
L40(1 1 02_-7 3 9 312
FL,8 ev. \\

E Your Turn E
How about it? How are we doing? This U the pkice to send us your message. Tell us what you like and what you don't, what you'd like to
see but don't -or whatever other feedback You'd like to send. Send comments to Robert Shelton,1850 Union Street, Suite 1.584. San
Fransisca, CA 94123, Fax: (415)928-3036, or, ihou're ordering, send aling with youT order.

Please check whichever box applies: -
Read entirely Scanned Found helpful Will refer to Didn't read

Feature U O U JO
Methods 0 1 0 -1 3

Components and Reuse U 3 0 3 0
Interview U U 0 3 O
Book Review O 0 U J J
Product Announcements O 0 0 1 J

FY] O 0 0 0 0

Please rate the following 1 (dislike or strongly disagree) t<1 10 (like or stringly agree): ..4'
Presentation of material _ Comme,its:

Accuracy of material - Coniinents:

Overall helpfulness in your job _ Comments:

What else would you like to see In THE HOTLINE?

Any other comments?

Name, title & phone (optional):

hotline *0,1

OBJEGORIENTED
technohgy

[JYes, plug me into the [atesr thinking :ind devel31,ments iI, <)1)]ect-,rieIited teellnology· Enter me as a subscriber at the term marked below and
rush me the current imie. This is :1 ribk-free offer - 1 may cancel my subscription at anv time and promptly receive a refund for the unt,sed portion.

1 year (12 issues) 2 years (246sues)
U $249 0 6478 M aave .520)

Coursub LJS ail $30 A. 7ear firairsertuce)

U Phone order O Bill me
Call Subscriber Services U Check enclosed

(212)274-0640 U Credit card orders
J Maste]·Card

U Fax order
O V]61

Fill out tenn and name/address
information, then fax to:

(212)274-0646

B,ick isizie@ $25 e.ich ($27.50 hn·eigyr)
V<,1.1, Nos.

Vol.2, Nos. Vol.3, No.

M.iil ('an.1 nizike out check, Send me a complimentary
if applicable) to: copy of your related

Tw. Hon.iNIE
Sib.criber herVIL.b publication (s):

P.O. Box 3000. Dept. HOT
Denville, NJ 078 34

(61)re&/i 'Id·..." k j.ip/':1'ii [. Cl THE JOURNAL OF OBJECT-dollarsdniti]tital %bank]

OR]ENTE[) PROGRAMMINO

Card# Expirwiticn I)are 1 OBJEcr MAC;AZINE
U Send me a copy of Signature

Ti n: IN·I ERN.A-1'10AL

OOP DIRECTORY
Nang

@ $69 ($81 foreign)
(all director·, ordeys must be prepaid; (1)mpany

jax w mad aerlir c.ird 174)7nuition !O Street/Bulldlne

265 588 Broadwa), #604, NY(10012.
City/F.}vince

Tna ke check paN<,ble to c)(12 (91? ecti)F.
Foye®i orde„ nius[be pre/)aid in [JS ST/Zip/(Jollnny

ckillays dmum orn [:S bank.)
Telephme

DTHEC++REIURI

Call Subscriber Services

(212)274.0640
or send order to

SIGS, 588 Broadway, =604
New York, NY 10012

D2GC

hotline t on
OBJECT ORIENTED

mchnology
VOLUME 3, NUMBER 8 THE MANAGER'S SOURCE FOR TRENDS, ISSUES & STRATEGIES JUNE 1992

Business in the Information Age

It seems that everywhere 701£ turn
today you can find articles and books
hemlding the dawn of a new eTa in

human histor): the Information Age.

The issue is not whether society is changing but rather
what will the Inform.ii ion Age he and how will business
organizations and their leaders adapt to meet its new de-
mands? Alvin Tofler. an early und perceptive chroni-
cler of societal change, offers the following statement
in his latest book, POWERS,inFI,S to define the Infurma -

tion Age: 4 The Inl)St imp(3Ttlint e' COI ic), 1 ke de ve [c)p ITiellt
of our lifetime hah heen the rise of a new system for cre.
ating wealth, based no longer on muscle but on mind.
Labor in the advanced econoiny no longer consists of
working on 'things,' Wrlrch historian Mark Posner of
USC Irvine, but of 'men and women working on other
men and women, or... people acting on inflirmation

"'

<md inforination acting on people.
Knowledge has always been associated with power;

John Slitz those who could obtain and use information effectively

had power. The difference in the Information Age will
come from the technologically enabled and enhanced
distribution of information throughout a business en-
terprise and the speed with which that information can
be turned into knowledge and action. As the twentieth
century careens to a close, those organizations that fo-
cus on increasing their ability to turn infurmation into
knowledge will become the leaders of their industries.
The issue fur these new, w<Irld-leading ekinippinies is not

whether to build pervasive, integrated information sys-
iems, but how to build them. The issue for Information
Age CEOs will be how to plan, construct, and direct
these new inforinanon-intensive org,inizations.

Another key issue to consider in the nascent infer-
mat[(in (>rganizatitin is the rate of Inikirination flow And
the corresponding action That results. The tempo of out
times is faster. We are driven by an increasing flow of in-
formation and the escalating need to act upon that in-
formation. This cycle of information and action is re-
sulting in unprecedented levels of business, political,
technological, and personal change. While change has
always been with us, it was never before critically im.
portant to continually anticipate its effects in our busj-
ness or personal planning. A few hundred years ago a

c„,12.zi,ed m liage 4 .

IN THIS ISSUE

FEATERE - Business in the Information Age John Slitz 2 FROM THE EDITOR
METI 1ODS -From data modeling to
object modeling Robert G. Brown 22 BOOK WATCH

COMPONENTS AND RHJSIE - How frameworks enable

application portability Mark Anden
PRODUCT ANNOUNCEMENTS

INTERVIEW WITH VAUGHAN MERLYN -
Toward the learning organization Robert Shdton Fl Fl NEW PAR-[NERINGS & ACQUISITIONS

BooK REVIEW - Object-Oriented Software
Development: Engineering Software for Reuse

reviewed by Dr. B. Henderson-Sellers
FYI- Industry publication excerpts

FROM THE EDITOR E E

494
-T-0 remain competitive wilh Pacific Rim, Indian, Irish, and Soviet program-
1 ming houses, US and European Community software development orga-

nizations have to change from one off software engineering in the model of
the job-shop to ihoroughbred software manufacturing, engineering-loorder
from off-the-shelf components-in the next three to five years.

This is no small challenge to a sheltered. specialized industry that has oper-
ated for several decades largely outside the scrutiny and performance demands
routine in any Class-A MRP manufacturing organization. Furthermore, prac-
titioners in this industry have yet to achieve a state-of-practice that would gen-
erally be viewed as engineering. Most commercial software houses and in-
formation technology (IT) organizations still do not discipline their members
(technical or management) to use engineering methods and tools rigorously
We lament thal our senior management does nol see the value or deliver the
committed support we require, vet the problem oftenl starts with a CIO not
providing executive-level linkage between the business and the technologists.
A surprising number of organizations still balk-today-at spending a few
thousand dollars on basic engineering tools for their analysis and developers.
And, we are still talking about •the change problem' a. though professional,
in this Industry have a personal prerogative to make software development an
art form instead of a measured manufacturing discipline.

No matter. With the breakup of the USSR in the last year, a wealth of pro-
gramming and engineering talent has become available-at pay rates that out-
of-work junior programmers in the US would overlook even in these tough
economic times. indian programming job shops (sweat shops by Western stan-
dards) crankout code from specifications sub stantially cheaper than even do-
mestic outsourcing firms. To boost their sagging economy, the Irish governw
ment has joined the fray, offering skilled techn icians at labor rates 50% below
those in the US, England, and Europe. Unlike the Indian developers, these
compe.[i[ors speak English and have a background in Western business pric

tices. With the ascent to wealth of such formerly low-cost labor sources as
Taiwan and South Korea, a third wave of Pacific Rim nations is following in
their (and Japan 's) fu otsteps a s the brains-and-b rawn -for-h i re w p [)13 e b of t he
region. Programming muscle is avail able--c heap.

The pattern of the hard-goods manufacturing sector-moving rough compo-
nent manufacturing, machining, subassembly, and even final asqembly over-
seas in search of the lowest-(091 labor source-is being repeated in software
development. As the infl ux of work brings wealth, the standard of living rises;
a commensurate rise in labor costs results, driving the work offshore. again, to
the next low-cost labor source. Compelitive advantage can be gained by the
higher-cost supplieronly by adding value m ways not accessible to the cheap-
labor compel tar. Failure of many a CIO to understand and act on this has
helped fuel the current wave of outsourcing here in the US and, unless effec-
tively countered, the trend will continue as globalization makes doing business
across national borders easier through the end of this century and beyond.

At issue is not the sophistication of the work, fitness to specifications, techni
cal documentation, or engineering discipline. rhe bottom line is cost. Cost is,
measured not only in aclual cash outlay, but in terms 01 opportunity cost and
market posmon. I he offshore developer capable of delivering replacement
core business systems for one of the largest global retail clothing businesses,
headquartered in the San Francisco Bay Area, does not even employ pro-
grammers capable ofcommenting the program codein English-so they don'l
bother with internal documentation at all. The vend£)r does not agree with
their customer that adherence to the customer's corporate data model Is im-
portant, leaving this firm's data administration staff with serious integration,
problems that inhibit corporate wide, not to mention interapplication, data
sharing. (lf you think this is just a data problem that will vanish with object

anintued on pa€e .4.

Editor
Robert Shelton

SIGS Pubtications, Inc. Advisory Board
Tom Atwood, 001<: 11< vun

Grady Gooch, a.'ionaa
George Bosworth, L>jgitan
Brad C:ox 1,?fir)„„,AM, Ag6?(0ly[jh·.02
Chuck Duff, 7,4 1 5„k·3·,aw c J.„u)
Adede Goldberg, Par,Phice .9 sum
R. jordan K re indler. 6.<mer,/ Ek> uk

Meilir Page-Jones, Dv.:042,4/6,:siem,
Tom love, Const/taor

Berl rand Meyer, 1:imractiveFDO,aretogineemig
Sesha Pratap, C Ink.rijne 50,7,1,4?re
R Michael Seashols, ters.„11 <)2#e, E Ter hm»gy
B jarne Stroustrup, ATA T Ben La/„
Dave Thomas, Object)ec /71,7/ogFInk?maeon<,f

HOTLINE Editorial Board
Jim Anderson, Digihilk, hic
Larry Constantine c onsi frant
Mary E.S. Loo mis Ve,%.ill C)51/(I f 7, i hi7 1<>g M
Reed Phillips Knowkdite.Syskvir: Corp
Trygve Reenskaug, Jashon Al
Zack Urlocker. Hor/and mk·maigd
Sleven Weiss Way/.1„1 5>'52„,26

SIGS Publications, Inc.

Richard P. Friedman, Folmder & Group Publishei

Art/Production
Kristina joukhadar, M....al:irw Ed,[or
Pitgrim Road, [td. Creative Dir«bor:
Elizabeth A. Upp, Fod:.mion Ed tor
Fennifer linglander, Ardi.oduc{Eon L oordnator
Circulation

Diane Badway, Circulation Businecs Manager
Ken Mercado, Fulfi] meni Manager
Vicki Monck, (.Ir< ulation A,·L.L.|an.
john Schreiber, i.„„, anor; Ass,sian[

Marketing
Sarah Hamilton, Proiii„tions Manager
Caren Polner, Pi<,mot ons Graphic Artist
Administration

David Chatterpaul. Bookkeepe:
Claire johnston, IN>nfer,9 e Manager
Cindy Roppet, Conference Coord,nalor
Jennifer Fischer, Pub I Retal ws

Margherita R. Monck, c eneral Manager

jane M. Grau, C ontrlbutlng Edilor

hotline am

OBJECTORIENTED
t£€lmak,gy

Tin Ho,Ii!,1 ON: OBJU I-ON»:,IDTKIN<>l06¥ (155% 01044-4319) .

published [Tionthly by SIGS Publik ations, 1114 588 Broadway, NY
NY 100 I 2, (212)274 0640 © Copyright 1992 SIGS Publkalion,

Inr All rights reserved Reproductionoflhus materialbvelectr<ink
transmission. Xerox or any other method will be Irc,ted as a willful
vioation of thie U S Copwwhi lawand M flatlv prohibiled Male
i al may be reproduced with express permission fom the publishe•
Mailed hrst L lass Subscripilor rae - one year 112 listies) $249,
}oreq,narK] Canada. $279 Singlecopy $23
POSTMASTER: Send addrm c hangeb & hubscrip[Ion o leo to The
Hon w Subgoriber Servires, P.O Box 30)0 Deot HOT Denville,

NJ07834

Submt editorial correspondence to Ruben Shelton, 1850 Union
Street Su® 1348, San trancisco, CA 94123 Voice (415) 928·
5842, MX:,415) 928-3036

.IGS
14]1311(AnONE

Publibherb of Ha Nin e 0.1 Ob» 1-Oriemed nx hnology, journal of
Ob/ra Oriented Programming. obveC itledg.zine, Uie X /oumd/r
The C++ Reporf, The Snamalk Rewon, and The inier,wfwi],2/ OOP
Ciratory

confirmed yesterday by industry executives who did not want
their names publicly attached to such preliminary
dibcussions. Sun, which has been left out of such alliances or
shunned them, and IBM would not comment...Evidence that
Sun has become more receptive to cooperalive projects has
come In recent months, with the company forming several
partnerships with other companies to work on specific
technologies. It recently took on the little-noticed Object
Management Group partnership with the Hewlett-Packard
Company aimed at setting Unix ioftware standards...

Sun Unk is sol«ht by /BM, joirl Marke«
THE NEW YORK TIMES. 3/13/92

For IBT North America's Mikel Roberts, C++ has proven
to be a boon to efficiency and productivity. Originally a C
shop with an emphasis on real-time programming or as
Roberts explains. "extreme real [Ime-a sk?p beyond what
people think of when thev say real time. Consequently we
have to be able to get down and play with the bitsies when
we need to." Roberts' team finds C++ cleaner than C and

easy to use when managing a project. Given the turnover
rate at most organizations, assigning a half-completed
project to a new programmer is oiten a nightmare.
According to Rot)crts "C++ k much easier to explain than
conventional code. You can see how the objects break the
problem into understandable pieces. roT that reason 11 2.
easier to maintain."...

A plus for C++, jessica Keyes, POW, 4/92
...The IDistributed Management Environment] breaks new
ground in software developmenl because it utilizei
advanced object-oriented software technologv. OSE argues
strongly that this powerful new approach to structuring
software will solve the complex distributed systems
management problems that users say are their primary
challenge today...

Bringing the DME info sharper focus, james Herman,
NETWORK WORLD, 3/30/92

In the A five-year, $100 million program debigned to increabe US
compelitiveness in the semiconductor induslly Is entering the

Industry homestretch. 30 int e forts among chip maker Texas Instrunients,
Inc. and two US defense agencies are expected to spawn
revved-up chip plants based on single-wafer processes,
distributed computing and object orientation by late next year.
The team effort io hasten production turnaround time and gain
reaklime control of factory information in order to lower costs
is exper:led lo Ars! be adomed by silicon makca and then spill
over to other US businesses that are struggling to compete
globally...The project seeks to accelerate chip-making cycle
times using single-wafer processes-as opposed to traditional
batch equipment to quickly product low volumes of
specialized chips...

Factory automation plan nears completion, joanie M.
Wele,r, COMPUTERWORLD, 4/6/92

POWEEK: What is Cairo? IMicrosoft Corp. Systems VP
Pautl MARITZ: Cairo Ts the code name for a collection of

protects we're working on that pertain to making [Windows]
fundamentally easier to use in a dislribuled environment. It
involves both putting object-oriented technology into the
operating system, as well as getting that technology to work
within a networked distributed environment. The vision we

hold out is allowing PCs to become more like information
appll ances...

Great Expe£ tations. Mic rosofts plans tor Windows, Paul M.
Shere, PC WEEK. 4/6/92

The International Business Machines Corporation, the
world'% IarRest computer maker, asked Sun in February to
join the Taligent loint venture Uwal 11 formed last vear with
Apple Computer Inc., the second-largest maker of personal
computers, The request to Sun was an attempt by IBM
to counter Microsoft' s introduction later this year of soft-ware
for work stations, the powerful desktop computers
increasingly popular with corporations. IBM's overtures were

« >/I

9¢.2 Calendar »
/&-&-;;/%;-;- --.Il#I'-

¥

THI. Ho-ruNE CALEND.AR presents conferences and meetings that focus exclusively on object-oriented technology. To have a
meeting or conference hsted, please send the dates. conference name and location, sponsor(s) and contact name and telephone
number to the Editor: Robert Shelton, 1850 Union Street, Suite 1584, San Francisco, CA 94123; fax: (415) 928-3036.

| June 8-12,1992
USENIX

San Antonio, TX

Contact: 614.588.8649

June 15-19,1992
Xhibition '92

ban](me, LA

Contact: 617.621.0060

June 16-18, 1992
SD'92

London, UK

Contact: 081.742.2828

July 14-17,1992

Object Expo Europe
london, UK

Contact: 212.274.0640

July 21-23, 1992

Object World
San Francisco, CA

Contact: 508.879.6700

VOLUM[3, NUMBER 8 E JUNE 1992

Engine¢Jring ...Taking the obiect perspective during analysis. design and
programming mandates special talents, skills and genius.

Methods Data flow techniques-the current rag-only require that
observers act as bloodhounds who trace the flow of paper.
Where objects are the goal, "Many are called, but few are
chosen."...For too long, we've believed that endless process,
protocols and software packages could do our analysis,
design and programming-and we probably always will,
The OOP approach forces the industr·y to recognize that we
have too many people, inappropriately selected and trained,
with the wrong set of tools. Will we ever learn?
Letters: Where many are called and few chosen, Howard D.

Weiner, COMPUTERWORLD, 3/16/92

Multimedia ...In addition, while high-power RISC technology is being built
Into PCs, video hardware such as coniputer-based multimedia
mach ines are expected to become more sophisticated. Giant
consumer-electronics companies like Sony Corp. are
threatening to dominate the home market at the expense of
multimedia PCs. Some observers believe that the motivation

Standards ...Typically, in the computer industry, many different vendors
Introduce different and Incompatible versions of a new
technology. Proprietary market wars persist for years and
sometimes decades, creating a heterogeneous mess in which
users fund it mmpossible to integrate systems. In the emerging
object-oriented Enabler environments, this shakeout has
substantially occurred before there were many products...

Advances and Research: The future of manufacturing
Enablers, james E. Heaton, ESD TECHNoLoGY, 3/92

...Thus the warover whose objects to use is likely to replace
the war over operating systems. And the lack of a common
foundation on which to build the software that enables

computers to do increasingly sophisticated tasks is likely to
continue to inhibit the American computer industry. •It

Languages ...[Davidl Taylor and other proponents of object-oriented
prograriming stressed one point as highly significant:
Using object-oriented languages such as C++ and
Smalltalk does not guarantee that software is object-
orienled. These languages are simplv programming
languages set up to make the mechanisms of object-
oriented programming easy to execute. Procedural
programs can be written in C++ and Smalltalk. while
object-oriented programming can be dione in procedural
languages. indeed, even simple languages like BASIC and
Pascal have been given object-oriented extensions...

Taking the "lego" approach to software design. Mitch
Wagner, OPEN SYSTEMS TODAY, 3/16/92

Excerpts from leading industry
publications on aspects of object 1
technology

Software object is not another expression for program
module. However, many software professionals have
difficulty discerning the difference between simple
modularity and designing with software objects...A [State
-Transition Diagraml is a good technique to determine
whether you're really designing a software object. If you can
represent the object with a discrete set state changes you
probably have an object. Frequently, an object can be
further decomposed into other objects.

Objectively speaking: Objects wi design, Richard Rieh/e,
HP PROFFSgONAL. 3/92

behind recent technology agreements between erstwhile rivals
IBM and Apple has less to do with the onslaught of cheap
computer clones than with trying to establish a platform to
compete with the likes of Sony later in the decade.-

High Power: Next generation PCs, Michael Antonoff,
PMULAR SCiENCE, 4/92

seems almost certain now that the battle lines are drawn,"
said Andrew Singer, a computer researcher at Enginuity, a
high technology company based in Palo Alto, CA.
Ideas & Trends: New weapons prolong the computer wars,

lohn Madkoff, THE NEW YORK TEMES, 4/5/92

...If you're inclined to believe that what the world really
needs now is another UNIX Standard, you'll be delighted to
learn that Novell is developing an object-oriented version
that will, of course, be called Univell. Think of il as Novell's
own self-contained Taligent project. In any event, sources
tell the Knife that the theme of the projec:t is to develop a
server-oriented environment for the networks of tomorrow...

/RM must M//P it r€3.1/ good 5ergei Ki·ika/ev,
MACWEEK, 3/30/92

...The interactive engine allows programmers to execute
software one small section at a time, said [Centerline's
president and CEO Seshal Pratap. les vital for effective
object-oriented programming, because you want to be able
to write several objects and execute them, and build your
program by constructing objects and linking them together
one at a time," he said. *This is, in fact, how most
advanced programming environments are designed. It's
one of the reasons why LISP was able to yield such huge
productivity gains.'...

Coping with the OOP chaffer,ge,
OPEN SYSTEMS TODAY, 3/16/92

HOTLINE ON OBJECT-ORIENTED TECHNOLOGY

:in ji,1med fT{ma Dage 2

technology, consideragain: what would happen to your reuse
strategy if an offshore developer did not respect your cory)0„
rate class model?)

Yet for this multibillion dollar company, the savings in devel-
opment costs alone make a persuasive business case. Add to
this the speed at which applications can be coded offshore
(about four months each in this case), and we're talking about
being another inventory turn ahead of the competition iii the
rough-and-tumble ragtrade--a business in which getting ahead
depends on divining subtle customer preferences (and changes
thereto) that the customers cannot even articulate (hmmrn...
sound familiar, software developers?), and staying ahead de-
pends on changing your offerings and turning over inventory
faster than the other chain. This company's senior manage-
ment is willing to tive with what they perceive as the costs of
this style of software development because the measurable
costs are significantly less than the costs of known problems
with today's systems-and incalculably less than the cost of
being second.

Approaching software engineering discipline, CASE, object
technology, or any other technical innovation, for that matter,
from the perspective of "look at the technical problems we
solve with this, and the technical benefits we can reap" is about
as effective as communicating in a whisperon a foundry floor-
the background noise simply drowns the whisper by several
orders of magnitude! Selling object technology on the strength
of claims of 14:1 productivity improvement and software con-
cepts that model the real world, thus eliminating the analysis
problems we have experienced with existing technology, is
whispering into the background roar. Our analysis problems
have been largely people problems. The productivity gains are
to those disciplined enough to buy, reuse, adapt, adjust-all
those things that run orthogonal to the grind-your-own-con-
crete-mix training of software developers. To the flexible go
the spa Is.

Coming from very different perspectives and backgrounds, our
authors in thus issue approach object techrologv with these
themes in common: software manulacturing, innovation and
process improvement, and adaptation to market changes.

Mr. John Slitz of the Object Management Group addresses in-
novation and information lechnologv in the context of histor-
ical changes in Western society over the last several hundred
years. Business competitiveness today, he pOsIB, is driven by
information access ard use, on Uthe ability to gather and pro-
cess large amounts ot data, and deliver it into the hands of
well-trained workers capable and responsible for making timely
decisions...7 The competitive business will have a flatter struc-
ture than today's mi!itary-styled hierarchies- more like a peer-
to-peer LAN than an SNA network (for the hard-core main
framers among usl). Value added will be measured in
knowledge-per-unit instead of cost-per-unit, with the business
impact of knowledge being to increase the revenues per em-
ployee and drive down the incremental cost of each new
revenue dollar. Those rising to this challenge will be organi-
zations able to change-in his use of the term, to innovate.
Yet Mr. Slitz's concept of innovation carnes strong overtones
of both the management of dramatic charge and the institu-
tional,zation of business process improvement. We'[1 revisit
thisin ourinterview with Mr. Merlyn...ina moment.

Mr. Robert Brown of the Data Base Design Group examines a
migration path from today's state-of-practice semantic mod-
eling to object modeling. The objective is to develop more et-
fective tools for understanding our businesses-while build-
ing on foundations already in place in many organizations.
These modeling tools fill a crucial role in the move to software
manu facturing:once we can manifest and understand-really

VOLUME 3, NUMBER 8 E JUNE 1992

blueprint--a business, we can make effective comparisons to
off-the-shelf components. To borrow an analogy from noted
author (and HOTLINE contributor) Mr. David Taylor, this is sim-
ilar to the way we would build a new PC today: lay out tile
component schematic, then fill it with chips and assemblies
purchased from parts catalogs. Those who suggest that this
modeling is superfluous, intellectual space filler have yet to
spend enough time with their business partners to recognue
that comparing code to business activities in not an effective
mechanism for undersianding either the business or the code!

Mr. Mark Anders of jnmark Development joins us to write
about frameworks-prefabric:ated application building blocks
that are a good example of what Mr. Brad Cox calls the soft-
ware-IC. Frameworks are among the components that can be
selected from today's software -parts catalog" for developers
using C++, Smalltalk, Actor, and even some nonobject lan-
guages. Mr. Anders presents the developer's perspective on
the importance of using such off-the-shelf components, giv-
ing us some hard numbers that as development managers
will appreciate, translate directly into development and main-
tenance cost savings.

We interview Mr. Vaughan Merlyn of Ernst & Young, wherein
he addresses the conflict in Western culture between innova
lion and continuous process improvement. Success with busi-
ness process innovation and business reengineering depends
on first constructing the foundation: an organization that can
support change. This Mr. Merlyn terms the learning organiza-
Non. He views innovation and process improvement as two
distinct issues, and feels our Western values are causing in-
novation strategies like business reengineering to overshadow
the more fundamental issues of change embodied in contin-
uous improvement. Continuous improvement, after ally is the
ability to sustain the value of innovations- for us software de-
velopers, it's called 'mainterance and enhancement," while
innovation is called 'development." Those unable to imple-
men[such concepts as Total Quality Management will not be
able to manage the more abrupt charges of reengineering.
Those who don'[ultimately achieve both will be surpassed by
other market players who are able to change. Like Mr. Slitz,
Mr. Merlyn also forsees responsibility-driven. flat orgariza-
lions where change is the norm. He also gives specific sug-
gestions on what needs to change in our organizations to
achieve the leverage of the learning organization.

Central among these changes for software development or-
ganizations is to understand software development as manu-
facturing. The successful software developers of the next three
to five years-those able to compete against offshore ven-
dors-will be those who make the change from today's one-
off craftworks to manufacturing from commercial compo
nents. Object technology is one technology enabler. What
we practitioners and our business partners consider to be ac-
ceptable attitudes toward software development is another.
If we choose to not decide, our offshore competition will help
our customers choose for us. E E

co,irintted Foin page 1

farmer expected to live his entire life with the tech-
niques his father taught him and to pass on those same
techniques to his son. Tradition, down to the smallest
detail, dictated both correct behavior and expectations.
And traditions changed slowly, over generations.

That situation only changed in the nineteenth cen-
tury and was buried in the twentieth, with the advent
of the Industrial Age. In this period, wholesale move.
ment from farms to factories produced <'wonders" of
science that resulted in the creation of our modern

world. With the advent of fast ships, airplanes, tele.
phones, and then the computer, the pace of informa-
tion flow, life, and change have accelerated to the point
where the focus of successful businesses iii the 21st cen-

tury will be primarily concerned with channeling and
USLIAg informatiOn.

The movement of society from Agricultural to In-
dustrial to Information ems may be viewed as the his
tory of information proceSS[ng. With each successive
epoch the speed of dissemination and the value and per-
vasiveness ot information has increased draniatically.
Each epoch has had to develop new means ofproduc.
tion, management, and political institutions to Cope
with the issues and challenges of the time.

PRE-INFORMATION AGE HISTORY
The past can be viewed in three broad ages: Agricul-
tural, Industrial, and the current beginning of the In-
formation Age. In earlier periods, the majority of the
population was involved in either agricultural or indus.
trial activity. In the Agricultural Age, a majoray of the
population worked at agricultural tasks, producing food
or other materials directly from the land. Success was
achieved by increasing the yieid per parcel of land and
those landowners who were the best producers were con-
sidered the most successful Movement was difficult and

the diffusion of"technical" information-on crop pro-
duction, harvesting, or irrigation-was limited to the
pace at which a man could walk. It was a safe bet that
most people were born, lived, and died all within a few
miles.This meant that the world looked almost the same
from decade to decade. The pace of life was slow and
change played almost no part in anyone's planning.

The next period was exemplifed by the Industrial
Revolution and started in the mid- 1700s. The world's
information creation and transmission abilities speeded
up. This resulted not only iii an increased ability to pro-
duce manufactured goods, but in increased production
from agriculture as well. Society as a whole gained the
ability to learn and change. Knowledge itself was be-
ginning to be viewed as having some value, although
not much. Rather than yield per acre the predominant
measure became cost per unit. The method of accom

2 - BUSINESS IN THE INFORMATION AGE

plishing lower c.osts was through "economies of scale."
Essentially, bigger shops and then bigger factories dis-
covered they could produce more goods at ever lower
costs per unit.

If we focus on the speed of communications as a key
indicator of the pace of societal change, we see the last
200 years as a continual increase in speed marked by
higher levels of productivity in each area of the econ.
omy. It would seem that the ability to move and share
information is a prime driver of technological and soci-
etal progress. li is noteworthy that we still produce agri,
cultural product in vast amounts, but use only a small
fraction of today's population to produce more then the
entire population could produce 200 years ago.

just as the Agricultural Age valued yield per acre and
the Industrial Age relentlessly tracked and recorded cost

per unit, it is my belief that the predominant measure
of the Information Age Will be knowledge per unit. The
labor and material costs of each unit produced from the
manufacturing sector will continue lo decrease but a
new goal to increase the value of each unit produced
will be added. This new measurement will allow prod-
ucts-whether service, [eisure, intellectual, agricultural,
or manufactured-to be comparatively valued. It is also
my contention that those companies that seek to max-
imize knowledge per unit in their products will come to
doininate the Informai ion Aga

The Industrial process sought to use the 'magic" of
mass production, the learning curve, and large, capital-
intensive plants to bring down the per-unit cost of the
goods produced (Fig. 1) They also used information in
the guise of manufacturing <'know how" or ill I:he slow
(by today's ternis) movement of knowledge from the re-
search laboratory to the industrial shop floor. The rea-
son large enterprises could be built was at least partly
due to the relatively slow pace of change in the econ.
omy. A plant then took ten years to plan, design, build,
and begin to produce api*·back. This required a low cost
of capital and the assurance thar in those ten years the
product produced would still be competitive, if not dom-
inan[in the market. It also required that a huge, undift
ferentiated market be available to consume the prod.

1 Inlormation Ofganizations

Figure 1. Industrial Revolution Chart

HOTLINE ON OBJECT-ORIENTED TECHNOLOGY

21st
Century

20th
Century

18th

Centuryr

iniormatio

Industfiallsts

 landowners I#J

11

Partnerings & William P. Lyons, president and CEO of the Ashton-Tate Corporation before Its acquisition by Borland International, Inc. last
Acquisitions year, succeeds Adele Goldberg as president and chief executive of Par[Place Systems. Goldberg continues as c·hairwoman.

Dr. 1. Peter Deutsch joined Sun Microsystems Laboratories, Inc. <SM[I), the advanced research subsidiary of Sun
Microsystems, Inc., Ide has also been named a Sun Fellow, one of three within Sun Microsystems. At SMLI, he is helping plan
future software development technologies and software architectures. Most recently, Dr. Deutsch spent five years as chief
scientist at Parcrlace Systems. He also spent more than 14 years with Xerox at the Palo Alto Research Center,

David E. Liddle, formerly a research scientist at Xerox Corp.'s Palo Alto Research Center and founder and CEO of Metaphor
Computer Systems, and Paul G. Allen, cofounder of Microsoft and founder of Asymetrix Corp., formed Interval Research
Corp. Uddle was named president and CEO, and Allen will serve as chairman and provide funding for the company. Interval's
goal is to perform research and advanced development in information systems, communications, and computer science.
Specific topics for research have not been announced.

Borland International Inc. reached an agreement to acauire two professional programming tools from the Solution Systems'
division d Software Developer's Company, Inc. Under the agreement, Borland would own, develop arie market BRIEF, a
professional programmer's editor, and SOURCERER'S APPRENTICE, a network version control system that manages the
building of large software proiects. Under the terms of the agreement, closing of the transaction is subject to certain
contingencies.

Versant Object Technology Corporation signed a licensing agreement with IBM relating to the VERSANT Object Database
Management System (OBDMS). Under this agreement IBM and Versant will work together on technology for a future IBM AIX
CASE integration framework offering. Additional terms of the agreement were not disclosed.

Solbourne Computer inc. set up a separate software business unit to sell and license graphical user Interface tools enabling the
develpment of C++ applications running on Sparc-compatible systems. Previously, the tools were only available bundled with
Solbourne hardware. Solbourne's first licensees include CenterLine Software Inc,, Parc:Place Systems, and The Qualix Group.

The Object Management Group (OMG) and World Expo Corporation announced the 2nd annual Object World Exposition
and Conference, to be held July 20-23, 1992 at the Moscone Convention Center in San Francisco, California. The OMG and
Computerworld will sponsor the First Annual Computerworld Object Application Award in conjuction with the show.

UNIX Systems Laboratories and Tivoli Systems recently agreed to develop a unified object-oriented framework for UNix
System V.4. The technology will ease the creation and management of distributed computing environments. The resulting
product will be based on Tivoli's Wiz[)orn object environment.

A joint development and technology sharing agreement calls for Tivoli Systems Inc. and Sun Microsystems, Inc. to work with
the OM€; to create UNIX-based system managment software for managing distributed networks. The jointly developed tools
will be bundled into a future version of Sun's Solaris operating system.

Object Design was designated by International Business Machines Corporation as an IBM Business Partner. IBM also is the
largest user of Object Design's ObjectStore ODBMS. IBM's Technology Products group is using ObjectStore in its internal
Electronic Design Automation (EDA) group to build software tools for designing systems and components for future RI5C
System/6000 models. Object Design and IBM will work together to jointly market ObjectStore on IBM's RISC System/6000
family of advanced workstations and servers. In addition, the firms signed a joint technology development agreement to work
together to provide early availability of ObjectStore on new releases of IBM's workstations and servers products.

Object Design also announced the signing of a value-added reseller (VAR) agreement with MediaShare Corporation of
Carlsbad, CA. Under the agreement, MediaShare has licensed the ObjectStore for Windows ODBMS and will ship an
embedded runtime version of ObjectStore in its forthcoming PRISM, an Interactive sales and marketing product
information system.

Object Design entered into a strategic alliance agreement with Fluent, inc. of Natick. MA, to integrate its object-
oriented database management technology with Fluent's digital video and audio software products for multimedia
application development.

VOLUME 3, NUMBER 8 m JUNIE 1992

ExperTe#igence, ExperTelligence announced the release of The ExperDocumenter on Action! for Digitalk's Smalltall,V. The ExperDocumenter
Inc.. scans the source program for the "classes" selected by the user and automatically generates the description,classes, methods,

' arguments, and all technical information needed by the programniers and certain categories of end users. The output of the
5638 Hollister Ave., Suite Documenter is a Rich Text Format (RTF) file directly readable by any word processor that uses thus format.

302, Gojeta. CA 93117,
805.967.1797

Computer Computer Innovations announced two programs for the Microsoft Windows NT environment: DEBUG*2000, a source code
debugger, and EDIT•2000, a programmers editor. DEBUG®2000 is a source-level debugger for C/C++ programs thatInnovations, inc.,
minimizes typing by using windows that automatically update as a program runs and emphasizes efficient use of screen

980 Shrewsbury Ave., space. EDIT•2000 is a programmer's editor that provides a full windowing environment. Support of the mouse, pull downTinton Falls. N) 07724 menus and an effective Help system makes EDIT•2000 easy to learn and fast to use. A programmer may open as many files as908.542.5920
desired and editing becomes fast and easy through the use of simple mouse clicks, keystroke commands, or any combination
that suits the programmer's style. DEBUG'2000 and EDIT:*2000 both run under Windows NT and Windows 3 on Intel
386/486 platforms and Windows NT on the MIPS platform.

Hewlett-Packard, Hewlett-Packard Company is shipping HP NewWave 4.0 Desktop Manager software for Microsoft Windows. A major
3000 1 lanover St.. Palo upgrade from Version 3.0, HP NewWave 4.0 offers significant improvements in all areas of desktop management including

Aiko, CA 94303 the desktop organizer, workgroup library, and work-automation support through its exclusive agent macro facility and OLE
408.720.3632 1.0 support. Amongthe improvements to HP NewWave's desktoporganizerare drag-and-drop printing, 32-character titles for

all data files and drag-and-drop file attachment of Windows documents to the New'Wave desktop, as well as previously
introduced features such as icons, folders, and file drawers. Now all DOS and Windows applications are interoperable with
the NewWave desktop manager. 1-he enhanced software installation process makes DOS and Windows applications available
as icons on thedesktop automatically.

Versant Object Versant Object Technology announced the availability of the VERSANT Interactive C++ Tool Set a C++ software system for

7»chnolog» res'tuit:1361'1612'seigr.clinteilliurigulzlitull:t'Surn,UNclurnt,1,idenveloer'r,ir,intscunrd«1321%glurn'T-inFUULUft
4500 Bohannon Dr., Menlo Interactive C++ Tool Set is tightly intergrated with the VERSANT ODBMS giving users a seamless development environment for

Park, CA 94025, building and deploying object-oriented database applications. The Tool Set consists of VERSANT Screen, a workstation-based tool
415.329.7500 that allows users to create highly interactive applications; VERSANT Interactive Object SQL, which uses SQL like statements to

access and manipulate objects within the VE RSANT ODBMS; and VE RSANT Report. an interactive report generator.

Lenet Systems Lenel Systems International is currently shipping MediaOrganizer, multimedia object management software for Microsoft
International, Windows users that is Windows 3.0 and 3.1 compatible, With MediaOrganizer, users can quickly organize, catalog, retrieve,

and play all types of multimedia information including full-motion video, digital and analog audio, graphics, animation files,
19 Tobey Vi}tage C)ffice still images. and text. Users can also create multiple, scalable windows for simultaneous display of their multimediaPark, Pittsford, NY 14534, Iniformation. MediaOrganizer meets the challenge of organizing, cataloging, and retrieving large amounts of multimedia

716.248.9720 information by integrating three critical technologies: multimedia computing, object-oriented programming, and database
management in a Windows environment. This tightly integrated software will also serve as the foundation for a complete
family of upcoming Lenel products including presentation, editing, authoring, etc.

b,mark Immark Development Corporation announced the release of its application framework, zApp, for the MS DOS platform. zApp
Development for DOS will offer DOS applications the same look and feel as MS Windows applications, including Windows style pull-down

menus, dialogs, scroll bars, and controls. zApp for DOS supports Borland, Zortech, and Microsoft C++ compilers. It offers
Corporation, single source-code compatility with zApp for Windows, as well as data entry forms, Transparent MDI Support lor DOS text

2065 Landings Dr., mode, frame/pane architecture, and automatic window sizing and positioning. Other features included are logical size and
Mountain View, CA dimensioning of objects and flexible message and background tasks

415.691.9000

EMS Professional EMS Professional Shareware Libraries began shipping an enhanced new version of its C++ Utility Library. The new version
Shareware Libraries, adds 18 new Public Domain and Shareware C++ language products, making a total of 140 products for professional C++

4505 Buckhurst O., Olney. programmers. All products in the library (and all known commercial C++ PC products) are described and indexed in a
MD 20832,301,924.3594 database that accompanies the library.

HOTLINE ON OBIECT-ORIENTED TECHNOLOGY

ucts in numbers sufficient to justify their production. To
an ever increasing degree, these conditions are disap-
pearing. Capital is no longer cheap, markets are be-
coming more fragmented, and the lifecycle of many prod-
ucts, even the most staid, iS measured itt months and
years, not decades.

CEO TO I NFORMATION MASTERY

In the Information Age. companies will have to react
faster and produce a broader range of products better
suited to the ever changing ttastes of more sophisticated
and differentiated consumers, To accomplish this task,
successful companies, in the motto of Software AG, a
large mainframe software developer, must "listen hard
and respond fast" to the changing market condition, as
well as to the changing technological base for theirprod-
uct and the shifting demands of their customers. This
process of constantly monitoring and analyzing their
own products and processes, and then making the nec-
esiciry improvements, is called innouation. Successful en-
terprises must become innovations masters, which witl
require new methods of planning, measuring, and man-
aging their businesses.

The ability to gather and process a large amount of
data and deliver it into the hands of well-trained work-

ers capable of and responsible for making timely decl-
sions will be critical. Success will be judged on the knowl-
edge that can be brought to bear on each unit produced
by the enterprise. The higher the knowledge content,
the higher the value to purchasers of the product. In-
creasing the knowledge content in each unit of pro-
duction must be the goal and scorecard of top manage-
ment and the means to this end is through innovation
planning and the development of pervasive companv
information systems to power thLS Information flow.

All businesses are not going to experience change
at the rate of computer chip manufacturers, but the
leaders in every mdustry must come to grips with a pace
and scope of change and a need for product innova-
lion that is far greater then they have experienced

I.T. LT.
Production Sales Maidware Sonware

1 .11.1 00
1 innovatio Sen,er Components

Downsizing Sollware
Chips

Strustured State of Diwmion T:e©hnology
Mini Monolithic

Passiye Only
Wormation Main#M In-House

Sales.Org Development
Figure 2. Technology decisions.

VOLUME 3, NUMBER 8 -juNE 1992

\ Robotics Multiple

n 7 CIM Channels
Edi:act

3 CAD
pC Standard

Soltware

Current \
'ractice /

in the past. This means that top management must be
involved in designing and implementing the informa-
tion systems that will become the nervous system of
the new corporation.

The Information Age CEO can no longer leave the
issues of information flow to the IT manager. Every mii
jor area of the company must be evaluated on its con.
tribution to the knowledge content/value added to the
enterprise's product. Each employee must be trained on
the goals, market, product and information technology
used to "plug" him/her into the company. Tasks in the
company must be analyzed on their past, present, and

Successful enterprises must become
innovations masters.

futurecontributions to the value of the company s prod-
ucts. A strong link between the CEO's vision, the com-
pany's strategic plan, and the IT plan must be forged.
The Information Age company cannot afford to) have
its information systems strategy out ofstep with the busi-
ness' strategic plan.

Each major function of the company shout{ be given
an innovation target (see Fig. 2) so that progress and
contribution to the company's goals can be assessed. An
optimal rate of innovation and the knowledge value con-
tributions from that rate or higher investment should be
tracked and evaluated. If the rate of current or expected
innovation is low it may mean that the function is a well-
understood process and therefore should be marked for
increased automation, out sourcing, or being left alone.

In those processes where innovation is still occur-
ring, often called state of the art, effort should be made
To increase the pace of innovation until the rate of change
stabilizes and the process can be shifted into the com-
pany base. In those areas where significant innovation
will lead to a disproportionately high gain in the know[-
edge content of the product, top management should
be actively involved. Likely areas for such involvement
are in the transition of information systems to speed the
flow of analysis information, new sales channels or
methods, design changes rhai better fit customer input,
and market analvsis to anticipate changes iii demand.
At each level of the chart, the power to implement pro,
cedure-changing decisions must be given to the line em-
ployees best positioned to make those changes.

Incremental improvements must be an accepted part

of the each function :ind the responsibility of the per
sonnel within that group. Such personnel must also have
both the authorky and the responsibility to implement
innovation. Innovations accumulated throughout the
organization by these semiindependent, functional groups
wililead to improvements m the entire system. By train-
ing each employee across a broader area of the company,
not just job-specific tasks but those of related functions
as well, greater autonomy and intelligence can be brought
to bear on all problems.

THE OBJECT-ORIENTED ENTERPRISE

To create an Information Age enterprise, management
must focus on the flow of information, as well as the de-
velopment and communication of a strategic vision for
the company. In implementation, each business func-
tion can be modeled as an object in the information sys-
tem. Communications between functions can be mod-

eled as messages. Within each function, the combination
of people, information, and structure that provides a
specific and measurable increase in value to the organi
zations product can also be modeled as an object. By
adopting an object-oriented perspective in both strate-
gic and information system planning for the enterprise,
the tendency for the IT and strategic plans to discon-
nect can be eliminated.

Top management derived le name because it resided
at the "top" of a hierarchical organization. In Industrial
Age enterprises, information flawed up the organization
and] only those at the lop had all the information nec-
essary to make decisions, which were then communl-
cated down to the organization. With the new infer-
mation technology, a company's information will be
available to every employee (with the exception of
confidential proprietary patent, trademark specific RUD,
personnel, and salary data). This will engage more peo.
ple in the decision-making process and lead to faster re-
sponse and better products.

Management will no longer be at the top of the or-
ganization issuing orders to a passive workforce. Instead,
key executives will be the architects and facilitators of

Figure 3. New corporale model.

C Customer

Pfocess ,

Added /
: Employee U Value UEnvironment)

j \ (The Product) 1 K

777

E E BUSINESS IN THE |NFORMATION AGE

a corporate vision and the designers of a responsive In-
formation Age organization. Management will se[goals
m support of the COInpany vision. Decisions on tactical
and implementation levels must be made in each group
without direct involvement by management. Employ.
ees with access to ati the companys mformation can
produce the rapid innovations and quality improvements
the information enterprise needs to prosper in the tough
competitive market of the Information Age (see Fig 3)

CONCLUSIONS

As the Inforniation Age dawns, the demands on man-
agement will stress individuals and organizations to the
limit Constantlv shifting markets, technological ad-
vances shortening product lifecycles, and a more spe-
cialized and independent work force are a few of the bet.
ter-understood challenges that he ahead. It is my hope
that by offering the perspective of the enterprise as an
information processor, rather than a material or people
processor, new insights mav be gained. The mechanisms
to help plan and manage Information Age organizations
are not fully developed, but 1 believe that a link between
the strategic.planning/vision-creation function of top
management and the information systems implementa-
tion must be forged. inforniation processing is on the
way to adopting object technology as a new paradigm
for the construction of diverse, networked, multivendor
systems. Because object technology seeks to model real.
world "objects" as persistent software entities and then
build new systems by reusing and manipulating them
within the computer, a necessary link to the business
plan is possible. Much work lies ahead, but the integra-
tic)n of the information system of an enterprise with the
strategic vision of top management is the primary re-
quirement of the Information Age enterprise. E E

References and suggested reading
1. Tofler, A. POWERSHEFT, Bantam Books, New York, 1990.

2. Rothschild, M. BioNOMIcs, THE INEVIT·AB]LITY OF C.AP-
ITALISM, Henry Holt Publishing, 1990.

3. Peters, T. THRiviNG ON CHAOS, Alfred A Knopf, New
York, 1987.

4. Sal<aiya, K. THE KNOWLEDGE VALUE REVOLUTION,
Kodansha. Japan,1985.

John Slitz is Vice hesident of Marketing for the Object Man-
age,nent Group, a nonprofit, inembepsupported corporation of
computer i,endors. softwa·e suppbers, and IT users. Bef)re join-
ing the OMG, Mr. Slitz was a founder and Vice President of
Stratenic Development for Neavi56, inc. He holds a BA in Eco-
nomics from SUNY Cordand, an Executive MBA from Fair-
leigh Dickenson, and a MA in Psychology from The Graduate
Facult> of the Nequ School foy Social Reseai·ch.

HoruNE ON OBJECT-ORIENTIED TECHNOLOGY

 Product Announcements

U
\ Product Announcements is a service to the
\ readers of the HorLINE ON OBJECT-ORIENTED

\ TECHNOLOGY; it is neither a recommendation
\ nor an endorsement of any product
\ discussed-

NeXT

Computer, Inc.,
900 Chobapeake Dr.,

Redwood City CA 94061
415.366.0900

Autumn Hill

Software,
1.45 Ithaca Dr., Boulder. CO

80303 303,494-8865

Borland

international, inc.,
1800 Green Hills Rd., P.O.
Box 660001, Scods V,i//en

CA 95067-0001
408.439.1631

The Stepstone
Corp.,

75 Clen Rd., Sandy Hook,
CT 06482, 203.426.1875

Arbor Intelligent
Systems, Inc.,

506 N. State St., Ann Arbor,
MI 48104 313.996.4238

NeXT Computer began shipments of its NeXT©ube Turbo workstation. The new workstation is built around the Motorola
68040 processor running at 33 MI{z and includes two newly designed NeXT custom chips. The new Turbo machines are.
rated at 25 MIPS. At the same time, NeXT reduced the prices on its most popular configurations by an average of 10%
compared to last year's configurations. NeXTcube Turbo pricing is unchanged from current NeXTrube pricing. Five
configurations of NeXTcube Turbo are now available and can be configured with up to 32 MB of DRAM (thev will be able to
support 128 MB when 16 MB parts are available) and 2.8Gb of hard disk drive storage space. The NeXTcube Turbo also
supportb three NeXTbus expansion slots providing expansion flexibility for such add-in products as NeXT's NeXT dimension
32-bit-peripixel color/video board.

Autumn Hill released the next generation of its Menuet GUI, completely rewritten in C++ and now providing extensions for
pen-based computers. Menuet Ill/CPP specifically supports Communication Intelligence Corporation's PenDOS operating
environment. The DOS version of Menuet 111/Cpp features a generic graphics API that interfaces to a wide variety of
commercially available graphxs libraries. The product is also available in versions for various 16-bit and 32-bit DOS Extender
environments. A Windows version of the product will be available by the end of the second quarter of 1992, and versions are
being planned for IBM/s OS/2 2.0 and SunSoft's Solaris. All major C++ compilers are supported. Menuet Ill/Cpp provides a
Moti Astyle look and is fully CUA complia nt.

Borland International Inc. introduced a combination software and video training product, "learn Programming Today,"
designed for novice computer programmers and power users who want to learn to program with Borland's object-oriented
Turbo Pascal 6.0 compiler. Also included are 50 sample computer programs, a two-hour videotape (11 lessons), and a 350-
page workbook. The videotape features Zack Urlocker. Borland's Turbo Pascal product manager, and the workbook was
written by Keith Weiskamp, a popular computer book author. Borland also introduced two new video training courses for use
with the company's object-oriented Windows programming software. "World of ObjectWindows for C++" and "World of
Objectwindows for Turbo Pascal" are designed to teach advanced programmers how to create Window applications quickly
and easily using Borland's Object\,Vindows software. Each ObjectWindows training course includes two one-hour videotapes
and a workbook with examples. Complete source code is also included, enabling users to work with the lessons as they
appear or customize the lessons for personal applications. The videotapes feature David Interslmone, Borland's Director of
Developer Relations and the workbooks were written by noted computer author Toni Swan.

Stepstone announced Objective-C for the Macintosh. Objective C offers both dynamic and static binding. The ability to use
ANSI C is retained at all times. Stepstone is also shipping V4.2 of the Objective-C Compiler with ICpak 101, the Foundationi
Class Library. Twenty classes and more than 300 methods provide a base of reusable components to build custom classes.
The Objective-C Compiler is a preprocessor that requires MPW C and is compatible with the MPW Development
Environment. A Macintosh computer with a hard disk and 4 MB of RAM (8 MB for larger applications) is required. It ships
with a full se[of documentation and tutorial.

The Stepstone Corp also announced the availability of Objective-C and its GUI toolkit, lepak 201, for the MIPS
Magnum 3000.

Arbor now offers an MS-Windows version of its bridge from Objectworks Smalltalk to Nexpert Object, an expert system shell
from Neuron Data. The Smalltalk Nexper[OBJECT BRIDGE enables developers to take a knowledge base created with
Nexpert and embed it along with Nexperfs inference engine in a Smalltalk application. All objects created in Nexpert thus
become available as Smalltalk objects. Ext)eR systems created with this bridge are instantly portable across Macintosh, MS-
Windows, and UNIX X-Windows without change to the code.

4*end Product Announcements to Robert Shelton, 1*50 Union Street Suite 154*, San Francisco, CAF
2%94*23, fax:*414**28-3*36.]nau,12€ompanynamEaddress, andphomenumberl

VOLUME 3, NUMBER 8 E JUNE 1992

44--t

V

didate classes?! Perhaps this is a reflection of the un-
derlying, predominantly bottom-up approach seen else.
where (e.g., p. 44)·

The authors' definition of the association relation-

ship appear to be nonstandard. They conceive of an as.
sociation relationship as being when "one entity is a
container for other entities" (e.g., p. 95). Association
is, I believe (see also Rumbaugh z) much wider than just
containment. Container classes are related more to the

concept of genericity. A second important, and not yet
fully defined, relationship is that of aggregation. Whilst
apprectating that there Still remains work to be done in
clarification of such object relationships, I find the dis.
cussion on page 47 of the is-part-of relationship totally
unconvincing. Finally, the idea of creating two classes
Cone abstract and one concrete) for any brand-new class
may be a useful heuristic (p. 47) but there are many oc-
casions when it could be totally unnecessary.

In general, the text is somewhat light on tools, no-
tations, and association methodoloales currently being
developed and implemented by software engineers work-
ing in applications development.

Some other minor points of concern include the feel
ing I have that Figure 2.9 is really more illustrative of a

Book Watch
.

FE E BOOK RWKW

state-transition diagram than a data.flowdiagram; chat
since specification of internal details of a class is inde-
pendent of the abstract data type (ADT) specification,
there may well be more than one implementation for
each design module or ADT (p. 27); that entity·
relationship diagrams (which deal only with data) are
not, as the authors state, the most important tool with
which to begin object modelling-I believe they are
likely to provide some good initial ideas only; an over,
early specification of data structure-data should be con.
sidered per se late in the lifecycle.

It is always easy to And points of disagreement or crit,
icism; less easy to offer positive feedback. 'Jobs well
done" are too often taken for granted, especially when
the job is writing a book. This book is a "job extremely
well done." I congratulate the authors. E E

References

1. Henderson-Sellers, B. A BOOK OP ONECT-OR,ENTED
KNow-LEDGE, Prentice Hall, Englewood Cliffs, NJ, 1992.

2. Rumbaugh, j., M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen. ()1312:(1 -C)REN)?El) At M :iri-ii,ci AND DEN/C,Ni
Prentice Halt, Englewood Cliffs, NJ, 1991.

1 The "Book Watch" column does not contain book reviews.

These listings are ahstacted from pres.s releases provided by

t the publishers, and no endorsement is implied. Please send
announcenients to the Editor. Robert Shelton, 1850 Union St..

\Ste 1 548, San Fransisco, CA 94123; fax {415) 928-3036

john Wiley & Sons, Inc. 605 Third Ave., New York, NY 101 58-0012, 212.850.6497.

John Wiley & Sons announced publication of |NTELLICENT OF-
FICES: OMECT-ORIEVIED Mui ·ri-MED,A |NFORMATION MANACEMENT

IN CLIENT/SERVER ARCH]TECTL: REG by Setrag Khoshaftan, A. Brad
Baker, Razmik Abnous, and Kevin Shepherd. Intelligent Offices
is a comprehensive guide that shows the user how to create an
environment that combines existing knowledge of digital innag-
ing, database management, data storage, and networking for
maximum information accessibility. The book provides an ob
ject-oriented model and uses readily available, off-the-sheIT
hardware and software In practical, real-world examples of
state-of-the-art integration.

john Wiley & Sons also announced publication of Ouncr-Om-
ENTED INFORM·<intON SYSTEMS: PLANNING AND 'MPLEMENYArION by
Davis Taylor. 0-0 intormation systems is a practical guide that
cuts through the usual techno-jargon, enabling managers and
executives to make informed decisions for successful object-
oriented information systems instalilation and development.
The book explains how to purchase, build, and maintain flex-
ible, powerful, and competitive object-oriented technologies
and includes a helpful "fast track" feature which summarizes
the contents of every page in the outer margins.

HOTLINE ON OBJECT-ORIENTED TECHNOLOGY

METHODS E E

From data modeling to object modeling

Data modeling has at its
heart a very simple idea: all

data is data about something.
That is, about some thing.

To understand the data, understand the thing. To do
that, adopt a modeling perspective. Select what Is tele.
vant and build a model of things as they exist in
the world.

What is relevant in a data model is the meaning of
the data about things of concern to the enterprise. The
name not withstanding, a data model is not a model of
data per se (as, for examples a diagram of record layouts
is). To emphasize their concern with meaning, data mod-
eis are often called semantic data models, information
models, or conceptual models. In this article, we use the
shorter term data model. A data model is used to repre.
sent anc{ reason about the mearings of data aspects of
things ofconcern to the enterprise.

Developing a database by modeling evolved as an al-
ternative to analysis and design. Development by mod-
eling consists of two phases. First, a data model is built
by looking out and modeling the world. Second, the
data model is transformed into a database design by ap-
ptying a selection of more or less standard transforms.
The models provide a concrete way to separate issues of
meaning from issues of implementation. A single model
can support multiple or alternate implementations for
shared use by multiple applications.

Developing an object system by modeling is simi-
larly an ahernauve to analysis and design. But the state-
of-practice data modeling styles are too limited to sup-
port object modeling. This article looks at some of the
changes and additions that are needed to support ob-
ject modeling.

Tlie description of data modeling is taken from (ref. 1).

VOLUME 3, NUMBER 8 E jLJNF 1992

ASSUMPTIONS OF DATA MODELING

The small banking example shown in Figure 1 uses a
data modeling style known as IDEFOU

IDEF1X differs from the other data modeling styles
in many ways, but not in its fundamental assumptions.
All state-of-practice data modeling Styles Share these
assumptions:

1. An entity is a person, place, or thing about which
data is needed.

In the example, the entities are customers, accounts,
credit card accounts, and checking accounts.

2. Data is passive, organized around entities, ancl shared
across applications.

Anthropomorphically, a data attribute such as age
represents knowledge by memory. Each customer knows
its age because it has been told its age by some process.

There is no free-floating data-all data is data about
an entity. A modeling discipline (normalization) re-
quires treating data about an entity as an attribute of
that entity and no other entity. For example, customer
name cannot be made an attnbute of account, even if
statement processing woutd like i[i here.

The intent of a data model is to include the data

needed by multiple systems such a.5 check posting and
credit card posting. The dara is organized in a "neutral"
way around the inherently shared real-world entities.
Each application process ks free to read and write the
data as needed.

3. Process is active, organized around function, and
unique to an application.

It is the separately defined processes that do 711 the com-
putation and set all the data values.

Separate and distinct process models :are produced
usually by some variant of structured analysis. The pro-
cesses are defined based on functional decomposition of
larger processes. A process is not tied to an entity; it IS
fee to access any entity necessary.

by Robert Q. Brown

Robert G. Brotmt is rhe mthor

of t he iDE F 1 X dara m ode ling
technrque. He B curren[N de-
veloping amd teaching object
modelotetechniqes. Heambe
Teached at The Datababe De.

sign Grog*, Inc., 44 1 Via Lida
Nord, Newpon Beach, CA
92663,714.675.3298.

Processes such as posting checks and posting credit
card transactions are naturally diffeient at the top level.
Starting out different, the decompositions tend to give
different subprocesses, even if they might be potentially
common. For example, posting a check needing over
draft protection involves a charge against a credit card
account-as does credit card posting. But within check
posting. the charge to the credit card is seen as a part of
an overall process-a process that is sequential on check,
ing, random on credit card, and involves a transfer of
the charged amount to the checking account. None of
these context conditions apply for credit card posting,
so the charge processes are unlikely to be the saime· Tikere
is no discipline analogous to normalization-nothing
that forces a function to be defined one place and shared.

4. Rules are incorporated by designing processes that
conform to them.

Certain very simple rules, such as uniqueness and reft
erential integrity constraints, can be declared in a data
model. The bank assigns customer numbers with the in.
tent that they uniquely identify customers; that unique-
ness rule is declared in Figure 1 as a uniqueness con-
straint on customer-no. But the rule that a checking
account can be protected by a credit card account only
if the two have the same owner cannot be declared. Such

domain-specific, general rules can be incorporated only
by embedding them within processes.

5. An information system Is a set of applications act-
ing on shared data to do information processing for
the business.

1n the example, check posting lind credit card post-
ing both act on the shared data in the data model.

ASSUMPHONS OF AN OBJECT ENVIRONMENT
The small banking example is restated in Figure 2 as an
object model. It is a model of structure-the classes,
properties, and relationships. The modeling style used
is described in (ref. 3).

The five assumptions of dat: modeling have five cor
responding assumptions in an obJect environment.

1. An object E a person, place, or thing whose knowl-
edge or actions are relevant.

The objects are customers, accounts, credit card ac-
counts, and checking accounts. The knowledge needed
is expanded to include derived knowledge such as
whether a given amount of credit is available. Actions
are added to post a check and charge a credit card.

There are two changes involved here. The obviou5
change is from an entity with just a data aspect to an
object with an action aspect. The subtle shift in per-
spective is from an entity about which we keep data to

2 9 METHODS

cuqomer account

custoing- no acct-id

marie own, balance
birthdate 1 owner-customer-no
age

,Fpous€-custoniei-no ,

1 13 married to

0 3
1-Z

credit card che, king

3-3'acct- id accl-Ed

crecirLIFIrdlio :AK) - checking.acct-no (AK) 1

Flimit protecting accl-id

i provides overdrall

prilertion lor

Figure 1. Data model.

an object that itself knows something we care about. We
don't keep the information; we have to ask the object
for its knowledge.

2. Knowledge is organized around objects and available
to other objects only if they ask.

The notion of shared data goes away. First, it is ex-

panded to shared knowledge, whether realized by stored
data or derivation. Second, data is no longer freely avail-
able to be read or writ:ten by a process; all requests for
knowledge are ill the form of a message to the object.
The only way to lind out the age of acustomer is to send
a message w that customer.

Only the object knows whether the knowledge is
based on stored data or derivatiOIi· A custoiner may kriow
its age by memory or by subtracting its birthdate from
the current date. If the knowledge is derived, the pro-

cess that does the derivation is "owned" by the object
and not visible to anyone else.

custorne, account

(ustomer no

name (owner) --7------------
baiance

birlhdate

age
1

15 married lo

credit card checking

*BE --,99 ---_-3 4 hecking-acct-no

£ limit I post
Eavailable
I charge

C , 4, 9
{protector) provides overdraft

protection ior

Figure 2. Obret model--structure.

HOTLINE ON OBJECT-ORIENTED TECHNOLOGY

example implementations. Chapter 7 gives a quick in·
troduction to C++ syntax and usage.

Chapters 9-11 contain the real conceptual focus of
the book. They are unique amongst current O-0 vol·
umes and, at the same time, less strong than the earlier
chapters. This does not reveal any deficiencies on the
part of the authors since they are involved in the most
cutting-edge research ill these areas. Rather, I believe it
reflects the general deficiency of work in these areas. If
nothing else, I hope these chapters highlight the urgent
need for a significant increase in research productivity
in the areas of testing, designing for reuse, and mainte.
nance. The authors point out (p. 51) that "Our con-
tention is that betterabstractions will be developed due
to our exper ience with The broader domain" (viz. also
considering maintenance and reuse) and that "One LIn-
portant goal for software design in today's environment
is to produce components that can be reused. This has
certainly been one of the central themes of this text.
Reuse does not happen by accident."

Chapter 9 is concerned with the often neglected area
of testing. It includes discussions of reuse and library
management, software quality using assertions, and er-
ror handling and presents strategies for class and hier·
archy testing. This has not, to the best of my knowledge,
been addressed seriously in any other competitive O-0
text and is certainly one of the (several) highlights and
commending features of MeGregor and Sykes' book.

Chapter 10 considers how to design in reuse, in-
cluding a discussion of genericity, although the con.
nection to "container' classes is not stressed nor is the

very useful notion of constrained genericity (as foundi
in the language Eiffel) mentioned.

Chapter 11 explores reusability further, providing
a useful analysis of extant libraries and excellent ad-
vice for assessing the cospeffectiveness of library pur.
chases. Indeed, it has often been said that using an O-
O language requires not merely the learning of the
syntax, but also gaining an understanding of the struc.
ture and features offered within the libraries that are

either supplied with, or can be obtained to support, the
user's chosen OOPL.

The final chapters round off the book nicely. Chap-
ter 12 presents an example development for the soft·
ware to play the game of Tic-Tac-Toe ("Noughts and
Crosses"). The application of domain analysis before ap-
plications analysis I found very insightful. It places the
power of reuse into a wider context than most authors,
who follow through a class lifecycle and then general-
ize rather than, as here, permitting the domain, not the
application, to influence the analyst's mindset. These
ideas deserve further study and application.

Chapter 13 contains a disappointingly outdated view
of tools (e.g., no reference to ROSE, ObjeciMaker, OM.
Tool, or OOATool) but includes some verv concrete

VOLUME 3, NUMBER 8 E JUNE 1992

and sensible ideas for the "tools of the future." Persis-

tency, so seldom addressed outside of specialized database
books, is a very welcome contribution (Ch. 14) and the
final chapter (15) is a welt,reasoned and germane redec-
tion on much-needed future work. There is perhaps some
shallowness in the management problems, which are,
in reality, probablv greater than indicated here. The mi-
gration paths are not really discussed nor are the neces,
sary project management tools for commercial adoption
of object technology. Sadiv, there is no mention of ob-

I hope these chapters highlight the urgent need
for a significant increase in research

productivity in the areas of testing, designing
for reuse, and maintenance.

ject.oriented metrics or the appropriateness (or other-
wise) of structured metrics.

The book's 15 chapters progress well, adopting a Api-
rat approach to exposition such as I also find very useful
in my own teaching and wntings (e.g., refl). However,
in MeGregor and Sykes' case this has unfortunately led
to some internal contradictions at the detailed level be-

tween separate iterations around the same technical area.

For example, literature has often been confused regard-
ing the distinction between 0-0 analysis and 0-0 de-
sign. McGregor and Sykes give an extremely lucid de.

scnption of this interface on page 47; yet, ill other places
(e.g.. pp. 53 and 264) analysis appears to be subsumed as
part of design. Further examples of internal inconsisten-
cics: Figure 6.3© seems to violate specification mheritance
recommended previously in Chapter 5. At the beginning
of Chapter 4 (Analysis and High-Level Design) k is sue
gested (p. 59) that relationships only exist in design and
not in analysis-yet this is contradicted on page 60 where
the role of relationships in analvsis is correctly identified.
Similarly, the use of the term "O-0 design" in Table 4.1
would be better as "0-0 development" since relation.
ships do not pertain solely to design but also to analysts.

There are some other small areas in which I find my-
self in mild disagreement with the authors (or rather
with their explanation here). For example, 1 disagree
with the statement that design of the application de-
pends upon the existence of the appropriate classes. Ap.
plication analysis is surely likely to discover new can-

BOOK REVIEW = E

OBJECT-ORIENTED SOFTWARE DEVELOPMENT: ENGINEERING
SOFTWARE FOR REUSE

by J.D. M€{iregor and D.A. Sykes

Van Nostrand Reinhold, New York ISBN 0-442-00157-6,352pp, $42.95. Avaitable June 1992.

reviewed by Dr. B. Henderson-Setters

being published that 8

Brian Hendey.son-Sellers is

with the School of Information
Systems, Univ€,sit of New
South Wales, Australia. He
can be reached at briaizhs@us-

age.csd. unsw.ozau.

ising number of GO books
gcus on software

d systems development rather
:and language development,
Ttainly one of the best,
As you can tell from the title, its primary slant is that
of softwme engineering for reuse. This is the book's main
contribution to 0-0 literature and its main claim to

uniqueness in the current crop of books. There is also a
very strong exhortation m favour of specification rather
than implementation inheritance: a sentiment with
which I wholeheartedly concur.

The book was developed from a three-day profes-
sional development course and thus has already (pre-
sumably) benefitted from exposure to a significant num-
ber of professional software engineers. The coverage is
cross-lifecycle, although naturally some areas are stronger
than others. Domain analysis is clearly differentiated
from applications analysis. Indeed, as the authors state
(p. 337): "[t Momain modelling] is a central concept for
our methodology." Various lifecyc. le models are discussed
(some only briefly) and some synergism of these views
is encapsulated in the authors' own lifecycle description.

The running examples are generally good. It is pleas-
ing to follow a particular problem through in one do.
main and see a solution being built up; the example
presented is in a familiar domain to most readers: a
graphical drawing package. The chapters are all well.
balanced and generally comprehensive. The style is
unbiased and the text very enjoyable to read. The con-
tent is generally (see below) bang up-to-date and in.
cludes overviews of some of the authors' own work to

be published later this year in fuller detail. The au-
thors' depth of understanding spans information sys-

tems and computer science with a hint of some of the
questions currently being asked by project managers
and chief executives. The slant is certainly technical
rather than managerial, yet should still appeal to a wide
range of software engineers concerned with learning
about object orientation and, specihcally, its impact
on reuse strategies within their organization,

The book commences with a very balanced de-
scription of paradigms, although, surprisingly, no men-
tion is made of Kuhn's widely accepted definition: 'a
large-scale and generalized model that provides a view-
point from which the real world may be investigated."
Indeed, the authors' description of the process-oriented
paradigm as an umbrella above the object.oriented
paradigm had, by pages 11-12, persuaded me that this
was the way to go. I fear I was somewhat misted, how-
ever, as the rest of the book extots the virtues of the ob-
ject>·oriented paradigm!

Chapter 2 is an excellent description of basic con-
cepts. I would quibble with the statement on page 16
that object is the basic concept/component: it is actually
class. This is, however, rectified on page 19: one exam.
ple of a minor, yet niggling inconsistency,

Chapters 3-6 progress through the development pro-
cess. Chapter 3 describes various methodological ap-
proaches including the waterfall, spiral, fountain, and
fractal models and then focuses on the authors' syner-
gistic description. The emphasis on the class lifecycle is
also very welcoine. Perhups the dangers of horizontal eve-
lution (p. 46) cf. Open-Closed Principle/versioning
should have been stressed more. Analysts anc{ high.level
design are covered in Chapter 4 as are lifecycle "activi-
ties/phases," which are sometimes ven' clearly defined and
at other times a little confused. Chapter 5 focuses on
lower-level considerations of relationships, messaging,
and class-level details such as friends. These detailed con-
siderations are expanded on in Chapter 6, Class Design,
which contains some excellent class design heuristics.
At this level, we move naturally into languages and cod-
ing considerations. There follows a quick and useful re-
view of various languages focusing on one (C++) for the

HOTLINE ON OBJECIT-ORIENTED TECHNOLOGY

3. Process is active, organized around objects, and avail-
able to other objects only if they ask.

The phrase "organized around objects" means a fun-
dament:i[and radical change of perspective fur process
analysis. Just as all data is data about an entity, so every
process is a process of an object. Posting a check to a
checking account Ls a process of the checking account.
Making a charge against a credit card account is a pro.
cess of the credit card account. A process of an object
can be regarded as an active property of the object.

In data modeling, the discipline of normalization dic-
tates that a fact about an entity be expressed as a (pas·
sive) property of that entity and no other. The same dis,
cipline applied to object modeling dktates that a process
of an object be expressed as an (active) pr opertv of that
object and no other. At the inos[fundamental level, R
is this discipline that leads to the increased reusability
01 processes in an object system. It tends to drive pro-
cesses to be defined the same way regardless of the ap-
plication context. In our example, the charge property
of a credit card account will be usable bv credit card

posting and by check posting for overdraft protection.
All proce»ing is done by the active properties of ob-

jects. An active property of an object acti by requesting
the knowledge and active properties ot other objects. In
doing so, the objects change state and enter into pa>
terns of collaboration. These dynamics are also mod-
eled. Figure 3 is an example of a dynamics model. It
shows some of the collaboration of a checking account
and a credit card account for overdraft protection.

The initial message to post an amount, A, is sent to
an instance of checking. That instance sends a message
to itselffor its balance, B. Ifoverdraft protection is needed,
it sends a message to itself for the identity of its protec-
tor, C (a credit card instance), ancl then sends a message
to the protector to charge A-B. The model shows object
instances and messages between object instances. The
model is far from complete, but a complete model can
be developed in the same way.

The tight integration of structureand dynamics mod-
els for objects stands in stark Contrast tO the separation
of data models and process models.

4. Rules are incorporated by designing active proper-
ties that conform to them.

In our example, die common owner nile is enforced by

c Ilerk*
--0 J 41 L

M clic/*g (A-f3,
r --r- I.
;11 1 1

E. 14111 e F PR>glor C 14 trefilt'ar,1

C

F,gUre 5.Object model-dynamics,

11

defining the active properties that maintain the owns and
provides overdraft prcitection fc,r relationships so that they
conform to the rule. This is a description of the current
state-of-practice object environments. It is not a desirable
end state. It would be better if rules could be declared di-

rectly without having to be encoded within methods.
Viewed anthropomorphically, such rules would invest ob-
jects with a two-fold sense of duty. First, they would not
break the rules. Second, they would act to carry out the
rules without having to be told toby an explicit message.

The phrase "organized around objects"
means a fundamental and radical change of

perspective for process analysis.

5.An information system consists of collaborating oh
jects, each responding to requests.

The information system increasingly resembles an
executing model of the enterprise. In our example, there
are no separate, distinct check posting and credit card
posting applications. Each arises out of collaborations
of cooperating objects.

NEED DATA MODELING CHANGE?

There are many styles of data modeling. By far, the most
widely used are variants of entity-relationship model-
ing.411 is toward this broad and admittedly ill-defined
group of state-of,practice modeling styles that these
remarks are directed,

Two naive approaches will be mentioned just to get
them out of the way. The first is to say there are data
objects and process objects. Voilal We've had objects all
along. This is a just response to the 'everything is an
object" litany, but has little else to recommend it.

Naive approach number two is to combine the enti.
ties of data modeling with the functions of structured
analysis togive objects. Trying it is sufficient to disprove
it. Applications and their decomposition into subfunc.
tions (andsub-subfunctions, etc.) are orthogonal to the
shared entities of the enterprise. The functions are free-
standing--they are not properties of anything. Process
modeling needs a radical change from organizing around
function to organizing around the things of the enter-
prise. The change is so dramatic it's hard to miss.

The changes needed for data modeling are more 5ub
t [e. The fundamental principle-organizing around the

VOLUME 3, Nu,MBER 8 - JuNF 1992

things of the enterprisa-is already present in data mod.
eling. Reducing the principle to practice has lead to
refinements and elaborations. Some of the elaborations

are appropriate for objects, some are not. It is this on-
again, off-again appropriateness of data modeling that
is so frustrating. It leads data modelers to think thev un-
derstand objects when they don't. It leads object pro-
grammers to dismiss data modeling as irrelevant when
they shouldn't.

In practice, a data model consists of diagrams and
glossaries produced with the aid of CASE tools accord.
Big to a methodology. To understand the changes needed
requires looking beyond the practice to the underlying
semantic ideas of data modeling.

Data modeling ideas
The state,of-practice data modeling styles share a set of
semantic modeling ideas. These ideas are felt to track
well with the way people think and therefore provide a
natural way to model the semantics of the enterprise:

e The world is made up of things. A thing has abound-
ary, identity, and it is distinct from ail other things.
Joe, Ingrid, 17, and a checking account are all things.

• Similar things are grouped into classes. The
classification chosen for a thing depends on one's
purpose. To his wife, Joe is a husband, to his boss he
is an employee, to the bank in our example he ts a
customer. A thing may be in multiple classes and it
may be reclassified. Every thing is an instance of at
least one class. For this reason, thing and instance
are sometimes used interchangeably.

1. Some classes, such as account, have a time-
varying set of instances. These are called entity
sets. The iIistances vary over time in two senses.
As accounts are opened and closed, instances are
created and deleted. While an account is open,
its balance changes.

2. Other classes, such as integers, have a fixed set
of instances. These are variously called domains
or value sets. The integer 17 cannot be deleted
or changed in anv way.

• Things are related to one another, that is, there are
connections among things. Thefact that Ingrid is 17
is a connection of two things, Ingrid and 17. The fact
that Joe and Ingrid are married is also a connection
of two things.

• Similar connections among things are grouped into
class connections among the classes of the things.

The class connection called age is between the class
of customer and the class of integers. The class con-

a E METHODS

nection called is married to is between the class of cus

tomers and the class of customers.

1. A class connection among entity sets, such as is
manied to, is called A relationship.

2. A class connection between an entity set and a
value set, such as age, is called an attribute.

• Class connectionscanbeconstrained in certain spe-
cial ways, such as uniqueness and cardinality. The is
mamed to class connection fs constrained such that

no customer can be a party to more than one mar-
nage. Age is constrained such that every customer has
exactly one age. Customer-no ts constrained so thal no
two customers have the same customer-no.

e Whatever is connected to a given thing can be con.

sidered a property of the thing. Iii this way, attributes
are thought of as properties of entities. 17 can be
thought of as a property of Ingrid, and age can be
thought of as a property of customer. Similarly, the
provides overdraft protection for class connection can
be thought of as a protector property of checking.
Protector is the name of the role played by a credit
card in aconnection. The value of the protectorprop-
erty of an instance of checking is the identity of the
connected credit card.

Data modeling has attempted (with mixed success)
to incorporate the kinds of abstraction that people use
every day to manage complexity. The three most promi-
nent are generalization, classification, and aggregation:

• Abstraction by generalization considers every thing
in one class to also be in another, more general class.

Every checking account is also all account.

• Abstraction bv classification considers a class to be

a thing. Joe and Ingrid write checks for specific, phys.
ical Items from the supermarket. They mentally clas-
sify all such items as groceries. When they set a bud-
get for groceries, they are treating the class groceries
as a thing-an in:stance of the class expense.

• Abstraction by whole-part aggregation considers a
thing (the whole) to be in'ade of other things (the
parts). Joe and Ingrid's household (the whole) is made
up of Joe, Ingrid, a TV, and a VCR (the parts) .

• Abstraction by reification aggregation considers a
connection to be a thing. Joe and Ingrid being mar-
ried, a connection, can be considered a thing-an
instance of the class marnage. Asking where the mar-

riage took place exemplifies this.

There is nothing in this set of semantic modeling
ideas that is direaly at odds with objec:t orientation. But

HOTLINE ON OBJECT-ORIENTED TECHNOLOGY

quantities. Once you have the manufacturing paradigm
in mind for software, we can leverage knowledge and
experience already in place in our manufacturing or.

ganizations. it took eighty Years to get to CIM from the
introduction of manufacturing. Will it take us that long
to get to CIM for software ?

HOTLINE: The make-or-break issue, then, becomes the
ability of IS to change?

MERLYN: Sure. The manufacturing paradigrn takes soft-
ware development out of the priesthood and moves it
intothe business domain. It'sbeen happening for anum-
ber of years, but most]S people have tried to ignore it.
With 10 million people using Lotus today, they're us·
ing stuff that would have taken a really hot APL pro-
grammer and an enormous mmntrame Just a few years
ago. IS cannot ignore this. = E

Reference

1. CIO MAO.AZINE 4(11), 1991.

ation of new data types so that a properly designed ap-
plicarion framework willallow easy integration of com.
ponents that encapsulate andi provide support for do-
main-specific objects and subsystems. The important
concept is that these additions are as valid as the com.
ponents provided with the library. This allows the de-
veloper or organization to create an environment that
provides the facilities they require for their unique ap-
plications and enforces organizational standards. To that
end, when we created zApp we wanted to address the
issue of class documentation: how it was created and

how it could be extended by the user. By embedding the
class reference in the code and creating tools to extract
and format the documentation automatically, we cre.
ated a method that allowed both the creators and, even-

tually, the users of zApp to add fully documented classes
to the framework that are as well integrated as those
provided in the base release. lt is this ability of a frame-
work to grow and encapsulate new facilities that makes
it a dynamic tool able tie simplifv both current and fu.
turn development issues.

Over the course of our experience with zApp, we dis·
covered something very interesting. As satisfying as cia
ating the product was, we received greater statisfaction
using it to create applications. We found that using il
was an evolutionary rather than revolutionary step. It
was the benefits gained from using an application frame-
work that were revolutionary. I I

19
111

with an analogy to an area in which we have already
succeeded in moving substantial human endeavor from
craft focused to process focused. What is the full impact
of this shift on software development?

MERLYN: A lot of things fall out of the manufactur-
ing paradigm. Simply saying this has enormous impli-
cations: the whole notion of the software chip, appli-
cation templates, and application models. Today we see
companies buying entity or process models and cus-
tomizing the models to fit their business. It will be far
easier to do this within the manufacturing paradigm
brought bv objects. The granularity of the model will
be small enough that we will be plugging in or re.
designing a component at El time instead of entire sys
tems. In software development, lS will begin to expe-
rience all die issues confronting any manufacturing
organization: how to manage inventory and leverage it.
how to address new problems with existing processes
and supply; how to make the best use of existing com·
ponents, subassemblies, and raw materials in stock; how
to optimize stock on hand and set reorder points and

<:on.nued frimi j.age 8 5

sure than lines of code: readability. Although for small
computations, such as this, the savings in lines of code
might be small, with savings of at most 1/2-2/3, the read-
ability of the C++ code is much greater. This is espe.
cially important during the maintenance and enhance-
ment phases of development. More complicated tasks
encapsulated by zApp include Print Job, which coordlk
nates sending the text or graphical contents of an ob-
ject to a print spooler and includes automated support
for printing techniques such as handing; and a Forms
package, which provide a high-level interface to data
Collectie,Tra 33d validmitn.

A properly constructed application framework can
also provide portabilitv among various GUI environ,
ments because it acts as a layer between the application
program and the underlying system. We have had pro.
grammers with no knowledge of any of the native en·
vironments create applications, using zApp, that run on
all of them. In selecting a portable application frame
work, it>s important to evaluate the platforms spanned
and facilities provided. Just as an application can be [im-
ited by choosing the wrong language, it is important to
make sure that the framework provides accessibility to,
and support for, the features of a GUl you need.

Frameworks have manv other benefits, as well. Un-
like conventional languages, the object-oriented lan-
guages with which frameworks are built allow the cre.

VOLuME 3, NUMBER 8 •JuNE 1992

l1

MERLYN: Yes. Part of the good news in the move to
workstations and PCs is that one can experiment with
new technology very inexpensively. Lotus Notes, for ex-
ample, can be explored on a small scale-ver·y different
from the mainframe environment. More of a natural se-

lection process can take place. I f something works, you
buy more of it. You can get there gradually.

If we're not good at running the old
systems, how good will we be at running

the innovated systems?

HOTLINE: Ifthe learning organization is a flexible or
ganization, presumably it can better absorb new tech-
nology andnewperspectives on technology application,
such as that presented by object technology?

MERLYN: The learning organization fs fundamental to
being able to absorb a new technology. Historically, IS
has been so untearning. We have been the keepers of
the great mystic art. Since thecommercialization of the
PC, the genie's out of the bottle. Now we have to step
forward and catch up, and it may already be too late. In
the 1985-1986 time frame, we crossed the point of hav-
ing more installed MIPS on the desktop than in com.
puter rooms. The trend away from traditional IS will
continue to accelerate, driven by ever more powerful
desktop systems.

HOTLINE: Let's return to business reengineering. Given
our discussion of continuous improvement, are yoli sug-
Resting that it has no real value?

MERLYN: Business reengineering is a wonderful idea,
but it's a little bit over hyped. I'm all for it. Good ana-
lysts have tried to look at things this wav in the past.
Big innovations tend to cross traditional boundaries,
and that is a both a strength and a challenge in suc-
cessfu[business reengineering, I think the danger is when
it is approached purely as a quick fix without strong foun-
dations. If we're not good at running the old systems,
how good will we be at running the innovated systems?
TQM iS the foundation for being able to innovate eft
fectively on this scale andis used to "tune" mnovations
once they are il»talled.

E E INTERVIEW

HOTLINE: What do vou see IS doing to build the
foundation?

MERLYN: One source's datal suggests a high awareness
of TQM among ClOs, and low idea of what to do about
it. Fifty-six percent of CIOs surveyed believe that lT
can play an exti·emely miportant role in achieving total
quality; another thirty-nine percent believe the role of
intorElation technology is Tmportant. Yet when asked
what their organizations are doing about TQM, onty
nine percent say they are assisting in the development
of a corporate total quality plan. Thirteen percent re-
sponded that they were incorporating the principles of
TQM into IS activities. The largest response, twenty-
five percent, was that the role of IS was to measure qual-
itv performance. The more I work with this, the more I
think the numbers are right-there are many CIOs who
really don't understand it well. It seems that CIOs are
more comfortable meauring other people than applr
ing TQM to their own organizations, measuring them-
selves, and actively participating in TQM with the rest
of the btisi[less. IS must reassess their role. The typical
IS organization doesn't have the vision, doesn't think
like a group of business people, and doesn't understand
the bibiness they are chartered to support. The excep
tions tend to stand Out.

HOTLINE: What is the impact of object techno[ogy on
TQM-say, for the thirteen percent of CIO: who real-
ize that TQM is not just a spectator sport, and must be
applied to IS activities?

MERLYN: That's the good news! One of the arguments
against TQM for software development is that software
development has traditionally been viewed as a work
of art. Object orientation is at long last the answer I
can give to people who say that software development
is not like manufacturing. It is. It should be. It can be.
Incredible rigor and discipline has helped very com-
mitted people get there with traditional technology,
Objects make it easier by encapsulation. The funda-
mental application building blocks are less complex
Objects dramatically simplify the application of TQM
to software development by moving us closer to the
manufacturing paradigm. The bad news comes back to
change. IS is so resistant to change, yet they need ob·
ject technology the most. It is such a fundamentally dift
ferent way of thinking about systems analysis, design.
and programming that there is a long learning curve,
and IS has proven itself resistant to anything with a
long learning curve.

HOTLINE: Brad Cox has been pushing the manufac-
turing paradigm for several years. Your observation re.
inforces that he has captured the critical transformation

HOTLINE ON OBIECT-ORIENTED TECHNOLOGY

data modeling has elaborated or interpreted some of
these ideas m wavs that are at odds with an object ort-
entation. Examples include identity and relationships.
Important new ideas need to be added, such as active
properties and object abstraction.

We look next at examples of the changes and addi,
tions needed.

IDENTITY

The modeling concept of identity iS the notion of
uniqueness plus continuity and sameness in the face
of change.5 The identity of a thing is unique and un-
changing. Joe mav quit his job, get a divorce, and
change his name and sex, but she is still the same cus-
tomer. A modeling style supports the concept of iden-
tity if the identity of a thing is independent of its
classification and independent of its property values,
The state.of-practice data models do not support iden-
tity. Two entities agreeing on at[property values are
considered to be the same entity. This is at variance
with the object model.

The lack of identity support has led to considerable
confusion over uniqueness, key, and identity in data mod-
eling. A uniqueness constraint on property values should
be stated [f it corresponds t O a Constraint in the business
or is inherent in the sense of the das The uniqueness
constraints on customer-no, credit-card-no, and checking-
acct-no in Figure 1 at[illustrate this. A uniqueness con-
straint is not the same as identity. By definition, the iden-
rity of a thing never changes. But property values can
change. If identity is equated with uniqueness, changing
customer-no for a customer· is going to be confusing. In a
database, keys are used to identify records, and in a rela-
tional database a key is unique. So what starts out as a
bustness constraint may end up being used as a key. But
that does not mean that a uniqueness constraint is the
same as a key. Treating uniqueness constraints as a
database design issue is evidence of this confusion.

Confusion is also evident in the coupling of unique-
ness, keys, and generalization. In generalization, a sin-
gle thing, with a certain identity, is classified as belonging
to both the subclass and the superclass. For example, a
particular checking account is a checking account and
an account. It is the identity of the checking account
that must be the same in both classes. There is no in-
herent requireinent that the uniqueness constraints be
the same, nor the keys. But without identity support,
one or the other is equated with identity and that leads
to the spurious requirement that the uniqueness con-
straints or keys be the same. In Figure 1, the data model
shows account, creditcardand checkong allhaving the same
uniqueness constraint, acct-id. The need for the artificial
attribute, acct-id, and its equation with identity both
stem from the lack of identity support.

VOLUME 3, NUMBER 8 •JUNE 1992

VThe source of the confusion is twofold. The state-oft
practice data models do no[have a strong notion of iden-
tity, and neither do relational databases. A data mod.
eling work-around sometimes used is to mentally separate
uniqueness from identity, state the uniqueness con-
straints, equate key with identity, and use non-
updatable surrogate keys in the database. This is what
was done in the data model in Figure 1. What is really
needed is the modeling notion of identity, as illustrated
in the object model in Figure 2.

Intrinsic identity is part of the object model. The
data modeling notion of identity needs to be strength-
ened to that of the object model. Doing so also solves
longstanding problems in data modeling. Identity sup,
port can be summarized by adding the following idea to
the set of semantic modeling ideas given earlier

• Everything ha.sanintrinsicidentity, iii<dependent of
its classihcation or coninections.

RELATIONSHIPS

One of the lessons learned as logical database design
evolved to data modeling was that the forming and
breaking of relationships involves significant business
semantics. The result was to elevate relationship from
a simple reference to a distinct modeling construct.
But the semantics of the relationship construct in data
modeling do not properly account for strong identity
or inheritance.

The models in Figures 1 and 2 show a relationship
between customer Bind account. It means that an account
is owned by one customer and that a customer owns zero,
one, or many accounts. Suppose that Ingrid owns only
one account, a checking account. If the customer instance
with name ingrid sends a message to the account that
it owns, will the inessage go u, (an instance of) account
or checking? An object modeler or programmer will find
the question bizarre, but answer checking. The data modg
eler will probably answer account-because the owns
relationship is between customer and account.

What is going on here is that the object programmer
is reasc)ning in terms of c,bject ids, types,:ind substitutability
and arriv Lng at one answer. The data inodeler is reason-
ing in t:erms of foreign keys (or just reading the diagram
iii n certain way) and arriving at a different answer.

Because data modeling has such weak notion5 of
identity and inheritance, relationships tend to be seen
as being between instances in particular classes. This
is at least arguably incorrect tor data models, and 15 cer-
minly not appropriate for objects. In ati object model,
relationships should relate instances, not instances in
particular classes. 1 his is a case where many data mod.
elers will need to rethink something that was inter.
nalized long ago.

I.

ACTIVE PROPERTIES
Data modeling provides no way to model the actions or
derived knowledge of an entity. Both are needed to ad-
dress object orientation. They can be provided by ex-
tending the basic set of semantic modeling ideas in the
following way. In data modeling, the existence of a con-
nection between things is presumed to be asserted or re-
tracted in some unspecified way. For example, an entity
has a certain attribute value if that value has been pre-
viously assigned to the attribute. There is no provision
torspecifying the connection in terms of acomputation.
Adding the idea of a computed connection to the set of
semantic modeling ideas given earlier allows the model
to incorporate actions and derived knowledge:

• A connection may be asserted or computed.

A computed connection viewed as a property is called
an active property. Ati active property provides derived
knowledge by computing the property (output) values.
In Figure 2, the age connection between customer and
integer is considered the age property of customer. As an
active property, age can be computed based on the cur-
rent date and the birthdate.

