
'00,5 Smalltalk report, The, 1991-1998 I of 1-]1434 ex 11 Adele Goldberg papers 1 027 3933 1

Pqrlodicals, technical papers. and articles
X8774.2010, Box 5 102739331

.

€2091,
IUHWEEK
LABS
SHOOT-OUT

,N7r
2/

KEY FEATURES
AD/Cycle- I World's leading, award-witwing object-

oriented programming system
I Complete prototype-to-delivery system
I Zero-cost runtime

WINDOWS AND OS/2:
PRU[Uf¥PE TO DELIVER¥

NO WAITING.
In Windows and OS/2, you need prototypes. You have to get a sense

for what an application is going to look like, and feel like, befire you can write
it. And you can't afford to throw the prototype away when youte done.

With Smalltalk/X you don't.
Start with the prototype. There's no development system yoii can buy

that lets you get a working model working faster than Smalltalk/M
Then, inatmentally, grow the prototype into a finished applica-

tion. Try out new ideas. Get input from your users. Make more changes.
Be creative.

Smalitalk/V gives you the freedom to experiment without risk. It's
made for trial. And error. You make changes, and test them, one at a time.
Safely. You get immediate feedback when you make a change. And you can't
make changes that break the system. Its that safe.

And when you're done, whether you're writing applications for
Windows or OS/2. you'll have a standalone application that runs on both.
Smalltalk/V code is portable between the Windows and the OS/2 Versions.
And the resulting application carries no runtime charges, All for just
$499.95.

So take a look at

Smalltalk/V today. It's time to make Smalltalk I V
that prototyping time productive.

Smalltalk/V is a mgistered trademark of Digitalk, Inc. O[her product names are trademarks M registe.rd
trademarks of their cespec:tive holders.
Digitalk, Inc., 9841 Airport Blvd., Los Angeles, CA 90045
(800) 922-8255; (213) 645-1082: Fax {213) 643-1306

LOOKWHO'STALKING

I Simplified application delivery for
creating standalone executable C.EXE)
applications

I Code portability between Smalltalk/V
Windows and Smalltalk/V PM

I Wrappers for all Windows and OS/2
controls

I Support for new CUA '91 controls for
OS/2, including drag and drop, booktab,
container, value set, slider and more

I Transparent support for Dynamic Data
Exchange (DDE) and Dynamic Link
Library (DLL) calls

I Fully integrated programming environ-
ment, including interactive debugger,
source code browsers (all source code
included), world.s most extensive Win-
dows and OS/2 class libraries, tutorial[
(printed and on disk). extensive samples

I Extensive developer support, including
technical supTort, training, electronic
developer forums, free user newsletter

I Broad base of third-party support,
including add-on Smalltalk/V products,
consulting services, books, user groups

GREE'Ed:Eimil.10'NE]OmuLUE][lomic
GEUr EW W5£3 El [i-I w [11]

1...Ir

This Smalltalk/V Windows applic·ation
captured the PC Week Shootout award-and

it was completed in 6 hours.

HEWLETT-PACKARD

HP bas devek>ped a nel,bork froubie
sbooting toot called tbe Network AdviSOT.
Tbe Network Advisor Wfen a compreben
sive set of toots incitiding a,1. expeit svitem,
statistics, and p,-0 jocel deedes to speed
problem isohtion. Tbe NA user intedace is
built on a windoivillg system wbicb allows
multiple applicatio?5 to be executed
gimultageously.

NCR

NCR bas an integrated test pyogram deiw.lop
megt e,vimlimgnt D}* digitai. allaog and
mixed mode pi inted circwt board restmg.

MIDLAND BANK

Midland Bank built a Windowed lecbnicat

'Irading Environmelit for currency, futures
andstock #ade,susing Sm=iltal V

m*

Smalltalk/V PM applications are used to
deelop state-of-the art CIA-contl,liant
applications- and they're portable to
Smalltalk/V Windows.

0

4 S

3%& I

The International Newsletter for Smalltalk Programmers

September 1991

THE

COMMERCIAL

EVOLUTION

OF SMAU]ALK

By Abdul K. Nabi

Contents:

Features/Articles

1 The commercial evolution of Smalltalk ; 1
4

b, Abdd Nabi

12 Compressing changes in Smalltalk/V 21
Windows by Charles-A Rovira

Columns ·
7 Getang Real: Should classes have

owners? by Juanita Ewing

9 GUb: Giving application windows U
dialog box functionality in Smalltalk/V PM 'i
ty Greg Hendley and Eric Smith

4
Departments i.

16 Lab Report: The Typed Smalltalk project
at the University of Illinois
by Ralph JohnsonI 8 Messages: Smalltalk, organization, and you by Allen Wir'fs-Brock

20 Software Review: WindowBuilder: An

interface builder for Smalltalk/V

Windows reviewed by Jim Salmons S

Volume 1 Number 1

verthe last decade, Smalltalk has made a dramatic evolution from a vi-
sionary software research project into a commercial environment that is
spearheading object-oriented programming, the next step in software
technology.

The focus of this article iS the evolution of commercial Smalltalk from the early market
to today's commercial success and what the future mlly hold. In addition to the evolution of
Smalltalk, the changes in the needs and demands c>f software development that contributed
to the spread of Smalltalk in commercial application development will be discus5ed

THE EARLY YEARS OF SMALLTALK

Xerox, in the interest of broadening the Smalltalk base, licensed Smalltalk to several lurd-
ware vendors (Apple, I Iewlett-Packard, and Tektronix) and one startup software vendor
(Softsmarts). This groundwork ted to the creation of a Smalltalk marketplace.

Xerox sold the Smalltalk environment bundled with its proprietary graphics worksta-
tions, which were quite expensive. These workstations pioneered the idea of high-perfor-
mance, graphical, interactive desktop coinpurers. Xercix used Smalltalk internally to de-
velop custom docuinent and information management applicationj. One major
application created in 1982, was a desktop publishing system for The New Ywk Times. The
next year, Xerox developed Analyst, one of the first and best known commercial Smalltalk
applications.

The Analyst is an integrated information management systan incorpor:ating document
processing and layout, a spreadsheet, charting, database, hypertext, links, and a world map.
The embedded object architecture, level of integration, and seamlessness of the applica-
tions is outstanding even by today's standards. Analyst's capabilities are unmatched by any
other software package, partly because Analyst is written in Smalltalk. Analyst is still be-
ing sold as a commercial, end-user application by Xerox Special Information Systems.

To put the early years of Smalltalk at Xerox in some perspective, Smalltalk-80 was cre-
ated about the same time the IBM-PC was introduced. The Analyst was introduced two
years before the Apple Macintosh.

One of the early users of the exotic Xerox workstation and the Analyst were US intelli-
gence agencies. These agencies required the horsepower. graphics, and high-performance
development environment that the Xerox workstation and Smalltalk provided to create
interactive analysis workstations. This helped Smalltalk emerge from the lab into the mar-
kerplace. However, Xerox did not market these workstations and Smalltalk-80 to ihe gen.
eral software development market.

Tektronix was also an early pioneer of commercial Smalltalk, delivering its first
Smalltalk in 1985 (which, like Xerox's, ran on a proprietary workstation). Unlike Xerox,
Tektronix was actively marketing the environment as a development tool, and at a con.
siderably lower cost (since by 1 985 pt·ocessors [ike the 68000 that Tektronix used made
low-cost workstations possible). Tektronix also used Smalltalk to develop custom software
for their workstations (such as a front-end for VLSI test equipment). Although successful

cm,th,ii:don pqe <None>.

EDITORS'

CORNER

John Pugh Paul White

clcome to the first issue of The Smalludk RepoTt! The Smalltalk community has iong yearned

for its own publication. With your help, The Smalitalk Report will fill the void.
The use of Smalltalk within industry is expanding rapidly. Only industry insiders know

w many of the exciting developments that are taking place and, as Abdul Nabi points out in his
lead article, they are not permitte(l to share them. Many companie.s believe it to bea strategic
advantage to be using Smalltalk and don't wish their competitors to be aware they are using
it. So, the language chat started it all (with apologies to Simula) is now seen by many as the
development system of choice for the 19906. As our good friend Dave Thomas (paraphrasing
Winston Churchill) is quoted as saying, "Smalltalk is the worst possible programming envi-
ronment - until compared with al[other programming environments."

Our Hiin at The The Smallmik RepuTE is to stipport the growth of Smalltalk as a development
vehicle for object-oriented systems and to serve as a focal point for sharing ideas and experi-
ences gained from the employment of Smalltalk technology in areas as diverse as real-time

embedded systems und financial systems. By publishing nine times a year, we will be able to
bring you timely information on new software releases of all dialects of Smalltalk, third-party
products, class libraries, books, industry news, etc. We will address all aspects of application
development with Smaitta[k, e.g., project management, analysis and design, development
tools, language issues, metrics, performance issuies, and education and training.

ln the lead article of our premiere issue, Abdul Nabi takes us on a tour through time -
from the early days of Smalltalk at Xerox PARC to current implementations and applications.
He discusses the issiies faced by Smalltalkers in the past, problems that have been solved, and
the challenges that lie ahead. He explains how, and why, the commercial evolution of
Smalltalk has unfolded in the manner it has and speculates where this evolution will lead.

In this first issue, we also introduce two of our regularly appearing columns. In "Getting
Real," Juanita Ewing discusses the issues of developing industrial strength applications with
Smalltalk. 1n her first column, she addresses the pros and cons of employing class ownership
as a vehicle for code management within a programming team. In their GUI column, Greg
Hendley and Eric Smith tackle the topic of graphical user interfaces. In the first installment
of a two-part column, they discuss giving application windows dialog box functionality in
Smalltalk/V PM. In future issues, watch outforother columns; on design from Rebecca Wirfs-
Brock and on "Smalltalk with Style" from Ed KINnHS and Suzanne Skiiblics

Our authors and columnists are willing to stand up and be counted, expressing their own
personal, sometimes controversial, opinions. To make this forum truly effective, we encourage
you to "junie into the foray' and let your ideas be heard. Use our "Messages" corner as a soap-
box to vent your own opinions. In this issue, Allen Wirfs-Brock laments the absence of a con-
ference where Smalltalk users and developers can get together and share their work.

Also in this issue: Charles Rovira suggests enhancements to the compress changes facility
In Smalltalk/V Windows, Ralph Johnson describes the Typed Smalltalk project at the Uni-
versity of Illinois, and Jim Salmons reviews the WindowBuilder/V product from Acumen.

The Smalltalk Relurt is written by Smalltalkers for Smalltalkers; we encourage you to contribute.
Enjoy the first issue!

71 4 '412 9 1 4 334
John Pugh and Paul White
Editors

Editors
John Pugh and Paul White
Carleton University & The Object People

SIGS PUBLICATIONS

Advisory Board
Tom Atwood, Object Technology
Grady Booch, Rational
George Bosworth, Digitalk
Brad Cox, Information Age Consulting
Chuck Duff, The Whitewater G roup
Adele Goldberg, Parcplace Systems
Tom Love, Consultant

Meilir Page-Jones, Wayland Systems
Bertrand Meyer, ISE
P. Michael Seashols, versant

Bjarne Stroustrup, ATST Bell Labs
Dave Thomas, Object Technology

THE SMALLTALK REPORT
Editorial Board
Jim Anderson, Digitalk
Adele Goldberg, ParcPlace Systems
Reed Phillips. Knowledge Systems Corp.
Mike Taylor, Instantiations
Dave Thomas, Object Technology International

Columnists
Juanita Ewing, Instantiations

Greg Hendley, Knowledge Systems Corp.
Ed Klimas, Allen·Bradley
Suzanne Skublics, Object Technology
Eric Smith, Knowledge Systems Corp.
Allen Wirfs-Brock, Instantiations
Rebecca Wirfs-Brock, Tektronix

SIGS Publications Group, Inc.
Richard P. Friedman
Group Publisher

Art/Production

Elisa Varian, Production Manager
Susan Culligan, Creative Director
Elizabeth A. Upp, Production Editor
Caren Polner, Desktop Designer
Circulation

Diane Badway, Ckulation Business Manager
Kathleen Canning, Fulfillment Manager
John Schrieber, Circulation Assistant

Marketing/Advertising
James Kavetas, Advertising Director
Diane M orancie, Account Executive

Geraldine Schafran, Advertising Sales Assistant
Bud Keegan, Promotion Manager
Administration

David Chatterpaul, Accounting
Suzanne W.Dinnerstein, Conference Manager
Jennifer Fischer, Assistant to the Publisher
Laura Lea Taylor, Administrative Assistant
Margherita R. Monck, General Manager

.SIGS
The Smallialk Repor[SSN# 1056 7976} is published 9 amew year. every menth except for ihe Mir/Apr. J,ily/Aug, ind Nodk combmed i=ues Published by «)OT, Ina a meinber i,fihe SIGS Pliblication,
Go,1,1, 588 Broadway. Nk w Yo« NY L[1012 (212)274·0640.©Copyrlght 19 by COOT. In, All rgh„ reserved Ileproducion of.his maerial by elecgonic uan;mission. Xerox oranv other method will be teated as
awillful vicitatiorint Lhe US Cipyndlt L®,nal: Ai ly prihibltrd. Mateml im Px reprixhiccdulthimr™r m min fnnin thepul,lishm. Mided Fimtaaa. Subcrip,wn ra[es 1 year, (9 mues) domestic.$65, For
elm and Canadi, $90, Single copy pace, $800. POSTMASTER Send addiess changes and subacription . rdersto: THE S.wALL, ALK R,luu. Subs„iber Se=kes, 8-pr. SM[., P.O. &™ 3000. Denville. NJ 07834 Submir
arricies [o the Ed,[ors 2.9 L Second Awnue, Ortawaj On,ario Kl S ZH4, Canada.

THE SMALLTALK REPORT

-Puttina Small talk#Bro Work!
1980 Smalltalk Leaves The Lab.

1984 First Commercial Version Of Smalltalk.
1985 First Industrial Quality Smalltalk Training Course.
1987 First Fully Integrated Color Smalltalk Systern.
1988 Responsibility-Driven Design Approach Developed.
1991 Smalltalk Majnstreamed in Fortune 1 00 Applications.

We were there.

We were there.
We were there.

We were there.

We were there.

WE ARE THERE.

Smalltalk Technology Adoption Services
Technology Fit Assessment
Expert Technical Consulting
Object-Orjented System Design/Review
Proof-of-Concept Prototypes
Custom Engineering Services & Support

Smalltalk Training & Team Building
Smalltalk Programming Classes:

Objectworks Smalltalk Release 4
Smalltalk V/Windows V/PM V/Mac

Building Applications Using Smalltalk
Object-Oriented Design Classes:

Designing Object-Oriented Software: An Introduction
Designing Object-Oriented Systems Using Smalltalk

Mentoring:
Project-focused team and Individual learning experiences.

Smalltalk Development Tools
Application Organizer Plus™ Code Modularity & Version Management Tools

See our new Multi-User/Shared Repository Team Tools At OOPSLA 91!

Smalltalk! Nobody Does It Better.

Instantiations, Inc.
1.800.888.6892

FINALLY, A PUBLICATION THAT SPEAKS YOUR LANGUAGE!

The Smalltalk Report stimulates, tracks, and evaluates usage of Smalltalk- Get accurate coverage on current trends,
techniques, the latest ideas and industry news. For users on all levels and dialects of Smalltalk.

St jin 01¢nt ·6* artlk/*3 fo'' appl€*f:j] :] W I M E M t s I)' c ·] NniN.. 0 1.....
I Introducing *mallilk into ¥*ur Orphization '¢43 1YFE@:f.f·: .
I, Designing and Managing Smallt#li¢ CI#$5 1.ibrariet :.: #.
I E#*ckikely Managing Mulciprogi*mmer Smaltilk Prole@:ts
I Metrics for Measurling Smalltalt¢ Sys¢*t¢m)>;) ..] . :·:
* 10#04*ing Your Smalilmlk Development Team 1,]U I

I Metal.*1 Programming' 4« ···»4 %»4%44- -ek-."**%· ··:
liSmalkalk in the; MIS World.. '· j t ·].: M :%1 5;··M··rt ·· : ·:·: I·).0 -
* Strm#talk as *Vehicle for Re#41-imeand*beded Systems
m Teathing Smalltalk to COBOLPh:*rammers i.. 2.-. 1 2 -
*t Interfating Smallmlk w an 501. ©*mbase :tj.{?*.imt· Yt
I Realiang Rausabili¥ ·: .· ·: ·. 'M·. . M ·. : 0 ... : I Ii:NA..*·t{..: 2

Don't Delay! Become a Charter Subscriber Today!

 J Yes, enter my Charter Subscription at the term indi-
 cared. This is risk-free offer. I can cancel at any time and get
a refund of the unused portion of my subscription.

year (9 issues) 2 years (18 issues)
J U $65 Domestic O$120

O $90 Foreign (includes air service) 3 $ 170

O Check enclosed U Bill Me

O Charge my O Visa a MasterCard
Card # Exp, Date
Signature

For faster service. call 21 2.274.0640 or fax 2 I 2.274.0646.
Make checks payable to Tha Smalltalk Report in US dollars drawn on a

1 US bank.

ParcPlace announces 4GL application development
tool for Objectworks\Smalltalk
ParcPlace systems announced the availability of FACETS, a devel-
opment tool for use when building applications in
Objectworks\Smalltalk Release 4. FACETS, suppiied by Reusable
Solutions, was designed to help create screen-based, data-inten-
sive applications such as order entry, financial processing, and
other database-oriented 4GL applications. In conjunction with
Objectworks\Smalltalk Release 4, FACETS provides an extendable
object-oriented 4GL development environment and series of on-
screen forms that guide the user through the rapid generation of
interface components.

FACETS is fully compatible with Objectworks\Smalltalk Release 4
and fully portable across all supported platforms, and allows full
connection to Servio's Gemstone interface for powerful database
connectivity.

For further information. contact ParcPlace Systems, 1550 Plymouth St.,
Mountain View, CA 94043, (800) 759-PARC.

Name

Title

Company

Address

City State Zip

Phone

Return to: The Smalltalk Report
Subscriber Services, Department SML
PO Box 3000

Denville, NJ 07834
Dl JA

Object Technology International announces an ob-
ject-oriented team development environment for
OS/2 and Windows

Object Technology]nternational, Inc. (OTI) announced the immedi
ate availability on OS/2 and Windows of Release 1.0 of ENVY/De-
veloper, an object-oriented team programming environment. With
ENVY/Developer, development teams using Smalltalk may work
concurrently on both OS/2 and Windows, sharing code and data
using the tools provided by the environment.

The environment supports the full manufacturing lifecycle including
prototyping, development, interactive debugging, performance
analysis, packaging/delivery, and maintenance of large systems
written in Smalltalk, and provides all tools required to realize the
benefits of object-oriented software development. ENVY/Devel-
oper is currently the only toolset for delivering large systems incor-
porating advanced object-oriented technology.

For further information, contact Object Technology International, Inc., 1785
Woodward Dr., Ottawa, Ontario KZC 0P9, Canada, (613) 228-3535, or fax
(613) 228-3532.

THE SMALLTALK REPORT

fastest Path to Plallorm Independen,e.
rldililig: T iqre Demo lippl

4 4, « + -L 3,9*P-#A
tl : :27;491 h . p33* Tigre*U'rogramming Environment 442™ 1- .4

* Portable 7
UNIX

Sun SPARC

DECstation

IBM R56000

HP/Apollof

1[-] Field Editor on: Demo Text KIN*ImMPM.-Ve
FER,41 4 ·,ki·15©·,il„:-: .· *. 4 :N· :*Y· 4 .3 :, .'/ i ·&.n,5: ftJ'%99'»1!9·AR:Fl 1*K's%;
" ' 1- 14€<'tfUL·5£:<Field Edi#*TYWAL >Yf ; 'ff··359

. '4 - :cl xWith ligre. incorporating te,t and ..lim;
graphics is rapid and por tabk ':03-'..**1*66&83.-.1

- i•,2»4.....444"ux' . rd-:40*9 4-*1 .4*2%*:b ·r©,**)Af„ 1 ;3NE-==g-m==-=------M/

- 4/lame/im#i # 177.f '0-32-Jt<-Of '73'Npilliz
929: ; talm/ii/ililillilliil,ililikjc

Build a da(abuse applica(loix ¥4
1 combi,Ii,q <ex{, i,nuges - euer, sourid §*

and oiden - m minuieR not wmitik <#A

MAC

Macinlosh 11

family

A««24

A.01 EN
14*t. , Funt .

*" C Le .. ¤ 146n Scfolling

31. @*nter ¤ Manual A«ept
k.

WIN Mode the user inte,face
whle your application

Windows 3.0- runs.just by makmg
selections in the €diR>rcompatible

Leap free of platform limitations and deliver full-color
GUI applications in half the time...wilh Tigre™.

Introducing an incredible
OOP breakthrough: A complete
development environment that lets
you create object-oriented, multi-
user applications that run across all
major platforms and networks. And
lets you deliver them up to 80%
faster than ever before.

TigreM Programming Environment,
running with Objectworks® \
Smalltalk Release 4, offers a set of
tools that turns a major hassle into
a quick drag. Literally. Because it

lets you build customized, color
GUM just by dragging and dropping.

You'll choose irom a large library
of user interface components. Objects
like scrolling text fields, check boxes,
radio buttons and more.

Drag them from the palette onto
your application screen. Move and
resize them as often as necessary.
No recompiling needed. And
virtually no code to write. Tigre's
Interface Designer automatically
creates the Smalltalk GUI for you.

Give the interface your unique
imprint by clicking selections to
change color, font, borders, icons, etc.
And you can add your own custom
GUI creations to the library for reuse.

Use Tigre's multi-user, object-
oriented database manager, to
provide network-compatible access
to text, images, icons, sounds - any
type of stored data.

Phone now for a complete package
of information on Tigre. There's never
been a faster track to freedom.

TICRE OBIECT SYSTEMS, INC. 3004 Mission Street, Santa Cruz, CA 95060
Call: (408) 427-4900, Fax: (408) 457-1015

-22* PUBLISHER'S
NOTE

4' sn't it time for an independent publicauon devoted
 exclusively to Smalltalk umers" is a question I'm fre-quently asked at conferences. Even though Smalltalk

is celebrating its tenth ianniversary this fall (since Byte'S
landmark issue lauding the language) there's been a sup
prising paucity of editorial coverage devoted to Smalltalk
in tiny publication since.

We at SIGS Publications have seen a recent resur-

gence in the interest m and usage of Smalltalk. It re-
mains the archetype of a pure and fully mtegrated O-0
development environment as OOP explodes in the
1990.. According to Ovum's Object Technology Sownce-
book. Smalltalk sales (in the US and Europe) are cur.
rently $21 million and are expected to double to $40
million by 1993 - making it one of the fastest-growing
languages·

The time has come for an independent forum de-
voted exclusively to Smalltalk users' informational
needs. The Smalltalk Report will publish over ZOO pages of
need-to-know information on Smalltalk during its first
volume year. Our editorial mission, simply stated, is to
stimulate, track, and evaluate Smalltalk usage on a
worldwide basis.

Welcome to the premiere issue. It represents hun-
dreds of hours of thinking, writing, and research. By
reading The Smallwlk Repon you can quickly benefit by
gaining access to nowhere.else-found techniques, advice,
ideas, source code, and "insider news" - a veritable
goldmine of consolidated information, You can rely on
what you read in The Smalltalk Report to be timely and
accurate. We publish it with the same editorial integrity
as we do our sibling publications, the Journal Of Object-
(Driented P·ogyamming, Obfect Magazine, The C++ Report,
the Hotline on Object,Oriented Tecindog); and The Inta-
nt[Nonal OOP Dii·ecton.

1 encc}ill age yE)11 tc) clmtact us regardilig yolir (1?inic)n
of this issiae pind wi,at y<)11!d like ti) see in up<:c)ining issiies.
Your feedback is valuable to us as the newsletter evolves.

I invite you to plug into the insiders network of
Smalltalk developers by becoming a Charter Subscriber.
Join our family of well-informed readers. We look for-
ward to serving your informational needs. Enjoy the
premiere issue!

Sincerely,

Richard P. Friedman

Group Publisher

m EVOLUnON OF SMALLTALK

c(lidytu¢<4 fY(Im t·OfF } · · ·

in-house, Tektronix, primarily a test equipment manufacturer,
had difficulty niarketing their Smalltalk workstation. By 1985,
developers and organizations were standardizing on main-
stream personal computers and workstations; thus, the appeal
of a custom workstation was limited. However, Tektronix de-
veloped a large group of people experienced in developing and
marketing Smalltalk and object·oriented development that
would later seed several successful companies iii the Smalltalk
and OOP market.

Digitalk introduced Methods, a text-based Smalltalk, iii
1985, and then Smalltalk/V, a graphics version, in 1986. The
most significant feature was thai Digitalk's Smalltalk ran on
the popular IBM-PC. By providing a low-cost Smalltalk for
the IBM-PC Digitalk expanded the base of Smalltalk users,
many of whom were building prototypes or custom applica-
tions. The success of these early developers spread the use of
Smalltalk as a commercial development environment.

In early 1986, a company by the name of Softsmarts
brought the first Smalltalk-80 for the IBM PC/AT to the mar-
let. Like Digitalk, the Softsmarts version proved that
Smalltalk could run on low.cost personal computers. Softs.
marty was also the first Smalltalk-80 to incorporate color
graphics and external language support. However, the PC
marketplace for Smalltalk became dominated by Digitalk with
lower-cost versions of their Smalitalk/V product (which in-
cluded the same feature set and ran on eight-bit PCs).

About the same time, the group within Xerox PARC that
had created Smalltalk wanted to spin off a company that
would focus on nwiketing Smalltalk. From that drive, Parc-
Place Systems was born. The first few years were spent creae
ing the infrastructure of the company and creating portable
commercial versions of Smalltalk for PCs, Macintoshes, and
UNIX workstations.

Although the early and mid. 1980s laid the groundwork for
the future growth of Smalltalk, both the state of the computer
industry and Sinalltalk itself prevented the widespread accep-
ranee and use of the language.

One perception of Smalltalk that remains to this day is
that it performs poorly compared to standard languages. Much
of the percemon is based on the fact that early versions of
Smalltalk were interpreted and included automatic storage
reclamation (garbage collection). What is interesting to note
is that even early versions of Smalltalk performed quite well
(most people made performance statements without direct ex-
perience). Much of this performance is based on the fact that
Smalltalk is best suited for complex, interactive information
analysis and management applications. In simpler applica-
tions, the overhead of Smalltalk becomes a factor that makes
it uneconoinical for those applications. As the application be-
comes more interactive or complex, the power of Smalltalk
becomes a key benefit in both development time and cost.
Also, perfonnaxice can be improved since the lower-complex-
ity code that is created by using Smalltalk can be optimized

THE SM.ALLTALK ¢EPORT

PRODUCT
INNOUN¢*M*NTS

Product Announcements are not reviegus. 7-11€) are abstracted Pom Mess releases provided by vendors, <md no endorsemegit is implied. Vendors
intewested in beilig nicluded in this feature should send press releases to oia edlitoria offices, Product Announcements Dept., 91 Second Ave.,

Ottawa, Ontario KES 2HW, Canada.

Logic Arts announces VOSS: virtual object storage
system for Smalltalk/V
Logic Arts' virtual object storage system, VOSS, is available now for
Smalltalk/V 286. Voss object management facilities include: persis-
tent storage, transparent access, virtual collection and virtual dic-
tionary, multikey access, a class restructure editor, and import/ex-
port in which administration facilities provide for backup, restore,
renaming, imporUexport between machines, or access over a net-
work. VOSS also features performance tuning: the control panel al-
lows cache size and other parameters to be tuned for optimum
performance, according to the degree of object volatility and ran-
dom v. sequential access to virtual collections. Many of the new
classes are independently reusable.SmalltalkA/286 source code is
supplied. VOSS requires SmalltalkA/286 and MS-DOS.

For further information. contact Logic Arts, Ltd., 75 Hemingford Rd., Cam-
bridge CB1 3BY, UK, (0223) 212392, orfax (0223) 245171.

Tigre ships multiplatform rapid GUI
application builder
Tigre Object Systems, Inc. of Santa Cruz, CA, is now shipping the
Tigre Programming Environment Tigre implements the capability
to build graphical user interface applications quickly for instant use
on multiple computer platforms and heterogeneous networks.
Color applications created by Tigre run without modification on
Windows 3.0. Macintosh ll, Sun/3, Sun SPARCstation, IBM RS/6000,
Digital DECstation, Hewlett-Packardfs HP 9000 Series 300 & 400,
Apollo Series 2500. 3500,4500. Sequent superminis, and on mixed
networks of these. Additional platforms will follow. Tigre, a fully ob-
ject-oriented system, uses Objectworks\Smalltalk Release 4 by Par
cPlace Systems as its scripting language.

For further information, contact Tigre Object Systems, 3004 Mission St.,
Santa Cruz, CA 95060,(408) 427-4900, or fax (408) 457-1015.

Digitalk announces Smalltalk/V developer conference
Digitalk, Inc. announced their first developers' conference,
Smalltalk/V Dev Con '91. The conference will take place September
11-13 at the Universal City Hilton and Towers in Universal City (Los
Angeles), CA. Sponsored by Digitalk and BYTE magazine, the con-
ference will include a wide range of technical topics, panel discus
sions, speakers, and product demonstrations. Events include: ses-
sions on design, management issues, application delivery,
Smalltalk/V internals, integrating with other languages, integrating
with other products, etc., as well as panel discussions, and industry
guest speakers.

For fur·ther information, contact Digitalk, Inc., 9841 Airport Blvd., Los Ange
les. CA 90045. (213) 645-1082, or fax (213) 645-1306.

Instantiations announces new engineering tools
and version management for Smalltalk
Instantiations, Inc. announced that it has developed a powerful new

VOL. L No. 1: SEPTEMBER 1991

set of software engineering tools to support developers using
Objectworks\Smalltalk called Application Organizer Plus. The prod
uct is an integrated set of tools that give Smalltalk users new ways
to structure applications, manage code, and optimize reuse and
was specifically designed to provide these capabilities without
sacrificing the freedom and high level of interactivity that are the
essence of Smalltalk programming.

Application Organizer Plus provides the Objectworks\Smalltalk de-
veloper with version management, improved code modularity, en-
hanced reusability, smaller delivered applications, new browsers,
and workspace enhancements.

For further information, contact Instantiations, Inc., 921 S.W. Washington,
Ste. 312, Ponland, OR 97205,(503) 242-0725.

Digitalk ships new release of Smalltalk/V Windows
Digitalk. Inc. announced a new release of Smalltalk/V Windows,
which combines Digitalk's widely used object-oriented program-
ming environment with Microsoft Windows 3.0. Smalltalk/V Win-
dows Release 1.1 contains an icon editor, performance improve-
ments, better memory utilization, and many new programming
examples demonstrating usage of Windows features.

Smalltalk/V Windows includes standard Smalltalk/V features such as

source code browsers, inspectors, and push-button debuggers. In
addition, Smalltalk/V Windows provides interfaces to dynamic data
exchange (DDE), allowing information to be shared between
Smalltalk/V programs and other programs and dynamic link li
braries (DLLs), providing a mechanism for calling code written in
other languages from within Smalltalk/V. Smalltalk;/V Windows
source code is compatible with Digitalles Smalltalk/V PM program·
ming environment for OS/2.

For further information, contact Digitalk, inc., 9841 Airport Blvd., Los Ange-
les, CA 90045, (213) 645-1082, or fax (213) 645-1306.

Digitalk announces royalty-free runtime
Digitalk, Inc. announced new versions of Smalltalk/V DOS and
Smalltalk/V Mac that include royalty-free runtime. Smalltalk'V Win-
dows and Smalltalk/\/ PM are already royalty-free.

The Smalltalk/V DOS Version 3.0 runtime system allows developers
to create standalone executable applications and includes inte
grated EGA/VGA color. Registered users of earlier versions of
Smalltalk/V may purchase an upgrade that includes a new manual.

The new version of Smalltalk/V Mac allows developers to create
standalone, double-clickable applications with no additional royalty
payments. Prior to this new policy, there was a per-copy charge for
runtime applications. Registered users of earlier versions of
Smalltalk/V may purchase an upgrade.

For further information. contact: Digitalk, Inc.,9841 Airport Blvd., Los Ange-
ies, CA 90045,(213) 645-1082, or fax (213) 645-1306.

4

WHAT THEY'RE SAYING
ABOUT SMALLTALK

Exe:erpts from industry publications

... Smalltalk/V has been realized in DOS, Macintosh, and Win-
clows versions. Much of the code can be used across al the en-
vironments. Objects can be stored in text form, and "filed out"
and "filed in" from system to system. Because Smalltalk is an
interpreter, these objects can be introduced into a running sys-
tem. The potential exists to network together Smalltalk systems
on a number of d jfferent platforms, and to let them exchange
objects in real time. This is not something you can do with
C++. Smalltalk/V has the most thorough tutorial of any of the
packages reviewed here. The manual is a complete course in
the language, and the example files give you working code for
most applications. Smalltalk is not like other computer lan-
guages. Instead of being like a musical score, it is more like a
jam session in which you create both new instruments and new
musicians as you go along. When yourve constructed your
band, you're ready to play. Smalftalk is extraordinarily interac-
tive, and the ideal environment for creative people, Accessibil-
ity is excellent, limited only by Smalltalkrs unusual syntax. Every
element of Smalltalk, from object creation to debugging and
running the application, takes place with a single Windows ap-
plication. Integration is total. The assistance to clear thinking,
Smalltalles clean handling of the Windows environment, its in-
tegration and rk:h data taxonomy, and its potential for inter-
platform development, make Smailtalk/v the winner among all
the packages we have surveyed.-

Breaking into Windows, Birreli Walsh,
Microtimes, 6/19/91

,.. Only the interpreted object-oriented systems such as
Smalltalk, object-oriented Lisp, and various proprietary object-
oriented development systemsr have a clear edge over
Nextstep in programmer productivity. Because these systems
are unsuitable for producing commercial applications due to
their poor performance, huge size, or restrictive licensing poli-
des, it is hard to refute the commonly heard claim that the
Nextstep environment is the most productive mainstream de-
velopment environment available today ...

The Next Next, Scott Raney,
UNIX World, 7/91

... Smalltalk is not about to replace COBOL, but it is finally ma-
turing into a viable choice in application development, espe-
daily for users looking for a tool to speed development of ad-
vanced graphical user interfaces in client/server applications.-.
Asa dynamically compiled language built on reusable objects
irda virtual interface that uses machine-independent, interme-
diate code, Smalltalk is also easily portable between the plat-
forms it supports ...
... there is still no widely accepted development methodology
for Smalltalk or for any other object-oriented environment. In
addition, many users are still making the transition to the rela-
tional model and structured programming techniques. "Most
[IS developers] still don't know what to do with objects. They're

still traumatized from making the migration to the RDBMS,"
says Na;tasha Kro], application program director at the Meta
Group in Stamford, Conn. Smalltalk also faces increasingly stiff
competition not only from other object-oriented languages
such as C++ but also from new GUI-buildjng tools, such as
Easel from Easel Corp, and Actor from Whitewater Group...

Smalltalk Grows Up, Jeff Moad
Datamation, 7/15/91

IBM will postpone its scheduled announcement of support fori
object-oriented technology in AD/Cycle until later this year ...
IBM had planned to announce by the end of this month sup-
port for the Digitalk Smalltalk language in its strategic software
development environment. When it does make the announce-
ment, IBM said, it will also provide a more substantial state-
ment of direction for AD/Cycle and object-oriented languages
as well as methodologies ... The AD/Cyde announcement will
focus more on how object„·oriented technology wift affect the
whole development life cycle ... rather than on an individual
product... IBM stili plans to include Smalltalk in AD/Cycle and
will also recognize C++ as an AD/Cycle language ...

IBM puts off object-oriented support, Rosemary Hamilton,
Computerworid, 6/17/91

... GUIs, however, are not a prerequisite of OOP programs,
But, the two have become dosely identified because GUN in-
crease the size and complexity of programs to the point whefe
traditional programming methods cannot manage them effec-
tively. OOP, on the other hand. car easily accommodate the
programming of Guis. In fact, Smalltalk, one of the first com-
pletely object-oriented languages, incorporates a graphical en-
vironment of menus, windows and scrolt bars.-.

Programming with Modules,
Chemical Engineering; 6/91

DiE SMALLYMLK REPORT

more easily than the large, complex amount of code created in
Itraditional languages.

Another major obstacle to the widespread use of Smalltalk
was a lackofacceptance ofboth graphical user interfaces and
the object-oriented paradigm. Most computing was being
done on either terminals or text-based PCs. Graphics were re-
served for video gaines and exotic applications. Much of this
was due to the fact that high-performance hardware and high.
resotution graphics disptays were not commonly available.
PCs were being used in data entry, or simple analysis, and not
to provide highly interactive interfaces or to solve complex
problems. Thus, the range of applications that Smalltalk is
ideally suited for were not being widely developed.

Marty early projects done in Smalltalk were either proto#
types or systems that evolved through many iterations. 0-0
analysis and design methodologies along with good implemen-
tation strategies were still forming (many of these early pro,
jects contributed to this process). However, in comparison to
traditional development languages, Smalltalk appeared cavae
lier, undisciplined, and immature. The speed perception and
lack of object-oriented analysis and design methodologies cre-
ated the perception that Smalltalk, although good for rapid
prototyping, could not be used in a disciplined way to create
robust, high-quality, commercial applications.

Duritig the middle to late 1 9804 desktop computing and
GUI-based interfaces became accepted. Smalltalk was behind
in integrating with the standard GUIs that were emerging,
continuing to provide its own nonstandard GUI. A[so,
Smalltalk was a closed language, not allowing interfaces to
other languages or libraries. However, now all versions of
Smalltalk from both ParcPlace and Digitalk integrate with the
standard windowing systems and external languages. As a re-
suit, Smalltalk provides one of the best environments for de.
velopment of host-based applications (given the complexity of
GUI programming interfaces).

Another· major block was the lack of Smalltalk developers,
inols, training, and support services. These were areas of the
market that had to grow to make Smalltalk a viable commer-
cial development environment.

SMALLTALK TODAY

Over the last Ave years, the Smalltalk industry has grown and
most of the hurdles have been cleared. Smalltalk has become

more widely used in commercial software development. This
is due not only to changes in the Smalltalk environment it-
self, but also to the software development marketplace as a
whole.

Changes in the overall marketplace have played a key role
in the success of Smalltalk. Time-to-market, adaptability, and
cost control have become increasingly crucial factors in over-
all business success. It is this business environment that has
accelerated the acceptance of object-oriented technologies
and Smalltalk. Information systems managers today are more
interested in solutions than in the technology employed.

VOL. 1, No. I: SEPTEMBER 1991

Many clients we work with that would have never considered
Smalltalk as a developmentind delivery language a few years
ago are now pursuing aggressive Smalltalk strategies.

The personal, highly interactive, graphical environment
that Smalltalk pioneered is now accepted and several GUIs
are widely in use. One result of the acceptance of GUIs is a
further increase in software complexity and development
costs. Developers now have to deal with the large library of
APIs that GUI and operating system have. Actually, the
Smalltalk windowing system, which has been considered
difficult to use, looks absurdlv simple when compared to stan-
dard windowing system libraries.

Many clients ... that would have
never considered Smalltalk as a

development and delivery language
a few years ago are now pursuing

aggressive Smalltalk strategies

Both ParePlace and Digitalk have introduced versions of
Smalltalk that access and use the host GUI and APIs. When

there were no standard windowing systems, Smalltalk provided
its own. This, of course, was unacceptable once standards for
windowing systems were established. Both Digitalk and Parc,
Place versions of Smalltalk run using the host windowing sys-
tem and allow access to the host API and external language
functions (i.e.,Windows and Presentation Manager DLLs).

One of the main differences between Digitalk and Pare
Place's versions of Smalltalk is how they provide host integra-
tion. Digitalk's Smalltalk V Mac, V Windows, and V PM pro-
vide tight integration with their host and use the host
environment controls and libraries (windows, menus, buttons,
and so on). Parcf>lace's Objectworks/Smalltalk Release 4 uses
only the higher-level and portable host services (windows,
fonts, and graphics) to provide iniage portability across plat-
forms and operating systems. Objectworks/Smalitalk does at-
low the developer to access the host's controls and libraries at
the expense of portability.

The amount of computing horsepower that sits on the aver-
age desktop today exceeds the horsepower that came with the
original $100,000 Smalltalk machines from Xerox. This allows
the user to use the system in an interactive graphical environ-
ment to solve increasingly complex problems. However, the
cost and development time of software using traditional meth-
ods has not kept pace, leaving idle MIPS on the desktop.
Smalltalk allows an effective, efficient, and cost-effective way to
develop interactive applications that solve complex problems.

Vt

Both Digitalk and ParcPlace have also improved perfor-
mance of the system by switching from a purely interpreted
environment to executing compiled code. The performance of
garbage collection has also been increased. In a variety of ap-
plications, particularly highlv interactive and complex analy-
sis, Smalltalk actually performs as well as or better than sys-
tems developed with traditional languages.

An example of high-performance Smalitalk in a commer
cial application is HPMS, a system developed for Hewlett.
Packard by Knowledge Systems Corporation. The HI>MS sys-
tem is a complex process modeling tool primarily designed for
manufacturing. It includes heavy computation and graphics
for flow autorouting and diagramming. Most who see the sys-
tem believe that it actually was written partly or entirely in C.
However, HPN·IS is implemented entirely in Smalltalk with.
out the use of C or assembly code. More information on the
HPMS system can be found in Robert Whitefield and Ken
Auers' article "You can't do that with Smalltalk! Or can your'
in the May/June 1991 premiere issue of Object Magazine.

Besides the Sfflailtalk language vendors, several other coin
panies have formed to provide tools, training, consulting, and
support for Smalltalk. Without this framework of companies
providing the supporting products and services, corporations
could not make the commitment and investment in Smalltalk.

One company, Object Technology International (OTI),
provides team development and source code control tools for
Smalltalk (essential for large,scate commercial development).
OTI has also used Smalltalk successfully in ROM-based em-
bedded cont roller applicazions, where typically low-level lan·
guages are used.

TODAY'S OBSTACLES FOR SMALLTALK
Many of the companies that are using Smalltalk are very secre-
tive about their use (to the point of not allowing any Smalltalk
books to be visible in offices). These coinpanies view the use of
Smalltalk as a strategic competitive advantage. Unfortunately
for those in the Smalltalk industry, this reluctance to share sue-
cess stories Inakes it difficult to promote wider use of the lan-
guage through examples. Often people in the Smalltalk indus-
try, when talking about Smalltailes success, must be vague with
lines like, "All sorts of companies are having tremendous suc>
cess with Smalltalk, but we can't tell you about any of them."

As larger projects are being developed with Smalltalk (by
companies we can't talk about), more time is being spent on
analysis, design, and software quality. When used for proto-
types, analysis and design are not significant issues. Still, for
high-quality production software, Smalltalk requires design,
testing, and iteration. Even today, many users first developing
with Smalltalk get enamored of the enormous productivity
gains of Smalltalk and try to turn functional prototypes into
commercial software (which ends up being low in quality,
difficult to maintain, or taking longer than expected). The
process of managing the Smalltalk software lifecycle anc! then
reuse of code are still issues. As more experience in managing

m EVOLUTION OF SMALLTALK

the high productivity of Smalltallk is compiled, issues such as
reuse and quality will be better understood.

Companies now inaking the investment ir Smalltalk da
velopment face the difficulty of finding resources and educe
tion. The number of experienced Smalltalk [rogramin irs is
limited, and competition for those developers is bean. In ad
dition, training in.house developers in object-oriert .d tech.
nology and Smalltalk takes approximately two months. After
the initial training period, six months of use is requ ed before
enough experience is developed to create quality commercial
software. Managers have difficulty accepting these time
frames, given the pressure to deliver. Often this pressure is the
reason for using Smalltalk.

SMALLTALK TOMORROW

Over the next few years, several significant products will come
out using Smalltalk. Smalltalk development and product sue
cess stories wilt be published (many in The Smalltalk Report).
The base of users and projects will expand both in organiza-
tions already using Smalltalk and in new ones.

The Smalltalk industry will expand with more companies
being formed to provide products and services, particularly
developer training, analysis and design tools, code genera-
tion, app] ication frameworks, and tools to manage large-scale
reuse of code.

Several companies will deliver integrated analysis, design,
development, and lifecycle management tools developed in
Smalltalk. These tools will push object-oriented application
development into a more disciplined and efficient level, par-
ticularly in large organizations.

For application developers in both large and small organiza-
tions, more development tools will be delivered. Interface
builders and application frameworks such as Acumen's Widgets
and Tigre Object Systenis' Tigre Programming Environment
are already in use building successful commercial applications.

In the software development community, there is always the
tei,dency to find the best technology. Currently, in the object-
oriented arena, many are looking for a winner, be it C++,
Smalltalk, Eiffel, and so on. The history ofsoftwate shows us
that there isn>t a winner, just as there isn't any best automobile.
There will be a variety of languages and tools to support varioLis
types of development. Smalltalk wiil find success iii commercial
applications, particularly in interactive desktop analysis applica-
tions, where the power of Smalltalk is best applied. *

REFERENCE

[l] Whitefield, R. and K. Auer. You can't do that with Smalltalk! Or

can you? Object Magazine, 1 (1), 64-69,1991.

Abdul K. Nabi can be reached at Knowledge bstems Corporation,
114 MacKenan Dr., Sre. 100, Con, NC 27511.

THE SMALLTALK REPORT

, 1 . 1 eant OOP from the gufus at

1*CU!31(DPFRE
SCOOP Furope presents a diversified program of OOP-related topics. Featuring the thought lead-
er· iii the technology, this five-day event offers over forty intensive ruforials, lectures, and technical
pape· preser tations - phts a large Exhibits area,

11 .1 .
Learn the latest state ofactivity jkom such notables as:
larry Constantine --
oribinal developer of 4(2* ··B Peter Coad - author of

struccured design O-0 ANALYSIS and

Grady Booch O-0
0 .1

design pioneer and
author of 0 0 DE GN

Brad Cox inventor of

Objective C
founder of Stepstone

Michael Jackson -
Founder of Michael Jack-
son Systems, publisher of
Jsp & JSK methods

Tom Love - OOP pio-
neer and noted Irainer and

consultant

Tom Atwood - Pres' lent

0 1 of Object Design
O 0 database pioneer

*IIB '..

Meifir Page Jones
0 90

not- d industry
0

writer and consultant
0 0

Marie Lenzi - Editor,
OBFECT MAGAZINE and

HOTI,INE ON OBJECT-
RIFENTEE> ECHNOLOGY

Chris Stone - President

ofthe Object Management
Group

plus Steve Cook, Rob Murray, Frank Ingati, and other industry pioneers.

If you are using object=@dented technology, 0, even
considering its risage, you should attend S©89/Eurepe.

AI In emat'onal Clockenspie] To,·eteive a demited brocbui·e, cai# 07X.259.2032,+r 07M.373.8430, or return card by maiL
Borland Internat'onal Harlequin
Boston University LBMS Educmon &

Corp Ed Ctr 'I'raining
O Yes, I want to stay current on object-oriented technology. Send me a detailed brochure.CACI Products Logic Programming

CGI/Yourdon Mar],V Name

CNS Object Internationat Tidc CA)mpaiv
CRII. IN·ogram Now Address
Cocking ind Dri.fy Rational

Postcode Ountry
Computer Mant,a$ Se.naptiore Training

Phone FaxComputi,lg SIGS Publications

Dathlex Services VALBECC Return iii SCOOP„Europe, Ua Boston Univ., 43 Harringron Gardens, London SW74JU, UK
Euroline Systems Zortech

ON

Apl I

VOSS

Virtual Object Storage System for

Smalltalk/V

1 Seamless persistent object managementwitkupdate transaction
control directly in the Smalltalk language.

e Transparent access to Smalltalk objects on disk
• Transaction commit/rollback
e Access to individual elements of virtual

collections and dictionaries

• Multi-key and multi-value virtual dictionaries
with query by key range and set intersection

e Class restructure editor for renaming classes
and adding or removing instance variables
allows incremental application development

• Shared access to named virtual object spaces
• Source code supplied

fogic Please stated;sksizerequired. Visa, Mastereard and EuroCard accepted.
Available now for Smalltalk/V286 $149 + $15 shipping

ARTS Logic Arts Ltd. 75 Hemingford Road, Cambridge, England, CB1 3BY
TEL: +44223 212392 FAX +44 223 245171

:,3

Experienced Sma[[talk/V Windows and Smalltalk/V PM
developers probably noticed that WindowBuilder uses
WBTopPane as the parent of application wifidows rather than
the more flexible and powerful ViewManager class. In many
circumstances, the multi-window views supported by View-
Manager designs are not required. When use of ViewManager
is desirable, it is possible to add each WBTopManager subclass
as a view of your application's ViewManager instance and set
the owners of all Subpanes of your WindowBuilder windows
within your window's TopPane to the ViewManager instance.
While this Is possible, I would like to see a clean and easy
"Link to ViewManager Instance" option in a future release of
WindowBuilder.

Also, there is no easv way to save WindowBuilder designs as
subclasses of other WindowBuilder subclasses. I would like to be

able to encapsulate reusable instance variables and methods for
a DDE client WindowBuilder window in a new abstract slib-

class of WEI'opPane. New DDE-based WindowBuilder designs
could be created as a subclass of this abstract class. Currently,
the only way to do this is to create your new design as a subclass
of WBTopPane, file it out, remove it, edit the source and file it
back in as the subclass of your abstract subclass of WBTopPane.

Where ltruly high performance is required or where multi-
pie instances of a window or dialog may be active at one time,
it is often desirable to compile a window or dialog using the
Microsoft Resource Compiler from the Windows Software De-
velopment Kit or similar tool. Stored in a dynamic link library

F SOF[WARE REVIEW

(DLL), such resources blast onto the screen when created and
may take advantage of DLL shared ruretime functionality. A
"Write WindowBuilder Design to DLG Script' which could
be fed to the resource compiler would be useful.
Finally, WindowBuilder does not fully implement the user in-
terface standards of the Windows and Presentation Manager
supported Common User Access (CUA} protocol. CUA de-
fines the "proper' way a keyboard interface should work in
terms of tabs between control groups and arrow keys moving
within a group's items, etc. While a WindowBuilder w®low
may have the 'look' of a CUA-compliant window or dialog,
the user access interaction misses the mark in terms of these
subtle 'feel" requirements.

HOW WINDOWBUILDER STACKS UP

WindowBuilder is a welcome addition to any Smalltalk/V
Windows developers toolkit. WindowBuilder will enhance
the productivity of the new as well as experienced
Smalltalk/V Windows developer.

By comparison, Digitalk's forthcoming Smart Parts product
(demoed for nearly a year as the "Look and Feel Kid) has the
potential to establish an entirely new programming paradigm for
Smalltalk application development. Smart Parts will be a radical
departure from traditional Smalltalk development procedures,
While Smart Parts will be revolutionary, WindowBuilder is a
solid evolutionary extension to Smalltalk/V development.

Try it. You will like it. Thanks, Acumen, and keep up the
good work. *

PRODUCT INFORMATION

WINDowBUILDER

REDUL PR](CE: $149.95

SYSTEM RE.QUEREMENTS:

SMALI.-EAM/V WINDOWS,
MICROSOFT W]NDOWS 3.0 OR LATER

ACUMIN SOFTWARE

2140 SHArrUCK AvENUE, SUITE 1008

BERKELEY, CA 94704

(415)-649-0601

Jim Salmons is President of JFS Consuiting of Lexington, South Car-
olina. JFS Consulting specializes in the documentation of object tech-
notog products and object-based user inteiface reuision contyol sys
tems. With his p>artney, Timt]nn Babitsky, Jim is coeditor of The
International OOP Directory, pubfished by SIGS Publications. Jim
and Timly?in aye also Exhibits Cochaws of the annual ACM OOP-
SLA Conference.

THE SMAUTALK REPORT

G ETTING REAL Juanita Ewing

Should classes have owners?

s Smalltalk engineering projects grow larger, the need for
reusable code increases. Developers need to build larger ap-
plications even faster. The easiest way to increase the ca-

pabilities and scope of an application is to reuse more classes.
Large applications require teams of Smalltalk programmers to
glue these reusable classes together and write some applica,
tion-specific code. too.

WHAT IS A REUSABLE CLASS?

Classes are reusable in two ways: as a client making instances
or as the basis for new subclasses. The characteristics of these

two kinds of reusable classes are different. For client use, you
want a fleshed-out anct general class. For subclassing, you want
a minimal anc[flexible class. Beyond these characteristics,
how do you tell if a class is reusable? To paraphrase Ralph
Johnson, a class isn't reusable until proven reusable. That
means it has been used in more than one application.

It takes extra time and effort to write classes that are

reusable. This extra effort is a separate programming activity.
Developers caught up in deadlines for delivering an applica-
tion often don't have the time necessary to flesh out and pol-
ish their classes. For example, developers will initially create a
single class that should be refactored into a combination of an
abstract class and a concrete class. The concrete class can be

reused by making instances of it and the abstract class can be
reused by making new subclasses derived from it. The reusabi[-
ity of classes written with the goal of multiple uses is much
greater than those written for specific roles in an application.

In conjunction with supporting teams of developers, some
Smalltalk environments actively promote the creation of
reusable classes. One of the goals of these environments is to
separate application engineering from the creation of reusable
units of code.

IS CLASS OWNERSHIP A GOOD BASIS FOR

PROMOTING THE CREATION OF REUSABLE

CLASSES?

Suppose each class is owned by a single developer. The theory
is that an owner feels responsible for and wili take the extra
effort to make a class truly reusable. The creation of reusable
classes is important to the entire organization as well as the
developers. Programming environment capability by itself is
not enough. To back up this capability in the programming
environment, the developers' organization must reward the

VOL. L No. 1: SEPTEMBER 1991

production of reusable code. Responsibility and ownership are
established management techniques for motivating employ.
ees. It's become common practice in manufacturing environ-
ments to give employees more responsibility and have them
provide input about die manufacturing process. Employees
don't just screw on lug nuts anymore.

Let's assume the owner of a class is rewarded for producing
a reusable class. What if another developer finds a bug in that
class, or thinks of a useful extension? Iii a system with class
ownership, the owner writes the code to fix the bug or writes a
new method. He is the one who is niotivated to make the

class more reusable.

WHO IS BEST QUALIFIED TO FIX THE BUG OR
WRITE THE NEW METHOD?

In the case of the bug, the best qualified person may be the de-
veloper who detected the symptom of a problem and isolated
the error. After the detective work, fixing the bug may be sim-
ple. And, sometimes it is difficult to reproduce a bug. In the
case of the new method, maybe the person who thought of the
extension knows best how to implement it. Mavbe in both
cases the owner and the person suggesting the change need to
work together to come up with the best solution. The best
qualified person depends on the situation. Flexibility in the
programming environment is crmcal.

Systems with class ownership are not flexible. Even the
motivational aspects are wrong for flexibility. What is the mo·
tivation for developers who are not owners?

DO CLASSES EXIST IN ISOLATION?

When a class is part of an application, it interacts, or coliabo.
rates, with other classes. Sometimes the collaboration is part
of a framework. For example, a view and a controller collabow
rate as part of the MVC framework. An instance of view is
never used alone. It Is always paired with a controller, Because
of the relationship between these two classes,coupled with
the fact that modifications in one class will probably require
corresponding modifications in the other class, there is a
strong reason for the same developer to own both of these
classes. It makes sense that any related classes should also be
owned by the same developer. Evidently all parts of a frame
work should be owned by the same developer.

Continuing this exaniple, what about the view's relationship
with its model? Some views have a close connection with their

N

models. This argues that the model should be owned bv the
same developer that the view and controller are owned by. And
vet in different applications the same view may collaborate with
different models. Are all of those models owned by the devel-
orer that owiis the view?Class ownership doesn't take into ac-
count the flexibility required b¥ multiple applications.

A subelass is closely related to its superclass. If thit behav-
ior of a class changes, there may be ramifications in the sub-
class, requiring corresponding changes iii subclasses. This im.
plies that the same developer should own classes that are
hierarchically related. Obviously, if one developer owns the
entire image, we aren't talking about teams of Smalltalk pro,
grammers anymore.

lf classes have owners and related classes are owned bv the

same developer to improve the efficiencv of the team, how do
you devise a reasonable partitioning if the ownership is re-
stricted to a single developer per class? The answer is, you
can't. The goal of grouping related classes conflicts with the
goal of distributing classes to individual owners,

46

The advantage of multiple

developers is to allow multiple
perspectives and therefore create

more general classes.
99

DO MULTIPLE DEVELOPERS AFFECT THE QUALITY
OF CLASSES?

Close collaboration between developers is important in the
production of reusable classes. People who are working to-
gether tend to be more creative. Multiple perspectives iii-
crease the likelihood of more general abstractions. Multiple
developers are an advantage. The result of multiple developers
is classes that are well Reshed out and suitable for client use
and classes that are general abstractions suitable for sub-
classing.

SHOULD CLASSES BE ACCESSIBLE TO MULTIPLE
DEVELOPERS?

The programming environment needs to promote developers
working together. One way to do this is to make classes acces-
sible to multiple developers. That way, each developer could
make changes when most appropriate. Ifyou have one owner,
what do you do when that owner goes on vacation? What if
the owner is ill at a critical time in tihe project? The program.

m GETTING REAL.

ming environment should make it easy to implement contin-
gency plans to keep a project going.

Since a reusable class is produced by a team of people, the
entire team should be rewarded. Team programming environ-
merits usually have author designations for accountabitity.
Outstanding efforts will continue to be noticed in these envi.
ronments because of accountability features.

HOW DOES THE PROGRAMMING ENVIRONMENT

KEEP THINGS FROM FALLING BETWEEN
THE CRACKS?

How do you ensure that the entire class hangs together? You
don't want to end up with classes that are a hodgepodge of
functionality. Some automatic checks could be installed to
produce warnings if, e.8, a method contains no references to
self or instance vanables.

Most of the consistency checks for a class cannot be auto-
mated at this time. A human still needs to browse and under-

stand a class to see if it follows basic design principles. In a coop-
erative team, this responsibility can be shared. Peer reviews; or
inore formal code reviews, are an essential part of team efforts.

The progranuning environment should be able to restrict
the set of developers for a class to avoid unauthorized
modifications. Many operating systems offer these kinds of
limitations. A team programming environment could be even
more selective. Also, it is a good idea to place at least one ex-
perienced person with a group of inexperienced people. Peo
pie who have good rapport generally program together well.

A programming environment for teams of Smalltalk devet
opens should promote the creation of reusable classes by re-
warding all developers. The advantage of multiple developers
is to allow multiple perspectives and therefore create more
general classes. Another benefit of multiple developers is more
apparent in the final stage of the software lifecycle. Classes
that are developed by multiple programmers are therefore un-
derstood by multiple programmers. It is easier for the organiza-
tion to maintain classes because more than one person has the
knowledge and understanding required for the job. 0

Jumuta Ewing is a senioY sitiff meniber of Instantiations, Inc., a soft-
ware engineering and consulting#nn that specializes in devetoping and
appbing object-oriented technologies. She has been a project leader foi
co?nmercial obiecioriented sofauard projects, €uid is an expert iii the
design and implementation of object··oriented applicanons, Aameworks,
and systems. in her previous position at Tektronix Inc., she was re-
sponsible for the det;:toimient of dass libraries for the first commercial
quality Sma(ltalk-80 system. Her professioital actit,ities include Wbrk-
shop and Panel Chairs for the OOPSLA conference.

11 lE SMAU-TAU< REPORT

j=i Window Bullde n: WEEmpDR -1-3
Elle Edit *ions Align Slze Woup Add

Acme Rooket,Employac Database

E123 -DepanmenED#88-,·Emplmec P„file1*9 :ta*N@me Firs' Name1101 1-I
2.. b i '.*.ED9 .-* ". z r Glme '114"Ag-

El „....any L Cene, Ve.G. 29. 1) Fi

3@L 2 '4,11 3 , '0'a·r 'o· liquilit li. 4. 1
L * OF;*ed jP-la--i#1 FAMflle=2Eng---

60 hated

St,k @*im TIP: 9 F- ielalle k IParen: T- 14 1
0 Scal,1

Mb @ Fed EeiMwa le; Ane ¥op [*1 i -
05caled

.3.Ill [i«3

Figure 2, WindowBuilders Framing Parameters Editor.

Panc subclass at any time and a Test It button is provided to
generate an instance of your design

Once you have the design worked out, you may then open
a Class Browser on your window's WBTopPane subelass. To
complete the implementation, you simply complete the "shell
method:11 which WindowBuilder generates based on your
when:perform: and menu item action specifications.

To make all these WindowBuilder features immediately ae-
cessible to You, a cogent manual is provided. It includes an
overview of the components and functionality of graphical
user interfaces, a "Quick Peek" introductory tutorial, a user's
guide, an extended example tutorial, a reference section and
an index. WindowBuilder is So intuitive, however, that you
hardly need the documentation.

USING WINDOWBUILDER TO CREATE A DDE

DATABASE CLIENT APPLICATION

About three-quarters of my development session was spent
implementing the DDE communication between Smalltalk/V
and Pioneer Software's Q&E database engine (Fig, 3), The de-
velopinent of the window design was truly painless using Win-
dowBuilder. Since WindowBuilder generates empty methods
based on the control and menu event specifications of your
design, it is essentially a "fill in the gaps" process to make the
application fully functional.

Had I not been using WitidowBuilder, I anticipate my
experimental development effort would have easily doubled.
WindowBuilder makes Smalitalk/V Windows a viable
choice as a consultant's rapid application development en-
vironment.

WINDOWBUILDER'S BRIGHT SIDE

WindowBuilder is a vastly improved way to develop a
Smalltalk/V Windows user· interface when compared to writ-
ing raw source code. As a consultant, I would on[y recom-
mend Smalltalk/V Windows for corporate client development
projects if it were enhanced with WindowBuilder.

Tlie Frarning Parameters Editor and the Align menu fea-
tures of WindowBuilder are particularly useful and are often

VoL. 1, No. 1: SEPTEMBER 1991

-1 Q,E · EMFOOE.QEFIADORDOF, EMP.oar, DEPT.Dan I..1,11
g Dir £/it am. selerl Seairli Ley,i,31 Wi,¥dow Un I r I

LAST_HINE IFIRITJAMEIEMP_ MIDEFTI>EPY_MANIE IGR iDISTRIET 1131
EL:=2 g-
I 3 i HrE'llan gie Edi 1120 Empioyeerins,mealREI- -Depe/mont:0101---r Em/loye:Pralic
- 21 Last NMe Mrs, N.me

11*0!Imal lisa- 1Man'Der

1'290*In . | elp ID Hic £)ale rs'x
Enplay'UN !90/E_ I lemfef] 1 Z'im'.'J
Bennett

Zamml 3 Street Adi}.ss
Metknin e l201 Ge/St.
Sampall

1 Cily ST 2/pesde

IDurham Ne 1 0*E- 1
58154

 M Ex©"M 5%M.00 2
Interesle

'Spofts:!:andball. Windiumng
i Hobbics. Stimp Cilidditle Dant|09 |Avc. Salaiy: $38.W irlub€ExcculLsENciw«ENOW _J

Figure 3. A WindowBuilder-built DDE client application window
and its Q&E database server.

not implemented as well in other user interface builders which
Ihave used.

WindowBuilder is extensible. WindowBuilder is provided
iii source code and its interface includes a facility for adding
your own new Subpane classes. If you create, or purchase, a set
of interface components such as ToggleSwitch or Thermome-
terGuage objects, you could include them in your Window-
Builder designs.

Acumen supplies a WindowBuilder run-[ime file. One,e
you have an application built based on a WindowBuilder user
interface, you can create a lean image with the classes and
method changes required to implement the interface but not
the WindowBuilder tool itself.

WindowBuilder is a vastly improved
way to develop a Smalltalk/V

Windows interface when compared to
writing raw source code.

A WINDOWBUILDER WISH LIST

The most glarilig problem I had with Version 1.0 was the lack
of a Z-order editor. Windows uses a Z-order list to determine

the order through which [he window "tocusl' will progress un-
der keyboard control. In a data entry application, you often
want to make an entry and tab to the next logical field. 11 is
surprising that Acumen did not provide ally means to control
and reorder this all*important aspect of a window ordialog de-
sign. The current workaround for the lack of a Z-order editor
is to cut and paste the addSubpane: blocks in the addSub-
panesTo: method. In a window as complex as the DDE
Database example, this is incredibly tedious.00

ti.OFTWARE REVIEW Teviewed b,Jim Salmons
twi

WindowBuilder: An interface builder
for Smalltalk/ V Windows

velopment of Smalltalk/V Windows applications. As its
indowBuilder, from Acumen Software, is a User Interface
Management tool which greatly facilitates the rapid de-

name implies, WindowBuilder enhances developer productiv-
ity by providing a 'construction se[' tool with which to inter-
actively design application windows and dialogs in a Hwhat
you see is what you get" manner, Once you are satisfied with

your design, WindowBuilder creates a new class to encapsu-
late your design, generating the Smalltalk methods which
bring it to life.

At a list price of $149.95, this is a potent rapid application
development tool which should be included in anY
Smalltalk/V developer's environment. Though there is room
for improvement, this initial release of WindowBuilder is a
much needed enhancement to Smalitalk/V Windows.

HOW DOES WINDOWBUILDER WORKI

WindowBuilder consists of software and a ninety-five page
manual. The WindowBuilder tool and its associated classes

are easily installed by fiting in a single Smalltalk source file.
Thirty-one classes are added to the base Smalltalk/V Win<
dows environment. Some of these classes implement the Win-
dowBuilder tool itself, but many are refinements and enhance-
ments to the base system's window user interface Control
classes. In addition to new classes, Acumen has made a signifi-
cant number of modiftcations to methods iii the base

Smalltalk/V Windows classes.
Once filed in, a WindowBuilder menu is added to your

Transcript window menubar giving You quick access to creating
new and editing existing WindowBuilder windows and dialogs.
WindowBuilder defines a new abstract class, WBTopPane, from
which new windows and dialogs subclasses are created.

Figure 1 shows WindowBuilder in use to create a relatively
complex application window. To place the Male RadioButton
in the Sex GroupBox, as shown, the tool palette on the upper
left side of the WindowBuilder window is used first to select a

primary iCOn to place 'Button' objects, after which a "Ra-
dioButton" secondary icon is selected. A crosshair cursor then
appears to target the buttons placement in the GroupBox.

The newly placed button displays 'selection handles' to in,
dicate that 11 is the active object. The Attributes Pane aloiig
the bottom of the WindowBuilder window is used to specifr a
default title, associated instance variable and Windowsspecific
style attributes- The Events group i;tictudes a When ComboBox

File Edit aptions Align Hize Group Add

Acme Rockets Employee Database |»

r [>cportment DR## -- - Employee Fr uitic

|E| La'IName Flial Name

1 E i Manager Ng/ore 11'gnored 1

ia 33 ignored Emp.ID 11?Ye Date G Sex--1
105 * Employees -•ed 1»-rnd I o #= I.0 Male : 1

Street Address

|Ignied

3 4 9 ap tlete

Ilgnored I [*] Ignored
salaryC]Exempt i

1 -

Tilk |Male: | FEve„:: |Font:. :| *iN>i,1
insnta, 111'Mas | Fi0*n#. : Hidet }1When: =clicked i

- 1 Pe#-m:|ibS=Updal. 15#le au Radioeullon!&1 1 1 1 {§4*44 :11 Apy# j]

Figure 1. WindowBuilder tool building a database application window.

which allows you to choose events to which the selected object
will react. In this case, the RadioButton associated with the rb-
Male instance variable will react to a clicked event by sending
ks parent window the rbSexUpdate message. The Events
group can be used to specify as many when: euent perform:
method associations as required by yOL[r design.

A wellimplemented group of alignment options make it
easy to create a clean window or dialog design. The Distribute
Horizontally and Distribute Vertically options, which space
objects evenly between two outermost selected objects are par-
ticu[arly kiseful and relatively rare in user interface design tools

A Framing Parameters Editor is provided to specify the
complex relationships among window control objects when
the window is resized. In Figure 2, the Framing Parameters Ed-
itor is being used to specify that the upper-[eft corner and bot,
tom of a ComboBox are fixed relative to the Parent window's

top left dimension while its right dimension is scaled to the
window's new size.

A Menubar Editor makes is easy to design dropdown
menus to be added to your window designs. As with your basic
window or dialog design, WindowBuilder generates the often
complex and errorprone source to the methods which create
and initialize your menus.

Working in concert, the tools provided by WindowBuilder
make quick work of designing a window or dialog. As an in-
teractive tool, you can save your design to its own WBTop-

THE SMALLTALK REPORT

*Tndow Buildir,nt:WBEm

flu Is Greg Hendiey and Ewec Smith

Giving application windows dialog box
functionality in Smalltalk/V PM, part 1

ela)me to the first installment of what we hope will be

W long-running column! Smalltalk has been around for
some years now. When Smalltalk was young, the idea of

applications having windows the way cats have kittens was a
new one. Smalltalk environments of yore preceded the prolift
eration of standardized window environments. Therefore, they

tended to carry their own windowing system with them.
These old clunkers would grab the whole machine (keyboard,
screen, and mouse) and have their own way with them.

Of late, however, the world has been changing. For rearly
every kind of desktop workstation, from the PC-clorte to the
top-of-the-line UNIX workstation, there is a standard win-
dowing system available. Applications that nin on these ma-
chines are increasingly expected to conform to the interface
standards of the host windowing system. Further, they are ex-
pected to work with other applications rurming under the
same wmdowing system.

Fortunately, Smalltalk has kept lilp. Both of the major ver.
dors are beginning to support "host windows." In this column,
we'11 be providing information on the nuts and bolts of getting
applications going in Smalltalk while working with the facili-
ties provided by the host windowing system. To begin this is.·
sue, we'll dive right in to a two-part examination of how to
bullet dialog boxes wholly within Smalitalk/V PM.

Dialog boxes are useful for displaying messagei and gathering
input from the user. In Smalltalk/V PM, there are two sub
ciasses of DialogBox to handle simple cases. MessageBox is use-
ful for getting quick yes/no or confirm/cancel information from
the user. Prompter is useful for posing a question and soliciting
an answer. Tliere are other DiatogBox subclasses for lind and re-
place, choosing fonts, and defining new subclasses. In each case,
a specific Presentation Manager {PM) dialog resource is used.

The resource defines the types and locations of the dialog's
controls. To define a dialog with a different hayout of controls, a
new PM dialog resource must also be deined. This can be done
with the dialog box editor or the linker and resource compiier
that come with the Presentation Manager development kit.

If you have been using Smalltalk for a while you may ask,
"Why can't atl the work be done in Smalltalk?" This column
proposes one approach to building custom dialogs whoilv
within Smalltalk. This approach creates a subciass of Applica-
tionWindow and gives it some useful behavior currently found
only in DialogBox. In addition to convenience, there are two
advantages to building dialogs wholly within Smalltalk. One

VOL. f,NO. f-SEPTEMBER 1993

advantage ts you can use your own cristom panes in addition
to control panes. (DialogBox M restricted to holding control
panes.) The other advantage is that once you know how, you
can add the behavior to any application window.

ESSENTIAL BEHAVIORS OF DIALOGBOX

Since we will be taking the essential behavior of DialogBox
and adding it to ApplicationWindow, let's identify what that
behavior is. Under DialogBox in the encyclopedia of classesi
is the comment

"A flialogBox is a popup window used to display mes-
sages and gather input from the user. A dialogboxcan be
modal or modeless. A modal dialog box requires that the
user terminates that dialog box before using the window
that opened the dialog. A modeless dialog box allows the
useT to continue to use the window witholit terminating the
dialog box."

So, ati optional behavior of dialogs is being modal. (Appli*
cation windows are modeless.)

You may have noticed another behavior: dialogs seem to
stick with the application window that created them. lf an ap-
plication window and its dialog are partially obscured by
other windows and either the application or its dialog is se-
tected, the application and the dialog window come to the
front together. This sticking together is one of a set of behav-
iors dialogs have because of the ownership relationship be-
tween a dialog and its application window. The application
window is said to own the dialog.

The option of being modal and the ownership relationship
are considered to be essential behaviors of DialogBox. Other
behaviors such as displaying messages, gathering user input,
opening, closing, and[passing messages are already part of be-
ing an application window. The rest of this column will dis-
cuss modality and ownership, where thev are documented,
what they mean, how Smalitalk/V PM uses them, some ways
for you to use them, and finally, how to put it ali together to
make your own dialogs wholly within Smalitalk/V PM. The
remainder of part 1 will cover modality. Part 2 will cover own-
ership and putting it all together.

MODALITY

Chapter 19, Dialog Windows, of ref. 2 (pp. 247-262) de
scribes two kinds of modalitv diatogs may have in PM. A dia-

=immm==1

\0

log may be system modal or application modal. When a dialog
is system modal, the dialog takes control from all other win-
dows in the system. When a dialog is application modal, it
takes control from all other windows in the application. (As
an aside, any window may be created system modal. Further
discussion oil this is deferred to a later issue.) Dialogs in
Smalltalk/V PM are neither.

Dialogs in Smalltalk/V PM are modal only to the window
that was active when the dialog was opened. As a result,
modality for Smalitall/V PM dialogs is handled within
Smalltalk. This makes it fairly easy to move the modality be-
havior to ApplicationWindow.

The mechanism for making dialogs modal is documented
on page 468 of the Snialltail¢/V PM I fandbook. 1

"Dic[Log boxes can be maide modal to the ctorentlo] active
window by putting selfprocesslnput as the last line in your
dialog box's open method. processinput will not return until
the user closes the dialog box (actuaLLy, until another method
in 30147 dialog box ckss serils self close) . Again, see New-
Subclass Dialog for an example. '

... dialogs seem to stick with the
application window that created

them. If an application window and its
dialog are partially obscured by other
windows and either the application or
its dialog is selected, the application
and the dialog window come to the

front together.

To understand what goes on when dialogs are made modal,
let's took at the method processinput in DialogBox. This
method is inherited by NewSubclassDialog:

processInput
"Make the receiver modal to its owner window,

This method doesn't return until close has been

sent to the receiver,"

1 cursor i
Processor currentProcessIsRecursive iffrue: [

self eIron 'Cannot do modal dialog during recursion.'].
owner disable.

cursor := Cursor.

CursorManageT normal change.
sem := Semaphore new.
[Cuirenthocess makeUserIP. Notifier run] folk.

• GUM

sem wait.

CurrentProcess makeUserIF.

cursor change.

Two actions are taken to make the dialog modal: the
owner is disabled and processing in the method is blocked.
Disabling the owner is easiest, so let's look at it first.

DISABLING

Disabling the owner means the dialog's application window is
prevelited froin receiving any more keyboard or mouse input.
Conceptually, the dialog's owner is the application window
that created the dialog. In implementation, the owner is set to
the frame window of the active window when t:he dialog re-
ceives the message fromModule:id: or fromResFile:. The code
that finds and sets the owner is the same in both methods. Ex-

ainining the code confirms that the owner is a window handle.

owner isNil iffnue: [
owner := Notifier activeMainWindow.

owneI notNil iffrue: [owner := owner framewindow] 1.
owner isNil iffrue: [owner:= WindowHandle queryActive}.

The method for disable in WindowHandle sends the

method enableWindow:fEnable: to PMWindowLibram the
sole instance of PMWindowlibraryDLL. In response,
PMWindowLibrary calls the MS OS/2 function WINEN-
ABLEWINDOW. MS OS/2 responds by disabling the frame
window and all its child windows (see pp. 260-261 ofref. 3).
So, the owner ignores all future keyboard and mouse input
until it is enabled. The dialog enables its owner in the
method close.

BLOCKING

Blocking means thal the Smalltalk process executing the
rnethod stops. The method does not return (and so the calling
method does not continue) until the process is unblocked.
The blocking is done in diree lines:

sem := Semaphore new.
[CurrentProcess makeUserIP. Notifier ran] fork.
sem wait.

The first line is simple. It initializes the semaphore. The
second line makes a new user interface process and starts it
processing events. The third line actually blocks the process
the method is executing in. The process is blocked and the
method does not return until the semaphore is signaled. The
dialog signals its semaphore in its method close. Once the
semaphore is signaled, the method processInput is resumed,
the user interface process is restored, and the method returns.
The method close for DialogBox closes the dialog and undoes
both actions taken iii processInput:

dose
"Close the receiver."

owner enable.

TLE SMALLYALK REFORY

of large, corporate sponsors that can afford to commit people
and finalicial resources to its success.

Perhaps, today, the environment is riFe for such an organiza

tion. There are now numerous large corporations that are mak-
ing strategic commitments to Smalltalk. These are the organiza
tions that really need and can afford to support a Smalltalk
users group and conference. My final remarks are to mv col-
leagues in these organizations.

You and your 01·ganization have made a commitment to
Smalitall. Its future success is critical to your future and success
This requires a dynamic, vibrant community of Smailtalk users.
Take control of your future, get involved and organized. Put to-
gether an organization, sponsor conferences and workshops, en·
courage standards. You know who you are, you know you have
the need. So do it. If you don't know who your counterparts iii
other corporations are, then call me at (503-242.0725) and I
will get you connected. Let's make Smalltalk succeed! *

Allen WAYS-Emck can be nuched at letantictions, Inc., 921 SW
Washington, Ste. 312, Portland, OR 97205, or b phone ac (503)-
242-0725.

Universal Database
OBJECT BRIDGE ™

This developer's tool allows Smalltalk to read and write to:
ORACLE, INGRES, SYBASE, SQL/DS, DBZ, RDB, RDBCDD,

dBASEIII, Lotus, and Excel.

2*91 x

r Inc.Intelligent Systems,
' 506 N. State Street, Ann Arbor, MI 48104 (313) 996-4238 <313) 9964241 fax

VOL 1. NO. 1: SEPTEMBER 1991

Smalltalk/VM
productivity
CodeIMAGERTM

(Formerly named IMA£*ER)

e Put relcted classes and methods Into a single
task-oriented application object,

e Brows@ only what the application sees of the Image
but easily import or delete external code.

e Automatically documentall application code using
modlitable templates-they can even be executable!

e Keep a history of previous versions and restore them
with a few keystrokes,

e Pint an application as a formatted. paginated.
commented report. Even a table of contents!

Thereb more-

• Many chores like change log recovery are menu-driven,
•New browsemon class variables and references.

global variables. Object dependents.
e Intelligent browsers are graphic, Interactive and

context-sensitive. Many update automatically.

Now-pRMMe application execution
with statistics and a calling tree!

€EE21,Zll Adeleted clasles|
/ deleted code<;2------4 .ideleted methods.,Browses...€-®322 W............................

image
CodeIMAGER is.. (SisBYTERBA'wimwalcodIng.<CIiemplate editing

Utilitle....<
testing<U._13pp,ica,ion testing

-:code protltingi

». Smc*tolk/V & Code MAGER <rereg. moks of DIgltok. Inc &Zunkl Data Corp

Shipping & handling: C $13 mall, U $20 UPS p,er copy. 48 hr order
himaround. Fax or phone for quickest handling.

Nm,

ADDIESS

SWE -/Kn

TELEPHONE OCheque OAmEx OMC OVSA
Velsion: O Mac O 286 #:

PM version available 3090

Diskette: [3 3 42 5 1/4 Expily Date: _ /_ /_
23% *sa - - 2035 C4te-de-Uesse, Suite 201
Zui lig MONTREAL, Quebec H*N 2MS

Tel. (514) 332-1331 Fax: (514) 956-1032

R.Al

MESSAGES AMen Wids-Brock

Smalltalk, organization, and you

A forum for sharing ideas, tips, and
experiences or just a place to have

your say .-.

This morning, I was reading through the papers iii tlie confer··ence proceedings of the 1991 USENIX C++ Conference.
This is a collection of eighteen papers relating to the applica,

tion, implementation, and possible extension of C++. In gen-
eral, the papers are well written, rnost are informative, and some
are controversial. Collectively, they show that there isaa large
and thriving C++ community that is not only actively applying
and evolving their language but also communicating, sharing,
and recording their shared experiences. They clearly show that
C++ ts a living, dynamic language.

As a Smalltalk user and implementor, my immediate reae
don to this collection was a sense of longing for a similar set of
papers concerning Smalltalk. I know there is comparable work
being dorie in the Smalltalk community. If Iliis wasn't the case,
Smalltalk would bea dead language. The probtern is that there
is currently no forum for Smalltalk users and developers to get
together and share this work. Why not?

For several years, OOPSLA provided such a forum. If you
look at the proceedings of the first two or three OOPSLA
conferences, you will find a large number of papers that di-
rectly relate to Smalltalk. This is not the case today. Why?
Because OOPSLA is now a Large, formal, scientific confer-
ence that addresses all aspects of object-oriented technology.
To be accepted at OOPSLA, a paper must address original
ideas that are broadly applicable to object-oriented technob
ogy. A paper that is of utility only to the users of a particular
language will normally not be accepted. At most, one or two
Smalltalk-related papers will now be selected for an OOP-
SLA conference. Generally, the same will be true of C++ or
any other language. This does not mean that onlv one or two
good papers exist, but to publish more would result in an un-
balanced conference. If eighteen of the twenty-three papers
at this year's OOPSLA were the papers from the USENIX
C+ + Conference, only C+ + programmers would attend
OOPSLA.

The obvious SOilltionis that we need a Smalltalk confer-

ence. This is not a totally new idea; others have suggested it in
the past, but nothing has happened so far. Why? It's easy for an
individual such as myself to get excited about the idea. I know

what has to happen. I lived through the organization of the first
OOPSLA. I could get on the phone and start calling people to
get them involved... but wait, reality starts to kick in. Organiz-
ing a conference takes a lot of work and entails considerable
financial risk. I run a small business. Can I afford to take the

time away from my clients and employees? Could I carry the
financial burden? Well, it was a nice idea, but back to work.

What is really necessary for the organization of a success
fu[conference is an organization to back it. For OOPSLA,
this was the ACM. For the C+ + Conference, it is USENIX.
USENIX describes itself as follows:

"The USENIX Association is a not-for Wvft organiza
tion of those interested in UNIX and UNIX-like systems. ft
is dedicated to fostering aid communicating the deveU>ment
of research and technological information and ideas pertain-
ing to advanced compu eng systems, to the TROilituring avid
encouragement of continumg mnovation m advanced com-
puting environment, and to the provision of a forum where
technical isstoes are aired and critical thought exercised so
that its members can remain cu,rent and vital. To these
ends, the Association conducts kirge semi-annual technical
cotiferences and spo,isors workshops concented with varied
specrahinterest topics.- ,"

A successful users group must be a
response to a real need, a "pull"

from the user community. „

What about Smalltalk? Unfortunately, there is no compara.
ble Smalltalk ziser's organization. Past efforts to create such an
organization have been unsuccessful. Like conferences, user or.
ganizatiom take a considerable investment oftime and monev.
Past efforts were "pushed'by vendors or individuals who had
neither the time nor financial resources to be successful. A sue

cessful users group must be a response to a real need, a 'toully'
from the user community. In addition, jt imist have the backing

THE SMALLTALK REPORT

owner makeActive.

Not:ifier remove. self.

PMWindowLibrary destroyWindow: handle.
sem notNit ifTrue: I

sem signal.
Processor terminateActive.]

The first two titles enable the owner (the frame window of
the dialog's application window) and restore it as the active
window. The next two lines do some clean-up necessitated by
the dialog having been created differently than a normal win.
dow. The last three lines signal the semaphore and kill the ac-
tive process. Signaling the semaphore allows the process that
was waiting on the semaphore to resume. This lets the method
processInput resume and return.

ADDING MODALITY TO APPLICATIONWINDOWS

This is where you try out what you just read, Start bv creating
a subclass of ApplicationWindow. Give it an instance variable
to hold the semaphore:

ApplicationWindow subclass: #DialogApplicationWindow
instanceVariableNames: 'sem '

classVariableNames: "

poolDictionanes: 'PMConstants '

Copy the method processInput from DialogBox. At the
end of processinput add the line:

super dose. "«Added because of difference between dose in
DialogBox and ApplicationWindow."

Copy most of the method close from DialogBox. Modify it
to look like this:

dose

"Close the receiver."

"Most of this is copied from
Dialog Box. GLH 18 July 1991:

owner enable.

owner makeActive.

sem notNit

imue: r
sem signal.
Processor temlinateActive.]

iffalse: [super close.] "«Added in case I am not modal. "

The differences between the close methods in DialogBox
and ApplicationWindow will be covered in the next install-
merit of this column. For now, iust trust that this is necessary.
The class will also need a method for finding and setting the
dialog's owner. Make the three lines from from Module;id:
into a method:

findAndSetOwner

"Find the active window and make it my owner.
This code is copied from DialogBox>>fromModule:id:.
GLH 18 June 1991."

owner isNil iflrue: [
owner:= Notifier activeMainWindow.

VOL. 1, No. f: SEPTEMBER 1991

owner notNil ifirue: [owner:= owner frameWindow] J.
owner isNil ifrrue: [owner:= WindowHandle queryActive].

The last method is for convenience:

openModal
"Open and become modal the way
most dialogs do. GLH 18 June 1991."

self findAndSetOwner,

super open.
self processInput.

Now, test the class. Open a workspace. This will be the application
window for the dialog. From the workspace type. select, and do
together:
Temp := DialogApplicationWindow new.
Temp openModal.
Terminal bell.

Notice you can no longer type or use the mouse with the
workspace. Also, note the last line did not execute. The dia<
log is modal to the workspace. The workspace is disabled and
the process is blocked. Now, close the dialog. The bell will
sound. Closing the dialog unblocks the process as expected.
Also, note tile workspace is enabled so the mouse and key-
board work with it

Note: if you completely covered the dialog with the
workspace, all is not lost. Simply type and do

Temp close

from the Transcript. This is why the global variable Temp #"as used.
In part 2, we will add ownership to DialogApplication-

Window and tie everything together. If there is space, you'll
be shown some other ways to use these dialog behaviors. *

REFERENCES

[l] Smalltalk/V®PM Tutodal and Programining Handbook, Digitalk
Inc., Los Angeles, CA, January 1989.

[2] Microsoft Opemting System/2 Programmer's Reference, Vol. 1, Mi-
crosoft Press, Redmond, WA, 1989.

B] Microsoft Operating Syrstem/2 Profammer's Reference, Vol. 2, Mi-
crosoft Press, Redmond, WA, 1989.

Greg Hendley is a member of the technical staff at Knowledge Systems
Corporation. His OOP expmence is in SmalltalkA'(DOS), Smalltalk-
80 2.5, Objectworks/Smalitalk Release 4, and Smalltalk/V PM.

Eric Smith is a member of the technical staff'at Knowledge Systems
Corporation. His specialty is custom gyaphical uset· intedaces using
Smalltalk (va·ious dialects) anti C.

They may be contacted at Knowledge SY.,te,ns Corporation, 1 1 4
MacKenan Dr., Cag, NC 2751 1, or by phone at (919) 481-4000.

0-0-0=0

II

COMPRESSING

CHANGES IN

Charles.A. Rovim

1 fter suffering through a series of embarrassing
f crashes, f came to the conclusion that t}ie System-

DictionaIy»compressChanges method for Digitatits
£ Smalltalk/V Windows and Smalltalk N Mac

lacked a little something in the robustness column. Here's
what I did to remedy the situation.

SMALLTALK WILL CRASH IF ABUSED

As bath as anyone might be to admit it, Smalltalk does suffer
from certain problems when dealing with resources that are
not its own. The Mac and Windows are great environments
when it comes to providing objects and functionality, but the
integration with Smalltalk is not as complete as i[needs to be.
The holes are quite deep enough to break an ankie when you
stumble into them,

A HANDLE IS NOT A MONIKER

It is possible to leave handles or pointers to objects lying around
and to trip over these objects, handles, or poiriters when Savillg
the image or during the course of execution. Leaving things un-
reclaimed is easy to do during the heat of a debugging session
... I've clone it often enough. Saving the image after every vie
tory, no matter how Ininor it Inight seem, is ati essential coinpe
nent of debugging, but save your image with unreleased handles
and life will rapidly become unpleasant.

After a while, an image becomes slow, bloated, and unreli-
able. What could be better than starting fresh with a new copy,
straight from the shrink-wrapped diskettes, and filing in all of
your work. It's all been preserved in the change.log or the /V
Mac image data fork. Unfortunately, the change.log contains a
record of everything that you've done while developing your
system ofapplication. Every successful dolt execution, two

A

copies of every class definition, every method you've defined, as
many times as you've defined it, every selector you've gotten
rid of. Everything!

Filing in your change.log will take the maximum amount of
time and it's not likely to work. The dolts are the show stop-
pen Any doft that brought up a window or otherwise inter-
fered with the scheduling process is likely to stop the filing in
of the log.

CLEAN UP YOUR ROOM

There is a way to shrink the change.log, remove all of the mis-
celiany, folderol, and failure, and leave only the shiny new
code: Smalltalk compressChanges. As it comes shipped by Dig.
italk, this copies the code to a new change. log, adjusting all
pointers as it does so, saving the image when it's finished, and
throwing away theoldchange.log. Try it ... you'll like it. Ex-
cept that we're attempting to dispose of a flabby, flatulent, or
faltering image, so we're going to try filingln the change.log,
appropriately renamed, into a brand spanking new cop¥ of /V
.. Wrong! Compress(hanges deans up a little too much. All

the class definitions are now missing, Filing in the change.log
will halt at every class asking if vou want to declare <your
ClassName,Here>. Then it will merrily reiect all the code be-
cause, since <yourCIassNameHere> is not a class, it does not
understand methods (don'task ...).Also, classes that need
initialization will once again need initialization and there will
be nothing to tell you which these are. The last straw is that
any global variables you might have used in your application
are now in lost in dataspace-

WHAT K-TEL HAS TO TEACH US

Get one now! It's new! Improved! Get one NOW! It won't
rust, rot, or testify in court! Get one now! Ws lanker bilge. It's
a dessert topping! It's both! Rated X, the unknown. Positively
no one admitted. Consult your local listings.

GET A LOAD OF THIS

In keeping with the tradition of Writing frightfully incomplete
articles, there is one minor component missing from the listing
included, mostly because it deserves a separate article in its
own right. To move global variables and their values out of the
image and onto a file from which they can be recovered re-
quires something called a Loader. Due w idiosyncrasies pecil·
liar to each implementation of Smalltalk, Loaders tend to be as
individual as the system iii which they reside. Also, since this
facility is needed in a development environment, loaders, at
least as I implement them, tend [O use the compiler because
operation is faster than using becomes:.

SON OF COMPRESSCHANGES

The code in Listing 1 is capable of compressing the change.log
into a form tliat can be filedIn into a new image. After a short,
initialization sequence to record what classes ariel globals are in
the new system, all of the classes and global variables are

THE SMALUAI.K REPORT

TMTaketdntrotof Yod¢ Smallth]WVfApp#64#6*ft
witiAMIST™:

Bring your large, complex object-oriented applicat-ors under
control with AM/ST, the Application Manager for Smalltalk/V.
The AM/ST Application Browser helps both individuals and
development teams to create, integrate, maintain, document,
and manage Smalltalk/V application projects.

0 ' 6/1 Imall,lk 8PpNCM'Q' CM", M"p'/6 Yin/£5 121

7 3 dll_-U -=1
 4.- I .pcnefize«let·,Iyeabld

?%@

·4***mmemmem=mmamemm=m•*13

e Application Hierarchy
Every class has an owner.
Functional view across classes
and related methods within classes.
Applications port easily across platforms.

0 Automatic Documentation
Revision history for each method.
Analysis and design reports.
Customizable documentation templates.

e Source Control
i Integrate work of severai users.

Save and browse multiple revisions easily. *
Check-in, check-out, and lock source code.
Customize code templates.
Develop in a LAN environment.
Deliver applications without AM/ST.

1• Static Analysis Tools
1 Application consistency reports.

Graphical views of hierarchies.
Cross-reference of variable and method usage.

Price List Uptodate method index.Coopers DOS V $150
DOS V/286 $395 * Dvnamic Anamyss Tools

. & Lybrand Macintosh V/Mac $395 1 Licate performance 'hot spots'
OS/2 V/PM $475 | Determine test coverage.
Site Ucenses Call fit#*4**Sma#*Kisatemier#Be*smu#*pwamidevelohmem/'SoftPert Systems Division

One Main Street New Productivity Toois! Da06 Or*4*Inter*ty

Cambridge, MA 02142 Windows i# C V'/09 indowrs $2175 IB?*ave j#*8 te#f ed#ei***#nah#Anaffwat
(617) 621-3670 Change Browser *
(617) 6213671 Fax Source Control ** $11 *Eukf=39*079 Anamer Lats

This has led us to concentrate on developing documentation
and figuring out how best to describe the system. One thing
that we have learned is to concentrate on the big picture and
ignore information that can be learned just as easily with the
browser. Thus, pictures that list the entire class hierarchy are
not important, but descriptions of the meaning of the hierar-
chy are. Lists of all the methods in a protocol are not impor-
tant, but descriptions of what each method does are.

Although most of the work on TS has been done at the
University of Illinois, Justin Graver, who did the original work
on type mference, is now at the University of Florida and has
several students working on projects related to the compiler.
Thus, TS is a multiinstitution project. We hope that it will
become reliable enough to be useful in the near future and
that many more people will start to use it.

SMALLTALK CODE ARCHIVE

The University of Illinois has an archive of Smalltalk software
and ofpapers on object-oriented programming. TS is not in
the archive yet. However, the archive contains a lot of soft-
ware that was developed at Illinois including Foible, a frama
work for visual programming environments that was written
in Smalltalk-80. It also contains the archive of Smalltalk-80

developed by Manchester University software and the archive
of Smalltalk-V software developed by the International
Smalltalk Association.

You can access the archive by anonymous ftp to
stes.uiuc.edu (which is currently an alias for

VOL. 1, NO. 1. SEPTEMBER 1991

speedy.cs.uiuc.edu at [128.174.241.101) or by sending e-mail
to archive-server@st.cs.uitic.edu of the form

To: archive-server@st.cs.uiue.edli
Subject:
path yourname@your.internet.address
archiver shar
encoder uuencode
help
encodedsend ls-IR.Z

which will cause the archive server to e-mail instructions to

you. Report problems with the archive to archive-
manager@st.cs.uiuc.edu.

As a last resort, you can get the entire contents of the
archive on an Exobyte tape or 1/4" QIC,24 (DC600A car.
tridges) in tar format, on Macintosh disks, or on DOS 3 1/2"
inch disks by sending $200 to William Voss at Department of
Computer Science, 1304 W. Springfield, Urbana, IL 61801. e

Ralph Johnson is in the Department (,f Computey Science at the Uni-
versie' of Illinois at Urbana-Chaunpaign. He can be reached Acl'e at
1 304 W. Sprindieid, Urbana, IL 61801, or by phone at (217) 244-

0098, or via €4Twit at johnson@cs.uiuc.edu.

L AB REPORT Ralph Johnson

The Typed Smalltalk project at the
University of Illinois

Reports of current work in Smalltalk
taking place in leading university and

res:earch laboratories.

The Typed Smalltalk project is one of several object-orientedprojects at the University of Illinois at Urbana-Champaign,
and the largest that uses Smalltalk. The goal of the Typed

Smalltalk project is to make Smalltalk as fast as any other lan-
guage by using optimizing compiler technology. We want to
make Smalltalk fast without losing any of its advantages or
changing the way it is used. We want to hide the compiler
from the programmer and keep the programming environment
just as interactive and useful for prototyping as Smalltalk has
always been.

Tvped Smalltalk is a large project with many components.
These components fall into two categories, language changes
and the compiler. The major language change is a type system
that was designed to fit the way Smalltalk programmers pro-
grain, not to force programmers to use a particular style. Type
information does not change the Ineaning of a program but is
just an annotation on an untyped program. Although the
original motivation for the type system was to provide infor.
mation that the compiler could use to make programs faster, it
is also useful docuihentation

One important part of the type system is a type inference
system that automatically inds the types in a program. The
compiler can infer a type for a method (the types of all rhe
variables used in the method and its return type), but a pro-
grammer can refine these types to make the type more precise.
The goal is for the programmer to rely on type inference when
a program is being written and is changing a lot, and then to
narrow down the types 85 the program moves from develop-
tRent to production use.

The compiler (TS) uses type information to convert
Smalltalk into efficient machine code. TS is entirely written
in Smalltalk. It has been designed to be portable and has a
table-driven code generator. We currently have code genera,
tors for the M68020, the NS32032, and the SPARC and are
working on one for the i80386.

The biggest problem with the back-end is that it is slow.
Tile best way to solve this is to compile it. Unfortunately, TS
does not work well enough yet to compile itself.

The project has had two major problems. We are using a
single technique to attack both problems. The first problem is

endernic to building large software systems. making the system
reliable. The second is endemic to academic projects: building
a large system on a shoestring budget with high attrition rates
of workers. Although we have had some funding from NSF
and a little from Tektronix and BNR, a lot of the work on the
compiler has been done by unsupported students working on
thesis projects. These volunteers work for the fun of it, so the
work must be fun, and they tend to leave just about the time
they have mastered the system.

The computer center of my alina mater had a sign that
gave the "ten laws of computing." I don't remember most of
them, but one of them was that "All nontrivial programs have
bugs in them." A corollary was "If your program has no bugs
then it is triviaL"

Since we are trying to make a reliable optimizing compiler,
this implies that we must build a trivial optimizing compiler.
Unfortunately, optimizing compilers are big and compli
cared,and tend to be buggy. In spite of this, we have tried to
make TS as simple as possible by rewriting parts that are com-
plex. We have rewritten some of the parts at least a half dozen
times. This has greatly improved the reliability of TS, though
there are many parts that are still complex and TS is still un-
reliable. Part of the Smalltalk culture is rewriting code until it
is elegant, easv to understarid, and rezisable. Our strategy fits
into this culture perfectly.

Another reason for reliability problems is improper testing.
Most people do not think that testing is fun, so volunteers are
unlikely to develop and implement thorough test plans. Also,
exhaustive tests of optimizing compilers are very difficult. Fi-
nally, the Smalltalk culture does not recognize the value and
difficulty of testing and there are few tools to support it. Al-
though the first two problems are peculiar to us, the third is
widespread in the Smalltalk community and needs to be fixed.

One of the keys to having thesis projects produce useful
software is to limit the scope of each project and to give the
student time to rewrite the software several times. This not

only produces better software, but the students are happier be-
cause they know they have done a good job. A good MS thesis
project is to rewrite an overly complex part of the compiler, so
this approach helps make the compiler more reliable.

MS students tend to spend a semester learning TS and
Smalltalk, a semester doing useful work, and a couple of
months writing a thesis. The high attrition rate has made
painfully obvious the need for high-quality documentation.

Ti TE SMALLTALK REPORT

de(zined, the inethods are saved, and the required class initial·
ization is performed and global values are loaded in.

To keep track of what additions or changes have been made
to the original inlage it is necessary to determine what classes
and globals are present in the image, This is the function of the
initialization sequence. The code not directly related to Sys-
temDictionary>>compressChanges is there to keep track of the
system as it chfinges.

* Cbs>>comment is necessary because I use class comments
for a class hinting mechanism that allows ine to verify
methods to ensure that I won't get *does not understand:'
walk-backs. It can also ensure that cloned images don't con-
taili more objects, classes, or methods than is absolutely
necessary. Like the Loader, this deserves its own article.

e Class>>remot,eFromSystem was modified to add the very last
line. It also checks if the class has instances and prompts
the operator through a ConfirmDialog. This is a standard
Widgets/286, Widgets/Mac dialog which I implemented in
N Windows to maintain compatibility. The method c.an be
changed to simply abort if there are any instances of the
class.

0 (lass>>remove!?istances just does what it savs it does

• The following methods have been modified to keep com-
ments around across recompilation:
Class>>subclas, :instunceVariableNames. clLusVarial,UNames:p
oolDictionaries:, Cbs>>vayiableByt€Subcla*s.·cfassVariable-
Nanies:poolDictionayies.·,Ciass>>variableSubclass:instance,
Van'ableNames:clasJVaTiableNmnes:poolDictimimies:

e MetaCkass>>name:environment:subclassof.·instanceVariable,
Natnes:variabie: words:pointers:classVan'ableNames:pooiDic-
tionaries.·comment:changed.· wais modified to remove
redefined classes from a list of the classes that were present]
in the original image.

® SystemDictiontir>>compressCUnges is where the metaphor
ical rubber hits the yellow brick roed. It has been modified
to add a preamble to the image that gathers ali classes and
all global variables defined iii the original image and to do
messages sends of the following selectors:

* S)'stemDicdonar>'>>compessChassDefsof.into: places
211 new or changed[class definitions into the
changelog. This method is implemented recursively
to ensure that the class hierarchy is respected. To
make it easier to relate class deinitions with their or-

der in the CHB, the subclasses are sorted alphaberi-
cally. This message is sent immediately after the
preamble.

B SystemDictionau>>co?nl,ress(fassinitsblto: finds alf
user-defined classes that implement an initialize se-
lector and places the appropriate message send so

VOL. I, No. I :SEPTEMBER !991

that the class will be initialized automatically on
filing iii the log.

e SystemDiction£07>>compy€Global)elsintor reserves
name space for all new globals used iii anv methods
iri die change.log. This message is sent immediately
after having saved ail of the global values.

• Soste?nDictionmy>>compressGjobalinitshito: loads the
globals from a 'recovery.dat' file. This will be the last
message in the change.log

0 37stemDictional·7>>compressGUbaiValuesinto: saves
all new globals used in the image in a 'recovery.dat'
file. This is sent immediately after saving all class
definitions.

* SystemDktionary>>TemoveKey:if.Absent: keeps track
of deleted globals. If if it necessary to modify globals
that come with the system, reniove them from the
system before replacing them with their new value.
This ensures that they are unloaded.

Due to idiosyncrasies peculiar to
each implementation of Smalltalk,
Loaders tend to be as individual as

the system in which they reside

PITFALLS

There are none. I have used this method to successkilly save
change.logs that contained at[information necessary to re
cover my system after some real doozles. I sometimes refresh
die image and fileln the change.log to ensure that I have no
obscure semickular references or other uncollected garbage.

Since implementing these changes, I am much more com-
fortable about experimenting with objects and resources out-
side Smalltalk's control. When i'm trying a triple somersault
from the flying trapeze, it's always nice to have a safetv net. 0

Now baged in Ottawa: Ca?zada, Chades-A. Rovira has been int,olved
with dam processing si?ice 1 975 and with Smditalk and other object
oriented technolodes snice 1987. 148 CompuSel·ve ID is r
[71230,12171 He'll admit to some unusual htemry i€luences, suck
as Douglas Adams, Ten·y Pratchett, and D.H. Lawrence. Also
Kierkegard, bit why brhig him up.

E COMPRESSING CHANGES

Listing l.

Class methods

comment

"answer the class comment"

comment

removefrom System

Remove the receiver from Smalltalk. Report an error if there are any sub
classes or mstances of the receiver."

...added ime of code

OnginalCiasses remove: myName asSymbol ifAbsent: []
removeInstances

setfwithAUSubdasses do: I:aelass I

a[Aass aUnstances do: [:anInstance I

anInstance become: String new] 1.

subelass: classsymbol

instanceVariableNames: instanceVariables

dassVariableNames: classyariables

pootDictionaries: poot)ictNames

"Create or modify the class class Symbol to be a subclass of the receiver with

the specified instance variables, class variables, and pool dictionalies."
inserted hnes of code

I aComment onginalCIass I

comment:= Sting new.

original(tass:= Smantalk at: classS?Inbot ifAbsent: [}.

originalCiass notNilifrrue: I

acomment .= oziginalclass comment].

modifed line of code
comment: aComment

changed: ail

variableByteSubelass: classSymbol
classVariableNames classVariables

pootDietionades: pooLDictiames

"Create or modify the dass classSymbol to be a vatiable byte subclass of the

receiver with the specified class variables and pool dictionanes."

... ins€]ted lines of code

I aMetaetass aComment original(:tass I

aComment:= Sting new.

onginalClass:= Smalltalk at: dassSymbot ifilbsent: 0-

originalCiass nomil ifhe:

[acomment := orginalclass comment].
.. mod(fied Zfne of code

comment: aComment

changed: nil

vaxiablesubclass: classembol

instanceVariableNames: instanceVariables
classVariableNames: classfariables

po:omktionaries: pooLDidNames

"Create or modify the class classSymbol to be a variable subclass of the re-

ceiver with the specified instance valiables, dass variables, and pool dictio
Ila IieS."

... inserted lines Of code

1 aMeta€lass aComment originatClass
aComment:= Sting new.

originatelass:= Smalltalk at: classSymbolifAbsent: [],

origina,Class notNil inrue: [

atomment := originaletass comment].

... moddied Zine qfcode

changed: nil

Metaaass methods

name: newName

environment: aSystemDictionaly

subdassof: superclass

instanceVariableNames: st,ingOtinst¥arNames
variable: variableBooteari

words: wordBoolean

pointers: pointerBoolean
classVariableNames: stringOklassVarNames

pooiDictionazies: string00?00!Names

comment: commentString

changed: changed
"Private - Create or modle the class and the metaclass of name new-

Name to be as defined by the arguments. Check if an Originatelass is

being redefined"
... added line of code

OriginatClasses remove: newName asSymbot if,Absent: [].
.answer

SystemDietionary methods

compressChanges

"Build a new change log file retaining only the latest version of changed

methods in the cuirent change log, Save the image to the image file."

 iogDirectory stream tempLogName dialog aFiteStream I
dialog := DialogBox new

fromDLLFile: 'vwdlgs.dll'

templateName: 'CompressingChange'.
dialog showWindow.

logDirectozy:= (Sources at: 2) fite directo Iy.

stream:=logDixectozy newfile: 'ChangLog.tmp:
stream lineDelimiter: Cr.

templogName := stream pathName.
... added lines of code

suearn nextPutAll.

'"evaluate

I originalaasses originalmobals 1

odginal{.asses:= SortedCollection new,
odginalGiobals:= Sorted€ollection new.

Smalltalk associationsDo: [:each I

(each value is Kind Of. Class)

iffrue: [originalaasses add: each key]

iffalse: [oniginalGlobals add: each key}].

Smalltalk at: #OIiginal[lasses put. odginalClasses.
Smalitalkat: #Original(Robals put: originalmobals.!!';
CI.

... addedlmes of code

seff compressClassDefsOP Object into: stream.

self compressGtobaWaluesInto:

(anteStream:= File patliName: 'recover. dat').
aFReStreamclose.

self compress*obaiDefsInto: stream.

added lines of code

self getSourceelasses do: [;class 1
self compressChangesOf: class class into: stream.

self compressChangesOf. class intor stream].

. added lines ofcode

self compressetassInitsInto: stream.

sett compress(Robannitsinto: stream.

.. added line of code

stream dose.

(Sources at: 2) close.

File remove: (Sources at: 2) pathName.

File renanY: tempLogName to: (SQUICes at. 2) pathmame.
Sources art 2 put:

(togDirectory file: (Sources at: 2) file name).

(Sources at: 2) lineDetimiter: Cr.

ApplicationWindow new saveImageNoConficm.
dialog close

compressaassDefsOf: aCkass into: aStream

"Write into a stream all of the hierarchy of class dehnitions that are new to

the image."

 classes I
(Originalaasses includes: aelass name asSymbot) iffalse: [

aClass fileOutOn: aStream.

aStream nextPut: $!!: cr

Transchpt cr; show: aClass name'7].

classes ,= aelass subclasses asSortedeouection:

[:first :second I first name < second name].
classes do: [:aSubdass

self compresselassDefsOf: aSubclass into: aStream]
compresselassInitsInto: aStream

"Write initialization code for all classes that have it"

I initializedClasses I
aStream nextPutAR: '"evaluate" '; cI.

initializedClasses:= self select: [:anEntry

(anEntly isKindOE. Class) &

(anEntry class selectors includes: #initialize) &

(OriginalClasses includes: anEntry) not].
init:ializedetasses do. [:a(tass

aSUeam nextfutAU: self name, ' initializa'; cr].

aStream nextPulAU: 'It'; cr

compressGlobamefsInto: aStream

"Set up alt global names"

1 globalsDictionaiy I

(OriginalGLobals includes: #Original[lasses)

ifFalse: [OriginalGiobals add: #Origmalelasses].

(OriginalGlobals includes; #OriginalGlobals)

iffalse: [Origina£Globals add: #Originalmobals].

aStream nextfutAll: ' "evaluate" '; cr.

globals])ictionary:= self reject; [:anEntry 1

anEntry isKindOf: Class].

globalsDictionary keysDo: I :aSymbol I

(OriginalGlobalsincludes: aSymbol) iffalse: I

aStream nextrut,Ul: ' Smalltalk ati lf,

aSymbot pintString, ' put: nfl.': crl]

aStreamnextPutAll: '"; CY

compressGlobaUnitsInto: aStream

"Get globals if we can load them."
aStream nextalt,All: ' "evaluate"

 coRectionOEAssociations anteStream

Smalltalk at: #Loader ifAbsent: [

Transcopt cri show:
"Loader not available. Globals not loaded.",

nit]·

afileStream:= Disk file: "recover.dat':

afileStream size> O iffalse: [

aFileStream close.

File remove: aFileStream pathName.
Transcript cr; show:

"Recover.dat not available. Gtobals not loaded 't

collectionOfAssociations:= Loader new readFrom: f.

aFileStream close.

collectionOfAssociations do: [:aPair

Smalltalk add: afair].!!!!'

compressGIobaiValuesInto: aStream

"Save (unload) all of the globals into aStream"
 aCollection dassUst I

Smalltalk at: #Loader ifAbsent: [
Transcript cr; show:

i 'Loader notavailable. Globals not saved.t

aCollectionOfAssociations:= OrderedCollection new.

classList:= #(Behavior Persistent ClassReader
ClipboaRIMmager Compiler Context CursorManager

DelayedEvent Deletedf(tass DirectoIy Dos

DynanucDataExchange Empflot File Font

GraphicsMedium 'GraphicsToot- Inputarent Loader

Menu Menultem Message NotificationManager

ProcessScheduler ViewManager Window WinHandle
WinInfo WinLogicalObject WinStructure).

(Original*obals includes: #Originatelasses)

ifFalse. {OriginalGlobals add: #OngirialCiasses].

(Originalmobals indudes: #Originalmobals)

iffalse: [OriginalGlobals add: #OriginalGiobals].
self associationsDo: [:Air I

(aParr value isKindOf: Class) iffalse: [

(OliginalGlobals includes: aPair key) iffalse: [

(classListindudes: aPairvalue) iffalse: i

aCollectionOfAssociations add: ea]]] j.
Loader new write: aCollectionO fAssociations toi aStream.

removeKey: aKey ifAbsent: aBIock

We're getting rid of something in Smailtalk. Check if it's an

OriginalGlobal."

OriginalGlobals remove: aKey ifAbsent: [].
-super removeKey: aKey ifAbsent: aBiock

THE SMALLTALK REPORT VOL. 1, No. 1.SEPTEMBER 199j

OwileI l T 11 Illite.
KEY FEATURES

€44,*·e -jkk-, - Tmy L AD/Cycle I World's leading, award-winning object-

7 7 V 14
0

4 oriented pgramming system
-SHOOT-OUT -64 • Complete prototype-to-delivery system

- Zero-cost runtime

WINDOWS AND OS/2:
PR®ff¥PE TO DELIVERY.

