
4 Of 4 1017 3437 0

-

li

L

SMALLTALK-72 INSTRUCTION MANUAL
ADELE GOLDBERG AND ALAN KAY, EDITORS

L_XEROX
PALO ALTO RESEARCH CENTER

SMALLTALK-72

INSTRUCTION MANUAL

Adele Goldberg and Alan Kay, editors

and

The Learning Research Group
Xerox Palo Alto Research Center

March, 1976

Copyright © 1976 by Xerox Corporation

6-/eM n 42.gnty

SMALLTALK-72 INSTRUCTION MANUAL

Adele Goldberg and Alan Kay, editors

SSL 76-6 March, 1976

The Smalltalk-72 instruction manual is intended for use by those persons with on-line access to the
Xerox Interim Dynabook. The first two chapters consist of an introduction to some of the methods
used for interacting with the Smalltalk system and for creating, editing, saving and retrieving
Smalltalk programs. Chapter III goes deeper into the basic concepts from which everything else in
Smalltalk is built. These include the method of evaluation of messages, message sending and
receiving, and the notion of classes and instances.

Many classes have already been built for the user's convenience. These include the various classes for
names, arithmetic, information storage methods, text display, and graphic control. The definitions of
all of these basic classes is given in Chapter IV; Chapter V then presents a number of interesting
examples that use these basic classes. Chapter IV also describes utilities already provided the user for
editing definitions, saving and retrieving files of information, viewing definitions, testing values, and
reading input devices.

Preface

The Smalltalk system described here was designed in the summer of 1972 and first conversed haltingly
with a user late that fall. It was released for more general use at the Xerox Palo Alto Research
Center (PARC) in spring 1973 when the first "Interim Dynabook" (a name for the current working
version of a small computer system) became available.

This manual is intended for use by those persons with on-line access to the Interim Dynabook. As
such, it employs a tutorial style that directs immediate experimentation with a Smalltalk system; it
aIso maintains a somewhat informal dialog about expected results of such experimentation. There are
references to peripheral devices, such as a keyset, a mouse, a display screen, and a disk, that have
meaning mainly in the context of the Interim Dynabook. Furthermore, the manual references disk
files that are needed in order to follow the suggested sequence for experimentation .and provides
information on how to obtain these files. Such information is only useful to those persons having
access to the Smalltalk system library.

The purpose of making public an instructional manual about a language implemented on a computer
not generally available is to ease the distribution of instructional information to school-age students
(no younger than high school age) who will, in fact, have access to the Smalltalk system and materials
noted here. Because an attempt is made to describe graphic results of running example programs,
readers without access to the Smalltalk on-line materials may still gain some information about
Smalltalk by browsing through these pages. Furthermore, the manual may assist these readers in
developing their own experimental Smalltalk environment.

Many people (both from the Learning Research Group and from other groups at PARC) have worked
hard to develop the systems described in this manual and accompanying documents--the design and
implementation of the Smalltalk language, real-time music synthesis, animation, retrieval methods,
color graphics, and network communications. We take space here to mention their names: Dan
Ingalls, Chris Jeffers, Ted Kaehler, Diana Merry, Dave Robson, John Shoch, Dick Shoup, and Steve
Weyer of LRG; David Boggs, Bill Bowman, Bob Flegal, Larry Tesler, Truett Thach, and Bill Winfield
of System Science Laboratory; and Patrick Baudelaire, Larry Clark, Jim Cucinitti, Peter Deutsch, Ed
McCreight, Bob Metcalfe, Mike Overton, Bob Sproull, and Chuck Thacker of the Computer Science
Laboratory.

iii

TABLE OF CONTENTS

Chapter I.

INFORMAL ORIENTATION AND OVERVIEW OF THE SMALLTALK SYSTEM

Introduction
To Get Started
The Mouse

Talking to Smalltalk
Helpful Notes
Try A Turtle
Layout of the Smalltalk Screen
Dialog Windows
A First Note on Smalltalk Classes

Font Editing Windows

initial comments on Smalltalk
how to load a disk and get Smalltalk
is what we point with
how to evaluate 3+4

how to handle typing and other errors..
make a square and a squiral
display screen coordinate system
how to use some Smalltalk windows

what is a class definition

how to design characters

Chapter II. WRITING SMALLTALK PROGRAMS

Simple Manipulation of a Simple Program

How to Edit Your Definition

Generalizing the Definition of Square
Fixing Your Dialog
Saving and Retrieving Programs
Diagnosis Window..,
Special Characters.

Boxes: An Introduction to Smalltalk..,

A Look at the Class Box
Alternative Box Definition

Class of Polygons·-

Turtles

Boxes Owning Turtl .c

Dispframes: An Introduction to Text Display

Placing Text on the Display Screen
Boxes as Menus

A Few Sketching Trir.kg

Paint Brush.

BITBLTing

- -.-I -

Chapter III. THE SMALLTALK WORLD AND ITS PRIMITIVES

Objectc W 144
Message Sending and Receiving 44

The Notion of a Clacc 48

The User Task 51

The Form of Presentation of'Classes, 53

A Smalltalk Class Example 55

Chapter IV. BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES

The Basic System Classeq 56

Atomc 56
Arithmetic 57

Turtles for Drawing 60

The False Class 61

Sequential Dictionariee 62

Dispframe: The Basic Window Clase 69
Point Clacc 73

Aids for Interacting with Smalltalk 74

The Smalltalk Class Editor 74

Showing Stored Information 75

Saving Smalltalk Definition. 75

Saving and Restoring Your Context 76

Utilitiee 77

Chapter V. EXAMPLE SMALLTALK CLASS DEFINITIONS

Arithmetic: Amortization of Loans 84

Sequential Dictionaries for Storage and Retrieval 87

Dispframe 90

Point Class

The Class Rectangle 92
Dictionaries of Areas and Points 94

Turtlec 96

Commander Turtle 96

Control Classes for Repetition and Alternate Paths 98

Scheduling Methods: sched and window 102

LoopIess Scheduling 107

A Sample Text Editor 110

Classes for Building Model- 117

Simpula Style Simulation 117

A Simple Hospital Simulation .. 121

INDEY 124

PREPARING A BASIC SMALLTALK DISK

There exists a disk pack that contains the Basic Smalltalk System as described in this manual. To
save on disk space, only the main files have been placed on this disk. These include the Smalltalk
programming system including the windowing functions, an editing facility and printing routines, and
some Smalltalk font files. Also included are files that contain the sample class definitions presented
in the manual:

boxes, fontfns, nwindowfns, simpulafns, turtlefns,
windowfns, xydic, ffer, xyfns, xplot

Not included are all the files needed to run the music, animation, findit, and editfont frameworks.
These can be retrieved onto your disk either (1) by transferring the files noted in the documentation
on the various frameworks from a disk that already contains them, or (2) by executing one of the
following (included) command files:

animationget.cm
finditget.cm
findituget.cm
musicget.cm
edit/ontget.cm

The format for executing a command file is

@<filename>@ <return>

To update your files, either use a Basic Smalltalk disk for transferring files, or, if you have access to
the archival file system, retrieve a file named

<smaZZtalk.>smallmanual.cm,

If you execute it as a command file, your disk will be updated with the Basic Smalltalk disk files
listed above.

Vi

ORIENTATION AND OVERVIEW Page 1

Chapter I.

INFORMAL ORIENTATION TO THE SMALLTALK SYSTEM

Introduction

This manual is intended for use by those persons with on-line access to the Xerox Interim Dynabook.
As such, it employs a tutorial style that directs immediate experimentation with a Smalltalk system;
it also maintains a somewhat informal dialog about expected results of such experimentation.
Chapter I demonstrates some of the methods used for interacting with the Smalltalk system; it
includes the use of display graphics, dialog windows, and font editing windows.

Chapter II continues this introduction by demonstrating methods for creating, editing, saving and
retrieving Smalltalk programs. It then begins specific instruction on the development of Smalltalk
class definitions, beginning with the class box, then expanding a box-shape into any regular polygon
(the class polygon), and continuing with methods for communicating with instances of the class

. turtle. Included in this chapter is definition of the set of special symbols used in Smalltalk; some
attention is paid to the idea of message sending and receiving. Finally, this chapter describes the
class dispframe, and piesents a number of ways to place text on the screen and to sketch with a "pen"
and a "paint brush".

Chapter III goes deeper into the basic concepts from which everything else in Smalltalk is built.
These include the method of evaluation of messages, message sending and receiving, and the notion of
classes and instances. One part describes subsequent presentations of basic class definitions.

Many classes have already been built for the user's convenience. These include the various classes for
names, arithmetic, information storage methods, text display, and graphic control. The definitions of
all of these basic classes is given in Chapter IV; Chapter V then presents a number of interesting
examples that use these basic classes. Chapter IV also describes utilities already provided the user for
editing definitions, saving and retrieving files of information, viewing definitions, testing values, and
reading input devices.

To Get Started

Place your Smalltalk disk in the machine, press "run" on the disk drive, and when the "ready" light
appears (yellow light), press the "bootstrap" button (the little one ·located near where the wires enter
the back of your keyboard). The screen will go blank for a second and then show you some
information having to do with the particular machine configuration you are using. You are talking to
the Interim Dynabook operating system. Type:

@s@ Creturn>

@ is typed by holding down both the key marked 'SHIFT' and the '2' key. There will be a flash and a
rectangle (window) will appear with text in it

A Smalltalk Window

If you are on a color machine (your screen background has color rather than white), you should type:

@cs@ <return.>

ORIENTATION AND OVERVIEW Page 2

The Mouse

The little rectangular object with three buttons that usually sits to the right of the keyboard is called
a mouse. Move it around while watching the screen. An arrow (mouse cursor) will be moving in
response to it. This is how we point to objects on the screen. Smalltalk constantly "asks" the mouse
where it is. A little bit further on we will explain how you can ask the mouse the same questions.

In Case of Disaster

In case of any disaster, first push the <escape) key (marked 'ESC' and located in the upper left corner
of the keyboard). Try to put the mouse cursor in a displayed windo.w or, by moving the mouse around,
try to wakeup a "hiding" window. If that doesn't help, then try typing <shift.)(ctrt><escape>. That
is, press the key marked 'ESC' while holding down the keys marked 'SHIFT' and 'CTRL'. Finally, as a
last resort, press the "bootstrap." button again and go through the above sequence.

Talking To Smalltalk

If you are on one of our color machines then move the mouse so that the cursor travels all the way off
the bottom of the screen. A white rectangle (a Smalltalk dialog window) will appear. It contains a
message. Move the cursor into the window. If on a black-and-white machine, simply move the mouse
so that the cursor travels into the rectangular frame at the bottom of the screen.

A small,
test this

flashing image of the Interim Dynabook will appear--this means Smalltalk is listening. To
, type:

3+4 1

The ! <do it> character is marked 'LF' on the upper right of your keyboard. It is used to tell
Smalltalk that this is the message you really want it to do. Now.try the following:

3*4!

'*' is how we express the sign for multiplication in Smalltalk. Try:

355.0/1131

The result shows a well-known number and the accuracy of Smalltalk's fractional arithmetic.

Helpful Notes

Smalltalk will only listen to you through a window when the cursor is in it. Any characters typed
when you are out of a window will be saved until you place the cursor in a window. Try taking the
cursor outside of the window and typing 3+4. You will not see the characters appear in the dialog
window. Now move the cursor into the window. Tile characters '3+4' will appear in the window.
When you have learned to create multiple windows, you might repeat this experiment to prove to
yourself that the characters will indeed appear only in the window containing the cursor.

Once you start typing characters in a window, Smalltalk will wait for you to type ! before any window
wakes up again. So, if you inadvertently move the cursor out of a window while you are typing,
Smalltalk will continue to listen in that window.

ORIENTATION AND OVERVIEW Page 3

Deleting (backspacing) of unwanted characters is done with the 'BS' key located on the upper right of
your keyboard.

If you inadvertantIy make an error of some kind, whiAh is then sent to Smalltalk by saying ! (<do
it>), a diagnosis window will appear with a message that, at this point, will probably be obscure.

To see this, try typing a symbol for which Smalltalk does not yet have a meaning, such as:

mumble !

A diagnosis window will appear. Note that the prompt character (the Interim Dynabook image) does
not flash. Once a diagnosis window appears, it listens to you until you return to your previous
context. To get back to your previous context, either type:

done !

or the shorter forrn:

<ctrD D

typed by striking the 'D' key while holding down the key marked 'CTRL'.

Try A Turtle

Turtles are little beasts which crawl around on the screen and can leave a variable width tracing of
where they have been. Smalltalk line drawings are done with turtles.

Smalltalk can have many turtles. Each is created as an instance of a group or class we call turtle.
One, 0 (called "smiley"), has already been created for you. It is typed by holding down both the key
marked 'SHIFT' and the '2' key (i.e., the @ sign which has a different printing representation in
Smalltalk than it does in the Interim Dynabook operating system).

As with all Smalltalk objects, ® can receive a variety of messages asking it to do "turtlelike" things
(such as "go forward some number of steps", "turn some number of degrees", ...), and answer
reasonable questions (such as "what kind of thing are you?", "where are you"). Type:

9 go 100! A vertical line should appear.

0 is ?] ? is typed holding down both the
'SIIIFT' and '6' keys.

Is the answer (turtle) reasonable?

S turn 90 go 100 1 Did what happened make sense?

To redo a previous statement, type:

redo n !

where n is the number of transactions (visible images of the Interim Dynabook) back from where you
are. If you type: redo 1! at this point, the @ turn 90 go 100! message should be re-sent to
Smalltalk and another line will be drawn on the display screen. If you want to redo the previous
statement, simply type the equivalent statement:

reda!

ORIENTATION AND OVERVIEW Page 4

Try
9 erase home! Clears the screen, brings the

turtle to its center position,
and points the turtle upward

do 4 (9 go 100 turn 90) 1 Will make a square

@ erase home.
for i +1 to 200 do (12 go £*2 turn 89)! To get a "squiral".

The text line change in the above transaction is obtained by pushing the key marked 'RETURN' after
the message home. This "carriage return" does not affect anything except the appearance of the text
in the text window. The period is a delimiter, signifying the end of a message. It is generally good
practice to include periods when stringing together several complete messages. Note that, although
the period signifies the end of the message, you still need to type ! Cdo it> to actually send the
message to Smalltalk.

Notice that, as a result of the above messages, the black frame around the window has disappeared.
The window has not been destroyed. Merely, ©'s drawing area overlapped with the window area, and
hence erased much of the window information. None of that information is lost. Move the cursor off

and then back into the remembered window area, refreshing the window display. This erases any part
of the turtle drawing that overlaps the window. Any turtle lines inside the window will scroll (move
up) whenever the text scrolls.

You have also just used two Smalltalk iteration methods: do and for. Each is a method for counting
the number of times a message should be evaluated. In the more general method for, the iteration
counter (in the above example, the counter is i) can be used as part of the message (in the example, E
is used to help determine the distance the turtle will travel).

Layout of the Srnalltalk Screen

The x direction runs from left to right. The left hand margin is 0, the right hand one is 512. The y
direction runs from top to bottom. The top margin is 0, the bottom one (at the lower boundary of the
original window) is 680.

Smalltalk display screen

X
->

U,0 ------------ 512,0

Y

1 IV
0,680 ------------ 512,680

Now say to the turtle:

0 erase!
Q goto 100 1001 Is a line drawn to the top left quadrant?

ORIENTATION AND OVERVIEW Page 5

Type moc. Then, before typing the !, place the cursor somewhere in the screen and type:

- Similarly, try

my!

Smalltalk should send you back reasonable numbers for m(ouse)x and m(ouse)y, the display
coordinates of the mouse cursor. Now type:

0 goto mz my!

and a line should be drawn to the cursor position. You have hooked up the mouse to the turtle. A
simple drawing program can be written by saying:

repeat C© goto mx my.)1

Move the mouse and a trail will be left behind. You are in an "infinite" loop (the goto moc my will
repeat forever). To escape from the loop and to get Smalltalk to listen to you again, press the key
marked 'ESC' in the upper left hand corner of your keyboard and move the cursor back into the
window.

Try

Ds width + 3. repeat (10 goto m= my)!

The 's is typed by striking the key marked 'S' while holding down the key marked <CTRL>.

A more involved drawing program might use the buttons on the mouse to control the turtle's ink color,
width, and erasure. More about drawing programs later.

Dialog Windows

All communication to a Smalltalk object is done through windows which contain the most useful
editor for that object (you have just been using a dialog window). The editor for a picture object is a
kind of painting and drawing aid; the editor for a paragraph of text handles characters; the font
editor allows the character defining dots to be easily changed; and so forth.

Every window can be moved, stretched, and deleted from the screen. Other abilities depend on the
particular kind of window with which you are dealing. A collection of related windows (containing
pictures, text) is a document which can be automatically archived in many different ways for later
retrieval and editing.

For example:

a. Move. Move the cursor into the upper left hand corner of the window you are in and press down
the top button. The window should go blank. You may have to play a little while holding down the
button in order to find the actual corner. The tip of the cursor (the upper left corner) must be in the
window corner.

b. Now point the cursor somewhere else on the screen and push the top button briefly again. The
window will reappear in the new position. The upper left corner of the window can not be forced off
the physical display screen; however, the other parts of the window can be slid off the display as a
method for pushing them out of the way until needed again.

ORIENTATION AND OVERVIEW Page 6

c. Grow. Now move into the lower right corner in a similar manner. (If the corner is off the screen
due to the previous move, do another move further to the left to get the right hand side visible again.)
The next button push will change the boundaries of the window so that the new lower right corner
position will coincide with the cursor. Try it. You can not grow the window smaller than 32 units
wide or 32 units high.

d. Create. A new dialog window will be created for you by grabbing the lower left corner of an
existing dialog window (pointing the cursor and pressing the top mouse b,itton). The new window
will appear in the upper left portion of the display screen.

e, Position the cursor inside the new window and try typing 3+4!.

f. Delete. Any dialog window can be deleted by grabbing its top right corner. Try it with the new
dialog window. For obvious reasons, a single remaining dialog window can not be deleted.

1 Move Delete

Create Grow

Try overlapping windows. The window that sees the mouse cursor wakes up and displays itself gn top
of all other windows.

Each new dialog window appears in the upper left portion of the display screen. Unless you move
each window as it is created, the windows will pile on top of one another. Another way to define a
dialog window is to have a new window appear at a location pointed to by the mouse cursor. The
cursor could blink on and off, waiting for you to press a mouse button to indicate that the present
cursor location is the place to put the new dialog window. Later on, after you have learned more
about Smalltalk, you might make this change to your personal Smalltalk system.

A First Note on Smalltalk Classes

Every entity in Smalltalk's world is called an object. Objects can remember things and communicate
with each other by sending and receiving messages. Each example we present demonstrates the ability
of objects to receive messages and produce replies.

Every object belongs to a class (a method for grouping together objects that do similar things). 9, for
example, is an object. It is a member of the class turtle. All members of this class are able to draw
lines on the display screen. The class handles all communication (receiving messages and producing
replies) for every object which belongs to it.

We have just been looking at members of the class window. Messages are sent to a window by
pointing with the mouse cursor and pressing a mouse button. Each member of the class responds to
the message by moving to a new screen location, changing its size, creating a new member of the
class, or deleting (erasing itself from the screen). The objects are dialog windows, capable of
capturing and editing Smalltalk messages. The next example is a font window which contains an
editor for designing display characters.

ORIENTATION AND OVERVIEW Page 7

Font Editing Windows

Type

filin 'fontfns'!

filin is the Smalltalk method for reading messages stored on a disk file. Reading the file takes a
while. The display screen is purposely turned off (becomes blank) to speed up the reading process.

You now have routines for creating windows in which editing means drawing in a matrix of black and
white dots. These windows contain magnified views of display characters. Any character font (the
design of the display characters) can be described as a matrix of black and white dots. Using the
mouse cursor in a font window, you can draw in a character font of your own choosing. Moving the
cursor to a dialog window, you can immediately view font changes within the context of text displayed
in that dialog window. Type

fontchar!

A newly created window appears in the upper left corner of the display screen. Like dialog windows, a
font window can be moved, deleted, and its size changed. Unlike dialog windows, a new font window
is created only by typing the message fontchar.

I move delete

I change change
I baseline width

Four actions are taken by pointing to one of the corners of a font window and pressing the top mouse
button.

1. Move the window. Point to the upp.er left corner and press the top mouse button. Then point to
a new position on the display screen and press the top mouse button.

2. Delete the window. Point to the upper right corner and press the top mouse button.

3. Change the baseline of the character. Point to the lower left corner and then to the relative
adjustment, up or down, of the character's baseline. Raising the baseline creates superscripts;
lowering the baseline creates subscripts. The upper limit is the baseline of the previous text display
line; no lower limit exists with the exception that an attempt to print outside the display screen
boundaries will cause Smalltalk to crash. Note that the font window appearance does not change; the
change only appears in the printed text. Move the cursor into the dialog window to see the change.

4. Change the width of the window (and, thereby, the width of the matrix). Point to the lower
right corner and then to the new right margin. The width is rounded to a multiple of 16 display bits
and may not exceed 16 dots, so it may not appear exactly at the mouse cursor's arrow head.

5. Drawing black and white dots. Black dots are painted into the matrix by pointing to a location
in the window and pressing the bottom mouse button. The drawing technique is to scratch black lines
through the matrix dots as long as the mouse button is pressed. As soon as the button is released, the
black dots appear in any area containing the black lines. White dots are painted by pointing to a
location in the window and pressing the middle mouse button. White lines are written through the
dots as long as the mouse button is pressed; white dots appear when the button is released.

ORIENTATION AND OVERVIEW Page 8

6. New characters. When the window is first created, the character available for editing is the
period, '.'. To change the character, place the mouse cursor inside the window and type, on the
keyboard, the desired character.

Once a new font has been designed, it is saved on a disk file by typing

filfont (filename) out !

where <filename> is some name delimited by single quote marks. For example,

fitfont 'myfont' out !

The font of the dialog window in which you are currently typing is the one that will be saved.

To read a saved font, type

fafont <filename> in !

For example,

fafont 'myfont' in !

The font of the dialog window you received when you first started working is stored on a filed named

st8.at

If you have made changes but would like to return to the original (default) Smalltalk font, type

filfont 'st8.al' in!

Other Smalltalk fonts include st6.al and st10.at; each can be retrieved from the archival file system.

The font of the dialog window in which you are currently typing will change to the font saved on
<fitename>. The font you edit is the one currently belonging to the dialog window in which you are
typing. Note however, that each dialog window is created with references to the identical font. In
order to have two font windows editing separate fonts for each of two dialog windows, it is necessary
to replace one of the dialog window's font with a copy of itself. For example, suppose there are two
dialog windows (A and B) and suppose you type fontchar! in window A. Results of editing the single
font window will appear in both A and B. Now type in window A

fontchar font disp,s font!

Recall that the 's is typed by stiking the key marked 'S' while holding down the key marked <CTRL>.

The class fontchar, upon receiving the message font, will replace the font for dialog window A with a
copy of the value following the message font (in this case, with a copy of the font possessed by A).
Results of editing the new font window will then show in A and not in B; .moreover, results of editing
the original font window will show only in B. Choice of which fonts are saved will depend solely on
which wirulow is used for typing the filfont message.

The use of the name disp and the message 's are described in more detail in subsequent sections. For
now, assume their use for the above redefinition of a dialog window font.

Warning: some fonts have no definition for the character whose Ascii code is 31. This is the
character used to mark the black dots. Any font without this character properly defined can not be
used with this font editing system.

WRITLNG SMALLTALK PROGRAMS Page 9

Chapter II. WRITING SMALLTALK PROGRAMS

Simple Manipulation of a Simple Prograrh

To hand an object 'd' the meaning '3' in Smalltalk, we say:

6*d + 3!

(The (2 is typed as <shift> '). If you now say:

d!

The meaning (or value) of d (which is a number, 3) will be returned.

Each object in Smalltalk can only have one meaning. To change the meaning of the object named 'd',
we might say

0°d + turtle!

The new meaning (or value) of d (which is a turtle) will be returned.

In these examples, we use the symbol (2 to indicate that a literal name follows. The arrow, e,
indicates a desire to give the name a meaning.

Previous turtle examples showed how we can get a turtZe to draw a square. Now we need to be able to
make that definition a Smalltalk object, use it, change it, save it, and retrieve it. To do this we need
to give a name to the actions which cause a square to be drawn. In Smalltalk, actions are also
objects. So we need to say something similar to what was just said to d. Type:

to square
(do 4 (9 go 100 turn 90)) 1

This will cause Smalltalk to give the actions do 4(10 go 100 turn 90) the name square. Here, the
symbol to (rather than the hand (20 indicates the desire to give a name to some actions; the actions
are enclosed in parentheses.

Erase the screen and bring the turtle back to home position by saying:

Q erase home !

Then say:

square !

The stored actions will be invoked. The commonly used actions of clearing the screen and telling the
turtle to go to home can also be abbreviated:

to ct (® erase home) !

Now only 3 characters have to be typed:

CZ!

rather than 13.

WRITING SMALLTALK PROGRAMS Page 10

Now type:

defs!

A list of the names square and cl should be typed back at you. dds is a kind of "bushel basket" which
contains the names of user-defined programs.

How to Edit Your Definition

In any dialog window, type:

edit square !

An editing window with a command menu will appear. The "method" of square is shown as:

do 4 ()

The () stands for a parenthesized message which in this case contains:

0 go 100 turn 90

Actual parentheses never show in the editor, only the marker () indicating levels of parentheses. To
see the message within the parentheses, point the cursor at the word 'Enter' in the menu and push the
top button on the mouse. (Note, some versions of the mouse have buttons laid out horizontally; left
to right, rather than vertically, top to bottom. Henceforth, we will refer only to top, middle, and
bottom buttons; the left button corresponds to the top button.)

You should see the message as:

9 go 100 turn 90

Place the cursor on the word 'Leave' in the menu and press the top mouse button. You have now
backed up to the next higher level of parentheses.

We will use the word "grab" to stand for the compound operation of positioning the cursor on an
object (word, icon) and pushing a button on the mouse to tell the system that the object we are
pointing at is really the one we mean. (Unless specifically stated to the contrary, push the top mouse
button).

Grab 'Enter' again.

Now let's change the 100 to a 50 in the definition of square. Grab 'Replace'. It will reverse its display
color to show that the selection is understood.

Grab '100'. The top half will reverse color. This means that 'Replace' expects you to replace one or
more elements beginning at '100'. We only want one element, so grab '100' again. The bottom half
will also reverse color and a prompting Interim-Dynabook image will appear, indicating that typing is
expected. Type:

so!

You will now see:

9 go 50 turn 90

WRITING SMALLTALK PROGRAMS Pagell

Now grab 'Exit' to terminate the editing context. You will be returned to the previous Smalltalk
context. Say:

square!

and one of size '50' will be drawn. So the "meaning" (or "actions") of square has been changed.

A Note on Editing

There are a number of ways to terminate an editing sequence before completion. If you grab a wrong
menu word, or have not completed the selection of a phrase to replace or delete, you can terminate by
pointing the cursor outside the editing window and pushing the top mouse button. This does not work
for 'Addl', 'Insert', nor 'Exit'. If you do not want to complete an add or insert command, but have
already received the Interim Dynabook prompt character, just type ! (i.e., insert or add .nothing).
Once you have selected the phrase, a replace command cannot be terminated unless you are willing to
lose any previous edits. Pressing the 'ESC' key takes you out of the edit window and back to the
dialog window. Also note that if there is more than one parentheses marker displayed in the edit
window, the 'Leave' and 'Enter' commands expect you to point at the appropriate marker.

Generalizing the Definition of Square

Now suppose we would like to make square more general, so that it will draw squares of any size. To
do so we can give square a "message" saying what the size should be this time, such as:

square 150 !

We must now change the definition of square so that it can receive the message and act accordingly.
First say:

show square !

to remind yourself what the current definition of square is. We see:

to square
(do 4

C@ go 50 tunt 90))

It's clear that we want to do something with the place where .50 is. Everything else about the
definition (having 4 sides and turning 90 degrees) describe squares in general.

Suppose there is a way to receive a value from the message. The value needs to be some number. We
give the particular value a "name" in order to talk about it since we don't know beforehand what the
number will be. Let's call it size. Looking above, we see that size should replace the 50 :

to square
Cdo 4

C© go size turn 90))

Now we just need to get square to receive the value of a message and call it size. In Smalltalk, the
request to "receive the value of a message" is expressed by a colon ,

So we want to add

WRITING SMALLTALK PROGRAMS Page 12

(9=size + :.

to the beginning of square. Say:

edit square!

Grab 'Insert', grab 'do', type:

0%£20 1:.8

Careful--the period is necessary here. It helps to separate, in one's mind, the sequence of receiving a
message and then invoking an action for producing a response. Note that the 'Insert' command
inserts before the selected element.

To replace the 50, grab 'Enter'. You should see

9 go 50 turn 90

Grab 'Replace'. You want to replace the '50' so grab '50' and grab '50' again (indicating the beginning
and ending of a phrase to be replaced by new text). Now type the new text

size!

Grab 'Exit'. You are no longer talking to the editor. Type:

show square!

to see what you've done. It should look like:

to square
CGPsize 4- :.

do 4

C® go size turn 90))

Then try sending several messages to draw different squares:

square 150!
square 10!

and so on.

The colon expresses a request to Smalltalk to fetch the next value in the message. The value is the
meaning of the next object (for example, the number 10). But the value can also be the result of
actions taken by the next object. For example, try

square 150+20!

Smalltalk runs the definition of square. When it sees the colon in (61=size + ..), Smalltalk "activates"
the next object, the number 150. This number sees the plus sign (+), fetches the value of the next
object (in this case, the number 20), and performs the addition. The value returned as the value of
size is the sum 170.

The definition of square is obviously working but is'a bit untidy. To see why, type:

Size!

WRITING SMALLTALK PROGRAMS Page 13

The value of the last size you gave square will be returned. This shows that the "name" of the message
for the size of square belongs to everyone. It is much better for size to belong only to the object which
uses it. To do this we only need to tell square that size belongs to it by putting the name size right
after the name square in the "title" part of the definitioh. Say:

edit square title!

square's title line will be shown as well as (), the marker representing the body of the definition. If
you were to 'Enter' 0, you would see the definition itself. Instead, grab 'Insert', grab (), type:

size!

Grab 'Exit'. Type:

show square!

You should see:

to square size
(* size 4- :.

do 4

C 0 go size turn 90))

Later, when more of the Smalltalk system has been explained, we will adopt some abbreviations to
make our story more compact and clear. For example, a short way to talk about this program would be
to exhibit, in a general way, what has to be said to get results:

square <number>!

means the object square expects anything which evaluates to a number as a message. An example
might be

square 30.4+(111.7*65.789)/991

Here, the colon in ((Psize + :.) fetches the result of the expression 30.4+(111.7*65.789)/99. This
example demonstrates t.!m left-tg=ight-mE?hod for recelying messages; that is, Smalltalk first sees the
floating point number 30.4 which, in turn, sees the plus sign and attempts to receive a floating point
number for the augend. However, the arithmetic is right associative. The augend is obtained by
fetching a value from the message. As a result, the floating point number (111.7*65.789) is
evaluated which, in turn, sees the division sign and requests a divisor (the 99.). Hence, in this
expression, the multiplication is carried out first (because of the explicit parentheses), the division
second, and the addition last. Try

10-5+2! response is 3, not 7
or

20-2*3! response is 14, not 54

Fixing Your Dialog

You can edit the command lines (or statements) in the dialog window in the -same manner that you
edit a named definition (described in the previous section). To fix a previous command line, type:

- fix n !

WRITING SMALLTALK PROGRAMS Page 14

where n is the number of transactions (visible images of the Interim Dynabook) back from where you
are.

An editing window with a command menu will appear. After making changes, you grab 'Exit' to
terminate the editing context. This causes the edited line to be sent and evaluated as .a message to
Smalltalk. The line in the dialog wjndow will not be altered.

Saving and Retrieving Programs

Type:

defs!

again. square and ct will still be there. To save everything in defs, type:

filout <some name in single quotes.> !

such as:

filout 'mysquare'!

The screen will go blank for a second.

To test whether you actually saved them, go through the "To get started" sequence again. Then try:

square 100!

This will generate a diagnosis window with the complaint that "square has no value"
a "clean" version of Smalltalk, one in which square has not been defined.

We are now in

Diagnosis Window

The complaint is stated in a diagnosis window. Smalltalk attempts to state the complaint and then
(1) to provide the name of the program in which the complaint occurred, and (2) to point, with a big
arrow »,to the object causing the problem.

In the context of the diagnosis window, you can type any Smalltalk messages. The value of objects
are within the context of the object in which the complaint occurred. In the above example, we are
still at the "top level" of Smalltalk; that is, the context is a global one for all objects defined in
Smalltalk. Each attempt by one object to evaluate another object takes you one level lower in
context; after completing the evaluation, you return to the object that requested the evaluation at its
higher level of context. It is possible to trace back from the current context in order to locate the
cause of complaint. Each time you type

c!

you see the next higher level of context.

Type

done! or <ctrl> D

to get out of the diagnosis window.

WRITING SMALLTALK PROGRAMS Page 15

Now type:

fizin 'mysquare'!

After a few seconds, try:

square 100!

The result shows that you have retrieved your program.

Type

size !

You will get a complaint that "symbol has no value" because now size only belongs to the object
square that uses it. The object size has no value in a more global context.

Special Characters

Smalltalk uses a number of special "iconic" characters, many of which were invented by some
Smalltalk students to help remind them of important distinctions. An example is "quote" whose sign
to adults is usually ("). The children preferred to use (62) to signify a literal symbol, since in its
typical use:

9'joe

(meaning the literal symbol 'joe' rather than what or who 'joe' may stand for)--the hand points
directly at the symbol itself.

This distinction exists in English also. We can say:

Paris is a large city in France.

We shouldn't say:

Paris has five letters.

but rather:

'Paris' has five letters.

to indicate the literal word rather than the city.

WRITING SMALLTALK PROGRAMS Page 16

Keyboard Equivalents

(Note, there are usually several ways to type a special keyboard character. The following table
presents the methods most commonly used.)

To Get You Type We Call It

! LF do it
<shift>' hand

4 <shift> 5 eyeball (look for)
8 <ctrl><shift>;
3 <ctrl> k keyhole, "peek"

<shift> / if... then
2 <shift> 1 return

<shift> 2 smiley
0 <shift> 7
? <ctrl> ?

's <ctrl> s
done! <ctrl> d

<shift> - unary minus
d <ctrl>< less than or equal

<ctrl> > greater than or equal
<ctrl> = not equal

96 <ctrl> v percent sign
@ <ctrl> 2 "at" sign
! <ctrl> 1 explanation
" - <ctrl> o double quote sign

<ctrl> 4 dollar sign

Summary of Special Dialog Window Operations

<esc> Escape to the "top level" of Smalltalk; should return youto the dialog window
blinking the prompt character

<ctrI> D Assuming you have entered a diagnostic window, returns you to the dialog
window.

c While inside a diagnostic window, changes the context of names and their
values so you can investigate the cause of an error.

<shift> <esc> Creates a sub-dialog window within the current dialog window, suspending the
operation of the current window until you type <ctrl> D. Within the sub-
window you can type any Smalltalk message.

fix <number> Enters the Smalltalk editor for a command line in the dialog window. The line
is <number> transactions back from where you are currently typing.

redo <number> Re-sends Smalltalk the message on command line <number> where the line is
<number> transactions back from where youare currently typing.

WRITING SMALLTALK PROGRAMS Page 17

Boxes: An Introduction to Smalltalk

First get the box programs by typing:

min 'boxes' 1

After a few blinks they will arrive.

Type to Smalltalk:

'Joe + box 1

A small box will appear in the top center of your screen. You have given it the name joe. As a
member of a class or group of objects resembling boxes, it can receive messages having to do with
"boxness", particularly those concerned with position, size, and tilt. Try:

joe grolo 50 1

joe will get bigger. Try:

joe turn 30 1

and

joe grow -20 !

and

joe is ? 1

joe will turn, grow, and answer that he is a box correctly. Now try:

0•jill + box 1

A new box will appear. Type similar messages to jiZZ using different numbers for size and tilt. jill will
answer the question jill is ? with box (as did joe).

Now try:

repeat (joe turn 20. fill turn -11) !

Both of the individuals respond. To "escape" from the endless loop, press the key marked 'ESC' located
in the upper left hand corner of your keyboard. Ask the questions:

joe's size !

and

jill's size!

(Don't forget that ss is typed as (ctrl> s)

We. see from this and the little "movie" which we created that joe and jill are really separate entities
which can do similar things.

WRITING SMALLTALK PROGRAMS Page 18

An analogy to these ideas is the common notion of classification by similar properties. For example,
we find useful the idea of grouping human beings into a class because we see so many similarities
between individuals that we would like to discuss them in the abstract. The class "human" has
properties such as 'name', 'age', 'weight', 'walle, 'eat', 'eyecolor', and many others. Each individual
human (we often say instance of the class human) has particular values for these properties. Some of
the values are quantities (as with a value for 'weight'), and some are actions Can individual may have
a particular kind of rolling gait for 'walk'). Smalltalk's semantics are at a more comprehensive level
than natural language and thus make no distinction between the rather crude English notions of
"thing" and "action".

In Smalltalk, every entity is called an object; every object belongs to a class (which is also an
object). Objects can remember things about themselves and can communicate with each other by
sending and receiving messages. The class handles this communication for every object which belongs
to it; it receives messages and possibly produces a reply, typically a message to send to another
object.

The central idea in writing Smalltalk p'rograms, then, is to define classes which handle communication
among objects in the created environment. A message is sent to an object by first mentioning the
object's name and then mentioning the message. Either the programmer (via direct keyboard typing)
or an action that is a reply from a class sends the message.

A Look at the Class Box

As an example of a class definition, here is a boz. Its various parts are described below. They serve
to introduce the special Smalltalk symbols and syntax. It is a very simple class definition, but
encorporates most of what is complex about Smalltalk.

Note that you can also examine the classes we have already discussed (turtle, window), as well as any
that will be introduced, by typing

show <classname) !

The definition of box is

to box uar / x y size tilt

(14(iraw * ((3i*j-18 square size.)
''L •#undraw * C 0 white. SELF draw. 5 black)

4 4#turn (SELF undraw. Ghilt + tilt + :. SELF draw.)

[.grow * (SELF undraw. *size €- size + :. SELF draw.)

isnew * (Gh + (21 + 256. (9•size + 50.
Ghilt + O. SELF draw)) 1

addto.turtle C=(4 place => (SELF penup goto (:)(:) pendn up. tSELF)) 1

to square length
(GP length + ..
do 4 (9 go length turn 90))!

WRITING SMALLTALK PROGRAMS · Page 19

addto. The object addto is useful for extending the definition of an object (in this case, we used it
to extend the definition of tutle). Here, we give a turtle the ability to respond to the message place.
The response is to have the turtle pick up its pen, Lgo to a screen position that is received as a
message, put its pen down, and face in an upward direction (that is, it places itself at a new position
without leaving a trace).

square. To draw a square box on the screen, we use the definition of square that was constructed in
Chapter I. The initial explanation of the colon, :, the Smalltalk symbol for fetching the next value in
the message, was also given in Chapter I.

Explanation of the Definition of the Box Class

The format for teaching Smalltalk about a new class of objects is
-6 « - ,v-=r X Y ea '676 1.1,-51-KYS#-2€ £,1 6

to <dass-name> <temporary variables) 1 / /J
<names of properties describing eacrihember (instancd; variables)> /
< names of properties describing the class (class variables))
(messagej to receive and actions to take) 1

L. 4&,-r-:*G. . .) 4 tAW 1,) '''
We use the symbol, to, to refer to the next object as a literal class name (here, the name is box).
Everything following the name is its value; it is useful to think of this format as the mechanism for
storing a name with its meaning in a dictionary. There can be different dictionaries for the different
contexts in which a message might be sent; typically dictionaries are nested so that an object can
gain access. to objects and their meanings that were defined in any higher level of context. So far we
have only been working at the highest level (top level) of Smalltalk context. The definitions of box,
turtle, window, fontchar, are found in the top-level dictionary.

Notice that more consistently, we might have preferred the format

Q <classname> 4- class <temporary variables> 1 (instance uariables.> / (ctass variables)
Cmessages and responses)!

which is more like

(2 <name) + <value>!

the method for creating instances of the classes. Here we use the symbol (2 to refer to the next
object as a literal name and the part after the arrow, •-, is the object's meaning.

Title Line•=*t64vir-/*Th,EliT/t
Words between the word to and the first left parenthesis are referred to as the title of the definition.
The vertical bar, /, in the title is used as a delimiter for the different kinds of variables.

Class and Instance Variables

In the title line, three different kinds of names can be specified: names for temporary storage
locations needed only when a member of the class is actually doing something; names of properties
that distinguish each member of the class; and names of objects that are common to all members of
the class.

The definition of the class box specifies two kinds of names: the four properties (x, y, size, tilt) that

distinguish members of the class; and a temporary variable (var). Properties x and y define the
location of the box on the screen; size= is the length of each of its sides; and tilt is its angle of
orientation on the screen. Hence, two members of the class box can have different screen locations,
different sizes, and different orientations.

WRITING SMALLTALK PROGRAMS Page 20

Messages and Actions

All members of the class box respond to messages to grow, turn, draw and undraw. Each member also
responds to two messages which have been adopted as reasonable conventions for Smalltalk classes: a
request to learn the class type (is), and a request to learn about the class' properties ('s). The
messages that each member of the class can receive, and the actions each will take upon receiving a
message, are given within parentheses after the title line.

The symbol 4, ("eyeball") is in front of each of the message words. The symbol resembles an eyeball
because it is used to look at the message. Suppose we have created the box named joe and we send
Smalltalk the message

joe grow 100 1

Smalltalk sees the name joe, looks *e up in its dictionary of names and their associated meanings,
and finds that it is an instance of the class box. Therefore, Smalltalk runs the definition of the class
box in the context of joe; that is, with the knowledge of a dictionary containing Joe's size, tilt, and
screen position. For example, joe's dictionary might indicate that size is 50, tilt 0, and x and y
coordinates equal to 256.