An active property tales action by computing based
on the property (input) values. The post active prop.
erty (a connection between a checking account and
money in our simplified example) can effect the check
posting by decrementing the balance of the checking
account.

The computation can be specified in a variety of
ways such as state machines, a procedural language, or
a declarative language. However it is specified, an ac-
tive property entails object abstraction; it is not a free-
standing computation.

OBJECT ABSTRACTION

In data modeling, property values of things (entities)
are presumed to be set and read by free-standing com-
putations, outside the scope of the data model. With ob-
ject orientation, there are no free-standing computa-
tions. Instead, all computation is done by things (objects).
This requires extending the set of semantic modeling
ideas in the following ways:

• The only computation is the computation of con-
nections. Or, equivalently, all computation is done
by active properties. The onlv wav to compute a cus-
tomer s age is by the age active property of customer.

• The onlv way a property value of a thing can be ob·
tained or specihed is by a request (message) to the
thing The only way the age of Ingrid can be obtained
is to ask Ingrid.

© 1992 The Database Design Group, Inc.

m E METHODS

• The value of a passive property ofa thing can be set
only by the thing.

The manner of posing a request for a propertv value
should riot depend in any way on whether the property
is active or passive. The separation of what the proper-
tles are f·OIn how tliey are realized LE an important change.
It allows the modeler to think in terms of the properties
of the objects without having to commit to a realize-
tion. It allows the method of realization to be changed
without affecting the requestors.

SUMMARY
Data modeling rests on a basic set of ideas. Most of t:he
ideas carrv forward to objeet nlodeling. But some of the
ideas have been elaborated in ways that are nor appropri-
ate to objects. Examples include identity and relationships.
Such elaborations need to be undone and the baSiC ideas

brought forward in a new w Hy. Significant new ideas must
be added to the basic set. Examples include active prop-
erties and object abstraction. If the changes and additions
are made, the result is object nlodeling. Object moddmg
developed in this way subsumes data modeling.

A corollary is that with (and only with) an under-
standing of the changes and additions, data modelers
can become object modeters.

A modeling style consists of concepts, notation, and
formalism. Models are motivatedby goals and enabled by
tools and methodology. This article has considered a few
ofthe changes needed in the concepts of data modeling.
Changes co goals, tools, and methodology tire also needed.

Conversely, data modeling can contribute certain
ideas not generally present in the programming heritage
of object orientation. Examples include treating rela-
tic>nships, constraints, and rules as modeling constructs;
declarative models; and the need for a consistent fam-
ily of models spanning the perspectives of the owners,
designers, and builders of information systems. E m

References

1. Brown, R.G. Data modeling methodologies: Contrasts
in styles, HANDIKX)K O> DA IVA M.ANAGi·MEN I . Auerbach,
New York, 1992 (forthcoming).

2. Bruce, T.A. DESiONING QUALITY DATABASES WITH
IDEF1X INFORMA-noN MonELS, Dorset House, 1992.

3. Brown, R.G. An extended conceptual modeling language
for objects and rutes, Plrux'[E DINGS C)F THE. l OTH ER Cl)N
FERE:Na, 1991 (invited paper).

4. Chen, P.P.S. The entity-retationship model-toward a
uttiked view ofdata, ACM TRANSAGIONS C)N] DA.ARASE
SYSTEMS, March 1976.

5. Khoshafian, S. and R. Abnous. OBJECT ORiENT.ATION,
John Wiley & Sons, New York, 1990.

HO f LINE ON; OBJECT-ORIENTED TECHNOLOGY

MERLYN: Yes. To get into business process reengi
neering, you should hrst reengineer your lS function.
Even before that, you should have started the journey
to a learning organization-building an entire organi-
zation, IS included, that can accommodate change. TOM
is the foundation.

HOTLINE: Where are we in terms of imbedding TQM
m Amencan business culture?

MERLYN: The TQM movement started to take hold
in the last two to three years. Within the last year, the
reengineering movement has started to surface and is
tending to eelipSe the TQM movement because Lt more
closely fits the American cullure.

HOTLINE: How does TQM manifest itself in software
development? Has Japan, for example, been successful
migrating TQM formalizations from busmess operations
to software development?

MERLYN: The Japanese have two very different universes
of software development. There are the very large sup
pliers of systems software, like NEC and Fugitsu; then
there is the regular IS shop. The US has the same differ-
ences, and I find that those who develop large-scale com-
mercial systems in both countries are more disciplined.
The gap in Japan, however, is far more extreme. The soft-
ware factories are much more advanced there than in the

US. Reuse, strong team approaches, and culturally inte.
grated TQM are fundamental. On the other hand, IS
shops m Japan are tive years behind IS in the US.

HOTLINE: Perhaps this should not surprise us, as the
Japanese also value information technology very differ-
ently than the Americans?

MERLYN: The US puts IT up on a pedestal. The
Japanese don't rely on strong information systems to cre-
ate value or differentiation the way we do. They em-
phasize the corporate library, but not CRT.based data.
To them, what's on the CRT is not interesting. That is
reflected in the Japanese implementation of TQM. They
track the things that are important, using a reasonable
amount of automation. They are not obsessed by au-
tomation as we otten are. Japanese software factories are
not too automated, either. They are norcarried away by
fancy CASE rools. Instead, they have a rigorous process
that is understood and followed, with lots of measure.
ment, feedback, and reuse.

HOTLINE: How do we create a learning organization?
What exactly must change?

MERLYN: Many things CIMI,ge when compared to most

VOLUME 3, NUMBER 8 2 JUNE 1992

of todav's organizations. There is less hierarchy and more
control in the workers' hands. Management must show
commitment to empowerment of the work force. Man.
agement sets the vision but realizes that improvement
comes from the workers. Education and training in im-

provement techniques and team techniques is empha-
sized. Workers are given autonomy in using teams to
achieve company goals, Management also changes ino-
tivation and reward structures. Workers in the learning
organization are not just rewarded tor productor service
delivery, but also tor contributions to the processes that
produce their product or service. Rewards for process
improvement become more significant than rewards for
simply following the existing process.

HOTLINE: The core change seems to be a shift from
management in die Industrial Age role of overseer-
the origin of the word supervisor-to management as
visionaries and leaders, with the workers thinking for
themselves. This puts a very different burden on man-
agement, for which many managers would seem i[[pre-
pared given the lack of training provided by today's
organizations.

MERLYN: This does require a very clear vision and mis-
sion for the organization. The learning organization will
tend to have a much more autonomous or distributed

organizationstructure, emphasizing self-management in
teams. Without a clear vision, things can literally dlls-
integrate. You need a clear understanding of what the
mission 15 so all teams don't go off in different direc.
tions. The mission is not well communicated m most
US organizations. It has to be very specific and very tan-
gible. The teams and individuals need a very clear un.
derstanding of what their role is in meeting that mis-
sionsothey will know what to do-remember, they will
be their own management.

HOTLINE: What is the role of technology in a learn-
ing organization?

MERLYN: There are substantial changes in the use of
technology in a learning organization. Technology call
be supportive of a distributed, autonomous organization.
Networking makes communications easier, and the eas-
ier you make it to communicate, the more people will
communicate. True work-group technologv doesni just
support teams but exploits them. The computer becomes
an active team tmember m work-group computing at its
best. Improved access to information iscritical-it lever-
ages the learning organization because of better access
to group knowledge.

HOTLINE: Downsizing and networking would seem to
work in favor of this distributed organization.

.

91.........4

NTERVIEWE-E-

Toward the learning organization
Vaughan Merlyn, interviewed by Robert Shelton

Organizations today aTe caught between
the temptations of innovation and the need

for a more fundamental change; continuous
process improvement.

inf overtaken in the US by business process reengineer-
ing and process intiovat ion-just as we are beginning to
realize that there is value to continuous improvement:.
The press is hyping that there is more value in radical
change like innovation and reengineering than in con-
tinuous improvement because the basic American vaiue
Ls radical, sudden jumps forward. In practice, we must
master both improvement and innovation.

Robert Shelion is die eduor of
he 2 1()71_INgc»OBJECIft'ORI-
ENTEI) TECHNIN.(X JY. 11€ Can

be reached at 4 / 5.928.5842.

Vaughan Merbyn is a Pai·tner
in Ems£ 8 Young's Center fa·
inf°miation Technology and
Strategy in Boston, MA,
te/zere he speciabws in *)»are
d€uelopment automation and
continuous quality imMR'e-
ment in hdonnation S)'stems.
hioy to joinmq Ernst 2
Young, he was Chai·num and

cofounder of CASE Re,earch
Co?·poratio?i. CASE Research
maged with Ernst 8 Young
in 199 j . Mr. Mer71 7nal be
reached at 617.725.1546.

This is especially true in the US, where OUT basic value

StrUCCUTe enCOUTages i,171Ot'Cit!071-JU77lp(ngfn)771 <)71€ SUV€T
bullet to the next has become the standing jibe at IT diqi-
sions. In fact, the ultimate business impact of'our innova*
tions depends less on the innovations themselves than on
oze· ability to encvlturate process unpmvement as entbod-
ied in Total Qualit, Management (TQM). This is where
the leanning organization excels, says industry expert
Vaughan Merlyn, and the learning organization will have
the competitive edge in the 19903. As object technology is
an innovation that presents us with a clear opportunity to
appl·y TQM to software development, this discu.ssion with
MT. Merlyn should be valuable to each of us seeking to bal-
ance radical change and systematic improvement as we
bring object technology into out· organiations.

Edimfs Note

HOTLINE: What exactly is a learning organization?

MERLYN: The idea behind a learning organization is
best expressed in the Japanese concept of kaizen, which
is this notion of continuous improvement. Everything
you do you should learn from and find a better way to do
it. Kaizen translates into a very personal approach to life,
a fundamental approach by which to live. This is a very
personal value that translates easily into the work envi-
ronment. Although he started his work in the US, Dem-
Ing went over well in Japan because his ideas paralleled
fundamental Japanese values That were already in place.
Ironically, Total Quality Management [Ed: TQM] is be-

HOTLINE: What impact is this having on our coin.
petitiveness-both as businesses and as information
sYstems developers?

MERLYN: I do find this direction of concern. Take, for
example, some ot the work we are doing at Ernst &
Young Some of our clients find innovation of process
relatively easy, but they cannot implement it. First, prior
to undertaking process innovation, they had not cre-
ated an IS organization that was sufficiently produc.
tive-that had the capacity to implement the new sys-
tems that were being demanded. Second, they had not
created an organization that could accoin[Iloclate change
well. In contrast, the essence of a learning organization
is that it accommodates change well.

HOTLINE: Given an organization able to accommo.
date change, why could we not arrive at similar results
through innovation as through continuous change?

MERLYN: Innovation tends to bring radical change.
If you're reengineering the order fulfillment process,
for example, vou can come up with innovative ap-
proaches. But what you then realize is that you have
to rebuild three to five of your core applications that
have been built over the last twenty years. That means
trying to squeeze ten to twelve years of development
work into six months.

HOTLINE So the limiting factor is the speed at which
IS can help support new applications for the informa-
non-dependent business?

HOTLINE ON OBJEC 1-ORIENTTED TECHNOLOGY

91./.mil../4
il

COMPONENTS AND REUSE E E

How frameworks enable application portability

Application fmmeworks are
libraries of object classes that
provide the building blocks of

an application.

They provide a directed means of applying object-
oriented techniques to application devebpment by pre-
senting the developer with an array of reusable compo-
nents that can be used as is, or extended via inheritance
mechanisms, to build even the most complex applica-
tions. A well-constructed application framework can
greatly reduce code size, cut development tLme, and in-
creasesoftware reliability, maintainability, andefficiency.
Yet despite the substantial benefits to be gained from
using a framework, many developers are slow to begin
using them even as the difficulty of creating applications
continues to increase at an astonishing rate.

A5 to why frameworks are slow to be adopted, the
reason Ls partly the result ot inaccurate perceptions of
object-oriented programming: what are objects, how
they are used, and how do they fit into the way that de-
velopment has been done traditionally? This percep-
tion has been fostered by the purveyors of objects, who,
in their zeal to spread the gospel, have positioned ob-
jects as a revolutionary breakthrough technology. Be-
cause of the hype, many developers are skeptical and
reluctant to undertake what they perceive to be a rad-
ical change in the their development process. Even
among those who have made the move to using an ob-
ject-oriented language, such as C++, many have yet to
begin using a framework. However, code reuse is one
of the promises of object-oriented programming, and
construction of applications from libraries of commer-
cial components is at the heart of reuse. Frameworks
are an instance of reusable components. Yet, when con-

VOLUME 3, NUMBER 8 E JUNE 1992

fronted with a framework, developers often revert to a
"not-invented-here" mentality.

One example of a framework is zApp, a C++ appli-
cation framework from Inmark Deve[opment Corp. that.
supports Microsoft Windows, DOS, OS/2, and, in the
future, will support X and Macintosh. Both during de,
velopment and as we've used zApp, we found that us·
itig C++ and object-oriented techniques did require a
mindset adjustment but, in regards to how we create
software, it was a natural one. We found that while ob-
jects are in many ways a breakthrough technology, they
are not a i·adica[departure from how software has been
developed. They are an evolutionary step in develop-
ment strategy with a rich history. brameworks are an ex-
tension of the abstractiOn techniques we already use in
software development thatfacilitate the reuse concepts
of object technology.

To understand why application frameworks are im.
portant, and the benefits they provide, it is important
to understand some of the issues facing the applications
developer and put those factors in perspective.

CURRENT ISSUES IN APPLICATION DEVELOPMENT

The current trend towards the graphical user interface
(GUI) has provided users with rich computing envi-
ronments; however, GUIs have dramatical[v upped the
ante for what it takes to create competitive applications
and placed a great burden on those whose job it is to
create them. GUIs have many tangible benefits, such as
making applications easier to use and providing stan-
dards for the way an application behaves. This allows
users to more effectively learn and use multiple appli-
cations and reduces training costs. It also opens up many
more possibilities for making applications work together.
Interapplication protocols such as dynamic data ex-
change (DDE) and object linking and embedding (OLE),
found in Microsoft Windows, allow suites of applica-
tions to be easily integrated for a given task. Even for
simple applications, the GUI has placed great empha-
sis on the interface from a user expectation point of view,

by Mark Anders

Mark Anders i.5 ViCE President

ofes€mch and Development
offnmcirk Dev:elopment Co*
He has been developing for
\Unidows mice 1986, and is
one of the principal designers
of TApp, a C+ + application

fanietuoik for Microsoft Wm-
dows, DOS, OS/2 amd OSF

Motif.

4-

so that features such as 3-D buttons and toolbars are now
considered expected features of an application and not
an added bonus.

The real problem with these environments is that
they are hard to program for. As many who have made
the move to developing software for a GUI can attest;
creating programs for such as environments can be an
order of magnitude more complicated than developing

Neither developers nor users want to be locked
into a system that does not meet their needs.

for other types of interfaces. The complexity lies in a
number of areas. Working with bitmapped text and
graphics, menus, windows, and event-driven program.
ming all require the prograrniner to rethink the way in
which an interface is built. New application program-
ming interfaces (APIs) are also appearing at an alarm.
ing rate, adding capabilities for multimedia, OLE, and
pen input. What we are finding Is that as soon as we
come to grips with ways to program for the present GUI
services new features have been added. No sooner are
they added, than they are expected by users. Our GUI
universe is indeed expanding!

To better understand how an application framework
can address the problems facing developers, it is first im-
portant to undersmnd what the problems are.

GUI APIs are low level

Most services provided by a GUI environment require
extensive control of all details by the programmer. For
example, in an environment such as Microsoft Windows
a simple application, such as the "Hello World" program
from Chapter 1 of Charles Petzold's PROGRAMMING WIN-
Dows, is approximately 75 lines of code. To use some of
Windows more advanced facilities, even more code 18
required. The Multiple Document Interface example
from Chapter 18 of the same book, a ver) simple exam-
ple of how to use the MDI, is approximately 490 lines
of code. Because even the most simple tasks require nu.
merous steps, programmers working in GUI environ-
ments often spend much more time and code dealing
with the peripheral details of their application raiher
than with the actual task that they're trying to solve.

14

E E COMPONENTS AND REUSE

Programming for GUIs is difficult
Having to deal with so many low-level details leads to
the fundamental problem: programming for a GUI sim-
ply requires a lot of work. Though these advanced user
interfaces are appealing from a usability standpoint, they
do not come without a cost. An environment such as

Microsoft Windows contains hundreds of API calls. Gain.

ing an understanding of these API calls, learning which
ones are important, and what happens when you use
them requires a lot oftime. Furthermore, having learned
how to use the API, creating and manipulating menus,
windows, buttons, and scrollbars require a lot of code.
Also, when vou consider the footprint of an application
with respects to the operating system, i.e., the amount
or percentage of code that is spent making calls to the
operating system, GUI applications spend much of their
time in operating-systern or environment-specific code.

Abundance of architectures and portability
There are currently a number of different GUI environ-
ments on the market: Microsoft Windows, OS/2 1.3 and
2.0, the Macintosh, X/Motif, OPEN LOOK, and the list
goes on and on. Often an organization will have to si.
multaneously support a number of these different GUI
platforms. In other instances. there needs to be a clear
migration path from current systems to other, more ad.
vanced ones. In all instances, neither developers nor users
want to be locked into a system thar does not meet their
needs. While most of the GUI AP]s offer similar services

to the developer, they provide these services m slightly
different ways. Unfortunately, because so muchofan ap-
plication running under a GUI is dedicated to control.
ling the various interface components, and because the
APIs usually Provide services at a low level, porting be-
tween environments is verv difficult. The problems cre.
ated by these API differences are not limited to the is-
sue of taking an application and moving it among
environments but also of taking programming resources
and moving them among different GUls.

BY WAY OF COMPARISON

As a reference point for evaluating how application
frameworks provide a solution to the aforementioned
problems, it's interesting to note that these problems
are really not very unique. Consider, for example, the
problems that faced programmers before the advent
of high-level languages such as FORTRAN, COBOL,
and latter C.

Assembly language is low level
Prior to having high-[eve[languages, all software had to
be written in the language of the machine, or in a basi-
cally one-to-one mapping of assembly language. In do-
ing so, every detail of the program had to be explicitly

HOTLINE ON OBJECT-ORIENTED TECHNOLOGY

written by the programmer. This required that the pro-
grammer approach the problerns to be solved not only
with an eye towards the conceptual operation to be per
formed, such as adding two numbers, but also with re-
Raids to exactly how this was to be performed on the
]hardware level. f'or example, on manv machines two
values can be added only when contained in the CPU

registers. Therefore, if the quantities to be added are
cont ained m memory locations, they must first be moved
to CPU registers and then added. Other common oper-
ations such testing logical conditions and performing a
set of instructions based on the result (if...then...else)
also could require many fsteps.

Programming in assembly language is difficult
The general problem with assembly languages therefore
becomes that by forcing the programmer to handle ev.
ery detail at the machine level-i.e., bv requiring that
not only the problem of what logical operation is to be
performed but also how it is to be performed be solved--
the task for the programmer is complicated to the point
tthat many problems become too difficult to solve.

Abundance of architectures and portability
Another major problem of coding in assembly is that
because a program was written m the language ot the
machine, as new machines with different architectures
were created software had co be completely rewritten.
While the instruction sets of many of these machines
had similar concepts, such as adding two numbers. or
moving data from a memory location to a register, they
implemented them in different ways.

THE HIGH-LEVEL LANGUAGE SOLUTION

The solution to these problems was high-level languages,
which encapsulated common operations performed in
creating a program into expressions that were easier for
the programmer to manage. What the creators of high-
level languages realized was that by allowing the pro-
graminer to express at a higher level what a program
should do m a natural way, such as "3 + 5", software de.
velopment would be greatly simplified, Thus bv remov-
ing the burden of dealing with how the machine per-
formed the actions, more complex problems could be
solved. it was also discovered that by eliminating the
machine-dependent operations from a program-cre-
ating a level of abstraction between how the machine
needed to perform a task and how the programmer ex-
pressed the task-programs could be easily moved ATiong
machines of different architectures.

APPLICATION FRAMEWORKS
In much the same way that high-level languages sim-

VOLUME 3, NUMBER 8 E JUNE 1992

plified the programming process by providing a more
powerful and more concise interface to the instructions
that the programmer wanted the computer to execute,
the object-oriented structure of an application frame-
work simplifies GUI application development by en-
capsulating common operations and interface behavior
into prefabricated objects. To exemplift user interface
objects provided by an application framework: zApp prop
vides over 20 different types of windows including main
application windows, push buttons, list boxes, and edit
boxes. Additional classes include, but are not limited

to, objects that correspond to various entities typically
associated with a GUI including graphics display de.
vices such as window, bitmap, and printer; drawing tools
such as pen, brush, and font: and geometric entities such
as points, rectangles, and clipping regions.

Using these objects to build applications yields mea-
surable results. The "Hello World" example for Microsoft
Windows, previously mentioned, which had required
75 lines of C code, was created with App in 11 lines of
C++ code. The Multiple Document Interface example
that took 490 lines of C code was completed in ap-
porximately 100 lines of C++ using zApp.

Objects are also provided that encapsulate common
operations. Consider the following. You're creating an

.

It is the ability of a framework to grow and
encapsulate new facilities that makes it a

dynamic tool able to simplify both current and
future development issues

application that displays text in a 40 pt. font. To create
that font, you must determine how many pixels there
are in 40 pts. for the device on which you will display
the text. The first step is to inquire from the device the
ratio of pixels/inch. You then must realize that there are
approximately 72 pts./inch, multiply the pixels/inch
ratio by the size of the font (40), and divide by 72. With
zApp, you simply create an instance of a zPrPoint object,
a logical sizing and dimensioning object representing pt.
units. You provide it with its size, 40, and the display
object with which it is to be associated. I[will peiform
all the calculations. This example also hints at a benefit
of an application framework that is more difficult to IneR-

c·.)n Mt£ed m liage 19 .

= E Your Turn E

How about it' How are we doing? This is the place to send us 7011· message. Tell us what jou like and what You don't, what you'd like to
see but don't - 01· whacever other feedback vou'd hke to send Send comments to Rober! Sheton, 1 850 Union Stivet, Suite !584. San
Fransisco, CA 94 /23, Fax: (415)928-3036, 01·, if you're o?·dering. send along with your order.

Please clieck wliichever bc,x applie*: ----«1%]
Read entirely Scanned Found helpful Will refer to Didn't read

Irature J U O U O

Method. 0 0 0 U 0
Shndards 0 0 0 0 0

CHASE U J U U O

Bi»k Review 0 3 0 0 1

Pic,duct Announcenienis O J (1 3 3
FYI O 3 0 0 J

PIe,ax r.lte tile tz>ili)wing 1 (dislike <,r btr<,tlgAL distlgree) to 10 (1]ke or stringly agree):
Precentation of material - 1 imunints:

A,calracv i,f materi.11 - c.(iniments:

Overall helpfulness in your job - Comments:

What eke would you like to see iii Ti it Hivrl.INE?

Any other comments'

Name, title & plione (optional):

botline* I)·n

OBJECIORIENTED
technolqgy

UYes, phigine int<) [17: late.[thinklitu .1,td ,le#e[1 'llieiits iii ,)11]ect-(irIented rechix)1(,gy. Ent,·r iiwils a .ut»crilier attlie term marked Irl#,w and
nish me the current isxue. This is a risk-free otter - 1 may cancel my subscriprirn at any time ,ind promptly receive a retund for the imused portion.

1 year (12 issues) 2 years (24 issues)
J $249 J $478 (mt,e $20)

Czur..144· [J.Kedd %30 1:rietir fi,rair.%:rulce)

O Phone order 21 Bill me
GIl Subscriber Services L Check enclosed

(212)274-0640 U Credit card orders
O Ma. ted'ard

D Fax order
lavig

Fill out term Lind nanie/address
U American Express

intormation, then fax Ic):

(212)174-0646

Ilick i.»ue, @ $25 each ($27 50 foreig'n) ·
Vol.1, Nob.

Vo[.2, Nos. Vol.3, Nos.

Mail (and make out check, Send me a complimentary
d applicable) m copy of your relatednklit)Il.NE
11-c If'ncr Service.h publication(A):

PO Box 3000, Dept. HOT
[Denville, NJ 07834

Vil.'InrE'.Z.1 r'!4 414.2£n, %
hErn dn,1,7 I 'l U (S ki,i A) U TITE JOI·RNAL OF OB]ECT-

DEN[NII,1 , PROGR.AMMING

Card- Expiration Date 13 Onwer M 1,3.AZINE
U Send me a copy of Sig..ture

Trni IN riaiNATIC)NAL
OOP DIRECTORY

Name
@ $69 ($81 foreign)

(all dn,aory En·deis mi,ar hc nrepard: Lonipanv

far or inad ancd,t card mi()rmanon ro Street/Buitdlng#
SIGN, 5118 Biouidica; , #604,10 YI· 1 0.42,

Clry/Pri,vince
make check pu,able w c k)P Drrecum.
Fureign ordei) mi,j, be pri'paud m US STRipll.liNg

dullays diaa'n on l.% hank) Te•Irphone

J Tnt C++ REpot-I

(LH Subscriber Scrucch

(212)274-0640

ir end Imler co
SIGH. 588 Broadway, *604

Neu York. NY 10012

D2GC

hotline * on
OBJECT ORIENTED

technology
VOLUME 3, NUMBER 9 11 IE MANAGER'b SOURCE FOR TRENDS, NSUES & STRATE.G]ES IULY 1992

OOD: research or ready ?

Object.s are entering the mainstream
application and system-development

community·
As this continues, experienced managers anxiously seek
effective design methods und CASE tools to comple-
ment object-oriented languages.

Development managers have only a passing interest
m research projects,ind research methods. To them, se-
lecting a mel hud meang i he€re betting their next ma-
lor project on it. A, m,inagers, miat of us 11:ive been hub-
jected to enough Koftware that wasn't svitein tested or,
in some case<, even uni[teted prior to release. I, f<ir one,
have no de,ire to km)windy repeat that experience, es-
pectalk n,it with a new design method,

With these experiences in min,1, this article describes
a commercial screen tor evillii,iling object-omented de-
ign methods and CASE tools. A conscientioub effort

hah been made to provide the most accurate and cur-
rent informdtion about alt three of the methods de-
scribed, but tha is a ,·apidlj changing held. The mi)[
important mes,age of this article is 'don't he afraid to

Patty Dock ask your own questions.

A COMMERCIAL SCREEN

I recently had the opportunit¥ to take a fresh look at the
ctirrent state c,fobject-oriented design method. My first
obbervation concerned the inimaturity of some of the
methods. It was apparent that some authors were simply
unfamili.ir with objects.

Back in the good old dapof slructured prograinming,
the recognized wizards, who had been involved iii build-

ing se\'cral succeshful systeins with their new methodb,
wrote the first wave of hooks con de,ign. Such a ground-
inK in practical .#v. tem building 13 exactly whai appears
to be missing in manv of the deign books for "the new
W,1) c)1 pr,)gr.1,711111 ng.

A:, an experinien[. 1 made .1 list of whai 1 Consid-
ered the absolute ininimum Tequirement, for an object-
oriented design method to be used on a commercial
project. Then 1 started reading, asking (Ille.hlion•,, and
making telephone Calls to both vendors ,ind u.>ers.

My list contained the following fundamental questions:

1.1. the method descnhed in an English-language hook
readily available to a team of developers?

2. Has at le,N one anihorol th; i book parlieip,lied,hill
time, iii an object-or[ented development prOJect?

conunked onpage 7

IN THIS ISSUE

FEA·i·uRE---OOD: research or ready? Patty Dock [f 1 1 '1 1
FROM THE ED[TOR

 t-J
METHODs-Enterprise modeling: an .€,4
object approach Richard T. Dud [1 0 1 i 6 1 BooK WATCH

STANDARDS-OMG'+ 18-24 month view [1101 'O 1 PRODU.27· ANNOUNCEMENTS
Christopher Stone -_,1

C.ASE-Designing for object-oriented apptications: a
CASE for wishful thinking... - " NEw PARTNERINGS & Accuisc [·IONS
BOOK REV]EW-OBJEC·r-LIFECYCLES-Mor)m.iNG THE
ORT.I) IN TATES Industry publication excerpts

reviewed by Michael Fuller 0-1 01 FYI-

1

THE *DITOR E

Bus,NE 6% WEI< made "object-oriented" a board-room word with the itember 30,1991, cover expost "Software Made Simple," but the
downside risk is [hat our nontechnical colleagues have externally vali-

dated, preset expectations that the adoption and application of object tech-
nology is child's play. In reality, making the "thinking" trans,lion from proce-
dure-think to object-think is a significant challenge. Actually delivering successful
designs for component reuse ls a much more daunting task altogether. Shall
we breach the subject of business analysisf

Saying that obJects remove the impeclance misniatch between analysis and
design because programming objects can be more like real-world business
objects ignores a moreessential truth: ourlimited capabilities for understanding
business objects leaves most practitioners of object-oriented technologies with
prototyping and a rapid development cycle as their principle lines of defense
against complex business problems.

At one time business partner4 would have expected us to turn to computer
aided software engineering (CASE) for help. However, INFOIRMATION WIFI<'9
February 17, 1992, cover expost "1 he Case Against CASE" has helped to slim
a door that was closing fast already. Granted, il was CASE vendors and soft-
ware technologist, them„elves who created the CASE disappointments and dis-
ask?rs we have seen over the last five years. Note too thai, despite thus artic le,
the concept of CASE tools is still far from dead. But we do find ourselves with
adouble-edge sword in hand: BubINE,b WILK tells our bug,new parners that this
new technology k software made Simplistic; |NfOR,MABON WILK te||S the few
still-employed CIOs that CASE is a lost c auie. Meanwhile, we are supposed to
implement the results on schedule and within budget,

Soundk like computer business as usual to me! So what's new with objects?

Attendees of Obiect Expo, Object World, OOPSLA, and even the more gen-
eral industry shows like DB Expo and Software Development are well ac-
quainted with the plethora of CASE tool vendors, training-feminar vendors,
and even development-environment vendors offering methods to supporl

: ROM

objec!-or.ented software development. Among these offerings, the most com-
mon approach isto extend existing methods, modeling techniques, and CASE
tools to support some subset of ideas associated with object-oriented pro-
gramming. More sophisticated approaches actually tackle design from the
viewpoint of an object, recognizing that the '-oriented" part of this tech-
nology'g name M about thinking. Among the players claiming tosupport
object-oriented analysis, perhaps the kindest observation is that few have
expressed a clear understanding of the problem space, whereas, as an in-
dustry, we're still wrestling with solution space, i.e., design.

Historically, as John Zachman has frequently observed. we computer tech-
nologiq have worked our waY upward. We start with programming the ma
chine. and eventually discover design,analysis, and (voila) the enterprise! I lis
assessment is 19 valid applied to object technology. Development environ-
ments are well established- A bevv of solid language implementalions 14 avail-
able. Object database management systems are available from several ven-
dors that can actually handle modest-sized api)lication4. Some very good class
library products are available to solve technical problems, and several com-
panics threaten to introduce business object c lae library products later this
vear. We are now ready to discover the need for designl

It'% not that design Issues and methods have gone unconsidered over the last
several years just theopposileis true. Ilisonlvin thelast 6-12 months, how-
ever, has design become an unavoidable issue industry-wide. Not surpris-
ingly, only during this same period have enough developers u,ed obiecttech
nology on projects serious enough to get themselves very visibly in trouble!
Several vendors have suggested to me [hal the lack of ti method" could even
be an impediment to their sales efforts. This is a far cry from projects only a
year ago on which design meihod„ were considered-only to be discarded
as adding unnecessary complexity to the already daunting task of learning
object-oriented programming. Besides, at thus point we as an industry finally

go,unmed on tape 3

Editor SIGS Publications, inc
Robert Shelton Richard P. Friedman, roi nder & (;roup P.,blisher

SIGS Publications, Inc. Advisory Board Art/Producfion

b04*04,2.6

OBJEelfORIENTED
fabnology

Tom Atwood b» r f»if.,7
Grady Booch am„»/
George Bosworth, Limfulk

Brad Cox, 4,/ow,pfir>„ .Le Con.,4.,p
Chuck Duff, The 2//ir&474?'er Grmip
Adele Goidberg, 5< Pla< e S>.em.
R. lordan Kreindler Gener„.' ce, 6.„
Mellir Page-Jones L ap/.,nd 5:..1,·1..
Tom Love. Con.un.im
Bertrand Meyer, Allerar,ve iD/,e:m Inip,neefr,7,)
Sesha Pratap. 61 nk,rl ini, 501?22.
R Michael Seashofs, 1 r... Of],e 7,4 5„)0/02,
Bjarne Strouslrup 4 7 & 7 13,11 2,yu>
Da ve Th o ma s, Obj a F ? ec f??04.,s hi c. r,?jug,1.1/
HonINE Editorial Board
Jim Anderson. Orgi:, 2,4, ;tor
Larry Constantine, Con.:d' I?,
Mary [,5. Loomis v , M.j:ki (950.. 7.> 9.39.4:,>
Reed P hillips. Knolt jrage 5.,ems Cou
Trygve Reenskaug 72:„kon /6
Zack Urlocker. Nal?,74 /num „il,Ofliff
Steven Weiss, Waohm<y.>60 04

Kristina joukhadar, Manan ng [diw
Filgrim Roady LM., C rear:ve· I),iei 'ii) 1
Efijabelh A. Upp, proilucbion I chi#
jennifer Englander, Art'Produilion (00 di *.3 20,
Circulation

Diane Badway, Circulation Bu,ine» Manager
Ken Mercado, Fulfi Imerit Manager
Vicki Monck, (Ir. u .,Mi. .mj,< 51.3n
John Schreiber, 0 re „1.,m>1. A: s M r

Marketing
Sara]J Hammon, Prond#.Viana,M
Caren Potner, Pro:nowa traph,c Artibl
Administration

David Chatterpaul, 80#,kkee>er
Ossaina Tomoum, Ilwkkim,
C[aire Johnston, (f„nieren< e Mon,:Me
Cindy Ropper, c ...ince c m'dinal.
jennifer Fischer, Put,1 c R: lat<r:-
Helen Newling Adm-hil.1.. , A.. %101,1
Margherita R. Monck, (.eneral Mar .:ter

lane M. Grau, C riritnbut,rl., Id:ip

Irs: 11,), rvi ,)NCIATI-)!<IN'k.D IHI,Mr{XY IlbSN#1044-43191

ib published monthly by SIGS Publicallor s, Inc. 588 Bro an,n
NY. NY 10012, 212)274 0640.©Copyright 1992 SIGS Publii .1

1,0 15, Inc Allrightb reserved. Repr<)(111(tion € f this materiall)•
1,<Ylronic- tran.mi,cion. Xrmx or anv olher melhod will be trealed

1%,willful violition o Ihe U S Copyright law and iq flatk nin
hibiled Mater.<,1 mav bereproduced with expms permission frum
Ihosi,blisher Malh?(]Fiht<lass Sub-ption rale-oneyear (12
8%60.)$249, Loreignand lanada$279 Single<(N)y 526

POSTMASTER: Sells addreis c h.inges & ,ubirription order, to Thi•
110·,-, Subgriber Services, P O 80\ 1000,Dep I C JT, Denvilli
N) 078 34

Submit ed,torial Correspondenle to Robert Shehor 1850 . rion
Streel, Suite 1548. San hancisco. CA 94123 Voiw (415)928

PER|ilis|iers or Hor.51. 0,1 (30,/e < Li)11 2.h:N) UN h/'1)RE) 3 j).rf,? 21 .)
Obveit ()flen fed Programming Obled Mamazine 7 he X join).1/
f €: C+- 24 porl Ihe S/,Killt/k Report. i,(v.., 11,ejnk:fliallrial 001'
13]104 1%.

5842, ax (415)928-30;6,

SIGS

The Business ..The genius of object oriented programming is thal once a
good idea has been realized, it can be shared. · If the

OJ , language guys do soinething neat," says IBorland'sl Neil
Snyder, di rector of product marketing in the spreadsheet
business unit, 'we can say, 'Damn. We like that. We're
going to steal that for Quattro Pro."....

Bed,End beflds the rules, .Mark Hindle¥,
VAR BUSINESS. 4/92

UnfoWorld's Lisal Picarille: You said Borland has not
suffered any product delays. Yet Bill Gates has been quoted
as saying "lf objecl onentation and C++ are so great, why
habn't Borland delivered yet?" That has made Wall Street

Distributed -I,-Object technology offers a second-generation model for
011011/server, with a dear role for a powerful chent as well as

Environments a powerful server," said David Gilmour, executive vice-
president of sales and marketing for Versant Object
Techrology, Menlo Park, Calif. By raising the power of an
individual object to support transparent peer-to-peer
communication via messages, the idea of client/server
extends to a more robust notion of objects Under this
notion, objects could at one point make requests as clients
to servers, then at other points act as server to other clienh.

Databases ...In the world of textual data. relational databases worked

fine. Text gives you structure and form in the way of
character strings and numbers. This is something an RDBMS
can handle quite well. Unfortunatelv. when you start dealing
with multimedia data types-where You have to deal with
massive amounts of this data, many of them being object-
based-an RDBMS falls flat. By contrast, object oriented
databases come out way ahead of RDBMSes when dealing
with heterogeneous, complex data involved in complex
relationships. More importantly, when you start getting
applications designed to integrate these multimedia data
types into their programs, it will be important for them to
int lude, 3% a part of the applications, an object-oriented
database to help them handle these new types of oblect
based data. Al first you will see lhese object-based databases
added to authoring products, then to presentation. drawing

Standards ..A great deal of important work involving object-oriented
systeni management currently is underway by a number of
standardls organizations. From these organizations will come
the definitions for the framework, common facilities, object
transportation and definition layers. Various groups also are
involved in the standardization of the object definitions
themselves, such ab user, 47•tem, group, printer, print Job
and device objeY [s...Sy*tem managernent strindardizalion.
especiallv the Iransportation layerq, the framework and
common facilities. and the object definitions, are vital to the
success of distributed systems manageinent. Without tliese

Tools ..Until fairly recently, C++ was v [ewed by man y as simply an
•academic language because of its lack of good tools. Now
that tools for C++ are improving, many software development
learns are ready to make the hhift from C to C++. Several
compiler vendor€ are currently offering full C++ compilers thai
generate objecl code directly from a C++ program as opposed
to just translating it into C code and compiling it with a C
compiler...Today's selection of C and C++ compilers for the

Vol uMU: 3, NUMMER 9 m JULY 1992

analybts skeptical. 1Boriand's Philippe] Kahn: Three years
ago we madie a huge bet and started Quattro Pro and
Paradox for Windows from scratch-brand new code bases,
no compromises, new architectures, new development
methodologies, the works. Object orientation requires a
large investment of [ime and effort up front, but the payoff is
not only better products but more efficient development in
the future, and it will give us a five-year technology
leadership position....Borland's products are not late-
they're early and the first of a new generation....

Merger or no, Borland's Kahn plans to beat Microsoft,
1 M Ph anjje, INFOWORLD, 4/2/792

lhis allows a modular distributed system that may be more
re%ponvive to c lange. Using objects as the unit to be
distributed may allow developers to save implementation
issues-such as distribution-unlil after the design is
complete. ··This is because object technology k an
inherently parallel technology that naturally thriveb in a
distributed multiprocessing environment," said Dr. David
Taylor, principal of Taylor Consulting, San Mateo, Calif....

Objects can set the stager Eric Aianow and Tom Kehier,
SOFTWARE MAGAZINE, 5/92

and desktop-publishing products. They will also become
important to any word-processing and next generation on-
screen doc unient communic ation b. lioncally, it will not be
the traditic>nal datal),1€e suppliers Ilial will help these,
independent software vendors use a databaw effec lively in
this multimedia-driven world. Even though Ihey all have
object based databases in the works, unless they are able to
perfect them soon and make them work harmoniously with
their RDBMS programs of today, they could be left out in the
cold. In the future, the database will be embedded iii major
applications so they can manipulate these stored images,
video and sound and integrate them into the heart of the app.
Whether anyone likes it or not, multimedia computing Is
going to revolutionize the way we use computers.

The soft view: Multiniedia simply spel/5 8 new digijai data
type, Tim Bajarin, COMPUTER RESELLER NEWS, 4/20/92

standards, management applications and object definitions
·will quickly diversify, until they are as cumbersome to use
as existing vertically integrated solutions. Both the industry
and the standards bodies themselves know of the critical

need to build generalized management applications that use
a standard framework and a standard set of managed
obiects. The outlook, however, of both these groups con be
quite differeril....
Umx system management: new developments, Geof Bullen,

NCR CONNECTION, 4/92

PC ranges from highly optimized compiler-onlv solutions to
complete integrated development packages that contain
debuggers, profilers and extensive class libraries for C++- Most
of thee c ompilen cost under $ 1,000, making It feasible to buy
soveral and lest tilem out at the gino Iii-ne...

Product Focus: C/C++ compilers bring favor code
crunching to PC platfornis, jeffrey Child,

COMPUTER DESIGN, 4/92

V

Creative ...If no one knows what is going on inside an object's
functions, and no one can tamper with its data without

Implementation authorization, then an object is highly secure. It polices its
own borders, responding only to authorized messages...Since
an object has boundaries, you can own it. You can reward or
punish the persons who designed it. You can rent out the use
of the object without telling how it works. You can see a
certain appeal here to the corporate mind.

Object-oriented programming: What's the big deal?,
Birrell Walsh, MICROTIMES, 3/92

..1've discovered that the single greatest challenge of

Analysis 62 ...In the Object-Oriented (00) Revolution the development
paradigm offered apoears to be 'Analysis is finding and

Design decomposing objects, while design is finding sub-objects
and decomposing them in greater detail." 00 practitioners
further argue that this process should be documented in
pseudo-code or better yet, in an Obiect-Oriented
Programming Language (OOPL) so that a continuum exists
from analysis through design into implementation. The result
is a further blurring of the boundaries and a shift in focus
towards code. The problem is that the closeness to code
causes confusion with code and a tendency to describe how
rather than what. This leads to premature implementation
before the requirements are clearly understood and the
design architecture Fs properly analyzed. This is a charter for
hacking systems into existence. Perhaps we should rethink
the "Fountain' life-cycle....

Analysis versus design: is there a difference, Clifford
friwood. THE C++ JOURNAL. Vol. 2/No. 1, 1992

.[Rob Dickerson, VP and General Manager of The
Database Business Unit at Borland Internationall: I think

you've got to learn to do a class hierarchy. The first time you

Strategies
last year, ButlerBIoor, a European research and consulting
...in a 220-page report on The Future of Software published

firm, warned that most large companies are fashioning a
"software time bomb" in that the more systems "they
generate, the more there is to maintain." It identified object
orientation as a new means of defusing the problem...To
get to the object-oriented multimedia era implies that firms
must first discard 20 to 30 years of IS investment, says
[Computer Associates International's Dominique] Laborde.
Ide says software companies that provide object orientation
as an extension to existing databases will be the successtul
vendors of the 90s.

The gs·eat new database debate, Ron Glen,
CANADIAN COMPUTER RESELLER, 4/15/92

Excerpts from leading industry 0
publications on aspects of object 1
technology

tackling a new object-oriented program is keeping a vision
of the program that's accomplishable. As I was writing this
program. I have to admit that at times I was thinking of an
interactive CD-ROM-based multi-media extravaganza.
Luckily, common-sense and deadlines prevailed..,

.Templates are a major C++ facility and should be
explored by every programmer interested in extensibility or
data structures. They have gotten short shrift in most C++
tutorials. being a little too advanced for beginner books and
too basic for advanced books....

Expert's toolbox: Templates of Doom, Larry O'Brien,
THE CHICAGO PURCHASER, 5/92

cio your class hierarchy, you write out what looks obvious,
and you fiddle with it, and you realize it's not the best one.
So you redesign it, and by the time you're done, the class
hierarchy you end up with was not what you initially
thought. And there's a bunch of tricks [0 it-how to identify
a meta-class, factoring, the notion of collection classes, how
to design a class hierarchy, but that's the main design effort.
At least, that's what I've seen our R&D guys have to get their
hands around. [Jacob Stein, Chief Technologist for Servio
Corp]: And there's lots of trade-offs, trade-offs between
reusability, and a natural fit to the system you're modeling.
They might not always be exactly the same. There may be a
tracie-off between designin8 for reuse and designing for this
particular application, and you have to take that broader
scope. It's said that people don't get classes right until
they've been implemented about three times, which might
mean that some of the interfaces wiiI change during that
course ot time....

Roundtable. Experts speak on object-oriented
development!, john L. Hawkins and Dian Schaffhauser,

DATA BASED ADVISOR, 4/92

...At Raytheon Missile Systems Division in Bedford, Mass.,
a 1984 study of 5,000 production applications found 40
percent to 60 percent of their code was subject to
standardization via reusable structures. Following an
encouraging pilot test, Raytheon's use of standard modules
and structures in a COBOL environment Yielded an average
of 60 percent reusability. On average, this reduced
development effort by 50 percent and work effort by 70
percent during maintenance. These results were achieved,
furthermore, with a language that did not couple reuse of
code directly with the semantics ot the language, as would
an OOP tool. These figures can be viewed as pessimistic
estimates of the gains that can be achieved by reusing code
with OOP, following startup efforts.

tower lifecycle and maintenance costs make strong case
For OOP, Peter Coffee, PC WEEK, 5/18/92

HOTLINE ON OBJECT-ORIEN TED TECHNOLOGY

C()Flt!nUCEI fr(Jm tiage 2

have enough real-world experience to be expected to make
a meaningful statement about design.

As Mr. Zachrnan suggested, serious attention is also being
turned to analysis, and a tew thinkers sc:outing the fringe would
suggest that there may be more lo object-oriented modeling
at the business enterprise level than meets the eye. Thus, it
seems timely to focus this issue of the HOTLINE on methods and
tools issues and industry trends that will substantially impact
how we develop object-orierted software.

Our feature author this month, Ms. Patty Dock of Orgware,
Inc., surveys current methods for object-oriented design and
finds the field of strong contenders surprisingly limited. Start-
ing with a very reasonable set of basic filter criteria, she win-
news twenty-two on-the-market methods for object-oriented
design down to three viable contenders for object developers
lo(lay. While this survey does not cover every commercial
method of which 1 am aware, it certainly covers the name-
brand marketplace including those companies the principle
business of which is selling methods or analysis/design tools.
That only 14% of the "major" approaches to object-oriented
design pass a simple sanity test gives one pause tor thought!
Mr. Christopher Stone, President of the Object Management
Group (OMG), discusses this industry-standards-setting orga-
nization's 12-18 month operating plan. Many view object
technology (and object database management svstems in par-
ticular) as central to the cost-effective and timely development
of the next generation of CASE tools. The OMG, as the pri-
mary standards-setting forum for the object industry, contin-
ues to actively pursue the development of a franiework in
which, among other things, the integration of CASE tools and
class library products from different manufacturers could be-
come reality for the business application developer. With the
Common Object Request Broker Architecture (CORBA) Ver
sion 1.1 in place, a first step has been taken toward the tool-
Ing vision expressed by Ms. Hardman in her article, this issue.
From Canada, Mr. Richard Du4 tackles enterprise modeling
from the vantage of object orientation. MT. Du€. proposes the
object perspective as an alternative to sonia of the well-recog
nized deficiencies of traditional enterprise (data) modeling.
While as a practicing modeler 1 share his conviction that ob·
ject technology removes critical problems, such as the nonse-
mantic segregation of data-dependent process from [he data on
which it operates and the creation of data structures devoid of
meaning and policy, experience suggests that some of the most
fundamental impediments to enterprise modeling will not be
resolved by modeling objects instead of entities. As Mr. Dud
suggests, most organizations today do not have a strategic di-
rection and seniantic modeling inevitably ignites dormant po-
litical disputes that reflect this deficit. Furthermore, many mod-
elers fall to understand ihe significance of semantics, and data
is commonly confused with information. Objects, however om-
nipotent, will not resolve these most human of problems.

On the bright side, the simple mechanism of removing the
above-mentioned process-data impedance mismatch does sim-
plify enterprise modeling in at least two areas. First, the un
derlying metarnodel is far simpler for an object modei than for
the separate processing and data models. Structured analysis
couldn't mate these separate models at a methods level. much
less in the CASE tool repository. The Simplification of the meta-
model aione could bring repository implementation within
reach. Secondly, the parallel between enterprise objects and
programming objects can probably constrain the meaningful
relationships between business oblects and implemented classes
to an understandable one=to-many mapping. This would be
a welcome alternative to the pre-object many-to-many
"maybe-mapping.-the "maybe," of course, because we could
never be quite sure....

Back to reality from theory, though, it remains for us model-
ers to prove that our view of object-oriented reality modeling

can truly overcome the problems that, to date, have been in-
herent in enterprise-wide modeling. Where top-down ap-
proaches have been criticized as inflexuble, time consuming,
and politically unpalatable, development-seasoned practi-
tioners suggest that objects offer a bottom-up alternative. Hovw
ever, they seem inexperienced when it comes to taking on the
business planning and interpersonal problems that have mo-
tivated top-down modeling approaches. This is the state-of-
practice in our industry today. From the eventual blend will
come our strength, and Mr. Du© proposes some criteria for
making the mix work.
Also from Canada, Ms. Sue Hardman of COGNOS sets her
sights on the future of CASE tools. Her multidimensional vi-
sion for a thinking-companion tool is, in the estimation of this
editor/practitioner, right on target. Two-dimensional static mod-
eis have appeal for static structures. The success of such mod-
eis in architecture lead many of us to pursue two-dimensional
process and data models-never mind the integration prob
lems. Unlike buildings, systems and businesses are structurally
dynamic. Businesses today must do to their systems what would
be the equivalent in building construction of completely re-
designing the core of a modern high-rise. Construction engi-
neers would give the same bad news that many information
systenis organizations have been torced to deliver: start over!
That's not economical today-ergo our interest in object tech-
nology wrappers around legacy systems and object databases
as semantic integration plattorriis.

Furthermore, Ms. Hardman strikes on an issue of correctness-
using visualization to understand both what should be hap-
pening in the business and what is happening given the way
we have designed our system. This reality-check could be a
viable alternative to mathematicat correctness-something
that, however right, is impractical for many of the normal hu-
man beings involved in building business systems.

Back from the future, one of our regular book reviewers, Mr.
Michael Fuller, reviews the second of the pair of books from
Sally Shlaer and Stephen Mellor, 081:CT LI[ECYCLES: MODEL JiNG
THE; WORLD IN STATES. Mr. Fuller's determination parallels Ms.
Dock's assessment of the Shlaer/Mellor method and CADRE
tool implementation. Thai these opinions were arrived at comv
pietely independently of one another suggests that we should
be cautious of the myriad of structured-cum-objective ap-
proaches being marketed today. Consider Mr. Fuller's insights
on the subject beyond the context of a review of one book-
he may have given us insight into a class problem. It seems
clear there remains a genre of less-than-effective approaches
that have grown out of the split process/data-structured anal-
ysis world seeking selftpreservation.

Of course, having seen the prematurely shrinkwrapped OM-
Tool that GE Advanced Systems Division was headlining at
Object Expo in New York, we could as well apply the same
caution to the Rumbaugh method. And Rumbaugh was one of
Ms. Dock's qualified 14%! Look very carefully before you buy!
Armed with our authors' sharp-minded thoughts, we are bet-
ter able to evaluate our alternatives as we seek to upgrade
our application-development process model and toolset with
an eye for eventually doing effective enterprise-wide
business analysis.

VOL U.ME 3, NUMBER 9 i JULY 1992

METHODS E E

Enterprise modeling:
an object approach by Richard T. Dud

Information engineering attempts to describe
an integrated vi

operati

Richard T. Dut is Pres,den[

of Thomsen Dud and Associ-
ata, Ltd. in Edmonton, Ah
be?·ta, (Jamaila and a member

of the X3 H I Object hih),ma
tioi Maiiageinciit Standards
l..0771?711(ted. He Clin be reached

ar 403.439.4627.

r

'ew of all data necessary for the
Dns of an 07ganization.

This integrated view. or enterprise model, is considered
to be necessary for the planning, implementation, and
control of relational database management systems.
Typically, in a process that can last months or even
years, the organization's goals, critical success factors,
functions, resources, data, and data relationships are col-
lected. This is accomplished through a series of inter-
views, ioint analvsis and design (JAD) or joint require,

ments planning URP) sessions, bv the analysts of data
dictionarv usage statistics, or, in some cases, bv com-
paring the organization under study to preexisting mod-
els of similar organizations.

The outputs of this process are one or more graphi-
cal or narrative models that describe the organization's
strategic, tactical, and operational data and data-
processing requirements. Data and data-processing func-
tions are defined in glossaries, data dictionaries, encv-
clopedias, and repositories. Data and data-processing
functions required by the organization are mapped against
existingcapability. Gaps, redundancies, and conflicts be-
tween required and existing systems are identified. Re-
sponsibilitv for the creation, retrieval, updating, and tele-
tion of dara is aligned with the organization chart. Plains
for the development of new systems and the integration
of existing systems are developed and prioritized.

Ilie main purpose of this approach has been to as-
sist the data-processing section of the company to plan
for information technology requirements, design
databases, and set systems development priorities. In
some cases, however, where senior management has been
committed to and thoroughly involved in the enterprise
modeling process, the process of building an enterprise

model has given the partlelptlINS a deeper understand-
ing of how the organization actually operates. Forced to
look at the organization from a strategic perspective,
inany participants report that for the first time they un-
derstand how their enterprise is organized and how it
performs. This data-centered enterprise-modeling pro-
cess is generallv performed in a top-down manner, pro-
ducing a relatively static descripnon of the organization
captured in narrative, CRUD man ices (tables showing
organizational responsibilities for the creation, retrieval,
updating, and deletion of data). and diagrams (entitv-
irelationship, data-flow, state-transition, network, ar-
chitecture, and organization charts, etc.).

LIMITATIONS OF THE INFORMATION

ENGINEERING APPROACH

Unfortunately, the inforination engineering approach
to enterprise modeling suffers from a number of
shortcomings.

It takes too long
Scarce and valuable people in the organization are forced
to spend months or even years of their time tr ·Ying to
develop the models. The concepts and techniques of
this approach to enterprise modeling are unfamiliar to
senior management, users, and even data-processing
personnel. Dormant political disputes over data defint-
tions, data ownership, process dehnitions, etc. can erupt
as the mtormation-engineering process focuses arlen-
tion on redundant, inefficient, or poorly planned areas
of the enterprise, slowing down or even stopping the
entire exercise.

People in the organization do not see
the value of the exercise

Information-engineering enterprise models require sub-
stantial further effort and investment before the under-
lying databases are implemented and before individual
applications can be built. Information engineering's con-
tralized approach to planning can conflict with decen-

HOrLINE ON OBJECT-ORIENTED TECHNOLOGY

00 Option
Micro Focus,

246:5 Fast Bayshore Rd.,
Palo Alto, CA 94303

415.856.4161

New language
releases

Borland International. Inc.,

1800 Green Hills Rd., P O.
Box 6600Of, Scolls Valley.

CA 95067-0001

408.439.4825

VOSS/Personal
Logic Art„

75 Hemingford Rd.,
Cambridge C{31 3BY

England +44.223.212392

PARTNERINGS &

ACQUISITIONS

19

Under its Early User Program, Micro Focus is shipping the Object Oriented (00) Option to its Micro Focus COBOL
Workbench. The 00 Option provides Workbench customers an opporlunity to experimenl with object-oriented languages
and development environments and provides tools for the COBOL programmer including two object-oriented development
environments: a Runtime Environment {RTE) and a Reusable Code Manager (RCM). Micro Focus Early User Programs are
designed to bring new technology to Microfocus customers who are willing to experiment and provide feedbac·k on
products, which helps to refine interfaces and other underlying features prior to full release. The Object Oriented
Developers Kit is the key component in 00 Option and contains the Micro FOCU. 00 COBOL environment. Sinalitall/V
PM is also a component of the 00 Option, allowing programmers to write code with Smalltalk/V PM and then use the 00
Developers Kit's extensions to the Smalltall</V class library to create communication objects. These objects permit Smalltalk
and COBOL programs to work together in a clien[/server mode of operation, the Smalltalk and COBOL environments
remaining mutually independent.

Borland International, Inc, announced the availability of several new language releases. Taking advantage of the advanced
features of Microsoft Windows 3.1. and adding features to Borland's C++ and Turbo Pascal for Windows product lines,
including full Windows 3.1 and 3.0 support, color syntax highlighting, and new Windows documentation. Borland C++ 3.1
is a complete development system. Turbo C++ for Windows 3.1 offers a route to Windows programming for ObjectWindows
level C and C++ userb, including the basic tools necessary for creating Windows appli Callers. Turbo Pascal for Windows 1.5
now lets users lake full advantage of the new features in Microsoft Windows 3.1 including OLE, common dialogs, drag &
drop, and Truetype fonts. Borland has also introduced Objectvision 2.0 for OS/2.

Logic Arts introduced VOSS/Personal, a low-c oq perbonal version of the Virtual Object Storage Sysiem for Smatitalk/V. It is;
available in two versionh: VOSS/286 Personal and VOSS./Windows Personal for use with Smalltalk/V 286 and Smalltalk/V
Windows, respectively. VOSS/Personal is fully compatible with the equivalent main product line and can read and write the
same virtual object spaces, providing transparent access to persistent Smalltalk objects of any class on disk without the reed
for a separate DBMS programming language. It has the same transaction management of updates, the variable-size cache of
virtual objects in the image, and most of the same VirtuaIDictionary and VirtualCollection classes for mandging collections
larger than the image.

Symantec Corporation has acquired MultiScope Inc. and The Whitewater Group lic. The acqup,ition of Mult,Scope :s a
pooling of interests in which Symantec will issue approximately 165,000 shares of itq common stock for the current
outstanding shares of MultiScope stock. The acquismon of The Whitewater Group is a pooling of interests in which Symantec
will issue approximately 80,000 shares of Itb common outstanding stock for the current outstancling shares of The Whitewater
Group stock. Personnel of both companies will remain In their current locations and report to Carol Clettenberg, the newly
appointed Director of Development Tools at Symantec. Mark Achler will join Symantec in the position of Director of Visual
Tools. Chuck Duff will become Principal Architect reporting to Mark Achler.

Zinc Software, Inc. announced the establishment of its first European office. Paul Leathen, former preident of Zorlech Ltd.
and Zortech Inc. will serve as Managing Director of Zinc Software (UK) Limited, based in London. Zinc (UK) will assume
responsibilities for European operations including sales, distribution, and technical support for Zines product line.

Object Technology International, Inc. COTO announced that Knowledge Systems Corporation (KSC) has been appointed as a
U.S. distributorfor ENVY/Developer, its object-oriented product development environment.

Servio Corporation and Hewlett-Packard Company announced that Servio has been named an HP Value-Added Business
Partner. The companies also announced that Servio's Gen,Stone object database and GeODE objea development
envJronment will be made available for the HP Apollo 9000 Series 700 PA-RISC-based workstation family.

Franz Inc. acquired the rights to Procyon Common Lisp for MS-Windows and other operating systems on personal
computers. Franz will further develop. market, and distribute the product worldwide under the name Allegro. Procyon
Common Lisp was developed by Procyon Research Ltd. of Cambridge, UK, a subsidiary of Scientia Ltd. The Common Lisp
product for MS-Windows will feature CLOS (Common Lisp Object System).

Gain Technology entered into a development-assistance agreement with IBM Corporation, providing Gain's multimedia
software for the IBM RISC Systern,/6000. Sun Microsystemsi Computer Corporation and Gain Technologv have also onie:r'ed
into an agreemen[under which Sun will build and distribute Gain-based multimedia applications on Sun workstations.

VOLUME 3, Nu,MBER 9 E JULY 1992

120/ A

Product

U

Announcements

Product Announcements is a service to the
readers of the HOTLINE ON OBjECT-ORIENTED

TECHNOLOGY; it is neither a recommendation
nor an endorsement of any product
dscussed.

C++ By Design
SIGS Conferences.

588 Broadway, Ste. 604,
New York, NY 10012

212.274.9135

inSession 3270
Avatar Corp.,
65 South St.,

Hopkinton, MA 01748
508.435.3000

ODBMS 1.0 for

Objectworks/
Smalltalk

\€ Sottwai·e Construction,
Petritorwall 28,3300

Braunschweig, Germany
+495.31242400

Smalltalk/SQL
Synergistic Solutions inc.,

63 loyner Dr.,
i awrenceville, Nj 086548

609.586.0025

GainMomentum
Gain Technology,

1870 Embarcadero Rd,
Palo Alto, CA 94303-3308

415.813.1800

Hi-SCREEN Pro 11

Softway, Inc.,
China Basin Landjng,

185 Berry St., Ste. 5411,
San Francisco, CA 94107

415.896.0708

Grady Booch, the developer of the Booch Method and O-0 analysis and design method, and Bjarne Stroustrup; the originator
of the C++ programming language, are teaming up for a four-city educational tour. C++ by Design is sponsored by the C++
Report and organized by SIGS Conferences. The one-day instructional seminar series is scheduled for September 1992 in
New York, Chicago, Dallas, and San Jose.

Avatar Corporation is shipping InSession 3270 for NeXT computers and the NeXT Programmer's Toolkit. InSession 3270
inc!udes an external hardware unit and software that provides IBM 3278/3279 terminal emulation and file-transfer
capabilities for NeXT computer users. It supports IBM terminal models 3278/2-5 and 3279/2A, 28,3A, and 38. InSession
3270 provides direct coaxial connectivity and is attached to the SCSI port of the NeXT computer and to afl IBM control unit
in the host environment via coaxial cable. Applications can be developed so NeXT computer users can transparently access
IBM host intormation without leaving the tamiliarity of the NeXT enwronment. The Toolkit includes sottware modules that
create the link between the NeXT Interface Builder objects and Avataes InSession 3270 software. Developers have access to
C ard Objective C languages in addition to NeXT Interface Builder and Speakerlistener development t(>015.

VC Software Construction announced ODBMS 1.0 for Par€Place Systems Objectworks/Smalltalk. an object·oriented
database management system supporting most Smalltalk languages. Its storage facilities for objects can be used during tile
development of Smalltalk applications and stand-along database applications.

VC Software Construction also announced enhancements to other releases of ODEMS. ODBMS 1.02 Programmer's
Version now offers support for Digitalk's Smalltalk/V 2.0 for Windows and for OS/2 2.0, as well as online documentalion.
enhanced search by using object names, and a new class hierarchy for Proxy-Objects. ODBMS 1.02 Graphical User Interface
now has graphical representation of objects and object links, drag and drop, an interactive Help facility, and MDI support
(Windows only). ODBMS 1.0 is now available as an educational version for Windows and includes the ODBMS
Programmer's version, the ODBMS/GUI, and the Distributed Smalltalk Software Development environment (DSSDe). The
education version contains most of the functionality of the commercial versions of ODBrMS.

Synergistic Solutions Inc. announced additional platform support for Smalltalk/SQL, their portable database interface for
Smalltalk. The product works in conjunction with the latest releases of ParcPlace Systems Objectworks/Smalitalk and Digitalk
Smalltalk V. The product enables development of graphical user interface (GUI) applications that access information stored in
relational databases. Direct database support is currently available for the Sybase, Oracle, NetwareSQL, and Gupta
databases. D82, Informix, Ingres, Rdb, and NetwareSQL databases may be accessed through a variety of gateway products,

Gain Technology, Inc. announced the general availability of Gain,Womentum Version 1.0, an object oriented multimedia
application development and delivery system for medium- and large-scale multiuser computers. The software provides a
complete environment fordeveloping large-scale, interactive multimedia applications incorporating sound, full-motion video,
animation, hypertext, graphics, and corporate data on corporate and departmental computer systems. It runs on the Sun
SparcStation and SPARC compatibles. Versions for DEC, Hewlett-Packard, IBM, and Silicon Graphics workstations will be
available by summer 1992.Gain deveioped its products under a joill[-development agreement with Matsushita Electric
Industrial Co., Ltd. of Osaka, japan.

Softway. Inc. announced the integration of PenDOS extensions into HI-SCREEN Pro [1, its language-independent, object-
oriented user interface development system. HI-SCREEN Pro It includes transparent support for [he Pen DOS operating
environment developed by Communication Intelligence Corporation (CIC), providing access to advanced pen input
capabilities without the underlying development complexity.

fSend Product Announcements to Robert Shelton, 1*30 Union Street, Suite 1 54@, San Francisco, CA
F94123, fa*(*15)428-303 928-3036. Include company name, address, and phone nul*ber.

HOTLINE ON OBJECIT-ORiENTED TECHNOLOGY

Contextual

Systems theory describes the context or environment of
a system as all of the induences on the system that the
system cannot control. Organizatic>ns are shaped by many
external factors, such as competition, the economy, gov-
emment regulation, etc. All these influences and their
effects on the enterprise must be identified and moni-
tored. The most successful organizations are those that
understand, respond to, and seek to control their enve
ronments. Familiar and widely reported examples of
these organizations include American Airlines and
American Hospital Supply. Both companies developed
systems that allowed them to effectively understand, re-
spond to, and control customers who were formeriv an
independent part of their environments. In addition,

Static models developed by the top-down
information-engineering approach are unable

to describe dynamically changing organizations.

there must be a way of "exchanging context" (1.e., un-
derstanding other points of view and other definitions
of meaning) among all people and systems that will use
the enterprise model.

Dynamic
Since the organization and its information processing
needs are constantly changing, the enterprise model must
also be constandy changing. While information engineers
correctly realized that processes in an organization are not
stable, they failed to understand that data M not stable ei-
ther. Today. organizations are either changing or they are
dying. New products and services are being developed
continually; mergers, divestments, outsourcing, and down-
sizing are Fill dynamic.ally changing the data and the se-
mantics of the data used by the organization.

Semantic

Rich semantic models attempt to capture the essential
features of reality needed to understand how the enter-
prise behaves and what services are required to support
this behavior. A rich semantic model will, at least, have
to capture information on the enterprise's data, pro-
cesses, behavior, business rules, policies. resources, ge-
ographical distribution, organization, business events,
and envuonment

tralizati<)11, d<)wnslzltig, and open syst-etn initiatives within
the organization.

The world changes
Organizations grow, merge, go into new business areas,
develop new products, are faced with new competition,
employ new technologies, and are subject to turbulent
social, economic, regulatory, and political environments.
Static models developed by the top-down infbrmation-
engineering approach are unable to describe dynarni,
cally changing organizations.

Organizations are much more than just data
Organizations are people, resources, data, and processes
that interact and behave m an ever-changing environ
ment over time andl space.

Barbara von Halle, in a recent articlel found it was
a startling realization to information engineers that data
is perhaps only one.sixth of the information systems ar-
chitecture necessary to promote data sharing m an eli-
terprise. John Zachman's Information Systems Archi-
tecture framework, e.g., is composed of data (entities),
functions (processes), network (locations), people, time
(events/cycles), and values (business rules/strategies).

Data is not information

Information engineering enterprise modeling calls for
the "normalization" (standardization) of the organiza-
tion's data to reduce redundancy and improve the ac-
airacy and consistency ofthe data resource. No attempt,
however, is made to 'normalize" the organization's pro-
cesses or business rules. This means that different users

can use different atgorithills to process the data and can
change or update data at different time intervals. Both
of these activities can corrupt the value of the infor.
nation retrieved from the databases. The flexibility of
relational databases, the use of 406, and downloading
of database extracts onto microcomputer platforms all
compound this problem as more and more people within
the organization process data in different ways and at
different times.

Direction

Most organizations do not have astrategic direction. Or
if they do, senior management is not going to reveal that
direction to the data-processing department.

Tony Durham indicatesi that information engineers,
in fact, complain that the difticult part of enterprise mod.
eling, "is getting this woffle (sic) that comes out of se-
nior management and working out what it means."

CRITERIA FOR EFFECTIVE ENTERPRISE MODELING

Overcoming these shortcomings will require enterprise
models that are able to satisfy the following criteria.

VOLUME 3, NUMBER 9 -JULY 1992

View I

Enterprise models must be able to be viewed from a
number of integrated perspectives. John Zachman sug
gests that his Information Systems Architecture frame
work needs to be viewed from the perspectives of tjhe
business (the owner), the information systems (the
designer), and the technology (the builder). Each of
these perspectives requires different information, at
different levels of detail, and in different contexts
to describe the organization. In a recent article,3
Zachman suggestiv

if your model-storage facility could maintain the
integrity of each model (in his ISA framework),
transformation algorithms between the models, ver-
sions of the models, and perhaps even versions of
the entities within the models, it would provide an
enterprise with the ability for dynamic infrastrup
lure change.

View linkage, then, is the ability to dynamically link
the perspectives and components of the rich semantic
model. A change in the model entered from any per.
spective must automatically update all other views of
the enterprise model.

Direct implementation
The enterprise model imust be capable of being imple·
mented without further work or investment. This means

that the enterprise model will have to be :ione--t<»one
operating model of the essential features of an organi.
zation, not just a collection of graphs, tables, and nar-
rative. Direct implementation Is necessary to allow mod-
elers to prototype, validate, and use [he enterprise model
as the actual organization evolves.

Developed by users
The modeling process must be able to be performed by
the enterprise: user personnel. There should be noneed
to have to involve technical personnel (who don't un-
derstand business processes) or change the model to pie-
commodate physical DBMS implementation consider,
ations (e.g., devising artificial intersection entties,
normadization, denOrmalizatiOn, ete.).

OBET PARADIGM ENTERPRISE MODELING
The object paradigm offers an opportunity to develop
enterprise models that satisfv these enterprise modeling
requ irements. ObJect paradigm enterprise models can
be dynamic simulations of the organization. Such mod.
els will show the interaction of the enterprise with its
environment. They will be unambiguous representations
of the things and behaviors that make up the organiza.
tion. These models will be rich, integrated, semantic
representations of the organization that will be asselli-

E E ELECTRONIC FRONTIER

bled and used by non-data-processing personnel who
will be able to view the models from a variety of differ-
ent perspectives. The following five major characteris-
ties of the object paradigm will be used to implement
this new approach to enterprise modeling:

Encapsulation
hi the object paradigm, all things that exist in the real
world are represented by unique, mdividuat simulations
called objects. Encapsulation means that the data st-
tributes and data-processing methods associated with
different objects are hidden from view. Once an object's
data and methods are encapsulated into a simulation,
the data and data-processing method can no longer be
directly accessed. Instead, messages requesting various
services can be sent to the object, which then responds
(or behaves) by providing the requested service.

In the object approach, enterprise models will be de-
veloped by dynamically collecting the simulations that
conespond either to the organization as it is today or to
a series of "what-if' scenarios. These various simulations

can be optimized according to the management's goals
and critical success factors and then implemented in the
real-world organizanon.

ExtensibUity
Extensibility allows the enterprise model to be composed
of many different abstract data tvpes. This means that
the model can consist of video. graphic, audio, and even
tactile representations. In effect, object paradigm en-
terprise models will eventually be <'virtual reality" sim.
ulatioi» of the organization.

Polymorphism
Polymorphism, the ability ofnew versions of an object
to respond to the same requests for service, allows the
physical implementation details of the enterprise model
to be hidden from the user. This means that new hard-

ware, software, communication devices, and even new
business rules can be transparently incorporated into
the enterprise model. For example, polymorphism al-
lows the effects of changing business miles or even chang
ing computer platforms to be hidden from the user, who
still sends the same messages, e.g, "pay the employees"
to the payroll object.

Class libraries

Class libraries are collections of templates used to create
individual object simulations. Class libraries will soon be-
come available for many objects that make up organiza.
tions. Electronic data interchange (EDI) and office doc-
ument architecture CODA) are tmi exaniples of initiatives
to define and describe standardized business objects (e€.,
financial instruments and office memos) that eventually

conrn.wed (m jimie B ···

HOTLINE ON OBJEC 1-ORIEN TED TECHINOLOGY

V

Second, does the approach integrate the analysis of
stored data and methods? To my mind, it doesn't. 1 was
in general agreement with their discussions of the in-
formation model and most of the state model. The fun.

damental tenet of object-oriented technology is that be-
havior ts paramount, yet the authors separate the storage
of data from the computation on data. Why separate the
acce.ssor (Utictions from the object? Why separate the
event functions from the state? What is the justification
for allowing a process to be shared by several ADFDs
and directly access several objects?

Third, does the approach support the inherent con-
currency of object instances? For the most part, yes.
The techniques and suggestions presented provide a
foundation for the analysis of dynamic behavior. This
is not a cookbook, however, and additional reading
will be required.

Fourth, does the approach maintain the semantics of
the objects? The end of Chapter Three states that fail-
ure analysis is outside the scope of the book. For me this
is the critical failure of the method described. An OOA

methodology should support, even demand, that the se-
mantics of an object be guaranteed at all times. The great
hope is that GO techniques will encourage widespread
reuse of software components and enable distributed sys-
tems. How is this going to work if you cannot know or
trust the behavior of inherited/delegated classes?

CONCLUSIONS

The real strength of this book is in the chapters on
modeling complex dynamic behavior. The text and
supporting examples clearly explain the relationship
that exists between the information and state models,

and demonstrate how these views should support each
other. On balance, though, the book fails in its quest
to define and articulate a new wayof approaching soft·
ware development. After reading the book, I have
more questions than when 1 started. This is good in
the sense that I am clarifying my understanding of ob-
ject-oriented analvsis but what I wanted was the
"strictiv defined, multi-level formalism" promised on
the back cover. E E

Pr-4/:"4""#mg""mmm'MM

The processes on an ADFD are closely related to the
information model object and the associated state-
transition diagram, but they have an independent exis-
tence. A process maybe shared by two or more ADFDs
provided that it always consumes and produces the same
data and events.

The infomlation, state, and process models provide
a comprehensive viewof the components of an applica-
tion system being studied. Shlaer anc{ Mellor introduce
the concept of domains to provide a mechanism for or
ganizing groups of models according to the problem or
service they provide. Common examples would include:

• user interface

• operating system

• network

e application subsystems

Individual domains communicate with each other

using the client/server messaging model Each domain
Ls named and its purpose described in a mission state.
ment that should provide a charter for constructing the
OOA models. The resulting domain chart defines the
system architecture for the complete project.

FUTURE DIRECTIONS
The book concludes with a discussion of project man-
agement issues, a lariguageindependent clesL{grl Inethod
ology (Volume three?), and an appendix that describes
how to map the OOA work products onto mil-sic] 2167a
reporting requirements.

UNANSWERED QUESTIONS
At the start of the review, I listed several questions that
1 wanted the book to answer.

First, how is the method described different than tra-
ditional SA/SD? The only major difference 1 could see
is the replacement of the data dictionary with the in.
formation model. This is a significant improvement to
SA/SD, but it does not constitute a new model of prob-
lem analysis.

:fi 44 ,
34: 2 0:0Calendar

0-P-

Send calendar information to the Editor: Robert Shelton, 1850 Union Street, Suite 1584, San Francisco, CA 94123; fax: (415) 928-3036.

July 14-17, 1992
Object Expo Europe
London, UK

Contact: 212.274.0640

July 21-23, 1992
Object World
San Fransisco, CA

Coniacc 508.879.6700

Sept. 21-25,1992

C++ By Design
New York, NY

Contact 212.274.9135

October 18-22,1992

OOPSLA'92

Vancouver. BC, Canada

Contact: 407.6283602

Nov. 16-20,1992
C++ World

Meadowlands Hilton, NJ

Contact: 212.274.9135

VOLUME 3, NUMBER 9 E JULY 1992

.

The information model represents the persistent or
stored data required by the application. To support the
later modeling tasks, the information model must re-
solve all many-to-Inany relationships using associative
objects and each object must have an attribute that
maintains the current state of an object instance. The
information model is comparable to an IDEF1 X, infor-
mation engineering, or CASE*METHOD entity-
relationship diagram.

State model

The state model is used to describe the lifecycle of the
objects defined on the information model. A state model
ConSiSIS Of:

• State-transition diagram-documents the stages of an
object's lifecycle, the events that indicate a progres-
sion from one stage to another, the actions needed
to accomplish the progression, and the transition
rules that define the legal progressions.

• State-0-ansition mble-an alternate representation of
the state-transition diagram. Primarily used to ver-
ify that the state model Is complete.

• Euent list- a cornposite list of all events from all state-

transition diagrams.

• Object communication model-documents the ex-
change of events between external objects (opera-
tors, physical devices, objects in other subsystems)
and the state model.

A state model captures the common behavior shared
by like objects. An object is an abstraction of a real.
world thing. What we know about an object is captured
by the information model in the form of attributes, re-
lationships, and cardinality. When (at what point) we
know something is captured by the state model in the
form of events and the response of the object to those
events. For many objects, the state-transition diagram
simply records that something has happened (engines
started, temperature reached, nme expued, contract
signed). For an associative object, however, the state-
transition diagram must capture the rules governing
the pairing of one object instance with another. The
most interesting topic centers on the definition and
description of an "assigner" state model. Its purpose is
to define how contention between instances of one or
more objects will be resolved (FIFO, Priority, etc.).
This discussion raises an interesting side-effect of OOA.
In traditional systems analysis, you are taught not to
worry about discrete instances of a record or process.
This is reasonable since a data value or software pro-
cess is a static thing; it doesn't change from one invo-
cation to the next. An object, by its very definition,
captures and thus exhibits behavior. Therefore, during
an analysis effort you must explicitly define how an ob-

BE E BOOK REWEW

ject (a discrete instance) wilt respond based on its his·
tory and the history of any object to which it could re.
act. The amount of detail you must deal with has just
increased by (several) orders of magnitude. The book
acknowledges this and provides a step-by-step proce-
dure, suggestions, and model templates to help you
mailge this coinplexity.

Process model

A process model captures the functional aspect of the
application system. It is based on Tom DeMarco's data-
flow diagrams (DFDs) and is extended with control
tlows and conditional data flows. A process model
consists of:

e Action data-#ow dia*am (AFDF)-documents the
units of processing and the intercommunication be-
tween them. It shows the source and sinks of both
events and information.

• Object access model-an alternate representation of
the action data-flow diagram that highlights the syn-
chronous communication between state models and
object instance data.

• State process table-a structured text document that
summarizes the set of action data-flow diagrams. The
book recommends developing three copies; one sorted
by process ID, one by state model and action, and
one by process type.

e PTocess description-an unstructured text document
describing the purpose of each proces*

Unlike a traditional DFD, an action data-Mow dia-
gram 15 flat. Each state on a state-transition diagram ts
decomposed into a collection of separate units of com-
putation, called a process, that communicate with each
other using data f[ows and/or control flows. A process
can also access a persistent data store (the ADFI) rep-
resentation of an information model object) or gener-
ate events to trigger a process in another state model
The authors also include a system clock and a timer fa-
cility that are used to synchronize the application sys-
tem. Shlaer and Mellor classify ADED processes as:

1. Accessor-[Create], [Read], [Update], [Delete] of in-
stances in a single information model object.

2. Event genemtors-produce a single event from the
associated state-transition diagram. It is not clear
from the text if each event is produced by only one
process.

3.Transfonnation-computes a result based on its in-
put data. A transformation object may directly read
or write one or more information model objects.

4. Tests--a process that generates a conditional event
or data flow.

HOTLINE ON OBJECT-C)RIEN TED TECHNOLOGY

Research or ready?, :03,{inued ftom poe 2

3. Has the method been used on at least one prior com-
mercial project that involved a team of five or more
programmers?

4. Is the method supported by at least one reasonably
priced (<$20,000 per programmer), commercially
available CASE tool ?

5. Is there at least one company with more than 10 peo-
pie init available to provide commercial training coiirses?

Commonsense screening, right? Yes, but after inves-
tigating the following methods:

• USA

1. Booch from Rational

2. Coad/Yourdon from Object International

3. OMT (Rumbaugh) from General Electric

4. Shlaer/Mellor from Cadre Technologies

5. OOSD (Wasserman/Pircher) from Interactive
Design Environment

6. CRC described in the Wirfs-Brook book used

extensibly by Knowledge Systems Corporation

7. OSA (Embley) originally from Hewlett-Packard

8. Odell/Edwards/Martin from Associative Design
Technology

•UK

1. SOMA (Graham)

2. Fusion

3. GO JSD

• France

1. Class-Relationship

2. MOA

3. OOM

4. SYS_p_o

• Bene lux

1. HOOD

2. OORA

3. SDM-0-0

* Scandinavia

1. ObjectOry

2. OORASS

3. OSDL

4. EFSOS

only three methods passed these criteria. Nineteen oth-
ers did not. Many seem a lot c[oser to the research end
of the research/ready spectrum. Let's look a little closer.

VOLUME 3, NUMBER 8 E JUNE 1992

4.44 7

APPLYING A COMMERCIAL SCREEN

Book screen

To pass the book screen, the method must be described
in an English-language book. This is a nice objective
criterion. Either an English-language book has been pub.
lished and is available from technical bookstores or not.

Basic experience screen
To pass the author's experience screen, at least one of
the authors must have participated in a commercial ob-
ject-oriented development project, on a full-time basis,
before they published the book. I was amazed by how
many so-called "experts in GO methodologies" fail this
test. Many of the better-known authors had never par.
ticipated in a single object-oriented development prop
ject

Marie Lenzi, Editor of OBJECT MAGAZINE, SeemS to
share mv views completely. She describes it as "the fa.
111OUS person/famous cornpany syndronle."1 Being famous
is not the same as knowing what you are doing.

Object-criented projects are significantly different from
traditional ones. The architecture, the design, the sched.
ute, the deliverables, thedevelopment process, the tools,
and the testing procedures are all different. New problems
exist at each level. The learning curve on someone 's first
object-oriented project is so steep it is amazing that some-
one could propose a design method without having been
through this process at least once. Most individuals in the
industry who have pioject experience are busy designing
systems while many of the software methodology authors
are not very bwy. Guess who started writing the books?

Tlie diagrarn in Figure 1 tel[3 1 he story as it exiStS today.
Designers with real experience in designing object-

oriented systems are in strong demand as designers (fully
booked). They can choose their projects. Their man.
agers are extremely reluctant to [et them take a vaca-
tion, much less a year off to write a book.

Experienced software methodologists have remained
in Mirly strong demand even as the technology was mak-
ing a major change. This isn't surprising, as the tag be-

Experienced SW Methodologists

Experienced Fully Booked
00 Designers

Figure l.

Authors

Ut,

p"......../4

tween the early adopters and the final adopters is so long
and the market has become so large. Notice that there is
very little overlap between methodologists and expen-
enced 0-0 designers but the methodologists do tend to
be authors. Percentage-wise, the methodologists are not
in demand as much as the experienced 0-0 designers.

What we would like to find is a set of experienced
authors who understand software methodologies and
have been involved in several commercial 0-0 devel-
opment eorts. They are few and far between

COMPLETED PROJECT SCREEN
To pass the project screen, the methodology must have
been used on at least one completed, hopefully success
ful, project. It would be even better if the methodology
has been used on multiple projects. It would be better still
ff it had been used on a project similar to my next one.

A publicly available reference in t:he press is the most

66

Serious 0-0 projects require allocating time
and resources for design methodology,

language, tool, and class library training.

unbiased metric but 1 hat m ight be too severe a restric-
tion. Even if it's privatelv obtained information, there
should have beenone project that actually used the method
described in the book before the book was published.

The question is, "can you provide me with a set of
application briefs describing projects that used this
method or tool?" Look for one that occurred prior to
the most recent release of the book. Also look for one
since the release of the book.

Application briefs give you the opportunity to con.
tact some developers and managers who have tried the
method to see what they thought. Questions you might
ask include: Are subsequent projects underway? If so,
will they use the method? What problems did you en-
counter and how were they overcome? What changes
will you Inake on your next project?

Too|s screen

Not all methods require automation. The CRC card
method asserts that automation is inappropriate, at least
in the beginning. To pass the tools screen, any portion
of the method that would be unduly tedious if performed
by hand should be automated.

VOLUME 3, NUMBER 9 E JULY 1992

m E RESEARCH OR READY?

The availability and cost of tools were factors in the
early acceptance of both AI and CASE methods. To be
sure we don't fall into the same trap, the tool must be
available for purchase for under $20K per copy. That
cost should include all software, such as a repository or
encyclopedia, the user would require to use the tool.

Tools should be a released product by a company with
at least one other software product. They should have
periodic, scheduled maintenance releases and the proc[-
uct must run on at least one of the following worksta-
tions: Sun, HP, DEC, IBM, Apple, OSR, or PCS with
Windows.

Trainingscreen
Training represents the most often underestimated por-
tion of a project introducing new technologies. Most
projects at least acknowledge that new language train-
ing should be scheduled, even if too little time is usu-
ally allocated. Unfortunately, many projects using new
design methods only allocate money to purchase a few
books and pass them around the project team members;
to be read.

Serious O-0 projects require allocating time and re-
sources for design methodology, language, tool, and class
library training. To be sure training for initial and sub-
sequent project teams can be obtained m a timely man-
ner, the training should be available from a commercial
training company of more than 10 people.

MY ASSESSMENT

I was surprised by how few of the most touted object-
oriented design methods passed this rudimentary com-
mercial screen. Only three methods passed; in alpha-
betical (,rder, they are Booch, CRC cards, and Rumbaugh

Booch

Grady Booch is the Director of Software Engineering Pro-
grams at Rational. He describes his methodology in a
book, OBJECT-ORIENTED DESIGN Wrni APPLICATIONS. 2
Grady's work with Rational and its tools has provided
solid object-ortented experience. Prior to writing thebook,
Grady participated in multiple projects including one on
process control and another on telephony. Prior to this
work, his in itial experiences with objects utilized Ada and
could be described as object-based rather than object-
oriented. The process-control project mentioned above
was written in C++ and consisted of hundreds of thou-

sands of lines of code. The telephony project was written
in Siimiltalk and consisted of hundreds ofSmalitalk classes.

Rat ic,Ilal has a coisuking division which regularly par-
ticipates on projecrs using this methodology. Rational
ROSE, a tool supporting the Booch method, is available
from Rational. Experienced designers consultant, teach
courses on the methodology, and provide tool training.

HOTL INE ON OBJECT-ORIENTED TECHNOLOGY

BOOK REVIEW E

OBJECT,LIFECYCLES--hiODELING THE
WORLD IN STATES

reviewed by Michael FuNerby SaZZy Shlaer and Steven J. Mellor

This is the second book by
the authors describing an

updated version of structured
analysis techniques.

The original book, OBJECT-OR1EN·rED SYSTEMS AN.ALY-
sis: MODELING THE WORLD IN DATA described an ex-

tended entityrelationship diagi amming technique and
supporting documentation anc] introduced state and pro-
cess modeling. The current book reviews the entity-re-
lationship diagramming technique, describe updates
and revisions introduced since 1989, and provides a de-
tailed presentation of state diagramming and process
modeling techniques.

OOA-WHAT IS ITT

The phrase object-oriented anabsis (OOA) is frequently
used but there is no consensus on its meaning and scope.
Before beginning the book I [isted several questions that
I hoped the book would be able to answer:
• What exactly is object-oriented analysis?
• How does it differ from non-OOA?

• How does it differ from object-oriented design
(OOD)?

• How does OOA ensure that object semantics are
preserved?

• How does OOA integrate the specification of stored
data and methods?

• How does OOA define and support object
concurrency?

The book addresses each of these questions. but the
answers may not be what you are expectingi Keep these

VOLUME 3, NUMBER 9 ZE JULY 1992

questions in mind as we examine the book, and we will
revisit them at the end of the review.

SHLAER/MELLOR OBJECT-ORIENTED ANALYSIS
The authors use three distinct models to describe an ap-
plication system.

1. Infin·mation model-a Chen-style entity.relatzionship
diagram that has been extended with subtypes.

2. State,[mnsition diagum»a Moore-style diagram that
represents states as boxes and transitions as arcs be-
tween the boxes.

3. Process models-a DeMarco/Mellor-style diagram that
represents a process as a circle and information flow
as arcs between the circles. An information flow can
contain data (solid lines) or control (dashed lines)
and may modify the information model (persistent
store) or slate model (dynamic store).

Each I:ype of model is supported by text definitions
and descriptions, and has a summary or overview' graph-
leal repre5entation.

information model

The information model provides the foundation upon
which the state and process models are built. An infor.
mation model consists of:

• Infer?nation structure dreign·am documents the obJect
types (class), its attributes, and the reladonships in
which the object participates.

e Ove,·Liew infon·nat071 structuid diagmn-an alternate
representai ion of the information Structure diagram
showing only the object name and relationships.

• Object specification document-astructured text that
describes the objects and their attributes.

• Relationshipspecificationdocument-astructured text
that describes each relationship present in the in-
COnnation model.

Michael Firtler· is an inf€)?ma-
acm en.gineen'ng consutumt and
luts developed targe-sc(tie, dis-
t?ii)utd ai)1)ficatains with a va
Tiety of technologies inclitding
Eiffel. He can be reached at
415 928.7067.

Book Wat -

The Benjamin/Cummings Publishing Com-
pany (A division of Addison-Wesley),390
Bridge Pkwy., Redwood City, CA 94065
415.594.4400

Benjamin/Cummings is pleased to announce the publication
of OBECT-ORUENTED DESIGN Wl™ APPER.ATIONS by Grady

Booch. The book is divided into three sections, The fjrst jn

troduces the basic concepts of the object model and ex-

Designing for 0-0, contititted fronil>age i>
cert that allows me to physically enact modifications
and see the repercussions against the model in real time
via the SIB and BIS simulations described above. [f I

DELETE the major object as per our example above, I need
to see exactly what happens even if it means that I watch
my model destroy itself and my result is floating Cop
phaned) objects. The key here is the word see -it is im-
perative, in my mind, that my CASE tool be able to
convey to Ine the exaa result in real tune. The imagery
is the solution.

Let's look a little closer at the power of this inter-
face. Much of my personal design work is done in scrib-
bles, doodles, and sketches with my end users and the
results are sketched on my office white-board during
dialogue and debate with my design team. This inter-
face, when married with the expert systems, must be
able to act in the same fashion-as an intelligent white-
board-and must provide me with the dialogue and
feedback I need to create my model on the spot. It should
be absolutely fluid, flexible, and responsive with none
of this waiting for machine performance to stilt my
creative thinking.

The tool should be something I can take to my users
and sketch, in concept at least, their basic requirements,
then automatically convey these to the rest of my de-
sign team. I need the coloured balls (classes of objects),
the holes (characteristics and behavior), and the sticks;

 The 'Book Watch" column does not contain book re-
views. These /istings are abstacted from press re/eases
provided by the publishers, and no endorsement is im-
plied. Please send announcements m the Editor: Robert
Shelton, 1850 Union Street, Suite 1548. San Francisco.

\CA 94123, fax: (415) 928-3036.

plains techniques to identify classes and objects. The second

introduces the authors method for object-oriented design, a
graphical notation for the methody and includes practical

advice on the challenges 01 managing object-oriented de-

sign projects. The third section is devoted to tive realistic ap-
plication projects, each of which is a complete design ex-

ample implemented in a different OOP language: C++,

Smalltalk, Object Pascal, CLOS, and Ada.

(retat ionships and dependencies) in all three dimen.
sions with some level of animation.

Then, and only then, do I have something compa-
Table to those chemical engineers.