NOWAITING
In Windows and OS/2, you need prototypes. You have to get a sense

for what an application is going to look like, and feel like, before you can write
it. And you can't afford to throw the prototype away when you'ie done.

With Smalltalk/X you don't.
Start with the prototype.There's no development system you can buy

that lets you get a working model working faster than Smalltalk/M
Then, incrementally, grow the prototype into a finished applica-

tion.Try out new ideas. Get input from your users. Make more chantges.
Be creative.

Smalltalk/V gives you the f medom to experiment without risk. It's
made for trial. And error. You make changes, and test them, one at a time.
Safely. You get immediate feedback when you make a change. And you can't
make changes that break the system. It's that safe.

And when you're done, whether you're writing applications for
Windows or OS/2, you'll have a standalone application that runs on both.
Smalltalk/V code is portable between the Windows and the OS/2 versions.
And the resulting application carries no runtime charges. All for just
$499.95.

So take a look at

Smalltalk/V today. It's time to make Smalltalk I V
that prototyping time productive.

Smalltalk/V is a registered trademark of Digitalk, Inc. Other product names are trademarks or registered
trademarks of their lespective holders
Digitalk, Inc., 9841 Airport Blvd., Los Angeles, CA 90045
(800) 922-8255; (213) 645-1082; Fax (213) 645-1306

LOOKWHOSTALKING

• Simplified application delivery for
creating standalone executable (.EXE)
applications

I Code portability between Smalltalk/V
Windows and Smalltalk/V PM

I Wrappers for all Windows and OS/2
controls

I Support for new CUA'91 controls for
OS/2,includingdraganddrop, booktab,
containel; value set, slider and more

I 'Dansparent support for Dynamic Data
Exchange (DDE) and Dynamic Link
Library (DLL) calls

I Fully integmted programming environ-
ment, including interactive debugger,
source code browsers (all source code
included), world's most extensive Win-
dows and OS/2 class libraries, tutorial
(printed and on disk), extensive samples

I Extensive developer support, including
technical support, training, electronic
developer forums, free user newsletter

• Broad base of third-party support,
including add-on Smalltalk/V products,
consulting services, books, user groups

19*UMN.om@Wi1. 16-11._

ImmE@ME-]E-
Ille• ammoommouooolliI

This Smalltalk/V Windows application
captured the PC ¥kek Shootout award-and
it was completed in 6 hours.

i muumm

HEWLETT-PACKARD
HP bas developed a metiuork troubie
shooting tool called the Network Advisor.
Tbe Network Advisor of»·r a compmben-
sive sgt of tools including an expert system,
itatistics, and pi·otocol decodes to speed
pmblem isolation. Tbe NA user interface is
buitt on a windowing system wbicb BUotus
multiple apptications to be executed
simukaneously.

NCR

NCR bas an integrated test program develop-
ment environmentford*itat, analogand
mixed mode pyinted circuit board testing.

MIDLAND BANK
Midland Bank built a Windowed 'Ikcbmical

Trading Environment for cu,yenc!4 futums
and stock traders using Smalitaik V

SmalitalldV PM applications am used to
develop state-of-the-art CUA-compliant
applications-and they're portable to
SmalltalldV Windows.

The Smalltalk Report
#.

The International Newsletter or Smalltalk Programmers
¥%14*%02*g&&i;*it*8%

January 1992

SHOULD CLASSES
HAVE OWNERS?

PERSPECTIVES

FROM

EXPERIENCE

137 S. S,idhar

Contents:

FeaturedArticles

1 Should classes have owners?:

tives from experiencen
by S. Sridhor

12 Smalltalk comes to the mainfr

by Glenn J. Reid

Columns

6 Object-Oriented Design: Determ
roles and responsibilities
by Rebecca Wirfs-Brock

9 Getting Rech How to use class
and class instance variables, pa
by juanita Ewing

Departments

15 Product Review.· Profile/V: a pei
profiler for Smalldk/V Windi
reviewed by Jon Hydands

17 Book Review: 08:ECT-ORIENTED
AND DESIGN

reviewed by Dan Lesoge

19 What They're SoyingAbout Smc

20 Product Announcements

Perspec-

ame, part 2

iining object

variables

rt I

-formance

)WS

i MODELING

intolk

Volume 1 Number 4

T his is a response to Juanita Ewing's "Should classes have owners?" article in
the September 1991 issue of The Smalltalk Report. There are several themes
in the article with which I'd like to take issue. I have been a Smalltalk pro-
grammer for some years now, and for about the last nine months several of

us at Knowledge Systems Corp. have been extensively using a commercially available de-
velopment environment that pervasively supports the concept of class ownership. This is
the ENVY/Developer team development tool running on Smalltalk/V PM and
Smalltalk/V Windows. This is a powerful programming environment designed to facilitate
cooperative software development among a team of programmers. The tool is flexible
enough to cater to the needs of multiperson teams as well as the lone programmer. For the
purposes of this article, I shall use the term ENVY to refer to ENVY/Developer.

It is in the context of my experience of having developed Smalltalk code using a learn
tool like ENVY in an inherently multiperson environment that I shall address each of the
issues Juanita has raised. I shall also attempt to provide technical as well as sociological
answers to the questions she has raised. 1 use ENVY here to set a practical context for doc-
umenting my experience with many of the class ownership issues discussed in the original
article. Readers should not misconstrue this as a commercial plug for the product.

TERMINOLOGY PRELUDE

Before delving into specific issues, let us define some key terms relevant to this discussion.
ENVY supports the notions of chass owners and class developers. A class is only one of many
software components that have an ownership aspect associated with them. Ownership im-
plies that someone is responsible for controlling a software component's evolution. This
control manifests itself in the Gct that only an owner can release a class for public con-
sumption.

The granularity of a software component can be varied: a method, class, set of classes,
set of sets of classes, etc. ENVY also supports an additional programming env ironment
structure called an application. An application is a collection of defined and extended
classes that together accomplish a well-defined purpose. In addition to providing a physi-
cal organization of related classes, it also serves as a large-grain reusable component. Team
members no longer just talk about reuse of a single class; they talk about reuse of function-
ality. This is good because the responsibility for accomplishing a given piece of functional-
ity may be distributed among a set of closely collaborating classes.

Class developers are team members who may author one or more classes in the applica-
tion. They may be distinct from the person who actually owns the class.

WHO IS BEST QUALIFIED TO FIX THE BUG OR WRITE THE NEW
METHOD?

Juanita writes: "assume the owner of a class is rewarded for producing a reusable class.
What if another developer finds a bug in that class or thinks of a useful extension? In a

cond,ued.nple#

133'

4322* EDITORS'

CORNER
(*ts:.#..I„

John Pugh Paul White

n Iast month's editorial, we urged you to take our columnists to task if you did not agree
with their opinions on particular topics. Well, you did just that! The approach to change
management proposed by Juanita Ewing in her opening Getting Real column, "Should
classes have owners?," has spurred several well-known members of the Smalltalk commu-
nity to put forward their ideas. In this month's lead article, S. Sridhar from Knowledge
Systems argues that, based on his experience, class ownership is indeed a primary compo,
nent of any strategy for managing change in large Smalltalk applications. Next month,
Jeff McKenna will put forward his view that change management is best organized
around what he refers to as the tWO distinct phases of software development using
Smalltalk-functional expansion and consolidation. Change managenient seems to be a
topical subject right now, and we look forward to hearing your views.

Two of our regular columnists appear in this issue. Rebecca Wirfs-Brock continues her
Object-Oriented Design column by discussing the importance of understanding object
roles and responsibilities. In this month's Getting Real column, Juanita Ewing begins a
two-part article on the appropriate use of class variables and class instance variables,
Also in this issue, Glen Reid, the architect of the Smalltalk/370 project, continueb his
description of their project. In this issue, he discusses in detail many of the imp[ementa-
tion issues that are specific to implementation on a mainframe, including a scheme to in-
troduce explicit variable typing in Smalltalk.

Rozinding out this issue, Jon Hylands takes a look at the first of a new line of third party
Smalltalk products, Profile/V, a code profiling tool that can be used to monitor the per-
formance of Smalltalk applications. Finally, Dan Lesage reviews Object-Oriented Modeiing
and Design by James Rumbaugh et al.

The Smalltalk Report is still finding its feet. Let us know what you like, what you don't
like, and what you would like to see. We look forward to hearing from you and hope you
enjoy tliis issue.

1 L Snuilitalk Repom (ISSN• 1056.7976) 15 published 9 nmes a yeam, every inon! h cxcepi fur thr MartAPT, 14/Al,2, and Novmec combined *sues
Publ„hi by COUL E., a member of rhe SIGS Public/„ons Gm,p, 588 Broadway, New York, NY 10012 (212)274-0640. © Copyrigh, 1991 by
COOT. Inc. All,Kghts reserve J. Reprrn],0 „in of i }11.matenal bv electronic transmission. Xexxor am other methed wil[be t.ealed a awillful viola·
wn of the US Copyright Lau and „ 11„tly prohibiled. Maternit may be reprxlueed .'Lth „press permision from the pubimhers Mailed First Class
Subscription rater i year.(9 issues) demes,ic. $65. Foreign and Can ada. $90, Singli copy price, 4.00. POS 1 MAEr[ER · Send ad dress cha nges and Nuh
scriptionordm ic: T]ISMALITAT.K REK,RT, Subscriber Services. Dept. SML. PO.6.3000, Denville. N] 07854 Sibmi articles totheattersa,91
Siond Avenue, Ottawa, Ontario KI S ZH4, Canada.

1 The Smalltalk Report
Editors

 John Pugh and Paul White
Carleton University & The Object People

SIGS PusucATIONS
Advisory Board
Tom Atwood, Obiect Technology
Grady Booch, Rational
George Basworth, Digualk
Brad Cox. information Age Consulting
Chuck Duff, The Whitewater Group
Adele Goldberg. parcplace Systed'.2
Tom Love, Consultant
Bertrand Meyer, ISE
Meilir Page-Jones, Wayland Systerns
Shesa Pratap, Cente.Une Software
P. Michael Seashols, Versant
Bjarne Stroustrup, AT&T Bell Labs
Dave Thomas, Object Technology

THE SMAUTWK REPORT *41*f:ik
Editorial Board
Jim Anderson, Digitalk
Adele Goldberg, ParcPlace Systems
Reed Phillips, Knowledge Systems Ccrp. f t
Mike Taylor. Instantiations
Dave Thomas. Objee Technology International

Columnists
Juanita Ewing, Instantiations
Greg Hendley, Knowledge Systems Corp.
Ed Klimas

Suzanne Skublics, ObjectTechnology
Eric Smith, Knowledge Systems Corp
Rebecca Wirfs-Brock, Instantiations

SIGS Publications Group, Inc.
Richard P. Friedman

Founder & Group Publisher

Art/Production

Kristina Joukhadar. Production Manager
Susan Culligan, Creative Director
Kristin R. Juba, Production Editor
Caren Polner, Desktop Designer
Circulation

Diane Badway, Circulation Business Manager
Kathleen Canning, Fulfillment Manager
John Schreiber, Circulation Assistant

Marketing/Advertising
Diane Morancie, Account Executive 1 7

Geraldine Schafran, Recruitment Sales -

Sarah Hamilton, PromotionG Manager
Administration

David Chatterpaul, Accounting
Suzanne W.Dinnerstein, Conference Manager
Laura lea Taylor, Conference Coordinator
Amy Stewart, Projects Manager
Jennifer Fischer, Assistant to the Publisher
Jennifer Englander, Administrative Assistant

Margherita R. Monck
General Manager

- MI,OcITUMs
Publ·,shers of Journal of Object-Oriented
Programming, Object Magazine, Hot/ine on
Object-On·ented Technology, The C++ Re-
porc, The Sma#talk Report The jr,terna-
tkonal OOP Directory, and The X Journal.

THE SMALLTALK REPORT

PRODUCT
ANNOUNCEMENTS

Product Announce?nents aTe not reviews. They aTe abstracted rom press releases provided by vendors, and no endorsenient is implied. Vendors
interested in being inctuded in this feature should send press releases to our editorial o#ices, Product Announcements Dept.. 9 j Second Ave.,

Ottawa, Onta)io KIS 2H4, Canada.

The Agorics Project announced the opening of an online Smalltalk
Components and Consulting market on AMIX, the new electronic
marketplace for information provided by Autodesk, a subsidiary of
the American Information Exchange Corp. (AMIX). In this market,
Smalltalk users will be able to buy and sell classes, methods, tools,
applets, and any other Smalltalk-related information. Users will also
be able to offer and request Smalltalk consulting services. Features
include email, negotiation facilities, listings of sellers' resumes and
references, listings of comments on components by previous buy-
ers, and more.

For more information, contact Howard Baetier, The Agoics Project, 10364
Bridgetown Place, Burke, VA 22015, phone and fax (703) 250-4760. emait
agorics@gmuvax.gmu.edu.

InputForms is a program designed for the interactive development
of input forms and all kinds of windows running under Windows 3.0
and Smalltalk/V Windows. Features include the ability to interac-
tively select child controls and define size, position, brush, fore-
ground color, background color, font, etc.

For more information, contact Viastimil Adamovsky, 66 rue de Bourgogne.
2-1272 Luxembourg: phone 352 420884.

Empower Software has announced the availability of the Smalltalk
Project Browser, a source code management tool for Smalltalk/V
Windows and PM systems that adds a powerful layer of control to
the Smalltalk environment. It is also useful as a development shell
from which other Smalltalk development tools are launched. The
Smalltalk Project Browser provides support for code porting and
maintenance across Smalltalk platforms, management of class de-
pendencies, system integration, automated code documentation,
and code distribution and packaging.
For more information, contact Empower Software, 9601 MIshre Blvd„ Ste.
1144, Beverly Hills, CA 90210.

Digitalk, Inc. has announced availability of a new release of its
SmalltalldV PM that gives software developers a jump start on de-
veloping new applications that take advantage of the power of
IBM's upcoming version 2.0 of OS/2. In addition to enhanced fea-
tures and power, Digi·ta lk's Sma litalk/V PM 1.3 release includes sup-
port for IBM's Common User Access '91 (CUA) controls that are at
the heart of IBM's new advanced OS/2 2.0 graphical user interface.
For more information, contact Barbara Noparstak, Digitalk, Inc.,9841 Air-
port Blvd., Los Angeles, CA 90045, (213) 645-1082; fax (213) 645-1306.

Bring your large, complex object-oriented applications under control
with AM/ST, the Application Manager for Smalltalk/V. The AM/ST
Application Browser helps both individuals and development teams to
create, integrate, maintain, document, and manage Smalltalk/V
application projects.

'm,!IMIZIT--77-3 Price Li
Al'ilion'-'gBA & 1!Pdae - 41.A+.-..4 4 - 2 B DOS V $150

0 0,-99 1 I i DOS V/286 $395

[.-Z.it . U Macintosh WMac $395
M.Ve

$475
' Dnd *,0****, OS/2 WPM

Resomplle Site Licenses CALL
*lar, .:,b-: I
i#-cavar./4#In"ligiIN=
ClassI,N,mel •

In€all aw Productivity Tools I
Load

0*

hile DIL Windows 3.0
E,ill b,ii'k4- Add qplicalen
EdllIcm,Ix„ Remoilippllt##un V/Windows $475

. Change Browser· $195
£.Irn P;
tt,IP Source Control*• PM or Windows

- first copy $1,595

$ M subsequent $595

Coopers SoftPert Systems Division

&Lybrand
(617) 621 3670 or (617) 621 3671 Fax

One Main Street
Cambridge. MA 02142

·With AM/ST. Smalltalk'V is a leader in senous multi-person development.-
David Ornstein, Sage Software

"Gave me a real edge in Design and Analysis"
Hal Hildebrand, Anamet Labs

VOL. 1, No. 4:JANUARY 1992

IiI·.Ii.rierialifinip'YJM'h

Ge,

Al ..ned .

Ul,14¢k

--RatiliQI]iEUampll"I
Every class has an owner.
Functional view across classes and related
methods within classes.

 Applications port easily across platforms.

· Aulgmatic_Qgcumnatil
Revision history for each method.
Analysis and design reports.
Customizeable documentation templates.

Source Control
f Integrate work of several users.

*Save and browse multiple revisions easily.
"Check-in, check-out, and lock source code.

Customize code templates.
Develop in a LAN environment.
Deliver applications without AM/ST.

• Static Analvsis Tools
Application consistency reports.

 Graphical views of hierarchies.
Cross-reference of variable and method usage.
Up-to-date method index.

RmamiAnalxsisIggls
Locate performance "hot spots."
Determine test coverage.

Smalltalk/V is a registered trademark of Digitalk, Inc.
AM/ST is a registered trademark 01 Sof[Pert Systems, Ltd

t

to

WHAT THEY'RE SAYING
ABOUT SMALLTALK

Excerpts from industry publications

... Momenta built the [PenTop] machine around the object-ori-
ented ianguage Smalltalk, Everything in the PenTop's environ-
ment is an object, so users can link anything in the machine=
from internal toolbox functions to their own sketches, text, and
presentations-to one another. The machine runs all popular
DOS and Windows applications, and will support Microsoft's
PenWindows when it becomes available ...

Momenta Rewrites the Notebook Rules, Richard Doherty,
Electronic Engineering Times, 10/7/91

... In addition to the visual orientation, there are two other rea-
sons I'm attracted to Serius' product. One is the level of ab-
straction of the objects. Most object-oriented languages today
are for professional programmers (e.g., C++ and Smalltalk) and
that means the objects are at a relatively low level of abstrac-
tion to provide sufficient control for speed and memory
efficiency. Serius Programmer, on the other hand, has very ro-
bust objects for an application generator -. The second reason
I like the package is the relatively broad support for data types.

A Ser}us Approach to Programming, Rich Bader,
PC Letter, 9/16/91

... Specialized OOP environments like Smalltalk tend to
frighten programmers used to the procedure-oriented ap-
proach of traditional languages...Although embedding OOP
technology in existing languages like Pascal or C has really
boosted OOP, the tendency for programmers using those tools
is to keep on doing things the same way, with only a few
changes- There's still a big learning curve, and, if you give a C
programmer a C++ compiler, he'll probably just write C code.
It's hard to lose old habits ...

... [Ron Fisher says] "Smalltalk's concepts are very different,
but once you can deal with them conceptually, you can write
much better programs. Smalltalk is a whole environment, not

„...1.1.1£1 from p \7

slightly thrown off since the style of the other analysis and de-
sign chapters gave me much more concrete choices to make.
And, since this is The Sma#talk Report, I can also say that the
Sma[ltalk language is somewhat slighted as a potential choice
for implementation language primarily because the authors re-
fer to it as a weakly typed language. I believe that there exists
confusion here between the use of strong typing and static typ-
ing. As every Smalltalk programmer knows, Smalltalk is a
strongly typed language.

Overall, I highly recommend this book to anyone who is
interested in learning more about 00 analysis and design. It
contains good, sound, practical knowledge drawn from real.
world examples. The methodology is flexible, allowing its
users ro emphasize those modeling techniques that make sense

just a Ilanguage, To me, C++ is a kit car, and Smalltalk is an
Acura NSX. C++ wasn't thought out thoroughly as an object-
oriented language. It exists because C exists. You can do a lot
more low-level stuff in C that you can with Smalltalk. C lets you
get at the iron much better, but if it wasr't for C, C++ wouldn't
have much of a following"...

Double Plus Good, Gordon Mct-achian, HP Professlonal, 9/91

... But in a world increasingly jammed with OOP proselytes, we
still don't have an OOP graphics front end for these [graphics]
libraries. 1 would like to see something that would give me
ONE Object Oriented Design perspective with support for sev-
eral graphics libraries...

Graphic Developer's Taste Test, William E. Gates,
Midnight Engineering, 10/91

... The more advanced pen-computing operating systems use
object-oriented delign for memory management. In contrast to
desktop GUI applications, which may require multiple
megabytes of memory, object-oriented applications typically
require only about l OOK to 200K because the operating system
conserves memory by eliminating redundant code...

Is the Pen Mightier?, Kathleen Melymuka, 12A-550 CIO, 9/15/91

... Building a single, integrated model for the problem domain
is something the securities industry has to do. We're face to
face with the complexity of the solution right now. Other indus-
tries won't be far behind. Take a close look at your own prob-
lem domain; you may find that the celebrated paradigm shift is
nota problem of changing the way peoplethink but of dealing
with the resulting solution ...

The Complextty of the Solution, SiU Welch,
Object Magazine, 9-10/91

in their shop, while deemphasizing those that are irrelevant.
The book clearly gives a path that takes the modeler from
known structured techniques and allows him to migrate this
knowledge into the realm of 00 analysis and design. In short,
this book has something for everyone using or considering the
use of 00 technology. 1

Dan Lesage has been involved with object-(Friented programniftig since
1986 and Smalitalk since 1988. Currenth, he is the PToject Manager,
Turnkey Systems at Object Technolojoj International in Ottawa,
Canada. His current interests include distributed computing, data
communications, and object-oriented anabsis/design. He can be
reached at Object Technology hiremational, (613) 228-3535, or
dan@oti.on.ca.

THE SMALLTALK REPORT

422&1=b=-I- #- 1.#.-I--I.I-.I I ... ' I.--%-:--I 7-/I-:-r------I-&...'------

1980 Smalltalk Leaves The Lab.

1984 First Commercial Version Of Smalltalk.

1985 First Industrial Quality Smalltalk Training Course.
1987 First Fully Integrated Color Smalltalk System.
1988 Responsibility-Driven Desjgn Approach Developed.
1991 Smalltalk Mainstreamed in Fortune 100 Applications.
NEVW First multi-reposjtory, group programming environment.

We were there.

We were there.

We were there.

We were there.

We were there.

WE ARE THERE.

NEW!

Smalltalk Technology Adoption Services
Technology Fit Assessment
Expert Technical Consulting
Object-Oriented System Design/Review
Proof-of-Concept Prototypes
Custom Engineering Services & Support

Smalltalk Training & Team Building
Smalltalk Programming Classes:

Objectworks Smalltalk Release 4
Smalltalk V/Windows V/PM V/Mac

Building Applications Using Smalltalk
Object-Oriented Design Classes:

Designing Object-Oriented Software: An Introduction
Designing Object-Oriented Systems Using Smalltalk

Mentoring:

Project-focused team and individual jearnjng experiences,

Smalltalk Development Tools
NE Wl Convergence/Team Engineering Environmenfu
Mu®ser/shared repository deielopment environment for teams creamlg production·quality Srnajltalk applications.

Convergence/Application Organizer Plus™

Version management, development tools, and improved code modularlty for jndjvidual Smalltalk developers.

Instantiations, Inc.
1.800.888.6892

antinuedFo.ipage 1...

system with class ownership, the owner writes the code to fix
the bug or writes a new method. He is the one motivated to
make the class more reusable."

First, the case where a developer finds a bug, Suppose I
own a reusable class called Drawing. If another developer, say
Harry, finds a bug in Drawing, he creates a scratch edition of
the application containing the class Drawing, creates a new
edition of Drawing, fixes the bug, versions the change, and in-
forms the owner via email or otherwise of the fix. I, as the
owner, can examine the fix at my leisure, assess the impact on
the clients of the method, and, if all is well, incorporate the
fix into a future version of Drawing and then release it for pub-
lic consumption. Alternatively, 1 could simply release the ver-
sion of Drawing that Harry created. In the meantime, Harry
can continue to use the scratch edition of Drawing and do
anything he pleases to any of the existing methods of Drawing
without impacting any other team member. When I have re-
leased a new version of Drawing, he can load it into his envi-
roninent, replacing the scratch edition.

Thus, it is that Harry and I have resolved the bug by en-
gaging in a harmonious electronic "conversation" without dis-
rupting any other team member. He found the bug, submitted
a fix, and continued to do his work with his fix without await-
ing my approval. I, as the owner of the method, evaluate the
quality of the fix, assess the impact of the fix, and then fold it
into the next version of the class and release it for our team's

use. The owner is the best person to assess the overall impact
since he is the one who most intimately knows the raison
d'etre for the method in the first place. He is probably the
most aware about the way in which existing and potential
clients use the method. ENVY automatically records the au-
thor and time stamp of the fixed method.

Alternatively, Harry can create a new working copy or edi
don of Drawing along a different stream of development or
versioning branch. When he is done fixing the bug, he ver-
sions the class with a mnemonic version labeL (The

mnemonic label is not required; it is just a convention we
have adopted to meaningfully identify the different versions of
a class.) The owner then merges his contributions with the
officially released version of Drawing. The point of all this is
that:

• With good communications (which is required anyway for
healthy project sociology), class ownership does not ham-
per the evolution of a class into the reusable club. This is
primarily because changes to the class can be made asyn-
chronously.

• The owner reviews the fix in a different context from that

of the other developers. It is his responsibility to guarantee
the proper functioning of all the advertised interfaces of his
class and to the extent possible be familiar with all the us-
age contexts of his class.

N SHOULD CLASSES HAVE OWNERS?

ADDING CLASS EXTENSIONS

The case where Harry finds a useful extension to Drawing is
easily dealt with in ENVY. As a matter of fact, this situation
occurs constantly in our work with 5ystem classes like String,
Stream, etc. ENVY provides a programming environment ab*
straction called class extension that allows a developer to add
brand new methods to an existing class. These method exten
siofis are localized to die application in which the extension is
defined. Thus, Harry can add a new method to Drawing by cre
ating an extension of Drawing in his application. Even though
I am the owner of Drawing, Harry does not require my permis-
sion to add the useful extension he needs. Furthermore, this
extension does not compromise the integrity of the original
class. A malicious Harry could, of course, de5troy the class'in-
tegrity by writing a method extension that corrupts the inter-
nal state of the class in a way that is incompatible with the rest
of the class' behavior. The users of Harry's code are the losers.
Team sociology being what it is, Harry would be quickly ex-
posed by the users and be pressured to undo his mischief.

It should be noted that the person who creates a class ex·
tension in a different application actually owns the extension.
Class extensions are a powerful mechanism for specifying and
managing application-specific behaviors for existing classes
and for dealing with orthogonal protocols for classes where
several developers are authoring different parts of the same
class. By splitting these orthogonal protocols along their func.
tional views using application5, multiple developers on a sin-
gte class can be managed realistically and effectively.

REWARDING REUSE

Juanita correctly notes that if a reusable class is provided by a
team of developers then the entire team should be rewarded.
It is our experience that a reusable class usually has a primary
author (or owner in ENVY parlance) and it can have multiple
developers different from the author. These secondary authors
can be reviewers, bug finders and fixers, and maybe even coau-
thors. Again taking the Drawing example, I may find that
Harry has made a dozen ext:ensions to Drawing in his api)tica-
don. Upon close examination, I determine that these exten-
sions are useful and general enough to warrant Inclusion in my
Drawing class. In ENVY, as the class owner, I simply add
Harry as a developer of the class, have him promote the dozen
deserving methods to my reusable rendition of Drawing, All
the newly promoted methods carry Harry's imprimatur. Thus,
Harry and I are established as coauthors of Drawing. Since the
programming environment explicitly identifies the people
who are working on an application (a large-grain reusable
component), it is easy to identify who to reward. A picky
manager can even measure the relative contributions to the
reuse genre and can thereby dispense rewards proportionately!

There is an mteresting soctological aspect to this reward ts-
sue that runs somewhat orthogonal to class ownership. If
Harry makes a change to my class that I don't like-as in
Juanita's world-who wins? As my colleague Lynn Fogwell

THE SMALLTALK REPORT

B OOK REVIEW Reviewed b29 Dan Lesage

OBJECr=ORIENTED MODELING AND DESIGN
by J. Rumbaugh, M. Blaha, W. Premerlani, R EddY, and W Lorensen
Prentice Hall, Englewood Clids, NJ, 1991

T
his is the book to recommend to your MIS/DP customers
that are considering the use of OOP in their company but
don't know where to start down the path toward the Holy

Grail. The investment in an 00 language may be considered
too risky for the average data processing manager, without
knowing how 00 can benefit his or her complete develop.
meat cycle. In that regard, the DP manager witllikely wish to
understand the benefits of 00 in terms of a formal methodol-

ogy. Rumbaugh et el. describe their object modeling tech-
nique (OMT), which is a gentle mutation of existing struc-
tured analysis/structured design (SA/SD) methodologies plus
entity-relationship (ER) diagrams into an 00 one, Should
your DP customer already be using structured techniques in
his or her shop, this book will help ease the transition toward
(DO. It should be no surprise that a large part of OMT follows
Rumbaugh's own work in combining objects with relations at
GE, as described in several of the OOPSLA Proceedings.

The book consists of five major sections: motivation, mod-
eling, methodology, implementation, and example systems.
The motivation part covers the normal questions of why one
would want to use 00 techniques. The modeling section pre-
sents the components of the OMT techniques that are based
on three diagramming techniques. Two of them are (hope-
fully) already being used by your MIS/DP customer: Harel
state diagrams, which are used as the dynamic model, and data
flow diagrams, which are used in the functional model. The
object model, is an extension of entity-relationship diagram
conventions incorporating class operations (methods) and in-
heritance {in the Smalltalk sense). If you are familiar with
these three basic techniques, the OMT methodology shows
how information from the dynamic and functional models can
gradually be pushed into the object model. OMT provides an
evolutionary approach to ease people into the world of 00
analysis and design, using existing modeling paradigms. I sup-
pose that 1 should also mention that the pretty pictures are di,
agramming conventions that you will already know if you are
familiar with the above structured techniques. No three-di-
mensional dodecahedrons, no dithered lines, no trisected
equilaterat triangles, etc.

The strengths of the book and the methodology are many.
The methodology draws on knowledge of familiar modeling
techniques. It is soft and can be tailored in a number of ways
for introduction into DP shops currently using structured

VOL. 1, No. 4. JANUARY 1992

techniques. The examples presented in the text are excellent
since they have been drawn from real-world problems encoun-
tered by the authors during the course of their research.
Within the context of some examples, the authors describe
how subsequent requirements information caused them to go
back and adjust their models. They give the reader a view of
the model over the life cycle of analysis and design rather
than just presenting the "answer." There is very good coverage
of some of the design issues involved when trying to incorpo-
rate an 00 design into systems containing components built
with more traditional technologies, such as relational
databases. The authors also attempt to provide practical ad-
vice about implementing your 00 design in non-(DO pro-
gramming languages.

Another strength is that the book can easily be used for
reference purposes. Each chapter contains a very thorough
bibliography. The organization of the book is such that the
reader can focus very quickly on the chapter that is relevant
to his or her question. It contains a glossary. The book can be
used as a supplemental educational text since each chapter is
followed by exercises, with selected answers in the back. Fi-
nally, the text is easy to read, which helps if the only time you
have for technical books is after your spouse and kids have
gone to bed.

And, should your MIS/DP customer wish to compare OMT
with other methodologies before going out to buy the latest,
greatest CASE tools or white boards, the authors have conve
niently included a chapter to make the decision easier. They
compare OMT with SA/SD, jackson structured development
(JSD), and conventional ER modeling, describing under what
circumstances they believe each model excels.

There are few negative aspects about this book. The
methodology may be confusing for people coming from an ob-
ject-oriented background. The notion of having to map dy-
namic and functional behavior into methods will be foreign
since it is natural for them to think in terms of methods from

the analysis stage. For 00 types, the object model should be
sufficient for the analysis. The chapter on system design is the
weakest link in the life cycle chain, but it>5 also the hardest in
real life so, although it does not provide the system design
cookbook, it does allude to many of the real-world decisions
that are made during this stage of the model refinement. 1 was

conanu¢don Nge 18 ...

* PRODUCT REVIEW

Ble Edit Smalltalk Methods Erofile
100% 007] Magnilier>>tesTRun 2% (2] se# Sele¢:t

12% (13] G faphics Tool>>cop,Bitm®:[mcm: te.
7% (8]GraphiesToot>>comBitmap:ftom:at:ide .,
7% {7] Bumap>>displajAE:with.
6% 16] G,aphic=Toof>>ec©yBilmap:iwentle:,det...
5% (51 Bkmap>>boundbigeog,
4% (4] Pen>>imeCOIDI:
3% 13] Pen>>setLire#idth

5% (5] Context>>basicP,olit

pen
"Answe, the graphics tool of Ihe receivei.-

self select

'*aphicToot

.//2-2:3:112.'222*22:R..-:1'::*.1%92»»2«...:.IWF'f':1E
Figure 1. Initial profile.

After making this modification, I again profted the
method, getting the results shown in Figure 2. As you can see,
the pen message frequency had been reduced to 23%, which is
half of the first run.

And, as shown in Figure 3, you can see that the pen mes-
sage has increased to 30% of the running time, but the bound-
ingBox message has disappeared, and, as a result, the method
runs faster.

So you can probably see by now that this tool is a valuable
one. I would never have guessed that the pen message is one to
avoid, and, in a real-worid application, things like that can,
mean the difference between acceptable and poor performance.

PROBLEMS WITH PROFILE/V

So far, the only problems I have had with Profile/V are small
ones relating to the user interface. One is that the indent on

I'llill'lli"WA#=I'll"Im.' * 1
Dle Edit Smalltalk Methods Braille

100% [105) Magnifie>>testRun

16% [17) Graphic#Tool>>com#Bkmap from:torule:.
16% 0 71 Graphiceool>>copyBitmap:from: abule.
11 % 1121 Bilmap>>d®le-At with ..
10% (10) GraphiesTool>>copyBRmap:from:to: .
8X (83 Bilmap>>boundhlBox.
3% [3) Cuiso,Managet>>sense.

1 3% (3) Pen>>citcle:
5% [5) Context>>basicP.Iner

apen
i "Answel the ggphics tool 01 the receiver."
' Sef select

-grphicircol

4

*
P''Za'#Bit/41$20mt/"12/"22"71PX.*02«*272*10*

Figure 2. Profile with cached pens.

"malit#fl""'439¢jibtflit'@51
. file Edit Smalltalk Methods 12,ofile
7100% 089) Magnifier>>testRun
9 97% (183i Maanifiet>>disok®Maanifiedlmace...

303% t561 Eirmap»pen.
! 20% 238) Graphic*Tool>>copyBRmap:from:at:rule;.
1 15% (28] Graphic@Tool>>copy@ilmap:from:to iule...
5 13% £24] Bitmap>>d®la>At:with:...
, 12% (23]GraphicsToot»copyBitmap:from:to...
: 3% (61 Pen>>circle:
: 3% [6] Context>>basicP,ofile:

:pen
, "Answer the graphics tool of the receiver."

seliselect.
graphicsTool

*@92-. *.......m...... <m:/.":I =:491*t *3

Figure 3. Final profile, with boundingBox message removed.

the profile tree is hard to make out since each successive in-
dent is only one space. I spoke with Kent Beck, the author,
and he assured me that this had been changed in future ver-
sions to make it more readable.

The other problem is perhaps more important and it in-
volves the way the children of a method are hidden and shown.
In Profile/V, some of the direct children of a method may be
visible, while others are not. This presents problems when try,
ing to view your profile from a given depth since you often have
to either do two double-clicks to get the desired results or use
the Hide Children menu command. You can get around this by
adjusting the threshold to be one (so it only takes one double-
click), but personally I think it would be more useful to have a
feature that allows the user to set a depth threshold rather than
(or in addition to) a percentage threshold.

FINAL WORD

1 found Profile/V to be an extremely useful piece of software
and I will definitely use it in the future. In comparison, I have
only briefly seen the profiler that Digitalk is sh*ping with
Smatitalky PM 1.3. It is lacking in that it only produces
fairly complex text ireports and has no user interface to allow
browsing of a profile-

I recommend Profi Ie/V as a solid addition to any serious
Smalltalk developer's toolkit. I

REFERENCES

[l] LaLonde, W. R., and J. R. Pugh. Graphics through the looking
glass, Journal ofObject<}riented PTogramming, 1(3), 1988, pp. 52-58.

Jon Hylands is a member of the technical sm#at The Object People in
Ottawa, Ontalio. He is also a part-time student in the School of Com,
puter Science at Carleton University. He can be reached at (613)
2304897.

THE SMALLT.ALK REPORT

observes, being clear about who owns what, or more precisely
who is responsible for what, actually goes a long way in resolv.
ing conflicts before they get started.

FLEXIBLE PROGRAMMING ENVIRONMENT

I agree with Juanita that "flexibility in programming environ-
ments is critical." I disagree with her statement, "Systems with
class ownership are not flexible." A good programming envE
ronment should be able to maintain flexibility without com.
promising the integrity and reliability of the classes. The pro-
gramming environment should be flexible enough to cater to
widely different organizational cultures and software environ-
ments. It should be appealing to the "rape and paste" rapid
prototyper as well as the person who is engaged in production
software engineering. In addition, it should be forgiving of the
user's mistakes.

In a production software environment, it is often necessary
to maintain comprehensive change control over the various
software elements; otherwise, system integration becomes a
nightmare. In certain organizations, it may be mandated that
third party reusable classes not be tampered with, for fear of
compromising the integrity and reliability of client code that
is dependent on them. Indeed, the reusable class vendor (an
internal organization or an outside source) may have sh*ped
a class library without any source. This is eminently possible
when classes are packaged as dmamic link libraries. Under
these circumstances, even though you cannot modify an exist-
ing method, in ENVY you can add extensions to these other-
wise read-only ciasses in your own application.

juanita notes the difficutty in managing the ramifications
induced (vis-&-vis class ownership) by introducing changes in a
class hierarchy. She concludes, using an interesting syllogistic
argument, that therefore the same developer must own all the
classes in the hierarchy. This need not be the case at all. In
fact, it is impractical to expect that the superclass and subetass
owners be the same. Often times the superclass owner may be a
third party vendor or a different organization geographically re-
mote from the subclass developer. In a programming environ-
merit such as ENVY with comprehensive version control and
configuration management facilities, a complete system con-
sists of a collection of compatible applications. By compatibif,
ity I mean, for instance, that the well-being of a subclass client
depends upon a properly functioning superclass. Now if the su-
perclass owner makes a change in his class, it may indeed com.
promise the integrity of the subclass. It is therefore incumbent
tipon the subclass owner to adapt his class to the newly
changed superclass before a new configuration of the Integrated
system is released, This is no different from the everyday situa-
tion where we developers have to port our classes to new vet-
sions of the Smalltalk products from vendors.

I agree with Juanita's concluding premise that classes de.
ve[oped by multiple programmers are understood by multiple
programmers. I disagree with her observation that class ownep
ship is an obstacle to accomplishing that. Classes in Smalltalk

VoL. 2, No. 1: JANuARY 1992

often reflect the sty[e and personality of the author. Having
too many developers on a single reusable class may introduce
conflicting styles, idioms, and figures of speech that together
strike a discordant note to the hapless client. As a flexible
programming environrrient, ENVY recognizes the need for
new extensions to existing classes and therefore permits the
distribution of protocol among several applications possibly
authored by different programmers for ever-so-specialized rea-
sons. The primary author serves as a focal point for the evolu-
tion of the reusable class. A class, in the course of its lifetime,
may see its author pass on to a different project or even leave
the company. Or, the author may want someone else to as,
sume the class' maintenance. Flexible programming environ-
ments provide mechanisms for effecting a smooth change of
guard to establish a new class owner.

CONCLUSION

The features and philosophy of class ownership (and indeed
that of software component ownership) foster a disciplined
software environment without compromising the classical
productivity gains of Smalltalk. Class ownership itself is inad-
equate. The ownership mantle has to be pervasively applied
across ait the different units of software that together comprise
a complete system, T;his requires a programming environment
that uniformly applies the ownership philocophy across the
various development tools. It should be flexible enough to ac-
commoclate different organizational work cultures vis-A-vis
team programming.

Class ownership provides a framework for properly separat-
ing the activities of component building from application
building. Component builders are those people whose major
goal is to build reusable components and who should have a
reward structure to match. Application builders are trying to
get an end user system out the door, and programming for
reuse may not be a critical factor for them. Even if developers
have to play both roles, it is important that they understand
and record the role that they are playing at anytime. Owner
ship and responsibility for software is a key factor in long-term
software quality and reusability. I

S. Sndha?+ is a senior member of the technical sta#at Knowledge Sys
tems Corp. in Cary, NC whele he is activety applying Smalltalk ro a

variety of software engineering pyoblems. He has also developed sub
stantial applications des®zed to mee[specific customer requirements.
He came to KSC Pom Mentor Graphics Corp. whae he was the pm
ject lead for Mentor's next generation design management enviTon-
ment developed in C++. Prior to that he worked at Tektronix foy four
years on Common Lisp and Smalltalk/80 1>roduct devetot)ment. While
at Tektyonix, he deve loped numerous tools and components running
in the Smalitalk/80 environment. He was an em·17 developer ofa
Famework for delivering stand-aione Smalltalk appticatimis.

La

>BJECT-ORIENTED DESIGN Rebecca Wids,Brock

Determining object roles and
responsibilities

onald Norman,I in The Dest'gn of Everyday Things, makes
the following statement:

Consider the objects-books, radios, kitchen appliances,
office machines, and light switches-that make up our ev.
eryday lives. Well-designed objects are easy to interpret
and understand. They contain visible clues to their opera-
tien. Poorly designed objects can be difficult and frustrat-
ing to use. They provide no clues·-or sometimes false
clues. They trap the user and thwart the normal process of
interpretation and understanding. Alas, poor design pre-
dominates. The result is a world filled with frustration,
with objects that cannot be understood, with devices that
lead to error.

I never thought I'd say this, but software objects are like
real-world objects! Both kinds of objects are hard rouse if they
are poorly designed. Ensuring that software objects are easy to
use involves payi Iig attention to a number of sound design
principles. No one ever said that good object-oriented design is
easy. In this month's column, I'll discuss the importance of un-
derstanding and modeling object roles. Once there is a clear
sense of an object's intended purpose, it is much easier to detail
the necessai·y behavior in an understandable fashion.

Identifying the central classes in an application is just the
first step. Combing through a specification of the problem may
provide an initial list of candidate classes, but what next?
First, let me state that no designer I know has ever found all
the ke y objects by reading and understanding a specification
of the problem. A specification is just a launch pad for design
activity. Depending on the weight of that specification, there
will be different strategies needed to And those key classes. If
there is a mound of paper to wade through, the initial task will
be one of Altering out a lot of detail and focusing on identify-
ing the highest level concepts. On the other hand, if the
specification is on the slim side, the [ask will be to develop a
skinny statement of intent into a model of key concepts that
will drive the design

There is a deceptively simple question that needs to be an-
swered for each identified class. Can that class' purpose within
the application be clearly stated? I've found it useful to force
myself to write a concise, precix statement of purpose for
each potential class. This purpose statement need not be long

D
or wordy; a sentence or two will often suffice. However, if it is
difficult to construct a succinct statement, more work is
needed. There are several plausible explanations (other than
that the class doesn't belong in the design) for being unable to
write a clear purpose statement for a class.

SUBDIVIDING LARGE CONCEPTS

For one thing, the class may represent too large a concepr.
One indicator of this is that the class seems to embody an eli.
tire program or a major portion of the overall system behavior.
This large concept needs to be decomposed into more under-
standable pieces. What are the constituent responsibilities of
this mega-object?To answer this question, we must resolve a
rather complex concept into simpler, more basic ones. These
simpler concepts will be easier to understand, and their pur.
pose and role will be easier to elaborate. Simpler concepts will
be represented by classes in the final design, while the larger
concept may not

...software objects are like
real-world objects

It is conceivable that the large, vague concept still has a
role to play and will be represented by a class in the final de
sign. For example, the object might be responsible for coordi
nating the actions of other objects (each with a concisely
stated purpose) that collaborate to fulfill the larger purpose-
One design for an automated teller machine might have ati
automated teller session object whose purpose is to conduct a
customer session. This customer session would consist of a se-

ries of user transactions with the bank (and a whole chain of

responses to user requests) that are coordinated by the auto.
mated teller object.

Subdividing the responsibilities of a large, complex ciass
into a number of simpler classes requires deeper understanding
of the system. Each newly created class needs a clearly stated

7'HE SMAUTALK REPORT

ERODUCT REVIEW Reviewed by Jon Hylands

Profile/V: a performance profiler for
Smalltalk/V Windows

rofile/V, from First Class Software, is a code profiling tool
that allows Smalltalk programmers to monitor the perfor-
mance of their applications. It creates a weighted call tree

of your code that basically shows the percentage of total run-
ning time spent in each method. With this information, it is
possible to find out where your code (or, just as important, sys-
tem code) is causing a bottleneck.

With a list price of $299.99, Profile/V is a tool that any
Smalltalk programmer who is interested in writing high-per-
fonnance code should include in their library. Although it
needs some improvement in the user interface department, it
is definitely inoney well spent. It is currently available for Dig-
italk's V Windows,V Mac, and V 286. Profile/V will be avail-
able for V PM this month.

HOW TO USE PROFILE/V
Profile/V comes on one software diskette and includes a 50

page User's Guide/Tutorial. The manual's 29-page tutorial
shows the optimization of a simple graphical application,
which is included on the disk. The manual also includes sec-

tions on installation, how to use the product, notes on how it
is implemented, and a very interesting section on "Program-
ming for Optimization."

The only problem I had with the manual is the fact that
the installation page is somewhere in the last half-when 1
look for the installation instructions, I expect them to be at
the beginning.

Profle/V uses an invisible window to capture timer- events
and takes a snapshot of the stack from the current user inter-
face process when a timer event happens. It builds a profile
object from these samples and then can open a browser on the
profile. The browser is a subclass of the system-supplied
method browser. The browser has three panes anct it provides
the user with the ability to go as deep as they want-right
down to individual statements in a method.

Other valuable features Include the capability to gather
method profiles for the same method and browse them as a
new profile. This feature is ideal when profiling recursive
methods. Another useful utility is the ability to take what is
displayed in the browser and convert it into formatted text in
a workspace for inclusion in documents (such as this one).
You can also adjust the threshold value for the browser, which
controls how many methods are shown when the browser is

VOL. 1, No. 4.+JANUARY 1992

P initially opened by hiding all methods that take less than the
threshold percentage value to run.

Perhaps one of the nicer things about ProE le/V is its size, or
lack thereof. The entire profiling system is only about 27K of
source code, which makes it a product more likely to be un-
derstandable and extendable.

BUT MY CODE IS ALREADY FAST...

Many programmers, myself included, will look at this tool ini-
daily and say something to that effect, Unfortunately, in the
case of Smalltalk, where you have a large library of reusable
code written by someone else, having your code run at light-
speed doesn't necessarily mean your application will be as fast
as it can be. Programmers tend to make assumptions about the
performance of other code, and these assumptions often turn
out to be incorrect. This turned out to be the case for a graph-
ics application I profi led.

USING PROFILER TO OPTIMIZE A SAMPLE
APPLICATION

The application I ran my tests on was a simple magnifying
glass, which Arst appeared in the Smalltalk column in the
Journal of Object-Oliented Programming.1 Since that time, the
authors have made large number of changes to the code to
simplify and streamline it. The magnifier simply simulates a
magnifying glass on the screen and shows the magnification of
a circular area. I limited the tests to a single method, which is
the code that displays this circular magnified image, since it is
the slowest part of the inagnifier simulation.

The first iteration of the profiler run on this method pro-
duced the profile shown in Figure 1. It shows quite clearly
(and quite surprisingly, also) that almost half the time spent
in this method is in sending the pen message to bitmaps!

The pen message is sent six times since we are performing
five copyBitinap's and one set of drawing commands to
achieve the circular magnification effect. However, we can
improve this since only two bitmaps are the receivers of the
pen message. We can cache each bitmap's pen in a tempo-
rary variable at the beginning of the method, thus saving
four pen messages. This works when performing copy-
Bitmaps, but not when doing pen-based drawing, so the pen
message must also be sent before the drawing section of the
method takes place.

Ch

where the method max: is located in class Number. Then in the

following:

f (temp:Integer) (indexl:Integer) index2 1
temp := indexl max: index2.

the message max: would be bound to the method max: in class
Number at compile time, and an instance of BoundMethod
would be entered in the global Set, BoundMethods. This in-
stance of BoundMethod would contain a BehaviorConstraint. The
compiler rule used to determine whether a BehaviorConstraint
or a TypeConstraint is generated is fairly simple. If a method is
redefined in any of the subclasses of the constraint class, the
compiler will generate a TypeConstraint. If such redefinition
does not occur, the compiler will generate a BehaviorConstraint.

if the method max: was now dened ill class Integers the
presence of a BehaviorConstraint in BoundMethods would inform
us that there was a "sendjng" method that required recompil-

 Association subclass: #ConstrainedAssociationListing 1.

instanceyariableNames:
'constraint '

classVariableNames:"

poolDictionaries: "

I SMALLTALK COMES TO THE MAINFRAME

ing, and BoundMethods would be updated to reflect the new Be-
haviorConstIaint.

If the method max: were now defined in class SmallInteger,
the compiler (using the rule mentioned above) would rernove
the BehaviorConstraint and substitute a NpeConstraint. In our
system, BoundMethods must be loaded at system start-up since
they will be invoked by direct function call.

Dynamic binding would remain the primary and preferred
way of associating messages with methods. Typing would be
used in situations that caused performance degradation or as a
data validation tool Intuitively, the best use of typing applies
in high-UBe areas where ityped ianguages can typically produce
very efficient code. Coincidentally, these areas correspond to
functions in Smalltalk that undergo few changes since they are
integral to the basic functioning of the system. Some example
preliminary candidates for typing might be arrays, which are
frequently used in the at: and at:put: messages, and array in-
dices, which participate in integer operations. In some actual
program samples we have studied, Lip to 40% of message rout-
ing would be removed by static binding in these areas.

Typing will probably be a compiler option that may be
turned on or off by the programmer. Programs compiled for
production would usually take the performance advantage of
typing, while, in the development environment, typing might
not be used to retain flexibility and fast compilation. I

ConstminedAssociation class methods

key: aKey value: anObject constraint aclass
"Answer an instance of class ConstrainedAssociation

whose key is initialized to aKey, whose vallie is initialized
to anobject, and whose constraint is initialized to aetass.'"
aCtassisBehavior

iffalse: I Aself error: 'constraint must a Class 1.
(anObject isKindOf: aelass)

ifFaise:[Aself error: 'value must be kindO f, aClass name],
A{ (self key: aKey) value: anObject) constraint: aCiass

ConstrainedAssociation methods

constraint: amass
"Set the constraint of the receiver to be aCtass. Answer the

receiver."

REFERENCES

Ill Johnson, R. E., 1 0. Graver, and L. W. Zurawski. TS: an optimiz-
ing compiler Sma[Italk, OOPSLA '88 Cozifeyence Proceedings, San
Diego, CA, October 1988, pp.18-26.

[2] Chambers, C., and D. Ungar. Making pure object-oriented lan.
gtiages practical, OOPSLA '91 Conference Proceectings, Phoenix,
AZ, October 1991, pp. 1.15.

[3] Palsberg, J., and M, I. Schwart:bach. Object-oriented type infer-
ence, OOPSLA '91 Confa·ence Pu,ceedings, Phoenix, AZ, October
1991,»146-161

aCiass i,Nit
ifFalse: [

(value isKindOf'. aCtass)
iffatse' I

'self error: 'value must be kindOf: amass name] 1.
constraint := aClass!

value: anObject
"Set the value of the receiver to be anObject if anObject
is an instance of constraint or one of its subclasses."

1 constraint isNil
ifFaise: I

(anObject isKindOf: constraint)
iffalse: i

Aself error: 'value must be kindOf t
1 constraint name]].
| value:=anObject

Glenn J. Reid G President and Founder of QSYS Systems Consultants,
Inc., a consulting and software development company whose main area
of expertige is in the application of object·miented technotogl. Archiect
of Smalltaik/370, MT. Reid is currently involved in the development and
application of a compiete pToject life cycle approach to developing object
oriented systems in a mainAame environment. He can be reached at
(4 I6) 3434464,

THE SMALLTALK REPORT

role. There already may be identified classes that can fulfill
part of the responsibilities of the rather large concept. Most
likely, this isn't the case. A hypothesis must then be formu-
lated on how to partition the vague concept into several dis-
tinct roles, Each role will be assigned to a new class. A key de-
signer of a large, successful application told me that his design
team subdivided responsibilities according to when, what, and
how. These subresponsibilities were then assigned to separate
classes that were either responsible for knowing when, know-
ing what, or knowing how to perform an operation. Sounds
simple enough. The design team found they Spent time debat.
ing whether a particular responsibility was actually a when, a
what, or a how. One object'swhat is another object's how. It
all depends on a particular point of view. At least the team
had a strategy for elaborating class roles. But they still had to
debate the details in context of their emerging model.

COMPLETING A MODEL OF OBJECT INTERACTIONS
There are other situations where it is difficult to state a class'
purpose. One common situation is that a class doesn't seem to
be connected to any others. It's hard to explain why this dis-
joint class should exist, yet the designer remains convinced
that it's important. Chances are, the class is important. The
problem is that the model is incomplete. This problem typi-
cally arises when classes are sifted through one at a time,
rather than building an understanding of the collaborative be-
havior between objects in the design.

To understand any single object's role, it must be looked at
in the context of others with which it interacts. Constructing
an object-oriented design is not a linear, top-down process, at
though it is often to present the design that way. Understand-
ing an object's purpose forces the designer to understand the
roles of other objects. To understand the role of a seemingly
isolated object, both an understanding of its static, structural
relationships with other objects and interactions with other
objects is needed.

To determine the static relationships an object has with
others, examine how an object is connected to others. Is there
a whole-]part relationship between it and another object?
Does this object represent an aggregation of other objects? If
so, it is usually pretty simple to fit this object into the design.

It is much harder when an object participates in a number
of relationships. In this case, it is useful to build an under-
standing of the dynamic behavior of the object. Performing
design walk-throughs by tracing a chain of object collabom-
tions in response to a stimulus is a good way to understand ob-
ject interactions. Ivar Jacobson,2 pioneer of the Objectory
method, introduced the notion of usage cases.Usage cases can
be recorded and then used to test the model under both nor.

mal and abnormal conditions. A key component of Steve
Weiss and Meilir Page-Jone's' object-oriented software syn-
thesis method is modeling the response to events and under.
standing their impacts on a design. The idea behind both
techniques is to translate requirements into events and to as-

VoL. 1, No. 4.· JANUARY 1992

VOSS
Virkial Object Storage System for

Smalitalk/V

Seamless persistent object management with update transaction
control directly in the Smantalk language

s Transparent access to Smalltalk objects on disk
0 Transaction commit/rollback
• Access to individual elements of virtual collections and

dictionaries

0 Multi-key and multi-value virtual dictionaries with query by
key range and set intersection

e Class restructure editor for renaming classes and adding or
removing instance variabla allows incremental application
development

e Shared access to named virtual object spaces
• Source code supplied
Some comments we kaoe received about VOSS:

t..dean ...elegant Works like a charm."
-Hal Hildebrand, Anamet Latomfories :

"Works absolutely beautifully; excellent performance and
applicability."

-Raut Duran, Microgenics Instruments

toBie VOSS/286 $595 ($375 to end of February 1992) + $15 shipping.
VOSS/Windows $750 ($475 to end of Febmary 1992) +$15 shipping.
Quantitydiscountsavailable.Visa,MastefardandEuroCardaccepted.

ARTS I»gic Arts Ltd. 75 Hemingford Road, Cambridge, England, CBI 3BY
TEL: +44 223 212392 FAX: +44 223 245171

sociate events with objects that are responsible for handling
them.

The more situations that are modeled, the better. As sim-
pie as this sounds, it takes some skill to effectively elaborate
object interactions. The goals is to first develop a "big picture"
before diving into detail The way to do this is to trace object
collaborations between objects tha[are at either the same or
next conceptual level in the design. First, develop an overall,
high-level view of key object interactions. Then elaborate and
subdivide roles and object responsibilities. This breadth-first
approach avoids modeling classes at widely differing concep·
tual levels, which indeed is difficult.

This breadth-first approach represents an ideal. In practice,
some areas of the design will be better understood and naturally
elaborated before others. An uneven design model can make it
difficult to trace object collaborations. It will be relatively easy
to trace the collaborative behavior throughout the well-under>
stood parts of the design. Wlien collaborations are necessary
with objects in an undeveloped area, suddenly what had seemed
straightforward becomes very unclear. This isa't a sign offail-
ure; it just indicates that the unclear part needs elaboration.

OBJECTS THAT DON'T FIT THE MODEL
Perhaps one of the toughest problems to deat with is when an
object doesn't fit with the designer's notion of what consti-
tutes a "good" object. It is very difficult to explain the purpose
of such misfits. Criticisms commonly leveled against such
troublesome objects are:

>4

• This is an organizing object. Ir is too simple. It merely
consists of data. It has no behavior. Aren't objects sup-
posed to have both?

• This object's only purpose seems to be to route messages
between two other objects. Why should I have intermedi·
ary between these objects? Can't they just directly commu-
nicate with each other instead?

• This object is too action oriented. Aren't objects supposed
to encapsulate both operations and data? This object seems
like a pure "process." We're doing an object-oriented de-
sign, not a process decomposition.

*mi=====i=mmii====#Yakmi#Wt*MW2#*mmiWNi#W,1#419*#1#*p

Constructing an object-oriented
design is not a linear, top-down process,

although it is often useful to present
the design that way.

There are no pat answers to these criticisms. In each case,
the object doesn't match the designer>s expectations. The
model, the designer's expectations, or both need readjust-
ment. In the first case, it is worth noting that objects are not
uniform packages of operations and data. It is natural that the
proportion of each will vary according to the object's role in
the design. It iM perfectly reasonable for relatively simple ob,
jects to coexist alongside more complex ones. However, the
object must stand on its own merit to be included. Indeed,
there may be preferable alternatives to creating a "data
inostly" object.

When creating an object model, the designer may need to
invent mechanisms that weren't spelled out in the
specification. Mechanisms may be added for the express pur.
pose of reorganizing the flow of information and communica-
tic>n between objects. These mechanisms may help reduce ob-

Universal Database
OBJECT BRIDGE ™

M OBJECT-ORIENTED DESIGN

ject coupling or provide an abstract connection between ob-
jects. The consequences of inserting such mechanisms needs
careful consideration. But, objects whose purpose is to ore-
nize or manage communication between objects can be rea-
sonable design additions.

In the third case, the purpose of an object may be to trans-
form information from one form to another. Such process-ori-
ented objects can naturally occur in a design and are not al-
ways a sign that the designer hasti't shifted from the
procedural to the object-oriented paradigm. Each process-ori-
ented object should apply a fair amount of intelligence to pro-
duce results. Better yet, a process-oriented object can often
provide a completely different view on the transformed infor-
mation. The objeCES being processed and the clients request-
ing the transformed information may be only dimly aware of
each other. In this case, the process-oriented object is proba-
bly a reasonable design concept. One example of a process,
oriented object is a compiler. The role of a compiler is to
transform text into an executable program structure. It takes a
lot of intelligence to perform this operation. Defining a com-
piler object is a reasonable design choice.

It may be that a class doesn't belong in the Anal design-
Websters Dictionary defines role as "a character assigned or as-
Burned. A part played by an actor or singer." The task of the
designer is to assign each object an appropriate role. Each role
is constrained to fit within the existing object model, but a lot
of designer discretion is still involved. It's a challenge to de-
sign well-understood, easy-to-use objects. But the positive im-
pacts that well-designed objects have on application mainte-
nance and understandability are well worth the extra effort. I

REFERENCES

[1] Nonnan, D. The Design of Eversday Things, Bantam-Doubleday
Dell, New York, 1988.

[2] Jacobson, 1.Object-oriented development in an industrial el·LVA
ronmenr, OOPSLA '87 Conference Proceedings, Orlando, FL,
SIGPLAN Notices, 22(12),1987, pp. 183-191.

[3] Weiss, S., and M Page-Jones. Synthesis/analysis and synthesis/de-
sign, PToceedings of the Object-OWented Systems Symtiosium, Sum-
mer 1990.

This developer's tool allows Smalltalk to read and write to:
ORACLE, INGRES, SYBASE, SQL/IDS, DB2, RDB, RDBCDD,

dBASEHI, Lotus, and Excel.

ntelligent Systems, Inc.
1 506 N. Stte Street Ann Arbor. Mi 48104 (313) 996·4238 (313) 996-4241 fax

Rebecca Wids-Brock is the Director of Object Technology Sell,ices
at Instantiations and coauthor of Designirig Object-Oriented
Software. She is the progyam chair for OOPSLA '92. She has six-
teen D ears of experience designing, implementing, and managing
sofauare products. Duying the fast seven years she has focused on
objectroriented software. She managed the development of Tek-
tronix Color Smalltalk and has been immased in developing, teach,
ing, and tecturing on object-oriented software.

THE SMALLTALK REPORT

gram. The program is typeable if these constraints are solvable.
Static binding information is derived from the solution. This
project is currently implementing the inferencing algorithm,
with an optimizing compiler as a future undertaking, and so
has no performance results to report. In our initial exploration
of explicit typing within Smalltalk, we have confined ourselves
at this time to investigating typing of named variables, exclud-
ing such things as intermediate results generated during expres,
sion evaluation. Potential candidates for typing are:

e dictionary variables (i.e., class, pool, and global variables)
o instance variables

• arguments

• named temporaries

0 receivers

IIi all cases, the affected variable would be constrained to
belong to a particular class or one of its subclasses (i.e., the
variable has been"typed"). Thus, we are using a simpler ver-
sion of typing than that used in Typed Smalltalk. For this dis-
cussion, type and class may be considered synonymous. Here
are some of the issues involved.

F<,r programmer convenience, we would prefer a common
type declarationsyntax that could be used for all the above-
mentioned cases. A possible candidate syntax is shown below:

Cun·ent Smalltalk, variableName

Typed Smalltalk: C variableName:Class)

This new syntax wouid be used wherever variables are "de-
clared" in Smalltalk, that is, in class definitions, message pat-
tems, and declarations of temporaries.

Typed variables must be initialized according to type. Un-
typed variables are initialized at creation with the value nil. This
is unacceptable for typed variables. I f variable x is declared as:

{ x:Anay)

we must ensure that x always contains an Array object; other-
wise, invocation of the statically bound expression:

x at: 1

would have disastrous results. This requires a modification to
the new and new: methods of class Behavior. Variables typed as
Data Types (i.e., types that do not have a direct system represen,
tation of their data structure) would be initialized by sending
the message new to the appropriate class. Variables typed as
basic Data Structures, such as Integer, Roat, and Array, would be
initialized at the primitive level. A possible set of initialization
values for Data Stnuctures might be:

Integer 0
Float 0

Array 0 elements

This arrangement would cover most cases, including the
special initialization requirements that apply to some classes

VOL. 1, No. 4,· JANUARY 1992

(e.g., OrderedCollection). Immutable Data Types (e.g., Character)
that disallow creation of new instances present some difficul.
ties, the main being that it is currently impossible for the sys-
tem to determine whether a class is immutable.

It would possible to initialize typed temporary variables in
methods to nil, as is done currently, since the compiler wouId
recognize that these variables remain untyped until an assign-
ment takes place, at which point the typing could then be
taken into account. This might be preferable to reduce initial.
ization overhead.

Runtime type checking is required to ensure that typed
variables are assigned according to their declared type, This
function would be performed by compiler generated code that
would perform the equivalent of an isKindOf: check prior to as-
signment of an expression result. The system overhead of this
check is minimal. In addition, typed arguments would be
checked upon entry to a method.

At compile time, Smalltalk changes a reference to a Dictio-
nary variable into a reference to the Association containing the
variable key and value to avoid a runtime dictionary lookup.
However, dictionary variables may be updated through basic
Dictionary messages at:put:. removeKey:, etc. This creates the po.
tential for an integrity violation in Smalltalk (try removing an
existing class variable with removeKey: then adding it again
with at:put:). While it could be argued that one should not up-
date dictionary variables in this manner, nevertheless it is an
option open to the user. This situation is aggravated for typed
Dictionary variables since there is no compiler-generated code
to stand in the way of an incorrect assignment when using the
basic Dictionaly messages. Our present solution to this is to cre-
ate a subclass of Association, call it Const:rainedAssociation, that
would contain a new instance variable, constraint, and would
inhibit incorrect assignment to its value. The class definition
and methods for ConstrainedAssociation are shown in Listing 1.
Note that our solution does not address the removeKey: in-
tegrity problem that currently exists in Smalltalk,

To manage static bindings we propose creation of the
classes;

BoundMethod

Constraint (virtual class - no instances)
BehavioIConstraint

lypeConstraint

BoundMethod would be a tuple containing at least an "imple-
menting" CompiledMethod, a "sending" CompiledMethod, and an
instance of either BehaviorConstraint or TypeConstraint. Behav-
ioreonstraint describes an instance of static binding, and Type-
Constraint describes the less restrictive case of simple type
checking.

In the following example, let us assume the class hierarchy:

Number

Integer
SmalUnteger

00

SMALLTALK

COMES TO THE

MAINFRAME,

PART 2

Glenn J. Reid

I n part 1 of this article, we discussed our implemen-
tation of Smalltalk in an IBM mainframe environ-

2 ment that we have called Smalltalk/370. Mention
was made that we are investigating the introduc

tion of typing into Smalltalk, currently a popular area of inter-
est in the 00 communitv. Here, in part 2, we will discuss some
specifics ofour investigation (not yet complete) and, hopefully,
shed some light on die difficulties involved in typing a lan-
guage like Smalltalk.

Before we launch into a discussion of solutions. perhaps it
would be appropriate to determine what we are investigating
and why. In part 1, we stated that the performance overhead
of dynamic (or late) binding would probably be unacceptable
in Smalltall/370, particularly since degradation of the system
affects all users m a time-sharing environment. The fastest
untyped version of Smalltalk today is the Parcllace
Smalltalk-80 implementation, which runs at approximatelv
10% the speed of optimized C. This does not imply that the
basic mechanism of dynamic binding in Smalltalk must be
thrown out. As with many performance problems, it is very
possible that concentrating on a few areas of concem will
lead to a satisfactory system. Since dynamic binding is the
problem, we must substitute statically bound procedure calls
or, better yet, in-lined procedures iIi the areas where they
provide the most benefit.

When we first considered the dynamic binding problem, we
felt that we would probably be able to implement a static typ-
ing mechanism that would allow programmers to explicitly de-
clare variable types within their programs and enable our conp
piler to make use of these for optimization purposes. In our first
attempt, we limited the scope of our ability to explicitly type
Smalltalk. Since performance was our main goal, rather than a
comprehensive typing system, we considered this approach ac-

I

ceptable. We have included a few of the details of this ap-
proach later in this article.

As our static typing mechanism gained in substance, a num-
ber of things became apparent. Explicit type declarations in-
crease system complexity from the users perspective. A new di+
mension is required in programmer thinking. Not only must
performance requirements be observed in producing algorithms
that operate efficiently, but all variations of types that the algo-
rithm could operate upon must be considered as well as the rel-
ative volume of message sends to each type. It is possible that
subsequent changes to the system may make previous tuning
invalid. Furthermore, type declarations may restrict the appli-
cation of a method. For example, a method argument may be
typed, causing method failure, similar to primitive failure,
when an argument with an incorrect type is received. This
makes the programming environmerit less fiexibte, or more
complex from the programmers point of view. Intuitively, it
appears that these complexities will increase if we expand our
typing strategy.

As part of our investigation, we are reviewing published lit>
erature in the area of typing and optimizations to pure object-
oriented languages. So far, we have conie across three different
approaches.

Probably the furthest advanced example of comprehensive
explicit typing within Smalltalk is the Typed Smalltalk (TS)
project.1 In this project, a syntax extension to Smalltalk allows
the programmer to explicitly declare types for variables,
method results, etc., that the compiler can use to statically
bind or in-line procedures. Published performance results indi
cate that some small benchmarks have achieved speeds
at least twice that of Smalltalk-80. Since this data is not re-

cent, and we understand that work is still continuing on Typed
Smalltalk, we expect that these results have been improved
still further. This approach is closest to our initial experiments
with explicit typing. Since this project is much further ad-
vanced, we will probably look to it to evaluate some ofour
concerns mentioned above.

Recent benchmark reszilts in the SELF programming envi
ronment have demonstrated a Smalitalk-like language running
at approximately 57% of the speed of optimized C.2 These re.
suits were achieved without the introduction of explicit typing
withii, the language. In this approach. the compiler uses "path
splitting" to generate both high- and low-per&>rmance paths
through a method. Path splitting is used when a frequently used
message seleaor whose receiver usually belongs to a particular
class is detected wit-hin the source program. For example, path
splitting would occur for the high-frequency message at:, which
is mast often received by an instance of Array. This approach
uses t he advanced techniqzies of dynamic C.Ompilation, CuS-
realization, deferred compilation, and path splitting manage
ment algorithms to produce the results mentioned above.

Finally, we have noted that some are working iii the area of
type inference without explicit typing.3 Here, a type inferenc-
ing algorithm constructs a graph of type constraints from a pro-

TIm SMALLTALK REPORT

ETTING REAL Juanita Ewing

How to use class variables and class

instance variables, part 1

 n last month's co[umn, I discussed some st-rategies for initial-izing classes and how initialization related to class variables
and ciass instance variables. In this column, I will talk about

coding conventions (br class variables and when to use class
variables vs. class instance variables.

Classes that use class variables can be made more reusable

with a few coding conventions. These coding conventions
make it easier to create subclasses. Sometimes developers ilse
class variables inappropriately. Inappropriate use of class vari-
ables results in c.lasses that are difficult to subclass. Often. the
better Implementation choice for a particular problem is a
class instance variable instead of a class variable.

WHAT ARE CLASS VARIABLES?

Classes can have:

* class variables

• class instances vanables

Class variables are referenced from instance and class methods

by referring to the name of the class variable. Any method, ei-
ther a class method or an instance method can reference a
class variable. Figure 1 contains a diagram of a class, ListInter-
face, that defines a class variables.

The methods in ListInterface would look like this.

ListInterface class

initialize

"Create a menu."

ListMenu := Menu labels: #('add"remove')

ListInterface

hasMenu

"Return tue if a menu is defined."

tistMenu notNit

performMenuActivity
"Perform the mouse-based activity for myview."

self hasMenu

iflrue: ['ListMenu startUp].

Both instance and class methods can directly reference
class variables by name. The class method initialize is used to
bind values to the class variables. The instance methods has-

Voi. 1, No. 4: JANUARY 1992

Menu and performMenuActivity reference the class variable List-
Menu. All instances of ListInterface and the class ListInterface
share the same class variables,

HOW ARE CLASS VARIABLES INHERITED?

Class variables and the values they are bound to are inherited.
The class variable referenced by a subclass is the same as the
one referenced by the superclass. This means that a class vari-
able is shared by a class, all lt-s subclasses, and all the instances
of the class and its subclasses.

It is possible for subclass methods to
modify inherited class variables, but

generally it is undesirable to do sol „

Our example has a subclass of ListInterface calied Cakulat-
edListInterface. Subclass methods referring to the ListMenu
class variable reference exactlv the same object as the super-
class method. The subclass CalculatedListInterface has behavior

that is different from its superclass, as defined by the method
conditionalMenuActivity:

faListintertaF'
1 list aListinterfacej

' 0.-/.0./,Unr.Listintertace

class variables *-
ListMenu - a Menu

subelass / 9\
CalculatedListinterface - faCalculatedListlnterface\

alcuIYte{16% calculationalock -
calculation Block

Figure 1. Class variables awe refernced by subclasses and all instances.
%0

Calculatedlist-Interface

conditionalMenuActivity
"Perform the mousebased activity for my view if the tist is not
empty. If them is no menu, flash the list pane."

self hasMenu

iffalse: [Aself flash].
list isEmpty

iffalse: [AListMenu startUp]

Subclass methods can directly reference class variables thai
are defined by the superclass. In our example, the Calculated-
ListInterface method refer enceb; the class variable ListMenu that

is defined by Listinterface. This is different from the inheri
tance of instance variables. The method conditionalMenuActiv-

ity references the instance variable list that is defined by the
class ListInterface. But, each instance of CalculatedListInterface
and ListInterface has its own copy of list and does not share its
instance variables.

HOW DO SUBCLASSES MODIFY CLASS VARIABLES?

It is possible for subclass methods to modify inherited class
variables, but generally it is undesirable to do so. If a subclass
were to modify a class variable, it would change the only ex-
isting value of the class variable. Each subclass does not have
its own copy. 11 references a shared copy. Generally, develop-

Ax*Mt# Smalltalk/V users: the tool

--'1 for maximum productivity

° Put related classes and methods into a single task-
oriented object called application.

° Browse what the application sees, yet easily move code
between it and external environment

° Automatically document code via modifiable templates.
° Keep a history of previous versions; restore them with

a few keystrokes.
° View class hierarchy as graph or list.
°Print applications, classes. and methods in a formatted

report, paginated and commented.
° File code mto applications and merge them together.
° Applications are unaffected by compress log change

and many other features..
Class --- ----------- ---=Deleted classes !

Browsers„<21ppfication <_ -.----.-__.___
*Yarn ; pele/metbods--1

\History -1 Code recoveryl

Utilities.. --4 AppiTJation-irimirIE- 1 and more..
E CodeIMAGER™ ¥286, VMae $129.95

i & VWindow $249.
Shipping & handling: $13 mall, $20 UPS . copy

Diskette: 0 3 ta 05.
Si*Graph™ Computing Ltd.
formerly ZUNIQ DATA Corp.
2035 Cdte de Liesse, suite 201
Montreal, Que. Canada HdN 2M5. Tek (514) 332-1331, Fax: (514) 956-1032Codc]M AGER h 8 reg. tted=mark o f S irGmph C=puting Ltd.
Smslltalk'¥ i; a rog. tradcmark of Digitalk. Inc.

Imager<
95

m GETTING REAL

ers want to create a new class variable and use it m place of
the inherited class variable.

Using our example, we will create a new menu in the sub·
class CalcutatedlistInterface. The menu is implemented with a
class variable so it is not possible to change the menu for the
subclass without also changing it for the superclass. This is be-
cause both classes reference the sanle variable.

The only way to create a new menu for the subclass and re
tain the original menu for the superclass is to create a new
class variable. In our example, we call the new class variable
CalculatedlistMenu. In addition to a new class variable, all
methods that reference the original menu must be overridden
in the subclass:

CalculatedListInterface class

initialize

"Create a calculated menu."

CalculatedMenu := Menu labels. #('add' 'remove' 'plint')

Calculated List:Interface

hasMenu

"Return tme if a menu is defined,"

'CalculatedMenu notNit

performMenuActivity
"Perform the mouse-based activity for my view-"

setf hasMenu
ifI'rue: [ACalculatedMenu startUp].

Because direct references to the Clais variable ListMenu are

sprinkied throughout the class UstInterface, the subclass must
override many methods. In this simple example, we had to
override three methods that reference ListMenu to reference a

different menu. In a complicated real-world applications many
other methods may need to be overridden to reference a dift
ferent class variable in a subclass. Because significant portions
of the class needed to be overridden, the class is not very
reusable.

(a Listinterfap,-

1- list _alistlnterface
£ im

LSfinteriac)
£ ilst /Listlnter&ice

class variables

- ListMenu --- aMenu

subclassCalculated LEstlnterface aaautafed Listinterfacel
faCalculatedLA£ Eist --Iallon BIOd</.
\-- calculation095/

Figure 2. Coding conventions increase the reusability of Classe5
implemented with class variables.

TilE SM.ALLTAI.K REPORT

A better version of ListInterface has the minimum number

of references to a class variable--one for setting and one for
retrieving the value of a class variable:

ListIntedace class

initialize

-Create a menu. Create constants."

ListMenu := Menu labels: #('add"remove')

menu

"Return the list menu."

AListMenu

ListInterface
hasMenu

"Return true if a menu is defined."

'·self class menu notNil

performMenuActivity
"Perform the mouse-based activity for my view."

self hasMenu

ifrrue: [Aself class menu startup].

Because of the nature of the data

stored in class variables, it is best for
class methods to store and retrieve

the class variables.

This coding convention reduces the number of direct refer
ences to a class variable, as illustrated in Figure 2. It is easier
to create subclasses because only the methods that setz and re
trieve the class variable need to be overridden. Now the code

for CalculatedListInterface looks like this:

CalculatedlistInterface class

initialize

"Create a a computed list menu."

CalculatedMenu:= Menu labels: #('add' 'remove' 'print')

menu

'Return the list menu."

CalculatedListMenu

This coding convention effectively restricts the references
to a class variable. Because of the nature of the data stored in
class variables, it is best for class methods to store and retrieve
the class variables. In effect, we have eliminated the sharing
between classes and instances.

VoL. 1, No. 4: J.ANUARY 1992

.

0. 0

I .

I . I

.. . . I

4.0 e
D * ... -0. I

...

By eliminating this sharing, we have made ListInterface
more reusable; however, Uslinterface still has another prob-
tem. Another class variable had to be created by the subclass
to provide a different menu. Now CalculatedListInterface has
two class variables, one of which (ListMenu) E not used.

The root of the remaining problem is that class variables
are shared by a class and its subclasses. In our example (and in
many other situations), this sharing is inappropriate. Instead,
a subclass needs to be able to override inherited data. Class

variables share the data between subclasses and superclasses,
so it's not possible for a subclass to override the data. Next
month, we will explore another mechanism, class instance
variables, that will solve our problem. I

Juanita Ewing is a senior staff member of instantiations, Inc., a soft-
WaTe €71gineerivig and consulting jinn that speciatizes in deve&*irig and
applyrig object.oriented technologies. She has been a project leader for
commercial objectoriented softivare projects and is an expen in the de-
sign and implementation of object-oriented applications, hameworks,
and systems. In her previous position at Tektronix Inc., she was Te-
sponsible for the development of cbs lib,Tanes for the first commercial
quality Smalltalk-80 system. Her professional activities include Wo,k-
shop mid Panel Chain for the OOPSLA confeyence.

f I

KEY FEATURES The Smalltalk Report'Nts
1.-,PM 919 H WEEK <44*t: f Ak-= === = P

47/. S 12<51: r AD/Cycle- 1 World's leading, award-winning object-
- 0 0+ oriented programming system

SHOOT·OUT - i Complete prototype-to-delivery system'77, 14
I Zero-cost runtime

WINDOWS AND OS/2:
PROIUY¥PE W DELIVERY.

NOWAITING.
In Windows and OS/2, you need prototypes.You have to get a sense

for what an application is going to look like, and feet like, before you can write
it. And you can.t afford to throw the petc,type away when you're done.

With Smalltalk/M you don't.
Start with the prototype. There's no development sy-stem you can buy

that lets you get a working model working faster than Smalltalk/M
Then, incrementally, grow the prototype into a finished applica-

tion. Try out new ideas. Get input from your users. Make more changes.
Be creative-

Smalltalk/V gives you the freedom to experiment without risk. It's
made for trial. And error. You make changes, and test them, one at atime.
Safely. You get immediate feedback when you make a change. And you can't
make changes that break the system. It's that safe.

And when you're dc,ne, whether youre writing applications for
Windows or OS/2, you'll have a standalone application that runs on both.
Smalltalk/V code is portable between the Windows and the OS/2 versions.
And the resulting application carries no runtime charges. All for just
$499.95.

So take a look at

Smalltalk/V today. It's time to make Smalltalk/V
that prototyping tjme productive.

Smalltalk/V is a registered trademark of Digitalk. Inc. Other product names am trademarks or registered
trademarks of their respective holders.
DigitaLk, Inc., 9841 Airport Blvd., Los Angeles. CA 90045
(800) 922-8255: (213) 645-1082; Fax (213) 645-1306

LOOKWHO'STALKING

1 IEWLETT-PACKARD NCR
HP bus deveioped n network trouble NCR bas a,1 ilit.egnlzed tert program develop-
sbaotmg tool called tbe Netwwk Adursoi ment elit•in}nment for digital, a,wiog and
1be Netwo¥k A,114501· offen a coy*mben mixed mode printed ci¥cuit board testing.
Give ™t id tools #:mding an expen spstem,
slatistic&. and protocol decodes to speed MIDLAND BANK
piublem Uolatioli. Tbe NA user interface :s Mi£Hand Bank bum a Windowed Tecimicat
buitt on a wmdoit:ing u>sum wbiob itows I;ading Environment for currency, futures
multiple afl>lkatio*5 M be executed and stock traders using Sinalitalk V.
simt,IMn€01654.

I Simplified application delivery for
creating standalone executable (.EXE)
applications

1 Code portability between Smalltalk/V
Windows and Smalltalk/V PM

• Wrappers for all Windows and OS/2
controls

I Support for new CUA '91 controls for
OS/2, including drag and drop, booktab
container. value set. slider arid more

I Transparent support for Dynamic Data
Exchange (DDE) mid Dynamic Link
Library (DLL) calls

Il Fully integrated programming environ-
ment, including interactive debugger,
source code browsers {alIsource code
included), world's most extensive Win-
dows and OS/2 class libraries, tutorial
(printed and on disk). extensive samples

I Extensive developer support, including
technical support, training, electronic
developer forums, free user newsletter

I Broad base of third-party· support,
including·add-on Smalltalk/V products
consulting services, books, user groups

EE6'21@lidal
62211'tlitouuum

Woo#IW

- 1=r= L
This Smalltalk/V Windows application
captured the PC Week Shootout award - and
it was completed in 6 hours.

'42 -- -3 Al
11

i % 101-ap'.,-1 I

: V*&2=peu':: :ic*..j,

Smalltalk/V PM applications are used to
develop stateof-the-art CUA-compliant
applications ·- and they're portable to
Smalltalk/V Windows.

61,16_IL__Jw

W IDE) MELL 8

The International Newsletter for Smalltalk Programmers
1

September 1992 Volume 2 Number I

4

EXPERIENCES rge project This question is particularly relevant to Smalltalk
ne of the most frequently asked questions about object-oriented
technology is whether it was used as the primary technology on a

WITH SMALLTALK prototyping but not for "real" product development. In this arti-
because it is often said that Smalltalk is a language well-suited for

de we will describe our experience using Objectworks\Smalltalk from ParcPlace
ON A LARGE Systems as the basic implementation language for a commercially available CASE

tool called ObjecTime. This project is currently in its sixth year and at one point
involved over 30 Smalltalk programmers.

DEVELOPMENT THE PRODUCT
BeiI-Northern Research (BNR) designs and develops real-time distributed

PROJECT software driving these systems is often surprisingly complex and usually involves
telecommunications systems for its parent company, Northern Telecom. The

many millions of lines of high-level code. To meet the extreme quality and ro-
bustness requirements of such systems, it is obvious that powerful computer-

By Bran Selic based development tools are required. ObjecTime (previously known as Telos) is
one such CASE tool created at BNR for constructing the next generation of dis-
tributed event-driven systems. It can be used for analysis, design, implementation,

Contents: and verification. The tool is a key component of a methodology called Real-Time
Object-Oriented Modeling (ROOM), which is characterized by a set of high-level

Features/Articles: design paradigms and a highly iterative development proces s.1 With ObjecTi me,
Experiences with Smalltalk on a users graphically capture the high-level aspects of their designs and combine them
Large Development Project with specifications written in C++, or a simple rapid prototyping language for the
by Bran Sek more detailed aspects. These designs can be executed directly using ObjecTime's
Sma]IDraw-Release 4 Graphics built-in run-time environment. ObjecTime is currently the most widespread
and MVC, Part 3 CASE tool within BNR. It has been rnade available to external (non-BNR) cus-
by Dan 8enson tomers and has already been purchased by several major corporations.

Columns: The software comprising the tool is quite elaborate and includes an interactive
14 The Best of graphical user interface, several complex semantic editors, a high-level language

Comp.Lang.Smaltalk: What e/se compiler, and an event-driven run-time system. This system'5 level of complexity
is wrong with OOP? can be deduced from the size of the class hierarchy, which currently contains close
by Alan Knight to 1,400 Smalltalk classes.

i i 17 Getting Rea/.·

 Hierarchy
Extending the Collection THE PROJECT AND ITS CHRONOLOGY

' by juanita Ewing The project has so far progressed through three principal stages: a prototyping
stage, a development stage, and a commercial product stage.

' I 9 Smalitalk idioms.
ValueModel Idioms -
by Kent Beck The prototyping stage

The prototyping stage started in late 1986 and lasted approximately 18 months,
Departments: during which time the project team grew from three to 18 people. None ofthe
23 Product News & Highlights

cont,nued on page 4.

29

EDITORS'

CORNER

John Pugh Paul White

APPY ANNIVERSARY! We thought somebody should say it, as we roll into year two of

1THE SMALLTALK REPORT. We trust you have been satisfied with the quality of articles over
the past 12 months. Subscriptions are constantly climbing, as is the number and diversity
of Smalltalk users. We have tried to include articles that have a broad band of appeal yet
are specific enough to give you more than just a "warm feeling,» Certainly the best part of
this job has been the opportunity to meet many of you (albeit electronically in most
cases!!). Please, keep coming forward with ideas.

As you arc all aware, one requirement sorely lacking in our niche of the software in-
dustry is a repository of documented experience reports. Other than OOPSIA's ext)eri-
ence reports, very little is available in terms of actual documented case studies. Newcom-
ers to object-oriented technology, and Smalltalk in particular, want to see proof that the
technology has been successful. And those of you trying to get on with the development of
software know how much easier life would be with a reservoir of experiences from previ-
ous projects, both good and bad, on which to draw. I f you're like us, you're constantly left
with the feeling that this has been done before," especially in terms of adapting tradi-
tional nianagement strategies to Smalltalk projects. It's time we started to reuse more than
just code.

Bran Selic's feature article describes many experiences gained duri ng the development
of the CASE tool Objecl'ime at Bell Northern Research. He gives a chronology of the pro-
ject, highlighting things that worked well and some of the ptifalls encountered.

Also in this issue, Dan Benson concludes his three-part series on the development of
Sma]1Draw, his graphics editor, illustrating the "ins and outs" of MVC. He adds facilities
to Smal]Draw to allow grouping, layering, and alignment of objects, cut/copy/paste facili
ties, and scrolling.

Three ofour regular columns appear this month with each building on themes de-
veloped in earlier columns. Kent Beck's column describes the inherent shortcomings of
the change propagation mechanism and describes the ValueModel style of coding intro-
duced in Objectworks\Smalltalk 4.0. Juanita Ewing continues her discussion of proper
use of inheritance through an example of adding an OrderedSet to the Collection hierar-
chy. Finally, Alan Knight continues his survey of many of the complaints registered on
USENET about OOP.

In closing, we would like to take the opportunity to thank those of you who have
helped us out over the past year. A special thanks goes to our regular columnists, who
have yet to let us down and whose contributions form the pillar of the REpoRT.
Thanks, gang!

The Small:glk Rep,irt (ISSN# I 056-7976) is ,„iblished 9 linics v year, every month excep[for the Mar/Apr, July/Aug, and Nov/Dec combined IssueN. Pub-
hshed by SIGS Publications Group, 588 Broadway. New York. NY 10012 (212)274 0640 © Copyighz I 992 by SIGS Publiwions, Inc All rigms reserved.
Reproduction of thi5 material by electronic transmission, Xerox or any other method wil be treated as a wIUful violation of the US Copyright Law and is
Rally prohibiled Mater„11 maybe reproduci il will, cxpr.·iN,irrmiwon frnm the,„,hlishen. Mailed First Class Subscription rates 1 year, (9 2,sues) do,na
4 365, Foreign and Canada, $90.Single copy price, $8.Do. POS]MASTER: Send address changes and subscripnon orders to. 'INE SMALLTALK REPORT, Sub-
scrlber S¢rnces. Dept. SML, PO. Dox 3000, Denvlle. N) 07831

Submit articles to the Editors at Smalltalk Report, 91 Second Avenue, Ottawa, Ontario KIS 2H4, Canada.

2

The Smalltalk Report
Editors

john Pugh and Paul White
Carketon Uinversity & The Object People

SIGS PUBLICATIONS

Advisory Board
Tom Atwood. Object Design

Grady Booch, Rational
George Bosworth. Digitalk
Brad Cox, information Ne Consulting

Chuck Duff, The Whitewater Group

Adefe Goldberg, Parcplace Systems
Tom Love. Consultant

Bertrand Meyer, ISE
Meilir Page jones, Wayland Sys,ems
Shea Pratap, Centerline Software
P. Michael Seashols. Venant

Bjarne Stroustrup. AT&T Bell Labs
Dave Thomas, Obiact rechnology International

THE SMALLTALK REPORT

Editorial Board

jim Anderson, Digitalk

Adele Goldberg, Parcflaci Sysmms
Reed Phmips. Knowledge Systems Corp

Mike Taylor, Digglk
Dave Thomas. Object Technology International

Columnists
Ken{ Beck, Fil'St CIm Software

juani= Ewing, Digulk

Greg Hendley, Knowledge Systems Corp.
Ed Khmas, Linea Engineenng Inc.

Alan Knight. Carleton University
Suzanne Skublics. Objeci Technology·Iniernational

Eric Smmh, Knowledge Systems Corp

Rebecca Wirfs-Brock, Digalk

SIGS Publications Group, Inc.
Richard P. Friedman

Founder & Group Publisher

Art/Production

Kristina Joukhadar. Managing Edker

Pillrim Road, Ltd., Creative Diredon
Karen Tongish. Production Ed,cor

Jennifer Englander. AreProd. Coordinaor
Circulation

Ken Mercado. Fumliment Manier

Diane Badway, Circulation BuMness Manager
John Schreiber. Circulation A.„istant

Marketing/Advertising
Diane Morancie, Adverosing Mgr-East Coas/Canada

Hol Meineer. Advenising Mgr-West Cag,WEurope

Geraldine Schafran, ExhibidRecrulcment S les Manager
Sarah Hamilton. Promotions Manager--Publinlions

Loma Lyle. Promoljons Mmier-Conurences

Caren Polner, Promotions Graphic Ardst

Administration

Ossama Tomoum, Business Manager
David Chatterpaul, Accounting

Claire johnston, Cowerence MInager
Cindy Roppel, Conference Coordinator
Amy Stewart, Projects Manager
Jennifer Fischer, Public Relattons
Helen Newling, Adn.in:*tra,Eve AIMInt
Margherita R Monck '
Genenl Manager

Publishers of Journci of Object-Oilented Programm ing
Object Megozmt Hodine on Objed·Oriented Technolog
The C++ Report lbe Smabbik Report The internatonaj
OOP Dh=.7, and The X journot.

THE SMALLTALK REPORT

ISIGS

PRODUCT ANNOUNCEMENTS

Product Announcements are not reviews. 7'hey are abstractedon, press releases provided by vendors, and no endorgement is imphed Vendors interested in being
included in thE feature should s€,id pms relegses to ow editorid offices, Product Antiouncements Dept, 91 Second Ave., Ormwn, Ontario K] S 2}14, Canada.

The American Information Exchange Corp. (AMIX), a
subsidiary of Autodesk Inc, announced the opening of the first
of several key online markets for information and consulting
services. At the AMIX Smalltalk Components and Consulting
Market customers can buy and sell Smalltalk/V, Smalltalk-80,
and other object code as well as consulting and training ser-
vices. AMIX establishes transaction rules, facilitates negotia-
tions, and automates payments and collections.

For more information, contact AMIX, 1881 Landings
Drive, Mountain View, CA 94043-0848, 415.903.1000.

Digitalk Inc. has announced a new version of Smalltalk/V for
Windows that simplifies the complex task of writing programs
for Microsoft's popular Windows environment.

The riew version of Smalltalk/V includes siipport for Win-
dows Multiple Document Interface (MDI), a Too[Pane (a row
of buttons that perform functions when selected), a StatusPane
thal displays information on the status of applications, an Ob-
jectFiler for sharing objects with other applications and develop-
ers, HelpManager support for non-US character sets, and per-
formance improvements. In addition [o standard Smalltalk/V
features, the package provides interfaces to Dynamic Data Ex-

change (DDE), allowing information to be shared between
Smalltalk/V programs and other programs, and Dynamic L.ink
Libraries (DLLs), which provide a mechanism for calling code
written in other languages from within Smalhalk/V.

For more information, contact Digitalk inc., 9841 Airport
Boulevard, Los Angeles, CA 90045,310.645.1082, fax
310.645.1306.

Zoom (Zippy Object-Oriented Memory) is a simple
object-oriented database written in Smalltalk/V for the 286, Win-
dows, PM, and Mac platforms. Zoom offers variable length keys
for random access messages at: at:put:, removeKey: and seqeun-
tial messages do:, first, next, prior, and last. A size method is
available and class method open: starts any database file while
new: guarantees a new file. Zoom works best by providing
keyed access to Digitalk Loader/Dumper object representation,
but an alternative representation requiring programming is
supplied. References between filed objects must be made by
name in your application,

For more information, contact Expertek, P.O. Box 611,
Clatskanie, OR 97014 503.325.4586.

HIGHLIGHTS

Excerpts from industry publications

SMALLTALK

. . .If Smalltalk is so powerful, why does it have such a small
following compared with C++? Dan Shafer, author of the
book Practical Smalltalk, suggests that Smalltalk is so com-
pletely different from any other development environment
that the first reaction of procedural programmers is
panic...Smalltalk'5 classes and methods are not iust a class li
brary but an integral part of its environment that makes up
Smalltalk. Everything interacts with everything else. This can
be quite disconcerting for the beginner, and the fear of break-
ing something can often serve as the greatest deterrent to
learning Smalltalk...Ultiniately, we return to the original
question: Why Smalltalk? Because you want an environment
built around object-oriented programming, not derived from
procedural programming. You want an environment that
provides extensibility while managing your code. You want
the flexibility of an interpretive language in which you can
play with and test your code, coupled with the performance
o f a compiler. You want an interactive debugging environ-
ment that lets you inspect and modify your code and vari-
ables on the fly with instant results, instead of saving, compil-
ing, and linking between changes.

Why not Sma/frolk? Wifham Scott Herndon,
UNIX REVIEW. 5192

SEPTEMBER 1992

PREDICTIONS

. . . The object-oriented programming revolution may be the
beginning of the biggest programming advance in the history
of computers. It may prove to be the software equivalent ofthe
microprocessor, allowing the mass creation of more capable,
less expensive software. We say may simply because it may
also be that object-oriented programming is just the beginning
of that revolution and will itself be swept away in a compara-
tively short time by the new technologies it makes possible

Object-oriented methodology, OPEN SOFTWAREJOURNAL, vol.5/no. 1 1 992

STRATEGIES

. . Robert E. Lee said "Plan no more than necessary." His ulti-
mate defeat was probably due more to the implementation of
this philosophy than its validity. The problem in development,
again, as in war, is bow to know when to stop planning and
start moving. The answer is never stop planning but never let
planning prevent progress. The best methods today flcilitate
iterative development. Use one with object-oriented tech-
niques for the appropriate tasks to get the most powerful and
complete approach available.

Planning lookohead,and spiroting into control, Adrian Bowies,
OBJECT MAGAZINE, 7-8/92

23

..

update: aSymbot
aSymbol = #valuel ifrrue: [self updateVatuel].
aSymbol = #value2 ifl'rue: [self updateValue21

The preceding information is written assuming ValueModel
holds values. In the real system, though, ValueModel is an ab-
stract superciass, and the subclass acting as ValleModel above is
really calied ValueHolder. PluggableAdaptor is also a subclass of
ValueModel. Other subclasses (like AveragingValueModel) should
arise as the full utility of the ValueModel style becomes apparent.

LAZY ViEWS

A finalidiom that accompanies Objectworks\Smalltalk release 4
and later is lazy updating of views. Back when dinosaurs ruled
the earth and Smalltalk did its own window management, it was
common to directly redisplay a view in response to an update:

update: aSymbol
(self internstedIn: aSymbol) ifrrue: [self displayViewl

A serious problem with this strategy is that the view will be
redisplayed several times if multiple update messages come in,
Multiple updates look bad and slow your programs down. This
is especially true with the expanded use of broadcast messages
in release 4.

When you implement views in elease 4 and later, you
should never directly redisplay the view. Instead the view
should send itself an invalidate message:

THE BEST OF-.cominuedfrompage 16

stractions useful in some specific domains. Reality can have
very poor software engineering principles.

Jeff Alger (alger@applelink.apple.com) writes:

Seldom are you ever modeling the real world in software.
The real world is the problem; why would you want to just
simulate it? Objects and classes in a piece of software are
nothing more than metaphors. In fact, direct simulations
of real-world objects lead to very poor object·oriented ar-
chitectures with little or no modularity and that are highly
unstable. Early on one learns that a Paycheck object should
print itself and a Block object should move itself around on
a screen. This is not the real world.

And Philip Santas (santas@infiethz.ch) points out:

There is no such thing as information hiding in the real
world.

CONCLUSIONS

Since this column has been devoted to whatrs wrong with OOP.
I ought to condude with what I think is right:

1. OOP is not a panacea, OOP is good for improving reuse; it
does not make reuse automatic. If I write a Car class for

modeling traffic flow and you write a Car class for modeling
the physics of collisions, our chances of being able to use

22

m VALUEMODEL IDIOMS

update: aSymbol
(self interestedIn: aSymbol) ifrrue: [self invalidatel

These invalidations are pooled together. The next time a
Controller sends itselfpoll (or someone explicitly sends check-
ForEvents to ScheduledControllers) all views with some invalid
area will be asked to display. This ensures that if there is a
change to a model cainsing several views to update they will re-
display as simultaneously as possible.

CONCLUSION

The ValueModel style of coding manages complexity by strictly
separating interface and model.

We have just begun to explore the range of possibilities in-
herent in the ValneModel style. You can expect to discover new
uses as you begin using it yourself. If you find new ValueModels,
or new uses for the existing ones, please drop me a line so I can
publish them here. I

Keigi Beck has been discovering Smalltalk idioms for eight years at
Tektronix, Apple Computer, and MasPars Computer. He is also the
founder 4 First Class Software, whidz develops and disti·ibutes re-
engineering products for Smalltalk. He can be reached at First Class
Software, P.O. Box 226, Boulder Creek, CA 95006-0226

1

the same class are small. Programs should carefully choose
what they're trying to model.

2. Don't try to model the real world in detail. Make appropri-
ate abstractions, try to make your- classes correspond to sen-
sible entities, but don't get caught up in the question of
whether or not something is an object. If it makes sense as a
concept, it's probably a reasonable object. Good software
engineering is more important than good modeling

Fundamentally, the difference between 00 and procedural
programming lies in what entities are most important. In a
procedural language, procedures are the important thing, and
data is secondary. The basic insight of OOP is that many func-
tions can be expressed as operations on a data type, and that
this clarifies the design.

Other benefits spring from this insight. Using polymorphism
we can dynamically select semantically similar operations on
different data types, and specify data types using inheritance for
incremental modification. The essential idea is to place the data
type at the center. But not everything fits neatly into this model,
and it's not the ultimate answer to all programming problems: it
is only an improvement on the preceding model. m

Alan Knight is a researcher in the Department of Mechanical and
Aerospace Engineering at Carleton University, Ottawa, Canada, KIS
586. Hecan be reached at +1 613 788 260005783, or bye-mailas
knight@mra).carleton.ca.

bIn MALLTALK REPORT

Tasition to

MENTORING

APPRENTICE

ANCED TRAINING

t & DESIGN

GROUP TOOLS

FRAMPWORKS

*AM REQUIREM

GROUP DEVELOPMENT
4813*1**Il/MIA

The Management Challenge
The transition to object technology
must be designed for success, The
management challenge is to:
• Produce Quality Software
• Deliver on Time

e Build Maintainable Code
e Model the Business Problem

e Bullet Client-Server Solutions

e Manage Complexity

Knowledge Systems Meets
the Challenge
Knowledge Systems Corporation
(KSC) has emerged as the industry
leader in delivering pure object-
oriented product solutions. KSC
products and services are designed to
successfully transition business to
object technology.

 9%*292.2

CUSTOM CONTRACTS

Transition Services
KSC Transition Services include

contract services and a complete
training curriculum that supports a
group development environment.
Multiple training tracks are designed
to ultimately attain self-sufficiency
and to produce deliverable solu-
tions. Program curriculum includes:
* Mentoring: Process Support
, Apprentice: Small Group Project

Focus at KSC

e Finding the Objects (CRC)
0 00 Analysis and Design
8 Introductory to Advanced

Programming in Smalltalk
e Introduction to Smalltalk for

COBOL Prograinmers

Development Environment
KSC now markets in the U.S. and

fully supports ENVY™/Developer, a
multi-user developinent environ..
ment. In addition, KSC provides
integrated services and tools to
enable construction of cooperative
processing applications.

Design your Transition
Begin your successful transition to
object technology today. Join the
growing list of KSC clients such as
IBM, Hewlett-Packard, Texaco,
Fisher Controls, American Airlines,
First Union, Northern Telecom, and
Texas Instruments. For more infor-

mation on transition products and
services from Knowledge Systems,
call us at 919-481-4000.

Knowledge Systems Corporation 114 MacKenan Dr.

Cary, NC 27511
OBJEC T TRANSITIO NBYDESIG N (919) 481-4000

© 1992 Knowledge Systems Corporation. ENVY is a trademark of Obiect Technology International. Inc.

m EXPERIENCES WITH SMALLTALK ONA LARGE DEVELOPMENT PROJECT

w.alued froinpage i

team members had practical experience with 0-0 technology
but we decided to adopt an O-0 approach.

Communications software traditionally has been designed
using an object-based approach, primarily because of the in-
herently distributed and asynchronous nature of communica-
tions systems. We were looking for a new technology that
could overcome some of the major limitations of traditional
software construction methods.

After some deliberation, we chose Smalltalk as the imple-
mentation language for our prototyping. Various object-
oriented flavors of C (Objective C, C++) were also considered
and discarded. We felt that a qualitatively different technology
was required to deal with the complexity we had forecast for
the coming generation of software systems. We were interested
in programming abstractions that could deal with entire sub-
system architectures and complex graphics. The semantic gap
between these and the low-level machine-oriented abstractions

provided in C and similar languages was just too great.
We originally selected Smalltalk/V from Digitalk Inc. After

about a year, we switched to Smalltalk-80 from ParcPlace Sys-
tems because ParcPlace software ran on the Unix-based work-

stations used by most of our client base. In addition, our own
performance benchmarks indicated that at that time (late
1987),our application would execute more than twice as fast
on ParcPlace Smalltalk than on Smalital]UV on the same plat-
form. The port of our code to Smalltalk-80 was straightfor-
ward with most of the difficulties stemming from differences in
the graphics paradigms.

There was no formal design process but the issue was dis-
cussed at length, with great fervor and some dissent. The
highly interactive Smalltalk development environment was un-
like any the team had experienced before. It obviously had
great potential that was not exploited fully by traditionallinear
models of software development.

Our initial development consisted of a set of disjoint proto-
types of different toolset components, each one designed and
implemented by a single developer. In the latter part of the
prototyping stage the distinct components were integrated,
one-by-one, into a composite whose functionality roughly ap-
proximated that of the desired system, There were no commer
cially available team programming environments at that time
so we eventually evolved a "manual» process for synchronizing
the activities ofprogramming teams.

This process was based on a weekly integration cycle. At the
beginning of each week a new version of the system was gener-
ated by the system integrator. Once this image was available,
designers would copy it to their own environment and make
further changes to it as necessary. At the end of the week, de-
signers would submit their changes for inclusion in next week's
image. To minimize conflicts, alI the classes in the hierarchy
were partitioned so that each class was owned by a group. Only
members of the group owning a class were allowed to submit
changes for that class. Also, it was possible to specify the inte.-
gration order of a submission relative to other submissions. A
common "patches'> repository was maintained for any changes

4

that needed to be shared in the interval between successive in--

tegrations. These could be filled in at the discretion of the indi-
vidual developer.

To our surprise, we found that this inanual process was ef-
fective even in later stages of the project when the development
team was much larger. We attributed this to the decoupling ef
feet o f partitioning the class hierarchy across different groups
as well as to the highly modular and loosely coupled architec-
ture ofthe application,

The development stage
Following our prototyping experience we commenced the ac-
tual implementation in September of 1988. This second stage
lasted approximately two years. During that time the internal
architecture of the tool was reorganized and almost all of the
prototype code rewritten. The development team doubled in
size to eventually include over 30 developers (not including
managers), all of them programming in Smalltalk.

The software was developed gradually, in four successive
releases, each release extending the capabilities of the previous
one. One of those releases included porting of the complete
software from a Macintosh platform to a Unix workstation
(Sun Microsystems SPARCstation 1). This porting effort
turned out to be trivial despite significant differences between
the underlying hardware and operating systems. The ease with
which this was accomplished confirmed the portability claim
of the ParcPlace Systems Object'works\Smalltalk product.

A more formal development process was used during this
stage since we were working on a production version of the
software and a much larger team was involved. The final ver-
sion of this process is described in a later section.

The commercial product stage
Until the end of 1990 ObjecTime was exclusively targeted to
internal BNR projects. In 1991 the potential for more
widespread use was recognized and a decision was made to
market the technology. This meant setting up a full-fledged
support organization, «robustification" of the software to com-
mercial-quality standards, creation of high-quality user docu
mentation, and functional extension with features required by
a much wider open market. With basic toolset architecture and
functionality in place this was accomplished by a smaller and
more focused team.

The current release of the toolset, ObjecTime Release 4.0,
contains close to 1,400 classes and the initial image requires 5.8
MB. Despite these relatively large numbers, we have not yet
encountered nor do we anticipate any fundamental technical
or resource limitations of either the language or the Par€Place
Objectworks\Smalltalk environment.

EXPERIENCE W!TH SMALLTALK

This section summarizes some of the salient aspects of our
Smalitalk experience.

continuedonpage 6

THE SMALLTALK REPORT

initiatize

value := Orderedfollection new

value
value isEmpty ifrrue: [ARoat zero].
'(value inject: Float zero into: [:sum:each I sum + each])

/ value size
vallie anObject

value addlast: anObject

We can install the new behavior by changing
Mandelbrot>>initialize.

initialize

flops := AveragingVatueModet new

No other changes to the model are necessary. When we want
to open a window on a running average of processor utiliza-
tion we can create another AveragingyalueModet We do not
need to duplicate any code.

The modd has acquired a large measure of independence
from changes mandated by the interface. For many interface
changes we no longer need to touch code in the domain model
beyond modifying the initialization. We instantiate a new kind
ofValueModel and the rest of the model remains unchanged.

THE REST OF THE STORY

The above code still doesn't quite work. The TextView expects a
String or a Text from its model, and the ValueModel in this case
returns a Number. The release 4.1 solution is to interpose an-
other object, called a PluggableAdaptor, between the model and
tile view, A PluggableAdaptor contains three blocks. The first is
invoked when it receives the message value. The block takes one
argument, the adaptor's model (in this case the VatueModel),
and by default returns the result of sending value to the model.
The block can be used to arbitrarily transform the value. In our
case we want to create a string from the number:

openflops
I window adaptor I

window:= ScheduledWindow new.

adaptor.= AspectAdaptor on: flops.
adaptorgetI]lock: [:m m value printString, ' flops'].
window addChRd: (TextView on: adaptor aspect: #value

change: nil menu: nit).
windowopen

The second block in a PluggableAdaptor is evaluated when

the adaptor receives the value: message. The block is invoked
with the model and the new value as arguments. By default it
passes the message along to the model. This block translates
the value from a form the view understands to one the model

Mandetbrot\Aew Mandelbrot le>aVIew

\,hlueHolder talueHolder
Figure 2. ValueHolder sgle separation of modet and interface.

SEPTEMBER 1992

region nops
/ 9

Z497 Object Oriented Database

Object 3Ianagement System
Tke ONLY ODBMS for Smallialk
for under $1000 £6€ delivers Persistent

9.,riented Object Storage on Disk via & Zippy
B+Tree Database Retrieval Engine!

I'lemory™ Hierarekical $ ZOOM 7
6 Smallia\WV
and Smallulk·80 1Limited (612) 837.2117
All Plad.ms $199.95 12407 Mop..E*pq N., Suice #100-266
Source Code Includei Aumtin, TX 78758

understands. If it was possible to change the flops rating, we
might write something like this:

openflops
£ window adaptor I
window:= ScheduledWindow new.
adaptor := AspectAdaptor on: flops.
adaptor getBIock. [:m 1 m value piintStri ng, 'Rops'] .
adaptor putmock: [:m :v 1

m value: (Number readFrom: v readStream)].
window addChild: (rextView on: adaptor aspect: #value

change: nit menu: nil).
windowopen

The finaI PluggableAdaptor block is used to filter update
messages. The block takes three arguments: the model, the as-
pect from the update: message, and the optional parameter
from the update: message. The block evaluates to a boolean
that is used to decide whether or not to forward the update. In
our example we may not want to update the text if the flops
rating is too low. We could change openflops as follows:

openftops
I window adaptor 1
window := ScheduledWindownew.
adaptor:= AspectAdaptor on: flops.
adaptor getBiock: [:m I m value printString, ' flops'].
adaptor putalock; [:m:v m value. (Number readFrom: v

readStream)].
adaptor updateBlock: [:m:a:p I m value > 186].
window addthild: (TextView on; adaptor aspect: #value

change' nil menu: nit).
windowopen

When an oNa is dependent on two or more ValueModels it
is often important to distinguish which one is generating the
broadcast message. One solution is to take advantage of the full
generality of the update message:

A cleaner solution is to use the update block ofa pluggable
adaptor to generate different updates for each ValueModel. The
initialization would look like this:

initializeWith: modell with: mode12
1 adaptorl adaptor2 1
adaptorl:= PluggableAdaptor on: modell.
adaptorl updateBlock: [:m:v:p I v == #value

imue: [adaptorl changed: #valuel]].
adaptorl addDependent: self.
adaptor2:= MuggableAdaptor on: mode12.
adaptou updateBlock: [:m:v:p Iv= #value

imue: {adaptorlchanged: #value21].
adaptor2 addDependent: self

Then the update method can look like this:

21

I VALUEMODEL IDIOMS

Universal Database

OBJECT BRIDGE ™
VatueModel

superctass: Model
instance variables: value

This developer's tool allows Smalltalk to read and write to:
ORACLE, INGRES, SYBASE, SQL/DS, DBZ, RDB, RDBCDD,

dBASEIII. Lotus. and Excel-

value

Nalue

value: anObject
value := anObject

0/Intelligent Systems, Inc. self changed: #value

506 N. State Street, Ann Arbor, MI 48104 (313) 9964238 (313) 996-424 I fox

"separate model and interface" is satisfied because the model
makes no direct reference to the interface, but the spirit is vio-
Iated because interface decisions have caused us to change a
model that should be oblivious to such concerns-

Other views with other aspects require inserting more hard-
wired broadcast messages. In large projects, this process of
broadcast accretion leads to a bewildering profusion of broad-
casts, often with intricate time dependencies.

Another problem is that this style of programming discour-
ages reuse- Each instance variable is a special case, to be handled
by special case code. For example, suppose we are working in a
multiprocessor environment and want to view a running aver-
age of the number of processors active during rendering. We
could add an instance variable, utilization, with accessing and
setting methods that are copies o f the respective messages for
flops, but we could do no better at reuse than copy and paste.

This last point suggests that state change and change propaga-
tion somehow must be folded together into a new object. This ob-
ject wi]] be used instead ofa bare instance variable as a model for
views. We can create a family of these objects to model tlie differ-
ent ways of viewing state changes over time. By using various
kinds o f objects in varying circumstances we can change the inter-
action supported by the model without changing the model itself.

The most common solution to these problems is to separate
the model into a "browser" object and a clean underlying
model without broadcasts (see Figure 1). The browser medi-
ates between the user interface and the "real" model, translat

ing user requests into messages to the model and propagating
changes back to the interface. Although fairly simple conceptu-
ally, this style of programming introduces another layer of ob
jects between the user and the model without addressing the
problem of multiple browsers on the same model (for exam-
ple, the problem of updating the source code of a method ap
rearing in more than one Browser).