In sequential order, joe looks (with the 4) for the message draw, undraw, .and turn, and then
matches the message grow with the word grow in the definition. Use of the eyeball, 4, is,asking a
question: do I see the following token as the next token in the message? We will use the word
"token" to refer to a single word or a group of words enclosed by parentheses. Examples of tokens are:
grow, (grou} 50),read, (read eual print).

Conditional Actions

Within the main set of parentheses for the class definition, we provide (virtually in tabular form) an
itemization of the messages each member of the class can receive and the methods for responding to
the messages. This itemization is actually in the form of a conditional statement Cif-clause * (then-
clause) else-clausej. The then-clause consists of the actions that will occur if the if-clause has a
not-false value; it must be enclosed within parentheses.

In the boz definition, the if-clauses of most of the conditional statements are simply questions "do
you see the following word in the message?" Any question that can be answered "false" or "not-false"
may be asked in a conditional statement. The choice of the word "not-false" rather than "true" has
significance in Smalltalk--any object with a value other than the boolean value "false" is considered
to have the boolean value "true". The object, however, returns its "not-false" value for use by the
message sender. ,

The Message Grow

Suppose a box sees the message grow. The action the box takes is to send itself the message undraw
in order to erase itself from the screen. It then changes the value of size by some amount. The
specific value of the change is received as a message using the Smalltalk symbol colon, :. In this case,
joe's size increases by 100. The box then sends itself the message draw in order to show itself again
on the screen.

The Message Turn

The action taken if a box sees the message turn is similar: the box tells itself to undraw, changes the
value of the instance variable tilt, and then tells itself to draw again.

WRITING SMALLTALK PROGRAMS Page 21

The Message Draw

The meaning of draw is to place the turtle at the box's screen location (z, y), turn the turtle in the
box's orientation (tilt), and call on the object square with the message size, the length of each of the
box's sides. Undrato simply changes the turtle's color to white (assuming the background color is
white) in order to "erase" the drawing of the square box.

Again, notice that the evaluation (reading) of a Smalltalk message is done in a left-to-right (linear)
manner. As each object is · evaluated, it is given the opportunity to read as much of the remaining
message as it is able.

The Message Isnew

The Smalltalk object isnew is a special question that determines if a new instance of the class is being
created. If so, the usual consequent is the action o f giving values to.each of the instance variables
(i. e., describing the new member of the class by assigning values tp each name in a dictionary created
for the class member). In box, the new instance alio sends itself a message to draw a square shape on
the screen.

If a Smalltalk class is to have any members (instances) at all, the question
isnew must be asked as part of the definition of the class.

The Message Move

To have a box grows we change the instance variable size; to have a box turn, we change tilt. To put
a box in a different position on the display screen, we want to redraw the box with new values for I
and y.

Edit box and add to the definition

4 moue * (-SELF undrato. 9°%*-:. (2'ye. SELF draw.)

Try

joe move 100 200.

joe move 200100.!

for i + 50 to 250 by 10 (joe moue i i.) 1

The third message causes joe to move across the screen diagonally from the upper left corner to the
lower right corner. To have joe track the mouse cursor, simply type

repeat (joe move mz my) !

The above is a method for having the box move to an absolute location on the screen. The box's
action is to tell itself to erase from the screen (undraw), change the values of =and y by receiving
new values from the message, and then drawing itself again (draw).

Suppose, instead, we would like to type messages such as

joe moue right 50. joe move Zeft 100. joe moue up 30. joe move down 10.1

In oiher words, if a box'sees the message move, then it should look for one of the four messages right,
left, uP, or down and then receive a number value to determine by how much to increment % or y.
The Smalltalk statement might be

WRITING SMALLTALK PROGRAMS Page 22

4 move * (SELF undraw.
Clright * ((2064-%+:.)

4len * (9·00+0:-:,1
4#up *
•¥down *

SELF draw)

The use of parentheses around the conditional statement (4#right => 0...) allows each possible form
to evaluate the last part of the statement (SELF draw); the reply to the message move contains
three actions: (1) SELF undraw. (2) look for one of the directional messages, and (3) SELF draw.
Also note that moving up means decreasing the y coordinate. If.we wanted to have both kinds of
move methods (relative and absolute) available, we could make one (say the absolute one) the default
case. Try

4 move * (SELF undraw.
Clright . (G=xf-%4:.)

4!eft * ((ihez-:.3
.up. (421*-1-:.)
4down * ((13:•,V+:)

SELF draw)

The Message Is.

There are two messages we include, by convention, in each class definition. One is the ability to learn
the name of the class; the other is the ability to evaluate messages within the context of the class or
class instance. We adopt the word is for the first message, and the possessive for 's for the second. If
they have not already been included in your definition of box, then type

addto box G=C•#is * Clbox * Cl GP box) 4 7 :> Cl GP box) 8. 2 false)
4's * CGP uar + 8. 4*- * 011· var + ...) fr var evall)!

The message is, by convention, is a request to learn the name of the class or to ask if the name is the
same as one already known. So we might say

r

joe is f! and be told box

or

joe is box! and be told box (i.e., not-false)
or

joe is turtle! and be told false

The. method for responding to is (shown in the above definition of box) involves seeing (4) if the·
class name (in this case, box), is the next word in the message. If it is, return (fr) the literal class
name (GF'box:). Otherwise, see if the next word in the message is a question mark (?). If it is, return
the literal class name. Otherwise, the answer must be false. In order to not leave the incorrect name
sitting in the message, gather it up but do not evaluate it (8). Then return faZse.

The "open colon" symbol (8) is a Smalltalk symbol that says: fetch the next token (the next word or
the next words enclosed in parentheses) literally as it appears in the message. The 8 is similar to 4
in looking at the message literally. However, the 8 always fetches in the next literal expression; the
4 only fetches the expression if there is an exact match.

WRITING SMALLTALK PROGRAMS Page 23

The Message is

The message Cs) is, by convention, a request to evaluate the next token in the message within the
context of the message receiver (;ypically, the class or'the instance of the class). Suppose the size of
the box joe is 50 and we say

Gh + 100!
0'h + joe's =!

What will be the value of h? At the main (top) level of Smalltalk we examine the global dictionary
and see that the value of x is 100; but, within the context of joe (looking in the dictionary created
for the class instance), the value is 50. Hence the assigned value of h must be 50.

The method for responding to 's involves receiving the next token literally (0), assigning this token as
the meaning of a temporary object (here named var), and then seeing if the next word in the message
is the back arrow (•-). If it is a back arrow, then return Cfr) the result of letting the meaning of uar
take on the next value in the message (:). (I.e., this is a method of indirect reference.) If the next
word is not the back arrow, then simply return the value of the meaning of uar (obtained by sending
uar the message eual). Again, note that the evaluation of a Smalltalk message is carried out
sequentially left to right, but that the message is actually grouped in a right-associative manner
because of the Smalltalk method for letting each object read as much of the message as it chooses.

Receiving Messages

There is not one global message to which all message "fetches" (use of the Smalltalk symbols eyeball,
4, colon, :, and open colon, 8) refer; rather, messages form a hierarchy which we explain in the
following way-- suppose I just received a message; I read part of it and decide I should send my
friend a message; I wait until my friend reads his message (the one I sent him, not the one I
received); when he finishes reading his message, I return to reading my message. I can choose to let
my friend read the rest of my message, but then I can not get the message back to read it myself
(note, however, that this can be done using the Smalltalk object apply which will be discussed later).
I can also choose to include permission in my message to my friend to ask me to fetch some
information from my message and to give that information to him (accomplished by including 4, :,or
8 in the message to the friend). However, anything my friend fetches, I can no longer have. In other
words,

(1) An object (let's call it the CALLER) can send a message to another object (the RECEIVER) by
simply mentioning the RECEIVER's name followed by the message.

(2) The action of message sending forms a stack of messages; the last message sent is put on the top.

(3) Each attempt to receive information typically means looking at the message on the top of the
stack.

(4) The RECEIVER uses the eyeball, 4, the colon, :, and the open colon, 8, to receive information
from the message at the top of the stack.

(5) When the RECEIVER completes his actions, the message at the top of the stack is removed and
the ability to send and receive messages returns to the CALLER. The RECEIVER may return a value
to be used by the CALLER.

(6) This sequence of sending and receiving messages, viewed here as a process of stacking messages,
means that each message on the stack has a CALLER (message sender) and RECEIVER (message
receiver). Each time the RECEIVER is finished, his message is removed from the stack and the
CALLER becomes the current RECEIVER. The now current RECEIVER can continue reading any
information remaining in his message.

WRITING SMALLTALK PROGRAMS Page 24

(7) Initially, the RECEIVER is the first object in the message typed by the programmer, who is the
CALLER.

(8) If the RECEIVER's message contains a eyeball, 4, colon, :, or open colon, 8, he can obtain
further information from the CALLER's message. Any information successfully obtained by the
RECEIVER is no longer available to the CALLER.

(9) By calling on the object apply, the CALLER can give the RECEIVER the right to see all of the
CALLER's remaining message. The CALLER can no longer get information that is read by the
RECEIVER; he can, however, read anything that remains after the RECEIVER completes its actions.

(10) There are two further special Smalltalk symbols useful in sending and receiving messages. One
is the keyhole, 8, that lets the RECEIVER "peek" at the message. It is the same as the 8 except it
does not remove the information from the message. The second symbol is the hash mark, #, placed in
the message in order to send a reference to the next token rather than the token itself. An example
of the use of # is given at the end of the next chapter. ·

Alternative Box Definition

An alternative method for defining the class box is given below. The main difference is the use of the
message redraw to simplify methods for growing, turning, and moving boxes.

Let's examine the de finition in terms o f steps (1)-(8) of the previous section. Suppose a box receives
a message, message A. In the definition of box provided below, if message A contains the token grow,

the box becomes a CALLER, sending itself another message, B--redraw (ihize+size+:. The

RECEIVER of message B sees the token redraw; as a result, it sends itself the message undraw.
After the action of undrawing is completed, the RECEIVER requests a fetch for a value (:.). The
fetch comes from the remaining part of message B (Cbsize + size + :.). This part of message B
contains a colon (:) directing it to get information from the remaining part of the CALLER's message
A (as stated in (8) above). This remaining part of message A contains a number that determines the
amount of the box's growth. The RECEIVER then sends itself the message draw, after which it
returns control to its CALLER. The CALLER's actions are now completed.

Similarly for messages containing the tokens turn or moue. In order to change more than one
instance variable (that is, both x and y in the case of move), it was necessary to enclose the
appropriate messages within parentheses. (Then the fetch for a value found in the action taken by
redraw, will obtain the value of changing both the x and the y.) In general, a colon will activate
(start determining the value of the message) at the next token--either a single word or words
enclosed by parentheses.

The alternative box definition follows.

r

WRITING SMALLTALK PROGRAMS · Page 25

to box var/xy size tilt

C 4 draw (10 place x y turn tilt. square size.J

4undraw * CM white. SELF draw. © black)

•#redraw * (SELF undraw. :.SELF draw.)

•4'turn (SELF redraw *tilt + tilt + :•)

4grolo * (SELF redraw Ghize + size + :.)

4move (SELF redraw (Gl:%6 + :. Cky':.))

4'S * CG?°ual· + 5., 4 + * CE uar + 1) t uar eval)

4is 0 (42,ox * Clr(itbox) 4?* Cl<Pbox) 8. trfalse)

isnew (9'x + G=y + 256. (3=size + 50.
Ghot + 0. SELF draw)) 1

Extending the Box Definition. There are several ways to extend or modify the box class. We will
show one in the next section: the class of polygons, and, after introducing the class turtle, we modify
the box class to be a class whose members each own an instance of the turtle class.

WRITING SMALLTALK PROGRAMS Page 26

Class of Polygons

This simple extension to class box allows us to create objects that have any number of sides of equal
length. The object that draws any polygon must ask the turtle to draw the appropriate number of
lines. After drawing each line, the turtle has to turn enough units so that, after drawing all the lines,
the turtle will have turned a complete circle (360 units). Since each angle of a polygon is equal, each
turn is an even division of 360 (360/number-of-sides). A polygon-drawing routine is

to poly sides size
(Ghides + :. Ghize + :.

do sides (10 go size turn 360/sides).) !

Using the box definition as a model, we can define a class for polygons.

to polygon uar / x y size tilt sides The title line is similar to that of box; we added the number
of sides as an instance variable.

(4 draw * (C) place x y turn tilt. poly sides size)

The method for drawing has changed. We use poly, not
square. poly expects two messages: number of sides and
length of each side.

4 grow * C•:Fsides * (SELF redraw (9°sides•-sides+:.)
4 size * (SELF redraw (Psize•-size•..JJ

We adopt message forms
ioe grow size 100.
joe grow sides 50.

as Lhe two alternative meanings of grow. Another method to
use 15

(Gh,ar + 8.
SELF redraw var•-var eval+:.1

Responses to messages redraw, undraw, turn, ,s, and move, are the same as in boss. The message is,
by convention, is similar, but looks for the word polygon. Or, alternatively, we can take advantage of
a Smalltalk object, ISIT, and use

Vis * (ISIT eual)

This object is part of the basic Smalltalk system referenced in subsequent sections. It is always
possible to type show (dass-name.> in order to see any such "basic" objects.

In isnew, we must give sides a value as well as the other instance pro,perties. Suppose we choose to
send the initial value of sides as a message when we create an instance of polygon. I.e.,

GFUoe + polygon 3! creates a triangle
GP'joe + polygon 6! creates a hexagon

Then we write as part of the definition of poly

isnew * ((ihides-:. (Psize + 50.
(ihilt + 0. Gh+CiP,+256.
SELF draw.)

WRITING SMALLTALK PROGRAMS Page 27

Turtles

The turtle examples in the first section showed some of th& messages any turtle can understand. We
can get a turtle to draw designs, sketch, and make diagrams with a number of useful and simple
programs.

Type

CiPpokey + turtte !

Now pokey understands messages

go <n>

turn <n)

penup, pendn

blach, white

Where n is an integer, move n units forward (+) or backward (-).

Where n is an integer, change orientation right (+) or left (-1

Change state of pen that can leave a trace.

A turtle can have three ink colors: black, while, or xor.

zor This color says that whatever "color" is on the screen, show its complement
(white for black, black for white). This works only when the turtle's
width is 1.

goto (n> On> where n and m are the horizontal, vertical locations on the display screen.

goto <point) <point> is an instance of the class point explained in a subsequent section;
try

goto mp

i,e., goto the point where the mouse cursor is placed.

UP Points the turlle's orientation (dir) towards top of screen.

erase Clears Lhe window. frame in which the turtle lives; default window is the
entire screen.

home Goes to center of the window frame.

4- (string> Prints the text (string of characters enclosed by single quote marks) at the
turtle's current localion, with its direction, width, and color. Note that
you can make non-destructive text by using xor ink which complements the
background so that reshowing the text erases it while restoring what was
underneath.

We can query the turtle's property values using 's (typed by striking the key marked 'S' while holding
down the 'CTRL' key). For example,

pokey s ink
pokey 's dir
pokey 's width

Also, x, 1, pen, and frame. We can change these values by typing

pokey,s <property > + (value)!

WRITING SMALLTALK PROGRAMS Page 28

Usually, only the width, whose value is an integer between 1 and 8, and frame, whose value is a
display screen window, are modified in this manner. There are alternative methods for each of the
other properties.

pokey 's width + 2!

A simple design program might be: pokey go a little, turn some amount, go a little more, and so on.

to design var i
(Quare:. for i to 300 (pokey go i turn uar)) !

Try

pokey erase home up.
design 89.
pokey home up.
design 91 !

It is probably better Smalltalk programming style to modify the turtle class definition and give turtles
the ability to receive the message design. In this way, all turtles, not just pokey, wilI be able to draw

designs. addto lets us add new messages and responses to class definitions. Try

addto turtle GP°(4design => ((tuar + :. for i to 300 (SELF go £ turn uar)))1

The explanations of 4 (eyeball), SELF, and * were given in the previous section. Recall that 4 is a
method for looking at the message and seeing if there is a match between the next word in the
message and the word following the 4. The use of 4 is a test whose value is either not-false or false.
The arrow (*) denotes a conditional statement of the form

<test for truth> * (<action to take if the value of the boolean expression is true>)
<otherwise do this>

WRITING SMALLTALK PROGRAMS *age 29

Boxes Owning Turtles

The definition of box as presented earlier depends on the turtle 0 to draw each instance of the class.
Each time an instance is drawn or erased, 0 must be placed at the appropriate location facing in the
appropriate direction. Rather than having to reposition © each time, we might assign a turtle to each
instance of box; since the instance "owns" its turtle, we can assume that the turtle is always
correctly positioned.

In the new definition of box given below, we use a different turtle to draw each instance of the class
box. The turtle, whom we named turt, is an instance variable of the class box. Each time we move or
turn a box, we actually move or turn the turt belonging to that box; . When we draw a box, we assume
that turt is sitting at the correct display coordinate, turned in the proper direction, waiting to draw
the geometric shape. The turt remembers its position (x, y) and its orientation (tilt) on the screen,
so the box no longer has to retain this information. There are now only two instance variables: turt

and size.

to box uar / turt size

Cisnew * (Ghurt + turtle. GPsize + 50.
turt place 256 256.
SELF draw.)

Create turt as an instance of class turtle and give
size the value 50. Place the turtle at the

starting position and orientation.

4draw * (do 4 (turt go size turn 90)) Ask the turtle to draw a square.

lundraw * Cturt white. SELF draw. turt black)
Change turtle's ink, assume background is white.

4redraw * (SELF undraw. .. SELF draw.)

4turn * (SELF redraw turt turn :.) Rather than changing value of tilt, we simply tell
the turtle to change his orientation.

imoue * (SELF redraw turt penup go (:) pendn)

This is a new kind of move--move forward if amount

is positive, move backward if negative. Turtle

always moves in the direction of his tilt. This is

useful if you Lhink of the box as a spaceship!

4 grow * (SELF redraw (ihize*-size+:.))!

There were several changes to the box definition.

(1) draw--we no longer need to reposition the turtle because turt is already correctly positioned, nor
do we need to use the object square.

(2) turn--since the turtle must sit in the proper direction, we tilt the box by changing the turtle's
direction (send turt the message turn). The box no longer has instance variable tilt.

(3) move--the turtle remembers his, and therefore the box's, position. The box no longer has
instance variables x and y.

WRITING SMALLTALK PROGRAMS Page 30

Dispframes: An Introduction to Text Display

Smalltalk diaZog windows are instances of the basic Smalltalk system class dispframe. Members of
this class can show text in a rectangular area that can be framed with thick black lines. As you have
already seen, Smalltalk can have many dispframes, each one capable of moving its screen position,
changing its size, displaying text, and hiding itself (deleting its representation from the display
screen). To do these tasks, an instance of dispframe understands messages such as moueto <upper left
corner =2 (upper left corner y.>, growto <lower right corner oc> <lower right corner y>, show, display,
and hide. You have sent messages to the windows by pointing at one of the four corners. To help in
this task, a dispframe understands the messages hasmouse, to determine whether or not the mouse
cursor is inside the window; and corner <=> Cy>, to determine at which corner, if any, the mouse
cursor points. The response to the message corner is a number between 1 and 4 depending on the
display coordinates x,y.

Each instance of a dispframe remembers text that is displayed in the rectangular area. This text is
named buf. One of the jobs of the class dispframe is to fit the text into the window:

(1) changing physical lines when the characters fill the line space ("line wrap around"),

(2) lining the characters up evenly in the right margin (right justify),

(3) scrolling (deleting the initial characters and readjusting the remaining characters upward)
when the window can not properly contain all the text.

Placing Text on the Display Screen

There are three ways to place text on the display screen, one uses a turtle, the other two rely on the
class dispframe.

With Turtles.

(Pamy + turtle!
amy penup goto 100 100 pendn!
amy + 'hello'!

Amy has width = 1 and faces upward.
Note the need for single quote marks as delimiters.

The word "hello" appears on the screen. The upper left corner of the first character shows at amy's
x,y position. Now amy has been repositioned at the end of the displayed word.

amy's width + 2! Increase amy's width to 2.

amy + 'he! Print another word.

Try printing with turtles facing in different directions and having different widths and colors.
Although it is possible to print text on the display with a turtle facing in any direction, text generally
looks best when the turtle's direction is horizontal, vertical, or at 45 degree angles.

With Display Frames. To create a dispframe you send at least five messages describing the
rectangular area and its contents: the area's upper left corner x, its width, its upp.er left corner y, its
length, and a string. The string is the method for storing the text characters to be displayed.

GP dp + dispframe 100 75 100 120 string 200.1

This creates a rectangular area 75x 120 at ' location 100,100. It can contain up to 200 text
characters. The simplest way to place text in this area is to send the dispframe the message put.

<dispframe) put <text) at <sc> cy>!

WRITING SMALLTALK PROGRAMS Page 31

Where x,y are the display screen coordinates. For example,

dp put 'hi there' at 150 100!

Now try

dp put 'hi where' at 200 150!

Notice that the dispframe has changed its x,y position to 200,150. It has replaced its original text
with the text 'hi where', but it has not erased the original text 'hi there'. Try

repeat (dp put 'hi' at mx my)!

to place the word "hi" all over the screen.

Appending Text to Display Frames. A dispframe stores its text in a place named buf. The
message 4-, when sent to a dispframe, is a request to add characters to buf; buf is an instance of a
basic class named string. We can print the word "hello" in the dispframe dp by typing:

dp + 'hello'.!

Now try:

dp + 'how are you today? My name is dp and I am a dispframe'!

Do you see how the line-wrap-around works? And that spaces have to be explicitly stored into the
dispframe? The original text was not cleared when new characters were added; rather, the new
characters are appended to the end. Now try the various other messages to a dispframe:

dp hide! The entire area disappears and reappears.
dp display!

dp felear! The text area is cleared and represented.

dp show!

dp clear! This empties the string buf so there is no longer text to display.
dp show!

dp hide!
dp growto 250 250!
dp display! Now the frame is larger.

dp hide!
dp moueto 50 50!
dp disptay! Now the.frame is in a new position.

WRITING SMALLTALK PROGRAMS Page 32

Boxes as Menus

The Smalltalk class editor uses two instances of dispframe. The first is the window containing the
levels of the class definition; the second is the menu window. In each case, you were able to position
the mouse cursor in the window and the editor was able to determine which character or word you
were grabbing. Instances of dispframe understand three messages that aid in this task:

mfindc (which character),
mfindw (which word), and
mfindt (which token, that is, which word

or set of words enclosed in parentheses).

The next example was chosen in order to clarify the use of these messages and to provide an example
of a dispframe.

A menu is an ordered list of objects that can be selected in a variety of ways. One way is to point at
the object with the mouse cursor. The objects might be words or pictures, each representing things to
do, or names of other objects to retrieve or to "activate" (that is, give the ability to do something,
such as to receive and/or to send messages).

We have chosen a simple example of a menu consisting of a list of words, each word being the name ·of
a polygon. The result of grabbing a word will be to create the corresponding instance of the class
polygon. Before the new instance is actually created, the user will select the position on the screen
where the polygon is to be drawn.

We will use a modified version of the definition of poZygon, one in which the polygon position is
determined from a message received at the time the object is created. For example, we will create the
polygon joe by typing

(Pjoe + polygon 5 150 1001 joe is a pentagon (5 sides) at 150,100

to polygon / sides size 0 polygon simply creates the object.

(4draw» ({to sides C® go size turn 360/sides))

isnew * ((2sides *- :. (2°size + 50.
840 + tur·Ue. 0 place
SELF drawl)!

Draws it on the -screen.

Values for sides and the turtle's position are
provided when the polygon is created.

The definition of polygonmenu includes the instance variable codevector. This object will be an
instance of the basic Smalltalk class vector, a method for storing a list of things. In this case, we
store a list of the names of the possible polygons to create. For example, we might create a menu by
typing: ·

(2' pm + polygonmenu Ctriangle square pentagon hexagon septagon octagon)!

The list codevector owned by pm is now a list of polygon names that will appear in the menu box on
the screen. Each item in codevector refers to a polygon that can be created.

WRITING SMALLTALK PROGRAMS Page 33

to polygonmenu i / dp .codevector

Cisnew *((Pcodeuector + 8. When creating a menu, fetch literally the vector of words to

be displayed in the menu.

repeat (button 4 * Wait for the user to press button 4 to indicate the menu

position; then create dp, the dispframe, at the mouse cursor's
position;

(-0'dp + dispframe mx 75 my 120 string 100.

and print each word in the menu followed by a carriage

return.

for i to codevector length - 1

(dp + codeuector [i] chars. dp + 13).

done))))1 We reference items in a vector using the notatioh:
name[index]

The above definition of polygonmenu simply shows a rectangular area filled with words. The method
for printing each word from the list is to count down through each item using the for iteration
method. The counter is i; codeuectorfiJ refers to the ith item. For example, in the above, if i=1
then codevector [il = codeuector [1]= G'triangte.

Each item in the list is an atom, a basic Smalltalk system class. Each instance of an atom responds to
the message chars by forming a string of characters for the atom value. For example, the response
from the atom GP»triangle would be the string 'triangle'. The word "triangle" is printed in a
dispframe area by sending the string 'triangle' to the dispframe. Hence the contents of the for
iteration is to send the dispframe dp the string codevector [i J chars.

The code for a carriage return is 13. Hence dp•-13 is a method for printing a carriage return in the
dispframe. This causes each new word to appear on a new line in the menu.

Now let's find the word to which the mouse cursor points.

addto polygonmenu (2(lindex » Cfhtp mfindt mx my))!

If we send a polygonmenu the message index, we will receive a list (vector) of four numbers (the
reply from the dispframe). The four numbers are: the actual index of the word in the vector
codeuector, the x position of the first character in the word, the width of the word, and the y position
of the first character in the word. Suppose, as an example, we type pm index while we are pointing
to the first word in the menu.

pm index!
(165 50100) The result is a vector. The first number in the vector is the index of the

word in the menu. The second is the x position, third the word width, and
fourth is the y position. Word height is generally 14.

To select the menu word from codeuector, we retrieve the i[1]th item in the vector.

addto polygonmenu (2(4select * (GPL+SELF index. do something with codeuectorf¢Illl)) 1

WRITING SMALLTALK PROGRAMS Page 34

Suppose we want to delay computing i until the user can point into the menu and press a mouse
button.

4select * (repeat (button 4 * (Gh + SELF index.
do something with codeuectorfiflll· done).))

The done part is important. It stops the repeating and returns control to the message sender. What
we do is simply to call on the pdygon class with sides = 2+i[1]. Hence, in this case, it· is actually
not necessary to retrieve the i[1]th item in codeuector.

4select * Crepeat (button 4 * CG' i + SELF index.
polygon 2+iL-ll mx my. done)11

But, again, there is no delay provided in order to allow the user to point somepIace on the screen
before the figure is drawn. Let's change the response to draw.

4select * Crepeat (-button 4 * CGP i + SELF index,
SELF draw 2+i[1]. done)))

4draw * Crepeat Cbutton 0 * Cdone)) Make certain that the button is released. Then

repeat (button 4 * wait for button press before calling on polygon.
(polygon (:) mz my. done)))

We can complete the menu selection by adding the ability to complement the color of the selected
word. There is a special routine, dcomp, that lets us complement any rectangular area of the screen.
It expects four messages: the area's upper left corner x, the width, the upper left corner y, and the
height. For example:

dcomp 100 50 100 200!

Tfy

do 100 (dcomp 100 50 100 200)!

The height of the font we are using is 14, so, to complement a word in the menu, we use

dcomp ££2-7 ££31 i£41 14.

The change to the class definition is '

4#select * Crepeat (button 4 *
CGPi + SELF index.

dcomp i[2 J i£31 if#J 14.
SELF draw 2 + i[1].
dcomp ££21 ££3.7 ££41 14.
done)))

Of course, we assumed the index was a reasonable number. It is safer to check! We change the
response to index to first see if the mouse cursor is inside the frame, and, if so, to compute i and
check to see if £ = -1. If it does, then the cursor was inside the frame but was not pointing at any
token. The completed- definition is:

WRITING SMALLTALK PROGRAMS Page 35

to polygonmenu i / dp codeuector
C lindex * Cdp hasmouse *C(ki + dp mfindt mx my. ifl J = -1 * C# fatse) #i)

trtalse.)
iselect * Crepeat tbutton 4 *

C (GPi + SELF index) *Cdcomp iL-2.7 ££31 iL-4.7 14.
SELF draw 2 + i[1].
dcomp *£21 1£3.7 ££41 14.done)

done)))
€#draw * Crepeat Cbutton 0 * Cdone))

repeat (button 4 * Cpolygon C:) moo my. done)11
isnew * (GPcodeuector + 8.

repeat (button 4 0 ((2dp + dispframe mx 75 my 120 string 100.
for £ to codeuector tength - 1

Cdp e codevector[i] chars. dp + 13). done))))1

Another kind of menu might use the index of the menu word selected to choose a message to evaluate.
The message might be an item in a vector of messages. For example, suppose we did not want to
depend on the order of the polygonmenu to determine which polygon was created. Possibly, we want a
menu to be

hexagon
triangle
circle

Within the repeat-loop of the response to the message select, replacing SELF draw 2+£/11, we might
have

(2((polygon 6 ms: my) Cpolygon 3 moc my)(polygon 10 mx my)) £££11.7 eval

Here i[1] is the index into the vector of messages. We select an item from the vector and send it the
message eval in order to obtain the desired polygon.

Chapters IV and V contain more information and examples about the classes dispframe and vector.

WRITING SMALLTALK PROGRAMS Page 36

A Few Sketching Tricks

Some of our favorite design programs are presented below. Caution: if you copy these routines, be
certain that you have a large enough win'dow to accommodate all your typing. Smalltalk only sees
text that you can see in the window. You can type part of the routine and add the rest by using the
Smalltalk editor. Alternatively, you can retrieve these turtle routines from the disk pack by typing

filin 'turtiefns'!

dragon

to dragon length
((Plength + :.
length = 0 0 (E go 10)
Zength >0* (dragon length -1. ® turn 90. dragon -Clength-1))
dragon -length+1. ® turn - 90. dragon length + 1.)!

Try
0 erase home up. dragon 8!

hiIbert space filler

to hil iab

((42£ + d = 0 * C® turn 180)
(i> 0*
((Pa + 90. (Pbei-1)
Gtae- 90.9'bei+13

hill hil2 hill)!

to hill

CO turn a. hil 0 - b. 0 turn a)!

. to hi!2
(® go 10. hit b. 0 turn 0 - a. 0 go 10 turn 0 - a. hit b. ® go 10)!

i is the recursion number. Try

0 erase home up !
hil 4 !

squiggles

to squig90
(repeat
(9 home do 200
C© go rand / 1000 turn 90 * rand mod 4)))!

to rand (11'[A et * 53!

Try
9 erase. ®'s width +2. (22 +11. squig90!

WRITING SMALLTALK PROGRAMS Page 37

Or

to squiggle i
09'i + 13.
repeat

(0 home.
do 1000

(@ go 10 turn rand)))!

0 erase. 0 's width + 1. squiggle !

Changing ink color and the width of the turtle's trace makes for interesting variations. Try

0 home up erase. ©'s width 4-1.dragon 8.
W home up turn 90. 9 s width + 2. dragon 8. !

Sketching. We can sketch by telling any turtle to follow the mouse cursor. For example,

repeat (pokey goto mz my) 1
or

repeal (pokey goto mp) 1

The routine mp returns the point where the mouse is located (that is, it combines mx and my).
Members of the class point respond to messages xy+- = max min. This class is described in more
detail in Chapter IV.

More sketching control is obtained with the mouse buttons.

to draw

(repeat
(-button 4 * (pokey pendn goto mp)

button 2 0 (pokey erase)
button 7 * Cdone)
pokey penup goto mp.)3 1

draw !

Now lines are drawn only when you press the top mouse button (bu.tton 4); the bottom mouse button
(button 2) erases the screen; holding down all the mouse buttons (button 7) terminates the program;
otherwise, the turtle moves to the cursor without leaving a trace. (Note, there are two versions of the
mouse device, one having buttons ordered from top to bottom, the other ordered left (top) to right
(bottom). Henceforth, we will refer to the top-to-bottom version.)

Variations use the mouse button to control changing the turtle's width and changing turtte's ink color
to allow selective erasure.

"Rubber Bands" is another sketching technique in which a turtle expands and contracts straight
lines, always stretching towards the mouse cursor. The line starts at the point indicated by pressing
the top mouse button; the bottom mouse button indicates that the line is to be fixed in its current
position.

WRITING SMALLTALK PROGRAMS Page 38

to rubberband fp sp :
(repeat

('button 4 * (@ penup goto *fpemp pendn.
repeat
CO goto (>sp*-nip.

button 2 * Cdone)
0 white penup goto fp pendn goto sp goto fp btack)))) 1

Saving the points fp, sp, lets you store the method for constructing the drawing. A simple example of
storing mouse points is

(2 points + stream of vector 10!
repeat 00 goto points + mp)!

Here, the object points is an instance of the class stream, a method for storing other objects
(described in detail in Chapter IV). 'Members of the class stream respond to messages + contents next
reset end, Each time the turtle moves, the new turtle location is stored (•) in points. The routine
rubberband can be modified to store each pair (fx, sm), making these lines available for reconstructing
the sketch.

to newrubberband fp sp points
f(Ppoints + stream of uector 10.

repeat
Cbutton 7 * Cdone with stream of Points contents)

button 4 * C- 0 penuli goto GPfpemp pendn.
repeat

(S goto (3=spfmp.
button 2 * (points + fp. points + sp. done)
Q white penup goto fp pendn goto sp goto fp Mack))))!

(2:' points + newrubberband!

The sketch can be reconstructed by

to reconstruct pts
((Ppts + I. pes reset.
repeat (pts end * Cdone)
0 penup goto pts next pendn goto pts next.))!

reconstruct points!

That is, reset the stream, and repeatedly retrieve the next item until reaching the end.

Chinese Brush Strokes. Changing the width of the turtle's path as a line is being drawn leaves
"Chinese Brush Strokes". This class lets you draw variable-width lines as long as you press the top
mouse button.

to brush i @
((9=0 + turtle.
repeat (button 2 * (12 erase)

button 4 * (0 pendn.
repeat (G>s widbi + 69'2+1 +i mod 8. 0 goto mp.

button 0 0 (done))3
@ penup goto mp. Gh•-O.1) 1

WRITING SMALLTALK PROGRAMS Page 39

Feather Strokes. This next class varies the thickness of the trace depending on the direction of the
"feather stroke".

to feder ox oy nx ny
CO penup.

repeat
Cbutton 4* (9 goto <*'ox + mx (2oy + my pendn.

repeat
(button 0 * (9 penup. done)
@,s width + 1+ abs (3 * (GP'ny + my) - oy) /CGPnoc + mx) -ox.
0 goto GPox 4- n= 0-07 + ny))

button 2 *C@ erase)))!

to abs z
CCGPX + .1 co» (tro - g.) 160!

Cobwebs This last class uses a second turtle, curt, to form cobwebs around the lines drawn by Q.
The creation of this turtZe with the message frarne is explained in Chapters IV and V; the class
vector is also explained in Chapter IV. A uector is used here as a method for storing,@'s display
coordinates for use by turt. The class cobweb expects two messages, the color of @'s ink and the color
of turt's ink. 0's width is set to 3 and turt's width is set to 1. Cobwebs are drawn as long as you
press the top mouse button. Clearly, this sketching method is designed for the color version of
Smalltalk.

to cobweb n i xs ys turt
(GPn + 10. @'s width f- 3. Q'S ink + '.
turt + turtle frame ©'S frame.
tures width + 1. tures ink + :.
GPIS + vector n. GPys + vector n.
repeat

(button 4*
Cocs£1 to n.7 + all mx. ysfi to n.7 + all my. store mx in all of vector xs

store my in all of vector ys
Gh + 1.
@ penup goto xsfil ysfil pendn.
repeat

CO = mouse 4*(done)
Gh *-1 +imod n.
turt penup goto xs£il ysfil·
0·goto =SIll + m= ysfil + my.
turt pendn goto xsfil ysfil))))!

In the black-and-white version of Smalltalk, type

cobweb 03) 63)!

t

WRITING SMALLTALK PROGRAMS Page 40

Paint Brush

Smalltalk also has a method for transferring blocks of designs, such as a solid black rectangle, or one
specially constructed to resemble a gray "color". The basic method o f inter facing brush painting to
Smalltalk is through the class rectangte. This class definition is available by typing

filin 'xyfns'!

A sufficient abbreviated version is

to rectangie / origin extent
(4 has * CGP't + :.

tr origin t origin + extent)
4 center * Ct origin + point extent %/2 extent y/2)
4 's * (t Z eval)
4 is * (ISIT eval)
4 paint * (CODE 43)
isnew * (GPorigin + :. GPextent + :.))!

As you can see, this definition includes an escape to machine code (CODE) which supports the
movement of bits on the display screen. The two instance variables, origin and extent, must be
instances of the class point, a basic system class defined completely in Chapter IV. The class point is
a method for working with two coordinates as one entity, for example, as a display point. To create a
rectangle, type

Ghsource + rectangle
rupper left corner point>
(extent of area as a point whose parts are the area's width and height> !

For example, try

GP'source + rectangle point 50 50 point 10 20! width is 10, height is 20

The rectangle does not, as yet, appear on the display.

Suppose you want to fill the rectangle with "color". "Gray color" is obtained by combining black and
white dots to form a spatial half-tone which gives the impression of a gray color (Iike that in
newspaper print). The number 1 represents a black dot, 0 a white dot. The "paint brushing" works
by painting "gray" into the source rectangle and then transferring from the source to a destination.
The destination is designated as a point, the upper left corner of a rectangle that will be made the
same size as the source. "Gray" is specified as an integer which gets folded into a 4x4 rectangle to
form a pattern which then gets replicated throughout the area being painted. The folding is

ABCD --->

IA
IB
IC
ID

Where A,B,C,D are binary numbers. For example, suppose the desired gray pattern is

WRITING SMALLTALK PROGRAMS Page 41

1101

0111
1101
0111

The corresponding single binary number is

11010111 11010111

which in octal is 0153727. Hence, the integer to store as the paint "color" is 0153727. (Note, octal
numbers in Smalltalk must begin with the number 0.) Try

(2'dest + mp.!
source paint 12 0153727!
source paint 0 dest!
source paint 0 mp!

Place the mouse cursor somewhere on the screen.

Store the gray "color" into the source rectangle.
Copy the source into the destination.
Copy the source into the mouse point destination.

Now try

source paint 4 dest!
source paint 8 dest 32125!

Copy the complement of the source area into the destination.
The integer 32125 is another "gray" color. This brushos the new
gray into the destination where the destination is a rectangle the
same size as the source.

The number following the message paint is an operation indicator. As we have seen:

0 copy source to destination point
4 copy complement of source to destination point
8 source brushes anew gray to destination point
12 fiII source with a gray

Each of these four operations has one of 4 modes, obtained by adding the following integers to the
above operation code.

0 store source into destination (paint--do operation as indicated above)
1 OR source into destination (merge the l's and 0's)
2 XOR source into destination (invert)
3 AND complement of source into destination (erase)

Hence, you might try the following variations using objects source and dest defined above.

source paint 1 dest! Take source and OR it to the destination.

source paint 2 dest! Take source and XOR it to the destination.

source paint S dest!
source paint 10 dest 32125!

Take complement of source and OR it to the destination.

Source brushes the XOR of the gray (32125) to the destination.

and so on. Some integers you might use as gray include (these are decimal numbers)

-1 32125 -5161 -21931 23130 15420 5160 -32126 0 11892 -10213 13260 51 -52

(Recall that the negative indicator sign is typed as <shift>-, that is, press the key marked '
holding down the key marked 'SHIFT'.)

' while

WRITING SMALLTALK PROGRAMS Page 42

Suppose you want to create a shaped area of gray color in the upper left portion of the screen.

CiP' palette + rectangle point 0 0 point 16 16!

The shape can be a paint brush shape.

C brush + rectangle point 20 20 point 16 16!

and the tone is one of the numbers representing the gray color.

GP tone + 15420!

The palette is then the mixture of brush and tone. Design the brush.

0 penup goto brush center pendn.
0's width + 8.
do 2 (0 go 2 turn 90)!

The combination is

brush paint 8 palette's origin tone!

To spread the paint around, try

repeat (button 4 * (palette paint 8 mp tone))!

Try building your own painting system using the Smalltalk painting brushes.

BITBLTing. A part of the Smalltalk system is the ability to move blocks of bits (0's and l's) from
one part of the memory of the computer to another, quickly. The Smalltalk program that should be
used with caution is

to BLT (CODE 41)1

It requires twelve messages which are, in order:

1 base address of the destination of blocks of bits
2 destination raster
3 destination x
4 destination width
5 destination y
6 destination height
7 operation code as defined above for paint
8 base address of the source of blocks of bits

9 source raster
10 source x

11 source y
12 gray color

Without too much explanation, we offer the following useful definitions for saving and changing the
shape and color of the mouse cursor.

WRITING SMALLTALK PROGRAMS Page 43

to cursor p buf gray
(4 loadfrom *

BLT 281 1 0 16 0 16 0 mem 60 32 px py 0)
4 copyto *

BLT mem 60 32 p % 16 p y 16 0 281 1 0 0 0)
4 show *

C{+buf + :. (2* 4- PNT buf.
BLT 281 10160160 p+21000)

4 makebuff *
((Pbuf + string 32.
(2' p + PNT buf.
BLT p+2 10160160 2811000.
fr buf)21

to PNT Emem 255 + :. t mem 255)!

Try

4*source + rectangle point 0 0 point 16 16!

GP'savecursor + cursor makebuff! A string Containing bits representing the cursor.

SOU·Te¢ paint 12 -5161! Paint gray color in the source rectangle.

cursor Zoadfrom sourcels origin! loadfrom requires a pointer to the upper left corner of
a 16 x 16 area (source rectangle upper left corner).

cursor show savecursorl Restore the cursor to original shape.

Or try the palette example given earlier. Then say

cursor loadfrom palette's origin!

Now

repeat Cbutton 4 * Cpatette paint 8 mp tone))!

The cursor look5 like the paint brush!

