fax.

For ordinary computer usera, objects mean Pes that are far easier to usee
than today's most"user-ftiendly" machines. Indeed, When Xerox Corp.'s
Palo Alto Res¢amh Center 0?ARC} begAn looking into object-oriented
software in the 19703, one of its gpals, literally, was to design a system so
simple a child could use it Twenty years later, object-based technology
promises to make computers easy enough for adults to use. "]f my
5-year-old kid can use it. I consider it good/' says Bjame Stroustrup, an

2 of5 5/9/2010 2:33 PM

09/30/91 SOFTWARE MADE SIMPLE Itttp:Uwww.businessweek.com/1989-94/pre88/b323363.htm

AT&T Bell Laboratories computer scientist who invented the most popular
ObJect programming language, C++.

A good exampte of how objects can make Pes easier to operate is
multimedia software, which gives computers the ability to manipulate
snippets of video and sound. In a package called Macromind Director, by
pointing to an icon that represents a VCR, you can retrieve stilt pictures or
even film clips from computer files. The VCR object works much like the
real thing Seie©t the '©assette" with the images you want, bit rewind or fast
forward, and locate, say, a clip of the Hindenburg crash. Hit record, and
copy the clip into your quarterly earnings presentation.

LIKE LIFE. Such multimedia tricks are only the glitzy surface of object-
oriented programming A more intriguing possibility is software that does a
much betterjob of simulating how a business works than spreadsheets and
data bases can. Businesspeople "want to describe information in more
general, real„wortd terms and create a full simulation of what they think is
going on," says Adele Goldberg, a former Xerox PARC researcher and now
president of Pam-Place Systems, a maker of object-based software.

Three years after Bergm·son and Cone left, Shearson Lehman Brothers Inc.
has bought into object technology and is building software that simulates its
business. It has Account objects, representing customers, Contract objects to
manalm agreements between parties, and Security objects that describe the
properties of stocks, bonds, or optioos. An Account can enter into a
Contract to buy a Security-just as in life, 'lfs more toward the reality of
whafs actually happening," observes Shearson Vice-President Frank
Filippis.

Once objects have been built and tested, it's fairly simple to clone them for
new products or services. Now, when Lehman wants to sell a new type of
security, the programmers just tell the computer the special attributes of this
new instrument. '[lie Security object then automatically gives birth to a
program that inherits all its generalized traits, plus the unique new attributes.
"Wecan model a[1 types of securities this way,lf says Filippis.

The upshot is a system that can keep up with business changes. At Unum
Life Insurance Co., for example, whenever a state regulation changed in the
past programmer& for the Portland (Me.)*based insurer had to scramble. But
now, using objects, they can do such updates in one-third the time--and
create software that's far more usable by nontechies, says Barby Mutler, a
technology manager. In some cases, "instead of the programmers, the
business people can make changes to the software.'· she says.

Another big benefit: By building progmms from prefab objects. you avoid
the kind of •spaghettf' code that programmers commonly use to patch new
functions onto 0[d systems. These little programs ean make software
maintenance--usually the biggest cost in running a computer center-a
nightmare. Brooklyn Union Gas Co. recently scrapped a 13-year-old
customer information system on its mainframe that had become so huge and
inflexible that the company couldn't respond to the needs of its 1 million
customers. With Andersen Consulting, it created an object-based program
that's 40% smatler yet does more. And ihe company expects it to last 20
years-onafractionofthe old maintenance budget.

Such success stories are attracting more converts. In a recent survey by
researcher International Data Corp., 70% of large U. S. corporations said
they are programming with objects or plan to do so soon. The main
motivator? Money. Shearson's Filippis claims that his group has cut 30%
from depdopment costs. He reckons the company could save miltions more
if every department shared a central object library.

Hard to imagine that a single technical advance can do all thi&--drastically
improve programmer productivity, create more reliable softwae, and give
computers a childlike simplicity? Surely, them must be a catch. There are
several.

Among the most formidable: it takes a lot of careful planning to create
objects. Software designers not only have to figure out what each building
block should de but they also must anticipate how each will work with
thousands ofother objects. "It takes a lot ofenineering to make things look
simple and easy," warns Stroustrup of Bell Labs.

PROJECT PINK. An even bigger obstacle may be standards. The big payoff
from object-oiiented software will come when there are common ways to
shuttle objects between different e,omputers. To that ent more than 160
computer and software makers and customers have joined the Object
Management Group. Its goal is to create an electronic system to distribute
software objects, such as multimedia documents, acmss a network,
regardless of the type of computers that are on it. Digital Equipment. Sun,
and Hewlett-Packard are now collaborating to produce the software.
Meanwhile, the Apple,IBM camp is working furiously to create a standards-

3 of5 5/9/2010 2:33 PM

09/30/91 SOFTWARE MADE SIMPLE http://www.businessweek.com/1989-94/pre88/b323363.htm

setting object-oriented operating system.·.the basic program that runs a
computer. 1rhat effort, say industry-watchers, will be based on Pink, an
object-oriented system under development at Apple. It also will include
tochnok}gy that IBM acquired with the purchase of Metaphor Computer
Systems. a so ftware company headed by David E. Liddle, another Xerox
PARC alumnus.