VALUE MODEL STYLE

ValueModels in Objectworks\Smalltalk Release 4 fill the role of
an interaction model. Rather than appearing between the do-
main model and the interface, ValueModels are placed '<be-
neath" the domain model. This allows the view to interact di-

rectly with the state of the domain model and does not clutter
the model itself with interaction concerns.

Here's how an ideal implementation can be applied to our
example:

20

We can recast Mandelbrot to use this simple ValueModel.
First, the initialization method sets flops to a ValueModel.

initialize

flops := ValueModel new

When accessing or setting the value you must remember to
send messages to flops and not iust use the instance variable.
Religious use of accessing and setting methods, though, can
hide this detail from the rest of the object.

flops
Aflops value

Note that when the value is set the Mandelbrot no longer
needs to propagate changes.

ftops: aNumber
flops value: aNumber

When making a view to display flops the ValueModel is the
model of the TextView, not the Mandelbrot.

openflops
window I

window := ScheduledWindow new.
window addChild: (Tex[View on: flops aspect: #value

change: nil menu: nit).
windowopen

We now have a system with the same functionality as the
simplest one described above. Figure 2 diagrams the relation-
ships between the various components in the value model-style
Mandelbrot.

The worth of ValueModels becomes apparent when we dis-
play a running average rather than a single value. The change is
made creating a subclass of ValueModel called AveragingValue-
Model, which accumulates a history of values in response to
value:messages.

AveragingValueModel
superclass: ValueMo(let
instancevariables: none

MandelbrotView Text\,lew

MandeibroiBrowser

L Mandelbrot
Figure I. Classic separation of model and interface.

THE SMALL·rAI.K REPORT

10 Years Ag<
When Gil Sugg
That Object-Ori

Technology WL ...1.41.1./.4/6

Revolutionize
The Software Industry,

People Called Us

Now, They Simply Call Us.
For over 10 years, OTI has been on the
leading edge of object-oriented software
engineering. And today. as more and more
companies adopt this exciting. new
technology, OTI remains the leader in
providing industrial and commercial
object-oriented solutions.

Partners in

Obiect-Oriented Development
OTT's unique technology alliance program
provides a means of accelerating product
development and introducing new software
technology. OTI's technology is being used
in products ranging from pen computers to
real-time systems. Through these alliances,
we've earned a solid reputation for developing
high-quality, reliable software - on-time,
within budget and to demanding product
specifications, This success is attributed to

OTI's ENVY®/Developer - the first multi-user
development environment for object-oriented
engineering.

OTl's ENVY/Developer - Product
Development Tools For Smalltalk
With ENVY/Developei·, large and small
software engineering teams work within an
interactive, shared programming environment.
Inside thi environment, team members share
common development tools, common:,oftware
components and common source code - that
means faster cycle times, increased productivity,
virtually no duplicated code, and no wasted
effort.

Applicatjons are created efficiently and
effectively. from beginning to end. Using
ENVY/Developer, the team passes the
application through each phase of the software

manufacturing lifecycle - conceptualizing,
prototyping, manufacturing, testing, release
and maintenance - without ever leaving the
environment. ENVY/Developer also tracks
this process by providing complete software
version control and multi-platform
configuratic,n management.

Interested?

If your organization is interested in joint
research and development or F,u would like
more information on ENVY/Developer and
object-oriented programming environments,
call us today.

Object Technology
International Inc.

Engineering Ideas
Into Products

Canada Telephone 613-820-1200 • Fax 613-820-1202 • E-mail: int©ob on.ca USA Telephone 602-222-9519 • Fax 602-222-8503
ENVY is a registered trademark of Object Technology International nc

m EXPERIENCES WHH SMALLTALK ON jA LARGE DEVELOPMENT PROJECT

eng„triedflom page#
Productivity
We are convinced that Smalltalk, with its sophisticated and
customizable environment, source-level debugging capabil-
ity, extensive class library, and automated storage reclama-
tion, is significantly more productive than most other devel-
opment environments (including, to a lesser degree, other
0-0 environments).

This is substantiated to a certain extent by an interesting
case that occurred during the project. As part of our develop-
meiit we were required to implement a general purpose graph-
ical windowing system using Objectworks\Smalitalk, Simulta
neoudy, a second development group was independently
implementing a similar facility in C based on an X Window
System toolkit. This substantial application amounted to ap-
proximately 66,000 lines of C code, while the same functional.·
ity in Smalltalk required only 6,200 lines of Smalltalk--a funic-
tionality ratio of 10 to 1 per line of code! A more conservative
estimate, based partly on these results and partly on our overall
experience on this project, is that Smalltalk gave us a produc-
tivity advantage three to five times over a traditional program-
ming language such as C.

We believe that Smalltalk has a significant productivity edge
over other 0-0 languages as weiI. Although we have no hard
quantitative data, our rough estimate is that Smalltalk is at
least two to three times more productive than C++.

Performance

ObjecTime is a computing-intensive application: It has a
graphical interactive user interface, it must perform complex
semantic checks in real time, and it must efficiently execute
complex high-level designs. By far the greatest portion of this
functionality is implemented in Smalltalk. (Lesser portions
[approximately 5%] were implemented iii G +, not for perfor-
mance reasons, but to enable execution of the C++ segments of
a user's design.) Although we occasionally encountered perfor-
mance problems, in most cases we were able to improve per-
formance to acceptable levels either via straightforward code
optimization or through readjustment of the architecture.

The only potentially serious problem relating to performance
is an occasional pause for memory compaction, which is part of
the automatic garbage collection mechanism. For our applica-
tion, we found that this pause becomes unacceptable in situa-
tions where there is not enough real memory so part of the
garbage collection involves swapping memory from disk. To
eliminate this problem we stipulated a minimum amount of real
memory for our application. Memory requirement is a function
of the size of the user design. For ObjecTime release 3.5-1, mini
mal memory requirement starts at 16 MB (on a Unix worksta-
tion) for small to intermediate designs and goes up to 40 MB for
the largest designs. With sufficient memory in place, the garbage
collectioii pause is relatively short (between 4 and 10 seconds)
and occurs infrequently (every 15-20 minutes).

Quality
Most of our development was done with the ParcPlace Systems

6

product, Objectworks\Smalltalk (from release 2.1 through release
2,5). In over four years we encountered only two problems, both
minor, which required product fixes by the vendor.

Usability for large system development
Our experience demonstrated that Smalltalk was a practical so-
iution for moderately large development teams (30 program-
mers) even without the assistance of specialized team pro
gramming tools. Of course, if such tools are available (e.g.,
ENVY/Developer from Object Technology International), they
should be used, since they add significant value and can extend
the applicability of Smalltalk to even larger projects than ours.

Training
Carleton University is one of the major world centers of
Smalltalk expertise. The School of Computer Science at Car-
leton organized a short course, taught by professors John
Pugh, Wilf LaLonde, and Dave Thomas, which for most team
members was the initial exposure to Smalltalk We were also
able to hire, on a temporary basis, a group of graduate and un-
dergraduate students who served as consultants on proper
Smalltalk usage. The presence of such experienced Smalltalk
programmers significantly cut down on our training time.

Ill addition to the Carieton course, we took an «intermedi-
ate" level Smalltalk course offered by ParcPlace Systems, which
focused oil common techniques for effective usage of the envi-
ronment. This course visibly increased the confidence level of
the development team.

It takes between one and three weeks for an experienced pro-
grammer to learn enough Smalltalk to start using it on the job.
However, for a programmer to effectively use Smalltalk, it is
necessary to become familiar with the 0-0 paradigm, the dass
library, and the programming environment itself. In our experi-
encethe majority of programmers needs an additional 6 to 20
weeks to reach an "intermediate" level of proficiency. (Keep in
mind that the same amount of time is needed to learn the envi-

ronmental particulars [e.g.,codelibraries] for any large project.)

The devetopment process
Our development process differed somewhat from the tradi-
tional modeL First ofall, we wanted to take advantage of the
rapid prototyping capability of Smalltalk. Proper use of this
feature helps designers gain valuable insight early in the devel-
opment cycle and before major implementation effort is ex-
pended. Inheritance also adds a new aspect to the overall de-
sign effort. Typically this requires additional effort consisting
of another pass through the design after the desired functional-
ity is fully achieved. Further design optimization is accom-
plished from the perspectives of reuse and abstraction. We ul-
timately settled on a process consisting of four main activities:

1. Functional design defines the functionality of the feature
being developed. The output of this activity is a Functional
Specification document which can be discussed with
clients. Once finalized, this specification is also given to an

THE MALL'FALK REPORT

MALLTALK IDIOMS

ValueModel idioms

y last column outlined ways of using dependency as
embodied in Smalltalk's update and changed mes-
sages. ParcPlace>s release 4 of Objectworks\Smalltalk

introduced a significant refinement of dependency called Val-
ueModel which addresses some of the shortcomings of the
dassic style of dependency management.

CLASSIC SMALLTALK STYLE

Here is another example of the classic style of Smalltalk change
propagation. A Mandelbrot renders a portion of the Mandelbrot
set while it measures performance.

Mandelbrot

superdass: Model
instance variabtes: region flops

A Mandelbrot object renders the portion of the Mandelbrot
set m region (a Rectangle with floating point coordinates) on
an Image when sent displayOn:. Assume we have implemented
a primitive rendering method that returns the number of float-
ing point operations it initiates as it displays. The DisplayOn:
method divides the number of operations by the rendering
time to compute the number of floating point operations per
second, which will be stored in tlops.

displayOn: anImage
I time ops I
time := Time millisecondsToRun.

{ops := self primDisplayOn:anT.mage].
self flops: ops / time / 1000

The model responds to openflops by creating a window that
displays the value of flops.

openflops
I window I

window := ScheduledWindow new.

window addChild: (TextView on: self aspect: #flopsString
change:nil menu: nil)

windowopen

Sorne users complain that putting an open method in the
model allows too much of the interface to leak through. But in
my opinion one is free to open any kind of window, and if the
model offers a default way, so much the better. Putting open in
the model keeps the code together; if more flexibility is needed
later it can always be moved.

TexWiew's symbol flopsString is used by the view both to rec-
ognize an interesting broadcast and as a message to the model

SEPTEMBER 1992

S Kent Beck

to return a string suitable for viewing. The model thus needs to
respond to flopsString.

flopsString
Aself ftops printString, 'flops'

Now all that remains to update the view is to propagate a
change whenever the flops change.

flops: aNumber
flops := aNumber.
self changed: #flopsString

Already the interface is beginning to leak into the niodel- Be-
cause the example interface uses the synibol #ftopsS1]ing. tie
model must have this particular symbol built in. Other interfaces
viewing other aspects of the model dependent on the measured
flops will require additional broadcasts when the ftops change.
The model is no longer insulated from changes to the interface.

Let's refine the model a bit to see where this style of change
propagation begins to fall apart What if instead of displaying
the last value of flops we want to display the average of recent
values? Eps holds an OrderedCoRection instead of a Number.

initialize
flops := Orderedeollection new

The setting method adds to the collection instead of chang-
ing the instance variable.

flops: aNumber
flops addiast: aNumber.
self changed: #fiopsString

The accessing method has to compute the average instead
ofjust returning the value.

flops
tops isEmpty ifrrue: [Aftoat zero].
.(flops inject: iloat zero into: [:sum:each j sum + each])

/ Rom size

The above code is still fairly clean from an implementation
perspective. From a design standpoint, though, it is a danger-
ous path.

The first problem is that the needs of the interface influence
our implementation of the model. Conversely, our- concept of
an interface is constrained by the way we have implemented
the model. The separation of model from interface, supported
at the implementation level by broadcasting changes, merely
reappears as a design problem. In other words, the letter of

19

behavior, so we just need to determine whether the additional
behavior in Orderedeollection is desirable.

Because instances of OrderedSet maintain elements in order,
we will need public behavior to support the ordering charac-
teristic. The behavior in OrderedCollection is a good set o f be-
havior for supporting this characteristic. In addition, if the be-
havior of OrderedSet is the same as for Orderedeollection, the
interchangeability of the classes is better and there fore the
classes are easier to reuse. Based on behavioral analysis, the
best superclass fur OrderedSet is OrderedCollection.

IMPLEMENTAMON

We can also look in more detail at what is required to imple-
ment OrderedSet. The implementation of OrderedCollection uses
an indexable portion or indexable object, as well as instance
variables to keep track of valid indices. Set is implemented with
hashing for efficiency in determining uniqueness of elements.
If a Set already contains an element, it quietly ignores the re-
quest to add an element.

OrderedSet needs to support instances with a large number
of elements. Hashing the elements is a good way to support
large numbers. Orderedeollections would potentially have to ex-
amine every element before determining if the addition of an
element would be a duplication. To maintain order and en-
force uniqueness we will use two structures, one to implement
the unique elements characteristic, and one to implement the
ordering characteristic, as shown in Figure 1.

structurefor structurefor

maintaining order enforcinguniqueness

/

-72-

Figure 1. Using multiple structures.

Now we will examine the implementations with each of our
candidate superclasses. If OrderedSet is a subclass o f OrderedCol-
lection, we inherit the portion that stores elements in order and
we need to implement the portion that hashes and enforces
uniqueness. The structure and behavior for maintaining order
is inherited from Ordered¢ollection, and the structure for en-
forcing uniqueness can be stored in ati instance variable. This
structure could be an instance of Set.

With this alternative, some inherited methods would need
to be overridden. All the add and remove methods must po-
tentially be altered to maintain both structures. As seen in the
list of public behavior, there are a number of these methods,
such as add:, add:after:, add:afterIndex:, addfirst:, removefirst and
removelast. Fortunately, not all these methods have to be over-

18

m EXTENDING THE COLLECTION HIERARCHY

ridden because some of them call each other.We would want
to override includes: because the hashing used in the unique-
ness structure gives us a quick lookup of elements. We would
not override do: because it operates on the inherited structure
that maintains order.

If OrderedSet were a subdass of Set, the inherited structure
is the one that enforces uniqueness; an auxiliary structure for
maintaining order is referenced from an instance variable. Pre-
sumably, the order maintaining structure would be an instance
of OrderedCollection.

We would also need to override adding and removing
methods-there is just one of each. The majority of coding is
in implementing behavior that implements the element order.
ing characteristic. We would not need to override includes: be-
cause we inherit the version that makes use of hashing, but we
would need to override do: so that we process elements in the
ordered defined bythe order maintaining struCture.

NAMING

Other criteria that might bias our judgment are implications of
a class's name. If a class hierarchy is part of the public interface
for a library, it might be easier for users to locate a class located
in a logical place in the hierarchy. With a class called Ordered-
Set, users are more likely to look for this class as a specializa-
lion of Set. They might not find it as easily if it is a subdass of
OrderedCollection.

CONCLUSION
We make OrderedSet a subdass of OrderedCollection because:

. The behavior of Orderedeollection is more suitable than the
behavior of Set.

· It is more likely that the behavior will be interchangeable if
the relationship between the two classes is explicit.

· There are fewer methods, overridden and new, that must be
implemented in OrderedSet.
Furthermore, by browsing the Collection hierarchy, develop-

ers will generally examine several Collection classes at a time, and
will probably notice OrderedSet as a subclass of OrderedCollection.

The is-kind-of heuristic is useful for generating candidate
superciasses. Its intuitive nature can be an advantage. How-
ever, analysis of public behavior often yields a better selection„
Ifwe only used the is-kind-of heuristic in our case study, we
would be most likely to make OrderedSet a subclass of Set. On
the other hand, when we use the public behavior heuristic, we
conclude that Ordered€ollection is a better choice. I

Juanita Ewing is a :mior staff member of Digitalk Professionid Ser-
vices (forynerly Instantiations Inc.). She has been a project leader for
several comniercial 0-0 software projeas, and is an expert i„ the de-
sign and implemmtation of 0-0 apptications, frameworks, atid sys-
tems. In a previous position at Tektronix Inc., she was responsible for
the development of the class libruries for the first commercial-qi#ality
Smalltalk-80 system. Her professional activities include Workshop
and Panel Chairs for the annual ACM OOPSLA cor.ference.

THE SMALLTALK REPORT

independent verification group to allow early preparation
of test plans.

2. Object or class design is the fundamental synthesis process in
which a high-level design is worked out for the feature. If
the feature is complex enough, a formal Design Document
is produced for review purposes.

3. Coding is part of the prototypingand refinement activity. In
the case o f prototyping, this activity is often concurrent
with and supplemental to class design and even functional
design. Given the importance of user interfaces to our ap-
plication, a distinct subactivity is early modeling and evalu-
ation of the user interface design.

4. Documentation and testing are usually done in the final
stage. Each designer generates a functional test plan that is
reviewed and used for white box testing. For major features,
code inspections are also held- This phase also includes test·-
ing of the software by an independent verification group.

Although the individual activities are listed in sequence, the
process allows for internal cycles to accomodate further refine-
ments, particularly following implementation.

The project management process
The iterative nature of the developmejit process makes it
difficult to detect whether or not it converges. To get around
this we specified a linear progression of milestones, each one
tied to a concrete deliverable. The interval between successive
milestones was fixed in advance, based on a priori estimates of
the effort required. For example, the formal release of a Func
tional Design document was the first milestone following the
start of feature development. Other major milestones included
the release of an Object Design document, the delivery of code
to a test group, and the successful completion of testing. Not
surprisingly, we had the most difficulty estimating the amount
of effort needed for individual milestones to be achieved. This
was especially problematic at the beginning because we had
had no previous experience with an iterative development pro
cess or the 0-0 paradigm.

Additional observations

To conclude this summary of our experience, we list several
additional points pertaining to 0-0 development

1. The management team must have an in depth understand-
ing of 0-0 technology to gain maximum return from it.
This technology is different enough from traditional ones
(e.g., the focus on reuse, iterative development process) that
many of the long-established management practices are in-
appropriate. Because this is a relatively new technology not
many technical managers are experienced with it.

2. There is a significant need to develop better management met
rics to reconcile an iterative development process with the
needs of management so that a process stays within its allocated
resources. Successive refinement can indeed reach a point ofdi-

SEPTEMBER 1992

anyDeveloper at: AMIX make: money

Juet opened!

The firet online Smalltalk marketplace where
any developer carl sell or buy Smalltalk tools,
components, add-one, advice or training, and
hook up with the right people. If you're looking
for the best in Gmalitalk, come to the AMD(
online marketplace.

We're offering the AMIX software for free.
Visit the AMIX Booth (#701) at 00FBLA,
October 18-22 in Vancouver. Or call us now at
415-903-1000 and we'll eend you a dial< today.

American information Exchange Corporation
1881 Lan£lines Drive
Mountain View, CA 940430848
Phone: 415-903-1000
FAX: 415-903-1093

minishing returns. How do we detect when that point has been
reached? New metrics are also required to measure productiv-
ity; with refinement, the number o f lines of code can actually:
decrease with time through inheritance and reuse.

3. The ease and rapidity with which code can be changed and re-
compiled in Smalltalk can easily lead to hacking with little or
no time taken to reflect. (Smalltalk is one ofthose seductive
environments where it is very easy for the medium to become
the message.) This style of development tends to work bottom
up and does not extend very well to large system design, The
best way to avoid this is to ensure that a system architecture is
defined be fore any development of details takes place.

CONCLUSION
We have been using Smalltalk on our project for almost six
years; overall, our experience remains strongly positive. We
have confirmed not only that Smalltalk is powerful and robust
enough to be used for commercial-quality software, but also
that there are substantial benefits when compared with other
implementation options. Finally, we have demonstrated that
Smalltalk can be used successfully on large and long-term pro-
jects involving sizable programming teams. E

References

1. Selic, B., G. I. Gutiekson, and I. MoGee Engelberg. ROOM: An
Object-Oriented Methodology for Developing Real-Time Sys
tems, Montreal, Canada, July 6-10, 1992.

Bran Selic is Seliior Manager responsible for real-time CASE technet-
ogy cat Bell-Northern Research in Ottawa, Canada. He can be
reached at 613.763.3954 or at selic@bur.ott.

7

SMALL DRAW -

RELEASE 4

GRAPHICS AND

MVC, PART 3

Dan Benson

inaliDraw is a simple structured graphics editor
that provides an example of graphics rendering
and MVC application construction in Smalltalk-
80 Release 4. The first article in this series con-

tained an introduction to graphics concepts and application
construction with the MVC architecture through the definition
of a"minimal" Smal]Draw. The second article added the abil-

ity to select and modify objects in the view. This third and final
article extends the features of SmallDraw to include grouping
of objects, layering of objects, alignment of objects through a
Dialogyiew, cut/copy/paste operations through a shared clip-
board, the use of command keys, and scrolling of the view. In-
formation on obtaining the complete source code for Small-
Draw is given at the end of the article.

GROUPING OBJECTS

Grouping objects together allows them to be treated as a sing[e
unit. That is, a grouped collection of objects can be translated,
scaled, and copied as a single object. To do this, a new class is
defined as a subclass of SDGraphicObject, called SDGraphicGroup:

Object ()
SDGraphicObject ('insideColor' 'bwderColor' 'lineWidth' 'handles'

'bounding Box')
SDGraphicGroup ('elements')

SDGraphicGroup's single attribute, elements, holds a collec-
tion of SDGraphicObjects. It implements specific methods for
calculating its boundingBox, displaying its elements, testing for
point inclusion, and translation and scaling. For example, SI}-
GraphicGroup defines the following method for translation:

transtateBy: aPoint
self elements do: [:0 1 0 translateBy: afoint].
self computeBoundingBox

The SmaUDraw model is responsible for grouping objects.
When the group operation is selected from the menu, Small-

8

S

Draw creates a new SDGraphicGroup, setting its elements to the
currently selected set of objects. The selected objects are re-
moved from SmaUDraw's objects and the new SDGraphicGroup is
added to SmatrDraw's set of objects.

The inverse operation of un-grouping is also provided.
When this operation is selected, Small)raw removes any iii-
stances of SDGraphicGroup from the current selection, adding
each individual element to its set of objects.

LAYERING OBJECTS
As objects are added to the drawing they are placed on top of
existing objects; that is, they are conceptually layered. This idea
is also reflected exactly in the SmallDraw objects instance van-
able as an Orderedeollection of objects.

It is often useful to change the relative positioning of objects
within the stack, This is accomplished by providing four menu
selections, shown in Figure 1, for moving objects to the front or
back of the stacie, or forward or backward by one position.

new >1

ill -=== forward (alt -f) edit , group (alt-g) to front
change > ungroup (alt-G) backward (alt-j)
2212 align (alt-k) toback 1

dient,.

Figure I. Menu selection for movIng oblects.

Moving selected objects to the front is done by simply re-
moving them ft-om the list of objects and adding them to the
front ofthe list:

moveToFront

self hasSelection iffrue: [I selection I
selection := self selectedObjectAssociations.
selection do: [:oa I self objects remove: oa].
self objects addARFirst: selection.
self changed: #rectangle with: self selectedObjectsDisplayBox]

Moving objects forward by one position is done by insert-
ing the selected object before the object that was in front of it:

moveForward

self hasSetection imue: [
self selectedobjectAssociations do: [:oa I I before I

self objects first == oa
iffalse: [before := self objects before: oa.

self objects remove: oa.

self objects add: oa before: before]].
self changed: #rectangle with: self selectedObjectsDisplayBox]

Moving objects to the back or backward one position is
done in a similar fashion-

THE MALLTALK REPORT

@Tat/*f**3

ETTING REAL Juanita Ewing

Extending the Collection hierarchy

n my last column, I discussed creating subclasses and twoheuristics for- selecting superclasses. This month I will con-
tinue the discussion on subclassing with a case study that

extends the Collection hierarchy. We will create a new Collection
class that contains unique elements and also maintains the or-
der of these elements.

HEURISTICS REVIEW

A key step in creating a new subclass is to select a suitable su-
perclass. The heuristics for selecting a superclass are:

Heuristic One: Look for a class that fits the is-kind-of or
is-type-of relationship with your new subciass.

Heuristic Two: Look for a class with behavior that is similar
to the desired behavior of the new subclass,

CASESTUDY

We want to create a new data structure class that holds ele

ments in order and disallows duplicate elements. When sent a
request to add a duplicate object, the request should be quietly
ignored.

This new data structure class contains elements s imilar to

Arrays, Strings and other Collection subclasses. Because of these
similarities, we will begin our search for candidate superclasses
in the Collection hierarchy. Two classes immediately stand out:

· Ordered¢ollections keep elements in order.

· Sets store each element only once, disallowing duplicate
elements

The combination of these characteristics is what we want

for our new class. A good descriptive name for our new class is
OrderedSet.

APPLY HEURISTICS

Where should we insert our new class, OrderedSet,into the hier-
archy? Our first heuristic is to look for potential superclasses
that match the is-kind-of criteria. We use is-kind-of as a short-

hand for categorization based on characteristics. The significant
characteristics and their classes used in this determination are:

» vary number of elements (Conection)
· store arbitrary objects (Collection)

· dynamically add and remove elements (Collection)
· enumerate (Collection)

SEPTFMBER 1992

· store elements iii order (OrderedCollection)

· store unique elements (Set)

The desired characteristics of OrderedSet are closest to those
of Orderedeollection and Set, so OrderedSet could be a-kind-of
Set or a-kind-of Ordered€oilection.

In a system that supports mult*le inheritance, we might be
tempted to have two superclasses, Set and OrderedCollection. In
Smalltalk we must choose a single superclass, either Set or Or·+
deredeollection.

Our second heuristic is to choose candidate superclasses with
suitable public behavior. Let's compare the candidate classes
we've selected, Set and OrdeIedCollection, in terms of behavior,
Set and OrderedCollection have a common superciass, Collection,
so we can ignore public behavior from the Collection on up.

If we were to make OrderedISet a subclass of Set, it would in-
herit these methods from Set:

add:

do:

includes:

occurencesOf:

remove.ifAbsent:
SiZe

Ali ofthese methods also have an implementation in the
abstract superdass Collection, so Set doesn't add any new public
behavior to the behavior from the common superclass.

If OrderedSet were a subclass of OrderedCollection, it would
inherit behavior from OrderedCollection and Indexedeollection

Cor 01·deredCollection and SequencableCollection in Object-
works\Sinalltalk). OrderedCollection has adding and removing
methods and many more methods related to its element-
ordering characteristic. The list of methods includes:

add: addfirst:

add:after: addLast:

add:afterIndex: remove:ifAbsent:

add:before: removeFirst
add:beforerndex: removeLast

Many of these methods are extensions of tile public behav-
ior from the common superciass Collection.

The public behaviors for Sets and Orderedeollections have
some similarities. In fact, the behavior of Set is a subset of the
behavior of OrderedCollection, which makes Set the behavioral
supertype o f Orderedeottection. Set doesn't add any additional

17

work just like human brains. Being told that OOP is good for
simulation and that it naturally models the problem domain
only makes these misconceptions worse.

Smalltalk programmers tend to transcend these ideas more
quickly than others because they're confronted with examples of
Schedulers, Controllers, Associations, and other non-concrete

classes. Even so, the misconceptions are very widespread. Let's
look at some concrete examples.

Objects are always concrete nouns
Dan Weinreb (diw@odi.com) writes:

This topic comes up again and again whenever semantic
data modeling is being discussed. I've seen it in papers from
over ten years ago. After reading a bunch ofthe literature in
this area I have come to the conclusion that there doesn't

seem to be any completely satisfying answer. Either you end
up having these objects that only model relationships rather
than modeling "things" in the problem domain, or else you
end up inventing constructs that are annoyingly complex
and often disturbingly similar to objects themselves.

and Doug MacDonald (doug@softwords.bc.ca) writes:

This thread raises what I have always considered to be a
shortcoming of 00 scheme of modeling the world: while it
allows us to capture complex classifications and instances,
it does NOT provide the idea of relationships among ob-
jects. Yes, we can "send messages" among objects, provide
well-structured access functions. But this does not address

the central problem. We end up with forced concepts like
relationship classes to deal with the cow-milk type puzzles.

This literal interpretation of objects corresponding only to
physical "things" is probably the single most prevalent miscon-
ception about OOP. It is the main reason people reject solutions
that indude an AlgorithmManager or a class representing the rela-
tionship between cows and farmers. I've seen many other exam-
ples, including database discussions that assumed an ODBMS
could model only physical things, and that an RDBMS could
only model relationships. In a similarly literal vein, rve seen C
described as a functional language because it has functions.

Naturally, there are many who do not share these beliefs.
Eric Smith (eric@tfs.com) writes:

There is nothing "forced" about relationship classes. Rela
tionships are objects, period. The word "relationship'> is a
noun. A relationship object should contain references to its
target objects, functions to return information about its
target objects and about various aspects of the relationship
between them, and functions to modifythe re]ationship.

Mike Wirth (mcw@cs.rice.edu) writes:

Nothing unnatural about it at all. Associations between ob-
jects are every bit as much "real world" objects as the objects
being associated. Ask your spouse or "significant other."

And Ralph Johnson (johnson@cs.uiuc.edu), who seems to

16

m THE BEST OF COMP.LANG

have encountered these ideas before, anticipated the objections
in the same posting quoted above:

There is NOTHING wrong with having objects that repre-
sent processes. It is true that novice 00 designers make a
lot of such objects that are bad design, but good 00 de
signers make those kinds of objects, too. You just need to
have a good reason for introducing a new object.

The fundamental point of OOP is abstraction. A good OOP
design should correspond to ideas in the problem domain.
Whether those happen to be ideas about things that can be
touched or about relationships, processes, or concepts is irrele-
vant. One of the best metrics for this is naming. If someone fa-
miliar with the domain can look at a class name and immedi

ately have some idea what it does, then it's probably a good
class for that domain.

There is exactly one "right" OOP design for a problem
Given that the objective is a perfect model o f reality, then all
00 designs should converge. After all, there's only one real
world. This results in much disappointment when people dis
cover that OOP, like any other kind of programming, still has
design decisions and trade-offs.

David A. Hasan (hasan@ut-emx.uncp) writes:

...the "map" between 00 methods/objects and what is go-
ing on in the real world is NOT' unique. There can be
different interpretations on which objects should carry out
which methods based on how the real world activities are

"best modeled." Therefore a choice must be made in sped-
fying object interfaces, and making this choice might un-
duly constrain future versions ofthe system...

This is entirely true, but it is based on vastly inflated expecta
tions of what OOP can do.

bobm@Ingres.COM (Bob McQueer) replies:

What problem you are trying to solve defines "proper," I
think. I can see us having the same problems we have al-
ways had when trying to "grow'> new functionality into a
design that didn't anticipate growth in that direction. Note
that expediency will dictate that you can>t make provisions
for EVERY possible direction of growth, also as it always
ha5.... I think what I'm saying is that while the 00
paradigm is a useful tool, you can't expect the existence of
a paradigm to do all your work for you. There is NOT a
unique map, and it takes proper use of the tool to define
the map which serves your purposes.

THE REAL WORLD AGAIN
The idea of modeling the real world in detail is fallacious. In
what we call «reality,>' most things are human-imposed con-
cepts. Reality consists mostly of interactions between elemen-
tary particles; the higher-level structures we perceive are ab-

continued on page 22.

THE SMALLTALK REPORT

S-i-Le-n-C-e
Now «vill«ble!
silence 2.0
for Windows
Ind PM ,

Multi-user source <.de control
Ind versioning system

for Smalltilk/V
f NEW. code mmged en a dient-serve¢ model k

NEWI *Inialit{ ba*ground #pdeing•
fNEW! 11#ked sul,****uppoto€

tNEW OFO persistent a4ed toolkit•
NEWE Aulomotit¢epou gmemlion•

Out#mutic (d,04*dowmentin,•
fship tompillediodewahWuts#u*e•

tf#Mikogeond 10**18*ses •
chfinge Wg browsert andres*ef•

Stirtin, from
$149.95

source code induded
digamma solutions
01 11@t *, 387 S,Ilin, AvenudTorint® 011:,ri6, Can,di,?MST 2*Pho°ie· {411) 351·8833% fix:f(41*) 408-2850 ClmpuServe)5430,400
 %*nk»lial Sl S.ll 4914525.00urieti9#* Ntrib Amm »*d. MR for u# 14(81*42 Ni*Ame,ic,Eum *den Idd 51 20 AMEX OR MASTERUM,(in,*m,Nekid,17*Gif %*nia4•*6•dd 8%2$14511/ E•fr•*MA •64•m*joldiomfS,nal**4•re,ittemdirdemi®,El®jitky[*

ALIGNING OBJECTS
A difficult and time-consuming task in any graphics editor is
trying to get objects aligned with each other. Confining the
mouse to a low-resolution grid is helpful but not always ade-
quate. This task can be simplified with the use of a DialogView
to specify the type of alignment desired. Alignment can take
place in either of two directions and one of three positions for
each direction (see Figure 2).

The user has the option of choosing one or both directions.
For each direction, only one position can be specified using the

Alignment
E] Vertical

®Top
O Center
0 Bottom

® Horizontal
O Left ® Cater O Right
Cancel J 2L___-1

Figure 2. Alignment Dialogview.

SEPTEMBER 1992

radio buttons. The chosen alignment positions are retained by
SmallDraw so that they may be applied to selected objects with-
out bringing up the DialogView each time. Therefore, two menu
selections are added, one for applying the current alignment
and one for setting the stored alignment.

When the alignment is to be set, SmallDraw creates a Di-
alogView whose model is SmallDraw. When the DialogView is
opened, SmallDraw specifies a message selector (#finishedAlign·-
ment) that determines when the view should be closed. Until
that message selector returns true, the DialogView interacts with
the user and SmallDraw to set and modify the alignment direc-
tions and positions.

The vertical and horizontal positions are represented as
symbols. These values are stored along with a flag that indi-
cates whether Cancel or OK was pressed in the Dialogyiew.
Rather than adding three new instance variables to SmallDraw, a
single instance variable called alignment is added. This is an in-
stance of a three element Array to store the three pieces of in-
formation as follows:

initializeAlignment

"The alignment instance vadable is an array of three elements:
1) vertical alignnient I nil
2) horizontal alignment I nil
3) false true nil -> cancel accept not finished (used by

DialogView)

The last flag must be set to nR each time the DiatogView is opened.
See openAlignmentDialog and finishedAtignment."

9

alignment isNi
iffrue: [alignment:= kay with: nil with: nit with: nil].

alignment at: 3 put nil

Methods are used to access the alignment array elements as
follows:

accept,Alignment
alignment at: 3 put: true

acceptedAUgnment
alignment at 3

cancelAUgnment
alignment at: 3 put: false

finishedAUgnment
(alignment at: 3) notNil

horizontaiAlignment
Aatignment at: 2

horizontal.Alignment: aSymbol
alignment at: 2 put: aSymbol.
self changed; #horizontatAlignment

verticalAlignment
Nignment at: 1

verticalMignment aSymbol
alignment at: 1 put: aSymbol.
self changed: #verticaLATignment

Alignment is performed relative to the total boundingBox of-
the currently selected set of objects:

m SMALLDRAW-RELEASE 4 GRAPHICS AND MVC PART 3

Intermediate storage implies an instance variable that can
reference collections of graphic objects. Sharing access to this
storage among SmallDraw instances suggests that a SmallDraw
class variable is the appropriate mechanism fur a common
clipboard. Therefore, a class variable called Clipboard is added
to the SmaliDIaw class. The Clipboard can hold one object, or
one collection of objects, at a time. Copy and cut operations
are destructive because they overwrite the current contents of
the Clipboard. Pasting is nondestructive because a copy is made
of the Clipboard contents and added to the drawing-

It may seem trivial to implement the copy operation by
simply assigning the Clipboard dass variable to a copy of the se
lected objects:

copy
self hasSetedion

imue: [Chpboard := self selectedObjects copy]

However, care must be taken when copying and pasting ob-
jects to and from the Clipboard. The Smalltalk copy performs a
shallow copy, which simply duplicates references to the objects
to be copied (making them identical and thus equal), and the
Clipboard then points to the objects remaining in the drawing.
In contrast, a deepCopy creates exact duplicate objects that are
different from the originals (equal but not identical):

d©Alignment
self hasSelection ifrrue: [bb Iepair 1

bb := self selectedObjectsBounding Box.
repair:= self selectedObjectsDisplayBox.

'Vertical movement."

self vertica\Alignment = #top ifrrue: [
self selectedObjects do: [:o I o translateBy:

0@(bb origin y-o boundingBox origin y}]].
self verticalAignment = #center ifrrue:[

self selectedubjects do: [:o o translateBy:
0@(bb center y-o boundingBox centery)]]

self vertica]Alignment = #bottom iffrue:[
self sekectedObjects do: [.0 I o transtateBy:

0@(bb corner y-o boundingBox comery)]].
"Horizontal movement."

self horizontalAtignment = #left ifrrue:[
self selectedObjects do: [:o o translateBy:

(bb origin X-0 bounding Box origin x) @0]].
self horizontaldlignment= #center iffrue:[

self selectedObjects do: [:o I o translateBy:
(bb center x-o boundingBox center x) @01].

self horizontalAUgnment = #right iffrue:[
self selectedObjects do: [:o I o transtateBy:

(bb comer x-o boundingBox comer x) @0]].
self changed: #rectangle with: repair]

copy

self hasSetection

ifrrue: [Clipboard:= self selectedObjects deep Copy}

It is not necessary to use deepCopy when objects are cut
from the drawing. In this case, the objects are removed from
the drawing and essentially transferred to the Clipboard:

cut

selfhasselection iffrue: [
Clipboard := self selectedObjects.
self objects. (self objects reject: [:p 1 p vatue]).
self changed: #rectangle with: self dipboaIdDisplayBox]

When objects are copied to the Ctipboard, they retain their
attributes induding their location in the drawing. A copied ob-
ject immediately pasted back into the drawing covers its origi-
nal copy. A useful convention is to paste an object into the
drawing at an offset from its copied position. Each subsequent
paste of the same object would then be offset from the previ-
ous pasted object. This can be accomplished by defining a
paste offset constant and translating the contents of the Clip-
board with each paste operation:

CUT/COPY/PASTE
A common metaphor in many applications is the cutting
copying, and pasting of objects using a "dipboard" as an inter-
mediate storage mechanism. The Macintosh system is an excel-
lent example of using a common system clipboard to transfer a
variety of data objects between applications. Similarly, graphic
objects can be copied or cut to a common buffer accessed by
all Smalli)raw applications.

pasteOffset
"Answer the default offset for pasting objects from their copied

positions,il
A10@10

paste
self clipboardfull irrue: [

self deselectAU,

self objects addAUFirst: ((Clipboard do: [:o I
o translateBy: self pasteOffset])

deepCopy colect [:0 1 0 ->trueD.

10 THE SMALLTALK REPORT

den Udders are the interface here, and we can 'pass' a cow
to a farmer object to get the cow milked and the milk in the
vat. The farmer contains the knowledge of how milking
should be done, not the cow.»
...say we now have a better way to milk a cow, with a milk-
ing machine. Strict OOD would say,"Modify the cow to
understand how to use the milking machine..." Reality
OOD would say, "Just 'pass' the cow to the new machine.
The cow doesn't need to change as it already provides the
necessary interface."
...Another example. Say you have some glob of data, and
you want to run N validation processes against it...Where
do these processes go? Strict OOD, "Part of the glob, obvi-
ously. That's what they act upon.» Reality OOD, "Thefre
separate from the glob, and use whatever interface is pro-
vided by the giob to do their work.'>

This is quite interesting, because it's a well-considered,
thoughtful posting based fundamentally on false ideas of OOP.
It arises from the basic question of where to put methods, but
in my opinion gets the principles wrong. I see the method
placement question as a conflict between the principles of
coupling and cohesion.

Consider the validation example, which expresses this most
clearly. A Validator class is a good idea. It groups related meth-
ods (for testing) together, and removes clutter from the class
beijing tested. It's easy to add additional validation checks, and
seems to be the only method that generalizes to consistency
checks involving several different objects.

On the other hand, we should hide internal representations
to minimize coupling. The internals of a class should not be
exposed, and we expect validation to require access to these de-
tails at least some of the time.

A good compromise is to use both techniques. Use class
methods to implement tests that depend on internal representa-
tions, preferably using a consistent naming scheme. Tests that
can be done through the public interface should be implemented
through a Validator class, which when validating can also invoke
the appropriate self-testing methods in the individual class.

The above posting is based on two false ideas, one in each
camp. Mi. Myers presents "Strict OOD" as the orthodoxy of
the OOP gurus. It dictates that any method modifying an ob-
ject's state must belong to the class of that object. On the sur-
face this sounds reasonable, very much like encapsulation, but
it's an overgeneralization that simply cannot work in practice.

Encapsulation restricts the set of methods that can access
an object's internal representation to those in its class, This is
enforced in Smalltalk, but it is possible to short-circuit the re
striction by writing get/set methods for each instance variable.
A method that accesses an object's state through message sends
could be placed anywhere, but if it operates primarily on one
object it is good style to make it a method in that class.

There'& a big difference, however, between good style and
an enforced rule. In particular, the "strict" position does not
allow the possibility of methods that modify (or even access)
more than one object. This disallows such a simple thing as a

SEPTEMBER 1992

m THE BEST OF COMP*LANG

bank transaction, where one account is incremented and an-
other decremented.

The "Reality OOD" camp allows such methods, but then
runs back into the question of method placement, as K. Srini
vasan (srini@gtsurya.gatech.edu) points out:

I am interested in developing 00 models to represent
manufacturing enterprises. I ran into the very same prob-
lem you've described - A method "process a part" seems
to alter the states of the part object, the machine object and
the operator object, and hence is a candidate for being a
method belonging to any of them. To make it a method of
one, say "part," and make that object a dient of other two
objects (operator and machine) will work. However, it
seems to be a highly arbitrary decision.

I agree wholeheartedly. If two or more things interact, and
the states are all changing, then the decision to place a method
handling this interaction is arbitrary. If the interaction is
sufficiently important, it may be worthwhile modeling it as an
object itself. Ralph Johnson (johnson@cs.uiuc.edu) discusses
this in the context of the milking example.

The real issue is how to divide responsibilities among ob-
jects.... Why not give the vat responsibility for taking the
milk from a cow? Without knowing anything about the
real world domain and what is likely to change, any of
three possibilities is just as likely. We have a transaction
between object C and object V, and the question is whether
we should introduce a new object F to model the transac-
tion (transactor) or we should make the transaction a
method of C or V. In general, it all depends!...If we have a
simple system whether nothing changes, then it might
make sense to put the responsibility for the transaction in
C. If we knew that the transaction itself was never going to
change, and that C was, (i.e. we want to milk sheep, goats,
horses, yaks, etc.) then it inight be better to put it in V. If
the transaction itself is going to change (i.e. use a milking
machine) then it would be better to make it an object.

Once again we hear the cry that this solution is "not really
object-oriented," which brings us to the second, and more im-
portant, fallacy.

OOP AND THE REAL WORLD

Choosing the right name for something is important. A name
should be short, easy to remember, and clearly communicate
the essential idea. Unfortunately, "object-oriented" fails in the
last category,

The problem is that everyone knows what an object is. We
intuitively"know» that object-oriented programming is all
about objects: concrete, physical things that we can, with
enough machinery, pick up and throw. Processes can't be ob-
jects. Relationships can>t be objects. Concepts can't be objects.
OOP is «good» because it writes programs that perfectly mimic
the real world, and an 00 program is -good" in direct propor-
tion to its mimicry-like neural networks, which we all know

15

fNHE BEST OF comp.lang.smalltalk Alan Knight

What else is wrong with OOP?

This might more accurately be called "What else do peo
ple on USENET think is wrong with OOP?" While there
are certainly areas iii which OOP could be improved,

there are many misconceptions and false criticisms-so many,
in fact, that I ran out of space for them last month and am
continuing the topic here-

Let>s start with one of the most common complaints: appli
cation areas for which OOP is inappropriate.

OOP CAN'T HANDLE PROBLEMS LIKE-..
Harry Erwin (erwin@trwacs.fp.trw. com) writes:

OOP can be a disadvantage if the problem domain does
not lend itself conveniently to object representations. For
example, many algorithms consist of aprimary control
loop operating on passive things, and a Pascal or Ada pro-
gram of the traditional mode is more efficient and clearer.
If true, this represents a severe restriction of the OOP do-

main. Many algorithms fit the pattern of a loop operating on
passive things; if OOP can't handle them, most programming
is ruled out. Objects will have to be relegated to simple GUI
tasks, error handling, and other algorithmically trivial areas.

In my opinion, it is not difficult to describe many algo-
rithms in terms of a main loop. The loop can be written as:

aBunchOffassiveT]lings do: [.passiveThing
algoIithmManager process: passiveThing].

The code gets more complicated if we indude initialization
and post-processing code, or if it has to use a more complex
method of choosing the next item, but I do not think a Pascal
or Ada program could be dearer.

The complicated part is the processing of each "passive
thing," which usually consists of elaborate manipulations of
various data structures, The algorithms literature considers it
good form to describe these manipulations in terms of opera-
tions on abstract data types. OOP usually handles abstract data
types very well, so it is actually very good for this kind of work.

BUT THAT'S NOT REALLY OBJECT ORIENTED
I>m quite happy with the general method ofwriting =tradi-
tional" algorithms using OOP because (1) the program struc
tures correspond well with typical algorithm description, (2)
there's good potential for reuse o f abstract data type classes,

14

(3) it's dearly suitable for implementation in an 00 language,
and (4) it nicely groups together the algorithm data in the
AlgorithmXManager cIass.

A recurring theme among complaints about OOP is that it
is "not really object-oriented." But OOP solutions to problems
are often rejected as not being faithful to the principles of
object orientation because of a misguided idea of what objects
are about.

THE PRINCIPLES OF OOP
What does it mean for a solution to be object-oriented? On
what basis are these kinds of solutions rejected? Are these ideas
valid and, if so, are they important enough to make us discard
good solutions?

The standard definition of an 00 language says that it
should support encapsulation, polymorphism, and inheri-
tance. True, but these are language features. not a set of guid
it* principles. The dictionary is even less helpful. Mine traces
the word object to the Latin objectum, literally meaning "some-
thing thrown before or against." Its roots are the words ob
(against) and jacio (to throw). Since we are interested in per-
ceptions of OOP, lefs find out what people on USENET think.

David Myers (dem@meaddata.com) writes:

Once people learn Object-Oriented Design, they seem to
fall into two schools of thought. I'm interested in your
thoughts on which, if either, is more correct.
The first camp I'll call "Strict OOD." They believe that all
functions that need to modify some object must necessarily
be member functions ofthat object....
The second camp I'll call «Reality OOD." They don't be-
lieve in taking things as far as the first camp ifthe resulting
model wouldn't fit with their perception of reality..,The

Reality OOD folks want to build an 00 system so that its
components closely represent the world they are trying to
model

and later expands:

You want to model a cow, and want to get milk from the
cow and put it in a vat...Strict OOD might say, "Just add a
method 'Cow, milk yourself,> which puts the milk right in
the vat. Leave the details to the cow." Obviously, Reality
OOD would say something different. "Cow, present ud-

THE SMALLTALK REPORT

m SMALLDRAW - RELEASE 4 GRAPHES AND MVC, PART 3

WINDOWBUILDER
The Interface Builderfor Smalltalk/v

.0g¢IE !» Al,In mize opt»ni

C

The key to a good application is its user interface, and
the key to good interfaces is a powerful liser interface
deve]inent tool.

1 8.10......
19 I

T»«*Me Evc-'- *233 ·0582.
#A-of, *1

1.rDD..1 1 ..t'm: 0.,c' ./.1 <<: I......p 11
Edi * S=lcd

U.. 1/Ald E./.a
C.

 | 442E-Ii- -73 .itmap
flip

Imilmil""/00... lf**32 1%3**%1 1

For Smalltalk, that tool is WindowBuilder.

Instead of tediousy hand coding window definitions and
rummaging through manuals, you'll simply "draw" your
windows, and WindowBuilder will generate the code for
you. Don't worry - you won't be locked into that first,
inevitably less-than-perfect design; WindowBuilder
allows you to revise your windows incrementally. Nor will
you be forced to learn a new paradignly WindowBwilder
generates standard Smalltalk codes and fits as seamlessly
into the Smalltalk environment as the class hierarchy·
browser or the debugger.

Our new WindowBuilder/V Windows 2.0 is now available
for $149.95, and WindowBuilder/V PM ia $295. Both
products include Cooper & Peters' unconditional 60 day
guarantee.

"... this is a potent rapid application development tool which
should be included in any Smantalk/V developer's enviromnent."

- Jim Salmons, The Smautalk Report, Seprember 1991

For a free brochure, call us at (415) 855-9036, or send us a
fax at (415) 855-9856- You'll be glad you did!

COOPER & PErERS, lic, (foRIERU ACUMe. Sofrw.Rd 2600 Ei CAMINO REAE, Suir€ 609 PA,0 Atro. CAtifo,Nu, 94306 Poze 415 855 9036 FAX 475 855 9856 Co.pus:,ve 71571,407

self changed: #rectangle with: self clipboardDisplayBox]

Note that all pasted objects become the current selection by
setting the value part of the Association to true. Making dupli-
cates of objects can be simplified by defining a duplicate opera-
tion that bypasses the Clipboard:

dupUcate
•Add a copy of the current selection without changing the Clipboard."
self hasSelection ifrnie: [newObjects i

newobjects := (self selectedObjectasociations deepCopy do' [:oa !
oa key translateBy: self pasteoffset]).

self deselectAiL
self objects addAllfirst: newObjects.
self changed: #rectangle with: self selectedObjectsDisplayBox]

COMMAND KEYS

As an input device, the mouse is a convenient mechanism when
working with modern bit-mapped graphical user interfaces.
However, it is often faster and less tiring to perform a com-
mand via the keyboard than to make a selection from a menu.

Keyboard commands are distinguished from normal typing
by pressing a combination of two keys: the command key and

SEPTEMBER 1992

a letter key. The command key looks Iike X on the Macintosh
andisthealt keyon the IBM RS/6000. Other platforms may
vary. The Smalltalk class InputSensor refers to the command
keys as attor meta (depending on the platform) and responds
when either is pressed through the messages altDown and meta-
Down, respectively.

Command key equivalents can be defined for most ofthe
operations that SmallDraw performs. Borrowing from a popular
commercial structured graphics application, the following keys
are used to invoke the following operations:

key ____ - operation
X cut

c copy
v paste
f move forward
j move backward
d duplicate
a select alt
k align

g group
G un-group

11

[In Small[)raw] the controller is
independent of command key processing

and additional keys may be added
to the model without changing the

controller's method.

The Smalll)rawControtter is responsible for all input, and can
now check for keyboard activity in its normal control se-
quence. All of the operations listed above are performed by the
SmaliDraw model. When the controller senses that a command
key has been pressed, it forwards the key to the model for pro-
cessing. This way, the controller is independent of command
key processing and additional keys may be added to the model
without changing the controller's method. The SmallDraw in-
stance method that processes command keys looks very much
like the list ofoperations above:

processCommandKey: aKey
'Respond to aKey which may correspond to one of the receiver' s

menu commands. If not, ignore it. '
aKey = Charader backspace ifh'ue: [self derete].
aKey= Sx imue: [self cut].
aKey=$ciflrue: [self copy].
aKey = $v iffrue: [self paste].
aKey = S f ifrrue: [self moveForwardl.
aKey = $j i frrue: [self moveBackward].
aKey= id ifhe:[setf duplicate].
aKey = $a ifrrue: [self selectAll].
a.Key = ikinrue: {self doAtignment].
aKey = $9 imue: [self group].
aKey = $(; imue: [self unGroupl.

SmallD]:aw menus are modified to indicate the keyboard com-
mands that maysubstitute for menu operations (see Figure 3):

SmalmrawController is only slightly modified in order to han-
die keyboard events. One method is added to detect and pro-
cess any keyboard activity:

new >
selection >

12.fty cut (alt-x)1
(alt-c)

display > paste (alt-v)
- duplicate (alt-d)

select all (alt-a)

12

1 SMALLDRAW-RELEASE 4 GRAPHICS AND MVC PART 3

prooes:Keyboard
"Determine whether the user pressed the keyboard. If so, read the

key and pass it on to the model."
seW sensorkeyboardPressed ifrrue: [1 keyHit 1

KeyHit:= self sensor keyboardEvent keyValue.
Check for backspace here.'

keyHit = Character backspace iffrue:
[self model ptocessCommandKey: keyHit].

(self sensor altDown or: [self sensor metal}own]) ifrnle: [
'KeyValues are lowercase so we must convert to uppercase if the

shift key is down.•
self sensor shiftDown iffrue:

[ke,Hit:= ke]Hit asUppercase].
self modelprocessCommandKey: keyHit]]

and one inherited method is overwritten to include the key-
board method jn its control loop:

©DitrolActivity
.Rird checkthe keyboard and then do the usual'
self process](eyboard.
super controtActivity.

SCROLLING THE VIEW

Small.DIawView can become a scrollable view by defining it as a
subclass o f ScroUingView. The class comments for ScrolUngView
include the following information:

Subclasses must implement the fotk>wing messages:
accessing

displayObject
scrolling

scroUBy:
scroll.Horizontally:

scroUVertically:

Display Object must be able to respond to the message bounds.
DisplayObject is the object being scrolled in the view, in this case
the SmallDraw drawing. Smalmra•View needs to know how big
the Small.Draw document is so that the scrolI bars can be prop-
erly scaled. SmaILDraw's new instance variable, pages, is an in.
stance of a Point that defines the number of pages lined up hor-
izontally and vertically. The minimum is 1@1, or one page. For
two pages side by side, pages would be 2@1, and so on. The
document automaticaliy increases in pages if objects are trans-
lated or scated such that they extend beyond the rightmost or
bottommost pages of the document. The SmalmawController
ensures that objects are not allowed to extend beyond the left-
most or topmost pages.

The size of the document is obtained by asking SmallDraw
for its bounds:

bounds

'0@0 extent: self documentSize

where the page configuration is converted to pixels by multi-
plying an 8 1/2 x11 inch sheet ofpaper (assuming 1/2 inch
margins all around) by the number of pixels per inch:

documeniSize

'Answer the size of the document in terms of the number of 8.5 x

THE SMALLTALK REPORT

11 meh pages.•
gelf pages * self pageSizeInPixels

pageSizeInPixels

'Answer the size of one 8.5 x11 inch page (with 1/2 inch margins),
scated by the number of pixels per inch (72), This number is
calculated as: ((7.5@10) * 72) rounded."

140@720

To ensure proper scaling of the scrolled object, Small-
DrawView defines the following method:

dataExtent

self displayabject bounds extent * self displayScate

Scroll bars rely 011 a scrolling grid in which the inherited value
for scroll(kid is 1@1.Using pasteOffset, Sma©rawView can be
defined so that scrolling occurs in larger intervals. SmaUDIawView
provides a menu option to turn the grid on or off mid Small.Draw-
Controller uses its view's grid for selecting points in the view.

Opening SmallDIaw with a scrolling view is done as before
by placing the SmallDrawView in an EdgeWidget*rapper but now
a horizontal scroll bar is also induded (see Figure 4):

openScrolling
"SmallDraw new openScrolling"
ScheduledWindow new

label: 'SmaUDraw':

component: (EdgeWidgetWrapper on:
(SmaRDIawView model: self)) useHorizontaiScroUBar:

openWithExtent: 200@200

10---/Lsmallitraw -irigMED
W

@ 1> 7 I.

Figure 4. Two scrolling views (25% and 100%) and mo pages side by side.

SUMMARY

Building on the first two SmallDraw articles, this final article
has presented further enhancements to SmaNDraw to demon-
strate Release 4 graphics and MVC application construction.
Though far from perfect, it should give beginners a good start
on their own development

Certainly many improvements and enhancements can be
made to SmallDraw. New types of graphic objects, such as
Text, Images, and Bezier curves (included in Release 4.1),
can be added- Other object operations can be defined, such
as rotation, smoothing of polygons, editing individual points
on a polygon, undo, or auto scrolling of the drawing while
translating or scaling objects beyond the extent ofthe view.
Advanced functionality can be provided to allow for saving
drawings to files, PostScript or LaTeX printing of the draw-

SEFIEMBER 1992

VOSS
Virtual Object Storage System for

Smalltalk/V

Seamless persistent object management
for all SmalitaikN applications

e Transparent access to all kinds of Smalltalk objects on disk
e Transaction commit/rollback of changes to virtual objects.
• Accessfoindividualelementsof virtualcollections forODBMSup

to 4 billion objects per virtual space; objects cached for speed.
0 Multi-key and multivalue virtual dictionaries for query-bunding

by key ralige selection and set mtelsection. (np)
0 Works directly with third party User Interface & SQL classes etc.
* Class Restructure Editor for renaming classes and adding or

removinginstancevanablesallow.sapplicationstoevolve. (np)
* Shared access to named virtual <>bject spaces on disk; object

portability between Images Virtual objects are fultv functional.
e Source code supplied.

Some comments we have rectived about VOSS·

"...ciean ...elegant. Works like a charm."
-Hol }fildibratid, Aiianet i,bornieyies

'Works absolutely beautifullv; excellent performance and
applicability" -Ruu/ Dumn, Mim,genic.Instrumenls

VOSS/286 $595 (Personal $ 199), VOSS/Wnidows $750 (Personal $299)
(Pe, sonal versions exclude items ria,ked (np))
Quantity d,scounts from 30% fortwoor more copies (Ask fur details)
Visa, Mastereard and EurICard accepted Pleaseadd $15 for:hipping

A_R T S TEL: +44 223 212392 FAX: +44 223 245171l ogic Arts I ld 75 Hemingford R„ad, Canibr,dge, England, CB' 3BY

ing (e.g., a GraphicsContext subclass that outputs
PostScript), or sharing of graphic objects with other
Smalltalk applications.

The complete source code corresponding to each of the
three SmaliDraw articles can be obtained from the University
o f Illinois and Manchester archives. They are identified as
SmallDrawl, SmallDrawl, and SmaliDraw3. The source code
is available to all with no restrictions. I ask only that proper
credit be given so that I may bear from those who have
benefited. I also encourage those who make improvements or
additions to SmallDraw to make them available through the
archives for others' education and use. E

Dan Benson conipleted his PhD in Electrical Engineering at the Uni-
versity of Washington where he developed a 3-D spatial database for
human anatonzy using Sittalitalk and tlze GeniStone ODBMS. He is
now a Research Scientist with Sierrwns working in the area of Image
Management and Distribution. He may be contacted at.· Siemens
Corporate Research, Inc., 755 College Road East, Princeton, NJ
08540, or by email: benson@siemens.siemens.com.

F*%124«494*Te SUBS(*1*22*049411%492%41

The Smalltalk Re,••, |

13

- TIE TOP NAME
-r.''

:f mA-G 5 ON
TIE BOTTOM

I OFTIE BOX

100% PURE OB -

The Smalltalk Report
e International Newsletter for Smalltalk Programmers

Where can you find the .
best in object-oriented training? 4

The same place you found
the best in object-oriented
products. At Digitalk, the
creator of Smalltalk/V.

Whether you're launching
a pilot project, modernizing
legacy code, or developing a
large scale application, nobody
else can contribute such inside

expertise. Training, design,
consulting, prototyping,
mentoring, custom engineer-
ing, and project planning. For
Windows, OS/2 or Macintosh.
Digitalk does it all.

ONE-STOP SHOPPING.

Only Digitalk offers you a
complete solution. Including
award-winning products, proven
training and our arsenal of
consulting services.

Which you can benefit
from on-site, or at our
training facilities in Oregon.
Either way, you'll learn from a

hantalk¥ ,« . *
0-01.-0.9-4.- 61*'./inal€:z>.belil

n=TIN
staff that literally wrote the
book on object-oriented
design (the internationally
respected "Designing Object
Oriented Software").

We know objects and
SmalltalldV inside out, because
we've been developing real-
world applications for years.

The result? You'll absorb

the tips, techniques and
strategies that immediately
boost your productivity. You'll

1

reduce your learning curve,
and you'll meet or exceed
your project expectations. All
in a time frame you may now
think impossible.

IMMEDIATE RESULTS.

Digitalk's training gives
you practjcal information and
techniques you can put to
work immediately on your
project. Just ask our clients
like IBM, Bank of America,

Progressive Insurance,
b Puget Power & Light, U.S.

Sprint, plus many others.
And Digitalk is one of only
eight companies in IBM's
International Alliance for

AD/Cycle-IBM's software
development strategy for the
1990's. For a full description
and schedule of classes, call
(800) 888-6892 x412.

Let the people who put
the power in Smalltalk/\4 help
you get the most power out of it.

DICITALK I

November/December 1992

EXCEPTION TO

TAKING

SMALLTALK,
PART |

By Bob Hinkle 6 Ralph E Johnson

Contents:

Features/Articles

1 Taking exception to Smalltalk,
Part I

by Bob Hinkle & Ralph E. Johnson
Columns

5 GUE Significant supported events in
SmalltalldV PM as illuminated in
Window Builder

by Greg Hendley & Eric Smith

9 Ge#ing Rea/.·How to manage source
without tools

by Juanita Ewing

12 The Best of comp.jang.smalltalk
by Alan Knight

15 Smalitalk idioms: Collection idioms
' by Kent Beck

20 Putting it in perspective:
Describing your design
by Rebecca Wirfs-Brock

Departments
22 Book Review.· OBJEcT-ORIENTED

ENGINEERING by John R. Bourne
1B by Richard L. Peskin

23 Highlights

Volume 2 Number 3

xception handling is an important part of many languages. Al-

E though not provided in the original Smalltalk-80 or in Smalltalk/V,
it is supported in the latest version of ParcPlace's Smalltalk-80. This
article will show how to build an exception handler for any version
of Smalltalk and will use Smalltalk/V 286 as an example. Along the

way, we'11 show you why it's useful for languages to treat seemingly internal
mechanisms such as processes and contexts as first-class objects.

The exception handler was first built for an early version of Tektronix>s
Smalltalk-80. It was modeled after a version described in an article by Evelyn Van
Orden,1 and we used it in the type inference system of Typed Smalltalk.2 When we
ported Typed Smalltalk to Parcplace Smalltalk, we wanted to use their faster ex-
ception handler, so we modified ours to be compatible. Thus, our exception han-
dler is similar to ParcPlace's, but less powerful. We then developed the V 286 ver-
sion described here, both to test the generality of the solution and to make the
work interesting to a wider audience.

A QUICK LOOK AT EXCEPTIONS

Brietly speaking, exception handling is the provision for non-lexical flow of con-
trol in a program when something out ofthe ordinary (i.e., exceptional) occurs.
An exception handler is a part of the program (usually a block in Smalltalk) that
can deal with some possible but unlikely event, such as reading past the end of a
file, dividing by zero, or referencing out ofbounds iii an array. In the usual
scheme, a program registers an exception handler for a particular kind of event
and then continues with its normal processing. If an exceptional event does occur,
a signal is raised as a notification to the system. The system finds the last handler
that was registered for that signal by searching down the context stack. If one is
found, control passes into the exception handler. Depending on the system, the
handler will have different options. The handler can usually make whatever
changes are necessary; execution can then resume where the signal was raised or
where the handler was registered, or return from where the handle was registered,

This deacription showi that implementing an exception handler requires ac-
cess to processes and their context stacks. An exception needs to search the con-
text stack to find the correct handler for a given signal and implement non-local,
control flow. As a result, exception handling could only be added to traditional
languages by the language designer. In Smalltalk however, where processes are
objects and contexts can be objects, exception handling can be added by a pro-
grammer. Smalltalk>s first-class treatment of contexts is one aspect of a concept
called reflection, which is the idea that languages and systems should objectify
their internal mechanisms to make them accessible to the programmer. In that
wah programs can monitor and change their behavior, in a sense reflecting on
themselves. Our example of exception handling shows how some re flectiveness
makes a language more adaptable.

contTiI,ed on pnge 3.

EDITORS'
CORNER

tohn Pugh AW ite

nother OOPSIA has come and gone. This conference represented a significant milestone,
both personally (since it's finally done and behind us!) and as Smalltalk users. Based on
this conference, it would appear the language wars o f the past are now over. Smalltalk is
definitely well-entrenched as the language of choice within many organizations and few, if
any, ofthe so-called research-]anguage-type complaints about Smalltalk were to be
found. Smalltalk bas clearly made it.

Interestingly, the void left by the language wars seems already to have been filled by a
full-tledged, drag-em-out war over methodologies. It seemed there were nothing but
methodology tools vendors on the exhibit floor. Many were designed specifically for
methodologies such as Booch or Rumbaugh, while others were "applicable to all method-
ologies" (which, of course, more often than not means "useful for none").

Two aspects of this methodology war are worth noting. First, it is not clear that any
onie will emerge as the winner. That is not such a bad thing. Iust as no one language is ap-
propriate for all applications, even within an organization, no one methodology should be
applied universally. Like the language wars before it, though, this plea for reason and tol-
erance will likely be lost among the battle cries.

The second and more subtle aspect of th is war is that these methodologies seem better
geared for the C++ world. Smalltalk developers seemed, for the most part, removed form
the debate. They talked much more about tools that would help you deliver and much less
about methodologies. We will have more to say on this subject and the need for better
tool5 that go beyond any particular methodology in future issues.

It is with great pleasure we introduce Ralph Johnson and Bob Hinkle, two well-known
members ofthe Smalltalk community, as our featured writers this month. Over the next
few issues, they will address in detail the issue of exception handling using Smalltalk. This
is a topic important to all computing languages and one that is often misunderstood. In
their opening article, they describe the interface for their exception handler, along with
the machine-independent aspects of its implementation.

Also in this issue, Kent Beck continues his survey of the Collection classes, highlight-
big interesting facts about many of the more popular classes. Rebecca Wirfs-Brock
speaks about the need for properly described classes and applications. Juanita Ewing de-
scribes a straightforward mechanism for managing source code on small projects. Greg
Hendley and Eric Smith survey the events supported by PM's Pane classa. Richard Pe-
skin reviews John Bourne's new textbook, written for engineering programs that intro>-
duce the object-oriented paradigm. Finally, Alan Knight returns with more discussion
from the USENET world.

Happy holidays to all!

410 -1-4 9-·0690

The Snialttalk Report (]SSN# 1056-7976) i, published 9 time. a mr, rvery mul#h excepl for the Mar/Apr, fuly/Aug, and Nov/Dec combined issues
Published b, SIGS Publications Inc.. 588 Broadway. New York. NY]00 2 (212)274 0640 © Copyright 1992 by SIGS Publications, Inc All -ight, re-
served Reproducion of th,5 material by electronic transmissin. Xerox or any other method witi be maned as a willful violation of,he US Copyr®lt
2 0%. Ind 98 fl lily prohibited Materia] maybe reproduced with express permission from the publishers Mailed hrst Class. Subscnplion rates I year, (9

GAM) domestic, 565, Foreign amd Can,da. 690, Single copy price, $8.00 POSTMASTER Semi nd.Ire» chang„ ind subscriplion orders to: THE
bwi L] Al K R]:Polu, Subscriber Services. Dept. SML, P.O. Box 3000, Denville, NI 07834. Submit art,cles to the Editors at 91 Second Ainue,
Ottawa, Ontario KIS ZH4, Canada.

2

The Smalltalk Report
Editors
John Pugh and Paul White

Carleton University & The Object People

SIGS PUBLICATIONS

Advisory Board
Tom Atwood. Objec Design
Grady Booch, Rational

George Bosworth, Digitalk
Brad Cox, Information Age Consulting

Chuck Duff. The Whitewater Group

Adele Goldberg, Parcplace Sy„ems
Tom Love, Orgwore

Bercrand Meyer. ISE

Meilir Page-]ones, Wayland Systems
Sesha Pratap, Centerlne Software
P. Michael Seashols, Yersant

Bjarne Stroustrup, AT&T Bet] Labs
Dave Thomas, Object Technoiogy liternational

THE SMALLTALK REPORT

Editorial Board

jim Anderson, Digitalk

Adele Goldberg, pariplace Systems
Reed Phillips, Knowledge Systems Corp.

Mike Taylor, Digitalk
Dave Thomt Obiect Technologi Interrational

Columnists

Kent Beck Fir,t Class Sofv,are

juanita Ewing, Dgilalk
Greg Hendley, Knowledge Sy5tems Corp.
Ed Klimas, Linea Engineering Inc

Alan Knight, Carieon Unlversky
Suzanne Skubks. Object Technology·International

Eric Smith, Knowledge Synems Corp.
Rebecca Wirfs-Brock, Digitalk

SIGS Publications Group, Inc.
Richard P. Friedman

Founder & Group Publisher

Art/Production

Kristina Joukhadar, Managing Editor
Susan Culligan. Pilgrim Road. Ltd . Creative Direction
Karen Tongish, Production Editor
Jennifer Englander, ArdPred Coordinator
Circulation

Diane Bad,4ay, Circula:In Business Manager
Ken Mercado, Fuifillment Manager
John Schreiber, Circulaton Assistant

Vicki Monck arculation A.,stant

Marketing/Advertising
Diane Morancie, Adverosing Mgr- East CoasUCanada
Holly Meinrzel·. Advertising Mgr-West CoasdEurop;e
Helen Newling, ExhibidRecruilment Sales Ma,Ver
Sarah Hamilton, Promotions Manager-Publications

Loma Lyle, Promotions Mwier«Inferences
Caren Polner, Promooons Grapk Ast

Administration

Ossarna Tomoum, Business Manager
David Chatterpaul, Accounting

Claire Johnston. Code,·ence Manager

Cindy Baird, Technlcal Program Manager
Amy Stewart, Projec. Manager

Margherita R. Monck
General Manager

.SICS
Publlhers of JOURNAL oF OajECT-ORIENEED FflM;Nd

08*Cr MAGAZJNE HoruNE 0,1 0*ST·01-TED TECHNOL£,GY.
C++ REPORT. THE SMALLTALK REPORT. THE INTERNATION

OOP DiRECTORY. and THE X JOURNAL

THE SMALL.'1'Al.K REPOR r

ples is cursory at best. There is a need in this section for empha-
sis on real examples. The non-electrical engineering coverage is
understandably the weakest, but his circuit simulation example
is again too detailed with emphasis on code rather than simula-
tion of physical behaviors. As in prior parts of the book, details
of extraneous subjects take up too much space-the external in-
terface description is a notable example. While Bourne does not
face some critical issues in engineering applications of Smalltalk,
such as handling of large numbers of objects generated in tech-
nical computations, he does address performance problems with
a discussion of user primitives. However, he confuses user prim-
itives (which are limited by the context loss across calls in PPS
release 4) and atrue C interface (not yet released for PPS at this
writing), Table 12.2 illustrates the serious problem with this
book. It is a method listing consisting of user prims (<primitive:
11106>, etc.) with no comments, and is presentedi before the
reader is even introduced to the necessary semantics. The book
does end with a fairly good discussion of simulation and
Smalltalk applications in simulation. Perhaps this discussion
should have been presented much earlier.

All in all, I was disappointed. Given the great need for
books and monographs on scientific and engineering applica-
tions of Smalltalk, perhaps I expected too much. In all fairness,
the book is accompanied by an instructor's manual and code
disks, which were not available in time for this review. Perhaps
their presence would have presented the text in a different
viewpoint. Future books on this topic should emphasize
Smalltalk as a behavioral paradigm for computational simula-
tion of physical processes. This important " forest' should not
be hidden by "trees" of small details. i

Richard L. Peskin is Professor of Mechanical and Aerospace Engi-
neering at Rutgers University and director of the CAIP Center Com-
putational Etigineering Systems Lab. He has been involved with engi-
neering and scientific aspects of Smalltalk since /984. In addition to
doing research in computational fluiddynamics and non-linear dy-
namics, he is one of the designers of the SCENE (Scientific Computa-
tion Environmentfor Numencal Experimentanon) system, a
5'mallialk-based distributed computing environment that implements
computational steering tools such as interactive scientdic graphics
and data management, automatic equation solvers, and mathemati-
cal expet t systatus.

Highlights
Excerpts from industry publications

CONCEPTS

.. In m051 languages, learning to program means learning the
syntax. Learning to program in Smalltalk, however, involves
much more. The programmer must have a clear grasp of ob-
ject-oriented concepts. In addition, Smalltalk's development
environment strongly influences the entire approach to
software creation. It is absolutely essential that the developer
become familiar with the classes provided by the Smalltalk en-
vironment. Although this can take some effort, it's a prerequi-
site for developing more than the most trivial programs. Fortu-
nately, this is an interesting activity and is one of the best ways
to]earn Smalltalk,

An eorfui of Smc#talk John D. Wimoms, PCAL 9-50/92

TASKS

- The tasks in an object-oriented effort are different- New
tasks are required to identify, characterize and document ob-
jects. These tasks focus on identifring objects and the interac-
tions required of these objects to provide a system that meets
stated requirements. Object-oriented efforts, like other devel-
opment approaches, need requirements and design
specifications. Yet these documents localize around objects,
and not functions or data. In addition, these specifications
clearly delineate which components are reused from an in-

NOVEMBER / DECEMBER 1992

house reusability library and which are developed from scratch
to support the application at hand. Tasks associated with the
construction of structure charts data flow diagrams and other
function- or data-oriented modules are obsolete and replaced
with modeling approaches more in concert with object-
oriented development.

Designing the object-odented way, Ron Schultz,
OPEN SySTEMS TODAY, 7/20/92

END-USER DEVELOPERS

. . . No fundamental change in the pace of software develop-
ment can occur until there is a significantly higher level of appli-
cation development. In other words, end users must become de-
velopers. Object-oriented programming could allow end users
to do just that. The ideal application development environment
would consist ofenormous libraries of prefabricated, modular
program parts (super high-level objects). These modules could
be configured and combined in virtually unlimited combine-
tions to build complete applications across the entire spectrum
of software use. Applications would be built exclusively in a
high-leveI tool of this sort. Conventional code-level program-
ming would focus on creating object components....End users
would have unprecedented programming opportunities.

The new shongr)40?,Joseph Firmoge, SOFTWARE MAGAZINE 7 192

23

T

A-

B EOOK REVIEW : Rictianit. Peskin

OBJECPORIENTED ENGINEERING
by John It. Bourne

T he subtitle of this book is Bu#ding Engineering Systems
Umig Smalltalk-80. It is to Bourne's credit that he ad-
dresses the important topic of engineering applications

of object-oriented software systems. While simulation was a pri-
mary target of earlyobject-oriented languages, such as Simula
and original versions of Smalltalk, more recent activity iii the
subject area appears to emphasize business applications, data
base applications, etc. If Smalltalk is to take its place alongside
more commonly accepted languages, its success in scientific and
engineering applications will have to be demonstrated on a
much broader Scale than is present today. Bourne>s effort pro-
vides an important step in that directions namely a book tbat ad-
dresses uses of Smalltalk in the engineering domains.

The author has made some valuable contributions to appli-
cations of Smalltalk iii the college classroom, one example be-
ing his work on engineering tutorial systems implemented in
Smalltalk, The book, however, is somewhat disappointing as a
classroom tool or general resource for engineers who want to
learn more about Smalltalk's potential for technical applica
tions. The material is much too general in its treatment of ac-
tual engineering applications, yet at the same time contains too
much code-*vel detail without providing sufficient prepara-
tion for beginners.

Part I is an overview of general concepts such as representa-
tion of physical processes in. terms of objects and behaviors. A
serious defidency is the lack of historical perspective and pre-
sentation of important recent contributions in engineering ap-
plications of Smalltalk. Notably absent is any mention ofthe
contributions of the (now defunct) Tektronix group. Applica
tions such as INKA, a system that assists in instrument service>
represent important real engineering Smalltalk projects. Also
omitted are the contributions of Thomas et al. on the uses of
Smalltalk itt realtiine instrumentation and control, work done
at Rutgers on scientific data management, and other real-world
cases discussed in recent journals and proceedings. Engineers
need to be motivated by actual applications.

Turning to more specific issues, this reviewer would have
liked to have seen more emphasis on behavioral paradigm, as
opposed to software structural aspects (inheritance, etc.). En-
capsulated behavior of objects is the crux of what Smalltalk has
to offer engineering simulation. Bourne puts much emphasis
on the MVC paradigm and attempts to draw real-world analo-
gies Not only is MVC outof date,but theauthor's analogies

22

are somewhat questionable, My greatest criticism of this part,
and of the book as a whole, is the emphasis it places on use of
ACOM cards for the '°pre-specification» of a Smalltalk design.
Bourne goes so far essay that one must use 4x6 cards as op-
posed to 3x3 cards for writing down the desired classes, prom
cols, etc. This approach refiects the traditional "specification"
approach to software, not the interactive prototyping style that
is Smalltalk's forte. Although he references a 1986 paper by
Cunningham and Beck as his rationale for emphasis on ACOM
cards, my own reading of that paper was that cards were only a
"literary aide" to help explain 0-0 concepts. The first part of
the book ends with an overview of other 0-0 languages, in
which the author does emphasize the importance of having a
complete class library for a particular 0-0 environment to be
of real benefit.

Part II concentrates on "tools," namely the Smalltalk tail-
guage and environment. This section does not flow smoothly
from topic to topic and I fear it will be difficult for beginners to
follow. Smalltalk code examples are presented in numerous
figures without proper preparation for the lay reader. Perhaps
Bourne intended this section to be covered by additional class-
room material In addition to Smalltalk specitics, this section
covers issues such as 'look and feel" (but omitting that PPS re-
lease 4 does not have a complete native platform look and feel)
and biteditors (without making clear that release 4 does not
reallysupport this and Pens as part of the system). As in Patti,
great store is place on the ACOM card method and how to
transfer information from the cards to the Browser. However,
there are some useful pieces in this section. While the discus-
sion on page 147 mixes animation with drawing, at least one is
shownh:ow to draw a line using PPS release 4. Chapter 8 con-
centrates on MVC. There is too much detail particulart about
the viewBuilder, and that level of detail is really not germane to
the subject of engineering applications- It is interesting to note
that the author's own code example for MVC illustrates the
typical MVC problem; that is, where to put drawing methods.
The «Counter" examples ParcPlace used to distribute would be
better ill this context. The author discusses the "Pluggable
Gauges" package (from KSC), but doesn't refer to the active
value concept that is central to that package and important to
engineering applications,

Part III deals with engineering applications, which I found io
be the most disappointin; Most of the discussion about exam-

THE SMALLTALK REPORT

TAKING EXCEPTION TO SMALLTALK con#nuedfrom page I

This article and: its sequel next month present a Smalltalk im-
plementation of exception handling. This month, we?11 describe
the system's interface and the machine-independent aspects of
its implementation. Next month, we'11 complete the picture by
describing the V 286-specific implementation.

THE EXCEPTION HANDLING INTERFACE

At the heart of the exception handling system are tile classes
Signal and Exception. An instance of Signal represents art excep-
tional event that might occur and its most important methods,
handle: do: and raise. Sending handle:do: to a Signal object regis-
ters a block that can be evaluated if that event occurs. For ex-

ample, suppose OutO]BoundsError is a global variable that holds
a Signal object. As the name implies, this signal is intended to
signify out-of-bounds references in arrays and might be used
in a method of class Array as follows:

cheekfifthElement

OutOfBoundsError

handle: [:exception [self handleException: exception]
do: I telf at 51

The effect of handle:do: is to evaluate the second parameter
(do: block), with the addition that a raised OutomoundsError

will be handled by evaluating the first parameter (handle:
block). So, as you might expect, evaiuating #(12345) check-
Fifthmement will return 5, but evaluating #(1 2 34) check-
Fifthmement will cause the block [:exception self handleExcep
lion: exception] to be evaluated. What happens next depends
on Array»handleException: It might define a default value for
that array, prompt the user for information, or form some
other appropriate response.

For this scheme to work, the system must use OutO]Bounds-
Error to signify the out-of-bounds condition. This can be done
by sending the raise message to OutOf.BoundsError in the midst
of att (and methods like it), as follows:

at: anIndex

<primitive: 60>
(self outOfBounds: anIndex)

ifrrue: ['OutOmoundsError raise]

One interesting aspect of the handleException: message is its
parameter exception, which is an instance of the class Exception.
Each time a signal is raised, a new exception is created to ob-
jectify that fact. The exception is a convenient place to encap-
sulate information about both the signal and the context in
which it was raised. Particular error information or a special
error message can be associated with an exception by using
variations of the raise message, in this case raiseWith: and
raiseErrorString:, respectively. In this way, an exception han-
dIing block can learn a great deal about the error by accessing
the exception, which allows it to respond more intelligently.

In addition, class Exception provides support for common
exception-handling techniques, including the messages
proceed, reject, restart, and return. When an exception pro-
ceeds, control resumes in the context where its signal was

NOVEMBER/DECEMBER 1992

Universal Database

OBJECT BRIDGE TM

This developer's tool allows Smalltalk to read and write to:
ORACLE, INGRES, SYBASE, SQL/DS. I)82, RDB, RDBCDD

dBASEHI, Lotus, and Excel.
/44*j@%40%39.

IFIntelligent Systems, Inc.
1 506 N Sfate Street. Ann Arbor. M! 48104 (313) 996-4238 (313) 996-4241 fox

raised, and a value can be returned if desired. This is how a
iiew default value can be defined for an array. Thus, handleEK-
ception: could be implemented as:

handleException: anException
anException proceedWith: 'Bob'

ihis wi]I cause the string 'Bob' to be returi·led as the value for
any index outside the arrafs bounds. In addition to proceed.
you can send restart to an exception. which causes the handle:do:
context to be restarted, or send return, which causes the hare
dle:do: message itself to return, again with the option of return-
ing a specified value. Finally, sending reject to an exception is a
way of saying that the current handler can't solve the problem.
The system looks for the next handle:do: context down the stack
that can handle the signal and evaluates its handle: block. These
possibilities are illustrated in Figure 1.

For the purposes of this example, we assume that Arrap>foo
is implemented as:

fbo

Transcript show: self checkFift:hElement printString

Now, if#(1234) foo is selected and evaluated, when fetch-
HandterBlock returns, the context stack will be as shown in Fig-
ure 1, with the exception>s instance variables signalContext and
handlerContext referring to the indicated contexts,

'Ihere are several ways to define Array»handleException:.
One possibility is for it to proceed from the exception, as in

1 Exception propagatePrivateFrom

2 Exception propagateFrom:

3 Signal raiseWith:startingAt:
extra String proceed:

4 Signal raise

3 Array at: - signal{Jontext

6 Signal handle:do: - handlerContext

7 Array checkFifthElement

8 Array foo

Figure 1. Stack during exception handling

3

handleException: exception
exception proceed

In this case, when the handle: block of handlerContext is evalu-

ated, nil will be returned as the value of the Anay>>at: message
send, the fifth context on the stack. and execution will proceed
in the sixth context. However, if handleException: is defined as

handleException: exception
exception return

then nil will be returned as the value of the Signal»handle:do:
message send corresponding to the sixth context on the stack,
and execution will proceed in the seventh context. Using
restart, as in

handleException: exception
exception restart

will cause the handlerContext, the sixth context on the stack, to be
restarted from the beginning, in effect reevaluating the do: block.
Finally, the exception handler niay reject the Exception, as in

handleException: exception
exception reject

In this case Exception>>propagateprivateFrom: will be called
again, but this time the search for a handler will proceed
downward from the context just below the handlerContext, in
this case the seventh one on the stack.

46

Briefly speaking, exception handling
is the provision for non-lexical

flow of control in a program when
something out of the ordinary (i.e.,

exceptional) occurs.

There is one final part of the system that interacts with ex-
ception handling, though it's not implemented in either of the
above two classes. This feature is something called an unwind
mechanism, which is away for a programmer to ensure that
certain actions are performed, even if a context is skipped dur-
ing exception handling. For example, when an exception does
a proceed, restart, or return, the flow of control jumps into
lower contexts on the procedure's stack, and any higher con-
texts are removed from the stack without ever returning to
:them. This can be a problem: The contexts that were skipped
might have performed some clean-up actions, such as closing
files or releasing semaphores, ifthey'dbeen allowed to finish
execution and return normally. Skipping these contexts during

4

=TAKENG EXCEPTION TO SMALLTALK, PART 1

exception handling means skipping important clean-up jobs.
The solution to this problem is to define a special method,
whose purpose is to ensure clean-up block5 will be executed,
even in the presence of exception handling. The name of this
method in Smalltalk-80 is valueOnUnwindDo:. Assuming
aCollection is defined, evaluating

[aCollection checkfifthETement]
valueOnUnwindDo. [Transcript show: 'Time to clean up!']

will cause the first block, [aCollection checkfifthElement], to be
evaluated. Ifatollection has five or more elements, the value of
the fifth element will be returned, and notliing more needs to be
done. However, if aCollection has four or fewer elements, and if
the exception halidler foi· OutOfBoundsError causes control to re-
turn past the context of the valueOnUnwindDo: method (in effect
skipping it), the second block will be evaluated, allowing any
clean-up or finalization to be done, In Smalitalk-80, unwind
blocks are even executed if theyre skipped by a normal method
return, because up-arrow is treated just like a return from an ex-
ception. In V 286, though, the meaning of up-arrow is hardwired
into the virtual machine, so we can't duplica Le this behavior.

THE MACHINE-INDEPENDENT IMPLEMENTATION

Although an implementation of exception handling inevitably
delves into system specific code, much of our solution is sys-
tem independent. In fact, the same implementation of class
Signal is used for Tektronix and Digital platforms (and poten-
tially for ParcP]ace), and most of class Exception is common as
well. This section considers the systemindependent aspects of
the exception-handling package.

To begin with, there are a number of predefined signals, all
o f which are defined in the Signal class>>initialize method and
accessible using messages to Signal. These basic signals include
ones for unhandled exceptions and keyboard interrupts. Iii aid-
dition to these, a class variable called ErrorSignal is added to
Object (just be careful how you add it.) and is accessible by us-
ing Object>>errodignal.

To create a new signal, you send the message newSignal to
an existing signal. So, for example, we could create the signal
OutmoundsError by evaluating

Outuffounds EIror .= ErrorSignal newSignat

either in a workspace or (more likely) in a class initialization
method. The newSignal method creates the new object and sets
its parent instance variable to the receiver. The parent variable
in class Signal is used to provide more structure in signal han-
dling. When a signal is raised, it can be handled by an excep-
tien handler for the signal, by one for the signal>s parent or by
one for any of the signal's ancestors. In this way, a programmer
can define some general response for a tree of signals by regis-
tering a handler for the signal at the root. This response can
then be specialized by registering more specific handlers for the
signals further down in the tree.

Once a signal has been defined, sending it handle:do: regis
ters an exception handler for it. The code for handle:do: is

THE SMALLTALK REPORT

the browser. This is precisely why more recent Smalltalk pro
gramming environment extensions come equipped with mech-
anisms and tools that explicitly enable designers to package the
presentation of a class and its interfaces to casual users.

I do not want to digress into a discussion on the merits of
recent additions to Smalltalk programming environments. (I
am absolutely convinced of their utility.) Nor do I particularly
want to defend Smalltalk against languages with explicit sup-
port for public and private declarations (which have problems
in actual use). However, developers of these newer Smalltalk
environments have recognized the danger of information over-
load. Without removing detail, it may be difficult to discover
the essence of a class.

We often create an instance and only use a fraction of its
class's features. And we are completely content to do so. I
strongly advocate a written textual description ofa class, de-
scribing the typical and most important patterns of use. De-
scribe the essential 20%, 50%, or 80% (your percentage will
vary depending on how full-featured a class is and how much
exploration a programmer makes) in a few short paragraphs.
Accompany this description with a few pictures describing
typical object-interaction sequences. Leave the rest for me to
discover by either reading through a more detailed class-de-
sign document or by exploring your code and comments. If
you are trying to leave a helpful trail for users, embed a typi-
cal object-creation message with appropriate arguments in-
side a comment within an instance creation method. More

elaborate examples can be developed with detailed com-
ments, either to be filed into an image or executed,

SPEND TIME ON WHAT MATTERS

Not every class is worthy of the same amount of attention. A
class of limited utility, intended to be seen by a very small au
dience. only deserves light treatment. I am not a proponent of
mandating equal discussion for all classes. That leads to either
lots of useless boiler-plate documentation or developer
mutiny. Instead, spend the time creating a well-considered dis-
cussion for classes that provide broadly useful functionality or
are central to your design.

Complex classes that require a lot of set up or have highly
stylized patterns of usage demand extra attention. From an ex-
ternal viewpoint, I need to know common patterns of usage, as
well as how to diagnose an object that>s broker and not fine-
tioning as expected. We creators of initial designs often don't
realize how easy it is for someone else to misinterpret our
work. So this kind of discussion is definitely worthwhile, if
only to get an idea of potential hot spots.

MAKING THE CONNECTIONS

It is relatively easy to produce documentation for a class intended
to be used iii isolation. It is much harder to describe classes that

are part ofa larger framework and intended to be used in con-
junction with a number of collaborators. To use a framework re-
quires iinderstanding how objects interact, what role eacli object
plays, and when and how objects should be created and used.

NOVEMBER ,/DECEMBER 1992

A description for a framework o f interacting classes must
not only cover the central classes, but also establish a clear
model of how these classes are intended to work together. This
year's OOPSLA conference had a refreshing paper by Professor
Ralph Johnson that explained his process describing a graphi-
cal editor framework in Smalltalk, called HotDraw. HotDraw
was originally developed by Ward Cunningham and Kent
Beck. In five pages of text, Ralph described the central ideas be-
hindi HotDraw and documented some common patterns of
key objects and their interactions. A nice touch was clear refer-
ences to the next layer of detail as well as pointers to related
concepts for each pattern of use.

Simple, helpful descriptions of object-interaction patterns
are straightforward reading. They require that the author has a
clear vision of the core ideas of a framework and a simple, if
not terse, writing style.

It reminded me of the Choose Your Own Adventure books

my kids used to read. After one or two pages, you were asked a
question. Depending on your answer, you were directed to one
of two pages. You could read the entire book and get several
different stories, each with different endings. My kids were
never satisfied until they had explored all possible paths.

Documentation o f interlocking classes of objects needs this
touch. First you reed a description of core concepts. Then you
need to tour key interactions at your own pace, allowing you to
discover and explore according to your personal choices. De-
scriptions should let you navigate, point you to more detail (if
you want it), and let you move on (should you want to
broaden your understanding),

CONCLUSION

New, useful ways for describing classes of objects and groups
o f cooperating objects are active research topics. There's plenty
of room for formal techniques as well as informal descriptions.
What 1 constantly strive for are pragmatic ways to impart de-
sign insight to users.

I don't want you to leave with an impending sense of
doom or writer's block. I don't like writing reams Of papa
that no one reads. And I won't recommend that you take ex-
traordinary measures nor do what I personally am not willing
to do myself.

] especially want to appeal to you cynics who might be
thinking as you read this, «But she's a writer. Of course she can
recommend we do these things. Writing comes naturally to
her.» Writing is definitely not a natural act for me. I have to
Struggle to write concise, precise documentation. But as a user
of some pretty nicely described systems, I encourage you to
perform an enormous service to your users, Take some time to
describe how to properly use your classes. I

Rebecca Wirfs-Btock is Directoi· of Object Tedn>iology Sevices at Dig-
italk and co=author of DESIGNING OBJECT-ORIENTED SOFrWARE.
Comments, fu rther insights, or wild specO#tions ure greatly appreci-
ated by the author. Rebecca can be reached via e-mail at
rebecca@digitalk.coin. Her U.S. mail address is Digitalk, 7585 SW
Mohawk St?·eet, Tualatin, Orego,197062.

21

tjUTTING IT IN PERSPECTIVE Rebecca Wirfs-Brock

Describing your design

bjects can be simplistic and passive, holding on to
small pieces of information, or they can be busy and
active, serving an important role in framing the over-

ali architectural structure of an application. The possibilities
for what an object cah represent are limited only by human
imagination. In this column I want to explore some effective
techniques for describing classes so they can be understood,
used, and refined by others. You, the author of a ciass or a
group of collaborating dasses, know how you intend them to
be used. How can you effectively impart this knowledge to oth-
ers? However you describe a class, your original design intent
will be mulled over by different people, each with aslightly
different set of expectations, needs, and experiences.

There are basic things that need to be said about any class.
These essentials cover roughly 50% of the issues, which I'll
cover first. Then I want to explore the remaining 50% that are
often left unsaid.

COVERING THE BASICS

Each class you construct in your design has a specific purpose.
You know what the class was intended to do and probably
what it was never intended to do. (ft is easy for someone to
torture your code in ways you never dreamed of, but I don't
know how to solve that problem.) You also know whether
your creation is ofmajor or minor importance, whether you
have a polished implementation, or whether you have left
room for improvement. The exact details you need to commu-
nicate vary depending upon the role of the reader. Different in-
formation and levels of detail are needed by:

· a programmer wanting to use this class in a program

· a developer creating a subclass to add new functionality or
override existing behavior

* someone adding new functionality to your class

· anyone trying to understand a class inheritance hierarchy
· a tester developing test suites

· someone fixing a programming error

When we describe our dasses and our applications, we need
first to provide a global context (a road map of the territory).
This provides a broad view, allowing readers to widerstand how
individual classes fit into the overall fabric of your design. This
should then be augmented by a consistent discussion of classes

20

0
from both an exterior (usage) and interior (implementation)
perspective. Arguably, all potential readers of class documenta-
tion need a basic understanding of how a class shouldbe used.

Let's concentrate on what informed dass users need to know.

At first glance, to use a class, a programmer needs to know:

· what the class was designed to do and not to do
· ways to create an instance of that class and, subsequently,

how it typically is used
• what it depends on, including other objects, global states, or

host-operating system features
. where to look for further details

Subclass developers need this information to ensure that
their new addition follows the expected patterns of behavior
defined by its superclass. They should not fix one problem only
to break pre-existing contracts with all current users ofthe
class. They need even more details than users, but all proceed
from these basics.

Not all basic information is gleaned by poring over a class-
browser reading code. Some have claimed that Smalltalk's pro-
gramming environment eliminates much need to describe this
kind of information, but this is just another rather lame argu-
ment that XXX code (replace XXX with your favorite pro-
gramming language) is self-documenting.

Learning an application by reading code and performing
experiments can take a long time and often isn't the most
effective way to transfer knowledge. We designers and imple-
mentors of classes should explain how to create and use our
objects. Documentation should supplement a programmer's
ability to find and use the right classes for the job.

From an exterior view, I certainly need to know less than
someone who is intending to modify, extend, or create a subclass.
I want you, the designer, to hide those things I shouidn't care
about. I really don't want to concern myselfwith any ofthe ob-
ject's instance variables, unless you explicitly choose to give me
access to them. I also don't Care about implementation details
encapsulated within iriethods. And I certainly don't care about
code that is private, intended to be executed by sending messages
to self. So please label those private, internal details as such. Your
chosen method partly depends on your Smalltalk environment,
and partly on style guidelines used within your organization.

Understanding how to create and use an object can some-
times become confused by all that wonderful detail exposed by

THE SMALLTALK REPORT

tiow 0441•614!ftiffltffilifittfiMulti-user sour¢*ficode control
sne und versionint#sedi
for
Ind for Smalitalk/V

Windows
PM

INEWfid¢I*4(**#f#tent#444¢,Wet*
ENEWEi#'am@%*4*94**up*gi•j

NEWE#•ke@s*pr*E##p¢) *
-*Ewl?**rnk**Es***An¥y@*4**¢**s-*
#Nmt#*00*®.*t,*141*W%*it***4***4*03hft{*mpla**w*off//4

%#4***41**¢•e*it.
0[#tbr#*S#F*to**

Starting from

source© rcode included
*ligamma solutions j
 Uni*3*4<141/A*Wit*4r**{0*f.*I4•#*2MW/2G#474)351*8*%*•* f*f#FA#8r28$0*404¢elh#**0*3
lihilli4fini 51(44*100*,121***in*N*Am*©95*m*i*f¢%*fi*k*4**f#4®*metiki**f/di*iNOAM0%**(E#(ARE
I40*InE*s«*70*130****6**48%0*444i***jr#*IN*@*mmi**nff@@t*Rf¢**i#WHJMARK*MIA©*i

handle: handlerBlock do: doBtock

"Evaluate doBlock. If all goes well, return its value. If an exception
occurs then the returned value could be generated by evaluating
returnBtock."

1 TeturnBlock 1
retumBtock := I :value 1 Avalue].
doelock value

This method's most significant role isasa placeholder. Its basic
function is simply to evaluate its second parameter, the do:
block. But it also marks a place on the context stack so the sys-
tem can find an appropriate handler when an exception oc-
curs. How this happens will be explained next month when we
consider Exception»fetchHandlerBlock:. The block stored iIi the
retumBlock temporary variable is used to make implementing
Exception>>return easier.

The only other method we mentioned for class Signal was
raise. As we said before, there are actually many variations of
the raise message, depending on whether the exception han->
dler can proceed through the exception, whether there's a pa-
rameter or error string needed, and so on. AU these raise
combinations call the same private Inethod, which is Sig-
nal>>raiseWith:startingAt:extraString:proceed:. This is imple..
mented as follows:

raiseWith: parameter starting.At: context
extra String: str proceed: aBoolean

"Create a new exception and have it took for handlers
starting at context.'
I exception 1
exception:= self newException

signal: self

parameter: parameter
extraString: str
proceedBlock:

NOVEMBER /DECEMBER 1992

(aBoolean
iffrue: [[:vatue I Avaluel]
iffalse: Init]).

Aexception propagateFrom: context

This method creates a new instance of Exception, passing the
signal as one of the parameters in the creation message. In ad-
dition, if aBoolean is true, the signal is "proccedable", which
means that the handler is allowed to send the exception the
proceed message, in effect declaring the error completely re-
solved and causing a return from the raise message send. If it is
proceedable, the new exception will be passed the block [:value

Nalue]. LikeretumBlock in the handle:do: method, the block
here simplifies our implementation, in this case niaking Excep-
tion>>proceedDoing: much simplen Finally, this new exception
is sent tile message propagatefrom: with the context passed in as
a parameter. This begins the process of finding a handler for
the exception.

Exceptions have five instance variables: signal, parameter,
extraString, proceedllock, and handlerContext. The first four
are set by the signal:parameter:extraSOing:proceedBlock: mes-
sage, which is sent by a signal when the exception is created.
Tile value ofproceed.Block, ifit im't nil, is the [:value I Avalue]
blockwesaw above. After creating a new exception, a signal
sends the propagatefrom: message, which in turn calls the
propagatePrivateFrom: method. in addition to error handling,
propagatePrivateProm: sends the message fetchHandlerBlock: to
find the right handler for the exception (in the process, it sets
the instance variable handlerContext to the appropriate han-
dle:do: message's context) and evaluates that handler. The
implementation offetchHandlerBlock: is described in next

continukdon page 14...

5

Greg Hendley and Eric Smith

Significant supported events in Smalitalk/V PM
as illuminated by Window Builder

G uIs you are manipulating the objects but not asking them to do
anything. For instance, if you designed a remote object sys-
tem where transparent copies of objects were transmitted
over a network, you might store the objects in an IdentitySet.
If you transmitted two objects that were = but not ==, and
later changed one of them, storing them in an IdentitySet
would ensure that they were different objects on the remote
systems.

Bag

Instead of discarding duplicate elements like Sets, Bags count
them. Executing this code:

PUBLISHED!

White Paper
11

"An Evaluation of
Object-Oriented Analysis and

Design Methodologies"
 f you have used Window Builder by Cooper & Peters, thenyou have taken advantage of its fill-in-the-blank way of

writing when:perform: statements for the open method.
You have probably noticed there are more events than you
thought you needed. You may have even asked yourself,
"Should I be using these events and, if so, how?"

In this installment of GUI Smalltalk, we will discuss some of

the significant supported events for the subpanes and controls
directly supported by Window Builder. This is not intended to
be an exhaustive discussion of every event; it will, however, get
the adventurous offto a good start.

We decided classes that implement supportedEvents would
be the most interesting to look at. The remaining classes should
inherit their superciasses> behavior. We will discuss each class in
turn, induding some significant supported dasses.

TopPane
Nearly all windows involve some kind of TopPane, which is
usually the window containing all the other controls. Top Panes
support a number of events that no other kind of window is
interested in,

* #validated, This event is generated as the final act in open-
ing a TopPane. When this occurs, the pane represents a
valid Preseiptation Manager (PM) witldow. 11his event sel-
dom requires a handler. However, in some rare instances, it
provides an opportunity to do any necessary twiddling of
the PM;frame window after it has been opened but before
any of the children have been opened.

•#activate. When a frame window becomes the 'active' win-

dow (i. e., it is selected, given the active window border
color, and the input focus), the window message WM_ACE-
VATE is sent along to the PM frame window. In Smalltalk,
this results in the #activate event. A newly opened window
usually becomes the active window, so this happens when
the window is opened as well as each time the frame win-
dow is activated.

• #menuBuilt. The #menuBuilt message is generated after the
menu bar has been created but before children are opened
or the TopPane validated. If you are using WindowBuilder, this
event is unlikely to occur. Cooper & Peters have circum-
rented the normal menu bar creation methods in their open

6

methods. Ordinarily, this event might be used to initialize
the enable/disable state of the various menu choices, add
custom menus, etc When using WindowBuilder, these sorts
ofactivities can be performed in the #initWindow Inethod.

s #close. Whenever TopPane, not ViewManager, receives the
message #close, it will generate the event #close before tak-
ing any action. If there is no handling method, or the han-
dling method returns nil, then the close operation will pro
ceed normally. Otherwise, no panes will be dosed. Handlers
for this event are quite common, particularly if dependents
are used. This provides the ideal place to clean up depen-
dents, PM resources, and other potential garbage as the
window disappears.

w #help. The #help event occurs when help is called for via
the Fl key. Using the help menu (should one be available)
will not generate this event. The handling method may do
whatever it pleases by way of providing help (e.g., toss up a
dialog, open another application, put up a message box). If
there is no handling method, or the handler returns nil,

then the problem will be passed along to the PM help man-
ager. Note that if you have a HelpManager defined for a win-
dow as well as a handling method for the help event, then
unless the handling method returns nil, the PM help man-
ager will not come up when Fl is pressed.

e #timer. This event will be generated whenever the frame win-
dow receives the window message WM_TIMER. This only occurs
in special circumstances beyond the scope of this column.

m #opened. This event is a red herring. It won't hurt a TopPane
to have a handler for this event, but that handler will never

be activated because TopPanes don>t generate this event.

DialogTopPane
DialogTopPanes behave just like TopPanes iii most respects (in
cluding those having to do with generating events). All the
events described for TopPane above are inherited, except that
those having to do with the menu bar will not be given a
chance to occur. One additional event is generated by dialogs:
a #opened. After a dialog is built, but before processing be-

gins, the event #opened occurs. This provides the owning
ViewManager witli tlie opportunity to fill iIi entry fields, ini-
tialize button choices, etc.

THE SMALLTALK REPORT

ISI
s:= Set new,

s addAM: #(a abb c).s
size

returns 3. Changing it to a Bag:

Ibl
b:= Bag new.
b addAU: #(a abb c).
b size

returns 5.

Use Bags anywhere you want a quick implementation of in-
cludes-that is, when you don't care about the order of elements
and you need a compact representation of duplicate elements.

Bags are not used anywhere iii the Par¢Place release 4.1 im
age or in Smailtalk/V Mac 1.2. The only time I can remember
using Bags is in Profile/V, Every time I take a sample, I put the
program counter in a Bag. When I display the profile, I map
the stored program counters back to source statements, giving
the user profiling at the level of individual statements.

CONCLUSION

The Collection classes are one of the most powerful parts of the
Smalltalk system. Choosing the right collection for a circum-
stance has a dramatic influence on the behavior and perfor
mance of your system. I have tried to lay out what each major
collection class does, what it is good for, what to watch out for,
and how it is implemented.

I am amazed at the richness of this seemingly simple set of
classes. Originally, I thought I would have to stretch to get
enough material for just one column. After two columns that
have cover+ed the major issues in using collections, there is
still more to be written. I'll give it a rest for now, however,
and go on to something else-I'm not sure what just yet. If
you have any ideas call me at 408.338.4649 or fax me at
408.338.1115. I

Kent Beck has been discovering Smalltalk idioms for eightyears at
Tektroy€x Apple Computer, and MasPar Compitter. He is also the
founder of First Class Software, wliick develops a,id distributes re-
aigineering products for Smalltalk. He ca,i be reached at First Class
Softwate, P.O. Box 226, Boulder CreeK CA 95006-0226.

NOVEMBER/DECEMBER 1992

This 72-page information-packed report compares and contrasts
eight leading O-0 A&D methodologies. Written in a dear, concise,
easy-to-read style, this report presents a rational approach for both
qualifying and quantifying the strengths and weaknesses of the lead-
ing eight techniques. Using a specific application domain as an exam-
pie, this white paper illustrates how you can identify the methodology
that best meets the needs of your project. This timely report is essen-
tial reading for anyone implementing or managing 0 0 projects.

An Evaluation of Object-Oriented Allatysis and Design Methodolo-
gies»is a functional resource clarifying and analyzing the differences
among notations, terminologies, and models proposed by the eight
leading analysis and design methods:

·Booch ·Rumbaugh
• Coad/Yourdon , Shlaer/Mellor
· Edwards/Odell/Martin · Wasserman/ Pircher
' Graham · Wirfs-Brock

Who should read this report?
Anyone about to introduce the benefits of 0 0 technology early in
the development cycle; specifically, project leaders, developers, soft-
ware alialysts, and designers.

About the authors: John Cribbs, Colleen Roe, and Suzanne Moon
workin the Advanced Projects Group at Alcatel Network Systems. To-
gether, these published authors have over ten years of
O-0 A&D experience implementing and managing in-house 0-0
projects.

ISIGS 10-DAY MONEY BACK GUARANTEE.

BOOKS

ORDER FORM
NY State residents add

Please send me the white paper for just $400.00 1% applicable sales tax.
_Check endosed. (Make checks payable to SIGS Books, US dollars drawn on a US bank.>
_Visa _Maste,Card _AmEx card #

Signature 1 Exp. Date
Name

Address

City State Zip
Country
Phone Fax

Return to White Paper, 588 Broadway, Suite 604, NY, NY 100m2
PHONE 212/274-0640 or FAX to 22274-0646

L

cording to the order in which they'were added, Sorted€ollet-
tions rely on a twoargument block to determine, pairwise,
the order for elements. This block defaults tb [:a :b I a 4= bl,
so simple Sorted€ollections sort tlieir elements from lowest·
to highest.

One thing to watch out for when using Sortedeoltections is
sending them add: when you donlt have to. add: does a binary
search of the collection, moves all of the eldments after the

added object down one. an:d inserts the added object. Moving
the elements to make room takes time proportional to the size
ofthe collection. Ifyou know you are going to be adding sev
eral elements at once, use addAU:, which will stick the new efe-
ments at the end and resort the entire collection. Here is a

method for comparing time spent using these two methods
(notice that I don't hold myself to the same coding standards
in workspaces):

lEertltz I
sc := Sorted€ollection new.

r := Random new.
tl := Time millisecondsToRunt

[1000 timesRepeat: [sc add: r next] J.
sc := SortedCollection new.

t2:= Time millisecondsToRunt

[sc addAE ((1 to: 1000) collect: [:each I Inext])}.
'Add: '. tl printString. ' addAN:. : t2 printS'ring

Executing this results in +Add: 10725 addAll. 1386'.

String
Strings in Smailtalk are like Arrays whose elements are restricted

to Characters. Strings are byte-indexable for compactness. They
redefine the indexing methods to convert from 8-bit numbers
to characters and vice versa:

String>>at: anInteger
'Character value: (super at: anInteger)

Sting»at: anInteger put: aCharacter
"super at: anInteger put: aCharacter asciiValue

It is common to use, to concatenate Strings. You can
use. to concatenate any two sequenceable collections
(Ordered¢ollection, Array, RunArray, and so on). Less com-
mon is the use of the other collection methods with

Strings, You can capitalize all the characters in a String
with coltect;

asUppercase
'self collect: [:each I each asUppercasel

Interestingly, even the ParcPlace release 4.1 image imple
ments this method with five lines containing an explicit loop
and indexing.

Digitalk's String cIass is implemented with the simple model
described here. Parcflace has a much more elaborate imple-
mentation that takes care of multibyte characters and different
character sets on: different platforms, even for odd characters.
The design requires six classes for strings and three more for
symbols

18

m SMALLTALK IDIOMS

Symbol
Symbots behave in most ways like Strings, except that if you
ha¥e two symbols containing the same characters, they are
guaranteed to be the same object. So while String>>=: takes time
proportional to the length of the strings, Symbol»= takes con-
Stant time:

Symbol>>= anObject
-self == anObject

To preserve uniqueness, Symbols cannot be changed once
they are created. at:put: is overridden to raise an error,

Like Interval, because Symbols don't respond to at:put:, they
override species. Symbol>>species returns the class String-
Thus, executing "#abc, #def"returns 'abcdefl a String, not a
Symbol.

If you are programming in Smalltalk/V, be careful of cre-
ating too many symbols. There is a limit of 2A16 Symbols.
While this may seem like a lot, after you have created many
new methods and used Symbols for indices in several places,
it is very possible to run out of Symbols. The scrambling you
have to do to climb out of the «limited Symbol pit" is not
pretty.

A last oddity of Symbols and Strings is the asymmetry of=.
"abt = #abc" returns true because the String receives the mes-
sage and successfully checks to see that the characters in tie re-
ceiver are the same as those iii the arguinent. "#abc = 'abc' '! re«
turns false because the two obiects are no t identical. I can

rdmember long debates at Tektronix over the propriety of this
strange fact. The upshot of the debates was that it's regrettable
things work this way, but the alternatives are all less attractive
for one reason or another.

Sets

Sets are dynamically sized collections. They respond to add:
and remove: but, unlike OrderedCollections, they don't guarantee
any particular ordering on the elements when they are used
later (e.g.,by do:).Sets also don'thave any indexed access (no
at: or at:put:).

Sets implement includes:, add: and remove: efficiently by
hashing. The element to be added is sent hash, and that
value is used modulo the size of the storage allocated for the
Set as the index to start looking for a place to put the ele-
ment for remove it). Note that storage for a Set will contain
more indexed variables than the Set has elements, so hash-

ing is likely to encounter an empty slot. The Set contains an
instance variable, tally. which records how many of the slots
are filled. Set>>size just returns tally.

You cari eliminate duplicates from any collection (albeit
while losing its ordering) by sending it asSet.

identitySet
Sets use = to determine if they have found an object. Identity-
Sets use ==. They are useful where the identity of objects is
important. Most applications are in meta-object code, whdre

THE MALLTALK REPORT

Subeane

Sub?ane is included even though it is an abstract class. Many
normal behaviors are described in this class. We will take ad<

vantage off:nheritance in our descriptions and only deviations
and additions will be described for subclasses.

ListBox

a #chartnput Most Smalltalkers do not use this event; they
use the event #select, which happens when a character is
typ>ed. I f a character is the first character o f one of the items,
that item is selected.

e #display· While Subhne supports this event, it is only re
ceived by GraphPane. So for all other subdasses, unless you
write a method that sends event: #display, you can disregard
this event.

. #resize. This is sent after PM has resized a top pane (or
other subclasses of AppticationWindow). Most applications
have no need for this event. Possible exceptions are special
uses of GraphPane and Groupparte.: Most resizing is handled
with the normal get contents and display methods. This is
supposedly one of the advantages of using an existing win-
dowing systeni such as P?,4.