THE SMALLTALK WORLD AND ITS PRIMITIVES Page 44

Chapter III. THE SMALLTALK WORLD AND ITS PRIMITIVES

Up to this point, we have provided a "try it and see the flavour of what happens" style of
presentation. In this chapter, and in the next, we modify the style in order to provide a direct
discussion of the basic Smalltalk concepts: classes, instances, and message sending and receiving. We
assume, however, that the reader has examined earlier chapters and is familiar with the special
Smalltalk symbol set presented there. The following is a summary of these symbols.

40 look to see if a specific word appears as the next word in the message.

receive the next value from the message.

8 receive the next literal token (single word or words enclosed in parentheses) from
the message.

1 indicates conditional statement: if-clause * (then-clause) else-clause.

£ return the following object; the object is "active" in the sense that the next action
taken is to run this object'a class definition and to let this object examine the
message.

SELF name used to refer within a class definition to the active instance of a class.

delimiter used between names of class, instance, and temporary variables in the
title line of a class definition.

Objects

Every entity in Smalltalk's world is called an object. Objects can remember things and communicate
with each other by sending and receiving messages. Every object belongs to a class (which is also an
object). The class handles all communication (receiving a message and possibly producing a reply) for
every object which belongs to it.

Examples of objects:

Class Name Objects

number 3 4 3.14159 6.28e-23
string 'this is some text' 'here is some more'
atom X y filea number
vector (135791113)
turtle 8

Message Sending and Receiving

A message is sent to an object by first mentioning the object and 'then mentioning the message,

Messages are simply strings of words separated by spaces. A "word" is either (1) a string of
alphanumeric characters beginning with an alphabetic character, (2) a string of all numeric
characters, or (3) one of the special symbols listed above, 0, or any arithmetic operator.

THE SMALLTALK WORLD AND ITS PRIMITIVES Page 45

Examples of sending messages:

Communication Object Message Reply Graphics Action

1, 3+4+5 3 +4+5 12 none

2. 5 mod 3 5 mod 3 2 none

3. 'abc'+'def' 'abc' +,def' 'abcdef' none

4. 0 go 100 9 go 100 9 draws a line 100 units Zong

5. do 4 do 4 none draws a square with side
(9 go 50 (@ go 50 50 units long

turn 90.) turn 90.)

6. joe grow 50 joe grow) 50 none joe, the box, grows his
sides by 50 units

7. joe-turn 25. joe turn 25 none joe turns 25 degrees
jill grow 30. jill - grow 30 none jill grows her sides 30 units

The class of an object can receive messages iIi a variety of ways. In addition, the user can add new
ways for messages to be received. Once a message is received, the object can take some action, such
as returning a message to the sender (reply) or modifying a graphic display (graphics action).

Notes on the Examples:

Communication Object Message Reply Graphics Action

1. 3+4+5 3 +4+5 12 none

The expression 3+4+5 is handled by sending the reply of the message 4+5 back to 3. First let's look
ata simpler message: 3+4. In the class number, we have

44+ * ((9'b + 1. fr 'result of computing the sum of SELF and b')

The action taken after seeing the '+' is to receive a value from the message and give it the name b.
Then return (t) to the sender a reply calculated somehow. The calculation uses the value of the
active instance of the class (referred to by the name SELF) as well as the value of b. In the
simplified example, the value of SELF is 3 and the value of b is 4. (This is usually done using more
Smalltalk code as in the first example, but can also be an escape to lower levels of the system, as in
this example. Such escapes are seen in the definition as CODE <number>.)

Hence, after seeing the '+', the receiver (3) receives a value (4) and returns-the sum (7),

In example 1, after the object 3 first sees the message +, the action (3' b +:. tries to receive a value
from the rest of the message. In this casey the rest of the message is 4+5. The 4 is a number also. It
is sent the message +5, which will activate the same line in the definition of number as 3 was using.
4 sees the + and tries to get a value (5) into ITS 'b'. There is nothing more in the message so 4+5 is
computed and 9 is returned to 3 as the value of its message. The 3 adds itself to the 9 and returns 12
to the original sender. All messages in Smalltalk are handled in a similar manner.

THE SMALLTALK WORLD AND ITS PRIMITIVES Page 46

Communication Object Message Reply Graphics Action

2. 5 mod 3 5 mod 3 2 none

In the example above, a message is sent to a member of class number (the literal 5). 'mod' is a token
which class number can recognize (we'11 see how in a bit). It indicates a desire for finding the modulo
of the number with respect to another number. We need another item from the message, this time a
numerical value. The part of class number which receives this general message form looks like:

*nod * (11' SELF - 62 b + :.) a SELF / b)

This means: if, in the message,

you see

the word 'mod'
then

do the following:
receive a value from

the message and give
it the name b
then

return to the sender

a reply calculated by
dividing yourself
by the value received;
multiplying the result
by that same value;
and subtracting this last
result from yourself.

mod

12'b K.

lip

SELF/b

b * SELF/b

SELF - b• SELF / b

To clarify the right-associative nature of the evaluation, we add the following, somewhat redundant
explanation of the above message. The uparrow (t) expresses the action of actively returning some
value (that is, the returned value is an object that becomes the immediate next message receiver; it
is able to examine the rest of the message). The value returned is obtained by evaluating the next
object in the message, here, SELF. Because SELF is an instance of class number, it looks for and
finds an arithmetic: operator (-) and asks to fetch the next value from the message. This in turn
effects the evaluation of the parenthesized message (0°be:.9. The value received is a number, hence
the value of b is an instance of number. This instance is still active and is able to look at the message
and see the multiplication operator (so far, the subtraction has not been completed). Upon seeing
that multiplication is indicated, a fetch is made for the multiplier. This activates the second
reference to SELF, a number that sees the division, retrieves the value of b, and completes the
division operation. The result of the divison operation is the multiplier; the result of the
multiplication is the subtrahend; the result of the subtraction is the value returned,

Most lines in class definitions resemble this one strongly because Smalltalk is modelled on the notion
of communication by sending and receiving messages

Since everything in Smalltalk is an object and every object can send and receive messages,
"expressions" (as in example 1) can be built by simply sending more messages to returned values
which have already been calculated. The messages can be cascaded in a single message streamy or
determined conditionally as actions ·specified in a class definition, Message streams are typed to
Smalltalk by the user or included as part of the definition of a class.

If a number can answer the question is number affirmatively, then we can easily test the value in the
previous example (which was given the name 'b') by:

THE SMALLTALK WORLD AND ITS PRIMITIVES Page 47

*mod * ((-(2'b + ..) is number * Clt SELF - b * SELF / b)
error CiP'f'non-numeric operand'))

We don't usually bother to do this as it is much better for the action to discover that a value is of the
wrong class by sending a message which it doesn't understand.

The object error handles printing the specified message in a Smalltalk sub-window and letting the
user investigate the context of the error.

Communication Object Message Reply Graphics Action

3. 'abc'+'def' 'abc* +'def' 'abcdef none

Class string has a way very similar to nuniber for receiving a message and then doing something.
Here, the action is string concatenation.

44+ * 02=b + .·. 11 'result of concatenating SELF and b')

In other words, receive a value from the message and give it the name b. Then return to the sender a
reply calculated somehow. Again, this is probably done using an escape to lower levels of the system.

Communication Object Message Reply Graphics Action

4. 0 go 100 0 go 100 9 draw a line 100 units long

The meEssage to the turtle to go 100 units (100 "dots" on the display screen) is received in a manner
similar to the second example. A turtle actively returns itself, thus permitting the cascading of turtle
messages.

4%0 4 (-C>dist + :. 'Somehow make turtle go dist' # SELF)

Communication Object Message Reply Graphics Action

5. do 4 do 4 none draws a square with
(ED go 50 (0 go 50 side 50 units long

turn 90.) turn 90.)

"Control Structures" in Smalltalk work the same way. The object do receives its message:

(PN + :. 0'exp + 8. 'method for doing exp N times'

The E means receive the message "literally". We use it here because we don't want the value of 0 go
50 turn 90 (which are actions by the turtle), but rather its literal form (which is a request for actions
by the turtle) to be iterated over and over. We do want to calculate a value for the repetition number
to allow expressions such as:

do a+6*5 C...2

r

THE SMALLTALK WORLD AND ITS PRIMITIVES Page 48

Communication Object Message Reply Graphics Action

6. joe grow 50 joe grow 50 none joe, the box, grows his
sides by 50 units; a larger
box is displayed

This is a typical message to a graphical object. We will show both the receipt of the message and its
method:

4grow .(SELF undraw.
(Psize + size + A

SELF drato)

When grow is seen, we 'undraw' ourSELF using the old size, compute the new size by adding a new
value received to the old size, and tell ourSELF to 'draw' using the new size.

Communication Object Message Reply Graphics Action

7. joe turn 25. joe turn 25 none one box on screen tilts 25 degrees, and
jill grow 30. jill grow 30 none then another box grows 30 units

Here we see a bunch of send messages done in sequence. The period '.' terminates a message and
hence separates two message communications. In many cases, the period is not needed, as the
message receiver will be able to determine how much of the message to examine. The period does,
however, serve the syntactic purpose of disambiguating the end of a message.

The order of communications is done sequentially from left to right (as with English text), so:

joe turn 25.

is done before

itu grow 30.

The Notion of Class

The basic class definition deals with just two ideas:

1. The notion of creating objects which have independent existence and memory.

2. The control of the flow of evaluation by sending and receiving messages in various ways.

For example, a send message is a control action because flow of control is suspended in the sender
and re,sumed in the receiver. A reply suspends the context in which it is found andd resumes the
object which originally sent it a message. Send messages may be ordered in time or be indifferont to
Sequence. "Conditional branching" chooses one path to follow from many depending on a test of some
kind. "Repeats" of various kinds cause evaluation to happen over and over; they may be terminated or
restarted.

The independent state and message properties of Smalltalk make it possible to construct arbitrary
structures or control structures.

THE SMALLTALK WORLD AND ITS PRIMITIVES - Page 49

Here are some of the abilities which have already been built for you to use. In the table below, the
word joe ia the name of an object that has been created. In creating a Smalltalk object, an -entry is
formed in a dictionary; each entry has two parts--the name of the object and the value of the object.
Typically, the object has value as a class or as an instance of a class. As explained in previous
chapters, class definitions have information known locally to the class as a whole (class variables)or
to each instance of the class individually. Information known locally to each instance -is either
retained as part of the description of the instance (instance variables) or exists only when the
instance is actively doing something (temporary variables). Dictionaries exist at each level of
definition and activation of classes and their instances: there is a "global" dictionary known-to all
objects, one for each class, one for each instance of each class, and one for each object currently
active.

Message Form Meaning

joe b c Send the object joe the message b c. Any message can be terminated with a period (·).
There will always be a reply of some kind.

joe Send the object joe an empty message. Usually the reply will be just a reference to joe's
value.

(@pjoe The "hand", 04, says consider the next token literally--ice., the literal -word *ioe' instead
of tile object joe. A literal word is simply a string of characters; an object, however,
refers to its value as a class or class instance. Here Q is an object being sent the message
joe, and the reply is the literal word 'joe'.

4*(a b ...) The reply is the literal chain (or vector) (a b ...).

4 grow look (4) in the message to see if the token (grow) is literally there. The reply will be
'not-false' if the token grow is literally there and the next thing in the message will now c I
be available for scrutiny. Otherwise, the reply will be 'false' and whatever was there is
still available.

The reply is the value of the next expression in the message.

The reply is the next literal token in the message.

2 - Same as 8 except that the current place in the message will be retained regardless of the
result of gathering the next token. This allows the receiver to "peek" at the message.

90 The reply is a reference to the meaning (class or class instance) of the next expression in
the message, So, for example, if we have (0'[unc s #hp, then the value of func is a
reference to the meaning of hp; i.e., if hp is a class definition, then func becomes another
name for the definition hp. Hence, mentioning fune is identical to mentioning hp.

The user can construct other ways to receive messages from these primitives (such as "receivers"
which check the class of the received object, and so on).

304 reply (#) to the sender the value of '3+4' which is 7; the 7 can now examine the current
message.

a » (b) c *r (d) ... if a evaluates to 'not-false' then evaluate b and continue evaluation after the next
enclosing parentheses. Otherwise evaluate c; if it replies 'not-false', evaluate d and
continue evaluation after the next enclosing parentheses. Otherwise ...

1

THE SMALLTALK WORLD AND ITS PRIMITIVES Page 50

The conditional expression a * (b) may be used anywhere in Smalltalk. Don't forget about the
"escape" from the 'not-false' branch! If you would like to deliver one value or another depending on a
condition, enclose the expression in '(...)'. Parentheses in Smalltalk serve a grouping or delimiting
function: they delimit the 'then-clause' from the rest of a conditional expression; they delimit
message parts to disambiguate or order the evaluation of the message; they group expressions for
iteration using repeat or do; in general, they group a sequence of words together as a token that is
received when the symbol 8 is used.

3425 4 00 53

will evaluate to 7 or 8, depending on the values associated with a and b, Here the outermost set of
parentheses is used to order the evaluation of the message; the innermost parentheses define the
limits of the 'then-cluase' for the conditional statement. Some examples of conditionally structured
evaluation include:

evaluating a or b but not both
letting evaluation of c depend on a or b
letting evaluation of c depend on a and b

a *Ob
(a * O b). c
Ca * (b)) * c

repeat C ...) The contents of O will be re·-executed until a 'done' is encountered (or if you hit 'ESC').
The escape will be from the innermost loop in which the 'done' is enclosed.

done

done with 3+4

again

for

Will cause the most recent repeat-loop to be exited.

Will cause the most recent repeat-loop to be exited with the value 7 as a reply.

Will restart the most recent repeat-loop in which the again resides.

An iteration control feature included in the basic Smalltalk system.
for i 4- 2 to 50 by 4 do (···)

Contents of C) will be re-executed until the value of index i, starting at 2 and stepped by
4 each time, exceeds 50. ln general, the 4·' part may be omitted and the default index
start is 1; the 'by' part may be omitted and the default step is 1. If the 'to' part is
omitted, the end condition value is the same as the start index value.

don(....7 The contents of £) will be re-executed until the index counter N, starting at 1, equals n
(i.e., for n *- 1 to n by 11 The counter N Es not available as a number to use inside the
parentheses.

Objects are created in one of two ways:

1. Creating a class

to <class name> <temporary variables> / <instance variabies> 1 <class uariabies>
C messages and responses)1

2. Creating an instance of a class

(2 (name> + <value> 1

where (ualue> is either the result of activating a class or activating an instance.

Other available (basic) abilities are described in subsequent sections.

THE SMALLTALK WORLD AND ITS PRIMITIVES Page 51

The User Task

Smalltalk has a USER task which is evaluated continually. You can see the message that is evaluated
by typing

94 + GET USER *DO. t
t print.!

Get the USER task.

Ask to see the message.

In a Smalltalk system that does not include the dialog window class, the reply is

Ccr. read eual print) The reply is a vector, a request to evaluate a typed message.

The task shown above effectively:

(1) prints a carriage return in the Smalltalk dialog window (cr);
(2) prints the Interim Dynabook prompt character (41), reads characters from the keyboard

untiI the <do it> character (!) is typed,
(3) assembles the characters into a list we call a vector;
(4) this vector is then an object that receives the message eval print; after seeing (4) the

token eual, it evaluates its contents as a message; and then
(5) whatever object the vector returns can receive the remaining message print. Some object

is always returned, possibly the object nil Can object without value). The default object
returned from running (activating) a class is the class instance (referred by the name '
SELF).

Some Comments. The routine read expects to print the characters typed at the keyboard in a dialog
window whose name is disp. Vectors only respond correctly to the message eual when the last item in
the vector is nit; hence the length of a vector containing Smalltalk message tokens ("code") is one
item longer than the number of message tokens in the vector.

Effect of the Message Print and the Period. In order to fully understand· the results of messages
sent to Smalltalk, it helps to understand the implications of the print message. As an example, if you
simply type a number or an arithmetic expression, without explicitly telling the resulting number to
print itself, the number will, in fact, print. Try

3+4! Reply is the number printed.

Now try

(3+43 print! Reply is the number 7 printed twice without an intermediate space.

3+4.!

(3+43 print.!

Note the period. Nothing seems to happen. The last message evaluated in the code
vector is a period; the period returns itself as the reply; it then receives the
message print and does nothing.

The number 7 sees the message print and prints itself in the dialog window; the
next token is a period; the period receives the print message (from the USER task);
hence only one 7 prints.

This means that any object obtained as a result of eValuating a message at the top-level of Smalltalk
will be sent the message print unless the original message is terminated with a period. If the
resulting object does not respond to the message print, Smalltalk runs a "dummy" class named print
which does nothing. Unexpected results might occur if the object does respond to the print rnessage
and the receipt of this message was not intended.

If you look at the USER task in a Smalltalk system with the dialog window class running, you will see
the following (code) vector:

THE SMALLTALK WORLD AND ITS PRIMITIVES Page 52

(sched map (2(G'task + uecril· apply task to (2(run) in GLOB)!

This USER task assumes that there is an object named sched (an instance of the class obset),and that
that object contains references to other objects (for example, dialog windows and/or font windows),
each of which should receive the message run each time the USER task is evaluated. The usual
response to the message run is to check to see if there is any keyboard input (kbck) and, if so, to
evaluate the message (cr. read eual print).

More information about this task is provided in the Chapter V section entitled Scheduling Methods:
sched and window.

Active and Passive Return. We mentioned that the result of evaluating a message is a Smalltalk
object that can receive the rnessage print, unless a message terminator (a parenthesis or period) is
used. Here we are saying that the result of evaluating a message is some value, an object that might
be able to further examine the message.

This ability to let an object furthei examine the message depends on the method used to return it to
the message sender. There are two methods for returning a value: passive return and an active
return. The former is the default case--every evaluation results in some object whose value is,
perhaps, nil. That object is returned to the message sender. Because it is returned passively, the
object can not further examine the remaining message, if any.

The method of active return requires an explicit request to return the object. The Smalltalk symbol
up arrow (lt) is this explicit request. The form is # <ualue.>; the <value) is an object that can
examine the rest of the message. All numbers return actively; the class turtle returns its instance
values actively (hence their ability to cascade messages). By default, instances return themselves
passively unless the definition includes # SELF as a response to each message. The class uector

receives the message eual and actively returns the result. Hence, the result of read eual is an object
that can receive the next message: print.

THE SMALLTALK WORLD AND ITS PRIMITIVES Page 53

The Form of Presentation of Smalltalk Classes In the next chapter, we present
definitions for the basic Smalltalk system: the classes already defined for general use, aids for
interacting with Smalltalk and with the Smalltalk file system. Chapter V contains examples of
applications of these classes. The basic Smalltalk clasbes will be presented by showing how instances
of each class are created and what happens when messages are sent to a class instance. In most cases,
the messages are annotated; in some cases, the actual definition of the class will be shown. For
example, a version of the class box defined in Chapter II can be presented as:

boz The name of the class.

9'joe + box! Creating an instance of the class.
f'm a box : x 256 7 300 size 50 tilt 0

joe is ? ! What is the instance type.
box

joe is box!. 'Not-false' is the same as 'true'.

box

joe's x + 200! Assigning meaning in joe's context.
200

foes %! Querying foe's context.
200

joe,Sy + 250!
250

joe's y!
250

joe's size + 100!
100

joe,s size!
100

joew tilt + 321
32

joe's tilt!
32

joe draw!

joe undraw!

joe grow 3+41

joe turn 20*2!

joe move 100 200!

THE SMALLTALK WORLD AND ITS PRIMITIVES Page 54

Abbreviations

In order to present these examples a bit more concisely, we need to adopt some abbreviations.

We Abbreviate By

a property of a class instance
expected value (any type)
expected number value
expected nonnegative integer value
instance of a class named classname
name of an object
expected string value
expected message stream
forms involving I]

<property>
<value>

<number>

<integer>
<classname>
<name>

<text>

<rnessage>
<selection>

We can further simplify the presedtation of classes if some class conventions are adopted, such as: all
classes will respond reasonably to the following messages:

is 1
is (classname.>

print
w <property.) e <value,>
w (property>

replies with (classname>
replies <classname> or faise
Drints in standard format
makes <property> stand for the <ualue>
replies with <ualue> of <property>

Class box then cain be described compactly as:

box

(2°joe + box!
Draws a square at x = 256, y = 300, size of each side = 50, and
angle of tilt = 0.

joe draw!

joe undraw!

joe grow <number>!

joe turn (number>!

joe move <number> <number)!

joe erases, makes himself bigger by <number> units, and redraws.

joe erases, turns himself by <number> degrees and redraws.

joe erases, changes his coordinates, and redraws in a new location.

THE SMALLTALK WORLD AND ITS PRIMITIVES Page 55

A Smalltalk Class Example
Link is a typically complete form which we present as an example of the conventions for presenting a
class definition. It is a structure familiar to LISP users:' pairs of objects which may in turn also be
pairs. Instances of [ink receive and respond to the folio'wing messages.

Zink init! Setup help and mail box information.

(2'pair + Zink GP.john GPmary.! Create an instance whose name is pair (or, as in LISP, "cons").

pair head! Ask for the value of instance variable h (or, as in LISP, the "car").
john

pair tail! Ask for the value of instance variable t (or, as in LISP, the "cdr").
mary

0=triangle + pair + *jim.! Create another instance whose head is the instance pair and whose tail is
*i i m.

triangle print.! Show the value of triangle.
(fjohn . mary) . jim)

triangle is ?! triangle is an instance of what class?
link

pair tprt! Provide some helpful information about the instance pair.
I am a link.

I consist of (jolin . mary)

The form of the class definition is

to link a/ht/ helpprint mailbox

C 4+ * Clr link SELF :)

4head * Clr (44- 0 ((*he..) 10)

•#tail * Clr e:fe- * C 9't#..) 0.7

4lprt * Chelpprint SELF)

4;irint * (dispe'C. h print. disp+'.'. t print. dispe')'.)

48* /4 Zink *C# 0°link) 47* CIr (ihink) 8. #fatse.)

4¥,s * <(ihz + 8.11 £4 + :> Ca + :) a eual))

finit =0 ((i;:helpprint + #hp. (2°mailbox + 'no mail'.)

isnezo·* (991 4- 2. 0't e '.))1

to hp ob ,

CGPob e :. cr. disp + 'f ama'.rob is O print.

cr. disp + 'I consist of '. ob print.j!

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 56

Chapter IV. BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES

The Basic System Classes

See the end of Chapter III for an explanation of the method for presenting the basic Smalltalk system
class definitions.

Atoms

Smalltalk atoms are unique tokens which are usually associated with Smalltalk objects in dictionary
entries. If a user attempts to create an atom which will print the same as an already created atom,
the system will force the two to be the same.

atom

Ghz e Gh! The value of a is the atom b.
b

(Pa + atom <text >! Reply is the new name which prints as <text>.

a chars! Reply is the <text> of names value.
'b'

a + (value>! The <value> is associated with the name b

(i.e., this is indirect reference to the name b).

al The value of a is b.
b

b! The value of b is <value>.
<value>

a eual!
<value)

Indirect reference--a eval is the value of a which

is b, and the value of b prints, which is <value>.

a = (name>! Value of a if 'not-false•, •false' otherwise.

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 57

Arithmetic

There are two classes for handling numerical operations: number and float. They are compatible and
interchangable. An operation containing both classes will have a reply in the class of the first object
(that is, in the class of the object being sent the message).

100/8.0!
12

100.0/81
12.5

The value range of number is

-32768 to 32767

that of float is (where the form 1.2e3 denotes 1.2 times (10 to the power 3))

-99999.99999e4095 to 99999.99999e4095

An integer beginning with the digit 0 is an octal number; all other numbers are base 10. ffoat must
begin with a digit from {0, ..., 9}. float must have an embedded period, numbers must not. In
addition, float may be expressed in scientific notation as a product of a power of 10.

Good Forms Bad Forms

123
-123

0.0 .0

355.0 355.

6.28e-23 28e-23

number

0°a + 128!
128

a + Cnumber>!

a - <number.>!

a * <number)!

a / <number>!

a mod <number>!

- al

a = (number) !

a • (number.>!

Value of a is 128, a number.

Reply is the numeric sum of the two obects.

Reply is the numeric difference of the two objects.

Reply is the numeric product of the two objects.

Reply is the integer quotient of the two objects.

Reply is the integer remainder.

Reply is the numeric negative of a. The unary minus
is typed holding down the <shift> key and pressing -.

Reply is the value of a if 'not-false', otherwise 'false'.

Reply is the value of a if 'not-false', otherwise 'false'.

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 58

a < <number>!

a 6 <number.>!

a > <number.) !

a <number.>!

a 0 <number.>!
afl<number>!
agl<number.>!
aD<number)!
aD<number>!

Reply is a if 'not-false', 'false' otherwise.

Reply is a if 'not-false', 'false' olherwise.

Reply is a if 'not-false•, 'false' otherwise.

Reply is a if 'not-false', 'false' otherwise.

Reply is the bitwise logical operation of the two values.
logical AND
logical OR
logical XOR
LSHIFT by the <number>

a min<number)! Reply is the minimum of the two values.

a max <number)! Reply is the maximum of the two values.

In the above, (number> can be an instance of number or of float, but the result is the proper number
result.

float

Gh + 3.14159!
3.14159

GPa + float <number,>! Reply is the floating point equivalent of the number.

a + <number>! In the following, reply is the proper floating point result, but
<number> can be an instance of number or of float.

a - Cnumber>!

a * <number>!

a / <number.>!

- a!

a = (number.>!

a • <number>!

a C <number.>!

a £ (number>!

a .> <number.>!

a h <number,> !

a ipart! Reply is the integer part of the floating point number; can
not be in scientific notation.

E.g., 27.3 ipart! Reply is 27.

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 59

a fpart! Reply is the fractional part of the floating point number; can
nol be in scientific notation.

E.g., 27.3 fpart! Reply is 3.

a ipow (number) ! Reply is the result of a to the power <number>.

a epart (float>! Reply is X where X ipow <float> =a.
E.g., 27.0 epart 3.01
Reply is 3.0.
This is used for printing floating point numbers.

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 60

Turtles for Drawing

A turtle is a method for drawing on the display screen. The class turtle was introduced earlidr in
Chapters I and II. Turttes, like 0, can receive any number of cascaded messages. For example,

0 penup goto 200 300 pendn!

is equivalent to:

0 penup
S goto 200 300.
0 pendn!

However, there is no cascading after the 's message. A turtle's width can vary from 0 to 8 dots. Say:

0,3 width + 4. 9 go 100!

turtle

0'63 + turtle frame (dispframe> !
¢29 + turtle!

0 home!

0 erase!

&3 upI

0 penupl

© pendn!

G3 black!

0 whitel

CD xor!

9 go <number)!

0 turn <number>!

0 goto <number> Cnumber) !

0 goto <point>!

0 + <te=>1
0 + Cinteger.>!

Turtle's range is defined by the boundaries of the dispframe.
Turtle's range is the entire display screen.

Picks up pen, takes @ to geometric center
of range, faces upward.

Erases range.

Faces turtle towards lop of display screen.

Any travelling will not leave a trace.

Any travelling will leave a trace if ink is different
from background.

Sels ink to black.

Sets ink to white.

Trail exclusive-or-ed with other stuff on screen, if width= 1.

Travels in current direction a distance <number>.

Turns clockwise <number> degrees from current direction.

Travels to x = <number>, y = <number>.

Travels to the place represented by the point and
does not change its direction.

Prints the text (or the character represented

by the Ascii code <integer>) at lhe turtle's
current location, with its direction, width and
color.

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 61

The False CIass

is a method for handling boolean operations.

false

<Pbooz + false!

boot => C<message>J!

boo! or Onessage)!

boot and ·<message) !

bool C <message)!

boo! = <message>!

bool > <message>!

Since bool is 'false', gathers up the message without
evaluating.
Reply is result of evaluating <message>.

Evaluates message; reply is SELF.

Evaluates message; reply is SELF.

Evaluates message; reply is SELF.

Evaluates message; reply is SELF.

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 62

Sequential Dictionaries

inchide the classes: vector, string, obset, stream, file.

Vectors and Strings

are both organized like beads on a string. Their only difference is the way they respond to:

is? ffre. 0 830 DIC
and that a vector may havny/Smalltalk object as a bead while tringmaonly.contain wholl
numbers ranging from(6-to 2.String objects are thus not absolutely necessary lsince vector beads
cancontainany-malltalk number), but are very useful as a compact way to store textual
information. The characters you type to Smalltalk are first captured as a string object and the textual
information which Smalltalk shbws you is held as a string object belonging to a dispframe object. To
save space, the messages of both these classes will be shown together, repeating messages in the
separate columns only when expected values and replies differ.

vector string

GPa + GP(-this is a vector literal)!

(this is a vector literal)

0'a + vector <number>!

af<number>J!

GPa *- 'this is a string literal'!

'this is a string literal'

(Pa + string <number>!

Objects of the class are created with initial length <number>.

Reply is the value of the bead found at position <number> Note· that
the first position is 1, not 0.

af <number:lb to <number:ub>.1! Reply is a 'subvector' or 'substring' of beads whose values are copied
starting at <number: lb> (lower bound) and ending with the value at
<number:ub> (upper bound). We call either of the forms involving
Il. [<number>] and [<number:lb> to <number:ub>], a <selection>.

a (sdection> + <value>! If the <selection> is of a single element, the value of the bead found at
position <number> becomes <value>. Otherwise, <value> is expected to
be a string of beads of Lhe same class as a and of any length. The
<selection> is replaced by the <value>.

a <selection> + Cvalue> (selection>! The form <value><selection> is a method for obtaining a string of beads
of the same class as a

a <selection> + all <value>! Copies the <value> into each element in the selection. This was used in
the sketching example in Chapter II: cobweb.

a <setection> find first (value)! Reply is the first bead position <number> where a[<number>] is the
·same as <value> if a[<number>] is found in the range of the
<selection>, 0 otherwise.

a <selection) find first non (value>! Similar to previous, except elements of <value> are ignored.

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 63

a (selection> find last <ualue>! Reply is the last bead position <number> where a[<number>] is the
same as <value> if a[<number>] is found in the range of the
<selection>, 0 otherwise.

a <selection> find last non (vaiue>! Similar to previous, except elements of <value> are ignored.

a eual! Vectors only. Treats the contents as Smalltalk code. Evaluation is in
current context; last item of vector must be nil.

a length! Reply is the number of bead positions

a + Cuector.>! Joins copies of a and <vector> (<string>) into a new vector

a + (string>! (string).

a map <vector) ! Vectors only. The value of <vector> is sent as a message to each of
the beads of a.

a = <string>! Strings only. Reply is <string> if a is identical to <string>; otherwise
false.

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 64

Obsets

Obsets are "bushel baskets" which can hold things for you. They can be used like mathematical sets
(having only unique values) or like "bags" (being able to contain duplicate values). Instances of obset
are frequently used as schedulers for the objects which they contain. For example, the display windows
of various kinds are all contained in an obset called sched. An instance of obset owns its own instance
of vector and provides a method for automatically expanding the uector, storing objects in the next
available position in the vector, and removing objects.

obset

69'ob + obset! An instance of obsel is given the name ob.

ob + <value>! If the <value> is not already in ob it will be added, otherwise ob stays the
same. This addition method (s-unieL.depends-on_cheaki!1-15
;quivalence__thaluesinob. Since ob actually contains pointers to the

/Smalltalk obiects, large integers of the same value will typically not be
L.Equivalent, as their pointers are not equivalent

ob delete (value)! Assuming there is only one occurrence of <value>, it will be deleted if in
ob; if there are multiple occurrences, only the first will be deleted; reply
is 'false' if there is no occurrence.

ob add (value! The <value> is added whether or not one already exists there.

ob unadd! The most recently added <value> will be deleted. add and unadd can be
used to implement a "stack".

ob vec! Reply is a vector containing all the objects of ob.

ob map <vector.> Evaluates the <vector> n times where n = the number of objects in ob's
vector.

An obset is one method of using vectors. Objects in an obset are actually stored in a vector that is
locally bound to the instance of the obset. The vector instance is named uec; i is the index counter
used in replying to the message map. Hence, if we wanted to send every object in the obset sched the
message run, we would say

sched map (2(vec fil run)! .

where vec[i] refers to the ith object in the obset. It is also possible to refer to each object by the
object each so that the above message could be written as

sched map (FY,ach run) !

Many users add their own version of intersection, union, and so pn, to the definition of obset.

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 65

Streams

Streams are similar to the BCPL programming 'language method for storing and retrieving
information. A pointer, i, is kept to the current stream item; pointer L keeps track of the last
storable item. The actual storage method is either a string or a vector bound to the instance of
stream. We use double quotes " to indicate optional forms.

GPs + stream! Default is to create storage in a string of length
10; i=0; L=10.

GPs + stream of vector <m) ! Create storage in a vector of length m; i=0; L=m.
(9's + stream of string <m.> ! Create storage in a string of length m; i=0; L=m.

GPs + stream "of vector (m> from <integerl>" "to <integerl>"!
0°s + stream "of string On)" "from <integerl>" "to <integers>"!

Initially, s is either a string or vector referenced starting before the
first item (i=0) up td the last storable position (L= length of the
string or vector). Or, optionally, s may be a different length string
or vector (m) whose contents are referenced beginning with an index
other than 0 (i= <integerl> - 1) up to an index other than the
actual string or vector length (L = <integer2>).

s + Cvalue>! Stores in the next (GPie-i+ 1) item of the stream, expanding the
length of the stream if i=L.

s contents! Returns the stored items (from Lhe first up to the ith item).

s neost! · Returns 0 if i=L; otherwise, returns the i+lst item and increments

s reset] Resets i to 0 (points to the beginning of the stream)

s end! Relurns 'true' if i is the end of the stream (i=L); otherwise returns
'false'

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 66

Files

The Smalltalk file system provides for instances of the class directory divided into files. A file is
found in a directory by its file name (fname). A file name must be an instance of the class string.
Each file has in its local context a character pointer (bytec) and a 5 12-character string as an i/0
buffer (sadi). Each file also knows the directory in which it can be found (dirinst).

Initially, there are two directories: dpO, dpl. However, only dpO should be used unless the Interim
Dynabook is equipped, for example, with two Diablo model-31 disk drives or with a Diablo model-44
disk. When creating a file instance, you actually send a message to an instance of the class directory..
Effectively, this sets the instance of the directory as the value of curdir. If the directory reference is
omitted, Smalltalk runs the class file with curdir equal to nfl, indicating that the directory should be
the default name stored as defdir. Unless specified, defdir is defaulted to dpO. To modify this, type

(directoryi use!

In the following, "<directory>" is therefore optional.

Creating File Instances

efi + <directory.> file <text> old! Searches for a file previously defined in the
directory; returns 'false' if not found.

07£ + <directory) file <text, new! Creates a new file or returns 'false' if a file with

the same name already exists.

0'fi + <directory.> file <text>! First attempts to find an old file; if it fails, then
creates a new file.

<directory> file (text> exist! Answers the queslion, does the file already exist
in the directory?

Deleting a File

<directory> file <text) delete! Deletes the file if it exists; returns 'false' otherwise.

Renaming a File

<directory> fize <text.> rename <text>!

Loading and Saving Entire Smalltalk Context

<ddectory> fne <text> bad!

(directory.> file <text> save!

Interrogating the Directory

<directory> list! Will print the names of all the files on the directory.

Reading and Writing a File

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 67

It is possible to read and write strings, words, or characters from a file. A word is simply two
characters on even character boundaries, while a string is a set of n characters. In the following,
local context for a file instance includes:

leader

curadr

nextp
sadr

bytec
numch

pagen
snl,sn2
version

disk address of page 0
disk address of current page
disk address of next page
512 character string
character index into sadr

number of characters on the current page, must be
512 unless current page is the last page
current page nurnber
unique 2 word serial number for the file
version number, currently always 1

fi + <integer>!

fi + (teoct)!

fi next!

fi next word!

fi next word + <number.>!

fi next into (text.>!

fi flush!

Addressing a File

fi skipneoct <number.> !

fiend!

fi shorten to <integer> (number>!

fi shorten to here!

fi print!

fi reset!

fi set to write (integer)<number.>!

f£ set to read <integer.> <number> !

fi set (integer><number>!

Store a number (Ascii code).

Store each character in the string onto fi.

Read the next character from fi (8 bits).

Read an integer from fi (18 bits). Adjusts character pointer to
retrieve the logical next word.

Write the number into the next word of fi.

Read enough characters from fi to fill the string <text>. This is
essentially, but nol identical code as,

for j to <lext> length do (<text>Ii] + fi next)

Write out sadr (the i/0 buffer) onto fi.

Relatively positions a file.
Same as fi set to read pagen bytec + :.

Returns file instance if pagen, bytec points to the end of the file;
returns 'false' otherwise.

Set nextp to 0, pagen to integer, bytec and numch to number.

Same as fi shorten to current file location, i.e., pagen bytec.

Prints the file name.

Same as fi set 1 0 (point to beginning of file).

Sets bytec to number; pagen to integer; allocates new pages if try to
go beyond the end of file.

Same as write but will stop if try to go beyond the end without
allocating new pages.

Same as set to read.

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 68

fi set to end! Same as fi set to read 037777 0 (i.e., forces end of file).

Files Open List

A list of file and directory instances currently being referenced for each directory is kept in a "files
open list".

<directory> print!

<directory) flush!

<directory) close!

Prints the entry names of each open file in the directory.

Write out the current state of each file in the filesopen list.

Flush the directory and reset the filesopen list.

Individual files can be added or removed from the files open list.

<directory> remember <ualue) !

<directory) forget <value.>!

fi remove! Remove file from the files open list.

fi dose! Remove file from the files open list and flush the bittable and the
current page.

BASIC -SMALLTALK SYSTEM CLASSES AND UTILITIES Page 69

Dispframe: The Basic Window Class

Text Display Routines

Smalltalk has a multiple-window display capability which allows viewports composed of text, pictures,
musical notation, and so on, to be created. The main method for creating and editing windows of text
is to create instances of the class dispframe. These display frames are rectangular areas on the
screen. They are specified with five values: an upper left corner horizontal position x, a width, an
upper left corner vertical position y, and a ·height. A fifth value specifies either an instance of class
string or creates the instance by including the words string (integer). Hence

0°df + dispframe 16256 16256 string 400!

gets you a rectangular area on the upper left portion of the display screen. The upper 18ft corner is
16,16; the width and height are 256; and a string of 400 characters (whose local name is buf) serves
as the text buffer. This buffer is altered by *- (store characters) and by scrolling in the window. Or,

Pef + dispframe 3 100 50 200 ''1

gets you a rectangular area at upper left corner 3,50 with a width of 100 and height of 200. The
buffer is a string with length 1. The instance variable last is set to 0. It is possible to create a
dispframe by stating the actual text of the frame, i.e.,

(Pgf + dispframe 3 100 50 200 'hello there'!

However, the text will not show because the index into the text string is Zast = 0, indicating that no
characters are to be shown.

There are actually two entities associated with a display frame: a frame and a window. Clipping and
scrolling are done on the basis of window boundaries. Window boundaries are intersected with the
physical display screen. The frame may be smaller or larger than the window and smaller or larger
than the physical display screen. Frame boundaries are the basis for word-wraparound.

Presently, dimensions defining frame and window boundaries are given the same values upon creating
an instance of dispframe. The following are local bindings (instance variables) for each instance of
the class.

winx
winwd

winy
winht

window upper left corner x
window width

window upper left corner y
window height (note, automatically increased on creation of the instance
to make the window extend to the bottom of the display screen)

frmz frame upper left corner x

frmwd frame width

frmy frame upper left corner y
frmht frame height

buf string buffer
last pointer to the current last character stored in buf
istln pointer to the character in buf that begins the last line of text in the frame
mart pointer to the character in buf representing the last prompt output

charg right x position of the character pointed to by index last
chary top y position of the character pointed to by index last

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 70

reply indicator for frame and window control (see below)

justify toggle for right justifying the contents of the window
0 means no justification; I means justify on frame boundaries

font font for displaying characters

if nil, then default font used; otherwise, the value of font is
a string defining the font to be used (see below)

editor available storage for associating a unique editor with any display frame.

The text buffer buf contains only characters that can be displayed within the window boundaries.
Scrolling occurs when an attempt to store more characters caus'es overflow of the bottom of the
window. In this case, the first lipe of characters (where a line is defined according to frame
boundaries) is stripped out of buf.

The reply variable is useful in controlling window and .frame boundaries and scrolling. The following
are meaningful values for reply:

0 everything is okay--there was intersection between window
and display and between the window and the frame.

1 no intersection between window and display
2 no intersection between window and frame

3 window height less than font height so not even one text line can be displayed
4 frame·height has been increased to accommodate new text
5 overflowed bottom of window (scrolling)
6 both 4 and 5 occurred

To get a different font other than the default font, it is necessary to read the font string from a
previously created file (see section on Editfont on how to create fonts). Type

07/ + file <text> intostring!

Then, assuming the name of the dispframe is disp, say

disp's (GPfont + ff)!

Or, you can declare the font at the same time you create the instance of the dispframe.

G>df + dispframe (integer> <integer> <integer.> <integer> (text>!
(2df + dispframe <integer.> <integer> <integer> <integer.> string <integer,>!

Create an instance of dispframe with values for window and frame
boundaries and length of the text buffer. The window will appear
on the display screen with a black double line around it. In the
first case, where a text string has been specified, it will not appear
because the variable last is set to 0. It would be necessary to type

dt.s (6Plast *- buf length). df display.!
to actually see the text.

CO°df 4- dispframe <integer) <integer> <integer) <integer> <tex:t> font <fontstring>l
0=df + dispframe <integer> (integer> <integer, <integer, string (integer, font <fontstring>!

Create an instance of dispframe with value for font.

GPdf + dispframe <integer) <integer> <integer> <integer> <text) noframe!
S:'df + dispframe <integer) <integer> <integer) <integer> string <integer> noframel

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 71

df + <text>!
df c- c integer> !

df show!

df display!

df frame!
df frame black!
df frame white!
df frame color <integer>!

df hasmouse!

df felear!
df wclear!
df clear!

df scroll!

df mfindc (integer>(integer) 1

df mfindw <integer> <integer.> !

df mfindt (integer) <integer> !

