'%;X; " Smalltalk report, The, 1991-1998 \ OQ 4 i

Adele Goldberg papers
Pariodicals, technical papers, and articles
X5774.2010, Box 5 102739331

| JHWEEK
LABS

SHOOT-QUT

WINDOWS AND 08/2:
PROTOTYPE T0 DELIVERY.
() WAITING.

In Windows and OS/2, you need prototypes. You have to get a sense
for what an application is going to look like, and feel like, before you can write
it. And you can't afford to throw the prototype away when youte done.

With Smalltalk/V, you don't.

Start with the prototype. There’s no development system you can buy
that lets you get a working model working faster than Smalltalk/V.

Then, incrementally, grow the prototype into a finished applica-
tion. Try out new ideas. Get input from your users. Make more changes.

Be creative.

Smalltalk/V gives you the freedom to experiment without risk. It's
made for trial. And error. You make changes, and test them, one at a time.
Safely. You get immediate feedback when you make a change. And you can't
make changes that break the system. It’s that safe.

And when you're done, whether you're writing applications for
Windows or OS/2, you'll have a standalone application that runs on both.
Smalltalk/V code is portable between the Windows and the OS/2 versions.
And the resulting application carries no runtime charges. All for just

$499.95.

So take a look at
Smalltalk/V today. It’s time to make
that prototyping time productive.

Smalltalk 'V

Smalltalk/V is a registered trademark of Digitalk, Inc. Other product names are trademarks or registered

trademarks of their respective holders.

Digitalk, Inc., 9841 Airport Blvd,, Los Angeles, CA 90045
(800) 922-8255; (213) 645-1082; Fax (213) 645-1306

HEWLETT-PACKARD
HP has developed a network trouble-
shooting tool called the Network Advisor.
The Network Advisor offers a compreben-
sive sel of tools including an expert system,
statistics, and protocol decodes to speed
problem isolation. The NA user interface is
built on a windowing system which allows
multiple applications to be executed
simultaneoushy.

LOOK WHO'S TALKING

NCR
NCR bas an integrated test program develop-
ment environment for digital, analog and
mixed mode printed circuit board testing.

MIDLAND BANK
Midiand Bank built a Windowed Techmnical
Trading Environment for currency, futures
and stock traders using Smalltalk V.

KEY FEATURES

B World’s leading, award-winning object-
oriented programming system

B Complete prototype-to-delivery system

B Zero-cost runtime

M Simplified application delivery for
creating standalone executable (EXE)
applications

B Code portability between Smalltalk/V
Windows and Smalltalk/V PM

B Wrappers for all Windows and OS/2
controls

M Support for new CUA 91 controls for

085/2, including drag and drop, booktab,

container, value set, slider and more

B Transparent support for Dynamic Data
Exchange (DDE) and Dynamic Link
Library (DLL) calls

B Fully integrated programming environ-
ment, including interactive debugger,
source code browsers (all source code
included), world’s most extensive Win-
dows and OS/2 class libraries, tutorial
{printed and on disk), extensive samples

B Extensive developer support, including
technical support, training, electronic
developer forums, free user newsletter

B Broad base of third-party support,

including add-on Smalltalk/V products,

consulting services, books, user groups

This Smalltalk/V Windows application
captured the PC Week Shootout award —and
it-was completed in 6 hours.

Smalltalk/V PM applications are used to
develop state-of-the-art CUA-compliant
applications—and they're portable to
Smalltalk/V Windows.

The International Newsletter for Smalltalk Programmers

September 1991

Volume 1 Number 1

By Abdul K. Nabi

Contents:

Features/Articles

I The commercial evolution of Smalltalic
by Abdul Nabi

12 Compressing changes in Smalltalk/V
Windows by Charles-A. Rovira

Columns

7 Gettng Real: Should classes have
owners! by Juanita Ewing

9 GUk: Giving application windows
dialog box functionality in Smalleall/V' PM
by Greg Hendley and Eric Smith

Departments

16 Lab Report: The Typed Smalltalk project
at the University of lllinois
by Ralph Johnson

I8 Messages: Smallealk, organization, and you
by Allen Wirfs-Brock

20 Software Review: WindowBuilder: An
interface builder for Smalltalk/V
Windows reviewed by Jim Salmons

ver the last decade, Smalltalk has made a dramatic evolution from a vi-
sionary software research project into a commercial environment that is
spearheading object-oriented programming, the next step in software
technology.

The focus of this article is the evolution of commercial Smalltalk from the early market
to today’s commercial success and what the future may hold. In addition to the evolution of
Smalltalk, the changes in the needs and demands of software development that contributed
to the spread of Smalltalk in commercial application development will be discussed.

THE EARLY YEARS OF SMALLTALK

¥erox, in the interest of broadening the Smalltalk base, licensed Smalltalk to several hard-
ware vendors (Apple, Hewlett-Packard, and Tektronix) and one startup software vendor
(Softsmarts). This groundwork led to the creation of a Smalltalk marketplace.

Kerox sold the Smallralk environment bundled with its proprietary graphics worksta-
rions, which were quite expensive. These workstations pioneered the idea of high-perfor-
mance, graphical, interactive deskrop computers. Xerox used Smalltalk internally to de-
velop custom document and information management applications. One major
application created in 1982, was a desktop publishing system for The New York Times. The
next vear, Xerox developed Analyst, one of the first and best known commercial Smalltalk
applications.

The Analyst is an integrated information management system incorporating document
processing and layout, a spreadsheet, charting, database, hypertext, links, and a world map.
The embedded object architecture, level of integration, and seamlessness of the applica-
tions is outstanding even by today's standards. Analyst’s capabilities are unmatched by any
other sofrware package, partly because Analyst is written in Smallralk. Analyst is still be-
ing sold as a commercial, end-user application by Xerox Special Information Systems.

To put the early years of Smalltalk at Xerox in some perspective, Smalltalk-80 was cre-
ated about the same time the IBM-PC was introduced. The Analyst was introduced two
years before the Apple Macintosh.

One of the early users of the exotic Xerox workstation and the Analyst were US intelli-
gence agencies. These agencies required the horsepower, graphics, and high-performance
development environment that the Xerox workstation and Smalltalk provided to create
interactive analysis workstations. This helped Smalltalk emerge from the lab into the mar-
kerplace. However, Xerox did not market these workstations and Smalltalk-80 to the gen-
eral software development market.

Tektronix was also an early pioneer of commercial Smallealk, delivering its first
Smalltalk in 1985 (which, like Xerox’s, ran on a proprietary workstation). Unlike Xerox,
Tektronix was actively marketing the environment as a development tool, and at a con-
siderably lower cost (since by 1985 processors like the 68000 that Tektronix used made
low-cost workstations possible). Tektronix also used Smalltalk to develop custom software
for their workstations (such as a front-end for VLSI test equipment). Although successful

continiied on page <Nome>...

EDITORS’
CORNER

John Pugh Pawl White

clcome to the first issue of The Smalltalk Report! The Smalltalk community has long yearned
for its own publication. With your help, The Smalltalk Report will fill the void.

The use of Smalltalk within industry is expanding rapidly. Only industry insiders know
many of the exciting developments that are taking place and, as Abdul Nabi points out in his
lead article, they are not permitted to share them. Many companies believe it to be a strategic
advantage to be using Smalltalk and don't wish their competitors to be aware they are using
it. So, the language that started it all (with apologies to Simula) is now seen by many as the
development system of choice for the 1990s. As our good friend Dave Thomas (paraphrasing
Winston Churchill) is quoted as saying, “Smalltalk is the worst possible programming envi-
ronment — until compared with all other programming environments.”

Our aim at the The Smalltalk Report is to support the growth of Smalltalk as a development
vehicle for object-oriented systems and to serve as a focal point for sharing ideas and experi-
ences gained from the employment of Smalltalk technology in areas as diverse as real-time
embedded systems and financial systems. By publishing nine times a year, we will be able to
bring you timely information on new software releases of all dialects of Smalltalk, third-party
products, class libraries, books, industry news, etc. We will address all aspects of applicarion
development with Smallealk, e.g., project management, analysis and design, development
tools, language issues, metrics, performance issues, and education and training.

In the lead article of our premiere issue, Abdul Nabi takes us on a tour through time —
from the early days of Smalltalk at Xerox PARC to current implementations and applications.
He discusses the issues faced by Smalltalkers in the past, problems that have been solved, and
the challenges that lie ahead. He explains how, and why, the commercial evolution of
Smalltalk has unfolded in the manner it has and speculates where this evolution will lead.

In this first issue, we also introduce two of our regularly appearing columns. In “Getting
Real,” Juanita Ewing discusses the issues of developing industrial strength applications with
Smallealk. In her first column, she addresses the pros and cons of employing class ownership
as a vehicle for code management within a programming team. In their GUI column, Greg
Hendley and Eric Smith tackle the topic of graphical user interfaces. In the first installment
of a two-part column, they discuss giving application windows dialog box functionality in
Smallealk/V PM. In future issues, watch our for other columns; on design from Rebecca Wirfs-
Brock and on “Smalltalk with Style” from Ed Klimas and Suzanne Skublics.

Our authors and columnists are willing to stand up and be counted, expressing their own
personal, sometimes controversial, opinions. To make this forum truly effecrive, we encourage
you to “jump into the foray” and let your ideas be heard. Use our “Messages” corner as a soap-
hox to vent your own opinions. In this issue, Allen Wirfs-Brock laments the absence of a con-
ference where Smalltalk users and developers can get together and share their work.

Also in this issue: Charles Rovira suggests enhancements to the compress changes facility
in Smalltalk/V Windows, Ralph Johnson describes the Typed Smalltalk project at the Uni-
versity of [llinois, and Jim Salmons reviews the WindowBuilder/V product from Acumen.

The Smalltalk Report is written by Smalltalkers for Smalltalkers; we encourage you to contribute.

Enjoy the first issue!

John Pugh and Paul White
Editors

The Smalltalk Report

Editors
John Pugh and Paul White
Carleton University & The Object Peaple

SIGS PuBLICATIONS
Advisory Board

Tom Atwood, Object Technology
Grady Booch, Rational

George Bosworth, Digitalk

Brad Cox, Information Age Consulting
Chuck Duff, The Whitewater Group
Adele Goldberg, ParcPlace Systems
Tom Love, Consultant

Meilir Page-Jones, Wayland Systems
Bertrand Meyer, ISE

P. Michael Seashols, Versant
Bjarne Stroustrup, AT&T Bell Labs
Dave Thomas, Object Technolegy

THE SMALLTALK REPORT

Editorial Board

| Jim Anderson, Digitalk

| Adele Goldberg, ParcPlace Systems

| Reed Phillips, knowledge Systems Corp.
Mike Taylor, Instantiations

Dave Thomas, Object Technology International

Columnists

Juanita Ewing, Instantiations

Greg Hendley, Knowledge Systems Corp.
Ed Klimas, Allen-Bradley

Suzanne Skublics, Object Technology
Eric Smith, Knowledge Systems Corp.
Allen Wirfs-Brock, Instantiations
Rebecca Wirfs-Brock, Tektronix

SIGS Publications Group, Inc.

Richard P. Friedman

Group Publisher

Art/Production

Elisa Varian, Production Manager

Susan Culligan, Creative Director
Elizabeth A. Upp, Production Editor
Caren Polner, Desktop Designer
Circulation

Diane Badway, Circulation Business Manager
Kathleen Canning, Fulfiliment Manager
John Schrieber, Circulation Assistant
Marketing/Advertising

James Kavetas, Advertising Director
Diane Morancie, Account Executive
Geraldine Schafran, Advertising Sales Assistant
Bud Keegan, Promotion Manager
Administration

David Chatterpaul, Accounting

Suzanne W.Dinnerstein, Conference Manager
Jennifer Fischer, Assistant to the Publisher
Laura Lea Taylor, Administrative Assistant

Margherita R. Monck, General Manager

S1GS

Ml PUBLICATIONS

Putting Smalltalk To \X/ork!

We were there.
We were there.
We were there.
We were there.
We were there.
WE ARE THERE.

1980 Smalltalk Leaves The Lab.

1984 First Commercial Version Of Smalltalk.

1985 First Industrial Quality Smalltalk Training Course.
1987 First Fully Integrated Color Smalltalk System.

1988 Responsibility-Driven Design Approach Developed.
1991 Smalltalk Mainstreamed in Fortune 100 Applications.

Smalitalk Technology Adoption Services

Technology Fit Assessment

Expert Technical Consulting
Object-Oriented System Design/Review
Proof-of-Concept Prototypes

Custom Engineering Services & Support

Smalltalk Training & Team Building

Smalltalk Programming Classes:

Objectworks Smalitalk Release 4

Smalltalk V/\AX/indows V/PM V/Mac

Building Applications Using Smalltalk
Object-Oriented Design Classes:

Designing Object-Oriented Software: An Introduction

Designing Object-Oriented Systems Using Smalltalk
Mentoring:

Project-focused team and individual learning experiences.

Smalltalk Development Tools

Application Organizer Plus™ Code Modularity & Version Management Tools

See our new Multi-User/Shared Repository Team Tools At OOPSLA 91!

Smalltalk! Nobody Does It Better.

The Smallralk Report (ISSN# 1056-7976) is published 9 times a year, every month except for the Mar/Apr, July/Aug, and Nov/Dec combined issues. Published by COOT, Inc., a member of the SIGS Publications
Group, 588 Broadway, Mew York, NY 10012 (212)274-0640. © Copyright 1991 by COOT, Inc. All rights reserved. Reproduction of this marerial by electronic transmission, Xerox or any other method will be treated as
a'willful violation of the US Copyright La s is flatly prohibited. Material may be mepriduced with express permission from the publishers. Mailed First Class. Subscription rates 1 year, (3 issues) domescic, $65, For-
eign and Canada, $90, Single copy price, $5.00. POSTMASTER: Send address changes and subscription orders to: THE SMaLLTALK REFORT, Subscriber Services, Dept. SML, P.O. Box 3000, Denville, N] 07834. Submit

articles ro the Edirors at 91 Second Avenue, Ottawa, Ontario K18 2H4, Canada,

THE SMALLTALK REPORT

Instantiations, Inc.
1.800.888.6892

26.

FINALLY, A PUBLICATION THAT SPEAKS YOUR LANGUAGE!

The Smalltalk Report stimulates, tracks, and evaluates usage of Smalltalk. Get accurate coverage on current trends,
techniques, the latest ideas and industry news. For users on all levels and dialects of Smalltalk.

Don't Delay! Become a

[Yes, enter my Charter Subscription at the term indi-
| cated. This is risk-free offer. | can cancel at any time and get
i a refund of the unused portion of my subscription.

| year (9 issues) 2 years (18 issues)
[$65 Domestic as$120
%90 Foreign (includes air service) [$170

[Check enclosed 1 Bill Me

[Charge my (1 Visa 11 MasterCard

Card # Exp. Date
Signature

For faster service, call 212.274.0640 or fax 212.274.0646.
Make checks payable to The Smalltalk Report in US dollars drawn on a
US bank.

[e e

o o e e e e e
1
1

Charter Subscriber Today!

1

i

Name :
I

Title !
i

Company E
i

Address !
o i I

City State Zip :
I

Phone E
I

i

Returnto: The Smalltalk Report :
Subscriber Services, Department SML i

PO Box 3000 i

Denville, Nj 07834 i

D1JA :

-4

ParcPlace announces 4GL application development
tool for Objectworks\Smalltalk

ParcPlace systems announced the availability of FACETS, a devel-
opment tool for use when building applications in
Objectworks\Smalltalk Release 4. FACETS, supplied by Reusable
Solutions, was designed to help create screen-based, data-inten-
sive applications such as order entry, financial processing, and
other database-oriented 4GL applications. In conjunction with
Objectworks\Smalltalk Release 4, FACETS provides an extendable
object-oriented 4GL development environment and series of on-
screen forms that guide the user through the rapid generation of
interface components.

FACETS is fully compatible with Objectworks\Smalltalk Release 4
and fully portable across all supported platforms, and allows full
connection to Servio’s Gemstone interface for powerful database
connectivity. .

For further information, contact ParcPlace Systems, 1550 Plymouth St.,
Mountain View, CA 94043, {800) 759-PARC.

Object Technology International announces an ob-
ject-oriented team development environment for
05/2 and Windows

Object Technology International, Inc. (OT) announced the immedi-
ate availability on O5/2 and Windows of Release 1.0 of ENVY/De-
veloper, an object-oriented team programming environment. With
ENVY/Developer, development teams using Smalltalk may work
concurrently on both OS/2 and Windows, sharing code and data
using the tools provided by the environment.

The environment supports the full manufacturing lifecycle including
prototyping, development, interactive debugging, performance
analysis, packaging/delivery, and maintenance of large systems
written in Smalltalk, and provides all tools required to realize the
benefits of object-oriented software development. ENVY/Devel-
oper is currently the only toolset for delivering large systems incor-
porating advanced object-oriented technology.

For further information, contact Object Technology International, Inc., 1785
Woodward Dr., Ottawa, Ontario K2C 0P9, Canada, (613) 228-3535, or fax
(613) 228-3532.

THE SMALLTALK REPORT

Fastest Path to Platform Independence.

Build a database application

UNIX

Sun SPARC
DECstation
1BM RS6000
HP/Apallo

Faaa £ =
..'A'-"‘“'l"“
P B ¥ .Y ¥ e
ety P

combining text, images - even sound §
E! and video - in minules, not months.
Macintosh 11
family

il Modify the user inlterface

while your application

Windows 3.0-
compatible

runs, just by making
selections in the editor.

Leap free of platform limitations and deliver full-color
GUI applications in half the time...with Tigre™.

Introducing an incredible
OOP breakthrough: A complete
development environment that lets
you create object-oriented, multi-
user applications that run across all
major platforms and networks. And
lets you deliver them up to 80%
faster than ever before.

Tigre™ Programming Environment,
running with Objectworks®
Smalltalk Release 4, offers a set of
tools that turns a major hassle into
a quick drag. Literally. Because it

lets you build customized, color

GUIs just by dragging and dropping.

You'll choose from a large library
of user interface components. Objects
like scrolling text fields, check boxes,
radio buttons and more.

Drag them from the palette onto
your application screen. Move and
resize them as often as necessary.
No recompiling needed. And
virtually no code to write. Tigre's
Interface Designer automatically
creates the Smalltalk GUI for you.

TIGRE OBJECT SYSTEMS, INC.

Give the interface your unique
imprint by clicking selections to
change color, font, borders, icons, etc.
And you can add your own custom
GUI creations to the library for reuse.

Use Tigre's multi-user, object-
oriented database manager, to
provide network-compatible access
to text, images, icons, sounds — any
type of stored data.

Phone now for a complete package
of information on Tigre. There’s never
been a faster track to freedom.

Call: (408) 427-4900, Fax: (408) 457-1015
3004 Mission Street, Santa Cruz, CA 95060

PUBLISHER’S
NOTE

®® Esn't it dme for an independent publication devoted

exclusively to Smallealk users™ is a question U'm fre-

quently asked at conferences. Even though Smalltalk
is celebrating its tenth anniversary this fall (since Byee's
landmark issue lauding the language} there’s been u sur-
prising paucity of editorial coverage devored to Smallralk
m any publication since.

We ar SIGS Publications have seen a recent resur-
gence in the mrerest in and usage of Smalltalk. Tt re-
mains the archerype of a pure and fully integrated O-O
development environment as OOP explodes in the
1990s. According to Ovam's Chject Technology Seurce-
bock, Smallralk sales {in the US and Europe) are cur-
rently $21 million and are expected to double to $40
million by 1993 — making it one of the fastest-growing
languages.

The time has come for an independent forum de-
voied exclusively ro Smalltalk users’ informartional
needs. The Smalltalk Repert will publish over 200 pages of
need-to-know information on Smallralk during is first
volume vear, Our editorial mission, simply stated, is to
stirmnulate, cack, and evaluate Smallralk usage ona
worldwide basis. '

Welcome to the premiere issue. [t represents hun-
dreds of hours of thinking, writing, and research. By
reading The Smallealle Report, you can quickly benefic by
gaining access to nowhere-else-found rechnigues, advice,
ideas, source code, and “insider news” — a veritable
goldmine of consolidated information. You can rely on
what you read in The Smalltalk Report 1o be timely and
accurate, We publish it with the same edivorial integricy
as we do our sibling publications, the Journal of Object-
Criented Programming, Object Magazine, The C++ Repore,
the Hotine on Object-Chriented Technology, and The Inter-
national OOP Direceory.

[encourage you to contact us regarding your opinion

of this issue and whar you'd Iike to see in upcoming issues.
Your feedback i valuable to us as the newsletter evolves.

Linvite you to plug into the insiders nerwork of
Smalltalk developers by becoming a Churrer Subscriber.
Join cur family of well-informed readers. We look for-
ward to serving your informational needs. Enjoy the
premiere issue!

Sincerely,

Qoo Falr

Richard P. Friedman
Group Publisher

i EVOLUTION OF SMALLTALK

coritinued from fage 1.

‘m-house, Tekrronix, primarily a test equipment manufacturer,

had difficulty marketing their Smalltalk workstation. By 1985,
developers and arganizations were standardizing on main-
stream personal computers and workstations; thus, the appeal
of a custom workstation was lmited. However, Tektronix de-
veloped a large group of peeple experienced in developing and
marketing Smaliralk and object-oriented development that
would later seed several successful companies in the Smalltalk
and OOP marker,

Digitalk introduced Methods, a rext-based Smallealk, in
1985, and then Smallealk/V, a graphics version, in 1986. The
rost significant feature was that Digiralk’s Smalltalk ran on
the popular IBM-PC. By providing a low-cost Smallealk for
the IBM-PC, Digitalk expanded the hase of Smalltalk users,
many of whom were building prototypes or custom applica-
rions. The success of these early developers spread the use of
Smallealk as a commercial development environment.

In early 1986, a company by the name of Softsmarts
brought the firse Smallralk-80 for the IBM PCSAT 1o the mar-
ket. Like Digitallk, the Softsmarts vession proved that
Smallwalk could run on low-cost personal camputers. Softs-
marts was also the first Smalltalie-80 to incorporate color
graphics and external language support. However, the PC
marketplace for Smallralk became dominared by Digiralk with
lower-cost versions of their Smalltalk/V product {(which in-
cluded the same fearure ser and ran on eight-bit PCs).

About the same time, the group within Xerox PARC that
had created Smalltalk wanted to spin off 2 company that
would focus on marketing Smalltalk, From that drive, Pare-
Place Systems was born. The first few years were spent creat-
ing the infrascructure of the company and creating portable
commercial versions of Smalltalk for PCs, Macintoshes, and
1INEX worksrarions.

Although the early and mid-1980s laid the groundwork for
the future growth of Smalltalk, both the state of the computer
industry and Smallralk irself prevented the widespread accen-
rance and use of the language.

One perception of Smallrall thae remains to this day is
that it performs poorly compared to standard languages. Much
of the perception is based on the fact that early versions of
Smallralk were interpreted and included automatic storage
reclamation (garbage collection}, What is interesting to note
is that even early versions of Smallralk performed quite well
{most people made performance statements without direct ex-
perience). Much of this performance is based on the fact that
Smalbtalk is best suited for complex, interactive information
analysis and management applications. In simpler applica-
tions, the overhead of Smalltalk becomes a factor that makes
it uneconomical for those applications. As the application be-
comes mote interactive or complex, the power of Smalliatk
becomes a key benefit in both development time and cost.
Also, performance can be improved since the lower-complex-
ity code that is creared by using Smallzalk can be optimized

THE SMALLTALK REPORT

Product Announcements are not reviews. They are abstracted from press veleases provided by vendors, and no endovsement s implied. Vendors
interested in being ncluded in this feansre should send press veleases to cwr editorial offices, Product Announcements Depr., 91 Second Ave.,
Otrawa, Ontaric K18 2H4, Canada. w

Logic Arts announces VOSS: virtual object storage
system for Smalltalk/V

Logic Arts’ virtual abject storage system, VOS5, is available now for
Srmalitall/V 286. Voss object managament facilities include: persis-
tent storage, transparent access, virtual eollection and virtual dic
tionary, muitikey access, a class restructure editor, and import/ex-
port, in which administration facilities provide for hackup, restore,
renaming, Import/export between machines, or aceess over a net-
work. V0SS also features performance tuning: the control panel al-
lows cache size and other parameters to be tuned for optimum
performance, according to the degree of object valatility and ran-
dom v. sequential access to virtual collections, Many of the new
classes are independently reusable Smalltalk/V286 source code is
supplied. VOS5 reguires Smalitalle/V286 and MS-DOS.

For further infermation, contact Logic Arts, Ltd., 75 Hemingford Rd., Cam-
bridge CB1 3BY, UK, (0223} 212392, or fax {0223) 245171,

Tigre ships multiplatform rapid GUI
application builder

Tigre Object Systems, Inc. of Santa Cruz, CA, is now shipping the
Tigre Prograrmming Environment. Tigre implements the capability
to build graphical user interface applications guickly for instant use
on multiple computer platforms and heterogeneous networks.
Color applications created by Tigre run without modification on
Windows 3.0. Macintesh i, Sun/3, Sun SPARCstation, IBM RS/6000,
Digital BECstation, Hewlett-Packard’s HP 9000 Series 300 & 400,
Apollo Series 2500, 350G, 4500, Sequent superminis, and on mixed
networks of these. Additional platforms will follow. Tigre, a fully ob-
ject-oriented system, uses Objectworks\Smalitalk Release £ by Par
cPlace Systems as its soripting language.

For further infarmation, contact Tigre Object Systemns, 3004 Mission St.,
Santa Cruz, CA 95060, (408) 427-4900, or fax {408} 457-1015.

Digitalk announces Smalltalk/V developer conference

Digitalk, Inc. announced their first developers’ conference,
Smalitali/V Dev Con 91, The conference will take place September
11-13 at the Universal City Hilton and Towers in Universal City (Los
Angeles), CA. Sponsored by Digitaik and BYTE magazing, the con-
ference will include a wide range of technical topics, panel discus-
sions, speakers, and product demonstrations. Events include: ses-
sions on design, management issues, application delivery,
Srnalitalk/V internals, integrating with other languages, integrating
with other products, etc., as well as panel discussions, and industry
guest spaakers,

Fer further infermation, contact Digitalk, Inc., 9841 Airport Blvd,, Los Ange-
les, CA 90045, {213) 545-1082, or fax (213} 545-1306.

instantiations anncunces new engineering tools
and version management for Smalltalk

Instantiations, Inc. announced that it has developed a powerful new

set of software engineering tools to support developers using
Objectworks\Smalitalk called Application Crganizer Plus. The prod-
ust is an integrated set of tools that give Smalltalk users new ways
1o structure applications, manage code, and optimize reuse and
was specifically designed to provide these capabilities without
sacrificing the freedom and high tevel of interactivity that are the
essence of Smalltalk programming.

Application Crganizer Pius provides the Objsctworks\Smalltalk de-
velopar with version management, improved code modularity, en-
hanced reusability, smaller delivered applications, new browsers,
and workspace enhancements,

Far turther information, contact Instantiations, inc., 921 5W. Washington,
Ste. 312, Portland, OR 7205, (303) 2420725,

Digitalk ships new release of Smalltalk/V Windows

Digitalk, Inc. announced a new release of Smalltalk/V Windows,
which combinas Digitalk's widely used object-oriented program-
ming environment with Micresoft Windows 3.0 Smalitalk/V Win-
dows Release 1.1 contains an icon editor, performance improve-
ments, better memaory utilization, and many new programming
examples dermonstrating usage of Windows features.

Smalltalk/V Windows includes standard Smailtalk/V features such as
source code browsers, inspectors, and push-button debuggers, In
addition, Smalitall/V Windows provides interfaces to dynamic data
exchange (DDE), allowing information to be shared between
Smalltalk/V programs and other programs and dynamic link §i-
braries (DLLs), providing a mechanism far calling code written in
other languages from within Smalltalk/V. Smalltal/V Windows
source code is compatible with Digitalk’s Smalltalk/V PM program-
ming environment for O5/2.

For further Information, contact Digitalk, Inc., 9841 Airport Bled., Los Ange-
tes, CA 20045, (213) 645-1082, or fax (213) 645-1306.

Digitalk announces royalty-free runtime

Digitalk, Inc. announced new versions of Smalitalk/V DOS and
Smalitall/V Mac that include royalty-free rantime. Smalltali/V Win-
dows and Smalltalk/V PM are already royalty-free.

The Smalltalk/V D08 Version 3.0 runtime system allows developers
to create standalone executable applications and includes inte-
grated EGA/VGA color. Registered users of earlier versions of
Smalitalk/V may purchase an upgrade that includes a new manual.

The new versicn of Smalltalk/V Mac allows developers to create
standalone, double-clickable applications with no additional royalty
payments. Prior to this new policy, there was a per-copy charge for
runtime applications. Registered users of earlier versions of
Smalltallk/V may purchase an upgrade.

For further information, contact: Digitalk, Inc., 9841 Airport Blvd., Los Ange-
les, CA 20045, {213) 645-1082, or fax {213) 645-1306.

Voi. 1, No. I: SEPTEMBER 199

25.

24.

. Smalltalk/V has been realized in DOS, Macintesh, and Win-
dows versions. Much of the code tan be used across all the en-
vironments. Objects can be stored in téxt form, and "filed out”
and “filed in” from system to systerm. Because Smalltalk s an
interpreter, these objects can be introduded into a running sys-
tem. The potential exists to netivork together Smalltalk systems
on a number of different platforms, and to let them exchange
objects in real time. This is not sumething you can do with
C++. Smalitalk/V has the most thorough wtorial of any of the
packages reviewed here. The manual is a complete course in
the language, and the example files give you working code for
most applications. Smalltalk is not like other computer lan-
guages. nstead of being like a musical score, it is more like 2
jam session in which you create both new instruments and new
musicians as you go along. When you've constructad your
band, you're ready to play. Smialitalk is extraordinarily interac-
tive, and the ideal environment for ereative people. Accessibil-
ity is excellent, imited only by Smalitalk’s unusual syntax. Every
element of Smalltalk, from object creation to debugging and
running the application, takes place with & single Windows ap-
plication. ln‘iegreﬂron is total. The assistance to'clear t?unkmg,
Smallall’s clean handling of the Windows environment, its in-
tegration and rich data taxonomy; and iis potential for inter-.

platform development, make Smalltali/v t?ze winner among ali .

ti’ae packages we have surveyed ..

: Breakmg into Windows, Barrel§ Walsh
Mmrot;mes &/19/91

. Only the m‘terpretad iject»onenteci sysfems such as
Smalltalk object-oriented Lisp, and various proprietary object
oriented development systems, have a clear edge aver
Nextstep in programmer produttivity. Because these systéms
are unsuitable for producing commercial applications due to
their poor performance, huge size, or restrictive licénsing poli-
cles, it is hard to refute the commionly heard claim that the .
MNextstep environment is the most produc:tlve rraingtrean de~
velopment environrment available today ... :

The Next Next, Scott R’aney,
UNIX Warld, 7/91

.. Smalftalk is not about t6 replace COBOL, but it'is finally ma-
tuz’mg into 3 viable choice in application development, espe-
cially for users leoking for & tool to speed development of ad-
vanced graphical user interfaces in client/server applications ..

As a dynamically compiled language Built on'reusable obg'ects
and a virtual interface that uses machine-independent, interme-
dizte code, Smailtalk is also easily portable between the p!at-
forms it supperts .. :

. therz is still no w;de!y accepted development methodo%ogy
for Smalltalk or for any other object-oriented environment. In
addition, many users are still making the transition to the rela-
tional model and structured programming techniques. “Most:
115 develdpers] stili dont know what to do with objects. They're

~ Excerpts from :iéiéiugtry_ publications.

still traumatized Ifr'o'm.ma%?ng_ the ﬁﬁ%gr'at%on fd_t&é.RDﬁMS,”‘ -
says Matasha Krol, application program diredior at the Mela
Grotp in Starnford, Conn. Smalltalk also faces increasingly stiff |

competition not only frorm other obiect-oriented languages: .~

such as C++ but alsc from new GUl-building thals, such as -
Easel from Easel Corp, and Actor from Whitewater Gmup

' Smailtaik Grows Up, Jaff Moacl
v Daiamanon, 7/‘55/'?1

IBM wﬂl postpone its scheduled anhouncement o*f suppor‘t fcsr
object-oriented technology in AD/Cycle until later this year ..
B had planned to announce by the end of this month su'p-:- o

port for the Digitalk Smalltalk language in its stratagle software

development environment, When i does make the annduhce-
ment, IBM said, it will also provide a more substantial state-.

ment of direction for AD/Cyele and objéct-orierted langlages
as well 23 methodologies ... The ADVCycle anfiouricement will .

focus more on how object-oriented technology will affect the -

whole develepment lifé éycle ... rather than on an individual . .
product ... iBM still plans to include Smalltalk in ADt’Cyclé and .
wilt alsc recogmze C++ as an AD/Cyc%e Ianguage '

(BM puts off ob;ect—onented support, Rosernary Hamiitan,- :

: Computerword &17/91

.. GUis, however, are hot a préréduis%‘;e‘ of OOF .prc'ag;’ams,_-. o

But, the two have become closely identified because GUis in-
crease the size and comp lexity of programs to the point where
traditionaf programming methods cannot manage them ez’“Fec-
tively. OOP, on the other hand; can easily accommodate the
programming of GUls, | fact, Smalltal, one of the first com-

pletely object-orientad languages, msz:osparates: a grapblcal én-.

virorment of menus, wmdows ami scroll bars

ngrammmg with M{Jdules, .
- Chemical Engineering, éf?‘l'

THE SMALLTALK REPORT

more e,asdy than the large, complc,x dmount of code u:eatcd in
" eraditionial langlzszges : " : :
" Another ma] or obstacle to the w;despzead 5 of Smalltalk
- was a lack of acceptance of both graphical usér interfaces and -

the ob]ecr oriented paradzgm Most comput;nu was bemg

“done on either términals or text-based PCs. Graphics were re-

served for video games and exotic dpplications. Much of this

* was due to the facr that high-performarice hardware and high-

resolation graphics displays were not commonly availzable'_.
PCs were being used i doea entry, o sitaple analysis; and ot
to provide highly interactive ifierfaces or to solve complex
problems. Thus, the range of applicarions that Smallealk is
idéally suited for were not being widely developed. - _
Mariy early projects done in Smalltalk were either proto-

types ot systems that evolved through many iterations. Q-0

analysis and désign methodologies along with good implemen-
tation strategies were still forming (nany of these early pro-
jects contribured o this process). However, in comparison o
traditional development languages, Smalltatk appeared cava-
lier, undisciplined, and immature. The speed perception and
lack of object-oriented analysis and design methodologies cre-
ated the perception rhat Smalltalk, although good for rapid
prototyping, could not be used in a disciplined way to create
sobust, high-quality, commercial applications. :

Dsring the middle to iate 1980s, desktop compurmg and-
GUl-hased interfaces became accepted. Smalltalk was behind
iy integrating with the standard GUls that were emerging,
continting to provide its'owr nonstandard GUL Also, -
Smalltalk was a closed language, not allowing interfaces to
other languages or libraries. However, now all versions of
Smallealk from both ParePlace and Digitall integrate with the
standard windowing systems and external languages, As z re-
sult, Smalitalk provides one of the best environmerits for de-
veloptent of host-hased '1ppli€:aficms {given the complexity of
GUI programiming interfaces).

Anaothér major block was the lack of Smalitaik dcveiopas,

rools, training, and support services. These were areas of the

miarket that had to grow to make Smalltalk a viable commer-
cial éevelopm@znz environment.

SMALLTALK TODAY

Orwer the Last five vears, the Stallralk mdustry has Zrown 5 and
most of the hurdles have been cleared. Smalltalk has become
more widely used it commercial software development. This
is due not only to changes in the Smallzalk environmment i-
self, but also to the software development markerplace asa
whole, :

"Changes in the overall mdrkcgpia(:t hdvt, playcd a kc:\r ralc
in the success of Smallalk. Time-to-market, adaptability, and
cost control have become increasingly crucial factors in over-
all business success. It is this business environment that has
accelerated the acceprance of object-oriented rechnologies
and Smalitalk. Information systems managers today are more
initerested in solutions than in the technology employed.

Mcim} clients we work with that would have hever considered
' Small{al% asa develapmem dngd delivery language a fow years

ago aré now pursiing agatessive Smalltalk strategies,
The personal, highly intéractive, graphical envirohment

 that Smaﬁraﬂc pioneered is now accepted and several GUTs
“ate widely ini use. Oné result of the acceptance of GUIs s &

further ihcrease in software complexity and development ~
costs. Developers now have to deal with the large library of
APIs that GUI and operating system have, Actually, the
Smallralk windowing system, which has béen considered
difficult o use, looks absurdly simple when compared 0 stan- -
dard Wmdowmw systern E&}ranes :

Many clients ... that would have
never considered Smalltalk asa- =
development and delivery language
a few years ago are now pursuing

aggressive Smalitalk strategies

Both ParcPlace and Digitalk have introduced versions of
Smalltalk that access and use the host GUT and APls. When
there were no standard windowing systems, Smallralk provided
its own. This, of course, was unacceptable once standards for
windowing systetns were established. Both Digiralk and Pare-
Place versions of Smalltalk run using the host windowing sys-
tem and allow access ro the host AP and external language
finctions {Le., Windows and Presentation Manager DLLs).

One of the main differences between Digitalk and Pare-
Place’s versions of Smalltalk is how they provide host integra-.
tion. Digitalk’s Smalltalk V Mac, V Windows, and V PM pro-
vide tight integration with their host and use the host '
environment controls and libraries {windows, memus, buttons,”
and so on). ParcPlace’s Objecoworks/Smalltalk Relesse 4 uses
only the higher-level and portable host services {windaows,.
fonts, and graphics) to provide image portability across plag-:
forms and operating systems. Objectworks/Smallratk does al-
low the developer to access the host's controls and iabraﬂcs at’ -
the expense of portabiliey.

The atrount of compuring horsepower that sits 6n the aver-
age desktop today exceeds the horsepower that came with the
original $100,000 Smalitalk machines from Xerox. This allows
the user to use the systerm in an ititeractive graphical environ- -
ment ta solve increasingly complex problems. However, the
cost and development time of software using traditional meth-
ods has not kept pace, leaving idle MIPS on the deskeop.
Smallealk allows an effective, efficient, and cost-effective way to
develop inreractive applications that solve complex problems.

Vou. 1, No. I: Sepredser 1991

B EVOLUTION OF SMALLTALK

Both Digitalk and ParcPlace have also improved perfor-
mance of the system by switching from a purely interpreted
envircnment to executing compiled code. The performance of
garbage collection has also been increased. In a variery of ap-
plications, particularly highly interactive and complex analy-
sis, Smalltalk actually performs as well as or berter than sys-
tems developed with rraditional languages.

An example of high-performance Smalltalk in a commer-
cial applicarion s HPMS, a svstem developed for Hewlett-
Packard by Knowledge Systems Corporation, The HFMS sys-
tem is a complex process modeling tool primarily designed for
manufacturing. It includes heavy computarion and graphics
for flow autorouting and diagramming. Most who see the sys-
tem. believe that it actually was written partly or entirely in C.
However, HPMS 15 implemented entirely in Smalltalk with-
out the use of C or assembly code. More informarion on the
HPMS system can be found in Robert Whirefield and Ken
Aaers” article “You can’t do that with Smalitalk! Or can you?”
in the May/June 1991 premiere issue of Object Magazine,

Besides the Smalltalk language vendors, several other com-
panies have formed to provide tools, training, consulting, and
support for Smalltallk. Without this framework of companies
providing the supporting products and services, corporations
could not make the commirmenr and investment in Smalltall.

Omne company, Object Technology International (OT1),
provides team developmenit and source code control tools for
Smallealk (essenitial for large-scale commercial development).
OTT1 has also used Smalltalk successfully in ROM-hased em-
bedded conrroller applications, where typically low-level lan-
guages are used.

TODAY'S OBSTACLES FOR SMALLTALK
Many of the companies that are using Smallralk are very secre-
tive about their use {to the point of not allowing any Smallralk
books ro be visible in offices). These companies view the use of
Smalltalk as a strarepic competitive advanrage. Unforrunarely
for those in the Smallralk industry, this reluctance o share suc-
cess stories makes it difficult to promote wider use of the lan-
guage through examples. Ofren people in the Smallralk indus-
try, when talking ahout Smallralk’s success, must be vague with
lines like, “All sorts of companies are having tremendous suc-
cess with Smallraik, but we can'r rell you abour any of them.”
As larger projects are being developed with Smallraik (by
companies we can’t talk about}, more time is being spent on
analysis, design, and software quality, When used for prota-
types, analysis and design are not significant issues. Still, for
high-quality production software, Smalltalle requires design,
testing, and iteration. Even today, many users first developing
with Smalltalk ger enamored of the enormous productivity
gains of Smallealk and try to turn functional prorotypes into
commercial software {(which ends up being low in quality,
difficult to mainrain, or taking longer than expecred). The
process of managing the Smalltalk software lifecycle and then
reuse of code are still issues. As more experience in managing

the high producriviry of Smallralk is compiled, issues such as
reuse and quality will be betrer understaod.

Companies now making the investment in Smalitatk de-
velopment face the difficulty of inding rescurces and educa-
tion. The number of experienced Smalltalk programmers is
limited, and competition for those developers is heavy. In ad-
dition, training in-house developers in object-oriented tech-
nology and Smalltalk takes approximately two months. After
the inirial training period, six months of use is required before
enough experience is developed to create qualiry cornmercial
software. Managers have difhiculty accepting these time
frames, given the pressure to deliver. Often this pressure is the
reason for using Smalltalk,

SMALLTALK TOMORROW

Owver the next few years, several significant producis will come
out using Smalltalk. Smallszlk development and product suc-
cess stories will be published (inany in The Smallwalk Report).
The base of users and projects will expand both in organiza-
rions zlready using Smalltalk and in new anes.

The Smalltalk industry will expand with more companies
being formed o provide products and services, particularly
developer training, analysis and design tools, code genera-
tion, application frameworks, and tools to manage large-scale
reuse of code.

Several companies will deliver integrated analysis, design,
development, and lifecycle management tools developed in
Smatitalk. These tools will push ohjece-oriented application
development inro a more disciplined and efficient level, par-
ticularly in large organizations,

For application developers in both large and small organiza-
tions, more development tonls will be delivered. Interface
builders and application frameworks such as Acumen's Widgers
and Tigre Object Systems” Tigre Programming Envirenment
are already in use building successful commercial applications.

In the software development community, there is always the
tendency to ind the best rechnology. Currently, in the object-
otiented arena, many are looking for a winner, be it C++,
Smalltalk, Eiffel, and so on. The history of software shows us
that there isn’t a winner, just as there isn't any best automobile.
There will be 2 variery of languages and rools to support various
types of development, Smalltalk will find success in commercial
applications, particularly in interactive desktop analysis applica-
tions, where the power of Smalltalk is best applied. 8

REFERENCE

[1] Whitefield, R, and K. Auer. You car’t do that with Smalisalk! Or
can vou! Object Magazine, 1(1), 64-69, 1991,

Abdul K. Nabi can be reached at Knowledge Svstems Corporation,
1M MacKenan Dy, See, 100, Cary, NC 27511,

THE SMALLTALK REPORT

EXHIBITORS

AT International

Barland International

Boston University
Corp Ed Cir

CACI Products
CGH Y ourdon

NS

CRIL

Cocking and Drary
Camputer Mannals
Computing
DataFlex Services
Eusoline Systerns

Glockenspiel

Harlequin

LEMS Educarion &
Training

Laogic Programiming

Mark V

Olbyject International

Program Now

Fational

Semaphore Training

SIGS Publications

YALBECC

Zortech

SCOOP-Europe presents a diversified program of GOP-related topics. Featuring the thought lead-
ers in the technology, this five-day event offers over forty intensive rutorials, lecrures, and rechnical
paper presentations —— plus a large Exhibits area.

Learn the latest state of activiry from such notables as:

Larry Constantine —
Peter Coad — author of
O-0 Anarysis and

O-0 DEesion

original developer of
structured design

Grady Booch — O-O
design ploneer and

author of O-0 Desien

Michael Jackson —
Founder of Michael Jaclk-
son Systems, publisher of

. SP & 18K hod
Brad Cex — inventor of J JSK methods

Objective-C,

founder of Stepstone

Tom Love — OOP pio-
nesr and noted trainer and

consultant

Tom Atrwood — President
of Object Design,
-0 darabase pioneer

Marite Lenzi — Ediror,
Orect Macazine and
Horums on Osect-
Owenren TEoHMNOLOGY

Meilir Page-Jones —
noted industry
writer and consultant

Chris Stone — President
of the Object Management
Group

plus Steve Cook, Rob Murray, Frank Ingari, and other industry pioneers.

[f you are using objeci-oriented technology, or even
considering its usage, you should attend SCOOP-Europe.

To receive 2 detasled brockure, call GFE.259.2032, for 071.273.3430, or resrn card by mail,

P m e m——— R S S o e pm pm m mm m—————1
; I} Yes, | want to stay current on object-oriented technology. Send me a detailed brochure. §
i Name i
E “Firle, Company §
[Address £
: Paoswwods Caunery E
E Phone Fax f
:: Return to SCOOP-Furope. o/ Boston Univ, 43 Marringron Gardens, London SW7 470, UK E

B . s s o i 1 e o i i o ok s e S S e . s R o o . e . . s s e

22.

| B SOFTWARE REVIEW.

VOSS

V;rtuai Ob]ect Storage System for

Smalltalk/V

Seamléss persistent object management with update transaction
control directly in the Smalltalk language.
& Transparent access to Smallfalk objects on disk
Transaction cominit/rollback

® Access to individual elements of virtual
collections and dictionaries

2 Multi-key and multi-value virtual dictionaries
with query by key range and set indersection

e (Class restructure editor for renaming classes
and adding or removing instance variables
atlows incremental application development

® Shared access to named virtual object spaces
® Source code supplied

Please statedisk size required, Visa, MasterCard and EuroCard accepted.
A R T 5 Logic Arts L. 75 Hemingford Read, Cambridge, England, CB1 38Y
TEL: +44 223 212392 PAX: +44 223 248171

[Ggig Available now for Smalital/ V286 $149 + §15 shipping

Experienced Smalltalk/V Windows and Smalltalk/V PM
developers prabably noticed that WindowBuilder uses
WBTopPane as the parent of application windows rather than
the more flexible and powerful ViewManager class. In many
circurnstances, the multi-window views supported by View-
Manager designs are not required. When use of ViewManager
is desirable, it is possible to add each WBTopManager subclass
as a view of your application’s ViewManager instance and set
the owners of all Subpanes of vour WindowBuilder windows
within vour window's TopPane to the ViewManager instance.
While this is possible, | would like to see a clean and easy
"Link ro ViewManager [nstance" option in a future release of
WindowBuilder.

Also, there is no easy way to save WindowBuilder designs as
subelasses of other WindowBuilder subclasses. 1 would like to be

akle to encapsulare reusable instance variables and methods for .

a DDE client WindowBuilder window in a new abstract sub-
class of WBToplane. New DIE-based WindowBuilder designs
could be created as a subclass of this abstract class. Currently,
the only way ro do this is to create your new design as a subclass
of WBTopPane, file it out, remove it, edit the source and file it
bhack in as the subclass of vour abstract subclass of WBTopPane.
Where truly high performance is required or where multi-

ple instances of a window or dislog may be active ar one time,
it is often desirable to compile a window or dialog using the -
Micresoft Resource Compiler from the Windows Software De-
velopment Kit or sitnilar tool. Stored in a dynaric fink library

{DLLY, stich resotizees blast onte the screen when created and

* may take advantage of DEL shared run-time finctionality: A

"Write WindowBuilder Design 16 DLG Seripe! which could
bé fed to the resource compiter would be useful. :
Finally, WindowBuilder does not fully implément the user in-
terface standards of the Windows and Presentarion Manager
supported Common User Access {CUA) protocol. CUA de-
fines the "proper” way a keyboard interface should work in
terms of tabs between control groups and arrow keys moving
within a group's items, etc. While a WindowBuilder window
may have the "look” of 2 CUA-compliant window or dialog,
the user access interaction misses the mark in terms of these:
subtle "feel" requirements.

HOW WINDOWBUILDER STACKS UP '
WindowBuilder is a welcome addition to any Smallralk/V
Windows developer's toolkir. WindowBuilder will enhance
the productivity of the new as well as experienced '
Smalleall/V Windows developer, '

By comparison, Digitalld's forthcoming Smart Parts product
(demoed for nearly a vear as the "Look and Feel Kit") has the
potential to establish an entirely new programming paradigm for
Simalltatk application development. Smart Parts will be a radical
departure from traditional Smalltalk development procedures.
While Smart Parts will be revolutionary, WindowBuilder is a
solid evolutionary extension to Smallealk/V development. |

Try it. You will like it. Thanks, Acumen, and keep up the
good work. #

PRODUCT INFORMATION

WINDOWBUILDER

ReTAlL PRICE: $149.05

SysTEM REQUIREMENTS:
SMALLTALKSY WiNDOWs, - _
MICROSORT WiNDOws 3.0 OR LATER

ACUMEN SOFTWARE .
2140 SHATTUCK AVENUE, SUITE 1008
BrrxpLEY, CA 94704 .
(415)-649-0601

Jim Sabmons is President of JFS Consulting of Lexington, Soteh Car-
olina. JFS Consulting specializes in the documentation of object tech-
nelogy broducts and object-based user mierface revision control sys-
tems. With his parmer, Timbynn Babitsky, Jim is coeditor of The

International QOP Directory, published by SIGS Publications, Jim

and Timbyrn are also Exhibits Cockairs of the annual ACM OOF-
SLA Conference.

THE SMALLTALK KEPORT

y 5 Smalltalk engineering profects grow farger, the need for
cusable code increases. Develapers need ro build larger ap-
lications even faster. The easiest way to increase the ca-
pabilities and scope of an application is to reuse more classes,
Large applications require teams of Smallealk programmers to
ghie these reusable classes together and write some applica-
tion-specific code, too.

WHAT IS A REUSABLE CLASS? :
Classes are reusable in two ways: as 2 client making instances
or as the basis for new subclasses. The characteristics of these
two kinds of reusable ciasses are different. For client use, you
want a fleshed-out and general class. For subelassing, you wane
a minimal and flexible class, Beyond these characreristics,
how do you tell if a class is reusable! To paraphrase Ralph
Johnson, a class isn’t reusable unti] praven reusable. That
means it has been used in more than one application,

it rakes extra time and effort to write classes that are
reusable. This exrra effort is a separate propramming activity.
Developers caught up in deadlines for delivering an applica-
tion often den't have the time necessary to flesh cut and pol-
ish their classes. For example, developers will initially create a
single class that should be refactored into a combination of an
abstract class and a conerete class. The concrete class can be
reused by making instances of it and the abstract class can be
reused by making new subclasses derived from it. The reusabil-
ity of classes written with the goal of multiple uses is much
greater than those written for specific roles in an application.

In conjunction with supporting teams of developers, some
Smalltalk environments actively promote the creation of
reusable classes. One of the goals of these environments is to
separate application engineering from the creation: of reusable
units of code.

18 CLASS OWNERSHIP A GOOD BASISTOR
PROMOTING THE CREATION OF REUSABLE
CLASSES?

Suppose each class is owncd i}y a singleé &evdaper The theory
is that an owner feels responsible for and will take the extra
effort to make a class truly reusable. The creation of reusable
classes is important ro the entire organization as well as the
developers. Programming environment capability by itself is
not enough. To back up this capabilisy in the programming
environment, the developers’ organization must reward the

Juanita Ewiﬂ;g'

Should classes have owners?

production of reusable code. Responsibility and ownership are
established management techniques for motivating employ-
ees. [t's become common practice in manufacturing environ-
ments to give employees more responsibility and have them
provide input about the manufacturing process. Employees
don’ fust serew on lug nuis anymore, :

Let's assume the owner of a class is rewarded for prodicing -
a reusable class. Whar if another developer finds a bug in that.
class, or thinks of a useful extension? In a system with class
ownership, the owner writes the code to fix the bug or writes a
new method. He is the one who is motivated to make the
class more reusable.

WHO I8 BEST QUALIFIED TO FIX THE BUG OR
WRITE THE NEW METHOD?
In: the case of the bug, the best qualified person may be the de-
veloper who detected the symptom of a problem and isolared
the error. Afrer the derective worl, fixing the bug may be sim-
ple. And, sometimes it is difficult to reproduce a bug. Inn the -
case of the new method, maybe the person who thought of the
extension knows best how to implement it. Maybe in borh
cases the owner and the person suggesting the change need to
work together to come up with the best sclution. The best
qualified person depends on the situation. Flexibility in the
programming environmment is critical

Systems with class ownership are not flexible, Even the
motivational aspects are wrong for flexibility. What is the mo-
tivation for developers who are not owrzeri?

DO CLASSES EXIST IW ISOLATION?
When a class is part of an application, it interacts, or coliaba-
rates, with other classes. Sometimes the collaboration is part
aof a framework. For example, a view and a controller coliabo-
rate as part of the MVC framework. An instance of view i’
never used alone. It is always paired with a controller. Because
of the relationship between these two classes, coupled with
the fact that modifications in one class will probably require -
catresponding modifications in the other class, there isa
strong reason for the same developer to own both of these
classes. It makes sense that any related classes should also be
owned by the same developer, Evidently all parts of a frame-’
wark should be owned by the same developer. .
Ceontinuing this example, what about the view's relationship.
with its model? Some views have a close connection with their

Voo, 1, No. I: SepresBeRr 1991

B GETTING REAL

models. This argues thar the maodel should be owned by the
same developer that the view and controller are owned by, And
yet in different applications the seme view may collaborate with
different models, Are all of those models owned by the devel-
oper that owns the view! Class ownership doesn’t take into ac-
count the fexibility required by multiple applications.

A subclass is closely related to its superclass. If the behav-
o1 of a class changes, there may be ramificarions in the sub-
class, requiring corresponding changes in subclasses, This im-
plies that the same developer should own classes that are
hicrarchically related. Obviously, if one developer owns the
entire image, we aren't talking sbout teams of Smalltalk pro-
SIAMINETs anymore.

1f classes have owners and relared classes are owned by the
same developer to improve the efficiency of the team, how do
you devise a reasonable partitioning if the ownership is re-
stricted to a single developer per class? The answer is, vou
can't. The goal of grouping related classes conflices with the

goal of distributing classes 1o individual owners,

The advantage of multiple
developers is to allow multiple
perspectives and therefore create

more general classes.

DO MULTIPLE DEVELOPERE AFFECT THE QUALITY
OF CLASSES?

Close collahoration berween developers is important in the
preduction of reusable classes. People who are working to-
gether tend to be more creative. Multiple perspecrives in-
crease the likelihood of more general abstractions. Multiple
developers are an advantage. The result of multiple developess
is classes that are well fleshed our and suitable for client use
and classes thar are general abstractions suirable for sub-
classing.

SHOULD CLASSES BE ACCESSIBLE TO MULTIPLE
DEVELOPERS!

The programming environment needs 1o promote developers
working rogether. One wav to do this is to make classes acces-
sible to multiple developers. That way, each developer could
make changes when most appropriare. I yvou have one owner,
what do you do when that owner goes on vacation? What if
the owner i ill at a crivical time in the project? The program-

ming environment should male it easy 1o implement contin-
genecy plans 1o keep a project going,

Since a reusable class is produced by a team of people, the
entire team should be rewarded. Team programming environ-
ments usually have author designations for accountability.
Outstanding effores will conrinue o be noticed in these envi-
ronments because of accountability features.

HOW DOES THE PROGRAMMING ENVIRONMENT
KEEP THINGS FROM FALLING BETWEEN

THE CRACKS?

How do you ensure thar the entire class hangs together? You
don't want to end up with classes that are o hodgepodge of
funcricnality. Some automatic checks could be insralled o
produce wamings if, e.g., 2 method contains no references o
self or instarice variables.

Mast of the consistency checks for a class cannor be auto-
mared ac this time. A human still needs to browse and under-
stand a class 1o see if it follows basic design principles. In a coop-
erative team, this responsibility can be shared. Peer reviews, or
moze formal code reviews, are an essential part of team effores.

The programming environment should ke able to restrict
the set of developers for a class to avoid unauthorized
maodifications. Many operating systems offer these kinds of
Hraitations. A team programming environment could be even
more selective. Also, it is a good idea to place at least ane ex-
perienced person with a group of inexperienced people. Peo-
ple who have good rapport generally program rogether well.

A programming environment for teams of Smallralk devel-
opers should promote the creation of reusable classes by re-
warding sl developers. The advantage of mulriple developers
is to allow multiple perspectives and therefore create mote
general classes. Another benefit of multiple developers is more
apparent in the final stage of the software lifecycle. Classes
that are developed by multiple programmers are therefore un-
derstood by multiple programmers. It is easier for the organiza-
tion to maintain classes because more than one pesson has the
knowledge and understanding required for the job. %

Juanita Ewing is o senior staff member of Instantiations, Inc., a soft-
ware engineering and consulting firm that specializes in developing and
applying object-oriented technologies. She has been a project leader for
commercial abject-oriented software frojects, and 35 an expert in the
design and implementation of object-oriented applicanims, frameworks,
and systems. In her previous position at Tekironix Inc., she was re-
sponsible for the development of class Hibraries for the first commercial
quelity Smallealle-80 system. Her professional activities include Work-
sheh and Panel Chatrs for the OQOPSLA conference.

THE SMALLTALK REFORT

Aindow Bolider 1
£dit Lipfions AHgr Sie Group A

= Acne Fiaek
“Bepatmenl DR

[:3
L

Einployee Database (B
Employic Pesfile~——————
Lost Maikie

¢ Contading 1 rBetore Aesideg ™
ket Hotizontally {0 Center Vertivally | -
;8 Fised 1efstive tor JPacend Lelt
£t Seated
O Fieed
Bisvated:
B Faed el lon [Paent Tup 12]
{5 Saaled
Bollom: @ Fred oislivele; [Pane Top | [8]
< Snated

Figure 2, WindowBuilder's Framing Parameters Editor.

Pane subclass at any time and a Test I¢ burron is provided to
generate an instance of your design,

Once you have the design worked out, you may then open
a Class Browser on your window's WETopPane subclass. To
complete the implementarion, you simply complete the "shell
methods" which WindowBuilder generates based on your
whenperform: and menu item action specificarions.

To make all these WindowBuilder features immediately ac-
cessible to you, a cogent manual is provided. It includes an
overview of the components and functionality of graphical
user interfaces, & "(Juick Peek” introductory tutorial, a user's
guide, an extended example turorial, a reference section and
an index. WindowBuilder is so intitive, however, that you
hardly need the documentation.

USING WINDOWBUILDER TO CREATE A DDE
DATABASE CLIENT APPLICATION

About three-guarzers of ry development session was spent
implementing the DDE communication hetween Smalltalk/V
and Pioneer Software's Q&F database engine (Fig. 3}, The de-
velopment of the window design was truly painless using Win-
dowBuilder. Since WindowBuilder generates empey methads
based on the conrrol and menu event specifications of your
design, it is essentiaily a "fill in the gaps” process 1o make the

applicasion fully functional.

Had I not been using WindowBuilder, | anticipate my
experimental development effort would have casily doubled,
WindowDBuailder makes Smalltall/V Windows a viable
choice as a consultant's rapid epplication development en-
vironment.

WINDOWBUILDER'S BRIGHT SIDE
WindowBuilder is a vastly improved way to develap a
Smallealk/V Windows user interface when compared to writ-
ing raw source code. As a consultane, I would only recom-
mend Smalltalk/V Windows for corporate client development
projects if it were enhanced with WindowBuilder.

The Framing Parameters Editor and the Aligh menu fea-

-tures of WindowBuilder are particularly useful and are aften

= G4E - CHPORELGER [ADBRDET, E
w File EdF Son Geiecs Seapch Layonl i
LBET VG |FIRST FeE | ERP_) 6 IBEFT | DEFT_HANE

RER_IB]STALET

=4

T [deanatl

2 |Woltean i

4 _jHcEIetlan) Piie EdR Dept [uves

5| Sampair :

) rBepatmeat: 07D {Emptayer Prafle—————————————
‘qu iz} Lust Mams First Nome
Miamger [wuttman | [sanura |
@ﬁrm—i Emp. IO Hire Dats rScX‘
Emplayers Ewver | pepar]ic"""‘f

y & Female |
il |
Street Address

Beqn

[1207 Gerr s, i
City 5T Zip Code

||/ iDutkam (e [erema |

| i N
[Siwy
Intercslz 53508.08 :
-; Sports: Handball, Windsawrfing

e Hulbisics: Slemp Cabiceting, Daaeing
e, Saleny: § 38600 {Eli{hﬁ: Exzoutboes! Metwark, HOW .

Figure 3. A WindowBuilder-built DDE client application window
and its Q&L database server.

not implemented as well in orher user inrerface builders which
I have used.

WindowBuilder is extensible. WindowBuilder is provided
in source code and ivs interface includes a facility for adding
your own new Subpane classes. If you creare, or purchase, a set
of interface components such as ToggleSwitch or Thermome-
terCiuage abjects, vou could include them in your Window-
Builder designs.

Acumen supplies a WindowBuilder run-time file. Cnee
you have an application built based on a WindowBuilder user
interface, you can create a lean image with the classes and
method changes required to implement the interface bur not
the WindowBuilder tool itself,

WindowBuilder is a vastly improved
way to develop a Smalltalk/V
Windows interface when compared to

writing raw source code.

A WINDOWBUILDER WISH LIST

The most glaring problem [had with Version 1.0 was the lack
of & Z-order editor. Windows uses a Z-order list to determine
the order through which the window "focus" will progress un-
der keyboard contral. In a data entry application, you often
want to make an entry and tab to the next logical field. It is
surprising that Acumen did not provide any means to contral
and reorder this all-important aspect of a window or dialog de-
sign. The current workaround for the lack of a Z-order editor
is to cut and paste the addSubpane: blocks in the addSub-
panes Lo method. In a window as complex as the DDE
Database example, this is incredibly tedious,

VoL, 1, No. 1. SEPTEMEER 1991

21,

20.

. :f@i&ﬁéd'gﬁi J Lm Sdim{m; .

Management tool which greatly facilitares the vapid de-
velopment of Smalitalk/V Windows applications. As its
name implies, WindowBuilder enhances developer productiv-
ity by providing a "construction set" tool with which to inter-
actively design application windows and dialogs in 2 "what
you see is what you get” manner. Oncé you are satisfied with
your design, WindowBuilder creates 5 new class to encapsu-
fate your design, generating the Smalitatk methods whlch
bring it o life.

At a list price of $149.95, this is 2 potent rapid application
develepment tool which should be included in any
Smallmll/V developer's enviroament. Though there is room
for improvement, this inital release of WindowBuilder is a
much needed enhancement to Smaltalk/V Windows.

HOW DOES WINDOWBUILDER WORK? -
WindowBuilder consists of software and a ninety-fivé page
manual. The WindowBuilder tool and its associated classes
are easily installed by filing in a single Smalltalk source file.
Thirty-one classes are added to the base Smallrall/V Win-
dows environment. Some of these classes implement the Win-
dowBuailder tool irself, but many are refinements and enhance-
ments to the base systeny’s window user interface Control
classes. In addition to new classes, Acumen has made a signifi-
cant number of modifications to methods in the base
Smalleall/V Windows classes.

Once filed in, a WindowBuilder menu is aéded £0 your
Transcript window menubar giving you quick access to creating

new and editing existing WindowBuilder windows and dialogs. .

WindowBuilder defines a new abstract class, WETopPane, from
which new windows and diatops subelasses are created.

Figure 1 shows WindowDBuilder in use to create a relatively
complex applicazion window. Te place the Male RadioButton
in the Sex GroupBox, as shown, the tool palette on the upper
left side of the WindowBuilder window is used first to select a
primary icon to place "Burton" objects, after which a "Ra-
dioButton” secondary icon is selecred. A crosshair cursor then
appears to target the button's placement in the GroupBow: -

The newly placed button displays "selection handles” to in-
dicate that it is the active object. The Atrribores Pane along
the bottom of the WindowBuilder window s used to specify a
default title, associated instance variable and Windows-specific
seyle ateriburés. The Events gronp includes Wheén ComboBox

adowBuilder, from Acumen Software, is.a User Interface.

=l Acme Rockets Employee Databage vl
Gepanmens DERE— "Eanplayae Profig——"
P,i Lasl Mame | Fizst Nume
Monager _ [tgnored | [Ignored |
ignnred i Emp. 0 Hire Date g?}ex -
Employees b 3 Male ;g
oW ignored [jlgnared & Femate
Birest Address
;Ignmxd . . I
Ciw ST Zip Code
[?gnurad I fgn hgxxured i
1 Exempt Salary
[=E
Title: [Male [Events:
tor:
- | Pesform: [ibSextipdate
Fipls: | emateRadinBullon _zi £

Figure 1, WindowBuitder toof building 2 database application window, .

which allows you to choose events to which the selected object
will react. In this case, the RadioPutton associated with the rh-
Male instance veriable will react 1o a clicked event by sending
its parent window the rbSexUpdate message. The Events:
group can be used to specify as many when: event performs:
method associations as required by your design. _ _
A well-implemented group of alignment options make it ©
gasy to create a clean window or dialog design. The Distribiate
Horizontally and Distribute Vertically options, which space
ohjects evenly berween twa outermost selécted objects are par-

ticularly useful and relatively rare in ser interface design tools.

A Framing Parameters Editor is provided to specify the
complex relationships amornig window control objects when
the window is resized. In Figire 2, the Framing Parameters Bd-
itor is being used to specify that the tpper-lefi corner and bot-
tom of a ComboBox are fixed relative to the Parent window's
top left dimension while is r;dht d[menum is scaled to the
window's new size. : :

A Memibar Editor maiccs is easy to o desi ign éropdcwn

menus to be added o your window designs. As with your basic

window or dialog desigri, WinddwBuailder geierates the often
complex and error-prone source ro the methods which create
and initialize your menus. :
Working in concert, the tools provided by WmdowBudder
make quick work of designing a window or dialog. As an in-
reractive tool, you can save your design teor its own WBTop- .

THE SMALLTALK REPORT

lcome to i:he first instaliment of what we hope will be
ong-running cohumn! Smalfratk has been around for
dhe S years now, When Smallealk was voung, the idea of
applicaticns having windows the way cats have kittens was a
new one. Smallealk environments of yore preceded che prolif-
eration of standardized window envircnments. Therefore, they
tended to carry their own windowing system with thermn.
These old clunkers would grab the whole machine {keyboard,
screen, and mouse) and have their own way with them.

Of late, howewer, the world has been changing. For nearly
every kind of deskeop workstation, from the PC-clone to the
top-of-the-line UNIX workstarion, there is a standard win-
dowing system available. Applications that rus on these ma-
chines are increasingly expected to conform o the interface
standards of the host windowing system., Further, they are ex-
pected to work with other applications running under the
samme windowing system.. . _ o

Fortunately, Smalltalk has kept up. Both of the major ven-
dors are beginning to support “hest windows.” In this column,
we'll be providing informartion on the nuts and bolts of getting
applications going in Smalltalk while working with the facili-
ties provided by the host windowing system. To begin this is-
sire, we'll dive right in to a two-part examination of how to
build dialog boxes wholly within Smalitalk/V PM.

Dialog boxes are useful for displaying messages and gathering
input from rhe user. In Smallrall/V PM, there are two sub-
classes of DialogBox to handle simple cases. MessageBox is use-
ful for getring quick yes/no or confirm/cancel information from
the user. Prompter is useful for posing a question and soliciting
art angwer. There are other DialogBox subclasses for find and re-
place, choosing fonts, and defining new subclasses. In each case,
a specific Presentation Manager {(PM) dialog resource is used.

The resource defines the types and locations of the dialog’s
controls. To defirie a dialog with a different fayout of controls, a
new PM dialog resource must also be defined. This can be done
with the dinlog Box editoror the linker and resoureé ¢ompiler
that dome with the Presentation Marager development kit

© ¥ yon have been tsing Smalltalk for a while vou may ask,
“Why can’t all the work be done in Smallealk? This column
proposes one approach to huilding custom dialogs wholly
within Smalflealk. This approach creates a subclass of Applica-
tion'Window and gives it some useful hehavior currently found
ondy in DialogBox. In addition to conveénience, there are two
advantages to building dialogs wholly within Smalltalk. One

{jreg H.encﬂie.jﬁ and Eric Sajﬁijth

Giving appl| cat ion wi ndows daaiog box
' Undmnai ty m P

|, paﬂ "E

advantage i you can use your own custom panes in acidztmn
g0 control panes. (DiakogBox is'restriciad o holding contrsl
vanes.} The other advantage is that onice you know how, you
can add the behavior to any application window.

ESSENTIAL BEHAVIORS OF DIALOGBOX

Since we will be taking the essential behavior of DialogBox
and adding it to ApplicarionWindow, let’s identify what that
behavior is. Under DialogBox in the encyclopedia of classes™
is the comment:

“A DialogBox is a popup window used to display mes-
sages and gather input from the user. A dialog box can be
modal or modeless. A modal dialog box rvequires that the
user terminates that dialog box before using the window
that obened the dialog. A modeless dialog box allows the
wser 10 continue [0 use the window without terminating the
dialog box.”

So, an optional behavior of dialogs is being modal. {Appli-
cation windows are modeless.) _

You may have noticed another behavior: diafogs seem to
stick with the application window that created them. If an ap-
plication window and it's dialog are partially obscured by
other windows and either the application or its dialog i3 se-,
lected, the application and the dialog window come to the.
front together. This sticking together is one of a set of behav-
iofs dialogs have because of the ownership relationship be-
tween a dialog and its application window. The application
window is said to own the dialog. =~ '

The oprion of being modal and the ownérship relationship -
are considered to be essential behaviors of DialogBox. Other
behaviors such as displaying messages, gathering user input,
opening, closing, and passitig messages afe already pare of be-
ing an application window. The rest of this column will dis-
cuss modaliry and ownership, where they are documented,
what they mean, how Smalltall/V PM uses them, some ways _
for you to use them, and finally, how to put it all together o
make your own dialogs wholly within Smalleall/V PM. The
remainder of part 1 will cover madality, Pare 2 will cover own-
ership and putting it all together,

MODALITY
Chapter 19, Dialog Wmdowa of ref. 7 {pp. 247—-262} de-
scribies two kinds of modality dialogs may have in PM. A dia-

Vor. I, No. [+ SEpTEMBER 1991,

10.

B GlUls

log may be system madal or application modal, When a dialog
is system medal, the dizlog takes control from all other win-
dows in the system. When a dizlog is application modal, it
takes control from all other windows in the applicarion. {As
an aside, any window may be created system modal, Further
discussion on this is deferred to a later issue.) Dialogs in
Smalltalk/V PM are neither.

Dialogs in Smallealk/V PM are modal only to the window
that was active when the dialog was opened. As a result,
wodality for Smallealk/V PM dialogs is handled within
Smallralk, This makes it fairly easy ro move the modality be-
havior to ApplicationWindow.

The mechanism for making dialogs modal is decumented

on page 468 of the Smalltall/V PM Fandbook.!

*Dhalog boxes can be made modal 1o the cerrently active
swirdow by utting self processingut es the last Ine in your
dialog box's open method. processinpur will not retuwrn wnyl
the user closes the dialog box {actually, wntil another method
in your dialog box class sends self close). Again, see New-
Subclassialag for an example.”

... dialogs seem to stick with the
application window that created
them. If an application window and its
dialog are partially obscured by other
windows and either the application or
its dialog is selected, the application
and the dialog window come to the

front together.

To understand what goes on when dialogs are made modal,
let’s fook at the method processknput in DizlogBox. This
method is inherited by NewSubelassDialog:

processinput

“Make the receiver modal to its owner window,
This method doesn’t retum until close has been
sent to the receiver.”

} cursor |

Frocessor currentProcessisRecursive ifTrus: |
self error: “Cannot do modal dialog during recursion.’].

owney disable.

curser = Cursor.

CursorManager nommal change.

sem 1= Semaphore new,

[CurrentProcess makeliserIF. Notifier run] fork.

sem wait.
CurrentProcess makeUserIF.
cursor change,

Two actions are taken ro make the dialog modal: the
owner is disabled and processing in the method is blacked.
Disabling the owner is casiest, so let’s look at it first.

DISABLIMG

Disabling the owner means the dialog's application window is
prevented from receiving any more kevboard or mouse input.
Conceptually, the dislog’s owner s the application window
that created the dialog. In implementation, the owner is set to
the frame window of the acrive window when the dialog re-
ceives the message fromModuleiid: or fromResFile:. The code
that finds and sets the owner is the same in both methods. Ex-
amining the code confirms that the owner is 2 window handle.

owner sNil ifTree: {

owner = Notifier activeMainWindow.

ovmer notMil fTruer [owner := owner frameWindow]].
owrier isMit ifTrue: fowner == WindowHandle queryActive].

The method for disable in WindowHandle sends the
method enableWindow:fEnable: o PMWindowLibrary, the
sole instance of PMWindowLibraryDLL. In response,
PMWindowLibrary calls the MS O8/2 function WINEN-
ABLEWINDOW . MS OS/2 responds by disabling the frame
window and all its child windows {see pp. 260261 of ref. 3).
So, the owner ignores all future keyhoard and mouse input
unitil it is enabled. The dialog enables its owner in the
method close.

BLOCKING

Blocking means thar the Smallealk process executing the
methoad stops. The merhed does not return (and so the calling
method does not continue) until the process is unblocked.
The blocking is done in three lines:

sem := Semaphore new,
[CurrentProcess makellserTF, Notifier run] fork.
sem wait.

The first line is simple. ft initializes the semaphore. The
second line makes a new user interface pracess and starts it
processing events. The third line actually blocks the pracess
the method is execuring in. The process is blocked and the
method does not return until the semaphore is signaled. The
dialog signals its semaphore in its method close. Once the
sernaphore is signaled, the method processinput is resumed,
the user interface process is restored, and the method returns.
The method close for DialogBox closes the dialog and undoes
both actions taken in processinput:

close
“Close the receiver.”
owner gnable.

Tur SMALLTALK REPORT

of large, corporate sponsors thar can afford to commit people
and financial resources to its success.

Perhaps, today, the environment is ripe for such an organiza-
tion. There are now numerous large corporations that are mak-
ing strategic commitments to Smallralk. These are the organizs-
tions rhat really need and can afford re support a Smallealic
users group and conference. My final remarks are to my col
leagues in these organizations.

You and your organization have made a commitment 1o
Smalltaik. Tts future success is eritical to your future and success.
This requires a dynamic, vibrant community of Smalltalk users.
Take control of your future, ger involved and organized. Put to-
gether an organization, sponsor conferences and workshops, en-
courage standards. You know who you are, vou know you have
the need. So do it I vou don’t know who your counterparts in
other corporations are, then call me at (303-242.0725) and |
will get vou connected. Let’s make Smalltalk succeed! %

Allen Wirfs-Brock can be reached ot Instartiations, Inc., 921 SW
Washington, Ste. 312, Pordand, OR 97203, or by phone at (503)-
2420725,

Universal Daftabase
OBJECT BRIDGE ™

This developer's tool allows Smalltalk to read and write to:
ORACLE, INCRES, SYBASE, SQ1./135, DB2, RDB, RDBCDD,
dBASEI, Lotus, and Excel.

Intelligent Systems, Inc.

506 M. Bterte Strast, Ann Arbor, MEABTO (313) 996-4238 (313) $96-4241 fem

productivil

{Formerly named IiM

AGER)

& Pyt related cigsses and methods info g single
task-oriented applicaiion object,

e Browse only what the application sees of the Image
but easily import o delate exdernal cods.

e Automaticaly decument all application cods using
modiftabie templates—thay can aven be executablal

e Koeop a history of previous versions and resiore fhem
with ¢ few keysirokes,

Print an application as g formatted, poginated,
commerted report, Even o table of contents!

Thera's more—
= Many chores ke change log recovery are menu-diven,
& New browsers on class varlables and references,

globat variables, Object dependents.

= intelliigent browsers are graphic, inferactive and
confextsensitive. Mony update automatically.

Now-—profile application execulion
with starfistics ond a caliing freel

Tapplicaftion g
Lo daleted closse sé
dalelad code <~m-m

idaieied methods:

B TR
fOWEETS :hEsh‘{F
) IMAGE s
CodelMAGER js.. <{cpplicmion printing
coding Ty
Uiimles...< e

) iTode profillng:
?as?mg<qpp”cu”°n testing

Shipping & handing: [$13 mai, [$20 UPS per copy. 48 hr ordier

umomosnd. Fox or phone for quickest handling.

NANE:

ALEHNESS

() SATE RS

TERE L cheque [Jamex [Me [Clvisa

Version: [:] Mce E:i 286 &

P verson avaliable 36850 Expiry Datte: I,

Diskette: [J 32 [(J5 e PPWLAE [/

= S e w2005 Lite-de-liesse, Suite 201
oEE mem = MONIREAL Quebec HAN 2MS

de BB HERG VONREAL Suebec mNaME

VoL, [, NG, 1. SEPTEMBER 159

19.

18.

A forum for sharing ideas, tips, and
experiences or just a place to have
YOur say ...

his morning, [was reading through the papess in the confer

ence proceedings of the 1991 USENIX C++ Conference.

This is a collection of eighteen papers refating to the applica-
tion, implementation, and possible extension of C++. In gen-
eral, the papers are well written, most are informative, and some
are controversial. Collectively, they show that there is a a large
and thriving C++ community thar is not enly actively applying
and evolving their anguage but also communicating, sharing,
and recording their shared experiences. They clearly show that
C++ is a living, dynamic language.

As a Smallralk user and implementor, tny immediate reac-
tion to this collection was a sense of longing for a similar set of
papers concerning Smalltalk. [know there is comparable work
being done in the Smalltalk community. If this wasn't the case,
Sinaliralk would be a dead language. The problem is that there
is currently no forum for Smalltalk users and developers to get
together and share this work. Why not?

For several years, OOPSLA provided such a forum. ¥ you
fook at the proceedings of the first two or three OOPSLA
conferences, you will find a large number of papers that di-
rectly relate to Smalitalk. This is not the case today. Why?
Because OOPSLA is now a large, formal, scientific confer-
ence that addresses all aspects of object-oriented technology.
To be accepted at QOPSLA, a paper must address original
ideas that are broadly applicable to ohject-oriented rechnol-
ogy. A paper that is of utility only to the users of a particular
tanguage will normally not be accepted. At most, one or two -
Smalltalk-related papers will now be selected for an OOP.
SLA conference. Generally, the same will be true of C++ o1
any other language. This does not mean that enly one or two
good papers exist, but to publish more would resule in an un-
balanced conference. If eighteen of the twenty-three papers
at this year's OOPSLA were the papers from the USENIX
C++ Conference, only C++ programmers would arrend
QOPSLA.

The obvious solution is that we need a Smalltalk confer—
ence. This is not a totally new idea; others have suggested it in
the past, but nothing has happened so far, Why? [¢'s easy for an
individual such as myself to get excited about the idéa. T know

Allen Wifs-Brock

what has to happen. I lived through the organization of the first
QOPSLA. | could ger on the phone and start calfing people ty
get them involved... but wait, reality starts to kick in. Crganiz-
ing a conference takes a lot of work and entails considerable
financial risk. T run a small business. Can I afford to take the
time away from my clients and employees? Could [carry the
fnancial burden? Well, it was 2 nice idea, but back to work.

What is really necessary for the organization of a success-
ful conference is an organization to back it. For OOPSLA,
this was the ACM. For the C++ Conference, it is USEN?X
USENIX describes itself as follows:

“The USENIX Associgtion is a not-for-fwofit organiza-

tion of those mterested in UNIX and UNIX-like systems. It

is dedicated to fosteving and communicating the development

of research and technalogical information and ideas pertain-

ing to advanced computing systems, fo the monitoring avd

encouiragement of continuing mnovation in advanced com-

puting envirormnent, and to the provision of @ forum where

technical issues are aired and critical thought exercised so

that its members can remain current and vital. To these

ends, the Association conducts large semi-annual technical

conferences and spansors workshops concerned with varied

special-ineerest topics...”

A successful users group must be a
response to a real need, a “"pull”

from the user community.

What about Smalltalk? Unfortunately, there is no compata-
ble Smalltalk user’s organization. Past efforts to create such an
organization have been unsuccessful, Like conferences, user or-
ganizarions take a considerable investment of tme and money.
Past efforts were “pushed” by vendoers or individuals who had -
neirher the time nor financial resources to be successful. A suc-
cesstul users group must be a response to a real need, a “pull”
from the user community. In addition, it must have the backing

THE SMALLTALK REPORT

owner makeActive,
© - Notifier remove: self. o .
PMWindowLibrary destroyWindow: handle..
sem niotNil i#True: [
© sem signat. :
Processor tefminateActive. |

The first two lines enable the owner {the frame window of
the dialog’s application window} and restoze i as the acrive
window. The rext two lines do some clean-up necessitated by
the dizlog having been created differently than a normal win-
dow. The last three lines signal the semaphore and kill che ac-
tive process. Signaling the semaphore allows the process that

was waiting on the semaphore to resume. This fets the method

processlinput resume and return.

ADDING MODALITY TO APPLICATIONWINDOWS
This is where you Ty out what you just read. Start by creating
a subelass of ApplicationWindow. Give it an instance variable
to hold the semaphote:

ApplicationWindow subclass: #DialoghpplicationWindow
instanceVariableNames: ‘sem ’
classVariableMames:)
pooilictionaries: PMConstants

Copy the method processInput from DalogBox. At the
end of processinput add the line:

super close, “<<Added hecause of difference between close in
BialogBox and ApplicationWindow.”

Copy most of the method close from DialogBox. Modify it
to look like this:

close -] o
“Cioge the receiver.”
“Most of this is copied from
DialogBox, GLH 18 July 19¢1."
cwmer enahle,
cwner makeActive,
sem notlil
Hlrue: [
sem signal,
Processor termmateAc’uve H
HfFalse: [super cloge.] "<<Added in case I am mot modal ”

The differenices between the close methods in DialogBox
and ApplicationWindow will be covered in the next install-
ment of this column, For now, just trust that chis is necessary.
The class will also need a method for inding and setting the
dialog’s owner. Make the three lines from from Module:id:
mtoa method'

fmdAndSet{)wner :
“Find the active window and make it my owner. .
This code is copied from DialogBox>>fromModule:id:.
GLH 18 June 1991.”
cwner isNil ifTrae: [~ - o
owner := Notifier activeMainWindow.

owner nothil iflrue: [owner = ovmer frameWindow]},
owner isil e [owner ;= WindowHandle queryActive].

The last method is for convenience:

GpenMndal)
“Open and become modal ti‘ie way
most dialogs do. GLH 18 June 19917
self findAndSetOwner.
super opesy.
self processTnpu.

Now, test the class. Open a workspace. Tms witl be the applzca’uon

window foy the dialog. From the workspace type, select, and do

together:

Temp = MalogApplicationWindow new,

Temp cpenModal.

Terminal bell,

Motice you can ne longer type or use the mouse with the
workspace. Also, note the last line did not execute. The dia-
log is modal ro the workspace. The workspace is disabled and
the process is blocked. Now, close the dialog, The hell will
sound. Closing the dialog unblocks the process as expected.
Also, note the workspace is enabled so the mouse and key-
board work with it

Note: if you completely covered the dinlog with the
workspace, all is not lost. Simply type and do

Temp close

from the Transcript. This is why the global variable Temp was used. -

In part 2, we will add ownership to DialogApplication-
Window and tie everything togerher. If there is space, you'll
be shown some other ways to use these dialog behaviors. &

REFERENCES

[1} Smallealk/V®PM Tutarial and Programmming Handbook Dlgztalk
Ing., Los Angeles, CA, January 1989,

{21 Microsoft Operating Systemf2 Programmer’s Reference, Vol. [, Mi-
crosoft Press, Redmond, WA, 1989,

13] Microsoft CGperating Svstem/2 Programmer's Referénce, Vol. 2, Ml—
crosoft Press, Redmond, WA, 1989.

Greg Hendley is a member of the technical staff at Knowledge Systems

Carporadon. His OOP experience is in Smalltall/V(DOS), Smalltalle-

80 2.5, Ohjectworks/Smalltalk Release 4, and SmalltalkfV PM.

Eric Smith is a member of the technical steff at Knowledge Systems
Corporation. His specialty is custom graphical user interfaces using
Smalltall {varions didlects) and C.

They may e contaected at Knowledge Systems Covporation, 114
MacKenan Dv., Cary, NC 27511, or by phone ar (919} 4514000,

Vou. 1, No. It SEPTEMBER {991

Ir.

12.

_OMPRESSING
CHANGES IN
IV WINDOWS

Charles-A, Rovira

ter suffering through a series of embarrassing
rashes, | came to the comclusion thar the Systan-
jctinnary>>eompressChanges method for Digitalld's

 Srnallvally/V Windows and Smallealk [V Mac

lacked a lictle something in the robustmess column. Here's

what 1 did to remedy the situaton.

SMATLLTALK WILL CRASH IF ABUSED

As loath as anyore might be to admit it, Smaliralk does suffer
from certain problems when dealing with resources that are
nat its own. The Mac and Windows are great environments
when it comes to providing objects and funcrionality, but the
integration with Smaliralk is nor as complere as ir needs to be.
The holes are guite deep encugh to break an ankle when you
stumble into them,

A HANDLE I8 NOT A MONIKER

It is possible o leave handles or pointers to objects lying around
and to trip over these objects, handles, or poingers when saving

the image or dering che course of execution. Leaving things une
reclaimed is easy to do during the heat of a debugging session

... I've done it often enough. Saving the image after every vie-

rory, no matter how minor it might seem, is an essential compo-
nent of debugging, but save your image with unreleased handles
and life will rapidly become unpleasant.

After a while, an image becomes slow, bloated, and onreli-
able. Whar could be better than starting fresh with a new copy,
stzaight from the shrink-wrapped diskettes, and filing in all of
your work. [r's 21l been preserved in the change.log or the [V
Mac image data fork. Unforrunately, the change log contains a
record of everything that you've done while developing your
systere of application. Every successful dolt execution, two

copies of every class definition, every method you've defined, as
many times as you've defined it, every selector you've gotten
ridd of. Everything!

Filing in your change.log will take the maximum amount of
time and it's not likely to work. The dolis are the show stop-
pers. Any dole that brought up a window or otherwise inzer-
fered with the scheduling process is likely to stop the filing in
of the log. :

CLEAN P YOUR ROOM

There is a way o shrink the change log, remove all of the mis-
cellany, folderol, and failure, and leave only the shiny new
code: Smallralk compressChanges. As it comes shipped by Dig-
italk, this copies the code to a new change log, adjusting all
pointers as it does so, saving the image when it’s finished, and

throwing away the old changelog. Tryir ... you'll like ir. Ex-

- cept that we're attempting ro dispose of a flabby, flarulent, or

faltering image, so we're going to try filingin the changelog,
appropriately renamed, ngo a brand spanking new copy of [V
... Wrong! CompressChanges cleans up a little too much. All
the class definitions are now missing. Filing in the change.log
will halt at every class asking if vou want o declare <your-
ClassNameHere>. Then it will merrily reject all the code be-
cause, since <yourClassNameHere> is not a class, it does not
understand methods (den'task ...). Also, classes that need
initialization will once again need initizlization and there will
be nothing to tell you which these are. The last straw is that
any glebal variables you might have used in your application
are now in lost in dataspace.

WHAT K-TEL HAS TO TEACH US

Get one now! It's new! Improved! Get one NOW! Tt won't
rust, tot, or testify in court! Get one now! is tanker bilge. It's
a dessert topping! Is both! Rared X, the unknown. Positively
no one admitted. Consult your local listings,

GET A LOAD OF THIS

In keeping with the tradition of writing frightfully incomplete
articles, there is one minor component missing from ehe listing
included, mostly because it deserves a separate article in its
own right. To maove global variables and their values out of the
image and onte a file from which they can be recovered re-
quires something called a Loader. Due to idiosyncrasies pecu-
lizr to each implementarion of Smallralk, Loaders tend to be as
individual as the system in which they reside, Also, since this
facility 1s needed in a development environment, loaders, at
least a5 | implement them, tend to use the compiler because
operation is faster than using becomes:,

E0ON OF COMPRESSCHANGES

The code in Listing 1 is capable of compressing the change.log
into 2 form thar can be filedin into a new image. After a short
initialization sequence to recoed what classes and glohals are in
the new system, all of the classes and global variables are

THE SsaLLTALE REPORT

and manage Smailtalk/V application projects.

Price List

1 Bring your large, complex object-oriented applications under ® Application Hierarchy
1 controb with AM/ST, the Application Manager for Smallialk/V.
The AMIST Application Browser helps both individuals and
development igams 0 creale, inlegrate, maintain, document,

Every class has an owner.

Functional wiew across classes

and related methods within classes.
Applications port easily across platforms,

e Automatic Documentation
Revision history for each method.
Analysis and design reports.
Customizable documentation templates.

» Source Control
Integrate waork of several users.
Save and browse multiple revisicns easily. *
Check-in, check-cut, and lock scurce CDC{B, -
Custoemize code templates.
Develop in a LAN environment,
Deliver applications without AM/ST.

« Static Analysis Tools
Application consistancy repors.
Graphical views of hierarchies.
Cross-reference of variable and method usage.

Up-to-date method index.
ngpggg BOS 5150
DOS /286 $385 | e Dynamic Analysis Tools
& E. bg‘aﬁd Macintosh V/Mac $395 Locate performance "hot spots.”
i y OS82 VWPM $475 Determine test coverage.

SoftPert Systems Division Site Licenses Cal
One Main Street New Productivity Tools !
Cambridge, MA 02142 Windows 3.0 ViWindows 5475
{81 7) 621-3670 Change Browser ~ S1 95 Smaiftalk/V iz a registered trademark of Digitalk, Inc.
{617) 621-3671 Fax Source Control ™ $1585 | amiSTis 4 registarsd trademark of SorPert Syslems, Lid.

This has led us to concentrate on developing documentation
and figuring out how best to describe the system. One thing
that we have learned is to concentrate on the big picture and
jgnore irdormation that can be leamed just as easily with the
browser. Thus, pictures that list the entire class hierarchy are
net important, but descriptions of the meaning of the hierar-
chy are. Lists of all the methods in a protocet are not impor-
tant, bur descriprions of what each method does are.

Although most of the work on TS has been done ar the
University of Hlineis, Justin Graver, whe did the original work
on type inference, is now at the University of Florida and has
several students worlking on projects related to the compiler.
Thus, TS is a multiinstitution project. We hope that it will
become refisble enough to be useful in the near future and
that many more people witl start to use it

SMALLTALK CODE ARCHIVE
The Univessity of [llincis has an archive of Smailzalk software
and of papers on obiect-oriented programming. TS is not in
the archive vet. However, the archive contains a lot of soft-
ware that was develaped at lHinois including Foible, & frame-
work for visual programming environments that was written
in Smalltalk-80. It also contains the archive of Smallialk-80
developed by Manchester University sofoware and the archive
of Smalltalk-V software developed by the International
Smallralk Associagion.

You can access the aschive by anonymous fip to
st.cs.auc.edu {which is currently an alias for

speedy.cs.uinc.edu ac [128.174.241.101) or by sending e-mail
to archive-server@st.cs.uiuc.edu of the form

T archive-server@st.cs.uiuc.ede

Subject:

path yourname@your.internetaddress

archiver shar

encoder uuencode

help

encodedsend Is-1IR.Z

which will cause the archive server to e-mail Instrucrions to
vou. Report problems with the archive to archive-
manager@st.cs.uiuc.edu.

As a last resort, you can get the entire contents of the
archive on an Exobyte tape or 174" {C-24 (DXC600A car-
tridges) in tar format, on Macintosh disks, or op DOS 3 127
inch disks by sending $200 to William Voss at Department of
Computer Science, 1304 W. Springfield, Urbana, 1L 61801, %

Ralph Johnson is in the Deparmment of Computer Science at the Uni-
wersity of inois at Urbana-Champaign. He can be reached there at
1304 W, Springfreld, Urbana, 1L 61801, or by phone at {217) 244-

0098, or via e-mail at johmsom@cs wiuc.edu.

17.

Vor. 1, No. 1: Sepremser 1991

16.

AB REPORT

T
- Uni vers ty f lllinois

Reports of current work in Smal§‘iaik
taking place in leading university and
research laboratories.

he Typed Smalltalk project is one of several object-oriented

projects at the University of illinois at Urbana-Champaign,

and the largest that uses Smalltalk. The goal of the Typed
Smalltatk project is ro make Smalltalk as fast as any other lan-
guage by using oprimizing compiler technology. We want o
make Smalltalk fast without losing any of its advantages or
changing the way it is used. We want to hide the compiler
from the programmer and keep the programming environment
just as interactive and useful for prototyping as Smalitalk has
always been.

Typed Smalltalk is a farge project with many tofpodents.
These components fall into two categories, language changes
ardd the compiler. The major language change is a type system
that was designed to fit the way Smallratk programmers pro-
gram, not to force programumers to use a particular style. Type
information does nor change the meaning of 2 program but is
just an annowation on an untyped program. Although the
original motivation for the type system was to provide infor-
mation that the compiler could use to make programs faster, it
is alse useful documentation.

One important part of the type system is a tfypé inference
system that automatically finds the types in a program. The
compiler can infer a type for a method {the types of all the
variables used in the method and its return type}, bur a pro-
grammer can refine these types to make the type more precise.
The goal is for the programmer o rely on type inference when
& program is being written and is changing a lot, and then to
narrow down rthe types as the program moves from develop-
ment to production use.

The compiler (TS} uses type information to convert
Smalltalk into efficient machine code. TS is entirely written
in Smallzalk. It has been designed to be portable and has a
table-driven code generaror. We currently have code genera-
tors for the MBR020, the MN532032, and the SPARC and are
working on one for the i30386.

The biggest problem with the back- end is that it is slow.
The best way to solve this is to compile it. Unfortunately, TS
does not work well enough ver to compile itself.

The project has had two major problems. We are using a

single techaique to attack both problems. The first problem is

Smaﬁéwik prJect at t é

| | Ralph fofmson

endernic to building large softwire systerns: making the system

reliable. The second is endemic to academic projects: building™

a Jarge system on a shoestring budget with high artrition rates
of workers. Although we have had some funding from NSF

and a little from Tektronix and BNE, a lot of the work on the _

compiler has been done by unsupported students working on
thesis projects. These volunteers work for the fun of it, s0 the
work must be fun, and they tend to leave just about the time
they have mastered the system.

The computer center of my alma mater had a sign that
gave the “ten laws of computing.” I don’t remember maost of -
them, but one of them was that “All nonerivial programs have
bugs in them.” A corollary was “If your program has no bugs -
then it is trivial.” o

Since we are trying to make a reliable optimizing compiler,
this implies that we must build a trivial optimizing compiler.
Unfortunately, optimizing compilers are big and compli- |
cated,and tend to be buggy. In spire of this, we have tried to
make TS as simple as possible by rewriting parts that are com-

plex. We have rewritten some of the parts at least o half dozen

tires. This has greatly improved the reliability of TS, though
there are many parts that are still complex and TS is atill un-

reliable. Part of the Smallralk culture is rewriting code until it |

is elegant, easy to understand, and reusable. Our strategy ﬁts
into this culrure perfectly. :

Another reason for reliability problerhs is improper testing.

Most people do not think that testing is fun, so volunteers arg:
unlikely to develop and implement thorough test plans. Also,
exhaustive tests of optimizing compilers are very difficult. Fi-

nally, the Smallralk culture does not recognize the value and |

difficulry of testing and rhere are few tools to support it. Al-
though the fizst two problems are peculiar to us, the third is
widespread in the Smalitalk community and needs 1o be fixed.
One of the keys to having thesis projects produce useful
software is to limit the scope of each profect and to give the
student time to rewrite the software several times. This not

only produces betrer software, but the students are happier be- .

catise they know rhey have done a good job. A good MS thesis
project is to rewrite an overly complex part of the compiler, so
this approach helps make the compiler more reliable..

MS students tend to spend a semester learning TS and
Smalltalk, a semester doing useful work, and a couple of
months writing a thesis. The hight attrition rate has made™ -
painfully abvious the need for high-guality documentation,

CTHE SMALLT ALK REpORT

daﬁne& thie methods are baveci a"ic{ th{: requtred class mitni

: 1zatmn is perfored and global valies are Joaded in.

T@ keep teaick of what additions or chafges hiave been made

~so the Gr1g1zml image it is n{zc,csca*"y to determine what classes
and globals are present iri the image. This is the funceion of the

mztmluacwn sequence. The code not directly related to Sys-
teszctmﬂarijvmpfress(_,hanr"es is there o keep tracix of rhe
systei as it chmges '

R !ass:—bc@mmc,nz is necessary bt.caus& Tuse class comments
for a class hinting mechanism thar allows me o verify
methods to ensure that | won't get *doss not understand:’

walk-backs. It can also ensure that cloned images don't con-

tain more objects, classes, or'mettiods than is absolutely
necessary. Like the Loader, this deserves its own article.

® Class>oremoveFromSystem was modified to add the very fast
line. It also checks if the class has nstances and prompts
the operator through a ConfirmINalog. This is a standard

Widpets/286, Widgets/Mac dialog which 1 implemented in -

IV Windows to maintain compatibility. The method can be
changed to simply abort if there are any instances of the

class.
8 Class>>removelnstances just does what it says it does.
The following methods have been modified w keep com-

ments around across recompilation:

Classzzsubclass mstanceVariaghleNames: classVariabl cNameq B
oolDictionaries:, Class>>variableByteSubclass:clussVariable-
MNuomes:poolDictionaries: Class>>variableSubclass instance-
VariahleNames :classVariableNames: pooll Dictionerdes:

= MetaClass>»name:environment:subclassOfinstance Variable-
Numes:variable: words: pomters:classVariableNames: poollic-
donaries:comment:changed: was modified to remove
redefined claises from a list of r%:e classes thar were ﬁreacm
in the original image. o

® S}smthcaamry>>f:o7wpressCﬁanrfes is Where the memphor»
ical rubber hirs the vellow brick road. It has been modified
o add a preamble o the image that gathers ali classes and
all global variables defined in the original image and ro do
messages sends of the following selectors:

o SystemDictioniarys>scompressClassDefsOfinto: places
all new or changed class definitions into the
change.log. This method is implemented recursively
to ensure that the class hierarchy is respecred. To
male it easier to relate class definitions with their or-
der in the CHB, the subclasses are sorted alphaberi-
cally. This message is sent immediately after the
preamble N '
SystemDictionary>>compressClassTnitsIneo: finds all

user-defined classes that implernent an initialize se-
lector and places the appropriate message send so -

L]

‘thar the c:lass will be mitzairtd ’mmmatlcaﬂy ot
ﬁling in the]ag o

e S'\5mDrcnmmm>>mmpmsGloba De}’slntu reserives
riatie space for all new globals used in any methods
ini the change. oz, This message ts'sent immediarely
afrer having saved all of the global values.

°SystémDictibmry?‘;&f}mﬁm‘ss@loi"v'ail'rzitsfﬁw: loads the”
globals from a ‘recovéry.dat’ file. This will be the last
miessage in the change.Jog '

& SystemDictionary=zcompressGlobalValuesnio: saves
all new globals used in the image inl a recavery.dat’
file. This is senr immediarely after saving all class
definitions.

® SystemDictionarys>>removekey:if Absent: keeps track
of deleted globals. If if it necessary to modify globals
that come with the system, remove them from the.
systemn before replacing them with their new value.

This ensures that they are unloaded.

Due to idiosyncrasies peculiar to

each implementation of Smalltalk,

Loaders tend to be as individual as
the system in which they reside,

PITFALLS . :
There are none. | have used this method ro successfully save
change logs that conrained all information necesssry to re-
cover my system after some real doozies. [somerimes refresh
the image arul fileln the change.log to ensure that [have no
abscure semicircular references or other uncollected garbage.
Since implementing these changes, T amy mch more com-
forrable abous experimenting with objects and resources oug- -
side Smalltall’s control. When P'm trying a triple somersault -
from the flying trapeze, it's always nice to have a safery net. $

Now based in Ouawa, Canada, Charles-A. Rovira has been involved

wieh data processing since 1975 and with Smalhalk ind ather object-
oviented technologies since 1987 Flis CompuServe ID is: '
[71230,12171. He'll admit to some wnusual Brevary influences, such
as Douglas Adams, Terry Pratchett, and D.H. Loswrence. hi?i}
Kierkegard, but why bring him up.

Yoo, 1, No. [:Sepresvser 1961

3.

B COMPRESSING CHANGES

Listing 1.

tloss methods
comrRent
“zrnswer the class comment”
“oomment
removelromBysier
“Remove the receiver from Smallfalk. Report an ervor if there are any sub-
classes or instances of the receiver.”
v added fine of code
Originalltasses remove: mylame asSymbol Ahsent:]
removelnstances
self withAllSubclasses do: [:aClass |
allass aliinstances do: [andnstance |
anInstance become: String new] |
subelass: dlassSymbol
instanceVariableNames: instanceVariables
classVariableMames: classVariables
pooiDicHonaries: poolDiciNames
“Create o modify the class classSymbol to be & subclass of the receiver with
the specified instance variables, class variables, and pool dictionaries.”
.. Inserted tnes of code
| aComment originalClass |
comment = Strng new.
originalClass = Smalltalk at: classSymbeo! ifAbsent: [},
originalClass notNil ifTrue: |
alomment = oxginalClass comment].
.. modified line of code
comment: aComment
changed: nil
variableByteSubelass; classSymbol
clessVariableMames: clasdVariables
pooiDictionaries: poolDictNames
“Create or modify the class classSyabol Lo be a vardable byte subclass of the
receiver with the specified class varizbles and pool dictionaries.”
.. inserted lines of code
{ adetaClass aComument originaiClass |
alomment = Soing new.
originalClass:= Smalltalk at: classSymbot ifAbsent: [].
originalClass nothil iffmae;
{aComument := originalClass comment].
.. modified line of code
comment: alomment
changed: nil

variableSubelass: classSymbol
instanceVariableNames: instanceVariables
classVariableMames: classVariables
poeiletionaries: poolDictNames
"Create or reodify the class classSymbol to be & variable subclass of the re-
cefver with the specified instance variables, class varfables, and pool dictio-
naries.”

.. Tnserted lines of rode

| aMetallass aComment originalClass |
aComment = 3tring new.

originalClass == Smalttalk at: classSymbel ifAbsent: [1.

originaiClass noti¥il ifTrue: |
aComment = originalClass comment],
... modified line of code
changed: nil
Metallass methods
name: newlams
environment: aSystemDictionary
subclass0f: superclass
instanceVariableNames: strine0MInstVarNames
varizbte: varizhleBooiean
words: wordBoolean
sainters: pointerBoolean
classVariahieNames: stringliClassVarNames
poolBictionaries: string0fPoolNames
conesent: commentString
changed: changed
“Private — Create or modify the class and the metaclzas of name new-
Name to be as defined by the arguments. Check if an OriginaiClass is
being redefined”
... added line of code
CriginalClasses remove: newlame asSymbol ifAbsent: [1.
~answer
SBystemictionary methods
compressChanges
“Build a new change leg file retaining only the latest version of changed
methods in the current change log, Save the hnage to the wage file.”
| logDirectory stream templogName dizlog aFileStream |
dialog = DialogBox new
fromDLERTe: wwdlgs.
templateName: ‘CompressingChange’,
dialog showWindow.
logDirectosy = {Sources at: 2} file directory,
stream = logDirectory newFile: ‘Changlog.tmp’,
stream lneDelimiter: {r.
tempLogName := stream pathiName.
.. added lines of code
stream nextPutAll:
* “evaluate”
| originalClasses originaiGlobals |
ariginalfiasses := SortedCollection new,
originalGlobals = SortedColiection new.
Smaltalk associationsDo: [ieach |
(zach value isKind0f: Class)
iffrue: foriginaltiasses add: each key |
ifFalse: [originalGlobals add: each kayl].
Smalltalk at: #Original(lasses put: originalClasses.
Srraliralk at: #riginalGlobals put: originaliilobals.!!;
8
.. edded lines of code
self compressClassDefsOft Object intor stream.
self compressiilobalValuesInto:
{aFileStream := File pathName: “recover,dat’).
aFileStream close.

self compressGlobalDefslnto: stream,

.. added lines of code
self getSourceClasses do: [class |
seif compressChangesOf: class class into: stream.
self compressChangesOf: class into: stream].
« added lines of code
self compressClassinitsTntor stream.
self compressGlobailnitsInto: stream.
. added ling of code
stream cloge,
{Sources at: 2} close.
File remove: {Sources at: 2) pathName.
File renane; templogName to: {Sources at: 2) pathName.
Sources at: 2 put:
togDirectory file: {Sources at: 2) file name).
{Sources at: 2 lineDelimiter: Cr.
ApplicatonWindow new savelmageNoConfirm,
dizlog close
comypressClassDefs0f: aClass into: aStream
“Write irto a stream all of the hierarchy of class definitions that are new to
the image.”
| classes |
{Uriginalllasses inctudes: aClass name asSymbot) ifFalse: |
aClass fileQutOn: aStream.
aStream nextPut: $1cr .
Transcript cr; show: aClass name”].
classes = allass subclasses asSortedCollection:
[first :second | frst name < second name}.
classes do: { :aSubclass |
self compressClassDefsOf: aSubiclass into: aStream]
compressClassinitsinte: abtrean:
"Write iniHalization code for all dlasses that have it”
{ initializedClasses |
aSiream nextPafAll: * “evaluate” ; cr,
indtiatizedClasses := self select: | :anEntry |
{anEntry isKindQf: Class) &
{anEnfry class selectors includes; #initialize) &
{OriginalClasses includes: anEnty) not].
initializedClasses de: | raClass |
aStream nextPutAll: self name |, * initialize.”; crl.
aStream nextPutAll: ‘14 or
compressGiobaiDefsinto: aStream
“8et up all global names”
{ globalsDictionary |
{OriginalGlobals includes: #0rginalClasses)
ifFatse: {OriginaiGlobals add: #0riginalClasses].
{(riginalGlobals includes; #0niginallebals)
ifFaise: |OriginaiGlobals add: #0nginalGlobals].
aStream nextPutAll: * “evaluate”) cr.
globalsDictionary ;= self reject: [sandntiy |
enEntry sKindOf: Class].
globalsDictonary keysDo: | :aSymbol |
{(rginalGlebals Includes: aSymbol) Hralse: |
© aStream nextPutAfl: * Smalltatk at: #,
aSymbol printString, * put: rdl”; o).

aStream nextPutall: *1Y; o,
compressGloballnitsInto: aStream
“Get globals i we can load them,”
aStream nextPutAll: * “evaluate”
| collectionOfAssociations aFfleStream |
Smalltalk atr #l.oader ifabsent: |
Transcript oy shows
“Loader not availabte. Globals notloagded.”,
~nilj.
aFileStream = Digk files “recover.dat”™.
aFileStream size » 0 iffalse: [
afileStream close.
File remover aFileSiream pathName,
Transcript or; show:
“Recover.dat not available, Globals not loaded .
~nil].
collectionBfAssociations == Loader new readFrom: £,
aFileStream close.
collectionfAssociations do: [:aFair |
Smalltalk add: aPair], (Y
compressGlohatvaluesinto: aSfream
“Save (unload} all of the globals into aStream”
| aCollection classList |
Smalitalk al: #Loader ifAbsent;
Transcript or; shows:
H "Loader not available. Globals not saved.”.
~ail].
aCollectiondfAssociations = CrderedCollection new,
classList = #{Behavior Persistent ClassReadar
ClipboardManager Compiler Context Cursorbanager
DelayedEvent Deletedflass Directory Dos
DynamicBataBxehange EmptyStot Fiie Font
GraphicsMedium “GraphicsTool” InputEvent Loader
Menu Menultem Message NotificationMarager
ProcessScheduler ViewManager Window WinHandle
Wininto WinLogicalObject WinStructure).
(Originalflobals includes: #0riginaltlasses)
ifFatse; [OriginalGlobals add: #0rginalllasses].
{Criginalflobats includes: #0riginalGlobals}
iffalse: [OriginalGlobals add: #C0riginalGiobals).
self associationsDo: [:aPair |
faPair vatue isKind0f: Class) ifFalse: |
{CriginalGlobals includes: aPair key) ifFalse: |
(classlist incudes: aPair value) ifFalse: |
aCollectionOfssociations add: ea]]]].