Companies that will compete with the IBM-Apple alliance·-Sun
Microsystems, Microsoft, and NeXT-argue that it's not necessary to build
an all-new operating system to deliver the benefits of object-based software.
"That'& not a very realistic scenario," says Gates, who plans to slowly add
obiect··based technology to Microsoft's operating systems.

'BLOATWARE.' Liddle contends that without an object-oriented operating
system. customers won't realize 1he efficiencies inherent in the new
technology. Worse, they'll be stuck with poor applications programs.-what
he calls 'bleatware." These am aging packages to which hundreds of
features have been added to make them "new" and'!improved"-but almost
impossible to inaster. A better idea, he says, would be to make nifty new
features freestanding objects, easily accessed by any program. Such
common objects may even be included with the operating systein that IBM
and Apple are building.

Eventually, a whole new way of seMing software may emerge. In a market
of interchangeable, plug-and-play objects. you might shop for pieces
separately and compile your own custom software. Chunks of programs may
be sold like hardware components. "You can walk into a Radio Shack and
buy a chip or circuit that does a specific function," says Chuck Duff,
founder of Whitewater Group, which makes programs to write object-
oriented software. "That needs to happen for software."

How quickly object technology wiM sweep the industry is anybody's guess.
Certainly, it's catching on With software makers and big corporations, who
hope to make programming simpler and cheaper. But will it fundamentally
alter the computer business, assoineobservers predict? Maybe "The entire
softwale environment needs a face-lift." notes Edward 1 Zander, president
of Sun's SunSoft subsidiary. Object technology by itselfmay not be the cure
to slow growth, but it looks like a good bet for painting a happier face on Qe
computer mdustry.

WHAT IS AN OBJECT?

Software objects are chunks of programming and data that can
behave like things in the r'eat world. On an Apple Macintosh
computer, for example, you can use electronic objects called file
folders and file cabinets to organize pages of information-the way
you would in the physical world.

But objects can be applied to many kinds of programs. An object ean be a
business form. an insurance policy-or even an auto axle. The axie object
would include data describing its physical dimensionsand programining
that des=ibes how it interacts with other parts, such as wheels and struts.

A system for a human resources department would have objects called
employees, which would have data about each worker and the programming
needed to calculate salary raises and vacation pay, sign up dependents for
benefits, and make payroll deductions. Because objects have
"intelkigence"-they know what they are and what they can and can't
do-objects can automatically carry out tasks such as calling into another
computer, perhaps to update a file when an employee is promoted.

The biggest advantage is that objects can be reused in different programs
The object in an electronic-mail program that places messages in
alphabeticatorder can also be used toalphabetize invoices. Thus, programs
can be built from prefabricated, pretested buildixig blocks in a fraction of the
time it would take to build them from scratch. Programs can be upgraded by
simply addingn©wobjects.

John W Venty and Evan t. Schwadz in New York with bureau repirts

[12=1¥bpl $* R©Mt I a?# te,frE.Nv% I aw pu.si Iswaaul SEARCHI COPATA©T *8*i

a==3

Updated Aug. 25,1997 by bwwebmaster
Copyright 1991, Bloomberg L.P.

4 of5 5/9/20102:33 PM

i e s- u#&1266 1%€e-%998?94:Driia*'- 6®€ mit-n - 6*h¥41<f --;fj#6"{16.5,««9%2 w. 942.0 mit:*AN. cr·%21/f:, 9»j yfi.> os .t.;,%,47:94.40> 04*ky:FAKert@%@01·2%*«»49*»39:»2.«9%20&»a**«2.49·33@341,36:*€4%/ppze4> :u»MUti.e*=*%. igjf@g 'XP,44.22

4

347#Aty«

A

a

2*e @A

twi.
Aih¢F

%5

i

j

ATI

=Sps#+9*e - 52.:9 '

L

j

TECHNOLOGY

THE OBJECT Of
TI'S DESIRE

Object-oriented technology helps create a new production process

leading seniiconductor
manufacturer and the
U.S. Department of De·
fense are using one inno-
vative technology to de-

velop another. Texas Instruments
Inc. is employing the object-oriented
software development techniques
used to build manufacturing sup-
port systems to design an entirely
new production process.

"The approach we have taken is to
adopt object-oriented programming
to all aspects of the system," reports
John McGehee, chief software archi-
ted for the micro electronics manu-
facturing science and technology
project at TI. McGehee helps oversee
one of the most ambi hous semicon-
ductor manufacturing projects ever
attempted. 'The project, which is
funded through a $112 million De-
fense Department contract won by TI
in 1988, seeks to build a radically new
semiconductor manufacturing facility
capable of producing custom military
chips in far less time and for far less
money than is currently possible.