0 #drawitem and #hightightrtem. Seldom used by most
Smailtalkers, these are sentonly when a user-drawn item is
included in the list of items. This deserves its own column
and will not be discussed here.

e #select. This event occurs when an unselected item is se

lected, not when a selected item is re-selected. It also occurs
when an item is selected by typing its first character.

0 #doubleCtickSelect. This event happens whenever an item is
double dicked. Behavior is the same whether or not the

item was already selected.

. #getPopupMenu. This event normally occurs as a result of
the mouse button2 dick. No surprise here.

•#getMenu. This event is usually not sent if the window was
built using Window Builder. The exception (there's always
an exception) is when the pane looks for its pop-up menu.
If it can't find one, it foolks for its regular menu to use for a
popup. Therefore, it is your choice to use this or the previ
otis event for your pop-up menus. Proper discussion of
menus would require its own column.

4 #getContents. Now we are back on familiar ground. This
event is sent whenever a subpane is opened. It is used to set
the text of a text pane, list of a list paneor combo box, and
label or text for other controls. This setting is normally
done using the method contents:. It is also sent as part of
the restore and update methods for many classes.

s #help. This is normally sent when the F 1 key is pressed. Not
all subclasses receive this event.

TextEdit

0 #textChanged.This event is sent each time a character key,
backspace, or delete is pressed. Think about whether you
want to respond. This event will be sent frequently if entire
paragraphs are being typed.

• #horizScroll. You normally will not care about this event
which iS Sent when you scroll using the horizontal scroll:
bar, It also happens with automatic scrolling, which occurs
when you type past the pane and word wrap is of£

0 #vertScroll. This is similar to horizScroll.

e #help, #getfopupMenu, and #getMenu. None of these are
received.

TextPane

Texthne inherits events from TextEdit. It also adds one event:

e #save. 'Ihis is sent through selecting the "save" item in the
pop-up menu for TextPane.

NOVEMBER/DECEMBER 1992

ListPane

Although neither super- nor subclass of ListBox, ListPane be-
haves similarly. The exception is as follows:

•#select. This event occurs when selecting an item that is at-
ready selected.

ENTRYFIELD

Entryfield is 'the Smalltalk class representing one-line entry ar-
eas commotily seen littered about dialogs, although theymay
be used in any window. Most of Entryfield's interesting behav-
ior can be used by paying attention to only two events:

• #geteontents. As with most other panes, this event is gener-
ated by an Entiyfield when it first comes up. It provides a
nice opportunity to initialize the text contained in the entry
field before the user gets to it. This is done in the handling
method by sending #contents: to the pane with an appro-
priate String as an argument.

• #text¢hanged. Any time tile contents of an Entryfield are
changed, the #textChanged event is generated. It doesn't
matter how the change originated; whether the user typed
in more characters or somebody sent #contents: to the En-
tyfield, a #textChanged event is generated. This means that
setting the contents of an Entryfield in the handler for a
#textChanged ger·ierated by that Entryfield will lead to
1111Illte reCUrS1O11.

ComboBox

- #textehanged. Be careful about using this event as a trig-
ger for other adivities. We recommend you save the new
text somewhere or note that the text is changed. One thing
you do nof want to dots update. This will create & circu
larity. The event #textehatiged is sent m response to sev-
eral activities: once when contents is set and twice when

you type the first letter of one of its list elements- It is not
sent when you type any other character. It is sent when

7

you press the pull-down button and when you select an
item from the list

0 #charInput. This happens whenever any character is typed.
Notice the difference between this and the previous event. A
character can be typed without being entered into the text
part o f the combo box.

e #select. This event occurs at peculiar times the way
#textehanged does. It is sent twice when text is in the entry
field part and the list is pulled down. It is sent once when
no text is in the entry field part and the list is pulled down.
It is not sent when an item is selected that matches the text

in the entry field part. It is sent once when an item is se-
lected that does not match the text in the entry field part.

• #doubleelick Select. This event does not happen for the
ComboBox.

. #drawItem. This event occurs when a user-drawn itemt

needs to be drawn. Most Smalltalkers will not use this event.

, #highlightItem. This event occurs when a user-drawn item
needs to be highlighted. Most Smalltalkers will not use this
event.

. #listvisible. This happens when you press the pull-down
button. Most Smalltalkers will not use this event.

BUTTON

Button is the superclass o f several kinds of controls that get
clicked. Nearly all of theni generate events, which are expected
to be handled in similar ways.

* #geteontents. This occurs when the palle first comes up. It
can be used as an opportunity to set the contents ofthe but-
ton. For most kinds of Button, the #contents: message ex-
pects a String as an argument,] his String will become the
label for the button.

e #clicked. Any time a Button is pressed, the #clicked event
occurs. For instances of Button, all you need to know is that
the Button was pressed. For toggle-type buttons, the action
of your handler may depend on whether the button was
clicked on or off. This can be determined by sending the
message #selection to the button. The Boolean returned will
reflect the state of the button.

DrawnButton

The class DrawnButton repi·esents a fairly special subdass of Button.
It isii't like the others in that it has no predefined look. Instead> die
owning window (or, in our case, the ViewManager) is expected to
draw whatever it wants on the button's graphics context.

s #geteontents This event occurs when the pane first comes
up. It maybe used as an opportunity to provide the pane
with a Bitmap, which it will draw on itself. DrawnButtons ex-
pect a Bitmap as an argument for the #contents: message.

* #drawItem. Any time a DrawnButton pane that does not have
a Bitmap is asked to display, it will generate this event. When

8

• GUM

the handling method gets control, the DrawnButton pane will
have a valid graphics tool. The handler method may then ask
for its pen and draw whatever it wants on it, Note that this
event also occurs as a result of the button being clicked.

*#hightlightnem. This message is generated as a result of
pressing a DIawnButton. The underlying PM window inessages
inform as to whether highlighting is to be added or removed.
Alas, by the time we reach the event level, this information has
been lost. As with #drawItem, the graphics tool ofthe Drawn-
Button in question is valid while this event is processed.

SpinButton
Admittedly, this class is not directly 5upported by Window
Builder. It is included in the standard image and can be added
to Window Builder as a custom palle.

* #gee·(enu, #geM?opupMenu, and #help. Noneof these are received.

* #te=Changed. This is an unusual event in the number of
times it occurs for a given action. It is sent once for each
character typed. It is normally sent once when the up or
down button is pressed. When there is text iii the entry field
that does not match any of its enumerated values, and the
up or down button is pressed, the event happens twice. It
happens once when the backspace key is pressed and twice
when the delete key is pressed.

• #up. This event is sent when the up button is pressed. Nor-
mally, you would only look at the #textChanged event.

* #down. This event is sent when the down button is pressed.
Normally, you would only look at the #textChanged event.

* #geteontents. This event is ignored if the spin button is nu-
meric. When the spin button is non-numeric, it expects to
be told its list of enumerated values.

ScrotiBar

Scrolling, with or without the scroll bar control, deserves
more space than we can give here, We can, however, point out
a few features.

The following events occur as a result of pressing the ar-
rows clicking in the blank areas, or moving the tab: #nextPage,
#pIevPage, #nextLine, #prevLine, #sliderPosition, #stide]Track,
and #endScroll.

The following events do not occur: #getMenuy #getPopup-
Menu, and#help.

#getContents occurs in the same manner as for most sub
panes, but scroll bars do not know the method contents:.In-
stead, they use position:, ®

Greg I·Imidley is a meniber of the techitical staff at Diowledge Sys-
tems Corporation. His OOP exper·ience is in Sma#talk/V(DOS),
Snia#talk-80 2.5, Objectworks Smalltalk Release 4, and
Sma#ralt/VPAL Eric Smith is also a member ofthe technical staffat
Knowledge Systems Colporation. His specially is custom graphical
user interfaces using Smallialk (various diaiects) and C. The authors
niay be contacted at Kiiowledge Syste?iks Corpolat)ion, 114 MacKe
nan Drive, Suite 100, Cary, NC 27511, or by phon* 919.481.4000.

THE SMALI. TALK REPORT

initial allocation, the space overhead and its effect on the stor-
age manager can be significant. I have heard stories ofpro-
grams speeding up by a factor of 60 just by replacing Ordered-
Colection new with Orderedeollection new: 1 at the right spot.
Gather statistics on the number and loading of your Ordered-
Collections to determine if this optimization will help you.

Another performance implication of using Ordered-
Collections is the level of indirection required to access ele-
ments. at: as defined in Object just invokes a primitive to index
into the receiver's indexed instance variables. To implement at:
and at:put:, Orderedeollections have to take first into account:

OIderedCollection>>at: anInteger
aninteger> self size iffrue: [selferron 'Out of bounds'J. A
super at: anInteger + first - 1

RunArray
RunArrays have the same external protocol as OrderedCollectien,
but they are optimized for storing collections in which the
same object is added consecutively many times. Rather than
just store the obJects one after the other, RunArrays store two
collections: one of the objects in the collection, the other the
number of times the object appears (Figure 4).

Each entry in a RunArray requires two object references.
RunArrays require storage related not to the number ofele-
ments in the collection, but to the number of times adiacent

objects are different. In the worst case, RunArrays require twice
as much storage as an OrderedCollection.

Indexing into a RunArray is potentially an expensive opera-
tion, requiring time proportional to the number of runs. Here
is an implementation of at:

Ruil.Array>>at: anInteger

 index I
index := 0.

1 to: runs size do:

[:each 1
index + (nins at: each)>= anInteger

SiTrue; [Avalues at: each].
index := index + (runs at: each)]

This simple implementation makes code like:

1 to: runkay size do: [reach 1 FunArray at: each]

Runtrray

take time proportional to the number of runs multiplied by the
number ofelements in the collection. Because the access pat-
tem for RunArrays usually inarches along the collection from
first element to last, RunArrays cache the beginning of the run
in which the last index was found. Looking up the following
index only requires checking to make sure that the new index
is in the same run as the old one:

Run.Array>>at: anInteger
anInteger >= cachedIndex

ifrrue: [self cachedAt: anInteger}
ifFalse: [selflookUpAL: anInteger]

cachedAt: anInteger
anInteger - cachedIndex > (runs at: cachedRun)

ifrrue:

[cachedIndex:= cachedIndex + (runs at: cachedRun).
cachedRun .= cachedRun + 11.

falues at: cachedRun

lookUp.At anInteger
I index I
index := 0.

1 to: runs size do:

[:each I
index + (nins at: each) >= anIntegeI

iffrue: [Avalues at: each].
index := index + (nins at: each)

With this implementation, an access pattern like the one above
will now be slightly slower than the equivalent OrderedCollec-
tion because of the overhead of checking for the common case.
Accessing the RunArray in reverse is now proportional to the
number of runs squared.

Interval

Another kind of run-length encoded collection is Interval. An
Intervalis created with a beginning number, an ending num-
ber, and an optional step number Corie is the default).#(1 2 3
4) and Interval from: 1 to: 4 are equivalent objects for most pur-
poses. Number>>to: and to:by: are shorthand for Interval
class>>from:to: and from:to:by:.

Intervals are commotily used to represent ranges of num-
bers, such as a selection in a piece of text. A common idiom is
using an Interval with collect:.

foo

9 to: self size) collect: [:each I each -> (self at: each)]

 Species is sent to an object when a copy is being made for usevalues -*- I in one ofthe enumeration methods collect and select:. The de-
runs 4\11- fault implementation in Object just returns the class of the re-

5 #plain I ceiver. SequenceableCollection implements collect: and select:,
and expects the result of self species to respond to at:put:. Since

2 #bold Intervals don't respond toat:put:,they haveto override species
to return the class Array.

3 #boldftalic

Figure 4. The result of RunArray new addAN: (plain plain plain plain plain
bold bold bolditalic boldltalic boldltalic).

SortedCollection

Another dynamically sized collection is the SortedCollection.
Unlike OrderedCollections, which order their elements ac-

NOVEMBER/DECEMBER 1992 17

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 279 DENVILLE NJ

POSTAGE WILL BE PAID BY ADDRESSEE

The Smalltalk Report
Subscriber Services Dept SML
PO Box 3000
Denville NI 07834-982I

NO POSTAGE
NECESSARY

IF MAILED

IN THE

UNITED STATES

Smalltalk Object Database Support
Integrated garbage collection of persistent Smalltalk objects • Server-
based gateway toolkit and relational gateways • Server-based active
object manipulation language • Cooperative client/server support

Please send me information on Smalltalk Object Database Support and

O Keep me informed of future product announcements
 Have a Servio representative call:

Name: Title:

< Company:Address:

City:

Phone: State: Zip:

SERVIO GemStone, the ODBMS for C, C++ and Smalltalk
from the Object Technology Company111,111,1/11,11/1111/111/lili„1111111111„lili„Ill j

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 475 ALAMEDA, CA

POSTAGE WILL BE PAID BY THE ADDRESSEE

SERVIO CORPORATION
950 MARINA VILLAGE PARKWAY

SUITE 110
ALAMEDA, CA 94501

NO POSTAGE
NECESSARY
IF MAILED

IN THE

UNITED STATES

in language
ice, A&D

The Smalltalk Report -"0 P .' "*?3- 3' rr' .: 2.7€4 --13--

66 If you're programming 2
In Smalltalk, 5...

E Ur Provides objective G authoritative coverage o you should be reading e.i advances, usage tips, project management adv
Fhe Smalltalk Repon " 3techniques, and insightful applications.

U Yes, I would like to subsc/ibe to The Smalltalk Report Date

O I year (9 issues) U 2 year (18 issues) Name

J Domestic $69.00 U Domestic $28.00 Title
[ZI Foreign $94.00 O Foreign SI78.00 Company

Method of Payment Address
O Check enclosed (payable to The Smalltalk Report)

CityU Bill me
StateU Charge my: U Visa U Mastercard U Amex

Card No. Zip
Exp. Date Country

Signature Phone

E. Which dialect of Smalltalk do

you use:

U Smalltalk V
O Smalltalk-80

!Jother
2. What is your involvement in

software purchases for your
departmendirm:

J Make Purchase
E] None
3. Which operating system

supports your software:

O UNIX
61 DOS

000
61 Windows

4. What is your company's
primary business activity:
-1 Computer/Software

Deve[opment.
J Manufacturing
J Financial Services

1 Government/Military/Utility

D Educational/Consulting
U Other
5. For how long have you been
using Smalltalk:
U le'55 than one year
CA 1-3 years
03·years

E2LG

ll,I'i'l,.I,I,11ll I11<II lilli,111,111„lili„111,111
O Recommend Need [3 Other
U Specify Product

Amemberollhe fax• I IISIGS
./Object Marketing Network 212/274-0646 Ul,Ll€ ATIONIS

--

-, 11-
--79"puce'

-' 14

-- 'mauve'

Figure 1. A typical Dictionary.

think of them as associations I use the message "associations" to
get aset of associations I can operate on unambiguously.

When a Dictionary· looks up a key it uses g= to determine if it has
founda match. Thus, two strings that are not the same object but
contain the same characters are considered to be the same key.

This is why when you reinlpieinent =, you must also reimplement
hash. Iftwo objects are =, they mus't have the same hash Value.

If you read your Knuth, you will see that hashed lookup
takes constant time-it is not sensitive to the number ofele-

ments in the collection. This mathematical result is subject to
two pragmatic concerns, however: hash quality and loading.
When you send hash to the keys you should get a random dis-
tribution. If many objects return a number that is the same
modulo the basic size of the Dictionary, then linear probing deL
generates to linear lookup. If most of the slots in the Dictionary
are full, the hash is almost sure to return an index that is al-
ready taken and, again, you are into linear lookup. By random-
izing the distribution of hash values and making sure the Dic-
ti0nary never gets more than 60% full, you will avoid most of
the potential performance problems.

identityDictionary
IdentityDictionaries behave like Dictionaries except that they
compare keys using == Care the two objects really the same ob-
ject?). IdentityDictionaries are useful where vou know that the
keys are objects for which - is the same as == (e.g., Symbols,
Characters, or SmanIntegers).

--*'#puce --* 14
41'.11111111--HHHI-1.

---*#mauve - 27

Figure 2. A typical Identity DictionarB

16

*SMALLTALK IDIOMS

Instead of being implemented as a hash table of associa-
tions, IdentityDictionaries are implemented as two parallel ari
rays. The first holds the keys, the second the values (Figure 2j.

This implementation saves space because each association
in a Dictionary takes 12 bytes of header + 8 bytes of object refer-
ence = 20 bytes. The total memor)r usage for a Dictionary is 12
bytes for the header of the DictionaIy + 4 bytes times the basic
size of the Dictionary+ 20 bytes times the number of entries.
The memory required for an Identi·*Dictionae is 24 bytes for
the header of the object and the value collectioti + 8 bytes times
the basic size.

For example, a 10,000-element Dictionary that has 5,000 en
tries free would take 12 + (4 + 150003 + (20 * 10000) = 260,012
bytes:.You can see how the overhead of the Associations adds
up. The same collection stored as an IdentityDictionary would
take 24 + (8 * 15000) = 120,024 bytes.

OrderedCollection

Orderedeoltections are like Arrays ill that their keys are consecu-
tive integers. Unlike Arraysi they are dynamically sized. They
respond to add: and remove:. OrderedCollections preserve the orn
der in which elements are added. You can also send them

addfist:, addLast:, removeFirst, and removeLast.

Using these methods, it is possible to implement stacks and
queues trivially. There are no Stack or Queue objects iii
Smalltalk because it is so easy to get their functionality with an
OrderedCollection. To get a stack you use addLast: for push, last
for top, and removeLast for pop (you could also operate the
stack off the front of the Orderedeollection). To implement a
queu¢ you use addFirst: for add and removeLast for remove.

As an example of using an OrderedCollection for a queue,
let's look at implementing level-order traversal. Given a tree of
objects, we want to process all the nodes at one level before we
move on to the next:

Tree>>levelOIderDo: aBlock

I queue I
queue := OrderedCollection with: self.
[queue isEmpty] whileFalse:

[1 node I
node := queue removefirst,
aBlock value: node,

queue addA[[Last: node children]

Orderedtottections keep around
extra storage at the beginning

OrderedCollection
and end of their indexable parts -

first 2to make it possible to add and
remove elements without having last 3

to change size (Figure 3). 1 nit

Because OrderedtoUections are
2 2.5

dynamically sized they preallo-
cate a number of slots when they 3 3.7

are created in preparation for 4 oil

objects being added. If you are
using lots of Orderedeollections Figure 3. The resuit of (Ordered-

Collection new: 4) add: 2.5,
and most are small:er than the add: 3.7,

THE SMALLTALK REPORT

itETTING REAL Juanita Ewing

How to manage source
without toois

any Smalltalk programmers develop significant ap-Mplications without any source-management tools.
Although it takes a certain amount of discipline,

small- to medium-sized applications can be developed without
additional tools. This column will describe several sound prac-
tices for the successful management of application source.

The code in this column is for versions of Smalltalk/V un-

der Windows and OS/2. The ideas are applicable to other ver-
signs of Smalltalk/V and to Objectworks\Smalltalk.

CONCEPTS

One concept is critical for successful management of applica-
Mon source:

• Never view your image as a permanent entity.

And there are two corollaries:

• Don't depend on your image as the only formt ofyour
application.

· Store your application in source form and rebuild your
image frequently.

Viewing the image as a non-permanent entity doesn't nec-
essarily imply that vendors are selling unreliable software.
There are several ways an image can become non-functional,
other than a serious Smalltalk bug or disk crash.

An image can become unusable because of some simple
mistake on the part of a developer, such as accidentally remov-
ing a class that is relevant to the application under develop-
ment. If the image is the only form of an application, recover-
ing sources for an application class can be difficult and tedious.
Another common mistake is the accidental deletion of the

change log or changes file. The source for all the changes
you've made to an image is stored in this file.

Not all motivation for storing an application outside an im-
age derives from mistakes. When your- vendor releases a new
version, migration to the new version may be necessary to take
advantage of new features or continue to the highest level of
technical support.

PRACACE

What is your application? In Smalltalk, this is not always a
straightforward answer. Images contain large class libraries,
and applications are developed by adding to and modifying

NOVEMBER / DECEMBER If)92

class libraries. There is no clear distinction between system and
application code. Because of this, it i:s very difficult to extract
all parts o f an application from an image j especially after the
development is completed. It is bettef to extract or list the
parts ofyour application as you develop it. I'lIen short-term
memory can help you decide if the modification you made was
necessary for your application or if a temporary modification
was needed for debugging. One of the most common errors is
to omit a critical piece of one's application.

I will discuss two techniques for extracting your application
code as you develop it. The first technique uses the browser to
file out code right after it is developed. Most application code
will be located in new classes, which can be filed out as a unit,
Other application components are extensions to system classes,
which can be filed out at the method level The result of this

technique is many small files.
There are dependencies among the classes defined in these

files. For example, a subdass depends on its superclass. I use a
script to reassemble all these files in correct order, rather than
try to remember what the dependencies are. It is possible to
create the script for reassembly at the same time the parts of an
application are filed out.

Figure 1 contains a script for installing multiple files. The
script consists of a list of file names, which is enumerated to in-
stall each file into the image.

" Read and file-in application files. "
#(
:ExtendedUstfane.cls'

'AviationGraphPane.(is'
'JetEngine.cts'

JetEngine.cls
ListPane-
ilstAttributes.mth

Figure 1. Example of reconstructing an application using multiple files.

9

PrpEngine.eis'
'RudderMechanics.cls'

'ListPane-class-supportedEvents. mth'
'Listfane-listAttributes.mth'

ListPane-listAttributes:.mth'

1{raphicsMedium-bezierCurve:.mth'

do:

[:fileName 1
(Disk fite: fite Name) fileIn]

Another technique is to make a list of all relevant application
pieces as they are developed. The list can be maintained iii order
of reassembly and used to extract all components ofan applicar
tion on demand. The result of extraction is a single file. Recon-
struction o f the application is a simple matter o f installing one
file. The source can be partitioned into several files, if necessary.

In Listing 1, the script has three lists: one for classes, one for
instance methods, and one for class methods. The classes listed
in the first script are written to the stream, then the methods in
the second list are written to the stream. The file-out code

makes use of CiassReader, which knows about Smalltalk sourceM
file format.

'This script makes use of a new method, fileoutelasson:,
defined iii Listing 2. The new method, which writes a class
definition and its methods on a stream, takes an instance of

fieStream as an argument. It is similar to an existing method,
fiteOut:, which takes a file name as an argument, creates the file,
then writes a dass and its methods to the file:

The script in Listing 1 works in the simplest cases, in which
there are no forward references to classes. For example, i f code
in the class JetEngine refers to the class PropEngine, the fRein
will not proceed properlv. This problem can be avoided by
defining all classes before any methods, as in the script iii List··
ing 3. This script also has two lists, but the first list is enumer-
ated over twice. A supporting method is defined in Listing 4.

a GETTING REAL

Listing 1. Example of creating a single file for application reconstruction.

I sourceStream reader 1
" CREatE blestrecm for storing sources."
sourceStream := Disk file: 'AviationSource.st.

" Write application classes."
#(
ExtendedListPane

AviationGraphPane
JetEngine
PropEngine
RudderMechanics)

do:

[:className I
reader :=ClassReader forClass: (Smalltalk at: dassName).
reader fileOutClassOn: sourceStream].

' Write standalone instance methods"

#<
(Listrane listAttributes)
(ListPane list,Attributes:)
(GraphicsMedium bezierCurve:)

do:

[:classNameAndSelector I
reader :=ClassReader foraass: (Smalltalk at:

(classNameAndSelector at: 1))
reader

fileOutMethod: (classNameAndSelector at 2)
on:sourceStream].

' Write standalone dass methods'

#(
(I.ist?ane supportedEvents)

do:

[:classNameAndSelectoT I
reader :=CaassReader fof(laSS: (SmaUtalk at:

(classNameArldSelector at: 1)class).
reader

fileOutMethod: (classNameAndSelector at: 2)
on: source Stream].

sourceStream close.

INITIALIZATION

Applications consist of more than classes and methods. In-
stances of windows, panes, and domain-specific classes are
also part of an application, Application reconstruction, there
fore, must consist of more than filing iii class and methods.
The expressions executed in a workspace or inspector to set
up the state of your application, such as initializing classes
and creating new objects, need to be re-executed when your
application is reconstructed. Save these expressions by col-
lecting them in a file and executing them after reconstructing
your application. In a future column I will discuss these types
of expressions, and ways to execute them as part of a script,

ERRORS

The most error-prone portion of these techniques is recording
pieces of the application as it is developed. Source-manage-
ment tools are quite valuable because they record this informa-
tion automatically. Because pieces of the application are
recorded by hand, it is also common practice to search back
through the change log to make sure no pieces have been for-

10

Listing 2. Support,ng code in ClassReader for f[ling out a dass onto a stream.

ClassReader

instance method

fiteOutClassOn: afileStream

Write the source for the dass (including the class defnition,
instance methods, and dass methods) in chunkfideformat

\ to afileS:recuri."
class isNil iflrue: ['·self].
CursorManager execute change,
afileStream lineDelimiter: Cr.

class fileOutOn: afileStream.

afilestream nextehunkPut: String new.
(ClassReader forClass: class class) fileOutOn: afileStream.

 self fileOutOn: afileStream.
CursorManager normal change

Listing 3. Example of creating a single filefor application reconstruction.

I sourceStream classlistreader I
" Create file stream for stonng souyces."
sourceStream:= Disk file:'AviationSource.sf.

a,ntinued on next page

THE SMALLTALK REPORT

MALLTALK IDIOMS

Collections idioms:

standard classes

ur previous column focused on enumeration methods
and how to use all of them to advantage. This colutmn
covers the common collection dasses, how they are

implemented, when you should use them, and when you
should be careful.

COLLECTION CLASSES
Array

Use an Array if you know the size of the collection when you
create it, and if the indices into the elements (the first are
ment to at: and at:put:) are consecutive integers between one
and the size of the array.

Arrays are implemented using the £'iii.dexable" part of ob-
jects. Recall that you can declare a class indexable. You can
send new: anInteger to an indexable class and you will receive
an instance with anInteger-indexable instance variables. The
indexable variables are accessible through at: and at:put:. Array
needs no more than the implementation of ati anc[at:put: in
Object, and the implementation of new. in Class to operate.

Many people use OrderedCollections everywhere they need a
collection. If you

¥ want a dynamically sized collection without the OrderedCol-
lection overhead (see below)

· are willing to make the referencing object a little less flexible
• don't often add or remove items, compared with how often

you access the collection

you can use arrays instead. Where you had:
initialize

collection := Orderedeollection new

you have:
initialize

collection := Array new ' or even #()"

then you replace add: and remove: sent to collection with copy-
With: and copyWithout: and reassign collection

foo
collection add. #bar

becomes
foo

collection:= collection copyWith: #bar

The disadvantage of this approach is that the referencing object
now has built into it the knowledge that its collection isn't re-

NOVEMBER /DECEMBER 1992

S Kent Beck

sizable. Your object has, in effect, accepted some of the collec-
tion's responsibility.

ByteArray
ByteArrays store integers between 0 and 255 inclusive. If all the
objects you need to store in an Array are iii this range, you can
save space by using a Byte=Anay. Whereas Arrays use 32-bit slots
(i.e., soon-to-be-obsolete 32-bit processors) to store object ref-
erences, ByteArrays only use 8 bits.

Besides the space savings, using ByteArrays can also make
garbage collection faster. Byte-indexable objects (of which
ByteArrays are one) are marked as not having any object refer-
ences. The collector does not need to traverse them to deter-

mine which objects are still reachable.
As I mentioned in the last column, any class can be declared

indexable. Instances are then allowed to have instance variables

that are accessed by number (through at: and at:put:) rather
than by name. Similarly, you can declare classes to be byte in-
dexable. at: and at:put: for byte-indexable objects retrieve and
store one-byte integers instead of arbitrary objects. A
significant limitation of byte-indexable objects is that they
can't have any named instance variables. This is to preserve the
garbage-collector simplification mentioned above.

If you want to create an object that is bit-pattern oriented,
but shouldn't respond to the whole range of collection mes-
sages, you should create a byte-indexable dass. Such objects
are particularly useful when passed to other languages because
the bits used to encode the objects in a byte indexable object
are the same as those used by, for instance, C, whereas a full
fledged Smat{Integer has a different format than a C int

Dictionary

Dictionaries are like dynamically sized arrays where the indices
are not constrained to be consecutive integers. Dictionaries use
hashing tables with linear probing to store and look up their
elements (Figure 1). The key is sent "hash" and the answer
modulo the basic size of the Dictionary is used to begin search-
ing for the key. The elements are stored as Associations.

Dictionalies aie mther schizo],hrenic. They cati't decide
whether they are arrays with arbitrary indices or unordered collec-
tions ofassociations with the accessing methods at: aiid at:put:. It
doesii't help that Dictionary subdasses Set to inherit the imple-
mentation ofhashed lookup. I treat them like arrays. IfI want to

15

=THE BEST Ot COMP.LANG

This claim provoked discussion about how easily register
windows could be used-whether they would interfere with
garlbage coNection (since values in registers outside the current
window would not be easily visible> andi other such topics-

Urs Hoelzle (urs@xenon.stanford.edu) mentioned that Self
has been using SPARC register windows with garbage collec-
tion for some time* Peter Deutsch provided a comprehensive
analysis of reasons for Smalltalk not to use them:

The problem of pointers buried in register windows is in-
deed a significantone, but it is not the reason why I would
recommend against modifying the Objectworks/Smalitalk
(Ow/ST) implementation to use register windows. First,
the performance gains would not be dramatic. Ow/ST
spends a substantial fraction of its: time in support code
written in G which would not be affected. A substantial

fraction of the time in conipiled Smalltalk code is spent do-
ing message sends, type checks, etc., which would also not
be affected. Also, since Smalltalk stacks get very deep and
ffuctuate more deeply than C stacks, the 7- or 8-register
window on current SPARCs would over- and underflow
significantly often. My best guess was that we would not
see more than 20-25% performance improvement. (On fri-
ture SPARC processors, where both the cost of memory
references relative to register accesses and the number of
register windows might be larger, this improvement might
be somewhat greater.) Second, one of the keys to Ow/ST's
remarkable portability is that it uses a very similar internal
storage format for stack frames on all platforms. However,
because saving and restoring register frames is done on the
SPARC by code that is not accessible to ParcPiace, we can-
not affect the storage format for these frames. So in order
to use the SPARC register frames, we would have to either
provide a complete second set of or add radical new flexi-
Unity to, the jarge body of code in the runtime support sys-
tem that manipulates stacks. The bottom line is that, in my
opinion, the work required to fit Ow/ST to the SPARC's
frame model would not justify the relatively small perfor-
mance improvement. As for the comparison against Self,
the Self authors acknowledge that the factor of 5 is only
achievable UIlder some circumstances. I do thinkit would

be exciting to apply the Self compilation ideas to Smalltalk,
and doing this could well produce drainatic performance
improvements (on all platformsh but this would require
wholesale redesign of most of the platform-independeiit
code (other than the memory manager) in the Ow/ST run-
time support system. The optimizing compilation experi-
nients I did at ParcPlace were based on an alternative ap#
proach that would not have required such substantial
changes to the Ow/ST virtual machine, but might have re-
quired type declarations (or at least trpe hints) provided
by the user (or a type inference system). El

Alan Kniglit iS a Tes©arciker ill tlte Department of Medu.nical apid
Aerospace Engineering at Carleton University, Ottaiva, Cap:ada,
K24 3PJ. Hecanbereached ot +1 613.788.2500 x5783, or by¢-mail

at knight@mrce.carleton.cal

14

*TAKING EXCEPTION TO SMALLTALK, PART i

aint:,imi fi Mi page 5

month>s system-dependent section because it depends on the
layout of contexts.

Once the handler block is found, it>s evaluated with the ex-
ception as a parameter. This alidws the handler block to send
the proceed, reject, restart, and return messages to the exception,
and to query the exception for information about the error.
Below are the implementations for proceed and reject-those
for return and restart :re in next month's article because they
depend on some specifics of the V 286 system.

Proceeding is simple: Since we have the instance variable
proceedBIock, all we need to do is evaluate it, perhaps with
some meaningful parameter, as in

proceedD©ing: aBtock
"Return the value of aBlock as the value of the raise signal. Unwind
the stack up to thatpoirit and resume execution in the context that
raised the signal. H
I answer 1
answer:= aBlock value.

signaIContext unwindLaterContexts.
proceedBlock value: answer

Evaluating proceedBlock causes control to return into the
context where the signal was first raised. The only subtle
thing to remember concerns the unwind mechanism. Before
evaluating proceedelock, we call unwindLaterContexts, which
evaluates the unwind blocks of every context we'll skip by
proceeding.

Implementing reject is also quite simple. The current han-
dier context (as found by fetchHandlerBlock:) is stored iii the
exception's handlerContext instance variable, so to find the next
handler below the current one, we fust need to look for some
handler for the exception's signal below handler€ontext. We
can do that by sending propagatePrivateFrom: to the receiver ex-
ception with handlerContext as the parameter,

At this point we have a system-independent implementa-
tion for much of our package. Tile ciass Signal is complete and
we need only three more methods for class Exception: return,
restart, and the private method fetchHandlerBlock:. We also
bed to implement unwindLaterContexts to implement our un-
wind mechanism. Finally, we need some extra functionality for
class Process. Next month, we will describe these final aspects
of our system, such as the need to create a new set of context-·
related classes to make dealing with contexts in V 286 consis-
tent and relatively trouble-free. E

References

1. Van Orden, E. Application talk, HOOPSLA! 1(2), 1988,
2. Graver, I.Type-checking andtype-inference for object-ori-

ented programming languages. Doctoral thesis, University of
Illinois at Urbana-Chanipaign, 1989.

Bob Hinkle and Ralph E. Johnson are affitiated with the University of
Illinois at Urbana-Clianipaigit. Mr. Hinkle's work is supported by a
fetiowshipfrom the Fannie and fohn Hertz Foundation.

THE SMALLTALK REPORT

Listing 3 co,itinued

" Classes in the application "
classist :- #C
ExtendedListPane

AviationGraphPane
Jet€ngine
PropEngine
RudderMechanics).

'W€te application class definitions."
classList

do:

I.className I
reader :=ClassReader fordass: (Smantalk at: className).
readerfileoutClassDefinitionOn: sourceStreaml

"Wnte the methods for the application dass"
classList

do:

[:className 1
reader.=ClassReader for(lass: (Smalltalk at: className}.
reader fileOutOn. source Stream].

"Write standalone instance methods"
#(
(UstPane listAttributes)
(ListPane listAttributes:)
(GraphicsMedium bezierCurve:)

do:

[:classNameAndSelector 1
reader :=ClassReader for(lass: (Smalltalk at:

(classNameAndSelector at: 1)).
reader

fiteOutMethod: (classNameAndSelector at: 2)
on:sourcestream].

" Write standatone class methods"
#(
(ListPane supportedEvents)

do:

[:classNameAndSelector I
reader :=ClassReader forCiass: (Smalltalk at:

(classNameAndSelector at: 1)class).
reader

fileOutMethod: (classNameAndSelector at: 2)
on: sourcestream].

sourceStream close.

Listing 4. Supporting code in ClassReader for filing out
a class definition without methods.

file{}utaassDefinitionOn:afileStream

"Wnte the source for the class (but not for the instance
methods und class methods> in chunk file format
to (FileStream.'

class isNit ifrrue: [Aself].

CursorManager execute change,
aFiteStream lineDelimiter: Cr,

class FileOutOn: aFileStream.

afileStream next¢hunkfut: String new-
CursorManager nomal change

NovEMBER /DECEMBER 1992

00* Smalitalk/V users: the tool
m for maximum productivity

° Put related classes and methods into a sihgle task-
oriented object called application.

° Browse what the application sees, yet easily move code
between it and external environment.

° Automatically document code via modifiable templates.
° Keep a history of previous versions; restore them with

a few keystrokes,
° View class hiemrchy as graph or list.
° Print applications, classes, and methods in a formatted

report, paginated and commented.
° File code into applications and merge them together.
° Applications are unaffected by compress log change
and many other features.

Class £ Deleted elasss . 1
Browsers..¢OApplica¥ion I<#.- , _ _/ Ayarn Ug)*ted jnethp.dE...|

\History --- Code recovery

Utilities.. -T - -ApbliAtkin prE tilti and more..
 CodeIMAGER™ V286, VMac $129.95

VWindow & VPM $249.95 Shipping & handling: $13 mail, $20 UPS,per copy
4 Diskette: 0 31/2 0 53/4

SixGraph™ Computing Ltd.
fonnerly ZUNIQ DATA Corp.
2035 COte de Liesse, suite 201

U, Montreal, Que. Canada H4N 2Mj#I*6 &¢16- Tel: (514) 332·1331, Fax: (514) 9561032
Ced©IMAGER 18 * re, t*'a* mark of Six(raph eo mpUring Lid.
SmallEalk/V is & mg. nad¢mark of Digitalk, fne.

gotten. This activity is usually performed in a regular fashion,
such as before each snapshot.

Another common error is to rebuild an. application on top
of an image that has been used for development. This is not a
good idea because the state of the image is unknown. There
may be unwanted side effects from objects in the image. It is
imperative, therefore, that the application is reconstructed
from a clean, pristine image.

FREQUENCY

How often should the application be rebuild Early in develop--
ment, when many classes are being created, the scripts are
modified rapidly. It valuable to rebuild often to test the scripts; if
thefre too far out ofsync with the application source, it can be
difficult to debug the reconstruction process. In the middle stages
of development the scripts are not in so much flux and the appli
cation doesn't need to be rebuilt so often to test them out. Other

considerations may force application reconstruction, such as re-
design ofparts ofan application. As the product is nearing com-
pletion, the development team imaywant to reconstruct the ap-
plication often to confirm that the build process is bug-free. E

juanita Ewing As a settior staf inember of Diglialk Professional Ser-
vices. She has been a project leader for several commercial 0-0 s€t-
ware projects, andisan expert in thedesign and implementation of
0-0 applications, frameworks, and systems. Iii a previous position at
Tektronix Ilic.,she was responsible for the development of class M-
Draries for the firstrummerrial-quality Smalltalk-80 system.

11

Imager<

f HE BEST OF comp.lang.smalltalk Alan Knight

Smalltalk performance

Many people think of Smalltalk as slow. Unfo rtunately, they're right, especially as compared with the
reference point of optimized C. This column will ex-

plore why Smalltalk code runs so slowly, just how slow it is,
and the possibility for improvement.

WHY IS SMALLTALK SLOW?

Although surprisingly fast for what it does, Smalltalk is slow for
various reasolis. Conv·entional wisdom blames garbage collec-
tion. After all, Smalltalk collects garbage wliile those other, fast
languages don>t. Garbage collection does have a price, but not
nearly as high as people think More time-consuming is safety
checking. Smalltalk checks all array references to make sure they
are in bounds, every object reference for null values, every integer
operation for overflow, and so on. C does none ofthese things,

If you have a compiler like Turbo Pascal, which allows you to
tum array-bounds checking on and oft try doing it with a pro-
grain that uses arrays. The effect on performance is very notice-
able. Istill leave checkhig on by default, and always turn it on]
when I'm trying to debug. When I learned C I wasted a lot of
tillie trying to figure oift how to turn on bounds checking, but I
finally did. It involves payiiig a lot for aii interpreter so my code
can run more slowly than equivalent Smalltalk, but it's worth it.

Of course, these approaches have the advantage that you
only pay the price during development. Safety features can be
turned off when shipping the "bug-free" production code. It
would be an interesting experiment for a vendor to provide a
fast. unsafe version of the Smalltalk virtual machine for stand-

alone applications.
Another important factor is message passing, for two rea-

sons. First, message sends are a little pricier than function calls.
You have to additionally figure out which function to call at
runtime. However, the high cost of message sends is due to
their number. Everything in Smalltalk except instance-variable
access requires a message send. Even if messages cost less than
function calls, the fact that there are so many more in the aver-
age Smalltalk program than the average C program makes
Smalltalk slower.

HOW SLOW IS IT?

Quantitative performance measurements are always difficult.
Results vary greatly between applications and minor changes
can make a big performance difference.

12

Given this difficuhy, we are fortunate to have someone with
a good knowledge of the subject, at least with respect to Parc-
Place Smalltalk. This impressive disclaimer is from Peter
Deutsch (deutsch@smli.eng.sun.com)

I was the principal designer and implementor of Parc-
Place's Smalltalk code generators, including the portability
architecture, the code generation framework, the stack
management architecture, and the individual generators
for 680x0, 80386, SPARC, MIPS, and RS/6000. The opin-
ions expressed below are my own and should not be at-
tributed to ParcPlace or to Sun.

He then writes:

In my experience, based on a variety of both micro- and
macro-experinients, the ParcPlace Snialitalk system does
benchmark around a factor of 8 slower than optimized C
for integer, structure, and array computation that does not
contain large numbers of procedure-call-free loops. For
straight-line integer computation, the ratio can get down
as low as 4 or 5 to 1. (Of course, ParcPlace Smalltalk does
overflow checking on al] arithmetic operations, so any such
comparison is not entirely appropriate.) For highly opti-
mizable loops, especially ones involving access to arrays or
strings (which ParcPlace Smalltalk always bounds-checks,
and C never does), the ratio can get up as high as 40 or 50
to 1 under the most unfavourable circumstances, such as
the 1 -statement loops of stlien or stropy.
It is because of these things that ParcPlace recommends
that, when necessary, users write their highrusage loops in
C Smalltalk's advantages are in areas other than highest
performance for unchecked inner loops.

IS THIS FAST ENOUGH?

For many applications, this kind ofspeed is high enough. The
numerous advantages of Smalltalk are worth the performance
hit in these areas. For other application areas, the speed is
definitely unacceptable, but this is partly psychological- If
Smalltalk is running as fast as it reasonably can, we must either
accept the performance or use another language. If, on the other
hand, it runs slowly because the implementors haven't bothered
to make it go faster, then We may get annoyed about it.

A strong voice for the possibility of improving performance
comes from the implementors of Self. Self is a prototype-based
language that is even more difficult to optimize than Smalltalk,

THE SMALLTALK REPORT

but its implementation achieves much better performance.
This is done using an extremely aggressive optimizing com-
piler. For example, Self exploits range information in integer
computations. Using this information, it can omit overflow
checks in cases where they're shown to be unnecessarv.

Bruce Samuelson (bruce@]ing.utail.edu) doesn't think cur-

rent Smalltalk performance is fast enough. He writes:

ParcPlace, your dynamic compilation technology, is indeed
impressive....But you can do better, and you have chosen
not to because you don't think it is high priority:
1) The Self authors claim in the literature that Smalltalk could
be sped up byy abouta factor of 5. They clairn in person that
PPS is notinteristed in doing so (atleast as of OOPSLA '91).
2) Mike Khaw's recent posting showed that Smalltalk did
integer arithmetic in a tight loop about 1/8 the speed of
C - „- This is in the balipark ofwhat one would expect for
such low levei comparisons.
3) A Smalltalk"VM implementor" told me at OOPSLA'91
that the machine code generated by the dynamic translator
is of "plain vafillia;> unoptimized quality. For example, lie
thought the code for SPARC machines (he was not the
SPARC VM implementor) did not make use of register win-
dows, SPARCs idionnatic technique for passing function ar
guments efficiently. Perhaps he was wrong, or perhaps I mis-
understood him, but times past when I've posted this and
asked for comments from PPS, you have remained silent. It
seenis like this is one area in wfiich you could apply some
fairly standard optimization techniques iii your VM that
wouldn't require modifications to the compiler in the VI.
4) A PPS employee was eipgaged in a serious optimization
project before he left PPS. I have not heard from PPS on the
status of t]1is project, except a comment I would paraphrase
as follows: "We are hnpressed with the speed of forthcoming
new machines [based I suppose, on DEC Alpha, HP-PA, In-
tel 586, TI Viking, etc.1 and feel that hardware vendors will
solve possible Smalltalk performance problems.'>
5) Critique of (4):Yes, Smalltalk grows faster in proportion
to the hardware. But so does every other language, and
Smalltalk remains 5-10 times slower than C. The hardware

vendors are not improving the competitive position of
Smalltalk, except to make it feasible to use at all, and they
already did that a few years ago. As machines get faster, ap-
plications get more ambitious and demand more cpu cy-
des....A software vendor offering a development envi-
ronment should regard decent optimization as a priority.
Reviews of software products, whether of languages or ap-
plications, usually give performance a prominent place.
You will make us, your customers, look better if you give
us the tools to write blazing applications.
6) Ihave had to spend more time on optimizing my
Smalltalk code than I would have liked, which has taken

time away from inore productive activities. I imagine this
has happened to other programmers.
7) A turbocharged Smalltalk that could even modestly
compete with C and C++ in speed wouId be an absolute

NOVEMBER /DECEMBER 1992

dynamite product, How many of the postings to
comp.lang.c++ give efficiency as a reason for using this
"engineering compromise"? Take away efficiency as a criti-
cism of Smalltalk and a lot of programmers and managers
will take note.

8) Digitalk must have had some money to spend to able to
buy out Instantiations. What if they put some of their
money into doing a bang-up job at optimizing ST/V?
Where would that leave ParcPlace?

9) Despite all these comments, which are directed to PPS in
response to Tim Rowledge>s posting, I realize that PPS is a
small company with finite resources. Your founders have
profoundly influenced the entire computer industry
(GUIs, object orientedness) for the better. And you sell a
very nice Smalltalk environment indeed. So I will counsel
myself to remain patient and trust your marketing in-
stincts. But please don't keep performance on the back
burner forever...

REGISTER WINDOWS

There are quite a few complaints here, and I entirely agree with
the main thrust that Parc]Mace needs to place more emphasis on
performance. I'd like to specifically deal with one of the claims
that attracted particular attention on the net: the assertion that
ParcPlace Smalltalk does not use register windows on the
SPARC. For those of you even more blissfully ignorant of hard M
ware than myself I will attempt to explain register windows.

Machine registers are verv fast to access and CPU designers
like to have lots of them. The downside ofthis (apart from
having to use valuable chip space) is that when there are many
registers, more bits in the instruction word are needed to spec-
ify which one you want.

There are various ways of getting around [his. One is to
have more than one set of registers, used for different purposes
(e.g., integer and floating point). The SPARC designers pro-
vided tots of registers, but made only a few of them visible at a
time, By changing the register "window," you change which
registers are visible.

Chwiging the window noritialiv is done when making a pro-
cedure call. Rather thaii put arguillents onto the stack, which is
iii main memory and therefore slow, one can put them into reg-
isters, then change the register window. Since the windows have
some overlap, values put into the bottom of the register window
ofthe calling routine will appear iii the top ofthe window of the
called routine. The arguments are immediately available and the
called routine has its own set of registers to play with.

This technique can speed up procedure calls quite a bit.
SUN daimed in some document I once read that register win-
dows were aimed specifically at incrementally compiled lan
guages like LISP and Smalltalk. In these languages, the compiler
doesil't have as much time to think about how to optimize code
and there are many procedure calls. Register windows are sup-
posed to a]low these calls to be easily optimized.

If SPARC can't or doesn't expioit SPARC register windows,
it sounds like there's a serious communication problem be-
tween chip and language designers.

13

' TIE TOP NAME
•1 mA-G 5 ON

TIE BOTTOM
OF TIE BOX '

Where can you find the
best in object-oriented training? t

The same place you found
the best in object-oriented
products. At Digitalk, the
creator of Smalitalk/V.

Whether you're launching
a pilot project, modernizing
legacy code, or developing a
large scale application, nobody
else can contribute such inside

expertise. Training, design,
consulting, prototyping,
mentoring, custom engineer-
ing, and project planning. For
Windows, OS/2 or Macintosh.
Digitalk does it all.

ONE-STOP SHOPPING.

Only Digitalk offers you a
complete solution. Including
award-winning products, proven
training and our arsenal of
consulting services.

Which you can benefit
from on-site, or at our
training facilities in Oregon.
Either way, you'll learn from a

Sinallhlk 04 i€ 4*fl» :
O*/N.•0•„: 1Lf %914:2'2 J. ':ilt

staff that literally wrote the
book on object-oriented
design (the internationally
respected Designing Object
Oriented Software").

We know objects and
Smalltalk/V inside out, because
we've been developing real-
world applications for years.

The result? You'll absorb

the tips, techniques and
strategies that immediately
boost your productivity. You'll

reduce your learning curve
and you'll meet or exceed
your project expectations. All
in a time frame you may now
think impossible.

IMMEDIATE RESULTS.

Digitalk's training gives
you practical information and
techniques you can put to
work immediately on your
project. Just ask our clients
like IBM, Bank of America,

Progressive Insurance
tk Puget Power & Light, U.S.

Sprint, plus many others.
And Digitalk is one of only
eight companies in IBM's
International Alliance for

AD/Cycle-IBM's software
development strategy for the
1990's. For a full description
and schedule of classes, call
(800) 888-6892 x411.

Let the people who put
the power in Smalltalk/V, help
you get the most power out of it.

EErl

The Smalltalk Report
The International Newsletter for Smalltalk Programmers
4&*BRM*de**#*44/#Malli

February 1993

MODULES:

ENCAPSULATING

BEHAVIOR IN

SMALLTALK

By Nik Boyd

Contents:

Feature

1 Modules: Encapsulating
behavior in Smalltalk

 by Nik Boyd
Columns

7 Putting it in perspective:
Characterizing your objects
by Rebecca Wirfs-Brock

10 The Best of

, comp.lang.smalltalk: Copying
i by Alan Knight

13 Gembg Rea/· Constants,
defaults, and reusability
by Juanita Ewing

15 GU/s: A quick look at two
interface builders

by Greg Hendley & Eric Smith
17 Smalltalk /dioms.' A short intro-

duction to pattern language
by Kent Beck

Departments

1 22 Product News and Highlights

Volume 2 Number 5

 his article proposes a new view of modules and how they may beadded to the Smalltalk programming system. Modules provide a
way to control the visibility of shared names. Modules also provide
a way to hide the detailed collaborations among a group of
Smalltalk classes organized as a subsy.stem. The organizing princi-

ples of classes and modules are orthogonal. Thus, modules also can be used to
safely extend existing baseline classes.

The concept of a module and modular software development has existed for
many years. A variety of programming systems has provided support for using
separate name spaces to control the visibility of names used in a program. Exam-
ples include Modula-21 and Ada.2

Smalltalk 5ystems use classes to encapsulate the structure and state of objects.
Because Smalltalk classes can hide their internal state and serve as centers around

which program behavior may be organized, they also may be considered modular.
But while Smalltalk classes can encapsulate the state of tlieir instances, they do not
encapsulate their instances' behavior.

By convention, some messages are designated as £'private" for the private use
of the class and its instances, I lowever, the Smalltalk system does not enforce des-
ignated message privacy and it is not always clear what such privacy means. For
example, should subclasses be restricted from using private messages they inherit
from their superclalises?

Because classes are globals iii the Smalltalk system dictionary, they are all visi-
ble to all other classes. This visibility is excessive and it can contribute to informa-
tion overload for novice Smalltalk programmers. It also can cause class naming
contlicts when a team of developers integrate their separately developed compo-
nents.

This article attempts to deal with these ismies in a relatively nonintrusive man-
ner that does not sacrifice any of the flexibility and power offered by existing
Smalltalk systems.

MODULES

In their work on Modular Smalltalk,3 Allen Wirfs-Brock and Brian Wilkerson de-
scribe the essential features of modules:

Modules are program units that manage the visibility and accessibility of
names.

A niodule typically groups a set of class definitions and obiects to im-
plement some service or abstraction. A module will frequently be the unit
of division ofresponsibility within a programming team....
A module provides ati independent naming environment that is separate
from other modules within the prograIn....
Modules support team engineering by providing isolated name spaces...

<oniruied on page 4

92480 4
%99.9372 1/

.F to EDIT(
Colt,

Johr py, 41 Paul White

 Cost of you are probably satisfied with Smalitalk as a development tool. In fact, many of usfeel even a bit arrogant about promoting Smalltalk as the "best" tool for developing
software systems. Nevertheless, most would have to agree that we still lack an integrated
process, and tools to match that process, for the entire softwai·e development lifecycle.
Whether we're using CRC, Booch's notation, OMT, or something else, there still exists a
"leap" from the design process to the construction of the software. Many ofthe tools on
the market today offer little in the wav of matching designs with the corresponding code.

Even more important, though, is the fact that we still don't have proper tools to allow
us to go back and update the design to reflect changes in the construction. If we are to
reap the benefits of the new "object-oriented lifecycle" many of us are advocating, where
the design and development phases can be better integrated, we're going to need such
tools. As Sam Adams and Steve Burbeck pointed out in the November/December 1992
issue of Obiect jMagazine, "design is a continual process of discovering, evaluating, and
deciding between alternatives. this can only be achieved ifthe costs of doing so are
manageable.

One issue that has been addressed over the months in this newsletter is how best to

manage visibilitv of objects within Smalltalk. On large development projects where teams
work on subsystems to be integrated, managing the name space alwavs proves to be a
difficult task. In our feature article this month, Nik Boyd takes a new look at using mod
ules as a vehicle for managing class library namespaces. He states that modules can be
used to hide the details of the implementation of a software component consisting of a
number of cooperating classes and he discusses means for implementincy them.5

In her column this month, Rebecca Wirfs-Brock calls for software development teams
to characterize their objects. She states that such characterizations will help ensure that all
team members are "in sync" and working toward a common system architecture.
Through her experience, she proposes a number ofterms for characterizing objects that
could be adopted by your team,

Kent Beck offers two columns in one this month, As an aside, he describes a fshort id-
iom for testing nil values in an expression. The main column calls for software developers
to "describe the intent behind a piece of code" for those who will later need to understand
it to reuse it. Kent suggests that what is needed is a 'pattern language" capable of describ-
ing these intentions at a variety of levels.

Juanita Ewing s betting Real" column addresses the problem common to all com-
puting languages-how best to deal with defining and using both constants and default
values. As she points out, to develop a code that will be reusable, default values must be
defined in a consistent fashion and a medianism must be provided for overriding them.
In the "GUI" column this month, Greg Hendley and Eric Smith comment on the simi-
larities and differences between Cooper and Peters' WindowBuilder and ParcPlace's new
Visua]Works. The issues involved in copying Smalltalk obiects arise regularly on
USENET, and Alan Knight tackles some of these issues in his regular
"comp.lang.smalltalk" column this month.

TH[SMA] LTA K R/pok {T»N#] 056 79- 113 published 9 li] I 4. 171 06,J, C<):,f d2)11ll>93 I3, %1(.J['blicd 02),n< i, i:614. re.e.[lt¢6,hid b, SIGS Publications C,mup. 588 Broad/a„ New York., NY 1, 0,
p ,>dumon of,hu malerot by ¢10,1 rome vansm ss on. Xer ox or ang other mellind wl] Iii <reatx 4 a I]] 1,1 viol:,1,0,1 of the US Copyright Law and a nal],

1 01·1911 21,12 (ft,[ada $90 5·Ir[F e u],]r ,>ria 9.00 POSTMASTIER Send addre„ di nges .ind Subs rip. 03 {>rder. tc.] 1,2 S.6. Lt,1 . R] 2.#4#6.0 18.>·
ServicesDepl, SUL])O.Box 3000 Den?I]i 1%<10783 f Subnit ir:Kk%!olhc·Ed;lan. d: 91 Second Avenue. O(tawa Onlarmi<lS 2114.Can,V,t

)RS'
IER

The Smalltalk Report
Editors
John Pugh and Paul Wire
Carleton U,3]versily & Ille Object People

BGS PumicATioNs
Advisory Board
Tom Atwood, Object TeD¢hnology Internationai
Grady Booch, Ramonal
George Sosworth, D,gtalk
Brad Cox, Information Age Consulting
Chuck Duff, Symantec
Ada e Goldberg, Pa,cplace Systems
Tom Love, Consu tam

Bei-trand Meyer, ISE

Me,br Page·Jo·nes. Wayland Systems
Sesha Pratap, Centertne Software
P. Michael Seashols, Versant

Bjarne Stroustrup, AT&T Bel, Labs
Dave Thomas. Object 1 echnology International

THE SMALLTALK REPORT

Editorial Board
Jim Anderson, Dignak

Adele (Goldberg, Pa.replace Systems
Reed Phdips, Knowledge Systems Corp
Mike Taylor, ED,gltak
Dave Thomas, Object Technology Internat,ona

Columnists
Kent Beck5 First Ciass Schvare

Juanita Ewing D 9,1. Ik
Greg Hendley, Knowledge Systems Corp.
Ed Klimas L nea Eng neering Inc.
Alan Knight, CarJelon Unwerslly
Eric Smith, Knowledge Sy,Mems Corp
Rebecca Wirfs-Brock, Digitalk

SIGS Publications Group, Inc.
Richard P. Friedman

Founder & Group Publisher

Art/Production

Krmstuna Joukhadar, Managng Eailor
Susan Cullgan, Pilgrim Road, Lid., Creatve Direction
Karen Tongish, Pro{duction Ed tor

Rot}eil Stewart, Desktop Symemr Coordinator
Circulation
Stephen W.Soule, Circulaton Manager
Ken Mercado, Fulfillment Manager
John Schreber. Circulation Assistant

Marketing/Advertising
jason Welskopt, Advertsvig Mg>-East Coast/Canada
Holy Me ntzer, Advert,srng Mg -West Coast/E„ope
Helen Newl,ng, Exhib t/Recrumnert Sales Manager
Sarah Hamilton, Plmotons Manager-Pubiloat,Mis
Lorna Lyle, Promot,oils Manage»-Conferences

Caren Polner, Pwomotio,is Graph:,Acist

Administration

Ossama Tomoum, Business Manager
Davpd Chatterpaul, Accounting
Claire Johnston, Cont>, ence Manager
CEndy Ba rd, Conierence Techf?Cal Manager
Amy Frmedinar, projects Manager
Margherita R. Monck
Genera' Manager

SIGS
Publishers of JOURNAL or OBJECTOR ENTED PRO·
GRAMMiNG, OBJECT MAGAZFNE HOTLINE ON OBJECT
OR ENTED TECHNOLOGY THE 84+ REFORT, THE
S MA L 1 TA I K R EFORT, T H E INTE RNAT O ? aL O OP DIRE C
TORY ara THE X JouRNAL.

HE MALLTALK REPORT

4**tht?**Fkt
IR#*0*0**Mi*{t

AmericanManagmentSystems, aninternationalconsult>
ing and sofrware development firm, is experiencing con-
tinued growth. AMS designs and develops breakthrough *
solutions for large organizations through the creative
application of technology.

We currently have numerous positions available for 00
professionals, ali ofwhich offer excellent growth opportu.
nities.

• SMALLTALK or C++ designers and developers
of smal[, medium and large scale systerns under
OS/2 and UNIX.

To find our more about your future with a recognized
leader in applied technology, please send or FAX your
resume to: Megan O'Neit, American Management
Systems, 1 777 N. Kent Street Arlington, VA 22209.
FAX: (703)8414056.

AMERICAN MANAGEMENT SYSTEMS, ING

Equclo»=ug E+»WER>N.

inherent complexity. Object management needs to be inte-
grated much more smoothly into the operating system services
and made to fit naturally with object-oriented languages. In
effect, you want the operating system support for objects to be
as transparent as support for memory allocation and dealloca-
tion, file services, and so on. Tlie approach must be sufficiently
general that it can accommodate a range oflanguages, not iust
C++ and Pascal. There will always be a place for interpreted
languages such as Smalltalk and Actor, and I hope that future
object-oriented operating systems will make cross-language
sharing of objects a reality,

Polymorphism unbound, Zack Urlocker,
WINDOWS TECH JOURNAL, 10/92

OOP is inclusive, lust as structured programming was two
decades ago. It differs, however, from structured programming's
traditional association with functional design methods such as
functional decomposition, dataflow diagrams or data structure
design. In OOP, obiects are first categorized into classes and or-

FEBRUARY 1993

ams

We are a rapidy growing
consulting company with

many state of the art openings.
+

LONG TERM ASSIGNMENTS

HIGHEST COMPENSATION!

SMALLTALK 80

COMPUTER CORPORATIONI

!212 Avenue or the Americas. New York, NY 10036,9th Floor
(212) 840-8666 • (800) 843-9119 • Fax (212) 768-7188

ganized hierarchically according to their dependency and simi-
larity. Each class comprises a set of attributes reflecting the ob-
jects' generally static properties and a set of routines (in
Smalltalk, methods) that manipulate these attributes, Then reta-
tions between classes, such as inheritance, are designed...

Object-oriented computing, David C. Rine and
Bharat Bhargavar COMPUTER, 10/92

..."In the object world you start bv defining classes," explained
Lanny Lampl, a technical consultant in Levi Strauss» Informa-
tion Resources Group. -You have to parcel out the responsibil
ities of each object and decide how classes will interact with
each other." Carrying out an object-oriented analysis turned
out to be harder than switching to Smal]Talk. C'The syntax of
the language is not the big thing," Lamp] said. "The important
thing is learning how to think about objects."

Levi Strauss cuts dient/server pattern, Jean S. Bozman,
COMPUTERWORLD, 11/16/92

23

PRODUCT

ANNOUNCEMENTS

Product Announcements are not reviews. They are abstracted from press releases provided by vendors, and no endorsement is implied.
Veiidors interested in being included in this feature should send press releases to our editorial offfices, Product Announcements Dept., 91 Second Ave.,

C) ttawa. Ontario Kl S 2114, Canada.

The Smalltalk Interface to Objective-C makes Objective-C ob-
jects look [ike Smalltalk objects. The interface is based on the
simple concept that every remote Objective-C object can he
represented by a local Smalltalk proxy object and every Obiec-
tiVe-C class can be represented by a Smalltalk instance. Mes-
sages sent to a local Smalltalk proxy obiect are transparently
forwarded to the actual Objective-C object it represents and
the results are returned as Smalltalk objects. If the return value
is an object ID, a proxy for that object is returned so that fol-
low-on messages are also forwarded.

1'0 the Smalltalk developer, there are just Smalltalk mes-
sages being sent to Smalltalk objects. To the Objective-C devel-
oper' there are just Objective-C messages being sent to Objec-
tive-t. obiects. The net result is that the two languages are very
smoothly integrated. Developers no longer have to choose be-
tweeii using Objective-C or Smalltalk. They can use both lan-
guages together, each where it is best suited.

Berkeley Productivity Group, 35032 Maidstone Court, Newark, CA

94560,510.795.6086, fax' 510.795.8077

The Object People Inc., a leading international provider of
training, mentoring, and project development services in ob-
ject-oriented technology, has expanded its educational facilities

and launched a new internship program for Smalltalk pro-
grammers. The company specializes in the design and develop-
ment of custom Sma[ltalk applications.

The new training facility allows the firm to offer an ex-
panded schedule of open enrollment courses in Smalltalk/V,
Objectworks\Smalltalk, and object-oriented concepts, analysis
and design. In addition, the finn's Objectworks\Smalltalk
courses now include the new VisualWorks application devel-
opment environment recently introduced by Parcplace. '1'he
Object People is also offering courses in PARTS, Digitalk's new
'visual development tool" for OS/2.

The new internship program is designed to fast-track the
development of accomplished Smalltalk programmers. Interns
will have the opportunity to work on their own applications
while having immediate access to assistance and guidance from
experienced Smalltalk developers. Interiiships are flexible in
duration and are spent at The Object People's educational fa-
cility in Ottawa. The program is available to both Smalltalk/V
and Objectworks\Smalltalk developers. Participation in the
program is strictly limited in view ofthe intensive one on-one
interaction required to make the program successful.

The Object People Inc., 509-885 Meadowlands Dr. Ottawa, Ontariol

Canada, KPC 3N2,613.230.6897, fax: 613.235.8256

Highlights
Excerpts from industry publications

DATABASES

.. Is the decomposition of the Open OODB system into mod-
ula arbitrary, or will other efforts to build a system with simi-
tar functionality result in a similar factoring? It is too carly to
report that such experiments necessarily result in similar fac-
torings, but the Open OODB's factoring into modules is very
similar to the application integration framework being devel-
oped by the industrial consortium Object Managentent
Group.... Thus, the OMG and the Open OODB architectures
are almost isomorphic. It is interesting that one is viewed as an
application integration framework architecture and the other
as an OODB architecture. .

Architecture of an open object-oriented database management
system. David L. Wells, Jose/ A. Btakeley,

and Craig W. Thompson,COMPUTER, 10/92

22

. .The power of obiects is in their robustness, extensibility,
flexibility, and modularity. Actually I wish engineers did not
have to know or care about objects. Except as interesting
metaphors, they are not useful to any one but computer pro-
fessionals. But we are not yet able to reach that level of infor-
marion hiding. If you are selecting an engineering database
management systeni today, it probably should be object-ori-
ented-and if it isn't, you should know why not.

What's the big deal about objects?. Joel N. Orr,
COMPUTER-AIDED ENGINEERING, 11/92

DESIGN

. , Although it's nice that operating systems are becoming ob-
ject-oriented for the user, there's no doubt that maintaining
backward compatibility with a straight C API brings with it an

THE SMALL-IALK REPORT

'. I . I../'... X :..r:etttlt *491123. t; Ir/ ;f.:..i.I'.5*ti_· :i..e#*di,Al#*"Albiza)**Wt//Ilil"ili
..0 ruln#Vek)0*19%4 ?fif{%%*: 14.9 trtitiv =/47..itivill/il/lifilill'll'UN:I.-:11:7112t.31*[7 %132:." - .4 z -23-t' 06:'flt-:4:42,>. g:j,%:4* \

Soe e rehit**Utute#Ar Bfu i lt:6.clbp*--j. e . 3444#k
 - 4*kf ::t :1 6::80#y: k:?:0:%***:21?94:*2 iTki. *tardi1t4*41ii#-:Of li ,9 + %3 Acnuu = i-t < :(f9'1F'1*1.u«fl 429 i c* *i ,-«4/447-'I' -I . :.t: ' 'A?iT':0**4 'T#a *lli %12*4f«i» F; 4 <4umy ek 47 , £,4s 513 - ffitu:4.-.9*trtitiffe,FA:.* r

1001-Mwi:,44$.,·.>44*4**5%
r:.43&<f:*iv43*16¥1.9.RE ffF*irtgty« #-bi>''r'4 A 1 ./ A :*4'42&' h ' ges

4 9./ b a. . 7

s:.U.4/29: 49«44 4 :3 22 :

i rit-32«' bke,ff.4/3,#1 1..."bl#*Ft
303<04 4=4.*3,94%;a**44*44;tift 4 904· 2 .deffilttti€92?4ft>il<44'*.11(.1AqK'*f-t.'.i 2*:'i-0.1,01Awl'* :

-, mu-+1:1973&9,3/<4... -**AMIS.l:**I:&+IlIr

4/ir«'0>11> titfjlf#lipli/,11%91."tfii'*fliliti#*Efl)/6/An.2/30:<Fqay. I
7119-€-¥»E=Ag*apate.'imiltba.NEW#,WriA. ania54 ': f 3 4. #«

ENVY/Developer:The Proven Standard For Smalltalk Development
An Architecture You Can Build In

KNVY/Developer is a multi-user environment
designed for serious Smalltalk development.
From team programming to corporate reuse
sirategies, ENV¥/Developet· provides a
flexible franiework that can grow with you to
meet the needs of toinoliOW. Here are soine of

the features that have made ENVY/Develqier·
the industry's standard Smalltalk development
ellk[<01101ent.

Allows Concurrent Developers
Multiple developers access a shared
repository to concurrently develop
applications. Changes and enhancementx are
immediately available to all members of the
development team. This enables constant unit
and system integration and test - removing
the requirement for costly error-prone
load builds.

Enables Corporate Software Reuse
ENVY/Developer's object-oriented
architecture actually encourages code reuse.
Using this framework. the developer creates
new applications by assembling existing
components or by creating new components.
This process can reduce development costs
and time, while increasing application
reijability.

Offers A Complete Version Control And
Configuration Management System
ENVY/Developer allows an individual to
version and release as much or as little of a

project as required. This automatically creates
a project management chain that siinplifies
tracking and inaintaining projects. In addjtion,
these tools also make ENVY/Developer ideal
fur mu[ti-stream devejopment.

Provides 'Real'

Multi-Platform Development
With ENVY/Developer, platform-specjfic
code can be isolated from the generic
application code. As a result, application
developtnent can parallel platform-specific
development, without wasted effort or code
replication.

Supports Different Smalltalk Vendors
ENVY/Developer supports both
Objectworks \Smalltalk and Sma][talk/V'.
And that means you can enjoy the benefits
of ENVY/Develope,· regardless of the
Smalltalk you choose.

For the last 3 years, Fortune 500 customers
have been using ENVY/Develo/]e,· to deliver
Smalltalk applicatjons. For more information,
call either Object Technology International or
our U.S. distributoi·. Knowledge Syxtems
Corporation today !

Object Technology Ottawa Office Phoenix Office Knowledge 114 MacKenan D[Ive, Suite 100
International Inc Phone (613)820-1200 Phone (602)222 9519 Systems Cary North Carolina 27511
2670 QueenSVEW Drive Fax (613)820-1202 Fax (602) 222-8503 E Comontion Phone (919) 481-4000
Ottawa, Onta[io K28 8K1 E-mail: info@oti.on.ca Fax· (919)460-9044

EN,rr Devemper,s a registered trade ruik ol Obled Technolc gy In ternal o,lal Inc. All other b [and and p[oducl names aip reg,sler® tradema'<s Of their respe¢I,ye Conlpanles

While providing many potential improvements to
Smalltalk, the Modular Smalltalk system does not implement
modules as first-class objects. Like many other programming
systems, the Modular Smalltalk system uses modules only for
organizat:ional purposes. This article proposes a different view
of modules as a special kind of Smalltalk class,

MODULES FOR SMALLTALK

The definition of a normal Smalltalk class includes a reference

to a superclass, the name of the new subclass, and the names of
any new instance and dass variables added by the new sub-
class. Class variables are shared by all the instances of a class
and are visible to all its methods and subclasses, if any.

In addition, the new subclass can provide its methods with
access to named objects that are shared on a subscription basis.
Certain names in the Smalltalk system dictionary are bound to
global pool dictionaries that contain these sharable named ob-
jects. The new subclass can subscribe to these objects by in-
cluding selected global names in its list of pool dictionaries,
For example, a File class might be defined using the following
inessage:

Object subclass: #File
instanceVariableNanies:

'directoiy file Id maine 1
classianableNames:

'PageSize '
poolDictionaries:

'CharacterConstants 1 1

Modules may be added to Smalltalk in a relatively straight-
forward manner. Details of how this can be done are presented
in a later section. For now. wc cain say that each module is a
class containing a name spaces called its domain, instead of
simply a pool of class variables.

There are several new messages for defining modules and
the private classes contained in their domains. The definition
of a module for managing an inventory might use the follow-
1Ilg message:

Object moduleSubclass: #Inventor<Manager
instanceVariableNames: 1

classVariableNanies: 1

poolDictionaries: ' :1

A 11ew private class can be added to the domain of the In-
venton/Manager class using the message:

Object subclass: #Inventoryltem
in: InventoryManager
instanceyariableNames:

'partNumber partName quantity'
classVariableNames: ' 1

pooLDictionaries: E!

In order to add a new private subciass of InventoryItem, we
send the name of the private class (#InventoryItem) as a mes-
sage to the InventoryManager module:

InventoryManager
Inventolyltem subclass: #Floontem

instanceVariableNames.

4

m MODULES m#mt fr,i page i

'storeLocation '

classyariableNames: ' '

pootDictionaries: 2 1!

The issues involved in this breaking of the module encapsu-
lation will be considered further in a later section.

Modules can be used to create nested subsystems. The fol-
lowing message creates a nested module for managing ac-
counts in the Inventor/Manager module class:

Object moduleSubclass: #AccountManager
in: InventoiyManager
instanceVariableNames: '

classyariableNames: ' '

pool Dictionaries: 1 '!

Figure 1 depicts the structural relationships between classes
in the InventowManager module. Note that the graphic design
notation of OMT4 has been extended slightly to show what
dasses are encapsulated inside a module class. The rounded
rectangles represent module domains. Note that the Smalltalk
system dictionary also is considered to be the system domain.

ENCAPSULATING PRWATE BEHAVIOR

Modules provide three ways of encapsulating private behavior,
atl of which are based on their ability to encapsulate private
classes;

• class groups (systems)
· baseline class extensions

· private methods

Each ofthese options will be discussed in the following
sections.

PACKAGING OBJECT SYSTEM DESIGNS

One advantage of modules is that they provide a way for devel-
opers to package systems ofcomponents. During the design of
a system of obiects, groups of classes often know of each other

Smalltalk

Objec 1

1

Inventory
Manager

Inventoryftem « 2< AccountManager

T TransactionLog
FloorItem

Figure 1. Structural relationships between classes.

THE SMALI.TALK REPORT

the module grants direct access to an enclosed class bv publish
ing it, then all the services of that class are directly available,

A module can provide direct access to an enclosed private
class by supplying an accessing message as part of the public
interface to the module. Suppose we want to give direct access
to SubclassB in Figure 3. We could give ModuleA a class method
named #SubclassB that answers SubclassB:

!ModuleA class methods !

SubclassB

"Publish SubclassB."
SubclassB!!

However, modules provide their greatest advantage when
they hide or limit the visibility of their internals. This visibility
is determined by what information (objects) is revealed by the

Extending the visibility rules of the
compiler is the key to adding modules

to Smalltalk.

module class and its instances (ifany). The module forins the
public interface to the classes inside the module domain.

COMPARISONS WITH OTHER WORK
Several other works 35,6 suggest that modules are not first-class
and have no direct representation in an active system of ob-
jects. They suggest that modules only serve as name spaces for
controlling the visibility of shared names. This article has pre-
sented a different viewpoint, advocating the inclusion of mod-
ules as a special kind of class.

Using a responsibility-driven approach,5,7 the design of an
object system can achieve a high degree of encapsulation and
reusability. Classes help to maintain encapsulation when they
limit access to their variables. Modules can help to maintain a
higher degree of encapsulation by limiting access to the private
behavior of subsystems.

The Law of Demeters suggests that object systems can best
realize the benefits of reuse by strictly limiting the visibility of
objects to those other objects in the system that require such
visibility. With classes and modules, visibility is controlled by
the system designer.

CONCLUSMON

This artide shows how modules can be made first-class within

Smalltalk systems. Modules provide a natural way of packaging
object systems and give obiect system designers more options
for controlling the visibility of a system's implementation de-
tails. Modules reduce the possibility of naming conflicts be-
tween separable systems of objects.

FEBRUARY 1993

Just as classes form a hierarchy for the inheritance of struc-
ture and behavior, modules can be used to form a nested hi-
erarchy of name spaces (domains). The organizing principles of
classes and modules are orthogonal and complement each other.

Classes can be imported into modules by adding a private
subclass ofthe same name to the module domain. However,
given the new visibility rules for shared names, this kind of
transparent subdassing may be the only reason for explicitly
importing classes from outside a module.

Classes can be exported from a module by providing a ines-
sage for accessing the class by name. However, this kind of rev-
elation on the part ofa module is discouraged because it leads
to dependencies on the module's internals,

SOURCE CODE AVAILABILITY

Modules may be added to Smalltalk with relatively few
changes. Two new classes and some changes to various core
Smalltalk classes and the front end of the compiler provide the
essentials for creating module classes. A tool for browsing
module domains is included. This shows one way that support
for modules may be integrated into the programming tools.
The source code for adding modules to Smalltalk/V is avail-
able through the American Information]Exchange (AMIX). E

References
1 Wirth, N. PROGRAMMING IN MODULA-2, TEXTS AND MONO-

GRAPHS IN COMPUTER SCIENCE, 2nd Edition, David Gries,
Springer-Verlag, Berlin, 1984,

2 Booch, G. SOFTWARE ENGINEERING WITH ADA, Benjamin/
Cummings, Menlo Park, CA, 1983.

3 Wirfs-Brock, A. and B. Wilkerson. An overview of modu[ar
Smalltalk. OOPSLA i988 PROCEEDINGS, September 1988,
pp. 123-1341

4 Rumbaugh, I. et al. OBFECT-ORIENTED MODELING AND
DESIGN, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1991.

5 Wirfs-Brock, R, B, Wilkerson, and L. Wiener. DEsiGNING OB-
JECT-ORIEN·rED SOFTWARE, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1990.

6 Szyperski, C.A. Import is not inheritance, why we need both:
modules and classes. ECOOP 1992 PROCEEDINGS, June/July
1992, pp. 19-32.

7 Wirfs-Brock, R. and B. Wilkerson. Object-oriented design: a
responsibility-driven approach. OOPSLA 1989 PROCEEDINGS,
October 1989, pp. 71-75.

8 Lieberherr, K.L. and I. Holland. Formulations and benefits of
the law of Demeter. SIGPLAN NOTICES, v24#3, March 1989,
pp. 67-78,

Nik Boyd has been developing object systems since 1987. Since lan-
Mary 1990, he has been with Citicorp Transaction Technology Inc. in
Santa Monica, Cahfornig where he is currently a Principal Member
of the Technical Staff. His experience with OOP includes work with
PARTS Workbench, Smalitalk/V for PM, Mac, Windows, and DOS,
and Objectworks/Smailtalk v2.5 for DOS and¥4.0 for Windows. His
research inte rests include iristance -ce?itered mid class-centered oblect
systems, as well as tools and techniques that support object-oriented
software engineering. Nik may be contacted via internet e-mail at
74170.2/71 @ CompuServe.com or through the American Informa
tion Exchange CAMEO.

21

NO POSTAGE

NECESSARY

IF MAILED

INTHE

UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 279 DENVILLE NJ

POSTAGE WILL BE PAID 8Y ADDRESSEE

The Smalltalk Repoirt
Subscriber Services Dept SML
PO Box 3000
Denville NJ 07834-9821

Smalltalk Object Database Support
Integrated garbage collection of persistent Smalltalk objects • Server-
based gateway toolkit and relational gateways • Server-based active
object manipulation language • Cooperative client/server support

Please send me information on Smalltalk Object Database Support and

O Keep me informed of future product announcements
O Have a Servio representative call:

Title:Name

Company

Address

C ity

Phone State: Zip:

SERVIO GemStone, the ODBMS for C, C++ and Smalltalk
from the Object Technology Company

'H"J",H"h"11"ll'll,l"Ldn,hh"Hhdd : ,

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

P 5% Previ

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 475 ALAMEDA, CA

POSTAGE WILL BE PAID BY THE ADDRESSEE

SERVIO CORPORATION
950 MARINA VILLAGE PARKWAY
SUITE 110
ALAMEDA, CA 94501

The Smalltalk Report t:..--0 If you're programmin0
in Smalltalk, .

des objective & authoritative coverage on languase you should De reading
&& advances, usage tips, project management advice, ADD

techniques, and insightful applications. ne Smalltalk Repoft 99 8
U Yes. 1 would like to subscribe to The Smalltalk Report Date

U i year (9 issues) U 2 year 68 issues) Name

U Domestic $6g.00 U Domestic $128.00 Title

13 Foreign $94.00 O Foreign $ 178.00 Company

Method ot Payment Address
O Check enclosed {payable to The Smalltalk Report)

CityU Bill me
StateU Charge my: OVisa U Mastercard U Amex

Card No Zip
Exp. Date. Country

Signature

i. Which dialect o f Smalltalk do
you use:

U Smalltalk V
U Smalltalk-80
0 Other
2. What is your involvement in

software purchases for your
department/firm:

13 Make Purchase
0 None
3. Which operating system

supports your software:

U UNIX
0 DOS
/ 05/2
IJ Windows

Phone

4. What is your company's
primary business activity:
61 Compu[er/Software

Development.

O Manufacturing
O Financial Services
U Government/Military/Utility

U Educational/Consulting
0 Other
5. For how long have you been
using Smalltalk.
0 Less than one year
 1-3 years

0 3, years
E3AG

llili,iI,,1il,I'll I1IIII IlliI,II/,ill,,i1'l,'1,I,111
U Recommend Need O0ther
0 Specify Prochict

Amemberof the

--abiect Marketing Network Illizil:)148 F illii'Iij

• MODULES

Listing 1.

CIassfiler objects are responsbile for filing Smalltalk source code in and out of
streams, usually FileStreams. This example is derived from the Smalltalk
Class Reader. It shows how private methods can be encapsulated in a njodute.

"The public interface module class."
Object moduleSubclass: #ClassFiler

instance'ariableNames:

'privateSelf 6
classfariableNames:"

poolDictionaries: f

"The private Classfiter mass.'
Object subclass: #ClassFiler in: Classhter

instanceVariabteNames:
'class 1

classVanableNames: '

poolDictionarieS: u

1ClassFile[class methods I
forelass: aClass

'Answer anew instance o f a public C ass Fiter
object."
self new forClass: a Class! f

privateS€lf:= ClassFiler new set[:tass: aelass.1 1
!Ctassfiler ClassFiter class methods ! 1

!ClassFiler Classhier methods !

checkfor: methodName

"Verify thatthe class described by the receiver
contains the named method.'

dass methodDictionary
at: methodName

ifAbsent: I
•selferror:

methodName asString,
is missing from ',

dads printString
1.1

fileIr:From: aStream

'Read chunks from aStream until art empty
chunk (a single bang ' 1) is found. Compile each
chunk as a method for the class described

by the receiver."
1 aString result I
I aStzing := aStream nextChunk.

aString isEmpty
ICIassFiler methods !
fiteInFrom: aStream

"Read chunks from aStream. Compite each
chunk as a method for the class described
by the receiver. Log the source code o f the
method to the change log.„

F Stream 1
stream := Sources at: 2.

stream setToEnd.

privateSelf instanceHeaderOn: stream.
privateSelf fileInFrom: aStream.
stream nextehunkht: t!; flush!

fileOut: metliof]Name On: aStream
"File out the named method for the class
described by the receiver to aStream, in
chunk foimat.'

privateSelf checkFor: ImethodName.
aStream m

pnvateSelf instanceHeaderOn: aStream.
privateSelf fileOut: methodName On: aStream.
a Stream next Chunkfut: "; cr. !

fileOutOn: aStream
'File out all the methods for the class described
by the receiver to aStream. in chunk format.•

aStream cr.

privateSelf instance Heade:On: aStream.
privateSelf file0utMethods011: aStream.
aStream next[:hunkPut: !'; cr!

for Class: aClass

Answer the receiver after attaching a new
private instance of the private Class Fiter class.1

whileralse: I
result :- class compile: aString.
result notNit imue: [

result value sourceString: aString

fileOut: met hodName On : a Stream

"File out the named method for Lhe class
described by the receiver on aStream, in
chunk fomlat."

aStream er: nextChunkFult: (
class sourceCodeAt: methodName

fite OutMethodsOn: aStream

"Fire out all of the methods for the class

desaibed by the receiver on aStreain.lt
Class selectorS asSortedoollection do: [:selector

self]Re Out: selector On: aStrea m

12

instanceHeaderOn: aStream
'write a header which identifies the class

desaibed by the receiver on aSeam."
'Note that fidng in translates double bangs to
single bangs and filing out translates single
hangs into double hangs (like those used here),
aStream

cr. nextfut: $!!;
nextfutkil: class printString:
space; nextPutAll: 'methods ! Fli

Because these new visibility rules subsume existing rules, the
semantics of normal classes continue to be supported.

BREAKING AND ENFORCING MODULE ENCAPSULATION
Because modules enclose and encapsulate their private classes,
programming tools need a way to break the encapsulation of
the module to create new classes inside the module. For this

reason, a change has been made to class Class.
When a module class sends #doesNotUnderstand: aMessage,

the message selector is checked to see if it is a capitalized unary
selector that is the name of a private class inside the module. If
so, the message answers the requested private class from the
module. Otherwise, the message is dealt with using the existing
#doesNotUnderstand. behavior.

This revised behavior is provided expressly for the compiler
and development tools. This service breaks the encapsulation

20

of the module similar to the way #instVarAt: breaks the encap-
sulation of an object.

To enforce the encapsulation of a finished module, the
module can be closed by adding another version of #doesNo-
tUnderstand: to the module class, overriding the one in ciass
Class. This can be accomplished simply by sending the message
#closeModule to the module class:

ModuleA closeModule.

This forces other classes outside the module scope to use
the publicly defined interface to the module.

MODULE INTERFACES

The module that encloses a group of private dasses can provide
either direct or- indirect access to the services of those classes. If

THE SMALLTALK REPORT

explicitly and collaborate closely to produce some complex be-
havior. Such subsystems are described informally in DESIGN-
ING OBJECT-ORIENTED SOFTWARI.5:

Subsystems are groups of classes, or groups of classes
and other subsystems, that collaborate among them-
selves to support a set of contracts. From outside the
subsystem, the group of classes can be viewed as work-
ing closely together to provide a clearly delimited unit
of functionality, From inside, subsystems reveal them-
selves to have complex structure. They consist of classes
and subsystems that collaborate with each other to sup-
port distinct contracts that contribute to the overall be-
havior of the system
Subsystems are identified by finding a group of classes,
each ofwhich fulfills different responsibilities, such that
each collaborates closely with other classes in the group in
order to cumulatively fulfill a greater responsibijity. . . .
There is no conceptual difference between the re·-
sponsibilities of a class, a subsystem of classes, and even
an entire application; it is simply a matter of scale, and
the amount of richness and detail in your model...

This article goes beyond the conceptual to assert that there
is no practical difference between the responsibilities of a class
and a subsystem of classes when the subsystem is implemented
as a module. The module class acts as a capsule around the
subsystem ofclasses enclosed within the module domain.

Such packaging supports some of the practices of good
software engineering. Imp}ementation details can be localized,
encapsulated, and scored. Just as good object designs organize
state and behavior into classes, systems of objects that are
closely coupled, or that cooperate to provide some overall set
of services, can be organized into modules.

classVariableNames: ' '

pooDictionaries: 11
Object subdass: #Transaction

in: FinanciaIManager
instanceVariableNames:

'account +

classVariableNames: ' 2

pooiDictionaries: ' '!
FinancialManager
Transaction subdass: #BatanceInquiry

instanceyariableNames: -

classVariableNames: 1

poo.Dictionaries: T '1
FinancialManager
Transaction subctass: #FundsDeposit

instanceVariableNames:

'amount '

classVariableNames: £

pooluictionanes: ' 1
FinancialManager
Transaction subciass: #FundsWithdrawal

irstanceyariableNames:

'amount i

dassfariableNames: F '

poolDictionaries: 2 '!
FinancialManager
Transaction subclass: #FundsTransfer

instanceVariableNames:

'amount target,Account'
classyariableNames: E r

poolDictionaries: E '1

EXTENDING BASELINE SMALLTALK CLASSES

Modules provide a safe way to extend and package changes to
baseline classes in the Smalltalk system domain. Figure 3 shows
how a private version of the String class can transparently sub-
dass its baseline version so as to extend it

EXAMPLE SYSTEMS

DESIGNING OBJECT-ORIENTED SOPTWARE. giveS
several examples of object system design based on
responsibilities, two ofwhich are described iii
this artide with just their class definitions. The
first example already has been presented. The In-
ventoryManager depicted in Figure 1 was derived
from the Inventory subsystem described on pages
146--148 of the above book. Pages 151-152 de-
scribe the organization of a subsystem for manag-
ing transactions against financial accounts. Figure
2 shows how this subsystem might be organized
as a module. The classes for this system could be

defined using the following messages:

Smalltalk

Object
i

FinancialManager

Transaction | Account
f1.

Balanceinquiry E j o FundsWithdrawal
Object moduleSubclass: #FinanciaIManager

instanceVariableNames: 1 5

classyariableNames:

poolDictionaries: ' !
Object subclass #Account

in: FinanciaNanager
instanceVariableNames:

'accountID balance '

FundsDeposit ° < fi FundsTransfer [

Figure 2. Subsystem organized as a module.

FEBRUARY 1993 5

ModuleA is a moduleSubclass of class Object and SubclassB is
a private class inside the domain o f ModuleA. The private String
dass inside the domain of ModuleA is a private subclass of the
baseline String class:

Object moduleSubclass: #ModuleA
instanc:VariableNames. ' '

dassVariableNames: -

poolDictionanes: 1 '!
Object subclass: #SubclassB

in: ModuleA

instance?ariableNanies:

dassVai.ableNames: ' '

poomicion aries: 1 9
String variable Byte Subclass: #String

in: ModuleA
instancefariableN:mes:

classVariableNames: '

poolDictionaries: 2 1:

The private String class extensions are visible to methods in
both ModuleA and SubclassB but not to classes outside of Mod-

uleA in the Smalltalk system domain, such as SubclassC.
One drawback exists in the above example. The compiler

creates constants for literals using the baseline classes: Small-
Integer, Float, String, Symbol, and Array. Unlike Object-
works\Smalltalk, Smalltalk/V presently does not include the
source code for its compiler. Because the Smalltalk/V compiler
has not been extended to use the privatized versions of baseline
classes it uses for literals, the private String class needs to create
instances by copying baseline strings. For example, if we want
SubclassB to use a private String for some operation, it will need
to create it using:

'private" String copyRom:
'a constant string'

The compiler creates a constant string that is an instance of
the baseline String class. The private String class creates ali in-
stance of itself that is a copy of this string constant. Given an

Smalltalk

Obtect

1

Subclasse I

• MODULES

instance of the private Stang class, the extended private string
operations may be performed on it

Given access to the source for the compiler, this small de-
feet could be rectified. Then all the baseline classes, including
those that the compile]· uses for literals, could be extended
transparently by private subclasses.

ENCAPSULATING PRIVATE METHODS

Modules can be used to hide the private methods of a class. To
do this, a pair ofclasses is used to divide the public methods
from the private ones. The public dass is a module whose
methods provide its public interface. The private methods are
hidden in a private class inside the module domain. The pri-
vate class can have the same name as the module class,

Figure 4 depicts an example of how this principle can be ap-
plied. Because ofits simplicity, the full code for this example
can be fowid iii Listing 1. The module class ClassFiler is derived
froni the standard Smalltalk class ClassReader. This class is used

to file Smalltalk source code in ard out of the system, usually
using an instance of class FileStream,

The ClassFiler module class has a single instance variable:
privateSelf. When an instance of the module class is created,
privateSelf is set to reference an instance of the private C'iassFiler
class. All the public methods of the module delegate private
messages to privateSelf. Instances of the module class serve as
proxies that hide the private behavior of the module class.

To maintain encapsulation, public methods in the module
class can check the answers that come back from privateSelf.
Any answer that is identical to privateSelf should be answered
as self (the module instance) instead.

This technique provides true encapsulation of private
methods of the class with a small amount of overhead in time

(the delegation and answer checking) and space (the extra iii-
stance privateSelf).

reim#.in j Gnprtge 19

Smalltalk

Object

Slnny

_1__- ClassFiler

ModuleA I : Classfiler

SubelassB ' String

Figure 3. Extending a baseline class by transparently subclassing it. Figure 4. Using a module to hide the private methods of a class.

6 THE SMALLT.ALK REPORT

m MODULES c.unji,mil#,p.ged

Smalltalk

Object

1
--

UndefinedObject Behavior I

| ModuleDictionary

Class MetaClass

f
Encapsulated
MetaClass

RESOLVING SHARED NAMES

Smalltalk methods use names that

start with lower case for private
names, including instance variable
names, method arguments, and
block temporaries. Smalltalk meth-
ods also can reference shared objects
whose names are capitalized.

The visibility of these shared names
depends on where they are located in
the system. Shared names can be
found in dass variable pools, global
pool dictionaries, and the Smalltalk
system dictionary. During method
compilation, references to shared
nanies are resolved by searching dic-
tionaries in the following order:

Figure 5.

ADDING MODULES TO SMALLTALK

Where a normal Smalltalk class uses a Dictionary for its pool of
class variables, a module dass uses a ModuleDictionary for its
domain. The ModuleDictionaly class is similar to the SystemDic-
tionary class. Like the Smalltalk systeni dictionary, each module
domain can contain shared objects, including other Smalltalk
classes. In addition, each module domain keeps track of the
names ofthe module class variables.

Each class contained in a module domain needs to know

what module contains it. For this reason, each class contained
inside a module domain is associated with an Encapsulated-
MetaClass rather than a Metatiass. The class EncapsulatedMeta-
Class extends the class MetaClass bv adding a reference to the
module whose domain contains the encapsulated class.

Figure 5 depicts the classes chaiiged to extend Smalltalk/V.
Rectangles with doubledi borders indicate the new classes.

· class variable pools of the class
and its superclasses up through
the class Object

• pool dictionaries to which the class subscribes from the
Smalltalk system dictionary

• the Smalltalk system dictionary itself
Extending the visibility rules of the compiler is the key to

adding modules to Smalltalk. The Smalltalk system dictionary is
the endosing domain for classes not contained in a module. As
such, it is also considered the system domain. Because a module
contains a name' space in its domain, references to shared names
are resolved by searching dictionaries in the following order:

· class variable pools of the class and its superclasses up
through the class Object

• pool dictionaries to which the class subscribes in the mod-
ute domains enclosing the class up through the Smalltalk
system domain

· module domains enclosing the class up through the
Smalltalk system domain

[;ii-veIi-tEalleiIiain;;1
TOOLS EUROPE 93

MARCH 8-11,1993
VERSAiLLES, FRANCE

CONTACT:+33.1.45.32.58.80

OBJECT EXPO
APRIL 19-23, 1993

NEW YORK. NEW YORK

CONTAOT:21 2.274.9135

OOPSLA'93
SEPTEMBER 26-OCTOBER T

WASHINGTON, DC
CONTACT: 919.481.4000

re

40%0Eityr:-1 -41*94,0

-35*./'Mi*

iNTERNATIONAL SYMPOSIUM &
EXHIBITI ONONOBJECT

TECHNOLOGY:

METHODOLOGIES AND TOOLS

APRIL 22& 23,1993
FRANKFURT, GEF2MANY

CONTACT:+49.69.52.19.82

OBJECT EXPO EUROPE
July 12-16. 1993

LONDON, ENGLAND
CONTACT:212.274.9193

FEBRUARY 1993

able to read a pattern and know:
· what problems need to be solved before this ore can be

solved

· what problem the pattern solves

+ what constrains the solution to the problem

· what to do to the system to satisfy the pattern
• what problems to solve once this one has been solved

Patterns have a consistent structure. Each has the following
Sections :

· a name evoking the problem and its solution
• a prologue summarizing what other patterns have to be

considered before this one is appropriate

· a one-paragraph preamble describing the crux of the prob
lem solved by the pattern
a diagram illustrating the problem

• a short essay exploring constraints on the solution
· one or two paragraphs describing how to solve the problem
· an illustration of the solution

• an epilogue summarizing patterns that can be considered
once this one is satisfied

Several valuable trits are common to all patterns:

· They always call for concrete actions, even ifthey are at very
high levels. For instance, a design-level pattern might call
for splitting one object into two to improve flexibility. A
coding pattern might help you give names to arguments.

· They include a complete description ofthe considerations
influencing the solution. Almost no documentation de-
scribes the forces acting on a decision, but it is precisely this
information that allows you to evaluate an object for useful-
ness in a particular context.

e They are i [kistrated w£th a simple diagraIn. Atexander's pat-
terns are remarkable for the degree to which their essence call
be distilled into a simple line drawing. The effective computer
patterns I have discovered also boi[down to a little picture.

The word "pattern» takes several meanings in this context
First, each solution represents a pattern of elements. The object
that uses an OrderedCollection has a specific relationship with the
objects it references. Second, the constraints acting on the solu-
tion form a pattern. The need to conserve space tugs this way, the
desire for greater speed that way. Finally, and most curiously, are
common] patterns of human behavior. The act of choosing an Or-
deredCollection recurs many times and in many places.

PATTERN LANGUAGE

Patterns do not stand in isolation. The epilogue and prologue
sections of each pattern link it to several others. The result can be
seen as a kind of lattice, with problems that need to be addressed
first higher than those that can be considered later. Much of an
expert's skil] comes from knowing what to worry about up front
and what can be safely postponed. This process-oriented infor-
marion is often as valuable as the patterns themselves.

The patterns together form a language in the sense that the

18

m SMALLTALK IDIOMS

patterns are terminal symbols, and the links between them are
the productions. You create well-formed sentences by consider-
ing a sequence of patterns in turn. The result is a fully formed
system. This is the primary difference between a pattern ian-
guage and a set of design rules (like the Apple Human Interface
Guidelines). The pattern language helps you create a system
with the desired properties, not iust analyze existing systems for
the existence ofthose properties. A pattern language for good
design will lead you to create a system with high coherence and
low cohesion, not just describe the properties in isolation.

A complete pattern language forobject-oriented program-
ming encompasses patterns at alllevels. Broad patterns cover
issues like distribution of responsibility and control structures.
Subsequent patterns help use the right abstractions iii a library.
Final patterns deal with variable naming, method naming,
breaking methods into smaller methods, factoring code into
inheritance hierarchies, and performance tuning.

CONCLUSION

No one has yet written a pattern language for objects like the
one outlined above, Thei-e is general agreement that the prob-
tem of communicating intent is critical to cashing in on the
promise ofobject-oriented programming. Researchers world-
wide have turned to pattern languages as a promising ap-
proach to the problem. Here are a few I know about:

· Ralph Johnson at the University of Illinois is writing a pat-
tern language for Hot Draw, a graphical editing framework.

· Richard Helm and John Vlissides of IBM and Erich Gamma
of the Union Bank of Switzerland have been writing a cata-
log of "design patterns," which capture common design ele-
ments of C++ programs.

• Bruce Anderson of the University of Essex is leading an
effort to compile an "architecture handbook."

* Oscar Nierstrasz at the University of Geneva has been using
patterns to try to achieve reuse.

In subsequent columns I will explicitly use the pattern format
where appropriate to describe Smalltalk idioms.I recommend
the study of Christopher Alexander>s work for those interested
in attacking the educational side of the reuse problem. I have
enjoved studying the material both because of the obvious par-
allels between the pitfalls ofprofessional architects and profes-
sional programmers, and because I am now far more sensitive
to my physical environment land its effect on my life.

Architecture has the advantage (and disadvantage) of thou·.
sands ofyears of history to mine for patterns, Programming isa
new enough discipline that we all have to invent new solutions
often. Collecting and disseminating these common patterns will
hasten the day we can get on to more interesting questions. As
you discover patterns iii your own work please send them to me. M

Kent Beck has been discovering Smalltalk idioms for eight years at
Tebronix, Apple Computer, and AfasPar Computer. He is also the
fo under of First Class So#ware, wh ich develops and distributes
reengineeTingloducts for Smatitulk. He can be reached at First Class
So#waye, P.O. Box 226, Boulder Creek, CA 95006-0226, by phone at
408.338.4649, fax 408.338.3666, or compuserve 707641216.

THE SMAL[.TALK REPORT

UTTING IT IN- PERSPECTIVE Rebecca Wirfs-Brock

Characterizing
your objects

 characterize objects, Building an application involvesn this column Ill describe some vocabulary I find useful to

teamwork and cooperation. Melding classes designed by
individuals into a consistent system of cooperating objects re-
quires that team members work tow·ard a common system ar-
chitecture. Team members need to share an understanding of
what constitutes well-designed classes and subsystems, and
what are acceptable patterns of obiect interactions.

Choices between perfectly acceptable alternatives must be
made consistently across classes designed by different people.
Achieving a consistent pattern ofobject communication first
requires team members to use a common vocabulary for de-
scribing objects and their communication patterns. Once team
members are talking the same language, they can have mean-
ingful discussions about desirable interaction styles. Decisions
then cari be made based on sound engineering practices that
nicet business requirements.

STEREOTYPING OBJECT ROLES

Objects in our design can be either involved, active partici-
pants in many conversations, or by design play a more docik
role, responding only when asked and taking a supporting role.
Between these two extremes are many shades of behavior. I
find it useful to classify objects according to their primary pur
pose as well as their modus operandi.

Here are two ways to characterize object roles:

• Business Objects. Objects whose primary purpose is to
model necessary aspects of a concept that would be familiar
to a user of the software we design. If we were designing an
Automated Teller Machine for a bank, we might have Bank
Customer, Bank Account, and Financial Transaction ob-

jects. If we were designing an oscilloscope we might model
Triggers, Waveforms, or Timebases. These types of objects
are also commonly referred to as domain objects because
they correlate directly with concepts in the users' domain.

· Utility Objects. These are generally useful, non-applica-
tion-specific objects. Smalltalk programming environ-
ments come with many genericallv useful classes. Classes
for structuring other obiects, such as Set, Array, Dictionam
and classes representing numbers or strings fall into this
category.

There are compelling reasons for application developers to

FEBRUARY 1993

create additional utility objects. For several projects rve
worked on, specific individuals were assigned direct responsi-
bility for creating, publishing, and ensuring that utility objects
were appropriate to the task and properly used. It is possible to
create and effective[y incorporate utility objects into the appli-
cation throughout development and software construction.

It is extremely useful to design new utility obiects that ex-
plicitly support system policies or common application pro-
gramming practices. For example, we have created classes that
stylize error handling and sequencing ofprocessing steps;
classes that model ranges of set table values, increments, and
units of measurement; and classes that monitor detectable ex-
ternal conditions. Once designed, these objects can be used in
many places within an application.

STEREOTYPING OBJECT BEHAVIORS

A number of researchers and design methodologists have
coined terms for describing objects according to the way they
operate. My list of useful terms isn't merely a composite ofall
common terms in the current literature. I continue to make

finer distinctions after reflecting on past experiences and tack-
ling new design projects- Periodic updating is needed to reflect
new ways of constructing software that accomplishes new tasks.

Following are useful ways to classitv object behavior.

Controlling objects

Controlling objects are responsible for controlling a cycle of
action. This cycle can be either repetitive, with conditional
branching logic, or initiated and executed once on detection of
a certain set of events or circumstances. Controlling objects
can initiate and control ongoing systemwide activity or iterate
over a minor application task.

The original Smalltalk-80 user interface presented a styliz-
ed three-way collaboration between Model, View, and Con-
troIer objects. Controller objects were responsible for re-
sponding to user directives, such as mouse clicks or
keystrokes, and initiating appropriate responses. Views dis-
played the current state of the application and model objects
were application-specific objects.

I use a broader definition than that implied by Smalltalk-80
Controller objects. Controlling objects need not be spurred to
action only on behalf of user directives. Controlling objects can
be found and created for many parts of an application where a

7

cycle of activity is initiated, sequenced, and, sometime later,
possibly completed.

For example, iii the design of an Automated Teller Ma-
chine, an ATM object can have responsibility for initializing
and sequencing system interactions with a bank customer. A
further design refinement can add the concept of a Session-
Controller object, which controls the sequence of activities by a
single bank customer wishing to carry out one or more trans-
actions with the bank. At a lower level, there mav be network
controller obiects responsible for handling network traffic be-
tween the application and the communication network,

Coordinating objects

Cooi·dinating obiects are the traffic cops and managers within
a system. Coordinators often pair dient requests with desired
services (or, rather, objects performing a requested service). In
my early obiect design experience I would append Manager to
the names of these objects. FontManager and StyleManager are
two example class names. I used to feel uncomfortable creating
objects whose primary behavior was being idle until someone
needed something, then helping to establish the connection
between two other obiects that would collaborate to actually
perform some useful function. I now realize that these coordi-
raton proved their worth simply bv eliminating the need to
hard-wire direct references between objects.

In another common design pattern, a coordinating object
may respond to a request by briefy establishing an appropriate
context, then delegating a request to one or more objects
within its sphere of influence. For example, in the ATM design,
the Session Manager first would determine which transaction
the bank customer wished to perform, then create the appro-
priate transaction object for delegating the responsibility to

gather additional information from the bank customer (such

as amount to withdraw if it were a Withdraw Transaction),
and then perform the transaction.

A coordinating object also may control a sequence ofac-
lions. It is often logical to blend coordinating and controlling
functions in the same objects. A reasonable design for the Ses-
sion Manager object is to give it the responsibility for creating
and handling a series of bank customer transactions. A bank
customer typically can perform transactions until indicating a
desire to terminate the session, causing our application to print
a receipt of all transactions and return the customer's card.

Structuring objects
Objects with structuring duties primarily maintain the relation-
ships between application objects. Iii many applications, busi
ness objects have very complex structural relationships. Let's
take a simplistic real-world example of a file cabinet containing;
folders that hold documents. A file cabinet simply holds folders
that may be tabbed and labeled, and the folders merely contain
their contents. The docunients themsdves are of interest.

In an obiect design, I add more or less behavior to obiects
to meet business requirements and to suit my personal tastes. I
can design File Cabinets to do more than organize their con-

8

a PUTTING IT IN PERSPECTIVE

tents. A File Cabinet could know when any folder was last ref-
erenced, or how much room is left in the cabinet. When I das-

sit an object as primarily a structuring obiect, I think first and
foremost about what relationships it should maintain between
other objects and how it should do so, and secondarily what (if
any) additional behavior might be appropriate and useful for it
to have.

Informational objects

Sometimes objects are created to hold values that can be re-
quested by many different kinds of application obiects. I don't
want to get into an in-depth discussion of design and pro-
gramming techniques to eliminate globals or minimize depen-
dencies on hard-wired values in code. However, at times it can

be useful to create obiects that are responsible for yielding in-
formation. In procedural programming languages, we have the
ability to declare constant values. In object designs, informa-
tional objects are an equivalent concept.

Service objects

A service object typically is designed to perform a single opera-
tion or activity on demand. A well-designed service object pro-
vides a simple interface to a clearly defined operation; it should
be easy to set up and use, Pure service obiects often are the
products of a highly factored design. Such a design consists of
many classes of objects having highly specialized behaviors.

One reason to create service objects is to facilitate optional
or configurable software features. The argument for this design
strategy goes something like this: It is easier to configure a
product's features by adding or removing entire classes of ob
jects than it is to add or remove class behaviors,

As more behavior is added to a class, it can become com-

pia to integrate new features with existing code. Optional
functionality needs to be implemented in a way that guarantees
pre-existing code doesn't break. Test suites and internal con-
sistency checks become important

When services are placed in specialized service dasses, the
design task shifts to creating an appropriate role and interface
to the service obiect, which must balance the client's control
over the service's performance with simplicity and ease of use.

An operation may be so complex to perform that it war-
rants creating many objects. A single object can be designed to
provide the public interface to this service, hiding most of the
details from the rest of the application.

Useful services can be packaged into distinct objects. These
service objects might be designed so as to be useful in a variety
of contexts, perhaps by being easy to extend or customize. We
could design our ATM transaction obiects to know precisely
how to print information about the transaction on a receipt.
Alternatively, we could design a Report obiect that provides
printing and formatting services for the transaction object.

Interface objects

Interface obiects are found at the boundaries of an object-ori-
ented application, They can be designed to support communi-

THE SMALLTALK REPORT

MALLTALK IDIOMS

A short introduction

to pattern language

'*this will bea departure from my code-oriented columns.For the last six months I've been surreptitiously pre-
senting my material using a technique that I've been

working with for the past six years or so. This technique was
derived from work done in architecture (buildings, not chips)
to help people design comfortable spaces for themselves. The
time has come to tell you what I've been leading up to, so that I
can directly refer to these concepts in the future.

First, though, I have to tell you about the most thoroughly
useful little idiom I have seen in a long time. Ward Cunning-
barn and I recently got to code together on a nifty spreadsheet
proiect and he showed me a simple idiom for dealing with nil
values. It saves me a line in many methods and, since most
methods are three or four lines long, that's a significant sav-
ings. Here is the implementation:

Object»ifNit: aBlock
Aself

UndefinedObject>>ifNE: aBlock
.aBlock value

Simple, huh? Here what happens when you use it, though.
You can transform code that looks like:

foo i:NitifTrue: [foo:= self computefoo].
.foo

into:

-foo iffE: [foo := self computefoo]

The savings comes because iffrue: and iffalse: return nil if
the receiver is false or true, respectively, UNil: returns the re-
ceiver, which can be any object, instead. 1 have found ifNil: use-
ful in many more situations than the one listed above. Try it! If
you find a clever use, send it to me and Ill write it up.

The one complaint about ifNil: is that it is slower than nisNil
iflrue:" (or its grosser cousin •== nil iffrue:"). I claim that if you
are focused on anything but achieving the most readable code
possible in the middle 80% of a development, you're doing the
Wrong thing. Besides, it wouldn't be that hard to implement
iftlil: as an inline message, just like the other conditionals- If it's
not that hard, maybe I should write it up some time. 01· inaybe
you should!

Now back to our regularly scheduled column...
The problem to be solved is describing the intent behind a

piece of code to someone who needs to use it. There are plenty
of methods for describing how code works (even though most
programiners aren't disciplined in using them), but describing
how code is supposed to be used is a black art. As the emphasis
on programming shifts from just running programs to refining
and reusing them, this is a problem of increasing importance,

FEBRUARY 1993

S Kent Beck

As objects are supposed to be about reuse, describing intent is
of critical importance to us.

Donald Knuth has attacked the problem with what he calls
"Literate Programming.'> He shares the insight that program-
mers ought to write programs for otlier programmers not lust
the computer. His solution is to make programs read like
books. When you read a literate program you are reading a
combination of prose and code. You can filter out the non-
program elements and run the result through a compiler to get
an executable program.

There are a couple of problems with literate programming
as Knuth conceives it, First, his literate programming system is
implemented as a 19703-style textual language. To write a lit-
crate program you have to know the programming language,
the typesetting language, and the extensions required by the
literate programming system. More importantly, the structure
of a literate program is fundamentally linear, It is intended to
be read from beginning to end. While this may be appropriate
for a monolithic program like TeX, it does not address the
problem of describing the intent of an object library, which is
intended to be used piecemeal-sometimes iust by instantiat-
ing objects, sometimes by plugging new objects into existing
frameworks, and sometimes by refinement.

What we need is a structure for intention-oriented infor-

mation that is flexible enough to convey a variety of informa-
tion at different levels, but structured enough to provide a pre-
dictable experience for readers. It has to be able to convey
process-oriented information but also describe programs
piecemeal. It has to describe both how a program is intended
to be used and how it works.

The solution I have been pursuing derives from the work of
architect Christopher Alexander, who has spent many years
seeking a way for architects to describe generic solutions to ar-
chitectural problems so that individuals call adapt these solu-
tions to their situations. The solution he found, called pattern
language, solves all of the problems listed above: It is piece-
meal, but also has large-scale structure; its essence describes
the application of a solution, but also relates how the solution
works; and it describes solutions at all scales, from urban plan-
ning to the size and color of trim in a house. His approach is
presented in a pair of books from Oxford PreSS: THE TIMELESS
WAY OP BUILDING and A PATTERN LANGUAGE,

PATTERNS

The unit of knowledge in a pattern language is a pattern. A
pattern encodes an adequate solution to a problem known to
arise in the process of building a system. A person should be

17

· provide buttons for committing the interface to code and
for launching the interface

• use palettes that allow you to lay out panes or components
as if you were using a drawing tool

· will open a browser on the generated code

One vs. many windows
The most obvious user interface difference between the two in-

terface builders is the windows they use. WindowBuilder uses a
singlle window with dialogs as needed. When a dialog is open
the main window may not be used until that dialog is dis-
missed. Visua[Works makes use of a multitude of windows si-
multaneously, which some people call outboard windows. The
window being built (the canvas) is in one window. and the
outboard windows all operate on the canvas. Most, but not all,
outboards operate on the most recently selected canvas.

Both techniques (outboards and dialogs) address the issue
of clutter. The outboards allow users to decide how much in-
formation thev want to see at once. However, this comes at a
price. The canvas and the outboards are not visually tied to-
gether; it is not always clear which windows go together in Vi-
suaIWorks, or even which windows are part of VisualWorks.

