13‘7 P Z
Folder 10

Y o

Y

01F 29270

PALO ALTO RESEARCH CENTER

SMALLTALK-72

INSTRUCTION MANUAL

Adele Goldberg and Alan Kay, editors
and

The Learning Research Group
Xerox Palo Alto Research Center

March, 1976

Copyright ©® 1976 by Xerox Corporation

S enn Rpasnser

SMALLTALK-72 INSTRUCTION MANUAL

i

Adele Goldberg and Alan Kay, editors
SSL 76-6 March, 1976

The Smalltalk-72 instruction manual is intended for use by those persons with on-line access to the
Xerox Interim Dynabook. The first two chapters consist of an introduction to some of the methods
used for interacting with the Smalltalk system and for creating, editing, saving and retrieving
Smalltalk programs. Chapter III goes deeper into the basic concépts from which everything else in
Smalltalk is built. These include the method of evaluation of messages, message sending and
receiving, and the notion of classes and instances.

Many classes have already been built for the user's convenience. These include the various classes for
names, arithmetic, information storage methods, text display, and graphic contrel. The definitions of
all of these basic classes is given in Chapter IV; Chapter V then presents a number of interesting
examples that use these basic classes. Chapter IV also describes utilities already provided the user for
editing definitions, saving and retrieving files of information, viewing definitions, testing values, and
reading input devices.

—
3
L3

!

- Preface

The Smalltalk system described here was designed in the summer of 1972 and first conversed haltingly
with a user late that fall. It was released for more general use at the Xerox Pale Alto Research
Center (PARC) in spring 1973 when the first "Interim Dynabook" (a name for the current working
version of a small computer system) became available.

This manual is intended for use by those persons with on-line access to the Interim Dynabook. As
such, it employs a tutorial style that directs immediate experimentation with a Smalltalk system; it
also maintains a somewhat informal dialog about expected results of such experimentation. There are
references to peripheral devices, such as a keyset, a mouse, a display screen, and a disk, that have
meaning mainly in the context of the Interim Dynabook. Furthermore, the manual references disk
files that are needed in order to follow the suggested sequence for experimentation and provides
information on how to obtain these files. Such information is only useful to those persons having
access to the Smalltalk system library.

The purpose of making public an instructional manual about a language implemented on a computer
not generally available is to ease the distribution of instructional information to school-age students
(nc younger than high school age) who will, in fact, have access to the Smalltalk system and materials
noted here. Because an attempt is made to describe graphic results of running example pregrams,
readers without access to the Smalltalk on-line materials may still gain some information about
Smalltalk by browsing through these pages. Furthermore, the manual may assist these reéaders in
developing their own experimental Smalltalk environment.

Many people (both from the Learning Research Group and from other groups at PARC) have worked
hard to develop the systems described in this manual and accompanying decuments--the design and
implementation of the Smalltalk language, real-time music synthesis, animation, retrieval methods,
color graphics, and network communications. We take space here to mention their names: Dan
Ingalls, Chris Jeffers, Ted Kaehier, Diana Merry, Dave Robson, John Shoch, Dick Shoup, and Steve
Weyer of LRG; David Boggs, Bill Bowman, Bob Flegal, Larry Tesler, Truett Thach, and Bill Winfield
of System Science Laboratory; and Patrick Baudelaire, Larry Clark, Jim Cucinitti, Peter Deutsch, Ed
McCreight, Bob Metcalfe, Mike Overton, Bob Sproull, and Chuck Thacker of the Computer Science
Laboratory.

TABLE OF CONTENTS

Chapter I.

INFORMAL ORIENTATION AND OVERVIEW OF THE SMALLTALK SYSTEM

Introduction initial comments on Smalltalkseeecrseessaenas 1
To Get Started how to load a disk and get Smalltalk........ 1
The Mouse is what we point With.eececsersscrsssscssnsons 2
Talking to Smalltalk how to evaluate 3+4ccccrissrsnensirsssannsocnas 2
Helpful Notes how to handle typing and other errors...... 2
Try A Turtle make a square and a squiral.iiiiesereencaseas 3
Layout of the Smalltalk Screen display sereen coordinate systeMicecserses sed
Dialog Windows how to use some Smalltalk windows..veceses 5
A First Note on Smalltalk Classes what is a class definitioNeeesessssercsereessans 6

Font Editing Windows how to design charactersiceessseesenese veraess T

Chapter II. WRITING SMALLTALK PROGRAMS

Simple Manipulation of a Simple Program.......ccivmeieciieenenonn. 9
How to Edit Your Definition.iessrccrasessenrsariassccsatniieiacsinersesisresararsssasrrnes 10
Generalizing the Definition of Squarecccccciiiniiniinnn. resrsereraracsaanenenee .11
Fixing Your DIialog...iciicisaeiiisniuniamissiiiiessianicsssnessissssssisinnsacsne 13
Saving and Retrieving Programs....ccccicemisceiiiiiieiesinsmness 14
Diagnosis Window.....cciieeeiisrsansnssenee Cethesesesnrsieniteatebanstatienarastitaserannreratsesrsnnint 14
Special Characters..ciciiscerisisiseieienirirenrmeiiacscssatiesirerstietssssoersssessessraassnsss 15

Boxes: An Introduction to Smalltalk..ccecicimeimni. 17
A Look at the Class BoX.uicueiieienn NeesestetsnrsssEasertrbebtisaarratstuasiatnaneitrerantasen 18
Alternative Box Definition ...c.cccvceeniiciiiminsiicersaneeiiommiissen 24
Class 0f POl yEomn S iiiiceciccrsoriiorsestescasacsorireesessstsrsrsessrstivesssrrasrassreerisssssarses 26

TUTTLES aeerrernererteseriretonesiansssrentnersrsmsiaseassrertassssanmessssssssnasnsissssnsssssassrsssassssnssussns 27
Boxes Owning Turtles..cccccceisiiiiiiniiiiiinniin evereneeeret e sreentatstaseerae 29

Dispframes: An Introduction to Text Display...ccceeerreeee. PP 30
Placing Text on the Display Screemn ..o 30
Boxes as MEIIIS iiiveviserserecissstsssinisnssesstssssstasinesssssrsasaresarrrsnsnsssnansansatiosttssinss 32

A Few SKetching TriCKS.. s nesesessces i ssasssssssssssesssassaasssseres 36

Paint Brush..ciicnnninnciniienissssessiinieneeiinissiisensees 40
BITBLTINE sciiititeiiereinccitissssisissasioantossostiessnnssssasssonasranississ NeeemsdtessrasinsessusnsTaTes 42

iv

Chapt;er III. THE SMALLTALK WORLD AND ITS PRIMITIVES

ObjectS.iectienerareriserrerararorerssesnasssnsarensasnsnnes ebbisiassieiesssssisascerstassentiasata corereceerane 44
Message Sending and Receiving.....cicecrereisessernsasaicecncrasinniiesscsesiissiisscsssioes 44
The Notion 0f a ClassS..ciiccscssiscesseicssrscerssrssrassarrressansassronsstsssssssaseranseressrasasss 48
The User TasK.i.ceiismescsnesisecesssrennsannane rtressssrasesarssarrararesannrnoys tetresrsrasesraasans 51
The Form of Presentation of "ClassesS..ccisscersercrssrersrnnrsssssesrivsrassrssassreass 53
A Smalltalk Class Example........... eesescssresesasnsertarsarneereannasansrras serrerserarrsrananne 55

Chapter IV, BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES

The Basic System ClasSes....icrcciiciinscnsnmmmmaniemsescesiesscsisssssssessisasissesiees 56
ALOmMS.cicriecrisirisaisiaresnraastisasrsnnse heriesetesesttttetiasesesensarasarstssntisansatisasiusanransnnnras 56
ATIthMEetIc iciininiiiisariiisismsiesimmemsssiniesisssrsssrassssiansossrosssnsnnnsnseetinsrsaaserbassntnns 87
Turtles for DrawiRE iccscciiiesisimsismsisssissessrissssisssesssnsses 60
The False Class..ccccimiiiiiiiiiciiiiciiiiieriiesiscisisisisisseriiresirsrsissssersssrsssrs 61
Sequential DHicCtiONATies.iciririisicisserssinrscrirsssserssnsrssarasssssiessnssissssssiossenssssnnsnsses 62
Dispframe: The Basic Window Class........ enaenas Ceeeresrsreserstnsasatasniannnineerasensa 69
Point ClassS.iiccecciscsasticnssisiasntnisnsssnissstssesenssssasssnisssssriensonsnsensnossasssisasesanstatnsss 73

Aids for Interacting with Smalltalk.......cciinnnnene. 74
The Smalltalk Class Editor.....cccueea. erereriresserasninsennene teassserssas sersneeressanesians 74
Showing Stored Information..ccicciiciieieeiiiseeiinsisssisecnrriserae. 75
Saving Smalltalk Definitions....cciiiiiriiiainasnisissnoisi 75
Saving and Restoring Your Context.....ccccccerrenimsraesseiiisicerosnien sesarerensennrnne 76
Uil iES s ueiinrernncrieniramnsnsseseisrasnsnisnsnsnsmnsesressnsosseresasressssstonasssssnnsssssantsronsssnsnssnss 77

Chapter V. EXAMPLE SMALLTALK CLASS DEFINITIONS

Arithmetic: Amortization of Loans.......coiierciiiiseniinnininceiiniseieeenn. 84
Sequential Dictionaries for Storage and Retrieval........coiiiiiiiniiniiianaiaas 817
DS P A iiiiitieirirreiisneionirariissarracernenissetsssesassrasesssasnssssrsasasnanssnsrsssenrssassasnsarans 90
Point Class
The Class Rectangle.....ccicieiiniiiiiiianiiiian, sresssrtsinsststasasensiacsatatasnenntess 92
Dictionaries of Areas and Points .cccccircriiimiconceromra e, 94
UL]S e iciiecniiiosentnesctatsaasamannensisensiosessssessassariseersnsuranaserurensasssiasnsnrasnranes 96
Commander Turtle . iimiimiiscmoissssssnen. 98
Contreol Classes for Repetition and Alternate Paths..aaaeiecieiniie. 98
Scheduling Methods: sched and window ..iiaecanaanmee. 102
Loopless Scheduling ..occvviieriiiiiniiiiininiiesnnsas e, 107
A Sample Text EditOor.iciiiiiseiiieiereioicsisirensissatrsiirssesssssressssssestsssnsssnss 110
Classes for Building Models....iciiiiiimisireenrirecisiniinsmtaisinesriesesersiosssssreensares 117
Simpula Style Simulation .iccoiesisiseesiimnesimres 117
A Simple Hospital Simulation....cccieiisnssisiisesnen 121
TN D EX ciieiiuiirauraimrustoneassrtatestsssimsisesnstasssnstessstsasssareisnsnsnssssssrerrorsnrassensrisnstasrssnansors 124

PREPARING A BASIC SMALLTALK DISK

There exists a disk pack that contains the Basic Smalltalk System as described in this manual. To
save on disk space, only the main files have been placed on this disk. These include the Smalltalk
programming system including the windowing functions, an editing facility and printing routines, and
some Smalltalk font files. Also included are files that contain the sample class definitions presented
in the manual:

boxes, fontfns, nwindowfns, simpulafns, turtlefns,
windowfns, xydic, xfer, xyfns, xplot

Not included are all the files needed to run the music, animation, findit, and editfont frameworks.
These can be retrieved onto your disk either (1) by transferring the files noted in the documentation
on the various frameworks from a disk that already contains them, or (2) by executing one of the
following (included) command files:

animationget.cm
finditget.cm
finditvget.cm
musicget.cm
editfontget.cm

The format for executing a command file is

@<filename>@ {return>

-

To update your files, either use a Basic Smalltalk disk for transferring files, or, if you have access to
the archival file system, retrieve a {ile named

(smalltalk)smallmanual.em ,

If you execute it as a command file, your disk will be updated with the Basic Smallitalk disk files
listed above.

ORIENTATION AND OVERVIEW Page 1

Chapter L. y
INFORMAL ORIENTATION TO THE SMALLTALK SYSTEM

Introduction

This manual is intended for use by those persons with on-line access to the Xerox Interim Dynabook.
As such, it employs a tutorial style that directs immediate experimentation with a Smalltalk system;
it also maintains a somewhat informal dialog about expected results of such experimentation.
Chapter 1 demonstrates some of the methods used for interacting with the Smalltalk system; it
includes the use of display graphics, dialog windows, and font editing windows.

Chapter Il continues this introduction by demonstrating methods for creating, editing, saving and
retrieving Smalltalk programs. It then begins specific instruction on the development of Smalltalk
class definitions, beginning with the class box, then expanding a box-shape into any regular polygon
(the class polygon), and continuing with methods for communicating with instances of the class
.turtle. Included in this chapter is definition of the set of special symbols used in Smalltalk; some
attention is paid to the idea of message sending and receiving. Finally, this chapter describes the
class dispframe, and presents a number of ways to place text on the screen and to sketch with a "pen"
and a “paint brush".

Chapter III goes deeper into the basic concepts from which everything else in Smalltalk is built.
These include the method of evaluation of messages, message sending and receiving, and the notion of
classes and instances. One part describes subsequent presentations of basic class definitions.

Many classes have already been built for the user's convenience. These include the various classes for
names, arithmetic, information storage methods, text display, and graphic control. The definitions of
all of these basic classes is given in Chapter IV; Chapter V then presents a number of interesting
examples that use these basic classes. Chapter IV also describes utilities already provided the user for
editing definitions, saving and retrieving files of information, viewing definitions, testing values, and
reading input devices.

To Get Started
Place your Smalltalk disk in the machine, press "run" on the disk drive, and when the "ready" light
appears (yellow light), press the "bootstrap” button (the little one located near where the wires enter
the back of your keyboard). The screen will go blank for a second and then show you some
information having to do with the particular machine configuration you are using. You are talking to
the Interim Dynabook operating system. Type:

@s@ (return}

@ is typed by holding down both the key marked 'SHIFT' and the '2' key, There will be a flash and a
rectangle (window) will appear with text in it

A Smalltalk Window
If you are on a color machine (your screen background has color rather than white), you should type:

@cs@ {return)

ORIENTATION AND OVERVIEW Page 2

The Mouse

The little rectangular object with three buttons that usually sits to the right of the keyboard is called

a mouse. Move it around while watching the screen. An arrow (mouse cursor) will be moving in
" response to it. This is how we point to objects on the screen. Smalltalk constantly "asks” the mouse

where it is. A little bit further on we will explain how you can ask the mouse the same questions.