Loader new write: aCollection0OfAssociations to! aStream.

remigyeKey: aKey ifAbsent: aBlock
“We're gelting rid of something in Smalltalk. Check if it's an
{iginalGlobal.”
PriginzalGlobals remove: aKey fabgens: {1
~super removekey: akey ifAhsent: aBlock

15,

THE SMALLTALE REPCRT Vor. 1, No. 1:SEFTEMBER 19591

KEY FEATURES

B World's leading, award-winning object-
oriented programming system
B Complete prototype-to-delivery system
B Zero-cost runtime
B Simplified application delivery for
creating standalone executable ((EXE)
applications [
B Code portability between Smalltalk/V

IHWEE
LABS

SHOOT-OUT

The Smalitalk Report

his is a response to Juanita Ewing’s “Should classes have owners?” article in

Windows and Smalltalk/V PM January 1992 Volume 1 Number 4
W]NDOWS AND OS " B Wrappers for all Windows and OS/2 -
@ controls
M Support for new CUA '91 controls for s
08/2, including drag and drop, booktab, Hou LD CMSSES
PR("UFYPE rm DELIVERY container, value set, slider and more the September 1991 issue of The Smalltalk Report. There are several themes
e B Transparent support for Dynamic Data in the article with which I'd like to take issue. I have been a Smalltalk pro-

gghm%EDglmd Dynamic Link HAVE OWNEM? grammer for some years now, and for about the last nine months several of
O WAIT]N G rary | judls : us at Knowledge Systems Corp. have been extensively using a commercially available de-
L]

M Fully integrated programming environ- velopment environment that pervasively supports the concept of class ownership. This is

;ﬁ lﬁ‘ljl;dénrg wn;;esrazglt;\; ﬁﬁ PEmpEa IVES the ENVY/Developer team development tool running on Smallealk/V PM and

In Windows and OS/2, you need prototypes. You have to get a sense included), world’s most extensive Win- Smallealk/V Windows. This is a powerful programming environment designed to facilitate
for what an application is going to look like, and feel like, before you can write dows and OS/2 class libraries, tutorial cooperative software development among a team of programmers. The tool is flexible
it. And you can't afford to throw the prototype away when youre done. (printed and on disk), extensive samples FRO M enough to cater to the needs of multiperson teams as well as the lone programmer. For the

With Smalltalk/V, you don't. B Extensive developer support, including purposes of this article, I shall use the term ENVY to refer to ENVY/Developer.

Start with the prototype. There’s no development system you can buy technical support, training, electronic It _is in the colntextlof my experienc.e of having_ developed Smalltalk code using a team
that lets you get a working model working faster than Smalltalk/V. developer forums, free user newsletter Fool like EY?\TVY in an inherently multiperson environment th'at I shall address _each_of the

‘Then, incrementally, grow the prototype into a finished applica- B Broad base of third-party support, mERIENCE issues Juanita has l'al-Sed. I shall als? attempt to provide technical as w§ll as sociological
tion. Try out new ideas. Get input from your users. Make more changes. includir_xg add~o_n Smalltalk/V products, answers to the quesFions shje has raised. I use ENVY here.ta‘set a pr'acncal ciontex[fc:r .docﬂ
Be it consulting services, books, user groups . umenting my experience with many of the class ownership issues discussed in the original

x By S. Sridhar article. Readers should not misconstrue this as a commercial plug for the product.

Smalltalk/V gives you the freedom to experiment without risk. Its
made for trial. And errot. You make changes, and test them, one at a time.
Safely. You get immediate feedback when you make a change. And you can't
make changes that break the system. It’s that safe.

And when you're done, whether you're writing applications for
Windows or OS/2, you'll have a standalone application that runs on both.
Smalltalk/V code is portable between the Windows and the OS/2 versions. s fueuel -t et
And the resulting application carries no runtime charges. All for just | I : |8
$499.95. . S |

N SAIRAIR/V e
SmallallV tody. I e 0 e DS

that prototyping time productive. it was completed in 6 hours.

TERMINOLOGY PRELUDE

Before delving into specific issues, let us define some key terms relevant to this discussion.
ENVY supports the notions of class owners and class developers. A class is only one of many
software components that have an ownership aspect associated with them. Ownership im-
plies that someone is responsible for controlling a software component’s evolution. This
control manifests itself in the fact that only an owner can release a class for public con-
sumption.

The granularity of a software component can be varied: a method, class, set of classes,
set of sets of classes, etc. ENVY also supports an additional programming environment
structure called an application. An application is a collection of defined and extended
classes that together accomplish a well-defined purpose. In addition to providing a physi-
cal organization of related classes, it also serves as a large-grain reusable component. Team
members no longer just talk about reuse of a single class; they talk about reuse of function-
ality. This is good because the responsibility for accomplishing a given piece of functional-
ity may be distributed among a set of closely collaborating classes.

Smalltalk/V is a registered trademark of Digitalk, Inc. Other product names are trademarks or registered
trademarks of their respective holders.

Digitalk, Inc., 9841 Airport Blvd., Los Angeles, CA 90045

(800) 922-8255; (213) 645-1082; Fax (213) 645-1306

LOOK WHO'S TALKING : Class developers are team members who may author one or more classes in the applica-
HEWLETT-PACKARD MNCR - tion. They may be distinct from the person who actually owns the class.
HP bas developed a network trouble- INCR has an integrated test program develop-
shooting tool called the Network Advisor. ment environment for digital, analog and WHO IS BEST QUALIFIED TO FIX THE BUG OR WRITE THE NEW
The Network Advisor offers a compreben- mixed mode printed circuit board testing. %
sive set of tools including an expert system, METHOD?
statistics, and protocol decodes to speed MIDLAND BANK S——— S
problems ésolarion. The HA seer tntefuce &s Midland Bank biih & Wanslowed Tachmivel Smalltalk/V PM applications are used to Juanita writes: “assume the owner of a class is rewarded for producing a reusable class.
built on a windowing system which allows Trading Environment for currency, futures devclop state-ch-the-art CUA pliant Az ; 2 faals
multiple applications to be executed and stock traders using Smalltalk V. applications—and they're pottable to What if another developer finds a bug in that class or thinks of a useful extension? In a
Shmadiannonly Smalltalk/V Windows. o R PR

EDITORS’
CORNER

]

Tohsn Pl

Paul White

n last month's editorial, we urged you to take our columnists to task if you did not agree
with their opinions on particular topics. Well, you did just that! The approach to change
management proposed by Juanita Ewing in her opening Getting Real column, “Should
classes have owners?,” has spurred several well-known members of the Smalltalk commu-
nity to put forward their ideas. In this month’s lead article, 8. Sridhar from Knowledge
Systems argues that, based on his experience, class ownership is indeed a primary compo-
nent of any strategy for managing change in large Smalltalk applications. Next month,
Jeft McKenna will put forward his view that change management is best organized
around what he refers to as the two distinct phases of software development using
Smalltalk—functional expansion and consolidation. Change management seems to be a
topical subject right now, and we look forward to hearing your views.

Two of our regular columnists appear in this issue. Rebecca Wirfs-Brock continues her
Object-Oriented Design column by discussing the importance of understanding object
roles and responsibilities. In this month’s Getting Real column, Juanita Ewing begins a
two-part article on the appropriate use of class variables and class instance variables.
Also in this issue, Glen Reid, the architect of the Smalltalk/370 project, continues his
description of their project. In this issue, he discusses in detail many of the implementa-
tion issues that are specific to implementation on a mainframe, including a scheme to in-
troduce explicit variable typing in Smalltalk.

Rounding out this issue, Jon Hylands takes a look ar the first of a new line of third party
Smallealk products, Profile/V, a code profiling tool that can be used to monitor the per-
formance of Smalltalk applications. Finally, Dan Lesage reviews Object-Oriented Modeling
and Design by James Rumbaugh et al.

The Smalltalk Report is still inding its feet. Let us know what you like, what you don’t
like, and what you would like to see. We look forward to hearing from you and hope you
enjoy this issue.

The Smalltalk Reporr {ISSN# 1056-7976) is published 9 times a year, every month except for the Mar/Apr, July/Aug, and Nov/Dec combined issues.
Published by COOT, Inc., a member of the SIGS Publications Group, 588 Broadway, New York, NY 10012 {212)274-0640. ® Copyright 1991 by
COOT, Ine. All rights reserved. Reproduction of this material by electronic transmission, Xerox or any other method will be treated as a willful viola-
tion of the US Copyright Law and is flatly prohibited. Material may be reproduced with express permission from the publishers. Mailed First Class.
Subscription rates 1 year, (9 issues) domestic, $65, Foreign and Canada, $90, Single copy price, $8.00. POSTMASTER: Send address changes and sub-
seription orders to: THE SMALLTALE REPORT, Subscriber Services, Dept. SML, P.O. Box 3000, Denville, W] 07834. Submit articles to the Editors ac 91
Second Avenue, Ottawa, Ontario K18 2H4, Canada.

THE SMALLTALK REPORT

PRODUCT

ANNOUNCEMENTS

Product Announcements are not reviews. They are abstracted from press releases provided by vendors, and no endorsement is implied. Vendors
interested in being included in this feature should send press releases to our editorial offices, Product Announcements Dept., 91 Second Ave.
Ottawa, Ontario K18 2H4, Canada.

The Agorics Project announced the opening of an online Smalltalk
Compenents and Consulting market on AMIX, the new electronic
marketplace for information provided by Autodesk, a subsidiary of
the American Information Exchange Corp. (AMIX). In this market,
Smalltalk users will be able to buy and sell classes, methods, tools,
applets, and any other Smalltalk-related information. Users will also
be able to offer and request Smalltalk consulting services. Features
include email, negotiation facilities, listings of sellers’ resumes and
references, listings of comments on components by previous buy-
ers, and more.

For more information, contact Howard Baetjer, The Agorics Project, 10364
Bridgetown Place, Burke, VA 22015; phone and fax (703) 250-4760; email
agorics@gmuvax.gmu.edu.

InputForms is a program designed for the interactive development
of input forms and all kinds of windows running under Windows 3.0
and Smalltalk/V Windows. Features include the ability to interac-
tively select child controls and define size, position, brush, fore-
ground color, background color, font, etc.

For more information, contact Viastimil Adamovsky, 66 rue de Bourgogne,
L-1272 Luxembourg; phone 352 420884.

Take Control of Your Smallt:

| Coopers

One Main Street

brand, Anamet L

Bring your large, complex object-oriented applications under control
with AM/ST, the Application Manager for Smalltalk/V. The AM/ST
Application Browser helps both individuals and development teams to
create, integrate, maintain, document, and manage Smalltalk/V
application projects.

SoftPert Systems Division

Cambridge, MA 02142
& Ly I’and | (617) 621 3670 or (617) 621 3671 Fax

Empower Software has announced the availability of the Smalltalk
Project Browser, a source code management tool for Smalltalk/V
Windows and PM systems that adds a powerful layer of control to
the Smalltalk environment. It is also useful as a development shell
from which other Smalltalk development tools are launched. The
Smalitalk Project Browser provides support for code porting and
maintenance across Smalltalk platforms, management of class de-
pendencies, system integration, automated code documentation,
and code distribution and packaging.

For maore information, contact Empower Software, 9601 Wilshire Blvd., Ste.
1144, Beverly Hills, CA 90210,

Digitalk, Inc. has announced availability of a new release of its
Smalltalk/V PM that gives software developers a jump start on de-
veloping new applications that take advantage of the power of
IBM’s upcoming version 2.0 of OS/2. In addition to enhanced fea-
tures and power, Digitalk’s Smalltalk/VV PM 1.3 release includes sup-
port for IBM’s Common User Access ‘91 (CUA) controls that are at
the heart of IBM's new advanced O5/2 2.0 graphical user interface.

Far more information, contact Barbara Noparstak, Digitalk, Inc., 9841 Air-
port Bivd., Los Angeles, CA 90045; (213) 645-1082; fax (213) 645-1306.

Applications with /

= Applications Hierarchy
Every class has an owner.

Functional view across classes and related
methods within classes.
Applications port easily across platforms.

Price List. - Automatic Documentation
Revision history for each method.
DOS V $150 MNSNtY san oy
Analysis and design reports.
DOS V/286 $395 Feaneiesin, {stiont Pitas
P $395 ustomizeable documentation templates.
08/2 V/PM $475
; Site Licenses CALL Source ol
i _Integrate work of several users.
PR - New Productivity Tools | *Save and browse multiple revisions easily.
biinai ek . “*Check-in, check-out, and lock source code.
L e indows 3.0 Customize code templates
EanimiGode | Ll e V/Windows $475 : e
Edh Templ S Develop in a LAN environment.
I * Chage Bmwser = $15% Delivér% 'iicationeé w‘itﬁoutTI\tMST
E"lmp"“ Source Control** PM or Windows ; ¢ pp : -
‘ first copy $1,595 o E
i subsequent $595 Static Analysis Tools

Application consistency reports.
Graphical views of hierarchies.

Cross-reference of variable and method usage.

Up-to-date method index.

+ Dynamic Analysis Tools
Locate performance “hot spots.”
Determine test coverage.

Smalltalk/V is a registered trademark of Digitalk, Inc.
ANMVST is a registered trademark of SoilPert Systems, Ltd.

VoL. 1, No. 4: JANUARY 1992

¥,

18.

WHAT THEY’RE SAYING

ABOUT SMALLTALK

Excerpts from industry publications

... Momenta built the [PenTop] machine around the object-ori-
ented language Smalltalk. Everything in the PenTop’s environ-
ment is an object, so users can link anything in the machine—
from internal toolbox functions to their own sketches, text, and
presentations—to one another. The machine runs all popular
DOS and Windows applications, and will support Microsoft's
PenWindows when it becomes available ...

Momenta Rewrites the Notebook Rules, Richard Doherty,
Electrenic Engineering Times, 10/7/91

... In addition to the visual orientation, there are two other rea-
sons I'm attracted to Serius’ product. One is the level of ab-
straction of the objects. Most object-oriented languages today
are for professional programmers (e.g., C++ and Smalltalk) and
that means the objects are at a relatively low level of abstrac-
tion to provide sufficient control for speed and memory
efficiency. Serius Programmer, on the other hand, has very ro-
bust objects for an application generator ... The second reason
I like the package is the relatively broad support for data types.

A Serius Approach to Programming, Rich Bader,
PC Letter, 9/16/91

... Specialized OOP environments like Smalltalk tend to
frighten programmers used to the procedure-oriented ap-
proach of traditional languages...Although embedding OOP
technology in existing languages like Pascal or C has really
boosted OOP, the tendency for programmers using those tools
is to keep on doing things the same way, with only a few
changes. There's still a big learning curve, and, if you givea C
programmer a C++ compiler, he'll prabably just write C code.
It's hard to lose old habits ...

... [Ron Fisher says] “Smalltalk’s concepts are very different,
but once you can deal with them conceptually, you can write
much better programs. Smalltalk is a whole environment, not

just a language. To me, C++ is a kit car, and Smalltalk is an
Acura NSX. C++ wasn't thought out thoroughly as an object-
oriented language. It exists because C exists. You can do a lot
more low-level stuff in C that you can with Smalltalk. C lets you
get at the iron much better, but if it wasn't for C, C++ wouldn’t
have much of a following”...

Double Plus Good, Gordon McLachlan, HP Professional, 9/91

... But in a world increasingly jammed with OOP proselytes, we
still don’t have an OOP graphics front end for these [graphics]
libraries. | would like to see something that would give me
ONE Object Criented Design perspective with support for sev-
eral graphics libraries ...
Graphic Developer’s Taste Test, William E. Gates,
Midnight Engineering, 10/91

... The mare advanced pen-computing operating systems use
object-oriented design for memory management. In contrast to
desktop GUI applications, which may require multiple
megabytes of memory, object-oriented applications typically
require only about 100K to 200K because the operating system
conserves memory by eliminating redundant code ...

Is the Pen Mightier?, Kathleen Melymuka, 12A-550 CIO, 9/15/91

... Building a single, integrated model for the problem domain
is something the securities industry has to do. We're face to
face with the complexity of the solution right now. Other indus-
tries won't be far behind. Take a close look at your own prob-
lem domain; you may find that the celebrated paradigm shift is
not a problem of changing the way people think but of dealing
with the resulting solution ...

The Complexity of the Solution, Bill Welch,

Object Magazine, 9-10/91

... continued from p.17

slightly thrown off since the style of the other analysis and de-
sign chapters gave me much more concrete choices to make,
And, since this is The Smalltalk Report, | can also say that the
Smalltalk language is somewhat slighted as a potential choice
for implementation language primarily because the authors re-
fer to it as a weakly typed language. I believe that there exists
confusion here between the use of strong typing and static typ-
ing. As every Smalltalk programmer knows, Smalltalk is a
strongly typed language.

Owverall, I highly recommend this book to anyone who is
interested in learning more about OO analysis and design. It
contains good, sound, practical knowledge drawn from real-
world examples. The methodology is flexible, allowing its
users to emphasize those modeling techniques that make sense

in their shop, while deemphasizing those that are irrelevant.
The book clearly gives a path that takes the modeler from
known structured techniques and allows him to migrate this
knowledge into the realm of OO analysis and design. In short,
this book has something for everyone using ot considering the
use of QO technology. H

Dan Lesage has been involved with object-oriented programming since
1986 and Smallralk since 1988. Currently, he is the Project Manager,
Tumbkey Systems at Object Technology International in Ottawa,
Canada. His current intevests include distributed computing, data
communications, and object-oriented analysis/design. He can be
reached at Object Technology International, (613) 228-3535, or
dan@oti.on.ca.

THE SMALLTALK REPORT

Putting Smalitalk To Work!

1980 Smalltalk Leaves The Lab.

1984 First Commercial Version Of Smalltalk.

1985 First Industrial Quality Smalltalk Training Course.
1987 First Fully Integrated Color Smalltalk System.

1988 Responsibility-Driven Design Approach Developed.
1991 Smalitalk Mainstreamed in Fortune 100 Applications.

We were there.
We were there.
We were there.
We were there.
We were there.
WE ARE THERE.
NEW! First multi-repository, group programming environment. NEW!

Smalltalk Technology Adoption Services

Technology Fit Assessment
Expert Technical Consulting
Object-Oriented System Design/Review

Proof-of-Concept Prototypes
Custom Engineering Services & Support

Smalitalk Training & Team Building

Smalltalk Programming Classes:

Objectworks Smalltalk Release 4
Smalltalk V/Windows V/PM V/Mac

Building Applications Using Smalltalk
Object-Oriented Design Classes:

Designing Object-Oriented Software: An Introduction

Designing Object-Oriented Systems Using Smalltalk
Mentoring:

Project-focused team and individual learning experiences.

Smalitalk Development Tools

NEW! Convergence/Team Engineering Environment™
Multuser/shared repository development environment for teams creating production-quality Smalltalk applications.

Convergence/Application Organizer Plus™

Version management, development tools, and improved code modularity for individual Smalltalk developers.

Instantiations, INc.
1.800.888.6892

8 SHOULD CLASSES HAVE OWNERS?

continued from page 1...

system with class ownership, the owner writes the code to fix
the bug or writes a new merhod. He is the one motivated to
make the class more reusable.”

TFirst, the case where a developer finds a bug. Suppose |
own a reusable class ealled Drawing. If another developer, say
Harry, finds a bug in Drawing, he creates a scratch edition of
the application containing the class Drawing, creates a new
edition of Drawing, fixes the bug, versions the change, and in-
forms the owner viz email or otherwise of the fix. 1, as the
owner, can examine the fix ar my leisure, assess the impact on
the clients of the method, and, if all is well, incorporate the
fix into a future version of Drawing and then release it for pub-
lic consumprion. Alternatively, I could siraply release the ver-
sion of Drawing that Harry created. In the meantime, Harry
can continue to use the scratch edition of Drawing and do
anything he pleases to any of the existing methods of Drawing
without impacting any other team member. When { have re-
leased & new version of Drawing, he can load it into his envi-
ronment, replacing the scrarch edition.

Thus, it is that Harry and I have resolved the bug by en-
gaging in a harmeonious electronic “conversation” without dis-
rupting any other team member. He found the bug, submitted
a fix, and continued ro do his work with his fix without await-
ing my approval. [, as the owner of the method, evaluare the
quality of the fix, assess the impact of the fx, and then fold it
into the next version of the class and release it for our team’s
use. The owner is the best person to assess the overall impact
since he is the one who most intimately knows the raison
d'etre for the methoed in the firss place. He is probably the
most aware about the way in which existing and porential
clients use the method. ENVY automartically records the au-
thor and time stamp of the fixed method.

Alrernatively, Harry can create & new working copy or edi-
ton of Drawing along a different stream of development or
versioning branch. When he is done fixing the bug, he ver-
sions the class with a mnemonic version label, {(The
mnemonic label is not required; it is just a convention we
have adopted to meaningfully identify the different versions of
a class.} The owner then merges his contributions with the
officially released version of Drawing. The point of all this is
that:

2 With good communications {which is required anyway for
healthy project sociology), class ownership does not ham-
per the evolution of a class into the reusable clubk. This is
primarily because changes ro the class can be made asyn-
chronously,

The owner reviews the fix in a different context from that
of the other developers. It is his responsibility to guarantee
the proper functioning of all the advertised interfaces of his
class and to the extent possible be familiar with all the us-
age contexts of his class.

ADDING CLASS EXTENSIONS

The case where Harry finds a useful extension to Drawing is
easily dealt with in ENVY. As a matter of face, this sitaation
cccurs constantly in our work with system classes like String,
Stream, erc. ENVY provides a programming environment ab-
straction called class extension thar allows a developer to add
brand new methods to an existing class, These method exten-
sions are logalized to the applicarion in which the extension is
defined. Thus, Harry cant add a new method to Drawing by cre-
ating an extension of Drawing in his application. Even though
[am the owner of Drawing, Harry does not require my permis-
sion to add the useful extension he needs. Furthermore, this
extension does not compromise the integrity of the original
class. A malicious Harry could, of course, destroy the class’ in-
tegrity by writing a method extension that corrupts the inter-
nal state of the class in a way that is incompatible with the rest
of the class' behavior. The users of Harry's cade are the losers.
Team sociology being what it is, Harry would be guickly ex-
posed by the users and be pressured to undeo his mischief.

It should be noted that the person who creates a class ex-
tension in a different applicarion acrually owns the extension.
Class extensions are a powerful mechanism for specifying and
managing application-specific behaviors for existing classes
and for dealing with orthogonal protocols for classes where
several developers are authoring different parts of the same
class. By splitting these arthogonal protocols along their func-
tional views using applications, multiple developers on a sin-
gle class can be managed realistically and effectively.

REWARDING REUSE
Juanita correctly notes that if a reusable class is provided by a
ream of developers then the entire ream should be rewarded.
It is our experience that a reusable class usually has a primary
author {or owner in ENVY pariance} and it can have multiple
developers different from the author. These secondary authors
can be reviewers, bug inders and fixers, and mayhe even coau-
thors. Again taking the Drawing example, I may find that
Harry has made a dozen extensicns to Drawing in his applica-
tion. Upon close examination, [determine rhat these exren-
sions are useful and general enough to warrant inclusion in my
Drawing class. In ENVY, as the class owner, I simply add
Harry as a developer of the class, have him promote the dozen
deserving methods ta my reusable rendition of Drawing. All
the newly promoted methods carry Harry's imprimarur, Thus,
Harry and | are established as coauthors of Drawing. Since the
programming environment explicitly identifies the people
who are working on an application {a large-grain reusable
comnponent}, it is easy to identify who to reward. A picky
tnanager can even measure the relative coneributions to the
reuse genre and can thereby dispense rewards proportionately!
There is an interesting scciological aspect to this reward is-
sue that runs somewhat orthogonal to class ownership. If
Harry makes a change to my class that [don’t like—as in
Juanita’s wotld—who wins? As my colleague Lynn Fogwell

THE SMALLTALK REPORT

Reviewed by Dan Lesage

~ORIENTED MODELING AND DESIGN

by J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen

Prentice Hall, Englewood Cliffs, NJ, 1991

his is the bock to recommend ta your MIS/DP customers

that are considering the use of OOP in their company but
¥ don’t know where to start down the path toward the Holy
(rail. The investment in an OO language may be considered
too risky for the average data processing manager, withour
knowing how OO can beneft his or her complete develop-
ment cycle. In that regard, the DP manager will likely wish to
understand the benefits of OO in terms of a formal methedol-
ogy. Rumbaugh et al. describe their object modeling tech-
nigue {OMT}, which is a gentle mutation of existing struc-
tured analysisfstuctured design {(SAJSD)} methodologies plus
entity-relationship (ER} diagrams into an QO cne. Should
your DF customer already be using structured technicues in
his or her shop, this boak will help ease the transition roward
OO It should be no surprise that a large part of OMT follows
Rumbaugh's own work in combining objects with relations at
(GE, as described in several of the QOPSLA Proceedings.

The boek consists of five major secticns: motivation, mod-
eling, methodology, implemensation, and example systems.
The motivation part covers the normal guestions of why one
would want to use OO techniques. The modeling section pre-
sents the components of the OMT techniques that are based
on three disgramming rechniques. Two of them are (hope-
fully) already being used by your MIS/DT customer: Harel
state diagrams, which are used as the dynamic model, and data
flow diagrams, which are used in the functional model. The
object model, is an extension of entity-relationship disgram
conventions incorporating class operations {methods) and in-
heritance {in the Smalltatk sense). if you are familar with
these three basic rechniques, the OMT methodology shows
how information from the dynamic and funcrional models can
gradually be pushed into the object model. OMT provides an
evolutionary approach to ease people into the world of OO
analysis and design, using existing modeling paradigms. I sup-
pose that | should alse mention that the pretty pictures are di-
agramming conventions thar you will already know if you are
familiar with the above struetured technigues, No three-di-
mensional dodecahedrons, no dithered lines, no wisected
equilareral triangles, etc.

The strengths of the book and the methodology are many,
The methedology draws on knowledge of familiar modeling
techniques. It is soft and can be tailored in a number of ways
for introduction invo DP shops currently using structured

techniques. The examples presented in the rext are excellent
since they have been drawn from real-world problems encoun-
tered by the authors during the course of their research,
Within the context of some examples, the authors describe
hew subsequent requirements information caused them o go
back and adjust their models. They give the reader a view of
the model over the life cycle of analysis and design rather
than just presenting the “answer,” There is very good coverage
of some of the design issues involved when trying to incorpo-
rate an OO design into systems containing components built
with more traditional technologies, such as relarional
databases. The authors also attempt to provide practical ad-
vice about implententing your OO design in non-O0 pro-
gramming languages.

Another strength is that the book can easily be used for
reference purposes. Each chapter contains a very thorough
bibliography. The arganization of the book is such that the
reader can focus very quickly on the chaprer that is refevant
o his or her question. [t contains a glossary. The book can be
used as a supplemental educational texe since each chapter is
followed by exercises, with selected answers in the back. Fi-
nally, the text is easy to read, which helps if the only time you
have for technical books is after your spouse and kids have
gone ta bed!

And, should your MIS/DP customer wish to compare OMT
with other methodologies before going out to buy the latest,
greatest CASE tools or white boards, the authors have conve-
niently included a chapter to make the decision easier. They
compare OMT with SA/SD, Jackson structured development
(18D}, and conventional ER modeling, describing under what
circumstances they believe sach model excels.

There are few negative aspects about this book, The
methodology may be confusing for people coming from an ob-
ject-oriented hackground. The notion of having to map dy-
namic and functional behaviar into methods will be foreign
since it is nagural for them to think in terms of methods from
the analysis stage. For OO eypes, the object model should be
sufficient for the analysis. The chapter on system design is the
weakest link in the life cycle chain, but it’s also the hardest in
real life so, although it does not provide the system design
cookbook, it does allude ta many of the reab-world decisions
that are made during this stage of the model refinement. [was

vangtiued o0 page 18 ...

You, I, N, 4: Januagy 1992

17.

16.

 # PRODUCT REVIEW

[ZE i ook seleck

18] Graphics Tools scopyBirian homat
% {7} Bitmaps > disphayAtwithe:
5] Gzaphme[»cquﬁ
{5} BimapyrbowralisgBex. .,
4} Pergrforeloloy..

3] Pery >sstLindaidite. . -
(5] Contents » hasicProfilk.,

g i s, st .

NB%&?N

HPer i T .

- “Bnswer the gisphics tool of s receiver.”
" seff gelech .
“oraphicsTrok

Figure 1. Initial profife.

After making this modification, | again profiled the
method, getting the rescles shown in Figure 2. As you can see;,:
the pen message frequency had been reduced 1o 23%, which is
haif of the first rurn. _ _

And, as shown in Figure 3, you can see that the pen mes-
sage has increased to 30% of the ranning time, but the hound-
ingBox message has disappeared, and, as a result, the method
runs faster. .

So you can probahly see by now that this tool is a valuable
ane. | would never have guessed that the pen message is one to
avoid, and, in a real-world application, things like that can:
mean the difference hetween acceptable and poor performance.

PRGBLEMS WITH PRGFILE/V
So far, the only problems I have had with Proﬁie/\/ are small
ones relating to the user interface. One is that the indent on

File . EAit . Smalltatk.
By 51 953 Magné&emlest?tun
% 5o ciat

162 (171 GiraphicsT oob» conyflitrap:from:
18% (171 GraphicsT ool > copyBitmap: from: at rufe:....
11% 173 Bitmape s dplapdbwite

18% [16) GraphicsT sob »oopyBitmapiiom:iar. .
8% (83 Bitmapy >boundinigBes..

3% (31 CursoiM amagen > sens.,

Iz Parocicle...

5% |51 Contasty>basicPrafile:...

"Answer the graphics tool of the receiver.”
seff select,
“graphicsTeel -

" Figure 2. Profilé with cachied pans,

=

File. Edit: ﬁmafﬂalk Methads: Brofile

100% [18’9] hiagm?lar)}zast?!un IR
97 fiegs 3 displanhd agnifiedlma

20% [38) l'i?a phins | oob >capyBimap:irom: atiule;
18% [28] GraphiceT ool »copyBiman: from:to; ILI[E

13% [24) Bitinapy > displavAl withy...
=

I -
125 (23] GraphicsT oo§>>copyl§ﬂma;3 fromiton.
% (6 Perdroigle, .,
: 3‘/ 5] Coﬁ[axé»bamlﬂrqh .

nswier tha.graﬁh'ics ook of the rebaiver.”
selff seleet,
“oraphicsTont

Figure 3. Final profile, with boundingBox message removed.

the profile tree is hard o make out since each successive in-
dent is only one space. 1 spoke with Kent Beck, the author,
and he assured me that this had been changed in future ver-
sions to make it more readable.

The other problem is pethaps more important and it in-
valves the way the children of a method are hidden and shown.
In Profile/V, some of the direct children of a method may ke
visible, while othets are not. This presents problems when try-
ing to view your profile from a given depth since you often have
to either do two double-clicks to get the desired results or use
the Hide Children menu command. You can get around this by
adjusting the threshold to be one (so it only takes one double-
click}, but personally I think it would be more useful to have a
feature that allows the user to set a depth threshold rather than
{ot in addition o) a percentage threshold.

FINAL WORD
I found Profile/V to be an extremely useful plece of Sﬁftware
and ! will definitely use it in the future. In comparison, § have
only briefly seen the prefiler thar Digitatk is shipping with
Smallalk/V PM 1.3. [t is lacking in chat it only produces
fairly complex text reports and has no user interface ro allow
browsing of a profile. .

I recommend Profile/V as a solid addition to any serious
Smalltalk developer's toalkit, B

REFERENCES

[1] LaLonde, W. R:, and J. R. Pugh. Graphics thiough the looking
glass, Jourrial of Object-Chiented Programming, 1{3}, 1988, pp- 52-58."

Jon Hylands is & member of the technical staff ai The Object People in
Ohteawa, Ontarie, He is also a part-time student in the School of Com-
puter Sciznce ar Cavleton University. He can be reached at (613)

2 3@6897 S

THE SMALLTALE REPORT

chserves, being clear about who cﬁwns'What “or mare precis'el'y'
who is responsible for what, actually goes a long wa‘y in resﬂlv--
ing conﬂmta beferc they get srartad :

FLEXEBLE PROGRAMMING ﬂNViRONMENT' _
I agree with Juanita that “flexibility in programining environ-

menzs is ritical.” | disagree with her statément, “Systems with .

class ownership are not flexible.” A good programming erivi- -
ronment should be able ro mainrain flexibility wishoue com-
promising the integriry and reliability of the classes. The pro-
gramming environment should be flexible enough to cater to
widely different organizational cultures and software environ-
ments. It should be appealing ro the "rape and pasee” rapid
protatyper as well as the person who is engaged in productions
software engineering. In addition, it should be forgiving of the
user's mistakes. _

In a production software environment, it is often necessary
to maintain comprehensive change control over the varicus
software elements; otherwise, systet integration becomes a
nighemare. In certain organizations, it may be mandated that
third party reusable classes not be rampered with, for fear of
compromising the integrity and reliability of client code that
is dependent on them. Indeed, the reusable class vendor {an
intemal organization or an outside source} may have shipped
a class library without any source, This is eminently possible
when classes are packaged as dynamic link libraries. Under
these circumstances, even though you cannot modify an exist-
ing method, in ENVY vou can add extensions to these other-
wise read-only classes in your own application.

Juanita notes the difficulty in managing the ramifications
induced (vis-&-vis class ownership) by introducing changes in a
class hierarchy. She concludes, using an interesting syllogistic
argument, thart therefore the same developer must own all the
classes in the hierarchy. This need not be the case atall. In
fact, it is impractical to expect that the superclass and subclass
owners be the same. Cften times the supesclass owner may be z
third party vendor or a different organization geographically re-
mote from the subclass developer. In a programming environ-
ment such as ENVY with comprehensive version conrol and
configuration management facilities, a complete system con-

sists of a collection of compatible applications. By compatibil-

ity | mean, for instance, that the well-being of a subclass client
depends upon a properly functioning superclass, Now if the su-
perciass owner makes a change in his class, it may indeed com-
promise the integrity of the subclass. It is therefore incumbent
upon the subclass owner to adapt his class to the newly.
changed superclass before & new configuration of the integrated
system is released. This is no different from the everyday situa-
tion where we developets have to port our classes to new vef-.
siohs of the Smalltalk products from vendors.

[agrée with Juanita’s concluding premise that classes de-
veloped by multiple programpers are understood by multiple
programmetrs. | disagree with her observation that class owner-
ship is anobstacle to accomplishing that. Classes in Smallzalk

often reﬂeet t§:1e sty € and personahty of the author E“iavmg
tao many devﬁlopers on 4 single reusable class may introduce ©

cenﬁ[ctmg styles, ld[oms, and ﬁgures of speech that together

strike & discordant niote to the hapless client. As a fléxible
programmmg environment, ENVY recognizes the need for-

©néew extensiofisito exmtmg classes and theréfore permits the
' distribution of pn}tocol among several apphcatlons possibly

authored by different programimers for ever-so-specialized rea-
sons. The primary author serves as a focal point for the evolu-
tion of the reusable class, A class, in the course of its lifetime,
may see its author pass on to a different project or even leave
the company. O, the author may want someoné else to as-
sume the class’ maintehance. Flexible programming envifon- |
ments provide mechanisms for effecting a smooth change of
guard to establish 2 new class owner,

CONCLUSION
The features and philosophy of class Gwnersth {and indeed
that of software component ownership) foster a disciplined
software environment without compromising the classical
praductiviry gains of Smalltalk. Class ownership itself is inad-
equate. The ewnership mantle has to be pervasively applied
across all the different units of software that together comprise
a complete system. This requires a programming environment
that uniformly applies the ownership philosophy across the
various development toals. It should be flexible enough to ac-
commodate different organizational work cultures vis-a-vis
feam. programming.

Class ownership provides a framework for propezly separat-
ing the activities of component buitding from application
building. Component builders are those people whose major
goal is to build reusable components and who should have a
reward structure to match. Application builders are rrying to
get an end user system out the door, and programming for -
reuse may not be z critical factor for them. Even if developers
have to play both roles, it is important thar they understand
and record the role that they are playing at anytime. Owner-
ship and responsibility for software is a key factor in long-term
software quality and reusability. T

8. Sridhar is a senior member of the technical staff at Knowledge Sys-
tems Corp. in Cary, NC where he is actively applying Smallialk o @
variety of softweare engineering problems. He has also developed sub-
stantial applications designed to meer specific clistomer. vequirements.
He came to KSC from Mentor Graphics Corp. where he das the pro-
ject lead for Mentor's next generation design management environ-.
ment developed in C4+. Prior to that he worked at Tektronix for four
years on Commen Lisp and Smalliall/80 product development. While
at Telaronix, he developed numerous tools and compenerts running
in the Smalltatk/80 envirorment. He was an early developer of a
framework for delivering stand-alone Smalltalk applications. .

Vor. 2, No. | j@waav 1992

responsibilities

= onald Norman,! in The Design of Everyday Things, makes
the following statement:

Consider the objects—books, radios, kitchen appliances,
office machines, and light switches——that make up our ev-
eryday lives. Well-designed objects are easy 1o interpret
and understand. They contain visible clues to their opera-
tion. Poorly designed objects can be difficult and frustras-
ing to use. They provide no clues—or sometimes false
clues. They trap the user and thwart the normal process of

" interpretation and understanding. Alas, poor design pre-
dominares. The result is a world filled with fruseracion,
with abjects thar cannot be undesstood, with devices that
lead to error.

I never thought I'd say this, but software ohjects are like
real-world objects! Both kinds of objects are hard o use if they
are poorly designed. Ensuring that sofeware objects are easy to
use involves paying attention o 2 nuinber of sound design
principles. No one ever said that good object-oriented design is
easy. In this month's column, 'l discuss the importance of un-
derstanding and modeling obiect roles. Once there is a clear
sense of an object’s intended putpose, it is much easter w decail
the necessary behavior in an understandable fashion.

Identifying the central chasses in an application is just the
first step. Combing through a specification of the problem may
provide an initial list of candidate classes, but what next?
First, let me state that no designer I know has ever found all
the key objects by reading and understanding a specification
of the problem. A specification is just a launch pad for design
activity, Depending on the weight of that specification, there
will be different strategies needed o find those key classes. If
there is a mound of paper to wade through, the initial task will
be one of filtering cut & lot of detail and focusing on identify-
ing the highest level concepts. On the other hand, if the
specification is on the slim side, the taslk will be to develop a
skinny statement of intent into a mode! of key concepts that
will drive the design.

There is a deceptively simple question that needs w be an-
swered for each identified class. Can thar class’ purpose within
the application be clearly stated? I've found it useful to force
myself to write a concise, precise statement of purpose for
each potential class. This purpose statement need nat be long

Rebecca Wirfs-Brock

ining object roles and

or wordy; a sentence or two will often suffice. However, if it is
difficult to construct a succinet statement, more work is
needed. There are several plausible explanations {other than
that the class doesn’t belong in the design) for being unabie to
write a clear purpose statentent for a class.

SUBDIVIDING LARGE CONCEPTS

For one thing, the class may represent too large a concept.
{One indicator of this is that the class seems to embody an en-
tire program or 4 major portion of the overall system behavior.
This farge concept needs te be decomposed into more under-
standable pieces. What are the constituent responsibilities of
this mega-ohject? To answer this question, we must tesolve a
rather complex concept into simpler, more basic ones. These
simpler concepts will be easier ro undersrand, and their pur-
pose and role will be easier to elaborate. Simpler concepts will
be represented by classes in the fnal design, while the larger
concept may not.

&6

... software objects are like
real-world objects

2

It is conceivable that the large, vague concept still has a
role to play and will be represented by a class in the final de-
sign. For example, the object might be responsible for coordi-
nating the actions of other objects (each with a concisely
stared purpose} that collaborate to fulhill the lasger purpose.
One design for an automated teller machine might have an
aurcmated relier session object whose purpose is to conduet a
customer session. This customer session would consist of a se-
ries of user transacrions with the bank (and = whole chain of
responses to user requests) thar are coordinated by the auto-
mated teller abject.

Subdividing the respensibilities of a large, complex class
into a number of siinpler classes requires deeper understanding
of the system. Each newly creared class needs a clearly stated

THE SMaLLTALK REPORT

Reviewed by Jon Hylands

that allows Smalltalk programmers 1o monitor the perfor-

mance of their applications. It creates a weighted call tree
of your cede that basically shows the percentage of total run-
ning time spent in each method. With this information, it is
possible to find out where your code (or, just as imporrant, sys-
tem code) is causing a bottleneck.

With a list price of $299.99, Profile/V is a tool that any
Smallralk programmer whe is interested in writing high-per-
formance code should include in their library. Although it
needs some improvement in the user interface department, it
is defimitely money well spent. It is currentiy available for Dig-
italk’s V Windows,V Mac, and V 186. Profile/V will be avail-
able for V PM this month.

proﬁle/\/ , from First Class Software, is a code profiling fool

HOW TO USE PROFILE/V

Prohle/V comes on one software diskette and includes a 50-
page User's Guide/Tutorial. The manual’s 29-page tutorial
shows the optimization of a simple graphical application,
which is included on the disk. The manual also includes sec-
tions on installation, how to use the product, notes on how it
is implemented, and a very interesting section on “FProgram-
ming for Optimization.”

The only problem 1 had with the manual is the fact that
the instzliation page is somewhere in the last half—when i
look for the installation instructions, | expect them to be at
the beginning.

Profile/V uses an invisible window to capture timer events
and takes a snapshot of the stack from the current user inter-
face process when a timer event happens. [t buiids a profile
object from these samples and then can opern a browser on the
profile. The browser is a subclass of the system-supplied
method browser. The browser has three panes and it provides
the user with the ability to go as deep as they want—right
down 1o individual statements in a methed.

Other valuable fearures include the capabilivy to gather
method profiles for the same method and browse them as a
new profile. This feature is ideal when profiling recursive
methods. Another useful utility is the ability to rake what is
displayed in the browser and convert it into formatted text in
a workspace for inclusion in documents {such as this one).
You can also adjust the threshold value for the browser, which

‘controls how many methods are shown when the browser is

initially opened by hiding all methods that take less than the
threshold percentage value to run.

Perhaps one of the nicer things abour Profilef/V is its size, or
lack thereof. The entire profiling system is only about 27K of
source code, which makes it a product more likely to be un-
dersrandable and extendable.

BUT MY CODE 1S ALREADY FAST...

Many programmers, myself included, will look at this tool ini-
tially and say something to that effect. Unfortunately, in the
case of Smalltalk, where you have a large library of reusable
code wrirten by someone else, having your code rum at light-
speed doesn't necessarily mean your application will be as fast
as it can be. Programmers tend to make assumptions about the
performance of other code, and these assumptions often turn
out to be incorrect. This turned out to be the case for a graph-
ics application I profiled.

USING PROFILER TO OPTIMIZE A SAMPLE
APPLICATION

The application I ran my tests on was a simple magnifying
glass, which &rst appeared in the Smalltalk column in the
Journal of Object-Oriented Programming.! Since that time, the
authors have made large number of changes to the code to
simplify and streamline it. The magnifier simply simulates a
magnifying glass on the screen and shows the magnificarion of
a circular area, I limited the tests to a single method, which is
the code that displays this circular magnified image, since it is
the slowest part of the magnifier simulation.

The first iteracion of the profiler run on this method pro-
duced the profile shown in Figure 1. It shows quite clearly
(and quite surprisingly, alsa) rhat almost half the time spent
in this methed is in sending the pen message to bitmaps!

The pen message is sent six times since we are performing
five copyBitmap’s and ane set of drawing commands to
achieve the circular magnification effect. However, we can
improve this since only two hitmaps are the receivers of the
pen message. We can cache each bitmap’s pen in a tempo-
rary variable ar the beginning of the method, thus saving
four pen messages. This works when performing copy-
Bitmaps, but not when doing pen-based drawing, so the pen
message must also be sent before the drawing section of the
method takes place.

.:VOL. 1, No, 4; January 1992

15.

14,

B SMALLTALK COMES TO THE MAINFRAME

where the method max: is located in class Numhex Then in the
’foliowmg ' o

N (temp Integer} (index1:Integer) index? |

temp = index1 max: mdexz _
the message max: would be bmmd to the me:hod max: in cldss
Number at compile time, and an instance of BoundMethod .
would be entered in the global Set, BoundMethods. This in-
stance of BoundMethiod would contain a BehaviorConstraint. The
compiler rule used to determine whether a BehaviorConstraint
or a TypeConstraint is penerated is fairly simple. If a method is
redefined in anvy of the subclasses of the constraint class, the
compiler will generate a TypeConstraint. If such redefinition
does not occut, the compiler will generate a BehaviorConstraint.

If the method max: was now defined in class Integer, the
presence of a BehaviorConstraint in BoundMethods would inform
us that there was a “sending” method that required recompil-

Listing 1.

Association subelass: #ConstrainedAssociation
ingtanceVariableNames:
‘constraint *
classVariableNames:
noolDictionarxies: *

ConstrainedAssociation class methods

key: akKey value: anObiect constraint: aClass
“Answer an instance of class ConstrainedAssociation
whose key is initialized 1o aKey, whose value is initialized
to anObject, and whose constraint is initialized to aClass.”
atlass isBghavior
iffalse: [“self error: ‘constraint must a Class]
(anObject isKindOf: allass}
ifFaise: [“self exror: “value must be kind0f, aClass name 1,
A (self key: aKey) value: anObject) constzaint: aClass

Constraineddssociafion methods

comstraint: aClass

“Set the constraint of the receiver to be aClass, Answer the
receiver.”

allass istlit

ifFalse:
(value (sKind0f: aClass)
ifFalse: |
~gelf error: ‘value mast be kind0f’, aClass name] 1.
constraint := aClass!

value: anOhject
”Set the value of the receiver to be anObject if anObject
is an instance of constraint or one of its subclasses.”
constraint isNil
iffalse: [
{anDbject {sKindOF: constram’{}
ifFalse: {)
~splf error: ‘value must ba kdnd0f ",
constraint nams 3].

value = anObject

'mg, and BaundMethods would be upéated o reflect the new 39w

haviarConstraint., - :
If the method max: were riow deﬁned ir class Smailinteger

the compiler {using the rule mentioned shove) would tefnove -

the BehaviorConstraint and substitute 2 Typelonstraint. Iri cur -
systern, BoundMethods must be loaded at system start-up since
they will be invoked by direct function call:

Diynamic binding would remain the primary and preferzed
way of associating messages with methods. Typing would be -
used in situations that caused performance degradation orasa .
data validarion tool. Intuitively, the best use of typing applies’
in high-use areas where typed languages can typically produce:
very efficient code. Coincidentally, these areas correspond w -
furictions in Smailtalk thar undergo few changes since they are
integral to the basic functioning of the systent. Some example
preliminary candidates for typing might be arrays, which are
frequently used in the at: and at:put: messages, and array in-
dices, which participate in integer operations. In some actual
program samples we have studied, up to 40% of message rout-
ing would be removed by static binding in these areas. :

Typing will probably he a compiler option that may be
turned on or off by the programmer. Programs compiled for
production would usually take the performance advantage of
typing, while, in the development environment, typing might
not be used 1o retain flexibility and fast compilation,

REFERENCES

1] Johnson, R. E.,]. O. Graver, and L. W. Zurawski. TS: an optimiz-
ing compiler Smallralk, OOPSLA 88 Conference Proceedings, San
Diego, CA, October 1988, pp.18-26.

{21 Chambers, C., and D. Ungar. Making pure oi)ject;'orién'ted. lan-
guages practical, OOPSLA ‘9] Conference Proceedings, Phoenix,
AZ, Gcrober 1991, pp. 1-15.

[3] Palsherg, |, and M. 1. Schwartzbach. Ob;ect—oriented type infer;
ence, DOPSLA '91 Conference Proceedings, Phoenix, AZ, Ocrober
1991, pp. 146-161

Glenn J. Reid is President and Founder of SYS Systems Consultanes,
Inc., a consulting and software development company whose main area .

of expertise is in the application of ohject-oriented technology. Architect .

of Smalltalkf370, Mr. Reid is currentby involved in the development and - .

application of a complete project life cycle approach to developing object-
griented systems in a mainframe envivenment. He can be reached at

(416} 343-6464,

THE SMALLTALK REPORT

' role. There alteady 'm.'ay §.:)e identified classes that can ﬁllﬁﬂ" -

part of the responsibilities of the rather large concept. Mose
fikely, this isn'r rhe case. A hypothesis must then be formu-
lated on how to partition the vague concept into several dig-
tinct roles. Each role will be assigned to anew class. A key de-
signer of a large, successful application told me that his design
ream subdivided responsibilities according to whern, what, dnd
how. These subresponsibilities were then assigned to separate
classes that were either responsible for knowing when, know-
ing what, or knowing how to perform an operation. Sounds
simple enough, The design team found they spent time debat-
ing whether a particular responsibility was actually a when, a
what, or a how. One object’s whar is another object’s how. It
all depends on a particular point of view. At least the wam
had a strategy for elahoraring class roles. But they still had o
debate the details in context of their emerging model.

COMPLETING A MODEL OF OBJECT INTERACTIONS
There are other situations where it is difficult to state a class’
purpose. Jne common situation is that a class doesn’t seem to
he connected to any others. It's hard 1o explain why this dis-
joint class should exist, vet the designer remains convinced
that it’s irnportant. Chances are, the class is important. The
problem: is that the model is incomplete. This problem typi-
cally arises when classes are sifted through one at & time,
rather than building an undesstanding of the collaborative be-
haviot between objects in the design.

To understand anv single object’s role, it must be looked at
in the context of others with which it interacts. Conseructing
an chject-oriented design is not a linear, top-down process, al-
though it is often to present the design that way. Understand-
ing an object’s purpose forces the designer to understand the
roles of other objects. To understand the role of a seemingly
isolated object, both an understanding of its static, structural
relarionships with other objects and interactions with other
objects is needed. _

To determine the static relationships an object has with
others, examine how an ohject is connected to ethers. Is there
a whole—past relationship between it and another ohject?
Daoes this object represent an aggregation of other objects? If
sa, it is usually pretty simple to &t this obiect into the design.

It is much harder when an object patticipates in a number
of relationships. In this case, it is useful to build an under-
standing of the dynamic behavior of the object. Performing
design walk-throughs by tracing a chain of object collabora-
tions in response to a stimulbus is a good way to understand ob-
ject interactions. Ivar jacobson,” pioneer of the Objectory
methad, introduced the notion of usage cases. Usage cases can
be recorded and then used to test the model under both nor-
mal and abnotral conditions. A key component of Steve.
Weiss and Meilir Fage-Jone’s* object-oriented software syn-
thesis method is modeling the response to events and under-
standing their impacts on a design. The idea behind both
techniques is to translate requirements into events and o as-

V.SS

"Vui'uai C)b]eet Sterage System foz

Smalltalk/ v

' Seamfess perszstent eb}e;:t managment with update transaction
control directly in the Smalltalk language

L 'E'ransparent access 1o Sinalltalk objects on disk

Transaction commit/rollback -

e Access to individual elements of virtual collections and:
dictionaries

¢ Multi-key and multi-valué virtual dictionaries with query by
key range and set intersection

(lass restructure editor for renaming classes and adding or
removing instance variables allows incremental application
development

Shared access to named virtual object spaces

@ Spurce code supplied

Sone comments we kave received about VOSS:

“., «dean ._elegant. Works like a charm.”

~-Hal Hildebrand, Anamet‘ J'_abomftmes
“Works absolutely beautifully; excellent performance and
applicability.”

@

—Raut Durar, Microgenics Insiruments

» WSS/ 256 $595 (9375 to end of February 1992} + 515 shipping.
ey ﬁ 1L vOss/Windows 5750 ($475 to end of February 1992} +515 shipping,
s P Craantiky disconmits available. Visa, MasterCard and EureCard accepted.
ARTS LogoAsnsLid 75 Hemingford Road, Cambridge, England, CBI 3BY
TERE R M OTEL: 44 223212392 FAX: +44 223 245171

sociate events with objects that are responsible for handling
them.

The more situations that are modeled, the better. As sim-
ple as this sounds, it takes some skill 1o effectively elaborate.
object interactions. The goals is to Arst develop a “big picrure”
before diving into detail. The way to do this is to trace object .
collaborations between obiects that are at either the same or
next conceptual Jevel in the design. First, develep an overall, .
high-level view of key ohject interactions. Then elaborate and
subdivide roles and object responsibilities. This breadth-first-
approach avoids modeling classes at widely differing concep-
tual levels, which indeed is difficult, '

This breadth-first approach represents an ideal. [n practice;
some areas of the design will be better understood and natuzally
elaborated before others. An uneven design model can make it
difficult o trace object collaborations. It will be relatively easy
to trace the collaborative behavior throughout the well-undes-
stoad parts of the design. When collaborations are necessary
with objects in an undeveloped area, suddenly whar had seemed
straightforward becomes very unclear. This isn’t a sign of fail-
ure; it fust indicates thar the unclear part needs elaboration,

OBJECTS THAT DON'T FIT THE MODEL

Perhaps one of the toughest problems 1o deal with is when an -
object doesn’t fit with the designer’s notion of what consti-
tutes a “good” object. It is very difficult ro explain the purpose
of such misfits. Criticisms commonly leveled against such
rroublesome objects are:

VoL, 1, NO. 4: Januagy 1992

B OBJECT-ORIENTED DESIGN

= This is an organizing object. It is too simple. It merely
consists of data, It has no behavior. Aren't objects sup-
posed o have both?

e This object’s only purpese seems to he to route messages
between two other objects. Why should I have inrermedi-
ary between these objects? Can't they just directly commu-
nicate with each other instead?

= This object is too action oriented. Aren't chjects supposed

to encapsulare both operations and data? This object seems
like a pure “process.” We're doing an ohject-oriented de-
sign, not a process decomposition.

66

Constructing an object-oriented
design is not a linear, top-down process,
although it is often useful to present

- the design that way.
g y 8

There are no pat answers to these criticisms. In each case,
the object doesn’t match the designer’s expectations. The
model, the designer’s expectations, or both need readjust-
ment. In the first case, it is worth noting that objects are not
uniform packages of operations and data. It is natural thag the
propertion of each will vary according 1o the cbject’s role in
the design. It is perfectly reasanable for relatively simple ob-
jects to coexist alongside more complex ones, However, the
object must stand on its own merit to be included. Indeed,
there may be preferable alternatives to creating a “data
mostly” chject.

When creating an object model, the designer may need to
invent mechanisms that weren't spelled out in the
specification. Mechanisms may be added for the express pus-
pose of reorganizing the flow of Information and communica-
tion between objects. These mechanisms may help reduce ob-

ject coupling or provide an abstract connection between ob-
jects. The consequences of inserting such mechanisms needs
careful consideration. But, objects whose purpose is to orga-
nize OF Manage communication between objects can be rea-
sonable design additions.

In the third case, the purpose of an object may be to trans-
form information from one form to anather. Such process-ori-
ented objeces can naturally oceur in a design and are not al-
ways a sign that the designer hasn't shifted from the
procedural to the object-oriented paradigm. Each process-ari-
ented ohject should apply a fair amount of intelligence to pro-
duce resulrs, Betrer yet, a process-oriented object can often
provide a completely different view on the transformed infor-
mation. The objects being processed and the clients request-
ing the transformed informarion may be only dimly aware of
each other. In this case, the process-oriented ohject is proba-
bly = reasonable design concept. One example of a process-
oriented object is a compiler. The tole of a compiler is to
transform text into an executable program strucrure. It mkes a
fot of intelligence to perform this operation, Defining a com-
piler object is a reasonable design choice.

1t may be that a class doesn’t belong in the final design.
Websters Dictionary defines rale as “a character assigned or as-
sumed. A part played by an actor or singer.” The task of the
designer is to assign each object an appropriate role. Fach role
is constrained to fie within the existing object model, bur a lot
of designer discretion is still invalved. It’s a challenge to de-
sign well-understood, easy-to-use objects. But the positive im-
pacts that well-designed abjects have on application mainte-
nance and understandability are well worth the extra effort.

REFEREMCES

{1] Norman, D. The Design of Everyday Things, Bantam-Doubleday-
Dell, New York, 1988,

{2] Jacohbson, L Object-oriented development in an industrial envi-
ronment, OCPSLA ‘87 Conference Proceedings, Oslando, FL,
SIGPLAN Notices, 22(12}, 1987, pp. 183-191.

i3] Weiss, 5., and M. Page-Jones. Synthesisfanalysis and synthesis/de-
sign, Proceedings of the Object-Criented Systems Sympaostzem, Sum-
mer 1990,

Universal Database
OBJECT BRIDGE ™

This developer's tool allows Smalltalk to read and write to:
ORACLE, INGRES, SYBASE, 5QL./DS, DBZ, RDB, RDBCDD,
dBASEIN, Lotos, and Excel, :

Intelligent Systems, Inc.

i
£

Rebecca Winfs-Brock is the Divector of Object Technology Sersices
at Instantiations and coauthor of Designing Object-Oriented
Software. She is the program chair for OOPSLA ‘92, She huas six-
teen years of experience designing, implementing, and managing
software products. During the last seven years, she has focused on
object-oriented software. She managed the development of Tek-
tromix Color Smalltalk and has beer: immersed in developing, teach-
ing, and lecruring on object-oriented software,

I 506N, Stcte Street, Ann Arbor, M 48104 (313) 9964238 (3133 9964241 fox

“THE SMALLTALK REFORT

grarm. The program is typeable if these constraints are solvable.
Static binding information is derived from the solution, This
project is currently implementing the inferencing algorithm,
with an optimizing compiler as a future undertaking, and so
has no performance results to report. In our initial exploration
of explicit typing within Smallalk, we have confined aurselves
at this time to investigating typing of named variables, exclud-
itg sizch things as intermediate results generated during expres-
sion evaluation. Potential candidates for ryping are:

dictionary variables (i.e., class, pool, and global variables)
® instance variables

® ATgUMENLS

® named temporaries

® receivers

In all cases, the affected variable would be constrained to
belong to a particular ¢lass or one of its subclasses (i.e, the
variable has been “typed”). Thus, we are using 2 simpler ver-
sion of typing than that used in Typed Smalltalk, For this dis-
cussion, type and class may be considered synonymous. Here
are some of the issues involved.

For programmer convenience, we would prefer a common
type declaration syneax that could be used for alf the above-
mentioned cases. A possible candidate syntax is shown below:

Current Smalltalk: variableNanwe
Typed Smabialk (variableName:Class }

This new syntax would be used wherever variables are “de-
clared” in Smalltalk, that is, in class definitions, message pat-
terns, and declarations of temporaries.

Typed variables must be initialized according to rype. Lin-
typed variables are initialized at creation with the value nil. This
is unacceptable for typed variables, If varisble x is declared as:

{ Z:Armay)

we must ensute that ¥ always contains an Artay object; other-
wise, invocation of the statically bound expression:

xat i

would have disastrous results. This requires a modification o
the new and new: methods of class Behavior, Variables ryped as
Data Types {i.e., types that do not have a direct system represen-
gation of their data structure) would be inivialized by sending
the message new to the appropriate class. Variables typed as
basic Data Structures, such. as Integer, Foat, and Anay, would be
initialized at the primitive level. A possible set of initialization
values for Data Structures might be: :

Inteqer ¢
Feat ¢
Array O elements

This arrangement would cover most cases, including the
special initialization requirements that apply ro some classes

{e.g., OrderedCollection}. Immutable Data Types (e.g., Character)
that disaliow creation of new instances present some difficul-
ties, the main being that it is currently impossible for the sys-
tem to determine whether a class is immutable.

[t would possible to initialize typed temporary variables in
methods o nil, as is done currently, since the compiler would
recognize that these variables remain untyped until an assign-
ment takes place, at which point the typing could then be
taken inte account, This mighe be preferable to reduce initial-
izagion overhead. '

Runtime type checking is required to ensure thar typed
variables are assigned zccording to their declared type, This
function would be performed by compiler-generaved code thar
wouid perform the equivalent of an #s¥ind0f: check prior ro as-
signment of an expression result. The system overhead of this
check is minimal. In addition, typed arguments would be
checked upon entry to a method.

At compile time, Smallratk changes a reference to a Dictio-
nary variable into a reference to the Assoriation containing the
variable key and value to avoid a nuntime dictionary lookugy.
However, dictionary variables may be updated through basic
Dictionary messages at:put:, removeKey:, ete. This creates the po-
tential for an integrity violation in Smallcalk (try removing an
existing class variable with removeXey: then adding it apain
with at:put:). While it could be argued thar one should not up-
date dictionary variables in this manner, nevertheless it is an
option open o the user. This situation is aggravated for typed
Dictionary variables since there is no compiler-generated code
to stand in the way of an incorrect assignment when using the
basic Dictionary messages. Qur present solution o this is 1o cre-
ate a subelass of Association, call it ConstrainedAssociation, that
would contain a new instance variable, constraint, and would
inhibir incorrect assignment to its value, The class definition
and methods for ConstrainedAssociation are shown in Listing 1.
Note that our solution does not address the removeKey: in-
tegrity problem that currently exists in Smallealk.

T'o manage static binding, we propose creation of the
classes:

BoundMethod
Constraint (virtual ¢lass - no instances)
BehavierConstraint
TypeConstraint

BoundiMethod would be a tuple containing at least an “imple-
menting” fompiledMethod, a “sending” CompiledMethod, and an
instance of either BehaviorGonstraint or TypeConstraint. Behav-
ior{onstraint describes an instance of static binding, and Type-
Constraint describes the less restrictive case of simple type
checking.

in the following example, let us assume the class hierarchy:

Humber
Integer
Smalllnteger

Yor. I, No, 4: JANUARY 1992

13,

12.

COMES TO THE

IAINFRAME,

PART
Clenn J. .Réi'd'.

n part 1 of this article, we discussed our implemen-
tation of Smalitalk in an IBM mainframe environ-
ment that we have called Smalleall/370, Mention
22 was made that we are investigating the introduc-
rion of typing inte Smallealk, currently a popular area of inrer-
est in the OO community. Here, in part 2, we will discuss some
specifics of our investigation (not ver complete} and, hopefully,

shed some light on the dithcalties involved in typing a lan-
guage like Smalltalk.

Before we launch into a discussion of solutions, perhaps it
would be appropriate to determine what we are investigating
and why. In part 1, we stated that the performance overhead
of dynamic {or late) binding would probably be unacceptable
in Smallalk/370, particularly since degradation of the system
affects all users in a tme-sharing environment. The fastest
untyped version of Smalltalk today is the ParcPlace
Smallealk-80 implementation, which runs at approximately
10% the speed of optimized C. This does not imply that the
basic mechanism of dynamic binding in Smalltalk must be
thrown out. As with many performance problems, it is very
possih]e that concentrating on a few areas of concern witl
lead to a satisfactory system. Since dynamic binding is the
problem, we must substitute statically bound procedure calls
or, better yer, in-lined procedures in the areas where they
provide the most benefit.

When we first considered the dynamic binding problem, we
felt that we would probably be able to implement a static typ-
ing mechanism that would allow programmers to explicitly de-
clare variabie types within their programs and enable our cam-
piler to make use of these for optimization purposes. In our Arst
attempt, we limited the scope of our ability to explicitly type
Smalltalk. Sitice performance was our main goal, racher than a
comprehensive ryping system, we considered this approach ac-

ceptable, We have included a few of the details of this ap-
proach later in this arzicle. - - : _

As our static typing inechanism gained in substance, a -

ber of things became apparent. Explicie type declarations in-
crease system complexity from the users perspective. A new di-
mension is required in programmer thinking. Not only rivst
performance requirements be observed in producing algorithms
that operate efficiently, but all variations of types that the algo-

rithm could operate upon must be considered as well as the rel- .

ative volume of message sends to each type. It is possible that
subsequent changes to the system may make previous tuning
invalid. Furthermore, type declarations may restzrict the appli-
cation of a method. For example, a method argument may be
typed, causing method failure, similar fo primitive failure,
when an argument with an incomrect type is received. This
makes the programming environment less flexible, or more
complex from the programmers point of view. Intuitively, it
appears that these complexities will increase if we expand our -
typing strategy. i

As part of our investigation, we are reviewing published lit-
erature in the area of typing and optimizarions to pure object-
criented fanguages. So far, we have come across three different
approaches. :

Probably the furthest advanced example of comprehensive
explicit typing within Smalltalk is the Typed Smallralk (TS}
project.! In this project, a syprax extension to Smalltalk allows
the programmer to explicitly declare types for variables,
method results, etc., that the compiler can use to statically
bind or in-line procedures. Published pesformance results indi-
cate that some small benclhimarks have achieved speeds
at least twice that of Smalltalk-80. Since this data is not re-
cent, and we understand that work is still continuing on Typed
Smalltalk, we expect that these results have been improved
still further. This approach is closest to our initial experiments
with explicit typing. Since this project is much further ad- -
vanced, we will probably look to it to evaluate some of our
concerns mentioned above,

Recent benchmark results in the SELF programming envi-
ronment have demonstrated a Smallrall-tike language running
at approximately 57% of the speed of optimized C.2 These re-
sults were achieved without the introduction of explicit typing
within the language. In this approach, the compiler uses “path
splitting” to generate both high- and low-performance paths.
through a method. Path splitting is used when a frequently used
message selecror whose receiver usually belongs ro a parricular
class is detected within the source program. For example, path
splirting would occur for the high-frequency message at:, which
is most often received by an insrance of Array. This approach
uses the advanced technigues of dynamic compilation, cus--
tomization, deferred compilation, and path splitting manage-
ment algorithms ro produce the results mentioned ahove.

Finally, we have noted that some are working in the area of
type inference without explicit typing.® Here, a type inferenc-

g algorithm constructs a graph of type constraints from a pro- -

THE SMALLTALE REPORT

ETTING REAL

How to use class variak

instance variables,

n last month’s column, [discussed some strategies for initial-

izing classes and how initialization related to class variahles

and class instance variables. In this column, I will talk shout
coding conventions for class variables and when to use class
variables vs. class instance variables,

Classes that use class variables can be made more reusable
with a few coding conventions. These coding conventions
make it easier to create subclasses. Sometimes developers use
class variables inappropriately, Inappropriate use of class vari-
ables results in classes thar are difficult to subclass, Often, the
better implementation choice for a particular problem is a
class instance variable instead of a class variable.

WHAT ARE CLASS VARIABLES!?

Classes can have:

« class variables
= class instances variables

Class variables are referenced from instance and class methods
by referring to the name of the class variable. Any method, ei-
ther a class method or an instance method can teference a
class variable. Figure 1 contains a diagram of a class, Listinter-
face, that defines a class variables,
The methods in ListInterface would look like this:
ListInterface class
initialize _
“Lreate a menu.”

ListMenu ;= Menu labels: #{'add" rerove’)
ListIntexface
hasMenu
“Return true if a menu is defined.” .

MistMenu notNil

perfaneauA&ivity _
“Perform the mouse-based activity for my view.”

self hasMeny
ifTrue: {"ListMenu startUpl.

Both instance and class methods can directly reference
class variables by name, The class merhod initialize is used to
bind values ro the class variahles. The instance methods has-

Juanita Bwing

les and class
1

Menu and performMenuActivity reference the class variable List-
Menu, All instances of ListInterface and the class ListInterface
share the same class variables,

HOW ARE CLASS VARIABLES INHERITED?

(Class variables and the values they are bound ro are inherired.
The class variable referenced by a subclass is the same as the
one referenced by the superclass. This means that a class vari-
able is shared by a class, all its subclasses, and all the instances

of the class and its subclasses.

ftis poss§b¥e for subclass m@ihods to
medify inherited class variables, but
generally it is undesirable to do so.

29

Cur example has a subclass of ListInterface called Caleulat-
adlistinterface. Subclass methods referring o the ListMenu.
class variable reference exactly the same object as the super-
class method. The subclass CalewlatedlistInterface has behavior
that is different from its superclass, as defined by the methad
conditional MenuActivity:

Listinterface /
class variables

CaicuiatedLlistinterface

aCalculatedLlistinteriacey
list
caiculationBlock

calcuationBlock,

VoL, 1, No. 4: January 1997

10.

& GETTING REAL

CalculatedListinterface
condiienalMenubetivity
“Perform the mouse-based activity for my view i the list is not
empty. If there is no menu, flash the list pane.”

self hasMenu
ifFalse: [“self flash].
list isEmpty
ifFalse: [*ListMenu startUp].

Subclass methods can directly reference class variables thar
are defined by the superclass. In our example, the Calealated-
ListInterface meshod references the class variable ListMenu that
is defined by Listinterface. This is different from the inheri-
rance of instance variables. The method conditionalMenuActiv-
ity references the instance variable lise thae is defined by the
class ListInterface. But, each instance of CaleulatedListInterface
and Listinterface has its own copy of List and does not share its
instance variables.

HOW DO SUBCLASSES MODIFY CLASS VARIABLES!?
It is possible for subclass methods to madify inherived class
variables, but generally it is undesirable to do so. If a subclass
were 1o modify a class variable, it would change the only ex-
isting value of the class variable. Each subclass does not have
its own copy. It references a shared copy. Generally, develop-

| AxRAM Smalltalky/V users: the tool

. for maximum productivity

° Put related classes and methods into 3 single task-
oriented object catled application.

® Browse what the application sees, vet easily move cods
hetween it and external environment.

2 Autormatically decument code via modifiable templates.

° Keep a history of previous versions; restore them with
a few keystrokes.

° View class hierarchy as graph or list.

¢ Print applications, classes, and methods in a formaited
report, paginated and commented.

° File code into applications and merge them together.

® Applications are unaffected by compress log change
and many other features..

Imager

Deleted methods |

Utilitles.. —— Application prinling | and more..

CodeIMAGER™ V286, VMac $122.95
& YWindow 249,95

Shipping & hendling: $13 mail, $20 UPS, par copy
Diiskerse: E:} 3T [:] K
BixGraph™ Computing Ltd.
formerly ZUNEQ DATA Corp.
- 2035 Chte de Liesse, suite 201 s
. . Montreal, Que. Canada H4AN 20
W o (54, o151 P (514) 656-103

CodalMAGER ia e reg. tredemark af SixGraph Computing Led.
SmalltalkfV is a rog, trademark of Digitalk, inc.

ers want to create a new class variable and use it in place of
the inherited class variable.

Using our example, we will create o new menu in the sub-
class CaleulatedListInterface. The menu is implemented with a
class variable so it is not possible to change the menu for the

subclass without also changing it for the superclass. This is be-

cause both classes reference the same variahle.

The only way to create 3 new menu for the sihclass and re-
tain the original menu for the superclass is to create a new
class variable. In our example, we call the new class variable
CalculatedlistMenu. In addition to a new class variable, all
methods that reference rhe original menu muse be overridden
in the subclass:

CalculatediistInterface class
initialize
“Create a calculated menu.”

CalenlatedMenu = Menu labels: #{'add’ Temove’ ‘print’)

CatcolatedListInterface
hasMenu
“Return true if 2 mena is defined.”

MalewlatedMeny notNil

performMenuhctivity
“Perform the mouse-based activity for my view.”

setf hasMenn
#lrua: [“CalculatedMenu startUp].

Because direct references to the class varishle ListMenu are
sprinkled throughout the class ListInterface, the subclass must
overtide many methods. In this simple example, we had to
override three methods that reference ListMenu to reference a
different menu. In a comphicated real-world applicazion, many
other methods may need o be overridden ro referenice a dif-
ferent class variable in a subclass. Because significant portions
of the class needed to be overridden, the class is not very
reusabie.

aListintarfa
list alistintarface!
HE]
Listinterface

Listiterface fist
class variablas

=% Listheny %%—waMenu

subciass

ataicutatedLlisiintertace
list
calculationBiock

Calculatedlistinterface

aCafcutatedid
st
cateulationBlock

Figure 2. Coding conventions increase the reusability of classes
implemented with class variables.

THE SMALLTALK REPORT

A better version of ListInterface has the minimum number
of references to a class variable~-one for setting and one for
retrieving the value of a class variable:

ListInterface class

initialize
“[reats z menu. Create constants.”

ListMenu := Menu labels: #('add”remove’)

Heny
“Return the list menu.”

AistMenu

ListInterface
hasMenu
“Return true if & menu is defined.”
"self class menu nothil

performMenudetivity
“Perform the meouse-based activiby for my view.”

self hasMenu
ifTrue: [2setf clags menu startlp].

o6

Because of the nature of the data

stored in class variables, it is best for

class methods to store and retrieve
the class variables.

9

This coding convenzion reduces the number of direct refer-
ences 1o a class variable, as illustrated in Figure 2. [t is easier
to create subclasses because only the merhods that set and re-
trieve the class variable need to be overridden. Now the cade
for CalculatedListInterface looks like this:

LaleulatedListlnterface clags
initialize
“Create 2 a computed list menw.”

* CalculatedMenn := Menu tabels: #(‘add’ ‘temove’ ‘print’)

menu
“Return the list menu.”

AatculatedLlistMeny

This coding convention effectively restricts the references
10 a class variable. Because of the nature of the data stored in
class variables, it is best for class methods to store and retrieve
the class variables. In effect, we have eliminated the sharing
berween classes and instances.

By eliminating this sharing, we have made ListInterface
more reusable; however, ListInterface still has another prob-

lem. Ancther class variable had to be creared by the subclass
to provide a different meno. Now CaleulatedListinterface has
two class variables, one of which (ListMerm) is not used.

The oot of the remaining problem is rthat class variables
are shared by a class and its subclasses. In our example {and in
many other situations), this sharing is inappropriate. Instead,
a subclass needs to be able ro override inberited data. Class
variables share the data berween subclasses and superclasses,
50 it’s ot possible for a subclass to override the data, Next
month, we will explore another mechanism, class instance
variables, that will solve our problem.

Juanita Eawing is a senior staff member of Instantiations, Inc., a soft-
ware engineering and consulting form that specializes in developimg and
applying object-oriented rechnologies. She has been a project leader for
commercial object-oniented software projects and is an expert in the de-
sign and implementation of object-oriented afplications, frameworks,
and systems. In her previous position at Tektronix Inz., she was re-
sponsible for the develspment of class liraries for the furst commercial
duality Smallialle-80 system. Her professional activities mclude Work-
shop and Panel Chairs for the OOPSLA conference.

Vor. I, No. 4: January 1992

I1.

WLLLE
| JHWEEK
LABS

SHOOT-OUT

WINDOWS AND 03
PROTOTYPE T0 DELIVERY.
NO WAITING.

In Windows and 0S/2, you need prototypes. You have to get a sense
for what an application is going to look like, and feel like, before you can write
it. And you can't afford to throw the prototype away when you're done.

With Smalltalk/V, vou dontt.

Start with the prototype. There’s no development system you can buy
that lets you get a working model working faster than Smalltalk/V.

Then, incrementally, grow the prototype into a finished applica-
tion. Try out new ideas. Get input from your users. Make more changes.

Be creative.

Smalltalk/V gives you the freedom to experiment without risk. It’s
made for trial. And error. You make changes, and test them, one at a time.
Safely. You get immediate feedback when you make a change. And you can't
make changes that break the system. It’s that safe.

- And when you're done, whether you're writing applications for
Windows or OS/2, you'll have a standalone application that runs on both.
Smalltalk/V code is portable between the Windows and the OS/2 versions.
And the resulting application carties no runtime charges. All for just

Smalltalk V

So take a look at
Smalltalk/V today. It time to make

that prototyping time productive.

Smalltalk/V is a registered trademark of Digitalk, Inc. Other product names are trademarks or registered
trademarks of their respective holders.

Digitalk, Inc., 9841 Airport Bivd,, Los Angeles, CA 90045

(800) 922-8255; (213) 645-1082; Fax (213) 645-1306

LOOK WHO'S TALKING

HEWLETT-PACKARD NCR
HP has developed a network trouble- INCR has an integrated test program develop-
shooting tool called the Network Advisor. ment environment for digital, analog and
The Network Advisor offers a compreben- mixed mode printed circuit board testing.
sive set of tools including an expert system,
statistics, and protocol decodes to speed
problem isolation. The NA user interface is
built on a windowing systent which allows
multiple applications to be executed
simultaneously.

MIDLAND BANK
Midland Bank built a Windowed Technical
Trading Environment for currency, futures
and stock traders using Smalltalk V.

AD/Cycle”

KEY FEATURES

B World’s leading, award-winning object-

oriented programming system

B Complete prototype-to-delivery system
B Zero-cost runtime
B Simplified application delivery for

creating standalone executable (EXE)
applications

B Code portability between Smalltalk,/V

Windows and Smalltalk/V PM

B Wrappers for all Windows and OS/2

controls

B Support for new CUA "91 controls for
08/2, including drag and drop, booktab,

container, value set, slider and more

B Transparent support for Dynamic Data

Exchange (DDE) and Dynamic Link
Library (DLL) calls

M Fully integrated programming environ-

ment, including interactive debugger,
source code browsers (all source code
included), world’s most extensive Win-
dows and O5/2 class libraries, tutorial
(printed and on disk), extensive samples

B Extensive developer support, including

technical support, training, electronic
developer forums, free user newsletter

B Broad base of third-party support,
including add-on Smalltalk/V products,

consulting services, books, user groups

This Smalltalk/V Windows application

captured the PC Week Shootout award —and
it was completed in 6 hours.

Smalltalk/V PM applications are used to
develop state-of-the-art CUA-compliant
applications —and they're portable to
Smalltalk/V Windows.

The Smalltalk Report

The International Newsletter for Smalltalk Programmers

September 1992

VYolume 2 Number |

EXPERIENCES

WITH SMALLTALK

ON A LARGE

DEVELOPMENT

PROJECT

By Bran Selic

14

23

Contents:

Features/Articles:

Experiences with Smalltalk on a
Large Development Project
by Bran Selic

SmallDraw—Release 4 Graphics
and MVC, Part 3
by Dan Benson

Columns:

The Best of

Comp.Lang. Smalftalk: What else
is wrong with OOP?

by Alan Knight

Getting Real:

Extending the Collection

Hierarchy
by Juanita Ewing

Smailtalk Idioms:
ValueModel Idioms
by Kent Beck

Departments:
Product News & Highlights

ne of the most frequently asked questions about object-oriented
technology is whether it was used as the primary technology on a
large project. This question is particularly relevant to Smalltalk
because it is often said that Smalltalk is a language well-suited for
prototyping but not for “real” product development. In this arti-
cle we will describe our experience using Objectworks\Smalltalk from ParcPlace
Systems as the basic implementation language for a commercially available CASE
tool called ObjecTime. This project is currently in its sixth year and at one point
involved over 30 Smalltalk programmers.

THE PRODUCT

Bell-Northern Research (BNR) designs and develops real-time distributed
telecommunications systems for its parent company, Northern Telecom. The
software driving these systems is often surprisingly complex and usually involves
many millions of lines of high-level code. To meet the extreme quality and ro-
bustness requirements of such systems, it is obvious that powerful computer-
based development tools are required. ObjecTime (previously known as Telos) is
one such CASE tool created at BNR for constructing the next generation of dis-
tributed event-driven systems. It can be used for analysis, design, implementation,
and verification. The tool is a key component of a methodology called Real-Time
Object-Oriented Modeling (ROOM), which is characterized by a set of high-level
design paradigms and a highly iterative development process.! With ObjecTime,
users graphically capture the high-level aspects of their designs and combine them
with specifications written in C++, or a simple rapid prototyping language for the
more detailed aspects. These designs can be executed directly using ObjecTime’s
built-in run-time environment. ObjecTime is currently the most widespread
CASE tool within BNR. It has been made available to external (non-BNR) cus-
tomers and has already been purchased by several major corporations.

The software comprising the tool is quite elaborate and includes an interactive
graphical user interface, several complex semantic editors, a high-level language
compiler, and an event-driven run-time system. This system’s level of complexity
can be deduced from the size of the class hierarchy, which currently contains close
to 1,400 Smalltalk classes.

THE PROJECT AND ITS CHRONOLOGY
The project has so far progressed through three principal stages: a prototyping
stage, a development stage, and a commercial product stage.

The prototyping stage
The prototyping stage started in late 1986 and lasted approximately 18 months,
during which time the project team grew from three to 18 people. None of the

continued on page 4.

John Pugh Paul White

APPY ANNIVERSARY! We thought somebody should say it, as we roll into year two of
THE SmaLLTALK REPORT. We trust you have been satisfied with the quality of articles over
the past 12 months. Subscriptions are constantly climbing, as is the number and diversity
of Smalltalk users. We have tried to include articles that have a broad band of appeal yet
are specific enough to give you more than just a “warm feeling.” Certainly the best part of
this job has been the opportunity to meet many of you (albeit electronically in most
cases!!). Please, keep coming forward with ideas.

As you are all aware, one requirement sorely lacking in our niche of the software in-
dustry is a repository of documented experience reports. Other than OOPSLA’s experi-
ence reports, very little is available in terms of actual documented case studies. Newcom-
ers to object-oriented technology, and Smalltalk in particular, want to see proof that the
technology has been successful. And those of you trying to get on with the development of
software know how much easier life would be with a reservoir of experiences from previ-
ous projects, both good and bad, on which to draw. If you're like us, you're constantly left
with the feeling that “this has been done before,” especially in terms of adapting tradi-
tional management strategies to Smalltalk projects. It's time we started to reuse more than

just code.

Bran Selic’s feature article describes many experiences gained during the development
of the CASE tool ObjecTime at Bell Northern Research. He gives a chronology of the pro-

EDITORS’
CORNER

ject, highlighting things that worked well and some of the ptifalls encountered.
Also in this issue, Dan Benson concludes his three-part series on the development of
SmallDraw, his graphics editor, illustrating the “ins and outs” of MVC. He adds facilities

to SmallDraw to allow grouping, layering, and alignment of objects, cut/copy/paste facili-

ties, and scrolling.

Three of our regular columns appear this month with each building on themes de-
veloped in earlier columns. Kent Beck’s column describes the inherent shortcomings of
the change propagation mechanism and describes the ValueModel style of coding intro-
duced in Objectworks\Smalltalk 4.0, Juanita Ewing continues her discussion of proper
use of inheritance through an example of adding an OrderedSet to the Collection hierar-
chy. Finally, Alan Knight continues his survey of many of the complaints registered on

USENET about OOP,

In closing, we would like to take the opportunity to thank those of you who have
helped us out over the past year. A special thanks goes to our regular columnists, who
have yet to let us down and whose contributions form the pillar of the REPORT.

Thanks, gang!

The Smalltalk Report (ISSN# 1056-7976) is published 9 times a year, every month except for the Mar/Apr, July/Aug, and Nov/Dec combined issues. Pub-
lished by SIGS Publications Group, 588 Broadway, New York, NY 10012 (212)274-0640. @ Copyright 1992 by SIGS Publications, Inc. All rights reserved.
Reproduction of this material by electronic transmission, Xerox or any other method will be treated as a willful violation of the US Copyright Law and is
flatly prohibited. Material may be reproduced with express permission fram the publishers. Mailed First Class. Subscription rates 1 year, (9 issues) domes-
tic, $65, Foreign and Canada, $50, Single copy price, $8.00. POSTMASTER: Send address changes and subscription orders to: THE SMALLTALK REPORT, Sub-

scriber Services, Dept. SML, P.O. Box 3000, Denville, NJ 07834,

Submit articles to the Editors at Smalltalk Report, 91 Second Avenue, Ottawa, Ontario K15 2H4, Canada.

| Rebecea Wirfs-Brock, Digitalk

The Smalitalk Report

Editors
John Pugh and Paul White
Carleton University & The Object People

SIGS PUBLICATIONS
Advisory Board

Tom Atwood, Object Design

Grady Booch, Rational

George Boswaorth, Digitalk

Brad Cox, Information Age Consulting
Chuck Duff, The Whitewater Group
Adele Goldberg, ParcPlace Systems
Tom Love, Censultant

Bertrand Meyer, ISE

Meilir Page-jones, Wayland Systems
Shesa Pratap, CenterLine Software

P. Michael Seashols, Versant

Bjarne Stroustrup, AT&T Bell Labs
Dave Thomas, Object Technology International

THE SMALLTALK REPORT

Editorial Board

Jim Anderson, Digitalk

Adele Goldberg, ParcPlace Systems

Reed Phillips, Knowledge Systems Corp.
Mike Taylor, Digitalk

Dave Thomas, Object Technology International

Columnists

Kent Beck, First Class Software

Juanita Ewing, Digitalk

Greg Hendley, Knowledge Systems Corp.

Ed Klimas, Linea Engineering Inc.

Alan Knight, Carleton University

Suzanne Skublics, Object Technology' International
Eric Smith, Knowledge Systems Corp.

SIGS Publications Group, Inc.
Richard P. Friedman

Founder & Group Publisher
Art/Production

Kristina Joukhadar, Managing Editor

Pilgrim Road, Ltd., Creative Direction
Karen Tongish, Production Editor

Jennifer Englander, ArvProd. Coordinator

Circulation

Ken Mercado, Fulfillment Manager

Diane Badway, Circulation Business Manager

John Schreiber, Circulation Assistant
Marketing/Advertising

Diane Morancie, Advertising Mgr—East Coast/Canada
Holly Meintzer, Advertising Mgr—Waest Coast/Europe
Geraldine Schafran, Exhibit/Recruitment Sales Manager
Sarah Hamilton, Promations Manager—Publications
Larna Lyle, Promotions Manager—Conferences
Caren Polner, Promotions Graphic Artist
Administration

Ossama Tomoum, Business Manager

David Chatterpaul, Accounting

Claire Johnston, Conference Manager

Cindy Roppel, Conference Coordinator

Amy Stewart, Projects Manager

Jennifer Fischer, Public Relations

Helen Mewling, Administrative Assistant

Margherita R. Monck #
General Manager

FSIGS

PUBLICATIONS

Publishers of Journal of Object-Oriented Programming,
Object Magazine, Hotline on Object-Oriented Technology,
The C++ Report, The Smalltalk Report, The International

OOP Directory, and The X Journal.

2

TuaE SMALLTALK REPORT

PRODUCT ANNOUNCEMENTS

Product Announcements are not reviews. They are abstracted from press releases provided by vendors, and no endorsement is implied. Vendors interested in being
included in this feature should send press releases to our editorial offices, Product Announcements Dept., 91 Second Ave., Ottawa, Ontario K15 2H4, Canada.

The American Information Exchange Corp. (AMIX), a
subsidiary of Autodesk Inc., announced the opening of the first
of several key online markets for information and consulting
services. At the AMIX Smalltalk Components and Consulting
Market customers can buy and sell Smalltalk/V, Smalltalk-80,
and other object code as well as consulting and training ser-
vices. AMIX establishes transaction rules, facilitates negotia-
tions, and automates payments and collections.

For more information, contact AMIX, 1881 Landings
Drive, Mountain View, CA 94043-0848, 415.903.1000,

Digitalk Inc. has announced a new version of Smalltalk/V for
Windows that simplifies the complex task of writing programs
for Microsoft’s popular Windows environment.

The new version of Smalltalk/V includes support for Win-
dows Multiple Document Interface (MDI), a ToolPane (a row
of buttons that perform functions when selected), a StatusPane
that displays information on the status of applications, an Ob-
jectFiler for sharing objects with other applications and develop-
ers, HelpManager support for non-US character sets, and per-
formance improvements. In addition to standard Smalltalk/V
features, the package provides interfaces to Dynamic Data Ex-

change (DDE), allowing information to be shared between
Smalltalk/V programs and other programs, and Dynamic Link
Libraries (DLLs), which provide a mechanism for calling code
written in other languages from within Smalltalk/V.

For more information, contact Digitalk Inc., 9841 Airport
Boulevard, Los Angeles, CA 90045, 310.645.1082, fax
310.645.1306.

Zoom (Zippy Object-Oriented Memory) is a simple
object-oriented database written in Smalltalk/V for the 286, Win-
dows, PM, and Mac platforms. Zoom offers variable length keys
for random access messages at:, at:put:, removeKey: and seqeun-
tial messages do:, first, next, prior, and last. A size method is
available and class method open: starts any database file while
new: guarantees a new file. Zoom works best by providing
keyed access to Digitalk Loader/Dumper object representation,
but an alternative representation requiring programming is
supplied. References between filed objects must be made by
name in your application.

For more information, contact Expertek, P.0. Box 611,
Clatskanie, OR 97016, 503.325.4586.

HIGHLIGHTS

Excerpts from industry publications

SMALLTALK

.. .If Smalltalk is so powerful, why does it have such a small
following compared with C++¢ Dan Shafer, author of the
book Practical Smalltalk, suggests that Smalltalk is so com-
pletely different from any other development environment
that the first reaction of procedural programmers is
panic...Smalltalk’s classes and methods are not just a class li-
brary but an integral part of its environment that makes up
Smalltalk. Everything interacts with everything else. This can
be quite disconcerting for the beginner, and the fear of break-
ing something can often serve as the greatest deterrent to
learning Smalltalk...Ultimately, we return to the original
question: Why Smalltalk? Because you want an environment
built around object-oriented programming, not derived from
procedural programming. You want an environment that
provides extensibility while managing your code. You want
the flexibility of an interpretive language in which you can
play with and test your code, coupled with the performance
of a compiler. You want an interactive debugging environ-
ment that lets you inspect and modify your code and vari-
ables on the fly with instant results, instead of saving, compil-
ing, and linking between changes.

Why not Smalltalk? William Scott Herndon,
UNIX REVIEW, 5/92

PREDICTIONS
... The object-oriented programming revolution may be the
beginning of the biggest programming advance in the history
of computers. It may prove to be the software equivalent of the
microprocessor, allowing the mass creation of more capable,
less expensive software. We say “may” simply because it may
also be that object-oriented programming is just the beginning
of that revolution and will itself be swept away in a compara-
tively short time by the new technologies it makes possible
Object-oriented methodology, OPEN SOFTWARE JOURNAL, vol.5/no. | 1992

STRATEGIES

.. .Robert E. Lee said “Plan no more than necessary.” His ulti-
mate defeat was probably due more to the implementation of
this philosophy than its validity. The problem in development,
again, as in war, is how to know when to stop planning and
start moving. The answer is never stop planning but never let
planning prevent progress. The best methods today facilitate
iterative development, Use one with object-oriented tech-
niques for the appropriate tasks to get the most powerful and
complete approach available.

Planning, lookahead,and spiraling into contral, Adrian Bowles,
OBJECT MAGAZINE, 7-8/92

SEPTEMBER 1992

23

B VALUEMODEL IDIOMS

update: aSymbol .
aSymbol = #valuel ifTrue: fself updateValuel],
aSymbot == #value? ifTrue: [self updateValue2]

"The preceding information is written assuming ValueModet
holds values. In the real system, though, ValueModel is an ab-
stract superclass, and the subclass acting as ValueModel above is
really called ValueHolder. PluggableAdaptor is also a subclass of
ValusModel, Other subclasses {like AveragingValueModet) should
arise as the full utility of the ValueModel style becomes apparent,

LAZY VIEWS
A final idiorn that accompanies Objectworks\Smalltalk release 4
and later is lazy updating of views. Back when dinosaurs ruled
the earth and Smalltaik did its own window management, it was
common to directly redisplay a view in response to an update:
update: aSymbol
{self interestedIn: aSymahol) ifTrue: {salf displayView}

A serions problem with this stratepy is that the view will be
redisplayed several times if muitiple update messages come in,
Multiple updates look bad and slow your programs down. This
is especially true with the expanded use of broadcast messages
in release 4.

‘When you implement views in release 4 and later, you
showld never directly redisplay the view, Instead the view
should send itself an invalidate message:

update: aSymbol _ A
{self interestedIn: aSymhol) ifTrue: [self invalidate]

"These invalidations are pooled together. The next time a
Controller sends itself poll (or someone explicitly sends check-
ForEvents to ScheduledControliers} all views with some Invalid
area will be asked to display. This ensures that if there isa
change to a model causing several views to update they wiil re-
display as simultaneously as possible.

COMCLUSION
The ValueModel style of coding manages complexity by strictly
separating interface and model.

We have just begun to explore the range of possibilities in-
herent in the ValueModel style. You can expect to discover new
uses as you begin using it yourself. If you find new ValneModels,
or new uses for the existing ones, please drop me a line so I can

publish them here. B

Kent Beck has been discovering Smalltalk idioms for eight years at
Tektronix, Apple Computer, and MasPars Computer. Fle is also the
founder of First Class Software, which develops and distributes re-
engineering products for Smalltalk, He can be reached at First Class
Software, P.O. Box 226, Boulder Creek, CA 95006-0228

THE BEST OF...continued from page 16

stractions useful in some specific domains. Reality can have
very poor software engineering principies.

Jeff Alger (alger@applelink apple.com) writes:

Seldom are you ever modeling the real world in software.
The real world is the problem; why would you want to just
simulate it? Objects and classes in a plece of software are
nothing more than metaphors, In fact, direct simulations
of real-world objects lead to very poor object-oriented ar-

chitectures with little or no modularity and that are highly

unstable. Barly on one learns that a Paycheck object should
print itself and a Block object should move itself around on
a screen. This is not the real world,

And Philip Santas (santas@infethz.ch) points out:

There is no such thing as infornmtion hiding in the real
world.

CONCLUSIONS _
Since this colummn has been devoted to what's wrong with QOP,
I ought to conclude with what I think is right:

1. OOP is not a panacea, OOP is good for improving reuse; if
does not make reuse automatic. If T write a Car class for
modeling traffic flow and you write a Car class for modeling
the physics of collisions, our chances of being able to use

the same class are small. Programs should carefully choose
what they're trying to model.

2. Don’t try to model the real world in detail. Make appropri-
ate abstractions, try to make your classes correspond o sen-
sible entities, but don’t get caught up in the guestion of
whether or not something is an object. If it makes senseas a
concept, it’s probebly a reasonable object. Good software
engineering is more important than good modeling,

Fundamentally, the difference between OO and procedural
programming lies in what entities are most important. In a
procedural language, procedures are the jmoportant thing, and
data is secondary. The basic insight of OOP is that many func-
tions can be expressed as operations on a dafa fype, and that
this clarifies the design,

Other benefits spring from this insight, Using polymorphism
we can dynamically select semantically similar operations on
different data types, and specify data types using inheritance for
incremental modification. The essential idea is to place the data
type at the center. But not everything fits neatly into this model,
and it’s not the nltimate answer to all programming problems: it
is only an improvement on the preceding model. B

Alan Knight is a researcher in the Department of Mechanical and
Aeraspace Engineering at Carleton University, Gttawn, Canada, K18
5B6. Hecan be reached at+1 613 788 2600 x5783, or by e-mail as
knightr@mirco.carleton.ca,

22

Tar Smarztary Rerony

ect

MENTORING -

APPRENTICE
ADVANCED TRAINING

ANALYS!S & DESIGN

GROUP DEVELOPMENT
GROUP TOOLS

FRAMEWORKS

CUSTOM CONTRACTS

The Management Challenge
The transition to object technology
must be desigried for success. The
management challenge is to:

e Produce Quality Software

» Deliver on Time

» Build Maintainable Code

Model the Business Problem

» Build Client-Server Solutions

s Manage Complexity

Transition Services

KSC Transition Services include
contract services and a complete
training curriculuem that supposts a
group development envirenment.
Multiple training tracks are designed
to ultimately attain self-sufficiency
and to produce deliverable setu-
tions. Program curziculum includes:
Knowledge Systems Meets ¢+ Mentoring: Frocess Support

the Challenge ¢ Apprentice: Small Group Project
Knowledge Systems Corporation Focus at KSC

{K5C) has emerged as the industry Finding the Obiects {CRC)

leader in delivering pure object- 00 Analysis and Design

oriented product solutions, KSC Introductory to Advanced
products and services are designed o Programming in Smalitalk
successfully transition business to Introduction to Smalltalk for
object technology. COBOL Programmers

8

8

Development Environment
KSC now markets in the U.5. and
fully supports ENVY™/Developer, a
multi-user development environ-
ment. Iz addition, KSC provides
integrated services and tools to
enable constructicn of cooperative
processing applications.

Design your Transition

Begin your successful transition to
object technology today. Join the
growing list of KSC clients such as
IBM, Hewlett-Packard, Texaco,
Fisher Controls, American Afrdines,
First Union, Northern Telecom, and
Texas Instruments. For more infor-
mation on transition products and
services from Knowledge Systems,
call us at 919-481-4000).

) ge Systems Cor

OBJECT TRANSITION BY DESIGN

114 MacKenan Dy,
on Cary, NC 27511
(919} 481-4000

® 1992 Knowledge Systems Corporation, ENVY is a trademark of Object Techniology International, Lo,

g EXPERIENCES WITH SMALLTALK ON A LARGE DEVELOPMENT PROJECT

...continued jrom page !
tearn members had practical experience with O- (G technology
but we decided to adopt an O-Q approach.

Communications software traditicnaily has been designed
using an object-based approach, primarily because of the in-
herently distributed and asynchronous nature of communica-
tions systems. We were looking for a new technology that
could overcome sorme of the major Himitations of traditional
software construction methods.

After some deliberation, we chose Smalltalk as the imple-
mentation language for our prototyping. Various object-
otiented flavors of C (Objective C, C++) were also considered
and discarded. We felt that a qualitatively different technology
was required to deal with the complexity we had forecast for
the coming generation of software systems. We were interested
in programming absiractions that could deal with entire sub-
systern architectures and complex graphics. The semantic gap
between these and the low-level machine-oriented abstractions
provided in C and similar languages was just too great,

We originally selected Smalitall/V from Digitalk Inc. After
about a year, we switched to Smalltalk-80 from ParcPlace Sys-
tems because ParcPlace software ran on the Unix-based wark-
stations used by most of our client base. In addition, our own
performance benchmarks indicated that at that time (late
1987}, our application would execute more than twice as fast
on ParcPlace Smalitalk than on Smallialk/V on the same plat-
form., The port of cur code to Smalltalk-80 was straightfor-
ward with most of the difficulties stemmming from differences in
the graphics paradigms.

There was no formal design process but the issue was dis-
cussed at length, with great fervor and some dissent. The
highly interactive Smalitalk development environment was un-
like any the team had experienced before. It obviously had
great potential that was not exploited fully by traditional linear
models of software development.

Our initial development consisted of a set of disjoint proto-
types of different toolset components, each one designed and
implemented by 4 single developer. In the latter part of the
prototyping stage the distinct components were integrated,
one-by-one, into a composite whose functionality roughly ap-
proximated that of the desired system, There were no commer-
cially available team programming environments at that time
$0 we eventually evolved a “manual” process for synchronizing
the activities of programuning teams.

This process was based on a weekly integration cycle. At the
beginning of each week a new version of the system was gener-
ated by the system integrator. Once this image was available,
designers would copy it to their own environment and make
further changes to it as necessary. At the end of the week, de-
signers would submit their changes for inclusion in next week’s
image. To minimize conflicts, all the classes in the hierarchy
were partitioned so that each class was owned by a group. Only
members of the group owning a class were allowed to submit
changes for that class, Also, it was possible to specify the inte-
gration order of a submission relative to other submissions. A
common “patches” repository was maintained for any changes

that needed to be shared in the interval between successive in-
tegrations. These could be filled in at the discretion of the indi-
vidual developer.

To our surprise, we found that this manual process was ef-
fective even in later stages of the project when the development
team was much Targer. We attributed this o the decoupling ef-
fect of partitioning the class hierarchy across different groups
as well as to the highly modular and loosely coupled architec-
ture of the application,

The development stage

Following our prototyping experienice we commenced the ac-
tual implementation in September of 1988, This second stage
lasted approximately two years. During that time the internal
architecture of the tool was reorganized and almost all of the
prototype code rewritten. The development team doubled in
size to eventually include over 30 developers (not including
managers), all of them programming in Smalltalk,

The software was developed gradually, in four successive
releases, each release extending the capabilities of the previcus
one. One of those releases included porting of the complete
software from a Macintosh platform to a Unix workstation
{Sun Microsystems SPARCstation). This porting effort
turned out to be trivial despite significant differences between
the underlying hardware and operating systems. The ease with
which this was accomplished confirmed the portability claim
of the ParcPiace Systems Objectworks\Smalltalk product.

A more formal development process was used during this
stage since we were working on a production version of the
software and a much larger tearn was involved. The final ver-
sion of this process is described in a later section.

The commereial product stage

Until the end of 1990 ObjecTime was exclusively targeted to
internal BNR projects. In 1991 the potential for more
widespread use was recognized and a decision was made to
market the technology. This meant setting up a full-fledged
suppert organization, “robustification” of the software to com-
mercial-quality standards, creation of high-quality user docu-
mentation, and functional extension with features required by
a much wider open market. With basic toolset architecture and
functionality in place this was accomplished by a smaller and
more focused team.

The current release of the toolset, ObjecTime Release 4.0,
contains close to 1,400 classes and the initial image requires 5.8
MB. Despite these relatively large numbers, we have not yet
encouniered nor do we anticipate any fundamental technical
or resource limitations of either the language or the ParcPlace
Objectworks\Smalltalk environment.

EXPERIENCE WITH SMALLTALK
This section surmmarizes some of the salient aspects of our
Smalitalk experience.

contined on page ...

4

TaE SMarcTaLs REporT

Object Oriented Database

initialize
value = JrderedCollection new
value
value isEmpty iflrue: [“Foal zero].
~{value inject: Float zero into: [:sum teach | sum + each])
/ value size
value: anJbject
vatue addlast: anDbject

We can install the new behavior by changing
Mandelbrot>>initialize,
initialize
flops »= AveragingValueModel new

No other changes to the model are necessary. When we want
to open a window on a running average of processor utiliza-
tion we can create another AveragingValueMaodel. We do not
need to duplicate any code,

The model has acquired a large measure of independence
from changes mandated by the interface. For many interface
changes we no longer need to touch code in the domain model
beyond modifying the initialization. We instantiate a new kind
of ValueMedel and the rest of the model remains unchanged.

THE REST OF THE STORY
The above code still doesn’t quite work. The TextView expects a
String or a Text from its model, and the ValueMaodel in this case
returns 2 Number. The release 4.1 solution is to interpose an-
other object, called a PluggableAdaptor, between the model and
the view, A PluggableAdaptor contains three blocks. The first is
invoked when it receives the message vatue. The block takes one
argument, the adaptor's modet {in this case the ValuaModel),
and by default returns the result of sending value to the model.
The block can be used to arbitrarily transform the value. In our
case we want to create a string from the number;
cpeniops

| window adaptor |

window = ScheduledWindow new.

afaptor == AspectAdaptor on: flops.

adaptor getBlock: {:m | m value printString, ' flops'].

window addChiid: (TextView cn: adagtor aspect: #value

change: ril menu: nit).
window cpen
The second block in a PluggableAdaptor is evaluated when

the adaptor receives the value: message. The block is invoked
with the model and the new value as arguments. By default it
passes the message along to the model. This block translates
the value from a form the view understands to one the model

Mandetbrot
yagion flops

MandelbrotView Textview

valupHolder ValueHoider

Figure 2. ValueHolder style separation of modef and interface.

PPy
. Management System
'bject The ONLY ODBMS for Smallialk

riented Object Storago on Disk via » Zippy
BiTree Database Refrieval Enginei

H ierarchical

pplications

Limited (512) 837.2117

Al Platforms $199.95 1240? Mo M., Buite #100-266
Sovree Code Included Austin, T}%&;SE;P“

for under $1000 that delivers Persistent

understands. If it was possible to change the flops rating, we
might write something like this:

openflops

{ window adaptor |

window = ScheduledWindow new.

adaptor := AspectAdaptor on: flops,

adaptor getBlock: [:m | m value printString, 'flops'].

adaptor putBlock: {1m v }
m valne: (Number readFrom: v readStream}].

window addChild: (TextView on: adaptor aspect: #value
change: nil menu: nil}.

window open

The final PluggableAdaptor block is used to filter update
messages. The block takes three arguments: the medel, the as-
pect from the update: message, and the optional parameter
from the update: message. The block evaluates to a boolean
that is used to decide whether or not to forward the update, In
our example we may not want to update the text if the flops
rating is too low. We could change openflops as follows:

openflops

| window adaptor |

window = ScheduledWindow new.,

adaptor := AspactAdaptor on: flops,

adaptor getBlock: [im | m value printString, * flops’].

adaptor putBlock: [im iv | 1n value: {Number readFrom: v
readStream)].

adaptor updateBlock: {:m :a :p | mvatue > 1e6],

window addChild: {TextView on; adaptoy aspect: #vahie
change: nil menu: nit),

window open

When an object is dependent on two or more ValueModels it
is often important to distinguish which one is generating the
broadcast message, One selution is to take advantage of the full
generality of the update message:

A cleaner solution is to use the update block of a pluggable
adaptor to generate different updates for each ValueModel. The
initialization would look Iike this:

initializeWith: modell with: model?

| adaptori adaptor2 {

adaptorl := Fluggablesdaptor on: modell.

adaptori updateBlock: [:m v :p | v == #value
#True: [adaptori changed: #valuel]}.

zdaptori addDependent: seif.

adaptor? := PluggableAdaptor on: model?,

adaptar2 updateBlock: fim v :p | v == #value
iffrue: fadaptorichanged: #value?ll.

adaptor? addDependent: self

Then the update method can look like this:

SEPTEMBER 1992

21

This developer's tool allows Smalltalk to read and write to:
ORACLE, INGRES, SYBASE, SQL /DS, DB2, RDB, RDBCDD,

Universal Database

m VALUEMODEL IDIOMS

OBJECT BRIDGE ™

dBASEIII, Lotus, and Excel.

Intelligent Systems, Inc.

506 N. State Street, Ann Arbor, M 48104 (313) 996-4238 (313) 9964241 foax

“separate model and interface” is satisfied because the model
makes no direct reference to the interface, but the spirit is vio-
lated because interface decisions have caused us to change a
model that should be oblivious to such concerns.

Other views with other aspects require inserting more hard-
wired broadcast messages. In large projects, this process of
broadcast accretion leads to a bewildering profusion of broad-
casts, often with intricate time dependencies.

Another problem is that this style of programming discour-
ages reuse. Each instance variable is a special case, to be handled
by special case code. For example, suppose we are working in a
multiprocessor environment and want to view a running aver-
age of the number of processors active during rendering. We
could add an instance variable, utilization, with accessing and
setting methods that are copies of the respective messages for
flops, but we could do no better at reuse than copy and paste.

This last point suggests that state change and change propaga-
tion somehow must be folded together into a new object. This ob-
ject will be used instead of a bare instance variable as a model for
views. We can create a family of these objects to model the differ-
ent ways of viewing state changes over time. By using various
kinds of objects in varying circumstances we can change the inter-
action supported by the model without changing the model itself.

The most common solution to these problems is to separate
the model into a “browser” object and a clean underlying
model without broadcasts (see Figure 1). The browser medi-
ates between the user interface and the “real” model, translat-
ing user requests into messages to the model and propagating
changes back to the interface. Although fairly simple conceptu-
ally, this style of programming introduces another layer of ob-
jects between the user and the model without addressing the
problem of multiple browsers on the same model (for exam-
ple, the problem of updating the source code of a method ap-
pearing in more than one Browser).

VALUE MODEL STYLE
ValueModels in Objectworks\Smalltalk Release 4 fill the role of
an interaction model. Rather than appearing between the do-
main model and the interface, ValueModels are placed “be-
neath” the domain model. This allows the view to interact di-
rectly with the state of the domain model and does not clutter
the model itself with interaction concerns.

Here’s how an ideal implementation can be applied to our
example:

ValueModel
superclass: Model
instance variables: value

value
“value

value: anObject
value := anObject
self changed: #value

We can recast Mandelbrot to use this simple ValueModel.
First, the initialization method sets flops to a ValueModel.
initialize
flops := ValueModel new

When accessing or setting the value you must remember to
send messages to flops and not just use the instance variable.
Religious use of accessing and setting methods, though, can
hide this detail from the rest of the object.

flops
*lops value

Note that when the value is set the Mandelbrot no longer
needs to propagate changes.

flops: aNumber
flops value: aNumber

When making a view to display flops the ValueModel is the
model of the TextView, not the Mandelbrot.

openflops

| window |

window := ScheduledWindow new.

window addChild: (TextView on: flops aspect: #value
change: nil menu: nil).

window open

‘We now have a system with the same functionality as the
simplest one described above. Figure 2 diagrams the relation-
ships between the various components in the value model-style
Mandelbrot.

The worth of ValueModels becomes apparent when we dis-
play a running average rather than a single value. The change is
made creating a subclass of ValueModel called AveragingValue-
Model, which accumulates a history of values in response to
value:messages.

AveragingValueModel

superclass: ValueModel
instarice variables: none

MandelbrotView TextView

Mandelbrot

Figure |. Classic separation of model and interface.