Resizing controi
In both interface builders, the window being built responds to

. GETTING REAL. continued from page Id

ma]Size

initialMaxSize

'Return the initrd maximum sizefor text entzy. U
92

initiaUze

'Private - Initialize the TeceiveT. "
value := 11.

selection:= 1@1.

modified := false.

Asuper initialize

DEFAULTS REPLACE ARGUMENTS

Defaults also can be used to diminish interaction complexity.
Commonly used values do not need to be passed as parameters;
they call become defaults instead. Developers need to provide a
way to override default values and still provide for the most
common situations int which defaults are an applicable value.

The typical way for developers to provide default argurnents
is with additional methods that leave out key words. The
method fill:rule:, from GraphicsTool, calls fill:rule:color: with
the fill color set to the foreground color, which is a default. To
override the default, the message fill:color: role: can be sent:

16

m GUis

chang€5 in the framing parameters of its panes or compo-
nents. Ifa pane or component is given ratios instead of abso
lute positions, that pane changes shape as you Change the ini-
tial size of the main window. WindowBuilder goes a step
further and provides before and after silhouettes of your pane.
As you change the framing parameters form pane, it shows
you a silhouette of your pane in the current window dimen-
sions and also shows you the dimensions of vour pane in a
larger, resized window. This way WindowBuilder gives youl
immediate feedback.

SUMMARY
The two interface builders are more similar than different. The

most important similarity is that they both fit nicely into the
Interface part of the ICM framework, which lets you reuse de-
sign between dialects. After all, reuse of design is more power-
ful than reuse of code. {@

Ch·eg Heridley is a member of the technical stal T at Kliowledge Sys-
tems Corporation. His specialty is custom graphical user interfaces
using various dialects of Smantalk and various imagegenerators.
Eric S„,ith is also a ynember of 0 he mdinical staff at Knowledge Sys
tems Corporation. His specialty is custom graphical user interfaces
using Smalltalk (various dialects) and C. The authors may be con-
tacted at Knowledge Systems Corporation, 114 MacKenan Drive,
Cary, NC 27511, or by phone, 919.481.4000.

fill: aRectangle rule: aRopConstant
'FiN a Rectangle in the receiver medium wi'th./breCofor using
aRopConstant. "
self fill: aRectangle ruler aRopConstant color: foreColor

CONCLUSION
The important difference between constants and defaults is
their effect on reusability. Defaults, isolated in a method, are
easily overridden by subclasses. Default values can be modified
by instances if developers add enough support or can be used
to eliminate arguments and reduce interaction complexity. De-
velopers should always strive to evolve constants into defaults
to make their classes more reusable. LE

juanita Ewing is a senior staffmember of Digitalk Professional Ser-
vices. She has been a project leader for several commercial 0-0 soft-
ware projects and is an expert in the design and imptementation of
O.0 appications, frameworks, and systems. In a previous position at
Tektronix Inc., slze was responsible for the developttieitt of class li·
braries for the first commercial-quality Smalltalk-80 system. She can
be reached itt 503.242.0725.

THE SMALLTALK REPORT

cations with users, other programs, or externally available ser-
vices, Interface objects come in many sizes, shapes, and flavors,
and at many conceptual levels.

Interface objects call be designed to support an ongoing two-
way communication between some external entity. For example,
iii the ATM application we have a number of physical devices
such as Receipt Printer, Cash Dispenser, and Card Reader. In
our design, all these devices would have interface objects that
define a high-level interface to the services they provide. A Cash
Dispenser object might define as message to dispense cash, re-
turn the cash balance, or adjust the balance (as a result of dis-
pensing cash or adding more money to the machine).

Interface objects can be designed to translate external events
or requests into messages fielded by interested application ob-
jects. For example. many external events need to be handled by
the ATM system. To name a few: jamming of cash iii the Cash
Dispenser, failure of the door to close, the Receipt Printer run-
ning out of paper, etc. The list iso't endless, although responsi-
ble objects (the most likely candidates are appropriate interface
objects) need to field those events and respond appropriately.

Or they can be designed to provide a narrow interface. For
example, a menu presents a number of options and returns a
user's preference. User interface objects typically support a
highly stylized dialogue between the user and the system.

Interface objects are responsible for bridging the non-ob-
ject world and the object world of messages and objects.
When I think about interface object design, I focus first on
those objects considered by the remaining applications to
define the interface to the outside world. I realize that a great
many details can and should be encapsulated by these inter-
face objects. The key is to hide these details and provide a
sufficiently abstract interface.

MOVING OBJECT DESIGNS ALONG THE BEHAVIORAL

CONTINUUM

Given that we have a sufficiently rich vocabulary for describing
obiect roles and behavioral patterns, we need to establish a con-
text for applying these terms. Once we have done so, we need to
evaluate our emerging design and select among alternatives.
First it is useful to distinguish at what conceptual design level
an object should belong (as opposed to where it is currently
placed). Is it a high-level object or does it provide low-level ser-
vices? Does it a play a significant or relatively insignificant role?

Once we determine this conceptual level, we can easily
characterize an object's role as business or utility. Examining
behaviors and building cleanly defined obiects takes more
time. Objects don't always fall into a single behavioral cate-
gory, nor do I expect them to. For instancej objects often blend
behaviors of controlling and coordinating. Another common
pattern is to blend behaviors for structuring and providing ser-
vices into the same object.

I do find it useful to ask whether an object is assuming too
much responsibility, and whether it would be more appropri-
ate to create new classes of objects to share the load. I also note
whether a design choice causes ali object>s behavior to shift one

FEBRUARY 1993

Smalltalk/V users: the tool
for maximum productivity

°Put related classes and methods into a single task-
oriented object called application.

° Browse what the application sees, yet easily move code
between it and external environment.

° Automatically document code via modifiable templates.
° Keep a history of previous versions; restore them with

a few keystrokes.
° View class hierarchy as graph or list.
° Print applications, classes, and methods in a formatted

report, paginated and commented.
° File code into applications and merge them together.
° Applications are unaffected by compress log change

and many other features..

Deleted classes

Browsers.4-,
\Yarn : Deleted methods i

\History - Code recoveryl

Utilities.. :lphcationprfing- and more -

 CodeIMAGER™ V286, VMae $129.95 VWindow & VPM $249.95
Shipping & handling: $13 mail, $20 UPS, per copy

Diskette: El 31/2 EL] 53/4
SixGraph™ Computing Ltd.
formerly ZUNIQ DATA Corp.
2035 Cote de Liesse, suite 201

u Montreal, Que. Canada H4N 2Mj
4>€4.Rdt= Tel: (514) 332-1331, Fax: (514) 956-1032

C<*IMAGER is a =g. rradernal: o f Si Graph Computing Ltd.
Smalltalk/V e aug. Kideniarkof Digitilk,Inc.

way or the other on a behavioral continuum. Has an object be-
come too active or passive? Is it perhaps taking on too many
behaviors by assuming both a coordinating role as well as per-
forming a useful service? Would it simplify the design to sub-
divide an object's responsibilities into smaller, simpler con-
cepts? What would be an appropriate pattern of collaboration
between that object and newly defined service objects?

When I look at rebalancing behaviors, I tend to consider
the current behavior definitions for a group of collaborating
objects belonging to roughly the same conceptual level. My
goal is to understand and develop an appropriate distribution
of control logic and responsibility among colloborators. De-
sign creativity and individual preferences needn't be sacrificed
during this assessment process. However, readjusting object
behaviors needs to be purposefully done. In my next column I
will discuss some object interaction styles as well as strategies
and reasons for choosing between them. 1

Rebecca Wit-B rock is DiredOT of Object Technology Services at Dig-
italk a/irt CO-ar.ium,- cd DESIGNI\'c; 0811:(fy-()1<it.N'?ED 50+1 M,>aRE. She

has 17 ye{Irt experieice desigiting, iin.plementing, and managing
software products, with the last eight years focused on object-oriented
software. She managed the development of Tektronix Color Smalltalk
and has been immersed in developing, teaching andlecturing on ob-
ject-oriented software. Comments, further insights or wild specula-
tions are greatly appreciated by the author. She can be reached via
email at rebecca@digitalk.com. Her U.S. mail address is Digitalk
7585 1 W. Mohawk, Tualatin, OR, 97062

9

Imager<

Class

*Eatio <

CC

b HE BEST OF comp.lang.smalltalk Alan Knight

>pying

opying objects ought to be easy. After all, objects are
just bits in the machine and those are easy enough to
copy. Besides, objects are encapsulated, so copying

shouldn't have to worry about anything outside the current
object. Unfortunately, it's not always that simple. Complied-
lions can arise from details of Smalltalk's implementation and
the object structure and from interactions with inheritance.

OBJECT IDENTITY

In Smalltalk, each object has a unique identity independent
of the value it represents. In other words, Smalltalk variables
don't hold objects but references to objects. Several different
variables can refer to the same object; ifa change is made to
that object, the changed value is visible through all those
variables.

'[his is also known as "aliasing" because the saine object can
have several different names, or "reference semantics" because
the variables refer to the objects. This is in contrast to "copying
semantics" where each variable has Col· at least appears to have)
its own copy of the object.

In pure functional languages, aliasing is eliminated. The
values of instance variables in existing objects cannot be
changed and new objects with different values must be created
instead. Functional programmers would say that this is a good
thing because it eliminates manv confusing errors associated
with aliasing. Non-functional programmers might say that re-
moving aliasing entirely also eliminates many useful program-
ming techniques but few would deny that copying semantics
can be useful sometimes.

Some Smalltalk classes have copying semantics, including
numbers, characters, booleans, and symbols. Operations on
these types of objects do not modify the internal values of the
instance but create a new instance as their result. Even though
numbers can be aliased (as almost all Smalltalk obiects can),
there are no operations that can change the internal state and
reveal the aliasing. The need to allocate new numbers for each
operation results in poorer performance for numerically inten-
sive applications but makes the behavior of numbers much
more simple and predictable.

Complications
The previous section contains a number of half-truths. It's not
really true that no operations modify classes with copying se

10

mantics. Meta-operations like become: and instVarAt can get
around these restrictions and it's possible to add methods that
modifr the internal state of some of these classes. In addition

to seriously messing up your image, these facilities call expose
significant differences iii the behavior of these classes.

The most important difference, for copying purposes, is
between SmaUIntegers:iid all other objects. SmallIntegers are
the rnost primitive entities in Smalltalk and really do have
copying semantics, which the other classes iust pretend to
have.

The trick is that Smalltalk variables actually hold a 32-bit
quantity, one bit of which is a flag. If the flag is set, the ob-
ject referred to is a SmallInteger and the remaining 31 bits are
its value. If the flag is not set, then it is some other kind of
object and the remaining 31 bits are the machine address of
that object.

If you copy the bits stored in a variable holding a Smat'Inte-
ger, vou actually get a copy of the Sma[Unteger. If the variable
holds an object, then you get a copy of a reference to the ob-
ject. This is the kind of implementation detail that you nor-
mally shouldn't have to think about, but it does explain a
number of otherwise confusing things. For example, ifyou've
ever wondered why become: doesn>t work on Smalnntegers but
does work on LargeIntegers, or why:

10 = 10

evaluates to true, but:

10 factonal = 10 factonal

comes out false, here is the explanation:
Become: caii t work on SmaNIntegers because it works by

changing obiect references. Smallintegers don't have object ref-
erences, so there's nothing to be interchanged. Iii fact, since
the parameter passing mechanism in Smalltalk is to copv these
32-bit fields described above, the become: operation doesnt
even get the original SmallIntegers to change but only a copy of
their values on the stack.

The == operation compares these same 32-bit quantities for
equality. For SmallIntege: 10, the bit patterns are exactly the
same, so = is true. 10 factorial is a LargePositiveInteger, and
since both sides of the expression are evaluated separately, we
get two separate instances of LargePositiveInteger, which are
equal (-) but not identical (=).

THE SMALLTALK REPORT

M UIs

A quick look at two
interface builders

 n this installment of GUI Smalltalk, we wiH look atSmalltalk's two main interface builders: Cooper & Peters'
WindowBuilder for different dialects of Smalltalk/V and

Par©Place's VisualWorks in R4.

While most people would not choose their Smalltalk dialect
based on the interface builders available for it, it is interesting
as a user and creator of graphical user interfaces (GUIs) to
compare tools and see how two providers make ilse of GUIs
themselves.

APPLES VS. APPLES OR ORANGES

The first question in comparing WindowBuilder and Visual-
Works is "Are we comparing apples and apples or apples and
orangesf ine answer is apples and apples. First, both are in-
terface builders, not application builders; as such, their power
is in graphically laying out the subpanes (ifyou are from V),
controls (if vou are from PM), or visualComponents (ifyou
are from R4) of a window. This eliminates the need for you to
calculate and write framing blocks.

COMPATIBIUTY WITH THE ICM FRAMEWORK

Both WindowBuilder and VisualWorks output one class per
window that can be used as the interface jay·er of the ICM
framework. (The ICM framework was described in two previ-
ous installments of this column.) In WindowBuilder the de-
fault superclass of the output class is ViewManager. In Visual-
Works the default superclass is ApplicationModel

CAPABILITIES FOR CREATING USER INTERFACES
Similar capabilities
The capabilities of the two interface builders are more similar
than different. Both have various versions of buttons, lists
static text, text editors graphics, etc., ard both help you build
and test menus.

Sizing, positioning, and resizing of the window and its ele-
ments (subcomponents or subpanes) are supported in both.
Elements of the user interface can be told to initially have the
same width or height. They can be aligned like text justified
left, right, top, or bottom; centered horizontally; or centered
vertically with respect to each other. Each element can be re-
sized by absolute position or by ratios.

Both interface builders provide support for specifying each
element's response to user input; both provide direct access to

FEBRUARY 1993

Greg Medley and Eric Smith

elements through the use of identifiers; both support tabbing;
and, most important, both allow for the use of custom sub-
panes and visual components.

Differences in capabilities

Four capability differences between the two interface builders
are noted below. Some are differences in degree while others
appear in one but not the other; these include keyboard short
cuts, reuse, specifying response to user input, and specifying
dependencies between components.

WindowBuilder provides direct support for keyboard
shortcuts for menu items. Visua]Works does not provide such
support from their tools.

Visuall'Vorks provides support for three levels of user inter-
face reuse. A user interface can be parameterized to work with
any ofa number of models. Inheritance can be used to let a

subclass add visual components to its superclass. One interface
can be used as a component in another interface. Window-
Builder only supports parameterization to use any number of
models.

WindowBuilder provides support for specifying response
to many types o f user input. WindowBuilder tells you the
events that may occur, lets you type the name of the method
to invoke, and writes a stub for the method. For example,
you call specify how to get the list for a list pane and what to
do when a selection is made in the list pane. Visua]Works
provides direct support only for specifying how to get the
list. Responding to selection has to be explicitly coded in Vi-
sualWorks.

VisualWorks directly supports dependencies between
different visual components in the same window. Bv making
more than one component interested in a single aspect, all
components respond when that aspect changes. Such depen-
dencies have to be explicitly coded in WindowBuilder.

THEIR OWN USE OF USER INTERFACE TECHNIQUES

It is always interesting to see how the creators of an interface
builder choose to use their tool. Let's start with their similarities.

Similarities
Both interface builders:

• operate in build-only mode

15

ty'gi##4471&*

Instead, each constant shouid be defined in a separate method,
allowing it to be easily identified and overridden. Once isolated,
we ca[1 these values defaults because subclasses easily can over-
ride the defining method, increasing the reusability ofthe class.

The method initWindowSize, from the class WindowDialog,
specifies the initial size of a dialog. Because this value is iso-
lated in a method, we consider it a default-subclasses easily
can override the default initial window size:

initWindowSize

'Private-Answer the default window size.'
A 150 @ 100

Another example from the image involves the application
framework class ViewManager, The ctass ViewManager has a
method that specifies the class of the top pane in the view
structure. Subclasses easily can override this method to specify
another top pane class, giving subclasses the critical abilitv to
override the creation of collaborators:

topPaneCtass
"Private-Answer the default top puRe dass. 1
ATopPane

EVOLVING CONSTANTS INTO DEFAULTS
In the section above, we saw two DiskBrowser methods contain-
ing an embedded constant, 10000. Next we see the two original
methods rewritten, plus one other method that isolates the file
size limit for automatic reading. The isolated constant is now a
default because it easily can be overridden by subclasses. With
a default, maintainers can locate the limit more easily and are
less likely to create inconsistent methods caused by modifying
one but not the other reference to the constant:

autoReadLimit

"Retum the file size limit that determines whether the entire contents
of c file win be automatically displayed."
.10000

file: file Pane

Private - Set the selected file to the selected one in fil€Pane. Display
the file contents in the text pane."
 afileS[realn I

CurserManager execute change.
self changed: #directorySort:.
selectedrile := filePane selectedItem.
self switchToFile Pane.

afile Stream := selectedpirectory fileReadOnly: selectedfile.
whote FiteRequest := a FileStream size < self autoReadLinQt.
aFiteStream close.

wholefiteRequest
ifnue. [self fileContents: contents?ane]
iffalse- Iself showPartialfite]

showPartialfile

Private - Display the head and tail of the selected file in the text
parte.'

afiteStream fieHead fileTailstartMessage endMessagea limit
initial final j
CursorManager execute change.
limit := self autoReadLimit.

14

m GETTING REAL

initial := limit 9 10 YoundTO: 1000,
final:= liniit - irdtial.

contents Pane modified: false,

aFReStream := selectedDirectory fiteReadOnty: selectedfite.
cr:= String with: Cr with: Lf,
startMessage :=

'File size is greater than t. limit. printString, ' bytes, f, cr,
'first: initial printString, ' bytes are ...: cr.

endMessage :=
CY, , cfr

'last 1, final printString. ' bytes are ..., cr.
fileHead:= afileStream copyfrom: 1 to: initial.
fileTail:= aFileStream

copyfrom: aFileStream size - final
to: aFileStream size.

afile Stream close.

contentsPane

file Infrom: (ReadStream on: (staiMessage.f Re Head,
endMessage, fileTail));
forceSelection{)ntoDisplay.

(self menuWindow menuTitled: '&Files')
enableltem: #loadEntireFite.

(self menuWindow menuTitled: '&File') disablertem: #accept,
CursorManager normal change

INSTANCES MODIFY DEFAULTS

In addition to all<,wing subclasses to override defaults, devel-
opers can structure code so that instances can modify the de-
fault, improving client reuse. In this scenario, the class
provides:

• storage for the default value, usually an instance variable
· accessing method for setting the default

· accessing method for retrieving the default (optional)

The class Entryfield has a default for the maximum number
of characters in an instance of EntryMeld. In addition to the
initialize method we saw above and an instance variable to

hold the value, one other method accesses the default maxSize.

The accessing method maxSize: allows instances to customize
the maximum number of characters that can be typed in an
Entlyfield.

ma*Size: anInteger

'Set the maximum number of characters in the rece iver to an Integer. •
maxSize : anhiteger.
handle = NullHandle

ifFatse: [self setTextLimit]

There are several ways to provide an initial value for a de-
fault. In the initialize method for Entryrield, maxSize is set to 32.
An alternative design, shown below, has an accessing method
that provides a default. The initialize method no longer sets the
value of maxSize. In this case, the initial default value is only
used if the default has not been otherwise set:

maxSize

9?etum the maximum number of characters that can be entered in
the receiver. ff no other value has beer set. use the initial max size
value and remember it. "

maxSize == Imil

ifrrue: [maxSize := selfinitialMaxSEze].

Inm inurd on pav 16

THE SMALLTALK REPORT

Shallow copy
How does this affect copying? The default copy implementa-
ton in Smalltalk is the "shallow copy," which just creates a
new instance with exactly the same bits as in the old instance,
This means we get a genuine copy of SmalIntegers and a shared
reference to all other objects. Sometiines this is what you want
but it also can be very confusing. For example, Richard Bentley
(dik@comp.lanes, ac. uk) poses the frequently asked question:

Could somebody please explain tome how copy is sup-
posed to work. To me, if I take a copy of (say) a
Didionary, the copy should not just have pointers to the
original Dictionary's instance variables, so that if I change
a value in my copy, the original is also changed.
Is this how copy is supposed to work? If I want a deepCopy
o f a composite object (one that references other objects
using instance variables), how should I go about it ?

Deep copy

In many cases, a deep copy is more intuitive than the one-level
shallow copy. Deep copying has its own complications,
though, and it's not possible to provide a single implementa-
tion that makes sense for all classes.

Digital provides an implementation of deepCopy that niakes
a copy of an object with shallow copies of all its instance vari-
ables. This is deeper than shallow copy but it just pushes the
problem down one level. This wouldn't work properly in the dic-
tionary example either because the instance variables of a dictio-
nary are not the keys and values but the associations that hold
them. They also provide an implementation of deepCopy specific
to Dictional, which does "the right thing." Such special imple-
mentations are required for quite a few classes, and stillleave
open questions like "How do I copy a dictionary of dictionaries?"

ParcPlace used to provide a recursive implementation of
deepCopy, which would copy an object and make deep copies of
all its instance variables, recursing until it reached primitive
objects. This also has problems, as Bruce Samuelson
(bruce@ling.uta.edu) points out.

Pareplace has been phasing out support for deepeopy
because of theoretical problems such as infinite recur-
sion for circular structures.

Jan Steinman (steinman@haster.ascom.ch) adds:

That's not good enough! #deepCopy has practical prob-
lems, such as chewing up memory when you least ex-
pect it. (Try to deepCopy a SortedCollection, for instance,
which holds a Blockelosure, which holds a CompiledLo-
calBlock, which holds a metaclass, which links in the en
tire class tree. -.)

There are numerous solutions for avoiding infinite re-
cursion, the simplest of which (context query) does not
even require any additional state.
I find #deepCopy so useful that I've implemented #deep-
Size, a "better BOSS," and lots of other deep things.

FEBRUARY 1993

They can be slow memory hogs, but if you use such
things within their practical limitations, what's the
problem? When #deeptopy goes away, I'll put it back!

The phrase "context query" hides a very clever trick that
takes advantage of Smalltalk's reflective capabilities to avoid
infinite recursion. Using the thisContext pseudo-variable in
ParcPlace Smalltalk, it is possible to examine the stack of the
currently executing process, This information can be used to
determine whether an object already has been visited (and
abort the recursion if it has). Jan Steinman has promised to
write an article for THE SMALLTALK REPORN· describing these
tricks in detail. Similar tricks should be possible in Digital im-
plementations but the interface to the process stack is not as
well-documented, so it would take a bit more investigation.

Do it yourself
In general, if you want a copy routine that does =the right
thing" for a particular dass, you have little choice but to write
it yourself. There isn't a universal definition of what the right
thing is, and it may even vary for the same class from applica-
tien to application. The problem of copying complex ob jects
with circular references (e.g- a Graph) is equivalent to the
problem of storing and retrieving an object from disk. In fact,
if I have objects that can be written to a file, it's sometimes eas-
iest to write them to a stream and retrieve them as a way of
making a copy. There will be a big performance hit but some-
times that doesn't matter.

It's also worth noting that ParcPlace has changed default
implementation of copy. Hans-Martin Moseier
Chmm@heeg.de) writes:

In R4.1, the only copy method besides #shalloweopy is
#copy itself. It is implemented as Aself shallowCopy post-
Copy. The posteopy method is the one that should do the
dirty work. It can copy instance variables, leave others
alone, update backpointers, and so on. Since it executes
in the already copied object, it has access to everything
it needs. To make copies which don't share instance
variables, the posteopy methods should copy all such
variables.

This is a nice implementation. since postCopy doesn't need
to do anything for variables that only require a shallow copy.
Thus, adding instance variables doesn't necessarily require
changing the copy method. My only' complaint is that thig
change was not very well advertised; I only discovered it by
stumbling across the code while doing something else.

INHERITANCE

As if there weren't already enough problems with copying,
there also can be problems inheriting from a class that defines
its own copying methods. For example, Ralf Grohman
(ralf@ubka.uni-karlsruhe.de) writes:

I want to extend the Dictionary Class in some way. So I
generated a new class (Test) which is a subclass of Dictio-

11

m THE BEST OF COMP. LANG.SMALLTALK

ParcPlace Smalltalk implements
60# 8 0 *. I .0, . 0 0,@@' classes such as Dictionaiy, Set and O>

dpredtollections as variable classes
I .

(clues with indexed instance variM

6.'4*; i 0. r.:/00'Q'./.e " 4.G .1 ,0 ables . 'then instances need to grow, a
ner lar,er instance is created, and be-
crme: 1. used to replace the old collec-

3055 35,8,44;40 .7 2,f,0S tien ·vith the ne, T. Unfortunately, the
./ I /

5 grow Uptiod cnly copies the indexed
4,""L .,p:f.140* #§,01·,·,Mt#Vib:L .22 £-44 . ./ / 2 5-, ./., - - instllicc Arililes. Ii-7.)n-indexedin-

T 24:422.65:2-53#«6>tkir5%.,56*656:.- ,1,3%3,52&m.655sftwvz:64-, t j» f9.64 st' ice virribles irepresert they must
1 .949-<474717.-.:40 3 2%457/5' r vt#j>«<jit:i€2343+3 becopied expl'cilly, and user dasses% 4.5/.i>...93472/44*E.'Mt. ::.' p.. .61 F :238«:«c«:2 5.44.s.dog0 - . ' r/.90 - r,y. v·t -· riust overr'de the grow method to doFq#fl'#56%91>9€43p€21*. 3,=<Al&,4 1 49 9 4. 34:#944%0< .42.2.-le:$:,=3*..&4„* , thi·. Jin Steinman (steinman@hasler.as-

com.ch) writes:54:98/ f/**UN c : 44 1 .42*1% @ @ 8 94 ' 4/ I M ¥/1 2.
*4959°91:92%*933::¢*4»4?04/44»29.-,1 y y .g «»:4»yvy *€12<Off<„4:w:.9,:, . » -<3 l'herehavebeen many debates

Ity . 40?/. I. . /9 .4 $ti<«» 1 .0 :. 4 i: -'< *@%4 PME» . 4 ':244»«2» about how to best handle this.1.&ilU.i<:*PM..*..I.%*,'fl/Fril One might beanoffline33*204¢*tworkl Sm at tatkietttittlijit»f444#Zw 4%40*]b#**g<
for SequenceableCollection sub-3 1*fjrhallta*for¢obo Pfogifam*%3%4%41%5¢Uf.- O4it#1443<° 3

:*i Analysts& Dagne:%04%24%42 «3*%*13%«pkNIFE]te®%*te**;* »%61;**45/*%4*» classes that addijistance variables
*0; P?t,jectiMnagement%<abzu0< »»:-i»<a; *. *-**i:*di:jili?12iii%%.>j.j:B. 4%0-2;lik»Ev,i«4:,jiw:<jia*»144f but do not iniplement#grow.
mt"IMPHouse &O2penm9Ursell*Allil Blil../Irmmlf//i/*IllI4../I I once reimplemented #grow so
144 Objet€PRoble In¢44**5(it ead&%12**t#fi:*€4**fat#@42%*¢34* 1 4

that it copied al] instance vari-

*132%2Ygt19Eft:if Butthisgets youintotrouble in
some cases where tlie new Collec-

nary and added an instance variable 'temp . tion requires different values, such as ' firstindex' and
The sole method of this class is: 'lastIndex' in Orderedeollection....For the time being, the

answer is to make sure people understand what is happen-addiere

temp:='ok: ing, but I've been Smalitalking for eight years, and it still
1 to: 5 do: [:xi bites me now and then!

Transcript show: temp='; show: temp printString: cr.
self at: x put: ·rest'. 1.

When I call it via 'Test new addiere: I get the following
Transcript:

temp= 'ok'
temp= 'ok'
temp= nil
temp= nil
temp= niI

Hey! Why is the instance variable overwritten after the
second iteration?

This problem is ParcPlace-specific and is described by Rick
Klement (rick@rick.infoserv.com):

It was not overwritten. It just wasn't moved to the new
object created when the Dictionary had to grow to ac
commodate three entries. Welcome to one of

Smalltalk's more subtle bugs.... 1'11 bet this bug exists
in 10% of the large programs that add instance vari-
ables to variable classes.

12

Another possible solution is to implement collections differ-
ently. In Digitall's version, these are normal classes that have an
array as an instance variable. If the collection reeds to grow,
then a larger array is created, its contents are copied, and the in-
stance variable replaced. It requires an extra layer of indirection
for collection access, but become: is not necessary and the in-
stance variables don't need to be copied. Digitalk's reason for
doing this is probably that become: is a very expensive operation
in their dialects, but Ralph Johnson (johnson@cs.uiucedu) ar-
gues that this is a cleaner implementation. In fact, he has code
to change Smalltalk-80 to operate this way:

I have a fileIn that will do this to 2.3, but haven't got
around to doing it to any of the later images. You can't
change classes like MethodDictionary, of course, but you
can eliminate most of the old-style collections.

Alan Knight is a researcher in the Depanment ofMcchanical and
Aerospace Engineering at Carte,ton University, Ottawa, Canada, Kl S
586. He currently works in ParcPlace Smantalk on problems relating
to jinite element analysis and has worked in most Smaltalk dialects
at one time or another. He can be reached at +1.613.788.2600 x5783.

THE SMALLTALK REPORT

IETTING REAL

Constants, defaults
and reusability

his column focuses on two aspects of reusability-subclassing and client usage-and how they relate to conm
stants and defaults. Many classes have constants and de-

faults to represent commonly used values. Some of the values
represented as constants may not really be constants, such as
heuristically determined values, which are often hard-coded and
embedded into methods. Though expedient iIi the prototyping
stage, most constants should evolve into defaults as classes are
refined. Developers of reusable software need to create reason-
able defaults and include a mechanism to override them.

This column will show you how to use constants and de-
faults and still maintain a high level of reusability. We will ex-
amine several dasses and methods from the Windows and
OS/2 versions of Smalltalk/V that contain defaults. We will

also revise some existing image code that has embedded con-
stants and improve its reusability.

CONSTANTS

Many initialization methods contain constants and their values

are often Smalltalk literals. In the class Entry]Field, the initialize
method contains four constants: a string, an integer, a point,
and a boolean. An initialization method is an appropriate place
for constants. Subclasses typically override the initialize
method to customize initial values:

initialize

'Private - Initmize the receiver. "
value := '

maxSize := 32.

selection :c= 1@1.
modified := false.

Asuper initialize

A less appropriate location for constants is embedded in arbitrary
methods. A method should have one purpose: to define a default
or perform some computation, but not both. With an embedded
constant, reusability is impacted because it is difficult to:

· find and modify the constant
· override the constant in a subclass

The method file: in DiskBrowser has a constant that controls
file contents display based 011 the file size. This constant is a

size limit used to determine whether to display the entire file or
a portion of it. If the fle size exceeds this limit, it takes an extra
action to see the entire contents. The main purpose of the file:

FEBRUARY[993

G Juanita Ewing

method is to display the file contents. It should not contain the
definition of the size limit:.

file: filePane

'Private - Set the selected file to the selected one in fil€Pane. Disptay
the file contents in the text pane."

I afileStrearn B
CursorManager execute change.
self changed: #directory,Sort:.
selectedfile := file Pane selectedkem.

self switchropite Pane.

afileStream := selected Directory fileReadOnly: selectedFile.
wholefileRequest := afileStream size < 10000.
atileStream close.

wholeFReRequest
iffrue: {se-lf fileContents: contentsPane]
iffalse: [self showPardalFile]

Another DiskBrowser method. showPartial?ile, also contains this

constant. Having the same embedded constant in two methods
can lead to maintenance problems:

showPartialfile

"Private - Display the head and tail of the selected me in the text
po.ne."

I arileStream fileHead fileTail st:rtMessage endMessage cr
CursoIManager execute change.
contentsPane modified: false.

@FileStream := selectedDirectom fileReadOnly: selectedfile.
cr:= String vith: Cr with: Lf.

startMessag e := 'File size is greater than 10000 bytes, :cr,
#st 1000 bytes are ...t cr.

endMessage := cr, 1....:lili.lilli.**lilli.WI , Cr,

last 9000 bytes are...1 cr,
fileHead := :FileStream copyfrom: 1 to: 1000.
fileTail := afileStream

copyfrom: afileStream size - 9000
to: afile Stream size.

ariteStream Elose.

contentsParte

fileIn From. (ReadStream on: (star[Message,
fileHead.endMessage, fileTail));

forceSelectionOntoDisplay.
(self menuWindow menuTitted: '&riles') enableitem:

#loadEntireFile.

(self menuWindow menuTitted: '&File) disableItem: #accept.
CursorManager normal change

DEFAULTS

Developers should not embed constants in arbitrary methods.

13

TIE lOP NAME
I mA-G 5 ON

TIE BOTTOM
OF TIE BOX

*1.11. 5-;

Where can you find the
best in object-oriented training?

The same place you found
the best in object-oriented
products. At Djgitalk, the
creator of Smalltalk/V.

Whether you're launching
a pilot project, modernizing
legacy code, or developing a
large scale application, nobody
else can contribute such inside

expertise. Training, design,
consulting, prototyping,
mentoring, custom engineer-
ing, and project planning. For
Windows, OS/2 or Macintosh.
Digitalk does it all.

ONE-STOP SHOPPING.

Only Digitalk offers you a
complete solution. Including
award-winning products, proven
training and our arsenal of
consulting services.

Which you can benefit
from on-site, or at our
training facilities in Oregon.
Either way, youll learn from a

Smamalk¥
--dp.-4...7 »45*¥ .»:ir

4/90

*1%%

5:R '

BIGIr.J K•
staff that literally wrote the
book on object-oriented
design (the internationally
respected "Designing Object
Oriented Software").

We know objects and
Smalltalk/V inside out, because
we've been developing real-
world applications for years.

The result? Youll absorb

the tips, techniques and
strategies that immediately
boost your productivity. You'll

100% 1EDCT TiITTYG.

reduce your learning curve,
and you'll meet or exceed
your project expectations. All
in a time frame you may now
think impossible.

IMMEDIATE RESULTS.

Digitalk's training gives
you practical information and
techniques you can put to
work immediately on your
oroject. Just ask our clients
like IBM, Bank of America,

Progressive Insurance;
D Puget Power & Light, U.S.

Sprint, plus many others.
And Digitalk is one of only
eight companies in IBM's
International Alliance for

AD/Cycle-IBM's software
development strategy for the
1990's. For a full description
and schedule of classes, call
(800) 888-6892 x411.

Let the people who put
the power in Smalltalk/V, help
you get the most power out of it.

The Smalltalk Report
The International Newsletter for Smalltalk Programmers

May 1993

STANDARD:

TECHNICAL ASPECTS

OF THE COMMON BASE

By R.J. DeNatate
6 Y. P. Shan

Contents:

Features/Articles

1 The Smalltalk standard: Technical

aspects of the common base
by R.J. DeNatale & Y.P. Shan

5 Classic Smalltalk bugs
by Ralph Johnson

Columns

10 Putting it in perspective:
The incremental nature of design
by Rebecca Wirfs·Brock

12 Getting Real: Don't use Arrays?
by juanita Ewing

15 Sma//ta/k idtbms.' Instance specific
behavior: Digitalk implementation
and the deeper meaning of it all
by Kent Beck

TOWARD A

SMALLTALK

18 The best of comp.lang.smalltalk
Breaking out of a loop
by Alan Knight

Departments

20 Product Announcements and
Highlights

Volume 2 Number 7

aognizing Smalltalk's increasing importance asa mainstream pro
gramming language and acting as a large user of the language, IBM
recently proposed the formation of a standards effort within ANSI
to define a Smalltalk language standard and offered a "common
base" strawman to start such an effort. At this time the proposal has

been accepted by the ANSI SPARC committee, and the formation of an ANSI
Smalltalk committee has begun.

This article focuses on technical issues regarding the common base. We have
written a companion article that will appear in OBJEci· MAGAZINE, which outlines
the history of the development of the common base.

WHAT IS THE COMMON BASE?

As part of the proposal for an ANSI Smalltalk standards effort, we have con-
tributed a "strawman" as the starting point for standardization. That strawman is
contained in tile IBM document entit[ed Smalltalk Portability: A Common Base
and comprises chapters 3-5 and appendices A and B from that document.*

This proposal is not our work entirely. It is the result of an 18-month-long col-
Laboration among five companies: IBM, Digitalk, KSC, 011, and Parcplace.

A purely syntactic description of Smalltalk results in a language specification
that is incomplete when compared to those for languages such as C, COBOL,
and FORTRAN. When studying the specification for a language one expects to
learn things, such as how to do arithmetic, how to code conditional logic, and so
forth. Smalltalk syntax does not address these issues. To bring the description of
Smalltalk up to the expected degree of completeness we must specify a number
of classes, such as numbers, booleans, blocks, and so on. The purpose of the
common base is to provide a semantic description that is common to both
Smalltalk - 80 and Smalltalk/V. We wanted to produce a specification of Smalltalk
that covers the variety of existing implementations. 'rhis led us to specifying the
external behavior of classes without prescribing implementation. Iktail differ-
ences between the two implementations were left out of the common base, at-
though we have kept careful note of these differences in the review process, and
they will no doubt be important items of discussion as the standardization effort
proceeds.

Currently, the common base covers the following areas. (This scope might be
changed during the standardization process):

· Language syntax
· Common object behavior

· Common class behavior

mitinked M page 4.

' The document can be ordered froin your toral IBM branch office or by aedit card through the IBM publica-
tions ordering number (800.879.2755). The publication number ts GG24-3903. The price is $2.75 per copy
lor printing and handling.

A-

EDITORS'
CORNER

John Pugh Paul White.

his month>s hot topic is standards. After many years of discussion, an ANSI Smalltalk lan-
gui}ge standard is now much nearer to becoming a reality. There is little doubt that lan-
guages achieve an extra measure ofrespectability when an ANSI standard is defined for
them. Many in the Smalltalk community have long recognized this, but how do you stan-
dardize Smalltalk? The language itsel f is very small, but standardization alone-though
valuable-does not produce a very useful result. We must standardize the class librar'y.
The Smalltalk class library can be thought of as an extension of the language; for example,
even control structures are captured via message passing rather than hard-wired svntactic
constructs. However, now we run into further trouble. There are two major dialects of

Smalltalk: Smalltalk-80 and Smalltalk/V. Enfin might be included as yet a third dialect,
and by the time you read this article there may be a fourth, SmailtalkAgents for the Mac-
intosh. Each has classes and frameworks unique to itself particularly in the domain of user
interface classes. Even when we restrict ourselves to magnitudes and collections we are
not out of the woods. Smalitalk 80 and Smalitalk/V have distinct differences both in the

organization of the class hierarchy and in the classes themselves. How have all these issues
been addressed? Well, read the lead article written by Rick DeNatale and Y.P. Shan and
you will find out. For our part, we applaud the initiative taken by IBM to promote the
standards effort and the participating vendors for putting their competitive instincts to
one side for the benefit of the Smalitalk community as a whole. We'll keep you informed
as the standardization effort proceeds and hope that as many of you as possible will play a
part iii the process.

But there's even more news on standards, Digitalk has announced that it will make itsi
Smalltalk products interoperable with SOM, IBM's System Object Model for OS/2 2.0 and
that it will also develop dient-server database and development tools adhering to the data
access portions of Apple's Virtually Integrated Technical Architecture Lifecycle (VITAL).

Iii our second feature article this month, Ralph Johnson provides us with a list of clas-
sic Smalltalk bugs. He has compiled his list from the collective experiences of many expe-
rienced Smalltalk programmers. The list will be particularly useful to beginning Smalltalk
programmers. If you are aware of other bugs you think should be accorded "classic" sta-
tus, please forward them to Ralph. His address is given at the end of the article.

Iii her column, Rebecca Wirfs Brock passes on some more of her nine years of experi-
ence designing, implementing, and managing software projects. In this issue, she discusses
the incremental nature of design and what distinguishes incremental design from rapid
prototyping. In this issue's Getting Real column, Juanita Ewing discusses the inappropri
ate use o f arrays and how their misuse affects reusability. Kent Beck continues his discus-
sion on instance-specific behavior, where methods can be attached to individual iii-
stances, as opposed to being attached only to the class. This month, Kent explores the
implementation of instance specialization in Digitalk's Smalltalk/V for OS/2 and contrasts
it with the ParcPlace implementation of the sallie concept.

Finally, Alan Knight focuses on the thread of discussion generated on
comp.lang.smalltalk by the following question: -I [have] always found a way to avoid this,
but I would like to know how to break away from inside a loop and return [to] the imme-
diate upper level context?" t> 1 Ch V C.' 0,1 r

We hope you enjoy this issue. J 41-9 12 \-1 Aull-> 9
The Smcilitalk Report (ISSN# 1056 7976) is publahed 9 imies a year. every n.onth except ior the Mar/Apr, July/Aug and Nov/Dec combined
issues Published by SIGS Publimions Group, 588 Broadway, New York, NY 10012 (2]2)274-0640 © Copyrigia 1993 by SIGS Publications
Inc Allrahts reserved Reproduchonof th.maierialbyautron.,ransmission, Xeroxoranyothermethodwil'ibetreated.sa willful viola-
tion of [lic US Copyright Law undis flatly prohibiled. Materal may be reproduced withexpress permission fromthe publishers. Mailed Firs,
Class. SubscrtpIion rates I year, (9 issucs) domesix. $65, Fomign and Canada, $90, Single copy pme. 68.00 1011 MASTER Send addres,
changes and subscription ortle q No.]in SMAI [wi REN>]tr, Subscriber Servic¢5, Dept. Alin P.O. Box 3000, Den 11¢, N] 07834 Subm]£ 3-0
cles i the Editors al 91 Second A v emuc, O Itawa, 01 ario K]S 214, C.an„da. For iervice on currelit 5ubscriptions call 800.783.4903. Printed
in the United States.

2

The Smalltalk Report

Ed#014
john Pugh and:Paul White
Carketon University & The Object People

SIGS PUBLICATIONS
Advisor# Board
Tom Atwood, Object Technojogy international
Grady Booch, Rational
George Bosworth, Digitark
Brad: Cox, Information Age Consulting
Chuck Duft, S.vmantec
Adele Goldberg; Pareplace Systems
Tom L-ove, Consultant
Beitrand Meyer, ISE
Mellir Page-Jones, Wayiand Systems
Usha Pratap, CohierLine Softelare
Bjame Stroustrup, AT&T Bell Labs
Dave Thomas, Objee·t Technology Intemational

THESMAU™*REPORT
Editorial Board
jim Anderson. Digiialk
Adele Goldbeyg, Par¢Place Syswms
Reed Phillipss Knowledge Systems Corp:
Mike Taylor, Digitally
Dave Thomas, Object Tedoology interhabonal

Columnists
Kent Beck. F.Nt Class Software

Juanita Ewing, Digitalk
Greg Hendley, Knowledge systems Corp.
Ed Klimas, Linea Engineenng inc.
Alan Knight, The Object People
Eric Smith, Knowledge SysMirs Corp;
Rebecca Wirfs-Brock, Digitalk

SIGS Publications Group, Inc.
Richard P. Friedman
Founder & Group Publisher

Art/Production
Kristina Joukhadar, Managing Editor
Susan Culligan. 13{grim Road. Lid.. Creative D.ection
Karen Tongish, Production Edkor
Robert Stewart, Computer System Coordinator
Circulation
Stepheri W. Soute, arculation Manager
Ken Mercado, Fulfiument Manager
Marketing/Advertising
Jason Weiskopf, Adverlisilig Mgr-East Coast/Canada
Holly Meintzer, Adverlising Mgr·--West Coast/Europe
Helen New!,ng, Recruitment Sales Manager
Sarah Hamiton, Promotions Manager---Publicatmns
Caren Poiner, Promolions Graphic Arust
Administration

David Chatterpaul. :Accounting Manage,
James Amenuvor, Bookkeeper
Dylan Smith, Special Assistant to the Publ um
Clare johnston, Conference Manager
Cindy Baird. Conference Techn:caT Manager

Margherita R Monok
General Managler

SIGS
131;111 1 (.Al KiRE

Publishers Of JOURNAL OF OBJECT-ORIENTED PROGRAM-
MING, OBJECT MAGAZENE. HOTUNE ON OBJECT-ORIENTED
TECHNoloGY, THE Oil + REPORT. THE SMALLTALK REPORT,
THE INTERNATIONAL OOP DIRECTORY, and THE X JouRNAL.

THE SMALLTALK REPORT

M E H

-SONWARE ENGINEERS-

MANAGEMENT
CONSULTANTS

SHL Systemhouse is an $800 million
sysbms integ,ator speca#zing in dient
server and obiect oriented software
development.Weareimmedatelyseek-
ing individuals for unique career
opponunities in the Southeast Region
olthe United States. Canddatesshould
possess one or more of the following
skills:

- C++, Smailtaik -=---
- 00 Deve»pment - - -
0 00 Database

We offer an outstanang compensation
and benefits package. Explore your ¢a-
mer oppormnities with a company that
5 commit&@d to excellence. Ca!1 800·
769-8704 or send your resume to
SYSTEMHOUSE, Depl. STM, 950
S.WinterParkD,lve,Cesselbs,y, FL
32707. Fax: 407-280·05@0.

SHLSYSTEMHOUSE

1 SMALLTALK IDIOMS

c mitinwed frum pas€ 2 7

tem, please pass them along. You'll find my address at the end
of the article.

CONCLUSION

Instance specialization has a place in the toolbox of every expe-
rienced Snialltalker. You won't use it every day-maybe not
even every year- but when you want it, nothing else will do.
The implementations for Visua[Works and Smalltalk/V OS/2

2.0 are quite different, but they present the same external inter-
face to the programmer.

The contrasts between the implementations hint at funda-
mental differences in approach between Digitalk engineering
and ParcPlace engineering. I will explore the practical conse-
quences of this difference in future columns. I

Kent Beck has been discovering Smalltalk idioms for eight years at Tek-
ti·onix. Apple (.ornputer, and Mcts!#r Computer. lie isalso the
founder of First Class Software, which develops and distributes reeng-
neering products for Smailtalk. He can be reached at First Class Soft-
ware, P.O. Box 226, Boulder Creek, CA 95006-0226, or at

408.338.4649 (phone), 408.338.3666 (jax), 70761,1216 (Compuserve).

MAY 1993

To place a recruitment ad,

contact Helen Ileuling at

212.214.0640 [uoice].

or 212.214.0646 [fa].

m THE BEST OF COMP.LANG.SMALLTALK

confinfied f on,pag, 3 9

In general, however, I think this technique is inferior to
simply restructuring your code to have an inner method
that can perform the loop and that can return from the
loop when needed.

In the end, I have to agree that restructuring the code is usually
the best solution. The number of different possibilities avail-
able does serve, however, as a reminder of the powerful facili-
ties available in Smalltalk. ®

ERRATA

Jon Hylands, an alert colleague who obviously reads my
columns very carefully, has pointed out ati error in a recent
column on copying (February 1993). I had said that adding
named instance variables to indexed collections in Parcilace

Smalltalk required overriding the grow method to copy these
variables. In fact, the method that should be overridden is
copyEmpty, which will be called by grow.

Alan Knight works for The Object People, 509-885 Meadowlands
Dr., Ottawa, Ontario, K2C 3Nl. He can be reached at 613.225,8811
or fit knight@mrco, airleton.ca.

23

='-4

SMALLTALK

DESIGNERS AND DEVELOPERS

We Currently Have Numerous Contract and
Permanent Opportunities Available for Smalltalk
Professionals in Various Regjons of the Country.

SALIENT
CORPORATION

Salient Corporation...
Smalltalk Professionals Specializing in the

Placement of Smalltalk Professionals

For more information, please send or FAX your resumes to

Salient Corporation
316 S Omar Ave, Suite B.

Los Angeles. California 90013

Voice: (213) 680-4001 FAX: (213) 680-4030

I HIGHLIGHTS (CONT'D)

guage biased. Class libraries developed in one language can-
riot be used with other languages. For example, a class li-
brary developed in C,+ cannot be u,ed by a Smalltalk pro-
grammers and a Smalltalk library is of no use to a COBOL
prograrnmer. The System Object Model (SOM) is a new
packaging technology designed to address this and other
packaging issues....

In the current version of SON·i as released on OS/2 2.0, we

provide full tool support for only C language bindings.... We
also have experimental C++ bindings, designs for Smalltalk
bindings, and binding to an experimental obiect-oriented vcr-
sion of REXX.

Developing with ISM's System Object Model (SOM), Roger Sessions,
arst Class, OMG NEWSLETTER, Feb/Mar 1993

[Me] Beckman, Duke Communications Intl : One brass-
tack thing you can do to improve your professional perspec-
tive is to buy Smalltalk/V for the Mac or PC and go through

22

f CONSULT WITH THE BEST

34

The company i. CAI> GEMIN[A Mr R]CA And-for [S pro-
lessionals who qeek a higher level of challenge and reward-
there'5 simply no briter choite

Object-Oriented Developers C/C + +
Expericnie the challenge of working as a con„:Irant involved
in utilizing Sm.[ltalk in obiect-orlented systems analysis, design,
programming as well a partlelpating on teams prepanng client
proposals And present,Eions We icck Individuals who possess
at least 1-5 years of experience in Smalltalk arid/or C+ +.
A vitl, gr(,wir,g liatiber of the CAP C,EMINI S()<giI I Gr<)rip-
t},c fliurth largest information services company in the world-
CAP GEMIN[AMERICA offers strong career development
backed by die reso.„A „Arn international leader Please send
resunie to Scott Mytchreest, Human Resources, CAP
GEMINI AMERICA, 25 Commerce Drive, Cranrord, NJ
07016. Wc are an Equal Opportunity Emplover

CAP GEMINI AMERIG
M,mber 01 the CAP GEMINI SOGETI Group

the tutorial. In about a week of evenings, you will pick up
more insight into object-oriented programming and where
new design programming is headed than you will in two or
three seminars...

Nick Knowles, Steam Intellect, Ltd.]: We maybe hearing
about (:++ from IBM Toronto, but we are also hearing about
Smalltalk from Rochester. Smalltalk is probably a better fit for
high-level business problems. C++ may give better percir-
mance for low-level tools...

Ilaul Conte, Picante Software]:. . .What's important is to
pick a language that lets you go through the exercise of build-
ing something with obiet-oriented techniques. Then you'll see
that while object-oriented languages may help solve sonic syn-
tactic-level problems and code-organization problems, these
languages lead to another generation of problems-the cre-
ation and management of c]ass libraries...

Roundiable 199 2 Change andchalienge, Date Agger,
NEWS 3*/400,12/92

TEII: SMALLTALK R£PORT

Liike ENVY eklop. t:4*4»1it :- »»
»U+4444«9524*«34%%Some Architedlutes:Are ce' : ?A:ft«.,i;%6k*.#..,9*1 42*3tToS

P/7 1 /%1#..1"'Il.....././....L
A):B„: 4 6.2 t:':% :A?:

9943*»%467/m'444,r#*4#1,.fWLP-1-*FAmm<'wfi:14442.f<21A4r:**<4 :t *¤0*44¢3,4;..I,RKIi tiff::::fit
9%/AMMBBad9/#W#//4- 4 7?12&&/ *'tiz)$&21.2%,-231*M%**1t..: t ?f..44*:f:4*3%4?*>03:,

#F -WRN*Firt. q;:*.3& - -21.:%%%tak/9 9 i

'ef« «piry»*441
99%

» 2** I k

4.-bll./.Wjtf,44«™*? Vill./#affE' 444**9*b :h *A,4..244>9294/ft t=**0, 434*/0/4 J IL/*. 949744€te"« 4..
Attn

Acm, D,4
I W =MIN¥.fl.. > 6 C ...9 «13.- 4,1 . - -.)393i%*Ret j.0544 f.1,,*I.x , . .:.1::rikff i.-3- 44 4: 1 1% 8

g 4 /M'f., ma:-- 42 .%., ..M:%4114..tit,449%46#it.p:t ':cju:4 %(02%3 4, f-tit 2-42 ili101%/A<-<. 1 ff*44*49*tb,#TZ.<Pkift@.8%4#»i.titi=j*i«ti....72..40 :

.* ,.: *tz :44 iM€Ni*2¥2992*t'*:·:.Et,394'Ul€e%*f 42**t *3:113«371 .
·*i. rflatt f<)487"frilt),e'ABie:Eliat r#ampki . .' 3.=A. 33£*@Reli 7 : 1 p v·;

4 / 1: *ft?*3133rj I I

., 7-0

0=*

ENVY/Developer. The Proven Standard For Smalltalk Development
An Architecture You Can Build On

ENVY/Do·elopet·& a multi-user environment
designed for serious Smalltalk development.
From um programming to col·porate reuse
umtegies, ENVY/Developer provides a
flexible framework that can grow with you to
meet the needs of tomorrow. Here are soine of

the fuatures that have made ENVY/De,·eloper
[he industry's standard Sinalltalk development
environment:

Allows Concurrent Developers
Multiple developers access a shared
reposit(,ry to ci}ncurrently develop
applications. Changes and enhanceinents are
immediately available to all members of the
development team. This enables conwtant unit
and system integration and test ·- removing
the requirement for costly error-prone
load bu Uds.

Enables Corporate Software Reuse
ENVY/Developer's object-oriented
architecture actually encourages code reuse.
Using this framework, the developer creates
new applications by assenibling existing
components or by creating iiew coinpotients.
This process can reduce development costs
and time, while increasmg application
reliability.

Offers A Complete Version Control And
Configuration Management System
ENVY/Developer allows an individual to
version and release as much or as]ittle of a

project as required. This automatically creates
a project management chain that siniplifies
tracking and maintaining projects. In addition,
these tools also make ENVY/Developer ideal
for multi-stream developnient.

Provides 'Real'

Multi-Platform Development
With ENVY/Developer, platfunn-specific
code can be isolated from the generic
application code. As a result application
deveiopment can paralle] platforni-specific
development. without wasted effort or code
replicatioi.

Supports Different Smalltalk Vendors
EN¥¥/Developer supports both
Objectworks \Smalltalk and SnialltalkfV:
And that means you can enjoy the benefits
of ENVY/Developer regardless of the
Smalltalk youj choose.

For the [ast 3 years, Fortune 500 custorners
have been using ENVY/Developer to deliver
Sim][talk applications. Foi· mot·e information,
call either Object Technology International or
our U.S. distributor, Knowledge Systeins
Corporation today!

Object Technology Ottawa Office Phoenix Office

International inc Phone (613)820-1200 Phone (602)222-9519 Systems Cary, North Caroline 27511
26/0 Queerisview Drive Fax. (613) 820-1202 Fax (602) 222-8503 Corporation Phone: (919) 481-4000
Offava. ontario)(28 *1 E-man Mfoood.00 Ca Knowledge 1 14 MacKenarl Ot Ive Suite 100Fax. (919) 460-9044

El[VY/Oeve/operis a Bg)*fed tradermik 01 Object Tedinclogy Inte,ilatiold k All QUEr brand and produc' lames are [egls:e[ed tademarks of treir respectu compnies

4/ j e .

R 6
m ' I &

.0

repi r,INed froi,1 page 1

· Magnitude

· Collections

· Streams

· Basic geometry

· File in/out format

THE TECHNICAL APPROACH

We wish the common base to describe the behavior of

Smalltalk classes without prescribing implementation. To this
end we have:

1. Documented only the public protocols of the classes

2. Avoided the specification of inheritance hierarchies

W'e will describe how we approached the specification of the
collection classes without the prescription of a particular in-
heritance hierarchy.

COLLECTIONS

Collections are an important part of the Smalltalk class library,
and present an interesting challenge given the desire to de-
scribe behavior without recourse to describing implementation
inheritance.

A maior inspiration for this work was the early publication
on the internet by William Cook, currently with Apple, of his
investigation of the relationship between the implementation
and type hierarchies ofthe Smalltalkcollection classes.' Fol-
lowing this work, we described each collection class individu-
ally without recourse to inheritance, in terms of combinations
of the following protocols:

· Expaiidable. Ciontains the messages for adding elements to
a co[lection. Set, SortedCollection, and OrderedCollection sup-
port this protocol.

· Ordered. Contains the messages that pertain to collections
which maintain their contents in a specific order. SortedCol
lection, Orderedtollection, Interval, Array, and String support
this protocol.

• Copy-Replaceable. Contains the #copyReplaceFrom:to:with:
message. Interval, Array, OrderedCollection, amd String sup-
port this protocol.

· Array-Like. Contains messages for changing the collection
based on a collection or range of indices. Array, Ordered¢ol-
lection, and String support this protocol.

• Indexable. Contains the #at: message used to access an cle-
nicol of the collection based on an index or key. Sortedeol
lection, Orderedtollection, Interval, Array, String, Dictionary,
and IdentityDictionary support this protocol,

• Updatable. Contains the #at:put: message used to replace
an element of the collection based on an index or key. or-
deredCollection, Array, String, Dictionary, and IdentityDic-
tionary support this protocol.

4

I TOWARD A SMALLTALK STANDARD

Contractable. Contains messages for removing an element
or collection ofelements from the collection. Set, SortedCol-

lection, and OrderedCollection support this protocol.

Insertable-From-Ends. Contains messages for adding ele
ments at the beginning or end of the collection. OrderedCol-
lection supports this protocol.

· Removable-From-Ends. Contains messages for removing
elements froin the beginning or end of the collection. Sort-
edCollection and Orderedeollection support this protocol.

By specifying each collection class in terms of a set of these
protocols we can describe the capabilities of each class without
requiring a particular implementation hierarchy.

Smalltalk is more than ten years old.
A standard is needed, and the

time is now.

FUTURE STANDARDS ACTIVITY

rhe common base represents an attempt to document what is
common between the two major Smalltalk implementations.
So, it leaves out what is not common. This points the way for
future standards activities.

A.s additional implementations appear, they need to be
compared to the common base. Decisions have to be niade
concerning what to do about existing incompatibilities. Many
questions will be outside the scope of standardization, but
some will need to be addressed. The impact and importance to
users should be the determining factor.

l'he primary goal is to produce a language standard. The
problem with doing this with Smalltalk is that it's not particu-
larly clear where the language ends and class libraries take over.
With the common base we made sonic conscious decisions:

1. We purposely avoided attempting to standardize user inter-
face classes. The pragmatic reason is that this is where most
of the differences lie between existing implementations. Oil
the other hand, other language standards do not address
user interface libraries. Smalltalk should not be penalized
because it does not standardi/c areas not addressed by other
language standards

2. We purposely tackled higher-level language features, such
as the collection classes, and some aspects of class objects,
because these features make Smalltalk what it is.

Starting a standards effort inevitably triggers tbe desire to
conlmuedoilpag, 9.

THE SMALLTALK REPOR'r

PRODUCT

ANNOUNCEMENTS

OBJECT THINK

Peter Coad and Jill Nicola have just completed a new book
titled Object-Oriented Programming. The book teaches "ob-
ject think," the thinking stategies necessarv for effective use
o f obiect technology. It also teaches how to program effec-
tively using the two leading object-oriented programming
languages: C++ and Smalltalk. The OOP book consists of
four large examples: a counter, a vending machine, a sales
transaction system, and a traffic flow management system. It
introduces strategies and language details just al the moment
each can be applied with success. According to Fotios Sk-
ouzos, IS Director at Falcon, "The OOP book has quickly be-
come the most consulted desk reference within my develop-
inellt group."
The book is available from Prentice I Iall technical bookstorc5

or directly from the authon at Object International.
Ob,ect International A.Jstin, TX

8006622557 3 5127950202 (4 512 '795 0332 (f)

OOP WORKBENCH FOR MACS

SmalltalkAgents for Macintosh is an obiect-oriented software
development workbench and application delivery tool with ad
vanced computing capability.

Based on a superset of the Smalltalk language, Smalltalk-
Agents has extensions patterned after C and I.ISP, and fully
supports the Macintosh toolbox including traps and callbacks.
[t provides a powerful new set of tools which greatly increases a
programmer' s productivity. SmalltalkAgents possesses ad-
vanced computing capabilities such as dynamic linking, true
preemptive interrupt-driven threads and events, transparent
memory management, a 24-bit international character sel sup-
porting Unicode and Worldscript, and a rich class library.
SmalltalkAgents requires a Macintosh with at least a 68020
CPU, 5 MB of RAM, and a hard disk. All features are fully
functional with System 7 and 7.1, with limited support for
System 6.0.7.

Quasar Knowledge Systems, Bethesda, MD
301.530.1858 (v), 301 530.5719 (f)

Highlights

Excerpts from industry publications

SPECIFICALLY SMALLTALK

One it the more significant happenings this year has been the
emergence of Smalltalk as an application development envi-
ronment for commercial application developers. American
Airlines, for example, has deployed a commercial system to
manage the resources required for all flights worldwide. This
high-reliability, high availability distributed system was pro-
grammed iii Smalltalk and is considered a major success.

1992 was also the year that Smalltalk companies got pro
fessional management.... The other challenge facing new
professional managers of Smalltalk companies is tliat MIS
directors can be very demanding to do business with. They
demand services and insist upon delivering new products on
or about the published schedules. As they evaluate
Smalltalk, they see a lot missing. The challenge for the next
couple of years will be to rapidly add capability without los-
ing focus. Development environment companies shouldl
build strong development environments and kernel classes
fur their language....

Just as Smalltalk has begun to creep into mainstream
businesses, the harsh, cruel realities of using C++ as an ap-

MAY 1993

plication development language have been felt in company
after company. while C++ can be used as an object-oriented
language, it typically is not. Rather, il is used as a more
complex C with esoteric new features that someday must be
understood...

A rather startling change has been in the paychecks of
highly competent 0-0 designers and developers. Some have
dozibled; a few have tripled in the last vear. Companies are be
ginning to recognize that someone who really knows existing
obiect-oriented libraries and tools can be worth more than five

greenhorns. For this time-to-market advantage, they are will-
ing to pay handsomely. I have seen individual Smalltalk pro-
granimers working for $2,000 per day on long-term contracts
and Obiective-C programmers maki]iga salary ot S200,000 per
year, and this treiid will accelerate."

MIS •adar detects objects for the first time, Tom Love, Hon jNE oN
Oarc·T-ORENTED TECHNOLOGY, Feboary 1 993

Current technologies for packaging class libraries have sev-
eral problems; the most important is that they are highly lan-

21

PRODUCT
FANNOUNCEMENTS

Product Announcements are not reviews. They are abstracted from press releases provided by vendors, and no endorsement is implied.
Vendors interested in being included in this feature should send press releases to our editorid offices,

Product Announcements Dept., 91 Second Ave., Ottawa, Ontario Kl S 2H4, Canada.

GRAPHICAL CLASS LIBRARY

ObjectBits 2.0 is a sophisticated class library that permits ad-
vanced programmers to create graphical applications effec-
tively in the ObjectWorks\Smalltalk Release 4.1 environment.
Programmers can understand it quickly and use it easily be-
cause it is implemented using purely Smalltalk technologies
and methodologies. ObjectBits is implemented in a modular
fashion and features components such as 2-D and 3-D charts,
gauges, geometric figures, and bit and image editors. Object-
Bits 2.0 is available on the Sun SPARCstation, HP 9000 series

70, IBM RS/6000, and Macintosh platforms.
Fur Xecox Iriformation Systems, Tokyo, Japan

81 3 3378.8984 (v) 81 3.3378.7959 0

GUI BUILDER FOR SMALLTALK APPS

Object Technology International (OTI) and Objectshare Sys-
tems have announced a new version of WindowBuilder that is

integrated with ENVY/Developer. The two companies will also
cooperate to ensure that future releases oftheir respective
products are compatible.

The new version of WindowBuilder will be available in the

format of an ENVY/Developer library. Previous versions of the
two products required an integration effort by the customer be-
fore they could coexist in the same Smalltalk image, Customers
will now be able to load and unload WindowBuilder into their

ENVY/Developer environment with no additional effort.
ENVY/Developer is an integrated multiuser environment

for large-scale Smalltalk development. It provides a highly pro-
ductive team programming environment that supports the
prototyping, development, release, and deployment of
Smalltalk applications. The product's features include configu-
ration management, version control, support for multiplat-
form development, performance profiling tools, a high-speed
object storage and retrieval utility, and packaging tools for pro-
ducing standalone executables.

WindowBuilder is the leading Smalltalk product for build-
iiig graphical user interfaces. Developers can quickly construct
sophisticated user interfaces for their end-user applications.
The result is less manlial programming and tedious layout
when developing applications with windowing front-ends.
WindowBuilder is available for Digitalk's Smalltalk/V for Win-
dows and Smalltalk/V for OS/2.

Obectshare Systems, San Jose, CA.
408.727.3742 (v), 408 727 6324 0

20

BUSINESS RE-ENGINEERING METHODOLOGY

CONSTRUCT is a leading-edge business re-engineering
methodology that integrates all three facets of a business-
strategy, operations, and information systems, to help compa-
nies manage change. CONSTRUCT is the frst methodology to
enable companies to define their fundamental purpose and en-
sure that all work performed in the organization has a demon-
strable link to that purpose. In addition, CONSTRUCT is the
only methodology that incorporates Business Works, an ob-
ject-oriented software tousled developed by ParcPlace Systems
that enables companies to refine strategy and rapidly translate
it to every element of the business.

BusinessWorks is based on Parcrlace's VisualWorks, an

ADE for creating graphical, client/server applications that are
completely portable across PC, Macintosh, and UNIX sys-
tems. Visua]Works' database access capabilities allow develop-
ers to combine the power of hierarchical, relational, and ob
ject-oriented database systems with object-oriented
programming technology for client/server applications. Visu-
aiWorks is based on ObjectWorks\Smalltalk.

Gemini Consu ling, Mornstowrh NJ 07960

201 285.9000 8 201 285.9586 0

AUTOMATIC DOCUMENTATION TOOL

Synopsis for Smalltalk/V provides an automatic class docu-
mentation tool for development teams using Digitalk
Smalltalk/V. The automatic documentation of Smalltalk classes

allows development teams to eliminate the lag between the
production of code and the availability of documentation.
Using information already present in the Smalltalk/V environ-
ment, Synopsis automatically generates class documentation
for any class in the system. Class documentation takes the
form of a summary, made up of class comments, comments
about variables, and documentation strings from class and in-
stance methods. These summaries are similar to what you find
in the Encyclopedia o C Classes section of any Digitalk's
Smalltalk/V manual.

With Synopsis, any effort by developers to improve class or
method comments iIi the code is immediately reflected in the
net class summary generated. Therefore, documentation lag
time is minimized. In addition, documentation time is reduced

because a large part of the work is done once during coding.
Synopsis Software, Raleigh, NC

919.847.2221 (v),919 817.0650 (0

THE SMALL]-ALK REPORT·

CLASSIC

SMALLTALK

BUGS

Ralph Johnson

very programming system is prone to certain

kinds of bugs. A good programmer learns theseAfil bugs and how to avoid them. Smalltalk is no ex-
ception. Although Smalltalk eliminates many bugs
that are common in other languages, such as bugs

in linear search algorithms (iust use do:), it has its own set of
classic bugs, which most new Smalltalk programmers learn the
hard way.

There are several reasons to collect classic bugs. First, it will
help experienced programmers test and debug programs, and
it can help us design better programs. Second, ifwe teach these
bugs to novice Smalltalk programmers, they should learn to be
good programmers faster. Third, perhaps we can redesign the
system to eliminate some of these bugs, or we can write check-
ing tools to spot them automatically.

I started the following list and posted it to comp.lang.small-
talk, Lots of people responded with more bugs, instructions on
how to fix the bugs, and comments about my bugs. The result
is the following list.

BUG 1: VARIABLE-SIZED CLASSES

Set, Dictionary, and OrderedCollection are variable-sized classes
that grow. They grow by making a copy of themselves and "be-
coming" the copy. If you add new instance variables to a sub-
class, you have to make sure these instance variables get
copied, too, or you will mysteriously lose the values of the in-
stance variables at random points in time.

Smalltalk-80 R4.0 (and probably some earlier versions) has
a #copyEmpty: method in Collection that you are supposed to
override if you make a subdass of Collection that adds instance
variables. The solution to this bug is to write a version of
#copyEmpty: for your class.

It would be easy to write a tool that checked that every new
subclass of Collection that added instance variables also defined

a method for #copyEmpty:.

MAY 1993

BUG 2: #ADD: RETURNS 1TS ARGUMENT

Most collections that grow implement the #add: method,
which returns its argument. Most new Smalltalk programmers
assume that #add: returns its receiver, which leads to prob-
lems. Thus, they write '(c add: x) add: f when they should re-
ally write «c add: x; add: y" or "c add: x. c add: y". This is one of
the good uses for #yourself. For example, you can write:

(Set new
add: x;

add: y;

yourself)
to make sure that you have the new Set.

#add: returns its arguments for serveral good reasons. Making
#add: return its argument often keeps you from resorting to
temporary variables, because you can create the argument to
#add: on the fly and use the argument afterward. If you want
to access the collection, you can do it with #yourself and cds-
caded messages, as described above.

Nevertheless, after years of- explaining how #add: works to
students, I wish that it had been defined to return its receiver. It

is too late to change now without confusing every Smalltalk pro-
grammer on the planet, so it isa problem we have to live with.

BUG 3: CHANGING COLLECTION WHILE iTERATING OVER IT

Never, never, never iterate over a collection the iteration loop
modifies. Bements of the collection will be moved during the
iteration, and elements might be missed or handled twice. In-
stead, make a copy of the collection you are itcrating over.
That is, aeollection copy do: I:each 1 aCollection remove: each] is
a good program, but i['you leave out the copy it isn't.

Mario Woloko suggested a solution that catches this problem
the instant it occurs (at some performance penalty, of course).
The solution is to change the collection classes. lEach iteration
method enters that collection into a set of collections being iter-
ated over (IteratedColections), executes the block, and then re··
moves the collection from the set. Collections are usually
modified using #at:put: or #basicAtput:, so these are overridden
to check that the collection is not in IteratedCollections. If it is, an
error is signated. You can either use this technique till the time or
just install these classes when you are testing and debugging your
progi·am. The changes are packaged in a file called Iterator-
check.st that is available on the Manchester and Illinois servers.

On the Illinois server, it is in pub/MANCHESTER/manchester/4.0/
Iterator-check.st.

BUG 4: MODIFYING COPIES OF COLLECTIONS

It is common for an object to have an accessing method that re-
turns a collection of objects you can modify. However, some-
times an object will return a copy of this collection to keep you
from modifying it. Instead, you are probably supposed to use
messages that will change the collection for you. The problem is
that this is often poorly documented, and anyone who likes to
modify collections directly will run into problems, See "Sched-
uledControllers scheduledControllers" for an example.

5

Lbe solution is to provide better documentation, to claim
that nobody is allowed to modify copies of collections returned
from other objects, or to have objects tha[don't want their col-
lections modified to return immutable versions of the collec-

tions that will give an error if you try to modify them.

BUG 5: MISSING A

[t is very easy to leave off a retui n cal et on an expression. If
there is no return at the end of a method, Smalltalk returns the

i·eceiver of the method. It only takes one missing return to
mess up a long chain of method invocations.

BUG 6: CLASS INSTANCE CREATION METHODS

Writing a correct instance creation method is apparently non-
trivial. The correct way to do it is to have something like:

new

'·super new init

where each class redefines #init to initialize its instance vari-

ables. Iii turn, #init is defined as an instance method init:

super iLLit 'to initialize inherited instance variables"
"initialize variables that I define"

It only takes one missing return to mess
up a long chain of method invocations.

There are lots of ways to do this wrong. Perhaps the most com-
mon is to forget the return, that is, to write:

super new init

As a result you have the class where you want the instance of
the class. This is a special case of bug number 5.

Another error is to make an infinite loop by writing:

Nelf new init

lf' Smalltalk doesii't respond when you think it should, press
'C to get the debugger. If the debugger shows a stack of #new
messages, you know you made this nnistake.

1·inally, you should define #new only once for each class hi-
erarchy and let subclasses inherit the niethod. If vou redefine it

in each clash, you will reinitialize the new objea many times,
wasting tiine and perhaps memory.

One way to keep this from happening is to make the #new
method in Object send #init, and have the #init method in Ob-
ject do nothing. Of course sometimes the version of #initthat
you define has arguments, and this wouldn't help those cases.
It is probably better to rely on education to eliminate this killd
oferror.

6

• CLASSIC SMALLTALK BUGS

BUG 7: ASSIGNING TO CLASSES

OrderedCollection := 2 is perfectly legal Smalltalk, but does
dreadful things to your image.

I his bug could be eliminated if the compiler gave a warning
when you assign to a global variable that contained a class.

BUG 8: BECOME:

#become: isa very powerful operation. It is easy to destroy
your image with it. Its main use is in growing collections (see

bug number I), since it can make every reference to the old
version of a collection become a reference to the new, larger
version. It has slightly different veinantics in Smalltalk/V and
Smalltalk-80, since x becomes: y causes every reference to x and
y lo be interchanged in Smalltalk-80, but does not change any
of the references to y in Smalltalk/V.

Suppose vou want to eliminate all references to an obiect x.
Saving x becomes: nil works fine in Smalltalk/V, but will cause
every reference to iii! to become a reference to x in Smalltalk-

80. This is a sure calamity. You want x to become a new object
with no references, such as in x becomes: String new.

BUG 9: RECOMPILING BUGS IN SMALLTALK/V

It is easy to have references to obsolete objects in Smalltalk/V if

you change code without ileaning things up carefully. For ex-
aniple, the a. sociations whose keys are the referenced names in
the Pool Dictionary are stored in the Compile#Methods at compile
time. If you create a new version ofthe Pool Dictionaly and in-

stall it by simpleassigninent the compiled method. still refer
to the old associations.

I f you substitute a new instance of Dictionary or replace,
rather than update an association in a pool dictionary, you have
to recompile all methodi using variable·, scoped to that Pool.

l'his is is also antioving when using ENVY, where the meth-
ods are under strict control. Perhaph Pool Dictionaries bhould be
be first-class versioned prerequisites ofclasses, iust like the
class definition.

Ifyou prune and graft a subtree of your class structure, you
have to make sure that all referencing methods are recompiled.
Otherwise, you (or your customer, because this is only de-
tected at runtime) will run into a Deleted class error message.
Thomas Muhr posted a "bite" a while ago to handle this prob-
lem for Snialltall/V 286.

BUG 10: OPENING WINDOWS

Older versions of Smalltalk/V and Smalltalk-80 do not return

to the sender when a new window is opened. Thus, any code
after a message to open a window will never be executed. This
is the cause of nuch frustration. For example, if you try to
open two window, at once, that is:

TextPane new open.
Textrane new open

in Smalltalk/V 286 and

aSchedutedWindowl open.
aScheduledWindow2 open

T]11. SMALLTALK RI:PORT

YOU CAN DO IT WITH EXCEPTIONS

An exception handling mechanism is built to handle iust these
sort of cases, breaking out o f normal processing to handle
some special condition. ParcPlace Smalltalk has one integrated
with the language, and there are several implementations avail-
able for Iligitalk versions.

Hubert Baumeister (huberl@nipi-sb.mi>g.de) provides a
detailed example of how to do this. We can define a signal han-
dler as:

LoopBreakSignat := Signal genericSignal
notifierString: 'Using break without being in a loop';
nameaass: self message: #toopBIeakSginal.

repeat a block using:
Context>>loop

"Evaluate the receiver repeatedly, not ending unless 'Oblect
loopBreakSignal' is raised or the block forces some stopping
condition, like method returns, Signals raised but riot handled

etc.."

Object loopBreakSignat handle: [:exp I]
do: [sel repeat]

and then invoke it with the Object method

break

Loop Breakdignal raise.

This is very similar to the use of exceptions for handling asser-
lions, which was discussed in this column in the October 1992

issue. rhis is nicer, since we don't have to change any systein
classes, but it still has a couple of disadvantages.

Firht, it makes the code for looping a bit more complicated,
and ifwe want it to be available everywhere we have to niodify
system methods like do:. If we want the block to return a value,
we have to do even more complicated things. It probably has a
fairly substantial overhead. Finally, and most important, it
could lead to very confu,ing results.

Exception handling is a very general facility for handling
non-local control transfers. It can be used to implement a facil-
ity for breaking out ofa loop, but in complicated cases, the
programmer needs to have the discipline to ensure that control
is being transferred to the intended place.

YOU CAN DO IT WITH BLOCKS

A cleaner solution also uses the method returning mechanism,
but to pass a method return as part ofanother block.

Ralph Johnson (iohnson@cs.uiuc.edu) describes this as
follows:

There are lots of ways to break out of a loop. The impor-
tant thing to realize is that the only ways to change control
Aow in Smalltalk are to send a message and to return from
a message, but blocks let you treat code as data and so con-
trol where you are going lo send a message.

The result of the above is that to simulate a go-to, you have
to introduce extra blocks. For example, here is a siniple
way to break out of a loop:

MAYI993

[obj foo]
whileTrueWithBieak:

[:exit 1
"loop body is here'
timeToLeave ifrrue: [exit value].
'Enish up loopy

whileTrueWithBreak: is defined in Blockelosure (in 2.5-4.I,
BlockContext in 2,3, and I don't know where in Smalltalk/V)
to be:

whiteTrueWithBreak: aBlock

AaBlock value: IAnit]

Smalltalk blocks are most often

used as simple control structures,
and we usually don't have to think

about their full capabilities.

Mario Wolczko also advises that the Manchester goodies li-
brary has similar code in the BlockWithExit goodie. The li-
brary is accessible by ftp@st.cs.uiuc.edu or at
mushroom.cs.man.ac.uk.

rhis kind of code can be very confusing. Smalltalk blocks are
most often used as simple control structures, and we usually
don't have to think about their full capabilities. In this case, we
pabb as an argument a blockthat returns from the mediod context
in which it was drimed. Although there may be a great deal in the
stack below that point, it is immediately discarded, and we re-
sume execution at the next level up from that defining method.

['his is quite a neat trick. k breaks out of a loop without us-
ing any additional language niechanisms. and it makes the
code onh a little uglier.

Unfortunately, to handle return values nicely, we have to
add a bit more ugliness, adding a parameler to the exit block.

whileTrueWithBTeakReturningAValue: aBlock
aB]ock value: [:returnValue I AreturnValue]

Writing a more c{)11]plicated loop, like injectWithEreak:into: cal]
start to get complicated. For one thing, the block will require
three arguments, which is a problem in Digitalk dialects. Also,
like exceptions, blocks can provide much more general trans-
fersof control, and the programmer must ensure that the re
sults dire correct.

WHAT'S THE BEST WAY?

Considering that you Call't return from 21 block iii Smalltalk,
there are a lot of different ways of doing it. Unforturately, they
all have their drawbacks. Ralph Johnson comments:

K i,21 U NT,ed M p age 2 3 .

19

 HE BEST OF comp.lang.smalltalk Alan Knight

Breaking out of a loop

his month's discussion started with a question fromDeeptendu Majumder (gt0963d@prism.gatech.edu),
who writes:

I [have] always found a way to avoid this, but I would like
to know how to break away from in5ide a loop and return
[to] the immediate-upper-level context.

Although this question may seem elementary to an experi-
enced Smalltalker, and the straightforward answer is probably
the best, I found the wide variety of answers worthwhile and a
reminder of how many different ways things can be accom-
plished in Smalltalk.

Unfortunately, the first answer that comes to mind is to dis-
miss the question.

FORGET IT

The language doesn't provide it, but it's easy to work around.
Anyone who didn't just fall off the cabbage truck knows that.
Next message.

This is an effective attitude for getting through news
quickly, but it's not very helpful. The least we can do is de-
scribe the standard workaround.

HERE'S WHAT YOU DO INSTEAD

The obvious answer is that, although you can't break out of a
block prematurely, you can break out ofa method. By pushing
the loop into a separate method, you can use the normal re-
turn mechanism.

For example, suppose we have a method like:
SomeClass>>someMethod

self startUp.
collection do: (:each 1

each doSomething.
self specialExitCondition

ifrrue. r Break. burt still do the finish up code"'].
each doSomeMore].

self finishUp.

We can't break out of the loop and still do the fit€shUp code.
To make it work, we need to break it into two methods,

Some{:[ass>>doSomething
self startUp
self loop.
self finishUp.

18

Someelass>>loop
collection do: [:each I

each doSomething.
self speciaTExitCondition iffrue: [Aself].
each doSomeMore],

When specialExitCondition is true, we return from the loop
method, but still execute the finishUp code. It's a simple trans-
formation on code, and breaking the code into smaller pieces
this way often improves it. Who could ask for more?

Well, perhaps it improves the code, but I doubt that it at-
ways does. While decomposing code into smaller pieces is usu-
ally good, I'd much rather do it along logical lines than along
lines imposed by the language.

YOU CAN DO IT IF YOU'RE CLEVER

Saying that Smalltalk can't do something is often a mistake,
particularly when you are in a virtual room with a lot of clever
programmers.

Jan Steinman (steinman@haster. ascom.ch), who is well-
acquainted with the inner workings of Smalltalks writes:

It is possible, but it is ugly. I had implemented it in Tek
Smalltalk for "real" blocks, via a Context stack hack, but I
haven't tried to make it work with 4.1 Blockelosures. It would

necessarily change the semantics of blocks somewhat-what
does the block answer when "broken," for instance?

Then there's the case of in-line "pseudo-blocks." My con·-
text stack hack never did work with compiled in-line
blocks, like #to:do:. This is a real problem, since the system
goes out ofits way to hide the difference from you!

To make it work with pseudo-blocks might actually be eas
ier. It would take a compiler hack that would simply jump
out of the loop. But then the semantics would be different
than for breaking out of a real block via a stack unwind
mechanism. Yuk.

So it can probably be done if we're sufficiently clever. This is
fascinating for dedicated Smalltalk hackers and for language
designers, but I don't think it's a good answer for a novice or
for+ somebody who just wants to get things done. It would be
easier to just rework the code as in the previous section. Is
there a better way?

THE SMALLTALK REPORT

Obj Transition

by Design

ADE

ANALYSIS

M

GUS

Object Technology Potential
Oblect Technology can provide a
company with significant benefits:
• Quality Software
• Rapid Development
• Reusable Code

• Model Business Rules

But the transition is a process that
must be designed for success.

Transition Solution

Since 1985, Knowledge Systems
Corporation (KSC) has helped
hundreds of companies such as
AMS, First Union, Hewlett-Packard,
IBM, Northern Telecom, Southern

California Edison and Texas Instru-

ments to successfully transition to
Object Technology.

i*%**4./%/f,

APPRENTICE PROGRAM

34*4

ANCED TRAINING 4-9
& DESEN

ENTORING
.

TOM CONTRACTS

TEAM TOOLS

KSC Transition Services

KSC offers a complete training
curriculum and expert consulting
services, Our multi-step program is
designed to allow a client to ulti-
matelv attain self-sufficiency and

produce deliverable solutions. KSC
accelerates group learning and
development. The learning curve is
measured in weeks rather than

months. The process includes.
• Introductorv to Advanced

Programming in Smalltalk
. STAFEM (Smalltalk Apprentice

Program) Project Focus at KSC
• 00 Analysis and Design
a Mentoring: Process Support

KSC Development Environment

KSC provides an integrated applica-
tion development environment
consisting of "Best of Breed" third
party tools and KE value-added
software. Together KSC tools and
services empower development
teams to build object-oriented
applications for a client-server
environment

Design your Transition
Begin Four successful 'Object
Transition by Design: For more
information on KSC's products and
services, call us at 919-481-4000

today . Ask for a FREE copy of ISC's
informative management report:
50#ware Assets by Desi¢i.

19 Knowledge Systems Corporation
OBJECTTRANSITION BY DESIGN

114 MacKenan Dr.

Cary, NC 27511
(919) 481-4000

1992 I<nowledge Systents Co,poration.

in Smalltalk-80, then you will get one open window and one
forgotten piece of code. This problem has been fixed in Object-
works\Smalltalk R 4.1 and later releases of Smalltalk/V, so the

above code will create two windows as you would expect.
The fix for earlier versions of Smalltalk-80 is to use the

openNoTerminate method to open the window, which does not
transfer control to it. A useful trick is to store the new window

in a global variable so you can test it.
Aad Nales says that the fix for Smalltalk/V286 is to fork the

creation of the new window:

[Textpane open] fork.

If this is not what the programmer wants, it is probably ileces-
sary to hack the dispatcher code and remove the dropSender-
Chain message, which is the ultimate cause of the problem.

BUG 11: BLOCKS

Blocks are powerful, and it isn't hard for programmers to get
into trouble trying to be too tricky. To compound problems,
the two versions of Smalltalk have slightly different semantics
for blocks, and one of them often leads to problems.

Originally blocks did not have truly local variables. The
block parameters were really local variables in the enclosing
method. Thus:

'xyl
X:= 0.

(1 to: 100) do: [:z I x := x + z]

actuallv had three temporaries, x, y, and z. This leads to bugs
such as the following:

someMethod

labl
a:= #(4321).
b:= SortedCollection sor[Block: [:a:b I a someoperation: b].
b addAR: a.

Transcript show: a.

When elements are added to b, the sort]31ock is used to tell
where to put them. What gets displayed on the transcript will
be an integer, not an array.

Early versions of Smalltalk-80 (2.4 and before) implemented
blocks like this, and Smalltalk/V still does. However, in current
Par¢Place implementations, blocks are close to being closures.
You can declare variables local to a block, and the names of the

block parameters are local to the block. Most people agree that
this is a much better definition of blocks than the original one.
Nevertheless, people planning to use Smalitalk/V should realize
that it has a different semantics for blocks.

This difference can lead to some amusing problems. For ex-
ample, here is some code written by someone who had obvi-
ously learned Scheme:

 anotherArray aBlockArray

aBlockArray := Array new: 4.
anotherAIray := #(1 2 4 8).

m CLASSIC SMALLTALK BUGS

1 to: 4 do: [:anIndex I

aBlockArray at: anIndex put: f (anotherArray at: anIndex) * 2 1].

The programmer expected each block to be stored in the array
along with its own value of anIndex. If anIndex were just a local
variable of the method, this will not work. It assumes that each
execution of the block gets its own version of anIndex, and
Smalltalk/V and old Smalltalk-80 actually make each execution
share the same version.

So, if you are using Smalltalk/V, be careful not to reuse the
names of arguments of blocks unless you know that the blocks
are not going to have their lives overlap. Thus:

atolect do: [:i I ...1.
bCollect do: [:i 1 ...].

is probably OK because #do: does not store its argument, so
the blocks will be garbage by the time the method is finished.
However, if the first block were stored in a variable somewhere
and evaluated during the execution of the second block then
problems would probably occur.

BUG 12: CACHED MENUS

Menus are often defined in a class method, where they are cre-
ated and stored in a class variable or a class instance variable.
The method will look something like this:

initializeMenu

Note that accepting the method does not change the menu.
You have to execute the method to change the class variable
or class instance variable. Often the #initializeMenu method is,
invoked bv the class method #initialize. This can lead to the

strange effect that you can initialize the menu by deleting the
class and filing it in again, but otherwise you don't seem to be
able to change the menu (because you haven't figured out
thal you should really be executing the #initializeMent
method).

To make matters worse, it is possible that each instance of
the controller, or model, or whatever has the menu, stores its
own copy of the menu in an instance variable. If that is the
case, it is not enough to execute #mitializeMenu, you must
also cause each object to reinitialize its own copy of the
menu. It is often easier to delete the objects and recreate
them.

Often a class will have a #flushMenus method to clear out

all menus. Typically the method that fetches the menu will
check to see if it is ni] and invoke #initializeMenu if it is. So,

#flushMenus will iust "nil out" the variable holding the menu.
The best way to figure out what is happening is to look at all
uses of the variable. Smalltalk experts rarely have problems
with this bug, but it often confuses iiovices.

Caching is a very common technique in Smalltalk for mak-
ing programs more efficient in both time and space. Caching
of menus is one of the simplest uses of caches, and other uses
can create more subtle bugs,

1 HE. SMALLTALK REPORT

Object»isSpecia[ized

'self methodDictionariesfield == self class methodDictionaries

Next come the methods for actually specializing the receiver.
The first sets up an array with a fresh MethodDictionary.

Object>>specialize
I old new I
self isSpecialized iffrue: [Ase[f].
old := self methodDictionariesfield.

new := (Array with: (MethodDictionary newSize: 2)),old.
self methodDictionariesfield: new

The next one takes a string, compiles it, and installs the result
in the private dictionary:

Object>>specialize: aString
 association 1

self specialize.
association:= Compiler compile: aString in: self class.
seti methodDictionariesfield first add: association

CONTRASTS

What do these two implementations of instance specialization
say about their respective systems? For one thing, both of them
are simple, dean, and easy to understand. The external proto-
col is exactly the same. There isn't much to choose from be-
tween them. From that standpoint, 1 would have to say that
both systems support a fairly esoteric change to the language
semantics with a minimum of fuss.

The ParcPJace implementation is conceptually cleaner to
me. The user's model that the behavior of an obiect is always

defined by its class is retained. It's just a little easier to create
classes than you thought. The Digitalk implementation re-
quires that you understand the particular mechanism they
have lying behind that conceptual model so that you can im-
plement the necessary changes.

When 1 understood the ParcPlace implementation I said,
"Ali, that makes sense." When I understood the Digitalk im
plementation I said, "Cool! That really works?" The ParcPlace
model is an extension of the semantics. The Digitalk model is
an extension of the implementation.

I am fishing for just the right way to characterize the differ-
ence. I don't think I can make it clear yet, but I also don't think
it will be the work of a single week, or even a single year, to
make it clear. Let's barrel oii.

As you gel to know both product lines, you will find this
saine distinction repeated many times. I think that the differ-
ence stems from the diverging goals of the technical luminaries
at the two companies. The ParcPlace image was driven first by
Dan Ingalls and then by Peter Deuisch. Both have strongly de
veloped aesthetic sensibilities to go along with their amazing
technical skills. A solution wasn't a solution to them until it

was beautiful. Actually, now that both of them have gone on to
other things, the ParcPlace models are beginning to show signs
of creeping cruft.

Jim Anderson and George Bosworth, on the other hand, are
primarily motivated by the belief that software just shouldn't

MAY 1993

be that hard to write. They produced Smalltalk/V so others
could write software more easily. Their success criteria seems
to be "if it's better than C, it's good enough." Theyweren't
about to let a little thing like a less-than-perfect conceptual
model get in the way of shipping product. Of course, they had
a company to run as they were developing their image, unlike
ParcP]ace in the early (Xerox PARC) years, so they didn't have
much choice about the importance of aesthetics.

Hmmm...

different implementations, same
interface-maybe this object stuff

works, after all!

Don't take this to mean that the ParcP]ace image is truth
and beauty personified and the Digitalk image is a baking-wire-
and-chewing-gum collection of dire hacks. There are areas
where each beats the other in both conceptual model and im-
plementation. However, I think it is safe to say that the pri-
mary motivations behind the two systems are a contrast be-
tween aesthetics and pragmatism.

What this means for the workaday programmer isn't en
tirely dear. Most of the time, the ParcP]ace image provides
smooth development. Every once in a while, though, you will
encounter a good idea tliat hasn't been taken quite far enough,
and you will have to bend yourself into a pretzel or bypass it
entirely to get around it. Put another way, if you are going the
ParcPlace way you will have lots of support. If, however, you
have the misfortune to want to do something a different way
than the original implementor imagined, you may be in trou-
ble. In these cases vou will often have to browse around and

understand lots of mechanism before you can figure out how
to wedge your code ln.

The Digitalk world is less coercive, but it's also less support-
ive. For code that relies heavily on their implementations (Le.,
not just instantiating collections) I average more lines of code
to get the same functionality. I know there have been cases
where the Digitalk implementation has been easier. I don't
think a Digitalk project has ever been conceptually simpler.
though.

In future columns, 1 will explore more specifics of the con-
trast between the systems, and try to quantify why one or the
other is better for specific tasks. In the meantime, if you run
into situations that are surprisingly hard or easy in either sys-

ionmmed un pase 23...

17

m SMALLTALK IDIOMS

Point ArIEN

class: --·'-·-__k

x 55

1 ---lmbMethodDictionaryVI 77 i

Anay

name 'Point'

iethods

MethodDictionary

Mathodlitclianar-y

Figure 2. A speciahzed Pont.

Conceptual Model

What's so special about the class constructing the array? It's
just an Array whose elements are Method.Dictionaries, Any object
can build one of those. That's how we'11 implement instance
specialization. We'l] fetch the array that's there and copy it,
adding a slot at the beginning containing a fresh MethodDic-
tionary, Then we can make all the changes we want to the pri-
vate Method Dictionary without affecting any other instances.

Example

Before we can implement the conceptual model we need access
to a couple of hidden primitives to get and set the method dic-
tionaries field ofthe object.

Object>>methodDictionaryfield
'Return the Array of MethodDictionaries for the receiver'
<primitive: 96>

self primitivefailed

Object>>methodDictionan,Field: anArray
•Set the Array of MethodDictionaries for the receiver
to anArray. anArray must contain MethodDictionaries
or your system will crash!"
<primitive: 97>
self primitivefaited

Now we need to get something on the screen to see the effects
of our experiments. Fortunately, that's easy in Smalltalk/V.

TopPane new open inspect

When we execute the above expression we get a window and
an inspector on that window. In the inspector we can execute
the following to get a fresh MethodDictionary to put our special-
ized methods in:

I old new 1
old := self methodDictionaryField.
new:= (Array with: (MethodDictionary newSize: 2)), otd
self methodDictionaryfield: new

16

Now we can specialize our window by executing the following
in the inspeCtor:

I association 1
association := Compiler

compile: 'display Transcript show: "Howd¢ . super display,
in: self class

self method Dictionaryfield first add: association

Now if you execute self display you will see that, indeed, the
specialized method is being invoked. (You will have to send
the window backeolor: for the superclass' display method to
work).

Methods

I was surprised at how easy it was to implement instance spe-
cialization methods that were compatible with the ParcPlace
version. I had expected the differences iii implementation to
leak through into the interface. Hmmm... different imple-
mentations, same interface-maybe this object stuff works,
after all!

The fist method I defined last time was one you would du-
plicate in any class in which you wanted all instances to be spe-
cializable. 1 don>t think this is necessary, since the lazy special-
izati on implemented below works fine. For completeness
though, here it is:

new

super new specialize

The method I defined in the last issue should have been de-

fined this way, rather than duplicating the specialization code
in the class and the instance. I think I did it the way I did be-
cause that was how 1 saw it first implemented by Ward Cun-
ningham when he put scripts into HotDraw.

Next is a method to test whether an instance is ready to be
specialized. Since all unspecialized instances of a class share the
same array of dictionaries, if the receiver has a different array
we will assume it has a private array,

'THE SMALLTALK REPORT

BUG 13: SINGLETON OBJECTS IMPLEMENTED WITH

CLASS METHODS

Sometimes you need to make a globally known object that is
the only member of its class. These singleton objects are some-
times implemented as class methods and class variables. This
works fine in the short term, but does not work in the long
term because the time inevitably comes when vou need to make

more instances of the class. If you have implemented an obiect
with class methods, you will have to rewrite the class or try to
implement a second object by making a subdass of the first.

Blocks are powerful, and it isn't hard
for programmers to get into trouble

trying to be too tricky.

The correct way to implement a globally known singleton
object is to make a normal class for it, to define a class instance
variable to hold the singleton obiect (in Smalltalk-80 this is
done in the definition pane of the browser when the -meta"
button is pressed), and to have a class method (I like the name
#default) return the value of the variable, initializing it if it is
nil, This is like a cache, and nearly eliminates the possibility of
an initialization error.

Another alternative is to make a singleton object be the
value of a global variable. There is no other proper use of
global variables. Storing an object iii a global variable is proper
when there are instances of the class used for other purposes.
For example, the global variable Undeclared iii Smalltalk-80 is
just a regular Dictionaiy. However, it is probably not a good
way to implement a singleton class, because making sure that a
global variable is initialized is a common source o f problems.

CONCLUSION

I would like to thank the many people who contributed bugs
or solutions to bugs to the list: Amir Bakhtiar, Hubert
Baumeister, Naci Dat Marten Feldtmann, Peter Goodall, Alan
Knight, Simon Lewis, Eliot Miranda, Thomas Muhr, Aad
Nales, Kurt Piersol, Jan Steinman, Mario Wolczko, Mike
Smith, Terry Raymond, Dave Robbins, Randy Stafford,
Michael Sullivan, Brent Sterner, Nicole Tedesco, Rik Fischer

Smoody, and Markus Stumptner,
If you would like to bring bugs to my attention, please post

them to comp.lang.smalltalk, email them to me at johnson@
cs,uilic.edu, or write Inc at Department of Computer Science,
1304 W. Springfield Ave, Urbana, IL 16801. 1

Ralph Johnson is nfiliated with the University of Illinois at Urbcuia-
Champaign.

MAY 1993

m TECHNICAL ASPECTS OF THE COMMON BASE

.. continated D om page 4

"improve» the language, Although this desire is good, we
think that the overriding goal must be to achieve a common
specification that is supported by available implementations.
While this is likely to require some compromise between the
various Smalltalk implementors and the constituents of the
user community, we believe the ultimate arbiter should be
the Smalltalk user community, The users are the ultimate au-
dience for Smalltalk and the standard.

CONCLUSION

Smalltalk is more than 10 vears old. It has come a long way
in overcoming the perception of being a research language
and has entered the realm of commercial application devel-
opment. We believe a standard is needed, and the time is
now. If you agree, please encourage your organization to
join us iii ANSI to define the standard. Together, as
Smalltalk users, we can ensure our success and contribute to

the acceptance of Smalltalk by the software development
community at large. E

Acknowledgments
We would like to thank Digitalk, KSC, OTI, and ParcPlace
for their contributions to and support for the project. We
would also like to thank all the IBM internal reviewers, the

legal and contract team, ITSC and its editors, and our man-
agement for supporting this effort.

Reference

1. Cook, W. Interfaces and specifications for the Smalltalk-80 col-
lection Classes, PROCEEDINGS OF OOPSLA '92, pp.1-15.

Rick DeNatate is a Senior Programmer with the IBM Systems
Laboratory in Cary, NC. In 1993, he headed a team that designed
amdimpleniented a hybrid O-0 language caNed ClassC. IYe is a
co-author ofthe Smalltalk Common Base document. He can be
reached by email at denatale@carvm3.vnet.ibm.com.
Y.P. Shan is a Development Staff MembeT al lh€ IBM Systems
Laboratory in Cary NC He has been active in researching and
developing object-oriented technology since 1986. He can be
reached by phone at 919.469.6571, fax at 919.469.6948, or email
at shan@carimS. vnet.ibm.roni.

Subscribe to THE SMALLIBLK REPORT
For more information call 212.214.0640 [uoice]

or212.214.0646 [fat]

9

ttfUTTING IT IN PERSPECTIVE Rebecca Wirfs-Brock

The incremental nature

It is good to have an end to journey towards;
but it is the journey that matters in the end.

Ursula K LeGuin

esign requires effort, review, reflection, and rework. I
don't know of anyone who has built an application
right the first time. Objects always need rework and

redefinition. Solutions should remain fluid throughout an in-
cremental design and implementation. In this column, I want
to reflect on when a design starts and when it is finished. I also
waiit to touch on some major differences between incremental
design and implementation cycles and rapid prototyping.

HOW DESIGN REALLY WORKS

Designing object software means creating an executable model
ofinteracting objects. One fundamental difference between
software design and software analysis is that designs have to be
translated into working programs. Analysis results need to re-
fleet an accurate statement of the problem and constrain possi-
ble solutions, but they don't have to work. We designers still
have to solve the problem. Solving even a well-defined prob-
len] is not always straightforward or easy.

I find software design to be inherently messy and fraught with
mistakes. It involves top-down, bottom-up and sideways build-
ing and rebuilding of a solution. 1 try to teach this to my design
students while giving them a strong foundation for building ob-
ject designs. Designers and implementers appreciate this honest
exposure to the way things really work and are eager to pick up
some immediately useful skills they can apply to object design.

I've had managers sit in on design sessions (or even worse,
in classrooms) and get very concerned that designers aren't
honing in quickly enough on the "right"solution. Besides hin-
dering progress, this can be demoralizing to teams new to ob
ject design. I've also worked with managers who entrust teams
from the start to solve problems and produce results. Only
when a schedule appeared to be in jeopardy or the team called
for help did they get concerned. The enthusiasm and positive
energv that sparks a team having this style of leadership are
amazing! The key to these managers success, m my opinion,
was that they empowered design teams while imposing plenty
ofnon-threatening process checks along the way.

The AMERICAN HERITAGE DIC'lONARY defines design as
"planining] out ina systematic. . . form." I like this definition. It
characterizes design as systematic planning. We're still error-
prone, even if we are systematic about software design. Is that

10

D

the fault of the designers, their tools, or the imprecision of in-
puts to the process? I don't think we should place blame on any
of these factors. We softwar e designers are inherently building
complex systems. Although borne researchers are actively inves-
tigating better ways to precisely state requirements while others
are working at wavs to minimize the transformations we make
between software analysis and software design, we designers and
implementers still have to deal with unpredictability. Unless we
are rebuilding a system for the uth time, we will continue to dis-
cover additional constraints throughout implementation.

Oblect technology improves our chances of building well-
designed systems. We liave coticeptual tools that help us de-
compose the problem. We can find objects in the problem do-
main that have representations in our executable programs.
We can encapsulate functionality and data into objects to build
high-level abstractions. Well-designed objects enable us to deal
with increasing levels of complexity. Even so, we still haven't
changed the bumpy, uneven nature ofsoftwaie development.

INJECTING DESiGN PNTO IMPLEMENTATION

While software development isn't a smooth process, we still
need a design process. Building systems more predictably de-
mands that we interleave design throughout implementation.
We need to consciously expend some fraction of our energy
designing and refining our solution. Design needs to naturally
occur throughout development. The alternative is to simply fix
things so they work, or hack more functionality without con-
sidering the impact on future developers or system flexibility.

Incremental design means progressing toward a working
solution in a planned fashion. One way to make orderly
progress is to decompose design and implementation into a
series of many small, inherently more manageable steps. I
don't view incremental design as a heavily regulated or tightly
monitored activity. 1 don't want to restrict iorward progress
or put a crimp on individual creativity. Designing involves an
element of understanding how things work now while not ac-
cepting the status quo. Responsible designers take a broad
perspective. It isn'l enough to build the software; you also
need to pay attention to the flexibility and elegance of the
emerging solution.

Design doesn't come together at the end of a long design
cycle and remain sacrosanct throughout implementation. In
incremental development, systems aren't designed or inte-
grated according to the Big Bang Theory. There are many small

THE SMALLTALK REPORT

S MALLTALK IDIOMS Kent Beck

Instance specific behavior:
Digitalk implementation and the
deeper meaning of it all

 n the last issue, 1 wrote about what instance-specific behavior is, wliv you would choose to use it, and how you imple-
ment it in Smalltalk-80...er...Objectworks\Smalitalk

iwhich way does the slash go, anyhow?),..er... Visua]Works
[is that a capital Wor not?). This month's column offers the
promised Digitalk Small talk/V OS/2 2.0 implementation
'thanks to Mike Anderson for the behind-the-scenes info) and

i brief discussion of what the implementations reveal about
he two engineering organizations,

I say "brief discussion" because as 1 got to digging around I
build many columns' worth of material there for the plucking
[11 cover only issues raised by the implementation of classes
ind method look-up. Future columns will contrast the styles as
hey apply to operating svstem access, user interface frame-
Morks, and other topics.

DIGITALK IMPLEMENTATION

Runtime Structures

rhe Digitalk implementation of method look-up is slightly
lifferent from the ParcPJace model. Actually, until Smalltalk/V

DS/2 2.0 (hereafter VOS2) the models were quite similar. The
Digitalk implementation did not allow you to create Behaviors
ind instantiate them easily, so the instance specialization im-
ilementation presented in the last issue wouldn't work, but the
ictures of' the objects would have been identical.

The VOS,2 model departs from the "classic" by giving each

Point

instance a reference, not to its class, but to an Array of Method-
Dictionaries (see Figure 1), In the normal case, the class con-
structs this array and all instances share it.

The Parcllace implementation requires an additional indirec-
tion to reach the method dictionary, as the virtual machine has to
go from the obiect to the class, and from the class to the method
dictionary. With the VOS2 model, the virtual machine just has to
go from the obiect to the array. Going up the superclass hierar-
chy is also faster, as the virtual machine can just march along the
arrav rather than trace references from class to superclass

Performance is not the primary motivation behind this de-
sign, however. More important, given the lack of flexibility in
the implementation of Behavior and Class, this design makes it
possible to specify the behavior of objects in many ways. For
example, implementing multiple inheritance (ignoring differ-
ent instance layouts iii different classes) is simple. The class is
welcome to create the array of method dictionaries any way it
wants.

You may be wondering how the message "class" is imple-
mented given the objects above. Each MethodDictionary has an
additional instance variable called class, which is set to the class

w'here it belongs (each class "owns" one and only one dictio-
narv). The primitive for class marches along the array of dic-
tionaries until it finds one whose class instance variable is non-

nil, and returns that. That way, you can have dictionaries that
don't belong to any class, and the scheme still works.

class 1 Uay Method-Dictionary

X

vatul
77

kei

Class

\ Mel

Point'
values

keys

yl
8 -:

-hadDictionary E #+
#dist:

name ' '

»m CompitedMethod

* CompiledMethid

methods

F,gure 1. VOS2 objects supportng method lookup.

MAY 1993 15

represents detailed status information about a file. An alternate
solution is to create a class, called FileInformation to store this

data. FileInformation has a class method to create new in-

stances, and instance methods to access its components. A par-
Ual class specification follows:

Ble Information methods

fromfileEntry: afileEntry
Create and return an instance of the receiver for a file entry

file Information methods

fileName

Return the name of the file.

size

Return the size of the file, including both the data and re-
source fork.

timeStamp
Return the date and time when the receiver was last
modified.

resourceSize

Return the size of the resource part of the file.
creato*pe

Return the code that indicates the application that created
the file.

With the FileInfomlation class, we can eliminate the use of Array
and incorporate usage of our new class. The formatted method
now looks like:

Directory methods
formatted

'Answer a collection of» information, one for each entry in
the receiver.'

I answer file Entries an.Array I
file Entries := self contents.

answer := Ordered Collection new: file Entries size.

file Entries do: [:each
answer add: (FileInformation fromFileEntry: each)].
 answer

Clients of this method call then use meaningful selectors in-
stead of indexing into an array. This code is more maintainable
now and doesn't need any extra commenting.

I zeros I
zeros= my{)irectom formatted select: [:info I info size = 0].
ZerOS Collect. [-info 1 info fileName]

There are good examples of Array use in your Smalltalk system.
These are uses in which the index is a relevant part of the data
structure, such as a numeric id allocated by the operating sys-
tem. The array contains the relationship between the id and a
related Smalltalk object. Literal arrays are convenient for col-
lections of values.

IDENTIFYING INAPPROPR1ATE USE

You can look for inappropriate use of Array and other data
structures in your image. Use these techniques to find methods

14

• GErriNG REAL

that reference Array. You may also want to look for references
to other data structures such as 01-deredCollection.

o In Team/V: Select Array in the Package Browser. Select the
menu item Class/BrowseRefs.

· In Smailtalk/V for OS/2 and Smalitalk/V Windows: Execute

Smalltalk senders Of: (Smalltalk associationAt:#Anay}

· In Smalltalk/V Mac: Execute Smalltalk referencesTo:#Airay.

· In Objectworks\Smalitalk: Select Anay in the System
Browser. Select the menu item Class Refs from the class pane
menul.

Don't use arrays as a shortcut to pass
around related items. Insteadl create a

class to represent the abstraction
relating the items.

When examining a method, inappropriate use will have one or
more of the following characteristics:

· Indices that are irrelevant to data and functionality.

· Array elements that are related by some abstraction notcap-
tured by a class.

· Awkward client use due to violation of information hiding
and encapsulation.

If you fi nd a method that uses arrays inappropriately, you
should improve the quality of your code by:

1. Creating classes to represent related array elements.

2. Rewriting offending methods to reference new classes and
to eliminate arrays.

CONCLUSION

Don't use arrays as a shortcut to pass around related items. Iii-
stead, create a class to represent the abstraction relating the
items. Your code will immediately be more understandable,
extensible, maintainable, and reusable. Classes are the basic

building blocks of Smalltalk programs. Use them. ®

juanita Ewing is a senior staff member of Digitalk Professional Ser-
vices. She has been a project leader fbr severad commercial 0-0 soft-

ware projects and is an expert itt the design and implementation of
0-0 applications, frameworks, and systems. In a previous position at
Tektronix Inc., she was responsible for the development of class

libraries for the first commercial-quality Smalltalk-80 system.

THESMAU.TALK Repo RT

SHARE

BJECT SYSTEMSWINDOWBUILDER
Tbe Interface Builder for Smalltodk/V 0 -

INC

-1 ..u....erle.te,e'£.& 1-1- 'Ihe key to a good application is its user interface, and theElle [Km = ,4* Slre *s .d

E-=r ,-i fri-- key to good interfaces is a powerful user interface
development tool, For Smalltalk, that tool is WindowBuilder.

Instead of tediousty hand coding window definitions and
rummaging through manuals, you'[I simply "draw" yourI

winUows, and WindowBuilder will generate the code for you.
1,7./ 1-.-W --FIEFr,- LN*, Complny WindowBuilder ailows you to revise your windows

incrementally. WindowBuilder generates standard Smalltalk
Ke„ :=2 Conp-./Pale.

EZZZE-
r)10,6 04....SyBIcrn. code, and fits as seamlessly into the Smalltalk environment asRchm 04'clha.ly,1,„m.

Ciaybell Amerlcar,Managcmcnl Sysem
/ ./. Share. the dass hierarchy browser or the debugger.

Hirndan Consulta.
T,00' Ente.prler:...

, To be even more productive, use Subpanes/V, the control
 Ad//c,on | Bemivcp€ron | library for Smallialik/V Windows, which brings a new world of

Cur,en'Pergon

 Fl,/2/mI: ['no I Shee S... 5 2 I user interface components to the SrnalItalk/V Windows
Programmer., La-Naint Fla*I I Compor t.*4*.:11

"... WindowBuilder is an essential tool for unravel-

ing the mysteries of the traditionalsmalltalk
model-view-controller paradigm. ... Window-
Builder is easily worth three times les $149.95 list
price.'

Ge* Kioyooka, Windows Tecb Journat, Mai'cb 1993

WindowBuilder/V Windows is available for $149.95 and
WindowBuilder/V OS/2 is $295. Subpanes/V Windows is
available for $129.95. We are offering a limited-time price of
$225 for WindowBuilder/V Windows bundled with Subpanes/V
Windows.

For a free brochure, calt us at (408) 727-3742, or send us a fax
at (408) 727-6324. You'll be glad you did!

OBJEC,5HARE SYSTEMS, INC. 5 TOWN & COUNIRY VIL[AGE, Sum 735, SAN JosE, CA 95128-2026
PHONE (408) 727-3742 FAX (408) 727-6324 COMPUSERVE 76436,1063

cycles of discovery, design of a partial solution, analysis of the
results, and rebuilding a better solution.

What distinguishes incremental design from rapidproto-
typing is this analytical step. Analyze means to "separate into
parts or basic principles so as to determine the nature of the
whole, to examine methodically." This is crucial to incremental
design. Progress needs to be measured, reflected upon, and re-
viewed with others periodically. There is an openness on the
part ofthe designer to change and improve.

Another characteristic that distinguishes incremental design
from rapid prototyping is the willingness on the part of an in-
cremental designer to throw out a bad design, rethink the
problem, and redesign a solution.