Create an instance of dispframe with values for window and frame
boundaries and length of the text buffer. Window will not have a
black line around it.

Append the'string <text> to buf and display if possible
Append this Ascii character to buf and display its corresponding
character if possible.

Clears the intersection of window and frame and displays buf.

Does a show, then draws double black line around the window.

Draws a double black line around the window.
Same as df frame.

Draws a double white line around the window.

(color display only) Draws double line around the window in color
denoted by the integer number.

Returns 'not-false' if the mouse cursor is within the frame;
otherwise returns 'false'.

Clears the intersection of the window and frame.
Clears the intersection of the window and the physical display.
Does an fclear and then sets last to 0 and 1stln to 1, effectively
cleaning out the text buffer.

Removes the top line of text from buf and moves the text up one
line in the frame.

Find character located at <integer>,<integer>.
Returns vector vec such that

vec[1] subscript of character in string
vec[2] left x of character

vec[3] width of character in string
vec[4] top y of character

If vec[1]=-1 then position is after the end of string.
If vec[l]=-2 then position is not in the window.

Find word located at <integer>,<integer>.
Returns vector vec such that

vec[1] subscript of first character in word
vec[2] left x of word

vec [3] width of word

vec[4] top y of word
If vec[1]=-1 then position is after end of string.
If ve,[2]=-2 then position is not in the window.

Find token located at <integer>,<integer>.
Returns vector vec such that

vec[1] token count where spaces and carriage returns
are considered delimiters but multiple
delimiters do not increment the count. <text>
counts as one token.

vec[2] left x of token

vec [3] width of token

vec[4] top y of token

If vec[11=-1 then position after end of string or not in frame.
If vec[1]=-2 then position is not in the window.

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 72

df read! Makes a vector out of keyboard input. Assumes the name of the
dispframe is disp.

df reread <integer>1 (Used by fix and redo). Counts back from end of buf an <integer>
number of prompts in the buffer and does a read from there.

df sub <value)! Evaluates <value> in the context of the dispframe. (Used by fix to
evaluate the editor within Lhe window and by shift-esc lo create a
window within the window).

df hide! Same as df fclear. df frame white.

df put (string> at <oc> <,>! Prints the text <string> starting at position x,y.
Upper Iefl corner of df becomes x,y.

df corner <z> Returns 0 if position x,y in no corner
returns l if position x,y in upper left corner
returns 2 ir position x,y in upper right corner
returns 3 if position x,y in lower left corner
returns 4 if position x,y in lower right corner

df moueto <oc) <y>! Sel winx and frmx lo <x>; set winy and frmy to <y>.

df growto (z> <7>1 Set winwd and frmwd to (<x> - frmx); set winht and frmht to
(<y>-frmy).

The last three messages are added to dispframe when the window framework is included in the basic
Smalltalk system.

Four routines are available for manipulating rectangular areas of the display.

dclear (integer> <integer> <integer) <integer> <number.>!

will clear the rectangular area defined by .the four integers, where the order
specifies:<upper left corner x> <width> <apper left corner y> <height>. The cleared area
is then filled with black and white dots according to the binary representation of the
number given (1's = black, 0's = white). For example, if the number is -1, the area will be
all black.

dcomp anteger> Cinteger> <integer> (integer)!

will complement the rectangular area defined by the four integers, where the order
specifies: <upper left corner x> <width> <upper left corner y> <height>.

dmoue <integer> <integer> <integer> <integer> <integer> <integer> <integer>l

will take the source rectangular area defined by the first four integers (same order as
above), and move it to the destination defined by the fifth and sixth integers (destination
upper left corner x,y). The seventh integer is a mode indicator: if the mode is 0, the
source rectangular area will be stored as given; if the mode is not 0, the black and white
dots in the source rectangle will be 'or-ed' with the dots in the destination area (0 or 0 =
0; 0 or l = 1; 1 or 0 = 1; l or i = 1).

dmouec <integer> anteger> (integer> anteger.> <integer.> <integer.> <integer)!

same as dmove except that the non-intersecting source rectangular area is cleared.

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 73

Point Class

A point is an example of a storage method. Several examples of its use have already been given in the
Chapter II section on sketching ideas.

point

(2pt + point 100 200! Create a point whose horizontal coordinate is 100 and vertical coordinate is 200.

pt =!
100

pty!
200

pt + (point>!

pt - <point>!

pt = <point>!

Reply is point obtained by adding coordinates of pt and <point>.

Reply is point obtained by subtracling coordinates of pt and <point>.

Reply is pt y if they are the same points, otherwise false.

pt L (point>! Reply is pt y if pt is a point whose horizontal and vertical positions are smaller or
equal to those of <point>.

pt max <point>! 3 Reply is a point whose horizontal position is the maximum of that for pt and
<point>; similarly for the vertical position.

pt min (point)! Reply is a point whose horizontal position is the minimum of thal for pt and
<point>; similarly for the vertical position.

This class is provided partly at the machine code level. The corresponding code is equivalent to

to point a/xy
(isneu} 0 ((2% + :. (2' y 4- :.)
4 X * (4+ * ((24...) Ir X)
47 *(4 + *((3° oy#:.) tty)
4+ * ((Pa 4-:. t point %+a % 1+a y)
4-*(Ghte:. 1 point :c-axy-ay)
4= * COPa+.9 * C# false) x.ax=, Clry =ay) #false)
4 6 * ((4#ae.) :> Clt false.1 x a oc * C# y ay) 11· false)
4 max » (GP'ae:. 11· point Oc mazax) Cy max ay))
4 min * 09-ae.. It point (% min a x.) Cy min a y))
4 print * OPpoint print. sp. z print. sp. y print))!

Also provided in the basic Smalltalk system is the routine mp

to mp 0 point inx my)!

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 74

Aids for Interacting with Smalltalk

The Smalltalk Class Editor

edit <classname>!

will get you the Smalltalk editor for the class which is named <classname>.

fix <integer>!

where integer is the number of transactions (images of the Interim Dynabook) back from
where you are, will get you the Smalltalk editor for transaction integer. Upon exiting, the
edited transaction will be evaluated, but the original transaction will not be modified.

edit <classname> title!

will start the editing with the title line.

The editor shows two frames. The righthand frame contains a menu of commands, the left
hand frame contains a structured representation of the definition. All tokens at a single level
o f parenthezation are shown. A lower level of parentheses is shown as (). An example is:

do 4 (S go 100 turn 90)

is shown as

do 4 ()

All editing is done by "grabbing" a command in the righthand menu (pointing to it with the
cursor and pushing the top or middle mouse button).

In the following, "text" refers to characters typed from the keyboard and- terminated with !.

Commands Number of Times

Grabbing Needed
Action Taken

Add 0 Append text to end of current level.
Insert 1 Add text befoTe designated word.
Replace 2 Replace the text indicated by pointing to the

beginning and end words with new text.
Delete 2 Delete the text indicated by pointing to the

beginning and end words.
Move 3- Combination of deleting text and inserting new

text before the word pointed to as third 'grab'.
Up 1 Remove parentheses.
Push 2 Put parentheses around words indicated by pointing

to the beginning and end of the intended grouping.
Enter 1 See the next lower level.
Leave 0 See the next higher level.
Exit 0 Terminate editing.

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 75

The only exceptions are Enter and Up. If there is only one level marker, (), showing in the current
level, no grabbing is required.

Showing Stored Information

show <name> !
- will show you what meaning the <name> currently has.

defs!
will show you the names of classes you have defined that are currently available.

dpo list!
will show you the names of files stored on your disk pack.

type <text>!
will show you the contents of file named <text>; returns 'false' if the file does not exist.

Saving Smalltalk Definitions

fizin <text>!

will go to a file whose name is <text> and tell Smalltalk to read what it finds on the file.
Example:

fitin 'boxes'I

Usually the file will contain programs written theie by running filout as defined next.

filout <text)!

will write every program whose name is in defs to a file called <text>. Example:

fuout 'boxes'!

will write out every program whose name is currently in defs· There are a few other useful

variations of filout.

fuout (text> <vector>!

wiII ignore defs and only write out the programs mentioned in the vector. Example:

filout 'boxes' (2'(box square triangle)!

will ignore defs and only write out the three programs whose names appear in the vector.

Suppose the vector contains vectors, for example,

filout 'boxes.'

0-(boxes square Caddto turtle (2(-4place * (SELF penup goto C.)(-:) pendn up))13!

will write out the programs boxes and square, and then the vector

(addto turtle (4[place *(SELF penup goto (:)(:) pendn up))).

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 76

On filing in this file, the ability to receive the message place will be added to the class turtle.

filout pretty <text> !
fitout pretty (text) (uector,!

will format the programs so they will print nicely (in show format).

filout <text> add!

will not overwrite file <text> but instead will add the new definitions at the end of <text>.
Obvious variations include

filout pretty (text) add!
filout (tect, add (vector.>!
filout pretty (text> add <vector.>!

The <vector) could Be given a name such as tist:

flist€- <vector.>!

and then it is possible to type

filout <text> list!

will write out the definitions of objects named in list.

Or

filout <text.> 0°list!

will first write out the definition of the vector list and then the definitions of the objects
named in list. Variations with pretty and add are also possible.

Saving and Restoring Your Context

file <text> save!

will save your entire current state verbatim on the file <text>.
Example:

file 'blockworld.su' save!

Try

file 'dmt.boot' load!

to start the Interim Dynabook memory diagnostic.

file <text) load!

will restore you to the exact state when the file <text> was saved. Example:

file 'blockworid.su' load!

This file is also one that you can resume from the operating system. That is:

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 77

resume biockword. su <return.>

will restore you to the exact state when the file was saved.

IJtilities

are already written programs which provide useful services such as reading the keyboard and the
mouse, telling you how much room is available, and so forth.

ntt

stands for the empty value in Smalltalk. It may be tested by saying:

nun <value.>!

which will reply 1 if the <value> is nil (i.e., the empty value), and 'false' otherwise.

corel

will tell you how many words are left. Any reply smaller than 500 is courting disaster. If
your space gets that low, or (worse) you get a diagnostic window with the message:

I've run out of memory

say:

expand <number)!

This will remove <number> of scan lines from the screen and convert them to usable space
at the rate of 32 words of space per scan line. So:

expand 100!

will increase your workspace by 3200 words.

addto (classname.> <vector)!

will add a definition whose meaning is <vector> to the class whose name is <classname>.

Example, after typing:

addto box (2(4#move * (SELF redrato (9»·:. (274-:.)))1

box will know how to move.

f (ualue) Cualue.> ... <value.> J!

will construct a vector of the values found between the curly brackets.

stringof <value.>!

will convert the <value> into an instance of the class string only if <value is an object that
responds to the message print.

base8 (integer) !

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 78

will construct an instance of class string containing the octal representation (unsigned) of
<integer>.

eq (value> <value>!

compares two Smalltalk pointers.

Keyboard Keys

(return>

moves following text to a new line when typing in. Will otherwise be ignored.

<bs)

removes any previous character (including <return>).

Reading the Keyboard

kbd

will wait until a character has been typed and then reply with the numeric code of the
character which was typed after being passed through a table which assigns (basically)
standard codes to the character.

To receive an uninterpreted version of a character, use:

TTY

which will wait for a character to be typed and then reply with an uninterpreted result.

Smalltalk will not lose typed characters if no program is listening. Instead they are held in an ordered
buffer waiting for a program to use TTY or kbd. To find out if there are any characters in the buffer,
use:

kbck

which replies 'not-false' if characters have been typed and 'false' otherwise. A typical use
would be:

kbck * ((9'char + kbd)

which will only use kbd if there is already a character waiting, and will then save the new
character in char.

read

will gather up a vector of Smalltalk code. It first sends a prompt O to the display.
Everything you type until a ! will then be made into a vector which is sent back.

read of <text>

is the same as read except that the characters are found in <text> rather than taken from
the keyboard.

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 79

ev!

repeatedly evaluates the vector (-cr read eual print); will, in effect, give you another level
of Smalltalk evaluation.

to eu (repeat Cer. read eval print))!

Over and over, it will do a carriage return, put out a prompt character 8, wait for input
terminated by a !, send the resulting vector the message eual to get Smalltalk to execute the
uector, and, finally, give the result of evaluation the message print in order to show the reply
back to the user. The loop is infinite but:

done! or <ctrl>D

will terminate it. Here is a fancier version which will tell you the current level of
evaluation:

(2 level + 1 !
to eu

((Plevel + level + 1.
repeat (cr. (2leu-el print. sp. Zeuel print. sp. read eval print)
Gif:'level + level - 1.)!

Notice that if the last token in the message is a period, then the sequence is not unlike

0' a + read of '.'. a is (.)
(2 a +a eval! a evaluates to nil.

a print! nil prints as nothing

<shift> <esc»

creates a subwindow in the dialog window. Allows Smalltalk evaluation as in the dialog
window. (In effect, evaluates eu in the subwindow). To return to main window, type

done! or (ctrl>D

Subwindows can be nested as long as there is space to create a window with height greater
than the font height. When a subwindow is created, reading characters is suspended in the
main window; a return to the main window returns you to the precise place you left off, for
example, in the middle of typing some expression.

<ctrl> (

does an evaluation of the next expression at the time the keyboard input is read. This gives
you an opportunity to perform a computation and have the result be used in the main
expression being typed.

Transferring Messages

appZy (name)

will send the current message (the one which was sent to the context we are currently in) to
the object which has name <name>. For example, suppose 'we' are called 'bogus' and have a
number of things we can do. Somebody sends us the message:

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 80

bogus sq 100+50!

an'd we have a line:

4sq * Capply square)

then square will be applied to the remainder of our message 100+50 so that it can pick up
the value 150 and draw the square with sides 150 units Iong.

apply <name.> to <vector>

gets the object which has name <name> and sends it the message <vector>. Example:

appry square to 0.(150)!

will draw the square with sides 150 units long. The important thing here, of course, is that
we can compute a message and then send it to Smalltalk.

apply (name> in Cvalue,>

will send the current message to the object which has name <name> using dictionaries whose
uector starts with context <value>. For example, if you would like to evaluate the message
using only "top level" names (ignoring the dynamic environment), then try:

apply mumble in GLOB!

apply (name> to <vector> in (value>

is the fullblown apply.

euapply

has exactly the same meaning as apply except that it expects a <message> of some kind to
be evaluated rather than a <name>. Example:

evapply Ca<b => C'abcdefg')(V'(this is vector) J to 9'Yiength) !

will reply with the length of either the string 'abedefg', or the uector GF'(this is vector),
depending on the values of a and b.

The optional formats for euapply are the same as for apply as described above.

Display Utilities

disp

is the local name of any dialog window. It is an instance of the class dispframe. When the
mouse activates the window, disp may be used to send messages to the window or to find out
things about it.

disp's frm=!

will tell you the x position (upper left corner) of the frame.

indisp <ualue> <message>!

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 81

will temporarily redefine disp to be <value> and evaluate the message in this new context.
This is usually used when the message contains print or read routines which assume that
they will be using a dispframe named disp. The routine is defined as

to indisp disp
(tdisp + h

t 8 euall !

SP

will print a space character.

CT

will print a carriage return.

dsoff

turns off the display and speeds up Smalltalk by a factor of 2.

dson

turns the display on again.

redo <integer>

where <integer> is the number of transactions (images of the Interim Dynabook) back from
where you are, will re-evaluate the message at transaction <integer>.

Control Utilities

repeat (...)

contents of () will be re-evaluated until a done is encountered (or you strike the escape
key). The escape will be from the innermost loop in which the done is enclosed.

done

will cause the loop to be exited.

done with (value.>

will cause th@ loop to be exited with the value <value>.

again

will restart the innermost loop in which the again resides.

for <atom> + <numberl> to <number·2> by <numberS) do C)

an iteration control feature--will re-evaluate contents of 0 until the value of the index
<atom>, starting at <numberl> and stepped by <number3> each time, exceeds <number2>.

if <value> then <messagel> else OnessageD

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 82

if the value of <value> is 'not-false', then evaluate <messagel > and do not evaluate
<message2>. Otherwise, evaluate <message2>, ignoring <messagel>.

do <integer> (...)

the contents of C.7 will be re-executed <integer> times.

Mouse Utilities

mi

replies with the horizontal position of the mouse. 0 is at the left margin, 512 is the right
margin.

my

replies with the vertical position of the mouse. 0 is at the top of the screen, 808 is at the
absolute bottom, 512 at the top and 680 at the bottom of the original dialog window.

mP

replies with an instance of class point such that mx = mp x, my = mp y.

button <numeric vaue between 0 and 7>

tests the mouse buttons singly and in combination.

button 0 'not-false' if no buttons are on

button 1 'not-false' if middle button is on (top is button nearest wire)
button 2 'not-false' if bottom button is on

button 3 'not-false' if bottom and middle are on

button 4 'not-false' if top button is on
button 5 'not-false' ir top and middle button are on
button 6 'not-false' if tAp and middle are on
button 7 'not-false' if all the buttons are on

mem

mem loads integers from and stores them into real core. The important locations are:

clock

mem 0430
mem 0430 + 0

Read the clock

Set the clock to zero

mouse

mem 0424

mem 0425

mem 0424 + 0

mem 0425 + 0

Read mouse x

Reai mouse y
Reset mouse x

Reset mouse y

BASIC SMALLTALK SYSTEM CLASSES AND UTILITIES Page 83

cursor

mem 0431 for i *- 1 to 16 (mem 0430 + i) are the cursor bits
for i +lto 16 (mem 0430 +ie shapefil)

mem 0105

mem 0105 + 0
mem 0426 + x. mem 0427 + y.

Put new bits into cursor from vector named shape
Connections between mouse and cursor

Disconnect cursor from mouse

Move the cursor

interrupt character

mem 0107 + 0177 Make DEL the interrupt character (instead of ESC)

display control block

mem 0420 Get pointer to display control block

keyboard, keyset, and mouse inputs

mem 0177034

nzem 0177030
Reads the first of 4 keyboard input words
Reads the word with mouse and keyset bits.

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 84

Chapter V. EXAMPLE SMALLTALK CLASS DEFINITIONS

This chapter provides some examples of the use of various Smalltalk basic system classes and utilities.
Included are samples of programming techniques as well as the contruction of new, interesting class
definitions. The examples correspond to the basic classes defined in Chapter IV; they are presented
in a "try it out" style with suggestions on problems and projects.

Arithmetic

Example: Figuring the Amortization of Loans

The problem we chose to demonstrate the use of fioat is the amortization of a loan in equal monthly
payments. The main routine payment requests values for the loan principal, loan interest, number of
years to pay off the loan, and the number of payments per year. It then carries out the following
computation:

Let

rate = interest rate/ (100 * number of payments per year).

Let

increase = (1 + rate) raised to the power (number of years to pay off the loan
* number of payments per year).

Then each

monthly payment = (amount of the loan * rate * increase) / (increase - 1).

The

total amount paid over the period =
(number of years to pay off the loan • number of payments per year) * monthly payment.

To report the results of the calculations, we need a reporting routine where we might say.

report 'Interest Rate as a Percentage is ' rate!

and expect to see

Interest Rate as a Percentage is 54.

The Smalltalk definition is

to report
Cer. Print a carriage return.

disp +.. Print the textual message in the dispframe.

C:) print J! Print the value received in Lhe dispframe.

Next we need to be able to receive the values from the keyboard for the parameters: number of years,
rate, etc. We can use the Smalltalk utility read.

read will gather up a vector of Smalltalk' tokens. It first sends a prompt 8 to the display. Everything
you type until a ! will then be made into a uector which is sent back. For example, the result of
saying:

(Pa + read!

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 85

and then typing:

do 4 (0 go 100 turn 9091

will associate the literal vector (-do 4 /9 go 100 turn 90)) with the name a. If we say:

a!

the following will be the reply:

(do 4 (S go 100 turn 90))

If you send the message eual to a, Smalltalk will evaluate its contents:

a eual!

and a square will be drawn. To select the second element of the vector a:

a[2J!
4

To select the fourth element of the third elemdnt:

a[3][4]1
turn

Vectors have many capabilities. To see more, take a look at the definition of vector in Chapter IV.

read of <text.> is the same as read except that the characters are found in <text> rather than taken
from the keyboard. To help get values from the keyboard, you might define:

to demand nin

((2nm + 8.
(4as * (dispe.) nm print)
tnrn + read eual)!

Try it with:

demand spd as 'I want a new speed ' !
I want a new speed 41367!

Then type:

spd!
367

or, without a specific message:

demand angle!
angle 859!

angie!
59

We will also need a method for converting the floating point numbers to nearest whole dollar
notation. We can send the message $ to members of the class float and receive the value rounded to
the nearest dollar.

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 86

addto float (> (4 %* Ct 0.0 + (0 + (0.5 + SELF) * 100) / 100))3

The class float can now take a floating point number and round to the
nearest dollar.

Now for the definition of payment, a method for computing the total amount of dollars paid on a loan
at the end of the load period.

The Definition of the Class Payment

to payment principal interest period
payments rate increase total Request four values

Cdemand principal as 'Amount of the Loan in decimal d--d.dd '.
demand interest as 'Interest Rate as a percentage'.
demand period as 'Number. of Years to Pay Off the Loan '.
demand payments as 'Number of Payments per Year'.

(2 rate +CO.0 + interest) / 100 * payments.

Q increase + (1.0 + rate) ipow (period * payments).

Compute the rate, adding
0.0 to guarantee floating
point number.

Compute the increase.

Compute lhe total amount
paid over the period to the
nearest dollar.

(2 amount + Crprincipal * rate * increase) / (increase - 11) $.

report 'Each Payment is $ ' amount. and report it.

Compute and tell total
amount paid over the period

report 'Total Amount Paid is $' (2total + amount * (period * payments).

Compute and
report 'Total Interest Paid $ ' total - principal.)! tell total interest paid.

Sample Interaction

Run this by typing

payment !

For example, the interaction between the user and payment might look like

Amount of the Loan in decimal d--d.dd 2 30000.00!
Interest Rate as a percentage $191
Number of Years to Pay Off the Loan 8 30!
Numbkr of Payments per Year £112!

Each Payment is $ 241.0

Total Amount Paid is 1 86760.0

Total Interest Paid is 56760.0

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 87

Sequential Dictionaries

include the classes: vector, string, obset, stream, file.

Stream.

Stringof is a method for converting a non-string value to a string. It is included in the basic
Smalltalk system.

to stringof n

1 ind isp stream (n print. £ disp contents))!

Recall we have already defined indisp as

to indisp disp
(0'disp e:.

t:eval)!

n is a value that we would like converted to a string. The simplest way to do this is to assume that
the print method for any class is to convert its printable form into a string that it can send to disp
(the generic name for a text display frame). We use indisp to set up a context in which disp is an
instance of the class stream. We then send n the message print which should basically do: disp +
<string form of n.>. Since disp is a stream, it will store the string form as its contents, which we
return as the proper reply.

Files.

The following routines (°cfer, copym, xplot) are examples of the use of the class file. Each is a useful
utility to have around.

(1) =fer

copies a single file. It is useful,mainly for transferring files between disks on an Interim Dynabook
with two disk drives. For example

xfer dpl file 'ualuable' old to dpO file 'ualuable' new!

copies a file named 'valuable' from disk 1 onto a newly created file of' the same name on disk 0. To
obtainthis object type

min 'rfer.'!

The definition is

15

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 88

toxferfghi
(dsoff, Turn off the display.

Fetch the instance of a file.

Clto A (f g + a The message (to) must appear for the format to be correct.

repeat (g + f's (numch = 512 * (sadr) sadrfl to numchl)·
f's nextp =0* (done) f set to ps pagen +10).

The repeat-loop is copying each page of the file.
g shorten to here) Sets the pagen and bytec for g.

Otherwise say format is incorrect
disp + 'proper format is:

disp + 'ocfer (file> to (file>!

disp + 'where <file> may be preceded by dpO or dpi')

f close. g close. dson.)! Close the two files and turn the display on.

(2) copym

copies multiple files from one directory to a directory on the same or on another disk. For example,
type

copyn, dpl to dpo 0°('filel') '.sr' 1

This copies 'filel' from disk 1 to 'filel.sr' on disk 0 (the new file). The complete syntax for copym is

copym (source directory) to <destination directory> <vector of file names> <text>!

where <text> is the extension for the files on the destination directory. ,The extension is optional.
The definition uses the object =fer.

to copym sourcedir destdir filenames ext i
CGPsourcedir + :.

4.to.
Ghiestdir + :.
0-filenames + :.
Cnull (67°',ext + :.) * (9'ext + 09)
for i to filenames length - 1

(Ifer sourcedir file filenamesfil old to destdir fize filenamesfil + ext new))!

(3) xplot

=plot writes a screen image (bitmap) onto a file (86-87 disk pages, takes about one minute) for
printing on an XGP with the XPLOT program. (Hence this is particularly useful to those readers with
these facilities.) Either low or high resolution screen images can be plotted, but not both; i.e., only
the low resolution (picture) part of a screen with both low and high resolution parts will be saved.
Type

filin 'xplot.'!

EXAMPLE SMALLTALK CLASS DEFINITIONS

The following definition requires the class AREA which is also provided below. N
simple form of class rectangle defined in Chapter 11 and later in this chapter. The
instance of AREA to the message makebuff is a string containing the sequence
rectangular area. The file 'xplot' also includes the obje'cts BLT, PNT, and bringitin.
a method for restoring a display screen from a file written by the object Xplot.
message--the file name.

Page 89

ote AREA is a

response of an
of bits in the
This last one is

It expects one

to AREA abc/origin extent
(4's » (lt 2 eual)

4 is * ('ISIT eual)
4 makebuff o (GPa + string 2 * extent y * GP b + Cextent x + 15) / 16.

C> cc- PNT c.
BLT c+2b0 extent %0 extent 70 mem 60 32 origin x origin y extent y 0.
1 a)

isnew * CGPorigin + :. GP extent + :))!

to PNT (mem 255 + :. 11 mem 255)!

to xplot fhirsw
((097 + :) is file * 0

07 + file f *O tfatse). Make sure f is a file.

Gho + 255 Ellnem C71 + mem 272)+ 1. Number of words per scan line.

CO < mem 11+1* Cfnext word +2.
Gh + 2 * mem h + 3)

f next word + 4. GPs + mem h + 3).

High resolution --- enlargement.
Number of scan lines.

Low resolution.

dsoff.
* r + AREA point 0 0 point w*16 1.
do 4 (f next word + 0).

The screen area is written out on the file

each time in the next loop.
Default values.

for i to s
Cf next word + - 10. f 4- r makebuff·
rs ((Porigin *- point O i)).

f close. dson. J!

-word count followed by bits in scan line.

Move the area down the screen.

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 90

Dispframe

disp. As explained in Chapter III, disp is the local name of any dialog window. It is, in fact, an
· instance of the class dispframe and is created as

0=disp + dispframe 16480 415 168 string 520!

A Smalltalk window, as demonstrated in Chapter I, owns an instance of a dispframe whose name is
disp. This particular name must be used because the Smalltalk read method assumes that all
keyboard interactions will be carried out by displaying the typed characters in an instance of
dispfrarne named disp.

As an example both of using this generic name as well as of using the four display routines (ddear,
dcomp, dmove, and dmouec), try the following sequence.

1. Create four new windows on your display screen.
2. Place them in four quadrants of the screen, enlarging them to fill the areR above the

original dialog window.

I window 1ll window 2 1
1 11 1

I window 31 1 window 4 1
1 11 1

I original I
I dialog window 1

3. Place the mouse cursor in window 1 and type (Pturt 1 + turtle frame disp!
This creates a turtle who lives only in this first window. home for turtl is the center of
the window.

4. Repeat the above process: enter each of the remaining three windows and create turtles
turt2, turt3, and turt4.

5. Now point in the original dialog window and try:

turtl home erase! Note only window 1 is erased.
for i to 200 (turtl go i turn 89)! Note the turtle draws lines only in its own window.
turtl's frame's (dcomp frm= frnuod frmy frmht)1

Complement window 1.

Try different designs in each of the four windows. Or try

turt2s frame7s (dclear frnix frmwd frmy frmht 13107)!
turt)'s frame's Cdclear frmi frmwd frmy frmht 12121)!

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 91

As examples of using dmoue, try making window 4 small and then

to niouer

Cturt#'s frame's (dmoue frmz frnuod frmy frmht 97 rmz•-frms-5 61°f rm,+frmy- 5 : 1)1

do 10 (mover 03! turtd's window moves toward the bottom left corner,
replacing any information already displayed in the areas.

or

do 10 (mover 1)! turths window moves toward the bottom left corner,
interacting with any information already displayed in the
area.

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 92

Point class

This data type is used to design the class rectangle which can compute areas of intersection between
two rectangles and create the rectangle that encloses two rectangles. An abbreviated version of the
class rectangle was introduced at the end of Chapter II section on Paint Brush. To obtain this
definition of rectangle, type

filin 'xy/ns.'!

GP'joe + rectangle point 100 100 point 150 150!
Rectangle at upper left corner 100,100 and lower right
corner 250,250

joe has point 120 105!
point 100100

joe comp!

joe clear -1!

That is, 'not false' and therefore true

Complements ioe's bits.

Clears joe to all black.

joe clear 21212!
joe clear 0525251 Some nice patterns.

joe intersect (Pjim + rectangle point 140 120 point 150 170!

jim is a rectangle at upper left 140,120 and lower right
290,290. Reply is intersection of joe and jim, a reclangle at
upper left 140,120 and lower right 250,250 (origin is point
140 120; extent is point 110 130).

joe include jim!

joe moueto 200 300!

joe frame!

Creates rectangle around joe and jim.

Upper left corner is moved to 200,300.

Draw a black border around the rectangular area.

The code for the class rectangle and some useful routines follow. Note two messages (makebuff and
loadbuff) used in the definition of AREA as stored on file 'xplot' could be included as messages
understood by a rectangle.

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 93

to rectangle abc/ origin extent
(4has=>

torigin c origin + extent)
4,s=>Clt 8 eual)
4¥comp*

(dcomp origin sc extent x origin y extent y)
'¢¥dear*

Cdclear origin x extent x origin y extent y :J
lintersect*

0'a + origin max c's origin.
0'b +Corigin + extent) min c's(origin + extent).
a L b» C#rectangle ab-a) 14alse)

4include:>
(*c + :.
(2='a + origin min c's origin.
0=b +Corigin + extent) max c,sforigin + extent).
trectangle ab-al

imoueto * CGPorigin + 0
4frame *

((Pa + turtle.
a penup goto origin turn 90 pendn's width + 2.
a penup goto origin turn 90 pendres width + 2.

do 2 (a go extent x turn 90 go extent y turn 901)
lis *CISIT eual)
4¥print *

(Gh-ectangle print sp origin print sp extent print)
4 paint o (CODE 41)

isnew => (0'origin + :. (2extent 4- :))!

to waitnext x

(936 + 8.
repeat (z eual » (3 done)
repeat Cz eual * Cdone)))1

to bug
(waitnext butlon. Emp)!

A demonstration to try often is

to xydemo + class abc
CGPa + rectangle Gh • bug bug - b.
a comp.
GP'c + rectangle G?°b + bug bug - b.
c comp.

0-b • a intersect c.

(b*(b clear 13107))
Ca include c) frame.)!

Type

xydemo!

Is a point inside rectangle?

Expects bit patterns as a message

Creates a rectangle that is the intersection of c
and SELF if they have common area
else,'false'.

Creates rectangle around SELF and c.

Move origin to a new point.
Turtles understand how to go to a point as
well as two numeric coordinates.

This message was discussed in Chapter Il
section on Paint Brush.

Stay in this routine until
x is first 'false' and then finally
'not-false' again.

Wait to get the mouse point
when button 1 is pre.sed.

The result of pointing to different screen locations is a geometric design formed by the interaction of
black, white, and gray rectangles.

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 94

Dictionary of Areas and Points

An Obscure Challenge for the Day: when does this blow up?

Suppose the screen is divided into a main area that is a rectangle point 30 20 point 100 80; and the
subareas within the main area are 50 wide and 40 high. There are four such subareas. The purpose of
a dictionary of points on the screen is to be able to designate areas as menu locations or nodes of a
tree or whatever, and to be able to recognize, quickly, in which area the mouse is located.

30,20

1 12

3 14

130,100

Suppose we create a menu that has five menu squares (1,2,3,4, 5) located in subareas 1 and 2. Each
menu square has length 14 units. Further, suppose the upper left corner of the first square is point 45
30.

[1][2][3][4][5]

Then, we have

0'dictiondry + xydic 50 40 in rectangle point 30 20 point 100 80!

Create the main area and subareas.

e•menu + vector 5!
for i to 5 do
(dictionary + menufil *- rectangle point 45+Ci-I)*14 30 point 14 14)!

Store menu squares 1 - 5.

dictionary print!
3 in area 1
3 in area 2

0 in area 3
0 in area 4

Print number of items in each

subarea foflowed by the subarea index.

dictionary map (2(-comp)! Tell all the menu squares to complement.

EXAMPLE SMALLTALK CLASS DEFINITIONS · Page 95

dictionary index point 50 70! Given a point (50 70), compute in which
3 subarea it falls.

dictionary find mp! Given a point (mouse point), ask all the
stored areas if they have the point.
Return the first one that says yes.

dictionary delete menu£31! Delete the third menu square.

dictionary edit Cdelete) menu£31 ! Editing method used by messages delete and •-.

A file exists on the basic Smalltalk disk that contains the following definition. Type

filin 'xydic'!

to try out this dictionary method.

to xydic exp i input p ual / all areas Erect ncols =size ysize .

(4#index * CGPP + :.
#1 +Crp x - brett's origin x.) / xsize) + ncols * (p y - brect's origin y) / ysize)

4/ind * Cqp + ..
brect has p=> (-(Pual + nil.

czreas[SELF index pl map (2
Cuecfil has p * Cdone with (iP'val + vecfil))·

truall
tfalse)

iedit * CGP'exp + uecmod 820 Ghnput e..
0'ual + (SELF index input frame'sforigin + point extent x 01)

- *i + SELF index input frame's origin.
for if-ito SELF index input frames(origin + point 0 extent y) by ncols

(for p & i to i + ual (euapply areas[p] to exp)).
apply all to exp)

44- * (SELF edit

4delete * (SELF edit (delete) :)

4#map . Call map :J

isnew» (Ghsize + :. 67'ysize + :.
6'brect + C<Fin=>C:) rectangle point 0 0 point 512 512).
@hcols + brect's extent x / xsize.
GPareas + uector ncols * brect's extent y / ysize.
for p to areas length (arects[pl + obset).
GPall + obset)

4print * (for p to areas length Careas[p] length print. sp.
disp + 'in area '. p print. cr)))1

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 96

Turtles

Try

4#turt + turtle frame dispframe 16 100 16 100 " .!
turt home erase.!
for i to 300 (turt go i turn 89).1
turt,s frames (dcomp frmx frmwd frmy frmht).!

The first three statements create a turtle in a 100 by 100 rectangular area in the upper left portion of
the display screen, clear that area to white and draw a spiral using black lines. The last statement
enters the context of the turtle's display frame in order to use the frame boundary parameters in
order to complement the area (white to black, black to white).

To sketch with characters or text, try

to draw turt ¢

C@turt + turtle.
turt home xor turn 90.

* t 4-:.

Create a drawing turtle.
Painting is different if the ink
is black or while.

Fetch Lhe"paint brush"

repeat (button 4 * Cturt penup goto mp pendn + t)
button 2 * Cdone)1)!

draw '®'1 Paint with "smiley"

draw 'hetto'! or the text 'hello'

draw 97! or the character 'a'.

Designing your own character is another way to design a paint brush/

Commander Turtle

Here is a nice way to distribute turtle messages to more than one turtle at a time. The idea is to
create a "commander" turtle. Any messages he receives, he sends on to all the members of his troop.

(Eioe + commander 4!

joe go 1001
joe turn (number.>!
joe pentip!
joe pendn!
joe home!
joe fan!

joe's ink + <integer.>!
joe's width + <integer)!

joe commands a troop of 4 turtles. Each turtle moves lo the center (home)
of the display area. Then joe sends himself the message fan.
Each member of the troop moves <number> of units.

Each member of the troop turns <number> of units.

Each member of the troop picks its pen up.
Each member of the troop put its pen down.
Each member of the troop moves to the center of the display area.
Each member of the Lroop turns in a unique direction and changes ink color
such that member i has ink color i+1.

Set the ink color or each member to <integer>.

Set the width of each member Lo <integer>.

Try
0=0 + commander 4!
dragon 6! Recall the definition of dragon in Chapter II sends messages to ®. Here, O

is no longer a turtle, but a turtle commander.

EXAMPLE- SMALLTALK CLASS DEFINITIONS Page 97

to see four dragon curves draw on the screen. For those curious, we include the class definition. Note
the use of colored ink assumes a color version of Smalltalk. The dispframe colorframe is defined as

(iholorframe + dispframe 0 256 0 128 ".

to commander ab/ turts

(4 go * (*a + :. turts map Q'Cio a). ltSELF)
4 turn * C(Pa + :. turts map <2(turn a). #SELF)
4 penup * (turts mape•(penup), tSELF)
4 pendn * (turts map (9'(pendn). tSELF)
4 home * Cturts map GPChome). SELF pendn. tSELF)
4 fan :> (for a to turts Zenith do

Cturtsfal turn(a - 13 * 360 / turts length.
turtsfal's ink 4-a+13.

tSELF)
4 'S * Clink * (44·. Ght + ..

turts map (P Cuecfil's ink + a))
4#width. 4+. (2'a + :.
turts map GPY's width + a).)

isne w

Ghurts + vector a.
for b to a (turtsfb.7 + turtle frame colorframe J
SELF home fan))!

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 98

Control Classes for Repetition and Alternate Paths

repeat, do, for, if

The usual methods for repeatedly evaluating an expression use one of three routines already
presented: repeat, for, and do . The method of for can be defined as

to for step stop uar start exp
CQuar + 8.
G°start + 04 4- * (:) 1)
(3'stop + (4 to * C:) start)
*step + 04 by *6:) 1)
4 do.
..p + 8.

do is optional

var + start.

repeat ((step >0* (uar eval > stop $ (done))
var eval < stop » (done))

exp eval. var + Cuar euall + step.))!

The form of a Smalltalk conditional statement, if-ctause . (then-clause) else-clause, has also already
been Shown in many contexts. The Algol "if...then...else..." syntax can be achieved by defining if as
follows.

to if exp
C (*exp + 0 * (4 then * CGP'exp + :. 4#else :> (8. exp) exp)

error 9'(no then))
4 then => CS. 4eise * (41'exp + 0 false)
error (iP'(no then)) 1

For example,

(Pual + if a > 10 then 4 else Cif a < 10 then 64) else 0)!

val will be 4, -4, or 0, depending on the value of a.

again

is a Smalltalk method for redoing the most recent repeat, do or for loops. It is one way of iterating
on a given condition, while defaulting to end the loop. For example, suppose we send the message

fbset *- makelist mary or joe or henry!

expecting to form a list of alternatives terminating when no further alternatives exist.

to makelist list

(Ghist + obset.
repeat Clist + 8.

lor * again) donej
1 lise!

Obsets form unions.

Continue if see word "or",

Reply with the list.

while

A while clause lets us send messages of the form

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 99

GP'str + streant.
while (Abck and C (*t + Abd) * 13))

do (str + t)!

That is, store keyboard strokes into the stream str as long as there is a character in the input buffer
and the character typed is not a carriage return (whose Ascii code representation is 13). This
definition is not part of the basic Smalltalk system.

to while Cond Exp
CG°Cond + B.

4 do. do is optional
(70'Erp + 8.
repeat (apply Booleanto Cond * CED¢p eual) donel)!

to Boolean result

CGPresult + :.
repeat (4or * cresult * (81 (Presult + 0

4and . Cresult * ((2'result + 0 8,7 Right side of the and part will not

be evaluated if left part is'false'.
£ result?J!

Zahn's Device

The following is an implemention of a simple "until-like" structure, very much like Zahn's original
suggestion, which allows multiple exits from a loop [Zahn, A control statement for natural top-down
structured programming, Symposium on Prog. Languages, Paris, 1974]. The intent was to be able to
write in Smalltalk a minimal, event-driven keyboard/display routine like this one:

until CR or DEL do

<Gh + hbd.
disp + t.
t = 13 * (CR)
t = 127 * (DEL))

case

CR : (disp + 'normal exit.')
DEL : (disp + 'punt exit.')!

To implement this control structure in Smalltalk, a class of objects called events was defined such
that each instance, when it is awakened, executes a piece of code and br6aks out from a loop.

to until tempatom statement
(repeat ((Ptempatom + 8.

tempatom + event.
4 or * (again) done)

C•¥do * CGPstatement + 83)
(Wcase * Crepeat ((22empatom + 8.

tempatom eual is event *
(4:. tempatom euai newcode 8.3

done)))
repeat (-statement evag) J !

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 100

to event / mycode
Cisnew * CGP'mycode + vector 3.

mycode [2] + (0'done.)
4 nelocode * Cnecode[11 + :.)
4 is * (ISITeual)
my=ie eval)!

Euent is an example of constructing a vector of code that wilI be evaluated at some later time. When
an instance of event receives the message newcode, it stores away some message as the first objects in
the vector mycode. The last object is the message done which, when mycode is evaluated, forces a
break out of the repeat loop in until. Hence, if we run the above example of using untiZ, we have

0:'tempatom + 8.
tempatom + event.
lor

*Cagain)
done

4 do
(2statement + 8
lease
repeat (tempatome·Z.
tempatom eval is event
(4:.
tempatom eual newcode 81

done)
repeat (statement eual)

Pick up the word CR and store in tempatom.
CR is made an instance of the class event.

We see or, so

go back, pick up DEL, and make it an instance of event.
Now we are done.

We see the word do.

Statement is the vector ((9•t,-kbd.....(DEL).
We see the word case.

We see the word CR again and store the name in tempatom.
The value of tempatom is Cr, an event.
We see colon, :, so we
send the event CR the message newcode and pick up the code
disp s 'normal exit'. Do this again: pick up DEL and send it the
message newcode, picking up code disp *- 'punt exit'.
There are no more case statement words so

repeatedly evaluate the vector (Gt-kbd·.·), an expression
that will tontinually requesl keyboard input until that input is
a carriage return or delete character in which case the
corresponding event will bo run in order to evaluate mycode.
Evaluating mycode results in execution of a done message, hence
terminating the repeat loop.

