F 5. 1 o s
[c L Smalltalk press and clippings, 1983-2002 T TER HETORY ‘
”jj T Adele Goldberg papers lmm ﬁﬂ@“ﬂw@ﬂm

vlder 1A Smalltalk
X5774.2010, Box 2 102739362

—

c G+ < Ruby < Perl « SQL < JavaScript

n,._ Wa
#336 MAY 2002

y D BT
DObb TO0LS FOR THE
ROFESSIOMAL
J 0 U R N A L |Gy

hitp://www.ddj.com

RLGORITHMS

7 Imauo Scaling with Bresenham
Avelding DisllRRagning .| | |
o QuiskBupEs | 4 1 L
Hadlil DU

> Multiple s 2] |
Hash % 4 0 oovs W &
Fllnctlons Excellence in

Programming

Opilimilng = Awards

ﬂﬂJ#JJHJ4] ux
GENER JJJ '

s t A 4 '
FRom P b‘JJ Adele Goldberg W, SSSQEETT Dan Ingalls

fe)é il

A

DS)

RubyGdcoa for Mac 08 X

External
SOL Rewri‘ters

01

FEATURES
DR. DOBB’S EXCELLENCE IN PROGRAMMING AWARDS 18

Adele Goldberg and Dan Ingalls are pioneers in object-oriented
programming in general, and the Smalltalk language in particular.

IMAGE SCALING WITH BRESENHAM 21

by Thiadmer Riemersma

The graphics algorithm Thiadmer presents here is quick, produces a
quality equivalent to that of linear interpolation, and can zoom up
and down.

GOOD HASH TABLES & MULTIPLE HASH FUNCTIONS 28

by Michael Mitzenmacher

Michael's multiple hash method produces good hash tables for
applications ranging from employee databases to Internet routers.

DISK THRASHING & THE PITFALLS OF VIRTUAL MEMORY 34
by Bartosz Milewski

Disk thrashing, also known as virtual memory thrashing, is among the
more serious software performance problems.

EXTERNAL SQL REWRITERS 42 |
by Richard To and Cara Pang o Jﬁzﬁ‘f"@fﬂfﬁ_ .
Database query optimizers optimize SQL statements by generating i
alternative execution plans to find the one with the least estimated cost.

EMBEDDED SYSTEMS

OPTIMIZING EMBEDDED LINUX 51

by Todd Fischer

Todd shares seven hard-won techniques 10 aid in the embedded Linux
development process.

INTERNET PROGRAMMING
GENERATING JAVASCRIPT FROM PERL 59

by Stephen B. fenkins
The techniques Stephen presents here help you provide users with a
better Ul and reduce the load on web servers,

COLUMNS WORKBENCH

PROGRAMMING PARADIGMS 69 PROGRAMMER'S TOOLCHEST 64

by Michael Sweine EXAMINING RUBYCOCOA

C PROGRAMMING 73 by Chris Thomas

by Al Stevens JAVAQRA B3

EMBEDDED SPACE 77 HOW DO 1 CORRECTLY IMPLEMENT THE equals() METHOD?
by Ed Nisley by Tal Coben

DR. ECCO’S OMNIHEURIST CORNER 98 ALGORITHM ALLEY 89

by Dennis E. Shasha QUICKSORT AND RADIX SORTS ON LISTS
- - by Steven Pigeont

PROGRAMMER'S BOOKSHELF 100

FILLING IN THE GAPS

by Gregory V. Wilson

DR.-DOBB'S JOURNAL (155N 1044-789X) is published monthly by CMP Media 1LC, 600 Hamison Sweet, San Francisco, CA 94017; $15-905-2200. Perindicals Postage Paid at San Francisco and ar additiona)
malling offices. SUBSCRIPTION: $34.95 for 1 year; $69.90 for 2 years. hmmnkxulmdmm!heprepaki?uymmybemdemmmmd Wm,urmnmmm or vin LS. funds drawn on
4 US. hank. Canada and Mexico: $45.00 per year. All other foreign: $70.00 per year. UK. subscribers contact Jil Surcliffe a1 Parkway Gordon 01-49-1875-386. POSTMASTER: Send addrexs changes 1o Dr
Dobb's Journal, PO, Box 56188, Boulder, CO 803286188, GST (Cantada) #R124771239. Capada Post International Publications Mail Product (Canadian Distribution) Sales Agreement No. 0548677,
FOREIGN mmmm Worldwide Media Service nc., 30 Montgortiery St, Jersey Gity, NJ 67302, 212.332-7100, Entire confents © 2002 by CMP Media LLC,, unless otherwise noted on
specific articles. s reserved

bttp.//www.ddj.com Di: Dobb’s Journal, May 2002 5

2002 Dr. Dobb’s

Excellence in

Programming
Aw

ince 1995, Dr. Dobb’s Journal has presented its Excellence recipients of the Dr. Dobb’s Excellence in Programming Award
in Programming Award to individuals who, in the spirit of include:

innovation and cooperation, have made significant contri-

butions to the advancement of software development. Past ® Alexander Stepanov, developer of the C++ Standard Template
Library

Linus Torvalds, for launching Linux.

Larry Wall, author of Perl.

James Gosling, chief architect of Java.

Ronald Rivest, educator, author, and cryptographer.

Gary Kildall, for his work in operating systems, programming
languages, and user interfaces.

Erich Gamma, Richard Helm, John Vlissides, and Ralph John-
son, authors of Design Patterns: Elements of Reusable Object-
Oriented Software

Guido van Rossum, Python creator.

Donald Becker, for his contributions to Linux networking and
the Beowulf Project.

Jon Bentley, computer-science author and researcher.
Anders Hejlsberg, developer of Turbo Pascal and architect of
C# and the NET Framework.

The recipients of this year's award, Adele Gold-
berg and Dan Ingalls, are pioneers in the area of
object-oriented programming in general, and the
Smalltalk language and development environment
in particular. As researchers at Xerox's Palo Alto
Research Center (PARC), Goldberg and Ingalls each
L recognized in their own way the promise of ob-
Adele G 1o jects, and they were in a unique position to put
those theories into practice in an architecture based
on objects at every level.

18 Dr: Dobb’s Journal, May 2002 bty wwwddj.com

Although we take objects for granted today, these two researchers
helped to bring object-oriented programming into the real world

for the first time almost 30 years ago, from the highest level of

users and their information modeling needs to the lowest levels
of syntax, compilation, and efficient message passing.

Looking back on the original work at Xerox, Goldberg later
said it tackled one of the most difficult and problem-prone steps
in software development— identifying terms and relationships
as understood by human participants of a particular situation
with those understood by a computer.

To that end, Goldberg believed that:

» Interactive, incremental software-development environments could
produce a qualitative improvement in software-development
productivity.

* Software could be designed in autonomous reusable units,
each corresponding to identifiable entities (conceptual as well
as physical) in the problem domain that communicate through
well-defined interfaces.

» The model, or framework, for how these units work togeth-
er represents both a process and vocabulary for talking about
the problem domain.

» We should think about writing software in the context of build-
ing systems, rather than in the context of black box applications.

As early as 1977, Goldberg, along with Alan Kay, presented the
goals for the Smalltalk research efforts in a paper entitled “Per-
sonal Dynamic Media” (JEEE Computer, March 1977). She went on
to author and coauthor many of the definitive books on Smalltalk-
80 programming including, with David Robson, the seminal
Smalltalk-80: The Language and Its Implementation (Addison-
Wesley, 1989, ISBN 0201136880), as well as numerous papers on
object tcchnolu;,} Goldberg edited The History of Personal Work-
stations (ACM/Addison-Wesley, 1988; ISBN 0201112590); coedit-
ed with Margaret Burnett and Ted Lewis Visual Object-Oriented
Programming (Prentice Hall, 1995; ISBN 0131723979); and coau-
thored with Kenneth Rubin Succeeding with Objects: Decision
Framewonrls for Project Management (Addison-Wesley, 1995; ISBN
0201628783).

Goldberg received her Ph.D. in Information Science from the
University of Chicago for work carried out jointly at Stanford
University. She also holds an honorary doctorate from the Open
University (UK) in recognition of contributions to computer sci-
ence education. After more than a decade as a researcher and
laboratory manager at Xerox PARC, Goldberg became the found-
ing CEO of ParcPlace Systems, the PARC spin-off that developed
commercially available object-oriented application-development
environments. Goldberg currently is founder of Neometron, a
consulting company that focuses on dynamic knowledge man-
agement and support for project-based online communities.

From 1984 to 1986, Goldberg was president of the ACM, re-
cipient of the 1987 ACM Systems Software Award along with
Dan Ingalls and Alan Kay, and is an ACM Fellow. She received
PC Magazine's Lifetime Achievement Award in 1990.

Like Goldberg, Dan Ingalls was an original member of the PARC
team that developed Smalltalk. He has been the principal archi-
tect of numerous Smalltalk virtual machines and kernel systems.
The first of these, Smalltalk-72, supported the work reported in
“Personal Dynamic Media.” Smalltalk-76, described in ACM's
1978 Principles of Programming Languages (POPL) proceedings
(and available at http://users.ipa.net/~dwighth/smalltalk/St76/
Smalltalk76ProgrammingSystem.html), was the first modemn Smalltalk
implementation with message syntax, compact compiled code, in-
heritance and efficient message execution, and its architecture en-
dures in Smalltalk-80, the major documented release of Smalltalk

bttp//www.ddj.com

work at Xerox. Most re-
cently he designed the
kernel of the Squeak
open Smalltalk system,
a practical Smalltalk
written in itself. (For
more information about
Squeak, see

fip://st.cs.uiuc.edu/Smalltalk/Squeak/docs/OOPSLA.Squeak.himl.)
Ingalls also invented the BitBlt graphics primitive and pop-up »
menus, and was the principal designer of the Fabrik visual-§
programming environment while at Apple Computer.

Ingalls received his Bachelor’s degree in physics from Harvard
University, and Masters in electrical engineering from Stanford &
University. He is a recipient of the ACM Grace Hopper Award 2
and the ACM Software Systems Award. Ingalls currently worl\s\
with Alan Kay and other seasoned Smalltalkers at Viewpoints Re-
search Inc., where he is working to complete an architecture for =
modular Squeak content that is sharable over the Internet. He ™=
supports an active Squeak community (http://www.squeak.org/) 3
[hrough his participation in e-mail discussions, attention to peri- i
odic releases, and other support at all levels. He also runs £
Weather Dimensions (http://www.WeatherDimensions.com/), a8
company that sells a weather station he designed.

Although Goldberg and Ingalls worked at very different lev-
els, the breadth of their collaborative territory is what shaped
the final result. Ingalls says of his technical achievements, “I
loved the challenge in efficiency and generality that it took to
make Smalltalk real, but what gives me the most satisfaction
looking back is that we built a serious system that is actually
fun to use. We had a passion, inspired by Alan, to liberate the
beauty of computer science from the barnacled past of ad hoc
engineering.” Goldberg adds, “During the PARC days, the op-
portunity to work with children and other nontechnical users
kept us focused on how to use rigorously what people already
know informally about objects. But the most thrilling experi-
ence for me was to work with ParcPlace customers in both large
and small companies, and see how our technology enabled
them to finally break the barrier between business understanding
and systems implementation.”

At Adele Goldberg’s request and in her name, Dr. Dobb’s

shrson Studio:

(

by Pm"

)! p Wﬂﬁ‘)

Pt

Journal is pleased to make a grant of $1000 to the Girl's Mid-

dle School (http://www.girlsms.org/), a San Francisco Bay Area
all-girls middle school that focuses on math and technology. At
Dan Ingalls request and in his name, we are happy to make a
$1000 grant to the The Sierra Nevada Children’s Museum in
Truckee, California. Please join us in honoring Adele Goldberg
and Dan Ingalls who once again remind us that a mix of tech-
nology, innovation, vision, and cooperative spirit is fundamen-
tal to advancement in software development.

DDJ

Dr: Dobb’s Journal, May 2002 19

Debug Java and
C++ code side by side with Forte™ tools

5=
SortThread.cc

=

L

void *(*sort_ func[SORT_CT]) (void*) =
{bubblesort, binary insertion_sort, heapsort, quicksort_stub,
shakersort, straight_insertion_sort, straight_selection_sort};

e JNIEXPORT void JNICALL Java_SortThread sort_lnum
(INIEnv * env, jclass cl, jint sort_no)
if (sort_status[sort_no-1] == SORT_NONE) BefOI'E: Insert your prll'lt
sort_status[sort_no-1] = SORT_SELECTED; statements: Fire-up
’
if (sort_status[sort_no-1] == SORT_SELECTED} { the Java debugger...
int sen = SORT_ELEMENT NO;
setup_sort_table((sort_no-1), sen);
With
; } Forte Tools: Step!
’,'l
* getup sort table()
*
-
static void setup_sort_table(int sort_type, int elements) |
it 4, I;
}
f"k
* SortThread.java
*
*{
import java.lang.*;
SRS - public class SortThread extends javax.swing.JFrame {
final static int bubblesort = 1;
final statie¢ int binary_ insertien _sort =2;
final static int heapsort = 3;
final static int quicksort = 4;
final static int shakersort = 5;

final static int straight insertion_sort
final statiec int straight_selection_sort

non
e e)

public native wvoid sort_proc();
public native static wveoid sort_num(int i);
public native static wveid sort_reset();

/** Creates new form SortThread */
public SortThread() {
super ("SortThread") ;
initComponents|();

Whether you are developing in Java; C++, C or the Fortran programming language,
Sun’s Forte™ tools provide a complete, end-to-end solution for developing entry-to
enterprise-class applications. And now you can use a single tool to efficiently debug
Java classes and legacy programs transparently —eliminating the need to debug
your applications with multiple tools from different vendors. This can save you a
great deal of time and effort, and increases the quality of your code. You can also
use the Native Connector Tool, which automatically creates bindings between Java
objects and C or C++ libraries. For a flash demonstration, go to www.sun.com/forte

=
=
o
£
=
=
e
[=3
(=]
=
-
=
b
=
o
=
T
=
=
[=]

©2002 Sun Microsystems, Inc. All rights reserved. Sun, Sun Microsystems, the Sun logo, java and Forte are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

THEME

PROGRAMMING
BY REHEARSAL

BY WILLIAM FINZER AND LAURA GOULD

An environment for developing

PROGRAMMING BY REHEARSAL is a
visual programming environment that
nonprogrammers can use to create
educational software. It combines many
of the qualities of computer-based
design environments with the full power
of a programming language The em-
phasis in this graphical environment is
on programming visually; only things
that can be seen can be manipulated.
The design and programming process
consists of moving “performers” around
on “stages”’ and teaching them how to
interact by sending ‘cues’ to one
another. The system relies almost com-
pletely on interactive graphics and
allows designers to react immediately
to their emerging products by showing
them, at all stages of development, ex-
actly what their potential users will see,
The process is quick, easy. and enjoy-
able; a simple program may be con-
structed in less than half an hour. The
beginning set of 18 primitive per-
formers, each of which responds to
about 70 cues, can be extended as the
designers create new composite per-
formers and teach them new cues.
We were motivated to undertake this
project by our desire to give program-
ming power to those who understand
how people learn; we wanted to elimi-
nate the need for programmers in the
design of educational software. Pro-
gramming by Rehearsal is implemented

educational software

in the Smalltalk-80 programming en-
vironment and runs on a large, fast, per-
sonal machine; the Xerox 1132 Scienti-
fic Information Processor (the Dorado).

COMPUTERS AND INTUITION

In the spring of 1980 our attention was
focused on a topic we called Computers
and Intuition. It seemed to us that newly
available, high-resolution computer im-
ages, combined with interactive control
over these images, constituted a new
medium for the presentation of informa-
tion and concepts. We were particular-
ly cancerned with the implications that
this interactive computer graphics
medium might have for education.

We were also thinking about how par-
adoxical it was that the computer was
often viewed as an engine for improv-
ing cognitive and analytical skills, while
it might turn out that because of its
William Finzer is a consultant with the System
Concepts Laboratory at the Xerox Palo Alto
Research Center and an instructor and cur-
riculum developer in the mathematics department
at San Francisco State University (1600
Holloway, San Francisco, CA 94132).

Laura Gould has been a member of the Small-
talk group at the Xerox Palo Alto Research
Center for the past seven years, She is now Na-
tional Secretary of Computer Professionals for
Social Responsibility (POB 717, Palo Alto, CA
94301).

superlative dynamic graphics, its main
new contribution to education might be
in the enhancement of nonanalytical, in-
tuitive thought.

Such ideas were certainly not new.
Even 15 years ago, a few farseeing peo-
ple proposed that computer graphics
would have a profound effect on human
learning. As Brown and Lewis wrote in
1968, "In the same way that books sup-
port man's linear and verbal thinking,
machines will support his graphic and
intuitive thought processes.’ (See refer-
ence 1) Similarly, in 1969 Tony Oettinger
wrote “"Computers are capable of pro-
foundly affecting science by stretching
human reason and intuition, much as
telescopes or microscopes extend
human vision." (See reference 2.) It
seemed that now we had both the soft-
ware and hardware to realize these
visions.

From these ruminations grew the de-
sign and implementation of a system
called TRIE which attempted to give
students an intuitive understanding of
algebra word problems through the ma-
nipulation of high-resolution pictures.
(See reference 3.) TRIP implemented in
the Smalltalk-76 system (see reference
4} on research hardware, a Xerox Alto,
took about two months to design and
four months to implement. It was struc-
tured in the form of a kit so that

(text continued on page 188)

JUNE 1984 « BYTE 187

REHEARSAL

In the Rehearsal
World, only things
that can be seen
can be manipulated

(text continued from page 187)

teachers could add new time-rate-dis-
tance problems fairly easily: it included
a diagram checker, an animation pack-
age, an expression evaluator, and an ex-
tensive help system. Members of the
computing profession were impressed
that we were able to bring to life such
a complex, general, graphical, vet
robust and helpful system in such a
short time. Educators, however, were
usually aghast that so much time and
effort were needed to produce a single
system and that the result was, in their
view, so limited.

After we had pilottested TRIP and
were thinking about what project to take
on next, we realized that our interest
had shifted up one level, from the ac-
tual design of educational software to
the design of a "design environment”
for educators. As our colleagues were
busy building the Smalltalk-80 environ-
ment (see references 5, 6. 7, and 8), we
undertook the task of extending and
reifying that environment to allow cur-
riculum designers who did not program
to implement their own creative ideas.

DESIGNER CONTROL

The work described here is based on
the belief that it should be possible ta
place the control of interactive com-
puter graphics in the hands of creative
curriculum designers, those with an
understanding of the power of such sys-
tems but not necessarily with the abil-
ity or willingness to write the complex
programs that are necessary to control
the systems.

Design and implementation constitute
two phases of a feedback loop. [n most
design situations, in which program-
ming is a separate and specialized skill,
the designer must somehow convey em-
bryonic ideas to a programmer, perhaps
by sketching on paper or talking. Then
the programmer goes away to write a
program so that something shows on
the screen to which the designer can
respond. This process introduces inter-

188 BYTE + JUNE 1984

ruption, distortion, and delay of creative
design.

In the creation of educational soft-
ware it is particularly important that the
design decisions be made by someone
who understands how students learn
and what they enjoy rather than by
someone whose expertise is in how
computers work. Too much of the edu-
cational software we see today has a lot
of fancy graphics but little real learning
content. We hope that if educators have
more direct control of the computer,
they will create high-quality software.

[n the environment we describe here,
the designer begins by sketching the
description, not in words or on paper,
but directly on the computer screen.
This sketching is not free-form but is
done with the aid of specially provided
graphical entities. If the designer's ideas
are rather vague, the process of sketch-
ing may help to define them; if the ideas
are well defined, they can be quickly ac-
cepted, rejected, or improved. In either
case, nothing is lost in the translation
process, as the only intermediary be-
tween the designer and the product is
a helpful, graphical computer system
that gives immediate response. Since
there is no waiting, the designer is in-
volved in a collaborative, creative pro-
cess in which there is minimal invest-
ment in the current production; thus a
poor production can be rejected quickly
and easily, and a good one pursued and
improved.

THE REHEARSAL METAPHOR

A large, supportive design environment
needs a potent metaphor in which the
unfamiliar concepts of programming will
have familiar, real-world referents. Our
goal was that the metaphor would serve
as a guide to the designers without get-
ting in their way.

Smalltalk is an object-oriented lan-
guage. This means that all the basic ele-
ments of programming—strings, num-
bers, complex data structures, control
structures, and procedures them-
selves—are treated as objects. Objects
interact with other objects by sending
messages. Logo is an example of a pro-
gramming language with one cbject, a
Turtle, which can be sent a limited num-
ber of messages such as FORWARD 20.
Smalltalk has many kinds of objects that
respond to a wide variety of messages.

Our immersion in Smalltalk led us to

extend the object-message metaphor to
a theater metaphor in which the basic
components of a production are per-
formers; these performers interact with
one another on a stage by sending cues.
We call the design environment the
Rehearsal World and the process of
creating a production Programming by
Rehearsal.

Everything in the Rehearsal World is
visible; there are no abstractions and
only things that can be seen can be ma-
nipulated. Almost all of the designer's
interactions with the Rehearsal World
are through the selection (with a mouse)
of some performer or of some cue to
a performer. Assuming that a designer
has the germ of an idea, the creation
of a Rehearsal World production
involves:

e Auditioning the available per-
formers by selecting their cues and
observing their responses to deter-
mine which are appropriate for the
planned production. If a production
involves getting the student to write
stories using pictures, the designer
might choose a text performer and
a picture performer because the
former responds to the cues setText:
and readFromKeyboard and the latter
responds to growBy: and followThe-
Mouse.

e Copying the chosen performers
and placing them on a stage.

® Blocking the production by resiz-
ing and moving the performers until
they are the desired size and in the
desired place.

® Rehearsing the production by
showing each performer what ac-
tions it should take in response
either to student (user) input or to
cues sent by other performers.

® Storing the production away for
later retrieval.

A SCENARIO

Static words and pictures on paper are
a poor substitute for direct experience
with a dynamic, interactive, computer
design environment. Nevertheless, we
shall try to give the flavor of what it is
like to use the Rehearsal World through
a simple scenaric involving two novice
designers, Laura and Bill. Suppose that
these designers are interested in lan-
guage curriculum and would like to

(text continued on page 190}

Send 2000

Letters Per Hour via
Your Personal
Computer

Delivered in
48 hours
or sooner at

26 cents a piece

using MAIL-COM.

. Presenting E-Com

Two years ago the
{.S. Postal Service
quietly announced the

E-Com® Service,

enabling specially
equipped personal
computer users to
bypass costly manual
mail preparation, by electronically submit-
ting their messages and mailing lists
directly to the Postal Service via modem.

This high speed computer originated
mail arrives at its destination within 48
hours—often less—in an attention-
grabbing blue E-Com envelope.

Announcing MAIL-COM.
Only from Digisoft Computers.

MAIL-COM is powerful software you
can use with your personal computer to
access E-Com. With your personal
computer, a modem and MAIL-COM
you can send from 200 to 2000 letters
per hour for just 26¢ each. Typed,
addressed, folded, inserted, sealed and
delivered. Complete.

MAIL-COM is the complete integrated
software available for E-Com operation.
It's easy to use. Mo special training is nec-
essary. And since Digisoft Computers
developed MAIL-COM in accordance with
U.S. Postal Service specifications, users
are guaranteed certification for use upon
purchase of MAIL-COM software.

MAIL-COM is the easiest and most
economical way to do your mailings.

The E-COM® Service is a registered trademark of the (.S, Postal Service. MailMerge and WordStar are registered trademarks of Micropro International. dBase Il is a

MAIL-COM includes a complete letter
editor and address maintenance program,
as well as communications software.

Directly interfaces with dBASE I,
Wordstar, MailMerge and other

e e

databases.

Each letter in your mailing can
be identical or all can contain
variable insertions. MAIL-COM
operates all the features offered
by E-Com.

Thousands of Uses.

If you have need for fast, economical

mass mailing capabilities, MAIL-COM
puts you and E-Com together.

Use it for

-~@ new product

invitations to
press events,
invoicing, fund

your sales force, new business prospec-
ting, reactivation of customers and much,
much more. Every department in your
company will have use for MAIL-COM.

Don’t Delay

With MAIL-COM you could be saving
time and money on fast, efficient E-Com
letters. MAIL-COM software is available
for the IBM PC, PCJr., Kaypro, CP/M,
Apple Il and other formats. Order today.
Call 212-734-3875.

registered trademark of Ashton-Tate, Inc. IBM PC and PCJr. are registered trademarks of [BM Corp.

announcements,

raising, collection, bulletins to

Digisoft
Digisoft Computers, Inc.

(212) 734-3875

Circle 105 on inquiry card.

Retail Dealer
Inquiries Invited

T 7 P T T TN e R A
I Digisoft Computers Inc. !
| Attn: MAIL-COM Marketing !
1 1501 Third Avenue 1
: New York, NY 10028 :
| L Yes! | want to eliminate the 6 costliest i
1 steps in preparing my organizations business 1
I mail. Please RUSH my MAIL-COM software to :
: me immediately. '
! I'l need software for: 1
| [JIBMPC (5195) [] CP/M (5195) :
1 [Victor (%195) __ (specity disk format)
1 [] Alpha Micro ($495) [Other (specify) 1
I [Apple 11 ($195.00) !
1 [] My check or money order is enclosed 1
1 (residents of Mew York State add sales tax). :
: [Charge my [Visaor [] MasterCard: :
: Account No. Exp. Date :
1 1
I 1
1 Name 1
I 1
: Address gl :
I 1
| i 1
] City :
| i
1 State Zip I
1 I
: Telephone() II
: © 1983, Digisoft Computers, Inc. :
e e e e e s e (i S |

REHEARSAL

Whenever you want infonmanion about anything on the screen, please point at it and press
the middle mouse button {this is called the NAME bunon) The name of that entity will then
sppear and will follow your mouse UNNl you press any mouse button. If' you drop the name

on either this prompier’s box or on the HELP button below, the entity will describe itsell

Figure 1: The control panel and the prompter's box, showing an initial help message. The icon in the corner is an eraser.

(text continued from page 188)

make some sort of word game. We'll fol-
low their efforts, skimming over many
of the details of their interactions with
the Rehearsal World, with an eye to
understanding some of the design deci-
sions of Programming by Rehearsal
itself. Although one person can manage
both mouse and keyboard quite well,
we'll assume that Laura is in charge of
the mouse and Bill is typing on the key-
board. In what follows, the paragraphs
describing the action of the designers
have been italicized.

Bill and Laura know from their brief
introduction to the Rehearsal World that
all of the performers are clustered
together in troupes waiting to be audi-
tioned for parts in a production. They
know also that the Rehearsal World in-
cludes a help facility that gives
assistance and descriptive information
about how to proceed.

Laura starts by selecting the HELP
button from the control panel at the
bottom of the screen (see figure 1).
Selection of the HELP button causes the
“prompter's box” to fill immediately
with ‘“procedural help” suggesting
something that the designers might
want to do next. When they select HELP
initially, the procedural help message
that appears explains that they can
always obtain 'descriptive help” about
anything that they can see on the
screen.

The fact that everything that can be
seen is capable of self-description is an
important component of the Rehearsal
World and one that makes it accessible
to nonprogrammers.

When they ask for descriptive help
about the STAGES button, they learn
that if they select the STAGES button,
they will get a menu of troupes and pro-
ductions. Laura selects the STAGES but-
ton which presents her with a menu of
troupes and productions (see figure 2).

190 BYTE * JUNE 1984

She finds a Text performer in the Basic
Troupe that she wants to audition to
learn what it can do, Laura starts by ask-
ing it to describe itself and is told by the
help system that if she selects the Text
performer. she can edit the text that it
displays. This editing is the default ac-
tion of the Text performer. Laura and Bill
spend a minute becoming familiar with
the simple editor that the Text per-
former provides.

The Rehearsal World uses a three-
button mouse for pointing at things on
the screen. The SELECT mouse button
causes a performer to execute its de-
fault action. The NAME button always
causes the name of the entity to appear
at the cursor point; if this name is

** PROGRAMMING

dropped in the prompter's box, a de-
scription of the entity appears. Finally,
the MENU button raises a pop-up menu
for the performer, enabling the designer
to send cues to it. In interacting with a
finished production, only the SELECT
button is used; that is, the NAME and
MENU buttons are not needed by the
student user.

Laura uses the MENU mouse button
to see the category menu for the Text
performer (see figure 3). Certain com-
monly used cues are at the top of this
menu in lowercase while others are
grouped under categories in upper-
case. Most of the cues and categories
are shared by all performers. Only the

(text continued on page 192)

BY REHEARSAL * *

hello

0 | 000000

L0 | Lo
fstart stop 1
R

s e
step -mdex: !

-

twenty-five past eleven

T e

!

¥ N X K X R H X R K X K K K K ¥ X

FOR N H % W X X K X X K K ¥ K X X ¥

Figure 2: The entire Rehearsal World theater, showing the STAGES menu at the left, all
the available Troupes, and a descriptive help message about the BasicTroupe.

ou can cunt on 3M disketts. D day.

Just like the sun, you can rely on 3M diskettes every day. At 3M,
reliability is built into every diskette. We've been in the computer
media business for over 30 years. And we've never settled in.
We're constantly improving and perfecting our product line, from
computer tape and data cartridges to floppy disks.

3M diskettes are made at 3M. That way, we have complete control
over the entire manufacturing process. And you can have complete
confidence in the reliability of every 3M diskette you buy.

Look in the Yellow Pages under Computer Supplies and Parts for
the 3M distributor nearest you. In Canada, write 3M Canada, Inc.,
London, Ontario. If it's worth remembering, it's worth 3M diskettes.

Circle 331 on inquiry card.

3M hears you...

REHEARSAL

Tesize
cupy
erass

cleanup
AME&TITLE
FONTS
FORMAT
DISPLAY
SIDES
POINTS
TERT
LIST
ACTION
BUTTON
SET
ADD
REMOVE
| REPLACE
ACCESS
HARACTERS
EVALUATE
DICTIONARY

000000

Figure 3: A BasilTroupe, containing a
Text, a Number and a Counter, and a
category menu for the Text performer.

(text continued from page 190)

categories at the bottom of the menu
(in bold) are particular to the Text
performer,

In its current prototype form, the
Rehearsal World contains 18 primitive
performers, each of which responds to
a standard set of 53 cues and an
average of 15 cues particular to that
performer. To understand what this
means, imagine a BASIC with a thou-
sand reserved words. This complexity
would be intolerable without a hierar-
chical organization and a simple way for
the designer to browse that organiza-
tion. The Smalltalk-80 system provides
a window, called a Browser (see figure
4), whose visual structure reflects the
hierarchical organization of the objects
and methods in the system. In the Re-
hearsal World, functionality is organized
around performers grouped together
into troupes; the cues that each per-
former understands are grouped into
categories. The result is that designers
never have to scan too much informa-
tion at a time, and, because each level
in the hierarchy has a different screen
appearance, they never lose track of
where they are in that hierarchy.

Qur novice designers proceed to re-
hearse the Text performer by sending
it various cues. Laura tries move and resize
and gets a pleasant surprise when the
fonts change so that the text always fits
within the performer’s borders. She sel-
ects the SET category and gets a cue
sheet showing the list of cues that have

192 BYTE » J[UNE 1984

to do with setting text {see figure 5).
Some cues, [ike setText,, take parameters
that are indicated by parameter lines
next to the cue. They use the help sys-
tem to discover that they can type any
string as a parameter to the setText; cue.
Bill types goodbye’ on the parameter
line. When Laura selects the cue. “good-
bye” appears in the Text performer.

They discover through rehearsal that
the setjumbled cue produces a random
permutation of the characters in the
text. They enjoy looking at the different
bizarre configurations that jumbling a
word can produce and decide to ex-
plore no more, but to make a jumble
game as their first design exercise. As
often happens, interaction with the de-
sign environment jtself leads to a
creative idea.

One would not expect jumbling of text
to be a basic capability of a program-
ming language. A programmer who en-
countered a need for such a function
would expect to write a simple routine,
In a design environment, however, we
expect to find a great deal of high-level
functionality, chosen with care by the
implementors of the environment, so
that the designers attention is not
diverted from the design task itself.

Laura and Bill's initial idea for their
simple production is to use two Text
performers, one to be placed above the

Rehearsal-Help
Rehearsal -Controllers
Rehearsal-Buttons

CirclaView
Picture
PictureBoxView
Fi

Rehearsal-Kernel
Rehearsal-Troupes
Rehearsal-Stages
PerformerWorkshop
Kernel-Objects

PositionView
Rectan gleS/iew

other on the stage. The top Text is to
contain the word to be jumbled and the
bottom one is to act as a soft button (a
button on the screen which, when the
student selects it with the mouse
causes something to occur). In this case
its action will be to cause the jumbling
of the top Text (see figure 6). Laura uses
the copy cue to put a Text performer on
an empty stage.

Any existing performer can be copied.
Thus each performer acts as a pro-
totype from which other performers can
be generated; each new copy will have
exactly the same characteristics as its
prototype.

Laura and Bill use the resize cue to
make the Text performer fill most of the
top half of the stage and then they copy
it to make a second Text performer
(exactly the same size as the first) in the
bottom haif of the stage. Bill types the
word JUMBLE into it, as this is what they
want the user to see. With the blocking
thus completed, they decide to give
each of their performers a mnemonic
name that describes its purpose; they
call the performers JumbledWord and
JumbleButton. Now they are ready to
define the action of the bottom Text,
which they want to act as a button.

Any performer can become a button,
By turning a performer into a button,

(text continued on page 194)

displaying
transformation

FEVEISe

realForm reverse.
displayForm reverse.
self displayNewPicture.
sell changed

Figure 4: A Smalltalk Growser showing the Rehearsal-Graphics category, the Picture-
View class, its ALTER category, the message named reverse from that category, and the

method associated with that message.

Circle 335 on inquiry card. —»

Only from Topaz...

Powermaker' Micro UPS

Uninterruptible, computer-grade power
— at half the cost

It’s in a class by itself.
For about half the cost of other Unin-
terruptible Power Systems, you can
- now get the same degree of protection
~ with our Powermaker Micro UPS. This
- remarkable new system eliminates com-
~ puter problems caused by blackouts,
‘brownouts, voltage sags and power-line
noise.

Prowdmg up to 75 minutes of con-
tinuous computer-grade power, our
- Powermaker Micro UPS is compauble
~ with microcomputers and PC’s. It’s

; ' automatic, maintenance-free,
pmrtable: and compact. It fits neatly
de or under your desk or work-
on. And because you can’t always
1l when you've lost primary power,
our little UPS even features an audible
-hne—lass alarin,

But best of all is the price. The Power-
maker Micro UPS is priced right and is
ready for immediate shipment. Find out
more about our Powermaker Micro UPS.
Call us at (619) 279-0831, or contact
your local Square D distributor.

REHEARSAL

R P R

e

amm.\.
e .-'1.":

Figure 5: A cue sheet for the SET category of a Text performer The string goodﬁye has
been typed on the parameter line of its first cue.

i
-Text- SET > E
iz -2
H:+ setText: goodbye’ -
o o .

%3 ey
b 22 d et i
A setTextFromKevhoard -
=3 s
H# setReverse -
Hu setJumbled -
i : i
q= setEmpty ;

e
e

A

-TumhbleEutton- ETTTTOM

hecome s BEution

codeForButton Action:. . []

performButton.dsction

Figure 7: The cue sheet for the BUTTON category of the performer named
JumbleButton. The square brackets on the parameter line indicate that the designer should

write some code between them.

-JumbleButton- BEUTTON

hecome & Button
codeForBution Actiomn:

L

[TumbledWord setTumbled,

performBution sction

R i

do whenever it is selected by the user.

= R
Figure 8: The code, written by watching. which indicates wha

e

t the]umbleButton should

S

(text continued from page 192)

the designers get to decide what will
happen when the user selects that per-
former. One of the categories on every
category menu is BUTTON; its cue sheet
contains the cue becomeABution (see
figure 7).

After Laura sends the becomeAButton is
cue to the JumbleButton, it no longer
responds-to selection by providing an
editor; instead, it simply flashes. It is
now a soft button on the screen, but it
has no action. They must show it what
to do.

They do this by using the cue codeFor-

194 BYTE = JUNE 1984

ButtonAction:|| to which every performer
responds. Bill and Laura understand
that they are expected to provide a
block of code between the square
brackets to describe the-action that
should occur when the user selects the
JumbleButton. The action they want is
very simple; they just want the jumbled-
Word to receive the setjumbled cue. Bill
knows that he does not have to type the
code; instead the Rehearsal World will
“watch” while they show it what to do.

To the left of each parameter line is
a tiny icon representing a closed eye.
When Laura selects it. the eye opens to

JUMBLE

Figure 6. A stage containing two Text
performers, the top one showing a jumbled
word and the botlom one acting as a button
which the user can select [o cause the
Jumbling to occur.

indicate that the system is indeed watch-
ing. Then Laura sends the setlumbled cue
to the JumbledWord by selecting it. The
code JumbledWord setjumbled ap-
pears within the square brackets of the
codeForButtonAction:|| cue of the Jumble-
Button, and the eye closes again (see
figure 8).

Two significant obstacles to learning
a programming language are mastering
the language's syntax and learning the
vocabulary. In the Rehearsal World, the
designers rarely have to know either the
syntax or the vocabulary as most writ-
ing of code is done by watching. While
the eye is open, the designers rehearse
a performer and the system makes a
record of this rehearsal. The Rehearsal
World's ability to watch, in combination
with a mouse-driven interface, means
that the designers do remarkably little
typing. The designers know whether or
not the code is correct not so much by
reading it but by observing whether the
effect produced on the stage is the
desired one.

Immediately after Laura sends the
codeForButtonAction:|) cue, she can select
the newly defined button to see if it
behaves as expected. Each time she sel-
ects the JumbleButton, it flashes and
the JumbledWord jumbles its text.

In a traditional programming environ-
ment, the programmer moves back and
forth between programming mode, in

(text continued on page 196)

COMPUTER WARE

caLLToLLFREE 4 . 800-528-1054

PRINTERS
Blue Chip
M120/10 W/Commodore Interface $279
M120/15 W/Commodore Interface . $349
C-ltoh
Abitr e $499
F-10-Parallel or Serial L ?935
55 CPS Serialor Parallel$1319
8510 Parallel (Prowriter)5329
BEATERA e .. §455
85108CF§525
8510BPl e R
Computer International
Daisywriter 2000 w/48K s 3985
Comrex i
e
CR-2 Keyboard . . $150
Datasouth
i 2 RN R R 1 g 111
e G S .$1499
Diablo
A0 $815
630API ... $1699
630 ECS/IBM . $2075
S-11 : $559
el Lo A s N e e e 5559
Epson
All Printer Models Call
Inforunner
Aleme st b s e s s $249
DS
Microprism 480 5375
Prism132.. ... $1310
Brism132Color.vovinnns $1500
Juki
8100 .. . Call
NEC
PEBOSaN. L §385
PC-8025 . 5635
20108715
s e ... 8775
20505899
3510 ..., ...$1365
3560.... ...51710
i $1900
Okidata
ARRASal AT R N SR, Call
83A .Call
84P b Sall
845 . Gall
92 Call
LT et e e G Call
2350F Call
2410P ; Call
Panasonic
oope b L s Call
(ORI e o, o Call
OEE b P ..Call
Qume
11/40 w/interface e o ...51369
11/55 w/interface vivein. 31589
LOMerPradnr o e 2609
Letter Pro 208 . . 609
Silver Reed
EXRADIERAE o T s S s Call
EXPSOOP. oo e $385
BRESBOC i e R 5420
EXPREOP il e 5480
EXPSE0S 4\ oirvinesinsionnrnnns i 5499
Star Micronics .
Gemini-10X Call
Gemini-16X Ly el
AR S e e] |
Baltadioiins ol LGS Call
Hadbo he _Call
Tally
MT 160L W/Tractors Call
MT 180Lw/Tractorsoooenin ...Call
SPinit8oCall
Toshiba
P1350 Serial or Parallel 51429
1351 Serial or Parallel . $1579
1340 . §775
Transtar
120 SerialorParallel 395
130 SeriatorParallel ,.............. . 5549
T315. .. LRI B . $449

SANYO* EPSON SYSTEMS

SYSTEM

DUAL DRIVE

SANYO MBC-555 « SANYO CRT-36
HI-RES GREEN MONITOR

EPSON RX-80 WordStar « CalcStar
» Mailmerge ¢ InfoStar » Spell Star

1925

SINGLE DRIVE
SYSTEM
SANYO MBC-550 » SANYO
CRT-36 HI-RES GREEN

MONITOR ¢ EPSON RX-80
WordStare CalcStar

S

1175

- MS-DOS» Sanyo Basic ° MS-DOS » Sanyo Basic
Above with Sanyo CRT-70 Above with Sanyo CRT-70
Color Monitor ~ $1939 Color Monitor $1629
VIDEO TERMINALS MONITORS COMPUTERS
ADDS Amdek Altos
A2Green VT gg?g Video 300 .. : gj] %g Allemodels ool __Call
A\;;:ewpomiso :;%EAOBGOA$1BD ColumbiaCaII
e rﬁ:‘” Cali _ColoriPius i ..$275 Eagle
3 ¢ Princeton Graphic PC-2 w/Monochrome Monitor. $2699
Hazeltine e e $2525
ot SO ST e $499 gg::tm 25878
ESErb (LS N e 5485 Ta)flan NEC
Esprit I1] 8575 12" Amber $125
Q ':n i Ze ,t";‘ irlls ECLBTOTACDIL S e gggg
ume ni PC-8206A32KRam e
QVT102Green............... $535 12" Green Screen595 PC-8281A Recorder589
QVT 102 Amber . 3 P gggg 12" Amber Scresn ., , . ..§95 PC-8201A-90 Battery Pack$15
il e e e zgse DISK DRIVES L i
el bt ey :Sggg Ra.na MBC-555 System51525
Televid Ehlw g%}g 1150 w/5000 printer $1575
[S iy, %
91o+v‘l‘.?9... .$550 Eite 3 : v %aino Televideo Systems
914 5515 Controller (w/Driveonly) o .365] e L Y i $4210
024 ‘..2635 1000 w/DOS (for Atari) $305 ggs.... $1765
BRI A S o b e el
ey 320 DISKETTES A
SO S e i S $985 80B/20 . .0 vvi s
Personal Terminal 8410 MManje“I]Ify 100). ... 5189 ??.%ﬁ (-u-Sfa-(.s.t,z-xi-Jon.J.
Wyse MD-2 (Oty 100) $295 o ith
e e e 3333 Scotch Z-100 Low Profile
ﬁ‘;;z;%g T eyaophl TAH-0IGR0) $200 A0 Ot et
. £-150 Single Drive . .
Visual Elep‘ha,nt 7.150 Dusl Drive ..
Visual 50 Green 5619 SISS/DIAYA00) i §155 Z-150 10 Megabyte .
T e S R 5709 D/50/D (Qty 100) $235 Z-160 Single Drive .
Zenith Z-160 Dual Drive . . .
228, 5644 MODEMS
Hayes
GUADRAM Smartmoden. > 3199
(2 T o e A A S S e 3449 Smartmoden 1200 . ..5485
Quadboard 84K $265 Smartmoden 12008 2430
Quadboard 256K P s gggg Micromodemile.5235
Quadboard IFG4K. .. Lo USHobotics
Quadboard Il 256K 5450 ar o el S $420
Password 1200 $310
IBM PG Modem .$320
Order Line: 1-800-528-1054

Order Processing & Other Information; 602-954-6109

A

[ERESS

2222 E. Indian School Rd.
Phoenix,

Arizona 85016

Store Hours: Mon-Fri 10-5:30 Saturday 9-1 —
Order Line Hours: Mon-Fri 8:30-5:30 Saturday 9-1 s [@

Prices reflect 3% to 6% cash discount. Product shipped in factory cartons with manufacturer’s warranty. Please add
$8.00 per order for UPS shipping. Prices & availability subject to change without notice. Send cashier’s check or
money order...all other checks will delay shipping two weeks.

e e R S R e T S S

REHEARSAL

I am a Text performer, I can be vied w make headings, show instructions, or act a5 a labelled

button, Try the cues in my SET caggory to experiment with different ways of setting my text,

‘

(9a)

Jumbled Word

(9b)

I am & word whoze letters are to be jumbled,
Ewerytime the user selects the JumbleButton which is below me on the stage,
iy tzxt will be rejumbled,

Figure 9: The default comment associated with every Text performer (9a) and the edited comment to be associated only with the performer

named JumbledWord (96).

(text continued from page 194)

which typing code is the dominant ac-
tivity, and running mode, in which test-
ing takes place. In Programming by Re-
hearsal, the designer does not feel any

‘—Iumbie 1i-

move

shift from one mode to another.
Even though their production is very
simple. Laura and Bill decide to docu-
ment it. They have already given the two
Text performers appropriate names:

resize
reshow
ETAZE

deztroy

cleanup
Wirgs
NAME&TITLE
FORMAT

JUMBLE

POINTE
LIET
ACTION
BUTTCIH

uinblel- GTORE

STORE
PROTECT
ACCESS
LAYOUT
GRIDDING
INITIALIZE
CONVERT
CUES

Store

Figure 10: A stage named Jumblel: it's a category menu and cue sheet

for its STORE category.

storeWithMame: - Jumhble

R AR

196 BYTE * JUNE 1984

JumbledWord and JumbleButtton. They
use the help system to get the default
comment for the JumbledWord and edit
it to be more specific (see figure 9).

As a designer creates new produc-
tions and new performers, the Rehear-
sal World becomes maore complex. The
default descriptive help messages can
be changed by the designer by simply
editing what appears in the prompter's
box and selecting the ACCEPT button.
This provides a quick and pleasant
method for providing descriptive com-
ments for productions, performers, and
cues.

It takes our two designers less time to
produce their first jumble game than it
takes to read about it. Although they
have some ideas about how to make the
game more interesting and educational-
ly worthwhile, they decide to store what
they have implemented so far. It is the
stage itself that must be instructed to
do the storing. The stage has its own
category menu and one of its categories
is STORE. They store their efforts under
the name Jumblel (see figure 10).

No fixed set of functions provided in
a design environment will ever be satis-
factory; the designers will always run up
against the limits of that set and wish
for more capabilities. The fact that
stages understand cues suggests one of
the mechanisms for extensibility in the
Rehearsal World: every stage can be

(text continued on page 198)

FEEL AT HOME WITH

plain english

The first programming
language that talks
like you do!

\r

LIST
10 REM #——ACRECO10——
20 REM #——CUSTOMER NAME AND ADDRESS LOAD PROGRAM ——
60 DIM BS(15)/0IM C$(20)/0IM DS(20)/R6S(1 8)="72"
70 J=0/0PEN M. CUSTMST.2"
80 GOSUB 400

90 J=6

100 GOSUB 400

MON=0

120 "LAST CUST # ENTERED WAS "' F AS U BS
130 !

140!"'T0 END PROGRAM ENTER 9999 AT CUST ¥

150 J =J§1

160 ! 'ENTER FOLLOWING:

210 N =F£/60T0 240
220 |""SEQUENCE ERROR-RETYPE
730 GOTO 160
240 INPUT “1ST NAME ~~ AS{1.8)
250 IF AS =ABS THEN 330
260 INPUT ST NAME = 88(1.15)
270 IF B${1,2)=A65(1 2) THEN 3B0
280 INPUT “ADRS LIN1 “.C8(1.20)
290 IF C${1,2)=AB%{1 2) THEN 360
300 INPUT *ADRS LINZ " D3{1,20)
310 IF D$(1.2¢AGS{1,2) THEN 380
320 INPUT TEL # ES(18)
330 IF ES(1.2)=ABS(1.2) THEN 380
340 INPUT MO PMT AMT * G
350 IF G=033 THEN 380
360 GOSUB 420
370 GOTD 150

N=N-1
390 GOTO 170
400 READ #0%358) A F A5 BS.CS.E5.G
410 RETURN
420 WRITE #0%9641.A F AS 85 (5,05 E5.G
430 K=0/G=J
440 WRITE #0%964).0 F.AS BS S, 08 ES.G NOENDMARK
450 RETURN

470 GOSUB 420
0 140
450 REM #-— —CLOSE ROUTINE——
LOSE #0
510 END

520 C$(1.20)= /REM 20 BLANKS
530 DS =C5/A5=C5/BS=CHEF=C$
540 RETURN

Basic

ACCOUNTS RECEIVABLE is 2 file.
1 Uses

IDENTIFICATION DIVISION.
D

CUSTOMER NUMBER PROGAAM —|

2 and CUSTOMER NAME TEST

3 and ADDRESS ENVIRONMENT DIVISION

4 and CITY STATE ZIP CONFIGURATION SECTION

§ and TELEPHOME NUMBER SOURCE—COMPUTER AMC

B and MONTHLY PAYMENT AMOUNT 0BJECT —COMPUTER AMC
INPUT—0UTPUT SECTION
FILE—CONTROL

SELECT AR—MASTER ASSIGN TO RANDOM ~/u/fibes /armast *

T0 CUSTOMER FILE is 2 verd
Does

MESSAGE ““What is the customer number? ORGANIZATION IS INDEXED
2 and INPUT CUSTOMER NUMBER ACCESS MODE IS DYNAMIC
3 and MESSAGE ‘What i5 the customer’s name? RECORD KEY IS CUSTOMER — HUMBER
4 and INPUT CUSTOMER NAME DATA DIVISION
5 and MESSAGE What is the strest agdress? FILE SECTION
6 and INPUT ADORESS FD AR—MASTER LABEL RECORDS ARE STANOARD
7 and MESSAGE What 15 the City State and Zip Code? 01 AR—REC
8 amd INPUT CITY STATE ZIP 05 CUSTOMER —NUMBER PIC Xi4)
9 and MESSAGE What is the cuslomer’s phone number ¥ 05 CUSTOMER —NAME PIC Xj20)
10 and INPUT TELEPHONE NUMBER 05 CUSTOMER—ADDRESS PIC X140}
1 and MESSAGE What will the customer pay monthly? 05 CUSTOMER—CITY —STATE—ZIP PIC X{40)
12 and INPUT MONTHLY PAYMENT AMOUNT 05 CUSTOMER—PHONE HCX(10)
13 and SAVE by CUSTOMER NUMBER in file ACCOUNTS RECEIVABLE 05 CUSTOMER —PAYMENT —AMOUNT PIC 9(5)
REPEAT WORKING—STORAGE SECTION

PROCEDURE DIVISION
RESIDENT SECTION 1
STAR—UP

OPEN QUTPUT AR—MASTER

LooP
DISPLAY “ENTER CUSTOMER HUMBER 0R T0 EXIT
ACCEPT CUSTOMER—NUMBER PADMPT
IF CUSTOMER —NUMBER = GO T0 END—DF —JOB
DISPLAY “"ENTER CUSTOMER NAME
ACCEFT CUSTOMER—NAME PROMPT
DISPLAY “ENTER CUSTOMER ADDRESS
ACCEPT CUSTOMER—ADDRESS PROMPT
DISPLAY “ENTER CUSTOMER CITY STATE ZIF
ACCEPT CUSTOMER—CITY —STATE—ZIP PROMPT
DISPLAY “'ENTER TELEPHONE NUMBER
ACCEPT CUSTOMER—PHONE PROMPT
DISPLAY “ENTER CUSTOMER PAYMENT AMOUNT
ACCEPT CUSTOMER—PAYMENT —AMOUNT PROMPT
WRITE AR—REC INVALID KEY GO TO BAD-—ADD
DISPLAY ' CUSTOMER RECORD SAVED
GO TO LoOP

BAD—ADD
DISPLAY “iHVALID CUSTOMER

60 10 Loap
END—OF —J0B
CLOSE AR—MASTER

STOP AUN Coboi

plain english

Compare Plain English to any other language, as shown in the FREE ACCOUNTING SOFTWARE.

charts above. Straight forward plain english commands, using For a limited time only, your Plain English package will include
nouns and verbs are all that are necessary to create even the four accounting programs: Accounts Payable, General Ledger,
most sophisticated programs. Eliminate the complexities and Payroll and Mailing Lists. These programs may be customized by

rigid structures of the old traditional languages.

PERFECT FOR FIRST TIME PROGRAMMERS

Simple plain english statements are used to
execute commands such as graphics, colors,
sound and many more. An easy to understand
TUTORIAL and helpful REFERENCE MANUAL

(written in plain english by the way) will allow
anyone to learn Plain English in as little as
four hours.

vnu o meet your requirements.
AVAILABLE TODAY AT YOUR LOCAL GOMPUTER
RETAILER ... PLAIN ENGLISH runs on all PC or
MSDOS personal computers including Tandy's Model
2000 and requires only 192K memory and one
320KB floppy drive. You can also contact us
directly for additional information, dealer

3 *inquiries invited. :
plam englﬂ;sh AVAILABLE SOON . . . Special series for

o software developers including Unix versions.

a preduct ot Common Language Systems Inc.

100 E. SYBELIA AVE. SUITE 375 MAITLAND, FL 32751 (305) 628-5973

Circle 64 on inquiry card.

JUME 1984 « BYTE 197

REHEARSAL

Jumhle i

b A R 0 BN BN NAN N

utmasdr

o4

g s A

:
:

|

Select to get new jumble

BRSNS

N 'A‘»'<'A'-'-'J\-'.M,v.fﬂ§

EIECET e RRR R Ur PR rE AR AN AN

B s

Type answer in here

PPN

B NNAR D A SBEEAD OEBENNAANORS,

Welcome to
Jumbles

AN A A N R R 0

)

AN PN LN

TYen

bbb b A,

Figure 11: An improved game named Jumble5, which evolved from]umblé].

(text continued from page 196)

converted into a new performer and
every stage can be taught new cues. A
designer who needs a new kind of per-
former can construct one by aggregat-
ing existing performers on a stage
teaching that stage some appropriate
new cues, and converting the result into
a new performer.

There are many circumstances in
which the designers may wish to aggre-
gate performers: several performers
belong together as a logical and spatial
unit; a group of performers are to be
used repeatedly within a production or
in several different productions; a pro-
duction is very complex, and creating
a new performer allows a factorization
of the entire problem into smaller ones.

Bill and Laura’s jumble game goes
through four revisions until it finally
becomes the one shown in figure 1.
This improved game contains four Text

performers and a Number performer. .

The large Text at the bottom is used
simply to give feedback to the student.

198 BYTE * JUNE 1984

The Text labeled "New Word" has been
turned into a button, its button action
is to cause a new secret word to be
chosen from a List and presented in
jumbled form in the top Text performer.
This performer has also been turned
into a button, its button action is to re-
jumble itself. The number of rejum-
blings is shown by the Number per-
former next to it. The Text performer in
the center of the stage is to be edited
by the student who will type the answer
there. Every time that Text is changed,
it will cause the answer to be checked
against the secret word and suitable
feedback to be provided. It does this by
means of its change action.

When a performer changes in some
fundamental way, as when a Number
performer changes its value or a Text
performer changes its text, it executes
its change action. The default change
action of a performer is to do nothing,
but the designer can define this action
for any performer. Certain other per-
formers have additional possible ac-

tions: the Repeater performer has a
repeat action, the List performer has a
selection action, and the Traveler per-
former has a move action.

In the Jumble5 game, Laura and Bill
use a List performer to keep a list of
secret words. Since they don't want the
user to see the List, they place it in the
wings (see figure 12).

While everything should be visible to
the designers, not everything should be
visible to the user of the production.
Wings can hold performers waiting to
appear on stage, data structures like the
List of secret words, or temporary vari-
ables used in computations.

A very simple game grew and pros-
pered as our designers implemented it,
changing in response to their new
understanding of what they were doing,
and to the needs and interests of users
and other designers who experimented
with it. It became something real that
people wish to play with and from
which they can get some increased in-
tuitive understanding of the rules under-
lying English orthographv.

BENEATH THE REHEARSAL WORLD
— THROUGH THE TRAPDOOR

The Rehearsal World in some ways may
be thought of as a visible Smalltalk. Al-
though our criginal intention was to re-
move the need for programming at the
Smalltalk level, it is paradoxically true
that the Rehearsal World provides an
excellent entry point for an incipient
Smalltalk programmer. Designers may
drop through the trapdoor of the Re-
hearsal World; beneath they will find all
the tools of the Smalltalk-80 program-
ming environment. A Rehearsal World
tool found there is called the Performer
Workshop. It looks like a simplified
Smalltalk browser and provides a mid-
level mechanism for creating new
primitive performers and defining new
cues.

For each kind of performer there is a
corresponding Smalltalk class that is a
subclass of class Performer. The in-
heritance mechanism of Smalltalk
allows the subclass to inherit the mes-
sage interface of class Performer. Each
production corresponds to a subclass
of class Stage. When designers store a
production, the Rehearsal World defines
a new subclass of class Stage. Interest-

(text continued on page 200)

e has anyone put

mto somethmwso small. The WY-50 gives

you big tenmna! features without occupy-

e. This took
people couldn’t accomplish for the price
But we d

-50 introduces a new stan-
st termina]q You get a

more vieu-“ing area than
ns. And a price tag as small

as they come.
The WY-50 sells for on

FEATURES:
*+ 14" screen.
+ 80/132 column
format.
* Soft-set up mode.
* High resolution characters.
*+ Low-profile keyboard.
+ Industry compatible.
* Only $695.00.

FUr more information on the revulution-

contact
WYSE

and we'll
send you a

hure filled with everything
. The full-

WYSE TECHNOLOGY

REHEARSAL

(text continued from page 198)

ingly, a stage is so much like a performer
that class Stage is actually a subclass
of class Performer.

When designers create new per-
formers, the Rehearsal World defines a
new subclass of Performer and writes
the code for the appropriate additional
methods that the class will need for lay-
out and for cues. Because the code writ-
ten by the Rehearsal World is indistin-
guishable from code written by a pro-
grammer, one can inspect it and modify
it in either a Performer Workshop or a
Smalltalk browser (see figure 4).

There are two important features of
Smalltalk that are not present in the Re-
hearsal World. The first is the ability to
create a hierarchy of objects. In Small-
talk, when one constructs a new kind of
object—that is, a class—one usually con-

“yacht
tricky”
jumbled®
Thelpful®
Psoissors’
el
“typist”
study’
‘program’
‘temote’
“honor?

$ii)

utmasdr
| secret word |

Figure 12: The wings of the Jumble5

game, showing a List performer in which the
current secret word is selected.

200 BYTE = JUNE 1984

structs it by defining a subclass of the
existing class that is most like the new
class. In that way the new class can in-
herit a great deal of the desired be-
havior. In the Rehearsal World, there is
no concept of class. A designer who
wants a new production that is similar
to an existing one can modify the exist-
ing production and store it under a dif-
ferent name. A major weakness of this
method is that modifications made to
the first production will not be auto-
matically reflected in the modified one.
In contrast, a modification made to a
Smalltalk class will be automatically
reflected in its subclasses.

The second difference between Small-
talk and the Rehearsal World is that in
Smalltalk there is a distinction between
a class and an instance of that class. The
class is the abstraction: an object is
always an instance of some class. A
class may have any number of in-
stances. Any changes to the class will
be immediately reflected in all its in-
stances. In the Rehearsal World, there
are no abstractions, thus no classes.
Everything is visible. Any performer can
serve as a prototype and one gets new
performers through copying. What is
lost is the ability to have changes made
to the original reflected automatically in
the copies.

DEBUGGING

Ordinarily, the sooner a program gives
evidence that something is wrong, the
easier it is for the programmer to diag-
nose the problem. Designers in the Re-
hearsal World find that bugs manifest
themselves very quickly because near-
ly all state information is visible and
because the flow of control from per-
former to performer is fairly obvious to
the eye. Even so, a situation will occa-
sionally arise in which the designer can-
not easily account for some behavior on
a stage.

It seems appropriate in Programming
by Rehearsal that help should come in
the form of another performer, the De-
bugger performer (see figure 13). A De-
bugger, when placed on a stage, inter-
cepts all the actions that performers ex-
ecute, shows their code, and waits for
the designer to tell it to go on. While
the actions of the production are thus
halted, the designers can investigate the
cause of a problem using any of the nor-
mal Rehearsal World activities such as

opening up cue sheets and sending
cues. Additional actions that may be ini-
tiated are placed in the Debugger's
queue for later execution.

ANIMATION AND

MULTIPLE PROCESSES

An intuitively pleasing, though incor-
rect, model for the Rehearsal World
would be that each performer goes
about its business independently of the
others except when it needs another
performer to answer a guestion or do
something. Performers would be like
people in the real world, capable of in-
dependent action but interacting
through requests. Animation, you might
think, would be easy because each per-
former would have its own rules for
moving around on the screen. In this
model, which we call the one-pracess-
per-performer model, each performer
would essentially have its own proces-
sor for its private use. Trouble comes
when performers have to share re-
sources and coordinate that sharing.
Several schemes for dealing with these
problems have been developed over
the years.

Our own solution to the problemis in-
troduced by having one process per
performer was to allow each user action
to initiate a single independent process
that either runs to completion or, as
with animation, continues in an infinite
loop. A single production can, at any
given time, have any number of different
processes running in it. (Beyond that,
there can be several stages on the
screen at a time, each running its own
processes) This one-process-per-user-
action model has so far proven to be
both intuitive and powerful, though we
see it as an area where further research
is necessary.

DESIGNERS AT WORK

Since the Rehearsal World is a proto-
type system, very few designers have
had a chance to experiment with it. The
first one to actually use the system was
Joan Ross, a curriculum designer from
the University of Michigan. Joan created
many interesting productions using the
Picture and Turtle performers. She
helped us to debug the systermn and to
understand how to improve it on all
levels as we prepared for a pilat study.
We spent a month responding to the
(text continued on page 202)

International Connections

- With the industry’s most popular data cormmunications program, the world
is at your command.

Animport/export office in New Jersey can instantly check the London
market for current dollar exchange rates ... send Hong Kong an updated
production schedule .. print-out the week’s sales results from the Dallas
branch,

There's virtually no limit to how far you can reach with your microcom-
puter, ordinary telephone lines, and CROSSTALK,

Even if your own business and personal needs are closer fo home, you'l
appreciate CROSSTALK's compatibility with a wide user base ... ssart
terminal characteristics ... total modem control .. and the ability to capture
data af a high speed for later off-line editing. CROSSTALK has extras you may
not find in other programs. Data capture to memory buffer (and on-line display).
Protocol error-checking file transfer, Modem /telephone hangup, and display of elapsed
time of call. Command file power and flexibility. Remote takeover and operation. And
much more,

There is a CROSSTALK version for almost every
CP/M, CP/M-86, or IBM DOS based microcomputer
system. See your dealer, or write for a brochure.,

IR\ \\I/Z\LIN\

p——
MICROSTUF 1845 The Exchange / Aflantq, Georgia 30339 / (404) 952-0267

CROSSTALK is a frademark of Microstuf, Inc, CP/M and CP/M-86 are frademarks of Digital Research, Inc,, IBM s a trademark of international Business Machinas, Inc.
Circle 224 on inquiry card. JUNE 1984 = BYTE 201

" NN e e e D

REHEARSAL

(text continued from page 200)

issues that Joan raised as a result of her
experiences and then invited Dan
Fendel and Diane Resek, curriculum de-
signers and faculty members of the
Mathematics Department at San Fran-
cisco State University, to visit for three
days to see what they could create in
the Rehearsal World. They are very ex-

perienced designers, familiar with the
power of interactive computer graphics,
but they are not programmers.

We gave them a tour of the system
and within 45 minutes Dan and Diane
had taken over and were using the Re-
hearsal World themselves. They started
by investigating a simple production we
had made about probability and soon

Plottar

4000;

o .w.v.'.u'wzﬂv.wvﬁ .
#
-
&

[x setWalue: Loop getlndex,

Point
etHeight 7 23,

Point zet¥: x / midX * (Graph getWidth / 2).

et expression evaluate / mid¥

* (Graph

Figure 13: A stage on which a Debugger performer has been placed temporarily so that

the designer may observe the code for each successive action.

202 BYTE * JUNE 1984

suggested and implemented some im-
provements. They found out how it
worked by looking at the button actions
and change actions of the performers,
both on stage and in the wings. By the
end of the first afternoon, they had
turned it into a game that bore only a
slight resemblance to our original ex-
ploratory activity. In the process, they
had auditioned Texts, Numbers, Lists,
and Repeaters to discover their capa-
bilities, dealt some with the blocking of
the stage, written a fair amount of code
by watching, and understood about but-
ton actions, change actions, and repeat
actions.

Dan and Diane spent an hour the next
morning away from the machine, de-
signing with words and a pencil. In the
course of this design session, they re-
fined their embryonic ideas for a frac-
tion game through discussion of both
the pedagogical issues and the fantasy
through which they should be trans-
mitted. They also considered which Re-
hearsal World performers they would
reed in their proposed game. The fan-
tasy involved a cave filled with gold
dust. They envisioned the ceiling of the
cave as an irregular set of stalactites;
they saw the floor as tiled. The student's
problem would be to sweep a vertical
broom through this cave, one floor tile
at a time, trying to collect as much gold
dust as possible without ever allowing
the broom to touch the ceiling. The
broom would stretch or shrink by a cer-
tain fractional amount which the student
would specify before each move. For ex-
ample, if the student edited the fraction
to read 2/1, the broom would become
twice as tall when it moved.

They had other design criteria as well.
They wanted the game to configure it-
self differently every time the START
button was selected. and they also
wanted to make it easy for a designer
to specify an easy cave, with broad floor

" tiles and very little variation in the ceil-

ing, or a hard one. They wanted to have
a score that was expressed as a percent-
age of the available gold dust; they
wanted some sort of disaster to occur
if the student made the fraction too
large and the broom touched the ceil-
ing. They decided to call their produc-

tion GoldRush (see figure 14).
We found this description guite over-
whelming for an initial project, as we
(text continued on page 204)

COMPARE
OUR
SERVICE & PRICE!
SPECIAL B | HARD DISK - IBM-PC & XT | | ~ MODEMS
L ;’;E (_ e MOUNTAIN — External Syst HAYES
MONTH L =" 5MB....$1539 10MB....$1799 Smartmodem 1200 $489
.PC & XT I 15M8B. . .. $2309 20MB. ... %2549 Smartmodem 12008 $419
CALL FOR L:—w'w—ﬂ I FMTapebwsianl $1595 NOVATION, Us ROBOTICS L
PRICE s MAYNAHD . CALL - WS BQEOTICS, . CAC
_ i COMPUTERS |
[PRINTERS]
EPSON €aalLe CALL
Fxso... CALL FX100...CALL COLUMBIA
Tandon TM100-2DSIDD $225 - CALL
PANASONIC JA 551 . HegAPa 0 $599 CORONA CALL
SHUGART SA-455 half-high ~ BEST HR-15PEr.......coociivnins $459 _

. TEAC FD-55B Slimline PRICES HR25.... 0. CALL % TAVA PC CALL
AMDEK half-high . COMPAQ CALL
HITACHI half-high DYNAX

DX-15Par.... 3459 Ser...... $489 L MONITORS |
MAYNARD ELECTRONICS CITOH AMDEK . s.ﬁs
Floppy Disk Controller $169 : Video 300G . . . $145 300A.....
FDC w/Par. Port I s S1005 Video310A $189
FDC wiSer Port $239 PROWRITER 8510 SP 180 CPS $649 Colorll $429 Colorl/l+ CALL
SANDSTAR SERIES CALL fo;ng,R L SEST
SIE@IF MICRONICS e L
QUADRAM Gemini 10X . .. $299 . $399 MAX-12 Hi Res Mo”‘;G . i)
Quadboard-PP,SP,C/C,Mem + siw silecuper B Hes
Expandableto 384K CALL OKIDATA
Quad 512+ SP,Mem with s/w BOA CALL . B3A.. . CALL
64K......$249 . B 84S
Guadeblor. = CALL g2p BEST gos BEST
ozp PRICES 935 PRICES
AST RESEARCH
MegaPlus Il 4-Funct 64K + siw $279 NEC
6-Pack 5-Funct 64K + siw 8279 3510..... $1485 7710.....$1995 | SOFTWARE FOR IBM-PC
e $120 9515 $M479 77I5.... 82039 g Eoridsgee e e
YECMAR J830 . . 81575 7720..... $2495 ppasel/. . . $389 VisiCalc. . . . $189
e say 2090..... $1695 7730 - 81995 pruitiplan. . $175 Multimate. . . $299
Waoe 0 s 0 00ciale. (8020 00deries . CALL \MICROSOFT Word...... $269
HERCULES AND LOTS MORE
Hi Res Graphics 72 TOSHIBA
e g eibel e $1649 CANADIAN
FREDRICKS ELECTRONICS b el i $849 -
COLORPLUS 640 x 200, COMPUTER HUT
e 7 399 /DS.DAISYWRITER. CALL
aaae e Lo AUTHORIZED DEALER
MA SYSTEMS
PC Peacock w/Par Port $275 MICROCONTEXT INC.
5253 AVE DU PARC
MICROLOG MONTREAL
BabyBlue 0. 0 S0 $359 QUE H2Vv4P2.
BabyBlue 164K 8575 (514) 279_ 7291
PARADISE ' Published Prices are for U.S.A. Only
Multidispfay $395 Please call for Canadian Prices

ANY PRODUCT NOT LISTED? CALL

COMPUTER HUT ORDERS & INFORMATION ORDER-LINE ONLY

OF NEW ENGLAND INC.
101 Elm St., Nashua, NH 03060

(603)889-0666

PLEASE

(800) 525-5012

All products usually in stock for immediate smpn‘en! and carry full manufacturers’ warranty. Price subject to chan ge -
get the lowest price. We honor personal checks — allow 10 days to clear, COD up 10 3300 add 3%. Visa. Masie
5.00 min. for small items and $10 min for monitors, printers, etc. APO & FPO orders add 12%

Return authorization and order status (603) 889-7625

IBM is a trademark of IBM Corp.