Implementing the models.
What to do on completion of this application model
poses something of a problem. The designer would
now have amazing technology with a superb picture
of the design that is absolutelv correct. This adds new
meaning to the words qualiti and completeness in that
the design Ls rigorous, meets the user requirements,
and contains all the details required to fully portray
not only the image of the obiect model but also the
solution. The only output the designer should expect
is a working application fully implemented in any lan
quage of choice.

1 don't want to see the diagrams, I con't want to
see the Teams of paper documentation, I don't want
to see the methodology, and I especially don't want
to see the coded (language) application because, on
achieving all the above, what we will reallv have con-
structed is a graphical language that will become as
commonplace to us in the future as today's languages
are now.

After atl, in the last five years how often have you
actually produced a core dump and decoded OCTAL or
BINARY? a -

HOTLINE ON OBJECr-ORIENTED TECHNOLOGY

CRC
There are several books and articles describing what has
become known as the Cl:us-Responsibility-Collabora-
tor (CRC) approach. The approach was introduced at
the OOPSLA conference by Ward Cunningham. IDE-
SIGNING OBJECIr-ORIEN-rED SOFTWARE.3 is the best-known
boc,k Oil the topic.

CRC cards, as they were first conceived, were hyper-
card stacks. Todav, they are most often Sm,111 index cards.
Groups of people sit around a table. First, the group iden.
tiftes the objects, their responsibilities, anti then their col
laborators. Next, the participants role play using the cards
to test tlie dynainic behavior of the system under design.

One of the most valuable benefits of the way CRC
cards are used is the ability to get everyone involved and
stimulate group thinking. Computers are intrinsically
single user. Trying to use the computers during these role
playing sessions was found to be detrimental; thus, the
lack of automation for this portion of the design process.

CRC is the most commonly used methodology for
successfully deployed object-oriented projects.

Training for CRC cards is available from a variety
of vendors. Several have made their own adaptations.
Parcplace includes the superclass on their cards; other
companies have their own vartanons. According to Sam
Adams, Knowledge Systems Corporation has taught the
CRC design method to several hundred people in the
past two years.

Rumbaugh
The methodology most often referred to as OMT is de-
scribed in OBJECT-C}RIENTED MociLING AND DESIGN bv
James Rumbaugh e[at.4 Prior to publishing this book,
the authors used object.oriented analysis, design, pro-
gramming, and database modeling for several years on
a variety of commercial GE applications. Their famil-
iarity with both theoretical and pragmatic issues related
to object-oriented concepts is apparent in the book. In
addition, the book sumniarizes practical experiences on
several medium-sized projects including some insight·
ful lesson learned on each project.

Since the book was published in 1991, the method-
ology has continued to be used throughout General Elec-
tric, especially in GE Aerospace,

ON ect Oriented Analysis, a four-clay course taught by
GE AdvancedConcepts Center,encompasses the GEOb-
ject Modeling technique described in Rumbaugh's book.

OMTool, a analysis ancl design tool which supports
the object model in the method, as well as tool and
method training is available directly from GEAdvanced
Concepts Center.

Researcher ready?
The three methods listed are readv for commercial use,

Other methods may soon be classified as ready, but

VOLUME 3, NUMBER 8 -JuNE 1992

V

most remain in the research category. Development
managers beware.

A CHALLENGE TO OTHERS

During my research I heard a refreshing candot among
the methodology providers. They are sincerely looking
for methods that can help us all deliver commercial sys.
tems. One key individual raised the question "Do we
need a formal methodologv, or is that just a passe goal
left over from traditional methods?" Others stressed the

need for experienced designers to take the time to doc.
Lment their experiences.

This article identifies the right types of questions for
development managers considering a new 0-0 design
method to ask. The methods that were not included in

my assessment descriptions failed oneormore of the cri-
teria: book, author's experience, completed project, tools,
or training. Some were a lot closer than others. I was
told of many books in progress, projects underway, and
tools that are close.

Hopefully this article will provide some additional
motivation for the method providers to "betty up to the
bar" and show us that their elixir has been tested on some-

body other than their unsuspecting next Cilste[Iler. E E

References

1. Lenzi, M. A. From the Editor, OBJECT MAC.AZINE
2(1):8 10, 1992.

2. Booch, G. OBJECH ORIENTEI) DESION wn-H APi'i,10.4 I K)%3,
Benjamin/Cummings, Menlo Park, CA, 1991.

3. Wirfs-Brock, R.. B. Wilkerson, L. Wiener. DESIGNING
OBJECI-ORNIN TElD ;OPTWARE, Prentice Hall, Englewood I
Cl# NJ, 1990.

4. Rumbaugh, J., M. Blaha, W. Premeriani, F. Eddy, and
W. Lorensen. OBJECT-ORIENTED MODELING AND DESIGN,
Prentice Hall, Englewood Cliffs, NJ, 1991

Pam Deck recently joined OrgWare, Inc. as Vice President.
She has been involved in the object-oriented mayketplace since
1985 when she joined Stepstone as a technology consultant
Since leaving Stepstone, Patti has worked for Jackson Sys-
tems Corporationand General Electric, both of which me ac-
tively involved m the objec[technology. She cumrently teaches
a course calted OBJECTMethods that compa?·es and con<
trasts leading object-oriented design methods. She can be
reached at 203.270.1242.

Research Ready

TANDARDS E E

OMG's 18-24 Month View

The Object Management Group
COMG) is dedicated to maximizing the

portability, Teusabiity j and interoperability of
computer software and the business benefits

deived from them.
The OMG 16 the leading worldwide organization
committed to creating a framework and supporting
specifications for commercially available object-
oriented environments.

The Oblect Management Group provides a refer-
ence architecture with terms and definitions upon which
all adopted specifications are based. Implementations
of these specifications will be made available under fair
and equitable terms and conditions. The OMG will cre-
ate industry standards for commerciallv available
object-oriented systems empliasizing distributed appli-
cations development.

The OMG provides an open forum for industry disp
 cussion, education and promotion of OMG endorsed

tedmologies. The OMG coordinates its activities with
related organizations and acts as a technology-marker-
ing center (br information on object-orlented sottware.

Specifically, OMG is focused on:

• Providing object portability across heterogeneous
systems.

I Providing interoperabilitv of applications within i
single object-management system.

Christophey Swne k 117'€Sideiu , Supportingthe design, analysis, and reuse ofobjects.

of the Object Management . Supportmg the asseinbly of obiects to torm larger
Group COMG). He ma·, be components,
reached at 508.820.4300.

• Supptirting the trading and cross licensing of obiects
both between suppliers ant! users.

by Christopher Stone

PERSPECTIVE

Three vears ago, OMG members and staffereated an ar-
chitecture called the Object Management Architecture
COMA). This model was meant to serve as the menu
from which OMG would base its direction and build the
Interface specitications (see Fig. 1). The Object Request
Broker (ORB) component of the architecture has been
realized with the recent issue of the Common Object Re-
quest Broker Architecture (CORBA) Specification 1.1
(March 1992). In addition, the OMG Core Object Model
is currently under development and should be published
bv July, 1992. The goal of this article is to outline the
kev strategic technology areas (not marketing) for OMG.
Reader feedback is welcome. The instantiations of these
technologies from OMG is in specification or applica-
tion-programmer interface (AP]) for in. They all sup-
port OMG's original mission and objective.

Object Request Broker
The Common Object Request Broker Architecture
and Specification Revision 1.1 is OMG's first pub.
lished API. Forty-flve companies have agreed to sup-
port it so far. It describes the interfaces for accessing
objects m a distributed environment long before dis-
tributed object applications have been written. An
object (interface) definition language, a dynamic in-

Architecture for the Connected World

APPLICATONOWECTS 9 | COMMONFACILIT]ES

OBJECT REQUESTBROKER b
V

£ OaderTSERV:FS
| 8/"re 1 041(3./ I :/I'l

HOTLINE ON OBJECT-ORIEN l ED TECHNOLOGY

V

common simulation I would wish to see is a DELETE
against Call or) one of my major entities or obiects in-
side the model. The expert systems bhould apply this
in two fashions; first, a simulated destruct and, sec-
ond, an automated destruct. Triggering the simulanon
01 a manual deletion followed by all those that subse.
quently follow via the automatic deletion will tell mc
what effect 1 can expect across the entire model,
predictable or otherwise.

This provides enormous power to actually see the
effects in motion and respond to al[areas of the model
that give cause for concern. It also allows some other
pause for thought. What happens if I DELETE the ob.
ject EMPLOYEE from mv corporate structure (data) model?
1 f I see unexpected results, I merely modify the model

Imagine a tool that is capable of responding like
a PhD fresh out of college but with no real-
world experience of application or database

design...

to reflect the correct structure and res,nulate

against the model to ensure the correct response. If I
see totally expected and correct cascading DELETES,
then I have created an Automatic archive feature into

the model structure for the actual procedure for
Terminating Employees,

Interfacing with the model
Itis imperative in this kind of technologv that we work
al a much higher level than the current"logical inodel"
space and so I will refer to this as a "conceplual 111(,del"
space. Idealk, this is more flexible and fluid than the
rigidly controlled, methodology-driven logical model of
the past and it is imperative we look at the kind of in-
terface that belongs on a tool of this kind. The inter-
tace, in tact, IS key.

1 need CAD-like imagery to display the model. 1 need
thesame tool that those chemical engineers already have
including the concept of coloured balls (classes of atoms)
with holes (valencv) and slick, (bonds) to represent
classes of objects, methods, and characteristics and I
need these in three dimensions with full animation.

What's more, I also want to create in software the con-
unilinued on noue' 16

Is is not logical, therefore, that we should expect ex-
pert systems to take care of Lhe more mundane applied-
tien of thispredictability and not only guide us to com-
pletion of the model but actively provide the designer
with an automated %ssistant?"

Imagine a tool that is capable of responding like a
Phl) fresh out of college but with no real-world expe-
rience of application or database design-the dialogue
would be invaluable. Iii fact, the analogv that springs
to mind is that of a seasoned professor with a lab assis.
tant avidlv taking notes, notifying the professor of coin-
tradictions and anomalies 0% the dialovue and rhe ob-
ject model ensued. The model could be completed with
no redundancies, no contradictions, and no anointiiies
and the professor's perceptionat awareness of the model
would be significantly increased. Two minds are in-
variably better than one.

Again, given that we have captured the character-
istics of the objects and theirrelationship to each other
in the model the expert systems should be callable of
"putting the model together." In other words, having
defined our obiects and given them characteristics and
subclasses we should he capable of assembling the model
via our requirements and dependencies on a "just do
it" basis. The resulting model (always assuming there
are no "holes") will be complete but may nor be cir-
rect or valid.

ENSURING MODEL STRUCTURE AND VALIDITY

To ensure the correctness or relevance of the model to
the requirements (or in applying change to the model),
these knowledge-based systems have to be capable of
simulating situanons, applying them against the model,
and feeding back to the designer actual results, based on
the structural composition, those cascading actions have
on the model. The.se simulated situations are the direct

results of simulated tranisactions applied against the
model as ifitwere Teal. Tvpicallv, thev should be ADD(ed)
or DELETE(d) elements extracted from a realistic scenario.
Let inc expand on this.

We have known tor some time that the structural

composition of the model will behave in predictable
fashion under certain conditions we call this struc-

turally implied behavior (SIB). Similarly, we know
that certain behaviours display predictable responses
within known structures we call this behaviourallv
implied structure (BIS). (The grounds for this knowl-
edge may be the theme of a subsequent article on the
subject of modelling theory but I would ask the read-

ers' indulgence for the purpose of this article.) The
marriage of these two aspects means that 1 con now
apply this knowledge to mv model to "shake out" the
weaknesses, and make changes bv looking at the eft
feet, and reapplving simulations. For instance, the most

VOLUME 3, NUMBER 9 • JULY 1992

CASE E =

Designing for object-oriented applications:
a CASE for wishful thinking ... by Sue Hardman

Information engineers consider
y application design to be a set of
nal data and process models and

the core of an'
multidimensio

yet persist ir

dest

Sue Hardnkin has been £[con-

sulting applicanons desimer
for ten Nean, specializtng m
data and information engz-
neenng for opmnian s)'stem
Wdormen. She TUnS the Sei·-
VAce Operations gr<)up as part
of the limdi6ct marketing or-
ganitati071 f)?· the Desktop Di
vision of COGNOS Inc., Ot-
tawa, Canada. She may be
reached at 613.783.6861.

producing "blue print" model
ns in schematic form.

I maintain that this is oid.fashioned and inappropri-
ate to the real world of designing complex business
applications.

Imagine chemical engineers trying to construct a
complex molecule using a schematic tool with joined
box diagrants and a rigid ser of diagraniciatiC rules to fol-
low. Would they see the gist, shape, and form of the re-
sulting molecule? Would it be appreciated that a DNA
molecule was, in fact, a double helix? I suspect not. The
chemical engineer of the 19905 has appropriate toot.s,
meaningful colour-coded formal objects, CAD equip-
ment with beautiful display technology, and the ability
to construct, view, and animate not two but three di-
mensions. In return, the engineer actually "sees" his
model,

Why, then, do we information engineers use out-
moded, inappropriate formalisms and tools to express
and view our application designs? Can we be expected
to model adequately and realistically within the con-
straints of current methodologies and flat CASE tech.
nology or do our object models require the kind and
quality of CAD tools that other engineering disciplines
already have?

CASE EXAMINED

The first wave of CASE tools automated standard, "strue
tured" methodologies to produce schematic diagrams
of application design models from either the process

model ordammodelpoint of view. They were elegant to
a degree but assumed fixed design patterns with [aborl.
ous methodologies and construction rules for the de-
signer to follow. They did not make for better designs.
They provided Aome speed during the early design phase
(but not enough to allow for interactive, creative thought
to flow) and they assisted greatly in documenting our
design layouts with a profusion of printed paper. Much
was said about the 'discipline" and "structure" of the
approach but It remains questionable what the real
benefit was.

Now we find the CASE marketplace has gone flat,
Users have been disappointed by overstated promises of
productivity and failure of the tools to respond quickly
enough to the constant system and specification changes
inherent m capturing levels of complexity. Many tools
onlv addressed the problem of designing new applica-
lions; no one tool took on the problem of legacy appli.
cations and data.

I believe, however, that we are about to see a sec-
ond wave of CASE products that will address the fatl-
ures and weaknesses of the first wave with amazing
new software technology, lightning performance, and
the ability to engineer truly rugged object-oriented
application solutions.

In fact, the CASE world may begin to look as follows.

DESIGNING OBJECTIVELY
Without doubt, these tools will be object oriented. The

world of object orientation (like that of top-downstruc-
tured) is one of structure, behaviour, classification, char-
acterization, inheritance, and polymorphism that give
us enough predictability on which to build the model.
Iii other· words, one object is differentiated from another
by the characteristic traits we assign to it and it is these
traits that dictate in what respect each separate object
interacts and behaves in relation to other objects iii the
domain of the model. This is key to designing and en-
gineeting a given object's structure and behaviour. Thus
predictability can be captured.

HOTLINE ON OBJECT-ORIENTED TECHNOLOGY

terface, and a read-on[y interface to an object repos
try have been established.

Interface definition ianguage
The interface definition language (IDL) is the interface
to the ORB core. IDL (including a dynamic interface)
is a language binding meant to make a subsystem avail-
able from a given language. The only language currently
supported is C,* although C++ lexical rules were obeyed
with new concepts added for distribution. Portability
of objects or applications among differing ORBs requires
that applications built with class libraries support IDL;
otherwise, these libraries will not be portable across all
platforms. In addition, database systems have devel-
oped a standard data manipulation language (DML) called
SQL. IDL, in database terins, is a data definition language
(DDL). It is believed most computer languages, in-
cluding DDLs Con relational and object databases) can
be mapped to the IDL

C)bjective: ORB interOperat!071-eriable language-
independent object inte#aces (def,zed in IDL) achieve
intra- and inte?·operabilitY of ORBs.

1. CORBA 1.2

• Clean up work on 1.1

2. CORBA 2.0

. ORB to ORB interoperability
• Federation (object sharing)
• Full Repository

3. CORBA 1.X

0 Lompliance test suite

Object services
Once a communications mechanism and single lan-
guage are in place (the ORB and Object Model), a group
of important, lower-level object services are necessary
to make a commercially viable system. Some of these
can be thought of as ORB extensions (e.g., security,
transactions, persistence), while others are low-level
features for ORB usability (e.g., configuration control,
versioning, object linking and embedding). The list be-
low reflects the present priority of services. This may
change at the discretion of the Technical Committee
(TC) and Task Force.

Objective: to add ualue to the Object Request Broker
by in·oviding distributed services.

* In addition, a structure must be put in place to solicit fast
turnaround of specific language mappings to IDE. These
proposals should be done through a Request for Proposals
(RFP), no Request fur Information (RFI) requued Targets
would be OSFs NIDL, Objective C, COBOL, Smalltalk,
and OSI's GDMO.

VOLUME 3, NUMBER 9 - JULY 1992

V

1. Object Services Phase I
• Persistence

e Lifecycle
• Repository

2. Object Services Phase If
I Transaction processing/

concurrency control
• Security
• Naming/Events

Following this low-level service activity will be ex-
tensions to the ORB and Object Model work to define
interfaces to common classes of applications (e.g., word
processors, process ccintrol systems, spreadsheets). Fliese
are referred to as cononon facttes.

Object model
The most crucial component of the Object Services por-
tion of the architecture Ls a common object model for
describing object/class structure. The Object Mode[Task
Force, active since mid-1990, has finished its draft model,
based on a single structure intended (or design porta-
bility only (the group will address sourcelevel porta-
bility separately). A single model, with a separate com-
ponent (feature) description and profiles (such asa model
for ECAD, databases, distributed applications, etc.), has
been accepted for publication by the OMG Technical
Committee in the OMA GUIDE. The component and
profile section of the core model wit[be done separately
from the initial core work.

Objective: the Object Model defines a language-
independent object scructul·€ and appropTiate compo-
nents and profiles. It will be used as a basis for defining
design portability across all OMG specifications. ye
jared staridards organizations, and ISVs.

1 Core Model-completed at May
27-28 meeting

2. Components/Profiles
• Databases (ODMG)

• Distributed Apps
• Analysis and Design

Common facilities

OMG must define a standard base library of application
classes and how they interact as an extension of the
Object Services work. This will be comprised of defini-
tions of specific application class interfaces for common
applications (spreadsheets, word processors, etc.) at-
ways described in IDL. This work will lean heavily on
the extant Open Systems Interconnect (OSI) docu.
ment architecture standards (such as supporting the
ODAconsortium). but expressed in ORB- and Object

Model-compliant interfaces. These can be considered
"high-level" class libraries. OMG has recently formed
a Special Interest Group (SIG) to produce a survey of
"low-level" class libraries (see description under "Clag
libraries") We expect this activity to begin in late 1992
or early 1993 with several request cycles lasting until
late 1993 or mid-1994.

01>jective: to ensuye application portabilito] and dis
tributed development, the OMG Te showN er,SUT¢
close cooperation of the Ciass Lifian' SIG and the cre
ation of a Conimon Facilities Task Force with the
main intent being u> create a base set of smidl-grained
objects (libraries) compiant with the Object Model,
ORB, and parallel Objec[Sen,ices.

Most commercially available class libraries are
C or C++ based with little or no regard to the

reuse and creation of distributed heterogeneous
applications from them.

SIGs AND DIRECTION

Special interest group activity
Although not directly in the path of standardization
for distributed applications, the OMO supports several
groups developing standards or informal positions in
other areas. The call for this widening of interest has
come from public awareness of OMG as "the place to
go for objects," a perception that we have strengthened
over the last year-

To avoid the losing our focus on the crucial dis-
tributed-application standardization efforts, however,
we have (with the blessing of the TC) separated these
activities from the primary TC activities into "Spe
cial Interest Groups." These semi-autonomous groups
are working in a wide variety of object-oriented in-
terest areas, some developing position papers and oth-
ers actually preparing to establish standards. It is im
portant to note that any OMO SIG publication,
although they need not be accepted by the TC/Board
route of adopted technology, are clearly marked as
such on the cover.

EE E STANDARDS

Class libraries

OMG has recently formed a SIG to study the porta.
bility and interoperability of class libraries. Most com-
mercially available class libraries are C or C++ based
with little or no regard to the reuse and creation of dis·
tributed heterogeneous applications from them. To fur-
ther complicate the issue, some languages (such as
Smalltalk, Serius, etc.) include a base set of libraries
from which to build an application. Others do not (C,
C++). Given that the goal is application portability
and interoperation, this SIG will develop a "survey"
paper discussing availability and interoperation of low.
level base libraries (i.e., list, string, array, etc.). The
objective is to provide a set of base libraries for each
language, ensuring interoperability. The libraries con.
forming in a CORBA-compliant manner would then
be certified by OMG. 1f appropriate, a task force could
be developed to issue standard interfaces for interop-
eration of these low-level base libraries in late 1992 or

early 1993.

Object query
A major facilitv of any database management system,
including object-oriented database management systems
(ODBMSs) is an interface for querying the records of
a database. The Object Data Management Group
(ODMG) and ANSI SQL 3 are expected to be instru·
mental in providing assistance in this area as well as ex-
tending the semantic-based Object Model to include a
syntax or "object SQL." They may also define the fea.
ture set of a low-level browsing tool to be available to
OMA··compliant applications, for which the data records
are application classes themselves. This will be a mid-
1993 activity.

Analysis & design
Chaired bv Andrew Hutt of ICL, this group is survey-
ing object-oriented analysis and design methodology
(CASE toots, etc.) forcommonalitv with a view to draw-
ing the diverse directions of this technology to some
common approach or notation. This group has gathered
considerable momentum and will issue a report corn-
par·ing various methods with a reference model at the
July, 1992 meeting in San Francisco. The group has set
as its objective to create a task force in early 1993 to es·
tablish specifications for:

• repository model for object analysis and design

• tools for object analysis and design

0 tools-interchange format.

Databases

The first of the OMG SIGs was created after the real.

ization thar all known object-oriented database com-

HOTLINE ON OBJECT-ORIENTED TECHNOLOGY

panies are members of the OMG. This group, inactive
during the Object Model work, will continue to develop
standards of interest to object-oriented databases and
object-oriented extensions to relational databases. This
group has been transposed by the Object Data Man,
agement Group (ODMG) and has responded to the Ob.
ject Services RF1 with a single architecture. Rick Cat-
tell of Sun Microsystems leads the group.

Smalltalk

Despite the long history of Smalltalk, no consensib
developed standard for the language exists. Duane Bay
of Parcl?lace Systems is pulling together a group within
OMG to rectify this situation. A paper is expected in
Quarter 3 of 1992.

End-user requirements
A first draft end-user requirements document, speci.
fying requirements that impinge on object-oriented
distributed applications, was developed by this group
led by Mary Ostlund of AT&T in early 1990. Pat
Davis of Boeing is a likely candidate to lead the com-
pletion of this effort in cooperation with Stefan Karl-
quist of Ericsson in Sweden. The visibility of this group

Enterprise modeling, ct:,w mi,eify<>m page 6

could be simulated and stored in class libraries. Class li-

braries will allow users to model their organizations by re-

questing the services required by their enterprue from
standardized collections of reusable simulations. Service

requests will be directed to the appropriate class libraries
by software agents called brokers or oraders.

Reality modeling
In the object paradigm, enterprise modeling ts the on-
going collection ofsimulation models that represent the
real organization. When the organization requires new
services or is called upon to behave in new ways, new
objects or new versions of existing objects will be added
to the collection. Reality modeling eliminates the need
for the time-consuming attempt to model the organiza-
tion from the top down. Instead, the enterprise model
evolves over time by integrating all the object simula-
tions that provide the services required by the organi-
zation. Put simply, the object paradigm enterprise model
is the sum ofall the classes of objects used to simulate
the organization.

Reality modeling also means that the dynamic.
simulation model can be used to replace current ac-
counting and management reporting systems (accoun t
ing is, after all, just an attempt to represent reatworld
transactions) and control the real organization (e.g.,
when the model realizes it is the end of the month it

could automatically initiate the payroll process).

VOLUME 3, NUMBER 9 E jULY 1992

will rise as more end-user organizations join OMG.
OMG will also look for input from Corporate Facili.
tators of Object-Oriented Technology (CFOOT,
chaired by Bob Marcus of Boeing) and the Forum on
Distributed Object Computing (FDOC, chaired by
John Rymer of Seybold Computing). Both of these are
eariy user groups hopefully developing business
scenarlos and requirements.

CONCLUSION

With over 260 member companies and growing at a rate
of five new members per week, OMG has positioned it-
selfrobring dramatic change to thewaywe develop soft.
ware, It is imperative that the user community begin to
get involved in this process to provide both business and
technical direction for OMG's members

The next Technical Meeting will be held July
21-22, 1992, at the Sheraton Palace Hotel in San
Francisco. This will be held in conjunction with the
Object World Tradeshow held at the Moseone
Center July 21-23, 1992. Look for future Object
World shows to be held in 1993 in Boston, MA, and
Weisbaden, Germany. 2 -

CONCLUSIONS

The methods, techniques, tools, class libraries, and
modeling notations necessary to apply the object
paradigm to enterprise modeling are still under devel-
opment. 1 intend to explore developments in these ar-
eas in future articles. The information-engineering
approach to enterprise modeling, although well-
intentioned, has some serious shortcomings. The top-
down study of data, which may be useful to plan and
design relational databases, is not going to provide a
rich, dynamic understanding of the enterprise. Dy-
namic-simulation models of the enterprise, however.
seem to be a promising opportunity for management
to better plan, control, and operate their organizations.
The models can be easily verified against the real world.
Simulations that effectively provide the services re.
quired by the organization can be used and enhanced
over time. Ineffective simulations can be immediately
rejected at little or no cost. Object technology appears
the appropriate vehicle to fulfill this promise. m a

References

1. von Halle, B. The information systems architecture
tightening bolt, DATAB.ABE PROGRAMMING & DESIGN,
january, 1992.

2. Durham, T. What's your line ?, IBM SYSTEM USER,
July, 30-34, 1990.

3. Zachmain, J. Frairiework wisdfim, DATA BAs-ENT:wsi.I:·ri E]22
20(1):11,1992.

m Your Turn E
How about it? f low me we doing? This is the place to send us youT message. Tefl us what you like and what you don't, what you'd like to
see but don't - or whatever oiherfeedback you'd hke to send. Seild comments to Robert Shelton,1850 Union Street, Suite 1584, San
Fransisco, CA 94 1 23, Fax: (415)928-3036; or, d you're ordenng, send along w'ith your order.

Please check whichever box applies: -L\-/42-frc]
Read entirely Scanned Found helpful Will refer to Didn't read

Feature (Kulinek) 9 JO U O
Feature (Adams) O U O O U
International Update J 0 0 0 0
ODAMS L.l Cl U U O
Dil 0 0 0 1 U
Product Announcements O 0 0 0 0
Calendar 0 0 0 0 0

Please rate the following 1 (dislike or strongly disagree) to 10 (like or strongly agree):
Presentation of inaterial - L.(,Innients

Accuracy of material - Comments:

Overall helpfulnebs in your job _ Comments:

What e'[se wcmuld Viu hke to See in THE HOTE.iNE?

Any other comments?

Name, title & phone (optional):

hotline 4 on

OBJECFORIENTED
MchnolGgy

OY£S, plug me into the latest thinking and develormentm in object-oriented technology. Enter me as a subscriber at the term marked below and
rush me the current issue. This isa risk-free offer - 1 may cance[my subscriptien at any time and pn,inptly receive a refund for the unused portion.

1 year (12 issues) 2 years (24 issues) Back [SSUeb @ $25 each (327.50 joreigiD:
0 $249 121$478 (save $20) Vol.1, Nos.

(outside US add $ 10 per Year fin· a,7 service) Vo[.2, Nos. Vol.3, Nos.

O Phone order U Bill me Mail (and make out check, Send me a complimentary
Call Subscriber Services 1 Check enclosed if applicable) to: copy of your relatedTHE Ho·n.INJL

(212)274-0640 U Credit card orders Subscriber Sejviceb publication(s):
12] MasterCard P.O. Box 3000, Dept. HOT

O Fax order J Viha Derville, N] 07834
(premi imiers ilitism be prepxud in l.'6 0 TICE JOURNAL OF OBJECT-Fill out term and name/address J American Express .6716]irdyaw Ma U Sbailk)

information, then fax to: C)RIENTED RAL)(,RAMMING

(212)274-0646
Card# Expiration Date 1 OBJECT MAGAZINE

U Send me a copy of Signature
THE IN·lERNATIONAL U THE C++ REPORT

OOP DIRECTORY
Name

@ $69 ($81 foreign) Call Subscriber Services

(aN dITecton indas inust be pTepaid: Company (212)27+0640
fax oy mad credit card mformanon to Streer/Bu.[ding# or send order to

S IGS, 588 Broadwa> . #604, Ni'(7 00 1 2. SIGS, 588 Broadway, *604
C„y/Province

make check pa>'able u) C)OF Directi)77· New Y,wk.NY :0012

Foi·eign orders miat be prepaid in US ST/Zip/Cointr¥
dollars draqun on US bank.) Teleph)na

hotline A k On

OBJECTORIENTED
technology

VOLUME 3, NUMBER 10 THE MANAGER'S SOURCE FOR TRENDS, ISSUES & STRATEGIES AUGUST 1992

Object technology: toward
software manufacturing

Object technology (OT) provides an
opportunity for software manufacturing

offeTing significant benefits other industries
have enjoyed since the Industrial

Revolution 200 years ago.
OT brings a fundainental change in die way we think of
software.]I is about building software products from exist-
ing software parts and building new sofrware parts that can
be reused throughout the corporation and the industry.

Today, inost software is developed using a structured
approach. Each application is an individually crafted
product developed with little, if any, consideration for
reuse. This is quite different from the approach of other
industries, such as hardware development and car man,
ufacturing, where building and reusing parts has a cen-

/d/1,/ tral place in bui[ding products. For example, we haveparts builders such as Intel or Motorola and parts reusers
such as Compaq or 1 IP. It is hard for us to envision build-

Eugene Kulinek ing computers from raw materials without parts.

Now, imagine we could build an application from
available software parts.We could reuse small parts such
as account and cheque or large parts such as foreign ex-
change or spell checker. We would also build new parts
that others could reuse. This would lead to improved
software quality, productivity, and flexibility with de.
creased complexity and cost.

This article discusses the transition from today's soft-
ware development process to a new approach-soft-
ware manufacturing. We will discuss required changes
in software architecture and organization and some of
the most important aspects of the changes needed to
benefit from OIl

FROM CRAFT TO PARTS

Object technology changes the paradigm from craft to parts.
It requires a coordinated standurdization effort, discipline,

atid coininitment.]t introdi Ies new developnient processes,
analysis and design techniques, and programming languages.
It demands new ways of organizing development teams.

The following sections discuss the transition from to-
day's software development process into software man.

a)ntinued .),1 f)age 8.

IN THIS ISSUE

FEATURE-Object technology:
toward software manufacturing Eugene Kulinek aN FROM THE EDITOR

FEATURE-Return on investment:
software assets and the CRC technique Sam Adams

Sergiu S. Simmet

Book REVIEW-OBJECT-ORIENTED ME™DDS
reviewed by Brian Henderson-Sellers

ALENDAR

INTERNATIONAL PDATE-bject-oriented
FYI

technology in Japan Daniel Levin

ODBMS-Providing commonality
while supporting diversity

PRODUCT NEWS

PARTNERINGS AND ACQUISITIONS

ITIE-U-IT;Y-TETI-57

 software manufacturing. L et's continue that conversation, keeping in mindn a previous issue of the Hotline, we posited the object of this technology:

a phrase from Mr. Sam Adams' column this month that 'reuse on a large
scale cannot be successful without...software components that are reuseful as
well as reusable.'

Our featured writer, Mr. Eugene Kulinek of the Royal Bank of Canada, takes
the stand that object technology gives corporate and commercial software de-
velopers the opportunity to take advantage of software manufacturing, which
he defines as building applications from off-the-shejf software parts. Manu
facturing, Mr. Kulinek rightly observes, is making the move from craft to parts,

At a recent conference. Dr. David Taylor of Enterprise Engines used an anal-
ogy drawn from the manufacture of personal computers. The commercial PC
can be understood as an assembly constructed from integrated circuits (ICs)
and plug-in subassemblies. Subassemblies such as interface cards, power sup-
plies, and memory banks are themselves constructed from integrated circuits.
For most PC done manufacturers, even the motherboard is a purchased sub-
assembly. Discrete components are used sparingly, and only to support ICs.

The bottom line is parts-purchased, off-the-shelf parts. PC makers could build
their own motherboards including application-specific integrated circuits
(ASICs) to provide specialized features, improved performance, or built-in re-
placements for standard interface capabilities such as video display and net-
working. Most do not opting instead to buy them from parts manufacturers.
Those that do, reuse their ASICs!

Simple enough, we software developers say. Production computers are not
built from discrete components. After all, what sane hardware (developer would
build a CPU from scratch? Mostofus who have been in this industry for more
than a few years have heard of (if not used) the PDP 11/70, the VAX 11/780,
the Cray, or the PYRAMID (with a four-yes four-discrete board RISC CPUI),
Performance and proprietary features were, of course. the driving factors in
an era when the "microcomputer" was already a well-established concept.

What many of us don't remember, however, is the struggle to overcome the
Inherent drawbacks of custom design. I remember the delivery of early pro-
duction VAX 1 1/780 systems, accompanied by teams of soldering-iron-armed
technicians sent along to debug the CPU wiring. The machines did not, of
course, work on arrival. They had to be debugged first!
Credit DEC with building most of their VAX 11/780 CPUs with ICs, though.
The technology was still called LSI (large-scale integration). Each IC must
have had at least 100 transistors in those days! Technology advances and
manufacturing technology made possible the transition from low-level in-
tegration and custom-built, field-debugged processor boards to the whole-
sale use of commercial subassemblies and ICs. Here is where we reconnect
with Mr. Kulinek's column. The software industry has left the period in its
evolution where a reasonable argument can still be made for complete cus-
tom building. Sure, our organizations still need their ASICs but as Mr. Ku.
linek points out, there should be people on our development teams whose
job is to build ASICs, which will become corporate assets. As for the rest,
what exactly is our excuse?

The modus operandiof today's corporate and commercial software develop-
ers should be to assemble commercial components, corporate ASICs, and off-
the-shelf class libraries into finished assemblies (applications) that address
business-user and product-customer needs. Let's ge[specific. What parts are
available and how do you figure out which ones to use?

Today proven. high-quality class libraries can be purchased from many man-
ufacturers to provide graphical user interface (GUI) services. Several provide
what Parc Pia€ e Systems Chairman, Dr. Adele Goldberg, calls "zero-cost porta-
bility.' These products allow developers to assemble one application and de
liver it to various combinations of Mac, DOS, MS-Windows, X Window Svs
tem/UNIX, NeXTStep. and even OS/2 Presentation Manager without changing
a line of application code. Such portability is available to any application de-

con[Ii,ued on page 3

Editor
Robert Shelton

SIGS Publications, ine. Advisory Board

SiGS Publications, Inc.
Richard F. Friedman, Founder & Group publisher

Art/Production

hotline 2, on

0¥CPORIENTED
**nofogy

Tom Atwood, Objeck Des,471
Grady Booch, Rariona/
George Bosworth, Digaam
Brad Cox' nfon?iatio.?Ag€>Com*
Chuck Duff, The Whtewater Group
Adele Goldberg, Parcmace.System,
R. Jordan Kreindier, Generaa Elean:

Mellir Page»jones, Way/and Systems
Tom Love, Consukant
retteand Meyer, toteract:ve Softwa,e Eng,neering
Sesha Pratap, Cent£>rt ine Software
R Michael Seashots, Versmt Object rechodogy
Bjarne Stroustrup, AT& T Bel Labs
Dave Thomas. Object Techm/ogy h,rerriational
Hon. [NE Editorial Board

Jim Anderson, Dms,tak, Kno.
Larry Constantine, Cons„hant
Mary E.S. LoomiS. Versant Obied Technobgy
Reed Phillips. Knowledge »rems Corp
Trygve Reenskaug, Tasko> AS
Zack Urlockeri 80,fand Intemationa/
Steven Weiss, Wayhima Sysrems

Kristina Joukhadar, Managing Editor
Pitgrim Road, Ltd, Creative Direapon
IElizabeth A. Upp, Producten Editor
Jennifer Englander, Art/Prodluctlon Coordmalor
Circulation

Diane Badway, Circulation Busness Manager
Ken Mercado, Fulfillment Manager
Vicki Monck, Circulation Assistant
John Schreiber, Circulanon Assistant

Marketing
Sarah Hamilton, Promotions Manager
Caren Polner, promotsons Graphic Artist
Administration

David Chatterpaul, Bookkeeper
Ossal'Ila Tomoum, Bookkeeper
Claire John5ton, Conference Manager
Cindy Roppet, Confererlce Coordinator
jennifer Fischer, Public Remations
Helen Newling, Administrative Assistant
Margherita R. Monck, General Manager

Jane M. Grau, Co„tributing Editor

T 25 Ho i,NE ON OBJEC ,-ORHN ,&.i, TbaiN< 20<.Y USSN #1044-43193

is published monthly by SIGS Publications Inc., 588 Broadway,

NY, NY 10012, (212}274 0640. ©Copyright 1992 SIGS Publica
lions, Inc. Al J righls reserved. Reproduc tion 01 th is material by

electron < Iran5mission, Xefox or any other method will be treated
as a willful violation of Ihe U S. Copyright Law and is flatly pro.
hibited Material may be reproduced with express permission frorn
the publisher. Mailed First Class Subscriphon rate -one year (12
Issues) 5249, Foreign and Canada $279. Single copy $25.
POSTMASTER: Send address changes & bubse.ription orders to The
HoniNE:, Subscriberbervices, P.O. Box 3000, Dept HOT, Derville
411 07834.

Submit ed,torial correspondence to Robert Shelton. 1850 Union
Street, Suite 1548, San Francisco, CA 94123 Voice. (415) 928-
5842, fax.(415) 928-3036.

SIGS
PUBLICATIONS

Publishers of Nothne on Ob)ect-Omented Techoo/osy, Journal of
Object.Oriented Progran)ming, Object Magazine, 7'he X low·nat
The C++ Repon; l'he Snal Itaik Report, arid The Interriamonal OO P
Directory.

PARTNERINGS &

ACQUISITIONS

IBM Corp. is acquiring an equity position in Sapiens International. The companies also announced a software
development assistance agreement, the goal of which is to expand the set of application development tools supporting
IBM's AD/Cycle. As part of the agreement, Sapiens will extend its client server product, SAPIENS Workstation, to the
092 platform.

Sunpro established operations in Europe, opening its European headquarters in Velizy, France. Sun Pro plans additional
regional offices in the United Kingdom and Germany by the end of 1992.

Lucid, Inc. has named John DeArmon as Manager, Product Marketing. DeArmon will oversee product strategy and
direction for Lucid's Energize Programming System. DeArmon will also manage marketing for Lucid's C and C++
compilers. DeArmon was most recently a sottware industry analyst for Dataquest, focusing on the computer-aided
engineering (CAE) market.

Object Design, Inc. announced the formalion of Object Design Japan K.K., a wholly owned subsidiary in Tokyo, Japan.
The new company, headed by managing director Michael J. Verretto, provides marketing and technical support for the
company's ObjectStore object-oriented database management system (ODBMS) to its Japanese distributors and strategic
accounts in Japan. Object Design also announced it will port ObjectStore to the newly announced UnixWare operating
system for Intel-based PC platforms from Univel. The company has also joined Univers Early Access Program.

Symantec Corporation and Apple Computer, Inc. announced a development and marketing agreement to provide a
cross-platform application frarnework for Apple Macintosh computers and Microsoft Windows-based PCs. Symantec
will provide the framework-the Bedrock framework-it is currently using internally to develop applications for
Macintosh computers and Microsoft Windows. Symantec will leverage Apple's engineering resources and current
object-oriented framework technology internally and work with Apple to support the developer community's transition
to the Bedrock framework.

Ram Banin, a cofounder of Daisy Systems, now Dazix, is to become senior vice president of the Telecommunications group
of Teknekron Communications Systems, Inc. of Berkeley, CA. At Teknekron, Dr. Banin will oversee the network management
systems and object-oriented software businesses for telecommunications markets,

Siemens Nixdorf Informationssysteme AG (SNI) signed a licensing agreement for several of Hewlett Packard's CASE
Soft Bench products: SoftBench, as it is incorporated in the Toolbus CASE environment from Informix; Encapsulator; and
C++ Developer. SNI will incorporate the HP technology in DOMINO, SNI's CASE technology. in addition to the
licensing agreemenli SNI expects lo become a sponsoring memberof CASE Communique, astandards effort.

Enteraclive Software Engineering, Inc. (ISE) and Versant Object Technology announc:ed they will jointly develop an interface
from the VERSANT Object Database Management System (ODBMS) to ISE's object-oriented programming environment, ISE
Eiffel 3. The interface will be developed in conjunction with ISE's European associate SOL of Paris. The VERSANT-Eiffel
interface will be integrated into the Piffelbtore persistent mechanism.

IBM Corporation will market the Digitalk PARTS product line through its Cooperative Software Program, The two companies
previously announced that IBM would market the Digitalk family of Smalltalk/V programming environments.

Hewlett·Packard announced it will license its SoftBench Broadcast Message Server technology to software suppliers that
want to create integrated software environments. HP uses this technology as the core of its SoftBench CASE product line.
HP also said its Broadcast Message Server software will comply with the CAD Framework initiative (CFI) specifications
for inteMool communication in electronic design-automation (EDA) environments.

HyperDesk Corporation announced that the HyperDesk Distributed Object Management System (HD-DOMS) will support
Unix\Vare from Univel. Unlvel has provided early versions of its software to allow development of products supporting
Unix\,Vare.

Mercury Interactive Corporation and Centerline Software, Inc. announced integration of their respective
automated testing tool and programming environments. Mercury's XRunner, a robust automated testing system
for The X Window System-based software, now interfaces seamlessly with Coderenter and Objecteenter,
Centerline's C and C++ programming environments. This announcement coincides with the unveiling of
XRunner's new text-recognition teature.

VOLUME 3, NUMBER 10 • AuousT 1992

CASE:W 4.0
CASEWORKS, Inc.,
1 [)unwoody Park,

Suite 130, Atlanta, GA
30338,404.399.6236

IRT capability
ICONIX Software

Engineering, Inc.,
2800 28th Street, Suite 320,

Santa Monica, CA 90405
310.458.0092

C++/Views 2.0
1 iant Software Corporation.

959 Concord Street,
Framinghant Massachuseus

01701-4613,
508.872.8700

Better-C V3.0, Top-
Down Designer

V3.0

Sitico-Magnetic Intelligence,
24 jean Lane,

Chestnut Ridge. NY 1 0952,
914.426.2610

TurboCASE,
version 4,0
StructSoft; Inc.,

5416156th Ave. SE
Bdievue. WA 98006,

206.644.9834

Quest Objectviews
C++ 3.01 (OVC++)

Quest Windows
Corporatio!1.

520£) Great America Parkway,
Santa Cfrara, CA 95054,

408.496.1900

CASEWORKS began shipping CASE:W 4.0 for the Microsoft Foundation Classes (MFC), a code generator producing
code for the MFC Library for C/C++ 7.0. In addition to MFC, CASE:W 4.0 supports Windows C APi and Borland's
ObjectWindows. CASE:W's snap-on capabilities eliminate the risk of selecting the wrong ciass library. Developers can
generate code for the Windows C API or either of the class libraries. Once they have completed that work, they can
usnap-on" a new knowledgebase and generate the code again in a different class library. CASEWORKS is also shipping
CASE:W 4.0 upgrades for its C and ObjectWindows knowledgebases.

ICONIX announced Integrated Requirements Traceability (IRT) capability in their multiuser, network-based CASE product
PowerTools, allowing requirements to be incorporated into a CASE model and considered throughout the development cycle,
Users can either copy requirements into a model from a source document or enter them as they are derived. Relationships
between requirements can be entered and tracked and requirements can be allocated to appropriate elements of the model,
At any point, one can trace requirements and verify that all have been considered in analysis and met by the design. Beyond
documenting the accomplishment of project requirements, another major feature of the new capability is impact analysis,
allowing ihe user to easily determine the impact of potential changes by reporting on every portion of the CASE model that
will be affected.

Liant's C++/Views 2.0 enables programmers to develop portable applications for Microsoft Windows, 05/2
Presentation Manager, and UNIX/Motif without having to know anything about the specific rules and arcane structures
of each windowing system environment. Programmers can develop software for one GUI and port the source code
unchanged to any other environment by recompiling. Users are free to switch compilers and platforms as needed.
Supported compilers include Borland 3.0; Zortech 3.0 and Microsoft 7.0 for MS Windows; Zortech 3.0 for OS/2 PM;
and Liant C++ and all other standard UNIX compilers for UNIX/Motif. New features include a reengineered Notifier
class that gives users full control of resource-based dialogs and support for multiple document interface (MDI). In
addition, keyboard control of dialog support conforms to Microsoft Windows, standards for both resource-based and
dynamic dialog boxes with complete support for accelerators. C++/Views includes a C++ class browser and source-
code development tool, C++/Browse, which includes new editor customization features. automatic save of editing
operations and restart of browsing sessions, ability to list all inherited member functions, and a streamlined selection
of class dependencies.

Silico Magnetic Intelligence (SMI) announced Better-C V).0 program generator for C/C++ programmers and proiect teams
and Top..Down Designer V3.0 C.ASE design tool for C/C++. Among several enhancements, Better-C V).0 boasts C++ code
generation and Top-Down Designer V3.0 has been augmented to support object-oriented design specific to C++. The
Beller-C V).O package consists of tutorial, program generator, library source, and include files. The Top-Down Designer
V3.0 package consists of tutorial and interactrve designer software. Both require an IBM PC or compatible with DOS
Version 2 and up.

Version 4.0 of TurboCASE for the Macintosh, from StructSoft, Inc. offers full object-oriented support for encapsulation,
inheritance, and polymorphism. 4.0 supports five new editors, four of which are graphics editors thal create different class
diagrams. The fifth editor, a dictionary, gives the user the ability to define classes. New TurboCASE diagrams include Class
Hierarchy, Class Definition, Class Collaboration, and Class Design, all integrated through a project database, providing
multiple views of the software design. All information entered in a diagram is automatically recorded in the Data Dictionary,
which eventually becomes the design specification. TurboCASE supports most widely-used methodologies including
Shlaer/Mellor for object-oriented analysis.

Quest Windows Corporation announced the release of Quest Objectviews C++ 3.01 (OVC++), a comprehensive,
object-oriented user interface development environment for the X Window System based on and 100% upward
compatible with the InterViews toolkit. OVC++ features full support of OSF/Motif and OPEN LOOK including dynamic
support for X resources: event translation, menu mnemonics, menu accelerators, predefined dialog boxes, option menu,
scale interactor, paned window, file selection box. OL push-pins, Motif tear-off menus, and full key-board traversal.
OVC++ offers a complete set of development tools including ObjectBuild Can object-oriented C++ graphical user
interface builder), OVC++ class browser, periodic table of OVC++ objects, sample demos, and source.

HOTUNE ON OBIECT-ORIENTED TECHNOLOGY

cowl,uked junninge Z dowC

, train,veloped for the OBjECTWORKS/Smalltalk virtual machine by
design. NeXT and OS/2 aretobe delivered soon. Smalltall<N Char-
currently supports MS-Windows and OS/2, and will shortly inlpri
support x/UNIX. For developers outside the Smalltalk world, an ed

such libraries provide capabilities unavailable with your raw ing s
development environment. Another group of class libraries than
that can be purchased for Smalltalk dialects, C++, Objective- failu

C, and Eiffel, among others, provides truly object-oriented Cess€

views of databases in retationa I database nianagernent systems Ah, j
(RDBMS>. Given the momentum behind Object COBOL. we regar
should expect class library products for it shortly, as well. NeXT pone
bundles a public-domain compiler on their systems (available whoi
from the Free Software Foundation) that will compile any com- velot
binanon of class> libraries and traditional functions from ANSI cost

C C++, and Objective-C. Manufacturers like SUN and Hewlett- avoi(

Packard are also delivering development environments that purcl
allow developers to lake advantage of class libraries written hunc

in languages other than their native one. That'

Could most of us see financial and delivery-time value in such Mr. 1

components? Can we agree that development environments jects
are rapidly breaking some of the language barriers by provid- ware

ingenhanced-and often portablevirtual-machine capabil- nolo:
ities? Do our projects require us to build our own GUI and critic

database classes, or could we use commercial products al- tion 1

ready available? When we really stop to look at the commer- the o

cial components available today, is there anything we are re- chan

ally going to do so much better that it will justify the total cost? velot
So why do we allow developers to continue to build our ap- bette

plications from scratch? Whose responsibility is it that our or- lean

ganizations don't havea reuse culture? Mr, l

1 will leave this thought for consideration and return to the sec- cycic
ond question I raised earlier. diffe

In h is fi rst column of a four-part series, Mr. Sam Adams 01 Knowl- diffe

edge Systems Corporation addresses the question of how to de- orga

termine which classes and class libraries to use in assembling qual

an application from parts. He suggests that understanding a men'

problem (analysis) or developing a solution (design) can best sive

be done through interactive role-playing. The dass«.sponsi_ difte
bility-coliaborator (CRC) approach he describes can help take an e·

developers and usei·s out of the computer realm and empower surec

as Cthem to act out and feel the problem or solution domain.
Levit

Extending this construct to software manutacturing, one could
easily substitute off-the-shelf business ASICs and software ICs Mr.

where a particular class was needed-at anv level of granu- of th

larity from Mr. Kulinek's spell checker class to a 'simple"win- Jects
dow or database class. As several of this month's authors point

ofth

Out, responsibility for making this come about lies with de- mon

velopers and managers. This is al j about creating a reuse cul- war€

ture. in upcoming issues, Mr. Adams will show us various as- and

pects of using and extending the CRC concept. This is only conc

one proven approach to understanding and designing that fo rt 1

does not require practiti oners to b u y pa rt kula r brands of com-
that

puter-aided software engineering (CASE) tools. It supports
IBM

reuse and validation of the class selected for reuse through assei

interpersonal simulation. Alth,

Where Mr. Adams is headed is toward software asset man- rent

agement: developing and buying components and subass€)m
blies that increase in value over time through reuse and safety.
The first be netit is fairly obvious. If part Windowmass costs $500
and is used once, it is less valuable to our organization than
if it is used 100 times. The cost per use is $500 and $5, re-
spectivety, with approximately the same overhead each time
for selection and validation (in other words, it really does cost
you something to make the decision that Windowelass Es the
right part to use, and regardless of cost, we have to consider
it). The second benefit is less obvious to people involved in
new development with limited support and maintenance ex-
perience. If you buy and use Windowaass, and I Con a separate
project for our company, perhaps) build my own MySuperwin-

VOLUME 3, NUMBER 10 -AuousT 1992

[ass, both have to be maintained. Users would have to be
9(:1 to recognize and use each of our window objects.
ges to improve one would probably [ead to a demand to
ove the other; which increases the likelihoodoffailure-
ent that will probably occur just when the CEO is watch.
omeone use this nice new application that she just au-
zed $750,000 tobuild! Maybe, if we're really lucky, the
re would occur just as my paycheck was being pro-
d...then, and only then, would I learn?

es, it all comes back to money. Maintenance is generally
ded as 80%-plus of the li fecycle cost of a software com-
nt, so reuse would avoid 100% of the cost of something
,e real (lifetime) cost is not completely evident to tile de-
Er. Were I to reuse your WindowClass, 50% of the lota
(as well as uncounted collateral damage) could be
led-if for no other reason than the commercial part you
iased had already been well debugged by yourself and
Ireds or thousands of other customers. That's leveraget
s software manufacturing,

)aniel Levin of SERVIO Corporation, Japan, writes of ob·
and oat bran-sort of. The Japanese are importers of soft-
technology, especially when it comes to object tech-

gy. Beware, he cautions-Japanese culture promotes the
al value needed for reuse: humility. The simple assump-
hat I would probablv not build a better WindowClass than
ne built by a parts maker specializing in GUI technology
ges my entire auitude and approach toward software de-
xnent. Personal value is placed on using someone else's
r idea rather than on making my own just to *be all that
be."

evin aiso promotes iteration in theproduct-development
3. This reminds me of Dr.Goldberg's warning about the.
ence between protocycling and iteration, an important
ence here. Like Dr. Goldberg, Mr. Levin talks about an
nized whole process that starts with a clear goal and a
ty development process (such as Total Quality Manage-
), and then rapidly improves the product through exter-
customer feedback. Change is the norm, but this process
rs radically from protocycling, where iteration becomes
<cuse for undisciplined hacking. The former can be mea-
1; the latter cannot. An iterative approach to design (such
RC) also makes possible component reuse, where Mr.
i suggests the Japanese have the rest of us fla [beaten 1

Sergiu Simmel of Oberon Software takes a look at some
ese concepts m the context ot managing persistent ob-

Keep software parts in mindi as you read his description
e Kala architecture. Then consider efforts like the Com-
Object Request Broker Architecture (CORBA), Open Soft„
Foundation's Distributed Computing Environment (DCE)
Distributed Management Environment (DME), and the
ept of micro-kernel architecture that underlies OSF's ef-
o provide a common virtual machine across platforms
took as different to their users as do UNIX. HP MPE, and
MVS. They are all about building assemblies from sub-
nblies ard parts,

Jugh it won't be easy, our focus must be on two concur=
tasks: mak parts and use parts,

RETURN ON INVESTMENT

Software assets and the CRC technique by Sam Adanu

In most large organizations today, software is a
large financial liability. Hundreds of millions of

dollars are spent annually in an attempt to
extend the life of millions of lines of brittle,

patchwork code.

OOP AND ROI

KSC's experiences over the last six years helping large
organizations adopt object technology have shown that
maximizing the return on investment in OT requires
a new set of assumptions:

1. Software is a corporate asset As an asset, it has a
value that can appreciate through investment in its
qualitv and reusability. This value is enhanced when
a software component can be reused m many differ-
ent applications.

Smn Alms is the Senio Con,

suMmt mud cofounder of Knowl-
edge Systems Corporation.
Since 1984, MY. Adams has
been actively devekiping object-
onented software systems m
Smalkdk antl is widely recoe
nized f)r his expertise. He is
codeueloper of the gro® facili-
tation techniqtte u.hi, CRC
cards and ha h?en traizang cona-
putu pofessionals m object
oriented technoUy for ot,er six
ean. Ah. Adanis has saved
071 se©eral coi@Enc) comm#
tea and is a frequent speakei·
andpan€lkitai /eading india[?7
conferences. He can be reached
b>' phone a 9 19.48 1.4900
or by fax ot 919.460.9044

The situation is expensive in the short term and intel.
erable in the long term.There is a consensus among coin-
puting-dependent organizations that something must be
done, and soon.

Most large organizations today are aware of the
often miraculous claims made about object technot-
ogy (OT)' Many have decided to integrate the tech-
nology into their businesses. The question for these
organizations is not "Do we go object-oriented?" but
"How do we maximize the benefits of object tech-
nology and manage the risks?"

Answering these questions will be the focus of a se-
ries of articles, of which this is the first, concerned with
meeting the challenges of enterprise-wide computing
using OT. The following topics will bc covered:

• Defining the requirements for maximizing return on
investment iii OT.

• An overview of the CRC technique and how it can
help a business create reusable software assets.

· Extending the CRC technique to address the coin-
plete software lifecycle.

• Multiuser tool requirements for the deployment of
object technology on an enterprise scale.

• Managing software assets using object-oriented
metricS.

2. Pervasive reuse of high.quality software components
must become the norm. A reuse-based infrastructure

is the single most critical success tact<or in meeting
the ever-increasing challenges of software develop-
ment. But reuse ori a large scale cannot be success-
ful without the existence and proper management of
large libraries of software components that are "reuse-
ful" as well as reusable.

3. The niost valuable 5oftware a.sets of any organization
will be the objecis Captillritlg die essenlial natiire of ilieir
business domain. High-quality design information, not
just code, will be die foundation of these assets.

ACHIEVING SOFTWARE QUALITY
High-quality software meets or exceeds the needs of
the user without violating user expectations. Achiev-
ing this level of qualitv requires that the designers of
software focus on the needs and expectations of the
user. Traditional software development processes as·
sume that quality can be tested in" after the software
has been developed. The user produces a specification,
the development team does their best to develop the
application, then the software is tested and patched
until it is either accepted by the user or abandoned,
That many software projects are abandoned due to poor
qualit:y is ample proof that a different approach to soft.
ware quality is required. At the highest level, our ap-
proach is based on three principles:

Hort„INE ON OBJECT-ORIEN TED TECHNOLOGY

Product Announcements

.....le>AN

- 0*39.
*232*sub*25%*%1*M

431

Product Announcements is a service to the

readers of the Honi,NE ON OlvECT-OR,EN'TED
TECHNOLOGY; it is neither a recommendation

nor an endorsement of any product
discussed.

SoftBench 3.0/
C++ SoftBench 3.0

Hewlett-Packard Company.
3000 lanover Slreet,
Palo Alto. CA 94304

303.229.2255

Smalltalk/V for
Windows

Digitalk, Inc., 9841
Airport Boulevard.

Los Angeles, CA 90045.
3 JO.645.1082

Consulting
Enterprise Engint's

4008 Bay·view Ave.
San Mateo, CA 94403

415 573-0363

0-0 analysis and
design module

Popkin Software & Systems
Inc., 11 Park Place, New

York NY 10007 2801

212.571.3434

Objective-C
extensions

Berkeiey Productivity
Group, 35032 Maidstone

Court Newark, CA 94560,
510.795.6086

Hewielt-Packard introduced several new software-development products designed to help reduce programming complexity,
increase performance, and facil Rate parallel development of complex applications. Soft Bench 3.0 and C++ Softeench 3.0 are
distributed software-development environments based on the SoRBench framework. Also released are C++ Developer 3.0, a
class-construction and browsing tool included in the C++ SoftBench environment, and Encapsulator 3.0. Programmers can
encapsulate window.oriented programs into their development environments via the Terminal Object with Encapsulator 3.0
without source-code modification. Also released Ws ChangeVision, a software change-request management environment thal
helps automate and manage software change requests on UNIX-based computers. It collects, analyzes, and correlates
software measurements such as code complexity, defect density, test coverage, and schedule status and provides software
learns with insight into the status of their proiects. Syne,Vision for SoftBench, which enables users to construct computer-
aided process-management environments, was also released. Software-development teams can attend the ChangeVision
Metrics Workshop to assist them in using that product. Also offered is HP Software Inspections, a three-day workshop, based
on a process used by HP, teaching managers and developers how to perform software inspections and integrate inspection
data with reports generated by HP's ChangeVIsion software. Attendees learn how to set up pilot programs and implement a
software-inspection process across their organization.

Digitalk's new version of Smailtalk/V for Windows includes support for Windows Multiple Document Interface (MDI), a
TooiPane {a row of buttons that perform functions when selected), a StatusPane that displays information on the status of
applications, an Objectfiler for sharing obiects easily with other applications and developers, HelpManager support, support
for non-US character sets, and performance improvements, as well as source code browsers, inspectors, and push-button
debuggers. It provides interfaces to Dynamic Data Exchange (DDE), allowing information to be shared between Smalltalk/V
and other programs; and Dynamic Link Libraries (DELs), providing a mechanism for calling code written in other languages
from within Smalltalk/V. This release, Version 2.0, takes advantage of new features in Windows 3.1 while maintaining
compatibility with Windows 3.0. Smalitalk/V source code M compatible with Digitalk's Smalltalk/V programming environment
for OS/2, allowing derek)pers to develop on either platform and deliver applications on both systems simultaneously.

Taylor Consulting announced it is expanding its operations and has incorporated as Enterprise Engines Inc. David Taylor is
Chairman and CEO of the new company. Bill Morton and Mike Jarrett, formerly with Informix and other high-tech companies,
have joined the company ab President and Vice-President, respectively. Enterprise Engines Inc. will help companies scale
object technology up to the organizational level, building active information systems known as enterprise engines. These
software engines confer two major benefits: They reduce system development costs by reusing models of standard business
components and increase white-collar productivity by including workflow, simulation, animation, reasoning, and other
;advanced capabilities into the business models.

Popkin Software & Systems Inc. is shipping an enhanced object-oriented analysis and design module for System Architect,
their PC-based CASE tool that provides support for Booch 91 and the Coad/Yourdon object-oriented techniques. Booch 91
includes design support for systems being developed for Ada, Smalltalk, Object Pascal, C++, and other object-oriented
languages. The Coad/Yourdon technique uses a new notation to show five layers of models: subjects, class and objects.
structures, attributes, and services. In addition, as part of the core product, System Architect includes support for the
Schlaer/Mellor methodology.

Berkeley Productivity Group's Borland extensions to Objective„€ make it possible to port Objective-C 10 Mic rosoft Windows
without changing a single line of code. The complexities of windows memory management are concealed from the Objective-
C source code. Standard Input and output can be performed to a Windows window. Alte,nativelv, the Objective-C software
can be run as a message server interfaced to spreadsheets or Smalltalk. All preprocessor, compiler, linker and postlink switches
required for compatibility between Objective-C and the Borland compiler are given and the reasons for them explained.

VOLUME 3, NUMBER 10- AUGUST 1992

Predictions Software programming, lons considered more art than
science, is becoming a disciplined endeavor as object-
oriented technology becomes the linchpin for provocative
computer applications. Integrated software, networked
knowledge and digital money are just a few of the
applications that will be swept forth by an advancing tide of
object-oriented technology. Indeed, according to Wayne
Rosing, president of Sun Microsystems Laboratories, object-
oriented software will be a key enabler of the distributed
networks that will emerge In the last half of the 19905...At
the same time, many of tomorrow's applications will build
on-but move far beyond-the concept of 00
programming. In doing so, they will take advantage of the
truly distributed computing environments of the future. The
most interesting of those applications are likely to revolve
around new methods for disseminating knowledge as a
service or the network 01 the luture. "The next big gain is
going [o be re-encoding knowledge in a much more active
form and then being able to provide a marketplace for that
knowledge," Rosing said. "Conventions will emerge for how
knowledge gets represented in rich, complex ways so people
can manipulate it for their own use." Objects will play a key
role in those new ways to represent knowledge.
Manipulation will most probably be accomplished using
hypertext-like search capabilities. Most important, the idea

Applications In the past year, faculty and staff members at Allegheny
College have written more than 100 sophisticated computer
programs that are being used in classes. The programs were
developed by about 25 people, most of them faculty
members not highly skilled in the arcane art of
programming...Most institution that install public computer
networks use machines made bv the International Business

Machines Corporation-or less expensive clones-or
manufactured by Apple Computer Inc. That, says Joel M.
Smith, assistant professor of philosophy and director of
educational computing services at Allegheny [College], is
because those two different types of "platforms," as they are
called. have the largest variety of software already written
for users...As a result, he says, campus administrators and
technical experts choose platforms for the educational
software that already exists. The problem is that while most
professors will gladly use a broad application for such tasks
as word processing, few instructors like using instructional

Standards ...The biggest shortfall of current object-oriented DBMS
technology is the lack of a standard definition ariel
manipulation language. This limitation results in a dearth
of data modeling facilities and standard content modules

Analysis and ...Programming can become so easy that customers will
"program• without even realizing it. That's when the real
payoff comes-when ordinary people put multimediaDesign information objects together into presentations, training

of integrated applications will be prominently featured...To
pay for such services, a common coinage will emerge called
digital money....

Multiple applications, Alexander Wolfe, ELECTRONIC
ENGINEERING TIMES, 5/18/92

... Over the next couple of years. software agents on the new
wireless computing devices will be "semi-intelligent,U and
able to help users with such applications as calendaring and
email, but plagued by a tendency to circumvent pro
grammers' intentions by taking instructions too literally,
[according to Apple Computer's Alan Kay]. In the second
half of the decade, he predicts that the agents will become
increasingly smarter. At the same time, the rise of object-
oriented programming will let end users start to build more
of their own applications, in much the same way they now
create their own spreadsheets and work processing
documents. Already, there are more Hypereard
programmers in the US than Cobol programmers, and many
of these HyperCard programmers are end users, he pointed
out, Further, even now, OOP software is allowing users to
perform such tasks as modi fying email systems....

"Intimate computing" is the wave of the future,
lacqueline Emigh, COMPUTER CURRENTS:

SAN FRANCISCO BAY AREA, 4/21/92

software written by someone else for their own courses.
That is because the program rarely meshes with their
teaching styles...But most professors don't have the
technical expertise needed to write a program, so they must
work with computer programmers. That approach, says
ICarnegie Mellon University's Robert] Sheines, has big
problems, as well. "Programmers don't know anything
about pedagogy, and professors don't know anything about
computers"...Specialists at Allegheny have been developing
a special library of objects that can be used in educational
computing, including objects that represent Petri dishes. bar
graphs, and tables. Once the code for each object is
written, other, less sophisticated programmers can easily
include it in their own applications....

Colfege enabks profr}ssors to write compider programs
with ease, David 1. Wilson, CHRONICLE OF

HLGHER EDUCATION, 3/20/92

for OODBNASs....

On the shoulders of giants, Mark R. jones, DATA BASE
PROGRAMMING & DESIGN. 5/92

materials, reference materials and so forth. "Programming?
Who. Me? I'm just writing.L.
Workstations-a software advantage?, Nick Arnett,
MULTIMEDIA COMPUTING & PRESENTATIONS, 4/33/92

HOTLINE ON OBJECT-ORIENTED TECHNOLOGY

1. Maximize user involvement throughout the process.
As the ultimate judge of the quality of the software,
the user ts the best person to determine if his needs
and expectations are being met.

2. The right decisions must be made at the right time in
the process. The earlier a design decision is made dur-
ing the process the greater j ts impact on system cpia[-
ity. If an implementation decision is made too early, it
can lock out potentially better design alternatives. If a
business analysis decision is deferred t<,0 long, it way
require massive dianges to the design and implemen-
tation or simply cost too mitch to include in the system.

3. Expect and encourage iteration throughout the soft-
ware lifecycle. The best way to insure a high-quality
result is to exploit the hindsight developed during the
project as well as the foresight gained from previous
projects.Only withcontinualdesign validation, mea-
surement, and refirietrient throughmit the process can
constant quality management be achieved.

MAKING THE RIGHT DECISION

AT THE RIGHT TIME

To know when to make the right design decisi(Mis, we mug
take a fresh took at the process of sofrware developinent.
Traditional approaches separate analysis, design, imple-
mentation, and testing into discrete steps, allinsillated to
some degree from each other. While k is necessary ti) di-
vide large development projects into deliverable phases
for management putposes, divisions along these lines pro
duce many undesirable side-effects. The frequent criti-
cisms of such "water·Gl[" processes bear witness to this fact.

We consider the development process to be a con-
tinuum that begins when we first attempt to understand
the domain of a particular business problem and ends
when a successful, high-quality implementation Ls put
into practical use. Design, from this perspective, is the
continual process of discovering, evaluating, and de
ciding between alternatives at all levels beginning with
initial domain object discovery and ending with the val
idation of the last line of program code.

Early iii the design process, business rules and other
domain issues predominate. As the initial design
evolves, other issues, such as legacy-data integration
and chent--server distribution, become the main issues
driving further extension and refinement. Later, the
focus shifts to implementation imues such as execution
efficiency and memory utilization. All of these are de-
sign issues and all require design decisions. A major
benefit of this perspective is the lack of barriers be-
tween these levels in the design. At any time, an in-
novative design alternative mav be proposed and eval-
uated at any level. This encourages iteration and
contributes to a higher-quality result.

VOLUME 3, NUMBER 10=Aucusr 1992

Application modeling and behavior distribution
Iii the design ofal] applications, whether interactive or
batch, a major design decision Involves the division of
[abor among the entities involved in the system. These
include not only individual software objects but also hu-
mans as interactive users and external systems such as
mainframe-based legacy systems or manufacturing work.
cett-control interfaces.

It is important to model not only the interfaces be-
tween these entities but their individual responsibilities
in meeting the requirements of the application as well.
This is difficult in most methodologies, since they pri.
marily focus on the design and implementation of soft-
ware objects only Lind tend to leave the description of ex-
tematentities toassociated documentationnot integrated
with the method itself To fully understand and meet the
requirements of today's complex applications, the be-
havior ofboth internal and external entities must be de
termined and modeled. This includes the human--com-

puter and client-server interfaces, both of which are
typically neglected in object-oriented methodologies.

Focusing on behavior and interaction
The challenge in finding a way to consistently model
these widely differing enuries is evident. We have found,
by modeling entities in terms of their behavior and in.
teraction, that both internal software objects and ex-
ternai entities can be represented in such natural WayS
as to be accessible to non-computer professionals like
users and domain experts,

There are three major benefits to this approach:

1. As humans, we have decades of experience dealing
with complex systems of interacting entities that
come complete with their own behavior. In fact,
this is main reason why design techniques like CRC
cards are so successful: they let us apply our natural
skills and experiences to the field of system design.

2. By focusing on behavior and interaction, we can de-
ter more implementation-oriented decisions such as
whether to store an attribute as data or compute it
dynamically until a more appropriate level in the de-
Sign process.

3. By limiting tile design of the system to the entities,
their responsibilities, and interactions, we make a
much larger part of the design process accessible t:o
the system specifiers and eventual users, one of the
keys to highquality mentioned previously.

INTRODUCING THE CRC TECHNIQUE
CRC is an interactive technique for one or more peo-
ple that uses note cards and role playing to facilitate the
process of modeling a system in terms of objects, their
behavior, and their interactions with each other and

V with entities t:hat lie outside the system under consid.
eration. The technique was originally developed by Ward
Cunningham while at Tektronix, Inc. iii tile mid 1980s
to help him communicate object-oriented designs to
nonprograinmers.

CRC stands for class, responsibility, and collabom
tors, The information written on a CRC card (Fig. 1)
consists ofthe name of the object (actually, the name
of its class), a list of irs responsibilities written as con
cise, active verb phrases, and a list of the other objects
that collaborate as service providers to assist t:his object
in the discharge of its responsibilities,

The teclinique itself is a simple one. Candidate objects
are proposed and each object's potential responsibilities
and collaborators are explored. Scenarios are developed to
validate the design against system requirements and then
tested Using roleplaying. Diiring roleplaying, the respollsi-
bilities and collaborators of existing objects are extended
and refined ancl otlier objects are created as ineeded to com-
plete the design. Existing scenarios are also refined to re-
fleet changes in requireznents 8Iid new sceiiaric>s intri)duced
as system requirements are added. This process continues
keratively until the design can successfully complete all
the scenarios and thus meet all system requirements.

The result of the process is a set of object descrip-
tions captured on cards and a set of scenarios that demon-
strates the behavior of the system and validates it against
a set of requirements.

E E RETURN ON INVESTMENT

vantage of the temporal and spatial nature of roleplaying
that can be only poorly captured on paper. When iised
in a group setting, roleplaying provides a mechanism for
the "parallel processing" of design problems since each
"player"need only focusonthebehaviorof hisor her own
object instead of everyone in the group attempting to un-
del·stand the entire system individuallv, An additional
benefit of roleplaying in design groups is that it tends to
help involve everyone iii the desigri process. regardless of
their background or experience, so all participants can
add their unique value to the pix,Ces5.

An example CRC design session
Let's loo>k at a partial CRC design and refine it using
roleplaying. This design is an enterprise model for a mail
order company that sells products to customers using
catalogs and credit card orders taken by phone or mail.
Some of the necessary cards are shown in Figure 2.

Example scenario
The scenario we'll use for this session is one where a

Customer, "Joe,>' decides to purchase two pairs of wool
socks and some climbing boots from the Backwoods
Outfitters, a mail order company. He calls a Salesper-
son, "Carl," at Backwoods and places his order. Carl at-
tempts to confirm the purchase, only to find that Joe's
credit card is at the limit.

1 19/

Hybrids ...Indeed, in line with the growth of networked and
client/server computing, new object-oriented tools have
emerged on workstations and PCs. And though many have
characterized that development as a threat to CASE-and a
key reason behind the Ness-than-stellar sales for AD/Cycle-
others also see a gradual and complimentary merging of
more traditional mainframe-environment CASE tools and

object-oriented and minicomputer CASE tools. The I-CASE
procurement at DoD-potentially worth billions of
dollars-embraces a grand vision of software development.
At the heart of that vision is the central repository with
common interfaces into which all the standards-based

vendors can plug their products. Templates and objects
extracted from past systems would become the standard
pieces thal developers would use to develop systems for
everything trom accounting to inventory tracking.

CASIgrows up, Andrew /enks,
WASHINGTON TECHNOLOGY. 4/23./92

...If you want to move to obiect-oriented technology, vou

Excerpts from leading industry
publications on aspects of object I
technology

-fl--

have got a couple of options: You can unlearn what you
have done and go off in a pure object-oriented venue, or
you can think in terms of extensions, like C++ is to C.
Our view is that there are hundreds of thousands of

people convei gant wtth #GL technologv and they really
have the job of writing new applications and maintaining
the old. Given our organic view, we want to add object-
oriented extensions to the existing 4GL. A similar
extension is to add a graphical environment to the suite
of tools that 4GL utilizes. We are doing both of those
kinds of things with 4GL. Companies providing
developers with all new, object-oriented environments,
are saying that it allows them to escape from yesterday's
world and move forward. But a truer view 15 that you are
telling them to adopt the object-oriented metaphor by
itself and trapping them within what that world provides,
I think being able to marry the two can very often give
you the best of both worlds, rather than a compromise of
both worlds....

Framework for the future, Chuck 1 louse,
OPEN SOFTWARE JOURNAL, vol. 5/ issue 1

The importance of roleplaying
As mentioned above, the CRC technique focuses on be-
havior and interaction of objects and other entities. Role-
playing, or acting out the behavior of the objects, is a
powerful tool for the refinement and testing of object de-
signs. While most methodologies rely on diagramming
notations to attempt to capture and communicate com-
Flex interactions between objects, role playing allows the
designers to actually experience the behavior firstlianct.
This theatrical anthropomorphism has many benefits in
the design process. Since designs can be "executed" very
early in the process using scenarios, alternative designs
can be explored easily using roleplaying as a form ofrapid
prototyping. Designs as complex as entire manufacturing
systems can be simulated in surprising detail, taking ad-

Broker 15
Class

accepts transaction requests Customer
executes tansactions -1-Tadg

collects commisions Customer

conveys commision rates Schedule

Responsibilities CoHaborator

IFigure 1.A typical CRC card.

Example roleplay
For the roleplay, let's skip to where Carl is about to at-
tempt the purchase confirmation. As he collected the
purchase information from the customer, Carl created a
Purchase object and described the product orders: t,WO
pairs of wool socks and one pair of climbing boots. He
also told the Purchase object about JoEs credit card. We
pick up the roleplay after Carl asks the Purchase object
to run a credit check on Joe's credit card. The players in.
clude the objects Purchase, ProductOrder (2 instances),
and Product (2 instances):

Purchase

includes ProductOrders for wool socks and climbing
boots

knows about Joe's credit card

ProductOrder 1
Product: Wool Socks
Quantity: 2

ProductOrder 2

Product. Climbing Boots
Quantity: 1

Product "Wool Socks"

Price: $20

Product "Climbing Boots"
Price: $120

Strategies companies start to tackle the next, radically diff:erentThe real demand for 00 technology will explode when

generation of applications, said [Al Fung, of Softfab
international}. "Up unhl now, weve been forced to adapt
to computers' limitations," he explained. "From now on,
users are going to expect computers to adapt to them,
through applications [ha[are easy to use. But developing
easy-10-use software requires a tremendous amount of
work, and that's causing a crisis in software development.
The only way to manage the complexity is through
object-oriented development."..."An object-oriented
system can have an object that represents the CEO and an
object that represents the vice president of sales, and

Products ..,The smartest thing Steve Jobs and his team did was to
come up with its object-oriented software. Steve and the
gang should be very worried about Gain, which is
licensing its software to Ne)Crs competitors, including
IBM, which clearly has abandoned its past interest in
NeXTStep. Thei threat to NEXT is that Gain's objects aren't
just for building interfaces, they extend all the way down
into programming and intormation obiects. What's worse,
for NeXT, its much larger arch-rival, Sun Microsystems, is
going to bundle Gain-based multimedia applications with
Sun workstations....

Workstations-3 software adrailfage?
Nick Arnett MULTIMEDIA COMPUTING &

PRESENTATIONS, 4/30/92

these ob]ects are self-contained entities thal have
attributes just like the people do. That more closely
models reality, which translates into making things easier
to deal with." In time, said FunK, that sort of approach
will be extended through all aspects of a system, so that
software developers will be able to construct, enhance or
imodify systenis as easily as a Windows user can copy a
me. "The overriding goal of all software development
efforts should be to make things easier for humans," he
said. If 00-based approaches can do that, then what's
everyone waiting for?

The objective approach, David Freedman, CIO, 5/15/92

..Consider Apple's plans for System 8-a microkernel that
will run on both 68000 and PowerPC (Pus. This

microkernel is supposed to add such modern ()S
conveniences as hardware memory protection, preemption,
multithreaded task management and other goodies. Greatl
But how about adding built-in object support for a new
version of Hypereard? Five years ago HyperCard was hailed
as a breakthrough in user programming, combining object
orientation with hypertext and graphics. As Apple develops
System 8, a New HyperCard should be ready to be
proclaimed as another bre:akthrough for people trying to get
control of their computers. Anything less is unacceptable.

What'b in the cards for Hype?,Card's future?
Don Crabb, MACWEEK, 5/11/92

HOTLINE ON OBJECT-ORIENTED TECHNOLOGY VOLUME 3, NUM[BER 10- AUGUST 1992

E E BooK REvifw

1-I

time of writing (ofcourse there are more now). MY
slight reservation would be the overemphasis on Ada-
restricted techniques such as HOOD, GOOD, and
MOOD. Whilst the Ada design community has con-
tributed significantly to more general object-oriented
ideas, I could not recommend any of these methods to
an industry embarking on the challenge of true object
orientation. Although the chapter focusses on OOND,
there are still moments when implementation and lan.
guage issues unfortunately encroach, e.g., stating that
"the traditional object-oriented principle [is] that ob-
jects are specified by their methods alone"-true in im-
plementation, not true in analysis, as the author then
goes on to show.

One of the more interesting parts of the book is also
the most original: the introduction of the author's new
methodology: SONIA (Section 7.3.2). This elaborates
upon the Coad and Yourdon work, utilizing several AI-
derived notions, and provides for interesting reading.
Section 7.5 concatenates CASE tools and lifecycle
models, which I think deserve more discussion; first,
in separate subsections and, second, In a subsection
discussing the synergism rather than this simple jux.
taposition. Again, product information on CASE tools

hotline:i, on

given here will be well appreciated by industrial
adopters.

Chapter 8 begins to answer the much-asked question
"What are the management implications ofadopting an
object-oriented lifecycler The answer given is basically
prototvping; although the need fordeliverables and mile-
stones is 7150 stre:5ed {p. 294).

The final chapter attempts the impossible: to fore.
cast the future. This is hard to do in general and evenl
harder in software engineering. Topics covered include
language trends, expert systems, AI, uncertainty, open
systems, concurrency and parallel processing, formal
methods, hardware concerns, and, finally, a discussion
aimed at management on how to really begin using ob-
ject technology. Graham sees a window of opportunity
about to open (Fig. 9.2) and urges industry "to adopt
object-oriented methods cautiously but quite whole-
heartedly;" I concur with this soundly based optimism.

With a few caveats, I can recommend this text pri-
marily because it is important that object technologists
do not become ostriches and ignore both the technical
and managerial lessons available from Al and, specificalty,
expert systems, similar to those we are currently learn-
ing from the data modelling community. E E

OBJECT"OIED
Back issues available

Vol..3, No.9/july '92 E OOD: Research or readv• L)ock = Entel prise rinodeling an object ap
proach • f.):ui- OMG's 18 24 month view• Stone - Design for object-oriented applications:
:i CASE fi>r wistifiit rhi,ki„g.... Pjard,mn

Vol..3, No.8/June '92 m BusLnessin the Information Age• Sh*eProm dara modeling toob.
ject maleling • B.oum =How franneworks enable applicarion por rability, An:hirs = Interview
with Vaughfiri Merlyn• SUrm

Vol..3, No.6/April '92 e Thinking the unthinkable: reducing the risk of failure • Lathers m
Mitgating madness wirhmerhod: first establish what you value• Fuller.Championing objecl
technology for career success m the 1990s• .St)·(uu a ObJ(ets md acti<in 1,7 end.[i,ser docu.
mentati<>110 D.,han,

Vol..3, No.5/March'92 - TA large-scale users' assessmencof objectortentation • Planta Re-
p,r:mihet)2:ject.(Or,emed(JOBOLTaskGroup .Adams = Interv tew .i;h KC.131;anscomb
I 'Sh'boyi

Vol. 3,No,4/February 92 - The big prize: acceptance <40·O by the MIScommunity • O'Shea
2 Retrk,spective 1991·21[:eve:aric all elianged 4 11}171 I.(J:(' a M.iking the trailstrm<.T t(> l) 0
technology • Ron Sparet, PAD E lnerview with Bearm Infanre • Shelon

Vol. 3, No. 3/January '92 E Enterprise obiect modeliaq knowing whaL we know • Shecon a
Adopung objeCD: pirfatts e Connd E Adopt ion rate of object technok}gy: a burvey of NSW' 1!1-
dustry . flenl»on.Selbs.

V{>1·.3,&,.2/Decett1er'9i- Accepti,igobject Technology.Bentiert.AcIOptmgobjects apath
* (Joinlel a 60,9.2.* grap!11cal content into mubnec|la presentamm • Banian 8 Wew

Vol.3, No 1/November '91 E Leading the U.S. semiconductormanufacturing industry to-
ward an object-oriented technology standard • Hollowdl E Coping w:irh complexity: OOPS
amd the economists' critique of central planninK • Lavowe, Baeue·, 2 Tulloh achoosing
Object Technology. Whaes rhe object? • Rosenthal a OOP: the MISsing link • Rovira

Vol. 2, No. 12©c rober 9 I E A nio<le-·t survey ofOOD approaches * Btdman E Whal Es a 'Ce.
rified" object programmer? * Beihne Perspective: investing mobjects today •Bowles m Ob-

lecronenred in Metbourne, Australia • Hachich E The Obiect Management Group • Gumnan
2 Matthew

Vol.2, No. 11*ept¢mber ·91=From applicanons *frameworks * Udocker= Repori onthe
Object-Ociented COBCUL Task Group * Adams 61 Lenk„v E Ge tazig st acted with object tech·
nology: efffectiv ely pmnning fi. change • Loven: E Object statistics on the way * Le™10 -
On obJece and bullets * OraN

Vol.21 No. 1 0/August 91 = Distributed objec t management: improving worker produaiv] ty •
(sher = Geiting the hesr from oblecis: rhe experience of HP • Colemal Ef Hayes E Apri .·
c,moNs: EC employs object technology .. • Srein = CAPACITY | 1 ANN]NO: Fiddling while
ROM. b:in. * R„<mi

Voi. 2, No. 9/Juty '91 =: Muttimedia is everywher:F • Weiss G B:„na?i E Developing an ob
lect technology prototype • Kthnek a Object-oriented capacity planning • Roura - How
OOP has changed our developmental lifecvcle • Ze,k e Modilarizamm of the computer
svstem• Angenius

Vol.Z, No. 80une '91 = Domain of objects: rhe Object Request Broker • Dyson E Object·
based api,ioact, ro .ser,|ociFneiitation . Rcede, a Rep<>rt m th€ c'}bjecrOrienmd COBOL
Task ¢;imp • Adams &£:nko. E [)0 w': Red „bject oriented ,]614;11 rietrics? * 1-84?k,is

Vol. 2, No.7/May '91 =Hvbridel)JecE-oriented/f u..ccionia ldecomposmon forsoftware engi-
neering * Menderson-Seller.3 2 So, what makes object databasesdiftelent: (Part 4) 0 8,167
m Using the generic application to solve similar domain problemi • Go%=n m Experience.
using CLOS * Hupkin g International Conference on Object-Oriented Technology, Sin-
g apore • B:,7171<frt

Vol.2, N{. 6/Api. '91 - Ari a: tisa perspective of Frogrami,21,12 * Rot m m So, w hat make. 0 4 ect
dambases different' (Part #) . Blakey = Movtng fro in [.16:011 To C++, Part 3 0 (fole . ObJect pro-
jects: whal cango „Tong e Sbeite,t=Rellecil„1„from LOC)K-'91 0 :47%&15-Agge,14!L

Atl back issues of Hodine on Object-Orienced Technoogy are available. Pie<:De call (212)274-
0640 fordetails.

To order, see back page; for reprints of individual articles, call Michael Biggerstaff at Reprint Management Services (71 7) 560-2001.

HOTLINE ON OBJECT-ORIENTED TECHNOLOGY

 Customer
! read catalogs Catalog

i select products Catalog
I purchaseproductusing credit MailOrder Company, Crediteard

Product

convey description

convey unit price
convey accessories Product

convey quantity on hand Warehouse

convey reorder information

Satesperson

accept purchase requests Customer

acquire purchase information Customer

confirm purchase Purchase ·

ProductOrder

convey ordered product Product

convey order quantity
determine total order cost Product

Purchase

convey customer Customer

convey method ofpurchase Crediteard

determine total price ProductOrder

convey product orders ProductOrder

determine tax TaxSchedute

check customer creditlimit Crediteompany

CreditCompany
issue credit cards Crediteard

maintain credit timits Customer

approve credit purchases
determine interest on credit

bill customers Customer

Productlist

convey product offerings Product

maintain product offerings

Warehouse

reorder products Product

store products
COnvey product quantities

Figure 2.

To run a credit check, the Purchase object must know
the total cost to the customer Including tax. To deter.
mine this, each ProductOrdez is asked for its own total cost.
To determine its total cost, eachProdutorder asks its Prod-
uct for its unlt price, then multiplieS it by the order quan.
tity. Summing the totals from each ProductOrder, the Pur-
chase object now has the total cost before taxes. To
determine the tax to add to the cost, Purchase needs to
consult the TaxSehedule object: but while it has been ref-
erenced as a collaboratoron the PUIchase CRC card it has

not yet been defined. So, we add a card for Taxgchedule:

TaxSchedule
determine sales tax Purchase

Now that the Purchase object can determine the taxi
it can determine the total cost to the customer and run

the credit check by calling the Credittompany and get-
ting approval. We immediately recognize that the Cred-
iteard object has not been defined yet, so:

Crediteard

convey customer name

convey credit company
Contact latO CreditCompany

Now the PUIehase object can contact the Creditcom.
pany and get approval. Upon doing so, we find that the
CreditCompany requires the account number, for which
our CreditCard object is not currently responsible, so we
add that responsibility:

VOLUME 3, NUMBER I 0 E August' 1992

CreditCard

convey customer name

convey account number
convey credit company name and phone number

Having consulted the CreditCompany, Purchase ftnds
out that Customer Joe's credit is insufficient for this pur-
chase, and informs Salesperson Carl in reply to his orig
inal request for a credit check. Carl then informs his
customer, and the scenario is complete.

SCALING UP CRC FOR THE ENTIRE LIFECYCLE

The CRC technique has been proven to be an effective
approach for highdevel object-oriented analysis and de-
sign from single applications to large-scale enterprise mod-
ets. The technique has been accepted across the 0-0 in-
dustry and is currently in use iii different forms by the
majority of practicing 0-0 analysts and designers world-
wide. What else is required to address the broader needs
of the entire software development lifecycle? There are
two major areas not addressed by the CRC technique in
its original form. The first is system requirements acqui#
sition and anatysts. The second is system Implementation
and testing. The next article in this series will deal with
these issues, as weil as provide an overview of a complete
lifecycle methodology that is centered on the CRC tech-
nique and extended to provide integrated support from
requirements to code, and back. E E

Object technology, conrinued ftom page i
ufacturing, touching on the implications for both soft-
ware architecture and organization.

Craft

Craft is the way we develop software today. We usually
acquire some base software such as libraries and an oper-
ating system. Then we engage in a number of indepen-
dent projects to obtain prcxtucts froin each undertaking,
as shown in Figure 1. The thick lines between each pro
ject represent the walls existing among theni-there is Lio,
or at best very little, reuse among projects. Today's orga-
nization and reward structures encourage such behavior.

Parts

The parts approach offers two relatively independent
software streams (see Fig. 2): software parts and appli-
cation development. The mandate of the software parts
stream is to build reusable software parts whereas thai
of the application development stream is to build ap-
plications using these software parts.

I suggest some changes to the above development

* jct A $ Project A
Base

SAN -

Project B
' Team i Project B

PrniArt Z
I Project Z

C 11
Parts

Z

- t
Prniect A Product A

Ct Z Product Z

Figure 2.

Team

Figure 1

- - pard-A
Team

Base
SM t

Parts
Tearr

Tearr

Parts

1 Prole
Il Tearr

process thal will open enormous potential in software
manufacturing. First, let us build applications themselves
as parts. Applications would break down into several in-
terworking parts. A typical word processor, e.g., could
break into a spell checker. thesaurus, and editor. We
would actually have no applications but rather a set of
software parts interworking to accomplish specific ta5ks.

As a result, we would not have applica[ion develop-
ment teams-every team would be involved in devil-
oping various reusable software parts (see Fig. 3). This
is very similar to other industries, e.g., the automobile
industry, which can reuse spark plugs or mufflers (sim-
ple parts) and engines or automobiles (complex parts).

The parts approach lends itself to the development
of distributed computing environments where some
objects (usually complex) act as a servers to client ob.
jects. For example, both branch banking and trader ob-
jects (clients) would use a foreign exchange object
(server) to perform some exchange related services on
their behalf. Both clients and servers could reside on

different, heterogeneous machines. Adding additional
clients or servers or tai[oring functionality to specific
requirements is also significantly easter.

Architecture

In today's typical computing environment, there are a
number of applications running concurrently. Although
there may be some limited sharing among applicationz
<usually through shared data), most applications are de.
signed to be self-contained and do not share their func-
tionality with other applications (see Fig. 4). Thus, we
may have a word processor with a great. spell checker
but another application, say, a spreadsheet, cannot use
it-it needs its own.

Object technology supports complex software parts
(e.g., spell checker, editor, spreadsheet, GUI) being
defined more independently of a particular application
and thus reusable by anyone. Our object-oriented spell
checker could act as a server to a number of different

clients such as a spreadsheet (Fig. 4). Obviously, such
an approach requires standardization of communications
among software parts--something very natural in other
engineering fields but, unfortunately, not in software.

Fortunately, there is some hope on the horizon. The
OMG 15 working on a set of standards for- interworking
complex software parts in a distributed environment in
which parts can communicate using the Object Request
Broker (ORB)-a software bus. The approach is sinif
lar to computer hardware that uses a bus and plug-in
boards. We can purchase a modeni from a,iy vendor and,
as long as it conforms to an agreed standard, integrate
it with the rest of the computer functions.