Case Statement

A method for simulating case statements in Smalltalk is to index into a vector of vectors or atoms
that can be evaluated. The general message form is

< vector> C <integer> J euall

Such a case statement can be seen in the routine used to realize a display window move, delete,
create, or grow depending on which window corner has the mouse cursor. The routine returns 'false'
if the cursor is not in a corner. Note, in the statements below, the index =1+ corner selected.

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 101

to frmedit disp
(G>disp +:.

0Yclrfalse) index = 1, no corner selected
(-disp fclear. waitnext (butlon). index=2, move

disp frame white. disp moveto mx my.
disp display)
C 1 =sched uec length »C) disp hide. index=3, delete

sched delete task. done.J
Ccontents copy) index=4, create

(disp fclear. waitnext Cbutlon). index=5, grow

disp frame white. disp grow mx my.
disp display))

I 1 + disp corner mx myl eual)! index evaluation

For instance, if the mouse is in upper right hand corner of the display window, then

disp corner inx my = 2

Add 1 and we get and index of 3, picking out the code to delete the current window.

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 102

Scheduling Methods: sched and window

Recall that Smalltalk has a USER task which is continually evaluated. (See Chapter III section
entitled The User Task).

One method useful for scheduling the display windows we have been working with is to replace the
USER task with a request to send the message run to each item stored in an obset. We have chosen
to name this obset sched.

PUT USER (13'DO (2(sched map 9'(9=task + uec[l-1.
apply task to (2(run) in GLOBJ)!

or

PUT USER GPDO (2'(sched map G'Capply each to G>(run) in GLOB))!

Suppose sched contains three items, each one an instance of the class window (we will examine the
code for this class in a bit). Then, in sequence, the temporary variable task is set to the value of
vec[I], vec[2], and vec[3] (the local bindings in sched for the three instances of window). Each
value of task is sent the message run. This is a round robin method for sclieduling objects, giving
each object the opportunity to run if it so chooses. Each object stored in sc/ted must be able to
receive the message run.

A window that can be scheduled has two instance variables, an instance of the dispframe in which we
expect to read and print any keyboard i/0, and an instance of a class that knows about and can edit
the objects living in the dispframe. We will present three examples of this second kind of class: a
Smalltalk dialog window (stwindow), a window for invoking the Smalltalk class editor (edwindow),
and a picturewindow (picturewindow).

Window. The class window looks like

Gbw + window dispframe 10100 10 50 strink 50 <editor)!
Creale a window in which the contents is defined as some editor.

w run! This is the message we expect to send as part of the USER task.

w contents (message>! window contents is <editor>. Send this <editor> the message <message>

to window / disp contents
Clrun * (disp hasmouse *

Ccontents enter.
repeat (disp hasmouse * Chbck * (contents kbd)

0 <mouse 7<* (contents bug)
contents running)

done)
contents exit))

€#contents * C# apply contents)
Vis * (ISIT eval)
4's * Cir 8 eual)
isnew * CG=disp + :. lihontents + :. contents new))!

The value of disp does not have to be a dispframe, but it does have to respond to the message
hasmouse. Notice that the main method for sending a message to the object whose name is contents is
to send it indirectly through the class window. When a window sees the message word contents it
gives the object contents permission to examine the message. For example, if contents is an instance
of stwindow, defined next, and we want to send that instance the message running, we could do so
indirectly by typing

EXAMPbE SMALLTALK CLASS DEFINITIONS Page 103

w contents running!

where w is an instance of window and the value of w contents is an instance of stwindow.

Smalltalk Dialog Window.

Now for some examples of <editor>, each of which must understand the messages sent to it by
window: enter, running, hbd, bug, exit, new.

The particular method used to define stwindow says that the final action in creating an instance of
the class is to return an instance of window. Hence it is not possible to send messages directly to
instances of stwindow; it is only possible to send messages indirectly through the class window.

sched + (Pst + stwindow dispframe 10 100 10 50 string 50!

Create a Smalltalk window where the display area is initially at 10,10 with
width 100 and height 50. Nole that st is an instance of window, not
stwindow. The value of st contents is the desired instance of stwindow.

st contents enter! Show the dispframe

st contents running! Blink the prompter.

st contents hbd! Road an expression from keyboard.

st contents bug! See where the mouse is pointing and take any appropriate actions.

st contents new! Print a message in the window.

st contents copy! Create another stwindow in st's own image.

to stwindow

Clenter * (disp display)

4running * (disp + 20. do 10 0. disp + 8) blink the prompt character in the window

4kbd * (cr. read eval print sp)

4bug * (frmedit disp) frmedit was defined previously.

4exit * 0

4copy * Cschedestwindow newframe) newframe creates dispframe in the upper left corner
of the display screen.

4new * (disp + 'A SMALLTALK window ')

lis * (ISIT eval)

44 * Clf 8 eual)

isnew * (twindow O.) SELF))!

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 104

to newframe f

(G°f + dispframe 16 256 16 112 string 1000 font disrs (font).

ps CGP'winht + frmht).

2 f)!

Edit Window. The content of this window is a list of names of defined classes. Pointing at one of
the names in the window invokes the Smalltalk class editor for the class. This is a useful utility for
avoiding typing edit <name>! The same method for defining the window is used here as was used in
stwindow: the reply from isnew is an instance of window; messages to edwindow must be sent
indirectly through window.

sched 4- G=ddw + edwindow! edw is an instance or window; its instance variable contents is an

instance of edwindow. The window's dispframe is newframe.

edw contents enter! Display the dispframe.

edw contents running! Blink a thick-lined square image (Ascii 4).

edio contents kbd! Create a subwindow and call on ev. I.e., repeat (cr read eval print
SP).

edw contents bug! Check the four corners (copy does not work)...if mouse is not in
corners find which name the mouse is pointing at and call on the
editor for the appropriate class.

echo contents show! Print the token 'edit:' followed by name stored in the vector.

edw contents exit! Do nothing special.

edw contents new! Display the dispframe.

to edwindow ai/ setname

(4enter * (disp display)

4running * (disp + 4. do 10 0. disp + 8)

4/,bd * (disp sub 'reu))

4bug => C frmedit disp *()
(2£ + disp mfindt mx my Ill·
£(2 * Cj.
GPa + (setname eval)Ii-1.7.

GPi + a euaL
edit i.

a = setname * (SELF showl)

4show * (disp clear. disp + '
edic:'.

The word "edit:" adds a token to the count. value of

a is Lhe class name.

i is now a pointer to the class to be edited.

Print the token 'edit:' followed by the names in the
atom a.

Ghz + setname eual.

for i to a length - 1 (sp. a.[i] print))

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 105

4#exit * C)

4new * (disp frame black. SELF show.)

<Es * (ISIT eual)

4's * C# 8 eual)

isnew » (Ghetname + 8.

£ window newframe SELF))!

Picture Window. This simple picture editor is an example of the use of a turtle "living" in a
dispframe. It makes use of the class point as well as obset and apply.

sched + (Ppw + picturewindow 16 100 16 100 string 50!

Creates a window for sketching at location 16,If. window is 100
wide, 100 high. Again, pw is an instance of window, pw contents is
an instance of picturewindow.

pw contents enter!

pw contents running!

pw contents kbd!

pw contents bug!

Show display frame and sketch.

Do nothing special.

Read the keyboard but do not evaluate expression.

Check four corners; otherwise, draw a line to the mouse point. If
middle mouse button pressed, pick turtle pen up.

pw contents exit! Do nothing special.

ptl, contents newl Erase the display area.

pw contents sketch! Draw lines between the points in the sketch unless point preceded
by penup command.

pw contents copyl copy has a new meaning: erase the sketch.

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 106

to picturewindow uar / dif 0 pics

Clenter * (df display. SELF sketch)

4running *C)

4'hbd *Ccr read)

4bug » (frmedit df*(SELF sketch.7
(pics vec length =0* (pics + (9'penup. 0 penup)

When first start pick pen up, or if
button 1 * (pics add (2penup. © penup)
@ pendn) middle button pressed, pen up.

pics + Ghuar +Imp - (point df frmz df frmy)).

8 goto var)

Find mouse point and store point relative to
the display window.
Draw the line.

4exit * 0
•fnew * C© erase)

4sketch * (pics uec length = O=,0. Nothing to sketch. Should pen be up?
pics map (P' CG=penup = uecfil=>(0 penup)

@ goto vecfil pendn).7 Draw line to the point.

4copy * (df clear. GPpics + obset)

4's* Cf, 8 eual)

4is z> (ISIT eual)

isnew * ((Pdf +Capply dispframe).

CiP@ + turtle frame df.
Gpics + obset.
trwindow df SELF)11

Delete sketch points.

Instance of dispframe created by receiving
values fiom picturewindow's message.
Turtle lives in this new frame.

Skelch points stored in an obset.
Create the window.

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 107

Loopless Scheduling

The following is an attempt to select some conventions for scheduling classes, while minimizing, if not
eliminating, the use of explicit repeat or for loops. We define startup, a method for waking up each
class instance and giving each a chance to grab control and remain in control until some quit
condition becomes true.

to startup task
(0'task + 6
(4in * ((PGLOB + :))
task startif * (task firsttime.

repeat(task quitif * Cdone)
task eachtime)

ttash lasttime)

Define context for evaluation.

Task starts, send firsttime.

Keep sending message eachtime
until quitif returns 'not-false' value.
Finally send message lasttime.

#faise)!

We will still use sched to hold the scheduled objects. The USER task is

PUT USER (SPDO (3·(sched map (>(startup each in GLOB))1

A task may choose to start, for example, if mouse cursor is in particular location or mouse buttons are
pressed or objects are waiting in a queue. The first time the task runs it may want to clean up some
graphic information or set a timer or take first object out of the queue. A task may decide to quit if
some clock timer has run out or the mouse is no longer in the correct position. Each time a task
runs, it takes whatever actions are appropriate; for example, the window might check to see if a
mouse button is pressed and the mouse cursor is in one of the corners. Hence, by convention, a
scheduled object must respond to startif, firsttime, quitif, eachtime, lasttime. So that no errors occur
if an object does not respond to these messages, we initialize things with

CiP'startif + (Pfirsttime + (Peachtime + (0'lasttime + nfl.
to quitif (#false)!

The class window which acted as a task master before is no longer needed. Methods for blinking the
prompter and waiting for an expression to ·evaluate true (waitnext) can be (re)defined. The class
prompt simply sets a timer, displays the prompt character and does nothing until the timer runs out
at which time it backspaces to erase the image. When prompt is the only scheduled object, we see a
blinking prompt character.

to prompt l t
(4firsttime * (disp + 20)

4#quitif * C#t < mem 280)
4#lasttime * (disp + 8)
isnew * ((22 + 10 + mem 280))!

Show Interim Dynabook image.
mem 280 is the clock.

Print backspace to erase image.
Set timer.

The next object, waitnext, also ignores some of the messages.

to waitnext / notoffyet expr
C<Equitif . (notoffyet » C#expr eual is false) 11 expr eual)

isnew * (0-expr + 8. GPnotoffyet + true. startup SELF.
*notofflet + false. startup SELF))1

The object frmedit is almost the same. The only exception is index 4 which originally was (contents
copy) but now must be the actions previously taken by (contents copy). In the case of stwindow, this
should be (sched + stwindow newframe). But edwindow wants to do nothing and picturewindow

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 108

wants to say (disp clear. GPpics + obset). Alternatives are to write separate frmedit routines or to
send the code as a message to be evaluated at a later time. We will use this last idea.

to frmedit disp expr
CGP'disp + :. GPexpr + nil. 0:'expr 4- 8.

0'((ltfalse)
(disp fclear. waitnext (butlon).

disp frame white. disp moueto mx my. disp display)
(1 =sched vec length =.C) disp hide. sched delete task. done.)
Cexpr eual)
(disp fclear. waitnext Cbutlon).

disp frame white. disp growto mx my. disp display))
£ 1 + disp corner m= myl eual) 1

The Smalltalk dialog window is now defined as

to'stwindow / disp
C istartif * (11·disp hasmouse)

4/irsttime * (disp display)
4guitif * C#disp hasmouse is false)

feachtime * Ckbck * (cr read eual print sp)
0 C mouse 7 0 (frmedit disp (-sched + stwindow newframel)
startup prom.pt)

4is * (ISIT eual)
4,$* (* 8 eual)
isnew * CGPdisp + :. disp clear. disp + 'SMALLTALK at your service ' 33!

edwindow and picturewindow can be defined as

to edwindow ail setname disp
C•#startif * C#disp hasmouse)

Affirsttime * /disp display)
4guitif * Cltdisp hasmouse is false)
<Feachtime * Ckbck * (disp sub 9'(eu))

0 < mouse 7 *
C frmedit disp () * 0

Gh + disp mfindt mo my £ 11·

(Pa + (setname eva!)Ii-11·
Gh + a eual.
edit i.

a = setname * (SELF show))
startup prompt) The prompt character is different.

4#show => Cdisp clear. disp + 'edit: '
GPa + setname eval.
for i to a length - 1 Esp. afil print))

48* (ISIT eual)
4's=> (lt & eual)
isnew => (Ghetname + 8.

(P'disp + dispframe 16 256 16112 string 1000.
disp clear. SELF show))1

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 109

to picturewindow / df 0 pics
(•#startif => Clrdf hasmouse)
4/irsttime * (df display. SELF sketch.)
4quitif * 011df hasmouse is false)
feachtime * Ckbck * (cr read)

0 < mouse 7 *

Cfrmedit df Cdf clear. CiPpics,obset) * (SELF sketch)
(pics uec Zenith =0* (pics + (9'penup. 9 penup)
1 = mouse 7 * (pics add (2'penup. 0 penup)
O pendn)

pics + (9='uar +Cmp - (point df frmz df frmy))*
9 goto uar))

4shetch * (pics vec Zength =
pics map (2 ((Ppenup = vecril=>C® penup)
Q goto uecril pendn))

4 is * (ISIT eual)
04's. fit o eual)

isnew * (*df + apply dispframe.
0-0 + turtle frame df.
if'pics + obset.
0 erase. df dispay))!

Messages can now be sent directly to instances of stwindow, edwindow, and picturewindow.

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 110

A Sample Text Editor

The purpose of this example is to demonstrate text management within a display frame (dispframe)--
how to

i. display text
ii. use mouse for pointing, keyboard for editing (or alternatively, set up an editing menu such as

in the Smalltalk editor)
iii. manipulate the text

Insert, delete, replace and append text can be accomplished with insert only:

action interpretation

point someplace and start typing insert, append
point to subset of the text and

start typing characters replace
point to subset and type 'del' delete

Note: when typing, will handle backspace (bs); If (<doit>) as character, not as terminator; and delete
(del) key.

A paragraph has some area on the display screen, is framed, and does not scroll unless it reaches the
bottom of the screen.

Call it pdisp.
pdisp is a dispframe.
The window height of pdisp (winht) should extend from the upper left corner

to the bottom of the display screen in order to avoid scrolling,
The frame height of pdisp (frmht) should indicate bottom of last line of text.

0'fontheight + 14.
(0'pdisp + dispframe 010 fontheight string 0 noframe.

A paragraph contains some text.

Call it buf.
buf is a string.
There is a pointer to the last character in buf.
Call it last.

last is a number.

These correspond to instance variables in a dispframe but paragraph wants
local manipulative control of the textual information.

We can give buf a textual value when we create the instance.

0'buf + (lof * (:) string o).
(;Plast + buf length.!

A paragraph contains pointers into a subset of the text.

Call the points pl and 1,2.
pl and :,2 are each, instances of the class point.
They indicate the beginning and ending of a selected subset of text.
These points correspond to indices into the text string
Call the indices locl and loc2.

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 111

010(14-(220(24-buf length·!

A paragraph has the selected subset of text complemented to provide graphic feedback.

Assume there is a class, dfcomp, owned by the paragraph class to perform the
complementation from pl to p2 within the dispframe.

dfcomp pcisp pl p2!

A paragraph's text can be manipulated.

(1) Show correct text

(2) Select an area of text

tell pdisp to show buffi to £astl

start with mouse button press in order to
select space between characters = pl;
hold down button to pick up characters
dynamically and then release the button. The
final mouse position = p2

(3) Replace selected text by new text start typing
if 'del' and locl not same as 1002, then

delete selected text

otherwise delete selected text and replace
with keyboard input

otherwise, keyboard input replaces
selected text.

(4) Might want to give the paragraph a name and store/retrieve it on a disk file

A solution to the text complement problem for a dispframe

Assume have two points indicating beginning and ending of line of text

pl beginning point
p2 ending point
df dispframe

If pl and p2 are the same point, complement nothing

If pl is lower in the dispframe than is p2, complement nothing or reevaluate
the routine, changing roles of pl and p2

If pl is higher in the dispframe than
is p2:

pl-------

.-------p2

complement from p 1 to pR requires possibly
three parts
(1) complement first line starting at pl
(2) complement full middle lines
(3) complement last line up to pe

Since the last line may be the first line pl---------pX
(3) is solved by dcomp pl % 0,2 x - pl x) p2 y fontheight.

(1) is needed if pl y < p2 y; it is solved by
dcomp pl z (df (frmz + frnuod) - pl %) pl y fontheight.

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 112

If we then redefine pl as
Shpl + point df frmz pl 1 + fontheight.

we set pl at the beginning of the second line.
If now pl and p2 are at same height and therefore same line, (3) solves it.
Otherwise, (2) is needed to fill middle lines by

dcomp pl z (df frmwd) pl y (p2 1 - pl y).

Putting this together we have

to dfcomp df pl p2
[*df + h
0'pl +:.
G°p2 e :.
Cpl y C pS y * Cdcomp pl x Cdf (frmz + frmwd) - pl oc) pl y fontheight.

(3'pl 4- point df frm= pl 7 + f dntheight.
pl y < pa y * (dcomp pl % (df frnuod) pl y (p2 7 - pl y).)))

ply>p2,»0
dcomp pl x (pE x - pl %) p2 7 fontheight.)!

A solution for finding out where you are pointing with the mouse

This routine returns a vector such that

first item
second item

third item
fourth

index of character after which you will insert
left x of character

width of character

top y of character

That is, if we point to character 3, return index 2; point to character 1, return index 0. This will
permit forward and backward movement of the cursor in order to select the subset of text. Sending
the dispframe the message mfindc gives most of the desired information:

(2'tue- df mfinde mz my.

tv is now a vector with the correct information with the exception of decreasing tufll (the index of
the character) and accounting for a "feature" of mfinde: if you point to the right of last character it
tells you the last chancter--in this case the intention is to append to the end and the returned index
should be last, not last-1, and the x position should be mx. The mouse is to the right of the last
character if its x position is greater than the character's x position plus the character's width (tv[2] +
tv[3]).

addto dispframe
(P'C•#findchar * C<Pt + mx.

(Ptu + SELF mfindc t my.
tu[1] < 0 * Going outside frame?

Clr (last charx 0 chary))
Ctu[1] = last * (t > tu[2] + tu[3] * (tu[2] e t)

tu [1]*- tu[1] - 1)
tu[1] *·tu[1]-1.)
ttu.))!

Some other useful Additions to basic system classes

GP' bottomscreen + disp C frmy + frmht)1 Where disp is lowest possible window on the screen.

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 113

addto dispframe Reset frame and window parameters.
GPC•#dispset * CGPfrmz + GPwinx + :.

GP'winht + bottomscreen - GPfrmy 4- (Ploiny e :.
47°frmwd + Ghoinwd + :.))!

0-C,ffshow * ((40/ * (0'buf + :.
GMast + ..) 1

SELF clear.
GPfrmht + 1.
SELF show))1

Reset text information

Then show the display.

addto number (3°(lchars » 8 stringof SELF))1

Reading the keyboard: Algorithm A

The following routine, as part of the paragraph class definition, ·will repeatedly handle one character
at a time, adjusting buf and the index pointers locl and Zoc2. The effect will be to delete, replace,
insert, and append to buf.

Special characters Ascii code

bs 8
carat 2 (looks like , a small carat character that has 0 width)
del 127

The following expression assumes we have already computed locl and loc2. We want backspacing (bs)
to decrease Zocl and delete (del) to delete the selection (buf[locl+1 to loc2]).

bufflocl + 1 to locBJ + all carat.

repeat ((9'char + hbd.
(del = char * (SELF delete)

bs =char *
(locl >0*

Cbufflocil + carat.
Ghocl + locl - 1.3.7

Clocl = loc2 0

(-Cbuf length < flast + last+hole
. Cd;'buf + WEI to last.7)3
bufflocl + hole + 1 to Zastl +

bufflocl + 1 to last-hole.7
buffiocl+2 to (2°Zoc2+Zoel+holel+all carat))

bufL-01ocl + locl + 11 + char)

kbck * C)
pdisp fshow of buf last.
done)

Replace each character in the selected lext by the 0 width
carat character.

Get character.

Is it delete?

Is it the backspace?
If so, test to see if locl is at beginning of text.
I f not, can decrease loc l and replace with the carat.
Otherwise, do nothing.

Here if character not a backsDace. Ordinarily can replace
buf[loct] by charader, and increase locl; special case exists
if locl = loc2. The special algorithm says that a "hole" into
which characters can be stuffed should · exist, always
providing extra input space permits replacements larger than
the selected text.

Start by making certain there is room for the "hole" to
be inserted after locl Gthole 4- 30)·
There's room for the hole so slide over the part to the
right of loct and replace the middle"hole" part with carats.
The "hole" created has 0 width and therefore is not seen.

This is always done regardless of input character...
just replace the*character.
See if there is more to do.

If not, replace/insert/append/delete completed.

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 114

Making selection if button pressed: Algorithm B

SELF cleanup.

SELF showselection of pdisp findchar.

repeat

Cbutton 4 *

C(P'char + pdisp findchar.
charil] = 10(2 * C)

0't-point char£21 char£41.
(char[1 J < loc2 * Cdfcomp pdisp t pS)

dfcomp pdisp p2 t)
Ghocz + char[1]. *,2 + t)

done)
0'char + faise.
Zoc2 (locl => 02'loc2 + GPLocl swap ZocS.

(0°pt + Ghpl swap pa)

Remove old indications of "hole" and of complementing.

Find the first location and set locl,]oc2 and pl=pl

As long as the button is pressed, keep changing
complemented area and loc2.
Got next location.

If no change, do nothing.
l is new location's point.
Complement changed area (possibly back to white).

Store the new loc2 and p2.
Done if button 4 not pressed.
Indicate no characters typed yet.
When completed, make certain first location
is earlier in the window than second location.

Above algorithm assumes the following addition to the class atom:

addto atom %(4sioap * (4hs+SELF eual.
SELF + :. tr z))1

Lets each instance of atom receive new value

and return the old value.

Now the class definition for a paragraph

to paragraph t tu I temporary variables
pdisp char buf last Zoel loc2 pl p2 ht/ instance variables

dfcomp hole carat bs del class variables

Cinit * (to dfcomp df pl p2 (above definition) Define in context of class.
GPhole + 30. GP'carat + 2. 41°bs,-8. CiP'del €- 127)

4retrieue * (filin :.) Create instance from a file; filin checks if value is a file.

4 store * CGh + file :. Write text such that, when evaluated
t + 'sched + paragraph of ' creates instance of a paragraph
t + 39. t + buf. t + 39. and stores in scheduler.

t + ' '+last chars +'ae'+ pciisp Cfrmx chars +''+
frmy chars +0'+ frnuod chan).

t close.)

CREATEINSTANCE

isnew * ((Ppdisp + dispframe 010 fontheight string 0 noframe.

CCreate display area.
9'buf + (40f * C:) string 0)
0'locl + 0-loc2 + (;Plast + buf length. Create indices.
4at * (SELF show at (·) (-:.) ..) If told where, show area.
pdisp frame black.J Frame the window. c

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 115

SEE TEXT

4 show * ((4at => (pdisp dispset (:) (:j :j) Reset display logtion.
pdisp fshow of buf last) Tell text information.

SCHEDULING MESSAGES

4 startif * C#pdisp hasmouse) Condition for starting is mouse inside the area.

4 quitif * (#pdisp hasmouse is false) Quit if mouse no longer in area.

4 firsttime * (pdisp hasmouse => CGPht + pdisp frmht. SELF showseZection))

4 eachtime => Ckbck *
(Algorithm AJ

button 4 *
(Algorithm B.))

Typing anything?
Keyboard algorithm
Pressing button to make new selection?

4 Zasttime * (pdisp's ((97rmht + ht).
pdisp frame white.
SELF cleanup.
pdisp frame black.J

Reset frame height to clear black frame.

MANIPULATING THE TEXT

4 showselection *

(9'tu •-
(lof => 0)
flast pdisp Clast-0 *Cfrmoc
GPNocl +0'20(2+turl 1.
Gbp 1 + point tvL-2J 21£41·

. Qp2 4- point tu[2]+1 tu[4]
dfcomp pdisp pl p2.)

Upon entering the window, set the cursor at the end for
automatic append; can receive parameter values from the
message.

Determine value of first selection: as message or as last
text character.

= 0 * (frmy)chary)}),

p2 is a little wider to help "see" current place.

)charx) 0 pdisp (last

4 delete * Reorganize buf removing text between loc 1, loc2.
((iP'buf + buf£1 to locll+buf£loc2 to Zastl-

(210(2 + locl. (91,24-point pl %+1 pl y.
(2last + buf length)

4cleanup * (Cchar * (-(F'char + false. Clear the window of complemented text and
0'buf + buff! to Zoel J + buffioc2 + 1 to Zastl. remove the "hole".

Glast + buf length.
G;'1002 + locl.17

pdisp fshow Of buf last)

4 is * (ISIT eual)

4,s * cir 8 eual))!

paragraph init!

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 116

It is possible to schedule a paragraph text editor by typing

sched + paragraph! · window appears in the upper left corner of the screen with
no width or height.

sched + paragraph at 100 50 200! window appears at 100, 50 with width of 200.

sched + paragraph of 'I am a text editing window' !

window appears in upper left corner with the text showing.

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 117

Classes for Building Models

"SimpuIa": Simula-style Simulation

We have chosen a simple example of a scheduling mechanism for building simulations of dynamic
environments such as hospitals and classrooms. The basis for this example is the simulation language
Simula (a major inspiration for Smalltalk).

The basic entities of Simula are instances of classes and ALGOL-like data-types. Simula simulation
operates primarily through scheduling pseudoparallel processes by means of a sequencing set which
holds the quiescent processes sorted by desired time of activation. Associated with each process are the
object itself, the time the object is scheduled to wakeup and do something, and a message telling the
object what state to go to next. This message was either constructed by the object when it last ran, or
is a default message (we will use run).

There is a system time (now) which indicates where the simulation's progress has currently reached.
All activation times in the sequencing set are equal to or greater than the system time. A great idea
of Simula is that system time is not advanced until there is no more computing to be done by the
currently active event. This means that an event can consume an arbitrary amount of computing
power; then, if there is nothing scheduled for the next one hundred (simulated) years, the system
time will be advanced one hundred years without any "clock ticking" in between.

An item in the sequencing set (SQS) is an instance of an Event Notice, a simple structure containing
the object to be activated (ob), the desired event time (etime, a floating point number), the message
telling the object what state to go to next (msg), and next and prev--indicators to the next and
previous elements in the sorted set.

Event Notice

I ob I msg 1 etime I prev I next I

SQS

1 Event 1 Event 1 Event 1
Notice 1 Notice 1 Notice 1

Note that 6ne object can be scheduled as more than one event, each event applying a different
message to (requesting a different activity from) the object. Hence we place the message in the
Event Notice rather than storing it as information local to the object. This is an improvement over
Simula which only allows one phase of an event to be scheduled. The main activity of the SQS will be
to add to, delete from, and sort the set of Event Notices. This job differs according to where the
event time is stored, that is, in the Event Notice or more local to the object.

to EuentNotice prop / ob msg etime preu next

(isnew * C GPobe:. Ghnsge:. (Petime•-:. *preue:. (F'nexte:.J

4,5* (0'prop + 1 4+ * (ltprop + :) tprop eual)

fis * (ISITeual))1

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 118

The sequencing set is not much more complex. It maintains now; current, the current process under
activation; and the ordered set of Event Notices, set. In order to make this explanation simpler, we
will include two dummy Event Notices with event times 0.0 and "infinity", that will, by default, be
the first and the last elements in the set. This means that we will not have to check for a special
termination condition, and that we avoid the possibility of a circular list. We always select the
second item in set as the next active event.

We need to provide messages to schedule a new event, to remove an event, and to activate the hext
event, as well as initialization for the set itself.

GPSimpula + SQS! Initializing the set means to create two Event Notices, the first and last
scheduled events. The event objects are Ineaningless, so we choose to define
them as 0; the first time is 0.0, which is also the value of now; the last is
a large number like 1.0e1000. Simpula's set is an Event Notice linked in an
ordered chain to other Event Notices

1 Ob 10 1 1I msg 10 1 1
I elimel 0.0 1 1

I prev 10 1 1
I next 1------------ 1 1

EventNotice

ob 10 1 1

I msg 10 1 1
I etime I 1.Oe 1000 I I
I prev I .------------
next 10 1

Simpula schedute blob! An EventNotice, whose object is blob, whatever it may be, is added to the
chain of events. By default, its msg is Gi•(ran) and its event time is the
same as now. In the above example, this new EventNotice will be the
second event. The (default) event whose object is 0 and event time is
1.Oe I 000 is always the last event in the set.

Simpula schedule blob for GPYchangeplace) at 20!

The object is scheduled as explained above, but the msg is (2(changeplace)
and the event time is Simpula's now+20.

Simpula activate! Get Lhe next scheduled event (newOb), set current to newOb's obiect, set
now to newOb's etime, and send current newOb's message.

SimpuZa remove! Takes and returns the next event off the set, meanwhile reorganizing the
chain of Event Notices.

Simpula full! Reply is true if there is an event, other than the two dummy events,
scheduled.

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 119

to SQS finger newOb time msg / now current set

Cisnew * CGPset + EuentNotice 0 0 0.0 0 0.
sen next + Euen:Notice 001.0€1000 set 0.

G>now + 0.0)

4#schedule * CGPnewOb + :.
9:'msg *- 04for=>(:) 0NCrun)).
G°time + (4at * (now + :) now).
GP'finger + set's next.
repeat C time h finger's etime * (CPfinger + finger's next. again)

0'newOb + EuentNotice newOb msg time fingers preu finger.
newOb's preuls next + newOb.
fingers preu + newOb.
done))

lactiuate * (CnewOb + SELF remove.
(0'now + newOb's etime.
(2current + neu,Ob's ob.
appEy current to newOb's msg)

•fremoue * CGPfinger + set's next.
finger's next's preu + finger's prev.
finger's preurs next + finger's neoct.
t finger)

4fult * Cfr 0 * set,s next ob)

4print * ((2finger + set's netct.
repeat CO = finger's ob * Cdone)

finger's ob print.
ciPfinger + finger's next.))

4.0 *0 8 eual)
4is * (ISIT eual))1

The above definitions are quite general, having two properties that might not be necessary in some
applications: (1) backwards pointers for an EventNotice which take extra time to rechain, and (2)
the instance variable current for SQS. As a response to the message activate, we say

(2'current + neu,Ob's ob. apply current to newOb's msg.

We might instead have

evapply newOb's ob to newOb's msg.

eliminating the instance variable.

Now to test it out.

By convention, a scheduled object, such as a Mob, must respond to the default message Crun) or to
some equally useful activation message.

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 120

to blob x y / sides ®
Cisnew * ((9'sides + 0. (2 9 + turtle. 0 width + 2. SELF draw) -
4run » (SELF undraw. SELF draw.

Simpula schedule SELF at augwaitime·rand mod 100)
4draw * C® penup goto (8"56 + rand mod 500 (27 + rand mod 500 pendn up.

poly (2°sidese (sides + 1) mod 7.
Q penup goto x y pendn up.)

qundraw * C 0 white. poly sides. 0 black)
4 print * l)
44 * Ct 2 gual)
<Fis * (-ISIT eual))!

to poly s
(do ((3°s+:) 03 go 10 turn 360/s))1

0'l + 13/
0'augwaitime + 100!

to rand (11· 0'6 + i * 5)!

Try

/Simpula • ses!

Simpula schedule blob!

Simpula schedule blob!

repeat (-Simputa activate)!

or

PUT USER GPDO CiP(kbck * (eu) Simpuza actioate)!

The result is two polygons bouncing around the screen. With the modified USER task, it is possible
to temporarily interrupt the bouncing in order to type some messages (such as scheduling another blob
or examining the scheduled events).

Note, another rand expression, that avoid the need to initialize the variable and also allows ranges to
be specified, is given below.

rand!

rand between 10 40!

to rand low high//n
(GF:'n + (null n. (13) n*S).

4between * ((0'tow + : GP'high + :.
t tow +nmod high +1- low)

2 n)!

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 121

A Simple IIospital Simulation

A hospital will be composed of departments (including admissions, surgery, wards, labs), each of which
has a number of resources (such as attendants, doctors, beds, oberating tables) and patients. A typical
patient (there will be many of them) has a name, age, and so on, a schedule which contains a route
through the hospital specified at admissions, and a reference to the patient's current department.
The patient visits the indicated department on the schedule, stopping at the department's front desk
to check to see if there is a resource available for him. If there is, the patient will occupy that
resource for some average treatment time: If there is no resource available, the patient must wait
indefinitely on the department's Zine until' one is available. After consuming the resource, the patient
will check the waiting line and send the next waiting patient, if any, to the desk.

If this simulation is set up with typical entrance intervals and treatment times found in a given
hospital, an examination of the department's lines after the simulation is in progress will give some
insight into the "bottleneck" departments of the hospital.

The hospital can include a Smalltalk vector of elements, each of which is a department.

GF=dept + vector 20!

will contain 20 departments. A department has two main parts: resources available and its waiting
Iine. It also has a name and an average treatment time for each patient.

to department prop I resources line available nme treatime

Cisnew * ((Pavailable + (9=resources + :. (2=line + SQS.
G=nme + stringof 1
(2=treatime + (4time » C:) augwaitime))

•f#take * ((9'available + available - 1)

•#giveup :> ((Pauailable + resources min auailable+1)

4,6 * (9'prop + 1, 4+ * (t prop + 0 t prop eual)

<lis * (ISIT eual))1

Initialize the departments for 1 to 5 resources.

for j to dept length (dept[j] e
department rand between 1·4 noname time 20* rand between 0 43!

We have to define a typical patient.

9°routine + stream of {dept[3 1 dept[6] dept[7 1 }1
Setup for the patienl's schedule.

routine reset. ! Reset the stream to the first item.

GPVane + patient 'jane' 22 routinel Create jane as a patient whose name is jane, age 22, schedule
to be in three departments: 3, 6, and 7. Notice that the

third message to patient must be an instance of stream

Simpula schedule jane for (P(wakeup)! The patient is scheduled to wakeup now.

jane makeup! The patient schedules herself to visit the department
(newplace).

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 122

jane visit! The patient sees if there are available resources in the

department. If so, the patient takts 31 resource and schedules
herself to move on after the department's treatment time;
otherwise, she enters the waiting line.

The patienl can also receive this message by being removed
from the department's line and scheduled again for a visit.

jane treatment! The patient gives up her resource in the current department
and wakes up the next patient, if any, in the waiting line;
if there are other departments to visit, she schedules herself
to visit the next one.

to patient·prop / nme age scheduZe newplace

(isnew o (UP'nme + :.-Ghlge + 6 (9=°schedule + :.
Cknewplace + schedule next)

4uisit * (newplace,s available .> 0 *
Cnewplace take.

Simpula schedule SELF for (P(-treatment) at newplace's treatime)
newplace's line schedule SELF for (i;°Cwaiting).1

4treatment * Cnewplace giueup.
Cnewplace's line full * (9'prop + newplace's line remoue.

prop's ob wakeup))
schedute end * 0 (IP'newplace + schedule next. SELF wakeup.3

4wakeup * (Simpula schedule SELF for (2(-uisit))

4¥print * (nme print. sp.)

4's * ((5'prop + %. 4+ A Cltprop + :) tprop eual)
0

lis * (ISIT eval))1

All that remains is to make up an admittance process which creates new patients at reasonable
intervals. We can add mechanisms for stopping the simulation and asking departments about their
resources and waiting line as well as asking patients about their schedule. A patient might also know
his disease and keep around a history of waiting times. A query method can be implemented by
creating a display window (a talkwindow) that can be scheduled in Simpula. Any time a key is
pressed on the keyboard, the window is scheduled to wakeup and expect inquiries about objects in the
environment. The main USER task might be

Abch * (Simpula schedule talkwindow for (2(wakeup))
Simpula full * (Simpula activate)

Graphic feedback can be provided by having a department print itself as a rectangular area containing
marks for each resource. The marks can be differently colored depending on whether or not they are
available. The department might have three stations: a desk for the patient coming to visit, a
waiting room for the waiting patient, and a staff room for the patient under treatment. We can also
add a graphic representation of the system clock to display thi value of now. Pressing a mouse button
can indicate that you are, making an enquiry about a particular department or patient. The
department or patient has a graphic representation that is pointed at by the mouse cursor. The
intention of pointing at the object is to schedule it for talking about itself. The USER task might
now be

V

EXAMPLE SMALLTALK CLASS DEFINITIONS - Page 123

hbck * (Simpula schedule talkwindow for 0Ywakeup))
O < mouse 7 * (Simpula schedule (findobject at mx my) for (2(tath))
Simpula full * (Simpula activate)

Instances of patient and department should respond to the message talk.

INDEX Page 124

This index was prepared from a Smalltalk Information Storage and Retrieval System in which the
contents of the sections of the manual are referenced. As a result, the pages given below generally
refer to the beginnings of the sections in which the information can be found. We have identified
three types of indexed items: basic system classes, utilities, and examples created especially for this
manual. The basic classes and utilities are provided in the Smalltalk system when you type resume
smaZZ.su. The index distinguishes between pages where the items are defined (def) and those where
the item is referenced (ref).

basic def 22,48
ref 15,23,44

8 basic def 48
ref 15, 23

,s utility def 23

1 . basic ref 2,3,15

11' basic def 22,48,52
ref 15,23,44,45

basic def 48
ref 15

basic def 48
ref 23

4 basic def 20,22,48
ref 15,23,44,45

basic def 11,48
ref 18,23,44,45

* basic def 48
ref 15, 44

0 utility ref 3,9,10,37

{ utility def 77

ref 121

abs example def 39

addto utility def 19,77
rei 18, 22, 27, 32, 34, 35

again utility def 81
ref 48,98

apply utility def 79

ref 98, 102, 105

AREA example def 87
ref 92

atorn basic def 56

INDEX - Page 125

ref 9, 11, 17, 32-35,44

base8 utility def 77

blob example def 117

BLT utility def 42

Boolean example def 98

boot (button) utility ref 2

box example def 18, 25,
ref 17-22,

29

45,53

brush example def 38

bs utility def 78

bug example def 92

button utility def 8,2
ref 32-39,96

c utility def 13
ref 16

cl example def 9

class definition basic def 19

class instance basic def 19

cobweb example def 39

commander example def 96

conditional utility def 27

statement ref 48

copyni example def 87

core utility def 77

cr utility def 80

ref 51

ctrl (utility def 78,79

cursor example def 42

mouse cursor utility def 2

ref 2,5, 7, 10, 32, 34, 35

dclear basic def 69
ref 90

INDEX Page 126

dcomp basic def 72
ref 32, 34,35,90, 110

defs utility def 9,75
ref 14, 75

demand example def 84

ref 86

department example def 121

design example def 27

dfcomp example def 110,114

disp . utility def 80,90
ref 87, 100,102,104

dispframe basic def 30-31,69
ref 31-35,80,90,100-105,110-114

display screen utility ref 4

dmove basic def 69

ref 90

dmovec basic def 69

do utility def 3, 81
ref 9, 10, 32, 34, 35,45,48,74

done utility def 2,13,81
ref 16, 32, 34, 35, 48,78,79

dpO utility def 75

ref 76

dragon ' example def 37
ref 96

draw example def 37,96

dsoff utility def 80

dson utility def 80

edit utility def 10, 74

edwindow · exarnple def 104, 107

eq utility def 77

esc utility ref 16

ev utility def 78,79

INDEX -- Page 127

evapply utility def 79

event example def 98,99

EventNotice - example def 117

expand utility def 77

false basic def 61

feder example def 39

file basic def 66
ref 69,76,87,114

filfont example def 7

filin utility def 75

ref 7, 13, 17, 37, 40

filout utility def 14, 75

fix utility de 13,74
ref 16

float basic de 57

ref 2,11,84

font editor example def 7

fontchar example def 7

fonts utility ref 7

for utility def 3, 81, 98
rei 32, 34, 35, 48, 121

frmedit example def 100, 107
rei 104

hil example def 37

hill example def 37

hil2 example def 37

hp example def 55

if utility def 81, 98

indisp utility def 80,87

ISIT utility def 26

isnew basic def 21

ref 26

INDEX Page 128

kbck utility def 78,79
ref 51,98,121

kbd utility def 78,79

keyboard utility ref 2

link example def 55

makelist example def 98

mem utility def 82

mouse utility def 2

ref 2,4,39,100

mover · example def 90

mp utility def 37,73,82
ref 40

mx utility def 4,82
ref 37,100

my utility def 4,82
ref 37, 100

newframe example def 103
ref 104

newrubberband example def 37

nil utility def 77

null utility def 77

number basic def 57

ref 2, 5, 9, 11, 16, 39, 40, 44, 45, 51, 110

obset basic def 64

ref 51, 102, 105

paragraph example def 114

patient example def 121

payment example def 86

picturewindow example def 105, 107

PNT utility . def 43,89

point basic ' def 73
ref 40, 92, 94, 105, 110

poly example def 26, 117

INDEX Page 129

polygon example def 26,32,34,35

polygonmenu example def 32,34,35

print utility ref 51

prompt example def 107

rand example de! 37, 117

read utility def 78,79
ref 51,84

reconstruct example def 37

rectangle basic ref 94

rectangle example def 40,92

redo utility def 3,80
ref 16

repeat utility def 4,81
ref 17, 30, 32, 34, 35, 37, 40, 48,98

report example def 84
ref 86

return utility def 78

rubberband example def 37

SELF basic ref 44

show utility def 75
rei 18, 26

sp utility dei 80

special keyboard utility def 15
characters

SQS example def 117

square example def 9, 11, 18
ref 10, 13, 14, 19

squig90 example def 37

squiggle example def 37

startup example def 107

stream basic def 65

ref 37, 87, 98, 121

INDEX Page 130

string basic def 62

ref 30, 31, 44, 45, 65, 87, 110

stringof utility def 77,87

stwindow example def 103, 107
ref 104

text (see dispframe, turtle)

title line basic def 19

to basic def 9, 19, 48

TTY utility def 78,79

turtle basic dei 27,60
ref 3,4,9, 18,29,30,37,39,44,45,75,90,96

type utility def 75

until example def 98,99

USER basic def 51

ref 102, 107,117

vector basic def 62

ref 32,34,35,37
65,75,84,94

39,
99,

44,64
100, 121

waitnext example def 92, 107
ref 100

whne example def 98
ref 102-105

window utility def 69

ref 2, 7, 14, 32, 34, 35

window utility def 13

(diagnosis)

window example def 5

(dialog)

xfer example def 87

xplot example def 87

xydemo example def 92

xydic. example . def 94

xyfns example def 92

Zahn's Device example def 99

5 ..1

-t

1

1

1

1

1

Babar

1 Electronic Mail Interface

1 Volume 1: Using Babar

by
Steve Putz and

ilan burlington

1 Xerox Palo Alto Research Center
System Concepts Laboratory

1 M a, 1986

1

1

1

1

1

- To Stoney B., George G.. Jane L. Alan P., Steve P., and Dave R..
who caught most of my errors and made valuable suggestions for improvements,

and especially to Steve P-
who started it all in the first place.