- this ad prepared two months in advance. You
rCard add 3%. For shipping & msura'\ce add 3% or
. Include phone number.

Circle 76 on inquiry card.

REHEARSAL

{| Floor |E™
|| Director | |5
[4
A |floorwidth Tite Lint
32
i Ceiting h""“' Rectande Doslio
Ceiling ||12824.0 0. 3
Drirector | [eiling rea | [Fane! Height
4498.06 20 0806
Room Arse Floor T *[?\
Maker
4
Rect Width
26,7741 13.3871
checker 2)
HTew Br HY[Old Br Ht
T
Disaster 0| |20 osng| ——
Director END

Stretch l]
x’:’L 5 w— | 3LV E l
Shrink 1 PARTE

0

SCORE

GO FOR THE GOLD!

Figure 14: The GoldRush game ard its complicated wings, sﬁowmg more performers backs tage than are on stage.

(text continued from page 202)

had expected them to embark on some-
thing at the level of the Jumble Game
described earlier. Rather than starting
with a toy example for practice, they
were embarking on a real-world task
after only one day's experience. We wor-
ried that they had chosen something
too difficult for them to accomplish in
the remaining two days.

By lunch time they had figured out
how to use the Turtle to draw the floor.
They said, "We need a Floor Director to
be in charge of drawing the floor.” and
placed a button in the wings labeled
FloorDirector for that purpose. They
used this same strategy to make a Ceil-
ingDirector, a Checker to test whether
or not the broom was touching the ceil-
ing, and a DisasterDirector in charge of
what should happen when it did. Cer-
tain performers had become, if you will,
visible procedures. They invented this
strategy on their own, led to it by the
Rehearsal World's emphasis on buttons.

Next to these directors in the wings,

204 BYTE » JUNE 1984

they placed the performers that would
be needed by the directors to accom-
plish their tasks. These performers fulfil
the role of variables; since everything
in the Rehearsal World must be visible,
all variables must be represented by
performers. By grouping their per-
formers in a logical manner, they could
debug their program easily by selecting
a button, like the CeilingDirector, and
simply watching what happened, both
on stage and in the wings.

Their next task was to implement the
broom (for which they used a Rec-
tangle), the START button, and the
MOVE button. The action of the START
button was simply to cause the Floor-
Director and the CeilingDirector to per-
form their button actions. The action of
the MOVE button was first to move the
broom and then to ask the Checker to
determine whether or not the broom
was touching the ceiling. If it was, it
asked the DisasterDirector to perform
its action; if it wasn't, the Checker com-
puted the score. That they had not yet

even designed the disaster didn't mat-
ter; they were using top-down program-
ming technigues, realizing that they
could return later and replace the
empty code block of the Disaster-
Director with whatever they wanted.

By the end of the day. the Floor-
Director and the CeilingDirector were
both working properly and they could
move the broom through the cave. They
started to plan the randomness that
they wanted to build into the button ac-
tion of the START button.

The next day they made a fraction to
be edited by the user, creating it from
two Numbers and two Rectangles, one
to act as the line between the Numbers,
the other to act as a frame. This looked
and worked fine, but they soon dis-
covered that it was a great disadvantage
to be dealing with four independent
performers instead of a single unified
one: whenever they decided that their
fraction was the wrong size or in the
wrong place, they had to resize or move

(text continued on page 206)

ORI o S R 5 e

Development Tools That Work

Avocet cross-assemblers are fast, reliable
and user-proven in over 3 years of actual
use. Ask NASA, IBM, XEROX or the hun-
dreds of other organizations that use them.
Every time you see a new microprocessor-
based product, there's a good chance it
was developed with Avocet
assemblers.

Cross-

Avocet cross-assemblers are easy to use.
They run on any computer with CP/M*
and process assembly language for the
most popular microprocessor families.

514" disk formats available at no extra
cost include Osborne, Xerox, H-P, IBM
PC, Kaypro, North Star, Zenith,
Televideo, Otrona, DEC.

Turn Your Computer Into A
Complete Development System

Of course, there’s more. Avocet has the
tools you need from start to finish to enter,

Before Johann Sebastian Bach developed
a new method of tuning, you had to
change instruments practically every time
you wanted to change keys.Very difficult,

Before Avocet introduced its family of
cross-assemblers, developing micro-pro-
cessor software was much the same. You
needed a separate development system
for practically every type of processor.
Very difficult and very expensive,

But with Avocet’s cross-assemblers, a
single computer can develop software for
virtually any microprocessor! Does that

_puo_ﬁc..af\\@“) put us in a league with Bach? You decide.
The Well-Tempered Cross-Assembler
CP/M-86
Crosigg:;:nbler MicroT;;gi:assor 6‘5;2?0?10 IBM P\?‘ MSDOS* *

ersions

XASMZ80 Z-80

AASMB5H 8085

XASMO0O5 6805

XASM0O9 6809

XASM18 1802 $250.00

XASM48 8048/8041 each

XASM51 8051 $200.00

XASM65 6502 each

XASM68 6800/01

XASMZ8 Z8

XASMFS8 F8/3870 $300.00

XASM400 COP400 each

XASM75 NEC 7500 $500.00

Coming soon: XASM68K...68000
{(Upgrade kits will be available for new Call Us

assemble and test your software and finally
cast it in EPROM:

Text Editor VEDIT -- full-screen text edi-
tor by CompuView. Makes source code
entry a snap. Full-screen text editing, plus
TECO-like macro facility for repetitive
tasks. Pre-configured for over 40 terminals
and personal computers as well as in user-
configurable form.

CP/M-80 version
CP/M-86 or MDOS version $195
(when ordered with any Avocet product)

EPROM Programmer -- Model 7128
EPROM Programmer by GTek programs
most EPROMS without the need for per-
sonality modules. Self-contained power
supply ... accepts ASCIl commands and
data from any computer through RS 232
serial interface. Cross-assembler hex ob-
ject files can be down-loaded directly.
Commands include verify and read, as
well as partial programming.

PROM types supported: 2508, 2758,
2516, 2716, 2532, 2732, 2732A,
27C32, MCMB8766, 2564, 2764, 27C64,
27128, 8748, 8741, 8749, 8742, 8751,
8755, plus Seeq and Xicor EEPROMS,

Circle 38 on inquiry card.

PROM types as they are introduced.)

Programymer’ . o000 $429
Options include:
Software Driver Package --
enhanced features, no installation

required.

CP/M-80 Version...........% 75
IBMPC Version o o $ 95
RE 42 Cable i o nl $ 30
8748 family socket adaptor . .. $ 98
8751 family socket adaptor . . . $174
8755 family socket adaptor . . . $135

G7228 Programmer by GTek - baud
to 2400 ... superfast, adaptive program-
ming algorithms ... programs 2764 in one
minute.

Brodrammery . e e $549

Ask us about Gangand PAL programmers.

HEXTRAN Universal HEX File Con-
verter -- Converts to and from Intel,
Motorala, MOS Technology, Mostek,
RCA, Fairchild, Tektronix, Texas
Instruments and Binary formats.

Converter, each version $250

If you're thinking about development sys-
tems, call us for some straight talk, If we
don’t have what you need, we'll help you
find out who does. If you like, we'll even
talk about Bach.

CALL TOLL FREE 1-800-448-8500
(In the U.5. except Alaska and Hawaii)

VISA and Mastercard accepted. All popular disc formats now
available -- please specify. Prices do not include shipping and
handling -- call for exact quotes. OEM INQUIRIES INVITED

* *Trademark of Microsoft

(™

AVOCET
SYSTEMS INC:

DEPT. 684-B
804 SOUTH STATE STREET
DOVER, DELAWARE 19901

" Trademark of Digital Research

| 302-734-0151 TELEX 467210

JUNE 1984 « BYTE 205

REHEARSAL

I musier | et continued from page 204)

four performers commensurately.

ih Consequently they felt the need to
’ create a new Fraction performer, which

they did by placing two Numbers and

a Rectangle for the central line on an
| otherwise empty stage. Since other per

formers would need to use the values

of the numerator and denominator of

so"wure this Fraction performer, they taught this
- stage the new cues getNumerator, get-

Denominator, and getValue. Then they told

Challenge your ability. . it to convert itself into a new performer
Take charge of your named Fraction and promptly used it in

computer. Take pride in) ; their production
the results. By the end of the third day. they had

a game that worked, that they could re-
nd to, that they liked, and that still
ded improvement.

An extra day of work was devoted to
adding new res. A Number per-
former called Parts was added that
could be edited by the user: its change
action was to show the broom divided
into the number of parts
additional piece of design aro
. their interaction with the production;

sources and’ i £) Y had they been working entirely from a
complete com ; : r paper sketch, this improvement might

You've invested in the
computer. Now

invest in your-

self. Writing

keyboard. It's challenging. It"] not have occurred to them
exciting. And now it’s easier than . ok | They then invited others in our re-
ever before with Self-Study Com- search center to play. Although it had

puter Courses from g B been desig
Heathkit/Zenith. ; colleagues
Master today’s most powerful and fun to p hey were i
contemporary languages including Microsoft BASIC, PASCAL with the quality of the game and espe-
and FORTRAN. And learn the popular CP/M and MS-DOS cially with the fact that the designers
operating systems, too. When you need to know, we’'ll take were nonprogrammers, yet had im-
you as far as you want to go. plemented something so complicated

in only a few days
Eventually we found some children of
1 appropriate age to be students they
also enjoyed ing the game and
rs trying to make a per-
ect score. Diane now plans to reimple-
ment GoldRush at San Francisco
g the Rehearsal World design as a

ed for third-graders, our
| the game interesting

For more information, send for our FREE colorful
catalog below or circle the reader service number.

Send for yours today!
TAL(

Qur colorful catalog
FREE! If coupon i : E

agé;n:mtre Eeafh 1 | Mail to: Heath Comgany prototype but changing it to run on dif-
Dept. 334-182 ALy S TR i s
334-182, Benton | [B% | Benton Harbor, MI 49022 | f;rlen.l hardware, which might mclu.da
MI 49022 |4 | color and have a different pointing
| mechanism
Hamg — | RESEARCH QUESTIONS

| Our experiences with designers have
given us confidence that our general
City - ideas about how to make the power of
| computers accessible to nonprogram-
g == i | mers are correct. We believe that inter-
& active, graphical programs could and

(text continued on page 208)

Address —

206 BYTE » Ul Circle 155 on inquiry card,

' DalsYWHEEL

Y : , 7 ' Finally, there is a full line of
quality printers available to

OZ/[C ﬂn M meet a variety of needs. And all
_ ; from a single manufacturer. ..
: ' FUJITSU. From dependable dot

: b matrix printing to ad-
‘ vanced thermal print-
L ing, you can’t buy more

DOT MATRIX . THERMAL

performance for the price.
Quality That's Built In: Fujitsu qual-

: #
ity is built into every printer manufac-
; ’/ tured. That quality translates into
0 e ’ lce high reliability (MTBF), versatile print
. : o capability, low maintenance, low noise,
and high speeds. And Fujitsu printers are serviced by TRW, a nationwide service organization.
A Complete Printer Line: Fujitsu’s dot matrix printer, with its 24 C———
wire head, offers letter quality printing at 80 CPS. With its
ability to also produce draft quality, correspondence quality and
high resolution graphics, the Fujitsu DPL24 leads dot matrix
technology. ‘ g
In daisy technology,
Fujitsu’s SP830 is the fast-
est letter quality printer
in the industry at 80 CPS.
Fujitsu’s SP320 daisy-
wheel printer also pro-
vides cost effective letter _
quality printing at medium speeds.
Fujitsu offers thermal printing with its TTP16
printer. The low-cost printer accepts a wide variety
of papers and operates quietly at less than 50 dBA.
Call Us Today: Contact Fujitsu America,
Inc., at 408-946-8777 for the printer
distributor nearest you.
? DISTRIBUTORS: Algoram Computer Products (415) 969-4533,

(714) 535-3630, (206) 453-1136, (916) 481-3466; Allen Edwards
Associafes, Inec. (213) 328-9770, (714} 552-7850, (619) 273-4771,
(805) 498-5413; Four Corners Technology (602) 998-4440, (505)
821-5185; Gentry Associates, Inc. (305) 859-7450, {305) 79]-
8405, (813) 886-0720, (404) 998-2828, (504) 367-3975, (205)
534-9771, (919) 227-3636, (803) 772-6786, (901) 683-8072,
(615) 584-0281; Hopkins Associates, Inc. (215) 828-7191, (201)
273-2774; Inland Associates, Dic. (913) 764-7977, (612) 343-
3123, (314) 391-6901; Lagon, Inc. (201) 646-9222; Lowry i i i
Computer Products, Inc. (313) 229-7200, (216) 398-9200, (614} 451-7494, (513) 435-7684, (616) 363-9839, (412) 922-5110, (502) 561-5629;
MESA Technology Corp. (301) 948-4350; NACO Electronics Corp. (315) 699-2651, (518) 899-6246, (716) 233-4490; Peak Distributors, Inc.,
(An affiliate of Dytec/Central} (312) 394-3380, (414) 784-9686, (317) 247-1316, (319) 363-9377; R? Distributing, Inc. (801) 298-2631,
(303) 455-5360; S&S Electronics, (617) 458-4100, (802) 658-0000, (203) 878-6800, (800) 243-2776; USDATA (214) 680-9700, (512) 454-3579,
713) 681-0200, (918) 622-8740. 2

|
‘{ PERIPHERAL PRODUCTS DIVISION
Quality Lives

| FUJITSU

| Circle 142 on inquiry card.

WORD PROCESSING/ HOME/PERSONAL FINANCE SPREADSHEETS/MODELING
EDITORS Pollars and Sense $1 lg ia%i 21 53 gf‘g‘\
Easywriter | System inancier Il 511 otus 1-2-
a?v palﬁ) 5149 Home Accountant Plus $ 99 Multiplan $159
Easywriter || System Tax Preparer 84 $189 Perfect Calc $159
(3 pak) $199 SuperCalc 3 $239
Edix/Wordix $279 DATABASE SYSTEMS TH! Solver $Call
Einstein Writer ﬂgg Alpha Data Base o VisiCalc IV $159
Final Word Manager |l £l
Microsoft Word $239 Condor 11l §329 LANGUAGES/UTILITIES
Microsoft Word/Mouse $299 dBase Il $369 Access Manager $239
Multimate ~ $279 DBplus $ 89 Digital Research
PeachText 5000 $199 Easy Filer §219 C Compiler $219
Perfect Writer/Speller $249 Friday $179 Display Manager $299
PES: Write $ 95 InfoStar $269 Microsoft C Compiler - $329
Samna Word 1I $329 Knowledgeman $309 MS Basic Compiler $249
Select Word Processor $199 Perfect Filer $159 MS Fortran $239
Spelibinder $249 Personal Pearl $199 Pascal MT+86 3249
SS| Word Perfect $Call PFS: File/PFS: Report $169 Norton Utilities 3 59
SuperWriter $179 QuickCode $178
Volkswriter $129 R:base 4000 $299 COMMUNICATIONS/
Volkswriter Deluxe §179 T/Maker Ill §199 PRODUCTIMITY TOOLS
The Word Plus (Oasis) $109 TIM 1V $269 Bkt $119
WordPlus-PC with The Boss $329 Versatorm $249 Memary Shilt § 79
WordStar £249 Move It $109
WordStar Professional PROJECT MANAGEMENT Prokey 3.0 £ 95
(WS/MM/S5/5) §369 Harvard Project
WordStar Options Pak Manzgement $289 HARDWARE PERIPHERALS*
(MM /S5/51) $189 Scitor Project Scheduler $229 Ak 7
il AST Six Pack Plus (6dk) § 299
VisiSchedule $189 Quadboard [0K) $ 229
ACCOUNTING MODULES Hayes 12008 with
Ask Micro Accounting $299 GRAPHICS : Smartcom $ 439
BPI Accounting $369 8PS Business Graphics $229 Hayes Smartmodem 1200 § 549
IUS EasyBusiness System $319 Chartman Combo (II&IV) $349 Hercules Graphics Board § 359
MEBA Accounting $369 Chartmaster $259 Epson FX-100 Printer sCall
Open Systems Accounting $459 dGraph $189 Comrex |l Printer SCall
Peachpak 4 (GL/AP/AR} §239 Fasl Graphs $199 NEC 3550 Printer $1899
Peachiree Accounting $399 Graphwriter Extended 3429 C ltoh Prowriter $ 399
Real World Accounting 3469 PC Draw $219 ¢ ltoh Starwriter $1249
Star Accounting Pariner PFS: Graph $ 95
(GL/AP/AR/PAY) 3269 VisiTrend/Plot $199 *Add 3% for shipping.

s e
5 1209 329

EXTRA $3% SAVINGS
With each order, we offer discount coupons worth up
to $10 on your next order.

Diskette = .

To Order call
- = /“\\l‘ A 49 T
- -l o

& | - - A] /‘..-1 .v -

In New York State call (212) 438-6057

W, W L

For technical support
and information call
(212) 438-6057

Library Case s

. with your order. This attractive 5
case protects, indexes and stores Monday thru Friday
10 diskettes for quick retrieval. - S
Normally a $10 value, it is now 9:00 AM -7:00 PM
available FREE to Softline customers sllndays
TERMS:

processing—add 3%. COD orders —cash.

M.O. or certibed check—add $3.00 Shipping
and handling UPS surface —add $3.00 per item
{UPS Biue $§6.00 per item). NY State
Residents—add applicable sales tax. All
prices subject o change.

Checks—aliow 14 days to clear. Credit 1 0.00 AM o 4.00 PM

5/ soltline Corporation
3060 Bedford Ave., Brooklyn, N.Y. 1210
TELEX. 421047 ATLN UI

208

BYTE « JUNE 1984

REHEARSAL

(text continued from page 206)

should be built inside an interactive,
graphical programming environment.
We believe that for such programs,
some sort of visual, spatial program-
ming will eventually supplant the cur-
rent process of writing lines of textual
code. Nevertheless, we have many un-
answered questions about the nature of
visual programming.

An important aspect of the Rehearsal
World is that everything is made visible;
only things that can be seen can be
manipulated. Thus, rather than thinking
abstractly, as is necessary in most pro-
gramming environments, a designer is
always thinking concretely, selecting a
particular performer, then a particular
cue, then observing the cue's instant ef-
fect. We know that much of the initial
accessibility of the system is due to this
concrete, visual, object-oriented ap-
proach. What we don't know are its
shortcomings. :

As designers create increasingly large
and sophisticated productions, they
may find it a nuisance to have to instan-
tiate everything (even temporary vari-
ables) in the form of a performer. There
are problems with space on the screen
and with visual complexity. Some of
these problems are addressed by the
ability to collapse a large set of per-
formers into a single new one, which can
be made very small while still retaining
its original functionality. This helps not
only with space but with factoring the
production into significant pieces.

While beginning designers benefit
from the concreteness, more experi-
enced ones will benefit from being able
to think in more general and abstract
terms. They are led to think in general
terms by the fact that all performers re-
spond to a large set of common cues;
they are led to think in abstract terms
through the manipulation of Lists and
Repeaters. Still, it may be difficult to
build productions, for example, that
need to access large amounts of data.
At some point, the concreteness may
become a barrier rather than an advan-
tage.

We know that the "watching” facility
is very important to beginners and
makes it possible for them to “write”
code without learning a language. But
it'’s really very simple and is in no way
“programming by example”; it employs

(text continued on page 210)

Blackouts...Brownouts. ..Voltage Surges... Lme Nonse
They Can Alter Data, Wipe Out RAM Memory
- or Damage Equlpment | i

The Datashield Backup Power Source Can Stand Between ;
Your PC and Disaster from Power Irregularities.

‘Protect Yourself Four Ways
With Datashield

- This rechargeable, battery-operated unit —
~ with built-in surge protector — provides
~maximum protection against all four
-commercial power problems that can impact
your PC: power outage, power drops, voltage
splkes, and e{ectromagnetw or radio ;
lnter!eronce (EMURFI}

: PC-200. Designed for Hexible i ‘ga,;‘,gmeld ®
. dise PC’s and some hard disc styles. - 2ol Sl . l

NOW. ONLY $359°

s

Technical Data
Backup Time
Min. 50% Load 20 Minutes
Min. 100% Load 5 Minutes

Output Rating
PC-200 200 Watts
XT-300 300 Watts

Typical Transfer Time
PC-200 4 Milisec. (4 Cycle)
XT-300 1 Millisec. (1416 Cycla)

Energy Dissipation 140 Joules

REHEARSAL

(text continued from page 208)
no generalizations but merely makes a
textual record of a performer being sent
a cue, perhaps with parameters. Again,
advanced designers might be led to
think abstractly rather than specifically
if the Rehearsal World pravided a more
powerful watching facility that was cap-
able of some form of generalization.
In the Rehearsal World, button acticn
and change acticn are the major mech-
ahisms for expressing the interactions
of all performers; a few performers, like
the Repeater, the List, and the Traveler,
have other special actions as well. De-
signers find these actions very natural
and so far have had no difficulty
describing their needs in these terms.
However, the Rehearsal World does not
provide designers with the facility to
create new types of actions for new per-
formers, and this may become a prob-
lem in the future. :
The Rehearsal World supports mul-
tiple processes in such a natural way

that our designers are not surprised by
the existence of this facility as they in-
terrupt whatever they're doing to do
something else. However, we have little
experience with designers using mul-
tiple processes in some production and
expect a variety of conceptual and
mechanical difficulties to arise.
Designers express actions in a pro-
cedural fashion, instructing a performer
to send a cue under certain conditions.

We are curious about how designers
would deal with a constraint-based
Rehearsal World in which the relation-
ships between performers were ex-
pressed in terms of conditions that
should always hold true (for example,
that the value of a Number should
always be twice that of another
Number). We hope that researchers
working on similar design environments
will explore these questions. ®

REFERENCES

1. Brown, Dean, and Joan Lewis. "The Pro-
cess of ' Conceptualization.” Educational
Policy Center Research Note EPRC-6747-9.
SRI Project 6747. December, 1968.

2. Oettinger., Anthony, with Sema Marks.
Run, Computer, Run. Cambridge, MA: Harvard
University Press, 1969.

3. Gould, Laura, and William Finzer. "A
Study of TRIP: A Computer System for
Animating Time-Rate-Distance Problems.” In-
ternational Journal of Man-Machine Studies (1982)
17, 109-126.

4, Ingalls, Daniel H. H. "The Smalltalk-76 Pro-

gramming System: Design and [mplementa-
tion.” Conference Record of the Fifth Annual ACM
Symposiurm on Principles of Programming Languages.
Tucson, AZ: 1978.

5. BYTE, August 1981.

6. Goldberg, Adele. Smalltalk-80: The Interactive
Programming Environment. Reading, MA:
AddisonWesley, 1984,

7. Goldberg, Adele, and David Robson.
Swmalltalk-80: The Language and its Implementation.
Reading, MA: AddisonWesley, 1983.

8. Krasner, Glenn, ed. Smalltalk-80., Bits. of
History, Words of Advice. Reading, MA: Addison-
Wesley, 1983.

IBM PC™Compatible

STANDARD FEATURES:

® MS DOS

@ 16 Bit 8088 CPU

@ SANYO BASIC

@ 128K Internal Memory

@ Centronics Printer Port

@ Color Graphic Capabilities

@ Diagnostics, Utilities, Speaker
& Joystick Port

MBC 550

DEALERS ONLY!

D SANYO

Business Computer System

Heavy guage
underhood
shigld

P.DT.
underhood

- 22 AWG
- wisted cpnﬂ't}sg_tirs

2mm PYC cover

BEFORE YOU BUY
CABLE ASSEMBLIES,

| I Gold plated pins

= 1 single sided/double density disk drive (160K)
» WordStar & CalcStar Included

MBC 555

* 2 single sided/doublé density disk drives (320K)
« 128K memory expandable to 256K
« WordStar, CalcStar, DataStar, InfoStar, & MailMerge Included

Also available in double sided drives

RETAIL-$999.00

N 4 MICRO EQUIPMENT

P CORPORATION

. 245 West Wieuca Rd.
MICRO-EQUIP-CORP Suite 210

Atlanta, Ga. 30342

404/843-3128

CHECK UNDER THE HOOD!

DATA SPEC!™ cable assemblies are the very best. Each cable
is fully shielded to exceed FCC EMI/RFI emission requirements.
Furthermore, the unigue P.D.T. technique is employed beneath
the hood shield for maximum integrity under the most adverse
conditions. DATA SPEC™ was the first to use the P.D.T. pro-
cess, and cable assemblies constructed with P.D.T. carry a
lifetime warranty. DATA SPEC™ has interface cables for all
your requirements: Modems, Monitors, Disk Drives, and much
more. Insist on DATA SPEC'™ cables in the bright orange
package - Available at better computer dealers everywhere. For
more information, call or write:

DAL RICOPLEC.

A Divigion of Alliance Research Corporation

18215 Parthenia Street, Northridge, CA 91325 (818) 701-5853

210 BYTE * JUNE 1984

Circle 389 on inquiry card.

Circle 97 for Dealer inquiries.
Circle 98 for End-User inquiries.

DATAMATION.

POWER TOOLS FOR
PROGRAMMERS

by Beau Sheil

{
Reprinted with permission of Datamation® Magazine, © copyright by Technical Publishing,
- a Dun & Bradstreet Company, 1983—all’rights reserved. T -

ILLUSTRATION BY DORIS ETTINGER

Emerging from Al labs, exploratory programming
environments can handle complex,

interactive applications that structured methods
box into a corner.

POWER TOOLS FOR
" PROGRAMMERS

= %=3a 33=x 2 2 =1
T A

by Beau Sheil

An oil company needs a system to monitor
and control the increasingly complex and fre-
quently changing equipment used to operate
an oil well. An electronic circuit designer
plans to augment a circuit layout program to
incorporate a variety of vaguely stated design
rules. A newspaper wants a page layout sys-
tem to assist editors in balancing the inter-
locking constraints that govern the placement
of stories and advertisements. A government
agency envisions a personal workstation that
would provide a single integrated interface to
a variety of large, evolving database systems.

Applications like these are forcing the
commercial deployment of a radically new
kind of programming system. First devel-
oped to support research in artificial intelli-
gence and interactive graphics, these new
tools and techniques are based on the notion
of exploratory programming, the conscious
intertwining of system design and implemen-
tation. Fueled by dramatic changes in the cost
of computing, such exploratory program-
ming environments have become a commer-
cial reality virtually overnight. No fewer than
four such systems were displayed at NCC "82
and their numbers are likely to increase rapid-
ly as their power and range of application
become more widely appreciated.

Despite the diversity of subject mat-
ter, a common thread runs through our exam-
ple applications. They are, of course, all
large, complex programs whose implementa-
tions will require significant resources. Their
more interesting similarity, however, is that
it is extremely difficult to give complete
specifications for any of them. The reasons
range from sheer complexity (the circuit de-
signer can’t anticipate all the ways in which
his design rules will interact), through contin-
ually changing requirements (the equipment
in the oil rig changes, as do the information
bases that the government department is re-
quired to consult), to the subtle human fac-

tors issues that determine the effectiveness of
an interactive graphics interface.

Whatever the cause, a large program-
ming project with uncertain or changing
specifications is a particularly deadly combi-

FEBRUARY 1983 131

[0
w!us the fﬁnatiohs F
ﬁt to say where the above go 7 No

(SETQ DRAWBETWEEN 8]
ORAWBETWEEN resst)

H FOLLOW CURSOH BREAK: 1

(FOLLOW/CURSOR beoken)
77:. SHOW PATHS FROM FOLLOW/CURSOR

NIL ¥

76:, DOES FOLLOW/CURSOR CALL ORAWBETWEEN SOMEHOW
T .

79:. DOES FOLLOW/CURSOR CALL DRAWBETWEEN

NTE e)

80 : DRAWBETWEEN
66

These two screen images show some of the
exploratory programming tools provided in
the Xerox Interlisp-D programming envi-
ronment. The screen is divided into a series
of rectangular areas or windows, each of
which provides a view onto some data or
process, and which can be reshaped and
repositioned at will by the user. When they
overlap, the occluded portion of the lower
window is automatically saved, so that it
can be restored when the overlapping win-
dow is removed, Since the display is bit-
mapped, each window can contain an arbi-
trary mixture of text, lines, curves, and pic-
tures composed of half-tones or solids. The
image of Einstein, for instance, was pro-
duced by scanning a photograph and storing
it digitally.

In the typescript window (labeled
1), the user has defined a program F (facto-

FOLLOW CURSOR FRAME
FOLLOW/CURSOR

b AUG HZ

rial) and has then immediately run it, giving
an input of 4 and getting a result of 24.
Next, in the same window, he queries the
state of his files, finding that one file (LAT-
TICER) has already been changed and one
function (F) has been defined but not asso-
ciated with any file yet. The user sets the
value of DRAWBETWEEN to 0 in command
74, and the system notes that this is a
change and adds DRAWBETWEEN to the set
of “*changed objects"" that might need to be
saved.

Then, the user runs the program
EDITTREE, giving it a parse tree for the sen-
tence “*‘My uncle’s story about the war will
bore you to tears.”” This opens up the big
window (2) on the right in which the sen-
tence diagram is drawn. Using the mouse,
the user starts to move the NP node on the
left (which is inverted to show that it is

being moved).

While the move is taking place, the
user interrupts the tree editor, which sus-
pends the computation and causes three
“‘break’ windows to appear on top of the
lower edge of the typescript. The smallest
window (3) shows the dynamic state of the
computation, which has been broken inside
a subprogram called FOLLOW/CURSOR. The
**FOLLOW/CURSOR Frame™ window (4) to
the right shows the value of the local vari-
ables bound by FOLLOW/CURSOR. One of
them has been selected (and so appears in-
verted) and in response, its value has been
shown in more detail in the window (5) at
the lower left of the screen. The user has
marked one of the component values as sus-
picious by circling it using the mouse. In
addition, he has asked to examine the con-
tents of the BITMAP component, which has

nation for conventional programming tech-
niques. Virtually all modern programming
methodology is predicated on the assumption
that a programming project is fundamentally
a problem of implementation, rather than de-
sign. The design is supposed to be decided on
first, based on specifications provided by the
client; the implementation follows. This di-
chotomy is so important that it is standard
practice to recognize that a client may have
only a partial understanding of his needs, so
that extensive consultations may be required
to ensure a complete specification with which
the client will remain happy. This dialog
guarantees a fixed specification that will form
a stable base for an implementation.

132 DATAMATION

The vast bulk of existing program-
ming practice and technology, such as struc-
tured design methodology, is designed to en-
sure that the implementation does, in fact,
follow the specification in a controlled fash-
ion, rathern than wander off in some unpre-
dictable direction. And for good reason.
Modern programming methodology is a sig-
nificant achievement that has played a major
role in preventing the kind of implementation
disasters that often befell large programming
projects in the 1960s.

The implementation disasters of the
1960s, however, are slowly being succceded
by the design disasters of the 1980s. The pro-
jects-described above simply will not yield to

conventional methods. Any attempt to obtain
an exact specification from the client is
bound to fail because, as we have seen, the
client does not know and cannot anticipate
exactly what is required. Indeed, the most
striking thing about these examples is that the
clients’ statements of their problems are real-
ly aspirations, rather than specifications. And
since the client has no experience on which to
ground these aspirations, it is only by explor-
ing the properties of some putative solutions
that the client will find out what is really
needed. No amount of interrogation of the
client or paper exercises will answer these
questions; one just has to try some designs to
see what works.

TOP LEVEL TVPESCRIPT WINDOW
A.Hlil\'lml\ TUU ME MUMPCU .

b ?é#{DEFINEQ {F (A) (IF & LT 2 THEN 1 ELSE A*(F A-1]

..to be dumped.
] plus the functions: F
want to say where the sbove go 7 No
ANIL

474+ (SETQ DRAWBETWEEN @]
i fBRﬁ\fBETWEEN reset)

| FDLLOW 'CURSOR BHEAK 1
‘;8:. DOES FOLLOW/CURSOR CALL ORAWBETWEEN SOMEHOW

??"_ DOES FOLLOW/CURSOR CALL ORAWBETWE
N1 i

88 DRAVBETWEEN
66

mB81:. EDIT WHERE ANY CALLS DRAWBETWEEN
i

NODEW IOTH

LNODEHE IGHT
OLNODES ET &) (N &)
FROMLNODES

an'mﬁ&%nwrenm 11558

opened up a bitmap edit window (6) to the
right. This shows an enlarged copy of the
actual NP image that is being moved by the
tree editor. Then, inside the largest of the
three break windows (10) the user has asked
some questions about the FOLLOW/CURSOR
subprogram that was running when he inter-
rupted, and queried the value of DRAW-
BETWEEN (now 66). The SHOW PATHS com-
mand brought up the horizontal tree dia-
gram on the left (7), which shows which
subprograms call cach other, starting at
FOLLOW/CURSOR.

Each node in the call tree produced
by the SHOW PATHS command is an active
element that will respond to the user’s se-
lecting it with the mouse. In the second
image, the user has selected the SHOWNODE
subprogram, which has caused its source
code to be retrieved from the file (.LISP;DE-

FOLLOW CURSOR FRAME
FOLLOW/CURSOR
(LNODE)#4.54110
DISPLAYSTREAM)4

BROWSER PRINTOUT WINDOW
fron P YLUM}(LISP)DEHG)&ATTMER 318}

STLAMBOR TND NODELST 0S TOSONLY)

{* displays a iode and its tinks.
IF TOSONLY 12 NON-NIL, DRAWS ONLY THE T0-LINKS:]

SHOW 7/NODE/LABEL ND 0S)
for TONODEID in (TOLLINKS NO) do (SHOWLINK NO (NODEIDTONODE TONGDEID NODELST)
(DR TOSONLY (for FROMNDID in (FROMLLINKS ND) do (SHOWLINK (NODEHDTONODE FROMNDIC

(* erE 23 JAN-E2 19047

ND D8])

(* Bas: " TEOCT 52 14i1287)
(" draws in g link trom
FREL TO TOND)|

MO:LATTICER) on the remote file server
(PHYLUM) where it was stored, and dis-
played in the *‘Browser printout window”’
(8) which has been opened at middle right.
User functions and extended Lisp forms
(like for and do) are highlighted by system-
generated font changes.

By selecting nodes in the SHOW
PATHS window, the user could also have
edited the code or obtained a summary de-
scription of any of its subprograms.

Instead, the user has asked (in the
break typescript window (10)) to edit
wherever anybody calls the DRAWBETWEEN
system primitive (which draws lines be-
tween two specified points). This request
causes the system to consult its dynamically
maintained database of information about
user programs, wherein it finds that the sub-
program SHOWLINK calls DRAWBETWEEN. It

thercfore loads the code for SHOWLINK into
an edit window (9) that appears under the
““‘Browser printout window.'" The system
then automatically finds and underlines the
first (and only) call on DRAWBETWEEN,
Note that on the previous line DRAW-
BETWEEN is used as a variable (the same
variable the user set and interrogated carli-
er). The system, however, knows that this
is not a subprogram call, so it has been
skipped over. If the user were to make any
change to this subprogram in the editor, not
only would the change take effect immedi-
ately, but SHOWLINK would be marked as
needing to be updated in its file and the
information about it in the subprogram da-
tabase would be updated. This, in tumn,
would cause the SHOW PATHS window to be
repainted, as its display might no longer be
valid,

The consequences of approaching
problems like these as routine implementa-
tion exercises are dramatic. First, the imple-
mentation team begins by pushing for an ex-
act specification. How long the client resists
this coercion depends on how well he really
understands the limits of his own grasp of the
problem. Sooner or later, however, with
more or less ill-feeling, the client accepts a
specification and the implementation team
goes to work.

The implementors take the specifica-
tion, partition it, define a module structure
that reflects this partitioning, freeze the inter-
faces between them, and repeat this process
until the problem has been divided into a

large number of small, easily understand-
able, and easily implementable pieces. Con-
trol over the implementation process is
achieved by the imposition of structure,
which is then enforced by a variety of man-
agement practices and programming tools.

USE OF Since the specification.
NTE and therefore the module
:“G':::':L structuring, is considered

fixed, one of the most ef-

fective methods for enforcing it is the use of

redundant descriptions and consistency
checking. Hence the importance of tech-
niques such as interface descriptions and stat-
ic type checking, which require that multiple

statements of various aspects of the design be
included in the program text. These state-
ments allow mechanical checks that ensure
that each piece of the system remains consis-
tent with the rest. In a well-executed conven-
tional implementation project, a great deal of
internal rigidity is built into the system, en-
suring its orderly development.

The problems usually emerge at sys-
tem acceptance time, when the client requests
not just superficial, but radical changes, ei-
ther as a result of examining the system or for
some completely exogenous reason. From
the point of view of conventional program-
ming practice, this indicates a failure at
specification time. The software engineer

FEBRUARY 1983 133

The implementation disasters of the 1960s are
slowly being succeeded by the design disasters of

the 1980s.

should have been more persistent in obtaining
a fuller description of the problem, in involv-
ing all the affected parties. etc. This is often
true. Many ordinary implementation exer-
cises are brought to ruin because the conse-
quences of the specification were never fully
agreed upon. But that's not the problem here.
The oil company couldn’t anticipate the addi-
tion of a piece of cquipment quite different
from the device on which the specification
was based. No one knew that the layout edi-
tors would complain that it doesn’t *‘feel
right™* now that they can no longer physically
handle the copy (even in retrospect. it's un-
clear why they fecl that way and what to do
about it), etc., etc., etc. Nor would any
amount of speculation by either client or soft-
ware engineer have helped. Rather, it would
have just prompted an already nervous client
to demand whole dimensions of flexibility
that would not in fact be needed, leaving the
system just as unprepared for the ones that
eventually turned out to matter.

Whatever the cause, the implementa-
tion team has to rework the system to satisfy a
new, and significantly different, specifica-
tion. That puts them in a situation that con-
ventional programming methodology simply
refuses to acknowledge—except as some-
thing to avoid. As a result, their program-
ming tools and methods are suddenly of lim-
ited effectiveness. The redundant descrip-
tions and imposed structure that were so ef-
fective in constraining the program to follow
the old specification have lost none of their
efficacy—they still constrain the program to
follow the old specification. And they 're dif-
ficult to change. The whole point of redun-
dancy is to protect the design from a single
unintentional change. But it’s equally well
protected against a single intentional change.
Thus, all the changes have to be made every-
where. (Since this should never happen.
there’s no methodology to guide or program-
ming tools to assist this process.) Of course,
if the change is small (as it “‘should™ be),
there is no particular problem. But if it is
large enough to cut across the module struc-
ture, the implementation team finds that it
has to fight its way out of its previous design.

Still no major problem, if that’s the
end of the matter. But it rarely is. The new
system will suggest yet another change. And
so on. After a few iterations of this, not only
are the client and the implementation team
not on speaking terms, but the repeated as-
saults on the module structure have likely left
it looking like spaghetti. It still gets in the
way (fire walls are just as impenetrable if laid
out at random as they are when laid out
straight), but has long ceased to be of any use
to anyone except to remind them of the pro-
ject’s sorry history. Increasingly, it is active-
ly subverted (enter LOOPHOLES, UNSPECS,
etc.) by programmers whose patience is run-

136 DATAMATION

ning thin. Even if the design were suddenly to
stabilize (unlikely in the present atmo-
sphere). all the seeds have now been sown for
an implementation disaster as well.

EXPLORE The alternative to this kind
DESIGN of predictable disaster is

not to abandon structured
PROBLEMS

design for programming
projects that are, or can be made to be, well
defined. That would be a tremendous step
backwards. Instead, we should recognize that
some applications are best thought of as de-
sign problems, rather than implementation
projects. These problems require program-
ming systems that allow the design to emerge
from experimentation with the program, so
that design and program develop together.
Environments in which this is possible were
first developed in artificial intelligence and
computer graphics, two research areas that
are particularly prone to specification insta-
bility.

At first sight, artificial intelligence
might seem an unlikely source of program-
ming methodology. But constructing pro-
grams, in particular programs that carry out
some intelligent activity, is central to artifi-
cial intelligence. Since almost any intelligent
activity is likely to be poorly understood
(once a program becomes well understood we
usually cease to consider it ““intelligent™’),
the artificial intelligence programmer invari-
ably has to restructure his program many,
many times before it becomes reasonably
proficient. In addition, since intelligent ac-
tivities are complex, the programs tend to be
very large. yet they are invariably built by
very small teams, often a single researcher.
Consequently, they are usually at or beyond
the manageable limits of complexity for their
implementors. In response, a variety of pro-
gramming environments based on the Lisp
programming language have evolved to aid in
the development of these large. rapidly
changing systems.

The rapidly developing arca of inter-
active graphics has encountered similar prob-
lems. Fueled by the swift drop in the cost of
computers capable of supporting interactive
graphics, there has been an equally swift de-
velopment of applications that make heavy
use of interactive graphics in their user inter-
faces. Not only was the design of such inter-
faces almost completely virgin territory as
recently as 10 years ago. but even now, when
there are a variety of known techniques
(menus, windows, etc.) for exploiting this
power, it is still very difficult to determine
how easy it will be to use a proposed user
interface and how well it will match the us-
er's needs and expectations in particular situ-
ations. Consequently, complex interactive
interfaces usually require extensive empirical
testing to determine whether they are really

cffective and considerable redesign to make
them so.

While interface design has always re-
quired some amount of tuning, the vastly in-
creased range of possibilities available in a
full graphics system has made the design
space unmanageably large to explore without
extensive experimentation. In response, a va-
ricty of systems, of which Smalltalk is the
best known, have been developed to facilitate
this experimentation by providing a wide
range of built-in graphical abstractions and
methods of modifying and combining them
together into new forms.

In contrast to conventional program-
ming technology, which restrains the pro-
grammer in the interests of orderly develop-
ment, ecxploratory programming systems
must amplify the programmer in the interests
of maximizing his effectiveness. Exploration
in the realm of programming can require
small numbers of programmers to make es-
sentially arbitrary transformations to very
large amounts of code. Such programmers
need programming power tools of consider-
able capacity or they will simply be buried in
detail. So, like an amplifier. their program-
ming system must magnify their necessarily
limited energy and minimize extraneous ac-
tivities that would otherwise compete for
their attention.

SOURCES One source of such power
is the use of interactive
%#E:'GN graphics. Exploratory pro-

gramming systems have
capitalized on recent developments in per-
sonal computing with extraordinary speed.
The Xerox 1108 Interlisp-D system. for ex-
ample, uses a large format display and a
“‘mouse’” pointing device to allow very high
bandwidth communication with the user. De-
signers of exploratory programming environ-
ments have been quick to seize on the power
of this combination to provide novel pro-
gramming tools, as we shall see.

In addition to programming tools,
these personal machine environments allow
the standard features of a professional work-
station, such as text editing, file manage-
ment, and electronic mail, to be provided
within the programming environment itself.
Not only are these facilities just as effective
in enhancing the productivity of program-
mers as they are for other professionals. but
their integration into the programming envi-
ronment allows them to be used at any time
during programming. Thus, a programmer
who has encountered a bug can send a mes-
sage reporting it while remaining within the
debugger, perhaps including in the message
some information. like a back-trace, obtained
from the dynamic context.

Another source of power is to build
the important abstract operations and objects

Redundancy protects the design from
unintentional change—but it's equally well
protected against intentional change.

of some given application area directly into
the exploratory environment. All program-
ming systems do this to a certain extent; some
have remarkably rich structures for certain
domains, (e.g., the graphics abstractions em-
bedded within Smalltalk), If the abstractions
are well chosen, this approach can yield a
powerful environment for exploration within
the chosen area, because the programmer can
operate entirely in substantively meaningful
abstractions, taking advantage of the consid-

erable amount of implementaticn and design”

effort that they represent.

The limitations of this approach,
however, are clear, Substantive abstracticns
are necessarily effective only within a par-
ticular topic area. Even for a given area, there
is generally more than one productive way to
partition it. Embedding one set of abstrac-
tions into the programming system encour-
ages developments that fit within that view of
the world at the expense of others. Further, if
one enlarges onc’s arca of activity even
slightly, a set of abstractions that was once
very effective may become much less so. In
that situation, unless there are effective
mechanisms for reshaping the built-in ab-
stractions to suit the changed domain, users
arc apt to persist with them, at the cost of
‘distorting their programs. Embedded abstrac-
tions, useful though they are, by themselves
enable only exploration in the small, con-
fined within the safe borders where the ab-
stractions are known to be effective. For ex-
ploraticn in the large, a more general source
of programming power is nceded.

Of course, the exact mechanisms that
different exploratory systems propose as es-
sential sources of programming power vary
widely, and these differcnces are hotly de-
bated within their respective communities.
Nevertheless, despite strong surface differ-
ences, these systems sharc some unusual
characteristics at both the languagc and envi-
ronment level.

THE The key property of the
LANGUAGE Programming languages

used in exploratory pro-
LEVEL

gramming systems is their
emphasis on minimizing apd deferring the
constraints placed on the programmer, in the
interests of minimizing and deferring the cost
of making large-scale program changes.
Thus, not only are the conventional structur-
ing mechanisms based on redundancy not
used, but the languages.make extensive use
of late binding, i.c., allowing the program-
. mer 10 defer commitments for as long as pos-
sible. .
) The clearest example is that explora-
tory environments invariably provide dynam-
ic storage allocation with automatic reclama-
tion (garbage collection). To do otherwise
imposes an intolerable burden on the pro-

138 DATAMATION

grammer to keep track of all the paths
through his program that might access a par-
ticular piece of storage to ensure that none of
them access or release it prematurely (and
that somcone does release it cventually!).
This can only be done by careful isolation of
storage management or with considerable ad-
ministrative effort. Both are incompatible
with rapid, unplanned development, so nei-
ther is acceptable. Storage management must
be provided by the environment itself.

Other examples of late binding in-
clude the dynamic typing of variables (asso-
ciating data type information with a variable
at run-time, rather than in the program text)
and the dynamic binding of procedures. The
freedom to defer deciding the type of a value
until run-time is important because it allows
the programmer to experiment with the type
structure itself. Usually, the first few drafts
of an exploratory program implement most
data structures using general, inefficient
structures such as linked lists discriminated
{when nccessary) on the basis of their con-
tents. As experience with the application
evolves, the critical distinctions that deter-
mine the type structure are themselves deter-
mined by experimentation, and may be
among the last, rather than the first, decisions
to evolve. Dynamic typing makes it casy for
the programmer to write code that keeps
these decisions as tacit as possible.

The dynamic binding of procedures
entails more than simply linking them at
load-time. It allows the programmer to
change dynamically the subprocedures in-
voked by a given piece of code, simply by
changing the run-time context. The simplest
form of this is to allow procedures to be used
as arguments or as the value of variables.
More sophisticated mechanisms allow proce-
dure valucs to be computed or even encapsu-
lated inside the data values on which they are
to operate, This packaging of data and proce-
dures into a single object, known as object-
oriented programming, is a very powerful
technique. For example, it provides an cle-
gant, modular solution to the problem of ge-
neric procedures (i.e., every data object can
be thought of as prov1dmg its own definition
for common actions, such as printing, which
can be invoked in a standard way by other
procedures). For these reasons, object-ori-

ented programming is a widely used explora-

tory programming technique and actuaily
forms the basic programming construct of the
Smalltalk language.

The dynamic binding of procedures
can be taken one step further when proce-
dures are represented as data structures that
can be effectively manipulated by other pro-
grams.. While this is of course possmlc to a

limited extent by reading and writing the text

of program source files, it is of much greater
51gn1ﬁcance in systems that, define an explicit

representation for programs as syntax trees or
their equivalent. This, coupled with the inter-
preter or incremental compiler provided by
most exploratory programming systems, is
an extraordinarily powerful tool. Its most
dramatic application is in programs that con-
struct other programs, which they later in-
voke. This technique Is often used in artificial
intelligence in situations where the range of
possible behaviors is too large to encode ¢ffi-
ciently as data structures but can ecasily be
expressed as combinations of procedure frag-
ments. An cxample might be a system that
*‘understands’’ instructions given in natural
Ianguage by analyzing each input as it is re-
ceived, building a program that captures its
meaning, and then evaluating that program to
achieve the requested effect.

-

A BASIC Aside from such special-
1 ized applications, effec-
gg:::&%E tive methods for mechani-

cally manipulating proce-
dures enable two other significant develop-
ments. The first is the technique of program
development by writing interpreters for spe-
cial purpose languages. Once again, this is a
basic technique of artificial intelligence that
has much wider applicability. The key idea is
that one develops an application by designing
a special language in which the application is
relatively easy to state. Like. any notation,
such a language provides a concise represen-
tation that suppresses common or unintercst-
ing features in favor of whatever the designer
decides is more important.

A simple example is the use of nota-
tions like context-free grammars (BNF) to
““metaprogram’’ the parsers for program-
ming languages. Similar techniques can be
used to describe, among other things, user
interfaces, transaction sequences, and data
transformations. Application development in
this framework is a dialectic process of de-
signing the application language and devel-
oping an interpreter for it, since both the lan-
guage and the interpreter will evoive during
development. The simplest way of doing this
is to evolve the application language out of
the base provided by the development lan-
guage. Simply by allowing the application
language interpreter to call the development
language interpreter, cxpressions from the
development language can be used wherever
the application language currently has insuf-
ficient power. As one's understanding of the
problem develops, the application language
becomes increasingly powerful and the need
to escape mto the development language be-
comes less lmportant

The other result of having procedurcs
that are easxly mampulated by ¢ other proce-
dures is that it becomes easy to wnte program
mampulauon subsystems This in turn has
two key consequences. First, the c?xp}oratory

Conventional programming technology restrains
the programmer; exploratory systems amplify him.

programming language itself can grow. The
remarkable longevity of Lisp in the artificial
intelligence community is in large part due to
the language having been repeatedly ex-
tended to include modern programming lan-
guage syntax and constructions. The vast ma-
jority of these cxtensions were accomplished
by defining source-to-source transformations
that converted new constructions into more
conventional Lisp. The ease with which this
can be done allows each user, and even each
project, to extend the language to capture the
idioms that are found to be locally uscful.

Second, the accessibility of proce-
dures to mechanical manipulation facilitates
the development of programming support
tools. All exploratory programming environ-
ments boast a dazzling profusion of program-
ming tools. To some extent, this is a virtue of
necessity, as the flexibility necessary for ex-
ploration has been gained at considerable sac-
rifice in the ability to impose structure. That
loss of structure could easily result in a com-
mensurate loss of control by the programmer.
The programming tools of the cxploratory
cnvironment enable the programmer to reim-
pose the control that would be provided by
structure in conventional practice.

Programming tools achieve their ef-
fectiveness in two quite different ways. Some
tools are simply effective viewers into the
user’s program and its statc. Such tools per-
mit one to find information quickly, display it
cffectively, and modify it easily. A wide va-
riety of tools of this form can be seen in the
two Interlisp-D screen images (see box, p.
132), including data value inspectors (which
allow a user to look at and modify the internal
structure of an object), editors for code and
data objects, and a variety of break and trac-
ing packages. Espccially when coupled with
a high bandwidth display, such viewers are
very effective programming tools.

A WIDE The other type of program-
ming tool is knowledge
g?_.n.ll.gro{s based. Viewer-based

tools, such as a program
text editor, can operate effectively with a
very limited understanding of the material
with which they deal, By contrast, knowl-
edge-based tools must know a significant
amount about the content of a user’s program
and the context in which it operates. Even a
very shallow analysis of a set of programs
(e.g., which programs call which other ones)
can support a variety of effective program-
ming tools. A program browser allows a pro-
grammer to track the various dependencies
between different parts of a program by pre-
senting easy to read summaries that can be
further expanded interactively.

Deeper analysis allows more sophisti-
cated facilities. The Interlisp program analy-
zer (Masterscope) has a sufficiently detailed

142 DATAMATION

knowledge of Lisp programs that it can pro-
vide a complete static analysis of an arbitrary
Lisp program. A wide variety of tools have
been constructed that use the database pro-
vided by this analysis to answer complex
querics (which may require significant rea-
soning, such as computing the transitive clo-
sure of some property), to make systematic
changes under program control (such as mak-
ing some transformation wherever a specified
sct of propertics hold), or to check for a vari-
cty of inconsistent usage errors.

Finally, integrated tools provide yet
another level of power. The Interlisp system
notices whenever a program fragment is
changed (by the editor or by redefinition).
The program analyzer is then informed that
any existing analysis is invalid, so that incor-
rect answers are not given on the basis of old
information. The same mechanism is used to
notify the program management subsystem
(and cventually the user, at scssion end) that
the corresponding file needs to be updated. In
addition, the system will remember the pre-
vious state of the program, so that at any
subsequent time the programmer can undo
the change and retreat (in which case, of
course, all the dependent changes and notifi-
cations will also be undone). This level of
cooperation between tools not only provides
immense power to the programmer, but re-
licves him of detail that he would otherwise
have to manage himself. The result is that
more attention can be paid to exploring the
design.

A key, but often neglected, compo-
nent of an exploratory programming system
is a sct of facilities for program contraction.
The development of a true exploratory pro-
gram is design limited, so that is where the
effort has to go. Consequently, the program
is often both inefficient and inclcgant when it
first achieves functional acceptability. If the
exploration were an end in itself, this might
be of limited concern. However, it is more
often the case that a program developed in an
exploratory fashion must eventually be used
in some real situation. Sometimes, the time
required to reimplement (using the prototype
program as a specification) is prohibitive.
Other times, the choice of an exploratory sys-
tern was made to allow for expected future
upheaval, so it is essential to preserve design
flexibility. In either event, it is nccessary to

- be able to take the functionally adequate pro-

gram and transform it inte onc whose effi-
ciency is comparable to the best program one
could have written, in any language, had only
one known what cne was doing at the outset.

The importance of being able to make
this post hoc optimization cannot be overem-
phasized. Without it, one’s exploratory pro-
grams will always be considered toys; the
pressure to abandon the exploratory environ-
ment and start implementing in a real one will

be overwhelming; and, once that move is
made (and it is slways made too soon), explo-
ration will come to an end. The requirement
for efficient implementation places two bur-
dens on an exploratory programming system.
First, the architecture must allow an efficient
implementation. For example, the obligatory
automatic storagc allocation mechanism
must either be so efficient that its overhead is
negligible, or it must permit the user to cir-
cumvent it (¢.g., to allocate storage statical-
ly) when and where the design has stabilized
enough to make this optimization possible.

Second, as the performance cngincer-
ing of a large system is almost as difficult as
its initial construction, the environment must
provide perfoermance engineering tools, just
as it provides design tools. These include
good instrumentation, a first-class optimiz-
ing compiler, program manipulation tools
(including, at the very least, full functionality
compiler macros), and the ability to add de-
clarative information where necessary to
guide the program transformation. Note that,
usually, performance engincering takes place
not as a single *‘post-functionality optimiz-
ation phase,”” but as a continuous activity
throughout the. development, as different
parts of the system reach design stability and
arc observed to be performance critical. This
is- the method of progressive constraint, the
incremental addition of constraints as and
when they arc discovered and found impor-
tant, and is a key methodology for explora-
tory development.

Both of these concerns can be most
clearly seen in the various Lisp-based sys-
tems. While, like all exploratory cnviron-
ments, they are often used to write code very
quickly without any concern for efficiency.
they are also used to write artificial intelli-
gence programs whose applications to real
problems are very large computations. Thus,
the ability to make these programs cfficient
has long been of concern, because without it
they would never be run on any interesting
problems.

More recently, the architectures of
the new,. personal Lisp machines like the
1108 have enabled fast techniques for many
of the operations that are relatively slow in a
traditional implementation. Systems like In-
terlisp-D, which is implemented entirely in
Lisp, including all of the performance-criti-
cal system code such as the operating system,
display software, device handlers, etc., show
the level of efficiency that is now possible
within an exploratory language.

The increasing importance of applica-
tions that are very poorly understood, both by
their clients and by their would-be implemen-
tors, will make exploratory development a
key technique for the 1980s. Radical changes
in the cost of computing power have already
made such systems cost-effective vehicles for

The programming languages used in exploratory
systems minimize and defer constraints on the programmer.

the delivery of application systems in many
arcas. As recently as five years ago, the tools
and language features we have discussed re-
quired the computational power of a large
mainframe costing about $500,000. Two
years ago, equivalent facilities became avail-
ablc on a personal machine for about
$100,000, and a year later, about $50,000.
Now, a full-scale exploratory development
system can be had for about $25.000. For
many applications, the incremental cost has
become so small over that required to support
conventional technology that the benefits of
exploratory development (and redevelop-
ment!) are now decisive.

One consequence of this revolution-
ary change in the cost-effectiveness of ex-
ploratory systems is that our idea of explora-
tory problems is going to change. Explora-
tory programming was developed originally
in contexts where change was the dominant
factor.

There is, however, clearly a spectrum
of specification instability. Traditionally, the
cost of exploratory programming systems,
both in terms of the computing power re-
quired and the run-time incfficiencies in-
curred, confined their use to only the most
volatile applications. Thus, the spectrum was

arbitrarily dichotomized into exploratory
(very few) and standard (the vast majority).
Unfortunately, the reality is that unexpected
change is far more common in standard appli-
cations than we have been willing to admit.
Conventional programming techniques strive
to preserve a stability that is only too often a
fiction. Since exploratory programming sys-
tems provide tools that are better adapted to
this uncertainty, many applications that arc
now being treated as standard but which in
fact seem to require moderate levels of ongo-
ing experimentation may turn out to be morce
effectively developed in an exploratory envi-
ronment.

We can also expect to see a slow infu-
sion of exploratory development techniques
into conventional practice. Many of the pro-
gramming tools of an exploratory program-
ming system (in particular, the information
gathering and viewing tools) do not depend
on the more exploratory attributes of cither
language or environment and could thus be
adapted to support programming in conven-
tional languages like FORTRAN and COBOL..
Along with these tools will come the seeds of
the exploratory perspective on language and
system design, which will gradually be incor-
porated into existing programming languages

and systems, loosening some of the bonds
with which these systems so needlessly re-
strict the programmer.

To those accustomed to the precise,
structured methods of conventional system
development, exploratory development tech-
niques may seem messy, inclegant, and un-
satisfying. But it’s a question of congruence:
precision and inflexibility may be just as dis-
functional in novel, uncertain situations as
sloppiness and vacillation are in familiar,
well-defined ones. Those who admire the
massive, rigid bone structures of dinosaurs
should remember that jellyfish still enjoy
their very secure ecological niche. #

Beau Sheil is on the research staff at
the Palo Alto Research Center of the
Xerox Corp., where he has been since
receiving his PhD in computer science
from Harvard University in 1976. His
research interests include program-
ming systems and the psychology of
programming. Many of these ideas
were first developed, and later pol-
ished, in discussions with John Seely
Brown and other colleagues in cogni-
tive and instructional sciences at Xe-
rox PARC.

144 DATAMATION

DATAMAITION
Smalltalk
Grows Up

Thanks to a boost from IBM and Microsoft, and a
growing set of support tools, Smalltalkis finally
beginning to sound good to IS.

f abject-oriented programming

(00P) technologies are the wave of

the future, why hasn’t Smalltalk, the
granddaddy of 0OP languages, been
more successful?

After all, Smalltalk, which was devel-
oped at the Xerox PARC research labhs
in Palo Alto in the mid-1970s, was one
of the first languages to reject the opera-
tor /operand, linear style of more con-
ventional ploglammmg languages. In-
stead, Smalltalk uses self-contained data
structures called objects, which program-
mers can combine and reuse in their ap-
plications. Its proponents said Smalltalk
would significantly improve program-
mer productivity and make long-term
program maintenance and enhancement
easier.

But Smalltalk never reallv took oft. 15
applications development managers
have tended to view it as a fringe lan-
guage, weak on performance and lacking
critical support features, such as stable
database interfaces and well-established
development methodologies. Thus, 15
managers have been reluctant to retrain
their COBOL programmers to use Small-
talk. ParcPlace Systems, a spin-off from
Xerox PARC, and a few small consulting
firms were pretty much alone in trying
to convince 15 to take Smalltalk seriously.

A SmaH Surge

number ol 18 orgammtmns are mmmg
beyond experimenting or prototyping
applacatlons with Smalltalk and are be-
ginning to develop critical applications.
Several small vendors have recently en-
tered the Smalltalk market with pmducts
that make the language easier to use and
more productive for large applications.
And a ParcPlace competitor has even
emerged. Digitalk Inc. of Los Angeles is
now selling lower cost versions of Small-
talk targeted at 08 /2 and Windows users.

Smalltalk is not about to replace
COBOL, but it is finally maturing into a
viable choice in application develop-
ment, especially for users looking for a
tool to speed development of advanced
graphical user interfaces (GUIs) in client/
server applications,

That’s Smalltalk’s function at Texaco
Inc.’s o1l exploration and land manage-
ment unit in Houston. According to Tex-
aco Is manager Dennis Samoska, the
company wanted to rewrite two large
mainframe applications, replacing dumb
terminals with Windows-based rcs and
workstations. The PCs and workstations
would give users easier access to host data
via advanced GUIs. After evaluating sev-

BY JEFF MOAD

eral computer-aided software engineer-
ing (CASE) tools, Samoska’s unit decided
to prototype and implement its new ap-
plications using ParcPlace’s Object-
works\Smalltalk. Now under develop-
ment, the applications will access Tex-
aco’s existing DB2 host database via an ap-
plication programming interface (AP1).
Users like Samoska say Smalltalk takes
much of the headache out of creating ap-
plications that use such GUI standards as
Windows or 08/2 Presentation Man-
ager. Rather than require programmers
to learn and write to complicated GUI
APIs, Smalltalk uses reusable class librar-
ies that can link applications to the APIs.

Launcher

Developers can then work with an easier-
to-use set of mterface-building tools.

As a dynamically compiled language
built on reusable objects and a virtual in-
terface that uses machine-independent,
intermediate code, Smalltalk is also easily
portable between the platforms it sup-
ports. Texaco, for example, is develop-
g its new Smalltalk applications on Sun
workstations and is running them on PCs.

Help From The Big Boys

Smalltalk is also benefiting from re-
cent recognition from 1BM and Microsoft
Corp. Recognizing that Smalltalk could
help users write more 05/2 PM applica-

Monopoly Traders,
a demonstration of Parcplace

Close Sessiq

raderBrowser(Browser Model>>chartwithBution:
raderBrowser>>stockAnalysis

Tder. Leibs |

Accounts

tep | send]

Dow Jones Average|

self highlight 15.
“5el

3= Char‘lBrcr‘;us'er new) stock: 11,
13 application: self application,,
et

iffrue: {13 open]
ifFalse: [t3 openNoAnnualButton].
“self

Reulers News Feed|

Trade

| Open New Account|
ADBE

i rowse Account

|
5

- System amwsa r

Tradlng of Adobe Systems

BB

MarketHls‘lﬁryJ aocessmg
Stack

S Enstang relass |

aﬁdrf‘ss I
printing ‘i address:
firstName

message se!er.mrand argument names
commentstahng purpose of message™

| temporaryvaﬁahie names |
statements .

SMALLTALKWOBJECT from ParcPlace Systems can be used to build rjortable applications

that run under several graphical interfaces.

SOFTWARE

LANGUAGES

tions, 1BM endorsed the environment late
last year. It signed licensing agreements
with both ParcPlace and Digitalk. 1BM is
currently attempting to integrate Small-
talk and object-oriented programming
capabilities into its AD/Cycle CASE archi-
tecture. If developers at Big Blue's Pro-
gramming Systems Lab in Cary, N.C,,
are successful in integrating Smalltalk
inte AD/Cycle’s information model,
there’s a good chance 18BM will take
the next step and declare Smalltalk a Sys-
tems Application Architecture (SAA)-
approved language, says Cliff Reeves,
manager of Common User Access for
IBM.

[0 THERE ARE STILL
SEVERAL MISSING
CHAPTERS IN THE
SMALLTALK STORY.

Not to be left behind, Microsoftis mov-
ing Smalltalk into the Windows environ-
ment. The company is working closely
with ParcPlace to build low-level pro-
gram-to-program messaging links into
future versions of Windows and 0s/2
that could help programs written in
Smalltalk and other object-oriented envi-
ronments such as C+ + more easily
share objects.

Eiffel Tower Of Babble

Public support of Smalltalk by [BM and
Microsoft has given a boost to some IS
managers trying to sell their bosses on
the advantages of object-oriented pro-
gramming and Smalltalk, "It really
helps,” says Phil Hartley, principal tech-
nologist in the Advanced Technology
Group at American Airlines Inc.’s SABRE
Computer Services. Hartley’s group is
currently evaluating Smalltalk along
with other object-oriented and GUI-
building tools such as C+ +, Eiffel and
Object coroL, Smalltalk currently has
the strongest set of support tools, says
Hartley.

Indeed, thanks to a growing number
of new Smalltalk independent software
vendors (15Vs), users can now choose
from several sets of tools that extend
Smalltalk’s functionality and ease of use.
Last year, Highlands, N.].-based Syner-
gistic Solutions Inc. started shipping its

Smalltalk Platform for Integrated Com-
puting Environments (SPICE), which in-
cludes a set of class libraries. SPICE helps
link applications written in Object-
works\Smalltalk or Digitalk’s Smalltalk V
with the Sybase/Microsoft SQL Server
and with NetBIOS or DEC-Net networking
protocol interfaces. Through the Sybase
database gateway, Smalltalk applications
can also access DB2, Rdb and other data-
base management systems.