But what if we want to build our first application us-
ing OT today?For various reasons (lack of an ORB forour
target platform, lack of corporate commitmern) it is un-

HOTLINE ON OBIECT-ORIENTED TECHNOLOGY

BOOK REVIEW E E

OBJECT-ORIENTED METHODS reviewed by Brian Henderson-Seliers

by f. Guttiant
Addison-Wesley, Wokingham, UK, J99J
4101,13

This is an

interesting and different
introducton approach to

object-oriented ideas.
It has, as the author readilv admits, a stronger artificial
intelligence (AI) and database (DB) bias than many
other competing texts. This has the twin effects of in.
troducing new ideas into the 0-0 community from "sis-
ter" software engineering subcultures and, conversely,
of sometimes leaving one feeling that one is studying
Al/DB without a clear mdication as to how it relates to
O-0. In other words, the svnergisms could be stronger
and more clearly obvious.

Graham notes the tendency for subcultures in soft-
ware engineering to keep reinventing the same concepts
under different names. This book does a lot to encour-

age the merging of these areas: objects expert systems,
and data medelling.

The book's strengths are in its wide and varied cow
erage and its practical slant. The obvious belief of the
author that these ideas are not only exciting but appli·
cable to industry now permeates throughout. That the
author himself has an industrial background gives cred.
ibilitv to these claims. The book's weaknesses in my view
are some of the improcisions and potential confusion in
the early discussion of basic concepts. Whilst I concur
strongly with the author about using a single concept (1
call it object/class, he calls it object) as a unifying faa-
ture of the whole lifecycle, 1 found myself in disagree.
ment early in Chapter 1. For example, there has been
discussion latelv on the confusicon between terms like ab-

straction and class*cation, encapsulation and intonnation
hiding, etc. Graham uS¢S the terms abstraction and en-
capsulation interchangeably, which adds a new slant to
the terminological confusion. A few pages later he tells

VOLUME· 3, NUMBER 10m Aucus] 1992

the reader thar encapsulation is equivalent to ink>rma-
tion hiding; also that an abstract data type (ADT) issim-
iDar to a class-it is certainly associated but it is gener-
allv regarded that an ADT relates to the specification
and a class to the coded object module and therefore an

AIDT is the equivalent of specification augmented bv im-
plementation. On page 14 we are told that "the terms
encapsulation, data abstraction, information hiding and
message passing all refer to much the same thing."(!)

The book has nine chapters, an appendix on fuzzy
objects (not recommended by the author for the Mint.
hearted!) and a useful glossary (bearing in mind my con-
cerns about definitions raised above). The citation list
is good, as are the name and subject indices. Each chap-
ter ends with both a succinct and very useful summary
and an annotated bibliography/furiher reading section.

Chapter 1 introduces basic concepts; Chapter 2 dlls.
Cusses manv ofthe software engineering attributes of ob-
ject technology first discussed in detail by Bertiand Meyer.
Whilst the authorfocusses on concepts rather than lan.
gualles. there is a digression into languages in Chapter
3. Here the section on functional languages seems, to
the 0-0 novice, to be out of place; not because it nec-
essarily is but because it is not obviously integrated into
the remainder of the chapter. Again the author's ac-
knowledged interest and background in Al is evident
and provides new understanding of the interrelation-
ships that we (the object community) still need to ex-
plore. This Al theme continues as an undercurrent in
Chapter 4, "Applications," again containing material I
have not seen in other 0-0 introductory texts.

Chapter 5 discusses database technology in the ab-
sence of objects as a prelude for the addition of objects
in Chapter 6. This covers both theorv, products, and
industrial applicability in a very useful 28 pages. This
is followed by the largest chapter (87 pages) on anal-
ysis and design. The author quite correctly (in my view)
avoids an arbitrary split between analysis and design
to create two smaller chapters. It discusses in useful de-
tail a good many of the object-oriented analysis and
design (OOA/D) techniques that were available at the

Brian Henderson-Sell€TS is

wth die Schod ofInfannation
Systenis, Unitersio of New
South Wales, Aust?uha. He
can be reached ar brianhs@u.5-

age.csd. unsw.orau.

V Finally, the application objects are implemented in
the upper [ayer(s), resulting in an application set or sift-
gle application. They are implemented using the con-
crete, object-delivered services provided by the layer im-
medlately below.

KALA--A BUILDING BLOCK

The layered architecture sketched above has been the
goal for developing Kala: the persistent data server from
Penobscot Research Center. z--3 Kala implemeno the
unaped data layer in Figure 1. Most of our effort dur-
ing the research and development program leading to
Kala has been in compressing the diversity of func-
tionality required by object management environments
into a suite of sma[[, compact, reusable primitives.

Two fundamental insights have guided us:

1. what's common across all persistent environments Is
applicable to persistent data made out of nothing but
unmterpreted bits and reterene.es into other persts-
tent data, and

2. what's common across ali models for transactions,
versioning, concurrency control access contro[, li
censing, conhgurations, and security is scope-based
visibility management.

By reducing all services to a handful of primitives,
we have abst-racted the commonality among all use-
fut environments without imposing either a least com.
mon denominator or a most comprehensive solution.
Instead, Kala is a toot for building such environments
to fit specific needs while preserving the lowest-level
interoperability.

This approach to creating a functional layer devoid
of any object ordata model is hardly new. In the same
domain of storing data, an iterative process iii the 19605
and 19703 led to the contemporary notion of a file as
a stream of uninterpreted bytes, which in tum has served
as one of the most pervasive de facto points of inter-
operability. If the industry had continued to insist on
the structured fles common in early operating systems,
our ability to even pass a simple text file between two
word processors would have been much hampered.

Kala carries the notion ot a semantics-free layer
further by adding several areas of functionality in-
cluding the visibility management primit i ves, full soft -
ware recoverability, references, and active (executable)
data, etc.

So how is this different than contemporatv object-
oriented database management systems (ODBMSs)?
The fundftmen tal difference is packagink there are cer-
tain kinds of functionality that make a product a
database management system (DBMS). These include
a data or object model. e.g., relational, object-based; a
data manipulation language (DML), e.g., SQL and. in

E E ODBMS

modern ODBMS products, object-oriented 3GLs such
as C++M a data definition language (DDL}, e.5, non-
st·andard relational schema notations or, in modern
ODBMS products, the declarative. subianguage of 3GLs
such as C++; and a suite of tools for navigation, query,
schema management, etc. Kala has none of the above;
thus, it definitely does not qualify as a DBMS-nor
does it attempt to do so.

Instead, Kala is a medium-grain building block: a
reusable component. 1ts approach to the functional-
ity it provides is different, too. Instead of covering a
laundry list of functionality, Kala provides combin-
able primitives used to produce not one but many such
laundry lists.

The approach is similar to that of many program-
ming languages: they don't provide sorting as a lan-
guage statement but provide other primitives one uses
to write one or many sorting routines, and then one
uses the primitives to write something completely dift
ferent, like a payroll program, thus effecting reuse at
the language facility level.

In summary, the tevel of specialization is consider-
ably higher with DBMS products than it is with Kala.
This comes not only from functional versatility but
also from physical characterstics such as size and
efficiency. Kala is not a replacement for a DBMS but
an alternative attractive to those whose true require·
ments are not quite fulfilled by DBMSs. In the realm
of object management systems, Kala presents the op-

1

portunity to provide tor economically attractive coin-
monality while supporting the inherent and practical
need for diversity.

CONCLUSION

The [ayered approach proposed by the Kala architecture
brings modularity from the object level to system-level
granularity. This contrasts sharply with many architec-
tures that still yield monolithic products with one sin-
gle usage at a time. Latyered OMS architectures provide
interoperability without compromising user functional
ity and nonfunctional qualities (such as performance,
con'ipactness, etc.). E e

References

1. Simmel, S. KALA-INTERFACE REPERENCE PART I: KALA
F AC NI f TES, Rf:VISION 2.0, OFT W.AliE VE.RSION 2.1, Penc>b-
scot Development Corporation, December, 1991.

2. Simmel, S.S. K.AL.A M,AIN CON<:Em-s, Penobscot Deveb
opment Corporation, 1990.

3. Simme[, S.S and I. Godard. The Kala basket-a se-
mantle prtimtive unitvinft object transactions, access
control, versions, and configurations, PROOFF.DINGs OP
OOPSLA'91, October, 1991.

HOTLINE ON OBJECT-ORIENTED TE¢HNOLOGY

likely we would take the OM(3 approach to its full extent.
However, we shotild design and develop our systems with
it in mindi build our applications of complex parts that
can be made independent when the OMO approach be>
comes feasible in our organization, separate service objects
(GUI, communications. database) from business objects
(account, client), and build independent complex parts
such as foreign exchange, branch, or spell checker. The
separation of functionality is also essential to reusabitity.

Why we craft
Why is the majority of software inday still crafted de-
spite the obvious advantages of building from parts? I
think the main reason is that it is very easy for someone
to begin building a singte software application. All we
need is an editor, compiler, and one average program-
mer (and short-term view). It is also easy to duplicate
written software with a simple dbkcopy command Those
attributes do not apply in many other engineering Acids,
e.g., building tires or transistors, where we need a
significant undertaking to build a single part and it is
rather hard to diskcopy it. This is why these industries
thought ofparts at a very early stage,

However, building software is not much different from
building Boeing 7478 if we take a long term view ofall our
software applications that should be integrated together.
Imagine we were told to develop not one but ten different
banking applications. 1 am sure we would think of reusing
theeffortsfromoneapplicationin anotherand would want
to create some common software parts before building our
first application. We would see that a large coordinated
grottp effort was preferable to ten teams running indepen,
dently. As in the 747 analogy, it would not be possible to
diskeopy our first application to build the next one. Un-
fortunately, most software today is built with a short-term
goal in mind- delivery of a single application.

INTRODUCING OT

Significant changes are required to introduce OT into
an organization. The following sections discuss the most
important factors of the change.

Organization
Object technology requires a different organization of
software development. Most important is the existence
of two sets of teams, with separate mandates, that have
to be managed differently:
1. Softwareparts teams with a mandate to develop and

maintain reusable software parts (business, graph-
ics, integrating with the third-party class libraries).
These teams work with business experts to formu-
late reusable business models and concentrate on

developing frameworks and abstract classes, The
tearns own the software parts.

VOLUME 3, NUMBER 10• AuausT 1992

2. Application teams with a mandate to develop appti-
cations reusing those software parts. In cases where
parts do not exist, these teams coordinate develop-
ment of necessary parts with the software parts teams.
They provide feedback about the quality of the parts
they reuse bur do not own them. This calls for a difi
ferent attitude than that of today's application de-
velopment teams-they no longer own the world.

For OT ro succeed, a commitment from senior man-
agement is essential. The change is too significant to be
left for developers and technical managers to attain. For
example, management has to reinforce and reward
reusability (both creating reusable parts and reusing
available parts) in all departments developing software-
Availability of reusable classes is vital to the success of
OT in an organization. The software parts must be
counted as corporate assets of strategic importance.

To minimize risk, OT could be introduced in a care-

CS

Appl. Appl.
Application Oriented Environment
(squares are applications)

/-1

Object Oriented Environment
(circles are complex reusable parts)

Figure 4.

. Project A

Parts ;. t
. Project Z

4 Team

Figure 3.

Word Spread- Graphi
Process 1 sheet 1 Appl.

/Spread- 1
\ sheet J

(Spelling
GUI (Checker

Editor

Thesa-
urus

fully selected part of the business. In banking, this could
be in a branch operation. As we build more reusable parts
we can expand to include other business areas. With each
expansion, we revise and refine our business model. An-
other benefit of this approach is that we will experience
the effectofreusability much sooner because, with the tim-
ited resources we usually have, we will make better progress
in building: parts in a smaller section of our business.

Development
Object technology brings new methodologies into the
development process and requires different thinking. In-
stead of data and functions, we think of objects provid-
ing services and their relationships with one another.
Message parameters and attributes are objects, too, as in
the Smalltalk environment

Iterative prototyping is a critical component of OT
development. Throughout the project lifecycle, we con-
tinue to work with objects and their relationships; what
changes is the level of detail. As each phase looks at ob-
jects from a somewhat different perspective, going tliOLIgh
each step of a project lifecycle allows us to verify the
correctness of our model.

As previously Inentioned, tlie design should separate
business functions (e.g., banking, insurance) from ser-
vice functions (GUI, communications), allowing busi-
ness objects, such as Account or Client, to be reused iii
any development environment, travel across the net.
work, or be stored m a database. Separation is also es-
sentia[to achieving a high degree of reusability. Further.
the business model should reflect the business, not what
is or is not possible in our development environment.

We need powerful visual roots to work with the hun-
dreds of available classes. A good 0-0 diagraining tool
and Smalltalk-like browsers are minimum requirements.
We can also purchase classes from various vendors. Cup
rently, most available software classes are for graphic
user interfaces. Unfortunately, we. cannot buy business-
related cia:ses such as Account or Cheque yet.

Coexistence

As OT is an evolution rather than a revolution, we need
to manage the coexistence of new software developed
using CT with existing software. We can use interface
software, commonly called wrappei·s, to facilitate inter-
actions between object-oriented and structured code.
Wrappers convert (or wrap) code written with tradi-
tional methods into object·oriented code, allowing one
to interface with legacv code in the OT environment.

Naturally, such an approach is a compromise. It has
a number of constraints we will have to accept for quite
some time. The main one is a conflict between two dift

ferent information models: structured, with process and
data separated vs. object oriented with both together.
Also, it is difficult, if not impossible, to build a real

Il

E E BjECT TECHNOLOGY

ODBMS out of an RDBMS as the relational view of in-

formation stored mav still be visible to the developer.
Today, we are already seeing some wrappers, e.g.,for

existing RDMBS products, that Inake it possible to use
an RDBMS in Smalltalk or C+ + environments.

Costs

The initial costs of the parts approach are higher than
the craft approach because an OT foundatioti needs to
be built. This includes training and education, new de-
velopment tools, and new organization structures.

However, as we develop more reusable parts and bet-
ter understand the technology, the development costs
will drop below what we are paying today for the struc.
tured approach. The costs will decrease, however, oniv
when we really change the paradigm and begin pro-
ducing reusable software parts, readily available through-
out the corporation. In the meantime, the cost of the
traditional approach will keep increasing with the in-
creasing complexities we have to handle.

The use of 0-O development tools alone will not guar.
antee costs savings. If we remain software craftsmen, we
will pay the additional costs of new tools without gettirig
any significant payback fromOT. We have to change the
development process-paris we build have to be reused
through<,ut the corporation-to ensure decreased costs.

SUMMARY

Or brings attractive benefits to software development
such as: software quality, productivity, and flexibility at
lower cost and shorter time to market. It greatly enh arices
communication among end users, analysts, designers, and
programmers as all of them talk about nearly the same
objects. These benefits, however, will be realized only aft
ter we change the way we develop software, i.e., move
from craft to parts. Thus, the benefits will not be realized
on our initial OT undertaking but rather some time in
the future, depending on the speed of the transition. The
change of tools is of secondary importance.

A number of companies are beginning to apply object
technology: researching and evaluating it and building
t:heir first prototypeS. Royal Bank of Canada has taken its
first significant steps in exploiting this promising oppop
tunity. We startect by developing our expeizise. Then, we
began researching arid evaluating the changes OT requires
new development methodologies, project lifecycles, class
libraries, and tools. We completed a few OT prototypes
from which we gained some banking parts that will con-
tinue to evolve with subsequent banking projects. EE E

Eugene Kulinek is cui·re'ndy worki, ig for Royal Bank of Ca?lada
as a Technical Sy.stems Anabst. He is responsible foy the in-
troduction and evaluation of object technok© at the company.
He can be reached by phone at 416.348.5422 oy by fax at
416.348.5460.

HOTLINE ON OBJECT-ORIENTED TECHNOLOGY

V

THE DATA-STORING DOMAIN

Figure 1 shows the layered architecture along the data-
storing dimension-the path between obiects in an ap,
plication5 memory and objects iII a secondary store.

The bottommost layer is that of the physical store.
It Is usually implemented m hardware but it may have
software components. It presents to the layer above a
very simple read/write/seek interface. The ifeins of dis.
course are sectors containing uninterpreted bits.

The next layer up presents an upper Interface op-
erating on assembly-language-level untyped data. 11
provides both access and visibility services on bit>and-
reference uninterpreted data. The items of discourse
are data iterns made out of bits and references into other

data items, as well as primitives controlling the visi.
bility of such data items bv any agent.

The next layer up presents an upper interface oper-
ating on typed (301--level) data. This layer introduces
general-purpose typing semantics. This is analogous to
the declarative aspects of a programming language. This
layer also implements concrete transactions, versioning,
sharing, licensing, configuration management, access
control, and security models out of the primitives pro-
vided b¥ the layer below. This is analogous to imple-
menting the scoping and naming aspects of a program-
ming language with persistence.

The next layer up presents an upper interface oper-
ating on objects, This layer introduces gencral-purpose
object notions such as abstract data tupes. classes, in-
heritance, delegation, etc. It implements them out of the
typed data primitives provided by the layer below. This
layering is analogous to the oblect model (e.g., encapsu-
lation, messaging, etc.) and class model (e.g.. inheritance,
dispatching, etc.) of an object,oriented Language and
generating code in a classic programming language.

f ..11 5 Common &

/' Application
1 ' Objects

Object
. Model

typed
1 Data

Untyped
1 Dafa

Physical
Store

 The Store
1 Domain

I 1.

This suggests the natural locale for these services is a
layer of the environment that knows nothing about ob-
jects, It also suggests the layers that do know about ob.
jects could package these object-unaware services so they
are delivered in an obiectraware manner. The natural
consequence is a crisply defined layer that provides the
OMS services in an object-model-independent manner.

This takes care of the diversity of oblect models that
come from various vendors, programming languages, and
technical traditions. However, this has only partly solved
our dilemma between diversity and commonality! We
are still bound to a specific ser of visibility services. This
set is Jisually selected by the vendor. For exaniple. a 13]3MS
vendor typically selects a single transaction-managenient
service, versioning service, and so forth. Suchrigidchoices
hardlv take diversitv into account....

We have to push the generalization one step further.
We must provide functionality that can be turned into
many variations of each kind of service. each variant
dealing with the needs of a specific application domain,
technical culture, or vendor's tradition. Instead of look.
ing for the one-size-fits-ail service, we should look for
one common way to express any variation of this ser-
vice. This leads to the idea of metasernces functionality
thai can be used to implement speclhc servlces.

A typical example is that of transaction management.
Application domains vary considerably m their re-
quirements for a transaction-management service. On-
line transaction processing (OLTP) appliCationS typt.
callv need transactions that are short in duration, atomic
in their actions on the data, and serializable in nature.
Computer-aided design (CAD) applications typically
need somewhat longer-term transactions that can be
nested. Cooperative work (CW) applications may also
need long-term transactions that are not serializable and
can be arbitrarily shared among cooperating participants
Any attempt to provide a single, unitying transaction
t>ervice to all of these applications results in owerhead
and underfunction. All get too much, and (paradoxi-
cally) all get too little.

The solution is that the lowest layer in our OMS
nitlSt provide meraservices applicable to the most gen-
eral data model we can imagine. Such a software liver
would provide a common basis for a diverse spectrum of
object management systems.

Thus, insteadofprovidingonesingle, all-unifying trans-
action-management service this layer must provide prim-
itives to express any such transaction models. The meta-
services would he packaged by a [aver above for export to
particular application domains. Consequently, an envi-
ronment for OLTP application would provide exactly
OLTP transactions and likewise for CAD and CW appli-
cations. Atid yet, alidoinain-targeted ¢],Vir£ minellts Tri,uld
be able to seamlessly interoperate and cooperate due to
the common lower layer they all use as a foundation.

VOLUME 3, NUMBER 10 -AugusT 1992

ft

igur[

1 14/

ODBMSEE

Providing commonality while
supporting diversity by Sergiu S. Simmel

Like every other genre of
environment s

Sergiu S. Shnm€i is a softwme
author and developer In Ar-
litigton. MA. tle has comp
thored Kala, the persistent dam
seT·ver by? Penob.scot Resem ch
Center, bic. Pie is a Softuiare
Architect for Oberon So#.
waye, Inc. m Cambidge,
MA, and is quorking on a book
about Kala to be published by
Addison-Wesley.

;oftware, object management
viSs) are caught between a
o anda hard place.

They stand between the forces pulling them toward se-
mantic (in content) und syntactic (in form> ditersity,
while their rmison d'etre is to capture commonality and
deliver it to many applications.

Diversity arises because each application makes difi
ferent functional demands on the supporting environ-
ment. Object management systems require commonal-
ity 1-0 fulft[[the promise of increased reuse under which
objectbased technologies are sold.

There is an obvious tension between ihe Forces of di

versity and commonality. On one hand, we must sup.
port each, On the other hand, we must support both.

The quality, endurance, and ultimate usefulness of
an object management syst:em (OMS) depends ott how
Lt resolves this tension. The OMS must allow for diver-

sity, both in space (e.g., support for several paradigms
or models) and time (e.g., abilitv to change when new
applications come along), At the same time, the OMS
must capture as much commonality as possible. The
more essential common features it captures, the more
useful it is, because the iess t he application needs to do.

Thus, the question remains: how can an OMS do
enough but not too much?

THESIS

There are no easv answers. However, there is a general-
purpose problent-solving technique that we can sue-
cessfully apply: divide the problem into component sub-

problems and try to solve these many, but smaller, ones.
This translates into what we have known for years as
the layered approach to software architectures.

To make the Ob/IS useful, we need to properly layer
the obJect management architecture so it provides the
hinctionality that common applications need while not
being so rigid as tostifie opportunities fordiversity. Such
an architecture consists of a few well-defined, carefully
crafted, and crisply distinguished layers with very sharp
interfaces between them.

In a crisply layered architecture, we can migrate the
common functionality towards the lowest few layers,
These become the most stable and reusable layers in the
architecture. The sharply defined interfaces insulate
them from any change above. At the same time, die
functionality subject to more diversity migrates towards
the uppermost layers. These become the most variant
and prone to replacement or change, least reusable, but
most application-dependent layers of the architecture.

Experience proves crisp layering is much, much eas-
ier said thari done. We all start with good intentions or
clear principles and cleanly drawn union structures but
often end up with sYstems that took much like ouronion
after having been run over by a truck!

There is hope, however. Newer technologies have
proven to be better able to carry through this ideal of
clean separation. Lets take a look at one such example.

What is common about persistent objects?
An environment that manages objects provides IWO
mam categories of services. The first is managing objects
themselves: their persistent states, relationships among
them, actions taken upon them, etc. (i.e., the object
model). The second category is managing the object's
visibility to the accessing user: who can see an object
and when. Visibility management includes managing
transactions, versions, access security, concurrency, anc]
licensing control.

Both object st-ate and object visibility are services diat
retain much of their meaning when divorced of any
specific object model.

HOT[INE OiN OBJECT-ORIENTED TECHNOLOGY

11

Object-oriented technology in Japan by Daniel Levin

Japan is a remote and
unknown place for most of US.
Many US software companies

do business with Japan, but
few non-Japanese have aclear

idea of business in Japan.

In this article, I will attempt to give an overview of what
is going on in Japanrelevant to object technology (CDT)
so you can identify concrete opportunities for yourself.
a market for your software, ideas on how to develop an
0-0 application, and a warning about what your Japanese
competition is lip to.

I would probably get more attention by announc-
ing Japan's imminent domination of the software in-
dustry than by telling the truth: Japan is not a leader
in software development. The Japanese computer in.
dustry, with the help of the Ministry of International
Trade and Industry (MITI>, has made several unsuc-
cessful attempts to [eapfrog the international software
technology state of the art with software factories. the
SiRIna project, and the 5th-generation project. The
fact that almost no Japanese software is exported demon-
strates that those efforts haven't made Japan a world
leader in software development OT is no exception:
1100-0 language or application has been exported from
Japan. You don't need insider knowledge about Japanese
software technology to judge the non·competitiveness
01 it anv more than you need to visit a Japanese auto-
mobile factorv to judge the competitiveness of their
cars. But in both cases, vou won't be surprised with the
export results if you visit the production site, Japan
may not be the leader in OT but in the rest of this ar-
ticle I will show why it is nevertheless a place ofmuch
interest for the OT community,

When they hear the word"Japan,"mc)51- people think

VOLUME 3, NUMBER 10 - AUGUST 1 992

"exporter." But for software, Japan is definitely an im-
poTier, especially of the most basic packages like d:atabase
management systems (DBMSs), operating systems (OSs),
and network management software. Japan is die world's
second largest software market and worth any software
vendor's attention. My company obtained 30% of its
revenue from Japan in 1990, Concerning the practical
issues of selling your software in Japan, I suggebt that you
read the AEA's handbook. 1

Although Japan is not a leader in OT, I agree with
the average doomsayer that it is necessary to keep an
eye on Japan to check if some company is going to
copy your idea, improve on it, and flood your market.
Japan did that for hardware, and has been attemptingg
to do the same for software. A look at some represen-
tative Japanese OT projects will give you tin idea of
both the specific interests and the state of deployment
of OT in Japan.

• Fujitsu (Jasmine>, Hitachi (Mandrilt), and NEC
(Odin) have developed prototype object database
management systems (ODBMSs). For previous gen-
erations of DBMSs, they provided proprietary· DBMSs
on proprietary hardware. Now that they are selling
more and more open systems they are evaluating
when to provide ODBMSs to their customers and
whether to develop proprietary ODBMSs.

• A hardware vendor has developed a prototype office
inforination system that stores. links, and retrieves
various tYpes of office information: fax, email voice, ...Ii*iJ//6/
word processor text, etc .:'*-::.

e ATR, a research organization owned half byNippon Vic./'21-

Telephone and Telegraph (NTT) and half by the
government, has developed a prototype CASE tool
that stores source code in an ODBMS and displays57*32 W

the struct-ure of it as a graph, thereby aiding modu
[arization and reuse of software modules. 2.-I'll,

• Sonv is developing an interesting O-0 research pro- Daniel Levin is the Regional
ject: MUSE, an O-0 operating system that enables Director ofthe japan Office
a[1 users to access a[[computer resources regardless fol· Sen o Comoration
of location.

\1

• Ship and Ocean Foundation is working on a proto·
type of CIM for shipbuilding. Currently, design in-
formation is scattered into numerous incompatible
proprietary fi le formats. Whenever :i change to ship
design ts required, the change ripples through the
various systems wreaking havoc as it goes. Ship and
Ocean Foundation hopes that putting all informa-
tion into one ODBMS would cut the total produc-
tion lime-span in half.

if your company makes anything that by any
stretch of the imagination can directly or

indirectly incorporate OT, youtd better not rest
on your technological laurels.

The various projects above will not make many of you
worried about Japanese competition, bilt there are a few
fields in which vou must reclon with it. For ex:imple, mui
timedia is receiving much attention in Japan. I am re
sponsible for sales of GemStone, Servio's ODBMS, in
Japan. Over half our customers and prospects are inter-
ested iii OT to handle multimedia applications. A visit to
the Sony Compilter Fair illustrates the state of multime-
dia in Japan. As a corporate strategy, Sonv is trying to cre-
ate a synergistic whole ofall its activities: video cameras,
CD players, workstations, palmtors and laptops, movies.
music, cartoon characters, etc. Other Japanese hardware
vendors have similar, although less broad, multiniedia
strategies. Sony has developed its own workstation and
PC and organized the Sony Computer Fair to let software
vendors exhibit their applications. Over one-third of the
applications exhibited are multimedia. The most typical
dento program, whether it is fc)r a CDROM iniage database
or a GUI developinent tool, is a personnel database What
is so important about putting photos into a personnel
database? Can'I you do without them? That's the point
Japanese vendors and customers are making: most data
that C<miliplinies TInnkige IS nlukirrleclm. A)1 exaimple, The
typical personnel deparnnent has employees iti a database.
Ina f [ing cabinet, they have a file foreachemployee with
a picture, handwritten perfurniance evaluations, a photo-
copy of a resume,etc. The computer ishandlingone-tenth
of the information, the other nine-tenths is being han-
died by manual updates, fax transinission, phol ocopy di,«
tribution, phone inclinries, etc. Tlie Japanese market con-
tradicts pessimists who say multimedia is a technology but
not a market. Japanese hardware vendors have identified
the inarket for multizIlediA: 111(]Ilagilig the kinds of infi)r-

E E INTERNATIONAL PDATE

marion found iii any othce: voice. pictities, diagrams, spread-
sheets, texts, etc. I don't think that the 6th-generation
project (successor to the 5th-generation project) has any
chance of making a significant impact on the quality of
Japanese IT, but the efforts devoted to multimedia could
have a major impact on the competitive position of both
Japanese hardware vendors and their japanese customers.

No matter how well you master OT, if your company
makes anything that by any stretch of the imagination
can directlv or indirectiv incorporate OT, vou'd better
not rest on your technological laurels. Consider "fuzzy
logic" as an example of a not,particulariv-Japanese tech-
nologv the Japanese industry turned into a competitive
advantage. Fuzzy logic is a field of Al. Japanese electric
appliance manufacturers have incorporated it into wash.
ing machines, ovens, and other electric appliances to en-
able them to make their own decisions about how to do

their job. "kizzy" for Japanese electric appliances has a
status similar to "no cholesterot" or "with bran" for food

in the USA: you can't sell your product if it doesn't have
"Fuzzy" written on it. Using fuzzy logic both to add intel-
ligence to appliances and as a sales point was a great strat-
egy, and 1 expect to see the Japanese be the first to label
auton.obiles and fax machines "object-onented. I

Plow about benefiting froin the results of Japanese re-
search, for a change? The Sigma project is an example of
what nor to do. This ambitious project, implemented by
a government.sponsored industrv consortium, aimed to
standardize all Japan on a common software-engineering
platform including a standard hardware platform, OS,
languages, and CASE roots. Standardization was to en-
able reuse of software "parts." and the combination of
reuse and CASE tools was projected to yield a 10x in-
crease in productivity. Last year a cover story in NIKKEI
CoMpuTER (the Japanese equivalent and corespondent
of DATAMATION) was titled "The failure of Sigma." The
main reasons pointed out for Sigmals failure were:

• Premature standards. By the time Sigma was corn-
pleted (1990),all the standards were obsolete. out-
weighing the alleged benefuS of standardization.

• Insufficient technology for reuse. Calling the same
old pieces of C or COBOL code "software parts" didn't
make them reusable.

• Lack of commitment. The typical Japanese govern-
ment's strategy ot making competitors cooperate to
develop new technology didn't work because the
technology was not precompetitive.

There are also some lessons to be learned from Japan
regarding what you should do. Of course, 1 suggest you
try to emulate Japan's successes rather than failures.
Japan's impressive success in product design, although
not directiv related to software development, should in-
spire all softwai·e developers.

HOT LINE ON OBJECT-ORIENTED TECHNOLOGY

Many people in the field of software engineering,
particularl, in the field of OT, consider "industrializa-
tien" of software development to be a desirable goal.
Don't waste your time studying conveyer belts and tire
molds unless your job is to produce multiple copies of
identical software. The crisis is in software develop-
ment, not software reproduction. Development is a de-
sign process, so inspiration should come from studying
the way automobiles and buildings are designed.
Japanese companies are world-class product designers.
Some of their techniques are relevant to GO software
development.

Rule 1 is to produce a design that satisfies all its users.
To ensure each department has other departments' needs
in mind, Japanese employees are rotated through van-
ous departments of their companies. Also, people from
all stages of the production process are included in the
design team from the start. For software development,
the lesson is that superior coordination of various de-
partments yields better results than superior profession-
alism in each department.

Rule 2 is thar trving to get adesign right the first time
is not the key to success: iterative design is. 1 have no
idea who invented the telephone answering machine,
but the first time I went to Japan, in 1987, l saw that
Japanese manufacturers were selling answering machines
that were smaller, better looking, andeaster to use than
Western ones. Western answering machines were an
implementation of the first iteration of design: a tape
recorder attached to a phone. Thus, they were machine-
centric: to listen to your messages you pushed rewina
to rewind the tape, 'play" to play back the messages,
then "stop," and then "rewind." Meanwhile, Japanese

answer ing machines were already several iterations be-
yond the first design and had already become user-cen-
tric: you pushed "play" to hear your messages.

Rule 3 is to reuse designs. The Japanese know a lot
about reuse. One example is architectural firms. They
have people traveling around Japan and the world tak.
ing pictures of buildings. They manage that competi-
tive data in addition to data on their own productions.
The most advanced companies are looking into using
ODBMSs to manage their databases. The point is: reuse
is not cheap. It requires a big investment in managing
the reusable designs. Japanese companies also illustrate
what champions of OT have been saying for vears: you
have to reward employees for putting in the extra ef-
fort to make a design reusable, which makes the corn-

pany more productive, rather than rewarding devel-
opers for botching their job as quickly and selfishly as
possible. One more skill required for reuse that the
Japanese have mastered is humility. Japanese tend to
iassume nobody is perfect and that the design they are
reusing is probably better than what they would have
created themselves. Westerners usually assume the op-
posite, a major obstacle to reuse.

To conclude, let's summarize the main things you can
do. You can sell software to Japan. You should watch out
for the way they incorporate technology into products
like the ones your company sells. And, you can learn
about how to produce designs from Japan. m E

Reference

1. SOFF LANDING IN JAPAN, American Electronics Associ-
ation, Japan Office.

' - I

Calendar
¥ V

THE HoTLINE C.ALEND.AR presents conferences and meetings that focus exclusively on object-oriented technology. To have a meeting or
conference listed, please send the cates, conference name and location, sponsor(s) and contact name and telephone number to the Editor:
Robert Shelton, 1850 Union Street, Suite 1584, San Francisco, CA 94123; fax: (415) 928-3036.

Sept. 21-25,1992
C++ By Design

New York, NY

Contact: 212.274.9135

Sept. 30-Oct.2,1992 October 13-14

CASE World Yourdon on Object.
Boston, MA Oriented Analysis &

Contact: 508.470.3880 Design
Chicago, IL

Contact: 508.470.3880

October 18-22, 1992

OOPSLA '92

Vancouver, BC, Clanada

Cont:act: 407.628.3602

Nov. 16-20,1992

C++ World

Meadowlards Hilton, N]

Contac·t: 212.274.9135

VOLUME 3, NuM[BER 10-Aucusil 992

.

hotline Ahon

OBJECT- ORIENTED
technology

Backissues

All back issues of the HOTLINE are available. Please call 212.274.0640 for details.

Vol.3, No 10/Auguit'92 .Object technology: toward software manufacturing . Re-
turn on investment: software <5sen and the CRC technique I Object-oriented tech-
nology in japan • Providing commonality while supporting diversity

Vol.3, N<>.9/July '92 m OOD: Research or ready • Enterprise modeling: an object ap
proach E OM G's 18 -24 month view . Design for object-oriented applications: a I ASI·
for wishful thinking..

vol.3, No.8/Iune '92 m Business in the Information Age- From data modeling Lo ob-
ject mod,11ng m How frameworks enable application portability . Interview Mth
Vaughan Merlyn
Vc,1.3, No.6/April '92 • Thinking the unthinkable reducing the risk offuilure, Mili-
gating madness with method: first establish what you value g Championing „I.ject tech-
nology for career success in the 19906 , Objects and actions in end-user documentatian

Vol.3, No.5/March '92 • TA large-scale users' assessment of„biectorientation • Re-
port on the Object-Oriented COBOL Task Group . literview with K.C. Branscomb

Vol.3, No.4/February '92 - The big prize: aceeptallce of O-O by the MIS community .
Retrospecnve: 1991-theyearita][changed-Makingthetransitionto O-Otechnolog>
• Inteniew with Beatriz Infante

Vol.3, N o. 3 /Ian uary 192 - 1·nt erprise (.bject Inod¢]ing: knowin g w ha t w¢ kno w a Adopt-
ing objects pitfalls .Adoption rate of object technology: a survey ofNSW industry
Vol,3, No. 2/D=riber '91 - Accepting object Technology • Adopting objects: a path
a Incorporating graphical content into mu[timedia presentations

Vol.3, No. 1/November '91 • Leading the U.S. semiconductor manufacturing iii-
dustry toward m obiect-oriented technology standard 2 Coping with complexity:
OOPS and the economists' critique of central planning- Choosing Object'I echnoI-
ogy: What'. the obiect?= OOP. the MISsing link

V„[.2, No. 12/0:tober '91 < A modest survey of OOD approaches - What is a "certi-
fied" „blect programmer? m Perspectiver investing in objects today I Object oriented
in Melbourne, Australia 2 The Object Management Group

Vol.2, No 11/September'91 2 } rorn applications to frameworks = Report on the Ob
ject-Oriented COBOL Task Group . Getting slarted with object technology: e fffectively
planning forchange - Object statistics on the way- On objects and bullets

Vol.2, No. 10/August '91 , Distributed object management: improving worker pro-
ductivity - Getting the best from objects: the experience oflip - APPI TCATIONS: EC
employS object technology . x (APACITY Pr ANNING: Fiddling while ROMs burn

Vol.2, No 9/jilly>91 .Multimediaiseverywhere! w Developinganobjecttechnology
prototype m Object oriented capacity planning - How OOP has changed our develop-
mentallifecycle • Modularization of the computer system

Vol.2, No. 8/June '91 • Domain of objects: the Object Request Broker• Oblect-based
approach to user documentation• Report on the Obiect On:nted COBOL Task Group
• Do we need obiect-oriented design nietric.?

Vol.2. No.7/May '91 - Hybrid object-oriented/functionaldecomposition for software
engineering a So, what makes object databases different? (Part 4) a Using the generic
application to solve similar <tornain probkins . Experiences using CLOS . Interna-
tional Conference on Object-Onented I echnotogy, Singapore
Vol 2, No.6/Apr. '91 • An artist's perspective of programming m So, what makes ob-
ject databases diff:rent? (Part 3) . Moving from Pascal to C.+, Part 3 2 Oblect pro-
jects what can go wrong 5 H.Rection, froni LOOK-'9 I

SUBSCRIBE NOW TO THE HOTLINE ON OBJECT-ORIENTED TECHNOLOGY-
DON'T MISS ANOTHER VALUE-PACKED ISSUE!

0 Yes, plug me into the latest thinking and developments in object-oriented technology. Enter me as a subscriber at the term marked
5@low and rush me the current issue. This is a risk-free offer - I may cancel my subscription at any time and promptly receive a refund
for the unused portion.

1 year (]2 issues) 2 years (24 issues) Back issues @ $25 each (327.50foreign):
3$249 0$478 (save $20) Vol.2, Nos.

f.miside US add $30 per year for dir se,vice) Vo[.3, Nos.

U Phone/fax order
Call Subscriber Services at 212.274.0640
or fax this form to 212.274.0646 Name

3 Bill me

O Check enclosed
Make check payable to the Ho·i·I.INF. and mail to:
The HOTIINE Subscriber Services
P.O. Box 3000, Dept. HOT
Denville, NJ 07834
(foregri orders mw be repaut m US dencis drawn on n US bank>

Title

Compaiky/Mail Stop

StreeVBuilding#

1 Credit cardorders
O MasterCard a Visa O AmEx

City/Province

ST/Zip/Country

Cardlf Expiration Date Telephone

Signature

hotline 0on
OBJECT- ORIENTED

technology
VOL. 3, NO. 11 THE MANAGER'S SOURCE POR TRENDS, ISSUES & STRATEGI,ES SEPT. 1992

Developing strategic business systems
using object technology

Over the past two years,
the thundering waves of
object orientedness have
become deafening. We are
bombarded with articles, speeches,
and pronouncements on object
technology as the savior of our in-
dustry. We are inundated with ad-

Dr. Jerrold M. vertisementy and product literature
Grochow on the latest books, languages, and

tools to make object design and de-
velopment painless. We are exhorted to "think like an object, act
like an object, be an object," as though somehow this will save
the world.

Unfortunately, a great deai of this cacophony is mere rehash-
ing for those of us in the information systems (IS) part of the in-
dustry (ala. business systems, nianagement information systems,
etc.). We have heard it all before: "Use structured techniques and
your syrtemi will be maintainable"; "Use 4GLs and you will elim
inate the application backlog"; "Use CASE tools and you will im-
prove productivity 50-100967 =Object technology will deliver on
all the promises that other technologies didn't." Yes, and "the
check is in the mail"

1 Cover feature Jerrold M. Grochow

Developing strategic business systems using object technology

2 From the Editor Robert Shelton

4 Education & Training David Bellin. PhD

Object training; harder than it looks

6 Return on Investment Sam Adams

Object-oriented ROI: extending the CRC across the lifecycle

If object technology is really going to help us, we need to ad-
dress the "real" problems in designing and developing strategic
business systems. When trying to figure out how to extend the
life of existing systems of more than a million lines of COBOL
code (mostly undocumented) running as a standalone system on
a mainframe computer, the issue is not whether C++ is object
oriented enough or which dialect of Smalltalk to use. The real is-
sues in object technology are:

· will it scale?

· can it be managed?

• will it perform?

The question is whether object technology will provide value
to the IS manager in the form of robust tools and methods for cre-
ating heavy-duty systems. The IS manager is searching for new
methods that miist apply to the large-scale, high-volume situations
faced everyday in the world ofbusiness systems. With hundreds
(or thousands) of online users making split-second decisions re-
garding millions of dollars, the brokerage house IS manager can't
explain that a strange lull iii system response is due to the envi-
ronment «garbage collecting." When nightly production sched-
tiles can't be missed without risking a Federal audit, the bank IS
manager can't say that the new object-oriented system "doesn't
handle batch processing so well." With database sizes measured

continued on page 10

IN THIS ISSUE

13 Software Quality Robert Howard

What TOM means for OT

16 Book Review reviewed by Brian Henderson-Sellers
OBJECT-ORIENTIED SOFTWARE ENGINEERING

17 Product Announcements

20 FYI

.1.

FROM THE EDITOR

D

E E

uring July, I had the pleasure of
chairing the London ObjectExpo Execu-
tive Briefing, a panel discussion organized
to familiarize senior and mid-level man-

agers with object technology. The major
ity ofattendees managed Inforination Tech-
nology (IT) groups and divisions in the UK,
from finance to basic iI]dustry, government
to health care. Our panelists were leaders
in the object technology vendor and user
community.

Over 50 managers participated. A straw
poll taken at the start of our session re
vealed that three had been involved with

object technology for more than one year,
while just under a dozen had less than a
year's experience. Of the remainder, half
had a reading familiarity with the subject
area and the other half were undertaking
their first exploration.

Their questions were as revealing as our
panelists' responses: How does this tech-
nology scale iii the large? Can it be used for
fault-tolerant or real-time systems? Can ob-
jects be used in an online transaction pro-
cessing application? One ofthe conference's
most enlightening speakers, a panelist and
a regular HOTLINE author, Mr. Norman
Plant, Chairman of the Object Interest
Group, challenged the technology's current
suitability in large-scale core applications-
an area in which some of our other pan-
dists had surprisinglylimited hands-on ex-
perience. His experience-based concerns
were echoed by a question about handling
the rapid-application development re-
quirements of the financial community,
wherein a trading house might require ap
plications to develop and deliver a new
financial instrument or to take advantage
of an opportunity with a Iife-window of
only a week or two.

These are the real day-to-day concerns
raised by this month's feature author, Dr.
Jerrold Grochow of American Manage-
ment Systems. He points out that much of
the hoopla over objects is rehash for the
IT manager, and that the fundamental
questions about objects, as with any new
technology, are about scalability, manage-
ability and performance. Real life for IT

managers running maor

projects is not radio buttons
and pastels patinas-it is AL#
budget, schedule, and
satisfied customers. Dr. Grochow would

agree with the panelists' conclusion: ob-
ject technology is profoundly useful in these
arenas, but only after overcoming the bar-
riers to entry. Some of these-lifecycle and
methods, training and education, tools,
and management control-are addressed
by our other authors this month. But Dr.
Grochow raises several critical needs that

are not receiving wide attelition as yet a
design repository that works, methods for
estimating development time and cost, and
methods for estimating operating costs. I
agree that we have not adequate]y met these
needs in the traditional software develop-
ment domain but, as Mr. Grochow points
out, managers expect much more than the
platitudes ofthe sales pitch, Just saying that
object development will be cheaper and
faster is simply not good enough -espe
cially for the managers who have to bring
their organizations' first object technology
project to success. Remember, success is
results against expectations, not just re-
suits! If the sponsoring manager expects
the first object-oriented project to cost less
aiid be completed more quickly, yet the re-
suit conforms with industry experience
(taking two to three times as long as it
would using conventional development
methods and programming technology),
then the project has failed in the eyes of
the beholder!

Reinforcing our author's point ofview,
Mr. Gordon Eubanks, President and
founder of Symantec whose perspective on
object technology is based on his employ-
ees' adoption experiences, reminded us at
the Executive Briefing that much of what
we place undertheumbrella of objecttech-
nology is not new or revolutionary. It is
rather common sense, often the same comM

mon sense tliat our iiidustry has fallen short
ofin the past! Furthermore, what is tough
about object technology is the adop-
tion/training process, not the concepts of
the technology itself. Dr. Adele Goldberg,

Chairman and founder of

F ff*¢ ParcPlace Systems, and also a
*94A ®44% Briefing panelist, reinforced

the importance of managing
expectations through the adoption pro-
cess with statistics from 38 object tech-
nology projects. Dr. Goldberg's and other
studies are beginning to address the hard
questions that information technology
managers must ask of object technology
and its vendors, but I expect most of us
would agree, despite our enthusiasm for
this technology, that the answers are far
from solidified as yetl

Mr. Sam Adams of Knowledge Systems
Corporation brings us the second in his
four-part series on the class-responsibility-
collaborator method. CRC takes an inter-

active approach to modeling the behavior
of a system and its external compatriots.
As such, it will likely be the methodologi-

ca] counterpoint to the data-structure/be- <
havioral approaches that are growing out
of entity-relationship (ER) modeling,

This article addresses one part of the
problem Dr. Grochow identifies: method
andlifecycle sufficiently comprehensive to
be applied at the enterprise level, capable
of handling complex industrial-grade sys
tems. Certainly CRC provides a uniform
model from top (enterprise) to bottom
(class hierarchy design). The challenge,
however, remains to identify and define
tlie transformations tliat take place through
this range. As work with the Zachman
Framework has led us to understand, there
are multiple views on any system. Mr, John
Zachman, formerly a senior consultant for
IBM Corporation. has refined these views
into layers that are each meaningful and
distinct. The layers are not decompositions
of one another, nor is the difference sim-

ply at the level o f detail and exactitude.
Each layer represents a different view of
the same system: the ballpark view, or
strategic vision, as seen by the CEO; the
business tactical view; the information

technology view; etc. Thus a CRC model
of the ballpark view (enterprise model)
would be expected to differ from the busi-
ness view (business conceptual model),

2 HOTLINE ON OBJECT-ORIENTED TECHNOLOGY

toward quality. It is not sufficient to test completed applications for defects, remove the ones we discover, and
ship the rest to customers. We must instill quality at every stage of development- And we must be satisfied
with nothing less than zero defects. With conventional software, this is almost certainly an unrealistic goal.
But object technology presents new opportunities for improving the lamentable state ofsoftware quality....

A quality-first program for object technology, David A. Taylor, OBJEcT MAGAZINE 7-8/92

. ,Robert E, Lee said "Plan no more than necessary.» His ultimate defeat was probably due more to the im-
plementation of this philosophy than its validity- The problem in development, again, as in war, is how to
know when to stop planning and start Inoving. The answer is never stop planning but never let planning pre-
vent progress. The best methods today facilitate iterative development. IJse one with object-oriented tech-
niques for the appropriate tasks to get the most powerful and compete approach available.

Planning, lookahead,and spiraling into control, Adrian Bowles, OBJECT MAGAZINE 7.8/92

...!Steve Jobs:] Software development today is collapsing under its own weight It has gotten too complex
for the current way of development. Object-oriented software allows you to hide and manage great com-
plexity. That means you can build much more complex software. That>s the biggest benefit. The second biggest
benefit is you can build a lot faster. The third biggest benefit is it is much more reliable. Then you get into
reusability issues. I f a company is writing ten applications and each one posts some debit or credit in a gen-
eral accounting system, ten different groups of ten people at tell different times will write different pieces of
applications to do that. Let's say thatyou decide to go into Europe and you have to support multiple curran-
cics. You've got ten things to change. If they all use the same posting object, with some subdass changes but
basically the same object, then you can change it in one place and it will dynamically link into all applications
automatically. Those benefits are just beginning to be discovered but they are going to be huge....

The Next step and beyond: a conversation with Steve Jobs, UNIFORUM MONTHLY, 5/92

. .My experience has been that the shops that were the most successful with structured techniques are also
the most successful with object-oriented techniques. This correlation isn't strange. Structured techniques
are successful only in shops that have direction and foresight, good team communication, discipline, and
management commitment to up-front analysis and design. Object-oriented techniques are, in many ways,
like structured techniques-only more so. Success in deriving useful classes, sound class hierarchies, and
other object-oriented structures requires a degree of software-engineering discipline that surprises even
some experienced software engineers. Shops that have failed with structured techniques should examine
carefully the reasons for their failure-not merely declare that 'structured techniques don>t work"-be-
fore adopting any other set of techniques. This is especially important if those techniques are object-ori-
ented .

Object orientation: the importance of being earnest, Meilir Page-jones, OBJECT MAGAZINE 7-8/92

. . .OOP, as presented by its proponents, represents a return to basics, The emphasis is on the realistic mod-
Ming of the user's world, and a systematic approach to design and programming. In addition, OOP languages
have feature that facilitate adjustments resulting from mistakes and the evolution of the business. Object-
oriented systems will not be written by novice developers; in fact, overall skill requirements are likely to be
greater...A problem is that object-oriented languages are a revolutionary, not an evolutionary step from ear-
lier languages... Their concepts are new, and there will be large learning curves for any enterprise taking up
the approach. This will be costly. In addition, the enterprise will benefit only in the long run over a number
ofprojects, and only if the entire enterprise commits to the new approach...The object-oriented variations
ofthe standard 4GL are not likely to cause any immediate change in the current use of 4GLs. However, in the
next three years, the trend to object-oriented languages will change the look of current 4GLs and eventually
lead to their more widespread use.

No gain without pain?, Gerald Adams, SYSTEM DEVELOPMENT, 5/92

. . . The ability to choose an access method enables new users of object technology to choose an access method
with which they are familiar. Many of these new users, living for years within traditional data management and
design concepts, find object-oriented concepts divergent and esoteric The use of a familiar access method and
database design shortens the time to implementation. As proficiency and understanding of object-oriented
concepts improve, the other access methods can be learned and later applied to enhance a database design

Access methods, Grant Colby, OBJECT MAGAZINE 7-8/92

SEPTEMBER 1992 23

FYI

way. He then wentback to Luigi and was able to report that all his programmers were now using C++ (developed <
by the very guy who was sitting under the tree in BUSINESS WEEK), Since C++ is an object-oriented language,
we mustbe an object-oriented shop. Everyone was happy.]/he programmers barely noticed a difference. Except
for a few brave experimentalists, none ofthem changed coding habits. Nosbert had saved face without having
to do anything significant. Luigi could hold his head high now that [his] company was again basking in the
white heat ofmodern technology. I believe that the technical term for all ofthis is "declaring victory.'> , -,

Object orientation: the importance of being earnest, Meilir Page-Jones, OBJEcT MAGAziNE, 7-8/92

. . . At a recent IBM briefini Jim Cannavino also seemed to downplay Taligent's impact on IBM's current PC
operating system strategies. On the eve of the shipment of OS/2 2.0, Cannavino said he saw OS/2 enduring
throughout the decade; he even saw it moving to other platforms (RISC, in this context). This caught us by
surprise, as we thought Taligent was specifically for the RISC. platform. Both Apple and IBM mentioned that
they would use the research from Taligent to enhance their current products, including the addition of ob-
ject-oriented technology, both to prolong product life and, presumably, to offer a path (eventually!) to Tali
gent itself What's going oil here? Has Taligent been orphaned at birth, abandoned at the start by the very
companies that paid for its development and whom we thought cared about its future? It is much more likely
that we're seeing naturally cautious senior-management types exercising prudence about a product whose
potential impact and revenue stream is still far, far away... This product hasn't been orphaned at birth; the
parents just don't want to claim this child prematurely. They're waiting for tile intelligence test results; they
want to see how many baby beauty contests it's going to win....

Taligent orphaned at Bir·th?, Amy Woht, COMPUTERSHOPPER, 6/92

. . .According to projections from computer industry market research firm International Data Corp., the
OODB [Object-oriented database] market will double each year, over the next five years... Already, OODBs
have established a presence in mechanical CAD (computer-aided design) and multimedia environments where
users are dealing with complex information that needs to be showed and retrieved quickly. One of the key ad-
vantages to OODBs is that they can more easily handle complex data like graphics,whole documents, multi- /
media applications, e-mail and voice mail. OODBs also handle high levels of abstraction and can represent, V
store and retrieve all the data pertaining to an entire company, for example, as a single object. With RDBMSs,
complex data has to be broken down and filled into rows and columns, like a big spreadsheet and complex
queries hurt performance ..AlthoughOODBs offer advantages for complex data types, there are areas, such
as online transaction processing applications (OLTPs),and retrieving content based on single values, where
RDBMSs are faster. Another hurdle for object technology is the heavy investment corporations have in rela-
tional technology. Customers want to have a clearly mapped migration path to object technologybefore they
jump in with both feet, says Robert Marcus, head of the newly formed Corporate Facilitators of Object-Ori-
ented Technology (C-FOOT)..,Is the hybrid approach simply a stopgap measure on the way to full object
databases, or can we expect this approach to be the dominant database model of the future? According to Or-
acids David Beech, senior product manager of Object Systems, the evolution will be for relational systems to
make more use of object technology and graphical interfaces: "I see a convergence o f the two fields. One is
just more general than the other."...

The next wave: object oriented databases, Gordon Arnaut, INFO CANADA, 5/92

-. According to a spokeswoman, interest in object technology is reflected in a telephone survey Object Expo
sponsor SIGS Publications made last month. The survey showed that 75 percent of the Fortune 100 indus-
trial companies are using some object-oriented technology. Half of the remaining quarter said they'd con-
sider it next year. Object Expo Tools, Dan Richman, OPEN SYSTEMS TODAY, 6/22/92

. . . The hottest new development technology is object-oriented programming. It's so hot that vendors are
proclaiming new versions of old software to be "object-oriented" about as fast as they can yell the words. It's
so hot that you might be tempted to dismiss it as just so much hot air. Don't. . .If you're developing software
any other way two years from now, you're probably making a mistake.

Object-oriented programming is worth its cost, Mark L. Van Name & Bill Catchings, PC WEEK, 6/15/92

STRATEGIES . . . obiect technology is often compared with manufacturing because new applications are assembled out of (
existing components ratherthan crafted from scratch. In terms of testing, however, we are emulating an outmoded
model. We leave testing until our products are completed, and we ship software that is virtually certain to contain
serious defects. If we are to emulate the success ofmodern manufacturing, we must take the same attitude

22 HOTUNE ON OBJECT-ORIENTED TECHNOLOGY

/,wing...

OiNECILORI3ED
NOTE TO OUR READERS:

Robert Shelton, Edjtor

I To make it easier to save and protect your copies for back
reference, the HoTLINE has been redesigned to fit into a
standard three-hole punch looseleaf binder.

Customized HoTLINE binders hold two volume years and
can be purchased for $15 (including shipping and handling)
by camng 212.274.0640.

which in turn would differ from the in-

formation systems view (class hierarchy).
I'his powerful and essential yet subtle con-
cept remains to be fully appreciated in the
information modeling community. Meth-
ods such as CRC are being evolved into
enterprise tools from the bottom up, and
will have to address these perspectives as
we come to clearly define them.

Our author Dr. David Bellin, an educa-
tor and trainer, takes a hard look at train-
ing. Object training is not simply a one-week
class in an object+oriented programming
language. A class in C++ for the program-
rners will not bring substantial benefits to

 the organization. We are reminded of Dr.
David Taylor>s books, which speak of the
need for training and education. Ms. Eliz-
abeth Sevean, founder of the New York
Object Users Group, has picked up this
theme by beginning to develop a curricu-
turn for object technology. Our industry
is on the tip of an iceberg. We know thai
rrientoring is critical to successful training,
as in the case of structured methods, ER
modeling, and CASE and conventional
programming. Organizations lean on the
macho programmer fantasy-you know,
"real programmers don>t need..."-as a
short-sighted excuse to avoid investing in
their own professionals. Right! And the
check is in the mail....

Mr. Robert Howard of Rock Solid Soft-

ware takes on the issue of process man-
agement through Total Quality Manage-
ment (TQM). As you can see from reading
Mr. Adams' series, the process by which
systems are developed largely determines
the quality of the results- This is basic TOM.
Mr. Howard addresses the tactical ques-
tion: How do we bring these management
techniques to bear at the programmer/de-
veloper level, in our project teams and in
our organizations? In last month's issue,
Mr. Daniel Levin of Servio Corporation

SEPTEMBER 1992

Japan Office discussed TQM as one of the
US and EC's great vulnerabilities. We cre-
ated this powerful technologyyet our abil
ityto master managementlags behindthose
who gladly import and use our technology
to their competitive advantage. Anyone
who says Lee Iaccoca of Chrysler Corpo-
ration cries foul over Japanese competition
while promoting the Dodge Stelt (a car
completely manufactured in Japan by Mit-
subishi) should appreciate that it's high
time to stop grousing and start learning
from one of our best customers and com-

petitors. TOM is a pivotal management
tool; just talking about it will not make us
competitive. l'QM is about action, not talk.

We have yet to address tools for dis-
tributed deployment or configuration man-
agement, integration of a transaction man
agement layer such as AT&T Tuzedo or the
impact of a CORBA-compliant layer. We
need to look at development tools or the
suitability of object database management
systems for large organizations like British
Ainvays or Bank of America. There is much
ground to cover on issues raised byauthors
like Mr. Plant and Mr. Grochow,

We are beginning-perhaps just be-
ginning-to address the issues that will
make this technology approachable and
useful to the IT manager. The issue is not
whether IT managers are interested in ob-
ject technology, but how they will make it
work. Vendors and early adopters share
the burden of communicating the how-
and-why of their successes and failures so
that interested managers can make a rea-
sonable case for using this technology in
their business. - •

SIGS ADVISORY BOARD

Tom Atwood. Object Design
Gedy Booch. Rational
George Bosworth, Digitak
Brad Cox, Information Age Consulting
Chuck Duff, The Whitewater Group

Adele Goldberg, Parcplace Systems
R. Jordan Kreindler, General Electric

Meilit Page-Jones, Wayiand Sysiems
Tom Love, OrgWare, inc.

Bertrand Meyer, Interactive Software Engineering
Sesha Pratap, CenterL,ne Software
R Michael Seashols, Versant Object Technology
Bjarne Stroustrup, AT&T Bell Labs
Dave Thomas, Object Technology International

HOTLINE EDITORIAL B€>ARD

Jim Anderson, Digiwk, Inc.
Larry Constantine, Consultant
Mary E.S. Loomis, Versant Object Technology
Reed Phillips, Knowledge Systems Corp.
Trygve Reenskaug Taskon MS
Zack Urlocker, Borland International
Steven Weiss, Wayland Systems

SIGS Publications, inc.
Richard P. Friedman, Founder & Group Publisher

ART/PRODUCT!ON

Kristina joukhadar, Managing Editor

Susan Culligan. Pilgrim Road. Ltd.. Creative Direction
Elizabeth A. Upp, Production Editor

Jennifer Englander, Art/Production Coordnator
CIRCULATION

Diane Badway, CIrcula&on Business Manager
Ken Mercado, Fulfillment Manager
Vicki Monck, Circulation Assistant

John Schreiber, Circulatin Assistant

MARKETiNG

Lorna Lyle, Promolions Manager-Conferences

Sarah Hamilton, Promations Manage»Publications
Caren Polner, Promotions Graphic Artist

Administration

David Chatterpaul, Bookkeeper
Ossama Timoum, Business Manager
Claire Johnston, Cenference Manager
Cindy Roppel. Conference Coordinator
Helen Newling, Administrat,ve Assistant

Margherita R. Monck, General Manager

Jane M. Grau, Contributing Editor

THE HOTLINE ON OBJECT·ORiENTED TECHNOLOGY (ISSN
#1044-4319) is published monthly by SIGS Publications, Inc.,
588 Broadwaye NY, NY 10012, (212)274-0640. © Copyright
1992 SIGS Pubitations, Inc All rights reserved. Reproduc-
Bon of this material by electronic transmission. Xerox or any
other method will be treated as a willful violation of the U.S.
Copyright Law and es flatly prohibited. Material may be repro-
dueed with express permission fromthe publisher. Mailed First
Class. Subscription rate - one year (12 issues) $249, For-
eign and Canada $279 Single copy $25

POSTMASTER: Send address changes & subscription orders
to HOTLINE. Subscriber Services, P.O. Box 3000, Dept HOT,
Denville, NJ 07834

Submit editorial correspondence To Robert Shelton, 1850
Union Street 5 Suite 1548. San Francisco, CA 94123
voice: (415) 928·5842: fax (415) 928-3036.

SIGS
PUBLICATIONS

Publishers of HOTLINE ON OBJECT- ORIENTED TEC.HNOLOGY,
JOURNAL OF OBJECT-ORIENTED PROGRAMMINIG, OBJECT
MAGAZINE, THE X JOURNAL, C++ REPORT, THE SMALLTALK
REPORT, and THE INTERNATIONAL OOP DIRECTORY.

3

EDUCATION & TRAINING -

Object training . 01,

than it looks

Object technology is today's most promising software develop-
ment technology, offering great hope for overcoming some of
the worst Achilles> heels of the software development commu-
nity. The promise of substantial savings in development and
maintenance costs seems near but, before these savings can be
realized. a substantial training effort must be undertaken. This
costs time, effort, and nioney. Most important, the training task
must be approached systematically to produce the expected pay-
back. A Fortune 500 training manager told me, "Object-oriented
techniques have proven to be the most expensive and most difficult
training project we have ever undertaken. It's costing us much
more than we expected." This manager is not the only one with
this experience. In fact, programmers of object-oriented (0-0)
languages uniformly agree that the transition to a fully 0-0 ap-
proach is the most difficult learning task of their careers. Early
training is one of the most crucial steps to adopting the technol-
ogy successfully. Developing good training programs, timing
them, and overcoming obstacles in order to implement them are
811 difficult tasks.

Object technology newcomers frequently underestimate the
extent of their educational needs. An experienced structured pro-
grammer needs a minimum ofsix months ofpractice to become
proficient in a pure 0-0 language. This was supported by Mark
Lorenz of IBM in a recent Hotline article,1 who stated that it
could take up to a year for true object-oriented programming
(OOP) proficiency to be reached. All the OOP experts I have spo-
ken with have confirmed this estimate.

Clearly, this learning curve is a great deal longer than when
structured languages were in vogue. Why this is so may be open
to debate and discussion. Personally, I think conceptualizing sys-
tems in 0-0 terms is actually harder than doing so in process-

Most successful training programs
combine formal and informal methods.

Both are crucial to OOP.

4

E

arder

David Bellin, PhD

oriented, data-transformation terms. Most disagree; they feel that
objectsarea more"natural"wayof modelling the world, and blame
the difficulty on differences in syntax and large class libraries with
which the coder must become familiar. But whatever the reason,

it is clear to all who have adopted object technology that pro-
grammers need substantial education.

Most successful training programs combine formal and in-
formal methods. Both are crucial to OOP. I have found it suc-

cessful to initiate the process by providing time, manuals, and
software for programmers to "play» with for several weeks. This
play-exploratory period is followed bya formal seminar in OOP
using the particular platform being adopted. After a one-week
breathen it is a good idea to hire an outside consultant. This OOP
expert is needed to provide the programming expertise that prob-
ably cannot be found in-house while the organization is still in
training. After a month or so of active work with OOP, most de-
velopment teams are able to start some internal education dis-
semination, in which the more skilled or rapid learners on the
team can begin to help their peers. This has been the most suc
cessful approach. I have used it in my own consulting work, where
we strive to make the clients comfortable with the new technol-

ogy by the time we complete an extended visit on-site.
No successful data processing (DP) shop achieves its results

solely from outside expertise, so a key decision is how to breed
knowledge in-house. There are many approaches to this. The one
I favor involves development of a leadership group, similar to
the elite police b v'¢Al teams whose training and personal stan-
dards are expected to provide an example and inspiration to the
rest of the force. How this OOP SWAT team is handled has a

significant imact on the results ofyour organization's OOP train-
ing. The SWAT team should consist of a core group of four to
six programmers who are put to work on a small test project so
that they may become thoroughly conversant in
0-0 technologies. This team then becomes the core for further
technical education within the organization. In other words, they
are groomed as the in-house -gurus."

Then there is the problem inherent to all gurus, from Timo-
thy Leary to Pat Roberts, who may come to consider themselves
virtually perfect and indispensable. This can lead to both extreme
salary demands and inferior organizational performance. How-
ever, Burns also have a lot to offer: they know their stuff, and can
be gratified by disseminating the word to others, My experience
is that good managers can handle any potential difficulties and

HOTUNE ON OB,ECT-OR]ENTED TECHNOLOGY

ented programming is not really new at all, It can be traced back to 1967 and the work ofNygaard and Dahlin
creating the Simula language. Its basic concepts are already over 20 years old. The time it has taken to win broad
acceptance is very similar to the time it has taken the concept of "open systems" to become accepted. The long
gestation period ofthese two very important ways ofthinking about software may tell us something about how
fast powerful 11ew ideas are accepted by the computer marketplace, at least on the software side. . . .

Object-oriented methodology, OPEN SOFIWARE JOURNAL, Vol 5/issue 1 1992

STANDARDS The Open Software Foundation, Inc. (OSF) said last week it has scrapped plans to use IBM's data engine in
the initial release of its Distributed Management Environment (DME), saying the object-oriented software
was too complicated to integrate with other technologies in the systeins and net management framework.,. OSF
said it will now rely on other components within the DME, including Tivoli technology, to fill the role planned
for the data engine. However, the group has not ruled out implementing the IBM data engine in subsequent
releases of DME

OSF scraps plan to use IBM data engine in its DME, Jim Duffy, NETWORK WORLD, 6/15/92

CLIENT/SERVER ... Converting a terminal-based application to a client/server paradigm using a GUI running on aPC misses
the point, because such applications wilinottake full advantage of the horsepower that is available on the desk
top, [Aaron Zornes of Meta Group] explained. "Clients should not have to wait for acknowledgement from a
server, What is needed is an asynchronous message-based system where clients are dedicated to servers, With
such an approach, you can optimize specific servers for certain types of applications," he said. "I'he goal is to
make the desk-top the focal point, with client/server applications that are proactive rather [than] reactive. This
is a major paradigm shift from block-mode terminals to asynchronous message-based computing.» Zornes said.

fhe problem todayis that nobodyknows how to program in such an emvironment" To create tliese environments,
application developers will have to familiarize themselves with object-oriented programming tools, because most
development environments are not designed to yield these types of dient/server applications

Building a solid base for client/server computing, Avery L. Jenkins & Michail Vizard, DIGITAL REVIEW, 6/8/92

LIBRARIES As developers move toward object-oriented programming, they are increasingly turning to prepackaged
class libraries to reduce programming efforts and to hedge against today' s growing number of platform
alternatives. However, developers and vendors both agree that their concerns about class iibrary standards
and compatibility have yet to be addressed....

Class libraries ease development; Garry Ray, COMPUTERWORLD, 6/29/92

DATABASES . . Object-oriented programming and Oodbms are in fact different things. But they share one vital concept-
the notion that software or data call be "containerized." Everything goes into a box, and there can be boxes
within boxes within boxes. In the simplest programming languages, each step of the program is one instruction;
in an object-oriented language, each step might be a whole boxful of instructions. So, too, with object-oriented
databases. With one of these, the space that might have been allocated for one data element may in fact be
filled with a whole boxful ofdata.... Here comes Oodbms, Joseph R. Garber, FORBES, 7/6/92

... Equally important, as new platforms, such as object-oriented databases, come to market, future-proofed
application can be ported to the new platform by changing only the DBMS block-the others remain intact
and unaffected. Although the benefits of future-proofing software are numerous and obvious, a major inb
vestment of resources is required because there is no way to evolve old mainframe applications to this type
of architecture. Noted technology consultant George Schussel, president of Digital Consulting, says, "For
maximum advantage from the added power, functionality andrichness ofdownsized client/serverapproaches,
youll need to trash your old applications and rebuild them from scratch.>' This is why future-proofed, ob
ject-oriented application packages are mostly coming from newer software vendors that have little stake in
oId application and maintenance revenue.

Commentary: Future«proof technology, Frank H. Dodge, COMPUTERWORLD, 6/29/92

THE BUSINESS OF O-0 ...This was a particularly funny one, which I didn't hear over the phone but at a conference cockta
party. Apparently, the boss-call him Nosbert-was Head of Software in a medium-sized company and the
boss's boss-call him Luigi-was Manufacturing Manager in the general corporation and had no real knowledge
of software. After reading BUSINESS WEEK on a plane, Luigi calledi Nosbert into his office. "Nosbert, are WE
doing this object-oriented stuff? Er, no" "Tlien get with it. I don't want our company to miss the bus." Nosbert
then implemented one of the most painless transitions to object orientation in the history of the universe. He
switched his compilers from C to C++ but told his programmers to continue to write C code in the same old

SEPTEMBER 1992 21

U

.

Excerpts from leading industry
publications on aspects of
object technology

HYBRIDS ,.,When we examine the choice of developing an expert system with a simple rule-based or a hybrid tool, the
hybrid software quickly becomes much simpler to use and understand. Hybrid tools allow us to represent
knowledge as objects that have the advantage of mapping directly to things in the real world. As the number of
objects grows, we can create hierarchies that show the logical relationships between different types of objects.
The objects maintain clarity about the facts being represented in the knowledge base and they make it easy to
edit the factual structure of the system. Hybrid tools have an added advantage of allowing tliose first prototype
applications to gracefully grow into more complex applications that would be impossible to develop with a simple
rule-based system. At the same time, we reduce the number of rules required, which in turn reduces the
niemory and processing time required...

Knowledge-based systems often deal with complex problems that maybe poorly defined. They require a network
of facts and heuristic rules. 4'heir solution depends on logic and an inference engine that can dynamically create
a decision tree, selecting which heuristics are most appropriate for the specific case being considered. The capa-
bilities provided with hybrid tools, combining object-oriented programming, rule-based reasoning and a graph-
ical environment support, rapid prototyping and make it easy to create a high quality, effective use]· interface. But
hybrid tools do more than just combine OOP, ES and GUI technologies. They allow us to solve problems that
could not be effectivelysolved before, In addition, theyarebecoming very similar to CASE tools in that they pro-
vide a descriptive, graphical model ofthe domain....

Object-based hybrid tools, Ross G. Hopmans, HP PROFESSIONAL. 5/92

LANGUAGES . . .IfSmalltalkissopowerful why does ithave suchasmall following compared to C++? A number ofpossible
explanations exist. Dan Shafer, author of the book, Practical Smalltalk suggests that Smalltalk is so completely
different from any other development environment that the first reaction of procedural programmers is
panic...Smalltalk>s classes and methods are not just a class librarybut an integral part of the environment
that makes up Smalltalk. Everything interacts with everything else. This can be quite disconcerting for the
beginner, and the fear of breaking something can often serve as the greatest deterrent to learning
Smalltalk. . .Ultimately. we return to the original question: Why Smalltalk? Because you want an environment
built around object-oriented programming, not derived from procedural programming. You want an
environment that provides extensibility while managing your code. You want the flexibility of an interpretive
language in which you can play with and test your code, coupled with the performance of a compiler. You
want an interactive debugging environment that lets you inspect and modify your code and variables on the
fly with instant results, instead of saving, compiling, and linking between changes.

Why not Smalltalk?, William Scott Herndon, UNIX REVIEW, 5/92

PREDICTIONS The next generation operating system will have to do much more than just use more memory; it will have to
fulfill a shopping list of items for leading edge computing in the 19905 ...The next wave of computer
software will also have to make it much easier to connect computers into networks, allowing electronic mail
and sharing of data. . . Finally, the software will have to be "object-oriented," a buzzword that means it will
be easier to write programs that are compatible with each other, and easier to update existing programs> making
the system quick to adapt to new uses, from communicating with supercomputers to automating your car.
Object-orientation is the key to broadening the PC market by finding new places to put computers now that
nearly all the desks are filled....

Code Warriors, Robert X. Cringely, WORTH MAGAZiNE, 7/92

... The object-oriented programming revolution may be the beginning of the biggest programming advancein the history of computers. It may prove to be the software equivalent of the microprocessor, allowing the
mass creation of more capable, less expensive software. We say"maf simply because it may also be that ob-
ject-oriented programming is just the beginning of that revolution and will itself be swept away in a compar-
atively short time by the new technologies it makes possible. As usual with computer revolutions, object-ori-

20 HOTINE ON OBJECT·OBENTED TECHNOLOGY

) at the same time guide their gurus into producing many posi-
tive contributions to the organization. The SWAT team is a
group rather than an individual guru. This is easier to manage
ifyou are careful in selection ofthe group. You should remember
to recruit members who have interpersonal skills in addition to
a technical background because these are the people who will
sell object technology to the rest of the staffby winning friends
and influencing neighbors.

To be successful, the SWAT team must be given extra re-
sources, higher funding, and twice the time they think they need
when they begin their first assignment. If at all possible, involve
the team in the evaluation and selection ofO-0 platforms; if not,
make sure they all have documentation, software, and hardware
of the highest caliber available, evenly distributed among them.
And start training promptly: train from day one, then give them
play time and open access to the technology. This first training
should consist ofbringing a training consultant in-house, at least
for several days, to get the team moving. Focus on 0-0 analysis
(OOA) approaches. 0OA skills are important and can be used
on projects implemented in any language (structured or 0-0).
It is useful at this point for the independent consultant to offer
an overview of current technology vendors and platforms. If de-
sired and if the team feels it would be helpful, the consultant can
continue on to a lower-level review of particular languages, tools,
or database management system (DBMS) products. I feel OOA

) skills should come first because they provide the basis for good
object-oriented design (OOD) practices when using OOP lan-
guages. I use 'CPR for OOA» as a start, a variant on CRC cards.
These provide a manual approach that can be used easily from
the beginning, Once facility in OOA concepts is achieved, more
formal methods such as Booch notation are readily adopted. No-
tice that I do not start with automated tools, although I encour-
age their adoption later on. It is more important to me that an-
alysts think through the problem. They can always learn to use a
specific tool later. During the next few weeks the SWAT team is
on its own, engaging in internal education exercises such as read-
ing some of the major textbooks and magazines and following
up with group discussions. These discussions tend to be non..
threatening because the team is not yet working on a particular
project. During this period, after the initial training, the output
should be "samples." That is, the initial team should be fi·ee to
"play" with the technologies. For example, if you will be using
Smalltalk, this is the time for the SWAT team members to begin
examining the class libraries. If the decision on ParcPlace vs. Dig-
italk implementations has not yet been made, team members
should look at both versions. Class libraries, both from vendors
and third parties, should be evaluated. This will be invaluable as
your organization makes the final purchasing decision on plat-
forms and environment5. Don't pressure the first team to im-
plement production jobs. You>11 le surprised to find that theyof-
ten go back to a recent project and reimplement it in an enhanced

' manner, learning much in the process about how different OOP

is from their conventional software-development technology. In
the next phase the new 0-0 team can be assigned to a produc-
tion job. This should be carefully chosen; it should be more than

SEPTEMBER 1992

a «toy» system, yet not so complex that it cannot be completed
in less than six months. This is important in ensuring positive
feedback to team members as well as continuity in the member-
ship of the team. Before production work starts, it is beneficial
to formally summarize the results of the study accomplished in
the earlier investigations of object technology.

By the time production work starts, the first 0-0 teamwillhave
found its own guru or gurus, who will often start propagandizing
the benefits of object-oriented analysis and programming to the
rest of your staff. Don't worry-that's part of switching over to
object technology. This is the beginning of a slow process of mo-
tivation and education that will make the whole shop eager to get
on the leading edge, rather than hang back in fear.

Let them know it can be done by encouraging their efforts,
giving them the chance to build self-confidence, and, most im-
portant, by providing them with the training they need! 2 22

Reference

1. Lorenz, M. Getting started with object technology: eftectively plar-
ning for change, HOTLINE ON OBJECT-ORIENTED TECHNOLOGY
2(11):9,1991.

David Bellin is a noted author and consultant engaged in object tech-
nology traning. Hs seminar on ''Object-Oriented Analysis" is available
in-house. Dr. Bellin welcomes readers' comments and may be reached
at 919.460,5198 or by email at dbellin@igc.org.

4, F E A H

1 OOP '93 OOP'93 and
objekldentklies Progia/mieren C++ WORLD
MONC REN

Munich, Germany
February 1-4 & February 4-5

XWORLD
March 8-11 ·New York City

Object oBI£CT EXPO
April 19-23 · New York City

OBJECT EXPO EUROPE Object
July 12-16 · I.ondon, England .31"0iEFiZmi;JM9i/E1

-25-Ce--.m,29yL425.-

C++ WORLD
October · California

* B. D .. 5

4 1

5

MarkYour Calendar 49. IGS
far 1003

RETURN ON |NVESTMENT EE

Object-oriented ROI:
extending CRC across
the lifecycle
(part 2 of a series)

52%

Sam Adams

According to an independent survey conducted by Object Mag-
azine, over 75% ofthe Fortune 100 have object technology (OT)
projects under way. The decision for these organizations is not
"Do we go obiect oriented?» but "How do we maximize the
benefits of object technology and manage the risks?" This is the
second in a series of articles concerned with the issues of extending
CRC to meet the challenges of enterprise-wide computing using
object technology.

The previous article defined the requirements for maximiz-
ing return on investment (RO[) in object technology by creating
and managing reusable software assets- It also introduced the role
of CRC in the discovery of key business objects.

This article introduces KSC's lifecycle methodology for the
development of object-oriented business systems. Extensions to
CRC for entity modeling, requirements acquisition, analysis, and
traceability will be discussed in detail, Future articles will deal
with extensions for implementation support, multiuser tool re-
quirements for the deployment of obiect technology on an en-
terprise scale, and managing software assets using object-oriented
metrics.

OT AND ROt

KSC's experiences have shown that maximizing return oIl in-
vestment in OT requires that software be treated as a corporate
asset that can appreciate through investment in its quality and
reusability. The most valuable software assets of any organize-
tion will be the objects that capture the essential nature of their
business domain. The foundation of these assets will not only be
code but high-quality design information. Pervasive reuse ofthese
software assets must become the norm, but it cannot succeed on
a large scale without the existence and proper management of
large libraries ofsoftware components that are 'reuseful" as well
as reusable.

IN SEARCH OF A METHODOLOGY

For two years now, KSC has funded a major internal research
and development effort aimed at defining a methodology and
environment for object-oriented software development, based
on our OT work at large business enterprises. No existing method
was consistent with our experience in large-scale, successful de-
sign and implementation projects. The new methodology had to
address the complete software development lifecycle, from re-
quirements acquisition to code validation. It had to provide a

6

single, consistent model for the design, implementation, and
reuse of object-oriented software components. Integration was
required with host-based legacy systems, databases, and support
for cIient/server distribution. People-centered techniques in-
cluding CRC needed to be central features. Multiuser environ-
ments for the creation, assessment, reuse, and management of
high-quality software components bad to be developed. A com-
prehensive suite of metrics for the assessment of design quality
as well as code was also required.

PRINCIPLES FOR SUCCESS

To make a system of this scope accessible to the many different
people involved in the software lifecycle, the methodology must
center on the behavior and interaction of objects and other en-
tities. This perspective provides these benefits:

1. Human beings have many years of experience dealing with
complex systems of interacting entities. CRC cards are suc-
cessful because they allow us to apply our natural skills and
experiences to the area of system design.

2. By focusing on behavior and interaction, we can defer im-
plementation-oriented decisions to a more appropriate level
in the design process.

3. By limiting the design of the system to the entities and their
responsibilities and interactions, the design process is more
accessible to the users and system specifiers.

High-quality software is designed to meet or exceed the
needs of the user without violating user expectations. Achiev-
ing this level of quality requires that software designers apply
these principles:

1. Maximize user involvement throughout the process. The user
is the best person to determine if needs are being addressed
and expectatioIis met,

2. Make the right decisions at the right time. The earlier in the
process a design decision is made, the greater is its impact on
system quality.

3. Expect and encourage iteration throughout the software life-
cycle. Only continual design validation, measurement, and
refinement throughout the process can ensure that constant
quality management is achieved.

All aspects of the lifecycle, including people-oriented pro-
cesses, tools, and methodology, must support constant manage-

HOTLINE ON OBJECT-ORENTED TECHNOLOGY

 ADA
Software Maintenance ADC/AdaScan is now available from Software Maintenance and Development as an option to Aide-
and Development De-Camp (ADC), the object-oriented software configuration management system. ADC/AdaScan helps

the Ada Developer find which source files belong to a specific program, which major program struc-
tures these files contain, and in what order files must be compiled to build all executable program.
ADC/AdaScan also enables the developer to identify the type(s) ofAda program units a compilation
order represents, such as a specification, body(?), package, procedure, task, or generic.

PO Box 555, Concord, MA 01742,508.369.7398.

96464£42#11 6- Rete,ditiehy
Al Corp and Aion Corporation announced the signing of an agreement to merge. While the two com-
panies will quickly begin the changes required to function as a single operation, the merger will be
finalized after SEC review and shareholder approval, which is expected in September of 1992 when a
new name for the company will be unveiled. The new company will be headquartered iii Palo Alto,
but will continue to operate a major facility in Waltham. Robert Goldman, chairman and CEO of AI
Corp, will become chairman of the new company, and James Gagnard, CEO and president of Aion,
will become CEO.

Digital Equipment Corporation announced an agreement to work with International Software Sys
tems (ISSI) on an architectural definition and implementation plan for E(DMA PCTE. Digital's mar-
keting and engineering staff in Varese, Italy, which has responsibility for all PCTE programs at Digital,
has been contributing to the ECMA PCTE standardization effort for several years. Digital is also a found-
ing member of the PCTE Interface Management Board (PIMB) Association, a nonprofit international
organization formed to promote the use of PCTE technology.

Serius Corporation announced the appointment of two key members of its management team. Wesley
Richards has joined the company as president and CEO, and James Heffernan has assumed the role of-
vice president offinance and CFO.

Software Maintenance and Development Systems entered into a distribution agreement with Seoul-
based Genesis Technologies. Genesis will market the Aide-De-Camp (ADC) software system and dis-
tribute ADC iii conjunction with complementary CASE tools and services in the Korean market.

Borland International announced plans to develop and market BRIEF, a professional programmer>s
editor, and Sorcerer's Apprentice, a network version control system. Borland recently acquired the
two professional programming tools from the Solution Systems' division of Software Developer's
Company, and will now own, develop, and market the products. Under the agreement with SDC, Bor-
land also recruited the core development team of these products for development of future releases.

CenterLine Software announced an independent software vendor (ISV) partnership program called
CenterStage. Under CenterStage, CenterLine will work with its partners to develop value-added prod-
uct integrations that complement CodeCenter and Objecteenter. In addition to receiving documen-
tation and technical support on how to access CenterLine's interactive capabilities, CenterStage mem-
bers will work jointly with CenterLine to market these solutions.

SEPTEMBER 1992

PRODUCT ANNOUNCEMENTS ==

Phar Lap Software Phar Lap's QuickStart for Windows NT allows developers to use Microsoft's NY tools (32-bit C/C++ <
compiler, linker, and resource compiler) under MS-DOS. QuickStart is available free of charge from
Phar Lap for a limited time. Quiddtart allows programmers to start building NT applications without
having to wait for their favorite DOS utilities to be ported to NT. To use QuickStart, developers copy
the NT tools from the Windows NT SDK CD ROM to their DOS hard disk. QuickStart runs the NY
tools by providing a subset of the WIN32 API under DOS, allowing the tools to be run from the DOS
command prompt like any other DOS program. 60 Aberdeen Ave., Cambridge, MA 02138, 617.661.1510.

Tom Sawyer Software Tom Sawyer Software introduced the Graph Layout Toolkit, an automated object-positioning tool pro-
viding realtime hierarchical layout services for directed and undirected graphs. When directly bundled
in applications, the Graph Layout Toolkit delivers an immediate facelift by dramatically enhancing the
readability of graph output. In addition, it allows complete flexibility for multiplatform GUI develop-
ment. Its many' useful design features are accessible through extensible C++ dass libraries or an ANSI C

1824B Fourth St„ Berkeley, CA 94710, 510.848.0853.

CLASS LIBRARIES
PostModern Computing PostModern Computing announced Netelasses, a set of C++ class libraries for TCP/IP-based object
Technologies transport and distributed programming in C pi on Sun workstations. The NetClasses Object Transport

libraries allow programmers to move objects between applications using TCP/IP and an asynchronous
intel·process messaging paradigm. NerCiasses transports generic C++ and National Institutes of Health
(NIH)-derived objects as well as Netelasses Typed Objects, runtime configurable objects whose struc
tures are specified by programmers in external files using an abstract syntax notation. The Netelasses
Distributed Services libraries form a connection management mechanism organized so that network
service providers need not set up explicit port numbers and remote procedure connections (RE), but
rather can simply "advertise" themselves on the network. Agents are active processes on the network
that monitor network service advertisements and manage connections between information produc-
ers and consumers. The NetClasses Remote Method Invocation libraries allow methods to be invoked 1
programmatically on objects from remote machines. 1032 Elwell Ct., Palo Alto, CA 94303. 415.967.6169.

ENVIRONMENTS
Interactive Software ISE's Eiffel 3 is a major revision ofthe company's object-oriented programming environment designed
Engineering for large industrial projects, as well as a significant addition of new components. The UNIX-based soft-

ware will be distributed in components so users invest only in tools and libraries they need for a par-
ticular project The heart ofISE Eiffel 3 is EiffelBench, a programming environment consisting of the
Eiffel compiler and a set oftools enabling debugging, browsing, and editing. EiffelBench uses ISE's Melt-
ing Ice Technology, incorporating the advantages of both compiled and interpreted environments:
efficient code and full static typing, with fast update after changing even large systems, resulting in a
fast re-execution cycle. FiffelVision is a high-level graphical user interface library for writing applica-
tions for various windowing environments without having to learn their details. EiffelBuild is the in-
teractive application builder with immediate execution. EiffeiStore is tile class library fur interfacing
with relational and O-0 DBMS, dealing with high-level persistency as well as with storage and retrieval
of networks of objects into and from different data bases using the SQL query language. EiffelBASE
contains well-designed basic Eiffel libraries, including data structures, ISE Eiffel 3 is available on ma-
jor UNIX, VMS, and AIX platforms. 270 Storke Road, Ste. 7, Goleta, CA 93117, 805.685.1006.

C++
Oasys Oasys announced that its Cross 680x{) Tool Kit is available on Silicon Graphics' RISC-based worksta-

tions and sei-vcrs. The Oasys Tool Kit includes the Green Hills C++, C FORTRAN, and Pascalcross-com-
pilers and the Oasys 68K Cross Assembler/Unker. Users will be able to develop applications on IRIS sys-
tems targeting Motorola 68040/30/20/10/00,683xx,and 68881/82 microprocessors. Oasys> Cross C++
compiler is fully compatible with the ATAT C++ specification Versions 2.1,2.0, and 1.2. It has been val-
idated using the Perennial C H test suites to ensure compatibility with commercial C++ class libraries
and the AT&T specification. The Cross C++ compiler includes the Cross C compiler, allowing develop-
ers to transition from C to C++ more easily. All the languages are inte]·language callable allowing users
to call C from C++, FORTRAN fi·om C, and so on. One Cranberry Hill, Lexington, MA 02173,617.862.2002.

18 HOTLINE ON OBJECT·ORIENTED TECHNOLOGY

 ment ofthe qualityand value ofdeliverables produced. These in··
clude all forms of analysis and design information as well as pro-
gram code. Testing and user validation of designs at all stages of
development, not just at the level of program code, is also nec-
essary. In an industry where reuse must become the rule instead
of the exception, a software methodology that does not explic-
itly support quality assessment and management is simply
insuffi cient for the task,

CRC, ENTITIES, AND REQUIREMENTS
The CRC technique is highly effective for high-level object-
oriented analysis and design. But software development in large
enterprises requires much more than design. System require-
ments must be acquired and analyzed. Dependencies must be
defined between the application software being developed and
external entities such as users and databases. Frameworks and

other design architectures must be discovered, refined, and reused.
At the implementation level, message interfaces must be specified.
Code must be developed and tested. User interfaces must be de-
signed, implemented, and user tested. And in large, computing-
dependent organizations, all these processes must be managed
in a multiuser, version-controlled environment. In this article
we will focus on the front end of our lifecycle methodology and
discuss requirements acquisition, analysis, and traceability.

Before any software is developed, we should always have a
) clear understanding ofwhat behavior is expected of the applica-

tion. Easier said than done! Designs are developed to meet re-
quirements and applications are implemented according to those
designs. No system can ever be expected to satisfy user require
ments if the user's needs are not captured sufficiently and com-
municated completely. Unfortunately, thevery nature of human
communication is fuzzy incompleteness, with a heavy depen-
dence on assumed background knowledge. Our experiences us-
ing CRC with groups of users have shown that requirements are
never perfect. They evolve throughout the analysis and design
process until they provide a sufficient basis for a successful de
sign and implementation.

One of the many artifacts produced by "waterfall" methods is
the notion that all requirements must be specified completely be-
fore any design or implementation begins- But it is far more im
portant for the systeni to meet 11ser expectations upon delivery. Re-
quirements and soffware actually evolve together throughout the

0 1 Expected Behavior
___,_*· Delivery81 1 (Requirements)

mi
2I

El

I 81.... 0...9Delivered Behavior
(Software)

Project Lifecycle

Figure 1. The coevolution of software and requirements.

SEPTEMBER 1992

lifecycle ofthe project (Fig. 1).In the iterative approach to software
development, users stay 'in the loop," refining their requirements
as they better understand that application features are possible
within the budget allowed. As an added bonus, users become fully
vested in the development of"their'> application.

REQUIREMENTS ACQUISITION

The key to acquiring high-quality system requirements is to max-
imize involvement of eventual system users and other domain ex-
perts in the process and capture their needs in a form that will sup
portthe manydifferent activities in the development process. Rather
than being dinically observed and analyzed like creatures swim-
ming in a drop of pond water, they should be full partic*ants in
defining aiid validating their system requirements.

Users are often not concerned with or even aware of the ap-
plication software objects that are created or reused during the
analysis and design process. They are concerned with the re-
sponsibilities to be performed for the organization as part of
their job, and they want or need a computer application to as-
sist them in fulfilling those responsibilities. As software design-
ers, we know that these system requirements must eventually be
fulfilled by some group of software objects in the implementa-
tion. At this phase of the process, however, it is much more im-
portant to understand the user>s view of what behavior the sys-
tem must provide.