20

THE SmMaLLTALK REPORT

10 Years Ago, &
en OTI Suggested 2
at Object-Oriented
echnology Would
Revolutionize
The Software Industry,
People Called Us
r

Now, They Simply Call Us.

OTI's ENVY%Developer — the first multi-user

For over 10 years, OTI has been on the
leading edge of object-oriented software
engineering. And today, as more and more
companies adopt this exciting, new
technology, OTT remains the leader in
providing industrial and commercial
object-oriented solutions.

Partners in

Object-Oriented Development

OTT’s unique technology alliance program
provides a means of accelerating product
development and introducing new software
technology. OTI's technology is being used
in products ranging from pen computers to
real-time systems. Through these alliances,

we've earned a solid reputation for developing

high-quality, reliable software — on-time,
within budget and to demanding product
specifications. This success is attributed to

Canada Telephone: 613-820-1200 e Fax: 613-820-1202 » E-mail: info@oti.onca USA Telephone; 602-222-0519 » Fax: 602-222-8503
ENVY s a registered trademark of Object Technology International Inc.

development environment for object-oriented

engineering.

OTI’s ENVY/Developer —

Product

Development Tools For Smalltalk

With ENVY/Developer, large and small

software engineering teams work within an

interactive, shared programming environment.

Inside this environment, team members share

common development tools, common software

components and common source code — that

means faster cycle times, increased productivity,

virtually no duplicated code, and no wasted

effort.

ENVY/Developer, the team passes the

application through each phase of the software

Applications are created efficiently and
effectively, from beginning to end. Using

manufacturing lifecycle - conceptualizing,
prototyping, manufacturing, testing, release
and maintenance — without ever leaving the
environment. ENVY/Developer also tracks
this process by providing complete software
version control and multi-platform
configuration management,

Interested?

If your organization is interested in joint
research and development or you would like
more information on ENVY/Developer and
object-oriented programming environments,
call us today,

Object Technology
International Inc.
Engineering Ideas
Into Products

B EXPERIENCES WITH SMALLTALK ON A LARGE DEVELOPMENT PROJECT

. continued from page ...

Productivity

We are convinced that Smalltalk, with its sophisticated and
customizable environment, source-level debugging capabil-
ity, extensive class library, and automated storage reclama-
tiom, is significantly more productive than mosl other devel-
opment environments (including, to a lesser degree, other
-0 environments},

This is substantiated to a certain extent by an interesting
case that eccurred during the project. As part of our develop-
ment we were reguired to implement a general purpose graph-
ical windowing svstem using Objectworks\Smalitalk Simulta-
neously, 2 second development group was independently
implementing a similar facility in C based on an X Window
System toolkit. This substantial application amounted to ap-
proximately 66,000 lines of C code, while the same functional-
ity in Smallialk required enly 6,200 lines of Smalitalk—a func-
tionality ratio of 10 to 1 per line of code! A more conservative
estimate, based partly on these resuits and partly on our overall
experience on this project, is that Smalltalk gave us a praduc-
fivity advantage three to five times over a traditional program-
ming language such as C.

We believe that Smalftalk has a significant productivity edge
over other O-0 languages as well. Although we have no hard
quantitative data, our rough estimate is that Smalltalk is at
least two 1o three times more productive than Cee.

Performance

ObjecTime is a computing-intensive apphication: It has a
graphical interactive user interface, it must perform complex
semantic checks in real time, and it must efficiently execute
complex high-level designs. By far the greatest portion of this
fanctionality is implemented in Smalltalle. (Lesser portions
[approximately 5%] were implemented in C++, not for perfor-
mance reasons, but to enable execution of the Cer segments of
a user’s design.) Although we occasionally encountered perfor-
mance problems, in most cases we were able to improve per-
formarnce to acceptable levels either via straightforward code
optimization or through readjustment of the architecture.

The only potentially serious problem relating to performance
is an occasional pause for memory compaction, which is part of
the automatic garbage collection mechanism. For our applica-
tion, we found that this pause becomes unacceptable in situa-
tivas where there is not encugh real memory so part of the
garbage collection involves swapping memory from disk. To
eliminate this problem we stipulated a minimum amount of real
memory for our application. Memory requirement is a function
of the size of the user design. For ObjecTime release 3.5.1, mini-
mal memory requirement starts at 16 MB {on a Unix worksta-
tion) for small to intermediate designs and goes up to 40 MB for
the largest designs. With sufficient memory in place, the garbage
collection pause is relatively short (between 4 and 10 seconds)
and occars infrequently (every 15-20 minutes).

Cruality

Most of our development was done with the ParcPlace Systems

product, Objectworks\Smalitalk {from release 2.1 through release
2.5). In over four years we encountered only two problemns, both
miner, which required product fixes by the vendar.

Lisability for large systemn development

Qur experience demonstrated that Smalltalk was a practical so-
iution for moderately large development teams (30 prograrn-
mers) even without the assistance of specialized team pro-
gramming tools. Of course, if such tools are available {e.g.,
ENVY/Developer from Object Technology International), they
should be used, since they add significant value and can extend
the applicability of Smalitalk to even larger projects than ours.

Training

Carleton University is one of the major world centers of
Smalltalk expertise. The School of Computer Science at Car-
leton organized a short course, taught by professors John
Puagh, Wilf LaLonde, and Dave Thomas, which for most feam
members was the initial exposure to Smalltalk. We were alsa
ahle to hire, on a temporary basis, & group of graduate and un-
dergrachuate students whe served as consultants on proper
Smalltalk usage. The presence of such experienced Smallzalk
programmers significantly cut down on our training time,

Inn addition to the Carleton course, we took an “intermedi-
ate” level Smalltalk course offered by ParcPlace Systems, which
focused on common technigues for effective usage of the envi-
ronment, This course visibly increased the confidence level of
the development team.

It takes between one and three weeks for an experienced pro-
grammer to learn encugh Smalltalk to start using it on the job.
However, for a programmer to effectively use Snuailtalls, it is
necessary to become famikiar with the O-O paradigm, the class
tibrary, and the programming environment itself, In our exper-
ence the majority of programimers needs an additional 6 o 20
weeks to reach an “intermediate” level of proficiency. (Keep in
mind that the same amount of time is needed to learn the envi-
ronmental particulars je.g., code libraries] for any large project.}

The development process

Qur development process differed somewhat from the tradi-
tional model. First of al}, we wanted to take advantage of the
rapid prototyping capability of Smalitalk. Proper use of this
feature helps designers gain valuable insight early in the devel-
opment cycle and before major implementation effort is ex-
pended. Inheritance also adds a new aspect to the overalt de-
sign effort. Typically this requires additional effort consisting
of another pass through the design after the desired functional-
ity is fully achieved. Further design optimization is accom-
plished from the perspectives of reuse and abstraction, We ul-
timately settled on a process consisting of four main activities:

1. Functional design defines the functionality of the feature
being developed, The output of this activity i a Functional
Specification document which ¢an be discassed with
clients. Once finalized, this specification is also given to an

&

THE Smarvrark REPORT

MALLTALK IDIOMS

v last columrn outlined ways of using dependency as
embodied in Smalitalld’s update and changed mes-
sages. ParcPlace’s release 4 of Objectworks\Smalitalk
introduced a significant refinerment of dependency called Val-
neModel which addresses some of the shoricomings of the
classic style of dependency management.

CLASSIC SMALLTALK STYLE

Here is another example of the classic style of Smalltaik change
propagation. A Mandelbrot renders a portion of the Mandeibzot
set while it measures performance.

Mandelbrot
superclass: Model
instance variables: region flops

A Mandelbrot object renders the portion of the Mandeltbrot
set in region (a Rectangle with floating point coordinates] on
an Image when sent display0n:. Assume we have implemented
a primitive rendering method that returns the number of float-
ing point operations it initiates as it displays, The BisplayOn:
method divides the number of operations by the rendering
time to compute the number of floating point operations per
second, which will be stored in flops.,

displagOn: anlmage

| time ops |
time ;= Time mitisecondsToRun:

{ops == self primDisplayUn:anImage].
self flops: ops / time / 1000

The model responds to openflops by creating a window that
displays the value of flops.
openflops
| window |
windew 1= ScheduledWindow naw.
window addChild: {TextView o self aspect: #flopsSiring
change:nil menus nil)
window open

Some users complain that putting an open method in the
model allows too much of the interface to leak through. Butin
my opinion one is free o open any kind of window, and if the
model offers a default way, so much the better, Putting open in
the model keeps the code together; if more flexibility is needed
later it can always be moved.

TextView's symbol flopsString is used by the view both to rec-
ognize an interesting broadeast and as a message to the model

Kent Beck

to return z string suitable for viewing. The model thus needs to
respond to flopsString.

flopsString
~gelf flops printString, flops'

Mow all that remains to update the view is to propagate a
change whenever the flops change.
flops; alumber

flops = aumber.
self changed: #flopsString

Already the interface is beginning to leak into the model. Be-
cause the example inierface uses the symbol #lopsString, the
model must have this particutar symbol built in, Other interfaces
viewing other aspects of the model dependent on the measured
flops will require additional broadcasts when the flops change.
The model is no longer insulated from changes to the interface.

Let’s refine the model a bit to see where this style of change
propagation begins to fall apart. What if instead of displaying
the last value of flops we want to display the average of recent
values? fiops holds an OrderedColiection instead of a Number.

initialize

flops = OrderedCollection new

The setting method adds to the collection instead of chang-

ing the instance variable.

flops: atfumber
flops addLast: alfumber.
self changed: #flopsString

The accessing method has to compute the average instead
of just refurning the value.
flops
flops isEmpty ifTrue: {~foat zero].
~[flops inject: float zero into: [ssum :each | sum + each])
/ fops size

The above code is still fairly clean from an implementation
perspective, From a design standpoint, though, it is a danger-
ous path,

The first problem is that the needs of the interface influence
our implernentation of the model. Conversely, our concept of
an interface is constrained by the way we have implemented
the model. The separation of model from interface, supported
at the implementation level by broadeasting changes, merely
reappears as a design problem. In other words, the letter of

SEPTEMBER 1962

19

& EXTENDING THE COLLECTION HIERARCHY

behavior, so we just need to determine whether the additional
behavior in OrderedCollection is desirable.

Because instances of OrderedSet maintain elements in order,
we will need public behavior to support the ordering charac-
teristic. The behavior in OrderedCollection is a good set of be-
havior for supporting this characteristic. In addition, if the be-
havior of OrderedSet is the same as for Ordered{ollection, the
interchangeability of the classes is better and therefore the
classes are easier to reuse. Based on behavioral analysis, the
best superclass for OrderedSet is OrderedCollection.

IMPLEMEMTATION

We can also lock in more detail at what is required to imple-
ment OrderedSet. The implementation of OrderedCollection uses
an indexable portion or indexable object, as well as instance
variables to keep track of valid indices. Set is implemented with
hashing for efficiency in determining uniqueness of elements.
¥f a Set already contains an element, it quictly ignores the re-
quest to add an element.

OrderedSet needs to support instances with a Jarge number
of elements. Hashing the elements is a good way to sapport
large numbers. OrderedCollections would potentially have to ex-
amine every element before determining if the addition ofan
element would be a duplication. To maintain order and en-
force uniqueness we will use two structures, one to implement
the unique elements characteristic, and one to implement the
ordering characteristic, 2s shown in Figure 1.

structure for
enforcing uniguensss

structure for
maintaining ordexr

e
— &
ks

T S
Ms -‘74%

N

7

N

Figure |. Using migtiple structures.

Now we will examine the implementations with each of our
candidate superclasses. If OrderedSet is a subclass of OrderedCol-
lection, we inherit the portion that stores elements in erder and
we need to implement the portion that hashes and enforces
uniqueness. The structure and behavior for maintaining order
is inherited from GrderedCollection, and the structure for en-
forcing uniqueness can be stored in an instance variable. This
structure could be an instance of Set.

‘With this alternative, some inherited methods would need
to be overridden. All the add and remove methods must po-
tentially be altered to maintain both structures. As seen in the
list of public behavior, there are a number of these methods,
such as add:, add:after;, add:afterIndex:, addfirst:, removefirst and
removeLast. Fortunately, not all these methods have to be over-

ridden because sorme of them call each other. We would want
to override includes: because the hashing used in the unique-
ness structure gives us a quick lookup of elements, We would
not override do: because it operates on the inherited structure’
that maintains order.

1f OrderedSet were a subclass of Set, the inherited structure
is the one that enforces uniqueness; an auxilary structure for
maintaining order is referenced from an instance variable. Pre-
sumably, the order maintaining structure would be an instance
of OrderedCollection.

We would also need to override adding and removing
methods—there is just one of each. The majority of coding is
in implementing behavior that implements the element order-
ing characteristic. We would not need to override includes: be-
cause we inherit the version that makes use of hashing, buf we
would need to override do: so that we process elements in the
ordered defined by the order maintaining structure,

MNAMING

Orther criteria that might bias owr judgment are implications of
a class’s mame. If 2 class hierarchy is part of the public interface
for a library, it might be easier for users to locate 2 class located
in a logical place in the hierarchy. With a class called Ordered-
Set, users are more likely to look for this class as a specializa-
tion of Set. They might not find it as easily if it is & subclass of
OrderedCollection.

CONCLUSION _
We make OrderedSet a subclass of OrderedCollection because:

+ The behavior of OrderedCellection is more suitable than the
behavior of Set.

« It is more likely that the behavior will be interchangeable if
the relationship between the two classes is explicit.

« There are fewer methods, overridden and new, that must be
implemented in OrderedSet.

Furthermore, by browsing the Collection hierarchy, develop-
ers will generally examine several Collection classes at a time, and
will probably notice DrderedSet as a subclass of OrderedCollection.

The is-kind-of heuristic is useful for generating candidate
superclasses. Its intuitive nature can be an advantage. How-
ever, analysis of public behavior often yields a better selection.
1f we only used the is-kind-of heuristic in our case study, we
wotld be most likely to make OrderedSet a subclass of Set. On
the other hand, when we use the public behaviar heuristic, we
congchude that OrderedCotlection is a better choice.

TJuanita Fwing is a senior staff member of Digitalk Professional Ser-
vices (farsmerly Instantiations Inc. }. She has been a project leader for
several commercigl 0-C software projecis, and is an expert in the de-
sign and implementation of O-O applications, frameworks, and sys-
tems. In a previous position at Tektronix Inc, she was responsible for
the development of the class libraries for the first commuercial-quality
Swalltalk-80 systemn. Her professional activities include Workshap
and Panel Chairs for the anrual ACM OOPSLA conference.

18

THE SmarLTalk REPORT

independent verification group to allow early preparation
of test plans.

2. Object or class design is the fundamental synthesis process in
which 2 high-level design is worked out for the feature. If
the feature is complex enough, a formal Design Document
is produced for review purposes.

3, Coding is part of the prototyping and refinement activity. In
the case of prototyping, this activity is often concurrent
with and supplemental to class design and even functional
design. Given the importance of user interfaces to our ap-
plication, a distinct subactivity is early modeling and evalu-
ation of the user interface design,

4. Documentation and testing are usually done in the final
stage. Each designer generates a functional test plan that Is
reviewed and used for white box testing. For major features,
code inspections are also held. This phase also includes test-
ing of the software by an independent verification group.

Although the individual activities are listed in sequence, the
process allows for internal cycles 1o accomodate further refine-
ments, particularly following implementation,

The project management process

The iterative natare of the development process makes it
difficult to detect whether or not it converges, To get around
this we specified a linear progression of milestones, each one
tied to a concrete deliverable. The interval between successive
milestones was fxed in advance, based on a priori estimates of
the effort required. For example, the formmal release of a Func-
tional Design document was the frst milestone following the
stars of feature development. Other major milestones included
the release of an Object Design document, the delivery of code
to a test group, and the successful completion of testing, Not
surprisingly, we had the most difficulty estimating the amount
of effort needed for individual milestones to be achieved. This
was especially problematic at the beginning because we had
had no previcus experience with an iterative development pro-
cess or the O-O paradigm.

Additional observations
To conclude this summary of our experience, we Hst several
additional points pertaining to O-O development:

1. The management team must have an in-depth understand-
ing of 0-0 technology to gain maximum return from it
‘This technology is different enough from traditional ones
{e.g., the focus on Teuse, fterative development process) that
many of the long-established management practices are in-
appropriate. Because this is a refatively new technology not
many technical managers are experienced with it.

2. There is a significant need to develop better management met-
rics to reconcile an iterative development process with the
needs of management so that a process stays within its allocated
resonrces. Successive refinement can indeed reach a point of di-

Ju.st opeﬁéd!ﬁ

The first online Smalitalk marketplace where
any developer can sell or buy Smalltalk tools,
components, add-ons, advice or training, and
hook up with the right people. If you're looking
for the best in Bmalitalk, come to the AMIX
online marketplace.

We're offering the AMIX sofiware for frae,

Visit the AMIX Booth (#701) at OOFPSLA,
October 186-22 in Yancouver, Or call us now at
415-203-1000 and we'll send you a disk today.

American Information Exchange Corporation
1881 Landings Drive

Mountain View, CA 94043-0845

Phone: 416-903-1000

FAX: 415-803-1085

minishing returns. How do we detect when that point has been
reached? New rretrics are also reguired to measure productiv-
ity; with refirernent, the number of lines of code can actuadly
decrease with tirme through inheritance and reuse.

3. The ease and rapidity with which code can be changed and re-
compiled in Seafltall can easily lead to hacking with ittle or
no time taken to reflect, {Smalthtalk is one of those seductive
environments where it is very easy for the medium to become
the message.) This style of development tends to work bottomn
up and does not extend very well to large systemn design. The
best way to avoid this is to ensure that a system azchitecture is
defined before any development of details takes place.

CONCLUSION

We have been using Smalltalle on our project for almost six
vears; overall, our experience remains strongly positive. We
have confirmed not only that Smalltaik Is pewerful and robust
enough to be used for commercial-quality software, but also
that there are substantial benefits when compared with other
implementation options. Finally, we have demonstrated that
Smalftalk can be used successfully on large and fong-term pro-
jects involving sizable programming teams.

References

1. Selic, B., . J. Gullekson, and L McGee Engelberg. ROOM: An
Object-Criented Methodology for Developing Real-Time Sys-
tems, Momntreal, Catada, July 6-10, 1992,

Bran Sefic 1 Senior Manager responsible for real-time CASE technol-
opy at Bell-Northers Research in Ottawa, Canada. He can be
reached at 613,763.3954 or at selic@bur.ca.

SEPTEMBER 1092

Dan Benson

maliDraw is a shmple structured graphics editor
that provides an example of graphies rendering
and MVC application construction in Smalkalk-

. 80 Release 4. The first article in this series con-
tained an introduction to graphics coneepts and application
construction with the MVC architecture through the definition
of a “minimal” SmallDraw. The second article added the abil-
ity to select and modify obiects in the view. This third and final
article extends the features of SmallDraw to include grouping
of objects, layering of obiects, zlignment of objects through a
DialogView, cut/copy/paste operations through a shared clip-
board, the use of command keys, and serolling of the view, In-
formation on obtaining the complete source code for Sniall-
Draw is given at the end of the article,

GROUIPING CBJECTS
Grouping obyjects together allows them o be treated as a single
anit. That is, a grouped collection of obfects can be translated,
scaled, and copied as a single object. To do this, a new class is
defined as a subclass of SDGraphicObject, called SDGraphicGroup:
Object {)
EDGraghicObject ('insideColor” herderfolor’ lineWidih” ‘handles’
‘poundingBox’)
SDGraphicGroup {‘elements’)

SDGraphicGroup’s single attribute, elements, holds a collec-
tion of $DGraphicObjects. It implements specific methods for
calculating its boundingBex, displaying its elements, testing for
point inclusion, and translation and scaling. For example, SB-
GraphicGroup defines the following method for translation:

translateBy: aPoink
self elements do: [:0 | o franslateBy: aPoint].
self computeBoundingBox

The SroaliDraw model is responsible for grouping objects.
When the group operation is selected from the meny, Small-

Diraw creates a new SDGraphicGroup, setting its elements to the
currently selected set of objects. The selected objects are re-
moved from SmallBraw’s objects and the new SDGraphicGroup is
added to Smallbraw’s set of objects,

The inverse operation of un-grouping is also provided,
When this operation is selected, SmaliDraw removes any in-
stances of $BGraphicGroup from the current selection, adding
each individual element to its set of abjects.

LAYERING OBJECTS

As objects are added to the drawing they are placed on top of
existing objects; that is, they are conceptuallv layered, This idea
is also reflected exactly in the SmallDraw objects instance vari-
able as an OrderedCollection of objects,

Itis often useful to change the relative positioning of objects
within the stack, This is accomplished by providing four menu
selections, shown in Figure 1, for moving objects to the front or
back of the stack, or forward or backward by one position.

forward (alt-h
voraup {alt-g) |twofront

edit b
change plungroup (ali-0) |backward (alt-}
gisplay b| align [alt-k) |toback

alignment ...

Figure | Menu selection for moving ohiecrs.

Moving selected obiects to the front is done by simply re-
moving them from the lst of objects and adding them to the
fromt of the list:

movefoFront
self hasSelection ifTroe: [| setection |
selection = self selectedOhjectAssociations.
selection do: [:oa | self objects remove: oal.
self objects addAlFrst: selection.
self changed: #rectangle with: self selectedObjectsDisplayBox)

Maving objects forward by one position is done by insert-
ing the selected object before the object that was in front of it

moveForward
self hasSelaction ifTrue: |
self selectedObjectAssociations do [loa | | before |
self objects first == oa
iffalse: [before := self objects befors: oa.

setf ohjects remove: pa.
setf objects add: oa before: before]].

self changed: #hectangle with: self selectedCbjectsDisplayBox}

Moving objects to the back or backward one position is
done in a similar fashion.

8

Tre SMaLLTaik REPORT

hieuristics for selecting superclasses, This month I will con-

tinue the discussion on subclassing with a case study that
externds the Collection hierarchy. We will create a new Collection
class that contains unique elements and zlso maintains the or-
der of these elements.

In my last column, | discussed creating subclasses and two

HEURISTICS REVIEW
A kev step in creating a new subclass is to select a suitable su-
perclass. The heuristics for selecting a superclass are:

Heuristic One: Look for a class that fits the is-kind-of or
is-type-of relationship with your new subclass.

Heuristic Two: Look for & class with behavior that is similar
o the desired behavior of the new subclass,

CASE STUDY
We want to create & new data structure class that holds ele-
ments in order and disallows duplicate elements. When sent a
request to add a duplicate cbject, the request should be quietly
ignored.

This new data structure class contains elements similar to
Arvays, Strings and other Collection subclasses. Because of these
similarities, we will hegin our search for candidate superclasses

in the Collection hierarchy. Two classes immediately stand ount:

* OrderedCollections keep elements in order.
« Sefs store each element only once, disallowing duplicate
elements.

The combination of these characteristics is what we want
for our new class. A good descriptive name {or our new class is
DrdexedSet,

APPLY HEURISTICS

Where should we insert our new class, OrderedSet, into the hier-
arclry? Crur first heurdstic is to look for potential superclasses
that match the is-kind-of criteria. We use is-kind-of as a short-
hand for categorization based on characteristics, The significant
characteristics and their classes used in this determination are:

»vary numbet of elements {Collection}
= store arbitrary objects {Collection)
» dynamically add and remove elements (Collection)

« enumerate (Collection)

Juanita Ewing

liection hierarchy

* store glements in order (OrderedCollection)

« store unique elements {Set}

The desired characteristics of UrderedSet are closest to those
of OrderedCollection and Set, so OrderedSet could be a-kind-of
Set or a-kind-of OrderedCollection.

In a system that supports multiple inheritance, we might be
tempted to have two superclasses, Set and GrderedCollaction. In
Smalltatk we must choose a single superclass, either Set or Or-
deredCollection,

Our second heuristic is 1o choose candidate superclasses with
suilable public behavior. Let’s compare the candidate classes
we've selected, Set and OrderedCollection, in terms of behavior,
Set and OrderedCollection have a common superclass, Collection,
50 we can ignore public behavior from the Collection on up.

If we were to make OrderedSet a subclass of Set, it would in-
herit these methods from Set:

add:

do:

includes:
orcurencestf:
remove:ifAbsent:
size

All of these methods also have an implementation in the
abstract superclass Collection, so Sat doesn’t add any new public
behavior to the behavior from the comnion superciass,

If GrderedSet were a subclass of OrderedColiaction, it would
inherit behavior from OrderedCollection and IndexedGollection
{or OrderedColiection and SequencableCollaction in Object-
works\Smalitall). OrderedCollaction has adding and removing
methods and many more methods related to its element-
ordering characteristic. The list of methods includes:

add: addfirst:
add:after: addlast:
add:afterIndex: removerifAbsent:
add:before: removeFirst
add:heforelndes: removelast

Many of these methods are extensions of the public behav-
ior from the common superclass Collection.

The public behaviors for Sets and OrderedCollections have
sorme similarities. In fact, the behavior of Set is a subset of the
behavior of OrderedCollection, which makes Set the behavioral
supertype of OrderedCollection. Set doesn’t add any additional

SEPTEMBER 1992

17

i THE BEST OF COMP.LANG

work just like hurnan brains, Being told that OOP is good for
simulation and that it naturally models the problem domain
only makes these misconceptions worse.

Smalttalk progranmers tend to transcend these ideas more
quickly than others because they're confronted with examples of
Schedulers, Controllers, Associations, and other non-concrete
classes. Even so, the misconceptions are very widespread. Let's
look at some concrete examples.

Objects are always concrete nouns
Dan Weinreb {dlw@odi.com) writes:

This topic comes up again and again whenever semantic
data modeling is being discussed. I've seen it in papers from
over ten vears ago. After reading a bunch of the literature in
this area I have come to the conclusion that there doesn’t
seem to be any completely satisfying answer. Either you end
up having these objects that only model relationships rather
than modeling “things” in the problem domain, or else you
end up inventing constructs that are annoyingly complex
and often disturbingly similar to objects themselves.

and Doug MacDonald (doug@softwords.be.ca) writes:

This thread raises what 1 have always considered tobe a
shortcoming of OO scheme of modeling the world: while it
allows us to capture complex classifications and instances,
it does NOT provide the idea of relationships among ob-
jects. Yes, we can “send messages” among objects, provide
well-structured access functions. But this does not address
the central problem. We end up with forced concepts like
relationship classes to deal with the cow-milk type puzzles.

This literal interpretation of objects corresponding only to
physical “things” is probably the single most prevalent miscon-
ception about OOP. It is the main reason people reject solutions
that include an AlgorithmManager or a class representing the rela-
tionship between cows and farmers. I've seen many other exam-
ples, including database discussions that assumed an ODBMS
could model only physical things, and that an RDBMS could
only model relationships. I a similarly literal vein, I've seen C
described as a functional language because it has functions.

Naturally, there are many who do not share these beliefs.
Fric Smith (eric@fs.com) writes:

There is nothing “forced” about refationship classes. Rela-
tionships are objects, period. The word “relationship” is a
noun. A relationship object should contain references to its
target objects, functions to return information about its
target objects and about various aspects of the relationship
between them, and functions to modify the relationship,

Mike Wirth (mcw@ca.rice.edu)} writes:

Nothing annatural about it at all. Associations between ob-
jects are every bit as much “real world” objects as the objects
being associated. Ask your spouse or “significant other.”

i your sp g

And Ralph Johnson (johnson@cs.uiuc.edu), who seems to

have encountered these ideas before, anticipated the objections
in the same posting quoted above:

There is NOTHING wrong with having objects that repre-
sent processes. It is true that novice OO0 designers make a
lot of such objects that are bad design, but good 00 de-
signers make those kinds of objects, too. You just need to
have a good reason for introducing a new object.

The fundamental point of OOFP is abstraction. A gond OOP
design should correspond to ideas in the problem domain.
Whether those happen to be ideas about things that can be
touched or about relationships, processes, or concepts is irrele-
vant. One of the best metrics for this is naming. If someone fa-
miliar with the domain can look at a class name and immedi-
ately have some idea what it does, then it’s probably a geod
class for that domain,

There is exactly one “right” OOP design for a problem
Given that the objective is a perfect model of reality, then all
00 designs should converge. After all, there’s only one real
world. This results in much disappointment when people dis-
cover that QOP, like any other kind of programming, still has
design decisions and trade-offs.

David A. Hasan (hasan@ut-emx.uucp) writes:

wthe “map” between (OO methods/objects and what is go-
g on in the real world s NOT unique. There can be
different interpretations on which objects should carry out
which methods based on how the real world activities are
“best modeled.” Therefore a choice must be made in speci-
fying object interfaces, and making this choice might un-
duly constrain future versions of the system...

This is entirely true, but it is based on vastly inflated expecta-
tions of what OQFP can do.
bobm@Ingres.COM (Bob McQueer) replies:

What problem you are trying to solve defines “proper,” I
think. I can see us having the same problems we have al-
ways had when trying to “grow” new functionality into 2
design that didn’t anticipate growth in that direction. Note
that expediency will dictate that you can’t make provisions
for EVERY possible direction of growth, also as it always
has.... I think what I"m saying is that while the QO
paradigm is a useful tool, you can’t expect the existence of
a paradigm to do all vour work for you. There s NOT a
unique map, and it takes proper use of the tool to define
the map which serves your purposes.

THE REAL WORLD AGAIM

The idea of modeling the real world in detail is fallacious. In
what we call “reality,” most things are human-imposed con-
cepts. Reality consists mostly of interactions between elemen-
tary particles; the higher-level structures we perceive are ab-

continued on page 22...

16

TuE Smaterary BerorT

ALIGNING OBJECTS
A difficult and time-consuming task in any graphics editor is
trying to get objects aligned with each other. Confining the
mouse to a low-resolution grid is helpful but not always ade-
auate. This task can be simplified with the use of a Dialog¥iew
to specify the type of alignment desired. Alignment can take
place in either of two directions and one of three positions for
each direction {see Figure 2).

The user has the option of cheosing one or both directions,
For each direction, only one position can be specified using the

{)Center
{) Bottom

Figure 2. Alignment Dialogviaw.

radio buttons. The chosen alignment positions are retained by
SmallDraw s that they may be applied to selected objects with-
out bringing up the DialogView each time. Therefore, two menu
selections are added, one for applying the current alignment
and one for setting the stored alignment.

When the alignment is to be set, SmallDraw creates a Bi-
alogView whose model is SmallDraw. When the DialogView s
opened, Smalilraw specifies a message selector (#finishedAlign-
ment) that determines when the view should be closed. Until
that message selector returns true, the DialogView interacts with
the user and SmaliDraw to set and modify the alignment direc-
tions and positions.

The vertical and horizontal positions are represented as
symbols. These values are stored along with a flag that indi-
cates whether Cancel or OK was pressed in the Dialog¥iew.
Rather than adding three new instance variables to SmallDraw, a
single instance variable called alignment is added. This is an in-
stance of a three element Array to store the three pieces of in-
formation as follows:

InitializeAlignment

"The alignment Instance variable is an amay of thres elements:

1} vertical alignment | nit

2) horizontal alignment | nil

3) false | true | nil -> cancel | accept | not finished (used by
DialogView)

The last flag must be set to nil each time the DialogView is apened.
See openAlignmentDialeg and finishedAlignment."

SEFTEMBER 1092

B SMALLDRAW-~RELEASE 4 GRAPHICS AND MVYC Part 3

alignment isNit
#True: [alignment = Avray with: nil with: nil with: ndl].
alignment af: 3 put: ail

Methods are used to access the alignment array elements as
follows:

accepthlignment

alignment at: 3 put: true
acceptedAtionmmend

~alignment atz 3
cancelAlignment

atignment at: 3 put: false
finishedAlignmenit

~{alignment at: 3} nothil
horizontalAlignment

~atignment at: Z
horizentalAlignment: aSymbel

alignment at: 2 put: aSymbol.

self changed; #horizontalAligrment
vyertealdiignment

~alignment at: 1
verticalAlignment: aSymbel

alignment at: 1 put: aSymbol.

self changed: #verticalAlignment

Alignment is performed relative to the total boundingBox of
the currently selected set of objects:

doblignment
self hasSelection ifTrue: [} bb repalr |
bb := self selectedObjectsBoundingBox.
repair := self selectedObjectsDisplayBox.
"Wertical movement.”
self verticalAlignment = #top ifTrue:|
self selectedOhiects do: [0 | o translateBy
a@{hb oxigin y - ¢ boundingBex origin v)1].
self verticalAlignment = #center HTrue:{
self selectedOhjects do: [to | o translateBy:
0@(bb center y - o boundingBox center y)]]-
self verticalAlignment = #bottom ifTrue:]
self setectedObiects do: [to | 0 transiateBy:
G¢@(bb corner y - o boundingBox comer y31].
"Horizontal movement.”
self horizontalAlignment = #left ifTrue:|
self selectedObjects do; [:o | o translateBy:
{bb origin % - 6 boundingBox crigin x) @0]].
self horizontalAlignment = #center ifTrue:[
self selected Dbjects do: [t0 | o translateBy:
(bh center % ~ 0 houndingBox center x) @0]].
self horizontalAligreent = #right iffrue:|
self selectedObjects do: {10 | o transtateBy:
{bk corner % - o boundingBog corner x) @0]]-
self changed: #rectangle with: repair]

CUTICOPYIPASTE

A common metaphor in many applications is the cutting,
copying, and pasting of objects using a “clipboard” as an inter-
mediate storage mechanism., The Macintosh system is an excel-
lent example of using a common system clipboard to transfer a
variety of data objects between applications. Similarly, graphic
objects can be copied or cut to 2 common buffer accessed hy
all Smalibraw applications.

Intermediate storage implies an instance variable that can
reference collections of graphic objects. Sharing access to this
storage among SmallDraw instances suggests that a SmallDraw
class variable is the appropriate mechanism for a commaon
clipboard. Therefore, a class variable called Clipboard is added
1o the SmallDraw class. The Clipbeard can hold one object, or
one colfection of objects, at a time. Copy and cut operations
are destructive because they overwrite the current contents of
the €lipboard. Pasting is nondestructive because a copy is made
of the Clipboard contents and added to the drawing.

It may seem trivial to implement the copy operation by
simply assigning the Clipboard class variable to a copy of the se-
fected objects:

copy

self hasSetection
iflrue: [Cliphoard := self selectedCbjects copy]

However, care must be taken when copying and pasting ob-
jects to and from the Clipboard. The Smalltalk copy performs a

shallow copy, which simply duplicates references to the objects

to be copied (making them identical and thus equal), and the
Clipboard then points to the objects remaining in the drawing.
In contrast, a deepCopy creates exact duplicate objects that are
different from the originals (equal but not identical):

copy
self has3election
ifTrae: [Clipboard := self selectedOljects deeplopy]

It is not necessary to use deepCopy when objects are cut
from the drawing. In this case, the objects are remeved from
the drawing and essentially transferred to the Clipboard:

cut
self hasSelection ifTrue: |
Clipboard := self selectedDbjects.
self objects: {self objects reject: {1p | p value]).
self changed: #rectangle with: self cliphoardDisplayBox]

When objects are copied to the Clipboard, they retain their
attributes including their location in the drawing. A copied ob-
ject immediately pasted back into the drawing covers its origi-
nal copy. A useful convention is to paste an object into the
drawing at an offset from its copied position. Each subsequent
paste of the same object would then be offset from the previ-
ous pasted object. This can be accomplished by defining a
paste offsel constant and translating the contents of the Clip-
board with each paste operalion:

pasteOffset
“answer the default offset for pasting objects from their copied
positions,”
~MO@E10

paste
self clipboardFull #True: {
self deselectall,
self objects addalFirst: ((Clipboard do: [0 |
o transiateBy: self pasteDifset])
deeplopy collect: [0 | ¢ -> truel)

10

Tre SMALLTALK REPORT

8 THE BEST OF COMP.LANG

ders. Udders are the interface here, and we can ‘pass’ a cow
to a farmer object to get the cow milked and the milk in the
vat. The farmer contains the knowledge of how milking
should be done, not the cow.”

...say we now have a better way to milk a cow, with a milk-
ing machine. Strict Q0L would say, “Modify the cow to
understand how to use the milking machine...” Reality
OO would say, “Just ‘pass’ the cow to the new machine,
The cow doesn’t need to change as it already provides the
necessary inferface.”

.Another example. $ay you have some glob of data, and
you want to run N validation processes against it..Where
do these processes go? Strict QOD, “Part of the glob, cbvi-
ously. That's what they act upon.” Reality OO, “They're
separate from the glob, and use whatever interface is pro-
vided by the glob to do their work.” '

‘This is quite interesting, because it's a well-considered,
thoughtful posting based fundamentally on false ideas of OOF.
1t arises from the basic question of where to put methods, but
in my opinion gets the principles wrong. I see the method
placement question as a conflict between the principles of
coupling and cohesion.

Consider the validation example, which expresses this most
clearly. A Validator class is a good idea. It groups related meth-
ods {for testing) together, and removes clatter from the class
being tested. It's easy to add additional validation checks, and
seems to be the only method that generalizes to consistency
checks involving several different abjects.

QOn the other hand, we should hide internal representations
to minimize coupling. The internals of a class should not be
exposed, and we expect validation to require access to these de-
tails at least some of the time,

A good comprosmise is to use both techniques. Use class
methods to implement tests that depend on internal representa-
tions, preferably using consistent naming scheme. Tests that
can be dome through the public interface should be implemented
through a Validator class, which when validating can also invoke
the appropriate self-testing methods in the individual class.

'The above posting is based on two false ideas, one in each
camp. Mr. Myers presents “Strict OGD” a5 the orthodoxy of
the OOP gurus, It dictates that any method modifying 2n ob-
ject’s state must belong to the class of that object. On the sur-
face this sounds reasonable, very much like encapsulation, but
it'’s an overgeneralization that simply cannot work in practice.

Encapsulation restricts the set of metheds that can access
an object’s internal representation to those in its class, This is
enforced in Smalltalk, but it is possible to short-circuit the re-
striction by writing get/set methods for each instance variable.
A method that accesses an object’s state through message sends
could be placed anywhere, but if it operates primarily on one
object it is good style to make it a method in that class.

There's a big difference, however, between good style and
an enforced rale. In particular, the “strict” position does not
allow the possibility of methods that medify (or even access)
more than one object. This disallows such a simple thing as a

bank transaction, where one account is incremented and an-
other decremented.

The “Reality QOD” camp allows such methods, but then
runs back inio the question of method placement, as K. Srini-
vasan {srini@gtsurya.gatech.edu) poinis out:

I am interested in developing (0 models to represent
manufacturing enterprises. { ran into the very same prob-
lem you've described — A method “process a part” seems
to alter the states of the part object, the machine object and
the operator object, and hence is a candidate for beinga
method belonging to any of them. To make it a method of
one, say “part,” and make that object a client of other two
abjects (operator and machine) will work, However, it
seems 1o be a highly arbitrary decision,

[agree wholeheartedly. If two or more things interact, and
the states are all changing, then the decision to place a method
handling this interaction is arbitrary. If the interaction is
sufficiently important, it may be worthwhile modeling it as an
object itself. Ralph Johnson (johnson®@cs.uinc.edu) discusses
this in the context of the milking example,

The real issue is how 1o divide responsibilities among ob-
jects.... Why not give the vat responsibility for taking the
milk from a cow? Without knowing anyihing about the
real world domain and what is likely to change, any of
three possibilities is just as likely, We have a transaction
hetween object C and object V, and the guestion is whether
we should introduce a new object F to model the transac-
tion (transactor) or we should make the transaction a
method of C or V. In general, it all depends!...Hf we have a
simple system whether nothing changes, then it might
make sense to put the responsibility for the transaction in
C. If we knew that the {ransaction itself was never going to
change, and that C was, {L.e. we want to milk sheep, goats,
horses, yaks, etc.) then it might be better to put it in V. If
the fransaction itself is going to change {i.e. use a milking
machine) then it would be better to make it an object.

Once again we hear the cry that this solution is “not reaily
object-oriented,” which brings us to the second, and more im-
portant, fallacy.

OOP AND THE REAL WORLD

Choosing the right name for something is important. A name
should be short, easy to remember, and clearly communicate
the essential idea. Unfortunately, “object-oriented™ fails in the
last category.

The problem is that everyone knows what an object is. We
intaitively “know” that object-oriented programming is all
about objects: concrete, physical things that we can, with
enough machinery, pick up and throw. Processes can’t be ob-
jects. Relationships can’t be objects. Contcepts can’t be objects.
OOP is “good” because it writes programs that perfectly mimic
the real world, and an OO program is “good” in direct propor-
tien to its mimicry—like neural networks, which we all know

SEPTEMEER 1992

his might more accurately be called “What else do peo-
ple on USENET think is wrong with QOP?” While there
are certainly areas in which QOP could be improved,
there are many misconceptions and false criticisms—se many,
in fact, that I ran out of space for them last month and am
continuing the topic here.
Let’s start with one of the most common complaints: appli-
cation areas for which QOF is inappropriate.

OOP CAN'T HANDLE PROBLEMS LIKE...
Harry Erwin {erwin@trwacs.fp.trw.com) writes:

OOP can be a disadvantage if the problem domain does
not lend itself convenientdy to object representations. For
example, many algorithms consist of a primary control
loop operating on passive things, and a Pascal or Ada pro-
gram of the traditional mode is more efficient and clearer.

If true, this represents 4 severe restriction of the OOFP do-
rmain. Many algorithms fit the pattern of a loop operating on
passive things; if OOP can’t handle them, most programming
is ruled out. Objects will have to be relegated to simple GUI
tasks, error handling, and other algorithmically trivial arcas.

In my opinion, it is not difficult to describe many algo-
rithms in terms of a main loop. The loop can be written as:

aBunchOfPassiveThings do: {:passiveThing |
algerithrManager pracess: passiveThing],

'The code gets more complicated if we include initialization
and post-processing code, or if it has to use a more complex
method of choosing the next item, but T do not think a Pascal
or Ada program could be clearer.

The complicated part is the processing of each “passive
thing,” which usuaily consists of elaborate manipulations of
various data structures, The algorithms literature considers it
good form to describe these manipulations in terms of opera-
tions on abstract data types, QOF usually handles abstract data
types very well, so it is actually very good for this kind of work.

BUT THAT'S NOT REALLY OBJECT ORIENTED

I'm guite happy with the general method of writing “tradi-
tional” algorithms using OOP because (1) the program struc-
tures correspond well with typical algorithm description, (2)
there’s good potential for reuse of abstract data type classes,

HE BEST OF comp.lang.smalltalk

/hat else is wron g with

Alan Knighf

(3) #t's clearly suitable for implementation in an OO language,
and (4) it nicely groups together the algorithm data in the
AlgorithmXManager class.

A recurring theme among complaints about OOP is that it
is “not really object-oriented.” But OOP solutions to problems
are often rejected as not being faithful to the principles of
object orientation because of a misguided idea of what objects
are about.

THE PRINCIPLES OF OOP

‘What does it mean for a solution to be object-oriented? On
what basis are these kinds of solutions rejected? Are these ideas
valid and, if so, are they fmportant enough to make us discard
good solutions?

The standard definition of an OC language says that it
should support encapsulation, polyntorphism, and inheri-
tance. True, but these are language features, not a set of guid-
ing principles. The dictionary is even less helpful. Mine traces
the word object to the Latin objectum, literally meaning “some-
thing thrown before or against.” Its roots are the words ob
{against} and jacie (to throw). Since we are interested in per-
ceptions of OOP, let’s find out what people on USENET think.

Dravid Myers (dem@meaddata.com} writes:

Once people learn Object-Oriented Design, they seem to
fall into two schools of thought. P'm interested in yous
thoughts on which, if either, is more corvect,

The first camp I'll call “Strict OOD.” They believe that all
functions that need to modify some object must necessarily
be member functions of that object....

The second camp I'll call “Reality OOD.” They don’t be-
lieve in taking things as far as the first camp if the resuiting
maodel wouldn't fit with their perception of reality... The
Reality 00D folks want to build an OO system so that its
components closely represent the world they are trying to
madel...,

and later expands:

You want to model a cow, and want to get milk from the
cow and put it in a vat...Strict OOD might say, “Justadd a
method ‘Cow, milk vourself,’ which puts the milk right in
the vat, Leave the details to the cow.” Obviously, Reality
Q0D would say something different. “Cow, present ud-

14

TuEe SMarrraik ReEpory

e

Cooren & Perses, e, (FORMERDY ACUMEN SOFIWAREL

B SMaLLDrRAw - ReLEAsE 4 GRAPHICS AND MYC, PART 3

Text [Puah e EV:\::S o e £l

Ve .

Srgte: [pushButiog a i -~
Hamz: [reeBution } | Fererm] |
o Botm: O Fnd s [Window o 3
e @ Sealed s 18

INDOWI

The Interface Builder for Smalltalk/V

The key to a gnod application is its user interface, and
the key to pood interfaces is a powerful user interface
development tool.

For Smalitalk. that tool is WindowBuilder.

Instead of tediously hand coding window definitions and
rummaging through manuals, you'll simply “draw” your
windows, and WindowBuilder will generate the code for
you. Don’t worry — you won't be Jocked into that first,
inevitahly less-than-perfect design; WindowBuilder
allows vou to revise your windows incrementally, Nor will
you be forced to learn a new paradigm; WindowBuilder
senerates standard Smalltalk code, and fits as seamlessly
into the Smalltalk environment as the class hievarchy

caut .

T Diylder tine H

Bpopoet B]

2 shin it £ Contat

“__. this is 2 potent rapid application development tool which

should be included in any SmalltallV developer’s enviromnent.”
- Jim Salmeons, The Smalliclk Report, September 1991

2600 FL Cammo Rea, Sure 409 Paws Ao, Cauromwa 94306

browser or the debugger.

Our new WindowBuilder/V Windows 2.0 is now available
for $149.95, and WindowBuilder/¥ PM is 5295, Both
products include Cooper & Peters’ uncenditional 60 day
guarantes.

For a free hrochure, call us at (415) 855-9036, or send us a
fax at (415) 855-9856. You'H be glad you did!

self chariged: #rectangle with: self clipboardDisplayBox]

Note that alt pasted objects become the current selection by

setting the value part of the Association to true. Making dupli-

cates of abjects can be simplified by defining a duplicate opera-

tion that bypasses the Clipboard:

duplicate
14d¢ & copy of the current selection without changing the Cliphoard.”
self hasSelection ifTrae: [| newlbjects |

newChijects = (self selectedOhjectAssociations deepCopy do: [0z |

oa key transiateBy: seif pasteOffset]}.

self deselectAll,

self ohjects addAllFirst: newCbjects.

self changed: #rectangle with: self selectedObjectsDisplayBox]

COMMAND KEYS

As an input device, the mouse isa convenient rmechanism when

working with modern bit-mapped graphical user interfaces.
However, it is often faster and less tiring to perform a com-
mand via the keyboard than to make a selection from a menu.

Keyboard commands are distinguished from normal typing

by pressing a combination of two keys: the command key and

a letter key. The command key lookslike & on the Macintosh
and is the alt key on the IBM RS/6000. Other platforms may
vary. The Smalltalk class InputSensor refers to the command
keys as alf or meta (depending on the platform) and responds
when either is pressed through the messages aliDown and meta-
Down, respectively.

Command key equivalents can be defined for most of the
operations that SmallDraw performs, Borrowing from a popular
commerdial structured graphics application, the following keys
are used to invoke the following operations:

key operation
X cut
c copy
v paste
H maove forward
i move backward
é duplicate
a setect all
k align
g group
G Un-group

SEPTEMBER 1502

11

Puone 415 855 9034 Fax 415 855 Y856 Cowreusmrve 71571,407

B SMal Droaw-——RELEASE 4 GRAPHICS AND MVC Part 3

o6

[In SmaliDraw] the controller is
independent of command key processing
and additional keys may be added
to the model without changing the
controller’s method.

The SmaltDrawController is responsible for all input, and can
now check for keyboard activity in its normal control se-
quence, All of the operations listed above are performed by the
SmaliDraw model. When the controller senses that a cormmand
key has been pressed, it forwards the key to the model for pro-
cessing. This way, the controller is independent of command
key processing and additional keys may be added 1o the model
without changing the controller’s method. The Smallliaw in-
stance method that processes command keys Jooks very much
like the Hst of operations above:

processfommandiey: aley

"Respond to aKey which may correspond to one of the receiver's
meny commands. If not, ignore #."

aKey = Character backspace ifTrue: {self delete].

aKey = $x ifTrue; [self cut].

aKey = $c ifTrue: {self copy].

aley = $v ifTrue: [self paste].

akey = §f ifTrue: [se¥f moveForward].

aley = 5j ifTrue: Iself moveBackward].

aKey = $d iffrue: [self duplicate].

aKey = $aiffrue: [self selectAll]

aKey = $icifTrue: [self doAlignment].

akey = $y ifTrue: {self group).

aKey = $G ifTrue: [self unGroup}.

SmailDraw menus are modified to indicate the keyboard com-
mands that may substitute for menu operations (see Figure 3):

SmallDrawControlier is only slightly modified in order to han-
die keyboard events, One method is added to detect and pro-
cess any keyboard activity:

new b
selection »

cut falt-x)
change b copy (alt-c)

display | paste {alt-v)
duplicate (alt-d}
select all (alt-a)

procesiKevboard
"Determine whether the user pressed the keyboard. If so, read the
key and pass i on to the model.”
self sensor keyboardPressed ifTrue: [| keyHit |
KeyHit := self sensor keyboardEvent keyVatue,
*Check for backspace here,”
keyHit = Character baclspace ifTrue: |
[self model processCommandKey: keyHit).
{self sensor altllown or: [self sensor metaDown]) iffrue; [
"KeyValues are lowercase so we must convert to uppercase if the
shift key is down."
self sensor shiftown iffrue:
[keyHit := keyHit asUippercase].
self model processCommandKay: keyHit]]

and one inherited method is overwritten to include the key-
board method in its contrel Inop:

confrotctivity
"First check the keyboard and then do the usual,”
salf processKeyboard.
super controlActivity,

SCROLLING THE VIEW

SmaliDrawView can become a scroflable view by defining it as a
subclass of ScrollingView. The class comments for ScrollingView
inciude the following information;

Subclasses must implement the feliowing messages:
accessing
display0bject
scrolling
scrollBy:
scrollHorizontatiy:
serollVertically:

DisplayObject must be able to respond to the message bounds.
Displaytbject is the object being scrolled in the view, in this case
the SmallDraw drawing. SmallDrawView needs to know how big
the SmallDraw document is so that the scroll bars can be prop-
erly scaled. SmaliDraw’s new instance variable, pages, is an in-
stance of a Point that defines the number of pages lined up hor-
izontally and vertically. The minimum is i@1, or one page. For
two pages side by side, pages would be 2@1, and 50 on. The
document automatically increases in pages if objects are trans-
lated or scaled such that they extend beyond the rightmost or
bottomunost pages of the document. The SmatlDrawConiroller
ensures that objects are not allowed to extend beyond the lefi-
maost or topmost pages.

The size of the document is obtained by asking SmaltDraw
for its bounds:

bounds
~0@0 extent: self documentSize

where the page configuration is converted to pixels by multi-
plying an & 1/2 x 11 inch sheet of paper {assuming 1/2 inch
margins all around} by the number of pixels per inch:

doemmeniSize
“Answer the size of the document in terms of the number of 8.5 x

12

Tue Smarirark REPORT

11 inch pages."
~self pages * self pageSizelnPixels
pageSizelnPixels
"Answer the size of one 8.5 x 11 inch page (with 1/2 inch marging),
scaled by the number of pixels per inch (72}, This number is
calewtated as: ((7.5@10) * 72) rounded.”
~LAG@T20

Ta ensure proper scaling of the scrolled object, Small-
DrawView defines the following method:

dataBxtent
*self displayOhiect bounds extent * self displayScale

Scroll bars rely on a scroiling grid in which the inherited value
for scrollGrid is 1@1.Using paste0ffset, SmalllrawView can be
defined so that scrolling occurs in larger intervals, SmallDrawView
provides a menu option to turn the grid on or off and SmallDraw-
Controller uses its view's grid for selecting points in the view.

Opening SmallDraw with a scroiling view is done as before
by placing the SmallDrawView in an EdgeWidgetWrapper but now
a horizontal scroll bar is also included {see Figare 4):

openscralling
"SmaliDraw new openScrotiing”
scheduledWindow new
iabel “Smalilyaw’;
component: (EdgeWidgetWrapper on:
(SmallDrawView model: self)) useHorizontalSerollBar;
cpenWithExtent: 200200

EJM‘ I]

|

%

- - B
1

Figure 4. Two scrolling views {25% and 100%) and rwo pages side by side.

SUMMARY

Building on the first two SmallDraw articles, this final article
has presented further enhancements to SmallDraw to demon-
strate Release 4 graphics and MVC application construction,
Though far from perfect, it should give beginners a good start
on their own development.

Certainly many improvements and enhancements can be
made to SmallDiraw. New types of graphic objects, such as
Text, Images, and Bezier curves {(included in Release 4.1),
can be added. Other object operations can be defined, such
as rotation, smoothing of polygons, editing individual points
on a polygon, undo, or auto scrolling of the drawing white
fransiating or scaling objects heyond the extent of the view,
Advanced functionality can be provided to allow for saving
drawings to files, PostScript or LaTeX printing of the draw-

VOSS

Virtual Object Storage System for

Smalltalk/V

Seamless persistent object management
for all Srmlltalk{V applications
@ Transparent access o all kinds of Smalltalk objects on disk.
Transaction comrait/rollback of changes to virtual objects.
® Access toindividual elements of virtual collections for ODBMS up
to 4 billion objects per virtual spave; objects cached for speed.
® Multi-key and multi-value virtual dictionaries for query-buikding
by key range selection and set intersection. (np}
® Works directly with third party user interface & SQL classes ele.
Class Restructure BEditor for renaming classes and adding or
removing instance variables allows applications o evolve. {np}
® Shared access o nmamned virtual object spaces on disk; object
portability between images. Virtual objects are fully functional.
% Source code supplied.
Somie conmeatis we have recetved about VOSS:
“...clean .. .elegant. Works like a charm.”
~Hal Hildebrand, Anmaet Laborateries

“Works absclutely beautifully; excellent performance and
applicability.” —Raul Duran, Microgenics Instruments

VOS5 /286 4595 (Personal 51999, VOSS/ Windows $750 (Personal $299)
. (Personal versions exclude items marked {rph.
[ng C Quantity discounts from 30% for bwo or more copies. (Ask for details)
i e 157, MasterCard and EuroCard accepted. Please add $13 forshipping.
A R "E“ S Logic Arts Ltd 75 Hemingford Road, Cambridge, England, CB? 38Y
TEL: +44 225 212392 FAX: +44 223 245173

ing {e.g., a GraphicsContext subclass that outputs
PostScript), or sharing of graphic objects with other
Smailtalk applications.

The complete source code corresponding to each of the
three SmaliDraw articles can be obtained from the University
of Hlinois and Manchester archives. They are identified as
SmallDrawl, SmallDraw2, and SmaliDiraw3. The source code
is available 1o all with no restrictions. T ask only that proper
credit be given so that I may hear from those who have
benefited. T also encourage those whe make improvements ar
additions to SmallDraw to make them available through the
archives for others’ education and use,

Dan Benson completed his PhD in Electrical Engineering at the Uni-
versity of Washington where he developed a 3-D spatial database for
Huran anatory wsing Smalltalk and the GemStone ODBMS. He is
niow a Research Scientist with Siemens working in the area of Image
Management and Distribution. He may be contacted at: Siemens
Corporate Research, Inc., 755 College Road East, Princeton, NJ
08540, or by email: benson@®siemens.siemens.com.

SEPTEMBER 1502

13

HE TOP NAME
IN TRAINING IS ON

THE BOTTOM
OF THE BOX.

Where can you find the
best in object-oriented training?

The same place you found
the best in object-oriented
products. At Digitalk, the
creator of Smalltalk/V.

Whether you're launching
a pilot project, modernizing
legacy code, or developing a
large scale application, nobody
else can contribute such inside
expertise. Training, design,
consulting, prototyping,
mentoring, custom engineer-
ing, and project planning. For
Windows, 0S/2 or Macintosh.
Digitalk does it all.

ONE-STOP SHOPPING.

Only Digitalk offers you a
complete solution. Including
award-winning products, proven
training and our arsenal of
consulting services.

Which you can benefit
from on-site, or at our
training facilities in Oregon.
Either way, you'll learn from a

100% PURE OBJECT TRAINING.

staff that literally wrote the
book on object-oriented
design (the internationally
respected “Designing Object
Oriented Software”).

We know objects and
Smalltalk/V inside out, because
we've been developing real-
world applications for years.

The result? You'll absorb
the tips, techniques and
strategies that immediately
boost your productivity. You'll

reduce your learning curve,
and you'll meet or exceed
your project expectations. All
in a time frame you may now
think impossible.

IMMEDIATE RESULTS.

Digitalk’s training gives
you practical information and
techniques you can put to
work immediately on your
project. Just ask our clients
like IBM, Bank of America,
_Progressive Insurance,
¥ Puget Power & Light, U.S.

Sprint, plus many others.
And Digitalk is one of only
eight companies in IBM’s
International Alliance for
AD/Cycle—IBM'’s software
development strategy for the
1990’s. For a full description
and schedule of classes, call
(800) 888-6892 x41Z2.

Let the people who put
the power in Smalltalk/V, help
you get the most power out of it.

DIGITALK

The Smalitalk Report

The Internati_oﬁ_ﬁl Ne wsletter for Smalltalk Programmers

November/December 1992

Volume 2 Number 3

TAKING

~ EXCEPTION TO

SMALLTALK,
PART |

By Bob Hinkle & Ralph E. Johnson

Contents:

 Features/Articles
1 Taking exception to Smalltalk,
Partdic e o
by Bob Hinkle & Ralph E. Johnson
6 GUIs: Significant supported events in
Smalitalk/V' PM as illuminated in
Window Builder S
by Greg Hendley & Eric S{m‘g‘h_
9 Getting Real: How to manage source
withaut tools ; ;
by Juanita Ewing S
12 The Best of comp.lang.smalltalk
by Alan Knight
16 Smalltalk Idioms: Collection idioms
by Kent Beck :
20 Putting it in perspective:
Describing your design
by Rebecca Wirfs-Brock
Departments
22 Book Review: OBIECT-ORIENTED
ENGINEERING by John R. Bourne
by Richard L. Peskin

93 Highlights

xception handling is an important part of many languages. Al-
though not provided in the original Smalltalk-80 or in Smalltalk/V,
it is supported in the latest version of ParcPlace’s Smalltalk-80. This
article will show how to build an exception handler for any version
of Smalltalk and will use Smalltalk/V 286 as an example. Along the
way, we'll show you why it’s useful for languages to treat seemingly internal
mechanisms such as processes and contexts as first-class objects.

The exception handler was first built for an early version of Tektronix’s
Smalltalk-80. It was modeled after a version described in an article by Evelyn Van
Orden,! and we used it in the type inference system of Typed Smalltalk.? When we
ported Typed Smalltalk to ParcPlace Smalltalk, we wanted to use their faster ex-
ception handler, so we modified ours to be compatible. Thus, our exception han-
dler is similar to ParcPlace’s, but less powerful. We then developed the V 286 ver-
sion described here, both to test the generality of the solution and to make the
work interesting to a wider audience.

A QUICK LOOK AT EXCEPTIONS
Briefly speaking, exception handling is the provision for non-lexical flow of con-
trol in a program when something out of the ordinary (i.e., exceptional) occurs.
An exception handler is a part of the program (usually a block in Smalltalk) that
can deal with some possible but unlikely event, such as reading past the end of a
file, dividing by zero, or referencing out of bounds in an array. In the usual
scheme, a program registers an exception handler for a particular kind of event
and then continues with its normal processing. If an exceptional event does occur,
a signal is raised as a notification to the system. The system finds the last handler
that was registered for that signal by searching down the context stack. If one is
found, control passes into the exception handler. Depending on the system, the
handler will have different options. The handler can usually make whatever
changes are necessary; execution can then resume where the signal was raised or
where the handler was registered, or return from where the handle was registered,
This description shows that implementing an exception handler requires ac-
cess to processes and their context stacks. An exception needs to search the con-
text stack to find the correct handler for a given signal and implement non-local
control flow. As a result, exception handling could only be added to traditional
languages by the language designer. In Smalltalk, however, where processes are
objects and contexts can be abjects, exception handling can be added by a pro-
grammer. Smalltalk’s first-class treatment of contexts is one aspect of a concept
called reflection, which is the idea that languages and systems should objectify
their internal mechanisms to make them accessible to the programmer. In that
way, programs can monitor and change their behavior, in a sense reflecting on
themselves. Our example of exception handling shows how some reflectiveness
makes a language more adaptable.

continued on page 3...

EDITORS’
CORNER

John Pugh Paul White

nother OOPSLA has come and gone. This conference represented a significant milestone,
both personally (since it’s finally done and behind us!) and as Smalltalk users. Based on
this conference, it would appear the language wars of the past are now over. Smalltalk is
definitely well-entrenched as the language of choice within many organizations and few, if
any, of the so-called research-language—type complaints about Smalltalk were to be

found. Smalltalk has clearly made it.

Interestingly, the void left by the language wars seems already to have been filled by a
full-fledged, drag-em-out war over methodologies. It seemed there were nothing but
methodology tools vendors on the exhibit floor. Many were designed specifically for
methodologies such as Booch or Rumbaugh, while others were “applicable to all method-
ologies” (which, of course, more often than not means “useful for none”).

Two aspects of this methodology war are worth noting. First, it is not clear that any
one will emerge as the winner. That is not such a bad thing. Just as no one language is ap-
propriate for all applications, even within an organization, no one methodology should be
applied universally. Like the language wars before it, though, this plea for reason and tol-
erance will likely be lost among the battle cries.

The second and more subtle aspect of this war is that these methodologies seem better
geared for the C++ world. Smalltalk developers seemed, for the most part, removed form
the debate. They talked much more about tools that would help you deliver and much less
about methodologies. We will have more to say on this subject and the need for better
tools that go beyond any particular methodology in future issues.

It is with great pleasure we introduce Ralph Johnson and Bob Hinkle, two well-known
members of the Smalltalk community, as our featured writers this month. Over the next
few issues, they will address in detail the issue of exception handling using Smalltalk. This
is a topic important to all computing languages and one that is often misunderstood. In
their opening article, they describe the interface for their exception handler, along with
the machine-independent aspects of its implementation.

Also in this issue, Kent Beck continues his survey of the Collection classes, highlight-
ing interesting facts about many of the more popular classes. Rebecca Wirfs-Brock
speaks about the need for properly described classes and applications. Juanita Ewing de-
scribes a straightforward mechanism for managing source code on small projects. Greg
Hendley and Eric Smith survey the events supported by PM’s Pane classes. Richard Pe-
skin reviews John Bourne’s new textbook, written for engineering programs that intro-
duce the object-oriented paradigm. Finally, Alan Knight returns with more discussion
from the USENET world.

Happy holidays to all!

& CUO
17340640

e 1.*: = e

The Smalltalk Report (1S5N# 1056-7976) is published 9 times a vear, every month except for the Mar/Apr, July/Aug, and Nov/Dec combined issues.
Published by 51GS Publications Inc., 588 Broadway, New York, NY 10012 (212)274-0640. © Copyright 1992 by SIGS Publications, Inc. All rights re-
served. Reproduction of this material by electronic transmission, Xerex or any other method will be treated as a willful violation of the US Copyright
Law and is flatly prohibited. Material may be reproduced with express permission from the publishers. Mailed First Class. Subscription rates 1 year, (9
issues) domestic, 365, Foreign and Canada, $90, Single copy price, $8.00. POSTMASTER: Send address changes and subscription orders to: THE
SMALLTALE REPORT, Subscriber Services, Dept. SML, P.O. Box 3000, Denville, NJ 07834. Submit articles to the Editors at 91 Second Avenue,
Ottawa, Ontario K15 2H4, Canada.

The Smalitalk Report

Editors

John Pugh and Paul White
Carleton University & The Object People

SIGS PUBLICATIONS
Advisory Board

Tom Atwood, Object Design

Grady Booch, Rational

George Bosworth, Digicalk

| Brad Cox, Information Age Consulting
Chuck Duff, The Whitewater Group

| Adele Goldberg, ParcPlace Systems

| Tom Love, OrgWare

Bertrand Meyer, ISE

Meilir Page-Jones, Wayland Systems
Sesha Pratap, CenterLine Software

P. Michael Seashols, Versant

Bjarne Stroustrup, AT&T Bell Labs
Dave Thomas, Object Technology International

THE SMALLTALK REPORT
Editorial Board

Jim Anderson, Digitalk

Adele Goldberg, ParcPlace Systems

Reed Phillips, Knowledge Systems Corp.
Mike Taylor, Digitalk

Dave Thomas, Object Technology International

Columnists

Kent Beck, First Class Software

Juanita Ewing, Digitalk

Greg Hendley, Knowledge Systems Corp.

Ed Klimas, Linea Engineering Inc.

Alan Knight, Carleton Universicy

Suzanne Skublics, Object Technology International
Eric Smith, Knowledge Systems Corp.

Rebecca Wirfs-Brock, Digitalk

SIGS Publications Group, Inc.
Richard P. Friedman

Founder & Group Publisher

Art/Production

Kristina Joukhadar, Managing Editor

Susan Culligan, Pilgrim Road, Ltd,, Creative Direction,
Karen Tongish, Production Editor

Jennifer Englander, Art/Prod. Coordinater
Circulation

Diane Badway, Circulation Business Manager

Ken Mereado, Fulfillment Manager

John Schreiber, Circulation Assistant

Vicki Monck, Circulation Assistant
Marketing/Advertising

Diane Morancie, Advertising Mgr—East Coast/Canada
Holly Meintzer, Advertising Mgr—West Coast/Europe
Helen Newling, Exhibit/Recruitment Sales Manager
-Sarah Hamilton, Prometions Manager—Publications
Lorna Lyle, Promotions Manager—Conferences

| Caren Polner, Promotions Graphic Artist

| Administration |
Ossama Tomoum, Business Manager
David Chatterpaul, Accounting

Claire Johnston, Conference Manager
Cindy Baird, Technical Program Manager
Amy Stewart, Projects Manager

Margherita R. Monck
General Manager

7SIGS

FUBLICATIONS

Publishers of JoURNAL OF OBECT-ORIENTED PROGRAMMING,
OgjeCT MaGazing, HOTUNE On OSECTLORENTED TECHNOLOGY,
C++ RePORT, THE SMALLTALK REPORT, THE INTERNATIONAL
OOP DIReCTORY, and THE X JOURMAL

&

THE SmaLLTALK REPORT

ples is cursory at best. There is a need in this section for empha-
sis on real examples. The non-electrical engineering coverage is
understandably the weakest, but his circuit simulation example
is again too detailed with emphasis on code rather than simula-
tion of physical behaviors. As in prior parts of the book, details
of extraneous subjects take up too much space—the external in-
terface description is a notable example. While Bourne does not
face some critical issues in engineering applications of Smalltalk,
such as handling of large numbers of objects generated in tech-
nical computations, he does address performance problems with
a discussion of user primitives. However, he confuses user prim-
itives (which are limited by the context loss across calls in PPS
release 4) and a true C interface (not yet released for PPS at this
writing). Table 12.2 illustrates the serious problem with this
book. It is a method listing consisting of user prims (<primitive:
11106>, etc.) with no comments, and is presented before the
reader is even introduced to the necessary semantics, The book
does end with a fairly good discussion of simulation and
Smalltalk applications in simulation. Perhaps this discussion
should have been presented much earlier.

Allin all, I was disappointed. Given the great need for
books and monographs on scientific and engineering applica-
tions of Smalltalk, perhaps I expected too much. In all fairness,
the bool is accompanied by an instructor’s manual and code
disks, which were not available in time for this review. Perhaps
their presence would have presented the text in a different
viewpoint. Future books on this topic should emphasize
Smalltalk as a behavioral paradigm for computational simula-
tion of physical processes. This important “forest” should not
be hidden by “trees” of small details.

Richard L. Peskin is Professor of Mechanical and Aerospace Engi-
neering at Rutgers University and director of the CAIP Center Com-
putational Engineering Systems Lab. He has been involved with engi-
neering and scientific aspects of Smalltalk since 1984. In addition to
doing research in computational fluid dynamics and non-linear dy-
namics, he is one of the designers of the SCENE (Scientific Computa-
tion Environment for Numerical Experirentation) system, a
Stmalltalk-based distributed computing environment that implements
computational steering tools such as interactive scientific graphics
and data management, automatic equation solvers, and mathemati-
cal expert systems.

Highlights

Excerpts from industry publications

CONCEPTS
.. .In most languages, learning to program means learning the
syntax. Learning to program in Smalltalk, however, involves
much more. The programmer must have a clear grasp of ob-
ject-oriented concepts. In addition, Smalltalk’s development
environment strongly influences the entire approach to
software creation. It is absolutely essential that the developer
become familiar with the classes provided by the Smalltalk en-
vironment. Although this can take some effort, it’s a prerequi-
site for developing more than the most trivial programs. Fortu-
nately, this is an interesting activity and is one of the best ways
to learn Smalltalk.

An earful of Smalltalk, John D. Williams, PCAl, 9-10/92

TASKS

. . . The tasks in an object-oriented effort are different. New
tasks are required to identify, characterize and document ob-
jects. These tasks focus on identifying objects and the interac-
tions required of these objects to provide a system that meets
stated requirements. Object-oriented efforts, like other devel-
opment approaches, need requirements and design
specifications. Yet these documents localize around objects,
and not functions or data. In addition, these specifications
clearly delineate which components are reused from an in-

house reusability library and which are developed from scratch
to support the application at hand. Tasks associated with the
construction of structure charts, data flow diagrams and other
function- or data-oriented modules are obsolete and replaced
with modeling approaches more in concert with object-
oriented development.

Designing the object-oriented way, Ron Schultz,

QPEN SYSTEMS TODAY, 7/20/92

END-USER DEVELOPERS
- . . No fundamental change in the pace of software develop-
ment can occur until there is a significantly higher level of appli-
cation development. In other words, end users must become de-
velopers, Object-oriented programming could allow end users
to do just that. The ideal application development environment
would consist of enormous libraries of prefabricated, modular
program parts (super high-level objects). These modules could
be configured and combined in virtually unlimited combina-
tions to build complete applications across the entire spectrum
of software use. Applications would be built exclusively in a
high-level tool of this sort. Conventional code-level program-
ming would focus on creating object components. . . . End users
would have unprecedented programming opportunities.

The new shangri-la?, Joseph Firmage, SOFTWARE MAGAZINE, 7/92

NOVEMBER / DECEMBER 1992

23

- by jﬁhﬂﬁ 3oum ¢ . i

he sa‘bmle of this imok s Bmi‘dmg Enﬂmeermg 5)/51‘8?’.‘13 _
Usmg Sma?fmifc 80. Itis to Boume s credit that he ad-

B dresses the important topic of engineéring applzcatlons
of objéct- -oriented software systerns. While simulation was a pri-
miary target of éarly object-oriented languages, such as Sirmula
and original versions of Smalltalk, more recent activ ity in the
subject area appeéars to emphasize business applications; data
base applications, ete. If Smalltalk is to take its place alongside
more commonly accepted languages; its success in scientific and:

“engineering applications will have to be demonstrated ona:
mirch Droader scale than is present today, Bourne's effort pro-

vides an important step in that direction, namely a book that ad-

dresses uses of Smalltalk in the engineéring domains.

The author has made some valuable contnibutions to apph-
cations of Smallealk in the collége classroom, one example be- .
ing his work on engineering tutorial systems implemented in
Smalltalk, The book, however, is somewhat disappointing as a
classroom tool or general résource for engineers who want to
learn mote about Sraalltalk’s potential for technical applica-
tions. The matérial is much too general in its treatment of ac-
fual eﬂgmeermg appilcauons, yet af the same time containg too
much code-lavel detail wﬁhmit prm ldmg s&fﬁcmn{ prepara-
tion for beginners. - - S

- Part1is an overview of generai concepts suah as representa~
tion of physical processes in terms of abjects and behdviors. A
serious deficiency s the lack of historical perspective and pre- -

bt‘l’lt&tlﬂl’] of i impo ttant tecerit conzrzbutmns in eigineering ap--.

pucatmns of Smalitalk: Notably absent is any mention of the
contributions of the {now defunct) Tektronix group. Applica-
- tions stich ak N KA, 2 system that assists in instrument service,
represem important real engineering Sralltallt projects. Also -
- omitted are the contributions of Thormas et ak on the uses of
Smalltalkin rea}tlme mqtmmentatmn and control, work dome

at Rutgerﬁ: on scientific-data management; and othet real-world -

'caees dlscm&;ed i récent]oumals and gr{)ceedmgs Engmeels

sieed to be motiva ted by actual applications. - S

o Eurmﬁg tao nmre spemﬁc issues, this reviewer would hwe

. liked to have seers more emphasis on behavioral paradigm, as

opposed to sc«ﬁware strictural aspects {inheritance, etc.). En-

capstlated behavior of objects is the crux of what Smalltalk has

16 offer engineering simulation, Bourne puts much eniphasis

. on the MVC paradigm and attempts to draw real-world analo-
gles ‘\Ect orﬁy is MV(‘ ouk Gf claze} but the aulhcn: 5 malocrzes

are somewhat questlonabie My gréatest criticist of lh1s part?

_ Rotine goes 50 far as say that one must use 4x6 cards as op-

and of the book as a whole, is the ernphasis it pla(,es on'use of -
ACOM cards for the “pre- spe::iﬁcatlon of a Smalltalk desigr.’

pased: to 3x5 cards for writiiig down the desired classes, proto-
cols; ete. This approach reflects the traditional “specification”

apprmch to software, not the interactive prototyping style that .
 fs Smailiallcs forte. Although he references a 1986 paper by
' Cunnmgham and Beck as his rationale for emphasis on ACOM

cards, my own reading of that paper was that cards weré only a
“literary aide” to help explain G-O congepts. The first part of
the book-ends with an overview of other O~} languages, in -

* which the author does emphasize the importance of havinga

completeclass lib'_ra'fy for a particular O-O environment to be
of real benefit, - 00 o e
Part I concentratés on “tools,” namely the Smalltalk lin- -

suage dnd environment. This section does not flow sinoothly
from topic o topic and I fear it will be difficult for beginners to.

follow, Smallzalk code examples are presented in mumerous
figures without proper preparation for the lay reader. Perhaps
Bourne intended this section to be covered by additional class-
TOOIN _ma__ter_mi I addition to Smalltalk specifics; this section .
covers issues such as “look and feel” (but omitting that PPS re-

lease 4 does not have a complete native platform look and feel} .

and bit editors (without making clear that release 4 does not
really siipport this and Pens as part of the system). As inPart L
great store is place on the ACOM card method and how to -
tranister information from the cards to the Browser. However,
there aré some useful pieces in this section. While the discus-
sion on-page 147 mixes animatior with drawing, dt least one is
shown how to draw a line tising PPS release 4. Chapter § con-
centrates on MVC, There is too much détail, particularly about
the viewBuilder, dnd that level of detail is réally not gernane to

the subject of enginecring applications. It is interesting to note -

thal the author’s own code example for MVC iltustrates the
typical MVC problem; that is, where to put diawing methiods. "
The “Counter” exariples ParcPlace used to distribute would be
better in this context. The aisthor discusses the Pluggai:le
Gauges” packace (from KSC}, but doesn’t refer to the active
value concept that is central to that package and important to
engineering applications,

- Part 11 deals with engineering ¢ '1pphc1tzons, which E found 1o
be the miost disappointing. Most of the discussion about exam- |

' chhm’di '.P:es:l;’ih_ '

22

TaE SMALLTALE REPORT

TAKING EXCEPTIONTO $MALLT}1iK 'Co.r'f.tf';‘.ihjea? [ro.n.s pcige 1 T

’}Thls amcie and s sequei Bext m{)nth presem a Smialitalle im- -
" piement&ﬂon of exceptlonhanéhng This month, we'll dcscrzbc

the systermn’s mterface and the machme -independent aspects of

s lmplementatmn Next month, we'll compleie the p1ctute by
. éescr;bzng the V 286- speaﬁc 1mplementatwn :

THE E)(CE.PTiGN HﬁNDLJNG iMTERF&CE

At the heart of the exceptmn handlifig system are the classes

Signal and *ﬁxceptmn An instance of Signal Tepl resents anexcep-

tional event ‘that m;ght vécur and its ot 1mpt}rtam mrethods,
handle:dos and raise - Sending handle:do: to a Signal object regis-
ters 2 block that ¢an be evaluated if that event occurs. For ex-
amplé; suppose | GutOfBoundsErior is a global variable that holds
a Signal object. As the name implies, this signal is intended to-
signify out-of-bounds references in arrays and Imght be used
in & mwethod of class Array as follows: -
checkEifthElement *
ButOfBoundsErmr

handle; { : ex«:epﬁcm | "seif handleﬁxcephon exe::eptmn}
©dot [“selfat: 51

The efféct of handle:do: is to evaiuaté the secm}d parateter
{do: block}, with the addition that 4 raised OutGfBoundsError
will be handled by evaluating the first parameter (handle:
block}. So, as you might expect, evaluating #(1 2 3 4 5) check-
FifthElement wili return 5, but evaluating #(1 2 3 4} check--
FifthElement wil! cause the block [:exception | self handleExcep-
Honr exception] to be evaluated. What happens next depends
on Aray>>handleException: It might define a default value for
that array, prompt the user for infermatimx, or form some
other appropriate response. '

For this scheme to work, the system must use UuthBoumds“
Error to signify the out-of-bounds condition. This can be done
by sending the raise message to OutOfBoundsError in the mldst
of at: {and methods Hke it}, as follows:

at: an}nde_'x._ 5

<primitive: 60>
{self outGfBounds: anlndex)
iffroe: (MutOBoundsError raise]

One interesting aspect of the handleException: message Is its

© parameter exception, which is an instance of the class Exception.

Each time a signal is raised, a new exception is created o ob-
fectify that fact. The exception is a convenient place to encap-
sulate information about both the signal dnd the contextin
which it was raised. Particelar error information or a special
error message can be associated with an cxception by using
variations of the raise message, in this case raiseWith: and -
raiseErrorString:, respectively. In this way, 4n exception han-
dling block can learr a great deal about the error by accessing
the éxception, which allows it to respond miore inteiligently.
~Inaddition, class Exception provides suppart for comman
exception-handiing techniques, including the messages
procéed, reject, restart, and return. When an exception pfo-'
ceeds, control réstmes in the context where its signal was

ThiS developer s %ool al?ows Smalltaik {0 read anc? vorite tor
QRACLE iNCRES SYBASE SQL/ I}S DBE RDB RDEC{'JB

| 506 N, State Sivebt, Ann Arbor, MI 48104 (3135 996-4238 (313) 996-4241 fiae

“raised, and a vé}ue can be returned if desired. This is howa

rrew default value can be defined for an array. Thus hand’leEx- o
ceptmn cot;ld be i 1m§ lemented as: : S '

han{iieExcep‘hcn: anExceytmn o
anException praceedWith: Bob™ -

This will cause the string 'Bab’ to be returned as the value for
any index outside the array’s bounds. In addition to procead, .
you can send restart to an exception, which causes the handle:do: '
context to be restarted, or serid return, which causes the han- -
dle:de: message itself ta return; again with the option of return-
ing a specified value. Finally, sending rejeet to an exception is a
way of saying that the current handier can’t solve the problerm.
The system looks for the next handle:do: context down the stack’
that can handle the signal and evaluates its handle: block. These
possibilities are llustrated in Figure 1.. :

For the purposes of this example, we assume that Array»foﬂ
is implemented ast

foo
Tranzseript show' self checkFifthElement printStﬁng

Now, if (1 2 3 4) foo is selectéd and evalisated; when fetch-
HandlerBlock réturns, the context stack will be as shown in Fig-
ure 1, with the exception’s instance variabies signalContext and
handiefContext referring to the indicated contexts,

There are several ways 1o define Ai’ray»han&iel%xceptmn
One possibility is for it to proceed from fhe exception, as in

1 Exception propagatePrivateFron:

2 Fzeeption propagaieFrom:

2 ' Signal ratseWith:startingAt:

i extraString: proceed:

4 Signal raise .

3 "Array ab: . g :signaiIC():}{:e.xt

& " Signal handlexdo: g handlerContext

=1

Array checkFiffhElamerii

8 Array fou

Figuré 1. Stack during exception handling, .- - .

NGVEM;;ER /DECEMBER 1992

B TAKING EXCEPTICN TO SMALLTALK, PART |

handleException: exception
exception proceed
In this case, when the handie: block of handlerContext is evalu-
ated, nil will be returned as the value of the Amay>»at: message
send, the fifth context on the stack, and execution will proceed
in the sixth context. However, if handlaBxceptior: is defined as

handleException: exception
- gxception refurmn

then nil will be returned as the value of the Signal>>handle:do:
message send corresponding to the sixth context on the stack,
and execution will proceed in the seventh context, Using
restart, as in

hendleExcepton: exception
exception restart
will cause the handlerContext, the sixth context on the stack, to be
restarted from the beginning, in effect reevaluating the do: block.
Finally, the exception handler may reject the Exception, as in

handleException: exception
exception reject

I this case Exception=>propagatePrivateFrom: will be called
again, but this time the search for a handler will proceed
downward from the context just below the handlerCentext, in
this case the seventh one on the stack. :

- Briefly speaking, exception handling
is the provision for non-lexical
flow of control in a program when
something out of the ordinary (i.e.,

exceptional) occurs.

8s

There is one final part of the system that interacts with ex-
ception handling, though it’s not implemented in either of the
above two classes. This feature is something called an tnwind
mechanism, which is a way for a programmer to ensure that
certain actions are performed, even if a context is skipped dur-
ing exception handiing. For example, when an exception does
a proceed, restart, or return, the flow of control jumps into
lovier contexts on the procedure’s stack, and any higher con-
texts are removed from the stack without ever returning to
them. This can be a problem: The contexts that were skipped
might have performed some clean-up actions, such as closing
files or releasing sermaphores, if they’d been allowed to finish
execution and return normaily. Skipping these contexts during

exception handling means skipping important clean-up jobs.
The solution to this problem is to define a special method,
whose purpose is to ensure clean-up blocks will be executed,
even in the presence of exception handling, The name of this
method in Smalltalk-80 is valueOnUnwindDe:. Assutning
aCollection is defined, evaluating

[aCollection checkFifthElement]
valueOnlnwindDo: [Transcript show: Time £o clean up!']

will cause the first block, [aCollection checkFifthElement], to be
evaluated. If aCollection has five or more elements, the value of
the fifth element will be returned, and nothing more needs to be
done, However, if alollection has four or fewer elements, and if
the exception handler for GutOfBoundsError causes control to re-

turn past the context of the valueGrnUnwindDe: method (in effect

skipping it}, the second block will be evaluated, allowing any
clean-up or finalization to be dene, In Smalltalk-89, unwind
blocks are even executed if they're skipped by a normal method
return, becatse up-arvow is treated just like a return from an ex-
ception. in V 286, though, the meaning of up-arrow is hardwired
into the virtual machine, so we can’t duplicate this behavior,

THE MACHINE-INDEPENDENT IMPLEMENTATION

Although an implementation of exception handling inevitably
delves into systemn-specific code, much of our solution is sys-
tem independent. In fact, the same implementation of class
Signal is used for Tektronix and Digitalk platforms (and poten-
tially for ParcPlace), and most of class Exception is commonn as
well. This section considers the system-independent agpects of
the exception-handling paclage,

To begin with, there are a number of predefined signals, all
of which are defined in the Signal class>»initialize method and
accessible using messages to Signal. These basic signals include
ones for unhandled exceptions and keyboard mterrupts, In ad-
dition 1o these, a class variable called ErrerSignal is added to
Object (just be careful how you add it!) and is accessible by us-
ing Object>>errorSignal.

To create a new signal, vou send the message newSignal to
an existing signal. So, for example, we could create the signal
OutOfBoundsError by evaluating

CutdfBoundsError = ErrorSignal newSignal

either in a workspace or {more likely) in a class initfalization
method. The newSignal method creates the new object and sets
its parent instance variable to the receiver. The parent variable
in class Signal is used to provide more structure in signal han-
dling. When a signal is raised, it can be handied by an excep-
tion handler for the signal, by one for the signal’s parent or by
one for any of the signal’s ancestors. In this way, a programmer
cant define some general response for a tree of signals by regis-
tering a handler for the signal at the root. This response can
then be specialized by registering more specific handlers for the
signals further down in the tree. .

Once a signal has been defined, sending it handle:do: regis-
ters an exception handler for it The code for handlesdo: is

4

THE SMALLTALE REPORT

the browser, This is precisely why more recent Smalltalk pro-
gramuming environment extensions come equipped with mech-
anisms and tools that explicitly enable designers to package the
presentation of a class and its interfaces to casual users.

1 do not want to digress into a discussion on the merits of
recent additions to Smailtalk programming environments, {1
am absolutely convinced of their utility.) Nor do T particularly
want to defend Smalltalk against languages with explicit sup-
port for public and private declarations (which have problems
in actual use). However, developers of these newer Smallfalk
environments have recognized the danger of information over-
load. Without removing detail, it may be difficult to discover
the essence of a class.

We often create an instance and only use s fraction of its
class’s features. And we are completely content to do so.
strongly advocate a written textual description of a class, de-
scribing the typical and most important patterns of use. De-
scribe the essential 2096, 50%, or 80% (your percentage will

' vary depending on how full-featured a class is and how much

exploration a programmer makes) in a few short paragraphs.
Accompany this description with a few pictures describing
typicai object-interaction sequences, Leave the rest for me to
discover by either reading through a more detailed class-de-
sign document or by exploring your code and comments. If
you are trying to leave a helpful trail for users, embed a typi-
cal ubject-creation message with appropriate arguments in-
side a comment within an instance creation method. More
elaborate examples can be developed with detailed com-
ments, either to be filed into an image or executed.

SPEND TIME ON WHAT MATTERS

Not every class is worthy of the same amount of attention. A
class of limited utility, intended to be seen by a very small au-
dience, only deserves light treatment. [am not a proponent of
mandating equal discussion for all classes. That leads to either
lots of usecless boiler-plate documentation or developer

Jmnutiny. instead, spend the time creating a well-considered dis-

cussion for classes that provide broadly usetud functionality or

- are central to your design.

Complex classes that require a lot of set up or have highly
stylized patterns of usage demand extra attention. From an ex-

“ternal viewpoint, I need to know common patterns of usage, as

well as how to diagnose an object that’s broken and not fanc-
tioning as expected. We creators of initial designs ofien don’t
realize how easy it is for someone else to misinterpret our
work. 5o this kind of discussion is definitely worthwhile, if
onily to get an idea of potential hot spots.

MAKING THE CONNECTIONS

it is relatively easy o produce documentation for a class intended
to be used in isolation. It is much harder to describe classes that
are part of 2 larger framework and intended 1o be used in eon-
junction with a rumber of collaborators. Te use a framework re-
quires understanding how objects interact, what role each object
plays, and when and how objects should be created and used. .

A description for a framework of interacting classes must
not only cover the central classes, but also establish a clear
madel of how these classes are intended to work together. This
year's QOPSLA conference had a refreshing paper by Professor
Ralph Johnson that explained his process describing a graphi-
cat editor framework in Smalltalk, called HotDraw. Hot{raw
was originally developed by Ward Cunningham and Kent
Beck. In five pages of text, Ralph described the central ideas be-
hind HotDraw and documented some common patterns of
key objects and their interactions. A nice touch was clear refer-
ences to the next layer of detail as well as pointers to related
concepts for each pattern of use.

Simple, helpful descriptions of object-interaction patterns
are stzaightforward reading. They require that the author has a
clear vision of the core ideas of a framework and a simple, if
not terse, writing style.

It reminded me of the Choose Your Own Adventure books
my kids used to read. After one or two pages, you were asked a
question. Depending on your answer, you were directed to one
of two pages, You could read the entire book and get several
different stories, cach with different endings. My kids were
never satisfied until they had explored all possible paths,

Dacumentation of interfocking classes of objects needs this
towch, First you need a description of core concepts, Then you
need ta tour key interactions at your own pace, allowing you to
discover and explore according to vour personal choices. De-
scriptions should let you navigate, point you to more detail (if
you want it}, and let you move on (should you want to
broaden your understanding).

CONCLUSION

Mew, useful ways for describing classes of objects and groups
of conperating objects are active research topics. There’s plenty
of room for formal techniques as well as informal descriptions.
What 1 constantly strive for are pragmatic ways 1o impart de-
sign insight to users,

I don’t want you to leave with an impending sense of
doom or writer’s biock. [don’t like writing reams of paper
that no one reads. And [won't recommend that you take ex-
traordinary roeasures nor do what I personally am not willing
to do myself.

1 especially want to appeal to you cynics who might be
thinking as you read this, “But she’s a writer. Of course she can
recommend we do these things. Writing comes naturally to
her,” Writing is definitely not a natural act {for me. I have to
struggle to write concise, precise documentation. But as a user
of some pretty nicely deseribed systems, T encourage you to
perform an enormous service t¢ vour users, Take some fime to
describe how to properly use vour classes, B

Rebecca Wirfs-Brock is Director of Object Technology Services at Dig-
italk and co-author of DesioNive OpjeoT-ORIENTED SOETWARE.
Conemnents, further insights, or wild speculations are greatly appreci-
ated by the author. Rebecea can be reached via e-mail ar
rebecca@digitalk.com. Her U.S, mail address is Digitalk, 7585 SW
Mohawk Street, Tualatin, Oregon 87062,

NOVEMBER /DECEMBER 1992

21

"y, b}ects can be s1rnp11st1c and passwe, holdmg on'te
small pieces of information, or they can be busy and

b active, serving an important role in framing the over-
all archuectural structure of an application. The possibilities
for what an object can represent are limited only by human |
imagination. In this column I want to explore some effective
technigues for describing classes so they can be understood, -
used, and refined by others. You, the author ofa class or a
group of collaborating classes, know how vou intend them to
be tsed. How can you effectively impart this knowledge to oth-
erst However you describe a class, your original design intent
will be mulled over by different people, each with a slightly
different set of expectations, needs, and experiences. :

* There are basic things that need to be said about any class.
These essentials cover roughly 50% of the issues, which Il
cover first. Then [want to explore the remammg 50% that are
often left unsaid.

COVERING THE BASICS :

Fach class vou construct in your design h'lb a specific purpose.
You know what the class was intended to do and probably
what it was never intended to do. (It is easy for someone to
torture your code In ways you never dreamed of, but T don’t
know how to solve that problem.} You also know whether
your creation is of major or minor imiportance, whether you
have a polished implementation, or whether you have left
room for improvement. The exact details you need to commu-
nicate vary depending upon the role of the reader. Différent in-
formation and levels of deml are needed by

“a programimer wanting to lise this class in a program -

» 2 developer creating a subclass to add new ﬁmchonal;ty or
override existing behavior

s someoﬂe aédmg new functionality to your class,
. zmyone trymg to understand a class inheritance hlemrchy
+ a tester developing test su 1te5 '
« someone fixing a programming error
" When we describe olir classes and our applications, we need
first to provide a global context (a road map of the territory}.
This provides a broad view, allowing readers to understand how

individual classes fit into the overall fabric of your design. Thxs
shouié then be augmenteci by a censxstent d1scuss10n of ciasses

UTTING IT IN PERSPECTIVE

scribin y wdeﬂ gn

from both an éxterior {usage} and interior (implementaﬁon} _
perspective. Arguably, all potential readers of class documenta-
tion need a basic understanding of how 4 class shotuld be used.

Let's concentrate on what informed class users need to know.”

At first glance, to use a class, a programmer needs to know:
= what the class was designed to do and not to do

» ways to create an instance of that class and, subsequently,
how it typically is used

« what it depends on, including other objects, global states, or
host-operating system features

. where to Iook for further details

Subclass developers need this information to ensure that
their_"xzew addition follows the expected patterns of behavior
defined by its superclass. They should not fix one problem only
to break pre-existing contracts with all current users of the

class. They need even more details than users, but all procacd
fromi these basics.

Not all basic mformatzon is glcaﬂcd by poring over a claqs~

browser reading code. Some have claimed that Smalltalk’s pro- -

gramming environment eliminates much need to describe this
kind of information, but this is just another rather lame argu-
ment that XXX code (replace XXX with your favorité pro-
gramming fanguage) is self-documenting,’

Learning an application by reading code and performmg
experiments can take a long time and often isn’t the most
effective way to transfer knowledge. We designers and imple-
mentors of classes should explain how to create-and use our
objects, Docunientation should supplement a programmer’s.
ability to find and use the right classes for the job. :

From an exterior view, 1 certainly néed to know less than
someone who is intending to modify, extend, or create 2 subclass.
I want you, the designer, to hide those things I shouidn’t care
about. I really don’t want to concern myself with any of the ob-
ject’s instance variables, unless you explicitly choose to give me
dccess to them. T also don’t ¢are about implerentation details
encapsulated within methods, And I certainly don't care about

code that is private, intendéd to be executed by sending rmessages -

to self. So please label those private, internal details as such. Your.

choseri method partly depends on your Smalltalk environinent,

anid partly on stvle guldefines used within your organization..
Understanding how to create and use an object can sonie-

: tlmes Become confﬂs&d by all that wonderfui detaﬂ exposnd by

Reﬁec_m- .Wirf§43rbék .

TaE SMALLTALK REPORT

handle: handlerBiuck do: doBlock
"Evaluate doBlock. If all goes well, refum its value. [fan excepmon
occurs then the returmed value could be generated by evaluating -
retumBlock.”
| returnBlock |
returnBleck = [value | “value].
~doBlock va‘zue

This method’s most mgnzf{canl role isasa place‘nolder Tts basic
function is simply to evaluate its second pararneter, the da:
block. But it also marks & place on the context stack so the sys-
temn can find an appropriate handler when an exception oc-
curs, How this happens will be explained next month when we
consider Exception>>fetchHandlerBlock:, The block stored in the
retumBlock temporary variable is used to make imp}émenﬁn a
Exception>>return easier.

The only other méthod we mentmned for ciass Signai was
raise. As we said before, there are actually mairy variations of
the raise message, depending on whether the exception han-
dler can proceed through the exception, whether there’s a pa-
rameter or effor string needed, and so on. All these raise
combinations call the same private method; which is Sig-
nal=>raiseWith:startingAt:extraString: proceed:. This is imple-
mented as foll OwWs:

ralseWxth* parametex starhng}‘&t comtext
ex‘traStnng. gtr proceed: aBoolean
o "Crgate a new exception and have it look for haﬁd!ers
starting at context.” :
| exception | :
exceptivn = self newExcepﬁoﬁ
signals self
parameter: parameter
.. extraString: sty
- proceédBlock: -

(aBoolean -
ifTrue: [[rvalue | “value]]
iffalse: [nl]}.
“exception propagateFront: context

This method creates a new instance of Exception, passing the -
signal as one of the parameters in the creation message. In ad--
dition, if aBoolean is frue, the signal is “proceedabie”, whichs
means that the handler is allowed to send the exception the
procead message, in effect declaring the error completely re-
solved and causing a return from the raise message send. If it is
proceedabie, the new exception will be passed the block [wvalue
| “valie]. Like returnBlack in the handle:do: method, the block
here simplifies our implementation, in this case making Excep-
tion=>proceed Doing: much simpler. Finally, this new exception’
is sent the message propagateFrom: with the context pagsed in as
a parameter. This begins the process of finding a handler for
the exception. - '

Exceptions have five instance vqnab]es szgnal parameter,
extraString, proceedBlack, and handlerContext. The first four
are set by the signal:parameter:extraString:proceedBlock: mes-.
sage, which is sent by a signal when the exception is created.
The value of proceedBlock, if it isn’t nil, is the [value | “value]
block we saw above. After creating a new exception, a signal
sends the propagateProm: message, which in turn calls the
propagatePrlvateFrom method, In aédltlon te error handling,
propagatePrivateFror; sends the message fetchHandlerBlock: to
find the right handler for the exception (in the process, it sets
the instance variable handlerContext to the appropriate han-
dle:do: message’s context) and evaluates that handler. The

Jmpiementatlen of fetchHandlerBlock is dese:nbed in next-,

soatiny ued dn page M

NOVEMBER / DECEMBER 1992

Sig
as illuminated by |

f you have used Window Builder by Cooper & Peters, then
Iy@u have taken advantage of its fill-in-the-blank way of
& writing when:perform: statements for the open method,
You have probably noticed there are more events than you
thought you needed. You may have even asked yourself,
“Should I be using these events and, if so, how?”

- In this imstallment of GUI Smalitalk, we will discuss some of
the significant supported events for the subpanes and controls
directly supported by Window Builder. This is not intended o
be an exhaustive discussion of every event; it will, however, get
the adventurous off to a goed start.

We decided classes that implement supportedBrents would
be the most interesting to look at. The remaining classes should

inherit their superclasses” behavior. We will discuss each clags in

tarn, including some significant supporied classes.

TopPane

Nearly all windows involve some kind of TopPane, which is
usually the window containing alt the other controls. TopPanes
support a number of events that no other kind of window is
interested in, ' '

= #validated. This event is generated as the final act in open-
ing a TapPane. When this occurs, the pane represents a
valid Presentation Manager {PM) window. This event sel-
dom reqguires a handler. However, in some rare instances, it
provides an opportunity to do any necessary twiddiing of
the PM frame window after il has been opened but before
any of the children have been opened.

#activate.\%@’\f hen a frame window becomes the ‘active” win-
“ dow (e, it is selected, given the active windaw border
color, and the input focus), the window message WM_ACTI-
VATE is sent along to the PM frame window. In Smalltalk,
this results in the #activate event. A newly opened window
" usyally becomes the active window, so this bappens when
the window is opened as well as each time the frame win-
dow is activated. L R

-

#menuBuilt, The #menuBuilt message is generated after the
menu bar has been created but before children are opened
ot the TopPane validated. If you are using WindowBuilder, this
event is uniikely to occur. Cooper & Peters have circum-
vented the normal menu bar creation methods in their open

”Ef‘icia;ﬁ“gt_mpmrtéedwemg in SmaiiftaékN P
Vindow Builder |

" Greg Hendley and Eric Smith

" methods. Grdinarily, this event might be used fo initialize
the enable/disable state of the various menu choices, add
custom menus, etc. When using WindowBuilder, these sorts

“of activities can be performed in the #initWindow method.

L]

#close. Whenever TopPane, not ViewManager, receives the
message #close, it will generate the event #close before tak-
ing arry action. If there is no handling method, or the han-
diing method retusns nil, then the close operation wilt pro-
ceed normally. Otherwise, no panes will be closed, Handlers
for this event are quite common, particularly if dependents
are used. This provides the ideal place to clean up depen-
dents, PM resources, and other potential garbage as the
window disappears.

+ dhelp. The #help event occurs when help is called for via
the F1 key. Using the help mena {should one be available)
will not generate this event. The handling method may do
whatever it pleases by way of providing help {e.g., toss up a
dialog, open another application, pat up a message box). If
there is no handling method, or the handler returas nil,
then the problem will be passed along to the PM help man-
ager. Note that if you have a HelpManager defined for 2 win-
dow as well as a handling method for the help event, then
unless the handling method returns nil, the PM help man-
ager will not come up when I'1 1s pressed.

e #timer. This event will be generated whenever the frame win-
dow receives the window message Wi_TIMER. This only oceurs
in special circumstances beyond the scope of this column.

#opened. This event is a red herring. It won’t hurt a TopPane
to have a handler for this event, but that handler will never
bie activated becanse TopPanes don’t generate this event.

CialogTopPane
DialogTopPanes behave just like TopPanes in most respects (in-
cluding those having to do with generating events). All the

-gvents described for TopPane above are inherited, except that

those having to do with the mena bar will not be given a
chance 10 occur. One additionat event is generated by dialogs:
= #opened. After a dialog is built, but before processing be-

gins, the event #opened occurs. This provides the owning
ViewManager with the epportunity to fill in entry fields, ini-
tialize button choices, etc. ' '

Tre SMALETALK REPORT

you are manipulating the objects bul not asking them to do
anything, For instance, if you designed a remote object sys-
tem where transparent copies of objects were transmitted

" over a network, vou might store the objects in an IdentitySet.

If you transmitted two objects that were = but not ==, and
later changed one of them, storing them in an IdentitySet
would ensure that they were different objects on the remote
SYSIEIS, ' '

Bag
Instead of discarding duplicate elements like Sets, Bags count
them. Executing this code: '

Isi

5 1= Set new,

saddAil: #(aabhcehs

size
refurns 3. Changing it to a Bag:

b

b = Bag new.

b addall: #f{aabbcl

b size
returns 5.

Use Bags anywhere yoa want a quick implementation of in-
cludes—1that is, when you don't care about the order of elements

- and vou need a compact representation of duplicate elements.

Bags are not used anywhere in the ParcPlace release 4.1 im-
age or in Smalltalk/V Mac 1.2, The caly time [can remember
using Bags is in Profile/V, Every time [take a sample, I put the
program counter in 2 Bag. When 1 display the profile, I map
the stored program counters back to source statements, giving
the user profiting at the level of individual statements,

CONCLUSION

The Collection classes are one of the most powerful parts of the
Smalitalk system. Choosing the right collection for a circum-
stance has a dramatic influence on the behavior and perfor-
mance of your system. I have fried to lay cut what each major
collection class does, what it is good for, what o watch out for,

" and how it is implemented.

T am amazed at the richness of this seemingly simpie set of
classes. Originally, I thought I would have to stretch to get
enough material for just one column. Afier two columns that
have covered the major issues in using collections, there is
still more to be written, I'll give it a rest for now, however,
and go on to something else—I1'm not sure what just vet. If
you have any ideas call me at 408.338.4649 or fax me ar
408.338.1115. - ' SRR

Kent Beck has been discovering Smalltlk idioms for cight years at
Tektranix, Apple Compriter, and MasPar Computer. He is also the
Jounder of First Class Software, which develops and distributes re-

- engineering products for Smallialk. He can be reached at First Class

Software, P.O. Box 226, Boulder Creek, CA 95006-0226,

NoveMaer / DECEMBER 1992

ite Paper
o

“An Evaluation of
sject-Oriented Analysis and
Jesign Methodologies”

This 72-page information-packed report compares and contrasts

1 cight leading O-0 A&D methodologies. Written in a <lear, concise,
| easy-to-read style, this report presents a rational approach for both

qualifying and quantifying the strengths and weaknesses of the lead-
ing eight techniques. Using a specific application domain as an exam-
ple, this white paper Hhustrates how you can identify the methodology
that best meets the needs of your project, This timely repert is essen-
tial reading for anyone implementing or managing O-C projects.

“An Evaluation of Object-Oriented Analysis and Design Methodolo-
gies” is a functional resource clarifying and analyzing the differences

among nofations, terminologies, and models proposed by the eight

leading analysis and design methods:

< Booch » Runtbaugh

= Coad/Yourdon e Shlaer/Mellor

* Edwards/Qdell/Martin « Wasserman/ Pircher
« Graham s Wirfs-Brock '

Who should vead this report?
Aanvone about to introduce the benefits of O-0 technology early in

the development cycle; specifically, project leaders, developers, soft-

ware analysts, and designers.

About the authors: Tohn Cribbs, Collzen Roe, and Suzanne Moon
work in the Advanced Projects Group at Aleatel Network Systems. Fo-

gether, these published authors have over tem vyears of

00 AKD experience implementing and managing in-house O-O
projects,

i0-DAY MONEY BACK GUARANTEE.

£

CRDER FORM

Y State residents add

tPlease send me the white paper for just $400.00 —w applicable sates tax.

_Ethedc enclosed. (Make checks payable to SIGS Books, U5 dallars drawn on 2 US bank.)
Misa MasterCard AmEx card #

Signature

| Exp. Date

Hame
Addrass .
City 5 State____Zip
Country | o

Phone Fax -
Return to White Paper, 588 Broadway, Suite 604, NY, NY 10012
PHONE 202/274-0640 or FAX to 202/774-0646

o .cerémg tor the order m whlch the‘y uere ad&ed Sorteéﬁolie&—

. tigns rely onia two- argumem block to determme, pairwise,
o 'the order for'elements. This bloci-: defauEts '

. 0 simple Sortedﬂﬁklerzmns st the:;r eiemema fmm Eowest
to highest., : L TR
. One S:inng to watch r.)ut fc}r When usmg Sarteéﬁcliecﬁons is
. semhng thiérn add: w?xen you don't have to, add: doesa bmar}f :
- gearch of the cs]lecttcm, moves ail of the elementq ai’ter the: -

- added object down one, and iriserts the added obJect Moving
the elements to make oot ta§<es sime woyorizenal to thesize " -

of the collection, 1f you know yotv are going to bé adding sev-

" eral elements at once; use addAlls; which will stick the new efe-

" miehts at the cnd and resort the Lntzrc, L@Hcctmn Hereis a
. method for comparing tlme sgent usmg these iwo metimds
- (notice that T don't hold myseif to the same codmg standarés
n W{:-rkspaccs}
[scy titz I
st Sortedﬁauecticn RO,
¥ == Randor new,
1 = Fime malhsecor&dsToRun :
{1600 timesRepeat: [sc add: rnextl],
so = SorfedCollection new,
2 i= Time millisecondsToRun! ' : :
[32 2ddAl: {(3 to: 1000) collect: [reach | rnextD}. -
tadd: T, 11 pnmStmlg addAll: ", 12 pnntSe.nng. .

. Executmg this].'(ibul‘% in 'Add: 20?25 addAll: 1385",

St:mg :

Strings irl Smalltalk are like Arrays whose elernents are i‘ﬂStﬁC;B{E
to Characters. Strings are byte-indexable for compactness. They
redefine the indexing methods to convert from 8-bit numbers

to characters and vice versa:

Stnng>>at anI@teger
ACHaracter value: {sper at: anZnteger}

String>>at: anlntéger put: aﬁharacteI
supar ats anIntegarput aCharacter asc;zValue)

It is common to use , to concatenate Strmgs You can -
use ; to concateriate any two sequenceable collections :
(OrderedColleciion, Array, Rundrray, and so on}. Less com-
mion is the use of the other collection methods with
Strings. You can capitalize all the characters in a String
with 'coliect: o
asifppercaseé

se‘Lf cotect: [gach | seach asUppercase]

Interestm@,lv, ven the ParcP]ace re{ease tL] mnwe [mple-
ments this methc&d with five lznes contammg an explzczt §oop
: and mdf:xmg e

+ Digitalk’s S‘mnq class is lmplememed w1th zhe sample model'
descr:i}ed here. ParcPlace has a niuch niore elaborate imple-
mexntation that takes care of multibyte characters and different -

character sets on different platforms, even for odd characters.
The desigs | reqmre‘; ma: cl&qseﬁ for qtrmgq and thl ee more for -
' S}fi'tlb{)].b : :

'Symbcs

. Symi:leis bekiave in mcrst ways lzke Strmgs, except ihat 1§ y{)u St
], have two symbols containing the same characters, ﬁley are

o gmranteed torbé the same oi:a]ec:t S whzle Stritig>s= takes time .
: pmpt}menai EG thie Eengih of the strmgs, Symbol»— mkes con-
i "'stant tzme PR :

_ 'Sjmbc_iw: anlhct
s fgelf==anObject .

" To preserve uniqueness, Symbals cannit be changed orice

‘they are created. atiput: is overridden to raise an error.
: Like Interval, becaiise Symbols. don trespond {o atiput:, ihw -
¢ override species. Symboi:«bsgecms returm the class String.

Thtzs, executing "#abc, #def" retuins a’mdei‘g a String, nota. ©

Symbol ; .
Tfyou are pmgrammmg in Smal?taik!‘sf ’zae careful of cre-
ating too many symbaols. There is a Hmit of 214 Symbels.: ©

While this may seem like a lot, after you have créated many

rew methiods and used Symbsls fof indices in several places,
it i%;:'»}:ery possible to run out of Symbols. The ‘;crambling you
have to do to climb out of the “limited Symbol pit” i5 not.
pretty.