Object-oriented techniques,
which attempt to describe s
as objects, are widely used
to develop individual ap
plications. But James Rum-
baugh, a computer scien-
tist at General Electric
Co.'s R&D center in
Schenectady, N,Y., and
one of the creators of a
high-level development
methodology called the Ob-
jed Modeling Technique,
claims that object-oriented
techniques are ideally suit-
ed for designing factories,
distribution routes, and
Other businesses. "It's a
natural way to model a real
thing like a factory or busi-
ness because it corresponds
to the way people think TI says that new technology can produce chips muu

 than 30 new processes that included
 - the interaction between a variety of

sensors and machines in just four
months of prototyping. "Software
had a significant role to play," says

i ··McGehee. "The simulation system is
I now viewed as the glue holding this

all together."
1 The object-oriented approach has

enabled TI to undertake numerous
revisions and modifications to the

production process that would have
been prohibitively expensive using
traditional development techniques.
Unlike most chip plants, which
churn out large quantities of chips
with little variation, the TI project
seeks to produce custom chips in
smaller batches at low cost, using
flexible manufacturing techniques.
The Defense Department, which
hopes the project will help reduce its
dependence on foreign suppliers for
high-tech weapons, ultimately plans
to transfer the chip,»making technol-
ogy to U.S. semiconductor compa-
nies for commercial use.

Jim Feldhan, senior VP at Instat
Inc-, a Scottsdale, Ariz., market re-
search firm, says a breakthrough of
this sort would have a big impact on
the semiconductor industry, since
custom designs are the fastest grow-
ing part of the market. "Newer
products tend to be lower volume
anyway, until the technology proves
itself/' he says,· "so if [TI and the
Defense Department] could make it
work it could be extremely beneficial
to U.S. suppliers."

McGehee believes the U.S. gov-
ernment will succeed in transferring

hnology to non-defense chip
makers, in large part be·
cause the object-oriented
systems underpinning the
TI project are easily revis-
able. "We are viewing it as
one of the most important
and strategic programs in
the country in terms of
keeping the U.S. semicon-
ductor industry at the fore-
front of technology," he
says. "One message I
would like to see propa-
gated is that the object-ori-
ented revolution has al-
feady begun. We have
seen the benefits. The
paradigm is extremely
powerful."

h faster -Witl McClatchy

JUNE 10, 1991/INFORMATIONWEEK 21

about them," he explains.
As opposed to traditional software

development methodologies, which
list a sequence of operations to be
performed, including fetching the
appropriate data, object-orientation
begins by representing the data as
objects. The definition of those ob-
jects (i.e. buildings, cars, machinery,
etc.) also includes operations or
tasks that are associated with them
(i.e. opening a door or dosing a win-
dow). Therefore, a modular system
Comprised of objects includes both
the data and the instructions acting
on that data.

At Texas Instruments, McGehee
and his colleagues have used object-
orientation to simulate everything
from inventory management to pro-
cess control with Mountain View,
Calif.-based Parcplace Systems Inc.'s
Objectworks for Smalltalk, an object-
oriented development environment
based on Unix workstations. Actual
objects simulated at TI include a ro
bot, a chip in production, and a pro-
cess-control operator. The Object-

works environment lets
1101* TI engineers test moreystems the tec

f.42/·k * 49 . STRATEGIES: •CHRYSLER INTEL *HEINZ

SOFTWA 49
MADUIMPU

. It's called
4,<es/9
(·39 object-oriented

cy programming-
a way to make
computers a lot
easier to use.
Here's what it
can do for you.

i.419

PAGE 92

4

00920

60II 6 - VO VN36¥5¥d
a¥3151¥H N 052 2I0L X09

ABVMqIl SISX
d303 X033X

299£ Ntl 26933 256*I£90I 2090

60II6 lIDia--5***********

«21 .> 14„ E{41*: 4*9000* i

SOFTWARE
MADE SIMPLE

WIU OBJECT-ORIENTED PROGRAMMING TRANSFORM THE COMPUTER INDUSTRY?
hile at engineering school,Eric Bergerson learned towrite computer programs the

hard way-line by bloody line. He would
spend long nights tediously outlining
and writing lists of instructions in C, a
popular but rather touchy computer lan·
guage. A single typing error could blow
a program sky-high. And adding new
functions, even to a smoothly running,
well-understood program? That could
take weeks or months to get right: Even
the best-made programs were usually so
convoluted that a seemingly trivial
change could screw things up. "It was
linarly," he says.

Programming didn't get any easier
when Bergerson went to Shearson Leh-
man Hutton Ine. in 1988.
Only there was tons more
pressure to do it fast He be
gan programming Sun Micro·
systems Inc. workstations for -
equity arbitrageurs and
found that aimost everything

+ in those systems needed con*
stant updating-from the de··
tails of transactions and trad-
ing strategies to the
customized "look and feel"
each trader wanted for his or
her screen. Writing line after
line of computer code, Ber-
gerson hit all the same snags
he had encountered at school.
Compounding his frustration,
he learned that down the hall
in capital markets another
young software hotshot, Alex
Gone, was writing many of
the same programs. Wasn't
there a better way?
•woo *Le€Ks., There sure

was. And as soon as Berger-
son and Cone found it, they
knew that for them-and
someday, the rest of the
world-programming would
never be the same. Indeed, at

92 BUSINESS WEEK/SEPTEMBER 30, 1991

the software startup they now head, Ob-
jective Technologies Inc., programming
seems downright juvenile: Inst:ead of
mucking around in tangles of C code-
writing arcane statements such as
printf f<Gs/n", curr str»they mainly
connect boxes on the screens of their
NexT Computer Inc. workstations and
fill in blanks. In minutes, they have in-
dustrial-strength programs that run
right the first time and that can be modi-
fied without brain surgery. Says Berger
son, 27:"I showed my mother, and she
said, 'Yout're still playing with Lego
blocks, like when you were a kid!"'