In Case of Disaster

In case of any disaster, first push the {escape} key (marked "ESC' and located in the upper left corner
of the keyboard). Try to put the mouse cursor in a displayed window or, by moving the mouse around,
try to wakeup a "hiding" window. If that doesn't help, then try typing <shift)(ctrl)(escape}. That
is, press the key marked 'ESC' while holding down the keys marked 'SHIFT" and 'CTRL'. Finally, as a
last resort, press the "bootstrap” button again and go through the above sequence,

Talking To Smalltalk

If you are on one of our color machines then move the mouse so that the cursor travels all the way off
the bottom of the screen. A white rectangle (a Smalltalk dialog window) will appear, It contains a
message. Move the cursor into the window. If on a black-and-white machine, simply move the mouse
so that the cursor travels into the rectangular frame at the bottom of the screen.

A small, flashing image of the Interim Dynabook will appear--this means Smalltalk is listening. To
test this, type:

3+4 1

The ! <(do it} character is marked 'LF' on the upper right of your keyboard. It is used to tell
Smalltalk that this is the message you really want it to do. Now try the following:

3*41
'*' is how we express the sign for multiplication in Smalltalk. Try:
855.0/113 1

The result shows a well-known number and the accuracy of Smalltalk's fractional arithmetic.

Helpful Notes

Smalltalk will only listen to you through a window when the cursor is in it. Any characters typed
when you are out of a window will be saved until you place the cursor in a window. Try taking the
cursor outside of the window and typing 3+4. You will not see the characters appear in the dialog
window, Now move the cursor into the window. The characters '3+4' will appear in the window.
When you have learned to create multiple windows, you might repeat this experiment to prove to
yourself that the characters will indeed appear only in the window containing the cursor.

Once you start typing characters in a window, Smalltalk will wait for you to type ! before any window
wakes up again. So, if you inadvertently move the cursor out of a window while you are typing,
Smalltalk will continue to listen in that window.

ORIENTATION AND OVERVIEW Page 3

Deleting (backspacing) of unwanted characters is done with the 'BS' key located on the upper right of
your keyboard.

If you inadvertantly make an error of some kind, which is then sent to Smalltalk by saying 1 (<do
it>), a diagnosis window will appear with a message that, at this point, will probably be obscure.

To see this, try typing a symbol for which Smalltalk does not yet have a meaning, such as:

mumble 1
A diagnosis window will appear. Note that the prompt character (the Interim Dynabook image) does
not flash. Once a diagnosis window appears, it listens to you until you return to your previous
context. To get back to your previous context, either type:

done 1
or the shorter form:

Cetrld D

typed by striking the 'D' key while holding down the key marked 'CTRL',

Try A Turtle

Turtles are little beasts which crawl around on the screen and can leave a variable width tracing of
where they have been. Smalltalk line drawings are done with turtles.

Smalltalk can have many turtles. Each is created as an instance of a group or class we call turtle.
One, © (called "smiley"), has already been created for you. It is typed by holding down both the key
marked 'SHIFT' and the '2" key (i.e., the @ sign which has a different printing representation in
Smalltalk than it does in the Interim Dynabook operating system).

As with all Smalltalk objects, can receive a variety of messages asking it to do "turtlelike" things
(such as "go forward some number of steps”, "turn some number of degrees”, ...), and answer
reasonable questions (such as "what kind of thing are you?", "where are you"). Type:
2 go 1001 A vertical line should appear.
is 21 ? is typed holding down both the
'SHIFT' and '6' keys.
Is the answer (turtle) reasonable?
turn 90 go 1001 Did what happened make sense?
To redo a previous statement, type:
redon 1
where n is the number of transactions (visible images of the Interim Dynabook) back from where you
are. If you type: redo 11 at this point, the turn 90 go 100! message should be re-sent to
Smalltalk and another line will be drawn on the display sereen. If you want to redo the previous

statement, simply type the equivalent statement:

redol

ORIENTATION AND OVERVIEW Page 4

Try
erase homel Clears the screen, brings the
turtle to its center position,
and points the turtle upward

do 4 (® go 100 turn 90) 1 Will make a sgquare

erase home.
Jor i« 1to 200 do (g0 i*2 turn 89)1 Te get a “squiral”.

The text line change in the above transaction is ebtained by pushing the key marked 'RETURN' after
the message home. This "carriage return" does not affect anything except the appearance of the text
in the text window. The period is a delimiter, signifying the end of a message. It is generally good
practice to include periods when stringing together several complete messagas. Note that, although
the period signifies the end of the message, you still need to type 1 ¢do it) to actually send the
message to Smalltalk, .

Notice that, as a result of the above messages, the black frame around the window has disappeared.
The window has not been destroyed. Merely, &'s drawing area overlapped with the window area, and
hence erased much of the window information. None of that information is lost. Move the cursor off
and then back into the remembered window area, refreshing the window display, This erases any part
of the turtle drawing that overlaps the window. Any turtle lines inside the window will scroll (move
up) whenever the text scrolls,

You have also just used two Smalltalk iteration methods: do and for. Each is a method for counting
the number of times a message should be evaluated. In the more general method for, the iteration
counter (in the above example, the counter is i) can be used as part of the message (in the example, ¢
is used to help determine the distance the turtle will travel).

Layout of the Smalltalk Screen
The x direction runs from left to right. The left hand margin is 0, the right hand one is 512. The »
direction runs from top to bottom. The top margin is 0, the bottom one (at the lower boundary of the

original window) is 680.

Smalltalk display screen

X
—————— >
0,0 —mmmmmmmmmem 512,0
[|
[| |
| [i
| I Y
I 2 |
| I v
0,680 —ememee—en—— 512,680
Now say to the turtle: K
erasel
goto 100 1001) Is a line drawn to the top left quadrant?

Try

ORIENTATION AND OVERVIEW Page §

Type mx. Then, before typing the I, place the cursor somewhere in the screen and type:
!
Similarly, try

myl

Smalltalk should send you back reasonable numbers for m(ouse)x and m(ouse)y, the display
coordinates of the mouse cursor. Now type:

goto mx my}

and a line should be drawn to the cursor position. You have hooked up the mouse to the turtle. A
simple drawing program can be written by saying:

repeat (& goto mx my)l

Move the mouse and a trail will be left behind. You are in an "infinite" loop {the & goto mx my will
repeat forever). To escape from the loop and to get Smalltalk to listen to you again, press the key
marked "ESC' in the upper left hand corner of your keyboard and move the cursor back into the
window.

&s width « 3. repeat (@ goto mx my)l
The s is typed by striking the key marked 'S’ while holding down the key marked <CTRL>.

A more involved drawing program might use the buttons on the mouse to control the turtle's ink color,
width, and erasure. More about drawing programs later.

Dialog Windows

All communication to a Smalltalk cbject is done through windows which contain the most useful
editor for that object (you have just been using a dialog window). The editor for a picture object is a
kind of painting and drawing aid; the editer for a paragreph of text handles characters; the font
editor allows the character defining dots to be easily changed; and so forth.

Every window can be moved, stretched, and deleted from the screen, Other abilities depend on the
particular kind of window with which you are dealing. A collection of related windows (containing
pictures, text) is a doecument which can be automatically archived in many different ways for later
reirieval and editing.

For example:

a. Move. Move the cursor into the upper left hand corner of the window you are in and press down
the top button. The window should go blank. You may have to play a little while holding down the
button in order to find the actual corner. The tip of the cursor (the upper left corner) must be in the
window corner, ' :

b. Now point the cursor somewhere else on the screen and push the top button briefly again, The
window will reappear in the new position. The upper left corner of the window can not be forced off
the physical display screen; however, the other parts of the window can be slid off the display as a
method for pushing them out of the way until needed again.

ORIENTATION AND OVERVIEW Page 6

¢. Grow. Now move into the lower right corner in a similar manner. (If the corner is off the screen
due to the previous move, do another move further to the left to get the right hand side visible again.)
The next button push will change the boundaries of the window so that the new lower right corner
position will coincide with the cursor. Try it. You can not grow the window smaller than 32 units
wide or 32 units high.

d. Create. A new dialog window will be created for you by grabbing the lower left corner of an
existing diclog window (pointing the cursor and pressing the top mouse button). The new window
will appear in the upper left portion of the display screen.

e, Position the cursor inside the new window and try typing 3+41 .

f. Delete. Any dialog window can be deleted by grabbing its top right corner. Try it with the new
dialog window. For obvious reasons, a single remaining dialog window can not be deleted.

Try overlapping windows. The window that sees the mouse cursor wakes up and displays itself on top
of all other windows.

Each new dialog window appears in the upper left portion of the display screen. Unless you move
each window as it is created, the windows will pile on top of one another. Another way to define a
dialog window is to have a new window appear at a location pointed to by the mouse cursor. The
cursor could blink on and off, waiting for you to press a mouse button to indicate that the present
cursor location is the place to put the new dialog window. Later on, after you have learned more
about Smalltalk, you might make this change to your personal Smalltalk system.

A First Note on Smalltalk Classes

Every entity in Smalltalk's world is called an object. Objects can remember things and communicate
with each other by sending and receiving messages. Each example we present demonstrates the ahility
of objects to receive messages and produce replies.

Every object belongs to a class (a method for grouping together objects that do similar things). @, for
example, is an object. It is a member of the class turtle. All members of this class are able to draw
lines on the display screen. The class handles all communication (receiving messages and producing
replies) for every object which belongs to it.

We have just been looking at members of the c¢lass window. Messages are sent to a window by
pointing with the mouse cursor and pressing a mouse button. Each member of the class responds to
the message by moving to a new screen location, changing its size, creating a new member of the
class, or deleting (erasing itself from the screen). The objects are dialog windows, capable of
capturing and editing Smalltalk messages. The next example is a font window which contains an
editor for designing display characters.

2

ORIENTATION AND OVERVIEW Page 7

Font Editing Windows
Type . .
filin 'fontfns'}

filin is the Smalltalk method for reading messages stored on a disk file. Reading the file takes a
while. The display screen is purposely turned off (becomes blank) to speed up the reading process. _

You now have routines for creating windows in which editing means drawing in a matrix of black and
white dots. These windows contain magnified views of display characters. Any character font (the
design of the display characters) can be described as a matrix of black and white dots. Using the
mouse cursor in a font window, you can draw in a character font of your own choosing. Moving the
cursor to a dialog window, you can immediately view font changes within the context of text displayed
in that dialog window. Type

fontcharl
A newly created window appears in the upper left corner of the display screen, Like dialog windows, a

font window can be moved, deleted, and its size changed. Unlike dialog windows, a new font window
is created only by typing the message fontchar.

| move delete i
! I
! I
| change change |
| baseline width |

Four actions are taken by pointing to one of the corners of a font window and pressing the top mouse
button,

1. Move the window. Point to the upper left corner and press the top mouse button. Then point to
a new position on the display screen and press the top mouse button.,

2. Delete the window. Point to the upper right corner and press the top mouse button.

3. Change the baseline of the character. Point to the lower left corner and then to the relative
adjustment, up or down, of the character's baseline. Raising the baseline creates superscripts;
lowering the baseline creates subscripts. The upper limit is the baseline of the previous text display
line; no lower limit exists with the exception that an attempt to print outside the display screen
boundaries will cause Smalltalk to crash. Note that the font window appearance does not change; the
change only appears in the printed text. Move the cursor into the dialog window to see the change.

4. Change the width of the window (and, thereby, the width of the matrix). Point to the lower
right corner and then to the new right margin. The width is rounded to a multiple of 16 display bits
and may not exceed 16 dots, so it may not appear exactly at the mouse cursor's arrow head.

5. Drawing black and white dots. Black dots are painted into the matrix by pointing to a location
in the window and pressing the bottom mouse button. The drawing technique is to scratch black lines
through the matrix dots as long as the mouse button is pressed. As soon as the button is released, the
black dots appear in any area containing the black lines. White dots are painted by pointing to a
location in the window and pressing the middle mouse button. White lines are written through the
dots as long as the mouse button is pressed; white dots appear when the button is released.

ORIENTATION AND OVERVIEW . Page 8

6. New characters. When the window is first created, the character available for editing is the
period, '.’. To change the character, place the mouse cursor inside the window and type, on the
keyboard, the desired character.
Once a new font has been designed, it is saved on a disk file by typing
filfont (filename) out 1
where {filename> is some name delimited by single quote marks. For example,
filfont 'myfont’ out !
The font of the dialog window in which you are currently typing is the one that will be saved.
To read a saved font, type
filfont (filename) in 1
For example,
filfont *myfont’ in ¥
The font of the dialog window you received when you first started working is stored on a filed named
st8.al
If you have made changes but would like to return to the original (default) Smalltalk font, type
filfont *st8.al’ inl
Other Smalltalk fonts include st6.al and st10.al; each can be retrieved from the archival file system.
The fout of the dialog window in which you are currently typing will change to the font saved on
{filename’. 'The font you edit is the one currently belonging to the dialog window in which you are
typing. Note however, that each dialog window is created with references to the identical font. In
order to have two font windows editing separate fonts for each of two dialog windows, it is necessary
to replace one of the dialog window's font with a copy of itself. For example, suppose there are two
dialog windows (A and B) and suppose you type fortcharl in window A, Results of editing the single
font window will appear in both A and B, Now type in window A
fontchar font disp’s fontl
Recall that the s is typed by stiking the key marked 'S8" while holding down the key marked <CTRL>.
The class fontchar, upon receiving the message font, will replace the font for dialog window A with a
copy of the value following the message font (in this case, with a copy of the font possessed by A).
Results of editing the new font window will then show in A and not in B; .morecover, results of editing
the original font window will show only in B. Choice of which fonts are saved will depend solely on

which window is used for typing the filfont message.

The use of the name disp and the message *s are described in more detail in subsequent sections. For
now, assume their use for the ahove redefinition of a dialog window font,

Warning: some fonts have no definition for the character whose Ascii code is 31. This is the
character used to mark the black dots. Any font without this character properly defined can not be
used with this font editing system.)

WRITING SMALLTALK PROGRAMS Page 9

Chapter II. WRITING SMALLTALK PROGRAMS

Simple Manipulation of a Simple Prograrm
To hand an object 'd’ the meaning '3" in Smalltalk, we say:
@d « 31
(The @& is typed as Cshift> '). If you now say:
dl -

The meaning (or value) of d (which is a number, 3} will be returned.