“A fast {)dérzy of Symbols and Strmgs is the asymmmetry of =,
“ali’ = #abc" returns true because the String receives the mes-.

sage and successfully checks to see that the characters in ihn re-

Y

ceiver are the same as those in the argument, "#abc = ‘abe
turns false because the two objects are not identical. Tcan .
remember long debates at Tektronix over the propriety of this
strange fact. The upshot of the debates was that it's rearettaévle
things work this way, but the alternatives are alt less ai_{racizlve B
for onie-reason or another. '

Sets L : : oo

Sets are dynamically sized collections. They respond to add: ©
atxd remaove: but, tmlike OrderedCollectioris, they don't guarantee
any particular orderiig on the elements when they are nsed
later {e.g., by do:}. Sets also don't have any mde‘ced access (n(} :
at: or atipat: }

Sets lmpiement includes:, add: and remove: efﬁc:entlv by -
hashing. The element to be added is sent hash, and that =
vatue is used modulo the size of the storage allocated for the
Set ai the index to start looking for a place to pat the ele-
ment {or remove it). Note that storage for a Set will contain
more indexed variables than the Set has elesnents, so hash-
ing is likely to encounter an dmpty slot The Set contains an
{lstaiice Varzable, taily, whzch recards how many thhe slu:)t@

. are filled. Set>>size just r<.tulns tally

You can eliminate dap]xcates frorm dny collection (a Deit
whﬁe lﬁbmq its Grdermg) by senémg it asSet. -

' fdentitySet : _
Sefs use = to determme 1Fthe}r have found an objecz Edentltyw .

Sets use ==. They ar¢ useful where the identity of objects is-

lmp{)rtant Most apphr.,atmns are in mgta- object cade] _where

18

THE SMATLTALK REPOET

- @ SMALITALK IDIOMS.

R 'SubPana& - : .

o SubPanE 1§ §nciuded, even Eheugh itds d¥ a%)stiaﬁz c]a%s Man"y

" normal behaviots are described in ‘this class. We will take ad»~

L '_vamage of: mhez:mnce in'our desmptzons dﬂd onl)f devmtims =
- and additlons W:l[be descrlbed for %ubdassm -

- #dispiay W%ule SuhPane stlpporxs ‘gim event itis Oﬁl‘y“ re-
ccwed by GraphPane. 50, for cﬂ]. c}ther subciasses, unless you'.

' : WH{E 4 methoé that sends event #dzsplay, you can chsregarcﬁ L

' this event

. #ms;.ze Ti‘m is sent aﬁer PM h ag resmzci a mg} pane {c}r
other subclasses of ApplicationWindow). Mast applications
have no need for this event, Possible mceptions dre special-

.- uses of Graph?ane and Groug;Pane Mast resizing is handled

" with the normal get contents and display methods. This is

' suppeadly one of the advantages of usmg an cmstmg wm~ .

d{awmg system such as PM.

" s figetPopupMenn, “This event normaﬁlv océcurs <1s a resalt of
the miouse button2 click: No surpn«;e here. :

= #getMenu. This event is ﬂsualiy rot sent if the window was
built using Window Builder, The éxception (there’s always
an exception) is when the pane looks for its pop-up men.
If it can’t find one; it looks for its regsilar menu o use for a’
popup. Therefore, it is your choice to use this or the'previu
ous évent for your pop-up menus. Proper dlSCUbSlGﬂ of
menus woitld require its Dwrs Lohmm :

-

#getﬁontents. Now we are bz_ﬁ_ci{ an famﬁiar'grcund. This
‘event is sent whenever a subpane is opened. It is used to set
‘the text of a text pane, list of a list pane or combo box, and
labiel or text for other controls. '"["hi's'sening is normally

- done using the method contentst, It is also sent as part of
the restoze and update methods for many classes..

. #help Thls is normally sent when the F1 keyis pressed Not

all subclasses receive this event.

TextEdizt

- » HtextChanged. This event is senit each tifme 4 character kéy,

backspace, or delete is pressed. Think about whether you
-want to respond. This everit will be sent frequem]y if entn”e:_
pqrawraphs are bemg typcd

“ #hemﬁz:mlh You normally wifl fiot care about this cw:nt
‘which is sent wher youl scroll using the horizontal scroll -

bar. It also happens with automatic scrolling, which occurs

wher.t you type past thc pmc and word wrap is off

“ #veri:S:mlL This is a:mﬂar ta honzScmﬁ

e #heip,#getPapupMenm and #geﬂ-lenu None of these are

T ecelved

TextPane : .
’E‘exﬁpane inherits eveni:s fmm TexiEd[t I{: aiso adds vite event:

“,» #savel This is sent throvgh selecimg the save " item in the

pop ﬂp menu ﬁ}r TextPane e

E.sst&ax

e ﬁshaﬂnpm; M{}st Smlﬂtalkers do not use ii’us event they

- use the event #seiect which happens Wheﬁ a Character i
: tvpeé g] ci’nractﬂ is the first character of one of the 1tems," :
R th'lt iten is seiected SR :

' s #drawltem md #hzghtzghtitem. Seldam used by most

: Qmalitalkers, these are sent only whent a user-drawn i item is
_11‘§c§uded i the list cnf ltems This deserves its own coiumn
and w:ll not be d{scussed here

#seiect "11}15 event fecurs when an LGseitcted itern is se- -
" lected, not when a selected itern Iy re- selected, It also accurs -
When an iteny is selected by W@mg its ﬁrst charaeter

[

#dﬁubieﬁllckSelecE This everit happem wﬁenever ani ftem s
“double clicked. Behavior is the same whether or riot the
item was already selected.. -

) Ltst?ane

Although neither suyez nor subclass r}f LlstBex, Llst?arae be-
haves similarly. The exception is as follows: ' :

s #select, This event ocours whf,n sdectmg an ztt,m éhat is al-
ready %eiected

ENTRYFIELD :
Entryfield is the Smailtalk class reg}resnmmg one-line entry ar--
eas commuonly seen littered about dialogs, although they may -
be used in any window: Meost of Entryfield’s interesting behav-
ior can be used by paying atfention to only two events:

"+ #igetContents, As with most other panes, this event is gener-
atéd By an Entryfield when it first comes up. It provides a
nice opportunity to initialize the text coiitained in the entry
field before the usér gets o it. This is'donke in the handling
methed by sending #eontents: to the pane with an appm—

' prmte Strmg asarn armment

* #t@xtﬂhanged Any tzme the mntenfs c}f an Eni:ryﬁeld are
changed, the #textChanged event is genérated. It doesn’t
miatter how the change originated; whether the user typed-
in more characters or somebody sent #contents: {6 the En-
tryﬁe'&d, a #textChanged event is génerated. This means thar
setting the contents of an Entryfeld in the handler for a
#textchanged generated by that Entrydield will lead to
infinite recursion.

Comchox A - : .
= #‘Eext(lhanged Be ca{equ a?}(}ut usmg this event s as & mg-
© ger for'other activities. We recommend you save the new -
text somewhere or note that the text is changed. One thing
vou do rof want 1o do'ls upéate This will create a circu-
farity, The évent #textChanged is sent in response to sev-
eral activities: once when conténts is set and twice when
you type the first lei:ter of oné of its list” efemenis It is not
. scnt whm y{)u é:vpe any, other character I’c 3 sent when S

N.DVEMEER' /Prcemer 199}2_ '

& GUIs

you press the pull-down button and when you select an
item from the list.

#charinput, This happens whenever any character is typed.
Notice the difference between this and the previous event, A
character can be fyped without being entered into the text
part of the combeo box.

@

#select, This event occurs at peculiar times the way
#i:ex‘t{lhanged does. Tt is sent twice when text is in the entry
field part and the list is pulled down. It is sent once when
no lext is in the entry field part and the list is pulled down.
1t is not sent when an iteny is selected that matches the text
in the entry field part. It issent once when an item is se-
lected that does not match the texi in the entry field part,

#doublellickSelect. This event does not happen for the
ComboBox. -

#drawttem. This event cccurs when a user-drawn item
aeeds to be drawn, Most Smalltalkers will not use this event.

&

Hhighlightftem. This event occurs when a user-drawn item
needs to be highlighted. Most Smalltalkers will not use this
event.

+ #istVisible. This happens when you press the pull-down
button. Most Smalltalkers will not use this event.

BUTTON

Button is the superclass of several kinds of controls that get
clicked. Nearly all of them generate events, which are expected
to be handled i similar ways.

+ #getContents. This occurs when the pane first comes up. It
can be used as an opportunity to set the contents of the but-
ton. For most kinds of Buttar, the #contents; message ex-
pects & String as an argument, This String will become the
label for the button.

@

#clicked. Any time a Button is pressed, the #clicked event
occurs. For instances of Bufton, all you need to know is that
the Button was pressed. For toggle-type buttons, the action
of your handler may depend on whether the button was
clicked on or off. This can be determined by sending the
message #selection to the button. The Boolean returned will
reflect the state of the button. ' '

DrawnButton

The class DrawnButton represents a fairly special subelass of Button.
It isn't like the others in that it has no predefined look. Instead, the
owning window (or, in our case, the ViewManager) is expected to
draw whatever it wants on the button’s graphics context.

= #getContents. This event occurs when the pane first comes
ap. [t may be used as an opportunity to provide the pane
with a Bitmap, which it will draw on itself. DrawnButtons ex-
pect a Bitmap as an argument for the #contents: message.

= #drawltem. Any time a BrawnButton pane that does not have
a Bitmap is asked to display, it will generate this event. When

the handling method gets control, the DrawnButton pane will
have a valid graphics toal. The handler method may then ask
for its pen and draw whatever it wants on it. Note that this
event also occurs as a result of the button being clicked.

Ll

#hightlightitern. This message is genérated as a result of
pressing a DrawnButton. The underlying P window messages
inform as to whether highlighting is to be added or removed.
Alas, by the time we reach the event level, this information has
Deen lost. As with #drawltem, the graphics tool of the Drawmn-
Button in question Is valid while this event is processed.

EpinButton

Admittedly, this class is not directly supported by Window
Builder. It is included in the standard image and can be added
to Window Builder as 2 custom pane.

» #getMenu, #getPepupMenu, and #help. None of these are received.

= #textChanged. This is an unusual event in the number of
times it occurs for a given action, It is sent once for each
character typed. Tt is normally sent once when the up or
“down button is pressed. When there is text in the eniry field
that does not match any of its enumerated values, and the
up or down bullon is pressed, the event happens twice. It
happens once when the backspace key is pressed and twice
when the delete key is pressed.

= #up. This event is sent when the up button is pressed. Nor-
mally, you would ordy look at the #textChanged event.

« #down. This event is sent when the down button is pressed.
Normally, you would only look at the #textChanged event,

= #getContents. This event is ignored if the spin button is nu-
meric. When the spin bulton s non-numeric, it expects to
be told its list of enumerated values.

ScrofiBar
Serolling, with or without the scroll bar control, deserves
maore space than we can give here, We can, however, point out
z few features,

The following events occur as a result of pressing the ar-
rows, clicking in the blank areas, or moving the tab: #nextPage,

HprevPage, #nextline, #previine, #sliderPosition, #sliderTrack,

and #endScroll.

The following events do not occur: #getMenu, fgetPapup-
Menu, and #help.

#getContents occurs in the same manner as for most sub
panes, but scroll bars do not know the method contents:. In-
stead, they use position:. C

Greg Hendley is a snember of the rechnical staff ar Knowledge Sys-
temms Corporation. FHis DOP experience is in Smalltalk/VIDOS),
Smiallinlk-80 2.5, Objectworks Smalltalk Release 4, and
Snialltalk/VPAM. Eric Smith is also a member of the technical staff ar
Knowledge Systems Corporation, His specialty is custom graphical
vser interfaces using Smalltalk (various diglects} and C. The authors
may be contacted at Knowledge Systems Corporation, 114 MacKe-
nan Divive, Suite 100, Cary, NC 27511, ar by phone, 919.481.4000.

Taz SvartitaLk Report

initial allocation, the space overhead and its effect on the stor-
age manager can be significant. I have heard stories of pro-
grams speeding up by a factor of 60 just by replacing Grdered-
Collection new with OrderedCollection new: 1 at the right spot.
Gather statistics on the number and loading of your Ordered-
Collections to determine if this optimization will help you.
Another performance implication of using Ordered-
Collections is the level of indirection required to access de-
ments. at: as defined in Object just invokes a primitive to index

into the receiver's indexed instance variables. To implement at:

and at:put:, OrderedCellections have {o take first into account:

Orderedollection>>at: anlnteger
aninteger > self size iffroe; [self exror '0ut of bounds'T. »
-supey at: anfnteqer + first - 1

Runfuray

Rundrrays have the same external protocol as OrderedCollection,
but they are optimized for storing collections in which the
same object is added consecutively many times. Rather than
just store the objects one after the other, RunArrays store two
collections: one of the abjects in the collection, the other the
number of times the object appears (Figare 4.

Each entry in a Runfuray requires two object references.
RunArrays require storage refated not to the number of ele-
ments in the collection, but to the number of times adjacent
objects are different. In the worst case, RunArrays require twice
as much storage as an OrderedCollection.

Indexing into a RunAsray is potentially an expensive opera-
tion, requiring time proportional to the number of runs. Here

. is an implementation of at:

RunArray=»at: anlnteger

| index |

index = 0.

1 to: rans size do:
[reach |
index + {xuns at: each} »= anlnteger

ifTrue; {"values at: each].

index 1= index + (runs at: each)]

This simple implementation makes code like;

1to: rundoray size dos [:eaéh | runfrray at each)

RunAvrray
valoes |~
TUns j
5 #plain
2 #oold

3 #boldltalid

Figure 4. The result of Runfirray new addAll (plain plain plain plain plain
. bold baold bolditalic bolditalic bolditalic).

take time proportional to the number of runs multiplied by the
number of elements in the collection. Because the access pat-
tern for RunArrays usually marches along the coliection from
first element to last, RunArrays cache the beginning of the run
in which the last index was found. Looking up the following
index only requires checking to make sure that the new indey
is in the same run as the old one:

Runfrray>>at: aninfeger
“aninteger >= cachedindex
ifTrue: {self cachedAt: anlnteger]
ifFalse: [self lookUpAt: anlnteger]

cachedAt: aninteger
anlnteger - cachedindexz > (yuns af: cachedRun)
i#Trus:
‘[cachedIndexz := cachedIndex + (runs at: cachedRun}.
cachedBun := cachedRun + 1]. o
“yalues at: cachedRun

lookUpAt: anlnteger

| index |

index := 0.

1 to: runs size do:
[reach |
index + (runs at: each) »= aninteger

True: [Mvalues at: each].

index = index + (runs at: each)

With this implementation, an access pattern like the ane above
will now be slightly slower than the equivalent OrderedCollec-
tiogn because of the overhead of checking for the commaon case.
Accessing the Runfrray in reverse is now proportional to the
numnber of runs squared.

interval

" Another kind of run-length encoded collection is Interval. An

Interval is created with a beginning number, an ending num-
ber, and an optional step number {one s the default), #(12 3
43 and Interval from: 1 fo: 4 are equivalent objects for most pur-
poses, Number>>to: and to:by: are shorthand for Interval
class=>from:to: and fromidoby:.

Intervals are commeonly used to represent ranges of num-
bers, such as a selection in a piece of text. A common idiom is
using an Interval with collect:.

foo
~{1 to: self size) collect: [:each | each -» {seif at: each)]

Species is sent to an object when a copy is being made for use
in oue of the enumeraticn methods collect: and select:. The de-
fault implementation in Object just returns the class of the re-
ceiver, SequenceableCollection implements collect: and select:,
and expects the result of self species to respond to at:put:. Since
Intervals don't respond to atiputs, they have to override species
to return the class Amay.

SortedCollection
Another dynamically sized collection is the SortedCollection.
Unlike OrderedGoliections, which order their elements ac-

WOVEMBER / DECEMBER 1992

17

“ l ‘ ” - Smalltalk Object Database Support

IN THE
I o 1 o ' Integrated garbage collection of persistent Smalltalk objects e Server-
e T—— based gateway toolkit and relational gateways Server-based active
BUSINESS REPLY MAIL s S object manipulation language » Cooperative client/server support
FIRST CLASS MAIL PERMIT NO. 279 DENVILLE NJ T
POSTAGE WILL BE PAID BY ADDRESSEE RS TR Please send me information on Smalltalk Object Database Support and
|G R R b e i it
ST] Keep me informed of future product announcements
The Smalitalk Report " .
EEEEE— Q Have a Servio representative call:

Subscriber Services Dept SML

PO Box 3000 Name: - Title:
Denville N] 07834-9821 Company:
Addressr .
City:
Phene; - .- . State: Zip:

SERVIO GemStone, the ODBMS for C, C++ and Smalltalk

from the Object Technology Company

”IllllllIIII!III!”llllll[llllllllllllllIIII”III[]

BUSINESS REPLY MAIL

FIRST CLASS MAIL PERMIT NO. 475 ALAMEDA, CA

POSTAGE WILL BE PAID BY THE ADDRESSEE

SERVIO CORPORATION

950 MARINA VILLAGE PARKWAY
SUITE 110

ALAMEDA, CA 94501

nmmnanirminmmmimamami

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

The Smalitalk Report

software purchases for your [gs/,
department/firm: 0 Windows

[Recommend Need [Other
[Specify Product

technigues, and insightful appl
(1 Yes, I would like to subscribe to The Smalltalk Report Date
(1 year (g issues) 2 year (18 issues) Name
[Domestic $69.00 [Domestic $128.00 Title
| Foreign $g4.00 J Foreign $178.00 Company
Method of Payment Address
[J Check enclosed (payable to The Smalltalk Report) City
[Bill me
[Charge my: [Visa [Mastercard [Amex State
Card No. Zip
Exp. Date Country
Signature Phone
1. Which dialect of Smalltalk do [Make Purchase 4. What is your company's ' Educational/Consulting
you use: [None primary business activity: [J Other
| [smalltalk vV 3. Which operating system ' Computer/Software 5. For how long have you been
0 Smalicalle-8c supports your software: Development. using Smalltalk:
[Other [UNIX [Manufacturing [Less than one year
2. What is your involvement in [DOS " Financial Services O 13 years

1 Government/Military/Utility = 3+ vears
E2LG

A member of the
= = 5
ject Marketing Network | 212/274-0646 PUBLICATIONS

©h Figure 1A ’cyplcal 0 célonary

: t%unk of thein’ as assocxa.tmns Tuse the message asseclatwns to =

get a set of associations] can operate on uriambiguously.

" “When a Mictionaty looks up a key it uses = to determine ifithds:

found a match. Thus, two strings that are not the same ohject but
contain the same characters are considered to be the same key. -
This is why when you reimplement =, you must also reirplement
hask. If two objects ave =, they must have the same hash value.

- I you read your Kauti, you will see that hashed lookap -
takes constant time—it is not sensitive to the number of ele-.
mernts in the collection. This mathematical result is subject to
two pragmatic concerns, however: hash quality and locading.
When vou send hash to the keys you should get a randora dis-
tribution. If many objects return a number that is the same
modulo the basic size of the Dictionary, then lincar probing de:-
generates to Hnear lookup. If most of the slots in the Dictionary
are fall, the lash is almost sure to return an index that is al- -
ready taken and, again, vou are into linear lookup. By random=
izing the distribution of hash values and making sure the Dic-
tonary never gets more than 60% full, vou will aveid most of
the p'{).te.ntial pe.rf{)rmaﬂte problems.

Edenhtymctaonary .
identityDictionaries behave like thtmnanes excei}t that they. -

compare keys using == (are the two objects really the same ob- -

ject?). IdentityDictionaries are Gseful where you know that the
keys are objects for which = is the same as == (¢.g., Symbols,
Characters, or Smalllntegersh, : :

—“""&#puw — 1 14

P snaave | —1— 8 27

Figure 2. A typical Identity Dictionary,

insimcf of %emg 1mplem€ntaé asa hdsh tab}e of 1ssoc1< S

s lums, Eéenntymctmnanes are in’;plnmented as two parailei ar-

ravs: The first holds the key@, the second the Vaiues {Fzgm’e ?‘)
This lmplamenidzwn saves space because cach’ assaaatmn

- irra Dictiondry takes 12 bytes of header + § bytes of c}b;ect refer-
- ence = 20 bytes: The. total memory usage for a Blctzonary 1812
Bytes for the header of the Dictionary + 4 bytes times thie basic.
gz of the ch‘aon&ry + 24} %)Vtes trmes the number of entries.

The memory reqmred foran Identltyihctmnary is 24 bytes for”

the lead er of thc ob;ect md the ‘«aluL coliectxeﬂ +8 bytes t1mes :_.

the basm size, :
§‘or emmple, a 10,600~ eiement chtlonary t§'1a€ has 5,000 en-

= trzes free Would tai{e 124 (4% 150007+ (20% 10060y = 7_6(} 0120

; .(}u can sée hr}w the {)\rerﬁeaé ofthe Aszociations adds

i upi Th& safie C{)Hectmn stored as ari Iéentltyﬂlctmnary would
tai{e 24 {8 250{}0} = EZ(} 024 bytes ' Lo

OrdaredCollac‘taan -
GrdereéCelIectmns are like Arrays inthat their Ixevs ate consecil-

tivé inlegers. Unlike Arvays, they dre dynamically sized. They
réspénd to add: aud rewovel. OrdersdCollections preserve the or-
der in-which elements are added. You can also send them
adéFust addLast:, reroveFirst, and remeoveLast. :
qug these methods, it is possible to implement stacks and .

' quetds trivially, There are no Stack or Guene abjects in

Smalltalk because it is so easy to get their functionality with an:

GrderedCollaction. To get a stack you use addLast: for push, last

for top, and removelast for pop {vou could also operate the

stack.off the front of the OrderedCollection). To implement a .

quene you use addPirst: for add and removeLast for remove.
As an example of using an OrderadCollection for a queue,

let’s look at implementing level-order traversal. Given a tree of

abiects, we want to process all the nodes at one level before we
move on to the next:

Tree>>levelOrderlio: aBlack
| queue |
guene = OrderedCoHecuon with: self,
[gueuve isEmpty] whileFalse:
[} node |
neds = queve removeFirst, -
aBlock value: node,
" queue addAllLast: node children]

GideredCollectionis keép around”

extra storage at the beginning .
: . : OrderedCollection
and end of their indexable parts i
to make it possible to add and frst _ :
remave elements without having lat| 3
to chahge size {Figure 35 1 st
Because OrderedCollections are "
. C o - . 2 25
dynamically sized they preallo-
cate a number of slots when they 32T
are created in preparation for Al wif
abjects being added. If vou aré

wsing lots of DrderedCollectionis :
using lots o € Collection new: 4) add: 2.5;

- and imost are stvailer than the L addiat

16

Tap Smavcraiy Bevonrt

E SMALLTALK IDIOMS " -

Figure 3. The resul of Orderad- :

ETTING REAL

| plications without any source-manageinent tools.
i Although it takes a certain amount of émﬁpﬁme,
snnllw to mediumsized applications can be developed w;thcut
a&(htzonai tools. This column will describe several sotnd prac-
tlces for the successful manmagement of application source.

The code in this column s for versions of Smalltalk/V un®.
der Windows and 08/2. The ideas are applicable to other ver-
sions of Smalltalk/V and to Objectworks\Smalltalk.

CONCEPTS
One coricept is crmcal for succeqsful mamgement of apphcaA
tion source:

. Neva view your image asa perﬁlanent entity.
And there are two corollaries: _ - _
- Don’t depend on your imagé as the only form of yotir
application. '
+ Store your appﬁc'a‘ziéu in source form and rebuild you%
image frequently.

Viewing the image as a non-permanent entity doesn’t nec-
essarily imply that vendors are selling unreliable software,
There are several ways an image can become non-functional,:
other than a sericus Smealltalk bug or disk crash. .

An image can becomne unusable because of some simplé
mistake on the part of a developer, such as accidentally remov-
irig a class that is relevant to the application vnder develop-
ment. If the imdge is the only form of an application, recover-

ing sources for an application class can be difficult and tedicas.

Another comimon mistake is the accidental deletion of the
change log or changes file. The source for all the changes,
you've made to an image is stored in this file. '

Not all motivation for storing an application cutside an im-
age derives from mistakes, When your vendor releases a new
version, migration to the new version may be necessary to take
advantage of new features or continue to the highest level of
tec’hnical SUpPPOTL. o :

PRACT!CE
What is your agplmdtmn? In Smalli:alk tins is ot always a
straightforward answer. Images contain large class libraries,

and applications are deveiﬁped'i)“}f adding to and modifying.

g any Simalltalk ﬁrogramiﬁe’ié de\iélo'g; significant ap- .

Juanita Fwing

~ Howtom aha e ; ._:ume i
b _Wathout tooi

" class libraries. There is nio clear distinction between systern and.

application code. Because of this, itds very difficult -te'eXtra?ét

" all parts of an apphcation from an image, espec;ally after the .

devel{)pment is ct}mpleteé 1t1s better to extract or Jist the

-parts'of your application as you develop it. Then short- term -

mierhdry cart helpy you decide if the modification you made was
necessaty for your application orif a tempofary modification.
was needed for debugging. One of the most common errors is
o omit a critical piece of one’s application. o

I will discuss two techniques for extracting your dpplication
code as you develop it, The first technique uses the browser to- .
file out code right after it is developed. Most application code
will be located in new classes, which can be filed out as & unit.
Other application components are extensions to system classes,
which can be filed out at the method level. The result of this
technigue is many stmall files.

There are dependencies among the classes defined in these
files. Bor example, a subclass depends on its superclass. Tuse a
script to reassernble all these files in correct order, rather than
try to remember what the dependencies are, It is possible to
create the script for reassembly at the same time the parts of an
application are filed out.

Figure 1 contains a script for instailing multiple files. The -
script consists of a list of file names, which is enumerated to in-
stall each file into the image.

*Read and file-In application ﬁE'es. L
#(:

‘ExtendedListPane cls'
‘AvigtionGraphPane.cls’
‘JetEngine.cls’

JetErgine.&l "
N nglr?e.cg LigtPane- - .
listAttributas.mth

Figure 1. Example of reconstructing an application using mulliple files,

NOVEMBER / DECEMBER 1002

B (GETTING REAL

- “PropEngine.cls'
‘RudderMechanics.cls’
'ListPane-class-supportedEvents. mth'
ListPane-UstAttributes.mth'
‘ListPane-listAttributes: mth'
‘GraphicsMedium-bezierCurve: mth!

)
dos

[:fileName |
{Disk file: fieName) fileln]

Another fechnique is to make a list of all relevant application
pleces as they are developed. The list can be maintained in order
of reassembly and used o extract all components of an applica-
tion on demand. The result of extraction is a single file. Recon-
struction of the application is a simple matter of installing one
file. The sourcecan be partitioned into several files, if necessary.

Jn Listing 1, the script has three lista: one for classes, one for
instance methods, and one for class methods. The classes listed
in the first script are written to the stream, then the methods in
the second list are written to the stream. The file-out code
makes use of ClassReader, which knows about Smalltalk scurce-
file format,

This script makes use of a new method, fleQutllassOn:,
defined in Listing 2. The new method, whicl writes a class
definition and its methods on a stream, takes an instance of
fileStream as an argumient. It is similar (0 an existing method,
fileQut:, which takes 4 file name as an argament, creates the file,
then writes a class and its methods to the file:

The script in Listing 1 werks in the simplest cases, in which
there are no forward references to classes. For example, if code
in the class JetEngine refers to the class PropEngine, the filein
will not proeceed properly. This problem can be avoided by
defining ali classes before any methods, as in the script in List-
ing 3. This script also has two lsts, but the fivst lst is enumer-
ated over twice. A supporiing method is defived in Listing 4.

INITIALIZATION

Applications consist of more than classes and methods. 1n-
stances of windows, panes, and domain-specific classes are
also part of an application. Application reconstruction, there-
fore, must consist of more than filing in class and methods.
The expressions executed in a workspace or inspector to set
up the state of your application, such as initializing classes
and crealing new objects, need to be re-executed when your
application is reconstructed. Save these expressions by col-
lecting them in a file and executing them after reconstructing
vour application. In a future column I will discuss these types
of expressions, and ways ¢ execute them as part of a script,

ERRORS

‘The most error-prone portion of these techniques is recording
pieces of the application as it is developed. Source-manage-
menl {eols are quite valnable because they record this mforma-
tion automatically. Because pieces of the application are
recorded by hand, it is also common practice to search back
through the change log to make sure no pieces have been for-

Listing 1. Example of créa'zing a single file for application reconstruction.

| souzceStrearn reader |
"Create filestream for storing sources. ”
sourceStream (= Disk file: *AviationSource.st',
"Write application closses.”
#(
ExtendedlistPane
AviationGraphPane
JetEngine
PropEngine
RudderMechanics)
do:
{:classiame |
reader :=ClassReader forClass: (Smalltelk at: className).
reader fileOutClassOn: sourceStream},

*Write standelone instance methods”
#(
(ListPane UstAtiributes)
{ListPane UstAtiributes:)
{GraphicsMedium hezierCurve:)
}
do:
[:classNamedndSelector |
reader =ClassReader forClass: {Smalltalk at:
{elassNameAndSelector at: 1)),
reader
fiteQutMethod: (classNameAndSelector at: 2}
on:sourceStream}.

" Write standolone class methods *
#{
(ListPane supportedEvents)
)
dot
[:elassNamehndSelector |
reader :=ClassReader forClass: {Smalitalk at:
{classNameAndSelector at: 1)class).
Teader
fileQutMethod: (classNamehndSelector at: 2)
on: sourcedtraam].
sourcestream close.

Listing 2. Supporting code in ClassReader for filing out a class onto a stream.

ClassReader
instance method

fite(ratCiassOny afileStream

"Write the source for the class {including the class definition,
instoance methods, and class methods) in chunk file format
fo afileStrearm. ”

class isNil #Troe: ["self].

CursorManager execute change,

afileStream lineDelimiter: Cr.

class fileQutOn: afileStream.

afiteStream nextChunkPut: String new,

{ClassReader forClass: class class} fileCutOn: aflsStream.
saif fileQutOn: zfileStream, :
CursorManager normal changs

Listing 3. Example of creafing a single filefor application recanstruction. |

| sourceStream classlistreader |
*Create file stream for storing sowrces. ¥
sourceStream = Disk file’AviationSource.st’,

continued on next page |

10

Tre SMALLTALK REPORT

MALLTALK IDIOMS

ur previcus colurmn focused on ennmeration methods
*and how to use all of thent to advantage. This column
covers the common collection classes, how they are
implemented, when you should use them, and when you

-should be careful.

COLLECTION CLASSES
Array
Use an Array if vou know the size of the collection when you

. create i, and if the indices intc the elements (the first argu-

ment to zt: and atiput:} are consecutive integers between one
and the size of the array.

Arrays are implemented using the “indexable” part of ob-
jects. Recall that vou can declare & class indexable. You can
send new: anlnteger to an indexable class and you will receive
an instance with anInteger-indexable instance variables. The
indexable variables are accessible through at: and at:put:. Array
needs no more than the implementation of at: and at:put: in
Object, and the implementation of new: in Class (o operate.

Mary peaple use OrderedCollections everywhere they need a
cellection. Hyou - -

* want a dynamically sized collection without the Orderedfol-
lection overhead {see helow}
+ are willing to make the referencing chject a little less flexible

s don't often add or remaove items, compared with how often
you access the collection
you can use arrays instead. Where you had:
initiatize '
collection 1= OrderedCollection new
you have:
initialize
collection = Array new “or even #{)"
then you replace add: and remove: sent to collection with copy-
With: and copyWithout: and reassign collection

foo
collection add: #bar

becomes
foo .

collection = collection copyWith: #bar

The disadvantage of this approach is that the referencing object

aow has bailt into it the knowledge that its collection isa't re-

Kent Beck

sizable. Your object has, in effect, accepted some of the collec-
tion’s responsibility. '

Byiedrray

ByteArrays store integers between 0 and 255 inclusive, I all the
objects vou need 1o store in an Array are in this range, you can
save space by using a Bytedrray, Whereas Arrays use 32-bit slots
{ie., soon-to-be-absolete 32-bit processors) 1o store object ref-
erences, Bytedrrays only use 8 hits.

Besides the space savings, using Bytefirrays can also make
garbage collection fester. Byte-indexable objects {of which
ByteArrays are one) are marked as not having any cbect refer-
ences. The collector does not need to traverse them 1o deter-
mine which objects are still reachable.

As T mentioned in the last colurnn, any class can be declared
indexable, Instances arve then allowed to have instence variables
that are accessed by number {through at: and at:iput:) rather
than by name. Stmilarly, you can declare classes to be byte in-
dexable. at: and at:put: for byte-indexable objects retrieve and
store one-byte integers instead of arbitrary objects. A
significant limitation of byte-indexable objects is that they
can't have any named instance variables. This is to preserve the
garbuge-collector simplification mentioned above,

Ifyou want to create an object that is bit-patiern oriented,
but shouldn’t respond to the whole range of collection mes-
sages, you should create a byte-indexable class. Such objects
are particularly usefisl when passed to other languages because
the bits used to encode the objects in a byte indexable object
are the same as those used by, for instance, C, whereas a full-
fledged Smalilnteger has a different format than a Cint,

Lictionary

Dictionaries are like dynamically sized arrays where the indices
are not constrained to be consecutive integers. Dictionaries use
hashing labies with linear probing to store and lock ap their
elements (Figure 1). The key is sent “hash” and the answer
modulo the basic size of the Dictionary is used to begin search-
ing for the key. The elements are stored as Assaciations.
DicHonaties are rather schizophrenic. They can’t decide
whether they are arrays with arhitrary indices or unordered collec-
tions of associations with the accessing methods at: and abipat:. It
doesn’t help that DicHonary subclasses Set to inherit the imple-
mentation of hashed lookup. I treat them like arrays. If T want to

MNOVEMBER / [JECEMBER 1992

i’mz _'335'5?:{5? f{_{)_m?;’mﬂéaﬂ_. AR

"?lm cialm pmvu:}kxd (?13{:1:551@1} clbo uf how Easaiv {enmter

o 'wzndows could be i 4 sed—whether they wouid zn‘terfere Wlt%l

_ qarb"zge c&ﬂeutmn { since valties in reglstem ﬂuiszcic thc mrrenﬁ
._'mudc}w would not be Lasﬁv Visibl) and other stich topm
Urs iioelzie { urs@xeﬁ{m stanfmd edu) mentmned that Self

has been using SPARC register windows with gari}agL collecs

' tion for some UZHEJ Peter Dwtsch pmwded a comprahen sive:
: mqiyms it raasam for Suvallatk ot to use them:. '

The pmb]em of ?E}miers btzrled in reglster windows is in- -
deed a significant onle, but it is not the reason why Twould
recammend agamst modifying the {}?)Jecmrorksi*}malﬁalk
(GW!ST) 1mp1ementatmﬂ to ise register windows. First,
1 the perfarmance gains would not be dramatic. Ow/ST
++ spends a substantial fraction of its tzme in support code.
written in C, which would not be affected. A substantial
fi‘actmn of the time in cemg}iied Smiailtalk code is spent do-
ing message sends, typc checks, efe,;, which would zlse not
be affected. Also, since Smailtalk stacks get very deep and
fluctuate more deéply than C stacks, the 7- or 8-register
window on current SPARCs would over- and underflow
significantly often. My hest guess was that we would not
- see miore than 20-25% pérfozmaiicé: improvement. {On fu-
tare SPARC PIBCESSOTS, where both the cost of memory
‘references relative to register accesses and the number of
register windows might be latger, this improvement might
be somewhat greater.) Second, one of the keys to Ow/ST’s
remarkable portability is that it uses a very similar internal
storage format for stack frames on all platforms. However,
because saving and festoring register frames is done on the
SPARC by code that is not accessible to ParcPlace, we can-
not affect the storage format for these frares. So in order
to use the SPARC register frames, we would have (o either
. provide a complete second set of, or add radical new flexi-
bility to, the large body of code in the runtime support sys-
temn that manipulates stacks. The bottom line is that, in my
* opinion, the work required to fit Ow/ST to the SPARC’s
frame model would not justify the relatively smiall perfor-
mance zmpm‘vs:meni Aj for the comparison against Self,
the Self authors %I{nnw]edge that the factor of 5 is oniy
milievahle under some circumstances. [do think it would
be excmng 10 apply the Self compilation ideas to Smalltalk,
* and doing this coudd well pmduce dramatic ?erform'mce
© improvements (on all piatt@rms) but this would requsire
~ wholesale redesign of most of the piatf(;rm-mdepeﬁde;%t
code (other than the memory manager} in the Ow/ST run-
time support systém. The optimizing cempﬂatmn experi-
merits T did at ParcPlace were based on an alternative ag;-
: pmach that would not have reqmreci susch substantial
- changes to the Ow/ST mriuai machme, buit might have re-
Cquired rype éeclamtloi}s (or at least type hints) pmwded
: by the sser {91’ & tvpc mferem_e qye!:emj ’ .

S ':Jr;trmmc!ﬁam pmc:.f TR

mﬂmh’s systam a&pcndcnt scctloﬁ because 1?, depend9 on the '
: anoul of coritexts. : : S
|- Omce ibe handler Block is tound it’s {,V"thialf:d w1th the ex-
_u,ption A8 A parameter, Fhis aHows the han{ﬂer block to qend
the pmceeé reject, restart, and return messaces to the e\ce?tion,. '

and fo querv the exception for information abaut the error.”

" Below are the 1mp§emmhﬁ{ms for proceed and re;ectwthoqe
for vetum and restart are in next miotith’s article becaase they

depend on somi specifics 6F the V 286 system,. .
- Proceeding is simple: Since we have rhe instance variahle

proceedBlock, ali we need to do is evaluate it, perhaps mth

‘;OI‘[}Q meamngful gqramete: asin:

pfuseaﬂﬂmng' aB!sck : ST
. "Retur the valie of aB‘LDck as the vaiue Gf the radse 51gna1 Unwind
';' the stack up to that point and resume execution in the dontext that
- raised the signal.' :
| answer | :
© | angwer = aBlock v, =
S sigralContest unwindLaterContexts.
- proceedBlock value: answer -

Fvaliating proceedBlock causes control to return into the
context where the signal was first raised, The only subtle .
thing to remember concerns the uawind mechanism. Before
evalating proceedBlock, we call unwindlaterContexts, which

 evaluates the unwind blocks ofevery context we'll skip by

proceeding. Co :
froplementing reject is afso quite sunple The clirrent han—
dier context (as found by fetchHandlerBlock:) is stored in the
exception’s handlerContext instance variable, 5o to find the next
handler below the ciirrent one, we just need to look for some
handler for the exception’s signal below handlerContext. We

can do that by sendling propagatePrivateFroi: to the receiver ex-

ception witl handlerfontext as the parameter, o
At this point we have a system- mc&p{'ndent impiemenh-

 tion for much of our package. The class Signal is complete and

we heed only three more methods for class Exception: retum;. -
restart, and the private method fetchHandlerBlock:. We also -

‘heed fo implement enwindiaterContexts to implement our un-
wind mechanism, Finally, we need some extra functionality for

¢class Process, Mext month, we will describe these final aspects
of our systerny such as the need to create a new set of Ccntext~
related classes to make dealing with contexts in V 286 L{'JH&.IS-
tent and rel fatively trouble-free. . :

Reféronces

1. Vin Orden, E Apphcqtmn mik HOOPSLN 1(2); 1988,

2. Graver, . Type-chécking and type-inference for object-ori-
ented programming languages. Boctoral thesis, University of
Tilinois at Urbana-Champaigiy, 1989, . -

Alan Knight is o researcher in the Beparrmcm of Mechanical and

- Aerospace Engincering at Carleten University, Oftawa, Canada,
20 3PS He can beveaclied af +1 Gii 788 2600 25?8% or b;f &- mm%
ot kmghi@fmw mrluanm ' o

Bob Hinlde and Ralph E. Johnson are affiliated with the University of

HMinois at Urbana-Champaign, Mr, Hinkle's work is supported by a

- fellowship from the Pannie and John Hertz Foundation;

4

Tt SMALLTALK REPORT.

. m TAKING EXCEPTION TO SMALLTALK, PART T

fa:ﬁ‘éM?*‘i Smaﬁtaﬁk/‘%’ users& the tﬂﬂ%

Lzm?;g.?fm;rmded S

" Ciasses in the r:fpphcaiion
classList i= #("

Ez-:tendedhst?ane
s AwahontaphPane

JetEnghe _
Proplngine. -
RadderMechamcs}

‘Wnte applrcahon da5$ deﬁmﬁans
classList. - :
. doy

Eclassﬂafne |

yeader :=ClassReader forClass: (Smaﬁtaﬁ«: at: chssﬁame)'k

readerﬁleOutClassDeﬁmtwnﬂn sourceStream]

"TWrite the methods for the apphcahon cIass
dassLlst :

de:
© [rclassName § _ : - S
.. reader ={lassReader forClass: (Smalltalk at: className).
reader fileQutOn: sourcestream],_ :

e smna’a?one mstance methoa’s "
#(:
(ListParne hstﬁtmbutes)
(ListPane listAttributes:)
{GraphicsMedinm beziexCuve:).
)
[:clagsNameAndSelector |
reader =ClassRéader forClass: (Smalltalk at:
{classNameandSelector at: 1)}
reader
fileflutMethod: (classNameAndSelecmr at: 2}
onisourceStream].

© "Write standalone class methods®

#{ .
(LlstPane suppor’tedﬁvems)
)
do:
[: dassNameAndSelecto: |-
reader :=ClassReader forClass: (Smai’italk at:
(ciassNameAnéSelector at: E}Class)
readey
ﬁInOutMe&od (c{ass’\!meAndSelector at 2)
o sourceStream.

sourteStrean close.

|| °-View class hierarchy as graph or hsi;

f{sr maxmmm praductmty_--

e Put related ciasses and methods mi{} a sm gie taskw
“priented object called application. :
: -_‘” Browse what the apphcaimn sees, yet easily move code
between it and éxiernal environment.
@ Automatically document cods via mudlfiabie tempiates.
| * Keep a history of previous vers;ons rest{}re them w:ﬁs
; afew keysrokes: o

© Print applications, classes; and maﬁh@d% m a formaﬁed
 1eport, paginated and commented. :

@ File code info applications and merge thent together

¢ Appiacatmns are unaffected by camgaress iﬂg change

| and many othier featares

Cl_a’ss . ._ """" o

Utilities.. Apphcauon p{;_mmg E and mors..

LﬂdeMAGERN V286, VMac $129 95
YWindow & V?M %249 95
Shipping & handling: $13 mail, $20 UPS, per capy

Disketter [132 [} s34

- SixGraph™ Cﬂmputzng Lid.

formerly ZUNIG DATA Corp,

2035 Cite de Lissse, sirite 201

Montzeal, Que, Canada H4AN 205

Tei (514) 3321331, Fax: (5&4) 956-1032

IMAGER is areg u‘a&rmrk of SixGraph Compuring Lid.
Smaﬂ:alkf‘a’ 1 & reg. tradernark of Digitalk, Jguc

Listirig 4. Supporting code in ClassReadsr for filing out
a class definition without methods.

iiieﬁﬂtﬂiassﬁeﬁmﬁanﬂn aFilgStream

" Write'the ‘soiirce: for the class {(but not for the instance
rhethods gnd class met}mds; i chunkﬁlefmmat _

. to aFileStream.” . .

- class isHit ifTrue: _["self]‘
CursorMariager execute change.

aFfieStream lineDelimiter: Cr,
class FileQutim: aFileStream. _
aFileStream nextChunkPut! String new.
CursorManager normal change

gotten, This "ictfifi"ﬁv s u‘sualiv perférmeé ina rcguiar fashion,
such as before each snapshot. :

Another comion error is to rebuild an appl:mtzor; on top
of an image that has been used for development. Thisis not a
good idea because the state of the image is unknown. There -
may be unwanted side effects from objects in the iniage. It is
imperative, therefore, that the application is reconstructed
from a clean, pristine image.

' FREQUENCY

How often should the application be rebuilt? Esu']y m df:velopﬂ
ment, when many classes are being created, the scripts are
modified rapidly. It valiable to rebuild often to test the scripts; i
they're too far out of sync with the application sotirce, it can be
difficult to debug the reconstruction process. in the middle stages
of development the scripts are not in so much fliax and the appli-
cation doesn’t need to be rebuilt 5o offen to fest them out. Other
considerations may force application reconstruction, such as re-
design of parts of an application. As the product is fizaring cormn-
pletion, the development teany may want to reconstruct the ap-..
plication often to confirm that the build process is bug-frec. &

Juanite Ewing is'a senfor staff shember of Digitalk Professiovinl Ser-
vices. She kas been a profect leader for several commercial O-O soft-
ware projects, and is an expert in the design and implementdtion of
O-C applications, frameworks, and systems. In a previous position at .
Tekeronix Ing., she was responsible for the developient of dass li- -
braries for the first commercial-quality Smalltalk-80 systens.

- NovemBiz /DECEMBER 1992

11

but its implementation achieves much better performance. dynamite product. How many of the postings to

HE EES T OF .Cﬂmp . langw Smallta}k _ ' ' Alan Knight ' This is done using an extremely aggressive optimizing com- comp.lang.c++ give efficiency as a reason for using this
: ' . _ : ' : piler. For example, Self exploits range information in integer “engineering compromise”™? Take away efficiency as a criti-
' ' computations. Using this information, it can omit averflow cism of Smalkltalk and a lot of programmers and managers
checks in cases where they’re shown 1o be unnecessary, will take note.
Bruce Samuelson (bruce@ling utafl.edu) doesn’t think cur- 8) Digitalk miust have had some money to spend to able to
rent Smalltalk performance is fast enough. He writes: buy out Instantiations. What if they put some of their

g~ any people think of Smalltalk as sfow. Unfortu-
nately, they're right, especiaily as compared with the
reference point of optimized C. This column will ex-
p]ore why Smalitalk code runs so slowly, just how sl(}w it is,
and the possibility for improvement.

WHY 1S SMALLTALK SLOW?
Although surprisingly fast for what it does, Smalitalk is slow for
various reasons. Conventional wisdom blames garbage collec-
tion. After ali, Smalltalk collects garbage while those other, fast
languages don’t. Garbage collection does have a price, but not
nearly as high as people think. More time-consuming is safety
checking. Smalltatk checks all array references to make sure they
are in bounds, every object reference for aull values, every integer
operation for overflow, and so on. C does none of these things.
¥ you have a compiler like Turbo Pascal, which allows you to
turn array-bounds checking on and off, try doing it with a pro-
gram that uses arrays. The effect on performance is very notice-
able. I still leave checking on by default, and always turn it on
when I'm trying to debug. When [learned C 1 wasted 2 lot of
time trying to figure out how to tuzn on bounds checking, but T
finally did. It involves paying a lot for an interprefer so my code
can run more slowly than equivalent Simalltalk, but it's worth it

Of couvrse, these approaches have the advantage that you
only pay the price during development. Safely features can be
turned off when shipping the “bug-free” production code. It
would be an interesting experiment for a vendor to provide a
fast, unsafe version of the Smalltalk virfual machine for stand-
alone applications.

Another important factor is mmessage passing, for two rea-
sons. First, message sends are g little pricier than function calls.
You have to additicnally figure out which function to cali at
runtime. However, the high cost of message sends is due to
their number. Everything in Smalltalk except instance-variable
access requires a message send. Even if messages cost less than
function calls, the fact that there are so many more in the aver-
age Smalltalk program than the average C program malkes
Smalltalk siower.

HOW SLOW IS IT?

Quantitative pesformance measurements are always difficult,
Results vary greatly between applications and minor changes
can make a big performance difference.

ice

Given this difficulty, we are fortunate to have someone with
a good knowledge of the subject, at least with respect to Parc-
Flace Smalltalk. This impressive disclaimer is from Peter

" Deutsch {dentsch@smh.eng.sun.com)

I was the principal designer and implementor of Parc-
Place’s Smalitalk code generators, including the portability
architecture, the code generation framework, the stack
management architecture, and the individual generators
for 680x0, 80386, SPARC, MIPS, and RS/6000. The opin-
fons expressed below are wmy own and should not be at-
tributed to ParcPlace or to Sum.

He then writes:

In my experience, based on a variety of both micro- and
macro-experiments, the ParcPlace Smalltalk system does
benchmark around a factor of 8 slower than optimized C
for integer, structure, and array computation that does not
contain large numbers of procedure-call-free loops. For
straight-fine integer computation, the ratio can get down
as low as 4 or 5 to 1, (O course, ParcPlace Smalltalk does
overflow checking on all arithmetic operations, so any such
comparison is not entirely appropriate.) For highly opti-
mizable Joops, especially ones involving access to arrays or
strings (which ParcPlace Smalitatk always bounds-checks,
and C never does), the ratio can get up as high as 40 or 50
1o 1 ander the most unfavourable circumstances, sach as
the I-staternent foops of strlen or strepy.

It is because of these things that ParcPlace recommends
that, when necessary, users write their high-usage foops in
C. Smalltall’s advantages are in areas other than highest
performance for unchecked inner loops. ’

IS THIS FAST ENOCHGH?
For many applications, this kind of speed is high enough. The
numerous advantages of Smalitalk are worth the performance
hit in these areas. For other application areas, the speed is
definitely unacceptable, but this is partly psychologieal. If
Smmalltalk is running as fast as it reasonably can, we must either
accept the performance or use another fanguage. If, on the other
hand, it runs slowly because the implementors haven't botherad
1o make it go faster, then we may get annoyed about i.

A strong voice for the possibilily of improving performance
comes from the implementors of Self. Self is a prototype-based
language that is even more difficult to optimize than Smalitalk,

iz

Frg SMALLTALK REpoRT

ParcPlace, your dynamic compilation technology, is indeed
impressive. .. . But you can do better, and you have chosen
not 1o because you don’t think it is high priority:
1} The Self authors claim in the literature that Smalktalk could
“be sped up by about a factor of 5, They claim in person that
PPS is not interested in doing so {at least as of GOPSLA "91),
2} Mike Khaw’s recent posting showed that Smalltalk did
integer arithmetic in a tight leop about 1/8 the speed of
C....This is in the ballpark of what one would expect for

- such low level comparisons.
3) A Smalltalk “VM implementor” told me at QOPSLA 91
that the machine code generated by the dynamic translator
is of “plain vanilla,” unoptimized quality, For example, he
thought the code for SPARC machines (he was not the
SPARC VM implementor) did not make use of register win-
dows, SPARC’s idiomatic technique for passing function ar-
guments efficiently. Perhaps he was wrong, or perhaps I mis-
understood him, but times past when I've posted this and
asled for comments from PPS, you have remained silent. It
scems like this is one area in which you could apply some
faizly standard optimization techniques in vour VM that
wouldn't require modifications to the compiler in the VL
4} A PPS employes was engaged in a serlous optimization
project before he left PP, 1 bave not heard from PPS on the
status of this project, except a comment I would paraphrase
as follows: “We are Impressed with the speed of forthcoming
new machines [based, I suppose, on DEC Alpha, HP-PA, In-
tel 586, T1 Viking, etc.] and feel that hardware vendors will
solve possible Smalitalk performance problems.”
5) Critique of {4}: Yes, Smalltalk grows faster in proportion
to the hardware, But so does every other language, and
Smalitalk remains 5-18 times slower than C. The hardware
vendors are not improving the competitive position of
Smalltalk, except to make it feasible to use at all, and they
already did that a few years age. As machines get faster, ap-
plications get more ambitious and demand more cpu cy-
cles. . . . A software vendor offering a development envi-
ronement should regard decent optimization as a priority.
Reviews of sofiware products, whether of languages or ap-
plications, usualiy give performance a prominent place.
You will make us, your customers, look better if you give

- us the tools to write blazing applications.

6) Ihave had to spend more time on optimizing my
Smalitaik code than | would have liked, which has taken
time away from more productive activities.] imagine this
has happened to other programmers.

- 7) A turbocharged Smalltalk that could even modestly

compete with and C++ in speed would be an absolute

money into doing a bang-up job at {thsmszgng ST/
Where would that leave ParcPlace?

9) Despite all these comments, which are directed to PPS in
response to Tim Rowledge’s posting, | realize that PPSisa
small company with finite resources. Your founders have
profoundly influenced the entire computer industry
(GUIs, object orientedness) for the better. And you sell a
very nice Smalhtalk environment indeed. So 1 will counsel
myself to remain patient and trust vour marketing in-
stincts, But please don't keep performance on the bhack
burner forever...

REGISTER WINDOWS

There are quite a few complaints here, and I entirely agree with
the main thrust that ParcPlace needs to place more emphasis on
performance. T'd like to specifically deal with one of the claims
that attracied particular attention on the net: the assertion that
ParcPlace Smalltalk does not use register windows on the
SPARC. For those of you even more blissfully ignorant of hard-
ware than myself, I will attempt to explain register windows,

Machine registers are very fast to access and CPL designers
tike 1o have lots of them. The downside of this {apart from
having to use valuabie chip space) is that when there are many
registers, more bits in the instruction word are needed to spec-
ify which one you want,

There are various ways of getting around this. One is o
have more than one set of registers, used for different purposes
(e.g., integer and floating point). The SPARC designers pro-
vided lots of registers, but made only a few of them visible at a
time, By changing the register “window,” you change which
registers are visible.

Changing the window normally s done when making a pro-
cedure call. Rather than put arguments onto the stack, which is
in main memory and therefore slow, one can put them into reg-
isters, then change the register window. Since the windows have
some overlap, values put into the bottom of the register window
of the calling routine will appear in the top of the window of the
called routine. The arguments are immediately available and the
called routine has its own set of registers to play with,

"This technique can speed up procedure calls quite a bit.
SUN claimed in some document I once read that register win-
dows were aimed specifically at incrementally compiled fan-
guages like LISP and Smalltalk. Tn these languages, the compiler
doesn’t have as much time to think about how to optimize code
and there are many procedure calls. Register windows are sup-
posed to allow these calls to be easily optimized.

H SPARC card't or doesn’t exploit SPARC register windows,
it sounds like there’s a serious communication problem be-
tween chip and language designers.

NOVEMBER / DECEMRER 1092

13

THE TOP NAME
IN TRAINING IS ON

THE BOTTOM
OF THE BOX.

Where can you find the
best in object-oriented training?

The same place you found
the best in object-oriented
products. At Digitalk, the
creator of Smalltalk/V.

Whether you're launching
a pilot project, modernizing
legacy code, or developing a
large scale application, nobody
else can contribute such inside
expertise. Training, design,
consulting, prototyping,
mentoring, custom engineer-
ing, and project planning. For
Windows, OS/2 or Macintosh.
Digitalk does it all.

ONE-STOP SHOPPING.

Only Digitalk offers you a
complete solution. Including
award-winning products, proven
training and our arsenal of
consulting services.

Which you can benefit
from on-site, or at our
fraining facilities in Oregon.
Either way, you'll learn from a

100% PURE OBJECT TRAINING.

staff tha literally wrote the

book on object-oriented
design (the internationally
respected “Designing Object
Oriented Software”).

We know objects and
Smalltalk/V inside out, because
we've been developing real-
world applications for years.

The result? You'll absorb
the tips, techniques and
strategies that immediately
boost your productivity. You'll

reduce your learning curve,
and you'll meet or exceed
your profect expectations. All
in a time frame you may now
think impossible.

IMMEDIATE RESULTS.

Digitalk’s training gives
you practical information and
techniques you can put to
work immediately on your
profect. Just ask our clients
like IBM, Bank of America,

Progressive Insurance,

B Puget Power & Light, U.S.

Sprint, plus many others.
And Digitalk is one of only
eight companies in IBM’s
International Alliance for
AD/Cycle—IBM'’s software
development strategy for the
1990%s. For a full description
and schedule of classes, call
(800) 888-6892 x411.

Let the people who put
the power in Smalltalk/V, help
you get the most power out of it.

February 1993

The lnternatio.naél? ﬁé‘m}életter for Smalltalk rn

Volume 2 Number 5

~ MonbuLEs:
ENCAPSULATING

BEHAVIOR IN
SMALLTALK

By Nik Boyd

Contents:

Feature

1 Modules: Encapsulating
behavior in Smalltalk
by Nik Boyd

Columns

7 Putting it in perspective:
Characterizing your objects
by Rebecca Wirfs-Brock

10 The Best of

22 Product News and Highlights

comp.lang.smalltalk: Copying
by Alan Knight

13 Getting Real: Constants,
defaults, and reusability
by Juanita Ewing

15 GU/s: A quick look at two
interface builders

by Greg Hendley & Eric Smith
17 Smalltaik Idioms: A short intro- §

duction to pattern language
by Kent Beck

Departments

his article proposes a new view of modules and how they may be
added to the Smalltalk programming system. Modules provide a
way to control the visibility of shared names. Modules also provide
a way to hide the detailed collaborations among a group of

Smalltalk classes organized as a subsystem. The organizing princi-
ples of classes and modules are orthogonal. Thus, modules also can be used to
safely extend existing baseline classes.

The concept of a module and modular software development has existed for
many years. A variety of programming systems has provided support for using
separate name spaces to control the visibility of names used in a program. Exam-
ples include Modula-2! and Ada.?

Smalltalk systems use classes to encapsulate the structure and state of objects.
Because Smalltalk classes can hide their internal state and serve as centers around
which program behavior may be organized, they also may be considered modular.
But while Smalltalk classes can encapsulate the state of their instances, they do not
encapsulate their instances’ hehavior.

By convention, some messages are designated as “private” for the private use
of the class and its instances. However, the Smalltalk system does not enforce des-
ignated message privacy and it is not always clear what such privacy means. For
example, should subclasses be restricted from using private messages they inherit
from their superclasses?

Because classes are globals in the Smalltalk system dictionary, they are all visi-
ble to all other classes. This visibility is excessive and it can contribute to informa-

_tion overload for novice Smalltalk programmers. It also can cause class naming

conflicts when a team of developers integrate their separately developed compo-
nents.

This article attempts to deal with these issues in a relatively nonintrusive man-
ner that does not sacrifice any of the flexibility and power offered by existing
Smalltalk systems.

MODULES
In their work on Modular Smalltalk,? Allen Wirfs-Brock and Brian Wilkerson de-
scribe the essential features of modules:

Modules are program units that manage the visibility and accessibility of
names. . . .

A module typically groups a set of class definitions and objects to im-
plement some service or abstraction. A module will frequently be the unit
of division of responsibility within a programming team.. . ..

A module provides an independent naming environment that is separate
from other modules within the program. . ..

Modules support team engineering by providing isolated name spaces. . .

continied on page 4.

John Pugh

Paul White

ost of you are probably satisfied with Smallralk as a development tool. In fact, many of us
teel even a bit arrogant about promoting Smalltalk as the “best” tool for developing
software systems, Nevertheless, most would have to agree that we still lack an integrated
process, and tools to match that process, for the entire software development lifecvcle.
Whether we're using CRC, Booch’s notation, OMT, or something else, there still exists a
“leap” fromy the design process to the construction of the software. Many of the tools on
the market today offer little in the way of matching designs with the corresponding code.

FEven more important, though, is the fact that we still don’t have proper tools to allow
us to go back and update the design to reflect changes in the construction, If we are to
reap the benefits of the new “object-ariented lifecyde” many of us are advocating, where
the design and development phases can be better integrated, we're going to need such
tools. As Sam Adams and Steve Burbeck pointed out in the November/December 1992
issue of Oblect Magazing, “design is a continual process of discovering, evaluating, and
deciding between alternatives,” This can only be achieved if the costs of doing so are
manageable.

One issue that has been addressed over the months in this newsletier is how best wo
manage visibility of objects within Smalkalle. On large development projects where teams
work on subsystems to be integrated, managing the name space always proves to be a
difficult task. In our feature article this month, Nik Boyd takes a new look at using mod-
utes ag a vehicle for managing class library name spaces. He states that modules can be
used o hide the details of the implementation of a soflware component consisting of 2
nuniber of cooperating classes and he discusses means for implementing them.

Iy her column this month, Rebecca Wirfs-Brock calls for software development teams
to characterize their objects, She states thar such characterizations will help ensure that all
teart members are “in sync” and working toward a common system architecture.
Through her experience, she proposes a number of terms for characterizing objects that
could be adopted by vour team,

Kent Beck offers two columns 1o one this month, As an aside, he describes & short id-
iom for testing nil values in an expression, The main column calls for software developers
to “describe the intent hehind a plece of code™ for those who will later need to understand
it to reuse it. Kent suggests that what is peeded is 2 “pattern language” capable of describ-
ing these intentions at a variety of levels.

Juanita Ewing's “Getting Real” column addresses the problem comrmon to all com-
puting languages—ahow best to deal with defining and using both constants and defauli
values. As she points out, to develop a code that will be reusable, default values must be
defined in a consistent fashion and a mechanism must be provided for overriding them.
In the “GUI” column this month, Greg Hendley and Eric Smith comment on the simi-
larities and differences between Cooper and Peters’ WindowDBuilder and ParcPlace’s new
VisualWorks. The issues involved in copying Smalitalk objects arise regularly on
USENET, and Alan Knight tackles sonie of these issues in his regular
“comp.ang.smalltalk” column this month.

The Smalitalk Report

Editors

Johr Pugh and Paol Whits
Cardeton University & The Olyjsct Poople

SIGS Puslicanions

Advisory Board

Tom Atwood, Object Technology Intrnational
Grady Booch, Rationat

George Bosworth, Digitalk

Brad Cox, Information Age Consuliing

Chuck Duff, Symantes

Adeie Goldberg, ParcPiace Systems

Tom Love, Gonsuitant

Bertrand Meyer. ISE

Meilir Page-Jones, Wayland Syslems

| Besha Pratap, CemterLine Software

¢ P Michael Seashols, Versant

Sjarne Stroustrup, ATET Bzl Labs

Dave Thomas, Object Technology kternational

THE St Tatk REPORT

Editorial Board

Jin Andlerson, Digitatk

Adefe Geldberg, ParcPlace Systems
Read Fhilips, Kaowiedge Systems Cop.
fvlike Taylor, Digitsik

Dave Thomas, Object Technolngy Inferastiona!

Colummists

Kent Beck, First Class Sokware

Juanita Ewing, Digitalk

Grag Hendley, Knowledgs Systams Gorp,
Ed Kiimas, Lines Engineering Inc.

Alan Knight, Carleten University

Eric Smith, Knowladge Systems Corp,
Rebeoca Wirfa-Brock, Digital

SIGS Publications Group, [nc.

. Richard P. Friedman

¢ Founder & Group Publisher

Art/Production

Kristing Joukhadar, Managing Editer

Susan Guligan, Plgrim Read, Lid., Greative Direcion
Karan Tongish, Production Edier

Rabert Stewart, Daskton Systern Soarchinator
Cireulation

Staphen W.Soule, Circulzton Manager

Ken Mercarn, Fubilment Manage

John Schreiber, Circulation Assisiant
Marketing/ Advertising

Jason Weiskopf, Adverlising Myr—Euast Coast/Canada
Hoby hMeintzer, Advertising Mgr—West Cosst/Furops
Helen MNewlng, Déba/Rec
Sarah Hamion, Promotions Manager—Sablicatons
Lorna Lyle, Promolions Manage—Conferences
Caren Polner, Promations Graplic Artist
Administration

Ozsama Tomoum, Business Manager

David Chatterpaul, Accounting

Clate Johnston, Canference Manager

Cindy Baird, Gonlerence Techeical Manages
Amy Friedmarn, Projects Manager

ment Sales Marager

Margharita B, Monck

General Manager

5 of Journal of Opiec™-ORENTEDR PRO-
e, CBIECT MAGAZIRE, HOTLINE On CagcT-
o Tg oLoay, Tre Gie ReporT, THE
SmaLLialg REPORT, THE INTERNATONA. QOF (IREG-
TRy, and ThE X JGURNAL,

THE SMALLTALK REPORT

American Managment Systems, an international consult-
ing and software development firm, is experiencing con-
tinued growth. AMS designs and develops breakthrough
solutions for large organizations through the creative
application of rechnology.

We currently have numerous positions available for QO
professionals, all of which offer excellent growth opportu-
nities.

& SMALLTALK or C++ designers and developers
of small, medium and large scale systems under

Q82 and UNIX.

To find our more abour vour furure with a recognized
leader in applied technology, please send or FAX vour
resume ta! Megan O'Neil, American Management
Systems, 1777 N. Kent Street, Arlington, VA 22209,
FAX: (703)841-6056.

AMERICAN MANAGEMENT SYSTEMS, INC.
Egual Opporauniy Emploser MIFIDIY.

We are a rapidly growing
consulting company with
many state of the art openings.
%

LONG TERM ASSIGNMENTS
HIGHEST COMPENSATION

SMALLTALK 80

CoMPUTER CORPORATION

1212 Avenue of the Americas, New York, NY 10036, 9th Floor
(212) 840-8666 = (800) 843-2119 = Fax (212) 768-7188

inherent compiexity. Object management needs to be inte-
grated much mare smoothly into the operating system scrvices
and made to fit naturally with object-oriented languages, In
effect, you want the operating system support for objects to be
as fransparent as support for memory allocation and dealloca-

tion, file services, and so on. The approach must be sufficiently

general that it can accommaodate a range of languages, not just
Cer+ and Pascal. There will always be a place for interpreted
languages such as Smallalk and Actor, and I hope that future
object-vriented operating systems will make cross-language
sharing of objects a reality.
FPolyvmorphism unbound, Zack Urfocker,
WINDOWS TECH JOURNAL, 10/62

QOP is inclusive, just as structured programming was two
decades ago. It differs, however, from structured programming's
traditional association with functional design methods such as
tunctional decomposition, dataflow diagrams or data structure
design. In QQOP, objects are first categorized into classes and or-

ganized hierarchically according 1o their dependency and simi-
larity. Each class comprises a set of attribuies reflecting the ob-
jucts” generally static properties and a set of routines (in
Smalltalk, methods) that manipulate these attributes, Then rela-
tions between classes, such as inheritance, are designed. ..
Object-oriented computing, David C. Rine and
Bharat Bhargava, COMPUTER, 10/82

T the object world you start by defining classes,” explained
Lanny Lamipl, a technical censultant in Levi Strauss”™ Informa-
tion Resources Group. “You have to parcel out the responsibil-
ities of each object and decide how classes will interact with
each other.” Carrying oul an object-oriented analysis turned
out to be harder than switching to Smalltalk. “The syntax of
the language is not the big thing,” Lampl said. “The important
thing is learning how to think about objecis.”

Levi Strauss cuts clignt/server pattern, Jean 5. Bozman,

COMPUTERWORLD, 11/16/92

FEBRUARY 1903

23

PRODUCT

ANNOUNCEMENTS

Product Announcements are not reviews. They are abstracted from press releases provided by vendors, and no endorsement is implied.
Vendors interested in heing included in this feature should send press releases to our editorial offfices, Product Announcements Dept., 91 Second Ave,,
Ottawa, Ontario K18 2H4, Canada,

The Smalltalk Interface to Objective-C makes Objective-C ob-
jects look like Smalltalk objects. The interface is based on the
simple concept that every remote Objective-C object can be
represented by a local Smalltalk proxy object and every Objec-
tive-C class can be represented by a Smalltalk instance. Mes-
sages sent to a local Smalltalk proxy object are transparently
forwarded to the actual Objective-C object it represents and
the results are returned as Smalltalk objects. If the return value
is an object ID, a proxy for that object is returned so that fol-
low-on messages are also forwarded.

To the Smalltalk developer, there are just Smalltalk mes-
sages being sent to Smalltalk objects. To the Objective-C devel-
oper, there are just Objective-C messages being sent to Objec-
tive-C objects. The net result is that the two languages are very
smoothly integrated. Developers no longer have to choose be-
tween using Objective-C or Smalltalk. They can use both lan-
guages together, each where it is best suited.

Berkeley Productivity Group, 35032 Maidstone Court, Newark, CA
94560, 510.795.6086, fax: 510.795.8077

The Object People Inc., a leading international provider of
training, mentoring, and project development services in ob-
ject-oriented technology, has expanded its educational facilities

and launched a new internship program for Smalltalk pro-
grammers. The company specializes in the design and develop-
ment of custom Smalltalk applications.

The new training facility allows the firm to offer an ex-
panded schedule of open enrollment courses in Smalltalk/V,
Objectworks\Smalltalk, and object-oriented concepts, analysis
and design. In addition, the firm’s Objectworks\Smalltalk
courses now include the new VisualWorks application devel-
opment environment recently introduced by ParcPlace. The
Object People is also offering courses in PARTS, Digitall’s new
“visual development tool” for OS5/2.

The new internship program is designed to fast-track the
development of accomplished Smalltalk programmers. Interns
will have the opportunity to work on their own applications
while having immediate access to assistance and guidance from
experienced Smalltalk developers. Internships are flexible in
duration and are spent at The Object People's educational fa-
cility in Ottawa. The program is available to both Smalltalk/V
and Objectworks\Smalltalk developers. Participation in the
program is strictly limited in view of the intensive one-on-one
interaction required to make the program successtul.

The Object People Inc., 509-885 Meadowlands Dr., Ottawa, Ontario,

Canada, K2C 3N2, 613.230.6897, fax: 613.235.8256

Highlights

Excerpts from industry publications

DATABASES

.. .Is the decomposition of the Open OODB system into mod-
ules arbitrary, or will other efforts to build a system with simi-
lar functionality result in a similar factoring? It is too early to
report that such experiments necessarily result in similar fac-
torings, but the Open OODB’s factoring into modules is very
similar to the application integration framework being devel-
oped by the industrial consortium Object Management

Group. . . . Thus, the OMG and the Open OODB architectures
are almost isomorphic. It is interesting that one is viewed as an
application integration framework architecture and the other
as an OODB architecture. . .

Architecture of an open obfect-oriented database management
system, David L. Wells, Jose/ A. Blakeley,
and Craig W. Thompson, COMPUTER, 10/92

... The power of objects is in their robustness, extensibility,
flexibility, and modularity. Actually I wish engineers did not
have to know or care about objects. Except as interesting
metaphors, they are not useful to any one but computer pro-
fessionals. But we are not yet able to reach that level of infor-
mation hiding. If you are selecting an engineering database
management system today, it probably should be object-ori-
ented—and if it isn’t, you should know why not.

What's the big deal about objects?, Joel N. Orr,
COMPUTER-AIDED ENGINEERING, 11/92

DESIGN

.. .Although it’s nice that operating systems are becoming ob-
ject-oriented for the user, there’s no doubt that maintaining
backward compatibility with a straight C API brings with it an

22

THE SMALLTALK REPORT

ENVY/Developer: The Proven Standard For Smalltalk Development

An Architecture You Can Build On
ENVY/Developer is a multi-user environment
designed for serious Smalltalk development.
From team programming to corporate reuse
strategies, ENVY/Developer provides a
flexible framework that can grow with you to
meet the needs of tomorrow. Here are some of
the features that have made ENVY/Developer
the industry’s standard Smalltalk development
environment:

Allows Goncurrent Developers

Multiple developers access a shared
repository to concurrently develop
applications. Changes and enhancements are
immediately available to all members of the
development team, This enables constant unit
and system integration and test — removing
the requirement for costly error-prone

load builds.

Enables Gorporate Software Reuse
ENVY/Developer’s object-oriented
architecture actually encourages code reuse.
Using this framework, the developer creates
new applications by assembling existing
components or by creating new components.
This process can reduce development costs
and time, while increasing application
reliability.

Offers A Complete Version Gontrol And
Configuration Management System
ENVY/Developer allows an individual to
version and release as much or as little of a
project as required. This automatically creates
a project management chain that simplifies
tracking and maintaining projects. In addition,
these tools also make ENVY/Developer ideal
for multi-stream development.

Provides ‘Real’

Multi-Platform Development

With ENVY/Developer, platform-specific
code can be isolated from the generic
application code. As a result, application
development can parallel platform-specific
development, without wasted effort or code
replication.

Supports Different Smalltalk Vendors
ENVY/Developer supports both
Objectworks™\Smalltalk and Smalltalk/V*.
And that means you can enjoy the benefits
of ENVY/Developer regardless of the
Smalltalk you choose.

For the last 3 years, Fortune 500 customers
have been using ENVY/Develaper to deliver
Smalltalk applications. For more information,
call either Object Technology International or
our U.S, distributor, Knowledge Systems
Corporation today!

Ottawa Office
Phone: (613) 820-1200
Fax: (613) 820-1202
E-mail; info@oti.on.ca

Dhject Technology
International Inc
2670 Cueensview Drive
Ottawa, Onlario K28 8K1

Phoenix Office
Phone: (602) 222-9519
Fax: (602) 222-8503

Knowledge 114 Mackenan Drive, Suile 100
Systems Cary, North Carclina 27511
J Corporation Phone: (919) 481-4000
Fax: (919) 460-9044

ENVY/Developeris & registered trademark of Object Technology International Inc. All oiher brand and product names are regisiered rademarks of heir respective companies.

® MODULES conined from page I

While providing many potential improvements to
Smalltalk, the Modular Smalltalk systern does not implement
modules as first-class objects. Like many other programming
systems, the Modular Smalltalk system uses modules only for
organizational purpeoses. This article proposes a different view
of modules as a special kind of Smalltalk class,

MODULES FOR SMALLTALK

The definition of a2 normal Smalltalk class includes a reference
to a superclass, the name of the new subclass, and the names of
any new instance and class variables added by the new sub-
class. Class variables are shared by all the instances of a class
and are vizible to all its methods and subclasses, i any.

In addition, the new subclass can provide its methods with
access to named objects that are shared on 2 subscription basis.
Certain names in the Smalltalk system dictionary are bound to
global pool dictionaries that contain these sharable named ob-
jects, The new subclass can subscribe to these objects by in-
cluding selected global names in its list of pool dictionaries.
For example, a File class might be defined using the following
message:

Object subclass: #File
instanceVariableFames:
‘directory fileld name '
classVariableNames:
'Pagelize '
poolDictionaries:
‘CharacterConstants 'l

Modules may be added to Smalltalk in a relatively straight-
forward manner. Details of how this can be done are presented
in a later section. For now, we can say that each module isa
class containing a name space, called its domain, instead of
simply a pool of class variables.

There are several new messages for defining modules and
the private classes contaimed in their domains. The definition
of a module for managing an inventory might use the follow-
ing message:

Object moduleSubcass: #InventoryManagar
instanceVariableMames: '
classVariableNames: '
poollictionaries: '

A new private class can be added to the domain of the In-
ventoryMarager class using the message:

Object subclass: #nventorylfen
in: InventoryManager
instanceVariableNames:

‘parfNumber partName guantity '

classVariablsNames: '’
pociDictionaries: ' !

In order to add a new private subclass of Inventoryltem, we
send the name of the private class (#InventoryTtem) as a mes-
sage to the InventoryManager module:

TrwentoryManager

Inventoryitem subelass: #Tloorltem
instanceVariableNames:

‘storeLocation '
classVariableMNames: "'
pooiDictionaries: "'t

The issues involved in this breaking of the module encapsu-
lation will be considered further in a fater section.

Medules can be used to create nested subsysiems, The fol-
lowing message creates a nested module for managing ac-
counts in the TnventoryManager module class:

Object moduleSubclass: #AccountManager
in: InventoryManager
instanceVariableNames: '
classVariableNames: **
poolDictionaries; '

Figure 1 depicts the structural relationships between classes
in the InventoryManager module. Note that the graphic design
notation of OMT? has been extended slightly to show what
classes are encapsulated inside a module class. The rounded
reclangles represent module domains. Note that the Smallalk
systemy dictionary also is considered o be the system domain.

ENCAPSULATING PRIVATE BEHAVIOR
Modules provide three ways of encapsalating private behavior,
all of which are based on their ability to encapsulate private
classes;

« class groups (sysiems)

s baseline class extensions

+ private methods

Each of these options will be discussed in the following

sections.

PACKAGING OBJECT SYSTEM DESIGNS

One advantage of modules is that they provide a way for devel-
opers to package systems of components. During the design of
a system of objects, groups of classes often know of each other

Smailialk
4 ™

Inventory
Manager

] AccountManager |,

A 1nventoryltem

TransactionL.

i Floorltem

Figure 1. Structural relationships between classes.

Tae SMariralk REPORT

the module grants divect access to an enclosed class by publish-
ing it, then all the services of that class are directly available,

A module can provide direct access to an enclosed private
class by supplying an accessing message as part of the public
interface to the module. Suppose we want to give direct access
to SubclassB in Figure 3. We could give Modulea a class methoed
named #SubclassB that answers SubclassB:

!ModuleA rlass methods |
SubclassB
"Publish SubclassB."
~SubclassBl !
However, modules provide their greatest advantage when
they hide or limit the visibility of their internals. 'This visibility
is determined by what information {chjects) is revealed by the

&6

Extending the visibility rules of the
compiler is the key to adding modules

to Smalltalk,

module class and its instances (if any). The module forms the
public interface to the classes inside the module domain.

COMPARISONS WITH OTHER WORK

Several other warks %56 suggest that modules are not first-class
and have no direct represenzation in an active system of ob-
jects. They suggest that modules only serve as name spaces for
controlling the visil:ility of shared names. This article has pre-
sented a different viewpoint, advocating the inclusion of mod-
ules as a special kind of class.

Using a responsibility-driven approach,7 the design of an
object system can achieve a high degree of encapsulation and
reusability. Classes help to maintain encapsulation when they
limit access to their variables. Modules can help to maintain a
higher degree of encapsulation by limifing access to the private
behavior of subsystems,

The Law of Demeler® suggests that object systems can best
realize the benefits of reuse by strictly limiting the visibility of
objects to those other objects in the systern that require such
visibility, With classes and modules, visibility is controlled by
the systemn designer.

CONCLUSION

This article shows how modules can be niade first-class within
Srnallzatk systems. Modules provide a natural way of packaging
object systems and give object system designers more options
for controlling the visibility of a system’s implementation de-
tails. Modules reduce the possibility of naming conflicts be-
tween separable systems of objects.

Just as classes form a hierarchy for the inheritance of struc-
ture and behavior, modules can be used to form a nested hi-
erarchy of name spaces {domains). The organizing principles of
classes and modules are orthogoenal and complement each other.

Classes can be imported into modules by adding a private
subclass of the same name to the medule domain. However,
given the new visibility rules for shared names, this kind of
transparent subclassing may be the only reason for explicitly
importing classes from outside a module.

Classes can be exported from a module by praviding a mes-
sage for accessing the class by name. However, this kind of rev-
elation on the part of 2 module s discouraged because it leads
to dependencies on the module’s internals,

SOURCE CODE AVAILABILITY

Modules may be added to Smalltalk with relatively few
changes, Two new classes and some changes to various core
Smalltalk classes and the front end of the compiler provide the
essentials for creating module classes, A tool for browsing
module domains is included. This shows ane way that suppoert
for modules may be integrated into the programming tools.
The source code for adding modules to Smalltaik/V is avail-

References

1 Wirth, N. Programaing 1w Mopura-z, Texrs avn Mowno-

Grapus in CompUTER Science, 2nd Edition, David Gries,

Springer-Verlag, Berlin, 1984,

Booch, G. SorFrwane ENGINEERING WITH ADa, Benjamin/

Cummings, Menlo Park, CA, 1983,

3 Wirfs-Brock, A, and B. Wilkerson. An overview of modular
Smallralk, OOPSLA 1988 Procsepings, September 1988,
pp. 123-134,

4 Rumbaugh, J. et al. OpreeT-Orienreo MopELING AND
Desien, Prentice-Hall, Inc., Englewood Cliffs, N], 1991,

5 Wirfs-Brock, R. B. Wilkerson, and L. Wiener, Desianing On-
TeeT-OrignTED SOFTWARE, Prentice-Hall, Inc., Englewood
Cliffs, W], 1990,

& Szyperski, C.A. Import is not inheritance, why we need both:
modules and classes. ECOOP 1992 Procsenivas, June/July
1992, pp. 19-32.

7 Wirfs-Brock, R. and B. Wilkerson. Object-oriented design: a
responsibility-driven approach. OOPSLA 1989 ProcEEDINGS,
October 1989, pp. 71-75.

& Lieberhers, ¥.L. and 1. Holland. Formulations and benefits of
the faw of Demeter. SIGPLAN Notices, v2443, March 1989,
Pp. 67-78,

o]

Nik Boyd has been developing object sysiems since 1987, Since Jon-
uary 1990, hie has been with Citicorp Transaction Technology Inc. in
Santa Monica, California, where he is currently a Principal Member
of the Technical Staff. Iis experiesice with OOP includes work with
PARTS Workbench, Smalfltalk/V for PM, Mac, Windows, and DOS,
and Objectworks/Smalltalk v2.5 for DOS and v4.0 for Windows. His
research interests include instance-centered and class-centered olyject
systems, as well as tools and technigques that support object-oriented
software engincering. Nik may be contacted via internet e-mail af
741702771 @ CompuServe.com or through the American Informa-
tion Exchange (AMIX),

FERRUARY 1993

21

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 279 DENVILLE NJ

POSTAGE WILL BE PAID BY ADDRESSEE

The Smalitalk Report

Subscriber Services Dept SML
PO Box 3000
Denville N] 07834-982x

I”IIIIIII”II[IIIIIIIIII”IIHII!IIIIII|ll|[”ll|1|

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

Smalltalk Object Database Support

Integrated garbage collection of persistent Smalltalk objects ® Server-
based gateway toolkit and relational gateways e Server-based active
object manipulation language ® Cooperative client/server support

Please send me information on Smalltalk Object Database Support and

E;E Keep me informed of future product announcements

ﬂ Have a Servio representative call:

Name: Title:
Company: : R SN
Address: e
City: -
Phomes — State: _Zip:

SERVIO GemStone, the ODBMS for C, C++ and Smalltalk

from the Object Technology Company

BUSINESS REPLY MAIL

FIRST CLASS MAIL PERMIT NO. 475 ALAMEDA, CA

POSTAGE WILL BE PAID BY THE ADDRESSEE

SERVIO CORPORATION

950 MARINA VILLAGE PARKWAY
SUITE 110

ALAMEDA, CA 94501

‘IIIHIII!'III[i”I“IIII“IIIIIlll”lll'lllllflll”

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

+ Exp. Date

The Smalitalk Report

EI ?éé, | wnul?l liita fo subscribe to The Smalltalk Report

(1 1 year (g issues)
[J Domestic $69.00
 Foreign $94.00

. Method of Payment
[J Check enclosed (payable to The Smalltalk Report)

(1 Bill me

1 2 year (18 issues)

[Domestic $128.00
[Foreign $178.00

[Charge my: [d visa [Mastercard [Amex

Card No.

Signature

Name

Date

Title

Company

Address

City

State

Zip

Country

Phone

1. Which dialect of Smalltalk do
you use:

[Smalltalk V

[Smalltalk-80

[other

2. What is your involvement in
software purchases for your
department/firm:

[J Recommend Need

[specify Product

| Make Purchase

[None

3. Which operating system
supports your software:

O UNIX

[pos

O os/2

[Windows

[Other

4. What is your company's

primary business activity:

[computer/Software
Development.

[Manufacturing

[Financial Services

[J Government/Military/Utility

[Educational/Consulting

[other
5. For how long have you been
using Smalltalk:

[Less than one year
[13 years
[3+ years

E3AG

A member of the

ject Marketing Network

212/274-0646

fax to

s Moouies

Lisiing 1.

ClagsFilar ohjects are responshile for filfrg Smalitalk source code i and sut of
streams, watally FileStreams, This example s derdved from the Smalltalk
ClassReader. It shows how private methods can be encapsulated in a module,

"The public interface module class.”
Chiect modnleSuhclass: #llassTiler
instanceVariableNames:
‘privateSelf
classVariableNames:
poolDictionaries: *

"The private ClassFiler tlags.”
Object suhclass: #ClassFiler i ClagsFilex
instanceVariabieNames: ’
‘class '
classVariablaNames: "
pootDictionarias: " §

ItimssTiler class methods |

forClass: allass
"Answer a new mmstance of a pubtic ClassFiler
ohject.”
"zetf new forClass: allass! |

iClassFiler methods !

fiieInFrom: aStream .
"Read chunks fom aStream. Compile 2ach
chunk as a method for the class described
iy the raceiver. Log the source code of tha
mathod to the change leg.”
| stream |
stream ;= Sources af: 2.
stream setToEnd.
privateSelf instanceHeaderOn: stream,
privateSelf fileInFrom: aStream.
stream tgatChunkfar ©: fush?

flebul; methodiName On: aStreamn
"File out the ramed method oy the class
described hy the receiver to aStream, in
chunk format.”
privatedelf checkPor: methed¥ame,
aStream cr.
privateSelf instanceHeadzrOn: aSiream,’
privateSelf fileQut: methodName On: aSiream.
aStream nextChunkPut: "; cr.!

fleGudn: aStream
*Fila out all the methads for the class described
by the recelver to aStream, in churk fovmat.”
aStream o, .
privateSelf instanceHeaderOn: aStreart,
privateSetf HlebutMethodsin: aStream,
aStream nextChunkPut: ") !

fartlass: aflass)
"Answar the receiver after attaching a new
private instance of the private ClassFiler class.®

privateSelf := ClassTilar new setflass: allass.? !
ClassFiler ClassFiler class methods 1!
ClassFiler ClassFiler methods !

chackFor: methodName : :
"Werify that the class descrified by the receiver
contains the named method.”)
class methodDictionary
at: methodName
Habsent: [
~self error:
methodName asdtring,
'is misgsing from °,
ciass nrintString
1t
fieFnbrom: aStream)
“Read claenks from aStream until an empty
chunk (& single bang "1 is foend. Compile sach
chunk as a method for the class described
by the recefver,”
| aString result |
[aString := aStream nextChuni.
aString isEmpty

1
whileFalse: |
result ;= class compile: aString,
result notNit ifTrue: {
result value sourceString: aString
]
11
fileDut: methodName On; aSiream
*File out the named methed for the class
described by the receiver on aStream, in
chunk format.”
aStrears oy nextChunkPut: {
ciass sourcelodedt: methodName
]
fileQuiMethodsOr: aStream
"File out alt of the methods for the class
described by the receiver on aStream,”
class selectors asSortedCallection do: [selectar |
self fileOuz: sefector On: aStream
1.t
ingtanceHearderOn: aStream
“Write a header which identifies the class
described by the receiver on aStream.”

“Mate that fiing in translates double bangs to
singte bangs and filing out transtates single
bargs into double bangs (like those used here)”

aStream
cr: nextPut: 51
nextPutAll: class printString:
space; nextPutAll: ‘methods I

Because these new visibility rules subsume existing rules, the
semantics of normal classes continue to be supported,

BREAKIMG AND ENFORCING MODULE ENCAPSULATION
Because modules enclose and encapsulate their private classes,
programming tools need a way to break the encapsulation of
the module to create new classes inside the module. For this
reason, a change has been made o class Class.

When a module class sends #doesNotUnderstand: aMessage,
tlie message selector is checked to see if it is a capitalized unary
selector that is the name of a private class inside the module. If
so, the message answers the requested private class from the
madule. Otherwise, the message is dealt with using the existing
#doesNotUnderstand: behavior,

This revised behavior is provided expressly for the compiler
and development tools. This service breaks the encapsulation

of the madule similar to the way #instVarAt: breaks the encap-
sulation of an object.

Ta enforce the encapsulation of a finished module, the
module can be closed by adding another version of #doesNo-
tinderstand: to the module class, overriding the one in class
{lass. This can be accomplished simply by sending the message
#closeModule to the module class:

Moduled coseModule,

This forces other classes outside the module scope to use -
the publicly defined interface to the module.

MODULE INTERFACES

The module that encloses a group of private classes can provide

either direct or indirect access to the services of those classes. If

20

Tun SMALLTALK REPORT

explicitly and collaborate closely to produce some complex be- -

havior. Such subsystems are described informally in Desion-
NG OsiecT-ORIENTED SOFTWARE™: o

Subsystems are groups of classes, or groups of classes
and other subsystems, that collaborate among them-
selves to support a set of contracts, From outside the
subsystem, the group of classes can be viewed as work-
ing closely together to provide a clearly delimited unit
of functionality, From inside, subsystems reveal them- -
selves to have complex structure. They consist of classes
and subsystems that collaborate with each other to sap-
port distinct contracts that contribute to the overall be-
havior of the system. . . .

Subsystems are identified by finding a group of classes,
each of which fulfills different responsibilities, such that
each collaborates closely with other classes in the group i
order to camulatively fulfill 2 greater responsibility. . . .
There is no conceptual difference between the re-
sponsibilities of a class, a subsystem of classes, and even
an entire application; it is simply a matter of scale, and
the amount of richness and detail in your model...

This article goes beyond the conceptual to assert that there
is no practical difference between the responsibilities of a class

and a subsystem of classes when the subsystem is implemented

as a module. The module class acts as 2 capsule around the
subsystemn of classes enclosed within the module domain.

Such packaging supports some of the practices of good
software engineering, Implementation details can be localized,
encapsulated, and scoped. Just as good object designs organize
state and behavior into ¢lasses, systems of objects that are
closely coupled, or that cooperate to provide some overall set
of services, can be organized into modules.

classVariableNames: * " .

poolDictionaries: T

Chiect subclass: #Transaction
in: FinancialManager
instanceVariableNames:

acoount’
classVariableNames: °°
poolDictionaries: ' 'f

FinancialManager '

Transaction subclags: #BalanceInquiry
instanceVariableNames: '
classVariableNames:
pooiDictionarigs: T'F

FinancialManager

Transaction subelass: #Fundsﬁeposi’t
instanceVariableNames:

amount '
classVariabteNames: **
poolDictionaries: '

FinancialManagex

Transaction subclass: #PundsWithdrawal
instanceVariableNames:

amount’ .
classVariabieNames: '’
poolDictionaries: "1t

FinancizlManager

Transaction subciass: #FundsTransfer
instanceVariableNames:

‘amount targetdccount '
classVariableNames: '
pooiDictionaries: *'f

EXTENDING BASELINE SMALLTALK CLASSES

Modules provide a safe way to extend and package changes to
baseline classes in the Smalltalk system domain. Figure 3 shows
how a private version of the String class can transparently sub-
class its baseline version so as to extend it.

EXAMPLE SYSTEMS

Smalltalk

Desrontve OriscT-ORIENTED SOFTWARE gives

several examples of object system design based on |

responsibilities, two of which are described in
this article with fust their class definitions. The
first example already has been presented. The In-

ventoryManager depicted in Figure 1 was derived
rom the Inventory subsystem described on pages

FinancialManager

146-148 of the above book. Pages 151152 de-
scribe the organization of a subsystemn for manag-
ing transactions against financial accounts, Figure
2 shows how this subsystem might be organized

Transaction Account

as 2 module. The classes for this system could be

FundsWithdrawal

defined using the following messages:

{hject moduleSubelass: #FinancialManager
instanceVariableMames: '’

Balancelnquiry

FundsTransfer

FundsDeposit

classVariableNames: '

poclDictionaries: 't

{bject subelass: #Account \\
in: FinancialManager

instanceVariableNames:
‘accountID batance '

Figure 2. Subsystem crganized as a modude.

FYBRUARY 1993

Moduled is a moduleSubelass of class Object and SubclassB is
a private class inside the domain of ModuleA. The private String
class inside the domain of ModuieA is a private subclass of the
baseline String class:

Object moduleSubclass: #Modules
instanceVariableNames: "'
classVariableNames: '
poolDictionaries: '

Object subclass: #5ubclassB
i ModuleA
instanceVariableNames: '
classVariableNames:
poolDictionaries: ' !

String variable Byte Subelass: #5tring
in: ModuleA
instanceVariableNames:
classVariablaNames: '
poclDictionanes: ' !

The private String class extensions are visible to methods in
both MeduieA and SubclassB but net to classes outside of Mod-
uled in the Smalltalk system domain, such as SubclassC.

One drawback exists in the above example. The compiler
creates constants for lterals using the baseline classes: Small-
Integer, Float, String, Symbel, and Anay. Unkike Object-
works\Smalltalk, Smalltalk/V presently does not include the
source code for its compiler. Because the Smalltalk/V compiler
has not been extended to use the privatized versions of baseline
classes it uses for literals, the private String class needs to create
instances by copying baseline strings. For example, if we want
SubclassB to use a privale String for some operation, it will need
to create it using:

"private” String copyFren:
‘s constant string'

The compiler creates a constant string that Is an instance of
the baseline String class. The private String class creates an in-
stance of itself that is a copy of this string constant. Given an

= MoDULES

instance of the private String class, the extended private string
operations may be performed on it

Given access 1o the source for the compiler, this small de-
fect could be rectified. Then all the baseline classes, inclading
those that the compiler uses for lizerals, could be extended
transparently by private subclasses.

ENCAPSLHLATING PRIVATE METHODS

Modules can be used to hide the private methods of 2 class. To
do this, a pair of classes is used to divide the public methods
from the private ones. The public dass is a module whase
methods provide its public interface. The private methods are
hidden in a private class inside the module domain. The pri-
vate class can have the same name as the module class,

Figare 4 depicts an example of how this principle can be ap-
plicd. Because of its simplicity, the full code for this example
can be found i Listing 1. The module ¢lass ClassFiler is derived
from the standard Smalltalk class ClassReader. This class 1s used
o file Smalltalk source code in and out of the system, usually
using an instance of class FleStream,

The ClassFiler module class has a single instance variable:
privateSelf. When an instance of the module class is created,
privateSelf 15 set to reference an instance of the private ClassFiler
class. All the public methods of the module delegate private
messages to privateSelf. Instances of the module class serve as
proxies that hide the private behavior of the module class.

T'o maintain encapsulation, public methods in the modale
class can check the answers that come back from privateSalf.
Any answer that s identical to privateSelf should be answered
as self (the module instance) instead.

This techimque provides true encapsulation of private
methods of the class with a simall amoeunt of overhead in time
(the delegation and answer checking) and space (the exira in-
stance privateSelf).

SOHTING

fon page 19

Svealleali

MaoduleA

| - %um 'q:é | .

o vy

Smalltalk
a ™

| Object |

A

ClassFiler

ClassFiler

- /

Figure 3. Extending a bassline class by transparently subclassing it

Figure 4..Uszh:g.é module 1o hide the private methods of a class.

Tae Svarrraik Rapoxs

w MoouLEs continued fron page 6

Smalltalk

RESOLVING SHARED NAMES

-

Object

A

™~ Smallalk methods use names that
start with Jower case for private

names, including instance variable

names, method arguments, and

Behavior

UndefinedObject

| block temporaries. Smalltallc meth-
: ods also can reference shared objects
| whose names are capitalized.

* ModuleDictionary

The visibility of these shared names

depends on where they are located in

the system. Shared names can be

lass MetaClass

found in class variable pools, global
pool dictionaries, and the Smalhlalk

system dictionary. During method
compilation, references 1o shared

Encapsulated
MetaClass

names are resolved by searching dic-
fionaries in the following order:

N

Vi > ¢lass variable pools of the class

Figure 5.

ADDING MODULES TO SMALLTALK

‘Where a normal Smalltelk class uses a Dictionary for its pool of
class variables, a medule class uses a ModuleDictionary for its
domain. The MeduleDictionary class is similar to the SystemDic-
tionary class. Like the Smalltalk system dictionary, each module
domain can contain shared objects, including other Smalltalk
classes, In addition, eacl module domain keeps track of the
names of the module class variables.

Each chass contained in a module domain neads to know
what module contains it. Por this reason, each class contained
inside a module domain is associated with an Encapsulated-
Matallass rather than a MetaClass. The class EncapsulatedMeta-
Class extends the class MetaClass by adding a reference to the
modale whose domain contains the encapsulated class,

Figure 5 depicts the classes changed to extend Smallrall/V.
Rectangles with doubled borders indicate the new classes.

and its superclasses up through
the class Object
+ pool dictionaries to which the class subscribes from the
Smalitalk system dictionary
» the Smalltalk system dictionary itself
Extending the visibility rules of the compiler is the kev o
adding modules to Smalltalk. The Smalltalk system dictionary is
the enclesing domain for dasses not contained in a module. As
such, it is also considered the system domain. Because a module
contains a name space in its domain, references 1o shared names
are resolved by searching dictionaries in the following order:
+ class variable pools of the class and its superclasses up
through the class Object

» peol dictionaries to which the class subscribes in the mod-

ule domains enclosing the class up through the Smalltafk
system doimain

+ maodule domains enclosing the class up through the
Smalitalk system domain

TOOLS EUHUROPE 93
MarcH B-171, 1993
VERSAILLES, FRaMOE

CoNTACT: T23.1.45,.32.58.80

INTERMATIOMAL SBYMPOSILIM &

DBJEDT EXPI
APriL 1923, 1923
MEW YORK, NEW YORK

COMNTADT:21 2. 274.91325

OOFRSLASE
SERPTEMRBER Z26~0ODTOBER 1
WASHINGTORN, DO
CoNTADT: 91 9. 4814000

EXHIBITION ONM BBJEDT
TEGHMOLOGY:

METHOOQOLOSIES AND TOOLS
APRiIL 22 & 23,1293
FRANKFURT, GERMANY
COMTART! +49.69.52.19.82

OBJECT EXPO ELHRDOPE
July 12-16, 1993
LONDON, ENGLAND

CoMTACTIRTZ2.274.97133

FEBRUARY 1002

19

7 SMALLTALK IDIONS

able to read paltmn and knoiw ;

= what problems need to be solved before thl‘i one can be
solved

- what problem the pattern solves

+ what constrains the solution to the problem

« what to do to the system to satisfy the pattern

» what problems to solve once this one has been solved
Patterns have a consistent structure. Each has the following
secticns:

- a name evoking the problem and its selution

&

a prologue sumimarizing what other patlterns have to be
considered before this one is appropriate

a one-paragraph preamble describing the crux of the prob-
lem solved by the pattern

a diagram illustrating the problem

Py

a short essay exploring constraints on the solution

L3

one or two paragraphs describing how to solve the problem

an tiustration of the solution

3

an epilogue summarizing patterns that can be considered
once this one is satished

Several valuable traits are common to all patteras:

= They always call for concrete actions, even if they are at very
high levels. For instance, a design-fevel pattern might call
for splitting one object into two to improve fexibility. A
coding pattern might help you give names to arguments.

= They include a complete description of the considerations
influencing the solution. Almost no documentation de-
scribes the forces acting on a decision, but it {s precisely this
information that allows you to evaluate an object for useful-
ness in a particular context.

* They are lustrated with 2 simple diagram. Alexander’s pat-
terns are remarkable for the degree to which their essence can
be distilled into a simple line drawing. The effective computer
patterns [have discavered also boil down to a little pictare,
The word “pattern” takes several meanings in this context.

First, each solution represents a pattern of elements. The object
that uses an OrderedColiection has a specific relationship with the
abjects it references. Second, the constraints acting on the solu-
tion form a pattern. The need te conserve space Tugs this way, the
desire for greater speed that way. Finally, and most curiously, are
common patterns of human behavior, The act of choosing an Or-
deredCollection recurs many times and in many places.

PATTERN LANGUAGE
Patterns do not stand in isolation, The epilogue and prologue
sectioms of each pattern link it to several others. The result can be
seen as a kind of lattice, with problems that need to be addressed
first hiigher than those that can be considered Jater. Much ofan
expert’s skill comes from knowing what to worry about up front
and what can be safely postponed. This process-oriented infor-
mation is often as valuable as the patterns themselves,

The patterns together form a language in the sense that the

patteins dre terminal symbols, and the links between them are

the productions. You create well-formed sentences by consider-

ing a sequence of patterns in turn. The result is a fally formed
system. This is the primary difference between a pattern lan-
guage and a set of design rules (like the Apple Human Interface
Guidelines). The pattern language helps vou create a system
with the desired properties, not just analyze existing systems for
the existence of those properties. A pattern fanguage for good
design will lead you to create a system with high coherence and
low cohesion, not just describe the properties in isolation.

A complete pattern language for object-oriented program-
ming encompasses patterns at all levels. Broad patterns cover
issues like distribution of responsibility and control structures.
Subsequent patterns help use the right abstractions in a library.
Final patterns deal with varisble naming, method naming,
breaking methods into smaller methods, factoring cede into
inheritance hierarchies, and performance tuning.

CONCLUSION
Mo one has yet written a pattern language for objects like the
one outlined above. There is general agreement that the prob-
lem of communicating Intent s critical to cashing in on the
oromise of object-oriented programming. Researchers world-
wide have turned to pattern languages as a promising ap-
proach to the problem. Here are a few | know about:
+ Ralph Johnson at the University of [linois is writing a pat-
ternn language for Hot Draw, a graphical editing framework.
« Richard Helm and JTohn Viissides of 1BM and Erich Gamma
of the Union Bank of Switzeriand have been writing a cata-
log of “design patterns,” which capture common design ele-
ments of C++ programs.
= Bruce Anderson of the University of Essex is leading an
effort to compile an “architecture handbook.”
* Oscar Nierstrasz at the University of Geneva has been using
patterns to try to achieve reuse.
In subsequent columns I will explicitly use the pattern format
where appropriate to describe Smalltallk idioms.] recommend
the study of Christopher Alexander’s work for those interested
in attacking the educational side of the reuse problem. I have
enjoved studying the material both because of the obvious par-
ailels between the pitfalis of professional architects and profes-
sional programmers, and because [am now far more sensitive
to my physical environment land its effect on my hife.
Architectire has the advantage (and disadvantage) of thou-
sands of vears of history to mine for patterns, Programming is a
new enough discipline that we all have to invent new solutions .
often. Collecting and disseminating these common patterns will
h'asten the day we can get on o more intcre%ting quet;‘tiom %s '

Kent Beck has been discovering Smalltalk idioms for eighe ;—.fears at
Tektronix, Apple Computer, and MasPar Computer. He is also the
founder of First Class Software, which develops and disteibutes
reengineering products for Smallialk. He can be reached at First Class
Soflware, P Box 226, Boulder Creek, (CA 95006-0226, by phone at
408.338.4649, fax 408.338.3666, or compuserve 70761,1216.

18

ToE SMariTaLk REPORT

characterize objects. Building an application involves
L teamwork and cooperation, Melding classes designed by
mdmdmls into & consistent system of cooperating objects re-
quires that team members work toward a common system ar-
chitecture. Team members need to share an understanding of
what constitutes well-designed classes and subsystems, and
what are acceptable patterns of object inferactions.

Choices between perfectly acceptable alternatives must he

made consistently across classes designed by different people
Achieving a consistent pattern of object communication first
requires teant members 10 use a common vocabulary for de-
scribing obfects and their communication patterns. Cnce team
memnibers are talking the same language, they can have mean-
inglul discussions about desirable interaction styles. Decisions
then can he made based on sound engineering practices that
meet business requirements.

STEREQTYPING OBIECT ROLES
Objects in our design can be either involved, active partici-
pants in many conversations, or by design play a more docile

rale, responding only when asked and taking a supporting role.

Between these two extremes are many shades of behavior. I
find it useful to classify objects according to their primary pur-
pose as well as their modus operandi,
Here are two ways to characterize object roles:
» Business Objects. Objects whose primary purpose is to
mosdel necessary aspects of a concept that would be familiar
o a user of the software we design. If we were designing an
Automated Teller Machine for a bank, we might have Bank
Customer, Bank Account, and Financial Transaction ob-
jects. If we were designing an oscilloscope we might model
Triggers, Waveforms, or Thmebases. These types of objects
are also commonly referred to as domain objects because
they correlate directly with concepts in the users” domain,

Utility Objects. These are generally useful, non-applica-
tion-specific ohjects. Smalltalk programming enviran-
ments come with many generically useful classes. Classes
for structuring other objecis, such as Set, Array, Dictionary,
and classes representing numbers or strings fall into this
category.

There are compelling reasons for application developers to
F g PE !

SHUTTING IT IN PERSPECTIVE

“n this column I'll describe some vocabulary [find usefud to

Rebecca Wirfs-Brock

create additional utility objects. For several projects T've
worked on, specific individuals were assigned direct responsi-
bility for creating, publishing, and ensuring that utility objects
were appropriate to the task and properly used. Tt is possible to
create and efectively incorporate utility objects into the appli-
cation throughout development and software construction.

[t Is extremely useful to design new utility objects that ex-
plicitly support svstem policies or commuon application pro-
gramming practices. For example, we have created classes that
stvlize ervor handling and sequencing of processing steps;
classes that mode! ranges of set table values, increments, and
units of measurement; and classes that monitor detectable ox-
ternal conditions. Once designed, these objects can be used in
many places within an application.

STEREOTYPING OBIECT BEHAVIORS
A number of researchers and design methodologists have
coined terms for describing objects according to the way they
operate. My hst of sseful terms 150t merely a composite of all
cotnrien terms it the current literature. T continue to make
Aner distinctions after reflecting on past experiences and tack-
ling new design projects. Periodic updating is needed to reflect
new ways of constructing software that accomplishes new tasks.
Following are useful ways to classify object behavior.

Controlling objects

Controlling objects are responsible for controlling a cycle of
action. This cycle can be either repetitive, with conditional
branching logic, or initiated and executed once on detection of
a certain set of events ar circumstances. Controfling objects
can initiate and conirel ongeing systemwide activity or iterate
aver a minor application task. ‘

The original Smalltalk-80 user interface presented a stytiz-
ed three-way collaboration between Model, View, and Con-
trofler objects, Controller objects were responsibie for re-
sponding to user directives, such as mouse clicks or
keystrokes, and initiating appropriate responses. Views dis-
played the current state of the application and model objects
were application-specific ohjects.

[use & broader definition than that implied by Smalltatk-80
Contreller objects. Contrelling objects need not be spurred to
action only on behalf of user directives. Controlling objects can
ke found and created for many parts of an application where a

FEBRUARY 1993

7

& PUTTING IT IN PERSPECTIVE

cycle of activity is initiated, sequenced, and, sometime later,
possibly completed.

For example, in the design of an Automated Teller Ma-
chine, an ATM object can have responsibility for inftializing
and sequencing system interactions with a bavk customer. A
further design refinement can add the concept of 2 Session-
Controller olyject, which controls the sequence of activities by
single bank customer wishing to carry out one or more trans-

o

actions with the bank. At a lower level, there may be network
controller objects responsible for handling network traffic be-
tween the application and the communication network,

Coordinating objecis

Covrdinating objects are the traffic cops and managers within
a systern. Coordinators often pair client requests with desired
services (or, rather, objects performing a requested service). In
my carly object design experience, [would append Manager to
the names of these objects. FontManager and StyleManager are
two example class names. ! used to feel uncomfortable creating
chiects whose primary behavier was being idle until somenne
needed something, then helping to establish the connection
between two other objects that would collaborate to actually
perform some useful function. I now realize that these coordi-
nalors proved their worth simply by eliminating the need o
hard-wire direct references between objects,

In another common design pattern, a coordinating object
may respond 1o a request by briefly establishing an appropriate
context, then delegating a request (o one or more objects
within its sphere of influence. For example, in the ATM design,
the Session Manager fivst would determine which transaction
the bank customer wished o perform, then create the appro-
priate transaction object for delegating the responsibility to
gather additional information from the banl customer (such
as amount to withdraw il 1t were a Withdraw Transaction),
and then perform the transaction.

A coordinating object also mav control a sequence of ac-
tions. [t is often logical to blend coordinating and controlling
functions i the same objects. A reasonable design for the Ses-
sion Manager object is to give it the responsibility for creating
and handling a series of bank customer transactions. A bank
customer typically can perform transactions until indicating a
desire to terminate the session, causing our application to print
a receipt of all transactions and return the customer’s card.

Structuring ohjects
Ohbjects with structuring duties primarily maintain the relation-
ships between application objects, In many applications, busi-
ness objects have very complex structural refationships. Let's
take a simplistic real-world example of a file cabinet containing
folders that hold documents. A file cabinet simply holds folders
thal may be tabbed and labeled, and the folders merely contain
their contents. The documents themselves are of interest,

In an object design, T add more or less behavior to objects
to meet business requirements and to suit my personal tastes. 1
can design File Cabinets to do more than organize their con-

tents, A File Cabinet could know when any folder was last ref-
erenced, or how much room is lefl in the cabinet. When I clas-
sify an object as primarily a structuring object, | think fivst and
foremost about what relationships it should maintain between
other objects and how it should do so, and secondarily what (if
any) additional behavior might be appropriate and useflul for il
to have.

Informational chjects

Sometimes objects are created to hold values that can be re-
quested by many different kkinds of application obhjects. I don’t
veant 1o get into an in-depth discussion of design and pro-
gramming techniques to eliminate globals or minimize depen-
dencies on hard-wired values in code. However, at tinies it can
be useful to create objects that are regponsible for vielding in-
formation. In procedural programming languages, we have the
ability to declare constant values. In object designs, informa-
tional objects are an equivalent concept,

Service obhjects

A service chiect typically is designed to perform a single opera-
tion or activity on demand. A well-designed service object pro-
vides a simple interface 1o a clearly defined operation; it should
be easy to set up and use. Pure service obiects ofien are the
products of a highly factored design. Such a design consiss of
maay classes of objects having highly specialized behaviors.