What they're doing is object-oriented
programming. Some say it's just thelat-
est computer buzzword, like artificial in.

WHAT IS AN OBJECT?

telligence was a decade ago. They pre-
diet that like artificial intelligence,
object-oriented programming will not
spawn a distinct new set of products but
wilI be a technique added to conventional
software.

But unlike artificial intenigence, which
promised the fascinating but far-out con·
cept of computers that "think," object
technology has an immediate. practical
payoff. Already, it's helping the comput-
er industry with its most daunting chat-
lenge: making software easier to create,
simpler to use, and far more reliable.

That's a tall order. While computer
hardware has made enormous strides,
software has been largely mired in the
past. Every two years or so, a new gen-

eration of microprocessor
chips arrives and doubles
hardware performance, but
no such breakthrough has oc+
curred in software. For the
most part, programmers con.
tinue to cobble together soft·
ware at a painfully slow rate.
As + result, corporate pro-
gramming departments are
frequently a year or more be-
hind. And computer makers
and software suppliers often
miss software shipment dates
by months.
81* PLANS. The bottom line.
For lack of software, many
of the advances in computer
hardware go untapped. The
software gap-yawning wid-
er every year-is one reason
for slow growth in computer
sales, Object programming,
however, "will get the indus-
try out of the rut we're in,"
says Philippe Kahn, president
of Borland International Ine.

Kahn and object technol-
ogy's many other boosters
predict that it will do for soft-
ware what the microchip has

COvER STORY

oftware obiects ore chunks of programming Bind data that conbehave like things in the real world. On an Apple Macintosh com·
puter, for example, you can use electronic obiects called file folders
and file cabinets to organize pages of information-the way you
would in the phy5ical world.

But ablects can be applied to many kinds of programs. An obiect
con be o business form, an insurance policy-or even an auto axle.
The exie object would include data describing its physical dimen-
sion-and programming *hal describes how it Interacts with other
parts, such as wheels and struts.

A system for o human resources department would have obiects
called employee$, which would have data about each worker and the
programming needed to calculate salary raises and vacation pay, sign
up dependents for benefits, ond make payroll deductions. Because ob
iects have "intelligence"-they know what they are and what they
can and can't do-obiects can automatically carry out tasks such as
calling into another computer, perhaps lo update o file when an em·
ployee is promoted.

The biggest advantage is that obiects can be reused in different
programs. The obiect in on electionic.mail program thal place* mei.
5age, in alphabetical order can also be u$ed to alphabetize invoices.
Thus, programs can be built from prefabricated, pretested building
blocks in o fraction of the time it would take to build them trom
scratch. Programs con be upgraded by simply adding new obiecti.

1

--4

y,

ore-

ice, 1
not
but
jnal 1

file 1

.Ie. 1
ro-

.re

rs

en

es

ny
Et

he

in

nt

t.

iS

ORY

THE OLD WAY... ...THE NEW WAY

99
km A Ef

CONFUSION can begin e•en before programming does. As in
.........--- the party gome Telephone, the description of
what a pmgram should do is retold many times. By the lime it's
translated into d series of commands that the computer "under-

stands," the original idea is easily distorted.

UNDERSTANDING h©w to design a program is easier be-
... cause obiects can correspond to real.

worid entities. Ff man,agement wgni to automote order taking, an
order·slip obiect can be written to replicate the real thing:, with
spaces for address, quantities, prices, etc.

HANDCRAFTING programs can help wnng extra speed
from a system. But, usually, such one-off

work can't be reused in other programs. That has kept software
writing o quirky craft rather than the modern manufacturing pro-
cess it should be.

REUSING software is possible when oblects ore created ac-
, cording toprecise rules. As long as obiects conform

to standards for how they 5hould communicate and interact with
one another, h possible to reuse old, reliable objects in new pro
grams. That saves time and money.

00**00.00
.*ad ."-4....A . S.

BREAKDOWNS can be a disaster with handcrafted pro
.. grams: Often. only the programmer who

wrote it knows how it work5. Worse, "speighetti code" Can 5noke
through a system, so altering one part of a program can have di-
sastrous results elsewhere.

REPAIRING and updating program: based on obiech is sirn-
ple. Obiect5 isolate program functions from eat}

other, so that o change in one doesn'tdisrupt the program else-
where. Entire obiects can be swapped out for new ones, without fe
working the rest of the program.