Similarly, Instanuations Inc. of Port-
land, Ore., recently started shipping
what it calls the Application Organizer
Plus, a set of tools I.Eat. helps large Small-
talk development teams with version

management and code reuse. And at .

least two other small vendors, Acumen
Software of Berkeley, Calif.,, and Tigre
Object Systems Inc. of Santa Cruz, Calif.,
are shining tools aimed at helping
Smalltalk developers create GUi-based
applications on pPC, Macintosh and UNIX
platforms even more easily.

Even one mainstream language ven-
dor—Micro Focus Inc.—is getting into
the Smalltalk environment. The vendor
of coBOL development tools recently
agreed to bundle Digitalk’s Smalltalk V
into its Cobol Workbench to be used to
build 05/2 PM interfaces.

There are still several missing chapters
in Smalltalk’s story, however. Observers,
note that there is still no widely accepted
development methodology for Smalltalk
or for any other object-oriented environ-
ment. In addition, many users are still
making the transition to the relational
model and structured programming
techniques. “*‘Most [1s developers] still
don’t know what to do with objects.
They're still traumatized from making
the migration to the RDBMS,” says Na-
tasha Krol, application program director
at the Meta Group in Stamford, Conn.
Smalltalk also faces increasingly stiff
competition not only from other ohject-
oriented languages suchas C+ + butalso
from new GUI-building tools, such as
Easel from Easel Corp. and Actor from
Whitewater Group,

Still, many observers see Smalltalk
gaining maturity. Says Stuart Woodring,
an analyst with Cambridge, Mass.-based
Forrester Research Inc.; “"Continued
strong support from IBM and others
could help push it over the top.” =

Reprinted from DATAMATION July 15, 1991
© 1991 by CAHNERS PUBLISHING COMPANY

Og0

ParcPlace Systems
1550 Plymouth Street
Mountain View CA 94043
415.691.6700
800.759.PARC

Fax 415.691.6715

AUGUST 1991 TRy Ll T - 3a- 8 FEATURE

BVl N

A McGRAW-HILL PUBLICATION

Smalltalk

Yesterday, Today,
and Tomorrow

A look back and a look ahead at this innovative programming language—
first featured 10 years ago in BYTE

Excerpted with permission, from the August 1991 issue of BYTE Magazine
Copyright ©1991 by McGraw-Hill, Inc., New York. All rights reserved.

L. PETER DEUTSCH AND ADELE GOLDBERG

t's been a decade since the August 1981 issue of BYTE was published. That issue provided many people with a first

comprehensive look at the then-fabled Smalltalk programming environment. In this article, we look back at how people

thought about Smalltalk in those days. Then we'll look more broadly at how Smalltalk and object-oriented software technology
has progressed since then; we’ll also consider today’s state of this technology and the market for it. Finally, we'll look ahead to
objects in the year 2001, another decade hence.

1981: Sending Up the Balloon

In that BYTE issue of 10 years ago, we wanted to convey three ideas about Smalltalk and object-oriented software technology: first,
that an interactive, incremental approach to software development can produce gualitative and quantitative improvements in
productivity; second, that software should be designed in units that are as autonomous as possible; and third, that developing soft-
ware should be thought of in terms of building systems, rather than as black-box applications. The Smalltalk-80 system described in
that issue so long ago was the exemplar of these three ideas.

Smalltalk was widely known then—and yet, largely unknown. Alan Kay and others from the Xerox Palo Alto Research Center
(PARC) had been giving talks with tantalizing glimpses of the technology, but few people knew or understood its content. Thus, the
cover of BYTE’s Smalltalk issue—depicting a brightly colored Smalltalk hot-air balloon leaving an isolated island—symbolized our
feeling that the time had arrived to start publicizing what we'd been doing. We believed we had new ideas that could make a real
difference in how people developed software.

Many research examples developed at PARC demonstrated that object-oriented design could produce an appealing, intuitive, and
direct mapping between objects in the real world and objects in a software implementation. We saw this as a radical breakthrough in
one of the most difficult and problem-prone steps in software development—identifying terms and relationships as understood by
human participants of a particular situation with those understood by a computer.

We believed that this simple mapping of nouns to objects was all (or most) of the story about how to design with objects, and we
presented it as such in the 1981 BYTE articles. Subsequently, in examples given in our books in 1983, we demonstrated that the
power of objects applied to more than nouns: It also applied to events and processes. But this power was not as well explained or
exploited.

The Smalltalk research project was founded on the belief that computer technologies are the key to im proving communications
channels between people, in business as well as personal settings. Our activities focused on finding new ways to organize informa-
tion stored in a computer and to allow more direct access and manipulation of this information.

The Smalltalk edition of BYTE introduced our approach to managing the complex information world of modern applications. It
explained our methods for taking full advantage of new graphics and distributed computing and for improving the ability of experts
in business and personal computing to describe their world models.

In retrospect, we are pleased that much of the software community has come to agree that the object-oriented approach to soft-
ware organization is a new way to solve problems that is often better than the procedural approach. Although our ideas about
problem-toimplementation mapping were incomplete—notably given the lack of format methodologies—those ideas aré widely
accepted today.

SMALLTALK

1991: A Decade of Experience
What have we learned in the past decade based on the Smalltalk
research and experience that was introduced to the public in

those 1981 BYTE arti-
(1LY | § ACTION SUMMARY

cles? The first idea, as

we stated earlier, is

simply that a highly in-

; teractive, highly incre-

When BYTE first broke the - - " fiware devel-

news about Smalltalk to the opment environment
world, there were no PC ver-
sions of the language. Now,
the principles that Smalltalk
pioneered have permeated

can produce a qualita-

tive improvement in

software development

productivity. Even in

1981, Smalltalk sys-

tems were not the only

the microcomputer world, ~ °nes With this charac-

teristic—Lisp systems

and powerful versions of the pioneered the approach

; in the early 1960s—but

language are available for a they were among the

variety of personal computer outstanding examples

platforms. and were the ones that

moved most success-

hardware to the micro-

processor mainstream. Today, the truth of this idea is widely

recognized: The suppliers of environments for more-estab-

lished languages like C, C++, and Ada are now aiming to pro-
vide the benefits that Smalltalk introduced a decade ago.

The second idea is the basic idea of object-oriented software
organization: that software should be designed in units that are
as autonomous as possible, should correspond to identifiable
entities in the problem domain whenever possible, and should
communicate through identified interfaces. This idea grows
out of work on modular software design that dates back, again,
to the 1960s. Object-oriented terminology adds an emphasis on
direct mapping of concepts in the problem domain to software
units, the idea of shared behavior and multiply instantiated
state, and a focus on the interfaces between the units.

The last of these (the interfaces between the software units)
makes it easy to think about systems that are configured or that
grow dynamically. Smalltalk has no monopoly on new con-
cepts, but it has been a leader in the public relations necessary
to get these concepts out into the computing mainstream.

Object-oriented software organization has a natural relation
to two current trends in software construction: combinable ap-
plications and open systems. Our interpretation of the term
open systems is that for systems to grow, evolve, and combine
gracefully, they should be constructed out of software with
published interfaces. Functional software should be designed
to be used as a component by other software, as opposed to be-
ing monolithically united with a particular interface designed
only for humans at a terminal.

The third important idea that has grown partly out of the
Smalltalk work is related to the open-systems idea—namely,
that one should always think about building software in the con-
text of building systems, rather than in the context of black-box
applications. In other words, one should examine explicitly the
nature of both the downward interfaces (the resources or facili-
ties the software uses) and the upward interfaces (the client’s
use of the software) and make them as undemanding as possi-
ble. Separating functionality from the user interface, which is
the Smalltalk concept of model-presentation-interaction known
as model-view-controller, is just one application of this princi-
ple—but a very important one.

The motivation behind much of the activity in the past de-
cade was to move Smalltalk off its island and into easy avail-
ability for the general programming community. We look at

this activity as being aimed at creating a credible, concrete, and
robust realization of the ideas that we could present only in shel-
tered research form in 1981.

As Smalltalk has moved into the commercial world, it has
encountered the familiar phenomenon of technological life
span. A technology comes into existence on paper, often at a
university. It then progresses to research papers, research pro-
totypes, and usable research-scale artifacts. Finally, it goes
into commercial use, first by the adventurous and then by the
broad mass of users—getting adapted, extended, patched, and
transported as long as it continues to solve problems well, and
eventually getting replaced in many or all of its uses by newer
technology. Smalltalk is now in this third stage—past the scru-
tiny of the adventurous and experiencing wider commercial
adoption.

he motivation of
the past decade was
to move Smalitalk
off its island.

A Framework for the Future

One of the promising new concepts in object-oriented design—
being actively explored today in Smalltalk as well as in other
languages and environments—is the concept of a framework. In
an object-oriented environment that supports inheritance, re-
usable software that implements a single concept frequently
takes the form of a specialization hierarchy in which the super-
classes are more abstract (e.g., the Smalltalk classes Collec-
tion and Number), with certain operations deliberately left to
implementation by more concrete subclasses (e.g., Array as a
concrete subclass of a kind of Collection, and Integer as a
kind of Number). These holes in the superclasses (called virtual
Sfunctions in C++ terminology) are an important part of the
design.

A framework is a generalization of this idea to a group of
classes working together. For example, the Smalltalk model-
view-controller framework consists of three abstract super-
classes that provide little more than definitions of how the con-
crete subclasses should work together, plus some bookkeeping
code and default implementations of the most common opera-
tions. You reuse a framework by writing new concrete subclass-
es and combining existing subclasses in new ways.

Another example of a framework involves the notion of a dis-
crete event-driven simulation, in which objects interact to rep-
resent tasks, workers, locations (where tasks are carried out by
the workers), and statistically based schedules for introducing
tasks and workers. New components, specialized tasks, work-
ers, and schedules can be described in order to reuse the gener-
al framework to create specific simulations. This concept is de-
scribed fully in the book Smalitalk-80: The Language by Adele
Goldberg and Dave Robson (Addison-Wesley, 1989).

The other Smalltalk idea receiving attention today is that
building software is building systems. Software should have the
same property as a fractal design: Assemblies built out of parts
should have the same qualitative nature (such as definable in-
ward and outward interfaces) as those parts. Developers must
realize that they cannot predict all the ways that a piece of soft-

SMALLTALK

ware will be used or all the ways that it will be ported to use the
facilities of new environments.

Smalltalk in the Marketplace

One of the powerful ideas that has attracted new attention as a
result of the development of object-oriented software technol-
ogy is the notion of reusable, combinable applications. Today,
this idea is promoted at three levels: (1) operating systems, such
as Unix pipes and fork/exec; (2) window systems, by way of
interapplication communications conventions (e.g., Apple’s In-
terapplication Communications, Microsoft's Dynamic Data
Exchange, and the X Window System'’s Inter-Client Communi-
cations Conventions Manual); and (3) independent software ar-
chitectures (including low-level ones such as Microsoft’s dy-
namic link libraries and Sun Microsystems’ shareable libraries,
as well as high-level ones such as Patriot Partners’ Constella-
tion project and ParcPlace’s object model and frameworks
approach).

Many believe that the discipline of defined, published inter-
faces—which the object-oriented approach naturally pro-
motes—will create a new marketplace for reusable software
components. However, from our experience with many devel-
opers and users of Smalltalk systems in many environments,
we think the key economic shift will be in a different area.

A public market is a loosely organized environment. Compo-
nents placed in a market will face a wide variety of demands,
and even well-designed components with minimally con-
strained interfaces will have trouble attracting a critical mass of
customers.

On the other hand, within a single organization, reusable
components can be developed and redesigned to span a large
fraction of their intended uses. In this way, the accumulation of
reusable code can become an important business asset and can
be treated (appropriately) as an investment and a capital good,
rather than simply as a cost (which is its present treatment).

In an object-oriented environment where inheritance is stp-
ported, it is not only individual components that are reused. As
we have noted, the design of interfaces between objects is often
more important than the implementation of functions within
objects. Frameworks can capture the structural design of soft-
ware objects that address a given (partial) problem domain. As
such, the frameworks developed and reused within an organi-
zation will, over time, come to capture and eventually even de-
fine the expertise of the organization—and, as such, can con-
tribute to the organization’s ability to meet its customers’
needs. (This is sometimes called competitive advantage, but it
applies equally well in situations where competition is not
involved.)

SMALLTALK

2001: A Smalltalk Odyssey

If we look into our murky crystal ball, how do we see soft-
ware’s use of object technology in the next decade? How do we
see it evolving?

We hope that in 2001, objects will be boring. In comparison,
radical ideas of past decades—that system software should be
written in higher-level languages or in languages with strong
type systems, and that computers can and should be seamlessly
networked—are thoroughly accepted today. Whether to imple-
ment them is almost never an issue now, even though there is
still plenty of discussion about how to implement them well.

In the same vein, we expect that 10 years from now, the ob-
ject-oriented approach to software design and implementation
will be an accepted, standard technique used in every lan-
guage, library, database system, and operating system and will
be taught in undergraduate computer science courses at every
university. This is an issue of moving the technology further
out into the world, and no major new thinking will be needed to
accomplish it.

One significant technological advance will be that we will
free ourselves even further from equating objects with the
nouns in the problem domain. Some of the most remarkable ad-
vances in the usability of computer systems have come from
recognizing that processes, as well as things, can and should be
described, modeled, and manipulated. Therefore, we will see
software objects being used to model time, places, actions, and
events. We believe that this will lead to usability advances al-
most as dramatic as those resulting from the now-established
window/icon/mouse/pull-down interfaces that were to a large
extent inspired by the original Smalltalk work of the 1970s and
1980s. m

L. Peter Deutsch is chief scientist and Adele Goldberg is presi-
dent of ParcPlace Systems (Mountain View, CA). They can be
reached on BIX c/o “editors.”

D@D ParcPlace Systems

1550 Plymouth Street
Mountain View CA 94043
415.691.6700
800.759.PARC

Fax 415.691.6715

Smalltalk About Windows

he Smalltalk environment has in-

cluded windows since its incep-

tion. In fact, you might say that

all the popular windowing envi-
ronments grew out of the Smalltalk en-
vironment developed at Xerox Palo Alto
Research Center (PARC). But, as with
any evolving system, there are marked
differences between the progenitor and
its descendants.

Now, Smalltalk has recombined with
the newest of the window environments,
Microsoft Windows 3.0. The two major
vendors of Smalltalk implementations
for PCs have recently announced ver-
sions for Windows: Objectworks)
Smalltalk for Windows from ParcPlace
Systems, and Smalltalk/V Windows
from Digitalk. While the core of both
systems is Smalltalk, the Windows im-

plementations are as different as the
philosophies of the two companies.

A Question of Consistency

ParcPlace is the traditionalist; after all,
the company is the tradition, since it
spun off from the original group that de-
veloped Smalltalk at PARC. Object-
works\Smalltalk is a unique window-
ing environment with a mouse, window -

SMALLTALK

panes, scroll bars, and drop-down
menus. You can use Objectworks)
Smalltalk on a variety of platforms, and
the window layout, icons, and window
controls are always the same: the Ob-
jectworks style (see screen A).

Although this window style is not
consistent with any of the newer and
more widely used windowing systems,
it has a great deal going for it. The most
obvious feature is line wrap and rewrap:
Long lines of text are wrapped around to
the next line, breaking only between
words. When you resize a window, the
lines are rewrapped to reflect the new
window size.

Another distinguishing feature of
Objectworks | Smalltalk is its five-pane
system browser window. (The system
browser is the primary programming
interface for Smalltalk.) Each pane is
associated with a different function:
class category, class, message category,

message, and code editing. Each win-
dow pane has its own pop-up menu of
operations. The pointers, icons, menus,
and scroll bars maintain Objectworks’
unique style on any platform.

Then there’s Digitalk—the company
that released the first commercial ver-
sions of Smalltalk (for DOS and then
for Mac systems). Digitalk’s Small-
talk/V Windows assumes that if you are
programming for an established win-
dow environment, then you want to to-
tally adopt that environment. In other
words, if you develop a Smalltalk/V ap-
plication for Windows, your application
should look and act like a Windows ap-
plication, not an application that merely
runs inside of (and despite) Windows.

The drawback to this attitude is that
Smalltalk/V for the Macintosh looks
and acts different from the versions for
Windows, plain DOS, and the X Win-
dow System. The distinct advantage of
Smalltalk/V for any environment is that
you can take full advantage of that envi-
ronment. Your applications will be con-
sistent with the style guidelines for that
environment. For example, Small-

Screen A: Objectworks/Smalltalk, capital release 4 for Windows looks similar to
versions of the language that run on other platforms.

talk/V Windows has full access to the
facilities of the Windows application
programming interface, including dy-
namic link libraries and Dynamic Data
Exchange.

Tools and Classes

There's more to a Smalltalk implemen-
tation than a window environment and a
language; there are the programming
tools and the predefined class hierar-
chy. Smalltalk/V Windows provides
fewer tools and a simpler class hierar-
chy than Objectworks\Smalltalk for
Windows, but these limits are, in part,
overcome by optional packages, like
those from Digitalk and from
third-party vendors such as Acumen
Software. Acumen recently released a
set of “‘user-interface construction kits”
that let you develop interfaces for
Smalltalk/V Mac, Smalltalk/V 286,
and Smalltalk/V Windows programs—
Widgets/V Mac, Widgets/V 286, and
WindowBuilder/V, respectively.

Both Windows versions of Smalltalk
maintain a text log of changes to the
Smalltalk “image” (i.e., the Smalltalk
gestalt of any moment). You can view
the Smalltalk/V version of the log with
the File utilities. With Objectworks
Smalltalk, you can view the change log
as an object with a hierarchy that has
separate instances for changes to class-
es, to methods, and to the system.

Both products provide a method for
applying the changes of one project to
another, a necessary operation if the
system is to follow the objective of re-
usability. Both products also have an ex-
cellent debugger, as well as tools for file
management, view management, and
text management. As with all things,
their styles differ: Objectworks main-
tains its own style, and Digitalk adopts
the style of Windows.

Ben Smith is a technical editor for
BYTE. He can be reached on BIX as
“bensmith.”

NTED: HIGH TECH CEO. MUS
‘BE FEARLESS, DECISIVE, FLEXIBLE,
“ABLE TO WORK WITH SOME VER
EAVILY CAFFEINATED GENIUSES.

=

BunpE F o

B funa

 today, including the Dynabook (lnown in the
- early *70s as “the Alto”), a powerful prototype

- windows in the user intetfaces that ultimately
_led to Apple’s Macintosh. While they were at

* and nerwork client servers.
* at that time, was at PARC from 1973 1o 1988 as.

*. alaboratory and research scientist. Though her name isnot
" connectad to a particular inventicr, suck as the mouse,

doing, trying to make it the best.”

us tzke for graneed that when we point at an icon on our
compiiter screen and click the mouse, what we expect to
happen happens, flawlessly and almost instantaneously,
That’s the way of technology: Yesterday’s astonishment is
today’s “of course.” But once in a while in this everyday
process; we should stap to thank Adele Goldherg,
Goldberg, 51, is ane of the lesser-known bur most in-

- fluential members of the miracle workers at what might be

called information technology’s Manhattan Project, other-

- wise known as the Xerox Palo Alto Research Center (PARL). -

Back in the 19705, those far-off days of lumbering main-
frames, with Bob Taylorin the Robert Oppenheimer role,
-this band of revoludonaries developed much of the tech-
nology that has produced the wired world as we know it

of the personal workstation, with overlapping
it, they also developed Ethernet, laser printers, -

Goldberg, one of the few womén in the field

Goldberg’s understanding of systens and the way people
work with them was a key clement in PARC's amazing

' recotd. PARC mentor Alan Kay describes her work at the

Iab as “nothing short of brilliant,” During a remarkably

- productive 15-year period, Kay says, Goldberg designed

“many of our user experimensts and was ceitral to some of
the user interface development. She also took it upon her-

self to get Smalltalk [the breakthrough object-oriented pro- -

gramming language originated by Kay] out the door.”

‘The vivacious Goldberg shrugs when asked about her .

place in history as one of computing’s handful of women

visionaries. “T'm the wrong person to ask about thas” she -

says. “At thetime, T was so involved with the work I was
In 1988, spinning off her research at Xetox, Goldberg
founded ParcPlace (riow ParcPlace-Digiralk), currently-a

* 350 miillion company that creates and sells tools for cor-
- porate application developers. She served as the company’s
* chairman uneil Aprif of ¢his year and 56l holds abour 2%

- of the company,

BY NOW, HALF A CENTURY ALONG in-the cyberage; most of

The air at Xerox PARC was charged
with the potential sociological and phite- '_
sophical effects Of easier computing—the - &
feeling that given enough power, a mouse

- could roar. Goldberg, coauthor of 2 book called Suceeeding

‘with Qbjects: Decision Frameworks for Project Managemen,
“clearly hasn’t relinquished her desire to change things, Since

- leaving her company, she has devoted more fime to pro-
jects aimed at the evolution.of computer education in cal- -

leges. Computer science graduates today lack two things,
says Goldberg.: “One, they know programming languages
but don’t understand systems. Two, with some exceptions,

~théy are used to working alone. They don’t know how to

wark in teams.” Currently, she is helping create new com-
puting science courses at commiunity colleges in the Unit-
' -ed States and at universities abroad. She has also
been involved, 2s a board member and mentor,
in Cogito Learning Media, a new company
formed to provide muldmedia software for sci-
ence education.

~ Atease in her sunny, commodions Palo Alto,

when she starts talking about education. This is
- _-where it all began for her. With a doctorate in
information science from the University of Chicago, Gold-
berg was doing résearch in education technology at Stan-
ford when Kay recruited her to head the pedagogic group
at Xerox PARC: Initially, the Dynabook efforts wete applied
to educational uses, which, happily for post-1984 comput-
£T Ty10s, put & premium on edse of use.

During her years at PARC, Goldberg worked in local Palo
Alto schoals, bringing students into the lab to experiment

~with the Alto. Kay remembers once in the mid-1970s when

she wanted to take the then-revolutionary hardware to a
nearby middle school for on-site learning experiments, “Af-
ter going through all the work of making the first modern
personal computer for children,” Kay says, “Xerox balked.”
Finally, Kay and Goldberg pulled Goldberg's station wag-
on up to the research center’s fronit door, loaded the ma-
chines, and took them down to the school, There were no

_repercussions, except for the enthusissm of the teachers and

}ids, anid the machines stayed in the school for a fall year.
© - This was 2 pivotal moment'in Goldberg’s education, too,
teaching her the valuable lesson that it's better to say you're
sorry than to ask permission. The incident, says Goldberg,

“helped start my career as a troubleimaker.” —Usmberro Tosi

[October 7, 1996 FORBES ASAP 137

- California, home, Goldberg gestures excitedly -

BUNRE T W

us take for granted:that when we point 4t 4n icon on our

computer screen and click the mouse, what we expect 1o

happen happens, flawlessly and almost instantaneotisly,

That's the way of rechnology: Yesterday’s astonishment is

today’s “of course.” But oncé in a while in this everyday
process, we should stop to thank Adele Goldberg:

Goldberg, 51, is one of the lesser-kniown but most in-)
" fluendal members of the miracle workers at what might be -
“called information technology’s Manhattan Project, other-

wise known as the Xerox Palo Alto Research Cénter {PARC).

i - Back in-the 1970s, those far-off days of lumberitig main-

~OHL Muna,

-of the personal-workstation, with averlapping. -

B led to Apple’s Macinitash., While they were at =~
- it, they also developed Etherner, laser printers,

" a laboratory and research sciensist, Though her nainie is nat
connected to a particular invention, such as the mouse, .

frames, with Bob Taylor in the Robert Oppenheimer role,
this band of revolutionaries developed much of the tech-

nology that has produced the wired world as we know it

“today, incleding the Dynabook {known in the
early "70s a5 “the Alto™), a powerful prototype

-windows in the usér interfaces that ultimately
and network client servers.

Goldberg, one of the few women in the field
at that tme, was at PARC from 1973 t0.1988 a5 -

Goldberg's understanding of systems anid the way people
work with them Was 4 key element in PARC’s- amazing

-Tecord. PARC mentor Alan Kay describes her work at the
-~ “labas “nothing short of britlant.” During a remarkably
- productive 15-year period, Kay says, Goldberg designed -
- “many of our user experiments and was central to sofme of
" the user interface development. She also took it upon her-
. self to get Smalltalk {the breakthrough object-oriented pro-
gramming language originated by Kay} out the doot”

©The vivacious Goldberg shrugs when asked about her

place in history as one of computing’s handful of women -
visionaries. “I'm the wrong person to ask about that,” she
o says. “At the time, I was 5o involved with the work [was
- doing, tiying to maké it the best,”

In 1988, spinning off her research -at_ﬁkerox;'{}dfdbérg.

~founded ParcPlace (now ParcPlace-Digitalk), currently a-

$50 million company that creates and sells tools for cor.

- porate application developers. She served as the company’s .
~chairman until April of this year and still holds about 2%
~of the company.

BY NOW, HALF & CENTURY ALONG in the cybérage, most of

“The air at Xerox PARC was charged
* with the potential sociological and philla-
sophical effects of éasier computing—ithe -
“feeling that given enoigh power, 2 mouse’ . N
- could roar. Goldberg, coauthor of a book called Suceeeding
‘with Objects: Decision Frameworks Jor Project Management,

elearly hasn't relinquishéd her desire to change things. Since

leaving her company, she has devoted more titne to pro-
jects aimed at the evolittion of computer education in col- -
leges. Computer science graduates today lack two things,

- says Goldberg. “One, they know programming languages -
~-but don’t understand systems. Two, with some exceptions,

they are used o working alore. They don’t know how to
work in téatns.” Currently, she is helping create new com-
puting science courses at community colleges in the Unit- ,
. --ed States and at universities abroad. She has also
-beeninvolved, as a board member and mentor,
in Cogito Learning Media, 2 néw company
formed to provide multimedia software for sci-
“ence education, PR
At ease in her sunny, commodions Palo Alto,
‘California, home, Goldbitg gestures excitedly
. when she starts talking about education. This is
- where it all'began for her. With a doctorate in

information science from the University of Chica go, Gold-

~berg was doing research in education techniology at Stan-
ford when Kay recriited her to head the pedagogic group .
-t Xerox PARC. Initially; the Dynabook éfforts were applied

to educational uses, which, happily for post-1984 comput-
€F ty1os, put 2 premiutn on edse of use., .
Drring her yedrs at paRe, Goldberg worked in local Palo

- Altw schools, bringing students ints the lab to experiment

with' the Alto. Kay remembers once in the mid-1970s when
she wanted to take the then-revolutionary hardware to 2
nearby middle school for on-site Jearning experiments, “Af-

- ter going through all the work of making the first modern .
personal computer for children,” Kay says, “Xerox halked,”

Finally, Kay and Goldbérg pulled Goldbierg’s station wag-
on up to the resedrch center’s front door, Ioaded the ma- -

_chines; and took them down to the school, There were no

repercussions, except for the enthusiasi 'of the teachers and

kids, and the machines stayed in the sctiool for a-full year.

This was 2 pivotal momerit in Goldberg’s education, too,

teaching her the valuable lesson that it's better to say you're

sotry than to ask permission. The incident, says oldberg,
“helped start iny career as a troublemaker.” —Uniberts Tosi

October 7, 1596 FORBES ASAP 137

o T — T Gregon Graduate Institute

_']ﬁdy Bamberger/}ames Hook . . . o o - Software Process Practicum: Lessonsin|- o

' :.._-_-'.SoftWare :Quality.a'nd 'Leadéf'ship' =

Course Title | 'Software Pracess Practn:um Lessons in Software I
| Quality and Leadershxp _ x

Course Number

H] ...-:.iInstruc’_tGrs _ ']“uciy Bamberger and }ames H{)ok - o ﬂ :
Days | Mondays, Wednesdays (and one Saturciay) H |
I Times |500pm-700pm |
H B I Rccm. | Cooley Center (CC) 3?1 PR "

Number of ‘Units 4 :r:redlts _

The saftware process practxcum is demgnﬂd to immerse. the Workmg studem in topu:s relevant 1o
_-sgftware process improvement and quality management, and to-introduce them to the :
- supporting theory. Topics include process management frameworks {capability maturity model,
-~ 180 9000); measurement. for process improvement, and key: team- skills necessary for effective.
. collaborative software engineering efforts. At the end of the course the student will be able to
"“demorxstrate that the software development process can be managed and controlled, leading to
increased software quahty In addition to lectures and m=~dass "kﬂjs," the dass wﬂl include one -
turday wgrkshop : : : :

~ OBJECTIVES / VISION

After this ciass you the Students w111 understand and have demonstrated that '
¢ Software processes can be managed and controlled. ' .
. Software: engineering is a social process, too.
¢ - Youhave real skills that you can apply today at Work

* ~You have a framework on which to build your.own’ educated decisions about appiymg _
" software quality principles and tools to personal ‘project, and corporate software activities.

‘e You have identified three thmgs to improve at your own work place’ (or w1thm your.own. ’
L __personal process) and you have begun working on them."

~ [Printed: 9/29/96 - 428 M T Paget . CSES0m B1bhography and Syllabus/Vas]
“{© 1996 Judy Bamberger / James Hook -~ - o o R E1b1wgraphyAndSyilabus

T

Sy

| CSE 503 - Oregon Graduate Institute
{Judy Bamberger/James Hook Software Process Practicum: Lessons in
Software Quality and Leadership

To the Students:
{This is a list of required and recommended books. .

Readings will be derived from the three required books throughout the semester. We

- |will be discussing some of them as part of the class session. They present a unique view
~ {of many of the concepts, models, and skills we will be covering - often a different view
{than would be found in most computer science courses.

The recommended books will provide additional breadth and assistance throughout
the class.

We have selected these books because we believe they will be useful to you after this
course, in your work environment and in your professional activities. Your feedback
throughout the course and afterward will be appreciated.

Required Books |
(1) Grady, Robert B and Caswell, Deborah L, Software Metrics: Establishing a ComPanwafd.'
_ Program, P T R Prentice Hall, 1986

(2) Scholtes, Peter R et al, The TEAM Handbook, Joiner, 1998

(3 - Weinberg, Gerald M, Quality Software Management, Volume 1, Systems Thinking, Dorset
' House Publishing, 1993

- Recommended Books
{1 Brassard, Michael, The Memory Jogger Plus+, GOAL/QPC, 1989

(2) Weinberg, Gerald M, Quality Software Management, Volume 2, First-Order Measurement,
Dorset House Publishing, 1993

Printed: 9/29/96 - 428PM | Page 2 CSE 503: Bibliography and Syllabus/ V2.3
© 1996 Judy Bamberger / James Hook Bibliography AndSyllabus

5

CSESOS ' | ' ' ' _ - D Oregcm Graduate Insnmte :
*|Judy Bamberger/James Hook : E : . Sofiware Process. Practicurm: Lessonsin |

::.. : :.. : I AR Software Q&aht}f and Leadershlp :
e ORGANIZING FOR SUCCESS

Thmgfs to Hnnk about. fmm the bemnnms‘?

“ Who would you like on ycmr team'? ‘Teams are not. reqmred to- keep the Same members
thmughout the entire course.” However, especially once the mid-term project is: ‘begun,
this does have significant advantages. We suggest you begin now, and think' about how
“ you could build an excellent, effective, and high-performing team (we will be giving you
- some hints, too). Wealso sugges{' that you use y()ur first team pro;ect to try some of those
1ideas, and set the tone for success. :

- o - With which "partner organization” would you like to Work? The m1d»term and end term
- assighments will focus on working with what we call a "partner organization." This could
. beateam with which you work at your company or school (highly preferred), orit could be
a team we recommend to you. You will be collaboting with them to define a process and:
then to create a plan to-improve that process. This will involve some of their time - in the-
~ past, it has been about 2 - 12 hours total over the ‘entire term- (depencis on number of '
~people involved, and- depth-of their mvolvement) : i .

F_-_‘-and Y Y S S e CSE 505 Bxbhography ond Syilabas Vas]
T ©1996JudyBamberger]}amesﬂomk R S BlblmgraphyAndSyHabus

r

[csEsms T “ | Oregon Graduate Institute
"1 Judy Bamberger/James Hook Software Process Practicurn: Lessons in
Software Quality and Leadershi

- GRADING CRITERIA

There will be individual and team assignments. We have tried to give most assignments on a
‘Monday, with the turn-in date generally on the following Monday. Team assignments will be
given a single grade, which will be assigned to each team member. Team assignments will have
-an individual component associated with each (graded individually) to analyze team
effectiveness overall, and the individual's effectiveness within that team.

The goal of these assignments is to allow you to reinforce the concepts and skills learned in
one or more Practicum sessions.

- There will be o _mid-term and end-term project to be done as a team. The mid-term and end-term
- projects are related (general descriptions are included in the syllabus). The mid-term project

 focuses on working with a partner organization to define a software-related process using the

techniques we learn in Practicum. The end-term project focuses on working with that partner
Organization to identify and plan for improvements to that process.

The goal of these projects is to allow you to synthesize the concepts and skills learned in
several Practicum sessions and practice them in a real-world setting. Past projects have
also resulted in significant benefits to the partner organization as well, a secondary goal.

There will be g final project to be done individually. This project will be to create an '
improvement plan for a process in which you are involved personally - individually or as part.
-a team at work or outside of work.

The goal of this project is to allow you to synthesize the information learned in Practicum
and apply it in a real-world, relevant context.

There nre fwo un-graded elements as_well.

The goal of both of these are to help us continuously improve the Practicum - both for you,
this term, and for future offerings of the Practicum.

We will be asking you to keep a Timelog - the amount of time you spend preparing for each class
‘{e.g., reading) and doing the homework assignments. This will have absclutely no bearing on
-any grade. In fact, we will not look at it until any related assignments have been graded. We will
use this to help us assess and tune the overall workload, week-by-week, assignment-by-

assignment. A Timelog template (with instructions) is included in this syllabus.

Please turn in your Timelog sheets each class session.

We will also be asking you to keep a Journal - short notes about the readings and learnings. We

- will ask to see this three times during the term. We will use this to help us assess the impact of

- the readings and the messages you take from the classes. Again, this will have absolutely no
bearing on any grade, and we will not look at it until related work has been graded. We will use

~ this to help us identify "what works" and "what doesn't,” as well as those articles, class sessions,
exercises, etc that have the most/least impact. A set of suggested items to cover in your Journal -
entries is included in this syllabus. .

Please try to make your Journal entries each day, or as new learnings come to you.

| Printed: 9729/96 - 4:28 PM Page 4 CSE 503: Bibliography and Syllabus/V2.3
1© 1996 Judy Bamberger / James Hook BiblicgraphyAndSyllabus

L :_:.:. R — . . . — - o R O;-egon T .m.sﬁm.tﬁ
o f}udy:B_ambergef /Tames Hook _ _ Software Process Practicum: Lessons i

e Homework - individual/team - 0%

‘e Mid-term project -team e 20%
" Process Definition - E o

* ‘End-term - team .~ . . A S 30%
' '_Pmcess Improvement o R ' -
e Final project” e O 30%
e Class partiﬂpation (mdlwduai) S R -_subj'e'ctivé
e .Timelog O b FPE Q%
e Jouwmal 0%

We Wﬂl make every effort to return homework to you within one calendar week You will see
~comments from. us and the following nﬁtatmns in the upper right corner, with the f{)llowmg
meamngs : : :

SR S not ho grade nioted; perhaps our instructions were not clear; goais of the
' - .assignment were missed; please see us. -and let 5 get straightened out; OK to
- rework and resubmxt for success: : :

R] "minus"; : does not meet minimal mtema, GK t0 r{awork and resubm1t for-
T suiccess

~"check’; ‘meets goals of hﬁ:}mewmk assagnment
' plus ; exceeds goals of homework asszgnment _

R --”daublempius exceeds our wzldes’s dreams e

'OFFICE HOURS and CONTACT INFORMATION

.]Li-dy Bamberger: M(}I.‘id'ély., 7:00pm - 8:00pm at OGI and by appointment
~Jim Hook: Wecinesday, 7:00pm - 8:00pm at OGI and by appemtment

]udy Bamberger : - Jim Hook

690-1206 : Ce90-1169
-bamberg@cse.ogiedu hook@cse.ogi.edu
room Strawberry office = room CSE 143

de are here to ensure you get the most out of this class, so please come and talk to 'us When youz)
: ed to!l If youuse Email to communicate or ask questions, then please send it to both of us. o

Software Quality and Leadership| -~

2 -'P_rmf:ed: B/ ZW 96 - 4:28 PM : - Page5. _. CSE 503: Blblzography ard. Syﬂabus/"‘e’?_?» .

@ 1996 Judy Bamberger / Jatries Hook - - o e N Blblmgraph}rhnds_ﬂiabus

y

[csEsos T Oregon Graduate Institute |
- | Judy Bamberger/James Hook Software Process Practicum: Lessens in
Software Quality and Leadershi

BIBLIOGRAPHY AND SYLLABUS

In the following:

(R#) means there is 'readihg to be done before this class

In general, the reading is intended to be done to a level where you are confident
~you can discuss the key themes (maybe not all the details), as we will begin many
- of the classes with a discussion of the readings. The goal of assigning the
~ readings is to broaden your background, and to provide you with "intellectual
pointers” to key references for the class (short term) and for your future as a
professional (longer term).

Those few times where detailed understanding of the readings is required {e.g., to
prepare for a specific class discussion or a homework assignment), we will
indicate that explicitly. Whenever in doubt, one way or another, please ask.

S (H#) - means there is homework to prepare after this class

(H#) The asterisk () before the homework indicates there is an
individually-done assignment to be turned in

&(H#) The ampersand (&) before the homework indicates there is a team-
done assignment to be turned in (ie., one single assignment per team,
with all teamn member names on it)

(H#) The lack of any leading marking before the homework indicates this is
- reading, other material, or other activities related to completing some
- other homework assignment to be turned in

“(JOUR) = means there is a journal-related activity here
The * -ed and - -ed lists summarize the topics to be covered in this class
When you turn in your homework, please make sure the following are done:

e Please put your name clearly on the front page, and indicate which homework this is (at
least the H-number you see in the syllabus and on any relevant handouts)

* Please put page numbers on each page (hand-written is OK)

s Please type (vs hand-write) your assignments (with many papers to read, we find it difficult
and slow with a lot of hand-written papers)

~ Do not spend a lot of time on formatting; just leave us enough space to write some
. comments and ask some questions

_* Please run some sort of spell-checker on your papers and make corrections (some of the
' typographical errors significantly decrease our ability to "figure out” what you are trying to_

say)

Printed: 9/29/96 - 428 PM Page6 CSE 503: Bibliography and Syllabus/ V2.3
{© 1996 Judy Bamberger / James Hook Bibliography AndSyllabus

'. _. '_CSE 5{}3 _ — T | ' ' . Oregon Graduate Inshtute
'Iuciy Bamberger/}ames Hook - - : R S SOftware Process Practicunt Lessons iri | -
| - : R Software Quality and Leadership

s }Hahdbutsg Artiél'es,-Réé&ingsgl-ﬁﬁa Other Materials Passed to Students

| (1) Introductmn Ice Breakmg, and Mctwaﬂon _' _ e

. Ciass. 1 .Danyate.:- i Key Pz‘esemer]1111 -_.'-_R'a&g's__laf o
Nstonasy, [y
1130 Sept&mber b

Homework? yes -

R Copy ef class materials” : e
| o "_-Develop COMMON. expectatzons about the class
=’ Communicate class mechanics |
e ‘Brietly survey "quality”
S Dlscuss quahty m %:he soft"waafe centext by mtroducmg an: example

CMHla) Write your "process: blography (per mstructor«pramded questmnnalre, ‘nanded _' -
. outin class) _ :
_ {tummatciass#Z] : - e L . _
. CUMHEIbY Interview three software deveiopment orgamzat}ons (per mstructm: pmwded
T o ..-questlormalre, handed outin class). :
 [turn'incat class #3] :

' {JOUR) . Write a "learning contract for yourself What a6 you want to learn; how do- you--‘_
- want to learn it; how, when, where; with whom do you want to practice it; how -
will you'claim ™ success” for. ycurseif a:fter Prac:tmum is over; make thxs your fzrgt
- Journal entry : : '

 -- (2) Backgr{mnd Stahstacal Pr@cess Ccmtrol Severai Basu:: Quahty Tools

--ﬁf Ciass "-Dayf'Date Key Presenter Ilm -_'.ReadmgS’ Yes

 ||Wednesday, || Bomework? yes

iy '-EOctober L FRERE -_.:_”_'(thznkmg {)nly)

= B Demzng Managemenf af Wark Mary Walton Chapter 2, "‘Flonda Power & B
' (sz} '-'Quaizty Piannmg and Anafyszs “ me Pmducf Develapment thmugh Use,] M-
S ; }uran and Frank M Gry‘na, Chapter 1, ”Bas:lc Concepts and Chapter 2
e Companywade Assessment of Quality”

S (R.Qc:)'.'.. | Qmﬂzf}; is Free; Phlhp B Cm&.by, Chapter 2 Quahty May Not Be Whaf: You
. ~0 - . Think It'Is,” Chapter 3, "The- Quahty Management Matumty Gr:td -and the
ke '. Lo Bmws&rs Gmde : o _ .

Prmte& 9/29/96 I8PM L ' e - Page’?'. Ve CSE 5(}3 szilography and Syllabus/V2S .
j@ lg%ludyBamberger/]ames Hook . ool oo e BxbimgxaphyAradSleabus

CSE 503
- {Judy Bamberger/James Hook Sottware Process Practicurn: Lessoms in
' Software Quality and Leadership

Oregon Graduate Institute

(R2txt)

(H2a)

(3) - How does the "I" fit into "TEAM"?

ass: 3

Quality Software Management, Volume 1, Systems Thinking; Gerald M
Weinberg; Chapter 1, "What Is Quality? Why Is [t Important?”

Copy of class materials

-~ Introduce several quality tools (brainstorming, consensus, affinity diagram,

Pareto diagram)

~ — “Discuss classical Statistical Process Control (SPC)

~ Point to other quality and management and planning tools (flowchart, check
sheet, run chart, historgram, scatter diagram; interaction digraph, tree
~ diagram, prioritization matrices, matrix diagram, process decision program
~ chart, activity network diagram)

Begin thinking about how you will build your team for class projects

Key Presenter: Judy Readings? yes

| ayf)a:

1© 1996 Judy Bamberger / James Hook Bibliography AndSyilabus

it Monday, ' Homework? yes
| | 7 October
Social Style Profile - Feedback Booklet; Wilson Learning .
(R3b} Enterprise, Winter 1991/92; "Unleashing People Power - Innovation comes from
_ the Individual at Chaparral Steel”
(R3c) Training & Development Journal, April 1991; Richard Wellins and Jill George;
"The Key to Self-Directed Teams"
" (R3txt) . The Team Handbook, Chapter 4, "Getting Underway"
[optional] The Team Handbook, Chapter 6, "Learning to Work Together”
. Copy of class materials
-~ Meeting management techniques
‘- Different style preferences
— Team development and growth _
» Handout - "Teams Need a Common Goal” {Hagar the Horrible cartoon)
® ‘Handout - "Why Some Teams Don't Fail" (from Manage, July 1993) o
*(H3a) ‘Analyze the strengths and weaknesses of each of the social styles (per instructor-
provided scenario, handed out in class)
f[turn in at class #5]
B Printed: 9/ 29/ 96 - 428 PM Page 8 CSE 503: Bibliography and Syllabus /Vﬁ.:ﬁ

CSE e . . . I R e (")regon Gm@ﬁme P,
A Judy Bamberger/James Hook . o .. Software Protess Practicum: Lessons in| . .
| T - i = _ SOftw_are .Quaii'_ty and Leadership]

o :"(?E'.-iSb) & :'.[readmgs to be handed out in class} Please Undersmnd Me - Character &f
R Temperament Types; David Keirsey and Marilyn Bates; Chapter 1,. D1fferent
- ‘Drums and Different Drummers and Appendlx The Sixteen Typee;

' _(HS&)' .[readmg to be handed out in class] ”MBTI Short: Summary" }udy Bamberger

*H3d) Do the readings. above; see what the instrument indicatés as natural tendencies, -
0 and discuss (3-5 pages) how these characteristics mamfest themiselves in your
‘team interactions at work : 2 S
[turn in at class #5]

j.ﬁ.:._. : : _ _(:__1) I’robiem Solvmg ?aradlgms

[Class: 4 . Daylf}afe i Key Presenter: Judy Readings? yes

o ZWednesday, ST ._Hamewark'?”yesi' a
19 October - R ' :

“(Rda)- _-'[aptmnal] Problem- Soivmg Pmcess, Xerox 1992 “artlczpant Gu;de “

e (R@txt). - Quality Software Management Volume 1, Systams Thinking; Gerald M L
. - .. ‘Weinberg; Chapter 2, "Software Subcuitures” and- Chapter 3, “What is'Needed to
- Change. Patterns?” . . _ _

e S __'Copy of c:lass. materials 2

= One problem soivmg model (useful tools at. each phase, ciecmmn makmg
- styles and tools} - '

- One-conflict resmiutaon model (1dentzfymg, managmg, and resoivmg C(I)I’iﬁl(:f) '.

. | | Handout - Role Piay Veginots (if useai n class)

- &(H4a)- AS a team; usmg the basic tools, discuss how you wcmid salve the problem of
7. whether or riot to inform the customer of a potential scheduie slippage (per
1nstruct0r~pr0v1ded guidelines, handed t}ut in class) :
[tum inat class #6] :

3y - '_Pi-gces_s Defig_iti@nx_?echniqﬂgé_ L]

T5 [DayDater | Key Presenter: Judy | Readings? yes |

Mon’&ay,' e

_ o Hnm:eWork?'ap{idﬁal' '
14 0ctﬂber -

S (R5a) Managmg the Software’ Process, Watts Humphrey, Prefac:e, Part One "Software)
. Process Maturity", Chapter 2, "The: Principles of Software Process Change”, '
Chapter 14, "The St}ftware Engmeermg Process Group Chapter 20,

‘ 7 "Conclusion"

T Pnnted 9/29;’96 428 ™ ' -._Pagég - CSE 503 BlbilograPhY aﬂd SYHabuS/VZS

© 199]udy Bambergm‘ 7 }ames HOO?& T R BlblmgraphyAndSyliabus

JcsEsm . Oregon Graduate Institute
Judy Bamberger/James Hook Software Process Practicum: Lessons in
Software Quality and Leadership

(R5b) IBM Systems Journal, 1985; R A Radice et al; "A Programming Process
- Architecture”

¢ | Copy of class materials -
— Several techniques for representing defined processes
* Handout - Process Definition Examples

e Handout - "Rules of thumb for developing processes - Lessons learned from the
trenches”; Mary Sakry

*(H5a) [optional] Demonstrate the process representation and definition techniques on
the sample process description we provide (handed out in class}
[turn in at class #7]

- Mid-Term Homework
* Define a process with your partner organization (per instructor-provided
guidelines; draft attached, handed out in class)
“[turn in at class #10; make presentation at class #11]

6) Continuation of Topic from class #5

o Week: 3 | 6 | ay{)e: Key Presenter: Judy Readings? yes

| Wednesday, Homework? nothing
16 October | new

Please t:hefoloin ain ery carefully. The key idea to learn is the method
Weinberg uses to represent and analyze processes (the drawings with "blobs" and
annotated arrows). We will be using this in class and/or as part of a future assignment.

(Rétxt) Quality Software Management, Volume 1, Systems Thinking; Gerald M
Weinberg; Chapter 4, "Control Patterns for Management” and Chapter 5,
"Making Explicit Management Models”

(7). Continuation of Topic from class #5
-] Weék:. .4") Class: 7 Day/Date:

Monday,
21 October

Key Presenter: Judy

Readings? yes

Homework? nothing
new

(JOUR)} Please turn in your Journals.

Please do the following readings very carefully. The key idea to learn is the method
~ Weinberg uses to represent and analyze processes (the drawings with "blobs" and .
- annotated arrows). We will be using this in class and/or as part of a future assignment. ™

Printed: 9 /29796 - 4:28 PM Page 10 CSE 503: Bibliography and Syllabus/V2.3
© 1996 Judy Bamberger / James Hook BibliographyAndSyllabus

[GEm . T Otegon Graduate Institute
: ,Tudy Bamberger;’]ames Hook .. o ST S Software Provess Practicumn: Lessons in:
' ' ' R Softwarc;_ Quality and Leadership

'-‘.l__::'(ié:’?txt')' Quai:iy Sf}ftware Management Volume I Sysfems Thmkmg Gerald M N
. Weinberg; Chapter 6, "Feedback. Effecfs,” Cha}:uter 7 "Steering S{)ftware, and
- Chapter 8, "Failing to Steer” ' _

s Note Ifwe comiplete pianned in-class exercises early, we may do a Smdent- ER
I provided activity oran exercise based on the Wemberg reading, or we may start
~the next-topic S g

e+ ANNOUNCING MA}GR READING FOR class #9111~ o .
e _Select: two quah'ry models (in class) and be prepared to present and discuss a set of

~compatison issues (per instructor-provided criteria); this will mvgive careful -
- reacimg (vs detaﬂed sklmmmg} - . S

:--(._'8_):. Capabahty Matumty Mode] for Software (CMM}
': - Class: 8 "Bay_iDate. i |
| ||Wednesday,
:3 23 October

- :Re;ﬂings?_' yes

| Key Presenter Judy

': {}zm is mzt) 3 _H_.gm-ewﬁrk? “tiothing -

b new =N

- (RBa) Capabziz%y Mﬁlflirify Mﬂdel far Software, Verswrz 1.1; Software Engmeermg :
- Institute; Chapter 1; "The Process Maturity Framework", Chapter 3, "Operational
- Definition of the Ca.pab:thty Matumty M{}del“ &ppend;x A, ”Goais for Each Key)
P 3:_Pr0cess Area” -
o AR8bY IBM Sysf€m5 fou?'?mz 1985 W S Humphrey,’.”The IBM Earge sysiems software SR
TR deveiﬂpment process: - Objectives and. dzrectzon" and R A Radice et al; "A o
f' programming. process study" : : :

o (RSC) e Amertcan Progmmmer September 1994]ames Bach' "The Immaturlty of the

- _'——— and optmnal readmgs (heipful references)-~——-

S .-'...'(RSd) “IEEE Software, }uly 1994; Mzchaei K Daskalantonakzs, "Achievmg I—I;gher SEI
e Levels" - '

oot Copy of Class matetials -

~ - Basic pmcess management concepts
o~ How they appiy 1o software engineering | _ _ _
= Characterization. of immature” and mature software engmeermg pmcesses_-
s _'Five levels of- maturl’cy as defmed by CMM -
- Details: of Repeatabie Level
. = ‘Framework of CMM - apphcabzhty across many dasmpimes

o “Some anecdutai ciata on RC}I

T T T " CSE 503: B1b110graphy P TR
@Ig%]'udy Bamberger / James- Hook A Ll e szilographyAndSyiiabus

‘[CsEs05

| Judy Bamberger/James Hook Software Process Practicum: Lessons in

Oregon Graduate Institute

Software Quality and Leadership

{9 Quality Frameworks: Applying the Concepts to Process Improvement

————t .

Week: 5 Class: 9 Day/Date: Key Presenter: Judy Readings? yes
Monday, Homework? nothing
28 October new

(RYa)
(R9b)

| {(R9¢)

('R@d‘j =

- (10) Quality Technique #1 - Formal Inspections

International Standard, ISO 3000-3; 150O; "Quality Management and Quality
Assurance Standards - Part 3: Guidelines for the application of ISO 9001 to the
development, supply and maintenance of software”

Trillium, 1994; Bell Canada; "Telecom Software Product Development Process

- Capability Assessment”

Quality System Review - Guidelines, March 1995; Motorola Corporate;

Y H

- "Introduction”, "QSR General Scoring Maturity Matrix", "Subsystem 10 -

1t tt

Software Quality Assurance” and "Scoring Reference”, "Quality Policy for
Software Development”

Malcolm Baldrige National Quality Award, 1996

- Completion of previous material and compare/contrast all quality models

! Week: 5

Class: 10 Day/Date: | Key Presenter: Judy Readings? yes
Wednesday, Homework? ves
30 October

(R10a)
(R10b)

(R10c)

(R10d)

*%% JH's the day before Halloween; dress ﬁp; partyl!ll =**

Neal Brenner; "The ST Inspection Handbook™

IBM Systems Journal, 1976; M E Fagan; "Design and code inspections to reduce
errors in program development"

IEEE Software, July 1994; Robert B Grady and Tom Van Slack; "Key Lessons in

Achieving Widespread Inspection Use”

'IEEE Software, March 1994; Jack Barnard and Art Price; "Managing Code
Inspection Information”

--- and optional readings (helpful references) ---

(R10e) IEEE Software, September 1993; Edward F Weller; "Lessons from Three Years of
' Inspection Data”
(R10f) IEEE Transactions on Software Engineering, July 1986; Michael E Fagan;
"Advances in Software Inspections” ' . '
Printed: 0/29)96 - 428 PN Page 12 " CSE 503 Bibliography and Syllabus/V2.3

- {© 1996 Judy Bamberger / James Hook Bibliography AndSyllabus

;;.'CSES{}g . - y e T ——— Qregongraduatelnstlmte;'. |

- _So{tware Q},tah%y_ -and ___Le_adership _

| ""."'.E(Ri(}g) _ Svftware Validation - Inspectzon - testmg - verzfzcatzon - aiternatwes, A F
- Ackerman, P] Fowlerf and R G Ebenau, “Software Inspectmns ancE the Industnal B
Production of Software" . T L

" (RI0R) - Software Inspection; Tom Gilb anci Dorothy Graham Sb‘fﬁ»__raﬂre_Inspections_a_fi -
~ Applicon" by Barbara Spencer e e T
Looe e Copy of class ‘materials ' =

= One defined process. Eor formal mspectaons o

~" One set of :metncs that can ‘be obtained from formal mspectlons =
_ = One set of forms, gms:"iehnes, mie sheets for formal mpectmns
SR o Handotit - Inspection Package o T
i e - Other handouts to support the lab will be prowded a5 needed -

o - ':'(}»Ilﬂé) . Prepare for formal mspectmn workshop, Saturday (use msper:u@n lab matemals’
- handed out in class))
 {class #11]

Ins;)echon Wcrkshop and presen%:atlon of M1d~Term Hamew’ork Process Definition

(11)

Dayfﬂate, :
'S.atui*dajf, o
2 November

S Key Presenter: Judy Readmgs’? nothlng A
Jand studefnts T mew Sl
R R 'Hamewmk?_ n{)ii:hing A
w0

;'End Term Homework

* . With your parmer orgamzatzon defme a process: 1mprovement plan for the
- -process you defined in the Mid-Term Homewotk (per mstruciar-prcsvzded
_ gmdeimes draft attached, handed. out in class) -
' [tum in at class #16 presentatmn at class #I?]

Process | 'impro?éfr’;ght Models
k: 6 [Class: 12 |Day/Date:
| - |{IMonday,

f 4 Nuvember

2 e I{e‘y I’ré’sénter: }ﬁd}?"_' Readmgs" y&s L

Humewo;k’? optmnai

1]udy Bamberger!}ames Hook e I _ "~ Software Process Practicum: Lessonsin| -

7 (R12a) select;ons from the Quahty issue csf Busmess Week 1991 _ c
(Rle) [c}ptmna}] Total Quality Impmz;emenr Sysfem, ODL; Quahty A{:tlﬂﬂ Teams el
. G ©Team Member 5- Workbook" N AT o

©1996}udy Bambergerf]ames Hook Sl e e T . B;bhographyAndSinabus

Csf 5{)3 ——

Judy Bamberger/James Hook Software Process Practicum: Lessons in

Oregon Graduate Institute

Software Quality and Leadershi

(R12¢)

(R12txt)

i

[optional] Tetal Quality Improvement System; ODL "Quality Action Teams -
Project Booklet"

The Team Handbeok, Chapter 5, "Building an Improvement Plan”
Copy of class materials

- Several process improvement models and strengths of each

- Principles of action planning and "how to"

Handout - Organizational Climate Survey, Judy Bamberger

[optional] Leveraging the readings from Business Week and comparing it with'
your experience, discuss what appears to you to be the "top six” characteristics of
high-quality organizations

- [turn in at class #14]

13 Software Metrics

Class: 13 Day/Date: Key Presenter: Judy Readings? yes

Wednesday, Homework? yes
6 November

{R13a)

(R13b)

Software Modeling and Measurement: The Goal/ Questz‘on/errdz’gm','

Victor R Basili
[optional] Software Quality, "Software Metrics that Meet your Information

- Needs,” Linda Westfall

(R13txt)

Software Metrics: Establishing a Company-Wide Program, by Robert B Grady and
Deborah L Caswell, chapters 5-6 and 12-15 {please use this as a minimum
guideline; we would have like to have assigned the entire book)

‘Copy of class materials

-~ Why measure software processes

-~ What are some things that can be measured in software processes

- Goal, Question, Metric Paradigm

| ~ - Examples
*(H13a) Identify a problem at work and do a "detailed impact case study” and a
"subjective impact study” following Weinberg, Volume 2, sections 8 (especially
8.4 - 8.6) and 9 (especially 9.3 - 9.5} (handed out in class)
- [turn in at class #15]
Printed: 9/29/96- 428 PM ' Page 14 CSE 503: Bibliography and Syllabus/ V2.3

© 1996 Judy Barnberger / James Hook Bibliography AndSylabus

[| e Y o T P
-~ |Judy Bamberger/James Hook - . . o : S Software Process Practicurm: Lessons in

. Software Quality and Leadership

- NC) cmss Dayf!)a%e -\ . |Readings? nothing
: . {Monday, e P
411 November - - o . i Homework? nothing || - -

"I Readings? nothing |
oo lnew _

NO CLASS || Day/Date:
| . jWednesday,'- o
" 113 November -

o ':':_f'r_. Week: 7

' Hoiﬁéwnrk?"nothiﬁgﬂ :
o finew -

e (14} Orgamzatlonai Infrastructure for Sustamed Process Improvement Leadersh:{p and
e Techn()}ogy Transition - B

-_Day/Date R '_-Key ?3seﬁter:'judy REadi'ngs?.ye‘-s

: Class: 14 |
. - fMonday, -_: SRP PR S Hﬂmewmk?i'nﬂthing'f E
N 18 Navember B S Inew '

'PZeaSe tum in your]oumals

~ (OuR) | - =
g '_(Rfiéa)" Quality Planning and Analysis - me Product Deveiapment i‘hmzzg}z tse; J M

Juran and Frank M Gryna; Chapter 7, "@rgamzatmn f{)r Quahty ‘and Chapter 8
~ "Developing a-Quality Culture” =

(R14b) The Leadership Chaifenge, }ames Kouzes and Barry Posner, Part Dne, "Knowing. -
- What Leadership Is Really About", Chapter 1, "When Leaders Are at Their Best: -

Five Practices and Ten Commitnients”, Chapter 2,"What Followers Expect of

 Their Leaders: Knowing the Other Half of the Story", Part 7, "The Beginning of

- Leadership”, Chapter 13, Become a Leader Who Cares arid Makes a Difference”

(Rl4e) - "Leading Change Why Transformatmn Efforts Fall Hamard Busmess Review;
7o March/April 1995 L '

o (R‘ié-tx‘t) Quality. Software Management Vohsme 1 Sysfems Thmkmg, Gerald M
: - Weinberg; Chapf:er 18, "What We've Managed 1o Accom@hsh”

e Copy of class. materials

'~ ‘Examined some management/ leaders}up issues to sustain process
e amprovement Lo .

L -'“Dmcussed key pom%s of effectwe 1eadersh1p

~ Understand your role as leader for process 1mprovement
T . sl = Getting information out about 1mproved process =

S .Gettmg 1mpmved process adoPted and useci

 [Prnied 9}’2‘9!’96 428PM T Page1s "CSE 505 Bxbhography A Syllabus/V23-

© 1996 Judy Bamberger / James Flook =~ . e _ BlblmgraphyAndS}rliabus_ s

‘[CsEs08

Judy Bamberger/James Hook Software Process Practicum: Lessons in

Oregon Graduate Instihite

Software Quality and Leadership

- (15) Quality Technique #2 - Quality Function Deployment (QFD)

Week: 8 Class: 15 || Day/Date: Key Presenter: Judy Readings? yes
Wednesday, Homework? nothing
] _ 20 November new
{(R15a) - Harvard Business Review, May-June 1988;. John Hauser and Don Clausing; "The
House of Quality”
(R15b) "QFD for Software - Satisfying Customers"; Richard Zultner

Copy of class materials

— Increasing importance of focus on quality

-~ Voice of the customer

- = Exercise using QFD

&

: ilé) - Managing Change

" Handout - Leemak, Inc; "Problems That QFD Solves”
Handout - Leemak, Inc; "OK, So How Long Does It Really Take?"

| Week: 9

.(me'a}'
(R16b)

(R16c)

(17) " Team Presents: End-Term Homework

- || Class: 16 "Danyate: Key Presenter: Judy Readings? yes
Monday, Homework? nothing
125 November new

IEEE Software, January 1990; Barbara M Bouldin, "The nature of change agents"

Harvard Business Review, January-February 1992; Robert H Schaffer and Harvey
A Thomson, "Successful Change Programs Begin with Results"

Group and Organization Studies, SAGE Publiciations, Group and Organizational
Studies, December 1982; J Scott Armstrong, "Strategies for Implementing Change:
An Experiential Approach” (Delta process)

Copy of class materials

-~ People issues about key principles of effective change

- 1© 1996 Judy Bamberger / James Hook BibliographyAndSyllabus

| Class: 17 | Day/Date: Key Presenter: Readings? yes
5 students » .
Wednesday, Homework? nothing
{27 November new
{ Printed: 9/29/96 - 4:28 PM Page 16 CSE 503: Bibliography and Syllabus/V2.3

C5£5{33 e . - . —— . _ Omg(m G;;a{iuate msumm :
| Judy Bamberger/James Hook _ ' ' L ‘Software Process Practicurn: . Lessons in |

- Software Quality and Leadership |’ '

o AR17a) Teachmg the Eiephanf to Darnce;]ames Beiasm, Chapter 1, Teachmg the
'~ . Elephant to Dance - The Manager's Guide to Empowermg Change", Chapter 2,
- "Getting Ready to Change”, Chapter 11, "Empower Indwuiual Change Agents”,
. Chapter 12, "Change Happens - The Elephant Learns”

(R17b) . Atticle from Wall Street }oumal 13 September 1994 on Chmese Quaizty
- - Managers :

'eek._.] Ciassls | Day/Date: =~ || Key Pr'snter:”_]imf' '
| _ .. fentire class
| Judy is out)

Readings? nothing ||
-~ |Monday, REW L

{12 December Homework? nothing
jmew.

o (19) ‘Review and Summary

 [Wee 10]

. | Key Presenter: . .. ||Readings? nothing ||
Jidiscussion. - finew

i Judy is out)

DayiDate‘:

' Monda.y,
|4 Decemiber . |

- || Homework? -nothing

(JOUR) Please turn in your Journals.
" Final Project |
e - As an individual, ciefme a process 1mprovement plan fora persanal pro]ect or

' - organizational process in which you have a stake (per 1nsf:ruct0r~pmwded
-guldehnes, ‘handed out in class)

- [turn in to Jim Hook or Judy Bamberger at OGI no later than Thursciay, 12
. December 1996] .

o Prmteci 9/ 29/96-428 PM Page 17 CSE 503: Babhography and Sy}iabus/ V2.3

i _3_;' ©1996 Iudy Bamberger /JamesHook ...~ o L . BibliographyAndSyllabus

i ﬁ}udyBaxnbérgerf}mesHot:k" S : o - Software Process Practicum: Lessons in |-
1JOURNAL ENTRY IDEAS = - 7 o e Sof’cware Qualzty and Leadersh;p S

Journal Entry Ideas

-.:Tc} the Students s - _ o

| The readings we suggest are intended to meet the goal of provzdmg gri)wth and

o broademng rather than 5omethmg we will "test” in class. To help us evaluate the _
leffectiveness of the readings in meeting this goal; we Wouid like you touse a ;oumal” to
- |capture your reactions to the readings. : : -

* | This is also a perfect opportunity to capture some of y@ur thoughts about the class sessions

. linput at various piaces throughout the term, we have heard from our students that they
“ fwould find it easier to capture evaluation thoughts as the class: progresses You can use -
o that information Wheﬂ it is time to do-the final course evaluatior. - '

‘| This is your }eurnal to keep - any way you want - hand scribbled notes anci diagrams, typed
- land indexed on a computer - whatever. We will ask to see it three timies throughout the
~course (approximately week 4, week 7, and week 10) s0 we can assess where we are going

o] insights, we request to meet br;gefiy w1th you to assess the 1mpa¢:t ef the readings and class |
- |sessions. :

Lo fso. We will use your input, to make mid- -course. corrections and improvements in the
- |Practicum. : ;

S{}me topics you rmght want to COﬂSider

= What key points did you get out of the reading, homework, or class?

| - How does this synthesize with previous readmvs homeworks, and ciasses what new’
"ghas" came? : :

s ‘What new knc)wledge did yotu gam from- the read:mg, homewcrk or ciags? o

e What new puzzles are opening up. for you- areas Where you want to experiment or get
~ more knowledge? C

i-'_ -

anythmg that strszes y’ou as 1mportant at the tame you write.

’ themseives ‘While we do a course evaluation at the end of the term, and while we ask for |-

" |with the course. If you would rather we did not see:your Journal, as it may contain private

|No grades will be given. No. Comments will be made unless you exph(:ltly request us to dd

| * Howdoes a readmg, homework or Class session help y(}u meet your learning contract’?

e Prmted 9729796 - 428 PM -) .Page 19 : CSE 5(}3 B1blmgraphy and Syiiabusjvzﬁ o

S 1©15% }udy Bamberger fJamesHook . o o _ BlbhegraphyAndSyllabus

Oregon Graduate Institute

'WELOG TEMPLATE e e . Software Quality and_Leadership_

udy Bamberger;’]ames Hook - o C coon - Software Process Practicom: Lessons in| - -

TIMELOG TEMPLATE

{To the Students:

 |We would like t& collect’ mformataon on the time each student spent on each dass 13
- |preparation-and assignment. . We will use this ONLY to help us evaluate and tailor the . . |-
[workload we are asking from each of you. The preferred format to give us time spent is: -

hours : minutes -
o with a granularity, of 15 minutes.

_ |We will NOT use time spent-as a. markmg cni‘erwn in any way It wﬂl be mamtamed ina-
. |separate database, and not examined until after all marks are given for'that assignment..

- |Our goal is to have an "achievable class" - with some planning on your part and our part*."j- :
| Your providing us with this’ mformatxon can heip us determine if we are meetmg that
 |goal. Thank yc:u :

- [Printed: 9/29/9%-428PM . . Page2l . CSE 503 B1bimgraphy and Syllabus/VEG "
- |© 199 Judy Bamberger / JamesHook . -~ - BibliographyAndSyllabus

[Csesos | — B Oregon Graduate Institate
Judy Bamberger/ James Hook Software Process Practicum: Lessons in
o { TIMELOG TEMPLATE Software Quality and Leadershi

“General Information
Student Name
_ Class #

Readings

Reading #s

- | Time spent

Homework

{Homework #s

| Time spent

Projects (Mid-Term, End-Term, Final)
: Project ID

| Time spent

Other

Description

| Time spent

 Complete only if turning in homework today
Homework ID
~ {Due Date

Turn-In Date

[Printed: 9/29/96- 428 PM__ ' Page 22 CSE 503 Bibliography and Syllabus; V2.0
- | © 1996 Judy Bamberger / James Hook Bibliography AndSylabus

o 2 Ca— R e A ”'Oregon(}radﬁééemsﬁmée o
Judy Bamberger/James Hook : - - *DRAFT* Software Process Practicuni: Lessonisin}

HOMEWORK: Process Definition .~ ..~ . " . Software Quality and Leadership| |

© Mid-Term Project: Process Definition

~ [To the Students: . _ _

| This exerciseis to be done as a team. Once again, "team” is defined as about three people
|Effective meeting managemerit and feam’ colla‘noration skills-are: key to success of this

~ |exercise: o -

| This exercise builds on classes #5 #6, and #7 (process deﬁmtlon) and additional reacimgs

- |and information about process:definition. It is due, in writing, at class #10, Wednesday, 30
1 October 1996, Each team will present its results at ciass #11 Samrday, 2 November 1996, in | -
'~ |the -afternoon. . _ 4

- {The assignment is to produce a process ‘definition, using the techmques and

representations we will be sharing with you this week, or others you.may have used or -
know. You are not constrained to follow the process we will be teaching; however, we -

. |would like to see certain products in certain formats ... all of which can be produced

multiple ways.