One reason to create service objects is to facilitate optional
or configurable sofiware features, The argument for this design
strategy goes something like this: Tt is easier to configure a
product’s features by adding or remaoving entire classes of ob-
jects than it is to add or remove class behaviors.

As more behavior is added €0 a dlass, it can become com-
plex to integrate new features with existing code. Optional
functionality needs to be implemented in a way that guarantees
pre-existing code doesn't break, Test suites and internal con-
sistency checks become important.

When services are placed in specialized service classes, the
design task shifts to creating an appropriate role and interface
to the service object, which must balance the client’s control
over the service’s performance with simplicity and ease of use.

An operation may be so complex to perform that it war-
rants creating many objects. A single object can be designed to
provide the public interface to this service, hiding most of the
details from the rest of the application.

Useful services can be packaged into distinet objects. These
service objects might be designed soas to be useful in a variety
of contexts, perhaps by being easy to extend or customize. We
could design our ATM transaction objects to know precisely
how to prist infermation about the fransaction on a receipt.
Alternatively, we could design a Report object that provides
printing and formatting services for the transaction object.

Interface objecis
Interface objects are found at the boundaries of an object-ori-
ented application, They can be designed to support communi-

TaE SMariTalk Repory

MALLTALK IDIOMS

&

in
rn language

his will be a departure from my code-oriented columns.

For the last six months 've been surreptitiously pre-

senting my material using a technique that U've been
waorking with for the past six vears or so. This technigue was
derived from work done in architecture (buildings, not chips)
to help people design comfortable spaces for themselves. The
time has come to tell vou what I've been leading up te, so that 1

can directly refer to these concepts in the future.

First, though, I have to tell you about the most thoroughly
useful little idiom T have seen in a long time. Ward Cunning-
ham and I recently got to code together on a nifty spreadsheet
project and he showed me # simple idiom for dealing with nil
values, It saves me 2 ine in many methods and, since most
methods are three or four lines long, that’s a significant sav-
ings. Here is the implementation:

(hject==ifNi: aBlock
“self

UndefinedGhject>>ifNil: aBlock
“aBlock value
Simple, huh? Here what happens when you use it, though,
You can transform code that looks Hke:
foo isNil ifTrue: [foo := self computeFon].
oo
into:

“foo ifNl: [foo = self computeFoo]

The savings comes because ifTrue: and ifFalse: return nil if
the receiver is false or true, respectively, NIl returns the re-
ceiver, which can be any object, instead. | have found ifNil: use-
ful in many more situations than the one listed above. Try it! If
you find a clever use, send it to me and Il write it up.

The one complaint about N3 is that it Is slower than "isNit
HTrue:" {or its grosser cousin == nil ifTrue:*). [claim thatif you
are focused on anything but achieving the most readable code
possible in the middle 804 of a development, vou're doing the
wrong thing. Besides, it wouldn't be that hard to implement
ifMil: as an inline message, just like the other conditionals. If it's
not that hard, maybe I should write it up some time. Or maybe
you should!

Now back to our regularly scheduled column..,

The problem to be solved is describing the intent behind a
piece of cade ta someone who needs to use it. There are plenty
of methods for describing how code works {even though most
programmers aren’t disciplined in using them), but describing
how code is supposed to be used is a black art. As the emphasis
on programming shifts from just running programs 1o refining
and reusing them, this is a problem of increasing importance,

Kent Beck

As objects are supposed to be about reuse, describing intent is
of critical importance to us.

Donald Knuth has attacked the problem with what he calls
“Literate Programming.” He shares the insight that program-
mers ought to write pragrams for other programmers, not just
the computer. His solution is to make programs read like
books. When you read a literate program vou are reading a
combination of prose and code. You can filter out the non-
pregram elements and run the result through a compiler to get
an executable program.

There are a couple of problems with literate programming
as Knuth conceives it. First, his literate programming system is
implemented as a 1970s-style textual language. To write a lit-
erate program you have to know the programming language,
the typesetting language, and the extensions required by the
literate programming system. More importantly, the strugture
of 2 literate program is fundamentally linear, It is intended to
be read from beginning to end. While this may be appropriate
far a monolithic program like TeX, it does not address the
problem of describing the intent of an object library, which is
intended to be used piecemeal—sometimes just by instantiat-
ing objects, somelimes by plugging new objects into existing
frameworks, and sometimes by refinement,

What we need is a structure for intention-oriented infor-
mation that is flexible enough to convev a variety of informa-
tion at different levels, but structured enough to provide a pre-
dictable experience for readers. It has to be able 1o convey
process-oriented information but also describe programs
piecemeal. It has to describe both how a program is intended
to be used and how it works.

The solution I have been pursuing derives from the work of
architect Christopher Alexander, who has spent many years
seeking a way for architects (o describe generic selutions to ar-
chitectural problems so that individuals can adapt these solu-
tions to their situations. The solution he found, called pattern
language, solves all of the problems listed above: Tt is piece-
mueal, but also has large-scale structure; its essence describes
the application of a solution, but also relates how the solution
works; and it describes solutions at all scales, from urban plan-
ning to the size and color of trim in a house. His approach is
presented in a pair of books from Oxford Press: Tue TiMELESS
Way oF BuiLping and A PATTERN LANGUAGE.

PATTERNS

The unit of knowledge in a pattern language is a pattern. A
pattern encades an adequate solution to a problem known te
arise in the process of building a system. A person should be

FEBRUARY 1993

7

W Gﬁls

» provide buttons for committing the interface to code and
for launching the interface

+ uge palettes that allow you to lay ont panes or c'omponcnts
as if you were using a drawing tool

» will open a browser on the generated code

One vs, many windows

The most ebyicus user interface difference between the two in-
terface builders is the windows they use. WindowBuilder uses a
single window with dialogs as needed, When a dialog is open
the main window may not be used until that dialog is dis-
missed. VisualWorks makes use of 2 multitude of windows si-
multanecusly, which some people call outboard windows. The
window being built {the canvas) is in one window. and the
outbrard windows all operate on the canvas. Most, but not all,
outboards operate on the most recently selected canvas.

Both techniques (outboards and dialogs) address the issue
of clutter. The autboards allow users to decide how much in-
formation they want to see at once. However, this comes at »
price. The canvas and the outboards are not visually tied to-
gether; it is not always clear which windows go tegether in Vi-
sualWorks, or even which windows are part of VisualWorks,

Resizing control
In koth interface builders, the window being built responds to

changes in the framing parameters of its panes or compo-
nents. If a pane or component is given ratios instead of abso-

lute positions, that pane changes shape as you change the ini- .

tial size of the main window. WindowBuilder soes a ste
8 P

further and provides before and after silhouettes of your pane.

As you change the framing parameters for a pane, it shows
vou a sithouette of your pane in the current window dimen-
sions and also shows you the dimensions of your paneina
larger, resized window. This way WindowDBuiider gives you
immediate feedback.

SUMNMARY

The two interface builders are more similar than different. The
most important similarity is that they both fit nicely into the
Tnterface part of the ICM framewark, which lets vou reuse de-
sign between dialects. After all, revuse of design is more power-
ful than reuse of code. B

Greg Hendley is o member of the rechnical staff at Knowledge Sys-
tems Corporation. His specialty 5 custom graphical user interfaces
using various dialects of Smalltalk and various image generators.
Eric Smith is alse a member of the techaical staff at Knowledge Sys-
tems Corporation. His specialty is custom graphical user interfaces
using Smalltalk (various dialects) and C. The authors may be con-
tacted at Knowledge Sysfems Corporation, 114 MacKenan Drive,
Cary, NC 27511, or by phane, 9194314000,

Ji:] GETTiNG REAL contiaed fron: page 14

~maxSize
inttialMaxSize
"Return the inital maximum size for text entry.”
EY
initialize
“Private - Initialize the receiver.”
value ="
selection = 1@ 1.
modified 1~ false.
~super initizlize

DEFAULTS REPLACE ARGUMENTS
Defaults also can be used to diminish interaction complexity,
Commoenly used vatues do not need to be passed as parameters;
they can become defaults instead. Developers need to provide a
way to override default values and still provide for the most
common situations in which defaults are an applicable value.
The typical way for developers to provide default arguments
is with additional methods that leave out key words. The
method fltrule:, from GraphicsTool, calls 8liirulercolon with
the filt color set 1o the foreground color, which is a default. To
override the default, the message fillicolorirule: can be sent:

fill: aRectangle rule: aRoplonsiant
"Fill @ Rectongle in the receiver medium with foreColor using
alopConstant.”
self fill: aRectangle rule: aRoplonstant color: foreColor

CONCLUSION

The important difference between constants and defaults is
their effect on reusability. Defauits, isolated in a method, are
easily overridden by subclasses. Default values can be modified
by instances if developers add enough support or can be used
to eliminate arguments and reduce interaction complexity. De-
velopers should always strive to evolve constants into defaults
to make their classes more reusable. 2

Tuanita Fwing is a senior staff miember of Digitalk Professional Ser-
vices. She has been a project leader for several commercial O-0 soft-
ware projects anid is an expert in the design and implementation of
O-0 applications, frameworks, and systems. In a previeus position at
Tektronix Inc., she was responsible for the development of class li-
Iraries for the first commercial-quality Smailtalk-80 systein. She can
be reached ar 503.242.0725.

16

THE SMaitLTatk REPORT

cations with users, other prograrns, or externatly available ser-
vices, Interface objects come in many sizes, shapes, and flavors,
and at many conceptual levels,

Interface objects can be designed to support an ongoing two-
way corrmnunication between some external entity, For example,
in the ATM application we have a number of physical devices
such as Receipt Printer, Cash Pispenser, and Card Reader. In
our design, alt these devices would have interface objects that
define a high-fevel nterface to the services they provide. A Cash
Dispenser object might define as message to dispense cash, re-
trn the cash balence, or adjust the balance (a5 2 result of dis-
pensing cash or adding more money to the machine),

[nterface objects can be designed to translate external events
or requests into messages (ielded by interested application ob-
jects, For example, many external events need to be handled by
the ATM system. To name a few: jamming of cash in the Cash
Dispenser, failure of the door to close, the Receipt Printer run-
ning out of paper, ete. The list isn’t endless, although responsi-
ble ohjects (the most likely candidates are appropriate interface
abjects) need to field those events and respond appropriately.

O they can be designed to provide 4 narcow interface. For
example, a menu presents a number of options and returns a
user’s preference. User interface objects typically support a
highly stylized dialogue between the user and the systen.

[nterface objects are responsible for bridging the non-ob-
ject world and the object world of messages and objects.
When 1 think about interface object design, I focus first on
those objects considered by the remaining applications to
define the interface to the outside world. 1 realize that a great
many details can and sheuld be encapsulated by these inter-
face objects. The key is to hide these details and provide a
sufficiently abstract interface.

MOVING OBIECT DESIGNS ALONG THE BEHAVIORAL
CONTINUUM

Given that we have a sufficienty rich vocabulary for describing
object roles and behavioral patterns, we need Lo establish a con-
text for applying these terms. Once we have done so, we need to
evaluate our emerging design and select among alternatives,
First it is useful to distinguish at what conceptual design level
an object should belong (as opposed to where it is currently
placed}. Is it a high-level object or does it provide low-level ser-
vices? Does it a play a significant or relatively insignificant role?

Once we determine this conceptual lavel, we can easily
characterize an object’s role as business or utility. Examining
hehaviors and building cleanly defined abjects takes more
time. Objects don’t always fall into a single behavioral cate-
gory, nor do | expect them to. For instance, objects often blend
behaviors of controlling and coordinating. Another commaon
pattern is to blend behaviors for structuring and providing ser-
vices into the same object.

I do find it useful to ask whether an object is assuming too
much responsibility, and whether it would be more appropri-
ate to create new classes of objects to share the load. T also note
whether a design chodce causes an object’s bebavior to shif eae

xék*’q?” Smalltalk/V users: the tool
e for maximum productivity

° Put related classes and methods into a single task-
oriented object called application.

° Browse what the application sees, yet gasily move code
between it and external environment.

@ Automalically document code via modifiable templates.

° Keep a history of previous versions; restore them with
a few keystrokes.

® ¥iew class hicrarchy as graph or list.

¢ Print applications, ¢lasses, and methods in a formatted
repost, paginated and commented.

° File code into applications and merge them together,

° Applications are unaffected by compress log change
and many other features..

Browsers..

{mager

Utilities.. Application printing | and more..

CodelMAGER™ V286, VMac $129.95
VWindow & VPM $249.95

Shipping & handling: $13 mail, $20 UPS, per copy
Diskette: [_J3"? [53
SixGraph™ Computing Lid,
formerly ZUNIG DATA Corp.
2035 Céte de Liesse, suite 201
bMontreal, Que. Canada H4AN 2M5
Tel: (514) 332-1331, Fax: (514) 956-1032

CodeTh{ AGER is a e, rademark of SinGraph Computing Ltd.
Smaltall/V iz a o, mdentark of Digitatk, Inc.

way or the other on a behavioral continuum. Has an object be-
comme (oo active or passive? Is it perhaps taking on too many
behaviers by assuming both a coordinating role as well as per-
forming a useful service? Would it simplify the design to sub-
divide an object’s responsibilities into smaller, simpler con-
cepts? What would be an appropriate pattern of collaboration
between that object and newly defined service objects?

When [look at rebalancing behaviors, I tend to consider
the current behavior definitions for a group of collaborating
objects belonging to roughly the same conceptual level. My
goal is 10 understand and develop an appropriate distribution
of contro! logic and responsibility among colloborators, De-
sign creativity and individual preferences needn’t be sacrificed
during this assessment process. However, readjusting object
behaviors needs to be purposefuily done. In my next column 1
will discuss some object interaction styles as well as strategies
and reasons for choosing between them.

Rebecen Wirfs-Brock is Director of Object Technology Services at Dig-
italk and co-author of DEsiGuNG Osipcr- ORIENTED SOFIWARE. She
has 17 years experience designing, implementing, and managing
software procucs, with the last eight years focused on object-oriented
software. She managed the developmient of Tektronix Color Smallinlk
and has been immersed in developing, teaching, and lecturing on olr-
ject-oriented software. Comments, further insights or wild specula-
tions are greatly appreciared by the author. She can be reached via
email at rebecca@digitalk.com, Her U.S. mail address is Digitalk,
7585 §.W. Mohawk, Tualatin, OR, 87062,

FEBRUARY 1003

" opying objects ought to be easy. After all, ebjects are
just bits in the machine and those are easy enough o

- copy. Besides, objects are encapsulated, so copying
shouldn’t have to worry about anything outside the current
object, Unfortunately, it’s not always that simple. Complica-
tions can arise from details of Smallallk’s implementation and
the object structare and from interactions with nheritance,

QBJECT IDENTITY

In Smalltaik, each object has a unique identity independent
of the value it represents. In other words, Smailtalk variables
don’t hold objects but references to objects. Several different
variables can refer to the same object; it a change is made o
that object, the changed value is visible through all those
variables.

This is also known as “aliasing” because the same object can
have several different names, or “reference semantics” because
the variables refer to the abjects. This is in contrast to “copying
semantics” where cach variable has (or ar least appears 1o have)
its own copy of the object.

In pure functional languages, altasing is eliminated. The
values of instance variables in existing objects cannat be
changed and new objects with different values must be created
instead. Funictional programumers would say that this is a good
thing because it eliminates many confusing errors associated
wilh aliasing, Non-functional programmers might say that re-
moving aliasing entirely also eliminates many useful program-
ming techniques but few would deny that copying semantics
can be useful sometimes.

Some Smalltalk classes have copying semantics, including
aumbers, characters, booleans, and symbels. Operations on
these types of objects do not modify the internal values of the
instance but creale a new instance as their result. Even though
numbers can be aliased (as almost all Smalhalk objects can),
there ave no operations that can change the internal state and
reveal the allasing, The need to allocate new nuwmbers for each
operation results in poorer performance for numerically inten-
sive applications but niakes the behavior of numbers much
more simple and predictable.

Complcations
The previous section contains a number of half-truths, 105 not
really true that no operations modify classes with copying se-

Alan Knight

mantics. Meta-cperations like become: and instVart: can get
around these restrictions and it's possible to add methods that
modify the internal state of some of these classes, In addition
ta serioushy messing up vour image, these facilitics can expose
significant differences in the behavior of these classes,

The most important difference, for copying purposes, is
between Smalllntegers and all other objects. Smalllntegers are
the muost primitive entities in Smalltalk and really do have
copying semantics, which the other classes just pretend to
have.

The trick is that Smalltaik variables actually hold a 32-hit
quanlity, one bit of which is a flag. If the flag 1s set, the ob-
ject referred {o is a SmallInteger and the remaining 31 bits are
its value. If the flag is not set, then it Js some other kind of
olyject and the remaining 31 bits are the machine address of
that object,

If you copy the bits stored in 2 variable holding a Smallinte-
ger, vou actually get a copy of the SmallInteger, 17 the variable
hoids an object, then you get a copy of a referenice to the ob-
ject. This is the kind of implementation detail that you nor-
mally shouldn’t have to think about, but it does explain a
number of otherwise confusing things. For example, if you've
ever wondered why become: doesn’t work on SmallIntegers but
does work on Largelntegers, or why:

10 == 10
evaluates to true, but:

10 facterial == 10 factorial

comes cut false, here s the explanation:

Become: can’t work on SmallIntegers because it works by
changing object references. Smallintegers don’t have object ref-
erences, so there’s nothing to be interchanged. In fact, since
the parameter passing mechanisim in Smalltalk is to copy these
32-bit fields described above, the become: operation doesn’t
even get the original Smallintegers to change but only a copy of
their values on the stack,

The == operation compares these same 32-bit quantities for
equality. For Smalllnteger 10, the bit patterns are exactly the
sanie, $0 == is true. 10 {actorial is a LargeFositivelnteger, and
since both sides of the expression are evaluated separately, we
gel two separate instances of LargePositivelnteger, which are
equal (=) but not identical (==},

10

THE SMmarrrark Revozr

o this installment of GUI Smalltalk, we will look at

Sialltall’s two main interface builders: Cooper & Peters’
WindowBuilder for different dialects of Smalltalk/V and
ParcPlace™s VisualWorks in R4.

While most people would not choose their Smalltatk dialect
based on the interface builders available for it, it is interesting
as & user and creator of graphical user inferfaces {GUIs) 1o
compare (ools and sec how two providers make use of GUIs
themselves.

APPLES VS, APPLES OR ORANGES

The first question in comparing WindowBulilder and Visual-
Works is “Are we comparing appics and apples or apples and
oranges?” The answer is apples and apples, First, both are in-
terface builders, not application builders; as such, their power
is in graphically laying out the subpanes (if you are frony V),
controls (if you are from PM], or visualCompenents (it vou
are from R4} of a window. This eliminates the need for you to
calculate and write framing blecks.

COMPATIBILITY WITH THE ICHM FRAMEWORK

Both WindowBuilder and VisualWorks output one class per
window that can be used 2s the interface layer of the ICM
framework, (The ICM framework was described in two previ-
ous installments of this column.) In WindowBuiider the de-
fault superclass of the cotput class is ViewManager. In Visual-
Works the default superchass is ApplicationMaodel.

CAPABILITIES FOR CREATING USER INTERFACES
Simiiar capabilities

The capabilitics of the two interface builders are more similar
than different. Both have various versions of buttons, lists,
static text, text editors, graphics, ete., and both help you build
and test menus,

Sizing, positioning, and resizing of the window and its ele-
ments {subcomponents or subpanes) are supported in both,
Elements of the user interface can be told 1o initially have the
same widlth or hieight. They can be aligned bike text: justified
left, right, top, or bottomy; centered horizontally; or centered
vertically with respect to each other. Fach element can be re-
sized by absohute pasition or by ratios,

Both interface builders provide support for specifying each
element’s responise to user input; both provide direct access to

Greg Hendley and Eric Smith

elements through the use of identifiers; both support tabbing
and, most important, both allow for the use of custormn sub-
panes and visual components.

[ifferences in capabitities

Four capability differences hetween the two interface builders
are noted below. Some are differences in degree while others
appear in one but not the other; these include kevboard short-
cuts, reuse, specifying response to user input, and specifying
dependencies between components.

WindowBuilder provides direct support for keyboard
shorteuts for menu items, VisualWorks does not provide such
support from their tools.

VisualWorks provides support for three levels of user inter-
face reuse. A user interface can be parameterized to work with
any of a number of niodels. Inheritance can be used to leta
subclass add visual components to its superclass. One interface
can be used as a component in another interface. Window-
Builder only supports parameterization to use any number of
maodels,

WindowBuilder provides support for specifying response
to many types of user input. WindowBuilder tells you the
events that may occur, lets you type the name of the methad
to invoke, and writes a stub for the method. For example,
you can specify how to get the list for a list pane and what to
do when a selection is made in the list pane. VisualWorks
provides direct support only for specifying how to get the
list. Responding to selection has to be explicitly coded in Vi-
sualWorks.

VisualWaorks directly supports dependencies between
difterent visual components in the same window. By making
more than one component interested in a single aspect, all
components respond when that aspect changes. Such depen-
dencies have 1o be explicity coded in WindowBuilder.

THEIR OWN USE OF USER INTERFACE TECHNIOUES
1t is always mteresting 1o see how the creators of an interface
builder choose to use their tool. Let’s start with their similarities.

Similarities
Both interface builders:

» aperate in build-only mode

FEBRUARY 1903

w (3ETTING REAL

Instead, each constant shauld be defined in a separate method,
allowing it to be easily identificd and overridden. Once isolated,
we call these values defauits because subclasses easily can over-
ride the defining method, increasing the reusability of the class,
The method initWindowSize, from the class WindowDialog,
specifies the initial size of a dialog. Because this value 1s iso-
lated in & methiod, we consider it a default—subclasses easily
can override the default initial window size:
initWindowSize
“Private-Ariswer the default window size.”
150 @ 100

Another example from the {mage involves the application
framework class ViewManager. The class ViewManager has a
method that specifies the class of the top pane in the view
structure, Subclasses easily can override this method to specify
another top pane class, giving subclasses the critical ability to
override the creation of collaborators:

topPanelass
"Private-Answer the defoull fop pane class.”
“TopPana

EVOLVING CONSTANTS INTO DEFAULTS

In the section above, we saw two DiskBrowser methods contain-
ing an embedded constant, 10000, Next we see the two original
metheds rewritten, plus one other method that isolates the file
size limit for automatic reading. The isolated constant is now a
default because if easily can be overridden by subclasses. With
a default, maintainers can locate the limit more easily and are
less likely to create inconsistent methods caused by modifying
one but not the other reference to the constant:

autoReadLimit
"Return the file size limit that determines whether the entire contents
of a file will be automatically displayed.”
10000

file: fileFane
“Frivate - Set the selected file to the selected one in filePane, Display
the file contents fn the lext pane.”
| atiteStream |
CursorManager execute change.
seif changed: #directorySart:,
selectedFile = filePane selectedfem,
seif switchToFilePane,
aFileStream = selected Directory fileReadOnly: selectedFile,
wholeFileRequest = aFileStream size < salf autoReadLimit.
aFileStream close.
wholeFieRequest
Hlrue: [self fileContents: contentsPane]
HFatser {self showPartialFile]

showPartialFile
“Privates - Display the head and fad of the selected file in the texi
pane.”
| aFileStream fileHead fileTail startiessage endMessagecy limit
inifial final |
CursorManacger execute change.
limit := self autoReadLimit.

initial o= lmit // 107 roundTo: 1000,
final = limit - initial.
contentsPane modified: false,) o . .
aFileStream = selectedDirectory HleReadOnly: selectedFite.
cr o= String with: Cr with; L, :
startMessage =)
'File size is greater than *, limil printStving, " hytes, *cr,
‘fiyst !, initial printString, ' bytes are ..., cr.
endMassage 1=
Qast’, final printString, ' bytes are ../, ¢x. .
filaHead = aFileStream copyFrom: 1 to: initial.
fileTail ;= afileStream
copyFrom: aFileStream size - final
to: afileStream size.
alileStream close.
contentsPane _
fdtelnfrom: ('ReadStream on: {startMessage, fileHead,
endMessage, fileTail}};
forpeSelectionOntoDisplay.
(self menuWindow menuTitled: ‘&Files
snableltem: #loadEntireFile.
{self menuWindow menuTitled: "&File’) disableltem: #accept.
CursorManager normal change

INSTANCES MODIFY DEFAULTS :
[n addition to allowing subclasses to override defaults, devel-
opers can structure code sa that nstances can modify the de-
fault, improving client reuse. In this scenaric, the class
provides:

+ storage for the default value, wsvally an instance variable

« accessing method for setting the default

= sccessing method for retrieving the default (optional}

The class EntryField has a default for the maximum number
of characters in an instance of EntryField. In addition to the
initialize method we saw above and an instance variable to
kold the value, one other method accesses the default maxSize.
The accessing method mazSize: allows instances to customize
the maximum number of characters that can be typed in an
EntryField.

maxdize: anintegey

"Set the maximum riumber of characters in the receiver to an Intéger.”
maxSize = anlnteger,
handie = NullHandie

ifFalse: [self setTextLimit]

There are several ways to provide an initial value fora de-
fault. In the initialize method for EntryField, maxSize is set to 32
An alternative design, shown below, has an accessing method
that provides a default. The initialize method no longer sets the
value of maxSize. In this case, the initial default value is only
used if the default has not been otherwise set:

maxSize
“Return the maximum number of characters that can be entered in
the receiver. If no other value has been set, use the Imitial maox size
value and remember it ”
maxSize == nil
ifPrue: fmaxSize = self initialMaxSize].

continued eon page 16

14

THE Svarcraik Repory

Shallow copy : .
How does this affect copying? The defdult copy implementa-
tion in Srnalltalk is the “shallow copy,” which just creates 4.
new instance with exactly the same bits as in the old instance,
This means we get a genuine copy of Smalllntegers and a shared
reference to all other objects. Sometimes this s what you want
but it also can be very confusing. For example, Richard Bentley
(dik@comp lancs.ac.uk) poses the frequently asked question:

Could somebody please explain to me how copy Is sup-
posed to work, To me, if 1 take a copy of (say) a
Dictionary, the copy should not just have pointers to the
original Dictionary’s instance variables, so that if [change
avalue in my copy, the original is also changed.

Is this how copy is supposed to work? If T want a deepCopy
of a composite object {one that references other objects
using instance variables), how should I go about it ?

Deep copy

{n many cases, a deep copy is more intuitive than the one-level
shallow copy. Deep copying has its own complications,
though, and it’s not possible to provide a single implementa-
tion that rmakes sense for all classes.

Digitalk provides an implementation of deepCopy that makes
acopy of an object with shallow copies of all its instance vari-
ables. This is deeper than shallow copy but it just pushes the
problem down one level. This wouldn’t work properly in the dic-
tionary example either because the instance variables of a dictio-
nary are 0ot the keys and vahees but the associations that hold
them. They also provide an implementation of deepCopy specific
to Dictionary, which does “the right thing.” Such special imple-
mentations are required for quite a few classes, and still leave
open questions like “How do T copy a dictionary of dictionaries?”

ParcPlace used to provide a recursive implementation of
deepCopy, which would copy an object and make deep copics of
all its instance variables, recursing uetil it reached primitive
objects. This also has problems, as Bruce Samuelson
{bruce@ling.uta.cdu) points out:

ParcPlace has been phasing out support for deeplopy
because of theoretical problems such as infinite recur-
sion for circular structures.

Jan Steinman (steinman®hasler.ascom.ch) adds:

That's not good encugh! #deeplopy has practical prob-
fems, such as chewing up memory when you least ex-
pect it, (Try to deepCopy a Sortedlollection, for instance,
which holds a BlockClosure, which holds a CompiledLle-
calBlock, which holds 2 metaclass, which links in the en-
tire class tree, ..)

There are numerous solutions for aveiding infinite re-
cursiomn, the simplest of which (context query) does not
even require any additional state,

I find #deepCopy so uselnl that Pve implemented #deep-
Size, a “better BOSS,” and lots of oiher deep things.

They can be slow memory hogs, but if you use such
things within their practical limitations, what’s the
problem? When #deepCopy goes away, P11 put it back!

The phrase “context query” hides a very clever trick that
takes advantage of Smalltall’s reflective capabilities to avoid
infinite recursion. Using the thisContext psendo-variable in
ParcPlace Smalltalk, it is possible to examine the stack of the
currently executing process, This information can be used to
determine whether an abject already has been visited {and
abort the recursion if it has). Jan Steinman has promised to
write an article for T Smarirars Reporr describing these
tricks in detail. Similar tricks should be possible in Digitalk im-
plementations but the interface to the process stack is not as
well-documented, so it would take 2 bit more investigation.

Do it yourself
In general, if you want a copy routine that does “the right
thing” for a particular class, you have little choice but to write
it vourself. There isn't a universal definition of what the right
thing is, and it may even vary for the same class from applica-
tien to application. The problem of copying complex objects
with circular references (e.g. a Graph) is cquivalent to the
problem of storing and retrieving an object from disk. In fact,
if T have objects that can be written to a file, it’s sometimes eas-
iest to write them to a stream and retrieve them as a way of
making a copy. There will he a big performance hit but some-
times that doesn’t matter.

[t's also worth noting that ParcPlace has changed default
implementation of copy. Hans-Martin Mosner
(hmm@heeg.de) writes:

In R4.1, the only copy method besides #shallowCopy {s
#eopy itself. It is implemented as “self shallowCopy post-
Copy. The postCopy method is the one that should do the
dirty work. It can copy instance variables, leave others
alone, update backpeinters, and so on. Since it executes
in the already copied object, it has access to everything
it needs. To make copies which don’t share instance
variables, the postCopy methods should copy all such
variables,

This is a nice implementation, since postCopy doesn’t need
to do anything for variables that only require a shaflow copy.
Thus, adding instance variables doesn’t necessarily require
changing the copy method. My only complaint is that this
change was not very well advertised; 1 only discovered it by
stumbling across the code while doing something else.

INHERITANCE

Agif there weren’t already enohgh problems with copying,
there alsa can be problems inheriting from a class that defines
its own copying methods, For example, Rali Grehman
{ralf@ubka.uni-karlsruhe.de) writes:

I 'want to extend the Dictionary Class in some way. So 1
generated a new class (Test) which is a subelass of Dictio-

FEBRUARY 1903

11

THE BEST OF COMP.LANG. SMALLTALK

nary and added an instance variable femp'.
The sole method of this class is

addiere

temp = ok’

1to: 5 do: [ux |

Transeript show: ternp="; show: temyp printString; cr.
self at: x put: Test', 1.

When I call it via 'Test new addiere.’ [get the following
Transcript

temp= "ok’
temp= "ok
temp= nil
temp= pil
temip= il

Hey! Why is the instance variable overwritten after the
second iteration?

This problem is ParcPlace-specific and is described by Rick
Klement {rick@rick.infoserv.com):

It was not averwritten. It just wasn’t moved to the new
object created when the Dictionary had to grow to ac-
conunodate three entries. Welcome to one of
Smalitall’s more subtle bugs. .. . Tl bet this bug exists
iz 10% of the large programs that add instance vari-
ables to variable classes,

ParcPlace Smalltalk implements
classes such as Dictonary, Set, and Cr-
deredCollections as variable classes
{classes with indexed instance vari-
ables). When instances need to grow, a
new, larger instance is created, and be-
come: is used to replace the old collec-
tion with the new. Unfortunately, the
grow rmethod only copies the indexed
instance variables. [f non-indexed in-
stance variables are present they must
be copied explicitly, and user classes
must override the grow methaod to do
this. Jan Steinman (steinman@hasler.as-
com.ch) writes:

There have been many debates
about how to best handie this.
Cine might be an off-line
“checker” method that would lock
for SegquenceableCollection sub-
classes that add instance variables
but do not implement #grow.

1 once reimplemented #grow so
that it copied all instance vari-
ables, rather than specific ones (1
to: self class instSize do: [1 | .10
But this gets you into trouble in
some cases where the new Cotlee-
tion requires different values, such as 'Hrstindex’ and
astindex' in OrderedCollection. . . . For the time being, the
answer is to make sure people understand what is happen-
ing, but T've been Smalltalking for eight vears, and it still
bites me now and then!

Another possible solution is to implement collections differ-
ently. In Dhgitalk’s version, these are normal classes that have an
array as an instance vaviable. If the collection needs to grow,
then a larger array is created, its contents are copied, and the in-
stance variable replaced. 1t requires an extra layer of indirection
for collection access, but becore: is not necessary and the in-
stance variables don’t need to be copied. Digitalld's reason for
doing this is probably that become: is a very expensive operation
in their dialects, but Ralph Johnson (johnson®cs.viuc.edu) ar-
gues that this is 4 cleaner implementation. In fact, he has code
to change Smalltalk-80 1o operate this way:

I have a fileln that will do this to 2.3, but haven’t got
around to doing it to any of the later images. You can’t
change classes like MethodDictionary, of course, but you
can eliminate most of the old-style collections.

Alan Knight is a researcher in the Department of Mechanical and
Aerospace Engincering at Carleton University, Ottawa, Canada, K18
AB6. He curvently works in ParcPlace Smalftalk on problems relating
to finite element analysis and has worked in most Smalltalk dialecrs
at one time or another. He can be veached of +1,613.788 2600 x5783,

THE SMaLLrALk REPORT

his column focuses on two aspects of reusability—sub-
classing and client usage—and how they relate to con-

stants and defaults, Many classes bave constants and de-
faults to represent commonly used values. Some of the values
represenrted as constants may not really be constants, such as
hewristically detenmined values, which are often hard-coded and
embedded into methods. Though expedient in the prototyping
stage, most constants should evolve into defaults as classes are
refined, Developers of reusable software need 1o create reason-
able defaults and include a mechanism to override them,

This column will show vou how to use constants and de-
faults and still maintain a high level of reusability. We will ex-
amine several classes and methods from the Windows and
(5/2 versions of Smalltalk/V that contain defaults. We will
also revise some existing image code that has embedded con-
stants and improve its reusabilily,

CONSTANTS
Many initfalization methods contain constants and their values
are often Smalltalk literals. In the class EntryField, the initialize
method contains four constants: a string, an integer, a point,
and & boolean. An initialization method is an appropriate place
for constants. Subclasses typically override the initalize
method to customize initial values:
initiatize

"Private - Initialize the receiver.”

value := ",

maxSize := 32.

seiaction = l@1i.

medified := false.

“super initialize

Aless appropriate location for constants is embedded in arbitrary
methods. A method should have one purpose: to define a defauh
or perform some computation, but not beth. With an embedded
constant, reusability is impacted because it is difficult to:

« find and modify the constant

« override the constant in a subclass

The method file; in DiskBrowser has a constant that controls
file contents display based on the file size. This constant is a
stze limit used to determine whether to display the entire file or
a portion ol it. I the file size exceeds this [imit, it takes an extra
action to see the entire contents. The main purpose of the file:

Juanita Ewing

method is te display the file contents. It should not contain the
definition of the size limit.,

file: filePane
"Private - Set the selected file to the selected one in filePane. Display
the file conterits in the text pane.”
i aFileStream |
CurserManager execute change,
self changed: #directorySort:,
selectedFile 1= filePane selecteditem.
self switchToFilePane.
afileStream = selectedDirectory fleReadOnly: selectedfile.
wholeFileReguest := aFileStream size < 10000,
aFileStream close.
wholeFileRequest
iffrue: [self fileContents: contentsPane]
itFalse: [self showPartialFile]

Another DiskBrowser method, showPartialFile, also contains this
constant. Having the same embedded constant in iwo methods
can lead to maintenance problems:

showPartialFile
"Frivate - Display the head and tail of the selected file in the texi
pane.”
| aFileStream fileHead fileTail startMessage endMessage ¢7 |
CursorManager execute change,
contentsPane modified: false.
afileStream = selectedDirectory fileReadOnly: selectedFile,
oy v= String with: Cr with: LE
startMessage = Tile size is greater than 10000 bytes, "cr,
‘st 1000 bytes are .., e
EﬂdME‘SS&gE’ = oy, [R R Ry *'A"kwl, or,
'last 9000 hytes are..', cr.
fileHead := aFileStream copyfrom: 1 fo: 1000,
fileTail = gFile3tream
cepyfrom: aFileStream size - 9000
to: aFileStream siza.
aFileStream close.
contentsPane
fileInFrom: (ReadStream ome {startMessage,
fileHead, endMessage, fileTail});
forceSelectionOntaDisplay.
{self menuWindow menuTitled: '&Files’) enableltem:
#loadEntireFile,
{self menuWindow menuTitled: '&File’} disableltem: #accept.
CurserManager normal change

DEFAULTS
Developers should not embed constants in arbitrary methods.

FEBRUARY 3003

13

THETOPNAME
INTRAININGISON

THE BOTTOM
OF THE BOX.

Where can you find the
best in object-oriented training?

The same place you found
the best in object-oriented
products. At Digitalk, the
creator of Smalltalk/V.

Whether you're launching
a pilot project, modernizing
legacy code, or developing a
large scale application, nobody
else can contribute such inside
expertise. Training, design,
consulting, prototyping,
mentoring, custom engineer-
ing, and project planning. For
Windows, OS/2 or Macintosh.
Digitalk does it all.

ONE-STOP SHOPPING.

Only Digitalk offers you a
complete solution. Including
award-winning products, proven
training and our arsenal of
consulting services.

Which you can benefit
from on-site, or at our
training facilities in Oregon.
Either way, you'll learn from a

100% PURE OBJECT TRAINING.

staff that literally wrote the
book on object-oriented
design (the internationally
respected “Designing Object
Oriented Software”).

We know objects and
Smalltalk/V inside out, because
we've been developing real-
world applications for years.

The result? You'll absorb
the tips, techniques and
strategies that immediately
boost your productivity. You'll

reduce your learning curve,
and you'll meet or exceed
your project expectations. All
in a time frame you may now
think impossible.

IMMEDIATE RESULTS.

Digitalk’s training gives
you practical information and
techniques you can put to
work immediately on your
project. Just ask our clients
like IBM, Bank of America,
Progressive Insurance,
¥ Puget Power & Light, U.S.
Sprint, plus many others.
And Digitalk is one of only
eight companies in IBEM’s
International Alliance for
AD/Cycle—IBM'’s software
development strategy for the
1990's. For a full description
and schedule of classes, call
(800) 888-6892 x411.

Let the people who put
the power in Smalltalk/V, help
you get the maost power out of it.

-

The International Newsletter for Smalltalk Programmers

May 1993

Volume 2 Number 7

TOWARD A
SMALLTALK
STANDARD:
TECHNICAL ASPECTS

OF THE COMMON BASE

By R.J. DeNatale
& Y.P. Shan

Contents:

Features/Articles

1 The Smalltalk standard: Technical
aspects of the common base
by R.J. DeNatale & Y.P. Shan

5 Classic Smalltalk bugs
by Ralph Johnson

| Columns

10 Putting it in perspective:
‘ The incremental nature of design
‘ by Rebecca Wirfs-Brock

12 Getting Real: Don’t use Arrays?
by Juanita Ewing

15 Smallialk idioms: Instance specific
behavior: Digitalk implementation
and the deeper meaning of it all
by Kent Beck

18 The best of comp.lang.smalltalk:
Breaking out of a loop
by Alan Knight

Departments

20 FProduct Announcements and
Highlights

ecognizing Smalltalk’s increasing importance as a mainstream pro-
gramming language and acting as a large user of the language, [BM
recently proposed the formation of a standards effort within ANSI
to define a Smalltalk language standard and offered a “common
base” strawman to start such an effort. At this time the proposal has
been accepted by the ANSI SPARC committee, and the formation of an ANSI
Smalltalk committee has begun.

This article focuses on technical issues regarding the common base. We have
written a companion article that will appear in Osject MaGazing, which outlines
the history of the development of the common base,

WHAT IS THE COMMON BASE?

As part of the proposal for an ANSI Smalltalk standards effort, we have con-
tributed a “strawman” as the starting point for standardization. That strawman is
contained in the IBM document entitled Smalltalk Portability: A Common Base
and comprises chapters 3-5 and appendices A and B from that document.*

This proposal is not our work entirely. It is the result of an 18-month-long col-
laboration among five companies: IBM, Digitalk, KSC, OTI, and ParcPlace.

A purely syntactic description of Smalltalk results in a language specification
that is incomplete when compared to those for languages such as C, COBOL,
and FORTRAN. When studying the specification for a language one expects to
learn things, such as how to do arithmetic, how to code conditional logic, and so
forth. Smalltalk syntax does not address these issues. To bring the description of
Smalltalk up to the expected degree of completeness we must specify a number
of classes, such as numbers, booleans, blocks, and so on. The purpose of the
common base is to provide a semantic description that is common to both
Smalltalk-80 and Smalltalk/V. We wanted to produce a specification of Smalltalk
that covers the variety of existing implementations. This led us to specifying the
external behavior of classes without prescribing implementation. Detail differ-
ences between the two implementations were left out of the common base, al-
though we have kept careful note of these differences in the review process, and
they will no doubt be important items of discussion as the standardization effort
proceeds.

Currently, the common base covers the following areas. (This scope might be
changed during the standardization process):

* Language syntax
* Common object behavior
+ Common class behavior

continded on page 4.

* The document can be ordered from your local IRM branch office or by credit card through the IBM publica-
tions ordering number (800.879.2755). The publication number is GG24-3903. The price is $2.75 per copy
for printing and handling.

EDITORS’
CORNER

John Pugh Paul White

This month’s hot topic is standards, After many years of discussion, an ANSI Smalltalk lan-
guage standard is now much nearer to becoming a reality. There is little doubt that lan-
guages achieve an extra measure of respectability when an ANSI standard is defined for
them. Many in the Smalttalk community have long recognized this, but how do you stan-
dardize Smalltalk? The language itself is very small, but standardization alone—though
valuable—does not produce a very useful result. We must standardize the class library.
The Smalltalk class library can be thought of as an extension of the language; for example,
even control siructures are captured via message passing rather than hard-wired syntactic
censtructs. However, now we run into further trouhle. There are two major dialects of
Smalltalke: Smalltalk-80 and Smalltalk/V. Enfin might be included as vet a third dialect,
and by the time you read this article there may be a fourth, SmalltalkAgents for the Mac-
intosh. Each has classes and [rameworks unigue to itself particularly in the domain of user
interface classes. Even when we restrict ourselves to magnitudes and collections we are
not out of the woods. Smalltallk-80 and Smalltalk/V have distinct differences both in the
organization of the class hierarchy and in the classes themselves, Flow have all these issues
been addressed? Well, read the lead article written by Rick DeNatale and Y.P. Shan and
you will find cut. For our part, we appland the initiative taken by IBM to promote the
standards effort and the participating vendors for putting their competitive instincts to
one side for the benefit of the Smalltalk community as 2 whole. We'll keep you informed
as the standardization effort proceeds and hope that as many of you as possible will play a
part in the process.

But there’s even more news on standards, Digitalk has announced that it will make ity
Smalltalk products interoperable with SOM, 1BM’s Systern Object Model for O5/2 2.0 and
that it will also develop client-server database and developmient tools adhering to the data
access portions of Apple’s Virtually Integrated Technical Architecture Lifecycle (VITAL).

Ins our second feature article this month, Ralph Johnson provides us with a list of clas-
sic Smalktalk bugs. He has compiled his list from the collective experiences of many expe-
rienced Smalitalk programmers. The list will be particularly useful to beginning Smalltalk
programmers, If you are aware of other bugs you think should be accorded “classic” sta-
tus, please forward them to Ralph. His address is given at the end of the article.

Inn her column, Rebecca Wirfs-Brock passes on some more of her nine years of experi-
ence designing, implementing, and managing soltware projects. In this issue, she discusses
the incremental nature of design and what distinguishes incremental design from rapid
protetyping. In this issue’s Getting Real column, Juanita Ewing discusses the inappropri-
ate use of arrays and how their misuse affects reusability. Kent Beck continues his discus-
sion on instance-specific behavior, where methods can be attached to individual in-
stances, as opposed to being attached only to the class. This month, Kent explores the
implementation of instance specialization in Digitalk’s Smalltalle/V for O5/2 and contrasts
it with the ParcPlace implementation of the same concept.

Finally, Alan Knight focuses on the thread of discussion generated on
comp lang.smalltalk by the following question: “1 [have] always found a way to avoid this,
but I would like to know how to break away from inside a loop and return [to] the imme-
diate upper level context?”

We hope you enjoy this issue.

5hud by 5l uhimamn& Gros 1, 588 Bru ad
ts reserved. Beproduction of this material b

Capyri swoand 15 Batly prohibited. M
ription [vear, \9 \uu;sl <*mmmv. 5(

ln A
ton ol
Clas

5 gic L‘up\; price, S2.G0. PO
St er ¢ 5 i)nps SML, P.L. Box 2000, De N il art
£ 9l Suond A\Lum, ()l!dvu, (JL:tldnu KIS 284, Canada. For service an current subscriptions cd..] JO0. 783 4905 l’rmu.cl

in the United States.

- Alaf Knight, Tha. {}hjec.‘ Pagple *

2) Conieri_lnc Soft\mre :
Bga{n&. Eﬁmmxtrup, ATET Bell Labe
bj t.}'echnmcgy ﬁntemaﬁonai

Wike, Tayior S Digitae DI
Dave 'I'homas Qb;eci Techrluk)gy Enfemamnai

Columnists - i
Keni Beck “Fifst Cidbs Sohware '_ :
Jianita Ewmg, Digital. k
Greg Headley, Kncwiedge Systems Cfnrp
Ed K!imas, Linex Engmsenng ing.-

Eric: Smith, Kmowle;:ge Bystemz Corp,
Rebecca Wtrfa Brock, E)fgﬂalk E

SfGS Publscahuns Gmu;}, Em:.

Rlchard P, Frisdman Lo

Faynder & Group Pub\:sher__ :

Art/Production e

Knstma akhadaf Managmg Eds;er ;

Su&fm Culiigan F’xgnm goad 1id, Cfaawe Direcll{m
Kareﬂ Tongiqh ‘Produstion Editer " R
Robirt Siewa Cu’nputer Sya}e Doordwaior
ﬂircuiaimn : ;

_aleaasUCaraeﬁa
; Wes; Cca.sh’Europe

Admm;straﬁoﬂ' : - S
Davic Chat Er;Jaul A counimg Manaqeu R
James Amenumr Bockkeeper RN A
Oyle Smlth Specnal Assistant io he Dubkaheu L
Clae 301‘1’35?0“ Cmfere‘me Manager _' R)
Ciﬂdy B;"ki Con?erence Techn'caT Managsr
Marghenra R Monck '

Sanaral Managﬁr

Publ shers of jObRNA Gmsmm quGRAH
WHBG, !:\msm MAGAzNE HOTLINE 08 - ORIECT-ORIENTED
s ThE Smar task ReEBORt,
(_Jséwj!- anid THE X JOURNAL,

2

Tre SmaiLTalk REPORT

SHi Systemboues i an $800 million
systems inlegrator specializing in dient
sarver and oblect orented sofiwars
development. We arelmmediately seek-
ing individuals for unigque career
og;pommmes in the Southeast Region

the Linited States. Candidates should
p%?isess one of morg of the following
skills:

- g-g, Emallislk
- Development
- OC Database

We offer an ou!s?an&ng compansation
and benofits package. tuplore your ca-
rear opportunites with a company that
is commitiad o axcoliencs, Caoll 80D
TE8-8704 or sond your resuma io
SYSTEMHOUSE, 8. 8THt, 950
8. Winter Parl Dvlve, Cosselberry, FL
| 32707, st;: 407-260-0590.

SH !,SYSTEMHOUSE

B SMALLTALK IDIOMS
-cenineed from page 17

tem, please pass them along. You'll find my address at the end
of the article,

CONCLUSION

Instance specialization has a place in the toolbox of every expe-
rienced Smalltalker. You won't use it every day—mavbe not
even every year-but when you want it, nothing else will de.
The implementations for VisualWorks and Smalltalk/V O8/2
2.0 are quite different, but they present the same external inter-
face 1o the programmer.

The contrasts between the implementations hint at funda-
mental differences in approach between Digitalk engineering
and ParcPlace engineering. | will explore the practical conse-
guences of this difference in future columns.

Kent Beck has been discovering Smallialk idioms for eight years at Tek-
tronix, Apple Compuder, and MasPar Computer. He is also the
Javnder of First Class Software, wiich develops and distributes reengi-
neering products for Smalltalk. He can be reached at First Class Seft-
ware, P.OL Box 226, Boulder Creek, CA 85006-0226, or af
408.338.4649 (phone), 408.338,3666 (fax), 70761,1216 { Compuserve).

@ THE BEST OF COMF.LANG.SMALLTALK,

...contined from page 19

In general, however, I think this technique is inferior to
simply restructuring your code to have an inner method
that can perform the loop and that can return from the
loop when needed.

I the end, T have to agree that restructuring the code is usually
the best solution. The number of different possibilities avail-
able does serve, however, as a reminder of the powerful facili-
ties available in Smalltalk.

ERRATA

Jon Hylands, an alert colleague who obviously reads my
columns very carefully, has peinted out an error in a recent
column on copying (February 1993). 1 had said that adding
named instance variables to indexed collections in ParcPlace
Smalltalk required overriding the grow method o copy these
variables. In fact, the method that should be overridden is
copyEmpty, which will be calied by grow,

Alan Kright works for The Object People, 509-885 Meadowlands
Dir, iawa, Ontarto, K2O 3N2. He can be reached ar 613.225,8812,
or at kmght@mrru carleton.co.

MAY 1593

23

SMALLTALK
DESIGNERS AND DEVELOPERS
We Currently Have Numerous Contract and

Permanent Opportunities Available for Smalltalk
Professiondls in Various Regions of the Country.

—~—

SALIENT

CORPORATION

Salient Corporation..,
Smalltalk Professicnals Specializing in the
Placement of Smalltalk Professionals

For more information, please send or FAX your resumes 1o:
Salient Corporation
316 S. Omar Ave., Suite B.
Los Angeles, California 90013.

Voice: (213) 680-4001 FAX: (213) 680-4030

The company is CAP GEMINI AMERICA. And—for [S pro-
fessionals who seck a higher level of challenge and reward—
there’s simply no better choice.

Object-Oriented Developers C/C + +

Experience the challenge of working as a consultant involved
in utilizing Smalltalk in object-oriented systems analysis, design,
programming as well as participating on teams preparing client
propasals and presentations. We seek individuals who possess
at least 1-5 years of experience in Smalltalk andlor C+ +.

A wvital, growing member of the CAP GEMINI SOGET! Group—
the fourth largest information services company in the world—
CAP GEMINI AMERICA offers strong career development
backed by the resources of an international leader. Please send
resume to Scott Mylchreest, Human Resources, CAP
GEMINI AMERICA, 25 Commerce Drive, Cranford, NJ
07016. We arc an Equal Opportunity Employer,

CAP GEMINI AMERICA

Member of the CAP GEMINI SOGETI Group

m HIGHLIGHTS (CONT'D)

guage biased. Class libraries developed in one language can-
not be used with other languages. For example, a class li-
brary developed in C++ cannot be used by a Smalltalk pro-
grammer, and a Smalltalk library is of no use to a COBOL
programmer. The System Object Model (SOM) is a new
packaging technology designed to address this and other
packaging issues. . ..

In the current version of SOM as released on O5/2 2.0, we
provide full tool support for only C language bindings. ... We
also have experimental C++ bindings, designs for Smalltalk
bindings, and binding to an experimental object-oriented ver-
sion of REXX.

Developing with 1BM’s System Object Model (SOM), Roger Sessions,
First Class, OMG NewsLeTTER, Feb/Mar 1993

[Mel Beckman, Duke Communications Int’l.]: One brass-
tack thing you can do to improve your professional perspec-
tive is to buy Smalltalk/V for the Mac or PC and go through

the tutorial. In about a week of evenings, you will pick up
more insight into object-oriented programming and where
new design programming is headed than you will in two or
three seminars. . .

[Nick Knowles, Steam Intellect, Ltd.]: We may be hearing
about C++ from IBM Toronto, but we are also hearing about
Smalltalk from Rochester. Smalltalk is probably a better fit for
high-level business problems. C++ may give better perfor-
marnce for low-level tools. . .

[Paul Conte, Picante Software]:. . . What's important is to
pick a language that lets you go through the exercise of build-
ing something with objet-oriented techniques. Then you’ll see
that while object-oriented languages may help solve some syn-
tactic-level problems and code-organization problems, these
languages lead to another generation of problems—the cre-
ation and management of class libraries. . .

Roundtable 1992: Change and challenge, Dale Agger,
NEWS 3X/400, 12/92

ENVY/Developer: The Proven Standard For Smalltalk Development

An Architecture You Can Build On
ENVY/Developer is a multi-user environment
designed for serious Smalltalk development.
From team programming to corporate reuse
strategies, ENVY/Developer provides a
flexible framework that can grow with you to
meel the needs of tomorrow. Here are some of
the features that have made ENVY/Developer
the industry’s standard Smalltalk development
environment:

Allows Concurrent Developers

Multiple developers access a shared
repository to concurrently develop
applications. Changes and enhancements are
immediately available to all members of the
development team. This enables constant unit
and system integration and test — removing
the requirement for costly error-prone

load builds.

Enables Corporate Software Reuse
ENVY/Developei’s object-oriented
architecture actually encourages code reuse.
Using this framework, the developer creates
new applications by assembling existing
components or by creating new components,
This process can reduce development costs
and time, while increasing application
reliability.

Offers A Gomplete Version Control And
Configuration Management System
ENVY/Developer allows an individual to
version and release as much or as little of a
project as required. This autormatically creates
a project management chain that simplifies

tracking and maintaining projects. In addition,

these tools also make ENVY/Developer ideal
for multi-stream development.

Provides ‘Real’

Muiti-Platform Development

With ENVY/Developer, platform-specific
code can be isolated from the generic
application code. As a result, application
development can parallel platform-specific
development, without wasted effort or code
replication.

Supports Different Smalltalk Vendors
ENVY/Developer supports both
Objectworks\Smalltalk and Smalltalk/V".
And that means you can enjoy the benefits
of ENVY/Developer regardless of the
Smalltalk you choose.

For the last 3 vears, Fortune 500 customers
have been using ENVY/Developer to deliver
Smalltalk applications. For more information,
call either Object Technology International or
our U.S. distributor, Knowledge Systems
Corporation today!

Object Technology Ottawa Office
International Inc

2670 Queensview Drive Fax: (613) 820-1202

Phoenix Office

Phone: (613) 820-1200 Phone: {602) 222-9519

Fax: (602) 222-8503

Knowledge 114 Mackenan Drive, Suite 100
Cary, North Carolina 27511

Systems
J Corporation Phone: (91) 481-4000

Ottawa, Ontario K2B 8K1 E-mail; info@oti.on.ca

22 THE SMALLTALK REPORT ENVY/Developeris a registerad trademark of Object Technology International Inc. All other brand and product names are registered trademarks of their respective companies.

Fax: (819) 460-9044

,,,;nmiammf_fi'nm page !
» Magnitude
» Collections
* Streams
« Basic geometry

+ File in/out format

THE TECHNICAL APPROACH
We wish the common base to describe the behavior of
Smalltalk classes without prescribing implementation. To this
end we have:

1. Documented only the public protocols of the classes

2. Avoided the specification of inheritance hierarchies

We will describe how we approached the specification of the
collection classes without the prescription of a particular in-
heritance hierarchy.

COLLECTIONS

Collections are an important part of the Smalltalk class library,
and present an interesting challenge given the desire to de-
scribe behavior without recourse to describing implementation
inheritance.

A major inspiration for this work was the early publication
on the internet by William Cook, currently with Apple, of his
investigation of the relationship between the implementation
and type hierarchies of the Smalltalk collection classes.” Fol-
lowing this work, we described each collection class individu-
ally without recourse to inheritance, in terms of combinations
of the following protocols:

+ Expandable. Contains the messages for adding elements to
a collection. Set, SortedCollection, and OrderedCollection sup-
port this protocol.

Ordered. Contains the messages that pertain to collections
which maintain their contents in a specific order. SortedCol-
lection, OrderedCollection, Interval, Array, and String support
this protocol.

Copy-Replaceable. Contains the #copyReplaceFrom:to:with:
message. Interval, Array, OrderedCollection, and String sup-
port this protocol.

Array-Like. Contains messages for changing the collection
based on a collection or range of indices. Array, OrderedCol-
lection, and String support this protocol.

-

Indexable. Contains the #at: message used to access an cle-
ment of the collection based on an index or key. SortedCol-
lection, OrderedCollection, Interval, Array, String, Dictionary,
and IdentityDictionary support this protocol.

-

Updatable. Contains the #at:put: message used to replace
an element of the collection based on an index or key. Or-
deredCollection, Array, String, Dictionary, and IdentityDic-
tionary support this protocol.

m TOWARD A SMALLTALK STANDARD

« Contractable. Contains messages for removing an element
or collection of elerents from the collection. Set, SortedCol-
lection, and OrderedCollection support this protocol.

* Insertable-From-Ends. Contains messages for adding ele-
ments at the beginning or end of the collection. OrderedCol-
lection supparts this protocol.

+ Removable-From-Ends. Contains messages for removing
elements from the beginning or end of the collection. Sort-
edCollection and OrderedCollection support this protocal.

By specifving each collection class in terms of a set of these
protocols we can describe the capabilities of each class without
requiring a particular implementation hierarchy.

&5

Smalltalk is more than ten years old.
A standard is needed, and the
time is now.

%

FUTURE STANDARDS ACTIVITY

The common base represents an attempt to document what is

common between the two major Smalltalk implementations.
So, it leaves out what is not common. This points the way for
future standards activities.

As additional implementations appear, they need to be
compared to the common base. Decisions have to be made
concerning what to do about existing incompatibilities. Many
questions will be outside the scope of standardization, but
some will need to be addressed. The impact and importance to
users should be the determining factor.

The primary goal is to produce a language standard. The
problem with doing this with Smalltalk is that it’s not particu-
larly clear where the language ends and class libraries take over.
With the common base we made some conscious decisions:

1. We purposely avoided attempting to standardize user inter-
face classes. The pragmatic reason is that this is where most
of the differences lie between existing implementations. On
the other hand, other language standards do not address
user interface libraries. Smalltalk should not be penalized
because it does not standardize areas not addressed by other
language standards.

(oo

. We purposely tackled higher-level language features, such
as the collection classes, and some aspects of class objects,
because these features make Smalltalk what it is.

Starting a standards effort inevitably triggers the desire to

continued on page 9.

THE SMAaLLTALK REPORT

PRODUCT

ANNOUNCEMENTS

OBJECT THINK

Peter Coad and Jill Nicola have just completed a new book
titled Object-Oriented Programming. The book teaches “ob-
ject think,” the thinking stategies necessary for effective use
of object technology. It also teaches how to program effec-
tively using the two leading object-oriented programming
languages: C++ and Smalltalk. The QOP haook consists of
four large examples: a counter, a vending machine, a sales
transaction system, and a traffic flow management system. It
introduces strategies and language details just at the moment
each can be applied with success. According to Fotios Sk-
ouzos, IS Director at Falcon, “The OOP book has quickly be-
come the most consulted desk reference within my develop-
ment group.”
The book is available from Prentice Hall technical bookstores
or directly from the authors at Object International.
Object International, Austin, TX
800.662.2557 or 512.786.0202 (v), 512.795.0332 (f)

OOP WORKBENCH FOR MACS

SmalltalkAgents for Macintosh is an object-oriented software
development workbench and application delivery tool with ad-
vanced computing capability.

Based on a superset of the Smalltalk language, Smalltalk-
Agents has extensions patterned after C and LISP, and fully
supports the Macintosh toolbox including traps and callbacks,
It provides a powerful new sct of tools which greatly increases a
programmer’s productivity. SmalltalkAgents possesses ad-
vanced computing capabilities such as dynamic linking, true
preemptive interrupt-driven threads and events, transparent
memory management, a 24-bit international character set sup-
porting Unicode and Worldscript, and a rich class library.
SmalltalkAgents requires a Macintosh with at least a 68020
CPU, 5 MB of RAM, and a hard disk. All features are fully
functional with System 7 and 7.1, with limited support for
System 6.0.7.

Quasar Knowledge Systems, Bethesda, MD
301.530.4858 (v), 301.630.5712 (f)

Highlights

Excerpts from industry publications

SPECIFICALLY SMALLTALK

One of the more significant happenings this year has been the
emergence of Smalltalk as an application development envi-
ronment for commercial application developers. American
Airlines, for example, has deployed a commercial system to
manage the resources required for all flights worldwide. This
high-reliability, high availability distributed system was pro-
grammed in Smalltalk and is considered a major success.

1992 was also the vear that Smalltalk companies got pro-
fessional management. ... The other challenge facing new
professional managers of Smalltalk companies is that MIS
directors can be very demanding to do business with. They
demand services and insist upon delivering new products on
or about the published schedules. As they evaluate
Smalltalk, they see a lot missing. The challenge for the next
couple of years will be to rapidly add capability without los-
ing focus. Development environment companies should
build strong development environments and kernel classes
for their language. . ..

Just as Smalltalk has begun to creep into mainstream
businesses, the harsh, cruel realities of using C++ as an ap-

May 1993

plication development language have been felt in company
after company. while C++ can be used as an object-oriented
language, it typically is not. Rather, it 1s used as a more
complex C with esoteric new features that someday must be
understood. . . .

A rather startling change has been in the paychecks of
highly competent O-O designers and developers. Some have
doubled; a few have tripled in the last year, Companies are be-
ginning to recognize that someone who really knows existing
object-oriented libraries and tools can be worth more than five
greenhorns., For this time-to-market advantage, they are will-
ing to pay handsomely. I have seen individual Smalltalk pro-
grammers working for $2,000 per day on long-term contracts
and Objective-C programmers making a salary of $200,000 per
year, and this trend will accelerate.”

MIS radar detects objects for the first time, Tom Love, HOTLINE ON

OBJECT-ORIENTED TECHNOLOGY, February 1993

Current technologies for packaging class libraries have sev-
eral problems; the most important is that they are highly lan-

21

Product Announcements are not reviews. They are abstracted from press releases provided by vendors, and no endorsement is implied.
Vendors interested in being incladed in this feature showld send press releases to our editorial offices,
Product Announcements Dept,, 91 Second Ave,, Ottawa, Ontarie K15 2H4, Canada,

GRAPHICAL CLASS LIBRARY
ObjectBits 2.0 is a sophisticated class library that permits ad-
vanced programomers to create graphical applications effec-
tively in the OhjectWorks\Smalltalk Release 4.1 environment.
Programmers can understand it quickly and use it easily be-
cause it is implemented using purely Smalltatk technologies
and methodologies. ObjectBits is implemented in a modular
fashion and features components such as 2-D and 3-D charts,
gauges, geometric fgures, and bit and image editors. Object-
Bits 2.0 is available on the Sun SPARCstation, HP 9000 series
70, IBM RS/6009, and Macintosh platforms.

Fuji Aezrox Information Systems, Tokyo, Japsn

$1.3.3378.8984 (), 81.3.3378.7950 {3

GUI BUILDER FOR SMALLTALK APPS

Object Technology International (OFI) and Objectshare Sys-
terns have announced a new version of WindowBuilder that is
integrated with ENVY/Developer. The two companies will also
cooperate to ensure that future releases of their respective
products are compatible.

The new version of WindowBuilder will be available in the
format of an ENVY/Developer library. Previous versions of the
two products required an integration effort by the customer be-
fore they could coexist in the same Smalltatk image, Customners
will now he able to load and unload WindowBuilder into their
ENVY/Developer environment with no additional effort.

ENVY/Developer is an integrated mulliuser environment
for large-scale Smalltalk development. It provides a highly pro-
ductive team programming environment that supports the
prototyping, development, release, and deployment of
Smalltalk applications. The product’s features include configa-
ration management, version control, support for multiplat-
form development, performance profiling tools, a high-speed
object storage and retrieval utitity, and packaging tools for pro-
ducing standalone executables.

WindowBuilder is the leading Smalltalk product for build-
ing graphical user interfaces. Developers can quickly constract
sophisticated user interfaces for their end-user applications.
The resull is less manual programming and tedious layout
when developing applications with windowing front-ends.
WindowBuilder is available for Digitall’s Smalltaik/V for Win-
dows and Smalltalk/V for O5/2.

Objectshare Systerns, San Jose, CA
408.727.3742 (v), 408.727.6324 (H

BUSINESS RE-ENGINEERING METHODOLOGY
CONSTRUCT is a leading-edge business re-engincering
methodolagy that integrates all three facets of a business—
strategy, operations, and information systems, to help compa-
nies manage change. CONSTRUCT is the first methodology to
enable companies to define their fundamental purpose and en-
sure that all work performed in the organization has a demon-
strable Hnk to that purpose. In addition, CONSTRUCT is the
only methodology that incorporates Business Works, an ob-
ject-oriented software tousled developed by ParcPlace Systems
that enables companies to refine strategy and rapidly translate
it to every element of the business,

BusinessWorks s based on ParcPlace’s VisualWorks, an
ADE for creating graphical, client/server applications that are
completely portable across PC, Macintosh, and UNIX sys-
temns. VisualWorks” database access capabilities allow develop-
ers to combine the power of hierarchical, relational, and ob-
ject-oriented database systems with object-oriented
programming technelogy for client/server applications. Visu-
alWorks is based on: ObjectWorks\Smalltalk.

Gemini Consulting, Marristown, NJ 079580
201.285.9000 (v, 201.285.9588 ()

AUTOMATIC DOCUMENTATION TOOL

Synopsis for Smalltalk/V provides an automatic class docu-
mentation tool for development teams using Digitalk
Smalltalk/V. The automatic documentation of Smalltalk classes
allows development tearns to eliminate the lag between the
production of code and the availability of decumentativa.
Using information already present in the Smalltalk/V environ-
ment, Synopsis automatically generates class documentation
for any class in the system. Class documeniation takes the
form of a summary, made up of class cormments, comments
about variables, and documentation strings from class and in-
stance methods. These summaries are similar to what you find
in the Encyclopedia of Classes section of any Digitallk’s
Smalltali/V manual.

‘With Synopsis, any effort by developers to improve class or
method comments in the code is immediately reflected in the
net class surmmary generated. Therefore, documentation lag
time is minimized. In addition, documentation time is reduced
because a large part of the work is done once during coding.

Synopsis Software, Raleigh, NC
919.847.2221 (v}, 918.84T7 0660 (F}

20

THE SMALLTALK REPORT

CLASSIC

SMALLTALK

BUGS

Ralph Johnson

very programming systemm is prone to certain
kinds of bugs. A good programmer learns these
bugs and how to avoid them. Smalltalk is no ex-
ception. Although Smalltaik eliminates many bugs
. that are common iy other languages, such as bugs
in linear search algorithims (just use do:), it has its own set of
classic bugs, which most new Smalltalk programmers learn the

hard way.

There are several reasons to collect classic bugs. First, it will
help experienced programmers test and debug programs, and
it can help us design better programs. Second, if we teach these
bugs to novice Smalltalk programmers, they should learn to be
good programumers faster. Third, perhaps we can redesign the
system to eliminate some of these bugs, ar we can write check-
ing tools to spot them automatically.

I started the following list and posted it to comp.lang.small-
talk. Lots of people responded with more bugs, instructions on
how to fix the bugs, and comments about my bugs. The result
is the following list.

BUG 1: VARIABLE-SIZED CLASSES
Set, Dictionary, and OrderedCollaction are variable-sized classes
that grow. They grow by making a copy of themselves and “be-
coming” the copy. If you add new instance variables to a sub-
class, you have to make sure these instance variables get
copied, too, or you will mysteriously lose the values of the in-
stance variables at random points in time.

Smalitalk-80 R4.0 (and probably some earlier versions) has
a #eopyEmpty: method in Collection that you are supposed to
override if you make a subclass of Collection that adds instance
variables. The solution to this bug is to write a version of
#copyEmpty: for your class.

it would be easy to write a tool that checked that every new
subclass of Collection that added instance variables also defined
a method for #copyEmpty:.

BUG Z: #ADD: RETURNS ITS ARGUMENT
Muost collections that grow implement the #add: method,
which returns its argument. Most new Smalltalk programmers
assumme that #add: returns its receiver, which leads to prob-
lems. Thus, they write "{c add:) add: v* when they should re-
ally write "c add: x; add: y" or "c add: x. ¢ add: y". This is one of
the good uses for #yourself, For example, you can write:

{Set new

add: %
addiy

yourself}

#add: returns its arguments for serverzl good reasons. Making
#add: return its argument offen keeps you from resorting to
temmporary variables, because you can create the argument to
#add: on the fly and use the argument afterward. If you want
0 access the collection, you can do it with #yourself and cas-
caded messages, as described above.

Nevertheless, after years of explaining how #add: works to
students, | wish that it bad been defined to return its receiver. [t
is too late to change now without confusing every Smalltalk pro-
grammer on the planet, 50 it is a problem we have to live with.

BUG 3: CHANGING COLLECTION WHILE ITERATING OVERIT
Never, never, never iterate over a collection the iteration loop
modifies. Elements of the collection will be moved during the
iteration, and elements might be missed or handled twice, Tn-
stead, male a copy of the collection you are Iterating over.
That is, aCollection copy do: [:each { alollection remove: each] is
a good program, but if you leave out the copy it isw't.

Mario Wolczko suggested a solution that catches this problem
the instant it occurs {at some performance penalty, of course).
The solution is to change the collection classes, Each iteration
method enters that collection into a set of collections being iter-
ated over (LteratedCollections), executes the block, and then re-
moves the collection from the set. Collections are usually
modified using #at:put: or #hasicAt:put:, so these are overridden
to check that the collection is not in IteratedCollections. If it is, an
error is signaled. You can either use this technigue all the time or
just install these classes when you are testing and debugging your
program. The changes are packaged in a file called Iterator-
check.st that is available on the Manchester and Illinois servers.
On the linois server, it is in pob/MANCHESTER/manchester/ 4.0/
Tterator-check.st.

BUG 4: MODIFYING COPIES OF COLLECTIONS

It is commen for an object fo have an accessing method that re-
turns a collection of ohjects you can modify. However, some-
times an object will return a copy of this collaction to keep you
from modifying it. Instead, you are probably supposed to use
messages that will change the collection for vou. The problem is
that this is often poorly documented, and anyone wha likes to
modify collections directly will run inte problems. See “Sched-
uledControllers scheduledContzollers” for an example.

MaY 1903

m CLASSIC SMALLTALK BUGS

The solution is to provide better documentation, to claim
that nobody is allowed to modify copies of collections returned
from other objects, or to have objects that don’t want their col-
lections modified to return immutable versions of the collec-
tions that will give an error if you try to modity them.

BUG 5: MISSING »

[t is very easy to leave off a return caret on an expression. If
there is no return at the end of a method, Smalltalk returns the
receiver of the method. [t only takes one missing return to
mess up a long chain of method invocations.

BUG 6: CLASS INSTANCE CREATION METHODS
Writing a correct instance creation method is apparently non-
trivial. The correct way to do it is to have something like:
naw
~super new init
where each class redefines #init to initialize its instance vari-
ables. Tn turn, #init is defined as an instance method init:

super init "to initialize inherited instance variables”
"initialize variables that I define"

B

It only takes one missing return to mess
up a long chain of method invocations.

*

There are lots of ways to do this wrong, Perhaps the most com-
mon is to forget the return, that is, to write:

super new init

As a result, you have the class where you want the instance of
the class. This is a special case of bug number 5.
Another error is to make an infinite loop by writing:

“self new init

If Smalltalk doesn’t respond when you think it should, press
~C to get the debugger. If the debugger shows a stack of #new
messages, you know you made this mistake.

Finally, you should define #new only once for each class hi-
erarchy and let subclasses inherit the method. If you redefine it
in each class, you will reinitialize the new object many times,
wasting time and perhaps memory.

One way to keep this from happening is to make the #new
method in Object send #init, and have the #init method in 0b-
ject do nothing. Of course sometimes the version of #init that
you define has arguments, and this wouldn’t help those cases.
It is probably better to rely on education to eliminate this kind
ol error,

BUG 7: ASSIGNING TO CLASSES
OrderedCollection := 2 is perfectly legal Smalltalk, but does
dreadful things to your image.

This bug could be eliminated if the compiler gave a warning
when you assign to a global variable that contained a class.

BUG 8: BECOME:

#hecome: is a very powerful operation. It is easy to destroy
your image with it. Its main use is in growing collections (see
bug number 1), since it can make every reference to the old
version of a collection become a reference to the new, larger
version. It has slightly different semantics in Smalltalk/V and
Smalltalk-80, since x becomes: y causes every reference to x and
vy to be interchanged in Smalltalk-80, but does not change any
of the references to vy in Smalltalk/V.

Suppose you want to eliminate all references to an object x.
Saying x becomes: nil works fine in Smalltalk/V, but will cause
every reference to nil to become a reference to x in Smalltalk-
80. This is a sure calamity. You want x to become a new object
with no references, such as in x becomes: String new.

BUG 9: RECOMPILING BUGS IN SMALLTALK/V

It is easy to have references to obsolete objects in Smalltall/V if
vou change code without cleaning things up carefully. For ex-
ample, the associations whose keys are the referenced names in
the Pool Dictionary are stored in the CompiledMethods at compile
time. If you create a new version of the Pool Dictionary and in-
stall it by simple assignment, the compiled methods still refer
to the old associations.

If you substitute a new instance of Dictionary or replace,
rather than update an association in a pool dictionary, you have
to recompile all methads using variables scoped to that Pool.

This is is also annoying when using ENVY, where the meth-
ods are under strict control. Perhaps Pool Dictionaries should be
be first-class versioned prerequisites of classes, just like the
class definition.

If you prune and graft a subtree of your class structure, you
have to make sure that all referencing methods are recompiled.
Otherwise, you (or your customer, because this is only de-
tected at runtime) will run into a Deleted class error message.
Thomas Muhr posted a “bite” a while ago Lo handle this prob-
lem for Smalltalk/V 286.

BUG 10: OPENING WINDOWS

Older versions of Smalltalk/V and Smalltalk-80 do not return
to the sender when a new window is opened. Thus, any code
after a message to open a window will never be executed. This
is the cause of much frustration. For example, if you try ta
open two windows at once, that is:

TextPane new open.
TextPane new open

in Smalltalk/V 286 and

aScheduledWindow1 open.
aScheduledWindow?2 open

6

THE SMALLTALK REPORT

YOU CAN DO IT WITH EXCEPTIONS

An exception handling mechanism is built to handle just these
sort of cases, hreaking out of normal processing to handle
some special condition. ParcPlace Smalltalk has one integrated
with the language, and there are several implementations avail-
able for Digitalk versions.

Hubert Baumeister (hubert@mpi-sb.mpg.de) provides a
detailed example of how to do this. We can define a signal han-
dler as:

LoopBreakSignal := Signal genericSignal

notifierString: 'Using break without being in a loop';
nameClass: self message: #loopBreakSginal.

repeat a block using;

Context>>loop
"Evaluate the receiver repeatedly, not ending unless 'Object
loopBreakSignal' is raised or the block forces some stopping
condition, like method returns, Signals raised but not handled

ete..
Object loopBreakSignal handle: [zexp |]
do: [self repeat]

and then invoke it with the Object method

break
LoopBreakSignal raise,

This is very similar to the use of exceptions for handling asser-
tions, which was discussed in this column in the October 1992
issue. This is nicer, since we don’t have to change any system
classes, but it still has a couple of disadvantages.

First, it makes the code for looping a bit more complicated,
and if we want it to be available everywhere we have to modify
system methods like do:. If we want the block to return a value,
we have to do even more complicated things. It probably has a
fairly substantial overhead. Finally, and most important, it
could lead to very confusing results.

Exception handling is a very general facility for handling
non-local control transfers. [t can be used to implement a facil-
ity for breaking out of a loop, but in complicated cases, the
programmer needs to have the discipline to ensure that control
is being transferred to the intended place.

YOU CAN DO IT WITH BLOCKS
A cleaner solution also uses the method returning mechanism,
but to pass a method return as part of another block.

Ralph Johnson (johnson@cs.uiuc.edu) describes this as
follows:

There are lots of ways to break out of a loop. The impor-
tant thing to realize is that the only ways to change control
flow in Smalltalk are to send a message and to return from
a message, but blocks let you treat code as data and so con-
trol where you are going to send a message.

The result of the above is that to simulate a go-to, you have
to introduce extra blocks. For example, here is a simple
way to break out of a loop:

MAY 1993

[obj feo]
whileTrueWithBreak:
[zexit |
"loop body is here"
timeToLeave ifTrue: [exit value].
"finish up loop"]

whileTrueWithBreak: is defined in BlockClosure (in 2.5-4.1,
BlockContext in 2.3, and I don’t know where in Smalltalk/V)
to he:

whileTrueWithBreak: aBlock
“aBlock value: [*nil]

B

Smalltalk blocks are most often
used as simple control structures,
and we usually don’t have to think

about their full capabilities.
9

Mario Wolczko also advises that the Manchester goodies li-
brary has similar code in the BlockWithExit goodie. The li-
brary is accessible by (tp@sl.cs.uiuc.edu or at
mushroom.cs.man.ac.uk.

This kind of code can be very confusing. Smalltalk blocks are
most often used as simple control structures, and we usually
don’t have to think about their full capabilities. In this case, we
pass as an argument a block that returns from the method context
i which it was defined. Although there may be a great deal in the
stack below that point, it is immediately discarded, and we re-
sume execution at the next level up from that defining method.

This is quite a neat trick. It breaks out of a loop without us-
ing any additional language mechanisms, and it makes the
code only a little uglier,

Unfortunately, to handle return values nicely, we have to
add a bit more ugliness, adding a parameter to the exit block.

whileTrueWithBreakReturningAValue: aBlock
~aBlock value: [:returnValue | “retumValue],

Writing a more complicated loop, like injectWithBreak:into: can
start to get complicated. For one thing, the block will require
three arguments, which is a problem in Digitalk dialects. Also,
like exceptions, blocks can provide much more general trans-
fers of control, and the programmer must ensure that the re-
sults are correct.

WHAT'S THE BEST WAY?

Considering that you can’t return from a block in Smalltalk,
there are a lot of different ways of doing it. Unfortunately, they
all have their drawbacks. Ralph Johnson comments:

continued on page 23...

19

Breaking out of a loop

Deeptendu Majumder (gt0963d@prisen. gatech.edu),
who writes:

This month’s discussion started with a question from

I [have] always found a way to avoid this, but { would like
to know how to break away from inside a loop and return
[to] the immediate-upper-level context.

Although this guestion may seem elementary to an experi-
enced Smalltalker, and the straightforward answer is probably
the best, [found the wide variety of answers worthwhile and a
reminder of how many different ways things can be accom-
plished in Smallealic

Unfortunately, the first answer that comes to mind is to dis-
miss the question,

FORGET IT
The language doesn’t provide it, but iU’s easy to work around.
Anvone who didn't just fall off the cabbage truck knows that.
MNext message.

This is an effective attitude for getting through news
quickly, but it's not very helpful. The least we can do is de-
scribe the standard workaround.

HERE'S WHAT YOU DO INSTEAD
The obvious answer is that, although vou can’t break out of a
block prematurely, you can break out of a method. By pushing
the loop into a separate method, you can use the normai re-
turn mechanism.

For example, suppose we have a method like:

SomeClass>>someMethod

self startip,

collection do: [zeach |
each doSomething.
self specialExitCondition

ifTrue: [“Break, but still do the finish up code"].

zach doSomeMore].

self finishUg.

We can't break out of the loop and stili do the finishUp code.
Ta make it work, we need to brealc it into two methods,

Somellass>>daSomething
self startlp.
self loop.
self finishUp.

HE BEST OF cpingasmall

Alan Knight

Somellass>>loop
collection do: [:each |
zach doSomething.
self specialExitCondition ifTrue: [“sel].
gach doSomeMore].

When specialExitCondition is true, we return from the loop
methad, but still execute the finishUp code. [t's a simple trans-
formation on code, and breaking the code inte smaller pieces
this way often improves it. Who could ask for mere?

well, perhaps it improves the code, but T doubt that it al-
ways does. While decomposing code into smaller pieces is tsu-
ally good, I'd much rather do it along logical lines than along
lines imposed by the language.

YO CAN DD IT IF YOURE CLEVER
Saying that Smalltatk can’t do something is often a mistake,
particularly when you are in a virtual room with a lot of clever
Programmiers.

Jan Steinman (steinman®hasler.ascom.ch), who is well-
acquainted with the inner workings of Smalltalk, writes:

it is possible, but it is ugly. I had implemented it in Tek
Smalltalk for “real” blocks, via a Context stack hack, but I
haven’t tried to make it work with 4.1 BlockClosures. It would
necessarily change the semantics of blocks somewhat——what
does the bleck answer when “broken,” for instance?

Then there’s the case of in-line “psendo-blocks.™ My con-
text stack hack never did work with compiled in-line
blacks, like #to:do:. This is a real problem, since the system
goes out of s way to hide the difference from you!

To make it work with psendo-blocks might actually be eas-
ier. It would take a compiler hack that would simply jump
out of the loop. But then the semantics would be different
than for breaking out of a real block via a stack unwind
mechanism. Yuk.

So it ean probably be done if we're sufficiently clever. This is
fascinating for dedicated Smalltalk hackers and for language
designers, but I don’t think it's a good answer for a novice ot
for somebody who just wants to get things done. [t would be
easier to just rework the code as in the previous section. [s
there a better way?

18

Tue SMaALLTALKE REpPORT

ADVANCED TRAINING

CUSTOM CONTRACTS

Ohbject Technology Potential
Object Technelogy can provide a
company with signiticant benefits:
= {uality Software

= Rapid Development

= Reusable Code

= Model Business Rules

But the transition is a process that
must be designed for success.

Transition Solution

Since 1985, Knowledge Svstems
Corporation (KSC) has helped
hundreds of companies such as
AMS, First Union, Hewlett-Packard,
IBM, Noarthern Telecom, Southern
California Edison and Texas Instru-
ments to successiully transition to
Object Technology.

ANALYSIS & DESIGN

MENTORING

APPRENTICE PROGRAM

TEAM TOOLS

KSC Transition Services

KSC offers a complete training

curricalum and expert consulting

sepvices, Qur muiti-step program is

designed to allow a client to ulti-

miately attain self-sufficiency and

produce deliverable solutions. KSC

accelerates group learning and

development. The learning curve is

measured in weeks rather than

months. The process includes:

s Introductory to Advanced

Programming in Smalltalk

s STAP™ (Smalltalk Apprentice
Program) Project Focus at KSC

» 00 Analysis and Design

= Mentoring: Process Support

KEC Development Environment
KSC provides an integrated applica-
tion development ervironment
consisting of “Best of Breed” third
party teols and KSC vatue-added
software. Together KSC tools and
services empower development
teams to build object-oriented
applications for a client-server
environment.

Design your Transiiion

Begin your successful “Object
Transition by Design” For more
infarmation on K5C's products and
services, call us at 919-481-4000
today . Ask for a FREE copy of KSC's
informative management report:
Software Assets by Design,

Knowls

£ 1992 Koowiedge Svstems Corporation.

ige Systems Corporation

OQBJECT TRANSITION BY DESITIGN

114 MacKenan Dr.
Cary, NC 27511
(919) 481-4000

C1LASSIC SMALLTALK BUGS

in Smalitalk-80, then you will get one open window and one
forgotten piece of code. This problem has been fixed in Object-
works\Smalltalk R 4.1 and later releases of Smalltalk/V, so the
above code will create two windows as you would expect,

The fix for earlier versions of Smalltalk-80 is to use the
operioTerminate method to open the window, which does not
transfer control to 1. A useful trick is to store the new window
in a global variable so you can test it.

Aad Nales says that the fix for Smalltalk/V286 is 1o fork the
creation of the new window:

[Textpane open] fork.

If this is not what the programmer wants, it is probably neces-
sary 1o hack the dispatcher code and remove the dropSender-
Chain message, which is the ultimate cause of the problem.

BUG 11: BLOCKS

Blocks are powerful, and it isn’t hard for programmers to get

mto trouble trying to be too tricky. To compound problems,

the two versions of Smalltalk have slightly different semantics

for blocks, and one of them often leads to problems,
Originally blocks did not have truly local variables. The

block parameters were really local varfables in the enclosing

Pxyi
x= 0.
(1to: 100y do: {1z | x = x + z]

actually had three temporaries, %, y, and 2. This leads to bugs
such as the following:

someMethod

lab |

a=#(4371).

b= SortedCollection sortBlock: {12 b | a someOperation: b}
I addAll: a.

Transcript show: a.

When elements are added to b, the sortBlock is used to tell
where to put them. What gets displaved on the transcript will
be an integer, not an array.

Early versions of Smaiitalk-80 (2.4 and before) implemented
Blocks ke this, and Smalltail/V still does. However, in current
ParcPlace implementations, blocks are close to being closures.
You can declare variables local to a block, and the names of the
bleck parameters are local to the block. Most people agree that
this is a much better definition of blocks than the original ane.
Nevertheless, people planning 1o use Smalltall/V should realize
that it has a different semantics for blocks.

This difference can lead to some amusing problems. lor ex-
ample, here is some code written by someone who had obvi-
cusly learned Scheme:

| anatherArray aBlockArmray |

aBlockArmray = Array new: 4.
anotherArray := #(1 2 4 8).

1to: 4 do: [:anlndex |
aBlockArray at: anlndex put: [(anotherfArray zt: anindex) * 2 11

The pragrammer expected each block to be stored in the array
along with its own value of anlndex. If anIndex were just a local
vartable of the method, this will not work. Tt assumes that each
execution of the block gets its own version of anlndex, and
Smalltall/V and old Smalltalk-80 actually make each execution
share the same version.

So, if you are using Smalltalk/V, be careful not to reuse the
names of arguments of blocks unless you know that the blocks
are not going to have their Hves overlap. Thus:

alollect do: {1 | ...}
blollect do: [] ...].

is probably OK because #do: does nat store its argument, so
the blocks will be garbage by the time the method is finished.
However, if the first block were stored in a variable somewhere
and evaluated during the execution of the second block then
problems would probably occur,

BUG 12: CACHED MENUS

Menus are often defined in a class method, where they are cre-
ated and stored in a class variable or a class instance variable.
The method will look something like this:

initializeMenu

Nole that accepting the method does nor change the mena.
You have to execute the method to change the class variable
or class instance variable. Often the #initializeMenu method is
invoked by the class method #initiatize. This can lead to the
strange efflect that you can initialize the menu by deleting the
class and filing it in again, but otherwise you don’t seem to be
able to change the menu (because you haven’t higured out
that you should really be executing the #initializeMenu
method).

To make matters worse, it is possible that each instance of
the controller, or model, or whatever has the menu, stores its
own copy of the menu in an instance variable. If that is the
case, 1tis not enough to execute #initializeMeny, you must
also cause cach object to reinitialize its own copy of the
menu. it is often easier to delete the objects and recreate
then.

Often a class will have a #flushMerus method to clear out
all menus, Typically the method that ferches the menu will
check to see if it is nil and invoke #initializeMenu if it is. So,
#ushMenus will just “nil cut” the variable holding the menu.
The best way to figure out what is happening is to look at all
uses of the variable. Smalltalk experts rarely have problems
with this bug, but it often confuses novices.

Caching is a very common technique in Smalltalk for mak-
ing programs more efficient in both time and space. Caching
of menus is one of the simplest uses of caches, and other uses
can create more subtle bugs,

8

THE SMALLTALK REPORT

Object>>isSpecialized

"self methodDictionariesField == self class methodDictionaries

Next come the methods for actually specializing the receiver.
The first sets up an array with a fresh MethodDictionary.

Ohject>>zpeciatize
| old new

selfisSpec{alizeri ifTrue: [“self].
old = self methodDictionariesFisid.
new := {Array with: {MethodDictionary newSize: 233 , old,

self methodDictionariesFiald: new

The next one takes a string, compiles it, and installs the resalt
in the private dictionary:

Object>>specialize: aString
| association |
self specialize.
association = Compiler compile: aString in; self class.
self methodDictionariesField first add: association

CONTRASTS

What do these two implementations of instance specialization
say aboul their respective systems? For one thing, both of them
are simple, clean, and easy to understand. The external proto-
col is exactly the same. There isn’t much to choose from be-
tween them. From that standpoint, | would have to say that
both systems support a fairly esoteric change to the language
semantics with a minimum of fuss.

The ParcPlace implementation is concepiually cleaner to
me. The user’s model that the behavior of an object 15 always
defined by its class 15 retained. [t's just a Butde casier to create
classes than you thought. The Digitalk implementation re-
quires that you understand the particular mechanism they
have lying behind that conceptoal model so that you can im-
plement the necessary changes.

When 1 understood the ParcPlace implementation 1 said,
“Al, that makes sense.” When [understeod the Digialk im-
plementaton I said, “Cool! That really works?” The ParcPlace
model 1s an extension of the semantics. The Digitalk model is
an extension of the implementation.

Iam fishing for just the right way to characterize the differ-
ence. I don’t think I can make it clear yet, but [also don’t think
it will be the work of a single weck, or even a single vear, to
make it clear. Let's barrel on.

As you get to know both product lines, you will find this
same distinction repeated many times, I think that the differ-
ence stems from the diverging goals of the technical luminaries
at the two companies. The ParcPlace image was driven first by
Dan Ingalls and then by Peter Deutsch. Bothy have strongly de-
veloped aesthetic sensibilities to go aleng with their amazing
technical skiils. A solution wasn’t a solution to them until it
was beautiful. Actuaily, now that both of them have gone on to
other things, the ParcPlace models are beginping to show signs
of creeping cruit.

Jim Anderson and George Bosworth, on the other hand, are
primarily motivated by the belief that software just shouldn’t

be that hard to write. They produced Smalltalk/V so others
could write software more easily. Their success criteria seems
to be il it’s better than C, it’s good enough.” They weren't
about to let a little thing like a less-than-perfect conceptual
model get in the way of shipping product. Of course, they had

a camipany to run as they were developing their image, unlike
Parcllace in the carly (Xerox PARC) years, so they didn’t have
much choice about the importance of aesthetics,

Hmmm...
different implementations, same
interface—maybe this object stuff
works, after alll

%

Den’t take this to mean that the ParcPlace image is truth
and beauty personified and the Digitalk image is a baling-wire-
and-chewing-gum collection of dive hacks. There are areas
where each beats the other in both conceprual model and im-
plementation. However, [think it is safe o say that the pri-
mary motivations behind the two systems are a contrast be-
tweern aesthetics and pragmalism,

What this means for the workaday programmer isn't en-
tirely clear. Most of the time, the ParcPlace image provides
smooth development. Every once in 2 while, though, vou will
encounter a good idea that hass’l been taken quite far enough,
and you will have to bend yourself into a pretzel or bypass it
entirely to get around it. Put another way, if vou are going the
ParcPlace way you will have lots of support. If, however, vou
have the misfortune to want to do something a different way
than the original implementor imagined, you may be in trou-
bie, In these cases you will often have to browse around and
understand lfots of mechanism before you can figure out how
to wedge your code in.

The Digitalk world is less coercive, but if's also less support-
ive. For code that relies heavily on their implementations {i.c.,
not just instantiating collections) 1 average maore lines of code
to get the same functionality, I know there have been cases
where the Digitalk implementation has been easier. [don't
thinl a Digitalk project has ever been conceptually simpler,
though.

In future columns, I will explore more specilics of the con-
trast between the systems, and try to quantify why one or the
other is better for specific tasks, 1o the meantime, if vou run
into situzlions that are surprisingly hard or casy in cither sys-

contimied ou page 23,

MAY 1993

17

B SMALLTALK IDIOMS

Point Array

T
class w

MethodDictionary

name

methods

P / MethodBictionary

Figure 2. A specialized Point.

Conceptual Model

What’s so special about the class constructing the array? [t's
just an Array whose elements are MethodBictionaries, Any object
can build one of those. That’s how we'lt implement instance
specialization. We'll fetch the array that's there and copy it,
adding a slot at the beginning containing a fresh MethodDic-
tionary, Then we can make all the changes we want to the pri-
vate MethodDictionary without affecting any other instances.

Example

Before we can implement the conceptual madel we need access
to a couple of hidden primitives to get and set the method dic-
tiomaries field of the object.

Object>>methodDictionaryField
“Return the Array of MethodDictionaries for the recefver”
<primitive: 46>
self primitiveFailed

Object>>methodDictionaryField: anArray
"Set the Array of MethodDictionaries for the receiver
to anArray, anArray must contain MethodDictionaries
or your system will crash!"
<primitive: 97>
self primitiveFailed

Now we need to get something on the screen to see the effects
of our experiments. Fortunately, that’s easy in Smalltally/V.

TopPane new open inspect

When we execute the above expression we get a window and
an inspector on that window, In the inspector we can execute
the following to get a fresh MethodDictionary to put our special-
ized methods in:

| old new |

old := self methodDictionaryFiald.

new = (Array with: (MethodDictionary newSize: 2)) , old
self methodDictionaryField: new

MNow we can specialize our window by executing the following
in the inspector
| association |
agsociation ;= Compiler
comupile: 'display Transceript show: "Howdy®, super display’
in; salf class
self methedDictionaryField first add: association
Now if you execute self display you wiil see that, indeed, the
specialized method is being invoked. (You will have to send
the window hackColer: for the superclass” display method to
woTk),

Methods
I was surprised at liow easy it was to implement instance spe-
cialization methods that were compatible with the ParcPlace
version. | had expected the differences in implementation to
leak through into the interface. Himmm . . . different imple-
mentations, same interface—maybe this object stuft works,
after alll

The first method [defined Iast time was one you would du-
plicate in any class in which you wanted all instances to be spe-
cializable. T don’t think this is necessary, since the lazy special-
ization implemented below works fine. For completeness,
though, here it is:

new

“super new specialize

The method I defined in the last issue should have been de-
fined this way, rather than duplicating the specialization code
in the class and the instance. I think 1 did it the way 1 did be-
cause that was how [saw it first implemented by Ward Cun-
ningham when he put scripts into HotDraw.

Next is & method to test whether an instance is ready to be
specialized. Since all unspecialized instances of a class share the
same array of dictionaries, if the receiver has a different array
we will assume it has a private array.

16

THE SMALLTALK REPORT

TECHNICAL ASPECTS OF THE COMMON BASE

BUG 13: SINGLETON OBJECTS IMPLEMENTED WITH
CLASS METHODS

Sometimes you need to make 2 globally known object that is
the only member of its class. These singleton abjects are some-
Hes implemented as class methods and class variables. This
worls fine in the short term, but does not work in the long
term because the time inevitably comes when you need to make
mare instances of the class. If you have implemented an object
with ¢lass methods, you will have to rewrite the class or try to

implement a second object by making a subclass of the first.

Blocks are powerful, and it isn't hard
for programmers to get into trouble
trying to be too tricky.

The correct way to implement a globally known singleton
obpect 1s to make a normal class for it, to define a class instance
varfable to hold the singleton object (in Smalltalk-80 this is
done in the definition pane of the browser when the “meta”
hutton is pressed), and to have a class method (I Iike the name
#default} return the value of the variable, initializing it if it is
nil. This is like a cache, and nearly eliminates the possibility of
an initialization error.

Another alternative is to make a singleton object be the
value of a global variable. There is no other proper use of
global variables. Storing an object in a global variable is proper
when there are instances of the class used for other purposes.
For example, the global variable Undeclared in Smalltalk-80 is
just a regular Dictionary. However, it is probably not a good
way to implement a singleton class, because making sure that a
global variable is initialized is 2 common source of problems.

CONCLUSION

I would like to thank the many people who contributed bugs
or solutions to bugs to the listt Amir Bakhtiar, Hubert
Baumeister, Naci Dai, Marten Feldtmann, Peter Gooadall, Alan
Knight, Simon Lewis, Eliot Miranda, Thomas Mubr, Aad
MNales, Kurt Piersol, Jan Steinman, Mario Wolczke, Mike
Smith, Terry Raymond, Dave Robbins, Randy Stafford,
Michael Sullivan, Brent Sterner, Nicole Tedesco, Rik Fischer
Smoody, and Markus Stumptner,

If vou would like to bring bugs to my attention, please post
them to comp.lang.smalltalk, email them o me at johnson@®
cs.uiuc.edu, or write me at Department of Computer Science,
1304 W. Springfield Ave, Urbana, 11 18801,

Ralph folmison is affiliated with the University of Hlinois at Urbana-
Champaign.

...continyed from page 4

“improve” the language. Although this desire is good, we
think that the overriding goal must be to achieve a comumon
specification that is supported by available implementations.
While this is likely to require some compromise between the
various Smalltalk irplementors and the constituents of the
user comimunity, we believe the ultimate arbiter should be
the Smalltalk user community, The users are the ultimate au-
dience for Smalltalk and the standard,

CONCLUSION

Smalltalk is more than 10 years old. It has come a long way
in overcomming the perception of being a research language
and has entered the realm of commercial application devel-
opment. We believe a standard is needed, and the time is
now. If you agree, please encourage your organization to
join us in ANSY to define the standard. Together, as
Smalltalk users, we can ensure our success and contribute Lo
the acceptance of Smalltalk by the software development
comuimunity at large.

Acknowledgmenits

We would like to thank Digitalk, KSC, OT1, and ParcPlace
for their contributions to and support for the project. We
would also like to thank all the 1BM internal reviewers, the
tegal and contract team, 1T5C and its editors, and our man-
agement for supporting this effort.

Reference
1. Cook, W. Interfaces and specifications for the Smalltalk-80 col-
lection classes, ProcerpiNgs or OOPSLA g2, pp.1-15.

Rick DeNatale is a Serior Pregrammer with the IBM Systews
Laboratory in Cary, NC. In 1993, he headed a team thai designed
and implemented a hybrid O- O language called ClassC. He is a
co-awsthor of the Smalltalk Cownmon Base document. He can be
reached by email at denatale@carvin3.vnel.ibm.com.

Y.E. Shan is a Development Staff Mewmber at the IBM Systems
Laboratory in Cary, NC. He has been active 1u researching and
developing object-griented technology since 1986. He can be
reached by phone ar 919.469.6571, fax at 9194626948, ar email
at shan@carvimi.vaet ibm.con.

Subscribe to THe SuatLaik Repomt

For more information call 212.274.0640 fuoice)
or 212.274 0548 (fau)

MAY 1993

It is good fo have an end 1o journey towards
Bud 1t s the jonrney that matters in the end,
—Ursula K. LeGuin

esign requires effort, review, reflection, and rework. [
don’t know of anvone who has built an application
B4 right the first time. Objects always need rework and
redefinition. Selutions should remain fluxd throughout an in-
cremental design and implementation. In this column, T want

to reflect on when a design starts and when it is finished. I also
want to touch on some major differences between mcremental
design and implementation cycles and rapid prototyping.

HOW DESIGN REALLY WORKS

Designing object software reans creating an executable model
of interacting objects. One fundamental difference between
software design and software analysis is that designs have (o be
transtated into working programs. Analysis results veed to re-
flect an accurate statement of the problent and constram possi-
ble solutions, but they don’t have to work. We designers still
have to solve the problerm. Solving even a well-defined prab-
lers is not always straightforward or easy.

Lind software design to be inherently messy and franght with
mistakes. [t involves top-down, bottom-up and sideways build-
ing and rebuilding of a solution. 1 try to teach this to my design
stadents while giving them a strong foundation for building ob-
ject designs. Designers and implementers appreciate this honest
exposure to the way things really work and are eager 1o pick up
some immediately useful skills they can apply to object design.

I've had managers sit in on design sessions (or even worse,
in classrooms) and get very concerned that designers aren’t
honing in quickly enough on the "right” selution. Besides hin-
dering progress, this can be demoralizing to teams new to ob-
ject design, Uve also worked with managers who entrust teams
from the start to solve problems and produce results. Only
when s schedule appeared 1o be in jeopardy or the team called
for help did they get concerned. The enthusiasm and positive
energy that sparks a team having this style of leadership are
amazing! The key to these managers’ success, in my opinion,
was that they empowered design teams while imposing plenty
of non-threatening process checks along the way.

The American Herrrace Dricnonary defines design as
“planining] out in & systematic. . . foron.” 1 like this definition. It
characterizes design as systematic planming. We're still error-
prone, even if we are systematic about software design, Is that

B UTTING IT IN PERSPECTIVE

atur

Rebecca Wirfs-Brock

the fault of the designers, their tools, or the imprecision of in-
puts to the process? { don’t think we should place blame on any
uf these factors. We software designers are inherently building
complex systems. Although some researchers are actively inves-
tigating better ways to precisely state requirements while others
are working at ways to minimize the transformations we make
between: software analysis and software design, we designers and
implementers still have to deal with unpredictability. Unless we
are rebuilding a system for the sth time, we will continue to dis-
cover additional constraints throughout implementation.
Object technology improves our chances of building well-
designed systems. We have conceptual tools that help us de-
compose the problem. We can find objects in the problem do-
main that have representations in our executable programs.
We cant encapsulate functionality and data into objects ta build
high-level abstractions. Well-desigined objects enable us to deal
with increasing levels of complexity. Even so, we still haven’t
changed the bumpy, uneven nature of software development.

IMIECTING DESHGN INTG IMPLEMENTATION

While software development 0t 2 smooth process, we still
nesd a design process. Building systems more predictably de-
mands that we interleave design throughout implementation.
We need ta consciously expend some fraction of our energy
designing and refining our solution. Design needs to naturally
occur throughout development. The alternative is to simply fix
things so they work, or hack more functionality without con-
sidering the impact on future developers or system flexibility.

Incremental design means progressing toward a working
solution in a planned fashion. Cne way to make orderly
progress is to decompose design and implementation into a
serics of many small, inherently more manageable steps. 1
don’t view incremental design as a heavily regulated or tightly
monitored activity. I don’t want to restrict forward progress
or put a crimp on individual creativity. Designing invaolves an
element of understanding how things work now while not ac-
cepting the status quo. Responsible designers take a broad
perspective. Itisn't enough to build the software; you also
need to pay attention to the flexibility and elegance of the
energing selution.

Dresign doesn’t come together at the end of a long design
cycle and remain sacrosanct throughout implementation. In
incremental development, systems aren’t designed or inte-
grated according to the Big Bang Theory. There are many small

i),

THE SMALLTALK REPORT

MALLTALK {DIOS

Kent Beck

Instance specific behavior:
Digitalk implementation and the

deeper meaning of it all

a the last issue, 1 wrote about what instance-specific behav-

ior is, why you would chioose to use #t, and how vou Imple-

ment it in Smalltalk-80 ., er. . . Objectworks\Smalltalk
{which way does the slash go, anyhow?). . Ler. .. VisialWorks
{is that 2 capital Wor not?). This month’s column offers the
promised Digitalk Smallialk/V O8/2 2.0 implementiation
{thanks to Mike Anderson for the behind-the-scenes info) and
a brief discussion of what the implementations reveal about
the two engineering organizations,

I say “brief discussion” because as | got to digging arcund 1
found many columns’ worth of material there for the plucking.
Il cover only issues raised by the implementation of classes
and method look-up. Future columns will contrast the styles as
they apply to operating system access, user interface frame-
works, and other topics.

DIGITALK IMPLEMENTATION
Runtime Struciures
The Digitalk implementation of method kook-up is shightly
different from the ParcPlace model. Actually, until Smalltalk/Vv
{058/2 2.0 (hereafter YOS2) the models were quite similar. The
Digitalk implementation did not allow you to create Behaviors
and instantiate them easily, so the instance specialization im-
plementation presented in the last issue wouldn’t work, but the
pictures of the objects would have been identical.

The VOS2 modet departs from the “classic” by giving cach

instance a reference, not to its class, but to an Array of Method-
Dictionaries (see Figure 1}, In the normal case, the class con-
structs this array and all instances share it

The ParcPlace implementation requires an additional indirec-
tion to reach the method dictionary, as the virtual machine has to
go from the ohject to the class, and from the class o the method
dictionary. With the VOS2 model, the virtual machine just has to
go from the object to the array. Going up the superclass hierar-
chy is also faster, as the virtual machine can just march along the
array rather than trace references from class to superciass.

Performance is not the primary motivation behind this de-
sign, however, More important, given the lack of fexibility in
the implementation of Behavior and Class, this design makes it
passible to specify the bebavior of objects in muny ways, For
example, implementing multiple inheritance {ignoring differ-
ent instance Jayouts in difterent classes) is simple. The class 13
welcome to create the array of method dictionaries any way it
wants.

You may be wondering how the message “class” is imple-
mented given the objects above. Each MethodDictionary has an
additional instance variable called class, which is set to the class
where it belongs (each dlass “owns” one and only one dictio-
nary). The primitive for class marches along the array of dic-
tionaries untl it finds one whose class instance variable is non-
nil, and returng that. Thal way, you can have dictionaries that
don’t belong to any class, and the scheme still works.

Point

values

Tame 'Pcin’zy
/ values

methods

keys

Kews | MN! |

MethodDictipnary

#e ek B ompiledMethod

Figure 1, VOS2 objecis supporting method lookup.

MAY 1993

i5

m GETTING AEAL -

represents detailed status information about a file. An alternate
solution is to create a class, called FileInformation to store this
data. FileInformation has a class method fo create new in-
stances, and instance methods to access its components, A par-
tial class specification follows:

file Information methods

fromfileEntry: afileEntry
Create and return an instance of the receiver for a file entry

file Information mathods

fileName
Return the name of the file.
size
Return the size of the Gle, including both the data and re-
source fork.
timeStamp
Return the date and thme when the receiver was last
modified.
respurceSize
Return the size of the resource part of the file.
craatoriype
Return the code that indicates the application that created
the file,

With the FileInformation class, we can eliminate the use of Array
and incorporate usage of our new class. The formatted method
now looks like:

Directory methods
formatted
"Arswer a collection of file information, one for each entry In
the receiver.”

| answer fle Entries anArray |

file Entries = self contents,

answer ;= Ordered Collection new: file Entries size.

file Entries do:[:each |
answer add: (FileInformation fromFileEntry: each}].
~ answer

Clients of this method can then use meaningful selectors in-
stead of indexing into an array. This code is mare maintainable
now and doesn’t need any extra commenting.

| zevas |
zeros = myDirectory formatted select: [info | info size = 0],
~zeros collect: [tinfo | info fileName]

There ars good examples of Array wse in your Smalltalk system.
These are uses in which the index is a relevant part of the data
structure, such as a numeric id allocated by the operating sys-
temt. The array contains the relationship between the id and a
refated Smalltalk object. Literal arrays are convenient for col-
lections of values,

IDENTIFYING INAPPROPRIATE USE
You can look for inappropriate use of Array and other data
structures in your tmage. Use these techniques to find methods

that reference Array. You may also want to look for references
to other data structures such as OrderedCollection.

« In Team/V: Select Array in the Package Browser. Select the
menu item Class/BrowseRefs.

» In Smalltall/V for 08/2 and Smalitalk/V Windows: Execute

Smalltalk senders Of: (Smalltalk associationAt:#Armray)}
» In Smalltalk/V Mac: Execute Smalltalk referencesTo: #Array.

+ In Objectworks\Smalitalk: Select Array in the System
Browser. Select the menu item Class Refs from the class pane
men.

&

Don’t use arrays as a shortcut to pass

around related items. Insiead, create a

class to represent the abstraction
relating the items.

2%

When examining 2 method, inappropriate use will have one or
more of the following characteristics:

« Indices that are irrelevant to data and functionality.

* Array elements that are refated by some sbstraction not cap-
tured by a class.

« Awloward client use due to viclation of information hiding
and encapsulation.

Ifvou find a method that uses arrays inappropriately, you
should improve the quality of your code by:

1. Creating classes to represent related array elements.

2. Rewriting offending methods to reference new classes and
to eliminate arrays.

CONCLUSION

Don’t use arrays as a shorteut to pass around related items. In-
stead, create a class to represent the abstraction relating the
items. Your code will immediately be more understandable,
extensible, maintainable, and reusable. Classes are the basic
building blocks of Smalltalk programs. Use them.

Juanita Ewing is a senior staff member of Digitalk Professional Ser-
vices. She has been a project leader for several commercial -0 soft-
ware projects and is an expert in the desigrt and implementation of
Q-0 applications, frameworks, and systems, [n a previous position at
Tektronix Inc., she was responsible for the development of dlass
libravies for the first commercial-guality Smmalltalk-80 systerm.