1

1

1

1

1

1

An elephant never forgets.
--- Anon.

Elephants suffer from too much patience.
--- Clarence Day

When you have got an elephant by the-hind leg,
and he is trying to run away, it's best to let him run.

--- Abraham Lincoln

Welcome to
Babar

the

Smalltalk-80
ailEleetronie Al

Interface

if

10 if
Babar User's Guide
May 1986

Table of Contents

Introduction *.... 1

Part 1.

1.1

1.2

1.3

Getting Started as a Babar User .
Before Starting

Becoming a Babarian

Converting Your Existing Mail Files , 5

Part 2. Organizing Your Babar Mail Database v

2.1 Predefined Mail Categories v

2.2 Defining Your Own Mail Categories·······,·...... 8

2.2.1 Hierarchical Mail Categories 7

The Mail Interface *...... 11
Invoking The Mail Interface .*. 13

The Category List Sub,iew and Menu 14

The Letter List Subview and Menus , 25

The Letter Text Subview and Menus 30

The Letter Status Subview and Menus . . ».... 31

The Start Date Filter Subview and Menus 34

The Stop Date Filter Subview and Menus 35

rhe Maximum Count Fiiter Subview and Menus35

The Auto Next Button 36

0 The Reformat Button 36
3.11 The Show Deleted Button 37

Part 3.

3.1

3.2

3.3

3.4

3,5

3.6

3.7

3.8
3.9

3.1

Part 4.

4.1

4.2

4.3

4.4

Mail Interface Features 38
Fittering The Letter List Subriew ... -,*,.,=-.*"...-. .38

Compacting Your Mail Database 40

Recovering Your Mail Database After a Crash 41

Moving Your Mail Database 42

'-I,,
f l)

-71

table of Contents n Babar User's Guide
May 1986

Part 4. Mail Interface Features (continued)
4.5 Auto-Sorting Your Mail 43

4.6 Archiving Your N *·········,* 45
4.7 Your UserProfile Attributes 47

4.8 The Error Log File ..·······................... 48
4.9 Forwarding Letters ······.... 49

4.10 Using Standard ".mail" Files *....9 50

4.11 Scavenging Your Mail Database50
4.12 Pattern Matching 50

Part 5.
5.1

5.2

53

5-4

5.5

The Mail Writer 51

Invoking The Mail Writer *.... 52

The Letter Header Subview and Menu 53

The Letter Status Subview and Menu 55

The Letter Body Subview and Menu 58

The Deliver Button» 59

Part 6. The Hardcopy Mail Writer 60

6.1 Invoking The Hardcopy Mail Writer 63

6.2 The Letter Header Subview and Menu 64
6.3 The Letter Status Subview and Menu 66

6.4 The Letter Body Subview and Menu 69

6.5 Ille Return Address Subview and Menu*. 71

The Inside Address Subview and Menu72

6.7 The Letter Date Subview and Menu 73

6.8 The Logo Text Subview and Menu 74

6.9 The Deliver Button75

i rit
M...

Introduction 92 Babar User's Guide 1
May 1986

Introduction

In this document, we describe Babar. the electronic mail interface created by Steve Putz for the System
Concepts Laboratory's research version of the Smalltalk-80 system.

Babar's ability to create, maintain. organize. and quickly access individual letters in a large database of
electronic mail (and electronic copies of hardcopy mail), plus its superior human interface, make Babar a
welcome replacement for its various predecessors.

Babar has three main parts:

* Ihe Mail Intedace allows you to create, access, and maintain a database of
electronic mail (and electronic copies of hardcopy mail). It also allows you to get new
mail from the network.

* The Mail Writer alk,ws you to create a new electronic mail letter and send it
to the network for distribution.

* The Hardcopy Mail Wnter allows you to create a new letter in a format
designed for sending through the U. S. Mail in a window envelope.

In part 1 of this document we tell you how to get started as a Babar user, Part 2 describes how you
organize the mail in your database. Part 3 gives you the details of reading and storing your mail, Part 4
covers some of Babar-s more important or interesting features. Parts 5 and 6 give you the details of
creating your own letters.

You may retrieve the latest on-line version of Babar documentation using Babafs Mail Interface view by
selecting the category named "Babar-Documentation".

You will find the latest on-line version of Babar documentatic)11 in the following files:

[Filen«Babar>Documentation>Babar=Documentation.mail
[Filene]<Babar>Documentation>Babar-Documentation.press

You will find the latest version of the Babar document that you are now reading in the following set of
files:

[Filene]<Babar>Documentation>Babar-Voll-*.press

r 'll

Introduction Babar User's Guide
Mav 1986

Please send suggested improvements to this documentation to BabarSupportt.pa fuse the "new form
comments/bugs" command - see section 3.3)

Part 1. Getting Started as a Babar User

You've decided to use Babar for your mail. Now what?

1.1 Before Starting

Before becoming a Babar use, you must meet the following qualifications:

* You must have a valid Grapevine account and a matching account on an IFS file
server.

* You must have disk to store your Babar mail database.

You must have An INS directon on which Babar can store your profile file

You inay choote either your 116 directory or your local file system to store the

remaining set of files which constitute your Babar mail database. [E you choose

your local file System and you are using Unix (TM), you may want to create an
appropriate subdirectory (01- you! mail EleS.

* Your Smalltalk-80 system's default IFS server must be the one containing your
IFS directory.

The system pronipts you R,r the default the fil·St tin·le the system needs it Do not

specify Alene if your priman account is on another server, such as Santiam.

S 1 No default IFS name has been specified,
4 Please type the name of your IFS file server)-

irene

1

to

1 1. 2

Getting Started Babar User's Guide
May 1986

You can reset the current default by evaluating the Smalltalk expression:

UserProfile default removeKey: #ifsName.

The next time you access an IFS. the system will prompt you for a new 113 name.

1.2 Becoming a Babarian

Having met the above conditions, you are now ready to become a Eabatian (a user of Babar) by
creating a new Babar mail database for your letters.

To create your new Babar mail database, you simply open a Babar mail interface by selecting
the "open window -> mail -> mail interface" command in the system menu any Smalltalk-80
system (V49 and later) which includes the Babar interface software.

r IF

galloy editor
.*8.#rebi-unw display form editor

4%45% garbaqe collect galley form editor
%%4ows»49»mait
%*Pt 3 h 0%9 4'i n dID ··,6,• s c .3 lend 8, r

t al kN §?:73·::
save

23ft save then quit system workzpace
quit F transcript

nl311 1 Iret

V I

mail interface

143* 3uspend I
r ':i:: 12Xlt Dr-i)Ject

lock

As you have not used Babar before. you will see the following notifier:

t2222212222222=21======2222212122
¢ Welcome to Babar, This is a new experimental electronic mail interface,
3 The previous mail interface (Fillet) is not available in this Smalltalk-80 system,
3 Would vou like to create a Babar mail database ?

-1 Ilc'

Answer "yes" ("no" will abort). You will then be asked to supply a location for your Babar mall
database. This location is a file name prefix, either on your IFS directory (e.g.
'[Filene]<UserName>Mail>DB.") or on a local file system (e.g. "BFS6:DB." or
"/usr/putz/mail/DB").

-erT,Fre/"#"//.......
L tr
2.-

Dj

Ge:tting Started Babar User's Guide
1.2 Becomming a Babarian f Mav 1986

Make sure that you have plenty of available space on the directory you choose. If vou use a
Dorado partition fwhich will hold onty about 10MB), we suggest that you dedicate the entire
partition to the mail database Babar will run much slower using remote files.

Please enter a mail database file prefix. By convention, it should end in "DB,'
For a local database, include the disk name if applicable, e.g. EFS6:DB,
To abort, enter an empty string.

rFilenel<Put*>Mail>DB.

Babar creates a file named Babar.profile on your IFS directory. This file contains the name o f
your new database. so that Babar will always know where to look for your database. Babar
shows this on your System Transcript:

121 Re

te fil Transorint t]}·i ?>:2 §:·3;5:8"i :t: 1?7>;.3£§.348%>:%81·:,·§:K>i.'3 3%1&42,{i,<:2{- i ,#.: >-:.:SES?**9*36"fSit:f:BiES· 5.8. 30:%44·:2:19: G>x:::::'·

,dating [Eilenel<,Putz >Babar,profile
gistering putz.pa.

Babar also creates the set of files which make up your new database. An example of the file
names that Babar uses is:

[Filene]<Putz>MaiDDB.categoriesIndex.btree
[Eilene]<Putz>Mail>DB.categoryNames.index
[Filene]<Putz>Mail>DB.database.log
[Filencl<Putz>Mail>DB.heapl.letterHeap
lEilene]<Putz>Mail>DB.heap2.letterHeap
[Eilene]<Putz>MaiDDB.heapindex.btree
[Filene]<Putz.>Mail>1)B. Mail Interface.state

Babar will automatically add you to Babarianst.pa. a distribution list which includes all Babar
users.

Congratulations! You are now a Babarian!

6*M

4.

9

64.*thGetting Started 1 ' f- Babar User's Guide 5
1.3 Converting Your Mail Files ir' May 1986p- 11

1.3 Converting Your Existing Mail Files

Babar can read and write standard mailjiles (whose names end with ".mail"). but it does not use
these mail files for storing your mail database. If you previously used Fillet Hardy, or
Laurel, you will probably want to read all of your mail files into your Babar mail database.
However. please note that once you start using Babar to retrieve and sort mail, you will find it
inconvenient to convert a large database back into mail files.

To read all of your existing mail files into your Babar mail database, use the "mail files -> read
maltii}le files" command in Babar (see sections 3.2 and 4.91 Babarasks you for alist ofmail
filenames:

Read mail files ffi,Rt€hiric: t·'i.im"
Al€*11t.*b*

Reply "no" to the following question (if you answer "yes" and you have already created
categories with the same names as some of your files, Babar will not read those files):

'.: .·' .1%21.Matil(:*mt{*4%54'/1//1<%1£ililli.WIT.j.£.....:.1.1.*.MI...i.P.......4./.%.D.t.*.MI'.1.#.t.*Im.*.blm..9/1 %*
i files with same name as existinis lion-empty categories? f**

604£
7e5 rio

..r

Your mail files must be on an IFS or on yourlocal file system. Babar may take an hour or two
for this operation Con a Dorado) ifyou have several megabytes of mail.

I f you want to interrupt thts procedure. type the DEL key and wait until the current file is finished. You
can latercontinue starting with the next file by answering "yes" to the "skip files with same name as existing
non-emptycategories" question.

After Babar has completed. vou should look at the contents of Babar's En*or Log File to see if
any of the mail files contained errors (see section 4.8), You can do this by evaluating the
following expression:

FileModel editfileNamed: Mainnterface activeinstance databaseerrorLogName.

I €
S•

Getting Started Babar User's Guide 6
1.3 Converting YourMail Files Mav 1986

Ifthere were errors, you may want to use the laurel MailfileScavenger to try to recover the
damaged message(s).

Part 2. Organizing Your Babar Mail Database

In a large mail database containing thousands of letters, you might have a hard time finding a
particular letter without some way of organizing your letters Babar allows you to organize your
letters into categoties. A category may hold a group ofletters. or it may be empty.

Each letter in your database must be in at least one category (the "*Unclassified" category, if no
Other - see below), but a letter may appear in as many categories as you wish. Babar stores a
letter in your database only once regardless of the number of categories in which the letter
appears.

Babar provides you with several special predefined categories for your mail. You may also add
new categones of your own.

2.1 Predefined Mail Categories

Babar uses predefined mail categories for specialized functions. [n general, you cannot remove
these categories, but you may rename them at any time without affecting their function. th this
document, we refer to these categones by the names given below. Please adjust these names
internally when you see them ifyou have changedthemin your own database.

The predefined categories are:

*All Letters

Chis is a special pseudocategory containing all letters in
your database. Itallows you to access altletters by date
without regard to their other categories. You cannot
add letters to or delete letters from this category. You
usually get the best use of this category when you use
filters (see section 4.1}.

01
0

Mail Database Organization 4 Babar User's Guide 7
2.1 Predefined Mail Categories f May 1986

*Deleted

When you delete a letter from another category, Babar

adds it to this one. When displaying the list of letters
in a category, Babar filters the list based on

membership in this category (see section 4.1). You
remove letters from your database by asking Babar to
purge this category during a compaction (see section
4.2).

*from <your name>

Unless you tell it otherwise, Babar puts outgoing letters
that you create with the Mail Writer or the Hardcopy
Mail Writer into this category. You may delete this
category, but Babar will recreate it as necessary to hold
new letters from you.

*New

Babar puts incoming letters obtained front the network
into this category.

You should remove letters from this category as soon
as possible by deleting them or moving them to other
categories (such as -Pending" or "Read Later"):
otherwise you may have difficulty telling which mail is
really new.

Unclassified

Babar puts unreferenced letters that belong to no other
categories :into this category. If you remove a letter
from all of its categories. Babar will put it in
"*Unclassified" and tell you that it belongs to zero
categories. If you remove a category. Babar puts any
letters in it that do not belong to any other category
into "*Unclassified".

Ilill 1/'ll Ilill lill
&01 ¥-L- ,

Mail Database Organization
2.1 Predefined Mail Categories

l'-t?
Babar User's Guide 8
May 1986

BabarDocumentation

Babar keeps documentation about itself in this
category. You may read these letters when you need
help in using Babar.

2.2 Defining Your Own Mail Categories

Babar allows you to define your own categories for your mail. You may define as many
categories as you wish. You define a new category by moving a letter or adding a letter or
category (see sections 3.3,3.4,3.6,5.4, and 6.4) and then selecting "new name" in the
resulting menu ofcategories that Babar displays:

 dd let.ter to which cateeory?t*92<
+ Deleted

To Print
imMq: newfname

When Babar prompts you for the new category name,

A

1{ 4 i:... :Enter a new name

you may type any characters that you wish - spaces. upper/lower case alphabetic, numeric, and
special characters. Note that hyphens (-) are special - see the following section,

»Dii A

-3

Babar User's Guide 9Mail Database Organization .4
2.2.1 Hierarchical Mail Categories May 1986

2.2.1 Hierarchical Mail Categories

Babar supports a lexical convention for hierarchically organized categories when it displays
menus of all category names. Babar interprets a hyphen (-) ina category name as a separator
for levels in a hierarchical category name. You may extend hierarchies to any number of levels.

For example. if you had the Following# categories:

Xylophone - Manufacturers
Xylophone - Music
Xylophone - Musicians - Amateur
Xylophone - Musicians - Professional

and wanted to add a letter to the last one, you would select the following entries from the menu
ofcategories that Babar displays:

c cir *tMAW-ddleer to which cate
4341%3>.1 *D©leted

To Print

n 1.I fti tr E U t-Q r". :'. :.: ' .:g·,.:.' '(4*:9, ·? ?:01}]SAFFE=§:E*@633 Mufic
, Ma

g w nam e

Mail Database Organization Babar User's Guide 10
Mav 19862.2.1 Hierarchical Mail Categories

If you wished to add a letter to a new category named -Xylophone - Miscellaneous-. you
would select "Xylophone - " and "new name-'. as below.

Atildd letter TO

To PAnt

Manufacturers :
rieW name Music

When Babar prompts you for the new category name,

Enter a new name

you only need to type in "Miscellaneous",

(77%
5.5

Mail Interface f Babar User's Guide - 11
3 May 1986

Part 3. The Mail Interface

We now describe in detail Babar-s Mail Interface. The Mail Interface view. which has a view
label, seven subviews. and three buttons, looks like this:

Category List Subviei¥ %::C. . Pm. :I Letter List Subview %31% :1

taMail Interface on86:DBI for Ritz*paf<no newtmail)
+from Putz
*New
+Unclassified
Active-Calendar

Active-Pending
1 Babar-+Documentation

Dec kettit maoarhumoort+
Dec 27 Babal·Support. t
Dec 27 Babar:Jupport.+
Dec 27 BabarSupport+
Dec 27 BabarSupport r

oaoar ·Lu user uocum g

Documentation Table 4%
Becoming a. Babarian k
Mail Interface Subwir*
The Category List Meili

J8Uto: ne*4 reforma.t.Show deleted etc,rt ,-fate: i stop date,· mox: m

1*Uy.ge,(1); CO.tegoties(1): Botber-Docamentatien

pate: Fri. 27 Dec 85 16:43:45 PST 2
From: BabarSupport.+,pa
Subject. Babar 7.0 Ufer Documentation

....4To: Babarianst·.pa

Reply-To: BabarSupport·,pa
Filad-on: [Filene]<Babar>Documentition>Babar-Documentation,mail 5

This is a user guide and reference manual for Babar, an experlmental
electronic mall interface implemented in the System Concepts Laboratorv's 4
research version of the Smalltalk-80 svistern,

Letter Text Subview %%%*362*244%4%394%92*1<

--1--=I

4 1.

t»//

Mail Interface .940- Babar User's Guide 12
3 x May 1986

The names of the other subviews and buttons are:

Auto Next Button %3.0 :.gy**3·:Rip':,:p:. Start Date Filter Subview Eltlbi:3%%»§·jibar:*:51:§»ca.:,.,3:3?4*:.···. 23%£E ·.

it Button Claw#BAs.&4.9 :r Subview 5*ff*Fift.L<'...-„..:. :.:

i Show Deleted Button [aximum Count Filter Subview W

14 Reforma < Ston Date b ilt•

t„rt d, t.

:'Ej E€%·«:$ i:*,1.2,3-%4*·8§6<$··...'*:*titai./.·:·22.. w:b.

uto nettlrelormat. show deleted s D -1· + ,- t M

Lit,I-'·drb, t I ./ , 1. ix , E.g t.'i ,t„) i ': ; . 83, bil . -1.·I. i. u„,t:,8 u , w, 2 E

Letter Status Subview :*3%%%%24#.. 6. 1%>iti-E*ffdt#%%·ilit*%%

Each subview has a pop-up menu which you access by pressing and holding the middle mouse
button. You may turn each button on and offby pressing the left mouse button.

The view label shows the location of your mall database, your name, and whether or not you
have unretrieved mail. When you collapse the window, you will see one of two elephant icons
(Babar the Elephant):

..6<§&2 ·¥:t.Jt·

f

new mail 03*2·23 no new mail

The following paragraphs briefly describe the uses of the various subviews and buttons. See sections 3.2
through 3.11 for more details.

The Category List Subview shows the arbitrary subset of all the mail categories that you
have chosen to be displayed here. 1 f you select one of these categories. Babar will display in the
Letter List Subview the list of letters in that category.

The Letter List Subview shows a filtered list of allletters in the currently selected category.
If you select one of these letters. Babar will display the text of the letter in the Letter Text

03
1

f K

iMail Interface
3

Babar User's Guide 13
May 1986

Subview.

The Letter Text Subview shows tile text o f the currently selected letter.

l'he Letter Status Subview shows the names of all categories containing the selected letter.
It also shows other useful information, such as whether the letter has images or references.

The Reformat Button controls to some degree the way that Babar formats the text of the
selected letter that you see in the Letter Text Subview.

The Auto Next Button controls the automatic selection ofthe next letter in the Letter List
Subview when you delete or move the current letter.

The Start Date Filter Subview. the Stop Date Filter Subview, the Maximum Count
Filter Subview, and the Show Deleted Button modify the list of letters shown in the
Letter List Subview for the selected category.

3.1 Invoking The Mail Interface

You may access your mail database and new mail from the network through the Mail Iriterface.
which you normally invoke by Ineans of your main system menu:

1 2 5 Lul e ulop/,ny i a.,1 a, eum,_ut

garbage collect gallgy form editor
open window VE % i li mail
show windows calendar

Save talk
c 6 - ,; th,in ,-, i i,¥ : i i c fori-, u..,,-irL· C +3 = Ain

P19<8 3*2*·:k.& S:*:·;·:N:».80· <4·M·M>'4·:44.1.u *42> ·2···.

k mail int:erface,
mail writer

1:·hardcopy mall writ€f
Babar notifies you m your system trans¢npt that it ts opening your mall database.

»« 1 operling data.baie.i,done

Mail Interface Je Babar User's Guide 14
3.1 Invokinglhe Mail Interface Mav 1986

You may have only one active Mail Interface on yourmail database. If you attempt to start another ott the
same system, you will get the following notifier. which you should then close.

145% I··Jot.ifier k< *%% .M t¥r :A%-"*,D:>22? '>
42% Currently only one Mall Interfac
*3 Cant be Open 51 a t.lyfte.

If your database is on an IFS and you attempt to start another Mail Interface on a different system. you will
get the following notifier. which you should then close. In either of these cases. we recomend that you
evaluate 'Smalltalk releaseExterna]Views' after closing the notifier

Pr

21File: <Putz>Mail>DB.heapIndex,btree Error: open File or-- ·- --le.El m i Unlill !1Iic: •v•», .

-7 w r - i ile 1,11 217

i SLeafFile (Oblect)>>error:
1> IFELeafFile(File)>>error:

[1 in IESLeaffileDirectory>>find:ifAbsent.Do:
me [] in IFSLeaffileDirectory>>openFile:mode:errorBlook: F
9. I] in IFELeafffile>>doCommand:page:errorBlock:
j" :

3331* t 1:::.f:*243% - *·t./ilimm'*11}ttllimm#:154--<·:f''/*feze'A':404:MI'l.%14%33%*:38< ···4:2:,:k f:·:i:*I.5:: 8:3·@i}inisyi@PE@%%§, *39}3I fgligfl{3iM€?bti«4::i«:*:tk·,..6·;...··· „··+·,·

3.2 The Category List Subview and Menu

+;New
'Unclassified Deb ,

: 324 3 AC t<LVE -0.·3181-ider Eli.
tz 'e·i·>·r· Active -Pe.i-idin Z Dec i
EIA . k ;Babar -Documentatlon Dec .2

St,Kit

.....

ino nia.%:

The Category List Subview shows the arbitrary subset of all the mail categories that you have
chosen to be displayed here. If vou select one of these categories, Babar will display in the

.-44.

<-1109,

IMail Interface Babar User's Guide 15
3.2 -Category List Sub¥iew and Menu Mav 1986

Letter List Subview the list of letters in that category.

You get the following menu in this subwindow:

plitifit;%44*?.. 1'.2. E€.·<39W;i.:..-...--4:12 %«:·..3·4·3·+:,·ci.ift·**i»%«liff·%*;
M:= 1-11'ter5'-·2-:·91.'.>·,<·,:EZB::fii_fL f<,j,{44:r.1::ff, 94- *:,sl::„L-.rMT;,123,b,§1§4::ff-·..<>:*4'4.F'. *41:it :,... : . :siGi>:§:·9 fi:§3.f ?33·.6 :·8§ :i::s . :: .: 1...:.>:.:....: 1:.:s·:·s *>.>:: rA 3 tChl r ! q :*22:-····t=*2**49%%24%%94i n gif tiff>fit*jQ.,,...f€<iffi-f@k¢E:*41 .,fifd

5 delete
{ undele te %*%.4%3%%26*:A?Es....3.:*1{4%944:.4
1 add

{ nal' 3 »39»6463-191f€%2»**»»4
8.UFEiirt .i..,.:R',4.:'.'..='. '1.23%@...*" 6·.5/4:57 1.<5<s)· }i#>ti.jio.j:§: 1.·

%.U:get ne« : forward5 h III W ·i < :2%0:;j:t} : ::33§ffEFF.%4§i< E 39%:it:>f
%[44 hide 99**429»9977*mat»*«a** multipi, 234§996*.i.i®''i·: ·}i ..v:@399:+01}·::>«g::*':t.:intersec

pi# category to-%***M*#***--*-% rename
11* Sort AJ|95 0
83- mall files 1.di====:214445'3/Wi:24*24#Lay/:R&&193
4% compact letters will become unclasified/
% update »:at·Z«·X>>2::y:«:3:?:i/: %:Of$j.49,%%...'·2%·35 ...:.....'i. 3j. i:K<&··19 1.* scavenge

3 d f il e 49<*? F.]41@5 ..6·Rt¢·i··]% 24*P>iltiple files,%¢*%94-{itt@Ff¢%%*:i
*=31=*044-"2::*-44<6266i-©a<
*41.*1%1***at=.E:«@»«»*1»*13-2-FF=ul@*»7:::*m:.
5.....X . ·M_,C»·55:6. .·X·»I»44:·.·E·:··4·..z:·I·A:·>sM''S:%R©9:gs<:02>3R kbg:422·....

.A

V

niall

t

L,J,.WI WI,UUU,00 1111

j

1%45%2%2 1%3<':·.* :..Fflu rirefe _rpnced

list E

re,

ri

J

If you use a command involving a category, and you do not currently have a category selected,
Babar will give you a menu of categories from which to choose. The category you choose will be
filtered, just as if you had selected it (see section 4.11

category -> intersect

Babar asks you for a second category (which you choose from a menu) and a new
category name. Babar adds all letters which are in both the selected category (without
filtering) and the second category (without filtering) to the new category.

....1 -6 V ,
r

€ 4

Mail Interface Babar User's Guide 16
3.2 Category List Subviewand Menu Mav 1986

13

For example, if vou had selected the category named "Xylophone * Musicians - Amateuf and
wanted to interseci it with "Xylophone · Music", you would select the latter category when
asked:

Intersect Xylophone - Musicians - Amateur with ?RE
24·t·!·'·'·MA A'1'468"m·V 2 13·'

2222* f.fu=:: --*0*a-:123411«ye-:»::.=»9149»11«331»f«4

Ayloph*ne -49491# M.3.nufacturer
new nam Q Music

-fr,}fid t : 4,1.J:.9 g..55·t.:y3C. 1 t',,4:3.i cian 5 -
n e M, n a ni e

and then choose a name For the new· intersection categor.

New Category Name:

Xylophone-Musici*#-t
Ama*ur & Xylophone- Music

category -> remove -> unreferenced.

Babar removes the selected category from your database. No letters are
destroyed! Babar moves any letters which were only in the removed category to the
"*Unclassified" category.

If the selected category contains anv letters, you must confirm its deletion:

Confirm deletion of Xylophone - Music <te
CLet.ters not in anv other v will 20 into +Unclassifierl 1care 2 Or

i
no

Mail Interface 4 Babar User's Guide 17W=

3.2 Category List Subview and Menu Mav 1986
?

category -> rename

Babar asks you for a new name for the selected category. See section 2.2 on
category names.

compact

Babar removes deleted letters from your database and then rectaims the disk space.
See section 4.2 for more details.

get new mail

Babar retrieves new mail from Grapevine and adds it to the "*New" category.

Babar shows that it is starting this process on your system transcript:

8:.82% 1* S:72;terft TY. 5„:.r-4 -- + 435¢>fl**%0:1.,.....313%%*Iff.....40>39...%%343
.:.::..*:.,>„i·&>:<i?.:**:3'i*82*3'R *i %19:34:*44%:9%

Semillon,ms..

While retrieving mail. Babaradds one " " for every 5 letters:

00*A W '1' Stem i ralls,

0* Semillon,ms.....

f' f

tc<4

Mail Interface i ...1- Babar User's Guide 18
3.2 Categoty List Subviewand Menu r May 1986

k E

You may interrupt this process by hiting the DEL kev:

#88 .*9:KE.Interrupted,
*8'?2>?k >99

Stop retrieving 'mail ?
•;18€:§-*Ii:*'*

if 3 new letters retrieved) 44.*19

Ves no

Babarwill stop retrieving new mail if You answer .yes":

11 Tr.Br13Crlpt.«
 Semillon.mir.- 1(stopped) 3 (mailbox not flu.shed) %%3 new letters,

1 8:35&*

Note that since the Grapepine mailbox was not completely empued. Babar does not [lush it to
get rid of all letters. The next time you get new mail you will get the same letters again. but

Babar Will determine that they are duplicates and ignore them,

Otherwise Babar retrieves all new mal] and reports this on your spstem transcnpt:

»»**7337EEmmammau5 tam T rall SID r lp t· 3 8% r..ttf¢:*jE]*jtjj#40249%<1-%33.i3-b-?§41,·)'1 ?1§*Jif{?3isy
Semillon,ms 1, 11

22 new letters

hide -> all

Babar stops displaying all categories (except "*All Letters") in the Category List
Subview. All categories still exist, and your database does not change.----

2.,31

Mail Intefface Babar User's Guide 19
3.2 Category List Subviewand Menu May 1986

hide -> matching

Babar prompts you for a pattern (see section 4.12):

Mrrir'rr:1951:95&'rrr:11Ii'ryisiTITTVT:TWIill:..Ic/&#lial,AjqfvTT
Hide C ate gories matching: pli

yIo

b»*MS-283**M:=Etars.01'*

Babar removes all matching categories from the list shown in the Category List
Subviw. All categories still exist, and your database does not change,

hide -> single

Babar stops displaying the selected category (unless it is "*All Letters") in the
Category List Subview. The category still exists, and your database does not change.

mail files -> read file

Babar asks you for the name ofa standard ".mair file and for the name of a category.
Babar reads letters from the file and places them into the specified category.

Warning: If you have some duplicate copies of these letters already in your
database and the duplicates are currently deleted, they will remain deleted.

mail files -> read multiple files

Babar asks you for a set of standard ".mail" files to read into your database. Se¢
section 1.3 for more details.

mail files -> write file

Babar asks you for the name of a new standard ",mair -file. Babar writes all
non-deleted letters from the selected category into the new file.

----------------'---
J.,-1%

A

Mail Interface
3.2 Category List Subviewand Menu 2

Babar User's Guide 20
May 1986

multiple -> add

Babar adds all letters in the selected category (as currently filtered) to another
category which you choose from a menu.

multiple -> auto sort

Babar applies the current set of sort rules to all letters in the selected category (as
currently filtered). Letters meeting any sort rule test are added to the category
specified by the sort rule, but they are not removed from the "*New" category. See
section 4.5 for more details.

multiple -> delete

Babar adds all letters in the selected category (as currently filtered) to the "*Deleted"
category.

multiple -> forward

Babar opens a Mail Writer initialized to forward all letters in the selected category (as
currently filtered), See sections 4.9 and 5 for more details.

multiple -> hardcopy -> condensed

Babar prints all letters in the selected category (as currently filtered). using the
minimum number of pages. A page may contain parts of two or more letters.

multiple -> hardcopy -> paginated

Babar prints allletters in the selected category (as currently filtered). with each letter
starting on a new page.

multiple -> move

Babar adds all letters in tile selected category (as currently filtered) to another
category w'hich you choose from a menu. Babar then removes all of these letters from
the current category.

+11%2
i - 7%

vt

Mail Interface .,9- Babar User's Guide 21
Mav 19863.2 Categon List Subview and Menu

multiple -> reference

Babar opens a Mail Writer initialized with references to all letters in the selected
category (as currently filtered). The referenced letters are not forwarded. See
section 5 for more details,

multiple -> remove

Babar prompts you for the name of a second category. I f Babar finds any letters in
the selected category (as currently filtered) which are also in the second category,
Babar removes these letters from the second category.

multiple -> undelete

Babar removes all letters in the selected category (as currently filtered) from the
"*Deleted" category. As deleted letters are nonnally filtered out. you may want to
turn on the "show deleted" button.

multiple -> write file

Babar asks you for the name of a new standard ".mail" file. Babar writes all
non-deleted letters from the selected category into the new file.

scavenge -> confirm

If you answer "yes" to the follow·ing question,

do you know what you are doing? 142

Ves 1no

Babar will scavenge your mail database, See section 4.11 for more details.

show -> filter ->All Letters

Babar selects the "*All Letters" category.

V

-3

...

Mail Interface Babar User's Guide 22
3.2 Category List Subview and Menu Mav 1986

show -> matching

Babar prompts you for a pattern (see section 4.12):

82. Show categories matching

A.-

4.'·p:Pi::':i ':'·:·t]:2/.:.2%:„·ltkS.-IN ;.44:*:i:.:.:.:0- : 0.:.2:·6444:::':ss:,1

Babar adds all matching categories to the list shown in the Category List Subview.
Babar does not change the currently selected category.

show -> single

Babar asks you to choose the name of a category from a menu of categories. Babar
adds the chosen category to the list shown in the Category List Subview. selects it, and
shows its letters in the Letter List Subview.

sort rules -> add

Babar prompts you for a new sort rule, which it adds to the current set of sort rules.
See section 4.5 for for general infonnation on sorting,

BatDar first asks for the header field.

ort Rule header field Em

+ -<5

'€k: 6

Mail Interface
3.2 Category List Subviewand Menu

Babar User's Guide 23

r D May 1986

After you enter the header field fe.g "To"), Babar asks you for the pattern (see SeetiOn
4.12).

5:LE.U.U %3 S.>4 :3 144<4·2·4 .:23*4324'4'g·2.24.·A *46%:4:,4-'·• ... v. i.,1 :4 ! " " " W*.t•y...

Sort Rule pattern for To field: an

After you enter the pattern (e.g "BabarSupporte). Babar asks you for the name or the

category to which the letter will be added if the lettersatisifies the rule

Sort Rule category name:

To Babar#upportl

After you enter the category fe g. "To Babar Support¥"j. Babar shows you your new sort rule
On your System Transcript.

*E.
4% new

it.em T raliscript· :im:?·f°%%,r.,21.,.2...:EM@**9 : 247*AF.jEr{¢ 4:.2
rule: To: +Babardupport·+ 4 --> TO Babar Support

sort rules -> delete

Babar deletes the sort rule that it asks you to choose from a menu of rules. See
section 4.5 fur for general information on sorting.

Mail Interface Babar User's Guide 24
' May 19863.2 Category List Subview and Menlo

]To:
E *4»LA@*Ma,zater-i---------¥2»24I-«4+932-...<*6144 #Weemma.p#·'elete El)rt Rule :,»3.b: <%$4*kiv; ·Ik,kdy·':> a:*8>:M@f:':4·2i':83*3>

=+3.-[%2222[lt.13-> To Bal:)a rfromit*Junk** f--> *Deleted

Atter you choose a rule. Babar deletes it and shoWs you the deleted rule on your System
Imnscrip t.

n

system Transirript.t>§:E:%4%:s,}31§441@53&*2:31*2..©S»>305
removed rule: from: *Junk t·* --> T:Lieleted

sort rules -> list

Babar lists the current set of sort rules on your System Transcript See section 4.5
for for general information on sorting.

>yste)-11 T ranSCript Ii:firligiti@11 K :4§%*4%14*7%32:,3
Sort rules:

To: *BabarSupportr·+ --> To Babar
from: +Junke --> +Deleted

V

, 1-1 i i P, ir t

.JJ

update

Babar makes sure that all recent changes (as contained in the recovery log file) are
recorded in the permanent database files.

vstern i ranscript i

£: &11 11.y,ij ditlil 2. Id 313.baGe; i.done

%-....

3%
:U

-3

93
Mail Interface ·93.2 Category List Subviewand Menu

Babar User's Guide 25
May 1986

Note:. Babar does this function automatically whenever you read multiple mail files,

compact close the Mail Interface view. change logins, snapshot, suspend, or quit your image.

3.3 The Letter List Subview and Menus

·Der: 2.7 ijatiarbupportl
Dec 27 BabarSupportt Ec Babarsupport--tBabarSupport·t

Be.barSupportt

234 :1 b}*:..:i..5374."'...4.1'....M' .4.?.·I:t

Ba.b·91' ? *U 1-,j 5er 1.)00 Uill' 34>k4
Documentation Table .#10

' s b:i:-Bf
Becoming a Babarian *:8:}54,
PA.Fil Interlace Subwir£»·:=pet
Thm CA»c,Ar·:p T i·r• 7.wrp ji:&.1*8

t*tow
33?4.·3 (' 2 ./. 7,00'f -206·umentotion

The Letter Lat Subpiew shows a filtered list of allietters in the currently selected category. If
you select one of these letters. Babar will display the text of the letter in the Letter Text
Subview.

If you have riot selected a letter, you get the following menu in this subview:

2%:Sm:Elit>:24*:.i:i:i:S:@i:i·%§)43.} Es.§?2i:.Ef:i·'··*3 derault

matrinew form[:17•44 hardcopy
182-ill: OrA fri entS/t,Uq24%11 iD:ollimns

-----1

-

=21

E.f-Mail Interface Babar User's Guide 26
3.3 Letter list Subviewand Menus Mav 1986

If you have selected a letter, you get this menu:

*341**BI ff *2*·g, %9%51%<43%7%32*2%14%2'i..::·i::<**bit
default #fti:

hardcopy •**i
answgr

9*new.:' form i.,3***-*+Fforrward *st
Im d G 1 Q t e *ti4%4·23··h ii,i@i:·: si>· s

·4 uridelete 1%%41%234{4 te
fit{ add 7lk#j::*:2655# comments,/tii_ris *ifj
tkil move

%9% auto 3 wt 44?:1·t[MIM/<*#%24§§}42*-0**ly·14*6 20*0

 *39·J»*ttIOd letter,.m.
*%*EE::::+:: .. ::::....-:.:0:.:--.

add

Babar asks you to choose the name of a category from a menu of categories. Babar
adds the selected letter to the chosen category.

auto sort

Babar applies the current set of sort rules to the selected letter. Ifit meets the test of
any sort rules. Babar adds the letter to the category specified by the rules and removes
it from the !'*New" category. See section 43 for more details.

t

Mail Interface . r/t
4 .11 14 Babar User's Guide

3.3 Letter List Subviewand Menus J Mav 1986

columns

Babar allows you to adjust the positions of the columns by using the left mouse button
to move the cross-hair cursor and the wavy vertical lines which mark the start oleach
column.

Putz.pa new mail)

Dec 27 tBabarSupport*
Dec 27 HabarSupport.t

lisabarsupportf
'{Baba.1·Support i

i LId.Ud-L KI ub,4-lu. t. r

41% Dec 27
Al Dec ti

1Babar 7.0 User Docum 2
}Documentation Table E
?15800mlill .3 Bab,3-rl,311 ·2
iMail Interface SubwinS
?The Category List MeM

4%41:Mi 2 '+Li. 11· 9. 464·521 / :1.Ftep.6529 mexi

When you are finished, use the middle or right mouse button to get the following
menu, and select "done":

delete

Babar adds the selected letter to the "*Deleted" category. If you have turned on the
auto next button (see section 3.91 Babar automatically selects the next non-deleted
letter, if any, and displays the text.

hardcopy -> letter

Babar prints the selected letter. Babar will ask you for the name of the printer that
you wish to use.

move

Babar asks you to choose the name of a category from a menu of categories. Babar
adds the selected letter to the chosen category and removes it from the current
category. [f you have turned on the auto next button (see section 3.9), Babar
automatically selects the next non-deleted letter, if any. and displays the text.

Il-=-Il=-I
42.*-1<1

Mail Interface Babar User's Guide 28
3.3 Letter [ist Subview and Menus Mav 1986

f.

new form -> answer

Babar opens a Mail Writer initialized as an answer to the selected letter. See section
5 for more details. Your new letter will appear in the same categories as the selected
letter.

new form -> answer & forward

A combination of answer and forward.

new form -> comments/bugs

Babar opens a Mail Writer initialized to send a message to BabarSupport¥.pa. See
section 5 for more details. Babar puts in formation about the mail interface software
version being used into the letter's header. You should use this form for questions,
reporting bugs, or making suggestions about improving Babar.

new form -> copy

Babar opens either a Mail Writer or a Hardcopy Mail Writer initialized as a copy of
the selected letter, depending on whether the letter was created by the Mail Writer or
the Hardcopy Mail Writer. See section 5 or 6 for more details. Babar omits the
"Date:" header field and ignores any non-text items not normally generated by Babar.
Your new letter will appear in the same categories as the selected letter.

new form :-> default

Babar opens a default Mail Writer. Sce section 5 formore details.

new form -> forward

Babar opens a Mail Writer initialized to forward the selected letter. See section 5
for more details. Your new letter will appear in the same categories as the selected
letter. Seesection 3.2 ifyou wish to forward more than one letter.

new form -> hardcopy

Babar opens a default Hardcopy Mail Writer. See section 6 formore details.

f

«- 4/ %4 74 7

Mail interface f
3.3 1.etter List Subview and Menus

Babar User's Guide 29
May 1986

remove

Babar asks you to choose the name of a category from a menu of categories (if the
selected letter belongs to more than one category). Babar removes the selected letter
from the chosen category. If you remove it from the current category and you have
turned on the auto next button (see section 3.91 Babar automatically selects the
next non-deleted letter. if any. and displays the text.

undelete

Babar removes the selected letter from the "*Deleted" category.

write file -> append letter

Babarasks you for the name of a new or existing standard ".mail" file. Babar appends
the selected letter to the specified file.--Ii----------------

1 2]1

Mail Interface Babar User's Guide 30
3.4 Letter Text Subview and Menus May 1986

3.4 The Letter Text Subview and Menus

:2':3%*At:AS:A. U 0*s pig·"i:**:4 p 1'37'·34'n««.9 +'".F@*:t«>f ****gEFEFEEE
4% auto next reformally'- · . 1/k stoD date:

1

:e.* . .. u# ...u..L,'7 >' 20'30r-DO¢umentation
i{, NE

E Date: Fri. 27 Dec 86 16:43:45 PST - 41=
...0 From: Babarbupportt·.pa 11 32?*&2:
1%**Mt 1-% ,

oubject: Bahar 7.0 User Documentation j*:lit:.:§8?§.
.1-JItti€E, To: Babarians·,pa

%11% i ,ep,y-To: sabarSupport..pa
** Filed-ona [Eilene]<Babar>Documentation>Babar-Documentation,mail *44

193*4 Thj 'c 5, 11 ser guide and reference manual for Babar, an experim

*im ejectronic mall interface implemented in the System Concepts L*3*: research version of the Smalltalk-80 3Vstem, 40%

: V

'.· I · r......:'6 ..:m.Q'€1aila'.d./.Ill.-.-./*24· · ·'.· ..' Y... .6 ...