{To do this exerczée you will need to identify two' things: (1) an Drgamzatlon With thch o .
|work: (perhaps your owny); and (2) a process to define with that organization. ‘If you have |

' any problems with this, see Jim or]udy, we will'try to find an’ orgamzatmn and a process

- -{for your team.

-+ JIf all contacts fail,]},m said i:hat he has a few pmcesses within PacSoft that cc;uld be defmeci 1
jand 1mpr0ved R . :

" Pick a simple, bounded: process w1thm an orgamzatmn - it has to involve multipie roles
- {disciplines, groups). ' -

~ The two examples given below indicate the "level” to which vou need to go (not Very

deep) and the "breadth” across the organization you need t@ cover {multiple

orgamzatmns) (Note that these are written like "scenarios” not like a real process
- definition; that will become clear through the lectures and. readmgs)

 For'example, managing a requirements: (specxflcatmn) change = customer. caiis, marketmg _
- fields the call and turns it into a requirement which is passed to engineering; they analyze

e it and feed impact back to their management and to marketing; ... design / code . the ~

- independent test (}rgamzatmn tests the code; defects are fed back into software engmeem:ig =

. the ready-to-ship code is configured and handed off to the release group to:cut-the CDs;

: _the CDs are passed to shipping which will pull the correct documentation, package all the -

o contents, and ship the product to the customer.

-~ As-another example, a customer calls the service orgamzataon with an urgent prob&em, the
- service organization verifies it is a critical software defect, files a defect report, and passes -
the issue to software engineering, requesting a fastpatch; software engineering evaluates -

- the defect, the impact, and the resources rieeded to make the fix; software éngineering

management allocates resources to fix the defect; the defect is fixed and a fastpatch is |

'createci peer reviews are held to verify it; service tests the fastpatch to verafy it; the

 [Prnted 9/79/96 - 228 PM Tageds CSE 503 Bibliography and Syllabus,fVZO

: @Iggﬁjudy?arx_;b_er_ger / Jamnes Hook _ o e BibliographyAndSyHabus

[CSE 503 Oregon Graduate Institute
- {Judy Bamberger/James Hook * DRAFT * Software Process Practicum: Lessons in
HOMEWORK: Process Definition Software Quality and Leadership

fastpatch is baselined (captured in a configuration management system); the defect report 1s
updated to indicate a fastpatch was created and that it must be fixed in the next regular
software release; a tape is cut, logged in the fastpatch tracking system, and shipped to the
customer.

“Your team is to turn in the following information at class #10:
(1} A process definition in all of the following representations:
~ Value-added map ("context diagram")
~ Time-x-role map

— EITVOX {only three process steps required to be done EITVOX; you may do as
many as you want)

(2) A discussion of the team effectiveness, as described, to include:
~ ~ Team strengths, weaknesses
- = Individual styles and how they contributed to the solution
— How decisions were made, how conflict was handled
- If you changed team members, discuss the impact

- — Improvements you can make as a team, as individuals, for future team exercises

— Observations on overall team effectiveness .
~ How effectively you used your "together” time (e.g., meeting management)
-~ An indication of where you believe your team is on the Team Growth Model

You may also turn in any other "team stuff” you think would help us understand
how you operated.

Your team is to present the following information at class #11:
¢ How your team did the homework; the team process and organization you used - the who,
what, when, where, how, why of your team process (not effectiveness; that comes laterf)
[quick summary; be brief; ensure team consensus]
~# What your team produced; a summary of the process your team defined - examples of all
~ three representations (a summary of (1) above)

~ [not expected to be a full presentation, simply a visual presentation to the class of what you
produced for your partner organization and what you turned into the instructors]

e (Observations on the reaction of your partner organization - to the process of defining
processes, to the resultant process definition, to you as a team, etc

[reflection, observations; ensure team consensus]

* Discussion of team effectiveness (a summary of (2) above)

[short presentation to the class of what you produced as part of the assignment turned in. '
© . the instructors]

a Printed: 9/29/96 - 4:28 PM Page 24 CSE 503: Bibliography and Syllabus/VZ2.0
© 1996 Judy Bamberger / James Hook BibliographyAndSyllabus

= 503 — SR, : o — . L i Oregon Graduate Inshtute: -
i Judy. Bamberger,/lameg Hook =~ : o *DRAFT* - - Sofhvare Process Practicum: Lessonsin|.-
U THOMEWORK: Process Definition: . . . - S T Sa_ft_w_a_re.Quahty and Leadv_a_rship_ :

. ‘o A brief summary (team or md1v1duai members of the team) as t{) the utmhty of 1 process i
~ definition techniques where you work (or have in the past, or would. like to in the future)_,’.'

o "[brzeﬂy reflect on the techniques, the processes, the experiences, and
- “your/team/organization's reactions]

3_3. . Be prepared to answer questlons of clamf;,catmn, cunouslty, am‘i envy fmm other studems o
- and the instructors on the above . . . :

ngedgjp_g;%wg%?m — ER -PageﬁS‘ o CSE 503 Bibhography and Syﬂabus/VEG
: ©:1996 Judy Bambérger / JTamesHook < . S T T BiblmgraphyAndSyHabﬂs

Judy Bamberger/James Hook - © - *DRAFT* “Software Process Prac:tu:um Lessons irt

 |HOMEWORK: Process Improvement -~~~ -~ software Quality and Leadership|

End Term Pro]ect Pmcess Impmvement

o - To the. Students

| This exercise is to be done asa team Once agam "team” is: defmed as: about three'
|people. Effective meeting management and team collaboratlon skills are key to success.
- |of this exercise. : : - : o

S Thls exemse buﬂds on rmr;i term process deﬁn1t1on homework ciass #12 (process
1mprovement models) and other lectures, readmgs, and mformatlon about process
improvement (in fact, the running theme throughout the course). Many of the
- |remaining classes have no homework other than, "factor these concepts into the end-
- |term process improvément homework"; we intend to prowde information to help you
- |address some of the questions we put to you. The homework is due, in writing, at class-
© 1 #16, Monday, 25 November 1996. Each-team will preseni its results at ciass #17,
o Wecinesday, 27 November 1996 : :

©o0 o {The assignment is to build on the process defim’aon from Week Fwe homework to

o jwork with your gartner orgamzation to: _ _ T
L 4. Identzfy metrics that can be used to measure. the performance of the process today
. .| - (to establish a baseline for improvement) o

B _' » Establish measurable goals for i 1mpmvmg the. process and
. Deveiop an action plan to 1mpz:ove the process.- _ _
- .The znformutmn fer t}:e team to turn in is: the pmcess Impmvemenﬂm:tmn pla:m

" “|As individuals, you will ook at individual and team. dynamms and effectlveness A
|list of topics to consider is included below. : :

| The mformatzon for each md:mdual to turn in 15 42-4 pags dzsc:usswn af individual |
|and team contributions. : N

- | You are not constrained. to follow the riodels we w111 be teachmg, however, we would
. {like to see certain products with certain content, which is described below. We will
e prowde additional templates for finished products (optwnai to use) at approprxate

7 fpoints in the remaining classes.

~ - |To do this exercise, you will need to reconflrm the Wﬂlmgness of your par’mer _
. lorganization to continue collaboration.- If you have any problems Wlth thlf,:, see Jim or
T]udy, we will try to find a pariner orgamzatxon for your team,

You are emouraged to use the process improvement plannmg process and template introduced -
“iniclass #12, unless your partner organization has a method and/or template of its own or you .

g have a defined method and template of your own. If you do not use the method /template we
"_:;_‘each please Iet us know What you will be: usmg, SO we'can ensure the necessary components will
- o CGVQI‘Ed - . _ - . _ _ :

 [Frimwed 572975 355000 - - “Page27 . CSE 503: Bibliography and Sylabus/ V2.0,

© 1996 Judy Bamberger / James Hook . S - Bibliography AndSyllabus

CSES03

* {Judy Bamberger/James Hook * DRAFT* Software Process Practicum: Lessons in
THOMEWORK: Process Improverment . Software Quality and Leadershi

. Oregon Graduate Enstitﬁte

Be sure to provide us with a complete action plan - all sections. The following list provides some
- additional hints and references to help with some of the sections.

1.1.

12,
13.

Problem Statement

A set of metrics that can be used to measure the performance of the process today.

~ — Describe any metrics used today to measure the performance of the process, and

how they are collected, reported, and used.

~ If none, describe what metrics could be used to establish a baseline so that the
organization will know on what to base its improvement. Describe how they
- could be collected, reported, and used.

- Vision after Success and

- Goal Statement

A goal (or goals) that your partner organization would like to see for process
improvement. You are encouraged to validate the goals with your partner
organization, if they did not participate in their creation.

- Using the Goal/Question/Metric paradigm (class #13), develop the goal,

questions, and metrics. Ensure that the metrics are quantifiable (either

- objectively, or subjectively; see homework/reading Weinberg, Volume 2,
Chapters 8 and 9). For each of five metrics, describe how it could be collected,
‘what is its scale (or value), any known or suspected data integrity issues, how it
could be used to answer the questions to test achievement of the goal(s).

~— Ensure that the goal(s} is a "SMART" goal (lecture #12), or discuss why they do

not need to be, or the risk incurred if they are not SMART.

11 RQH Out/Training Plan

Consideration for "self-sustaining improvement” (aka, institutionalization factors, -

_discussed in classes #8 and #9)
- ENABLERS for sustained improvement

& Commitment to Perform (policy, leadership needed)

= - Ability to Perform (tools, training, resources needed)

 ENFORCERS for sustained improvement

» Measurement and Analysis (how your proposed metrics will help demonstrate

achievement of the goal, how the organization will know to what degree the
-organization is complying with the change)

e Verifying Implementation (progress/status reports to sponsoring management,

independent review, etc)

Transition considerations for the new-improved process {e.g., information

- dissemination, newsletters, all-hands meetings, formal training, mentoring, brow.

Printed: 9;’29/96 4:28 PM ~ Page28 CSE 503: Bibliography and Syllabus/V2.0
© 1996 Judy Bamberger / James H{mk o BibliographyAndSyllabus

O

CSES{B " . e . e ' _ _ ” .' Oregon Graduate I,nstii’ufe | .
_“1Judy Bamberger/James Hook - YDRAFT* ' Software Process Practicum: Lessonsin) .-
: HOMWORK Process Improvement -~ . o . . Software Quality and Leadership]

bag luriches, etc). ’I’hls needs to reflect sens1tzvzty to the culmre of yf:mr partner
. orgamzahon - how they 1eam and retain bes’c

_ Trinted: 9/25/96 - 428 PM . Pagesd CSE 503 B1bhr3graphy and Syliabus/V20]
""r--:@w%!udyﬁmbergerf JamesHook -~ oo Blblmgraphmdswiabus |

[CSEs05 . . . Oregon Graduate Institute
~ {Judy Bamberger/James Hook * DRAFT * Software Process Practicum: Lessons in
AHOMEWORK: Process Improvement Software Quality and Leadershi

- How to Get There

You are encouraged to involve your partner organization in this as much as they can be (or want
to be). Since they are the ones who really practice the process being improved, they are likely to

~ have many good ideas about how to improve it. Involvement can be: brainstorming during
information/data collection; participation in the force-field analysis; reviewing intermediary
products; etc.

You are encouraged to use one or more of the process improvement or problem solving methods
discussed in class or offered as reading, unless there is another method with which you have
much experience. (In this case, please consult with the instructors ahead of time to ensure the

- goals of this assignment are met.) Options include:

» The general problem solving method (and tools) from class #4 (remember to focus it on
process improvement)

- # The action planning techniques discussed in class #12
¢ The ODI method and tools from the readings for class #12 and class discussion

¢ The methods and tools described in The Team Handbook, chapter 5 (one of the readingé
for class #12)

“Individual and Team Contributions

-~ As individuals, please provide a discussion of your view of your contribution to your team’s . '
effectiveness throughout the course, to include:

* Your style and how it contributed to the strength of the team

» Observations on areas where you would like to improve in team activities (styles you
might want to try; roles you might want to play, etc)

& Techniques and skills you used to keep the team moving forward, to resolve conflicts, to
‘be creative, etc

-+ How effectively you used your "together” time (e.g., meeting management)
- » An indication of where you believe your team is on the Team Growth Model
~» Effectiveness of team activities in reinforcing the key themes of this course

» Lessons you have learned from your class-team that you can take into your work-place-
teams

[Printed: 9/29/96 - 428 PM__ — Page3d "CSE 503 Bibliography and Syllabus/ V2.0
© 1996 Judy Bamberger / James Hook BibliographyAndSyllabus

. S Cregon Cradote Tnstitats]
udY Bamberger/ Tames Heok - : : #ORAFT * : . Software Process Practicum: Lessons il

- HOMEWORK Process }_mprovement Sl e L - Software Quality and Leadership] '

- Team Preseni*ai:mn o

"‘ :.’-_Your team is o present (30~45 mmutes, depends on the total number of teams} the foiiowmg

'_:5 mformatmn at’ ciass #17:

= R “How your team dzd the hcomework the team pmcess and mgamzatmn y‘a:m used the who, .
o -'what, when, where, how, why of your team process : :

- [quick summary; be brief; ensure team -consensus]

'o'-:.'-What your team produced; a summary of the action plan

[not expected to be a full presentation, simply a visual presentatmn to the class of what you
© _produced for your partner organization and what you turned into the instructors]

e Observations on the reaction of your pariner organization - to the process of improving
- processes, to the resultant process improvement plan to you as a team, etc

- [reflection, observations; ensure team consensus]

e _'-'_'.Be prepared to answer quesizons of. clarification, c:urwuszty, emd envy from other students
- .and'the mstructors on the above: o : :

[Printed: 9/29/96-428PM .~ Pagedl CSE 505 B1bhography and Syliabus/v20]
o ' . szhegraphyAndSyHabus

- |©1996 Judy Bamberger / James Hook -~

MEMORANDUM
OF CALL

[vou WERe caLLED BY— [YOU WERE VISITED BY—

OF (Organization)

[[] PLEASE cALL — Eggg&,’fﬁ' [Frs

[] wiLL caLL aGAIN (] 1s waiming 7o SeE You

[[] RETURNED YOUR cALL [] wiSHES AN APPOINTMENT

MESSAGE

RECEIVED BY DATE TIME

63-109 ; STANDARD FORM 63 (Rev, 8-76)
Prescribed by GSA

wEPO : 1981 0 - 34i1-529 (117) FPMR (41 CFR) 101-11.6

LETTERS |

record and file locking, semaphores,
shared memory management, and hard-
ware error recovery. The version of
XENIX that you can buy depends on
your computer. XENIX 3.0 runs on the
IBM PC AT, while XENIX 2.3 runs on the

Altos, Tandy, and other 16-bit muftruser

computers. -

THE REAL RSA ALGORITHM

440 EIS IS IO INIIRIRANENEEENRNEEBERED

Charles Kluepfel's article (“Implementing
Cryptographic Algorithms on Microcom-
puters,” October 1984, page 126) is not
based on the real RSA algorithm but on
Donald Knuth's version of it. Knuth uses
the exponent 3 to encode a message. but
the full RSA allows any exponent that does
not share any prime factors with (p—1)*
{g—1). Instead of having to ensure that
messages are greater than the n”(1/3). one
can choose any encoding key s such that
27 s>n and then be sure that all messages
except 0, 1, and n—1 are thoroughly
encrypted.

The full RSA system also allows the de-

coding key to be chosen for special prop-
erties and the encoding key to be de-
duced from it; for instance, the decoding
key may be kept short (15 digits or so) or
close to a power of 2 for easier computa-
tion when the recipient of messages has
less computing power than the sender.

I'm not sure why Knuth's version is dif- =~

ferent; perhaps his knowledge of RSA was
based on an early version, before the
main paper was published: CACM.
volumes 21 and 22, pages 120-126 (1978).

I have tried running Kluepfel's example
on our own Big Integer BASIC interpreter
on a 3-MHz Z80-based CP/M machine,
with the following program: - ;

100 INPUT N,D

110 INPUT MS

120 CD=MS"[N]3 : PRINT CD

130 MT=CD"[N|D ‘ :

140 IF MS=MT THEN PRINT "OK" :
PRINT : GOTO 110

150 PRINT “**ERROR*";MT

Apart from problems with a misprint in
listing 9 {a spufious "1” in "182818218" in
the first two occurrences of MS), the pro-

gram ran first time. It took a second or so
to encode and 115 seconds to decode.
Qur factorization program in BASIC took
2.5 minutes to factor BYTE's tele-
phone number: 13 * 4703 * 98779 =
6039249281, No doubt the I1BM PC ver-
sion will be faster.

A it s 8 MARTIN KOCHANSKI
Speldhurst, Kent, England

Charles Kluepfel rephes

At the time [wrote the program and
article, all descriptive references that I
saw to the RSA system used the power
3, indluding Knuth, who in fact referenced
the same article Mr. Kochanski men-
tioned. As Knuth provided an unam-
biguous description, | felt that it was the
same as in the RSA reference, and I did
not seek that source, However, the Knuth
description is, indeed, based on the real
RSA algorithm, as a particular instance
of using 3 as the encoding power. -

Referring now to that main paper,
wherein the power in question is de-
noted by e (as opposed to s in Kochan-
- (continued)

It's powerful, fast and fun!

For IBM PCs and compatibles with 512K
bytes RAM using PC-DOS or MS-DOS.

y, § g w = u
pDiCGic ALK iNC
5200 West Century Boulevard
Los Angeles, California 90045

Inc. PCG-DOS is a trademark of {BM Corporation.

(213) 645-1082

Smalitalk-80 is a trademark of Xerox Corporation. MS-DOS ia a trademark of Microsoft,

developmentmimnmenttwitlﬁ

Smalltalk-80"" language:

Card # _

YES! Please send me a copy of METHODS for $250.
Check____ Money Order

Visa_____ - Mastercard____
Exp. Date

Name

Address

City/State/Zip_

Telephane (
Signature

) .

California residents add 6% sales tax. Qutside U.S.A add $15.00

" 26 BYTE * MARCH 1985

Inquiry 116

- WHAT'S NEW

e Footmouse Frees Yoaur Hands

- liltnn cnqnaqnanmcv

aaoaotocrcu-&utttt

. The Footmouse' doestit weed special Boards or Software.

T -lilio&v»;nalaniuewluanndo - tlt!!ali.uthi!c!licthtqvllcll

ersatron is shipping the__ rieither special boards nar i
Footmouse, a foct softwdrs support, e '
cperated mouse for micro Presently available For the &
IBM-PC and 1BM PC-COmpat»
‘ibles, versions of the Foot~ .
miouse far the' Apple lls
Maeiritosh, [BM PC-XT and g
=PC AT Ty, Compaq and’
- R823%C terminals will e
Loavailable shortly, The sug-
gested list price is $225. L0 -
Contact Versatron Corp.,:}lO? -
Plazd St Heal dsbur.g CA" Lo

t_urer rotes that the primary -
advantage of the Footmouse
i$ that it frees Lioth your
hands for data input. -

‘Fontmouse reported!y
Swotks with any software -
'package that uses a cursor.
t emulates the keyboard
cursor funictions, vet it does
not mterrupt normal cursar 95448.-1800) 443-1550: i

operations. Footmouse plugs SCalifGrnia, 1800) 4334550 _or'
between the keyboard and - (707) 433- BIA4, T

Muititaskm.g, Muitluser DOS Runs with MS DOS :
“switches need only 14 ma-
¢hine-language instrections,

Several configurations of -
- POIyFORTH I, reflecting in- ©
~roreased capabilities and
© SUppoTt services, are
_available for M5-DOS com- - all the tapabilities of level 3
~puters. Level 3, which costs
$600, includes the operating -
- system. & FORTH turnkey
“compiler, assemb]er, 'editcr,'

“multifesking, muitluser
. -Ciperating systém for
8(}86/8088 microcomputers -
.. running M&DOS Kas been -
Antroduced by FORTH inc,
U -Called polyFORTH 11, this _
-Operating systeri gives you -
- the ability to run multiple
- terminals, uniimited tasks, ..
and concurrent printer opers
“ations. The environrment that
4 ' TH 1 creates {5 said
- to be stitable for such.in- 7
- ‘teractive, realtime com:
putercontrol applications as |
robotics, data acquisition,
fnage processing. and pro- - -

. Methods far umalltalk Programmmg

i!iili{t.!'i.lllili&‘i.l'llktt!t'lilllﬂﬁvllll‘l!l‘iif‘!.l.l

ethods is a Srnalltalk :
¥ & program-development - or miodify. Primitive methods - B _ |
systemn for the (BM PC and - can be implemented in 0 AW & Microsoft lets you-add " .

compatibles running under - assembly language. " three different peripherls to
o105 versions 20, 2.1

- Any number of asynchron-
.- DUSs Processes runting con-
" currently are supported by

he computer, requiring . .-!nqmry 609,

ﬁvqiunu!ilittq--sucgonlivtnun.--iﬁscw;qni:ois-is--

o mathemat{cs library, data- - embiedded in ROM of te- -,
“base support system, utili- campiiing pOlyFORTH itself. .
“ties,-and source code for all . All polyFORTH 11 disks are.

-but the nucleus. + .- .. compatible with MS-DOS,
7 Priced At 83200, poEy- . znd its FORTH blocks are’
~FORTH I level 4 comes with " maintained in data files. S
L Contace FORTH Inc., 2309 i
-as well as full systerm source - Pacific Coast Highway, Her-"
and the Target Compil er, - micsa Bedch, CA 902 54,
“which is capable-of .generat- {218) 372 8493
E.m_g agphcatmns that_can be . Uinquiry 610,

‘Peripheral Boosts
. -the Mac's Versatility .-
bygwge t]"ﬂ'OUgh put o use - ::.',:..nu-;c..n-\-n-ui.'.-_nn.u.-u«:_ o

i acEnhancer from "

~Or-3.0. 0 -The user interface features Apple's Magintosh. Reguiring

Fully COmEaﬁbé with Xerox's - a charactermapped display. ‘@ single Macintosh RS422

.- polyFORTH I1. A comipany
" -$pokesperson reparts - that
" polyFORTH 1 do#s not im-
. pose & cap on the amount
_of users supported. altheugh'
-this iz -subject 1o hardware -
constraints; Further, the
Spokesperson notes that -
| polyFORTH operates at rea- .
sonable speeds, the rate of
- which is dépendent on the
e number of processes.

Smalltalk-80 language,

- POp-up menus, and exten- . port. MacEnhancer gives - Tl
- Methods includes nearly IDO sive-uge of color (mono- - ryou two RS232C serjal :
. Classes, which are program- -'ﬁ - chrome displays are sup- 5 ports and a paraileE pi’mter B
7 ming tools that define the ~ ported). Your cursor keypad nterface.
structure and behavior of s used as # it were.a - "MacEnhancer arrives Wlth
" -abstract -data types such as - mouse. Methods also comes drzvers for a number of -

- integets and points,
-Smalltalk, an extensible,
fob]ect-c:nented Iangua.ge fs -
suitable for simulation and - o
- graphical user interfaces. For bytes of RAM and & pair of ton-services. and - bulletin
o« @ broader discussion of " 360K-byte disk drives or a
' --Smallta]k see the August " hard disk. Two marnuals are

Tagks can be assxgned
. private ‘partitions, or they
-~ may execute shared, re- =
entrant TOUtines. Active tasks
equirg as little 237100 bytes ~#
{ memory. and context 2

i -Methads gwes .you

16 most of the source code ~ Digitalk Tnc, 5200 West Cen

from which # s buflt. It has " tury Bivd., Los Angeles, CA
“more than 2000 routines, or :

methods; that you can -

' with a system transcript, flie ﬁ":.'popular dot-matrix and
: :-_-'edltor and-a w;ndow for daisywheel printers and
debugging. with terminal-émulation sivf
~Methods reqmres 512[(ware for aceessing informa-

“ boards. Its list price is $74G,
For further information. con.-
tact Microsoft Corp.-10700
Northup Way, POB 97200
Bellevie, WA 98009 (205) .
828-7400. S

- supplied. “The suggested
sptice I8 5250, Contact -+

ess'_.

. 90045 (213} 645 1082.

Srnore successful?
A Al all) Sroallatk, which ‘was dcvcl
| opedai thie Xerox PARG research labs
an Palo Adwein the
“of {he first laflguag'

structures calledabjects which prograin-
rierscart combine and reuse i ther ap-

| would slg;mhmmi} IMprove prograi<

“mer productivity and mike lofig-term
program malmenanw and enhanceinent
easier.

‘eritical ﬂf])pm[featires, such as stable

developmeitt methodologies. Thus, 38

Atk

ParcPlice Systems, a spin=off from
Xero

¢ paRe; and g few small consulting

Cloconvinee 18 {o take Smalltalk scrnously

A Small Surge

sinning to develop critical applications:
Several small vendors hive recently en-

now selling lowet cost versions of Sima
-m]i\ targeted at 08/2 and Windows dser

viable chotce in. applz(ahon develop:

server applications. .
That's Smallialk’s funciion at Ecxam
Tnc. s il exploration-and land mirag

“mamframe applications, replacing dumb

o '-64 BA?AMATION—«JULY 18, mw

" object- orienicid ;Jx{)fg;cammmg_-'-
(t)m*) technologies are the wave ol
4 the future, why imsn t Sinalltalk the.
wratiddaddy- Uf Gor Janguages; bt’en'

mid-1970s, was orie - :
‘to rejectihe operas
: tm/opemnd limear seyle ol miore con-
ventionat pmi;m;mmm; faniguages.-tn-
stead, Sadlialkouses self-contained data |

plicatiosis, Its pr oponents’ sard Smaltalk’

But Smallialk néver :ed?ly took off, 15
applicitions devélopment manigers.
Jrave tended 1o view 1t as acfringe lan-
‘guage, weak oh performance and facking -

database Interfaces 4l wil {*mh%ﬁh{xi:-

mdmgms Tave been 1{*luu<mt Wretrain.
hieir COBOL programmers 1o use Smill-

_f;rms were pretly much alone intrying

A AT U may be rhdﬂgmg TOWEVET. J\'
A nimber of 15 or gdlil?d[l()lh are moving
beyond experimenting ot piototyping -
applications with Smalltalk and.are be- .

tered thie Smalltalk iarket with proditts
{hilt miake the language easier 1o age and
hore productive Tor large applications. -
“And - ParePlace” wmpemor His even’:
emerged. Digialk Tne. of Los Anigeles is

- Smalltalk s not about o replace
1 €0BOL, but it is finally maturing intoa

mént, especially for asers looking fora:
ool to: speed devel opiment of admncc i
Bt apiufal usernteifaces (GU l:;) e hﬁm/_

1 -merit Unic in Hodstomn, -Actordimg to! lax- L
aco” IS manager- Dennis Sdnmskd the o
“eompany wanted 1o rewrité two large .

|-termimals with Windows-hased #Cs.and -
| workstations. ThelpCs-and workstations -
1awonkd giveusers easicraccess tohostdata
3 _vm admnud O Ws Aélt‘r U&lllldllng £

. jThanks 104 boostfrom JBM and M cros«:}ft and a

growing setof support tools, Smalltalk 5 z‘mai%y

_'beg Aning to Sound good 10 iS

BY ;}13:_.1-“1?! M'OAD’ :

eral computér=aided software en gifeer-

ing (CASE) tools, Samoska’s unit decided
to prototype wud implerient it néw ap-

- plications using ParcPlace’s Ob;t’tl—'
works\Smallalk.
“omrent, the applications will access
ico’s existing b2 host database viaan aps

' plzmnon programming interface (Av1).

Now under develop:
e

Jsers like Samoska say Smalltalk takes

“miteivol the headache vut of treating ap-
phications that use such GUI standards as—
: .'_He!p From '{he Bng Eoys

Windaws oy 0s/2 Présentation Man:

ager. Rather than require programmers |

to learn and write to complicated GUIL
“apis, Smallealk uses veusable class Tbras -
~¥es thatcan lirk applications to the APIs.

- Ao-ise set oiinté

Iilfl(f* hdz uses ma{,hme uzntlependmt EER
Cintermediate idﬁ.g&)E!lrl”ld”\l\dl%[)(’:l‘sl]}"_'
o pofis. Texato, _
“ing itsmew Smixilltalk dpplz(}mmz\ ()n-‘uzn;' B
; _\-\m kstations: di’ld 1% rmmmg; themon P(5.0

Corp: Rcm{’m;mq thiat: Sriv
fielp uscz‘s Mlie more 0’\ /‘} PN applmt—-: "

1){\' ‘f ;)cumnilwn mmkmtf dﬂ'e’
ave-bulding (ol
‘n i tiwzdmi{ :;I%v

vl avirtiedang

f’)m'l;il')'lt" bet

Smallealk s also berefiing fram vé-
centret f)-gmn{m from iy dnd Micr os{)h.'_

SMALETALI\\OB}ECT Trovin Par(,P lace Svmems can i)n used o buaid portab i af;ipiscalmhs- g
“ihvatrud unde{ seve{ai r;raph;rai mlpmfm) ’ N

mpli{‘{i %zll%i)lf41f.,ﬁ“;_:... -

B R S

¥ %_AUE

“tions. 18M cndcrsed the environment late -
- last year, 1t signed heensing agreements.
“with botly ParcPlace and Dugitalko miats
Cpurrentdyattempuing (o imtegrate Szl
alk aucé ob;em oriented-)rug: AN

capabilities into 18" AD/G u!e{ ASE arciu-

reciure, 1 developers at: i&lg_, Blue's Pro-’

' .gmmmmg $wtem§ Lab incCary, N, o

4 are successful in integrating. Strial fealk
Gnto-anseycle’s information model, -
iliere’s a-good chance s will take

thénext swgz. and declare Smualitalk a Sy

Lems. ’\pp ieation Architeciure {SAA)

approved fangrage, savs Cl L Reeves,
nmsmgcr of Cominon User Access for
: 'IB‘VI
Shin THERE ARE STILL
SEVERAL MISSING
CHAPTERS IN THE
I SMALLTALK STORY.

T\Oi i be left hehind, \hc:omhmﬂc}v
g

] Smalitalk into the Winidows €nviron- -
“meni. The company is working-closely.
‘with ParcPlace to build: lowslevel prov

.gmm toj- pmgmm messztgmg mis Hito

future versions of Windows and 05/2
~that could help programs writienin
“Smalltalkand other object-oriented e

ToONnments. such
shareobjects.

as G+ 4 more easxly

. Eiffel Tower of Babbie . :

< Public support bl Sanallealk by 183 and'_' :
~Microsolthas given-a boost 1o sofe i85
nmudgms wving to scll their bosses on
~the advantages of objectoriented pro- .
~itTereally
hel ps says Phil thlev, prmc;pa} [f,Lh‘_

- gmmmmg ’md Smdllta

Helpmg Smalltalk Get Blg-'

aniss mantionedi

- building tools such as
Object COROLL

6 ognsz in the Advanetd {,chzmlog}.f S

Groupat Ammerican Alrlines lm
Computer Services.. Hartley's gro

Swith nther ijecl oriented and-ouis
$o5 Fiffel tmd--'
Smalitalk currently! Avids
the sirongestsel. of \uppor[[(){Jls sfu,s

O Hattley,

Indeed, thanks 1o a_growing ﬂu;nbe

wierors {ISVsY, ugers cannow choose

from several setsof Tools that extend™

.“TL!‘LPS[LIT‘(‘(F’}.CEQNT&T;%G“B“CUTP
'-66 Dm‘mmommjuw 15 1831

uf) (I I
Courrently cmhmnmf; Smalliall al zmg

of new Smalitalk l_ndq){’ndwt_ software oo

and ehse of use.

sna%ha L i3 nn(unmln}
_"Lasi Y
msm Setitoms

staried: e%nppmg Hs

1% (l-pf} :
Fkavsmalitalkor Digitalk’s Smdllialk V

clopient teams with VETsion
rement and code reuse, And at

| Object Systems Tne: of Sarita Craz, Calif.,
e ehlppmg ools ainved at helping

S OH I, ’viacmtmh and UNIN
_a c\’en m(n & easﬁ‘,

v Highlands, N:J: -based Syner-

ialk Platform for Inegrated Come
Environiients (SPICE), which in:
: iudes Aset of ¢lags fibraries spicehelps ol
Iwaimm writensin Object- oy

with (e Sybase/’ﬂ;cmmﬁ SOL Server '

and wilk Nets10s or DEC-Net networking |

O _;merfaces ‘Through the Sybdse .
lalabase gateway, Sratltalk applications

H] also e ess DB‘) Rdb dnd other dam-- _
- the Smialhalk environment. The verdor: -

of copol developrient tools receimtly - 1
agreed to bundle Digitalk's Smalltalk Vo
into-its Cobol Workbench (o be used o

“Build 0872 et interfaces, :
There dre sall several mmmcr c’hdpwrs :
S LTy, however, Obser VETS,
“hote that there isstill o widely accepted
- developiment methodology for Smaltalk -
or for any other object: -oriented environ=" -
ment. In-addition, many users-are: sl gadtiny
sfriaking the gransition w0 the telational - ar
model and sireciured: pmgmmmmg -
. ifchmques DMost [15 developers] still

5t
alls the »%pp ication Orgazmex :
{of lools that hielps large Small-

Cm Smiadltl

2B
i two- other smali veridors, Acumen
i Software of- Bf:zke!fw Calf., and Tigre

nalitalk developers create Gut-based -

dor-—=Micro Focts. Inc.—is getting into

émz 1 ko w §ml 10 éo mth ﬁb}ﬁct%

o TE"aey e

the risigration w:the RDBMS™
tasha Krol, application progr

SUH iy obs iVEE‘IS tep "":m;tllmlk
.nmium\f 5

twith Caridyr idge M

For fester Rewmch Inc.:

e been ded mtod firthe. Mw form.\

-'developn .m relati Oflf:h} }WITh {B\

er :‘ cc.mes | Ol %het musa,nds oi‘ busmm soluﬂma for the

j:AS/ti{}O Sof xmre 20 004 }S Li 13 fhe h@% W’L, ve :
drice o

S day tme »‘m(i our {{)()pemm* mmrch cm{i

e {mr Bisiness S@Euham are: avaﬁa,h!z, with the m‘y

'f : ate%t A’%/ (}0 €=nhancemems

@m boﬁwzre >{>(Ser

i 'r*m‘g}fd of mmgmted f mnancial, hwna rre sour{&

e'ﬁmumema dﬂ{‘l {i}s ﬂbum«:m suftwurpt ait

' '.{)f 'ﬂse Wx a G @ﬁ’?r A ﬂu;t{, of ?(‘ mwd (mp

still-fravmatized. f!b]ﬁ_'_nmk%r_i_gi: e
‘says Naw |

: ardivedtor | -
at:the - Meta: (xmup in Stamford, Conn. | -
Srialitatk dlso faces inereasingly: suff 1
' mmpeu[mﬁ not-only froni other ohject:
oriented] languages suchas O+ % hutalso)
_ new G- i}mldmg,y touls; ek as]
Fasel from Fasel Corp. and fmm” imm"'- R
Whitewater Grotip. 5 e

ays Stuart Woodring,:
sg-based -
‘Confinued .
Costiong support from 1BM and otiers
-{mzld hc‘ip pﬂsh itover the mp.-;'- :

emure. ihat

s .amiuciaw 2 wm; e 16 '

nmnﬁamp ﬁ]mtz{m&hn wnh P(‘ nase‘ '

b i,o el wu bvtterpian for

51':' eramvp prowssmg pmducts Lhat £ dvmgneﬂ
i e ﬁ itire b} bmngmg

vour Qrganimhens mo%t mm 1! -mfm mrl’[l(}ﬁ w

th'_"desk up ?‘or £l uen cio‘;vr]ﬂtﬁ\ aL wmt a,re

:'::-__-{,all'\?:oftwam 5’0(}0 at()t).; 532000
 (Software 2006)_'_:-’,"' "
i AS/4 Bi%usm{*ss b()lu‘n(}n

C;rcie 2 on Fteade? {:ard

- 1ear]y thee bosz buqmma 56l UU()ﬁS ﬁ}rthe ’aS/e’iOO

December 1984

Volume 4 Number 12 {i_SSN02?2.1715)

CARTICLES

[rsicn Rarey o

T Aurara Systenis efls the

Siiriguing story ol this
Laenth's coverin M About
theCover Toh page 4.

L aver designt day Simpson

" A Context for User Tnterface Managemm!

Cruest Editor's Tntroduction: Hnman Inu:mrswi’ari
el £, Oirimes

The User Interface for Sapphire o
Brad A, Myers i B
The principal designer of the Sapphire window mdn.zg.u “tatks abaut ils feons: .md ST mmnmmi\ i

. this utorial on the %ereen allocation package:

7 ' '.w

N . [. o . . '“ NS - o .
Corporate Identity for Iconic Tnterface Deésign: The Graphic Presign Perspective

saron Marcus
Even with Timited resources, 3 is possible 16 impfove manamiachine communication by employing the

-sante graphic design principles used in large L‘()mmcrcizll systens,

Daan 8. Qisen, Jr., Williom Hnumi. Roper Ehvich, Daviet 3. Kasik, J'mm’s B Rhvpe, and
SJohn Sibere . .
Suecessiul interactive graphics systcx‘m'ai'imv't‘lsc'r:x'-'!o'pmduce ariphics wilhout \-\‘cén.-'ying abiiat ow

- they do k. This interface management 100! helps system developers improve hummn-miaching -

Hiteractions.,

' _Teachmg a‘Course {:n Human Fauors and Cc}mpmer Sy stezm

Pauf Green
Atombination of lectures, diseussions, videotapes, cier'r'mmtra{ions Luest lec'mruré omewerk

S asstenments, and projects resulled in a course that students and ‘their instrictor St Husis astically

endorsed.

A Keport on lhe Yail Workshop on Haman F actors in C()mpmvr Ny s(cms '

Michgel £, Arwoad .
SWhere should we be heading?'” Posing this question, these specialists seek \\';I}a e imnprove thig

relationship between human and conputer.

Index—VYolume 4

f}l k. ’\R FML.\I

Abowcihe Cover - T -~ Published by the IEEE Coinputer Socieny”
Displaves on isplay) S

Call Tor Papers

Application Briels

Selective Updare

New Products

Prodoct Highlights PR T . . _
Professional Tak ‘nd&z . : . TEER CS Membership Agplication, p.a2

" Classitied Ads s o O Change-of-Address Form, p, 79

Advertiser/Product Index co s Reader Sereviee Cuards, Y7

Décembier 1984

S deboriol {ABativing, Caditor

Even with limited resources, it is possible to improve man-machine
‘communication by employing the same graphic design principles
' used in large commercial systems.

~ Corporate Identity for Iconic

interface Design:

 Aaron Marcus

Aaron Marcus and Associates

As computer systems become more sophisticated, they
st remain friendhe, comprehensible, and elfective o
continue (oappeal to users. A crucial factor in all three of
these desirable attributes is the guality of conmunication
between user and machine,

The gquality of connnunication is included in all of (he

Aeatures commaonly felt to be found in an cffective system:

low cost, sephisticated functionality, fricndly interfaces,
and good service. T Thix common thread of communicas
ton altects the fongaerm cost of the system by veducing
the nonproductive tame during training and use of a com-
parter system, by providing the means for the user 1o take
advantage of the svstem’s Tunctionad power, and by
erhineing service guetity. when users understand casiy
how 1o achieve ther goals. Commumication van be
understood o ke plice throupeh three “laces™ ouier
Juces (preseniationad and anabytic displays), interfaces
fuser-muchine command/control and documentation
dislogued, and tnnerfices iprogramming and maintenance
ervironnients). -

Good communication generally can b dchioved when
thi following conditions are present:

Lo Simphosy-emajor parts of the sysem are few in

number o are Brerirehivilly orzanized.

Sl e I hased o cantees aasde, U Teonie et e § Jesien, T it an

podresd i e Procecdimn o0 Naoprdt NI Lobvo, Lo TURY [E18
M Phe ek orggamath appeared o1 e Hriecednigs of dne Piith s
et o feromey PR Natnowad Cingneos Clepfines Howctcion 1 of 1
Mav FUITD IR, pp 0ETY aind s

deptintod B revised form wath she senmisdon of e Moo Campuice

Cirapduics Asniciiif o,

TEner e L funidbgp

2, Clatiry—the paris of the syster areevident
3

- Familiarity—1the parts of the system remind the user

of things already known,

4. Integrity-—~the system is an ordered sum of irs paris,

5. Consistency—what the user knows of one parnt
belps in other parts of the sysiem.

6. Reliability—the system responds 1o the user in 7
frustworthy manner.

7. Responsivencss—the interactive replies of the
system are quick, polile, and helpful, 34

There are no simple rules Tor achieving gaod communi-
caton beeause all of the contributing factors interact with
vach other. Since the subject §s a broad one, ihis article
Foruses on soreen dest
perspoctive,

an issues from the graphic design

Fhuman-computer screen interfaces are often an anor-
ganized series of frames that are never scen as an entity.
Oace the interfaces are viewed as a whole, it beconies ap-
parent that one can speak of the “corporate ientity™ of

step application of typography, symbolism, color, spatial
favout, and approach 1o sequencingsanimation that
characterize a particalar system. The lorm eorporate

wentity program’™ i welt known in the araphic design .

old, which has applicd dwe approach-to the traditionat

arvas of siationery, vehicle Klensitication, siprage, and

ather forms of complex conmmmunication . This approach
can now oe extended to the design of sereens, csperially
for igh-resehution, iconic, multiwindow interfaces,

i

Rl OOk A

o
Hh

3

o7
e
St

i1 tlid
7 ¥

et t

{1

1
). 4
L §
1

11t

51

t

- |
1 EEREE DN
T

3

by

5
et

rink

. Graphic design and corporate iden‘iity.
-programs

. The systermatic appearance of Lypography, symbolism,
color, layout, and sequencing constitutes a visible lan-
“guage. Corporate identity programs establish the system
and record It within graphic design standards manuals,
Swhich, in ¢ffect hecome the source code for a graphic
“design algorithm. (Design manueals are well undersiood in
the graphic design field; in fact a design munruad Tor design
manuals has even been written.) Withouwt reproducing a
“mranual here, we can defineate the main points of a typicad
manual’s conventions. Those comvenuons relevant 1o
“high-reselation, iconic, muliwindow screen desipn appear
in the subsections below.

Typography, Variations i tepefaves shouk! be finied
1o one or two type Tamilies. Many ol the leading corporate
cgrapghics manuals in the business convmnunity have sradi-
tonaily emphasized a few well-documoented tvpe Tons,
These have proven their legibitity, rheir Hexbiliny of
display in small 1ext sizes and Targe display sizes, and their
avatkability in many styles. The more popular tvpelfaces ine
clude: Baskervilie, Caslon, Garamond, Helvetica, Finws
Roman, and Univers, ®
Sometimes two type families are combined . A Typicad
~combination of two fuces might be Holvetion and Timwes
Roman or Univers and Times Roman, that is, o vonrrs
between sans-serif and seril (ypefaces. Type size is also
o limited; three sizes {or a maximum of five) salfice for all

BDevimber 198

cistinenions sach’ as footnotes, fitles; headers, and Ggire
caplions, Wherever possibile, simple, direct changes in size
ol 2:1 or 3:1 should be used 1o distinguish the levels of
titling sizes.)

Type appears in columing, usually onc to theee columns
pér screen, with 40 to 60 characters per column. Upper-
and lowercase letters should be used wherever possible
because they are more legible. Their legibility 15 due o the
greater difterentiation of fetter shapes which centribute (o
the overall shape of the word, Reading is acconmphished by
recogiition of word shape as much as by the identification
of individual ketters. Al capital leller settings of text may
be used lor brief tides or for emphasis, but thelr exiensive
use can slow reading speed by asmuch as 13 peecent.® The
space herween words should be approximately ane quarter
the width of a capital M for variable width fonts, while the
space berween lines may vary according 1o the design of
the tvpe Font, Generadly, suns-seril letterforms fike those
ol Helvetiea require a small amount of extra spmice bo-
tween the baselines of the text. Formasimam legibility the
line spacing should produce spaces between lines prester
than the amount of space between wirds.

CThe Bines themsehees may be unjustitied (ragped vighty;
there is ne woticcable difference in their legibitinn,” The
differcnces e lenpth of anjustfied text can contribnile
tor the visuad interest of e sereen, but care must be taken
te avord strong, recoerizable shapes in (w patrern proe
duced by the ends of Hnes, The columns of text themselves
should be separated by o widih an deass cqual 10 Dwo word
spaces Tor vartable widith charncorss 1or mamy séreens 4

layaut of Uirer eolumns per sereen Tor (ext setfings of one
wide cotumn on {he right with g narrow column on the lelt
Aor marginalia is uscful.

- Typical choices for 1vpe danrs include roman-and iakics

typical Lype weights are buld, medium, and gl nithough

Lt is questionable whether Hight typelaces of small tex sizes
“will he legible on most current - highsresolution display
screens. Typical widih variotions lor type in Lext normally
Cinclude condensed, regular, and extended; but for mowt
sereen-presentatons, regular widths sulfice. A uselul set

Cofstyle variations would then mnclude medium reman, -

mediom itatie, bold roman, and bold italic for content
Covariations in normal text setungs,

- Symboliso According to the languiige of stimiotics, the
science of signs, signs may be iconie {represeniational) and
symbolic {abstract),%? Symbolism as used here refors
Joosely 1o all nonverbal signy: illustrations, photographs,
dingrams, pictograms, etc.

The concept of corporate graphics implies that all im-
ages are designed 1o meetl their umagife communication
needs, while being adjusted to produce a’visual consisien-
cy throughout the systemn. This combined approach can be

“achieved by the use of g constant scale, limited size varia-
tions, the orientation of Ngures with respecl 10 texd,
limited use of colors, limited variation of line weights, ard
the treatment of the borders for figures or pictograms.

“These visuzl themes help 1o establish recognizability, clari-
ty, ard congsistengy just as verbal or linguistic techniques
-appiied to text-help to promote simplicity, clarity, famil-
iarity, integrity, and consistency.

One ared receiving considerable attention in the cor-

porate graphic design community is the design of logos,
ideograms, and pictograms to communicate the concept
of 2 total business entity 10 guide consumers inthe use of a
company's products (packaging signage), or to guide
- vigitars through a company’s architectural environment
(architectural or urban signage). '7 in same fields, such as
{ranspotiation, standards have emerged. ' Here the sym-
botism i oTten characterized by a funclional elegance: un-
necessary variations of curvature, line thickness, shape,

color, and number of parts are avolded. Many of the most -
Swidely pecognized company trademarks are models of

‘good désign, a fact which makes them suitable for ap-
pearance in many sizes and a variely of display media.

Culor, The use of color in computer graphics has ofien
emphasized too many colors, even when only a few were
availabie. 12 The corporate praphics approach 1o eolor emy-
rhasizes the selection of a limited set of well-chosen colors
that meet the criteria of production, the needs of the con-
wnt, and the preferences or limuations of 1he viewers.
These colors are used repetitively to maintain consistency

Cacross content arcas and across different display media.

The colors chosen by a company can be a primary fous
ture i achieving recegnition by its public. i1 1he set of
selected colors is sufficientdy large, a desigaer can use them
A0 many Torms of informational as well as marketing
graphics. Some companies choose color schomes thal are
very simple, while others choose nonstandard, more subtle;
muted (low chroma) colors as (helr unigque color identiry,

Syt The appaodch o spiind organizaton charierers
ing corporale yraphic desian derives frém the BEaropean
consiractivist aristic moveniens of the cardy nwenticth cene
tury. As the approacl Tonod Bswiy into (e Torinaiive veirs
o e ipernational stele of corporie gragne desien durng

Sthe P07 stressed an artiondate . seaenioe wethod of
Cassigming Lareas for text and iustration as well as the
shackgrovnsd “fiekd or format, Whenever posaible, visnal.
" references were mnde 1o 4 serics olstrong, vasily recognized

proportions that lave bechused since cassical towss

121006, the sguare
S1:1d 14, the square-rool ol twd rectanple
1618, the enlden rectangle
101,732, fhe sgoarcroot-of-three rectanele
122,000, the double square

When munltiple columns of (680 or inges are used o
designer can create more interesting and hvely composinons

of text and fustration. A typical sereen lavous naght pro-
pose (e cqual-width coliming or one narrow and one wide

column. Typically, a large space 18 lelt e the top of the
screen Tor smportant Hiling or ilustrations. The lavout and
forms (he basis for repulating the varied groupings of text

“and invages. This grid 15 a series ol horizontd and verticad

lines that define centain arcas of the sereen for the position-

Cing of titles; text, or illustrations, The erid alsa determines
“ihe extent or size of these three clemoents. T theoway the i
~proach budlds a visual consisteney into cvery péssible

lavout.” _

While never visible in Hs entirery, the grid boalways press”
ent through its effects on visual clements of the composi-
ton. Even empty space is o meaningful part of o eridded
lavout because it can resiate the grid’s subdivisions of

“space. The coneept of the spatial Tivout grid emphasizes
“adiversity within Hinited constrains, The grid'soa means of

establishing recognizable order and hicrarchy within a
complex problem of focation, shape, size, and content,

Sequencing. Traditionally animanos and kinetic move-

mient kave not played major roles in corporate dosign pro

grams because 1the gecess W condrol has been lacking m
display media, Wlere temporal design is possible, the cor-

- porate graphics approacl again stresses sunple, clear.

modular temporal constructs, This mighcapply, for o
ple, 1o the regular appearance or disappodriance ot dens
ar the overall dramatic narrative,

-Case studies

o Several offior awemation séstes have appeared thi

display characturistics ol the corpornre Wdotisy approach
oy the design of the faomanemachine infer e witl varyinge
degrees of completion. Those meroprocesar seslenis e

—supported by igh-resolution i-mapped screens, Thisan

fcle examines ilyee black-mnd white svstemsr the Meron

CStar, the Apple Lisa, and the Intran Memfoma.

he Xetox Ster. The Merox St svstewn (see Fignee D
appeared n 1981 0 emerped Trom research cfforts w
Nerex PARC Based on publishicd documents, aomnnbe

“of the Tundamental design principles for the Sae ierface

IR AR

- - are known.d In ¢reating a system that promoted familiari-

tyand friencliness through the simplicity,; coheréncy, and -

- consistency . of its - interface, - the - designers -sought to
~--develop a conceptual model of thesystem in the mind of
the wter-that was commmunicated {hrough the visypal
- Teatirres of the interface. The corporaie approach to com-
~munkeation strives for sxactly this method—tio embody
. functions and features into an casily grisped and easily
learned system: The Xerox teain afticulated the deskrop
~metaphor on the sereepn it represent activities generally
“handled ata desk and carried it through in the visualiza-
| tion of atl desklike fusictionis and activities. This was ac-
- complished through visual objedts called “iebns, ' which
" have properties that are sumgnarized for the user in easily
“displayed and edited “property sheets,”
" By establishing global commands with consistent mean-
- Cingsthrotughouw the Star interface; its désigners were able
*to -develop another systeriatic Aaspect .of the display.
Several other methods were used to-establish consistency:

~Editing is accomplisheéd .through a single paradigm of -

Operation, whether one is editing text, graphics, files, the
o ._desi_c:top itself, property sheets,-or even programs. Retriev-
ing information always takes place theough the paradigm

“of databases, and ereating new objects is always ackisved -

through' the paradigm of copying. -

- By reducing the number oF paris in the systers dnd mini- -

“tizing redundancy,. Star designers were able to-achieve

large-scale simplicity, Cne important -aspect of this sim-

Cplicity is ‘modeless interaction. For example, the keys of

the main keyboard are used for typing only, and special
keysare used solely for functions. Clearly séparating these

“keys reduces the short-term memory requirements of the

1ser.)

The Star organizes the desktop sc'r'éen'i’nw d'space for
154 icons centered on fixed locations, each one inch sguare
or 7272 pixels. The squarish icons tend to fill up their
atlotted space and use small chanpes intheir edges to com-
municate the differen: meahings. For example, a small
corner tipped down on a pageé represents a file, while a
smali extension of the top edge of a folder repiesents a

coliection of files. Screen butions differ in the drawing of

their corners: sharp, square ¢orners representitéms of data
or characteristics on property sheets; rounded corners
represent sereen buttons and tiding within the topy band of
windows, : e

- Figure 1, Typical screen layout forthe Xerox 8010 Star Information System. Visible are sonfs of the iconic séreen but.

 tons. The icons are recognizable images of familiar office sbjects, such as documents, folders; fite drawers, and “in" -
-and “put"baskets. The windowis atleft withits title barder at the top and additionial eymbols appéaring rithe borders

. at the tight side and the boﬂ'_mﬁ'.-{Pht;iograph';courte'sy of Xerox Corporation)) -

Décember 1984 - L

28

[] - Herthesst foiad

£s vere 0% above Guoia - Tr 1
hatt A5 the. figures below }:

L34 Qer dth Qer |

%bé;'st“']’i}tial'.

R R
o 31

Figure 2. Typical screen layout for the Apple Lisa system. Visible are sorie of its iconic screen buttons, multiple -
averiayed windows, title bar, and descending submenus. Each window exhibits window border symbolism,

The Star is a black-and-white system. Color issues con-

-cern how white, black, and gray are used. The {:iesktop‘
-screen dtself is approximately 50 percent gray. The dark

outlines of the icons and the dark owtlines of windows -
" show up clearly against i, The interior areas of the icons
--and windows are white to contrast with the background.

The top border of subwindows appears as a higher resola-
tion gray to distinguish itself from the two other screen
elements: window contents and desktop. Black is used for
reversing screen buttons or icons that have been selected;
the selected item reverses within the old area, and a thin

. white rule surrounds it. All of these details represent a par-

ticular systemwide approach to the treatment of color.
The icons of the Star appear in a fixed grid layout
measuring 14 units wide by 11 units high. Another fixed-

" grid aspect of the interface is the top border of a window:

It must accommeodate two rows of window titles and local

“screen buttons. The remaining grid features are the right

side and botiom borders of windows: They must accom-
modate screen buttons for scrolling within the window,

A particularly characteristic feature of the systematic -
" approach in the Star s the standard object-command or

-noun-verh sequence of selection. Entities appearing on the
screen are either acted upon or selected. Selecting entitics is
a primary goal in the user’s conceptual modet; then the

-user selects the action or change of state {o be effected.

" The Xercx Star was a pioneering achievement in the cor-
porate identity of interface design. It represented a state-

of.the-art, ohject-oriented scréeny manipulation ina high-
_resotution system. Of considerable importance to this
- discussion is the effort that was undertaken to design not
ofily the algorithrns that support the system but also the
manner of its representation in -a systematic form. The
-conventions established by the Star have already begun to
influence later systems.

"The Apple Lisa. Following the Star’s approach is the
Apple Lisa {see Figure 2), which appeared in lanuary
“[983.% Like the Star, the Lisa offers a selection of
typefaces, inchiding serif, sans-serif, fixed-widilh, and
vatlable-width letters, and @ half-dozen variations in type
“style including shadowed letters, To utilize 100 many of
these typefaces in the interface itself would not represent .
the corporate identity approach; and the Lisa designers
wisely chose to display primarily a single size of modern
sans-serif lefters in upper- angd lowercase, with solected

" “screen butions appearing in reversed type.

-~ Some of the Xerox Star's development stafl came 1o
~work on the Lisa and influenced Appie's desigiiers 10
“adopt the Star’s desktop concept as a unifying metaphor.

Although the terms ““jconic”™ and “representational™ are

refativistic terms for representational or absitact signs, in

different systems one is able to distinguish specilic dif-
ferences in approach, The icons of the Lisa are i some
cases more highly representdtional and detailed tham in the

- Star, for example, in the garbage can icon that (Somewha

FEEE UGRA

eonfusingly) represents a wastebaskel for unneeded Ties,

© - indentatidng appear along the sides of the can and even a

handie is added on the top to raise the lid. These details
Csugpest the beginning of more illustrative or anecdotal

oddcons for more personalized workstations.

In the Lisa, the icons appear with their verbal equiva-

lents directly below them, The windows themselves and =~ -

. the submenus that descend Trom the menu bar positioned
-across the top of the screen show slight drop shadows tha
- begin toindicate an implied three-dimensional stracture to
the flat workspace of the desktop screen.
A typical difference in the interface style of the Star and
- Lisa systems can be seen in the stronger window-scrolling
carrows used in both systems. In the Star the arrows are
drawn with three thin lines; in the Lisa they are thicker,
- with an owlinie and a drop shadow. As mentioned before,
the symbolism in the Lisa is richer and more representa-
" tional from a visual communications point of view, The
symbol-set also beging to show some weakness as a com-
~pletely designed system. For example, the reversed titles of
Cwindows have unigue orramental additional lines to théir
-sides, an unnecessary deviation from a total corporate
lidentity approach.
- Color considerations in the Lisa are simildr 1o those in
/- the Star. The Lisa also uses several gray-value textures o
'_ distinguish the primary desktop, windows, and window
‘botders, but the exact grays are slightly differently dis-

' . posed in comparison with the Star. Of special note in the

- Lisa are the gray right side, gray bottom, and the white top
“border of the windows,

The Apple Lisa permits a relatively unorganized loca-

" tionof feons on the desktop, One strong gridded feature of

- its screen design, however, 1s the menu bar that appears at

thetop'of the screen. Submenus “pop.down™ {rather than

up) termporarily from it and may obscure material appear-

- ing-below. As formulated by boil the Star and the Lisa,

" the metaphor of the desktop does not inclade any cor-
porate standard for desk organization or windows.

The noun-verb sefection paradigm of the Star has been

~incorporated into the Lisa: The user selects objects first
and then the wransformations intended for those objects,
"Asz for the Star, the windows, icons, and submenus are in-
" tended to appear and <isappear Instantaneously; if this
_-does not happen as intended, it is treated as a deficiency to
-be hidden with whatever means available. In the Lisa, the
- window that appears when an icon is pressed zooms up
“from the jcom position in a noticeable transition. Many
computér graphics display systems assume that faster is
“always better. However, a communication-oriented ap-
proach might saggest for novice Or occasional users——es-
pecially during trainivg periods—that dissolves, fades,
wipes, and zooms might be of value in communicating the
. meaning of change.

The Apple Lisa system iépresents a substaniial refine-
ment of the ideas introduced in the Star system, In Janu-
ary £984, Apple introduced the Macintosh. '* This low-
cost version of the Lisa comtinues many of #5 graphics

- Teatures and makes evident the value of corporate graphic
-standards for interface design. {See box on page 30.)

. . The Intran-Metaform system, The Metaform system.

" {see-Figures 3 and 4) from Iatran represents a modest

L December 1984

Lo et

Figure 3. Prototypical screen layout, desighed by Aaron Marcus
and Associdles, for the Intran Metaform system. Visible are

-ieonic sereen buttons, an ilustrative cursor, and areas for
menus and submenus.

Figure 4. Anotherscreen layout tor the Intran Metaform systam.

development sealein comparison with the 30 work years of
-development on the Star’s dnlerface dnd the 200 work

years claimed Tor the developmient of the Apple Lisa. > fn-.

terface degign Tor the Metaform system consumed only a

“few work-years by the time-the system was anncunced in -

' - Décember 1982, Metaforim provides special-purpose soft-
" ware to accomplish forms design and editing [or the Xerox
9700 laser printer. The software resides on a PERQ high-

resolution display system, '® The Metaform’s system- -

“oriented graphic designers prepared from the very begin-

_riltig of the project for a corporate design approach when *
. they proposed prototype sketches- for typography and

“screen-layout,

The design scheme called for most screen displays to ac- |

commadate Univers topograghy in a single size for all
systems messages. Reversed type is used for selected but-

i _'_.capabrmy aiiom the User {0 sean menu options’ qu;ckl
without going through the time-coz‘nsumzng pmcess of ©. '

' 1 d S
ptmns 5‘0:' the varlous graphlcs and type: },1 es_ sx,kch ’

. Vi isons §s-the Macintosh’s high- -resolution (72 pixels per
B it dnsplay, which snmulates the actual desk%ap War
g enwranmentmcompieie AW DO notepads fHa
Cfelders) calcilator, and ‘other office tools. Rather tha

T dayy, tha- Macm!csh s pine-inch; 512><3a%2 psxel screen
mimics printed paper pages by readmg ou!- acktypeon:

: ' .'vendors willemploy the Magintosh's lcan!wlndowimenu -
o (- HELCLR tnereby mamtamlng a standard easy't'

oy .CPUfmomtcrassembly takeﬁ u;a abnut {He: game amount
- of desk space as & plece of papar, vet ity singta n!ﬂemch o
- sruare circuit board hosts a 32-bit microprocessorwitha - -

ions, M'iliiipi'c' tines «f ty'pé always appear stacked ﬂush

“eft and ragged right, which mskes the scanning of-fsts of B
“butlons and other information easier. -

leonic symbolisny for the Metdaloran light buitons took a -
special direction. ‘The corporate graghics ¢onvention for
primary module icons s 10 use narrative images that tell a- -

briel story about what oceurs within a moduale of the syg-

fem. These largeicons are somewhat like fluminated let- -

" ters in medieval manuscripls. Ja comparisan with the Star
R and the Lisa systerns, Metalorm’s images are much more
*jeonic. They ¢ontain claborated delail related to dctivities

and to other signs used in the system: They indicate ap-
propriate cursors and explain to the uninitiated what will -
happen in the modules. Similar to the Star and the Lisa;-

Metaform uses different cursors to signal svstem processes -

and states to thé user. Pen points, brushes, pericil poiats,

Addsng te 1ha Base-of use cag}abshiy of Qhe mt;ause and

light textonadari backgrouﬁd (as Tnmost dlsp!ays"tcs-

1ght gray bac:kgmund Thls ergonem_ faatum reduces

re-grealing the entire screen. . -
According to Abple Camputer thirds paﬁy Sofiwa?e"-

teractmn capabl |Ey

CPU running $peed of 7.83 MHz. Standard interal mem:

oty is 128K of RAM and 64K of ROM. Usershave thedp-- -
- tion--at’ $995 extra=to - purchase 512K of iniernai-ﬁ_'} ;

FrRMmary. - . .
Secondary memary ct}ﬁsmts af Gne bunibm Flgdneti

- disk drive with s;ngie_sxdeci 4{)0K sttirage aapacltywwo” B
- pages of dolble-spaced text. 1 the'back of tha unitisa -
- connactor port forar addniona¥ disk drive: '

The free- standing keyboard: consists of 58 keys in a_ o

;j.'-:fu i-stroke; Selectric:style layout. “TheMacintost's smail -
. size allows the user fa move the. machine easily on h;s :
arkating merlts-are ot unintemmnal) o

desic and evem ta and from hiswork

JEEE CGRA

sysiem.

" paper r;'li;ﬁé’,-an’d’ pointing lands ali coriribate to'explain- -

“ang and differentiating activities.

Color-distinctions ity Metaform are s:rmlar 10 those in
the Staf #nd the Lisa. Gray vitlies fre used 1o distinguish
" differént areds-such as light-button fields from the work

“~area; Gray allows both white and black to be used for
~highlighting #rid low lighting. _

- Inthe original Metaforny design {actaal implementation
differsslightly in some features), the screen is a tiled sur-
-face of areas. Unlike screen layouts that permit a variety of
- window ateas to appear anywhere, Metaform was origi-

2

- nally mrended 1o-emphasize the regu!ar appearance of
“widows in-fixed focations and sizes on the sereerr. This

L Eeature comr:bates 1o the uger's knowledge 6f the systern

~and reduces the spatm[clittter assoc:atad wsth itens ap--

" pearing and disappearing.

- workarea appears at the left. (This could easily be réversed
for Ieft-handed users.) By -consistently -locating :screen
"tomponentis in one place, nsérs can be helped to learn the

_layout of the system and- its fealures more quickly. The
forms ‘designed -within the work area can be of any or-

- ganization; éepenémg upor the particular function of the
- ferm

- With respeut to sequemmg, the M etaiorm deszgn solved

" the problem of thé appestance of submenus after a screen-

- Tunction buttan had been selected by having the submenu

7 bnttons descend from the seélected itern much like a win-

"dow shade, while other ‘buttons slowly rearrange them-
- selves to actommodate the new Tunctions. (In-addition
: :_selecteé biittons’ ‘vopped out three-dimensionally using a
“drops shadow techinique.) Desides the visual interest that
“such-a small-scale animation sequénce provides, the user
~iEansee a visual tepresentation of menu hierarchy. This
“helpsthe novice or oceasional user to comprehend the
changes that take place in screen organization and system
- functianality.‘Clearty, for the experienced user the speed
ot tis featurs rleeds to be a variable parameter 5o that it

e can kéep pace with the user’s familiarity with the systen, .

CDiecenitber 1984

“The menu appears at the right of the screen, wh]le the

cFraure 5 Examples of iconandoirsor designs{by Aaron Marcus and Associates) for the PERQ Accent Gperétmg'sys!ém Al elements
“of the signs have been carefully ltm;tcd to a selof marks that can be combined into the ditferent forms requ:red forthe functions ofthe -

. ’

From its vEry b&giﬁhidg Metsform designérs intended
that the system exhibit comprehensive, systematic graphic

~design in all aspects of the system: screen design, off-line
“user documigniation; and marketing materials. Practical

limitations of implementation prea%ixded the extent {o
which corporate graphic design could shape the com-

_mercial form of the systern; however, the approach and its

achievements are clear. The Metaform systern represents a

' significantly smaller investment of time and effort than the
~ other systems. byt mdzcates that cotporate demgn stan-

dards may be builf effectively into a’system with con--
siderably smatler resources than those available for the
development: of the Slar the Lisa, of the Mar:lmosh
Systems, : -

The Metaform appro*:cth 1o corporaze ldenmy is- beirg

garried Torward dn current. graphic design for Accent, a :

programmer’s operdting system on thc-PERQ'fZ. Seethe

“article by Brad Myers in (his issue of JEEE Computer

Graphics oad Applications, The more systematic. ap-

“proach is gvident in examplesof icon and cursor designs

shown in Figure 5. These signs attempt to improveripon
the original designs developed by Myers: They simiplify

- and coordinate the variety of marks used to identify and o
differentiate functions. They also attempt to equalize the

visual weight of all the signs, to reduce visual clutter, and

“to utilize repetition of forms ds an aid to the learning ofa

new visual code.

‘Future developments

Although iconic interface design 15 jusi beginning to be
intreduced into the commerical market, the ficld is

- expanding rapidly a5 new .systemis based -on - micro-

processor technology dnd high=resolution -display are

“developed. The computer g,raphics industry already has
--sOme strong, ¢

clear prototypes upot: which 1o base new
designs. Several.important jssues arise that must be ex-

plored in'the next'stages of graphically desigried interfaces:

o What is.an appropiiate scrcen formats square; ver-
tical réctanigle, or horizontal rectangle? What pro-
- portions shotld a reclangalar screen possess? i
= Where should menus be located xdeduy at the top,
ihe right edge, the buttom, or should they be floating
freely?