COvER STORY BUSINESS WEEK/SEPTEMBER 30. 1991 93

r

MIM ANDON

1

60 P

k 4 1v ./.- Vi

chips, the software revolution will be
built on socalled objects-simpte, self·
contained, reliable software components
(box, page 92). Like the microprocessor,
object technology has the potential to
radicalIy change the eeonomies of the
business-and not just in the $30 billion
packaged-software industry. In an era
when hardware is a commodity and soft·
ware is the key competitive technology,
computer makers that exploit object«i-
ented software best are likely to domi-
nate the computer industry itself.

If you doubt that, consider the pend.
ing collaboration between IBM and Apple
Computer Inc. These blood rivals
stunned the industry last summer by an·
nouncing that they will work together.
Their plans remain sketchy, but a key
goal will be to create a system for ob-
ject€oriented programming that will set
a standard in the next decade-and
thereby seize control of the industry
from Microsoft Corp.

Object-oriented technology also fig-
ures prominently in the plans of William
H. Gates III, Microsoft's chairman. In
his view, every image, graph, or snippet
of a road map will be stored in the corn-
puter-as an object. The goal, says Gates,
is "information at your fingertips"-the
ability to seek out, compile, and summa-
rize information from myriad eleetronic
souces without having to know where
any of it comes from.

Hoping to lead yet another technology
movement, Steven P. Jobs has been pur-

94 BUSNESS WEEK/SEPTEMBER 30 1991

jsuing object-oriented .echnology ever
since he launched NexT Ine. The Next
workstation, introduced three years ago.
comes complete with an object-oriented
programming language and a library of
100 objects that handle such common
tasks as printing, displaying information
in windows, and handling electronic
mail It has become a favorite among
software developers. Object program.
ming, says Jobs, "is the first real techno-
logical shift we've had in the industry
since the Macintosh."
INF,Ht,ELY REUSABLE. The key break-
through in object technology is the abili-
ty to build large programs from lots of
small, prefabricated ones. That's possi-
ble because objects completely change
the traditional relationship between pro-
grams and data, which have been strict-
ly segregated for 40 years. As the old
term "data processing" implies, pro-
grains ordinarily act on data-simpte
lists of numbers or customer names, for
example, An object, in contrast, encapsu-
lates programs and data in one self-con-
tained unit, which fully describes some
real-world entity.

Think of the wav an Apple Macintosh
handles a page of information. The page
on the screen is a rudimentary object. It
has data--words, numbers, and
graphs-and a!50 the programming that

lets it behave like a real
page. Using your mouse.
you can pick K up. move it,
file it. copy it. or even
throw it away.

This simple idea. provides
tremendous benefits. Soft-
ware objects can be built
to represent Just about
anything-from an ab-
stract concept, such as an
insurance policy, to a spe·
cific thing or person, such
as Duke Ellington, Ameri-
can com poser and musi-
cian. 1899-1974. More im.
portant. objects can be
created that perform cer-
tam common tasks-sort-
ing. for example. Once per·
fected. such objects are
infinitely reusable. so pro-
grammers don't have to re-
invent the wheel every
time. Brad-Cox, who creat-
ed Objective C, the pro-
gramming linguag·e that
comes with xexT machines,
predicts that object tech-
nology will be as big an
advance for the Informa-
tion Age as Eli Whitney's
invention of interchange-
able musket parts was in
the Industrial Age.

But software components are more
than interchangeable Cogs Because
they're made of programming and data,
they ·'know" what they are and how
they behave. An object called Payday,
for instance, can automatically eheek
with an object called Employee Roster,
note any resignations or retirements,
then call over to another object called
Payroll and give it a [ist of checks to

'THE FIRST REAL TECHNOLOGICAL
SHIFT SINCE THE MACINTOSH'
RIVENP. 808* NeXTINC

COVER STORD

*IF MY 5-YEAR-OLD KID CAN USE IT,
1 CONSIDER it GOOD'
mARNESTROUSTEUP ATAT BELLLABORATORIES

C

%9
f
r

C

3UOF 10 BOHOMI PHOTOGRAPHS BY le#FREY lowe ROA#In MCHMGRIN

a real
nouse,

Ove It.

even

ovides
Soft-
butit

about
I abu

-Sort-

9 Per.
are

to reb

verv

reat-

pro-
that

tines.
tech·

g an
rmaw

ney's
inge-
16 In

more

luse
data,
how
dav.
heek
steri
6 hts,
a lied
S t.0

print-al! without human intervention.
Using reusable blocks, instead of writ-

ing from scratch, makes programming
far faster and produces finished soft·
ware that is more reliable and easier to

update. Reusability alone is expected to
give businesses a huge boost in pro-
grammer productivity (box) because
eventually, only unique new functions
will need to be written from scratch.
Modifying programs is also easier.
When NexT wanted to give its worksta-

tions the ability to send faxes. for in·
stance, it didn't have to write fax code
into each program. It just added the fax
programming to the workstations' Print
object. Since all Kerr programs use that
object, they were al] instantly upgraded
to communicate by fax.