FROM OBJECTS TO ENTITIES

Modeling the world in terms of "objects" is a natural perspective
taken by users in a CRC session. The word 'object» is quoted
here because early in CRC sessions it is often unclear which cards
describe software objects and which describe other behavioral
entities that interact with the software. This ambiguity allows us
to focus on understanding the essential behavior of the domain
under investigation. The decision as to how to deliver this be-
havior can be deferred to later in the design process. Often some
"object" is created to model the user, at least as far as interactions
with the proposed system are concerned. It is also common for
an £'object" to be created that models the behavior of some part
of the system larger than a single object or class. Frameworks
such as windowing systems or components that provide rela-
tional database interfaces are examples. Based on these observa-
tions, we have generalized the CRC concept of a class with re-
sponsibilities and collaborators toward the broader notion of
interacting behavioral entities.

We did not choose the term "entity" lightly. Fully aware of its
usage within the database and information modeling communi-
ties, we specifically chose the term to help the transition of thou-
sands of business programmers already familiar with informa-
tion modeling concepts towards object technology. Designing
systems using abstraction and inheritance is not unique to ob-
ject-oriented approaches. Database designers have been devel-
oping both data models and information models using these tech-
niques for decades.

IFor example, entity- relationship (ER) models are rich sources
of information about the enterprise, its business rules, and the na-

7

14

RETURN ON |NVESTMENT

ture of tile business as currently practiced. Because of the data ab-
straction and type inheritance common in these models, it is easy
to confuse them with object-oriented designs. Bilt althougli these
primarily data-oriented designers did not produce "real objects,"
many if not most of the "data entities» existing in today>s infor-
mation models provide reasonable starting points for the traiisi-
tion toward fully object-oriented enterprise models. Adding be-
havior to data entities is not automatic or easy, and significant
refactoring of the design is often required to fully take advantage
ofthe additional benefits of the object paradigm.

Evolving data and information models to object models is a
broad topic and deserves fuller treatment in a future article. For
now, consider an entity as any behavioral unit that can interact
with other entities to achieve some goal. Examples of entities that
might appear in a design are users, user interfaces, frameworks,
database managers, host or network-based application servers,
and, of course, business objects such as Employee, International-
Cunency, and LifeInsurancePolicy.

MODELING REQUIREMENTS WITH
RESPONSIBILITIES

It is natural in CRC sessions for users to view "the system" as a
single behavioral entity, Therefore, it should also be natural for
users to describe requirements for the system similarly to de-
scribing responsibilities of an object in a CRC session. But while
the essential, high-level behavior of a system may be initially de-
scribed in terms of concise verb phrases, a much richer model
for responsibilities is needed to serve adequately as requirement
specifications.

Over the years, many different models for requirements have
been used in the computer industry, each with its own a<ivan-
tages. In our experience, one ofthe most effective ways to describe
requirements is in terms of needs and scenarios. Accordingto this
model, each requirement has a statement ofthe need to be fulfilled.
It also has one or more scenarios (use cases) that both en-
hance the understanding ofthe needs statement and provide
a set of acceptance criteria to help determine if a proposed
design or hnplementation alternative actually fulfills the re
quirement.

Since responsibilities in CRC already have something sim
ilar to a needs statement, we can enhance them by including
scenarios to support the modeling of requirements. As an
added benefit, the creation and testing of scenarios that pre-
viously occurred informally in CRC sessions cain now be for-
malized and supported directly in CRC. With these exten-
sions, CRC can now be used to find the requirements
(responsibilities) of either objects or entities, using scenarios
to test alternative designs.

REQUIREMENTS ANALYSIS

The scale and complexity of most business applications re-
quires that we analyze and design the behavior and interac-
tion oflarger units in the model that are not intended to end
up as individual object classes in software. By using single
CRC cards to represent entities like entire host systems and

8

geographically distributed business units, we find that the same
successful results can be obtained as when CRC is used to define

software objects. This has allowed our customers to develop more
complete and detailed models of not only their users' needs but
also the needs of their organizational units. An added benefit is
that these models provide evidence for redefinition of the user's
responsibilities, which has led to some surprising and profitable
insights for several of our clients.

REQUIREMENTS TRACEABILITY

Traceability is about deterniiniiig whether or not all requirements
have been met and completely implemented, as well as deciding
which parts of design and implementation are invoived in fulfilling
each requirement. Aside from determining when a system is
'finished," this information is very useful for determining the im-
pact of proposed changes to the requirements, design, or imple
mentation.

By using behavior and interaction to define both software ob-
jects and the application components they support, we can trace
requirements throughout the entire development process. Like
sofrware objects, entities now encapsulate their implementation
details by providing an external behavioral interface composed of
the responsibilities they agree to fiilfill for their clients (Fig- 2).The
terms client and server are used here to indicate service requesters
and service providers rather than workstations and host main-
frames in the distributed computing sense.

Each responsibility is fulfilled using some collection of col-
laborating entities acting as servers, along with a mechanisrn (pro-
cedure) that defines how these entities interact with each other
to deliver the specified Client behavior. These mechanisms pro
vide a high-level "implementation» for each client responsibil-
ity, linking delivery of that behavior with the proper implemen-
tation of responsibilities provided by the collaborating server
entities. This link between high-level behavior and lower-level

External Behavioral Interface

Responsibilities 7\.

Entity
Internal Behavioral

220

Figure 2. Behavioral encapsulation in entities.

HOTLINE ON OBJECT-ORIENTED TECHNOLOGY

9
Client

Entity

Server
Entity

Server

Ermy

aA <-T®€'Ul/EU>t/ Product Announcements is a service to our

. timtewiteme,th readers. It is neither a recommendation nor
an endorsement of any product discussed.

DATABASES
Expertek Expertek's Zoom is a minimalist single-user OODB that delivers a large fraction of full OODB perfor-

mance (induding cached, keyed random, or sequential access) at a small fraction of the price. Expertek
supplies source code compatible with Smalitall</V DOS, 286, Mac, PM, and Windows. Readable source
in Smalltalk/V allows you to enhance or translate Zoom to meet your needs. In addition, telephone,
modem, and mail support is provided. P.O. Box 611, Clatskanie, OR 97016,503.325.4586.

Enfin Software Corp Enfin announces that both 16-bit ENFIN/2 and 32-bit ENFIN/3 object-oriented development envi-
ronments have added support for IBM's Distributed Database Connection Services (DDCS/2), The
IBM DDCS/2 gateway allows DB2 and AS/400 databases to be accessed from a PC as if they were OS/2
databases. DDCS/2 implements IBM's Distributed Relational Database Architecture (DRDA) for ac
cess to data in supporting database management systems. Both ENFIN/2 and ENFIN/3 allow an ap-
plication developer to interactively design and create GUI screens and reports and link the GUI objects
to external databases. Consequently, GUI front ends for DB2 and AS/400 can be quickly created with
a minimal amount of programming. However, since the ENFIN tools automatically generate Enfin
Smalltalk source code, applications can be further customized and extended as necessary. By support-
ing the 32-bit architecture of IBM OS/2 2.0 operating system, ENFIN/3 performs substantially faster
as a development tool as do the resulting applications. Enfin Software will also continue to provide
new releases ofENFIN/2, its 16-bit version for OS/2 Version 1.3, throughout 1992 so that existing users
will be able to migrate to the OS/22.0 platform as they wish. The release of ENFIN/2 for Windows 3.1
supports virtually all of the new Windows 3,1 features, including OLE. 6920 Miramar Road, San Diego, CA
92121,619.549.6606.

Answer Software Answer Software's HyBase V3.0 is a database server for the Macintosh, with a data model that com-
bines the best features of relational and object-oriented technologies. The relations capabilities allow
you to create tables and access your data using SQL operators like SELECT. The object-oriented fea-
tures let you define your own data types and program methods for operating on them. HyBase allows
you to combine these two models to create powerful database applications. The HyBase server runs un-
der System 7 or under Multifinder in System 6. Client applications may communicate with a server on
the same machine, or on other processors over an AppleTalk network connection. Answer Software
provides a client API for developers who are writing standalone applications and a client XFCN inter-
face for developers who prefer to use front-end tools like Hypereard, Supereard, or PLUS. HyBase
supports a Pascal-like programming language augmented with object-oriented and SQL operators. Hy-
Base statements can be executed interactively or compiled for faster processing.

20045 Stevens Creek Blvd., Cupertino, CA 95014,408.253.7515.

TOOLS
Iconix Software

Engineering
Iconix Software is shipping ObjectModeler, a CASE tool that supports object-oriented analysis, design,
and object-oriented programming iIi a single module. ObjectModeler is available onthe Macintosh and
will soon be available on other platforms. It supports the object-oriented analysis method developed by
Peter Coad and Ed Yourdon as described in their 1991 book, Object Oriented Analysis. For design, it
supports the class and object diagrams in the extensions of the method developed by Grady Booch and
described in his 1991 book, Object Oriented Design With Applications. ObjectModeler also supports
object-oriented programming in C++, with a C++ language-sensitive editor, The tool is multiuser en-
abling concurrent repository access with collision detection, access controls, and global functions across
a network, ObjectModeler is fully integrated with the nine other modules in the Iconix PowerTools set.

2800 28th St., Ste. 320, Santa Monica, CA 90405,310.458.0092.

SEPTEMBER 1992 17

BOOK REVIEW -9

OBJECT-ORIENTED SOFTWARE ENGINEERING reviewed by
A Use Case Driven Approach Brian Henderson-Sellers

I. Incobson, M. Christerson, P. Ionsson and G. Overgaard
Addison-Wesley/ACM Press, 1992
524 pages; ISBN 0-201-54435-0

The primary author of this book, Ivar Jacobson, is well known
and highly regarded in object-oriented circles. His approach and
his methodology, ObjectOry, have been sparsely reported in the
literature until the publication of this long-awaited volume.

The ObjectOry methodology for object-oriented analysis and
design has had many years of industriai exposure: 15 full-size
projects have used it successfully. While many of its characteris
tics are now evident in other approaches, the most significant
novelty is the emphasis on what Jacobson calls use cases. A use
case is a sequence oftransactions performed by a user of the sys-
tem. Each use case outlines a likely thread of control through the
many objects within the system, thus providing a potential
unification between the static and dynamic views of an object-
oriented system-an integration lacking in most other method-
ologies. It is further argued that by structuring methodologies to
build systems around action patterns of likely users, a greater de-
gree of reusability and flexibility will be built into the system

The book is divided into three parts: The first is introductory;
the second is the meat of Jacobson's methodological argument; and
the third ranges over two detailed case studies, some project man··
agement issues, and a comparison with other methodologies and
notations. In his preface, Jacobson outlines altei-native reading strate-
gies for various types of software engineers and managers, allow
ing the text flexibility to meet the needs ofdifferent audiences.

The introductory part of the book is well presented in five
chapters beginning with an easily understandable analogy to the
building trade, with its various levels of abstraction, equality con-
cerns, reuse, etc. The second chapter considers systems lifecycle
issues while the third is a synopsis ofwhat is generally understood
by the object-model. The book takes the reader from zero knowl
edge about object technologyto fully detailed methodologies (no-
tably ObjectOry). In that sense, the book's real audience is not
novices but initiates. Chapter 4 applies the ideas of Cliapter 2 to
object-oriented specifics and Chapter 5 addresses languages.

The focus of the book in Chapters 6-12 is ObjectOry. Jacob-
son presents a trimmed-down version of the method, which he
calls OOSE (obiect-oriented software engineering), because he
claims the full description of ObjectOry is too massive to be con-
tained within a text of this kind. Nevertheless, the reader will come

to understand the basic philosophy of ObjectOry here. It is also
stressed in the two forewords to the book by Dave Thomas and
Larry Constantine, who both strongly endorse Jacobson's work.

These chapters take us through the lifecycle that Jacobson sees
as a waterfall for each version. I heartily concur with his discus-
sion of analysis modelling, with its problem of space focus and
modelling underpinning. The translation to design is done no-
tationally as well as via the acquisition of a new mindset. Analy-

16

sis icons are transmuted into design block icons that are ab-
stractions of the implementation and may be coded as one or
several classes. In this text, design and implementation are cou-
pled under the heading of «construction" (Chap. 8). The fol
loving four chapters in Part II consider, in relatively brief detail
(about I 5 pages per chapter), the subjects of real time, database,
component generalization and reuse, and testing strategies.

Part III is named "Applications." Of the four chapters here, the
first two certainly fit under this heading. However, the third deals
with managing object techology, Since one of the intended groups
ofreaders is senior management, it>s a little puzzling to see this ini-
portant chapter "tucked away" almost at the end ofthe book.

The final chapter contrasts ObjectOry/OOSE with other pub-
lished methodologies, although the discussion tends to be biased
toward a description of the models of each methodology rather
than the process of building tile models. This iliuminates the
novel concepts embodied in Jacobson's work.

The book has two appendices: one on the historical develop
ment ofthese ideas embodied in ObjectOry (where you may find
what CASE tool support is currently available for this method-
ology) and a summary of the architecture.

The book is a very solid software engineering book. It is not an
explanation or advocation of the advantages of object technology
but it does assume that objects are useful and describes a whole soft-
wareengineering environment focused on this new technology. This
perspective suggests a longer life than other texts on object-oriented
concepts that perhaps more directly reflects todafs manifestations
of object technology. Jacobson and colleagues have, I believe, cap-
tured the essence of object technology in much greater depth: that
ofsoftware engineering and not just software development-

I did notice some disturbing repetitions iii the text. For ex-
ample, Figure 7.12 is identical to Figure 6.14 and some ofthe tab-
mar material in Chapter 16 also tends to be repetitious- The book's
production is generally excellent with only a small number ofty-
pographical errors, although there are too many instances of ta-
bles and figures located several pages away from the textual ref-
erence, sometimes even in a totally different section of the book.
However, the references are reasonably complete and the index
is certainly adequate.

This book is highly recommended, in part for managers and
as a whole for technologists coming to grips with object tech-
nology. While the terminology used by Jacobson may appear
strange to some at first, largely because this material has been de-
veloped parallel to and often earlier than the terminological stan-
dards emerging elsewhere, the authors' understanding of object
technology shines through. a •

Brian Henderson-Sellers is with the School of Information Systems, Uni-
versity of New South Wales, Sydney, Australia. He can be reached at
brianhs@usage.csd.unsw.ozau.

HOTLINE ON OBJECT-ORIENTED TECHNOLOGY

 behavior provides traceability in both directions. As an ex-
ample, let's revisit the mail order company CRC card de-
scribed in last month's article:

reads catalogs

MailOrderCompany
publish catalogs
convey product offerings
maintain product inventory
convey address and phone number
sell products

CatalogPublisher

Productlist
Warehouse

Customer, Salesperson

recieve mail

Eguie4

sell products,

Of these responsibilities, "publish catalogs" and "sell -ijh
products" are the principal external behaviors. Figure 3 shows i)
the principal interactions between the Mail0IderCompany, its -'53Ic Ordertompany)

J V

Customer(s), and the Post[}face. 1 Dosi Offi 'kwoods Outfitters" /

'Cary, N
In taking a doser look at the responsibility"sell products," \ZIZZ

we find that this high-level behavior is fulfilled by a number
ofother entities collaborating together (Fig. 4). Some ofthese
entities will eventually be implemented as software objects, Figure 3. High-level interactions between entities.

while others, like Salesperson, may be used to (re)define the
job responsibilities and work procedures for a human sales-

person. In the resulting «system," Salesperson's behavior may Im52212=13%-.'.-------ZI3
be delivered by a person performing a job function manually
or by using a software application with software entities col-- 1&>1 Fguie 5

laborating with him. W]·tich entities are automated and how ,check 1Irr------
they will deliver their behavior are decisions that can be de- p creditezIE>\confirm limit

ferred to later in the design process. purchase 5 --4.*' 1 1 12
) While we are only shOWillg one mechanisrn for "sell prod- L '1145• U

ucts," it is common in object-oriented designs for several al- ¤ Salesperson F 1 3 -
ternative implementations of tile same responsibility to be oversee \ 1 "Carr ,4--·---- create

purchasesr f product
available. In this example, the Customer is nialking a credit card \-1....Jif acquire purchase orders

accent R \M information
purchase. There might alsobe other mechanisms for "sell prod-
ucts" in MailOrderCompany that address different forms ofpar
ment or even different kinds o f sales, such as quantity dis-
counts and government purchase agreements- purchase products.X'---*--ftselect products

If we take an even doser look, this time at the responsi (1 Customer 9] provide payment
using credit card L C

informationbility «check credit limit" in die Purchase entity 1145, we find
\LIZE3/also find a mechanism {Fig. 5).

I f we decide to implement this entity as an object in Figure 4, A mechanism for fulfilling the responsibility of a high level entity.

Smalltalk, for instance, a specific method in tile class Pur-
chase uses program code to fulfill the responsibility. The
Smalltalk code shown in Figure 6 is actually an executable Purchase --.. _limi-----version of the mechanism shown in Figure 5. It should be "1 145"

noted that interactions 1 and 2 in Figure 5 represent tile Pur-
chase entity 1145 using its own responsibilities "determine" retermine

otal price
total price and "determine total tax.'

Tracing requirements and their fulfillment for interact- , 3 aetermine-7 C-
M M total tax Purchas

ing responsible entities is possible because ofthe association P '1145'of responsibilities with the mechanisms or source code that
describe their implementation. In Figure 3, the "sell procl- L convey credit
ucts" responsibility is involved in completing the interac- approve 1 company info

credit 1 convey' -r<-E--x
tions between the Customer and the MailOrderCompany. The purchases * account / 3/- --1 \

CreditCard
dashed rectangle indicates the part ofthe diagram shown in "34256389"

4 greater detail in Figure 4, which illustrates a mechanism for i
the implementation of "sell products." The dashed rectan-
gle is also shown in more detail in Figure 5, which details a

Customer

purchases products
using credit card

deliver mail L(
7- 1*Aait

ce

publish <Datalogs#

purchise \
requests

1

e

/-1--, number
Credit

Figure 5. The mechanism for an object'a responsibility.

SEPTEMBER 1992

llc

'0

RETURN ON INVESTMENT = m

mechanism for the implementation of the'check credit limit' re-
sponsibility in the Purchase entity.

These diagrams illustrate the connection between the imple-
mentation of one entity's responsibility with those of the entities
and objects involved in the mechanism. This connection com-
pletely integrates the behaviors of lower-level and higher-level
entities and eventually the executable software itself. A change in
the behavioral interface of the Salesperson entity in Figure 4 might
invalidate its role in the mechanism for "sell products' in MailOrder
Company- By replaying the scenarios that test the mechanism, the
nowinissing behavior would be detected, resulting in either its
reinstatement in Salesperson or the development of a different
mechanism for «sell products.>'

THE REST OF THE STORY

The large amount of interwoven information required for busi-
ness system designs, whether object-oriented or not, must be
managed throughout the fifecycle to protect the organization's
investment in its reusability and value as a software asset. In ad-
dition, version control and configuration management ofall rel-
evant information is mandatory if large group design and devel-
opment is to be managed with confidence. For this reason,
multiuser design and development environments are required

STRAGETIC BUSINESS SYSTEMS E m
Co,MIT}ued be,i page 1

in terabytes, the insurance company IS manager won't be ex-
cused because the object-oriented database "can't store an ob-
ject that spans physical volumes."

The world of the IS manager is more demanding than many
realize. It requires saying iii advance how long it will take to de-
velop a new system, and being within shooting distance of that
estimate when the results are in. It often constrains solutions by
requiring the use of equipment and people it already has (no-
we can't -shoot all the COBOL programmers" as one industry ex-
ecutive once suggested), And it mustfind new technologies to help
it out of the mess it's in.

The question is whether object technology is the technology
and, if so, how we can introduce it to the million or so program-
mers and analysts who call the IS organization their home. Of
course, one could argue that object technology was never meant
for creating large-scale business applications, that it's most appli-
cable to the creation of complex user interfaces and workstation-
based applications. But I think our industry would be missing the
boat. The concepts of object·oriented design are certainly as ap-
plicable to difficult business problems as they are to difficult tech-
nical problems and complex user interfaces. At AMS, as well as at
a number of other companies, we are actively engaged in bringing
object technology up to industrial strength for use in stategic busi.
ness systems. There are some difficult problems being addressed
in a way that makes object technology more useful iii this arena.

Of course there are always counterexamples: "high-volume,
industrial·-strength systems" have already been deveioped using
object-oriented techniques, but these are typically embedded sys-
tems, operating systems, or development tools.

10

checkCreditlimit

Answer true or fajae dependlng on whether or not my customer has sufftient
cred# availabie to buy the prodticts in the quantities specified."

total:Cost CIed„Company approval
totalCost:= self totalkroductfrice + self totatTaxfo,Purchase.

crediteompany := Credittompany
named:self customer crediteard companyName.

approval:= creditCoinpary
appvovefurchaseAmount: tot:Eost
fortuitomerAccount:seE custom. accountNumber.

'approval

Figure 6. Smalltalk method implementation.

to fully support the high level of integration provided by our
methodology,

The next article in this series will present an overview o f the
design and implementation portions ofour methodology, along
with a detailed discussion oftbe software environments required
to support the enterprise software lifecycle from requirements to
code and back again. E 2

Sam Adams is the Senior Consultant and founder of Knowledge Systems
Corporation, Since 1984, Mr, Adams has been actively developing object-
oriented software systems in Smalltalk and is widely recognized for his ex-
pert,se, He is codeveloper of a group facllitat,on technque using CRC cards
and has been training professionals in object-oriented technology for over
six years. Mr, Adams has seived on several conference committees and is
a frequent speaker and oanelist at leading industry conferences He can be
reached by phone at 919,481.4000 or by fax at 919.460.9044.

STRATEGIC BUSINESS SYSTEMS AND
OBJECT TECHNOLOGY

I define a strategic business system as one that is integral to the
day- to-day operation ofa large organization. Today, such systems
are typically characterized as monolithic, COBOL. based, and main-
frame oriented. Moreandmore, however, they are being"down-
sized" to networks and distributed architectures. Data integrity is
paramount and hours-long batch-processing runs are common,
The systems are changing from text to graphics but they are still
the same behemoths necessary to run today' 5 large organizations.

A strategic business svstem's portfolio may encompass hull-
dreds ofsystems with total code in the tens of millions oflines. The
limiting factor in improving IS, therefore, is often the management
processes we have or are capable of developing, Design manage-
ment, configuration management, and versioning are qualitatively
different with a project team of 100 people. When dealing with
such projects, the management processes cannot be left to chance
or informal methods. They need to be standardized, documented,
and supported by appropriate automated tools. These barely ex-
ist today for projects employing structured and information engi
neering methods, let alone projects using object technology.

So far the vendors ofobject technology have given us, the users,
only pieces of a complex puzzle, We are unable to see what the
completed picture will look like-or even if the pieces will fit to-
gether without lioles! Each vendorhas its niche, each book its topic,
each speaker an ax to grind. But will it all work when we try to de-
velop strategic business systems for todafs large organizations?

We can't really know. With only one or two visible examples
(implemented several years ago using specially developed tools,

HOTLINE ON OBJECT-ORIENTED TECHNOLOGY

volvement ofpeopie outside the project development team. This
involvement is crucial for keeping the work of your O-0 team
current with mainstream company objectives.

UPDATE THE FIRM'S REWARD AND
RECOGNITION SYSTEM

a

This is a definite sticky wicket" for OT. Think carefully about
the goals most important for your project and your company.
Create rewards that reinforce these ideals. Reward systems
based on performance in previous-generation software de-
velopment are almost always wrong for rewarding the best
performance in OT.

Here's a simple approach used in one project: programmers
new to OT are given some training and then assigned to write
methods for dasses that have been designed but not yet imple
mented. The project leader does the bulk of the system design
including the inheritance hierarchy and class iiivariants. Only aft
ter programmers prove they can perform adequately at this as-
signment are they a]lowed to advance by taking on inheritance
decisions. They gradually take on more ancl more responsibility
for design andi coding decisions until they eventually become re-
sponsible for an entire subsystem. This is a great common-sense
approach to reward and recognition that can reinforce your 0-
O training program.

 VIEW MISTAKES AS LEARNING EXPERIENCES
Mistakes represent opportunity. 1 f we made no mistakes, there
would be no way to improve our processes and we could not
look forward to competing at higher levels of efficiency. This
reality should be acknowledged in 0-0 design by applying the
principles of programming by subcontracting. Assumptions
should be codified via class invariants, preconditions, post-
conditions, and other types of assertions. This is directly sup-
ported by Eiffel and can be implemented in other languages
as well.

The 0-0 enterprise model is really the
software embodiment of the concept of

ever-increasing improvement
demanded by TQM.

The c)mic might complain that all the extra assertions are
just additional opportunities for mistakes. While this is true,
they typically prevent far more mistakes than are added. Our
own experiences with Eiffel have shown that runtime defects

SEPTEMBER 1992

can be decreased by almost an order of magnitude. (Other as-
pects of Eiffel such as automatic memory management also
helped out in this regard.) I have also used assertion technol-
ogy with C++ and estimate that runtime problems were reduced
by perhaps 25%.

EMPOWER EMPLOYEES

Don't neglect the opportunity to involve as many people as pos-
sible in the 0-0 process. 0-0 is really a way of thinking, so ex-
pose the concepts to your best thinkers and let them help you.
Doing so can ensure that your ultimate success with 0-0 is their
success as well. Realize that 0-0 gives you organizing principles
that allow better understanding of the work your department
performs. In this way, 0-0 becomes a bridge to the rest of the
company.

Once enough key people in the company are aware of basic
0-0 principles, the opportunity exists for building an 0-0 en-
terprise model. This model can become the tool whereby man-
agement and employees simulate and ultimately gain control over
large-scale corporate processes, Of course, the very act of at-
tempting to create this model will uncover areas of needed im-
provement. The 0-0 enterprise model is really the software em-
bodiment of the concept of ever-increasing improvement
demanded by TQM.

CONCLUSION

Making the switch to 0-0 is a difficult task. Treat it with respect.
Remember that the only thing we can be sure about in this in-
dustry is constant change. If we can deal with that, everything
else is easy. While better approaches to software development
like OT are an important part of the changing picture, we also
need to install process-review mechanisms and other quality-fo-
cused practices to help us on the road to ever-improving soft-
ware development. m m

Suggested reading
1. Gitlow, H.S. and S.J. Gitlow. THE DEMING GUIDE TO QUALITY AND

CoMpETITivE PosmoN, Prentice Hall, Englewood Cliffs, NJ, 1987.
Z Peters, T.THRIVING ONCHAOS, Alfred A.Knopf, Inc., NY City, 1987,
3. Eisman, R. Whycompanies are turning to total quality, LEADING EDGE

Exncu·rivE, May 1992.

4. Meyer, B. OBJECT ORIENTED SOFTWARE CONSTRUCTION, PrentiCe
Hall, Englewood Cliffs, NL 1988.

5. Howard R. Eiffel at the Georgia Tech College of Computing: An in-
terview with Dr. Brian Guenter, THE EIFFEL OUTLOOK JOURNAL,
July/August 1992.

Robert Howard is President of Rock Solid Software Inc. in Austin, Texas,
which sells and supports tools and libraries for the Eiffel programming
language. He is editor and publisher of Eiffel Outlook, the leading in-
dependent technical journal for the international Eiffel community. He
can be reached by phone at 512.328.6406 or by email at rock@rock
sld.com.

15

SOFrWARE QUAUTY

software engineers. Evaluation of these processes must be ongo-
ing and address all of the following areas:

• standards for design capture documents

· coding standards

• guidelines for creating rough and fine-grained work estimates

· guidelines for evaluating outside libraries and tools for possi-
ble acquisition and use

· guidelines for test plans and the testing process

· guidelines describing the typical product release mechanisms

· a process definition of how improvements in reusable libraries
are maintained and redistributed

ESTABLISH EMPLOYEE TEAMS

On each large project, an employee team should perform the fol-
lowing tasks:

· Create the highest-level cut at the interaction of the key pro-
posed objects in the project (OOA).

· Suggest the best opportunities for reuse of existing software.

· Review the first proposed inheritance structure proposed by
the project engineers.

Our experience suggests that project
scheduling estimates can improve
drastically with the adoption of OT.

Since 0-0 analysis is done in terms of the application do-
main, it is necessary to have domain experts as team members.
In fact, domain experts should be fully involved in design deci-
sions throughout the project. (A useful hint: team meetings that
concentrate on 0-0 design are an excellent opportunity for de-
mystifying OT for all types ofobservers. Use them to expand your
base of 0-0 cognoscenti.) After each major phase ofa project is
completed, it is important to perform a postmortem analysis of
the project:

• Locate where the basic processes either broke down or were
improved by the project members.

· Review the project estimates. Which were right? Which were
wrong? Why? How could the estimates have been improved?

14

· Was anything else of value learned? Both positive and nega-
tive lessons should be included.

• Identify and note candidate code for possible reuse at a later
date. (I don't suggest taking the time to make this code fully
reusable until a specific opportunity for reuse has been
identified.)

Findings are only valuable when shared with the rest of the
organization, so be sure they are reported to the quality team.

SET UP SPECIFIC MEASURABLE SHORT- AND
LONG-TERM GOALS

The key word is measurable. While we don't yet have standard
0-0 metrics that capture the dynamics of the 0-0 lifecycle, we
can still measure many things that loosely represent our progress-
The two most important bottom-line measurements are defects
per release and a measure of the accuracy o f project time and
effort estimates. The measurement of defects is conceptually
simple because bug tracking is a normal part of almost all soft-
ware projects. The difficulty comes when one ruthlessly notes
all types of defects including design shortcomings, holes in the
requirements analysis, and even inclusion of unnecessary or
useless features.

The accurate measure of project estimates requires that the
initial estimates (which always change) be retained for later study.
Let the developers know that this will happen. Point out that time
and cost estimation are meaningful components of any engi-
neering discipline.

Our experience suggests that project scheduling estimates
can improve drastically with the adoption of OT. Here are
some hints: Allow a fist cut at the.object design before ask-
ing for estimates. The best estimates I've seen were those de-
rived by summing subestimates of major methods identified
within the initial object design. Also obtain confidence levels
for the stability of the initially proposed inheritance trees. Cur-
rent 0-0 languages and tools typically do not allow the in-
heritance hierarchy to be changed easily. Inheritance
modifications are usually conceptually easy to perform but are
often time consuming; factor in extra time if confidence lev-
els are less than 95%. Finally, increase all estimates for new
classes and methods that will be reused by more than one pro-
grammer during the course of the current project. Design re-
views, additional testing, knowledge sharing, and intraproject
maintenance will eat up more time for these than for code that
is not reused in this manner.

SOLICIT FEEDBACK FROM CUSTOMERS

A rapid.prototyping approach to development, where a work-
ing executable version of the program exists throughout all stages
ofdevelopment, is a big win because ofearly feedback. The prob
tem is finding someone to provide the feedback. The ideal sce-
nario, which some say is practically a requirement, involves a
product champion who performs this service. You call also use
the working prototype as another tool for broadening the in-

HOTLINE ON OBJECT-OmENTED TECHNOLOGY

 techniques, and languages), several issues fundamental to the ISworld have not been adequately addressed, namely, scalability,
manageability, and performance.

The entire field of software engineering generally has evolved
in response to these issues. Software engineering provides the
systematic approaches and standards that enable us to develop
large systems, manage large projects, and achieve acceptable per-
formance. Without this discipline, we produce spaghetti code
that costs a lot to maintain (or becomes unmaintainable) and is
unable to meet the changing needs ofthe organizations it is meant
to support. I hope we have not forgotten this in the rush to de-
velop new systems by "iterative development," create reusable
software based on object libraries, and get to market first with
new methods, tools, and languages.

SOFTWARE ENGINEERING FOR OBJECT
TECHNOLOGY
For tile past 25 years, our industry has labored to evolve into a
profession worthyofthe name "software engineering," Over that
time, many aspects of a discipline for software engineering have
been explored. The key aspects tbatneed to be addressed for ob-
ject technology are:

1. a defined lifecycle (phases and tasks)

2. methods and techniques for performing those tasks
3. tools and languages

) 4. a "design repository
5. estimating methods for development effort and cost
6. estimating methods for operating costs of systems
7. training and educational curricula

Norman Plant's article in the Ho ·rLINE (3 [7]) provides specific
requirements for manyof these areas, but I would like to address
a few in terms of three fundamental issues.

Lifecycle
A lifecycle for developing large object-oriented information sys-
tems must allow for the orderly formulation ofsystem require-
ments, translation of those requirements into tested, high per-
formance software, and integration ofcomponents into libraries
that can be used in other systems.

Rebecca Wirfs-Brock's article in THE SMALLTALK REporrl

lays out some ideas for such an object-oriented system lifecycle.
With a few added components, her proposal sounds suspiciously
like the development lifecycles being followed by most organi-
zations today. Perhaps this is because a lifecycle designed to pro-
duce an industrialstrength system is by nature more structured
than one designed to develop a prototype or even a small-scale
system. Her lifecycle begins with the process of developing an
overall concept and design for the system before getting into the
iterative, object-oriented programming cycle. It ends with ex-

 plicit "cleanup" and «generalization for broader utility" (as life-
cycle phases) as necessary postimplementation steps. In short,
she attempts to fit the iterative prototyping structure of the ob-
ject-oriented development environment to the lifecycle of in-
dustrial-strength systems based on reusable components.

SEPTEMBER 1992

Methods and techni4ues
Within the context ofthe lifecycle, methods and techniques must
be specified for how to go about the design, development, and
implementation of object-oriented systems.

You have only to visityour local technical bookstore to see the
number of object-oriented design methods that have been pro-
posed. While there are similarities, each has its own approach, Very
few have been validated, particularly as they pertain to Iarge sys-
tems. This is currently a major source of confusion for organiza-
tions attempting to move into the object arena.

Methods and techniques usually imply documentation- And
documentation, to be readily understandable, needs to have a
standardized form. Experience to date seems to show that ob-
ject-oriented systems have an even larger requirement for doc-
umentation and comments in the code than 3GL-based systems.
Most of us know the importance of reading in English what the
original programmers thought they were doing andwhy.The ob-
ject technology goal ofreuse actually brings with it a higher stan-
dard for documentation quality.

Tools and languages
Software engineering tools and programming languages provide
the medium for applying methods and techniques to the pro-
duction of operational systems. I am not referring to just pro-
gramming tools, but design tools, testing tools, configuration
management tools, etc.

For 25 years, IS systems have been coded primarily in COBOL.
There was, for a while, a flurry of activity in PL/1 but it never re-
ally caught on. (I wonder what we can learn from the fact that
the one highly publicized object-based business system in exis
tence today was implemented in PL/1.) Now we are being asked
to switch to C++ or Smalltalk, languages whose richness is con-
strained not so much by their syntax as by the class libraries that
are really part of the "language environment." Studying the base
classes is really 'learning the language" and we're not much bet-
ter off than we were 10 or 15 years ago with COBOL: program-
mers and designers still have to study the specific dialect and class
libraries ofthe particular implementation they want to use. Hav-
ing a consistent set of base classes across the different imple-
mentations of Smalltalk and C++ will make it a lot easier to de-

velop a cadre of experienced object developers. Ifthe differences
remain significant for too much longer, theywill impede the tran-
sition to object technology by making it too difficult to move
people fi-om one environment or project to another.

The biggest tool challenge for object technology, however, may
be creating thekindof « object library browser" that will integrate
indexing, documentation, and code in a way that truly makes
large-class hierarchies accessible. True, there is a significant com-
pactness ofcode in object-oriented programming languages, and
significant reuse will also account for reductions in lines of code,
but by how much? Even at a 10-to-1 reduction from today's sys-
tems, providing equivalent functionality will mean systems with
thousands of objects and tens of thousands of methods. Since a
large part of using object technology is understanding the dass
hierarchy ofthe system and thus understanding what can be reused,
how will we approach design and development of such massive

11

'-INI,L

STRATEGIC BUSINESS SYSTEMS £ a

systems? At what point will "dis-economies" begin to set in? A
100-object system can be understood in detail by a single person,
but what about a 1,000-object system or a 10,000-object system?
This, of course, assuines tliatwe will figure outhow todocument and
indexobjeds in a meaningful way when we have thousands ofobjects.

Other tools also need to be scalable. One of the configuration-
management tools we have been using to help control a Smalltalk
development effort gets high marks for capabilities but seems to
have been designed with a different size project in rriind. Each "ap-
plication" defined to the tool is limited to about 50 object dasses.
When more tlian five people are working together, the disk files
get so large that you have to reorganize every other day. The ideas
are good, but this type of tool will need a major overhaul in fea-
tures as well as performance to support a project ten times this size.

The key point here is that large business systems will exist for
20 years or more. We need tools and languages that will be effec-
tive during development and during the 90-95% of the system
lifecycle that occurs after the system goes into production.

Design repository
A design repository provides a generalized model for the in forma-
tion concerning a system that must be stored as a basis for future
enhancement and maintenance. It provides a common facility for
tool developers to store the information their tools create and for
tools users (i.e., application developers) to access this information.

Object-based systems will need this type of repository as much
if not more than traditionally developed systems. The use of ob-
ject technology does not relieve us of the need to access a wide
array of information as we perform maintenance and enhance-
ment. In fact, the fundamental ideas of reusability demand this
access. The object hierarchy itself contains some of the informa-
tion that one would store iii a design repository, but it is neither
sufficient nor in a form that can be easily accessed.

We all know the problems that IBM and other CASE tool ven-
dors have had in trying to agree oil a common repository of in-
formation that can be created about application systems. Iii this
as in other areas, the advance of object technology will be hin-
dered by the unsolved general problems facing our industry.

Estimating methods
Estimating development and operational costs is integral to the
justification of new systeins developinent. Methods are needed for
creatingsuch estimatesbefore objecttechnology can be fully accepted.

As part of our work at AMS, we have tried to learn from the
experience of others how to estimate the time and cost of devel-
oping object-oriented systems. You may laugh, but our best sum-
mation is to estimate as you would using traditional techniques,
then figure that using object-oriented technology will take less.
Unfortunately, this hardly supports a major paradigm shift. Be-
fore they commit to major changes, managers waI]t to see quant-
ified estimates ofsystem development cost and effort. They need
something more specific than "it will take less time." (From the
additional perspective of a consulting firm attempting to bid sys-
tem development jobs, I also need something more to tell a po-
telitial client than «it will be better," particularly if I want to be
paid for my consultation!)

12

Training and education

It almostgoes without sayingthat courses, workshops, and other in-
formatioii to educate analysts, designers, programmers, and man-
agers are required to ensure the successful introduction of the life-
cycle, methods, techniques, tools,and languages of objecttechnology.

'I'here seein to be two main suggestions regarding training and
education in object technology: the"forget everything you know"
approach and the '£objects build on what you know" approach.
I am not sure these divergent viewpoints will ever be reconciled,
but I submit that it is difficult for most people to forget every-
thing they know.

To the extent that object technology presents a majorparadigm
shift, we have to help people integrate these new ideas into their
existing mental models of systems. This is a significantly more
difficult task than simply teaching someoneanew programming
language. As an industry, we haven't even had such great success
at that. The people teaching "Object Technology for COBOL De-
velopers" will need more than a week to interact with their stu-
dents if the message is going to stick.

READY FOR PRIME TIME?

The $64 question is whether object orientation is ready for prime
time, i. e., developing large-scale strategic business systems. At the
current rate ofchange in technology, the tools and languages should
be ready in about 12-18 months. At the rate of change of man-
agement processes, it may be a lot longer before the tools and lan-
guages can be effectively applied in the IS environment (I am not
couiting"COBOL programs written in Smalltalk' as effective use).

We have a chicken/egg problem working here; we can't get to
large application systems untii we have a certain infrastructure
available (related to lifecycle, methods, tools, languages, and man-
agement) providing a foundation for a successful project, and we
can't get that until we try some things to see what works- Obvi
ously, some organizations are taking a giant step (perhaps a'leap
of faith'>) and moving from small-scal¢ testing of concepts to large-
scale implementation. Since most large organizations are averse
to risk, however, they will need to see significant activity in the
areas I have discussed. (What we need is an iterative prototyping
approach to the development of object-oriented infrastructure.)

While we can't have all the answers before we start, we should be
workingon them and willingto taikabout the results. Strategic busi-
ness systems deal with some hard problems. That's wliere object tech-
nology should be able to give our industry the greatest payoff. And
ifitdoes, therewill bemore than enough benefits to go around. = m
References

1.Wirfs-Brock, R. The phases ofan object-oriented application, THEHoT
LINE ON OBJECT-ORIENTED TECHNOLOGY 1(5), 1992.

Acknowledgments
The author would like to thank Milt Hess, A ndy Baer, and Fred For-
man for their comments on an earlier draft o f this article.

Dr. Grochow is a Vice President at Amencan Management Systems,
Inc., an internationally recognized information systems development firm.
As senior member of the Corporate Technology Group, he supervises
the introduc:tion of new technologies into the firm's business practices,
He has been a consultant on object technology to IBM and is on the
Board of Directors of Knowledge Systems Corporation.

HOTLINE ON OB,ECT-ORIENTED TECHNOLOGY

SOFTWARE QUALITY m a

What TQM
means for OT

As we accept the challenge of improving our software develop-
ment efforts using object-oriented technology (OT), we should
not neglect the wisdom earned by sources outside the familiar
world of computing, The popular concepts embodied in total
quality management (TQM) comprise at least one set of guide-
lines worthy of consideration.

This article outlines the ideas in TQM and suggests ways
we can apply them when reorganizing our computing re-
sources around OT. One recurring theme is that object ori-
entation (0-0) allows opportunities for people besides core
developers and other project members to get involved in the
software development process. The key conclusion is that the
move to OT should ideally be part of a larger effort to insti-
tute ever-increasing improvement of the overall software de-
velopment process-

An orientation toward quality has helped many businesses
improve their level of customer satisfaction. This often leads to
bottoni-line improvements such as higher regard for products,
improved customer loyalty, and lowered maintenance costs. Com-
puter software has a customer satisfaction problem: standard
software product disclaimers usually state that the product is not
necessarily useful for any stated or implied purpose. Also, the
market>s perception is that early versions of new software prod-
ucts are going to be buggy and major upgrades generally late.

Don't count on consumers accepting today's standards of
quality for too long. Aggressive companies are already trying to
improve upon current perceptions of software and thus take the
high road to ultimate success.

Object-oriented technology is for many of us a way to win
the constant battle against bugs and backlogs. The hope is to
make software development more of an engineering discipline
with better product quality, better scheduling, and less job burn-
out. We should note. however, that many organizations have
made improvements in these areas by applying total quality man-
agement principles to the development process, I suggest we
study their success while we draw up our own plans for imple-
menting OT.

What is TQM? Answers vary, but here are the main points:

·Get it right the first time.

· Meet or exceed customer expectations.

· Commit to continuously improving quality.

SEPTEMBER 1992

419%

Robert Howard

These are nice goals we all can agree or, but how do compa-
nies actually go about becoming quality-oriented? Here are some
guidelines that have worked in many organizations.

ENSURE SENIOR MANAGEMENT COMMITMENT

As readers of this newsletter know, object-oriented technology
changes the software development product cycle. This can dis-
rupt organizations. Senior management must back the changes
to keep everyone in line with the new program. This is not to be
taken lightly. Proceeding witt] implementation of OT without
senior management commitment is a serious step that is highly
unlikely to succeed.

ESTABLISH A QUALITY TEAM

The first major step is the formation of a team for quality. This
team will take a step back from the problems at hand and evai-
uate and hopefully improve the organization's software devel-
opment process. To keep the discussions focused on practical
rather than theoretical matters, try to quickly focus on specific

Aggressive companies are already
trying to improve upon current

perceptions of software and thus take
the high road to ultimate success.

questions as soon as possible. Assign subteams of one to three
people to study the most important topics. Distribute the tasks
evenly over time and personnel. If everyone tries to be involved
with all issues, they won't have time to make their own contri-
butions to the important projects to which they are assigned. As
you will see, there is a lot of work to be done, so plan to expand
the scope and membership of the committee over time as new
talent reveals itself in your company. The team will concentrate
on process-oriented functions that affect the productivity of ali

13

hotline/74 on
OBJECT- ORIENTED hotline0, onkhnology 0 0 OBJECT- ORIENTEDBackissues

All back issues of the HOTLINE are available. Please call 212.274.0640 for details. · technology
Vol. 3, Nu. 1 I/Septernber'92 -1)evelopingstr.,tegic business sy,stems ustng object tech- Vol.3, No. 1/November '9] E Leading the U.S. semiconductor manufacturing in
nok'gy. Object training: harderthan it looks E Object oriented ROI: extending the dustry toward an object-oriented technology standard - Coping with complexity:
C 11(across the lifecyele E What TQM means for 01 OOPS and the economists' critique of central planning - Choosing Object Tedinol-

Vo].3, No. 10/August '92 a Oblect teihnology: toward software manulaituring - Re- ogy: Whit's the object? E OOP. the MISsing link
turn on inve.,trient: mftware as.am and the CRE: te<.huique e Obied oriented lech Vol.2, No. 12/0:tober '91 2 A modest survey m 001) approaches E What is a ·'certi
nology in Japan e Pri,viding commonality while supporting diversity fied" object progrannmer? m Perspective: investing in objects today . Object oriented

Vol. 3. No.9/July '92 E DOD: Re.earch or ready E Enterprise niodeling: m Libiat ap in Melbourne, Australia E The Object Management G roup

proach.OMG's 18-24 montliview •Design forolijat-orientedapplicalionk a (.ASE Vol.2, No. 1 1/September '91 8 From applications to fraineworks. Report on the Ob
for wishful thinki,ig.. iect-Oriented COBOL Task Group = Gettingstarted with object technology: effectively
Veil No 8/June'92 m Businessin the lnfurniation Age E From data modeling Loob. Planning for change E Obect statistics on the way E On obiects and bullets
ject modling - How frameworks enable application portability - luterview with Vol.2, No. 10/August '91 E Distributed object management Improving worker pro-
Vaughan Merlyn ductivity E Genting the best froin 01),eus: Iheexperience ot 111> E Arp, 4 ATIONS EC
Vol.3, No.6/April '92 = Thinking the unthinkable reducing the risk offailure - Miti- employs object technology ECAPACr Y PL.ANNiNG: Fiddling while ROMs burn

gating madness with method: firstestablich whatyou value .Championing objecl leth- V„1.2, No. 9/July'91 EMultimediaiseverywherel m Deve[opingan object teclinology
nologyfor carcersuccess in the !9905 E Objects and uctions inend-userdocument,[ion prototype = Obiect oriented capacity planning= How OOP has changed our develop-
Vol.3, No.5/March '92 z TA large-scale users'asses:incilt d object orientation E Re- nentallifecycle • Modillari/ution of ilic computer.system
port on the Object-Oriented COBOL Task Group a interview with K.C. Branscomb VOLt No. 8/Jun¢ 91 E Domain of objects: the Object Request Broker m Object-bas„!
¥(11.3, No.4/l•ebru.lry '92 E 1 he big pri,e: acceptance of 0-0 by the M]S coni,nunity z approach to user daumenlation E Report on tlie obieil-Oriented :0801. :isk Gr(nup
Retrospectigr: 1 991-the year it alichanged - Making the transition to O-O technology E Do)ve need obiect-oriented design meti icsy
E]Rterview with Beatriz Iniante

Vol.2, N„.7/May '91 e Hybrid object-oriented/functional decomposition for software
Vul.3, Nu. 3/January '92 E Knterpriseoblect modeling: knowing what we know E Adopt- engineering . So, what makes object databases different? (Part 4) = Using the generic
ing <>biecig: pitfialls E Adoption rate of object technology: a suney of NSW industry api'lication to solve similar domain problems = Experiences using CLOS E Interna-

Vol.3, No. 2/December '91, Accep[„gol,ject 'lechni.logy. Adolizing id,jects: a path tional Conference on Object-Oriented Technology, Singapore

a Incorporating graphical con ent int(] multime<lia presentations Vol.2, No.6/Apr. '91 -An artist's perspective ot programming = So, what makes ob-
j£ct databases different? (Part 3) a Moving from Pascal to C++, Part 3 = Object pro-
jects: what can go wrong E Retlections from LOOK-'91

SUBSCRIBE NOW TO THE HOTLINE ON OBJECT-ORIENTED TECHNOLOGY-
DON'T MISS ANOTHER VALUE-PACKED ISSUE!

U YeS, plug me into the latest thinking and developments in object-oriented technology. Enter me as a subscriber at the term marked
below and rush me the current issue. This is a risk-free offer - 1 may cancel my subscription at any time and promptly receive a refund
for the unused portion.

1 year (12 issues) 2 years (24 issues) Back issues @ $25 each ($27.50jbreign).
U $249 J $478 0save $20) Vol.2, Nos.

(gulswle U S add $30 t,/r mir k Ar SerVICe) Vol.3, Nos.

U Phone/fax order

Call Subscriber Services at 212.274.0640

or fax this form to 212.274.0646 Name

U Bill me

VOL

ments for the lifecycle

Over 75% of the Fortune
100 have object technol-
ogy (OT) projects under-
way; their question is not
£'Do we go object-oriented?" but
"Howdo we maximize the benefits

of object technology aiid manage
the risks?" This article is the third

in a series concerned with meeting
Sam Adams

the challenges of enterprise-wide
computing using object technology.

In previous articles, we have defined the requirements for
maximizing return on investment in object technology by creat-
ing and managing reusable software assets. We also introduced
KSC's lifecycle methodology for the development of object-ori
ented business systems from requirements to code and back. This
article will focus on tool requirements for the deployment of ob-
jed technology on an enterprise scale.

OOP AND ROI

KSC's experiences have shown that maximizing return on invest-
ment (ROI) in OT requires that software be treated as a corporate

I asset appreciable through investment in its quality and reusabil-
 ity. The most valuable software assets of any organization will be

objects that capture the essential nature of their business domain;
their foundation will be high-quality design information, not just

· 3, NO. 12 THE MANAGER'S SOURCE FOR TRENDS, ISSUES & STRATEGIES OC

Return on investment: development environ-

p:®41

Title

Company/Mail Stop

Street/Building#

City/Province

Sl-/Zip/Coiintry

T. 1992

'part 3 of a series)

code. Pervasive reuse of these software assets must become the

norm but cannot succeed on a large scale without the existence
and proper management oflarge libraries ofsoftware components
that are reuseful as well as reusable. For two years now, KSC has
funded a maior internal research and development effort aimed at
defining a methodology and environment for object-oriented soft-
ware development to help meet these organizations' goals.

REQUIREMENTS FROM THE INDUSTRY

In a previous issue ofHoTI.INF, Norman Mant presented the find-
ings of the Object Interest Group (OIG), a UK consortium com-
prising 14 of Britain's largest manufacturing and financial corpo-
rations, two government departments, andone university (Holline
3 [5]). In evaluating OT the group reached this conclusion:

Object orientation is potentially one of the most powerful
technologies ever to become available to the IT industry and
its users. As such it demands high-calibre management. It is
not a panacea but a high-powered tool-dangerous if mis-
used but capable of great things.

Regarding requirements for development environments,
0IG said:

Given our emphasis on reuse, a development environment
will be needed that is rich in class libraries of reusable code,
and provides tools to support fast prototyping and intelligent
browsing. If people cannot browse easily, reuse will be harder
than reinvention and reuse simply will not occur.

continued on page 7

U Check enclosed
Make check payable to the Hon.,v H. and mail to:
The HoTLi NE Subscriber Sen·'kes

P.CD. Box 3000, Dept. HOT
Denville, NJ 07834
(fore,gu orders must De prepoid m US dallars drown mia US bank)

O Credit card orders
O MasterCard U Visa 13 AmEx

1 Cover feature Sam Adams

Return on investment: development
 environments for the lifecycle

2 From the Editor Robert Shelton

.. 4 Object methods Patti Dock

Selecting the right object-oriented method

IN THIS ISSUE

13 Object databases Mary E. Loomis, Ph.D.
Object Database technology:
who's using it and why?

16 Reuse Sesha Pratap
Objects and reuse

19 Product announcements

9 Languages Bill Hunt 22 FYI
Card# Expiration Date Telephone Choosing an object-oriented language
Signature

D2KC

FROM THE EDITOR E-

0
ur feature article this month is by

Mr. Sam Adams of Knowledge Systems
Corporation, who brings us installment
three in his four-part series on getting re-
turll (-)13 your object techn<,logy itid·estment.
We have talked before about return on in

vestment (ROI) and software assets but Mr,
Adams phrases tile concept in a most en
lightening way: "Maximizing Rol from ob-
ject technology requires that software be
treated as a corporate asset that can ap-
preciate through investment in its quality
and reusability.>' This turn of phrase argues
equally well for TQM iii a manufacturing
process that turns out hard goods. The in-
vestment is in a process that delivers qual-
ity products and is repeatable. The benefit
derives from the high-quality reusable and
rcuseful components the process delivers.

Most discussions of reuse address code-

level components. Mr. Adams reminds us
that the largest reuse gain comes from de-
sign reuse, not Just code or component
reuse. With the design is captured the se
mantics, requirements, test suites; and the
code for (possibly) multiple language im-
plementations. The semiconductor indus-
try wins in spades from design reuse. Have
vou ever examined an enlarged IC cliip de-
sign? Regions on these designs can be clearly
identified by the lay person much as any
one ofus who might not be a botanist could
recognize different kinds of flowers iii a pic-
ture of a neatly blocked garden. Back to the
chip, the lay viewer can detect similar re-
gions across different chip types--like an
on-board cache region on a cPu chip that
looks in pattern exactly like the storage re-
gions on a RAM chip. Large portions ofthe
buffer design were reused-at a significant
savings in design cost.

With this perspective in mind, give
thought to development enviroliments, lan-
guages, design methods, and CASE tools
intended to support object software. Most
development environments support code
(component) reuse. Button, collection,
slider, window, biti„ap, and canvas classes
either ship with the environment or can be
purchased froni third parties supporting
language products inadequate in their raw

form for commercial use be-
cause theylack such compo-
nents. The better develop-
ment environments include

code and dassstructure browsers that fa-

cilitate component reuse.
Design methods and CASE tools for ob-

ject technology are another matter entirely!
Many of today's object methodology prac
titioners started their careers in structured

methods, and propose to adapt their anal-
vsis and design methods to objects. Some
pundits have substantially rethought the
concepts and principles underlying a devel-
opment metliod ai·id are taking advantage
ofappropriate technique and method com-
ponents from traditional approaches iii their
new niethods. 7 raditional metliods andtech-

niques for design harken froin an era ofcus
tom construction. Components were not
even a dream. Integrated circuits had not
vet been comniercialized. If I didn't enioy
vintage vacuum tube audio equipment froni
thesame era, I might be so rash as to reter-
ence the clark ages,but, alas, my cave is too
comfortable for such remarks! As traditional

methods are kneaded into something re-
sembling object- oriented development, the
archaic value system surrounding custom
software design comes along for the ride.
Methods that propose to assemble (instead
of design) a system would be more appro-
priate for the economic and political objec-
tives we have inmind for object technology.

As long as the job of our designers and
prop-amiiiers (as reinforced by coinmercial
metliods and trainitig) is invelltion alld cus
toin coitstruction,Mi·. Adai]·is Rol will not

appear. The focus must shift from -my job
is to invent it here to Illy Job is to trans-
late the problem into a sound solution that
can be assenibled from parts with minimal
invention." And the focus ofour corporate
reuse efforts must be the management of
design components backed up by quality,
proven parts. To paraphrase Mr. Adams.
code is too pool· a mediu]11 to coinmunkate
business meaning. Reengineeri]ig from code
can (at best) only extract how the program
works, not whytlie business works that way
(ifit reallydoes)! We mustmaiiageand prob-

lem solve atthe level of mean-

ing, and construct from parts
that are inextricably bound to
that meaning.

Mr. Sesha Pratap of Cente line Software
picks up tile theme of software reuse and
discusses what is necessary to cause deve]-
opers to adopt reuse practices that enact
the corporate commitment. The primary
objective of training developers in object
technology, Mr. Pramp emphasizes, is to
educate them in component reuse and
cause them to practice it. Corporate com·
mitment notwithstanding, without re-ed-
ucation, dearly set objectives, and strong
incentives to steer conventionally schooled
developers I ani convinced diat component
reuse will not rise above what Dr. Adele

Goidberg ca]ls arbitrary reuse-sonie reuse
happens, mostly at the individual level, and
the financial benefit to the organization is
limited and tough to measure.

This issue contains the first installment

of the Object Methods column, authored
by Ms. Patti Dock of Orgware, which will
address different issues surrounding object
development disciplines. In this month's
column, she discusses the approach taken
by A]catel Network Systems in evaluating
object-oriented methods from Booch,
Coad/Yourdon, Edwards (A la Martin/
Odell), Graham, Rumbaugh, Schlaer/
Mellor, Wasserman/Pircher and Wirfs-
Brock for corporate use. For further read-
ing on tilesubject, we recoinniend AN EvAI-
UATION OF OBJECT-ORIENTED ANALYSIS

AND DESIGN MEE HODGII»IES> wherein you
will findANS results discussed iii detail, and
JOOP Focus ON ANALYSIS & DESIGN, which
contains a five-way methods evaluation
from the Hewlett-Packard Information

Management Lab that considers HOOD,
Bulir, Booch. Rumbaugh andWirfs-Brock,
both published by SIGS Publications.

While the conclusions of such studies

are valuable in and ofthemselves, Ms. Dock

reminds us tliat the "right" coiidusioilS may
vary depending on your organization, its
objectives, the experience and background
ofyourteam, and the kinds ofprojects be-
ing worked. The greatest value isthe reusable

2 HOTLINE ON OBJECT-ORIENTED TECHNOLOGY

ing the benefits of object-oriented programming will require time and effort, as you must shift to a new
style of thinking and move beyond the current structured methodologies.

The language of objects, Bill Wright, D G REVIEW, 6/92

DATABASES

. . . Object databases make sense to me. With a traditional database, you must try to represent everything
with one of the predefined data types such as numeric, fixed-length string or date. The operations that
can be performed on these types are largely predefined.... However, most traditional databases are
very weak in the ways they can manipulate BLOBS [binary large objects].Objectdatabases giveyou even
more storage flexibility and efficiency than standard BLOBs, and they let you manipulate these types
of data almost as easily as you manipulate numbers and fixed-length alphanumeric fields. . . .

Objective viewpoint, Brad Clements, D G REVIEW, 6/92

. .However, recent interest in object-oriented design and implementation environments is revolu-
tionizing the development of coupled KB/DB [Knowledge Base/Database] systems. Object-oriented
concepts such as class and object structures, inheritance, and data encapsulation make separation and
coupling knowledge and facts smooth and natural. Combining an object-oriented approach with a hi-
crarchical structure further aids the KB/DB coupling process by helping to identify search and infer-
ence patterns that can then be encapsulated into object attributes and methods....
Object-oriented methodology for knowledge base/database coupling, Kunihiko Higa, Mike Morrison, Joline
Morrison & Olivia R. Liu Sheng, COMMUNICATIONS OF THE ACM, 6/92

IMPLEMENTATION . . . The tasks ir an obiect-oriented effort are different. New tasks are required to identify, characterize
and document obiects. These tasks focus on identifying objects and the interactions required of these
objects to provide a system that meets stated requirements. Object-oriented efforts, like other development
approaches, need requirements and design specifications. Yet these documents localize around obiects,
and not functions or data. In addition. these specifications clearly delineate which components are reused
from an inhouse reusability library and which are developed from scratch to support the application at
hand. Tasks associated with the construction of structure charts, data flow diagrams and other function-
or data-oriented models are neither appropriate nor useful in an object-oriented effort. Such tasks are
obsolete ard replaced with modeling approaches more in concert with object-oriented development....

Designing the object-oriented way, Ron Schultz, OPEN SYSTEMS TODAY, 7/20/92

.One of the most important lessons we learned in our group was that nonreusable code is easy to
write iti any language... Similariy we learned that reduced maintenance can be realized only when you
follow good design practices . . .We also learned that writing poorly performing object-oriented soft-
ware is easy.

Practical object-oriented programming: 38 guidelines for making OOP work, Bill Hunt, EDN, 7/6/92

. Akey idea ofthe OOC [object oriented computing] paradigm is that computer systems should sim-
ulate the way enterprises and real systems operate. This is in stark contrast to past approaches, which
emphasized the decomposition of real systems into procedural specifications that could be easily pro-
grammed. The resulting implementations frequently distorted the operations of the enterprise, and
were very difficult to integrate and maintain....

Developing CAD: CAD 2001-beyond the event horizon, William V. Weiss and Victor C. von Buchstab,
DESIGN ENGINEERING, 6/92

THE BUSINESS OF OBJECTS

. . Perhaps NeXT's most useful accomplishment has been to commercialize object-oriented technol-
ogy, a concept that has been around since the late 19603. Once NeXT finally got up and running, other
computer firms entered an obiect race....

The NeXT wave on Wall Street, Jenna Michaels, WALL STREEr & TEcHNoLoGY, 6/92

OCTOBER 1992 23

l*t

49
Excerpts from leading industry

publications on aspects of
object technology

MULTIMEDIA . . . laccording to Marc Stiefler, vice president of development at Xanadul "The computer industry is
just now implementing piecemeal-as computing power increases and market needs demand-the
integrated group ofelements conceived in. . . earlier research: windows, icons, menus, multiple processes,
obiect-oriented programmingandhyperlinks." Therealchanges will hitin the nextyear or two....The
benefits will be widespread. Searching and reading through hundreds of thousands of pages will
become as fast and easv as leafing through a few chapters o f a how-to book on cooking or boating.
Not only will these electronic books contain text, they will include virtually any kind of information
that can be stored on a diskette-audio, visual, graphical or animated. This concept, hypermedia, is
simply an extension of the hypertext method that incorporates other media as well as text. . -.

Hypertext: a new world for the document, Bernard C. Cole, ELECTRONIC ENGINEERING TIMES, 7/20/92

- Object-oriented 3-D offers almost total control ofthe final image. When each letter is processed as a
3-D object, the title can be viewed from any angle, camera focal length or viewing distance. You can dis-
play it from any point of view. As though behind a camera, you can truck in toward the title, truck out
from it, dolly right, tilt left. Obiect-oriented files are also the basic ingredients of animation. By import-
Ing a file into a compatible animation program, you can render and compile an animated journey, In-
stead ofseeing a static title, the viewer can experience a flight into, over and around [he 3-D credits....

Desktop video: Titles in 3-D, M ichael DiSpezio, VIDEOMAKER. 6/92

CASE STUDIES . . . The coupling of CASE technologies with the object-oriented paradigni is starting t{) [ead to a significant
expansion in reusability at allevels. Whereas ordinary procedural languages such as Foi·tran rarely
produce more than 15 percent reusable code, with object-oriented languages such as Smalltalk and
Objective-C, reusable code often exceeds 50 percent, owing to the concept of inheritance embedded
in the language. Although object-oriented analysis and design techniques are not as advanced as the
languages, theyare advancing rapidly....

CASE's missing elements, Capers Jones, IEEE SPECTRUM, 6/92

... While object-oriented design has captured tremendous attention in the past few years, associated
methodologies are still evolving....Uncertainty surrounding which methodology to use can make it
difficult on tile software engineers striving to create supporting CASE tools,...

Tool vendors "CASE" the industry for object-oriented designers, Amy Bermar, EDN NEWS, 6/8/92

LANGUAGES . . In a poll of C++ and Smalltalk users, ParcPlace Systems, Inc.'s. Objectworks/Smalltalk compiler and
development environment distinguished itself with the top overall score of 79 lout of a possible 1001.
Its competitors finished close behind: Microsoft Corp.'s C/C++ scored 77, Digitalk, Inc.'s Smalitalk/V
earned a 76, and Borland International, Inc.'s C++ scored 75. The results demonstrated some of the
relative strengths of these two approaches to OOP, In general, users gave the two Smalltalk products
higher satisfaction ratings in areas such as support for inheritance and ease of maintaining applications.
The C++ environments scored noticeablyhigher iii speed of applications... More than 70% ofthe users
surveyed indicated that using OOP has increased their productivity.

C++, Smalltalk vie for object-oriented favor, Derek Slater, COMPUTERWoRLD, 7/20/92

, . . Deciding which language to use may not be as important a decision as is the choice to try a new
paradigm for programming. All of the languages discussed here provide the basic tools necessary for
OOP. The challenge will be to learn to make effective use of the growing number ofdass libraries. Reap

22 HOTLINE ON OBJECT-ORIENTED TECHNOLOGY

part: the process. The Alcalie} approach can.
be usedas aframework for yourown meth

) ods'evaluation aftertuning the criteria and
weightings to your orgianization's needs.

On asubject near and dear to methods,
I remain concerned about GE Advanced

Concepts Center and OMToof. While their
people are admirably enthusiastic, OM-
Tool is not on par with commercial CASE
offerings today. Experienced professionals
who have seen the product demonstrated
report that its release is seriously prema-
ture, Suggesting that OMToot is unready
for public consumption to the deg:ree one
would expect from a product delivered in
a shrink-wrapped box to conference audi-
ences. When you stop by the GE booth at
OOP SLA, enjoy the virtual reality scene,
but keep in the forefront ofcritical thought
die real-world niodeling probjems you liave
to solve back at work. When a large, well-
resourced vendor is building tooling for a
method as widely known as Rumbaugh's,
is it unreasonable for the market to demand

that they "bring good things to life"?
Mr. Bill Hunt from Hewlett-Packard

writes about selecting an object-oriented

 programming language. His description of
the unfortunate way in which many orga-
niZatiOUS Seled an OOPI. reminds me of

temmings to the sea-without the benefit
of populat:ioncontroL Witheach new tech-
nology, the same lemmings will try again,
and again, and again... The bottom line
here is don't select a language or environ-
ment simply because the learning curve
looks shal[ow. Languages that are most like
the traditional programming language you
are using today are die wrong choice if that
is your primary reason for selection. To-
day>s development problems arise from to-
day's solutions. The processes we use and
environments iii which we develop shape
our solutions. Recall the sage observation
by [.udwig Wittgenstein diat Jainguage con-
trols what and how we think. Originally
pertaining to natural language, this obser-
vation is equally valid for programming
languages. All language is a medium for
concept expression and CommunICatIOn
between a sender and a receiver-even

when the message is sent to se{11
The point is: beware the solution that

) requires no change. Language vendors take
note: the right answer fol· your custoiner's
business is prot 'It>s a better C." As Mr. Hunt

emphasizes, the daim to fame of hybrici

OCTOBER 1992

Unguages' is their ability to mix object and
traditional programming constructs. This
has strong appeal for those wanting theap-
pearance ofobject techitologywithout mak
ing a positive commitment. As in much of
life, we get back iii proportion to what we
put in. A hesitant commitment to learning
wil[produce little learning* A play-it-safe,
language-only approach also negates the
principle benefits object technology offers
the business, Mr. Hunt observes, although
it may tighten the programineks work load
when coding up a window for display on
the graphical user interface. The most im

portant reason for using an OOPL is to pro-
duce a higher-quality product, not simply
to inake programming easier while we keep
on doing things the old way.

Dr. Mary Loomis of Versant Object
Technology writes about object database
management systems (ODEMS), who's lis
ing them, and why. Wi thin in formation tech-
nology (IT) organizations, ODBMS vendors
are still working to prove their mettle. To-
clay, Fortruie 500 coinpanies run as much as
a year ahead of middle-sized businesses in
exploring newiiiformarion technology due
to their dependence on technology and avail-
able resources. It is exactly these bi,sinesses
that work with instance and concurreney
volumes beyond the proven limits of any
ODBMS product available today: multi-gi
gabyte (and terabyte) persistent·storage de„
mands and 1,000-40,000 online user envi-
ronments. These are the very situations that
so desperately requii·e tlie seniantic preser-
vation that Mr. Adams and our frequent au-
thor Mr. Norman Plant discuss, and thus

that most need the business benefits ofob-

ject technology and an ODBMs. While the
market for structure servers is real aiid sub-

stantial, IT needs large-scale, semantics-shar-
ing servers. Watch this technology and eval
uate the products (and vendors> claiins) with
a critical eve. As the field matures, ODBMS

will be a powerful technology for IT.
There isa moralinhere somewhere: Look

beyond todafs solutions to get beyond to-
day>s problems, and look beyond today's
problems to escape todays solutions.

hotline,Aott

OBJECPORIENTED
tedhnohigy

Robert Shelton, Editor

SIGS ADVISORY BOARD
Tom Atwood, Object Design
Grady Booth, Rational
George Bosworth, DIgitalk
Brad Cox, Informaton Age Consulting

Chuck Duft The Whitewater Group
Adele Goldberg, Farcpmace Systems
R. jordan Kreindler, General Electric
Meilir Pagedones, Wayla,ld Systems

Tom Love, OrgWare, Mc
Bertrand Meyer, Interactive Software Engineer,ng
Sesha matap, Centerline Software

R Michael Seashols Versant Oblect Technology

Bjarne Stroustrup, AT&T Bell Labs
Dave Thomas, Object Technology Internet onat

HOTLINE ED,TORIAL BOARD

.jim Anderson, Digtalk, Inc.
Larry Constantine: cons.Mant

Mary E.S. Loomis, Versant Object Technology
Reed Phillips, Knowledge Systems Com.
Trygve Reenskaug, Taskon Als
Zack Urlocker, Bormd International
Steven Weiss Wayland Systems

SiGS Publications, inc.
Richard P. Friedman, Founder & Group Publisher

ART/PRODUCT,ON

Kristina Joukhadar, Mmagifg Edker
Susan Culligan, Pilgrim Road, Ltd., Creative Direction

Elizabeth A. Upp, Production Edaor
Jennifer Englander, Artiproduction Coordinator
CgRCULATION

Diane Badway, Circulation Busness Manager

Ken Mercado, Fulfilpment Manager
Vicki Monck, Circulation Assistant
John Schreiber, Circulabon Assiscant

MARKEnNG

Lorna Lyle. Promotions Manager-Conferences
Sarah Hamilton, Promotions Manager-Publications

Caren Poiner, Promotions Graphic Artst

Admintration

David Chatterpaul Bookkeeper
Ossama Tomoum. Business Manager
Claire lohnston, Conference Manager

Cindy Roppel, Technlcal Program Manager
Helen Newring, Admunistrative Assistant

Margherita R. Monck, General Manager

jane M. Grau, Contnbut,ng Editor

THE HOTLINE ON OBJECT·ORIENTED TECHNOLOGY (ISSN
#1044·4319) = published monthlyby SIGS Publications, Inc.,
588 Broadway, NY, NY 10012, (212)274-0640. © Copyright
1992 SIGS Publications, Inc. All rights reserved. Reproduc-
tion of this material by electronic transmiss[on, Xerox or any
other method wiN be treated as a wilful violation of the U.S.

Copyright Law and is flatly prohibhed. Material may be repro
duced with express permission fromthe publisher. Maded First

Class. Subscription rate - one year (12 issues) $249, For.
eign and Canada $279. Single copy $25.

POSTMASTER: Send address changes & subscrprion orders
to Ho ruNE, Subscriber Services, P.O. Box 3000: Depl HOT5
Denvdle, NU 07834.

Submit editorial correspondence to Robert Sheltorir 1850
Ur.ion Street, Suite 1548, San Francisco, CA 94123
voice: (416} 928·5842; fax: (415) 928 3036.

SIGS
PUBLICATIONS

Publishers 0 2 HOTUNE ON OBJECT-ORNENTED TECHNOLOGY,

JOURNAL OF OBJECT-ORIENTED PROGRAMMING, OBJECT
MAGAZINE, THE X JOURNAL, C++ REPORT.THE SMALLTALK
REPORT. and THE INTERNATIONAL OOP DIRECTORY.

3

OBJECT METHODS E E

Selecting the right
object-oriented method

Alcatel Network Systems Inc. (ANS), a multinational telecom-
munication company, is integrating object-oriented methods
into its mainstream development activities. ANS was looking for
a common sense approach to quantifying the decision-making
process. Pursuant to that goal, john Cribbs, Colleen Roe, and
Suzanne Moon, all members of the Advanced Projects Group,
spent the past year evaluating different design methodologies andi
issued 3 75-page report, An Evaluation of Object-Oriented Analysis
and Design Methodologies. published by SIGS Publications.

Since reviewing this report, I have had several opportunities
to discuss the experience with the authors. In searching for a pro-
cess that would enable them to stand behind their recommen-

dation, they took a fairly straightforward approach:

• Determine what is important to the organization.

• Specify the evaluation criteria.

· Apply a filter for selection of included methodologies.

· Quantify the evaluation.

· Formulate a recommendation.

Their report is the most in-depth, detailed, point-by-point
comparison of current object-oriented methodologies I have seen,
covering Booch, Coad/Yourdon, Edwards (induding Martin and
Odell), Graham, Rumbaugh, Shlaer/Mellor, Wasserman/Pircher,
and WirfsMBrock.

Ifyour company is in the process ofevaluating object-oriented
methodologies, the ANS experience will save you enormous time.
It doesn't matter whether or not your criteria precisely match
theirs or if you agree with the weights they used for their rating
system, or even if you agree with all of their assessments.

Ilhis artide COInbines a briefexplanation ofANS's five steps with
some thoug]·its on how to apply them in your own corporation.

DETERMINE WHAT IS IMPORTANT TO
YOUR ORGANIZATION

Before considering migrating to a new technology, it is aiways
important to understand your organization's cultural and busi-
ness requirements.

ANS started the process by categorizing their requirements.
In their report, John, Colleen, and Suzanne stress the importance
of understanding what constitutes each category and the relative
importance of each. They admit that a different staff working in

4

Patti Dock

a different problem domain might assign different weights and
therefore reach significantly different conclusions.

Whether the method uses an object model and event trace
an object schema and object flow diagram, or a class diagram and
timing diagram, all the methods describe the systems from sev-
eral different perspectives or models. The first step in defining a
common basis for comparison was to agree on a common model
for evaluation. Only after ANS decided to map each method to
a static-logical, dynamic-logical, and physical model were they
able to list each individual criterion and determine the relative

evaluation weights.
The static logical model captures information regarding the

static structure of classes and objects and their relationships. It
addresses how well each method defines the class, its relation-

ships, and attributes: Does it capture inheritance? Does it limit
the visibility? Are pre- and postconditions explicitly listed? What
about version control of individual obiects?

The dynamic logical model captures the system's non-static
characteristics. A system's time-dependent characteristics such
as object lifecycles, events processing, state transitions, flow of
control, and timing constraints are represented by data flow di-
agrams, pseudocode, extended class diagrams, and algorithm
statements. Other important issues such as persistency and con-
currency ar¢ addressed in the criteria.

Transforming the static and dynamic models into a physical
model requires information concerning task partitioning, pro-
cess mapping, task dependencies, and synchronization.

ANS decided to independently evaluate tile quality and un-
derstandability of the notation. They believe that the usefulness
of even the best modeling concepts directly correlates to the ease
with which the model communicates information.

ANS found they still had a group of concerns that were not
included in any of the previous categories. Among these con-
cerns, or intangible criteria, were:

* Is C: · (at the detailed design level) supported?

•Is there a smooth transition between analysis and design?

· Is CASE support available ?

• How did existing SMSD environment map to the new methods?

I believe niost companies could use the ANS paper as a frame-
work for their evaluation, mapping most object-oriented de-

HOTUNE ON OBJECT-OR@ENTED TECHNOLOGY

$ 5 tieteditte,u
Servio UK in London, opened and will provide service to customers of Servio UK and Servio's existing European distributor net-
work. In a separate announcement, Servio has been named a Hewlett-Packard Value-Added Business Partner.

Phil Sheridan was appointed to the new·tv created position of Vice President ot International Operations at Servio Corporation.
Sheridan comes to Servio from Boole & Babbage Corp., where he served as director of marketing for the companyls on-line
teleprocessing products.

NeXT Computer appointed Bernhard Woebker as its new vice president of Europe. NeXT's European executives are now located in
NeXT's Munich and Paris offices. Woebker will be stationed in Munich along with Herbert Schwab, recently appointed Nerrs head of
fnance and administration for Europe. In Paris will be Paul Vias, who returns to his position as technical director for Europe after serv-
itig as acting VP of Europe since early February, and Randall Sosnick, responsible for legal and business affairs.

Object Design Inc. and NeXT Computer Inc. signed an agreement to jointly develop object-oriented storage and database tech-
nologvwith the intention of creating an industry standard. Under this agreement, they will port Obiectbtore 2.0 to NeXTSTEP Re-
lease 3.0 by the end of 1992 to be marketed and distributed by Object Design. NeXT will incorporate other jointly developed prod-
ucts into future versions of NeXTSTEP and. Object Design will license these to other vendors.

Ron Lang has joined Rational as vice president ofmarketing. He will manage the marketing effort ofRational's object-oriented prod-
ucts division in addition to the Companyis corporate marketing functi:ons. Most recently Lang was director of software product mar-
keting at NeXT Computer, Inc.

Michael Sayer has been named vice president of international sales and marketing for Lucid, Inc. He will establish European head-
quarters and manage Lucid's European operations. Sayer has been with Lucid for six years and was most recently general manager
of Lucid's Lisp Division. Lucid has also announced distribution agreements with the following European companies: ELSA Soft-
ware, France; Mesarteam S.p.a., Italy; ENEA DATA AB, Scandinavia; Engineering Software Ltd„ U.K.; and C.S.E. Austria, Ger-
many, Switzerland.

Chicago-based O'Connor & Associates formed a new division, Black Diamond Technologies, to market trading systems software
products for NeXTSTEP and other UNIX-based workstations. At the same time, Black Diamond Technologies said it has signed an
exclusive two-vear agreement with Lotus Development Corporation to distribute Lotus Realtime for NeXTSTEP.

Object Design Inc. announced the Object Design Partner Program for ObjectStore. Among those companies already signed on as mem-
ben of this Program are Borland International; CenterLine Software, Hewlett-Packard Company, fluent inc., Lucid Inc., Oberon
Software Inc., ParcPlace Systems, Progress Software Corporation, Spatial Technology, STEP Toots Inc - and Visual Edge Inc.
In addition, public domain class libraries will be part ofthe Partner Program tool catalog. Object Design is actively seeking new mem-
bers for the Partner Program.

Object Design and Progress Software Corporation announced the signing of a strategic development and marketing agreement
under which the two companies willintegrate the PROGRESS 4GLand ObiectStore ODBMS. Development ofajointproduct, code-
named "Object Access Project," has already begun. The first product is scheduled to ship in the first quarter of 1993.

Lucid Inc. and Artificial Intelligence Technologies Inc. (Am have announced a partnership to bring new Lisp-based tools and ap
plications to market. Under this agreement, Lucid will market and support AIT's standards-based products. The two companies
agreed on a plan to release the first product, AIT's Motif tool lit, during the third quarter of 1992.

Oberon Software Inc. opened its western regional office in Palo Alto, CA. William Doerlich is Western Region Manager.

Pencom Software 19 launching a training and consulting team to serve both developers and end user organizations equipped with
workstations from NeXT Computer. The new trainingservices will be performed in some cases with NeXTedge, NeXTrs service and
support group, which Pencom will assist with post-sales support and possible other activities to be announced at a later date. Pen-
com also plans to initiate NeXT-specific training courses in various regions across the country.

FrostByte Software announced a Value Added Reseller agreement with NeXT Computer inc. to sell NeXT workstations to create
custom applications for organizations whose needs have grown beyond personal computing alternatives or who are preparing to
downsize from mainframe environments. NeXT workstations running Oradefs RDBMS over an ethernet LAN will be the founda-
tion for large client/server enterprise solutions.

OCTOBER 1992 21

PRODUCT ANNOUNCEMENTS EE

Island Systems Island Systems has announced additional compiler and graphics support for object-Menu, a class libratry
designed to enable graphics developer to quickly integrate a stat¢-0 f-the art Graphical User Interface en
vironment into any C++, DOS-based application. In addition to support of Borland C++ and Microsoft
C+-p, object-Menu will also be available for use with Metaware C++ and Watcom CH compilers for 32
bit protected mode support. object-Menu is also expanding its grapliics library support to inellide MetaWin
dow (Metagraphics Corp.), Genus GX graphics (Genus Microprogramming Inc.), and HALO graphics
(Media Cybernetics). Support for Watcom C++ is pending release of the Watcom product.
7 Mountain Rd., Burlington, MA 01803 617.273.0421

Template Software, mne. Template Software is shipping release 4.0 of SNAP, its template-based advanced technology develop-
ment tools for complex, business-critical applications. This release features the windowed, Menu-driven
SNAP Development Environment, which integrates SNAP development tools to ease the creation and
modification of SNAP applications, as well as Shared Information Base (SIB), which enables dynamic
object sharing among multiple distributed processes, mechanisms to reconfigure or scale applications
with little or no code changes required, and links to C++ code,
13100 Woridgate Dr., Ste. 340, Herndon, VA 22070-4382 703.318.1000

Cobalt Blue, inc. Cobalt Blue has announced the new release for FOR_C++ vl.1, its conversion package offering auto-
inated code tranblation from FORTRAN to Ce.. Available for MS-DOS and SPARCstations, FOR_C++
translates standard FORTRAN-77 with many MILSPEC and VAX extensions into AT&1's Op+, While
code is not object-oriented, its translations utilize special C++ objects. FOR_C++ generates complete
C++ function prototypes. Function calls are checked for consistent usage during translation and passed
either by address or reference in Cpi. Parameters are translated as O+ constants to help program de#
bugging, with class and structure types being user-defined for greater flexibility
675 Old Roswell Rd„ Ste. D-400, Roswell, GA 30076404.518.1116

BOOK WATCH

Prentice Hall Prentice Hall announced the publication of THE OI PROGRAMMERS GuIDE by Amber Benson and Gary
Aitken. This new guide shows programmers how to build a graphical user interface with the Object In-
terface (OI) toolkit in the X Window System. OI is a library of dass definitions and procedures writ-
ten in C++, providing a single interface that allows programmers to write programs conforming to both
Motifand OPENLOOK.

Also announced was the publication of OBJECT-ORIENTED PROGRAMMING WITH C++ AND OSF/MO-
TIF by Douglas A. Young. This book shows programmers how to use C++ and OSF/Motif to design
and implement applications featuring interactive graphical user interfaces. It addresses object-oriented
programming and design techniques, as well as user interface design methods-emphasizing the thought
processes behind each technique-and presents common architectures for object-oriented design.

Another new Prentice Hall release, C++ PROGRAMMING AND FUNDAMENTAL CoNCEPTS by Arthur E,
Anderson and William J. Heinze, covers the C++ programming language Version 2.1 and its io] stream
library. The book offers programmers a clear migration path from C to C+4, discussing pre-2.1 ver-
sions of the language and how pre-ANSI C and ANSI C differ from Cer.
Prentice Hall, 113 Syivan Avenue, Route 9W, Englewood Cliffs, NA 07632 201.592.2348

Addison·.Wesley Addison-Wesley Publishing Company and GO Corporation announced the publication of TH E GO
TECHNICAL LIBRARY, a new series of books, written by experts at GO Corporation, providing an official
technical description ofthe PenPoint operating system. Consisting ofseven volumes, these books show
experienced programmers how to design, code, compile, and debug PenPoint applications. The GO
Technical Library indudes: PENPOINT APPLICATION WRITING GuIDE, PENPOINT USER INTERFACE DE-
SIGN REFERENCE, PENPOINT ARCHITECTURAL REFERENCE: VOLUMES I AND II, PENPOINT DEVELOPMENT
Tools, and PENPOINT APPLICATION PROGRAMMING INTERFACE: VOLUMES I AND IL

Addison-Wesley Publishing Company, 1 Jacob Way, Reading, MA 01867 617.944.3700

20 HOTLINE ON OBJECT-ORIENTED TECHNOLOGY

Before considering migrating to a new
technology, it is always important to

understand your organization's cultural
and business requirements.

99

sign methods into the ANS models with very little customiza-
tion. The intangible criteria, however, might be significantly
different. Some consideratios for determining your intangible
criteria include:

· What is the primarypurpose ofthe organization? Are you pro-
ducing software products or services?

Logic Model - Static 250
Logical Model -Dynamic 250
Physical Model 100

Notation 200

Intangibles 200

ANS documented a list of criteria or questions for each cate-
gory. They assigned a weight to individual questions such that
the sum equals the relative weight for the category. Like the se-
lection ofthe models, this portion ofthe paper is extremely use-
ful. ANS's initial evaluation had over 70 specific criteria divided
among the five different categories. Whether you add, delete, or
change the weights, trying to specify each category or question
from scratch is a time-consuming task! Here is an example ofsix
ofthe individual questions that represent 75 ofthe 250 total points
in the static modeling criteria.

· Is the information organization considered important in the
strategic direction of the organization?

· What is the most critical goal ofyour organization? Is it mai· Class N
keting time, quality, or competitiveness?

• Understand whether your organization's culture is leading-
edge or conservative. Ifyou are a conservative company, us- Class D
ing a method successfully demonstrated in a similar+ company
may be important. Ifyour company is looking for the com-
petitive advantage, it may be appropriate to use a more rev-
olutionary approach. Atiribu

· Although ideally one does not preselect a language or devel- Methoc
opment environment, preselection is often the reality. Be sure
you recognize historical software development facts. Think
about whether the organization has C, COBOL, or Smalltalk
experience.

Abstrac

• What is the typical software development lifecycle?
Unique

· If the organization has experience in C and has preselected
C+4, does the methodology support C+ r? Ifthe organization
has a large investment in COBOL you might transition to ob-
iect-oriented COBOL, or take a more revolutionary approach

Total p,with Smalltalk.

Weight
ame Does the descriptive text name

conform to organizational
naming conventions? 10

escnption Does the text description
contain as much and/or as
little information as necessary
to describe the class? 10

telist Are the names of the attributes

contained in the class 10

1 List How well does the method

document the names/signatures
of the methods that define

the class's behavior? 10

i Class Does the method support
abstract classes? 5

Identier How well does the method

capture the list of the attributes
necessary to uniquely identify
an instance? 5

Dints 75

* If the organization has a large investment in structured tech-
niques, does the proposed object-oriented methodology al ANS used a rating system and corresponding numeric values
low the use of models such as data flow diagrams to capture to quantify how well each criterion was met:
class method functionality?

Score

SPECIFY THE EVALUATION CRITERIA
IN COMMON TERMS

Next, ANS assigned a value to each categor)rand rated eadi nietliod
according to how well it supports the individual criteria in the
categories. They used 1,000 points as the perfect score. ANS'scat-

egories and corresponding values were:

Excellent/Complete Support: 4
Satisfactory Support 3

Less than Satisfactory Support 2
Unsatisfactory Support 1
Not Suppoited 0

OCTOBER 1992 5

OBJECT METHODS

One of the first questions I asked ANS was "Howdidyou de-
termine lihe relative weighting of each category?" Their company
focus is realtime telephone applications. Having spent five years
iii the telecommunications business myself, I was surprised that
they didn't weight the dynamic logical model more heavily thaii
the static logical model. They indicated that although they bad
debated the relative weights, the group felt the 5:1 ratio of the
logical models relative to the physical model was most appro-
priate across their entire business spectrum.

Borne alternative examples of relative weighing for different
systems are:

• A document distribution system might weight the static log-
kai model more heavily due to its ownership and version con-
trol dependence,

· A CAD system might weight the physical model most heavily
because performance is most often its bottleneck.

· A compiler designer might weight the dynamic logical most
heavily because this is where the transformation constructs
are addressed.

SELECT THE METHODS TO EVALUATE
Once the criteria specification was complete, ANS selected which
methodologies to evaluate. ANS's evaluation criteria stated the
method must be described in an English language book, have
been used on at least one released commercial product, and be
taught by at least one commercial training company.

Given the dynamic nature of the market, John Cribbs indi-
cated that several more methodologies would probably have
been included ifANS were to begin the evaluation today. Cer-
tainly the publishing industry has been busy this summer and
several new obiect-oriented methodology books are already
available.

EVALUATION

Finally, the actual review of each method begins. Here is a por-
tion of one of ANS's charts:

Booch Coad Edwards

Class Name 4 (Excellent) 4 (Excellent) 4 (Excellent)
Class Description 4 (Excellent) 2 (<Satisfactory) 1(Unsatisfactory)
Attribute List 4 (Excelleiit) 4 (Excellent) 2(<Satisfactory)
Method List 4 (Excellent) 4 (Excellent) 2 (<Satisfactory)
Abstract Class 4 (ExceRent) 4 (ExceUent) 4 (Excellent)

Unique Identifier 1 (Unsatis factory) 1 (Unsatisfactory) 1 (Unsatisfactory)

Once the individual rating is captured, an evaluation table is
compiled by applying the weight of each item in a manner con-
sistent with the item's importance to your organization and sum-
ming all the columns according to the formula on the chart.

6

Weight Booch Coad Edwards

Class Name 10 4 4 4
Class Description 10 4 2 1
Athibute List 10 4 4 2

Method List 10 4 4 2

Abstract Class 5 444

Unique Identifier 5 1 1 1
weight(i) ' score(i) 185 165 115

I caution you not to underestimate the time required to un-
den,tand the nuances concerning the different modeling tech-
niques, the notation, and the tools supporting it. Bv definition,
each method has at least one book associated with it. Most have

tools and some have multiple tools that need to be reviewed.
Many have either public or in-house training courses to at-
tend. 1 suggest you check out at least one reference project for
each method.

After the numbers are calculated, a 'best" method will be ap-
parent. Be sure to:

. allow time for feedback from your peers;

· provide a mechanism for feedback from your vendors;

· identify any special areas of risk.

You will still need to formulate a migration plan, evaluate the
impact on your organization, and estimate the associated costs.
After completing these actions, determine the method to rec-
ommend, including any modifications necessary tor your orga-
nization, and present your recommendations.

SUMMARY

The process described in this article should be viewed as a means
of making a final selection; it should help to eliminate the biases
that are inevitable when making decisions concerning new tech-
nologies. Only through a quantitative process can you formulate
a defensible recommendation.

I recommend you read the entire 75-page report. Copies can
be ordered from SIGS Publications at 212.274.0640. m a

Reference

Cribbs, J., C Roe, and S. Moon. AN EvAL.uATioN op OBJECT-ORIENTED
ANALYSIS AND DESIGN METHODOLOGIES, SIGS Books, New York,
[992

Patti Dock recently joined OrgWare, Inc. as Vice President. She has
been involved in the object-oriented marketplace since 1985 when she
joined Stepstone as a technology consultant. Since leaving Stepstone
Patti has worked for Jackson Systems Corporation and General Elec
tric, both companies actively involved in objecttechnology. She currently
teaches a course called OBJECTMethods, which compares and con-
lasts leading objectoriented des gn methods. She can be reached at
903.270.1242,

HOTLINE ON OBECT-ORIENTED TECHNOLOGY

ementi
94©bet Product Announcements s a service to our

0 67mt,wle readers. [t is neither a recommendation nor

an endorsement of any product discussed.