+ Should window orgamization be free and wnorga-

nized, or should some default layouts be imposed 4o

aid comprehension, memdry,and user efficiency?

What size and dhape should windows have, and
" should they have borders?

% Should funttion buattons, . objecs, and other il
tustrative imagery be very representational or ab+

“stract?
» “What is the ideal typeface for an interface: positiveor

reversed; serif or sans serif; one size or several sizes?
* Should screen elements appear and disappear quickly
~orslowly? How can dissolves, wipes, cuts, zZooms,
am oiher cinematic techniques be incorporated ef-
- fectively?
& How van color be used effectivelyto enable users (o

learn more quickly and to be more efficient in
“performing their tasks? '

The answers to many of these questions will emerge i

“the iconic interfaces that will be designed in the next faw
. years. Some of these systems will help establish the
. conventions for the corporate design of systems in areas

other than office automation, such as CAD/CAM and
computer-aicted learning.

Current developments presént an exciting challenge to

~the ‘compuiter systemn designer and the graphic designer

who can atid should work together to create effective in-

terfaces Tor powerful computer-graphics systems. As the -
" field of High-resolution iconic interface design matures
.-and adopts corporate design conventions and, eventually,
standards, the entire community of builders and users will- . |
- benefit by being able to see and learn from successful ap<

proaches totypography, symbalism, colos, layout, and sev
quencing. 8

References

1. - Aaroil.Mareus, **Graphic Design for Computer Graphics,”
Proc. Intergraphics 83, Technical Session B3-2, Tokyo,
Japan, 1983, pp.
Applications, Vol.'3, No. 4, July 1583, pp. §3-68.

2. James . Foley and Andries van i)am,.F).-'ndf.mremr':.%h_f!'ﬁ;. :

teractive Computer Graphics, Addison-Wesley, Reading;,
Mass., 1582,

3. Aaron Marcus, **Designing the Face of An Interface,”

IEEE Computer Graphics and Applications, Vol. 2, No. 1,
_January 1982, pp. 2329,

4, - Davied Canfield Smith, et al., **Designing the Star User Tn-
Cderface,” Byte: The Smuall Systems Journal, Vol 7, No. 4,
April 1982, pp, 242.282.

5. Ann Chaparos, - Nojes for @ Federal Graphic Desien

Martul, Chiaparos Productions, Washington,. DC 20001,
1979,

. -burgh PCm% 71984,

1-9; and JEEE Computer Graphics and

e RollF Rum Ty;)ogm,nm How 1 Muke i Most L vwhk’

_'i)uzgn Research Interpational; Canel, Ind., 1974,

7.7 losed Néur: \er-Brockman; (T?m! .S}-zs‘rf?f'n.\; i Dirapifuc {Im}m'._ .

“Verlig Arthur Nigehi, Niedertenlen, Wesf Germany, 1981,

& Umberte oo, 7 Theoryof Semicrics, Indiana University
Press; Bloomingion, T8,

4 Aaron Margus, “An brreiiction 10 the \f;'mdi Syniax of

CConcrete Poctey,”” Visible Language, Vol 8
1974, pp. 333360,

S0 il CAdeher dnd Martin - Krarepen, Zeicherisysteme der

visugtien Kommunikation, Verlagsanstalt Adesander Koch,
~ Stuttgart, West Germany, 1977,

11 Symbol Sigris, Asierican Institie of Graphic Arts, Visual
Communication Books, Hastisgs House, New York, 1981,

12 Aaren Marcus, “Colors A Tool Jor Computer Graphics

Cmnmunicmion,'_" in The Catpaiter Bmage, Greenberg, D,
‘et al., eds., Addison-Wesley, Reading, Mass,, 1982 pp
-9,

13, - Gregg Williams, " The Lisa ("Omr}uui“ Systemn,'' Byee: The

Sawealt Smmnf jrmma.’ Vqﬁ 8, No. 2, February 1983, pp.
33.50.

) 14 Gregg Wxii;mm, “The Appic Macinfosh C‘enmulcr ™ Byter

The Seutt Svstems Jotrnal, Vol. 9, N2 February 1984,
pry. 3G-50F7

15, *Meiatorm User’s Marual,™ Intran Corporaticn, Intran .

~Image Manmagement Group, 7429 Bush’ Hkt Rd., Edina,
Minn. 53435, 1984,

t6. - Porg 7 User’s Manual, PLRQ Syslcms Cor;}umlton Pils-

F

“Marcus and Associates, Berkeley, Califor-

L {irm, specializing in effective communica-
ion for computer graphics display. Pre-
wvipusly he wiis a staff scientist in the Com-

:of Lawrence Berkeley Laboraiory, From
@ : “1968-1977 he taught at Princeton University

i b and was a consuliant i computer graphics
it Bell Telephone Labs, Murray Hill, New Jerscy, where he pro-

grammed & prototype interactive page design system. His pro-
fessional graphic desigi’ work and computer graphics have been

exhibited, published, and awarded intersationally. Fle has written

and lectured oxiensively on graphic design and on computer -

araphics for professional journals and conferences of both fields.
Recently, Marcus has -cosuthored The Cemyputer lmage
published by Addison-Wesley; writtén Managing Facis and Con-

eepts published by the Design Arts Program, National Endow- .

ment for the Aris; and writles Saft Where, Inc., Vols. Fand L

- published by the West Coast Poetry Review, Heisonthe adwsor)’ .
“Boards of Computer Graghics Today “and Information Design
dovrnal, e has consulied internitionaily with major computer

graphics research-and developmient Eroups -on Ui xub;am ol
chart, diggram, and map design! on user-Triendly iconto inter-

“Eaces; and on prograts visualization/Zdocuinentation 1echnigues.

3o NG, 4, sutamn

Aaron Mareus is the pringipal of Aaron

L nig, an information-orientied graphic demgn R

- plter Science and Mathematics Departmerit

narcus received the BA in phyvsics from Princeton University

aewd the BEA amt MEA in graphic design from Yale University
©Art School. Heis amember of the NCGA ACM, Sigaraph, Yiem

Computer Arts Society,. Sigma Xi Scientific Organization. and

the American [nsiitute of Graphic Arts.

“The nuthor sy be contadted - Aaron Marcus and Associates, -

1198 Euﬁ'l@d Avenue; Berkeley, CA 94T08-1640.

TEFE CO&A-

| Don't tall
behind with

an obsolete
system

It's more than sad when a system is too
old to work properly—it’s costly. Here’s
how to recognize, and avoid, that sorry

stafte.

by David Kull, Management Issues Editor

Obsolescence, always a creeping
phenomenon, creeps more rapidly
these days. Technological develop-
ments accelerate.

Major new computer lines appeared
about every eight years during the
1960s and 1970s; that cycle spins al-
most twice as fast now. Other aspects
of information technology advance
just as rapidly. Meanwhile, demands
on information-resources depart-
ments multiply as businesses turn to
them more and more frequently for a
competitive edge. As systems age
more quickly, determining when they
are simply too old becomes more
difficult—and more important.

Two forces push systems toward
obsolescence——economics and func-
tionality. A system is ready for re-
placement when the costs of keeping
it exceed those of changing to an-
other, or when it cannot meet the cor-
poration’s needs. Often, these forces
work in tandem, making the decision
] to change a judgment that combines

the desire for improved services with
a need for cost-effectiveness.

Figuring a system’s operating costs
is simple mathematics. The key is to
include a/l/ costs. Lease payments
and depreciation are only the start,

Photo courtesy of Sperry Corporation

There are also expenses for space,
cooling, and power. The newer gener-
ations of smaller, power-efficient
cpus provide considerable savings in
these valuable commodities, some-
times making room and board for the
alder models unacceptably expensive.
And costs for technical support,
which are likely to increase as a
system approaches retirement, can
become exorbitant—particularly
when a vendor discontinues a line,
These “ancillary” costs would make
some systems uneconomical even if
you could get the systems for free.

You must also tote up expenses for
a new system. Determining them
requires careful projections, parti-
cularly when the new technology is
only a gleam in the manufacturer’s
eye. You musl monitor the choices
that are available or soon will be,
however. An old system becomes
obsolete as soon as superior alterna-
tives appear.

According to Robert V. Head,
president of CAPIT (Company for
Analysis and Planning of Informa-
tion Technology) in Stafford, VA,
there are a number of industry
observers who can project the trends
in cost and performance for

165

Obsolete Systems

(Continued from page 165)

mainframes about five years ahead
with a high degree of confidence.
Most mainframe vendors, with the
important exception of IBM, will ad-
vise customers on developments if
they sign non-disclosure agreements.
Head recommends engaging a
technology-forecasting service, such
as the Gartner Group or Yankee
Group, to help you keep up with Big
Blue.

When considering a spanking-new
system, you must give thought to the

Monitor available
options. An old system
becomes obsolete as
soon as there are
superior alternatives.

being stuck with an obsolete one by
staggering the end dates of the leases.
F. William Hoffman, a consultant
with Price Waterhouse in New Or-
leans, points out that “leapfrogging”
two eight-year leases is almost as
good as having four-year commit-
ments for each machine. You can
change one unit every four years as
your workload demands.

In assessing the risks of signing a
lease, a company should consider the
length of time the product line has
been on the market. The younger the
model, the less risk in making a long-
term commitment. On the other
hand, even a four-year lease would be
imprudent if the model has been on
the market six or seven years and is
about to be replaced. Hoffman tells
of a steel manufacturer that leased
two [BM 360 series processors fairly

late in the line’s life cycle. Even with
moderate workload growth, Hoffman
says, the equipment was inade-
quate—and technically obsolete—
long before the lease expired.

“Don’t think you can outsmart the
lessors,” warns Hoffman. “If they're
offering equipment at a very low cost,
it’s for a reason.”

Hoffman believes reliable, realistic
capacity planning is the key to avoid-
ing obsolescence. An organization
should review these plans annually to
be sure that the projections hold true.
Companies make some commeon mis-
takes in predicting their horsepower
needs. Many times, they will under-
estimate the transaction volumes for
new online systems or the demands of
sophisticated databases and high-
level programming languages. Pro-
fessionals forget that online pro-

probability of its obsolescence. Ven-
dors recognize the shortened life
cycle of systems and have tightened
leasing arrangements accordingly.
By charging a premium for shorter-
term leases—of three or four years,
as opposed to the traditional seven—
or by jacking up the bail-out penal-
ties, they're assured of turning profits
by the time the customer starts look-
ing toward the next computer gener-
ation. The primary recourse, besides
being aware of the potential problem,
according to Robert Head, is to shop
for the best deal. For most cor-
porations, this means checking out
the plug-compatible-mainframe
manufacturers.

According to Kailash Khanna, vice
president for strategic systems plan-
ning at American Express Co. in
New York, organizations can retain
considerable flexibility in meeting
their mainframe needs. Vendors, in-
cluding IBM, describe their products
about a year before bringing them to
market. “If you're looking a year or
two ahead, you can plan to use what
you know is available or what you
expect to be available,” Kailash
points out. “Then, when the time
comes, you can take the best course.”

Organizations running at least two
mainframes can halve the risk of

placements of six systems.

A. System Name
1. Primary Function:

Primary User:

2. Secondary Function;

Secondary User:

3. System Age:
4. Business Supported:

B. Design Characteristics

Assessing the situation

Data-processing managers in American Can Co.’s metal-packaging
division recently compiled reports in the format below to assess their 32
major application systems. (The form shown describes the kind of infor-
mation to be gathered, rather than presenting a sample report.) The
managers passed the reports to top management, recommending re-

System Profile

Briefly describe the system’s

primary objective.

Identify specific departments using
the system—the “owners” ol the data
and reports. .

Where applicable, the system’s
secondary uses. An accounts-payable
system’s primary function is to
maintain the company’s payable
liability and to generate payments to
vendors. A secondary use is to provide
information for tax reporting.

For an accounts-payable system, a
secondary user would be the
corporation’s tax department.

How long has the system been in use?
Which business units or divisions use
the system?

Describe the system in the user’s terms, emphasizing business, rather
than technical, characteristics. Give processing frequencies (daily,

166

COMPUTER DECISIONS

‘--metypmg

_ __.-{Cammuedfmm page 139} : -

o the user might ask;
.m hortzonta -mws‘?’ .

2t many'cases the prototypcr can
-[-j._'i:ha fnge thesetup nght onithe screen,”

cman; president of Generation Science

in Syosset ‘NY. Building a prototyp
- for users to play withbefore the dp-;
'ff.:'phcatlon is pul into final production’
- heads off many po{eﬂt:ai problems,.
- “from bugs- to!inconveniences; and.
- indkes’ for 4 more flexible sotution:

S Mnc traditional devélopmient: Seta_
“dp pros are constantly tefling users'to

“That's like saying, “Freeze the

'-responswc _
its durmg the exp nmﬁ:n atlon

ﬁ_bty will find critical elem
~overlooked in thé applic

syste wént live,” he says. “Probabl
© - the oaly ‘way we would have fou

By

. 5 __'-"'the pmbiem was by prot{)typmg'_
- :-Gammg @ mmpet:twe edge

" Nevertheless; promtypes may help t

o limé needed 1o generate vital new in-
“formation systemis. As Higbee's, a
Cleveland-based retailer, discovéred
- such. benefits: help --produ'c_'f: concret

"-__'.amprovcmems of the balance sheet.”

en, I a book and it was.update
it .';_-theory—-as purchases were: m:

i The Hast: phase s the ‘key to-the =~ a
"'--.-_premtypmg pracess, says Gary Gutts
S was achore. When top'

Inga coniract—programmmg house "4 ! - :

~ - freeze the specs,” Gutiman says.

world." Requirements and conditions.
change;: and systams have 1o be_

“holes,” in Gutiman’s-lexicon. For:

o ___axampﬁe Guttman's staff’ dlscovered-_ :

i :a flaw i a secursty rontine that_ an application's probiems before
“would havc ps‘evemed authorized

‘sers from- accessing data‘and opened

~the door o unauthorized ‘users. “We.

. §@se_d.__that__309F3§”‘_.‘3E¢.hﬂf@fﬁ the:

-Warren McFarlan of Harvard,

. Fosiermg better relations wn:h'
users won't be d;rcctly irans}ated into
Can improvement 6f the bottor - line.

©improve ‘a corporation”s ability to
‘compete by reducing the-amount ‘ol

soeckike lmany-other department'_ ;

._.stores Higbee’s has u bridal registry

o thatheips the Triends and relatives of -
o :bndes to- be choosa appmprzate_.-i"

"3hear£§ East summer that an Akmm

" Stores Coi(St. Lams) and the local

L. registries, it 1ssucd a dlrectwe £ beat '
Cthemdolive e
S EWeo used me an: apphcatmn-

programmers and Users can sort. ous

riaking a‘big cormmitment, says F.-

forewe can measure the omcame v If :

e jnucs by 20 percent; he says.

You-eolld plit & price on'user - s
_n' action, the payoff of prototypmg ~Line," Feports-Mclntyre. The: system. .
ould be even higher than it alréady - . -had Been. a priority for the- advertising”

e

- COMPUTER DECISIONS

based affiliate: of May Departrent -

~outlet for: J.C. Penney Co. (New =
- York), its main competitors, were S
- planning to” automate their: bridal =

: R ' ' - geﬁﬂfﬁtor from Burfoughs;towinthe. =
- with Higbee's ni uburhan ‘stores - race,” says Mclntyre: e Software
er allows: you to: get o, the user. a iet._- e

: un a-full year -be:: AR

shouid see aft increase m_'_ SENR
: g-gift sales: Automatmg A
. brldai registry ty;}]t:ally hoosts brzdal B

hc:dulm ané c(mtmi sy‘;tf:m using

Gaites. _Wesa‘mghc}u_se_ staff ﬁ)r same tfme hc: says “but 1t".' B

o grammer- produc
: Opti

o - -'der:§0pment tonls.

7 Ten times: wore work

;'_:‘.med prototype'
-'packages com

Tentation gt:r;cramr

Use.It from Higher Order Soft-

" ware is another tool used to build pro--

: miypes 115 Résource Aliacatlen “Tool

diagrams, structure. charts, and data-

- miodel diagrams; paints screens; ex-
| tracts: teports from- ‘databases: and
. helps prepare’ doctimeritation. Tools

~hike Excelerator produce the best re-
sulisaf iarge systems are dwaded into -

' '.-.smzill “seCtions:

_ Producmg applzcatmﬂs on: timc:"
S cand o the satisfaction of ugers g E

oo -worthy benefit, but prototyping ¢an
~also save: mOney Prototyp;ng can_-_'

protf}types as bie did deve]opmg appli--

: ~cations: via- the -traditional ‘method,

._ianguages, docu» s
-and: system—

ros 50, 000 v1dcotdpes of ”FV shows it |
o distributes to' stations across the
. couritry. The pF(}_]ﬂCt was. for one Seps
(tion.of the corporation; and therefore
was'not a high priority on'the applis
cations- develapmeni list.-
~Gaites doubts the pro;ect would have
“been: cornp]eted via. the tradltmnai
_ route
Cpermits sintulation; makmg rap;d-_
f'comtructlon of prototypes “possible.”
7 Also, it contains-a component: that_-
S speeds data” anaiys&s and mtegratmn
: OF routines.” _
-1 Other produc{s operate aon: persarxa%-'- g
P 'CQmputers Excelerator fromi Index
.0 Technology Corp. runs.on the TBM =
- Personal Computer X T (thé hard--
- disk ~version). It geénerates data-flow

W{z had: bcen iookmg at Burw_
" récalls Gaites. “The "
.--tape—managemem job; because it was
an isolated apphcatlon seeimed likea
~good place to try #t.”

roughs Ling

A project team
began constructing 4’ prototype in

January 19837 Gaites and’ his staff
sat-with users at. terminals and soli-
“cited their reactions to suggested rou--
tines: “Taking the feedback the.
'developcrs sometimes. canve back o
with ‘the éesned ‘changes within
“They could never:
~have made the changes so fast the'old
way.” The’ system was- rLzsmmg lhrae'

hours,” he says.

momhs later.

s The protﬂtype for 1hc v;deotape-'
s managemem system actﬁally became”
- the “live system,”

Indeed,

says Gaites. Users -
were satisfied; and there was o need
o.put the prototype ints production.”

system using. Data” Manager,

be says
The. shertcut as su!utmn el

: - Gaites' experlence ws;h the vzdeo—_ S
tape-managementiprototype be:
coming a’live system apparently was -
not unusual AT&T had the same ex-
. perience with -4 prototype that system:
developers wére prepared to discard;. ..
says R:F. Bellaver. Developers had
worked backwards to work up-specifi-
cations and couldn’t even wuse all the -
inherent advantdges ‘but the protos
type was o hit with the user involved. .~
e devclopers considered: the proto- B
Jlypea failure; the user refused tolet .
citdie;claimig it was the “best thing” -

- for his. department; recalls:Bellaver.
A wser may say; Don’t bother to” -

: ci{a a- production version.- The proto-
iypedoes what I'want it to'do, " says _
Joseph -E. Urban, dssociate professor
“at-the University of Southwestern” .-
Louisiana:. Even if the prototype’s -
bcnet‘x[s are shorz lived, users might -
still*be served: Some proporénts bes.
~lieve Failed: prawtypes afford usersan
educational “experience.: Users in-
~valved in their constrictiontedrn first
~hdnd about the problems that MIS/ - -
~dp-has been trymg to explain, For. -
~some-organizations. the value of this -
~Hearning: experience is worth the cost

A system"t{) admmz‘;iﬂr ccmracts--- o
“with tadicand television stations was
developed by building a prototype: el
-and moving it into production, In that- .
ccase, Gaites” staff built the motiel'_' S

microcomputer: pdckage from .
-'Burmughs and enlarged its'scope in.
‘& full-production syst_t:mmterfaccd t
- the corporate-billing application. ="
Gaites believes- the staffer who'in-. .
-Crean:d ‘his” productivity tenfold. is
“typical. Prototyping has also-cul’ the
-application-development cyele in o .
half, and that:will ‘help his staff re- -
duce. Westinghouse's appixcatmns‘
~backlog: “And-if you could put d -
. value-on user satisfaction, the payoff -
_wou}{i beveven hlghef

e egasting mf‘crmatl(m at Westmghousa " Biiiding a. ;}rerotype for. usérs 1o p%ay_i_- :
S Broacicast & Cable lnc Mllford -_wdh before the application is put into -
T - final production heads off many -
" : - potential-problems, -says Gary
Wcstmghouse used a promtype to.-.

S - Guttman; p:esudent of Generazlcn
e sct up a system 1o kef:p track ﬂfabout Sctence mc: SR _ _

-fazlcd prototypes. .

' _’.handie on their work: “Theré’s a bo-

~of wasted’ time: ané Tesotirces- and-'-__- o

“. Bellaver beileves orgamzatmns
“-that iise prototyping have a -better

(C htinued on page !45}' L

1420 o R e L e BRI _coMEUTE’R--DEC;S’;ONS T

“..more functions, features, and

- It you rieed high volume and flexibility, - -
- you should know that the DatagraphiX.:
- 0800 isn't just a 21,000 LPM laser printer. -
- It also accepts the widest variety of paper - -
 form sizes of any non-impact printer, with-
- form widths of 8.5"t0 16" and a length
~range of 3.5"1o 14" And all 9800 printers -
-feature perf-to-perf printing on paper
~weights of 16 to 110 pounds, depending
On paper type.
- The 9800 series is'an entsre!y
new generation of non-impact, -
“high speed faser printers —with

- reliability. It offers up to 34 standard
character sets, with a font editor that .
- helps you create a nearly unlimited vari-

ety of fonts, logos or signatures of your

own dessgn -
- The 9800 series comes
. in avanety of on-ling, offline,-or on-line/
- off-line configurations compatible with a
“broad selection of CPUs. Off-line models
- offer user-criented menu-driven software,
“hard copy log, 6250 BPI tape drives with™
-ping-ponging capability and more. On-line
- models offer full IBM 3800 compatibility, -
- In addition to the advantages of Data-.
- graphiX’s-advanced engineering.
- Combine these advanced-features w;th
gxcellent print quality and unmatchable
reliability -and you begin 1o see why

. -DatagraphiX is recognized asa supplier of suﬁerfﬁf‘ Ig@ﬂﬂpﬁd/

computer output management products. The full-

featured 9800 printers are available now, sefftmg . The Computer Output Management Company
industry standards for up-time in customer sites %eo%} 3855145 E%E% Bont 8525485%9 San Diego, CA 92138
throughout the US and Canada. " In California, please cail (619) 291-9960, Ext, 5581

T TWX: 910-335-2058
_ _CIRCLE 62
JTUNE 1984 S o T 141

'; _.:'_ij’f'_Prototypmg

".".(C oﬂrf;zuedfrom pge M.?} RS

S0 nusof ‘ongoing ﬂex'tbzi';ty., he says.
H;s staff- biilds in what he calls’ -
-2 Sehange hooks,” which mark sectmns_:’

.. of code that might be:changed in the
Cfuture. A year after the prototype is -

: ifra user dcpartmen;
S wants fo change elements in the
- system, Bellavet's staff can tocate the. -

CUpertinent Section of code ore easily

- than-before, Change ‘hooks imprave:

“MIS/dp commuiitty has decried.

cemplﬁsed

: 'do__c_;l_m_c:_ntatzon for updates and

FﬂV!S]OﬁS

raght sections of ‘code.”

“Prototyping also has: enéouraged'
Bellaver. to- approach large-system
developmentin‘a deccﬂtrahzed mare.

manageable way, “For years, ‘the

“If we brmg i pro-_
gramimers for rewrites, they cin grab
-onto the hooks,” Bellaver saysy
“That’s much faster-than telling.
them to- search the]:stmgs for - ihe.‘

~Beltaver explains,*

-_sysmmb 50]fxrgf: that- mbt}dy fu]i}f.

krew them: With prototyping,”

L COMPUTER DECISIONS

‘we canapproach oo
development with smaller teams that = 70
unidérstand the ;‘:rojcets- endto end.” ST
“Thie teams ' work up modélsina short 7

“time; usually about five months, Ther i

result-of -the team approach is-high- -

Ceuality. uff‘;cmn% ‘projects. . “It gwcs. L
“staffers a sense of- {mners‘mp Tme
proves the giiality of their work. and

Dallas« L. cmcion « Paris » Toronto '.Frankfurir Zurich SR
UCCEL Corporation, Exchange Park, Dallas, TX 75235

Formerly University Computing Company. UCCEL is the trademark of UCCEL Corporation.

CIRCLE 64

o -.;nsplres enthuszasm he says

B as. the’ ones: descrtbed bv Gai

_cxpressmn {-don
Tl "qarliy dirty or bad o
ﬁve tong-distance-telecommuni-

" route, his staff hag dlscaréed three.

~ certain‘amount of tifme and effort:to

- %ays,and those benefits {jutwezgh the
o false starts,

':'_'_'computtng and: storage capacity
prototypes-witl .demand. Are’ proto-

itypes resource-hungry? Yes and no:

s ~Says Westinghouse's Ed Gaites: “1

: than dsnal”

g re fined product.

- expensive machines and software, it’s
worthwhile because’ faster “applica
SR devc!opmunt is.what” manage
‘ment-is fooking for,” he'says. ©
s Ag far as Bilmade resourees go; pros

L Ctolyping dogsn’t impose: special Tes-

Notall prototypes are as succes's'f ul_"_:

“Quickisn’t neces— :

- Sométimes most of the prototypes.--
- churned odt by a developmient ‘staff
wre chiatked up to experignce. Of the
P typing part-of the development pro--
- Ccations. apghcdtmns R.E. Bellaver -
" has put-through ‘the prototyping.

-0 Does thisTow balting average distress .
" Bellaver? Not really; he says. His
© staffs Comimitmenis 10 the discarded:”
prototypes were not -heavy. Organi-

“zations mist be willing fo sacrifice’a’ “partfment.-

Cattain the benefits of prototyping, hie

Y The nwffwlency of buil dmg_-
- models anly to discard them is-one of |
- the key .concerns -about ‘prototyping. .
~Another ‘is how -much -mainframe =

self-contzined,
“doesn’t have to be integrated into an-".
-advises . Conoscernite. -
““Chogse an application of modest-.
-size You and your staff wiil

more quickly, and be able to keep -

haven't- found prototypes to be e«
" source hogsioAnd the systems gener- .
cated don't ru:]mrc: more” hardware.- s

~ Nongtheless, cautions - joseph Up
*- ban,execution time. may be slower in- - -
Ca prototype thanina proéactloﬂ ver---
sion: “In addition;” prototypes - somes .
‘times consume more memory.
o+ capacity than Jive systems, hé says. - -
. That's because ‘a @roiatype it A
‘Bellaver cautions agalmt bc:-___.._. s

'-::':commg preoccupled with-start-up
o costs M Even if -profotyping calls: fi)r-_

o quirements on-development. émploy- .

says Gus Conoscente,
According to Conoscente, Gaites,

and Bellaver, managers shoiild avoid

several pitfalls wher making proto-

cess. Most. imiportantly, don't {ry 16

prototype. systems that tie m_ge_ther_'
transactions in several-departments, -
they sav. Gaites; for ‘instance, chose™

the -videotape-management. applida-

tion 1o -be his staff's first-prototype
bécause it invoived only one-de-
Under thoge circum- .
sstances; the deve]opment staff had.
-better-control over the project and the
“consequences of mistakes -weren't so

Earge
“Start. with’ a{)mcthmg simple and
something that

other-system,”

G get started, choose an application.”

of niodest size that dogsn't have To
- be |meg{ated into-another system.”
Cmoscen?e Ban g c}'f Amenca

-t start,

learn

yoir arms a'r'(jl_md -thé'gf;:'r'_(')}ect‘- Alsa,
vou'll reduce the risk of disaster,”. -

-1 you're: looking for a likely place -
) irt, Conoscente suggests-a .
B niarketing-information system—it- ...
B doesn'tnecessarily relate to anothér: -
Iaventoriés of |

dutomated ‘system.

-real-estate-holdings of furniture are - S
P S ~ " other possibilities. Such projects have
ees. “A normal project team does the -
jabs,”

size and simplicity -to récommend:

them, he says; but they also demon=> -~
strate immiediate results in functions’ .
“that dre unautomated AR many'-_'.
"-orgdm?atmns ' :

‘Conoscente &lso

meni pcrapectwa e
OFf course,-not ali;programmsr's_'if'

~and analysts:are suited to be proto-
typers. They must work closely with
users, a role that some technicians:
find difficult to play. They musthave
‘the diplomatic-savvy fo guide uwsers -
through the process: Inaddition; the
prototypemay imitate a systemthat’s - -
-different from the final version;a .
‘possibility that users“should kaow- -
“ahout Friom the start;

ut from the start; “Some dp pros
are better thanothers,”

At bottom ‘prototypmg offers”

- médnagers aninstrument to bring the "
. high cost of development—in time,
Coskilts, cand” dollaﬂ—_«undcr control
.:_-_-.But soMme: manageﬂ “bélieve proto- <
typing is a vital tool ina distributeds
processing setup: Prototypmg puts:

1ore power-ahd control i the hands -
ers; h@i;jmg long the trend tos -
rd decentralization. "‘MlS/dp .

managers shouldn’{ Teel threatened;”

says Gus: Conoscente, “Their toles
“are changiig: They may become: pros
- fessional: consultants' within their
i :'osgam?atlons——or even: somethmg R
_i:)etter e s RS I

9?{4

" juwr

_ges managers to T
: ﬁcarefu]éy enlist uscr members of -

- project teams. The hlgher the'rankof - . -
“the user-members; the better the -
system will be,- he asserts. "For ex-
“ample, if. youre working on a furni-’”
ture-inventory. ‘prototype, entist 'the
manager: responsible for Furniture]
not a subordinate. Assign your: best
“analyst to the project as.well: Low-
.:-cchelon staffers don’t havea manage- :

o “says Bellaver. . -
- SWeltry 1o put pros with both-pro-
: --gr‘ammmg and mterpersﬁncﬂ skills on

our teams.”

rhod ever think of that?
‘The people of AT&T

_'Commumcatlans.

- People who know busmess, - |
We can help antique dealers use

our AT&T Long Distance Network so that
~they can hold an auction with different.

| custemers in up to 58 different locations. -

- Anywhere in the Umted States.

~ Simultaneously. . -
S{:)_ they can ﬁnd out ammedlately

what the trade is willing to pay for a rare .

- antique bowl.

| And any other items in the catalog |
miailed out beforehand. So their business, |

1in effect, is national.

Andthey cancompeteasefficiently

- as businesses many times their
_size and sales force.

he people at AT&T Communications
are thinking about your business in

~ ways you never thought of.

 things. -

johﬂScﬁBejr :

. ChaimanoftheBoad, - anewolds7
“+ - and Chief Executive Officer - ' o S - Los Angeles, California
- Apple Computer, Inc. o March2,1987

Teny years ago a revolutaan began that rhanged the world. 1t wasa revolution that
| f-i_put mcred1bly powerful tools intothe hands and minds of mdmduaiswnot computer '
- experts, but ordinary people who were to discover that they could do extraordmary

Revaiutzons rec;u;re i wﬂ}mgness to tzke risks...to radicall y depart from e

e conven{:onai wisdom.

| - When we reorganized App ein the summer of 1085, we dxdn t abandon the egacy
~ of our revolutionary roots. We avoided making the safe choices just to save 2 company,

i because the safe choices would have meant losing a dream. -

~ A dream 1o build great personal computers...a dream to chaﬂge the world by

- "touchmg the lives and minds of millions of people, especially the new generatioris that

: ~will inherit the 21st century. We want to be a catalyst for change by improving the way

people think, work, organize, communicate, and learn. This is a commitment to action”

'_-i_and to changing the ways things are done in the world. - | o
: “To accomplish this identity for Apple, we have built 2 work environment where
Iues are shared, ‘Where work is fun. Where creativity and innovation are recognized

o -wath amp e resources and enthusiastic appreciation.

“To create extraordinary tools for ordinary people. takes exrraordma;y talets, We

'_ have built a fun; exciting, and rewarding environment, with openness and a shared - -

- vision. At Apple we seek to create a great company that—like a magnet—can attract the

G '._:_3-'.-.;:':'.-btést“_peog}lé_m‘ work for us.as employees, or to work with us 45 independent developers, -

oy

~ - things,

 resellers, and user constituencies,
It is most fitting, therefore, that Appl eWorId bea cataiyst event that brings

‘together talented people from a wide range of disciplines and experiences across Apple’s .'
" broad, worldwide constituent groups. The real strengths of Apple are the shared vision -
- we have to make 2 difference in the world, and the innovative products we build as |
B .enablinjg technology platforms that can be used by others to do wonderfully creative

There is no power on earth like an idea whose time has come. As paradigm
shifters, we offer the world alternative viewpoints on the critical issues of productivity

o and Jearning. As we approach the 21st century, there is increasing evidence that the old

~ways of doing things aren't working as well as they used to.
In the 1960s, computers were envisioned as wonderful machmes that would
: éign'iﬁcantly increase the productivity of large institutions. The idea was to systemize the
workflow in the institutions of government, business, and education so that complex
| tasks could be done much faster. | | |
Yet recently many leaders of institutions are reahzmg a curious thing: As
processing power dramatically increases and at the same time becomes less expensive,
- we are failing o see a corresponding increase in the productivity of large organizations.
At Apple we see the opportunity to increase productivity through an alternative
'pamciigm‘ We choose to focus on people rather than on institutions, We seek to turn -
. computers into powerful, easy-to-use tools that will give individuals the chance to .

. discover new ways of learning, working, and communicating with each other. We want

| ~ personal computers to be a catalyst in the process of discovering new ways for people to
~ do things. By getting people to work better, not just faster, we believe we'll help people
. tobe a lot more productive. And therefore institutions will be more productive.

It comes down to just making the experience of working a lot more interesting. We |

. h‘ave barel ly begun to see how innovative third-party companies and users will be, if we
can provide them with an expanding range of incredibly exciting personal tools.

In the process of systemizing work over the last two decades, we may actually have-
' made work boring. I's hard to be more productive if what you are doing isn't -
 interesting, Tt's hard to be more productive if it's difficult to learn how to use the .vfe'rjr

. tools that are supposed to make work easier.

" Just as there have been disappﬁintiﬁents'abauf pfﬁdﬁa’ixﬂw in the work 'piac‘:e, '

- there are also doubts about the quality of education in-our schools. The traditional view -

" of education has closely mirrored the requirements of an'industrial age. We are now past

-~ the transition point of becoming a global, dynarnic information-intensive economy. The
~fact is that young people entering this new world can expect to change jobs and even -
~careers several times during their lifetime. Learning must, therefore, become a lifetime

- _experience that is not limited by the boundaries of the institutional walls. Yet education

s sll conceptuahzed as a structured, rule-bound process.

- Tknow that there are many progressive educators here at AppleWorld today who |
71'_beiieve as T do that the best assurances for gaining a competitive position in the world are

S diréctiy dependent upon the level of commitment to innovation and resources that we as
2 S‘Cciety-provide to strengthen the quality of our education system.

B *Inan industrial age, most jobs required repetitive manual skills. In an information

-_:jage, the best jobs will have some information content.and decision-making requirement.

‘If people can work better and more productively, if we make work interesting,

isn't there also an opportunity to make the education experience more productive by

o making learning more interesting?

We believe that personal computers have only begun to be used in ways that can

- make a difference in education. We see the personal computer as a wonderful,

B increasingly powerful simulation machine that can be used interactively by the studentto

Jearn at his or her own pace, with the capability of customizing to the way that is most
 effective for the individual, We are inspired by the possibility of new learning concepts
‘built around experimentation rather than memorization, We dream of libraries of

' : .-knw?ledgethat are at the fingertips of every student, rather than just 2 collection of

~ books in 2 building, - Libraries of wonderful, high-quality color photographs,
' --"high#ﬁdélity sound, and text annotation—all accessible on a personal computer.
| The personal computer industry has made it through its slump. We are about to |
 entera period of exceptional growth and the introduction of many exciting new |
| products. -Now more than ever we need a framework against which to judge the choices
| -and appreciate the opportunities ahead. | _ _ _
- Inthe 1970s, data processing was the central purpoée of Cdrﬁpute‘rs. This was a time -
- of Ea’rge mainframes locked away in high-security temperature-controlled rooms.

3

~ While all of us were conscious that the cost of computer processing power was
. dropping dramatically, few of us realized the implicationss it would have on shifting the
epicenter of the industry from the mainframe to the network: Today, the giants in the
§ :com'puéér industry are scrambling to redefine their product lines in a distributed
. processing model, as opposed to the traditional data processing paradigm.
| I predict the epicenter will shift again as we discover that what we really need to do |
s niot just connect networks to computers, but connect information to people. For

- people to be productive on a connected network, information must arrive ina

o - recognizable and useful form. I believe that by 1990 the epicenter will shift from B

i distnbuted processing to document processing.

T - We have already begun to see with desktop pubhsh&ng the p{)wer ofa - |
'. .typeset~qual1ty document that includes high-quality text and graphics using professional

S __iayout tools.- But until now, desktop publishing has been a stand-alone product concept

As people begin to be connected in workgroups, the preparation of documerits can

" beashared responsibility. But we have set a very high-standard of expectation in terms

of ease-of-use for stand-alone desktop publishing applications that must be maintained

- with workgroup solutions. AppleShare™, our new desktop communications product

'_'f:sffermg, does exactly this. |
*As the critical mass of stand alone and connected workgroups grows, so will the

e .mﬁrket opportunity for new graphics-based software and peripherals for document

- preparation. |
o As workgreups have the ability 0 access mfarmatmn regardless of where itis on
 the '_ﬁetwark, documents will take on an increasingly important value based on their
timeliness and on the inclusion of realtime information. As artificial intelligence
*becomes increasingly important, document processing will lead to increasingly

- intelligent documents.

| Document processing, hawever is not limited to the printed page It embraces the

o _'-tmnsference of valuable, customized, and analyzed information into enhanced graphics, |
~ text, and layout for clear communications. - In fact, some documents may never be -printed |

~out, but only read on a display.. Conversely, printed documents must have an easy way of “

- being read into computers and indexed as archival records and source material for future

| documents 1 predict that in’ the future all word processing, spreadsheei data base,

4

- ﬁ':chaniﬁg,'_and communications applications will have 2 _I'_aycut'and presentation capability.
" The intelligent document as a metaphor, therefore, is even more important than the
" document as a physical thing. _ _

~Qur goal at Apple is to- make this progression toward the intell rgent dm:ument

= happen in a logical and consistent way. We have been committed to graphics-based -

“-systems for years and have carefully built a systems software technology that can grow as

_Z'i:cmmzmications and high-performance products are added. This is possible only

- because we have complete control over our computer architectures—which lets us -

- optimize performance without having to make compromises. At the same time, you will
. see real evidence this week that Apple has actively started to adopt important industry -

- -'_standards while helping to create others.

*‘What is clear is that the personal computer's roIe wxii only became more 1mponant

- astime goes on. With the quantity of information doubling every 2-1/2 years, we will

“ either learn to cope with it or be overwhelmed by it.

_ High-resolution graphics and superior human interface, two ideas that were B
- considered too radical only a year ago to be accepted as building blocks for the

- 'mainstream of personal computing, are now emerging as two of the most important

- foundancm stones for the second-generation personal computer. |
“This is an example of how exciting technologies, independent of a framework of
- understanding, are often misunderstood. . But the real source of optimism for the

~* personal computer industry ahead is not based solely on new technologies and new -

~products we will introduce here today. We are seeing the convergence of a conscious,

. genuine need to radically change the ways we work, learn, and communicate, so our

e institutions can be more productive and our people better educated, and 5o a strong, -

:-.__-Zafﬂuﬁnt. ‘middle-class marketplace will survive and thrive in a far more complex, global,

-~ dynamic economy. .

| -As graphzcs—based téchnol ogy moves into the mainstream because it is now clearly _
needed by the users, we expect to see a tremendous surge of activity by third-party
i companies that will be creating software applications, peripheral products, -acce_ssory
- products, and communications products for our secéﬁd*ge;aeratéon'p;erscnal compute‘rsf.. -
S we see a framework with the epicenter of the computer industry progressively

o _:' “shifting from data processing to distributed processing to document -'proces_si;?ig: A

¥

- framework where documents will become increasingly important as more and more

- people are connected together over networks. A framework where documents

" themselves will becorne increasingly more intelligent as data can be easily accessed from

B --anywhere and as we move toward increasingly higher levels of performance with

- personal computers that can eventually handle expert systems and artificial mteihgence |

- applications. A framework where the second-generation personal computer will play a

R _'-__ve'ry significant role in merging high-performance functionality with 2 superior

. gmphics -based human interface. - o -

© - 1t'is within this framework that the plans and opportumnes for Apple over the -

. cormng years can best be understood. | -
- Today you will hear about a large number of very s1gmﬁcant pmducts from App!

o and thu‘d -party developers that are being announced at-AppleWorld '87.

s For the office market, what has been the high énd of our Macintosh™ line sucidenly' -
= bef:()mes the low end of that product line. | | |

| We have expanded the performance of Macmtosh whﬂe now sffermg a chome of

§ compattbl ity with other operating environments as an-option. _

| We are announcing a significant development for AT&T® UNIX® that wil give

* high-end users the opportunity to have the same outstanding human interface on UNIX®

S - that many have become accustomed to using with Macintosh.

- ‘AppleShare and the related workgroup productivity communications pmducxs that
; : we annouaced in January WIH now have an even wider 1 range of choice of file servers,
" since AppleShare products are fully compatible with the new Macmtosh computersthat

| we will be announcing today.

. The expandmg range of Apple 5 product line, mcludmg the abz zty 0 use mdustry
standards such as Ethernet and Token Ring to connect-into host environments, will open
”up new opportunities which we intend 10 pursue: wuh the federal government :»md

- 'hlgh-end resellers.

“But in spite of al you will see and hear about thzs week it s :mportant to keep in

- 'mind that our pipeline is still filled with even more new products to come. Before the

T end of 1987 there will be more announcements, and still more in 1988,

‘We are even making significant progress in the development of the technolagzes that
= we hope to be able to use in our products in the early 1990s. =

- &

o We are 2 niew 'preducts"compa'ﬁy ina new -'pm'du-cts industry, and never again will B

" we allow Apple to get behind the product-development power curve, - Staying ahead of
~the pmduct-developmem power curve is very important for Apple in terms of the

' ~positioning of our company, in terms of assuring strong third-party innovation with our |

- technologies, and in allowing us to maintain gross margins high enough to support the . -

- significant research and development expenditures necessary to support two system

- software architectures...Apple® 1I and Macintosh.

~ Apple is a company of meaningful differences, not better sameness. We intend to be

e _' the catalyst in this industry—the catalyst that will provide the best opportunities for

. others to innovate with our products, and will offer still others the chance to pioneer -

" new markets and new methods of selling. We strongly believe the future health for the
entire personal computer industry lies in being able to add clear value, not in turning the

' industry into a cookie cutter operation for clones. '

| Last year people asked, “When will Apple be abie to connect to theny?” Next year,

o p-red:ct the question will be, “When will they be able to connect to Apple?”

~ The second-generation personal computer is here. But the second- -generation
persona} computer is not 2 box. It's a consistent set of building blocks that form a.
systems software architecture—an architecture that retains the elegance of the
. stand-alone Macintosh and Apple Ilos™ in “look and feel,” yet has the industrial Etrength |

"~ 10 be able to work in a serious network and data communications world.

~ Not long ago, conventional wisdom held that Apple had embarked ona lonely and
~dangerous course by investing so much in the Macintosh technology. | |
Today, as the rest of the computer industry bumps up against the ceiling of ordiﬁar’y
| i'.'{:'éniputer technology, Apple is just beginning to realize the potential of our original idea.
- While our competition’s whizziest 32-bit machines can only run the same software
slightly faster, Apple computers are setting new standards of speed and performance

. with totally new kinds of software.

~ Qur revolutionary idea isn't a silicon chip or a clever twist on technnlogy Itsa

- '_'vi'sion of how computers can help people accomp lish anything they set their minds to do.
| Simply put, it's “the power to be your best.”™ N
And when you think how much that vision has changeé our world in the pass -

o '_decade, just imagine how far it can take us in the next.

7

-~ Apple. and the Apple logo are registered trademarks of Apple Computer, Inc. AppleShare; Apple 1GS, -
AppieWorkI Macintosh, and The Power to Be Your Best are trademarks of Appie C{;mputcr Ine.
- UNIXisa regxswred tradettark of AT&T.

CAPAES
f {ISAAND
 MANTOSH
~ AREOBJECT f

-BA’SED;_’;f-’--' $

o ;.'-pmgrummer prﬁdumvny campured wuh iradmomi struc_ture programming fechnigu

"BYJOHN W, VER Y

1-Just dt}wn ihe road fmm the general :
| store Sandy Hook, Conf., past a.| f
| sweeping turny i’ the: Pcctazuciﬁ River |-
| where all that could be-heard was the "
-] rush.of 2 waterfall and the rustle of pide’
.| trees; there sat, many years ago, ated.
1 brick bmldmg that'saw the begmn;ngs of |’ _ i
.ob}ect‘cnented pregra 'mmg,'
-nigue fast beconnng: commermahzed B
‘Love’s venture-financed PPL; and by suc
firmsas AT&T, Xevox, Tektronix, and Ap
~ple. These vendors and 4 gmwmg fisto
large ‘usersclaim- that: object-oriented -
Lprogramming systems (no one . cally

A iechna}ogzca% revolution. -

Jo 3 was there in the riid- 18005 it is _'
'_'saui that Charleés Goodyear worked to
A pérfectihis accidentally discovered pro--
w4 cess for. vulcanizing rubbier. Vultsniza-
U1 tonfurned raw -sap from ‘the Amiazon
: -sn{oamugh versatlie product that even-

' . otually: was used dn-the o

) .'.manufaciure of auto-:

"-_--mobx_l_e__ t;res “Good-
CYEdr's 'disr;{wery thus

: mciustry

mrca 1831, is still'there,

chicolate chipcookies,
-“is there, 1o, and. one

whispering and the w

'Productmty Prodiicts *-larernational

(BPL) 18 10 be believed, thers's another)
tevolution Eﬁmemmg Behind thoge: br;ck_
wialls, one that i§ about to change the way

: _.'anotiler mdastry doeg business.

U This revolution: has o Lenin as 1ts :
“f ery jeader—Love's: ﬂashy white’ Bmw:
betrays strictly capitaiist tendencies—-
‘| :nor does it need oneT lnmsam@ven‘emrj
of the peaple; nda worldwide one-at 4.
| that/ From Oslo to Tokyo to Palo Alto, | “in
i Ale growing niasses; their consciousness: | d
I razsed at international ccmferencas are’l o

transtormied. an erm;'e' =
' iearly extended the possibilities of com
“puter programming, they. have ‘been les
'_than sahsfactory when deaimg Wit
' 'se_}]mg _everythsng.frorn_-- 7] i : '
Jaminers and nals 4o -

- ‘The genéral store,

- The 6ld brick building

ich’ mmh i es_ dataand; eigcmh Prag

_'m hls grave 11‘
-'-structure :

'they deman{i _

of :hxs rew:nlutxon get'their way; class an
.mherztance willd i fact become

themGors yet) are already makmg g00

“or the promises that the a5t great: lesp s
forward-sstructured '
f:contmues to male. But has yet to full

- programming

CAlthough structired methiods ha

.-whnse specz{“ catsons are sherefore ¢

cultto pindown earlyisi the deveiogm&n
S -c:ycie Back]ogs ccmtmue 1o grow, bug
- can still hear the g]meS"- :
: ;'tenance is as tough'as: ever
CtEry s;}ﬁhng overrocks outsides And A0
"1 Toni Love, “chairman-and; cofounder of

Structured programming:

3 smalt fielp,” states Love it ;vazded-'..- ;
By 69:-10% o 15% lmprc}vemem inopro-
~dactivity” when pesple were 1éd ¥ faoks-
“ing for improvements of 10 1o 15 fimes
“Object-ariented: pmgmmms' ' g
1 claims; staid “ready’ to. provide these -
needed improvements | bu:ause they:of
“fer means for aradically. “differént; hore
-“intuitive!™ way, nf ccmepau'xhz:slg and.
'buﬂdmg Sys_ems : o

i taols) H

DATAMAT ONQMA‘:‘ 119

| world'in terms of cooperating “objects” |-

1 ‘messages to one ariother. “IU's program .|
L ag stage play,” states ‘one convinced:
"Jiuser. - R o
S Obje foing is |
] the - structured programming of " the-
1808, says Bjarne Stroustrup, & rESpHEct-
e software thiriker at AT&T and author of
| its object-oriented langdage, U4t “In
-1 the right hands it is 2 major lever. .
L YT significantly more of a revola-
‘tiony thafr structured design, because it

ct-oriented program

©] applisstto. a. wider vafiety of applica-j-

tions,” commetits David Thomas, asso-.
| ‘ciate. professor of computer science at
1 Carleton University, Ottawa. v
‘Yision of a Globul Market _
- Of courge, the object-oriented gang -
' may sound less than; well, less than-ob-
~Fjective when they claim their approach

F hn;}révé's'pmgrammer*s’.?;;mductivity by
Cfactors of 25 or more, OF that it is more
| easily used by “lesser trained ‘program-

“rhersT or that it finaily, makes possible :

ndustry has coveted for so lonig. Per=
- | haps most fantastic is the vision some
“lghare of @ potentially global marketptace
"] for software components analogous o
=~ 1 today's microchip areha. Love’s PPl has
o already trademarked “the term soft-
- ware-IC” and is seeking partners to help
tsild sch comptnents, B
oo Surely the: multibifion-dollar soft-’

| ware busiress hds seen.more than its

} fare. Yet, the factis that a growing num-

-} by substantial capital and resources, are -
1 successiully - ‘hawking ._'-objet:t-'oﬁented _
A tools: There is serious talk amuong softs -

Y ware theorists, moreover, that ‘ohject-

| oriented techniques wilt fundamentally
‘¢hange the way. Computer systems dre '
conceived and designed. Large compa-.

‘complex. software-—companies fike ‘LM
1 ‘Fricsson, AT&T, ITT, and Hewlett-Pack-

.| Object-Oriented - Programming; . Sys-

1 tems, Languages, ~and - Applications
{O0PSLAY was held. Some 20° vendors’

~j showed up for the ACM-SIGPLAN ‘spon-

~“Revolution

_ : ‘space _(justib’#ér.li}@d people got in). |
“that ‘relate ._i:;y__passing_s‘tric:ly defined 1+

sIntelligence Agency, were surprised by
“all of this—bit onlyafittle. 7

“with object-oriented programming for a

- Daniel Ingalls, a principal engineer at Ap- -

1 'ihe retisable software “comporients’ the 1

“share of snake oil and wonder cures be- |

‘ber of companias, some of them backed -

nies whose products depend heavily on

{ard, to name but a few—have adopted
| the teclinology in-one form or atiother. -
‘Revolution or not; something is gomgon.
: . “Fangible evidence of that.some- :
| ‘thing "was -séen in Partland, Ore., last
‘October when the first conference on

e sored chnference, more than 50 papers
(antyathird of those submitted) wete des
Tivered, and some:pecple hoping to at-

The meeting’s prganizers, who' repre-
sented everyone from1BM to the Central”

4 lot of people have been working

while now and 1his conference wis ovet-
due,” -says -OUPSLA program chairman:;

ple Camputer Inc. ' The fact that we had”
to turn people away shows that the-area
js really growing.” .o D
-~ “1t’s an unstoppable trend,” de-
clires evén Tom DeMarco, a noted 26—
vocate of structured methods who 18-
founder -and a principal of the Atlantic -
Systems Guild in New York.» - .
"While - similar -conferences - have .
been heid récently in France and Britain,
there are other sigis.of object-orietited
‘programming’s intreasing - acceptance.
Digital Equiptment Cofp.y for example,

o SMALLTALK
" BINDSDATA
~ ANDPROCE-
- DURALCODE
~TOGETHER. - -

Group in Hudson, Mass,, where it does”
much of its work in artificial intelligence
and advanced programming. - . .

Another big industry name, Xerox,
has spun-out s new company, ParcPlate
Systen
and market 4 variety of software tools
centered around : Smalitalk. That lan:
phage; dével
at Xerox, is considered by most observ-
ers to represent the archetype af - ob-
.jectsoriented programming. Xerox has

‘seeking more such ‘partiers, -according
to Adele Goldberg; ParcPlace president..

heiped fund @ multimedia database proj-
ect whose prografnming is object orient-

combines texts and illustrations into-a

teachers and students’ using workstas

1 of Smalltalk for the 1BM PC family. The
- software has found extefisive useat Oli

has set up an Object-Based Systems

5 in Palo Alto, which-will create .
aped over the past 15years
licensed Smallialk to such firms as Tek::

tronix, Apple; HP, and Sun Microsystens .
for use ‘on various workstations and 35

-~ Thére’'s been activity on campiis, a5
“well. At -Brown . University, 1BM has

ed. The -so-called Intermédia systen’

el of - information” - that “ean” e

tions. It is inleresting tongte that Brown

“programmed IBMRT in part with software |
I migrated from Apple's Macintosi. .~ - g

" Dave Patterson, a professor at the | '

‘University of Cali{ornia, ‘Berkeley, has' g’ .
designed & raduced mstruction set com- |
puter

(RISCY - microprocesscr designed
specifically to run-Smalltalk. s falled |
sOAR. Farther up ‘the coast at Otegon
State Usiiversity 1 Corvallis, computer

that the Arstprinting of his book, 4 Little

‘teaching version of the fanguage, which
goes by the same pame.. - R
“In nedrby Beaverton, where Tek-
‘tronix “sells A line.of ‘Smalitalk-baséd
‘workstations, - Servig” Lagic - Develop- |
“ment " Cotp. ~markets’ Gemstone, . an
“object-oriented DBMS for - personal comi-
puters - and VAXs. -Computer Corp.f:

‘America, Cambridgs,
-~ Digitalk Inc.; Los Angeles; sells for
$99 an impressive, hoeEroWn Version
vettl, thie Ttalian cothpater maker, -

claims to have installed some 2,500 cop- |
ies of its DbjectivesC package, a prepro-

| cessor that feeds standard C compilers |

with ohject-based code. 1t also gells Vg,

which interpets C and Objet

poses. Customers inclide Hp, ACEuray,
“and NASAL TR
APiaduct with Pluses SR
ATET IS gedring up 1o ';n_zsh"(?_-{—qw' .
" intg the commercial market after seeing -

‘it-find User at some 200 universities |
‘worldwide, according to Zach Shorer, }.
.produc‘{_'_manager-in‘_:_Mor‘r‘is‘_tcwn.,.___ﬁ_j. 1o
Shorer claims that over a million nesof

‘that the: Janguage; even withott -ratich -]
-push from the company, has been adapt- | 0
od to machines ranging fromi Unix work- -
stafions to Amdahl mainframes; a Cray |
supercomputer version is in the works: -
‘Bjarne Stroustrup, the. langidge’s mods
est author, says his C 4+ is “spreading | -
like ‘wildfire’- within AT&T, where it s
used for; among other things, simulating - -
Vistehips. o B
.~ Key Logic,a Santa Clara offshootol |
“Tyrishare, will 500m introducé dn entire- |-

“tend-had to- be turned gway for dack of

‘browsed, annotated, and shared among.

Mvsand competes i termis of transacs -

T4 DATAMATION £ MAY 1,1987

science instructor Titmothy Budd reports

Smallialk (Addison-Wesley, ‘Reading, | - g
;-Mass;,-lQB?){ﬁa‘S‘sx_}ld-out; He-hasalso |
‘sold about 300 copies of his Unix-based”

Mass., is under- 1 -
stood to be working on similar products. . -

" Rack in the States, Tom Love's PPE | :

{ tive<C code
for -debugging and - instructional pur-

C + code exist within AT&T alone, and -

dy né’w-l'ppErat'ihg's‘y*stem-fcsr:_?}?_!;}'-type_ :
mainframes that completely. rephices - -

Y ppmiposed of objects.

tion processirig speed with 1BM's TPF/2
‘(the former ACP). The software has been -
" written in'an object-oriented version of
“pL/ 1, according to Key Logic president
| Ann Hardy, “We couldn’t have built the -
Syslem withopt it,”" she says. o S

" The cia has commissioned Xerox fo

| ‘buitd a system cailed the Analyst, a “mul-.
‘Himedia spreadsheet” that enables inteili-

gence analysts to peet inth numerous
“yextual “and . graphical databases at ‘the
sarfie time. The hush-hush systermn ‘is

“Restof the ﬁﬁbﬁu'{échﬁi{wé?-

" Enthusiasin abounds, “We've been

convinced since 1975 that thisis the best

olthe known techniques,” says Carleton
-University’s David Thomas, who was
| givena private showing of Snralitalk back :

~ | then. But as he and others are quick to-

“point-out, it’s only beenrecently that ob-
ject-oriented programming has become
cominercially - feasible, because it re-

quires sitbstantial computing resources .
to be effective. Prices for memory And

processing power “have reached low

‘encugh lévels, particularly in the form of-

desktop worksiations, that niow the ba-

E -sicg of the object-oriented technique can.

| be taught and used throughout industry
and academia: “Now there are a lot of
_pedple beavering away at this technolox

gy, he says. : :

- MIt's definifely the wave of the fu-
fure;” states Paul Cubbage, senior ana-

Jystat iidustry researcher Dataquest in

: .”The.. s

‘Revolation.

San '}'rjée; ‘He déesn't. thiﬁk‘,‘; however,

““that it will be at the center of the market

untilthe 1990s.” "L
.. .-Indeed, even Love, ‘who's raised
close to $3 million I venture-capital to

launch. PP, believés the néw methods
1 and languages have @ long way to go be-.
fore they dent COBOL uisage 1o any ex- -

tent. “We won't go bust: pur pick on’

i that,” he replies when asked if PP1in-

tends to try for the mainframe market.
Instead, the compary plans to attack the

| ‘applications . backlog " at the “fringe,” {
‘| where entirely new, advanced, and often .

complex systems get built. Insuratice
companies that-have to-build their own -
multimedia databases, for instance, will.

be forced to adopt object-oriented toolsif |

they want to succeed, Love maintais. -

7 If there really is an object-oriented
revolution going on, Smalltalk is its mani-
festo: Formost people;itis thefirstthing -}
that comes to mind when the subject

of object-oriented programming s

broached, A product of Xerox's Palo Alto>
Research Center (PARC), Smalitalk was:
the brainchild of the company’s brilliant °

computer scientist Alan‘Kay. Kay's pre- 1

cocious visionin the early 1970s wasofa -

notebook-sized . computer -~ with which.|

childien and other ~nontéchnical -users .
could interact -graphically throuigh a dis- -

“play of two-dimensional objects: The ob= |

jects would reflect the machine’s internai

state and could be manipulated tochange

that state. e e
Dynabook, -as Kay referred-to his

@ .

T VisiTAT oM

o f RAVE-L ¥AlLED ‘S0
A3 A MOTHER, ROBERT?

“laptop dream rachine, could not possi-’
‘bly be built from the hardware or soft- .-
ware available back then. Nevertheless, | -

fie and his team of researchers (whichini- |

cluded Ingalls and Goldberg), built and 1 -
_simulated as much of it as they coutd | . -
“The fruits of their labors were a dazzling | -
“series of innovations at PARC that helped 1}
yield, among other things, Xerox's Alto |-
‘and Star workstations, the mouse-icon- |

window-bit-mapped-scréen display - as. '

the leading jdea’in usérinterfaces {popu-| -

larized by the Macintosh), and Smalitalk |
‘as a way of life.”

Well, almost. Smalltalk was not just | ity

angther programming - language,. -one
quick]y learned; it 'was 4 coinplete pro-
gramming. ““environment” “uniike -any--

‘thing anyone had ever seen before. It |
‘provided an abstract world in which the |
usually distinet boundaries betweer pro- 1
‘oram-and operating systemand between |-
data and program were blurred, a wotld |

it which a fiew conception of program--4 -
ming could flogrish. - T

Primory Cavse af'_érpiéx! failure .

procedural programming, as seen in FOR-

“TRAN and COBOL programs, for instance.:

Data are structured in some way inorder

‘that they may be processed by a separaie -
‘and shifting collection of procedares. But 1
‘sirice there is nb firm- connection be- |

tween -these two elements .(they are

stored: ._‘_‘Wiihd‘ﬁt'. context,” - Love ex-
‘plaing), @ change in-data structure can |-

easily invaliddte some-or all of a pro-

gram's routines, -and. vice' versa. This, J -
say software: theorists; is the primary |- g
cause of failure in"large, comipiex proj
-ects where no single pefson caneompre- § -

Hend ‘both ‘data strictire -and- program

logic in their totality. -Traditional lan- |
' guages {orce programmers to relyonpo-
“tentully faulty assumptions about which ™|
data types are valid for which routines.

“As a result, fixes, patches, dnd-ex-

‘tensions to a program tend 1o produce
‘unwanted, unpredictable side effects and | .
“everl catastiophic fallures which, so'far, |
‘o amourt of form of structored method- §
ology has béen able fully 1o prevent. "At’
‘ahout 100,060 lines {of ‘code], things:

stait to break down with the old meth:’ g

1 ods,"states Love. “As your ability touns § -
“derstait a'system declines, your ability | -

to add to it declies as well™ -
"I contrast, Smalltalk and related

languages bind datd and procedural code
|- tightly together—inseparably, in fact= .| .
-1"in the form of objects. Eachiobiectons 1|

76 GATAMATION L1'MAY 1,

I-tains its own _dam,'_a‘pp‘rc;:riai‘ely_. sty g

The a;ery_.n'ameﬁ-ef' the data :jjr'o'ceés'-f 10
ing industry ‘reflécts the paradigm ol

- The

“Revolution

tured forits particular ise, to whichithas
‘sole access and sole responsiblity forma-
/| ‘nipuliling according to private proce-
“dures. Thus, there's no chance for data
and ¢ode to get out of sync with one an-
1 pther, as it were,and there is greater
| possibifity for building flawless " pro- |
1 grams quickly and i a way that permits-
{ almost -endless extension and change.’
| With relative ease, objects canbe put tos
gether 1o form new systems and extend -
| existing ones. “You don't destroy‘the
original {code], you just extend it and.
| build upon-it,” explains Jim Anderson,
- Fopresidentof Digitalk.
1° Objects are quite different from tra-
| ditional subroutines. For one thing, they
‘| refiect a deeper abstraction: by strictly
“1'Lying data to code, objects actually msm-
1 tain structure and context even as they
*{ helpfully “hide” those qualities from the
progratimer, ‘Moreover, they respond '
‘only teé-certainstrictly defined messages:
passed tothem by other objects. Once it
receives a message it knows how Lo han-
| ‘dle; an obiect takes full control of the sys-
temi until it passes control to some other

1 object via another message. (In contrast,

-_tr‘aditicnai' yellstructured” subrou-
“tines eventually pass-control-back 1o & |

‘main routine.) The programumer need not’
know anything about an object’s internal

structure, either its data or procedures, -

‘yethe canstiil use the hject i he knows

the messages it can receivé and act upon. -

Finally, the object’s interface to oth-
er objects is clearly defined and cannot -
‘be ‘subverted: a Smalltalk program <an-

not jump suddenly into the middle of an

object in the way that a wayward FOR--
TRAN program might mistakenly activate
code deep within a subroutine. This’
strictly defined intetface; combined with

the fact that data and procedures are |

sealed away from dangerous tinkering,

prompts talk of a future marketplace of |
“software chjects, designed fo be cat-

aloged and available off the shelf from
networked libraries of colnponents. -

Already, Artecon Inc..of Carlsbad,:

Cahf., selis a family of basic graphics ob-

jects designed to work in pPI's Objective-

C environment. Love expects additional "
sets of uselu} objects to become avaifable

in such areas as communications, data-

hases, and user interfaces,

- In additian to their encapsulated na-
ture, objects gairi riuch power from their
ability to iafierit propertics and behavier.”
All objects resideina many-leveled hier-
‘archy of elasss, Each object is consid- |
ered an-instance of its clags -and, like.
ather instances thereof, it displays the
properties and behavior of not onty that
class but also those of all classes above it
in the class hierarchy. Thus, the object
“Secretariat’ might be an instance of the
class “horse” and inherit propertigs-and
behavior from _the class “marnmal,”.

“anjmal.” Inheritance makes it possible -
to define complex new objects without
the bothier of ‘writing everything from
scratch. U : '
‘Means 16 Tremendous Improvements .

- Although sbjects and the fiotions of |
inheritarice and ciass take some getting
‘used to——several months, at least, for
traditionally trained programmers, it is
‘said—they providethe means for achiev-
“ing tremendous improvements in pro-

of predefined, well-docutnented classes .

&

~ and datawi

~ Monagepower,fclephone
inginyour facility.

R 'Fr?e‘iefbme'shews:hom -

' More teléphones, a new computer,
-new copy machine, new electrical
equipment—wires, wires every-
Cwhere. A Wiremold aluminum race-
~ way system efficiently tucks away |
those wires and cables into one
low-prafile, surface-mounted race-
- 'way. It can run around the walls or
- alonga counter top. The satin ano- -

-dized alumitium finish Jooks great,

©Orwrite/phone for the - - A

~and it’s easy to keep that way. Talk .
to your installer about Wiremold. -

brochure. 1-800-621-0049. , i,

{In Connecticul) I\ (eR. 7 el 2
1-800-992-2277. @ %’”ﬁ;' .

€z
L

" ‘The Wiremold Cotiipany, Electrical Division,
50 Woodlawn St., West Hartford T 08110-0639.

CIRCLE 55 ON READER CARD

AWiremold ™~

Sych predelined classés may be quite so-
| phisticated, defining frequently tsed ob-:
jects like- interactive windows or “disk’

| browsers. - In- addition, user-defined - :

| classes and objects may be stored away -

for future tée and adaptation. e
‘Interactive systems-tend to employ | -
“sophisticated, graphical interfaces: that |
1 display a high degree of modularity and

i termis of objects, says Beau Sheil, a Xe-
‘tox PARC alumnus who fiow heads Price -
Waterhouse’s newly formed Technical
Center in Menlo Park, -Caiif. (se€ his
“Power Tools for Programmers,” Feb-
ruary 1983, po 13100 o S
- 'ParcPlace’s Goldberg notes, too,”
that the notion of objects can be easily
grasped by nonprogramimers, who can |
“define their own applications and proto- |
types” interms that are familiar to them:’
- “The world -we see-around s’ is
made tp ‘of objects, not subroutines;”
‘says one proponent. But does that mdke -
for a revolution, a replacement of struc-
tured design -methods? AT&T's -Shorer |
thinks so. “We have a tiger by the tail” |-
he says. But Oregon State’s Budd takes a |

} thore “cdutious view: “Object-orierited”

‘programmiing is just part of a bigger rev-
‘olution. People are realizing that we have
aplethora of languages available because

which itssif would inherit from the class |- o

ductivity. Forone thing, firge collections | © -~

and methoeds, thie algerithms in an ohject | '
-| that act on incoming messages, can e |
“delivered for programmers to use as is.”

are therefore more edsily programmed §

‘all language paradigms are .im;mrt_ant_._"._l _

Expe i

Yisi Diederich s Jack Millon -

Mathematics Dept., University of California at Davis

 Smalltalk promotes fearless programming.
Users can significantly alter an application —
- even the system itself — without fearing

' unrecoverable disasters.