Each object in Smalltalk can only have one meaning. To change the meaning of the object named 'd’,
we might say

@°d € turtlel
The new meaning (or value) of d (which is a turtle) will be returned.

In these examples, we use the symbol (& to indicate that a literal name follows. The arrow, «,
indicates a desire to give the name a meaning.

Previous turtle examples showed how we can get a turtle to draw a square. Now we need to be able to
make that definition a Smalltalk object, use it, change it, save it, and retrieve it. To do this we need
to give a name to the actions which cause a square to be drawn. In Smalltalk, actions are also
objects. So we need to say something similar to what was just said to d. Type:

to square
(do 4 {© go 100 turn 90)} 1

This will cause Smalltalk to give the actions do 4(® go 100 turn 90) the name square. Here, the
symbol to (rather than the hand @) indicates the desire to give a name to some actions; the actions
are enclosed in parentheses.
Erase the screen and bring the turtle back to home position by saying:

© erase home 1
Then say:

square 1

The stored actions will be invoked. The commonly used actions of clearing the screen and telling the
turtle to go to home can also be abbreviated:

tocl (@ erase home) !
Now only 3 characters have to be typed:

A |

rather than 13.

WRITING SMALLTALK PROGRAMS Page 10

Now type:
defs!
A list of the names square and cl should be typed back at you. defs is a kind of "bushel basket" which

contains the names of user-defined programs.

I3

How to Edit Your Definition
In any dialog window, type:

edit square !
An editing window with a command menu will appear. The "method" of square is shown as:

do 42 ()
The () stands for a parenthesized message which in this case contains:

go 100 turn 90
Actual parentheses never show in the editor, only the marker () indicating levels of parentheses. To
see the message within the parentheses, point the cursor at the word 'Enter’ in the menu and push the
top button on the mouse. (Note, some versions of the mouse have buttons laid cut horizontally; left
to right, rather than vertically, top to bottom. Henceforth, we will refer only to top, middle, and
bottom buttons; the left buiton corresponds to the top button.)
You should see the message as:

go 100 turn 90

Place the cursor on the word 'Leave' in the menu and press the top mouse button. You have now
backed up to the next higher level of parentheses.

We will use the word "grab" to stand for the compound operation of positioning the cursor on an
object (word, icon) and pushing a button on the mouse to tell the system that the object we are

pointing at is really the one we mean. (Unless specifically stated to the contrary, push the top mouse
button).

Grab 'Enter’ again.

Now let's change the 100 to a 50 in the definition of square. Grab 'Replace’. It will reverse its display
color to show that the selection is understood. ’

Grab '100'. The top half will reverse color. This means that 'Replace' expects you to replace one or
more elements beginning at '100'. We only want one element, so grab '100' again. The bottom half
will also reverse color and a prompting Interim-Dynabook image will appear, indicating that typing is
expected. T'ype;

50!

You will now see:

g0 50 turn 90

WRITING SMALLTALK PROGRAMS Page 11

Now grab 'Exit' to terminate the editing context. You will be returned to the previous Smalltalk
context. Say:

squarel
and one of size '50' will be drawn. So the "meaning” (or "actions") of square has been changed.
A Note on Editing

There are a number of ways to terminate an editing sequence before completion. If you grab a wrong
menu word, or have not completed the selection of a phrase to replace or delete, you can terminate by
pointing the cursor outside the editing window and pushing the top mouse button. This does not work
for 'Add’, 'Insert’, nor 'Exit'. If you do not want to complete an add or insert command, but have
already received the Interim Dynabook prompt character, just type ! (i.e., insert or add nothing).
Once you have selected the phrase, a replace command cannot be terminated unless you are willing to
lose any previous edits. Pressing the 'ESC' key takes you out of the edit window and back to the
dialog window. Also note that if there is more than one parentheses marker displayed in the edit
window, the 'Leave’' and 'Enter’ commands expect you to point at the appropriate marker.

Generalizing the Definition of Square

Now suppose we would like to make square more general, so that it will draw squares of any size. To
do so we can give square a "message” saying what the size should be this time, such as:

square 150 1

We must now change the definition of square so that it can receive the message and act accordingly.
First say:

show square 1
to remind yourself what the current definition of square is. We see:

to square
(do 4
(® go 50 turn 90))
It's clear that we want to do something with the place where .50 is. Everything else about the
definition (having 4 sides and turning 90 degrees) describe squares in general.

Suppose there is a way to receive a value from the message. The value needs to be some number. We
give the particular value a "name" in order to talk about it since we don't know beforehand what the
number will be. Let's call it size. Looking above, we see that size should replace the §0:

to square
{do 4
(® go size turn 90))

Now we just need to get square to receive the value of a message and call it size. In Smalltalk, the

request to "receive the value of a message” is expressed by a colon .

So we want to add

WRITING SMALLTALK PROGRAMS Page 12

@ size « ;.
to the beginning of square. Say:
edit squarel
Grab 'Insert’; grab 'do’, type:
G size « .1
Careful--the period is necessary here. It helps to separate, in one's mind, the sequence of receiving a
message and then inveking an action for producing a response. Note that the 'Insert' cormmand
inserts before the selected element.
To replace the 50, grab "Enter’. You should see

go 50 turn 90

Grab 'Replace’. You want tg replace the '50' so grab '50' and grab '&0" again (indicating the beginning
and ending of a phrase to be replaced by new text). Now type the new text

sizel
Grab 'Exit'. You are no longer talking to the editor. Type:

show squarel
to see what you've done. It should look like:

to square

(@ size « ;.
do 4
(@ go size turn 90))

Then try sending several messdges to draw different squares:

square 1501
square 101

and so on,
The colon expresses a request to Smalltalk to fetch the next value in the message. The value is the
meaning of the next object (for example, the number 10). But the value can also be the result of
actions taken by the next object. For example, try

square 150+201
Smalltalk runs the definition of square. When it sees the colon in (G size ¢ .Y, Smalltalk "activates”
the next object, the number 150. This number sees the plus sign (+), fetches the value of the next
object (in this case, the number 20), and performs the addition. The value returned as the value of
size is the sum 170.

The definition of square is obviously working but is’a bit untidy. To see why, type:

sizel

WRITING SMALLTALK PROGRAMS Page 13

The value of the last size you gave square will be returned. This shows that the "name" of the message
for the size of square belongs to everyone. It is much hetter for size to belong only to the object which
uses it. To do this we only need to tell square that size belongs to it by putting the name size right
after the name square in the "title" part of the definition. Say:

edit square titlel

square's title line will be shown as well as (), the marker representing the body of the definition, If
you were to 'Enter' (), you would see the definition itself. Instead, grab 'Insert’, grab (), type:

sizel
Grab 'Exit'. Type:
show squarel
You shouid see:

to square size
(@ size « :.
do 4
(® go size turn 90))

Later, when more of the Smalltalk system has been explained, we will adopt some abbreviations to
make our story more compact and clear. For example, a short way to talk about this program would be
to exhihit, in a general way, what has to be said to get results:

square {number>!

means the object square expects anything which evaluates to a number as a message. An example
might be -

square 30.4+(111.7*65.789 /991

Here, the colon in (& size € :.) fetches the result of the expression 30.4+(111.7*65.789)/99. This
example demonstrates the left-to-right method for receiving messages; that is, Smalltalk first sees the
floating point number 30.4 which, in turn, sees the plus sign and attempts to receive a floating point
number for the augend. However, the arithmetic is right associative. The augend is obtained by
fetching a value from the message. As a result, the floating point number (111.7*65.789) is
evaluated which, in turn, sees the division sign and requests a divisor (the 99.). Hence, in this
expression, the multiplication is carried out first (because of the explicit parentheses), the division
second, and the addition last. Try

10-5+ 21 response is 3, not 7
or
20 - 2 * 31 response is 14, not 54

Fixing Your Dialog

You can edit the command lines (or statements) in the dialog window in the.same manner that you
edit a named definition (described in the previous section), To fix a previous command line, type:

" fixnl

WRITING SMALLTALK PROGRAMS Page 14

where n is the number of transactions (visible images of the Interim Dynabook) back from where you
are.

An editing window with a command menu will appear. Alter making changes, you grab 'Exit’' to
terminate the edifing context. This causes the edited line to be sent and evaluated as a message to
Smalltalk. The line in the dialeg window will not be altered.
Saving and Retrieving Programs
Type:
def's!
again. square and cl will still be there. To save everything in defs, type:
filout ¢some name in single quotés)!
such as:
filout 'mysquare'l
The screen will go blank for a second.
To test whether you actually saved them, go through the "To get started" sequence again. Then try:
square 1001 -
This will generate a diagnosis window with the complaint that "square has no value" . We are now in
a "clean” version of Smalltalk, one in which square has not been defined.
Diagnosis Window
The complaint is stated in a diagnosis window, Smalltalk attempts to state the complaint and then
(1) to provide the name of the program in which the complaint occurred, and (2) to point, with a big
arrow ™, to the object causing the problem.
In the context of the diagnosis window, you can type any Smalltalk messages. The value of objects
are within the context of the object in which the complaint occurred. In the above example, we are
still at the "top level" of Smalltalk; that is, the context is a global one for all objects defined in
Smalltalk, Each attempt by one ohbject to evaluate anotiher object takes you one level lower in
context; after completing the evaluation, you return to the object that requested the evaluation at its
higher level of context, It is possible to trace back from the current context in order to locate the
cause of complaint. Each time you type
cl
you see the next higher level of context.
Type -

donel or ctrl> D

to get out of the diagnosis window.

WRITING SMALLTALK PROGRAMS Page 15

Now type:

filin ‘mysquare'l - *
After a few seconds, try:

square 1001
The result shows that you have retrieved your program.
Type

size 1
You will get a complaint that "symbol has no value" because now size only belongs to the object
square that uses it. The cbject size has no value in a more global context.
Special Characters
Smalltalk uses a number of special "iconie" characters, many of which were invented by some
Smalltalk students to help remind them of important distinctions, An example is "quote" whose sign

to adults is usually ("). The children preferred to use (@) to signify a literal symbol, since in its
typical use:

@& joe

(meaning the literal symbol 'joe' rather than what or who 'joe' may stand for)--the hand points
directly at the symbol itself.

This distinction exists in English also. We can say:
Paris is a large city in France.

We shouldn't say: -
Paris has five letters,

but rather:
'Paris' has five letters.

to indicate the literal word rather than the city.

WRITING SMALLTALK PROGRAMS Page 16

Keyboard Equivalents

(Note, there are usually several ways to type a special keyboard character. The following table
presents the methods most commonly used.)

You Type We Call It

LF do it

<shift> ' hand

{shift> 5 eyeball (look for)
{etrl>{shift>;

<ctrl> k keyhole, "peek"
<{shift> / if ... then

<shift> 1 return

<shift> 2 smiley

<shift> 7 :

{otrl> ?

Cctrld> s

<ctrl> d

{shift> - unary minus
<ctrl> < less than or equal
<ctrl> > greater than or equal
Cetrl> = not equal

{etrl> v percent sign
{ctrl> 2 "at" sign

<ctrl> 1 explanation
<ctrl> o double quote sign
ctrl> 4 dollar sign

Summary of Special Dialog Window Operations

{esc»

<ctrl> D

{shift> {esc>

fix <{number>

redo {number>

Escape to the "top level” of Smalltalk; should return youto the dialog window
blinking the prompt character

Assuming you have entered a diagnostic window, returns you to the dialog
window.

While inside a diagnostic window, changes the context of names and their
values so you can investigate the cause of an error.

Creates a sub-dialog window within the current dialog window, suspending the
operation of the current window until you type <ctrl> D. Within the sub-
window you can type any Smalltalk message.

Enters the Smalltalk editor for a command line in the dialog window. The line
is <number> transactions back from where you are currently typing.

Re-sends Smalltalk the message on command line {number> where the line is
{number> transactions back from where youare currently typing.

WRITING SMALLTALK PROGRAMS Page 17

Boxes: An Introduction to Smalltalk
First get the box programs by typing:
filin 'boxes’ !
After a few blinks they will arrive.
Type to Smalltalk;
@ joe + box !
A small box will appear in the top center of your screen. You have given it the name joe. As a
member of a class or group of objects resembling boxes, it can receive messages having to do with
"hboxness", particularly those concerned with position, size, and tilt. Try:
joe grow 501
joe will get bigger. Try:
joe turn 30 1
and
joe grow -20 1
and
joeis? 1
joe will turn, grow, and answer that he is a box correctly. Now try:

&= jill « box !

A new box will appear. Type similar messages to jill using different numbers for size and tilt. jill will
answer the question jill is ? with box {as did joe).

Now try:
repeat (joe turn 20. jill turn ~11) !

Both of the individuals respond, To "escape” from the endless loop, press the key marked 'ESC' located
in the upper left hand corner of your keyboard. Ask the questions:

joe’s size 1
and
jill's size 1
(Don't forget that ’s is typed as (ctrl) s)

We.see from this and the little "movie" which we created that joe and jill are really separate entities
which can do similar things.

WRITING SMALLTALK PROGRAMS Page 18

An analogy to these ideas is the common notion of classification by similar properties. For example,
we find useful the idea of grouping human beings into a class because we see so many similarities
between individuals that we would like to discuss them in the abstract. The class "human" has
properties such as 'nmame’, 'age’, 'weight', 'walk’, 'eat’, 'eyecolor', and many others. Each individual
human (we often say instance of the class human) has particular values for these properties. Some of
the values are quantities (as with a value for 'weight'), and some are actions (an individual may have
a particular kind of rolling gait for 'walk’). Smalltalk's semantics are at a more comprehensive level
than natural language and thus make no distinction between the rather crude English notions of
"thing" and "action".

In Smalltalk, every entity is called an objeet; every object belongs to a class (which is also an
object}. Objects can remember things about themselves and can communicate with each other by
sending and receiving messages. The class handles this communication for every object which belongs
to it; it receives messages and possibly produces a reply, typically a message to send to another
object.

The central idea in writing Smalltalk programs, then, is to define classes which handle communication
among objects in the created environment. A message is sent to an object by first mentioning the
object's name and then mentioning the message. Either the programmer (via direct keyboard typing)
or an action that is a reply from a class sends the message.