Glockenspie[Glockenspiel released CommonBase, its C++ framework for object-oriented development of database
applications. CommorBase provides SQL and ISAM developers with application portability across
database platforms, interoperability with other C++ class libraries, a transparent migration path from
ISAM to SQL and independence from database store formats. This new version provides support for
two additional platforms: Microsoft's C/C++ 7.0 compiler and Faircom's ctree Plus. CommonBase 1.3
also corrects all known bugs.
39 Lower Dominick St.s Dublin 1, treiand +353.1.733166

UniSQL, Inc UniSQL announced UniSQL/X for IBM RISC System/6000 workstations running AIX, providing IBM
RS/6000 users with object-oriented data modeling and multimedia data-integration capabilities in an
ANSI SQL-compliant environment. UniSQL also announced UniSQL/4GE Application Development
Environment, GUI-based application development tools for IBM RS/6000 users.
9390 Research Il, Ste. 220, Austin, TX 78759-6544 512.343.7297

Oasys Oasys introduced Oasys Native SPARC Tools. The Tools indude the new Version 1.8.6 release ofthe
optimizing Green Hills Compilers (C, C++, Pascal, and FORTRAN) and the multilanguage, X Win
dows system-based, MULTI debugger, and have been integrated with Sun's native assembler/linker.
Oasys Green Hills Compilers support three intercallable high-levellanguages: C, switch-selectable ANSI
C, and classic K&R C; a production-quality C++ compiler, that is source-code compatible with AT&T
cfront 2.1, 2.0, and 1.2, with switch-selectable support for C; ANSI/ISO Level I Pascal; and ANSI FOR-
TRAN-77 with DoD MIL-STD 1 753 extensions and VAX/VMS extensions. In addition to native SPARC

each language compiler is available in native and cross mode for a wide variety oftargets and platforms.
One Cranberry Hill, Lexington, MA 02173 617.862:2002

Metrosoft Metrosoft announced October shipping of MetroTracks, a commercial multitrack audio software for
NeXT workstations, running NeXTSTEP 3.0. A NeXT workstation equipped with MetroTracks and
any of several analog or digital audio front ends provides users with a full-featured digital audio work-
station capable of recording, mixing, and editing CD-quality sound plus MIDI data. A recording can
contain up to 32 virtual tracks in any combination ofaudio and MIDI and as many as 8 tracks can be
mixed simultaneously, depending on the hardware configuration. The MetroTracks architecture is ex-
pandable to utilize any future NeXT hardware directions.
740 13th St.. Ste. 503: San Diego, CA 92101, 800.851.8665, 619.488.9411

ProActive Software, Inc. ProActive Software unveiled its Customer Information Resource (CIR) system, a comprehensive fam-
iIy of enterprisewide, dient/server applications and tools designed to help companies improve customer
satisfaction, ProActive also announced immediate availability of Support Advantage for Microsoft Win-
dows 3.1, the first of six CIR applications, as well as the ProActive Toolset, an object-oriented cus-
tomization environment. ProActive's CIR system will support multiple SQL relational databases (Sybase,
Informix and Oracle), UNIX platforms, and user interfaces (including Windows 3.1,The X-Win-
dowsbystern, ami Macintosh). It also features its own workflow engine and Query-by- Example facil-
itv. Developed in C++ with a client/server architecture, CIR is built around a Dynamic Application Dic-
tionary and the ProActive Toolset, which enables users to customize their applications without changing
source code. Currently available on Sybase, Support Advantage will run on Informix and Oracle database
servers on a wide range of UNIX platforms. Support Advantage uses the RDBMSs to access, capture,
and track complete up-to-date profiles of customers. Support Advantage also uses Object Linking and
Embedding (OLE) technology to link and attach multiple data types.
1043 North Shoreline Blvd., Mountain View, CA 94043 415.691 .1500

Microsoft Corporation The new Microsoft C/C++ Browser Toolkit lets you access and manipulate the contents of the browser
database (.BSC) files in Microsoft C/C++ Version 7.0. You can also use the new APIs to develop cus-
tom applications that work off the information contained in the database files. Toolkit can be down-
loaded from Microsoft developer forums on Compuberve or ordered directly from Microsoft.
One Microsoft Way, Redmond, WA 98052-6399 206.882.8080

OCTOBER 1992 19

REUSE

mentation of the coda The startup cost for a reuse project can
also include expenses for hiring additional staffto support reuse
and for developing custom tools.

GETTING STARTED WITH SOFTWARE REUSE
The three requirements for implementing software reuse are
tools, reusable code, and training. New tools are required be-
cause the traditional compiler and debugger toolsets are not ad-
equate. Interactive programniing environments are necessary
to develop reusable software at the object level. These support
object-level prototyping, execution, debugging, and testing,
making it possible to develop reusable objects and reuse soft-
ware at the object level. These environments also provide tools
for browsing the structure of objects to determine their de-
pendencies and interfaces.

When beginning a reuse project, start with reusable code in
the form of dass libraries or ati application framework. Purchase
as much reusable code as possible, although this approach does
depend on the quality of the reusable code. Groups engaged in
software reuse should develop criteria for evaluating and testing
the quality of purchased software. Class libraries and reusable
components may require several releases before they reach ac-
ceptable levels for robustness and quality. Training is also vital to
helpprogrammers understand howtomakethetransition toob-
ject-oriented programming and software reuse. One of the main

OBjECT DATABASES continued from page 15

SUMMARY

Figure 1 classifies the various ODBMSs according to this cate
gorization of customer need.

Please note that this is iust one approach to classifying prod-
ucts. I've forced each product into a single category but the ma-
jorityof ODBMSs are sold successfully iii both the persistent stor
age and database management categories.

My experience with this approach is that some Of)BMS cus-
tomers who start out requiring persistent storage eventually have
database management needs. Sometimes this is because a soft-
ware engineer's success with an object programming language
and ODBMS leads to broader adoption o f the technology. And

PersistentS·torage
P,%"%%- -------- -

Object < db...VISTA III
POET

with significant
groupwork functionatie
Objectstore

Conventional 2 < ivit DOS and UNIX Files

objectives of training shotild be to break old habits that cause pro-
gram mers to distrust reusable software written by others.

SUCCESS WtTH SOFOWARE REUSE

Success with software reuse depends on a few simple rules. First,
pick a small project and set realistic expectations for the results
expected during the transition to objects and software reuse. Sec-
ond, make along-term commitment to improvingsoftware reuse
instead of a heavy upfront commitment that mav have to change.
Third, don't expect big rewards until several releases of an ap-
plication have been built with reusable objects. Fourth, make an
investment in tools, reusable code, and training.

Software reuse can be an extremely effective means to reduc-
ing software costs, shortening development cycles, and reducing
the complexity of creating software. These rewards depend on
the level of software reuse and the commitment to making the
transition to reuse Successful. E E

Sesha Pratap is CEO, President, and cofounder of Centerline Soft-
ware, Inc. Prior to launching Centerline Software, Mr. Pratap special-
ized In evaluating potential investments in computer and computer-
related industries for a venture capital firm, Mr. Pratap also has more
than ten years of experience in systems programming and lecturing. In
1990, he was elected a trustee of the Massachusetts Software Coun-
cil. Mr, Pratap Ps also a board member of the Object Management Group.

broader adoption of the technology typically means using it to
support multiuser applications where sharing of objects is manda-
tory. Some database management customers evolve to needing
groupwork functionality, while others start with those needs,
Keeping your broader requirements in mind will help ensure that
you are satisfied with your product selection. E m

Mary E.S. Loomis is Vice President of Versant Object Technology She
can be reached at 4500 Bohannon Dr. Menlo Park, CA 94(025: via
phone at 415.329.7500, via fax at 415.325.2380, or via email at
mloomis@osc.com.

Database Management

Gemstone
OPeRODB
02

rgith:significant
grdupwork functionality:
ITASCA

04*ctivi4#DB
ONTOS DB
VERSANT

ORACLE,°Sybase, etc.

Figure 1.A classification of ODBMSs.

HOTUNE ON OBJECT-ORENTED TECHNOLOGY

RETURN ON fNVESTMENT cominuedfrompage 1

) Although we agree wholeheartedly with OIG's assessnient, we
have shown in previous articles that to get return on; investment
through reuse, organizations must focus on developing software
a&sets that include more information than just code.

The program code itself is a very poor medium of exchange
for the wealth of design information developed during a large
project, The majority of semantic information about a reusable
object or group of objects would be traditionally referred to as
analysis and design information; the code has little semantic or
reuse value without it. If an organization is to be successful in the
development of a reuse-based infrastructure, it is essential that
all semantic litformation be managed in a single consistent model
that includes not only code but requirements, design, and test-
ing information as well.

Mr. Plant listed the features of a good 0-0 development
environment, regardless of the actual programming language
involved:

 incremental compiler/linking

· change-management support

· single- and multiuser support

· runtime inspectors

. message-passing protocols

+ storage management

* dynamic binding

• type-checking facilities
* perfumiance-analysis aids

These features are all essential for the development of 0-0
programs, but what about requirements, design, user interfaces,
and test suites? How can ally IS manager be expected to have
confidence in the quality and reusability of the software deve]-
oped when such a small portion of the total process is being ad-
dressed by the development environment?

THE TOOLMAKER'S CHALLENGE

The large amount of interwoven information required for busi-
ness system designs, whether object-oriented or not, must be
managed throughout the lifecycle to protect the organization's
investment in its reusability and value as a software asset. In ad-
dition, version control and configuration management ofal rel-
evant information is mandatory iflarge group design and devel-
opment is to be managed with confidence. We need multiuser
environments supporting all aspects of the lifecycle for the high
level of integration required to deliver high-quality software in a
large enterprise.

Code generation is insufficient
Many airrent vendors ofanalysis atid design tools, whether object-
oriented or not, rely onacode generationstrategy intheir attempts

I to integrate the lifecycle. Even where the amount ofcode generated
from design documents is 80% or more, code and design are out
ofsync as soon as a programmer modifies the generated code to
provide the required functionality. When that happens, the value

0CTO8ER 1992

of both code and design goes down dramatically, especially after
several iterations. Many large organizations using these types of
tools and sti·ategies have experienced this. Code generation from
high-level design infc>rmation cannot yield complete, executabie
systerns on the scale required by today>s business enterprises. But
what ifthe design contains low-level design information as weiR

American Management Systems Inc. (AMS) is a large systems
integrator with over 25 years of experience in the design, devel
opment, and deIiveryof large«scale government and commercial
information systems. Jim Taivitic, a senior principal at AMS, de-
scribes the problem this way:

There is a point when the design becomes so detailed that it is
really code witli the unfortunate character ofbeing unexecutable.

Design documents, whether textual or graphical, all too ofl
ten end up this way, with page after page of textual or graphical
pseudocode. Programming is still programming, whether done
in an executable programming la:nguage or in a "design" nota-
tion. Designers may spend all their time writing the program,
leaving programmers little option but to patch it up until it works
or ignore the design and completely rewrite the code.

Automatic code reengineering is insufficient
«So whatifthe programmers have to <finish' the code? Even ifthey
completely ignore the design we can use re-engineering tools to
extract the design." This is a common claim of tool vendors who
use the code generation strategy. But no existing programming
language is rich enough to capture all the design intent of the orig
inal programmer, whether a human or a code generator. Where
are all those wonderfully complex diagrams,the pages and pages
of textual description; the requirements and user interface
specifications stored in theprogram code? The fact is, they aren't
there. Code is just too poor a medium to hold and preserve this
valuable information. The best result we can hope for when pars-
ing program code is to determine how the program works, not
why it needs to work that way to meet user requirements.

Required: a common model for lifecycle information
When information is transferred between dissimilar mediums,

some of it is always lost in the translation. "Bolting together" a
diagram editor with a code generator and a code parser does not
provide an appropriate platform for the management of strate
gic corporate assets, but rather one primed for the loss of valu-
able design information. Only by providing a single unified model
for the integration of all lifecycle information can this «noise»
problem be avoided. If the requirements, design, and imple-
mentation are provided in the same medium, there is no need
for translation and thus no opportunity to lose information-

Ifthis sounds like the well-worn argument fbr CASE tools and
information modeling, keep in mind that the real proof of any
idea lies in the delivery of an effective implementation. Traci-
tional CASE tools are seriously compromised by the "data only"
or «data + function» perspective. These are the central tenets of
traditional design and programming, and their inability to pro-
vide a rich and flexible medium for a company's business rules

7

RETURN ON INVESTMENT E E

has long been recognized. Even the most basic definition of an
object a.5 an interacting behavioral entity provides a much bet-
ter foundation for modeling an enterprise.

That is why we base our methodology on these behavioral en-
tities. It is also why the process of developing high-quality de-
signs requires a focus on behavior and interaction. This unified
view has already proven highly beneficial both in our work with
CRC cards and the methodology presented in earlier articles in
this series. The experience also has led us to build fifecycle de
velopment environments based on the same principle. But how
can a single environment address the entire software lifecycle if
it focuses only on high-level design and ignores the development
of program code itself?

LANGUAGE-NEUTRAL VS. LANGUAGE-SPECIFIC

For several years, most methodologists in the OOP industry
have been advocating approaches "neutral" to the particular
programming language chosen to implement the design. While
this approach is definitely practical from the standpoint of sell-
ing methodology books, it completely ignores the reality ofthe
software lifecycle. Of course; at the earlier stages ofa software
project, a design can be general enough to be reasonably inn-
plemented on a variety of language platforms. But the further
toward implementation you go, the more important language
features and differences become. Smalltalk and C++, the two

most prevalent 0-0 languages, often produce radically differ-
ent implementations for the same high-level design. A com-
plete lifecycle development environment cannot ignore this fact.
It would be wonderful if we had an environment that would al-

low us to use any 0-0 language we like and still provide the in-
tegration of all the lifecycle information. Unfortunately, these
languages have many more differences than similarities. A good
implementation de-sign in a hybrid language like C++ often
makes a lousy design in a pure object environment like Smalltalk,
and vice versa.

So, while a methodology shouldbelanguage-neutralattheear-
lier stages of the lifecycle, it must be language-specific in the later
stages. The same is true for any tool or environment that claims
to address the requirements of an entire development lifecyde.

ly'l

MORE REQUIREMENTS

So far we have discussed only the tool needs for the development
of 0-0 software; we have not addressed legacy systems, cooper-
ative processing, or database integration. Although not all orga-
nizationalapplications require these non-0-0 components, the
environment needs to be able to accommodate and assimilate

them smoothly. Since the behavior/interaction approach pro-
vides the best way to model these entities as well, the develop-
ment environment could also support and maintain this infer-
mation within the same unified model mentioned previously.

MEETING THE TOOLMAKER'S CHALLENGE
Delivering on aIi the requirements described above is obviously a
tremendous challenge. No CASE tool or programming environ-
merit available today can even come close. But if OT is to live up to
inarket expectatioiis and large organizations are to i·eceive a profitable
return on tlieir investment in this technology, then such an envi
ronment must be developed and deployed as soon as possible.

At KSC, we treat these requirements as design specifications
for the tools we are building in support of our lifecycle method-
ologv. We recognized over two years ago that a much higher level
of tool capability would be required to fully exploit OT in the
business computing world.

The next article in this series will describe what we cail Con-

stant Quality Management, a strategy and process for the devel-
opment, reuse, and management ofsoftware assets. We will show
how using integrated testing and constant metric feedback at all
levels can enable the entire software lifecycle to be managed with
confidence, producing consistent, high-quality results from re-
quirements to code and back. -25

Sam Adams is th: Senior Consultant and cofounder of Knowledge
Systems Corporation. Since 1984, Mr, Adams has been actively de-
veloping object-oriented software systems in Smalltalk and is widely
recognized for his expertise. He is codeveloper of the group facilita-
tion technique using CRC cards and has been training computer pro-
fessionals in object-oriented technology for over six years. Mr. Adams
has served on several conference committees and is a frequent speaker
and panelist at leading industly conferences. He can be reached by
phone at 919.481.4000 or by fax at 919.460.9044.

CALENDAR 'm#,7
'll'11. .

To have a meeting or conference listed, please send the dates, conference name and location, sponsor(s), and contact name and tele-
phone number to the Editor: Robert Shelton, 1850 Union Street Suite 1584, San Francisco, CA 94123; fax: (415) 928-3036

October 18-22, 1992 October 29-30 Nov. 16-20,1992 February 1-4 and April 19-23,1993
OOPSLA INTEROP C++ World February 4-5,1993 Object Expo

San Francisco, CA OOP '93 and C++ World

Vancouver, BC Contact: 415.941.3399 or I Meadowlands Hilton, NJ Munich, Germany New York, NY
Contact: 407.628.3602 800.INTEROP ext 2502 Contact: 212.274.9135 Contact: 212.274.9135 Contact 212.274.9135

HOTUNE ON OBJECPORIEN:TED TECHNOLOGY

REUSE 8 8

standard mechanism for applications to communicate with
reusable objects.

66

Companies such as GTE have
successfully increased reuse in a short
period of time by paying commissions

and royalties to employees who
produce and support reusable software.

Domain-level reuse consists ofreusing software that provides
common functionality for a particular domain of software, such
as database applications or applications with graphical user in-
terfaces based on Motif or Windows. Domain-level objects usu-
ally incorporate the capabilities of many foundation-levelobjects
so that programmers; can eliminate the need to write major por-
tions ofan application. For example, an editable text window can
be used in place of program code built on foundation objects that
provide panels, scrolling, and cut-and-paste capabilities.

Application-specific objects or application frameworks al-
low programmers to maximize the level of reuse for a given pro-
gram. An application framework consists of a collection of ob-
jects that perform functions common to a particular class of
application, such as software for financial, manufacturing,
CAD/CAM, or telecommunications applications. For example,
an application framework for a financial-planning application
could provide components for reading and plotting stock in-
formation, analyzing historical trends, computing present val-
ues, and managing a portfolio. By starting with an application
framework, the programmer can focus on writing new code that
provides custom functionality unique to the particular appli-
cation such as creating a financial-planning program for man-
aging overseas stocks.

From an organization's perspective, reuse of software also oc-
curs at three levels: individual, group, and corporate. Individual-
level reuse consists of software reused by the same programmer
over several generations of a software application as it is contin
ues to be maintained and enhanced. Maintenance activities can

be greatly reduced by building modular programs consisting of
reusable objects. By using object-oriented techniques and plan-
ning for reuse, programmers can preserve the architecture and
modularity of their programs as the software Es modified. Reuse
of software by the individual programmer requires the least com-
mitment and investment bythe corporation and therefore is the
form of reuse most widely practiced today.

Reuse of software by groups involves the development and
maintenance of class libraries shared by a group of developers,
usually working on the same project. For group reuse to be ef-
fective, the group must have support for the collection, dassifi-
cation, and maintenance of reusable objects. This task can be

OCTOBER 1992

shared by members of the group but a dedicated individual is re-
quired once the library of reusable objects becomes large enough
to require continuous maintenance and updating.

Reuse ofsoftware at the corporate level requires a formal com-
mitment to software reuse. Most companies form several teams
ofdevelopers responsible for identifying reusable software among
various development efforts, cataloging and classifying reusable
objects in a corporate repository or library, maintaining and en-
hancingthe reusable code as corporate requirements change, and
assisting programmers in reusing the software. Implementing
corporate-level reuse requires a good understanding of thecom-
pany's software development needs and the areas in which it can
share the results of individual development efforts.

BARRIERS TO EFFECTIVE SOFTWARE REUSE
To reuse software effectively, most organizations need to over-
come several barriers, the most common of which are technical.

Because object-oriented tools and class libraries are relatively
new, the first requirement for effective reuse is that tools and li-
braries assembled from various vendors are compatible and ad-
here to common standards. For example, in the C++ world, Ver-
sion 3.0 of AT&T's C++ implementation is emerging as the
industry-standard language specification, but programmers are
faced with the choice of several, differing implementations and
several foundation dass libraries.

For companies attempting to increase the level ofgroup and
corporate reuse, a major technical barrier is the lack of appro-
priate tools. Commercially available software deveiopment tools
for configuration management, documentation, and testing do
not support object-level software development or software reuse;
tools to collect, store, classify, and retrieve components are just
becoming available. The easiest solution for many corporations
is to develop their own custom tools.

Organizational barriers can hinder the success of reuse pro-
grams if the organization does not make a long-term commit-
ment to reusing software. Introducing software reuse to a devel-
opment project call result in upont delays because programmers
have to learn new tools and programming techniques. Some com
panies switch course after an initial bad experience with software
reuse, which is un fortunate because the payback mav not be ap-
parent until after several releases ofthe software. Organizational
historyandan unspokenemphasis on measuring successbywrit-
ten lines of code can hinder the commitment to reusing software.
This inertia can be overcome with policies that provide recogni-
tien and financial rewards for developing and using reusable soft-
ware. Companies such as GTE have successfully increased reuse
in a short period of time by paying commissions and royalties to
employees who produce and support reusable software.

For many, the economic barriers to software reuse present the
biggest obstacle. Introducing object-oriented techniques and soft-
ware reuse to a development group can result iii high startup
costs for training and tools and loss of productivity during the
transition. Critical software projects can be delayed because pro-
grammers are using new techniques and writing reusable soft-
ware requires much more effort for the initial design and imple

17

AN

L

REUSE - a

Objects and reuse

The concepts o f objects and object-oriented programming are
already more than two decades old but have been embraced bv
the mainstream of the software development community only
in the last few years. One ofthe more compelling reasons to adopt
object-oriented development techniques is the promise of more
effective reuse of software components. This article explores how
object-oriented programming promotes software reuse and how
software development organizations can adopt tools and tech-
mques to increase software reuse.

WHEN LESS MS MORE: THE REWARDS OF

REUSING SOFTWARE

Increasing software reuse is compelling because of the rewards
that reuse provides: increased programmer productivity and soft-
ware quality and reduced complexity. The power of software
reuse is based on the simple concept of leveraging programmer
expertise and effort. The most fundamental way to reduce the
length of the software development process, improve the qual-
ity of the software developed, and simplify the software devel-
opment lifecycle is to reduce the overall amount of code that
needs to be designed, developed, and tested. The most effective
method for minimizingthedevelopment ofnew codeis tomax-
inlize the reuse of existing code.

By reusing software, developers are able to reduce the amount
of time needed to develop, test, and debug new code. Reusing
software usually requires developers to make a greater invest-
ment in designing an application and, ifthe reusable software
is internally developed, in maintaining and enhancing existing
software. These increased inVestments iii design and mainte-
nance usually mean that productivity gains of r·eusing software
do not become apparent until several generations or versions
of an application have been built using reusable objects. Stud-
ies by corporations using internally developed class libraries in-
dicate that a software project evolves through four or five ver-
sions before the reuse of software produces significant savings
in development effort.

Software reuse also helps improve the overall quality of the
developed program. Reusable obiects can be tested and debugged
to provide highly reliable software components, although the
most effective means to improve the quality of reused software
is to correct the problems identified by repeated use.Using ob
ject-oriented design techniques will produce software that is more
modular and maintainable. Reusable objects also promote the

16

S

Sesha Pratap

concept and the practicality of unit testing, thus making testing
an integral part of the software-development process.

Reusing software can simplify the software-development life-
cycle in several ways. First, reusing software reduces the amount
of code that needs to be designed, written, tested, and debugged.
Second, object-oriented programming and software reuse allow
programmers to work at a higher level of abstraction, thus re-
ducing the need to conceive of and work with a software appli-
cation at the language level. Reusing software also makes it eas-
ier to prototype and develop software iii a rapid incremental way,
allowing programmers to evolve simple solutions to complex
programming problems.

WHAT COUNTS AS SOFTWARE REUSE?

Almost :41 software developed today contains a considerable amount
of reused code. Software programs are built upon several layers of
system software and application libraries, all of which are reused
code. For example, a program that makes cals to the operating
system or displays output through a graphical windowing system
iis reusing code by taking advantage of the functionality provided
in the system software. Most programs are also built with fufic
tons that are linked from libraries of code. This form of software

reuse is prevalent and straightforward but represents only one wayv
to reuse software. The other way is to reuse code written as part of
an application overseveralversions ofthe applicationorbyagroup
of similar applications. Object-oriented programming techniques
increase both types ofsoftware reuse but the biggest benefit ofde-
veloping with objects is that progranis can be built from objects
that are easily reused for new versions and new applications.

From an industry perspective, software reuse occurs at three
levels: foundation, domain specific, and api)lica tion specific. Soft-
ware reuse at the foundation level consists of using industry-wide
software components, such as operating-system services and com-
mercially available foundation-class libraries. This represents the
broadest form of reuse; the reused software performs activities
required by the broadest range of applications. This form of reuse
places the greatest demand on the reliability and standardization
of the reused software. Most software designed for foundation-
level reuse can be accessed through standardized application pro*
gramming interfaces (APIs) that provide for effective encapsu-
lation of the reused software. The introduction of object request
brokers (ORBs) and a common object model will make it much
easier to reuse software at the foundation level by providing a

HOTUNE ON OBJECT-ORIENTED TECHNOLOGY

LANGUAGES EE

Choosing an object-
oriented language

Commitment to using object-oriented technology for your next
project requires careful planning and thought and is not a decl-
sion to be taken lightly.

Before choosing a language, consider the reasons for using an
object-oriented approach in the first place. Many new to object-
oriented programming assume that to become object oriented all
that 15 necessary is to start writing code in C++. This, ot course, is
silly because no language can make or break any system by itself
and, more importantly, the term object oriented refers to the ar-
chitecture ofthe system, not to the features o f the language in use.

One of the major pitfalls encountered when developing an
obiect-oriented system for the first time is the tendency for de-
velopers to implement a traditional architecture using an object-
oriented language. This is a very easy mistake to make with hy-
brid languages such as C++ that do not explicitly encourage an
objectoriented design. Iii Cip, passing messages and calling pro-
cedures both use approximately the same syntax and have almost
the same semantics so it is very easy to confuse the two and slip
back into the traditional architecture. This does not happen when
using the so-called "pure" languages (such as Smalltalk, Actor
and Eiffel) because there is no procedure-called syntax at all.
Other hybrid languages, such as Obiective-C, use a different syn-
tax for passing messages. The developer still has a choice of us-
ing a pure object-oriented architecture or anon-object-oriented
architecture but cannot easily mix the two.

The ability to mix obiect-oriented and traditional architec-
turns is very appealing to those who do not want to fully commit
to using object-oriented techniques. This is why C++ is so pop-
ular. People say «I'll use C++ so that if I don't like this object-
oriented stuff I can still use a traditional approach." Languages
like Objective-C and Smailtalk require a full commitment to the
object-oriented approach.

GOALS OF OOP

Many people new to object-oriented technology don'tknow why
they should be using it. Some say object-oriented technology
should be used in order to generate reusable code, while others
say that programmer productivity should be the main goal.

In my opinion, the most important reason to use object-
oriented technologvis to generate ahigher-quality end product
This is made possible through strict partitioning; ofvarious parts
of the system and through the packaging of data and associated
procedures together as one unit. When the internals of a system

OCTOBER 1992

Bill Hunt

are strictly separated, the code is much simpler and easier to un-
derstand. The developers will therefore make fewer mistakes and
the result will be a more robust, higher-quality system,

A major side effect of a simpler architecture is higher pro-
gr·ammer productivity. This is because developers do not need
to spend a large portion of their time understanding the inter-
actions between various modules. Unfortunately, using a lan-
guage with complex syntax or semantics will cancel the expected
productivity gain. Languages with simple syntax and semantics
allow developers to implement new capabilities correctly the first
time without spending time correcting their mistakes.

Object-oriented systems often have lower maintenance costs
because of the simplicity of the architecture. In a good object-
oriented design there are fewer interactions between seemingly
independent modules in the system. Therefore, a defect can be
fixed or an enhancement made without introducing new defects
into the system.

In many cases, the overall testing effort can be reduced be-
cause of lower defect rates. I f the rate is truly lower, fewer defects
need be uncovered during the testing phase to reach the same
overall quality level. Therefore, either less testing is needed or the
same amount oftesting can be performed to yield a higher-qual-
ity result,

Code reuse is the benefit most often associated with object-
oriented programming. It is perhaps the most over-promised
and under-delivered benefit of object-oriented technology. Some
early reports implied it is impossible to write non-reusable code
using ali OOPL. Actually, it is very easy to write non-reusable
code in any language. Sometimes the situation is worse with an
object-oriented programming language because of a mistaken
beliefthat the technology wil] automatically cause the code to be
reusable. Unfortunately, the term "reusable" does not mean that
reuse is really practical,just as the term "recyclable" does not im
ply that a product will actually be recycled.

The most important reason that code reuse is not as preva-
tent as expected is because the true cost ofreusing code is much
higher than most people realize. For example, in class libraries
that have enough functionality to even bother with reuse, there
are usually some name or convention conflicts. Some effort
must be spent resolving these conflicts (renaming classes, con-
verting data types, etc.) before the code can be reused. This is
generally not an insurmountable problem but clearly it is not
without some cost

LANGUAGES a a

Often the development team on an object-oriented system
can be smallerthan for projects using a traditional approach. Be-
cause there are fewer details to remember, such as intermodule

dependencies, one person can manage a larger portion of the sys-
tem. Developers are more productive when part of a smaller team:
additional team members increase the communication and train-

ing load on the rest of the team as well as the chance for mis-
communication.

LANGUAGE FEATURE:S

One importantwaytoevaluateanobject-oriented languageisto
determine how well it supports the object oriented architecture
being developed. Other factors indude the availability of soft-
ware development tools and the existence of usable class libraries.
Too often the language is chosen based on less important factors
such as comfort level, ease of training, popularity, etc. (this ex-
plains the popularity of C++). Unfortunately, less threatening
languages are usually a poor choice because it is too easy to slip
back into the traditional approach.

Proponents ofcertain languages will usually find a unique fea-
ture iii that language and promote it as one required for object-
oriented development, implying that it is the only "serious" ob-
iect-oriented language. 111 truth, very few features are so important
that they are required for objectoriented development.

Essential language features

The following features are absolutely essential for object-oriented
development.

Encapsulation Encapsulation is the fundamental reason that
object oriented technology is worth the effort. The ability to de-
clare data and their operations in one module and then restrict
access to the data from outside the module allows the program-
merto divide the problem into manageable pieces. This is so im-
portant that some non-object-oriented languages such as Ada
support encapsulation as well.

Polyniorphism und dynamic binding Polymorphism and dy
namic binding together are critical to the success of object-ori-
ented programming. Polymorphism allows code to be written
without specifying the type of its data. Dynamic binding is re-
quired for correct execution of polymorphic code because it in-
sulates the sender of a message from the place where that Ines-
sage i S received and implemented. Sonic supposed object-oriented
languages don't have dynamic binding at atl and some, such as
C++, allow it but not as the default. In C++, since static (compile-
time) binding is the default, an enormous number of very sub-
tie errors can be introduced unless strict conventions are used.

Inheritance Inheritance allows code to be written just by spec-
ifying the differences from existing code. This very effective way
to increase the reuse of routines already being used for the pro-
ject is what I call "internal reuse" and is an important way to inea
sure the potential for future reusibility of the code. Think about
it ifthe code is already in your system and you can't reuse it, why

10

would it be useful for another project? Unfortunately, inheri-
tance is often overused because it is an implementation conve-
nience that is hard to resist. The problem is that inheritance adds
complexity to the system by creating dependency links between
a classandthe classes from which it inherits. Each time a class is

changed, there is a possibility that the change is incompatible
with a subdass and that a defect will be introduced into the sys-
tem inadvertently. Keeping software quality in mind, therefore,
inheritance must be used with caution.

It is clear that with enough conventions, macros, rules, etc.,
C (or even assembly language) can be used lo implement an ob-
ject.oriented architecture, although it is more difficult However,
when considering sonic ofthe available obiectoilented languages
and goals, such as higher quality, higher productivity, lower de-
tect rates, etc., it is important to choose a language that Supports
these essential features.

Other language features

There are many other language features that can be evaluated
when selecting a language for object-oriented software develop-
ment. Some seemingly important features are actually unim-
portant or even "anti- features.» Others are controversial at best.

Strongvs. weak oping Strongtyping allows compilers to do more
checking for type mismatches and other trivial errors e.g., send-
ing a message to an object that does not understand it. Proponents
ofstrong typing argue that programmer productivity is increased
when the compiler performs additional checks. Some also claim
that testing time is reduced because the compiler does not allow
certain types ofproblems to exist in the generated code. Unfortu-
nately, even though additional error checks in the compiler are
useful, their cannot detect the subtle semantic errors that are the

most common type of-defect introduced by experienced develop-
ers. Due to the potential for these undetected defects, testing time
really cannot be reduced just because a stricter compiler is in use.

The cost o f the convenience o f extra compiler type checking
can be verv high. In languages that support only strong typing,
it is easy to write code that can handle only one data type. This
is fine if the code will not be reused for a different purpose but,
if it is desirable to reuse it the code may need to be modified to
handle another data type. Using a strongly typed language cer-
tainly does not preclude writing reusable code, but it often re-
quires more effort. One way to increase programmer productiv-
ity is to avoid spending this extra effort to design fully
general-purpose classes. Not only is it much quicker to design a
class for a specific purpose, but predictions about future needs
are usually wrong.

Iii languages that support weak typing, it is natural to write
code to support all data types, Therefore, developers can quickly
design classes for current needs only, and sometimes the result-
ing classes are already general enough for later reuse without
modification, For example, a collection class originally imple-
mented for the specific purpose of holding a collection of win-
dows is likely to be usable later (without modification) to hold a
collection of real numbers.

HOTUNE ON OBJECT-ORIENTED TECHNOLOGY

typically new code or major rewrites of existing code. Customers
usually select their object-oriented development methodologrand
tools, object programming language, and ODBNIS products to-
gether. They expect to be able to build their applications faster be-
cause the combined suite of obiect products provides the svnergy
of a unified model from the glass to the disk. Dealing with obiects
throughout avoids time-corismning and errori-,rone work to trans-
form between various user-interface, programming-language, and
database models.

THESE PRODUCT EVALUATIONS FOCUS

ON ARCHITECTURE

Product evaluations in theobjectdatabasemanagement category
tend to focus on the architectures ofthe various candidate ODBMS

products, specifically their ability to support production levels
ofshareability. Evaluations include investigation of concurrency
control policies, locking techniques, transaction-management
capabilities, logging and recovery capabilities, schema evolution,
approaches to object identification, etc. Evaluation teams studv
the candidate products' architectures and considerations like the
partitioning of ODBMS functionality between the client and
server modules of a product.

ODBMS products well-suited for the needs of the persistent-
storage segment tend to use a different client-server model than
ODBMSs designed for database management customers who need
both production levels of multiuser performance and highly re-
liable databases. These customers tend to look for a balanced par-
titioning of DBMS responsibilities between client and server sys
tems, e.g., with storage management, indexmanagement, buffering,
physical logging, and query filtering at the server; and schema
management, query optimization, transaction management, and
object cachingat the Client. In these systems, theinterface between
the dient and server components is at the object level. Another
way to look at this balanced architecture is that the server part of
the ODBMS has the responsibility to manifest objects from stor-
age and present them to the client part of the ODBMS for deliv-
ery to the application. The trend is for the ODBMS server to be
active in the execution of object methods as well

By contrast, an ODHMS that is focused on persistent storage
typically has a 'skinnier" server and a "fatter" client. The server
doesn>t know much about obiects; it manages page spaces and
delivers pages to the clients who do the rest of the ODBMS-re-
lated work. This architecture imposes certain limitations that can
adverselyaffect performance, e.g., query filters cannot be applied
at the server. This can result in significant network traffic in mul-
tiuser systems because all candidate obiects must be available at
the client.

SOME ODBMS CUSTOMERS NEED NEW
TRANSACTION AND DISTRIBUTION CAPABILITIES

A varietyof ODBMS customers have applications that need groupm
work functionality: versioning, long transactions, persistent locks,
event notification, check-out and check-in, and so forth. These
transaction-management anddata- distribution capabilities sim-
ply are not available in conventional DBMSs or file systems. Ex-
amples of these applications include CASE for engineers who

OcroBER 1992

need to cooperate in the development of lal·ge applications, CAD
to support concurrent engineering, process and financial simu-
lation with extensive "what-if' scenarios, and document or de-
sign-management systems that simulate library environments.

Evaluating the transaction
management and distributed

functionality of ODSMS products is
not a trivial task.

99

Customers building these applications are faced with either
developing the groupwork functionality themselves Con either a
conventional DBMS ora filesystem) or buying it via an ODBMS
product. Increasingly, they are choosing the ODBMS approach.

Developers of these kinds of applications need to make sure
that the ODBMS selected will enable their application to match
the wav their business operates, rather than tailoring business
operations to the functionality ofthetechnology. Somemay need
to be able to arrange hierarchies of databases, with controlled
movement and sometimes replication of objects between the lev-
eis of the hierarchy. Some may want to be able to version objects
with appropriate degrees of flexibility about which versions are
usable in particular circumstances. And they commonly want to
be able to configure heterogeneous network environments that
scale with business needs.

EVALUATING GROUPWORK FUNCTIONALITY

IS NONTRIVIAL

ODBMS products in both the persistent-storage and database
management categories offer groupwork functionalitv. Evaluat-
ing the transaction management and distributed functionality of
ODBA/IS products is not a trivial task. The challenge is compli-
cated by the fact that vendors do not agree on the terminology
used to describe features iIi this area. For example, you can't iust
look to see i f a product supports versioning or not; you really
have to dive down into the details of the versioning capabilities
to get a fair comparison ofthe products. Similarly, the terms
"check-out» and "check-in" refer to different sets of features for

the various products. And to complicate matters further. typi-
tally there are subtle interactions among the groupwork features.
For instance, check-out may or may not have versioning impli-
cations, depending on the product. Not all vendors offer persis-
tent locking, which is essential for kongtransaction recovery- Not
all ODBMSs support nested short or long transactions. In gen-
eral, ODBMSs focused on database management customer needs
are more robust (i.e., suitable for production multiuser systems)
in the area of groupwork functionality than ODBMSs for the per-
sistent storage custonier.

continued on page 18

15

OBJECT DATABASES E E

tem, resulting in a typically awkward and code-consuming in-
terface. ODBMS products offer an attractive alternative and move
the customer from using a conventional persistent-storage solu-
tion to an object-based one.

Because of its tight integration with the obiect programming
language, an ODEMS enables programmers to build their ap-
plications faster. In fact, for many programmers in this category,
the more invisible the ODBMS the better. They may even view
the combination of the objectprogramminglanguage and ODBMS
as simply a «persistent-object programming language.

Not only is there significant reduction in the number of lines
of interface code, but there also can be substantial performance
improvements. One of our customers found its application ran
3-10 times faster (depending on the particular benchmark mea-
surement) using an ODBMS instead of UNIX liles.

CUSTOMER PRODUCT EVALUATIONS FOCUS ON
SINGLE-USER PERFORMANCE

Once the decision to use an ODBMS has been made in the per-
sistent-storage segment, the primary technical criterion iii eval-
uations is usually single-user performance. Different customers
use different performance benchmarks, of which few have been
published. Most tend to emphasize in-memory access speeds,
although some take a broader view to consider paging behav-
ior. Customers hope an ODBMS essentially will deliver objects
at programming language in-memory speeds. They generally
don't care about concurrencyand transaction-management fea-

The more complex the application is in
terms of data types and

interrelationships, the more likely that
ODBMSs will deliver needed

performances while relational
solutions will not.

tures. By implication, an ODBMS aimed at this segment may
de-emphasize these features in favor of single-user access speeds.

It is important that customers having performance as their
primary product-selection criterion use benchmarks that truly
reflect their application's characteristics. This can be easy for rel-
atively simple applications, where the application itself can be
the benchmark, but it can be quite complicated in other cases,
especially if over time the application changes the population of
objects through extensive deletions and insertions.

14

OTHER CUSTOMERS NEED DATABASES
OF OBJECTS

Increasingly, ODBMS sales are being; driver byapplications that
require production levels of object sharing rather than as a con-
sequence of adopting an object programming language and want-
ing persistent storage, These applications require database man-
agement functionality and have performance requirements that
RDBMSs simply can't satisfy. Database management function-
ality is much more than object persistence.

Often these applications will execute in client-server envi-
ronments, with multiple client machines accessing object databases
on one or more server machines. Examples of these applications
include geographic information systems (GIS) with extensive,
non-tabular data; network management systems with complex
interrelationships among many kinds of components; hospital
information systems with many different kinds ofdata to profile
patients and treatments; and CAD software with complex prod-
uct-definition data.

FOR SOME, MULTIUSER PERFORMANCE WS
NUMBER ONE

Some customers in the database management category have mul-
tiuser runtime performance as their primary reason for using
ODBMSs. The complexity of their applications makes RDBMS
performance unsatisfactory and moves these customers into the
object part ofthe database management market.

Complexity comes in two flavors: (1) complex data types (like
product designs, multimedia, images, voice,...) that don't fit
well into relational tables and lose their internal semantics when

stored as relational binary large objects (BLOBs), and (2) queries
that require combining several kinds of data and result in low-
performance multiwav joins in a relational system. The more
complex the application is in terms of data types and interrela-
tionships, the more likely that ODBMSs win deliver needed per-
formance while relational solutions will not.

Many of these customers are independent software vendors
(ISVs) building the "next generation" of their products in the
CAD, CASE, or GIS areas. These object-oriented products will
replace single-user versions that are based on home-grown file
structures. The buyers of these products want shareability, which
the ISV can either build or acquire off-the-shelf with an ODBMS.
Essentially, the ISV can decide to enter the database business or
buy the functionality and performance from an ODBMS vendor.
Ifan ODBMS is used, it must be able to deliver objects with run-
time performance at least as fast as a home-grown file-oriented
solution while also providing shareability.

FOR OTHERS, PRODUCTIVRY B FIRST

Other customers in the database management market say that
their primary requirement is to build the application faster, which
I would restate as «productivity," although few customers actu-
ally use that term; they nearly always list performance as their
second most important reason for using an ODBMS.

Applications in the object database management category are

HOTLINE ON OBJECT-ORIENTED TECHNOLOGY

Ibere are also several tiontechnical reasons whythis «pull model"
of reuse is the most likely to succeed commercially. Although the
reward structure still needs improvement, the team that needs the
class library is most likely to be rewarded for reusing classes (be-
cause of lower development costs, higher-quality result, etc). A
team responsible for generating reusable libraries is rewarded for
the amount ofcode generated, not for generating useful code. Ifit
were possible to make money selling class libraries, competitive
pressures would improve the situation significantly. Another prob-
lem with the push model is that classes are often developed in a
vacuum, without a specific need in mind. The result is often overde-
signed or unfocused code not useful for anything.

Keyword selectors Keyword selectors (available in Smalltalk and
Objective-C) increase programmer productivity. If the developer
must consult a manual (or, worse, the target code) to determine
the meaning of the parameters each time an unfamiliar message
is to be sent, productivity will be low. However, with keyword
selectors and good naming conventions each parameter is labeled
with a hint about its meaning.

For example, sending a message to a real number object to
format itself onto a file stream in C++ might look like this:

zeaUIumber.format{aStream, aFormat)

However, using keyword selectors in Obiective-C, this be-
comes slightly more readable (though more verbose):

[realNumber formatOn: aStream using: aFormat]

The extra clues contained in keyword selectors are often just
enoughtoallowanexperienced developer to guess themeaning and
order ofthe parameters without consulting the documentation.

Memory management Automatic memory management has
received a great deal of attention lately. Many believe it is required
for true object-oriented programming. I disagree. It is more likely
that manual memory management methods will result in more
reliable code, for two reasons. First, manual memory-manage-
ment techniques impose the responsibility of "ownership" of all
obiects on the arch itecture so they can be freed at the correct
time. The result is a more organized structure that has been nec-
essarily partitioned very carefully according to responsibilities.
Second, very subtle but potentially serious bugs can be masked
by automatic memory management but are very' obvious under
manual memory management.

Consider a system without automatic memory management.
Two objects, A and B, are designed to always share a third obiect
C. If A is the owner of C and is instructed to throw away C and
share object Cl instead, It will {correctly) free C. However, if there
is a defect in the system that leaves object B with an invalid pointer
to the old object Cl the system will most likely crash with a fatal
internal error, Proponents of automatic memory management
insist that this problem is solved with memory management be-
cause the old object C will not be freed but rather will remain in
existence as long as B has a pointer to it. However, I would say
that in some cases this situation is even more dangerous than a

OCTOBER 1992

crash because the sYstem might silently report the wrong answer
when an old, unused object (C) is being accessed by object B.

One important benefit of using automatic memory manage-
ment is protection against memory "leaks" (allocated memory
that is never freed). This potentially serious situation slowly con-
sumes all available memory until the application runs out of
memory and crashes. One way to solve this problem is to design
the system with manual memory-management techniques but
have a garbage-collection mechanism as a backup to protect
against memory-leak defects. Another way to handle this sima-
tion is to spend some testing time studying memory usage to de-
termine if memory leaks are a problem. Tools have been devel-
oped that monitor all memory allocations and deallocations to
determine if memory is allocated but not freed.

C++ automatically copies objects in a variety of situations.
This can be convenient in manv situations but, because it does
not support automatic memory management, memory leaks are
a serious threat.

Operator overloading Operator overloading is a very good way
to reduce the verbosity of message calls. It allows standard ex-
pression operators such as + and = to be implemented as Ines-
sage calls and therefore allows new data types to be defined that
appear to work directly in expressions. This is not really an issue
with «pure" object-oriented languages such as Smalltalk because
there is really no base language. Every expression is already a se-
ries o f messages and operator overloading is a natural way to
make the language more usable. However, with a "hybrid" lan-
guage such as C++ the base language is compiled directly into
machine code but operators defined as messages are not. Mak-
ing expressions of built-in and defined types look the same can
often simplifythe appearance ofthe source codebut can also hide
the message-passing inefficiencies.

Execution speed In the past, efficiency was a maior concern when
selecting a language. Now that incredibly fast machines are avail-
able at a low cost, however, this is no longer as important an is-
sue. It is likely that the differences between various languages are
insignificant when compared with the effects of a poor overall
software architecture. Some real-time systems recently have been
developed using verrefficient implementations of Smalitalk. Still,
there are some applications extremely sensitive to execution speed
and the only choice is a high-performance hybrid language such
as Objective-C, which has many of Smalltalk's benefits but its base
language, C, can be used to attain the ultimate performance.

Objective-C allows the developer to improve performance of
message passing by declaring staticallybound messages. C H does
this by default; the normal object-oriented requirement of dr
namic binding is the special case. Both languages allow direct ac-
cess to instance variables. These speed hacks should never be
used-they are only necessary to improve the performance of a
poo r architecture.

Runtime type determination Some languages allow access to
the type information at runtime. Smalltalk uses this information

11

LANGUAGES E E

to support inspectors to help with locating defects. Objective-C
also has this type information available at runtime, but only the
NeXT platform utilizes this information for interactive tools. C+-
does not have access to type information at runtime, so these de-
bug tools are often difficult to implement.

Runtime type information can also be used for more advanced
capabilities such as transforming an instance of one class into an
instance of another. This is certainly not critical to a project's
success but it can be useful.

Multiple inheritance Multiple inheritance is rarely the best
way to implement commercial quality software. The standard
examples used to support the need for multiple inheritance
are trivial and do not reflect the real world. Mu Itiple inheri-
tance is useful for minimizing duplication of code. However,
the goal is high-quality software, not the minimum number
of lines of code, so simplfying the overall architecture is the
most effective answer. Inheritance can simplify the architec-
ture by accentuating the similarites between related classes,
but it can also increase complexity due to additional depen-
dencies on members of the inheritance hierarchy. Multiple in-
heritance magnifies inheritance>s problems without really solv-
ing any of them.

In C++, true polymorphism is not supported but pseudo-
polymorphism can be obtained by using an abstract base ciass
to declare a general protocol. The problem with this technique
is that often objects must take on the behavior of more than
one abstract class. Multiple inheritance can be used to solve
this problem, but a better answer is to select a language that
supports true polymorphism without placing restrictions on
the developer.

Standard class libraries The availability of standard class li-
braries and other runtiine support is most important for very
small applications and least important when developing large ap-
plications, The reason for this should be obvious: in a large de-
velopment effort, the incremental cost to implement classes that
might have been available in a library is small when compared
with the total cost of the project

Pre-andpostconditions Somelanguagessuchas Eiffelsupport
explicit preconditions and postconditions. Proponents claim that
code correctness is guaranteed if these conditions are fully 51>CC-

ified. That may be true but the problem is to fully specify all of
the necessary conditions. Although these conditions do no harm,
it is very unlikely that atl necessary conditions can really be spec-
ified correctly and completely. in any case, defects are usual]y
caused by incorrect specifications, not by incorrect implemen-
tation of the specifications. Therefore, in many cases the condi-
tions will be specified incorrectly but the code will match the con-
ditions exactly.

Development environnient colisideintions In addition to features
ofthe language, the development environment must be considered.

In some situations, very fast edit-test cycles are an important

12

V'

consideration. An interpreted language such as Smalltalk is the
best way to reach this goal. However, experienced developers
using a language that is not error-prone can be productive even
if this cycle is not optimally fast because they generally write the
code correctly the first time without needing to verify it.

Debug and verification features often can have a significant
impact on the amount of time and effort spent during the test-
ing phase. The availability of standard debug features, such as
breakpoints on code or changes to data, etc., is important as are
features specific to object-oriented development such as inter-
active inspectors, bi eakpoints in specific instances of classes etc.

With enough debug features, it is relatively easy to locate the
source of defects iii a large object-oriented system.

In a commercial development environment, there are several
very important issues related to brge-scale software development
such as source-code control, audit trails, and shared access to a
central source-code database.

Sometimes there are commercial delivery issues such as li-
censing to overcome for the use of runtime libraries or inter-
preter, support for specific platforms, or memory requirements
of the minimum system.

CONCLUSION

The selection of an object-oriented language involves compai:
ing the goals and requirements of the project with the features
and benefits of the various languages available. Smalltalk is prob-
ably the best choice based on language features and develop-
meat tools but there are lingering issues for large development
teams and the number of supported platforms is limited to those
important to Smalltalk suppliers. Obiective-C is a reasonable al-
ternative to Smalltalk and is supported on many platforms. Be-
cause it is translated into C, code can be ported to any platform
that supports the C language using cross-compilation techniques.
Objective-C has many Smalltalk-like features such as typeless
objects atid keyword selector syntax for messages. Its hybrid na-
ture also allows code to be written with the efficiency of C. C++
features such as virtual functions, automatic copying of objects,
etc., place a heavy burden on the developer and, consequently,
programmerproductivity is limited. In addition, developers who
do not fully commit themselves to the object-oriented approach
may slip back into their old ways more easily with Ci i . This is
usually not obvious when it occurs and can become a significant
management issue.

Don't choose a language based on the amount of training re-
quired ofyour team. An object-oriented approach requires a new
way of thinking about the problem and must be approached as
such. Choosing a language just because it resembles one already
being used spells disaster if the team is merely shoehorning a tra
ditional approach into the obiect-oriented structure. 2 -

Bill Huntis asoftware-development engineerat Hewlett-Packard's Mea-
surement Software Diwsion in Loveland, CO. He develops software for
test-and-measurement applications using object-opented techniques.
He can be reached via phone at 303.679.3642, via fax at 303.679.5957,
or via email at billti@Ivld,hp.com,

HOTLtNE ON OBJECT-ORENTED TECHNOLOGY

OBJECT DATABASES E E

Object database technology
who's using it and why?

mm

ODBMS MARKET IS YOUNG AND

GROWING RAPIDLY

Many observers of the object database management system
(ODBMS) market consider it still to be in its infancy. The first

Of)BMS product was shipped by Servio Corporation in 1987
and most of today's "maior" ODBMS vendors have been ship-
ping product for only two years or so.* In 1991 the database
management system (DBMS) market was approximately $4.12
billion. While ODBMS products represented onlya small frac-
tion of this total, it still amounted to a healthy market ofabout
$ 10 million.'

Industry watchers expect tile market for ODBMSs to grow
dramatically. Projections generally are about $35 million in 1992
and nearly $100 million in 1993. The current annual growth rate
for relational DBMSs (RDBMSs) is about 17% while the ODBMS
market is growing at a 350% clip. James Martin projects that 50%
of all DBMS sales in the second half of this decade will be for

ODBMSs, not RDBMSs.

What a great time and place for technology entrepreneursl
New companies continue to enter the ODBMS market so the
shakeou t hasn>t reallv begun. The most active ODBMS vendors,
their products, and the programming languages they support are
shown in Table 1.

WHY DO PEOPLE BUY?

Mary E. Loomis, Ph.D.

primarily to make it easier for users of a programming lan-
guage to access disk storage for their data and structures 10-
cally or on a network. A database management system is de-
signed primarily to provide multiuser data sharing to a variety
of applications and programs locally or on a network. Persis
tent storage and database management needs to exist in both
the object and conventional technology worlds.

ODBMS products are object based; some are more appropri
ate for persistent storage needs and others for database manage-
ment needs. RDBMS products meet conventional database-man-
agement needs; file systems (such as those provided by DOS or
UNIX) meet conventional persistent-storage needs. For now, let's
focus on object-related needs.

SOME CUSTOMERS WANT PERSISTENT
STORAGE OF OBJECTS

Customers in the object-based persistent-storage category buy
an ODBMS because they are using an obiect programming imb
guage and need to create objects that will outtive the termina-

tion of program executions. Many of these sales are to indi-
vidual programmers or projects. The applications are commonly
single user and run solely within the domain ofa workstation
or PC.

Before deciding to use an ODBMS, obiect programmers may
have implemented their own persistent storage using the file sys-

People buy ODBMS products for a variety of
reasons; no single-value statement applies to all
01)BMS purchases. I want to share with you an
approach I've found useful for categorizing
ODBMS customer needs and I'd appreciate your
feedback.

There are two basic dimensions to this cat-

egorization approach:

1. object vs. conventional

2. persistent storage vs. database management

A persistent storage mechanism is designed

* Compared with RDBMS vendors, ODBMS vendors
are quite small.

f source: Forrester Research, Inc,

Table 1

Vendor ODBMS Product Programming Languages

BKS Software POET C++

Hewlett Packard OpenODB HP OSQL

Itasca ITASCA C, C++, Lisp
02 Technology 02 C, C++
Object Design ObjectStore C, C+··+

Objectivity Objectivity/DB C, C++
Ontos ONTOS DB C++, Object SQL
Raima db__VISTA III Cr C++
Servio GemStorle C. C++. Smalltalk

Versant Obj ect Technology VERSANT C, C+4. Smalltalk,

Eiffel Object SQL

OCToBER 1992 13

AN

Ai

hotline0 on
OBJECT- ORIENTED

technology
Backissues

All back issues of the HOTLINE are available. Please call 212.274.0640 for details.

Vol. 33, No. 1 2/October '92 E Development etiviron nents for the life:·vele z Object
methods: Selectingthe rightobiect-oriented method• Languages: Choosing an object-
oriented language• Object databases Object DE Technologv: who's using it and why?

Vol. 3, No. 11/September '92 E Developing strategic business systems using objecttech-
nology E Obic> trainng: harder than it looks E Object-oriented ROI: extending the
CRCacross the lifecycle E What IQM means for OT

Vol.3, No. 10/Augus['92 - Ol,ject i ch,inlogy· toward software manufacturing E Re-
hirn on investment: hoftware assets and the CRC technique E Object-oriented tech-
nology in Japan E Providing coin mona] iry while supporting diversil v

Vol.3, No.9/July '92 , 001): Research m ready E Enter,3 - 111„leling: m object op
proach e OMG's I,%-24 m€]Ii i Ii view . 1):sign for object orieliled applica tions: a CASE
for wishfu] thinking

Vol.3, No.8/kine '92 3 Bus,[iess iii the Information Age E From data modeling to ob
jeci m„.lelil.ge· How frarnew„lks enablcapplication portabllitvE I nterview with Vaughan
Merlyn

Vol.3, No.6/Aprd '92 5 Thiliking [lie unihinkable: reducing the n.k of failuree Mitigat
Ing Inadile,:s will. melhod: fint establish wh.it you value E Championing object techno!
ogy thr career mic:es, in the 19905 - Ob jects and actions in end-user documentation

Vol.3, No.5/March '92 • TA large-scale u.werY' nhieshme Eil of obiect orien Int] m E Re
port<irith/011]/cl-Oriented(:OBO! I'nik(Imilpainterview witli KC. Ilronscomb

Vol.3, No.4/February '92 - The big prize: acceptance of O-0 by the MIS con,Inuility P
Retrospective: 1991-theyearitall changed - Mi,king the trailition h) 0.0 technology
m Interview with Beair]/. Infaille

Vol.3, No. 3/Ian wary'92 E Enterprise object modeling: knowing ivhat we know E Adopt-
ing objects. pitfalls E Adoption rate ofoble.[tedmology: a survey of >:SW l,idwlry

Vol. 3. No. 2/I)¢ ceniber'91 E Acceptingobject lechnologym Adopting objects: a path
E Incorporatmggraphical content into Inultiniedia presentations

Vol.3, No. 1/November 91 8 Leading the U.S. semiconducior ill,ultlf'acturing in-
dustry toward an object-oriented technology standard E Coping with complexity:
OOPS and the economists'critique o f.entra] planning, Choosing Oblect [echnot
ogy: What's the object? E OOP: the MISsing link

Vol.2, A D. I 2/Oaober '91 2 A modest survey of OOD approaches z What is a "certified"
{)b)ect programmer?a Perspective: investing in objects today- Object oriented iii Mel-
bourne. Audralia - The Obiect Management Group

Vol.2, No. 1 [/September '91 a l rom applications to frameworks = Report on the Ob
ject-Oriented COBOL Task Group - Gellingstarted with ciblect technology: efffectively
planning for change- Obiect statistics on the way = On objects and bullets

Vol.2, No. 10/Auguwt '91 E Distnbuted obiect management: improving worker pro-
ductivity E Getting the best trom oblects: the experience ot HP = App I ,(CA [IONS. EC
employs object technology e CAPACHY PIANNING: ddling while ROMs burn

Vol.2, No. 9/Ju,v '9 1 E Multimedia is everywherel E I) c. e |Oping an 01,]ec[technology
prototype-Object-oriented capacity planning- How OOP lial Lhanged our develop
mentallifecycle E Modularization of the computer sybtem

V 01.2, Na. 8/Jiine '91 E 11(imain of objects: th e Ob ject Req uest Broker z Obiect-based
approach to user documentation E Report on the ObJect-Oriented COBOL. Task Group
I Do we need obiect-orielite.I design metrIL,?

Vol.2, No.7/Ma) '9 I = Hybrid object-orient cd/functional d:composilrm for .3 w.ire
engineering E So, what makes obiect databases differen[? (Part 4) E I.ing the generic
application to solve similar domaiIl problerns e Experiences using CLOSE Interna
Litinal Confure·,11 on Ob,ect-Orienled'technology, Singapore

Vol.2, No.6/Apr. '91 - An artist's perspective of progrumming • So, what makes ob-
ject databases different? (Part 3) E Moving frum Puse.11 10 C] 1, Par: 3 E Object pro-
Jects: what can go wrorge Reflections frum I.OOK-'91

SUBSCRIBE NOW TO THE HOTLINE ON OBJECT-ORIENTED TECHNOLOGY-
DON'T MISS ANOTHER VALUE-PACKED ISSUE!

U YeS, plug me into the latest thinking and developments in object-oriented technology. Enter me as a subscriber al the term marked
below and rush me the current issue. This is a risk-free offer - 1 may cancel my subscription at any time and prompily receive a refund
for the unused portion.

l year (12 issues) 2 years (24 issues) Back issues @ $25 each ($27.50 foreign)
23$249 a $478 6Suy€ $20) Vol.2, Nos.

(outside US add$30 per year for mr service) Va.3, N.

Cl Phone/fax order
Call Subscriber Services at 212.274.0640

or fax this form to 212.274.0646 Name

U Bill me Title

U Check enclosed
Make check payable to Lhe Ilorri I N F. and mail to:
The HOTLINE Subscriber Services

P.O. Box 3000, Dept. HOT
Denville, NJ 07834
Ubragi 0,·ders m= k pitpaid m L'.S doMirs ding en a (.79 bank)

Company/Mail Stop

Street/Building#

3 Credit cardorders
O MasterCard U Visa U An,Ex

City/Province

ST/Zip/Country

Card# Expiration Date Telephone

Signature

D2KC

hotline0 on
. OBJECT- ORIENTED

technology
VOL. 4, NO. 1 THE MANAGER'S SOURCE FOR TRENDS, ISSUES & STRATEGIES

Combining object technology with data
standards for the next industrial revolution

%

Interchangeableparts, assem- accurate and timely information among different divisions, de-
bly Hne production, efficient partments, and disciplines.

Todaythe design, manufacturing, and business managementtransportation infrastructure: functions of an organization niust work in tandem and have the
without these critical developments, most effective too[s if the company is to remain competitive, For
the first industrial revolution might computer-based systems, this means software that provides a
never have taken place. Today, new flexible infrastructure that can seamlessly integrate a variety of
developments ira computer hardware applicalions, both existing and new, into a global network of en-
and software are setting the stage for gineering and business information systems.
a second industrial revolution. Two

Thomas Rafferty enierging software technologies, HOW TO GET THERE FROM HERE

when combined, hold great poten- Phenomenal price/performance strides have been made by hard-
tial for accomplishing this transformation within the manufac- ware vendors during the past few years. The potential for equally
turing industry: object-oriented systems and a standard, ven- continued on page 4
dor-neutral format capable of supporting a product throughout
its lifecycle.

IN THIS ISSUE
As anyone working in the manufacturhig industry today can

tell you, improving "time-lo-market"-the time it takes to de-
sign, develop, manufacture, and ship a product-is one of the 1 Coverfeature Thomas M. Rafferty
most crucial issues for companies aspiring to compete ina global Combining object technology with data
marketplace. As a result, manufacturers must continually search standards for the next industrial revolution

for tools that will provide them with a competitive edge; tools 2 From the Editor Robert Sheltonthat wil[significantly reduce time-to-market without sacrificing
product quality. 5 Return on Investment Sam Adams

Imagine an environment in which manufacturing engineers Constant quality management
have immediate access to design information; where parts de-
signers can effortlessly call up the latest version of related com- 9 Component Marketplace Howard Baetjer

Evolving markets for software & William Tullohponents; and where support personnel can quickly retrieve, test,
componentsand repair records for each product, part, and component. T]iis

networked environment would enable separate design teams 13 Distributed Information Tim Andrews
whether internal or among subcontractors, to work cooperatively The quest for value
and in real time regardless ofgcographic location.

Computers offer a great potential to reduce time-to-market 15 Object Methods Patti Dock

- Revewing OOSE: a use case- by providing the means forsuch collaborative efforts. Until now, driven approachhowever, companies have been hampered by proprietary software
systems that make information sharing with outside vendors both 18 Product Announcements
costly and difficult Even within their own firms, existing software
systems have not adequately addressed the growing need to share 21 FYI

/.1992

FROM THE EDITOR - a

 oday, 1 enjoyed yet another insight-
ful conversations with a friend who has
worked with a leading clothing retailer for
over a decade. He has seen the firm grow
from 100 million to one billion in sales.

Along with his teammates, he has strug-
gled to maintain the large imainframe busi-
ness applications that keep products rolling
out the door to satisfied customers day af
ter day, year after year. He has seen tech-
nologies come and go-and been one of
the people whose job it was to make these
technologies live up to expectations. To-
day, my friend asked me about objects.

Why is this new technology sounding
more andmorclike the previous, onhrwith
a new vocabulary? he asked. How can I ex-
pect management to be interested in a new
set of buzz words? Why do the vendors all
push implementation-level concepts when
explaining object technology? Don't they
understand that implementation is not
where the problem is? What does this pro-
gramming language concept really mean
at the business enterprise level? How is any
of this different from what information

engineering was supposed to be?
Would that I could provide good an-

swers in so few words! No fewer than a

dozen IT managers from billion-dollar-
plus firms have asked me similar questions
in the last few weeks.

Well, to start with, mv friend's basic ob-
servation is right Object technology has
grown out of programming language con-
structs. What is important about some of
those constructs is that they keep bhowing
up in other disciplines, and in the way we
observe the world around us. Mr. Thomas
Rafferty, Vice President of.Auto-trol Tech-
nologies, nia]:es the value ofthis parallel dear
in his feature article this month about ob-

jects and manufacturing. Objects make iii-
tuitive sense because we can make analogies
between objects andthereal world. To busi-
ness managers this means They can expect
us to build systems with objects that look
one hell of a lot more like their world than
ours. Better, but only a start. Right though
we are, we are skirtiiig the real question.

Over the last twenty years, our industry
has evolved approaches to developing com-

puter-like software for busi
ness people. Computer tech-
nologists and business peo- ,
ple alike have long viewed ihis {
state of affairs as immutable

reality. Only in the last few years have busi-
ness people experienced the insight ofwork-
ing with analysts who model the real busi-
ness of the business. Some of these business

people have made a clear distinction be-
tween the value of modeling computer sys-
tems (a technical discipline used in
blueprinting for soitware developmer,0 and
the value of modeling thebusiness (abusi-
ness discipline that often involves IT pro-
fessionals). '['hese people gain business value
from such technologies as information en.
gineering, business process reengineering,
and objects. But, often through no fault of
their own, these peop}e are the exception.

Although Mr. Edward Yourdon in THEi
DECLINE AND FALL or THE AMERICAN PRO-
GRAMMER observes that the state iii which

IT finds itself today with CASE and meth-
ods Ldoes not mean that there is some-
thing wrong with structured methods...", I
suggest that my friend's expe riences on the
job-and yours and mine as well-tell us
that the problem started right there! From
the get-go, many of us were taught to con-
form the business to computer based mod-
eis. We were taught that business processes
should decompose into two to six subpro
cesses. We were taught that the business
processes at some point (calledi design) sud-
deiily begaii to deconipose flirther illto Cont-
pletely custom-built computer logic. Last,
and most costly, we learned that applica-
tions controlled the data-so today busi-
nesses are spending billions of dollars try-
ing to reasseinble irito sliared structures the
very business data that we spent several
decades decomposing into separate and dis
joint islands. Even Dr. James Martin's in-
formation engineering failed to free itself
completely from the bondage of the com-
puter system. How strong is the grip of iron!

Doll't misunderstand me. Without the

discipline of formal methods, high-quality
systems cannot be built and maintained
cost-effectively. Quality does not just hap
pen, it must be built in from the start. Mr.

Sam Adams reinforces this

point eloquently in this issue,
in the closing artide of his in-
sightful four-part series. I think
we all agree that engineering

discipline is critically missiiig from too many
IT investments. This, however, does not

mitigate the business i iipact ofour heritage.
Of the developers who have been educated
in structured or IE approaches, al] too manv
seem to not understand the difference be-

tween modeling the concepts (probjem
space) and the implementation (solution
space). Machine-based models and con-
straints are still driving our business appli-
cations. Our software has been con strain-

ing the business, its growth and flexibility.
To succeed iii die Il' market, the object tech
nology industry will have to show how ob-
jects can be used to change this situation.

Can we focus our efforts with this tech-

nologv on the areas that our industry has
traditionally missed? What object-oriented
method is directed at something other than
applications design or analysis? How maliv
object-oriented methods pi·ovide substance
in both analysis and design? How many ef-
fectively handle the transition (rom anal-
ysis to design? How many contenders help
the IT professional glean objects from their
inventory ofbusiness models? How many
address sharing information, distribution
of data, distribution of processing, opera-
tions management, application perfor-
mance assessment, quality control, secu
ria and aiiti-viral imuno-systein strategies,
business policy and semantics, global net-
work management, peer-to-peer applica-
tions where client and server are relative

concepts, design for zero-cost portability,
design from components, and TQM? Ok,
is my point clear?

Ms. Patti Dock of OrgWare continues
to examine many of these questions in her
column and finds, for example, that the
Jacobson method is one ofthe few that ad-
dresses testing and software components.
Testing and quality are an especially sticky i
wicket, as you will see in reading Mr.
Adams discussion ofthe subject. Both busi-
ness and IT stand to reap substantial re-
wards from the wide-scale reuse of well-

HOTUNE ON OBJECT-ORIENTED TECHNOLOGY

ofOOP. But more important, at no time did this person grasp that reusability-one of the great benefits
of OOP-might be possible without cutting and pasting code. Although I'm a big fan of FoxPro (and
Fox Software), I was surprised at how many additional misconceptions and misunderstandings about
object-oriented programming werebeing perpetrated....

C++ and client/server, Richard Hale Shaw, DBMS. 7/92

LANGUAGES ... Iii most languages, learning to program ineans learning the syntax. Learning to program in Smalltalk,
however, involves much more. The programmer must have a dear grasp of object oriented concepts. In
addition, Smalltalk's deve]opment envirormieI'it strongly influei ices the entire approach to software creatioii.
It is absolutely essential that the developer become familiar with the classes provided by the Smalltalk
environment. Although this can take some effort, it's a prerequisite for developing more than the most
trivial progratns. Fortuliately, this is an interesting activity and is one ofthe best ways to learn Smalltalk. . . .

. .The Smalltalk development process usually involves rapid prototyping. The typical approach is to
quickly implement a rough version of part of the system so you can begin to get feedback that will
shape later development. For this reason, dle user interface is usually the first part of a Smalltalk-based
system to see the light of day. Additional methods are fleshed out as needed. The more difficult parts of
the program are often left until the end, when the rest ofthe supporting structures are in place. Numerous
developers use this approach to quickly deliver software....

An earful of Smalltalk, John D. Williams, PCAM, 9 10/92

. ,OOP is not a panacea. Small's second law of software, "You can write a bad program in any ian-
guage,» applies equally well to C++. A fanatical OOP programmer can compress and condense his source
code wonderfully. But at compile time the compact source code could expand into a cumbersome plod-
der of a program. OOP deliberately emphasizes the relationships between things while suppressing the
processing that operate on these things. Thus, you could lose sight of how things work, Learning the new
syntax of C++ is riot difficult ifyou are already familiar with C...But changing your mindset from pro-
cedura] to object„ oriented programming takes time; six months is a common estimate. Breaking a prob-
lem down into a hierarchy of objects is far from an exact science. And no method exists to test how op-
timal a given breakdown is....

. . .Proponents fervently hope that C++ will lead to more code sharing and reuse. While a given pro-
grammer Indy be able to reuse his own code more easily, code sharing within and among companies de-
pends on more than a good language. A host of organizational, territorial, Iegal, financial, and archival
problems overshadow the problems of grafting a foreign bit of code into a program. While Ref2 is os-
tensibly about reusing Ada code, the article actually describes the tough, realworld problerns of code
reuse that have little, if anything, to do with computer languages....

How C++ works, Charles H. Small, EDN, 8/6/92

Apple Computer InC. is working on a new language that it hopes will bring simplicity to application
development, much as the Macintosh brought ease of use to desktop computing. The new language
which Apple classifies as an object-oriented dynamic language, or OODL, is called Dylan. With roots
in C++, Smalltalk and Common LISP, Dylan is Apple's attempt to meid the features of static and dy-
namic languages into a new paradigm of programming...Apple plans to license Dylan to third-party
tool vendors and will build its own application framework around the language. . .Iandlalso plans to
use it to develop applications for its Newton personal digital assistant...in order to compete with C
and C++, Dylan will have to prove itself as a portable language, one analyst said. "It's ati absolutely easy
language to write to-the problem is portability," said Jeffrey Tarter, editor and publisher of Soft•let-
ter, an industry newsletter in Watertown, Mass. "[Apple's] talking about essentially a proprietary Ian-
guage, and that>s going to be a hard sell in a world that's moving very rapidly toward C and C++ and
other highly portable products."

Apple's new language: it's OOP from the ground up, Cara A. Cunningham, PC WEEK, 8/17/92

NOVEMBER 1992 23

FYI

IBM has officially changed the plan for AD/Cycle as an acknowledgement ofthe expanding role ofwork
group computing in software development. The new plan calls for incorporating the Repository Infor-
mation Model on AIX and OS/2 via a third party-supplied object-oriented database, said jon i lemming,
IBM manager for market strategy in the programming Systems unit in Somers, NY. The OODBMS has
not vet been selected....

Workgroup advances change ad/cycle plan, SOFTWARE MAGAZINE, 8/92

STANDARDS . . . In developing Cairo, Microsoft's object-oriented version ofWindows due in 1994, the company'thus
far has also bypassed standards work being done by the Object Management Group COMG), an indus-
try consortium that includes Microsoft and nearly every other systems-software provider . . . Microsoft
has not worked with the OMG to ensure that the new object module in Cairo will comply with the ob-
ject-model standards being developed by the OMG....

Microsoft bets its future on NT, Paul M. Shere, PC WEEK, 8/17/92

. , The American National Standards Institute (ANSI) has gained the support ofthe vendor-sponsored
Object Management Group (OMG) ...in its effort to head off any divergence in standards for object-
oriented technology. The X3 Committee, authorized by ANSI and managed bythe Computer and Busi-
ness Equipment Manufacturers Association (CBEMA), Washington, DC, established a new committee
to bring together object-oriented precepts for programming languages, database services, user interfaces,
open systems interconnection profiles, open distributed processing systems, operating systems inter-
faces and information modeling standards . . . William Kent, a software engineer in the Hewlett-Packard
Co. laboratories in Palo Alto> Calif, and chair ofthe new committee, said the X3 group was forced to
act quickly as software components and standards are being built or fundamentally different premises
and object-oriented concepts. Each is justifiably called object-oriented, he said, but the different software
packages still cannot communicate with each other. Kent contends that the many definitions are cur-
rently diverging rather than converging....

OMG backs ANSI effort, Henry Heffernan, SOFTWARE MAGAZINE, 8/92

STRATEGIES In the roughly 23 vears since the development of Simula 67, the grandmother of object-oriented
programming languages, object-oriented software concepts have achieved wide endorsement. They are
getting applied to operating systems, libraries, programming languages and particularly user interfaces.
But the focus on user interfaces-a highly visible but not very profouiid application-may mean that
object-oriented concepts' deeper, more valuable a potential for addressing the problems of open
systems could go undeveloped. .

Objects: Not just another pretty interface, L, Peter Deutsch, ELECTRONIC ENGINEER]NG TIMES, 8/24/92

. , , Design, coding, debugging and management of complex class hierarchies of C++ did bring some
additional challenges to the programmer. However, the rapidly improving programming tools, sub-
stantial sources of class libraries and evolving operating systems have allowed class libraries to in-
termingle with standard APIs and foundation classes, mitigating much of the challenge of object-
oriented programming.
As a minor participant in the creation of the Cobol legacy, I can empathize with the large intellec-
tual investment in code and programmer training. But corporations that ignore the enterprise com-
puting model and the new object·oriented architectures will be trapped between two different
worlds. .

Entering the. enterprise era, Ann Winblad, COMPUTER WORLD, 8/3/92

O-O DEFIN[TIONS . . . At Jast fall's Fox Software Conference in Toledo, for example, I listened to a panel ofdatabase luminaries
and Fox officials discuss OOP. One Fox spokesman, convinced that FoxPro was object-oriented, spoke
of its inherent ability to let you reuse code: "Ali you have to do is generate well-designed, modular code 1
and then cut and paste it from one module to another." In his view, this made such code "reusable»
(albeit, in an extremely limited fashion) and therefore <'object-oriented." At rio time did this person
mention inheritance, encapsulation, or polymorphism, which are considered the three primerv tenets

22 HOTUNE ON OBJECT-ORIENTED TECHNOLOGY

tested components. The riskwith Zultner's
translation of Dealing into software tat-
ing is that it sounds much like the concept
ofmass inspection that Deming so opposes.
The distinction is a line line, and to my
knowledge neither Zultner nor any other
practitioner has dearly defined how we will
do statistical process control for software.

What our industry seems to miss re-
peatedly is that IT managers live with the
above list of problems. Thex are not just
future issues! These are issues that need to

be addressed today-iii ourinethods, tools,
and approach to management. Application
analysis and design is simple by compari-
son! Our industry is once again addressing
only the relatively narrow technical scope
that is easy to control, and not the broader-
scope issues ofhow the applications we de-
sign must integrate into the businesses they
are expected to support. It is easier to fo

cus on applications than on the business
and technical environment in which they
are deployed. But how, in light ofthis, call
we expect that the object technology in-
dustry will now focus on problems that
were never found palatable before?

What I beseech my colleagues for is
original thinking that addresses problems
that could make a difference in the way we
run businesses-right NOW! At present,
we are addressiiig technical concerns fii:st-
once again-while simultaneously telling
our business partners that objects will bring
software closer to the busi ness. Our actions

and our words need to be brought into
alignment. Sure, objects do allow us to rep-
resent business concepts more effectively
in software, but vendors have to show IT
how to deliver that! This is what Mr. Adams

addresses with constant quality manage-
ment, and what the AMiX component
marketplace, described in this issue by Mr.
Howard Baetjer and Mr. William Tulloh,
must deliver. At the same time, we have to

bring business closer to software develop-
ment-taking the befuddlement out ofthe
process of getting flexible, correct solu-
tions to business problems; getting busi-
ness input into the design of truly flexible
.systems built around shared business in-
formation; showing IT how to make large-
scale reuse work at the level of business

components, not lust code; and showing
IT how they can help their business part-
ners make money from this powerful new
wave of "open" technologies

.As M r. John A. Zachman has often ob-

NovEMBER 1992

served, working bottom up from pro-
gramming and design constructs got u S
into the niess we face todaywith structured
methods, IE, and CASE. We have to think

beyond programming language constructs
to answer the questions ofbusiness and IT
professionals like my friend. Mr. Timothy
Andrews of ONTOS addresses vendor in-

volvement and commitment to this end in

his monthly column about distributed in-
formation by first addressing ROI, not
technology. '1 heotherside of reality's dou-

ble-edged sword is that our business part-
ners now question how much better off
they are for funding us through these very
expensive technology advances. When
measuring their return on investnlent:
business flexibility, data sharability, force

reductions (and all the other benefits they
expected from IT), they are not better off
in their own eyes. That's the problem.
That's the problem we should be address-
ing with object technology.

With object technology, we are raising
good issues. As ati insider, it is clear to me
that, properly used and managed, this tech-·
nology can bring substantial technical and
business benefits. With the tools and con-

cepts this industry is pushing, we can go
where no developer dared go before. But
the resounding questions coming from our
business and IT partners are: when will
we show them how and why it is different?

When will we show them how to get there
from here? Our industry's performance in
showing IT how to succeed with object
technology will make or break how IT per-
ceives the viability of object technology
over the next twenty-four months.

When so many IT managers are asking
basic questions like those of my long-time
friend, and our industry is so ill equipped
to answer them, a red flag has been run up
the pole. It's not -one if by land, two if by
sea." It's both, and I frankly believe that

most vendors severely overestimate the
limited time they have available to under-
stand and miswer these questions with sub-
stance that will speak to the reality-
hardened IT manager,

hothine.4 on
OBJECPORIENTED

technology

Robert Shelton, Editor

SIGS ADvISORY BOARD
Tom Atwood, Object {Design
Grady Booch, Rationaa
George Bosworth, Digitalk
Brad Cox, informat,M Age Consdting
Chuck Duff, The Whtewater Group
Adele Goldberg, Parcplace Systems
R. Jordan Kreindler, General Electric
Meilir Page-Jones, Way and Systeins
Tom Love. Orgware, Inc.
Bertrand Meyer, Interactive Software Engineering
Sesha PratapM Cente,Line Software
R Michael Seashols, Versant Object Technok>gy
Bjarne Stroustrup, AT&T Bell Labs

Dave Thomas, Object Technology internablonat

HOTLINE EDITORIAL BOARD

jim Anderson, D,gitalk, Ine.
Larry Constantine, Consultant
Mary E.S. Loomis, Versant Object Technology
Reed Phillips, Knowledge Systems Corp.
Trygve Reenskaug Taskon Ns
Zack Urlocker. Borland International
Steven Weiss, Wayland Systems

SIGS Publications, Inc.
Richard P. Friedman, Founder & Group Publisher

ART/PRODUCTION

Kristina Joukhada Managing Edwor
Susan Culligan, Pilgrim Road, Ltd., Creative D rection
Elizabeth A. Upp, Production Editor
jennifer Englander, Art/Production Coord nator
CIRCULATION

Diane Badway, c,rcu'ation Business Manager
Ken Mercado, Fulfillment Manager
Vicki Monck, C,rcumation Ass sta,it
John Schreiber, C. culat,on Assistant
MARKEMNG

Amy Stewart, Projecrs Manager
Lorna Lyle, Promotions Manage»Conferences
Sarah Hamilton. Promot,ons Manager-Publicabons
Caren Polner, Promotions Graphic Arbst

Administration

David Chatterpaul, Bookkeeper
Ossama Tomoum, Busness Manager
Claire Johnston, Conference Manager
Cindy Baird, Technical Program Manager
Margot Patricks Administrative Assistant

Margherita R. Monck, General Manager

Jane M. Grau, Contributing Editor

1 HE HOTLINE ON O81ECT ORIENTED TECL,NCIOGY (ISSN #1044·4319) is
published mon-hly by SIGS Publcations inc, 588 Broadway NY NY
10012.(219)274·0640 ©Copyright1992 SIGS Publications,]no. A Inghts
resened. Reproducliofi <,f thms ,nizera by electronic t-ansmission Xerox
or any other mothodwil betreated ELS a wiliful velallor of the U.S Copy·
Aght Law andisflatly prohibited Materialmay bereproducedwithexpress
perrnision Mom1hel,:ibl:sher Malled First erass Subscription rate - one
year (12 issues)$249 Foreign a d Cana<:21 $279 Single copy $25

POSTMASTER: Send address changes & subscriplion ordersto Hon]Me,
Subscriber ServEces P.O Qx 3000, Dept 14OT, Donvi le, NJ 07834.

Submit e,1 toria! correspondence to Robert Shelton 1850 Union Street,
Suite ':548,SanFranciseo,CA 94123volce (415)928·5842: fax (4153
928 3036

Publ.hisof HO712?+EONOaJECT.OR:ENTED TECHNOLOGY JouRNal

OF OBJECT ORIENTED PROGRAMMENG, ORJECT MAGAZINE THE X JOUR·

NAL. C++ REPC>RT, THE SMALLTALK REPORT, aid TI E INTERNAT,ONAi
OOP DIRECrORY

3

S I

ENVIRONMENT FOR THE NINETIES E - continuedfrompage 1

great strides in the software arena has exceeded the software ven-
dor's ability to keep current. In an effort to retain the value of
hundreds of man-years of software development, many
CAD/CAM software developers have elected to build new ca-
pabilities (surface and solids modeling systems) on their oid
technology (wireframe design). Based upon traditional
third-generation programming languages, these packages have
grown into enormous, monolithic pieces of "spaghetti code" dif-
ficult to maintain and enhance. Many newer entrants into the
CAD/CAM marketplace have elected to start 'from scratch" and
offer specialized software addressing the needs of niche markets.
These new vendors have the luxury of inventing new automa-
tion processes and refining existing ones, but often do not have
the expertise, funding, or time to develop the complete solutions
needed bv manufacturing companies fighting on the "front lines"
of world competition.

The missing link in the evolution of total systems solutions
is a software environment specifically designed to support the
integration of applications, while providing a firm foundation
for the development of a new generation of modular engi-
neering applications. Such an environment would offer both
traditional and niche software vendors the opportunity to tie
their products into a network of applications working as a sin-
gle unit to address specific customer requirements. The benefit
of such all environment to customers speaks for itself: access
to the software solution they were promised years ago; and the
ability to build their own "shopping list" of applications with-
out having to absorb the responsibility of making disparate
products work as a single entity.

Object-oriented technology can provide such an environment.
The most powerful example today is the emerging field ofobject
management, the combination of distributed computing and ob-
ject orientation. Distributed computing is an inherently flexible
method of building systems by linking resources-computers,
printers, applications, etc.-across networks. Object-oriented
technology offers a framework for developing highly complex
applications by constructing them from self- contained building
blocks called objects that combine both data and functionality.
As manufacturing processes become more distributed, the au-
tomated infrastructure must follow suit. Distributed object man-
agement is the means to this end.

DISTRIBUTED OBJECT MANAGEMENT

Distributed object management was originally conceived as a
means of integrating diverse software applications, computers,
and peripherals. With this technology, each component ofan in-
formation system is defined as an object with clearly specified ca-
pabilities. Each object can then communicate with other objects
to request actions, data, or services without knowing the other
obiects' locations on the network or their internal operations.
Distributed obiect management systems provide the ability to
encapsulate existing applications-everything from spreadsheets
to advanced engineering applications and databases-by pro-

conbnued or page 11

4

STEP Fact Sheet

STEP js an acronym for Standard for the Exchange of Product
model data, a standard designed to provide a mechanism ca-
pable of describing product data throughout the lifecyde of a
product--through design, manufacture, utilization, maintenance.
and disposal. Because this process involves data exchange be-
tween different computer systems, product information must
be in computer-interpretable form. In addition, product data
needs to remain complete and consistent throughout its use.
STEP makes product data suitable not only for neutral file e»
change, but also as a basis for implementing and sharing prod-
uct databases and archiving across multiple computer platforms.

The goal of STEP is to allow and support concurrent engi
neering among design engineers, manufacturing, and support
personnel by providing a standard mechanism for exchange of
data between incompatible computer systems and applications.
The development of this standard is critical to manufacturing
companies which invested heavily in automation in the 1 980s
and today are struggling with data incompatibllity to the detil-
ment of teamwork among engineering disciplines, quality prod-
uct delivefy, and ime to market.

The STEP standard is organized under the International Or-
ganization for Standardization OSO 10303 Product Data Rep-
resentation and Exchange).This is a voluntary activity among
more than 15 countries. In the US, STEP is coordinated by
National Institute of Standards and Technology (NIST), the
successor organization to the National Bureau of Standards,
under the IGES/PDES Organization administration at NIST.

Key aspects of STEP:

1. STEP defines the schema for data to be captured and ex-
changed induding a definition of the data to be exchanged.
in addition, tests can be generated to verify conformance to
STEP.

2. STEP application protocols define the high-level items to
be exchanged. Protocols defined indude explicit drafting,
associative drafting, configuration control and design, B-
Rep solids modeling, surface modeling, wireframe model-
ing process modeling and NC programming.

3. STEP captures all product data, including: productinforma-
tion, tolerance specification, material speciftations, surface
finish information, feature definition, shape, and others.

4. STEP captuies product support information relevant to
the product over its lifetime including analysisand test re-
suits, manufacturing process plans, setup sheets, -tooling
and NC information, CA inspection information, and sup-
port information.

For further STEP information contact
William Conroy, The }GES/PDES Organization Office. NIST
Bkjg; 220, Rm. 127, Gaitbersblfrg, MD 20899; 301.975.3981.
Haidee Rapacid, PDES Project Deputy Chair, Autro-trot
Technok)gy, inc., 12500 N. Washington St,; Denver, CO
24142400.303.2522886.

HOTUNE ON OBJECT-ORIENTED TECHNOLOGY

Excerpts from leading industry
publications on aspects of

object technology

DEVELOPMENT
& DESIGN

.The tasks in an object-oriented effort arc different New tasks are required to identifv, characterize
and document objects. These tasks focus on identifying objects and the interactions required of these
obiect to provide a system that meets stated requirements. Object-oriented efforts, like other development
approaches, need requirements and design specifications. Yet these documents localize around objects,
and not functions or data. In addition, these specifications clearly delineate which components are reused
from an in-house reusability library and which are developed from scratch to support the application
at hand. Tasks associated with the construction of structure charts, data flow diagrams and other
function or data-oriented modules are obsolete and replaced with modeling approaches more in concert
with object-oriented development....

Designing the object-oriented way, Ron Schultz, OPEN SYSTEMS TODAY, 7/20/92

. . No fundamental change in the pace of software development can occur until there is a significantly
higher level of application development. In other words, end users must become developers. Object-
oriented programming could allow end users to do just that. The ideal application development envi-
ronment would consist of enormous libraries of prefabricated, modular program parts (super high-
level objects). These modules could be configured and combined in virtually unlimited combinations
to build complete applications across the entire spectrum of software use. Applications would be built
exclusively in a high-level tool of this sort. Conventional code-level programming would focus on cre-
ating object components...End users would have unprecedented programming opportunities....

The new shangri-la?, joseph Firmage SOF-TWARE MGAZINE, 7/92

DATABASES . .What will be the impact of OOP on database application languages and client/server technology?
First, I expect G+ to be used as a model for obiect-oriented extensions to popular database programming
languages. Indeed, early descriptions of the next generation of popular database products indicate that
this is already in the works. Consequently, many ofthe benefits of C++-the capabi[ity to create new data
types, inheritance, simpler, reusable code-should become de rigueur as new versions of database
management systems appear. Future database management systems will be based on objects. and youll
be able to create generic, all-purpose components that you can reuse in vour own applications, via
inheritance...Applications will need very little "hard-wiring"-oniv to the type ofobjects used, not to
a particular access method. "Soft" components will become the order of the day., -You can also expect
to see upcoming database management systems offering transparent access to different types of servers,
via plug-in components --objects- These Objects will provide polymorphic multiserver access methods
that let a client application use a single approach for accessing disparate servers with differing protocols
and commands... Finally, all the objects used in such a system would have persistence: the capability
to save themselves to disk and restore themselves on demand..

C++ and client/server, Richard Hale Shaw, DBMS, 7/92

THE BUSINESS
OFOO

... Was it obiect-orientation (00) that attracted Computer Associates to Nantucket Corp.? I think so.
Ifyou couple Clipper's use of 00 with a healthy base ofinstalled PC applications,you have a very attractive
package... Clipper will evolve into more than just a DOS-based system, becoming operable under
whatever operating system CA's other products run. Experts peg 90 percent of CA's sales as mainframe
products. With PCs closing the gap to mini-mid-range systems, it isn't hard to see why CA may be in a
better position than Bo]·Iand Int'l or Microsoft. Although Borland and Microsoft are principally known
in the PC marketplace, coming from the mainframe world, CA has a gigantic user base that wants to
use PCs to their best advantage.

Why I think CA bought Clipper, Clesson M. Duke, DATA BASED ADVISOR, 7/92

NovEMBER 1992 21

.

PRODUCT ANNOUNCEMENTS E E

Symantec Corporation Symantec Corporation announced MultiScope Debuggers Version 2.0, supporting Borland C++ and
Microsoft C 6,0 and C/C++ 7.0 languages for programming Windows and DOS applications. Symantec
entered into an agreement for the acquisition of MultiScope in June 1992. The DOS debuggers can be
Windows-hosted and allow debugging ofanysize DOS applicationin a DOS windowand offer full Win-
dows 3.1 support, MultiScope Debuggers for Windows have a suggested retail price of $379.

Symantec, 10201 Torre Avenue, Cupertino, CA, 800.999.8846,408.253.9600, fax: 408.253.4092

TauMetric Corporation TauMetric Corporation has an upgraded version of its Oregon C++ Development System for SPARC,
offering the professional programmer direct code generation, C++ 2.1 compatibility, fast compilation,
high-quality code, and a C++ debugger. The compiler generates object code directly; there is no trails
lated output. Oregon C++ is currently available for VAX/VMS, SPARC, MIPS (DECstation), HP 9000/300,
and Sun-3 Systems.

TauMetric Corporation, 8785 Fletcher Pkwy, Ste. 301, La Mesa, CA 91942, 619.687.7507, fax: 619.697.1140

+1 6- 61«98€tie hi

Object Design Inc. announced the formation of Object Design Australia Ptv. Ltd., a wholly-owned subsidiary based near Sydney,
Australia. The new company, headed by managing director Philip Considine, provides marketing, sales, and technical support to
Object Design's commercial accounts in Australia and New Zealand.