2*4:23 w.*:*f:::3§ *%%4:%*33%4*41 KE...*4**P..... :.. <*..-:34*324_

The Letter Text Subview shows the text of the selected letter. Babar may present this text in
different ways, depending on whether the Reformat Button is on or off (see section 3,101

If you have not selected a letter, you get the following menu in this subview:

PAW new formp
i{¢33335.1 defa.ult
@0**0 hardcopy
%*f·*41:§20 0 m ment s :· b u g

'5:2'«fS:'.·:Is;----1----

-11

Und€*ENEBEEZEEE

4%
OF
410

Mail Interface 1 .773 Babar User's Guide 31
3.4 Letter Text Subview and Menus May 1986

If you have selected a letter, you get this menu:

4...2

hardcopy
a ri s 1..v Q r

for¥/ard

.answer & forward *i.*

copy

f=inew formt:**j
*EN again %%*t
240 0,3 n-, 1%*il

r . -2**2:,ae:·:

*1 do it €423%3 comments/bldgs %452
:..... t.:©oil:·ls€$ 2«39>+·S·'24·:24·:< :«··5 -·Min 3 p ec t it %49*41%3% r o...s..d »:i:* ,.: - ···p ··RE'13t**lha-cor v *13201%1ft-It*kietti*:,<3.,b.

hardcopy

Babar prints the selected letter. Babar asks you to specify the printer you wish to use.

new form -> .

These are identical to the same commands in the Letter List Subview menus (see
section 3.3).

others.

The remaining-items are standard Smalltalk text menu commands.

3.5 The Letter Status Subview and Menus

J images 4 1 tute

nu R € 1 6 , d·E , d S Pe T

**tJ „593;59·!. fphfpED·tr*.ON·?>·19 2,3.·<··5.·n - *.,...'. 6,1 REE.:r:)9''H)'3e' - ·4' '4:i:41'4

If you have selected a letter. the Letter Status Subview shows the names of all categories
containing the selected letter. [t also shows other useful information, such as whether the letter
has images or references.

If you have selected a category, but not a letter, the Letter Status Subview shows the number of

I - i

....

-34 f
%,4,0

Mail Interface 0
3.5 Lotter Status Subview and Menus '

Babar User's Guide 32
May 1986

letters in the category.

20.:81

If you have not selected a category, the Letter Status Subview shows the total number of letters
and the total number ofcategories in your database.

f teri in 33' ¢,rte..9072 03. 2

If you have not selected aletter. you get the same menu asin the Category List Subview, See
section 3.2 for more details.

If you have selected a letter, you get the following menu:

% ,%4%*01%93*>41 category kil

*Mft forwarded E
add /**um:

image

remove

add

Babar asks you to choose the name of a category from a menu of categories, Babar
adds the selected letter to the chosen category.

reniove

Babar asks you to choose the name of a category from a menu of categories (if the
selected letter belongs to more than one category). Babar removes the selected letter
from the chosen category. If you remove it from the current category and you have
turned on the auto next button (see section 3,9), Babar automatically selects the
next non deleted letter, if any. and displays the text.

show ->- category

Babar asks you to choose the name of a category from a menu of categories (if the

X V '
--3

9.1
iMail Interface -
3.5 Letter Status Subview and Menus

Babar User's Guide 33
May 1986

selected letter belongs to more than one category). Babar then selects the chosen
category in the Category List Subview and displays the category's letters in the Letter
List Subview.

show -> forwarded

Babar searches your database for all letterfs) which the selected letter forwarded.
Babar inserts the letters that it finds into the Letter List Subview if it is not already
there, selects the first letter, and displays the text of that letter in the Letter Text
Subview.

Note: When you select a forwarding letter, and the forwarded letter(s) are in the
database but not in the Letter List Subview, Babar automatically inserts them into the
list immediately after the forwarding letter.

show -> image

If the selected letter contains images, you may use this command to view them with a

Smalltalk Form Editor. If the letter contains more than one image, Babar puts up a
menu from which you may select an image.

33*·fiew which imageF

show -> in-reply-to

Babar searches your database for a letter to which the selected letter is a reply, If
Babar finds it. Babar inserts the letter into the Letter List Subview. selects the letter,
and displays the text of the letter.

Note: The selected letter need not contain a special in-reply-to item if it has a
reasonably formatted "In-Reply-To:" field in its header.

.9-1

464

-- 41·-1

1Mail Interface LF Babar User's Guide 34
3.6 Start Date Subview and Menus May 1986

L ·t

3.6 The Start Date Filter Subview and Menus

mlele

t* The MBabarbuppor

t op 4(ofte: m

The Start Date Filter Subview modifies the list ofallletters shown in the selected category. See
section 4.1 for more details.

When you wish to add a date, you may type either on top of "start date.· " or after it. You may
enter dates in several formats, such as

27 Dec 85

1 April 1986 17:05
2/23/86 9:22 p.m.
3/18 (of current year)

When you have finished typing in the date, choose the "accept" command from the menu, If
you make a mistake, you may confuse the system and get a notifier. Close the notifier, correct
your error, and "accept" again.

I f you wish to clear the date, choose the "reset" command from the menu.

You get tile following menu:

reset

r UT I

1 Q ret r
ECCept1
i oncel Im

Babar clears the date in the Start Date Filter Subview,

L.t.-fMail Interface Babar User' s Guide 35
3.6 Start Date Subview and Menus Mav 1986

others.

The remining items are standard Smalltalk text menu commands.

3.7 The Stop Date Filter Subview and Menus

fig¢**2'9©¥i@F«%§39.5§
- p Category List Me.B *Dec 27 Babel

Wak start date:

f»·p _00 £ 5:kkg:2,122 11' 2,4

The Stop Date Filter Sub¥iew modifies the list ofallletters shown in the selected category. See
section 4.1 for more details.

The details of entering dates. clearing dates. and the menu are identical to those of the Start
Date Filter Subview, section 3.6.

3.8 The 1Maximum Count Filter Subview and Menus

*loportt The Ca

IE?% StOp fe·t,
-L••/.4/

*34999%%%2233

VAl.yx:

The .Waxi>num Count Filter Subwindow modifies the list of all letters shown in the selected
category. See section 4.1 for more details.

When you wish to add a maximum count. you may type either on top of "max: " or after it.

Then choose the "accept" command from the menu. Numbers greater than 500 are changed to
500.

if you wish to clear the count choose the "reset" command from the menu, Babar reverts to its
default value (50 for the "*All Letters" category, 500 for others).

The menu is identical to that of the Start Date Filter Subview. section 3.6.

1 4 7
-49-0

I - --'-t--== ----=----

Mail Interface k
3.9 Auto Next Button

Babar User's Guide 36
May 1986

3.9 The Auto Next Button

.0% ?:%: aultiz next]Ir: 1
umentation

rmat show deleted *01

Date.gori€Jf Z): 50(DCIS*)12

The Auto Next Bu:tton controls the automatic selection of the next letter when you delete or
move the currently selected letter.

«1»»mat.....6f..2:CM,4.f.i :::1
U*:12,„.V...IME'l:>... 48.13.tb next INE»?

R·:·:»M:.:22%4 Utl*1433*1»ter 5 :»0.222*3**13»*»»xe»u»,9.:".,"'34 ' 2

If the Auto Next Button is on, Babar automatic selects the next letter when you delete or move
the currently selected letter.

3.10 The Reformat Button

El:'Eabar -DnEu·-- '- .YA?,TiLEIEFirt .Alite nreformat.st w deleted *43

26/1 2: 8¢06'Ze#

The Reformat Button controls part of the formatting of the text of the currently selected letter in
the Letter Text Subview.

Fitt reformatftigt
.

reformat | 221*1
1:t ·:91»46. Off ' N.?:441

Mail Interface
3.10 Reformat Button

x · to Babar User's Guide 37
May 1986

12

If the Reformat Mode Button is on. Babar takes the following actions before displaying the
letter:

1. The "Date:" fieldis reformatted and moved to the top.

2. The following fields are omitted, and the list of omitted field names is
shown immediately following the header.

Message[D:
Received:

Return-Path:

Comment:

3.11 The Show Deleted Button

PBab,ar -Documen :c 27 Baba.M.GUP il DE

t show deleted

>6:41

.auto nerd reforn ort dates Vt.
14'.,#·.*.+.+i'*438

1%74'.:M,:.9: :.:%04%**%·:,*et:*reiamit.44:itimi*%:4'42%*it.

The Show Deleted Button controls part of the filtering of the list of letters m the Letter List
Subview. See section 4.1 for additional details.

9:§}g_*im2Uilail, 53& show deleted *i:
...ggy 03:·c:¢:.. On %44'42:·§39@09*%:{Y Off 42>?13iPE.

If the Show Deleted Button is on. Babar shows deleted letters in the currently selected category.
Babar marks these deleted letters by putting a line through them.

AV

6%:1 1 Dec 27 Babar:Supporti Documentation Table

If the Show Deleted Button is off. Babar filters out deleted letters in the currently selected
category.

 7
-64.

Mail Interface Features 4 Babar User's Guide 38
4 May 1986

Part 4. Mail Interface Features

Now that you have seen what Babar's Mail Interface looks like (in part 3), we want to briefly
describe some of the broader or more interesting features of Babar.

4.1 Filtering The Letter List Subview

When you select a category in the Category List Subview (see section 3.2). Babar displays the
letters contained in this category in the Letter List Subview (see section 33). As you might
have a large number o f letters in this category, and since you might not want to see all of them.
Babar allows you to control (to some degree) the number and kind of letters that you will see in
the Letter List Subview.

With Babar, you may see letters between certain dates (which may include times-of-day). before
a certain date, or after a certain date, You may avoid seeing deleted letters, and you may also
limit the number of letters that you wish to see,

Babar accomplishes this by ./Ute,ing the list of letters in the specified category and displaying
only those that pass the filtering tests. Babar currently has four filtering tests, which it applies in
the following order:

(1) Deleted Letters- Unless your Show Deleted Button is on (see
section 3.11), Babardoes not show any deleted letters. Deletedletters are
those which belong also to the "*Deleted" category.

(2) Start Date- If you have set a date in the Start Date Filter Subview
(see section 3.6). Babar does not show letters whose postmark is earher

than the specified date.

(3) Stop Date. If you have set a date in the Stop Date Filter Subview
(see section 3.7). Babar does not show letters whose postmark is later than
the specified date.

(4) Maximum Count Babar never shows more than a certain number
of letters. Babar's default for this number is 500 (except for the "*All
Letters" category, in which it is 50). You may override the default numbers
if you wish (see the Maximum Count Filter Subview, section 3,81 When
the number of filtered letters in your category exceeds the maximum count.

0%
<

4«

Mail Interface Features ff-
4.1 Fitiering Babar User's Guide

May 1986

Babar displays only the earliest letters.

Notes on filtering:

* Babar filters on deletedand dates before filtering on maximum count.

* Date filtering is based on a letter's hidden postmark, which is usually a
few seconds different than the date which appears in the letter's text. but
may be a lot different.

* When Babar suppresses any letters because of a date or count filter.
Babar highlights the the filter value in boldface. An example is "max: 8"
instead of"max: 3". Babaralso notes this in the Letter Status Subview.

·····....v.·.....,<·:4·d·>b:2<€*.:·:055:<222&&4¥»'I@@ME'.::4:A·.a:j;Exf}i'

I auto next | reformat show deleted stort de·te: 13 May 8612*1 1 1%81 22 Zetters listed (filte.re.d)

%5?3*t'©%244:211:':jei*·EE{% %#J263%3*35{*FEGENfeig*423.*E**2*542%4133"45«333

it]

i]%·3::72.:33,6: ..i:§§3§'{·E€:624%**23: L...k.4 .2.:..tibE€ :'t%*3%%442*@*543*14%"i·.9.1§3
auto next reformat. show deleted stert date: 13 May 06

19 letters in *Ati Litters, 26 listed

Except for the "*New" category. Babar normally displays the letter list
scrolled to the bottom, so that you see the latest letters. When you have set
a stop date, Babar starts the list scrolled to the top, so that you see the
earliest letters.

* If you have more than 500 letters in a category, you must use date
filters ifyou wish to access ail of the letters.

... .ill ./. il." illi
1 C

...

Mail Interface Features .4-- Babar User's Guide 40
' May 19864.2 compacting

4.2 Compacting Your Mail Database

Babar stores in your database every letter that you retrieve from your Grapevine inboxes, as well
as all of those that you read in from standard ".mail" files. When you delete a letter, Babar adds
it to the "*Deleted" category but does not remove it from your database. If you wish to avoid
degraded performance ariel taking up excessive amou nts of> storage. you must periodically ask
Babal- to remove the deleted letters entirely from your database.

You do this by using the "compact" command in the Category List Subview menu (see section
3.2). Babar then asks you ifyou wish to destroy your deleted letters.

Purge * Deleted fl·st.7 Ra

Ves no

[fyou choose "no", Babar will abort the compaction.

If Babar reports an error on the System Transcript while compacting your database, you have a
smashed database. Immediately report your problem to BabarSupportt.pa using the 'Tnew form
-> comments/bugs" command in the Letter Text or Letter List Subviews (see sections 3.3
and 3.4). We will attempt to determine what went wrong, and we will try to recover any lost
letters!

We suggest the following strategy about compaction:

* Compact at least every week or two. Ille longer you wait the more
time it will take.

* Avoid doing a compaction when you have many undeleted letters in
the "*New" category, as new letters which survive their first compaction
will never get reclaimed under the current scheme.

First generation letters are new mail retrieved using either the "get new mail" or the "mail files
-> read file" commands. Second generation letters are first generation letters which have
survived a compaction or are those letters read using the "mail files -> read multiple files"
command.

We plan to add a facility for compacting second generation letters.

31
9 4
NK»;

99Mail Interface Features ji
4.2 compacang

Babar User's Guide 41
May 1986

4.3 Recovering Your Mail Database After a Crash

Babar uses a recoveo log jile on disk to keep track of all the actions that it has taken on your
mail database since you opened the view (or since the last update).

When you restart the Mail Interface after a crash, Babar replays the recovery log file to bring
your database up to date. Babar reports its recovery actions on your System Transcript:

RFE.5 2752 E TrariSC rip t PI?y:k*::%98·@28:.· >?.,·:· <·t:·: >>:· 0:··R·: ...:·.·:«d·;:*=»sge ..<.:u. ·:,. § :%:s; 3.21 1 *t # .·..'Ef

*2% reopenin @ database, -
02**= Recovering BTree transaction on

43-s IFilene]<Putz.>Mail.>DE.categ·orie:5Iridex,btree done
94#7 Replayin g log ··,

*a» ourie replayin g: 102:.

VAQ2.V.V

'X

Under normal circumstances, you should not lose anything as the result of a system crash.

Remember:

Babar automatically updates your database when you

* do a "mail files -> read multiple files" command (see section 3.21

* do a "compact" command (see section 3.21

* close your Mail Interface Window,

* change logins.

* suspend your image.

save a new snapshot

save and quit. or

* quit your image.

l.»4
4 r

4 9, 5

Mail Interface Features .i-
4.3 RecoveringAfteraCrash

C Bat>ar User's Guide 42
May 1986

You may also use the "update" command to do this (see section 3.2),

\Varning:

I F Babar gets very confused in the middle of some critical operation, you should not
try to go on. Instead, you should either (1) close and reopen your Mail Interface view
or (2) quit Smalltalk and restart your image, causing Babar to replay the recovery log
file. I f you have doubts, please contact BabarSupportl·.pa.

Notes on recovery:

The characters that Bat>ar prints on your system transcript while doing its recovery have the
following meanings:

{ started getting new mail

} finished getting new· mati

+ added a letter to a category

added a group of letters io a category

- removed a letter from a category

C started moving a letter to a category
) finished moving a letter to a category
& added a category

- deleted a category

R renamed a category
< started purging a category

> finished purging a category

[started a compaction
] finished a compaction
H created a heap

4.4 Moving Your Nlail Database

If you ever need to move your Babar mail database to a different directory. you will first need to
copy all of the Babafs files from the current directory (see section 1.2) to the new directory.
You must then change your "i]Babar.profile" file to reflect the change,

Please contact BabarSupportt.pa for assistance before you do this. Use the "new form ->
comments/bugs' command (see section 3.3).

2%
-li
<

Mail Interface Features 1 2 Bid,ar User's Guide 43
4.3 Auto-Sorting Your Mail May 1986

4.5 Auto-Sorting Your Mail

Babar has a primitive facility for automatically categorizing letters according to simple rules.
Babar currently has a single predefined sort rule, plus the capability to add, delete, and list
user-defined sort rules (see section 3.2).

Babar currently sorts mail only when you tell it to do so. You may sort a single letter with the
"auto sort" command in the Letter List Subview (see section 3.3) or in the Mail Writer> s
Letter Status Subview (see section 5.3). You may also sort a whole category of letters (as
currently filtered) with the "multiple -> auto sort" command in the Category List Subview (see
section 3.2).

Babar adds the successfully sorted letter to the category specified by the rule which the letter
met. The letter may be added to more than one category if if satisifies the conditions of more
than one rule. If a successfully sorted single letter is a member of the "*New" category, Babar
removes it from that category,

You may have only one set of rules for your database, and Babar applies all rules to each letter
under consideration. Babar may be slow when applying user-defined rules. These constraints
limit the usefulness of user-defined rules

The Built·In "In-Reply·To" Sort Rule

Whenever a letter which is a reply to an earlier letter is sorted, Babar automatically
adds it to all categories containing the eartier letter, with the exception of the "*from
<your name>" category.

Warning: If you reply to a deleted letter, Babar currently deletes your response!
You must remove it from the "*Deleted" category yourself if you wish to save it..

l

-3
f K

CL

Mail Interface Features 1 Babar User's Guide 44
4.5 Auto-Sorling Your Mail - May 1986

UserDefined Sort Rules

User-defined sort rules match patterns in rules against text in header fields (see
section 3.2 for the details of adding your own sort rules). We say that Babar has
successfully sorted a letter when Babar finds a match for the pattern anywhere in the
text o f the header field. A sort rule consists of three parts:

1. a header field name.

2. a search pattern (see section 4.12), and

3. a category for the letterifthe pattern matches.

Possible header field names include:

Date

From

In-Reply-To
Keywords

Subject
10

Note that Babar adds a colon (:) to the end of your header field name, so you must
not type it yourself, or you will get two colons (which will never match anything).
Also note that Babar makes no distinction between upper and lower case letters in the
header field name and the search pattern.

An example of a user-defined sort rule is:

1. headerfeld = from

1. pattern = *Babarsupport¥*

3. category = Babar Messages

This tule tells Babar to search for the stnng 'Babarfupport,- anywhere in the text of the
'From:" header field and move the letter to "Babar Messages" ifit is found.

We added user-defined sort rules to Babar as an experiment, and we may change this facility in
the future.

6.0

Mail Interface Features 291 Babar User's Guide 45
4.5 Auto-Sorting Your Mall May 1986

4.6 Archiving Your Mail

You may take the following steps for archiving old mail and purging it from your Babar
database. Besides reducing disk space, you may find this useful just to reduce the "clutter" in
your database.

1. Identify or create a category containing letters that you wish to archive.

You may use filtering to archive only part of a category (see Section 3.4

2. Use the "mail files -> write file" command (see SeCtion 3.2) to write the
letters in the category to a standard ",mall" file.

You should choose a name that is as descriptive as possible, such as
"[Filene]<Putz>Archive>IFS-Accounts·Defunct- 1983-1985.mail".

3. You may now delete these letters from the category. Choose either step 4 (if you
wish to delete these letters from all categories) or steps 5 through 8 (if you wish to
leave these letters in any other categories to which they currently belong).

4. Use the T,multiple -> delete" command (see section 3.2) to delete all of the
letters in the category (as filtered). Go to step 9.

Warning: this action also deletes these letters from inv other
categories to which they belong!

5. You may want to use the "multiple -> remove" command to remove the letters
from any other category to which they belong.

Warning: letters w·hich belong to any other categories after
this step will nor be deleted and purged, even though you have
written those letters to an archive file.

6. Make sure that your "*Unclassified" category does not contain any mail that you
want to keep. Ifit does. move the letters to anothercategory,

3%
4 <

44

Mail Interface Features
4.6 Archiving Your Mail

Babar User's Guide 46
May 1986

7. Use the "category -> remove -> unreferenced..." command to destroy the
archived category. Babar places all unreferenced letters into the "*Unclassified"
category.

Warning: this action also affects any letters which you filtered
out in step 1 and have =f written to the archive file

8. Select the "*Unclassified" category and use the "multiple -> delete" command
to delete all of the letters in this category.

9. Repeat steps 1 through 4 (or 8) for any other categories you wish to archive.

10. The next time you do a compaction (see section 4.2), you may ask Babar to
purge the deleted letters and reclaim the disk space.

11. Send a message to Archivist.pa requesting that the file(s) you have just created be
archived and deleted- For example

Subject: Mail Archiverequest (IFS /Grapevine)

To: Archivist,pa

ArchiveAndDelete: [Filene]<Putz>Archive>IFS-1983.mail

ArchiveAndDelete: [Filene]<Putz>Archive>IFS-1984.mall

ArchiveAm]DeIete: [Filene]<Putz>Archive>IFS"Accounts-Defunct- 1983-1985.mail

ArchiveAm]Delete: [Filene]<Putz>Archive>Grapevme-Accounts-defunct-1983-1985.mail

As this procedure is rather complicated, we may later add a function to Babar which
performs most o f these steps automatically.

1/1

3 4
42- 1

Mail Interface Features .f Babar User's Guide 47
4.7 Your Userprofile Attributes May 1986

4.7 Your UserProfile Attributes

Babel- looks for three optional attributes in your UserProfile (a local Smalltalk object on your
system) that you may find useful. The names and functions of these attributes are:

#ful]Name

If present. the Hardcopy Mail Writer puts the value at the beginning of
your return address (see section 6.51

#mailFromName

If present the Mail Writer and the Ha [-dcopy Mail Writer put the value in a
"From:" field (see sections 5.2 and 6.2).

#workPhone

If present, the Hardcopy Mail Writer puts the value in place of the default
phone number in your return address (see section 6.5)

To add, change, or delete these attributes, you must modify your "[]Babar.profile" file with file
lid or by evaluating:

FileM*lei editfileNamed: 1]Babar.profile'.

For example, you might start with:

* I]Babar profile *i:*:1:.54: 9':4:::: 8%?%*%:30%%§%:*90*34%%%·*.10%**p.:§:Di·§.·:0<i:>:»
me Aurioute: mailDBHost -> nil

mt,m At.tribute: mallDBPrefix -> 'ryllene]<Putz>Mail>DB,'

. 1

'1 1%:

2 2
NO

Mail Interface Features
4.7 Your UserProfile Attributes

Bat}ar User's Guide 48
May 1986

and add atl three of the above attributes:

SIS"+2946$: *Mr ,24. F'£T„ ..:,'.4.,"+"4 .g'..;".4.'f:Ld'*7.*4.:"f- 227·*·K·< "<.··.:·· ...2.§:."+'4,f:33 6*413..''$2*fj:%:1.·:-, +415§ >·13214:§.§:M·>4.Ef '21100* **49.3«14480:4/*,r , .'::332*MN·4*:kipttikist?Y@*fap*ff

**Ef Atnibute: mailDBHost -
***u.*: Attribu.te: mailDBPrefix
*92% Attribute: fullName ->'S

¥t,mig attribute: workPhone -2

9.92% Attribute: mailfromName

i-£11 3%09%
20.13.:: %4%
-22&*58*

> '[Filene]<Putz>Mail>DB.'
teve Putz'

'(415) 494-4355' t{{.E:.:::
- > 'Steve Puts <Puts,pa>

After doing a "put" to update your file, you need to install the new version of the file by evaluating:

UserProfile current readUserProfileFromFileNamed: '[]Babar.profile'
i fAbsent: [self error: 'file not found'].

4.8 The Error Log File

Babar keeps an en·or log,#te which contains a list of the errors that Babar encounters during the
following operations:

* reading a standard ".mail" file. and

* compacting a portion o f your mail database.

If you have a Mail Interface view open, you may examine the error log file by evaluating:

FileModel editfileNamed: MailInterface activeInstance database errorLogName.

If Babar reports an error on the System Transcript while reading a standard ".mail" file, you
may want to use the Laurel MailfileScavenger to try to recover the damaged letter(s).1-------------------

(»%,j
N

¥ i

-:-4) 4/3Mail Interface Features Babar User's Guide1 dr4.9 Forwarding I etters May 1986

4.9 Forwarding Letters

Babar has a different way of forwarding mail than most other mail programs (such as Walnut,
Laurel or Fillet). Rather than simply including the text of the forwarded letter, Babar sends the
entire forwarded letter (including non-text items such as images) along with the forwarding
letter.

When you use Babar to for'want a letter to a non-Babar mail program. the receiver of your letter
will see the text of the forwarded letter embedded in your forwarding letter's text between two
lines of dashes. When you receive a forwarded letter created by a non-Babar mail program, you
will see the text of the forwarded letter embedded in the forwarding letter's text between two
lines 0Fdashes.

When you receive a forwarded letter created by another Babar user, Babar adds the actual
forwarded letter to your database as a completely separate letter. Ifthe forwarded letter is new,
Babar puts it into the "'Unclassified" category. Babar does not add it to the "*New" category
until the first time you select the forwarding letter, In the forwarding letter's text. forwarded
letters appear simply as a single line of text, such as:

fbrvard: BabarSupport,9 message of Fri, 27 Dec 85 18:53:36 PST -- Sending Letters

When you are looking at the forwarding letter, you may use the "show -> forwarded"
command to select and display the forwarded letter Gee section 3.5).

When you wish to forward mail, you may ask Babar to forward either a single letter or a group
of letters (see sections 3.2 and 3.3). When you are creating the forwarding letter with the
Mail Writer (see section 51 you must not change the text between the dashes. or Babar will not
know where to insert tile forwarded letter-'s text

1 2

2 41
f i

IMail Interface Features 3- Babar User's Guide 50
4.10 Standard -mail" Files Mav 1986

4.10 Using Standard ".mail" Files

Babar allows you to access the standard '*.mail" files (as created by Fillet Hardy, and Laurel).
You may perform the following actions on mail files:

* read a set of mail files (see sections 1.3 and 3.2).

* read a single mail file (see section 3.2).

* create a new mail file containing a set of letters (see section 3,2).

* append a single letter to a new or existing mail file (see section 3.3),

4.11 Scavenging Your Mail Database

If you cannot get access to letters in your database, or have some other reason to suspect that
Babar's internal tables are bad, you may use the "scavenge -> confirm" command (see
section 3.2) to tell Babar to recreate its internal index tables that point to the letters in your
database and to the list of categories in your database.

4.12 Pattern Matching

Babar asks you for patterns for group actions on category names and when creating sort rules
(see section 3.2). A pattern is a string, but two characters, asteric (*) and sharp sign (#). have
special significance.

11*,1
This character in your pattern matches any sequence of characters

(including no characters) in the string being tested.

This character in your pattern matches any single character in the string
being tested.

Any other character in your pattern will match only the same character in the string being
tested. with the exception of alphabetic characters, for which upper and lower case characters of
the same letter also match.

For example, the pattern 's #e' matches the strings 'Steve' and 'Sue', but not the strings 'set', axes', or 'se'.

0,
2/

Mail Writer
5 rL d li,7- Babar Usefs Guide 51

May 1986

Part 5. The Mail Writer

We now describe the way that you create electronic mail using the Mail Writer.

The Mail Writer view which has three subviews and one button. looks like this:

»982**I«22%1-2699»>%*FrEE»-t»***»*«%37»31039%*924%239-*-226-291»»€*»-*%*194% *42-@*9@232@33*33%Fo
Mail Writer Wi* Letter Header Subview 225·)1>»M#W:%··:,4>··i·:>3:'·*>

Ait¢It·}3:1'j:.§4%1@t From: Sterze put.2 <''PUtZ.93
#4#voi.:'51'i.:p; Subject: Sijbiect

§&5619§2{1}t.}j·j}}joj.,*44{% TC,4 Re,Deive
·>

9 Letter S%3 Status I.,3 'iritego:zes. +Trom Pute M Deliver E
Deliver 4 Button Piitt Subview %

#4%*12·B#Milk#:ib -kite: 1.-ontents-

E>f;·:38,1.. & r.4:I..:%:44.4 1:: .:.4@4 Letter Body Subview %.Mt.?:t-:14:.::./.st··t/ff··/·..·.. :.:..:./.

Each subview has a pop-up menu which you access by pressing and holding the middle mouse
button.

The Letter Header Subview shows the header of the letter which you are creating.

The Letter Status Subview shows the categories to which the new letter will belong after
you deliver it.

The Letter Body Subview shows the text of the new letter you are composing.

The Deliver Button allows you to send the new letter after you have finished creating it-

Mail Writer l . '9- Babar User's Guide 52
5.1 Invoking The Viil Writer Mav 19861 1

la

5.1 Invoking The Mail Writer

You may invoke the Mail Writer from your main system menu:

gdliele e l.] 1 Lur
restore display form editor

garbage collect galley form editor
op#n window:Ytetti Mti mai

show win do %,V 5 calendar

6- fl*0323%
B mail interfac

LE«023*4%414*,f,al WZUW
hardcopy mall F

Itt:
riter,33%

You may also invoke the Mail Writer from your Mail Interface view by menu commands in the
Category List, the Letter List and Letter Text Subviews (see sections 3,2,33, and 3.4):

multiple -> forward

Bar mitialiles the Mail Wmer to forward ali letters in the seiected

category Your new letter is initially assigned to the "*from <name>"
cate2013

multiple -> reference

Bat)ar inltializes the Mail Writer to reference all [etters in the selected

category Your newletter is mitially assigned to the "*from <name>"
category

new form -> answer

Bat>ar initializes the Mail Writer to answer the selected letter

Categories are initialized from the selected letter.

new form -> answer & forward

Babar initializes the Mail Writer to answer and forward the belected

letter Categories are initialized from he selected letter

new form -> comments/bugs

Babar mitiallzes the Mail Writer to report suggestions and/or
problems to BabarSupporti.pa.

4-4-746
t

Mail Writer i 03
5.1 Invoking The Mail Writer m

Babar User's Guide 53
May 1986

new form -> copy

Babar initiallzes the Mail Writer with a copy of the selected letter.
Categories are initialized from the selected letter.

new form -> default

Babar initializes the Mail Writer for its default letter

new form -> forward

Babar initiatizes the Mail Writer to forward the selected letter

Categories are mitialized trom the selected letter

5.2 The Letter Header Subview and Menu

+ 1 I, I 311

From ,terre Plitz Putz 1,3,
Dijblect & Ublect

Tt, Fecer™r

C C

The Letter Header Subview shows the header of the letter which you are creating. The Letter
Header contains information about your letter. such as the sender, the receiver. the subject. who
gets copies, to which letter this is a reply. etc.

Babar creates a template for you to fill in. You should fill in the "Subject:". "To:", and "ec:"
(copies to) fields. You may add other fields by typing them or by using the "add field" menu
command.

if you initiate the Mail Writer from a Mail Interface menu. Babar may provide you with
additional fields and/or fields which are already filled in.

U)

7 4
9

Mail Writer Babar User's Guide 54jt

5.2 Letter Header Subvew and Menu May 1986

I f present, Babar uses the following UserProfile attribute as the value of the "From:" field (see
section 3.71

#mai[FromName

You get the following menu in this subview:

··.i:j: :K ,3<Ab.In *)*.>Mil
':9- undo 4%%1

24:i 1%4 2 COP v ...:84:F.,]ti
:ER' cut :-:.5:2

A:·E", pdS/Q §·3'Am
.ii;*i?§'i?: 3,d,! field :tami
2··j 52 Jj 13 o i t 21*:.-:
S':8:8 p ri n t it ty
·':>: 8:s. 6·>E{ I n 5 D e C t l t]2'250:,
mm:··§§§ cancel)13%51.:.

add field

Babar prompts you with a menu of the following standard field names:

123 Add header field %93

If you select one, Babaradds it to the current information in your letters header.

others...

The remaining items are standard Smalltalk text menu commands.

1,

49.4

Mail Writer & fl
5.3 Letter Status Subview and Menu

Babar User's Guide 55
May 1986

5.3 The Letter Status Subview and Menu

V

el

The Letter Status Subview shows the categories to which the new letter will belong. it also
shows whether the letter contains images or references, whether it is a reply to another letter.
and whether it forwards other letters.

You get the [Following menu in this subview:

add
move Im

remove

auto sort

delete
undelete

don't sav

add imag,
47·bremove image E.:if'{·

-

10% store letter 3.Ill

I f you do not have a Mail interface open. only the "add image" and "remove image" commands
will function and your Letter Status Subview willlook like this:

Since Babar cannot store your new letter directly into your mail database, you should add
yourself to the "ec:" header field if you wish to keep a copy of it.

7

631/4

Mail Writer 1-
5.3 [cH¢r Status Subview and Menu '

Babar User's Guide 56
May 1986

add

Babar asks you to choose the name ofa category from a menu ofcategories. Babar
will add your new letter to the chosen category when you deliver it.

add image

Babar gives you a Form Editor on an image which you initially specify from your
screen. Babar includes this image in your letter.

Important: If you edit the image. you must use "accept" in the Form Editor's menu
before you deliver your letter.

auto sort

Babar applies the current set of sort rules to your new letter. See section 4.5 for
more details.

delete

Babar will add your new letter to the "*Deleted" category when you deliver it.

don't save

Babar removes your new letter from all categories. Babar will not store this letter in
your mail database when you deliver it

mo¥e

Babar asks you to choose the name of a category from a menu of categories (unless
your new letter is currently in only one category). Babar removes your new letter
from the chosen (or only) category. Babar then asks you to pick the name of another
category from a menu of categories. Babar will add your new letter to that category
when you deliver it.

remove

Babar asks you to choose the name of a category from a menu of categories (unless
your new letter is currently in only one category). Babar removes your new letter
from the chosen (or only) cate€orv.

c -«%[j
k i/'

7

€4:

Mail Writer 1 '7.1
5.3 [„eller Status Subviewand Menu f

Babar User's Guide 57
May 1986

remove image

Babar asks you to choose an image from a menu of images in your letter.

YE'17:8]TiOVe whic-li 11114.'Ee 36·*·

Babar removes the chosen image from your letter.

store letter

Babar stores your letter "as is" in your mail database without delivering it via
Grapevine. Babar notes this on your system transcript:

•U•661*340&*4:432{4§ 8%*Ry i.id :i %?·%8 4:98-*:i*:: 8 *.9>:
8 - ,;98 b yete in U'r,Rns ir 1 t:i , i;*·:4 ¥i· ·>:si©j ta. :% 5..§20.F··23:9 :iR·is··*i:·:<>·i*·$§4
33% Undellvered letter stored m database,

7-'lli.-.'.*....-...-*.*-......*..-.*I

undelete

Babar removes your new letter front the "*Deleted" category.

h.

4
1

4 .
it.

Mail Writer Babar User's Guide 58
5.4 [etter Body Subview and Menu ' - May 1986

5.4 The Letter Body Subview and Menu

49 -letter Contents-

«strm»t«%»oR«**1¥':F f,:5:6i: :::3..:.

The Letter Body Subview shows the text of your new letter, except for the header. You use your
keyboard and standard text-editing commands from the menu to compose your letter.

Babar includes emphasis information. such as font changes and underscores as part of your new
letter. Grapevine mail programs other than Filter and Babar will probably ignore this
formatting information.

You get the following menu in this subview:

copy mi
* Cut %%*:.:

imaa do rt .

all commands.

All items are standard Smalltalk text menu commands.

1/ i

Mail Writer Babar User's Guide 59
5.5 Deliver Button f May 1986

4

5.5 The Deliver Button

When you are ready to send your new letter, you activate the Deliver Button by pressing your
left mouse button. If Babar does not find any errors in your letter's header. Babar will deliver
your letter to Grapevine. If you have a Mail Interface view open, Babar will immediately store
your letter in your mail database, This means that you need not add yourself to the "ec:" header
field if it belongs to any categories (as shown in the Letter Status Subview).

Warning: W you do not have a Mail Interface view open, Babar can not store your letter in
your mail database. Ifyou want to keep a copy of your new letter, you must add yoursel f to the
"ec:" header field.

If your letter has no recipients listed. Babar will simply put it iii your mail database. This is
faster than sending the letter to yourself, and LS similar to using the "store letter" command
described in section 5.3.

If Babar stores your letter in your mail database, it will close the Mail Writer view when it
finishes. Otherwise. Babar willleave the view on your screen.

1 -- -

3
+ 1

Hardcopy Mail Writer
6

Babar User's Guide
May 1986

Part 6. The Hardcopy Mail Writer

We now describe the way that you create printed letters (such as the example in figure 1 on the
next page) using the Hardcopy Mail Writer. Babar formats your printed letter so that you may
fold it in thirds and put it Ento a window envelope with the recipient's name and address showing
through the window. for mailing via the U. S. Postal Service.

Please Note: You may also send a hardcopy letter electronically via Grapevine if you specify
recipients in the "To:" header field.

The Hardcopy Mail Writer view. which has seven subviews and one button, looks like this:

4% %*]46::?}L€3%5,2.:. Return Address Subview 7.:0.42%431: Letter Header Subview clat«
:·»>·x· *.1.0:.Ii.....looti:itj:P:··:·:·:·:+2·>:©30:)§:*·;.61%:..4.4:&.:d€Il}Ilt<§:{*ji,Ef*l,itt/>]str:'ift*§341·*:'*:*:1·>:9::·:F·>'·;·P.:A*WEE;·42*-§439:2:kt#·jilk·r€f?%%*ii>jois j
42:f HaracopyiME Wri·ar J&
2% Steve Putz

A

s.*40 A ero x Palo Alt o Research Canter
2% 3333 Co yote Hill Road
234 P ato CA 94304A\to,
* f4151 494-4355

4% Bahai User
m Xerox Palo Alto Research Center

23 .3 333 Coyote Hill Road

31% Palo Alto, CA 94304

24* Dear Babarian,
04=

 Date: Frt. 27 Dec 0; 46,04,177 PETu·J 1 3,0+, 1 1

 From: BabarSupport+.pa
 Subject: The Hardcopy Mail Writer
 To: Ba.barianst·.pa
1 Fleply-To: BabarSupport.+.pa.
 80.3,02 -Documents'tirin Deliver

27 December 1985 1 XEROXA

This letter is ati e.xample of a hardcopy format letter. You may use the
new form -> copy command to create a Hardcopy Mall Writer containing
this letter,

#83<8

P .+11 In1. The A G J

83% 2. The Insz,fe Address,

4%*%3925#33% i.:-:i:..:. 8>%.ti..j-5 1_.etter Body Subview {%·%4%39%334%·Hmm{% 1%-51 :it:li:2]Etift:

. V

VV

f €

hk

Hardcopy Mail Writer Babar User's Guide 61
6 May 19861-U

Steve Putz

Xerox Palo Alto Research Center
Coyote Hill Road

Palo Alto, CA 94304

(415) 494-4355

XEROX 27 De -amber 1986

Babar User

Xerox Palo Alto Research Center

3333 Coyote Hill Road

Palo Alto, CA 94304

Dear Babarian,

This letter is an example of a hardcopy form.at letter, You may use the new
form -> COpy command to create a Hardcopy Mail Writer containing this
letter,

The Hardcopy Mail Writer differs in that is has four additional
subwindo

The Return Addrer:

The Incide Address,

The Lener Date? (distinct from the Date: field in the Grapevine
headerl,

4. The Logo Text, which i s currently limited to the letters needed for
'XEROX'

In addition, the Letter BodY text is left and right justified,

When printed, a Hardcopy Letter can be formatted for a st.andard window
envelope, And additional option allows you to suppress the Return Address
and Logo so the letter can be copied onto official letterhead (which already
includes these items),

Sincerely,

Ctelle Pute

BabarSupport·+,Da

Figure 1.
A simulated printed letter from the Hardcopy Mail Writer.