14

Tue Smarrrarx Rerony

Wit 11 JEPPE1 80 45 o 1=
Fre betent g
n:8
Prizon Editor ad
Last Eompany Ehna
Name size
—i Peesnn Erllar [+ i
[ae]] e Laat Compemy
il Nomc LLLE
{wem&mo«n B Ted Petara Cooper & Polcrr
Fory 2 Ken Coaper Croprr & Deless
Cing Fischir Dbfectshare Systcma
Pursom Edhar 8, Lea Rabrra Oblecinhare Synizms
Eri¢ Clayberg Amencar Management Synicms
Dan Shafes Graghlonel User Intedorces
Sealt Hernion Conauitant
(maiMlew | § Oavtad Taylor Enterprinc Engines
ko W i
[_addecenon | [Bemave Persen |
rSurrsnt Peraon
{ FlrgzMome: {Dins Shar Stam [
| sastMame: [Faches | compamn [obmotmpare 5]
L

... WindowBuilder Is an essential wool for vnravel-
ing the mysteries of the traditional Smailalk
model-view-controller paradigmn. ... Window-
Builder is easily worth three times Iit's $149.95 st
price.”

- Gen Kioyooka, Windows Teck Journal, March 1993

BUILDER

The Interface Builder for Smalltalk/V

SHARE

ORJECT

SINHLSAS

iNC.

The key to a good application is it$ user interface, and the
key to good interfaces is a powerful user interface
development tool, For Smalltalk, that too! is WindowBuilder,

Instead of lediously hand coding window definitions and
rurnmaging through manuals, youw'lt simply “draw” your
wintows, and WindowBuilder will generate the code for you.
WindowBuilder atlows you to revise your windows
incrementaily, WindowbBuilder generates standard Smalitalk
code, and fits as seamlessly into the Smalltalk environment as
the class hierarchy browser or the debugger,

To be even more productive, use Subpanes/V, the control
tibrary for Smalliaik/V Windows, which brings a new world of
user interface components o the Smalltall/V Windows
Programmer,

WindowBuilder/Y Windows is available for £149.95 and
WindowBuilder/V O5/2 is $295. Subpanes/V Windows is
available for $129.95. We are offering a limited-time price of
$225 for WindowBuilder/V Windows bundled with Subpanes/V
Windows.

For a free brochure, call us at {408} 727-3742, or send us a fax
at {408) 727-6324. You'll be glad you did:

Omecrsaare SysTems, INc, 5 Town & Countay Vittase, SUITE 735, San Joss, CA 95128-2024
Prong (408) 727-3742 Fax (408) 727-6324 CompuSmrve 76436,1063

cycles of discovery, design of a partial solution, analysis of the
results, and rebuilding a better solution,

What distinguishes incremental design from rapid proto-
typing is this analytical step. Analyze means to “separate into
parts or basic principles so as to determine the nature of the
whole, to examine methodically.” This is crudial to incremental
design. Progress needs to be measured, reflected upon, and re-
viewed with others periodically, There is an openness on the
part of the designer to change and improve.

Another characteristic that distinguishes incremental design
from rapid prototyping is the willingness on the part of an in-
crementel designer to throw ot a bad design, rethink the
problem, and redesign a solution.

The primary geal during rapid prototyping is to simply get it
working. Many times an implementer during rapid prototyping
kmowingly {and quite possibly with some discomfort) builds
something that is definitely not cleanly structured. It takes a lot
of discipline to stop and clean things up with rapid prototyping.

Incremental designers, on the other hand, take many things
into account throughout implementation: How can object in-
teractions be improved? Is there a way to reduce messaging
traffic between collaborators? Are interfaces to object services
simple enough or powerful enough? Can a higher information
bandwidth connection be made between collaborators? [s there
a way to reduce the complexity of control logic? Is polymor-
phism being used to advantage? Is data really being encapsu-
tated correctly? What new classes should be created to reduce
existing complexiiy? How might behaviors be refactored to
achieve a better balance and cleaner distribution of responsi-
bilities? Have we formed the right abstractions? What classes

should be eliminated? Does the current implementation of an
inheritance hierarchy facilitate or unnecessarily constrict the
addition of new functionality? Are there existing interactions
that could be refactored to encapsulate details or hide objects
from one another? How well is the object model holding up?
Are there serious flaws that demand major redesign and repair?

Incremental design involves a fundamental shift in goals, val-
ues, and process, It requires that we inject incremental design
throughout implementation. To do so, we must distinguish be-
tween finishing an implementation task and completing a satis-
factory design. Working code doesn't automatically signal com-
pletion, Getting the desiga right is a journey, That joumey
begins as soon as the ink has dried on system requirements. It
ends when we declare an end to discovery and invention. There
does come a time when we have to stop improving the design
and must focus on completing our work. The tricky part is pick-
ing the right time to make that dash to the finish line. Stopping
design too early means the system “evolves” rather than being
“systematically planned and implemented.” Stopping design too
late can caunse problems, too. There is always a tension hetween
getting the design “right” and meeting the schedule. However,
embracing incremental design means thal change and improve-
ments aren’t viewed as threats, instead they are acknowledged
and carefully factored into the development process. B

Rebecca Wirfs-Brock is the Director of Object Technology Services at
Digitalk and co-author of DosianinG OBrECT-ORIENTED SOFT-
waRE, She can be reached via email at rebecca@digitalk.com or via
US mail ar Digitalk, 7585 §.W. Mohawk Drive, Tualatin, OR 97062,
Comments, further insights, or wild speculations are welcotne.

May 1963

!

ETTING REAL

<this column discusses inappropriate use of arrays and
how misuse affects reusability. We will analyze several

Smalltalk methods that use arrays and rvevise them to
use classes instead of arrays. We will also show you how to
search vour image for methods that use arrays.

MOTIVATION

A class in Smalltalk is a specification of behavior and support-
ing data. Each instance contains a particular set of relaled data,
For example, the data for an instance of Rectangle is two
points. The points are related because they are both part of a
reclangle: One is the origin peint, and the other is the corner
point.

In Smalltalk, you can alse use a data structure such as an ar-
ray to represent related data, Instead of the class Rectangle, vou
coubd use an array with the first element of the array being the
origin point and the second element being the corner point.
Which Is more reusable?

First, les examine how clients access data. Clients of the
class Rectangle can send the messages origin and comer. Clients
of the rectangle-as-array must access the correct element by
specifying the index, and the index might not have any correla-
tion {0 the values stored in the array,

Accessing the data is not the only consideration. Rectangle
has specialized behavior, such as height, containsPoint:, inter-
sects:, and expandBy:, The rectangle-as-array has no specialized
behavior. For example, each client that needed the height of
the rectangle-as-array would have to duplicate the code that
subtracted the two y coordinates to obtain the height of the
rectangle.

There are three reasons why the class is more reusable than
the array:

+ Ease of Use. Clients of the rectangle-as-array need to know
arbitrary indices to obtain the data. Clients of the rectangle-
as-class send messages with meaningful names.

Encapsulation. The behavior of rectangle is not encapsu-
lated with the data in the rectangle-as-array. Clients of the
rectangle-as-array would need to write much more code
than the clients of the rectangle-as-class in arder to dupli-
cate the behavior of rectangle. Most clients would write the
same code over and over,

Juanite Ewing

+ Information hiding. The constituent data for the rectangle
is accessible o all clients in the rectangle-as-array. Indeed, it
must be in order for clients to the duplicate the behavior of
Rectangle. But it also means the rectangle-as-array cannot
change its representation without affecting all its clients,

INAPPROPRIATE USE |

Standard Smalltalk even provides us with a bad example of
array usage {nobody’s perfect). On page 109 of Smatiraix-80:
THE LANGUAGE AND [T$ IMPLEMENTATION Is the specification of a
class method for Date:

Date class protocol |
general inquiries

dateAndThueliow Answer an Array whose first ele-
ment is the current date {an in-
stance of class Date representing
today’s date) and whose second el-
ement is the current time {an in-
stance of class Time representing
the time right now).

Here is one possible implementation of the method:

Date class methods
datedndTimeNow

“Answer an Aray of two elements. The first element is o
Date representing the current date and the second element
is a Time representing the current fime,"”

" {Array new: 2)

at: 1 put: sell today;
at: 2 put: Time now;
yourself

Clients of this method must keep track of which elements are
where 1n the array. The code to compare two date-and-time
arrays looks like this (the variables now and then contain date-
and-time arrays):

| now then oldest |

then = self oldDateAndTime.

now = Date dateAnd¥imeNow.

{{now at: 1) >= {then at: 1) and: [{now at: 2) > {then at: 2)1}
if True; [oidest ;= then]

TrE SMaALLTALKE REPORT

B GETTING BEAL

This kind of code is not easy to read

and 15 likely te be duplicated in an ap-
plication that manipulates time
slarmps.

In the dateAndTimeNow method, the
array is merely a shorteut way of im-

plementing a return of two values. The
elements in the array have nothing to
do with their indices. Clients have to
remember which element is which.
They also have to remember the algo-
rithm for comparing date/time pairs,
This kind of shoricut is not good cod-
ing practice because it does not facili-

SIGS is carrently secking Authors for its newly created

Submir cutline proposal or discuss your ideas for a book,

WANTED

*BOOK AUTHORS.

Arvances N OppecT TECQURNOLOGY serics.

Conracn
Dir. Richard Wiewer, Book Sevies Editor
i35 Ry(qc'l'}f Court
Calprado Springs, GO 8090¢
PHONEFAX: 719.579.9616

tate reuse.

A better solution is to create a new
class that represents an associated
date and time. We will call this class TimeStamp. It would
have messages for accessing its date and time, and for com-
paring itself with other TimeStamps. Using this new class, the
dateAndTimeNow method can be rewritien:

Date class methods
dateAndTimeNow
"Angwer an instance of Time Stamp confaining the current
date and the current fime. "

~TimeStamp date: self today time: Time now

Even belter would be to eliminate the Date method and cre-
ate a TimeStamp method that returns the current date and
time. A TimeStamp method is better because the instance is
created in the class that relates date and time. The Date class
is a less desirable location becavse dates don't have an ex-
plicit relationship with time. Time is not referenced in other
Date methods.

TimeStamp class methods

now
“Answer an instance of the receiver containing the current
date and time.”

| current |

current = setf new,
current date: Date today.
current time: Time now.
“ourrent

The client of this lunctionality can now wrile much simpler
fragments of code.

| now then oldest |

then := self oldTimaStamyp.

now = TimeStamp now.

now > then
if True; [oldest ;= then].

INAPPROPRIATE USE 11

A method from Directory provides us with another inagpropri-

ate use of an array. In this method, a collection of arrays pro-
vides detailed information about each file in a dircciory.

Directory methods
formatted
"Answer a collection of arays of file information for the re-
cetver directory. Each array has four entries: file name, size,
date/time and attributes.”

| answer file Entries anArray |
fite Entries 1= self contents.
answey = Ordered Collection new: file Entries size.
file Entries do: | :each |
anArray i= Array new: 5,
anArray
at: 1 put: {Directory extract FileName Fron each);
at: 2 put: (Directory extract SizeFrom sach);
al: 3 put: (Directory extract DateTime From: each);
at: 4 put: (Directory extract ResourceSize From: each):
at: 5 put: {Directory extract CreatorfypeFrom: each).
answer add: andrray].
™ answey

Mate that the method comment is wrong. It references an ar-
ray with four entries, but the code has an array with five en-
tries, indicating that a small change in the implementation has
a big impact on clients. Users of this method must know
where relevant information is stored in the array. It is impos-
sible to tell from either the comment or the code which array
element is new.

In this fragment of code, the client of Divectory needs the
names of files of zero length. This code must reference cle-
ments stored at arbitrary kocations, and requirves heavy com-
mienting to be maintainable.

| zeros |
zeros 1= myblirectory formatisd

select: {vinfo | (info atx 2) = 0]. “size is stored at 2"
~zeros coilect: [:info | info ai: 1] "neme is stored ot

Related data stoved in arrays is more appropriate as an instance
of a class, In this example, the information stored in an array

MAY 1993

13

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 279 DENVILLE NJ

POSTAGE WILL BE PAID BY ADDRESSEE

The Smalitalk Report

Subscriber Services Dept SML
PO Box 3000
Denville N] 07834-9821

I”IIIIIII”IIIIII”JIIII”IlIIIIIIIIIIIIIII”IIIIII

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

If You Use Smalltalk, You Need GemStone.

'GemStone is the ideal database
renvironment for supporting
'Smalltalk applications. It is the
ronly high-performance, produc-
tion-ready ODBMS with a trans-
i parent Smalltalk interface.

© » Maintain class hierarchies and
execute Smalltalk methods
directly in the server.

1 * Automatic, transparent transla-
tion of Smalltalk objects into
GemStone.

 » Cooperative client-server sup-

. port.

 Smalltalk-based DDL/DML.

- » High-performance, scalable,
production-ready ODBMS.

 » Integrated garbage collection of
persistent Smalitalk objects.

[NETWORK |

-

]

Smalltalk Application

GembStone Object Database

1 YES! Send Me Complete Details On GemStone

Name: Title:
Company:

Address:

City: State: Zip:
Phone:

1-800-243-9369

"SERVIO

NO POSTAGE

|l | l “ IF MAILED
§ IN THE

The Smalltalk Report

NECESSARY

; g sl ; you should be reading ‘
advances, usage tips, pr management advice, AGD .
URAED STATES techniques, and insightful applications. The Smalltalk nllllll'l J
BUSINESS REPLY MAIL 1 Yes, I would like to subscribe to The Smalltalk Report ~ Dae
FIRST CLASS MAIL PERMITNO.4362 SAN JOSE, CA 1 year @issues) Jzyear (Bissues) Name
Domestic $69.00 [:I Domestic $128.00 Title
POSTAGE WILL BE PAIDBY THE ADDRESSE ' Foreign $94.00 ' Foreign $178.00 Company
. Method of Payment Addrase
’ 8 Check enclosed (payable to The Smalltalk Report) City
: Bill me
SERVIO CORPORATION (] Charge my: [visa [Mastercard [Amex State
2085 HAMILTON AVENUE ‘ | ard Ho, Zip
SUITE 200 ‘ Exp. Date Country
SAN JOSE, CA 95125-9985 ShgriERar. Fhone

1. Which dialect of Smalltalk do [Make Purchase 4. What is your company's [Educational/Consulting

' 2. What is your involvement in

software purchases for your
department/firm:

+ [J Recommend Need
+ [specify Product

you use: O Norie
[Smalltalk v 3. Which operating system
[$malltalk-8o supports your software:

+ [Other [UNIX

[pos

1 os/z

[windows
[Other

primary business activity:

[} Computer/Software
Development.

[Manufacturing

[Financial Services

[Government/Military/Utility

A member of the

e} | > —————
5. For how long have you been
using Smalltalk:

[Less than one year
[13 vears
U 3- years E3EG

fax to
ject Marketing Network zlaf 274-06486

SIGS

PUBLICATIONS

Where can you find the
best in object-oriented training?

The same place you found
the best in object-oriented
products. At Digitalk, the
creator of Smalltalk/V.

Whether you're launching
a pilot project, modernizing
legacy code, or developing a
large scale application, nobody
else can contribute such inside
expertise. Training, design,
consulting, prototyping,
mentoring, custom engineer-
ing, and project planning. For
Windows, 0S/2 or Macintosh.
Digitalk does it all.

ONE-STOP SHOPPING.

Only Digitalk offers you a
complete solution. Including
award-winning products, proven
training and our arsenal of
consulting services.

Which you can benefit
from on-site, or at our
training facilities in Oregon.
Either way, you'll learn from a

100% PURE OBJECT TRAINING.

TA

staff that literally wrote the
book on object-oriented
design (the internationally
respected “Designing Object
Oriented Software”).

We know objects and
Smalltalk/V inside out, because
we've been developing real-
world applications for years.

The result? You'll absorb
the tips, techniques and
strategies that immediately
boost your productivity. You'll

THE TOP NAME
INTRAININGISON

reduce your learning curve,
and you'll meet or exceed
your project expectations. All
in a time frame you may now
think impossible.

IMMEDIATE RESULTS.

Digitalk’s training gives
you practical information and
technigues you can put to
work immediately on your
project. Just ask our clients
like IBM, Bank of America,
Progressive Insurance,
Puget Power & Light, U.S.
Sprint, plus many others.
And Digitalk is one of only
eight companies in IBM’s
International Alliance for
AD/Cycle—IBM'’s software
development strategy for the
1990’s. For a full description
and schedule of classes, call
(800) 888-6892 x411.

Let the people who put
the power in Smalltalk/V, help
you get the most power out of it.

DIGITALK

S

The Smalitalk Report

June 1993

_ The International Newsletter for Smalltalk Progr

Volume 2 Number 8

SMALLTALK

BENCHMARKING
REVISITED

By Bruce Samuelson

Conten.ts:

Features/Articles
1 Smalltalk benchmarking revisited
by Bruce Samuelson

4 Using Windows resource DLLs
from Smalltalk/V
by Wayne Beaton

| Columns

8 Smalltalk idioms:
To accessor or not to accessor?
by Kent Beck

9 GUls: Using MS Help from
within VisualWorks
by Greg Hendley & Eric Smith

10 The best of comp.lang.smalltalk:
- Sets and dictionaries
by Alan Knight

. 13 Sneak preview: WindowBuilder
Pro: new horizons
by Eric Clayberg & S. Sridhar

_ Departments
23 Product Announcements

hen Smalltalk emerged from the Xerox PARC labs in the early
1980s, performance was a major issue. CPU speeds and memory
densities were both nearly two orders of magnitude lower than in
today’s machines. The 1983 “green book,” SmaLLTALK-80, BITs OF
History, Wornps oF Anvice, included many articles with detailed
performance analysis,’ One chapter even studied the feasibility of implementing
Smalltalk in hardware, namely in the Intel 432 chip. The Xerox Dorado worksta-
tion was the fastest Smalltalk machine, and implementations on chips such as the
DEC VAX and Motorola 68000 did well to run at a small fraction of a Dorado.

As the decade progressed, hardware got faster at a factor of nearly 10 every five
years. Efficient techniques were employed for method look-up caches and for gen-
eration-scavenging garbage collectors. By mid 1992, a midrange machine running
ParcPlace Smalltalk performed several times faster than a Dorado, and a fast ma-

chine a dozen times faster. One could buy a cheap PC running either ParcPlace or
Digitalk Smalltalk faster than a Dorado.

These developments raise the question of whether Smalltalk is now fast
enough. Shouldn’t vendors concentrate on features rather than performance?
Won’t hardware advances take care of any lingering problems with speed? This
was, in fact, the position taken by a senior representative of one of the major
Smalltalk vendors in a conversation with me last year. If Smalltalk were the only
language, and if there were only one vendor, the answer might be yes. But
Smalltalk implementations are not only vying with one another for prominence,
they are also competing with other languages.

PERFORMANCE OPTIMIZATION IN OTHER LANGUAGES

One reason C++ has become so popular is that it adds object extensions to C with-
out sacrificing much of C’s efficiency. This is a frequent theme in USENET news
groups such as comp.lang.c++ and is commonly cited as a reason for using C++
instead of Smalltalk. Smalltalk users cite Smalltalk’s consistent use of the object
paradigm, productive development environment, rich class library, flexibility, and
portability (for ParcPlace’s products) as reasons to choose it over C++. A language
with Smalltalk’s features that approaches C++'s speed would attract a larger com-
munity of users. It this possible or only a dream?

Perhaps the researchers who are most aggressively trying to demonstrate its pos-
sibility is the Self group at Stanford University. Like Smalltalk, Self is a fully dynami-
cally tvped language. It uses prototypes and delegation in place of classes and inheri-
tance. Whereas other researchers have tried to achieve performance gains (and
perhaps other benefits) by adding strong typing to Smalltalk, the Self group is seeing
how far they can push the performance envelope by using various compiler opti-
mization techniques without sacrificing type flexibility.

They have pushed the envelope quite far. An example of their results is de-
scribed in an article by Craig Chambers and David Ungar in the OOPSLA 91 con-

continued on page 16...

John Pugh Pgul White

ver the past 24 months, we have often discussed Smalltalk’s move into the business world.
Both Digitallc and ParcPlace have spent a significant effort to not simply improve their ex-
isting products, but instead to change their products to position Smalltalk as the best de-
vetopment tool for large organizations across all industries. To this end, both PARTS and
VisualWorks represent the next gencration of products for their respective vendors, which
attempt to make Smalltalk more ace and newer
Smalitaik vendors are sure to arrive. Fasel’s Enfin product is already having an impact on
the object-oriented market that is likely 1o grow as time goes on.

Recently, we have noted that Small(alk is being talked about in arenas that would not
have been dreamed of before. One such place was a recent colummn 1n the April 19th issue
of Business Week in which Smalltalk is deseribed as being an extremely successful devel-
apment tool for many corporations including American Airlines, [P Morgan, and Citi-
corp, and the list of these companies keeps growing, Reports such as these can be used as
fodder for those of you who are still fighting to justify Smalltalk to vour management.

L our feature article this month, Bruce Samuelsan offers some benchmarks he has per-
tormed for the various dialects of Smalltalk. This is a new arena for Twur SmaLrrark Re-
rowrr, and we believe efficiency is an issue that many of vou face “in the trenches.” Bruce
has been very active in recent months on Internet discussing this fopic, and has invested a
great deal of time in preparing this study. More important than the raw numbers he pre-
sents, he has many insightful comments concerning the implementation strategies of both
ParcPlace and Digitalk, While not endorsing the numbers presented by Bruce, we strongly
Delieve these types of studies are crudial (o the further mainstreaming of Smalttalk.

The debate over whether to use accessor methods has raged in the Smalltalk commu-
ity since “the beginning of time.” As Kent Beck points out in his column this month, this
one question has probably been debated more vehemently in Smalltalk labs than any
other style issue. [n our own shop, the question of the appropriate use of accessors has
been argued so much that it is now considered a taboo subject. We believe Kent has pat
this debate in the right context, especially the comment that programmers will “do any-
thing, given enough stress,” and suggesl anyone responsible for the integrity of their cor-
porate libraries give these arguments attention.

This month we have two columns that address the issue of GUI development using
Smatltalk, First, Greg Hendley and Eric Smith return this month with their GUT cotuman,
getting you started with infegrating VisualWorks with Microsoft’s Help facility, Second,
Eric Clayberg and S. Sridhar take a first ook at WindowBuilder Pro, the next generation
of the well-known WindowBuilder product originally released by Cooper and Peters.

Alan Kaight's look at comp.lang smalitalk takes him into a review of the implementa-
tion of sets and dictionaries. In doing so, he studies how well (or not well} abstracted the
implementation of these reusable data types is and some suggestions for improving them.
Also this month, Wayne Beaton describes an implementation of a mechanism for storing
and managing DLLs for Smalltall/V for windows.

Enjoy the issue!

P
N L':j_A\
The Smakitalk Report (1SSN# 1056-7970} is published Y times @ year, every month except for the Mar/Apr, July/Aug, and Nov/

issues. Published by $IGS Publications upr, S48 ﬁmaclwa\, New Yok, NY 1012 (212)274-0840, & Copyright 1993 ¢
Inc. All rights reservad. Reproduction is matertal by electronic rransmission, Xgrox or any other me(hm! m!l be lrm cd A
tion of the US Copyright Law and is fatly prokibited. Nat ith >

Subscription rates \3 domestic, %65,

and subscription orders Ser cs Drept. § - 1478, -
cles to the Editors a1 91 Second Avcam(‘ Ottawa, Ontaria K18 2H4, Canada. For service on carrent iuhmr]ph(}ni catl §00.783. 496]3.

Printed in the United States.

The Smalitalk Report

Editors

Johin Pugh and Paul White
Carlelon University & The Cbjact People

SIGS PUBLICATIONS
Advisory Board

Tom Atwood, Object Desiga

Girady Booch, Ratonal

Gieorge Boswardh, Digtaik

Brad Cox, information Age Consulting
Chuck Duff, Symanies

Adele Goldberg, ParcPiace Systems
Tam Love, Congultant

Bertrand Mayer, ISE

Meilir Page-fones, Wayland Systems
Sesha Pratap, Centerline Software
Biarne Stroustrup, AT&T Bell Labs
Dave Thomas, Object Techaolgy ntermational

THE SmaLiTack REPORT
Editorial Board

Jim Anderson, Digitatk

Adele Goldberg, ParcPlace Systems
Reed Phillips, Knowledge Systems Carp.
Mike Taylor, Digitaik

Dave Thomas, Object Technology Internationsl

Columnists

Kent Beck, First Class Sofiware

Juanita Ewing, Digitatk

Greg Hendlay, Knowledge Systems Corp.
Ed Klimas, Linea Engineering Ira.

i Adan Kright, The Objest People

Eric Smilh, Knowledge Systems Corp,
Rebecca Wirfs-Brock, Digitalk

SIGES Publications Group, Inc.

Richard P, Friedman

Founder & Group Publisher

Art/Production

Hristina Joukhaday, Managing Edilor

Susan Culligan, Pigrim Road, Lid,, Creative Direction
Karen Tongish, Production Editer

Gwen Sanchirico, Production Coordinator

Robert Stewiart, Computar Systerm Goordinatar
Cirgulation.

Stephen W, Scale, Circulation Manager

Ken Mercado, Fulilment Manager
Marketing/Advertising

James O. Spencer, Direclor of Business Davelopment
Jason Weiskopf, Advertising Mor—LCast Coast/Canada
Hally Meintzer, Advertising Mar—West Coast/Rurepe
Helen Mewling, Recruitment Sales Manager

Sarah Hamiiton, Premotions Manager—Publications
Caren Poiner, Promations Graphic Artist
Administration

David Chatterpaud, Accounting Manager

James Amenuvor, Bookkesper

Dylan Smith, Special Assistant lo the Publisher
Claire Johnston, Conference Manager

Cindy Baird, Corference Technical Manager

Margherita R. Manck

General Manager

Publishers of Jourmar of DEcT-OriEnTEn PROGRAM-
MG, B5ECT Magazine, HoTunz o OR1eCT-ORENTED
TECHNOLOGY, THE Cw+ REPORT, THE SMALLTALK RESORT,
The INTERNATIONAL COP DIRECTORY, and THE X JouiRkaL,

2

Tur SmaLerark ReporT

Preduct Announcements are not reviews, They are abstracted from press refeases provided by vendors, and no endorsement is implied.
Yendors interested in being included in this feature should send press releases to our editorial offfices,
Product Annourncements Dept., 9) Second Ave., Ottawa, Ontario K18 2H4, Canada.

JCONEX Software Engineering's ObjectModeler now supports
smalltalle. ObjectModeler is an COA/OOD/OOP module. This
recent addition was made in response to the developing trend
in the object-oriented market that more and more COBOL
and IS shops are moving into Smalitalk while technical shops
contine to move into Cer,

[CONIX ObjectModeler already supports Cs+ and SQL de-
velopment and the company believes that the addition of
Smalltalk will be of particular inferest within the IS market.
ObjectModeler users already have the ability to attach text files
to any symbol on a Rumbaugh, Coad/Yourdon, or Booch dia-
gram within ObjectModeler. In the same way that Cr+ and
SQL remplates are used to link source code 1o diagrams, they
can now pick from 9 menus containing over 270 Smallialk Jan-
guage constructs.

ICONEX Software Engineering, 2800 28th 5t., Suite 320,
Santa Monica, CA, 310.458.0082 (v), 310.305.3454

WindowBooster is a simple and powerful utility that optimizes
the opening of windows and dialog boxes programmed using

Digitaik’s Smalltalk/V. WindowBooster significantly improves
the overall specd of any application. The product is easy o in-
stall, transparent to the user, and compatible with products
such as WindowBuilder. The product is available for Windows
and (8/2 and includes complete source code,
Taw Ceti, 1801 Avenue of the Stars, Suite 404, Los Angeles,
CA 90067-5906, 310.556.9723 (v), 310.566.9725

Tensegrity is an object-oriented database system for Smalltaltk.
Using Tensegrity, Smalltalk developers can create single-user
or multi-user network applications without changing code,
The product provides transparent object persistence, advanced
fransactional capabitities, two-phase commil, distributed
garbage collection, and exceptional speed. Because the product
is network-independent and requires no dedicated database
server, the company anticipates that it will have grear appeal 1o
developers of workgroup applications,

Poiyraorphic Software, 1097 Indusidizl R, Sude 220, San Carlos,

CA 94070, 415592 6301 (v), 415.692.6302 ()

An open system distributed business application development
infrastruciure seaks C4+ Engineers 10 develop ORB and Ob-
ject Services Class Libraries.

Engineers w;th deveiopment experienca needed o devalop
muiti-process multi-thread software infrastructure components
and rasolve Smalltalk/C++ integration issues,

For more information regarding these exceptional technical
opportunities please inquire, in strictest confidence, 10:

Jim Milisap
2015 Spring Read
Box 250
Oak Brook, IL 60521

or call:
1-800-586-6500

SMALLTALK
DesiecNERS AND DEVELOPERS

We Currently Have Numerous Contract and
Permanent Opportunities Available for Smcilitalk
Professiondis in Viarious Regions of the Country.

Salient Corporation...
Smailltalk Professionals Specializing in the
Placement of Smadlltalk Professionais

For more information, plecse send or FAX your resumaes 1o;
Salient Corporotion
2168, Omar Ave., Suffe B.
Los Angeles, Californic 90013,

Voice: (213 680-4001 FAX: (213} 480-4030

continiied from page 8

m SMALLTALK IDIOMS

the outside world. Messages should present the services an ob-
ject is willing to provide. Using them to give an abstract view of
storage turns those implementation decisions into yet more
services. Revealing implementation is exactly what encapsula-
tion is supposed to avoid.

“Tust make the accessors private.” That’s the common solu-
tion, but there are two reasons why this isn’t a sufficient solu-
tion. First, anyone can invoke any method (and will, given
enough stress). There is currently no way to make truly private
methods that cannot be used outside the class. Digitalk and
ParcPlace are both working on this problem. More seriously,
programmers are notoriously bad at deciding what should be
private and what should be public. How many times have you
found “just the right method,” only to find it marked private? If
you use it, you are faced with the possibility that it may go
away in the next release. If you don’t, you have to violate the
encapsulation of the object to do the computation yourself,
and you have to be prepared for that computation to break in
the next release,

The argument against automatically using accessors rests on
the assumption that inheritance is less important than encap-
sulation. Rick DeNatale of IBM argues that inheritance should
be kept “in the family.” Anytime you inherit from a class you
don’t own, your code is subject to unanticipated breakage
much more than if you merely refer to an object. If you want
to use inheritance, do it only between classes whose change
you control. While this may not result in the most elegant so-
lution, it will save you headaches in the long run.

Using this model, you can access variables directly. If you
want to make a subclass that needs to access a variable through
a message, you use the programming environment to quickly
change "x :=..." into "self x: ..." and "x ..." into "self x ...". En-
capsulation is retained, and the cost of changing your decision
is minimal. If you don’t own the superclass or the subclass, you
can’t do this, as it would involve making changes in code you
can’t control.

CONCLUSION

Aesthetics does not provide a compelling argument one way or
the other. There’s a giddy feeling when you make a subclass the
original programmer never anticipated, but only need to make
a few changes to make it work. On the other hand, there is sat-
isfaction in thinking you finally have to reveal a variable, only
to discover that by recasting the problem you can improve
both sender and receiver.

Regardless of how you choose to program, you are faced
with the hard choice of deciding which variables should be
reflected as messages. Pushing behavior out into objects rather
than just getting information from them and making decisions
yourself is one of the most difficult, but most rewarding, jobs
when programming objects. Making an accessing method pub-
lic should be done only when vou can prove to yourself that
there is no way for the object to do the job itself. Making a set-
ting method public requires even more soul-searching, since it
gives up even more of an object’s sovereignty.

Either way, you accept a discipline not supported by the
language. If you choose to use accessors, you and everyone
who uses your code must swear an oath never to send messages
that invoke methods marked private in the receiver. You also
must be wary of using the accessor from outside the object
when you really need to add more services to the receiver. If
you do not use accessors, vou accept the burden of refactoring
classes, either making an abstract class or at least adding acces-
sors, should a later inheritance decision make it necessary.

& Programmers are notoriously
bad at deciding what should be
private and what should be public. %

Whichever style vou choose, make sure it pervades your
team’s development. Einstein is reputed to have said, “You
can be consistent or inconsistent, but don’t be both.” The
same simplifying assumptions should hold throughout all of
your code.

If you use accessors, make them all private at first. Only
make them public if you must, and struggle to discover a less
centralized solution first. Don’t assume that because you ac-
cess variables through messages you have made all of the ab-
straction decisions you’ll have to make. Using an accessor, in-
ternally or externally, should alert you that there may be
missing behavior.

If you use variables directly, be prepared to recant your de-
cision when the time comes. If what you thought was state is
really a service, make the change everywhere. Don’t have exter-
nal users getting a variable’s value through a method and inter-
nal users accessing it directly.

So, what’s The Answer? In my own code, [change state into
service (define an accessing or setting method) only when I am
convinced it is necessary, Otherwise, my classes access their
variables directly. I think inheritance is overrated. Providing
the right set of services has more bearing on the success of a
design. There are plenty of successful, experienced folks who
would call me a reactionary hick for this (and worse things, for
other reasons). Try some code each way and decide for your-
self which style you find more comfortable. That’s the only
right answer, [

Kent Beck has been discovering Smalltalk idiowus for eight years at
Tektronix, Apple Computer, and MasPar Computer. His is founder
of First Class Software, which develops and distributes reengineering
products for Smalltalk. He can be reached at First Class Software,
P.O. Box 226, Boulder Creek, CA 95006, by phone at 408.338.3666,
or on CompuServe at 70761,1216.

b2

THE SMALLTALK REPORT

ENVY/Developer: The Proven Standard For Smalitalk Development

An Architecture You Can Buiid On

ENVY/Developer is a multi-user environment

designed for serious Smalltalk development.
From team programming to corporate reuse
strategies, ENVY/Developer provides a
flexible framework that can grow with you to

meet the needs of tomorrow. Here are some of
the features that have made ENVY/Developer
the industry’s standard Smalltalk development

environment:

Allows Concurrent Developers

Multiple developers access a shared
repository to concurrently develop
applications. Changes and enhancements are
immediately available to all members of the
development team. This enables constant unit
and system integration and test — removing
the requirement for costly etror-prone

load builds.

Enables Corporate Software Reuse
ENVY/Developer's object-oriented
architecture actually encourages code reuse.
Using this framework, the developer creates
new applications by assembling existing
components or by creating new components.
This process can reduce development costs
and time, while increasing application
reliability.

Offers A Complete Version Control And
Configuration Management System
ENVY/Developer allows an individual to
version and release as much or as little of a

project as required. This automatically creates

a project management chain that simplifies

tracking and maintaining projects. In addition,

these tools also make ENVY/Developer ideal
for multi-stream development.

Provides ‘Real’

Multi-Platform Development

With ENVY/Developer, platform-specific
code can be isolated from the generic
application code. As a result, application
development can parallel platform-specific
development, without wasted effort or code
replication.

Supports Different Smalltalk Vendors
ENVY/Developer supports both
Objectworks\Smalltalk and Smalltalk/V".
And that means you can enjoy the benefits
ol ENVY/Developer regardless of the
Smalltalk you choose.

For the last 3 years, Fortune 500 customers
have been using ENVY/Developer to deliver
Smalltalk applications. For more information,
call either Object Technology International or
our U.S. distributor, Knowledge Systems
Corporation today!

Object Technology Ottawa Office
International Inc
2670 Queensview Drive Fax: (613) 820-1202

(Ottawa, Onlario K2B BK1 E-mail: info@oti.on.ca

Phoenix Office

Phone: (613) 820-1200 Phone: (602) 222-9519

Fax: (602) 222-8503

Knowledge 114 MacKenan Drive, Suite 100
Systems Cary, North Carolina 27511

J Corporation Phone: (915) 431-4000
Fax. (919) 460-9044

ENVY Davelopers areqistered tradermark of Ubject Technology International Inc. All other brand and product names are reqistered trademarks of their respective companies.

UsiING
leSOURCE DL
SMALLTAL!

Wayre Beaton

| icrosoft provides a handy mechanism for Win-
dows-compliant applications (o store resources in
[ynamic Link Libraries (D2LL). While an extensive
tool set exists to access resources stored in DDils,
 seasoned Smalltalk programmers are a little
spoiled and generally hope to avoid contact with operating sys-
tem details, 1 have implemenied a Windows resource DLL man-
ager inn Stnafltalk to protect hardworking problem solvers from
the semantics of dealing with Windows directly. The resources
of primary interest are bitinaps, icons, and cursors; | have left

room, however, for expansion to include resources such as
string tables and perhaps programmer-defined resources.

A resource dynamic link library can be constructed reason-
ably casily—provided you have a resource compiler and a lot
of time to figure out how to use it. Fortunately, Digitalk pro-
vides a resource DLL for free: the file vwsignon.dil contains the
dialog that Smalltalk displays as it loads itsell during runtime.
A copy of this file, placed in the working directory of the im-
age, can be easily modified by a resource editor.

All the Windows functions required to access DLLs, which
are detailed in The Microsoll Windows Software Development
Kit {SDK) manuals, have hooks in the base Smalltalk/V image.
Alsor in the base Umage is the class DynamicLinkLibrary, which
provides an absiract representation of a DLL. Equipped with
ihis class and the battery of existing methods, all that is really
required is management of the resources.

The class WindowsResourceManager has been developed to
manage resource DLLs. As an instance is created, it is provided
with the name of the DLL file whose resources it represents.
The instance will automatically open the DLL when required
and will automatically close it when the image is either saved
or exited. The programmer need only ask the instance for a
particular resource by type and name. The methods
bitmapAt:ifAbsent:, cursorAt:ifAhsent: and iconAt:ifAbsent answer
the mamed bitmap, cursor, or icon, respectively. The first pa-
rameter is 2 case-independent string containing the name of
the resource; the second is a block to evaluate if the resource
cannot be successfully accessed.

As each resource is loaded, it is cached to prevent the same
resource from monopolizing system resources. The Windows
Craphics Device Interface {GI), for example, allocates a spe-
ciab handle for bitmaps. As only a relatively small number of
these handles are available, frugal use will allow many bilmaps
to be used frequently. Caching also relieves the programmer
of the responsibility of releasing the DLL resources; all cached
resources are released when a WindowsResourceManager
closes itself.

The provided example methods show how an stance of
WindowsResourceManager might be used. In Listing 1, an in-
stance is created vsing the message

WindowsResourceManager class=>onDLINamed:

and stored in a global variable. The instance is then asked fora
bitmap with the message

WindowsResourceManager>>hitmapht:ifAbsent:
Inspection of the method
WindowsResourceManager>>hitmapAtifAbsent:

reveals that the receiver is first opened. Then the cache is in-
spected 1o see if a bitmap already exists with the provided
name. That failing, Windows is asked to find the bitmap. Hno
bitmap exists, the ifAbsent block is evaluated.

When an instance of WindowsBesourceManager is asked to
open, it first checks to see if it is already open. If it is not, it at-
tempts to open the DLL it s to access and remembers it Afier
the DLL has opened, it tells Smalltalk to notify it on exit. The
method SystemDictionary>>netifyAtExit: ensures that the in-
stanice will be notified with the message WindowsResourceMan-
ager>rexit when Smalltalk attempts to exit gracefully.

The method WindowsResourceManager==exit simply closes
the instance, releasing the resources which have been loaded,
closing the I?LL and removing itself {rom notification with the
method SystemDictionary=>removeExitObiect:,

When the image is saved, all classes are sent the message
aboutToSavelmage, The class WindowsResourceManager reroutes
this message to all of its instances, Yach instance directs itself
to close when the image is about (o be saved. Long-term refer-
ences to resources should be avoided: Accessing resources ex-
clusively through the WindowsResourceManager will avoid em-
barassment when they are automalically released as (the image
is saved.

The code that T have included provides all the necessary
equipment to effortiessly access bitmaps, cursors and icons
from a DLL. As always, [am open to any suggesticns as to how
this may be extended, or moedified for efficiency.

Wayne Beaton is a senior member of the Technical Staff at the
Olgect People. He lkes to think of objects as having personality as
well as behavior. He can be contacted at the Object People at
6132258812 (v} or 613.225.5943 (f).

4

THE SMALLTALK REPORT

and STV, if T had used more plain vanilla classes, they could
have had a wider reach,

Slopstones is so low-level that many of its individual tesis
may get completely optimized away by the compiler, I knew
this woulds’t happen with current Smalitalk compilers, but it
did happen when Urs [olze compiled it under Self.

The Smopstone test for sorting a set of strings was subtly
flawed, The raw material for the sort was different for ST80
and ST/V because the STBO Set enumerates an instance from
low index to high, while ST/V-[308 enumerates from high o
low. Mareover, the sets being sorted are hashed differently re-
sulting in a different ordering of their elements. If 1 had sorted
the original array of strings rather than the derived set of
strings, this flaw would be removed. The result of doing this is
to slow down the ST80 sort speed by 5-10% while leaving the
STV sort speed virtually unchanged. In other words, 8T/V
wins the sort test by 5-10% more than in the Smopstone chart.

CAN SMALLTALK PERFORMANCE BE

FURTHER OPTIMIZED?

The benchmarks in this article show that there are areas in
which ST&0 excels over §T/V and others in which ST/V ex-
cels, This suggests that both ParcPlace and Digitalk could
wring oul better performance by conventional means. As for
more exotic optimizations, the Self researchers claim the an-
swer to the guestion is most definitely yes, both in their pub-
lications and in private conversations. Vendor representatives
are less convinced, I have only lalked with ParcPlace, but my
impression is that they either feel it is not technically feasible
te achieve Self performance in a commercially viable way
(e.g., without requiring 64MB machines), or it would be too
expensive for them to do it, or their customers do not regard
it as a priority.

Last May there was a flurry of discussion in comp lang.small-
talk on Smalltalk efficiency. One thread focused on the Pare-
Place virtual machine, and in particular, on whether using reg-
ister windows in native machine code on Sun Sparc plaiforms
would speed it up much. A second thread focused on whether
Self optimization techniques could be applied profitably to
Smialltall. After considerable discussion, Peter Deutsch made 2
summmary statement for both threads. He used to be with Parc-
Place and has considerable experience in implementing and
optimizing Smalltalk. Regarding the second thread, he ex-
pressed the following private opinion (his views do not neces-
sarily reflect those of his emplover):

As lor the comparison [of Smalltallk] against Self, the Self au-
thors acknowledge that the factor of 5 [improvement of Sell
over Smalltalk] is only achievable under some circumstances,
1 de think it would be exciting to apply the Self compilation
deas to Smalitalk, and doing this could well produce dra-
matic performance improvements (on all platforms), but this
would require wholesale redesign of most of the platform-
independent code (other than the memory manager; in the
[ST80] runtime support system. The optimizing compilation

experiments 1 did at ParcPlace were based on an alternative
approach that would not have reguired such substantial
changes to the [ST80] virtual machine, bul might have re-
quired type declarations (or at least type hints) provided by
the user {or a type inference systent).

I dan’t know whether ParcPlace has continued their experiments
or whether Digitatk has any active projects to push toward Self’s
performance. I is interesting that two of the prime movers, Peter
Dreutsch {Smalitalk) and David Ungar (Self) have maved respec-
tively from ParcPlace Systems and Stanford University to Sun
Microsysterns, I wonder what Sun has up its sleeve?

In conclusion [would urge you 1o let your vendor know if
performance opltimization is important to you. Report serious
bottlenecks to them, I have found ParcPlace 1o be guite re-
sponsive in correcting them.

COMPILING AND RUNNING THE BENCHMARKS

The benchmarks require floating point hardware or emulation
software. They compile and run without difficalty on all the
versions of ST80 and 5T/V for which they have been tested. At
least two Smopstone benchmarks, fracionacc and rectangle in-
tersection, wor't run under GMNU Smalltalk because it lacks
Fraction and Rectangle classes.

itis 2 good idea to file the code into a clean inwage and do a
garbage collect before running it if possible. The individual
times will fluctuate somewhat, but the geometric mean is
pretty stable. You can reduce fluctuations by running more it-
erations (the n variable in the execute method). Doing so for
STAV-DOS may crash it though,

Be sure to run ST/V-DOS benchmarks under native DOS,
For example, Smopstones in a full screen DOS shell under
Windows only runs at 2% of its speed under native DOS.

Mail the results to me or post them to compJang.smadltalk,
If you want to try the Self performance suites, contact self-re-
quest@self.stanford.edu. Or fip from the directory bench-
marks/st8-2.4,

SOURCE CODE

You may fip the source code from the public domain Smallalk
archives at the University of [linois (st.cs.uivc.edu
128.174.241.10) or University of Manchester
(mushroom.cs,manac.uk 130.88.13.70).

REFERENCES

I, G Krasner, Smarrtank-8¢, Birs or Higrory, Worbs 0F ABVICE,
Addison-Wesley, Reading, MA, 1983,

2. Chambers, C,, and D Ungar Making pure object-oriented lan-
guages practical, DOPSLA 91 CoxpEreNCE Proceiniwgs; also pub-
lished as $IGPLAN Motices 26.11, November 1991,

Bruce Sarmuelson wses ParcPluce Smatltalk for tinguistic applica tons
at the University of Texas at Arlington and with the Suwmer Insti-
tute of Linguistics. Bruce carn be reached vig internet at

brice@utaffl utaedu (uta-eff ell ell).

FUNE 1993

21

@ SMALLTALK BENCHMARKING REVISITED:

ST/V-Windows comes off rather poorly. 1 don’t know whether
this is becanse Digitalk hasn’t optimized it'as much as their
(572 versions or because the only test ran it under Windows
which itself ran under O8/2. Perhaps it would run faster under
native Windows. A recent ComMputERWoRLD article says that
Digitatk is beta testing a new Windows version based on The
Win32s 32-bit interface. Tt yields “a big performance boost”™
and i3 expected to be ready in July.

You definitely want to run ST/V-DOS under native DOS
rather than in a DOS shell under Windows. In the latter it runs
at ondy 629% of native capacity.

Although ST/V-Windows beat ST/V-DOS by 0,167 to
0.070 on Stopstones for a 486/33, they came in nearly tied on
Smopstones. Moreover, the individual Smopstone tests,
which are not given in this article, were quite close for the
two versions. Since the DOS version I tested was 1987 vintage
or earlier {its file dates were 1987), this suggests that Dig-
italk’s Windows version is in need of a performance tune-up.
[don’t understand the divergence between low- and
medium-level results,

The Macintosh results for ST/V aren’t too bad if you omit
streams and sets from Smopstones. T haven’t included the indi-
vidaal runs, and [don’t have a Mac version. | think the same
theory as outlined earlier applies; namely, §1/V-Mac must be
really bad on mixed mode integer-float arithmetic, which
streams use, and absolutely terrible on string hashing, which
set formation uses. I've heard that a new Mac version may be
shipping by (he time this article is published.

Ideally, the tests comparing ParcPlace to Digitalk should be
made on the same machine. I am assuming that the 486/33 on
which I tested ParcPlace is about egual to the 486/33 on which
Marten Feldtmann tested Digitalk. Similar comments can be
made about the Macs. Although my machine benchmarks
faster than Marten’s on ParcPlace’s Dorade benchmarks, |
think this is due to differences in our video cards.

There are several means one could report. Three popular
ones are:

« Arithmetic mean = (x1+x2..+xn)/n
» Harmonic mean =n/{(1/21)+{1/x2}...+{1/xn})

= Geometric mean = (x1%x2,..5xn)**{1/n}

[chose geometric mean because it has the best scaling proper-
ties and [t s the least sensitive Lo one number being particu-
larly low or high. The ParcPlace Dorado benchmarks use har-
monic mean. When 1 first posted the benchmarks to
comp.Jang.smalitalk, T used geometric mean, but erroneously
called it harmenic. Urs Holzle corrected me,

The benchmarks have several shortcomings, some of which
were pointed out by people posting to comp.fang.smalltalk.
There shouid be a lot more than seven tests in each suite, They
concentrate o1t too few areas of Smalltalk and omit many of
the diverse capabilities of its class library. With so few tests,
they could be sensitive to one particularly weak link in an im-
plementation. Examples of such links we probably encoun-

tered were a bad string hash function for ST/V {especially for -

Mac), wealk floating point performance for ST/V, poor string
compare or sort algerithm for 5780, and possibly poor recur--.
sion or poor performance of nonclean blocks in ST80 {e.g.,
fibonacci and fractonacci, and especially Marten Feldtmann’s
while loop.).

Two low-level tests I wish I had included in Slopstones
waould have been to test direct method dispatch efficiency with

Object new yoursell; yourself yourself...
and then to test inherited dispatch with something like
Dictionary new yourself; yourself; yourself...

This would have determined the absolute maximum number
of method dispatches that can be performed per second. In an
informal test, divect dispatch with T80 ran at the same speed
as integer addition. On a 486/33, this means you get a nxaxi-
mum of 6.6 million dispatches per second. Most machine lan-
guage instructions probably run in one clock cycle, yielding 33
million machine language operations per second (MIPS} The
actual mips rating of a 486/33 is perhaps haif or two third this,
but is still much higher than its MDPS (million dispatches per
second) rating,

Other additions to Slopstones could be using arguments
when evaluating blocks and performing selectors. One could
imagine many more, oo,

I received some suggested additions to Smopstones by
email after [had already frozen them. T also should have in-
cluded some of the benchmarks already developed by the Self
group. Richards was donated to them by Peter Deutsch, for-
merly of Parc Place.

The benchmarks are not at a level high encugh fo test actual
applications. Slopstones, in particular, is hardly a predictor of
real-life performance. However, by comparing ST80 and ST/V
on low-level and medium-level operations, the style of bench-
mark we have written does shine the spotlight on operations
that need to be optimized. If Slopstoncs and Smopstones were
made more comprehensive, this could help the vendors find
areas in which their performance is not competitive.

The benchmarks do not test the speed of user interactions
stech as opening windows or scrolling lists. These consume a
lot of a user’s timie in practice. Nor do they test how quickly
Smalitalk accesses disk les, which can be important in some
applications, For example, 1 can read an ASCII file on my
486/33 machine running ParcPlace at only 40K hytes per'sec-
and when deing high-level access with contentsOfEntireFile. Al-
though much higher rates are achievable with I0Accessors {in.
the IMB range), this Is low-level and inconvenient.

Although the henchmarks are portahle between ST80 and
STV, they are less portable to other languages. Urs Holzle
ported Slopstones to Selll easily enough, bul couldn’t casily
port Smopstones because Self lacks strearms and fractions. A
user of GNU Smalltalk couldn’t port Smopstones because
GNU lacks rectangtes and fractions, Although I hadn’t antici-
pated the benchrnarks being run for any languages except STRG

20

Tre SMatLTalx REPORT

Listing 1.

Dhject subclass: #WindowsResourceManager
instanceVariableNames:
‘fileName dil cachedResourees
classVariableNames: "
puolBictionaries: ™
category: 'DLLY

‘WindowsKesourceManager class methods

aboutToSavelmage .
"When the image is about to be saved,
inform any of my instances,"
{WindowsResourceManager aboutToSavelmage)"
self alllnstancesPrim do: [seach | each aboutloSavelmage]! !

'WindowsResourceManager class methods

examplel
"Answer the icon named 'Balloon’ in the dli named
ywsignon dit”
"(WindowsResourceManager example1)” | resources |
resources ;= WindowsRescurceManager on: 'vwsignon.dil.
“resources icondl ‘Balloon't !

"WindowsResourceManager class methods

cnbiLNamed: aString
"Answer an instance of myself for use
with the BIL named aString.”
~self new fiteame: aString! !

'WindowsResourceManager methods

ahoutToSavelmage
"When the image is about to be saved, close myself 5o that nezt
time the image is opened, open in a clean stata.”
self close! !

'WindowsResourceManager methods

bitmapAt: aStdng
“Answer the bitmap named aString.”
~self bitmapAt: aString ifAhsent: [self error: Mo such bitmap.]!

bitmapAt: aString ifAbsent: black
*Answer the bitmap named aString. If no such bitmap exists,
then evalnate block {with no parameters).”
| ke |
self open.
key = Array vath: Bibmap with: aString asUpperCase,
*self cachedResources
at: key
ifAbgent: [
seif cachedResources
at: key _
put: {self buildBitmapNamed:
aString ifAbsent: ["block valuel}}!

huildBitmapiamed: aString ifAbsent: block
"Private - Angwer the bitmap named aString.”
| handie |
handle := UserLiizary -
toadBitmap: self 4l asPdrameter
name: aString asParameter.

handle = 0 iffrue: {*block value}.

~Bitmap fromHandle: (WinHandle fromInteger: handle)! !

"WindowsResourceManager methods

buildCursorNamed: aString ifabsent: block
"Private - Answer the cursor named aString.®
| handle |
handle = UserLibrary
InadCursor: self dit asParameter
name: aString asParameter, -

handle = 0 ifTrae: [“block value].

~lursorManager fromHandle: (WinHandle fromInteger: handle)!

cursorat: aString
“Answer the cursor named aString."

~self cursordt: aString ifAbsent: [self error: "No such cursor.’]!

cursorAl: adtring ifAbsent: black

"Answer the bitmap named aString. If no such bitmap exists,

then evaluate block (with no parameters).”
| key |
self open.

key := Array with: CursorManager with: aString asUpperCase,

“self cachedResources
at: key
ifAhsent: |
self cachedResources
at: key
put: (self buildCursorNamed:

aString ifAbsent: {“block value]}]! !

IWindowsResourceManager methods

buildiconNamed: aString ifAbsent: block
“Private - Answer the icon named aString."
| handle |
handle := UserLibrary
icadlcon: self dit asParameter
name: aString asParameter.

handle = 0 iffrae: [“hlock value},

~eon framHandie: {WinHandle fromInteger: handle)!

iconAt: aString
"Answer the icon named aString.”

~self iconAt: aString #Absent: {self arror: 'Wo such icon/’]?

contined on page &

TUNE 1093

iconAt: aString ifAbsent: block

“Answer the bitmap named aStiing.
If no such bitmap exists,
then evatuate block (with no parameters).”
[ey |
self oper.
key := Array with: Icon with: aString asUpper(ase.
~setf cachedResources

at: key

ifAbsent: |

setf cachedResources
at: key

put: (self buildlconNamed: aString fAbsent:

[“Hock value])}H!
'WindowsResourceManauer methods

cachedResouyces
"Private - Answer my collection of cached resources.”
“cachedResources!

cachedResources: alictionary
“Private - Set my collection of cached resources,”
cachedResources 1= alictiomary!

initializeCachedResources
*Private - Initialize my resources cacha.”
self cachedResources: Dictionary new!

releaseCachedResources
“Private - Explicity release the cached
resources ko free up system resources.
self cachedResources do: {:each |
gach release]! !

‘WindowsResourceManager methods

close
"Close myself. If I am not open then do nothing.
Otherwise, release my cache and free my PLL.
Set may DLL to nil so that T know I'm closed.
Remove mysetf from notification at exit.”
self isCpen
iffrue: |
self
releaselachedResources;
initializelarhedResources.
self di free.
self dHs: nil.

Lsing Wanbows Resourcr DLLS FROM SmaliTalk/V

Smalltalk removeExitObject: self]!

exit
“Force myself to close before exiting
if I have not already done so."
self close!

fiteName
“Anzwey my file name.”
“fileName!

fileNare: aString
"Set my file name."
fileName ;= aString!

is{pen
"Answer whether or not I am open”
~galf dit nothil!

open
"Rpen myseif with the resources in my file.
Tell smalltalk to notify me before
exiting {or saving the image), so that I
can clean up. I am already open, then
do nothing.”
self isOpen ifFalse: |
self

initiatizeCachedResources;

dil: self openDLL.

Smalltalk notifyAtExit: seff]! !

‘WindowsResourceManager methods

dau
"Private - Answer the DLL which acthually contains my rescuices.”
it

dll; aDynamicLinklibrary
“Private - Set the DLL which
actually contains my resources,”
dit ;= allynamicLinklibrary!

openDLL
“Private - Answer an instance of DynamicLinkLibrary
opened on my file name.”
~IynamicLinkLibrary open: self fileName! !
WindowsResourceManager comment: °!

Mow Avalpsapie—Fuer oF CHARGE / o

- e
e sty

oD

Cunnulative Article Index The Emallialk Benort

Receive a FREE comprehensive subject index to Tae SMatltalk Rerort. Find

in—depth, practical information in seconds. Whether you're researching a

particular topic or simply locking for that landmark aricle you missed, this
index will put you on the right track. 11's only & phone call away.

To receive your FREE index--
Call: 718/834~0170 or Fax: 212/274-0646

=

Frte SMALLTALK REPORT

» Adding integers

Table 4. Benchmark results of 32-bit implementation.

« Adding floats

slopstones

+ Accessing a character in a string {low-level)
» Creating an ohject 1.09
* Copying an object (.55
» Performing a unary selector 0.56
« Evaluating a block without arguments 0.62

Each test is repeated many times inside a block. For | p4s
example, integer addition Jooks like [1+1+1+1...

b i) 0.1t

many times]. The block, in turn, is evatuated many
1imes, 012
.41

benchmark Ssmopstones benchmark

fmed level)

add integers 1.48 generate fractonaccis

add floats 1.09 generate primes

ACCESS SIrings 14 generate and parse streams
create objects .68 generate sirings

copy objects .30 farm sets

perform selectors 2,19 07T strings

evaluate blocks 0.86 intersect rectangles
geometric mean .71 geomelric mean

SMOPSTONES
The seven medium-level tests are:

« Generating fractonacas (like fibonaced, but using fractions)
« Generating prime numbers

« Generating and parsing streams

+ Generating and manipulating strings

= Forming a set of strings

» Sorling this set

» Recursively creating sets of overlapping rectangles

Lach test is repeated once vsing fixed values for its parameters,
it can be repeated more times if necessary for fast machines. I
used fractonaced rather than fibonacel because fibonacci runs
were either too fast or generated 32-bit integers. Fractonacci fit
within the constraings imposed by my goals.

ANALYSIS OF THE RESULTS

Digitalk didn’t beat ParcPlace after all, at least in these bench-
marks. The fastest version of §T/V for Intel machines ran at
4£1% of 5T80 for the low-level tests and 719% for the medium-
level tests. However, the numbers in the chart are the geomet-
ric mean of seven individual tests (x1%x2*.,.727 ¥ (1/7). Dig-
itatk did beat ParcPlace on some of the tests.

The results of comparing ST/V-08/2 {32-bit) relative to
ST8C-Windows (32-bit) are presented in Table 4. Numbers
greater than one mean ST/V is faster, Marten Feldtmann did
these ST/V runs and | did the T80 runs.

Table 4 suggests the two vendors have optimized different
parts of their systems, For example, on the low-level tests, the
two versions add integers at about the same speed, but Digitalk
is quite inefficient at perforiming selectors and evaluating
blocks without arguments. ParcPlace is consistently better on
the remaining tests by a factor of two.

For the mediun-level tesis, Digitalk whips ParcPlace on sort-
ing. Perhaps this is because Digitalls string compare is betfer or
perhaps they are using & better sorting algorithm. I haven't
checked. Digitalk also beats ParcPlace oo fractonaccis with the
same margin they won on Marten Feldtmann’s fibonacci test. [
think this is because Digitalk is faster on tight, recursive block or

method calls and—or—-Dbecause of the performance penaltics

ParcPlace pays for full blocks and copying blocks versus clean
blocks, a distinction T doubt Digitalk makes. However, Dipitalk
got clobbered on the siveam tests, possibly because it is slow at
mixed mode arithmetic between integers and tloats. And it fared
badly on set formation, probably because its hashing algorithm
for strings is less effective than the sophisticated one used by Par-
cPlace, especiaily for ST/V Mac 1.2

Il we omit these stream, set, and sort tests from Smopstones,
the 32-bit version of ST/V for Q872 comes i at 98% of the geo-
metric mear: of ParcPlace’s 32-bit version for Windows—a
dead heat.

There is a wide divergence between the low- and medium-
level results. ST/V-08/2 rose from 0,41 on Slopstones w 0.71
an Smopstones. The most dramatic rise was for ST/V-DOS. it
rose from 0.070 t0 0.261 on a 486/33 and from 0.002 to 0.008
on an 8088/4.77. Perhaps §T/V-IX0S bogs down more on Slop-
stone garbage collection than on Smopstones. This is pure spec-
wlation, The general advantage that ST80 has over ST/V in low-
level tests relative to mediumm-level ones may be caused by the
performance penalties that ST80 pays for distinguishing be-
tween clean, copying, and full blocks. T may have written the
medium-level tests to be more susceptible to this distinction.
More tests would be needed to verify this hypothesis, Recall
above how I sped up the while loop for ST80 in Marten Feldt-
man's test by converting a full block to a clean one.

ParcPlace would have come off slightly better if the tests were
not canstrained by portability. Some of the code could have been
shortened by using ParcPlace’s larger class library. More
significantly, some of the variables that are declared as method
ternporaries could have been declared as block temporaries, thus
converting some dirty blocks to dean ones. This would have left
Slopstones unaffected, but would have improved ParcPlace’s rel-
ative Smopstone performance by 2.5% on average, with the
biggest gain coming in the intersecling rectangles {19%).

ParcPlace’s syntax for declaring block temporary variables
is shown below, ST/V-120S does not support it. [don’t know
whether newer Digitatk versions do.

largl sarg? |

| templ temp? femp3 |

statements]

JunE 1993

Teble 3. Stopstone and smopstone results,

& SMALLTALK BENCHMARKING REVISITED

Vendor | Version | GLUI Qs Brand Ccru i Mifz | Extrn | RAM Slopstone | Smopstone
C cache, | MB (low),* {med}*
) KB

PPS VW L0 OpWALG Sunls 4.1.3 Sun §5/10-30 SPARC nt 36 O 32 905 1,932+
PPS YWl - HP/UX 2.7 HP 720 PA intrn 502 — 32 1.498 1.673
PES VW 10 | Wind] DOSs5.8 Amax none 486008 intrn 33 256 16] 1.9
Prs B0 4o | — Sun 5542 SPARC | — 40 64 b4 1.137 (.995
Dig V2.0 PM {872 2.01b clone 48610K intrn 33 256 16 0411 0.982%+
BPS 8140 Wind.l ¢ DOS50 Amax noneg 486DX | intm 33 256 16 0.995 0.973
[hig V2.0 P O8/22 2010 clone 486DX intrn 33 256 16 0411 0.71
PPS VW 1.0 Mac Mac(S 7.01 MacQuadra7(0 63040 mtrn 25 0F 20 0.525 0.5372
Dig Vid i 087214 done 488D% intrn 33 256 i6 (.236 0.470
Dig V1.2 Mac MacOS hlac accel**> 68040 intrn 25 — — 0.137 0.344%
Dig V 2.0¢ — K25 5.0 Amax none 48610X | intmn 33 256 16 G¢.070 0.261
Dig V20 Win()s2 Q52 2401h clone 48613X intrn 33 256 160 167 0.25
g V12 Mac MacQ57.0.1 Mac Hal 68030 63682 25 32t 14 0.078 0,191
Dig v Mac MacOQS57.01 Mac i ci 68030 68582 337 07 316G 0.072 0,184
pPPsS VW 1.0 | Mac Mac(3s 7.01 Mac Ilci AR030 68882 1 23 (i3 16 0174 0,180
g V1.2 Mac Mac(s Mac accel**? 53040 intrn 25 — e 0.137 0131
PPS 804.0 OpW2.0 Sun(3s 4.1 Sun 354 68020 68881 16 0 12 0.114 3107
PPs 80 2.5 SunVw SunOS 4.1 Sun 3/50 68020 o881 14 0 12 0.067 0,102%
Iy V286 1.2¢ none 1335 5.0 OPTY 386X none 25 0 4 none 0.096
Dig V12 Mac Mac08 7.0.1 Mac {lct 68030 068882 23 327 16 0.078 0.072
Iig A Mac MacDS 7.01 Mac cl H8030 63852 332 jiie 5161 0.072 0.069
Dig v Mac Mac$ 7.01 | Mac PRI0OO 68000 none 16 & 34477 (1020 00513
g v Mac MacCrs 7.01 Mac PB10O 68006 none 6 0 3/47F 0.020 0.019
g V2.0 nong DOS33 clone XT 8088 nang® | 3 G 640K 0.002" 0.008%
Lyig WV Mac MucOS5 7.0 Mac Hsi H3030 none 25 [3477 0.044 none

Results are normalized to one for VisualWeorks 1.0 an wmy 486/33.

b SS/10-30 has 36K internal cache. 80486 and 68040 {and T think §5/2} have SK.
¥ Floating poimt performance was extrapolated assuning an §087.

Smuopstenes did’t include set formation benchmark—string hash inadequate.
xfv means Mec elfocated x MB te Smalltalk out of y MB total,

Swapstones excluding the two worst cases (stream, set) and the best case (sorting). The stream and sof results were bad for ST/V Intel and atrocious for
ST/V Mac, probably because of weak implementations of mixed Integer and floai arithmetic (used in streams) and string hash {used in forming sels),

== Fhis machine was g Moc el with a 25 MHz 68040 Radius Rocket accelerator.

Note: The entries are sorted by Smonstones (last columny, Higher mumbers in the last two columms mean greater speed. Eight people contributed these
results. For the 486, [did the PPS runs apd ST/V-DXOS run. Marten Feldtmann did the remaining ST/V 486 runs.

Stones) and smaopstones (Smalllalk Medium-level OPeration make objective cross-platform comparisons. Also, portability is
Stones), and the results are summarized in Table 3. difficedt to achieve between ST80 and ST/V in video tests.
1 wanted to avoid any tests that stressed the disk or video sys-
tems, Although these are important in real applications, modern SLOPSTONES o
caching disk controllers and video coprocessors make it hard to - The seven low-level tests ate:

18 Tie SMALLTALK REPORT

APFPRENTICE PROGRAM
ADVANCED TRAINING

ANALYSIS & DESIGN

VENTORING

CUSTOM CONTRACTS

TEAM TOOLS |

Object Technology Potential
Uhject Technology can provide a
company with significant benefits:
Quality Software

s Rapid Development

» Reusable Code

s Model Business Rules

But the transition is a process that
must be designed for success.

KSC Development Environment
KSC provides an integrated applica-
tion development environment
consisting of “Best of Breed” third
party tools and KSC value-added
soltware. Together K5C tools and
services empower development
tearns to build object-oriented
applications tor a client-server -

KSC Transition Services

KSC offers a complete training
curriculum and expert consulting
services. Our multi-step program is
designied to allow a client to ukti-
mately attain scif-sufficiency and
produce deliverable selutions, KSC
accelerates group learning and

#

e) environment.
Transition Solution development. The learning curve is _
Since 1985, Knowledge Systems measured in weeks rather than Design your Transition
Corporation (KSC) has helped months, The process indudes: Begin your successful “Object
hundreds of companies such as s introductory to Advanced Transition by Design” For more
AMS, First Union, Hewlett-Packard, Programming in Smalltalk information on KSC's products and
[BM, Northern Telecom, Southern o STADP™ (Smalltalk Apprentice services, call us at 918-481-4000
California Edison and Texas [nstru- Program) Project Focus at K5C today . Ask for a FREE copy of KSC's
ments fo successfully transition to s 00 Analysis and Design informative management report:
Object Technology. = Mentoring: Process Support Software Assets by Design.

nowledge Systems Corporation 114 MacKenan Dr.

Cary, NC 27511
OBJECT TRANSITION BY DESIGN (919) 481-4000

& 1992 Knowledye Svstoms Corporation.

MALLTALK IDIOMS

debate has been raging on both CompuServe and the In-
terniel lately about the use and abuse of accessing meth-

ods for getting and setting the values of instance vari-
dbles Since this is the closest thing I've seen to a religious war
in & while, I thought I'd weigh in, not with the definitive an-
swer, but with at least a summary of the issues and arguments
on hoth sides. As with most, uh, discussions generating lots of
heat, the position anyone takes has more to do with atfitude
and experience than with objective truth.
First, 2 little background. The classic accessor method comes

in two flavors, coe for getting the vahue of an instance variable:

Point=>x
1

and one for setting an instance variable:

Point=>x: aNumber
= aNumber

Accessing methods are also used to do lazy initialization, or as
caches for frequently computed values;

Vigw>>controller
~controller #)il: {controller = self getlontroller]

ACCESS0RS
When I was at Tektronix, Allen Wirfs-Brock (nowa Digitalk
dude) wrote (or at least discussed wriling--it was a while age) a
think piece called “Tastance variables considered harmful.” His
position was that direct reference to instance variables limits in-
heritance by fizing storage decisions in the superclass that can’t
be changed in a subclass, His solution was to force all accesses
to instance variables to go through a methad. I you did an "inst
var refs” on a variable of such a class, you’d find two users, one
o return the value of the variable and one to set the value.
Points make a good example of why inheritance demands
consistent use of accessing methods. Suppose you wanl to make
a subclass of Point that obeyed the same protocols, but stored jts
location it polar coordinates, as r and thefa, You can make such
a subclass, but vou will swifily discover that you have (o over-
ride most of the messages in the superclass because they make
direct use of the variables x and y, This defeats the purpose of
mheritance. I addition, you would have to be prepared (o ¢i-
ther declare new variables, 1 and theta, and waste the space for x

accessor or not t«

Kent Beck

ccessor?

and y in your subclass, or store rin x and theta in y and keep
track of which is which. Neither is an attractive prospect,

If Point had been written with accessing methaods, at least
the problen: with inheritance would not arise. In vour subclass,
vou could override the messages accessing and setting x and v,
replacing them with computations converting polar to Carte-
sian coordinates and vice versa. At the cost of four methods
you would have a fully functioning PolarPeint. A more fully
factored solution, one that solves the problem of wasted or
misramed storage, would be to have an abstract Point class
with no variables, and subclasses CartesianPoint and PolarPoint,

ACCESSORE—NOT!

Many in the Smalitallk community were compelied by this ar-
gument {or arrived at the same conclusion independently).
Vocal and influential organizations such as Knowledge Systems
Corporation made consistent use of accessors a fundamental
part of their Smalltalk teaching. Why are there still heathens
whio refuse to bow to this superior wisdom?

Most easily dismissed is the issue of productivity. All those
accessors take too long to write. Most extended Smalltalk envi-
ronments include support for automatically generating access-
ing and setting methods. Some are activated when the class is
recompiled, asking whether you want accessors for the new
methads, others appear when a "message not understood® error
occurs, by noticing that the receiver has an instance variable of
the same name as the offending message. In any case, writing
accessors need not be time consuming.

A slightly more serious argument is performance, All those
accessors take time to execute. While it is true that accessing a
variable directly is laster than sending a message, the differenice
is not as great as you might think. Digitalk and ParcPlace are
careful to make sure that looking up a method is fast, particu~
farly in common cases like sending a message to the same class
or receiver as you did the last 1ime you were in this method. In
addition, the CompiledMethod representing the accessor has spe-
cial flags set to allow it to be executed quickly, without even the
overhead of pushing a frame on the stack. In tight loops where
the performance of accessors niight stifl be a problem, you can
probably cache the value in a temporary variable, anyway.

The crux of the objection is that accessors violate encapsu-
lation. Accessors malke details of your storage strategy visible to

continued on page 22, ..

8

Trx SmacLTank REPORT

form portability and second 1o supporting true native look and
feel. Here are the comments I received on performance:
» [t would certainly be nice if it ran faster, but I think re-
sources might be better devoted elsewhere. [Speed] might
help attract potential new customers, though.

&

Speed is very important {that simple).

"

Speed 1s the standard problem with Smatltalk.

®

My first major program in Smalltalk {a simulation) still
docsn’t run fast enough to be uselul, Definitely give me
more speed,

)

Faster execurtion speed will have a large effect on the use of
Smalltalk in indusiry, Although Smalltalk would be fast
enough for their applications, C is often used instead “just
i gase.”

-

Execution speed will always be important and [it will] pever
be [fast] enough, so # needs constant attention.

o

The biggest negative perception Smalltallk has from the gen-
eral computing comumunity is that it is roo slow. Unless this
perception is corrected, Smalltalk will remain a “cult lan-
guage.” My particular project is a large-scale Smalltalk effort,
and T am anticipating exccution speed 1o be a major problem,

» We do some heavy computation using it

Fheard a contrary opinion recently. At the Pebruary meeting of

the North Texas Society for Object Technology, a speaker from
Texas Instruments described a chip fabrication software system
they developed using ParcPlace Smalitalk, Gemstone, The Ana-
Iyst, Envy, and other third-party products. This is a big svstem
with over 3,000 classes. The speaker said that in no case did
they encounter a performance bottleneck that was Smallralk’s
fault. The probiems they did have were due to misapplying the
technology. So there are some major users who do not con-
sider performance to be a problem,

COMPARING PARCPLACE SMALLTALK TO

DIGITALK SMALLTALK: FIRST TRY

There is considerable data in the literature measuring
Smalltalk-80’s performance. The green book mentioned previ-
ously covers early, experimental implementations. ParcPlace’s
newsletter publishes Dorado benchmarks for current commer-
cial versions. And the Self group has compared ST80 2.4 to Seif
91 and to C.

i haven’l seen literature comparing the performance of
ParcPlace’s Smalltalk-80 with Digitalk’s Smalltalk/V. The cur-
rent article is a modest, if flawed, step in this direction.

People often claim that ST8G is faster than ST/V. Is this
true? Recent articles in complang.smalltalk bring this into
question. Someone published two very simple benchmarks for
the ©5/2 versions of ST/V, and others published results for
ST/V-Windows and ST80-Windows, The results were surpris-
ing, because the 32-bit version of §T/V for O5/2 was, at first
glance, between 1.5 and 3 times faster than the 32-bit version
of 5T80 for Windows, The 16-bit versions of §T/V fared much

warse, probably because both benchmarks generated numbers
that would be LargePositivelntegers for 16-hit Smalltalk. Later, 1
discavered that by slightly modifying one of the benchmarks,
ParcPlace moves from being 3 times slower to one third faster
than the fastest Digitalk version. It remains 1.5 times slower in
the other benchmark. The code as posted follows, and the re-
sults are given in Table 2;

1. while loop {original posting)

} anlndex |
Time millisecondaToRun; |
anindex := 100000,
[anIndex 0] whileTrue:[anfndex = anindex - 1]]
2. while leop (modified for ST80 by declaring anlndex as a
temporary block variable)
Time millisecondsToRun: |
| anIndex i
anlndex = 160000,
[anlndex 0] whileTrae:[anlndex = anlndex - 171
3. Fibonacci number generator {tested with “30 fib™)
fib {in class integer)

self 1
#Trues] M{self - 1) fib + (self - 2) fib) |
ifFatse:["1}
Hardware 486/33 (Feldunann, Samuelsor 16MB: Nouwen
aMBl.

COMPARING PARCPLACE SMALLTALK TO

DIGITALK SMALLTALK: SECOND TRY
As a ParcPlace custamer, T was intrigued and startled enough
by these results that I decided 1o measure how the Digitalk and
ParcPlace products perform on & wider range of tests, The
goals of the benchmarks [developed are:

* Portability hetween versions of 5T80 and ST/V, including
STIV-DOS.
+ Writing in as idiomatic a style as portability would allow.
+ Being able to compile and run within ST/V-DOS’s 640K limit.

= Keeping integers small enough 1o not skew the resulls
against 16-bit versions.

+ Ruaning for a long enough time to get falrdy accurate resuits,

+ Being cpu intensive while avoiding accesses to disk or video
subsystems.

+ Avoiding disk paging.

* Measuring both low-level and medium-level operations.

These goals were to some extent mutually exclusive. For example,
itis hard 1o keep integers and loop counts within the bounds of
16-bit integers while still consuming measurable amounts of
time. And itis hard to consume enough time without exceeding
runtime resource limits of ST/V-DOS. Tt took experimentation
and dozens of reboots of my machine during ST/V-1DOS runs
before Larrived at something that met all the goals. The resulting
benchmarks are called slopsrones (Smalltalic Low-level OPeration

FUNE 1993

17

comtinmed from page

B SMALLTALK BENCHMARKING REVISITED

Table 1. Language execution speed as percentage of optimized G. _.)

Language . Stanford Suite Purzle Richards
STEO 2.4 10% 4.4% 9.4%
Self 91 - 57% 27% 35%

fererce proceedings.? They compared the execution speeds on
a Sun SPARC workstation of C, Smalitall-80 2.4, and Seif 91
{and some other languages) on the Stanford Suite ol integer
benchmarks, the Puzzle benchmarl;, and the Richards operat-
ing system simulation benchmark.

The results, given in Table 1, are impressive, especially since
Self is at least as hard to optimize as Smalltalk, and the same
techniques used to tune it can be applied to Smalltall. Self actu-
ally did better than the numbers indicate. Relative to Smalltalk-
80, its optimization doesn’t freeze the definition of low-level
looping constructs. And it supports several features not found
in optimized C: “generic arithmetic, robust error-checking
primitives, and support for source-level debugging,” In demon-
strating an object-oriented environment that is both ethcient
and full-featured, the authors claim that “programmers no
longer need to choose between semantics and perfonmance.”

Smialitalk did better on the Richards benchmark in an inde-
pendent test posted to comp lang smalltatk in mid-1991. While
the Self group measured Smalltalk-80 2.4 to run at 9.4% of opti-
mized Cor+ on a Sun 4/26(running UNIX, the poster measured
Srmallealk-80 4.0 to run at 27% relative to Borland Ce+ 20 0na
3865X running DOS/Windows. He sugpested that the difference
could be due to using STS0 version 4.0 rather than 2.4,

Just how practical would it be for the commercial Smalitalk
vendors to get its speed up to that of Selff Self’s optimizations

Table 2. Looping benchmark resulis.

exact several penalties. First, whereas Simalltatk compiles indi- .

vidual methods incrementally at an almost instantaiieous
speed, the optimizations performed by Self’s compiler slow it
down to 2 compilation speed comparable to C. Second, com-
pilation of “uncomimon cases” is deferred, but when it does
happen during runtime, it may be somewhat intrusive. Third,
Self’s code takes between one-third to four times more space
than the C code generated for the benchmarks. T haven’t seen
data on Smalitalk code density, but I would expect it to take
less space than C. P'm referring to incremenial code density, -
not to the initial size of the class library. In Self’s favor, it
might look better when compared to heavily object-oriented
programs written in C++ than to procedural programs written
in C because of the space Ce+ uses for virtual function dis-
patch tables. Fourth, the Self environment requires more
space than Smalltalk. The people I've talked with at ParcPlace
have the impression that on a 32MB machine, Self pages un-
acceptably, and that vou need at least 84MB to run it comfort-
ably. When 1 raised this point with a Self researcher, he made
two rebuttals, First, Self has not been optimized for space. He
cited examples of major savings that could be made. Second,
he said that Salf runs fine on a 32MB machine and does not
require 64MB. He did concede that it stili takes more space
than Smalltalk, but this is at least partly because it is a research
language and the focus of the research has not been to mini-
mize memory requirements.

I have talked with several representatives of both ParcPlace
and the Self team in the last couple of years about these issues.
My impression is that they're not communicating enough. I
think rhat some of ParcPlace’s misgivings about Self could be
confirmed or denied by tailking more with the Self people. I
don’t know to what extent Digitalk is in
touch with Self. If the comnmercial ven-

, while loop, . . dors decide to focus on performance
Ward milliseconds fibonacel, .
fength, | (avg result) rmilliseconds turing as hard as the researchers, the
Tester Vendor Version bits* original | modified {avg result) communication channels will no doubt
.. o
Nouwen Dhgitaik STIV-Win 2.0 1 18 3,570 n/a 32,960 open “}i{kr’ . .
We'll return later to the question of
Peldtmann | Digitalk ST/V-PM 1.4 14 253 n/a 9,503 whether Self"s optimizations can be ap-
Nouwen Digitatk | STvV-PM L4 | e 2,530 nfa 9470 plied to Smalltalk.
Feldtmann | Digitalk ST/V-PM 2.0 32 125 n/a 4,673 B L .) o
HOW IMPORTANT WOULD A FASY
Mouwen Digitalk ST/V-PM 2.0 32 120 nia 4,650 SMALLTALK BE TO USERS?
Samuelson | ParcPlace | VW-Win1.0° 32 353 921 5909 The jury is out on whether Self’s opti-

with a 32-bit IDOS extender.

extras bundled.

Fdon't think Digitalk mokes these distinctions, ot least for its DOS version.

Y These are my assimptions about Be underlying word length in the virtual machines. Although VW-
Win runs on a 16-bit operating system (Win 3.1), it i3 a 32-bir implemenation because it is comnpiled

This is ParcPlace’s new VisualWorks product, which is T80 with an interface builder wid other

Notice the dramatic speed-up for ParePlace when the dedaration of the termporary index variable is
woved inside the outer block. ParcPlace distinguishes between clean blocks, copying blocks, and full

blocks. These vary, respectively, from fustest (o stowest and from least context overlizad to most pver-
head. I moving the variable declaration, the owter black goes from a full biock to o cdlean block and the portance ¢f 19 featuves. Faster execution
loop runs four times faster. This confirms ParcPlace’s admonition o ise clean blocks whenever possible.

mizations will find their way into
Smalitalk and other commercial lan-
guages. [n the meantime, it would help
your vendor to know how much priority
you give to performance. 1 took a survey
of ParcPlace customers in the
comp.langsmalltalk newsgroup in Octo-
ber 1991 and asked them to rank the im-

speed carme in third place, with first
| place going to maintaining cross-plat-

16

Tap SMALLTPALR REPORT

wEn

oIp fron

=% bc host “looks” that can be achieved with ParcPlace’s Vi-
sualWorks can be impressive. However, once impressed,
a client may ask for even nore host-user interface inte-

gration. These requests can exiend past the look that ParcPlace
provides. The client may ask for the feel of the host system. In
the case of the Microsoft Windows platforms this may include
the ability to run any application without a mouse. This isan
anathema for most Smalitaik programmers. Ancther request
under windows might be integration with the help system.

Think about ft. While it is not a “widget,” the help system is
very much part of the user interface. It is the users’ way of ob-
taining more information on how to use an application. The
rest of this column will show you how to get started integrating
VisualWaorks with the help system under Microsolt Windows,

Accessing Microsoll Help from VisualWorks requires
knowledge of ParcPlace’s ObjectkitiSmalitalk C Programming
{otherwise known as C Progranuning Object Kit or CPOK)
and Microsoft Help (M35 Help), each of which deserves its own
column (at feast). I this columnn, we'll explain only enough of
cach to get you going. The goal is for you to he ahle to activate
MS Help from within VisualWorks and have the help docu-
ment open on the topic vou specify,

MS HELP
The M5 Help application (MSHELP.EXE} lets you read hyper-
text-like help files. Help files may contain multiple topics. A
topic is the unit of information that may be presented at one
time by the MS Help application. In your application a topic
may provide information on a visual part, a menu, or a win-
dow. The Microsoft Help Compiler generates help files from
word processing documents saved in Rich Text Format (RTF).
Refer to the Microsoft Windows Software Development Kit for
maore information on generating help files and defining topics.
In your Smalltalk application, vou will invoke the MS Help
application. Your application can simply activate MS Help, or
it can specify the help file and topic that M5 Help should open
on. MS Help is invoked through the MS Windows API {Appli-
cation Programming Interface) WinHelp().

CPOK

ParcPlace’s Objectkit\Smalltalk C Programming lets Smalltalk
access programs written in C. This includes the Microsoft Win-
dows API functions. We will use it to invoke WinHelp(). CPOK
i a definite improvement over writing your own primitives.

Greg Hendley o Eric Smith -

within Visual S

Access to C APY functians is through subclasses of External-
Interface. In general vou will create a class for cach AP and a
method for each function, The subclass creation method for
Bxternallnterface is different from that of most classes.

subclass: t

includefiles: if

inchudeDirectonies: id

libraryFiles: If

libraryDirectories: 1d

generateMethods: gm

beVirtual: by

instanceVariableNames: §

classVariableNames: d

vooilictionaries: pd

category: cat

This method, in addition te creating a subclass, parses header
files and creates methods corresponding to the functions
defined in the header file. The method also creates methods
corresponding to other externals of the header file.

(Omice Externalinterface creates the subclass and methods, all
you have to do is use them.

USING CPOK TO ACCESS MS HELP

First, we will define the class. Then we will go over how to use it.

Class definifion .
Create the class WindowsLibrargTnterface as a subclass of Exter-
nallibrarySupport. If all your files are on your C: drive and your
directory structure is similar to ours, your class definition will
look something like this:

subclass: #WindowsLibrarylnterface

includeFilas: “\windows.h'

includeDiractoriss: ‘o \windeviinciude’

iibraryFiles: ‘gdi.exe krn/3586.exe user.exe’

tibraryDirectories: 'c:\windev\debug'

generateMethods: ™

beVirtual: false

instanceVariableNames: ™

classVariableNames: "

poolDictionaries: -

category: ‘ExternallibrarySupport’

An explanation of each of the parameters can be found in the
ObjectkitiSmalltalk C Programming User’s Guide. One parame-
ter is worth explaining here, though, The argument gm (" ins the
above code) indicates that methods should be generated for all

externals, functions, and otherwise. You could instead list just
continued on page 15

JUNE 1993

g

efs an

% ets and dictionaries are widely used classes implementing
 well-known data types. In many ways they are exemplary,
7 as the basic public interface is simple 1o use, eflicient, and

corresponds well 1o the standard abstract data types of the
samne name. Unfortunately, both classes can present a number
of subtle difficulties. Many of these difficulties relate to the fact
that both are implemented by hash tables, and thar this imple-
mentation shows through mare than it should.

A good abatract data type is specified without reference to
its implementation, and ideally should have several possible
implementations, differing only in performance characteristics.
The specification should not be written to favour or depend on
a particular implementation.

These goals are not always easy to live up tn, and Sets and
dictionaries fall shortin a number of areas.

HASHING
The hashing mechanism provides an efficient scarch mecha-
nism with little space overhead. It does, however, require the
user to provide certain operations. These discussions refer to
both dictionary keys and set elements. To save repetition, T'll
refer to both as keys, and to both sets and dictionarics as
hash tables,

Any hash table key must provide two methods: = and hash,
A simple description of the hashing process follows. For a par-
ticular key, the hash method is used to compute an offset into
the table. If that slot af that offset contains nil, the key s not

present. Il the slot is occupied, we test for equality with the key,

If the two are equal the search has succeeded. i the two are not
equal, the offset will be repeatedly incremented until an object
equal to the key or 2 nil slot is found,

This implementation has a few implications. First, since nil
15 used to mark empty slots, it cannot be used as a dictionary
key or inserted nto g set.

Second, objects must provide = and hash methods, More
importantly, they must provide these methods such that
equal objects have the same hash value. Note that the con-
verse need not hold: Objects with the same hash value do not
have to be equal.

The default implementation of = is the object identity test
== and the default hash method is compatible with this. A
common mistake for Smalltalk novices is to define a different
equality refation without defining a corresponding hash

HE BEST OF cmp.lang.smalﬁak

Alan Knight

method. Although this is a well-knownr mistake, there are simi-
lar, more subtle problems.

CHANGING HASH VALUES

A hash function that is not based on object identity will praba-
bly be based on instance variables of the object. A common
strategy is to add or XOR together the hash values of the
significant instance variables, possibly with some additional
scrambling. For example, in V/Windows:

Faint hash
“x hash + y hash.

ParcPlace Smalltalk has

Paint hash
“{x hash pitShift: 2} bitdor: y hash

The problem arises if any of those instance variables are
changed, The hash vadue is then changed, and the object will
hash to a different place in a set or dictionary. Any hash tables
with that object as a key need to be rehashed, and there is no
standard way of finding which tables those are.

This can be a very serious problem and difficult to track
derwr. In practice, bowever, it doesn’t seem to arise all that
often. [suspect the explanation lies in the normal usage pat-
terns. The most commuon dictionary keys arc strings and sym-
bols, which are not normally modified. Sets often use a greater
variety of objects, but mostly use the default identity-based
hash function.

IDENTITY HASHING WITH become:
Lven identity-based hashes aren’t completely safe, since the be-
come: operation can change them. Uve encountered an exam-
ple of this with a simple version controf system in V/Windows,
In order to keep track of which added classes belonged to an
application, the systerm maintained a set of classes. Classes do
not override = or hash, so they inherit the identity-based ver-
sion,

In Smalltall/V Windows, there is & special class DeletedClass.
When a class is deleted, the last thing the system does is:

classTeBeDeleted become: DeletedClass.

This achieves two goals. It ensures that classToBeDeleted can be
garbage collected, since any references 1o it have been re-

10

Tue Smarrtaik REporT

generated ViewManager subclass. You can add vour own events
and include them in the list of supported events.

CompositePanes can be nested within one another to any
level. If you define tabbing order withint your CompositePane,
this nests properly as well. However, vou must be careful to
avoid potentially recursive definitions. WindowBuilder Pro was
anly able to detect single level recursion (e.g., you can’t place a
copy of a CompositePane within itself) but it cannot check for
later recursion. If you defined A 1o contain B and vice versa vou
would be in big trouble. CompositePanes may have one of three
styles: default, borders, and scroll bars. The Jast stvle is the most
interesting. Placing scroll bars on a CompositePane allows you to
place widgets within scrolling panes for the first thme. While we
wouldn’t necessarily recormmend doing this from a GUI poing
of view, iis nice to know that we can do it.

WindowhBuilder Pro provides several additonal features
that simplify working with CompositePanes. If you double-click
on a CompositePane, it will open another copy of Window-
Builder Pro on the CompositePane detinition itself. If vou
change the definition, it will change the CompositePane every-
where you have used it If you decide that vou don’t wanl the
CompositePane and would rather use its components directly,
use the Ungroup command to split them apart losing any
“oomposite” behavior.

{OPEN ARCHITECTURE

in addition to adding lots of features for the end-user devel-
oper, QST has also opened the WindowBuilder archilecture 1o
make it casier for third parties to build tools that integrate with
the product. A new Add-in Manager allows other products to
bind themselves to WindowBuilder Pro and add their own

funciionality and menus, Adding new widgets to the tool
palettes is also easy. You must still define support for your wid-
get the same way you would under WindowBuilder, Once
you've done that, you create a tool palette bitmap for it and 2
simple add-in that adds your widget to the Add menu.

PLATFORMS

(8] plans to include a number of follow-on products that inte-
grate with WindowBuilder Pro. They have already announced
ENVY/Developer and TEAM/V versions of the product and
they plan on having a Macintosh version that is compatible
with the current Windows and O5/2 versions.

CONCLUSION

WindowBuilder has been the tool of choice for many
Smalleall/V developers for years. WindowBuilder Pro repre-
sents a Jogical and necessary evolution of the product that
should serve the Smallialk community well into the future. It
provides significant new capabilities with its CompositePane
technology and adds novel GUT building features such as the
Scrapbook and Morphing utilities that should make for a
pleasant GUJ development environment.

Eriv Claybery is Director of the Computer-Fluman Interaction Lab at
American Management Sysiems, He is an expert in applyiag O-O
and Smallialk technology to the design and construction of advanced
graplvical user interfaces. He can be reached on Compuserve at
722542515 8. Sridhar is an independent Smalltalk developer whose
interests include building professional guality class Hovaries. He is af-
fiftated with classAct Technology in Cary, NC. He can be reached on
Cempuserve af 71031,3240.

m GUIs . conrinned from page 9

those externals essential for bringing up help, Unfortunately,
there are dependencies in the externals defined in the windows
header file. For a first pass it is easier to use ™ and create all pos-
sible methods, Warning: this may take 15 to 20 minutes,

Initiate help on a specific topic
MS Help may be opened on a help file in a number of different
ways, To get you started, we will show you how to open on s
particular topic. In a workspace, do:

WindowsInterface new

WinHelp: self GetActiveWindow

with: 'c:\my-help.hlp'

with: 20
where my-help.hlp is vour help file and 20 is the context
number for a tepic in your help file. MS Help will then open
on your help file and show the information for topic 20,
Feeping track of which topic is which is an interesting issue
that vou will have to work out for yourself.

The above 1est code uses the method GetActiveWindow, This
method answers the handle of the active window. The method
was generated when you created your subclass of Externalinter-

face. This is one of the side benefits of using ' and having all
methods created instead of specifying only those that look like
they are necessary for help.

CLOSING

We have shown vou the essentjal low-level Smalltalk necessary
oy get M5 Help working with VisualWarks applications. Now
you are ready to tackle the higher-level tasks of associating help
topics with your windows, menus, and other visual components.

Acknowledgments

We would like (o thank our coworkers Kyle Brown, who made
using Objectkit\Smalitalk C Programming much easier, and John
Cribbs, who applied it to accessing MS Help from Smalhtalk,

Creg Hendley is o member of the techwnical staff ar Knowledge Sys-
tems Corporation. His QOP experience is in various dialects of
Smalltalk. Other experience includes flight simulator out-the-windew
visial systemns, Eric Smith is @ member of the technical siaff at
Knowledge Systems Corporation. His specialty is custom graphical
wser interfaces using Smalltalk (various dialecis) and C. They can be
contacted at Knowledge Systeins Corporation, 114 MacKeran Drive,
Cary, North Caroling 27511, or by phone at $19.481.4000.

Jung 1993

= PRODUCT REVIEW

on top of their parents (great for floating toolbars), minimize
with them, and close when their parents close {very much like
MDT without the clipping). Sibling Hoks create a child window
of the current window’s parent (£.g., your desktop window). .

ActionBultons allow you to attach predefined code snippets
to a button. Some of these, like “Cancel” come standard with
the product. (“Cancel” performs “window close” on any win-
dow if sits on), The ActionButten attribute editor lets you select
these predefined actions or create your own in standard
Smallzatk. Almost any action that is not window specific could
be coded once and then reused. WindowBuilder Pro needs to
provide a rich variety of these predefined code snippets. The
user can modify them appropriately, thus adding to the catalog
of these reusable code snippets.

The LinkMenus and AconMenus function the same way as
the LinkButtons and ActionButtons. Any menu option defined
with the menu editor may have a link or action associated with
it. For example, you can assign the action “Cancel” to the
“Exit” menu item.

WIDGET MORPHING

This is a nifty feature that will alleviate the frustration of many
a WindowBuailder user. What is widget morphing? It is a fea-
ture that allows you to transform a widge! from one (ype into
any other while mapping over any commaon atiributes.

To demonstrate how useful this is, suppose you create a List-
Boz, give it a name, attach a list, set its color and fonts, and give
ita few event handlers. Later, let’s suppose you discover that
vour windeow deesn’t have room for a ListBox and yvou opt to
use a ComboBox instead. Before the advent of this feature, you
would have had to add 2 new control and copy all of the origi-
nal control’s attributes to the new control by hand (or you
could change the WindowBuilder generated code by hand,
which is verboren). Now, you can accomplish the same thing by
clicking on the widget with the right mouse button and select-
ing the “Morph” option. This presents a cascaded list of all
“similar” widget types {e.g., ComboBoxes, ListPanes and MultiSe-
lectlistBoxes in the case of ListBoxes) as well as an “Other. .7
choice (for those rare occasions when you want to transform a
ListBox into a totally different widget, such as a button}. Choose
the one you want and your widget transforms instantly. Only
events that both the old and new widget understand will be
mapped over; the new widget will acquire as many of the origi-
nal widget's attributes as it understands and default the rest. Be
careful when morphing widgets, because while all widgets re-
spond to #getContents, they expect very different things. It
would be nice if WindowBuilder Pro added a warning message
when potentially troublesome morphing is attempted.

SCRAPBOOK

One of our favorite new festures 1s the Scrapbook. Anyone who
has used the Macintosh will appreciate this one right away. {Ac-
tually anyone who has ever had to reuse visual components will
appreciate this right away). The Scrapbook provides a place to
store [ully defined widgets or sets of widgets. It allows you to

organize your creations in multiple chapters containing mwulti-

ple pages. Fach page contains a user-defined object.

Start by creating and defining a group of widgets. Select them

all and select the Store option from the Scrapbook menis. Name:
your creation and select one or more chapters in which to place
it. You can organize your objects under as many calegories as
vou like, Mew chapters can be created with the touch ofa but-
ton. There is a single special chapter entitled “Quick Reference.”
Anything added here is automatically appended {o the “Scrap-
book. . . Quick Reference” cascading menu for instant access.
In order to retrieve something from the Scrapbook, select
“Retrieve.” You are then presented with a listing of all of your,
chapters and pages. Clicking on any page will display its con-
tents in a graphic view to the right. This allows you to preview

i

any abject before placing it on the screen. Selecting a page and
hitting OK loads the cursor with the selected object which you
can then drop anywhere vou like.

You can easily save Scrapbooks to disk and retrieve thern.
Bach developer can have a Scrapbook, and these can then be
merged together to provide a common set of components
across a development team.

CompositePanes
While the Scraphook provides a repository for storing reusable
visual components, WindowBuilder Pro’s new CompositePane
technology provides the mechanisms to actually create these
reusable visual components, In Smalhtalk, we routinely build
complex classes by synthesizing structure and behavior from
simpler classes. Iz a like manner, CompositePanes allow you to
create compound or composite widgets out of other atomic wid-
gets. WindowBuilder Pro includes an example of this in a sample
CompositePane subclass calied SexPane. A SexPane is composed of
three widgets: two RadioButtons (Male and Female} and a Group-
Bax {labeled Sex). WindowBuilder Pro treats it like any other
standalone widget. If you resize it, its components resize relative
to itself. It even has its own instance variables and events. For ex-
ample, In respanse to a #sexChanged event (issued whenever the
user clicks one of the RadioButfons), you could bring up a Mes-
sageBox announcing the new state. Setting its cortents is as sim-
ple as sending the message: aSexPane contents: #male,

(51 has searnlessly integrated this functionality with the rest
of the product. _

To create a CompositePane, select the appropriate option
from the File meny or select several existing widgels that exist
in your editing window and select the Create Composite com-
mand. This opens a new copy of WindowBuilder Pro with the
selected compaonents in it, (Here the WindowBuilder Pro itself
acts as an attribute editor for the CompositePanas. Neat!), Give
thermn names or further define them anyway vou like. Whest
you save them vou are prompted for a class name and a super-
class {generally CompoesitePane). WindowBuilder Pro creates
the class and then enquires whether you would like to replace
the original widgets with the new composite. Once you have a
CompositePane subclass defined you may add code to it ex-
aclly the same way you would add code to a WindowBuilder

14

THE SMattTaLk Repory

e -

“moved. Tt also ensures that any code

which referenced classToBeDeletad will
report an error when executed,

Unfortunately, if a class is removed .
outside the framework of this version
control system, any applications that”
contained it now contain references (o
DeletedClass. Further, those references
are stored according to the hash value of
classToBeDeleted, so they can’t be re-
moved using the public set interface.

In order to remove Beletedtlass, the
set must be rehashed.

As a final difficulty, V/Windows does
not provide a rehash operation. Fortu-
nately, for this application, the slow-
and-dirty anplementation

aSet become: aSet copy

is sulficient.

HASHING PERFORMARNCE

Even if your hash function doesn’t play
tricks on you, defining one with a good
distribution can be difficult. Jeff McAffer

{jeff@is.s.u-tokyo.jp) writes:

I was recently looking at & system
that made extensive use of sets, . .,
One of the benches was putting a whele bunch of two-ele-
rnent arrays into the sets. It turns out that 60% of the pro-
cessing time was in the set hashing. The canse? In V/Win
{kikely all Vs) the hash function for arrays returns the re-
ceiver’s size. | changed the hash function and doubled the
speed of the benchmark.

The identity-based hash function usually has a good distribu-
tion, but has a refatively small nunsber of significant bits.

60 Periormance will suffer greatly
any time a hash table contains more
elements than the hash function can

nandle well.

Bruce Samuelson {bruce®@ling uta.edu) writes:

I think the IdentityDictionary hash function runs out of
steam at about 14 bits (16K objects).

Performance will suffer greatly any time a hash table contains
more elements than the hash function can handle well. Ta
help determine if this is the case, Bruce Samuelson has also
written a method to measure dictionary hash performance. It

is written for ParcPlace Smalltalk, but should be easily adapt-
able to Digitalk dialects, and is available from either the
Manchester or Ilinoks Smalltalk archives, under the title die-
Liopary-performance:

Dictionary methodsFor: ‘statistics'!
hashStatistics
"This method tests how well the receiver is hashed.
Tt is adapted from
<Pictionary findKeyCrllil:> "
"Smalltalk hashStatistics”
"Retura an anray:
at: 1 basic8ize of dictionary
at: 7 size of dictionary, 1.e., wumber of efements {associations)
at: 3 average miss of hash function
0 means hash is ideal
W means avq element is placed N steps beyornd its hash value
large number means hash is bad

at: 4 histogram (using a sorted collection) of misses”

| basicSize size total histogram |
basicSize ;= self basichize.
size := self size.
total := 0.
histograum := Bag new,
self keysDo: {key |
| ntiss location probe |
miss i= 4,
Tocation = key hash \Y basicSize + 1.
[(probe = self basicAt: location) isKil or: [probe key ™= key]]
whileTrue: |

June 1993

11

® THE BEST OF COMP.LANG.SMALLTALK

Miss 1= 1niss + 1.
(location := location + 1) » basicSize
iffrue: [location ;= 1L
histogram add: miss.
total i= total + miss].
~Array

with: basicSize

with: size

with: (total / {size max: 1)) asFloat

with: histoaram sorfedElements! !

LARGE INSTANCES

There are other factors that might affect the performance of
hash tables. For example, very large arrays of pointers (most
collections, but not ByteArrays or WordArrays) can cause prob-
lems for the garbage collector. Earlier versions of ParcPlace
Smalltalk incladed an arbitrary limit of 100,000 on the size of
such collections. They've removed the limit, but the problem
remains. The source of the problem is the copying garbage col-
lectors used in Smalltalk, which can be foreed to spend a lot of

time copying these large objects back and forth.

For very small dictionaries,
it may not be necessary to use a
dictionary at all. ©9

Is poor performance on very large hasly tables a problem?
It's certainly not the common case. Rik Fisher Smoody
{riks@ogicse.cse.oglhedu) writes:

Consider Dictionaries. The overhead of creating a small
one is small. This is good. I checked one handy image:
there were 540 instances of dictionary or subclasses with a
total of 4,137 elements...an average of less than 10 ob-
jects/dictionary.

But occasionally a giant arises. . .. What if there were a
class called BigDictionary that obeys all of the external pro-
tocol of Dictionary, but is tuned for performance when it is
large? Perhaps when a small (ordinary) dictionary grows, it
could automatically turn into a BigDict.

Very large hash table performance is one of those things you
don’t usually worry sbout, but when you do need it, it's very
important. A BigDict would be a very handy thing to have, and
Prn sure there’s already more than one implementation out
there, Jan Steinmman (steinman@ascom.hasler.ch) writes:

To get a start on this, look at the Symbol class variable
USTable, which is sort of an ordered BigSet, although it isn’t
implemented as a class. The general strategy is divide and
conguer, as in KSAM,

UsTakle {I looked at ParcPlace R4.1) seems to be a bucketed

hash table with some code for choosing good dictionary and

buckat sizes. The buckets are weak arrays, which stops USTable

from holding on to otherwise unreferenced symbals. 1t may 2
also improve speed, since wealk arrays have some additional
searching primitives,

Divide and conguer normally means splitting a problem up
into sub-probiems, each of which can be solved more easily
than the whale and reassembled to form a solution to the com-
plete problem, For a large set, the ebvious decomposition is
into smalier sets. By converting USTable’s buckets into sets (or
IdentitySets), 1t would be easy to convert this into a divide and
conguer selution that would help avoid the performance prob-
lems of very large hash tables.

SPACE OVERHEAD
Most dictionaries ave small, so the performance problems of
farge hash tables don’t affect them. Applications that use many
small dictionaries can, however, suffer from serious space
problems, In particuiar, regular dictionaries are implemented
using associations, which requires another obyject with two in-
stance variables for each elemnent in the dictionary.
IdentityDictionaries are implemented without associations

in both ParcPlace and Digitalk versions, ParcPiace uses two *

paraliel arravs of keys and values. Digitalk uses one array,
storing keys at odd indices, values in even indices. Both are

much more space efficient than normal dictionaries, but -

make operations that access associations (e.g.,
associationsDo:) much slower.

Fm not sure why this particular choice was made. [t's nice
to have more space-efficient dictionaries, but | don’t see why
that should be coupled to the use of identity versus equality.

For very small dictionaries, it may not be necessary to use a
dictionuary at all. H the number of keys is 2 small constant, a
class using linear search may be just as efficient in time, and
save even maore space {this would have much less impact than
regular vs. identity dictionaries). Lazy initialization can help
enormously if not all ohjects have properties.

CONCLUSION

I've shown a {ew examples of problems that can arise using the
hash table classes in Smalitalk. There are other tricks, such as
assuming the identity of associations in a dictionary remains
constant and retaining or modifying them. 1 think this is a bad
thing, buf the base Smalltalk system does it, so iU’s not likely to
disappear soon. A broader issue is that some people believe the
association-based nature of dictionaries is too public and that
this imposes excessive costs on other implermentations (such as
IdentityDictionaries). A future column may explore these and
other issues.

Alan Kaight works for The Object People. He can be reached af
6132258812, or by e-mail as knight@pirco.carleton.ca.

12

Tre SMALLTALK REPORT

o

K PREVIEW

Sutider Pro

Ul builders have become de riguer in the PC desktop
computing marketplace. For the past few years, Win-
et dowBuilder from Cooper and Peters has been the pri-
mary tool for building Smalltalk/V-based GUT applications. At
the beginning of 1993, C&P decided to get out of the Smalltalk
market. A new company, Objectshare Systems Inc, {081), ook
over the responsibility of marketing C&P's WindowBuilder
line of products, WindowBuilder is the premier tool for
Smalltall/V GUI development. WindowBuilder is designed o
coexist with the standard Smalltalk/V environment and, as
such, generates human-readable class definitions and message
interfaces. To meet the ever-increasing demands of sophisti-
cated GUT applications, 081 is evolving the WindowBuilder
product line into a professional version of the GUT builder

called the WindowBuilder Pro.

As early beta testers, we'll report in this article on a number
of the new features and enhancemients that are an mtegral part
of WindowBuilder Pro. Because WindowBuilder was reviewed
i one of the very first issues of ThEs SmaLLralk REporT, we'll
skip over all its basic features.

MNEW LOOK AND FEEL
WindowBuilder Pro has a nicer look and feel than Window-
Builder. Colorful toolbars abound. Across the top of the screen
are buttons lor creating new windows; theses include Cut, Copy,
Paste, Alignment, Distribution, and Z-Order Control among
others. A duplicate command that works like the corresponding
command i Macldraw is & new feature, Selecting a widget or
collection of widgets and hitting Puplicate creates a copy offsel
from the original. Moving the copy relative to the original and
hitting Duplicate again results in more copies at the new offset.
WindowBuilder Pro provides increased access 1o the Font,
Color, Framing, Menu, and other commands. Although the
commands work the same way the did before, they are now ac-
cessible through a toolbar and via pop-up menus, The toolbar is
right below the main editing area, and you can access the pop-
up menu by clicking the right mouse button over any widget.
The Framing editor has been slightly enhanced 1o allow users to
lock objects to the horizontal and vertical centerlines of a win-
dow (as opposed (o just the right, lefy, top, or bottom sides),
Next to the attribute toolbar are two new items that Visual-
Basic fans will appreciate: size and position indicators. As vou
move or resize widgets, these indicators constantly update to
reflect the new information. This feature is very useful for pre-

Eric Clayberg ¢ 5. Sridhar

rizons

cise work. A new status line at the bottom of the screen gives
context-sensitive help. As you drag through merm commands
or over toolbar choices, the status line describes each option.
As you drag through the widget tool palettes, it describes each
widget type. This is especially helpful for those whom the “in-
tuitive” meaning of the many icons is not so intuitive. Also, as
vou click on any object in the editing window, the status line
identifies its name and type.

In addition to the new look, WindowBuilder Pro has sev-
eral nice ergonomic enhancements. You can now leave auto-
sizing on all the time. StaticText, Buttons, CheckBoxes, and Ra-
dioButtons will automatically autosize as you type in labels.
StaticText autosizes in the proper divection depending on its
style. (The right-justified labels now autosize o the left! This
should eliminate many of those type-autosize-1move se-
guences). Autosizing now also conforms o the grid, rectifving
an annoving oversight in the original WindowBuilder.

All widgets now include an attribute editor, and all widgets
draw correctly in the edit pane (no more generic recrangles).
ListBoxes and ComboBoxes fealure a list editor Uiat allows users
to enter an initial list of items. Although this is not useful in
cases where dynamic Hst data is needed, it is handy during
rapid prototyping or when the items are static. DrawnButtons
and StaticGraphics can now display a bitmap in the editing win-
dow. In the Lield for entering text for a widget, vou enter the
name of the bitmap file (. BMP) that you would like to use. If
Windowbuilder Pro finds the file, it will display it for you.
Your other option is to double-click to bring up a file dialog
from which to sclect a bitmap. The application window’s at-
tribute editor also has been enhanced to allow the addition of
minimization icons to window definitions.