The primary goal during rapid prototyping is to simply get it
working. Many times an implementer during rapid prototyping
knowingly (and quite possibly with some discomfort) builds
something that is definitely not cleanly structured. It takes a lot
of discipline to stop and clean things up with rapid prototyping.

Incremental designers, 011 the other hand, take many things
into account throughout implementation: How can object in-
teractions be improved? Is there a way to reduce messaging
traffic between collaborators? Are interfaces to object services
simple enough or powerful enough? Can a higher information
bandwidth connection be made between collaborators? Is there

a way to reduce the complexity of control logic? Is polymor-
phism being used to advantage? Is data really being encapsu-
[ated correctly? What new classes should be created to reduce
existing complexity? How might behaviors be refactored to
achieve a better balance and cleaner distribution of responsi-
bilities? Have we formed the right abstractions? What classes

MAY 1993

should be eliminated? Does the current implementation of an
inheritance hierarchy facilitate or unnecessarily constrict the
addition of new functionality? Are there existing interactions
that could be refactored to encapsulate details or hide objects
from one another? How well is the object model holding up?
Are there serious flaws that demand major redesign and repair?

Incremental design involves a fundamental shift in goals, val-
ues, and process. It requires that we inject incremental design
throughout implementation. To do so, we must distinguish be-
tween finishing an implementation task and completing a satis-
factory design. Working code doesn't automatically signal com-
pletion. Getting the design right is a journey. That journey
begins as soon as the ink has dried on system requirements. It
ends when we declare an end to discovery and invention. There
does come a time when we have to stop improving the design
and must focus on completing our work. The tricky part is pick-
ing the right time to make that dash to the finish line. Stopping
design too early means the system "evolves" rather than being
"systematically planned and implemented." Stopping design too
late can cause problems, too. There is always a tension between
getting the design <'right" and meeting the schedule. However,
embracing incremental design means that change and improve-
merits aren't viewed as threats, instead they are acknowledged
and carefully factored into the development process. E]

Rebecca Wirfs-Brock is the Director of Object 'rechnology Services at
Digitalk and co-author of DESIGNING OBIECr-ORIENTED SON.
WARE. She can be readied Wa email ati·ebeaca@digitalk. coin or via
US mail at Digitalk, 7585 S. W. Mohawk Drive, Tualatin, OR 97062.
Comments, jurther insights, or wild speculations are welcome

11

iftf ETTING REAL

Dont use Arrays?

his column discusses inappropriate use of arrays andhow misuse affects reusability. We will analyze several
Smalltalk methods that use arrays and revise them to

use classes instead of arrays. We will also show you how to
search your image for methods that use arrays

MOTIVATION

A class iii Smalltalk is a specification of behavior and support-
ing data. Each instance contains a particular set of related data.
For example, the data for an instance of Rectangle is two
points. The points are related because they are both part of a
rectangle: One is the origin point, and the other is the corner
point.

In Smalltalk, you can also use a data structure such as an ar-
ray to represent related data. Instead ofthe class Rectangle, you
could use an array with the first element of the array being the
origin point and the second element being the corner point.
Which is more reusable?

] irst, let's examine how clients access data. Clients of the
class Rectangle can send the messages origin and comer. Clients
of the rectangle-as-array must access the correct element by
specifying the index, and the index might not have any correla-
tion to the values stored in the array.

Accessing the data is not the only consideration. Rectangle
has specialized behavior, such as height, containsPoint:,inter-
sects:, and expandBy:. The rectangle-as-array has no specialized
behavior. For example, each client that needed the height of
the rectangle-as-array would have to duplicate the code that
subtracted the two y coordinates to obtain the height of the
rectangle.

There are three reasons why the class is more reusable than
the array:

• Ease of Use. Clients of the rectangle-as-array need to know
arbitrary indices to obtain the data. Clients of the rectangle-
as-class send messages with meaningful names.

· Encapsulation. The behavior of rectangle is not encapsu-
lated with the data in the rectangle-as-array. Clients of the
rectangle-as-array would need to write much more code
than the clients of the rectangle-as-class in order to dupli-
cate the behavior of rectangle. Most clients would write the
same code over and over.

12

Juanita Ewing

· Information hiding. The constituent data for the rectangle
is accessible to all clients in the rectangle-as-array. Indeed, it
must be in order for clients to the duplicate the behavior of
Rectangle. But it also means the rectangle-as-array cannot
change its representation without affecting all its clients.

INAPPROPRIATE USE I

Standard Smalltalk even provides us with a bad example of
array usage (nobody's perfect). On page 109 of SMAt I.I·Al.K-80:
THE LANGUAGE AND m IMPLEMEN FATION is the specification of a
class method for Date:

Date class protocol
general inquiries

dateAndTimeNow Answer an Array whose first ele-
ment is the current date (an in-
stance of class Date representing
today's date) and whose second el-
ement is the current time (an in-

stance of class Time representing
the time right now).

Here is one possible implementation of the method:

Date class methods

dateAndTimeNow

Mnswer an Array of two elements. The first element is a
Date representing the current date and the second element
is a Time representing the current time. "

 (turay new: 2)
at: 1 put: self today;
at: 2 put: Time now;
yourself

Clients of this method must keep track of which elements are
where in the array. The code to compare two date-and-time
arrays hooks like this (the variables now and then contain date
and-time arrays):

 now then oldest 1
then := self oldDateAndTime.

now := Date dateAndTimeNow.

((now at: 1) >= (then at: 1) and: Know at: 2) > (then at: 2)])
if True: [oldest := then]

THE SMALLTALK REPORT

This kind of code is not easy to read
and is likely to be duplicated in an ap-
plication that manipulates time
slamps.

In the dateAndTimeNow method, the
array is merely a shortcut way of im-
plementing a return of two values- The
elements in the array have nothing to
do with their indices. Clients have to
remember which element is which.

They also have to remember the algo-
rithm for comparing date/time pairs.
This kind of shortcut is not good cod-
ing practice because it does not facili-

. GETTING REAL

•BOOKAUTHORS•

SIGS is currently seeking Authors for its newly created
ADVANCES IN OBJECr TECI liNOLOGY Series.

Submit outline proposal or discuss your ideas for a book.
Coniact:

Dr. Ricbard Wiener, Book Seria Editor

135 R.Kely Court
Colorado Springs. CO 80906

PHONE/FAX: 719.579.9616

WANTED

tate reuse. ,=im----**#
A better solution is to create a new

class that represents an associated
date and time. We will call this class TimeStamp. It would
have messages for accessing its date and time. and for com-
paring itself with other TimeStamps. Using this new class, the
dateAndTimeNow method can be rewritten:

Date ctass methods

dateAndTimeNow

'Answer an instan ce of Time Stamp containing the current
date and the current time.'r

mmeStamp date: self today time: Time now

Even better would be to eliminate the Date method and cre-

ate a TimeStamp method that returns the current date and
time. A TimeStamp method is better because the instance is
created in the class that relates date and time. The Date class
is a less desirable location because dates don't have an ex-

plicit relationship with time. Time is not referenced in other
Date methods.

TimeStamp class methods
now

gnswer an instance of the receiver containing the current
date and time. a

1 current I
current := self new.

current date: Date today.
current time: Time now.

'current

The client of this functionality can now wrile much simpler
fragments of code.

 now then oldest I
then := self oldlimeStamp.
now := TimeStamp now.
now > then

if True: [oldest := then].

INAPPROPRIATE USE H

A method from Directory provides us with another inappropri-

MAY 1993

ate use of an array. In this method, a collection of arrays pro-
vides detailed information about each file in a directory.

Directory methods
formatted

'Answer a collection ofarrays offile inlinnation for the re-
ceiver directory. Each array has four entries: file name, size,
date/Nme and attributes. '

I answer file Entries anAnay 1
file Entries := self contents.
answer := Ordered Collection new: file Entries size.

file Entnes do: [:each
arLAnay := Array new: 5.

anArray
at: 1 put: (Directog extract File Name From: each) ;
at: 2 put: (Directory extract Sizefrom each):
at: 3 put: (Directory extract DateTime From: each);
at: 4 put: (Duectory extract ResourceSize From: each);
at: 5 put: (Directory extract CreatoITypeFrom: each).

answer add: anArray]
A answer

Note that the method comment is wrong. It references an ar-
ray with four entries, but the code has an array with five en-
tries, indicating that a small change in the implementation has
a big impact on clients. Users of this method must know
where relevant information is stored in the array. It is impos-
sible to tell from either the comment or the code which array
element is new.

In this fiagment of code, the dient of Directory needs the
names of files of zero length. This code must reference ele-
ments stored at arbitrary locations, and requires heav, com-
menting to be maintainable.

I zeros I
zeros := myDirectory formatted

select [:info 1 (info al= 2) - 01. 'size u stored at 2·
teros collect: [:info info at: 11 Uname im stored atl "

Related data stored in arrays is more appropriate as an instance
of a class. In this example, the information stored in an array

J3

If You Use Smalltalk, You Need GemStone
GemStone is the ideal database

environment for supporting - r } b.%41'123*baial>
Smalltalk applications. It is the # 9 #
only high-performance, produc- NETWOR}<

lion-ready ODBMS with a trans-
parent Smalltalk interface.

1*11
*11023(44*uN .:'._i..

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 279 DENVILLE NJ

POSTAGE WILL BE PAID BY ADDRESSEE

NO POSTAGE

NECESSARY

EF MAILED

INTHE

UNITED STATES

i

The Smalltalk Report
Subscriber Services Dept SML : j
pO Box 3000
Denville NI 07834-982

• Maintain class hierarchies and
execute Smalltalk methods

directly in the server.

· Automatic, transparent transla-
Non of Smalltalk objects into
GemStone.

• Cooperative client-server sup-
port.

GeinStone Object Databdic Smalltalk Application

O YES! Send Me Complete Details On GemStone

Name: Title:

Company:

Address:

• Smalltalk-based DDL/DML. City: State:- Zip:
• High-performance. scalable,

production-ready ODBMS. Phone: Fax:

• Integrated garbage colledion of 1-800-243-9369 SERVIOpersistent Smalltalk objects.
IN„d„dhn,Ill'll'll'll'll,I,„66„Hhdd

NO POSTAGE The Smalltalk Report YA*I#&i.ALI.Ii=e .
NECESSARY If you're programming-1

IF MAILED in Smalltalk, 49
IN THE you should be reading -33 02' Provides objective & authoritative coverage on language

UNFTED STATES advances, usage tips, project management advice, AGD The Smalltalk Report "techniques, and insightful applications.

BUSINESS REPLY MAIL -
FIRST CLASS MAIL PERMIT NO. 4362 SAN JOSE, CA

POSTAGE WILL BE PAIDBY THE ADDRESSE

U Yes, I would like to subscribe to The Smalltalk Report Date_

J 1 year (g issues) J 2 year (18 issues) Name

1 Domestic $69.00 U Domestic 028.00 Title
U Foreign $94·00 U Foreign $ 178.00 Company

Method of Payment
3 Check enciosed (payable to The Smalltalk Report)
U Bill me

SERVIO CORPORATION O Charge my: O Visa O Mastercard O Amex
2085 HAMILTON AVENUE 1 Card No.

SUITE 200 Exp. Date

SAN JOSE, CA 95125-9985 : Signature
i. Which diatect of Smalltalk do O Make Purchase

L you use ONone
QI Smalltalk V 3. Which operating system
D Smallialk-80 supports your software:

O Other O UN[X

z. What is your involvement in U DOS
software purchases for your OS/2
departmentifirm: U Window,

Address

City

State

Zip

Country
Phone

4. What is your company s
primary business activity:
O Computer/Sofnvare

Development.
1 Manufacturing
J Financial Services
J Government/Military/Utility

O Educational/Consulting
0 Other
5· For how long have you been
usins Smalltalk:
O Less than one year
01-3 years
0 3· years EBEG

i O Recommend Need 3 Other tax to
A memberathe

i 61 Specify Product' Aihiect Marketing Network 212/274-0646 IISIGS
L BLICA]1(31·5

- TIE TOP NAME
•1 mAIIG 5 ON

The Smalltalk Report
The International Newsletter for Smalltalk Programmer*4%
4:0-4,- -

TIE BOTTOM
OF TIE BOX |

Wo®'ws 5•,10,

Where can you find the
best in object- oriented training?

The same place you found
the best in object-oriented
products. At Digitalk, the
creator of Smalltalk/V.

Whether you're launching
a pilot project, modernizing
legacy code, or developing a
large scale application, nobody
else can contribute such inside

expertise. Training, design,
consulting, prototyping,
mentoring, custom engineer-
ing, and project planning. For
Windows, 08/2 or Macintosh.
Digitalk does it all.

ONE-STOP SHOPPING.

Only Digitalk otters you a
complete solution. Including
award-winning products, proven
training and our arsenal of
consulting services.

Which you can benefit
from on-site, or at our
training facilities in Oregon.
Either way, jint ill 10:rn frnm A

1

haMA/ 1

staff that literally wrote the
book on object-oriented
design (the internationally
respected "Designing Object
Oriented Software").

We know objects and
Smalltalk/V inside out, because
we've been developing real-
world applications for years.

The result? You'l! absorb

the tips, techniques and
strategies that immediately
boost vour oroductivitv. You'll

reduce your learning curve,
and you'll meet or exceed
'our project expectations. All
9 a time frame you may now
hink impossible.

IMMEDIATE RESULTS.

Digitalk's training gives
fou practical information and
echniques you can put to
vork immediately on your
)roject. Just ask our clients
ike IBM, Bank of America,

Progressive Insurance,
Puget Power & Light, U.S.

Sprint, plus many others.
And Digitalk is one of only
eight companies in IBM's
International Alliance for

AD/Cycle-IBM's software
development strategy for the
1990's. For a full description
and schedule of classes, call
(800) 888-6892 x411.

Let the people who put
the power in Smalltalk/V, help
you get the most power out of it.

'11474

' L. L. 11 1.....'d ' " ...'d' I. . ,

100%11 Tirv.-.rl A

June 1993

SMALLTALK

BENCHMARKING

REVISITED

By Bruce Samuelson

Contents:

Features/Articles

1 Smalltalk benchmarking revisited
by Bruce Samuelson

4 Using Windows resource DLLs
from Smalltalk/V

by Wayne Beaton

Columns

8 Smalitaik idioms.

To accessor or not to accessor?

by Kent Beck
9 GUis: Using MS Help from

within VisuaIWorks

by Gfeg Hendley & Enc Smith

10 The best of comp.lang.smalltalk:
Sets and dictionaries

f by Alan Knight

13 Sneak preview.· WindowBuilder
Pro: new horizons

by Eric Clayberg & S. Sridhar
Departments
23 Product Announcements

Volume 2 Number 8

hen Smalltalk emerged from the Xerox PARC labs in the early

W 19804 performance was a major issue. CPU speeds and memory
densities were both near[y two orders of magnitude lower than in
today's machines. The 1983 'greer book," SMALLT'ALK-80, BITS OF
H[STORY, WORDS OP ADVICE, included niaiiy articles with detai]ed

performance analysis,1 One chapter even studied the feasibility of implementing
Smalltalk in hardware, namely in the Intel 432 chip. The Xerox Dorado worksta-
tion was the fastest Smalltalk machine, and implementations on chips such as the
DEC VAX and Motorola 68000 did well to run at a small fraction of a Dorado.

As the decade progressed, hardware got faster at a factor of nearly 10 every five
years. Efficient techniques were employed for method look-up caches and for gen-
eration-scavenging garbage collectors. By mid 1992, a midrange machine running
Parc Place Smalltalk performed several times faster than a Dorado, and a fast ma-
chine a dozen times faster. One could buy a cheap PC running either ParcPjacc or
Digitalk Smalltalk faster than a Dorado.

l'hese developments raise the quedion of whether Smalltalk is Dow fast
enough. Shouldn't vendors concentrate on features rather than performance?
Won't hardware advances take care of any lingering problems with spe ed? This

was, in fact, the position taken by a senior representative of one of the maior
Smalltalk vendors in a conversation with me [ast year. If Smalltalk were the only
language, and if there were only one vendor, the answer might be yes. But
Smalltalk implementations are not only vying with one another fur prominence,
they are also competing with other languages.

PERFORMANCE OPTIMIZATION IN OTHER LANGUAGES

One reason Ci- has become so popular is that it adds object extensions to C with-
out sacrificing much of C's efficiency. This is a frequent theme iii USEN F.T news
groups such as comp.lang.c++ and is commonly cited as a reason for using Cti
instead of Smalltalk, Smalltalk users cite Smalltalk's consistent use of the object
paradigm, productive development environment, rich class library, flexibility, and
portability (for ParcPlace's products) as reasons to choose it over Cp+. A language
with Sma]!talk's features that approaches C++'s speed would attract a larger com-
munity of users. It this possible or only a dreani?

Perhaps the researchers who are most aggressively trying to demonstrate its pos-
sibility is the Self group at Stanford University. Like Smalltalk, Self is a fully dynami-
cally typed language. It uses prototypes and delegation in place of classes and inheri-
tance. Whereas olher researchers have tried to achieve performance gaills (and
perhaps other benefits) by adding strong typing to Smalltalk, the Self group is seeing
how far they can push the performance envelope by using various compiler opti-
mization techniques without sacrificing type flexibility.

They have pushed tbe envelope quite far. An example of their results is de-
scribed in an article by Craig Chambers and David Ungar in the OOPSLA 91 con-

cont<..denpa.·16.

T.L K.. ..r.'

/ f -«33¥. t·. · '
11*6>

EDITORS'
CORNER

John Pugh Poul White

ver the past 24 months, we have often discussed Smalltalk>s move into the business world.
Both Digitalk and ParcP]ace have spent a significant effort to not simply improve their ex-
isting products, but instead to change their products to position Smalltalk as the best de-
vetiopment tool for large organizations across all industries. To this end, both PARTS and
VisualWorks represent the next generation of products for their respective vendors, which
attempt to make Smalltalk more accessible to the mass development market--and newer
Smalltalk vendors are sure to arrive. Easel's Enfin product is already having an impact on
the object-oriented market that is likely to grow as time goes on.

Recently, we have noted that Smalltalk is being talked about in arenas that would not
have been dreamed of before. One such place was a recent column in the April 19th issue
of Business Week in which Smalltalk Es described as being an extremely successful devel-
opment tool for many corporations including American Airlines, JP Morgan, and Citi
corp, and the list of these companies keeps gr OWing. Reports such as these can be used as
fodder for those of you who are still fighting to justify Smalltalk to your management

In our feature article this month, Bruce Samuelson offers some benchmarks he has per-
formed for the various dialects of Smalltalk. This is a new arena for THE SMAI.ITALK RE-

poRT, and we believe efficiency is an issue that many of you face "in the trenches." Bruce
has been very active in recent months on Internet discussing this topic, and has invested a
great deal of time in preparing this study. More important than the raw numbers he pre-
sents, he has many insightful comments concerning the implementation strategies of both
ParcPlace and Digitalk. While not endorsing the numbers presented by Bruce, we strongly
believe these types of studies are crucial to the further mainstreaming of Smalltalk.

The debate over whether to use accessor methods has raged in the Smalltalk commu-
nity since «the beginning of time.» As Kent Beck points out in his column this month, this
one question has probably been debated more vehemently in Smalltalk labs than any
other style issue. In our own shop, the question of the appropriate use of accessors has
been argued so much that it is now considered a taboo subject. We believe Kent has put
this debate in the right context, especially the comment that programmers wili "do any-
thing, given enough stress," and suggest anyone responsible for the integrity of their cor-
porate libraries give these arguments attention.

This month we have two columns that address the issue of GUI development using
Smalltalk First, Greg Hendley and Eric Smith return this month with their GUI column,
getting you started with integrating VisualWorks with Microsoft's Help facility. Second,
Eric Clayberg and S. Sridhar take a first look at WindowBuilder Pro, the next generation
of the well-known WindowBuilder product originally released by Cooper and Peters.

Alan Knight's look at comp.lang.smalltalk takes him into a review o f the implements-
tion of sets and dictionaries. In doing so, he studies how well (or not well) abstracted the
implementation of these reusable data types is and some suggestions for improving theni.
Also this month, Wayne Beaton describes ali implementation of a mechanism for storing
and managing DLLs for Smalltalk/V for windows.

Enjoy the issue!

2©_A'/R. 1 A L *j y
Tb: Sma"talk Repor, C]SSN# 1056 7978),s pub hshed 9 times a yeah every month except for the Mar/Arn)4,/Aug. and No /Dec comt>ined
mues Published by SIGS Publwalions Group, 588 Broadway. New York, NY 10012 (212)274·0640. © Copyright 1993 by SlGS Pubhations·
]Ii« Allrighisreserved Reproduction oi thismaterial by<·lectronic transmission, Xerox or a oth€rmetbod will beircatedas a willful viola
bonaf the USCopyright Lawandis ilam proh,[bhed Al„teria] inaybe reproduced wi,h expre.%spermiss,on frort the pul)]:chers. Mailed First
Class. Subscription rates 1 year, (9 issies) domestic, $65. Foreign und Canadi, $90, Single copy price.$800. l>OSTMA5FIR Send addred
changes mlaubscnpnon <>rders 10 Tur S.2,·,Lut/. Ri/„Al, Subsc: fber Servic€s, Dept. SAIL P.O. Box 3000, Denville.NI 07834. Subm#arn
cles to the Ed tors :11 9 Second Ave,nic, Ottawa, On,afio K 13 2 H#, Canada. I:or service on current subscriptions cut] 800.783.4903.
Printed in the United States.

The Smalltalk Report
Editors

John Pugh and Paul White
Carleton University & The Object People

SIGS PUBLICATIONS

Advisory Board
Tom Atwood, Object Des,gn
Grady Booch, Rational
George Bosworth. Digitalk
Brad Cox, information Age Consumng
Chuck Duff, Symantec

Adele Goldberg, Parc.Pke Sysiems
Tom Love, Consultant

Bertrand Meyer, ISE
Meilir Page-Jones, Wayland Systems
Sesha Pratap, Centerllne Softwame
Bjarne Stroustrup, AT&T Bell Labs
Dave Thomas, Object Technology International

THE SMALLTALK REPORT

Editorial Board
Jim Anderson, Digtamk
Adele Goldberg, parepiace Systems
Reed Phillips, Knowledge Systems Corp
Mike Taylor, Digoilk
Dave Thomas, Oblect Technology internato:la

Columnists

Kent Beck, FIrst Class Software
Juanita Ewing, DIg,talk
Greg Hendley, Knowledge Systems Corp.
Ed Klimas, Lnea Engineering Inc.

Aman Knight, The Object People
Eric Smith, Knowledge Systems Cofp.
Rebecca WIrfs-Brock, Digmtalk

SIGS Publications GrouR Inc.
Richard P. Fnedman

Founder & Group Publisher

Art/Production

Kristina Joukhadar, Managng Edilor

Susan Culligan, Pilgrim Road, Ltd, Clealive D,recuon
Karen Tongish, Production Editor
Gwen SanchInco, Producton Coordinatior

Robed Stewart, Computer System Coord,nator
Circulation

Stephen W. Soule, Circiation Manager
Ken Mercado, Fu'fillment Manager

Marketing/Advertising
james O. Spencer, Director of Business Development
jason Weiskopf, Advertising Mgraast Coast/Canada
Holly Meintzer, Adve.!Isng Mgr-West Coast/Europe
Helen Newling Recrudment Sales Manager
Sarah Hamilton, Promotions Manager-Publications
Caren Poiner, Promollons Graphic Aitit

Administration

David Chatterpaul, Accounling Manager
James Amenuvor, Bookkeeper
Dylan Smith, Special Asselant lo the Publisher
Claire Johnston. Conference Manager
Cindy Baird, Conference Technleal Manager

Margherita R. Monck
General Manager

SIGS
1>Uni.!CATION)

Publishers of JOURNAL OF OBJECT·ORIENTED PROGRAM-
MING, O8JECT MAGAZINE, HOTLINIE ON OBJECT· ORIENTED
TECHNOLOGY, THE C++ REPORT! THE SMALLTALK REPORT,
THE INTERNATioNAL OOP DIRECToRY. and THE X JOURNAL.

THE. SMALUALK RI.PORT

PRODUCT

EANNOUN¢*MENT*

Product Announcements are not reviews. They are abstracted from press releases provided by vendors, and no endorsement is implied. I
Vendors interested in being included in this feature should send press releases to our editorial offfices,

Product Announcements Dept., 91 Second Ave., Ottawa, Ontario Kt S 284, Canada.

ICONIX Software Engineering's ObjectModeler now supports
Smalltalk. ObjectModeler is an OOA/OOD/OOP module. This
recent addition was made in response to the developing trend
in the object-oriented market that more and more COBOL
and IS shops are moving into Smalltalk while technical shops
continue to move into C+i.

ICONIX ObjectModeler already supports G+ and SQL de-
velopment and the company believes that the addition of
Smalltalk will be of particular interest within the IS market.
ObjectModeter users already have the ability to attach text files
to any symbol on a Rumbaugh, Coad/Yourdon, or Booch dia-
gram within ObjectModeler. In the same way that C++ and
SQL templates are used to link source code to diagrams, they
can now pick from 9 menus containing over 270 Smalltalk Ian-
guage cofistructs.

ICONIX Soft.vare Engineer ng, 2800 28th St. 5 Suite 390,

Santa Monica: CA, 310 458 0092 (v): 310 396.3454

WindowBooster is a simple and powerful utility that optimizes
the opening of windows and dialog boxes programmed using

Digitalk>s Smalitalk/V. WindowBoostersigtiificantly improves
the overall speed of any application. The product is easy to in-
stall, transparent to the user, and compatible with products
such as WindowBuilder. Tile product is available for Windows
and OS/2 and includes complete source code.

Tau Ceti, 180 Avenue o- the Stars, Suite 404: Los Angeles,
CA 90067-5906, 310.556.9723 ®, 310.556.9725

Tensegrity is an object-oriented database system for Smalltalk.
Using Tensegrity, Smalltalk developers can create single-user
or multi-user network applications without changing code.
The product provides transparent object persistence, advanced
transactional capabilities, two-phase commit, distributed
garbage collection, and exceptional speed. Because the product
is network-independent and requires no dedicated database
server, the company anticipates that it will have great appeal to
developers of workgroup applications.

Polymorphic Solware, 1091 Industrial Rd., Suite 220, San Carlos,
CA 94070,415 592 6301 (v), 415.592.6302 (f)

iRjECjfRiU31*11%19EfNATtto*cdiemitmintad.ifa#8*Hew@tati12*ZM.*0 tiof/,(#2*ti#6*f*]1

OBJECT SOFTWARE
ENGINEERS

Salary: $70,000 to $11
Premier Fortune Developer

· C++ Engineers
An open system distributed business application development
infrastructure seeks C++ Engineers to develop ORB and Ob-
ject Services Class Ubraries.

• Sr. Smalltalk (Parc Engineers
Engineers with development experience needed to develop
multi-process multi-thread software infrastructure components
and resolve Smalltalk/C++ integration issues.

For more information regarding these exceptional technical
opportunities please inquire, in strictest confidence, to:

SMALLTALK

DESIGNERS AND DEVELOPERS

We Currently Have Numerous Contract and
Permanent Opportunities Available for Smalltalk
Professionals in Various Regions of the Country.

SALIENT
3CORPORATION

Salient Corporation.,,
Smalltalk Professionals Specializing in the

Placement of Smalltalk Professionals

Jim Milisap
2015 Spring Road

Box 250

Oak Brook, IL 60521
or calf:

1-800-596-6500

For more information, please send or FAX your resumes to:

Salient Corporation
316 S. Omar Ave.. Suite B.

LosAngeles,Calfornia 90013.

Voice: (213) 680-4001 FAX: (213) 680=4030

el**olortunlly employer

wtitin.ed from page 8

the outside world. Messages should present the services an ob
ject is willing to provide. Using them to give an abstract view of
storage turns Lhose implementation decisions into yet more
services. Revealing implementation is exactly what encapsula-
tion is supposed to avoid.

Just make the accessors private." That's the common solo-
tion, but there are two reasons why this isn>t a sufficient solu
tion. First, anyone can invoke any method (and will, given
enough stress). There is currently no way to make truly private
methods that cannot be used outside the class. Digitalk and
ParcPlace are both working on this problem. More seriously,
programmers are notoriously bad at deciding what should be
private and what should be public. How many times have you
found "just the right method,1' only to find it marked private? If
you use it, you are faced with the possibility that it may go
away in the next release. [f you don't, you have to violate the
encapsulation of the object to do the computation yourself,
and you have to be prepared for that computation to break in
the next release.

Ihe argument against automatically using accessors rests on
the assumption that inheritance is [ess important than enaip-
sulation. Rick DeNatale of IBM argues that inheritance should
be kept "in the family." Anytime you inherit from a class you
don't own, your code is subject to unanticipated breakage
much more than ifyou merely refer to an object. Ifyou want
to use inheritance, do it only between classes whose change
you control. While this may not result in the most elegant so-
luton, it will save you headaches in the long run.

Using this model, you can access variables directly. Ifyou
w'<int to make a subclass that needs to access a variable through
a message, you use the prograniming environment to quickly
change "x := ..." into "self x: ..." and "x ..." into "self x ...". En-
capsulation is retai ned, and the cost of changing your decision
is minimal. If you don't own the superclass or the subc[ass, you
can't do this, as it would involve making changes iii code you
Can't control.

CONCLUSION

Aesthetics does not provide a compelling argument one wayor
the other. There's a giddy feeling when you make a subclass the
original programmer never anticipated, but only need to make
a few changes to make it work. On the other hand, there is sal-
isfaction in thinking you finally have to reveal a variable, only
to discover thal by recasting the problem you can improve
both sender and receiver.

Regardless of how you choose to program, you are faced
with the hard choice of deciding which variables should be
reflected as messages. Pushing behavior out into objects rather
than just getting information from them and making decisions
yourself is one of the most difficult, but most rewarding, jobs
when programming objects. Making an accessing method pub-
lie should be done only when you can prove to yourself that
there is no way for the object to do the job itself. Making a set-
ling method public requires even more soil[-searching, since it
gives up even more of an object's sovereignty.

22

1 SMALLTALK IDIOMS

Either way, you accept a discipline not supported by the
language. If you choose to use accessors, you and everyone
who uses your code must sweat· an oath clever to send messages
that invoke methods marked private E]i the receiver. You also
must be wary ofusing the accessor from outside the object
when you really need to add more services to the receiver. If
you do not use accessors, you accept the burden of refactoring
classes, either making an abstract class or at least adding acces-
sors, should a later inheritance decision make it necessary.

66 Programmers are notoriously
bad at deciding what should be

private and what should be public. 99

Whichever style you choose, make sure it pervades your
team's development. Einstein is reputed to have said, £You
can be consistent or inconsistent, but don'l be both." The

same simplifying assumptions should hold throughout all of
your code.

If you use accessors, make them all private,it first. Only
make them public if you must, and struggle to discover a less
centralized solution first. Don't assume that because you ac-
cess variables through messages you have made all of the at-
straction decisions you'l] have to make. Using an accessor, in-
ternally or externally, should alert you that there maybe
missing behavior.

If you use variables directly, be prepared to recant vour de-
cision when the time comes. 1fwhat you thought was state is
really a service, make the change everywhere. Don't have exter-
nat users getting a variable's value through a method and inter-
nal users accessing it directly.

So, what's The Answer? In my own code, I change state into
service (define an accessing or setting method) only when I am
convinced it is necessary. Otherwise, my classes access their
variables directly.] think inheritance is overrated. Providing
the right set of services has more bearing on the success of a
design. There are plenty of successful, experienced folks who
would call me a reactionary hick for this (and worse things, for
other reasons). Try some code each way and decide for your-
self which style you find more comfortable. That's the only
right answer. E

Kent Bcck has been discovering Sma#talk idioms for eight years at
Tektronix, Apple Computer, and MasPar Computer. Hisisiounder
of Fir Clabs Software, which develops and distributes reengineering
products for Smalltalk. He can be reached at Fir,t Class Software,
P.O. Box 226, Boutier Creek, CA 95006, by phone at 408.338.3666,
01·on Compt(Serve ati0761,1236.

THE SMALLTALK REPORT

I r .::-I:/IT

Like ENVYYDeve n
Some Ardbildatas<.¢ft -- =, »

I*:' th2:16:ik*Gi.93.= b 4o): 9
* ./ .-1194711*SH.ITilill. tillijlsilillillililliT .MA'.00%81%44/i*J.'14-*,/ af/*F*iiri',:'

'.» -:14.224? 5,8:A. :..: 'thir/.211%05(43:44%4929*%21214£**99*2$£12
/94*V/444/94 6 9t*3»*f3/4,14..gib.JiT44*h**4%%9%34404*,54%444

./4«·R '/Al,tilt/#J«*4.Ul.0*t¢4%%}t}Qk

Ast€*kit%*R ... ·-.99'- - .- w94* . r.:;931/2....:. -34.14#:Kil#,lifitifi'gilk:.2 .2.fvillillillillilli
i..6 ©- * ..:-.F';19«i¢ft,t{..--MAM#7'/ft*.-*:..i Q:2:r:. :'t=Q/ 4*22© :i ' 9& 422@FF*44*th» .ES ; 11+:f 2414 l i4 X} ::: C 7:: ii &JI <.

ft=r,Jrt'ff/:9.>yij,i i .fer*·*)f#f+Yr?@·<p? 4**r€j,j.-]*ti*51*3*N#b/--IC'J.·#(3*. >1144 1,2<, 94wrg?*2·<r4 .33141494*Arilliurl€+ I...Aff,-14#P.,24,, *4+4%¥1>292.33432*kit:;14*2,1*394«i)---

4. 4%4**8£:5-04 :4- I.- -94 "i 30.0.224»knie,ufJ''9..I:4. 1 4,.11 -224%*Mfimp933? 3**1„ -*.':f.* 4,65464
%13*'K»*1.•18*e,-4-£423*ids?*7995*& #R-t>y€

641*
.A:..I:/<VT#4.1/,1/P.:P/lin#' .

g304>f. - I 87:,1 -, .: 1844*i*fit**91%*44 -404- x ;#:r :4 ·'#:r 2,ig#i 2 :k 4 44 4*;M£
//dit:

.

4 «23& 4-7

'g /% I *m<1$>,gm

ENVY/Deve/oper: The Proven Standard For Smalltalk Development
An Architecture You Can Build On

ENVY/Developer is a multi-user environment
designed for serious Smalltalk development.
From team programming to corporate treuse
strategies. ENVY/Deve/opei· provides a
flexible fi·amework that can grow with you to
meet the needs of tonicirrow. Here are some of
the features diat have made ENVY/Develope,·
the industry's standard Smalltalk development
environment:

Allows Concurrent Developers
Multiple developers access a shared
repository to concurrently develop
applications. Changes and enhancements are
immediately available to all members of the
development team. This enables constant unit
and system integration and test - removing
the require]11 eiit foi· costly eirot·-p[·one
load builds.

Enables Corporate Software Reuse
EN¥¥/Developer's object-oriented
architecture actuatly encourages code reuse.
Using this framework, the developer CRUL[LeS
Dew applications by assembling existing
coniponents or by creating new components.
This process can reduce development costs
and time. while increasing application
reliability.

Offers A Complete Version Control And
Configuration Management System
ENVY/Developer allows an individual tc,
version and release as much or as little of a

project as required. This automatically creates
a project management chain that simplifies
tracking and maintaining prc,jects. In addition,
these tools also make ENVY/Develoiw,· ideal
for multi-stream development.

Provides 'Real'

Multi-Platform Development
With EN¥¥/Developer. platform-specilic
code can be isolated from the generic
application code. As a result, application
development can parallel plaff(,rm-specific
development, without wasted eifort or code
replication.

Supports Different Smalltalk Vendors
ENVY/Developer supports both
Ob.jectworks \Smalltalk and S ma][talk/V.
And that means you can enjoy the benefits
of ENVY/Developer regardless of the
Smalltalk you choose.

For the last 3 years, Fortune 500 customers
have been using ENVY/Developer [o deliver
Smalltalk applications. For more information,
ca[l either Object Technology International or
our U.S. distributor. Knowledge Systems
Corporation today!

Object Technology Ottawa Office Phoenix Office
International Inc Phone (613) 820-1200 Phone (602) 222-9519 Systems Cary, North Carolina 27511
2670 Queensview Drive Fax (613)820-1202 Fax (602) 222-85D3 Corporation Phone: (919) 481-4000
23'a, Ontario Ka 8(1 E-m,I: ink)@otz.o??ca Knowledge 114 Mackenarl Ddke, Sune TCoFax (919) 460-9044

ENVY·Deve/oper s 3 regisle[Ed MERRIE N Oblect Technology Intemionel Inc All o,her bfand and proW.· refnes ar€ reg,5Ic:ed trademarks of theu respeclive companies

USING WINDOWS

RESOURCE DLLS FROM

SMALLTALK/V

Wayne Beaten

., icrosoft provides a handy mechanism for Win-
dows-compliant applications to store resources in
Dynamic Link Libraries (DLL). While an extensive
tool set exists to access resources stored in DLLS

J seasoned Smalltalk programmers are a little
spoiled and generally hope to avoid contact with operating sys-
tem details. 1 have implemented a Windows resource DLL man-
ager in Smalltalk to protect hai·dworking problem solvers from
the semantics of dealing with Windows directly. The resources
of primary interest are bitrnaps, icons, and cursors; I have left
room, however, for expansion to include resources such as
string tables and perhaps programmer.·detined resources.

A resource dynamic link library can be constructed reason-
ably easily-provided you have a resource compiler and a lot
of time to figure out how to use it. Fortunately, Digitalk pro-
vides a resource DLL for free: the file vwsignon.dll contains the
dialog that Smalltalk displays as it loads itself during runtime.
A copy of this file. placed in the working directory of the im-
age, can be easily modified bv a resource editor.

All the Windows functions required to access DILs, which
are detailed in The Microsoft Windows Software Development
Kit (SDK) manuals, have hooks in the base Smalltalk/V image.
Also in the base image is the class DynamicLinkLibraly, which
provides an abstract representation of a DLL. Equipped with
this class and the battery of existing methods, all that is really
required is management of the resources.

The class WindowsResourceManager has been developed to

manage resource DLLs. As an instance is created, it is provided
with the name of the DLL file whose resources it represents.
The instance will automatically open the DLL when required
and will automatically close k when the image is either saved
or exited. The programmer need only ask the instance for a
particular tresource try type and name. The methods
bitmapAt:ifAbsent:, cursorAt:ifAbsent: and iconAt:ifAbsent answer
the named bitmap, cursor, or icon, respectively. The first pa-
rameter is a case-independent string containing the name of
the resource; the second is a block to evaluate if the resource
cannot be successfully accessed.

4

M

As each resource is loaded, it is cached to prevent the same
resource from monopolizing system resources. The Windows
Graphics Device Interface (GDI), for example, allocates a spe-
cial handle for bitmaps. As only a relatively small number of
these handles are available, frugal use will allow many bitmaps
to be used frequently. Caching also relieves the programmer
of the responsibility of releasing the DLL resources; all cached
resources are released when a WindowsResourceManager
closes itself.

The provided example methods show how an instance of
WindowsResourceManager might be used. In Listing 1, an in-
stance is created using the message

WindowsResourceManager class>>onDLINamed:

and stored in a global variable. The instance is then asked for a
bitmap with the message

WindowsResourceManager>>bitmapAt:ifAbsent:

Inspection of the method

WindowsResourceManager>>bitmapAL:ifAbsent:

reveals that the receiver is first opened. Then the cache is in-
spected to see if a bitmap already exists with the provided
name. That failing, Windows is asked to ind the bitmap. if no
bitmap exists, the ifAbsent block is evaluated.

When an instance of WindowsResourceManager is asked to

open, it first checks to see if it is already open. Ifit is not, it at-
tempts to open the DLL it is to access and remembers it. After
the DLL has opened, it tells Smalltalk to notify it on exit. The
method SystemDictionary>>notifyMExit: ensures that the in-
stance will be notified with the message WindowsResourceMan-
ager>>exit when Smalltalk attempts to exit gracefully.

The method WindowsResourceManager>>exit simply closes
the instance, releasing the resources which have been loaded,
closing the DLL and removing itself from notification with the
method SystemDictionary>>removeExitObject:.

When the image is saved, all classes are sent the message
aboutToSaveImage. The class WindowsResourceManager reroutes
this message to al] of its instances. Each instance directs itself
to close when the image is about to be saved. Long-term refer-
ences to resources should be avoided: Accessing resources ex-
clusively through the WindowsResourceManager will avoid em-
harassment when they are automatically released as the image
is saved.

The code that I have included provides all the necessary
equipment to effortlessly access bitmaps, cursors and icons
from a DLL. As always, 1 am open to any suggestions as to how
this may be extended, or modified for efficiency. I

Wayne Beaton is a senior member of the Technical Staff at the
Oblect People. He likes to think of objects as having persoirality us

well as behavior. He can be contacted at the Object People at
613.225.8812 (v) or 613.225.5943 (f)+

1111- SMALLTALK REPORT

and ST/V, if I had used niore plain vanilla classes, they could
have had a wider reach.

Slopstones is so low-level that many of its individual tests
may get completely optimized away by the compiler, I knew
this wouldn't happen with current Smalltalk compilers, but it
did happen when Urs Holzle compiled it under Self.

The Smopstone test for sorting a set of strings was subtly
flawed. The raw material for the sort was different for ST80

and ST/V because the ST80 Set enumerates an instance from

low index to high, while ST/V-DOS enumerates from high to
low. Moreover, the sets being sorted are hashed differently re-
sulting in a different ordering of their elements. If I lad sorted
the original array of strings rather thail the derived set of
strings, this flaw would be removed. The result of doing this is
to slow clown the ST80 sort speed by 5-10% while leaving the
ST/V sort speed virtually unchanged. In other words, ST/V
wins the sort test by 5-10% more than in the Smopstone chart.

CAN SMALLTALK PERFORMANCE BE

FURTHER OPTIMIZED?

The benchmarks in this article show that there are areas in
which ST80 excels over ST/V and others in which SUV ex-

cels. This suggests that both ParcPlace ard Digitalk could
wring out better performance by conventional means. As for
more exotic optimizations, the Self researchers claim the an-
swer to the question is most definitely yes, both in their pub-
lications and in private conversations. Vendor representatives
are Iess convinced. I have onlv talked with ParcPlace, but my
impression is that they either feel it is not technically feasible
to achieve Self performance in a commercially viable way
(e.g., without requiring 64MB machines), or it would be too
expensive for them to do it, or their customers do not regard
it as a priority.

Last May there was a flurry of discussion in comp.lang.small-
talk on Smalltalk efficiency. One thread focused on the Parc-
Place virtual machine, and in particular, on whether using reg-
ister windows in native machinecode on Sun Sparc platforms
would speed it up much. A second thread focused on whether
Self optimization techniques could be applied profitably to
Smalltalk. After considerable discussion, Peter Deutsch made a
summary statement for both threads. He used to be with Parc-
Place and has considerable experience in implementing and
optimizing Smalltalk. Regarding the second thread, he ex-
pressed the following private opinion (his views do not neces-
sarily rellect those of his employer):

As for the comparison lof Smalltalk] against Self, the Self au-
thors acknowledge that the factor of 5 [improvement of Self
over Smalltalk] is only achievable under some circumstances.
I do think it would be exciting to apply the Se] f compilation
ideas to Smalltalk, and doing this could well produce dra-
matic performance improvements (on all platforms), but this
would require wholesale redesign of most of the platform „
independent code (other than the memory manager) in the
[ST80] runtime support system. The optimizing compilation

jUNE 1993

experiments I did at Parcplace were based on an alternative
approach that would not have required such substantial
changes to the iS'F:80] virtual machine, but might have re-
quired type declarations (or at least type hints) provided by
the user (or a type inference system).

1 don't know whether ParcPlace has continued their experiments
or whether Digital has any· active projects to push toward Self's
perfbrmance. li is wteresting dial two ot the prime movers, Peter
Deutsch (Smalltalk) and David Ungar (Self) have moved respec
tivelv from ParcPlace Systems and Stanford University to Sun
Microsystems. I wonder what Sun has up its sleeve?

In conclusion I would urge you to let your vendor know if
performance optimization is important to you Report serious
bottlenecks to them. I have found ParcPlace to be quite re-
sponsive in correcting them.

COMPILING AND RUNNING THE BENCHMARKS

The benchmarks require floating point hardware or emulation
software. They compile and run without difficulty on all the
versions of ST'80 and ST/V for which they have been tested. At
least two Smopstone benchmarks, fractonacci and rectangle in-
tersection, won't run under GNU Smalltalk because it lacks
Fraction and Rectangle classes.

it is a good idea to file the code into a clean image and do a
garbage collect before running it if possible. The individual
times will fluctuate somewhat, but the geometric mean is
pretty stable. You can reduce fluctuations by running more it-
erations (the n variable in the execute method). Doing so for
S I/V-DOS maycrash it though.

Be sure to run ST/V-DOS benchmarks under native DOS,

For example, Smopstores in a full screen DOS shell under
Windows only runs at 62% of its speed wilder native DOS.

Mail the results to me or post them to comp.lang.smalltalk.
If you want to try the Self performance suites, contact self-re-
quest@seilistanford.edu. Or ftp from the directory bench-
marks/st 80-2.4.

SOURCE CODE

You may ftp the source code from the public domain Smalltalk
archives at the University of Illinois (st,cs.uiuc.edu
128.174.241.10) or University of Manchester
(mushroom.cs.man.ac.uk 130.88.13.70). E

REFERENCES

1. G. Krasner. SMALLTALK -80, BITs op H] STORY, WORDS OF A D VICE.

Addison-Wesley, Reading, MA, 1983.

2. Chambers, C., and D. Ungar Making pure object-oriented lan-
guages practical, OOPSLA 91 CoNFERENCE PROCEE DI NGS; also p ub
lished as SIGPLAN Notices 26.11, November 1991.

Bruce Samuelson u.ses Par€Place Smalltalk for linguistic applications
at the University of Texas at Arlington and with the Summer Insti-
tute of Linguistics. Bruce can be reached via internet at
bruce@hitaftl.ula.edu (uta-eff eU gil).

21

ST/V-Windows comes off rather poor[y. I don't know whether
this is because Digitalk hasn't optimized it as much as their
OS/2 versions or because the only test ran it under Windows
which itself ran under OS/2. Perhaps it would run faster under
native Windows. A reCent COMPUTERWORLD article says that
Digitalk is beta testing a new Windows version based on The
Win32s 32-bit interface. It yields "a big performance boost"
and is expected to be ready in July.

You definitely want to run ST/VDOS under native DOS
rather than in a DOS shell under Windows. In the latter it runs

at only 62% of native capacity.
Although ST/V-Windows beat ST/V-DOS by 0.167 to

0.070 on S[opstones for a 486/33, they came in nearly tied on
Smopstones. Moreover, the individual Smopstone tests,
which are not given in this article, were quite close for the
two versions. Since the DOS version I tested wa 1987 vintage
or earlier (its file dates were 1987), this suggests that Dig-
italk's Windows version is in need of a performance tune-up.
I don't understand the divergence between low- and
medium-level results.

The Macintosh results for ST/V aren't too bad if you omit
streams and sets from Smopstones. I haven't included the indi-
vidual runs, and I don't have a Mac version. I think the same

theory as outlined earlier applies; namely, ST/V-Mac must be
really bad on mixed mode integer-float arithmetic, which
streams use, and absolutely terrible on string hashing, which
set formation uses. I've heard that a new Mac version may be
shipping by the time this article is published.

Ideally, the tests comparing ParcPlace to Digitalk should be
made on the same machine. I am assuming that the 486/33 on
which I tested ParcPlace is about equal to the 486/33 on which
Marten Feldtmann tested Digitalk. Similar comments can be
made about the Macs. Although my machine benchmarks
faster than Marten's on ParcPlace's Dorado benchmarks, I
think this is due to differences in our video cards.

There are several means one could report. Three popular
ones are:

· Arithmetic mean = 0<1+x2...+In)/n

• Harmonic mean = n/((1/xl)+(1/x2)...+(1/xn))

· Geometric mean = (xl'x2.- *xii)"(1/n>

Ichose geometric mean because it has the best scaling proper-
ties and it is the least sensitive to one number being partial-
larly low or high. The ParcPlace Dorado benchmarks use har-
monic mean. When I first posted the benchmarks to
comp.lang.smalltalk, I used geometric mean, but erroneously
called it harmonic Urs Holzle corrected me.

The benchmarks have several shortcomings, some of which
were pointed out by people posting to comp.lang.smalltalk.
There should be a lot more than seven tests in each suite. They
concentrate on too few areas of Smalltalk and omit many of

the diverse capabilities of its class library. With so few tests,
they could be sensitive to one particularly weak link in an im-
plementation. Examples of such links we probably encoun-

20

m SMALLTALK BENCHMARKING REVISITED

tered were a bad string hash function for ST/V (especially for
Mac), weak floating point performance for ST/V, poor string
compare or sort algorithm for ST80, and possibly poor recur-
sioii or poor performance of nonclean blocks in ST'80 (e.g.,
fibonacci and fractonacci, and especially Marten Feldtmann's
while loop.)

Two low-level tests I wish I had included in Slopstones
would have been to test direct method dispatch efficiency with

Object new yourself; yourself; yourself...

and then to test inherited dispatch with something like

Dictionary new yourself; yourself; yourself...

This would have determined the absolute maximum number

of method dispatches that can be performed per second. In an
informal test, direct dispatch with ST80 ran at the same speed
as integer addition. On a 486/33, this means you get a maxi
mum of 6.6 million dispatches per second. Most machine Ian-
guage instructions probably run iii one clock cycle, yielding 33
million machine language operations per second (MIPS). The
actual mips rating of a 486/33 is perhaps half or two third this,
but is still much higher than its MDPS (million dispatches per
second) rating.

Other additions to Slopstones could be using arguments
when evaluating blocks and performing selectors. One could
imagine many more, too.

I received some suggested additions to Smopstones by
email after I had already frozen them. I also should have in

cluded some of the benchmarks already developed by the Self
group, Richards was donated to them by Peter Deutsch, for-
meriy of Parc Place.

The benchmarks are not at a level high enough to test actual
applications. Slopstones, in particular, is hardly a predictor of
real-life performance. However, by comparing ST80 and ST/V

on low-level and medium-level operations, the style ofbench-
mark we have written does shine the spotlight on operations
that need to be optimized, If Slopstores and Smopstona were
made more comprehensive, this could help the vendors find
areas in which their performance is not competitive.

The benchmarks do not test the speed of user interactions
such as opening windows or scrolling lists. These consume a
lot of a user's time in practice. Nor do they test how quickly
Smalltalk accesses disk files, which can be important in some
applications. For example, I can read an ASCII file on my
486/33 machine running ParcPlace at only 40K bytes per sec-
olid when doing high-level access with contentsOfEntireFile. Al-
though much higher rates are achievable with IOAccessors (in
the IMB range), this is low-level and inconvenient.

Although the benchmarks are portable between ST80 and
ST/V, they are less portable to other languages. Urs Holde
ported Slopstones to Self easily enough, but couldn't easily
port Smopstones because Self lacks streams and fractions. A
user of GNU Smalltalk couldn't port Smopstones because
GNU lacks rectangles and fractions, Although I ladn't antici-
pated the benchmarks being run for any languages except ST80

THE SMALL TALK REPORT

Listing 1.

Object subclass: #WindowsResourceManager
instanceVariableNames:

'fileName dll cachedResources '

classVariableNames: "

poolDictionaries: "
category: 'DLL'!

!WindowsResourceManager class methods

about'roSaveImage
i F#hen the image is about to be saved.
inform any of my instances,"
"(WindowsResourceManager aboutToSaveImage)"

self allInstanceshim do: [:each I each aboutToSavelmage] ! 1

'WindowsResourceManager class methods

examplel
"Answer the icon named 'Balloon' in the dli named

'vwsignon. dll'."
'(WindowsResourceManager examplel)' 1 resources I
resources := WindowsResourceManager on: 'vwsignon.dll'.
resources iconAt: 'Balloon'! !

!WindowsResourceManager class methods

onDLLNamed: aString
"Answer ant instance o f myself for use
with the DLL named aString."
self new fileName: aSting ! 1

lWindowsResourceManager methods

aboutToSaveImage
'When the image is about to be saved, close myself so that next
time the image is opened. I open in a clean state."
self close! !

IWindowsResourceManager methods

bitmapAt: aStzing
"Answer the bitmap named aString."

Aself bitmapAt: aString ifAbsent: [self error: 'No such bitmap, 1!

bitmapAt: aString ifAbsent: block
"Answer the bitmap named a String. If rio such bitmap exists.
then evaluate block (with no parameters).11
I key I
self open.
key:= Array with: Bitmap with: aString asUpperease.
-self cachedResourees

at: key
ifAbsent: I

self cachedResources

at: key
put: (self buildBitmapNaIned:

aString ifAbsent: [Ablock vatue])11

JUNE i993

buildBitmapNamed: aString ifAbsent: block
"Private -Answer the bitmap named aString."
I handle 1
handle .= UserLibrary

loadBitmap: self dit asParameter
name: aString asParameter.

handle = 0 ifFnle: [Ablock valuel.

Bitmap fromHandle: ginHandle fromInteger: handle)! !

!WindowsResourceManager methods

buildeursorNamed: aString ifAbsent: block
"Private - Answer the cursor named aShing.f
I handle [
handle:= UserUbrary

loadCursor: self dll asParameter

name: aString asParameter,

handle = 0 iffrue: [Ablock value].

ACursorManager froinHandle: (WinHandle fromInteger: handle) !

cursorAt: aString
"Answer the cursor named aString."
self cursorAt: aString ifAbsent: [self error: 'No such CUISOI.11 !

cursorAt: aString ifAbsent: block
"Answer the bitmap named aString. If no such bitmap exists,
then evaluate block (with no parameters)."

Ikey I
self open.

key:= Array with: CursorManager with: aString asUpperease,
Aself cachedResources

at: key
ifAbsent: [

self cachedResources

at: key
put: (self buitdCursorNamed:

aString ifAbsent: {block value])]! I

!WindowsResourceManager methods

buildIconNamed: aString ifAbsent: block
"Private - Answer the icon named aString."
 handle 1
handle := UserLibrary

loadIcon: self dll asParameter

name: aString asParameter,

handle = 0 ifnue: [Ablock valuel.

Icon fromHandle: (WinHandle fromInteger: handle)!

iconAt: aString
"Answer the icon named aString.,
Nelf iconAt: aSI[ing ifAbsent: [self erron 'No such icon.'] I

continued on page 6

Ln

iconAt: aString ifAbsent: block
5'Answer the bitmap named aString.
If no such bitmap exists,
then evaluate block (with no parameters).I
I key I
self open.
key := Array with: Icon with: aString asUpperCase.
self cachedResources

at: key
ifAbsent: I

self cachedResources

at: key
put: (self build IconNamed: aString ifAbsent:

[block value])]! !

!WindowsResourceManager methods

cachedResources

"Private - Answer my collection of cached resources.':
cachedResources!

cachedResources: aDictionary
'Private - Set my collection of cached resources. '
cachedResources := aDictionary!

initializeCachedResources

"Private - Initialize my resources cache.'
self cachedResources: Dictionaly new!

FeleaseCachedResources

"Private - Explicity zelease the cached
resources to free up system resources."
self cachedResources do. [:each

each release] ! 1

!WindowsResourceManager methods

close

11Close myself. If I ain not open then do nothing.

Otherwise, release my cache and free my DLL.
Set my DLL to nil so that I know I'm dosed.
Remove myself from notification at exit.§1
self isOpen

iffrue: [
self

reteaseCachedResouIces;

initializeCachedResources.

self dil free.

self dll' nfl.

m USING WINDOWS RESOURCE DLLs FROM SMALLTALK/V

Smalltalk remove ExitObject: self] !

exit

"Force myself to close before exiting
if I have not already done so.'
self close!

fileName

"Answer my file name.'
AfileName!

fileName: aString
Set my file name.·
fileName := aString!

isOpen

"AnSWeI whether or not I am open. •
-setf dll notNE!

open

"Open myself with the resources in my file.
Tell smalltatic to notify me before
exiting (or saving the image), so that I
can clean up. If I am already open, then

do nothing."
selfisOpen iffalse: 1

self

initiatizeCachedResources;

dU: self openDLL.
Smalltalk notifyAtExit: self] ! !

!Window,ResourceManager methods

dll

"Private - Answer the DLL which actually contains my resources.11
Adll!

dll: aDynamiclinkLibrary
"Private - Set the DLL which

actually contains my resources. '
dll := aDynamicLinkLibraly!

openDLL

"Private - AnsweI an instance of DynamicLinkLibrary
opened on my file name."
DynamicLinkLibrary open: self fil?Name ! 1

WindowsResOUICBManager comment: I

NOW livt#LABLE-2?REE OF CHARGE

Cumulative Article Index The Smalltalk Report

ihe*•*•H•»,R#*#•

22': 8

Receive a FREE comprehensive subject index to Tile SMALLTALK REPORT Find
m-depth, practical mformation in seconds Whether vou're researching a
particular topic or simply looking for that landmark artide you missed. this

index will put you on the right track it's only a phone call away

're re¢eive your FREE index-
Call: 718/834-0170 or Fax: 212/274-0646

THE SMALLTALK REPORT

• Adding integers

• Adding floats
St<

• Accessing a character in a string (b

· Creating an object 1.

• Copying an object o.

• Performing a unary selector o
• Evaluating a block without arguments o

Each test is repeated many times inside a block. For o.
example, integer addition looks like [1+1+1+1... 0

many times]. The block, in turn, is evaluated many
0.times.

0.

Table 4. Benchmark results of 32-bit implementation.

ipstones benchmark Sll

)w-level) (med level)

39 add integers 1.

53 addl floats 1.

56 access strings 0.

62 create oblects 0.

45 copy objects 0.

11 : performalectors 2.

12 evaluate blocks 0.

11 I geometric mean : 0.

iopstones : benchmark

116 E generate tractonaccs

59 : generate prinies

14 generate and parse streams

58 generate strings

30 foral Sets
19 sort strings

46 inters¢ct rectangles

71 I geometric ineari
SMOPSTONES

The seven medium-level tests are:

· Generating fractonaccis (like fibonacci, but using fractions)
· Generating prime numbers

e Generating and parsing streams

• Generating and manipulating strings

· Forming a set of strings

· Sorting this set

· Recursively creating sets of overlapping rectangles

Each test is repeated once using fixed values for its parameters.
It can be repeated more times if necessary for fast machines. 1
used fractonacci rather than fibonacci because fibonacci runs

were either too fast or generated 32-bit integers. Fractonacci fit
within the constraints imposed by my goals.

ANALYSIS OF THE RESULTS

Digitalk didn't beat Pal·cPlace after all, at least in these bench-
marks. The fastest version of ST/V for Intel machines ran at

41% of ST80 for the low-level tests and 71% for the medium-

level tests. However, the numbers in the chart are the geomet-
ric mean of seven individual tests (xl*x2*...•x7)"(1/7). Dig-
italk did beat ParcPlace on some of the tests.

The results of comparing ST/VOS/2 (32-bit) relative to
ST80-Windows (32-bit) are presented in Table 4. Numbers

greater than one mean ST/V is faster. Marten Feldtmanti did
these ST/V runs and I did the ST80 runs.

Table 4 suggests the two vendors have optimized different
parts of their systems, For example, on the low-level tests, the
two versions add integers at about the same speed, but Digital
is quite inefficient at performing selectors and evaluating
bloclis without arguments, ParcPlace is consistently better on
the remaining tests by a factor of two.

For the medium-level tests, Digitalk whips ParcPlace on sort-
ing. Perhaps this is because Digitalk's string compare is better or
perhaps they are using a better sorting algorithm. I haven>t
checked. Digitalk also beats ParcPLice on fractonaccis with the
same margin they won on Marten Feldtmann's fibonacci test. I
think this is because Digitalk is faster on tight, recursive block or
method calls and-or--because of the performance penalties

A NE 1993

ParcP]ace pays for full blocks and copying blocks versus clean
blocks, a distinction I doubt Digitalk makes. However. Digitalk
got dobbered on the stream tests, possibly because it is slow at
mixed mode arithmetic between integers and Aloats. And it fared
badly on set formation, probably because its hashing algorithm
for strings is less eftective than the sophisticated one used by Par-
cPlace, especially for ST/V Mac 1.2

If we omit these stream, set, and sort tests from Smopstones,
the 32-bit version of SUV for OS/2 comes in at 98% of the geo-
metric mean of ParcPlace's 32-bit version for Windows-a

dead heat.

'There is a wide divergence between the low- and medium-
level results. SUV-OW2 rose from 0.41 on Slopstones to 0.71
on Smopstones. The most dramatic rise was for ST/V-DOS. It
rose from 0.070 to 0.261 on a 486/33 and from 0.002 to 0.008

on an 8088/4.77. Perhaps ST/V-DOS bogs down more on Slop-
stone garbage collection than on Smopstones. This is pure spec-
ulation, The general advantage that ST80 has over SUV in low
level tests relative to medium-level ones may be caused by the
performance penahies that ST80 pays for distinguishing be-
tween clean, copying, and full blocks. I may have written the
medium-level tests to be more susceptible to this distinction.
More tests would be needed to verify this hypothesis, Recall
above how I sped up the while loop for ST80 in Marlen Feldt-
mann's test by converting a full block to a clean one.

Parcl,lace would have come off slightly better if the tests were
not constrained by portability. Some of the code could have been
shortened by using ParcPiace's larger class library. More
significantly, some of the variables that are declared as method
temporaries could have been dedared as block temporaries, thus
converting some dirty blocks to clean ones. This would have left
Slopstones unaffected, but wouid have improved ParcPlace's rel-
ative Smopstone performance by 2.5% on average, with the
biggest gain coming in the intersecting rectangles (19%).

ParcPlace's syntax for declaring block temporary variables
is shown below, ST/V-DOS does not support it. I don't know
whether newer Digital versions do.

Dargl:ar# I
I templ temp2 temp3 I
statements]

19CDA

m SMALLTALK BENCHMARKING REVISITED Transition
Table 3. Sropstone and smopstone resuhs

Obj
Vendor Version GUI OS Brand CPU flpt MIE Extrn RAM S[opstone i Sinopstone

cache, MB (low),• (med)*

KB . by Desi
905pps VW 1.0 OpW3.0 SunOS. 4.1.3 Sun SS/10-30 SPARC int 36 0+ 32 1.932+

PPS VW 1.0 - HI'/UX 2.7 HP 720 PA intrn 50? - 32 1.498 1.673

pi>S VW 1.0 Win3.1 DOS 5.0 Amax none 486DX intrn 33 256 16 1,0 1.0

PPS 80 4.0- - Sun SS/2 SPARC - 40 64 64 1.137 0.995

Dig V 2.0 PM OS/2 2.0]b clone 486DX intrn 33 256 16 0.411 0.982"

PPS 804.0 Wi,13. 1 DOS 3.0 Amax none 486DX intrn 33 256 16 0.995 8.973

Dig V 2.{) PM OS/222.Olb clone 486DX intrn 33 256 16 0.4 1 1 0.71

APPRENTICE PROGRAM

ADVANCED TRAINING

-,1'ANALYSIS&DEGN
PPS VW 1.0 Mac MacOS 7.01 MacQuadra700 68040 intra 25 0? 20 0.525 0.572

486DX intrn 33 256 16 0.236 0.470Dig V 1.4 PM OS/21.4 clone

Dig V 1.2 Mac MacOS Mac accel 68040 intrn 25 - - 0.137 0.344" TEAM-RERUIREMENIS

Dig V 2.Oc - DOS 5.0 Amax none 486DX intrn 33 256 16 0,070 0,261

Dig V 2.0 WinOS2 OS/2 2.0lb clone 486DX intrn 33 256 [60 167 0.25 91** 4.06

Dig V 1.2 Mac MacOS 7.0.1 Mac II ci 68030 68882 25 32? 16 0,078 0.191 14

Dig V Mac MacOS 7.01 Mac II ci 68030 68882 33? 0? 5/6 0.072 0.184*'

PPS Vw 1.0 Mac MacOS 7.01 Mac IIci 68030 68882 25 0? 16 0.174 0.180

Dig V 1.2 Mac MacOS Mac accer" 68040 intrn 25 - - 0.[37 0.131

MENTORING

CUSTOM CONTRACTS

TEAM TOOLS

PPS 804.0 OPW2.0 SunO341 Sun 3/50 68020 68881 16 0 12 0.114 0.107

PPS 802.5 S unVw SunOS 4.1 Sun 3/50 68020 68881 16 0 12 0.067 0,1024'

Dlg DOS 5.0 OPTI 386DX none 25 0 4 noneV286 1,2 none
0.096

Dig V 1.2 Mac MacOS 7.0.1 Mac Iici 68030 68882 25 32? 16 0.078 0.072

Dig V Mac MacOS 7.01 Mac IIci 68030 68882 33? 0? 5/6" 0.072 0.069

Dig V Mac MacOS 7.01 Mac PB[00 68000 none 16 0 3/4" 0.020 0.051

94 V Mac MacOS 7.01 Mac PB 100 68000 none 16 0 3/4" 0.020 0.019

Dig V 2.0 130[le DOS 3.3 clone XT 8088 none 5 0 64()K 0.0021 0.008'

Dig I V Mac MacOS 7.01 Mac IIsi 68030 none 25 01 3/4" 0.044 none

• Resuits are nonnalized to one for VisualWorks 1.0 on my 486/33.
6 SS/10-30 has 36Kinternal cache. 80486 and 68040 Cand i think SS/23 have 8K.

Hoating pornt perjormance was extrapolated assuimng an 8087.
** Smopstonesdidn't indudesetformation benchmark-stnnghashinadequate.
" x/y means Mac allocated x MB to Smalltalk out ofy MB fotaL
1' Smopstonesexcludingthetwoworst cases (stremn, setjandthebestcase (sorting).Thestreamandsetresults were badjor ST/V Intelandatrocions for

67'/V Mfic, p, obably becaaise of weak implenwitations of mixed m reger and float w flh·,netic (it:ed in st, eat} as) and sri·mg hash (used iii forming sets).
This machine was 1 Mac Iici with o 25 M Hz 68040 Rad ius Rocket acceleraton

Note: The entries are sorted by Smopstones (last column). Higher numbers in the last two columns mean greater speed. Eight people contributed these
results. For the 486, I did the PPS runs and ST/V-DOS run. Marten Feldtmann did the remaining ST/V 486 runs.

Object Technology Potential
Object Technology can provide a
company with significant benefits:
• Quality' Software
e Rapid Development
• Reusable Code

e Model Business Rules

But the transition is a process that
must be designed for success.

Transition Solution

Since 1985, Knowledge Systems
Corporation (KSC) has helped
hundreds of companies such as
AMS, First Union, Hewlett-Packard,
IBM, Northern Telecom, Southern
California Edison and Texas [nstru-

ments to successfully transition to
Object Technology.

KSC Transition Services

KSC offers a compjete training
curriculum and expert consulting
services. Our multi-step program is
designed to allow a client to uiti-
mately attain self-sufficiency and
produce deliverable solutions. KSC
accelerates group learning and
development. The learning curve is
measured in weeks rather than

months. The process indudes:
* introductory to Advanced

Programming in Smalltalk
• STAF' M (Smalltalk Apprentice

Program) Project Focus at KSC
• 00 Analysis and Design
e Mentoring: Process Support

KSC Development Environment
KSC provides an integrated applica-
tion development environment
consisting of 'Best of Breed" third
party tools and ESC value-added
software. Together KS(: tools and
services empower development
teams to build object-oriented

applications for a dient-server
environment.

Design your Transition
Begin your successful 'Oblect
Transition by Desigrf. for more
information on KSC's products and
services, call us at 919-481-4000
today . Ask for a FREE copy of KSC's
informative management report:
S#hvme Ass€'8 bv Design.

Stores) and spnopstones (Smalltalk Medium level OPeration make objective cross-platform comparisons. Also, portability is
Stones), and the results are summarized iii Table 3. difficult to achieve between ST80 and ST/V in video tests.

I wanted to avoid any tests that stressed the disk or video sys-
tems. Although these are important in real applications, modern SIC)PSTONES
caching disk controllers and video coprocessors make it hard to The seven low-level tests are:

Knowledge Systems Corporation
OBJECTTRANSITIONBYDESIGN

114 MacKenan Dr.

Cary, NC 27511
(919) 4814000

1992 KriowIedge Syst em Cor poration.

18 THE SMALLTALK REPORT

S 1 MALLTALK IDIOMS Kent Beck

To accessor or not to accessor?

:bate has been raging on both CompuServe and the In-
ernel lately about the use and abuse of accessing meth-
ods for getting and setting the values ofinstance vari

ables. Since this is the closest thing I've seen to a religious war
in a while, I thought I'd weigh in, not with the definitive an-
swer, but with at least a summary of the issues and arguments
on both sides. As with most, uh, discussions generating lots of
beat, the position anyone takes has more to do with attitude
and experience than with objective truth.

First, a little background. The classic accessor method comes
in two flavors, one for getting the value ofan instance variable:

Point>>x

AX

and one for setting an instance variable:
Point>>x: aNumber

x : = aNumber

Accessing methods are also used to do lazy initialization, or as
caches for frequently computed values:

View>>controller

Acontroller ifNil: [controller := self geteontrotter]

ACCESSORS

When I was at Tektronix, Allen Wirfs-Brock (now a Digitalk
dude) wrote (or at least discussed writing--it was a while ago) a
think piece called «Instance variables considered harmful." His
position was that direct reference to instance variables limits in-
heritance by fixing storage decisions iii the superclass that can't
be changed in a subclass. His solution was to force all accesses
to instance variables to go through a method. If you did an »inst
var refs" on a variable of such a class, you'd find two users, one
to return the value of the variable and one to set the value.

Points make a good example ofwhv inheritance demands
consistent use of accessing methods. Suppose you want to make
a subc}ass of Point that obeyed the same protocols, but stored its
location in polar coordinates, as r and theta. You can make such
a subclass, but you will swiftly discover that you have to over-
ride most of the messages in the superclass because they make
direct use of the variables x and y. This defeats the purpose of
inheritance. In addition, you would have to be prepared to ei-
ther declare new variables, r and theta> and waste the space for x

8

and y in your subclass, or store r in x and theta in y and keep
track of which is which. Neither is an attractive prospect.

If Point had been written with accessing methods, at least
the problem with inheritance would not arise. Iii your subclass,
you could override the messages accessing and setting x and y,
replacing them with computations converting polar to Carte-
sian coordinates and vice versa. At the cost of four methods
you would have a fully functioning Polarpoint. A more fully
factored solution, one that solves the problem o f wasted or
misnamed storage, would be to have an abstract Point class
with no variables, and subclasses CartesianPoint aiid PolarPoint.

ACCESSORS-NOn

Many in the Smalltalk community were compelled by this ar-
gument (or arrived at the same conclusion independently).
Vocal and influential organizations such as Knowledge Systems
Corporation made consistent use of accessors a fundamental
part of their Smalltalk teaching. Why are there stiH heathens
who refuse to bow to this superior wisdom?

Most easily dismissed is the issue of productivity. All those
accessors take too long to write. Most extended Smalltalk envi-
ronments include support for automatically generating access-
ing and setting methods. Some are activated when the class is
recompiled, asking whether you want accessors for the new
methods, others appear when a 'message not understood' error
occurs, by noticing that the receiver has an instance variable of
the same name as the offending message. In any case, writing
accessors need not be time consuming*

A slightly more serious argument is performance. All those
accessors take time to execute. While it is true that accessing a
variable directly is faster than sending a message, the difference
is not as great as you might think. Digitalk and Parc·Place are
careful to make sure that looking up a method is fast particu-
Early in common cases like sending a message to the same class
or receiver as you did the last time you were in this method. In
addition, the Compile{Method representing the accessor has spa
cial flags set to allow it to be executed quickly, without even the
overhead of pushing a frame on the stack. In tight loops where
the performance of accessors might still be a problem, you can
probabjy cache the value in a temporary variable, anyway.

The crux ofthe objection is that accessors violate encapsu-
lation. Accessors make details of your storage strategy visible to

continued on page 22...

TH]. SMALLTALK REPORT

form portability and second to supporting true native look and
feel. Here are the comments 1 received on performance:

· It would certainly be nice ifit ran faster, but I think re-
sources might be better devoted eisewhere, ISpeed] might
help attract potential new customers, though.

· Speed is very important (that simple).

• Speed is the standard problem with Smalltalk.

• My first major program in Smalltalk (a simulation) still
doesn't run fast enough to be useful, Definitely give me
more speed.

· Faster execution speed will have a large effect on the use of
Smalltalk in industry. Although Smalltalk would be fast
enough for their applications, C is often used instead "iust
m case.

• Execution speed will always be important and [it will] never
be [fast] enough, so it needs constant attention.

• The biggest negative perception Smalltalk has from the gen-
eral computing community is that it is too slow. Unless this
perception is corrected, Smalltalk wil] remain a "cult lan-
guage." My particular proiect is a large-scale Smalltalk effort,
and I am anticipating execution speed to be a major problem.

• We do some heavy computation using it

I heard a contrary opinion recently. At the February meeting of
the North Texas Society for Object Technology, a speaker from
Texas Instruments described a chip fabrication software system
they developed using ParcP]ace Smalltalk, Gemstone, The Ana-
lyst, Envy, and other third-party products. This is a big system
with over 3,000 classes. The speaker said that in no case did
they encounter a performance bottleneck that was Smalltalk's
fault. The problems they did have were due to misapplying the
technology. So there are some major users who do not con-
sider performance to be a problem.

COMPARING PARCPLACE SMALLTALK TO

DIGITALK SMALLTALK: FIRST TRY

There is considerable data in the literature measuring
Smalltalk-80's performance. The green book mentioned previ-
oust covers early, experimental implementations. ParcPlace's
newsletter publishes Dorado benchmarks for current commer-
cial versions. And the Self group has compared ST80 2.4 to Self
91 and to C.

I haven't seen literature comparing the performance of
ParcPlace's Smalltalk-80 with Digitalk's Smalitalk/V. The cur-
rent artide is a modest, if flawed, step in this direction,

People often claim that ST80 is faster than ST/V. Is this
true? Recent articles in comp.lang.smalltalk bring this into
question. Someone published two very simple benchmarks for
the OS/2 versions of ST/V, and others published results for
ST/V-Windows and ST80-Windows. The results were surpris-
ing, because the 32-bit version of ST/V for OS/2 was, at first
glance, between 1.5 and 3 times faster than the 32-bit version
of ST80 for Windows. The 16-bit versions of ST/V fared much

JLINE 1993

worse, probably because both benchmarks generated numbers
that would be LargePositiveIntegers for 16-bit Smalltalk. Later,]
discovered that bv slightly modifying one of the benchmarks,
ParcPIace moves from being 3 times slower to one third faster
than the fastest Digitalk version. It remains 1.5 times slower in
the other benchmark. The code as posted follows, and the re-
suits are given in Table 2:

1. white loop (original posting)
I anIndex I

Time millisecondsTGRun: [
anIndex .= 100000,

[anIndex 0] whileTrue:[anIndex := anIndex - 1]}

2. while loop (modified for ST80 by declaring anIndex as a
temporary block variable)

Time nuRisecondsToRun: [
I anIndex 1

anIndex := 100000.

[anIndex 0] whileTrue:[anIndex := anIndex - 11]

3. Fibonacci number generator (tested with "30 fib")
fib (in dass integer)

self 1

imule.['((self- 1) fib + (self -2) fib)]
iffalse:[Al]

Hardware 486/33 (Feldlinanii, Saniuelson 16MB; Nouwen
8MB).

COMPAR[NG PARCPLACE SMALLTALK TO
DIGITALK SMALLTALK: SECOND TRY

As a ParcPjace customer, I was intrigued and startled enough
by these results that I decided to measure how the Digitalk and
ParcPlace products perform on a wider range of tests. The
goals of the benchmarks I developed are:

· Portability between versions of ST'80 and ST/V, including
SI'/V-DOS.

· Writing in as idiomatic a style as portability would allow.
· Being able to compile and run within SIFV-DOS's 640K limit.

· Keeping integers small enough to not skew the results
against 16-bit versions.

* Running for a knig enough time to get fairly accurate results.
• Being cpu intensive while avoiding accesses to disk or video

subsystems.

· Avoiding disk paging.

· Measuring both low-level and medium-level operations.

These goals were to some extent mutually exclusive. For example,
it is hard to keep integers and loop counts within the bounds of
16-bit integers while still consuming measurable amounts of
time. And it is hard to consuine enough time without exceeding
runtime resource limits of ST/V-DOS. It took experimentation
and dozens of reboots of my machine during ST/V-DOS runs
before I arrived at something that met all the goals. The resulting
benchmarks are called slopstones (Smalltalk Low-level OPeration

17

.cominued from page I m SMALLTALK BENCHMARKING REVETED

Table 1. Language execution speed as percentage of optimized C. exact several penalties. First, whereas Smalltalk compiles indi-

Language Stanford Suite Puzzle Richards vidual methods incrementally at an almost instantaneous
speed, the optimizations performed by Self 's compiler slow it

ST80 2,4 10% 44% 9.4%

i down to a compilation speed comparable to C. Second, com
 Self 91 57% 27% 35% pilation of"uncommon cases» is deferred, but when it does

happen during runtime, it may be somewhat intrusive. Third,
ference proceedings.2 They compared the execution speeds on Self's code takes between one-third to four times more space
a Sun SPARC workstation of C, Smalltalk-80 2.4, and Self 91 than the C code generated for the benchmarks. I haven't seen
(and some other languages) on the Stanford Suite of integer data on Smalltalk code density, but I would expect it to take
benchmarks, the Puzzle benchmark, and the Richards operat- less space than C. I>m referring to incremental code density,
ing system simulation benchmark. not to the initial size of the class library. In Self's favor, it

The results, given in Table 1, are impressive, especially since might look better when compared to heavily object-oriented
Self is at least as hard to optimize as Smalltalk, and the same programs written in C++ than to procedural programs written
techniques used to tuneit canbe applied to Smalltalk. Selfactu- in C because of the space C++ uses for virtual function dis„
ally did better than the numbers indicate. Relative to Smalltalk- patch tables. Fourth, the Self environment requires more
80, its optimization doesn>t freeze the definition of low-level space thati Smalltalk. The people I've talked with at Parcplace
looping constructs. And it supports several features not found have the impression that on a 32MB machine, Self pages un-
in optimized C: generic arithmetic, robust error-checking acceptably, and that you need at least 64MB to run it comfort-
primitives, and support for source-level debugging." In demon- ably. When I raised this point with a Self researcher, he made
strating an object-oriented environment that is both efficient two rebuttals. First, Self has not been optimized for space. He
and full-featured, the authors claim that "programmers no cited examples of major savings that could be made. Second,
longer need to choose between semantics and performance. he said that Self runs fine on a 32MB machine and does not

Smalltalk did better on the Richards benchmark iii an inde require 64MB. He did concede that it still takes more space
pendent test posted to comp,lang,smalltalkin mid-1991. While than Smalltalk, but this is at least partly because it is a research
the Self group measured Smalltalk-80 2.4 to i·un at 9.4% of opti language and the focus of the research has not been to mini-
mixed G + on a Sun 4/260 running UNIX, the poster measured] mize mem ory requirements.
Smalltalk-80 4.0 to run at 27% relative to Borland C++ 2.0 on a I have talked with several representatives ofboth Par,Place
386SX running DOS/Windows. He suggested that the difference and the Self team in the last couple of years about these issues.
could be due to using ST80 version 4.0 rather than 2.4. My impression is that thefre not communicating enough. I

Just how practical would it be for the commercial Smalltalk think ihat some of ParcPlace's misgivings about Self could be
vendors to get its speed up to that of Self? Self's optimizations confirmed or denied by talking more with the Self people. I

don't know to what extent Digitalk is in
Table 2. Looping benchmark results. touch with Self. If the commercial ven-

while loop, dors decide to focus on performance
Word I milliseconds fibonaccl,

length, 1 (avE result) milliseconds tuning as hard as the researchers, the
Tester Vendor Version bits* original modified (avg result) communication channels will no doubt

Nouwen Digitalk ST/V-Win 2.0 16 3,570 n/a 32,960 open wider!
We'11 return later to the question of

Feldtmann Digitalk ST/V-PM 1.4 16 2,530 n/a 9,503 whether Sers optimizations can be ap-
Nouwen Digitalk ST/V-PM 1.4 16 2,530 nfa 9,470 plied to Smalltalk.

Feldlmann Digitalk ST/V-PM 2.0 32 125 n/a 4,673
HOW IMPORTANT WOULD A FAST

Nouwen Digitalk SlyV-PM 2.0 : 32 120 11/a 4,650 SMALLTALK BE TO USERS?

Samuelson Par(-Place VW-Win].0* 32 353 921 6909 The jury is out on whether Self's opti-
mizations will find their way into

X Theseare my assumptionsabout the underlyulg word length in the virtual machines. Although VW- Smalltalk and other commercial lan-
Win runs on a 16-bit operating system (Win 3.1), it is a 32-bit implementation because it is compiled
with n 32-bit DOS extender. stages. In the meantime, it would help

your vendor to know how much priority
1 This is Par(Place's new VisualWorks product, what is ST80 with an inte®ce builder and other

extr<15 bundled. you give to performance. I took a survey
of ParcP[ace customers in the

Notice the dramatic speed-up for Partplace when the dectoration of the temporary index variable is
moved inside the outer block. Par<Place disringuishes between clean Mocks, copying blocks. and fult comp.lang.smalltalk newsgroup in Octo-

blocks. 'rhese vary, repectively, from fastest to slowest and from leost contextoverhead to most over- ber 1991 and asked them to rank the im-

head I,n moving the variable declaration, the outer blockgoes Dom afull Wock to a clean block and the portance of 19 features. Faster execution
loop runs four t,mes jaster. 7 his con/irrus pi rcpjace 5 admonition to use clean blocks whenever possible. qpeed came in third place, with first
I 8073't thin k IA,gitalk makes these dist<nctious, at least for its i»f vet:loti. place going to maintaining cross-plat-

16 THE SMALLTALK REPORT

G uIs Greg Heiidley + Eric Smith

Using MS Help from within VisuaIWorks

 sualWorks can be impressive. However, once inipressed,
he host "looks" that can be achieved with ParcPlace's Vi-

a client may ask for even more host-user interface inte-
gration. These requests can extend past the look that ParcPlace
provides. The client may ask for the feel of the host system. In
the case of the Microsoft Windows platforms this may include
the ability to run any application without a mouse. This is an
anathema for most Smalltalk programmers. Another request
under windows might be integration with the help system.

Think about it. While it is not a "widget,» the help system is
very much part of the user interface. It is the users' way of ob-
taining more information on how to use ati application. The
rest of this column will show you how to get started integrating
Visual'Works with the help system under Microsoft Windows.

Accasing Microsoft Help from VisualWorks requires
knowledge of ParcPlace's Objectkit\Smalltalk C Programming
{ otherwise known as C Programming OMeet Kit or CPOK)
and Microsoft Help (MS Help), each of which deserves its own
column (at least). In this column, we'11 explain only enough of
each to get you going. The goal is for you to be able to activate
MS Help from within VisualWorks and have the help docu-
ment open on the topic you specify,

MS HELP

The MS Help application (MSHELP.EXE) lets you read hyper-
text-like help files. Help files may contain multiple topics. A
topicis the unit of information that maybe presented at one
time by the MS Help application. In your application a topic
may provide information on a visual part, a menu, or a win-
dow. The Microsoft Help Compiler generates help files from
word processing documents saved in Rich Text Format (RTF).
Refer to the Microsoft Windows Software Development Kit for
more information on generating help files and defining topics,

In your Smalltalk application, you will invoke the MS Help
application. Your application can simply activate MS Help, or
it can specify the help file and topic that MS Help should open
or. MS Help is invoked through the MS Windows API (Appli-
cation Programming Interface) WinHelp{).

CPOK

Par¢Place's Objectkit\Smalltalk C Programming lets Smalltalk
access programs written iIi C. This includes the JMicrosoft Win-
dows API functions. We will use it to invoke WinHelpO. CPOK
is a definite improvement over writing your own primitives.

jUNE 1993

Access to C API functions is through subclasses of External-
Interface. In general you will create a class for each API and a
method for each function. The subclass creation method for

External Inte]·face is different from that of most classes.

subclass: t

include Files- if

indudeDirectoies: id

libraryfiles: tf
libraryDirectories: Td
generateMethods: gm
beVirtual: bv

instanceVariableNames: f

ctassVariableNames: d

pooll)ictionaries: pd
categmy: cat

This method, in addition to creating a subclass, parses header
files and creates methods corresponding to the functions
defined in the header file. The method also creates methods

corresponding to other externals of the header file.
Once Extema{Interface creates the subclass and methods, all

you have to do is use them.

USING CPOK TO ACCESS MS HELP

First, we will define the dass. Then we will go over how to use it

Class definition

Create the class WindowsLibraryInterface as a subclass of Exter-
nalLibraxy:Support. If all your files are on your C: drive and your
directory structure is similar to ours, your dass definition will
look something like this:

subclass: #WindowslibraryInterface
inctudefiles: \windows.h'

includevirectories: 'c:\windev\inctude'

tibraryfiles: 'gdi.exe kIn/386.exe user.exe'
tibran,Directones: 'c:\windevidebug'
generateMethods
beVirtual: false

instanceVariableNanies. "

classVariableNames: "

poolDictionaries: "
category: 'ExternamibrarySupport'

All explanation of each of the parameters call be found in the
Objectkit\Smalltalk C Programming User's Guide. One parame-
ter is worth explaining here, though. The argument gm ('*' in the
above code) indicates that methods should be generated for all
externals, functions, and otherwise. You could instead list just

contintledon page 15...

9

I{Ii HE BEST OF comp.lang.smalltalk Alan Knight

Sets and dictionaries

 ets and dictionaries are widely used chasses implenientingwell-known data types. In many ways they are exemplary,
as the basic public interface is simple to use, efficient, and

corresponds wel] to the standard abstract data types of the
same name. Unfortunately, both classes can present a number
of subtle di fficulties. Many of these difficulties relate to the fact
that both are implemented by hash tables, and thal this imple-
mentation shows through more than it should.

A good abstract data type is specified without reference to
its implementation, and ideally should have several possible
implementations, differing only in performance characteristics.
The specification should not be written to favour or depend on
a particular implementation.

These goals are not always easy to live up to, and Sets and
dictionaries fall short in a number of areas.

HASHING

The hashing mechanism provides an efficient search mecha-
nism with little space overhead. It does, however, require the
user to provide certain operations. These discussions refer to
both dictionary keys and set elements. To save repetition, I'll
refer to both as keys, and to both sets and dictionaries as
hash tables.

Any hash table key must provide two methods: = and hash.
A simple description of the hashing process follows. For a par-
ticular key, the hash method is used to compute an offset into
the table. If that slot at that offset contains nil, the key is not
present. If the slot is occupied, we test for equality with the key.
If the two are equal the search has succeeded. If the two are not
equal, the offset will be repeatedly incremented until an obiect
equal to the key or a nilslot is found.

This implementation has a few implications. First, since nil
is used to mark empty slots, it cannot be used as a dictionary

key or inserted into a set.
Second, objects must provide = and hash methods. More

importantly, they must provide these methods such that
equal obiects have the same hash value. Note that the con-
verse need not hold: Objects with the same hash value do not
have to be equal.

The default implementation of= is the object identity test
==, and the default hash method is compatible with this. A
common mistake for Smalltalk novices is to define a different

equality relation without defining a corresponding hash

10

method. Although this is a well-known mistake, there are simi-
lar, more subtle problems.

CHANGING HASH VALUES

A hash function that is not based on object identity will proba-
blv be based on instance variables of the object. A common
strategy is to add or XOR together the hash values of the
significant instance variables, possibly with some addi Nonal
scrambling. For example, iii V/Windows:

Foint hash

Ax hash + y hash.

ParcPlace Smalltalk has

Point hash

-(x hash bitShift: 2) bitXor: y hash

The problem arises if any of those instance variables are

changed, The hash value is then changed, and the object will
hash to a different place in a set or dictionary. Any hash tables
with that object as a key need to be rehashed, and there is no
standard way offinding which tables those are.

This can be a very serious problem and difficult to track
down. Iii practice, however, it doesn't seem to arise all that

often. I suspect the explanation lies in the normal usage pat-
terms. The most common dictionary keys are strings and sym-
bols, which are not normally modified. Sets often use a greater
variety of objects, but niostly use the default identity-based
hash function.

IDENTITY HASHING WITH become:

Even identity-based hashes aren't completely safe, since the be-
come: operation can change them. I've encountered an exam-
ple of this with a simple version control system in V/Windows.
In order to keep track of which added classes belonged to an
application, the system maintained a set of classes. Classes do
not override = or hash, so they inherit the identity-based vcr -
sion,

1Ii Smalhalk/V Windows, there is a special class Deletedelass.
When a class is deleted, the last thing the system does is:

classToBeDeleted become: DeletedClass.

This achieves two goals. It ensures that clastroBeD)eleted can be
garbage collected, since any references to it have been re-

THE SMALLTALK REPORT

generated ViewManager subclass. You can add your own events
and include them in the list of supported events.

Compositepanes can be nested within onie another to any
level. If you define tabbing order within your CompositePane,
this nests properly as well. However, you must be careful to
avoid potentially recursive definitions. WindowBuilder Pro was
only able to detect single level recursion (e.g., you can't place a
copy of a CompositePane within itself) but it cannot check for
later recursion. If you defined A to contain B and vice versa you
would be in big trouble. CompositePanes may have one of three
styles: default, borders, and scroll bars. The last style is the most
interesting. Placing scroll bars on a CompositePane allows you to
place widgets within scrolling pants for the first time. While we
wouldn't necessarily recommend doing this from a GUI point
of view, its nice to know that we can do it.

WindowBuilder Pro provides several additional features
that simplify working with CompositePanes. If you double-dick
on a CompositePane, it will open another copy o f Window-
Builder Pro on the CompositePane definition itself. If you
change the definition, it will change the CompositePane every-
where you have used it. If you decide that you don't want the
CompositePane and would rather use its components directly,
use the Ungroup command to split them apart losing any
=composite" behavior.

OPEN ARCHITECTURE

in addition to adding lots of features for the end-user devel-
open OSI has also opened the WindowBuilder architecture to
make it easier for third parties to build tools that integrate with
the product. A new Add-in Manager allows other products to
bind themselves to WindowBuilder Pro and add their own

m SUB ...continued from pose 9

those externals essential for bringing up help. Unfortunately,
there are dependencies in the externals defined in the windows
header file. For a first pass it is easier to use and create all pos-
siblemethods. Warning: this may take 15 to 20 minutes.

Initiate help on a specific topic
MS Help may be opened on a help file in a number of different
ways. To get you started, we will show you how to open on a
particular topic. Iii a workspace, do:

WindowsInterface new

WinHelp: self GetActiveWindow
with: 'c:\my-help.hip'
with: 20

where my-help.hlp is your help file and 20 is the context
number for a topic in your help file. MS Help will then open
on your help file and show the information for topic 20,
Keeping track ofwhich topic is which is an interesting issue
that you will have to work out for yourself.

The above test code uses the method GetActiveWindow. This

method answers the handle of the active window. The method

was generated when you created your subclass o f ExternalInter-

JUNE 1993

functionality and menus, Adding new widgets to the tool
palettes is also easy. You must still define support for vour wid-
get the same way you would under WindowBuilder. Once
you've done that, you create a tool palette bitmap for it and a
simple add in that adds your widget to the Add menu.

PLATFORMS

OSI plans to include a number of follow- on products that inte-
grate witli WindowBuilder Pro. They have already announced
ENVY/Developer and TEAM/V versions of the product and
they plan on having a Macintosh version that is compatible
with lhe current Windows and OS/2 versions.

CONCLUSION

WindowBuilder has been the tool of choice for many
Smalltalk/V developers for years. WindowBuilder Pro repre-
sents a logical and necessary evolution of the product that
should serve the Smalltalk community well into the future. It
provides significant new capabilities with its CompositePane
technology and adds novel GUI building features such as the
Scrapbook and Mo]·Dhing utilities that should make for a
pleasant GUI development environment. E

Eic Claybery is Director of the Computer-Human interaction Lab at
American Management Systems. He is an experi in applying O-0
and Smalltalk technology to the design and construction of advanced
yraphical u s¢7 inierfaces. He can be reached on Compuserve ot
72254,2515. S. bridhar is an independent Smalltalk developer whose
interests include building professional quality class libraries. He is of-
filialed with dassAct Technology in Cary, NC. He can be reached on
Compuserve at 71031,3240.

face. l'his is one of the side benefits of using "' and having all
methods created instead of specifying only those thatiook like
they are necessary for help.

CLOSNG

We have shown you the essential tow-leve] Smalltalk necessary
to get MS Help working with Visua]Works applications. Now
you are ready to tackle the higher-level tasks o f associating help
topics with your windows, menus, and other visual components.

Acknowledgments
We would like to thank our coworkers Kyle Brown, who made
using Objectkit\Smalitalk C Programming much easier, and John
Cribbs, who applied it to accessing MS Help from Sinalitalk E

Greg Ifetidley Cs a 1:ne?1:iber of the techilicel st*iff at Knowlelge Sys-
tems Corporation. His OOP experience is in various dialects of
Smaltalk. Other experience includes flight simulator out-the-window
visual systems. Eric Smith is a member of the technical staff at
Knowledge Systems Corporation. His specially is custom graphical
user interfaces ust}tg Smalttalk (various dia.lects) a,id (:. They caji be
contacted at Knowledge Systems Corporation, 114 MacKenan Drive,
Cary, North Carolint 27511, or by phone at 919,481.4000.

15

on top of their parents (great for floating toolbars), minimize
with them, and close when their parents dose (ver·y much like
M DI without the clipping). Sibling links create a child window
of the current window's parent (e.g,,your desktop window).

ActionButtons allow you to attach predefined code snippets
to a button. Some of these, like <'Cancel" come standard with
the product. ("Cancel" performs "window close" oil any win-
dow it sits on). The ActionButton attribute editor lets you select
these predefined actions or create your own in standard
Smalltalk. Almost any action that is not window specific could
be coded once and then reused. WindowBuilder Pro needs to

provide a rich variety of these predefined code snippets. The
user can modify them appropriately, thus adding to the catalog
of these reusable code snippets.

The LinkMenus and ActionMenus function the same way as

the LinkButtons and ActionButtons. Any menu option defined
with the menu editor may have a link or action associated with
it. For example, you can assign the action "Cancel" to the
«Exit" menu item.

WIDGET MORPHING

This is a nifty feature that will alleviate the frustration of many
a WindowBuilder user. What is widget morphing? It is a tea-
ture that allows you to transform a widget from one type into
any other while mapping over any common attributes.

To demonstrate how useful this is, suppose youl create a List-
Box, give it a name, attach a list, set its color and fonts, and give
it a few event handlers. Later, let's suppose you discover that
your window doesn't have room for a ListBox and you opt to
use a ComboBox instead. Before the advent of this feature, you
would have had to add a new control and copy all of the origi-
nat control's attributes to the new control by hand (or you
could change the WindowBuilder generated code by hand,
which is verboten). Now, you can accomplish the same thing by
clicking on the widget with the right mouse button and select-
ing the "Morph" option. This presents a cascaded list of all
"similar" widget types {e.g., ComboBoxes, ListPanes and MultiSe-
lectListBoxes in tile ase of IistBoxes) as well as an "Other ..."

choice (for those rare occasions when you want to transform a
ListBox into a totally different widget, such as a button). Choose
the one you want and your widget transforms instantly. Only
events that both the old and new widget understand will be
mapped over; the new widget will acquire as many of the origi-
nal widget's attributes as it understands and default the rest. Be
careful when morphing widgets, because while all widgets re-
spond to #getContents, they expect very different things. It
would be nice if WindowBuilder Pro added a warning message
when potentially troublesome morphing is attempted.

SCRAPBOOK

One of our favorite new features is the Scrapbook. Anyone who

has used the Macintosh will appreciate this one right away. (Ac-
tually anyone who has ever had to reuse visual components will
appreciate this right away), The Scrapbook provides a place to
store ftilly defined widgets or sets of widgets. It allows you to

14

= PRODUCT REVIEW

organize your creations in multiple chapters containing multi-
ple pages. Each page contains a user-defined obiect

Start bv creating and defining a group of widgets. Select them
311 and select the Store option from the Scrapbook menu. Name
your creation and select ore or more chapters in which to place
it. You can organize your objects under as many categories as
you like. New chapters can be created with the touch of a but-
ton. There is a single special chapter entitled "Quick Reference."
Anything added here is automatically appended to the <'Scrap-
book... Quick Reference" cascading menu for instant access.

In order to retrieve something from the Scrapbook, select
"Retrieve.» You are then presented with a listing ofall of your
chapters and pages. Clicking on any page will display its con-
tents iii a graphic view to the right. This allows you to preview
any object before placing it on the screen. Selecting a page and
hitting OK loads the cursor with the selected object which you
can then drop anywhere you like.

You can easily save Scrapbooks to disk and retrieve them.
Each developer can have a Scrapbook, and these can then be
merged together to provide a common set of components
across a development team.

CompositePanes
While the Scrapbook provides a repository for storing reusable
visual components, WindowBuilder Pro's new CompositePane
technology provides the mechanisms to actually create these
reusable visual components. In Smalltalk, we routinely build
complex classes by synthesizing structure and behavior from
Simpler classes. In a like manner, CompositePanes allow you to
create compound or composite widgets out of other atomic wid-
gets. WindowBuilder Pro includes an example of this in a sample
CompositePane subclass called SexPane. A SexPane is composed of
three widgets: two RadioButtons (Mate and Female) and a Group-
Box (labeled Sex). Window]3uilder Pro treats it like any other

standalone widget. I f you resize it, its components resize relative
to itself. It even has its own instance variables and events. For ex-

ample, in response to a #sexChanged event (issued whenever the
user dicksone of the RadioButtons), you couldbring up a Mes-
sageBox announcing the new state. Setting its contents is as sim-
ple as 5ending the message: aSexPane contents: #male.

OSI has seamlessly integrated this functionality with the rest
ofthe product.

To create a CompositePane, select the appropriate option
from the File menu or select several existing widgets that exist
in your editing window and select the Create Composite com-
mand. This opens a new copy of WindowBuilder Pro with the
selected components in it. (Here the WindowBuilder Pro itself
acts as an attribute editor for the CompositePanes. Neat!). Give

them names or further define them anyway you [jke. When
you save them you are pronipted for a class name and a super-
class (generally CompositePane). Window·Builder Pro creates
the class and then enquires whether you would like to replace
the original widgets with the new composite. Once you have a
CompositePane subciass defined you may add code to it ex-
actly the same way you would add code to a WindowBuilder

THE SMALLTALK REPORT

moved. It also ensures that any code ,.
which referenced classToBeDeleted will 6 I. '

report an error when executed.
Unfortunately, ifa class is removed

outside the framework of this version
. 2 . econtrol system, any applications that

contained it now contain references to

DeletedClass. Further, those references /4 e

are stored according to the hash value of
classTo BeDeleted, so they can't be re- -Pllafff°990%33- 24 I. 4,-4 0%*Em
moved usingthe public set interface.

As a final difficulty, V/Windows does
not provide a rehash operation. Fortu- .
nately, for this application, the slow- le. .«44%142414·» d / »
and-dirty implementation

2*4**&*aining*«94944*P€404*,41*4dfs¢*ick€
aSet become: aSet copy

is sufficient.

HASHING PERFORMANCE

Even if your hash function doesn't play
tricks on you, defining one with a good
distribution can be difficult. Jeff McAffer

(jeff@is.s.u-tokyo.jp) writes:

3, S mi# *k/9 Windows and PM
?*Objectworks:\Smalltalki
fi Smalitalk for Cobol Programmers
® Analysis & Des:ign
•i Project Miriagement
G a n-Hou se i & O pen Co urses I

The Object People inc.
(613) 230-6897 Fax (613) 235.8256

FtiGhs*ttig#**aid¢ng?
3©Ri#id<Paotypinglt .
03*teulomgoftw** 0*velopment

©14442*S#*el
90**D.Itt '
atent*verf

. JK**2@4 ' 1 ' .9:1 Second)Ave. Ottawa. Ont

S'nalltalk/V is a: regihter*d tr#de,nark of D[gitalk
I was recently looking at a system
that made extensive use ofsets....

One of the benches was putting a whole bunch of two-ele-
ment arrays into the sets. It turns out that 60% of the pro-
cessing time was in the set hashing. The cause? In V/Win
(likely all Vs) the hash function for arrays returns the re-
ceiver's size. I changed the hash function and doubled the
speed of the benchmark.

The identity-based hash function usually has a good distribu-
tion, but has a relatively small number of significant bits.

i Performance will suffer greatly
any time a hash table contains more
elements than the hash function can

handle well. 99

Bruce Samuelson (bruce@ling. uta.edu) writes:

I think the IdentityDictionary bash function runs out of
steam at about 14 bits (16K objects).

Performance will suffer greatly any time a hash table contains
more elements than the hash function can handle well. To

help determine if this is the case, Bruce Samuelson has also
written a method to measure dictionary hash performance. It

JUNE 1993

rtic ObjecLK'OrRs is a tr{,derriark of Par©PIACE Sj*fl*kkt

is written for ParcPlace Smalltalk, but should be easily adapt-
able to Digitalk dialects, and is available from either the
Manchester or Illinois Smalltalk archives, under the title

tionatppebrmance:

*Dictionary methods For: 'statistics'!
hashStatistics

"This method tests how well the receiver is hashed.

It is adapted from
<Dictionaa findKeyOrNit:>."
trSmalltalk hash Statistics'

'Return an array:
at: 1 basicSize of dictionary
at: 2 size of dictionary, i.e., number of elements (associations)
at: 3 average miss of hash function

0 means hash is ideal

N means avg element is placed N steps beyond its hash value
large number means hash is bad

at: 4 histogiam (using a sorted collection) of Inisses'

1 basicSize size total histogram I
basicSize := self basicSize.

size:= self size.

total:= 0.

histogram := Bag new.
self keysDo: [:key I

I miss location probe 1
miss:= 0.

location := key hash \\ basicSize + 1.
[(probe := self basicAt: location) isNil or: [probe key -= key] J

whileTrue: I

miss := Irliss + 1.

(location := Location + 1) > basicSize
iffrue: [location := 1]].

histogram add miss.
total:= total + miss].

.AIray
with: basicSize

with: size

with: (total / (size max: 1)) asftoat
with: histogram sortedEtements! !

LARGE INSTANCES

There are other factors that might affect the performance of
hash tables. For example, very large arrays of pointers (most
collections, but not ByteArrays or WordArrays) can cause prob-
lems for the garbage collector. Earlier versions of ParcPlace
Smalltalk included an arbitrary limit of 100,000 on the size of
such collections. They've removed the limit, but the problem
remains. The source of the problem is the copyiiig garbage col-
lectors used in Smalltalk, which can be forced to spend a lot of
time copying these large objects back and forth.

66 For very small dictionaries,
it may not be necessary to use a

dictionary at all. 99

is poor performance on very large hash tables a problem?
It's certainly not the common case. Rik Fisher Smoodv

(riks@ogicse, cs¢.ogi.edu) writes:

Consider Dictionaries. The overhead of creating a small
one is small. This is good. 1 checked one handy image:
there were 540 instances of dictionary or subclasses with a
total of 4,137 elements...an average ofless than 10 ob-
jects/dictionary.

But occasionally a giant arises.... What if there were a
class called BigDictionary that obeys all of the external pro-
tocol of Dictionaly, but is tuned for performance when it is
larger Perhaps when a small (ordinary) dictionary grows, it
could automatically turn into a BigINct

Very large hash table performance is one of those things you
don't usually worry about, but when you do need it, it's very
important. A BigDict would be a very handy thing to have, and
I'm sure there's already more than one implementation out
there. lan Steinman (steinnian@ascom.hasler. ch) writes:

To get a start on this, look at the Symbol class variable
USTable, which is sort of an ordered BigSet, although it isn't
implemented as a class. The general strategy is divide and
conquer, as in KSAM

12

lim THE BEST OF COMP. LANG.SMALLTALK

USTable (I looked at ParcPlace R4.1) seems to be a bucketed
hash table with some code for choosing good dictionary and
bucket sizes. The buckets are weak arrays, which stops USTable
from holding on to otherwise unreferenced symbols. It may
also improve speed, since weak arrays have some additional
searching primitives.

Divide and conquer normally means splitting a problem up
into sub-problems, each of which can be solved more easily
than the whole and reassembled to form a solution to the com-

plete problem. For a large set, the obvious decomposition is
into smaller sets. Bv converting USTable's buckets into sets (or
IdentitySets),it would be easy to convert this into a divide and
conquer solution that would help avoid the performance prob-
lems of very large hash tables.

SPACE OVERHEAD

Most dictionaries are small, so the performance problems of
large hash tables doii't affect them. Applications that use many
small dictionaries can, however, suffer from serious space
problems. In particular, regular dictionaries are implemented
using associations, which requires another obiect with two in-
stance variables for each element in the dictionary.

Identit,Dictionaries are implemented without associations
in both ParcPlace and Digitalk versions. ParcPlace uses two
parallel arrays of keys and values. Digitalk uses one array,
storing keys at odd indices, values in even indices. Both are
much more space efficient than normal dictionaries, but
make operations that access associations (e.g.,
associationsDo:) much slower.

I'm not sure why this particular choice was made. It's nice
to have more space-efficient dictionaries, but I don't see whv
that should be coupled to the use o f identity versus equality.

For very small dictionaries, it may not be necessary to use a
dictionary at all If the number of keys is a small constant, a
class using linear search maybe just as efficient in time, and
save even more space (this would have much less impact than
regular vs. identity dictionaries). Lazy initialization can help
enormously if not all objects have properties.

CONCLUSION

I've shown a few examples ofproblems that can arise using the
hash table classes in Smalltalk. There are other tricks, such as

assuming the identity of associations in a dictionary remains
constant and retaining or modifying them. I think this is a bad
thing, but the base Smalltalk system does it, so it's not likely to
disappear soon. A broader issue is that some people believe the
association-based nature of dictionaries is too public and that
this imposes excessive costs on other implementations (such as
IdentityDictionaries). A future column may explore these and
other issues. I

Al(in Knig ht works foi 'lhe Object 1>eople. 1 le con be reached at
613.225,8812, or by €-mail as knight@mrco.carleton.ca.

THE SMALLTALK REPORT

1 NEAK PREVIEW Eric Clayberg 6 S. STidhar

WindowBuilder Pro: new horizons

G Ul builders have become de riguer in the PC desktopcomputing marketplace. For the past few years, Win-
dowBuilder from Cooper and Peters has been the pri-

mary tool for building Snialltalk/Vbased GUI applications. At
the beginning of 1993, C&P decided to get out of the Smalltalk
market. A new company Obiectshare Systems Inc. (OSI), took
over the responsibility of marketing C&P's WindowBuilder
line of products, WindowBuilder is the premier tool for
Smalltalk/V GUI development. WindowBuilder is designed to
coexist with the standard Snialltalk/V environinent and, as

such, generates human-readable class definitions and message
interfaces. To meet the ever-increasing demands o f sophisti-
cated GUI applications, OSI is evolving the WindowBuilder
product line into a professional version of the GUI builder
called the WindowBuilder Pro.

As early beta testers, wel] report in this article on a number
of the new features and enhancements that are an integral part
of WindowBuilder Pro. Because WindowBuilder was reviewed

in one of the verv first issues Of THE SMALLTALK REPORT, We'it
skip over all its basic features.

NEW LOOK AND FEEL

WindowBuilder Pro has a nicer look and feel than Window-

Builder. Colorful toolbars abound. Across the top of the screen
are buttons for creating new windows; theses include Cut, Copy,
Paste, Alignment, Distribution, and Z-Order Control among
others. A duplicate command that works like the corresponding
command in MacDraw is a new feature. Selecting a widget or
collection of widgets and hitting Duplicate creates a copv offset
from the original. Moving the copy relative to the original and
hitting Duplicate again results in more copies at the new offset.

WindowBuilder Pro provides increased access to the Font,
Color, Framing, Melia, and other commands. Although the
commands work the same way the did before, they are now ac-
cessible through a toolbar and via pop-up menus. The toolbar is
right below the main editing area, and you can access the pop-
up menu by clicking the right mouse button over any widget.
The Framing editor has been slightly enhanced to allow users to
lock objects to the horizontal and vertical centerlines of a win-
dow (as opposed to just the right, left, top, or bottom sides).

Next to the attribute toolbar are two new items that Visual-
Basic fans will appreciate: size and position indicators. As you
move or resize widgets, these indicators constantly update to
reflect the new information. This feature is very useful for pre-

3UNE 1993

cise work. A new status line at the bottom of die screen gives
context sensitive heip. As you drag through menu commands
or over toolbar choices, the status line describes each option.
As you drag through the widget tool palettes, it describes each
widget type. This is especially helpful for those whom the "in-
tuitive meaning ofthe many icons is not so intuitive. Also, as
you click on any object in the editing window, the status line
identifies its name and type.

In addition to the new look, WindowBuilder Pro has sev-

eral nice ergonomic enhancements. You can now leave auto-
sizing on all the time. StaticText, Buttons, CheckBoxes, and Ra-
dioButtons will automatically autosize as you type in labels.
StaticText autosizes in the proper direction depending on its
style. (The right-justified labels now autosize to theleft! This
should eliminate many of those type-autosize-move se-
quences). Aulosizing now also conforms to the grid, rectifying
an annoying oversight in the original WindowBuilder.

All widgets now include an attribute editor, and all widgets
draw correctly in the edit pane (no more generic rectangles).
ListBoxes and ComboBoxes feature a list editor that allows users

to enter an initial list of items. Although this is not useful in
cases where dynamic list data is needed, it is handy during
rapid prototyping or when the items are static, DrawnButtons
and StaticGraphics can now display abitmap in the editing win-
dow. In the field for entering text for a widget, you enter the
name of the bitmap file (.BMP) that you would like to use. If
WindowBuilder Pro finds the file, it will display it for you.
Your other option is to double-click to bring up a file dialog
from which to select a bitmap. The application window's at-
tribute editor also has been enhanced to allow the addition of
minimization icons to window definitions.

RAPID PROTOTYPING

WindowBuilder Pro has four new components to facilitate rapid
protoblping. These are the LinkButton, ActonButton, LinkMenu,
and ActionMenu. These components provide easy ways to link
windows together and perform simple actions without writing
any code. LinkButtons provide a way to hook windows together
without writing any code. Place a LinkButton on the screen and
double-click on it to see a list ofal] of your ViewManager sub-
classes. Pick the subdass you want, then select the type of link
you want. There are three types of links, independent, child, or
sibling. Independent links have no logical dependency on the
window that created them. Child links create windows that float

13

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 279 DENVILLE NJ

POSTAGE WILL BE PAID BY ADDRESSEE

The Smalltalk Repoit
Subscriber Services Dept SML
PO Box 3000
Denville NU 07834-982

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

If You Use Smalltalk, You Need GemStone.
GemStone is the ideal database ..
environment for supporting
Smalltalk applications. It is the
only high-performance, produc- NETWORK
tion-ready ODBMS with a trans-
parent Smalltalk interface.