MetaWare announced that Bennett C. Watson, formerly Vice President of Technology at Ryan Mcfarland Corp., is taking over du-
ties of current president Dr. Franklin L. DeRemer. Dr. DeRemer, who will continue as CEO and Chairman of the Board, assumes
the role of Vice President of Business Development, working with MetaWare>s cofounder Dr. Thomas j. Pennello.

HyperDesk Corporation and Object Design Inc. (ODI) announced the availability ofan interface between their products. The com-
panies have incorporated ObjectStore, ODI's object-oriented database management system, into HyperDesk's HD-DOMS dis-
tributed object management system.

Software Maintenance and Development Systems Inc. (Sk[DS) announced a cooperative marketing and product integration agree-
ment with CenterLine Software, Inc. Under the agreement's terms, CenterLine and SMDS will participate in joint marketing and
product integration efforts. This is one of a series of relationships CenterLine has developed under CenterStage, its third-party mar·-
keting program.

Informix Software Inc. licensed Hewlett-Packard's object-oriented database, Open ODB, to be integrated with its INFORMIX On-
Line relational database. lIP will also share with Informix other object-oriented technologies for distributed object-oriented envi-
ronments to be integrated into the INFORMIX-OpenCase/Too!Bus environment, based on HP's SoffBench softwar¢-development
1-ramework,

Data General Corporation and NeXT Computer Inc. will announce an agreement this month in which Data General will resell
NEXT workstations along with its own Aviton servers. The agreement is designed to give Data General customers access to NeXTs
object-oriented software.

The Object Management Group (OMG) announced that Petrotechnical Open Software Corporation (POSC) will include in its in-
terface (API) specifications Common Object Request Broker Architecture (CORBA)-conformant technology. POSC has also eli-
dorsed the CORBA specification and ORB implementations as vehicles for providing a standard, interoperable framework to sup-
port these technologies in a heterogeneous environment. This agreement marks the first time an end-user organization officially
endorses CORBA specifications. POSC is a not-for-profit membership corporation dedicated to facilitating industry development
of integrated technology.

20 HOTUNE ON OBJECT-ORENTED TECHNOLOGY

RETURN ON INVESTMENT

Constant quality
management
(part 4 of a series)

How do we maximize the benefits ofobject technology and man-
age the risks?" is a question raised throughout the IS community.
Computing-dependent organizations face the challenges ofdown.
sizing, distributed computing, cooperative processing, GUIs, and
the constantly changing application requirements of their users.
This article is the fourth in a series concerned with meeting the
challenges of enterprise-wide computing using object technology.

In previous articles we have defined the requirements for
maximizing return on investment in object technology by cre-
ating and managing reusable software assets. We liave overviewed
KSC's approach to a lifecyde methodology for the development
of object-oriented business systems from requirements to code
and back. Tool requirements for the deployment of object tech-
nology on an enterprise scale were also brought into sharp fo-
cus. We now introduce constant quality management, a strategy
and process for the development, reuse, and management of
software assets. Using this approach, supported by fully inte-
grated testing and constant metric feedback at all levels, the en-
tire software lifecycle can be managed with confidence for con-
sistent high-quality results.

ACHEVNG SOFTWARE QUALITY
High-quality software is designed to meet or exceed the needs
of the user without violating user expectations. In our experi
ence, adhering to the following principles is critical to high-
quality results:

· Maximizeuser involvement throughout the process. The user
is the best person to determine if needs are being addressed
and expectations met,

· Expect and encourage iteration throughout the software life-
cycle. Only continual design validation, measurement, and
refinement throughout the process can ensure that constant
quality management is achieved

In addition, the right decisions must be inade at the right tillie.
The earlier in the lifecyde a design decision is made, the greater
is its potential impact, both positive and negative, on system qual-
ity. Lower-level design decisions made too soon can prevent the
discovery of better solutions by prematurely limiting the num-
ber of alternatives, while deferred high-level "business" decisions
may be too costly to implement.

In an industry where reuse must become the rule rather than

NovEMBER 1992

-

-

-

Sam Adams

theexception, methodologies and tooisthat don't explicitly sup-
port these principles are simply insufficient for the task. All as-
pects of the lifecycle, including people-oriented processes, tools,
and methodology, must support constant management of pro-
duced deliverables' quality and value, including all analysis and
design information as well as program code.

WHO'S RESPONSIBLE FOR QUALITY?

The software testing group? The proiect manager? The team
leader? The users? In fact, everyone involved in the development
lifecycle has some effect on the quality, whether positive or neg-
alive, of the delivered result. It is not a new idea that quality must
be the daily responsibility of every participant in the process. Dr.
W. Edwards Deming, an American statistician who went to Japan
after World War II, taught this to Japanese managers over 30
years ago. He convinced the Japanese tliat they could deliver high
est-quality products faster and at a lower cost than their compe-
tition. Since then, the maxim for Japanese industry has been
<<Quality that is taken for granted,"2 with the assumption that
customers have the right to expect qualitv products. Producing
"Quality that fascinates" is the Japanese goal.3 Customers should
not just be satisfied with product quality, they should be delighted.
A product should excite by exhibiting a level of excellence that
demonstrates the company's passion for CUStomer satisfaction.

The key to Deming's approach was not statistics, engineering
discipline, or technology, but a devotion to continuous quality
improvement.

THE DEMING WAY AND SOFTWARE DEVELOPMENT

Why not apply these same principles to the software develop-
ment lifecycle? "We don't have the time or the budget for that
level of quality" is often the reply. Iii the beginning, many
Japanese managers felt the same way, But in the words of an
old motor oil advertisement, "You can pay me now [for the Oil],

or pay me later I for the repairs]-" Most IS organizations today
spend the vast majority of their budgets maintaining sy-stems
that were developed years ago to meet minimum requirements.
In reality, the "total cost of ownership" for those systems is
many times the original cost of development. «Can we afford
software qualityr i he question is rather «can we afford the lack
of it later?'

Richard Zultner, one of Deming's disciples, has applied The
Deming Way to the traditional software development lifecycle. 4

5

&

.

RETURN ON INVESTMENT· a a

Negative Quality Zero Positive Quality I
(minimize losses> Defects (maximize value)

SEI Levels 1,2 SEI Level 3 SEI Levels 4,5

Complaints, Compliments, 1
Defects Delights

Figure 1. The quality continuum.5*

One of his specific recommendations for IS managers is to cease
dependence on mass inspection, especially testing:

The traditional thrust ofsoftware quality has been to use brute-
force testing. Yet testing neither improves nor guarantees qual-
ity. Testing simply (and imperfectly) sorts code into two piles:
"OK so far," and "rework." Rework adds delay and cost, but
no value. Many project plans Candi even methodologies) call
for a massive effort to (try to) find and fix the large number
of defects expected-even taking up an entire phase of the
project to do so. What does this say to the developers about
how manv errors are expected? Is their job to build correct
software-or to meet the schedule?•

How different is this perspective from that of continuous quill-
ity improvement! High-quality software simply cannot be de-
veloped using the «write the code, add testing, and stir" recipe.
Most software development projects today are organized and
managed around the goal of limiting (if not eliminating) the
number ofsoftware defects delivered in the final product. While
a better process than uncontrolled hacking, this focus on "Zero
Defect" management can never lead to high-quality results (lig-
ure 1).It can only produce minimally acceptable software, not
software that excites the user. If organizations are ever to reach
a state of continuous improvement, we must accept zero defect
management as only a milestone on the path, not a destination.

Our focus should be on improving quality, not achieving zero
defects. We must adopt a philosophy for software development
that requires constant management of software quality and con-
tinuous improvement on the development process.

CLOSED LOOP CONTROL AND CYCLE TIME

Our approach for reaching these goals is based on a simple idea,
The best time to assess the quality of any design decision is when
you make the decision. In a process as complex as software de-
velopment, the notion of "closed loop control» is critical to suc-
cessful management and high-quality results. To illustrate this
point, think about how you drive your car. Could you success-
fully reach your destination if you drove with your eyes closed?
Would you even leave the parking lot? Visual feedback is a re-
quirement for driving. But how much is enough? Ifwe drove our
cars like we develop software, we would think long and hard about
where we wanted to go, dose our eyes, and hit the gas. Then later,

* SEI levels referenced in Figure 1 referto the stages ofcorporate evolution toward
the continuously improving organization. See Paulkm for more information.

6

at a predetermined time, we would open our eyes and make sure
we had arrived at our destination. Obviously no one would at-
tempt to drive in this manner. What ifyou only closed your eyes
for one minute out ofevery ten? No wav. One second out of ev-
ery ten? Maybe, but not with me in the passenger seat. The same
problem would exist if you drove with your eyes open all the time
but could only inove the steering wheel every other minute. The
issue here is not the time or effort spent seeing or steering, but
the cycle time between each observation and course correction.

Philip Thomas is an expert ort cyde time. lie has helped hun-
dreds of organizations drastically reduce the time it takes to pro-
ducc products while simultaneously improving quality. He gave
the following advice to the cellular phone division of Motorola:

. . .suppose you built a feedback Ioop into each cycle: After
you make 100 phones, you test them and find only 93 percent
of them are good. You take the 7 percent and figure out, "If
I'd done this differently, they'd have made it." Then you ad-
just your process. With a feedback loop built into each cycle,
you improve something everytime. That means: The shorter
the cycie time, the more frequently you improve your prod-
uct or service and the faster quality improves,6

If we drove our cars like we develop
software, we would think long and hard

about where we wanted to go, close
our eyes, and hit the gas. Then later,

...open our eyes and make sure we had
arrived at our destination.

Although software development is different in many ways
from mass production hardware manufacturing, the same pro
cess ofiteration can occuL The difference is that the iteration oc-

curs on a single deliverable product, instead of the next batch of
identical cellular p)hones. Thomas goes on to describe the results
of closed loop control and reduced cycle time at Motorola:

When Motorola was running a cycle every two weeks, that
gave them only 24 opportunities to learn everyyear. Now they
have 1,500 opportunities a year. They recently brought out
the smallest, lightest cellular phone in the world-ounces less
than the Japanese.6

CONSTANT QUALITY MANAGEMENT

We must applv these principles to maximize software quality
throughout the entire development lifecycle. T'he best mile to as-
sess the quality of any addition or change to the requirements,

HOTUNE ON OBJECT-ORIENTED TECHNOLOGY

Micro Data Base Systems Micro Data Base Systems, Inc. (mdbs) is now shipping the Object/1 Professional Pack for the Oracle re-
lational database management system. Developed jointly by mdbs and Database Engineering Ltd., the
Object/1 Professional Pack for Oracle allows developers to manage an Oracle session within an Object/1
application. Object/1 is an object-oriented development environment that allows rapid application de-
velopment of graphical user interfaces (GUIs) in Windows and Presentation Manager. Object/l appli-
cations can query and update data from Oracle through the use of Oracle's SQL language. The Object/1
Professional Pack for Oracle RDBMS is $495.

Micro Data Base Systems, Inc., Two Executive Drive, PO Box 6089,

Lafayette, IN 479034089, 800.445.MDES, 31 7.447.1122, fax: 317.448.6428

IBM IBM AIX XL C++ Compiler/6000 is generally available and includes a C++ compiler, browser, class li-
braries, and a test coverage analyzer. XL C++ is a native optimizing compiler that supports the full lan-
guage definition, including templates and exception handling. Product libraries include I/0 stream li-
brary, complex mathematics, and task library. The AIX debugger.dbx has been enhanced to support C++
and several AIX commands have been modified to work with XL G+. InterViews 3.0 and Nm 3.0 have

been ported to AIX V3.2 to work with XL C++ and are shipped "as is» without support. Prices range
from $875 to $7,000 according to the type of processor.

liM, 1 Kirkwood Blvd., 40·A3-02, Roanoke, TX 76299,817.961.7326, fax: 817.961.6220

Library Technologies Library Technologies announces the release of Version 3.0 of C-Hea p its memory management library
for Microsoft and Borland C/C++ compilers. C-Heap now supports the allocation of memory from up-
per memory blocks (UMBs) through malloc(), either via DOS calls or the XMS driver, transparently. In
addition, C-Heap allows utilization of 64K of expanded (EMS) memory as heap space. Version 3.0 of
C-Heap adds local heaps to its list of memory tools. C-Heap is $229 including source.

Library Technologies, P.O. Box 56031, Madison, Wn 537054331,800.767.4214, 608.274.4224

Borland International inc. Borland International Inc, announced several products re[eases. ObjectVision PRO is an advanced ver-
sion of ObjectVision for Windows 2.0. It indudes ObjectVision 2.1; Turbo C++ for Windows 3.1; SQL
connection, a multimedia tool kit for creating applications with video, sound, graphics, and animation;
and Crystal Reports, a graphical report writer. ObjectVision 2.1 provides the end user with added database
functionality with a new. faster Paradox Engine that supports both 3.5 and Paradox 4.0 file compatibil-
ity. Also supported are Paradox MEMO fields, binary large object (BLOB) data types, and composite sec-
onclary indexes. Borland Paradox Engine and Database Framework 3.0 eiiables pr ogrammers to integrate
their applications with Paradox data. The new Object Layer provides an object-oriented access layer to all
the Engine functions from C++ and Pascal. Borland C++ & Application Frameworks 3.1 for CD-ROM
simplifies the installation process and includes both uninstalled andpre-installed versions of Borland C++
3.1. The Borland KnowledgeBase CD is Borland>s Technical Support Department's database on two CDs.
ObjectVision PRO carries a suggested retail price of $495. Borland C++ & Application Frameworks 3.1
for CD-ROM is available to current Borland C++ & Application Frameworks 3.1 users for $19.95 or they
may exchange their disk set for the CD free ofcharge; The CDs can be purchased individually for $249.95.
A year's subscription to the quarterly releases is $495. ObjectVision 1.0 users can upgrade to 2. I for $49.95
while 2.0 users can upgrade to 2.1 for $29.95. The upgrade cost to ObjedVision 1.0 and 2,0 users for the
PRO product is $199,95. Current Turbo C++ users may upgrade to ObjectVision PRO for $199.95; Ob-
jectvision SQL users can obtain the product at no cost directly from Borland.

Borland fnternationa[Inc., 1800 Green Hills Rd., P.O. Box 660001,
Scotts Valley, CA 95607-0001,800.331.0877, 408.461.9000

GUI Computer GUI Computer has a new release of 1.5 Object'rable C/C++, a Windows-oriented library that imple-
ments a programmable multicolumn table object for the database front end. The new v 1.5 release sup-
ports protected column, drag the column width at runtime, international currency, different true-type
font and color for column, multiline column title, 3D column title, and row title. It is compatible with
Borland Resource Workshop and Microsoft Dialog Editor, and supports Borland ObjectWindows C++
and Microsoft [foundation Class C++. For C++ , 1.5 ObjectTable C/Cp + is priced at $99 for object code
and $259 with source; for C $79 for object code and $199 with source.

GUI Computer inc., PO Box 795908, Dallas, TX 75379, 214.250.3472, fax: 214.250.1355

NOVEMBER 1992 19

.

.

Product Announcements is a service to our

readers. It is neither a recommendation nor

an endorsement of any product discussed.

Pocket Soft Pocket Soft unveiled the initial release ofa new suite of memory management libraries, virtual-memory
data (VMData), providing a uniform, cross-platform method of managing a program's dynamically-al-
located data. VMData provides a platform-independent virtual-memory scheme for managing dynam-
ically allocated data, distinguishing between different types of memory and managing program data ac-
cording to data priority. VMData accesses all tile available memory resources for DOS, Windows, and
OS/2, such as EMS, XMS, UMB, HMA, Windows movable, etc. The VMData libraries are for C and C++
languages, The supported operating systems are MS-DOS 2.1 and above, Windows 3.C, and OS/2.1.X
and 2.0. VMI)ata costs $495 for the first platform purchased and $295 for each subsequent platform.

Pocket Soft, Inc. P.O. Box 821049, Houston, TX 77282, 713.460.5600,800.826.8086, fax: 713.460.2651

Virtual Technologies Virtual Technologies Incorporated announced the commerciallaunch ofthe SENTINEL debugging en-
vironment: a comprehensive debugging tool supporting runtime verification of pointer usage and dy-
namic memory allocation in both C and C++. SENTINEL is supported for Solaris 1.0.1 (SUN OS 4,1.2)
on SUN SPARC-II and compatibles, HP-UX 8.0 on H P 9000/8xx systems, and System V Release 3.2 and
4.0 on Intel 80386 and 80484 systems, The environment is priced at $195 in Intel 80x86 environments,
$395 in SUN environments, and $495 in HP environments. Substantial discounts apply for multiple unit
purchase.

Virtual Technologies incorporated, 4G030 Manekin Plaza, Suite 160,

Sterling, VA 221 70, 703.430.9247, fax: 703.450.4560

Knowledge Garden Inc. Knowledge Garden Inc. announced KPWin++, whic]1 allows users of its KnowledgePro for Windows
(KPWin) high-level object-oriented development environment to generate C++ code. Users of Reve-
lation Technologies Inc.'s database tool for Windows, Openinsight, which includes a licensed copy of
KPWin, are also able to take advantage ofthe new C++ code-generation tool. KPWin++ reads code writ-
ten in KPWin or OpenInsight environments and generates ANSI-standard compilable C++ code. Us-
ing the Microsoft C/C++ 7.0 compiler, users are able to amend generated C++ code, link to third-party
libraries if needed, and then compile to create an executable file. Later implementations will also sup-
port the Borland, Watcom, and Zortech compilers. KPWin++ is priced at $895 or at a $695 intro-
ductory price to KPWin and OpenInsight users. The expert system and hypertext DLL engine used
by KPWin++ will also be available for licensing and embedding into other tools and applications.

Knowledge Garden lnc., 12-8 Technology Drive, Setauket New York 11733, 516.246.5400, fax: 516.246.5452

Objectivity 1nc. Objectivity Inc. has developed a localized version of Objectivity/DB, its object database management
svstein, for the Japanese market, The localized version of Objectivity/DB allows users to store. retrieve,
manipulate, and display multibyte Kanji characters. All Objectivity application development tools are
fully integrated into the Japanese operating environment and support Kanji messages, menus, and on-
line help. Objectivity provides Japanese user documentation and works with its codevelopers/distributors,
Mitsui and Osaka Gas Information System Research Institute (OGIS-RI), to conduct Japanese seminars
and training and provide local support in Japan. Support for Chinese and Korean characters will be pro-
vided by the first quarter of 1993. Objectivity inc., 800 E! Camino Real, Menlo Park, CA 94025, 415.688.8000

Pioneer Software Pioneer Software and Borland International have announced the release of Q+E DataLink/OV, which
enables ObjectVision developers to link their applications to ten additional major database formats,
Q+E DataLink/OV provides database access via a set of self-registering ObjectVision functions that
perform database operations. With this new product, ObjectVision users can augment ObjectVision's
database access with SQL data and other major data formats. Q+E DataLink/OV has a suggested re-
tail price of $399. Pioneer Software is offering Q+E DataLink/OV for a special introductory price of
$299 until January 1, 1993.

Pioneer Software, 5540 Centerview Drive, Suite 324, Raleigh, NC 27606,919.859.2220, Fax: 919.859.9334

18 HOTLME ON OB,ECT-OBENTED TECHNOLOGY

High

Low

0000-000000·00+
Constant Quality Management

2--1 - 101 B

Phased Ibsting

¤

Delect Detection Only

 Development QUailly AssessmentAnd Feedback

Figure 2. The evolution toward constant qualty management.

design, or implementation of a system is when the change oc-
curs. This requires a methodology that supports fully integrated,
distributed testing at all points in the lifecycle. In the early years
ofsoftware development, the user's reaction to the product upon
delivery was the only kind of quality management. And while
large-grain, phased-testing approaches have been used in tradi-
tionai software development for years, they have riot been able
to deliver much more than the "zero defect"level of quality. The
lesson to be learned is: Decrease cycle time between construction
and evaluation and you increase quality. The logical result of this
evolution is a complete distribution of testing and quality as-
sessment across all activities in the lifecycle (Figure 2). That's
what constant quality management is all about.

An important consequence of this approach is that for any
significant system the level of detailed management required to
fully implement constant quality management demands simul-
taneous support by both automated tools and development
methodology. Ed Yourdon puts it this way in his latest book, THE
DECLINE AND FALL OF THE AMERICAN PROGRAMMER:

. . . the situation just described suggests that something more
fundamental is going on: software development methodolo-
gies are created (bysomeone, orby some motleycrewofpeo-
ple) and introduced into the field. If they survive> inevitably
they evolve over a period of time. Meanwhile CASE tools
evolve too-but the kev point is that they may lag behind tile
methodologies (by several years, in the case of structured tech-
niques!) until the CASE tools themselves become the driving
force for methodology creation and evolution.'

This assertion has been a top requirement for our work on
both methodology and its supporting environment. In the fol-
lowing sections, we will describe how each specifically supports
constant quality management.

Methodology support
So how does an organization go about implementing this ap-
proach to quality management in its development activities?
Zultner advises:

NovEMBER 1992

More attention needs to be given to finding out what features
are expected (and thus not mentioned),and which are unimag-
ined (and thus not mentioned) but desired-and delightful
when delivered, Substantially more effort must be spent up
front during analysis and design to catch defects soon after
thefre made. Inspections-or rigorous (structured) walk-
throughs-should be much more frequent during analysis
and design.4

Closed-loop control and reducing cycle time are process is-
sues, not technology issues. Therefore, the methodology that guides
the process of development must fully support distributed test-
ing and continual quality feedback. Unfortunately, most 0-0
methodologies today simply suggest that we "iterate until we're
satisfied" giving little ifanv process guidelines for evaluation and
certification ofrequirements, design, or implementation. That is
onereason weweredriven todevelop a new methodology focused
on the entire development lifecycle.8

Just as no modern organization can
function with manually maintained

paper accounting ledgers, no software
development organization can

successfully manage this amount of
information without automated tools.

99

By defining the responsibilities (requirements) for the entire
system as well as its components, and by focusing on the inter-
action among the behavioral entities in the system, the same con-
ceptual model of interacting behavioral entities can be applied
at allievels of granularity in the design. Then, by using the sce-
narios defined for each responsibility, the fitness of a proposed
design or implementation chahge can be tested by roleplaying
(for high-leve] cornporient interactions) or by developing software
test harnesses (for method-level services). Since every entity in
the design has responsibilities, whether it be the entire system, a
component (a group of classes), or an individual object class
testing and other quality assessment can occur at allievels of the
design at any time iii the process.

How much testing is done at any one time can then be deter·
mined by management using return-on-investment principles to
iustifr the effort required for expected increase in total system
quality. And because the behavior of an,system part can be rep-
resented using CRC cards, users and domain experts can be brought
in at anytime to roleplay changes in system behavior and provide
external validation of system requirements and design-

7

Mem

.

RETURN ON INVESTMENT E m

Tool and environment support

Constant quality management requires a much finer level of
monitoring and control of the entire process of developing
software, and therefore produces a much larger quantity ofvalu-
able information that must be managed, Just as no modern or-
ganization can function with manually maintained paper ac-
counting ledgers, no software development organization can
successfully manage this amount of information without auto-
mated tools. But the tools must be in sync with the methodol-
ogy or the mismatch will cause more problems than it solves. In
our previous article we defined tool requirements for the suc-
cessful creation and management of high-quality software as-
sets.9 With respect to testing via scenarios, all scenario infor-
mation as well as roleplaying results must be managed in the
same multiuser, version-controlled environment as the rest of

the design information. Automatic management oflifecycle in-
formation from requirements to code and back creates an op-
portunitv to dramatically increase awareness of both designers
and programmers of the effects their decisions have on system
quality: real-time metric feedback

Metrics support

"You can't manage what you can't measure." This old business
adage has never been more true than when applied to software
development. With so many different kinds of activities going
on throughout the lifecycle, how can project managers effec-
tively track the progress of the project, let alone the level of qual-
ity being produced? The truth is they can't, at least not alone.
Remember, developing high-quality software requires that ev-
eryone in the process be responsible and empowered to posi-
tively affect that quality. Programmers as well as managers need
feedback; the closer the feedback to the system addition or
change, the faster the cycle time and the higher the quality of
result. If you change a service (method) in a class you should
be immediately notified as to the completeness ofits interface
signature, the complexity of vour algorithm, the readability of
your code, etc. Remove a collaborator from the CRC card for
a class, and you should be immediately aware of the methods
now invalid because of their coupling to the removed object's
services.

This level of evaluation and feedback has been a requirement
in the lifecycle development environment supporting our method-
ology, and for the past six months has had a major impact on the
quality we have come to expect in the continuing development
of the tools themselves. Given these benefits, we have dedicated

additional resources to develop more and better ways to mea-
sure software quality in all its expressions and provide more effec-
tive feedback in the environment. We have also recognized the
great potential for developing project management extensions,
such as schedule management and time estimation to the envi-
ronment, based on the same kinds of metrics when viewed from
a multiuser, project-wide perspective.

MAXIMIZING RETURN ON INVESTMENT EN OT

Obviously, a long-term commitment is required by the highest

8

levels of corporate management to refocus an entire software or-
ganization around these quality ideals. The transition will not be

easy or inexpensive, but it is an absolute necessity if the organi-
zation is to achieve the level of software quality required for cor-
porate survival in the decades to come.

Each of the four articles in this series las focused on an es

sential requirement for meeting the challenges of enterprise com-
puting and maximizing an organization's return on its invest-
ment in object technology:

1. Software must be treated as an asset worthy of investment.

2. A lifecycle methodology must be adopted that unifies and
supports the development process from requirements to code
and back.

3. An integrated multiuser, version-controlled environment
for the creation and management ofsoftware assets must be
deployed, fully supporting every aspect of the lifecycle
methodology.

4. Constant quality management must be practiced through-
out the li fecvcle and fully supported by the methodology and
environment.

All these requirements are interdependent and must be met
for success. At I<SC, we are actively seeking partnerships with
those organizations ready to begin the lourney. E E

REFERENCES

1. Adams, S. Return on investment: Software assets and the CRC tech-
nique, Hon.INE oN OBJECT-ORIENTED TECHNoLOGY 3(10):4-7,1992.

2. No. 1-and trying harder. BUSINESS WEEK, Special Issue oil Quality,
October]991.

3. A new era for auto quality, BuSINESS WEEK, October· 22,1990.

4. Zultner, R. THI. DEMING WAY TO SOFTWARE QUALITY, presented at
Lhe Pacific Northwest Software Quality Conference, Zultner & Com-
pany, Princeton, New Jersey, 1989.

5. Adapted from Kano. ExcitingquaIity, HINSHn·su 14(21 1984.

6. Anderson, D.M. Time warrior, SuccEss, December 199].

7. Yourdon, E. Ti:]L DECUNE AND FALLOFT]IL AMERICAN PROGRAMME]4
Yourdon Press, New York,1992, p. 32

8. Adams, S. Return on investment: extending CRC across the lifecycle,
HOTLINE ON OBJECT-ORIENTED TECHNOLOGY 3(11):6- 10,1992.

9. Adams, S.3 Return on investment: development environments for
the lifecycle, HOTLINE ON OBJECT-ORIENTED TECHNOLOGY 3(12):1,
7-9,1992.

Sam Adams is the Senior Consultant and cofounder of Knowledge Sys-
tems Corporation. Since 1 984, Mil Adams has been actively develop-
ing object-oriented software systerns in Smal talk and is widely recog-
nized for h?s expertise. He is codeveloper of the group facilitation technicue
usng CRC cards and has been training computer professionals in ob-
jed-oriented technology for over six years. Mr. Adams has served on
several conference committees and is a frequent speaker and panelist
at leading industry conferences. He can be reached by phone at
919.481.4000 or by fax at 919.460.9044.

HOTLINE ON OBJECT-ORENTED TECHNOLOGY

Comparison of OOSE with other object-oriented methods
The chapter on other object-oriented methods discusses, on a sur-
vey level, other object-oriented development methods. Jacobson
notes that comparing how methods help achieve a better and more
competitive product in terms of quality productivity, modifiabil-
ity, etc., would be most interesting, but comparing notation, con-
cepts, and easy-to define strategies is much more achievable. He
chooses to provide the latter and offers an overview of each o f the
followingmethods followed by a notational comparison:

• OOA by Coad-Yourdon
•OOD by Booch
·HOOD

· OMT by Rumbaugh

· CRC by Wirfs-Brock

Jacobson refers to Rebecca Wirfs-Brock's method as RDD (re
quirements-driven design), according to Wirfs-Brock's own ter-
minology. Most people use CRC to identify her methods but RDD
is, in fact, a registered mark ofa San Jose-based systems engi-
neering company, Ascent Logic.

TEST CASES

Most object-oriented books provide examples based on the pre-
existence ofrequirements. Typically, they give detailed examples
of how a particular architecture and classes resulted from re-
quirements A and B.

Interestingly enough, object-oriented developers find cate-
gorizing and grouping requirements very difficult. Jacobson
spends less time describing content and more time describing
the pros and cons of potential approaches. Examples of this
abound in Chapters 13 and 14. Iii Chapter 13, Jacobson discusses

the pros and cons of describing a particular sequence as a single,
complete use case vs. dividing it into several. Another example
in the same chapter is a discussion ofoptions for storing attribute
i,}formation during the analysis phase.

SUMMARY

This very interesting book on object-oriented software engi-
neering would be an asset to your personal library. As I men-
tioned above, the preface provides a a roadmap" of which chap-
ters to read. Anyone unfamiliar with Jacobson's concept of a use
case should first read the explanation in Chapter 7 and then re-
turn to the sequence in the preface.

For those who 1·enlei'tiber InF"Research or Ready" artie]€,2 read-
ing Jacobson's book was the first step in the review process for in-
dusion in my list. 1 11 indude more details as I com plete the review.

As a final note, don't overlook Dave Thomas' well-written
preface, = a

References

1. Jacobson, I. OBJECT-ORIENTED SOFTWARE ENG]NEBRING-A USE
CASE DRIVEN APPROACH, Addison-Wesley, Reading, MA, 1992.

2. Dock, P. Researcher ready? HoTI INE ON OBJ ECT-ORIENTED TECH-
NOLOGY 3(9):1,7-9, 1992.

Patti Dod< has been involved,n the object-or,ented marketplace sincel 985
when she joined Stepstone as a technology consultant. After leaving
Steostone, Patti worked for Jackson Systems Corporation and General
Electric, both companies actively involved in object technology, Today
Patti is \Ace President at OrgWare, Inc,, where she consults with orga
nizalions as they migrate to object-oriented techniques. She also teaches
a course aled OBJECTMethods, which compares and contrasts lead-
ing object-oriented design methods. Patti can be reached at
203.270.1242.

SIGS Conference Calendar c 1 992-1993)
NOV'92 FEB'93

FEBRUAR 1993

WORLD

November 16-20.1992
The Meadowlands Hilton, NJ

NOOP '93
Objekl·orienlieries Programmieren
MOINC H IN

OOP'93 and C++ WORLD
February 1-4 and 4-5,1993

The Sheraton, Munich, Germany

X
HEX INFORMATION X[HANG E

March 8-11, 1993
Marriot Marquis

New York, New York

rAP*KE«4»14»41%422*m*¥t OCT '913

Mi Okiggi C+
--ek£ n-0-·p.2/ U/ORLD

April 19-23, 1993 July 12-16, 1993Hilton Towers October 18-22, 1993Queen Elizabeth II Con£ Ctr.
New York, New York Dallas, TexasLondon, England

For more information on SIGS Conferences, call 212/274-9135.

0

OBJECT METHODS E E

SOFTWARE ENGINEERING ASPECTS

There is no shortage of object-oriented design and analysis books
on the market today. This book, however, is one of the few that
addresses object-oriented software engineering topics, such as
reuse through components, testing, and project management

Components
Jacobson states, «To build with components and to build with ob-
jects are two entirely different activities." The chapter on compo-
nents discusses one of the difficult problems in the object-oriented
market today: Whycan't weseemto produce reusable components?
He lists seven of the most commonly cited reasons why we have
failed, aiid suggests that to successfully create components we need
both a methodology and organization that support their lifecycles.
These reasons are:

1. Project schedules and budgets do not allow for the time re-
quired to develop quality components.

2. The not-invented-here attitude precludes reuse of someone
else's design or code.

3. There is no recognized standard for component functional-
ity and use,

4. Components that exist cannot be found because our libraries
and tools are not built around component reuse

5. Measurement oflines of code defeats the motivation to reuse

C i.e., reuse is not doilig work, while writing code is doing work)

6. Payment schemes (i.e., pay-per-use) for a component mar-
ketplace have not been implemented, so the economics of
component distribution are unfavorable.

7. Engineers have tried to define components from functions,
not objects.

He discusses methodology support and identifies many of the or-
ganizational issues associated with maximizing reusability.

Testing
Jacobson devotes an entire chapter to the neglected issues of
quality assurance and testing. He mixes basic testing philosophy
with a discussion of special testing challenges introduced by poly-
morphism and inheritance. (Portions of this chapter may read
like the teliting chapter of your college software engineering
course, but I think that's okaysince most ofusdidn't payenough
attention to that chapter anyway!) He emphasizes the impor-
tance of use cases in designing your testing procedures and re-
iterates the need for automation of regression testing in an ob-
Ject-oriented system.

Project management issues
The "Managing object-oriented software engineering" chapter dis-
cusses some of the experiences gained by introducing ObjectOry
to about 15 real projects of varying size (3-50 man years) dur-
ing the past few years. This chapter discusses and describes:

* how introducing any new process is delicate anct should be

16

only undertaken when the process is in sync with the corpo-
ration's long-term plan for development organization

• how the objectives oforganizational change should be clearly
understood and supported

· how to select a pilot project and the importance ofcarefully
tracking its progress

Prototyping must be integrated and managed and the defined
goal should be a higher-quality result. Real experiences with
project staffing, project tracking, training, risk analysis, project
management, proiect organization, andi project metrics are also
discussed.

SPECIAL TOPICS

In addition to software engineering topics, this book contains
some interesting perspectives on a number of special topics such
as database specification, real-time experiences, and a compari-
son of existing object-oriented design methodologies.

Database specification
Iacobson's chapter on database specification provides a clean
description of the differences between relational and object-ori-
ented databases complemented by an explanation of when and
why system architects must make choices.

The chapter describes how to encapsulate some of the prob-
lems that arise when one uses a relational database for persistent
object storage. A reusable framework is used to create the logi-
cal database design from the object-oriented model. It simulates
the inheritance structure using tables.

Jacobson believes there is no industry consensus today on de-
scribing an object-oriented database management sYstem
(ODBMS). He further points out that database design must be
integrated during analysis and design of the application because
today's commercial ODBMSs use obiect-oriented implementa-
tion languages such as C++ or Smalltalk rather than a specific data-
manipulation language (such as SQL) like relational databases.

Real-time specialization
Iacobsondefines a hard real-time system as one iii which timing
constraints must be met to avoid catastrophes. Real-time re-
quirements add time as an extra dimension to svstem design.
Process synchronization and communication almost always have
a major impact on design aiteria.

During the analysis process, one must collect important real-
time constraints and document them in use case descriptions.
During construction, the system must be implemented and tested
against these constraints. Use cases are an effective tool to docu-
ment system behavior and real-time behavior. Distribution of ob
jects across several processors can be encapsulated iii the object
itself. Interaction diagrams are used to handle real-time require-
ments and allocate timing requirements for different objects. Ja-
cobson explains why testing is probably the most critical aspect
of real-time systems. He contends that requirements traceability
coupled with automated regression and use case testing are cru-
cial to the high quality demanded in hard real-time systems.

HOTLINE ON OBJECT-ORIENTED TECHNOLOGY

COMPONENT MARKETPLACE E E

Evolving markets for
software components

As industry Iuminaries such as Brad Coxi and Fred Brooks2 have
noted, the development of robust markets in software Compo-
nents (meaning systematic, widespread, routine commerce iii
reusable components) promises to provide great improvements
in software productivity. Markets distribute the cost and com-
plexity of software development across many organizations, al-
lowing firms to focus internal capabilities on their ownl Compet-
itive advantage while purchasing external capabilities on the
market.

In a vigorous software component market, developers could
routinely purchase much of the functionality to be used iii their
applications in the form of components routinely developed by
specialists building such components for sale in the market.

Such markets, long anticipated by proponents of object-
oriented technology, have been disappointingly late in coming.
But the wait may end soon. Pieces of the puzzle are increasingly
falling into place and there is now an electronic software com-
ponent marketplace-an electronic"location" where buying and
selling components is inexpensive and convenient-in which ro-
bust component markets may emerge. This column synthesizes
some of our research in trying to overcome barriers to the software
component. markets on the American Information Exchange
(AMiX). We explain how electronic marketplaces, such as those
on AMiX, can help to catalyze extensive commerce in software
components.

CHALLENGES TO COMPONENT MARKETS

For robust component markets to develop, a number of chal-
lenges must be met:

Howard Baetjer William Tulloh

· Assuring quality components forsale. Components must un-
dergo the same level of quality assurance (testing, documen-
tation, and availability of support) that applications undergo
(or should undergo) if they are to become widely marketable.
Component producers must come to see their reusable com-
ponents not as by-products of application development, to
be reused if possible, but as important products in their own
right, deserving ofsignificant time and effort to prepare them
for market.

· Creating standards for component interoperability. A ma-
jor problem with class libraries is that they are often in-
compatible with other class libraries, even those built in the
same language. Accordingly, the potential component mar-
ket is highly fragmented. Industry standards for component
interoperation are needed. As interoperation becomes less
costly, the number of potential buyers for any given com-
ponent will increase. Bright spots in this respect are OMG's
CORBA, IBM's System Object Model (SOM), and Digitalk>s
PARTS.

· Addressing ownership and liability concerns. The software
industry faces a serious challenge iii ensuring adequate com.
pensation to developers. This challenge is greater still for com-
ponents, which are both finer-grained than applications and
also intended for multiple use in various applications. At the
same time, liability issues arise: Who is responsible when a
component does not work as expected? The industry needs
new means of licensing components that clearly defne own-
ership and liability.

• Developing new channels of distribution. Current boftware
distribution channels, generally expensive and aimed at the
mass end-user market, are ill-suited to components, which
require inexpensive distribution channels aimed at develop-
ers and sophisticated end users, The industry needs to develop
affordable means by which producers can easily distribute
their components and users can easily access them.

* Making components understandable. The conceptual nature
of software requires that extra attention be paid to making
components easy to reuse. Component producers need to
provide guidance for users ofthose components, making clear
the contexts in which components may be built into larger
applications.

NovEMBER 1992

FROM ELECTRONIC DISTRIBUTION...

A promising point of leverage for overcoming these challenges
is electronic distribution of components. This is a natural match

because electronic distribution provides an affordable means
of access to components. As networking and distributed com-
puting become more ubiquitous, component distribution in-
evitably will be electronic.

But electronic delivery by itself does not allow a component
user to obtain usable components at reasonable cost- Even ifthe

world's best components were made available on a universally
accessible network, users probably would not find it affordable
to use them, Although the dollar cost of downloading appropri-
ate components would be negligible, the cost in time and effort

9

COMPONENT MARKETPLACE m a

would be very high. Progress is being made in developing better
search tools but it is still very costly to search and retrieve from
a passive repository ofcomponents.

...TO ELECTRONIC MARKETS
Electronic markets go far beyond electronic distribution because
they are active rather than passive. The relationship of electronic
distribution to electronic markets is the same as a large, parti-
tioned building surrounded by parking lots to a shopping mall.
The electronic network provides the same supporting infras-
tructure-the virtual location where component commerce can
take place-as the large, partitioned building provides for retail
trade, But neither is a market, nor can we make them markets by
filling them with priced goods. Picture a shopping mall building
with no signs, no salespeople, no displays, few shelves or racks,
no brand names, no segmentation according to expense-noth
ing but lots of merchandise grouped by category. That's not a
market, just as plain electronic distribution is not. If you know
what you want and where to find it (or you have extraordinarily
capable search tools), youcan get what youwantwithout difficulty.
Otherwise, forget it.

The point of markets is to make it easy for buyers and sellers
to find one another and exchange successfully. What markets
provide beyond simple technical availability of goods is rich in-
teraction among market participants and, consequently, a wealth
of information, guidance, and evolving practices and institutions.
Markets offer the active participation of vendors who achieve
their purposes only by providing customers what they want and
need at a reasonable price.

THE AMERICAN INFORMATION EXCHANGE:

A FIRST EFFORT

The American Information Exchange Corp, (AMiX) provides an
electronic marketplace for software components. AMiX provides
basic institutions and capabilities for electronic markets for in-
formation of all kinds, and ultimately plans to open a wide vari-
ety of in formation markets. In its Cariv stages, however (the sys-
tem came online the first quarter of 1992), AMiX is building
markets iii computer-related areas, including markets for software
components and consulting. The first to be developed is the
Smalltalk market. (There is also a C++ market; AMiX plans to
offer a variety of other component markets in the near future.)
The Smalltalk community has been enthusiastically supportive
ofthe concept. Smalltalk users program by extension, using what
already exists in their environment to support their problem solv-
ing. Programmers typically take advantage of the installed base
of class libraries by browsing class hierarchies for what they need,
editing and subclassing as necessary. The AMiX Smalltalk mar-
ket is essentially an extension of the Smalltalk paradigm.

A solution to the distribution challenge
The primary benefit of the AMiX service for fostering compo-
nent markets is its low-cost distribution system. Components
can be inexpensively stored on the system and downloaded by

10

V

buyers for immediate use. To facilitate custom development, the
system supports small-scale consulting with negotiation, con-
tracting, and delivery online. AMiX handles all billing and ac-
counting centrally, freeing market participants from accounting
overhead. Online charges are at cost and, in any case, the system
allows users to do most ofwhat they need to do from their local
image of the system, connecting only for short periods. AMiX
profits only when market participants conclude a mutually sat-
isfactory exchange, taking a percentage of the purchase price.

Market>driven answers to the remaining challenges?
Ofthe challenges mentioned previousin AMiX solves the first di-
rectly. AMiX is coinmitted to being an open marketplace where
all participants may be buyers, sellers, or both, as long as they
maintain basic standards of good citizenship. Accordingly, AMiX
individual vendors are responsible for the quality, understand-
ability, and licensing arrangements of their components, and for
the components' adherence or non-adherence to standards.

We believe AMiX can catalyze answers to these remaining
challenges by providing a means for customers to express their
needs in a competitive market context. These challenges must be
met through the actions of various players in the software in.
dustry, whether vendors or users. AMiX provides the electronic
"location" and system support for real market activity. Within
the context of actual evolving A.MiX markets, these challenges be
can met in a coherent fashion.

The AMiX Smalltalk market provides:

· a rich information environment. Through extensive sy·stem hy-
perlinking, users can easily access a wealth of supporting in-
formation to evaluate vendor reputations and product quality.
These indude sellers> resumes (participants are required to pub-
lish a resume before they may publish or sell anything on the
system), buyers evaluations of products and services, compo-
nent reviews and recommendations, etc.

· a competitive context, with corresponding market pressure on
component producers to reduce prices, improve interoper-
ability, and steadily enhance and improve their components.
It is easy to compare products on the system; all prices and
terms are immediately visible.

, active matching of vendors' expertise and customer needs. Coin-
ponent producers actively market their components according
to research users> needs, bringing the product to the users' at-
tention rather than leaving it in a repository. Conversely, com-
ponent users bring their needs to component producers, bid-
ding for the (custom) construction of needed components,
support, training, and other services. Buyers and sellers can ne-
gotiate and establish binding contracts, deliver, and pay for ser-
vices rendered-or do any other business-online.

Understandability and quality beyond "take-it-or-leave-it'
Within this market setting there is pressure from customers for
more understandability and quality assurance. Potential users of

HOTLINE ON OB,ECT"OBENTED TECHNOLOGY

OBJECT METHODS E a

Reviewing OOSE: a use
case driven approach -4.fj:

 recently read O B J ECU'-O iU EN i]ED SOPTWARE ENG INEERING-A
Usb CAs?. DR]vEN APPROACH by Ivar Jacobson, 1 a good object-
oriented design and analysis book and an excellent obiect-ori-
ented software engineering book. Not only is the technical con-
tent high, but I can honestly say I enjoyed reading it. It captures
20 years of the author's experience and is written in a very mod-
ularized fashion. The preface even provides a "roadmap" ofwhich
chapters to read depending upon one's experience level and in-
terests.

The «Introduction" section's five chapters define new terms
and explain OOSE>s concepts, approach, and lifecycle. They iii-
trodlice ObjectOry (the Object Factory for Software Develop-
ment), the development technique used in this approach.

The next seven chapters, comprising the "Concepts" section,
provide the core of the analysis and design method. This sec-
tion introduces the use case concept and explains its role in de-
sign, analysis, and testing. There are also individual chapters on
realtime specialization, database specialization, components,
and testing.

The "Application> section contains two case studies augmented
by two chapters, one addressing the managerial issues associated
with object-oriented projects and another, very interesting chap-
ter comparing OOSE with five other object-oriented analybis and
design methods.

USE CASE DRIVEN APPROACH

Throughout the book, Jacobson uses OOSE techniques to de-
scribe OOSE The title of the book is derived from a concept Ia-
cobson has been using and documenting over the past decade.
Actors and use cases are used to define what exists outside the

system. An actor represents a role a user may play. The user in-
tends with the system by performing a sequence oftransactions,
referred to as a use case. That is, from a user's perspective, each
use case is a complete course o f events in the system. Examples
of use cases might be an operator connecting a subscriber to a
system, an Insurance adluster entering an estimate, or a reserva-
tion clerk veritjing the availability of a rental car.

Jacobson continually emphasizes the importance of viewing
the system design process from an 0-0 perspective. Each use

NOVEMBER 1992

Patti Dock

case is a class. Individual instances of use cases are the class (or

objects). This allows us to view each use case instance as a trans-
action with internal states.

A use case driven design is achieved wlien each use case model
is described by a number of actors and use cases, and each use
case has detailed descriptions and interfaces. When the system is
iii operation, instances are created from the descriptions in this
model. To modify the system, we simply remodel appropriate
actors and use cases.

OOSE CONCEPTS
This section of the book concentrates on incremental and cre-

ative activity to achieve the following five models, resulting in a
completed system:

· a requirements model that captures functional requirements
for the system

• an analysis model that provides a robust and modifiable ob
ject structure

• a design model that adopts and refnes object structure to the
current implementation environment

• an implementation model that describes implementation of
the system

a test model that concentrates on verifying the system

OOSE describes how each of the models look (syntax), what
each means (semantics), and the appropriate heuristics and rules
of thumb (pragmatics.)

OOSE describes two processes; analysis and construction. The
analysis process produces both requirements and analysis mod-
eis. Use cases are used in the requirements model to describe the
functionality of the smem, These use cases provide the founda-
tion for analysis, implementation, and test models. The require-
ments model itself provides the basis for the analysis model. The
analysis mode[specifies all the logical objects to be included in
the system and how they are related and grouped. The design,
implementation, and test models are completed during the con-
struction process.

15

ih

I.

DISTRiBUTED INFORMATION E a

Our attitude towards software should

be the same as toward a security
investment. We are going to purchase
the software, so we should think first

about the ROi we expect.

99

- The processing required by a distributed application can be
spread across machines, resulting iii better capacity utilization.

However, none of these advantages will provide ROI in the
abstract Possible cost increases associated with adopting a dis-
tributed information system can immediately be cited:

· Manymore machines must be purchased, installed, connected,
and maintained.

· Software must be purchased for all machines that need it
and must be upgraded in a coordinated manner to avoid
inconststencles,

V

· Problems may occur in many more machines, making them
harder to isolate and correct.

CONCLUSION
It is evident that without more specific information about abusi-
ness, it is impossible to evaluate whether purchasing software for
distributed information systems will generate a positive ROI. In
the next series of articles, I will develop scenarios for ROI evalu-
ation, from which guidelines for conducting evaluations can be
articulated based on ROI analysis. This will help both purchasers
and vendors identify the information needed to create success-
ful partnerships yielding distributed-information systems that
provide significant ROI, a a

Tim Andrews has been Chief Technical Officer at ONTOS Inc. since

1988. He is one ol ONTOS' primary designers and has a background
in object technology, database implementation, and technical mar-
keting. Mr Andrews has helped shape the strategic direction of the
ONTOS product architecture and has continued his work with criti-
cal customers, most notably IBM. He can be reached at ONTOS,
Three Burlington Woods, Burlington, MA 01803, by phone at
617.272.7100, or by fax at 617.272.8101.

..:. I n

CALENDAR 1,/7**/P.

To have a meeting or conference listed, please send the dates, conference name and location, sponsor(s), and contact name and tele-
phone number to the Editor: Robert Shelton, 1850 Union Street, Suite 1584, San Francisco, CA 94123; fax: (415) 928-3036.

November 5,1992 Nov. 16·20,1992 i February 1-4 and April 19-23,1993 February 1-4, 1993
Knowledgeware User's C++ World February 4-5, 1993 Object Expo Object World (OMG)
Group and DAMA OOP'93 andC++Wolld

(NY Chapter)

New York, NY
C:on lad 212.439.0063

Meadowlands Hilton, NJ Munich, Germany
Contact 212.274.9135 Contact: 212.274.9135

New York, NY
Contact 212-274-9135

Boston, MA
Contact: 800.225.4698

March 8-11,1993 March 8-12,1993 March 17-19, 1993 May 3-7, 1993 June 14-17
X World INTEROP Uniforum'93 DB Expo Object World SF

New York, NY
212.274.915

Washington, DC
800.INTEROP

San Francisco, CA
800.323.5155

San Francisco, CA
415.966.8440

San Francisco, CA
800.255.4698

14 HOTUNE ON OBJECE·-ORIENTED TECHNOLOGY

components have been frequently blamed for not using available
components due to an £'not invented here" (NIH) attitude. But
as Ward Cufininghani aiid Kent Beck point out,3 this phenomenon
is probably more often the result of the take-it-or-leave-it atti-
tude of component suppliers who are not offering understand-
able, tested code. In a competitive market setting such as AMiX
provides, with immediate electronic access to suppliers, customers
take an active role in demanding high-quality, easily understood
components. When buying reusable components, they expect to
buy not only code but documentation, test suites, and support.

As the market grows, however, customers may not need to
take so much initiative. Their demand for quality and reliability
Indy generate the emergence of supporting institutions and or-
ganizations such as cataloguing services, testing services (similar
to Underwriters' Laboratory), publications that review and/or
rate new products, comparative testing services like CONSUMER
RE poRTs, etc.

DRIVING LICENSING AND STANDARDIZATION ISSUES

By reducing the transaction costs ofbringing together vendors and
customers, electronic markets provide a complementization to for-
mal standardization processes with regard to component inter·
operability and licensing. Electronic markets help identify key ar-
eas of concern and provide direct profit incentives for their removal.

CONCLUSION

,b The challenges facing software component markets will be met
in an evolutionary fashion through the efforts of many people
and organizations. Robust component markets will evolve as
progress in one area increases the incentive to progress in an-

other. The availability of a new electronic marketplace for com-
ponents may be a catalyst for meeting remaining challenges by
bringing component users and producers together in a compet-
itive business environment. Facing competitive market selection
for the most usable and dependable products, producers will be
driven to improve the quality and understaiidability of their coin-
ponents. In seeking access to the broadest possible range ofprod-
ucts, component users will demand faster adoption of interop-
erability standards. The emergence of these standards, in turn,
will stimulate a burst of component development. As revenue
streams grow, producers and suppliers will be driven to develop
successful licensing arrangenients to protect their interests. In
such a complex, interactive manner, we can expect component
markets to grow. a E

References

1. Cox, B. Planning the software industrial revolution, IEEE So rwARE,
November, 1990.

2. Brooks, F.P. Jr. No silver bullet: Essence vs. accidents of software en
gineering, CoMpuTER, April, 1987.

3. Cunningham, W.,and K. Beck. Constructing abstractions for object-
oriented programming, JOURNAL OF OB JECT-ORIENTED PROGRAM-
MING 2(2):17-19,1989.

The authors are researchers with the Agoncs Project at the Center for
the Study of Market Processes at George Mason University, where Mr.
Baetjer is Executive Director and Mr, Tulloh is Research Coordinator. In
addition, Baeter and Tulloh are prindpals in Agoric Enterprises, Inc., help-
ing to build software components and consulting markets through the
American Information Exchange Corp. (AMIX). They can be reached at
Agoric Enterprises, 10364 Bridgetown Pl., Burke, PA 22015, by phone
at 703.250.4760, or fax at 703.250.3532.

SOFTWARE ENVIRONMENT FOR THE NINETIES con,muedfrompige 4

viding them with a common, object-oriented interface. This in-
terface allows an existing, non-object-oriented application to be-
have in an object-oriented manner by correctly accepting and re-
sponding to other objects on the network. This approach allows
a smooth transition of non-object-oriented programs into the
object-oriented environment.

Object-oriented technology has tremendous implications for
engineering application developers. No longer do they have to
concern themselves with specific details ofa network-locations
and types of plotters, numerically controlled (N/C) machine tools,
computers, databases, etc. Applications can automatically adjust
to the changing manufacturing environment. For example, as-
sume a shop-floor scheduling application needs to query a ma-
chine tool about the number of parts completed since its last
maintenance. To accomplish this data exchange today, a system
developer must hardwire the communications link from the ma„
chine tool directly into the computer running the scheduling ap-
plication. The result is a static, single-use gateway between two

 individual resources.
Under this scenario, a problem will arise when the location

of the machine tool is changed or a new machine tool controller
is added. When this type of change occurs, the link between sys-
tems must be redefined and the scheduling application--along

NOVEMBER 1992

with every other application communicating with the machine
tool-must be altered.

In a distributed object-oriented system, a much greater de-
gee of flexibility is achieved. The machine-tool and the schedul
ing application are defined simply as objects on the network Ob-
jects interact with each other by passing requests and responses
and no object in a transaction needs to know location or imple-
mentation detals. In an object-oriented system, changes to a ma-
chine tool's location or controller has no bearing on other ob-
jects on the network.

Because of their flexibility, object-oriented systems are obvi-
ously less confusing to the network user, On most systems today,
a user who wants to print an E-size drawing, for example, needs
to know how to route the drawing to a specific plotter. In an ob-
ject-oriented system, both drawing and plotter are objects and the
network is aware of the requirements and capabilities of each. The
user merely selects Plot to generate a drawing, and the system will
forward it to a plotter with the appropriate characteristics.

The use of a graphical inter face offers the user even more flex-
ibility by presenting objects as icons. By "dragging" the icon rep-
resenting his drawing and "dropping" it over the plotter icon,
our user has accomplished the same task as before. The drawing
may be of any size, and the plotter may have any address on the

11

1

SOFfWARE ENViRONMENT FOR THE NINETIES

network. The user can get on with the job at hand. The object
management system handles the details.

ORB: THE OBJECT MIDDLEMAN

The heart of the distributed object management system is the ob-
ject request broker (ORB). Like any broker, the ORB acts as a
middleman to help two entities arrange a transaction more eas-
ily and efficiently than they could alone.

In a distributed environment, objects turn to the ORB to set
up interactions. For example, an application requesting printing
needs to provide only two pieces of information: the name of the
operation it wants to perform (in this case Print) and the infor-
mation that needs to be printed. It doesn't have to know the
printer's location on the network, format requirements, or com-
munications protocol. The ORB takes the application's basic re-
quest, locates the obiect that car perform the service, fills in the
details needed to request the service, and communicates with the
targeted object. The ORB then returns to the application the re -
suit ofthe requested operation.

THE NEED FOR STANDARDS

The full benefit of distributed object management systems in
the manufacturing industry won't be realized until core data
format and communications standards are established. With

such standards, users will be able to mix and match best-of-class
applications and other obiects as needed to create a custom-in-
tegrated, distributed solution to their scientific and business
systems requirements.

The Object Management Group has laid the groundwork for
interoperabilitv of applications across heterogeneous networks
with its Common Obiect Request Broker Architecture (CORBA).
Backed by 180 members-including Digital Equipment Corp.,
Hewlett-Packard, SunSoft, NCR, Hyperdesk, and Object De-
sigin-CORBA provides a standard interface for developing dis-
tributed managementsvstem applications, allowing objects to in-
teract across a network. But while CORBA specifies the mechanism
for achieving this interaction, it provides wide latitude in defining
how the objects on the networ]< are actually implemented. Each
implementor, for example, is free to create a unique ORB core.

Meanwhile, the International Standards Organization (ISO)
has specified a standard data format specifically geared to the needs
ofthe manufacturing industry. Standard for the]-txchange of Prod-
uct Model Data (STEP) enables everyone involved in the design,
manufacture, and support ofa product to create, access, and share
informarion. STEP is vendor neutral and is capable of completely
and accurately representing data throughout a product's devel-
opment and production cycles. The accuracy of the STEP repre-
sentation makes it suitable for neutral file exchanges, as well as a
basis for implementing and sharing databases, enabling users run-
ning multiple applications to access the data simultaneously.

A STEP model includes such particulars as product inforina-
tion (part number, version, security classification), tolerance
specifications, material specifications, surface-finish information,
feature definitions, shape (both geometry and topology), and

12

more. Collectively, this information completely defines the phys-
ical and functional characteristics of a component (see sidebar),

The STEP standard is able to support a product throughout
its development and production cycles. Design specifications,
analysis results, test results, manufacturing process plans, setup
sheets, tooling and numerical control data, quality assurance in-
spection information, and support data are all captured as a prod
uct passes through these stages of its lifecycle.

Finally, STEP solves the problem of incomplete or inconsis-
tent data exchange by rigorously defining both the information
required to specify a component and the constraints that apply
to this information. To do this, STEP uses a formal information

modeling language called EXPRESS to define schema for data
that is to be captured and exchanged. In addition, any constraints
on the data are also captured in the EXPRESS-based information
model. This unambiguous definition leaves no room for vendors
to misinterpret the standard and ensures that implementations
can be rigorously tested to verify their compliance.

THE WINNING COMBINATION

An obiect-oriented distributed computing environment coupled
with an industry-standard model utilizing both CORBA and STEP
specifications could fundamentally change the way manufacturing
companies dobusinessbyeliminating many oftodafs bottlenecks
and inefficiencies. In such an environment, object software can be
easily plugged into the network, offering several distinct benefits:

· Customers can employ the latest best-of-class applications
without abandoning valuable, existing data.

· Integration of existing applications is simplified.

All applications can be linked by a single standard architec-
ture rather than customized, fixed linkages between individ-
ual applications,

· Object-oriented systems have the potential for tremendous
gains in productivity, as applications are able to seamlessly
interact, sharing common data.

Object-oriented technology combined with industry stan-
dards has the potential to deliver enormous returns to the man-
ufacturing industry. The improved functionality, flexibility, and
i eliability offered by object-oriented systems will offer manu-
facturers the competitive tools they need to shorten
time-to-market while maintaining a consistently high level of
quality. The next industrial revolution will thus provide the same
benefits as the original, at a time in history when global compet-
itiveness is crucial. E E

Thomas Rafferly, a 24-year veteran of the CAD/CAM and engineering
industries, joined Auto-trol Technoiogy n 1991 to spearhead and direct
the development of Mozaic, the first object- oriented, standards-based
platform for the CAD/CAM marketplace As Vice President of Market·
ing and Systems development, Rafferly is currently head of Auto-trol's
mechanical engineenng business unit. He can be reached at Auto-trol,
125000 N. Washington, Denver CO, 80241-2400 or by phone at
803.452.4919.

HOTLENE ON OBJECPORIENTED TECHNOLOGY

DISTRIBUTED INFORMATIONEE

The quest for value

Distributed information is a topic o f vital interest to almost all
businesses today. The title of this column reflects this interest
and the value brought to object technology, including object
databases, by enabling distributed information. Although as the
founder of a vendor I have my biases, I want to address more
than the specific areas oftechnology related to my organization.

NEW TECHNOLOGY AND ROI

Too often those of us participating in the creation ofnew tech-
nologies sell the technology as the solution. We try to create suc-
cessful products rather than successful solutions. We encourage
our customers to use obiect technology to increase productivity
or gain better reuse of software. These benefits, far too vague, are
offered bv every new technology that comes along. We must place
more emphasis on understanding the business goals driving cus-
tomer organizations andquantifying the benefits that obiect tech-
nology provides in addressing business goals. the hard return on
investment (ROD.

Consider a bank that wants your money. If you were told the
bank would give you back less than you gave, or merely that you
would earn -a great return," vou would not deposit your money.
You would want to know, in advance, the ROI, e.g., 5% per year
compounded daily. Now you can make relative comparisons. If
another bank offered 6% for the exact same deposit. you would
go there. When different investments are compared, the evalua-
tion process is more complicated. A stock may offer a 3% divi-
dend but greater potential for capital appreciation, perhaps 1096.
The ROI could be 13%, a much better return than the 6% of-

fered by the bank, but the risk is quite different because only a
3% dividend is assured.

During this evaluation we do not examine how the bank or
the stock provides the return. Ifwe wish to better understand the
differences between the two instruments, then it is necessary to
examine the "technology" underlying each security. We exam-
ine the credit worthiness of the bank: Does it carry insurance?
How does it invest the money we deposit? We examine the fi-
nancial statements of the company issuing the stock: What were
its revenues and earnings iii previous years? What business is it
in? This improves our ability to choose the investment that will
best satisfy our objectives.

Our attitude towards software should be the same as toward

a securities investment. We are going to purchase the software,
so we should think first about the ROI we expect. When com-

NOVEMBER 1992

Tim Andrews

paring software packages we should evaluate the expected re-
turns and risks associated witti each package and how these fae
tors relate to our business objectives. Once we have purchased
software and begun to use it, we should measure our returns
over consistent time periods so that we can continually evalu-
ate the actual return.

Both vendors and customers need to participate in the process
of evaluating and measuring ROI. In practice, however, it is very
uncommon for either vendor or customer to conduct evaluations

or measure ROI once a development project is under way. This
is because software is generally evaluated and purchased by tech-
nology personneI whose natural indination is to examine tech-
nological aspects and base a selection solely on those aspects. Ven
elois wishing to sell their products focus on marketing technology
advantages to have the best chance of winning the sale.

CHANGING THE GAME

This process of technology adoption is one reason some tech-
nologies, such as AI, are failures in the marketplace. New tech-
nology has substantial risk associated with its adoption, so an
ROI-based evaluation is crucial to successful adoption and even-
tual use of the new technology within an organization. The fo
cus on ROI causes a change iii the perspectives ofboth customers
and vendors. Customers begin to examine business objectives,
cultural effects of new technology, and support o f business ap-
plications developed with the new technology. Vendors expend
more effort understanding the customer's objectives and what
hurdles must be overcome for the technology to make a positive
contribution. A partnership results when both sides are focused
oil the common objective of improving the customer's business
operations in a tangible way. This partnership translates directly
into ROL

As an example, Iet's take a brief look at distributed informa-
tion systems. Many businesses today are interested iii moving to-
ward distributed systems, whether client/server systems con-
necting PCs to mainfi·ames or distributed applications running
in fast LANs on RISC workstations. At the highest level, the ar-
guments are compelling:

• One can purchase MIPs for a much lower price on a PC or
workstation than a host system,

e Machines can be added incrementally, giving business greater
flexibility in purchasing equipment.

13

4h

hotline0 on
OBJECT-ORIENTED

technology
Backissues

All back issues of the HOTLINE are available. Please call 212.274.0640 for details.

Vol. 4. No. 1/November '92- Combining object technology with data standards forthe
next industrial revolution = Constant quality managerient m Evolving markets for soft-
ware components• The quest for value• Reviewing OOSE: ause case-driven approach

Vol 3. No. 12/October 192 E Rei: development environmencs fur thelifecycles Se-
leafngthe right obiect-oriented method EChoosingan object-oriented language-Ob-
ject database technology: who's using it and why? - Objects and reuse

Vol. 3, M. 1 1/September'92 E Devel„ping strategic business systems using object tech-
nology . Obiect training: harder than it Looks E Object-oriented ROI: extending the
CRC across the lifecycle E What -1-QM means tor OT

Vol.3, No. 10/August '92 = Object technology: toward software manufacturing E Re-
turn on investment: sol-tware assets and the c RC rechnique E Object-oriented tech-
nology in Japan a Providing commonality while supporting diversity

Vol.3, No.9/July '92 E OOID: Research or ready • Enterprise modeling: an obiect .47
proach -OMG's 18-24 monah view• Design forolveit oriented applications: a CASE
for wihful thinking. .

Vol.3, No.8/June '92 2 Busihiess in the Information Age, From data modeling 10 ob
ject modeling. How framewon ks enable application portability E Inten]©w with Vaughon
Merlm

Vol.3. No.6/April 32 s Thinking the unthinkable. reducing the risk o f failure a Mitigat
inginadnesswithmethod firstestablishwhatvo„,valle-9Ch.impioningobjectlechnel
ogy for career success in the 19903*Obiecisand .ictioni in end·userdocumentation

Vol.3. No 5/March '92 m TA large-scale users' assessment of object orientation E Re-
port on the Obiect-Oriented COBOL Ta5k Group E Interview with K.C. Brai.comli

Vol.3. No.4/February '92 E The big prize: acceptance ot O-0 by the MIS community E
Retrospective: 1991-the year it all changed • Making the transition 20 0-0 teclmology
E Interviewwith Beatriz Infante

Vol.3, No. 3/Januarv '92 e Enterpri,e obleci modeling: 1<nowing what we know E Adopt-
ingobjects: pitfalls E Adoption rate of object technology a surveyof NSW industly

Vol.3. No. 2/December'91 - Accepting object Technology • Adopting obiects: a path
E Incorporating graphical Content Ult„ Intillilliedia presentatons

Vol. 3, No. 1/November 91 I Leading the U.S. semiconductor manufacturing in-
dristry toward an object-oriented technologv standard - Coping with complexity:
OOPS and the economists' critique of central planning= Chooing Object Techn<,1-
ogy: What's the object? E OOP: the M]Ssing link

Vol.2, No. 12/0:lober '91 - A mode,t Nurvev ot OOD approaches E What is a "fertihed"
oblect pr,]grammerf e Perspective: mvesting in objects today= Oblect oriented in Mel-
bourne, Australia E The Obieet Managenient Group

Vol.2, No. 11/September '9[= From applications to frameworks . Rcport on the Ob-
ject-Oriented COBOL Task Group - Getting started with obicct technology: efffectively
planning for change E Object statistics on the way E On objects and bullets

Vol.2, No. 10/August '91 a Distributed object management: improving worker pro-
ductivily • Getting the best from objects: the experience of I IP E AppucATIONS: EC
employs object tcchnology E CAPACITY PLANNING: riddling while ROMs burn

Vol.2, No. 9/July '91 E Multimedia is everywhere! = De,·eloping ali obiect technology
prototype- Object-oriented capacity planning= How OOP has changed our develop-
frielitallifecyclee Modi larizanon ofthecomputersys tem

Vol.2, No. 8/lune '91 E Domain of objects: die Obiec:t Request Bri.ker m Object-based
approachrouserdeculnentation.Reportanthe (ObjeL[Oriented C.OBOT Task(Iroup
2 Do we need object-oriented design metrics?

Vol.2, No.7/May '9 I E Hybrid object-oriented/functional decomposition for software
eng,reering - So, what makes object databases different? (Part 4) = Using the generic
application to solve similar domain problemS Z Experiences using CLOSE [merna-
tional Conference on Object-Oriented Technology. Singapore

Vo[.2. No.6/Apr. '91 E An artist's perspective of programming I SO, what makes ob-
lect d.taliases different? (Part 3) E Moving from Pascal to C++, Part 3 m Obiect pro-
jects: what can go wrong E Reflections from LOOK-'91

SUBSCRIBE NOW TO THE HOTLINE ON OBJECT-ORIENTED TECHNOLOGY-
DON'T MISS ANOTHER VALUE-PACKED ISSUE!

U YeS, plug me into the latest thinking and developments in object-oriented technology. Enter me as a subscriber at the term marked
below and rush me the current issue. This is a risk-free offer - I may cancel my subscription at any time and promptly receive a refund
for the unused portion.

1 year (12 issues) 2 years (24 issues) Back issues @ $25 each ($27.50 foreign)
3$249 1 6478 (=ve $20) vol.25 Nos.

(outside US add $30 per yea; for i,iz servii:e) Vol.3, Nos.

O Phone/fax order
Call Subscriber Services at 212.274.0640

or fax thjs form to 212.274.0646 Name

U Bill me Title

U Check enclosed
Make check payable to the HorT INF and mail to:
The I jol'LINE Subscriber Services
P.O. Box 3000, Dept. H<)1
Denville, NJ 07834
dirrig,1 mim mu# beprepaid m US den.„ drawn on a LTS bank)

Company/Mail Stop

Street/Building#

U Credit card orders
O MasterCard Cl Visa 3 AmEx

CiLy/Province

ST/Zip/CA,untry

Card# Expiration Date Telephone

Signature

D2KC

hotline on
1 OBJECT- ORIENTED

technology
VOL. 4, NO. 2 THE MANAGER'S SOURCE FOR TRENDS, ISSUES & STRATEGIES DEC. 1991

Achieving zero-cost portability today

Portability is defined as the You ncedthe compiler for thenewplatform; you need to run the
ability to design and imple- test suites; you need a debugger for subtle errors; and you need

people who know about the operating environment and its tools.
ment a computer program on This is the traditional approach and is not zero cost.
one machine and execute it on a In the second model for porting, you simply transfer your ap-
different machine. True portability plication executable code, unchanged, to other platforms. Each
is performing this process without platform includes a special layer of software, usually called a vir-
having to make any changes to or tual machine, that transforms applications operations into plat-
perform any work on the original form-specific actions. With no additional effort, your applica-
software. Implied in the notion of tion executes as expected. Since exactly the sanie application code

Richard L. Dellinger true portability is that, while abso- is executing on tle target machine, testing the port is completely
lutely no work is done to move the unnecessary. From theapplication software developer's point of
software from one machine to an- view, all platforms are identical. Simply stated, the i·esponsibil-

other, the ported software conforins with theguidelines orrules ity for porting, testing, and supportingtheport has been moved
of the host platform. We call this zero-cost porting. from each application developer to the vendor that supplies the

Providing zero-cost porting touches many aspects of a plat- zero-cost portability technology.

2- 35.071:F¥.3

pa

form. When software moves from one platform to another, we ex-
pect to fully utilize the host processor, operating system, commu-
nications capability, window management, tool kit for the user
interface and multi-media resources, and access to external sources
of information. Utilization of the operating system means that ap-
plications are independent of difErent file structures and approaches
to memory management, while employing host fonts, graphics,
and color.

Why is portability interesting? Primarily, true portability de-
creases or, better yet, completely eliminates the costs of deploy-
ing software acros.R multiple platforms. Porting costs typically are
for engineers, tools for compiling and testing configuration man-
agement, and release control. ID other words, the need to have
engineering; resources dedicated to each supported platform is
eliminated. Portability also reduces the long-term risk of in -
evitable changes to the underlying platform. An informal poll of
software engineering managers throughout the industry revealed
that it is not uncommon to apply over 60% of an organization's
development resources to performing and supporting ports to
multiple platforms.

| By way of example, let's look at two models for porting. ln
the first, you recompile your application code on each new plat-
form and rely on similarities in compilers, libraries, and platform
primitives for graphics, color, window management, and so on.

coiitinued op page 8

IN THIS ISSUE-

1 Cover Feature Richard Dellinger
Zero-cost portability

2 From the Editor Robert Shelton

6 Methods Bertrand Meyer
Design by contract:
Building bug-free 0-0 software

10 Objects in Business
Object Interest Group: phase two Norman Plant

13 Distributed Information Tim Andrews

Towards a framework for
software ROI

15 Product Review Robert Shelton

Amziod "objects"

17 Product Announcements

21 FYI

FROM THE EDITOR mEE

 ast month's editorial addressed
large corporate IT interests iii object tech-
nology. We raised the issue of vendor re-
sponsiveness to IT's very immediate con-
cerns about management, scaling,
robustness, security. integration, and busi-
ness effectiveness of object technology. We
talked about the questions that business
needs to have answered before effective use

can be made of object technology. We dis.·
cussed the frustration experienced by large
corporations when vendors explain andl
justify object technology in terms of pro-
gramming-level concepts, obviously not
understanding the business impact of mi-
gration and integration issues accompa-
nying this technology. Corporate devej-
open-and the business decision makers
who fund their work-are suffering from
buzz-word-burnout. Too many techno].
ogy phenomena have comeand gone,leav-
ingbehind only a new (usually incompre-
hensible) vocabulary and incredible costs
with little return.

OOPSLA was held inVancouver B.C

Canada, iii October of this year. For those
who have never attended, OOPSLA is
ACM's annual conference oIl object-ori-
ented programming systems, languages,
and applications. Since its inception, OOP-
SLA has had a primarily academic kaning
and has been well attended by technical
staff and academics. In recent years,how
ever, OOPSLA has hosted a growing veil-
dor show floor. The presentations and pa-
pers have increasingly addressed issues of
technology use as opposed to doctoral and
technological research. This, combined
with a growing interest in object technol-
ogy on the part of the business commu
nity and corporate IT professionals, has
brought corporate developers to OOPSLA
in unprecedented numbers.

Ms. Elizabeth Sevean, as a partlier with
the Integration Consortium and founder
of the Business-Technology Exchange (a
user group of businesses interested in
object technology), is in a good position
to judge this firsthand, and served as my
co-writer on this editorial.

This year's OOPSLA seemed unpre-
pared to address the information needs of

the business community. To
be fair, OOPSLA is not alone
in this shortcoming. Profes-
siGnals from large IT organi-
zations first attending object
technology conferences have repeatedly
walked away with their business and inte-
gration questions unanswered.

Vendors and most technology confer-
ences are not addressing large business IT
concerns. The industry and conference
community are told that IT concerns are
not being addressed because IT is not buy-
ing yet. How, we ask, can this industry ex-
pect corporate IT to buy a technology that
does not address corporate IT needs?

Contrast this with the significant
turnout of traditional corporate IT orga-
nizations at object technology seminars
hosted exclusively for IT managers. Firms
like AT&T, Prudential, General Electric,
Chase Manhattan, British Airways, andi
American Airlines are sending employees
to conferences, seminars, and training in
unprecedented numbers. Organizations
for IT professionals like the Data Admin-
istration Management Association, which
traditionally focuses on data administra-
tion, business modeling, repositories, in-
formation architecture, etc, in the large
corporate IT environment, are sponsor-
ing seminars about object technology for
their membership and experiencing
turnouts well into the hundreds. Even the

1)82 user groups are clamoring for speak-
ers on object technology.

The object industry· seems to expect IT
to buy products before it is educated. IT
has been burned by that approach too
many times, and knows all too well the
costs and risks of playing '£do-it-yourself"
integrator with new technology. IT pro-
fessionals today want to be educated be-
fore they buy, as evidenced by their atten-
dance at conferences and professional
organization seminars. We suggest that the
object industry could profit from recog-
nizing this need as an opportunity. What
is the road block? Why is the large IT cus-
tomer being neglected?

To market a product, the vendor must
assess the needs of the marketplace. It ap-

pears that the object industry
has not done an accurate mar-

ket assessment of IT. Inter-

ested customers are being
missed. Remember that in ad-

dition to software and hardware, consult-

ing, training, and conference registrations
are all products. When prospective cus-
tomers are not addressed, an opportunity
is missed in proportion to the size and net
profitability of the sales involved. The real
measure of success is how little profitable
business we are missing, not how much we
are captunng

Furthermore, marketing a product re-
quires two way communication. The ven-
dor must understand the customer's needs

and be abie to deliver a product that ad-
dresses those needs in a way the customer
understands and values. We are seeing
some products that reflect this realization.
New development tools and concepts from
IntelliCorp, Knowledge Systems Corpo-
raton, Objective: Inc., ParcPiace Systems, 1
Persistence, and Softeam are among those
forging a path for corporate IT. Among
these offerings are evolving solutions to
basic issues o f concern to IT like reuse man-

agement, business-object analysts, auto-
mated connections to database manage-
ment systems, encapsulation ofrietworking
and host graphical user interfaces, zero-
cost portability, and encapsulation oflegacy
systems. Companies like these are making
great strides in their respective areas of
strength. From the tewpoint of mainframe
IT, however, the object technology indus-
try still has a long way to go.

We believe the object industry as a
whole has not yet made the effort to ed-
ucate itself about the needs of IT in the

large-scale information-dependent en-
terprise. There are urgent needs iii today's
business that would provide outstanding
opportunities for using object technol-
ogy. Consider some examples: decision
support, componentized process control,
reconfigurable manufacturing lines, dis-
tribution of dataand processing that
comes with downsizing, and revitalizing I
legacy systems currently constrained in
their usefulness by inflexible user inter-

2 HOTLiNE ON OB,ECT-ORIENTED TECHNOLOGY

get by for a while, but sooner or later there is going to bea bad accident....
The overselling of object technology, Jan Steinman, OBJECT MAGAZINE, 9-10/92

... Already, object technology is reshaping programming so that it will become the integration of en-
terprise services....Will object technology overtake conventional methods? Probably not, at least in
the near future. in fact, one ofthe strengths ofobject technology is its ability to complement and co-
eist with conventional programs....

Distributed enterprise networking: Applying object technology to distributed networking yields
incrementally greater benefits, Steven Brockman, OBJECT MAGAZINE. 9-10/92

Process change will come about only ifwe use the object-oriented approach, from requirements to
coding. . . But I predict no improvement in return on investment if both methodology and manage-
ment aspects are not considered concurrently. . . .

Insider: Software help wanted: revolutionary thinkers, Annie Kuntzmann-Combelles,
IEEE SoFTwARE, 9/92

As a panelist at a recent software methods conference, I was asked, "How long willit take for the software
industry to fully realize the benefits of obiect-oriented technologies?" My answer was and is, "Who
cares, as long as you and your organization reap some benefits as soon as possible?» Implicit in my an-
swer are a few truths. The first is I don't know how long it will take to fully realize the benefits of O-
0....The second truthin my answeris that the question reflects false antihype...designed to impede
the progress of a new idea. It is usuallv generated by those with a vested interest in the status quo. True
antihype is designed to help a new idea. It deflates unreasonable expectations and allows old ideas to
be used in service to the new. Yes, there are risks to adopting object technologies. However, there are
also risks with maintaining the status quo: more failed analysis eforts, more bad code, and self-inflicted
increases iii the project backlog....

Antihype: Wait for everyone else and you'll be history, John Palmer, OBJECT MAGAZINE, 9-10/92

. . . Objects are an effective way to manage system complexity, providing data and program abstraction
and a convenient way of modifying the software. However, in and of itself, the obiect-oriented model
does not guarantee timing preditablity under both normal and abnormal operating conditions-a pri-
mary requirement of real-time software...By combining compiler-based static analysis and object ort
entation, we are giving real-time-system developers a tool that enhances timing predictability without
sacrificing good engineering practices....

Compiler support for object-oriented real-time software, Prabha Gopinath, Thomas Bihari, Rajiv Gupta,
MEEE SOF·r·WARE, 9/92

BOOK WATCH

The Object Management Group

The Object Management Group announced the completion ofan upgraded version ofits OBJECT MAN-
AGEMENT ARCHITECTURE (OMA) GuIDE. It contains a newly endorsed Object Model for all OMG
specifications. The OMA GUIDE, available for $50, contains a reference model that is the central design
guideline OMG uses for the creation of a distributed object computing environment. In addition to the
new Object Model, the guide contains a complete glossary of object tenns and the technical objectives
of the OMG.

492 Old Connecucut Path, Framingham, MA 01701, 508.820.4300, fax: 508.820.4303

DECEMBER 1992 23

FYI m m

In a move that signaledthebeginning of a new phase in its multiplatform cooperative computing strat
egy, HP stepped up ts plans to deliver what it'# calling a Distributed Object-Computing Environment.
This environment would permit HP users to develop applications across heterogeneous, distributed
networks, without regard to operating system or hardware platform. A new HP organization, the Dia-
tributed Object Computing Program, will assume responsiblity for the development and coordination
for the new distributed environment. . . .

HP defines distributed object computing environment, HP PROFESSIONAL, 9/92

Motorola's Microprocessor & Memot-y Technologies group is teaming with Distributed Systems In-
ternational to provide software to manage Motorola's Fiber Distributed Data Interface (FDDI) chip-
set The software, developed by Wheaton, Ill.-based DSI, is an object-oriented package that connects
and disconnects stations to the FDDI ring, monitors network operations, isolates network faults, and
detects conditions such as duplicate addreses that inhibit ring operation

Data Net, Andrew Collier, ELECTRONIC News, 8/31/92

CLIENT/SERVER . .Todafs CORBA-compliant]DOM environments are a step closer to the vision of "Information at
Your Fingertips": they are heterogeneous, simple to understand, and dynamic, They have a single, simple
interface to heterogeneous hardware and software objects and a single, simple solution for how those
objects talk to eachother.... Hardware and software can be replaced or- upgraded easily with minimal
impact to users. The systems themselves can evolve over time....

Client/server computing: Recent developments in OT indicate an evolution toward truly open systems,
Molly Johnston, OBJECT MAGAZINE, 9/10/92

.. On the dient side, object-oriented companies are aiming to deliver an application package like other
databases but with the focus on objects instead ofthe relational model. On the UNIX server side, though,
there is a battle plan. When Next and other UNIX vendors embed Object Design's technology directly
into their operation systems, they are hoping it will give UNIX systems more than just the abilithy to
store data in the operating system as objects rather than files. They are hoping it will also give them a
leg up on Windows.

Object-oriented technology takes a front seat, UNINEWS, 8/24/92

VISUAL

PROGRAMMING ...However, visual programming techniques on their own do notnecessarily improve the productivity
of programmers. It is through the fusion of object-oriented software dev·elopment concepts and a visual
development environment that both the number of programmers capable of application development
,ind their productivity can be increased....

Visual programming: Interactive construction of programs speeds developement and
increases productivity, Dave Mandelkern, OBJECT MAGAZINE,9-10/92

VRTUAL REALITY . . . How would voutike to display obejct-oriented information, e.g., OOP sources, using VR and
literally walk through your code? VR and objects are one and the same, just different ways of looking
at data. Remember that what VR tries to do is create a possible wourld, populate it with objects, and
define their behaviors and the nature oftheir interactions.,..

Virtual reality: Redefining the meaning of human-computer interaction,
David A. Smith, OBJECT MAGAZINE, 9-10/92

HAVE YOU EVER SEEN

A PARADIGM SHIFT? ...However, the quickest way to get into trouble is to view object technology as a panacea by taking
any ofits advantages for granted. Assuming specific benefits, especially in the early stages, causes problems
if those benefits are not actively pursued throughout the project. The proper level of"buy in" is
crucial-not enough, and a critical mass is not achieved. On the other extreme, there is a difference
between "buying in» and jumping off a cliff! Perhaps most importantly, changing technology without
changing culture is like switching to automobiles while retaining horse-and-buggy protocol-you can

22 HOTLINE ON OBJECT-ORIENTED TECHNOLOGY

faces and data structitres. Until the object
industry understands and communicates

with the IT customer, sales will not be

£ forthcoman*
Comments from experienced IT pro

fessionals maybesummedup best by anal-
ogy: Object technology has presented IT
with a wonde]·ful "erector set'> full ofcom-

ponents, yet completely lacking in assem#
bly and integration instructions for these
components. We would suggest that IT is
not buying simply because no one is pro-
viding the instructions for assembling the
pieces in the context of their existing en
vironment, concerns, and needs.

Current object methodologies do not
provide adequate instructions for dealing
with the business. Theydonotidentifythat
someling (the business) exists above and
beyond the boundaries of the applications
wearebuildingwith OOPLs. MostofIT's
current problems exist precisely because
of this application tunnel vision. Instead
of focusing on the business, we IT profes-
sionals have been taught to think about
computer solutions. Our traditional de
velopment lifecycles do not revalidate the
application against the business at the en-
terprise level. The topic of business reengi-

I neering at the enterprise level recently has
become an extremely hot topic in the IT
environment. To make the best use ofob-

ject technology in the IT environment, we
must avoid application tunnel vision. Our
approach to objects in the IT environrient
must effectively address business object
identification, sharing, management, etc.
With reuse and flexibility as key selling
points of object technology, revdidation
to the business is critical.

How will the 80% ofthe potential mar-

ketplace repraented by IT get the object
industry's attention to real business issues?
What will motivate development of a
structure for the implementation and in-
tegration of object technology? To date
no one has put together a structure to sat-
isfir the needs of IT and large organiza-
tions with mainframe and distributed en-

vironments. 60% of mainframe IT

organizations will undertake an OT pro-
ject in 1993, as opposed to 40% of IT or-
ganizations overall. It's the IBM main-
frame shops that are hurting badly enough
to put in the effort-the pain is forcing

| them to change. These are also the people
migrating offtheir mainframes, variously
terming their efforts downsizing, cooper-

DECEMBER 1992

ative ComplitiI]g> Client-Server Computing,
etc- The market segment with the largest
problem to solve is actively looking for
and experimenting with solutions.

As for those vendors and conference

promoters who believe there is no inter-
est in the mainframe IT environment, we

have been asking questions and raising is-
sues at every object technology conference
this year, as well as at several vendor-de-
livered training seminars. Mainframe IT
professionals keep coming up and telling
us about the same concerns, which are not

being addressed. We think vendors do not
see the market because they are largely un-
familiar with the problems of the main-
frame environment; they have not pack-
aged their products iii a way that addresses
IT's concerns. Until vendors recognize and
correct this, mainframe IT organizations
will see no value inbuying their products.
Some research in this area would be ap-
propriate and profitable.

Speaking of profitable, in this month's
issue Mr. Richard Dellinger of ParcP]ace
Systems addresses the financial savings
from zero-cost portability. The concept is
simple, really. Instead ofwriting every user
program and software package in a raw
third-generation language (3GI) like
COBOL, C, or C+-p, developers construct
their products iii a development environ-
ment that provides a virtual machine. The
virtual machine is an abstract computer
application program interface (API) that,
through significant effort on the part of
vendors like ParcPlace Systems, make ali
supported computers and their operating
systems look identical from the applica
tion program's point of view.

Stable, well-established virtual machine

development environments are available
from several vendors, All are in active use

for development of commercial products
and IT applications. Smalltalk virtual ma-
chines are available from Parc]?lace and

Digitalk. Objective: Inc. provides a fifth-
generation language development envi-
rot·ment product called Macroscope. Each
of these products is available on some coin-
bination of the following host systems:
MS/DOS, MS/Windows, Macintosh,
NEXT, SUN, OS/2, RS/6000, Read Mr.

Dellinger's artide carefully. The cost-eff¢c-
tiveness of his proposal cannot be over-
stated for the corporate developer build-
ing client-server applications or the

cont,zadonpageP

hortineolon

OBJECPORIENTED
Eed,nology

Robert Shelton, Editor

SIGS ADVISORY BOARD
Tom Atwood, Object Design
Grady Booch, Rational
George Bosworth, Digtalk
Brad Cox, George Mason Unvers,ty
Chuck Duff, Symantec
Adele Goklberg, Par<:Place Systems
R. Jordan Kreindier, General Electrc
Meilir Page-Jones, Wayiand Systems
Tbm Lovet OFWare. Ing,
Bertrand Meyer, Interactive Software Engineering
Sesha Pratap, Cente.Line Software
P. Michael Seashols, Versant Object Technology

Bjarne Stroustrup, ATIT Bell Labs
Dave Thomas, Object Techtlokgy International

HOTLINE EDITORVAL BOARD
Jim Anderson: Digitaik Inc.

K.C. Branscomb, L.eus Dea>pment Corp
Mary E.S. Loomis, Versant Object Technology
Reed Philtips, Knowledge Systems, Corp
Bernadette G. Reiter, Objective: irc.
Steven Weiss, Wayland Systems
john A. Zachman, Zachman International

SIGS Publications, Inc.
Richard P. Friedman, Founder & Group Pub],sher

ART/PRODUCTION

Kristina joukhadar, Managing Ed or
Susan Culligan, Pitgrim Road, Ltd„ Creative Diection
Elizabeth A. Upp, Production Editor
jennifer Englander, Art/Productton Coordinator
CIRCULAMON

Ken Mercado, Fum]Imeni Manager
Vicki Monck. CIrculation Assistant

john Schreiber, Circulation Assitant

MARKETING

Amy Friedman, Projects Manager
Lorna Lyte, Promotons Manager-Conferences
Sarah Hamittons Promotions Manager-Publications
Caren Polne, Promonons Grapsc Artist

Administration

David Chatterpaut Bookkeeper
Ossama Tomoum, Business Manager
Margherita R. Monck, Generaa Ma,nager

jane M. Gnu, Contributing Editor

THE HOTLINE ON OBJECTORIENTED TECHNOLOGY (ISBN
#1044 4319) is publ{shed monthy by SIGS Publicatons, Inc

588 Broadway, NY, NY 10012, (212)274.0640. © Copyright
1992 SIGS Publications, Inc. All rights reserved. Reproduc-
bon of this materal by electronic transmsmon, Xerox or any
other method will be treated as a wiliful violation of the U.S.

Copynght Law and is flatly prohibited. Material may be repro-
duced w,th express permission from the publisher. Mailed First

Class. Subscription rate M- one year (12 issues) $249, For-
eign and Canada $279. Singte cooy $25.

POSTMASTER: Send address changee & subser ption orders
to HOTLINE, Subscriber Services, P.C. Box 3000, Dept HOT,
Den,Ble, Nj 07834.

Submit editorial correspondence to Robert Shelton, 1850

Union Street, Suite 1548 San Francisco, CA 94123
voice: (415) 928·5842, fax: (415) 9283036.

1 PUBLICATIONS
Publishers of HOTLINE ON OBJECT·ORIEN'rED TECHNOLOGY,
JOURNAL OF OBJECT·ORIENTED PROGRAMMING, OBJECT
MAGAZINE. THE X JOURNAL. C++ REPORT. THE SMALLTALK
REPORT. and THE INTERNATIONAL OOP DIRECTORY.

3

MISIGS

METHODS EE

Design by contract: building

bug -free 0-0 softwa re

Nhen evaluating a software development method, many peo-
ple tend to view productivity as the major expected benefit For
object-oriented technology, 1 believe this is inappropriate. Who
really cares about the number of lines programmers churn out
each month? What matters is how good these lines are. In other
words, the focus should be less on productivity than on quality.
Better software methods; languages, and tools should also better
productivity, ofcourse, but mainly as a by-product of improved
quality. In the words of K. Fujino, Vice President of NEC Cor-
poration's CAC Software Development Group, "W]ien quality
is pursued, productivity follows."1

A major component of quality in software is reliability: a sys-
tem's ability to perform its job according to the specification (cor
rectness) and to handle abnormal situations (robustness). Put

more simply, reliability is the absence of bugs.
Reliability, although desirable in software construction re-

gardless of the approach, is particularly important in the object-
oriented method because of the special role given by the method
to reusability: unlesswe can obtainreusable software components
whose correctness is much more trustworthy than that of usual
run-of-the-mill software, reusability is a losing proposition.