A Look at the Class Box

As an example of a class definition, here is a box. Its various parts are described below. They serve
to introduce the special Smalltalk symbols and syntax. It is a very simple class definition, but

encorporates most of what is complex about Smalltalk,

Note that you can also examine the classes we have already discussed (turtle, window), as well as any
that will be introduced, by typing

show (classname) 1

The definition of box is
to box var [x y size tilt

(Fdraw > @ square size.)

<fundraw o (® white. SELF draw., & black)

WA
BY.

o «Fturn > (SELF undraw. G tilt « tilt + :. SELF draw.)
«f grow > (SELF undraw. @ size ¢ size + :. SELF draw,)
isnew > (GPx « GPy « 256. @ size « 50.

@ tilt « 0. SELF draw)) !
addto. turtle G>(¥ place » (SELF penup goto (:)(:)} perdn up. *SELF)) 1
to square length

(@ length « :.
do 4 (@ go length turn 901

WRITING SMALLTALK PROGRAMS . Page 19

addte. The object addeo is useful for extending the definition of an object (in this case, we used it
to extend the definition of turtle). Here, we give a turtle the ability to respond to the message place.
The response is to have the turtle pick up its pen, 8o to a screen position that is received as a
message, put its pen down, and face in an upward direction (that is, it places itself at a new position
without leaving a trace).

square, To draw a square box on the screen, we use the definition of square that was constructed in
Chapter I. The initial explanation of the colon, :, the Smalltalk symbol for fetching the next value in
the message, was also given in Chapter 1.

Explanation of the Definition of the Box Class

The format forbteaching Smalltalk about a new class of objects is y 1£
. . v sr2c T
to \’clas::ame) {temporary variables) | XY size Lt valrs® %)
(names of properties describing eacH member (instance variables)) |
(names of properties describing the class (class variables))
messages to receive and actions to take) ! .

‘ gz/g:&wj@..,) ﬁaiﬂm-'—?'() ..
We use the symbol, to, to refer to the next object as a literal class name (here, the name is box).
Everything following the name is its value; it is useful to think of this format as the mechanism for
storing a name with its meaning in a dictionary. There can be different dictionaries for the different
contexts in which a message might be sent; typically dictionaries are nested so that an object can
gain access to objects and their meanings that were defined in any higher level of context. So far we
have only been working at the highest level (top level) of Smalltalk context. The definitions of box,
turtle, window, fontchar, are found in the top-level dictionary.

Notice that more consistently, we might have preferred the format

@ (classname) « class {temporary variables) | (instance variables) [(class variables)
{ messages and responses)1

which is more like
& (name) « (value)l

the method for creating instances of the classes. Here we use the symbol & to refer to the next
object as a literal name and the part after the arrow, +, is the object’s meaning.

Title Line~ByZ, boy wer/ X Y #2e +itf

Words between the word fo and the first left parenthesis are referred to as the title of the definition.
The vertical bar, /, in the title is used as a delimiter for the different kinds of variables.

Class and Instance Variables

¢
In the title line, three different kinds of names can be specified: names for iemporary storage
locations needed only when a member of the class is actually doing something; names of properties
that distinguish each member of the class; and names of objects that are common to all members of
the class.

The definition of the class box specifies two kinds of names: the four properties (x, ¥, size, tilt) that
distinguish members of the class; and a temporary variable (var). Properties x and y define the
location of the box on the screen; size is the length of each of its sides; and tilt is its angle of
orientation on the screen. Hence, two members of the class box can have different screen locations,
different sizes, and different orientations.

WRITING SMALLTALK PROGRAMS Page 20

Messages and Actions

All members of the class box respond to messages to grow, turn, draw and undraw. Each member also
responds to two messages which have been adopted as reasonable conventions for Smalltalk classes: a
request to learn the class type (is), and a request to learn about the class' properties (’s). The
messages that each member of the class ean receive, and the actions each will take upon receiving a
message, are given within parentheses after the title line.

«f

The symbol <¥, ("eyeball") is in front of each of the message words. The symbol resembles an eyeball
because it is used to [ook at the message. Suppose we have created the box named joe and we send
Smalltalk the message

Jjoe grow 100 ¢

Smalltalk sees the name joe, looks joe up in its dictionary of names and their associated meanings,
and finds that it is an instance of the class box. Therefore, Smalltalk runs the definition of the class
box in the context of joe; that is, with the knowledge of a dictionary containing joe's size, tilt, and
screen position. For example, joe's dictionary might indicate that size is 50, tilt 0, and x and y
coordinates equal to 256. .

In sequential order, joe looks (with the <¥) for the message draw, undraw, and turn, and then
matches the message grow with the word grow in the definition. Use of the eyeball, <, is ,asking a
question: do I see the following token as the next token in the message? We will use the word
"token" to refer to a single word or a group of words enclosed by parentheses. Examples of tokens are:
grow, (grow 50), read, (read evel print).

-

Conditional Actions

Within the main set of parentheses for the class definition, we provide (virtually in tabular form) an
itemization of the messages each member of the class can receive and the methods for responding to
the messages. This itemization is actually in the form of a conditional statement (if-clause » (then-~
clause) else-clause). The then-clause consists of the actions that will occur if the if-clause has a
not-false value; it must be enclosed within parentheses.

In the box definition, the if-clauses of most of the conditional statements are simply questions “do
you see the following word in the message?" Any question that can be answered "false” or "not-false"
may be asked in a conditional statement. The choice of the word "not-false" rather than "true" has
significance in Smalltalk--any object with a value other than the boolean value "false" is considered
to have the boolean value "true". The object, however, returns its "not-false" value for use by the
message sender. .

The Message Grow

Suppose a box sees the message grow. The action the box takes is to send itself the message undrew
in order to erase itself from the screen. It then changes the value of size by some amount. The
specific value of the change is received as a message using the Smalltalk symbol colon, :. In this case,
joe's size increases by 100. The box then sends itself the message draw in order to show itself again
on the sereen.

The Message Turn .

The action taken if a box sees the message turn is similar: the box tells itself to undraw, changes the
value of the instance variable ¢ilt, and then tells itself to draw again.

WRITING SMALLTALK PROGRAMS Page 21

The Message Draw

The meaning of draw is to place the turtle at the hox's screen location (x, y), turn the turtle in the
box's orientation (tilt), and call on the object square with the message size, the length of each of the
box's sides., Undraw simply changes the turtle's color to white (assuming the background color is
white) in order to "erase” the drawing of the square box.

Again, notice that the evaluation (reading) of a Smalltalk message is done in a left-to-right (linear)
manner. As each object is'evaluated, it is given the opportunity to read as much of the remaining
message as it is able,

The Message Isnew

The Smalitalk object isnew is a special question that determines if a new instance of the class is being
created. If so, the usual consequent is the action of giving values to_each of the instance variables
(i.e., describing the new member of the class by assigning values to each name in a dictionary created
for the class member). In box, the new instance also sends itself a message to draw a square shape on

the screen.

If a Smalltalk class is to have any members (instances) at all, the question
isnew must be asked as part of the definition of the class.

The Message Move
To have a box grow, we change the instance variable size; to have a box turn, we change tilt. To put
a box in a different position on the display screen, we want to redraw the box with new values for x
and y.
Edit box and add to the definition

«F move » (SELF undraw. & x¢:. @ye:. SELF draw.)
Try .

Joe move 100 200.

joe move 200 100.1

for i € 50 to 250 by 10 (joe movei i}l

The third message causes joe to move across the screen diagonally from the upper left corner to the
lower right corner. To have joe track the mouse cursor, simply type

repeat (joe move mx my) 1
The above is a method for having the box move to an absolute location on the screen. The box's
action is to tell itself to erase from the screen (undraw), change the values of x and y by receiving
new values from the message, and then drawing itself again (draw).
Suppose, instead, we would like to type messages such as

joe move right 50. joe move left 100. joe move up 30. joe move down 10.1
In other words, if a box sees the message move, then it should look for one of the four messages right,

left, up, or down and then receive a number value to determine by how much to increment x or y.
The Smalltalk statement might be

WRITING SMALLTALK PROGRAMS Page 22

%3 move » (SELF undraw.
(Fright 5 (Exex+:.)
fleft » (Fxex-:.)
Fup » (G yey-:.)
<fdown » (Eyey+:))
SELF draw)

The use of parentheses around the conditional statement {<fright = (")...) allows each possible form
to evaluate the last part of the statement (SELF draw); the reply to the message move contains
three actions: (1) SELF undraw. (2) look for one of the directional messages, and (3) SELF draw,
Also note that moving up means decreasing the y coordinate. If we wanted to have both kinds of
move methods (relative and absolute) available, we could make one (say the absolute one) the default
case. Try

<¥ move > (SELF undraw.
(fright » (Gxex+:.)
Fleft » (Exex-:.)
“fup » (Eyey-:.)
“fdown = (@"yé—yﬁ)
Fxe: Eyer)
SELF draw)

The Message Is.

There are two messages we include, by convention, in each class definition. One is the ability to learn
the name of the class; the other is the ability to evaluate messages within the context of the class or
class instance. We adopt the word is for the first message, and the possessive for ’s for the second. If
they have not already been included in your definition of box, then type

addto box G°(fis » (Fbox » (T G box) «§ 2 » (T G box} 8. T false)
s » (@ var « 8. wfe¢ » (T var ¢ :.) T var evael))!

The message is, by convention, is a request to learn the name of the class or to ask if the name is the
same as one already known. So we might say

e
joe is 28 and he told box
or
Jjoe is box] and be teld box (i.e., not-false)
or
joe is turtlel and ke told [false

The. method for responding to is {shown in the above definition of box) involves seeing («¥) if the-
class name (in this case, box), is the next word in the message. If it is, return (T) the literal class
name (& box). Otherwise, see if the next word in the message is a question mark (?). If it is, return
the literal class name. Otherwise, the answer must be false. In order to not leave the incorrect name
sitting in the message, gather it up but do not evaluate it (8). Then return false.

The "open colon" symbol (8) is a Smalltalk symbol that says: fetch the next token (the next word or
the next words enclosed in parentheses) literally as it appears in the message. The 8 is similar to <§
in looking at the message literally. However, the § always fetches in the next literal expression; the
=¥ only fetches the expression if there is an exact match.

WRITING SMALLTALK PROGRAMS Page 23

The Message ’8

The message (’s) is, by convention, a request to evaluate the next token in the message within the
context of the message receiver (typically, the class or‘the instance of the class). Suppose the size of
the box joe is 50 and we say

@&x ¢ 1001
@Gh + joe's x

What will be the value of A7 At the main (top) level of Smalltalk we examine the global dictionary
and see that the value of x is 100; but, within the context of joe (looking in the dictionary created
for the class instance), the value is 50. Hence the assigned value of k must be 50.

The method for responding to *s involves receiving the next token literally (8), assigning this token as
the meaning of a temporary object (here named var), and then seeing if the next word in the message
is the back arrow («). If it is a back arrow, then return (1) the result of letting the meaning of var
take on the next value in the message (:). (l.e., this is a method of indirect reference.) If the next
word is not the back arrow, then simply return the value of the meaning of var (obtained by sending
var the message eval). Again, note that the evaluation of a Smalltalk message is carried out
sequentially left to right, but that the message is actually grouped in a right-associative manner
because of the Smalltalk method for letting each object read as much of the message as it ¢hooses.

Receiving Messages

There is not one global message to which all message "fetches"” {use of the Smalltalk symbols eyeball,
<%, colon, :, and open colon, 8) refer; rather, messages form a hierarchy which we explain in the
following way-- suppose I just received a message; I read part of it and decide I should send my
friend a message; 1 wait until my friend reads his message (the one I sent him, not the one I
received); when he finishes reading his message, I return to reading my message. I can choose fo let
my friend read the rest of my message, but then I can not get the message back to read it myself
(note, however, that this can be done using the Smalltalk object apply which will be discussed later).
I can also choose to include permission in my message to my friend to ask me to fetch some
information from my message and to give that information to him (accomplished by including ¥, :, or
8 in the message to the friend). However, anything my friend fetches, [can no longer have. In other
words,

(1) An object (let's call it the CALLER) can send 4 message to another object (the RECEIVER) by
simply mentioning the RECEIVER's name followed by the message.

(2) The action of message sending forms a stack of messages; the last message sent is put on the top.

(3) Each attempt to receive information typically means looking at the message on the top of the
stack.

(4) The RECEIVER uses the eyeball, <f, the colom, :, and the open colon, 8, to receive information
from the message at the top of the stack.

(5) When the RECEIVER completes his actions, the message at the top of the stack is removed and
the ability to send and receive messages returns to the CALLER. The RECEIVER may return a value
to be used by the CALLER.

(6) This sequence of sending and receiving messages, viewed here as a process of stacking messages,
means that each message on the stack has a CALLER (message sender) and RECEIVER (message
rec-éiver). Each time the RECEIVER is finished, his message is removed from the stack and the
CALLER becomes the current RECEIVER. The now current RECEIVER can continue reading any
information remaining in his message.

WRITING SMALLTALK PROGRAMS Page 24

(7) Initially, the RECEIVER is the first object in the message typed by the programmer, who is the
CALLER. -

(8) If the RECEIVER's message contains a eyeball, <, colon, :, or open colon, 8, he can obtain
further information from the CALLER's message. Any information successfully obtained by the
RECEIVER is no longer available to the CALLER,

(9) By calling on the object apply, the CALLER can give the RECEIVER the right to see all of the
CALLER's remaining message. The CALLER can no longer get information that is read by the
RECEIVER; he can, however, read anything that remains after the RECEIVER completes its actions.

(10) There are two further special Smalltalk symbols useful in sending and receiving messages. One
is the keyhole, &, that lets the RECEIVER "peek” at the message. It is the same as the 8 except it
does not remove the information from the message. The second symbol is the hash mark, #, placed in
the message in order to send a reference to the next token rather than the token itself. An example
of the use of # is given at the end of the next chapter. . .

Alternative Box Definition

An alternative method for defining the class box is given below. The main difference is the use of the
message redraw to simplify methods for growing, turning, and moving boxes.