• Maintain class hierarchies and

execute Smalltalk methods GeniS!, ii: c)4201 1):i:ihase Smalltalk Application

directly in the server. U YES! Send Me Complete Details On GemStone
• Automatic, transparent transla-

tion of Smalltalk objects into Name: Title:
GemStone.

Company:
• Cooperative client-server sup-

port. Address:

• Smalltalk-based DDUDML. City: State: Zip:
i • High-performance, scalable,

Phone: Fax:d production-ready ODBMS.

• Integrated garbage collection of 1-800-243-9369 SERVIO, persistent Smalltalk objects.

11111,1,1111111111111111,11111111111111111[111111111

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

The Stnantalk RepOrt you're prodrammini
in Smalltalk,

r Kir rrovides objective 8 authoritative coverage on language you should be reading ·tadvances, usage tips, project management advice, AED The Smalltalk Report "techniques, and insightful applications.

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 4362 SAN JOSE, CA

POSTAGE WILL BE PAIDBY THE ADDRESSE

D Yes, 1 would like to subscribe to The Smalltalk Report Date

U I year (9 issues) O 2 year (I8 issues) Name

[ZI Domestic 969.00 U Domestic s[28.00 Title

U Foreign $94,00 U Foreign $178.00 Company

SERVIO CORPORATION
2085 HAMILTON AVENUE

SUITE 200

SAN JOSE, CA 95125-9985

II.I...I,l.,.,lli,lil,I,I.lil..Iil..I,,I..l,l.I,.,ll

Method ot Payment
U Check enclosed (payable to The Smalltalk Report)
U Bill me
U Charge my: O Visa O Mastercard U Amex
Card No.

Exp. Date

Signature

i. Which dialect of Smalltalk do O Make Purchase
you use: ONone

J Smalltalk V 3. Which operating system
O Smalltalk-80 supports your software:

J other O UNIX
2. What is your involvement in 61 DOS

5oftware purchases for your 3 05/2
department/firm:

D Windows
O Recommend Need 3 Other
3 Specify Product

Address

City

State

Zip
Country
Phone

4. What is your company's
primary business activity:
U Computer/Software

Development,

J Manufacturing
J Financial Services
01 Government/Military/Utility

Amemberofthe

ct Marketing Network

D Educational/Consulting
1 Other

5, For how long have you been
using Smalltalk:

3 Lea than ore year
U Myears
1 3. years E3FG

1.10m,/.4,-1 SIGSEliTUr3 4%

TIE TOP NAME *
I TRA-G 5 ON

TIE BOITOM 1 0,

OF TIE BOX i
Where can you find the

best in object-oriented trainjng?
The same place you found

the best in object-oriented
products. At Digitalk, the
creator of Smalitalk/V.

Whether you're launching
a pilot project, modernizing
legacy code, or developing a
large scale application, nobody
else can contribute such inside

expertise. Training, design,
consulting, prototyping,
mentoring, custom engineer-
ing, and project planning. For
Windows, 092 or Macintosh.
Digitalk does it all.

ONE-STOP SHOPPING.

Only Digitalk offers you a
complete solution. Including
award-winning products. proven
training and our arsenal of
consulting services.

Which you can benefit
from on-site, or at our
training facilities in Oregon.
Either way, rn"'It laarn fram m

AL...pil"I ..4,#

1110 1
staff that literally wrote the
book on object-oriented
design (the internationally
respected "Designing Object
Oriented Software").

We know objects and
Smalltalk/V inside out, because
we've been developing real-
world applications for years.

The result? You'll absorb

the tips, techniques and
strategies that immediately
boost vour nroductivitv. Youll

liE

4 jpl

reduce your learning curve,
and you'll meet or exceed
your project expectations. All
in a time frame you may now
think impossible.

IMMEDIATE RESULTS.

Digitalk's training gives
you practical information and
techniques you can put to
work immediately on your
project. Just ask our clients
like IBM, Bank of America,

Progressive Insurance,
b Puget Power & Light, U.S.

Sprint, plus many others.
And Digitalk is one of only
eight companies in IBM's
international Alliance for
AD/Cycle-IBM's software
development strategy for the
1990's. For a full description
and schedule of classes, call
(800) 888-6892 x411.

Let the people who put
the power in Smalltalk/V, help
you get the most power out of it.

100% 71]k OBJECT T"I'![d

The Smalltalk Report
The International Newsletter for Smalltalk Programmers

Juty-August 1993

SMALLTALK

DEBUGGING

TECHNIQUES

By Roxie Rochat
6 Juanita Ewing

Contents:

Feature

1 Smalltalk debugging
techniques
by Roxie Rochat & Juanita
Ewing

Articles

4 Debugging objects
by Bob Hinkle, Vicki Jones, &
Ralph E. Johnson

8 Applications of Smalltalk in
scientific and engineering
computation
by Richard L. Peskin

Columns

1 1 The Best of comp.lang.smalltalk.
Good code, bad hacks
by Alan Knight

15 Sma#talk idioms: Inheritance:

the rest of the story
by Kent Beck

26 Product News and Highlights

Volume 2 Number 9

xpert Smalltalk users are characterized not only by their program-

E ming skills, but by how quickly they locate and correct errors. Not
only do they use debugging skills to find bugs, but also to under-
stand existing code. To reuse code effectively, you have to under-
stand it, so debugging skills are important tools for maximizing

reuse and minimizing work.
This article describes debugging techniques fur both Objectworks\Smalitalk

and Smalltalk/V. Although written fur novice Smalltalk users, it assumes a basic
familiarity with Smalltalk terminology and the environment, including browsers
and debuggers.

Many expressions in this paper are common to Objectworks and Digitalk
Smalltalk systems. Expressions that are not annotated apply to both Smalltalk sys-
tems. IJnless otherwise noted, the Objectworks expressions given in this artic]e are
applicable for:

· Objectworks\Smalltalk 4.1
• VisualWorks 1.0

· ENVY/Developer rl.4 1 a for Objectworks\Smalltalk and Visua[Works.
The Smalltalk/V expressions have been tested under:

- Version 2.0 of Snialitalk/V for OS/2

· Version 2.0 of Smalltalk/V for Windows

· ENVY/Developer rl.4 la for Smalltalk/V for Windows
I f you are using other versions of Smalltalk, use the expressions presented in this
article as a starting point.

WHO AM I?

A major component of the debugging process is the collection of information
about the objects and their current state. Transcript messages allow you to gather
information about objects over tEme. Inspectors allow you to see objects and their
internals in a static state. Careful planning with respect to naming and object
identity can help you focus on easily collecting relevant information. This section
reviews debugging techniques involving the Transcript, inspectors, and factors re-
lating to object identity.

hello world, or printf, in Smalltalk

The Smalltalk equivalent of the C printf function is to write to the '1'ranscript win-
dow. (You do leave your Transcript open, dion't you? The system writes error
messages to the Transcript so if you collapse or close it, sooner or later, you'll be
sorry.)

Information you print in the Transcript can be used to determine when a par-
ticular method is called, to examine arguments, or to examine data calculated by

C.'tmled o. pag,eis·

43$1337%

--/%

EDITORS'
CORNER

John Pugh Paul White

evelopers who use Smalltalk have always had a real love/hate relationship with their devel-
opment environment. We've always been fascinated listening to Smalitaikers describe the
toolset iii their environment. When describing Smalltalk to "outsiders," they defend it
with an emotional fervor, noting how flexible it is and how rich a toolset it actually pro-
vida But if you have a chance to speak with these same people alone, youll hear a very
different story. The fact is that the base Smalltalk development environment is in desperate
need of a major overhaul. It has become Smalltalk's «legacy system." One of the first things
that appealed to us about Smalltalk back in the early days was its rich development envi-
ronment-it was definitely the best on the block. Since then, rio significant changes have
been made to the way in which people interact with the system. Sure, minor improvements
have been made at times, but there have been no qualitative improvements to the browser,
the inspector, or the debugger. Even the tools that do exist need to be more polished. (Ever
listen to someone use the "Find Class" option in Digital>s browser-the groans over a lack
of wild card are universal). Even team development tools such as Team/V and ENVY don't
improve to any significant extent the way in which we interact with Smalltalk.

So why don't we see better tooisets coming to market? We suspect the answer is simple: a
lack of motivation on the part of the vendors. There is a greater return to be made by provid-
ing add-·on facilities such as interface builders and database iilterfaces than there is by aug-
menting the tools that already exist in the base image. Will third-party developers take up the
challenge? We hope so, but we are not terribly optimistic. Perhaps the forthcoming Object
Explorer tool form First Ciass Software, which attempts to visualize the relationships between
objects, will set a trend. Of course, many Smalltalk programming shops have built "in-house"
extensions to the environment that they use on their projects and those of their clients. But
most organizations don't want to be tool builders, they're application developers.

On a more positive note, four ofthe articles in this issue do illustrate just how rich an en-
vironment Smalltalk has. Each takes a different perspective, with two focusing directly on
the debugging process and the techniques that can be used to understand what is taking
place inside your systems. Roxie Rochat and Juanita Ewing are featured this month with
their hints on debugging. They have included a number of debugging techniques, including
ones for debugging code that does not allow for the normal "self halt" approach to work.

Also on the topic of debugging, Bob Hinkle, Vicki Jones, and Ralph Johnson return
this month with a description of how Smalltalk can be extended iii ways that will allow for
non-intrusive debugging to be carried out.

Alan Kniglit atid Kent Beck also touch on the issue of debugging with Smalltalk. Kent re-
turns to his discussion of the conflicting roles played by inheritance iii Smalltalk and intro M
duces two new patterns that describe rules that can be applied when making inheritance deci-
sioiis. Alan tackles the issue of recognizing "good code" by characterizing the elements of
good coding techniques.

Finally, Richard Peskin provides us with a gtimpse into work that is being done to
make Smalltalk more applicable to scientific and engineering computing. As he points
out, this area has not received much attention from the Smalltalk community lately, even
though much of Smalltalk's early history involved serving this community.

3 01, - / LIL
IHE SMAI.1. 11.LKRENE (ISSN# 1056-7976) is published 9 £,Ines a year, every molth excet,t for the Ma:/Al>r> Buly/Aug, aiid Nov/Dec
combined issues. Published by SIGS Publications Gr'oup, 588 Broadway, New York, NY 10012 212.274.0640. © Copyright 1993 by SiGS
Publicatior,s. Inc. All rights reserved. Reprciducti<jn oj this material by electioi,ic transmission, Xerox w any ,>ther method will be
treated dS a wilitul violation oftheUS Copyrig]11 Lawaid is flatly prohibited. Material may be reproduced WI[h e·xpreks permssion from
the publishers Mailed]-irst C :laff. SubKription rates 1 year, (9 issues) doines:tic, S65, Pireigi, and Canada, $90, Single col}y price, $8,00.
POSTMASTER: Send address changes and subscription order·s to: THE SMALL'rALK R.pORT, Subscriber Service, Dept. SMI„ P.O. Box
3000, Denville, NJ 07834. Submit articles to the I·ditors at 91 Second Avenue, Ottawa, Ontario KIS 2H4, Canada. For service on cur
rent subscriptions call 800.783.4903. Printed iII 11]e United States.

2

The Smalltalk Repaft
Editors

John Pugh and Paul White
Carieton University & The Obled People

SIGS PuBLICATIONS
Advisory Board
Tom Atwood, Obecl Technology International
Grady Booch, Rational
George Bosworth. Dig alk
Brad Coxl Information Age Consulting
Chuck Duff, Symantec
Adele Goldberg, Par©Place Systems
Tom Love. consultant

Bertrand Meyer F ISE
Mellir Page-Jones, Wayiand Systems
Sesha Pratap Cente,Line Software
Bjarne Stroustrup, ATKT Bell Labs
Dave Thomas, Object Technology internat,onal

THE SMAL™K REPORr

Editorial Board
Jim Anderson, Digitalk
Adele Goldberg, parcPJace Systems
Reed Phillips, Knowledge Syslems Corp.
Mike Taylor, Digttalk
Dave Thomas, Object Technology Intemational

Columnists
Kent Beck. Fist Class Software

Juanita Ewing, Dfg,twk
Greg Hendley, Knowledge Systems Corp
Ed Klimas, Linea Engineering Inc.
Alan Knight, The Oblect People
En© Smlth, Knowledge Systems Corp.
Rebecca Wirfs-Brock, Dtg,tark

SIGS Publications Group, inc.
Richard P. Friedman
Founder & Group Pubhsher
Art/Production
Knstina Joukhadar, Managing Editor
Susan Cull,gan, Pilgrim Road, Ltd., Creabve Direction
Karen Tongish, Production Editor
Gwen Sanchirico, Prod.Clk>n Coordmator
Robert Stewart, Computer Systems Coordinator
Circdation

Stephen W.Soule, Circulation Mar.ager
Ken Mercado, Fulfillment Manager
Marketing/Advertising
James O. Spencer, Director of Business Development
Jason We}skopf, Advertising Mgr-East Coast/Canada
H·10!b· Mentzer, Advertising Mgr··-West Coam/Europe
Helen Newilng, Recrumnent Sales Manager
Sarah Hamilton, Promotions Manager-Publicatons
Jan Fulmer, Promotions Manager-Conferences
Caren Polner, Promotions Graphic Artist
Administration

David Chatterpaul, Accounung Manager
James Amenuvor, Bookkeeper

Dylan Smith, Special Amstant to the Publisher
Claire Johnston, Conference Manager
Cindy Baird, Conference Technical Manager
Margherita R. Monck
General Manager

SIGS
PUBLICATIONS

Publishers of JOURNAL oF OBJECT-ORIENTED PRo·
GRAMMING OBJECT MAGAZINE, THEO++ REPORT, THE
SMALLTALK REPORT, THE INTERNATIONAL OOP DREC
TORY.and THEX JOURNAL.

THE SMALLTALK REPORT

[9«yy<»n=-====file©rett
"ANNOUN¢*M*NTS

Product Announceiriefmts are not reviews. I'hey are abstracted from press reteases provided by vendors, and 170 endorseinent is impiied.
Vendors interested in being included in this feature should send press releases to our editorial offfices,

Product Announcements Dept., 91 Second Ave., Ottawa, Ontario Kl S ZH4, Canada.

SERVIO TO SUPPORT GEMSTONE ODB&'IS, GEODE
DEVELOPMENT ENVIRONMENT ON WINDOWS NT.

Servio Corporation has announced that it will provide support
for its full range ofproducts on Microsoft Corporation's Win-
dow's NT operating system.

GemStone and GeODE for Windows NT are scheduled for
production shipment beginning in early 1994. They are cur-
rently available for most leading UNIX-based platforms in-
cluding Sequent Symmetry 2000, SUN SPARC, RS6000, and
HP9000, GeniStone release 3.2 and GeODE release 2.0. Gem-
Stone is also available for DEC VAX/VMS. GemStone data can

BOOK AUTHORS

ISIGS
1 BtiOKS

Is currently seekins Authors for its
'£Advances in Object Technology"

series.

Opportunity to join rapidly growing list of
prestigious authors and experts and

earn international recognition.

To discuss your ideas for a book contact:
Dr. Richard Wiener, Book Series Editor

135 Rugely Court
Colorado Splings, CO. 80906

© Phone & Fax: 719.579.9616

=WANTED

be accessed from most client environments including UNIX,
Windows, OS/2, and Macintosh.

Set·vio Corporation develops and markets the GemS[one
object database management system, which incorporates the
GeODE code-free visual development environment for rapidly
building and deploying end-user database applications. Servio
supports its products with consulting or-site technical support
and educational services that enable customers to implement
mission-critical object··based solutions.

Servlo Corp., 2085 Hamihon Ave„ Ste. 200, San Jose, CA 95125,
408.879.6200 00,408.869.0422 0

The first multi-dialect ytzrn
Eff FSmalltalk 4 0

Al. 1% 29,-
4 Ni K WS

developers %34., E im .1
Fgti: 1. 13.r :
u&*4% · tr> pconference %6044.·, 2>,, 1
11*Witf

- Wi" W W"

August 20-21, Glendale, California.
Presentations · Panels · Tutorials · Technical

sessions · Exhibits · Books & Magazines.

Digitalk (Sma#talk/V) · Sen/io (GemStone)
Easel (ENFEN) · Quasar (Smal/ta/kAgents)
ObjectShare (WindowBuilder) · Parcrlace
(ObjectWorks) · many others.

Only $250 H you register before July 30! $300 after.
For more information and a registration form, contact
Monica at (tel) 213-257-5670, (fax) 213-259-0430, or
(Compuserve) 72330,1236.

48

344

1,K

1.

Highlights
Excerpts from industry publications

COBOL TO OOP

What would you say ifyour boss ordered you to traiisform 60
mainframe programmers into object-oriented programmers in
one year? Most likely, "You're joking, right?" Believe it or not,
in the past year American Management Systems (AMS) of Ar-
lington, Va., has transformed over 60 COBOL programmers
into Smalltalk GUI programmers. They didn't raid the staff of
an OOP tools firm, and they didn't rely heavily on external
consultants. But they did perform a major paradigm shift on
the minority of their staff. . . The secrets of their success in-
cluded: Boot camp: All programmers went through develop-
ment tool training and object-oriented design training. The
majority participated in a one- to eight-week apprenticeship
program, where they worked side by side with object-oriented
pros. The process was supportive and orderly-at no point did
programmers feel they were floundering. Teamwork: AMS
brought in OOP design dn programming experts to "mind-
meld" with their COBOL programmers. The experts designed
the application architectures and classes; the novices handled
the specialized processing and application logic. The OOP
novices with GUI design expertise did the screen layout. The
managers performed function-point analysis to glean new pro-
ject-estimation metrics. AMS effectively used consultants to
jump-start their efforts, without paying a fortune. Today they
have a core team of strong OOP technicians in-house...

Br:ng,ng object-oiented technology to the masses,
Christine Comaford, PC WE-EK, 2/27/93

THEY SAY WE HAVE A REVOLUTION

We are currently in the middle of a revolution in the Smalltalk
world. Back in the old days the only objects that came with any
language were simple data structures, enough metaobjects to
write die .system itself, and support for rudimentary graphics and
user interfaces. Everyorie who used an object language was in the
business, by necessity, of creating fundamentally new kinds of
objects all the time. This limited users to those who were capable
of such invention,a nd limited the productivity of those users be-
cause writing new kinds ofthings is so much harder thaii reusing
existing fraineworks. A consensus has grown recent[y that the
time has come to stop Focusing exclusively on creating objects
and start supporting people who only want to use or elaborate on
things that already exist. Several factors contributed to this shift:
The market ofwizards creating new frameworks from scratch
was getting saturated. The economics of growth dictates a search
for new kinds of customers. The pace of innovation in 1iser jitter-
faces slowed, with the major windowing systems settling on
roughly the same set of components. This allowed the Smalltalk

26

vendors to stop spending so much energy doing the entire user
interface without help from the operating system. Enough ob-
jects had been created that is was possible to imagine someone
writing an application and not having to create new kinds of ob-
jects. The factors that used to single out Smalltalk-a bundled
dass library and an interactive programming environment-
were no longer unique. Smalltalk had to move on or get tram-
pled by the Borland C++'s of the world.

Whole lotta Smalltalk, Kent Beck,

OBJECT MAGAZNE 3-4/93

CORBA

About 60 companies are creating CORBA implementations. ac-
cording to the Object Management Group. But only DEC and
HyperDesk, Westborough, Mass., with its Distributed Object
Management System, are shipping CORBA 1.1 products... HFs
implementation, to be called HP Distributed Smalltalk, is a set of
Smalltalk classes for use with Visua[Works, a Smalltalk develop-
ment environment from ParcPiace Systems...

HP Tool Showcases Key Object Spec, Dan Richman,
OPEN SYSTEMS TODAY, 2/15/93

OBJECT SQL

DBMS: Are you planning an object-oriented language? Or do
you recommend one?

[R&[) section manager for HI's Database Lab, and second
chairman of the SQL Access Group: fohn R. Robertson]:The
real issue is·moving into that paradigm. Yes, we should have
staodards, we should have a common language. I don't think
C++ is necessarily the right language. By the time you get into
object systems you probably want to be having 4 GLs that are
going to take care of it for your. We should've learned that les-
son by now. We are not making an object-oriented language.
We have an object-interactive language, which really operates
at the command level. We're working with third parties who
are in the 4GI. business. The Object Management Group work-
ing group seems to be migrating toward having a common
command set, which is OSQL [Object SQI.]. 1 don't think it
matters much wliether you express that through Cil or
Smalltalk. The real issue is that you want your object model to
let you move your methods out of your application and put
them into the database where you can reuse them. This is how
database technology will mature.

Hewlett-Packard's Relational/Object Paradigm:
Peggy Watt and Joe Ce!ko, DBMS, 2/93

THE SM,\1 1.-r.AI K REPORT

SHARE

INC.

SYSTEMS WINDOWBUILDER 17 !
Tbe New Power in Smalltalk/V Interface Development

Smalltalk/V clerelopers have
Window];uilder :15 an

essential tool for devek}p
inK sophisticated liser inter-
faces, Tedious hand coding
of interfaces is replaced by
interactive kibual composi-
tion. Since its initial release.
WindowBuilder has

become the industry stan-
card GUI devek)pment tool
for the Smallt:ilk/V environ-

ment. Now Objectsllare
brings you a whole new
level of capability with
WindowBililder Pro! New
functionality and power
ah{>und in this next genera-
tion ot Windi>RBuilder.

come to rely on Windownuilder Pro/V 3

9=,2 'ElgAR#„Buader Pf<#i#.#mmer#,Bgl,04,411*5 2f»43
tile Ldit Miew Wign Size Qptions Quaphook Add

0,11231¤,Iwil.1 1.Imlo iii.lajetimixit·111#14·I•il:Tl+13.#¢47:Il

*4x »1 P.ogrommt, Aa#i@,•mhbb Illf :lh-4 A 1 :i::.
- - hz. 4*di f€Uima<,3

* f i :1:6·*eft : f<FICI 1 f }ifil 1
24'" /7 AR=1 '. 1.. 0.24.

49*U«© f 1=Intel®lit: 30.14J: t#1&
„*024/41//Mi [lefaullSVIc I*ltfJWken:display
:3&94¢3......
MI#-,0 941•hN.i?,£-*-Miledi' f 42:f

s available on Windows for $295
 and 04/21-or $495. Our sta

dard *.11kl(>u'Tiiiildel/V N

*: still dvailable on W inclowS
tor $]49.95 :ind OS/2 fri
S295. We Killer full j alue
tracie-In for oiii

1 WindowBILikier customers

u :inting to move up to Iii·o
These pmdhic IN are .11%0
aivailable in

. 11.NVYE/Depelope?i- and
2 lk'am/V'EM coniparible for
I mats. As with .111 of our

 products, WindowBuilder
as¢- 1 Pro comes with a 30 day

|1 1 money back guarantee. ful
source rode and no Run-

Time fees.

Sorne ctitbe exciting ilettifeatures...
• Compolit·I>.Imp. Create cubtom controls as composites

' of other contrcils. tre:lal as
Strce:1 21 5111;tle 01)jeet, all<)Ulng [lke

dewl<}per higher leverage
Cit/l IS of reusable widgeth
Zip:

&/Vt. ild.4%*14@2Emi Compositepanes can lie
used Nfatedly al](!

Irause they are Class based. they can be· easil)· hub-
classed: changes in a CompositePane are reflec·led any-
where they are used.

• Morphing. Allows the developer to quickly change
milltalk *' from one tYpe of con,rol es,ous
IWIndowBulld" t t<) .l11(,ther..ill(>\Ving k)1 0 Smalltalk

Per e p{)weriul Hlia[-i[st¥[e O Windoweuilder

p visual development. The 00'hei
' lexibility allowed by 2

morphing will greatly enliance produdivity.

• Ncr:11)Book: Another new feature to level·age visual
componenl reuse, ScrapBook, pir,vide a met'llanism for

ck velopei·% to quickly
store #ind retrieve pre-

1la.ulh.

iv1,„s- defined sets of comix)-
nents. The Sci·,Ip Book

. 23£3UXEB
I. i:. a catalog of one's

favorite interface com-

1--W-19*jij - 'M'*==U- 121 ponents, cilgallized
into chapter, and pages.

• Rapid Prol«volim apa-
bilitics: With the new link- 94.lavic»imqrliES

ing cipabilities. a develop- F ile'ind.r - l'reeDirknrews/, + Link Type

er can rapidh' protolype i Graphirs/rme , Sib/Ing |Fiefrang
Iconhditorfunctional interlace u lt]Joul 1,1offieTax

A |07%'e 6elected
1 1%,Indow ai i child &

'IMS.T.irmwriting a single line <)1 ./ltransc:ip 4 cuirc./.duw.
Puly'lirew

code. Linkllum)Ms and liu22'0'L I ---*--1FB..'M
Link;Menus provide a pow·- - -

 c ful mechanism ft>r linking
;-I windows together and bpeci-

--M_ - - fying flow of control.
el. ActionBultons and

Actiontlenues pi·c>vide a
4,ww,j2 -Ifmt Ineellaill,:111 kn clevel)I.el. 10

attach, create, and reuse
actions without baking to write code These leatiurs
greatly enhance productivily during prototyping.

• -['00!Bar: Developers can Create suplii,ticated toolbars

Altell{21 01 ibltile
just like the ones in dic Windowflliilder Pro tool itbelf.

• c)thel ne„ fezituic. incluile enhanced duplication and
cut/paste functions. size and position inclicatom,
enhanced framing specification. Parent-Child window
relation,hip specilication, enh,inced Entn'Field with char-
after and field lekel validation, and much more...

• kid-in \I:in.itti·i Allows developers to easily integrate
extenhions into WiI,(kinlluilder Prob open architecture.

Catch the excitement. go Pro!
Call Objectshare for mot·e intormation.

(408) 727-3742

Objeershare SysteniN. Inc 5 Town & Country Village
Fax: (408) 7276324 Suite 735
Clm.puserve 76=136,1063 San Jose. CA 95128 2026

WindowBuilderand WindowGuilde. Pro aretrademar<solobjecls-iare S,Slems, Inc Allorher hrandand productnamesare regsteredtrademarksof theirreipectivecompanies

Debugging
objects

Bob Hinkle, Vicki Jones, and
Ralph E. Johnson

s the premier obiect-oriented programming lan-
guage, Smalltalk should give programmers easy
access to objects. However, during debugging it
can be very difficult to get your bands on a par-
ticular object. For example, suppose you're devel-

oping a program that stores some objects in an Orderedeollec-
tion, but when it tries to retrieve them later, some are missing.
You might like to add debugging code to Orderedeollection
methods such as add: and remove: to detect when objects are
taken out of the Orderedeollection, but any changes would affect
every OrderedCollection in the system, bringing your image to a
crashing halt* This article will show how to solve this and simi-
lar problems by letting you modify code and add breakpoints
that affect only one particular object, rather than all objects in
a given class.This approach of defining only object-specific
methods is similar to what Kent Beck has described.].2 Our so-
lution relies on the use of a new kind of class and on some

small but powerful variations on CompitedMethods and Compil-
ers. Besides being useful iii their own right, we feel these exten-
ions again illustrate (as in our previous articles'·4) how power-
ful Smalltalk's reflective features are, as they allow
programmers to) adapt and extend the environment to suit
their needs. The solution described here is specific to
Smalltalk-80, since it relies on Smalltalk-80's architecture for
classes, metadasses, the compiler, and compiled methods and
on the complete availability of source code for these system el-
merl 'Asa result, our extensions may not apply to Smalltalk

V er + . onments, although something similar may be possible.

UGHTWBGHT CLASSES

The first step to debugging objects is to be able to modify
methods on a per-object basis. In Smalltalk, methods for an

* Source code for the object debugging package is available by anonymow ftp from
st.cs.uiucedu. Look for the file ObjeciDebugging.st in pub/st80_r41.

4

A

object are defined in that object's class and are stored in the
class's method dictionary. To change a method for a particular
object requires that the object have its own private class. We
will give an object that we want to debug its own class by in-
serting a new class between the object and its real class. We
could create a (perhaps temporary or anonymous) instance of
class Class for this purpose, but that's a little heavy-handed: In-
stances of Class have many instance variables and a lot of be-
havior aren't needed for our purposes. For example, Class adds
variables and functionality to define new class and pool vari-
ables. In addition, Class inherits from ClassDescription variables
and code to support adding new instance variables and class
organizations. All ofthis is unnecessary for a lightweight class,
so we defined Lightweight€lass to be a subclass of Behavior. Be-
havior is the superdass of ClassDescriptien, and it defines the
code needed for the interpreter to do method lookup. (For
more in formation on the roles of Behavior, Class, and ClassDe-
sciiption, refer to the chapter titled "Protocol for Classes" iIi
Reference 5.) Since Behavior is a simpler starting point, in-
stances o f LightweightClass wili be smaller than instances of
Class and will require less memory and time to allocate, initial-
ize, and finalize. That makes it easier and less expensive to cre
ate lightweight classes on the fly to modify, even if only tem-
porarily, some object's behavior.

Before explaining Lightweightelass in detail, it's helpful to
review the way things work normally in Smalltalk. When an
object is sent a message, the system tries to find a method cor-
responding to the message's selector in the method dictionary
of the object's dass. If no such method exists, the system will
look in that class's superclass, and so on up the chain of super-
classes until a method is found or the end of the chain is

reached. Furthermore, when a method is added to a class or
changed. the new code is compiled by an instance of the class's
compilerelass (which by default in the system is Smatitalkeom-
piler). The result of compiling is an instance of CompRedMethod,
which will be stored in the class's method dictionary with its
selector as its key. The source code for the method is not stored
directly in the CompiledMethod; but, instead, is written into the
change log and the CompitedMethod is given a pointer to its file
and offset.

Our implementation of lightweight classes changes this
normal scenario in three ways. The first and most important
change inserts a Lightweightelass in between an object and its
real class (or what we will call original class, since it was the
class by which the object was originally created), with the ob-
ject's dass being changed to the Lightweightelass, and the
Lightweight(lass' superciass set to the object's original class. In
this way, any message sent to the object will first be looked up
it] the Lightweightaass's method dictionary. Ifa method is
found there, it will be used to respond to the message, and it
will be unique to that particular object. Otherwise, message
lookup will continue to the LightweightCiass' superdass-the
object's original class-and, hence, will proceed as usual for
objects of that class. Figure 1 illustrates this relationship be-
tween an object, its original class, and its lightweight class.

THE SMALLTALK REPORT

method corresponding to aSelector isn't defined in the receiver,
a new BreakpointMethod is created and installed in the re-
ceiver's method dictionary.

As with lightweight classes, we need a new compiler class,
BreakpointCompiler, to implement breakpoints. Once again,
though, this class is almost trivial, since it only needs to define
newCodeStream to return a CodeStream that creates Breakpoint-
Methods.

PUTTING THINGS TOGETHER

To exploit the functionality provided by Lightweight¢lass and
BreakpointMethod, we adapted the interface to make object de-
bugging as simple as possible. This required changing the exist-
ing Browsers, adding a menu option to Inspectors, and creating
a new Browse specifically for lightweight classes.

The existing BrowseIS were changed by adding a breakpoint
option to the menu in the selector view. Choosing this option
will either set a breakpoint on the selected method or, if the
method is already breakpointed, remove the breakpoint, so
that the option acts like a toggle switch. Furthermore, the se-
lector view allows method selectors to be formatted, and we

use a preceding asterisk to quickly distinguish methods with
breakpoints.

In addition, all Inspectors jiow have a new menu option
called browseLightweight. Choosing this option will create a
new lightweight class for the selected object and open a
LightweightelassBrowser to examine and modify methods for
that particular obiect.

LightweightClassBrowser is a subciass of Browser for looking
at lightweight classes. As shown in Figure 3, the Lightweight-
ClassBrowser has six subviews. The first two views allow you to
decide what methods voull see: You can either see only meth-
ods defined in the lightweight class, or all methods up to some
specified superclass. The upper right view shows which class
you're listing methods up to, while the upper left view shows
which class the selected method is actually defined in. This
option makes it easy to view a superclass method and then
make changes to save in the lightweight class. The third view
lists all selectors from the lightweight class up to the class cho-
sen in the upper right view. These selectors are formatted so
that all breakpointed methods are marked with an asterisk,
and so that all methods actually defined iii the lightweiglit
class (as opposed to one of its superclasses) are printed in
bold. The fourth view is a Text'new on the code of the cup
rentiv selected method. Finally, the last two views belong to an
Inspector on the object whose lightweight class is being
browsed.

This interface makes it easy to imagine how the debugging
session mentioned in the introduction would proceed. Once
you've decided there is a problem with one of your OrderedCol-
lections, you can use a Browser to put a breakpoint on the
method where the OrderedCollection is created. When that

method is executed, a Debugger will pop up. The Debugger lets
you inspect the OIderedCollection and choose the browse-
Lightweight option to create a lightweight class for it. The

JULY-AUGUST 1993

LightweightClassBIowser lets you put breakpoints on the add:
and remove: methods. After you "proceed" from the Debugger,
you'll be able to watch as that one OrderedCollection is
modified, and you can find out when objects are added to it
and when they're removed. With that information, youllbe
well on your way to solving the problem.

These changes significantly improve debugging in the
Smalltalk environment. Though breakpoints are convenient,
it's the functionality of lightweight classes that makes the key
difference, as they allow you to monitor or alter the behavior
of particular objects without affecting the rest of your system.
The changes described here, while not complex, are remark-
able in one sense, because they rely on our ability to modifv
par ts of the Smalltalk system that iii some languages would be
internal and unavailable to programmers. The fact that
classes are first-class objects-which is to say, classes are ac-
cessible to and modifiable by the programmer--allowed us to
introduce a new kind of class and to replace an object's class
on the fly during execution. Similarly, we were able to create
two subclasses of CompiledMethod, and make an important
change to that class itself, onlv because compiled methods are
first class. Finally, Smalltalk's representation of the Compiler
itself, and its good design for pluggability, allowed us to cre-
ate two simple subclasses by defining only one method each.
The combination of the ease of making these changes with
the significant benefits they provide is a good argument for
the desirabilitv of this level of reflection in a programming
system. In our next article, we plan to explore one level
deeper into Smalltalk's reflectiveness by changing the com-
piler and the interpreter to introduce active variables and
watchpoints. I

References

1. Beck, K. Instance-specific behavior, part I, THE SMALLTALK RE-
poRT 2(6), 1992.

2. Beck, K. Instance-specific behavior, part I I, THE SMALLTALK REI-
PORT 2(7), 1992.

3. Hinkle, B. and R. E. Johnson. Taking exception to Smalltalk,
part 1, THE SM.ALLIAI.K REPORT 2(3), 1992.

4. Hinkle, B., and R. E. Johnson. Taking exception to Smalltalk
part 2, THE SMALLTALK REpoRT, (2)4, 1993.

5. Goldberg, A., and D. Robson. SMALUALK-80: THE LANGUAGE
AND ITS IMPLEMENTATION, Addison-Wesley, Reading, MA,
1983.

6. A. Ii. Borning. Classes versus prototypes in object-oriented lan-
guageS, PROCEEDINGS OF THE ACM/IFEE FALL JOINT CoM
PUTER CONFERENCE, Dallas, TX, November 1986, pp. 36-40.

Bob Hinkle, Vicki Jones, and Ralph E Johnson are affiliated with the
Department of Computer Science at University of Il inois at Urbana-
Champaign. Bob Hinkle is supported by u fellowship from the Fannie
and joitn Hertz Foundation. He can be renched via enictit at
r-hinkle@uinc.edu. Vicki jones and Ralph Johnson can be reached
via einailat {viones, ioh,ison}@cs.uiuc.ediz

25

..coatitued fri„i page 6

Date

method O,ctionary

-, A CompiledMetbod
$ bytes: #(.. 1

A M ethod D iction ary mcI#..

source(ode 346902

0 -agent
#asSeconds

B
•day I A BreakpointMethod

 - bytes #{)
0 *Closs

sourceCode 52822

-agenl
clientMethod-

C IA CompiledMethod
bytes: #C)
molar"

sourceCode 347782
- gent

Figure 2. The relationship between CompitedMethods and the BreakpointMethods
that represent them.

pointMethod itself is invisible in the debugging process, since it
is removed from the execution stack before the debugger
opens, In addition, BreakpointMethods implement the getSource
message by returning their client's source, and so breakpointed
methods can be browsed directly.

The new variable agent is needed to make CompiledMethods
with breakpoints print out well. Every CompiledMethod has an
instance variable called mdass, which refers to the class in
whose method dictionary the CompiledMethod should be
found. When CompitedMethods print themselves out, they look
iii their mciass to make sure they really are defined there ; if
they aren't, they will print out as an unboundMethod, Since
BreakpointMethods replace their client in the method dictio-
nam all breakpointed methods would print out as unbound-
Methods, which is confusing and aesthetically unpleasing. We
solved this problem by adding agent:. Now, when a Compiled-
Method prints out, it checks to make sure that its agent is
defined by its mclass, and if so it prints out normally. Most
CompiledMethods are their own agents, but breakpointed
methods will have their agent set to tile BreakpointMethod
that's representing them, and so they'll print out correctly.
Figure 2 illustrates this relationship between CompRedMethods
and the BreakpointMethods that represent them.

In Figure 2, the asSeconds method for Date-the Compiled-
Method marked A-is a normal method. Its mclass is Date, it is
its own agent, and it is referred to directly by Date's method
dictionary. However, a breakpoint has been placed on the day
method for Date. The #day entry in Date's method dictionary
refers to the BreakpointMethod B, whose clientMethod is the
CompiledMethod C. CompiledMethod C, in turn, refers to Break-
pointMethod B as its agent. This way, even though Compiled-
Method C is not referenced by Date's niethod dictionary, its
agent-BreakpointMethod B-is, so CompiedMethod C will print
as a well-defined method rather than as an unbound one.

24

m DEBUGGING OBJECTS

We added breakpoints to the system by creating three
new methods in Behavior, thus making breakpoints in all
kinds of classes, including instances of both Class and
Lightweightaass. The first method, isBreakpointAL:, tells
whether the specified method in the Behavior has a break-
point set or not. The second, breakpointCompilerelass, returns
Breakpointeompiter, which is the compiler used for all classes
to create new breakpointed methods. The third method, set-
BreakpointAt:, is the main one and is used to set or remove a
breakpoint. It's implemented as:

setBreakpointAt: aSelector
Icml
c:- self whichelassIncludesSelector: aselector.
c isNilifrrue: [Aself].
m := c compiledMethodAL aSelector.
self == c

ifrrue: [
m isBreakpoint

iffrue: [m client metass = self
iffrue: [self addSelector: aSelector

withMethod: m client]
iffalse: [self removeselector: aselector]1

iffalse: [self addSetector. aSelector withMethod.
(BreakpointMethod on: m

selector: aSelector

inaass: self)]]
iffalse: I

at iSBreakpoint imue: [m := m client].
self addSelector: aSelector withMethod:

(BreakpointMethod on. m selector: aSelector inelass: sell)]

If the receiver Behavior is tile class that defines the method cor-
responding to the parameter selector and if the method is ai-
ready breakpointed, the code removes the breakpoint by test-
ing whether the BreakpointMethod's client is defined in the
receiver or not. If it is, the BreakpointMethod is replaced by its
client in the receiver's method dictionary; but if it isn't, the
BreakpointMethod is simply removed from the receiver's
method dictionary (thus leaving the client in whatever other
method dictionary it resides). If the method isn't break-
pointed, the code creates a new BreakpointMethod for it and
adds it to the receiver's method dictionary. Finally, if the

022,as:a
*assecon<is ,
bemeen:and:
class

psDays
This method has been spe¢kalized for this one object.'·

142

I V

 Date today as Daysseif 33697
day 1 self asDays i
year 7.

Figure 3. The lightweight class browser.

THE SMALLTALK REPOR'r

asDa

A MethodDictionary

A Date Date m
class e

day 97 m method Dictionapy

year 1993
day

'day

1 .

SUP//Class
A Method Dictio na ry

B
A Date A Lmghtweighttlass Oclass ®day 98 4 methodDiononary -

year 1993
dal

•42

e

®
e

Figure 1. The relationship between an object, its original class, and its
lightweight class.

In Figure 1, when the day message is sent to the object
marked A, a corresponding method is searched for starting iii
Date, the object's class. This method returns the value of the
day instance variable, which (for A) 14 97. However, when the
day message is sent to object B, message lookup begins iii its
class, which is an instance of Ughtweightelass. The method in
the lightweight class's method dictionary is defined to return
42, Thus, object B behaves differently from A and all other in-
stances of Date,

The two other changes pertain to source code management.
The code for methods in lightweight classes can't be stored in
the change log, since the lightweight class isn't named in the
system dictionary, and it has no category or protocols like nor-
mal classes. (And in any case, the lightweight class may be an
entirely dynamic object that is created while running a pro-
gram, but which does not persist from one programming ses-
sion to the next, so that storing code for it in the change log
would make no sense.) Instead, we store the code directly with
tile method it produces, which required us to create a new kind
of compiled method, CompiledMethodWithSource. Finally, to
produce these kinds of compiled methods, we exploited the
«pluggability" of the compiler and created a new subclass of
Smalltalkeompiler. We'll describe these two changes after first
looking at Lightweightelass in detail.

As a subclass of Behavior, UghtweightClass adds only one in-
stance variable, name, which is convenient for telling
lightweight classes apart. In addition to accessor methods for
this variable, Lightweightelass defines three other methods of
interest: initializeWithSuper:, whichinitializes a new lightweight
class; compile:notifying: ifFail:, which adds a new method to a
lightweight class; and compilerClass, which defines the kind of
compiler to use for methods in a lightweight class.

A new lightweight class is normally created by sending
becomeLightweight to an object. This method is defined in Ob-
ject as follows:

becomeLightweight
 lightweightClass 1
self lightweightelass isNit

JULY-AuGusr 1993

#0.Just touch a buttonto
 r77 putachart li

- MPkiB:M'2<1* viewiny<,ur lit

Add charts to your Visua]Works palette
Dynan#t Acid or change data points, with minimal screen repainting.

Add or remove data series to/from the chart.

#nteraaive Select data points with the mouse-EOCharts informs
your application.

3 ...1

Uses screen space effectivety 0 1000 2000 ZOO 'CO

Scroll the chart view in one or both
directiozis. Mark values of summary 1985 ---7

functions in the ww i
#*-%%12£SaS)(axis areas. Show ' 9" "". 1 1 7

' '-J - 2 thresholds using 1987 6- 1 ..2-/-_..73, grid [ines. 1908

1989 !-1,1 1 7,1 144*Ex'.' - 1930.- 1/ 1
NEw Voar ST, 1991 /4 1 11

I E

10% 01/ 021 03: 04r q. *,f f[1 T ¥ mi wt
T f!ff [!il LI + ft Zf *,1.-74 12_- v - 4*Iname 'Remze -In31

I. H
8 - Tr7 f---1 E- 1 [1 1-
' 1(Arla] f-1 P ' " 4

'GB 'r 1 '65 39 -r ·,1 7» 73 74 '7:

00$350 41 Totalbudget A rotalaid te

No runtime license fee r A C iff C U
Cati for a technicaf paper I JOI IW 31°42

on Ectharts (408) 462-0641
Msuamore is a tradenlark

of Pa.Place Systems. Inc
21137 East Cliff Dr · Santa Cruz · CA 95062

ifrrue: [
lightweightmass :=

Lightweightelass newWithSuper: self dass,
self change(lassToThatOf: lightweightaass basicNew]

If the receiver of this message already has a lightweight class,
nothing more is done. Otherwise, newWithSuper: is sent to cre-
ate a new lightweight class whose superclass will be the receiver
object's original class. The message changeClassToThatOf: is then
sent to the receiver to insert the lightweight class before the ob-
ject's original class. Because some objects (notably immutable
objects like SmallIntegers, Characters, true, and false) can't have
their Cla5S changed, becomeLightweight carl't be sent to them,
but it can be sent to all others.

The newWithSUper. method creates a new lightweight class
and then sends it the initiatizeWithSuper: message, where the
parameter is the object's original class. This initialization
method gives a default name to the lightweight class, creates a
new method dictionary for it, and sets its superclass to be the
class passed in, so that any messages not found in the
lightweight classquote method dictionary will be looked up in
the object's original class.

The solution described in the preceding paragraphs makes
sure that messages sent to a lightweight object are first looked
up in the object's lightweight class as desired. However, class
messages will not work correctly as the solution has been pre-
sented so far. For example, ifaDay is a lightweight instance of
Date, sending "aDay class nameOfDay: 1" should be the same as
sending "Date nameOfDay: 1," but aDafs class is an instance of
Lightweight(lass, so "aDay class name(}fl)ay: 1" will try (and fail)
to find a method for the message nameomay: defined for

5

*

Lightweightelass, This problem exists because classes have sev-
eral roles, including roles as method repositories and as reposi-
tories for shared information On this case, the names of the
days of the week). We want the lightweight class to play the
first role and the object's original class to play the second, but
Smalltalk expects one entity to play both roles. (Alan Borning
summarizes the various roles of class and suggests an alterna-
tive approach in Reference 6.) Our solution to this problem is
to separate out the role of method repository, which we did by
creating a new method for all objects called dispatchingCiass,
The definition of dispatching Class in Object is the same as that
of class-it uses a primitive to directly access the object's class
from the object's memory structure. When an object is made
lightweight, its lightweight class is stored in the memory struc-
ture and thus returned as the value of dispatchingelass. In addi-
tien, LightweightC]ass overrides the class method to be:

class

self dispatching€lass superetass

This will return the object's original class, as desired, since
newWithSuper: installed the original class as the lightweight
class's superclass.

The Lightweightetass method compRe:notifying:ifFail: is
needed when a method is defined in a lightweight class and is
implemented as:

compile: code notifying: requestor ifFail: failmock
-Compile the argument. code. as source code in the context of the
receiver and install the result in the receiver's method dictionaiy.
The argument requester is to be notified if an error occurs. The
argument code is either a string or an object that converts to a string
or a PositionableStream on an object that converts to a stling. This
method *does* save the source code. Evaluate the failmock if the
compilation does not succeed."

1 methodNode selector save method oldMethod I
save := code asString copy,
methodNode := self compiteraass new

compile: code
in; self

notifying: requestor
ifFail: faitmock.

selector := methodNode selector.
method := methodNode generate.
method sourceCode: save.

oldMethod:= self compiledMethodAt: selector ifAbsent: Init].
(oldMethod notNil and: [oldMethod isBreakpoint])

ifrnle: [oldMethod client: method]
ifFalse'. [self addSelector: selector withMethod: method].

selector

There are two major differences between this method and the
compile:notifying:iffail: method as defined in Behavior. First,
this method saves the source code that was passed iii and
passes it along (using the sourceCode: message) to the Compiled-
MethodWithSource that's generated from the message send
methodNode generate." Also, the code checks to see whether
the method being compiled used to have a breakpoint and, if
so, preserves the breakpoint in the method dictionary. (This
logic will be explained in detail in the next section.)

The final Lightweightaass method is compiteraass, which

6

m DEBUGGING OBJECTS

simply returns a new class, LightweightCompiler, to be used when
compiling [ightweight class methods. Creating a new compiler
class sounds overly ambitious, but it>s actually quite simple,
since the new class has only one method, newCodeStream; the
rest are inherited straight from SmaUtalkCompiler. This method
is used to create a new CodeStream for use by the compiler. Since
CodeStream generates CompiledMethods by default, we changed it
to be parameterized by the kind of method generated, and so
Lightweighteompiler implements newCodeStream simply by re-
turning a CodeStream that will generate instances of Compiled-
MethodWithSource. The implementation of CompitedMethodWith„
Source is just as simple. We changed three methods so that the
sourceCode instance variable is interpreted as a source string
(rather than a pointer to a fle and offset), and the rest of its
functionality is inherited from CompiledMethod

With these few changes we now have an easy way to change
the behavior of individual objects. We still need a good inter-
face for doing that, though, and we'11 describe our approach
for that after first looking at breakpoints.

BREAKPOINTS

One of the typical things a programmer wants to do while de-
bugging objects (and often in other debugging, as well) is to
add "self halt" to a method-effectively adding a breakpoint. As
it turns out, there's a simple way to add an initial breakpoint
using the same technique that we used above with Lightweight-
Compiler and CompiledMethodWithSouIce; we'11 simply create a
new class of compiled method, BreakpointMethod, and a com-
piler for generating instances of it. This variety of breakpoint
has three advantages over the "self halt" version: They are easier
to add and remove, since it's done by menu rather than by typ-
ing; they don't affect the various change mechanisms, so the
change set and change log don't include trivial changes for
adding (and presumably later removing) a halt in a method;
and they are invisible in source code, so a programmer who is
browsing or debugging a breakpointed method will see only the
normally defined code-the breakpoint is invisible. The one
disadvantage of our technique is that you can halt only at the
start of a method, though our design may be adaptable to cover
breakpoints throughout a method's body.

BreakpointMethod is a subclass of CompiledMethod with one
instance variable, clientMethod. In addition, we added a new in-
stance variable, agent, to CompiledMethod. When a breakpoint
is set on an existing CompitedMethod, a new BreakpointMethod is
created, and these two instance variables are changed so that
the BreakpointMethod's clientMethod is the CompiledMethod, and
the CompiledMethod's agent is the BreakpointMethod. The body
of a BreakpointMethod is always the same: It's the expression
"Notifier handleBreakpoint." Thus, when a BreakpointMethod is
executed, this expression is evaluated, and Notifier responds by
updating its stack, replacing the BreakpointMethod with its
client-the original CompiledMethod-and opening a debugger
with that method in the top context. In this way, the Break-

continued on page 24 .

THE SMALUALK REPORT

ParagraphEditodnitializeDispatchTable.
ParagraphEditorinitializeAdditionsToDispatchTable.

These bindings are valid only for windows created after initializ-
ing, so open a new Browser or Workspace to test the additions.

For Smalltalk/V, we use keyboard abbreviations. After typing
an abbreviation, type Shift-Space to expand the abbreviation.

Execute the following code, customizing as appropriate:
Smalltalk at #Abbreviations put:Dictionary new.
Abbreviations

at: 'gh' put:'(Notifier isKeyDown: VkShift) ifrrue: [self halt].';
at: 'tr' put:'Cuirentfjocess walkbackOn: Transcript maxlevels: 1.'

In Smalitalk/V for OS/2, add the following method:
TextPane

characterinput: aChar

"Process a character typed by the user."
1 abbrevDict left right c scontinue newline 1
abbrevDict := Smalltalk

at:#Abbreviations

ifAbsent: [Aself basicCharacterInput:aChar].
<aChar = Space and: Iotifier isShiftDown])

ifhe: [selfgetPMSelection.
left := right := setEnd - 1.
s := String new.
[c:= self charAt: left.

(continue :- (c noiNR and: [c isAlphaNumeric]))
ifrrue: [s := (String with: c), s}

continue]
whileTrue: [left :=left - 11.

new := abbrevDict at: s ifAbsent: [nil].
new nomitifTme: [self selectIndextom: left to:right].
Aselfinsert: newl.

Asuper characterInput: aChar

In Smalltalk/V for Windows, copy the text from the TextPane
method characterInput: to a new method called basiceharacter-
Input:.

TextPane

basiceharacterInput: aChar
"Pdvate - the user typed aChar."
self isGapSelection

iffalse. [selfhideSelection].
newSelection := self reptaceWithehar: aChaL
modified :=true.

self

selectAfter: newSelection comer;
makeSelectionVisible:

displayehangesforCharInput;
showSelection

Ther, replace the original characterInput: method with the
following:

TextPane

characterInput: aChar
"Process a character typed by theuser."
 abbrevDict left right c scontinue line new J

abbrevDict := Smalltalk

at: #Abbreviations

ifAbsent: [telfbasicCharacterInput: aChar].

(aChar = Space and: [Notifier isKeyDown: VkShift])
ifrrue: [teft := right := selection corner x.

JULY-AUGUST 1993

line := textHoldertineAt: selection comer y
s := String new.
[c := line at: left

(continue := (c notNil and: [cisAlphaNumeric]))
ifrnie: Is := (String with: c),s]
ifialse: Bet := left + 1].

(continue and: [teft > 11)1
whileTrue: [teft:= left - 1].

new :=abbievDict at; s ifAbsent: Init],
new notNitiffrue:

[selection
selectBefore: left @ selection corner y;
setectTo- right @ selection carrier y.

self IeplaceWithText: new.
selection selecLAfter: left + new size @ selection comer y.
self forceSelectionOntoDisplay.
Anilll.

Aself basicCharacterInput: aChar

Be careful when entering this method in the browser, as mis-
takes will prevent subsequent character input from text panes,
such as in the bottom pane of the browser.

CAVEATS

Please note that the debugging techniques advocated in this ar-
tide may violate normal programming guidelines. Some of the
expressions use globals or "private» methods; others, like mov-
ing or warping the cursor, are expressly prohibited by user iii-
terface style guides. Use them judiciously.

CONCLUSION

While this article has presented a collection of Smalltalk de-
bugging techniques, it is impossible to describe the most
efficient debugging strategy for anv particular situation with-
out knowing where the problem lies. Of course, if you knew
where the bug was in the first place, you wouldn't need to de-
bug it.

These debugging hints won't make you an expert overnight.
Effective debugging requires creativity and experience and
there are few shortcuts, but assembling an arsenal of debugging
techniques can shorten development time and improve code
quality. ®

Acknowledgments
We'd like to thank the following people, who provided prob-
kerns, solutions, or otherwise helped debug the debugging pa M
per: Ken Auer, Duane Campbell, Andrew Cornwall, Tom
Hendley, Tom Heruska, Larry Juiidt, Cary Laird, Mike Lucas,
Pat Martin, Angie Multer, Kim Rochat, Brian Wilkerson.

Roxie Rochat is Senior Technical Specialist in Advanced System De-
velopment and Process Instrumentation Technology at Fisher-Row-
mount Systems Inc., 1712 Centre Creek Drive. Austin, TX 78754
512.832.3583. She can be reached via email at rechat@jisher. com,
Juanita Ewing is G senior staff member of Digtalk Professionat Ser-
vices, 921 SW Washington, Suite 312, Portland, OR 97205,
503.242.0725. She is a columnist ./br THE SMAUTALK REPORT.

23

provided by Windows to remove an unwanted task with the
End Task button. A more reliable method is to type <CTRL-ALT-
DEL>.The first <CTRL-ALT-DEL> allows you to exit the current
process. Another <CTRL-ALT-DEL> allows you to reboot the
machine.

After exiting, use the appropriate utilities to recover the
changes you want to keep, being careful not to restore the
method or methods that caused the crash.

An Advanced Emergency Procedure for Objectworks
If you're feeling more adventuresome and know exactly what
you did wrong, Objectworks allows you to recompile the
offending method instead of quitting. For example, you insert
a self halt in a critical method such as the otherwise empty con-
troUnitializel method and quickly realize that you should have
done this in a subdass when you see all the notifiers pop up.
Since <CTRL-C>,the program interrupt key, doesn't help, you
type <CTRL-SHIFT-C> to bring up the Emergency Evaluator and
then evaluate the following expression to restore the original
method:

Controlter compile: 'controUnitialize Aself dassified:
'basic control sequence'

Don't be concerned about making the Inethod pretty or get-
ting the protocol exactly corred; you can and should fix those
details once your environment is back to normal again.

OTHER DEBUGGING AIDS

Ways to debug problems are as varied as the bugs themselves,
but the following tips include advice about general approaches
to object-oriented debugging, techniques for graphical debug-
ging and ways to add shortcuts to access frequently used de-
bugging expressions.

Isolate Debugging Code in a Subclass
Whenever possible, isolate your debugging code in a new sub-
class, You can copy methods from the superclass or override
them to add debugging information. This is most useful when
you are primarily interested iii finding out how the current sys-
tem works and your debugging activities are confined to halts
and monitoring activities such as printing to the Transcript. If
you are trying to find a genuine bug and functionally changing
code, you have to remember to copy the changes back to the
real class.

Graphical Feedback
When you're debugging graphical applications, you need a lot
of visual feedback. If your application is interactive, you might
need to understand where the cursor is located and how to
manipulate it.

In Objectworks, you can find out where the cursor is rela
tive to the window with the expression:

SchedutedControtters activeController sensor cursorPoint

You can position the cursor explicitly with:

22

a SMALLTALK DEBUGGING TECHNIQUES

ScheduledControllers activeController sensor cursorPoint: aPoint

You can ask the user to interactively designate an area on the
screen:

Rectangle fromUser

Indicate an area with a filled rectangle:

ScheduledControlters activeControlter view graphicsContext
display Rectangle: (0@0 extent: 10@100)

In Smalitalk/V, there are a similar set of expressions. To find
the location of the cursor iii screen coordinates use:

Cursor sense

To translate to coordinates for a paine use:

Cursor sense map ScreenToCtient: aPane

To set the location of the cursor relative to the screen origin:

Cursor offset: aPoint

You can ask the user to interactively designate an area on the
screen:

Display rectanglerromUser

You can also indicate a screen area, in this case by filling the
rectangle with a solid red color:

Display pen fill: Display rectangleFromUser color: CirRed

Magic Debugging Keys
If you find that you use certain debugging expressions fre-
quently, you can modify your programming environrnent to
add these expressions with function keys or keyboard
equivalents.

For Objectworks, we use function keys to insert some of the
debugging expressions mentioned previously.

The ParagraphEditor's initializeDispatchTable class method
controls the binding of keys to actions. Rather than adding to
thi5 method, the following code creates a new method for the
debugging bindings:

ParagraphEditorclass
initializeAdditionsToDispatchTabIe

Vnitiatize additional keyboard dispatch keys."
"ParagraphEditor initializeDispatchTable.
ParagraphEditor initiatizeAdditionsToDispatchTable."
Keyboard bindValue:#display}ialtKey: tor #F5.
Keyboard bindValue:#displayGuardedHaltKey: to: #F6.

ParagraphEditor
displayHaltKey: aCharEvent

"Replace the current text selection with a debugging statement-
initiated by #F5."

self appendToSelection: 'seif halt.\' withCRs.
displayGuardedHaltKey: aCharEvent

'·Replace the current textselection with a debugging statement-
initiated by #F6."

self appendToSelection: 'InputState default shiftDown
iffrue:[self halt].\' withERs.

After compiling those methods, be sure to execute

THE MALLTALK REPORT

Obj nsition
byl

APPRENTICE PROGRAM o 00
- ta

ED TRAINING

t

CONTRACTS

ANALYSIS & DESIGN
91.7

¢{%11.16•,141111104614:16

MENTORING

4

Object Technology Potential
Object Technology can provide a
company with significant benefits:
e Quality Software
e Rapid Development
e Reusable Code

0 Model Business Rules

But the transition is a process that
must be designed for success.

Transition Solution

Since 1985, Knowledge Systems
Corporation (KSC) has helped
hundreds of companies such as
AMS, First Union, Hewlett-Packard,
IBM, Northern Telecom, Southern
California Edison and Texas Instru-

ments to successfully transition to
Object Technology.

TEAM TOOLS 37

KSCTransition Services

1<SC offers a complete training
curriculum and expert consulting
services. Our multi-step program is
designed to allow a client to ulti-
mately attain self-sufficiency and
produce deliverable solutions. KSC
accelerates group learning and
development The learning curve is
measured in weeks rather than

months. The process includes:
• Introductory to Advanced

Programming in Smalltalk
• STAP™ (Smalltalk Apprentice

Program) Project Focus at KSC
0 00 Analysis and Design
e Mentoring: Process Support

KSC Development Environment
KSC provides an integrated applica-
tion development environment
consisting of "Best of Breed" third
party tools and KSC value-added
software. Together KSC tools and
services empower development
teams to build oblect-oriented
applications for a client-server
environment.

Design your Transition
Begin your· successful "Object
Transition by Designt For more
information on KSC's products and
services, call us at 919-481-4000
today . Ask for a FREE copy of KSC's
informative management report:
Sofware Assets by Design.

Knowledge Systems Corporation 114 MacKenan Dr.

Cary, NC 27511
OBJECTTRANSITIONBYDESIGN (919) 4814000

9 1992 Knowlodge Ny M ems :orp<,ra[ion.

Applications of
Smalltalk in
scientific and

engineering
computation

Richard L. Peskin

1992 marked Smalltalk's 20th anniversary. While using
Smalltalk for simulation was an important goal for the environ-
ment, applications to "real" scientific and engineering simula-
tion and modeling have been few, In earlier Smalltalk systems,
slow (and expensive) hardware together with slow interpreters
were adequate reasons for the scientific community to ignore
Smalltalk. Addiction to FORTRAN and conservatism com-
pounded the problem.

Today's modern Smalltalk systems running on high perfor-
mance workstations have removed some of the traditional barn.-
ers to the use of the language for scientific computing. While in-
terpretive environments are generally an order of magllitude
slower than optimized compiled code for numericaliy intensive
tasks, techniques to integrate compiled code segments into
Smalltalk applications can overcome this deficit. The advantages
of Smalltalk's graphical interface and its ability to promote pro-
totyping offer much for scientific computing.

To address the issues and problems presented by scientific
applications of Smalltalk, Kent Beck of First Class Software and
I organized a workshop at OOPSLA <92 in Vancouver. Atten-
dance was by invitation only. Ten position papers were pre-
sented during the morning session, the afternoon session was
devoted to informal workgroups that delved into design and
implementation specifics. The position papers covered a wide
range of domain-specific topics concerned with applying
Smalltalk to scientific and engineering computation, However,
ali the papers were characterized by certain commonalities, one
o f these being that Smalltalk's flexibility does admit strategies to
overcome weaknesses such as computational performance. I
opened the meeting with some overview comments and noted
the rising interest in object-oriented computing within the sci-
entific and engineering community. Furthermore. with the
rapid increase iii hardware performance, we can expect more
applications of interpretive environments to scientific and en-
gineering problems, This is already evident in journal articles

8

where languages like Lisp, Prolog, Smalltalk, etc. are taking
place alongside FORTRAN and C. However, this domain com-
munity is very demanding; if existing 0-0 environments are
not suitable, users will create ones that are. Sather is an exam-
ple.

I also emphasized the need for robustness, completeness,
and correctness in Smalltalk implementations if they are to
meet the needs of the scientific community. Support for exter-
nal programs, inter-application communication, distributed
and parallel computation, and numerical and symbolic com-
putation classes are just sonic of the features needed, but are
currently either absent or minimally present in Smalltalk sys-
tems. This level of support maybe a tall order for a language
with only one or two vendors and no "standard»; one reason
for the popularity o f Lisp among the scientific community is its
standards and its multi-vendor support.

The bottom line is that the scientific and engineering com-
putation community will adopt 0 0 systems and do want the
prototyping flexibility offered by an interpretive environment
with dynamic binding. If Smalltalk is to be chosen by more
than just a token few, its user community and vendors will
have to work together to meet the needs of scientists and engi-
neers. The OOPSLA workshop was set up to be one forum to
assist in this process. To this end, vendor representatives were
invited to attend arcPJace Systems had a representative, and P

at the workshop. The morning presentations were further di-
vided into general topics (mathematics, engineering computa-
tion, scientific computation, and scientific data management)
and application papers. However, these boundaries were not
sharp. Pro fessor David Rector of the University of California
Irvine opened the morning session with a discussion of his
work in the development of a Smalltalk-based system to teach
numerical analysis to students, He presented several examples
of how current Smalltalk standard implementations fail to pro-
vide needed support. One example is the absence of precise iII-
terval subdivision (which he has corrected). He suggested im-
plementing a new iterator, map: [aBlock], so that collection
operations return correctly (e.gl, so that collect: over a dictio-
nary returns a dictionary, etc.), and he showed how this applies
to a differential equation solver method. Rector suggested a
separate class, Quantity, under Object, because Number is not ap
propriate to hold integral domains and fields such as complex
numbers, polvnomials, quaternions, etc. He also pointed out
that class Array is not the proper container for Vectors and Ma-

trices. In particular, the many varieties o f matrices implies the
need for a more general class to deal with these objects. This
subject became the topic of one of the afternoon working
groups.

Alan Knight, formerly ofthe Department of Mechanical
and Aerospace Engineering at Carieton University, presented
an overview (co-authored with N. Dai) of Smalltalk in the con-
texts of applications to finite element method solveis. Drawing
or] five years of experience in attempting to use Smalltalk for
this type of problem, he listed the major problem areas of per-
formance, portability, graphics, and user-interface facilities.

TELE SMALL.TALK REPORT

If the code is being executed from a controller method in Ob-
iectworks, you can use the simpler:

self sensor shiftDown iffrue: [self halt]
If this interferes with other tests for the shift key, you can also
test for the Meta, Option, Alt (ifit isn't commandeered by
your windowing system), or Ctrl keys. For more information,
see the section on sensing input near the end of Chapter 18,
"Application framework," of the USER'S GUIDE FOR OBJECT-
WORKS\SMALLI·ALI<.

For Smalltalk/V, you can use platform-dependent keys with
expressions such as the following. For Smalltall/V for Win-
dows, use:

(Notifier isKeyDown: VkControt) iffrue: [self halt]

You can also gain control over the execution of non-primitive
expressions executed in the context of a workspace, debugger,
or inspector. For example, execute do it on the expression be-
low, which sends the halt message to 3

3 halt raisedTo: 2

In the debugger, step or skip through the niessages until you get
to the raisedTo: message and then send or hop. You can't step
into a primitive, such as integer addition, from the debugger,

Slowing Down the Action

Sometimes you don't actually want to stop the action; you iust
need to slow it down a little. For example, you're looking at
code that draws a complicated figure with a loop and you want
to see each line segment drawn, one at a time. You might use a
delay in the loop For Objectworks:

Cursor wait showWhile: [(Delay forMilliseconds: 800) wait]

For Small talk/V for OS/2:

CursorManager wait changefor: {DosLibrary sleep: 8001

Iii Objectworks, don>t forget to send the wait message to the
delay. You can create an instance of a Delay anytime you like,
but it doesn't actually stop the action until the wait message is
sent.

Or, You might choose to wait until a mouse button is
clicked For Obiectworks:

Cursor crossHair showWhile:

[ScheduledControllas activeControtter sensor waiLNoButton;
waitClickButtonl

This expression waits until all mouse buttons are up and then
waits again until one Es pressed. For Smalltalk/V:

CursorManager execute changeFor:
[Notifier consumeInputUrtil: [.event f

event selector =#buttonl Down:].
Notifier consumeinputUntil: [:event

eveigt selector = #buttoniUp:]]

This expression waits until the left mouse button is pressed
and then released.

The first expression makes sure you aren't in danger of run-

jULY-AUGUST 1993

ning on through the whole expression just because the mouse
button was still down from a previous operation such as a
menu invocation.

Changing the cursor while the system is sleeping or waiting
for a button press is a good visual reminder of your program>s
action. There are a number of other cursors available, and if
you have multiple delays in a method, you can use different
ones to give you feedback about the btate of the execution.

A delay can also give you time to interrupt a method with a
program interrupt ifyou so choose.

HOW DO 1 GET OUT?

One of the best things about the Smalltalk environment is that
you can change almost anything you like. One ofthe worst
things about tbe Smalltalk environment is that you can change
almost anything you like. If you happen to alter your environ-
ment in an undesirable way, you can also find yourself in big
trouble.

Although you might be able get yourselfout of a tight spot
ifvou have enough tinie, skill, and patience, you may find that
it's best to quit out of an image and recover desirable changes
in a fresh image rather than to undo the damage.

Quitting while You're Ahead
Ifyour normal means of exiting is blocked, you can often exit
by evaluating an expression. In Objectworks, the magic expres-
sion to gracefully shut doWI) the image when all else has failed
is'

ObjectMemory quit

or

ObjectMemory quitPrimitive

In pre-4.1 Objectworks, this message was sent to Smalltalk in-
stead.

Iii Smalltalk/V, the expression im
Smalltalk exit

lf your image seems dead and you don't get any response from
typing, hrst try the program interrupt and attempt the exit
procedure again. If that doesn't work, then, for Obiectworks,
use the Emergency Evaluator to evaluate the exit expression:
1. Type <CTRL-SHIFT-C> to bring up the Emergency Evaluator.
2. Type the exit expression ObjectMemory quit
3. Type <ESC> to evaluate tEle expression.

In Sinalltalk/V for OS/2, use the WindowList provided by OS/2
to remove an unwanted process:

1. Type <CTRL-ESC> to bring up the WindowList.
2. Select the top-level Smalitall/V Window or the Transcript.
3. Bring up the menu and select Close.
OS/2 also notices if a process is not responding to events and
prompts you to exit the process.

In Smalltalk/V for Windows, you can use the WindowList

21

Source Code for Blocks

Although the source code is not always available, the following
expressions are sometimes helpful for examining the source
code for blocks (Smalltalk/V) or Blockelosures or MethodCon-
texts (Obiectworks). For Objectworks:

aBlockClosure method getSource
aMethodContext sourceCode

For Smalitalk/V for OS/2:

aBlock homeContext method sourceString

Decompiling a Method in Objectworks
If the source code for a method is unavailable, the Objectworks
browser allows you to view a decompiled vers jon o f the
method: The comments are gone, certain expressions are opti-
mized, and the temporary variable names tl, t2, and so on are
used in place of the original argument and temporary variable
names.

Even when the source code is available, you can view the
decompiled version of the method if you hold down the shift
key when you select the method name in the Objectworks
browser. This technique is useful for finding obscure bugs such
as when Uterals have been unknowingly altered. Many pro-
graminers think that Smalltalk literals are immutable, and do
not realize that they can be altered. The following example il-
lustrates detection of an altered literal array.

A method initializes an instance variable to reference a lit-
eral array:

initialize

arrayConstant := #(1 2 3 4)

The programmer intends this to be a constant, but later uses
an expression such as the following to alter the array:

arrayConstant at 1 put: 100

This alters the contents of the literal array in memory, so the
original contents of the array are not restored even if the origi-
nal initialize method is re-executed. You can check the con-
tents of the literal array by decompiling any method that refers
to it. After altering the array, the decompiled contents of the
initialize method are.

arrayConstant := #(100 2 3 4>

If you recompile the method from the source, the original con-
tents of the literal array are restored. This is a particularly nasty
bug to locate, so be forewarned. To prevent this type ofbug,
some programmers provide accessing methods for important
literals, and return a copy ofthe literal instead of the original.
Because the original literal is never returned, inadvertent alter-
ations are made only to the copy.

Entry Points
Sometimes you just want to know how a window is opened or
what happens when a menu item is invoked. Instead of inter-

20

m SMALLTALK DEBUGGING TECHNIQUES

rupting it, sometimes it's easier to trace the action down from
a few weI}-known entry points.

For example, the Objectworks Launcher lets you open
browsers, workspaces, and other windows. The code behind
this master menu is found in LauncherView and Visua[Works
UIVisualauncher class methods. Browse all implementors of
'*enu*' to see menu initializations for other windows: select im-
plementors from the Visualivorks Launcher Browse submenu
or the ENVY Launcher ENVY>browseimplementors...alternative,
The string "enu•' matches selectors such as menu and fileList-
Menu regardless of the capitalization.

The file menu in Smailtalk/V contains items to open
browsers, workspaces and other windows. The class Applica-
tionWindow supports the file menu, and contains entry points
to tools, Browse the class to examine the methods that open
windows.

WHERE AM i GOING?

This section highlights techniques that allow you to temporar-
ily halt or gain more control over the execution. Some tech-
niques, such as slowing down the action in your application,
are oriented towards graphical operations.

Breakpoints
Although Smalltalk has a well-earned reputation for its debug-
ging environment, current implementations place some re-
strictions on breakpoints, Iii Smalltalk/V, you can set break-
points from a debugger. In Objectworks, you have to
recompile a method and insert code to stop execution. Remov
ing the code to stop execution also requires recompilation.

In both Smalltalk systems, one of the first debugging tech-
niques you learn is to send the message halt to any object.
When executed, it prompts you to open a debugger. Ina de-
bugger, you can execute expressions and inspect the current
object, its instance variables, and any method temporaries. The
message error: also prompts you open a debugger, and uses its
argument iii the title of the waikback or notifier. These expres
sions can be inserted in a method or executed iii a workspace.

selfhatt.

self error: 'Invalid data during retbeval'

However, you quickly learn that this needs to be used with
caution. If you place the expression Inside a loop, a notifier ap-
pears each time the loop is executed. You can guard the ex-
pression if you know exactly when you want to break:

i > 10 imue: [setf halt]

Or you may choose to control the execution dynamically. For
example, the following expression halts only if the shift key is
pressed. For Obiectworks:

InputState default shiftDown iflme: [self halt]

For Smalltalk/V:

(Notifier isKeyDown: VkShift) iffrue: [self halt]

THE SMAL]frALK RE.PORT

Approaches to performance improvement include use of prim-
itives and high-performance libraries, and improved imple-
mentations. Knight pointed out that Smalltalk's claimed high
portability falls short of the mark in practice, both in portabil-
ity between versions and limited number of supported plat-
forms. Smalltalk's integration with other languages needs to be
improved, as do graphics (particularly 3-D graphics) for sci-
entific and engineering applications. The integration and
graphics issues were also discussed iii other papers at the work-
shop. Weaknesses in the user interface, particularly the need
for good widget toolkits was mentioned, and be emphasized
the need for significant improvements in the debugger.

Dr. Rob Gayvert of RIT Research Corp. discussed the use of
Smalltalk in scientific computations, with emphasis on appli-
cations in speech and signal processing. He also emphasized
the need for improvement in the numeric array and matrix
classes, listing specific new protocols for both numeric array
and matrix classes. His group has implemented these in
Smalltalk/VMac. His suggested strategy for domain-specific
classes (such as may arise in nonlinear equation solvers) is to
implement first without regard to performance and then to
optimize. The RIT group has implemented inter-application
communication (specifically AppleEvents) as well as exten-
sions to the ToolBox access in Smalltalk/V Mac. This greatly
increases the potential for access to external data sources, ap-
plication servers, etc. This should be a standard feature in fu-
ture Smatitalk releases. Gayvert showed examples of his system
improvements, namely the speech processing application. Bet-
tel+ numeric and matrix classes, IAC, etc. allowed the construe
tion of tools to do speech processing, which have both algo-
rithmic power and good graphical presentation for the user,
His conclusion is that, with proper additions and improve-
ments, Smalltalk has strong potential for scientific and engi-
neering applications.

Dr. Sandra Whither ofRutgers, in a paper I co-authored,
reviewed some features of the Smalltalk-based SCENE system,
a software environment to support numerical experimentation
in science and engineering. Some features ofimportance in
this environment include user extensibility and configurability,
automatic programming, computational steering, distributed
storage, and parallel/distributed processing. The talk focussed
on the strategies used to handle very large datasets-sets so
large that their representation in Smalltalk as data objects is
impractical. The large data sets were implemented as active
processes running on a (server) platform. In this way, one can
handle these sets emciently, but to users of the Smalltalk inter-
face the sets appear as manipulatable objects. Practical use of
this scheme requires some good interprocess communications,
and a means for users to tailor particular data sets to meet their
needs. The latter facility is provided by an object editor tool that
is used to create and compile new C code for the active data set
and tailor menus and other interface items in response to user
di rectivcs.

In conclusion, Smalltalk can be appended to handle large
data sets and other scientific computational requirements.

JULY-AUGUST 1993

C Now supports
< Digitalk's PARTS ,
1Par©Place's Smalltalk-80 /

23 464.- -

ODBMS

The Objectoriented Database

O Persistent Object Storage for Smalltalk
C] Handles Complex Data Types
O Object Ownership, Versioning, Security,

and Object Distribution
n Programmer and Enduser Versions
3 Stand Alone or Network Configuration
[3 Database Classes licensed for

OEM Distribution
[3 Support for ParcPlace Smalltalk-80

Add-on Applications
¤ DSSDe SourceCode Management
[3 Interface to SQL-Classes
m Support for Digitalk's PARTS

ODBMS
Objectoriented Technology by
VC Software

USA: VC Software Inc., Three Christina Centre, 201 N.Walnut Street, Suite
1000, Wilmington, DE 19801 <> Other Countries: Ve Software Const:ruction
GmbH, Petritorwall 28, 38118 Braunschweig, Germany, Tel: +49-531€4 24 00.
Fax: +49531-24240-24

9

These facilities provide Smalltalk-like incremental compilation
and dynamic binding features outside of the actual Smalltalk
environment.

The portion of the workshop devoted to applications be-
gan with a talk by Jan Steinman of Bytesmiths. He described
his work in using Smalltalk to develop laboratory instrumen
tation interfaces. He introduced the concept of the "abstract"
instrument object (instances of an InstrumentObject class),
which allow standard abstractions of physical instruments and
effects a basis for common data acquisition protocols. Other
features, such as appropriate abstract protocols, were also dis-
cussed. As an example he described the Tektronix instrument
ensemble control system, a stack-based machine architecture
for controlling instruments and returning results via a graphi-
cal interface. This was developed under the object paradigm in
Smalltalk. The position paper by P. Johnson and D. Herkimer
of Martin Marietta was not presented, but copies were avail-
able. The paper describes a space vehicle launch simulator
written in Smalltalk/V Mac. Among the issues discussed were
the need for support for parallel computation abstractions in
Smalltalk that would provide a framework for implementa-
tion of parallel computation of numerically intensive portions
ofthese complex simulations. This paper also pointed out the
need for better numerical classes in Smalltalk. Brian Remdeios
o f BC Research presented a Smalltalk application designed to
simulate control functions for an IC engine. The hierarchical
nature of class structure allows encapsulation of various en-
gine component parts into a single functional representation
or the ability to study individual components. In this applied-
tion, Smalltalk was able to facilitate inter-object communica-
tion, but it was suggested that a class to handle more general
transfer functions between obiects would be helpful. The pa-
per discussed how Smalltalk models of this type could be used
to implement non-brittle (e.g., fuzzy logic) decision process
Slnlulations.

David Jones of Prior Data Science presented a paper on at-
gorithm objects. While the specific application discussed was
taken from the domain of geometric models, this paper pre-
sented a controversial proposal, namely, to collect algorithms
(methods) under a single class (Class Algorithm). This is a radi-
cal departure from current Smalltalk practice where algorith-
mic methods are associated with specific class behaviors. Un-
der the Class Algorithm proposal, algorithms together with the
their documentation etc. would be found in a single class, sup-
ported by its own browser and other interface features. Users
would have a single point of reference for,11 algorithms, and
class behaviors would be implemented via dispatch from Class
Algolithm. This proposal was the subject of one of the after-
noon working groups.

Judith Cushing of the Oregon Graduate Institute dis-
cussed the subject of computational proxies. The difficult is-
sue here is how to render results computed by different sci-
entific programs comparable. The emphasis in this paper was
on the computational chemistry domain, but the central is-
sue of how to design object-oriented databases that can cap-

10

m SCIENTIFIC AND ENGINEERING COMPUTATION

Modern Smalltalk systems running on
high performance workstations have

removed some of the traditional barriers
to the use of the language for scientific

computing.

lure both syntactic and architectural complexity associated
with the output of various scientific computational systems
all of which produce data relevant for a given domain exper-
iment or simulation. Implementation approaches in C++
were discussed. and these were related to possible Smalltalk
implementations.

The final paper in the first session of the workshop was pre-
sented by Annick Fron of DEC European Technical Center in
France. She described an interesting application of Smalltalk to
the simulation of an MIMI) embedded computer system. The
simulation relied on processes and monitors. The result is a
tool that has been used for embedded signal processing appli-
cations. This type oftool is very useful in design and debug
stages and can ease problems associated with integration on
final target architectures.

The afternoon sessions were devoted to in-depth considera-
tions of topics that arose during the presentations. in formal
groups examined issues such as the need for better mathemati-
cal algorithms and better organizations for algorithms, inter-
facing Smalltalk to parallel and distributed computing, and
mechanisms for handling scientific data in Smalltalk environ-
ments. Suggestions from these sessions included the need to
re-examine algorithms and algorithm classes, the need for bet-
ter integration of Smalltalk into scientific computing environ-
ments, the need for better class support for parallel and dis-
tributed computing interfaces, etc. One important conclusion
of the workshop was that this event should be repeated, per-
haps on a regular basis. There was a general feeling that the sci-
entific and engineering communitv was ready for Smalltalk.
The critical question is whether Smalltalk is ready for that
community. I

Richard L Peskin is Professor of MechaMical and Aerospace Engi-
Meeting at Rutgers University where he is director of the CAIP Center
Computritional Engineenng Systems I.ab. He has been itivolved with
engineering and scientific aspects of Smalltalk since 1984. He is one of
the designers of the SCENE (Scientific Computation Environment for
Numerical Experimentation) system, n Smatitalk-based distribuled
complit}ng environtnent thal imp!€·ments computational steeing
tools such as interactive scientific graphics and data management,
automatic equation solvers, and mathematical expert systems. He
wn be reached via ema R at peskin@aupiwgers.edu.

THE SMALLTALK REPORT

gathering information about the data in your application, you
may need to collect information about the dynamic state of
your application. Two keys to understanding the dynamic state
of your application are identifying where vou are in the dy-
namic sequence of message sends and identifying how you got
there.

We also present two alternate ways to access dynamic state:
locating code of interest via user input and using key entry
points.

identifying the Current Context
When you need to identify the method you are executing,
print an identification expression to the Transcript. The fol-
lowing prints the class and message name as it appears in the
debugger's stack (e.g., Class(Superclass)>>methodName).For Ob-
jectworks:

"if irs not in a block'

Transcript show: thisContext pliniString; cr.

Debug iffrue: ruse this expression in a block'

Transcript show: thisContext sendeI home pIintString: cr].

For Smalltall/V:

CuIrentProcess watkbackOn: Transcript maxLeveis: 1.

Audible Feedback

Another alternative to writing to the Transcript is to use sound
to give audible feedback that a method has been executed. This
is particularly useful in situations where the display system is
not available. For example, in Smalltalk/V the GO file is pro-
cessed before the display system is available. Insert these ex-
pressions to ring the bell. For Objectworks:

Screen default ring Bell.

For Smalitalk/V:

Terminal belt.

Catching n in the Act
If you would like to examine code behind a specific action, but
don't know where to find the method, you can interrupt it by
typing the program interrupt while executing the code of inter-
est. In Obiectworks, the default program interrupt is <CTRL-C>.
in Smalltalk/V, it is the platform interrupt key (<CTRL-BRK>
under OS/2 and Windows, <command-.> on the Mac).

For example, if you want to know how the rubberbanding
code works when drawing a line in a graphics editor:

1. Perform the appropriate action, such as holding down the
left mouse button and dragging the cursor.

2. While you move the mouse, press the program interrupt.

3. A notifier appears that allows you to open a debugger and
examine code in the stack. You can see flow of control in

JULY-AUGUST 1993

the debugger, and can examine method arguments and
temporaries.

Timing can sometimes be a problem -for some operations
you may need to try this several times until you catch it at the
right place.

Sometimes a program interrupt can save you from a bad
situation, If you make a simple change to your code and see a
garbage collection cursor instead of what you expect, you may
have created an infinite loop. The following is a typical exam-
ple of a class method that inadvertently causes an infinite loop:

new

self new initialize"this should be a call to super instead of to self"

In this method, the user intended to invoke the inherited
method called new, but instead called the same method, result-
ing in an infinite loop.

lf your application is in an infinite loop, vou can interrupt
it with a program interrupt. After interrupting the application,
use the debugger to look at the stack and locate the error, fix
the error and then either close the debugger and start again, or
resume the execution from the debugger.

Be careful when you interrupt a method with a program iii-
terrupt Instead of closing the notifier or debugger, you may
need to resume or proceed from the debugger if you are in a
loop that needs to finish execution to restore the state of the
cursor, signal a semaphore, or complete some other clean-up
activity.

Aiternative to Walkbacks and Notifiers

You may not want to open a debugger and, instead, prefer
some other way to view the context information. If you are de-
bugging low-level code and are concerned that an interruption
might leave the image in an unstable state, you can print out
information about the current context as described below. It
can also be useful if you are sending a beta release to customers
or if vou are working on an embedded application in which
there is no access to a user interface. The following expression
prints the execution stack on the Transcript. For Objectworks:

Transcript cr; show. (NotifierView shortStackror: thisContext).

For Smalitalk/V:

CurrentProcess walkbackOn: Transcript maxlevels: 10.

You can also print this information to a file. For Objectworks
Intel

file := 'eirors' asFitename apI)endStream.
file cr; nextl>utAR: (Notifie:View short*ackror: thisContext).
file close

For Smalltalk/V:

1 file I
file := File pathName: 'errors'.
file setTo]End.

Cunentprocess watkbackon: file maxLevels: 50.
file close

19

contirtid jrompage 1

the method. Data you write to the Transcript should be
identified, and should include some formatting such as tabs
and carriage returns. Here is an example of an expression that
would be inserted in the method of a class that understood the

total message:

Transcript cr; show: 'Total = ',self total printaring.

This expression prints the string Total =' concatenated with the
string result of sending the total message to the receiver. The
comma in the above expression is a message that returns the
receiver concatenated with the argument, another string. Use it
when you want to append a string. Iii this example, the result
of the total message is an integer, so pIintString is used to ob-
tain the string equivalent.

Use a global variable to control printing information to the
Transcript, setting it to true or false from a workspace when
you want to turn printing on or off. In this expression we use a
global named Debuge

Debug ifrrue. [Transcript cr; show"starting calculations...']

Instead of setting the global to a boolean, you can set the global
to an integer that controls how much detail you print:

Debug > 4 ifrrue: [Transcript show:"detailed information"]

In Objectworks, you're not restricted to a single Transcript. If
you would like to create customized transcripts to separate
different types of messages, refer to the Creating a transcript win-
dow section on creating transcript windows in Chapter 21, lext
and text views," in the OBJECTWORKS SMALLTALK USER'S GuIDE.

Menu Hooks for Inspectors
Printing a lot of information out to the Transcript can get
rather tiresome. A n attractive alternative is to open an inspec-
tor on key objects at strategic points in the code or, better yet,
to provide an easy way for the developer to access an inspector.
When you are creating new window applications, it's handy to
include an inspect item in the window's menu during the ini
tal development phase. This is a quick and easy way access the
objects behind the window.

Inspect is implemented by Object, so you don't have to pro-
vide a new method if you're happy bringing up an inspector on
the obiect that accepts responsibility for menu messages. I f you
do need to customize the inspect action from a window, pro-
vide a new message rather than overriding the inspect message.
If you override inspect, your customized method, instead of the
inherited method, will be executed by the system whenever the
inspect message is sent to the object. Opening an inspector
from an inspector, for example, uses the inspect message. If
you want to inspect the selected item in a list directly from a
menu, implement a new message called inspectSelectedItem
and avoid overriding inspect.

Object identity
Situations arise in which you need to compare two variables to
see if they reference the same object. For example, you might

18

m SMALLTALK DEBUGGING TECHNIQUES

be stepping through two similar sets of actions that involve a
particular object. One works and the other doesii't, so you
need to determine whether the two variables reference exactly
the same object.

Object identity is determined with the = = message, which
answers whether the receiver and the argument are exacdy the
same object. In contrast, the = message is used to determine
object equality: It answers whether the receiver and the argu-
ment are equivalent

#asdf == #asdf "true: Symbols are unique."
'asdf =i= 'asdf "false. Strings are not unique.

If the two objects are not iii the same context (i.e., you have
captured them in separate inspectors), you can assign one to a
global variable and use the object identity message to deter-
miiie equality.

GlobalOne := self name. "in one inspector"
self name = = Global{ne. *in a different inspector'

Don't forget to remove global variables when you're through
with them:

Smalltalk removeKey: #Globalane

Use standardized names, such as an unusual prefix, to identify
temporary globals.

Older Smalhalk systems supported as hash as a means of
uniquely identifying objects. In current Smalltalk systems, iici-
ther of these messages uniquely identify an object.

Names

It is often a good idea to add a name or id field to an object
strictly for debugging purposes, particularly when instances
cannot be uniquely identified by their instance variables or
when they are distinguished iii obscure ways. ff you're going to
be dealing with multiple instances of a class, it may otherwise
be hard to keep track of which object is which.

You also can specialize the method printOn: for your new
classes. The printable representation can incorporate a name to
help identify the object.

printon: aStream
"Add a printable representation of thereceiver to <aStream>.
Use the fullitame field to identify thereceiver."
super p IintOn: aStream.
aStream nextrut,AU: ' on '.

a Stream nextputAR: self ful[Name

A good printable representation carl speed debugging, because
it lets you quickly ascertain when two objects are equal or how
they were created. However, be aware that assumptions in a
specialized printOn: method might not be correct. For example,
some instance variables might not have been initialized. If so,
the previous method should be checked to see if the name were
nil before printing it

WHERE AM I AND HOW DID I GET HERE?
An object encapsulates both behavior and data. In addition to

THE SMALLTALK REPORT

tiil HE BEST OF comp.lang.smalltalk Alan Knight

Good code, bad hacks

T here have been many attempts to define the elements
of Smalltalk style. Some of them even agree with each
other. Almost all of them share a common point of

view, that ofa programmer striving to write good code. Honna
Segel (honna@bnr. ca), on the other hand, approaches the
problem as someone evaluating a Smalltalk program, trying to
recognize bad code:

I'm in the curious position of evaluating a prototype writ-
ten in Smaltalk without prior knowledge of Smalltalk. I
could distinguish a terrible hack from good work iIi C-
what do I look for in Smalltalk? Whats a prime symptom
of work that will be scary to modify and extend?

THE BASICS

Dan Benson (benson@siemens.siemens.com) writes:

As a first pass, I'd look at the class hierarchy. See if the
names of the classes match the concepts intended for the
prototype. For instance, if the prototype is supposed to be
an airline reservation system you might expect to fird
classes representing Tickets, Airlines, Reservations, Airports,
and so on. If the class names are way off the mark, I would
be a bit skeptical. Next, see if there are any class comments
to see whether the programmer was conscientious or at
least considered that someone else might read the code.

Some of the other things you can look for without getting
into actual code are the organization of the class hierarchy
(to see if it makes sense intuitively), the method categories
(to see how well the various tasks were separated),and, per-
haps, the number of instance variables and the names used
(there shouldn>t be too many instance variables per class,
and the names should be intuitive or at least informative).

The most obvious thing to check, of course, is the opera-
tion of the prototype itself. How well does it do what it's
supposed to do? Are there any bugs? If so, how serious are
they? Is it a matter of changing the interface or would it in-
volve modifying the underlying model, or perhaps starting
all over?

There's good advice here, and most of it can be applied by
someone who doesn't know Smalltalk well Coincidentally, rve
actually seen an airline reservation system written in Smalltalk

JULY-AUGUST 1993

that did not have classes representing Tickets, Airlines, Reserva
tions, or any of the other obvious domain objects. Sure enough,
it was bad code.

One of these remarks, however, does seem questionable to
me. We are to check to see iftlie class hierarchy 'makes sense
intuitively." That's pretty vague, especially for someone who's
unfamiliar with Smalltalk. While the hierarchy should make
sense intuitively, this suggestion needs to be defined more
clearly.

For myself, I would say that classes in an inheritance hierar-
chy should have a clear logical relation. This relation should
probably be expressible as either "is-a" or "is-implemented-
like„» This is not a two-way relationship. Not all classes that
have these relationships should be in the same inheritance tree.

This still leaves much room for judgment, as it should, but I
hope it helps weed out some of the worst offenders (such as
those using the "sounds-like" or «was-implemented-the-same-
day-as" relations to determine their class hierarchies).

DOCUMENTATION

Jack Wo€hr (jax@wel].sf.ca.us) has a simple recipe:

Good Smalltalk comes accompanied by good documenta-
tion, a separate document explaining the author's intent,
and probably by a glossary of objects and their methods.

Bad Smalltalk comes without such documentation.

Strictly speaking, the quality of the documentation and the
quality of the code should be independent. If you lake away the
documentation, the quality of the code remains the same. All
of us have written good code that we never quite got around to
docurnenting properly.

Practically speaking, however, good code and good docu-
mentation are inseparable. This is especially true for code that
tries to be reusable (and these days, we're all writing reusable
code). When I intend to use a class, the first thing I do is iook
for the class comment. All too often, the second thing I do is
curse the author for not providing one.

Parcilace, to its credit, provides comments for all of its sys-
tem classes. Digitalk doesn't support class comments directly,
but it's easy to establish a convention for class methods con-
taining comments

11

OTHER CRITERIA

Frerk Meyer (frerk@tk.telematik. informatik.uni-karlsruhe.de)
provides a whole list of criteria. His suggestions are somewhat
more difficult for novices to apply and subiect to some excep-
tions. Ill discuss them one at a time.

Use Global Variables Sparingly

Bad-the use of global variables

This is pretty standard, even for non-0-0 programming,
Globals have their uses, but they definitely should not be used
to excess because they introduce extra dependencies between
classes and generally pollute the namespace.

Separate Domain and Interface

Bad-instance variables in the model holding view, con-
troller, or window information

This is ParcPlace-specific, but the underlying idea is universal.
The domain model should not concern itself with the way in
which the interface presents information. While this is very
important, it is something that may be difficult for Smalltalk
novices to judge and difficult for Smalltalk programmers to do
well.

The simplest method of checking for this separation is to
examine the instance variables and methods of the domain

model for obvious interface information. This will find some

violations, but assumptions about the interface can leak into
the domain model in many subtle ways. There's always a
temptation to introduce just a few lines of code that are
ever-so-slightly dependent on the interface, Maybe it doesn't
really belong in the interface, either. Besides, it would take so
much longer to do it properly, and we're not likely to change
that part of the interface.... These temptations should be
resisted.

Greg Hendley and Eric Smith discussed these issues jun sonic
detail in a two-part article titled "Separating the GUI from the
application" (THE SMALLTALK REPORT, May 1992 and October
1992).They advocate introducing a -control" layer into the in-
terface that acts as a buffer between the interface visuals and
the domain model.

Avoid Long Methods

Bad-lnethods that are larger than one screen (usually)

It's pretty much a consensus that Smalltalk methods should be
short. Long methods are probably trying to do more than one
thing and should be broken up into their components. Long
methods arer't always bad, but the presence of large numbers
is a definite danger sign.

A notable exception is for automatically generated meth-
ods, such as WindowBuilder's horrendously long open meth-
ods. But since these methods are not intended to be modified
by humans, this is not so much of a problem.

I notice that Digitalic's compiler is much slower for long

12

M THE BEST OF COMP.LANG.SMALLTALK

methods. This can, however, be considered a feature (though I
doubt it was intended as one) since it motivates programmers
to break up their code into smaller components.

Avoid System Changes

Bad-making changes to system classes instead of sub
ciassing

After some discussion, the consensus on this point was that
adding methods to svstem classes is fine, but modifying exist-
ing methods is to be avoided. System changes are a problem
because your changes are likely to be incompatible with others,
including those in the next Smalltalk version. They're also
more likely to make your system crash during development. If
you have to modifr a system method, it's usuallv best to make
the modification as small as possible. Ideally, you should just
insert a hook that calls your own code.

Keep instance Creation Simple

Bad-using class method new more than Asuper new
initialize

It's common practice iii Smalltalk to override the method new
to automatically initialize instances of the class, changing the
code to:

new

-super new initialize

Other common changes are to override new to be an error or
to return an already existing instance. Adding much more
functionality than this to the method is considered bad form.
Again, it's better to provide a hook to more extensive code in a
method like initialize.

Use System Classes

Good-using system classes wherever possible

I f code that serves a purpose is already available, it should be
reused. As an extreme example, code that uses fixed-size ar-
rays, but goes through complex manipulations to mimic the
behavior of Orderedeollection would be bad. Similarly, code
that avoids the normal user interface mechanisms and gets
mouse or keyboard input directly is probably bad, It may be
trying to do something thal is not normally possible through
those mechanisms, but even then it is preferable to extend the
UI mechanisms rather than go around them.

Work within the System

Good=using MVC, dependency mechanisms, and processes

Again, i f the mechanisms are there, it's best to work with them
rather than against them. They can, however, be overused.
Kent Beck writes, in =Abstract Control Idioms" (THE
SMALLTALK REPORT, July/August 1992), about the advantages
and disadvantages of the dependency mechanism.

THE SMALLTALK REPORT

Applying "Separate Abstract from Concrete" to RGBColor, we
create Color as RGBColor's superc]ass. We move complement to
Color, because it doesn't rely on any instance variables directly.
We leave hue, saturation, and value in RGBColor because they
do rely on variables.

Now, if we want to create Color subclasses that store color
values in other ways, they can inherit complement as long as
they implement hue, saturation, and value.

When you apply this pattern, you will often find that meth-
ods which were implemented initialiv as requiring variable val-
ues can be recast by applying "Compose Methods» so they can
be moved into the superclass.

CONCLUSION

Now that I have written down Separate Abstruct fron# Concrete,
I'm nol sure I entirely agree with it. I like to have more than
one concrete example before I try to generalize. I use two
different patterns, "Factor Several Classes" and '£Concrete Su-
perclass» in my own programming. I will present these pat-
terns in the next issue.

Inheritance is strong medicine. Only by understanding the
options and trade-offs involved can you avoid the pitfalls and
use it to your advantage. If you use different patterns for apply-
ing inheritance, please send them to me. 1

VOSS
Virtual Object Storage System for

Smalltalk/V

Seamless persistent object mming,ement
for all Smalltaliclv applications

$ Transparenlacces.tuallkindsofSmantalk i.blectson disk
• Transaction commit/rollback of changes to virtual objects;
9 Acce»toindividual elements of virtualcollections forODBMS'kp

to 4 b 11 on objects per virtual spat e; objects cached for speed
• Multi-kevand multi-valuevitualdictionaries forquery-building

liyke>,rangeselechonandsetintersection I>£1rtialandconcatenated
keys supported

• Works directly w h third party user interface & SQL classes etc
• Class Restructure Editor for renaming classes and add}ng or

removing inbtance variables allows applications to evolve
• Shared acces to named virtual obiect spaces on disk, object

portabihty between images Virtual ob)ects are fully functional.
I Sourte c)de supplu?.1

VOSS/OS2 $195£), VOSS/W' ndow,29'3(}, VOSS/286 $950
V(,SS/052 1)1.[_ le'x,lu,Im soirc cde) 9 395
'The VOSS Collection' -source ode fornon-virtual collect-4 only.
(Windows and OS/2 verions),with VOSS/062 Demonstrabon - $150
Quantity discounts from 309{ for two or more copies (Aqk for detailb)
Visa, MaslerCard and EuroCard accepted. Please add $15 for shippng

Kent Beck is founder of First Class Software. He can be reached at
408.338.4649 (v), 408.338.3666 01 or via CompuServe at
70761,1216.

ARTS Logic Arts Ltd 75Hemingtord Road, Cdmbridge, (81 3BY England
r EL. +44223212392 FAX +44223245171 CIS 100040,364

July 1 6-1 0 1 993
OBJECT EXPO EUnOPE
london,England
440306631 331

44 0.3.06.631.696 004

649 1 9.23. 1993
MBM CONFERENCE ON
OBJECT.ORIENTED SD TOOLS

Toronto, Canada
5128388019

Augus* 2. 1 0 1 993
DESTMNATMON €++
Neu Yol .NN

W/oshington DC
Toronio,Canada

Houston, iX
los Angetes: CA
212.274.9135

July-AUGUST 1993

August 1 0- 1 2, 1 993
SUN OPEN SYSTEMS WEST

Anaheim, O
571.250.9756

Sepe. 26. Oct. 1,1993
OOPSLA
Washinglon, D.C.
2 12.869.7440

September 21-23,1993
UNIX EXPO
New Yofk, New Yoi
8008293976

20 1-346 1 60 (6.9

O€*obe• 1 3- 1 5,1093
INT'L SYMPOSIUM &
IXHIBITION ON OOP

tranklurl, Germany
49.61732852

October 1 8.22, 1 993
€+ + WORD

Dio43 TX
2 12 274.9135

November 1 5 1 6,1 993
COMPUTER WORLD EXPO
trankfurl. Giermany
800-2254698

De¢ember 9= 1 0,1993
DATABASE WORLD
CLIENT/SERVER
Chicago, H
5084703880/0526

April 25-28,1994
XWORLD'94
New York, Ny
212.274.9 135

17

parse: aStream
 writer I
writer:= String new writeStream.
[astream atEnd] while False.

[(aStream peekFor: $#)
ifrrue: [aStream restOfLine]
ifFalse: [writer nextPutAll' aStream restOILinel]

Applying "Compose Methods' to parse: to separate line parsing
from the overall parsing control structure we get:

parse: aStream
I writerl
writer:= String new writeStream„
[a.Stream atEnd] whileFalse:

[self parseLine: aStream onto: wfiter]

parseLine: inStream onto: outStream
(aStream peekFor: $#)

iffrue: [AaStream restOfLine].
outStream nextPutAll: aStream restOfLine

Notice that by creating parseLine:onto: we are now able to ilse the
return control structure to make the submethod easier to extend,
Applying it again to fuctor out the outputStream creation, we get:

parse: aStream
I writer I
writer := self outputStream.
[aStream atEnd] whileFalse:

[self parseLine: aStream onto: writer}

outputStream
AString new writeStream

Applying it to parseLine:onto: to separate the choice of what is a
comment from the behavior when a comment is found we get:

parseLine: inStream onto: outStream
(self peekforComment: inStream)

iffrue: [inStream restOfLine].
outStream nextPutAU: inStream restO mine

peekforComment: aStream
aStream peekfor: $#

Apply it to peekForComment: to separate the character you are
looking for from the way in which you look for it:

peekforComment: aStream
'aStream peekFor: self commentCharacter

commenteharacter

7#

The final code is much easier to modify in a subclass ifyou
want to change the comment character, write onto something
other than a string, or extend the parsing to deal with special
cases other than comments.

PATTERN: SEPARATE ABSTRACT FROM CONCRETE

This is a pattern I learned fi·om Ken Auer of Knowledge Sys-
tems Corporation. He told me about using it to great advantage

16

m SMALLTALK IDIOMS

in a financial services application in which there were many
kinds of financial instruments, all implemented similarly.

66 By understanding the options and
trade-offs involved, you can use it to

your advantage. 99

Context
You have implemented one object It has some methods that
rely on the values of variables and others that do not You can
see that you will have to implement many other similar objects
in the future.

Problem

How can you create an abstract dass that will correctly capture
the invariant part of the implementation ofa family of objects
with only one concrete example?

Constraints

You want to begin using inheritance as early as possible to speed
subsequent development, and you want you inheritance choices
to be correct so you don't have to spend time refactoring later.

Solution

Create a state-less superclass. Make it the superclass ofthe class
you want to generalize. Put all of the methods in the subclass
which don't use variables (directly or through accessors) into
the superclass. Leave methods that rely on instance state in the
subdass.

This solution strikes a balance between inheriting too early
and too late. By making sure you have one working class you
know you aren't using inheritance entirely on speculation.

Example
Let's say that we have an RGBCotor represented as red, green, and
blue values between 0 and 1. We can then write methods like:

hue

"Complicated code involving the instance variables red, green. and
blue..."

saturation

Complicated code involving the instance varables red, green, and
blue..."

value

"Complicated code involving the instance variables red. green, and
blue..."

complement
Aself species

hue: (self hue + 0.5) fractionalfart
saturation: self saturation

value: self value

/HE SMALLTALK REPORT·

He summarizes the disadvantages as "debugging and per-
formance." Dependency-based code can be much more
difficult to follow and debug than normal code. When it's put
together property, it will often work immediately. When it
doesn't, tracking down the problem can be painful.

I wouldn't consider processes to be a necessary feature of
good code. Multi-threaded code introduces many complica-
tions, and I avoid it unless I really need it.

Choose Names Carefully

Good-using expressive naming of classes, methods and
variables, and using the class document feature

Definitely. Naming things properly is very important. One of
my biggest complaints about both Digitalk and ENVY/Devel
oper is how difficult they make it to change class Raines.

PUT CODE IN THE RIGHT PLACE

Charles Lloyd (clloyd@gleap.jpunix.com) adds several points.

Place Code Well

A series of messages sent to some object other than self is
probably badly placed code. That series should be moved
to the class of the receiver.

Note: This is the hardest thing to do well in O-0 program-
ming, but it pays very high dividends when done well.

Breaking up methods iii this way has several advantages. As
we've already mentioned, it's good practice to break up long
methods into logically connected units. A series of messages to
some other object makes a good candidate for such a division.
Since they have an object iii common, they should probably be
moved to a method in its class. This also provides an opportu-
nity to use polymorphism (i.e., providing different implemen-
tations of the same function ill other classes).

Avoid Checking Types Explicitly

Encoding type information

You should never see any checks for "type" information.
All type information should be implicit in the class of the
receiver. Exceptions to this rule are few and far between.

It's usually bad style to ask the type of an object. Frequent use
of class tests or isKindOf: is a characteristic of poor code.

Ideally, rather than testing the type, code should request
that an object carry out some action. The object is then re-
sponsible for doing the appropriate thing based on its type, but
this is done through the method dispatch mechanism, rather
than explicitly in code.

If it's necessary to determine some characteristic of the ob-
iect, it>s better to do so by sending a message asking about the
characteristic. Thus, 11'5 better to say:

JULY-AUGUST 1993

PostScript Objects
from Magust

Magus View™ - The revolutionary PostScript-language rendering
library from Magus. Now available as 'paris' for Digitalles PARTS
Workbench, as a class library for Smalkalk/V, or in C.DLL form.
Work in the environment ot your choice to rapidly assemble PostScript
imaging applications. Enjoy the power of obiect-oriented PostScript
rendering-and only from Magus.

· Create front ends for document imaging systems - display
PosiScript files, or use Pos[Script as the image definition language

· Enhance collaborative applications such as electronic mail or
other "groupware" -support documents with complex graphics
and fonts

• Create host-based PostScript drivers for non-Postfieript printers
• Bring a new level of fidelity to print-previewing in your applications

Magus View is available in DLL form for OS/22.0 and Microsoft
Windows 3.[. Programming interfaces are provided for Smalltal k. C
and Digitalk's PARTS Workbench. Pricel, start al 3495 for a single
Magus View Developer's Kit.

PO Box 390965. Mountain View CA 94039-0965 ·USA
(800)848-8037 • (415)940-1 109 • sales@magus.com

anObject isColtection ifrrue: t ... 1
than

(anObject isKindOf: Collection) ifI·rue: [...]

The second form confuses an attribute of the object (whether it
responds to basic collection protocol) with the dass hierarchy
(whether it inherits from the class Collection).

As a concrete example of how this can be dangerous, con-
sider a system that works with vectors. We may wish to treat
instances of Point as two-dimensional vectors, Code that sends

the message isvector will work fine for points. Code that relies
on isKindOf: Vector will fail.

Put Conditional Behavior in Subclasses

Introduction of instance variables

Instance variables should be added sparingly. If you think
you need N instance variables to model your subclass,
consider introducing Msubclasses (Mvery close to N)
where each new subclass introduces a minimum of new
variables.

Introducing subclasses where other languages might use enu-
merated "type" variables is often good style. It is a problem if
instances may change their type, but, otherwise, it call be very
useful. In many ways, it> 5 similar to the previous point. Instead
of having conditional statements on the enumeration, we sim-

13

/VU©GVU 5

-

ArtBASE®
Distributed
Smalltalk and

ODBMS
for VisuaIWorks and Objectworks®

*riBASE
*til hever pretend that It is
the bbst ODSMS

,-; Hui k le..the only :].·
distributed Smalltalk··
fetivird-ritiierit still fully
Winplemented in Smalltalk

- any object and class extended by
the ability to become persistent
and to be shared by multiple
users

- full transaction management

all advantages of Smalltalk kept
alive

- almost no changes to existi ng
applications to convert them
to a database

- de#vered in source code

-- 11 ArtinAppieS Ltd.
Ill Kremelska 13

845 03 Bratislava
Slovakia

fax: +42-7-777 779

rtne taeba-8782Fs.cs

..C juit add Art:BASE·.'·:
44001*ecode to your

Srnatitalk appjicaikiri :, ff ' x .
and *01 *an

44*te £, flavor

d*IMbut+E
Sm#]Ral@ enthronment

free evaluation licenses available

M THE BEST OF COMP.LANG.SMALLTALK

ply ask instances to perform some function, They will auto-
matically do it in the appropriate way, and the language mech-
anisms will do the testing for free.

FAILURE MODES

We can also look at bad code by considering how it might have
gotten to be bad. Maybe the author didn't understand
Smalltalk or OOP fully. Maybe it was a quick hack bv someone
capable of doing better work. Maybe it was written by some-
one who didn't understand the domain and/or requirements,
Maybe it really was written by an idiot. Maybe it was once
good code that's had too many patches and has never been
consolidated.

Most of these problems can be recognized the same way
they would be in any programming language, and only a few
have OOP- or Smalltalk-specific aspects.

Quick backs, for example, can usualiv be identified bv their
shoddv documentation and comments. The comments that do
exist are often incomprehensible notes from authors to them-
selves, often of the forin "fix Ihis later,"

It's usually easy to tell when the author didn't understand
the paradigm and wrote FORTRAN, C, or COBOL with
Smalltalk syntax. There is often excessive use of type informa
tion (as described above), internal representations are almost
always exported, and collections with encoded meanings are
often used as data structures.

The most common symptom of exporting too much repre-
gemation is the presence of direct gcuset methods for every
variable in a class. Some schools of thought hold that all vari-
able references should be made through get/set methods. In
this case, the code will have such methods, but many of them
should be clearly marked as private.

Programmers who aren't used to opaque data types will
often use collections as data structures. For example, they
might represent a circle by an array whose first element is the
centre point and whose second is the radius, instead of intro-
ducing a new class Circle. Juanita Ewing discusses this common
error in "Don't use Arrays?" (THE SMALLTALK REPORT, Mayr
1993). •

CONCLUSION

Although it's far from complete, I hope this brief overview
provides some help to those of you trying to distinguish good
Smalltalk from bad Smalltalk. If you're writing code, this col-
umn should provide some things to strive for or avoid.

Alan Knight works for The Oblect People, 509-885 Meadowlands
Dr., Ottawa, Ontario, K.?(i 3%2. He can be reachedat 613.225.8812
or as knight@mrco.carleton. ca.

THE SMALMALK REPORT

t . ..1 MALLTALK IDIOMS
22*6*.3 4

f the three tenets of objects-encapsulation, polymor
phism, and inheritance-inheritance generates by far
the most controversy. Is it for categorizing analysis

obiects? Is it for defining common protocols (sets of mes-
sages)? Is it for sharing implementation? Is it really the com-
puted goto of the nineties?

The answer is Yes. Inheritance can (and does) do all of the
above at different times, The problem comes when you have a
:single-inheritance.system like Smalltalk. You get one opportu-
nity to use inheritance. If you use it in a way that doesn't help
you, you have wasted one of the most powerful facilities of the
language. On the other hand, if you use it poorly, you can mix
up the most ridiculous, unmaintainable program gumbo
vou've ever seen. How can you walk between the rocks of un-
aer-using inheritance and the chasm of using it wrongly?

What's the big deal? Inheritance is the least important of
the three facilities that make up objects. You can do valuable,
interesting object-oriented prograniming without using inheri
tance at all. Programmers still quest after the Holy Grail ofin-
heritance because of the potential it shows when it works well.
When you need an object and lind one that is factored well
and does almost what you want, there are few experiences in
programming better than making a subclass and having a
working system after writing two or three methods.

In this and mv next several columns, 1 will focus on various

aspects of inheritance. I will present a variety of strategies for
taking advantage o f inheritance, in the form of patterns, While
1 don'[necessarily use all the patterns in my own program-
ming, casting the strategies in terms of patterns makes it easier
to compare and contrast them.