--r

Hardcopy Mail Writer .f Babar User's Guide
6 May 1986

The names of the remaining subviews are·

L.1

t Letter >it-?*9·45=4*MW*:imYE:
te,©26*i inside Address Subview *23'e:8 1 Status :s:,-:.j.....:.:::=':.::p·pkt: D liver .'09&3 Subview w,"::4,44:4.i.*.2. Button :...5.
1444:ict·:}*·>gqi*,4 ?;lj·#4146/·4:42%.:s:t:».:>%:>:»sL>:,>3..A..... „ ·2«4f.··:gi*.s£13:U:sg*8:©v: St#.;.:··-:3'VA#kv.34*41 ' Reply-Topl©arSupport·t:pa 1.15mil aber User

¢7 Xerox Palo Alto Research Center 300'22'-DOCUM€736(tion Deliver
241 3333 Covote Hill Road ME#01#4%iii.i.%.iN:i.iwiNk'N -:D;:D:IDE:!:!:!:DD>DiC'41·4:::G:4:D:*S

27 December 19851%31 Palo Alto, f-16 9 '101,1-1424 A F XEROXA

/OjE'>9*/TE,51-!.3!>1dE' j...2.'·,up"Qv·· ·-·..· ,.v ·.·:·······:'····'··'·······p·····:,·.·5·>t<·j·'<'··6,·2/§§§.,·,i.{·>h·Eg*;wk·%30>»p:,i·::s'*>2·10xi-:*..0.«iisi
:i:-m:j.:i;.2§·3:5<tal{·**t.§2%:§?0%33%§f:§4'1·19*/ .*c.z·.>23·y·i g··2t Letter Date 1%4*)43* Logo Text 3%€04%*Pt:-:4.3.-,.c.-.2.:mp:.:41....c..... m..5*84.%3%?f..?33 Subview .j%:223% 0 Subview :5 .0

»24.*84*24%-ET»311*€93#13%&14»fe-%*»»»-40*»22*«*»E-W€*-9-mag«ga=»»p»*=»=»»ra-pm,&114#R<'F%r*immm #p:fmmm-«2*2

One set of subviews contains information that appears in your printed letter. Babar uses the
other set of subviews for storing the letter in your mail database and for electronic mail
distribution. These two sets of subviews are distinctly separated, as shown below.

I:>:';'>2. >74 ·'·r"C'··'>6·..»,·.·„y,·T··>f'fm: .i,*j@t1.2%.il::« separator itu:it.88: u.::.;..- .0->Uy»=1-jeiardcotelirittet#.:.f?E«?34=:14*i=e=*»:94.6»«-*>» 3:3-192*2«€*1.13:=*@**1'4»...24*»***91.@2932......93%
43* Steve puti Date· Fri, 27 1-liar Ar 1,04:17 PET
**t: Xero x P ak ,arch Canter 1 From· -
5%< 3333 Co,
*?4% Palo Al

1 SUM This information is for
electrome mail and r

I *,415 ··1 your mail database.9.:........Ill-t*-- r9% Bal Lter : 276'bar -DOCUmb,-w . DeliverEt ZE Information from
* 33 A these subviews .':..i :1.-LIE =li. i:# :!fi:Wi'r:F1:Al94, pal goes into your 2 7 p.=.- - .-- b 4.

11,-_ printed letter.

*4% This lette. £ ou. mav use this

:94 new form -.. ..u..acopy Mail Writer containing
M= this letter,
038526

Each subview has a pop-up menu which you access by pressing and holding the middle mouse
button.

The Letter Header Subview shows the headerofthe letter which you are creating.

//

I.

.P'

Hardcopy Mail Writer f
6

Babar User's Guide 63
May 1986

The Letter Status Subview shows tile categories to which the new letter belongs.

The Letter Body Subview shows the text o f the new letter you are composing.

The Return Address Subview shows your address.

The Inside Address Subview shows the address to which you are sending this letter,

The Letter Date Subview shows the date ofyour letter.

The Logo Text Subview shows the Xerox logo.

rhe Deliver Button allows you to send the new letter after you have finished creating it.

6.1 Invoking The Hardcopy Mail Writer

You may invoke the Hardcopy Mail Writer from your main system menu:

102.:231

43 1
>>:bls.>54

lj,9.1142y ef-111Ur L> ·*@:&:A>&·¥%<t·)1:····D:€£;*g.g::g
restore display form editor > 224 1 :2,:4%37.1,
garbage collect galley form editor t> mail interface

openo Windowff *fambitw*MwmaIMOff({ 89 7 ma.h ·*i,·,.,r-iter
show windows Calendar Im/7//0/imm/'In'll

?:'f·%* 6 -"M,=11

You may also invoke the Hardcopy Mail Writer from your Mail Interface view by means of
menu commands in the Letter List and Letter Text Subviews (see sections 3.3 and 3.4):

new form -> copy

Babar initalizes the Hardcopy Mail Writer with a copy of the

selected haricop.p letter Categorics are initialized from the selected
letter

new form -> hardcopy

Babar initializes the Hardcopy Mail Writer for its default letter. The
letterk initial Categorv [S "*from <vour name>"

4 >14
1, 1

Hardcopy Mail Writer
6.2 Letter Header Subview and Menu

Babar User's Guide 64
May 1986

6.2 The Letter Header Subview and Menu

0- Date: Fri, 27 Dec 83 19:04:17 PST
rer From: Babarilipportt.pa

 Subject: The Hardcopy Mail Writer
, 1 0: Cabarians·,pa

Reply-To: Babar:Jilpport+.pa

LEECEME?fi.9.20.f.'f''f....,-L_....ugt€E71

The Letter Header Subwindow shows the header of the letter which you are creating. The
Letter Header con trans information about your letter, such as the sender, the receiver, the
subject, who gets Copies. to which letter this is a reply. etc.

Babar uses this information when you send your letter electronically, as well as by the U. S. mail
(or instead of using the U. S. mail).

Babar creates a template for you to fill in. You should fill in the "Subject:", "To:", and "ec:"
(copies to) fields. You may add other fields by typing them or by using the "add field" menu
command.

If you initiate the Mail Writer from a Mail Interface menu, Babar may provide you with
additional fields and/or fields which are already filled in.

I f present, Babar uses the following UserProfile attribute as the value of the "From:" field (see
section 4.7):

#mai]FromName

03

Hardcopy Mail Writer
6.2 Letter Header Subview and Menu

Babar User's Guide 65
May 1986

You get the following menu in this subview:

222:i-/2.-...1*lit./. I
··§ieps:ti: Li qa I n .i::0:24·:5
Ffi undo *ft
./': Lupy ****32 :5% c: ut T,r,...+.

i.i: 5:. 3·f p,3 5t Q '83%§·t>j·)
////add field 3%i
311311< d 0 1 1 -01:*if
r)23.4 print it :.i*ppiti:

Fijb···..·{i{ In 5Delot it ?3'·31(ity

24·m# 3: ,3. AC e | E1*00*:Im:mimmy'lm

add field

Babar prompts you with a menu of the following standard field names:

id header tleld3093
To

[fyou select one. Babar adds it to the current information in your letter' s header.

others...

The remaining items are standard Smalltalk text menu commands.

44

€21

Hardcopy Mail Writer J
6.3 Letter Status Subview and Menu

Babar User's Guide 66
May 1986

6.3 The Letter Status Subview and Menu

mnte

§%·11·3§:t:{.: §:f,B:.::. .:lE*@*?E:@:.::3 .4*24%.47.9414%% .:54.f :

Deliv
i|,7 Ejecember 195-,,J XER

The Letter Status Subwindow shows the categories to which the new letter will belong. It also
shows whether the letter contains images or references, whether it is a reply to another letter.
and whether it forwards another letter.

You get the following menu in this subview

56 TPTTT91ITTESrrirsm*FFFMT.In
adr

mo·Y ©1

re m iD 3

auto sort

delete
undelete

don't save %*
add image ..a

remove image IT
store letter 533.

Ifyou do not have a Mail Interface open, only the "add image" and "remove image" commands
will function. and your Letter Status Subview wililook like this:

an 't Be've this letter /no 4020 2,0 24 0 Den 1 29?

Since Babar cannot store your new letter directly into your mail database, you should add
yourself to the "ec:" header field ifyou wish to keep a copy of it.

-:liA%,
1 23

4....

Hardcopy Mail Writer A
6.3 La+Status Subview and Menu

Babar User's Guide
May 1986

add

Babar asks you to choose the name of a category from a menu ofcategories. Babar
will add your new letter to the chosen category when you deliver it.

addimage

Babar gives you a Form Editor on an image which you initially specify from your
screen. Babar includes this image in your letter. In the printed version of your letter.
Babar places all images at the end of your letter after all text.

Important: Ifyou edit the image. you mustuse "accept" in the Form Editofs menu
before you deliver your letter.

auto sort

Babar applies the current set of sort rules to your new letter. See section 43 for
more details.

delete

Babarwitt add your new letter to the "*Deleted" category when you deliver it

don't save

Babar removes your new letter from all categories. Babar will not store this letter in
your mail database when you deliver it.

move

Babar asks you to choose the name of a category from a menu of categories (unless
your new letter is currently in only one category), Babar removes your new letter
from the chosen (or only) category. Babar then asks you to pick the name ofanother
category from a menu of categones. Babar will add your new letter to that category
when you deliver it,

71
71 - Ul
70 f

Hardcopy Mail Writer «- Babar User's Guide 68
6.3 Letter Status Subview and Menu May 1986

LIt

reniove

Babar asks you to choose the name of a category from a menu of categories (unless
your new letter ts currently in only one category). Babar rernoves your new letter
from the chosen (or only) category.

remove image

Babar asks you to choose an image from amenu ofimages in your letter:

etai<emove which i

image 1,
image 1

magepo

52:9349§%41:S

Babar removes the chosen image from your letter.

store letter

Babar stores your letter "as is" in your mail database without printing it Babar notes
this on your system transcript:

System Tr,Elriscript. £':11 :<5:.:: ,2
Undelivered letter stored in databasE

undelete

Babar removes your new letter from the "*Deleted" category.

Ill-=-I--1.-I
90 K

Hardcopy Mail Writer Babar User's Guide 69
6.4 Letter Body Subviewand Menu Mav 1986

6.4 The Lettet Body Subview and Menu

»#4.x·.:':·:·:>,41<&:3 :s·>Ed:»·*>gf:§..D'.<Ef?li©4*>1:41*·¢<:·5·*:40 -·*9«*@2%23:§%*:42 1.·:34:41%5904%214.2, *9:*33
e...:83«25:.:.3:,4 XerOX Palo Alto Research Center ! Bo·b.,· 0.-Documente'tion , Delile

· · ·· ·i::::.:.:.·.:i'.i:i':'iri: i'·'· r.,il .6&.....lcu_

42%93 3 27 December 1985Alto, CA 94304 .LZE
Babarieri 1

'· · 4 This letter is an example of a hardcopy format letter, You mo. 1.DEME
*44% new form -> copy command to create a nafdoopy Mail Writer talt

10 % this lauer,

9832 wim The Hardcopy Mail Writer differs in that. 13 nas four additional ,¥193§
241.

L The Return Ad,fress.
. I2. The Inside Aacxress.

2 %8783@]21 ···:x' 4-*·:i·.8.6::<%3§>:i) §6%424>j k»jy 1 ?14 9.§§2¥f>rK/*PS''P'R,':3 *5?2; 42 32,1.1,8I;92©3{f{S·§·.; X.? >%;%,P :>7>:„6:>fdf:'iD„:··.0,y.: :g ..,::: :.1 21{t
1.{ENE::i}::p·.:§·ip· :}I:Z.::§·i: ;::.:'' /::i@j.:.'.'I/*/.*····3······:<yy::d:>':i 01:t::*:t:3§§<t §?22it.5·::3:2:·:<·: IC;31·3'II]-/ /
me«>939.:7:6:E:.r ::: ..:::..2::x: .PE 7 .::99:+..f.6.23,.623.53462:1-.fi.:'ryr« &

The Letter Body Subview shows the text of your new letter, except for the header. You use your
keyboard and standard text-editing commands from the menu to compose your letter.

Babar includes emphasis information, such as font changes and underscores, as part of your new
letter. [f you decide to send this ietter electronically as well as for instead of) by U. S. mail,
Grapevine mail programs other than Fillet and Babar will probably ignore this formatting
information.

When you deliver your new letter. Babar formats body text for the printer so that the text is both
left and right justified.

rt
1,1

n

7 r
4 €

46;

Hardcopy Mail Writer C · Df
6.4 Letter Body Subview and Menu

47
Babar User's Guide 70
May 1986

You get the following menu in this subview:

1 again ailge*%%* undo **01
§:d:}i)25:1 r. op V }:j}jim:::ft
/)>' 4 i¥:i P. Cut %51*:t:{it
1.9 X:8:1 ·· paste it;*J ::C
%903 do it *Ek
% 1,1 :· :: p t-i n t I t j.·:1:32'
3%3.ja:,4 InSpect it ttit:*I

.,%.'.1,

Ili=fi.EL_%41€F

all commands..

All items are standard Smalltalk text menu commands.-----------=-----=-
-'09%

d:

-un
r

€?//1,

Hardcopy Mail Writer *1
6.5 Return Address Subview and Menu

Babar User's Guide 71
May 1986

6.5 The Return Address Subview and Menu

E

%93*@rgea«j...*313««a»»37ff t«»U:*6 «j..2 :::.*:*.*..:,.*.;*L..'..7,4..3*2:TE 593.»E
E{***HAM.4,491*Writer 43%43%{i.}40

a. te: F rlfffi
4 Xero·:; Palo Alto Research Center F ni Elak*jt·??1

81 1 ect: *2%
.: ·is:·t Palo Alto, U A 94304
L 4% (415) 494-4355

T Bab23

- gr User

13*18 Xerox Palo A to ·Lesearch Center

4%84 3333 Covote Hill Road.

%411"P" 5'Eff:"1:NTI."413·94%*32*%92%44%

The Return Address Subview shows your address, Babar prints this return address at the top left
corner o f the first page o f your printed letter. If present, Babar uses the following UserProfile
attributes as part of this address (see section 4.7):

#fuliName
#workPhone

If you wish to change tile default for your return address, you must modify the class method
named "returnAddress'femplate" in class "Hardeop,MailWriter".

You get the following menu in this subview:

4 /

S.R:, again
una undo

/WN cut
}11:%§ paste
3*JEE do it
**te.: print it
**Unjpect it

all commands.

All items are standard Smalltalk text menu commands.

-7

tAll}

A fHardcopy Mail Writer 1
63 Return Address Subview and Menu /

4
Bat)ar User's Guide 72
May 1986

6.6 The Inside Address Sub'view and Menu

€*&88§.:¥]> D ·5 5 S CT 0 0 te Hill R o a d
*&*Bl Palo Alto, CA 94304

sisiare:5:: Xerox Palo Alto Research Center i

A

Subjec 2
To: Ba.@G

Reply-*

The Inside Address Subview shows the address to which you are sending this letter. Babar prints
this inside address so that when you fold the letter in thirds, this address is positioned to show
through the window of a standard window envelope. You must type in this information.

You get the following menu in this subview:

undo 594/
CODY
cut

naSte *22¢'

SM# do k
1ji{.4% print i t

Inspect It
cancel

all commands..

All items are standard Smalltalk text menu commands.------
r%

l

Hardcopy Mail Writer Babar User's Guide 73
6.7 Letter Date Subview and Menu May 1986

6.7 The Letter Date Subview and Menu

 Reply-To: BabarSupport.+ .pa

December 19,5
A

3eliff

XEN
l

The Letter Date Subview shows the date of your letter. Babar prints this date oil the right side
of the first page of your printed letter between the return address and the inside address. Babar
initializes this to today's date. You may change it to whatever you wish.

Note: This date need norbe the same as the one in the "Date:" field of the Grapevine header.

You get the following menu in this subview:

:

* undo t·.

$%4 Clopy #**0%42 cut /·%*392
paste *30%32.-/**69 do i t ©3*45

'·.r)* in5:pect i ti*ji<:29.
Mi.:198§ :···Ca.E.#+3"f

all commands.

All items are standard Smalltalk text menu commands.

Hardcopy Mail Writer
6.8 Logo Text Subviewand Menu

Babar User's Guide 74
May 1986

6.8 The Logo Text Subview and Menu

Deliver *im

i XER[
The Logo Text Subview shows a logo. Babar prints this logo in the left margin of the first page
of your printed letter between the return address and the inside address, If you do not wish the
logo on your printed letter. you should delete the text in this subview. Babar currently supplies
only the letters needed for the word "XEROX".

You get the following menu in this subview:

:a g a. i n i.1% Es j'·j.j
=*E· undo 92.'

45'Fit·.4% C ID p V te}j·j;%.3:':: {:j: Cut %)1:./'?F
pa,te
do it

3{>:"'?31 p r-1 nt '
?34:·i·. ·i } i il 3 p e C T i t %@:i®:
58* can cal 1341%

all commands .

All items are standard Smalltalk text menu commands.

4
./U . 1.. ,

14 --3.
€ 4

Hardcopy Mail Writer 4-
6.9 Deliver Button -

Babar User's Guide 75
May 1986

6.9 The Deliver Button

yer .-

When you are ready to send your new letter. you activate the Deliver Button by pressing your
left mouse button. i f Babar does not find any errors in your lettefs header, Babar will first ask i f
you wish to send your letter to a printer:

E lease select· a prilnterlil

*Eother printer {01#Pitjit
9% no printer :2:§··23·:.t.:*2%

If you choose "no printert Babar will ask if you wish to send your letter via Grapevine:

5<7
4 Deliver

yes

without print.in

no

i:4*fil*%%43*ri·7

[f you do choose a printer, Babar will ask if you wish to format your letter for a preprinted
letterhead form:

ath Format for preprinted Letterhead? |
no

If you answer "yes", Babar will omit the return address and logo when it prints your letter. as
the official letterhead already includes these items.

1-- 4-1.

Hardcopy Mail Writer
6.9 Deliver Button

Babar User's Guide 76
May 1986

Babar prints your letter in a format for a standard window envelope. If your letter has images,
Babar will print them in order following the body of the letter.

If you have a Mail Interface view open. Babar will immediately store your letter in your mail
database. This means that you need not add yourself to the "ec:" header field if it belongs to
any categories (as shown in the Letter Status Subview).

Warning: If you do not have a Mail Interface view open, Babar can not store your letter in
your mail database, Ifyou want to keep a copy of your new letter. you must add yourself to the
"ce:" header field,

If your letter has no recipients listed. Babar will simply put it in your mail database. This is
faster than sending the letter to yourself, and is similar to using the "store letter" command in
section 6.3.

If Babar stores your letter in your mail database, it will close the Mail Writer view when it
finishes. Otherwise, Babar willleave the view on yourscreen.

A

4 1

1 62)
Babar User's Guide 77
Mav 1986

Index

If you are looking for an entry whose name begins with non-alphabetic characters
you will find it under the first alphabetic character in its name. For example. "*New"
appears as if it were "New".

Boldface entry names are menu commands. Boldface page numbers show major
subject areas within an entry.

accept, 34,35,56,67

access to a mail database. 13
add, 26,32,55.56,66,67
add field. 53,54,64.65

add image, 55,56.66.67
adding

a letter header field, 53,54
a letter to a category, 20.26,32.43.56.67
an image to a letter, 56,67
a sort rule. 22-23

address. 71. 72.73.74,75
again. 31, 54,58.65,70,71.72.73.74

"*All Letters' predefined mailcategory, 6. 18, 19,21.35,38
answering a letter. 28
appending letters to a standard mailfile. 29.50
archiving a letter. 45-46
archivist, 46
Archivistpa. 46
attributes, UserProfile, 47-48.54, 64.71

#ful]Name attribute, 47,71
#mailfromName attribute. 47.54.64
#workPhone attribute. 47.71

automatically sorting mail. copy
Auto Next Button ofthe Mail Interface. 12.13.27.32.36
auto sort 26,53,55.56,66.67
Babar, 1,12.58,69

becoming a user of. 2-6

"Babar-Documentation" predefined mail category, 1.8
Babarian. 3.4

(-4,
t.

Index r Babar User's Guide
' Mav 1986

Babarianst.pa, 4
Babar.profile file. 4,41 47.48
BabarSupportr.pa, 2.28,40.42,52

becoming a Babar user, 2-6

body ofa letter, 30,58,69
buttons

Auto Next Button of the Mail Interface, 12, 13, 27. 32. 36
Deliver Button

of Hardcopy Mail Writer, 62,63,75-76
ofthe Mail Writer. 51.59

mouse button, 12.27,51, 59, 62, 76

Re format Buttonofthe Mail Interface, 12,13,30.36-37

Show Deleted Button of the Mail Interface. 12, 13,37

cancel 34,54,58.65.70.71.72.73.74

categories to which a letter belongs, 31.55,66
categorizing a letter. 6-10

category, mail, 6-10. 7.8. 14, 18, 19,50
creating, 15

hiding, 18,19
hierarchical. 9-10

number of, in database, 32

organizing, 6-10

predefined categories. 6-8
"*All Letters", 6, 18. 19, 21. 35, 38
"Babar-Documentation". 1.8

"*Deleted". 7.20.27.29,38.40,43,56,57,67
from <name>". 7.43.52

*New". 7. 17. 20. 26. 39. 40,43. 49

"*Unclassified". 6. 7. 16, 45, 46. 49
removing, 6,16,19
renaming. 6,17

showing, 22,32
user-defined categories, 810

Category List Subwindow
menu, 14,15,32

ofthe Mail Interface. 11.12.14-25. 18.19,22,38,40 43.52
category name

in a sort rule, 44

menu. 8, 9, 10,16

category -> intersect, 15

-> remove -> unreferenced .

-> rename. 15.17

15.16.46

CO

524 r<141,¥

Index Babar User's Guide
May 1986

"cc:" letter header field, 53,55.59.64.66.76

classes, Smalltalk. 71
close, 25,41

columns, 26.27
commands, menu

accept 34,35,56,67

add, 26.32,55,56,66.67

add field, 53.54,64.65

add image, 55.56.66.67
again, 31,54, 58.65.70.71,72,73,74
auto sort, 26.53.55.56.66.67

cancel 34,54.58.65,70,71.72.73.74

category -> intersect, 15
->remove-> unreferenced 15.16.46
->rename. 15.17

columns. 26.27

compact, 15, 17. 40, 41
copy, 31,34,54.58,65.70.71.72.73.74

cut, 34,54.58,65,70,71,72.73.74
delete, 26,27,55.56,66.67

do it, 31, 54, 58,65. 70. 71.71 73. 74
done, 27

don't save, 55.56,66.67

get new mail, 15. 17,40

hardcopy, 26.27,31
hide -> all. 15.18

-> matching, 15, 19
-> single. 15. 19

inspect it 31,54,58.65.70,71.72.73.74
mail files ->read file, 15. 19,40

-> read multiple files. 5. 15, 19, 40. 41
-> write file, 15, 19, 45

move, 26,27,55.56,66.67

multiple->add. 15,20
-> auto sort 15.20.43

-> delete. 15. 20. 45. 46

-> forward, 15.20.52

->hardcopy -> condensed. 15,20
->hardcopy-> paginated. 15.20
-> move, 15. 20

-> reference 15.21, 52
-> remove. 15.21.45

n
f i
91>

)trt
Index ' A- Babar User's Guide 80

May 1986

commands. menu (continued)
multiple -> (continued)

-> undelete, 15,21

->write file, 15,21

new form->answer, 26,28.31.52

->answer & forward, 26.28,31.52

-> comments/bugs. 2, 26, 28,31.40, 42, 52

->copy, 26,28,31,53.63
-> default 26,28,31,53

-> forward 26.28.31.53

->hardcopy. 26.28,31.63
new name, 8,9, 10. 16

no printer, 75
open window ->mail->hardcopy mail writer. 63

-> mail -> mail interface, 13

-> mail -> mail writer. 52

paste. 54,58.65.70.71.72 73.74

printit, 54.58.65,70.7 1.72.73.74
remove, 26,29.32.55.56.66.68

remove image, 55.57.66.68
reset, 34,35
scavenge->confirm 15,21.50

show -> category, 32
->filter ->All Letters. 15,21

-> forwarded. 32.33.49

-> image. 32,33
-> in-reply-to, 32,33

-> matching, 15,22

-> single. 15. 22
sort rules -> add, 15, 22

-> delete, 15.23

-> list. 15, 24

store letter, 55,57.59,66.68.76

undelete, 26.29,55.57.66.68

undo, 54,58.65,70,71,72,73,74

update, 15,24,42

write file -> append letter. 26. 29
"Comment:" letter header field. 37

compact, 15,17.40.41
compaction ofa maildatabase, 7.25,40.41.48
"Confirm deletion of <category>" option, 16
confirmers, 16, 18, 21, 40, 75

ljC r».4

Index t Babar User's Guide 81
May 1986

converting standard mail files to Babar. 5
copy, 31,34,54,58,65,70,71,72.73,74
copying a letter, 28,52

count filtering of letters. 35.38
counts, 35

crash. system, 41

creaung
a letter, 51. 60

a mail category. 15
a mail database. 3

a standard mailfile, 21.45.50

cut 34.54,58.65.70.71.72.73.74
database, mail, 2, 3.6. 12, 13

see also letters

access to. 13

compaction of 7, 25, 40. 41. 48

creating, 3
errors in. 40

files making up 4 4.42
location of, 3. 12

moving, 42
organizing, 6-10
recovery of 41-42

scavenging of 15.21, 50
smashed, 40

date, 34.35.38.73

filtering, 34,35.38

Brmat for entering. 34
ofletter. 39,73

'Dater letter header field. 28.37.44.73
delete, 26.27,55,56,66.67

deleted letters filtering of letters. 37.38
*Deleted" predefined mail category, 7,20.27.29,38,40,43,56.57,67

deleting

a letter from a category, 20,27.56.67
an image from a letter, 57,68
a sort rule, 23

Deliver Button

of Hardcopy Mail Writer. 62,63.75-76
ofthe Mail Writer, 51,59

delivering a letter. 51. 59.62. 63. 75
"Deliver wittiout printing?"option. 75

73
O.v,%

Index 30 Babar Usefs Guide 82
Mav 1986

DEL key, 5, 18
disk, see IFS file server, local file system
disk files, see file, disk

distribution lists, see Babarianst.pa, BabarSupportt.pa
documentation, of Babar. 1. 8
do it, 31,54,58,65,70,71.72.73,74

done, 27
dion't save, 55.56.66,67

Dorado. 4,5

partition, 4

"do you know what you are doing?"option, 21
duplicates ofa letter. 18, 19
editing an image ill a letter. 56
electronic mail, 1.51.60

envelope, 1,60.72.76

error log file, 5.48
errors in a mail database, 40

example letter o f Hardcopy Mail Writer. 61
exceptionconditionsofthe Mail Interface. 14

Filene, 2

file, disk

error log file. 5,48

making up a Babar mail database. 4.42
recovery log file. 24. 41
standard mail 5.19.45,50

appending letters to. 29.50
converting to Babar. 5
creating, 21.45, 50
reading, 5.19.25.41,48,50

Fillet, 5.49.50.58,69

filtering of displayed letters, 6.7, 15, 20,21. 25. 37.38-39,45
count filtering, 35.38

date filtering, 34.35,38
deleted letters filtering. 37,38

fonts, 58,69
formatting of text of a letter, 13. 36. 37
Form Editor, 33,56.67

torms, see Images in a letter
forwarded letters, 33.49

forwarding a letter. 20,28,33,49,55.66
"From:" letter header field, 44,47.54.64

"*from <name>"predefined mailcategorv. 7,43.52

l.1,

Index Babar Usefs Guide 83
Mav 1986

#fulINameattribute. 47.71

garbage collection, see compaction of mail database

generation ofa letter. 50
get new mail, 15, 17, 40
getting new letters, 7. 13, 17
Grapevine, 2, 17, 18, 59. 60,69. 75
hardcopy, 26,27.31

hardcopy
format of a letter, 60.61

mail. 1

Hardcopy Mail Writer, 1, 7,28, 60-76
Deliver Button. 62,63.75-76

example letter. 61
Inside Address Subview, 62.63.72

invoking, 63
Letter Body Subview. 60,63,69 71

Letter Date Subview, 62,63,73
Letter Header Subview, 60,64-65

Letter Status Subview. 62.63.66-68

Logo Text Subview, 62.63,74
Return Address Subview, 60, 63, 71

view. 60,76

HardcopyMailWriter. Smalltik class, 71
Hardy, 5,50
header

Field name in a sort rule. 44

of a letter, 37.53.58.64. 69.75

header fields, 44,53,64

adding, 53.54
"cc:", 53,55,59,64,66.76

"Comment:", 37

'Date:", 28.37.44,73

"From:". 44.47.54,64

'"In-Reply-Tor, 33.43,44.54.65
"Keywords:", 44,54,65

"Message-ID:". 37
"Received:", 37

"Reply-To:", 54.65
'"Return-Path:", 37

"Subject:", 44,53.64
"Tor. 44,53,60,64,65

V 3

Index Babar User's Guide 84
May 1986

hide -> all, 15. 18

-> matching, 15,19
-> single, 15. 19

hiding a mail category. 18. 19
hierarchical mail category names. 9-10
highlighung, of filter values. 39

hyphens, 8,9
[FS directory, 2.4
IFS file server. 2. 14

1FS server. 2

resetting, 3
icons. 12

images in a letter. 13, 31, 49. 55

adding, 56,67
deleting, 57,68
editing, 56
printing, 76

viewing, 33
"In-Reply-To:"letter header field.
inside address of a letter, 72

Inside Address Subview

33,43,44.54.65

menu. 72

of the Hardcopy Mail Writer, 62,63,72
inspect it, 31, 54, 58. 65.70.71, 72. 73,74
interrupting processes, 5. 18
invoking

the Hardcopy Mail Writer. 63
the Mail Interface. 13-14

the Mail Writer. 52-53

"Keywords: " letter header field, 44.54,65
Laurel, 5,6,48,49.50

Mai{FileScavenger. 6.48
letter

adding to a category. 20.26,32. 43.56,67
answering, 28

archiving, 45-46

body of 30,58.69
categories in, 31.55,66
categorizing, 6· 10

copying, 28,52
creating, 4.51-59, 60-76
date of 39,73

1.-I

p.

Index
Ch CA

Babar User's Guide 85
May 1986

letter (continued)
deleting from a category, 20.27,56.67
delivering. 51, 59.62.63.75
duplicates, 18.19
filtering, 6,7,15,20.21.25.37.38-39,45
fonnatting oftex[of, 13.36, 37
forwarded, 33.49
forwarding, 20,28,33.49,55,66
generation, 50

getting new. 7. 13. 17
hardcopy format, 60.61

header of, 37.53,58,64,69,75
images. 13. 31,49. 55

adding, 56.67
deleting, 57.68
editing, 56

printing, 76
viewing, 33

inside address. 72

logo of, 74

mailing, 59,75

moving to a category, 20.27.56,67
not saving in a database, 55.56.66.67,76
number of in a category, 31,32
number o f in a database, 32
organizing. 6- 10

postmark ot< 39
printing, 20,27.31.75,76

prinung on preprinted letterhead. 75
purging deleted from a database, 40
references to, 13, 21, 31. 55, 66
retonziatting, 13. 36, 37

removing from a category, 21.29.32,40.56,68
replies to, 33.55,66

return address of 71

scavenging of in a database. 50
sending, 59.62
sorting, 20,26,43-44.56,67
status, 31, 55.66

storing in a database. 57.59.62.68.76
text of, 30.58.69
unreferenced. 7

i/:31
M

3

Index Babar User's Guide 86
May 1986

letter Ronfinual)
viewing, 30.58.69

writing, 4,5159,60-76
Letter Body Subview

menu, 58.69.70

ofthe Hardcopy Mail Writer, 60.63.69-71
of the Mail Writer. 51.58

Letter Date Subview menu. 73

menu. 73

of the Hardcopy Mail Writer. 62.63.73
letterhead, copy
Letter Header Subview

menu, 53,54,64,65

of the Hardcopy Mail Writer, 60, 64-65
o f the Mail Writer, 51, 53-54

Letter List Subview

menu, 25,26

of the Mail Interface. 11,12,13,15.22,2529,31,33,37,38,40.43.52,63
Letter Status Subview

menu, 31, 32. 55,66
of the Hardcopy Mail Writer, 62.63.66-68
ofthe Mail Interface. 12. 13, 31-33. 39

ofthe Mail Writer, 43,51.55-57
Letter Text Subview

menu, 30. 31

of the Mail Interface, 11. 13.25,30-31,33.40.52,63
levels, in category name. 9
listing sort rules. 24
local file system, 2
location ofa maildatabase. 3,12

logins. 25, 41
logo ofaletter, 74
Logo Text Subview

menu. 74

ofthe Hardcopy Mail Writer, 62.63- 74
mail, see letter. reading letters. writing letters.
mailcategory. see category, mail
mail database. see database. mail

mail files, see files, standard mail
-.mail" files, see files, standard mail

Index 1,
.A -f L Babar User's Guide 8

May 1986

mailfiles->read file, 15, 19.40
-> read multiple files, 5. 15. 19. 40. 41
-> write file. 15, 19, 45

Mal{FileScavenger, see Laurel Mai{FileScavenger
#mailFromName attribute, 47.54.64
mailing a letter, 59,75
Mail Interface. 1, 11-37. 38. 55, 64. 76

Auto Next Button, 12.13.27.32.36

Category List Subview, 11. 12. 14-25, 18,19.22,38.40,43,52
exception conditions. 14
invoking, 13-14
Letter List Subview. 11. 12. 13, 15.22,25 29.31,33,37.38,40.43,52,63
Letter Status Subview, 12. 13.31-33, 39
Letter Text Subview. 1 1,13,25.30-31,33,40,52,63
Maximum Count Filter Subview. 12. 13.35
Reformat Button. 12, 13. 30,36-37
Show Deleted Button. 12. 13.37
Start Dam Filter Subview. 12.13,34-35,35
Stop Date Filter Subview. 12, 13. 35
view, 11. 52, 76

view label, 12
Mail Writer, 1, 7, 20, 28,49. 51-59

Deliver Button, 51,59
invoking, 5253
Letter Body Subview, 51,58
Letter Header Subview. 51. 53-54
Letter Status Subview. 43. 51. 55-57
view. 51, 59

main system menu, 13, 52. 63
mask. see pattern
Maximum Count Filter Subview

menu, 34.35

ofthe Mail Interface, 12, 13.35

menu commands, see commands. menu
menus

Category Lin Subview menu. 14. 15.32
category name menu. 8.9.10.16
Inside Address Subview menu. 72
Letter Body Subview menu, 58.69.70
Letter Date Subview menu. 73
Letter Header Subview menu. 53.54.64,65
Letter List Subview menu. 25.26

i 4/9.4
iL Ull

-3
4

t.

Index P Babar User's Guide 88
May 1986

menus fcontinue>09
Letter Status Subview menu. 31. 32.55. 66

Letter Text Subview menu, 30,31

Logo Text Subview menu, 74
Maximum Count Filter Subview menu. 34.35

other menus. 23.24,27.33.54.57.65,68,75

Return Address Subview menu. 71

Start Date Filter Subview menu. 34

Stop Date Filter Subview menu. 34.35
system menu, 13,52,63

'"Message-ID:"letter header field. 37
methods, Smalltalk, 71

mode buttons, see buttons

mouse button. 12.27.51,59.62. 76

move. 26,27,55,56,66,67

moving

a letter to a category. 20.27.56. 67
a mail database, 42

multiple->add, 15,20
-> auto sort. 15. 20.43

-> delete. 15, 20,45, 46

->forward, 15.20.52

->hardcopy ->condensed, 15.20
-> hardcopy -> paginated 15.20
-> move, 15.20

->reference, 15,21.52

-> remove, 15,21,45

->undelete, 15,21

-> write file, 151 21

'*New"predefined mail category, 7. 17.20.26,39,40,43,49
new form ->answer 26.28.31.52

->answer & forward. 26.28.31.52

-> comments/bugs, 2.26,28.31.40,42,52
-> copy, 26,28,31,53.63
-> default 26, 28.31,53

-> forward, 26.28.31,53

->hardcopy, 26,28.31.63

new mail 7,13,17

new name, 8, 9, 10, 16

no printer, 75
notifiers. 14

not saving 3 letter in a database. 55,56,66.67,76

2 :.'94

3
€ 4%
%4

f 7-VI-'[2 92)Index N Babar User's Guide 89
May 1986

number o f letters in a category, 31, 32
number of letters in a database, 32
number of mail categories in a database. 32
open window -> mail-> hardcopy mail writer. 63

-> mail-> mail interface. 13

4> mail -> mail writer. 52

organizing

mail categories. 6-10
a mail database, 6-10

letters, 6-10

paste, 54.58,65,70.71.72,73,74
pattern

for matching text strings, 19,22.23.44.50
in a sort rule, 23,44

pictures, see images in a letter
postmark ofa letter, 39
predefined mail categories. 6-8

"*All Letters", 6. 18, 19, 21, 35. 38
"Babar-Documentation". 1,8
"*Deleted", 7,20,27,29,38,40.43,56.57,67
"*from <name>", 7.43.52
"*New", 7, 17. 20, 26. 39, 40,43, 49

"*Unclassified". 6, 7, 16,45 46,49

recovery ofa mail database, 41-42
preprinted letterhead, 75
printing

a letter, 20, 27, 31, 75, 76
an image from a letter. 76

ona preprinted letterhead, 75
print it, 54,58,65,70,71.72.73,74

-Purge *Deleted first?" option, 40
pu [ging deleted letters from a database, 40
quitting a Smalltalk image. 25,41
reading a standard mailfile, 5. 19.25.41,48.50
'Received:" letter header field. 37

recovering a mail database after a system crash, 41
recovery log file, 24,41
references to a letter, 13,21,31,55.66

Reformat Buttonofthe Mail Interface, 12.13,30,36-37
reformatting of a letter, 13.36, 37
remove. 26,29,32,55,56.66,68

remove image, 55.57.66,68

ce-»01
1 2)

qr.#

t.<...

Index Babar User's Guide 90
May 1986

removing
a letter from a category, 21, 29, 32. 40, 56. 68
a mail category, 6, 16, 19
an image from a letter, 57,68

renaming a mail category, 6,17
replies to aletter, 33,55.66

"Reply-To:" letter header field, 54.65
reset. 34.35

return address of a letter. 71

Return Address Subview

menu, 71

of the Hardcopy Mail Writer, 60, 63. 71
'Return-Path:" letter header field, 37

Santiam. 2

saving a Smalltalk image. 25. 41
scavenge ->confirm. 15.21,50
scavenging, 15, 21,50

ofa mail database, 15,21,50
of letters in a database. 50

scrolling, 39

sending a letter, 59,62

separator, levels, 9

show -> category, 32
-> filter -> All Letters, 15.21
-> forwarded. 32.33,49

-> image, 32.33
-> in-reply·to. 32,33

-> matching, 15,22

-> single, 15, 22
Show Deleted Button ofthe Mail Interface, 12.13,37
showing a mail category, 22,32

IT"skip tiles with same nameas existing non-empty categories option, 5
Smalltalk-80, 1, 3

system menu. 13,52. 63
smashed mail database, 40

snapshot, 25,41

sorting a letter, 20,26,43-44.56,67

sort rules ->add, 15, 22

-> delete, 15, 23

-> list, 15. 24

i . 7%
2... ' V;

V <

Index Babar Usefs Guide 91
May 1986

sort rules for sorting letters, 22-24,26,43-44.53.54
adding, 2223

category name iIi, 44
deleting, 23
header field name in, 44

listing, 24
pattern in, 23,44

using, 20,26.43-44
standard mail files, sce mail files
Start Date Filter Subview

menu, 34

of the Mail Interface, 12. 13.34-35.35

starting up as a Babar user. 2-6
status ofa letter, 31.55,66

Stop Date Filter Subview
menu, 34.35

ofthe Mail Interface, 12, 13, 35

"Stop retrieving mail?" option. 18
store letter, 55,57,59,66.68,76

storing a letter in a database. 57, 59.61 68.76
"Subject:" letter header field, 44,53,64
subviews

Category List Subview of the Mail Interface. 11.12.14-25, 18,19,22,38,40,43,52
Inside Address Subview of Hardcopy Mail Writer, 62,63,72
Letter Body Subview

ofthe Hardcopy Mail Writer, 60. 63, 69-71
of the Mail Writer. 51, 58

Letter Date Subview of the Hardcopy Mail Writer. 62,63,73
Letter Header Subview

of the Hardcopy Mail Writer. 60,64-65
of the Mail Writer. 51.53-54

Letter List Subview ofthe Mail Interface, 11, 12,13, li Z.2,25 29,31,33.37,38,40,43,52,63
Letter Status Subview

ofthe Hardcopy Mail Writer. 62 63.66-68
ofthe Mail interface, 12,13,31-33.39
of the Mail Writer, 43,51.55·57

Letter Text Subviewofthe Mail Interface. 11, 13,25,30-31.33,40,52,63
Logo Text Subview ofthe Hardcopy Mail Writer, 62.63.74
Maximum Count Filter Subviewofthe Mail Interface, 12,13,35
Return Address Subview of the Hardcopy Mail Writer. 60.63, 71
Start Date Filter Subviewofthe Mail Interface, 12,13, 34 35,35
Stop Date Filter Subview of [he Mail Interface. 12,13,35

1/ 4

U. 2>Index Babar User's Guide 92
May 1986

-4-4 1

suspend: 25,41
system menu, 13. 52, 63

system transcript, 4, 13, 17, 18, 23. 24, 41. 48, 57
template. of letter header, 53.64
text of a letter, 30,58,69
'"To:" letter header field. 44,53.60,64,65
transcript 4,13,17,18,23,24.41,48.57

"*Unclassified" predefined mailcategory, 6.7,16,45,46,49
undelete, 26,29,55,57,66,68
underscoring, 58,69
undo, 54,58,65,70.71.72,73,74
Unix GM). 2

unreferenced letters. 7
see also *Unclassified

update, 15,24,42
user-defined

mail categories, 8-10
sort rules, 22-24.26.43-44,53,54

UserProfile attributes, 47·48,54.64,71
#fuliName attribute, 47. 71
#mai]FromName attribute. 47,54.64
#workPhone attribute, 47.71

using
Babar. starting up, 2-6
sort rules, 20,26.43-44

U. S. Mail 1.60,64,69
¥49. 3
view

label of the Mail Interface. 12

ofthe Hardcopy Mail Writer, 60.76
of the Mail Interface. 11.52.76
of the Mail Writer, 51, 59

viewing
a letter. 30,58,69

an image in a letter. 33
Walnut, 49
warnings, 42,43,45.46.59.76

window envelope, 1, 60. 71 76
#workPhone attribute. 47, 71
write file -> append letter, 26,29
writing a letter. 4, 51*59. 60-76

»1 1.

f.-3