Let's examine the definition in terms of steps (1)-(8) of the previous section. Suppose a box receives
a message, message A, In the definition of box provided below, if message A contains the token grow,
the box becomes a CALLER, sending itself another message, B--redraw & sizeesize+:. The
RECEIVER of message B sees the token redraw; as a result, it sends itself the message undraw.
After the action of undrawing is completed, the RECEIVER requests a fetch for a value (:.). The
feteh comes from the remaining part of message B (& size ¢ size + :.). This part of message B
contains a colon (:) directing it to get information from the remaining part of the CALLER's message
A (as stated in (8) above). This remaining part of message A contains a number that determines the
amount of the box's growth. The RECEIVER then sends itself the message draw, after which it
returns control to its CALLER. The CALLER's actions are now completed,

Similarly for messages containing the tokens turn or mowe. In order to change more than one
instance variable (that is, both x and y in the case of move), it was necessary to enclose the
appropriate messages within parentheses. (Then the fetch for a value found in the action taken by
redraw, will obtain the value of changing both the = and the y.) In general, a colon will activate
(start determining the value of the message) at the next token--either a single word or words
enclosed by parentheses.

The alternative box definition follows.

WRITING SMALLTALK PROGRAMS

to box var | x y size tilt

(<¥drew
<fundraw
“Fredraw
<fturn
“fgrow
«Fmove
«§s
«fis

isnew

-

Y

>

(® place x y turn tilt. square size.)

(® white. SELF draw. © black)

(SELF undraw. :. SELF draw.)

(SELF redraw @tilt « tilt + :.)

(SELF redraw G size « size + 1.}

(SELF redraw (@x ¢ ;. Gy¢:.))

(G var « 8, <F ¢ > (T var « :.) T var eval)
(Fbox > (1@box) <& 7 » (1@"box) 8. Mfalse)

(@ x ¢ Gy « 256. G size « 50.
@tilt « 0. SELF draw}) !

Page 25

Extending the Box Definition. There are several ways to extend or modify the box class. We will
show omne in the next section: the class of polygons, and, after introducing the class turtle, we modify

the box class to be a class whose members each own an instance of the turtle class.

WRITING SMALLTALK PROGRAMS Page 26

Class of Polygons
This simple extension to class box allows us to create objects that have any number of sides of equal
length. The object that draws any polygon must ask the turtle to draw the appropriate number of
lines. After drawing each line, the turtle has to turn enough units so that, after drawing all the lines,
the turtle will have turned a complete circle (360 units). Since each angle of a polygon is equal, each
turn is an even division of 360 (360/number-of-sides). A polygon-drawing routine is

to poly sides size

(@ sides « ;. @ size « =,
do sides (® go size turn 360/sides))1

Using the box definition as a model, we can define a class for polygons.

to polygon var | x y size tilt sides The title line is similar to that of box; we added the number
of sides as an instance variable,

(< draw » {® place x ¥y turn tilt. poly sides size)

The method for drawing has changed. We use poly, not
square, poly expects two messages: number of sides and
length of each side,

<§ grow > {<Isides o (SELF redraw & sidesesides+:.)
<f size » (SELF redraw & sizecsize+:.))

We adopt message forms .

joe grow size 100.

joe grow sides 50,
as the two slternative meanings of grow. Another method to
use is

(&*var + &,

SELF redraw var¢var eval+:.).
Responses to messages redraw, undraw, turn, ’s, and move, are the same as in box. The message i3,

by convention, is similar, but locks for the word polygeon. Or, alternatively, we can take advantgge of
a Smalltalk object, ISIT, and use

<¥is > (ISIT eval)

This object is part of the basic Smalltalk system referenced in subsequent sections. It is always
possible to type show (class-name) in order to see any such "basic" objects.

In isnew, we must give sides a value as well as the other instance properties. Suppose we choose to
send the initial value of sides as a message when we create an instance of polygon. l.e.,

&joe ¢ polygon 31 creates a triangle
joe « polygon 61 creates a hexagon

Then we write as part of the definition of poly

isnew » (@ sidese:. Esize ¢ 50.
@Etilt ¢ 0. ExeEye256.
SELF draw.}

WRITING SMALLTALK PROGRAMS Page 27

Turtles

The turtle examples in the first section showed some of the messages any turtle can understand. We
can get a turtle to draw designs, sketch, and make diagrams with a number of useful and simple

programs.
Type
@ pokey ¢ turtle !

Now pokey understands messages

go {n)
turn {n)
penup, pendn

black, white

xor

goto {n) (m)

goto {point)

up

erase

home

« (string)

Where n is an integer, move n units forward (+) or backward (-).
Where n is an integer, change orfentation right (+) or left (-}
Change state of pen that can leave a trace.
A turtle can have three ink colors: black, white, or xor.
This color says that whatever “color” is on the screen, show its complement
{white for black, black for white). This works only when the turtle's
width is I.
where n and m are the horizontal, vertical locations on the display sereen.
{point? is an instance of the class point explained in a subsequent section;
try

goto mp
i.e., goto the point where the mouse cursor is placed.

Points the turtle's orientation (dir) towards top of screen.

Clears Lhe window. frame in which the turtle lives; default window is the
entire screen.

Goes to center of the window frame,

Prints the text (string of characters enclosed by single quote marks) at the
turtle's current location, with its direction, width, and coler, Note that
you can make non-destructive text by using xor ink which complements the
background so that reshowing the text erases it while restoring what was
underneath.

We can query the turtle’s property values using ’s (typed Ly striking the key marked 'S' while holding

down the 'CTRL' key). For example,

pokey 's ink
pokey s dir
pokey s width

Also, x, ¥, pen, and frame. We can change these values by typing

pokey s {property) ¢ (value)l

WRITING SMALLTALK PROGRAMS Page 28

Usually, only the width, whose value is an integer between 1 and 8, and frame, whose value is a
display screen window, are modified in this manner. There are alternative methods for each of the
other properties.

pokey 's width « 28
A simple design program might be: pokey go a little, turn some amount, go a little more, and so on.

to design var i
(@ vare:. for i to 300 (pokey go i turn var)) |

Try

pokey erase home up.
design 89.

pokey home up,
design 911

It is probably better Smalltalk programming style to modify the turtle class definition and give turtles
the ability to receive the message design. In this way, all turtles, not just pokey, will be able to draw
designs. addto lets us add new messages and responses to class definitions. Try

addto turtle G7(fdesign » (G var « :. for i to 300 (SELF go i turn var)})}

The explanations of ¥ (eyeball), SELF, and » were given in the previous section. Recall that “fisa
method for looking at the message and seeing if there is a match between the next word in the
message and the word following the <f. The use of <f is a test whose value is either not-false or false.
The arrow (=) denotes a conditional statement of the form

(test for truth> » (<action to take if the value of the boolean expression is true>)
<otherwise do this>

WRITING SMALLTALK PROGRAMS ‘Page 29

Boxes Owning Turtles

The definition of box as presented earlier depends on the turtle © to draw each instance of the class.
Each time an instance is drawn or erased, must be placed at the appropriate location facing in the
appropriate direction. Rather than having to reposition &) each time, we might assign a turtle to each
instance of box; since the instance "owns" its turtle, we can assume that the turtle is always
correctly positioned.

In the new definition of box given below, we use a different turtle to draw each instance of the class
box. The turtle, whom we named turt, is an instance variable of the class box. Each time we move or
turn a box, we actually move or turn the turt belonging to that box . When we draw a box, we assume
that turt is sitting at the correct display coordinate, turned in the preper direction, waiting to draw
the geometric shape. The turt remembers its position (x, y) and its orientation (tilt) on the screen,
so the box no longer has to retain this information. There are now only two instance variables: turt
and size.

to box var [turt size

{isnew > (Gturt ¢ turtle. @size « 50. Create turt as an instance of class turtle and give
turt place 256 256, size the value 50. Place the turtle at the
SELF draw.) starting position and orientation.

<fdraw > (do 4 (turt go size turn 80)) Ask the turtle to draw a square.

“Fundraw » (turt white. SELF draw. turt black)

Change turtle’s ink, assume background is white.
<fredraw » ((SELF undraw. :. SELF draw.)

eFturn » {SELF redraw turt turn :.) Rather than changing value of tilt, we simply tell
: the turtle to change his orientation.

“fmove > (SELF redraw turt penup go {:) pendn)

This is a new kind of meve--move forward if amount
is positive, move backward if negative. Turtle
always moves in the direction of his tilt. This is
useful if you think of the box as a spaceship!

«fgrow s (SELF redraw G sizeesize+:.))l

There were several changes to the box definition.

(1) draw--we no longer need to reposition the turtle because turt is already correctly positioned, nor -
do we need to use the object square.

(2) turn--since the turtle must sit in the proper direction, we tiit the box by changing the turtle's
direction (send turt the message turn). The box no longer has instance variable tilt.

(3) move--the turtle remembers his, and therefore the bex's, position. The box no longer has
instance variables x and y.

WRITING SMALLTALK PROGRAMS Page 30

Dispframes: An Introduction to Text Display

Smalltalk dialog windows are instances of the basic Smalltalk system class dispframe. Members of
this elass can show text in a rectangular area that can be framed with thick black lines. As you have
already seen, Smalltalk can have many dispframes, each one capable of moving its screen position,
changing its size, displaying text, and hiding itself (deleting its representation from the display
secreen). To do these tasks, an instance of dispframe understands messages such as moveto (upper left
corner x> (upper left corner y), growto (lower right corner x} {lower right corner y», show, display,
and hide. You have sent messages to the windows by pointing at one of the four corners. To help in
this task, a dispframe understands the messages hasmouse, to determine whether or not the mouse
cursor is inside the window; and corner (x) (y), to determine at which corner, if any, the mouse
cursor points. The response to the message corner is a number between 1 and 4 depending on the
display coordinates x,y.

Each instance of a dispframe remembers text that is displayed in the rectangular area, This text is
named buf. One of the jobs of the class dispframe is to fit the text into the window:

(1) changing physical lines when the characters fill the line space ("line wrap around"),
(2) lining the characters up evenly in the right margin (right justify),

(3) scrolling (deleting the initial characters and readjusting the remaining characters upward)
when the window can not properly contain all the text.

Placing Text on the Display Screen

There are three ways to place text on the display screen, one uses a turtle, the other two rely on the
class dispframe,

With Turtles.

Eamy « turtlel
amy penup goto 100 100 pendnl Amy has width = 1 and faces upward.
amy « 'helio'l Note the need for single quote marks as delimiters,

The word "hello" appears on the screen. The upper left corner of the first character shows at amy's
%,y position. Now amy has been repositioned at the end of the displayed word.

amy’s width « 21 ' Increase amy's width to 2.
amy « 'hi’'l Print another word.

Try printing with turtles facing in different directions and having different widths and colors.
Although it is possible to print text on the display with a turtle facing in any direction, text generally
looks best when the turtle's direction is horizontal, vertical, or at 45 degree angles.

With Display Frames, To create a dispframe you send at least five messages describing the

rectangular area and its contents: the area's upper left corner x, its width, its upper left corner y, its
length, and a string. The string is the method for storing the text characters to be displayed.

@& dp « dispframe 100 75 100 120 string 200.1

This creates a rectangular area 75 x 120 at'location 100,100. It can contain up to 200 text
characters. The simplest way to place text in this area is to send the dispframe the message put.

{dispframe) put (text) at (x> (y>1

WRITING SMALLTALK PROGRAMS Page 31

Where x,y are the display screen coordinates. For example,
dp put 'hi there' at 150 100! .
Now try
dp put 'hi where’ at 200 1501

Notice that the dispframe has changed its x,y position to 200,150. It has replaced its original text
with the text ‘hi where’, but it has not erased the original text hi there'. Try

repeat (dp put 'hi’ at mx my)!
to place the word "hi" all over the screen.

Appending Text to Display Frames. A dispframe stores its text in a place named buf. The
message <, when sent to a dispframe, is a request to add characters to buf; buf is an instance of a
basic class named string. We can print the word “hello” in the dispframe dp by typing:

dp ¢ 'hello'.}
Now try:
dp ¢ 'how are you today? My name is dp and I am e dispframe’l

Do you see how the line-wrap-around works? And that spaces have to be explicitly stored into the
dispframe? The original text was not cleared when new characters were added; rather, the new
characters are appended to the end. Now try the various other messages to a dispframe:

dp hidel The entire area disappears and reappears.
dp displayl

dp fclea.r! The text area is cleared and represented.
dp show}

dp clear! This empties the string buf so there is no longer text to display.
P g
dp show!

dp hide!
dp growto 250 2501
dp displayl Now the frame is larger.

dp hidel
dp moveto 50 501
dp displayl Now the.frame is in a new position.

WRITING SMALLTALK PROGRAMS Page 32

Boxes as Menus

The Smalitalk class editor uses two instances of dispframe. The first is the window containing the
levels of the class definition; the second is the menu window. In each case, you were able to position
the mouse cursor in the window and the editor was able to determine which character or word you
were grabbing. Instances of dispframe understand three messages that aid in this task:

mfindc (which character),
mfindw (which word), and
mfindt (which token, that is, which word
or set of words enclosed in parentheses).

The next example was chosen in order to clarify the use of these messages and to provide an example
of a dispframe.

A menu is an ordered list of objects that can be selected in a variety of ways. One way is to point at
the object with the mouse cursor. The objects might be words or pictures, each representing things to
do, or names of other objects to retrieve or to "activate” (that is, give the ability to do something,
such as to receive and/or to send messages).

We have chosen a simple example of a menu consisting of a list of words, each word being the name of
a polygon. The result of grabbing a word will be to create the corresponding instance of the class
polygon. Belore the new instance is actually created, the user will select the position on the screen
where the polygon is to be drawn.

We will use a modified version of the definition of polygon, one in which the polygon position is
determined from a message received at the time the object is created. For example, we will create the

pelygon joe by typing
& joe « polygon & 150 1001 joe is a pentagon (5 sides) at 150,100

to polygon | sides size polygon simply creates the object.
(<¥draws {do sides (© go size turn 360/sides)) .
Draws it on the-screen,
isnew » (& sides « ;. G size « 50. Values for sides and the turtle's position are
O « turtle. @ place (:)(2 provided when the polygon is created.
SELF draw))8

The definition of polygonmenu includes the instance variable codevector. This object will be an
instance of the basic Smalltalk class vector, a method for storing a list of things. In this case, we
store a list of the names of the possible polygons to create. For example, we might create a menu by
typing: -

@& pm ¢ polygonmenu (triangle square pentagon hexagon septagon octagon)l

The list codevector owned by pm is now a list of polygon names that will appear in the menu box on
the screen. Each item in codevector refers to a polygon that can be created.