For ordinary computer users, objects
mean Pcs that are far easier to use than
today's most "user·friendly" machines,
Indeed, when Xerox Corp.'s Palo Alto
Research Center :PARC) began looking

Into object-oriented software ln the
19703, one of its goals, literally, was to
design a system so simple a child could
use it. Twenty years later, object-based
technology promises to make computers
easy enough for adults to use. 2'If my
5.yearold kid can use it, I consider it
good," says Bjarne Stroustrup, an AUT
Bell Laboratories computer scientist
who invented the most popular object
programming language, C+ +.

A good example of how objects can
as an

a spe·
such

imeri-

musi.

2 im.

m be
F Cer.

AT HP THESE DAYS, OLD SOFTWARE NEVER DIES

i.' i

·4

1

s a $13 billion-a-

year maker of com·
puters, laser prinb

ers, calculators, medical
systems, and electronic
test gear, Hewlett-Packard
Co. produces pbs of soft·
ware every year. About
60% of its research and de-
velopment funds and per-
sonnel are devoted to pro-
gramming and improving
the software-creation pro-
cess. Several years ago,
HP's top engineers realized
that they could get a tre·
mendous productivity
boost if they could some,
how reuse old chunks of
software in new prod·
ucts-thus reducing the
need to write new soft-
ware from scratch for ev·

ery new computer or heart
monitor. Since then, a soft-
ware revolution has been

; quietly brewing at the Sili-
1 con Valley giant. MARTIN Gl
 The leader of the move-
I ment is Martin Criss. a cherubie South
1 African who has proclaimed himself
1 HP's "reuse rabbi." He figures that if

HP really gets serious about recycling
its software, the company can save a
cool $100 million annually.
QUAUTY AND SAVINGS. So, when he's
not pursuing his hobby, what he calls
'"object-oriented painting," Griss
spends much of his time shuttling
among HFs many software facilities
around the world, There, he encour-
ages engineers to consider reusing
software at the start of every pro-
gramming project. That means looking
for useful chunks of software that al-
ready exist in other parts of HP and
designing new bits of software in such
a way that others can easily use them.
Programming groups can try whatever
techniques they want, but Griss advo-
cates a gradual shift to objeet-oriented
methods, because they offer the great-

STORY COVER STORY

'WE'RE NOT DRIVING PEOPLE TO USE OBJECTS. WE'RE
TAKING ONE BITE ATA TIME'

tISS HEWLETT·PACKARD CO.

est potential for reuse. "We're not
driving people to use objects," says
Griss. "We're taking one bite at object-
oriented [programming} at a time."

The reuse message seems to be get-
ting through. One good example is a
massive manufacturing program that
he]ps HP customers keep tabs on their
inventory and factory operations. Griss
helped persuade programmers in four
different HP divisions to swap preused
software with each other instead of
creating everything from scratch.
Turns out the programmers were able
to take 40% of their software from ex-

isting programs. That translates into
savings of 15% in development costs,
says Griss. And, because used soft-
ware doesn't need as much tinkering,
he estimates that maintenance costs
will be less than half what they would
be for virgin code. Better still, the
quality went up-from four defects

fper 1,000 lines of code to
only four per 10,000 lines.

Another standout suc·
tess is CareVue 9000. a
hetwork of workstations
that helps nurses record
and manage patient infor·-
matzon. HP's programmers
faced an enormously com-
plex task: The system
would have to anticipate
every hospital's unique
record-keeping and medi-
cal procedures. "The last
thing [the system] should
do is dictate one way of
doing things," says Robert
Seliger, system architect
at HP's clinical-informa·
tion·systems operation.
'•ou THEIR owN.' So his

team chose an object·
based design that would
let each hospital mold and
extend CareVue to its spe-
cific needs. Objects "let
the hospitals roll their
own" software, Seliber

says. For example, they
can create data-entry forms that look
just like the paper ones their nurses
have alwaysused. But the electronic
objects work better because the pro-
gram can easily adapt to the types
of treatments in which each hospital
specializes.

Despite these successes, Griss says
that he still often encounters reluc·
tance among HP engineering groups to
buy his message. "The impediments,"
he says, "are social more than techni-
cal." Engineers sometimes feel they
should be paid more for the extra work
that's needed to make software mod-
uies that can be used by others. More
over, they often don't think to look for
prewritten components until it' s too
late. But Griss is there, as he puts it,
"to let people know there's good stuff
in the library," A reuse rabbi's work is
never done.

By John W. Verify in New Fork

BUSINESS WEEK/SEPTEMBER 30 '99! 95

r

K.IN 'INDING

-tmake PCs easier to operate is multimedia
1 software, which gives computers the
 ability to manipulate snippets of video
 - - and sound- In -a package called Macro·I mind Director, by pointing to an icon
1 that represents a vCR, you can retrieve
 still pictures or even film clips from com·puter files. The vCR object works much

like the real thing= Select the "cassette"
with the images you want, hit rewind or
fast forward, and locate, say, a clip of
the Hindenburg erash. Hit record, and
copy the dip into your quarter]y earn-
ings presentation.
uKE un. Such multimedia tricks are
only the glitzy surface of object·oriented
programming. A more intriguing possi-
bility is software that does a much bet-
ter job of simulating how a business
works than spreadsheets and data bases
can. Businesspeople "want to describe
information in more general, real-world
terms and create a full simulation of

 what they think is going on," says Adele
1 Goldberg, a former Xerox PARC re-
z searcher and now president of Pare·R Place Systems, a maker of object-based
f software.
1 -Three years after Bergerson and Cone
{ left, Shearson Lehman Brothers Inc. has1 bought into object technology and is
F building software that simulates its busi-
; ness. It has Account objects, represent-
g ing customers, Contract objects to man-
2 age agreements between parties, and
3 Security objects that describe the prop-
8 erties of stocks, bonds, or options. An
£ Account can enter into a Contract to buy
8 a Security-just as in life. ' 7€s more