" KEVIN REAGAN:T &

07407459,/47/0500,/0056,/$01.00 ©1987 |EEE

 oiié of the central programming
¥ -paradigms to emerge in this -
decade “The scope of its inflience can be

seen’in the introduction -of objects into . '
puRerous programming langiages such &5

Loops, Objective-C, Object-Pascal, and

- Smalltalk is -the- pnnmpai ob;ecs-'-'

_orjented langtiage. While a more complete - -
- disenssion of Smalltalk’s development is--

given in the so-cilled Green Book! and in

. the Aupust 1981 issue of Byfe magazine, it
- is important to-note: that-Simalhalk is'a™
- descendent of Simula atid hasits origingat ™
the Xerox Palo Alto Research Center inthe” 7.
“early 1970s. It was developed by the Learn- .

ing Research Group based largely on ideas
of Alan Kay,

Smalltalk-80, which was fiest licensed for ~

-~ use in 1983, Commercial versions of
~Smailtalk are avaiflable on such worksta-
~ tions as the Tektronix 440X series, the Sun, -
- and the IBM PC AT, Prerelease versions
have been made availabl¢ for the Apple .~ -1 ©

‘Macintosh; An initial aitempt at develop- -

" ing Smalltalk on mimicomputers such as

the Digital Equipment Corp. YAX line was -
judged vnsuceessful in a multinser envi-

-ronment. However, implementations for

the MicrovAX are under development. .

" IEEESOFTWARE .~

. .-bjectFDi*ientedﬁprbgramm'ing' is -

Flavors, among others: Object-oriented - - |
- concepts are also being incorporated into:
existing relational database technology. . -
“Dratabase management systems now exist”
“thatare based on object-oriented prinei- - o
“ples, and one commercial version usésan C
~extension of Smalltalk for its data defini- :
" tion -and data manipulation languages.
- Additional uses and applications can be "]
- found'in the proceedmgs of recent cons
ferenices. '

- The languagewent through three major -
-vérsions: Smalltalk-72, Smalltalk-76, and -~ -

. Smallialk is moré than just another pro< -~
gramiming language. It offers acompletely - - -
_ new environment for software develop-- .~
sent. Marny articles and books have been - - -

~written describing the features of the -
" Smalltalk language and environment, but .
-+ ouit primary objéctive is to convey just how:
. different software development is in the .

Srialitalk system.

Qurexperience, based on our work in -
-"prototypmg a database design system? .
- over the past year suggests that Smallwalk -~

- -goes well ‘beyond faciliating program-.-
- gniigs Indeed, it s e mtegral ool for - -
) _'.-pmmmmg expmmenta! prototyping. -
“-More explicitly, in our experiments we -

L often made sweeping changes i the design

- gystefi’s atchitectire; ganerafly withi Iittle -

. Teprogramming effort, and usually with

-~ 'thé introduction of- only simple bigs that
were easily identified and fixed. To & Jarge -
" extent, our desife to try different
approaches was sigrificamly influenced by
what we view as a new and emerging con-

“eeptin programming,.

Basu: cancepts

WO lmportant aspects of the Db}ect.

. definition in Smalltalk are encapsulanon
" “and hierarchy.

RS {13 encapsuiat:on R i mfmmatmn--
- hldmg) an object has its own data or local -
metniory,- called . instance -variables. An .
~would be graduateStudent whilea classor -

- "object also recognizes a set of procedures

o for manipulating its local inemory. These
7 .Student.}:

o procedures, wlled methods, aréinvoked by
endmg messagesto the object.

_ " Maturally, many objects will have the”
same type and will respond 1o thie same-
Conseqguently,” objects -are”.

~messages. _
-organized by a hierarchy of classes and

. subclasses. An objeéct resporids notonly to
;.- messages defined- for ifs class, but it can -
- also inhierit messages fmm all ns super-"-

: 'classes

Class defi muoa. Fzgure i shows the defi-
_nition of two classes, Person and Student.
Person is & subclass of Object, which isthe -

“rootclass of é}ll other clasges. An instance
of the class Person {an object from the -
sclassy will have local memory forits name,
“address, and birthDate, Student is a sub-
‘class of Person, and each instance of -
Student will inherit naie, addréss, and
birthDate, in addition to having instance
variables college, class; ma;or, currents

Courses, and gpa. .

Each instance variable will bean 0b3ect, :
“tiie, but it neéd not be bound o aparticu:
tar obiect class. HonorsList is d class vari-
-able, Every method of the class Student
" will have accessto (can read or change} the
-value of this variable.

{Note the naming _conv'en‘t:o'ns': _Cor‘n-

“pound naries have the first letter of each _f _
“word capitalized except for the first word. -

- Encapsulation and

-hierarchy are two
important aspecis of
. ob]ect defmttmn.

“The case of the first le‘zte'r of th‘e first word
“depends on the use of. the name, Thus an -

instance variable for & eraduate student

a class variable would ‘be Graduate-

-Meéssages. - After creating the class -
" Person, we can developrmessages that can
be serit to'the cldss Person and 16 instances
“of the class. For example; the existing mes- |
 sage, new, is inherited by the'class Person |
from its supérclass Object and will create |
‘an'instance of Person. In Faguﬂ: 2a,the -
. temporary variable person-is cassigned
- {using the assxgnmem symbol <} and -
~serves as & pointer to the. obiéct that is -
credted as aninstance of the class Person.
“To givé an instance 2 value for ats name,- -

Object stubclass: #Person’

_jnstance variables: *

Persm; subc!ass #Studeni

name: address BifthDate”

- instance variables: college ciass major currentCoutses g;:a
c:!ass vanab]es ’HonorsLlst

‘we can creaté a piessage, name: aString, - -
‘ that cati be sent (o person, as Figuré 2b .

- shows. The 6bject being sent the message,

" person in this case, is called the receiverof | ' I
the message. Messagés that have-colom
: suf fixes, such as name:, take an object. asj

an argument, and those without colonsdo: -
Tot. -

A message can cotitain several parts,
such as add:before:, which in this form;

without arguiments, _:s.calie_d I message .
selector. It can be used to add a new object: -
before the current object i a hst, as Figs
“igre 2¢ shows. Likewise, since Studentisa”
- subglass of Person, instances of Student .
egn also Cbe

sent z'he ﬁmessage,i_f--

nare; *Stefand’.

A subelass can-also’ reampiemem and
o thus override a2 message defined in its
-7 goperelasses. For: ex&mplf_:, the message, :
- passing, sent to astudent might determine -
_ifthe student’s GPA is above 2.0. However,

if we credte a subdlass GraduateStudent of

> Studem, we canadd a message also called

-pasiing for this subctass thatinstead deter: e
‘mines if the GPA is above 3.0, Thus, ifan

instance of ‘GraduateStudent is-sent the -
message passing, the system looks tothis =
" class and finds thé message with the 3.0,

“condition. Likewise, if an- instance of
- Student is sent the message, the systemuses -

the message withthe 2.0 coradmon, T
If ‘we changed our minds and dater

“wanted fo use the same condition for both,
“vie would delete the message for Graduate-

(@) - pérson = Person new.”
by .'per#gn name: *Stefano’.

e 'p_éifsaﬁ.hi'st-aci_d:. newName
" before:: currentName, |

Ad) . pame: aName
L pame+-gaName,

&) name.

cAwame

. "_.'i?“ig?ufé 1. Ciass definitions.

. May 1987

- Figure 2.(a) Creating an instance; (b) mes= -
~ sage miodifying an instance variable; (¢} . -
- mhessage with two argumenzs, (@ method "
forthe message naime:; (€) meihcd forthe - -
| WIRSSAgR HAME. : '

- Stirdent, Then whenever dn instance of

- GraduateStudent is sent’ the message -

“passing; the system first checks its elass,

“and when the message is not found there,

' : it gdes up through the hierarchy to find and
' -'-'-execute a message w:th that selector,

' 'Me!hod_s._-'Messa‘ges are imp!emez‘a’ted'in' '

Foutines that are called methods. For exam-

“always gives the form of the message. In
g _'-'F:gure ‘24, niames is the message selector
O and aNameis anarsusent, The rémalning

- lings implerent the method. In the second -
- . hnetheinstance variable, name, of the mes- -

- l-sage § receiver'is assigned the value aName.
- Simitatly, Figare 2& shows the method - -

ot the,m_essage wsed to retrieve the per-
-so1's name. Again, the first line of the

- method is the form of the message: In the
- second line, the instance variable, name,

- will be réturned, as signified by the up

- arrow (1), whenever the message, name, is°

sent to aninstance of Person.
“Every tiine a message is sent o an object

: - .sumethmg is returned. The refurned value

. may be significant or may merely inform
“the sender that a requested action is com-

" plete. ThisTets messages be concatenated.
-~ For example, person birthDate month,

-~ will return thé month ‘of person’s birth

. since person birthDate returns & birthDate -
- that has aninstance variable month that is

- returned when the message month is sent.

. Variables and scoping. To enforce the -
: concept ofencapsuiatiﬂn, there is only ohe
“way to modify an instarice Variable of an

7 object — sending the object a message.

- Furthermore, if a variable appears in a -

©1 ple; the method for assigning the name of
. an instance of Person is quite simple, s -
Figure 2d stiows. The first ine'of 2 meéthod

“switchNamesWith: ~aPerson - -
|tempName| =
JdernpName = - aPerson hame.
- aPerson name: name, '
-mame + {empName! .

B 'Figuré 3. A method in class Person,

52 .

method, it ¢an onily be one of six types:

“e-an instance variablé in the class of

Dbjects for which the method is defined, _

an arpuient of the message,
e @ temiporary var:ab?e ‘focal to the

method,

® 4 ¢lass vanable,' _
» 2 pool variable, or
‘s 'a global variable.

Class variables are shared by a class and'

its subclasses, pool variables are valid

across designated classes, and global vari-
" ables are shared by all classes.

In the methed for namie:-in Flgurc.zd

’ name must be an instance variable because
- itis lowercase and itjs in a méthod defined

for instances of Person that have that

instance variable. The varizble, aName, is

To enfarce the concept
of ancapmfabon there
 is only one way to .
- ‘modify an instance
‘-variable of anobject.

an argument of the message, There are nio
©.temporary or ct}xer types of var:abies in

thzs method

2 Class, . podl, and gfobal variables are .
' -_used sparingly. Thus, in .p_r_ap_ut_:c, we have -
avery restricted type of lexical scoping.
* This strict . information-hiding all but-
" eliminates scoping-related problems, and -
nares typically do not have. m be mo&:i’ ed
o to avoid naming confhcis '
| “For example, consider the method {m'__ .
Figure 3) defined for mstances of Person
- that when sent 10 a pérson, the receiver,
switches its iame with that of aPerson, the.
“miessage’s argument. Temporary variables, - -
sichas tempNarmein Figure 3, are declared
“by Bisting them in the verncal buars: They
éxist for the message’s éxecution life, (Class - : _
- of various types to process each element. " .
‘For example, the code in Figure 4a will pro~ -
iess cach student in classList. The argu-
ment ‘of the block has a colon prefix; "
dppears before the vertical bar, and isin o
turn instantiated to each of t:IassList s A
- elements. e

and global variables are used for Tonger

“terin storage and dre notin th'é}'ecaE Mem:

oFy of instances of ihe class 3 :
-~ Note the various uses of name.-In. the
~first line of code, it is'a message senit to':
* . aPerson to retrieve aPerson’sname, and -
“agsigned to teipName: Because aPerson is

not -the receiver of the message switch- -

NaimesWith:, the only way to retrieve its

narie is to send it the message, ame. :
- Thefiext useof name isasthe arpument

_ofihamess_age namf_:._ frithe second lineof -
- code. In this case becauseit isnot declared -
- & témporary variable; it must répresent the
- “instance variable of the message’s receiver. -~ ..
" In thisline, the name of aPersonis modi- -
fied to be the name of the receiver,

In the last line of code, name is the E

instance variable of the réceiver andis” . B b
. éhanged 1o E_he name in tempName. The o
- code in Figure 3 could have been written -

with different names for the messageé seleg-

- tors, stich as getName instead of name for -
©retrieving 4 nameé and setName: insteadof -
-narhe for storing a name..

“We those this example to :Husiraze the o

freedom permitted by the Smialltalk lan- - e
“guage:and {his overloading of name

presents no difficulty inunderstanding to

© the shightly expermnccd SmaHtaIk pro- - -
grammer. - S
- “Thereare somenegatlve aspects tousmg3 L

'getName and setName:, First, '

a?erson gezName :

“is proncduml in ﬂavor whﬂc

aPersnn fame-

s more funcnonal and has fore of a -
natural-language flavor, which contributes - -

m' the readability of the'code

.Becond, it precludes thesimple conven- " .77

‘Hien that messages ‘withthe sdiie names as -
“instarnice _varxab_les_are_ used toretrieve their -~
 values, while those followed by acolonand -
‘argumient are used to store the' values. This -~

~ convention makes remembering the mes-
sage selectors for mstance vanabies e
_ _strmghtfﬁrward '

Contmi strucmres. Sma]ilaik control T
“structures aré also handled viathe (}bject-_ (y
cnessags paradagm._.?or example, 2 mes- 0

sage; do: aBlock, can be sent to collections

JEEESOFTWARE

o The'_c_éﬁe-{qiidwix_ig';}il_é b'ar__is: executed . Fearless pmgtammmg w’q_r‘id'._preble_m .in't_c_a_a'.prégram.{}bject_"_.
: _f;::r each ;iemex;t if tl;:j E%i and aé!ustrates_._. - Whilet is difficult to capture in an aftie orf_m__tatu;? z; a mijogstep in t.}.ns r.i:rgc‘t:on,._ :' g
..t € USED af :gn ;um:B » £ COR xtao]n ag “cle the quite différent sense of what it is Tike -__-sam'l:c;]vor mgkwu ol :lects sterns n;ore réat— -
_msiance of the class Booléan, is ehclosed . 6 Work i s mb}ectwcnented language and dral thanworking Wit constructs ound i

i parentheses and is seni the] message af-_ “standard {anguages.

environment; we will nevertheéless try o - -
“True:ifFalser. Other conditional message * presént $ome sénse of the flavor of pro< . TOT Xample, i a non-objeci araented_
“gelectors am 1fTrue*, 1fFa!se 5 and 1f« o

10ty ping in Smalltalk. What we vould like. - |An8uage, if anelement s retrieved froma.
. False ﬁTrue

' tovshow, biit can do so only gartially, s that “list or an array, 4§ in the assignment state—_ -
Coment x e drray(s); then changes madeto”

R L e -iherelsanundercurrentwecharactenzeas' v P
'Unde'r'smnﬂinig objects. When working featless programming. . x are st reflected in the contents of -
: Carray(5yand vice versa. This asa:gnmem in -
wﬁh objects, an individual accustomed to .+~ Fearless prcgrammmg encourages effect creates a duj licate elesment, and
Tion- ObJECtnorlented languagés may expe- experimentation with i alternative - dunlicat Epl a ¢
rience “soinie” unanticipated difficulties. . 2pproachiesto algotithms, appiacauon pro- P feates ?lm oot o t}G m‘mmem. -
.-'Mast caneasily be corrected orice the sym~ : 'grams, and system des,lgn w:them the fear - ._c;es since CEIang:‘ES " jine : c;ment i R
: ptoms are recogmzed S -of being caught up in & ‘morass-of detail :(a)ttj}:z?an;_a yIe ecie e anges in the ST
Forexampfe, there =satend&ncy to takc :.__t.hat.:_s-mp_-p.mﬂ_ful to sor_t_:pu_t.-__._M?rg_o_ver;- This is nét .true when deahng mth
a8 ihe object paradzgm too Hterally and cons” _th_\:': Sys‘em_h?ﬁ a mb_‘.jﬂ' programming par- objects. If an ob;ect 1s retrieved fromralist;
o sader ¢ach-dppearance-of an. object as'a . adigm -;-_—a_t_}'x_e_:_.;:_'mgra_r?mer-f:;n make_bqld ~-any changes made in’ the obgect are" L
iy ‘unique oiaject Certainly ini the real world, _:c_han!_g_és 'U.j'-th.g system fisclf and, even after reflected wherever the Gbject is referericed.
anobjéct can crnlybem briepiatest atime cmaking significant errors, can often 'p'ro;.. For instance if aCard is 2 terfiporary vark.
: Supposcan instance of the class Card has ceed through several d1fferent TOUES 10 abie and points at the object that is poirited -
“the- instance: ‘variablés suit and fank. A _izecovery without harm. -~ at frrthe fifth position of harid via the state- o
S handi isan Array tha! can hoitiasmany a8 “Infact, fﬂaﬂeswmgmmng h%playm-' ment aCard + hand ‘att “subséguent '
. five cards, and ‘a deck is an’ Orderedy--'?.mrgf_: part in-our developrienit of niew’ '_ch:ingés to aCatd areeflected:in the Objéct
. Collection of 52 cards. + methods and faster algorithms for data- pointed at in the fifth position of hand. -

: "~ ‘base normalization becaise it promotes o
- The cede in Fagure 4b wﬂi deal acard.-':_'expenmematmn (We d6 not-mean o “Consider what happens if.we want to

_ and’ piaoez! at the first position in the hand. ~imply that good design can be ignored or - group or sort the sam;geﬂccuop_qfobjects.____.__' s
M younow inspect deck and hand using the oy good: programiming practices can be - in-different ways, perhaps for sequential -
U dnspecior m Smalleatk (a tool for examin. violated; for even Smilltalk methods can - access via an OrderedCollection and for -
ing objects); you see that deckstﬂlcantams-_ “'he crented that have ‘inanticipated side direct access via a Dictionary. Inthis case,
e thedealt card — and s&-does hand. Aliteral - effects or fail to be coli érent and pmperly.-” -changes made to'the objects are indepen- _
- driterpretation of object, that an object cani - --moduianzed) L . dent of the structures used to'access them. -
--only bein one place, would suggest tosome’ . T L nstandard languages, you would either
“that these are distinct cards. Unfortunately - - Advantages. Naturaliy, the closer the have to create multiple lists, again leading
.- -the inspector does not directly reveal conetrycrs in & languageare to theentities - to problems asscciated with duplication, or - . -
0 whether they are distinct or not. -yl deal With in the real world the 1éss dif- ~-have 1o maintain multiple fists of pointers, |
i i Assum}ng they aredlsungg mlght ieadto ﬁcuIty Wﬁ mconnter intranslatingthemal- Whlch leads -_t(}_ more complex Cﬂdmg R
'-_'.anattemptmsetthesuriandrankofthe Do e e T e : o o
- card in the deck to nil to avoid redealingit, ==~
which will result in ‘making the card in -
.- -hand a blank card also. What i factis *
.--f}ccumngxsthattheassxgnmentstatemcnt. B S co e e
' '--plac::sapomter it thevariablé aCardtothe. 5] - classL-Es‘;t dn I aSiudcnt | (aStudent gpa >= 2.0)
sameé card in both collections; deckand | -~ ..~ oo o UifTruer | aStudent printName]
“hand. fndeed, the card exists in‘oneplace; | (@) o oo ifFaise: [aStudent alertinstructor]
K and aCard; deck, and hand mereiyprov;de B L R '
aitematwe access structuresthat pomt toit.)

- In some cases, the problem isnofsoeass | 0. aCard +deck dealACard.

-ily diagnosed, particularly when thereare |- ()7 - “hand ati I'put: aCard. -

-several layers of compléxity such aswhen . f 70 ST

. using - the - model-view-controller -triad. | -

" Khoshafianand Copeland discuss differ- N I o ;
_"va‘m degrees Of ob;ect !dt“«‘ﬂf!t}’ 7 Figure 4. (a) Enumeration message do: and coiiditionals; (b) dealing a card. .

“* " {Duplicates ¢an be made in Smalltalk, but
‘they are fiof imphcit. and require smdmg'.

oneof the built-in messages for copying -

ijécis ¥

- “The. obJect~message parad:gm and
oy encapsu!atmn 1end ‘1o promote a more -

-:_moduiar system- because each message

©7pepresents ‘a module’ This is desirable
- becanse sifaller modules are easier to'¢re- 7

" ste and understand. In addition, there is
._aIsn a tendency for each message to be a

“¢oherent itnit because the very niotion of -

“'sending messages focuses the development

*the message.

“And the reason the Smaittalk pmgram— -

o : mer can focusion the intent of each mes:
B - “afid 15 not: !empted to émbed
“additional functmnahty in thessagey < ig .

- that problems of interfacing modules,

T whieh are generally associated . with -

'.bmtomuup development, “are essentially
- absent when work:ng with objects and

o messages. (We view method creation as
bottom-up -and - class creatmn as

B top-dowr). .

- Ome reason mterfacmg probiems are’’

- minimalis that objects are genérally passed

- as arguments i méssages,. and their’
. instance viriables donot explicitly appear.

Consequently, ch‘angéé inan object’s struc:

- tiwe have no-implications” for a vast
L “majority of ;:he messages n: w!nch they _
=L . ..GCCUT - .. -
S For example, in Flgun: 3 wha!esale o
T -changes in thie striscture of the tlass Person,
~ . -and even ‘¢lianges in’ the structuie of its :
' instanice variable, name (the one of prit
'_;_marymterest inthe méthod); will have o
o1 effect whatsoever onthe miethod - for
: -swntchNamesWﬂh, and no changes are
- xequired in ahy other method in whmh this
S message selector appears. : '
S W hy T Becau&eobjects and the:rmstancc'
v variables are not lype:d and the bmdmg of
B -objects i6 instance variablés oceurs At run-
Ctie, ‘Late E;nndmg Promotes fearless pro-
- gramming Because it ‘lets the deésigner. -
= .pestpnne typingand saruczural decisions
L ot germane to the current state of thepm—_ :
L tctype : :

"It has been our experlence “that’ many

i 'methods will riot require changes or recom- .

i pﬂatmn as the prototype advances: Those

L Ehat requ:re recomp:latton are typtcally...

s

~simall and reguire mtmmai time: because..
-compiling is incremental.

- miethods can be borrowed in & variety of .

Whatever problems arise

_forim - the message selectors.and argu-
_inEnts remain unchanged, with only slight
“hodifications required in the method, This
~often:occurs when subdasses ovemdc :
_messages :

. Fxgure 3; this can beaccomiplished without

tlasses

“Kigher tather -than Iower Ieveis of

“The exxsxence of predeﬁned ObJE!Ct-

“classes also contributes 1o this senke of
-fearless prografming in that you have a
-wide selectivin of 6bjects and messages to
"~choose from, thils paining & conszrierabie 3
" head startin prototyping a system. -

- An additional advantageisthat existing

ways. In some cases, the method can beé -

directly copied 16 anozher class without

change to its form of ceniem In other

- of each method on the semiantic intent of 7 Casek, the-incisage will retain’ e same

“and wholever morass

' you create tend to be'at

higher rather than lower
Ievels ﬂf abstmctmn,

And “as md;cated in the dlSCuSSlDH of '
fear of difficulties arising from scoping or
nammg considerations. Nameés do not hdve

beused with different ciasses and sub—

Perhaps the most 1mportant contribu-
tion to fearless programming, apart from

- the environiment, is that: working with
_-objécts and messages has tmportant ana-

dogito Wc;rking' at the level of human cog-

“hition, - Whaiever ‘problems arise: and -

whatéver morass you create tend 1o be'at

abstracucn

The use’ of - ‘messages {:onveys much -

" about the: sermantics of .operations on

Objects, rediicing the need for documienta-
tion. {Other dotumentation requirements,
mcludmg managmg hlerarcmes and nes-

sages, are handled by the environment. JA -~
-great deal of cluster, unessential low-level .
detail, is eliviinated frommuch of thecode,
This is, in part, due 1o the existence of
_predefined classes and messages... -
-For instance, there are various collection .
‘classes {including Set. “Bag, Ordered- -~
" Collection, Array, and Dietionary) that
respond 10 the saine message, doraBlock,
o enurierate the objects of the eollection
and 10 Gperate on each i turn by executs
“ing the code in aBlock. Incrementing vari- -
‘ables to - process’ the collection is .-
“unneécessary. (Furtherthore; these struce
tures can be substitted fof one anotherto -
S }mpmve performancem later stages of the

ihthe code) - _ SR
L In add:non, objects are prepackaged o
bunc!ies ot parameters to be passed asargu="
“-meénts in messages and therefore tend to”

" yeduce the number of arguments present
_and toenhance the readability of the code.

~Example. This-example demanstrates
“these advantages. It is dfawn from oir

work ofi relational databascs but s simiili=

“fisd -here. We will call a functional depen=
dency & statement of the form @ == b that”
we can read as _“_a'impliés b, @ i proposis

- tionallogic. It is possible that, givenacol- 7.

“fection Fof funcuonaldependencaes some
dependencies are redundant. - _ .
Remowng fedndant - dependencxes e
from Fisimportant inrelational database -

d Forexampl Hecti :
to-be ariifi cially modlﬁed 10 d:stmgulsh T mgn r plé givert the collection *

C-messages with the same selectoré but-can -

Fom {a—'b b—'c,a—’c,b*d e*’*’c}'

'the thlrd funcnonal dependency is redun- o o
~ dant since it can be derived from the first ./~
B .and second uSEn‘g'tht: :r’ansitivity rule:

afa—'bandb"*c,lhcna"*c

IEEE SOFTWA?%E;-.T

o

“Théreisa stra:ghtforward algorzthm 10 :
"detérmine il a functional dependency is -
-redundant. Asan illustration, toshow that
~ the furictionat dependency f = (¢~ o) is
redundant, first form F'
" f from). :
- Now pass thn}ugh F'as miany times as -
necessary 10 discover all attributes implied -
by the'left side of £, {a b Allimplied attrib -
- utes; inchuding &, are placed ina collection
called closure, the ciosur& of g With reSpec; -
Ao R e :

F= -{j} (delete '_

(= buthis éxémbia'clos'um"ﬂ {a.bc.d}ar
" the eénd-of the passes over £, 1f closure
S .;:comair'as'the right Sideoff thenfis rédun—'

s deleted from F,
: " A natural starting pomt far deveiopmg o
Ll 1mpiementatxon toeliminate redundant

" functional dépendencies is to define a class

-7 called FunctionalDependency. This class
- can be madeasubelass of Object because

fioy other class exists for which it would be
“a natural subclass,

It aléoseems appropriate to create 1Wo

" instancs variables to represent thedeft and

Fight sides {thsand rhs} of the dependency '

S FThe declaratmn is

Dbjcct “subclasst #FunctmnalDependency__

instance variables: " thsrhs '

** ““The miethods for new, Ihsz, the, Ihs; andrhs
e easily be coded tocreate an instance of
'-_--'Functmna}]}&pendency and to set and-

" yetrieve the values of its instance vanables

" respéctively. We store the set of functional.

~- dependencies F in-a collection named
- SetOfFDs.
- tigquite striking just how qmckly and

- with such Kttle code this and other -
‘alporithms . can’ be 1mplememed in o

Smalltalk.

S!w’ctu‘rat changes; Now Snp’p’esa that;

after having developed the algorithm out-

" Tined above, we believe it would be more '
efficient to mark a funictional dependency

- fa s inactive rather than'to deléte it from the

i into Fif it is not redundant.

" This can easily be achzeved by addlng a

‘new iristance variable, active, to the ¢lass
. FunctionalDependency. No other method
- defined on this class norany other codein

~ which functional dependencies are passed .
T 11 argnmems or sent e:xxsimg messages
nieed ‘be changed to accomimodate the

" addition of the new instanice variable. -

= Consequently, a great dea) of recompil-
ing and relinking will be avoided. The
- hanges will be isolated 1o modifying the

‘method for the algorithm. This simply

" -involves replacing statements for removing
... functional dependencies from SetOfFDs ™
- /to form F by statements for setting their

actwe before using 1t n eompunng closure,

and resettmg active totrue if the functional”
‘dependency is not redundant. At this stage,
‘the meitiod for eliminating redandant”

- dependencies might]eek like thf: cade in

Figure 5.

TheSetOfFDsin Fgamr 5 mayheany of
several predefined classes of collections in
the Smallfalk system. Thus we can fréely
‘change the structure of the SetOfFDs to
détermine which gives the best perform-
- “ance. When this method is compiled, it is
-not nécessary to have determined which
class the $atOfPDEs cormes from betaise of .

the delayed binding.
- Notethat the funcnona! depcnde:nczas in

B '.F above are not grouped by comimon left
-gides. Somie algbrithmms reduire that they be
- groiiped this way. Onie approach is o sort
- SetOfFDs-according to their left sides.
However, if the original set must be main-"
‘tained (to allow, for example, direct aceess

to functional dependencies if SetOfFDs is
adictionary), we can easily create ¢ollec-

- tions using ‘existing Smalltalk - classes,
denoted heré as DepWithLUHS(X), which

- will contain the dependencies with a com-

Cmon lefi side X,

But sifice we are working with functional

‘dependencies as objects, if a functional’
‘dependency ~accessed ~from - DepWith- -
LHS{X} is made inactive, it will also be
-inactive if accessed from SetOfFDs. The -
" change tothe code in Figure 5 to accom-

modate the change in the alganthm is

. straightforward.
" 8$etOfFDs to form £ and then rcmsert it -

_ Also, we haver’t yet. wmten the tethod

“for complting closures,: which is used in
the second line of Figure 5 by sending the'
‘meéssage closure to the left side of gach
* functional dependency, closure <~ eachid-
- Ihs closure. As the code’n Figire 5 iscom-

piled, the system will notify the program-

mér and give an option to proceed and |

define the missing message later. -

" When developing ‘our algorithms, we

_'iri'ec'i many . approaches -to computing -
“elosures. Somé wereconceptually similar -

but had different éfficiencies, and others

“ywere conceptually mew. In all cases, very lit- "
tle code had to be changed to accommo-~

date ‘the different “versions of closure;
clearly no changes were required for the -
codein Figure 5, and it was straiphtforvand

-0 borrow extensively from one version o
the next. '

“While Smalltalk code may seem'a bit -
strange becaust of unfariliar naming cons”
wentions and syntax, it is generally true that - -

“after sore initial difficulty it seems quite =~
readable. Unessential details do not clut-

- ter the code, as Figure 5 shows. Onlyinfres

“quently ‘are lines: necded to increment

variables; pararneters are not required for

invoking routines, as they are hidden in the -
- ‘instanee variables of the objects; and mes- -
" sages are simple, and their names reflect

much of the semantics of what they do. -

o Ifa message is not understood by the .
';_.programmer orreader of the code, it can -~ -

be quickly examined. We do not mean to

" suggest that this canfiot be accomplished
im other languages, but it seems to oceur
- miore natufally in Smalltalk.

Cancépt’ua] ch:i;ig'ei:‘.' While implement-

- ing various types of closure in Smalltalk,

we discovered a new approach to eliminat-
ing redundant functional dependencies. It

- involved dedctivating all of the functional |
dependenciesinagiven DepWithLHS(X).
_Asa resulf; we couldn’t use the instance

variable active to detéfmine if a functional

- dependency was redundant.

‘One of the changes required to accom-

: modate ‘this was to introduce a new -
instance variable, redundant, for the class . -
- FusictionalDependency and toset its value

SetOfFDs .

“do: [reachfd | eachfd aciive: false.
closure +- {gachfd
{closure includes: (eachfd

]'hs} closure, ..
© 1hs))
ifFalse:[each fd activer truef]. :

- ifistance variables active to-false, testing - L=

"l whether a functional dependency ‘was

 May 1087

. Figuré:S.-Eiimin’aiing_feddhda'ht dependencies.

Collections- axt _
Collections~ Array

Collections-Strea{ SortedColiection '

Collections— Suppo -
.Graph:cs—Prsmltlv

énumérat:ng
private

addAliFirst: . .
“j addAllLast -
faddFirst
addlast

'add' newObjoct before: oldObject

*Add the argument, newObject, as an element of the receiver. Put
Answer newObject)”

e

] index]

{ it in the position just preceding oldObject,

index « self find: oldObject.
self insert: newObject before: index,

“+hewObject

o BB’

:Figure 6. The system browser.

' “totrue when a given functiohal depen-
dency was discovered to be redundant. (For
-$everal reasons, we chose 1o save redundant
- - dependencies rather than discard them.)
- Though this is a small change, it
" tievertheless hints at how changes made at
- the sonceptual level can - be translated -
.- directly into messages and objects. This
. shiows that the way we think about entities
- jnan application can bé translated directly
. mto two fundamental aspects of an object,
“its attributes and its behavior. OF course,

other parts of the code in other methods

- were affected by changing the semantics of
- the instance variable active. The Smalltalk
- environment provides the tools to work

rapidly -through the effects of these

"“¢hanges.

‘The Smalltalk system promotes trying
alternatives. The time required to restruc-

" ture objécts, modify methods, create new

ntethods, locate the effects of changes, and

" recompile the code to experiment with it,
“igmuch less of a factor in the cost/benefit
* ratio than you would incur if working with
© - 1host standard languages.
- -Also, most changes occur ata h:gh con- -
ceptual level, so it is more ke working with
o changes in the specification than with
©-changes in the code. However, we do not

¢laim that Smatltalk is close to achieving
the software engineering goal of directly

" compiling specifications.

" Environment

~While encapsulation an‘d'hiemrchy forsﬁ
the basic foundations of the Sialltatk lan-

- guage, it is the rich environment that lets
. you work with its many classes, methods,

and messages.

In Smalltalk, there are several window -

types available. These windows can be

“¢reated, moved, reshaped, collapsed, and

¢losed using a three-button mouse {some -
- systems nse asingle-button mouse). Mul-
tiple,-overlapping windows can be on the

seréen, and vou can move from one win-
dow to the next 1o carry out different or

refated tasks.
. Code can be modified and run from-

different kirids of windows, and applica-

- tion windows can be activated and deacti-

vated. This is particularly useful if anerror
turns up while debugging an-application

~and recovery from within the application

is not possible.

' The convenience of doing different
~thifigs in the system quickly and efficiently
-gilso contributes significantly to fearless

programming. You aren’t caught up in the

- time-consuming cycle of doing something -

ineditmode, exiting and entering compile
mode, - exiting and ‘entéring run/debug 7
‘mode, exiting and returping to edit mode

to make changes: Tesler® has discussed the

-philosophy behind modeless environments

and the early Smalltalk interface.

Organization. Becausé there is no single
tinear command list, beginners often won-
der where the program is. Programming in

“Smalitalk is mainly adding new classes and -
“messages, creating objects, and passing - i
messages. Thus, being abletomovearound . -+ -
the system easily and to work with individ- .
‘nal classes is -¢ritical to productive

Smalltalk programming, - The system

_classes are organized ina hierarchy with the

class Object at the top, but yeu don’t have -
1o remémber the exact Merarchy while pro-

- gramming because the interface provides
@ convenlent organization method and

access 1o the systemn classes through the sys--
tem browsér, shown i Figure 6. _
The systern browser window contains -
several panes, each with'its own-menu of -
actions. The second pane from the left

along the top contains the name of classes,
.and the fourth pane contains miessage

selectors, The first anid third panes catego-

' |EEE SOFTWARE.

_ '.nze snmlar typf:s of ciasses and messages, o

Ctespectively.

-~ In Figure .6, the categery of c]asses .
_:.selected {(indicated -by reverse _wdeo} is-
“Collections-Sequenceable. This class cat-

" egory contains classes linearly structured.:

" Oneé such class, 'Grdered(ﬁoﬂec’iinn, s

*“selected in the second pane. -

“The instance/class pair at the bottom of i

" 1he second pane i¥ a toggle. If instanceis

- gelected (as shown), what appears inthe]

©-" . panestothe right dnd below will pertain to

- methods sént to instances of the class. 1f

§ classisselected, it will pertain to methods |
- sent to the class, whichis also consadered '

- 'am gbject.

.o The variots categor:es of messages that
- can be-sent” to instances: of Ordered- -
_ Colléction are ‘showit in the third pane.
- Here, we have selected messages for adding

- objectsto an ordered collection, The actial
snessages for adding are iri the fourth pane |-
- with the message add: before: selected.
- The method for this message is shownin -
the Targe pane at the bottom of ihe browser
- wmdow in F:gure 6

.'Bsing the browser. For the most part, -
‘the browser is used to créate classes, create - |
rhessages -and methods, and to browse
through the system. To indicate how these -
. ivolscan be used 1o make changes, recall -

. the example of working-with the class -
° FanctionalDependencies. There was a -
. ¢hange in the semantics of the instance -
variable active when the instarnce variable -1
‘redundarnt was added to the class. This

required examining all the methiods that
might be affected, so we wantto review all

- miethods ‘ that modify . or .retrieve the |

instarice viriable active.

There are several ways 10'do this. Om:'
©way is to-select: the: elass Functional- -
. Depundency in'the browser. We can then -
- get a pop-up menu (Figure 72) and select -
.the m:m, ifist var refs. Another pop-up-
"meni appears (Figure Tb) that lists the.
the class”
- FunctionalDependency. By selecting the
~variable active, we gét a window showing -

instance variables -for

all methods where: this instance variable
y -appedrs (Figure 7¢). -

By examining each method, we seethat -

" fhe message active: modifies the value of

the instance variable active and the mes- -

May 1987 -

- print out
spawn

spaQWn hlerarchy

Cfiletout oo

“stem=Comp{ - | FDindexe
“stem-Relea} | Fds
s=Streams | py |

haerarchy
cieflmtion
comment
protccofs

ciass var refs

_class refs

2

~Interface |

_renamea .
L remove:

class -

rlassVariahlaeNamas:

{#)

System-Compf
System-Releal
| Files=Streams }

0S5= !nterface

- y ¥F
paollﬁ)actwnanes -

®

' sage active retriéves it; After selecting the .
canselectan :tem, senders {see Figure7d). -

“shown in Figure 8. By selecting each

"gect subclass' #Functlonaibependency :
instanceVariableNames: 'lhs rhs active ”

initialize |-
Faccessing. |

Object subciass, #P‘unctmnalDependency
'mstance\faraablewamas- "Ihs: rhs ac‘twe
' classVanab!eNamar 7

'category: ’DB Des*gn

method for active:, we.can get a pop-up -
menu in the same wmdow {we don’t have -
{0 return to the browser) Trovin which we

- In this casé, we are asking for all .~

- .me’théds that use (send) the meéssage active: -

in their code; the result is thé window

method, we can examnirie the code to see if

 Figure 7. (a) Class pane menu; (b) instarice variables,

the change in dctive’s semantics réquires. . -

changes in the method, Whatéver -the
" changes may be, we can make themiin this
window (its tof part is shownin Figore 8}
.:and compile thé code there. :

““Threeitems in the menu in Figore 7d e o
senders, implemeriters, and messages —
can be vety effective message tracers.

" Again, messages with thé'same name (but. - '
“different. functmnamy} m1gi1t E}e ampie»': '

e L

i

: Fumtmnaimepeﬁdency actWe
FunctmnalDapendancy lhs it st

- '.’mésﬁ&ges :

4% aBoolean

“‘active « aBoolean

(d}

Coomove s
- remove

‘mented in different classes in the system,

'_ ';5: selected diteetly from the menuin Fig-
- -ure 7d; it is also a menu option for the top
“pane in Figure §. Selecting it will guickly

c ';se}ect any of the messages in'the men i
-~ Figure 9, we will get another window of the

“{ype sHown in Flgurc '8, which lists all
1mplemented We'can now select one class
g _-the new window.

ihrough the syszem as well as detrug, i

58

~and a given method might use messages
. from other classes. The item, messages, can -

o g"ei é m’enu of all 'me‘s'sa'gés'in 'ihe selected -

-classes where a. message of that name is '
- land inspectits method i inthe lower pane of
These facilities he!p tbe user browse_

:_.'addltzon the system has uhlmes to identify -

' Fxgure 7. (6) M'e't'hf_itfs ia_Sing'aéiivé; (@) finding senders of active,

menu for that pane.

.- 1f the code contains a symax ermr, an -
Appropridle fessape s inserted nte the
" codeinreéverse video: Because the message
“isin reverse vidéo, if can easily be cut, the -
“code can be corrected, and ihe mezhod cani
he recomplied

“ble, each;

Debugging. While changing the seman:
tics of the instance variable ‘active and’
introducing -the “new instance . variable -
“redundant, suppose we failed to initialize” -

. fedundait to -false when creating new . .-
instaiices of FunctionalDependency. This -
12 would fead to prob]ems ‘which' can be" o

» traced with the bu;lt-m debuggen CoL el
S Ong approach is-1o plas';e; a-haltin thc.__- e
" codewhere the problems arise (in this case;

- ihe method for. ehnunatmg redundant - P
" dependencies)and to step throughthe code
and ‘examine the objects. When code’is
*“executed, 4 notifier will ; appear on the
- screen 1o indicate that a halt has been =
encontered. You: have the option to pro- s
-ceed past the ha!t orioenter debugmode. .
If you choose to débug, the window =~
* shiown in Figure 10 appears, and the rienu -
. appearing over .the top pane can be
- pbtained, The top pane of the window con-
; ‘tains the current activation stack — the st
-of messages leading to the halt: This list .
"can be scrolled, and individual messages
- “canbe selected. Code for the selected mes-
- sage is-displayed in the middle parie; and
- the bottom two entries in the iop pane’s
TS B R _pop«upmenucanbeusedtamnthrough' '
“and cotrect syntactically and semanticatly -
incorrect code: The power of the complete -
tool collection ccmtnbutes s;gmf cant]y o
fearless pmgrammmg : :
- Smalltalk source code is complied into’
' -:_an intermediate form, called bytecodes,
‘that’is ther interpreted. This t:ompﬂatmn "
- i$ done incrementally as néw classes; mess -
~'sdges, and the associated methods are
defined. Code is displayed in the vode pane
*of the browsér and is compiled through ihe -

a stepmse sitnalation of the progrant.

_ Selecting thé item; step, ex_ccutcs thecur-
-rent selected message (redundant in Figure ..
10y ‘and moves you [to- the next one
(ifFalse:). Selecting the item, send, enters. -
“the method for the selected message, which
then displays in the middle pane and €an

be treated the same way. The lower left -
‘pane contains instarice variables 6f the
_';massage receiver displayed i in the middle -
-pane, and ihé lower right pane coniing
"current values of ali temporary variables in
" ihat method. The value of the loop varia-.-
“isdn- m_stance of class -
‘FunctionalDependency at this point. :
- Youcan inspect this object, as Figure 1 -
shows. The result is the window inFigure =~
-12, where we have. sélected redundant; -

. IEEE SOFTWARE

For browsing, a selection in the systefn’
~browser’s code pané, explam, is very help- - _'j s
Jal: You can select any foken in a method, - -
" and theexplain selectnon mil:ndlcaie what
1-type of token it is {class vanab]e, global’’
_-var:able, name of 2 amessage, andsoon)by -
inserting explanatory text in reversé video .
“in'the method display inthe code pane.

A A

i
¥

self da' I’:,each i (each actwe)'
' ifTraer

o ehmmateﬂedundantmependencles

[aachm

(each ths. ISSubsetOf {aach Ihs cinsura, self))
|fFa}se. [each actwa. true]]j :

*Figure 8. Senders of activer.

- whose nﬂ va!ue shows inthe nght paie aiid
" revesls the: problem that reduniant wasnot

- initialized. Chaptér 19 of the’ Orange -
Book® gives a more detailed descr;ptmn of |

. the debugger

" There dre.-other ways to mvoke the '_ :
debugger‘ f“nr example, if 2 halt had not .-
) -:_been plaa:ed in the ¢ode, a rotifier. would
-+ appear during éxecution upon test of the |
7 nil value of redundant, The notifier would
" indicate that a ion-Boolean receiver had b
“been encoumered ‘and three optibns would :

‘b available: ©

{1 Sevthe va.hm &)f the receiver ::o true '. :

- and praceed with execution.

(2) Enter the debugper at the pomt of the 3_ :

' :problcmatic code:

i3 Stop the errzint pracess s:mply by :__

- .'_ciosmg the debug window, -

- Jrithe second case; the debugger wmdow -

‘hasthe form of the one in Figare 10, and.

- the programuier can proceed as above. The -

©debugger is a particularly nice tool and cer-
- £amiy Helps make runiime etrors much’

" more tolerable during program develop-

mrent. It can be very confusing to the begin=
e, however, asthedepthsofthe code are:
- “explored with the option serid. For exam-~
- plea user who doesn’t know how system-’

"-"::May'"lga?"

1 ach|
-=ach rhs iSSUbSEtOf (each ihs c!osure'
analse* {each a.ctwe* tme}]]

‘ntDependencies: |

des
' ths
rhs

~ractive
Cractiver
biackcopy
“closure:
oder -
isSubsetOfd

“tive)

false,

i
R

il

-ifi'gufe'-Q;.Messsiges' iﬁ_é-:ﬁetﬁaﬂi.' S
defined control structures are implemented

.muid heconfused by thf: system cnde whenf. _
__'n is t‘.I!C(}UI‘lEeI'ed :

miajor restructuring: from our database
‘project wouold beitoo detailed to develop -
© - here, but we can give an éxample that has -
" petvasive implications for the system. .

Mod;fy;ng Sma]lta!k Fearless program‘_-
~ming gives users mnf" éence 1o attempt "
“extensive changes in the system, even ones
‘to the predefi ned-{:lasse_s. An-example of -

. We needed varicus ways of writing bn- '

. maps of parts of the screen out to files, and - -
‘the system did mot already have all the
necessary funcimnahty To capiurf: it

5o

= Undefmadﬁbmct))lﬁ)oit

| Coveryre mmate edundantaependenczes

: pruceed
_restart
~-senders

:séﬁ”hakbf”

'_ehmmat&ﬁadundantnependanm&s

seif do. Eeach] (each.

:fFaIse* [each aetwa. false._

" (each rhs |s$uhset0f. (aach Ihs CIGSUF‘E' self))
“ifTruer [each redundant: true] . '

;fFa-!sa:'_{aach,a--ctave. s

rue]l]

sé;f-_
{ firstindax |
Jastindex - |

. Figure 10. The debugger.

: "txme of capture, we hiad to deactivate the
" ménus so they:could be brought up on

o bmmn was released, .
’Ib achleve this;, weadded a ciass varia-

' : 'm'éps with pdp—up'menﬂs' displayed at the

" screen to have their picture taken without
“having the: selected message sent when the -

ble, Active, ‘to the class: ?b‘pﬁpMeﬁu,

~which governs pop-up menus, through
~“which essentially all actions areinitiated.

If Activeis true all actions throiigh menus

‘will proceed as usual; if Active is false, a -

“eonditional placed in the code for sending
: menu messages remirns nMp wvilue when :

/| ifTruer [each redundant:
|’ “ifFalse: [each active: true]]]

true]

1 a FunctionaiDependency -

60

- Figure 11. Inspecting a temporary variable. .

. the miouse button s réleased, and the mehu

disappears with no action taken. We then
defined & two-Key sequence 10 toggle

Active. - -

This <hange is very powerfui becanseit -
covers the predorminant means by which

“actions are taken in the system. This also
- makes it dangerous. It indeed léd to several
‘interesting debugging prabiems iwo of -
- which we'will 1!Iustmte. '

Fatal error: If the class variable Active

- isdefined, but initialization to true or false -
s neglected, its default value will be nil. If
- anythmg is theil extcuted through a pop-
- up meny, this nil value for Active will be -
- éncountered in the conditional code, and
wanotifier; w;]? appear. The menu for this
“riotifier contains two optlons proceed and
debrig, which would ordmaniy function as
.‘deseribed above

I this cise, however, usmg The mxddie
button 1o generate the pép-up ment from -

“which tochonse anoption would resultin
- -consultation of the sarfie conditional code, -
- which would again find that Active has the

IEEE SOFTWARE -

. vahie gil. This would generate another -
notifier, which in turn would generate
< anothier fiotifier if we selected pmc&eﬂ oF

debug, and 50N,

" T guard against major damage under

" gicha condition, in fearless programming
" -yoi také spapshots of the entire environ-

ment from thme 1o timie, After an abort, the

- gystem can immediately be recovered at the -

fast smapshoi, and all ¢hanges in the
interim canbe recovered from the changes
file.

Avmdmg - sysiem abort. Gur 1mua!
o anempi to name the bitmaps we were cap-

- turing illustrates a serious probilern that did S
- not require a system abort. Thecaptirewas 1. - 1
" actomplishéd by executing codeinacode |
- pane of a window that produced a small
-~ window to type the itame of the file to store -

the bitrap in, provided the value of Active -
~ is false; Unforiunately, when this codeis -
- executéd, the naming window that auto-

- “matically pops up uses an instance of §. -
. “PoplipMent, which-also finds that Active: |

-is false, and ‘which theréfore producesa |
new window asking that thé naming win- | *

dow be namied. '

'Unlike the previous example, the entire
" pystemn functmna}lty was not lost and there -
- .wasamareelegam solution thana system -
. -abort. We can toggle the value of Activeto
" true with the appropriate key, activate a
" systém browser with a single click of the -
* mouse, find the offending method in class - |
! PopUpMenu, change the code by deleting |
ihe conditional on- Active, and recompile -
“the method. When we return 1o the rin-
“ning application it -will use the few,
ncrementally compiled code and stop ask- -
-~ ing for naming wmdc)ws :
- There will of course be several stray win-
~dows on-the séréen that will have to be -
*closed, and there are vatious conditionsin
' different vérsions of Smalltalk that might -

May 1987

AR aitempttocﬁosethismndow wlththe -
nonse and thus stop the process would ~
' also generate a notifier. The toggle mech-
- -anism could not now be used to set Active -
" because that mechanism uses a conditional
" based on Active being true or false Fur- -
_'_thermore, yoir cannot shut down the sys-’
“tem becaus¢ a pop-up -menu -is dlso
- requiréd-to do so. The only choice in this
" ¢aise would be to abort the system itself,

: rirew:f:nt ‘extrication from such a predica-
-ment without aborting theimage, The per-

‘manent fix to this problem was relatively

straightforward. The main point is that we -
_cha'ng_ed the system during an application - -
it ik ATy OUt @ variety of tasks.

- In fearless programming
you take snapshots of
‘the entire environment

“fimited or constrained by mode or context.

: from time do time..

- yun when our modifications cut too deep

e atid this ability contribiltes to the sénse
of fearless programming. .~
" “The environment in genetal — not just

the debuigger — has the tools _neaded to
© build, examine,-modify, and’ test code.
These tools aré readily available-and not -

Building, examining, modifying, and test-

~ing code are all related operations, While
*uising the debugger, for instance, you aren’t

trapped init, You ¢an browse, modify cods,

One measure of the Smalltalk environ:

mént’s effectiveness is the extent to which -
hard copy is unnecessary during applica-

-tion developraent, Initially you use hard -

- copy to sketch ideas and code; but as devel-
-bprnent proceeds your work becomes vir-

- -tually paperless. The only reason for print. -

" ing out codé is to carry it away froni the

" tachine or for backip. Because we have
~always had to use printoiits 6f vatious iter-
-ations of the code in-other languages, we
“pelieve this to be a strong indication of the

Smialltalk facﬂitles ‘effectiveness,

| a FunctionalDependency .

'_Figﬁre' 12: ¥iewing an objeci. -

61

Oiher window Iypes. En addition to the
-system ‘browser and debugper windows,

“there are several other important window -
~types. Code written in a workspace is not

_compiled into the system, so the workspace
" is generally uied to try out existing mes-
~ - sages, run applications, and develop and
.~ test new methods. A filelist window is used
" tointeract with the underlying file system.
Some versions of Smalltalk have win-
dows to interact with modules written in
other Janguages. Other windows, called
"7 gystem tfanscripts, let the system note that
" actions have been accomplished or special
conditions have been encountered.
‘Another window, called a system work-
- §pace, .corntains commonly needed code
-~ . -sepments. A template for such segmerits
. can be'modified in the system workspace
" and be executed on the spot.
. For example, we might know that some
" plass implements the message,suspend,
but not ¥now which one. ‘We can activate
" a system workspace and locate the
- template
* Smalltaik browseAHImplemehtorsOf:
- WkeywordSymbol
" Thig can be easily edited to
" Smafialk browseAlllmplementersOf:
- -#suspend

“Jt can then be selected and executed, and

- the-result will be a window such as that

shown in Figore &, which displays all
O methods that implement the message
- denoted by suspend.

. Although Smallalk provides, cxcelient
. 'faczlmes 1o birowse the structure of classes
_‘and objects and to examine their messages,

- it does not provide adequate facilities to
" examinethe behavior of a complex appli-

. cation. Cunningham and Beck® have
- reported one effort to remedy this.
. Misconceptions _
- " Three Smalltalk areas are often misun-
“derstood.

. Performance. Tt is commonly believed

*_that the abundance of high-level features,
- the uniform object-message implementa-

- tion, the delayed binding of var:abietypes, K
- and the graphical capabilities of Smalitalk -
| yield .a system with' poor overall per-

-formance.

Tn part, this can be attributed to the fact
that the initial prerelease - copies- dis:’

iribited by Xerox PARC to participating
companies for refinement in the early

-'1980s were quite slow on different hard-

ware implementations. It also did not help
the performance image of Smalitalk that

“a'major implementation on a VAX was

_particularly slow in a time-shared environ-
ment, and that the project thus limited its

“emphasis to implementations on worksta-

tions.” And it is well known that an
absence of data typing and the lack of a
global optimizing compiler typically exact
heavy performance pepalties.

- We have found that
there are nonenhanced
- commercial versions of
. the language that are
quite fast.

Research is now under way to add per-
formance enhancements to Smalltalk, such

" -as improved garbage collecfion, faster
" alternatives to the bytecodeinterpreter, and

typing facilities. With a data-typing facil-
ity, you could delay all binding during pro-

~totyping -and product development for
Dmaximum fledbility and then identify orit-

ical sectionsand optimize, ising data typ-

“ing and other methods of fine tuning; for
- the mature application.

- 'We have found, however, that even with-

- out such enhancements, there are cormmer-
- cial versions of the languape that are quite
fast. In particular, we impleménted and
- tested database normalization algorithms

i MProlog and Smalltalk on a Tektronix

#4404 arid found Smailtalk 1o berabout 15
times faster than MProlog. After perform-

“ance tuping in both languages, which was -

far more straight forward in Sinalitalk, the

‘gap between the two languages mughly
guadrupled.

Just ini case we simply had a pameuiariy

‘§low implementation of MProlog, we

imiplemented and tested one set of proce-

“dures to find graphical shapes in pointsin
- the plane in C, Smailtatk, dnd MProlog

and the results were striking. Thie MProlog

program was about 80 times slower than-
-the C program, but the Smalltalk programn
was a bit less than two tirmes slower than -
- the C program. The only performance -
enhancements we made were to correst -
_obvious inefficiencies in the code.
For example, the Prolog program 2s - .

oviginally published® was 500 times slower

" thanthe Cprogram, and witha few rather

obvious inefficiencies made for a rather

unfair comparison. Sometwiddlingof the -
Prolog code eliminated a large amoiint of
unnecessary backtracking and lowefed the
ratio to 80. We also ranthe C program on
a VAX 11/750, and the runtimes were -
within 15 percent of the runtimes onour . -

workstation.

- These limited tests certainly cannot even

begin to charactérize the performance of

Smalltalk relative to MProlog and C, but

- they underscore what we had discovered: |
-On our workstations; Smalltalk is very

responsive during program development, -
“and it performs quite well on the type of

_computation and data manipulation we

are using.

The performance siandarci whxch _

- different versiohs of Smalltalk on different
machines are measured by, is the lan- .

. guage's performance on the Xerox Dorade, -
-on which it is very fast. The Poradodsa - .

" descendant of the Xerox Alto and jsa high=

" performance experimental .micropro-
grammed personal computer with a . _
“microcycle tirmie three times faster thanthe ™ -

VAX 11/780.

There are commermally available work— L
stations that ron special Smalltalk as fast 7
or faster than the Dorado. This perform-
ance is excellent and makes for an out~
standing software prototyping environ- -
" ment. We would be willing to pay a far big--. -
_ger performance penalty than we now pay

in a language like C, for example, for the - -~
productivity gaing we have achieved in e
© Smallatk. .
. Smalltalk provides system facilities to _
{race execution at varying deprees-of .~
‘granularity, to time ¢ode blocks, and to
identify critical sections, There is a class
‘naméd Benchmark that contains methods
for micro and nracro benchmarks to meas-
“wre the relative efficiency of different byte- =~ -

code interpreters. .-

|EEE SOFTWARE

Bt e o S B

- Process;.

B A;Jp_ii';aﬁohs;Many commiercial adver-
© tisertients for Smalltalk characterize it asan.

- artificial intelligence Janguage. Indeed it
ma‘y ‘be excellent fora wide variety of arti- .

fic::al mteli:gan_ca applications; and weare
- using it to create a production system for:
" database design. However, it seems to be-
- far more general-purpose, and it is not’
“penerally considered ‘an artificial intelli-

" gence’ !anguage by the artificial mtelhgencc'.-_
S commumty

T The ob;ect AHESSALE paradzgm provides

- apowerfil general-purpose pfogramming -

- language. The graphieal capabilities pro--

L vide hlgh*level primitivés not only for the -
. development of interfaces but for domains |

~that need to use graphics. Built-in classes

provide an excellent foundation for many S

- applications.
Agood example Df bmlt in capablimes

" for other purposes is aset of classes-that -
support disgrete-event simulation. As-a

"~ descendant of Simula, Smalltalk contains

"o the basic mechanisms to support quasi-
parallel. ‘processing, through the classey
. ‘ProcessorScheduler, and’
e Semaphore. These allow process descrip-
- tion and referencing, dynamically gener- -
- ated - processes, and - delimited and -

J- sefpuenced active phases of processes, with
*orwithout reference Y the coneept of sys—
1em time. S

ties and casily suspending & process and

. resuming it later. Higher priority processes :

~-are executed before lower ones, and events ..
: _’_.-'w;th the same pnoraty are handled on a’
- firsticome, first-served basis.

" Part three of the so-called Bhue' chk‘g

L Smalialk reference is devoted to discrete~ -

- event simulation. It develops the basic

" ¢lasses in addition to the built-in ones, and -~ .

trace can be started in the debugger, but -

coiints of active processes start to degrade;-

and certain debugger windows are not -
functional without coercion (such ag hit- -
~ting the abort key). For débupging complex’ '
and lengthy processes, the user cannot rc]y o
‘- on the debugger. : '

ancther Apple product, MacApp, héavily -~
1o build user interfaces in- Sr’!‘ialltallé R
departure from using the MVC, . '
“Thus, ‘while-Smalltalk contains 4 weii-' -
:ntegrated set of gfaphxcaf primitives, the
begmmng Smalhalk progranimer should ..
not expéct to find aquick and easy pathto .~ -
- developing graphical applications. -~

: Gl‘ﬂphicai pamtiugm .The basic. para~" S

;d:gm for handiing graphical apphcanons

“in Smalltalk is through the inodel-view-
‘controller triad. For the display of dn-
object, the object itself is conmc’iered the

model, the praphical layout i$ the view, and

the coordination of usér inputs to gkamine
“themode! and the displayis done thmugh
- the controller.
- Simple and complex fiested views maybe -
created -and manipulated. Basic classes-
- handle generic views and controllers, and

the system interface itself is handled with

the MVC, providing a rich sét of tools serv- i
ing as wodels for the programmer’s devel-
~opment. Unfortunately, the promised and:
long:awaited tome from Xerox PARC on’

how ‘to use the MVC-has not been pub-
lished, wh:ch leavésa hoie m ‘the’ documen«
tation.

ful, and this richness contribites to the ini-
tial learning difficulties.

‘Apparently grumbling about u usmg the :

‘MVC is relatively. common, ‘and ‘it is _
" the systemon line, wrifing your ownappli- -
~ gations, and frequently mHioving. from one.-
- réferenceor squr_cem anqther Fortunately, o
learning the system posesonly ashort-term -
‘disadvantage, but Tong-term pmducnvny f-
-gains may be w&rth zhe m: tial mvestment

rumored that an altérnativé is sought. The

~ concept of a pluggable view removes the
- néed 1o build each application from
“scratch, but it certainly does not represent”
-aradical departure from the MVC, Tndeed,
the Apple version of Smalltalk -uses

T develops several of the applications in -

' Birtwistle’ sbook“’sufﬁc;em!ytoprov:de —

: an excellent basis for simuldtion. .

i - Theré are nimerous significant errors in
o the similation code in part three of the
- seprfected™ first edition of the Blue Book,

~but these are being repaired-and some of :
" the'code Has beenl streamiingd. One disad:
©.-vantage: of working with-the simulation”.
- ‘clasesis that the debugger does not func- -
- tion well while tracing the sispensionand
' _-resumptmn of precesses A s:mu}auon' L

May '“_!_9_8-}'_ .. :

- Coupled with the nchness of the system,

_ this makes learning tovise the MVC a for-
midable task. Like the overall Smalltalk " -

"o system ifself, the MVC is rich and power- -

e lmportant capahu ities sre schedulmg .
. and exécuting processes of differerit priori-

- _..I,eaxning.exp'eﬁencre R

- Sralltalk is ot easy tolearm, evenif you .
“have corisiderable experience with standard: -
~languages. The Blue Book and the Orange -

. Book -are excellent referenées, especiaiiy o
when coupléd with the extensive {m-hne_._.-_
“dociimentation — bt they are not gm)d SR

textbmks. :

““The Blue Book deals mamly ‘with fea~ e
‘tires. of the language, While the Orange -~
Book deals with the environment, But the
-system is so mh and so wellintegrated that
it is not easy. to décompose the task of o
ledrning it into subtasks. Itislikethe clas- =~
- sicchicken-and-égg situation—therich set.
. oftools can be used to overcome thecom-- . - .
plexity of the systemn; but at the same time "~ R
- you have to work with the system forsome.
time before seeing how the tools can hake
a significant difference in workmg with the' FENES
- system. ;
We think learning. Smailtalk i$ riot. kae e

'learmngalanguagabmhke learning acul-
“turé, Over time, unprovcmems inmethods.
of learning the system'should emerge, but. -
-the ¢urrent paradtgm invoives intersive -
" reading of both réference books, browsing . -

oed

ity and reasonahiy dow rework.

Ca syatem premotm it. Bnefiy, fear}ess pra-
grammmg i

- Referenceless. The systcm managesj
5 'Smaiimik}

lowfevei detail,

__-_so desagn deczsmns can be made ﬂﬁxabiy

Acknnwledgments

e mzmy helpfu! mmmems _by the referees.”

"References '

“Reading, Mass., 1983,
=k Aldinog, Calif; 1987,

U York, 1986‘.
4 -'i.arry “Tester,
fmest, T Byre, Aug. 1981, pp. 90-14"?. L
Adele Goldbere, Smallialk-80: The Im‘emr
tive ngmmmmg Environment, Add:son
- Wesley, R&aﬂmg, Miass; 1984, '

‘grami for Object-Oriented Programs, Proe.

ACM, New York; 1986, -

o Bimalitalic80 Newsletter, Feb, 1984, pp 34

- -Cahf)

3maihalk prometes h:gh productw~-'
- within the programming énvironment.
e Paperless. ’I‘he System manages- :
' documentauon and the programimner { does-
0ot rely on hand copy fo examing the work.

- Certainly for expenmentmg with
. algomhms, for rapid prototyping systems,
and for developing programs that need -
s hu;th interactive and grapincal mterfaccs,'f
‘you can éxpect a riet gain in return for the -
invéstment of learring Smalltalk, One of
the major advantages is that the object-
Cmessage paradxgm greatly heips conqu&r.
. _system complmty .

Wl-ule the researcher mterested me

" While this may;serve as a: general
.-chamcteﬂzat:on ‘of fearless pmgramrrung, i
" there are some specific ¢ charactenstlcs W
' consxderm detemumng the extent towhich

: 'pmmers 10 strnctures (ob_wcts in-o
- Clutzﬁr!es& The system abstracts out

“e Typeless: Types need not bé declared

We'd like to express our apprec:at:on for the

] ‘Glenn Krasher, S)rzaflmfk-&@ Bzrs af Higeooo o
-tory, Words of. Adwce. Addlscn-WesIey. L

" 1 Tim Diederich and Jack Maiton. “Oddcssy :
L A OljectiOrienied Database Desipn Syse
oo e, Proc, Third Im"i Conf. Data-Engi=". -
" neering, . Computér Soviety ’i-“’ress, Los_ FS

o X Setrag Khoshaf” dre v Georgc Copeiand T
Lyt Tdentity, ™ Proes Firsi dnn Confl - -
T Dbjeci-Criented Programmiig Sysrems;
clanghages, and Apphcanons, ACM New'

.“The Smatlzaik Enwwn- g

. Ward Cunniighany and Kent Beck “A Dla- :

st Ansi. Conf. Object-Oriented Pro--
: grammmg Systems Languages, ana‘ A ppi:— -

7. David Patterson, “Smalitalk o a VAX ol

. avax!abte rmm Xemx Cmp Pato Aiw,
: . BT eiy of: the EEEE

* e Modeless. Actions can betaken at will -

straightforward -sumber-crunching may - .-

- have little to gain in Lsing: Smalitalk,and- 0
-while there may bé other ¢lasses of users "
“whofind other languagesand d{welnpment S
“environments much more suitable, we feel
‘that - programmers in many applcation "~ . -
dreas would he we!1~served by the Smailtaik-:’_ e

em’lronmcm

“‘Moreover, the good pcrformance Df PR
'snme ‘commercial systems and’ the'_-:"--::'. '
enhancemerits of Smalltalk unider develop- -
“ment suggest that Smalltaik may everi have
4 future niche in scientific and réal-time - -
~systems as well. ‘Smalltalk promotes a
gom! new approach to programmmga o

8 ?,S.G Swifison, “Pl'ﬁcnpuwto I)escnpuve'.

'jProgrammmg AWayAheacE forCAADRY

-Proes Loglc: Pragmmmmg Werkshop,

~Architectire Bepts, Umv 3 Edmburg}x
. Beotland, 1980; .

9. Adele Goldberg and Dav;d Robson, . S

27 Mass., 1983
210, Grahdam Bzrtwmﬂe, A Sysremfar ﬂrscrere :
~Event Modefmg an S:mu!a, Macmslian, :
Lot*:d(m, 1979

- Smalltatk-80: The Longuuge and ftsimple- 7
meniatiot, Addison-Wes]cy, Readmg, T

“3ack Milton is an’ associate professor .of

' miathematics as the University of Califorpiaat -] -
S Davis Hels aléo s assocnatemvcstagammmhe T

- Krowledge.Based Management Systers project
- -at Stanford University and coordinates the Data- - -0
" base - Research 'Sémmai there ‘His research”. " -

:) -_onemed svstems
S Daedench is an assoctate pmfesser cf o
~iathematics a1 the University of Califoraiaat -
Travis. His research interests include database'
.-deSJga and object-oriented systems. .
Dxﬁdcnch réceived @ PRI in fmathematics
'_fmm thie Tisiversity of Californiz at Riverside,

Hisamémiberof ACM and the Computcr Soe:- -
; . --':Umversny of Cahforma. Davas, CA 95616

Miltoidid his tznéergrad}.saie work at Swarth-g': '

“¥hore College andrecéived amaster'sanda PhD_ - o

“irt tmathemiatics from Duke University. Hedsa™
-miember of ACM andthe Co;npmer SOCieiy af R
'the IEEE S

“The amhors canbe mntacted ai Math Dept 4 =

lEEE SOFTWARE'-__ 5

.1981 Sen{hng Up the Bailoen

iauk hask and a iaak ahead at thzs mnovatwe programmmg %anguage— S

f irst featureé 10 years agﬂ n BYTE

B e ?‘E"I‘EK DEWM ANI) ADELE GOLIJ&ERG

“issué provided many penpie with a first comprehensive look at the then-fa-

 cade hence.