WRITING SMALLTALK PROGRAMS Page 33

to polygonmenu i [dp codevector
i
{isnew :(@’codevector « 8. When creating a menu, fetch literally the vector of words to
be displayed in the menu.

repeat (button 4 5 Wait for the user to press button 4 to indicate the menu
position; then create dp, the dispframe, at the mouse cursor's
position;

(@ dp « dispframe mx 75 my 120 string 100,

and print each word in the menu followed by a carriage
return.

for i to codevector length - 1
{dp « codevector[i] chars. dp « 13).

done})) ¥ We reference items in a vector using the notation:
name[index]

The above definition of polygonmenu simply shows a rectangular area filled with words. The method
for printing each word from the list is to count down through each item using the for iteration
method. The counter is i{; codevectorfi] refers to the ith item. For example, in the above, if i=1
then codevector[i] = codevectorf 1] = G triangle.

Each item in the list is an atom, a basic Smalltalk system class. Each instance of an atom responds to
the message chars by forming a string of characters for the atom value. For example, the response
from the atom @ triangle would be the string ’‘triangle’. The word "triangle" is printed in a
dispframe area by sending the string ‘triangle’ to the dispframe. Hence the contents of the for
iteration is to send the dispframe dp the string codevector[i] chars.)

The code for a carriage return is 13. Hence dp«13 is a method for printing a carriage return in the
dispframe. This causes each new word to appear on a new line in the menu.

Now let's find the word to which the mouse cursor points.
addto polygonmenu G (<findex » (Tdp mfindt mx my})1

If we send a polygonmenu the message index, we will receive a list {vector) of four nuinbers {(the
reply from the dispframe). The four numbers are: the actual index of the word in the vector
codevector, the x position of the first character in the word, the width of the word, and the y position
of the first character in the word. Suppose, as an example, we type pm index while we are pointing
to the first word in the menu.

pm index!

{16550 100) The result is a vector, The first number in the vector is the index of the
word in the menu. The second is the x position, third the word width, and
fourth is the y position. Word height is generally 14.

To select the menu word from codevector, we retrieve the i[1]th item in the vector.

addto polygonmenu G (<¥select » (G i¢SELF index. do something with codevector[i[1]]))1

WRITING SMALLTALK PROGRAMS Page 34

Suppose we want to delay computing i until the user can point into the menu and press a mouse
button.

“

<Fselect > (repeat (button 4 » (@i « SELF index.
do something with codevector{if1]]. done}))

The done part is important. It stops the repeating and returns control to the message sender. What
we do is simply to call on the polygon class with sides = 2+i[1]. Hence, in this case, it is actually
not necessary to retrieve the i[1]th item in codevector.

<Fselect » (repeat (button 4 » (& i « SELF index.)
polygon 2+if 1] mx my. done)))

But, again, there is no delay provided in order to allow the user to point someplace on the screen
before the figure is drawn. Let's change the response to draw.

<¥select » (repeat (button 4 » (@& i ¢« SELF index.
SELF draw 2+if 1]. done))})

<Jdraw » (repeat {button 0 » (done)}) Make certain that the button is released. Then
repeat {button 4 » wait for button press before calling on polygon.

(polygon (:) mx my. done)))

We can complete the menu selection by adding the ability to complement the color of the selected
ward. There is a special routine, deomp, that lets us complement any rectangular area of the screen.
It expects four messages: the area's upper left corner x, the width, the upper left corner y, and the
height. For example:

dcomp 100 50 100 2001

Try
do 100 (dcomp 100 50 100 200)1

The height of the font we are using is 14, so, to complement a word in the menu, we use
deomp if2] i[3] i[4] 14.

The change to the class definition is

“¥select »> (‘repeat (button 4 »
(@i « SELF index.
deomp if2]i[3] i[4] 14.
SELF draw 2 + if 1].
deomp if2] if3] if 4] 14.
done)})

Of course, we assumed the index was a reasonable number. It is safer to check! We change the
response to index to first see if the mouse cursor is inside the frame, and, if so, to compute i and
check to see if ¢ = -1. If it does, then the cursor was inside the frame but was not pointing at any
token. The completed definition is:

WRITING SMALLTALK PROGRAMS Page 35

to polygonmenu i | dp codevector
{ Findex » (dp hasmouse o & i « dp mfindt mx my. if1] = -1 » (T false) Ti)
ffalse)
<Fselect » (repeat {button 4 »
((@i ¢ SELF index) »>(dcomp i[2] i[3] i[4] 14.
SELF draw 2 +if1].
deomp if2]if3] if 4] 14.done)

L

done}))
«Fdraw > (repeat (button 0 > (done))

repeat (button 4 » (polygon (:) mx my. done})}
isnew o (@ codevector « 8.
repeat (button 4 » (& dp « dispframe mx 75 my 120 string 100.
for i to codevector length - 1
(dp « codevectorfi] chars. dp « 13). done})))

Another kind of menu might use the index of the menu word selected to choose a message to evaluate.
The message might be an item in a vector of messages. For example, suppose we did not want to
depend on the order of the polygonmenu to determine which polygon was created. Possibly, we want a
menu to be

hexagon
triangle

circle

Within the repeat-loop of the response to the message select, replacing SELF draw 2+if 1], we might
have

G~ (polygon 6 mx my) (polygon 3 mx my)(polygon 10 mx my)) [if1]] eval

Here i[1] is the index into the vector of messages. We select an item from the vector and send it the
message eval in order to obtain the desired polygon.

Chapters IV and V contain more information and examples about the classes dispframe and vector.

WRITING SMALLTALK PROGRAMS . Page 36

A Few Sketching Tricks

Some of our favorite design programs are presented below. Caution: if you copy these routines, be
certain that you have a large enough window to accommodate all your typing. Smalltalk only sees
text that you can see in the window. You can type part of the routine and add the rest by using the
Smalltalk editor. Alternatively, you can retrieve these turtle routines from the disk pack by typing

filin "turtlefns't
dragon

to dragon length

(G length « :.
length = 0 » (® go 10)
length > 0 = (dragon length -1. & turn 90. dragon -(length-1)})
dragon -length+1. & turn - 90. dragon length + 1.)!

Try
erase home up. dragon 81

hilbert space filler

to hil iabd
((Fie:)=0= (8 turn 180)
(i) 0>
(e« 90.&beti-1)
Ga e ~9. Gbei+l)
hill hil2 hil1)l

to hill
(®turna. kil 0 - b. @ turn a)l

, to hil2
(% go 10. hil b. & turn 0 - a. & go 10 turn 0 - a. kil b. © go 10)!

iis the recursion number. Try
erase home up 1
hil 41
squiggles
to squig90
(repeat
(® home do 200
(® go rand / 1000 turn 90 * rand mod 4)))1
to rand (NG ¢ i* 5)!

Try)
erase. @'s width « 2. @i ¢ 11, squig90!

WRITING SMALLTALK PROGRAMS Page 37

Or

to squiggle i
(@i « 13.
repeat
(B home.
do 1000
- (8 go 10 turn rand)))1

erase. © s width ¢ 1. squiggle 1
Changing ink color and the width of the furtle’s trace makes for interesting variations. Try

home up erase. s width « 1. dragon 8.
home up turn 90. @ ’s width « 2. dragon 8. !

Sketching. We can sketch by telling any turtle to follow the mouse cursor. For example,

repeat (pokey goto mx my) 1
or
repeat { pokey goto mp) 1

The routine mp returns the point where the mouse is located (that is, it combines mx and my).
Members of the class point respond to messages x ¥ + - = max min. This class is described in more
detail in Chapter IV.

More sketching control is obtained with the mouse buttons.

to draw
{ repeat '
{ button 4 » (‘pokey pendn goto mp)
button 2 » (pokey erase)}
button 7 » {done)
pokey penup goto mp)) 1

-

draw I

Now lines are drawn only when you press the top mouse button (button 4); the bottom mouse button
(button 2) erases the screen; holding down all the mouse buttons (button 7) terminates the program;
otherwise, the tiirtle moves to the cursor without leaving a trace. (Note, there are two versions of the
mouse device, one having buttons ordered from top to bottom, the other ordered left (top) to right
(bottom). Henceforth, we will refer to the top-to-bottom version.)

Variations use the mouse button to control changing the turtle's width and changing turtle's ink color
to allow selective erasure.

"Rubber Bands" is another sketching technique in which a turtle expands and contracts straight
lines, always stretching towards the mouse cursor. The line starts at the point indicated by pressing
the top mouse button; the bottom mouse button indicates that the line is to be fixed in its current
position.

WRITING SMALLTALK PROGRAMS Page 38

to rubberband fp sp ~
{ repeat
(button 4 > (B penup goto @fpemp pendn.
repeat
(® goto &spemp.
button 2 » (done)
white penup goto fp pendn goto sp goto fp black}))) 1

Saving the points fp, sp, lets you store the method for constructing the drawing. A simple example of
storing mouse points is

@ points « stream of vector 101

repeat (@ goto points « mp)1 .
Here, the object points is an instance of the class stream, a method for storing other objects
(described in detail in Chapter IV). 'Members of the class stream respond to messages ¢ contents next
reset end. Each time the turtle moves, the new turtle location is stored («) in points. The routine
rubberband can be modified to store each pair (fx, sx), making these lines available for reconstructing
the sketch.

to newrubberband fp sp points
(@ points « stream of vector 10.
repeat
{button 7 » (done with stream of points contents)
button 4 » (© penup goto G>fpemp pendn,
repeat
(® goto & spemp,

button 2 » (points « fp. peints « sp. done)
white penup goto fp pendn goto sp goto fp black})))}

@ points ¢ newrubberband}
The sketch can be reconstructed by

to reconstruct pts
(@ pts ¢ :. pts reset.
repeat (pts end > (done)
penup goto pts next pendn goto pts next))l

reconstruct pointsl
That is, reset the stream, and repeatedly retrieve the next item until reaching the end.

Chinese Brush Strokes. Changing the width of the turtle's path as a line is being drawn leaves
"Chinese Brush Strokes”. This class lets you draw variable-width lines as long as you press the top
mouse button.

to brush i
(G0 « turtle.
repeat (button 2 » (@ erase)
- button 4 » (& pendn. ,
repeat (@’s width « @ic1+i mod 8. @ goto mp.
button 0 » (done))})
penup goto mp. &°ic0.1) 1

WRITING SMALLTALK PROGRAMS Page 39

Feather Strokes. This next class varies the thickness of the trace depending on the direction of the
"feather stroke",

to feder ox oy nx ny
{© penup.

repeat

(button 4> (© goto & ox « mx & oy ¢ my pendn.
repeat
(button 0 = (& penup. done)
@'s width ¢ 1 +abs (3* (& ny ¢ my) - oy} /(G nx ¢ mx) - ox.
goto GPox ¢ nx &oy « ny))

button 2 (@ erase))1

to abs =x

((Gxe:}<(0> (10-x) Tx)t

Cobwebs This last class uses & second turtle, turt, to form cobwebs around the lines drawn by 8.
The creation of this turtle with the message frame is explained in Chapters IV and V; the class
vector is also explained in Chapter IV. A wvector is used here as a method for storing .'5 display
coordinates for use by turt. The class cobweb expects two messages, the color of @'s ink and the color
of turt's ink. ©'s width is set to 3 and turt's width is set to 1. Cobwebs are drawn as long as you
press the top mouse button. Clearly, this sketching method is designed for the color version of
Smalltalk. .

to cobweb n i xs ys turt
{En « 10. Bbs width « 3. s ink ¢ &
GFrurt « turtle frame &'s frame.
turt’s width « 1. turt’s ink « ;.
G xs € pector n. & ys « vector n.
repeat
(button 4>
(xs[lton] «all mx. ysf1ton] ¢ all my. store mx in all of vector xs
store my 1n all of vector ys
Gi e 1.)

©) penup goto xs[1] ys[1] pendn.
repeat
(0 = mouse 4=(done)
i« 1 +imodn.
turt penup goto xsfi] ysfi].
@'goto xs[i] « mx ys[i] « my.
turt pendn goto xs{i] ysfi]) 1))}

In the black-and-white version of Smalltalk, type

cobweb (~3) (-3)1

WRITING SMALLTALK PROGRAMS Page 40

Paint Brush

Smalltalk also has a method for transferring blocks of designs, such as a solid black rectangle, or one
specially constructed to resemble a gray "color". The basic method of interfacing brush painting to
Smalltalk is through the class rectangle. This class definition is available by typing

filin 'xyfns'l
A sufficient abbreviated version is

to rectangle [origin extent
(< has » (@t « 2.
T origin t origin + extent)
«f center > (T origin + point extent x/2 extent y/2)
<F s (T8 eval)
¥ is » (ISIT eval)
«J paint » (CODE 43)
isnew » (@ origin « ;. Gextent € :.))1

As you can see, this definition includes an escape to machine code (CODE) which supports the
movement of bits on the display screen. The two instance variables, origin and extent, must be
instances of the class point, a basic system class defined completely in Chapter IV. The class point is
a method for working with two coordinates as one entity, for example, as a display point. To create a
rectangle, type

G®source « rectangle
Cupper left corner point)
{extent of area as a point whose parts are the area’s width and height >}

For example, try
GPsource « rectangle point 50 50 point 10 20! width is 10, height is 20
The rectangle does not, as yet, appear on the display.

Suppose you want to fill the rectangle with "color”. "Gray color" is obtained by combining black and
white dots to form a spatial half-tone which gives the impression of a gray coler (like that in
newspaper print). The number 1 represents a black dot, 0 a white dot. The "paint brushing" works
by painting "gray" into the source rectangle and then transferring from the source to a destination.
The destination is designated as a point, the upper left corner of a rectangle that will be made the
same size as the source. "Gray" is specified as an integer which gets folded into a 4x4 rectangle to
form a pattern which then gets replicated throughout the area being painted. The folding is

ABCD --=>
1A
B |
{C1
1D |

Where A,B,C,D are binary numbers. For example, suppose the desired gray pattern is

WRITING SMALLTALK PROGRAMS . Page 41

1101

0111 .
1101 .
0111

The corresponding single binary number is
1101 0111 1101 0111

which in octal is 0153727. Hence, the integer to store as the paint "color" is 0153727. (Note, octal
numbers in Smalltalk must begin with the number ¢.} Try)

Gdest mp.! Place the mouse cursor somewhere on the screen.
source paint 12 01537271 Store the gray "color” into the source rectangle,
source paint 0 dest! Copy the source into the destination.
source paint 0 m.p! Copy the source into the mouse point destination.
Now try
source paint 4 dest! Copy the complement of the source area into the destination.
source paint 8 dest 321251 The integer 32125 is another "gray"” coler. This brushes the new

gray into the destination where the destination is a rectangle the
same size as the source.