98 8US[NESS wEEK/SEPTEMBER 30 1991

toward the reality of what's
actually happening," ob·
serves Shearson Vice-Fresh
dent Frank Fitippis,

Once objects have been
built and tested, it's fairly
simple to clone them for
new products or services.
Now, when Lehman wants
to sell a new type of securi
ty, the programmers just
tell the computer the special
attributes of this new instru-
tent. The Security object
then automatically gives
birth to a program that in·
herits all its generalized
traits, plus the unique new
attributes. "We can model
all types of securities this
way," says Filippis.

The upshot is a system
that can keep up with busi-
ness changes. At Unum Life
Insurance Co.. for example,
whenever a state regulation
changed in the past, pro-
grammers for the Portland
(Me.).based insurer had to

scramble. But now, useng objects, they
can do such updates in one-third the
time-and create software that's far
more usable by nontechies, says Baby
Muller, a technology manager. In some
eases, "instead of the programmers, the
business people can make changes to the
software," she says.

Another big benefit: By building pro-
grams from prefab objects, you avoid
the kind of "spaghetti" code that pro
grammers commonly use to patch new
functions onto old systems. These little
programs can make software mainte
nance-usually the biggest cost in run-
ning a computer center-a nightmare.
Brooklyn Union Gas Co. recently
scrapped a 13-year-old customer infor,
mation system on its mainframe that
had become so huge and inflexible that
the company couldn't respond to the
needs of its 1 million customers. With
Andersen Consulting, it created an ob-
jecbbased program that's 40% smaller
yet does more. And the company expects
it to last 20 years--on a fraction of the
old maintenance budget.

Such success stories are attracting
more converts. In a recent survey by
researcher Internationat Data Corp., 70%
of large U. S. corporations said they are
programming with objects or plan to do
so soon. The main motivator? Money.
Shearson'& Filippis claims that his group
has cut 30% from development costs. He
reckons the company could save millions
more if every department shared a een·
tral object library.

Hard to imagine that a single te¢hni.

f

THE TECHNOLOGY IS AN ADVANCE AKIN TO
THAT Of INTERCHANGEABLE MUSKET PART5
BRAI COX OBJECTIVE C CREATOR

cal advance can do all this-:drasticany
improve programmer productivity, cre- ;
ate more reliable software. and give
computers a childlike simplicity? Surely,
there must be a catch. There are several,

Among the most formidable: It takes
a lot of careful planning to create
objects: Software designers not only
have to figure out what each building
block should do but they also must
anticipate how each will work with thou-
sands of other objecrs. ··It takes a
lot of engineering to make things look
simple and easy," warns Stroustrup of
Bell Labs.
PROSECr PINK. An even bigger obstacle
may be standards. The big payoff from
objectoriented software will come when
there are common ways to 'shuttle ob
jects between different computers. To
that end. more than 160 computer and
software makers and customers have
joined the Object Management Group.
Its goal is to create an electronic system
to distribute software objects, such as
multimedia documents, across a net-
work, regardless of the type of comput-
ers that are on it. Digital Equipment,
Sun, and Hewlett-Packard are now col-

BUSINESSPEOPLE WANT TO
'CREATE A FULL SIMULATION'
ADELE GOLDIERS PARC-PLACE SYSTEMS

COVER EfO6)7

r

laborating to produce the software.
Meanwhile, the Apple-IBM camp is

working furiously to create a standards"
setting object·oriented operating sys-
tem-the basic program that runs &
computer. That effort, say industry·
watchers. will be based on Pink, an ob·
ject„oriented system under development
at Apple. it also will include technology
that IBM acquired with the purchase of
Metaphor Computer Systems, a soft·
ware company headed by David E. Lid·
dle, another Xerox FARE alumnus.

Companies that will compete with the
IBM-Apple alliance-Sun Microsystems,
Microsoft, and Next-argue that it's not
necessary to build an all-new operating
system to deliver- the benefits of object-
based software, "That's not a ven· real-
istic scenario," says Gates, who plans to
slowly add object-based technology to
Microsoft's operating systems.
,10*rwaRE.y Liddle contends that witb
out an object-oriented operating system.
customers won't realize the efficiencies
Inherent in the new technology. Worse,
they'l] be stuck with poor applications
programs-what he calls "bloatware."
These are aging packages to which hun-
dreds of features have been added to
make them "new" and "improved"-but
almost impossible to master. A better
idea, he says, would be to make nifty
new features freestanding objects, easi-
ly accessed by any program. Such com-
mon objects may even be included with
the operating system that IBM and Apple
are building.