RAPID PROTOTYPING

WindowBuilder Pro has four new components to facilitate rapid
prototyping. These are the LinkButton, AchonButton, LinkMen,
and ActionMera. These components provide easy ways to link
windows together and perform simple actions without writing
any code. LinkButtens provide a way to hook windows together
without writing any code. Place a LinkButton an the screen and
double-click on it to see a fist of all of your ViewManager sub-
classes. Pick the subclass you want, then select the type of link
vou wanl. There are three types of links, independent, child, or
sibing. Independent links bave no logical dependency on the
window that created them. Child links create windows that float

JUnE 1993

13

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 279 DENVILLE NJ

POSTAGE WILL BE PAID BY ADDRESSEE

The Smalitalk Report

Subscriber Services Dept SML
PO Box 3000
Denville N] 07834-9821

”IIIIIIII”IIII!I”IIIll”lllI|II|IIIIIIIII”IHIII

RS TG S S A
NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES
T T i A SR TR
R A SR
et =
R N AR ST
R s O T P N
AT
Y, EY e SRR
TR TR S A R
[P R)

GemStone is the ideal database
enwronment for supporting

- Smalitalk applications. It is the

, only high-performance, produc-
tion-ready ODBMS with a trans-
| parent Smalltalk interface.

~ * Maintain class hierarchies and
. execute Smalltalk methods
« directly in the server.

e Automatic, transparent transla-
tion of Smalltalk objects into
GemStone.

-« Cooperative client-server sup-

. port.

~ » Smalltalk-based DDL/DML.

. » High-performance, scalable,
production-ready ODBMS.

¢ Integrated garbage collection of
persistent Smalltalk objects.

T

GemStone Object Database Smalltalk Application

[YES! Send Me Complete Details On GemStone

Name: Title:
Company:

Address:

City: State: Zip:
Phone:

1-800-243-9369 Fax:SERVIO

NO POSTAGE

‘|| ‘II IF MAILED : :
IN THE &=

NECESSARY
UNITED STATES

 inSmalltalk,
- you should be reading
The Smalltalk Report **

- advances, usage tips, project management advice, AGD
technigues, and insightful applications.

BUSINESS REPLY MAIL 21 Yes, I would like to subscribe to The Smalltalk Report pae.

d 2 year (18 issues)

FIRST CLASS MAIL PERMIT NO.4362 SANJOSE, CA

POSTAGE WILL BE PAIDBY THE ADDRESSE

SERVIO CORPORATION
2085 HAMILTON AVENUE
SUITE 200

SAN JOSE, CA 95125-9985

IIllllllllllll"lll‘llllIIIIIIIIIIIIIIHIIIIIiIIIII"

1 year (9 issues)
Domestic $69.00
(J Foreign $94.00

Method of Payment

[Check enclosed (payable to The Smalltalk Report)

[Bill me

J Domestic $128.00
d Foreign $178.00

| Charge my: [Jvisa [d Mastercard [Amex

Card No.

Exp. Date

Signature

Name

Title

Company

Address

City

State

Zip

Country

Phaone

1. Which dialect of Smalltalk do
you use:
[smalltalk v
O smalltalk-Bo
SJdother
2. What is your involvement in
software purchases for your
| department/firm:
J Recommend Need
+ [Specify Product

J Make Purchase

(J None

3. Which operating system
supports your software:

O UNIX

(J DOs

1 0s/2

J Windows

[Other

4. What is your company's

A member of the

ject Marketing Network

fax to i
2i12/274-0646 .

[Educational/Consulting

primary business activity: [Other

= Computer/Software 5. For ho\men
Development, using Smalltalk:

" Manufacturing [Less than one year

- Financial Services (13 years

[Government/Military/Utility = 3+ years E3FG

SIGS

FUBLICATIONS

THETOPNAME
IN TRAINING IS ON

Where can you find the
best in object-oriented training?

The same place you found
the best in object-oriented
products. At Digitalk, the
creator of Smalltalk/V.

Whether you're launching
a pilot project, modernizing
legacy code, or developing a
large scale application, nobody
else can contribute such inside
expertise. Training, design,
consulting, prototyping,
mentoring, custom engineer-
ing, and project planning. fFor
Windows, OS/2 or Macintosh.
Digitalk does it all.

ONE-STOP SHOPPING.

Only Digitalk offers you a
complete solution. Including
award-winning products, proven
training and our arsenal of
consulting services.

Which you can benefit
from on-site, or at our
fraining facilities in Oregon.
Either way, you'll learn from a

100% PURE OBJECT TRAINING.

Ot i ProgeaeminSysem

staff that literally wrote the
book on object-oriented
design (the internationally
respected “Designing Object
Oriented Software”).

We know objects and
Smalltalk/V inside out, because
we've been developing real-
world applications for years.

The result? You'll absorb
the tips, techniques and
strategies that immediately
boost your productivity. You'll

[TALK

reduce your learning curve,
and you’ll meet or exceed
your project expectations. All
in a time frame you may now
think impaossible.

IMMEDIATE RESULTS.

Digitalk’s training gives
you practical information and
techniques you can put to
work Immediately on your
project. Just ask our clients
like IBM, Bank of America,

Progressive Insurance,

Puget Power & Light, U.S.
Sprint, plus many others.
And Digitalk is one of only
eight companies in IBM's
International Alliance for
AD/Cycle—IBM'’s software
development strategy for the
1990’s. For a full description
and schedule of classes, call
(800) 888-6892 x411.

Let the people who put
the power in Smalitalk/V, help
you get the most power out of it.

The Smalltalk Report

The International Newsletter for Smalltalk Programmers

July-August 1993

Volume 2 Number 9

SMALLTALK
'DEBUGGING

_ TECHNIQUES

By Roxie Rochat
¢ Juanita Ewing

Conténts:

Feature

1 Smalltalk debugging
techniques
by Roxie Rochat & Juanita
Ewing

Articles

4 Debugging objects
by Bob Hinkle, Vicki Jones, &
Ralph E. Johnson

8 Applications of Smalltalk in
scientific and engineering
computation
by Richard L. Peskin

Columns

11 The Best of comp.lang.smallfalk:
Good code, bad hacks
by Alan Knight

15 Smalltalk Idioms: Inheritance:
the rest of the story
by Kent Beck

26 Product News and Highlights

xpert Smalltalk users are characterized not only by their program-

ming skills, but by how quickly they locate and correct errors. Not

only do they use debugging skills to find bugs, but also to under-

stand existing code. To reuse code effectively, you have to under-

stand it, so debugging skills are important tools for maximizing
reuse and minimizing work.

This article describes debugging techniques for both Objectworks\Smalltalk
and Smalltalk/V. Although written for novice Smalltalk users, it assumes a basic
familiarity with Smalltalk terminology and the environment, including browsers
and debuggers.

Many expressions in this paper are common to Objectworks and Digitalk
Smalltalk systems. Expressions that are not annotated apply to both Smalltalk sys-
tems. Unless otherwise noted, the Objectworks expressions given in this article are
applicable for:

+ Objectworks\Smalltalk 4.1

+ VisualWorks 1.0

» ENVY/Developer r1.41a for Objectworks\Smalltalk and VisualWorks.
The Smalltalk/V expressions have been tested under:

» Version 2.0 of Smalltalk/V for OS/2

= Version 2.0 of Smalltalk/V for Windows

« ENVY/Developer rl.41a for Smalltalk/V for Windows

If you are using other versions of Smalltalk, use the expressions presented in this
article as a starting point.

WHO AM I?

A major component of the debugging process is the collection of information
about the objects and their current state. Transcript messages allow you to gather
information about objects over time. Inspectors allow you to see objects and their
internals in a static state. Careful planning with respect to naming and object
identity can help you focus on easily collecting relevant information. This section
reviews debugging techniques involving the Transcript, inspectors, and factors re-
lating to object identity.

hello world, or printf, in Smalltalk
The Smalltalk equivalent of the C printf function is to write to the Transcript win-
dow. (You do leave your Transcript open, don’t you? The system writes error
messages to the Transcript so if you collapse or close it, sooner or later, you'll be
50rTYy.)

Information you print in the Transcript can be used to determine when a par-
ticular method is called, to examine arguments, or to examine data calculated by

continued on page 18. ..

John Pugh Paul White

evelopers who use Smalitallk have always had a real loverhate relationship with their devel-
opment environment, We've always been fascinated listening to Smalltalkers describe the
toolset in their environment. When describing Smalltalk to “ouisiders,” they defend it
with an emotional fervor, noting how flexible it is and how rich a toolsel it aclually pro-
vides. But il you have a chance to speak with these same people alone, vou'll hear a very
different story, The fact is that the base Smalltalk development environment is in desperate
need of a major overhaul. 1t has become Smalltalic’s “legacy system.” One of the first things
that appealed to us about Smalitalk back in the carly days was its rich development envi-
ronment—it was definitely the best on the block. Since then, no significant changes have
been made to the way in which people interact with the system. Sure, minor improvements
have been made at times, but there have been no qualitative improvements to the browser,
the inspector, or the debugger. Even the tools that do exist need to be more polished. {Ever
listen to semeone use the “Find Class” option in Digitalk’s browser—the groans over a lack
of wild card are universal), Even team development tools such as Team/V and ENVY don’t
improve to any significant extent the way in which we interact with Smalitalk.

3o why don’t we see better toolsets coming to market? We suspect the answer is simple: a
lack of motivation on the part of the vendors. There is a greater return to be made by provid-
ing add-on facilities such as interface builders and database interfaces than there is by aug-
menting the tools that already exist in the base image. Will third-party developers take up the
challenge? We hope so, but we are not terribly optimistic. Perhaps the forthcoming Object
Explorer tool form First Class Software, which attempts to visualize the relationships between
objects, will set a trend. Of course, many Smalltalk programming shops have built “in-house”
extensions to the envirorunent that they use on their projects and those of their clients. But
most organizations don’t want to be tool builders, they’re application developers.

O a more positive note, four of the articles in this issue do illustrate just how rich an en-
viromment Smalltali has, Each takes a different perspective, with two focusing directly on
the debugging process and the technigues that can be used to understand what is taking
place inside your systems. Roxie Rochat and Juanita Ewing are featured this month with
their hints on debugging. They have included a number of debugging techniques, including
ones for debugging code that does not allow for the narmal “self balt” approach to wark.

Also on the topic of debugging, Bob Hinkle, Vicki Jones, and Ralph Johnson return
this month with a description of how Smalltalk can be extended in ways that will allow for
nen-mtrusive debugging to be carried out,

Alan Knight and Kent Beck also touch on the issue of debugging with Smalitalk. Kent re-
turns to his discussion of the conflicting roles played by inheritance in Smalltalk and intro-
duces two new patterns that describe rules that can be applied when making inheritance deci-
sions, Alan tackles the issue of recognizing “good code” by characterizing the elements of
good coding techniques,

Finally, Richard Peskin provides us with a glimpse into work that is being dane to
make Smalltatk more applicable to scientific and engineering computing. As he points
out, this area has not received much attention from the Smalltalk community lately, even
though much of Smalltallc’s early history involved serving this community.

THE Smarvrark Repont {ISSNE 1036-79787 is published @ Uimes o yéar, every month except for the MaiT APy, Tulifug, and Noviliee
combined issaes. Published by S1GS Publications Group, 588 Broadway, New York, NY 10012 212.274.0640. @ Copyright 1993 by SIGS
Pablications, 1nc, All rights reserved. Reproduction of this material by electronic transmission, Xeros or any other method will be
treated as a willfil vielation of the US Copyright Law and is fatly prohibited. Matesial raay be reproduced with express permission from
the publishers. Mailed First Class. Subscription rates | vear, (¥ issues) domestic, $65, Poreign and Canada, $90, Single copy price, $8.00.
POSTMASTER: Send address changes and subscription orders to: THE Smavetais Repury, Subscriber Serviees, Dept. SML, P.O. Box
3000, Denville, N 07834. Submit articles to the Editors at 91 Second Avenue, Oftawa, Cutario K18 2H4, Canada. For service an cur-
rend subscriptions call 806.783.4903. Printed in the United States.

The 8malitalk Beport

Edttors

John Pugh and Paul White
Carleton University & The Object People

S1GS Pusticarions
Advisory Board

Tom Atwood, Object Technalogy International
Girady Booch, Rational

Gearge Bosworth, Digitak

Brad Cox, infermation Age Consulting
Chuck DuF, Bymantec

Adele Gaoldberg, ParcPlace Systems

Tam Lave, Consultart

Bertrand Mayer, I13€

Meilir Page-Jones, Wayland Systems

Sesha Pratap, CenterLine Software

Biarne Stroustrup, AT&T Befl Labs

Dave Thomas, Object Technology International

TrE SMaltTack REPORT

Editorial Board

Jim Anderson, Digitalk

Adsle Goldberg, ParcPlace Systems
Reead Phillips, Knowledge Systems Corp.
Mike Taylor, Digitatk

Crave Thomas, Object Technulogy Intemational

Columnists

Kent Beck, First Class Softwars

Juanita Ewing, Digitaik

Greg Hendley, Knowledge Systems Corp.
£d Klimas, Lines Engineering Inc.

Afan Knight, The Object People

Eric Smith, Knowledge Systems Corp.
Rebecca Wirfs-Brock, Digitaik

51GS Publications Group, Inc.

Richard P. Friedman

Founder & Group Publisher

Art/Production

Kristina Joukhadar, Managing Editor

Susan Culligan, Pligrim Road, Ltd., Creative Direction
Karen Tongish, Production Editor

Gwen Sanchirico, Production Coordinator

Robert Stewart, Computer Systems Goardinator
Clreulation

Stephen W.Soue, Circulation Marager

Ken Mercade, Fulfiimert Manager
Marketing/Advertising

James G Spencer, Direclor of Business Development
Jason Weishopf, Advertising Mar—East Coast/Canada
Holly Meintzer, Advertising Mgr—West CoastEwrope
Helen Newling, Recruiiment Sales Marager

Sarah Hamitton, Promotions Manager—Fublications
Jan Fulmer, Promotions Manager—Conferences

Caren Polner, Promotions Graphic Aréist
Administration

Davigd Chatterpaul, Accounting Manager

James Amenuvor, Bookkeaper

Dylan Smith, Special Assistant to the Publisher
Claire Johnston, Conterence Marsager

Cindy Baird, Gonference Technicai Manager

dMargheriia R. Monck
General Manager

SIGS

PUDEICATIONS

Publishers of Journat oF OBECT-ORENTED PRO-
GRAMMING, OBECT MAGAZINE, THE G+ REPORT, THg
SuaLLTALK REPORT, THE INTeRnanonal OOF Direc.
TorY, and THe X JoURNAL.

! Product Annouscements are not reviews. They are abstracted from press releases provided by vendors, and no endorsement is implied, |

Vendors interested in being included in this feature should send press releases to our editorial afffices,
Traduct Announcements Dept., 91 Second Ave., Ottawa, Ontaric K15 2H4, Canada.

SERVIO TO SUPPORT GEMSTOMNE DDBMS, GEODE
DEVELOPMENT ENVIRONMENT OM WINDOWS NT.

Servie Corporation has announced that it will provide support
for its full range of products on Microsoft Corporation’s Win-
dows NT operating system.

GemStone and GeODE for Windows NT are scheduled for
production shipment beginning in carly 1994, They are cur-
rently available for most leading UNIiX-based platforms in-
cluding Sequent Symmetry 2000, SUN SPARC, RS6000, and
HP9000, GemStone release 3.2 and GeODE release 2.0, Gem-
Stone is also available for DEC VAX/VMS. GemStone data can

be accessed from most client environments including UNIX,
Windows, O8/2, and Macintosh.

Servio Corporation develops and markets the GemStone
object database management system, which incorporates the
GeQDE code-free visual development environment for rapidly
building and deploying end-user database applications. Servio
supports its preducts with consulting on-site technical support
and educational services that enable customers to implement
mission-crifical object-based solutions,

Senvio Conp., 2085 Hamilfon Ave., Ste. 200, San Jose, CA 95105,
408.878.6200 (v), 408.868,0422 (7)

300K AUTHORS
SIGS

BOOKS

is currently seeking Authors for its
“Advances in Object Technology”
series.
Cpportunity to join rapidly growing list of

prestigious authors and experts and
gam internaticnal recognition.

Tex discuss your ideas for & book contact
Dr. Richard Wiener, Book Series Editor
135 Rugely Court
Colorado Springs, €0, 80906

@ Phone & Fax: 719.579.9616

2

ToeSMaLLTaLK RErorT

The first multi-dialect

Smalltalk

developers
conference

August 20-21, Glendale, California.

Presentations - Panels - Tutorials - Technical
sessions * Exhibits - Books & Magazines.

Digitalk (Smalftalk/V) + Servio (CemStone} -
Easel (ENFIN) » Quasar (SmalltalkAgents)

ObjectShare (WindowBuilder) - ParcPiace
(ObjectWorks) - many others.

Only $250#f you register hefore July 30! $300 after.
For more information and a registration form, contact
rMonica at (tel) 213-257-5670, {fax] 213-259-0430, or
(Compuserve} 72330,1236,

Highlights

Excerpts from industry publications

COBOL TO OOP
What would you say if your boss ordered you to transform 60
mainframe programmers into object-oriented programmers in
one year? Most likely, “You're joking, right?” Believe it or not,
in the past year American Management Systems (AMS) of Ar-
lington, Va., has transformed over 60 COBOL programmers
into Smalltalk GUI programmers. They didn’t raid the staff of
an QOOP tools firm, and they didn't rely heavily on external
consultants. But they did perform a major paradigm shift on
the minority of their staff. . . The secrets of their success in-
cluded: Boot camp: All programmers went through develop-
ment tool training and object-oriented design training. The
majority participated in a one- to eight-week apprenticeship
program, where they worked side by side with object-oriented
pros. The process was supportive and orderly—at no point did
programmers feel they were floundering. Teamwork: AMS
brought in OOP design dn programming experts to “mind-
meld” with their COBOL programmers. The experts designed
the application architectures and classes; the novices handled
the specialized processing and application logic. The OOP
novices with GUI design expertise did the screen layout. The
managers performed function-point analysis to glean new pro-
ject-estimation metrics. AMS effectively used consultants to
jump-start their efforts, without paying a fortune. Today they
have a core team of strong OOP technicians in-house. . .
Bringing object-oriented technology to the masses,
Christine Comaford, PC Week, 2/27/83

THEY SAY WE HAVE A REVOLUTION

We are currently in the middle of a revolution in the Smalltalk
world. Back in the old days the only objects that came with any
language were simple data structures, enough metaobjects to
write the system itself, and support for rudimentary graphics and
user interfaces. Everyone who used an object language was in the
business, by necessity, of creating fundamentally new kinds of
objects all the time. This limited users to those who were capable
of such invention,a nd limited the productivity of those users be-
cause writing new kinds of things is so much harder than reusing
existing frameworks. A consensus has grown recently that the
time has come to stop focusing exclusively on creating objects
and start supporting people who only want to use or elaborate on
things that already exist. Several factors contributed to this shift:
The market of wizards creating new frameworks from scratch
was gelting saturated. The economics of growth dictates a search
for new kinds of customers. The pace of innovation in user inter-
faces slowed, with the major windowing systems settling on
roughly the same set of components. This allowed the Smalltalk

vendors to stop spending so much energy doing the entire user
interface without help from the operating system. Enough ob-
jects had been created that is was possible to imagine someone
writing an application and not having to create new kinds of ob-
jects. The factors that used to single out Smalltalk—a bundled
class library and an interactive programming environment—
were no longer unique. Smalltalk had to move on or get tram-
pled by the Borland C++’s of the world.. . .

Whole lotta Smalltatk, Kent Beck,
OssecT Magazivge, 3-4/93

CORBA

About 60 companies are creating CORBA implementations, ac-
cording to the Object Management Group. But only DEC and
HyperDesk, Westborough, Mass., with its Distributed Object
Management System, are shipping CORBA 1.1 products. . .HP’s
implementation, to be called HP Distributed Smalltalk, is a set of
Smalltalk classes for use with VisualWorks, a Smalltalk develop-
ment environment from ParcPlace Systems. . .

HF Tool Showcases Key Object Spec, Dan Richman,
Oren Systems Topay, 2/15/83

OBJECT SQL
DBMS: Are you planning an object-oriented language? Or do
you recommend one?

[R&D section manager for HP’s Database Lab, and second
chairman of the SQL Access Group: John R. Robertson]:The
real issue is moving into that paradigm. Yes, we should have
standards, we should have a common language. I don’t think
C++ is necessarily the right language. By the time you get into
object systems you probably want to be having 4 GLs that are
going to take care of it for your. We should’ve learned that les-
son by now. We are not making an object-oriented language.
We have an object-interactive language, which really operates
at the command level. We're working with third parties who
are in the 4GL business. The Object Management Group work-
ing group seems to be migrating toward having a common
command set, which is OSQL [Object SQL]. I don’t think it
matters much whether you express that through C++ or
Smalltalk. The real issue is that you wanlt your object model to
let you move your methods out of your application and put
them into the database where you can reuse them. This is how
database technology will mature.

Hewlett-Packard’s Relational/Object Paradigm,
Peggy Watt and Joe Celko, DBMS, 2/93

26

THE SMALLTALK REPORT

SHARE

OBJECT
SIWILSAS

INc.

WINDOWBUILDER PRO

The New Power in Smalltalk/V Interface Development

!

WindowBuilder Pro/V is available on Windows for $295

Smalltalk/V developers have come to rely on
WindowBuilder as an ;

- and OS/2 [or $495. Our stan-

_ WindowBullder Pre: [Programmera

\:ﬂ k .,.] >

essential ool for develop-
ing sophisticated user inter-

Eile Edit Yiew Align Size Options Scrapbook Add

- dard WindowBuilder/V is
- still available on Windows
for $149.95 and OS/2 for

faces. Tedious hand coding
of interfaces is replaced by

$295. We offer full value

interactive visual composi-

- trade-in for our

tion. Since its initial release,
WindowBuilder has

- WindowBuilder customers
wanting to move up to Pro.

become the industry stan-

These products are also
available in

dard GUI development tool
for the Smalltalk/V environ-
ment. Now Objectshare
brings you a whole new

ENVY®/ Developer and
Team/V™ compatible for-
mats. As with all of our

level of capability with

praducts, WindowBuilder

WindowBuilder Pro! New

detauliStyle

functionality and power i
abound in this next genera- |
tion of WindowBuilder.

ProgrammerName

Pro comes with a 30 day
money back guarantee, full
I source code and no Run-
Time fees.

Some of the exciting new features...

= CompositePanes: Create custom controls as composites
Shea] of other controls, treated as
-{ 4 a single object, allowing the

—= developer higher leverage
I of reusable widgets,

i CompositePanes can be
used repeatedly and
because they are Class based, they can be easily sub-
classed; changes in a CompositePane are reflected any-
where they are used.

' City: State:
Zip:
Sk s

¢ Morphing: Allows the developer to quickly change

TSmainalk from one type of control ¥suis ——

‘WindowBullder > o =

Other to another, allowing for | © smaitaik
powerlul “what-if” style | O WindowBuilder
visual development, The | © Other

[—

flexibility allowed by
morphing will greatly enhance productivity.

e ScrapBook: Another new feature to leverage visual
component reuse, ScrapBooks provide a mechanism for
developers to quickly
store and retrieve pre-
defined sets of compo-
nents. The ScrapBook
is a catalog of one's
favorite interface com-
ponents, organized

e Rapid Prototyping capa-
bilitics: With the new link-

ing capabilitics, a develop- ||
er can rapidly prototype a At e

Icontditor

functional interface without ||ieemerax

Selert a Viewhanger Class:
[Diskrawser

rLink Type 1
Independent |
|Sibling

—

Opens the selected
window as a child of

x oo v : ~ MDISystel | i
wriling a single line of Folhng | ltne current window.
PolygonView |

code. LinkButons and
LinkMenus provide a pow-

Puzzlels

erful mechanism for linking
windows together and speci-
fying flow of control.
ActionButtons and
ActionMenues provide a

—| mechanism for developers to
attach, create, and reuse
actions without having to write code. These features
greatly enhance productivity during prototyping.

= ToolBar: Developers can Create sophisticated toolbars

just like the ones in the WindowBuilder Pro tool itself.

s Other new features include: enhanced duplication and
cut/paste functions, size and position indicators,
enhanced framing specification, Parent-Child window
relationship specilication, enhanced EntryField with char-
acter and field level validation, and much more...

e Add-in Manager: Allows developers to easily integrate
extensions into WindowBuilder Pro's open architecture.

' Catch the excitement, go Pro!
Call Objectshare for more information.

(408) 727-3742

Objectshare Systems, Inc 5 Town & Country Village
Fax: (408) 727-6324 Suite 735
CompuServe 76430,1003 San Jose, CA 95128-2026

WindowEBuilder and WindowBuilder Pro are trademarks of Objectshare Systems, Inc. All other brand and product names are registered trademarks of their respective companies

oges

Bob Hinkle, Vicki Jones, and
Ralph E. Johnson

s the premier object-oriented programming lan-
guage, Smafltalk should give programmers easy
access to objects, However, during debugging it
can be very difficult to get your hands on a par-
ticular ebiect. For example, suppose vou're devel-
oping a prograin that stores some objects in an OrderedCollec-

tion, but when it tries to retrieve them later, some are missing.
You might like to add debugging code to OrderedCollection
methods such as add: and remove: to detect when objects are
taken out of the OrderedColtection, but any changes would affect
every OrderedCollection in the systemn, bringing your image to 2
crashing halt. This article will show how to selve this and simi-
lar problems by letting yed medify code and add breakpoinis
that affect only one particular object, rather than al! objects in
a given class. This approach of defining only object-specific
methods is similar to what Kent Beck has described.?2 Cur so-
lution relies on the use of a new kind of class and on some
small but powerful variations on CompiledMethods and Compil-
ers, Besides being useful in their own right, we feel these exten-
sions again iilustrate (as in our previcus articles®*} how power-
ful Sralltalk’s reflective features are, as they allow
programmers to adapt and extend the environment to suit
their needs. The solution described here is specific to
Smalltaik-80, since it relies on Smatltalk-80’s architecture for
classes, meltaclasses, the compiler, and compiled methods and
on the complete availability of source code for these system el-
meni *As a result, our extensions may not apply 1o Smalltatk
Ver. . onments, although sormething similar may be pessible.

LIGHTWEIGHT CLASSES
The frst step to debugging objects is to be able to modify
methads on a per-object basis. In Smalltatk, methods for an

¥ Source code for the object debugging package is available by anonymous fip from
st.es.uiuc.edu. Look for the file ObjectDebugping.st in pub/sts_rdl.

object are defined in that object’s class and are stored in the
class’s method dictionary. To change a method for a particular
object requires that the object have its own private class, We
will give an object thal we want to debug its own class by in-
serting a new class between the object and its real class. We
could create a (perhaps temporary or anonymous} instance of
class Class for this purpose, but that’s a little heavy-handed: In-
stances of Class have many instance variables and a ot of be-
havior aren’t needed for our purposes. For example, Class adds
variables and functionatity to define new class and pool vari-
ables. In addition, Class inherits from ClassDescription variables
and code to support adding new instance variables and class
organizations. All of this is unnecessary for a lightweight class,
so we defined LightweightClass to be a subdlass of Behavior, Be-
havior is the superclass of ClassDescription, and it defines the
code needed for the interpreter (o do method lockup. (For
more information on the roles of Behavior, Class, and ClassDe-
scription, refer to the chapter titled “Protocol for Classes” in
Reference 5.) Since Behavior is a simpler starting point, in-
stances of LightwelghtClass will be smaller than instances of
{lass and will require less memory and time to allocate, initial-
ize, and finalize. That males it easier and less expensive to cre-
ate lightweight classes on the fiy to modify, even if only tem-
porarily, some object’s behavior.

Before explaining LightweightClass in detail, it’s helpful to
review the way things work normally in Smalltalk. When an
object is sent a message, the system tries to find a method cor-
responding to the message’s seleclor in the method dictionary
of the object’s class. If no such method exists, the system will
look in that class’s superclass, and so on up the chain of super-
classes until a method is found or the end of the chain is
reached. Furthermore, when a method is added to a class or
changed, the new code is compiled by an instance of the class’s
compilerClass (which by default in the system is SmalitalkCom-
piler}. The result of compiling is an instance of CompiledMethod,
which will be stored in the class’s method dictionary with its
selector as its key. The source code for the method is not stored
directly in the CompiledMethod; but, instead, is written into the
change log, and the CompiledMethod is given a pointer to its file
and offset.

Our implementation of lightweight classes changes this
normal scenaric in three ways. The first and most important
change inserts a LightweightClass in between an object and its
real class (or what we will call original class, since it was the
class by which the object was originally created), with the ob-
ject’s class being changed to the LightweightClass, and the
LightweightClass' superclass set to the object’s original class. In
this way, any message sent to the object will first be looked up
in the Lightweightlass's method dictionary. If a method is
found there, it will be used to respond to the message, and it
will be unique to that particular object. Otherwise, message
lookup will continue to the LightweightClass' superciass—the
object’s original class—and, hence, will proceed as usual for
objects of that class. Figure 1 illustrates this relationship be-
tween an object, its original class, and its lightweight class,

Tae Smarerarx Rerort

method corresponding o aSelector isn’t defined in the receiver,
a new BreakpointMethod is created and installed in the re-
ceiver’s method dictionary,

As with lightweight classes, we need a new compiler class,
BreakpointCompiler, to implement breakpoints. Once again,
though, this class is almost trivial, since it only needs to define
newCodeStream fo return a CedeSiream that creates Breakpoint-
Methods.

PUTTING THINGS TOGETHER

To exploit the functionality provided by LightweighiClass and
BreakpointMethod, we adapted the interface to make object de-
bugging as simple as possible. This required changing the exist-
ing Browsers, adding a menu option to Inspectors, and creating
a new Browser specifically for lightweight classes,

The existing Browsers were changed by adding a breskpoint
option o the menu in the selector view. Choosing this option
will either set a breakpoint on the selected method or, if the
method is already breakpointed, remove the brealpoins, so
that the option acts like a toggle switch. Furthermore, the se-
lector view allows method selectors to be lormatted, and we
use a preceding asterisk to quickly distinguish methods with
breakpoints.

In addition, all Inspectors now have a new menu option
called browseLightweight. Choosing this option will ¢create a
new lightweight class (or the selected object and open a
LightweightClassBrowser Lo examine and modify methods for
that particular object.

LightweightClassBrowser is & subclass of Browser for looking
at lightweight classes, As shown in Figure 3, the Lightweight-
ClassBrowser has six subviews. The first two views allow vou to
decide what methods you'll see: You can either see only meth-
ods defined in the lightweight class, or all methods up to some
specified superclass. The upper right view shows which class
you're listing methods up to, while the upper left view shows
which class the selected method is actually defined in. This
option makes it easy 1o view a superclass method and then
make changes to save in the lightweight class, The third view
lists all selectors from the Hgheweight class up to the class cho-
sen in the upper right view, These selectors ave formatied so
that all breakpointed methads are marked with an asterisk,
and so that all methods actually defined in the lightweight
class (as opposed to one of ity superclasses) are printed in
bold. The fourth view is a TextView on the code of the cur-
rently selected method. Finally, the List two views belong to an
Inspector on the object whose lightweight class is being
browsed.

This interface makes it easy to imagine how the debugging
session mentioned in the intreduction would proceed. Gnee
you've decided there is a problem with one of your DrderedCol-
lections, vou can use a Browser to put a breakpoint on the
methed where the OrderedCollection is created. When that
method is executed, a Debugger will pop up. The Debugger lets
you inspect the OrderedCollection and choose the browse-
Lightweight option to create a lightweight class for it. The

LightweightClassBrowser lets vou put breakpoints on the add:
and remove: methods. After you “proceed” from the Debugger,
you'll be able to watch as that one OrderedCollection is
modified, and you can find out when objects are added te it
and when they’re removed. With that information, vou’li be
well on your way to solving the problem.

These changes significantly improve debugging in the
Smalltalk environment. Though breakpoints are canvenient,
it’s the functionality of lightweight classes that makes the key
difference, as they allow you to monitor or alter the behavior
of particular objects witheut affecting the rest of your system.
The changes described here, while not complex, are remark-
able in one sense, because they rely on our ability to medify
parts of the Smalltalk syster that in some languages would he
internel and unavailable to programmers. The fact that
classes are first-class objects—which is to say, classes are ac-
cessible to and modifiable by the programmer—allowed us o
introduce a new kind of class and to replace an object’s class
on the fly during execution. Similarly, we were able to create
two subclasses of CompiledMethod, and make an important
change to that class itself, only because compiled methoeds are
first class. Finally, Smalitalk’s representation of the Compiler
itself, and its good design for pluggability, allowed us to cre-
ate two simple subclasses by defining only one method each.
The combination of the ease of making these changes with
the significant benefits they provide is a good argument for
the desirability of this level of refiection in a programming
system. In our next article, we plan to explore one level
deeper into Smalltalic’s reflectiveness by changing the com-
piler and the interpreter to introduce active variables and
watchpoints.

Referances

1. Beck, K. Instance-specific behavior, part T, THe SMaLLTALK RE-
rowrt 2(6), 1992,

2. Beck, K. Instance-specific behavior, part 11, The Smaritars Re-
rORT 2{7), 1992,

3. Hinkle, i and R. L. Johnson. Taking exception to Smalltalk,
part 1, Tae Svarirack Repony 2{3), 1992,

4. Hinkle, B., and R. E. Johnson. Taking exception to Smallialk,
part 2, THEe Smarvrark Revorr, {234, 1993

5. Goldberg, A., and I3, Robson. Smarirark-80: THE LANGUAGE
AND 1T5 IMPLEMENTATION, Addison-Wesley, Reading, MA,
1983,

6. A, H. Borning. Classes versus prolotypes in object-oriented lan-
guages, PROCEEDINGS OF THE ACM/IEEE Pary Joint Com-
ruter CoNpERENCE, Dallas, TX, November 1986, pp. 36-40.

Department of Computer Science at University of Hlinois at Urbang-
Champaign. Bob Hinkle is supported by a fellowship front the Fannse
and John Hertz Foundation. He can be reached via email ai
r-hinkle@uiuc.edu. Vicki Jones and Ralph Johnson can be reached
via email at {vjones, iokmson}@cs.nivc.edu.

Jury-AUGUST 1993

. cotitinued from page &

u DEBUGGING OBJECTS

Date
L methogDictionary

P
AA CompiledMethod 1
3 bytes: B}
A MethodDictionary melass
sowcaGode: 346802
& L agent
@
@
#asSecands.
#day JA BreakpointMethod
@ 1 bytes: #)
L melass
i sourceCoda: 52822
agent

LantMathod

Pl
& CompitedMethod ~ |-
bytes: #{..)
mglags
sourceCods: 347782
agent

Figure 2. The relationship between CompiledMethads and the BreakpointMethods
that represant them.

paintMethod itself is invisible in the debugging process, since it
is removed from the execution stack before the debugger
apens. In addition, BreakpointMethods implement the getSource
message by returning their client’s source, and so breakpointed
methods can be browsed directly,

The new variable agent is needed to make CompiledMethods
with breakpoints print out well. Every CompiledMethod has an
instance variable called mclass, which refers to the class in
whaose method dictionary the CompiledMethod should be
found. When {ompiledMethods print themselves out, they look
in their mclass to make sure they really are defined there ; if
they aren’t, they will print out as an unboundMethod, Since
EBreakpaintMethods replace their client in the method dictio-
nary, ali breakpointed methods would print out as urbound-
Methods, which is confusing and aestheticaily unpleasing, We
solved this problem by adding agent:. Now, when a Compiled-
Method prints out, it checks to make sure (hat its agent is
defined by its melass, and if so it prints out normally. Most
CampiledMethods are their own agents, but breakpointed
methods will have their agent set to the BreakpaintMethod
that's representing them, and so they'll print out correctly.
Figure 2 illustrates this refationship between CompiledMethods
and the BreakpointMethods that represent them.

In Figure 2, the asSeconds method for Date—the Compiled-
Method marked A—is a normal method. Its mclass is Date, it is
its own agent, and it is referred to directly by Date’s method
dictionary. However, a breakpoint has been placed on the day
method for Date. The #day entry in Date’s method dictionary
refers to the BreakpointMethod B, whose clisntMethod is the
CompiledMethod C. CompiledMethod C, in turn, refers to Break-
poirdMethod B as its agent. This way, even though Compiled-
Method C is not referenced by Date’s method dictionary, its
agent-— BreakpointMethod B——is, so CompiledMethod C will print
as a well-defined method rather than as an unbound ane,

We added breakpoints to the system by creating three
new methods in Behavior, thus making breakpoints in all
kinds of classes, including instances of both Class and
LightweightClass. The first method, isBreakpointat:, tells
whether the specified method in the Behavior has a break-
point set or not. The second, breakpointCompilerClass, returns
BreakpointCompiler, which is the compiler used for all classes
to create new breakpointed methods. The third method, set-
Breakpointat:, is the main one and is used to set or remove a
breakpoiat. It's implemented as:

setBreakpointit: aSelector
lem |
¢ = self whichClassIncludesSelactor: aSelector.
¢ isNil iffrue: ["self].
m ;= ¢ compiledMethodAt: aSelector.
self == ¢
HTrue: |
m isBreakpoint
iffrue: [m client mclass == self
iffrue: [self addSelector: aSelector
withMethod: m client]
ifFatse: [self removeSelector: aSelector]]
ifFalse: [self addSelector: aSelector withMethod:
{BreakpeintMethod on: m
selector: aSelector
nClass: seif)]]
ifFalse:
m isBreakpoint ifTrue: [m = m clent].
self addSelector: aSelector withMethod:
{BreakpointMethod ori: m setector: aSelector inClass: self}]

if the receiver Behavior is the class that defines the method cor-
responding to the parameter selector and if the method is al-
ready breakpointed, the code removes the breakpoint by test-
inng whether the BreakpointMethod’s client is defined in the
receiver or not, If it is, the BreakpeintMethod is replaced by its
client in the receiver’s method dictionary; but if it isn’t, the
BreakpointMethod is simply removed from the receiver’s
methed dictionary (thus leaving the client in whatever other
method dictionary it resides). If the method isn’t break-
pointed, the code creates a new BreakpointMethod for it and
adds it to the receiver’s method dictionary. Finally, if the

belweenand:
class .|

psDays =
“This method has been specialized for this one object™]
~42 |

o = Date today asDays i

so¥f I 33697

day ' selfasDays

year BN -

Figure 3. The lightweight class browser.

24

Tus SmariTarx Berort

A MethodDictionary

5 @
A Date 13 Date ®
class - e
day: 97 wdy methodDicticnary = ey
year: 1823 rday
i EY
pS
&
suparciass

A MethodDictionary

a

A Date A LightweightClass B

class o &
day: 58 g methodDictionary 1 i
year: 1993 ¥

42

L

&

L]

Figure 1. The relztionship between an object, its original class, and its
lightweight class.

In Figure 1, when the day message is sent fo the object
marked &, a corresponding method is searched for starting in
Date, the object’s class. This method returns the value of the
day instance variable, which (for A} is 97. However, when the
day message is sent to object B, message lookup begins in its
class, which is an instance of LightweightClass. The method in
the lightweight class’s method dictionary is defined to return
42, Thus, ohject B behaves differently from A and all other in-
stances of Date,

The two other changes pertain to source code management,
The code for methods in lghtweight classes can’t be stored in
the change log, since the lightweight class isn’t named in the
system dictionary, and it has no category or protocols like nor-
mal classes, (And in any case, the lightweight class may be an
entirely dynamic object that is created while running a pro-
gram, but which does not persist front one programming ses-
sion to the next, so that storing code for it in the change log
would make no sense.} Instead, we store the code directly with

the method it produces, which required us to create a new kind

of compiled method, CompiledMethadWithSource. Finally, to
produce these kinds of compiled methods, we exploited the
“pluggability” of the compiler and created a new subclass of
SmalltalkCompiler. We'll describe these two changes after fiest
looking at LightweightClass in detail.

As a subclass of Behavior, LightweightClass adds only one in-
stance variable, name, which is convenient for telling
lightweight classes apart. In addition to accessor methods for
this variable, LightweightClass defines three other methods of
interest: initiatizeWithSuper:, which initializes a new lightweight
class; compile:notifying:iffail:, which adds a new method toa
lightweight class; and comapilerClass, which defines the kind of
compiter to use for methods in a lightweight class.

A new lightweight class is normally created by sending
becomeLightweight to an object. This method is defined in 0b-
ject as follows:

becomeLightweight

| HghtweightClass |
setf HghtweightClags isNil

Just touch a button fo

= put # chart
view In your
window!

Add charts to your VisualWorks palette

ynamic Add or change data points, with minimal sereen repainting.
Add or remove data series toffrom the chart.

frteractive Select data poinds with the mouse-—EC-Charts informs
vour appiication.

{ses screen space effectively
Scroi the chart view in one of both
directions, Martk values of summary
functions in the
axis areas. Show
thresholds using
grid lines.

T
Al e (LS Eomsarnds) H2)

son

iy

Fhrw Vosx Sra -
i b of dedlars o4 1% 0z

G3%E o

4 Totsl hadget 2 Total sid Ic

o F ot CHE Soltware
(408) 462-0641

Mo runtime license fee

£3ll for g technical paper
on EC-Lharls

Visualiorks is a trademark

of ParcPlacs Systas, o0, 21137 Bast CHff D - Santa Cruz - CA 95062

iffrue: |
tightweightllass .=
LightweightClass newWithSuper: self class,
self changeClassToThatOf: tghtweightClass hasicNew]

If the receiver of this message already has a lightweight class,
nothing more is done, Otherwise, newWithSuper: is sent to cre-
ate a new lightweight class whose superclass will be the receiver
abject’s original class. The message changeClassToThatOf: is then
sent to the receiver to insert the lightweight class before the ob-
ject’s original class. Because some objects {notably immutable
objects like Smalllntegers, Characters, true, and false) can’t have
their class changed, becomeLightweight can’t be sent to thern,
but it can be sent to all others.

The newWithSuper: method creates a new lightweight class
and then sends it the initializeWithSuper: message, where the
parameter is the object’s original class. This initialization
method gives a default name to the lightweight class, creates a
new method dictionary for it, and sets 1ts superclass to be the
class passed in, so that any messages not found in the
lightweight classguote method dictionary will be looked up in
the object’s original class.

The solution described in the preceding paragraphs makes
sure that messages sent Lo a lightweight object are first looked
up in the object’s lightweight class as desired. However, class
messages will niot work correctly as the solution has been pre-
sented so far. For example, if aDay is a lightweight instance of
Date, sending “alay class nameGfay: 17 should be the same as
sending “Date nameOfDay: 1,” but aDay’s class is an instance of
LightweightClass, so “alay class nameGiDay: 1" will try {and fail)
to find a method for the message nameOfbay: defined for

JULY-AUGUST 1993

& DEBUGGING OBIECTS

LightweightClass, This problem exists because classes have sev-
eral roles, including roles as method repositories and as reposi-
tories for shared information {in this case, the names of the
days of the week). We want the lightweight class to play the
first role and the object’s original class to play the second, but
Smalltalk expects one entity to play both roles. (Alan Borning
summarizes the various roles of class and suggests an alterna-
tive approach in Reference #.) Crur solution: Lo this problem is
to separate out the role of method repository, which we did by
creating a new method for ali objects called dispatchingClass.
The definition of dispatchingClass in Object is the same as that
of class—it uses a primitive to directly access the object’s class
from the object’s memory structure. When an object is made
lightweight, its lightweight class is stored in the memory struc-
ture and thus returned as the value of dispatchingClass. Iy addi-
tion, LightweightClass overrides the class method to be:

class
“self dispatching{lass superClass

This will return the object’s original class, as desited, since
newWithSuper: instailed the original class as the lightweight
class’s superclass.

The LightweightClass method compilenotifying:ifFail: is
needed when a method is defined in a ligheweight class and is
implemented as:

compile: code notifying: requestor ifFail: failBlock
“Corapile the argument, code, as source code in the context of the
receiver and install the result in the receiver's method dictionary.
The argument requestor is to be notified if an error occurs. The
argument code is either a string or an object that converts te a string
or & PositionableStream on an object that converts to a string, This
method *does* save the source code. Evaluate the failBlock if the
compilation dees not succeed.”
| methodNode selector save method oldMethod |
save ;= code asString copy.
methedNede = self compilerClass new
compile: code
in; self
notifying: requestor
ifFail: faitRlock.
selector := methodNode salector.
method = methodNode generate,
method sourceCode: save.
otdMethod := self compiledMethodAt: selector Absent: [nit].
(otdMethod notiil and: [cldMethod isBreakpoint])
ifTrue: [oldMethod client: method]
ifFalse: [self addSelector: selector withMethod: method].
“selector

There are two major differences between this method and the
compilemetifying:iffail: method as defined in Behavior. First,
this method saves the source code that was passed in and
passes it along (using the sourceCode: message) to the Compiled-
MethodWithSource that's generated from the message send
“methodNode generate,” Also, the code checks to see whether
the method being compiled used to have a breakpoint and, if
50, preserves the breakpoint in the method dictionarv. {This
logic wilt be explained in detail in the next section.)

The final LightweightClass method is compilerCiass, which

simply returns a new class, LightweightCompiler, to be used when
compiling lightweight class methods. Creating a new compiler
class sounds overly ambitious, but it’s actually quite simple,
since the new class has only one method, newCodeStream; the
rest are inherited straight from SmalltalkCompiler. This method
is used to create a new CodeStream for use by the compiter. Since
CodeStream generates CompiledMethods by default, we changed it
to be parameterized by the kind of method generated, and so
LightweightCompiler implements newCodeStream simply by re-
turning a CodeStream that will generate instances of Campiled-
MethedWithSource. The implementation of CompiledMethodWith-
Source is just as simple. We changed three methods so that the
sourceCode instance variable is interpreted as a source siring
{rather than a pointer to a file and offset), and the rest of its
functionality is inherited from CompiledMethod.

With these few changes we now have an easy way to change
the behavior of individual objects. We still need a good inter-
face for doing that, though, and we’ll describe our approach
for that afier first looking at breakpoints.

BREAKPOINTS

One of the typical things a programmer wants to do while de-
bugging abjects (and often in other debugging, as well) is to
add “seif halt” to a method—effectively adding a breakpoint. As
it turns out, there’s a simple way to add an initial breakpoint
using the same technique that we used above with Lightweight-
Compiler and CompiledMethodWithSource; we'll simply create a
new clags of compiled method, BreakpointMethed, and a com-
piler for generating instances of it. This variely of breakpoint
has three advantages over the “self halt” version: They are easier
toeradd and remove, since it’s dome by menu rather than by typ-
ing; they don’t affect the various change mechanisms, so the
change set and change log don’t include trivial changes for
adding (and presumably later removing) a halt in 2 method;
and they are invisible in source code, so & programmer who is
browsing or debugging a breakpointed method will see only the
normally defined code—the breakpoint is invisible, The one
disadvantage of our techuique is that you can halt only at the
start of a method, though our design may be adaptable to caver
breakpoints throughout a method’s bady.

BreakpointMethed is a subclass of CompitedMethed with one
instance variable, clientMethoed. In addition, we added a new in-
stance variable, agent, to CompiiedMethod, When a breakpoint
is set on an existing CompiledMethod, a new RreakpointMethod is
created, and these two instance variables are changed so that
the BreakpointMethad’s clientMethod is the CompiledMethod, and
the CompiledMethod’s agent is the BreakpointMethod, The body
of a BreakpeintMethod is always the same: It's the expression
“Notifier handleBreakpoint.” Thus, when a BreakpointMethod is
executed, this expression is evaluated, and Notifier responds by
updating its stack, replacing the BreakpointMethod with its
client--the original CompiledMethod-—and opening a debugger
with that method in the top context. In this way, the Break-

cotirintueed on page 2.

Twe Smarevary REporT

ParagraphEditerinitializeDispatchTable.
ParagraphEditerinitializeAdditionsToDispatchTable.

These bindings are valid only for windows created after initializ-

ing, so open a new Browser or Workspace to test the additions.
For Smalltalk/V, we use keyboard abbreviations. After typing

an abbreviation, type Shifi-Space to expand the abbreviation.
Execute the following code, custormizing as appropriate:

Smalitalk at: #Abbreviations put:Dictionary new.
Abbreviations
at: ‘g’ put:'(Notifier isKeyDown: ViShift) ifTrue: [self halt].”;
at: i’ putiCurrentProcess walkbackOn: Transeript raxbevels: 1.7

In Smalkall/V for 05/2, add the following methaod;

TextPane
characterInput: aChay
“Process a character typed by the user.”
} abbrevDict left right ¢ scontinue newline |
abbrevDicl := Smalltalk
at:i#Abbreviations
ifAbsent: [“self basicCharacterInput;aChar].
{alhar = Space and: [Notifier isShifiDown])
iffrue; [selfgetPMSelection.
teft = yight ;= selEnd - 1.
5 0= Stving new.
[1= self charAt: lefl.
{continue := {c notlil and: {c isalphaNuraeric]))
ifTruer [s = {String with: ¢), s].
continue]
whileTrue: {left 1= left - 11
niew = ahbrevDict at; 5 ifAbsent: [nil].
new notNilifTrue: [setf selectindexFrom: left to:right].
“selfinsert: new).
~super characterinput: aChar

In Smalltalk/V for Windows, copy the text from the TextPane
method characterInput: 1o a new method called basicCharacter-
Input:,

TextPane
basicCharacterinput: aChar
“Private - the user typed aChar,”
self isGapSelection
ifFalse: [setthideSelection].

medified :=true.

self
selectAfter: newSelection comer;
makeSelectionVisible;
disptayChangesforCharlnput;
showSelecton

Then, replace the original characterInput: method with the
following:
TextPane

characterInput: aChay
“Process a character fyped by theuser.”

| akbrevDict left right ¢ scontinue Une new
abbrevDict == Smallialk
at: #Abbreviations
ifAbsent: [~selfbasicCharacterlnput; aChar].
{aChar = Space and: [Nolifier isKeyDown: VkShift])
ifTree:[left = right := selection corner x.

ling := textHolderlineAt: selection corner y
5 1= String new.
[o= line at: left,
(continue ;= {c notNil and: [cisAlphaNumeric]))
ifTme: {s == {String with: ¢),5]
ifFalse: [left ;= left + 1].
{continue and: {left > 111
whileTrue: [left == left - 1].
new =abhrevlict at: s ifAbsent: [nil],
new notNilifTre:
[selection
selectBefore: left @ selection comner y;
selectTo: right @ selection corner y.
self replaceWithText: new,
selection selectAfter: left + new size @ selection comer v,
self forceSelectionOntoDisplay.
~nil]].
“self basicCharacterTnput: aChar

Be careful when entering this method in the browser, as mis-
takes will prevent subsequent character input from text panes,
such as in the bottom pane of the browser.

CAVEATS

Please note that the debugging techniques advocated in this ar-
ticle may violate normal programming guidelines. Some of the
expressions use globals or “private” metheds; others, like mov-
ing or warping the cursor, are expressly prohibited by user in-
terface style guides. Use them judiciously.

CONCLUSION
While this article has presented a collection of Smalltalk de-
bugging technigues, it is impossible 1o describe the most
efficient debugging strategy for any particular situation with-
out knowing where the problem lies. Of course, if you knew
where the bug was in the first place, you wouldn’t need to de-
bug it

These debugging hints won’t make you an expert overnight.
Effective debugging requires creativity and experience and
there are few shortcuts, but assembling an arsenal of debugging
techniques can shorten development time and improve code
quality. B

Acknowledgments

We'd like to thank the following people, who provided prob-
lems, solutions, or otherwise helped debug the debugging pa-
per: Ken Auver, Duane Campbell, Andrew Cornwall, Tom
Hendley, Tom Heruska, Larry Jundt, Cary Laird, Mike Lucas,
Pat Martin, Angie Multer, Kim Rochat, Brian Wilkerson.

Roxie Rochat is Senior Technical Specia!tisnt in Advanced System De-
velopment and Process Insirumentation Technelogy at Fisher-Rose-
mount Systenis Inc., 1712 Centre Creek Drive, Austin, TX 78754,
512.832.3583. She can be reached via email at rochatr@®fisher.com.
Juanita Ewing is a senior staff member of Digtalk Professional Ser-
vices, 921 SW Washington, Suite 312, Poriland, OR 97205,
503.242.0725. She is a colummnist for THE SMALLTALK REPORT.

JULY-AUGUST 1593

23

SMALLTALE DEBUGGING TECHNIGUES

provided by Windows to remove an unwanted task with the
End Task button. A more reliable method is to type <CTRL-ALT-
DEE>, The first <CTRL-ALT-DEL> allows you to exit the current
process. Another <CTRL-ALT-DEL> allows you to reboot the
machine,

After exiting, use the appropriate utilities to recover the
changes you want o keep, being careful not to restore the
method or methods that caused the crash.

4n Advanced Emergency Procedure for Objectworks

If vou're feeling more adventuresome and know exactly what
you did wrong, Objectworks allows you to recompile the
offending method instead of quitting, For example, you insert
a self halt in a critical method such as the otherwise empty con-
trollnitialize method and quickly realize that you should have
done this in = subclass when you see all the notifiers pop up.
Since <CTRE-C>, the program interrupt key, doesn’t help, you
type <GTRL-SHIFI-C> to bring up the Emergency Evaluator and
then evaluate the following expression to restore the original
method:

Controller corpile: ‘vontroilnitialize “self’ clagsified:
“basic control sequence”

Don't be concerned about making the method pretty or get-
ting the protocol exactly correct; you can and should fix those
details once your environment is back to normal again,

OTHER DEBUGGING AIDS

Ways to debug problems are as varied as the bugs themselves,
bt the following tips include advice about general approaches
0 object-oriented debugging, techniques for graphical debug-
ging and ways to add shorteuts to access frequently used de-
bugging expressions.

lsolate Debugging Code in a2 Subclass

Whenever possible, isalate your debugging code in a new sub-
class. You can copy methods from the superclass or override
them to add debugging information. This is most useful when
vou are primarily interested in finding out how the current sys-
tem works and your debugging activities are confined to halts
and monitoring activities such as printing to the Transcript. if
you are trying to find a genuine bug and functionally changing
code, vou have to remember to copy the changes back to the
real class.

Graphical Feedback
When you're debugging graphical applications, you need a lot
of visual feedback, If your application is interaclive, you might
need to understand where the curser s focated and how to
manipulate it.

In Objectworks, you can find cut where the cursor is rela-
tive to the window with the expressiomn:

ScheduledControliers activeController sensor cursorPoint

You can position the cursor explicitly with:

ScheduledControliers activeContrelier sensor cursorPoint: aPoing
Yeu can ask the user to interactively designate an area on the
screen:

Rectangle fromUser
Indicate an area with a filled rectangle:

SchedutedControlers activeController view graphirsContext
display Rectangle: (D@0 extent: 10@100}

In Smalitalk/V, there are a similar set of expressions. To find
the location of the cursor in screen coordinates use;

Cursor sense

To translate to coordinates for a pane use;
Cursor sense mapScreenToClient: aPane

To set the location of the cursor refative to the screen origin:
Cursor offset: aPoint

You can ask the user to interactively designate an area on the
SCreen:

Display rectangleFromUser

You can also indicate a screen areq, in this case by filling the
rectangle with a solid red color:

Display pen fll: Display rectangleFromUser color: CrRed

Magic Debugging Keys

If you find that you use certain debugging expressions fre-
quently, you can modify your programming enviroament to
add these expressions with function keys or keyboard
equivalents.

For Objectworks, we use function keys to insert some of the
debugging expressions mentioned previously.

The ParagraphEditor’s initializeDispatchTable class method
controls the binding of keys to actions. Rather than adding to
this method, the following code creates a new method for the
debugpging bindings:

ParagraphEditorclass
jnitializeddditionsTolispatchiable

“Initialize additional keyhoard dispateh keys.”

“ParagraphEditor initializeDispatchTable,

ParagraphEditor initializeAdditionsToDispatchTable.”

Kayboard bindValue:#displayHaltKey: to: #F5.

Kevboard bindValue: #displayGuardedHaltKey: to: #F6.
ParagraphEditer
displayHaltKey: aCharEvent

“Replace the current text selection with a debugying statement-
initiated hy #F5."

solf appendToSelection: ‘self halt.\” withCRs,
displayGuardedHaltKey: aCharEvent

“Replace the current textselection with a debugging statement—
initiated by #56."

self appendToSelection: ‘TnputState default shiftDown

ifTrue:[self hatt].\" withCRs.

After compiling those methods, be sure to execute

22

Tue SMmaLrTank REronry

Object Technology Potential
Object Technology can provide a
company with significant benefits:
= (Quality Software

¢ Rapid Development

» Reusable Code

« Model Business Rules

But the transition is 4 process that
must be designed for success.

Transition Solution

Since 1985, Knowledge Systems
Cerporation (KSC) has helped
hundreds of companies such as
AMS, First Union, Hewlett-Packard,
IBM, Northern Telecom, Southemn
California Edison and Texas Instru-
ments to successfully transition to
Object Technelogy.

_ ADVANCED TRAINING

ANALYSIS & DESIGN

CUSTOM CONTRACTS

APPRENTICE PROGRAM

MENTORING

TEAM TOOLS

KSC Transition Services

KSC offers a complete training

currictlum and expert consulting

services, Our multi-step program is

designied to aliow a client to ulti-

mately attain self-sufficiency and

produce deliverable solutions, KSC

accelerates group learning and

development. The learning curve is

measuied in weeks rather than

months. The process includes:

s [ntroductory to Advanced

Programming in Smalitalk

s STAP™ {Smalltalk Apprentice
Program) Project Focus at KSC

00 Analysis and Design

* Mentoring: Process Support

KSC Development Environment
K8C provides an integrated applica-
tion development environment
consisting of “Best of Breed” third
paity tools and K8C value-added
software. Together KSC tools and
services empower development
teams to build object-oriented
applications for a client-server |
environment.

Design your Transition

Begin vour successful "Object
Transition by Design” For more
information on KSC's products and
services, call us at 919-481-4000
today . Ask for a FREE copy of KSC's
informative management report:
Software Assets by Design,

nowledge Systems Co

OBJECT TRANSITION BY

1992 Knowledge Systermns Corporation.

DESIGN

B : 114 MacKenan Dr.
uon Cary, NC 27511
{919) 481-4000

Richard L. Peskin

1992 marked Smalltali’s 20th anniversary. While using
Smalitalk for simulation was an important goal for the environ-
ment, applications to “real” scientific and engineering simula-
tion and modeling have been few, In earlier Smailtalk systermns,
slow (and expensive) hardware logether with siow interpreters
were adequate reasons for the scientific community to ignore
Smalltalk. Addiction to FORTRAN and censervatism com-
peunded the problem,

Today’s modern Smalltalk systems running on high perfor-
mance workstations have removed some of the traditional barri-
ers to the use of the language for scientific computing. While in-
terpretive envirnnments are generally an order of magnitude
slower than oplimized compiled code for numerically intensive
tasks, techniques to integrate compiled code segments into
Smalitalk applications can overcome this deficit. The advantages
of Smalltalk’s graphical interface and its ability 1o promote pro-
totyping offer much for scientific computing,

To address the issues and problems presented by scientific
applications of Smalltalk, Kent Beck of First Class Software and
Porganized a workshop at OOPSLA 92 in Vancouver. Atten-
dance was by invitation only. Ten position papers were pre-
sented during the morning session, the afternoon session was
devoted to informal workgroups that delved into design and
implementation specifics. The position papers covered a wide
range of domain-specific topics concerned with applying
Smalltalk to scientific and engineering computation, However,
all the papers were characterized by certain commonalities, one
of these being that Smalltalk’s flexibility does admit strategies to
overcome weaknesses such as computational performance. 1
opened the meeting with some overview comments and noted
the tising interest in object-oriented computing within the sci-
entific and engineering community. Furthermore, with the
rapid increase in hardware performance, we can expect more
applications of interpretive environments to scientific and en-
gineering problems, This is already evident in journal articles

where languages like Lisp, Prolog, Smalltalk, etc. are taking
place alongside FORTRAN and C. However, this domain com-
munity is very demanding; if existing (-0 environments are
not suitable, nsers will create ones that are. Sather is an exam-
ple.

[also emphasized the need tor robustness, completeness,
and correciness in Smalltalk implementations if they are to
meet the neads of the scientific community. Supporl for exter-
nal programs, inter-application communication, distributed
and parallel computation, and numerical and symbalic com-
putation classes are just some of the features needed, but ave
currently either absent or minimally present in Smalltalk sys-
tems. This level of support may be a tall order for a language
with only one or two vendors and no “standard”; one reason
tor the popularity of Lisp amaong the scientific community is its
standards and its multi-vender support,

The bottom line is that the scientific and engineering com-
putation cormmunity will adopt (0-0 systems and do want the
prototyping flexibility offered by an interpretive environment
with dynamic binding. If Smalltalk is to be chosen by more
than just a token few, its user community and vendors will
have to work together 1o meet the needs of scientists and engi-
neers, The GOPSLA workshop was set up to be one forum to
assist in this process. To this end, vendor representatives were
invited to attend, and ParcPlace Systemns had a representative
at the workshop. The morning presentations were further di-
vided inlo general topics (mathematics, engineering computa-
tion, scientific computation, and scientific data management)
and application papers. However, these boundaries were not
sharp. Professor David Rector of the University of California,
Irvine opened the morning session with a discussion of his
work in the development of a Smalltalk-based system to teach
numerical amalysis to students, He presented several examples
of how current Smalltalk standard implementations fail to pro-
vide needed support, One example is the absence of precise in-
terval subdivision (which he has corrected). He suggested im-
plementing a new iterator, map; [aBlock], so that collection
operations retuirn coz.‘rectly {e.g., so that collect: over a dictio-
rary returns a dictionary, etc.), and he showed how this applies
o a differential equalion solver method. Rector suggested a
separate class, Quantity, under Object, because Number is not ap-
propriate to hold integral demains and fields such as complex
numbers, polynomnials, quaternions, etc. He also pointed cut
that class Avray is not the proper container for Vectors and Ma-
trices, In particular, the many varieties of matrices implies the
need for & more general class to deal with these objects. This
subject became the topic of one of the afternoon working
groups.

Alan Knight, formerly of the Department of Mechanical
and Aerospace Engincering at Carleton University, presented
an overview (co-authored with N, Dai) of Smalltalk in the con-
texts of applications to finite element method solvers, Drawing
an five years of experience in attemnpting to use Smallalk for
this type of problem, he listed the major problem areas of per-
formance, portability, graphics, and user-interface facilities.

8

THE SMasiraLk REPORT

If the code is being executed from a controller method in Ob-
jectworks, vou can use the simpler:

self sensor shiftDown iffrue: [self halt]
If this interferes with other tests for the shift key, you can also
test for the Meta, Option, Alt (if it isn’t commandeered by
vour windowing system), or Ctrl keys. For more information,
see the section on sensing input near the end of Chapter 18,
“Application framework,” of the User’s Guine ror OBJECT-
WORKS\SMALLTALE,

For Smalltalk/V, you can use platform-dependent kevs with
expressions such as the following, For Smalltalk/V for Win-
dows, use;

(Hotifier isKeyDowr: VkControl) ifTrue: [self halt]

You can also gain control over the execution of nen-primitive
expressions executed in the context of a workspace, debugger,
ot inspector. For example, execute do it on the expression be-
tow, which sends the halt message to 3:

3 halt raisedTo: 2

In the debugger, step or skip through the messages until you get
1o the raisedTo: message and then send or hap. You can’t step
into a primitive, such as integer addition, from the debugger,

Slowing Down the Action

Sometimes you don’t actually want o stop the action; you just
need to slow it down a little. For example, you're looking at
code that draws a complicated figare with a loop and you want
to see each line segment drawn, one at a time. You might use a
delay in the loop For Objectworks:

Cursor wait showWhile: [{Delay forMilliseconds: 800) wait]
For Smalltall/V for Q8/2:
CursorManager wait changeFor: {DosLibrary sleep: 800]

L Objectworks, don’t forget to send the wait message to the
delay. You can ¢reate an instance of a Delay anytime you like,
but it doesn’t actually stop the action until the wait message is
sent.

Or, you might choose to wait until a mouse button is
clicked For Ohjectworks:

Cursor crossHair showWhile:

[ScheduledConiroliers activeController sensor waitlioButton;
waitClickButtan]

This expression waits until all mouse buttons are up and thea
waits again until one is pressed. For Smalltalk/V:
CursorManager execute changelor:
[Notifier consumelnputUntil: [:event |
event selectoy =#buttoniDown:].

Notifier consumeInputUntil:[:event |
event selector = #hutton1Up:]]

This expression waits until the left mouse button is pressed
and then released.
The first expression makes sure you aren’t in danger of run-

ning on through the whole expression just because the mouse
button was still down from a previous operation such as a
menu invocation.

Changing the cursor while the system is sleeping or walting
for a button press is a good visual reminder of your program’s
action. There are a number of other cursors available, and if
vou have mulliple delays in a method, you can use different
unes Lo give you feedback about the state of the execution,

A delay can also give you time to interrupt a method with a
program interrupt if vou s¢ choose.

HOW DO | GET OUT?

Cne of the best things abour the Smalitaik covironment is that
you can change almost anvthing you like. One of the worst
things about the Smalltalk environment is that you can change
almost anything you like. If you happen to alter vour environ-
ment in an undesirable way, you can also find vourself in hig
frouble.

Although you might be able get yourself out of a tight spot
if you have enough time, skill, and patience, you may find that
it’s best to quit out of an image and recover desirable changes
in a fresh image rather than to undo the damage,

Quitling while You're Ahsad
If your normal means of exiting is blocked, you can often exit
by evaluating an expression, In Objectworks, the magic expres-
sion to gracefuily shut down the image when all clse has failed
ist

ObjectMemory guit
or

ObjectMemory quitPrimitive
In pre-4.1 Objectworks, this message was sent to Smalltalk in-
stead.

In Smalltalk/V, the EXpression is:

Smalltalk exit
Ifyour image seems dead and you don’t get any response from
typing, first try the program interrupt and attempt the exit
procedure again. If that doesn’t wark, then, for Objectwarks,
use the Emergency Evaluator to evaluate the exit expression;

L. Type <CTRL-SHIFT-C> to bring up the Emergency Evaluator.
2. Type the exit expression ObjectMemory quit.
3. Type <ES0> to evaluate the expression,

In Smalltalk/V for 05/2, use the WindowList provided by Q0872
to remove an unwanted process:

1. Type <CTRL-ESC> {0 bring 1 the WindowList.
2. Select the top-level Smalltalk/V Window or the Transcript.
3. Bring up the menu and select Close,

(5/2 also notices if a process is nat responding to events and
prompis you to exit the process.
In Smalltalk/V for Windows, you can use the Windowlist

FULY-AUGUST 10993

21

SMALLTALK DEBUGGING TECHNIQUES

Source Code for Blocks

Although the source code is not always available, the following
expressions are sometimes helpful for examining the source
code for blocks (Smalitall/V} or BlockClosures or MethodCen-
texts (Objectworks). For Objectworks:

aBlockClosure method getSource
aMethodContext sourceCode

For Smalltalk/V for (95/2:

aBlock homeContest method sourceString

Decompiling a Method in Objechworks

Tf the source code for a method is unavailable, the Objectworks
browser allows you to view a decompiled version of the
method: The comments are gone, certain expressions are opti-
mized, and the temporary variable names t1, t2, and so on are
used in place of the original argument and temporary variable
narmnes.

Even when the source code is available, you can view the
decompiled version of the method if you hold down the shift
key when you select the method name in the Objectworks
browser. This techrrique is useful for finding obscure bugs such
as when literals have been unknowingly altered. Many pro-
grarnmers think that Smalitalk literals are immutable, and do
not realize that they can be altered. The following example il-
lustrates detection of an altered literal array.

A method initializes an instance variable to reference a lit-
eral array:

initiatize

arrayConstant := #{1 2 3 4}

The programmer intends this to be a constant, but later uses
an expression such as the following to alter the array:

arrayConstant at: 1 put: 160

This alters the contents of the literal array in memory, so the
ariginal contents of the array are not restored even if the origi-
nal initialize method is re-executed. You can check the con-
tents of the literal array by decompiling any method that refers
to it. After altering the array, the decompiled contents of the
initialize method are:

arrayConstant = #(100 2 3 4)

if you recompile the method from the source, the original con-
tents of the literal array are restored. This is g particulatly nasty
bug to locate, so be forewarned. To prevent this type of bug,
same programmiers provide accessing methods for important
literals, and return a copy of the literal instead of the original.
Because the ariginal literal is never returned, inadvertent alter-
ations are made only to the copy .

Entry Points
Sometimes vou just want to know how a window is opened or
what happens when a meny item is invoked. Tnstead of inter-

ripting it, sometimes it's easier to trace the action down from
a few well-known entry poinfs.

For example, the Objectworks Launcher lets you open
browsers, workspaces, and other windows. The code behind
this master menu is found in LavncherView and VisualWorlks
UlVisualLauncher class methods. Browse all implementors of
“apu* to see menu initializations for other windows: select im-
plamentars from the VisualWorks Launcher Browse submenu
or the ENVY Launcher ENVY>hrowseimplementors... alternative,
The string *enu*' matches selectors such as menu and fileList-
Menu regardless of the capitalization,

The file menu in Smalitali/V contains items to open
browsers, workspaces and other windows. The class Applica-
tionWindow supports the file menu, and conttains entry points
to tools. Browse the class to examine the methods that open
windows,

WHERE AM | GOING?

This section highlights techniques that allow you to temporar-
ily halt or gain mare control over the execution. Some tech-
nigues, such as slowing down the action in your application,
are oriented towards graphical operations.

Breakpoints

Although Smalltalk has a well-earned reputation for its debug-
ging environment, current implementations place some re-
strictions on breakpoints, In Smalltalk/V, you can set break-
points from a debugger. In Objectworks, you have to
recompile a method and insert code to stop execution. Remaov-
ing the code to stop execution also requires recompilation.

In both Smatltalk systems, one of the first debugging tech-
niques you learn is to send the message halt to any object.
When executed, it prompts you to open a debugger. In a de-
bugger, you can exccute expressions and inspect the current
abject, its instance variables, and any method remporaries. The
message error: also prompts you open a debugger, and uses its
argument in the title of the walkback or notifier, These expres-
sions can be inserted in a methed or executed in a workspace.

self halt.

self error: ‘nvalid data during refrieval’

However, you quickly learn that this needs to be used with
caution. If vou place the expression inside a loop, a notifier ap-
pears each time the loop is executed. You can guard the ex-
pression if you know exacily when you want to break:

1> 10 iffrue: [self halt]

O you may choass ta control the execution dynamically. For
example, the following expression halts only if the shift key is
pressed. For Objectworks:

InputState default shiftDown ifTrue: [self halt]
For Smalltalk/V:

(Notifier isKeyDowr: YkShift) i#True: {self halt]

20

Tue SmarLTaik Report

Approaches to performance improvement include use of prim-
itives and high-performance libraries, and improved imple-
metitations. Knight pointed out that Smalltalk’s claimed high
portability falls short of the mark in practice, both in portabil-
ity between versions and limited number of supportad plat-
forms. Smalltalld’s integration with other languages needs to be
improved, as do graphics (particularly 3-D graphics) for sci-
entific and engineering applications. The integration and
graphics issues were also discussed in other papers at the work-
shop. Weaknesses in the user interface, particularly the need
for good widget toolkils was mentioned, and he emphasized
the need for significant improvements in the debugger.

D1z, Rob Gayvert of RIT Research Corp. discussed the use of
Smalitalk in scientific computations, with emphasis an appli-
cations in speech and signal processing. He also emphasized
the need for improvement in the numeric array and mairix
classes, listing specific new protocols for both numeric array
and matrix classes. His group has implemented these in
Smallralk/V Mac, His suggested strategy for domain-specific
classes (such as may arise in nonlinear equation solvers) is to
implement first without regard to performance and then to
optimize. The RIT group has implemented inter-application
communication {specifically AppleEvents) as well as exten-
sions to the ToolBox access in Smalltalk/V Mac. This greatly
increases the potential for access to external data sources, ap-
pHcation servers, etc. This should be a standard feature in fu-
ture Smalltalk releases. Gayvert showed examples of his systern
improvements, namely the speech processing application. Bet-
ter numeric and matrix classes, IAC, etc. allowed the construc-
tion of tools to do speech processing, which have both algo-
rithmic power and good graphical presentation for the user,
His conclusion is that, with proper additions and improve-
ments, Smalltalk has strong potential for scientific and engi-
neering applications.

1. Sandra Walther of Rutgers, in a paper [co-authored,
reviewed some features of the Smalltalk-based SCENE system,
a software environment to support numerical experimentation
in science and engineering. Some features of importance in
this environment include user extensibility and configurability,
automatic programming, computational steering, distributed
storage, and parallel/distributed processing, The talk focussed
on the strategies used to handle very large data sets—sets so
large that their representation in Smalltalk as data objects is
impractical. The large data sets were implemented as active
processes running on a {server) platform. in this way, one can
handle these sets efficiently, but to users of the Smalltalk inter-
face the sels appear as manipulatable objects, Practical use of
this scheme requires some good interprocess communications,
and a rmeans for users to tailor particular data sets to meet their
needs. The latter facility is provided by an object editor tool that
is used to create and compile new C code for the active data set
and tailor menus and other interface items in response (o user
directives,

In conclusion, Smalltalk can be appended to handle large
data sets and other scientific computational requivernents.

/,/""’)’};Tow supports T
(" Digitall’s PARTS
s ParcPlace’s Smalltalk-80

Fa it

ODBMS
The Objectoriented Database

O Persistent Object Storage for Smalitalk
™ Handles Complex Data Types
1 Object Ownership, Versioning, Security,
and Object Distribution
O Programmer and Enduser Versions
O Stand Alone or Network Configuration
© Database Classes licensed for
OEM Disaibution
1 Support for ParcPlace Smalltalk-80

Add-on Applications
T DSSDe SourceCode Management
O Interface to SOL~Classes
T Support for Digitalk’s PARTS

ODBMS
Objectoriented Technology by
VC Software

1USA: VO Softwars Inc., Three Christing Ceatre, 200 N.Walout Sizect, Suite
1000, Wilmington, DE 198 <> Other Countries: VO Software Construction
GmbH, Petritorwall 28, 38118 Braunschweig, Germany, Tel +49-531-24 24 00,
Faz: +49-5331-24 24 0-24

JULY-AUGUST 1993

& SCIENTIFIC AND ENGINEERING COMPUTATION

These facilities provide Smalitalk-like incremental compilation
and dynamic binding features outside of the actual Smalltalk
environment,

The portion of the workshop devoted to applications be-
gan with a talk by Jan Steinman of Bytesmiths. He described
his work in using Smalltalk to develop laboratory instrumen-
tation interfaces. He introduced the concept of the “abstract™
mstrument object (instances of an InstrumentObject class),
which allow standard abstractions of physical instruments and
effects a basis for common data acguisition protocols. Other
features, such as appropriate abstract protocols, were also dis-
cussed. As an example he described the Tektronix instrument
ensemble control system, a stack-based machine architecture
for controlling instruments and returning results via a graphi-
cal interface. This was developed under the object paradigm in
Smalttalic. The position paper by P. Johnson and [3. Herkimer
of Martin Marietta was not presented, but copies were avail-
able, The paper describes a space vehicle launch simulator
written in Smalitalk/V Mac. Among the issues discussed were
the need for support for parallel computation abstractions in
Smalltalk that would provide a framework for implementa-
tion of parallel compatation of numerically intensive portions
of these complex simulations. This paper also pointed out the
need for better numerical classes in Smalltalk. Brian Remdeios
of BC Research presented a Smalltalk application designed to
simulate control fanctions for an 1C engine, The hierarchical
nature of class structure allows encapsulaiion of various en-
gine component parts into a single functional representation
or the ability to study individual components. In this applica-
tion, Smalltaik was able to facilitate inter-object communica-
tion, but it was suggested that a class to handle more general
transfer functions between objects would be helpful, The pa-
per discussed how Smalitalk models of this type could be used
to implement non-brittle {e.g., fuzzy logic) decision process
simulations.

David Jones of Prior Data Science presented a paper on al-
gorithm objects. While the specific application discussed was
taken from the domain of geometric models, this paper pre-
sented a controversial proposal, namely, to collect algorithms
{methods) under a single class {Class Algorithm). This is a radi-
cal departure from current Smalltalk practice where algorith-
mic methods are associated with specific class behaviors, Un-
der the Class Algorithm proposal, algorithms together with the
their documentation etc. would be found in a single class, sup-
ported by its own browser and other interface features. Users
would have a single point of reference for all algorithms, and
class behaviors would be implemented via dispatch from Class
Algorithm. This proposal was the subject of oae of the after-
noon working groups.

Judith Cushing of the Oregon Graduate Institute dis-
cussed the subject of computational proxies. The difficulr is-
suie here is how to render results computed by different sci-
entific programs comparable. The emphasis in this paper was
on the computational chemistry domain, but the central is-
sue of how to design object-oriented databases that can cap-

Modern Smalltalk systems running on
high performance workstations have
removed some of the traditional barriers
to the use of the language for scientific

computing.

ture both syntactic and architectural complexity assaciated
with the output of various scientific computational systems
all of which produce data relevant for a given domain exper-
iment or simulation. Implementation approaches in G+
were discussed, and these were related to possibie Smalltalk
implementations.

The final paper in the first session of the workshop was pre-
sented by Annick Fron of DEC European Technical Center in
France. She described an interesting application of Smalltalk to
the simulation of an MIMD embedded computer system. The
simulation relied on pracesses and monitors. The result is a
tool that has been used for embedded signal processing appli-
cations. This type of tool is very useful in design and debug
stages and can ease problems assoclated with integration on
final target architectures,

The afternoon sessions were devoted 1o in-depth considera-
tions of topics that arose during the presentations, Informal
groups examined issues such as the need for better mathemati-
cal algorithms and better organizations for algorithms, inter-
facing Smalltalk to parallel and distributed computing, and
mechanisms for handling scientific data in Smalltalk environ-
ments. Suggestions from these sessions included the need to
re-examine algorithums and algorithin classes, the need for het-
ter integration of Smalltalk into scientific computing environ-
ments, the need for better class support for parallel and dis-
tributed computing interfaces, etc. One important conclusion
of the workshop was that this event should be repeated, per-
kaps on a regular basis, There was a general feeling that the sci-
entific and engineering community was ready for Smalltalk.
The eritical question is whether Smalltalk is ready for that
COTRMUnIty.

neering at Rutgers University where he s divector of the CAIP Center
Computational Engineering Systems Lab, He has been involved with
engineerinng and scientific aspects of Smalftalk since 1984. He is onc of
the designers of the SCENE (Scientific Computation Environment for
Numerical Experimentation) system, a Smalltalk-based distribued
computing environment that implements computaiional steering
fools sich as interactive scigntific graphics and data management,
automalic equation solvers, and wmathematical expert systens. He

cai be reached via email at peskin@caip. rutgers.edu,

10

THE SMALLTALK REPORT

gathering information about the data in your application, you
may need to collect information about the dynamic state of
your application. Two keys to understanding the dynamic state
of your application are identifying where you are in the dy-
namic sequence of message sends and identifying how you got
there.

We also present {wo allernale ways toaccess dynamic state:
locating code of interest via user Input and using key entry
points.

identifying the Current Context

When you need to identify the method you are executing,
print an identification expression to the Transcript. The fol-
lowing prints the class and message name as it appears in the
debugger’s stack (.g., Class{Superclass)>>methodName) Lor Ob-
jectworks:

"if it's not in 2 block”
Tranzcript show: thisContext printStuing; cr.

Debug ifTrue: ["use this expression in a block”
Transeript show: thisContext sender home primtString; o).

For Smalitalk/v:

CurrentProcess walkbackdn: Transcript maxLevels: 1,

Audible Feadback

Another alternative to writing to the Transcript is to use sound
to give audible feedback that 2 method has been executed. This
is particularly useful in situations where the display system is
not availabie. For example, in Smalltalk/V the GO file is pro-
cessed before the display systetn is available. Insert these ex-
pressions to ring the bell. For Objectworks:

Screen default ringBell.
For Smalltalk/V:

Terminal bell.

Catching it in the Act
If you would like to examine code behind & specific action, but
don’t know where o find the method, you can interrupt it by
typing the prograny interrupt while executing the code of inter-
est. In Objectworks, the default program interrupt is <CTRL-C>,
In Smalltalk/V, it is the platform interrupt key {<CIRL-BRK>
under O5/2 and Windows, <comrmand-.> on the Mac).

For example, if you want to know how the rubberbanding
code works when drawing 2 line in a graphics editor;

L. Perform the appropriate action, such as holding down the
left mouse button and dragging the cursor,

2. While you move the mouse, press the program interrupt.,

3. A notifier appears that allows you to open a debugger and
examine code in the stack, You can see flow of control in

the debugger, and can examine method arguments and

temporaries.

Timing can sometimes be a problem —for some operations
you mmay need to try this several times until you catch it at the
right place,

Sometimes a program interrupt can save you from a bad
siteation. If you make a simple change to your code and see a
garbage collection cursor instead of what you expect, you may
have created an infinite loop. The following is a typical exam-
ple of a class method that inadvertertly causes an infinite loop:

new
~self new initfallze”this showld be a call to super instead of to self”

In this method, the user intended to invake the inherited
method called new, but instead called the same method, result-
ing in an nfinite loop.

If your application is in an infinite loop, you can interrupt
it with a program interrupt. Affer interrupting the application,
use the debugger to lock at the stack and locate the error, fix
the error and then either close the debugger and start again, or
resume the execution from the debugger,

Be careful when you interrupt a method with a program in-
terrupt, Instead of closing the notifier er debugger, vou may
need 10 resume or proceed from the debugger if vou are in a
loop that needs to finish execution to restore the state of the
cursor, signal a semaphare, or complete some other clean-up
activity,

Alernative to Walkbacks and Notifiers

You may not want to open a debugger and, instead, prefer
some other way to view the context information. If you are de-
bugging low-level code and are concerned that an interruption
mmight leave the image in an unstable state, vou can print out
information about the current context as described below. Tt
can also be useful il you are sending a beta release to cuslomers
or if you are working on an embedded application in which
there is no access to a user interface, The following expression
prints the execution stack on the Transeript. For Objectworks:

Transcript cr; show: (NotifiesView shortStackFor: thisContext).
For Smalltalk/V:
CurrentProcess walkkbackOn: Transcript maxLevels: 10.
You can also print this information to a file. Far Cbjectworks:

i file |

file := "erors’ asFitename appendStream.

file cr; nextPutAll: (NotifierView shortStacklor: thisContext),
file close

For Smallsally/V:

| fite |

file := File pathName: ‘errors’.

file setTobnd.

{urrentProcess walkbackOn; file maxLevels: 50,
file cloge

JULY~AUGUST 1993

...continued from page 1

2 SMALLTALK DEBUGGING TECHMOQUES

the method. Data you write to the Transcript should be
identified, and should include some formatting such as tabs
and carriage returns. Here is an example of an expression that
would be inserted in the method of a class that understood the
totat message:

Transcript cr; show: ‘Total = *,gelf total printString.

This expression prints the string Total =" concatenated with the
string result of sending the total message to the receiver. The
comma in the above expression is a message that returns the
receiver concatenated with the argument, another string. Use it
when you want to append a string. In this example, the result
of the total message is an integer, so prntString is used to ab-
tain the string equivalent.

Use a globat variable to control printing information to the
Transcript, setting it to true or faise from a workspace when
you want to turn printing on or off. In this expression we use a
global named Debug:

Debug ifTrue: [Transcxipt ¢r; show:'starting calculations...’]

Instead of setting the global to a boolean, you can set the global
to an integer that controls how much detail you priat:

Debug > 4 ifTrue; {Transcrpt show:"detailed information”)

In Objectworks, you're not restricted to a single Transcript. [f
you would like to create customized transcripts to separate
different types of messages, refer 1o the Creating a transcript win-
dow section on creating transcript windows in Chapter 21, “Text
and text views,” in the Osrectworks SMarrraix User’s Guips.

Menu Hooks for Inspectors

Printing a lot of information out to the Transcript can get
rather tiresome. An attractive alternative is to open an Inspec-
tor on key objects at strategic points in the code or, better yet,
to provide an easy way for the developer to access an inspector.
When you are creating new window applications, it’s handy to
include an inspect item in the window's menu during the ini-
tial development phase. This is 2 quick and easy way access the
ohjects behind the window.

Inspect is implemented by Object, so you don’t have to pro-
vide a new method if vou're happy bringing up an inspector on
the obiject that accepts responsibility for menu messages. If you
do need to customize the inspect action from a window, pro-
vide a new message rather than overriding the inspect message.
If you override inspect, your customized method, instead of the
inherited method, will be executed by the system whenever the
inspect message is sent {0 the object. Opening an :nspector
from an inspector, for example, uses the inspect message. If
you want to inspect the selected item in 2 list directly from a
meny, implernent a new message called inspectSelectedltem
and avoid overriding inspect.

Object identity
Situations arise in which you need to compare two variables to
sce if they reference the same object. For example, you might

be stepping through two similar sets of actions that involve a
particular object. One works and the other doesn’, so you
need to deterrnine whether the two variables reference exactly
the same object.

Object identity is determined with the = = message, which
answers whether the receiver and the argument are exactly the
same object. [ir contrast, the = message is used to determine
object equality; It answers whether the receiver and the argu-
ment are equivalent:

#asdf == #asdf “true: Symbeols are undgue.”
‘agdf == ‘asdf’ “false: Sirings are not unigue.”

If the twe objects are not inn the same context {Le., you have
captured them in separate inspectors}, you can assign one to a
glohal variable and use the object identity message lo deter-
mine equality.
GlobalOne := self name.
self name = = GlobalOne.

“in ome inspector”
“in a different inspector”

Don’t forget to remove global variables when you're through
with them:

Smaittalk removeKey: #GlobalOne

Use standardized names, such as an unusual prefix, to identify
temporary giobals.

Older Smalltalk systems supported as hash as a means of
uniquely identifying objects. In current Smalltalk systems, nei-
ther of these messages uniquely identify an object.

Mames
It is often a good idea to add a name or id field to an object
strictly for debugging purposes, particularly when instances
cannot be uniquely identified by their instance variables or
when they are distingnished in obscure ways. [f you're going 1o
be dealing with multiple instances of a class, it may otherwise
be hard to keep track of which object is which.

You also can specialize the method printOn: for your new
classes, The printable representation can incorporate a name to
help identify the object.

printOn: aStream
“Add a printable representation of thereceiver to <aStream>.
Use the fullMame field to identify thereceiver,”
super pantOn: aStream.
aStream nextPutdl: “on’,
aStream nextPutalls self fulllame

A good printable representation can speed debugging, because
it lets you quickly ascertain when two objects are equal or how
they were created. However, be aware that assumptions in 4
speciatized printOn: method might not be correct. For example,
some instance variables might not have been initialized. If so,
the previous method should be checled to sec if the name were
il before printing it.

WHERE AM | AND HOW DID 1 GET HERE?
An object encapsulates both behavior and data. In addition to

16

Tre Smairtaik BEPORT

here have been many attempts to define the elements

of Smalltalk style. Some of them even agree with each

other. Almost ali of them share a common point of
view, that of a programrner striving to write good code. Honna
Segel (honna@bnr.ca}, on the other hand, approaches the
problem as sorneone evaluating a Smatltalk program, trying to
recognize bad code:

I'm in the curious position of evaluating a prototype writ-
fen in Smalltaik without prior knowledge of Smalttalk. I
could distinguish a terrible hack from goed work in C—
what do I look for in Smalitalk? What's a prime symptom
of work that will be scary to modify and extend?

THE BASICS
Dan Benson (benson@siemens.siemens, com | writes:

As a first pass, ['d lock at the class hierarchy. See if the
names of the classes match the concepts intended for the
prototype. For instance, if the prototype is supposed to be
an airline reservation system you might expect to find
classes representing Tickets, Airlines, Reservations, Airports,
and so on. If the class names are way off the mark, I wouid
be a bit skeptical, Next, see if there are any class comments
to see whether the programmer was conscientious or at
least considered that someone else might read the code.

Some of the other things you can look for without getting
into actual code are the organization of the class hierarchy
(to see if it makes sense intuitively), the method categories
(to see how well the various tasks were separated), and, per-
haps, the number of instance variables and the names used
{there shouldn’t be too many instance variables per class,
and the names should be intuitive or at least informative).

The most obviouns thing to check, of course, is the opera-
tion of the prototype itself. How well does it do what it’s
supposed to do? Are there any bugs? If so, how serious are
they? Is it 2 matter of changing the interface or would it in-
volve modifying the underlying model, or perhaps starting
alt over?

There's good advice here, and most of it can be applied by
someane who doesn’t know Smaltalk well. Coincidentally, I've
actually seen an airline reservation systemn written in Smalltallc

HE BEST OF cap.a.smtai

Alan Knight

yod code, bad hacks

that did not have classes representing Tickets, Airlines, Reserva-
tions, or any of the other obvious domain objects. Sure encugh,
it was bad code.

One of these remarks, however, does seem questionable o
me. We are 1o check to see if the class hierarchy “makes sense
intuitively.” That's pretty vague, especially for someone who's
unfamitiar with Smalltalk. While the hierarchy should make
sense intuitively, this suggestion needs to be defined more
clearly.

For myself, [would say that classes in an inheritance hierar-
chy should have a clear logical relation. This relation should
probably be expressible as either “is-a” or “is-implemented-
like.” This is not a two-way relationship. Not all classes that
have these relationships should be in the same inheritance tree,

This still leaves much room for judgment, as it should, buz 1
hope it helps weed out some of the worst offenders (such as
those using the “sounds-like” or “was-implemented-the-same-
day-as” relations to determine their class hierarchies).

DOCUMENTATION
Jack Woehr (jax@wellsf.ca.us) has a simple recipe:

Gond Smalitalk comes accompanied by good docummenta-
tion, a separate document explaining the author’s intent,
and probably by a glossary of objects and their methods.

Bad Smalitalk comes without such dogcumentation.

Strictly speaking, the quality of the documentation and the
quality of the code should be independent. If you take away the
documentation, the quality of the code remains the same. All
of us have written good code that we never quite got around to
documenting properly.

Practically speaking, however, good code and good docu-
mentation are inseparable. This is especially true for code that
tries to be reusable (and these days, we're all writing reusable
cede). When [intend to use a class, the first thing [do is look
for the class comment. All too often, the second thing I do is
curse the author for not providing one.

ParcPlace, to its credit, provides comments for all of its sys-
tem classes. Digitalk dogsn’t support class comments directly,
but it’s easy to establish a convention for class methods con-
taining comments,

JoLy-ALGUST 1993

11

% THE BEST OF COMP.LANG. SMALLTALK

OTHER CRITERIA

Frerk Mever (frerk@tk telematik. informatik.uni-karlsruhe.de)
provides a whole list of criteria. His suggestions are somewhat
more difficult for nuvices to apply and subject 1o some excep-
tions. Il discuss them one at a time.

iUse Global Yariables Sparingly
Bad—the use of global variables

This is pretty standard, even [or nen~O-Q prograniming,
Globals have their uses, but they definitely should not be used
to excess because they introduce extra dependencies between
classes and generally pollute the namespace.

Separate Domain and Interface

Bad—instance variables in the model holding view, con-
trolier, or window information

This is ParcPlace-specific, but the underlying idea is universal.
The domain model should not concern itself with the way in
which the interface presents information. While this is very
important, it is something that may be difficalt for Smalltaik
novices to judge and difficult for Smalltalk programmers to do
well.

The simplest method of checking for this separation is 1o
examine the instance variables and methods of the domain
model for obvious interface information. This will find some
violations, but assumptions about the interface can leak into
the domain model in many subtle ways. There’s always a
temptation to introduce just a few lines of code that are
ever-so-slightly dependent on the interface. Maybe it doesn’t
really belong in the interface, either. Besides, it would take so
much longer to do it properly, and we're not likely to change
that part of the interface. . .. These temptations should be
resisted.

Greg Hendley and Eric Smith discussed these issues in some
detail in a ewo-part article titted “Separating the GUI from the
application” (T're Smapirark Report, May 1992 and October
1992). Thev advecate introducing a “control” layer into the in-
terface that acts as a buffer between the interface visuals and
the domain model.

Ayoid Long Methods
Bad-—methods thal are larger than one screen {usually)

it's precty much a consensus that Smailtalk methods should be
short, Long methods are probably trying to do more than one
thing and should be broken up into their companents. Long
methods aren’t always bad, but the presence of large numibers
is & definite danger sign.

A notable exception is for automatically generated meth-
ods, such as WindowBuilder’s horrendously long open meth-
ods. But since these methods are not intended to be modified
by humans, this is not so much of a problem.

I notice that Digitail’s compiler is much slower for long

methods. This can, however, be considered a Jeature {though I
doubt it was intended as one) since it muotivates programmers
to break up their code inlo smaller components,

Avoid System Changes

Bad—making changes to system classes instead of sub-
classing

After some discussion, the consensus on this point was that
adding methods to system classes is fine, but modifying exist-
ing methods is o be avoided, System changes are a problesn
because your changes are likely to be incompatible with others,
including those in the next Smalltalk version. They'’re also
more likely to make your system crash during developirent, If
you have to modify a system method, it's usually best to make
the modification as small as possible, Ideally, you should just

i

msert a hook that calls your own code.

Keep Instance Creation Simple

Bad—using class method new more than “super new
initiatize
It's commuon practice in Smalltalk to override the msthod new
to automatically initialize instances of the class, changing the
code to:

new
“super new initialize

Other common changes are to override new to be an error or
to return an already existing instence. Adding much more
functionality than this to the methed is considered bad form,
Again, it’s better to provide a hook to more extensive code in a
method like initialize.

Use System Classes
Good—using systemn classes wherever possible

If code that serves a purpose is already available, it should be
reused. As an extreme example, code that uses fixed-size ar-
rays, but goes through complex manipulations to mimic the
behavior of GrderedCollection would be bad. Similarly, code
that avoids the normal user interface mechanisms and gets
mouse o1 keyboard input directly is probably bad, It may be
trying to do something that is nol normally possible through
those mechanisms, but even then it is preferable to extend the
Ul mechanisms rather than go arcund them.

Work within the System
Good—using MVC, dependency mechanisms, and processes

Again, if the mechanisms are there, it’s best to work with them
rather than against them. They can, however, be overused.
Kent Beck writes, in “Abstract Control Idioms”™ {Tae
SmarLTalk Reeort, July/Angust 1992), about the advantages
and disadvantages of the dependency mechanisim.

12

The Smarcrarx ReporT

Applying “Separate Abstract from Concrete” to RGBColor, we
create Celor as RGBLolot’s superclass. We move complement to
Color, because it doesn’t rely on any instance variables directly.
We leave hue, saturation, and value in RGBColor because they
do rely on variables.

Novw, if we want to creaie Color subclasses that store color
values in other ways, they can inherit complement as long as
they implemient hue, saturation, and value.

When you apply this pattern, you will often find that meth-
ads which were implemented initially as requiring variable val-
ues can be recast by applying “Compose Methods” so they can
be moved into the superclass,

CONCLUSION

Now that T have wrilten down Separate Absiract from Concrete,
Im not sure I entirely agree with it. 1 Jike to have more than
one concrete example before I try to generalize, | use two
different patterns, “Factor Several Classes” and “Concrete Su-
perclass” in my own programming. I will present these pat-
terns in the next issue,

Inheritance is strong medicine. Qnly by understanding the
options and trade-offs involved can you avoid the pitfalls and
use it to your advantage. If you use different patterns for apply-
ing inheritance, please send them to me. 8

Kent Beck is founder of First Class Software. He can be reached at
418,338.4649 (v}, 408.338.3666 (), or via Compulerve at
F0761,1216,

VOG5S

Virtual Object Storage System for

Smalltall/V

Seamless persisient object management
for all Smalitall/V applications
Transparent access to all kinds of Smalkalk objects on disk.
® Transaction commit/rollback of changes to virtual objects.
@ Actess to individual elernents of virtual collections for CDEMS up
to 4 billon chjects per virtual space; objocts cached for speed.

® Multi-key and multi-vatue virtual dictionaries for query-building
bykey range selectionand setintersection, Partiz and coneatenated
kevs ported.

® Works directly with third party user interface & SQL classes eic,

& Class Restructure Editor for renamin
FOIAOVENE
& Shared a
portabi

sses and adding or

wtance variables allows app ions ko evolve.

s to named virteal object spaces on disk; object
tween images, Virtual objects are fully funchional.
% Source code supphied.

=5 anly,

[VOSE /OS2 Demonsiration - $150

far two or moTe cop (Ask for details)
d accepred. Plepse add $13 for shipping.

Quantity discounis {rom :
Visa, MasterCard and FuroC

[-
A R F S Logic Arts Ltd 75 Hemingtord Road, Cambridge, CB1 38Y England
At THEL: +44 223 212392 FAX: +34 203 245171 CIS 100020, 364

July 16-18, 1993
DBIECY EXPD EURDPE
Londan, Englond

44.0.306 631 331

440 306,631,696 ffox)

July 19-23, 19932

IBM CONFERENCE N
SRIECT-ORIEMNTED 5D TOOLS
Toronio, Conoda

5128388019

QOPSLA

UMYX BEXPD
Sugust 2-10, 1993
DESTINATION €4+
- New York, INY
hington, D.C.

SOC-829-3976

Housion, 1X
los Angeles, CA

2122749135 4961782857

fugust 10-5T2, 1993
EUN OGPEM SYSTEMS WEST
Ancheim, CA

SiZ2. 2509756

Eeplt. 26-0e8. 91,1993

Washinglon, D.C.
212 860.7440

Seplember 291-23,1993
News York, New York

201-348- 1602 (fax

" o Setober 13-15,1993
Chicago, il INT'L SYMPOSIEM &
EXHIBITION ON ooP

Frankfuri, Germany

Getober 18-22, 1293
C++ WORLDE
Dallas, TX

2122742135

Bovember 15-16,1993
COMPUTER WORLD EXPO
Frankfurt, Germany

800-225-4698

Becomber 9=-10,1993
BATABASE WORLD
CLIEMT /SERVER

Chicago, Il
508470-3880,,0526

April 25-28,1064
AWoRLD 24

MNew York, NY
2122799135

Jurv-Avaust 1ggs

17

SMALLTALK IDIOMS

parse: aStrean
| writer |
writer == String new writeStrears.
[aStream atEnd] whileFalse:
[{aStream peekFor: $#)
ifTrue: [aStream restOfLine]
ifFalse: fwriter nextPutAll aStream restQfLine]]

Applying "Compose Methods” to parse: to separate line parsing
from the overall parsing control structure we get:

parse; aStream
| witer |
wiiter ;= String new writeStream.
[aStream atfnd] whileFalse:
[self pazseline: aStream anto: writer]

parseLine: inStream onto: outStream
(aStream peekFor: §#)
ifTrue: ["aStream restOfline].
ontStream nextPutAll: adiream rest0fling

Notice that by creating parseline:onte: we are now able o use the
return control structure to make the submethod easier to extend.
Applying il again to factor out the cutputStyeam creation, we get:
parse: aStzeam
| writer |
writer := self autputStream.

{aStream atEnd] whileFalse:
[s5elf parseLine: aStream onto: writer}

outputStream
~String new writeStream

Applying it to parseLineonto: fo separate the choice of what isa
comment from the behavior when a comment is found we get

parseline: inStream onto: outStream

{self peekForlorunent; inStream)

iffrue: [inStream restCfline}.
outStream nextPutAll: inStream restOfline

peekForfomment: aStream
~aStyeam peekFor: §#

Apply it to peekForComment: {o separate the character you are
looking for from the way in which you look for it:

peekForComiment: aStyeam
~aStream peekFor: self commentCharacter

commentCharacter
~EH
The final code is much easier to nxadify in a subclass if you
want to change the comment character, write onto something
other than a string, or extend the parsing to deal with special
cases other than comments.

PATTERN: SEPARATE ABSTRACT FROM CONCRETE
This is a pattern T learned from Ken Auer of Knowledge Sys-
tems Corporation. He told me about using it to great advantage

in a financial services application in which there were many -
kinds of financial instruments, all implemented similarly.

&0 By understanding the options and
y g P
trade-offs involved, you can use it to
your advantage. 9%

Context

You have implemented one object. 1t has some methods that
rely on the values of variables, and others that do not, You can
see that vou will have to implement many other similar objects
in the future.

Problem

How can you create an abstract class that will correctly capture
the invariant part of the implementation of a family of cbjects
with only one concrete example?

Censtraints

You want to begin using inheritarice as early as possible to speed
subseguent development, and you want you inheritance choices
to be correct so you don't have to spend time refactoring later.

Solution
Create a stale-less superclass. Make it the superclass of the class
you want to generalize, Put all of the methods in the subclass
which don’t use variables {directly or through accessors) inte
the superclass, Leave methods that rely on instance state in the
subclass,

This solution strikes a balance between inheriting too early
and too late. By making sure vou have one working class you
know you aren’t using inheritance entirely on speculation.

Exampile
Let’s say that we have an RGBColor represented as red, green, and
blue values between 0 and 1. We can then write methods like:

hue
"Complicated code involving the instance variables red, green, and
blue...”
saturation
"Cotaplicated code involving the instance varables red, green, and
blue..."
value
"Complicated code involving the instance variables red, green, and
blue..."
complement
~self species
fuer (self hue + 0.5) fractionalPart
saturation: self saturation
value: setf value

Tur 52a117ALE EEPORT

He summarizes the disadvantages as “debugging and per-
formance.” Dependency-based code can be much more
difficult to follow and debug than normal code. When it's put
together properly, it will often work immediately. When it
doesn’t, tracking down the problem can be painful.

[wouldn’t consider processes to be a necessary feature of
good code. Multi-threaded code introduces many complica-
tions, and T avoid it ualess I really need it

Choose Names Carefully

Good—using expressive naming of classes, methods and
variables, and using the class document feature

Definitely. Naming things propetly is very important, One of
my biggest complaints about bath Digitalk and ENVY/Devel-
oper is how difficult they make it to change class names.

PUT CODE IN THE RIGHT PLACE
Charles Liovd (clloyd@gleap jpunix.com) adds several points.

Place Code Wealt

A series of messages sent to some object other than self is
probably badly placed code. That series should be moved
to the class of the receiver.

Wote: This is the hardest thing to do well in O-Q program-
ming, but it pays very high dividends when done well.

Breaking up methods in this way has several advantages. As
we've already mentioned, it’s good practice to break up long
methods into logically connected units. A series of messages to
some other object makes a good candidate for such a division.
Since they have an object in common, they should probably be
moved to a method in its class. This also provides an opportu-
nity to use polymorphism {i.e,, providing different implemen-
tations of the same function in other classes).

Avoid Checking Types Expiicitly
Encoding type information

You should never see any checks for “type” information.
All type information should be implicit in the class of the
receiver. Exceptions to this rule are few and far between.

It’s usually bad style to ask the type ol an object, Frequent use
of class tests or isKindOf: is a characteristic of poor code.

Ideally, rather than testing the type, code should request
that an ohject carry out same action. The object is then re-
sponsible for doing the appropriate Ihing based on its type, but
this is done through the method dispatch mechanism, rather
than explicitly in code,

If it’s necessary [o determine some characteristic of the ob-
ject, it’s better to do so by sending a message asking about the
characteristic. Thus, it’s better to say:

PostScript Objects
from Magus!

Magus View™ — The revelutionary PostScript-language rendering
{ibrary from Magus. Now available as ‘parts’ for Digialk’s PARTS
Workbench, as a class iibrary for Smalliaii/V, orin C-DLL form.
Work in the environment of vour cheice to rapidly assemble PostSoript
imaging applications. Enjoy the power of object-oriented PostSeript
repdering—and only from Magus,

» Create front ends for decament maging systems — display
PosiSeript files, or use PostScript as the image definition language

«» Enhance collaborative applications such as elecironic mail or
pther “groupware” - support documents with complex graphics
and fonts

+ Create host-based PostScript drivers for non-PestScript printers
« Bring a new level of fidelity to print-previewing in your applications
Magus View is avaifable in DLL form for 08/2 2.0 and Microsoft

Windows 3. 1. Programming interfaces are pravided for Smallialk, £

and Digitalk's PARTS Workbench. Prices starl at $4495 for a single
Magus View Developer’s Kin

PE Box 390965 » Mountain View CA 94030-0965 = LISA
(R0MB4E-8037 = (41590441 109 » sales@magus.com

anObiect isCollection ifTre: | ...]
than

(anCbiect isKindaf Collection) #True: [...]

The second form confuses an atirilrute of the abject (whether it
responds to basic collection protocol) with the class hierarchy
(whether it inherits from the class Collection}.

As a concrete examptle of how this can be dangerous, con-
sider a system that works with vectors. We may wish to treat
instances of Point as two-dimensional vectors, Code that sends
the message isVector will work fine for peints. Code that relies
on isKindOf: Vector will fail.

Put Conditional Behavior in Subciasses
Introduction of instance variables

Instance variables should be added sparingly. If you think
vou need N instance variables to model your subclass,
consider introducing M subclasses (M very close to N}
where each new subclass introduces a minimum of new
variables.

Introducing subclasses where other languages might use enu-
merated “type” variables is often good style, It is a problem if
instances may change their type, but, otherwise, it can be very
useful. In many wavs, it’s similar to the previous point Instead
of having conditional staternents on the enumeration, we sim-

Pay-AUGUST 1993

13

I4

B THE BEST OF COMP.LANG. SMALLTALK

Distributed
Smalltalk and
Ol S

for VisualWorks™ and Objectworks®

- any object and class extended by
the ability to become persistent
and o be shared by multiple
USers

- full transaction management

- alf advaniages of Smallialk kept
alive

- almost no changes 1o existing
applications to convert them
tc a databaze

- dalivered in source code

ArinApples Lid.
Kremeiska 13
845 03 Bratislava
Slovakia

o -7-
i tol, 427 5% a6
mfﬁﬂﬂﬂiﬁg artbase@artinapples.cs

free evaluation licenses available

ply ask instances to perform some function, They will auto-
matically do it in the appropriate way, and the language mech-
anisms will do the testing for free,

FAILURE MODES

We can also look at bad code by considering how it mighl have
gotten to be bad. Maybe the author didn’t understand
Smalltalk or OOP fully. Maybe it was a quick hack by someone
capabie of doing better work. Maybe it was written by some-
one who didn’t understand the domain and/or requirements,
Maybe it really was written by an idiot. Maybe it was once
good cade that's had too many patches and has never been
consolidated.

Most of these problems can be recognized the same way
they would be in any programming language, and enly a few
have QOP- or Smalltalk-specific aspects.

Cuick hacks, for example, can usually be identified by their
shoddy documentaron and comments. The comments that de
exist are often incomprehensible notes from authors to them-
selves, often of the form “fix this later.”

It's usually easy to tell when the author didn’t understand
the paradigm and wrote FORTRAN, C, or COBOL with
Smalltalk syntax. There is often excessive use of type informa-
tion {as described above), internal representarions are almost
always exported, and collections with encoded meanings ave
oftent used as data structures.

The most common symptom of exporting too much repre-
sentation is the presence of direct get/set methods for every
variable in a class. Some schools of thought held that all vari-
able references should be made through get/set methods, In
this case, the code will have such methods, but many of them
sheuld be dearly marked as private,

Programmers who aren’t used to opaque data types will
often use cellections as data structures. For example, they
might represent a circle by an arrav whose first element is the
centre point and whose second is the radiug, instead of intro-
ducing a new class Circle. Juanita Ewing discusses this common
error in “Don’t use Arrayst” (The Smatirark Reeort, May
1993), E

CONCLUSION

Altheagh it's far from complete, I hope this brief overview
provides some help to those of you trying to distinguish good
Smalitalk from bad Smalltalk. If you're writing code, this col-
umn should provide some things to strive for or avoid,

Alaw Knight works for The Object People, 509-885 Meadowlands
D, Ottawa, Ontario, K20 3N2. He can be reached at 613.225.8812

or as knight@mreo.carletor.ce.