The number following the message paint is an operation indicater, As we have seen:

copy source to destination point

copy complement of source to destination point

source brushes a new gray to destination point
2 fill source with a gray

- 00 b O

Each of these four operations has one of 4 modes, obtained by adding the following integers to the
above operation code.

store source into destination (paint--do operation as indicated above)
OR source into destination (merge the 1's and 0's)

XOR source into destination (invert)

AND complement of source into destination (erase)

WM = O

Hence, you might try the following variations using objects source and dest defined above.

source paint 1 destl Take source and OR it to the destination.

source paint 2 destl . Take source and XOR it to the destination.

source paint 5 destl Take complement of source and OR it to the destination.
source paint 10 dest 321251 Source brushes the XOR of the gray (32125) to the destination,

and so on, Some integers you might use as gray include {these are decimal numbers)
"1 32125 °5161 T21931 23130 15420 5160 "32126 O 11892 T10213 13260 51 T52

(Recall that the negative indicator sign is typed as (shift’-, that is, press the key marked '-' while
holding down the key marked 'SHIFT".)

WRITING SMALLTALK PROGRAMS Page 42

Suppose you want to create a shaped area of gray color in the upper left portion of the screen.
@& palette « rectangle point 0 O point 16 161

The shapé can be a paint brush shape.
@& brush « rectangle point 20 20 point 16 161

and the tone is one of the numbers representing the gray color.
@ tone ¢ 154201

The palette is then the mixture of brush and tone. Design the brush.

penup goto brush center pendn.
&s width « 8.
do 2 (& go 2 turn 90)1

The combination is
brush paint 8 palette's origin tonel
To spread the paint around, try
repeat (button 4 » (‘palette paint 8 mp tone)}t
Try t'Juilding your own painting system using the Smalltalk painting brushes.

BITBLTing. A part of the Smalltalk system is the ability to move blocks of bits (0's and 1's) from
one part of the memory of the computer to another, quickly. The Smalltalk program that should be
used with caution is

to BLT (CODE 41)1
It requires twelve messages which are, in order:

base address of the destination of blocks of bits
destination raster

destination x

destination width

destination y

destination height

operation code as defined above for paint
base address of the source of blocks of bits
source raster

10 source x

11 source y

12 gray color

@O 03 -3 Oy O o G2 B =

Without too much explanation, we offer the following useful definitions for saving and changing the
shape and color of the mouse cursor.

WRITING SMALLTALK PROGRAMS -~ . = =~ Pageds

. to cursor pbuf gray .
{ =¥ loadfrom =
@ e, '
_ BLT 28110160180;%61&60321)3:5}370)
«f copyto =
(Ep + 1
" BLT mem 60 32 px 16 py 16 0 3811 0 0 0F
«Ff show =
(Ebuf « ;. Fp « PNT buf.
BLT28110160160p+21000}
- =¥ mahebuff =
[@buf « string 32.
& p o« PNT buf. i i
'BLTp+210160160281 100 0

T buf })%
“'fo PNT {mem 255 « ;. T mem 255 J%
Try

| @Fsource « rectangle point 0 0 point 16 168

Bsavecursor & cursor makebuffl o A string containing bils pepresenting the cursos.
* souice paint 12 “51618 .. . - Paint gray color in the source rectangle,
cursor loadfrom source’s origink : loadfrom requires a pointer to the wpper left -cornor of

& 16x16 area (source rectangle upper left coTner).
__cursar' show Sm}écm"scﬁr! Cee : _. Restore the -curser to original shage.
- Or try the palette example givén’.earlier; Then say
-~ Gursor loadfrom palette’s origind
Now - .
. ;"eperi,.t fbutten 4.-_:.-. (;pczleit:e paint’ 8 mp tcme;})!

~"The aurser looks like the paint brushl

THE SMALLTALK WORLD AND ITS PRIMITIVES _ Page 44

Chapter IIl. THE SMALLTALK WORLD AND ITS PRIMITIVES

Up to this peint, we have provided a "try it and see the flavour of what happens" siyle of
presentation. In this chapter, and in the next, we modify the style in order to provide a direct
“discussion of the basic 8malltalk concepts: classes, instances, and message sending and receiving., We
assume, however, that the reader has examined earlier chapters and is familiar with the specigl
Smailtalk symbol set presented there, The following is a summary of these symbols,

¥ lock to see if a specific word appears as the next word in the message,

: receive the next value from the message.

o

receive the next literal teken {single word or words enclosed in parentheses) from
the message.

= indicates conditional statement: if-clause = {then-clause) elze-clause.

1 return the following object; the object is "active" in the sense that the next action
taken is to run this object’s class definition and to let this ohject examine the
message.

SELF name used to refer within a class definition to the active instance of a class.

f delimiter used between names of class, instance, and temporary variables in the

title line of a class definition.

Objects

BEvery entity in Smalltalk's world is called an ohject. Objects ean remember things and communicate
with each other by sending and receiving messages. Every object belongs to a elass {which is also an
chject). The class handles all communication (receiving a massage and possibly producing a reply) for
every object which belongs te it.

Exam ples of objects:

Class Name Ohjects
- number 3 4 J.14158 6. 88e-23
string 'this iz some text’ 'here is some more
atomn x y [filed number
vector (1 3 § 7 9 11 13)
turtle &)

Message Sending and Receiving
A message is sent to an object by first mentioning the object and then mentioning the message,
Messages are simply strings of words separated by spaces. A "word" is either (1) a string of

alphanumeric characters beginning with an alphabetic character, (2) a siring of all numeric
characters, or {3} one of the special symbols listed above, @, or any arithmetic operator.

THE SMALLTALK WORLD AND ITS PRIMITIVES = . Page4s

. _Ea-iamples of sending messages:

Commumcz&twn Dbmct 7 Message .Reply ._ ' 'Gra}jhif;s Action

1 J+4+5 3 +4+5 12 nong
2 & mbd 3 5 mod 3 z none
3. tabetsdeft - Yabe” . adef’ ‘abedef' none
4. go 100 - . Cogo 100 draws a line 100 units long
5 ﬁo 4 o do B -4 _ none . draws a sguare with side
' (% go 50 (8 go 50 B0 units long
furn 90.) - . turn 90. } '
e joe grow 50 -'jbe . 'grow 50 none ; _joe, the box, grows his .

sides by 50 units

7. joe turn 25. .- Joe - turn 25 - nene - . joe turns 25 degrees
Fill grow 30. Jitl - grow 30 none - Jill grows her sides 30 wnits

. The class of an object can receive messages in a variety of ways. In addition, the ser can add new -
“ways for messages to be received. Once a message is received, the object can take sorme -action, such -
as returning & message to the sender {reply) or modifving a graphic display (graphics action],

. Notes on the Examples:

Communication) iject : .Message S Reply Gl"éphics Action .-~

TS B4 3 J 45 12 none

The- expressmn Fr4+5 is handled by sending the raply of the message 4¥5 back to 3. Flrst let's 100k
ata s;mpler message: JI+4. In the class number, we have :

- EO (G@'ﬂ:‘b « &, % result of computing the sum of SELF and b’}

The action taken after seeing the '+’ is to receive a value from the message and give it the fiame b. -

*Then return (T} to the sender a reply calculated somehow. The calculation uses the value of the .

" active instance of the class (referred to by the name SELF) as well as the value of b In the - .

. simplified example, the value of SELF is 3 and the value of b is 4. (This is usually done using more-
. Smalltalk code as in the first exawmple, but can alsc be an escape to lower levels of the system,-as in
-~ -this example. Such escapes are seen in the definition as CODE {number>.}

‘Hence, after sesing the '+, the receiver {3) receives a value (4) and returns the swm (7). -

In example 1, after the object 3 first sees the message +, the action G b «:. tries to recsive a value
Zfrom the rest of the message. In this case, the rest of the message is 4+5. The 4 is a number also. It
.ig sent the messape +5, which will activate the same line in the definition of number as 3 was using.
4 sees the + and tries to get a value (&) into ITS 'b'. There is nothing more in the méssage so-445 s
ccomputed dnd ¢ iz returned to 3 as the value of its message. The § adds itself to the ¥ and returns 72
“to the original sender. All messages in Smalitalk are handled in a similar manner.

THE SMALLTALK WORLD AND ITS PRIMITIVES : ‘Page 46

2. Smod 3 5 mod 3 2 none

-En the example above, a message iz sent to a member of class number {the literal). 'mod’ is a token
which class number can recognize (we'll see how in a bit). If indicates a desire for finding the modulo
of the number with respect to another number. We need ancther item from the message, this time a

"numerical value. The part of class number which receives this gensral message form looks like:
wmod » (T SELF - (& be:}*SELF / b)

This means: if, in the message,

you sea “F
the word ‘mod' mod
“‘then =N

do the following:
-receive a value from
" the message and give

it the name b &Y « 1.
then
return to the sender T

a reply calculated by
" dividing yourself

by the value received; SELF/b
multiplying the result
by that same value; b * SELF/b
~and subiracting this last
result {rom yourseif, SELF - b* SELF / b

To elarify the right-associative nature of the evaluation, we add the following, somewhat redundant -
explanation of the above message. The uparrow {1} expresses the action of actively returning some
value (that is, the returned value is an object that hecomes the immediate next message receiver; it

- . is able to examine the rest of the message). The value returned is obtained by evaluating the next

object in the message, here, SELF. Because SELF is an instance of class number, it looks for and
dinds an arithmetic operator {-) and asks to fetch the next value from the message. This in turn
effects the evaluation of the parenthesized message (& he:.). The value received is a number, hence
the value of b is an instance of number. This instance is still active and is able to look at the message
and see the multiplication operator (se far, the subtraction has not been completed). Upon seeing
that muitiplication is indicated, a fetch is made for the muliiplier. This activates the second
_veference to SELF, a number that sees the division, retrieves the value of b, and completes the
division operation. The result of the divison operation is the multiplier; the result of the
~mmauitiplication is the subtrahend; the result of the subtraction is the value returned,

Most lines in class definitions resemble this one strongly because Smalltalk is modelled on the notion
of communication by sending and receiving messages.

Since sverything in Smalitalk is an object and every object can send and receive messages,
"expressions” {as in example 1) can be built by simply sending more messages to returned values
which have already been calculated. The messages can be cascaded in a single message stream, or
" determined conditionally as actions specified in a class definition, Message sireams are typed to
Smalitalk by the user or included as part of the definition of a class.

If a number can answer the question is number affirmatively, then we can easily test the value in the
-~ previous exarople {which was given the name "'} by

 THE SMALLTALK WORLD AND ITS PRIMITIVES ' Pagedr

Cadimod 5 (@b « ..} is numbir e {’iT SELF -b * SELF / b}
: error GF('non-numeric operand’)

'_'__We dcm § nsualiy bother to do this as it is much better for the actwn to dmcover that a value is of the :
wrotig class by sending a message which it deesn't understand, :
' The obiect error handles printing the specified message in @ Smalltalk sub-window ahd lstting the
Couser investipgate the context of the error.

Communication | Object - Message ~ Reply ~~ Graphies Action

3. ‘abe'+'def Cabe' +def! “abedef’ . mone

Class string has a way very similar to nuniber for receiving a message and then doing something. -
" Here, the-action is string concatenation.

CHE L (Gl T tresult of concotenating SELF arnd b’)

Iri other words, receive a value from the message and give it the name b. Then return to the sender a’ S

reply calculated somehow, Again, this is probably done using an escape to lower levels of the systerm.

" Communication Object - Mess'age. Reply . Graphics Action .

4. ©go 100 5] go 100 © draw a line 100 units long

The message to the turtle to go 100 units (100 "dots” om the .disgylay screen) is received in n manner

~-.similar to the second example. A turtle actively returns itself, thus permitting the cascading of turtle -

Inessages,

'.ﬁga > (C?&fst « 1. "Somehow make turtle go dist’ T SELF)

Commumcatmn Ohject . - Message 'Reﬁ‘iy © - Graphics Action

R o 4 “hone “draws a square with -
(. go 50 . . o {8 g 50 _ side 50 units long
~turn 90.) - - turn 0.3 . : .

““ontrol Structures” in'Stnalltalk work the same way. The object do teceives its message:

PN e @Pexp ¢ 8. 'method for doing exp N times’

“The means receive the message "literally”. We use it here because we don't want the value of & go

50 turn 80 (which are actions by the turtle), but rather its literal form {whichis a request for actions

by the tirtle) to be iterated over and over. We do want to caleulate a value for the rﬁpetltmn number o
- to allow expressmns such s : :

do d+b*5 {...)

THE SMALLTALK WORLD AND ITS PRIMITIVES ' Page 48

Communication Object Message Reply Graphics Actien
8. joe grow 50 joe grow 50 none joe, the box, grows his
sides by 50 units; a larger
box is displayed

This is 4 typical message to a graphical ohject, We will show both the receipt of the message and its
method:

sfgrow » { SELF undraw,
Esize « size + ¢
SELF draw)}

When grow is seen, we ‘undraw' our8ELF using the old size, compute the new size by adding a new
value received to the old size, and tell ourSELF te 'draw’ using the new size.

~Communication Object Message Reply Graphics Action
7. joe turn 25, joe turn 25 none one hox on sereen tilts 25 degrees, and
jill grow 30. jil grow 30 nens then another box grows 30 units
Here we see a bunch of send messages done in sequence. The periad 7. {erminates a message and

hence separates iwo message communications. In many cases, the pericd is not needed, as the
message receiver will he able to determine how much of the message to examine. The peried does,

"~ however, serve the syntactic purpose of disambipuating the end of a message.

The order of communications is done sequentially from left to right {as with English text), so:
joe turn 2Z5.
is dong before

Jill grow 30,

The Notion of Class

The basic class definition deals with just two ideas:

1. The notion of creating objects which have independent existence and memory.

2, The control of the flow of evaluation by sending and receiving messages in various ways.

For ‘example, a send message is a control action because flow of control is suspended in the sonder
and resumed in the receiver. A reply suspends the context in which it is found and resumes the
object which originally sent it a message, Send messages may be ordered in time or be indifferent to

“sequence, "Conditional branching” chooses one path to follow from many depending on a test of some
kind. "Repeats" of various kinds cause evaluation tc happen over and over; they may be terminated or
restarted.