Eventually, a whole new way of sell-
ing software may emerge. In a market
of interchangeable, plug-and-play ob-
jects, you might shop for pieces sepa-
rately and compile your own custom
software. Chunks of programs may be
sold like hardware components. "You
can walk into a Radio Stack and buy a
chip or circuit that does a specific tune-
tion," says Chuck Duffy founder of
Whitewater Group, which makes pro-
grams to write objectoriented software.
"That needs to happen for software,"

How quickly object technology will
sweep the industry is anybody's guess.
Certainty, it's catching on with software
makers and big corporations, who hope
to make programming simpler and
cheaper. But will it fundamentally alter
the computer business, as some observ.
ers predict? Maybe. "The entire soft-
ware environment needs a face·dift,"
notes Edward J. Zander, president of
Sun's SunSoft subsidiary. Object tech·
nology by itself may not be the cure to
slow gjowth, but it looks like a good bet
for painting a happier face on the com-
puter industry.

BV John W Verity and Eran f. Schicartz
in Nete York, With bureau reports

100 BUSNESS WEEK/SEPTEMBER 30, 1991

ARE TODAY'STINY STARTUPS
TOMORROW'S SOFTWARE TITANS?

ot so long ago, a technology arcane software code. British Aerospacecalled the relational data base Ltd, uses an object base from Ontos Inc.
was languishing in deep academ· in Burlington, Mass,, to model the elec-

ie obscurity. And Oracle Systems Corp., trial wiring system for a military air-a West Coast startup among the first to craft For each of 20.000 wires, the object
sell such software, was a computer-in- base keeps a schematic drawing. bill of
dustry nobody. Then, almost overnight, materials, manufacturing information.
in the early 198(}s, relational was hot. and other data. Earlier. this was stored
And by last year, Oracle had grown to in separate data bases, making it diffi·
be one of only three software companies cult for engineers to get a complete pie-
to reach 31 billion in annual sales. tureand multiplying the cost of manag-It's a success saga well known to a ing the data.
half-dozen gangly software upstarts that For most businesses. however, object
are aiming to outdo Oracle. Their "object bases remain in the realm of teehno·exor
bases," database programs built on ob- ie.a. Altogether, object-base companies
ject·oriented concepts, will have revenues of
may be a giant step up perhaps $15 million thisfrom relational technol- THE NEW year, And today's buy·ogy, and the latest DATA-BASE RACE ers are mostly testingstage in getting ma- , the technology in smallchines to store and re- INNOVATIVE $¥SrEMS Spe- pilot projects. -I'm con-trieve information effi- cializes in investment banking stantly amazed how lit.ciently. The products applications Founded.· 2981 tte (computer buyersi
need work, and they OBJECT DESIGN Targeting elec- know about this tech-wor2't kill off relational tronic design Marketing deal nology." says John W.data bases any time with Computervision Jan'e, a partner insoon, But venture capi· Founded.·.1988 Menlo Ventures. whichtalists have been pump has pumped $2 millioning millions into the OBJECTIVITY Markeung pact into startup Objectiv
technology. And cus· with Digital Equipment ity Inc.
tomers are beginning Founded.· I988 The upside: As busi·to take it seriously. ONTOS Customers are AT&T, nesses adopt object·ori-RELATioNSHIPS+The General Dynamics ented programming
startups are counting Founded: 1985 and plunge into multi-
on delivering superior SER¥10 Owned bv Indonesian media computing, theyperformance for hig.hly investors. Marketing pact with will need to managecomplex jobs. The first IBM Founded:1982 swelling libraries of re-"flat file" data·base usable objects, voice re-programs, in the I®os, VERSANT Pursuing manufac- cordings, and videos.placed -data in long turing control and design jobs Sol s.ys market re-
streams of numbers Founded: 1988 1seareher International
and letters. You could wA COMPAMY #Pmts. Data Corp.. Objectbaseeasily look up one bank OFFICE COMPUTING GROUP sales should hit .%446
customer's balance, but million by 1998.
it could take many searches to locate all That's not a big enough ¢hunk of the
customers with balances over $10,000. multibillion-dollar data-base software
Relational data bases organize data in market to worry leaders such as Oracle
rows and columns, like statistics on a and IBM-or to make them rush into ob-
baseball card. By reading down rows or ject bases. As their customers begin us-
across columns, the computer quickly ing object-based technologies, Oracle
spots useful relationships-such as how plans simply to add some object storage
many player·s who hit more than 30 home and retrieval techniques to its software,
runs also stole at least 30 bases. says Robert N. Miner, cofounder andBut object bases take data retrieval senior vice-president. "I was nervous
even further, storing complex informa- that we were going to be blindsided," he
tion that won't fit into columns and says. "But now I think that we'11 be able
rows. So a computer can catatorthings to do everything they do before they do
suchras 3.D images, sound recordings, everything we do," If he's wrong, there
and photographs. Moreover, nontechies may be a new Oracle in the making.
can use object bases without learning By Keith H Hammonds in Boston

COVER SYCE¥

1-

EA **0*