7 Inthat BY TE issue of 10 YEATS 3P0, “We wénted 'to convey three ade&s about Smalk—
- -tafk and object»oriented software te(:hno"iogy first, that an interactive, incre-
" méntal approach to software developraent can produce qualitative and quanma—

ot xmpmvements in productivity; second; that software shoild be designed in
- uhits that Are as autonomous as possiblé; and third, that developmg software. -
- " should be- thought of in terims of blilding systems, rather than a$ black-box appli-
- cations. The Smalitalk-80 system descrlbed in that issue S0 lnng ago: was ihe ex-.__ :

-'-'.emplar of these three ideas. - _
- Smallalk-was widely known then—and yet 1argeiy unknown Aian ay
ethers from the Xerox Palo Alto Research Center (PARC) had béen giving tal

S with tantahzmg glimpses of the technology; but few people: knew or understood. -
" -its content. Thus, the.cover.of BY TE’s'Smalltalk issue--depicting a brightly col-
- v-ored Smalitalk hot-air balloon leaving an isolated island-—symbolized our feeling =
- that the time had arrived to start publicizing what we'd been doirig. We believed
- we had new.ideas that could make i teal dlfference in how people dewz:leped

R software.

- Many résearch exampies developcd at PARC demonstrated zhat ohject—omcmed -

_ .'-de:ngn cotild prodice an appealing, intuitive,.and direct mapping between ob-
i jects ‘the real world and objects in a software imiplementation. We saw thisasa -
-+ radical breakthrough in one of the most difficult and probiempr{me steps in soft- -
CLUWare develapment—zdenuf ying terms and relationships as understood by. human i

o participants of a particular situation with those understood by 2'COmPpUter.

We believed that this simple:mapping of nouns to objects was all {of most) of

L the story about how to desxgn with cb}acts and we presented it 4 such in the. 1981

o ms B YT E '+ AUGUST 1991

| _'t sbeena decade since the ﬁugust 1981 issue of BYTE was pubhshed That'.-' &

~bled Smalltalk programming environment. In this article, we look back at

o e HOW peaple thought about Smalltalk in those’ days Then we'll: took 1 more .| _

s broad}y at how Smalltalk and object-oriented software technology’ has Pro-c |

- gressed since then; we'll alsp consider today’s state of thxs technology andthe |-
- market for it. Final ly we' 1} look ahead 10 objects m the ycar 2001 another de»'-

U LUSTRAYION. PEGE ROHERTS & e8]

| BVIEE

- fhews about Smalitalk to the
7 world, there were no PC ver- -
. gions of the language. Now, -

"_.-‘_p;oneered have permeated'
S the mlcrocomputer world,
- -and powerful versions of the

U410 BYTE « AUGUST 1991

- SMALLTALK

i | !w mo{watsm ﬂf

_ 'the pa&& decade was
-_-tﬁ_m_a_ve-Smalitalk
off its island.

- BYTE articles. Subsequently; in examples given in our b'doks'_
- in 1983, we demonstrated that the power of objects applied to -
*..more than nouns: It also applied to events and processes. Butl

this power was not as well ﬁxplamed or exploited.

ofganize information stared in a computer and to allow more

- direct access and manipulation of this information.: _
The Smalltalk edition of BYTE introduced our approach to
- managing the complex information world of modern applica- -
. tions. It explained our.methods for taking full advamage of iew
... graphics and distributed computing and for § Hnproving theabil- 1
ity of experts in business and persana wmputmg to-describe -

theit world models.

© . “In refrospect, we are pleased that much of the software com:
_'mumty has come to agree that the object-oriented approach 1o
- Softwdre organization is a asw Wway to'solve. problems that is -
- often better than the procedural approach. Although our ideas:
~about’ pmﬁ}emnm implémentation mapping were ncomplete—
- notably ‘given the lack of forpial” methodologms—thos& 1deas_'

are w1de1y accepted mday

: 1?91 A !)eca{ie of Experzence

7 What have we learned in the past decade based on the Smal!ta!k
L 'r&search and expermnee that Wis mtroducad 1o the pubh(: in:

: - those 1981 BYTE artic
g cles? The first idea, as'

we stated - earhe:r, is

'.-':W.h'é_n:-f'B'YT.E first 'bfcj_if:e'-the'-' . feractive, highly incre-

- the prmc&ples that Smalitalk

"-'Ianguage are ‘available for a -
'vanety of. peraonai computer :
o -platfarms ' : '

- moved . most suceess-

“simply that a' highly ifi)

- tnental software devels -
opment environment
-can produce a qualita-
~tive -improvement in
software’ deveiopment?-t
productivity. Even in.
~1981, Smallralk sys--
" ems were not the only;
- ones with this characs
- teristic—Lisp systéms
- ploneered the approach
-in the early 1960s—but.".
~they ‘were among the
. omstanding “exXdamples
and were ‘the ones that .-
: Ai?ramework for the Future : R S
-One of the promising new. concepts.in ebject—onented desﬁgn— SR

Hully from: pmprletary : :
be@ activeiy expiored today in. Smailtaik as weﬁ a8 m other-_- S

~hatdwate to the piicro-

" pmcessor mams:ream To;:an, th& truth of th:s 1dea 1§ w:dely.' T
- recognized: The suppliers of ehvironments for morewsstab?'_.-:
- lished languages fike C, €+ and Ada are now aimingto; pm~ =
- wde the benefits that Sma! talk introduced o’ decade ago.- :
<. The second idea is the basic idea of object«m]emed softw&re b
- organization: that software should be desigried in units thit are
“as autonotious as possible, should” correspond to identifiable -
- -'_-enmaes in the problefr domain whenever possible, and. shoutd:
" communicate through idéntificd interfaces. This idea: BIOWS
out of work on madular software design that dates back, again,
to the 19608, Object-orierited terminology adds af emphasm ofi
direct mapping of concepts in the problem domain ‘to software .
“lumits, the ddea-of shared behavior and: multiply: ms!antaated: e
~state, and @ focus on the interfaces between the units;
The last of these (the interfaces between th software mts} S
“makes it easy to think about systems that aié configured orthat ..
grow dynammaf!y ‘Smalltalk ‘has no monopoly on new gons

cepts, but it has’ been aleader in the public relations necessary--.

:to get these concepts out into the computmg mainsrein.
oo The Smitltalk research project was founded on the belief -~

that computer technologiés are the’ key 10 improving communi-.
- cations channels between people in business as well as per---
" sonal- setnng;& Qur activities focused on finding new ways fo -

Objéct-oriented software organization has a natural: rclatmn'

~to two current trends in software construction: combinable’ ap-
phcatlons and open systems. Our interpretation of the term
open systems is that for systemns to grow, evolve, and combine =
. gracefully, they should be constructed ot of software with = -
- published intétfaces. Fiinctional software should be des1gned R
tobe used as a component by other software, as opposéd to be-
ing monolithically united with a part;cu!ar mterface des;gned-i-
- only for humans at a terminal S
“The thifd: }mpariant idea that- has. gmwn partly ot of the}'_. e
Smalltatk work is telated to the open-systems' idea—~namely, .
~ that one should always think about building softwareinthecon-"
‘textof building systeris; rather: than in the contéxt of black-box
~applications. I other words, one should examine explicitly the .+
~pature of both the downward interfaces (the resourcesor facili-- -
ties the software uses)-and the upward-intérfaces (the client’s -
“1se of the softwate) and mike them ds undemandmg A5 POSSE=
ble: Separating functionality from the aser interface, whichis . =
- the Smalltalk concept of model-presentation-interaction’ krsown_' o
7 Cas model-viewscontroller, is Jusi one apphcatmn ef thxs pr:mw- fas
. 'ple—bm avery importantone; - e
The motivation behind much of the actmty in the past s:ie~' S
-cade was to move Smalltatk off its-island and into easy avail- -
-ability. for the general programming community. We look at
this activity as being aimed at creating a credible, concrete; and
“robust realization of the ideas that we could present cniy in Shf:i—' :
g tered research formin 1981,

‘As Smalltalk has moved. mto tha. commercml Wﬁrid it has.. _.

‘encountered the familiar phenomemn of technological tife -
_Span. A technaiag}r comes into existence o paper, oftenara
‘university. Tt then progresses to research papers, research-pros -
‘totypes, and Usable research-scale artifacts. Finally; it goes:
.into commiercial use, first by the- adventurous and then by. the 0
_broad mass of users»«gemng adapted, extended, patched; and -~
“transported aslong as it continues to solve pmbiems well, and -~ -
- eventually getting replaced in many or allof its uses-by newer
technology. Smalltalk is now ini this third stage—past the seru-+
- tiny ‘of the adventurous and experiencing wider commeércial
“adoption. [Editor’s note: For a Jook at some new products: that'
should help bring Smalltalk to a larger audience, seé the fext .~
"~ boxes: “OO0P Made Visual: Digitalk’s Look and Feel Kzt " on
page l 1.2 cznd “Smaﬁmlk Abaut Mndaws“ oft page £ i 4 }

SHAUTALE

: 'Lmk ami Faéi K:t-frérﬁ D:gita - man-
icu;.!t- task':-' I’t_maka's- vis'ible-the

of soufces; whetlm ‘they’ e writtén in ful
' Smalisaik ot anoiher__ianguag@; cmatmg o

i ':ianguages and ﬁnwronments»wm the concept ofa frameworic In
“an object-ofiented environment that supports inheérifance; re=’.
‘usable software that implements a single: concept frequenl}y D
‘takes the form of a specialization hierarchy in which the super-
clagsés-are more abstract {e.g., the Smalltalk clayséy Collée-
‘tionand Number), with certain operations: deliberately leftto.
‘implementation by more concrete subclasses'(e.g., Arvay asa .o -
concréte subclass.of akind of Colisetion, dnd Integerasa
Eind of Number). “IHese holes in the su;}erclasses (call&d virtual -
' fanctmns in C-H— iermmology) arean :mpo:tant part ef the K
design_ .
A framework isa generahzatmn ef tins xdea te a group of - T
“glasses working together: For ﬁxample the Smialitalk model- "~ -
view-controller framework consists of three abstract super- - . .
- classes that provide little more than definitions of how the con- - ..
“crete subclasses should work together, plus sonis bookkeeping
code and defauli implementations ‘of the most commion opéra-
“tions.: You retise a-framework by writing new concrete suhclass— 0
€8 ‘and ¢ombining ‘existing subclasses in'new ways, : S
7 Anothier example of a framework involves the notion: ot a dlS- S
“erete event-driven simulation, in which'objects interact torep-
: '::eser‘tasks workers, E{m&tmns (Where tasks are camed eut by S

112 BYTE + AUGUST 1991

Mike

Georgs:
Bastiars

C-Dekeraly %

and statistically based schedles for introducing-
workers. New components, specialized tasks, work-
ers; and schedules can bé deéscribed inorder to reuse the gener-’
al framiework to create specific simy!

~Goldbetg and Dave Robson (Addison-Wesley, 1989). :
" “The other. Smialltalk idea receiving attention today is that
1di are s building systems. Software should have the
sarme property asa fractal design: Assemblies built outof parts
should have the same qualitative nature (such as definable in-
ard and outward interfaces) as those parts: Devélopers mikst

acilities of new environments.

Smalltalk in the Marketplace

sult

“the niotion of reusable; combinable applications. Today, |
is promoted at three fevels: (1) operating systems, such -

~* ‘interapplication communications conventions (€., Apple’s In-

terapp mmur 10! na
‘Exchange, and the X Window System’s Tmer-Client Coniumni-

: ris, Thisconcept s de~

sctibed fully in the book Smalltalk-80: The Language by Adele -

. “ s well as high-lével ones such as Patriot Partners’ Constella

“tion project and ParcPlace’s -object model and ‘frameworks
approach). o . S

realize that they cannot predict all the ways that a piece of soft- -
re will be used orallthe ways thatit will be ported touse the -

One of the powet ful 'ideas_thét'ha's'at!r’_act’_e;f new aﬁtgnﬁoﬁz a8 a
of the dévelopment of ubject-oriented software technol- -

ipes and fork/exec; (2) window systems, by way of : ® igd -
~fraction of théir intended uses. In this way , the accumulation of - -

lication Communications, Microsoft’s Dynamic Data
cations Conventions Manual); and (3) independent software ar-
chitectures (including Jow-level -ones such as Microsoft’s dy~

niarnic link libraries and Sun Microsystems’ shareable libraties,

""Many believe that the discipline of defined, published inter-
faces—which fthe ‘object-oriented ‘approach -naturally “pro=.

‘motes—will create a new marketplace for reusable software

components. However, from our experience with many. devel-
opers and ‘users of Smalltalk systems in many environments, -

~we think the key economic shift will be in'a differentarea. - -

A public market is a loosely ofganized environment. Compo- :

" nents placed in a market will face a wide variety of demands; -
‘and even well-deésigned - compofients with minimally con--
“strained interfaces will have troubie attracting acritical massof -
Ccustotmers. o no T i

+On the other hand, within & single jqrgan'iéat_ioi:'.; 3_;‘&1’1'5_;':'1}1&:
components can be developed and redesigned to-span-a large

o AUGUSTI® * BYTE 113

 SMALLTALK

. 3_-reusab!e ¢ode can becmme an important business asset and can

“be treated (appropriately) as an investrnent and & capital gond :

father than simply as a cost (which is its present treatment).

Irvan object- -piiented environment where inberitance is sup-.
‘ported, it is not only individual components thatare reused. As
we have noted, the design of interfaces between objects is often
" miore important than the implementation of functions within -

‘objects. Frameworks can capture the structural design of soft--
- ware objects that address a given (partial) problem domain: Ag .
- suchi, the framieworks developed and reuised within an organi=

zation will, over time; comie to captiré and evéntually éven de-

“fine the ‘expertise of the orgamzatmn——and as stch, can-con-. -

ribute to. the argamzatlen 5 abﬂaty to" meet. its - customers’

114 BYTE AUGUS’I‘ 1991

“needs. (Thls is sornetimes cali&d compenrxve advamage but it L
applies equally welE in situation¥ whe,re competltmn i m}t'_ :
mvoived 3 ;

'2961 A Smalitalk ()dyssey O ' e
- If we look into our murky crystal baﬂ tow {io we 68 soft— Sl
“ware's use of ﬁbject technology-in the next decadeﬁ ch do we'.-__. =
. see jt evolving? S

- We hopethatin 20(}1 ‘whjects Wlll be bormg In cmnparfson S
: radzcal Jideas of past decades—that system software should be
: wrmen in higher-level languages o in languages with strong .

systems, and that computers cin and should be seamlessty

_ ne orked—arc thomughiy aocepted today Whether to: 1mplem'-_

Salitalkl¥ Class Hie

e seten]
F1it]).

- Ben nu:&";s a feehmmi ed;tor fbr. o
- BYTE: He: can be: raeac}wa’ on BIX as’
- "‘bensm;r'

ostill plcmy of discussion abmxt how to lm;ﬂem{mt them well.
Jject-oriented approach to. software design and 1mp§emematwn
. puage, 11brary, database system, and operating system and will
/ university. This is an issue of moving the: technology further
accomphsh it

free ourselves -even - further from equating objects with the

Tn the same vein, we expect that 10 years from now, the ob-' :
" will ‘be ari accepted, ‘standard technique used in every lan--
~ be taught in undergraduate computer sciénce courses abevery -
“out into the world, and noiajor new mmkmg wili be nee{ied o

O szgmﬁcsﬁﬁt t&éhﬁaichcai advance will he that we will

dent of ParcPlace Systems {Moumfam Vzew, D‘U ’I’hey can be S .

o “nioiins i the problem domatit. Some of the most remarkable ad- 'reached on BIX clo: “eduam’

vancés i the. usabzhty of cemputar systems have come fmm
' recognizing that processes, as well as things, can-and shotuldbe -
-described, modeled, and manipulated: Thérefore, we will see - -
- software objects being used to-model time, places; actions, and. -~
events. We believe that this will lead to us,abllaty advancesal- -
*most as dramatic as those resulting from the now-established - .~

window/icon/mouse/pull-down interfaces that were to a large

“gxtent mspared by the ongmal Sma!itaik work.of the 19708 and.

1980s. & .

L. Peter IDenIsch is c}aaef seientist. and’ Ade{e Goldberg is presi- .

o A%JGUST 1991 #'IB'f.;T_.E.-':i-iS e

 OBJECT-ORIENTED LANGUAGES

BY- KURT -]. SCHMUCKER

Thzs applzcatzon can szgmﬁcant Y reduce
Maant@sh progmm development tme

ONE FASCINATING -and potentiatly
. far-reaching use of object-oriented
‘programiming is in the design of an
- application framework for a perscnal
“compiiter or workstation. Several ex-

"~ amples of such frameworks exist, such

-asithe Lisa Toolkit, discussed in “Soft-
“iware Frameworks” by Gregg Williams
December 1984 BYTE), anid more are

- being designed all the time. This arti-
cleexamines one specific application ..
- framework for the Macintosh, Mae-~
o App~The Expandable Macintosh Ap-
- phication from Apple,

The average end user does not gert-

. “erally use or even know about appli-

catton frameworks. They are tools for

. .developers who design the software
e _for end users. In theory, an applica-
- fon framework can be developed for

.any personal computer..-However,

“they are especially ‘useful on those -

“with & - weli-defined uset-interface
“specification. .

WHAT IS MACAPP?

" The MacApp framework is basically a-

completer sélf-contained application

' - that implements most of the Macin-
tosh user-interface standard. 1t has

memj's that pul§ down-and windows .

that-scroll and.can be moved.about

-the -screen, it works correctly with
desk accessories and with Switcher,”
"and it printson the Imagewtiter and
‘the LaserWriter. The only things miss-
Cing from a complete application are
" the contents of the windows and the
items onthe menus. An appiication
< framework ig-only the shell of a real

application~a shell that you can eas-
ily customize into a-true application.
This customization process differen-
tiates an application framework from

a set of merely usefyl subroutines.

- For example, lét's exarine the way

‘in which an application framework . -
supports undoing commands. Mac- -

App knows that after you choose a

- menu command, the Undo'command -

should reverse the effect of the com-

mand. But a general application
~framework can't know how o undo;

of-de all the commands’ These oper-
. ations are accomplished with the -

~dynarmic binding present in anobject- .-
~oriented language. The application
framework “knows” about.command
‘objects and it knows that when acom-
mand is to be performed or undone,

St shouid send the 'messa'-'gé Dolt or .

Lindolt to the current command ob-
ject. - The ~application -framework

~defiries the basic skeletonof the ap-

-plication, but it leaves the specifics— "~
-for example. the actual details of un--
- doing the Double Spass command-~ -

to the command object. To build a*

specific application-from this frame- .~

work, you need to design only the ob-
jects that perform these specific ac-

tions and then install them into the - .

framework. - o
"The framework kn{:}ws in generaif_ :

.what a Macintosh application’is sup-ts o
posed t6 do. It Knows how to make -

the menus work, how to give up con-
srol when a desk acéessory is ac-”

“rvated. fiow to'scroll windows, andso .~
on-all the. things that are common to. =

icontmued}’

CRaurt . Scﬁmusker director of edicational ser- .
vites for Productivity Products International -
“(Severna Park Mall _ A
575 Richie Highway, -Séverag Park, MD -
teaches seminars on object-orignted -~
“programming. Kart has written three books

M &R Block Office;
211461

on compuber science. iviluding the forthcoming

- Obiect-oriented Programming for the: '

Macintosh (Hayden, 19861

CUAUGUST 1088 ¢ BY TE L 189

MACAPP

- Macinitosh -applications. The frame- -

‘work knows that the most recent com-

“mand should be undone when you

-choose the Undo menu item and that”
- the current setection should be high-
. lighted when you activate a window.
However. it doesn't krniow how to re-
verse the-actions of particular com-
mands ar how to highlight the current

" selection. The objects you install in your

custormization of the application

framework determine these actions,

‘For example to unde the last com-
mand.- the application framework

sends the message Undolt to the cur-
~rent comrriand oblect. The dynamic

binding of this Undoit message to-a

method as run time invokes the rou-

tine You have designed to handle un-

" doing this particular command. The

application frafmework proceeds with-
out knowing what that command, or
. that selection, really is.

The application framework is more -
Jthan just a skeleton “with a fixed

number of pluggable slots for com-
mands and selection. Using the tech-

nigues of object-oriented programs-
. ming. you can -overtide every major
_decision (and many minor onesh Any
application - on this framework can

take control at any decision poirnt
in the program by overriding the
preprogrammed methed to perform

&. userwrittery applicatiotspecific
“method.

To give it this flexibility, the applica-’
tion framework is set up as:a.group
of classes, or class library that you:

can use and specialize while develop-
ing & new application. If you want
yout application to behave in some

unique. specific way, you can add
- some fiew ohijects into the framewaork
“to provide this behavior. if you don't
-~ want anything unusual,-the applica-

- tHon framework wai] handlé the apph~ -

canon correctiy as is.

. THE BASIC STRUCTURE OF

) MACAPP . :

~The class |ibrary thati is MacApp con-
‘rains more than 30 different classes -
Cand over 450 methods! |
shows the inheritance structura of
- these classes.) However, if you undes-
_stand the operation of just three of
_these ¢classes—TAppilication, TDocu-

Figure |

ment. and TView—and seven of their
methods, you will be able to build -

“your awn appiication on topof the -

MacApp framework. The class TApgli-
cation takes care of things that are the

responsibility of the applicaticnasa

whole: This includes launching the ap- -
plication, setting up the menu bar,
deciding whzch documents to display - -
in -the "Open. Which Document?”

{continued) o

TObject - _
! b L
Tlommand TBuffer TTalkCall
TStdBufter TATPCall
TEvtHandler | TGatRequestCall]
B — [[A [-
| TApplication - TTalkHandler TD'ocum'en_t 1 “TFrame TWindow TView - TPrintHandler .
..1 T [_
TDeskSerapView TTEView { TCatView TDialogieem =
TATPHandier Thialog TRadioCluster TKeyHandler
[s L
Tlistener .| | TResponder’ || TRequester TNumberext
TReceiver - TSender 1 TDemander

Figure |: The infieritance tree of the MacApy classes.

Coo0 BYTE + AUCUST 1986

dizlog bex, and 'so on. You dééigﬁ' :

your own special subtlass of TAppli-

- cation, overriding whatever methods

you choose In order to specialize any

" of these behaviors. One behavior you
‘must always override is the type of
* document that holds your applica-
tion's data {the method DoMake-
" Document).

" The class TDocument processes
commands like Save and Close,
which are specific to-each of the

- documents that are open at any cne |

[instant. - (MacApp -applications can
- ysually deal with mukiple documments
“being open at oncej Two behaviors
© that you must override in.your sub-

rlasses of TDocument are the types
of windows that display the data

“stored in the document (the method
DoMakeWindows) and the contents
7 of the windows (the mathod DoMake-
Views). (The DoMake-something -
‘MacApp-methods are the ones you
© must override.) '

The class TView fakes care of every-

" & Fite Edit

e

=== Macljp Mousa:

o B33R3PM
2717788

Figure 3: MacApp applications typically work with multiple docuntents and
always work correctly with desk eccessories, even multiple ones,

192 BYTE + AUGUST 1986

thing inside your w_ffndOWchirawing _

the images, highlighting the selection.

handling -mouse interaction with
those images, and other things. TView
knows when a portion of the window ~
‘needs to be redrawn and when the . -
‘selection” shauld be ‘highlighted: It
doesn't know exactly how to do these
things. It relies on you to override the'
methods that supply these behaviors -
‘in your subclasses of TView, These -

methods are - Draw, Highlight

‘Selection, and DoMouseCommand.

' DEVELOPING AN APPLICATION =
~To develop a MacApp application.
-you must design your own subclasses

of JApplication. TDocument, and

“TView. It is traditional in MacApp pro-
_gramming to name these new sub-
classes so that you can easily deter-

thine their respective -superciasses.

.- Therefore, [-have. used the names: -
TSmallApplication:{a subclass of TAp- -
-plication), - TSmaliDocument {a sub-

“rlass of TDocument), and TSmallView

| {asubclass of TView). The application

1 is called SmallApplication, and its en-
- tire source cade requires only 87 lines. -
1 7 of Object Pascal. (For a:discussion:of -~ 7§
| - Objéct Pascal ~and -other .object-

oriented languages, see my article
“Oblecr-oriented Languages for the-
Macintosh on-page 177.) Two print-
auts of screen shots from SmallAppli- ~
cation are-shown'in figures 2 and 3.7
|Editor's ‘note: The entire source listing for - -

Swrall Application s available in a variety of
formuts. See page 405 for details] Let's look

~at two representative methods from
~this application—the . DoMakeViews
‘methond of the class TSmalilocamerit

and the Draw method of TSmailView.

DoMakeViews is- one of the

. methods MacApp needs to access
one of the classes designied specifical-
-ly for Smallapplication. | call this kind

of method a-MacApp hook method.
Listing 1°contains the full text of

SmallApplication's - DoMakeVigws .-

method, This method generates -ini-

tializes, and instails one -instance of

TSmallView: MacApp -sends-the
message DoMakeViews precisely so
it can obtain one of these and use it

to draw nside the window. If this =

method seems rather short, that is'a

_common _characeristic of object-
oriented programs. especially those -

-

MACAPP

-'Listmgl The fu foit of DoMakeViews, _
1 PROGEDURE TSmal | Document. DoMakeVseW$(farPrlnt1ng EODLEAN) OVERRIDE
COVAR .gmallView: TSmaiiView; _
.ZBEGIN
NEW(smal IView): : __i Creogts a new ans{dnce ot T$ma V;ew i
smal | View, ESm&EiVaaw(SELF) § Send new vibdw object -its Init message
: _SELF fSmaltVigw = smalquew,.{ Install this. view objesct in documént L
END; . o

- Listing 2: A procedure that overrides TSmallView's Draw method to draw a pichure of @ mouse. :
PRGCEDURE TSma] 1View.Dr aw{ared: ‘Rect); OVERRIDE;
' FUNCTIGI«% MokeRect{top,

lett, bcttom,.r|ght INTESER) Rect*

END:

. Frcmeﬁec%(ﬁukeRect{?ﬂ,'29%

170, 180));

CWAR r: Rect;
BEGIN ' : o .
CoooBetReet{r, left, top, right; Bettom):
. MakeRact = 1 D
ENQ' e
BEGIN ‘
PenNormali . - R : Lo
-'PQ|nt0val(HakaRa¢t(74 ?2 139, %27)), i Qutline of the mouse head }
'Eraseﬁvc!&MaksR&ct(&4 74,138, 525)3, Outline.of the mouse face_
Framebval{MakeRect (103, 84. i29 115337 - 1 Mouse mouth:{part 1 of 2)°
ErasaRect?MukaReciEiﬁQ 84,7123, 115}}: 7§ Mouse mouth’ {pqrt 2 of 23 i
FrameOval{MdkeRect (98, 87, 1087, 98)); . Left ays } .
- FramaOval{MokeRect {88, 104, 187, 113}); o4 Right-eye-}
PaintOval {MakeRect{ 101, 98, 124, 83}); Left pupil i
CPaintOvei{MokeRect {101, 187, 184, 118));. Right pupil |
- PaintOvail{MakeRect (111, 87, 117, 183)); - Nese } :
- PgintOvol {MokeRact (53,52, 91, 5@)); Left eaor }
U PaintOval (MokeRect{BS, 148, a1, ﬁ48)); Right-ear § -

= A-'bcu'hd'i:n'_g'_re_c:’%érqgé s 3

" designed 1o be overridden for many -

different-purposes. -Instead of ‘hard

- codirig many decisions; the designer -
of a class will make each stich degi-
- sion a method. You can change such
. & decision by creating subclassés and
- overriding the appropriate method.
‘the

The .Draw method of-
TEmaliView class is a method for

~“which MacApp cannot possibly pro-
- vide & generic version. You cant draw -
-anything ina window that would be

- useful to all Macintosh applications.

" In-such cases, MacApp provides a
stub method that does nothing, a wudl -

method, You don't have tooverride a

~.null method like. you.do a hook
“method, but if you don't ovebride this :
CEarly studies indicate that. Mar:App

one.part of your application may ap-

- pear to do niothing. The code in listing -
o 2 . overrides TSmallView's. Draw -
- method to draw a picture of a mouse.

If you continue this process for five

other methods. you will have devél

-oped-SmallApplication, an applica- .
tionthat draws a picture of a mouse.-

SmaliApplication is a stand-alone Mac

“application - that works correctly on

128K-byte and 512K-byte Macs, the

works with Switcher and with any num-

ber of desk accessories, prints on the -

Imagedwriter and the LaserWriter, sup-

- portsmultiple documsnts: and allows

you to resize -and move windows and

itself may seem, ivdoes ilustrate the

flexibility of the MacApp frariework.

“THE BENEFITS AND COSTS OF
USING MACAPP -

can reduce application development

time by a factor of four or five:
MacApp also decreases the'amount -
of sourcecode vou need, againby 8-

- factor of four or five. It maintaing con-
sistency with respect to the Macintosh -
-(ser-interface standard and provides -
‘error handling ‘arid -anh interactive
“debugging. facility.- which-are useful _
: _ s, the during development. Tt providesa -
new Mac Plus, and the Mac XL. it -

conceptual framework. that lets you .-

“concentrate ‘on your application ..

rather than on Macintosh internals”
Some feel that these gains are atthe -

-expense -of -performance in’ the
~finished application and of a large
use menus. As trivial as the application .-

amount of additional memory. In fact,

many MacApp programs actually run _
“faster than their non-MacApp ver-

sions, despite theé fun-time overhead
of messaging. MacApp applications

-are usually somewhat larger than théir..
‘non-MacApp versions—about 10K 1y
15K bytes: But for most end-user ap-
plications. this is not alarge penalty ™™ -
when weighed against the decrease in -
“development time -

- ALGUST maa'?ev?E 193 .

| OBJECT-ORIENTED LANGUAGES

BY LARRY TESLER

. Prbgmmmers _u:s'ing 'objecteoriéntéd; ..lané'u'a'ges
say the benefits make the learning worthwhile

WHAT {517 LIKE to write a program -

i an objectoriented language? [
posed.that question to several peo-
ple who program In ObjectiveC

. CT++, Object Pascal, and Smalltaik,

hoping to gain insight into how dif-

" ferent programmers think about’
- objectoriented design. Their ex-

_ periences had more in common than
- you might expect,

1 asked each person to describe hig
"project and discuss how object

‘oriented -programming affected its .

progress. Their recollections tended
to support oft-heard claims that
obiect-oriented languages can be a
- boon to large programming projects.
The software development benefits

_stem from three properties of object

oriented programs: object-based
modular structure, data abstraction,
and the ability to share code through
inheritance.
The term modularity refers 1o the fac-
- toring of a large program into units
- that can be medified indepéndéntly.
In an oblect-oriented system. ‘every
module is an ¢bject, that is, a data
--strdcture that contains the procedures
. -that operate upon it, Object-oriented
- design is the process of identifying
objects that constitute & usaful mode!

“of the problem at hand. In the sarly
stages of designing a program, the
need to partition the problem into ob-

~Jects stimulates the desigriers to iden-

tify its principal constituents and to
specify their behavidr and interaction,

Data abstraction -is the process of -

hiding a data structure behind a set

of procedures throueh which access
10 the data is forced. In this way, the

“concrete” representation chosen by
the programmer is replaced by an
“abstract” catalog of available opera-
tions. The advantage of data abstrac-
tion is that at any time the program-
mer can change representations
without having to change other.pro-
grams that relate to the operations.
Data abstraction is a natural concomi-
tant of object-oriented programming

because each object contains not
only its-data structure but also the .

- procedures that” operate ‘upon it
These procedures, -often called
‘methods, are usually the only aspects

~of the object accessible to other

objects.
. All object-oriented Janguages can
" share code through inferitance: that is,
oblectoriented languages provide the
ability to define one type of obiect as

-a variation of an existing type. The .

new obiect type is called a subclass of
the old. and the old type a superclass
of the new type. Objects in the sub-
. clasg’inherit all the properties of the
superclass, including the implermenta-
tions -of ‘methods. . The subclass can .

define addizional methods and rede-

fine old methods by ‘providing so- . |
called owerrides. By using inheritance -

during the development of an object-
oriented program, code can be

~ shared among similar objects. Later.
“certain kinds of enhancements can be

made simply by creating new object

types as variations of existing anes,

A WINDOWING SYSTEM e
“The first person | interviewed was
Gary Walker, Manager of Primary In-
teraction Development in the Dis-
“tributed Systermns Group at Burroughs ™

Corporation in Boulder, Colorada. He

and hig group of nine programmers -
" were assigned the task of implement- -

{centinued)

" Larry Tesler. currently Marager of Advariced
-Development at Apple Computer, previousty .
- wanaged the developwient of Lisa applications.
the Lisa Toolkit, and MdcApp. He can be
contacted at Apple Computer, 20325

Martani Ave., Dept, 5770, Cuperting. CA

95014,

AGGUST 1986 = BY TE 195

" PROGRAMMING
_ EXPERIENCES -

]

ing a general windowing énvironment.
featuring menus. check boxes, but-
tons, and the other trappings of a see-
and-point user interface. After con-
ducting a comparative study of the
available object-criented languages.
his group chose C++, an obiect-
| oriented extension of C inspired by -
Simula-67 and developed by Bjarne
Stroustrup at Bell Laboratories in Mur-
ray Hill, New: lersey. Only object-
oriented languages were considered
for the project. "In a windowing
systern; Walker explained. "you want
to instantiate cobjects for windows, -
each with its own private data. By
| defining separate types of windows as-
different classes they can inherit com-" -
men characteristics and still possess
their own special properties”
1 Walker found data abstraction to be
the most significant advantage of
using C+-+. Smalltakk and some other
object-oriented languages force data
abstraction uporn the programmer by
hiding the interhal structure of one
object from other obiects, For exam-
ple to move a chess piece, a Smalltalk -

~| program must invoke a method such

as move__1o, passing the destination
square as a parameter. It cannot use
an .assignment statement to modify
the data structure describing the
chess piece’s position. The advantage
of the restriction is that both the rep-
resentation of chess pieces and the
implementation of move._to can be
+ changed without having to alter the
code in other obiects that access

- them.

Unlike Smailtalk, Object Pascat and
C++ allow objects to access part or

"1 all of the internal data of other ob-
jects. However, many textbooks warn
against direct data access except
when perfarmance considerations are
paramount. Walker's - group found
through experience with C++ that
interoblect direct data access is
usually a detriment to modularity. "if
you want 1o get at somebody else’s
variables” ‘he said. “you should go
through access functions {methods|”
_Another property of object-ariented
programs that benefited the window-
ing system project is modular struc-
ture. It gave the designers the ability
to create what Walker calls “isolated

: icontinued)

' PROGRAMMING EXPERIENCES

worlds of data and functions””
.-Walker also suggested a rhore

pragmatic advantage of modularity -

based on objects: cutting down on

the number of global variables inthe -
program. The advantage of avoiding -
global variables in an interactive sys-:

tem is that multiple instances of egch

S object can easily be created. it would

| be quite difficult to support multiple
windows if the data describing a win-
dow resided in giobal variables. Ac-
cording to Walker, if you follow the ad-
vice of many software engineering
books and avoid global variables, you

usually end up passing too many pa- -

i rameters to functions.. With C++,
Walker explained. data can be
“private” 1o an object. and all func-
tions of that object can access its data
without passing parameters,

Having heard ‘Walker mention in--
heritance as akey factor in his choice:
of the object-oriented paradigm, [
asked him for.an exampie of its use

in the windowing systemi: He cited the
1 class Merw, a data abstraction with
several subclasses, ificluding Vertical:
Menu, RadicButtons, and Check-

| ‘Boxes. The system displays each type .

of menu a-different way, and the user

interacts with-each 'a bit differently. -

But all serve the same basic purpose:

-They give the user choices, and they

report the user's choice to the object
in the application program.

Some methods of Menu are in-
herited by the subclasses withott.
- modification, while others are over-

ridden by special implementations in
- each subclass, An example of anin-

™ herited method is selectioriTitle, which
returns the stzing containing the user's’

menu choice. The implementation of
selectionTitle is shared by Menw and

all its subclasses, Anexample of an-

overridden method is prompt, a func-
tion whose arguments are the text

| strings “that represent the choices.

available in the menu. For sxample,
my__meny.prompi{‘sherbert” !

LI

cake”, “torte™) specifies the choices in

| a dessert menu. Each subclass of

Menu implements its own version of

| prompt. The.version in the class Ver-

| ticalMenu displays & list of the strings

in-a style similar to Macintosh pull-
down menus, while the version in the -

1 class CheckBoxes displays the strings

theese:

- siéé by Sid_é with a .check'-'bsx' besjde"_)
each one’

similar to “Macintosh |

‘dialogs.- oo
- The variable my,mend s declared
to-be of the type Menu, but at dif-

ferent times during execution its value

may refer to objects of different sub- .-

classes. of Menu., “Whehever the

ry__menu.prampt is executed. itwill

invoke -the - version -of - prompt as-

sociated with-the class of the object

that. is" currently - referred to by

rmy._ment; This is one of several -
cases where Walker's group found a
‘use for. the so-called polymorphic

‘property . of objects. Polymorphism -
~refers to the ability of one procedure - -

call to invoke different procedures at
run’time depending .on the type of

one - of “its ‘parameters. in o_biect-'_ :
‘oriented languages, polymorphism is

achieved by letting different classes -
implement methods that ‘have the

same fiame and formal parameters

but different implementations.
© The ability of subélassés to inherit

- from superclasses can also simplify
- the maintenance of large objed-
-otiented - prtograms. The Burrcughs

team found that by making a change .

10 the superclass, in effect -they

changed all the subclasses at.on¢e,

~and if they made changes o one of

the subclasses to get distinctions they

wanted, the code’in the superclass .-
D and . the other subclassés remained
safe; '

Waiker”s-group was not alone in that
finding. -1 heard similar claims from

Seth ‘Snyder and Dale Peterson of
_Recording Studio-Equipment.Com- .
‘pany based in -Miami. Florida, who!
-used an object-oriented language to
implément an integrated application
-that controls 2 spectruni analyzer
“while managing time billing for a re-
‘cording studio. According 1o Snyder:
and Peterson, when new features had -

to be added to their program, they

were able to add them reliably, with-
out any risk of affecting the perfor-

mance of features they had imple-
mented earlier.

A SHIPBOARD NAVIGATION

BYSTEM

Carl Nelson. acomputer coénsultant in

Seattle Washington, was approached

fogntnraedl

i —

_ PROGRAMMING EXPERIENCES -

by a group of investors for his.
ing a computer- .
assistet navigation system. The envi-
sioned system. to be installed -on
| ‘boats in coastal waters, would consist

assistance -in -build

of a Macintosh connected to & loran.

A loran collects data on a ship's posi--

tion from a radio receiver. turied to

three or more land-based fransmit-
ters. Using a combination of triangula

tion and dead reckoning, it'displays

the ship's position and beating on a -

simple (one-to three-line} display, The
captain can key in the latitude and

longitude of points along the desired .
| course and thereafter the igran will
| display the current heading and the .

distance 'to' the next point in the

| course If connected to an autopilot, |
| thedorarn can command it to steer the

vessel along the planned route.
The clients told Nelson that -even
though the loran and autopilot are

mainstays of navigation for many boat

owners, “the equipment can be

i -tedicus and time-consuming to-use.

The digital information on the display
does not relate toa position-on a

navigational chart at first glance A~

“what you see is where you are” sys-
tem—one that displays the chart on
the screen with the présent course
lines superimposed on:the image~-

was needéed. Such a. system would -

allow a navigator to plan a course on
the chart with-a mouse and then
would transmit the coordinates elec-
tronically 1o the loran, The system

and avoid problems that arise when
in‘correct coordinates are entered.

’I‘h'e entrepreneurs used -a ?h‘under-'

nautical charts into MacPaint files, and

the application. One of the investors
already had & Macintosh connected
to the loran on his boat and recorded

| the telemetry of one day's voyage on -

a floppy disk. That disk enabled

| Nelson to test his program inthe com-

fort of his office. For testing, Nelson

used two computers. The main com-
puter displayed the chart and allowed

the course to be specified with a
mouse, The other Macintosh served

' | as a loran simulator. playing back the
recorded telemetry through one of its . -

_ ser‘i‘éall ports to the main compuser.

All that was left was tO program the

application and the simulator, Because

he had only four months from project
start to public demonstration, Nelson

needed & software development en-
vironment that-enabled rapid pro- -
“totype development and implemen-

tation. He chose MacApp, an object-

-oriented software framework for the
Macintosh (see "MacApp: An-Appli-
cation Framework” on page 189)and

Object Pascal, the only langlageé avail-
able then {mid-1985) that could be

used with-MacApp.

To understand MacAp'p you must '

‘be familiar with certain standard con-

cepts undetlying Macintosh applica-
tions: including the concepts of docu-
ment, view, window, and comrmand. A
document in the Macintosh corre-

_sponds roughly to a file“in-a tradi-
tional computer. The programmer

must design a file format for storing

‘it on disk and a data structure for stor-

ing it in memory. The programimer
must also provide one or more ways

-~ torepresent the document visually on

-the display and-on the printed page. -
-~ Each different visual representation
‘s called a view. For exampie, an ar-

ray of floating-point riumbers can be

viewed asa tabular column of text .

containing digits and decimal points,

‘orasa'pie chart with shaded wedges
“of varying size. The size of a view
-often exceeds the size of the screen.
© but you can see portions of it through
1 would save time increase accuracy’

a window that you can scroll and

tesize: Using the mouse and the key-
board. you can issue commands that

change the document. The changes
are reflected in all views of that docu-

_ment that are pressntly displayed.
they wrote a wtility program to cone .
vert those files to a format usable by

“MatApp - defines ‘the abstract -

~classes Document, View, Window,
~and Command, corresponditig to the

above concepts. A class includes a set
of methods that defing whit the class

‘can do. For example, a document can

open and save, a view can draw and

- print, a window ¢an resize and move,

and a command can do'and undo. T
use MacApp. you must structure the

“application in a modular fashion.in -

terms of these obiects. Onee that is

“-done, the application can-inherit an

extensive library of user-interface and-
© continuedt

a0

 PROGRAMMING EXPERIENCES

-error«handlmg facilities. . e
Accorditig to Nelson. the framework
provided by MacApp gave him a

_structure to plug things into. As he-

* - studied the navigation problem, he
-~ asked himself, “What do 1 have in this
‘application that maps onto objects

. supplied by MacApp?” After identify-
‘ing-all the concepts that mapped easi-

ty into MacApp objects, he found that

" “the whole user -interface was ac-

“counted for. The only code that re-
mained to be designed was: that
* which manipulated internal data struc-
tures unrelated to the user interface.
- In the navigation application, the
" most important subclass of the class
- View was easy to identify: a digitized

- chart with latitude and longitude lines.

" The window in-which that view was
displayed was a little harder to design,

" 7 because it had to provide nonstan-
- dard contrals for scrolling around a -
- gpherical world. The command ob-
" jects were - easily - determined by

“.enumerating the commands available

" inthe user interface such as place -
marker and show navigation info. The -

choice of doctinent objects was not
-so clearcut.
‘A document in MacApp is anoblect
- that manages the principal data struc-
-~ tires of an application both in RAM
and in file storage: In Nelson's applica-
tion, several different files are
ermployed. including the digitized

nautical chart image with added an-
notations, and & trip file, which con-
sists mainly of the trail of coordinates
recorded during - a.-specific voyage.
Nelson had to decide whether the-
- document object of his application
should be of the ¢lass NauticalChart -
‘or of the class Fip, of whether his ap-
plication should support both:kinds

of documents. He based his: décision
on an analysis of the operations
associated with each type of object.

For example, he wanted the client to
" be able to savé the history of a trip -
~'in a file and then reopen that file by

clicking an icon in -the Macintosh

Finder. But he also warited the client .

to be able to-open a chart file to

review the afinotations that had been
- made on the chart. He conclucled that

both the trip and the chart are appro-

priate document objects, and his ap-

plication defings both as subctasses
of Document.

The chart file consisted of a digi- -
“tized image plus markers indicating -
significant locations such as reefs and-
‘buoys. Once the program-was Tun-
ning. Nelson and his client reatized
that not all markers should be as-
" sociated with the chart file. It made
“gense for a marker labeled

“light-
house” to be stored with the chart,

- but a marker labeled “caught 30 b
‘salmon” really belonged with the trip.
- Nelson decided 1o divide all markers

Marker

data: earth position
time/date of placement

routines: annotate marker

ChartMarker
‘routines; draw chart matker -

store with ¢hart

TripMarker -
| Icutines: draw trip marker

. store with trip 7~

. Figure 12 An example of class hierarchy.

BYTE « AUGUST 1986

into two subclasses of the object class - -
Marker, “namely, - TripMarker and.~
ChartMarker: He dnalyzed what the ..
two kinds of ‘markers had in-com-

mon=for example, the display algo-
“rithm and - the routines . to edit an

annotation--and - implemented that

" gommon behavidr in the supétclass. -
Marker, from which the subclasses
could inhérit it. He also determined -
whiat differentiated them-for exam- -

_ ple, the shape 'of the displayed-icon .

- and the file used for storage—~and im- .
plemetited that special behavigr.as -

overtides in the subclasses. Né!soﬁ-_' -

called the - differentiation " process |
from |

“pushing - down ‘the details”
superc]ass to subclass {seé'-ﬁgum i;.

A CAD SYSTEM - :
At Artecon Ine. in Carlsbad.- Cahfor—'

nia.-a group ‘of 20 programmers led
cby -Dana - Kammersgard used - an

object-oriented language -on Sun-2
and Sun-3 workstations in the-devel-

“opment-of ArteMate, an integrated

CAD and office automation system. To
make the system as portable as possi- -

“ble, Kammiérsgard's graphics-group

coded their routines according to an -

-industry standard called GKS (Graph-
- ical Kernel Systemn). GKS provides a
‘way o construct images by transform-
cing anc. combining primitive forms
- such-as {ines, polygons, curves, and © |
ellipsoids, The standard specifies a+

device-independent set of procedure - |
calls:leaving to each implementation -
thetask of interpreting those calls in
a manner appropriate to the avax]able '
output devices,

According - to Kammersgard hns

-team wanted the CAD portion of Arte-

Mate to display two-dimensional and
three:dimensional graphics on awide

variety of plotters and screens, To ob-

tain that flexibility, an object-oriented
approach séemed best. The language’
they chose for their implementation

was Objjective-C, developed by Prod-
Adctivity - Products International of -

Sandy Hook, Connecticut, and avail--
able on a variety of computers and-
operating systems.

The. first quastion Kammersgard's
group addressed was how 10 organize -

‘the code for -a number of graghics

devzces ne luding the CalComp 1043

[wnumma -

_ PROGRAMMING EXPERIENCES =

*-aid 1044 and the HP 758X models, -
in such a -way that it could perform

‘both input and cutput to a aumber of-
- black-and-white and color display

systems, including the - SunColor
-Graphics Processor - and -~ the " 1BM

-+ 5080, The programmers decided that
each type of device should bé repres

sented by a different type of abject.
. Accordingly. they defined Objective-
C classes such as SunGP and Cal
- Compl044.
At different times during program

contain pointers to différent device

- classes. For example, if dev refers to

- an instance of the class-SunGP, the
staternent dey -polywlin'e':_awrdust '
. invokes a device-specific method in-
" class SunGP to display a polygonon

the Sun screeri.1f dev is later-assigned

a reference to a CalComp 1044, the

" statement dev poly._finei coordList

invokes a dewce—specxflc: drawing -
method in the ciass CalCompi0dd to
drive the pen plotter along a polygo- .
‘nal path. To support a new device, the
the programming team can simply .
~ define a new class without modlfymg-

existing code,

Kammersgard says that where i:hey e
could take advantage of special hard-
‘ware features, they implemented a .
device-specific method in the class.

For example, the method poly__line
" normally has to apply transformations

to the coordinates supplied in its -
- .parameter list to account for the:

- 'visual perspective of the viewer. To
calculate these transformations . in-
- .volves matrix multiplications, which
are time-consuming opetations in a

‘conventional computer. Because the -
“Sun -Graphics Processor implements

‘a three-dimensional -transformation

pipeline in-hardware, the class SunGP

overrides the standard implementa-
tion of poly__line, substituting & ver-
sien that is shorter and faster than

transformations performed whally in

software, _ _

Like bioiogists who classify - lifé
forms into- species, group- sifmilar
species into a genus, group related
genera into a class, and soon, object-
criented programmiers design hierar-

chies of classes according to the =
similarities and différences - they
perceive between objects. In.the

Artecon system speczhc output-‘_ _
_'de\nces are the species of the graph=. -
-ics: kmgdom and ‘company product
lines are the genera. Since-different
devices from the same manufacturer
-often have similar interface specifica- .
tions. Kammersgard's tearn defined
the class CalCompPlotter as a super-- .
‘class of both CalCompitdd and-
CalComp1044. ‘They moved methods -~

common 'to both maodels p to the

superclass -and- left ‘model-specific . -
- -methads in the subclasses: In a similar |
execution, a program variable can .

fashion they added generic classes

like HPPlotter,.- SunDisplay. -and..".
IBM50SeriesDispiay to .the class
-hierarchy. By sharing as much code as- -

" possible between device classes, they -
were able to reduce program size and

developrment time considerably. -

The hierarchy of device classes con-
tinues for two more levels At the level -
above product lines, all kinds of plot-

ters are grouped into ohe clags, and

ali-kinds of interactivé displays into .
-ancther; display classes implement -
‘methads for user input, while plotter -
classes do not. At the highiest level is -
the class GKSWorkstation, -which is - -
‘the -ancestor “of all ~othér- device -
lasses. At that level, device- -
“independent Operations ate.irmple- -
mented—for example, the GKS primi--- -~
-tives that change display attributes in -
data structures-in memory without
T commiunicating to the devices, _
- In‘any graphics application, another
obvious application of ‘objects is to -
represent the graphical:components
- of the drawing. Forexampla all ellip-

soids cught 1o be instances of the

class Eliipsoid, and all eylinders cught -
'to be instances of the class Cytinder. -
“In the Artecon system, all geometric
modeling classes are grouped to-
gether under a'superclass called Geo-
~metricObject. Geometric objects re-
spond to messages such as draw.

rotate, and store.

But a CAD systerri must do more :

than s simple drawing program.

must-aliow the user to indicate reia-_ :
- tionships ameng design components,
Kammersgard's .group found them-

selves adding “Iinké” to geometric ob-
jects and (o other objects within the

system, such as instances of the class

ViewPort. After a while they realized

{continued)

- | systermn.on the IBM PC. The system =

that the various implementations of
1 links could be cambined by embody-.
ing Geometric_ Object and ViewPort
| ina new superclass called Associa-
tivityObject. An associativity -object -
‘containg a set.of links and supports -
1-operations. such -as . add. link,
“remove.link, and modify_link. A
4 member - of any subclass, sav.

Cylinder, inherits the ability to contain
links -as well as- the routines - for -

manipulating thern. Adding the class

1 AssociativityObject required a modest
-} festructuring of existing code: Accord-
‘ing to Kammersgard, it i$ ¢ormmon to -
| restructure the class hierarchy to take
| advantage - of ‘newly -discovered
| opportunities -for - sharing code

through inheritance, -

A KNOWLEDGE-BASED
APPLICATION
Bill Hutchison, & behavioral pw:hol»
- | ogistliving in Silver Spring, Maryland. .

is implementing a knowledge-based

organizes information in a way that

| allows a seemingly rational response
to stimuli. After considering a number
- | of development systems, Hutchison:

1 detided upon Methods, & Smailtalk -

dialect developed by Digitalk Inc. of
Los Angeles, California [spoke to

Hutchison after he had been using
Methods for four months. "I like the

way | can think-about the problem,”
he sald. " map out the general prob-

-lemvin my head and can almost ex- -
tract the objects from how 1 write it

downifs English. 1 make an obiject for
each physical thing, process, or activ-
ity:that 1 am dealing with””

i agked him'if Smalltalk was dl'fﬁcult
1 to learn. Hutchison, who has pro-

grammed - extensively in -assembly

- | language, COBOL,-BASIC, PILOT, and
| PLANIT. said he found Smalitalk “the

maost natural way'” 1o program. He ad-

4 mits, however, that most of his learn-
J 1 ing time went 16 mastering Smalltalk’s

© | extensive class library. Large libraries
are typical in object-oriented systemns

because they are extremely sasy 1o
build and -maintain using subclassing

and inkeritarice. The library that

: ~{ comes with Methods indudes classes
| that are similar in purpose to those

of. MacApp. That allowed him to im-
plemerit the user interface of his-ap-

PROGRAMMING EXPERIENCES

'plii’:étzon' éés’ﬂy énd':g"zve it fancier
features than -he had first thought T

pDSSlbi
Hutchigon sai d he structured the ape

piicatlons_ob gcts in & modular way. -
Knowledge -is -stored i association

networks that relate situations, conclu-

sions, ‘and responses. He {irst devel-
-oped a basic Network class able to
- represent simple ‘domains, -and he

said that doing so was hot as difficult
as he had expetted. Latér, when he

* decided to tackle more difficult prob- -
Jems, complex networks became sub- - -

classes of the basic version. The first

‘subclass he defined was Interaction-
" Network, which adds the ability for -
parts of networks to interact with each .
other. That class was itself subclassed
" to define MultiResponselnteraction- .-
- ‘Network, which permits the systemto
. respond along multiple dimensions.
At each stage he had to restructure
“existing definitions a little 1o allow the
~new class to inherit as much as possi-
blé from the old classes. The modular

structure of the application made it

. easier to change one part without af-
‘fecting others, "Sometimes.” Hutchi-
" son said, “aradical charige that | was

dreading took me only an hour or less

“to accomplish” But Hutchison added
that to -make the program - that

modular, he had to develop the dis-

cipline to confine knowledge of an ob-
ject’s internal structure to its own -
class—~only after having <done that

could hemgke changesto an obiect's
structure without affectmg cthers.

' .GBIECT—QRIENTED FUTURE

Certainly, object-criented programa

ming offers -a-great deal to software -
“developers who want'to manage large .

software projects or create prototypes - -
~quickly. Now that' several suitable

languages are widely available, many

programmers will likely invest the time
. necessary to acquire the'skill of using

them. The interviews] conducted en-

couraged me to believe that these lan- -~
guages can be applied effectively in-
- diverse situstions by pedple of varied
- technical backgrounds. Even though
‘the i&arning curve is high, most pro- -~ -
- gramimers can-easily exploitthe full
‘potential of object modularity, ‘data
_abstraction, and inheritance offered
by object-ofiented languages. ®

- group’s productivity by the output of 10% of its time.

el

 byPatiickBrown

“The real “difficiilty in -ménagéng software

- “development is the fuzzy concept of exactly
~ what is" being ‘managed,. Develdpment is

" typically managed using a phased develop-
- ment Todel, and a common form of pro- -

duetivity measure is the KLOC/month, Yer
U it'ls 5ot clear that either phase developmient

models or productivity measares actuaily | e _
- -they may have to' anybody, incliding the

- Tepresent development activities. -

o Development is often broken into
“several discrete efforts, sometimes calléd
~phases. Commi# phases -are trequirements

' -definition, external design, interral design, -
' “same fate. The cost of maintaining a ctir-

rent version of the doctiment is simply 100 -
“large to make it feasible. Most groups Te-

‘code and unit test, and integration and SY5-

7 e test. Managing this process involves

;7 “the formal réview of the products of sach
phase. 7.5 o S
ol Requirements, extertal tesign, and

. ititerial design produce documents describ-
- ing the results of analysis and design activi-

.-ties, constraints, assumptions, and future
“work plans, - .

. The product of code and unit test is _

the delivery of tested code to-the integra-

- tion/system test group. Other than a check :

" to make sure all components have been de-
livered, © this . phase is normally not
Creviewed. : .)

- Intégration and systemn testing tsn-

;- ally involves exercising ali or mmost of the
.. delivered system and eithier formal of infor. ...
“mial gvaluation of the test results, General-

1y, 2 signeoff or formal acceptanice of the
‘product ends the testing period. _
It I interesting to note that a num-

- ber of diverse skills are required to use the

- phase developiment process. - Analysis and

~design are intended to be the primary activ. -
o Vitles in the requirements and design phases. -
. The product being reviewed, however, {s al- . .

i 'Ways a result of documentation skills, Doc-

umentation skills aré ‘necessary since poor

- docuimentation cah rin a good desisn. In

- the code and unit tést phase the products
“ooare indeed program ‘tomponents that re:
L quire coding and testing skills: The integra--

' tion test phase has no tangible iﬁredﬁé_t bat
requires experienced testing skills and good -

data processing background.
phase .f‘nanagcm_erzt' process. Documenta-
tion of the product s tevoming ah enors

mous burden. It is ‘not ancommon for
projects to produce - design - docustients -
“thousands of pages dong. Producing stich

documents costs far more than any valoe

authors. Few developtrisnt Eroups Use ex-
ternal design documerits aftey internal de-

" “sign efforts have been chmpleted,

Interfial design docuntents share ihe

sort to informal methods—or worse, no

‘method at all—to keep track of changed -
“designs. The document s normally of less
‘value to outside groups than to the authors,
‘Usually, an outside Eridep wanis to know
about-a small part of the entire product.

Should a person read a 1,200-page design
document to find the format of a single
interface? L :

quirements doctiment. Similarly; the inter

“nal design document -is a separate effort
from external design. This makes continu-
1y in design difficalt. It is a rare. develop:.

ment group that can trace every fedturein a
product back to a requirements statement,”

or that can demonstrate that BVEry requires -
ments statement has been satisgfied by some -
- design component. R R
An _approach ‘16 explaifing “the .
- problems is that while the phase process de.
mands docimentation, the developmient -

. process requires information. Doctiinenta. -

tion is not 4 substitute -for - informatior;
This will be séundly endorsed by anyone:

‘who has waded through 2 few hundred -

There are severe problems with the

- DESIGN

Another significant “probler - with
"the process is that documents are rarely
compatible- with one’ another. In many .-
* cases the production of the éxterrial design
document is a separate sffort from the re-

pages :bf‘-dbcume;ntatian' looking -for'_a--ﬁa~ '
rameter forfmat, s T T

MANAGING - Additionally, ~ emphasis
cron - documentation ens

Soaguile 1 courages mianaging. the ;

PROCESS - design - process - as if 4t

were a publishing businéss, Instead of crec

- ating hierarchic levels of design detail, we
.-are faced with the problem of publishing .7

design éocuments-wweiﬂmes 12, 8nd 3w
“with associdted draft and ‘publishing dead: 7
-~ lines Anexamitiation of work. plang for de-

sign - groups - will uncover - tasks Clike
“produce preliminary draft” and “sdit fina]

draft.” More appropriate tasks might be

“integrate - all --design components” and

| “eross-check. components for consisténcy g
and completeéness.™ - - : e

. Measurements of programming ef- -

forts are imprecise at best: and i many
cases probably meaninigless. Though thein: -

dustry recognizes a vieed for prodiciivity -
and. quality ‘misasurertients, there- are sio-
clear ideas about what sheuld be raeasured.

A commonly sccepted convept of produce
- tivity is lines of cods per unit time. But us- R
ing lines of code ({or Kroc per. mionth) - -

©.cTeates a major problem in terms of congis.

tency in counting. ‘A few of the variables -~

are different langlages, comments, “stte.

merts vs. card -images; execatibls siate-

ments vs. all statements, and differing

levels of complexity, - - -

- Bven more important than inconsis-
tency is the question ‘of whether lines of -

code is an appropriate measiire of software -

-develupmient. -Coding, the ‘production of
ings of code; normally cocupies abous 100 -

of project tiriie for new development and

. perhaps 1% to 3% of maintenance time,

How can it ‘make sense’ 'to measure g

group’s productivity by thé output of Jess R
than 10% &f its time? Certainly the design .
- phase must ‘have been productive ot the -

project would 1ot have been undertaken. A R
- true measure of productivity must acedunt - -
-for the activities of all phases. L

" APRIL15, 1985133 .

1L 1S not uncommort for projects to produce design

documents thousands of pages long.

~ It may be argied that lines of code

are used 48 a measurement bacause it i the

- only fangible feature of the dalivered prod- -

uct: This argument, however, “only - rein-

- forces the idea that the phase process s an .
Iappropriate technique for'managing sofr.”

~-ware developrmient. Each phase of the des.
~velopiment should: produce some tangible, . -

- ineastrable produet, "

Z::simi}ar.'.fau_lt's‘. Typical quality measure-

- ments Tefer 1o error density and tiean time
40 falhure. Thése Kinds of measurements are -

- cguitable for manufacturing’ envifoniments,

. of the number of sticky déors in 2 new of.

- fice building. The owner ofa building is not -

. interested in'counting defective bitcks, he is

interested -in Row well the new building

- meets his businesy needs. Software guality: -
w38 not measured by counting defedtive .

© . building blocks: it isa tedsure of How well .-
1 the new syStem wieets the fieeds of the busi.

oness it 'was designed 16 support,.

Lo A sad s the cutfren sitaation is,”

- the futuse promises even more -probilems.
- Current technigues simply will not support

"-emerging meéthods of development that Toy- .

S pass many traditional phases.
by quickly building a model of the target

cosense B spend $ix 't sight weeks producing

asrequirenments -docutnent Tor the system.

“Spending additional time developing coms-

~.7 prehensive extérnal and internal design -
i '_"d_t_jtﬂmen'ts_ ab'ou_t an existing system. may
Co-motiriake sense either, Sl

“software instead of devel-

- ‘. negﬂy as ch'ea'p o by code as fo develop

f0r custom-built systems: The raditional
- phase development Process doss not sasily
-~ deal with such quastions. . - S
LU T A utomatie application - generators

o areadvertised as able to incresse productiy-

A4 DATAMATION

- Quality . meéasurements suffer from.

o but soffware IS Tot massproduced. Error-
T d'e'zrs_'_iz:y_-iii-sqftwar_e'mig'ht_ beé analogous to
~measuring the nuriber of defective bricks

i Take, for exataple; .prc_t'dtypin'g. E
- Prototyping ‘has received increasing atten-
oo tion in recent literature. The theory is that

. System, much of the requirements anid de- i
-+ -sigh phase can be bypassed. If a prototype
“can-he binl iR gk weeks, it inakes lttle

o AS CHEAP '-"in'élddi'ti.a.n,. zha'nj;_dmrﬁwi
U TOBUYAS panies are purchasing -
- DEVELOP

Conew code, fiurehase doesnot require the ac- -
quisition and maifitenarce of "development. .
“resources. To what extent should &.devel.
- opment organization provide desigi infor-
- rhation to the software vendar? Internal
Cdesign-nformistion ay not be appropriate,
- External initerfaces are ‘cértainly important -

Aty by large ‘factors: But many generators .
--produce neither usable internal designs nor

‘souree code. It is rlot redsonablé to meastire
the output of #n application: generator in

the sarme fashion as we Medsure s program-

this situdtion,

cess toward producing:linas of code; it can

be viewed as producing 4 workable design
for a- problem. Notiée that ‘the ‘traditichal -

definition -and the proposed definition are

. notincompatible. They are simply different
- ways of Jooking af the same aetivities.

L The design-process may be rede-
fined as the specification of & desipn; which

- will either solve a stated pioblem or fulfill
stated requirements, Traditionally, 3 way -
viewed as the specification’ 4f code that’
~would perfori 2 business function to solve -

the problem. The code and unif 2est Aptivie

“tes may be viewed ay the implémentation -
of ‘the design. Lntegration ‘testing. can be -
thought of as verifying that the implemen- .
tation of the design. dctually meets stated :

requirements, |

design - actually behaves e the design in-

tended. Verification determines that 4 de.
s " sign-has-been consistently stated and -
- Oping -t -Not only is it

confuse the two concepts but ‘They dlways
perform both kinds of teste) o

intended it to behave. Integration and sys-

-tem tests ensure that afl progranimers uged
“the samie design specifications, R

- The redefining of the process has

- several appealing aspects. - It allows new

lechndlogy to enter software development.

. Purchased software and application gener- -
-ators no longer fall outside-of {he manage-.
~ment model. The definition of reqiirements

~anid the gerieration of specifications fall into~ -
. the design process, Implementation:simply’ T
- replaces coding with; say, purchase of soft
‘mer. wiiting applications;. Ornice sgain; the -

Ataditional management prodéss and tradi- R
tional measurements do not easily handle -

~totype i a working imodet of the furction,
wAnterfaces, and data required for a sew sy
~tem. If ole considers the information com
“tained ina. prototype rather than the =
- méthod of capliiring th information, then
o -prototyping-faﬂs' irto the desipn phase,

©5 attention: un’ méeting the needs of the
~ business rather than on the act of creating 4

' the vérification step. Typically, integration -

. Strate that their designs are consistent and
-complete prior to miplementation and the -
- implemetitation can be validated, then ver-

redundant.

fications phase range from'40% to 609 of !
all software ertors. Increased stteftion to :
 the verification of desigt statemients should - i
- slgnificantly reduce the numiber of efrorsin: 2

~the software, .~ . — Sl

MEASURING Knowing what o mes.
T RGRERE L sure s ust s mmpottaty.-

-0 (A vord dbout -the. differsnee be. DESIGN

- tween validation and vérification. Valida- 3

tioh ersuies that an irplementation .of a-

widel

ware Or peneration. ‘of application code, -~

~And validation of code may or may notbe -
appropiiate,; depending upon sifeums
o Lo oot StANGes, e i
_ It would be nice if orie mrinagerient
- techniique could handle all kinids of devel- .-
‘opment work. Unfortunately, this is probas.
~bly not feasible; bizt a few simple guidelines
U provide at least a-consistent approach o
the problems -of diverse developmient”
‘methods, S e
~» Manage what you prodisee. i
* Measure ‘what you produce. A
« Strive” for information -rather-than
~documentation. - - .- S el
- It would be convenient to have one niodel
to use in managing softéare developrent
~oworks R T
o Fig. 1 represents 4 wmiinor Tedefini-
- tion of the traditiol development process.
Rather than aiming the ‘development pro- .

- Prototyping can be _coﬁsider_éé-__aﬁ_'- B
alterniate form of design expression. A pro-

" The redefinition of the phases fociig:

documerit or writing a program. L
.~ Using ‘the new- definition, software:
developers are now positivned to elitminate

and systerm testing wiil" occupy 200% ty.

-35% of the'project development time. By oo
focusing atterition on the design, backiend
- testing miay be no lonper necessary. If over -

a.period -of time, developers car defron.

fication -éfzer"impiememai-ig:in becomes

... Brrors il software will be reduced.
Esiimates of errors introdueed i the Speiie.