The independent state and message properties of Smalltalk make it possible to construct arbitrary
structures or control structures,

PHE SMALLTALK WORLD AND ITS PRIMITIVES = -~ = Pageds

-~ Heré are some of tha abilifies which have already Been built for you to use. In the table below, the
word joe is the name of an ohject that has been created.. In-creating a Smalltalk object, aneutryis -
formed in a dietionary; each entry has twe parts-~the name of the objeci and the value of the object.
“Typically, the object has valve as a clasg or as an instance of = class... As explained in. previous
" chapters, class definitions have informatisi known locally to the class as a whole (class variables) -or .
to each instance of the eclass individually, Information known lecally to each instance is gither -
retained as part of the deseription of the instance (instance variables) or -exists only when the
“instance -is actively doing something (temperary variables), Dictionaries exist at .eacly level of
definition and activation of classes and their instances: there is a "global” dictionary known -to ail -
- objects, one for each class, one for each iinstance of each class, and one for each object eurrently

- active.

" Message Form . - Meaning
joe b e) Send the object joe Lhe message b c. Any wmiessage can be terminated with a périod ().
There will always be a reply of some kind.) .
Joe I . -Bemd the object joe an empiy message. Useally the reply will be just a referznce to joe's
value,
@:’jéé) “The "hand”, &F, says consider the roxt token literatly--t.e., _the'iitefal ‘word ‘ﬁoe' ‘instead
’ ~6f the object joe. A literal word is simply a string of characters; an objeet, however,
refers 1o its value &s'a class or class instance. Here G is an nbject beinp sont the message
joe, and the reply is the literal word 'joe', :
CE?:(ab ,} - “fhe reply is the fiteral chain {or vector} (a b)
fgrow . ; 7 look (&) in the message to see if the token {grow) is literally there. rX"Ec're'ply will be
') ‘not-false' if the tokén grow is literally there and the next thing in the message will now
be available for serutiny, Otherwise, the reply will be ‘false' and whatéever was there is
utiil available.
: " The reply is the value of the next expression in the message.
8 "The reply is the next literal token in the ‘message.
2 S “ Ssme as B except that the current piace in the message will be retained regardless of the -
o _ ep g £ of
: result of gathering the next token. This allows the receiver to "pesk” at the message.-
T# S ! - The reply is a reference fo the meaning {class or class instance) of the ngit exprossion in .

the message. 5o, for example, i we have GPfunc « #hp, then the value of fune is a
" veference to the meaning of hp; i.e., if hp is a class definition, then func becomes another
-~name for the definition hp. Hente, mentioning func is identizal to mentioning hp. .

The user can construct othef ways to -receivé Tessages Trom thess primitives (such as "receivers”
“which chack the class of the received object, and so on). :

g S reply {1} to the sender the value of 'Z+d’ which is 7} the 7 <an now examing the current .
' U message. : ' '

awm (b} o {d) if -2 evaliates to ‘nub-false' then evaluate b and conmtinue evaluation after the - next
) . enclosing parentheses. Otherwise evaluate e if it replies “mot-false’; -evaluate 4 ~and
continue evaluation after the next ¢nclosing parentheses. Otherwise .., : N

THE SMALLTALK WORLD AND ITS PRIMITIVES - . - Page 50

The conditional expression a = {b) may be used anywhere in Srailtalk. Don't forget about the
"gscape” from the 'not-false' branch! If yvou would like to deliver one value or anoiher depending on a
condition, enclose the expression in '(...}". Parentheses in Smalltalk serve a grouping or delimiting
function: they delimit the 'then-ciause' from the rest of a conditional expression; they delimit
message parts to disambiguate or order the evaluation of the message; they group expressions for
iteration using repeat or do; in general, they group a sequence of words together as a token that is
recelved when the symbol § is used.

3+(ath » (41 5)

will evaluate to 7 or 8, depending on the values associated with @ and b. Here the outermost set of
parentheses is used to order the evaluation of the message; the innermost parentheses define the
. limits of the 'then-cluase’ for the conditional statement. Some examples of conditionally structured
evaluatisn include: :

~evaluating a or b but not both a={)hb
fetting evaluation of c depend enma or b (a=(bysc
~letting evaluation of c depend on a and b (fa=(b))=sc
repeat { .. } The contents of {) will be re-exacuted until a 'done’ is encountersd {or if you hit 'ESCO.

The escape will be from the insermost loop in which the "done' is enclosed.

‘dons Will cause the most rocent Tepeat~loop to be exiled,

dorne with 3+4 Will eause the most recent repeat~loop to be exited with the value 7 az a reply,
‘again Will restart the most recent repeat-loop in which the again resides.

for An iteration control feature included in the basic Smakltalk system.

for i « 2 to 50 by 4 do (...)

Contents of () will be re-executed until the value of index i, starting at 2 and stepped by
4 each time, exceeds 500, lIn general, the "«' part may bs omitied and the default index
start is T; the 'by’ part may be omiited and the default step is t. If the "to' part is
omitted, the end condition value is the same as the start index value.

donf ...}) The contents of {) will be re-executed until the index counter M, starting at 1, equals n
{ice., for m = 1 to n by 1}, The counter N is not available as a number to use inside the
parentheses,

{bjects are created in one of two ways:

1. Creating a class

to {class name) (temporary variables? | (instance variables? § {class variables)
{ messages and responses }

2. Credting an instance of a class
- &P (name) ¢ (value)l
where {valuel is either the result of activating a class or activating an instance,

“Other available (basic) abilities are described in subsequent sections,

THE SMALLTALK WORLD AND ITS PRIMITIVES Page 51

The User Task

Smalltalk has a USER task which is evaluated continually., You can see the message that is evaluated
by typing ' '

@&t « GET USER &°DO. ! Get the USER task,
t prin.t.! Ask to see the message.

In a Smalltalk system that does not include the dialog window class, the reply is
(er. read eval print) The reply is a vector, a request to evaluate a typed message.
The task shown above effectively:

(1) prints a carriage return in the Smalltalk dialog window (cr);

(2) prints the Interim Dynabook prompt character (£}), reads characters from the keyboard
until the <do it> character (1) is typed,

(3) assembles the characters into a list we call a vector;

{4) this vector is then an object that receives the message eval print; after seeing (<§) the
token eval, it evaluates its contents as a message; and then

(5) whatever object the vector returns can receive the remaining message print. Some object
is always returned, possibly the object nil (an object without value). The default object
returned from running (activating) a class is the class instance (referred by the name
SELF).

Some Comments. The routine read expects to print the characters typed at the keyboard in a dialog
window whose name is disp. Vectors only respond correctly to the message eval when the last item in
the vector is nil; hence the length of a vector containing Smalltalk message tokens ("code™) is one
item longer than the number of message tokens in the vector.

Effect of the Message Print and the Period. In order to fully understand- the results of messages
sent to Smalltalk, it helps to understand the implications of the print message. As an example, if you
simply type a number or an arithmetic expression, without explicitly telling the resulting number to
print itself, the number will, in fact, print. Try

3+41 Reply is the number printed.
Now try
{3+4) print} Reply is the number 7 printed twice wil.h::ut. an intermediate space.
3+4.1 Note the period. Nothing seems to happen. The last message evaluated in the code

vector is a period; the period returns itself as the reply; it then receives the
message print and does nothing.

{3+4) print.! The number 7 sees the message print and prints itself in the dialog window; the
next token is a period; the period receives the print message (from the USER task);
henge only one 7 prints.

This means that any object obtained as a result of evaluating a message at the top-level of Smalltalk
will be sent the message print unless the original message is terminated with a period. If the
resulting object does not respond to the message print, Smalltalk runs a "dummy" class named print
which does nothing. Unexpected results might occur if the object does respond to the print message
and the receipt of this message was not intended.

If you look at the USER task in a Smalltalk system with the dialog window class running, you will see
the following (code) vector:

THE SMALLTALK WORLD AND ITS PRIMITIVES Page 52

(sched map @ (@ task « vec[i]. apply task to & (run) in GLOB)!

This USER task assumes that there is an object named sched (an instance of the class obset), and that
that object contains references to other objects (for example, dialog windows and/or font windows),
each of which should receive the message run each time the USER task is evaluated. The usnal
response to the message run is to check to see if there is any keyboard input (kbck) and, if so, to
evaluate the message (cr. read eval print).

More information about this task is provided in the Chapter V section entitled Scheduling Methods:
sched and window.

Active and Passive Return. We mentioned that the result of evaluating a message is a Smalltalk
object that can receive the message print, unless a message terminator (a parenthesis or period) is
used, Here we are saying that the result of evaluating a message is some value, an object that might
be able to further examine the message.

This ability to let an ohject further examine the message depends on the method used to return it to
the message sender, There are two methods for returning a value: passive return and an active
return. The former is the default case--every evaluation results in some object whose value is,
perhaps, nil. That object is returned to the message sender. Because it is returned passively, the
object can not further examine the remaining message, if any.

The method of active return requires an explicit request to return the object. The Smalltalk symhol
up arrow (1) is this explicit request. The form is T (value}; the (value} is an object that can
examine the rest of the message. All numbers return actively; the class turtle returns its instance
values actively (hence their ability to cascade messages). By default, instances return themselves
passively unless the definition includes T SELF as a response to each message. The class vector
receives the message eval and actively returns the result. Hence, the result of read eval is an object
that can receive the next message: print.

THE SMALLTALK WORLD AND ITS PRIMITIVES Page 53

The Form of Presentation of Smalltalk Classes In the next chapter, we present
definitions for the basic Smalltalk system: the classes already defined for general use, aids for
interacting with Smalitalk and with the Smalltalk file system. Chapter V contains examples of
applications of these classes. The basic Smalltalk classes will be presented by showing how instances
of each class are created and what happens when messages are sent to a class instance. In most cases,
the messages are annotated; in some cases, the actual definition of the c¢lass will be shown. For
example, a version of the class box defined in Chapter II can be presented as:

box The name of the class.

@joe € hoxl Creating an instance of the clasa.
I'm a box : x 256 y 300 size 50 tilt O

joe is 21 What is the instance type.

box

joe is box? 'Not-false’ is the same as 'true'.
box

joe's x « 2001 Assigning meaning in joe's context.
200

Joers x1 Querying joe’s context.
200

joes y « 2501
250

joe’s y1
250

joe's size « 100}
100

joers sizel
100

joers tile « 321
32

joers tiltl
32

joe drawl

joe undrawl
joe grow 3+41
joe turn 20*21

joe move 100 2001

THE SMALLTALK WORLD AND ITS PRIMITIVES

Abbreviations

Page 54

In order to present these examples a bit more concisely, we need to adopt some abbreviations.

We Abbreviate

a property of a class instance
expected value (any type)

expected number value

expected nonnegative integer value
instance of a class named classname
name of an cbject

expected string value

expected message stream

forms involving []

{property>
<value>
{number>
{integer>
{classname>
{name>
{text>
<{message?
{selection>

We can further simplify the presentation of classes if some class conventions are adopted, such as: all
classes will respond reasonably to the iollowing messages:

is?

is (classname)

print

5 (property) ¢ (value)
’s (properiy?

replies with (classname)

replies (classname) or false

prints in standard format

makes {property) stand for the (value)
replies with (value) of {property?

Class box then can be described compactly as:

box

& joe « boxl

joe draw}

joe undrawl

joe grow (number>}
joe turn (number)}

joe move Cnumber) (number)!

Draws a square at x = 50, and

angle of tilt = 0.

2568, y = 300, size of each side =

joe erases, makes himself bigger by <number> units, and redraws.

joe erases, turns himself by <number> degrees and redraws.

-

joe erases, changes his coordinates, and redraws in a new location.

THE SMALLTALK WORLD AND ITS PRIMITIVES Page 55

A Smalltalk Class Example

Link is a typically complete form which we present as an example of the conventions for presenting a
class definition. It is a structure familiar to LISP users:’ pairs of objects which may in turn also be
pairs. Instances of link receive and respond to the following messages.

link initl Set up help and mail box information.
@'pair « link Gjohn Gmary.l Create an instance whose name is pair (or, as in LISP, "cons").
pair headl Ask for the value of instance variable h (or, as in LISP, the "car").
john
pair taill Ask for the value of instance variable t (or, as in LISP, the "edr").
mary
@’triangle < pair + @’jim.! Create another instance whose head is the instance pair and. whose tail is
& jim,
triangle print.1 Show the value of triangle.

((john . mary) . jim)

triangle is ?1 triangle is an instance of what clags?
link
pair lprt! Provide some helpful information about the instance pair.

I am a link.
I consist of (john . mary)

The form of the class definition is
to link a [ht [helpprint mailbox
{ <§+ = (T link SELF :)
<Fhead » (T («Fe » (Gher.} R))
«ftail » (T (e » (@ter) t))
“flprt » (helpprint SELF)
«fprint » (dispe'('. h print. dispe'.. t print. dispe’)’.)
Fis = (T link 5 (P @°link) < ? o> (T @link) 8. ffalse.)
s (Eae3 T(Fesfae:) aeval))
«finit » (@’helpgrint ¢ #hp. @ mailbox « 'no mail’.)
isnew = (Gh « :. @t « :.))!
to hp ob o0
(@b ¢ :. cr.disp ¢ 'Tama’. (obis?) print.

er. disp ¢ ‘I consist of '. ob print.)l

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 56

Chapter IV, BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES

The Basic System Classes

See the end of Chapter III for an explanation of the method for presenting the basic Smalltalk system
class definitions.

Atoms

Smalltalk atoms are unique tokens which are usually associated with Smalltalk objects in dictionary

entries. [f a user attempts to create an atom which will print the same as an already created atom,
the system will force the two to be the same.

atom
EFa « @’b! The value of a is the atom b,
b
@a « atom (text M Reply is the new name which prints as <{text).
a chars! Reply is the <text> of names value.
"
a ¢ (value)l The {value) is associated with the name b
(i.e., this i3 indirect reference to the name b),
al The value of a is b,
b
bl The value of b is <value>.
{value)
a evall Indirect reference—-a eval is the value of a which
(value) is b, and the value of b prints, which is (value,

a = {name)l Value of a if "not-false', 'false' otherwise,

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 57

Arithmetic
There are two classes for handling numerical operations: number and float. They are compatible and
interchangable. An operation containing hoth classes will have a reply in the class of the first object

(that is, in the class of the object being sent the message).

100/8.01
12

100.0/8)
12.5

The value range of number is
-32768 to 32767
that of float is (where the form 1,2e3 denotes 1.2 times (10 to the power 3))
~-99999.99999e4095 to 9