Trg Smavirans REPGRT

frhe three tenets of objects—encapsulation, polymor-

hism, and mheritance—inheritance generates by far
£)

the most controversy. Is it for calegorizing analysis
objects? [s it for defining common protocols (sets of mes-
sages)? Is it for sharing implementation? Is it really the com-
puted goto of the nineties?

The answer is Yes. Inheritance can (and does) do all of the
above at different times, The problem comes when you have a
single-inheritance system like Smallialk. You get one opportu-
nity to use inheritance. If you use it in a way that doesn’t help
you, you have wasted one of the most powerful facilities of the
fanguage. On the other hand, i yvou use it poorly, you can mix
up the most ridiculous, vnmaintainable program gumbe
you've ever seen, How can you walk between the rocks of un-
der-using inheritance and the chasm of using it wrongly?

What's the big deal? Inheritance is the least important of
the three facilities that make up objects. You can do valuable,
interesting object-oriented programming without using inheri-
tance at all. Programmers still quest after the Moly Grail of in-
heritance because of the potential it shows when it works well.
When vou need an obfect and find one that is factored well
and does almost what vou want, there are few EXPETICnees i
programming better than making a subclass and havinga
working system after writing two or three methods.

B this and my next several colurmns, 1 will focus en various
aspects of inheritance, | will present a variety of strategies for
taking advantage of inheritance, in the form of patterns. While
Ddow't necessarily use all the patterns in my own program-
ming, casting the strategles in terms of patterns makes it easier
to compare and contrast them.

PATTERM: COMPOSE METHODS

This pattern 15 the cornerstanc of writing objects that can be
reused through inheritance. [t is also critical for writing objects
that you can successfully performance tune. Finally, by forcing
you to reveal your intentions through method names, it makes
your programs more readable and maintainable.

Cortext

You have some code that behaves correctly {it does no good to
beautify code that doesn’t work, unless you have 1o make it
work). You go to subclass it, and realize that to override a
method you have to textually copy it into the subclass and

Kenr Beck

change a few lines, forcing you lerever after to change both
methods.

Another good context for this pattern is when you are look-
ing at a profile that looks flat; that is, no single method stands
out as taking more time than others. You need further im-
provement in performance and believe that the object can de-
liver it

Problern
How can you write methods that are easy to override, easy to
profile, and casy 10 understand?

Constraints

Fewer, larger methods make control flow easy to follow. Lots
of little methods make it hard to understand where any work is
getting done. Lots of little methods named by what they are in-
tended o do, not how they do it, make understanding the
high-level structure of a computation easy. Your programming
time is limited. You only want to perform manipulations of the
code that will have some payoff down the read. Fach message
sent cosis time, and execution time is limited. You only want
ta cost yourself execution time if the result will provide some
advantage at some point. You don't want to introduce defects
in werking code. The manipulations must be simple and me-
chanical to avoid errors as much as possible,

Sojution

Make each method do one nameable thing, If & method does
several things, separate out one of them, create a method for i,
and inveke it in the original method, When you do this, make
sure that if the same few lines occur in other methods, those
methods are modified to invoke the new one as well,

This solution ignores the cost of message sending, You will
get faster programs by using messages 1o structure your code
$0 that you can more easily tune them than by reducing the
number of messages. {1 also assumes that the eventual reader of
the code is comfortable plecing together contral as it flows
through lots of small methods.

Example
A method for parsing a siream to eliminate lines that begin
with a pound sign might look like this at first:

JULY-AUGUST 1993

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 279 DENVILLE NJ

POSTAGE WILL BE PAID BY ADDRESSEE

The Smaliltalk Report

Subscriber Services Dept SML
PO Box 3000
Denville N] 07834-9821

I”IIIIIII”II'IIE”II|I|||II||||I||||I|IIIE|III|III

PR e e
NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES
I R N I R e e
[BREsaR v)
pe s Ay A A e 1
N S RS S
P AR R AT
R R |
T AT T T SR % |
L T S R
ST R]

- GemStone is the ideal database
renvironment for supporting

' Smalltalk applications. It is the

- only high-performance, produc-
tion-ready ODBMS with a trans-
' parent Smalitalk interface.

- = Maintain class hierarchies and
execute Smalltalk methods
directly in the server.

. * Automatic, transparent transla-
tion of Smalitalk objects into
GemStone.

. » Cooperative client-server sup-

. port.

. » Smalltalk-based DDL/DML.

i » High-performance, scalable,
i production-ready ODBMS.

« Integrated garbage collection of
persistent Smalltalk objects.

[NETWORK | ’

GemStone Object Database Smalltalk Application

(1 YES! Send Me Complete Details On GemStone

Name: Title:
Company:

Address:

City: State: Zip:
Phone:

1-800-243-9369 FaxSERV[O

BUSINESS REPLY MAIL

FIRST CLASS MAIL PERMIT NO. 4362 SAN JOSE, CA

POSTAGE WILL BE PAIDBY THE ADDRESSE

SERVIO CORPORATION
2085 HAMILTON AVENUE
SUITE 200

SAN JOSE, CA 95125-9985

IR AR R AR A A A

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

" Signature

The Smalltalk Report

 Yes, 1 wnuld like to subscribe to The Smalltalk Repurt- Date

- 1 year (g issues)

Domestic $69.00
[Foreign $94.00

' Method of Payment
- [Check enclosed (payable to The Smalltalk Report)
L Bill me

[d 2 year (18 issues)

[Domestic $128.00
[Foreign $178.00

1 Charge my: A visa [Mastercard [Amex

. Card No.

Exp. Date

Name
Title
Company
Address
City
State

Zip
Country
Phone

1. Which dialect of Smalitalk do] Make Purchase

You use:

[smalitalk V

[smalltalk-8o

1 Other

2. What is your involvement in
software purchases for your
department/firm:

[Recommend Need

- [specify Product

[None

3. Which operating system
supports your software:

L UNIX

[pos

Qosn

[Windows

[Other

4. What is your company's a Educational/Consulting

primary business activity: [Other

[Computer/Software 5. For how long have you been
Development. using Smalltalk:

[Manufacturing [Less than one year

[Financial Services 1= years

U Government/Military/Utility = 3+ years E3GG

A membar of the
futll
|ect'\darketmg“letwork 212/274-064 it m * m\s

The Smalitalk Report

LOOK WHAT HAPPENED

The International Newsletter for Smalltalk Programmers

WHEN DIGITALK

BROKE INTO THE BANK.

Congratulations to
Bank of America on their
new 11-state wide area net-
work. A system they call “the
most sophisticated distributed
network in the world.”

With good reason.
Their network configuration
tools have already won the
Computerworld 1993 Award
for Best Use of Object-
Oriented Technology within
an Enterprise or Large
System Environment.

Of course, that's what
happens when a company
like Bank of America turns
to a powerful technology like
Digitalk’s Smalltalk/V.

LIKE MONEY IN THE BANK.

Why are so many Fortune 500
companies like B of A switching to

07000
B Smalltall/V lets
Yyou show proto-

fypes of enterprise-
wide systems in
weeks instead of

. months. In fact,

- systems as ambi-
tious as Bank of
America’s can be

LK completed in as
et [iTtle as 18 months.

SMALLTALK/V. 100% PURE OBJECTS.

BANK OF AMERICA

WINNER - 1993
COMPUTERWORLD
OBJECT APPLICATIONS

AWARD
sE OF OBJECT
" WITHIN
SE OR

ENVIRONMENT

In addition, our Team/V Group
Development Tool lets large teams of
programmers use version control to
easily coordinate their work. Plus
you'll be surprised at how quickly your
in-house staff becomes productive
with Smalltalk/V.

The bottom line is Smalltalk/V
helps a company get moere done in
less time. Which can save very large
amounts of corporate cash.

RATED #1 BY USERS TOO.

On behalf of Computerworld,
Steve Jobs presented the award to
Bank of America. But industry

return on your investment.

luminaries and Fortune 500
managers aren't the only
ones who have recognized
the value of Smalltalk/V.
Users have discovered that
Smalitalk/V is the only
object-oriented technology
that's 100% pure objects.
With hundreds of reusable
classes of objects, thousands
of methods and 80 object
classes specifically designed
to build GU/s fast. Which
means no more time spent
writing code from scratch.

BANK ON SMALLTALKN.

So it's no wonder that
S0 many companies are
doing award-winning work with
Smalltalk/V. Incidentally, Smalltalk/V
applications can be easily ported
between Windows, 05/2 and
Macintosh. And you can distribute
100% royalty-free.

For information on how Digitalk’s
Smalltalk/V can save you time and
money, call 1-800-531-2344
department 310 for our special White
Paper. And be sure to ask about Digitalk’s
Consulting and Training Services.

Call right now, and see how
Smalltalk/V can yield a maximum

September 1993

Volume 3 Number 1

BUILDING
OBJECT-ORIENTED

FRAMEWORKS

by Nik Boyd

Contents:

Features/Articles

1 Building object-oriented
frameworks
by Nik Boyd

Columns

8 Smalltalk idioms:
Inheritance: the rest of the story
by Kent Beck

10 The best of comp.lang.smalltalk:
Extending the environment (part 1) |
by Alan Knight E

23 GUIs: Keeping multiple views
up-to-date
by Greg Hendley & Eric Smith

26 Book review: SMALLTALK
PrROGRAMMING FOR WINDOWS
reviewed by Dan Lesage

Departments

27 Highlights

bject system architects have long understood the value of frame-
works. Frameworks provide a powerful way to organize and build
interactive object systems. While classes define the structure and
behavior of individual objects, frameworks define the structure
and behavior of interactive object systems and subsystems (archi-
tectures). Just as classes provide leverage from the reuse of solutions to compo-
nent problems, frameworks provide leverage from the reuse of solutions to sys-
temic problems. Classes and frameworks complement each other for object
modeling coordination,

Object system architects have sought ways to discover, describe, and define
uselul frameworks. This article explores some issues related to designing and
building object systems, especially using frameworks. This article proposes that
frameworks can be made first-class objects and describes the implementation ol a
Framework superclass for Smalltalk.

First-class frameworks provide a way to formalize the relationships between
the abjects in a system and factor out their patterns of interaction. Framework
classes provide new opportunities for design, development, and reuse in object
systems. They can be used to create very general or specialized evenl-driven sys-
tems. By making frameworks first-class objects, they derive and supply the same
benefits as other objects: They can be built and reused with existing tools.

HOW THIS WORK EVOLVED

Smalltalk’s browsers provide essential tools for quickly building and evolving ob-
jects. These tools organize and present objects and their definitions. The internal
workings of these browsers can be quite complex. As a result, the classes that im-
plement these browsers tend to have many methods.

The complexity of these browser classes contributes significantly to the
difficulty of developing new tools for Smalltalk. This observation leads naturally
to the following question: How can these browsers be broken down into more
easilv integrated and reusable components? The Model-View-Controller (MVC)
framework! and its alternatives?? provide great value, but do not completely re-
solve the problem of component integration.

Early experiments with refactoring some new tools led to ways of loosely cou-
pling their components using a kind of “smart” linkage. These component con-
nections included their own behavior. After exploring some alternatives, it be-
came obvious that these experiments had produced a way of implementing
mediators.* Patterns began to emerge when the browser components were cou-
pled together using mediators. This observation led naturally to the realization
that some of these interaction patterns could be factored out and reused. Such
refactoring created first-class framework objects whose behaviors are governed by
interaction contracts.’ Framework classes map interaction contracts directly onto
inheritance hierarchies.

contined on page 4.

John Pugh

Panl Whire

's been a busy spring and summer for conferences. Here are a few Smalltalk-related per-
spectives on those that one or the ciher of us has attended recently.

In May, Digitalk held their second conference for developers, DEVCON'93 in Costa
Mesa, CA. The audience, which was populated by many representatives from banking and
insurance companies, reflected very much the move of the MIS community into Smalitalk
development. The conference program calered fo this community with a heavy emphasis on
the use of Smalltalk/V and PARTS in chient-server computing. In one of the Hiveliest presen-
falions, Amarjeet Garewal from the Bank of America descrilred hus firm's client-server de-
velopment, ACA (A Cooperative Application). ACA facilitates distributed computing using
Smalltalk and legacy systems, and was an award winner in the Object Applications category
al the recent ObjectWorld conference. Watch for an upcoming arlicle (rom Amarjeet in the

¢

Rerorr, For Smalltalk aficionados who wanted to learn more of the “meta-world” of
Smalitalk, Dave Smith from IBM give an inimitable reprise of his “Behavior of Behavior™
presentation. SsarrTak Resoky columnist Kent Beck dispelled a few Smialltalk myths and
provided some invaluable insights into how to write high-performance Smalltalk programs.
Fowas also Digitall’s 10th anniversary—they threw a good party!

June was the month Tor the large ObjectWorld conference in San Francisco. The
Smalhtalk story of note there was the demonstration of Hewlewt-Packard’s Distributed
Smalltalk product-—the first complete implementation of the Object Management
Group’s CORBA specification for distributed computing. Using Distributed Smalltalk,
programmers can access distributed objects transparently without regard for whether the
objects are local or remole, At the conference, users of Distributed Smalltalk in the HP
booth were able 1o access objects residing in a Gemstone database in the Servio booth.
Distributed Smalltaik consists of approximately 150 classes that sit on top of ParcPlace
Systems’ VisualWorks product. Watch out for upcoming articles on distributed comput-
ing with Smallalk in future issucs.

For the past few years, many people have been discussing the issue of frameworks as a
mechanism for achieving reuse in object-oriented systems. For most, however, the issue of
finding these frameworks is elusive, to say the least. As this month’s fead article, Nik Bovd
provides a description of how frameworks can be made first-class objects by introducing a
Framework abstract class 1o Smalltatk and provides examples llustrating how best to use it

Three of our colummnists check in this month. Alan Knight addresses the issue we
raised in cur fast editerial, namely making extensions to the base Smalltalk environment,
In his column, ke reports on “home-brewed” enhancements that have been posted to the
Internet news group. In his column this month, Kent Beck continues his discussion of
using inheritance effectively by introducing a pattern to be applied when attempting o
make decisions concerning the factoring of subclasses. Greg Hendley and Eric Smith are
back, describing how to take advantage ol the object-dependents mechanism provided
by Smalltalk when trving to keep multiple windows that are displaying inter-dependent
information in sync, Finally, Dan Lesage reviews Dan Shafer’s new book, SMariraLk
PROGRAMMING FOR WINDBOWS.

Enjoy the issue—and welcome to our third year!

LLALE Reporyt (155NF creennh encept fr the MirdApr, JuiviAug, 2

consbined Jssucs, Published by SIGS Pablications Tne., 388 Broadway, Mew York, 22730040, & Copyright 1993 by SHGS
Publications. Al rights ved. Reproductum of this material by dlectronic franst my ather method will be weated as
ul vioktion of the L3 ¥ ¢
added First Class, Subscription rates eatie, 5633 Foreign and Canada, $90: Single copy price, S50, POST
1 Seed address chagey and subsart ders o0 Tate Smatyvass Rivory, Subscriber Services, Pept L RO Box 3000,
Denville, N 07834, For service on carrent subscziptions call 800.783.4903, Submit articies 10 the Editors at 509-885 Meadowlands
Prive, Gitawa, Gotario K2C 3N2, Canada, 6132258812 (), 613.225.5H3 ().

PRINTED IN THE UNITED STATES.

NETE

"?he Smalltalk Beport

Editors

Jahn Pugh and Paul White
Carteton Unwversity & The Object People

SIGS PUBLICATIONS
Advisory Board
Torn Atwood, Objec: Desi
Gracy Booch, Rutiona
George Bosworth, Digitalk

Brad Coux, Information Age Gonsulling
Adele Goldbary, ParcPace Systems
Tom Love, BM

Bertrand Meyer, 15E

¢ Mailir Page-Jones, Wayland Systems

Sesha Pratep, Cestsline Sofiware

Ciiff Reeves, IBM

Biarne Stroustrup, AT&T Bed Labs

Dave Thomas, Object Technoogy isbermatona

THE SMalLLTALK REPORT
Editorial Board

Jim Anderson, Digitatk

Adele Goldberg, ParcPlace Systerms
Reed Phillips, Knowledge Systerms Gorp.
fike Tayior, Digitak

Diave Thomas, Obiect Technology Intermations

Colurmmnists

Kant Back, Fist Class Soltware

Juanita Ewing, Digitalk

Greg Hendley, Knowledge Syslems Corp,
Ed Klimas, Linea Engireering Ino

Alan Knight, The Object People

L Eric Smith, Kaowledga Systers Carg

Rebecca Wirfs-Brock, Tigitatk

SIES Publications Grougp, Inc.
Richard P. Friedman

Foundear & Group Publizher

Art/Production

Kristina Joukhaciar, Managing Fltor

Susan Culligan, Pilgrim Road, Lid., Creative Dirsction
Karan ?ongish‘ Froduchon Cditor

SGwen Sanchirico, Production Coordinator

Robert Stewart, Comouter Systems Coordinator
Cirgulation

Stephen W.Soule, Circulstion Marager
Marketing/Advertising

fames 0. Spencer, Director of Busiress Deveiopment
Jason Weiskopf, Advertising Mgr—East Coast/Canada
Haolly Mesntzer, Acvertising Mgr—Wes: Coast/Europe
Healen Newling, Recruitment Sales Manager

Sarah Harmilton, Promotions Manager—Publications
Jan Fulmer, Promotions Manager--Conferences

Caren Polner, Promotions Graphic Arlist
Administration

Dawid Chatlerpaul, Accounting Manager

James Amenuvor, Bookkeeper

Margot Patrick, Assistant 3o the Publisher

Claire Johnston, Gonterence Manager

Cindy Baird, Conference Technical Manager
Margherita K. Monck

General Manager

Fublishers of Journal oF OplECT-ORENTED PRo-
CT Maczazsg, THE G+ REPORT, THE
HY, Teg Inteansnioma, OOF Daec-

2

Tae Smatrrack Revortr

Excerpts from industry publications

S0M

[n practice, [IBM 8] SOM {System Object Model} will allow
programmers to “package” objects into blocks of code, of class
libraries, that can be readily accessed from a Cro or Smalitalk
program. Next month, [BM will extend 5OM with a full
CORBA (Common Object Request Broker Architecture)
maodel, This Distributed SOM, or DSOM, spec will let objects
e transparently accessed either locally or across a network,

HEAA o
sl ey

POINTER-SAFE

At least triggers are specified in an SQL vartant. SQL has no
pointers and there is no need to worry about wild stores. Even if
the application is written in a language that is not pointer safe
(e.g., C) a witd pointer or running off the end of an array will
not corrupt the database. However, maost ohject database ven-

dors and at least one relational vendor allow behavior specified
in Cor Cet to be optionally linked inte a server process, and

SEIVET Prod

sses contain very large caches of data. The problem
in the relational environment is thal the rows {1 the cache are
assurned to satisty all integrity constraints and that the cache is
often shared amongst multiple cients. A seemingly experienced
application developer once wold me, in all seriousness, that ma-
ture C code doesn’t produce any wild stores {and vou wonder
why DBAs sometimes seem paranoid). A wild store in this sce-
narie can result in corrupted data being committed to the
databrase. And the corrupted data might not have been read by
the offending application program. Many object databases have
the same problem with behavior specified in Cor Cis. These
databases tend w bulk copy their caches to disk at rransaction
commit, This is ene of the major reasons why have alwavs be-
lieved that a pointer-safe language such as Smalltalk is a much
better data-manipulation language that C or even Ces.

GOBME T 5

oeh Stewy O

Shafer’s siyle of writing in this book is down Lo earth. This
shauld appeal to new programumers, but there are instances
where FHound the style to be a fittle subterranean. On page
141, for example, Shafer writes:

{It's amazing to think one can acrually get paid for doing this
kind of work, isn'r ft¢)

I hope I never accidentally put thar into my application
comments!

Crm the plus side, this book has really made strides in the
area ol integrazing an application into its surroundings, Ap-
pendix B discusses DDE and DLL interfaces and provides an
example of adding a DD ink o the Calendar application
from Microsoft Excel. The DLL example shows how to use
multimedia extensions in combination with a sound board.
The example demonstrates how to modify the Calendar pro-
ject to play a sound file instead of beeping for alarm events.

The end result of all these enhancements gives a Calendar
application that is comparable in function to the Microsoft
Windows desktop calendar. [belicve that most programmers
would classify this to be a true application, albeit a simple one.

Shafer demonstrates the use of fast prototyping a< cha-
nism for building applications, Throughout the baok, he pro-
poses designs that have minor flaws contained within them. He
then leads the reader through the analysis required to correct
the problem. This highlights an importent pohnt pertaining to
the design of graphical applications. Most of the discovered
problems have to do with event handling, sequencing, bad ini-

tialization and proper notification of change. To further com-
plicate the analysis, these problems occur within a mult-
windaw, multi-pane, multi-widgel environment. This is also
true in the real world: The hard partis not defining the visual
aspects, it 1s getting the glue right. This book does an excellent
job in highlighting these kinds of problems and demonstrating
the type of analysis is required to correct them.

Onee you overcome the silly book cover, the carteons on
the back and the fact that the publisher’s name is about 3 fimes
the size of the author’s, the content of this book will be very
useful to new Smalltalk programmers. The calendar applica-
tion can form the basis of an introductory Smalltallc course, |
kaow of one company that has modeled part of its internal
training exarnples on those presented in the book. This book s
a colossal improvement over its predecessor and it demon-
strates what i takes to start building applications under Win-
dows using Smallik. 1 recommend this book 1o new Smalltalk
programmers who wish to quickly develop small scale applica-
tons within the Windows envirtonment. &

Dan Lesage o responsible for Disteibnged Systems Framewerks at Ob-
ject Techuology Ditersational I, This means that he gets to act as
trial avbiter between very unlfike pieces of hardware and sofiware,
protocol arbiter between collaborating classes in frameworks, person-
nel arbiter between team menibers and agueous medium arbiter be-
fweent aygressive piscatorial wmembers of s aguaria, I occasionally
means that ke gets i develop saftware in Smallialk, He can be
reached at 613.820.1200 or dan@oti.on.ca.

SEPTEMBER 1993

27

SMALLTALK PROGRAMMING FOR

by Dan Lesage

INDOWS

by Dan Shafer with Scott Herndon and Laurence Rozier

Prima Publishing

Roclin, CA

phone: 916.7856.0426

fax: 916.786.0488

$39.95

ISBN 1-55958-237-5 1993

am waiting for the day of the truly paperless book. The day

when reading on an electro-luminescent ot photo-polar-

ized device provides me with as little eye strain as reading
flat paper. I am sure that Dan Shafer is waiting for this day as
weil. On that day, the problem of publishing a timely technical
hook about rapidly changing rechnology will no longer exist.

Eighteen months ago, 1 reviewed Shafer’s original Smalitalk
book, entitled Pracricat Smantratk (Tae Ssavirank Re-
rarT, Qctober 19910 One of the issues T raised in that review
was that the book presented examples in Smalltalk/V 286, just
when Digitalk was moving wward PC deskiop integration with
Windows and 05/2 Presentation Manager. The paradigm used
for modeling these new user interfaces had changed drastically
from Madel-Pane-Dispatcher. MPD lost 1ts sex appeal for sobv-
ing Ui problems, although the fundamentals of Smalltalk were
the same. Real-world Smalltalk development had moved on to
a different paradigm.

Shafer’s new book, which uses V' Windows 2.0 as its base, i3
mare timely than its predecessor. However, it is interesting
that Digitalk’s focus has moved onto Parts, once again leaving
Shafer to play catch-up. What we need is the ability to publish
a book directly from a Smalltalk image!

Once again the focus of the new book is a practical intro-
ductory guide for novice Smalltalk users. ft acts as a supple-
ment ter the material provided by Digitalk. The format of the
book is similar to the previous one. Aflter two introductory
chapters, it leads the reader through chapter pairs. The first
chapter of each pair introduces important Smalltalk classes.
The second of the pair highlights the use of these classes within
a working example application.

The book describes seven detailed projects. The first is a List
Prioritizer that prompts the user to priorilize text entries, The
second consists of a Counter widget that introduces interaction
hetween subpanes. The third project is a Calendar application
that displays monthly pages, allowing vou to navigate dates,
highlighting holidays and the current date. The fourth applica-
tion is an Appointment Book built by extending the calendar
application in the third project. The Appointment Book intro-
duces the ViewManager class. The fourth project also demon-
strates how to manage multiple window interaction by adding

26

a text based appointment window to the calendar. The fifth
project is a Bar Graph Editor and Viewer. The sixth consists of
a Form Dresigner that demonstrates how to create a user infer-
face layout from a Smalltalk outline. The last project consists
of a Clock that also hooks inte the Calendar application. The
clock is responsible for displayving the time and sounding
alarms and chimes. The Clock project demonstrates the multi-
processing capability built into Smalltalic and how to use itin
combination with ViewManager.

I Hound that the example projects contained within the
book had greater relevancy to developing real applications
than the ones presented in Practical Smatirack. Only the
List Prioritizer, Counter, and Bar Graph Viewer appear as up-
eraded versions of examples used in the previous book. The re-
faining projects simalate the process of building real applica-
tons. They require the developer to add new functions to
existing software rather than create designs [rom scratch,
Changing the Calendar viewer into a time-based Appointment
Book typifies how Smalltalk developers must constantly reor-
ganize their code to accomoedate new requirements, The Clock
project, which is the cumulative effect of these requirements,
provides new Smalltalk programmers with insight into the
power of classes such as Time, Processor and Context (blocks),
This last project demonstrates how to make these classes col-
laborate to simulate the behavior being modeled. The result of
completing the last project is a sense of satisfaction and
confidence. Develapers should feel comfortable browsing the
class hierarchy as they develop more complex applications.

The book includes & 3.5-inch diskette that containg V Win-
dows 2.0 code, 5o browsing the examples is casy. Just remern-
ber to remove the diskette immediately when you buy the book
or vou will find that afier a while, the soft back cover will look
like it has been run over by an office chair!

There appear to be some errors within the printed Smalltalk
code that do not appear on the diskettes. Pages 184 through
186 conlain numerous syniax errors and erroncously repeated
code. Unless vou are a masochist, you should browse the code
from your image rather than read the book to ensure correct-
ness, OF course, that means you need your paperfess book
again, a5 vou fiy from Boston to Gtiawa, Hmmm...

THE SmanLTaLk REPORT

Object Technology Potential
Object Technolagy can provide a
company with significant benefits:
s {uality Software

s Rapid Development

» Reusable Code

* Muodel Business Rules

But the transition is a process that
must be designed for success.

Transition Sofution

Since 1985, Knowledge Systems
Corporation (KSC) has helped
hundreds of comparies such as
AMS, First Union, Hewlett-Packard,
IBM, Northern Telecom, Southemn
California Edison and Texas Instru-
ments to successtully fransition to
Object Technology.

ADVANCED TRAINING

ANALYSIS & DESIGN

GUSTOM CONTRACTS

APPRENTICE PROGRAM

MENTORING

TEAM TOOLS

KSEC Transition Services

KSC offers a complete training

curticutum and expert consulting

services. Our multi-step program is

designed to allow a client to ulti-

mately atfain self-sufficiency and

produce deliverabie solutions. KSC

accelerates group learning and

development. The learning curve i3

measured in weeks rather than

maonths. The process includes:

» Introductory to Advanced

Programming i Smalitaik

» STAP™ (Smalltalk Apprentice
Program; Project Focus at K5C

+ 00 Analysis and Design

= Mentoring: Process Support

KSC Development Environment
K5C provides an integrated applica-
tion development environment
consisting of "Best of Breed” third
party tools and KSC value-added
software. Together KSC toois and
services empower deveiopmernt
teams 1o build object-oriented
applications for a client-server
environment.

Design vour Transition

Begin your successful “Object
Transition hy Design” For more
information on KSC's products and
services, call us at 919-481-4000
today . Ask tor a FREE copy of KSC's
informative management report:
Suftware Assets by Design.

Knowledge Systems Corp

OBIECT TRANSITION BY

@ 1992 Knowledge Systems Corporation.

oration

DESTIGN

114 MacKenan Dir.
Cary, NC 27511
(219 4814000

Lcontinned frove page |

B BUILDING OBJECT-ORIENTED FRAMEWORKS

This article describes the results of these experiments: The
role that frameworks can play in system design, and how
framework classes can be used 1o deline the structure and co-
ordinate the behavior of objects in systems. We begin by ex-
ploring some issues related to object design and system design,

OBIECT DESIGN AND SYSTEM DESIGN

We offen solve large problems by breaking them up into
smaller problems and combining the solutions (divide, under-
stand, integrate: solve e coagula). Just so, we can divide large
syslerms of interacting objects into smaller collaborations, or
subsysterns. This allows us to better undersiand and manage
the structure and behavior of the larger system.

Twao key concerns of object system architects ave the right

g
fucioring of behavior and the right coupling of objects, Al-
though different aspects of a design, factoring and coupling de-
cisions often Influence each other, For example, creating a new
object class presents a question that arises frequently in object
system design: Where does the new class belong in a class hier-
archy? This critical design activity incorporates both factoring
and coupling decisions because obyjects serve as the essential
unil for both factoring and coupling in object systems.

The class location deciston can be made easier by looking al
the proposed service responsibilitics of the new class and asking
some questions. Does the new class provide the same (or sub-
stantially similar) services when corpared to another existing

class? Does it add new services or change the implementation of

some services? Does it remove any services? When s new dass
shares (and perhaps adds to} the public interface of an existing
class, the new class is a good candidate for subclassing the exist-
ing class. When the public interface of the new class is not sub-
stantially similar, but needs the services of an existing class, the
new class should be a client of the existing class. When a new
class shares some portion of the public interface of an existing
class, the hierarchy may need to be revised, splitting out the
shared interface inte a new, more general superclass shared by
both the existing and newer subclasses. Finding the best Joca-
tion for object behaviors is the essence of right factoring,

RIGHT FACTORING

Factoring characterizes how well responsibility for services are
distributed throughout an object system or class hierarchy.
1deally, cach unique picce or pattern of behavior has a unique
Incation within cach object system or class hierarchyv.

Classes may be organized initially based on data and the
operations on that data. However, classes shouid finally be or-
ganized based on their service responsibilities and collabora-
tions, Fach object in a system is assigned responsibility for
providing certain services to its clients. Responsibility-based
design (EBD) takes the client/server approach to its logical
conclusion in the design of finegrained objects and collabora-
tive subsystems.o?

Many experienced object designers have suggesied that
good class hierarchies lend to be deep and narrow. A hierarchy
is considered deep when there are many intermediate super-

classes between the most specialized classes and the top of the
hierarchy. A hierarchy is considered narrow when each class in
the hierarchy adds relatively few public services.

Class libraries tend to evolve over time untii they become
stable and mature, However, we must be careful if we don’t
want such stability to mean that they ossify! This can happen in
large systems when a few basic objects are used repeatedly, cre-
ating many dependencies. The stability created by such depen-
dencies may argue against redesign, creating a kind of mertia

Larly design evolution should be encouraged in order to
prevent premature stability. Object modeling!® can help 1o ac-
celerate the process of evolution during class and system de-
sign. Design iteration provides opportunilies [or revisiting and
revising object and system designs through refactorig. !

Refactoring applies one or more kinds of behavior preserving
transtormation to an object model. The behavior of the modeted
objects is redistributed so that they are simpler and provide bet-
ter epportunities for reuse, ven fairly stable class hierarchies
may be improved by subjecting them to refactoring. 2

One frequently used example of refactoring 1s generaliza-
tion. When two or more subclasses share some common be-
havior, a new more general superclass can be created by factor-
ing out the shared behavior,

Many of the transformations permitied by refactoring can
be automated. Automating the refactoring process could even-
tually fead Lo the development of a kind of “lint” eliminator for

object designs.

RIGHT COUPLING

Coupling characterizes the relative visibility and independence

of objects in relation to each other. Ideally, objects and classes

should oaly be visible to those clients that need to see them.
When one object depends implicitly on another, they are

tightly coupled. Object instances are tightly coupled to their

classes. When one object depends direcily on the visibility of

another, they are closely coupled. Smalltalk instance, class, and
pool variables are are closely coupled to the instances that ret-
erence them.

When one abject references another only indirectly through
an opague reference or through some accessing or structural
Iraversing message(s), it depends only on some portion of the
other’s public interface and may be logsely coupled, Table 1
summarizes the relationships between visibility and coupling.

Thus, appropriate visibility is essential for achieving right
coupling. Often, the success of a large programming project
hinges on right coupling. Right coupling can only be achieved if
the system architect has an awareness of coupling and visibility

Table 1. Relationships between visibility and coupling.

isibility Coupling
Implicit Tight
Immeadiate Close
Opaque Laose
None Nene

4

THESMALLTALK REPORT

forms an expression of the form self changed: attribute. The
parameter attribute varies depending on just what part of
the domain model object was allered. For the change of
name example, this argument would likely be name. In such
a case, the setter method for name in the class Customer
might look like the following:
Custormer>>name: aString
"Accessing — Set my name, Update anybody who's interested.”
narae ;= aString.
selt changed: name
5o Whenever an object is sent the changed: message, asin
event 4, all other objects which have been registered as de-
pendents on the receiver of the changed: message receive
update: imessages. The argument passed along with the

update: message is the same as that passed in with the origi-
nal changed: message which started the process.

&, In processing the update: message, the application control
compares the argument with those identifying aspects of the
domain model in which it is inlerested. [T a match is found,
then the associated interface object is informed that some of
the data it is displaying 1s no longer valid and must be up-
dated. This is done by sending the interface object a message
that tells it just what data needs o be redisplaved. I this were
a view on the Customer as in the preceding examples, the
method for update: would lool, i part, like the [oliowing,
CustomerEditorControl>>update: aspect

"Updating — Some part of my domainMaodel has changed. See if
it is a part in which T'm interested. it s, then direct
the userinterface 1o update it."

aspect = = #name

iffrue: {* self userinterface invalidateName].
aspect = = #company

ifirue: [self userlnterface invalidateCompany}.
~ super update: aspect

. As Control B is also a dependent of Domain Object it wiil also

receive an updater message of the same form as that received
by Control & in event 5. This provides application B with an
opportunity to keep its view of the domain object up 1o
date even though application A was the source ol the
change. Application B does not need to know the source of
the change. All it needs to know is what change took place,
“this update: message provides it with this information. The
two views of Domain Object remain in syne,

8. Contral B will handle the update: notification in much the
same wav as did Control A in event 6. In fact, if these are the
same kind ol views of Domain Chject, then it will handle the
message in exactly the same way. The end result is that a
message witl be passed on to Window B telling it that it must
refresh the display of the changed item.

After the list of dependents of Domain Object is exhausted, that is
each member of that list has received and processed the update:

message, the process of changing an attribute of the domain

maodel obiject is complete. Only at this point does the processing
of the cmdSetAttribute message from event 2 complete,

Note that the domain model object did nol need 1o know
much about the application to provide this notification. All it
needed to know is when to vell, "I've changed!” Other objects
may or may not be interested, 1 they're not interested, they
just won't listen.

Objects may or may not be
interested. If they're not interested, they
just won't listen. 9%

CLEAN UP

When any of these windows are shut down, the dependency
links with the domain model objects must be broken. This is
best done using the removeJependent: message. When a win-
dow s closed it must, before it goes away entirely, pass on to
1ts control object a message allowing it to clean up as welll A
message ke deanUp will do nicely:

CustomerEditorModel==cleanlp
"T'm about Lo be terminated, clean up
any messes I've left laving aboul”
self domainModel removeDependent: self
The Object Dependents mechanism can be particularly uselul
for keeping collections of information up to date dynamically.

This will be the topic of a future column. 8

Gireg Flendley is a member of the technical staff at Knowledge Sys-
tems Corporation, His specialiy is custom graphical user lntorfaces
wsing various dialects of Smallialk and variows baage gencrators. Ere
St s alsa o member of the technical staff at Knowledge Systems
Corperation. His speciality is custom grophical user inferfaces usiig
Smighitalk {various dialects) and C. The authors may be contacied al

Krnowledye Systems Corporation, 114 MacKenan Drive, Cary, NC
27511, SI9AST 4000,

SEPTEMBER 1993

T R R TR I I I TN

u GUIs

08 \\Vhenever some aspect of Domain
Object that might be of some importance
to the outside world changes, the
method of the domain object that
actually changes the value performs an
expression of the form self changed:
attribute. 99

update message

update: sender

update: arg()

update: arg() with: arg1l

update: arg() with: arg1 with arg2

An object, A, may register itself as a dependent on another ob-
ject, B, by sending B the message addDependent: with itself, A, as
the argument. All dependents of an object are removed by
sending the object the message release.

A NOTE FOR DIGITALK USERS

Digitalk does not provide one method that is very useful in
dealing with Object Dependents. The missing method is
Object>>removeDependent: and a possible implementation is:

Object>>removeDependent: aDependent
"Remove a single object from my list of dependents.”

| dependents |

(dependents := Dependents at: self ifAbsent: [" nil])
remove: aDependent
ifAbsent: [].

dependents isEmpty ifTrue: [self release]

Digitalk users should also beware of the confusion possible be-
cause ViewManagers implement their own independent changed-
update framework, which is unrelated to Object Dependents
though it uses much the same protocol. To avoid prablems, we
won't be sending changed messages to view managers.

TWO VIEWS ON ONE OBJECT

To keep all of the windows on a particular domain model ob-
ject current, the domain model objects will generate self
changed: messages whenever some aspect of their state has
changed. It is assumed that when an view is opened on any dy-
namically updatable domain object, that the application control
object registers itself as a dependent of the domain model ob-
ject it is representing to the user. This will insure that the appli-
cation control will receive the update: message when the state of
the domain model object changes. It is also assumed that the
responsibility for undoing the dependency link when the win-
dow is closed also resides with the application control object.

24

SETTING UP
When a window is opened on a domain object, using an
openOn: message for example, the window informs its applica-
tion control object that this domain object is to be its model
object. It is at this time that the application control object
should register itself as a dependent of the domain model. The
following methods illustrate this set up:

CustomerEditor=>open0n: aCustomer

"Scheduling — Open myself up as a window
on the given Customer."

self control domainModel: aCustomer.
self open

CustomerEditorControl>>domainModel: aCustomer
"Accessing — Set my reference to my domain model object.
Make myself a dependent of this object."

domainModel notNil ifTrue: [domainModel removeDependent: self].
aCustomer notNil ifTrue: [aCustomer addDependent: self].
domainModel := aCustomer

Given this set up, Figure 2 provides an illustration of a generic
scenario for what happens when some attribute of a displayed
domain object is changed by the user in one of two views on
that object. In this example Control A and Control B are both de-
pendents of Domain Object.

1. The user uses some control in the window to alter the value
of an attribute of the domain object being presented to him.
For example, a the name of a Customer may be changed.

2

. Asa result of manipulating a control, a command message is
forwarded to the application control object of the window the
user is working with. In the case of changing the customer’s
name, this might be a message like cmdSetCustomerName:.

3. In the course of processing the command message, Control A
sends a message to the Domain Object to inform it that it
must change some of its internal state. To continue the cus-
tomer name example, this would likely involve sending Do-
main Object the message name:.

4. Whenever some aspect of Domain Object that might be of

some importance to the outside world changes, the method

of the domain object that actually changes the value per

1
Window A }6\ User Window B
Attribute

6 z Ny

invalidateAttribute cmdSetAttribute: 'foo’

invalidateAttribute

Control A

Control B

3

attribute: 'foo’

Domain Object

4

7

date:
update: ptate:

Now! Automatic Documentation

For Smalltalk/V Development Teams — With Synopsis

Synopsis produces high quality class documentation
automatically. With the combination of Synopsis and
Smalltalk/V, you can eliminate the lag between the
production of code and the availability of documentation.

Synopsis for Smalltalk/V

+ Documents Classes Automatically

+ Provides Class Summaries and Source Code Listings
+ Builds Class or Subsystem Encyclopedias

+ Publishes Documentation on Word Processors

+ Packages Encyclopedia Files for Distribution

+ Supports Personalized Documentation and
Coding Conventions

Dan Shafer, Graphic User Interfaces, Inc.:
“Every serious Smalltalk developer should take a
close look at using Synopsis to make documentation
more accessible and usable.”

Development Time Savings

Coding Documentation
Without
Synopsis
Start Finish
Documentation
With
Synopsis

Products Supported:
Digitalk Smalltalk/V Windows $295

Digitalk Smalltalk/V OS2 $395 °
(O8/2 version works with Team/V and Paris)

5 "' Synopsis Software
8609 Wellsley Way, Raleigh NC 27613
Phone 919-847-2221 Fax 919-847-0650

changed:

Figure 2. Keeping two windows up to date,

The SmarcTark Revort

issues, and has tools that provide him with real options for deal-
ing with those issues.

Component classes, module classes,!* and framework
classes complement one another in controlling coupling and
visibility in Smalltalk systems. They also provide complemen-
tary mechanisms for factoring. The issues raised regarding the
factoring of behavior and the coupling of objects can be dealt
with formally by designing objects using contracts.

DESIGNING WITH CONTRACTS
Contracts are design abstractions. They provide high-level de-
scriptions of:

+ The behavior (and structure) of a component object

« The collaborations between the components that form a
subsystem

+ The interactions between the participants in a framework.

Classes define the service capabilities of their instances.
These services can be organized using protocols. Protocols are
generally used to represent the contracts provided by objects.
Protocols generally characterize the services they organize us-
ing descriptions derived from verb phrases such as initializing-
releasing (instances), accessing (some state information), com-
puting (some value).

Sometimes a complex set of related services can best be im-
plemented and simplified by assigning responsibility for some
contract(s) to a separate class. The set of resulting classes can

SEPTEMBER 1993

then be organized as collaboratars in a subsystem. Responsibil-
ity-based design® can be used when defining and refining the
contracts fulfilled by components and subsystems.

In Smalltalk, module classes!® can be used to organize and
provide opaque access to subsystems. Like component classes,
module classes can be instantiated. Whether through the mod-
ule class or one its instances, each module serves as a gateway,
providing access to the services of its internal subsystem.

Interaction-oriented design can be used when defining and
refining the interaction contracts fulfilled by frameworks, In
interaction-oriented design, the interactions between objects
are first-class entities in the design space.’ Using framework
classes, these first-class designs can be implementated as first-
class objects,

THE FRAMEWORK SUPERCLASS
Listings 1 and 2 provide the Smalltalk source code that imple-
ments the Framework superclass. The Framework superclass is
intended to be subclassed to create both general and special-
ized frameworks. The Framework superclass is responsible for
providing the following services:

* Building a framework from participants

* Resolving roles for participants

* Defining roles and their responsibilities

+ Validating participants for roles

+ Translating events into messages

n

e BUILDING OBJECT-ORIENTED FRAMEWORKS

When a framework instance is built, some of the partici-
pants are components, bul some may be other frameworks.
These nested frameworks are given special treatiment during the
assembly of the framework in which they are embedded. Each
nested framework is checked for unresolved roles. If any unre-
solved roles are found, they are filled using participants from
the embedding framework by maiching their role names. Thus,
naming the roles and participants in a network of frameworks
is an important activity,

This feature allows system architects to design and build net-
works ol interfocked frameworks. Small frameworks and their
components can be integrated so that events propagate through
the network o produce the overall behavior ofa large system.

Within a framework, each object has a role and must supply
certain services in order to fulfill that role, Aninteraction con-
tract defines the responsibilities of the objects that form a be-
havioral composition. The services cach object must render in
order to pardcipate in a role may be defined explicitly as part
o a [ramework class. When these specifications are defined for
the roles of a framework class, they are verithied when each in-
stance of the framework is assembled.

Although framework role validation is feasible within any lan-
guage system, it 1s easiest to implement when the language sup-
ports reflection directly, Reflection provides objects with access
to information regardimg their own behavior. Sometimes this
language feature is described as object sell-knowledge, Smalltalk
is one of the few commercial languages that support reflection.

The use of reflection by [ramework classes for validating
role participants presents an inleresting apportunity. This
reflective information can be used 1o support the intelligent as-
semnbly of object frameworks. In Listing 1, the #assembleds:
method shows how the Collection class may be extended 1o
support framework assembly from anonymous participants.

If the service requirements defined for cach role differ
sufficiently, they may be used 1o identify the role players
needed from a collection of anonymous participants. Fach
anonymous participant can be examined 1o determine ifs most
likely role within a framework based on the service require-

list

component couplings pine menu

-
.

N
vy

subpane inter-framework coupling

O

framewnrk mediator

Figure 1. Key diagram,

ments of cach role. Once the voles of all the participants have
been identified, the framework can be built without any need
to explicitly specify their roles.

EVENT NOTIFICATION AND TRANSLATION
The MV framework and other similar ones typically broad-
cast event and change nolifications to dependents. While this
may be sufficient for simple framewarks, more complex frame-
works need something mare: the ability to target specific
framework participants for event or change noiificalion. For
this reason the Framework class supports both kinds of
notification mechanisms:

self notify: #someParticipant

that: #somethingHappened,

self someParticipant
notifyThat: #somethingHappened.

The #notifthat: request exlends the Gbject cluss to provide
event notification largeied at specific named dependents, The
#notifyThat: request extends the Dbject class to provide broad-
casting of events to all dependents (sce Lisung 1}, The Frame-
work class overrides #netifyrthats to support targeting specific
named participants. ¥t also overrides #notifyThat; 1o translate
events o actions.

SOME EXAMPLE FRAMEWORKS

The first two examples are described in Reference 5. Listing 3
shows a framework class that captures the SubjectView contract.
The SubjectView contract manages a collection of views so that
they ali reflect the current value of a subject. By factoring out
the behavior refated to the contract Into a separate framework
class, the services that the subject and view classes must sup-
port are drastically reduced. This facloring allows these classes
to be simplified 1o their essential behavior without concern for
how they are used in a broader context.

Listing 4 shows how ButtonGroup, a specialization of the
SubjectWiew comiract, can be captured as a framework subclass,
The ButtonGroup shows which bution of a group of radio but-
tons is selected. Here again, the bebavior required of the Button
class is reduced, eliminating its need 1o retain any framework
specific behavior,

The next example is derived from efforts o refactor some
browser classes. A brief overview will suggest how such refac-
toring may proceed. The Tramework superclass is subclassed by
a hierarchy that supports the redirection and translation of the
SubPane events used in Smalltalik/V. The class SubPaneMediator
guides the interactions between one of the SubPane subclasses
(i.e., Button) and some other component(s).

The component used by these mediators in addition to the
subpanes 15 a SelectionList. The Selectionlist class remembers
the selection of a single item from a fist of items. The item list
miay be either an IndexedCollection or an OrderedBictionary. The
selection index of the listis either an ordinal number or an or-

. comtined au prage 1.

&

Tre SMariTaLk REPORT

- 11 many Smalltalk applications, it is possible for the end-
user to have several independent windows providing

views of the same information {Figure 1), There may be
several instances of one kind of window or parent and child
windows that, theugh very different in appearance, share
some overlap in the information they present. To prevent in-
consistencies between windows, the changed-update (also
lnown as Object Dependents) mechanism can be used to in-
sure that all views the end-user has opened on a particular ob-
fectare kept up-to-date with that object’s most recent idea of
what it looks [tke.

Far example, if the user has a view of a Customer object that
e opened directly and another view of the same Customer that
was opened as a consequence of browsing a ServiceAgreemant
nbject, any changes make to one view of the Customer should
be immediately reflected in the other. The user should not see
two different views and be lefl to figure out which one is the
most carrent.

BACKGROUND

The application architecture outhned in previous columns
{THE SMarTack Rerort, May 1992 and October 19923 will be
emiployed here. For those who have not vet been exposed to
the Interface-Caontrol-Model architecture, a brief glossary of

terms is provided here.

« Interface. The component of the user interface whose job it
is to present information to the end-user and accept input
events from same, The interface translates aser input to se-
mantic aclions such as mouse-clicks to selection or menu
selections to commands. The interface has very little
knowiedge of the structure of the application of which it is
a part, It has virtually no knowledge of the domain model
(see below),

a

Control. The contrel layer of an application is the compo-
rent that understands the sermantics of the application as a
whiole, This is where commands identified by the interface
are actually carried out. The application control under-
stands the relationships among the various domain model
objects it works with, [l also knows aboult the consequences
of commands. This is the point where all the “brains” ot the
application (as the end-user sees it) reside.

Greg Hendley & Eric Smith

» Model The moedel is the meat of the system, This is where
the real information ts modeled (hence the name). I we
were working with a circuit design application, this layer is
where objects such as Circuit, Transistor, Diode, etc. would be
found. These objects have only the most limited under-
stariding that there is a user interface above them, They
have no direct knowledge ol vser interface issues,

OBIECT DEPENDENTS

Both major dialects of Smalltalk provide essentially the same
Object Dependents facility. The idea s that a client object,
which wants to be informed when some other object changes,
registers itself as a dependent of that object. Since the requisire
behavior for maintaining dependencies is implemented in the
class Object, all objects may have dependents, be dependent on
other oljects, or both.

The detailed operation of Object Dependents is a topic for
another ime, We'll have to be satisfied with just a quick look
at the top level of the behavior, In the simplest ternss, an object
which has changed and may have dependents sends itsell a
changed message. This results in each of the dependents, if any,
of the object i question being sent a matching update mes-
sage. A list of possible changed messages and their matching
update messages is presented below:

changed message

changed: arg{)

changed: arg{) with: arg?

changed: arg{) with:argl with: arg?

Sirfus Cybemetics Corp,

Figure 1. Two windows on a single Customer.

SEPTEMBER 1403

23

selectItem: item
self selectionList selectItem: item.!

selectObject: selection
self selectionList select: selection.! !

ListItemChooser subclass: #ListViewer
instanceVariableNames: "
classVariableNames: "
poolDictionaries: " !

!ListViewer class methodsFor: 'validating roles' !

widget
Ea) #(
deselect
restoreWithRefresh:
selection:
selection

i
!ListViewer methodsFor: 'translating events' !

deselected
self widget deselect.!

listChanged
self widget restoreWithRefresh: self selectedltem.!

selected
self selectIndex: self widget selection.! !

!ListViewer methodsFor: 'changing component state' !

showSelection
self widget selection: self selectedIndex.! !

ListIltemChooser subclass: #ListButton
instanceVariableNames: "
classVariableNames: "
poolDictionaries: " !

!ListButton class methodFor: 'validating roles' !

m BUILDING OBJECT-ORIENTED FRAMEWORKS

widget
“super widget, #(contents:)! !

!ListButton methodsFor: 'translating events' !

clicked
self listSelections size > 1 ifTrue: [
self widget contents: self nextSelection].!

listChanged
self selectionChanged.!

selectionChanged
self widget contents: self selectedItem.! !

ListButton subclass: #MenuButton
instanceVariableNames: "
classVariableNames: "
poolDictionaries: " !

!MenuButton class methodsFor: 'validating roles' !

selectionList
“super selectionlist, #(popUpltems)! !

!MenuButton methodsFor: 'changing component state' !

nextSelection
“self selectionList popUpltems! !

ListButton subclass: #ToggleButton
instanceVariableNames: "
classVariableNames: "
poolDictionaries: " !

ToggleButton class methodsFor: 'validating roles' !

selectionlList
~super selectionList, #(selectNext)! !

ToggleButton methodsFor: 'changing component state' !

nextSelection
“self selectionlList selectNext! !

TO SUBSCRIBE TO

THE SMALLTALK REPORT

CALL 212.274.0640 OR FAX YOUR REQUESTTO
212.274.0646.

22

The SMmaLLTALK REPORT

OBJECT
SIWHISAS

INcC.

Smalltalk/V developers have come to rely on

WINDOWBUILDER PRO

The New Power in Smalltalk/V Interface Development

!

WindowBuilder Pro/V is available on Windows for $295

7= 4 I3 SP S A . - -
WindowBuilder as an ’='l " WindowBuider Pro

- and O8/2 for $495. Qur stan-

Options

FZ.‘:'SCﬂtllll.(().()l for devel_op— File Edit View Align
ing sophisticated user inter- ‘
faces. Tedious hand coding

Scrapbook Add

- dard WindowBuilder/V is
= still available on Windows
| for $149.95 and O5/2 for

of interfaces is replaced by

5295, We offer full value

interactive visual composi-

| trade-in for our

- WindowDBuilder customers

tion. Since its initial release,

WindowBuilder has

| wanting o move up to Pro.

become the industry stan-

| These products are also

dard GUI development tool

| available in

for the Smallrall/V environ-

| ENVYs/ Developer and

ment. Now Objectshare

- Team/V™ compatible for-

brings you a whole new

mats. As with all of our

level of capability with

| products, WindowBuilder

WindowBuilder Pro! New

{ Pro comes with a 30 day

: |defauliStyle

functionality and power

| money back guarantee, full
i source code and no Run-

ProgrammerName

abound in this next genera-

Time fees.

tion of WindowBuilder.

Some of the exciting new features...

* CompositePanes: Create custom controls as composites
= of other controls, treated as

S"m'lj— 1 a single object, allowing the
CWS S‘*‘“E]_‘ (ngiullt_{{)el-7h.ig__,rlh.cr lcfx-'crugc
4] of reusable widgets.

B CompositePanes can be
used repeatedly and

because they are Class based, they can be easily sub-

classed; changes in a CompositePane are reflected any-

where they are used.

72 M)
=
-

» Morphing: Allows the developer to quickly change

Smalltalk from one type of control Tskiis
“windowBuild } k — : |
e T to another, allowing for | © smaliat

powerful “what-if” style | © WindowBuilder
visual development, The | © Other
flexibility allowed by '

morphing will greatly enhance productivity.

s ScrapBook: Another new feature to leverage visual
component reuse, ScrapBooks provide a mechanism for

developers to quickly
store and retrieve pre-
defined sets of compo-
nents. The ScrapBook
is a catalog of one's
favorite interface com-
ponents, organized

into chapters and pages.

+ Rapid Protolyping capa

bilities: With the new link- [soeoa viewsnge cless:

ing capabilities, a develop- Wroweer ‘»ﬂ“ﬁ?ﬁ% 1
er can rapidly prototype a Rl ’ Sibling
functional interface without |[jaester o ‘ Opens the selected
writing a single line of iU 1 K'e":?,:fﬁiﬁfh'ifi"
code. LinkButtons and Faa

LinkMenus provide a pow-

erful mechanism for linking
windows together and speci-
I} fying HNow of control.

|| ActionButtons and

|| ActionMenues provide a
mechanism for developers to
attach, create, and reuse
actions without having to write code. These features
greatly enhance productivity during prototyping.

Select an Action:
Concel

Inspeet

_

o (o] [Bop]

= ToolBar: Developers can Create sophisticated toolbars

just like the ones in the WindowBuilder Pro ol itself.

» Other new features include: enhanced duplication and
cut/paste functions, size and position indicators,
enhanced framing specification, Parent-Child window
relationship specification, enhanced EntryField with char-
acter and field level validation, and much more...

* Add-in Manager: Allows developers to easily integrate
extensions into WindowBuilder Pro's open architecture.

Catch the excitement, go Pro!
Call Objectshare for more information.

(408) 727-3742

Objectshare Systems, Inc 5 Town & Country Village
Fax: (408) 727-0324 Suite 735
CompuServe 76436,1063 San Jose, CA 95128-2026

WindowBuilder and WindowBuilder Pro are trademarks of Objectshare Systems, Inc. All other brand and product names ara regislered trademarks of their respective companies

MALLTALK IDIOMS

Inheritance: t

n the June issue where [took on accessor methods, [
stated that there was no such thing as a truly private mes-

sage. T gol a message [rom Nikolas Boyd reminding me
that he had written an earlier article describing exactly how to
implement really truly private methods. One response I made
was that until all the vendors ship systems that provide
method privacy, Smalitalk cannot be said to have it. Another
is that P not sure U'd use it even if L had it. It seems like
some of my best “reuse moments” oceur when [find a sup-
posedly private method in a server that does exactly what |
want. I don't vet have the wisdom to separate public from pri-
vale with any certainty.

On 2 different note, Uve been thinking about the impor-
tance of bad style, In this column, Talways try to focus on good
style, but in my programiming there are at least two phases of
project development where maintaining the best possible style
is the farthest thing from my mind. When I am trving to get
some code up and running I otten deliberately ignare good
style, figuring that as soon as [have everything running [can
simply apply my patterns 1o the code to get well-structured
code that does the same thing. Second, when I am about to
ship a system [often violate good style to limit the number of
objects I have to change to fix a bug.

What got me thinking about this was a recent visit | made
to Intelliware in Toronto. Turns out Intelliware is two very
bright but fairly green Smalltalkers, Greg Betty and Bruno
Schmadi (he’s not nearly as German as his name]. They hired
me to spend two days going over the code they had written for
a manufacturing application. The wonderful thing was, they
had made every mistake in the book. IU's no reflection on thejr
intelligence; everyone makes the same mistakes at first.

What made their hoo-boos so reat was that [was able to go
in and, in two days, teach them a bost of the most advanced
Smalltalk techniques just by showing them how to correct er-
rors. I'd say, “Oh, lock, an isKind0f:. Here's how vou can get
rid of that and make your program better at the same time,”
Because [had a concrete context in which to make my obser-
vations, they could learn what [was teaching both in the con-
crete {“Yes, that does clean up the design”™) and the abstract
(“Oh, I see. I can do that apv time I would have used
isKind0f: "},

So, go ahead. Use sKindOf:. Use class == and == nil. Access
variables directly. Use perform: a Jot. Send a message to get an

rest of the st

Kenr Beck

object that you send a message (o, Just don’t do any of these
things for long. Make a pact with vourself that vou won't stand
up from vour chair (or go to bed, or ship the system, or go Lo
vour grave. ..} without cleaning up first.

Some people are smart enough to write clean code the first
time. At least, that’s what they tell me. Me, I can’t do that.]
write it wrong, and then fix it. Hev, it's not like we're writing in
Cor and 7 takes an hour 1o compile and link our programs.
You may as well be making your design decistons based an
code that works. Otherwise, you can spend forever speculating
about what the right way to code something might be,

PATTERN: FACTOR A SUPERCLASS

As an alternative to the Separate Abstract from Concrete pattern,
I'd Bke 1o present the way Ward Cunningham taught me to make
inheritance decisions. It is very much in keeping with what 1
wrote above about lefting vour “mistakes”™ teach you the “right”
thing to do. When you are programming like this, it feels like the
program itself is teaching you what to do as you go along,

CONTEXT

You have developed two classes which share some of the same
methods. You have gotten tived of copying methods from one
to the other, or you have noticed vourself updating methods in
both in parailel.

PROBLEM

How can you factor classes into inheritance hierarchies that
share the most code? {Note that some people will say that this
isn’t the problem that inheritance should be solving. You
wauldn’t use this pattern if that was your view of inheritance.)

CONSTRAINTS
You'd like to start using inheritance as soen as possible. I you're
using inheritance vou can often program faster because you
aren’t forever copying code from one class 1o another (what Sam
Adams calls “rape and paste reuse”). Also, i you are using inher-
itarce, you don’t run the risk of 2 mulliple update problem,
where you have two identical metheds, and you change one but
net the other. tdeally, for this constraint, you'd like to design
your inheritance hierarchy before you ever wrote a line of code.
On the other hand, designed inheritance hierarchies (as op-
posed to derived inheritance hicrarchies) are seldom right. In

8

Tue Svarrrark REPORT

!SubPaneMediator methodsfor: 'binding components®! SubFaneMediator subclass: #ListitemChooser
instanceVariableNames:

supportedEventHandlers classVariableNames: ”

~H{ poolDictionaries: " !
clicked:
doubleClickSelect: tListitemnChooser class methodsFor: 'validating roles' !
getlontents:
getMenu: roteNames
getPopupdenu: ~ #{ selectionlist widget)!
select:
I selectionlist
~ #(
handlexfor: event list:
“self supportedEventHandlers detect: items
[:evh | event = (evh copyWithout: (5:) }] selections
iNone: [nil 1! selectingex:
selectedindex
support: event for: subPane selectitem:
| selector | selectedlrem
selector ;= self handlerFor: event. select:
selector isMil iffrue: | “self 1. selaction
subPane when; event performu selector.! e

supportEventsFor: subPane IListTtemChooser methodsFor: "accessing component stales' !
subPane class supportedfvents do: [revent |
sedf support: event for: subPane .1 getlontents
~seif HistItems!
claimOwnershipll: subPane
subPane ifUnderstond: #supportedivents do: | listltems
subPane owner: self. ~self selectionlist items!
self supportEventsFor: subPane 1.!
listSetections
for: partNarme use: anlhbject ~sglf selectionlist selections!
| selector |
super for: partName use: anbject. selectedIndex
self claimUwnershipff: arObject, "if SubPane™ ! ~self selectionList selectedIndex!
1SubPaneMediator methodsFor: handling events' ! selectedftam
~self selectionlist selecteditem!
clicked: subPane
self notifyThat: #clicked.! selection
“self selectionlist selection!
doubleClickSelect: subPane
self notifyThal: #doubleClicked.! selectionlist
~self partaerNamed; #selectionlist!
getContents: subPane
self iflinderstood: #getlontents do: | widgat
subPane contents: self getContents |.! “self partnetNamed: #widget! !
getMenu: subPane tListTtemChooser methodsFor: ‘changing component state’ !
self ifUnderstood: #getMenu do; |
subPane setMenu: self getMeny]! changelist
self selectionlist list: self getlist.
"nate: getlist should be implemented by subclass
methed o1 prototype block™

getPopupMenu: subPare
setf ifUnderstoed: #getPopupMenu do: |
subPane setPopupMenu: self getPopupMenu].!
selectIndex: index
select: subPane self selectionlist selectIndex: index.!
sell notifyThat: #selected.! !

SEPTEMBER 1993 21

" BUILDING OBJECT-ORIENTED ERAMEWORKS

supers do: []
methodiames addail: 5 methodﬁictionary keys I
methodMames = methodNames select: [|
nlast == ($:) 1
methodiames = methodNames collect: [|
n copyWithout: (5:) 1.
“methodNames!

doesiotlinderstand: aMessage
“Try handling aMessage, assuming it #s accessing the parts of the
receiver, If the part accessed is a block context, answer the result of
evaluating the block with the receiver and arguntents from aMessaqe as
arquments. Jtherwise, answer the accessed part. If aMessage does not
access a part, let the superclass handle aMessage.”
| part |
(parts respondsTo: aMessage selector) ifFalse: [
“super doesNotUnderstand: aMessage],
part ;= self partNamed: aMessage selector iflone: |
~parts perform: aMessage selactor
withArguments: aMessage arguments |,
part isContext ifTrue: |
aMessage arguments isEmpty ifTrue: |
“part value: aMessage receiver },
~part value: aMessage receiver
valae: aMessage arguments |.
Mpart!

"The following exampte is derived from the contract SubjectView
deseribed on page 171 of [HHGS0L"

ISubiectView class methodsFor: 'validating roles' !

rolelNames
~ #{ subject view }!

subject
~ #{ value value:)!

view
~ #(showValue: 3!

tSubjectView methodsFor: supporting subject’ !

setValue: value
self getValue = value ifTrue: [“self |
self subject value; value,
self notify.

get¥alue
~setf subject value!

notify

self views do: [rview | self update: view).t

atrachView: aView
self validate: aView as: #view,
self views add: aView.!

detachView: a¥iew
self views remove: aView.! !

!SubjectView methodsFor: ‘supporting views' !

update: aView
self draw: aView.!

draw: aView
aVisw showValue: self getValue.!

setSubject: aSubject
self validate: aSubject as: #subject.
self subject: aSubjact.
self views == self ifTrue: [seif views: Set new 1.1 1

"zample use of the framework”
SubjectView new
setSubject: ValueHolder new;

attachView: BarGraphView new;
attachView: DialGaugeView new;
attachView: PercentageView new,;
setValue: 75.!

"The following example is derived from the refinement of the
SubjectView contract calied ButtonBroup on page 173 of [HHG90]."

SubjectView subclass: #Buttonimoup
instanceVariableNames: "
clasaVariableNames: "
poolDictionaries: !

"Buttenbroup class methodsFor: walidating rofes'

view

~ #{ value chosen: }1 !
IBurtonGronp methadsPor: supporting butfons'!

select: aButton
self setValue: aButton value.!

update: aButton
self getValue = aButlon value
ifTrue: [self choopse: aButton |
ifFalse: [self unChoose: aButton 1!

chooge: aButton
aButton chogen: true.!

unChoese: aBution
aButton chosen: false.! !

Framework suibclass: #5ubFPansMediator

ingtanceVariableNames: "
classVariableNames: "
poolDictionaries: " !

20

Toe Svavitary REPORT

fact, by maling inheritance decisions too soon you can blind
vourself to the opportunity to use inheritance in a much better
way. This constraint suggests that vou should make inheritance
decisions only after the entire system is completed.

SOLUTION

If ane of the ohjects has a superset of the other object’s vari-
ables, malke it the subclass. Otherwise, make a common super-
class, Move all of the code and variables in commen to the su-
perclass and remove them from the subclasses.

EXAMPLE

It is difficult lo come up with an example of inheritance that
st totally abvious. The problerm is that hefore you see it, you
cary't imagine if, and afier you see it, you can’t imagine it any
other way. So, if this example seems contrived, don’t worry,
yaur own problems will be much harder.

Here is an example in VisualWorls [ran across a couple of
months ago. [had Flgurel, a subclass of VisualPart. Tt had to be
dependent on a several other objects, and it had to delete those
dependencies when it was released.

Class: Figurel

Superclass: VisualPart
Instance variables: dependeas

Figure>>initialize
dependees := OrderedCollection new
Rather than use the usual addDependent: way of selting up de-
pendencies, [implemented & new message in Figurel called de-
pendOn:.
Figurel=>dependUn: an0bject
dependees add: anObject.
anObject addDependent: self
When the figure goes away, it needs to detach itself from every-
one it depends on,

Figurel>>breakDenendents
dependees do: [:zach | each removelependent: self].
super breakDependents

Then 1 created a Figure?, To get it up and runaing quickly 1
just copied the three methods above to Figure2 and set about
programming the rest of it.

[t was when [went ta create Figure3 that T decided to take o
break and clean up. | created DependentFigure as a subclass of
VisuzalPart, gave it the variable dependees and the three meth-
ods above, made Figurel and Figure? subclasses of it, deleted
their implementations of initialize, dependOn: and breakDepen-
dents, and then implemented Figure3.

OTHER PATTERNS

While you are factoring the code is often a good time to ap-
ply Compose Methods so vou can move more code into the
superclass.

CONCLUSION
[have presented a pattern called Factor a Superclass as an al-
ternative to Separate Abstract from Concrete for creating in-

DO YOU KNOW
SMALLTALK?

At Boole & Babbage, we talk big about
our UNIX and mainframe products.

I you want an unparalleled technical
opportunity to work with a world-class
team in a company with 25 years
experience as an innovator, bring your
smalitaik and QOD skills and talk big to:

Boole &
Babbage

Group Staffing DRRSR
510 Qakmead Parkway
Sunnyvale, CA 94086
FAX: (408) 737-2649
or email {ASCl and Postscript only):
info@boole.com

EQE
principals only

heritance hierarchies. Using Factor a Superclass, vou will end
up with superclasses that have more state. I'm not sure if this
is a good thing or not. On the plus side, you will probably be
able o share more implementation. On the minus side, you
may find vourself applying the pattern several times to get the
final result. You might factor two classes to get a third, then
notice that once you look at the world that way vou can factor
the superclass with a previously unrelated class to get a fourth,
and so an.

Beware of juggling inheritance hierarchies too much. You
can waste lots of time factoring code first one way, then an-
other, and find that in the end you aren’t that much better off
than you were when you started. Objects can survive less-than-
optimal inheritance much better than they can encapsulation
violations or insufficient polymorphism. Most expert designers
agres that great inheritance hierarchies are oaly revealed over
time. Make the changes that you can see are cbvious wins, but
don’t worry about getting it instantly, absolutehy right. You are
betier off getting more objects into your system so you have
more raw material from which to make decisions. B

Tektronix, Apple Computer, and MasPar Computer. He is alse the
Jounder of First Class Software, which develops and distributes reengi-
neering products for Smalltalk, He can be reached af First Class Soft-
ware, P, Box 226, Boulder Creek, CA 95006-0226, 40)8.338.4649
(voice), 408.338.3666 (fax), or 7078 1,1216 on Cornpuserve.

SEPTEMBIR 1093

9

Tttt B —— A A

{ he Smalhalk development environment is excellent in
mary ways, but stagnant. The basic tools haven't
changed much from when [first used Apple Smalltalle-
80 on a Lisa in 1986, At that time Smalhtalk and LISP systems
led the way in interactive development environments, Now
these environments exist for many languages, some of them
very competitive with Smalltalk.

Ta be fair, there have been great improvements in sonze ar-
eas, mostly in the area of add-on products. These include GUI
builders, team programming tools, profilers, and database in-
terfaces. The basic tools—the browsers, inspectors and the de-
bugger
defy improvement.

remain almost unchanged. This is not because they

Fortunately, one of Smalltalk’s strengths is the ease with
which it can be customized and extended. In this column, the
first of two parts, il discuss some simple extensions to these
tools, Part two will look at seme of the packages available that
make more substantial changes. The main focus will be on
ideas or onn code available over the net rather than commercial
products which are better covered in a product review.

AREN'T IMPROVEMENTS THE VENDOR'S JOB?

Ideally, users shouldin't have to write or acquire extended tools.
The development environment is a strong selling point for
Smalllalk, and one might expect the vendors to put some effort
into improving it. From the vendor’s point of view, however,
there are good reasons not to change the environment.

* Backward comparibility. Everybody gets annoyed when
system code changes. H users don’t think the changes are
worth breaking their code for, they’ll be upset.

* Disagreement, Any vendor-imposed changes to the envi-
ronment will be unpopular with some users, and ques-
tionable changes run the risk of a backlash rivaling that
was received by the New Coke,

* Priorities. Vendors have limited resources, and are kept
very busy developing new products and fixing the major
problems with existing ones. The base environment st
bleeding too badly, so resources go elsewhere,

« Lack of competition, With the recent growth in Smalltalls
popularity, many users are new to the language and come
{rom areas such as mainframe COBOL or 4GL development.

HE BEST OF Comp,langﬁmaﬂta}k Alan Knight

the environment

They're stili too dazzled by the very idea of an incremental
development envirenment lo complain about its deficien-
cies. Competition from other languages is

't strong encugh
vet to inspire changes. The most likely source of imiprave-
ments may be new Smalitalk vendors who need to worry
more about carving a niche than backward compatibility.

Extensibility. There are relatively fow complaints about
the environment, because any user with sufficient time
and skill can change it to suit themselves.

[FSUPTO YOU

You can’t count on the vendors for improvements, so it's up to
vou to take responsibility for vour own development environ-
ment. You don’t have to rewrite the debugger, but don’t be afraid
o make changes or 1o explore the changes others have made.

At this point, careful readers may recall my March/April
1993 columa, where I urged great caution in making systemn
changes. This appears to be a contradiction, but it's really just a
trade-off. To be sure, there are risks in changing the system.
New releases or add-on products will need to be checked more
carefully for conflicts and small mistakes can destroy an image.
Frequent back-ups are in order.

On the other hand, changing the browsers or inspectars s
much less risky than changing deep systemn components such
as the compiler or the process scheduling mechanisms. Even
with the risks, the increased productivity can be well warth the
trouble, As always, it's best to Himit changes in system methods
to smalil “hooks” that call your own code. This helps minimize
the problems with new releases.

WHAT NEEDS CHANGING
Development environments are a religious issue, and everyone
has a different opinion on the perfect environment. Neverthe-
less, here's a short wish lst of ideas. Note: Not all these ideas
have been implemented, and if they have, the author 1s not
necessarily in a position to distribute the code. The best place
10 look for code is the Smallalk Bp archives (stes.uiucedo or
mushroony.cs.manacuk), where the authors have gone to the
trouble of cleaning things up and releasing them to the public,
Code written for personal use often requires significant efforr
to adapt and separate from other extensions.

This column mentions extensions fram three different peo-

{Framework methodsPor: ‘defining roles'!

addRolesNamed: roleNames
roleNames do: | woleName | sell for: zoleName use: nit]!

for: releName use: anObject
(self binders includes: roleName) iffalse: |
“oarts at: releName put: anObject 1.
self
performa: (self binderFor: roleName)
with: an{fhject.!

when: gventName do; aBlock
self for: eventName use: aBlock.! !

Framework methodsTor: 'hinding comporents'!

resolveRoles
| framework |
parts associationsDo: [:model |
framework := model value,
{framework 1sKindOf: Framewark) ifTrue: |
framawerk name: modal key.
framework resolveRolesFrom: parts] 1
setf validateParts,!

resolveRolesFrom: partsCatalog
| part |
self unresolvedRoleNames do: { :roleName |
part i= partsCatalog at: roleName fabgent: | nil].
self for: roleMName use: part].
self validateParts.!

unresoivedRoleNames
~parts keys select: [roleName |
{zelf partNamed: releName) 1sNit]! !

{Framework methedsFor: triggering events'!

notify: partName that: eventName
“Answer the result of notifying the named part that eventName
occirred.”
~{self partamed: partiame)
notifyThat: eventName!

npotify: partame that: eventName with: arqument
“Answer the result of notifying the named part that eventName
accurzed.”
{self partNamed: partName)
notifyThat: eventName
with: argument!

notify: partName that: eventName withall arguments
“Answer the result of netifying the named part that eventMame
occurred.”
~{self partMamed: partName)
notifyThat: eventName
withAll: arquments! !

1

Fre SMaLLTALK REPORT

SEPTEMBER 1095

!Framework methodsFor: 'transiating events to messages' !

respondsTe: selector
{super respondsTo: selector) ifTrue: [“rue 1
{parts respondsTo: selector) iffrae: | “true 3,
"alse!

notifyThat: eventName
"Aniswer the result of performing eventName, o1 the receiver if
eventName has not heen Implemented."

~self iflinderstoodPerform: eventName!

notifyThat: eventName with: argument
"Answer the result of perforning eventName, or the receiver if
eventName has not been implemented.”

~self iflUnderstoodPerform: eventlame with: arquinent!

notifyThat: eventName withall arquments
“Answer the result of performing eventName, or the recelver if
eventName has not been implementad,”
“gelf fUnderstoodPerforrn eventName
withAll: arguments! !

'Framework methodsFor: alidating rele services' !

canilse; part as: roleName
self class ifnderstood: roleName do: |
“part respondsToAll:
{zelf class perform: roleMame) 1.
el

validate: part as: roleName
| services |
{self canlse: part as: roleName) ifTrue: [“self |
services 1= self class perform: releName,
services 1= part servicesRejectedFrom: services.
~self error:
‘Supplied ', roleName storeString,
' cant respond to ', services fixst storeString!

validateParts
parts associationsDo: | reach |
seif validate: each value as; each key 1.0

iFramework methodsfor: 'hinding components - private' !
hinderFor: roleName

"Answer the selector that can be used to hind a companent to
roleName,”

~{ rolelame, 1") asSymbol!

binders

“Answer all the selectors that can be used to hind the components of a

framework subclass.”
| supers methodNames |
methedNames 1= Set new.
supers := self class allSuperclasses removelast; yourself,
supers size > 0 ifTrue: [supers remavelast |,

& BUILDING OBJECT-ORIENTED FRAMEWORKS

notifyThat: eventName
“Da nothing, as nil has no dependents.”!

notifyThat: eventName with: argument
“Tio nothing, as nil has no dependents.”!

notifyThat: eventName withAll: arguments
“Do nothing, as nil has no dependents.”t !

IdentityDictionary subclass: #SmartDictonary
instanceVariableNames: "
classVarizhieNames: "
poolDictionaries: ¥ !

tSmartDictionary methods |

respondsTo: selecior
*Answer whether the yeceiver can respond to the message selector.”
| colons |
{super respondsTo: selector) ifTrue: { Mrue]
(self includesKey: selector) iffrue: | “rue],
colons = selector occurrencesDf: (§:).
colong =1

doesNotUnderstand: aMessage
"Tf the receiver can handle aMessage sstector, do so. Otherwise, treat
aMessage Hke supar would."
| name |
name = aMessage selector,
(self respondsTo: name) ifFalsa: |
~super doesNotUnderstand: aMessage. 1.
"handie getter,”
(self includesKey: name) ifTrue: ["self at: name |.
"handle setter.”
name ;= name asstring copyWithout: (3:).
“self at: name asSymbol
pul: aMessage arquments frst.! !

{biect subclass: #Framework
instanceVarizbleNames: 'name parts

.

classVariableNames: "
poolDictionaries:

L]

'Framework class methodsFor: ‘creating instances' !

assembie: frameworkName from: parts
"self new
nare: frameworklame;
parts: parts;
resolveRoles!

new
“super new initialize! !

Framework methodsFor: ‘initializing - releasing' !

initialize

name := nil.)
parts == SmariDictionary new.!

releags
| objects |
obiects = self partg.
parts .= SmartDictionary new,
ebjects do: { :each | each releage I
~super yeleage! !

'Framework methodsor ‘accessing cowponents' !

name
“name!

name: partName
name := partName.!

partNamed: pariName
~self partNamed: partiame fNone: [nil |!

partNamed: partName ifNone: aBlock
fpart |
part := parts at: part¥ame ifAbsent: | "aBlock value].
part isMil iffrue: | ~aBlock value 1.

“part!

partNames
“parts kays!

parts
Mparts values!

parts: partsCatalog
parts = partsCatalog.! !

Framework wethodsTor: "assembling frameworks' !

bestRoleNameFor: part:
"Answer the roleName that best fits the part, or nil."
| roleNarme roleSize roleServices |
roleSize 1= 0.
rolaMName == nit.
setf class roleNames do: [-each |
self class ifUnderstood: each do: |
roleServices = self class perform: each.
roleServices size > roleSize fTrua: |
(self canllse: part as: each) ifTrue: |
roieName 1= each.
roleSize = roleServices size 11 1 1.
“roleame!

uzeBestRoleFor: part
| roleMame |
raleName = self bestRoleNameFor part,
roleName izNil ifFalse: [
self for: roleName use: part 1.1}

8

THe SmaLLTark ReponrT

ple on the net. Deeptendo Majumder (dips@cad.gatech.edu)
has released his extensions up in a package called ISYSE, avail-
able from the archives.

Bruce Samuelson (bruce@ling.uta.edu) may get around to
cleaning up and releasing his code, hut is not in a position to de
so at this time. Gene Golovchinsky (golovch@ie toronto.edu)
hasn't packaged his extensions, but is willing to be pestered
about themn,

Automatically writing access methods

One of the most common system extensions is a mechanism to
generate access methods for instance variables. These methods
aren’t difficult to write by hand, but they occur so frequently
that a tool can be very convenient,

It's important that the tool be selective, Mot all variables
should have access methods (or some of them should be
clearly marked private, depending on your philosophy) so the
user musl be able to select which methods to generate. The
tool should alse provide documentation in the method. The
user should be able to (it not forced to) provide information
on the type of the variable and its purpose. This information
should already be in the class comment, but it deesn't hurt to
duplicate it. A really sophisticated tool would check the class
comment for the mformation and update it if necessary.

Find class

[use the “Find class” feature very frequently, especially in Dig-
italk dialects. Unfortunately, the basic Digitalk implementation
is brain-dead, and the ParcPlace one, while better, still doesn’t

do what T want.

> Tgnore case. This is much faster and more convenient. (Is
it Fitename or FilleMame?)

= If the name maltches a class {e.g, set), go directly to it
without presenting a useless list of one class 1o choose
from. In general, T prefer tools that can skip over lists with
only one item.

« If the name doesn’t match a class, append a wildeard and
present a fist of those it matches (e.g., sett gives me a list of
#(Settee Setter Settlement).

= H L explicitly type a wildeard, always give me the list (e.g.,
set® gives #{Settee Sstter Settlament)).

Smalitalk/V's debugger

[vou've used both Smalltalk-80 and Smallialk/V, ane of the
miost frustrating things about V is its debugger, To the un-
trained eve, both debuggers are very similar, and in fact V offers
the nice additional leature of breakpoints. The problem is that
when evaluating an expression inside the debugger, V evaluates
itas a method in self (the receiver of the current message), not
the context of the current method. In the Smalltalk-80 debug-
ger you can highlight any text in the carrent method and evalu-
ate it In the Smalltalk/V debugger this only works if the text
doesn’t reference method arguments or locals.

The most irritating thing about this problem is that [don't
know how to fix it. Digitalk hides the source to their compiler,
and although U've come up with a few bizarre ideas that might
work, 've never had time to really work oo it. [f anvbody has a
fix for this, please let me know,

Browsing inherited methods

[don’t know how many requests P've seen for a for a browser
that shows all methods in a class, including inherited methods.
The basic functionality is very simple, and the real problem is
providing a good user interface. ParcPlace does provide this
capability with the FuliBrowser, but it’s a poor implementation
and only available in the APOK add-on package. It's a good ex-
ample of why we might not want the vendors deciding for
themselves how to Improve the environment. Most of the ex-
tended environments described in part 2 provide this capahil-
ity in some form.

Resizing panes
Bruce Samuelson describes a useflul feature to augment the
broswser with:

-..buttons for resizing browser windows horizontally and
vertically, and reproportioning the Hne separating the up-
per panes from the method

This is an increasingly commeon feature in user interfaces, and
one that can be very usetul. Smalltall/V Mac has a convenient
*zoom”™ feature that makes the text editing area fill the entire
window, but this would be more flexible.

Gene Golovchinsky writes:

I would like to see more buttons on the screen for common
commands rather than entries in pop-up menus. | invari-
ably pick the wrong one, or keep moving between copy,
paste, and accept. Then I accidentally pick cancel, and have
to repeat the whole process again!

I'm not sure we want to add too many buttons, but a few in the
right place would be nice. Certainly, i's much nicer having
buttons in the debugger for single stepping than haviag to use
a pop-up meni. For operations like cut and paste 1 prefer to
have keyboard short-cuts.

Renaming classes in Smalifalk/y

Smalltall/V still doeso’t support renaming classes or changing
the definition of classes with instances. It shouldn’t be that
kard to implement, and [believe the capabilities are available
as part of their Team/V package. Why is such a basic capability
bundled into a team programming teol and not in the base im-
age? Only Digitalk can tell.

COGNITIVE OVERLOAD

While all of the above are useful, they are only minor improve-
ments, There are more general issues that need to be ad-
dressed. Deeptendu Majumder raises the issue of cognitive
overload in the Smalltalk environment:

SEPTEMBER 1993

il

m THE BEST OF COMP.LANG.SMALLTALK

One thing that irritates me more and more these days is
how my screen gets out of control with a multitude of win-
dows. ... I sometimes wonder if there is some kind of
study...about determining the most suitable ST program-
ming environment. .. . | sometimes very strongly feel the
environment can be “smarter” about, .. veducing the cogni-
tive overload and maintaining easily identifiable cues
about what info is available only for a mouse click.

Controlling windows
The largest single factor In cognitive overload must the num-
ber of windows Smalltalk produces. T usually have 10 1o 20
windows apen simultanecusly and I'm sure | get as high as 50
now and then, With this many windows, it's vital to have
mechanisms to control the complexity.

Craig Latta (latta®@xcf.berkelev.edu) writes:

I find that simply having a good window manager goes a
long way toward reducing the cognitive load. The main
probiem I would have otherwise is with hordes of windows
crowding the screen, and subsequently losing track of par-
ticular windows. Things like icon managers (as in ‘twm’ on
X platforms) reduce this problem significantly.

A good window manager and a large screen are vital elements
for Smalltalk work. CGne technigue | use is to make use of win-
dow and icon positions. Certain windows {e.g., the system
transeript, 2 workspace with useful expressions, my list of
things to do) are always open, and I make a point of ajways

keeping them in the same place. Lalso try to keep their icons in
standard places, but not all window managers maintain the po-
sition of icons (MS-Windows doesn’t).

Writing Smalltalk code is akin to
authoring hypertext

Another technigue is to put more information into window
titles, By hooking into the browser selection mechanism, the
window title can be made to indicate the current class and
method. This makes navigating among icons easier, and can
also be used with window managers that allow you w find win-
dows by title. With a bit mare effort, it should be possible to
change the window icon to convey more informaticn.

Il your window manager doesn’t manage windows and
icons well, it's possible to make up some of the difference in
Smalltalk. Gene Golovchinsky writes:

I added an entry to the Launcher menu that displays a Hist of
all current Smallfalk windows, and indicates the minimized
ones. I T pick from this menu, if raises that window. Just to-
day [saw that something similar is available in the archives!

Reducing the number of windows

Managing windows Is all very well and good, bul do we really
need all those windows in the first place? Jaap Vermeulen
{jaap@sequent.com) doesr’t think so. He writes:

With new tools to replace the browsers that allow better in-
dexing, searching, shorteuts, and backtracking, you might
need fewer windows, Finally, if the inspectors and debug-
ger would become a little smarter and not throw up win-
dows all over the place, we really would start talking.

Inspectors are one of the worst culprits in creating excess win-
dows. A tool that allowed graphical inspecting of many objects
at once, following links between them, could reduce this con-
siderably. There is a simple tool of this type included with the
HotDiraw application framework. I believe First Class Software
(408.338.4649 [voice), 408.338.3666 (fax), or 707611216 on
CompuServe) has a graphical inspecting tool for Smalltaik/v.

Too many browser operations spawn a new window in
which to present their results, The only concept of bucktrack-
ing is to go back to the window vou started the operation from.
For operations like senders, this is simple to change and makes
the function easier to use. Gene Golovchinsky writes:

Pve augmented the MethodListBrowser to add the ability to
add a specific method to the list, It works like the Messages
menu item, but instead of spawning a new window, it adds
the entry to the list. If there is more than one itern, it
prompts for the one to add. I find this tool handy for
traversing long chains of message sends and keeping them
all in one place.

Unlortunately, iUs not so easy Lo reduce the number of win-
dows generated by some ol the other operations.

HYPERTEXT MECHANISMS
Gene Golovchinsky writes:

Writing Smalltalk code is akin to authoring hypertext; per-
haps some insight can be gained from perusing that litera-
ture. Along those lines, this environment seems like an
ideal vehicle for implementing all sorts of rypertext behav-
ior. In fact, the existing browsers have many of these fea-
tures already.

Indeed, Smalltalk browsing shares many characteristics with
hypertext browsing and suffers many of the same problems.
There’s an enormous amount of information, only a small part
of which is relevant at any given time, and iU’s easy to become
fost in the irrelevant,

Messages
Many browser improvements are intended o quickly find rele-
vant information white aveiding that which is not relevant. If
you can follow a link divectdy to what's important, you don’t
need as many windows open looking for il

Ome such feature is the messages menu item mentioned
above. This allows vou, when browsing a method, o find in-

Tue SMaLLTALK RePORT

"The following code extends the baseline Smalktalk classes to support
certain aspects of framework assemnbly, event handling, and role
validation.”

!Callection methads |

assembleds: frameworkClass

"Answer & new framework assembled from the receiver.”
| framework |
framework = framework(lass new.
seif do: [:each | view useBestBoleFor: each 1
Mramewoik resolveRoles!

'0bject methodsFor 'accessing named degendents' !

dependentNamed: name
"Answer the named degendenrt, or nil."
~setf dependentNamed: name #None: I nit I

dependentNamed: name ifNone: aBlock
"Answer the named dependent, or evzluate aBlock.”
~self namedDependents
detect; [:d | d name = name] ifAbsent: aBlock!

namedDependents
"Answer any named dependents attached to the receiver.”
“self dependents
select: [:each | each respondsTo: #name 3! 1

{0btect methodsPor: 'performing optional behavicrs' !

HUnderstood: selector do: aBlock
"Evaluate aBlock if the receiver understands selector.”
~{self respondsTo: selector)
iflTue: aBlock
ifFalse: { seif]t

HinderstoodPerform: selector

"Answer the result of the selected method, or the receiver.”
{zelf respondsTao: selector) fFalse: ["self).
~self performy selector!

ifinderstoadPerform: selector with: argument

"Answer the result of the selected method, or the receiver.”
{self respondsTo: selactor) ifFalse: [~self |
~gelf perform: selector with: argument!

iflinderstoadPerform: setector withAll: arquments

"Answer the result of the selected method, or the receiver.”
{self respondsTor selector) iffalse: | Mself 1
~self perform selector withArguments: arguments! !

Object methodsPor: ‘votifying dependents of events’ |
notify: name that: eventName

~{self dependentNamed: name)
natifyThat: eventName!

nolify: name that: eveniName with: argument
"(self dependentMamed: name)
notifyThat: eventName
with: arqument!

notify: name that: eventName withAll: arguments
~{self dependentNamed: name)
notifyThat: eventName
withAll: arguments!

notifyihat: eventName
"Answer the final zesult of notifying all the dependents that eventName
occurred.”
| result |
self dependents do: [:d |
result = d notifyThat: eventName |.
“result!

notifyThat: eventName with: arqument
“Answer the final result of notifying all the dependents that eventName
occurred.”

| resnit |

self dependents do: | :d |

result = & notifyThat: eventName
with:argument J.
“result!

notifyThat: eventName withAll: arquments
“Answer the final resull of netifying all the dependents that eventName
oceurred.”
| result |
self dependents do: [:d |
result = d notifyThat: eventName
withAll: arquments }.

“result! 1
Object methodsFor: responding to requests' !

respondsTosll: symbolSet
"Answey whether the receiver responds to all of the messages in
symbolSet.”
symbaolSet do: [zeach |
(self respondsTo: each) Ufalse: { ~alse] 1.
“true!

servicesRejectedFrom: symbolSet
"Answer thase service requests frem symbolSet to which the receiver
does not respond.”

~eymbolSet reject: [teach | self respondsTo; each |

value
"Answer the receiver,”

Agelft !
WndefinedObject methodsfor: 'catching dependents access' !
namedDependents

"nil has ne dependents.”
~Array new!

SEPTEMBIR 1993

17

a1 BUILDING OBIECT-ORIENTED FRAMEWORKS

through such an implicit “second-class™ framework can be
difficult. However, these patterns of interaction can be cap-
tured and reused explicitly by framework classes. Because the
message flow is more explicit in framework classes, they are
much easier to understand.

As noted perviously, good class hierarchies tend to be deep
and narrow. The hierarchies created by framework classes tead
to be deep, narrow, and win. The methods themselves tend to
be small (thin), because they coordinate only the interactions
between the objects that participate in the framework.

Many object designers have claimed that frameworks are
difficult to find. Actually, frameworks are not hard to find at all!
They simply have not been noticed much. They tend to be like
thin oils that lubricate the meshings of larger objects. Any pat-
tern of interactions between objects may be captured as a frame-
work. However, the resulting [ramework may be so specialized
that it is better to leave the interactions built into the collaborat-
ing chasses. Frameworks serve best when they capture and factor
out the semantics of event-driven interactive systems.

senetimes it is expedient during prototyping to develop a
system that is closely coupled. After completing the prototype,
some parts of the design can be revisited and the coupling
loosened for better reusability, Loosely coupled objects tend to
be more reusable and move resilient 1o design and svstem evo-
lution. Framewark classes provide a new option for refactoring
through decoupling.
FUTURE WORK
The current implementation of the Framework superclass uses a
simple collection of methed names for role validation. 1t would
be beiter if each role were defined using a specification abject,
in particular an object type. Ubject tvpes use method signatures
to specity the types of each argument and the method result,
When these specification objects become available, framework
role validation can evolve to use them. Object types will provide
better constraints to qualify components for roles,

CONCLUSION

This article has presented a new view of ebject frameworks:
How framework classes can simplify the design of component
classes by factoring out the behavior found in interactive sys-
tems. Component objects becorne simply clients andfor service
providers, reducing or eliminating the additional responsibili-
ties of complex coordination between objects, [n addition o
simplifying existing components, refactoring may create new
components. Such refactoring improves the reasability of all
the components that form a system and creates reusable
framework objects. B

Acknowledgments . .

Several individuals inspired me with their interest and
thoughtlul critiques during the evolution of these ideas. Special
thanks to Jean-Francois Cloutier, Tracy Tondro, Oleg Arsky,
and Jim Carlstedt.

References

L Krasner, G.E, and $.T. Pape. A cookbook for using the model-
view-controller user interface paradigm in Smalltall-80, Jourwar

o Osrpor-Orisnren ProcraMaiing H3126-49, 1988,

o

Shan, Y-P. An event-driven model-view-controiler framewark for
Smalltalk, Osior-OrisnTED PROGRAMMING SYSTEMS, LAN-
GUAGES, AaxD APrLICaTIONS ConFerence, ACM, New Qrleans,
LA, 1989,

3. Sham, ¥-P. Mol2E: A UIMS for Smalltalk,. Osrrer- Orisnron Pao-

GRAMMING SYSTE

15, LANGUAGES, AND APBLICATIONS {oN:

excE, ACM, Ontawa, ONT, 1990,

4. Sullivan, K1, and D. Notkin. Reconciling envirfonment integration
and component independence, TransacTIONs N SOFTware Ex-
GixeErinG, AUM, Ottawa, ONT, 1990,

e

Helrm, R, LML Holland, and D). Gangopadhyay, Contracts: Specify-
ing behavioral compositions in object-oriented systems, Opject-
OWERTED PROGRAMMING SYSTEMS, LANGUAGES, AND APPLICA-
rions Conrerence, ACM, Otawa, QONT, 1990,

6. Wilkerson, B How to design an object-based applicarion, D

viLor, Apple Computer, Cupertino, CA, April, 1990,

7o Wirfs-Brook, R, and BB Jehnson. A survey of current rescarch in
object-oriented design. Comamunications or the ACM
339104124, 1994

B Wirfs-Brock, R, and B. Wilkerson. Object-oriented design: & re-
sponsibility-based approach, Oereer-Oriexten PROGRAMMING
SYSTEMS, LANGUAGES, anD ArpLicaTions CoxrFErENGE, AUM,
Mew Orleans, LA, 1989,

2. Wirls-Brock, R., B, Wilkerson, L. Wiener, Desianivg Osrror-
Or

TED SovTwars, Preptice Hall, Englewood Cliffs, M1, 1990,

)

- Rumbaugh, 1., M, Blaha, W. Premerlani, ¥, Eddy, W, Lorensen.
Op)eer-ORIESTED MODELING ann DEsion, Prentice Fall, Engle-
wood Chiffs, NI, 1991

- Crpdyke, W.E. Refactoring object-oriented frameworks, PRI thesis,
Py Z0b)

University of iHinols at Urbana-Champaign, 1992.

[

- Cook, W.R. interfaces and specifications for the Smafltalk-80

collection classes, OmrpcT-OriExTEn PROGRAMMING SYSTEMS,

LanGuaces, ann Aprricarions Coneer
BU, 1997,

AUM, Vancouver,

=

- Bovd, NL Modules: Encapsularing behavior in Smalitalk, Trs
Ssarerark Reporr 2{5}, 1993,

Nik Boyd is a Principal Member of the Techuical Staff ar Citicorp
Transaction Technology in Santa Monica, CA. His research in-
ferests include instance-centered and elass-centered object sys-
fems, as well as tools and technigues that suppert abject-oriented
software engincering. Nik may be contacted via ewrail at
74170.217 M@compuserve.com or through the Asmerican Informa-
ton Exchange (AMIX),

16

THE SMALLTALK REPORT

plementors or senders of any of the massages sent by that
method. The messages sent become hypertext links,

One problem is that the number of methods found can be
too large to work with. Thus, it's useful to restrict the methods
considered. One way is to allow “local” senders/implementors,
selecting only methods within the current class or perhaps
within its sub/superclasses.

Bruce Samuelson has another mechanism:

...'my senders’, ‘my implementors’ which only look at the
changes file...

Also, we may want to browse a method that isn't sent from the
cuwrrent message, or we may be in a text editor instead of a
browser. Gene Golovchinksy describes a menu item that opens
a browser on the class or method named by the currently se-
lected text. [have a similar extension, but [separate the
browse/senders/implernentors/class references behavior and
use keyboard shortcuts to invoke them. Keyboard shortcuts are
a little faster, and work in workspaces as well as browsers, but
are less mnemonic and not as flexibie.

COperating on text is a nice feature, but one that works best
for zero- or one-argument messages. Multi-keyword messages
don’t usually occur in text in the right form. It should be possi-
ble to use the Smalltalk parser (o extract possible message
narees, but [haven't tried this.

Deeptendu Majumder added a feature for finding imple-
mentors of a method whose name is not known, The base im-
age allows wildcard searches on method names, but foree a
choice from a menw of possible names without seeing imple-
mentations.

«.all T did was add an extra list to the browser that grabs
all those things that otherwise show up in the menu. When
}am not sure exactly which method 1 am looking for, I can
select entries from this list one after another and browse
their various implementations. } can then change the selec-
tion template from within the list and grab a whole new set
of message names.

Searching for strings

The link you need may not be the name of the method or a
message that it sends. Just roday [wanted 1o search for a
method that didi’t send a particular message, but contained
the name of that message in a comment. | had previously com-
menied out that message send, closed the window, and forgot-
tent the method name. Bruce Samuelson writes of a feature he
implemented:

...search for a string (e.g., open:} in methods and class
comiments. This can operate on. .. categories, classes, or
protocols. This is useful for maintaining comments and for
finding code for which standard searches break dovn.

Lost in hypertext tools
All the mechanisms listed above are valuable tools for search-

“Just fouch & butforn to
=T put 2 chart

?| view in your
window!

- Add charts to your VisualWorks palette

Dynamic Add or change data points, with minfsal screen repainting.
Aded or remove data series toffrom the chart.

inreractive Select daa points with the mouse —EC-Charts informs
vour application.

{Ises screen space effectively o
Scroi the chart view inone or both
dircetions. Mark values of summary

functions in the

axis areas. Show
thresholds using
grid lines.

5 ik
Rt T s PR

b Yoy Srag 1991
i Eitions of thadiars

17 -

re

& Tobal Hudget & Fobalsid to

No runtime license fee

Call for a techilcal paper
on EC-Charnts

AL isxi {LH “Srliuiu
(408) 462-0641

gy [t acketrerk .
e L o 21137 East CHIT Dr - Santa Cruz - CA 95062

of ParcPlace Systerns, Ing,

ing. Unfortunately, if we implemented ther all in a single im-
age | suspect users would merely find themselves lost in hyper-
Ltext mechanisms instead of {or as well as) lost in the code. As
Deeptendu Majumder writes:

There are so many small enhancements that can be done
that [found it is not very productive to undertake the ef-
fort without a serious study of overall needs rather than
trying to attack small segments of the problem.

Next month, we'll examine some more radical extensions that re-
place the basic tools instead of patching or adding a few features.

ERRATA

[n the June 1993 column [published code for festing dictio-
nary performance under ObjectWorks\Smalltall release 4.0.
Unfortunately, didn’t test this code adequately, and Bruce
Samuelson, the author, has pointed out that, due to changes,
this code does not work with release 4.1 or VisualWorks. There
are two problems, First, the way hashing is done has changed,
s0 the results will be in error, Second, the method sortedEle-
ments has been removed, so the method will produce a walk-
back. A new version, which will also work with other hash
table classes, is available from the Smalltalk archives at
stesauluc.edin

Alaw Knight works for The Object People. He can be reached ai
613.2

5.8812 or by etnail as knight@arrco.carleton.ca.

SEpPTEMBER 1903

I3

C[]:‘If]!]!{(’.(i_)‘}()ﬂi P(i“’f ¢

B BUILDING OBIECT-ORIENTED FRAMEWORKS

metaChoice
(MetaChoiceToggleBution)

manager

{CHBManager)

selectionkist /

selectionk.ist
(SelectionList) [;

L. selectionList
(Selectionkist)

variables
{VariableListView)
T2

variableshenu
(Menu)

ooy

\\ selectionlist

(Selectionlist) /4 ;‘X \\L \{\ {SclectionList)
widget (Butfon) J
widget widpet
1 e st e
hicrarchy (ListPane) widget {ListPane} methods
(ClassListView) (ListPane) {McthadListView)
classesMenu methodsMenu
{Menu) text (TextPane) (Menu}

Figure 2. GHB frameworks.

dered dictionary key. Selectionlists also notily their dependent
mediators when their list or selection changes:

"from within #list:"
seif notifyThat: #listChanged.

"from within #select:”
self notifyThat: #selectionChanged.

Listing 5 shows the code for the SubPaneMediator classes. The
kinds of SubPaneMediators that use SelectionLists include those
depicted in the following hierarchy:
Ohbject
Framework
SubPaneMedialor
ListItermChooser
ListViewer
ListButten
MenuBution
TegaleButton .

The ListTtemChooser class manages the interactions between a
Selectionlist and a SubPane (GUI widget). The ListViewer class
manages the interactions between a Selectionlist and a ListPane.
The ListButton classes manage the interactions between a Selec-
tionList and a Button in two varieties. The MenuButten class pops
up a menu of the list iterns when clicked, allowing one of the

iterns to be selected. The ToggleButton cycles through the List of
items, showing the next ftem description on the button face.

Now, consider how these small framework classes might
be used to refactor a browser such as the Smalitalk/V
{lassHierarchyBrowser (CHB}. The CHB has five subpanes:

a class hievarchy ListPane, a variables ListPane, a methods
ListPane, a RadioButten group, and a TextPane,

For this discussion, we will replace the RadioButton group
with a speciatization of the ToggleButton. This MetaChoiceTog-
gleButton framework will use a two item list: #(class instance)
{or selecting either class methods or instance methods.

For each of the ListPanes, we specialize the ListViewer frame-
work with ClasslistViewer, VariableListViewer, and Method-
ListViewer frameworks. Each of these small frameworks serves
as the owner for their respective subpanes. As such, they ac-
crete the behavior from the CHE related to those panes, in-
cluding menus, st maintenance, item selection, and propaga-
tion of notifications and changes throughowut the overall
framework network (see Figures 1 and 2.

This brief outline indicates how such refactoring can pro-
ceed. However, note that further evolution and improvements
can be made through additiona] refactoring and framework
creation. In the end, the responsibility of the browser class can
be reduced 1o assembling a network of objects that together
produce the overall browser behavior,

14

Trey SmarLrack Repory

TUNING COMPONENT COUPLING
The Framework superchiss uses loose coupling as a technigue
far achieving component integration and coordination. The

implementation suggested in this article makes use of a kind of

Dictionary to bind framework participants into their roles. This
technique of loose binding allows frameworks Lo be evelved
and extended guickly through several iterations,

Although this technigue requires Hitle in the way of over-
head, a small amount of performance can be lost when the
role participants are resolved dypamically. A number of op-
tions exist for tuning the performance of frameworks built ns-
ing these technigues.

The Framework class uses a class named SmartDictionary {see
Listing 1). In addition 1o the messages understood by IdentityDic-
tionary, SmartDictionary responds to the typical accessor idioms:

componentName “gettar”

camponent¥ame: anObject "setter”

These protacols are supported by overriding the #respondsto:
and #doesNotlUnderstand: methods. These protocols are also
supported by the Framework class. In addition to this implicit
form of component access, the Framswork class supports the
following form of indirect access:
componentiame "indirect getter"
~self partnerNamed: #componentName!

componentName: anObject "indirect setter”
setf
for: #comporlentName
use; anllbiect.!

This support for the dynamic binding of roles can be replaced
by ordinary instance variables and their accessors. However, i
arder to gain the benefiis of rapid design evolution, this should
e done {if done at alt} only afler the design of the framework
class has stabilized.
componentName "direct gettar”
Aeomponentiame!

componentName: anUbject "direct setter”
componentMame 1= anbject.!

PARTICIPANT INTERACTION STYLES

One of the principal uses of any {ramework class 1s to mediate
the interactions of Its participants. Because participants are
loosely coupled, the metheds of a framework class have this
peculiar aspect: Participants are always accessed through re-
quests to self. So, some of the framewaork methods provide ac-
cess to components or their state(s), while others translate
events into actions.

The event handiing methods of a framework class serve as
temnplates thal guide the exchange of information between
the framework participants, The expressions used by these
event handling methods generally fall into one of the follow-
ing bastc patlerns:

eventName
"Request information o7 a change of state.”
~self someComponent request

eventName
*Exchange information between components.”
self semelomponent binaryKeyword:
self anotherComponent request.

eventName
"Wotify another participant (framework) that something happened
{translating the event name}."
~self
notify: #frameworkX
that: #somethingBappened

eventName
"Forward this event fo another participant {framework)."
“gelf
notify: #framework
that: #eventName

SPECIALIZING FRAMEWORKS

New frameworks can often be discovered when rensing exist-
ing ones. Sometimes it is more convenient to attach custom
behavior to an existing framework rather than create a new
framework subclass.

The Framework superciass supporis the prototyping of new
hehavior by allowing the usage of blocks as components, When
a message is redirected through #doesNotUnderstand:, the
Framework superclass checks to see if a block has been defined
to handle the message sclector. If the frameworlk can handle
the message with a block, the block is evaluated with the mes-
sage receiver and its arguments (if anv),

After a new framework has stabilized, the developer may
decide o create a new framework subclass, moving its special-
ized behavior from blocks into methods. When this occurs, the
developer is faced with a decision: What should the scope of
visibility for the new class be? Yery general frameworks should
probably be visible to the whole Smalltalk system. Hlowever,
some frameworks should only be visible to the class(es) that
need them. Module classes' can be used 10 hide specialized
framework subclasses.

For exarmple, in our consideration regarding browsers, we
found that they will ofien need specialized frameworks for
managing the interactions between the subpanes from which
they are composed. Fach of the ListlternChooser subclasses can
be further specialized 1o create custaumnized mediztors that
manage the overatl interactions between the various subpanes
that make up a browser. Rather than expose these specialized
frameworks to the whole of Smalltalk, they cann be hidden
within the browser class i it is implemented as a module.

GENERAL OBSERVATIONS

Many patierns of interaction between objects in a system ap-
pear aver and over again in other systems. Sometimes these
pasterns are formed into a loose composition of abstract classes
like the MV framework.t Following the flow of messages

SEPTEMBER 1993

15

NO POSTAGE
NECESSARY
IF MAILED

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 279 DENVILLE NJ

POSTAGE WILL BE PAID BY ADDRESSEE

The Smalitalk Report

Subscriber Services Dept SML
PO Box 3000
Denville NJ 07834-9821

I”I!IllII”IIllIIHIIIII”I|IIIHIIHII|III!”IIISI

IN THE
UNITED STATES

GemStone is the ideal database
‘environment for supporting
Smalltalk applications. It is the
‘only high-performance, produc-
tion-ready ODBMS with a trans-
‘parent Smalltalk interface.

. * Maintain class hierarchies and
¢ execute Smalltalk methods
. directly in the server.

* » Automatic, transparent transla-
tion of Smalltalk objects into
GemStone.

. *» Cooperative client-server sup-

. port.

i » Smalltalk-based DDL/DML.

* High-performance, scalable,
. production-ready ODBMS.

* |ntegrated garbage collection of
. persistent Smalltalk objects.

GemStone Object Database Smalltalk Application

d YES| Send Me Complete Details On GemStone

Name: Title:
Company:

Address:

City: State: Zip:
Phone:

Fax:
1-800-243-9369 SERVIO

BUSINESS REPLY MAIL

FIRST CLASS MAIL PERMIT NO. 4362 SAN JOSE, CA

POSTAGE WILL BE PAIDBY THE ADDRESSE

SERVIO CORPORATION
2085 HAMILTON AVENUE
SUITE 200

SAN JOSE, CA 95125-9985

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

. Signature

The Smalitalk Report

' techniques, and insightful applications.

you should be f'eading

(d Yes, I would like to subscribe to The smalllaik_mgpmﬁ:

[1 year (9 issues) [2 year (18 issues)
[Domestic $69.00 (d Domestic $128.00
‘3 Foreign $94.00 J Foreign $178.00

Method of Payment

[Check enclosed (payable to The Smalltalk Report)
[Bill me)

[Charge my: [d visa [Mastercard [Amex

Card No.

Exp. Date ____

+ [Recommend Need

1. Which dialect of Smalltalk do [Make Purchase

you use: Ol Nk
[Smalltalk v 3, Which operating system
[Smalltalk-80 supports your software:

S Jdother_ [AUNIX

| 2. What is your involvement in [DOS

software purchases for your [gg/,
department/firm: 0 Windows

= Llihpee. . ..
' Specify Product

The Smallitalk Report *°
Date
Name
Title
Company
Address S
City
State E——
Zip
Country
Phone
4. What is your company's [Educational/Consulting
primary business activity: 1 Other
[Computer/Software 5. For how long have you been
Development, using Smalltalk:
[Manufacturing (I Less than one year
[Financial Services (13 years
[Government/Military/Utility = 3+ years E3JG

A member of the

fax to
biect Marketing Network | 212/274-0646

PU