“PROCESSES Measuring design pro-

ekt . tesses is not very well iin- - -]
derstood. Any attémpt will be experimental -

in nature, The best one carrhope todoisto © 7]

try several alternatives and evaliate which, |

If ariy, seem t6 make sense.
constraitied throughout” its Tifs eyele. In - ;
- practice, verification skould occur at BRIy -

‘step in-the life eycle: Most proprammers =~

- Hardware developers use meastre:

ments such as MIPS and bits per inch, which]

provide some standardized idea of how -8

~much ufility is being delivered to the cus. o
. - tomer. Software developers don’t have any

- Unit ‘tests normally maké sure the .
- prograr behaves the way the programemer’

standard measures: of utility, nor do they
mass-produce standard: products. Some

_ Theaslires of delivered function have hesn
attetipted, ‘netably finction points, A
‘though ‘hot unjversally accepted as a valid B B

- messurement; function points ‘are the most— = - 7

“known -estimator of déliversd g

-funetion: . oo S

The disadva‘nf_agé of function poinis”

is that they are itiprecise and often misua-] S
“derstood. Many people perceive 3 funetion " .

ations fall into. .
tation simply . :
rehase of soft-
lcation code,
or maynotbe |
pon circums f T

Timation cons

wiation, then

resent the furiction defiv.
In fact, it Tepresétits the
flimbedded in the specif-
term; much of the imbed.
be invisible' or ‘not qti.
deed, different designs
wirénients Ihay
function point

- point figiire to rep
- ered to the uger,
i amount of farictio

" e design of the sy
Lo uniction may
L ized by the tiser, 1
“meeting the same so
' ely - different

phases focus. -
needs of the

on, software

An approach 1o quantifying design
- t would be 4 desi
4 that vields consistent de
.- orierted design methnd
1 . Jackson and the Warnie
© - gies can be used tode
" datal Several people
rroblem will ‘develo
- 'using tHe data flow
- dedompiosition ten
- different desi

go-methodolopy
signs. The datas -
ologies” like the -
T-O1r methodélo-
Tive consistent design
working on the same)
D very similar designs -
technigues. Fu
hniques often yie :
&1 approaches to the same
.The advartage of consistent design
ey will all ‘defiver the =
afid can be examinsd
£ thé number of
~a-désign could be

-same evel of détaii_
ity by Coutin

.- required. The disadvan
. ented design techniqu
- suitable for some clas
IR “The useof 3 ¢
- laniguage would simp
- design 'is expressed in
o AhER Some measure o
- mézde. For exampl
sions about data o

tage of the datgoopi

esis that they are un. .
865 0f probiens, .
esign tool or a design .
lify the problem. Tf 4 -
a consistent fashion,

fits contents can be .
€ PEL/PSA pses Expros-

bjects, processes,
“and system striucture to o
abase. A measure of int
data at severa] hie
t'be nsed o quantify th
Completeness and con,
$sed in- terms of mis
Or by the.datg a
ured analysis and
& 3ystem as a ool-

Cinterfaces an
Process uses. SADT (struct
" design technique) defines

- lection of objects and eve
ToBySteny 16 ba described -
iween the objests of th

“evenis in the sy
- rived from the SADT _data’ba_se.

DOZENS .
COFToOLs -

bage, <changes.

“and checked fo_r'cémpleteness,
- Cesses withont

Tequirements into ~design and

design features,

Measurements of the . implements-
- ton process will make certain that the- .

fmplemented. {coded, Purchased, or proto.
~typed) product matches the lowest level of
-design ‘specification.. The process for per.

forming these tests Wil vary depcnding__-
- upon the kind of specifications used. A data

ERRORS

How design can be

terms of logio sequences or flowcharts, then
" ihe test group may be reduced 1o attempts
Ing to test logical Ppaths throtigh the Systen,

" expressed ina telatively noncomplex mari.
fer if we simply miake & slatement ghout -
design ‘specifications ‘that were implement.

ed incorrectly, An approach to implement.
" ing such a philosophy smight be organized
- as follows. . L o
-# Coding milestones are the completion of

. Thiere are dozens of [aa. .
-guages and tools avajl. .-
i ARy g - able. The tepls not only
__AVMMSLE " -enable ths developer to
collect daty r&onsi'stent_ly,' they allow hint o :
. her io manipe the Process over the pericd
of the developement process. Onge the de.
Csigh i consistently’ expressed in the data.
to “the design can -be
completely implemented.
Additions or enhancements cag be appilied .
-and the datibase reviewed .t determing.
their impact on other parts of the-systern, 1f
a hierarchy of desigri: détail is used, gach
level can be exparideq int6 increasing detail
58, &.z.; for Proe:
inputs, data elements- that
are not used, and so forth, The £xpansion of
: design’ into
" detail degign will Provide some confidence
that requitements ean be traced to specific

validated by ensuring
‘that every input/’ou'tput: mapping is cor. -
Tect. Ag event-driven design can be tested
using the mapping of all Apecified trigpers _ o
: 18 csign i : 1. ganize the désign to Feduce Opportunity for” -

® Hierarchy, modularity,
-dence make designs less e
easUrements of. validatibn ‘can be -
- * Whenever possible,
-terms of hisrarehidy
; PrOCess-ouwtput, or strdiiy
‘than control-logic Hows, .
* Define interfaces b
-each hierarchica) Jevel
- * Consider 1ising a get

- major design points instéad of the comple-:
0N of programs op transactions. oo
+® Unit fest milestones are the validation of

major design features, ..
. ® BrTors are expressed in design’ features
-Bot delivered or delivereg incorréctly, - - :

. This approach ncourages program-

miers o’ be clear’ ahotf the Specifications’

S . coding styles. Finally,
| sterm. Me'asziife's of the'gcbpe'; I
+.and cotisistenicy of the system could he de- -

it Drovides-a. state.
ment of errors that iy of Intersst to the
- dustonter, ST S
. The Custémer s iterested in 2

. "aren’t'werking. A staterrient that all eritical © .-
- interfages work properly and that afl minor
~ TIOTS are-itemiized is more Hkely to instl
- confidesce in the customer. To he useful, a
- measare of the validation process must ag.
dress the activity of validation, not some -
dbstract congept of error density, - - EET
-~ Measurements of the verification -
process should express some concept of the
consistericy ‘of the design across the devel. N
‘opment”process. Sucha metric showld at . .
~least attempt to correlate injtial requires
“ments Statements and low-leve] design -
[Statements, One approach mipht beto tdén--
tify user intérfaes int relation to reguires
- Thents statemiénts, Another might ba o .
 show the éxpansion of design for each com-
ponetit in the requirarents, Certainfy the
- measure should ensiire that the interfacey
betwaen . COmponents - are " stateq .
consistently, oo - .

"ORGANIZE “Any kind of Cﬁm?l‘ehenf
0 REDUCE ~ sive completéness or con- -
B : R -sis‘teney'ché:cking‘w()u}d v
. probably have tobe autos

automated verifications, it is possible to op. -

CETTOr,

and data indepen.-
: mplex and less ~
affected by _ch'z‘inges_tc_')_'speciﬁc&tions. - :

: Specify functiong i
of -daty flows, -input. s
COnsiructs rather - .
etween components 4t -
483000 45 possible: _
of datd access mod. - _

- APRIL 15, 1985 1a5

e Imternational Exscutive Service

- pdlinthess The execuiives gre voluns

thert V. Case R T
Chairmhan of the Board & CEG
"Ameracan A rhnes inc :

i ma vo%uﬂteer wpporter caf eammgs rghi here n Amerfca

7 Corpsianot-tor-profit organt zatlon *Service Corps ras-compieted 8,500
: -wnh avital mission:
s AWe send rétired U.S. execu-
tves ta help COMpAanies in “developing - this effort with funids and personnel. .
S You would be'in Good company. Cver
B0OO U.S, companies hiave. supported
- us-Our Board of Directors éna Ad-
. Qur main purpase is to heip Cvisary Councit inchude the chief execu:
_ _.-deve oping countries succeed in ~tive officers of many-of Amerzcas mos{
- business. But the Benefit doesn’t stop - -important corporations:
“there: These countries consumea about '
40 percent of LS exports. Sothe .
: wark We do he os to create ;obs and

| teers. We pay thelr expenses, but .
dhey. receiva no salary.

rate givirg; think about doing good

N A
- OB

T Thas Puble s

l .Jﬂip i’!‘lﬁ‘ in heipmg busmesses o L
“4 L geveloping countiies-wby supporting - e
i - the Interrational Executive Service Nané

[Corps: Far more informalion write 1o
- plbert V.Casey, Chairméan of the

A Based & CEQ, American Alrlines ng,
at 8 Stamiord Forum, PO Box 10005,
A Sramiord, CT-06804-2005. Cr samply' :

'] g _-cass this number: (203} 95745{)(3(3

E

T e R
' _Addre's?:' s ::: R, o o
|

S qae hATAMATION 7

The Irtematicnal Execut;ve o

“hrojects in 72 countries. | think you - -
should-gedously cansidar supporting

‘When you think aboui' corpo~ '

Chusiness. as__weél asdoing-good.

i ﬂ the ﬂformation Systems Grcsup at IBM

“The indusiry sesis to be. unab%e 6 =
tmgmsh between the fformation neede
d 1o produce a. -product and the doctumens
ion- that is- simply . regurgitated: in
nse to A request for-information.

nor,prose sections instead of Writing phase”

‘documents, In 1esponsé 1o requests for spe- :
“eific information, it-is possible fo generate: -
“reports from the database. The Teqiiester L F
“danbe senta ‘soft copy of the specifié-dedign -~ |
I: inforivation he requested mstaad of am e
5_t1re document o
: < Control isa. necessary gaart le ali :

'management processes. In fact; the phase- .
‘development process daine about as a-way e
to-control software develclpmﬁ:nt ‘Butithe -
cost of control functions is becoring dis+
'propﬁrtxonately larpes in reiatmn to zhe cost: b

of. ée’velogmmt activities;.

AL reguirements txme SOTnE kmd of b

review ought to be ield regarding the scope
‘| -and anticipated cost of the project. During
_' the -design phass, ‘thers may need tobeal
“feview of the exiernal interfaces And &k
- pected performanca of the target system.” T
1 coding is to be dorie, ‘then some sortof veft--
| fication of the detail design is appm;mate' S
“before beginning coding. Certmnly avali-'-
| -dation of the 1m;}1amented system isneces-
_sary before it is delivered o the ctzstem&r T
ey * While management attenition has . -
4 wandeied until control 6f the process has o
beconie’ moré important ‘than- delivery of - ..
| -the system; the concept of the phaseTeview
~ | process is still soundk. But shifting aftention”
- from ccrztrolhng ‘the development ;}rocess_;_'. e
toward managing the'developnient of ade-

sign will prcvxde ar¢lear uudﬁrstandmg of

- the tasks and dssues-involved inthe: c}e‘vel-« S
f OPTENt process. “The: develcpmazlt pmcess: S
"1 shoiald provide ain envirenoient i ‘which- i
ST necessary’ cotitrol-information’ can-beigén~ .
|| ‘erated without exira efiort {m ihe part of -

. 'the davelopers :

: Ees rather than lmbedélng accesses m.'.'-'- A
. functzorial modules: : S
calbof the precedmg techm{;ues wﬂl R
implify the verification, sither manual Ql'._ o
_.aummated “of the design package.

in publish- phase documents we = F
m1ght attemp£ to utilize d design methodol- -
“ogy that captures the reqmred informiation -
-and-makes 1€ -available -in-easity compre--f 4
“hended sections. Some development- orga~ . [
‘nizations are using design’ tools to captire .- f
‘the information-and: then dumping the
_datdbase, editing the result, and addingmi~ o f

In perieral, avesid: conimhonenieﬁ RS
“ 1 tasks as much possible. Try to produce’. - |
1 eontrol mfomlatmn A5 A resuit Df wortal o
| aetivities. For example, by using a design _.
database the mimber of people ngeded to " |
2 draft and edit a review document is res . f
1 Guced. The database ‘can 'be Tsed ‘o pro- -0
duce the design’ information; to wiite the -
-prosé, and edit the entire: package The dse
of a-database elifninates the zwcci fﬁr wnt-_' i
] ing” a design. decument.

: S

Dr. Dobb's | 2002 Dr. Dobb's Excellence in Programming Awards | M... http://www.drdobbs.com/article/printable Article.jhtml;jsessionid=...

Microsoft*

tech-ed

THi WORLD OF Bmﬁ DEVELWMEHT

2002 Dr. Dobb's Excellence in Programming Awards

Since 1995, Dr. Dobb's Journal has presented its Excellence in Programming Award to individuals
who, in the spirit of innovation and cooperation, have made significant contributions to the
advancement of software development.Adele Goldberg and Dan Ingalls are pioneers in object-
oriented programming in general, and the Smalltalk language in particular.

By Dr. Dobb's Journal
May 01, 2002

URL:http://www.ddj.com/184405043

Since 1995, Dr. Dobb's Journal has presented its Excellence in Programming Award to individuals who, in the
spirit of innovation and cooperation, have made significant contributions to the advancement of software
development. Past recipients of the Dr. Dobb's Excellence in Programming Award include:

» Alexander Stepanov, developer of the C++ Standard Template Library.

s Linus Torvalds, for launching Linux.

e Larry Wall, author of Perl.

» James Gosling, chief architect of Java.

* Ronald Rivest, educator, author, and cryptographer.

* Gary Kildall, for his work in operating systems, programming languages, and user interfaces.

e Erich Gamma, Richard Helm, John Vlissides, and Ralph Johnson, authors of Design Patterns: Elements of
Reusable Object-Oriented Software.

¢ Guido van Rossum, Python creator.

¢ Donald Becker, for his contributions to Linux networking and the Beowulf Project.

¢ Jon Bentley, computer-science author and researcher.

¢ Anders Hejlsberg, developer of Turbo Pascal and architect of C# and the NET Framework.

The recipients of this year's award, Adele Goldberg and Dan Ingalls, are pioneers in the area of object-oriented
programming in general, and the Smalltalk language and development environment in particular. As researchers
at Xerox's Palo Alto Research Center (PARC), Goldberg and Ingalls each recognized in their own way the
promise of objects, and they were in a unique position to put those theories into practice in an architecture based

1of3 5/9/2010 2:40 PM

Dr. Dobb's | 2002 Dr. Dobb's Excellence in Programming Awards | M...

20f3

on objects at every level.

Although we take objects for granted today, these two
researchers helped to bring object-oriented programming into
the real world for the first time almost 30 years ago, from the
highest level of users and their information modeling needs to
the lowest levels of syntax, compilation, and efficient message

passing.

Looking back on the original work at Xerox, Goldberg later said
it tackled one of the most difficult and problem-prone steps in
software development — identifying terms and relationships as
understood by human participants of a particular situation with

| those understood by a computer.

To that end, Goldberg believed that:

Adele Goldberg » Interactive, incremental software-development environments
could produce a qualitative improvement in software-
development productivity.

e Software could be designed in autonomous reusable units, each corresponding to identifiable entities
(conceptual as well as physical) in the problem domain that communicate through well-defined interfaces.

e The model, or framework, for how these units work together represents both a process and vocabulary for
talking about the problem domain.

¢ We should think about writing software in the context of building systems, rather than in the context of
black box applications.

As early as 1977, Goldberg, along with Alan Kay, presented the goals for the Smalltalk research efforts ina
paper entitled "Personal Dynamic Media" (/EEE Computer, March 1977). She went on to author and coauthor
many of the definitive books on Smalltalk-80 programming including, with David Robson, the seminal
Smalltalk-80: The Language and Its Implementation (Addison-Wesley, 1989, ISBN 0201136880), as well as
numerous papers on object technology. Goldberg edited The History of Personal Workstations (ACM/Addison-
Wesley, 1988; ISBN 0201112590); coedited with Margaret Burnett and Ted Lewis Visual Object-Oriented
Programming (Prentice Hall, 1995; ISBN 0131723979); and coauthored with Kenneth Rubin Succeeding with
Objects: Decision Frameworks for Project Management (Addison-Wesley, 1995; ISBN 0201628783).

Goldberg received her Ph.D. in Information Science from the University of Chicago for work carried out jointly
at Stanford University. She also holds an honorary doctorate from the Open University (UK) in recognition of
contributions to computer science education. After more than a decade as a researcher and laboratory manager
at Xerox PARC, Goldberg became the founding CEO of ParcPlace Systems, the PARC spin-off that developed
commercially available object-oriented application-development environments. Goldberg currently is founder of
Neometron, a consulting company that focuses on dynamic knowledge management and support for
project-based online communities.

From 1984 to 1986, Goldberg was president of the ACM, recipient of the 1987 ACM Systems Software Award
along with Dan Ingalls and Alan Kay, and is an ACM Fellow. She received PC Magazine's Lifetime
Achievement Award in 1990.

Like Goldberg, Dan Ingalls was an original member of the PARC team that developed Smalltalk. He has been
the principal architect of numerous Smalltalk virtual machines and kernel systems. The first of these,
Smalltalk-72, supported the work reported in "Personal Dynamic Media.” Smalltalk-76, described in ACM's
1978 Principles of Programming Languages (POPL) proceedings (and available at http://users.ipa.net/~dwighth

5/9/2010 2:40 PM

http://www .drdobbs.com/article/printable Article.jhtml;jsessionid=...

Dr. Dobb's | 2002 Dr. Dobb's Excellence in Programming Awards | M... http://www.drdobbs.conv/article/printable Article.jhtml;jsessionid=...

/smalltalk/5t76/Smalltalk 76 ProgrammingSystem.html), was the first modern Smalltalk implementation with
message syntax, compact compiled code, inheritance and efficient message execution, and its architecture
endures in Smalltalk-80, the major documented release of Smalltalk work at Xerox. Most recently he designed
the kernel of the Squeak open Smalltalk system, a practical Smalltalk written in itself. (For more information
about Squeak, see fip://st.cs.uiuc.edu/Smalltalk/Squeak/docs/OOPSLA.Squeak.html.) Ingalls also invented the

BitBIt graphics primitive and pop-up menus, and was the principal designer of the Fabrik visual-programming
environment while at Apple Computer.

Ingalls received his Bachelor's degree in physics from Harvard
University, and Masters in electrical engineering from Stanford
University. He is a recipient of the ACM Grace Hopper Award
and the ACM Software Systems Award. Ingalls currently works
with Alan Kay and other seasoned Smalltalkers at Viewpoints
Research Inc., where he is working to complete an architecture
for modular Squeak content that is sharable over the Internet.
He supports an active Squeak community
(http//www.squeak.org/) through his participation in e-mail
discussions, attention to periodic releases, and other support at
all levels. He also runs Weather Dimensions

(http://www. WeatherDimensions.com/), a company that sells a
weather station he designed.

Although Goldberg and Ingalls worked at very different levels,
Dan Ingalls the breadth of their collaborative territory is what shaped the

final result. Ingalls says of his technical achievements, "I loved
the challenge in efficiency and generality that it took to make Smalltalk real, but what gives me the most
satisfaction looking back is that we built a serious system that is actually fun to use. We had a passion, inspired
by Alan, to liberate the beauty of computer science from the barnacled past of ad hoc engineering." Goldberg
adds, "During the PARC days, the opportunity to work with children and other nontechnical users kept us
focused on how to use rigorously what people already know informally about objects. But the most thrilling
experience for me was to work with ParcPlace customers in both large and small companies, and see how our
technology enabled them to finally break the barrier between business understanding and systems
implementation."”

At Adele Goldberg's request and in her name, Dr. Dobb's Journal is pleased to make a grant of $1000 to the |
Girl's Middle School (hitp://www.girlsms.org/), a San Francisco Bay Area all-girls middle schoot that focuses on
math and technology. At Dan Ingalls request and in his name, we are happy to make a $1000 grant to the The
Sierra Nevada Children's Museum in Truckee, California. Please join us in honoring Adele Goldberg and Dan
Ingalls who once again remind us that a mix of technology, innovation, vision, and cooperative spirit is |
fundamental to advancement in software development. 1

DDJ

8 FSy WU 111G Coddd 2000 A0 MG 7 &

3of3 5/9/2010 2:40 PM

09/30/91 SOFTWARE MADE SIMPLE

http://www businessweek.com/1989-94/pre88/b323363.htm

1of5

PREMIUM SEATING
AVAILABLE NOW.

CLICE HERE FOR THE

BEST SEATS
IN THE HOUSE.

BusinessWee Archives

REGISTER| BW HOME | BW CONTENTS | BW PLUS! | BW DAILY | SEARCH | CONTACT US

Return to Past BW Coverage Table of Contents

SOFTWARE MADE SIMPLE

Will Object-Oriented Programming Transform the
Computer Industry?

While at engineering school, Eric Bergerson learned to write computer
programs the hard way--line by bloody line. He would spend long nights
tediously outlining and writing lists of instructions in C, a popular but rather
touchy computer language. A single typing error could blow a program
sky-high. And adding new functions, even te a smoothly running,
well-understood program? That could take weeks or months to get right:
Even the best-made programs were usually so convoluted that a seemingly
trivial change could screw things up. "It was gnarly," he says.

Programming didn't get any easier when Bergerson went to Shearson
Lehman Hutton Inc. in 1988, Only there was tons more pressure to do it
fast. He began programming Sun Microsystems Inc. workstations for equity
arbitrageurs and found that almost everything in those systems needed
constant updating—from the details of transactions and trading strategies to
the customized "look and feel” each trader wanted for his or her screen.
Writing line after line of computer code, Bergerson hit all the same snags he
had encountered at school. Compounding his frustration, he learned that
down the hall in capital markets another young software hotshot, Alex
Cone, was writing many of the same programs. Wasn't there a better way?

LEGQ BLOCKS.' There sure was. And as soon as Bergerson and Cone
found it, they knew that for them--and someday, the rest of the world—
programming would never be the same. Indeed, at the software startup they
now head, Objective Technologies Inc., programming seems downright
juvenile: Instead of mucking around in tangles of C code--writing arcane
statements such as printf ("%s/n", curr str)—-they mainly connect boxes on
the screens of their NeXT Computer Inc. workstations and fill in blanks. In
minutes, they have ndustrial-strength programs that run right the first time
and that can be modified without brain surgery. Says Bergerson, 27: "1
showed my mother, and she said, "You're still playing with Lego blocks, like
when you were a kid!""

What they're doing is object-oriented programming. Some say it's just the
latest computer buzzword, like artificial intelligence was a decade ago. They
predict that like artificial intelligence, object-oriented programming will not
spawn a distinct new set of products but will be a technique added to
conventional software.

But unlike artificial intelligence, which promised the fascinating but far-out
concept of computers that "think," object technology has an immediate,
practical payoff. Already, it's helping the computer industry with its most
daunting challenge: making software easier to create, simpler to use, and far
more reliable.

That's a tall order. While computer hardware has made enormous strides,
software has been largely mired in the past. Every two years or so, a new
generation of microprocessor chips arrives and doubles hardware
performance, but no such breakthrough has occurred in sofiware. For the
most part, programmers continue to cobble together software at a painfully
slow rate. As a result, corporate programming departments are frequently a
year or more behind. And computer makers and software suppliers often
miss software shipment dates by months.

BIG PLANS. The bottom line: For lack of software, many of the advances
in computer hardware go untapped. The software gap--yawning wider every
year--is one reason for slow growth in computer sales. Object programming,
however, "will get the industry out of the rut we're in," says Philippe Kahn,
president of Borland International Inc.

Kahn and object technology’s many other boosters predict that it will do for

5/9/2010 2:33 PM

~ - 09/30/91 SOFTWARE MADE SIMPLE hitpr://www businesswiek.com/1989-94/pre88/b323363 htm

softwire what the sicrochip has done for hardware. Instéad of mécrochips, .
the software revolution will be buils on so-catled objects-gimple,
self-contained, reliable software compenents (box, page 92 58). Like the

“tricroprocessor, object technolopy has the potential to radically change the
seanopmics of the businessiand not fust in the $30 billon peclkaped-sofware
industry. In an era when hardwars is a commedity and software is the key

“competitive fechaology, compitter makers that exploit object-oriented
softvare best are likely to dominate the computer industry itself.

I you doudet that; consider the peading collabaration between IBM and
Apple Computer Ing. These blood rivals stunned the industry last summer .
by announcing that they will work together. Their plins Temain sketchy, but
& key goal will be to create a system fof object-orienicd programming that
 will set a standaed in the next decade--and thereby seizé vontrol of the
* industry from Microsoft Corp.

Objectoriented technology afso figures prominently in the plans of William
H. Gates IF, Microsoft’s chaitman. In his view, évery image, graph, or
snippet of read mag will be stored in the compuiter as kn object. The goal,
- says (Gates, 18 "information at your fingertips"--the ability to seek out,
_-compile, and sustirarize informetion from myriad electronic spurces without
. having 1o know where any of it cormes from.

Hoping to fead yet another techaology movement, Steven P. Joba has been
- pursuing object-oriened techavlogy aver since he Jagnthed NeXT Inc. The
NeXT workssation, introduced three years ago, comes compliate with an
_-ohject-oriented programening lenguags atid a Iibwary of 100 objects that
* handle such connmon tasks as printing, displaying mformation in windoves,
anid handling electronic mail, It hag become & favorite smong software
develapers, Object programtning, says Jobs, "is the first reat technological
* shift we've had in the industty since the Macintosh.”

INFINITELY REUSABLE. The key breakthrouph fr object technology is

the ability to build farge programs from Jots of small, prefabricated ones.

Fhat's possible because objects completely change the traditional

- relationship between programs and data, which have been sirictly)

" sepregated for 40 years. As the old term "data procéssing” implies, programs

ordinarily acl of data-~simple lists of numbers or castorier names, for

example, An objest, 0 conirast, etcapsulates programs and data in one

self-contained nnit, which fully describes some real-world entity.

. Think of the way an Apple Mucintosh handles a page of informhation. The
- page on the screen i 4 nadimentary object. It has data~words, numbers, and
graphs--and &lso this programuming that lets it behave Hke a real page, Using
| your mouse, you can pick i up, move it, file it, copy i, or even throw it
AWHY.

This sivaple idea provides tremendous benefits. Softwire obiects can be built
. to represent just about anything—from an abstract concept, such as an
insurange policy,; 10 a specific thing or person, such as Duke Ellington,
“Ametican composer apd musician, 1899-1974. More important, objects can
‘be created $iat perform certain common, tasks--sorting, for example. Once
perfected, such objects are infinitely reusable, so programmers don't have o
reinvent the wheel every time. Brad Cox, who created Objective C, the
‘programming language that comes with NeXT machines, predicts that object
- techvlogy will be as big an advance for the Information Age as Eli
Whitniey's invesition of interchangeable musket parts was in the Industriat
Age,
But softwste components are mote thaa interchangeable togs, Because
they'te mads of progratnming ard data, they "know" what they are and how
.. they behave. An object called Payday, for instance, can swiomatically check
.. with an object talled Employee Roster, note any resignations or retirements,
_ then call over to anether object calfed Payroll and give ita list of checks to
print--ai] without hurnan intervention. Using reusable blocks, instead of
writing from seratoh, makes programming far faster and produces fmished
softward that is more reliable and casiet o update, Reusability alone i
expected 1o give businesses a e boost in programmer productivity (box)
because eventmally, only unique new functions will need to be written from
“serafch. Modifving progeams is also easier. When NeXT wanted to give its
workatations the ability to send faxes, for instance, # dida't have to write fax
code into cach program, It just-added the fax programming to the
workstations' Pring object. Since all NeXT programs use that shject, they
" were alt ingiantly upgraded fo commumicate by fax.

For ordinasy computer users, objects mean POs that are far easier 1o use
than today's mest "nser-friendly” machines. Indeed, when Xerox Corp.'s
Palo Alto Research Center (PARC) began looking into object-orented
softwase in the 1970s, one of its goals, literally, was to design a system so
sitple a child could use if. Twenty years later, object-based technology
promises te make compuiers easy snough for adults to use. "If my

- Suyeareold kid van use 1€, I consider it good," says Bjame Stroustrup, an

C20f5 e - . - C 5912010 2:33 PM

U 09/30/91 SOFTWARE MADE SIMPLE hitp://www businessweek.com/1989-94/pre88/b323363 htm -

AT&T Beil Laboratories computer sciciitist who inventéd the most popalar
- object programming language, CH-+

‘A good example of how objects can make PCs easier to operate iz
multimedia software, which gives computers the ability to manipulate
suippets of vides and sound. In a package called Macromind Director, by
pointing to an icon that reprasents a VCR, you can refrieve stil] pictures or
ever film clips from computer files. The VCR obiect works much like the
-real thing: Select the "cassette” with the Images you want, hit rewind or fast
forward, and locate, szy, a clip of the Hindenburg crash. Hii record, and
capy the clip into your guarterly samings presentation.

LKE LIFE. Such multimediz iricks are only the glitzy sarface of object-
ariented programming. A more intriguing possibitily 15 sofiware that does a
much better job of simulating how a business works than spreadsheets and
data bases can. Businesspeople “want to describe information in more
generat, real-world terms and create a full simsulation of what they think is
goangr on,* says Adele Gokdberg, & former Xerox PARC researcher and now
president of Pare-Place Systems, a maker of object-based software.

“Three years after Bergerson: and Cone left, Shearson Lehman Brothers Inc.
has bought inte objeet technology and is building software that simulates its
“husiness. It has Account objects, representing customers, Contract objects to
manage agreements between parties, and Security objects that describe the
properties of stocks, honds, or options. An Account can enter into a

. Contract 1o buy a Security--just as in life, "It's more toward the reality of
what's sctually happening," observes Shearson Vice-President Frank
Filippis.

 Unce objects have been built and tested, it's faiky simple to clone them for

. new products or services. Now, when Lehman wants to seli & new type of
seclrity, the programsiers just tell the computer the speciat attributes of this
new mstrument. The Secudity object then avtomatically gives birth to a
program that inkerits alf its generalized traits, phis the unigue new attributes.
"We can mode! al! types of securities this way,” says Filippis,

The upshot is & system that can keep up with business changes. At Unum
Life Insurance Co., for example, whenever a state regulation changed in the
.. past, programmers for the Portland (Me.)}-based insurer bad to scramble. But
now, using objects, they can do such updates in one-third the time--and
- create softwire that's far more usable by nostechies, says Barby Muiler, a
technofogy manager. In some cases, "instead of the programmers, the
business people can make changes to the software,” she says.

Another big benefit: By building programs from prefab objects, vou avoid

" the kind of "spaghefti" code that programmers commmonly use to patch new
functions onto old systems. Thess little programs can make software
maintenance--usually the biggest cost in running 3 comgpriier center—a
nightmare. Brooklyn Unten Gas Co. recently scrapped & 13-year-old
cusfomer information syster on its mainfrarae that had become so huge and
inflexible that the company coulde't respond to the needs of its 1 million
customers. With Andersen Consulting, it created an object-based program

- that's 40% smabler yet does more. And the company expects i to Jast 20
years—an a fraction of the old maintenance budpet.

Such success stories are attracting more converts, In a recant survey by

. researcher International Data Corp., 70% of large 1), 5. corporations said
they are programuting with objects or plan 1o do se seon. The main
maotivater? Money. Shearsen's Filippis claims that his proup has cut 20%
from developiient costs. He seckons the company could save millions more
if every departiment shared a central object library.

Hard to imagine that a single tecknicaf advance can do afl this-—-deastically
improve programmer productivity, create more reliable sofiware, and give
computers & childlike simplicity? Surely, there mast be 2 catoh. There are
several

Among the must formadable: # takes a fot of careful planming to create
objects. Software designers notl only have fo fignre out what each building

- Block should do but they alse must anticipate how each will work with
thousands of other objects. "It takes a lof of engineering to make things lock
simple and sagy," warns Steoustrep of Bell Labs,

PROJECT PINK. An even bigger ohstacle may be standards. The big payoff
from object-oriented software witl come when there are commen ways o
shuttle objects betwesn different computers. To that end, more than 160
‘eomputer and software rakers and customers have joined the Object
- Management Group. lts goal is to create an electronic systeni to distribute

software objecss, such as moltimediz documents, across a network,
regardless of the type of computers that are on it. Digitai Equipment, Sun,
and Hewlett-Packard wre now collaborating fo produce the software.

. Meanwhile, the Apple-TBM eamyp is working furicusly 1o create a standards.

3ofs - I - S 5/9/20102:33 PM

* 09/30/91 SOFTWARE MADE SIMPLE http://www businessweek.cotn/1989-94/pre88/b323363.him

setting object-oriented operating systetn--the basic program thut runs s
conputer. That effort, say industry-waichers, will be based on Pink, ar
object-oniented system under development a2 Apple. It also will inclode
technology that IBM acquired with the purchase of Metaphor Computer
Systerns, a software company headed by David E. Liddle, another Xerox
PARC alumnus.

Companies that will compete with the IBM-Apple allisnce--Sun
Microsystems, Mictosoft, and NMeXTargue that it's not necessary to baild
an all-new operating system to deliver the benefits of object-based sofiware.
"That's net a very realistic scenario,” says (Gates, who plans to slowly add
ohject-based technology to Microseft's operating systems.

CBLOATWARE ! Liddle contends that without an ebject-orented operating

. system, cugtomers won't realize the efficiencies inherent in the new
technolngy. Worse, they'll be stuck with poor applications programs--what
he calls "blaatware.” These are aging packages to which hundreds of
features have been added to make thern "new" and "improved"--but almost
“impossible to master. A better idea, he says, wonid be to make nifty new
features froestanding obicets, easily accessed by any program. Such
comman objects may even be included with the operating system that TBM
and Apple are buikiing,

Eventually, 8 whole tiew way of sefling software may emerge. [n a market
of interchangeable, plug-and-play objects, you might shop for pieces
‘separately and compile your own custorn software. Chunks of programs may
be sold like hardware components. "You can walk info a Radio Shack and
Inzy & chip or cirewlt that does a speeific function,” says Chuck Duff,
founder of Whitewater Group, which makes programs to write object-
oriented software. "That needs 1o happen for sofiware.”

How quickly object technology will sweep the industry is anyhody's guess.
Certainly, it's catehing o with software makers and big corporations, who
hope to make programming simpler and cheaper. But will it fundamentally
alter the computer busingss, 45 some observers predict? Maybe, "The entire
software enwvironment needs s face-lift," notes Edward . Zander, president
of Sur's SunSeft subsidiary. Object technology by itseld may vot be the cure
to stow growth, but it looks like a good bet for painting & happier face on the
computer mdustry,

WHAT IS AN OBRJECT?

Software ohjects are chunks of programming and data that can
behave ke things in the real world. On an Apple Magintosh
computer, for exampie, you can use elecironic objects called file -
folders and file cabinets to organize pages of information—the way
you woulid in the physical workl.

But objeeis can be applied to many kinds of programs. An object can be a
business form, an insurance policy--0r even an auio axle, The axle object
“woukd inchude data deseribing #s physieal dimensions--and programming
that describes how it interacts with other parts, such as wheels and struts.

A system for a human resourees depariment would have obieets called
emplovees, which would have dala about each werker and the programming
needed to calculate salary raises and vacation pay, sign up dependents for

. benefits, and make pavroll deductions. Because objests have
"intelligence”~they know what they are and what they can and can't
de—objects can automatically carry ot tasks such as calling into another
camputer, parhaps to update 2 file whet an employes is prometed.

The biggest advantage is that objeets can be reused in different programs.

- Fhe object in an electronic-mail program that places messages in
dlphabetical erder can also be used to alphabetize invoices. Thus, programs
can be huilt fram prefabricated, pretested badlding Blocks in a fraction of the

" time it would take to build them from scratch. Programs can be upgraded by
simply adding new objects.

John W Verify and Evan {. Schwarlz in New York, with bursay reporis

- [mmstwen] sw some | pW conTERTS | BW PIESL |BW DARY | BERRCH | COMTACY 4 |

Updated Aug. 25, 1997 by bwwebmaster
Copyright 1691, Bloomberg L.P.

- dof5 : ' : ' _ : ' 5/6/2010 2:33 PM -

Object-oriented technology helps create a new production process -

leading semiconductor
manufacturer and the

-fense are using one inno-
A4 B vative technology to de-
velop another. Texas Instruments
Inc. is employing the object-oriented
software development techniques
‘used to build manufacturing sup-
‘port systems to design an entirely
new production process, _
. “Theapproach we have takeriis to
adopt object-criented programming
to ail aspects of the system,” reports
John McGehee, chief software archi-
tect for the micro electronics manu-
facturing science .and technology
i project at TI McGehee helps oversee
“one of the most ambitious semicon-

ductor manufacturing projecis ever

atternpted. The . project, which is
funded through a $112 million De-
fense Department contract won by TI
1n 1988, seeks to build a radically new

semiconductor manufacturing facility -

capable of producing custom military
chips in far less time and for far less
meney than is currently possible.

- Object-oriented techniques,
which attempt to describe systems
as objects, are widely used .
to -develop individual ap-
plications. But}James Rum-
baugh, a computer scien-
tist-at General Electric
Col’s R&D center in
Schenectady, N.Y., and
one of the creators of a
high-level development -

1 methodolegy called the Ob-
ject Modeling Technique, -

“claims that object-oriented
techniques’ are ideally sujt-
ed ‘for designing factories,
distribution routes, and .
other businesses. “It's a -

‘natural way to model a real -
thing like a factory or busi- -

.| ‘miess biecause it corresponds -
| to the way people think

~UL.S. Department of De-

TECHNOLOGY

about them,” he explains.

As opposed to traditional software
‘development methodologies, which

list a sequence of operations to be

cperformed, including fetching the

appropriate data, object-orientation
begins by representing the data as
objects. The definition of those ob-
jects (i.e. buildings, cars, machinery,
etc.} also includes operations or

tasks that are asscciated with them -

(i.e. opening a door or closing a win-

~dow). Therefore, a modular system

comprised of objects includes both

‘the data and the instructions acting

on that data. _
At Texas Instruments, McGehee

arwt his colleagues have used oliject- .
- orientation to simulate everything
from inventory management to pro-

cess control with Mountain View,
Calif -based Parcllace Systems Inc.’s
Objectworks for Smalltalk, an object-

oriented development environment

based on Unix workstations. Actual

objects simulated at TI include a ro-

bet, a chip in production, and a pro-
cess-control operator. The Object-
works environment lets
Tl engineers test more

g - than 30 new procésses that ineluded
- -the interaction between a variety of
-sensors and machines injust four

" moriths of prototyping. - “Software

had a significant role to play,” says

" ~McGehee. “The simulation system is .
‘now viewed as the glue holding this
~all together.”

The object-oriented approach has |

enabled TI to undertake riumerous |-

revisions and modifications to the |
production process that would have-

- been prohibitively expensive using | .
* traditional development techniques, |
‘Unlike most chip ™ plants, which

churn out large quantities of chips -
with little variation, the-TI project
seeks to produce custom chips in -

smaller batches at low cost, using -
flexible manufacturing techniques.
"The Defense Departmient, which .
hopes the project will help reduce its -

_dependence on foreign suppliers for

high-tech weapons, ultimately plans™ '

to transfer the chipbmaking technol- |
~ogy to U5, demicondictor compa-
nies for commercial use.

Jim Feldhan, senior VP at Instat -

Inc., 4 Scottsdale, Ariz., market re- -
search firm, says a breakthrough of -

this sort would have abig impact on

Ahe” sefniconductor ‘industry, since
custom designs are the fastest'grow- |

ing part of the market. “Newer

products tend to be lower volume

anyway, until the technology proves
itself,” he says, "'so if [TI and the
Defense Departraent] could make it
work it could be extremely beneficial
to U.5. suppliers.” _
McGehee believes the 1.5, gov-
ernment will succeed in transférring

‘the technology to non-defense chip

makers, in large part be--
cause the -object-oriented -

X1 project are’easily revis-
~able. “We are viewing it as
“one of the most important
_-and strategic programs in
“the country in. terms of
keeping the LLS. semicon-

“ifront of technology,” ‘he
says. “Une message [
would like to see propa-
‘gated is that the object-ori-
ented revolution has al-
ready begun. We . have:
‘seen . the beriefits.” The

~paradigm "is -extremiely

" TI says that new technology can produce chips much faster

powerful.” _
—Will McClatchy

JUNE 10, 1951/INFORMATIONWEEK 27 womessss

< gystems underpinning the | - T

ductor industry at the fore- .17

STRATEGIES: » CHRYSLER MINTEL PHENZ

6 ¥y YNIaYSYd
uv3151vu N 052 2107 X094
o _ A¥VHEIY s1sx
N 440D XO¥3X <
'99QEI-HI1126§33 256215901 2090 -

60116 ' 11315 Sxxxxxxxxxxx-}"fﬁ

__--’Its cal ed .
object orzemedf‘-i_-}:ﬁ
_ programming- |
- awaytomake |
§ computers alot‘f'-; |
7 easiertouse.
' -':-_-..-_.'Hereswhat it |

| -_."'Can do for you |

| WILL OBJECT-ORIENTED PROGRAMMING TRANSFORM THE COMPUTER INDUSTRY?

hite at engineering school,
f 'Eric’ Bergerson learned to

| ‘hard way—line by bloody line. He would

spend - long nights tedicusly outlining
‘and writing lists of instructions in C, a
| popular-but rather touchy computer lan-
i guage. A single typing error could blow
-t-a-program sky-high. And adding new
| functions, éven to a smoothly running,
wellunderstood program? That couid
take weeks or months to get right: Even
the best-made programs were usually so
convoluted that a seemingly trivial

hange could serew things up. “Tt was

-gnarly,” he says.
Programming didn't "get any easier

write' computer programs the -

the software startup they now head, Ob-
jective: Technologies Ine., prograniming
seems - downright juvenile: “Instead —of
mucking around in tangles of 'C code
writing arcane statements such’ as
printf (“%s/n", curr strj—they mainly

connect boxes on the screens of their-
NexT Computer Ine: workstations and -

fill in blanks. In minutes, thev have in-
dustriab-strength programs that” run
right the first time and that can be modi-

fied without brain surgery. Says Berger-

son, 27: "I showed my mother, and she
said, You're still playing ‘with Lego
blocks; like whel you were a ladr -
What they're doing is object-oriénted
programming. Some say it's just the lat

telligence was a decade age. They pre-
diet that like artificial intelligence,
object-oriented programming will not .
spawn 4 distinet new.set of products bat
will ke a technique added to conventional
software. o :
But unlike artificial intelligence, which:

promised the fascinating but far-out con. |-

cept. of ‘computers” that “think,” objéct
technology has an: immediate, practical
payoff. Already, it's helping the comput-
er industry with its most daunting chal-
lenge: making software easier to create,

simpler 1o use, and ‘far more reliahle,

That's a tall order. While computer
hardware has made’ enormous strides,
software has beent largely mired in the

B o1 mever be the same. Indeed, at

| when Bergerson went to Shearson Leh-

man” Hutton Ine. in 1988,
Only there was tons more
-pressure to do it fast. He be-

o “gan-programming Sun Micro-

‘systems [ne. workstations for
equity arbitrapeurs and

| found that slmost everything

in those systems needed con-

i ‘stant updating—from the de-

“tails of transactions and trad-
{-ing " strategies . ' to the

" | customized “Jook and -feel”
| -edeh trader wanted for his or

- her screen. Writing line after
‘line of computer code, Rer-

"1 gerson hit all the same snags

| he had encountered at school.
:| Compounding his frustration,
.| he-learried that down the hall
.4 in - capital” markets another

| 'young software hotshot, Alex

A Cone, was writing many of
~the. same - programs.” Wasn't

there a better wiy?

- | ‘4860 - whoexs. - There sure

"} 'was, And as soon as Berger-
son and Cong found it, they |

Knew that for theme—and

someday, the rest of the

world—programming would

est computer buzrword, like artificial in-

WHAT IS AN OBJECT?

s-af'rwqre objects are chunks of programming and data that con

behave like things in the real world. On an Apple Macintoth com- -
puter, for example, you can use electronic objects colled Hle folders .

and file cobinets to orgonize poges of informatici—the way you
would in the physical world, :

But objects can be applied to many kinds of programs: An ohject
can ba o business form, an insurance policy—r #ven an quto axle.
The axle object would include data describing its physical dimen-

sions=—and programming that describes how it interaets with- ather

parts, such as wheels and shruts,
A system for 6 human resources department would have obiscts
colled employsss, which would have dota about each worker dnd the

programming needed to calculate solary raises and vacation pay, sign

up dependents for banefits, and make payroll deductions. Because ob-

jects have “intelligence" —thay know what they are and what they

tan ond can'f do-—ghiects can automatically carry out taske such gs
calling into another computer, perhops to update o file when an em-
ployes is promoted.

The _higgesr cdvantage s that obijects ¢ain ba reused in different
-programs, The object in an slectronie-mail program that places mes- -

sages in glghabetical érder can alse be used to alphabetize invaices,
Thus,-programs can be built from prefabricated, pretested building

blocks in o fraction of the time it would take to build them from - |

scratch. Pragrams can be upgradad by sitply adding new objects,]

Most part, prégrammers con-

‘ware st a painfully slow rate.
As @ résult, -corporate pro- |

" 92 BUSINESS WEEK/SEFTEMBER 30, 1991

past. Every two years or o, a new gen-:

eration of microprocessor
thips arrives-and doubles
hardware performance, but
ng such breakthrough has oc
curred nsoftware. For the

tinue to cobble together soft.’

gramming . departments are
frequently 4 year or more be-
hind, And computer makers
and software suppliers often
miss software shiprivent dates
by months. -
B16 PAaRS. The bottom line:
For lack of software rmany
uf the advances in computer
hardware .go untapped. The |
software gap—yawning wid-
£ every year--is one reason
for slow growth in computer
sales. Object programming,

however, “will get the indus- |
try out of the rut we're in,”
-says Philippe-Kahn, president -
-of Borlend International Ine,

Kahn und object technol-

ogy's many other boosters
‘prediet that it will do for soft-
_ware what the microchip has

COvER 5TORY

 CONFUSION

 HANDCRAFTING

* work can't be reused in other programs. Thot has kept software

THE OLD WAY....

can .bééiﬁ even before r;:‘r—;g-r;;mmin daes. As in L
: the party gome Telephone, the description of
what a program should do is retold many fimes. By the time it's

" traneleted into d series of commands that the computer “under.

stangs,” the original idea is easily distorted.

programs cam help wring exira spee.cl' :
from a-system. But, usually, such one-off

writifng a quirky creft; rather than the modem manufacturing pro- -
cess it should be.

RE A}(DQW NS tuﬁ bew discz's‘wih handcrafted ';:m—' -
sesmamieinnin - Grams. Often, only the programmer whe

wrate it knows how it works. Worse, “spaghetti code” con snoke
thraugh a system, so oltering one part of o program can have dis -

sastrous resuits elsewhera,

REUSING

* - e COtAing R precise viles! As long-as objects corﬁonﬁ e

- grams. That saves time ond money,

“REPAIRING

UN QERSI AN H’QG how to giésign o p:rpgmni'is L'tt.sier be-)
ey COUSE obiects con carresgond toreal- 1
world entities. If monagemant warits to outomate order taking, an ~
order-slip dbject can be wiitien to replicete the real thing, with
‘ipaces for address, quantities, prices, ete.

L

software is pa.ssihie whén'objects are created oc-

1o standards for how they should communicate and infefact with
ong trother, it's possible to reuse old; reliable objacts in new pro-

B s - e

and updating programs based on objects is sim-
‘pla. Objects isolate program Funchions from gach
_other, so thot a change in one does'tdiseupt the progrom else:
where, Entire objects cun be swopped out for hew ones, without re-
“working the rest of the progrom. o

| CEVER STORY

BUSINESS WEEK/SEPTEMBER 30, 197! 93

PHILF ARDIERAON

(TOF 10 BOTIGHMI PHOTGGRAPHS By ITREY (iwe, KOBERT HOUGRER

—

contained, reliable software COMPOnEnts

| (box, page 92). Like the MICrOprocessor,

object technology has the potential to
radically change the economics of the
business—and not just in the $30 billion

| packaged-software industry. In an era

when hardware is 3 commodity and soft-
ware is the key competitive technology,
computer makers that exploit abject-ori-
ented software best are likely to domi-
nate the computer industry -tself.

| - If you doubt that, consider the pend.
1ing collaboration between 18M and Apple

Computer Inc. These blood rivals
stunned the industry last summer by an-

| nouncing that they will work together.

Their plans remain sketehy, but a key
goal will be to create a system for ob-
Jectoriented programming that will set
& standard in the next decade—and
thereby seize contral of the industry
from Microsoft Corp,

Object-oriented technology also fig-
ures prominently in the plans of William
H, -Gates III, Microsoft’s chairman. In
his view, every image, graph, or snippet
of a road map will be stored in the com-
puter-as an object. The goal, says Gates,

“is “information at your fingertips —the
"ability 1o seek out, corpile, and summa-

rize information from myriad electronic
souces without having to know where

any of it comes. from.

Hoping to lead yet another technology

‘movement, Steven P, Jobs has been pur-

done for. hardware. Instead of microe _.
| chips, the software revolution will be]
built on so-alled objects-—simple, self-| 8

ROUSTRUP ATaTBE

ets it ‘behave ke a rea
You can pick it up, move it
Cfile v ocopr it or even
g Lhrow it away,

t - This simple idea provides

anyvthing—from an ab-
- stract concept, such as an
insurance policy, to a spe-
. ¢ific thing or person, such
as Duke Ellington, Ameri-

grammers don't have to re-
nvent the wheel every
tme. Brad -Cox, who creat-
-ed Objective :C, the pro-
gramming - lAnguage that

predicts that objeet tech-
“nology will be as big an
advance for the Informa-
i tion Age as Eli Whitney's
invention “of -interchange- |

i
H

the Industrial Age.

suing object-oriented techno
since he launched NeXT Inc. The xext
workstation, intreduced three VEars ago,
comes complete with an object-orented
programming language and a library of
100 objects that handle such comman
tasks as printing, displaying information
in windows, and handiing electronic
mail. It has become a favorite among
software developers. Object program-
ming, says Jobs, "is the first real techno-

logical shift we've had in the industry | |8

sinee the Macintosh.”

INFINITELY REusaBLE. The key hreak--
through in object technology is the abili-
ty o build large programs from lots of

small, prefabricated ones. That's possi. | S

ble because objects completely change
the traditional relationship between pro-
grams and data, which have been strict--

ly segregated for 40 yvears. Ag the old |

term “data processing” implies, pro-
grams ordinarily act on data—simple
lists of numbers or customer nares, for

example, An object, in contrast, encapsu- .| g8
lates programs and data in one self-eon- -

tained unit, which fully deseribes some
real-world entity,

Think of the way an Apple Macintosh” | g

handles & page of information. The page
on the screen is a rudimentary object, It
has = data—wards, numbers, and

graphs—and also the programming that

logy ever |

‘Payroll and give it a list of checks to

But software components are .maore

~tremendous benefits, Soft-
ware objects ean be built |
g 10 represent just aheur |-

poertant. objects can be .
cregred that perform cer-

|- e0mes with XeXT machines, |

able musket parts was in |

page. Using vour mouse,

‘can composer and musi |
clan. 13991974 More im.

1

such objects are |
infinitely reusable. so pro- |

than interchangesble cogs. Because
they're made of programming and data,
they "know” what they are and how |
they behave. An object called Payday,
for instance, can automatically check
with an object called Employee Roster,
note any resignations or retirements,
then call over to another ohject called |

P4 BUSINESS WEEK/SEPTEMBER 30, 199!

o e em

R B N L T ol e Sl VI

T . T B e sl AR

S e e (RS kRO DY [BE o A

L onbuge,

gvedt,
even

'__'_m"jifies
S Bofe

bl

" about |
S abe
oas-an -

“& Spe
wisuch

L sTERY

| print—-all without human intervention.

Using reusable blocks, instead of writ-
ing from scratch, makes programming
far faster and produces finished seft
ware that is more reliable and easier to

update. Reusability alone Is expected to-
give businesses a huge boost in pro-

grammer productivity (box) because
eventually, -only unique pew functions
will need to be written from scratch.
Modifying programs i1s also easier.
When NexT wanted to give its worksta-

today's most

tions the ability to send faxes, for in-

stance, it didn't have to write fax code -

into each program. It just added the fax
programming to the workstations’ Print

‘object. Since all NeXT programs use that

object, they were all instantly upgraded
to communicate by fax.

For ordinary comiputer users, objects
mean PCs that are far easier t use than
“user-friendly” machines.
Indeed, when Xerox Corp’s Palo Alto

‘Research ~Center ‘PARD) began lecking

inte object-oriented software in the
19705, one of its goals, literally, was 1o |

design a system so simple a child could

use it. Twenty years later, object-based
technology promises to make computers |
easy enough for adulss to use. JIf my |
Svear-old kid can use it, | consuder it .
says Bjarne Stroustrup, an AT&T
Bell Laboratories computer scientist | - . -
who invented the most popular object |

good,"”

programming language, C+ +.

A good example of how objects e’ |

AT HP THESE BMS OI.D SOF'I'WARE NEVER DIES

5 & $13 billion-a-
year maker of comi-
. | puters, laser print-

ers; caleulators, medical
systems, and electronic.
test gear, Hewiett-Packard -
Co. produces gobs of soft-
ware every year. Aboutl
60% of its research and des
velopment- funds and per-
sonnel are devoted to pro-
gramming and improving:
the software-creation pro- ..
cess, Several vears ago,
HP's top engineers realized
that they could get a tre-
mendous productivity
boost if they ceuld some-
how reuse cld chunks of
software in new . prod-
ucts—thus reducing the -
need to write new soft-
ware from seratch for ev-
&ry new computer or heart |
monitor. Since then, a soft- -
ware revolution has heen’.
quistly brewing at the Sili- |
con Valley giant, _ .
The leader of the move | Homm

§per 1,000 lines of code to
~only four per 10,000 lines..

“network of workstations

-dnd manage patient infor-
omation: HP's programmers.
“faded an-eénormously com-
“plex task: The system

“every. hospital’s
srecord-keeping and medi-
1ozl procedures. "The last

~do. is dictate one way of
doing things,” says Robert
‘Beliger, system architeet
“at - #HP's clinical-informa-
-tlon-systems operation.

ROLL THEIR OwM. So his®

extend CaraVue to its spe-
cifie needs.
~the ‘hospitals rell théir-
OWI’]“

ment i Martin Griss, 2 chemble South

bE »kfrwan wha. has proclalmed himself

HP's “reuse rabbi” He figures that if
HP really gets serious about recycling
its software, the company can save a
cool 3100 million annually.

QUALITY AND SAVINGS. So, when he's |

not pursuing his hobby, what he calls
“object-oriented painting,” Griss

| spends much- of his time shuttling

among HP's many software facilifies
arcund -the world, There, he encour-
ages engineers to congider reusing
software at the start of every pro-

gramming project. That means locking
“Afor useful echminks of software that al-

ready exist in other parts of HP and
designing new bits of software in-such
3 way that.others can easily use them.
Programming groups can try whatever
-technigues they wani, but Griss advo-

1} --cates a gradual shift to object-orfented

-methods, because they offer the great-

est potential for reuse. “‘We're not
driving - people to use objects,” says
Griss. “We're taKing one bite at object-
ortented [programming? at a time.”
The reuse message seems to be get-

ting through. Ume good exampie is a

massive manufacturing pregram that
helps HPcustomers keep: tdbs on their
inventory and factory operations. Griss
helped persuade progtammers in four
different HP divisions to swap preused
software with each other instead of
creating -everything from serateh.
Turns out the programmers were able
to take 40% of thei¥ software from ex-
isting programs. That translates inte
savings of 15% in development costs,
says Griss. And, because:used soft-

ware doesn't need as much tinkering, -

he estirates that maintenance costs
will be less than half what they would
be for virgin code. Better still, the
quality went up—from four -defects

“gays. For example, they
can create data-ertry forms that look
just like the paper ones their nurses
have always used. But the electronic

objects work better because the pro- -

gram can easily adapt w the types
of treatments in which each hcspmal-
specializes.

Despite these Suceesses, Griss says -

that he still often encounters relue- =

tance among HP engineering groups to
buy his messaga. “The impediments,”
he says, “are social more than techni-

cal” Engineers sometimes feel they

should be paid more for the extra work
that's needed to make $oftware mod-
ules that can be used by others.- More
aver, they often don't think to look for

prewritten - components until ‘it's ‘oo -

late. But Griss is there, as ha puts it

“to let people know there’s good stuff -
“in the library.” A reuse rabbi's workis -

never done.

By John W, Verity in New York -

~- ~Another Standout suc-
ceess is CareVue 9000, a .

that helps nurses record .

~would” have to anticipate
unique

“thing [the syster] should

“team - chose an ohject-
“baséd - design - that would
“let each hospital mold and -
Objectz “let f

software, Seliver -

COVER 5TORY

< BUSIMNESS WEEK, SEFTEMBER 3C 1991 95 . ..

ik HARDRIG

O 10 BOTIOME PHOIOGEAPHS. K. JOHN MADERE . 1041 HARDING. . |

| toward the reality of what's
actually happening,” ab-
serves Shearson Viee-Presi-
| dent Frank Filippis. _
Once objects. have been

j-8imple to clone them for

I New, when Lekman wants
1o sell’a new type of securi-
ty, the programmers just
“tell the computer the special
attributes of this new instry-
ment.. The Security object

- birth to 4 program that in-
‘herits .all its generalized
“traits, plus the unique new
attributes. “We: can model
I"all types of securities -this
way," savs Filippis,

I that can keep-up with busi-
ness changes, At Unum Life

whenever a state regulation
changed in the past, pro-

|-make PCs easier to operate is multimédia
| 'software, -which gives computers the |
| ability -to manipulate snippets of video -

and :sound..Tn 2 package called Macro-
miind Director, by pointing t6 an. jcon

{ that represents a VCR, you can retrieve
- still pictures or even film clips from com-

| ‘puter files. The VR gbject works much
like the real thing: Select the “cassette” | .

with the images you want, kit rewind or

. fast: forward, and locate, say, & clip of
-the Hindenburg crash. Hit record, and

copy the elip into

your quarterly earn-
ings presentation.

- HIME ApE. Such multimedia tricks -are
only the glitzy surface of object-oriented .

Programming, A more intriguing possi-
bility Is software that does a much bet-

| ter -job of simulating how 2 busimess
works than spreadsheets and data bases _

can. Businesspeople “want to describe
inférmation - in more general, real-world

terms and. create 3 full simulation .of.
What they think is going on,” says Adele.
Goldberg, -a former -Xerox ‘PARC res
searcher and now president of Pare.”

Flace Systems, a maker of objeet-based
software, _ _
Three years after Bergerson and Core

left, Shearson Lehman Brothers Ine. has
{-bought into . object technology and is
| building software that simulates its busi-
ness. It has Account objects, represent:-
ing customérs, Contract ohjects to maf--
{-4ge agreements between parties, and

Security .objects that descrive the prop-

erties of stocks, bonds, or options. An.

“Account can-enter into a Contract to buy

| & Security—just as in- life. “It’s more

s —-.) {(Me.}baged insurer had to
scramble. But now, using objects, they

Muller, 2 technology manager. [d sofme

business people can make changes to the
software, she says.

grams from’ prefab objects; you . avoid
the kind of “spaghetti” code that pro-
grammers commoniy use to patch new

programs can make software mainte-

nance—usually the biggest cost in run< |)
ning a computer center—a rightmare, -
Brocklyn - Union Gas. Co. “récently. |}

scrapped a 13-year-old customer infor-

| mation system -on its mainframe that -
had become so huge and inflexible that

the company couldn't respond to. the
needs of its 1 million customers. Witk
yet does more. And the company expects
old maintenance budget.

Iaore ¢onverts. In a receht survey by

of large 1J. S, corporations said they are

Programming with objects or plan to'de -

86 .s0on. The main motivator] Marey.
Shearsgm"s Filipgis claims that his group
has cat 30% from-development vosts, He
more if every department shared a-cen

tral object library. o
Hard to imagine that a single techni:

g R BUSINESS WEEKTSEPTEMBES 38,1991

Hew . products or - services.

then automatically gives -

The ‘upshot s a system

Iasurance Co,, for exampie, -

cases, “instead of the progratnmers, the:

Another big benefit: By building ‘pro-

reckons the company could save millions

1 lts goal

grammers for the Portland |

. éai'

atdvance oan do a
improve programmer
ate more reliable software, and glve |-

1l .th'is@—drasticél-“ ;

computers a childlike simplicity? Surely. |
_ een | there must be a catch, There are severs)
built and tested, it's fairly |

Among the most formidable: It takes
a ot of carefy] planning to create |
objects. Software deSigners not only -

“have 1o figure sut what each-building |-

block should do but they alse must -
antcipate how each will work with thouy-

sands of other objects. It takes g
lot of engineering v make things loék:

simple and easy,” '
Befl Lahs. . ; |
PROJECY PINK. An even bigger obstacle |
may be swndards. The big payoff from

objectoriented software will come when |

there "are common ways to shuttie ob- -
jerts between -different computers. To | -
that end. more than 180 computer and

software makers. and customers -have | .7

Jjoined . the Object Management Group.
15 10 create an electronic system
to distribute software ohjects, such as
multimedia documents, . acrogs A net
work, regardless of the type of comput-
ers that are on it Digital Equipment,
Sun. and Hewlett-Packard are now cal. |

-can do such updates in one-third -the_-_-
tme-—and create software that's far | @
more usable by nontechies, says Barby

funetions onto old systems. These liftle |}

Andersen Consulting, it created an ob- B
ject-based program that's 40% smaller :

it to last 20 years—on a fraction of the 15
Such success stories are attracting |

reséarcher International Data Corp., 0% -

| ADELE GOLDBERG PARC-PLACE SYST

'CREATE A FULL SIMULATION'

productivity, cre-

wamns Stroustrup of 10

laborating -t¢ produce the goftiware. ||

Meanwhile, the AppleIBM -camp - is

| Working furiously to create a standards-

setting object-criented - operating sys-

.ctem—the basic program that runs a

computer. “That -effort, “say industry-

watchers, will be based on Pink, an ob--

jectoriented system under ‘development
1 at Apple- It also will include technslogy
1 that IBM acquired with the purchase of
Metaphor Computer Systerss, a soft
ware company headed by David E. Lid.
dle, another Xerox PaRC alumnus.

‘Companies that will compete with the

‘| 1BM-Apple alliince—3un Microsystams,
Mierosoft, and NeXT—argue that it's not
necessary to build an all-new operating
‘system o deliver the benefits of object

| based software: “That's not.a very real--

| istic scenario,” says Gates, who plans to

1'slowly add object-based technology to |

Microseft's operating systems,

‘sloavwanres Liddie contends that with-
.out.dn object-oriented operating system,
customers won't realize the efficiencies
| inherent in the new technology, Worse,
| they'll be stuck with poor applications

e programs—what -he calls - ‘bloatwdre.”

| These are aging packages to which hun-

1 dreds of features have been added to i
| make them “new” and “improved”-—but
- almost impossible to rthaster. A better

idea, he says, would be 0 make nifty

-new features freestanding objects, easi-

ooi-ly accessed by any program. Such com-
1. mon objects may even be included with

- the operating syster that 18M and Apple |

are building.

Eventually, a whole new way of ‘sell-

‘ing software may emerge. I a matket

af interchangeable, plug-and-play ab- .
| Jeets, you might shop for pisces sepa- |

' | ‘rately -and compile vour own custorm

-t software. Churks of programs may be
: sold like hardware components. “You.
-+ |-can-walk into-a Radio Shack and buy.a |
| chip or circuit that dees a specific fune-

| ton,” “says ~Chuck Duff, foundet of
-Whitewater: Group, which makes pro-

grams to write object-oriented software.

“That needs to happen for scftware.”

How' quickly _object “technology will -

- sweep the industry is anybody’s guess.
| Certainly, it's catching on with software

- “|"makers ind big corporations, who hope
"] to. make programming - simpler and
-4 chedper. But will it fundamentally alter

“the computer business, as some observ-
ers predict? Maybe. “The entire soft-
ware:-environiment needs a facelift,”
| notes Edward J. Zander, president of

Sur's: SunSoft subsidiary. Object tech..

| nology by itself ‘may-not be the cure to
stow growth, but it looks like a good bet
for painting -2 happier face ¢n the com-

- puter industry. :

By Jdohn W Verity and Evan I Schwartz
St New York, with bureau reports

~_ARETOD

Y'S TINY STARTUPS

| ic abscurity. And Oracle Systems Corp.;
~a West Coast startup among the first to

“dustey nobody, Then, almost overnight,

| And by last year, Oracle-kad growh to

[ing millions into the

con delivering superior

| easily look up ane bank

[rows and columns, like statistics on a |
“baseball card. By reading down rows or

II-3nd photographs.. Moreover, nontechies

38 01 5o long ago, .z technology.
called the relational data base -
= was languishing in déep acader:

sell such software, was a computer-in-
in:the early 1980s, relational- was hot. |

he one of only three software COMPANIEs
to reach 31 billion in annual sales:

1t's a success saga well known io a
halfdozen gangly software upstarts that
are aiming to outdo Oracle. Their “object
bases,” data-base programs buill on ob-

arcane software code. British Aerospacs
-Ltd, uses an cbjeet base from Ontos. Inc.,
in Burlington, Mass.. to mode! the elec.”
trical wiring system for a military air-
- craft For each of 20.000 wires, the objest”
base keeps a schematic drawing. bill of

materials, manufacturing information, |

and other data. Earlier. this-was stored

in.separate data-bases, making it d@iffi- |-

cult for engineers to get a complete pie-

ture—and multiplying the ¢ost of manag- ||

ing the data, . _
For most businesses: however, object -

bases remain in the realm-of technpavor fo

ica. - Altogether, object-base companies .

ject-oriénted concepts,
may be a giant step up
from relational technol
ogy, and the latest

 THENEW
_ DATA-BASE RACE

1 will have revenues of
| perhiaps $15 million this
Year. And todayv's buy-
ere-are mostly testing

stage .in getting ma-
chines to store and re-
trieve information effi-
ciently. The products
tieed work, and they
‘wor't kill off relational
data bases any . time
soon. But venture eapi
‘talists have been pump-

-applications -

‘technology. And cus-
tomers are beginning
o take it seriously.
‘RELATIONSHIPS, The -
startups are counting

perfoimance for highly
complex jobs. The first
“flat file"” data-base
programs, in the [960s,
placed -data in long
streams “of numbers
and letters, You could

IBM

customer's balance, g |

IHNOVATIVE SYSTEMS - Spe-
cializes in nvestment banking |

" DBJECT DESIGH Targeting eléc-
tronic design. Marketing deal
with Computervisicn

' .:Oﬁ;lECTWE‘l"Y Marketing pact
with Digital Equipment

ﬂi‘ﬂ'ﬁs Customers are AT&T,
“General Dynamics '

SERVIO Owned by [ndonesian
-Anvestors. Marketing pact with

_ VERSAMY Pursoing manufas-
furing control and design jobs

© DATA- COMPANY REPORTS,
- OFFICE COMPUTING GROUF -

piiot projects. “I'm can-
stantly amazed how lit-
tle {computer buyers}
knew -about - this -rtech-
nology,”’ savs John W
Jarve.-a partner i

Founded: 1981

Fi ound’g&‘:: 1588

ity Ine.

The upside: As busi-
nesses adopt: ohject-opi-
ented programming
and ‘plunge into multh

_ media computing, they
will need to manage
swelling libraries of re- -
usable objects, voice re-
“cordings, and videos. .
50,.58y% market re-
searcher International
Data -Corp., object-hase
sales should hit 3446
million by 1596,

Founded: 1988
Fourded: 1685
Founded: 1982

Founded: 1958

it could take many searches.to locate ali
customers with balances over $10,000.
Relational data bases organize data in

-across columns, the computer guickly
“spots-useful relationships—such as how
“mary slayere who hit more'than 30 home
*uns 4iso stole at least 30 bases..
But object bases take data -retrieval
aven further, storing complex informa-
tion that won't . fit into columns: and
rows: 30 a computer can éatalogthings
such as 3D images, sound recordings,

can use object bases without learning

That's not a big enough chunk of the
multibillion-deliar data-base” software -
market o worry leaders such as Oracle
and IBM—or o make them rush into ob-
ject bases. As-their customers begin us-
g object-based technologies, Oracle
plans: simply to add some object storage
‘and retrieval techniques to its software,
says -Robert’ N. Miner, co-founder and
senior vice-president. “l was nervous .
that'we-were going to be blindsided,” he .
says. "But now [think thit we'll be able
‘o do éverything they do before theyv do
everything we do.” [f he's wrong, there
may be & new Oracle in the making.

“the technology in small !

___TOMORROW'S SOFTWARE TITANS? |

Menlo Ventures. which |-~ -
has pumped $2 million. |
into startp Objectiv- |

By Keith H Hammonds in Boston

- T 100 BUSINESS WEEK/SEPTEMBER 20, 1991

CICOVER SI0RY L

s ¥