PATTERN: COMPOSE METHODS

This pattern is the cornerstone of writing obiects that can be
reused through inheritance. It is also Critical for writing obiects
that you can successfully performance tune. Finally, by forcing
you to reveal your intentions through method names, it makes
your programs more readable and maintainable.

Context

You have sonic code that behaves correctly (it does no good to
beautify code that doesn't work, unless you have to make it
work). You go to subdass it, and realize that to override a
method vou have to textuallv copy it into the subclass and

JULY-AUGUST 1993

re

k

Kent Beck

change a few lines, forcing you forever after to change both
methods.

Another good context for this pattern is when you are look-
ing at a profile that looks flat; that is, no single method stands
out as taking more time than others. You need further im-
provement iii performance and believe that the object can de-
liver it.

Problem

How can you write methods that are easy to override, easy to
profile, and easv to understand?

Constraints

Fewer, larger methods make control flow easy to follow. Lots
of little methods make it hard to understand where any work is
getting done. Lots of little me thods named by what they are in-
tended to do, not how they do it, make understanding the
high-level structure of a computation easy. Your programming
time is limited. You only want to perform manipulations of the
code that will have some payoffdown the road. Each message
sent costs time, and execution time is limited. You only want
to cost yourself execution time if the result will provide some
advantage at some point. You don't want to introduce defects
in working code. The manipulations must be simple and me-
chanical to avoid errors as much as possible.

Solution

Make each method do one nameable thing. If a method does
several things, separate out one of them, create a method for it,
and invoke it in the original method. When you do this, make
sure that if the same few lines occur in other methods, those
methods are modified to invoke the new one as well.

This solution ignores the cost of message sending, You will
get faster programs by using messages to structure your code
so that you can more easily tune them than by reducing the
number of messages. It also assumes that the eventual reader of
the code is comfortable piecing together control as it flows
through lots of small methods.

Example

A method for parsing a stream to eliminate lines that begin
with a pound sign might look like this at first:

15

*IiI

Inheritance: the re

of the story

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

If You Use Smalltalk, You Need GemStone.

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 279 DENVILLE NJ

POSTAGE WILL BE PAID BY ADDRESSEE

The Smalltalk Report
Subscriber Services Dept SML
PO Box 3000
Denville NJ 07834-982I

GemStone is the ideal database

environment for supporting
Smalltalk applications. It is the

 only high-performance, produc-
tion-ready ODBMS with a trans-

' parent Smalltalk interface.

• Maintain class hierarchies and

, execute Smalltalk methods

directly in the server.

• Automatic, transparent transla-
tion of Smalltalk objects into
GemStone.

• Cooperative client-server sup-
port.

• Smalltalk-based DDL/DML.

• High-performance, scalable,
 production-ready ODBMS.

• Integrated garbage collection 01
: persistent Smalltalk objects.

NETWORK

.ST'.1 1/§'t·4%*45"e& yL .1,"
(;eiriSione Object D:Iabase Smalltalk Application

O YES! Send Me Complete Details On GemStone

Name: Title:

Company:

Address:

City: State: Zip:

Phone: Fax:

1-800-243-9369 SERVIO
10„d„dhd„/ILd„Hd„Ld/„LhnUhdd

NO POSTAGE
NECESSARY

IF MAILED

IN ™E

UNITED STATES

 The Smalltalk Report
car Provides objective 6 authoritative coverage on language

advances, usage tips, project management advlce, ASD
techniques, and insightful applications.

;alk,
" If you're pro,

irt Smalll

you ehould be reaaing :n
The Smalltalk Report "

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 4362 SAN JOSE, CA

POSTAGE WILLBE PAIDBY THE ADDRESSE

J Yes, 1 would like to subscribe to The Smalltalk Report Date_

O I year (9 issues) U 2 year (IB issues) Name

U Domestic $69.00 U Domestic §128.00 Title
O Foreign $94.00 U Foreign $178.00 Company

SERVIO CORPORATION

2085 HAMILTON AVENUE
SUITE 200

SAN JOSE, CA 95125-9985

Method of Payment Address
U Check enclosed (payable to The Smalltalk Report)

CityU Bill me
State1 Charge my: J Visa O Mastercard U Amex

0 Card No, Zip
Exp. Date Country
Signature Phone

11,1,1.111 lili ll,,I,I,I,1,I.I,.l,li.I..I..1,lll,,,ll

i. Which dialect of Smalltalk do
youuse:

O Smalltalk V
O Smalltalk-80
0 Other
2. What is your involvement in

software purchases for your
department/firm:

U Recommend Need
0 Specify Product

1 Make Pumhase
U None
t. Which operating system

supports your software:

O UNIX
ODOS
63 OS/2
O Windows
1 Other

4. What is your company's
primary business activity:
1 Colitputer/Software

Development.
 Manufacturing
U Financial Services
9 GovernmenUMilitary/Utility

Amember©Ilhe

-.)biect Marketing Network

O Educational/Consulting
0 Other
5. For how long have you been
using Smalltalk:
[3 Less than ore year
1-] years
0 3• years EBGG

21/6546'48 Mils.ttili
..

LOOK WIIAT HAPPENED
WIEN DIGITALK

BROKE INOTIE BANK.

Congratulations to
Bank of America on their
new 11-state wide area net-
work. A system they call "the
most sophisticated distributed
network in the world.

With good reason.
Their network configuration
tools have already won the
Computerworld 1993 Award
for Best Use of Object-
Oriented Technology within
an Enterprise or Large
System Environment.

Of course, that's what

i/.3*j.14=3844 .

lilizill ill"/re :Se: -

. 0.

0. a

. 0

..

Fl

40"t

luminaries and Fortune 500
managers aren't the only
ones who have recognized

& the value of Smalltalk/V.
Users have discovered that
Smalltalk/V is the only
object-oriented technology
that's 100% pure objects.

1
With hundreds of reusable

yq€ . classes of objects, thousands
. W. of methods and 80 object
49- classes specifically designed

di y to build GUM fast. Which
1 ; means no more time spent

writing code from scratch.
happens wnen a company
like Bank of America turns

to a powerful technology like
Digitalk's Smalltalk/V.

LIKE MONEy IN THE BANK.

Why are so many Fortune 500
companies like B of A switching to

 Smalltalk/V?
• you show proto-

Smalltalkfi lets

types of enterprise
wide systems in

2 weeks instead of
months. In fact,
systems as ambi-
tious as Bank of

 America's can be
la completed in asL..= -- - - - A' little as 18 months

In addition, our Team/V Group
Development Tool lets large teams of
programmers use version control to
easily coordinate their work. Plus
you'li be surprised at how quickly your
in-house staff becomes productive
with Smalltalk/V.

The bottom line is Smalitall/V
helps a company get more done in
less time. Which can save very large
amounts of corporate cash.

RATED #1 By USERS TOO.

On behalf of Computerworld,
Steve Jobs presented the award to
Bank of America. But industry

1**E

1

 BANK ON SMALLTALKN.
So it's no wonder that

 so many companies are
doing award-winning work with
Smalltalk/V. Incidentally, Smalltalk/V
applications can be easily ported
between Windows, 06/2 and
Macintosh. And you can distribute
100% royalty-free.

For information on how Digitall's
Smalltalk/V can save you time and
money, calll-800-531-2344
department 310 for our special White
Paper. And be sure to ask about Digitalk's
Consulting and Training Services.

Call right now, and see how
Smalltalk/V can yield a maximum
return on your investment.

40*TALK

The Smalltalk Report
The International Newsletter for Smalltalk Programmers

September 1993 Volume 3 Number 1

BUILDING

OBJECT-ORIENTED
FRAMEWORKS

by t rik Boyd

Contents:

biect system architects have long understood the value of frame-

0 works. Frameworks provide a powerful way to organize and build
Interactive obiect systems. While classes define the structure and
behavior of individual objects, frameworks define the btructure
and behavior of interactive obiect systems and subsystems (archi-

rectures). just as classes provide leverage from the reuse of solutions to compo-
merit problems, frameworks provide leverage fi-om the reu,e ofsolutions to sys-
teniic problems. Cla.sses and frameworks complement each other for object
modeling coordination.

Object system architects have Nought ways to discover, describe, and define
useful frameworks. This article explores sonic issues related to designing and
building object systems, especially using frameworks. This article proposes that
frameworks can be made first-class objects and describes the implementation of a
Framework superclass for Smalltalk.

lirst-class frameworks provide a way to formalize the relationships between
the obiects in a system and factor out their patterns of interaction. Framework
classes provide new opportunities for design, development, and reuse in object
systems. They can be used to create very general or specialized event-driven svs-
tems. Ity making frameworks first-class objects, they derive and supply the same
benefits as other object.4: They can be built and reused with existing tools.

Features/Articles

1 Building object-oriented
frameworks

by Nik Boyd

Columns

8 Smalltalk idioms:

Inheritance: the rest of the story
by Kent Beck

10 The best of comp.lang.smalltalk:
Extending the environment (part 1)
by Alan Knight

23 GUM: Keeping multiple views
up-to-date
by Gr·eg Hendley & Eric Smith

26 Book review.· SMALLTALK

PROGRAMMING FOR WINIDOWS

reviewed by Dan Lesage

Departments

17 Highlights

HOW THIS WORK EVOLVED

Smalltalk's browsers provide essential tools for quickly building and evolving ob-
jects. These tools organize and present obiects and their definitions. The internal
workings of these browsers can be quite complex. As a rebult, the classes that im-
plement these browsers tend to have many methods.

1-he coniplexity of these browser classes contributes significantly to the
difficulty of developing new tools fur Smalltalk. This observation leads naturally
to the following question: How con these browbers be broken down into more
easily integrated and reusable components? The Model-View-Controller (MVC)
framework' and its alternativest' provide gi·eat value, but do not completely re-
solve the problem of component integration.

Early experiments with refactoring some new tools led to ways of loosely cou-
pling their compoiients using a kind of "smart"linkage. These component con-
nections included their Own behavior. After exploring some alternatives, it be-
came obvious that these experiments had produced a way of implementing
mediators.4 Patterns began to emerge when the browser components were cou-
pled together using mediators. This observation led naturally to the realization
that sonic of these interaction patterns could be factored out and reused. Such
refactoring created first-class framework objects whose behaviorb are governed by
interaction contracts.i Framework classes map interaction contracts directly onto
inheritance hierarchies.

„immi,d oi, page 4

4 4/

M

EDITORS'
John Pugh Paul White

 t's been a busy spring and summer for conferences. Here are a few Smalltalk-related per-spectives on those thal one or the other of us has attended recently.
In May, Digitalk held their second conference for developers, DEVCON'93 in Costa

Mesa, CA. The audience, which was populated by many representatives from banking and
insurance companies, reflected very much the move ofthe MIS community into Snialitalk
development. The conference program catered to this community with a heaw emphasis on
the use of Smalltalk/V and PARTS in client-server computing.]n one of the liveliest presen-
tations, Amarieet Garewal from the Bank of America described his firin's client-server de-

velopment, ACA (A Cooperative Application). ACA facilitates distributed computing using
Smalltalk and legacy systems, and was an award winner in the Object Applications category
at the recent ObjectWorld conference. Watch for an upcoming article from Amarieet iii the
REPORI. For Smalltalkalicionadoswho wanted to learn more of the "meta-world" of

Smalltalk, 1)ave Sinilli from]BM give an inimitable reprise of his "Behavior of Behavior';
presentation. SMALLTALK REpoRT columnist Kent Beck dispelled a few Smalltalk myths and
provided some invaluable insights into how to write high-performance Smalltalk programs.
It was also Digitalk's]Oth anniversary-they threw a good party!

June was the month for the large ObiectWorld conference in San Francisco. The
Smalltalk story of note there was the demonstration of Hewlett-Packard's Distributed

Smalltalk product- the first complete implementation of the Object Management
Group's CORBA specification for distributed computing. Using L)istributed Smalltalk,
programmers can access distributed objects transparently without regard for whether the
objects are local or remote. At the conference, users of Distributed Smalltalk in the HP
booth were able to access obiects residing in a Gemsione database in the Servio booth.
Distributed Smalltalk consists of approximately 150 classes that sit on lop of ParcPIace
Systems' VisualWorks product. Watch out for upcoming articles on distributed coinput-
ing with Smalltalk in future issues.

For the past few years, many people have been discussing the issue of frameworks as a
mechanism for achieving reuse in object-oriented systems. For most, however, the isbue of
finding these frameworks is elusive, to say the least. As this month's lead article, Nik Boyd
provides a description of how frameworks can be made first-class objects by introducing a
Framework abstract class to Smalltalk and provides examples illustrating how best to use it.

Three of our columnists check in this month. Alan Knight addresses the lbs,ue we
raised in ourlast editorial, namely making extensions to the base Smalltalk environment.
In his column, he reports on "home-brewed" enhancements that have been posted to the
Internet news group. In his column this month, Kent Beck continues his discussion of
using inheritance effectively by introducing a pattern to be applied when attempting to
make decisions concerning the factoring of subclasses. Greg Hendleyand Eric Smith are
back, describing how to take advantage of the obiect-dependents niechanism provided
by Smalltalk when trying to keep multiple windows that are displaying inter-dependent
information in sync, Finally, Dan Lesage reviews Dan Shafer's new book, SMALLTALK
PROGRAMMING FOR W]NDOWS.

Enjoy the issue-and welcome to our third year!

11,1, SMAL-.A R]]]ORT (1'AN# 1066-7976) is published 9 times a war. every month ckcipt Air the MAr/Apr, luly,Aug and Nov/Dec
olnbilted)wa l>ublis],td by SIGS Pub[,calions Inc., 588 Broadway, Nav York, NY 10012 212 274 0640 6) Cop)118191]993 by SIGS
Publica Dns. All right, rose·n ed. Reproduclloit or tlils inater:.11 by elcilronic- 1 ranitniision, Xerox or anyolher merh,Ki will be treated as
d willful violationoltheUS Capyrig.htlawanditath prohibited Mut·nalinitv bereproducedwithexpre permiwonimmrhepul>
Imher MJ,le<11 Int Clds, Subscnption rates I ye r (9 iss,ws, doinestii, S65, I oreign and O nati $90: Sil* Lopy pride, $500. POST
MASTER: Sendaddre»elld,18's and iubscription orders to. Tili SMAL]TAIARKIN}RT, Suburibir Serv]Ces, Dept. SAU, PO Bli>43000,
Denville, NI 078.3,1 lor sen'ice on Lurrent subsonpti<im call 800.783.4903. Submit articles to Ihe Ldl tors .1 509-885 Meadowlands
Drive, Ot taw a, On ta rio #2 C :9 N 2, Ca nads, 6 13.22 5.881 2 (v), 6 1 3.2 25,5943 (0.
PRIN']-ED IN THE UNITED STATES.

2

CORNER

The Smalltalk Repon
Editors

John Pugh and Paul White
Carelon Un versity & The Object People

SIGS PUBLICATIONS

Advisory Board
Tom Atwood 040¢,Des:gn
Grady Booch Rahoral
George Bosworth. D,cidalk
Brad Cox, Infounation Age Consullir:g

Adele Goldberg, Par:P<ice Systems
Tom Love, IBM

Beararid Meyer, iSE
Medir Page·Jones Waylard S.ysten s
Sesha Prataa 01 te,L ne SoftwaTe

Cliff Reeves, IBM

Blarne Stroustrup. ATST Be 1 Labs
Dave Thomas, Oble¢' Technciogy Inte riationa

THE SMALLTALK REPORT

Editorial Board
jIm Anderson, D,gnalk

Adele Goldberg. Parcplace Systems
Reed Ph I'llpsr Knowledge Sys,ems Corp

Mike Tayeor! Digitak
Dave Thomas Obecl Technology Intel nat,o„a

Columnists

Kent Beck. First Class Sollware

Juanita Ewing, DIgilalk
Greg Hendley, Knowledge Sysien® 0<>rp
Ed Klimas Linea Eng,reerig Inc
Alan Knight, The Object Poople
Eric Smithl Knowledge Syslen s Corp
Rebecca W rfs·Brock, Dig ralk

SIGS Publications Group, Inc
REchard P Friedman

Founder & G/:Up Publisher

Art/Production

Krist?ra Joukhadar Mar aging Edftoi
Susan C:illigan, Pilgrim Road. Ltd. Creative Dilect.>n
Karen Tong,sh, Pfoduclion Editor
Gwen Sanchirico, Production Coordinator
Robert Stewart. Computer Systems Coordinator

Circulation

Stephen W Soule, C.,rclilat:m Maracier
Marketing/Advertising
james O. Spencer, Director of Bl„,ress Deve oplnellt
jason Welskopf, Advertislrig Mgr-East Coast/Canada
Hcdly Me feer, Advert,mg Mgr-West Coasl/Europe
Hemen Newling Recruitment Sales Manager
Sarah HMNIo7. Plon,otlons Manager-a;blleal,orls

Jan Fulmer, PromoNIE Manager Conferences

Carer, liolner, Proniotiors Graphi<% Artist

Administration

David Chatterpau, Accounzing Manager
James Amenuvor, Bookkeeper
Margot Patrick, Ass,stant Zo the Pub ,sher
ClaBre Johnston, Conference Manager
C ·ldy Baird, Conference Techorcal Manager
Margherita R Monck
General Manager

SIGS
Publishers of JOURNAL oF OBJECT·OR ENTED PRO·

GRAM+.PNG. OBJECT MAGAZiNE 5 THE Cl + REPORT, THE
SMALLTALK REPORT! T-E {Nf ERNATIONAL COOP DIC

ORY. and THE X JOURNAL

THI: SMALI.TALK REPoin

Highlights
Excerpts from industry publications

SOM

In practice, [[BM's] SOM (Svstem Obiect Model) will allow
programmers to "package" objects into blocks ofcode, ofclass
[ibraries, that can be readily accessed from a Cli or Smalltalk
program. Next month, IBM will extend SOM with a full
CORBA (Common Obiect Request Broker Architecture)
model. This Distributed SOM, or DSOM, spec will let obiects
be transparent}v accessed either locally or across a network.

i.)'.1 fc.eli,3 ;46 new Softwa e obj((l /., ,• 1,, ..1, 4

POINTER-SAFE

At least triggers are specified in an SQL variant. SQL has no
pointers and there is no need to worry about wild stores. Even if
the application is written iii a language that is not pointer safe
(e.g., C) a wild pointer or running off the end ofan array will
not corrupt the dawbase, However, most object database ven-

Shafer's style of writing in this book is down to earth. This
should appeal to new programmers, but there are instances
where I found the style to be a little subterranean. On page
141, for example, Shafer writes:

(Ifs amazing to think one can actually get paid for doing this
kind of work, isn't it?)

I hope I never accidentally put that into my application
comments!

On the plus side, this book has really made strida in the
area of integrating an application into its surroundings. Ap-
pendix B discusses DDE and DLL interfaces and provides an
example of adding a DDE link to the Calendar application
from Microsoft Excel. The DI.[. example shows how to use
multimedia extensions in combination with a sound board.

The example demonstrates how to modify the Calendar pro-
iect to play a sound file instead ofbeeping for alarm events.

The end result of all these enhancements gives a Calendar
application that is comparable in function to the Microsoft
Windows desktop calendar. I believe thal most programmers
would dassify this to be a true application, albeit a simple one.

Shafer demonstrates the use o f fast prototyping a, cha-

nism for building applications. Throughout the book, be pro-
poses designs that liave minor flaws contained within them. He
then leads the reader through the analysis required to correct
the problem. This highlights an important point pertaining to
the design of graphical applications. Most of the discovered
problems have to do with event handling, sequencing, bad ini-

SEPTEMBER 193

dors and at least one relational vendor allow behavior specified
in C or C++ to be optionally linked into a server process, and
server processes contain very large caches of data. 7'he problem
in the relational environment is thal the rows in the cache are

assumed to satisfy al] integrity constraints and that the cache is
often shared amongst multiple clients. A seemingly experienced
application developer once told me, iii all seriousness, that nia-
lure C code doesn't produce any wild stores (and you wonder
why DBAs sometimes seem paranoid). A wild store in this see-
tiario can result in corrupted data being committed to the
database. And the corrupted data might not have been read by
the offending application program. Many object databaseb have
the same problem with behavior specified iii C ore++. These
databases tend to bulk copy their caches to disk at transaction
commit. This is one of the major reasons why I have alwavs be-
lieved that a pointer-safe language such as Smalltalk is a much
better data-manipulation language that C or even C, , .

ODBMS Tear down Lhe wobs, fc.cob Stein, Oia,ECT MAGAZINE, 7-8/93

tialization and proper notification of chaiige. 10 further com-
plicate the analysis, these problems occur within a multi-
window, multi-pane, multi-widget environment. This is also
true in the real world: The hard part is not defining the visual
aspects, it is getting the glue right. This book does an excellent
iob in highlighting these kinds of problems and demonstrating
the type of analysis is required to correct them.

Once you overcome the silly book cover, the cartoons on
the back and the fact that the publisher's name is about 3 times
the size of the author's, the content of this book will be verv
useful to new Smalltalk program mers. The calendar applica-
tion can form the basis of an introductory Smalltalk course. 1
know ot one company that has modeled part of its internal
training examples on those presented in the book. This book is
a colossal improvement over its predecessor and it demon-
strates what it takes to start building applications under Win-
dows using Sma]L,k. 1 recommend this book to new Smalltalk
programmers who wish to quickly develop small scale applica-
tions within the Windows environment. E

Dan Lesagr n responsible for Distributed Systems Frameworks at Ob-
iect Tech nolog y 1 nternational Inc. This means that he gets to act as
trial arbiter between very un i ike pieces of hardware and software,
protocol arbiter between collaborating classes m frameworks: person-
nelarbiter between team members and aqueous mediumarbiter be-
tween aggressive piscatorial members of his aquaria. h ounsionally
means that he gets to develop software in Smalltalk. He can be
reached at 613.820.1200 or dan@oti.on.ca.

17

j O OK REVIEW by Dan Lesage

SMALLTALK PROGRAMMING FOR WINDOWS
by Dan Shafer with Scott Herndon and Laurence Rozier
Prima Publishing
Roclin, CA

phone: 916.786.0426
fax: 916.786.0488

$39.95

ISBN 1-55958-237-5 1993

 am waiting for the day ofthe truly paperless book. The laywhen reading on an electro-luminescent or photo-polar-
ized device provides me with as little eye strain as reading

flat paper. I am sure that Dan Shafer is waiting for this day as
well. On that day, the problem of publishing a timely technical
book about rapidly changing technology will no longer exist

Eighteen months ago, I reviewed Shafer's original Smalltalk
book, entitled PRACTICAL SMAL[.TALK (THE SMALLTALK RE-

poRT, October 1991).One of the issues I raised in that review

was that the book presented examples in Smalltalk/V 286, just
when Digitalk was moving toward PC desktop integration with
Windows and OS/2 Presentation Manager. The paradigm used
for modeling these new user interfaces had changed drastically
from Model-Pane-Dispatcher. MPD lost its sex appeal for solv-
ing UI problems, although the fundamentals of Smalltalk were
the same. Real-world Smalltalk development had moved on to
a different paradigm.

Shafer's new book, which uses V Windows 2.0 as its base, is

more timely than its predecessor. However, it is interesting
that Digitalk's focus has moved onto Parts, once again leaving
Shafer to play catch-lip. What we need is the ability to publish
a book directly from a Smalltalk image!

Once again the focus of the new book is a practical intro-
ductory guide for novice Smalltalk users. It acts as a supple-
ment to the material provided by Digitalk. The format of the
book is similar to the previous one. After two introductory
chapters, it leads the reader through chapter pairs. The first
chapter of each pair introduces important Smalltalk classes.
The second of the pair highlights the use of these classes within
a working example application.

The book describes seven detailed projects. The first is a List
Prioritizer that prompts the user to prioritize text entries. The
second consists of a Counter widget that introduces interaction
between subpanes. The third project is a Calendar application
that displays monthly pages, allowing you to navigate dates,
highlighting holidays and the current date. The fourth applica-
tion is an Appointment Book built by extending the calendar
application in the third project. The Appointment Book intro-
duces the ViewManager class. The fourth proiect also demon-
strates how to manage multiple window interaction by adding

26

a text based appointment window to the calendar. The fifth
project is a Bar Graph Editor and Viewer. The sixth consists of
a Form Designer that demonstrates how to create a user inter-
face layout from a Smalltalk outline. The last proiect consists
of a Clock that also hooks into the Calendar application. The
clock is responsible for displaying the time and sounding
alarms and chimes. The Clock project demonstrates the multi-
processing capability built into Smalltalk and how to use it in
combination with ViewManager.

I found that the example proiects contained within the
book had greater relevancy to developing real applications
than the ones presented in PRACTICAL SMALLTALK. Only the
List Prioritizer, Counter, and Bar Graph Viewer appear as up-
graded versions ofexamples used in the previous book. The re-
maining projects simulate the process ofbuilding real applica
tions. They require the developer to add new functions to
existing software rather than create designs from scratch.
Changing the Calendar viewer into a time-based Appointment
Book typifies how Smalltalk developers must constantly reor-
ganize their code to accomodate new requirements. The Clock
proiect, which is the cumulative effect of these requirements
provides new Smalltalk programmers with insight into the
power of classes such as Time, Processor and Context (blocks),
This last project demonstrates how to make these classes col-
laborate to simulate the behavior being modeled. The result of

completing the last project is a sense of satisfaction:ind
confidence. Developers should feel comfortable browsing the
class hierarchy as they develop more coinplex applications.

The book includes a 3.5-inch diskette that contains V Win-

dows 2.0 code, so browsing the examples is easy. just remem-
ber to remove the diskette immediately when you buy the book
or vou will find that after a while, the soft back cover will look

like it has been run over bv an office chair!

There appear to be some errors within the printed Smalltalk
code that do not appear on the diskettes. Pages 184 through
186 contain numerous syntax errors and erroneously repeated
code. Unless you are a masochist, you should browse the code
from your image rather than read the book to ensure correct-
ness, Of course, that means you need your paperless book
again, as you fly from Boston to Ottawa. Hmmm...

THE SMALLTALK REPORT

Object Transition
by si01

APPRENTICE PROGRAM .:-

1 TEAM RERUIREMENTS

ADVANCED TRAINING

ANALYSIS & DESIGN

MENTORING

COSTOM CONTRACTS

Object Technology Potential
Object Technology can provide a
company with significant benefits:
• Quality Software
• Rapid Development
• Reusable Code

• Model Business Rules

But the transition is a process that
must be designed for success.

Transition Solution

Since 1985, Knowledge Systems
Corporation (KSC) has helped
hundreds of companies such as
AMS, First Union, Hewlett-Packard,
IBM, Northern Telecom, Southern

California Edison and Texas Instru-

ments to successfully transition to
Object Technology.

TEAM TOOLS

KSC Transition Services

KSC offers a complete training
cunicidum and expert consulting
services. Our multi-step program is
designed to allow a c[ient to Ill ti
matelv attain self-sufficiency and
proctuce deliverable solutions. KSC
accelerates group learning and
development. The learning curve is
measured iii weeks rather than

months. The process includes:
•Introductory to Advanced

Programming in Smalltalk
• STAI)[M (Smalltalk Apprentice

Program) Project Foc.us at KSC
0 00 Analysis and Design
s Mentoring: Process Support

KSC Development Environment
KSC provides an integrated applica
tion development environment
consisting of "Best of Breed" third
party tools and KSC value-added
software. Together KSC tools and
services empower development
teamS to build object-oriented
applications for a clientserver
environment

Design your Transition
Begin your successful "Oblect
Transition by Designf For more
information on KSC's products and
services, call us at 919-481-4000

today . Ask for a FREE copy of KSC's
informative management report:

&#Avar·e Assets D>· Design.

Knowledge Systems Corporation 114 MacKenan Dr.

Cary, NC 27511
OBIECT TRANSITION BY DESIGN (919) 481-4000

1992 Kn,i„?tedge Systerns Corporation.

cominued from puge J

This article describe.s the results ofthese experiments: The
role that frameworks can play in system design, and how
framework classes can be used to define the structure and co-

ordinate the behavior of objects in systems. We begin by ex
ploring some issues related to object design and system design.

OBJECT DESIGN AND SYSTEM DESIGN

We often solve large problems by breaking them up into
smaller problems and combining the solutions (divide, under-
stand, integrate: solve e coagula). Just so, we can divide large
systems of interacting objects into smaller collaborations, or
subsystems. This allows us to better understand and manage
the structure and behavior of the larger sy.stem.

Two key concerns of object system architects are the right
factoring ofbehavior and the right coupling of objects. At-
though different aspects of a design, factoring and coupling de-
cisions often influence each other. For example, creating a new
object class presents a question that arises frequently in object
system design: Where does the new class belong in a class hier-
archv? This critical design activity incorporates both factoring
and coupling decibions because objects serve as the essential
unit for both factoring and coupling in object systems.

l'he class location decision can be made easier by looking al
the proposed service responsibilities of the new class and asking
some questions. Does the new class provide the same (or sub-
stantially similar) services when compared to another existing
class? Does it add new services or change the implementation of
.some services? Does it remove any services? When a new class

shares (and perhaps adds to) the public interface ofan existing
class, the new class is a good candidate for subclassing the exist-
ing class. When the public interface of the new class is not sub-
stantially similar, but needs the services of an existing class. the
new class should be a client of the existing class. When a new
class shares some portion of the public interface of an existing
class, the hierarchy mar need to be revised, splitting out the
shared interface into a new, more general superclass shared by
both the existing and newer subclasses. Pinding the best loca-
tion for object behaviors is the essence of right factoring.

RIGHT FACTORING

Factoring characterizes how well responsibility for services are
distributed throughout an obiect system or class hierarchy.
Ideally, each unique piece or pattern of behavior has a unique
location within each object system or class hierarchy.

Classes may be organized initially based on data and the
operations on that data. However, classes should finally be or-
ganized based on their service responsibilities and collabora-
lions. Each object in a system is assigned responsibility for
providing certain services to its clients. Responsibility-based
design (RBD) takes the clientlserver approach lo its logical
conclusion in the design of finegrained objects and collabora-
tive subsystems.69

Many experienced object designers have suggested that
good class hierarchies tend to be deep mid narrow. A hierarchy
is considered deep when there are many intermediate super-

4

m BUILDING OBJECT-ORIENTED FRAMEWORKS

classes between the most specialized classes and the top of the
hierarchy. A hierarchy is considered nairow when each class in

the hierarchy adds relatively few public services.
Class libraries tend to evolve over time until they become

stable and mature. However, we must be careful if we don't
want such stability to mean that they ossify! This can happen in
large systems when a few basic obiects are used repeatedly, cre-
ating many dependencies. The stability created by such depen-
dencies may argue against redesign, creating a kind of inertia.

Early design evolution should be encouraoed in order to
prevent premature stability. Object modelinglo can help to ac-
celerate the process of evolution during class and system die-
sign. Design iteration provides opportunities for revisiting and
revising object and svstent designs through refactoring. 1 I

Refactoring applies one or more kinds of behavior preserving
transformation to an object model. The behavior of ihe modeled
obiects is redistributed so that thev are simpler and provide bet-
ler opportunities for reuse. Even fairly stable class hierarchies
may be improved by subjectiny them to refactoring.12

One fi·equentiv used example ofrefactoring is generaliza-
tion. When two or more subclasses share some common be-

havior, a new more general superclass can be created by factor-
ing out the shared behavior.

Many of the transformations permitted bv refactoring can
be automated. Automating lhe refactoring process could even-
tually lead to the development of a kind of"lint" eliminator for
object designs.

RIGHT COUPLING

Coupling characterizes the relative visibility and independence
of objects in relation to each other. Ideally, objects and classes
should only be visible to those clients thal need to see them.

When one object depends implicitly on another, they are
tightly coupled Obiect instances are tightly coupled to their
classes. When one obiect depends directly on the visibility of
another, they are closely coupled Smal alk instance, class, and
pool variables are are closely coupled to the instances that reft
erence them.

When one obiect references another only indirectly through
an opaque reference or through some accessing or structural
traversing message(s), ii depends only on some portion of the
other's public interface and maybe loosely coupled. Table 1
summarizes the relationships between visibility and coupling.

Thus, appropriate visibility is essential for achieving right
coupling. Often, the success of a large programming project
hinges on right coupling. Right coupling can only be achieved if
the system architect has an awareness of coupling and visibility

Table 1 Relationships between visibility and coupling.

Visibility Coupling
Implicit Tight
Immediate Close

Opaque Loose

None None

I'HE SMALLTALK REPORT

forim, an expression ofthe form self changed: attribute. The
parameter attribute varies depending on just what part of
the domain model object was altered. For the change of
name example, this argunient would likely be minic. hi such
a case, the setter method for name in the class Customer

might look Like the following:

Customer>>name: :Strmg
"Accessing - Set my name. Update anybody who's interested."

name:= aString,

self changed: name

5. Whenever an object is sent the changed: message. as in
event 4, all other obiects which have been registered as de-
pendents on the receiver of the changed: message receive
update: messages. The argument passed along with the

update: message is the same as that passed in with the origi-
inal changed: messace which started the process.

6. Iii processing the update: message, the application control
compares the argument with those identifying abpects of the
domain model in which it is interested. Ifa niatch is found,

then the associated interface object is Informed that some of
the data it is displaying is no longer valid and must be up-
dated. This is done bv sending the interface object a message
that tells it iust what data needs to be redisplayed. If this were
a view on the Customer a.s in the preceding examples, the
method for update: would look, in part, like the following.
CustomerEditorControt>>undate: aspect

'Updating - Some part ot my domainModet has changed. See if
it is a part in which Im interested. If it ls, then dnect
the userInterface to update it.1

aspect = = #name
iffrue: IA self usennterface invalidateName].

aspect = r #coinpanv
iffrue: r self userInterface mvalidateCompary].

r super update: aspect

7. As Control B is also a dependent ot Domain Object it will also
receive an update: message of the same form as [hal received
by Control A in event 5. This provides application B with an
opportunity to keep its view of the domain object up to
date even though application A was the source of the
change. Application B does not need lo know the source of
the change. All it needs to know is what change took place.
l'his update: message provides it with this information. The
two views of·Domain Object Jremain iii svile.

8. Control B will handle the update: notification in much the
same way as did Control A in event 6. In fact, if these are the
same kind of views of Domain Object, then it will handle the
message in exactly the same war. The end result is that a
message will be passed on to Window B telling it that it must
refresh the display of the changed item.

After the list of dependents of Domain Object is exhausted, that is
each member of that list has received and processed the update:
message, the process of changing an attribute of the doinain

SEPTEMBER 1993

model object is complete. Only at this point does the processing
of the cmdSetAttribute message from event 2 complete.

Note that the domain model object did not need to know'
much about the application to provide this notification. All it
needed to know is when to veil, "1've changed!" Other objects
mayor may not be interested.]f they're not interested, they
just won't listen.

66 Objects may or may not be
interested. If they're not interested, they

just won't listen. 99

CLEAN UP

When any of these windows are shut down, the dependencv
links with the domain model objects must be broken. This is
best done using the removeDependent: message. When a win-
dow is closed it must, before it goes away entirely, pass on to
its control object a message allowing it to clean up as well. A
message like cleanUp will do nicely:

CustonierEditoiModel>-deanUp
N iIi about to be terminated. clean up
any messes I've left laving about.'

self domainModel removeDependent: self

The Object Dependents mechanism can be particularly useful
for keeping collections of information tip to date dvnamically.
This will be the topic of a future column. El

Greg Hendley is a meniber ofthe fechmcal staffaf Knowledge Sm
tenis Corporation, His specialty is custom graphical user mierfates
using vanous diafects of Smaiftolk and varioub image generators. Eric
Smith i-salso a menibet of the technical slaffat Knowledge Systems
Brporation. His speciality iscuslom graphical user interfaces usi,w
Snialitalk (various dialects) and C. The authors moy be contacted at

Knowledge Systems Corporation, 1 14 MacKenan Drive, Cary, NC
2751 1.919.481.4000.

TO PLACE A RECRUITMENT AD,
CONTACT HELEN NEWLING AT

212.274.0640.

25

i Whenever some aspect of Domain
Object that might be of some importance

to the outside world changes, the
method of the domain object that

actually changes the value performs an
expression of the form self changed:

attribute. 99

update message
update: sender
update: arg()
update: argO With: aigl
update: argO with: aIgl with arg2

An obiect, A, may register itself as a dependent on another ob-
jec[, B, by sending B the illessage addDependent: with itself, A, as
the argument. All dependents of an object are removed by
sending the obiect the message release.

A NOTE FOR DIGITALK USERS

Digitalk does not provide one method that is very useful in
dealing with Obiect Dependents. The missing method is
Object>>removeDependent: amd a possible implementation is:

Object>>removeDependent: aDependent
Remove a single oblect from my list of dependents."

I dependents 1

(dependents := Dependents at: self ifAbsent: 7 nill)
remove: aDependent
HAbsent: [].

dependents isEmpty ifrrue: [self release]

1)igitalk users should also bewareof the confusion possible be-
cause ViewManagers implenient their own independent changed-
update framework, whidi ib Lliirelated to Object Dependents
though it uses much the same protocol. 7 o avoid problems, we
won't be sending changed messages to view managers.

TWO VIEWS ON ONE OBJECT

fo keep all of the windows on a particular domain model ob-
ject current, the domain model objects will generate self
changed: messages wlienever so,ite aspect of their state 11,10
changed. It is assunied that when an view is opened on any dy-
namically updatable domain object that the application control
obiect registers itselfas a dependeni of the domain model ob-

ject it ib representing to the user. This will insure that die appli-
cation control will receive the update: message when the state of
the domain model object changes. It is also assumed thot the
responsibility for undoing the dependencv link when the win-
dow is closed also rebides with the application control object.

24

.GUIs

SETTING UP

When a window is opened on a domain obiect, using ;iIi
openOn: niessage tor example, the window informs its applica-
lion control object thal this domain obiect is to be its model
object. It is at this tinie that the application control object
should register itself asa dependent ofthe domain model. The
following methods illustrate this set up:

CustomerEditor>>openOn: aCustomer
Scheduling - Open myself up as a window

on the given Customer.'

self control domainModel: aCustomer.

self open

CustomerEditorControt>>domainModel: aCustomeI

Accessing - Set my Ieference to my domain model object.
Make myself a dependent of this object.•

domainModel notll ifrrue: [domainModel removeDependent: self].
aCustomer notNil iffrue: [aCustomer addDependent: self].
domainModel := aCustomer

Given this set up,]·igure 2 provides an illustration ofageneric
scenario for what happens when some attribute of a displayed

domain object is changed by the user iii one of two views on
that object. In this example Control A and Control B are both de-
pendents ofDomain object.

1. The uher uses some Control iii the window to alter the value

ofan attribute ofthe domain obiect being presented to him.
For example, a the name of a Customer mav be changed.

2. As a result of manipulating a control, a command message is
forwarded to the application control object ot the window the
user is working with. In the iase of changing the cublonier's
name, thiN inight bea meisage like cmdSeteustomerName:.

3. In [lie course Of proces.ing the conimand nies,age, Control A
sends a mes·,age to the Domain Object to inforni it that it
must change some ot its interlia] state. To continue the cus-
turner name exaniple, this would likely involve sending Do-
main Object the mesage name:.

4. Whenever home aspect of Domain Object that might be of
Knne importance to the outide world changes, the metliod
of the domnin object that actually changes the value per

11

 Window A Usn Window B 1 Attlibute

inva idit,Attnbute cnidSetAmbute: 'foo I HivalidateAttIbute

Control A
Co,itrol B

ibute 'Foo·

omain Object
ch/Aged:

Figure 2. Keeping two windows up to date.

Tin S.MAT [.1 Al K R,1,0 141

L 3
aMi

update
/ .ipdate

Now! Automatic Documentation

For Smalltalk/V Development Teams - With Synopsis

Development Time Savings
SynOpSiS produces high quality class documentation
automatically. With the combination of Synopsis and Coding Documentation

Smalltalk/V, you can ehminate the lag between the
production of code and the availability of documentation. S y nop si s **6W"***#i·i<·>iN»%>lie·*8>·.:> <:p·
Synopsis for Smalltalk/V
• Documents Classes Automatically
• Provides Class Summaries and Source Code Listings

• Builds Class or Subsystem Encyclopedias
• Publishes Documentation on Word Processors

• Packages Encyclopedia Files for Distribution
+ Supports Personalized Documentation and

Coding Conventions

Dan Shafer, Graphic User Interfaces, Inc.
"Every serious Smalltalk developer should take a
close look at using Synopsis to make documentation
more accessible and usable."

issues, and has tools that provide him with real options for deal-
ing with thObe issues.

Componell[Clabbes, inodule classes, 1-3 and framework
classes complement one anollier in controlling coupling and
visibility in Smalltalk systems. 7 hey also provide complemen-
tary Illectianism4 for factoring. The issues raised regarding the
factoring ofbehaviorand the·coupling of objectscaii be dealt
with formally by designing oblects using contracts.

DESIGNING WITH CONTRACTS

Contracts are design abstractions. They provide high-level de
sci·iptions of:

· The behavior (and structure) of a component object

· The collaborations between the components that forni a
qutiviteni

· The interactions between the participants in a framework.

Classes define the service capabilities of their instances.
These servive, Can be organized using protocols. [Protocols are

generally used to represent the contracts provided by object,.
Protocols generally characteri,e [lic services they organize us-
ing descriptions derived from verb phrases such as miti,Ilizing-
relca,ing (ilislances), uccosing{some state information), (-0,11-
puting (some value).

Sometimes a complex set o f related services can best be im-
plemented and biniplified bv assigning reponibility for some
contract (s) to a separate clas. The set of resulting classes can

S]ipliMHFR 1993

Start Finish

Documentation

Coding FEEEWith
Synopsis EEIEEE

A A

Stait Finah

Products Supported:

Digitalk Smalltalk/V Windows $295

Digital Smalltalk/V OS2 $395
COS/2 version works with Team/V and Paris)

 Synopsis Software
8609 Wellsley Way, Raleigh NC 27613
Phone 919-847-2221 Fax 919-847-0650

then be organized as collaborators iii a subsystem. Responsibil-
ity-based designg can be used when defining and refining the
contracts fulfilled by components and subsystems.

In Smalltalk, module classesl-3 can be used to organize and
provide opaque access to subsystems. Like component classes,
module classes can be instantiated. Whether through the mod-
ule class or one its instances, each module serves as a gateway,
providing acces, to the ser vi,es of its internal subsystem.

Interaction oriented design can be used when definingand
refining the interaction contracts fulfilled by frameworks. In
interaction-oriented design, the interactions between objectb
are first-class entities in the design space.3 Using fi·ainework
classes, these fii·st-class designs can be implementated as first-
class objecth

THE FRAMEWORK SUPERCLASS

Listings 1 and 2 provide the Smalltalk source code tha[imple-
ments the Framework superclass. The Framework superch is
intended to lie subclassed to create both general and special-
ized frameworks. The Framework superclass is responsible for
providing the jollowing services:

· Building a framework from participants

· Resolving roles for participants

· Defining roles and their responsibilities

· Validating participant. fur roles

• l'ranslating events into messages

Ln

When a framework instance is built, some of the partici-
pants are components, but some mav be other frameworks.
These nested frameworks are given special treatment during the
assembly of the framework in which they are embedded. Each
nested framework is checked for unresolved roles. Ifanv unre-
solved roles are found, they are filled using participants from
the embedding framework by matching their role names. Thus,
naming the roles and participants in a network of frameworks
is an important activity,

This feature allows system architects to design and build net-
works ofinterlocked frameworks. Small frameworks and their

components can be integrated so thM events propagate through
the network to produce the overall behavior of a large system.

Within a framework, each object has a role and must supply
certain services in order to fulfill that role. An interaction con

tract defiiies the responsibilit:jes of the obwets that form a be-
havioral composition. The services each obiect must render in
order to participate in a role may be defined explicitly as part
of a framework class. When these specifications are defi ned for
the roles of a framework class, they are verifed when each in-
stance of the framework is assembled.

Although framework role validation is feasible within any lan-
guage system, it is easiest to implement when the language sup-
ports reflection directly. Reflection provides objects with access
to information regarding their own behavior. Sometimes this
language feature is described as object self-knowledge, Smalltalk
is one of the few commercial languages that support refjection.

The use of reflection bv framework classes for validating
role participants presents an interesting opportunity. This
reflective information can be used to support the intelligent as-
sembly of object frameworks. In Listing 1, the #assembleAs:
method shows how the Collection class mav be extended to

support framework assembly from anonymous participan[s.
If the service requirements defined foreach role differ

sufficiently, they may be used to identify the role players
needed from a collection of anonvmous participants. Each
anonymous participant can be examined to determine its most
likely role within a framework based on the service require-

component couplings pane menu

subpane inter-framework coupling

0
framework mediator

Fbgure 1. Key diagram

6

m BUILDING OBJECT-ORIENTED FRAMEWORKS

ments of each role. Once the roles ofall the participants have
been identified, the framework can be built without any need
to explicitly specify their roles.

EVENT NOTIFICATION AND TRANSLATION

The MVC framework and other similar ones typically broad-
cast event and change notificalions to dependents. While this
may be sufficient for simple framework.s, more complex frame
works need something more: the ability to target specific
framework participants for event or change notification. For
this reason the Framework class supports both kinds of
notification mechanisms:

self notify: #someParticipant
that: #something Happened,

self SOmeParticipant
notifynat: #somethingHappened.

The #notify:that: request extends the Object class to provide
event notification targeted at specific named dependents. The
#notifyThat: irquest extends the Object class to provide broad-
casting ofevents to all dependents (sce Listing 1). The Frame-
work class overrides #notify:that: to support tai·geting specific
named participants. It also overrides #notifffhat: to translate
events into actions.

SOME EXAMPLE FRAMEWORKS

The firsi two examples are described in Reference 5. Listine 3
shows a framework class that captures the SubjectView contract.
The Subj ectView contract manages a collection of views so that
they at] reflect the clirrent value of a subiect. By factoring out
the behavior related to the contract into a separate framework
class, the services that the subject and view classes must sup
port are drastically reduced. This factoring allows these classes
to be simplified to their essential behavior without concern for
how they are used in a broader context.

[.isting 4 shows how ButtonGroup, a specialization of the
SubjectView contract, can be captured as a framework subc}ass.
The ButtonGroup shows which button of a group of radio but-
tons is selected. Here again, the behavior required of the Button
class is reduced, eliminating its need to retain any framework
specific behavior.

The next example is derived from efforts to refactor some
browser classes. A brief overview will buggest how such refac-
toi·ing may proceed. The Framework superclass is subclassed by
a hierarchy that supports the redirection and translation of the
SubPane events used in Sinalltalk/V. The class SubPaneMediator
guides the interactions between one of the SubPane subclasses
(i.e., Button) and some other component(s).

The component used by these mediators iii addition to the
subpanes is a SelectionList. The SelectionList class remembers
the selection of a single item from a list of items. The item list
may be either an IndexedCollection or ali OrderedDictionary. The
selection index of the list is either an ordinal number or an or-

comin,{ed 0,1 page 14..

Tl Hi S MAI.1. r·A LE RE· P OR I

f UIs Greg Hendley 6 Eric Smith

Keeping multiple views up=to-date

 n many Smalltalk applications, it is possible for the enduser to have several independent windows providing
views ofihe same information (Figure 1). There may be

several instances of one kind of window or parent and child
windows that, though very different in appearance, share
some overlap in the information they present. To prevent in-
consistencies between windows, the changed-update (also
known as Object Dependents) mechanism can be used to in-
.sure that all views the end-user has opened on a particular ob-
iect are kept up-to-date with that object's most recent idea of
what it looks like.

For example, if the user has a view of a Customer object that
he opened directly and another view ofthe same Customer that
was opened as a consequence of browsing a ServiceAgreement
obiect, any changes make to one view of the Customer bhould
be immediately reflected in the other. The user should not see
two different views and be left to figure out which one is the
most current.

BACKGROUND

The application architecture outlined in previous columns
(THE SMA[.1.TALK REPORT, May 1992 and October 1992) will be
employed here. For those who have not yet been exposed to
the Interface-Control-Model architecture, a brief glossary of
terms is provided here.

· Interjace. The component of the user interface whose iob il
is to present information to the end-user and accept input
events from same. The interface translates user input to se-
inantic actions such as mouse-clicks to selection or menu
selections to commands. The interface has verv little

knowledge of the structure of the application of which it is
a part, It has virtually no knowledge of the domain model
(see below).

• ContraL The control layer of an application is the compo-
nent that understands the semantics of the application as a
whole. This is where commands identified by the interface
are actually carried out. The application control under-
stands the relationships among the various domain model
objects it works with, It also knows about the consequences
of commands. This is the point where all the 'lbrains" of ihe
application (as the end-user sces it) reside.

SEPTEMBER 1993

· Model, The model is the meat of the system. This is where
the real information is modeled (hence the name). If we
were working with a circuit design application, this layer is
where objects such as Circuit, Transistor, Diode, etc. would be
found. These obiects have only the most limited under-
standing that there is a user interface above them. They
have no direct knowledge of user interface issues.

OBJECT DEPENDENTS

Both major dialects of Smalltalk provide essentially the same
Object Dependents facility. The idea is that a client obiect,
which wants to be informed when some other object changes,
registers itself as a dependent of that object. Since the requisite
behavior for maintaining dependencies is implemented in the
class Object, all objects mav have dependents, be dependent on
other objects, or both.

The detailed operation of Obiect Dependents is a topic fur
another time. We'll have to be satisfied with just a quick look
at the top level of the behavior. Iii the simplest terms, an object
which has changed and may have dependents sends itself a
changed message. This results in each of the dependents, ifanv,
of the object in question being sent a matching update mes-

sage. A list ofpossible changed messages and their matching
update messages is presented below:

changed message
changed: arg{)
changed: argo with: argl
changed: arg{) with:argl with: arg2

4..........6-k)# 12201497-6699

Name: smus Cybemencs Corp· hanager John Smith

Sinits Cybemelits Cup.

Cily. \?,I'us Bela : jii Addres 1231 09©ThausandSt
z¥ 27511

MiNShip 216?a

City: Sirill Beta

CUMDI ZiP- 27511 - 6446

Daailst Canter.%

F gure 1. Two windows on a single Customer

23

I BUILDING OBJECT-ORIENTED FRAMEWORKS

selectItem: item

self selectionList selectltem: item.!

widget
'super widget, #(contents:)' 1

selectObject: selection
selt selectionlist select: selection.!

!ListBulton methodsror: 'translating events' !

ListItemChooser subclass: #Listfiewer

instanceVaIiableNames: "

classVariableNames:

poolDictionanes: " 1

clicked

self listSelections size > 1 ifnue: [

self widget contents: self nextSelection].!

listChanged

self selectionChanged.!
!List\Rewer class methodsFor: 'validating roles' '

selectionChanged
widget self widget contents: set selectedltem.!

A #(
deselect

IestOIeWithRefresh:

selection:

selection

ListButton subclass: #MenuButton

instanceVariableNames:

classVariableNames: '

poolDictionaries: " !

'Memulutton class method:,For: 'validating rotes' !
'ListViewer methodsFor: 'translating events' 1

selectionList

deselected

self widget deseled.!
super selectionList, #(popUpltems)!

!MenuButton methodsfor: 'changing component state' !
listehang ed

self widget restoreWithRefresh: self selectedftern.! nextSelection

'self selectionList popUpItems'
selected

self setectindex: self widget selection.! !

'ListViewer methodsfoI: 'changing component state' !

ListButton subdass: #ToggleButton
HistanceVariableNames: "

classVariableNames:

poolDictionaries: " I

showSelection

self widget selection: self selected.Index.! !ToggleButton class methodsfor: Validating roles' !

ListItemChooser subclass: #ListButton

instariceVariableNaines: "

classVariableNames: "

pootDictionaries: " 1

selectionList

.super selectionList, #(selectNext)! !

!ToggleButton methodsfor: 'changing component state' !

'ListButton class methodfor: 'validating roles' ! nextSelection

self selectionlist selec[Next! 1

TO SUBSCRIBE TO

THE SMALLTALK REPORT
CALL 212.274.0640 OR FAX YOUR REQUEST TO

212.274.0646.

I'MISMA[.]IAIER]·PORr

SHARE

INC.

SYSTEMS WINDOWBUILDER pg'-'
Tbe New Power in Smalltall?/V lizterface Development

Sinalkalk /V cierclopers have come to rely on WindowBuilder Pro/V is available on Windows for %295
WindowBuil(ler zih :in g----7,.%06.IderpmrAAi-e.Aa,9.=4- TTE-1 'I nil OS/2 for S +95. orn ·i an-ch.henti.,1 zool fol develop- --File Fdit View A]ign SI,r Q ons EciapbU-liI-= cl:ird WindowBuiliti·i· V N

--- I still available on Window·,
face< Tedious hand coding '- ··- fur· S 149.95 and OS/2 ftii

S295. We offer full value

11}il'Elutli e \1'<till C<1111[)<*,L- M|2 AII "TTac - -->------- pag----- i track -in for our-

lion .Sillte ith iI,Tti:11 rele.ibe, Windownuilder c ublorners/'gal If in---tml
n·.inflng to move up to Pro.
I'lit·se plc)duas .irc also

13 21]lable Zil
fol the hinallialk V enwron- lk+-4111 1 1:UN 1 ./. 1 -1- 1 ENVY«Derehiper.ind
ment Now Oblea>,hari I RW I I 1[21911 - - '.1.':: &1 l Eg 1 U '1'cam:VT.! cy>nip.itil,le for-
brings veil A whole new i :-111 6--------1-7--' --1...4.' mats. As willi all ot our

level of capability with |1§*i:-. _ -_ ____ productq. Wind(,14 131!ilder
\\'indowlizzilder Pro! New 073
tune[ionality ;ind power .141--11 S¥&:1*la,1248 / When:,display * I| inoney back guarantee, full
al)(}und in [his next gener,1- |ilmlal"e: Ez==IM=L____] pedorm,L_-_____ _____1 source code ;ind no Run

11 Miliple pan.i =dicted The ME '*2 Namet*,vo,R, nam,d 'Flornme N-tion of Windi >wBuilder. Time le.4

Some qftbe exciting neivfeatures,,,
• Comp(.Ael'.wic 3 Cleate Cl,%[on, controLs 14 Compcihiles

I { }| 0111·1· controls. i,·elited as
1 Stied

- 1 ,·ing:le object..illowing theA-1 1 di.\Cloper higher lever·ageCity:0 1__1 01 irl,hilbie witlge[AState: U . 1

.¥f ComposirePalle, Can be
u>ed repeatedly .Ind

because they air Ciash !):thed. they can be casih· sul>
c :leed: eli,inges in .i Compi>sitePone :ue retecied :inn'-
\\|lele [|C) .Ire UNCL|

• 11(,aE,hing All<)3,4 the dneloper to quickly change
I.i,Air--10 110111 one ti pe of cont[·01 ' Skills -I

Windoweuilder | 1
01her m '° ·1[1('then allowing for 0 Smalltalk

ponerful ··uliat-if" st\'le 0 Windowlluilder

Hexibility .111()Ved by
morphing will gledth· enhance produeti, ity

• .4·1· pltook Another ne,# featult [c) 1(g{'1<iKe riblial
um,ponent reu,e. NcilipBook> plci lok· a meehanlhn, 101

developers to quickly
, fhap,tri -_-i -- 1 N-iOK.C.=r---Il store and retrieve >re-

ludle oulns
U/,rl.le -I defined xetb of conip{>
(.1,[e rilruin I nene.. 7 he Scrapljook

1 1.1, orite interfuce com
| is .1 (,It:11(1,1 01 >Ill·'b

-VEL-1 -==al @ t)(inents. organi yed
into chapters And pages.

• Rapid Pmton·ping capa
bililieN With the new link

t2i& 1 MED---millt: COI):11)illtles. :1 Gci| ,1 , ilerindi, n 1 lind.'*--
el· call r:,pidly pr<)1011·pe it (...cs/en. 11

functional lnterf,Ice Nithout ,1,7,0, i Tux 1-4 11/indow as achild &DIS""m , TIth/cu/„Imnd,wn filing a *ingle line of ...anGr/pl i, Fp.l'-Vicwcodi· Linklautte>11% arit

1.ink.Menut. pro, ide a pow- -- -

F-,-Ii.....Ii- erful 11]c·(11:Inistii for linking
,= Windowi loge'llier anti Kpec·l-

I-os- 1 fuing flou oil control1 M.'Id T.I
Actic inihittc>ns .in<i1 EL3 Action\!emies provide .i

attach. create, and reme
laions without having to u rite code. The>e feati,re,%
greally enhance productivily (lill·ing prototyping.

• looIll: it De, ek>per. can Cattle sophisticated toolbars

iuht like the ones in rhe Windownuilder Pro 1001 itself.

• Othei new k·.lit,ies mciucle: enlianced duphe.,tion and
cut/paste functions, size and pobition indil·.1!015.
enhanced framing specification, 11.uent-Child window
relationhip Viccitication. enhanced I.riryFicid with char-
after and ticki level validation. :ind much niore...

- Add-in 41:in:Ni i· Allow developers to easil\' integinte
extersion„ i,ino Windownuilder Pro's open architecture

Catch the excitement. gg Pro!
Call Objectshare fur inore intormation.

(408) 727-3742

Obice[*hare SysteinM, Inc 5 lown & Country· village·
1.Ix: (408) 727-6324 suirc 735

09„1111]Serve 76436.1063 Saii Jobe. CA 95128-2026

W:ndoweuilder and Wir.Coweudder Proaretrademarks of Obledshare Systems, Inc All othe, Diand and Produci rlaines are registered trademarks oftheirrespeclive companies

MALLTALK IDIOMS Kent Beck

Inheritance: the rest of the story

 n the June issue where I took on accessor methods, Istated that there was no such thing as a truly private mes-
sage. I got a message from Nikolas Boyd reminding me

that he had written an earlier article describing exactly how to
implement really truly private methods. One response I made
was that until all the vendors ship systems that provide
method privacy, Smalltalk cannot be said to have it. Anothei
is thal im not sure I'd use it even if I had it. It seems like

some of my best "reuse moments" occur when I find a sup-
posedly private method in a server that does exactly what I
want. I don't yet have the wisdom to separate public from pri-
vate with any certainty.

On a different note, I've been thinking about the impor-
tance of bad style. In this column, I always try to focus on good
style. but in my programining there are at least two phases of
project development where maintaining the best possible style
is the farthest thing from my mind. When I am trving to get
some code up and running I often deliberately ignore good
style, figuring that as soon as I have everything running I can
simply apply mv patterns to the code to get well-structured
code that does the same thing. Second, when I am about to
ship a system I often violate good style to limit the number of
obiects I have to change to fix a bug.

What got me thinking about this was a recent visit I made
to Intelliware in Toronto. Turns out Intelliware is two very
bright but fairlv green Smalltalkers, Greg Betty and Bruno
Schmidt (he's not nearly as German as his manie). They hired
me to spend two days going over the code they had written for
a manufacturing application. The wonderful thing was, they
had made every mistake in the book. It's no reflection on their
intelligence; everyone makes the same mistakes at first.

What made their boo-boos so neat was that I was able to go
in and, in two days, teach them a host of the most advanced
Smalltalk techniques iust by showing them how to correct er
ron I'd say, "Oh, look, an isKindof:. Here's how you can get
rid of that and make your program better at the same time."
Because I had a concrete context in which to make my obser-
vations, they could learn what I was teaching both in the con-
crete ("Yes, that does clean up the design") and the abstract
("Oh, 1 see. I can do that any time I would have used
isKindOf:*).

So, go ahead. Use isKindOf:. Use class == and == nil. Access
variables directly. Use perform: a lot. Send a message to get an

8

object that vou send a message to. Just don't do any of these
things for long. Make a pact with yourself that you won't stand
up from your chair (or go to bed, or ship the system, or go to
your grave...) without deaning up first.

oome people are smart enough to write clean code the first
time. At least, that's what they tell me. Me, 1 can't do that. I
write it wrong, and then fix it. Hey, it's not like we're writing in
C++ and it takes an hour lo compile and link our programs.
You may as well be making your design decisions based on
code that works. Otherwise, you can spend forever speculating
about what the right way to code something might be.

PATTERN: FACTOR A SUPERCLASS

As an alteriiative to tlie Separate Abstract from Concrete pattern,
I'd like to present the way Ward Cunningham taught me to make
inheritance decisions. It is very much in keeping willi what I
wrote above about letting your "mistakes" teach you the "rieht"
thing to do. When you are programming like this, it feels like the
program itself is teaching You what to do as vou go along.

CONTEXT

You have developed two classes which share some of the same
methods. You have gotten tired of copying methods from one
to the other, or you have noticed yourself updating me·thods in
both in parallel.

PROBLEM

How can vou factor classes into inheritance hierarchies that

share the most code? (Note that some people will say that this
isn't the problem that inheritance should be solving. You
wouldn't use this pattern if that was your view of inheritance.)

CONSTRAINTS

You'd like to start using inheritance as soon as possible. If you're
using inheritance you can often program faster because you
aren't forever copying code from one class to another (what Sam
Adams calls rape and paste reuse'D. Also, if you are using inher-
itance,you don't run the riskof a multiple update problem,
where you have two identical methods, and you change one but
not the other. Ideally, for this constraint, vou'd like to design
your inheritance hierarchy before you ever wrote a line of code.

On the other hand, designed inheritance hierarchies (as op-
posed to derived inheritance hierarchies) are seldom right. IIi

THE SMALLTALK REPORT

!SubPaneMediator methodsfor: 'binding components !

supportedEventHandlers

A #(

SubPane Mediator subclass: #ListItem(hooser

iristanceVariableNames:

classVariableNames: "

poolDictionaries: " 1

clicked:

doubleelickSelect: !Listltemehooser ctass methodsfor: 'validating roles' I

get{ontents:

getMenu: roteNames

getPopupMenu: #(selectionlist widget) !
select:

selectionlist

A #(
handlerfor: event list:

lelf supportedEvent}{andlers detect: items

I :evh 1 event = (evh copyWithout: ($:)) 1 selection.s

ifNone: I nil]! selectlndex:

selectedIrdex

support: event for: subfane selectitem:

t selector selectedIte m

selector := self handlerroI: event. select:

selector iskil ifTrue: ['self j. selection

subPane when: event perform: selector.!

supportEventsfor: subPane

subPane class supportedEvents do:[:event
self support: event for: sub}>ane].!

!ListItemChooser methodsFon 'accessing component states'

getConterrts
telflistitems!

claimOwnershiDOf: subPane

subfane if[Jrderstood: #supportedEvents do: [
subPane owner: seU

self supportiventsFOI: subPane].1

lisntems

Aself selectionList items!

listSelections

for: partName use: an Object
 selector I
super for: partName use: anObject.
self claimOvmershipOf: anObject. "it SubPane':

'self selectionList selections!

selectedIndex

-self selectionlist selectedIndex!

!SubPaneMediator methodsfon 'handling events· ! selecteditem

'self setectionList selected Item!

clicked: subPane

self notifyThat: #clicked.! selection

Aselt setectionList selection!

dotiblet:lickSelect: subPane

self notifyThal: #double(Ricked. ' selectioriList

self partnerNamed: #selectionlist!

geteontents: subfane
self if[Inderstood: #ge[Contents do: [

subPane contents: self geteontents].1

widget
setf panr,e.Named: #widget !

getMenu: subPane
selfifUndemtood: #getMenu do: 1

subfane setMenu: self getMenu].!

getPopupMenu: sul,Pane

self ifUnderstood· #getfopupMenu do: [
subPane setPopupMenu: self getPopupMenu].!

IListhemehooser methodsFor: 'changing component state' 1

changelist

self selectionList list: self gethist.
'note: g etList should be implemented by subctass

method of piototype block'! 1

selectIndex: index

select: subfane self selectionlist selectIndex. index.

self notifyThat: #selected. ' 1

SEPTEMBER 1993

supers do: I :s 1
methodNames addAH: s methodDictionary keys].

methodNames := methodNames select: [m l
n last == ($:) 1.

methodNames := methodNames collect: [:n 1
n copyWithout: ($:) 1

AmethodNames!

doesNotUnderstand: aMessage

'Try handling aMessage. assuming it is accessing the parts ofthe
receiver. If the part accessed is a block context answer the result of

evaluating the block with the receiver and arguments from aMessage as
arguments. Otherwise, answerthe accessed part. If aMessage does not

access a part, let the superclass handle aMessage.'

 part I
(parts respondsTo: aMessage selector) iffatse: [

ASUper doesNotUnderstand: aMessage }.
part:- self partNamed: aMessage selector imone: [

parts perform: aMessage selector
withArguments: aMessage arguments].

part isContext iffrue: [

aMessage arguments isEmpty iffrue: [
part value: aMessage receiver j.

'3?art value: aMessage receiver
value: aMessage arguments].

Apal' i

"The following example is derived fromr the contract Subject:View
described on page 171 of {HHG90]."

'Subjectfiew class methodsFor: 'validating roles' !

roleNames

A #(subject view) 1

subject
 #(value Value:) !

view

A #(showValue:)! 1

!Subjectfiew methodsfor: 'supporting subject' I

setfalue: value

self getvatue = value ifrrue: [Aself 1.
self subject value- value.

self notify. 2

getValue
self subject value f

notify
self views do. I :view I self update: view].1

attachView: aView

self validate: ayiew as: #view.
self views add: aView.!

20

m BUILDING OBJECT-ORIENTED FRAMEWORKS

detachfiew: aView

self views remove: aView. 1 1

!Subjectlhew methodsfor: 'supDozting views' i

update: aView
self draw: aView. !

draw: aView

aView showVatue: se'if getVatue.!

set Subject: aSubject
self validate: aSubject as: #subject.

self subject: aSubject.

self views == self irrue: [self views: Set new]! I

rrsample use of the framework"
SubjectViewnew

setSubject: ValueHoider new;

attachView: BaIGraphView new;
attac]View: DialGaugeliew new:
attachyiew: PercentageView new;
setValue: 75.!

' S'--191- --- -1.-I--IrA€*.i..10

The following example is derived from the refinement of the
Subjectyiew contract calted ButtonGroup on page 173 of [HHG90].r[

SubjectView subclass: #Button(koup
instancelariableNames:

das:VanableNames: 11

poomictionaries: '7

!ButtonGroup class methodsfor: evalidating roles'

Anew

a #(value chosen:)! !

ButtonG,oup methodsfor: 'suppoding buttons' !

setect: aButton

self setValue: aButton value.!

update: aButton
self getValue - aButton value

iffrue: [self choose: aButton]
iffise: [self un Choose: aButton]!

choose: aButton

aButton chosen: true.!

unChoose: aButton

aButton chosen: false. ! !

Framework subclass: #SubPaneMediator

instanceVariableNames.

classVariableNames: "

poolDictionaries: " :

f'HE SMALI/'ALK REPORT

Fact, by making inheritance decisions too soon you can blind
yourself to the opportunity to use inheritance in a much better
way. This constraint suggests that you should make inheritance
decisions only after the entire system is completed.

SOLUTION

If one of the obiects has a superset of the other object's vari-
ables, make it the subclass. Otherwise, make a common super-
class. Move all of the code and variables in common to the su-

perdass and remove them from the subclasses.

EXAMPLE

It is difficult to come up with an example of inheritance that
iso't totally obvious. The problem is that before you see it, you
can't imagine it, and after you see it, you can't imagine it any
other way. So, if this example seems contrived, don't worry,
your own problems will be much harder.

Here is an example in VisualWorks I ran across a couple of
months ago. I had Figurel, a subclass of Visua[Part. It had to be
dependent on a several other objects, and it had to delete those
dependencies when it was released.

Class: Figure 1
Superclass: VisualPart
Instance variables: dependees

Figure>>initialize
dependees:= OrderedCollection new

Rather than use the usual addDependent: way ofsetting up de-
pendencies, I implemented a new message in Figurel called de-
pendOn:.

Figurel>>dependOn: anObject
dependees add: anOMeet.
anObject addDependent: self

When the figure goes away, it needs to detach itself from every--
one it depends on.

Figurel>>breal<Dependents
dependees do: [:each I each removeDependent: self].
super breakDependents

Then I created a Figure2. To get it up and running quickly I
just copied the three methods above to Figure2 and set about
programming the rest of it.

It was when I went to create Figure3 that I decided to take a
break and clean up. I created DependentFigure as a subclass of
VisualPart, gave it the variable dependees and the three meth-
ods above, made Figurel and Figure2 subclasses of it, deleted
their implementations of initialize, dependOn: and breakDepen-
dents, and then implemented Figure3.

OTHER PATTERNS

While you are factoring the code is often a good time to ap-
ply Compose Methods so you can move more code into the
superclass.

CONCLUSION

I have presented a pattern called Factor a Superclass as an al-
ternative to Separate Abstract from Concrete for creating in-

SEPTEMBER 1993

DO YOU KNOW
SMALLTALK?

At Boole & Babbage, we talk big about
our UNIX and mainframe products.

If you want an unparalleled technical
opportunity to work with a world-class

team in a company with 25 years
experience as an innovator, bring your

Smalltalk and OOD skills and talk big to:

& Boole &
B*- Babbage

Group Staffing DRRSR
510 Oakmead Parkway
Sunnyvale, CA 94086
FAX: (408) 737-2649

or email (ASCII and Postscript only):
info@boole.com

EOE

principals only

heritance hierarchies. Using Factor a Superclass, vou will end
up with superclasses that have more state. I'm not sure if this
is a good thing or not. On the plus side, you will probably be
able to share more implementation. On the minus side, you

may find yourself applying the pattern several times to get the
final result. You might factor two classes to get a third, then
notice that once you look at the world that way you can factor
the superclass with a previously unrelated class to get a fourth,
and so on.

Beware of juggling inheritance hierarchies too much. You
can waste lots of time factoring code first one way, then an-
other, and find that in the end you aren't that much better off

than you were when you started. Objects can survive less-than-
optimal inheritance much better than they can encapsulation
violations or insufficient polymorphism. Most expert designers
agree that great inheritance hierarchies are only revealed over
time. Make the changes that you can see are obvious wins, but
don't worry about getting it instantly, absolutely right. You are
better off getting more objects into your system so you have
more raw material from which to make decisions. E

Kent Beck has been discovering Smalltalk idioms for eight years al
Tektronix, Apple Computer, and MasPar Computer. He is also die
founder of First Class Software, which develops and distributes reengi-
neeringproducts for Smalltalk. He can be reached at First Class Soft-
ware, P.O. Box 226, Boulder Creek, CA 95006-0226,408.338.4649
froicel 408.338.3666 (bix), or 70761,1216 on Compuserve.

9

ti HE BEST OF comp.lang.smalltalk Alan Knight

Extending the environment
(part 1)

T Smalltalk development environment is excellent inmany ways, but stagnant. The basic tools haven't
changed much from when I first used Apple Smalltalk-

80 on a Lisa in 1986. At that time Smalltalk and LISP systems
led the way in interactive development environments. Now
these environments exist for many languages, some of them
very competitive with Smalltalk.

To be fair, there have been great improvements in some ar-
eas, mostly in the area of add-on products. These include GUI
builders, team programming tools, profilers, and database in-
terfaces. The basic tools-the browsers, inspectors and the de-
bugger-remain almost unchanged. This is not because they
defy improvement.

Fortunately, one of Smalltalk's strengths is the ease with
which it can be customized and extended. in this column, the

first of two parts, I'll discuss some simple extensions lo these
tools. Part two will look at some of the packages available that
imake iiiore substantial changes. The main focus will be on
ideas or on code available over the net rather than commercial

products which are better covered in a product review.

AREN'T IMPROVEMENTS THE VENDOR'S JOB?

Ideally, users shouldn't have to write or acquire extended tools-

The development environment is a strong selling point for
Smalltalk, and one might expect the vendors to put some effort
into improving it. From the vendor's point of view, however,
there are good reasons not to change the environment.

• Backward compatibility. Everybody gets annoyed when
system code changes. If users don't think the changes are
worth breaking their code for, they'll be upset.

· Disagreement. Any vendor-imposed changes to the envi-
ronment will be unpopular with some users, and ques-
tionable changes run the risk ofa backlash rivaling that
was received by the New Coke,

· Priorities. Vendors have limited resources, and are kept
very busy developing new products amd fixing the majoi
problems with existing ones. The base environment isn't
bleeding too badly, so resources go elsewhere.

· Lack ofa>mpaition With the recent growth in Smalltalk's
popularity, many users are new to the language and come
from areas such as mainframe COBOL or 4GL development.

10

They're still too dazzled by the very idea of an incremental
development environment to complain about itb deficien-
cia Competition from other languages isn't strong enough
yet to inspire changes. The most likely source of improve-
ments may be new Smalltalk vendors who need to worry
more about carving a niche than backward compatibility.

' Extensibility. There are relatively few complaints about
the environment, because any user with sufficient time
and skil] can change it to suit themselves.

Irs Up TO YOU

You can't count on the vendors for improvements, so it's up to
you to take responsibility for your own development environ-
ment. You don't have to rewrite the debugger, but don't be afraid
to make changes or to explore the changes others have made.

At this point, careful readers mav recall my March/April
1993 column, where I urged great caution in making system
changes. This appears to be a contradiction, but it's really just a
trade-off To be sure, there are risks in changing the system.
New releases or add-on products will need to be checked more
carefully for con ficts and small mistakes can destroy an image.
Frequent back-ups are in order.

On the other hand, changing the browsers or inspectors is
much less riskv than changing deep system components such
as the compiler or the process scheduling mechanisms. Even
with the risks, the increased productivity can be well worth the
trouble. As always, it's best to limit changes in system methods
to small "hooks" that call your own code. This helps mininiize
the problems with new releases.

WHAT NEEDS CHANGING

Development environments are a religious issue, and everyone
has a different opinion on the perfect environment. Neverthe-
less, here's a short wish list of ideas. Note: Not all these ideas

have been implemented, and if they have, the author is not
necessarily iii a position to distribute the code. The best place
to Iook for code is the Smalltalk ftp archives (st.cs.ujuc.edu or
mushroom.cs.man.ac.uk), where the authors have gone to the
trouble of cleaning things up and releasing them to the public.
Code written for personal use often requires Significant effort
to adapt and separate from other extensions.

This column mentions extensions from three different peo-

TH E SMALLTALK REPORT

!Framework methodsfor: defining roles' 1

addRotesNamed: roleNaries

roleNames do: I :roleName I self for YoleName use: nil].!

for: roleName use: anObject

(self binders includes: roteName) iffalse: I

ADarts at: roleNaine put: anObject 1.
self

peIform: (self binderfor: roleName)
with: anObject.'

when: eventName do: aBlock

setf for: eventNaire use: aBlock. 1 '

!Framework methodsfor: Ebinding components' !

resolveRoles

 framework 1
parts associationsDo: [:model I

framework := model value.

(framework isKindOf: Framework) ifrrue: [
framework name: model key.

framework resolveRoleshom: parts]]
self vatidateParts,!

resolveRolesFrom: partsCatalog

I part I
self unresolvedRoleNames do: [:roleName I

part := partsCatalog at: roleName HAbsent: I nil]

self for: roleName use: part].
self vahdateParts. 1

unresolved Role}ames

parts keys select: [:roleName F
(self partiamed: roleName) is,Nit]! :

!Framework methodsfor: 'triggering events' !

notify: partName that: eveniNaine

'Answer the result of notifying the named part that eventName
occurred.'

(self partNamed: partiqame)
noti fyThat: evenetame m

notify: partName that: even:Name with: argument
"Answer the result of notifying the named part that eventName
occuned.

'(self pait.Named: partName)
notifyThat: eventName
with: argument!

notify: partName that: eventName withAR: arguments
' :Answer the result of notifying the named part that eventName
occurred."

'(self partNamed: partName)
notifyThat: everitName

withAR: arguments! B

SEPTEMBER 1993

!Framework methodsfo:: translating events to messages' !

respondsTo: selector

(super respondsTo: selector) iffrue: [Atrue].

(parts respondsTo: selector) itfrue: I «true]
Afalse!

notifyThat: eventName

"Answer the result of performing eventName, or the receiver if
eventName has not been implemented.'

'self ifUnderstoodPerform: even*ame !

notifyThat: event>lanie with: argument
"Answer the result of performing eventName, or the receiver if

eventName has not been implemented.'

self ifUnderstoodPerform: even:Name with: argument!

notifyThat: eventName withAR: arguments

'Answer the result of performing eventName, or the receiver if
eventName has not been implemented.'

self ifUnderstoodPerfona: everitName

vathAR: arguments! 1

!Framework methodsFor Validating role services' !

canUse: part as: roteName

self class ifUnderstood: roleNaime do: 1
Apart respondsToAR:

(self class pefoirn: roleName) 1
Atrue!

validate: part as: roleName

 services F
(self canUse: part as: roleName) iffIue: [self].
services := self class perform: roteName.

services : = part servicesRejectednom: services.
Aself error:

'Supplied ', roleName StOIeString,

' cant respond to '; services first storestring!

validateParts

paits associationsDo: I :each 1

self validate: each value as: each key].! !

TIantework methodsFor: 'binding components - private' !

binderfor: roleName

"Answer the selector that can be used to bind a component to
roleName.'

(roleName, ':') asSymbol!

binders

'Answer all the selectors that can be used to bind the components of a
framewoik subclass.'

I supers methodNames I
methodNames := Set new.

supers := self class allSuperclasses removeLast; yourself.

supers size > 0 iffrue: [supers removeLast].

==mr

1

notifyThat everitName
'Do nothing, as nit has no dependents.".

notifyThat: eventName with: argument
'Do nothing, as nil has no dependents."'

notifyThat: eventNante withAR arguments

'Do nothing. as nit has no dependents."1 !

IdentityDictionary subclass: #Smart Dictionary
instanceyariableNames: "
classVariableNames: "

poolDictionaries: " 1

!SmartDictionaly methods !

respondsTo :selector
MAnswer whether the receiver can respond to the message selector.rr

I colons I

(super respondsTo: selector) imue: [Atrue].
(self includesKey: selector) i]True: [Atrue 1.
colors := selector occurrencesof. ($:).

colors - 1

doesNotUnderstand: aMessage
"If the receiver can handle aMessage setector, do so. Otherwise, treat

aMessage like super would.'
I name I

m BUILDING OBJECT-ORIENTED FRAMEWORKS

initialize

name:= 1111.

parts := Smartactionary new. f

release

I objects I
objects:= self parts.

paits := SmartDictionary new.
objects do: [:each E each release].

.super release! !

! Framework methodsfor: 'accessing components' !

name

Aname!

name: partNaine
name := partName.!

partNamed partName
"self partNamed: partName ifNone: [nil]!

partNamed: pariName ifNone: aBlock

I part I
part := parts at: par¢Name ifAbsent: f aBlock value].
part isNit ifi'rue: [#Block value].

.part!

name := aMessage selector.

(self respondsTo: name) i(Fatse: [
super doesNotUnderstand- aMessage 1.

"handle getter,"
(setfinclude:Key: name) iffrue: ['self at name].
':handle setter. 1

name := name as String copyWithout: ($:),
setf at: name asSymbot

put: aMessage argument.s first.! !

Object subelass: #Framework

instanceVariableNames: 'name parts '
ctassVariableNames: It

poolDictionaries: 'F f

! Framework class methodsfor: 'creating instances' !

assemble: frameworkName from: parts

self new

name: frameworkName;

parts: parts;

resotveRoles!

new

super new initialize! f

rhamework methodsfor: linitializing - reteasing' I

l8

partNames
parts keys!

parts

parts values!

parts: partsCatalog

parts := parts Catalog. ' !

! Framework methodsFor: 'assembling frameworks' !

i bestRoleNamefor: part
"Answer the roleName that best fits the part, or nit:

I roleName roleSize roleServices I
roleSize :- 0.

roleName := nil-

self class roleNames do: [:each 1
self class if[Jnderstood: each do: [

roleServices := self class perform: each.

roleSelvices size > roleSize ifrue: I

(self canUse: part as: each) ifrrue: 1
roleName :- each,

ToleSize := roteServices size 1 1 1 j.
A roleNamet

useBestRolefor: part

I roleName I
roteName := self bestRoleNaniefor- part.
roteName isNit iffaise: [

self for: roleName use: part].! f

THE SMALUI'ALK REPORT

pie ort the net. Deeptendu Majumder (dips@cad.gatech.edu)
has released his extensions up ina package called ISYSE, avail-
able from the archives.

Bruce Samudison (bruce@ling.ula.edu) may get around to
cleaning up and releasing his code, but is not in a position to do
so at this time. Gene Golovchinsky (golovch@ie.toronto.edu)
ham't packaged his extensions, but is willing to be pestered
about them.

Automatically writing access methods
One of the most common system extensions is a mechanism to
generate access methods for instance variables. These methods

aren't difficult to write by hand, but they occur so frequently
that a tool can be very convenient,

It's important that the tool be selective. Not all variables
should have access methods (or some of them should be

clearly marked private, depending on your philosophy) so the
user must be able to select which methods to generate. The
tool should also provide documentation in the method. The
user should be able to (if not forced to) provide information
on the type of the variable and its purpose. This information
should already be in the class comment, but it doesn't hurt to
duplicate it. A really sophisticated tool would check the class
comment for the information and update it if necessary.

Find class

I use the '<Find class" feature very frequently, especially in Dig-
itaik dialects. Unfortunately, the basic Digitalk implementation
is brain-dead, and the ParcPlace one, while better, still doesn't
do what I want.

· Ignore case. This is much faster and more convenient. (Is
it Filename or FiteName?)

· If the name matches a class (e.g., set), go directly to it
without presenting a useless list of one class to choose
from. In general, I prefer tools that can skip over lists with
Only one item.

* If the name doesn't match a class, append a wildcard and
present a list of those it matches (e. g., sea gives me a list of
#(Settee Seller Settlement).

If I explicitly type a wildcard, atways give me the list (e.g.,
set* gives #(Settee Setter Settlement)).

Smalltalk/V's debugger
[fyou're used both Smalltalk-80 and Smalltalk/V, one of the
most frustrating things about V Es its debugger. To the un-
trained eye, both debuggers arevery similar, and in fact V offers
the nice additional feature of breakpoints. The problem is that
when evaluating an expression inside the debugger, V evaluates
it as a method in self (the receiver of the current message), not
the context of the current method. In the Smalltalk-80 debug-
ger you can highlight any text in the current method and evalu-
ate it. In the Smalltalk/V debugger this only works ifthe text
doesn't reference method arguments or locals-

SEPTEMBER 1993

The most irritating thing about this problem is that I don't
know how to fix it. Digitalk hides the source to their compiler,
and although I've come up with a few bizarre ideas that might
work, rve never had time to really work on it. I fanybody has a
fix for this, please let me know,

Browsing inherited methods

I don't know how many requests I've seen for a for a browser
that shows ati methods in a class, including inherited methods.
The basic functionality is very simple, and the real problem is
providing a good user interface. ParcP]ace does provide this
capability with the Ful!Browser, but it's a poor implementation
and only available in the APOK add-on package. It's a good ex-
ample of why we might not want the vendors deciding for
themselves how to improve the environment. Most of the ex-
tended environments described in part 2 provide this capabil-
tty in some form.

Resizing panes

Bruce Samuelson describes a useful feature to augment the
browser with:

..buttons for resizing browser windows horizontally and
vertically, and reproportioning the line separating the up-
per panes from the method

This is an increasingly common feature in user interfaces, and
one that can be very useful. Smalltalk/V Mac has a convenient
"zoom. feature that makes the text editing area fill the entire
window, but this would be more flexible.

Gene Golovchinsly writes:

I would like to see more buttons on the screen for common

commands rather than entries in popup menus. I invari-
ably pick the wrong one, or keep moving between copy,
paste, and accept. Then I accidentally pick cancel, and have
to repeat the whole process again!

I'm not sure we want to add too many buttons, but a few in the
right place would be nice. Certainly, it's much nicer having
buttons in the debugger for single stepping than having to use
a pop-up menu. For operations like cut and paste I prefer to
have keyboard short-cuts.

Renaming classes in Smailtalk/V
Smalltalk/V still doesti't support renaming classes or changing
the definition of classes with instances. It shouldn't be that

hard to implements and I believe the capabilities are available
as part of their Team/V package. Why is such a basic capability
bundled into a team programming tool and not in the base im-
age? Only Digitalk can tell.

COGNITIVE OVERLOAD

While all of the above are useful, they are only minor improve-
ments. There are more general issues that need to be ad-
dressed. Deeptendu Majumder raises the issue ofcognitive
overload in the Smalltalk environment:

11

One thing that irritates me more and more these days is
how my screen gets out of control with a multitude of win-
dows....1 sometimes wonder ifthere is some kind of

study...about determining the most suitable ST program-
ming environmentI sometimes very strongly f€el the
environment can be "smarter" about...reducing the cogni-
five overload and maintaining easily identifiable cues
about what info is available only for a mouse click.

Controlling windows
The largest single factor in cognitive overload must the num-
ber of windows Smalltalk produces. I usually have 10 to 20
windows open simultaneously and I'm sure I get as high as 50
now and then. With this many windows, it's vital to have
mechanisms to control the complexity.

Craig Latta (latta@xcf. berkeley.edu) writes:

I find that simply having a good window manager goes a
long way toward reducing the cognitive load. The main
problem I would have otherwise is with hordes of windows
crowdiiig the screen, and subsequently losing track of par-
ticular windows. Things like icon managers (as in 'twm' on
X platforms) reduce this problem significantly.

A good window manager and a large screen are vital elements
for Smalltalk work. One technique I use is to make use of win-
dow and icon positions. Certain windows (e.g., the system
transcript, a workspace with useful expressions, my list of
things to do) are always open, and I make a point ofalways
keeping them in the same place. 1 also try to keep their icons in
standard places, but not all window managers maintain the po-
sition of icons (NIS-Windows doesn't).

66 Writing Smalltalk code is akin to
authoring hypertext 99

Another technique is to put more information into window
titles. By hooking into the browser selection mechanism, the
window title can be made to indicate the current class and

method. This makes navigating among icons easier, and can
also be used with window managers that allow you to find win-
dows by title. With a bit more effort, it should be possible to
change the window icon to convey more information.

If your window manager doesn't manage windows and
icons well, it's possible to make up some of the difference in
Smalltalk. Gene Golovchinsky writes:

I added an entry to the Launcher menu that displays a list of
all current Smalltalk windows, and indicates the minimized

ones. If I pick from this menu, it raises that window. Just to-
day I saw that something siinilar is available in the archives!

12

m THE BEST OF COMP.LANG.SMALLTALK

Reducing the number of windows

Managing windows is all very well and good, but do we really
need all those windows in the first place? Jaap Vermeulen
Gaap@sequent.coin) doesn't think so. He writes:

With new tools to replace the browsers that allow better in-
dexing, earching, shortcuts, and backtracking, you might
need fewer windows. Finally, if the inspectors and debug-
ger would become a little smarter and not throw up win-
dows all over the place, we really would start talking.

Inspectors are one of the worst culprits in creating excess win
dows. A tool that allowed graphical inspecting of many obiects
at once, following links between them, could reduce this con-
siderably. There is a simple tool of this type included with the
HotDraw application framework. I believe First Class Software
(408.338.4649 (voice), 408.338.3666 (fax), or 70761.1216 on

ConipuServe) has a graphical inspecting tool for Smalltalk/V.
Too manybrowser operations spawn a new window in

which to present their results. The only concept of backtrack-
ing is to go back to the window vou started the operation from.
For operations like senders, this is simple to change and makes
the function easier to use. Gene Golovchinsky writes:

I've augmented the MethodListBrowser to add the abilitv to
add a specific method to the list. It works like the Messages
menu item, but instead of spawning a new window, it adds
the entry to the list. If there is more than one item, it

prompts for the one to add. I find this tool handy for
traversing long chains of message sends and keeping them
all in one place.

Unfortunately, it's not so easy to reduce the number of win-
dows generated by some of the other operations.

HYPERTEXT MECHANISMS

Gene Golovchinsky writes:

Writing Smalltalk code is akin to authoring hypertext; per-
haps some insight can be gained from perusing that litera-
ture. Along those lines, thi5 environment seems like an
ideal vehicle for implementing all sorts of hypertext behav-
ior. In fact, the existing browsers have many of these fea-
tures already.

Indeed, Smalltalk browsing shares many characteristics with
hypertext browsing and suffers many of the same problems.
There's an enormous amount ofinformation, only a small part
of which is relevant at any given time, and it's easy to become
lost in the irrelevant.

Messages
Many browser improvements are intended to quickly find rele-
vant information while avoiding that which is not relevant. If
you can follow a link directly to what's important, you don't
need as many windows open looking for it.

One such feature is the messages menu item mentioned
above. This allows you, when browsiiig a method, to find im-

THE SMALLTALK REPORT

"The folowing code extends the baseline Smalltalk classes to support
certain aspects of framework assembly, event handling. and Iole
validation.·

notify: name that: even'Name with: argument

(self dependentNamed: name)
notifyThat: eventName
with: argument!

!Collection methods 1

assembleAs: frame,voikClass

"Answer a new framework assembled from the receiver."

I framework
fianiework := frameworkmass new.

self do: [:each 1 view useBestRoleFOI: each 1.
framework resolve Roles! :

Object methodsror: 'accessing named dependents' !

dependentNamed: name

"Answer the named dependent, or nit."

Asen dependentNamed: name i]None: I nit]!

dependentNamed: name if#lone: aBlock
"Answer the named dependeint, or evaluate aBlock. 31

'self namedDependents

detect: [:d I d name = name] ifAbsent: aBlock!

namedDependents

"Answer any named dependents attached to tile receiver."
'self dependents

select: [:each 1 each respondsTo: #name]! i

!0bject methodsfor: 'perfoIming optional behaviors !

i]Understood: selectoI do: aBlock

"Evaluate aBlock if the receiver understands selectoi."

Nse'lf respondsTo: selector)
iffrue: aBlock

ifFalse: [self] !

itUnderstoodPerform: selector

"Answer the Iesult of the selected method, Or the receiver

(self Iespondsro: selector) iffalse: [Aself].

As.f perform: selector'

ifUnderstoodPerform: selector with: argument
"Answer the Iesult of the selected method. or the receiver.'E

(set respondsro: selector) ifFalse: [Aself].

Aself perform: selector with: argument!

ifUnderstoodPerform: selector withAU: arguments
"Answer the result of the selected method, m the receiver-"

(self respond:To: selector) iffalse: [Aself].
Aself perform: selector withArguments: arguments! !

'Object niethodsFor. 'notifying dependents of events' !

notify: name that: eventName

'(self dependentNamed: name)
notifyThat: eventName i

SEPTEMBER 1993

notify: name that: eventName withAR: arguments
'(self dependent?lamed: name)

notifyThat: eventjame
with,All: arguments!

notify'i'hat: eventName
"Answer the final result of iiotifying aR the dependents that eve IitName
occurred.

 result 1

self dependents do: [:d 1
Iesult := d notifyThat: eventmame].

Aresult

notiffrhat. eventName with: argument
'Answer the final result of notifying all the dependents that eventName
occurred.'r

I result I
self dependents do: 1 :d

result := d notifyThat: eventNaine

with:argument 1.
"result!

noti*hat: eventi'Jame with AN: argumeints
"Answer the final result of notifying all the dependents that eventName
occurred. 5

I result I
self dependents do: [:d 1

result := d notifyThat: eventName
withAU: arguifierits 1.

AIRSillt" 1

!Object methodsFor: 'responding to requests' :

respondsroALL svmboISet

'Answer whether the receiver responds to alt of the messages in
symborSet.'

symbolSet do: [:each I
(self respondsfo: each) ifialse: I Nalse]].

Atnle

semicesRejectedbom: symbolSet
"Answer those service requests from symbomet to which the receiver
does not respond.'

symbolSet reject. i :each I self respondsTo: each]'

value

"Answer the le¢eiVE.'

Aserf? r

!UndefinedObject methodsron 'catching dependents access' !

namedDependents

'nil has no dependents.·
''Array new!

17

through such an implicit "second-class» framework can be
difficult. However, these patterns of interaction can be cap-
tured and reused explicitly by framework classes. Because the
message flow is more explicit in framework classes, they are
much easier to understand.

As noted perviously, good class hierarchies tend to be deep
and narrow. The hierarchies created by framework classes tend
to be deep, narrow, and thin. The methods themselves tend to
be small (thin),because they coordinate only the interactions
between the obiects that participate in the framework.

Manv object designers have claimed that frameworks are
difficult to find. Actually, frameworks are not hard to find at al[!
They simply have not been noticed much. They tend to be like
thin oils that lubricate the meshings of larger obiects. Any pat-
lern of interactions between objects mav be captured as a frame-
work. However, the resulting framework maybe so specialized
that it is better to leave the interactions built into the collaborat

ingclasses. Frameworks serve best when they capture and luctor
out the semantics of event-driven interactive systems.

Sometimes it is expedient during prototyping to develop a
system that is closely coupled. After completing the prototype,
some parts of the design can be revisited and the coupling
1005ened for better reusability. Loosely coupled objects tend to
be more reusable and more resilient to design and system evo-
lution. Framework classes provide a new option for refactoring
through decoupling.

FUTURE WORK

The current implementation of the Framework superclass uses a
simple collection of method names for role validation. 11 would
be better if each role were defined using a specification object,
in particular an object type. Object tvpes use method signatures
to specify the types ofeach argument and the method result,
When these specification objects become available, framework
role validation can evolve to use them. Object types will provide
better constraints to qualify components for roles.

CONCLUSION

This article has presented a new view of object frameworks:
How framework classes can simplify the design of component
classes by factoring out the behavior found in interactive sys-
tems. Component objects become simply clients and/or service
providers. reducing or eliminating the additional responsibili-
ties of complex coordination between objects. In addition to
simplifying existing components, refactoring may create new
components. Such refactoring improves the reusability of all
the components that form a system and creates reusable
framework obiects. ®

Acknowledgments

Several individuals inspired me with their interest and
thoughtful critiques during the evolution of these ideas. Special
thanks to Jean-Francois Cloutier, Tracy Tondro, Oleg Arsky,
and Jim Carlstedt

J6

1 BUILDING OBJECT-ORIENTED FRAMEWORKS

References

1. Krasner, G.Land S.T. Pope. A cookbook for using the model-
view-controller user interface paradigm in Smalltalk-80, JOURNAL
OF OBJECT-ORIENTED PROGRAMMING 1(3):26-49,1988.

2. Shan, Y-P. An event-driven model-view-controlier framework for
Smalltalk, OBLECT-ORIE.NTED PROGRA,MMING SYSTEMS, LAN-

GUAGES, AND APPLICAT IONS CONFERi iNCE, ACM, New Orleans,
LA, 1989.

3. Shan, Y-P. MoDE: AUIMS for Smalltalk,. OBJECT-ORIENTED PRO-

GRAMMING SYSTEMS, LANGUAGES, AND APPLICATIONS CONFER-
f Nci, ACM, Ottawa, ONT, 1990.

4. Sullivan, K.J.,and D. Notkin. Reconcilingenvironmentintegration
and component independence, TRANSACTIONS ON SOFTWARE EN-
GINEERING, ACM, Ottawa. ONT, 1990,

5. Helm, R.. I.M. Holland, aild D. Gangopadhyay. Contracts: Specify-
ing behavior·iii compositions in object-oriented systems, OBjECT-
ORIENTED PROGRAMMING SYSTEMS, LANGUAGES, AND APPLICA-
TioNS CONFERENCE, ACM, Ottawa, ONT, 1990.

6. Wilkerson, B, How to design an obiect-based application, DE-
vi·Lop, Apple Computer, Cupertino, CA, April, 1990.

7. Wirfs-Brock, R.,and R.E. johnson. A surveyofcurrent research in
obiect-oriented design. COMMuNICATIONs op THE ACM
33(9):104-124,1990.

8. Wirfs-Brock, R.,and B. Wilkerson. Obiect-oriented design: Are-
sponsibility-based approach, OBJECT-ORIENTED PROGRAMMING
SYSTEMS, LANGUAGES, AND APPLIC.A I IONS CON TERENCE,, ACM,

New Orleans, LA, I 989.

9. Wirfs-Brock, R., B. Wilkerson, L. Wiener. DiesIGNING OBJEcT-
ORIEN-rED SorlwARF, Prentice Hall, Englewood Cliffs, NJ, 1990.

10. Rumbaugh, I.. M. Blaha, W. Premerlani, F. Eddy, W. Lorensen.
OBJECT-ORIENIii) MODELING AND DEsiGN, Prentice Hall, Engle-
wood Cliffs, NJ, 1991.

It. Opdyke, W.F. Refactoring object-oriented frameworks, PhD thesis,
University of Illinois at Urbana-Champaign, 1992.

12. Cook, W.R. interfaces and specifications for the Smalltalk-80
Collection dasses, OIJE.CT-ORIENTED PROGRAMMING SYSTEMS,
LANGUAGES, AND APPLICA IONS CONFERENCE, ACM, Vancouver,
BC, 1992.

13. Boyd, N. Modules: Encapfulating behavior in Smalltalk. THE
SMALL r A K R F PORT 2(5), 1993.

Nik Bold is u Principal Member of the Technical Staff at Citicorp
Transaction Tedmology in Santa Monica, CA. His research in-
terests include instance-centered and class-centered object sys-
tems, as weti ns tools and techniques that suppolt object-oriented
software engineering Nik may be contacted via email at
74170.2171@compuserve.com or through the American Informa-
tion Exchange (AMIX).

THE SMALLTALK REPORT

plementors or senders of any of the messages sent by that
method. The messages sent become hypertext links.

One problem is that the number of methods found can be
too large to work with. Thus, it's useful to restrict the methods
considered. One way is to allow "local" senders/implementors,
selecting only methods within the current class or perhaps
within its sub/superciasses.

Bruce Samuelson has another mechanism:

...'mysenders>, 'my implementors'which only fookat the
changes file...

Also, we may want to browse a method that isn't sent from the
current message, or we may be in a text editor instead of a
browser. Gene Golovchinksy describes a menu item that opens
a browser on the class or method named by the currently se-
lected text. I have a similar extension, but I separate the
browse/senders/implementors/class references behavior and
use keyboard shortcuts to invoke them. Keyboard shortcuts are
a little faster, and work in workspaces as well as browsers, but
are less mnemonic and not as flexible.

Operating on text is a nice feature, but one that works best
for zero- or one-argument messages. Multi-keyword messages
don't usually occur in text in the right form. It should be possi-
ble to use the Smalltalk parser to extract possible message
names, but I haven't tried this.

Deeptendu Majumder added a feature for finding imple-
mentors of a method whose name is not known. The base im-
age allows wildcard searches on method names, but force a
choice from a menu of possible names without seeing imple-
mentations.

...all I did was add an extra list to the browser that grabs
ali those things that otherwise show up in the menu. When
1 am not sure exactly which method I am looking for, I can
select entries from this list one after another and browse
their various implementations. 1 can then change the selec-
tion template from within the list and grab a whole new set
of message names.

Searchjng for strings
The link you need may not be the name ofthe method ora
message that it sends. Just todav I wanted to search for a
method that didn't send a particular message, but contained
the name of that message in a comment. I had previously com-
mented out that message send, closed the window, and forgot-
ten the method name. Bruce Samuelson writes of a feature he
implemented:

...search for a string (e.g,, open:) in methods and class
comments. This can operate on...categories, classes, or
protocols. This is useful for maintaining comments and for
finding code for which standard searches break down.

Lost in hypertext tools
All the mechanisms listed above are valuable tools for search-

SEPTEMBER 1993

- m i riff Putachart pIm'*IM Mbwild<91 viewinyour i

Add charts to your VisuaWorhs palette
Oynan#C Add or change data points. with minimal screen repainting-

Add or remove data series to/from tile chart.

YnteriMMve select dan poitits with ttie imi,se-- EC-Cham iifoonS
your applicatic>Il.

5/.0-5Uses screen space effectively
10 ICQ 400

Scroll the chart view in one or both
directions, Mark va]nes of summary

fluictioris hi tlk¢

L . · '1' 'I=,i 11: axis areas. Show 1 f
..· · I ·r· -B I thIESholels using Jei *#24* 1 ' : *.Z:9-:.4. 3--:-:1 you gnci lines· I989 **_-L74Ln

1990 ///LII-
Nrw YoAK Sid Iggi li -- L_u_-L
2,7 2.--s. ca>Ws cy: 0114 :4 tilt. Ii. I.+ .H 1.1

OB a -etit"*34 1 .,Mal"/dic40 $350
No runtime license fee

A [1191 CW UkoNCall for a technical paper
on EC-Charts (408) 462-0641

VsuaWorks:s ati·a*frark
d ParePWce Syme k 21137 East CHI ff Dr · Santa Cruz · CA 95062

ing. Unfortunately, if we implemented them all in a single im-
age I suspect users would merely find themselves lost in hyper-
text mechanisms instead of (or as well as) lost in the code. As
Deeptendu Majumder writes:

There are so many small enhancements that can be done
that I found it is not very productive to undertake the ef
fort without a serious study of overall needs rather than
trying to attack small segments of the problem.

Next month, well examine some more radical extensions that re-
place the basic tools instead of patching or adding a few features.

ERRATA

In the june 1993 column I published code for testing dictio-
nary performance under ObjectWorks\Smalltalk release 4.0.
Unfortunately, I didn't test this code adequate' T2, and Bruce

Samuelson, the author, has pointed out that, due to changes,
this code does not work with release 4.1 or VisualWorks. There
are two problems. First, the way hashing is done has changed,
so the results will be in error. Second, the method sortedEle-
ments has been removed, so the method will produce a walk-
back. A new version, which will also work with other hash
table classes, is available from the Smaltalk archives at
st.cs.uiucedu. ®

Atan Knight works for The Obiect People. He can be reached at
613.225.8812 or by email as knight@mrco.carteton.ca.

13

0 10/3

1984

198L

1.1 U...],2

0. 11
4 #VE,%-52]Joal=355[.33Ll€ 36 44: 44

66 '67 68 69 70 '71 '72 73 74 72

connmied from page 6 I BUILDING OBJECT-ORIENTED FRAMEWORKS

selectionList

(SelectionList)

selectionList

3 E (SelectionList)

metaChoice variables

ihoic¢ToggleButton) 1 (Variablel

ger

/ widget (Button)
widget widget

(Listrane) (Listpant

 widget
\ (Listpane)

mana

(CH-BManat
- var iablesMenu

(Menu)

selectionList
selectionLjst

(SelectionList) \ (SelectionList)
\

hierarchy methods

(ClassLis(View) (MethodListriew)

classesMe.nu - - methodsMenu

(Menu) - text (TextPane) 22 (Menu)

Figure 2. CHB frameworks.

dered dictionary key. Selection,Lists also notify their dependent
mediators when their list or selection changes:

"from within #list:11
self notif/That: #listehang ed.

"front within #select:"

self notif/That: #selectionChanged.

Listing 5 shows the code for the SubPaneMediator classes. The
kinds of SubPaneMediators that use Selectionlists include those

depicted in the following hierarchy:

Object
Framework

SubPaneMediator
ListltemChooser

ListViewer

ListButton

MeituButton

ToggleButton

The listItemChooser class manages the interactions between a
Selectionlist and a SubPane (GUI widget). The ListViewer class
manages the interactions between a Selectionlist and a ListPane.
The List]3utton classes manage the intera©tiOJ)S between a Selec-
tionlist and a Button in two varieties. The MenuButton class pops
up a menu of the list items when clicked, allowing one of the

14

items to be selected. The ToggleButton cycles through the list of
items, showing the next item description on the button face.

Now, consider how these small framework classes might
be used to refactor a browser such as the Smalltalk/V
ClassHierarchyBrowser (CHB). The CHB has five subpanes:
a class hierarchy Listfane, a variables ListPane, a methods
Listrane, a RadioButton grotip, and a TextPane.

For this discussion, we will replace the RadioButton group
with a speciali,zat ion of the ToggleButton. This MetaChoiceTog-
gleButton framework will use a two item list: #(class instance)
for selecting either class me[hods or instance methods.

For each of the ListPanes, we specialize the ListViewer frame-
work with ClasslistViewer, ValiableListViewer, and Method-
Listliewer frameworks. Each of these small frameworks serves

as the owner for their respective subpanes. As such, they ac-
crete the behavior from the CHB related to those panes, iii
cluding menus, list maintenance, item selection, and propaga-
tien of notifications and changes throughout the overall
framework network (see Figures 1 and 2).

This brief outline indicates how such refactoring can pro-
ceed. However, note that further evolution and improvements
can be made through additional refactoring and framework
creation. In the end, the responsibility ofthe browser dass can
be reduced to assembling a network of objects that logether
produce the overall browser behavior.

Till: SMALLTALK REPORT

TUNING COMPONENT COUPLING

The Framework superclas uses loose coupling as a technique
for achieving component integration and coordination. The
implementation suggested in this article makes use of a kind of
Dictionary to bind framework participants into their roles. This
technique of]oose binding allows frameworks to be evolved
and extended quickly through several iterations.

Although this technique requires little in the way of over-
head, a small amount of performance can be lost when the
role participants are resolved dynamically. A number of op-
tions exibl for tuning the performance of frameworks built us-
ing these techniques.

The Framework class uses a class named SmartDictionary (see
Listing 1). In addition to the messages understood by IdentityDic-
tionary, SmartDictionaly responds to the typical accessor idioms:

componentlame 'getter;

componer:*ame: anObject 'setter

'These protocols are supported by overriding the #respondsTo:
and #doesNotUnderstand: methods. These protocols are also
supporled by the Framework class. In addition to this implicit
form of component access, the Framework class supports the
following form of indirect access:

componentName Flindizect gette,"
'self partneINamed: #componentName

componentName: anObject "indirect setter"
self

for: #componentName
use: anObject!

This support for the dynamic binding of roles can be replaced
by ordinary instance variables and their accessors. However, in
order to gain the benefits of rapid design evolution, this should
be done (ifdone at all) only after the design of the framework
class has stabilized.

Compomentmame "direct getter'
componentName

componentName: anObject "direct setter•
componentName := anObject!

PARTCIPANT INTERACTION STYLES

One of the principal uses of any framework das.s is to mediate
the interactions of its participants. Because participants are
loosely coupled, the methods of a framework class have this
peculiar aspect: Participants are always accessed through re-
guests to self. So, some of the framework methods provide ac-
cess to components or their state(s), while others translate
events into actions.

The event handling methods of a framework class serve as
templates thal guide the exchange of information between
the framework participants. The expressions used by these
event handling methods generally fall into one of the follow-
ing basic patterns:

SEPTEMBE R 1993

eventName

"Request information or a change of state."
Aself someCon,ponent Iequest

everitName

"Exchange information between components.'
self someComponent binaryKeyword:

self anotherComponent request.

eventName

'Notify another participant (frainewo Ik) that something happened
(translating the event name).

self

notify: #framework)(
that: #somethingHappered

eventName

Forward this event to another participant (framework).'
Aself

notify: #frameworkX
that: #eventName

SPECIALIZING FRAMEWORKS

New frameworks can often be discovered when reusing exist-
ing ones. Sometimes it is more convenient to attach custom
behavior to an existing framework rather than create a new
framework subclass.

The Framework superclass supports the prototyping of new
behavior by allowing the usage of blocks as components. When
a message is redirected through #doesNotUnderstand., the
Framework superclass checks to see ifa block has been defined
to handle the message selector. If the framework can handle
the message with a block, the block is evaluated with the mes
sage receiver and its arguments (if anv).

After a new framework has stabilized, the developer may
decide to create a new framework subclass, moving its special-
ized behavior from blocks into methods. When this occurs, the
developer is faced with a decision: What should the scope of
visibility for the new class be? Very general frameworks should
probably be visible to the whole Smalltalk system. However,
some frameworks should only be visible to the classles) that
need them. Module classes' 3 can be used to hide specialized
framework subclasses.

For example, in our consideration regarding browsers, we
found that thev will often need specialized frameworks for
managing the interactions between the subpanes from which
they are composed. Each of the LisatemChooser subclasses can
be further specialized to create customized mediators that
manage the overall interactions between the various subpanes
that make up a browser. Rather than expose these specialized
frameworks to the whole of Smalltalk, they can be hidden
within the browser class if it is implemented as a module.

GENERAL OBSERVATIONS
Many patterns of interaction between objects in a system ap
pear over and over again in other systems. Sometimes these
patterns are formed into a loose composition] of abstract classes
like the MVe framework.' Following the flow of messages

j5

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 279 DENVILLE NJ

POSTAGE WILL BE PAID BY ADDRESSEE

NO POSTAGE

NECESSARY

IF MAILED

INTHE

UNITED STATES

If You Use Smalltalk, You Need GemStone
GemStone is the ideal database ---*=0me=/flimil:"7810'I.-

environment for supporting -..uu... 4:72-6& 2.-2.-1.11.-

Smalltalk applications. It is the
only high-performance, produo NETWORK

tion-ready ODBMS with a trans-
parent Smalltalk interface. ..#-

• Maintain class hierarchies and

execute Smalltalk methods

directly in the server.

• Automatic, transparent transla-
tion of Smalltalk objects into
GemStone.

• Cooperative client-server sup-
port.

The Smalltalk Report
Subscriber Services Dept SML
PO Box 3000
Denville NJ 07834-982I

(;emSton. Object Database Smalltalk Application

U YES! Send Me Complete Details On GemStone

Name: Title:

Company:

Address:

• Smalltalk-based DDL/DML. City: State:- Zip:
• High-performance, scalable,

Phone: Fax:production-ready ODBMS.

• Integrated garbage collection of 1 -800-243-9369 SER&)persistent Smalltalk objects.
10„d„dhdn,Ii'll/'ll/1//Illi,IddndU„hl

NO POSTAGE

NECESSARY
IF MAILED

IN THE

UNITED STATES
e Er Provi

The Smalltalk Repon ... If you're programr,
in Smalltalk.

des objective 6 authoritative coverage on language you should be readi„0
advances, usage tips, project management advice, AeD The Smalltalk Report "techniques, and insightful applications.

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 4362 SAN JOSE CA

POSTAGE WILL BE PAIDBY THE ADDRESSE

J Yes, 1 would like to subscribe to The Smalltalk Report Date_

El I year (9 issues) U 2 year (18 issues) Name

U Domestic $69.00 U Domestic $,z8.00 Title

J Foreign 594.00 O Foreign $178.00 Company

SERVIO CORPORATION

2085 HAMILTON AVENUE

SUITE 200

SAN JOSE, CA 95125-9985

Method o! Payment Address
i U Check enclosed (payable to The Smalltalk Report)

City1 Bill me
StateU Charge my: O Visa O Mastercard O Amex

, Card No. Zip

Exp. Date Country
Signature Phone

Il,l.,,I,I 1.,0 Il,.lil,lil,I.I.,I,I,.I,,l.,I.I,1,,,ll

1. Which dialect of Smalltalk do
you use:

l Smalltalk V
0 Smalltalk-80
0 Other
2. What is your involvement in

software purchasef for your
department/firm:

J Recommend Need
0 Specify Product

U Make Purchase
0 None
3. Which operating system

supports your software:

U UNIX
0 DOS

0 05/2
O Windows
EL] Other

4. What is your company's
primary business activity:
·-1 Computer/Software

Development.
1 Manufacturing
U Financial Services
D Government/Military/Utility

A membec of the

Eect Marketing Network

C Educational/Consulting
0 Other
5. For how long have you been
using Smalltalk:
O Less than one year
1 3 ye ars

O 3' years EGJG

fax to212/274-0848 SIGS
l]U I< VT [ONb