How can we build reliable object-oriented software? The an-
swer has several components. Static typing, for example, is a ma-
ior help for catching inconsistencies before they develop into
bugs. By itself, reusability also helps: if you are able to reuse com-
ponent libraries produced and (presumably) validated by a rep-
utable outside source, ratherthan developing your own solution
for every single problem you encounter, you can start trusting
the software as much as the machine on which it runs. In effect,
the reusable libraries become part of the "hardware-software
machine" (hardware, operating system, compiler).

But thIS IS not enough. To be sure that our object-oriented
software will perform properly, we need a systematic approach to
specifying and implementing obiect-oriented software elements
and their relations in a software system. This article introduces
such a method, known as Design by Contract. Under the Design
by Contract theory, a software system is viewed as a set of com-
municating components whose interaction is based on precisely
defined specifications of mutual obligations, or contracts.

The benefits of Design by Contract include the following:
a better understanding of the object-oriented method and,
more generally, of software construction

4

Bertrand Meyer

* a systematic approach to building bug-free object-oriented systems

· an effective framework for debugging, testing and, more gen-
erall)% quality assurance

* a method for documenting software components

· a better understanding and control ofthe inheritance mechanism

· a technique for dealing with abnormal cases leading to a safe
and effective language construct for exception handling

The ideas developed beloware part of]Fiffel,2.3 which the leader
is urged to view here not so much as a programming language
but rather as a software development method. A longer exposi-
tion of the approach may be found in a recent article.7

SPECIFICATION AND DEBUGGING

As a key step toward improving4 software reliability, it is impor
tant to realize that the first and perhaps most difficult problem
is to define, as precisely as possible, what each software element
is supposed to do. Of course, specifying a module's purpose will
not ensure that it will achieve that specification, but, conversely,
if we don't state what a module should do, there is little likeli-

hood that it will do it (Dijkstra's law of excluded miracies).
As will le seen below, a specification, even if it does not fully

guarantee the module>s correctness, is a good basis for system-
atic testing and debugging

The Design by Contract theory, then, suggests associating a
specification with every software element. These specifications
(or contracts) govern the interaction ofthe element with the rest
of the world.

This presentation will not, however, advocate the use of full
formal specifications. Although the work on formal specifications
in general• and as applied to the object-oriented method is at-
tractive, we will settle for an approach in which specifications are
not necessarily exhaustive. This has the advantage that the
specification language is embedded iII the design and program-
ming language (in this case, Eiffel), whereas formal specification
languages are typically nonmexecutable or, if they are executable,
can be used only for prototypes. Here our criteria are more de-
manding: we want our language to be used for practical com-
mercial development and hence yield efficient implementation.
This preserves a keyproperty of a well-understood object-oriented
process: seamiessness,6 which makes it possible to use a single
notation and a single set of concepts throughout the software
lifecycle, from analysis to implementation and maintenance, en-

HOTLENE ON OWECT-ORIENTED TECHNOLOGY

Excerpts from leading industrypublications on aspects of object technology

. . . [Intek Integration Technologies, Inc. of Bellevue, Washington] had only its three chief architects
learn the object-oriented design (OOD) methodology behind OOP and C++. And it did take them six
months. Then those three created the class libraries needed for Intek's software. The other iii® pro-
grammers in the company just learned C++ syntax and were taught how to string together the class
libaries. It took them about two weeks to master that. Intek now uses C++ to do all its factory automa-
tion projects....

Borland's bridge to OOP, Lee Thd, DATAMATION, 8/15/92

STANDARDS . . .We maybe looking forward to the electronic equivalent of the Tower of Babel if everyone insists on
doing things their own way-trying to lock up all of the market with mutuaily exclusive approaches. I
have a colleague who says that the need for standards is a middle-age disease. Standards are unquestionalbly
dull, but thevarepreciselv what maketelephones and fax machines so useful (and widely used). We need
to apply some of the same logic to the next round ofoperating environments. and, if objects are to have
any chance of succeeding iii the short term, we need to carefidly thii,k about how future software products
wil be developed, priced, packaged and distributed.

industry watch:What do Microsoft, IBM and Apple have in common?, Richard Dalton: WINDows! 8/92

. . . Since the classes iii 00 software systems typically describe particular objects rather than abstract
concepts, and since the field is labeled OBJECT-oriented programming, it would bea good idea to avoid
the term aCLASS" in this field and use e.g., "OBJECT type" instead, because 'CLASS» has too strong a
connection with the area of taxonomy of concepts....

Objectivism: "CLASS" considered harmful, Jurgen F.H. Winkle,
COMMUNICATIONS oF THE ACM, 8/92

THE BUSINESS OF

OBJECTS T0 [Taligent's Guglielmi] wants to court UNIX users bv writing adapters within the Pink system. IBM
and Apple witi write adapters so the operating system will be portable, making existing software able to
run on it. But analysts predict that even if Pink is that advanced, anyinitial success will be lin]tied to IBM
and Apple machines* To convince system vendors and software developers to write for Pink, Guglielmi
caii point to a large installed base of:„]achines, something that anodier bleeding-edge COnlpally Couddii>t . - . .

From blue to pink, Gary Andrew Poole, UNIX WORLD, 10/92

- . . The software industry itself has a long way to go before it converts its thinking about packaging and
pricing to an object orientation. Word for Windows is a good example: Each time it is updated it be-
comes a more complex package ofwhat might, in the future, be sold as individual objects.... The prob-
lem is that almost no one is creating, packaging or pricing software by the obiect, This means an enor-
mous upheaval somewhere along the line, riot only by the companies that create the software, but
throughout the entire software distribution chain, right down to the waythat the neighborhood software
store carves up shelf space, does inventory and Calculates its profit margin

Industry watch:What do Microsoft, IBM and Apple have in common? Richard Dalton, WINDOWS, 8/92

If a recent presentation by Microsoft Corp. executives to developers is any indication, the company is
making good progress onits object-oriented environment for Windows NT,code-named Cairo. . .which
will begin shipping next year....1 Program chieffim Allchin]said the developers didn't like Microsoft's
original user interface design for Cairo, so it will be changed to look more like Windows. And Microsoft
is also reviewing its original decision to make Cairo available only on NT. A scaled-down version of
Cairo, minus features such as security, may show up on DOS Windows after all.

Windows Goes to Cairo, DATAMATION, 8/15/92

DECEMBER 1992 21

INDUSTRY BRiEFS ma ,

11:10¥ 8*0203>
K.C. Branscomb, most recently chief executive officer of IntelliCorp, Inc., has been named Senior Vice President of business devel
opment at Lotus Development Corp. Responsible for pursuing business ailiances and technology relationships in support of Lo-
tus' workgroup computing strategy, Branscomb will report to Lotus President and CEO Jim Manzi, joining the companfs senior
executive staff.

AICorp Inc. and Aion Corp. announced the completion of their merger and will begin doing business as of Oct, 1, 1992 under the
name of Trinzic Corp. Trinzic's management team is a combination of the leadership ofboth companies. The executive manage-
ment for Trinzic is as follows: Robert Goldman, Chairman; Jim Gagnard, ChiefExecutive Officer; Frank Chisholm, President; Larry
Cohn, Executive Vice President of Technical Operations; Irv Lichtenwald, Chief Financial Officer; Larry Harris, Chief Technology
Officer; and Colin Phillips, Vice President o f International Operations. Trinic will continue to enhance and market its two appli-
cation development tools: KBMS and The Aion Development System (AionDS).

Denny K. Paul, formerly a key senior executive at both Businessland Inc. and Dataquest Inc., has joined Infinity international Fi-
nancial Technology Inc. as Chief Financial Officer. Mr, Paul joins Infinity as Vice President and CFO with responsibilities in gen-
eral management, administration, and finance.

SGN and EURIWARE announced the formation of INTELLITIC INTERNATIONAL with a charter to promote, seU, develop, distribute,
and maintain the MATISSE Database Management Product, a second-generations industrial-strength, open-semantic object database.
INTELUTIC INTERNATIONAL is managed by Executive Chairman Bruno de Saint Chamas, Executive Vice President of Mar-
keting and Sales Olivier Loubiere, and Executive Vice President of Technology Pierre Moller.

Sherpa Corporation joined the Object Management Group COMG). Sherpa Corporation markets PIM solutions to Fortune 100
companies in the aerospace, automotive, defense, telecommunications, and consumer electronics industries.

SunPro and MetaWare incorporated have announced a licensing agreement in which Met,Ware's x86 code-generation t¢chnol
ogy is used in a new family of SunPro compilers for personal computers. The family, called ProCompiter, makes available com-
pilers for developing applications on the Solaris for X86 operating environment.

Non-profit International Consortium for Eiffel (NICE) announced that Robert «Rock"Howard will serve as tile new chairperson.
Mr, Howard is the president of Rock Solid Software, which distributes Eiffel products and publishes the Eiffel OUTLOOK journal,

Object Technology International inc. announced two new ENVY/Developer distributors. Cyberdyne Systems Corporation Pty.
Limited ha5 agreed to be an ENVY/Developer distributor for the Australian market, and Artificial Intelligence International Ltd.
(AlIL) has become a distributor of ENVY/Developer for Obiectworks/Smalltalk in the United Kingdom, Both companies have ex-
perience providing consulting and product solutions for their Smalltalk customers.

Objectivity selected Hewlett-Packard's SoftBench framework as its standard solution forintegrating multiple software applications
into a single cohesive environment Under the terms of the agreement, Objectivity will incorporate the Soft]3ench Broadcast Mes-
sage Server technology into Objectivity tools and also may offer this technology to Objectivity customers.

Data General Corporation and NeXT Computer Inc. announced a relationship in which Data General will resell NEXT worksta-
tions with AViiON servers. In addition, the two companies win cooperate in the further development of advanced client/server
solutions. Data General will port NeXT's NetInfo to its AViiON servers by the end of 1992.

NeXT Computer Inc. and Auspex Systems inc. wii] comarket Auspex NFS network servers to NeXT workstation customers un-4
der a teaming agreement just completedbythecompanies. Auspexalsoannouncedthatthe company will work with Xedoc Soft-
ware Development, Pty. Ltd. to sell and Support NeXT network management software, called Netinfo SPARC Server Edition, used
with Auspex servers. NeXT and Auspex will recommend each other>s products when appropriate to meet customer needs.

20 HOTUNE ON OBJECT-OR]ENTED TECHNOLOGY

suring bettermapping from solution toproblemand thus, among
other benefits, smoother evolution.

THE NOTION OF CONTRACT
In human affairs, contracts are written between two parties when
one ofthem (the supplier) performs some task for the other (the
client). Each party expects some benefits from the contract and
accepts some obligations iii return. Usually, an obligation for one
of the parties is a benefit for the other. The aim of the contract
document is to spell out these benefits and obfigations.

A tabular form such as in Table 1 (illustrating a contract be-
tween an airline and a customer) is often convenient for expressing
the terms of such a contract.

Table 1.

Obligations Benefits

Client Be at the Santa Barbara Reach Chicago.
airport at least 5 minutes
before scheduled departure
time. Bring only acceptable
baggage. Pay ticket price.

Supplier Bring customer to No need to carry
Chicago. passenger who is late.

has unacceptable
baggage, or has not
paid ticket price.

A contract document protects clients byspecifying how much
should be done, and suppliers by stating their lion-liability for
failing to carry out tasks outside the specified scope.

The same ideas apply to software. Consider a software ele-
ment E. To achieve its purpose (fulfill its own contract), E uses a
certain strategy, which involves a number of subtasks, 2,-., tn.
If subtask ti is non-trivial, it wilf be achieved by calling a certain
routine R. In other words, E contracts out the subtaskto R. Such
a situation should be governed by a well-defined roster of obli-
gations and benefits: a contract.

Assume for example that tl. is the task of inserting a certain el-
ement into a dictionary (a table where each element is identified
by a certain character string used as key) of bounded capacity.
The contract will be as shown iii Table 2.

This contract governs the relations between the routine and
any potential caller. It contains the most important information

Table 2.

Obligations Benefits

Client Make sure table is not Get updated table
full and key is a non- where the given
empty string element now appears,

associated with the

given key.

Supplier Record given element No need to do anything
in table, associated if table is full, or key is
with given key, empty string.

DECEMBER 1992

that can be given about the routine: what each party in the con-
tract mustguarantee for a correctcall, and what each party is en-
titled to in return,

So important is this information that we cannot remain satisfied
with an informal specification of the contract as above. In the
spirit ofseamlessness (encouraging us to include alt relevant in-
formation, at a}]levels, in a single software text), we should equip
the routine text with a listing of appropriate conditions. Assum-
ing the routine is called put, it will look as follows in Eiffel syn-
tax, as part of a generic class DICEONARY IELEMENTJ:

put (x. ELEMENT; key: STRING) is
- Insert x so that it win be retrievable through key.

require
count « capaci*
not key.empty

do

... Some insetion algorithm -
ensure

has 04;
item (key) = x;
count =old count + 1

end

The require clause iiitix,duces an input coridition, or precondi
tion; the ensure clause introduces an output condition, or post-
condition. Both of these conditions are examples of assertions or
logical conditions (contract clauses) associated with software ele-
ments. In theprecondition, count is the current number ofelements
and capacity is the maximum number; iii the postcondition, has is
the boolean query that tells whether a certain element is present,
and item returns the element associated wit]) acertaiti key. The no
tation old count refers to the value of count on entry to the routine,

CONTRACTS IN ANALYSIS

The above example is extracted from a routine describing an im
plementation (although the notion of dictionary is meaningful
independent of any implementation concern). But the concepts
are just as interesting at the analysis level. Imagine, for example,
a model of a chemical plant, with classes such as DINK, PIPE, VALE,
CONTROL_ROOM Each of these classes describes a certain data ab-
straction-a certain type of real-worid obiect, characterized by
the applicable features (operations). For example, DANKmayhave
the following features:

· Yes/no queries: is-empty, is_All...
• Other queries: in_valve, oulvalve (both of type VALVE),

gauge_reading, capacity...
· Commands:.fm, empty

To characterize a command such asjitl we may use a pre-
condition and postcondition as above:

0 is
- Fill tank with tiquid

require
in_valve.open;
outvolve. dosed

deferred - i.e., no implementation
ensure

in valve-dosed;
outvolve, dosed;
is-Juu

end

5

4

METHODS E E

This style of analysis avoids a dassic dilemma of analysis and
specification: eitheryouuseaprogrammingnotation and run the
risk ofmaking premature implementation commitments, or you
stick with a higher-level notation («bubbles and arrows") and re-
main vague, forsaking one of the major benefits of the analysis
process: the ability to state and darify delicate properties of the
system. Here the notation is precise (thanks to the assertion mech-
anism, which maybeused to capture the semantics of various op-
erations) but avoids any implementation commitment (There is
no danger ofsuch a commitment in the above example, since what
it describes includes no software and, indeed, no computer yet!
Here we are using the notation just as a modeling tool.)

Jean-Marc Nerson's BON object-oriented analysis and design
method7.8 starts from these ideas but provides complementary
representations (graphical, tabular in the style of Wirfs-Brock et
at.9 and a multi-step methodological sequence. An unpublished
workbv Mark Ratjens from Class Technology (Sydney, Australia)
is based on similar premises.

INVARIANTS

Preconditions and postconditions apply to individual routines. It
is also important to use assertions to characterize a class as a whole,
rather than its individual routines. An assertion describing a prop-
erty that holds all instances of a class is called a class invariant. For
example, the invariant of DICTIONARY could state:

invariant

0 <= count; count <= capacity

and the invariant of TANK could state that e.full really means «is
approximately full".

invariant

is_Adl= (0.97 * capacity <. gauge)
and (gauge « 1.03 * capacity)

Class invariants are consistency constraints characterizing the
semantics of a class. This notion is important as a basis for configu-
ration management and regression testing because it describes
the deeper properties of a class: not just its characteristics at a
certain moment of evolution, but the constraints that also must
apply to subsequent changes. In mv view, the notion of class in-
variant is one of the three or four most important concepts in
the whole object-oriented approach.

Viewed from the contract theory, an invariant is a general
clause that applies to the entire set of contracts defining a class.

DOCUMENTATION

An important application of contracts is that they provide a stan-
dard way to docunient software elements: classes. To provide client
programmers with a proper description of the interface proper-
ties ofa class, it suffices to give them a version of the dass, known
as the short form, which is stripped ofallimplementation infer-
mation but retains the essential usage information: the contract.

The "short» form (provided as one of the formats for dis-
playing the class text by the browsing tools of the environment)
retains headers and assertions of exported features, as well as in-
variants, but discards everything else. For example:

6

class inteitace DICTIOLARY [ELEMEDIT] feaxie:
put (x: ELEMENT; key: STRING) is

- Insert x so that it will be retrievable through key.
require

count <= capacity;
not key.empty

ensure

has 00;
item (key) =x;
count = old count + 1

,.. Interface specifications of other features
invariant

0 <= count; count <= capacity
end class interface- DICYTONARY

This short form serves as the basic tool for documenting li-
braries ard other software elements. It also serves as a central

communication tool between developers. We have found that
emphasis on the short form facilitates software design and pro-
ject management, encouraging developers and managers to dis-
cuss key issues (interface, specification, intermodule protocols)
rather than internal details.

TESTING, DEBUGGNG, AND QUALITY ASSURANCE
Given a class text equipped with assertions, we should ideally be
able to prove mathematically that the routine implementations
are consistent with the assertions. In the absence of realistic tools

to do this, we can settle for the next best thing, which is to use
assertions for testing.

Compilation options enable the developers to detennine, class
by class, what effect assertions should have, if any: no assertion
checking (under which assertions have no effect at all, serving as
a form of standardized comments), preconditions only (the de-
fault), preconditions and postconditions, all of the above plus
class invariants. or all assertions.

These mechanisms provide a powerful tool for finding mis-
takes. Assertion monitoring is a way to check what the software
does against what its author thinks it does. This yields a produc-
tive approach to debugging, testing and quality assurance, in
which the search for errors is not blind but based on consistency
conditions provided by the developers themselves.

CONTRACTS AND INHERITANCE

An important consequence of the contract theory is a better un-
derstanding ofthe central object-oriented notions ofinheritance,
polymorphism, redefinition and dynamic binding,

A class B that inherits from a classA may provide a new decla
ration for a certain inherited feature r ofA (Fig. 1).For example, a
specialized implementation of DICJYONARymight redefine the al
gorithm forput. Such redefinitions are potentially dangerous, how-
ever, as the redefined version could iii principle have a completely
different semantics. This is particularly worrisome in the presence
of polymorphism, which means that in the call a. r the target a of
the cal], altliough declared statically of type A, could in fact be at-
tached at runtime to an object of type B. Then dynamic binding
implies that the B version of r will be called in such a case.

This is a form of subcontracting: A subcontracts r to B for tar-

HOTLINE ON OBAECTORtENTED TECHNOLOGY

Sun Pro SunPro announced the availability of the ProWorks family ofdevelopment en vironments for the Solaris
for X86 operating environment, the initial offerings providing the principal development component of
the Solaris for X86 early access kit. The ProWorks famihr of integrated development environments for
C, C++, and Fortran consists of the ProWorks tools and a ProCompiler language system for C, C++, or
Fortran. The ProWorks tools, which use the OPEN LOOK graphical user interface, include Session Man-
ager, Debugger, SourceBrowser, Analyzer, Make Tool, and FileMerge. Early versions of ProWorks de-
velopinent environments including the ProCompiler language systems are available immediately through
SunSoft's Solaris for X86 early access kits.

SunPro 2550 Garcia Avenue, Mountain View, CA, 94043-1100, 41 5.960.1300, fax: 415.969.131

intellitic international Intelitic International is pleased to announce the release of MATISSE Version 2.1, a second-genera-
tion Open Semantic Object Database. This multiuser clienUserver architecture is compatible with C++
and fully complies with the OODBMS Manifesto. Its open architecture is also in compliance with ANSI
standards. With MATISSE, 'the developer is able to use any third-party development tool and any com-
mon language, such as C, C-+, FORTRAN, ADA, and COBOL. Built-in features include cardinality
constraints, type checking, triggers, and daimons. Based on the ANSI three level architecture, modu-
larity is inherent within any MATISSE application and referential integrity is guaranteed by the MA-
TISSE Meta-Schema.

Intellkic ntemational, USA: ODB (Object Databases),
238 Broadway, Cambridge. MA 02139, 617.354.4220, fax. 617.547.5420

Corporate Office Entemtic Internationak Saint Quentin en Yvelines, Cedex, France, +33.1.30.14.54.30

Lucid Inc. Lucid Inc. announced the first ofseveral scheduled enhancements to the Energize Programming Sys-
tem. Energize 1.1, with support for more tools and utilities and improved performance in its native
code C++ and C compiler, is shipping immediately. New releases of Lucid C and Lucid C++ and com-
pilers are also shipping immediately. Pricing is unchanged from Lucid's original offering that allows
each programmer iii a workgroup to have his or her own product, For five-person workgroups, it is
priced at $3,250 per seat. The product can also be purchased in single quantities for $4,250. Additional
discounts are available for larger workgroups and sites. Current customers with support agreements
receive free upgrades.

Lucid Fnc„ 707 Laurel Street, Menlo Park, CA 945025,415.329.8400, fax: 415.329.8480

Microtec Research Inc. Microtec Research Inc. announced availability of its Intel 1960 and 8086- family microprocessor devel-
opment tools on the IBM RISC System/6000) workstation. These tools join the Microtec Research Mo-
torola 6800 family tools already on the IBM workstation and were ported under an agreement with IBM.
A C++ cross compiler is available for 68000 target processors, compliant with version 2.1 of the AT&T
specification. US list price starts at $4,300 for the MCP68K Package, which includes ANSI C Compiler,
Assembler, Linker, and Librarian for Motorola 6800 processors.

Microtec Research Inc., 2350 Mission Conege Blyd.S Santa Clara, CA 95054,408.980.1300, fax: 408.982.8266

Sapiens Software
Corporation

Sapiens Software Corporation released the 3.3 version of its Star Sapphire Common LISP for the PC,
PS/25, and compatibles. The product includes an interpreter, incremental and fastload compiler for
Common LISP, EMACS editor, and over 1 Mb of online reference materials for the language. Star Sal)-
phire support for the Common LISP Object System (CLOS) has been upgraded, with version 3.3 in-
cluding most of the proposed ANSI CLOS standard. The product sells for $99.95 and has an academic
volume discount pr ogram.

Sapiens Software Corporation, PO Box 3365, Santa Cruz, CA 95063,408.458.1990, fax: 408.425.0905

TGS Systems, Ltd TGS Systems, Ltd. announced the Prograph IAC Goodies disk, which gives developers using Prograph's
object-oriented language high-level facilities for writing applications making use of Apple Events. The
IAC Goodies diskis a $49 disk with documentation, dasses, and examples for writing applicationsin Pro-
graph that make use of the Inter Application Communications (IAC) capabilities of Macintosh System
7. Higher level support, in the form of Prograph classes, is provided for the Apple event Object Model.

TGS Systems Ltd., 2745 Dutch Village Road, Suite 200, Halifax, Nova Scotaa, Canada BJL 4Gn

902.455.4446, fax: 902.455.2246

DECEMBER 1992 19

PRODUCTANNOUNCEMENTS E E

sharing of information across documents and applications; enhanced graphics; global computing; and
general usability features. Added to the application development environment of Release 3.0 are the
Database Kit, 3D Graphics Kit, Phonekit, and Indexing Kit, as weil as bwidled Novell Client and Ap-
pleShare Client software, additional Macintosh and DOS file support and expanded ability to share files
and printers from various vendors, and to fax modems and CD-ROM drives among networked ukrk
In addition to built-in ISDN capabilities, Hayes Microcomputer Products Inc. provides an ISDN Ex-
tender, a telecommunication network interface module that can be used for point-to-point communi
cations and remote LAN access. Registered owners of NeXTSTEP Release 2 can upgrade to Refease 3.0
for $295. NeXTSTEP Release 3.0 will be induded automatically with all NeXT computers, and will also:
be provided on a CD-ROM for backup.

NeXT Computer Inc.,900 Chesapeake Drives Redwood City, CA 94063 415.366.0900, fax: 415.780*3714

Micro Data Base Systems Micro Data Base Systems (mdbs) is now shipping the Obiect/1 Professional Pack for the Oracle rela-
tional database management system. Developed jointly by mdbs and Database Engineering Ltd., the Ob
ject/1 Professional Pack for Oracle allows developers to manage an Oracle session within art Object/1
application. ObjecUl is an object-oriented development environment that allows rapid application de-
velopment of graphical user interfaces (GUIs) iii Windows and Presentation Manager. Object/1 appli
cations can query and update data from Oracle through the ilse of Orade's SQL language. The Object/1
Professional Pack for Oracle RDBMS is $495.

Micro Data Base Systems, Two Executive Drive, PO Box 6089,

Lafayette, IN 47903-6089, 317.447.1122, toll-free: 800.445.MDBS, fax: 317.448.6428

Want Software Liant Software announced that its PHIGS+ -based programming library-FIGARO+ 3.0 (-enables
programmers to develop graphics applications in the object-oriented environment ofG+. FIGARO+ is
an independent PHIGS+ implementation, providing tigdit integration with the X Window System, PHIGS'
Extension to X (PEX), as well as graphics accelerators like Sun Microsystems' XGL Silicon Graphics' GL
and GLX and Hewlett-Packard>s STARBASE. US list prices begin at $2,600, depending on the configu-
ration. FIGARO+ 3.0 C platforms range from PC to supercomputer. Liant also announced a major up»
grade of its C-scape User Interface Management System, an object-oriented C development tool for
rapidly creating portable text and graphics-based user interface (UI) applications. Developers can now
create applications using the new CUA (common user access)-style borders for both text and graphics
mode, as well as other advanced windowing functions. C-scape DOS now also supports Microsoft C.
C++ 710 and Watcom C 9.0, as well as Borland C.C++ 3.X and Zortech C++ 3.0 compilers. In addition to
other new features, new classes have been added and there is expanded documentation. C-scape 4.0 also
includes the Oakland Graphics Library, a device-independent graphics library. North American prices
start at $499, depending on configuration. Upgrade prices start at $299.

Liant Software, Framingham, MA 619.457.5350, toll free: 800.682.9860

Digitalk Inc Digitalk Inc.'s language-neutral PARTS workbench consists of a catalog of prebuilt components, both
visual and nonvisual, and a workbench window. Applications are created by' first dragging parts front
the catalog into the workbench, then "wiring" parts together by drawing lines between them. PARTS
Workbench for 08/2 2.0 has a suggested retail price of $ 1,995. Current Smalitalk/V customers can con-
tact Digital for a special offer. Digitalk Inc. is also shipping the 32-bit version of its object-oriented
Smalltalk/V development environment for OS/2 2.0. 7'he new version results in Smalltalk/V applications
that are up to 100 percent faster and 50 percent smalier· than 16-bit OS/2 applications. Smalltalk/V for
OS/2 version 2.0 has other improvements, induding the ability to call both 16-bit and 32-bit Dynamic
Link Libraries, a debugger with enhanced single-stepping capability, improved support for bitmaps, dou-
tile-byte character set characters in Smalltalk/V code, and support for OS/2's common dialog boxes.
Smalitalk/V version 2.0 for OS/2 has a suggested retail price of $99.50. Individuals and small groups in-
terested in learning object-oriented design and Smalltalk/V can now attend public training classes offered
monthly by Digitalk Inc. at Digitalk Professional Services' new facility in the Portland, Oregon, area.
Digitalk continues to offer a wide range of object-oriented courses and seminars for delivery at a cus-
tomer's facility.

Digitalk Inc., 9841 Airport Boulevard, Los Angeles, CA 90045, 310.645.1082, fax: 310.645.1306

18 HOTLINE ON OB,ECT-ORIENTED TECHNOLOGY

gets ofthe corresponding type. Blit a subcontractor must be bound:
by the original contract. A client executing a call under the for m:

if a.pre then
a. r

end

must be guaranteed the contractually promised result: the call
witi be con·ectiy executed since th e precondition is satisfied (pre
is assumed to be the precondition of r); and on exit a.postwill be
true, where post is the postcondition of r.

The fundamental principle of subcontracting follows from
these obse]-vations: a redefined version of r may keep or weaken
the precondition, and it may keep or strengthen the postcondi-
tion. Strengthening the precondition, or weakening the post-
condition, would be a case of "dishonest subcontracting" and
could lead to disaster. The Eiffel language rules for assertion
redefinition6 support the principle ofsubcontracting.

These observations shed light on the true significance of inher-
itance-not just a reuse, subtyping, and classification mechanism,
but a way to ensure compatible semantics by other means. They
alsoprovideuseful guidanceas tohowto useinheritance properly.

EXCEPPON HANDLING

Amongthe inanyother applications ofthe contract theory, we may
note that the theoryleads naturally to a systematic approach to the
thornyproblem ofexception handling, or handling abnormal cases.

A software eleinent is always a way to fulfill a certain contract,
explicit or not. An exception is the element's inability to fulfill
its contract fur any reason: a hardware failure has occurred, a
called routine has failed, or a software bug makes it impossible
to satisfy the contract.

In such cases only three responses make sense:

1. Resumption. An alternative strategy is available. The routine
will restore the invariant and and make another attempt us-
ing the new strategy.

2. Organized panic. No such alternative is available. Restore the
invariant, terminate, and report failure to the caller by trig
gering a new exception. (The caller will itself have to choose
between the same three responses.)

3. False alarm. It is in fact possible to continue, perhaps after

/////:002%%%*9,

DECEMBER 1992

A

r

Figure 1.

taking some corrective measures. This case seldom occurs (re
grettably, since it is the easier to implenlent!).

The exception mechanism follows directly from this analysis.
Itisbased onthenotionof"rescue clause» associated witharou-

tine, and of "retry instruction," which implements resumption.
Details may be found elsewhere.2.3.1° An example without fur-
ther comment will illustrate the mechanism: the alternate be=

havior of the routine (similar to clauses that occur in human con.
tracts to allowfor exceptional, unplanned circumstances). If there
is a rescue clause, any exception occurring during the routine's
execution wilinterrupt the execution of thebody (the "do clause")
and start execution of the rescue clause. The clause contains one

or more instructions:

attempt_tonsmission (message: STRING) is
- Attempt to transmit message over a communication line
- using the low-level (C) procedure unsge_transmit, which
- may full triggering an exception.

- After 100 unsuccessful attempts, give up (triggering
- an exception in the caller).

local

-failures: INTEGER
do

unsafe-transmit (message>
rescue

A Rures:= fadures + 1;
iffaitures 100 then

retry
end

end

ASSESSMENT

The theory as sketched above and explained in more detail in
some of the publications listed below leaves a number of ques-
tions open. Two of the most important are:

·How do these ideas transpose to the world of concurrent object-
oriented programming?

· Exactly how powerfui should the assertion language be?

· How does the method of design by contract apply to the ear-
liest stages of software investigation (domain analysis, busi-
ness model. overall plan)?

But ore does not need to wait for these questions to be solved.
Design by Contract already has been widely applied. The theory
provides a powerful thread throughout the obiect-oriented niethod
and addresses, at least in part, of many of the issues that people
encounter as they start applying object-oriented techniques and
languages seriously: what kind of"methodology" to apply, on
what concepts to base the analysis step, how to specify compo-
Dents, how to document object-oriented software, how to guide
the testing process and, most importantly, how to build software
so that bugs do not show up in the first place. Reliability should
be built-in, not an afterthought. -

References

1. Ghezzi, C., M. fazayeriand D. Mandrioli. FuNDAMENTALs op Soft-
W.ARE ENGINEERING> Prentice Hall, Englewood Cliffs, NJ, 1991.

7

METHODS

2. Meyer, B. OBJECI-ORIENTED SOFI·WARE (ZONSIRUCT:ION, Prelltice Hall,
1988.

3. Meyer, B. En-III: THE LANGUAGE, Prentice Hall, Englewood Cliffs,
NL 1991.

4. Hayes 1.1. (Ed.), Sncipic.uioN C.ASE STUDIES, Prentice Hal] Interna-
tional Hernel Hempstead, 1988.

5. Duke, R., et al. The object-Z SpeCifiCation language, PROCEED]NGS 01
TOOI-S 5 01-i ca Noi.ock 05' OBJEC'I 4)RIEN rEI) LANGUAGES AND SYS-
ri™s), Santa Barbara, 1991, pp. 465-483.

6. Henderson-Sellers, B. A BooK 01 OBJECT-OR IENTED KNOWLEDGE,
Prentice Hall Sydney (Australia). 1991.

7. Nerson, J-M.Applying object-oriented analysisand design, CoMMU-
NICATIONS OF THE ACM, 35(9):pp. 63-74,1992.

ZEROCOST PORTABILITY E E com,;rved bon?Fee /

Twomajorhurdies must be overcome to be successful. The first
is to provide acommon interface to the underlying operating sys-
tem capabilities and the second is to provide some mechanism to
deal with the problem that not all computers have the same CPU.

The accepted solution to the first hurdle is to employ a vir-
tual machine as mentioned above. The virtual machine provides
a platform-independent set of utilities that allow an application
program to have uniform access to various operating system com-
ponents such as the window manager, file system, graphics sys-
tem, memory manager, and I/0 manager. Thus, although the
underlying operating systems maybe dramatically different, vir-
tual machines make them seem identical to the application pro-
gram (Figure 1).

To overcome the second hurdle of incompatible CPUs, there
are two techniques diat employ very different approaches. The das-
sical technique incorporates the use of an interpreter as a part of
the virtual Inachine. In an interpretive environnielit, the virtual nia-
chine includes not onlytlie special layer that transforms operating
environments but also a runtime translation system. This virtual
CPU converts virtualinstructions (the instruction set ofthevirtual
machine) into a series of subroutine calls that implement the se-
mantics of virtual instructions. These subroutines are written us-

ing the native instruction set ofthe host CPU. Using this technique,
the source code for the application is "compiled» into the instruc-
tien set ofthe virtual machine rather thai) the instruction set ofany
specific processor. The interpreter then performs the function of
the CPU by "executing" the virtual machine instructions.

Note to our readers:

To make it easier to save and protect your copies
for back reference, the HOTLINE has been
redesigned to lit into a standard three-fole punch
looseleaf binder.

Customized HorUNE binders hold two volume

wears and can be purchased for $15 (including
shipping and hand#ng) b# calling 21 2-274.0640.

8

8. Nerson, HA. OBJECT-ORIENTED ARCHITECTURES: ANALYSIS AND DE-
SIGN OF RELIABLE SYSTEMS, Prentice Hall, 1993 (forthcoming).

9. Wids-Brock, R., B. Wilkerson and L. Wiener. DESIGNING OBIECT-

ORIENTED Sop:rwARE, Prentice Hall, Englewood Cliffs, NJ, 1990.

10. Meyer, B. Applying"Design by Contract," IEEE C0MPUTER, October
1992.

Bertrand Meyer, a SIMULA fan since 1973, is the president of Inter-
active Software Engineenng, Santa Barbara, He Is the man designer
of the Eiffel language and environment and author of OBJECT-ORIENTED
SOFPWARE CONSTRUCTION INTRODUCTION TO THE THEORY OF PRO-

GRAMMNG LANGU.AGES and E{FFEL: THE LANGUAGE (PREN-NCE HAM_),

There is a rather severe performance penalty incurred with an
interpretive environment. Depending on how closely the virtual
machine instruction set matches the actual CPU instruction set,

the cost of executing each virtual machine instruction can run
from a few to 100 or more CPU instructions. As a result, the ap-
plication program could execute from one order of magnitude
to, in very extreme cases, two orders of magnitude slower than
ifan interpreter had not been employed.

The second technique was developed to address this per-
formance issue. With this approach, the source code is still
compiled to an intermediate form; however, unlike an inter-
preted instruction, the intermediate form is translated to the
actual CPU instruction set at runtime. In the technical liter-
ature, this technique is referred to as dynamic compilation
or dynamic translation. A more descriptive name would be
lazy code generation because the machine code is actually
generated as needed and then put into a cache in case it is
needed at a later time. As a result of this invention, applica-
tion programs can be portable vet suffer no serious degrada
tion of performance.

Ifsuch a capability were readily available, tremendous savings
could be gained by software development organizations that sup-
port products on more than one platform. But are we dr earning?
Is this really possible?

ParcPlace Systems provides true portability with its Object-
Works Smalltalk and VisuaiWorks products. Both products pro-
vide a dynamic translation capability that allows programs to ex-
ecute the native instruaion set of the host CPU (Figure 2). Both
products provide a virtual machine that presents the operating
system utilities to application programs in a completely portable
fashion. The architecture of each product is shown in the ac-
Companying figure. Note that both Smalltalk and VisualWorks
provide a large selection of reusable components and that both
incorporate the Smalltalk virtual machine. The difference be-
tween the two products is that ObjectW orks S nia]1 talk is the stan -
dard Smalltalk development environment and Visua]Works is
an application development environment that provides database
connectivity and a graphical application builder. Both products
are available for MS-Windows, Macintosh, most popular UNIX
platforms, OS/2, and NeXT.

HOTLENE ON OBJECT-ORIENTED TECHNOLOGY

al

8,461
Product Announcements is a service to our

readers. it is neither a recommendation nor

an endorsement of any product discussed.

Softool Corporation Softool Corporation announced CCC/Manager for Windows and OS/2, a new software change and
configuration management product, supporting the development ofall object-oriented applications in-
depen<lently of implementation language. CCC/Manager for Windows and OS/2 offers a fully CUA-
compliant user interface, permits users to store, retrieve, and manipulate multiple versions of any kind
of file, and has an Application Management that enables users to create virtual windows into the repos
itory versions and to update them. Softool's new product operates on networks and stand-alone PCs,
without the intervention of a host. When used with host change management systems and Softool's
CCC/Bridge product, COC/Manager for the desktop permits a three-tier architecture covering the de
velopment lifecvcle. Softoolis also now offering a new version ofits CCE/Manager product to IBM RS-
6000 users.

Softool Corporation, 340 Kellogg Avenue, Go[eta, CA 93117, 803.683.3777, fax: 805.683.4105

Virtuag Technologies]nc. Virtual Technologies Inc. introduced its Data Entry Workshop, a collection of tools for writing vali-
dated data entry screens and other advanced Windows controls. It's a three step process: Use Resource
Workshop to place and edit the controls interactively, run the MAKESRC utility supplied with Data
Entry Workshop to generate the source code automatically in Ct + or Pascal, and use Borland>s Ob
jectWindows Library to access the controls. Data Entry Workshop is designed for programmers using
Borland C++, Borland Turbo Pascal for Windows, or Borland Turbo C++ for Windows. Data Entry
Workshop costs $189. No payment of royalties is requiredl

Virtuat Technologies Ince 46030 Manekin Plaza, Suite 160,

Sterling, VA 22170, 703.430.9247, Yax: 703.450.4560

Compass Point Software Compass Point Software completed its five man-year engineering effort with the introduction of ap-
plication::ctor (pronounced "Application Constructor"), a GUI application development tool that re-
lieves the programmer of virtually all the programming burden presented by Windows' graphical en-
vironment. The product includes an intuitive, object-oriented «View Editor," a user-interface class
library containing over 100 classes, and a C+++ class browser. In addition, application::ctorcan be used
as a very sophisticated prototyping system. application::ctor requires Windows 3.1 and your favorite
C++ compiler. The product is priced at $99.

Compass Point Software, 332A Hungerford Dme, Rockvme, MD 20850, 301.739.9109

Interactive Development Interactive Development Environments Inc. has announced the immediate availability of Object-
Environments Inc. Oriented Structured Design/0 +. OOSD/Cd- supports development teams doing architectural design,

detailed design, implementation, and documentation of C++ applications, as weiI as creating reusable
design components. IDE has initially integrated OOSD/C++ with the ObleaCenter programming envi
ronment and with PrameMaker and InterleaG technical publishing svstems. Integration with Sof[Bench
C++ along with objecteenter will be available on the HP platform in the fourth quarter of 1992. OOSD/C+1
is available immediately on Sun SPARC-based workstations andservers andwillbeavailable on HP 9000
Series 700 and IBM RS/6000 worl<stations before the end of 1992. Interactive Development Environ-
ments Inc. has also introduced the Success Package for C++, which combines IDE>s OOSD/C++ with
training. IDE consultants work with customers to identify success criteria, define people's roles, set cor-
rect expectations, and organize for reuse. The Success Package for C++ is available immediately to acm
commodate project teams of5-15 peopk with the frve-seat package costing $75,000. Although IDE r¢c
ommends customers start with the Success package, OOSD/C++ is available with one year of software
maintenance and technical support and a four-day training class for $10,000 per seat.

Interactive Deveiopment Environments Inc., 595 Market Street, 10th Fioor,

San Frandsco, CA 94105, 415.543.9090, tax: 415.543.0145

NeXT Computer Inc. NeXT Computer Inc. is shipping NeXTSTEP Release 3.0, which preserves ali the features of the previ-
ous version, while adding improved custom application development tools; greater interoperability;

DECEMBER 1992 17

PRODucT Review = a

jectsarefullyconformantwith ObjectManagementGroup (OMG)
specifications, can be distributed around the office or globe with
or without the use of ati Object Request Broker, and are com-
pletely portable across different platforms and desktops (Fig. 1).
Furthermore, these objects can be reused indefinitely in differ-
ent applications through a simplified version of plug-and-play
that is rapidly becoming known as set-and-leave-be.

Developers, regardless of skill level, can become instantly
proficient in assembling arbitrarily complex solutions to the
simplest of problems. This tremendous productivity boost is
achieved by appealing to our childhood play experiences. How-
ever, developers who never played with wood blocks in their
childhood may experience significant anxiety. When our lab
elves compared Ainziod Objects with Erector Set products in
a compute-off, we found productivity gains of at least 40%,
There is no need to bolt components together with the Amziod
product, due to its use of a revolutionary new concept for hold-
ing things together: gravity. (This may also be an indication
that more work gets done when developers treat their work
with gravity!)

Our lab test did reveal a few drawbacks, in addition to the mi-
nor environmental sensitivities indicated above:

For starters, the lack of Tinker-Toy compatibility could bea
serious problem iii winning product acceptance in C++ shops.
Our elves suggested that the inclusion of a 3/8-inch drill bit
iii future releases would solve this problem for all but those
large IT network developers who are dependent on routers.
The matter of Lego compatibility is slightly more complex
and may require the use of sockets.

· Our elva had some doubts about instances being re-entrant
once installed in a system. This did not seem to be a problem
when enough instances were purchased to supply the needs
of all developers, so we would advise site licensing.

• The larger component kits come elegantly packaged in dear
plastic boxes that make ideal gifts, but which may cause se-
vere developer trepidations about fitting all the objects back
into the box. The manufacturer informed our lab that this

//6//0.L

Portable Across Multiple Platforms

Figure 1. Funy portabte.

16

packaging issimply intended to takeadvantageofanefficient
form ofshippingknown as block transfer. Since Amziod plans
to introduce new bag packaging (brown paper, if your orga-
nization needs to keep your use of objects "under wraps"),
this should become a non-issue. (Still a matter of industry
concern, however, is why developers should ever want to put
objects back in the box!)

We think the use of the word *object'
has the potential for increasing sales.

In al, our lab found the Amziod Objects to be most effective
for stress relief, comic relief, vaporware relief, and development
This is simply a blockbuster product that truly delivers every-
thing it promises-and, as the manufacturer explains, when your
systems crashes, you can «Just say OOPS."

Every developer needs an Amziod object nowl
P.S. From the editor and all of SIGS staff the best of wishes

and good cheer for this holiday season. We hope all our readers
have found our reporting and opinions useful during 1992, and
we look forward to being of continued service ill 1993. E E

Manufacturer:

Amziod

40 Samuel Prescott Drive, Stow, MA 01775, USA
U.S. 508-897·5560 or (fax) 508·-897-7332

Technical Specifications:
Made of dark walnut, red oak, cherry, rock maple,
ash, and white birch

Supported Platforms:
Any Intel-based X86 system, Apple Macintosh,
NEXT, IBM ES/9000 or AS/400, and workstations
including SUN, HP and RS/6000

Price Range:
$19.95to $199.95, or $1.00 per A La Carte object
(20 minimum)

Applications:
Great for gifts, especially with yolir organization's
logo on the bag or box

HOTLINE ON OBJECT·ORIENTED TECHNOLOGY

ZERO-COST PORTABILFTY E E

CONCLUSiON
Portability is achieved in many traditional development envi-
ronments at a significant recurring cost-one that is experienced
eachtimeariewproductreleasemustbeported. Zero-costporta-
bility environments are commercially available today. Where
porting cost is a significant financial issue-such as any situation
where the cost of porting and providing multiplatform support
exceeds the cost of developing and supporting the product on
the base platform-development environments that offer zero-
cost portability should be evaluated as an alternative. m =

Richard L Dellinger is Vice President of Engineering at ParcPlace Sys-
tems, Sunnyvale. California

1 Applications

1 Smalltalk Development Tools and
Class Libraries

I Smalltalk Virtual Machine

UNIX NeXT OS/2 Windows Mac

Figure 1.

1 Applications

1 Visua]Works Development Tools and
Class Libraries

Smalltalk Virtual Machine

UNIX NeXT OS/2 Windows Mac

Figure 2.

DECEMBER 1992

EDITORIAL E E commued *mpa.ge 3

commerdal tool builder who supports (or should support) mui-
tiple host platforms. Reaftimeand online transaction processing
systems are running todayin these virtual machine environments,
suggesting that all but the most severe performance concerns
holdlittle merit. Thecost ofdeveloping and maintaining software
in these environments is lower than that oftraditional 3GLs, It's

high time that developers put aside their prejudices in favor of
more cost-effective development tools,

Mr. Bertrand Meyer of ISE writes about design by contract, an
approach to designing robust software components. The issues
Mr. Meyer addresses are central to successfully selling conlpo-
nents and developing CASE tools that will support assembly of
applications from purchased components. Component markets
like AMIX (see Hon.INE 4[1]) will partly depend, for broad ac-
ceptance and high volume business, on effective specification of
external characteristics and surrounding usage rules that come
with a concept like design by contract. Corporate IT also becomes
concerned about object contracts. Considerthetrouble thatbusi-
ness modelers and data administrators experience when specify-
ing business rules and constraints on such business entities (read
that "objects») as customer, financial instrument, or product. The
concept of design by contract gives us a mechanism for crispiy
speciking the behavior, data content, and constraints on business
components. Combined with an ER-model-based object model
technique, we have a powerful mechanism for specifying business
objects in a manner compatible with current modeling approaches.

Mr. Norman Plant, Chairman of the Object Interest Group
in England, writes about the next steps his organization must
take to further the utility of object technology to large-scaie cor-
porate developers in the United Kingdom. This article should
serve as a reminder to the object industry that large corporate IT
is interested in object technology. We think this user-driven work-
group approach (see Mr. Plant's articles, HorLINE 3[5 1,3[7]) will
be increasingly common. Large business IT has learned from ex-
perience that more leverage is available in numbers, and is in-
creasingly joining vendor-driven industry groups or forming
user-driven groups that focus on specific information technol-
ogy areas. As Mr. Plant points out, large businesses are fending
for themselves when it comes to understanding the integration
of object technology into their environments.

Hopefully, the messge is dear: if the object industry will not
help, IT will help itself. Obiect industry, are we listening?

9

4

OBJECTS IN BUSINESS E E

Object interest group
phase two

The Object Interest Group (OIG) was formed in May 1990 and
consisted of 16 leading UK companies involved in banking, in-
surance, manufacturing, chemicals, oil and steel production,
telecommunications, and government. The first project it car-
Med out (May 1990„-February 1991) was to reach a shared as-
sessment of the technology supported by hard evidence, so that
members could understand it, position it in their IT strategy, and
tell suppliers what was needed to enable faster exploitation. The
proiect was notable for the spirit of friendly and willing cooper-
ation within the group and the very positive response from the
IT industry. In previous issues (HoTLINE 3[5], 3[7]), I have re-
ported on this effort.

Following these encouraging conclusions, during the sum
mer of 1991 members planned to spread their knowledge and
findings within their companies to encourage them to start ob-
ject-oriented projects. A second phase would then be focused on
developing method technique and management based on the
shared experience of real projects.

TAKE-UP

Take-up within member companies varied widely. Some started
immediately with enterprise-critical applications in fiuenced by
similar actions of a competitor. Some started by "modelling" to
see how effectively it could reflect the changing business of the
enterprise. Some started with front-end work and GUIs; in the
latter case as a productivity tool for replacing C and PM envi-
ronments. Others undertook a variety of applications: moving
information around the enterprise, process control, dient/server.
No member used it for their core business high-speed transac
tion processing systems (e.g., banking transactions, airline reser-
vations, etc). Although it is still early for feedback from these ap-
plications, members grow more positive about the technology as
they get hands-on experience.

If you are not doing real applications, real problems do not
arise and you have no basis for contributing or sharing. We have
oniy· recentiv reached tile stage where there is sufficient take-up
to provide a platform for our second phase on method, tech-
nique, and management.

OIG PHASE 2 MISSION

We defined our mission as helping OIG member companies mi-
grate to object-oriented technology at minimum risk and cost
by:

10

Norman E. Plant

· building confidence on how and where to start

· developing methods, techniques, and management through
appropriately focused teams based on sharing real project ex-
periences

· getting the products and services we need to our priorities

• using the power of the group to influence:

1. the government for funding

2. appropriate bodies for standards

3. educational institutions for research and the supply of
suitably trained grad uates

FULFILLING THE MISSION

We decided the most proactive way offulfilling our mission would
be to identifyperceived problems within our companies and form
focused teams around them. Interviews with members and their
management resulted iii the following key concerns:

1. How do I start an 0-0 project?

2. Where do I start and how do 1 coexist?

3. What methodology do I choose?

4. How do I manage reuse?

5. How do I assure domain-model quality?

6. How do I support the early days of operating O-0 systems?

7. How do I train?

This problem set provides a reasonable focus for each team
yet has sufficient overlap to provide issues oil which shared agree-
ments must be reached. As teams become more effective, new
problems will arise and can be tackled accordingly, Having a
problem focus means we are responding to real needs as opposed
to studying a topic for interest's sake. Problems 1,2, and 7 focus
on our first mission statement: «confidence in how and where to

start." The remaining problems focus on our second mission
statement: "developing methods, techniques, and management»
We plan to spend nine months on this problem set, with each
member company contributing at least 20 person-days. Teams
average four people. The scope ofthe problem areas is discussed
below in more detail.

HOTLENE ON OBJECT-OREENTED TECHNOLOGY

PRODUCT REVIEW- -

Object-building blocks
available today

Uith so much effort in the object technology industry focused
on zero-cost portability, management of reuse, commercializa-
tion of off-the-shelf components, and developer productivity,
the elves in HOTLINE'S product evaluation lab have uncovered
what they believe is a significant breakthrough product.

On July 20, 1992, Amziod Corporation announced it was
iumping on the marketing bandwagon by renaming an existing
product with the word "object." Dennis Merritt, VP of market-
ing, explained to our product review staff, "We think the use of
the word 'object' has the potential for increasing sales.» He's right.
As pointed out in this issue's "From the Editor," the Informa-
tion Technology market is substantial, and is looking for prod-
ucts it· can get its hands on right away. Since everyone in this in-
dustry knows that Amziod>s marketing strategy is completely
revolutionary and heretofore untried, we simply had to review
its product.

Amziod's product is off-the-shelf objects-prefabricated corn-
ponents that can be used to realize an infinite variety of sophis-
ticated structures such as towers, castles, abstract sculptures, en-
gineering maivels with cantilevers, gravity-defyi]ig bridges, parquet
designs, elegant examples of instability, and whatever else could
be inferred into the requirements document.

The manufacturer packages components in various sizes to
meet a range of needs. The "Bag of Objects" size is ideal for pi-

.luill

DECEMBER 1992

lot proiects and research efforts exploring the viability of objects
providing 9 base classes and 18 instantiations. Six additional
classes (18 more instances) can be added with the "Objects Up-
grade," Individual programmers will be best served by the'Lim-
ited Edition CASE of Objects." With 10 subclasses and a full coin-
plement of 38 instances, this will keep even the most determined
techie busy for days. Our lab confirms that large corporate de-
velopers like American Airlines Information Systems (Al'IRIS)
probably would be best served by "A La Carte Objects,» a unique
approach to packaging in which the buyer can specify exactly the
classes and quantities purchased, or Amziod's custom-fabricated
objects. Given IBM's troubles in implementing its repository
product, and its recent announcement that future versions would
utilize object technology, our elves believe IBM should purchase
Aniziod's "Oodles of Objects.' Ainziod guarantees that this pack-
age of 200 instances from nine base classes will keep an entire
mainframe development team busy for weeks. Research is cur-
rently under way in our lab to determine if the same effect can
be measured in several UNIX development shops-a much
tougher challenge!

Though robust enough to serve such mainline production
roles as executive entertainment systems, goodduck charms
(knock oIl wood), and US Army Abrams MIAl tank parking
chocks, Arnziod's objects are probably best suited for rapid pro-
totyping. Amzied's obiects are honed from fine American hard-
woods, and as such are both sturdv arid aesthetically appealing.
For systems being deploved iii hazardous or harsh environments,
however, some extra precautions will be required above and be-
yond the manufacturer' 5 Danish oil finish. These objects are riot
fireproofand months of development work truly can go up in a
flash, so smoking while working is strongly discouraged. Also,
due to surface porosity, these objects cannot withstand extended
contact with coffee or jolt cola. Beyond these basic cautions, de-
velopers should find these objects reliable, stable, well docu-
mented, cut to exacting specifications, and at least as much fun
as Visual BASIC

For organizations looking to industry standards efforts to re-
solve problems with compatibility and portability, Arnziod's VP
of Development Mary Kroening explained that all Amziod Ob-

15

D]SmIBUTED INFORMATION

these organizations fall broadly into two campt: those with sig-
nificant investment in: existing information systems (usually in-
volving mainframes) and those without a large investment in ex··
isting systems. Many of their concerns overlap, while some are
unique to each group.

Organizations with substantial existing investment in hard-
ware, software, and networks are almost all in agreement that mov
ing to distributed systems must be a strategic goal. However, they
are also uniform in their need to preserve or, better yet, enhance
exisling investments during the transition. These organizations are
beingdriventodavby userdemand formoreaccesstoexistingsys-
tems froin graphical interfaces running on desktop machines. Con-
scquently, issues around client/server, where the server is a host
system, and GUIs are the most important topics today.

In contrast, organizations with less existing investment are
more concerned with building new applications rapidly and be-
ing able to distributethe processing ofthese new applications in
a very flexible manner. Issues of primary concern center around
Peer-Peer distribution between powerful workstations and local
servers, and tools for building applications that can operate in
this peer-peer environment.

Given these business goals, we can examine technologies in
terms of their capability to help organizations move toward their
distributed processing goals; in particular, how object technology
can heip. Object databases, for example, are being used today to
provide distributed processing. Another exainple is the Obiect Re-

quest Broker from the Object Management Group, which is a
promisirig vehicle for trading objects across different hardware and
software environments. There are also development environments
that allow rapid delivery of GUI-based applications using Object
programming languages. In frture columns I will discuss these and
other object technologies that can assist organizations in achiev-
ing positive ROI via distributed processing of information.

CONCLUSION

Return on investment must always be the ultimate criterion
for judging the effectiveness of software. ROI forces the explicit
examination and statement of business goals, which can be
used to evaluate an organization's investment in technology.
Object technology holds great promise in providing business
solutions through distributed information processing. In fu-
ture columns I will examine various object technologies and
how they can contribute to improving business processes us-
ing distributed information processing. In addition, I encour-
age you to let me know what issues are most relevant to your
organization. I will do my best to cover those issues most rel-
event to our readership. E E

Tim Andrews is Chief Technical Off cer of ONTOS, Inc., and may be
reached at ONTOS, Inc , Three Burlington Woods, Burlington, MA
01803, by voice mall at 617.272.7110 x288, or via email at
andrews@ontos.com.

Other sources of information on object technology from 5161 Ptiblicatiom-.

;OURNAA 00

08*ci=ORIENTED Joop is wriuen by and for programmers and developers using object technology.
43•4,4 Inrernational in scope. editorial features are code-intensive, technical, and "hands-on", offer-

ing readily usable advice and programming techniques. Readers receive ihe most accurate,
cutting-edge anc{ objective information available on object-orienution. Annual subscription,+ $59.00. Back Emes.· $12.00.

OBJE€I Object Magazine is written for software managers seeking to increase software productivity through
object technology. The magazine looks at the implications of using object technology in the work-
place, including its effects on productivity, interdepartmental relationships, business trends, and the

bottom line. Object Magazine walks readers; through the steps needed to implement their own object-based strategy.
Anmot mbscriptioll: $29.00. 3,ick ismes: $7.{10.

++REPORT C++ Report guides readers on how to get the most from C++. As a code-intensive, language-specific
publication, the C++ Report is geared toward increasing productivity in the programming environ-

ment. Platformindependent and written for C++ users at all levels, this magazine is packed with new ideas, tips, tricks,
shortcuts, and usable advice on every aspect of C++. Annualsubsniptien: $69.00. Back bsues: 38.00.

(ail §101 Publication; at 212/174-0640 or fax: 212/21*0646
foriukription information on foreign poitage and inititutional ratel

14 HOTLINE ON OBJECTOR,ENTED TECHNOLOGY

PROBLEM AREAS IN DETAIL

How do i start an 0-0 project?

The deliverable is the ability to stand up in front ofyour man-
agement and project the confidence that you know how you are
going to start and run an 0-0 project Its scope includes project
and quality plans, commercial and technical objectives, docu-
mented inputs, intimate domain-knowledge inputs, facilitating
a modelling team and keeping the process going when the team
gets stuck, recognizing emerging model stability and when to
stop, obiect-oriented questioning, project stages, roles, deliver-
ables, reporting points, etc.

ff you are not doing real applications,
real problems do not arise and you

have no basis for contributing or
sharing. We have only recently reached
the stage where there is sufficient take-
up to provide a platform for our second

phase on method, technique, and
management

Where do I start and how do I coexist?

The purpose is to enable members to look at a mainstream op-
plication in their company, advise on where object-oriented tech-
nology can be introduced with benefit, say how key technical is-
sues (e. g., coexistence) can be handled, and provide supporting
evidence from external projects.

Its scope includes:

* strengthening relationships with external practitioners to gain
access to hard evidence

· studying where people have started

· looking at how detailed technical issues were handled (e. g.,
"front-end" objects sharing attributes with legacy-system
databases, front-end systems integration, front-end 0-0
databases coexisting withmainframe relational databases, etc.)

* drawing out general guidelines

What methodology do 1 choose?
This project must cover al] aspects of the two interacting life-
cycles (the domain component lifecycle and the application life-
cycle). Most current methodologies do not recognize the differ-
ence between domain and application and therefore do not

support reuse.

The scope indudes looking at available and emerging 0-0
methodologies, their strengths and weaknesses, what people's
experiences have been, coexistence with installed conventional

DECEMBER 1992

niethodologies: migration from existing methodologies, enabling
software tools, training and skill requirements, management is-
suesy standards, consistency of notation from analysis to code,
absorption of external foundation classes, etc. The deliverable
is the inventory and evaluation of O-0 methods and their po-
tential impact on current working practices, techniques, and
procedures.

How do I manage reuse?
The scope covers visibility and understanding of the range of li-
braries beng made available from internal and external sources
and the management isbues associated with their use. Library
types include generic system objects such as GUIs, generic ap-
plications such as payroll, and the forms in which they are avail-
able (code or just design).

Reuse management issues include organizational infrastruc-
ture, corporate architecture, external library assessment, identi-
fying parts ofapplications that are candidates for libraries, library
management, enabling tools, standards, ensuring reuse, and han-
dling the associated cultural issues.

How do i assure domain,model quality?
Qualitycomes from the reuse of tried and tested procedures, de
signs, components, etc. The purpose of this project is to estab-
lish a set of guidelines or designs for common business obiects
that frequently occur and can be recognized in many situations,
<'Business Party" (a person or organization with whom we in-
teract) and "Business Relationship» (the nature ofthe relation-
ship between ourselves and the Business Party) are two such ob-
jects. Both have subclasses along the lines of person, company,
and internal department. The idea of ati object <'Business Reta-
tionship" seems odd in the conventional entity-relationship ap-
proach, but in this generic form it effectively handles suppliers
who are also customers, internal company dealings, etc. It is im-
portant for the analyst to have an inventory of good design prac-
tices if domain quality is to be assured.

The approach includes:

· understanding to what extent extent generic objects can be
designed that are widely applicable to the internal working of
most companies. Examples include Business Party, Business
Relationship, Budget, Client Perception, Organizational unit,
Plan, Resource, etc,

 understanding the extent to which sound generic objects can
be designed that are widely applicabie to industry types, in par-
ticular to their products aind product distribution (e.g., sepa-
rate foundation classes for airlines, banking, insurance, etc.)

· identifying existing and potential sources of supply

• supplying visibility in the form of catalogues, electronic or
hard copy, andl detailed description guidelines

· understanding the competitive-edge issues

· assessing if the object set defines a sufficiently complete lan
guage to meet most application needs

11

4

OBJECTS IN BUSINESS E E

How do 1 support the "early-days" operation
of 0-0 applications?

As yet we have not given the project adequate definition but it
concerns those member companies cutting over their first pro-
jects and having to maintain and operate them with very little in-
house experi€]ice.

Among the issues expected to be pertinent as applications are
cut over to p roduction are:

• application deployment and hardware/software configura-
tion-management issues

· security and access control at all levels o f the architecture

· troubleshooting defects

· tuning application performance

How do I train?

The OIG has produced a two-day workshop based on the find-
ings from our first project (May 1990-February 1991).The work-
shop is a far more effective way of communicating widely than
are reports from the same project. This workshop will become
the repository for recording and communicating solutions and
anyfuture problem areas. By this means, the findings ofour group
can be effectively fed back to IT divisions. Even though member
companies are active with the technologn penetration and un-
derstanding across IT divisions as a whole are still very slight,

The scope of this project obviously includes understanding
the approach to training by external suppliers and assessments
as well as comparisons of their training products and services.

V

HARD EVIDENCE

Real experiences are essential to these problems; thus the ap-
proach is to get hard evidence from UK, USA, European, and our
own member companies (users and suppliers). In return we will
share current and prior findings with any company willing to
help. This worked well on our first project and proved that es-
tablishing these relationships is an important task.

THE BUSINESS CASE

Eachofour member companies will contribute a minimum of 20
person-days and share solutions to all problem areas. They will
have international visibility of their application and use of object
orientation. They also will have a social network of people they
can easily contact Non-member companies who can contribute
real and relevant experiences also may share in our findings.

CONCLUSION

I hope the second phase will have the sallie measure of success
as the first. Industrial collaborations are not easy, particularly
when members are competitors. But good progress can come
from wide-scale interaction of committed, focused minds, and

we need to understand the competitive issues associated with this
technology. Should any other group wisli to start on similar lines
we would be only too happy to help. E E

Norman Plant is Chairman and a founder of the Object Interest Group
and a consultant specializing in the inroduction of object technology into
large IT organizatios, He was a senior manager in British Arways' IT di-
vision for 25 years, He can be reached at +44.252-836315 in the UK.

SIGS Conference Calendar (1992-1993)
33m*49394344liIl= 74MMYAR)*St

1.-4, F E B R U A R 1993

OOP '93 C.*Ng
Objelll-orientiertesProgrammieren
MONC HEN

WORLD6 0,1

OOP'93 and C++ WORLD
February 1-4 and 4-5,1993

The Sheraton, Munich, Germany

X March 8-11, 1993
Marriot Marquis

New York, New York

OCT'93

C.+SI

APR '93 JULY'93

April 19-23, 1993
Hilton Towers

New York, New York

QDkgt
tic,£=916

July 12-16, 1993
London, England

WORL[)6_011
October 18-22, 1993

Dallas, Texas

For more information on SIGS Conferences, call 212/27+9135.

12 HOTLINE ON OBJECT»ORIENTED TECHNOLOGY

DISTRIBUTED INFORMATIONEE

»+32

9 ..449:

Towards a framework U#4*

for software ROI

|n my last column (HoniNE 4[1]) I discussed the need for ap
proaching software evaluation from an economic perspective,
focusing on return on investment (ROI). This column will con-
tinue that subject by working towards a basic frameworkthat or-
ganizations can use to implement ROI analysis.

THE PROCESS IS THE GOAL

The most important consideration for an organization prepar-
ing to undertake an ROI analysis is that the process is ongoing.
It is certainty helpful to conduct some initial ROI work, but the
real benefit is derived from the establishment of a process that
feeds back into the system t[4ig. h

The process o f ROI analysis wi] start as a process o f discov-
ery. How is software evaluated? What cost items are included?
Once a selection has been made, the process continues: What is
the cost of development relative to estimates made during the
evaluation? What are the causes of anyvariances discovered? Fi-
naily, are the costs of deployment and maintenance as expected?
And is the value provided by the software as expected? This is
where the "R. ir ROI can be evaluated.

As an organization gains experience with this process, a larger
picture emerges. Tlie organization's true costs are ideritified, along
with actual returns o f various software systems. This in forma-
tion enables the organization to more accurately predict both
costs and RO] ofnew software development, which in turn leads
to better budgeting ability and the IS equivalent ofportfolio man-
agement: how to maximize ROI.

When R01 analysis is used, organizations begin to consider
risk vs. reward, which is a very important and positive change.
In the absence of ROI analysis, organizations tend to focus on
avoiding risk because risk is easily recogn ized. Reward is usually
based on an abstract future goal and is not always easy to quan
tify, so this factor tends to be ignored. Thus a software product

Evaluation
Deployment

Expected Returns * Development *- Actual Returns +
Established Costs Measured

Measured

l
Figure 1.

Tim Andrews

that offers very high reward is often rejected because it also las
significant risk. Even if the reward is great in proportion to the
risk, organizations may not choose a software technology because
they cannot compare the risk/reward ratio to that of other soft-
ware. When ROI analysis is adopted, a "Software Value Graph"
can be drawn, which represents the comparison ofsoftware based
on risk-reward characteristics (Fig. 2),

As more analysis accrues, the graph is updated. The graph
provide insight for the organization about the value of chosen
software in its own environment. Oraanizational differences such

b

as existing hardware and software infrastructure, training and
education of personnel, and competitive envih onment affect the
ROI ofa software system, which in turn affects the organization's
risk/reward profile. For example, an organization with large batch
processing operations on mainframes would perceive a different
risk/reward fi-om software available on a distributed workstation

than would a smaller company that runs on distributed work-
stations. This difference in perception does not mean that the
software is more valuable to the smaller organization, but that
ROI analysis will be different for these two organizations.

DISTBBUTED INFORMATION SYSTEMS AND ROI

I want to use these initial columns to establish an ROI-based per-
spective from which to discuss information systems; in particu
lar, distributed information systems. In this way, I hope to be a
"user advocate» by consistently focusing on the ultimate eco-
nomic benefit, or ROI, of a given approach. Now I want to be-
gin the examination of distributed information systems and their
impact on organization.

Below I will outline those areas I have found to be of concern

totheorganizations lhave talked with overthelastseveral months.

Reward

Above average rewards
invest here ,

Fair Value Line

--- Below average rewards
don't invest here

Risk

Figure 2.

DECEMBER 1992 13

Ah

.

hotline on
OBJECT- ORIENTED

technology
Backissues

All back issues of the HOTLINE are available. Please call 212.274.0640 for details.

Vol. 4, No. 2/1)ecember 92 e Zero-cost portability - Design by contract Builing bug-
free 0-0 software E Object inlerest group: pliase two = Towards a framework for soft-
ware ROI I Reviewing Amziod " objects"

4, No. 1/November'92 •Combming object technologywith data standards for the next
industrial revolution e Con.Lant quality in.unagement E Evolving markets for software
components = The quest for value E Reviewing DOSE: a use cose-driven approach

Vol. 3, N i. 12/October '92 • ROI: development environments toi· the lifecycle = Se
lecting the right object oriented method - Choosing an object-oriented language m Ob-
ject database technology: who's using it and why? - Objecls and reuse

Vol. 3, No. 11/September'92. Developing strategic busince s»tems uslng ob,ea tech-
nology . Object trairing: harder than it looks E Obect-oriented ROI: crtending the
CRC across the bfecvcle E Whal IQMmeans for OT

Vol.3, No. 3/Januan·'92.1.nte,·prise oble.[modeling: knowing whal we know. Adopt-
ing owects: pit fall: E Adoption rate of obiect technology: a hurvey of NSW i.idustry

Vol.3, No. 2,/I)ecen iber '91 , Accepting object Technology - Adopting objects: a path
E Incorporating graphical con[ent in o mullimedia presentations

vol.3, No. 1/Noveinber '91 E Leading the U.S semiconductor manufacturing in-
diihlry toward an obiect-oriented technology standard - Coping with complexity:
OOPS and the economists' c 111 que of central planning E Choosing Object Technol-
ogy. What's the obiect? E OOP: the MISsing link

Vol.2. No. 12/Octobe, '9 lEA modest silnev of<)Ol) appr<.che. E What 1% a "certified"
obicct programmer? = Perspective· mvestingin objects loday = Objectoriented m Mel-
bourne, Austraha E 'I he Object Management Group

Vol.3, Mi. 10/Auguht '92 E Object technology toward software manufacluring a Re-
turn oil investment: boftware assets and fhe CRC technique s Obiect-oriented tech-
nology in Japan E Providing comnionality while supportingdiversitv

Vol.3, No.9/]uly '92 E OOD: Research or ready = Enterprise modeling: an obiect ap
proach a O M G rs 18-24 month view E Design for oblect-oriented applications: a CASE
forwuhful thinking. .

Vol.2, No. 1 1/September '91 a From applicar kons to fraineworks m Repo rt on the Ob
At Oriented COKE)LTask Group = Getting started with obJect technology: emectively
planning foi change•Object stalistics on the way-On oblects and bullets

Vol.2, No. 10/August '91 - Distributed obiect nianage,nerin: improving worker pro-
ductivity= Getting the best from oblects: Ihe experience of H F> -= Al}p[.raTHONS: El.
employs obied te,hnolugy e CAPACITY PLANNING: Fiddling while ROMs burn

vol.3, No.8/June '92 E Business in the Information Age - From data modelmg to ob
iect modeling= How franieworlsenable application portability• Interview with Vaughan
Merlyn

Vol.3, No.6/April '92 •Thinkingthe unthinkable reducing theribk of tallure E M]tigal
ing madness with method: first establish what you value= Chanipioning object techno]
ogy tor career success in the 19906 E Objects and actions in end- user documentation

Vol.3, No.5/March '92 = TA large-scale users' assessment of obiect orientation • Re-
port on the Object-Onented COBOL Task Group = Inrerview w·ith K.C. liranscomb

Vol.3, No.4/February '92 E The l,ig prize: acceptance of 00-0 by Ihe MIS community E
Retrospective: 1991-the yearit all changed, Making the trai,hilicm lo O-0 technology
a Inten'iewwith Beatrizinfante

Vol.2, No. 9/fuly "91 E Multi media is everywhere' s Developing an obiect technology
prototype F Object-oriented capality planning E Hoh OOP has changed our develop-
mental lifecycle a Modulariation o I the computer system

Vol.2, No. 8/June '91 E 1)oniaili oF i.I.iects: the Ol.iect Reques[Broker a Object based
approach to user documentation E Report on Ihe Obied-Orieriled C (,BOI. Task Group
E I)„ we need Adlect-oriented dehign metrics?

Vo].2, No.7/May '91 E H Ybrid object-oriented/functional decomposition for software
erigineering a So. what make, object databases different? (Part 43 2 Using the generic
api.lication to solve similar domain proble,ns a Experiences using CLOS = Interna-
tional Conference on Objet t-Oriented Technology, Singapore

SUBSCRIBE NOW TO THE HOTLINE ON OBJECT-ORIENTED TECHNOLOGY-
DON'T MISS ANOTHER VALUE-PACKED ISSUE!

 YeS, plug me into the latest thinking 'ind developments in object-oriented technology. Enter me as a subscriber at the term marked
below and rush me the current issue. This is a risk-free offer - I niay cancel niv subscription at any time and promptly receive a refund
for the unused portion.

1 year (12 issues) 2 years (24 issues) Back issues @ $25 each (327.50 jbreign)
J S249 J $478 (save $20) Vol.2. Nos.

{outside US mid 32,0 per year for w servire) Vol.3, Nos.

U Phone/fax order
Call Subscriber Services at 212.274.0640
or fax this form to 212.274.0646 Name

[J Bill me Title

O Check enclosed
Make check payable to the HOTLINE and mail to:
The HOTLINE Subscriber Services
P.O. Box 3000, Dept. HO'l
Denville, NI 07834
(bragi, or ders mria bc prepald in US domirs dral,·n Uns US bink j

Company/Mail Stop

Street/Buikjing#

ELI Credit card orders
10 MasterCard J Visa 3 Amnx

City/Province

ST/Zip/Country

Card# Expiration Date Telephone

Signature

DGKA

hotline/b on
OBJECT-ORIENTED

technology
VOL. 4, NO. 3 THE MANAGER'S SOURCE FOR TRENDS, ISSUES & STRATEGIES JAN. 1993

Gauntlet implementations:
the 5GL object-oriented challenge

Pi/i-<9%&9 Without doubt, computers performance and, more notably, functionality have increased by
fi„ 1.1 and their related technolo- a factor of 1,016. However, over the same time period software

implementations have only evolved in speed of implementation,'lk gies-hardware, software, price, performance, and functionality by a single factor of 101.

 ¥ communications-have had the Inaddition, itisgenerallybelievedthatha[fofthisrelativelytiny
olost powerful i nipact on the sec- "leap" occurred when developers migrated from programming
ond half o f the twentieth century. in second-generation assembler languages to third-generation
In a few short decades, mai] has languages (3GIs) such as COBO[.,FORT'RAN, RPG, etc., some-

-19i- moved from subsonic flightto vis- thingthattook place three decades ago (for everyone except the
1 iting the moon. The secrets ofDNA airline reservation systems...)!

Bernadette Reiter and RNA have been revealed, and IIardware has achieved its dramatic accelerated evolution

global newb and trading systems through the ongoing development of building blocks. This
have shrunk the vastness of the five continued on page 4

continents to the immediate interactivity of a medieval village.
In ali these achievements, and in many others, computers and
computing have played major roles. Their central importance in
our daily lives can scarcely be exaggerated.

And yet exaggeration there has been and continues to be.])e-
spite the almost incredible achievements Imade using computers
and software products, theystill often fail to live up to the claims
made by their vendors. This is particularly so in commercial en-
vironments where, despite many real advances, boasts and
promises still frequently outstrip performance, often by a very
large margin. Almost daily, newspapers and magazines carry ar-
rides reporting that large systems have been abandoned or failed.
A casual browse through recent, well-publicized press reports
shows the abandonment of $1 billion development in travel-
related systems at AMRIS; another of over $200 million for the
rewrite of financial systems at AMEX; an undiscovered (until
years after the event) $40 million alleged fraud in building an $80
million hospital system at Wessex Health Authority, England;
the total abandonment of a custom-built ambulance dispatch-
ing system that could not dispatch ambulances at the London
Ambulance Service; and the list could go on...'

IN THIS ISSUE

1 Cover Feature Bernadette Reiter

Gauntlet implementations:
the 5GL object-oriented challenge

2 From the Editor Robert Shelton

5 Software Licensing Sergiu S. Simmel
Infrastructure for a new

economics of software

9 Databases Christopher Keene
You can have your objects
and be relational tooi

13 Distributed Information Tim Andrews

A description of object databases

15 Distributed Computing Robert Marcus
The middleware challenge

19 Industry Brief

20 ProductAnnouncements
HISTORICAL PERSPECTIVE

It is worth briefly reviewing how the information technology (IT)
industry came to this current state of affairs. Data processing, or
IT as it is now usually called, has undergone massive changes and
improvements. While hardware price and size have gone down,

22 FYI

23 BookWatch

FROM THE EDITOR ma

0
neyear ago my first article for the

HOTLINE was about enterprise obiect mod-
eling. Today, at Open Engineering, we are
partners in the Integration Consortium,
where we are engaged iii the Anal thi·oes of
producing a (hopefully pivotal) paper on
the subject for presentation at OOP '93 in
Munich. In rereading my original article,
and some of my early editorials, I was be-
mused by signs that this old dog may have
learned a few new tricks. Many of these, by
the way, are thanks to colleagues like Mr.
Thomas Bruce at Bank of Anierica; Ms. Kate

Salafia and Ms. Elizabeth Sevean of the In-

tegration Consortium; Mr. Norman Plant,
a frequent Hotline author and Chairman
of the Object Interest Group iii London;
and Mr. William Perrin, a client of some

years back who has since gone into business
to develop innovative, money-saving
software solutions for the commercial in-

surance industry. He>s using object tech-
nology, ofcourse!

My concerns for the object technology
industry revolve around presenting an ac-
curate vision and useful road map ofobject
technology to the Information Technology
(IT) community. I am also gravely con-
cerned about the viability of industry in this
country, and tlie ability of IT to support and
rejuvenate its competitiveness, My above-
mentioned colleagues have helped hone my
awareness ofthe issues and concerns facing
large IT organizations, and have helped me
focus on what makes software truly useful
to business. As mvsecond year as HoTI.INE
editor begins at a fast trot, I would like to
take this opportunity to thank these indi
viduals, and others here uiinanied, who have
given their valuable time to educate, coach,
counsel, cajole, and generally keep my feet
on the ground. This, I think, is what the ca-
maraderie of a healthy business commu-
nity is about. This I would like to see us ex-
tend totheglobal community in themonths
and years to come.

I would like to take this opportunity to
introduce three new Editorial Review Board

members who have joined us in recent
months. Ms. K.C. Branscomb, whom you

will remember fi·oin our dyna]11ic inteiviav
(Hor]LINE 3[5]), is former CEO of Intel-

licorp, and currently Senior VP
of Business Development for
Lotus Development Corpora-
tion. Congratulations to Ms.
Branscomb-and to Mr.

Manzi, as well. As you will recall from our
interview, Ms. Bransconib has argued that
no development tool will win with the IT
community until it addresses their needs
and integrates their legacy systems. This is
:iii insight with which many O-0 product
companies have beeii grappluig during 1992,
and I hope to see the fruits of their labors
in this new year. We Iook forward to Ms.
Branscomb>s continued involvement in the

software developinent community and to
heradvice and counselhereatthe HOTLINE.

Ms, Beniadette G. Reiter, CEO and Pres-

ident of Objective: Inc. and our feature au-
thor this month, brings to our Board her
s¢Iftprofessed unconventional perspective
on software development and the role of
software iii busIl¢SS. Perhaps it's my own

leanings on the subject, but Ms. Reiter's
vieWS oil cost-effective development, cut-
through-the-bull methods for delivering re-
ally creative applications, and conviction
that software must be put back in the hands
ofthe business end-users to give them back
control over the business all make sense

here! Tlie challenge at hand is to show busi
ness end-users and IT professionals that al-
ternatives to today's morass do exist, and
that they really can pick up froiii wliere they
are today and make forward progress. This
is certainly a challenge that Ms. Reiter and
Objective: Inc. have taken on.

Mr. John A. Zachman, formerly a Senior
Considtant with IBM, and presently a highly
respected consultant to the 17 coinmunity
through his firm Zachman International,
brings to ourBoard his perceptiveiiess about
large]T organizations and the underlying
problems we are trying to solve. Mr. Zach-
man is known throughout the IT commu-
nity for his work on the Framework for In-
formation Systems Architecture.],2 The
Framework provides a basis for under-
standing the business and systems develop-
ment process that recognizes the need for
understanding concurrent perspectives on
a business system (those ofplanner, owner,

designer. buider. and subcon-
tractor). That methodologies
to date have not accounted for

these concurrent views explains

part of IT's current predica-
ment, Mr. Zachman's writing is thought
provoking and highly recommended. We
welcome him to our Board.

Turning our sights to the year ahead. I
would hke to share my editorial plan with
the hope that feedback and improvements
will be forthcoming from our readers. We
will devote at least four issues to substan-

tial real-world applications ofobject tech-
nology; currently March, May, July, and
September. The April issue will focus on
reuse. Other issues will feature client-server

development tools; database and legacy sys-
tems encapsulation, middleware and object
request brokers, and some fresh thinking
in engineering methods and support tools.
Let me know what you think.

Let's tale a look at this issue. Our fea-

ture article by Ms, Bernadette Reiter ar- 1
gues for 5GL development environments
as an alternative to conventional pro-
gramming languages. What underlies Ms.
Reiter's case for retooling business appli-
cation developers, is a value proposition:
break the techno-cultural taboos about

"right" and "wrong" development tools.
These taboos are rooted not in current fact

but in historical familiarity and bias. As IT
organizations look to become =object on-
ented," familiarity draws them to Object-
COBOL, C++, and Obiective-C Business
application developers can use these tools,
but Ms. Reiter's point is that thev don't
have to. Instead, use the right tool for the
iob, Total cost and time to market argue
iagainst using raw language tools for most
business application development, espe-
cially as our concept of user interface moves
beyond text fields in windows to visual
models like maps ard diagrams.

When evaluating 5GL tools, here are
some requirements to keep in mind: Doesg
it support connectivity to the database man -
agement systems m your environment, or
can such connectivity layers be installed that
give the developer an object view of the
database? Is dient»server architecture sup-

2 Hon,NE ON OBJECT-ORIENTED TECHNOLOGY

DISTRIBUTED SYSTEMS... Users clearly see the spread ofpowerful desktop workstations occurring, and the resultant move
to put applications where users are located rather than in a central computing center. The hot issues
for the next few years will be whether and how much to move from a centralized to a decentralized
computing and communications architecture, and the increasing complexity of managing hybrid
environments. This complexity also seems to underlie the [1992 Network and Distributed Systems
Management Conference] attendees' preference for object-oriented approaches to management
applications. There is a strong belief that object-oriented approaches will both accelerate application
development and increase interoperability among applications and objects... The clear message to
standards organizations and vendors was that platforms and infrastructure are great, but only if they
help get applications with increased flexibility and interoperability on the market sooner...

Net Management Directions, James Herman, BUSINESS COMMUNICATIONS REVIEW, 8/92

LANGUAGES . Although no C++ compiler is available on the AS/ 400 system, many AS/400 programmers are
purchasing C++ compilers for their PCs, I frequently am asked whether it is necessary to learn C
before learning C++. My answer is not. Knowing C definitely 'mil help you learn C++ because the
languages are so similar, but in my opinion, such knowledge is not a requirement. A good analogy is
that although knowing how to drive a car with an automatic transmission makes it easier to learn to
drive a standard-transmission car, I wouldn't recommend learning to drive an automatic just to learn
to drive a standard. Also, because C.+ is a separate language, most C++ reference books treat it as such
and cover the whole language, not just its enhancements over C...

C++ for AS/400 programmers, Jennifer Hamilton, NEWS 3X/400,9/92

8,04 7*tb

Waite Group Press, 200 Tamal Plaza, Corte Madera, CA 94925, 415.924.2575; fax: 415.924.2576

OBJECT-ORIENTED PROGRAMMING IN MICROSOFT C++ by Robert Lafore ($29,95) takes you into the newest techniques of obiect-ori-
ented programming using Microsoft's C++ compiler and environment. You will find complete, step-by-step lessons on the basics.

BORLAND C++ DEVELOPERS BIBLE, by Mark Peterson ($29.95) goes beyond Borland's own documentation and provides references
and tutorials for the commands and options found in the Borland C and C++ compilers, linkers, debuggers, assembler, libraries,
and utilities. It also introduces and references the new Applications Framework including Object Windows.

Prentice Hall, Simon & Schuster Education Groups 113 Sylvan Ave., Route 9W, Englewood Cliffs, NJ 07632,
201.592.2348

OBJECT-ORIIENT ED PROGRAMMING by Peter Coad and Jill Nicola ($33.00) is the third book in a series on object-oriented develop-
ment Through a series of four comprehensive examples written in Smalltalk and C++, this book teaches the reader how to "object
think": up-front concise thinking and conceptualizing with object-oriented development.

TRANSFORMING THE ENTERPRISE THROUGH COOPERATION: AN OBJECT-ORIENTED SoluTIoN by Dan Shafer and David Taylor
($15.00) provides a concise overview of NCR's full-scale enterprise computing systems based on object technology and how it can
be used to help manage an organization.

TOOLS 7, Bertrand Meyer, George Heeg, and Boris Magnusson ($60.00). Proceedings from the TOOLS 7 Conference held in Dort-
mund in April, 1992. TOOLS 8, Bertrand Meyer, Riamound Ege, and Madhu Singh ($60.00). Proceedings from the TOOLS 8 Con-
ference held iii Santa Barbara, CA in August, 1992.

JANUARY 1993 23

Excerpts from leading industry
publications on aspects of

object technology

MODELING ...Clearly, we do not suffer from any shortage of models in our companies. In fact, the problem is
just the opposite - we build too many models, and we build them all independently and
incompatilly...With so many disparate but overlapping models and methodologies, changing any
one model is bound to have unpredictable consequences for all the other models...A fundamental
tenet of the object-oriented approach is that all aspects of real-world objects should be encapsulated
into their corresponding software objects. This tenet is most explicit with regard to data and
operations: A welldesigned object contains all the data and operations it requires to represent its real-
world counterpart. This encapsulation of data and operations folds the corresponding data and
operational models into a single object model. It also allows changes in the object model to
automatically affect both data and operations in a consistent, symmetrical manner. Since there is only
one model for data and operations, any change in this model automatically keeps the two consistent
with each other. With a modest amount of extrapolation, we can readily see how all the other models
can be rolled into a unified object-based model as well. -, As for simulation, it almost comes with the
territory. . .We simply copy the current state of the model, make whatever modifications we would
like to explore, and then <'run'> the model to discover the results, In effect, we can play "what if' with
the entire company rather than with a spreadsheet full ofquestionable numbers...

Easing into objects. Integrating the enterprise through object modeling, David A. Taylor,
OBJECT MAGAZINE, 11 -12/92

STRATEGIES ... [Pardplace's Adele Goldberg:] We talk to people doing mission-critical applications, and they get
this message that life is fun, life is easy, that you can ignore all the complexity, that it all happens for
you - all because of obiects. Well, it>s not because of objects. What we>re saying is that we can
provide the know-how that allows you to specialize and refine and solve your particular needs within
a predefined application space. But if you move outside that space, which is what you do when you
do mission-critical work, you have much bigger issues to contend with. The MIS staff that builds
these system knows this, and now they have to confront an end-user community that believes the
marketing messages that say object are the answer and make it all easy. The good news is that the
19908 are about application developers, about users working more as a team. There's an opportunity
here, even if the hype sometimes gets in the way...

Making object-oriented smalltalk, DBMS, 10/92

. . . Obiect wrappers can be used to migrate to object-oriented programming while protecting invest-
meiit ill conventional code....It is possible to create object wrappers around the bulk of existing code
that can then be replaced or allowed to wither away. Building object wrappers can help protect the in-
vestment in older systems during the move to object-oriented programming. An object wrapper enables
a new, object-oriented part of a system to interact with a conventional chunk by message passing. The
wrapper itself is likely to be written in the same language as the original system, let us say it is COBOL,
for example. This may represent a vervsubstantial investment, but once it is in place virtually all main-
tenalice activity may cease; at least, that is the theory...

Migration strategies: Interoperation-combining object-oriented applications with conventional IT,
lan Graham, OBJEcT MAGAzINE, 1 1-12/92

APPLICATIONS . ..I cannot imagine that there are a whole lot of people - in the Silicon Valley region or anywhere
else, for that matter - who have the skills to do factory automation programming and who are
spending their time working as assemblers. [NeXT's CIM Manager Steve Herrick] admits "Our
operators don't know how to program,» Which might seem to put them in awkward positions vis-a-
vis their responsibilities, The trick to their doing the programming is the NeXTstep software
system...Consequently the operators can do the necessary programming by entering the particular
processing parameters, then hitting the «Go» icon. The work is done for them by the system itself..

What's NeXT? Gary S. Vasilash,PRODUC-nON, 9/92

22 HOTLINE ON OBJECT-ORIENTED TECHNOLOGY

ported, and is the networking transparent
to the application? Is tlie application portable
without change across host platforms and
GUIs? Is the environment extensible through
componentization? How is team develop.
ment and configuration management sup-
ported? How is sharing critical business ob-
jects handled? Can the vendor (or a third
party) provide connectivity to request bro-
ker and transaction processing layer prod-
ucts?

Speaking ofdistributed computing, Dr.
Robert Marcus of Boeing Computer Ser-
vices writes about middleware: the glue that
enables more powerful and sophisticated
connectivity, distribution of services, and
mteraction among software components.
Anyone familiar with an online transaction
processing (FI'P) environinelitwil[recognize
TP layers as middieware products. The ul-
timate goal of middleware is full-bore dis-
tributed object computing: enterprise-wide
sharing of a variety of resources from busi-
ness objects to spell checkers to CPU cycles.
Middleware can make available on work-

stations throughout the enterprise services
that would otherwise be conifined to theap-
plication that delivers them. In addition to
distributiori and connectivity, middleware
offers interoperability through standard ap-
plication program interfaces (API), porta-
bility and platform independence, a plug-
and-play platform that will encourage the
growth of the software component indus-
try, and abasis for intervendor product in-
novation and user-constructable applica-
tions. Middleware is the enablingtechnology
for the distributed computing architecture
that, as Mr. John Rymer of the Patricia Ser
bold Group observes.3, will predommate
through the end of this decade.

Mr. Sergio Sinimel of the Penobscot De-
velopment Corp. writes about softwareli-
censing and metering. Meterware, or pay-
per-use software, is the most sensible
approach to resolving the complexities of
licensing where software components are
involved. From the business end-user's

point of view, parper-use makes sense over
flat- fee licensing where the use of a partic-
ular software component or application is
infrequent. Consider how metering re-
moves both the motivation and mechanism

for software piracy when, say, a developer
needs to use a USD $10,000 CASE tool for
a week ortwo. Consider, also, the cost sav-

ings: free distribution (copy and use), no
lengthy justification process to manage-

JANUARY 1993

ment for the purchase of a costly tool, and
rapid access to the right tool right now. As
Mr. Simmel points out, pay- per-use is the
sign of a maturing marketplace.

Mr. Christopher Keene of Persistence
Software proposes a very practical entred to
objects foI· IT organizations: start with prod-
ucts that give developers an object-oriented
view of existing shared data structures. I
have long maintained that the 0-0 devel-
opment tool that cannot integrate with
legacy systems and databases using off-the-
shelf connectivity is of questionable value
to IT. Furthermore, it is unlikely to be taken
seriously for production development, be-
cause, as Mr. Keene points out, new appli-
cations usually have to access todafs cor
porate data where it lives. By the way, Mr.
Keene's product is the kind ofsolution that
can make Cp: sane! Combined with appb
cation frameworks like Zapp from Inmark
Development, there is yet promise for shops
dedicated to C++: developers can rise above
machine-level coding and focus on the busi-
ness application at hand. This is particu-
lariv critical because most middleware prod-
ucts still require a C or C++ interface when
accessed from a 5GL application.

In contrast to relational database tech-

nology, columnist Mr. Timothy Andrews
undertakes to answer the question «What
is an obiect database, and what is it good
for?" I expect readers will find his next sev-
eral articles very helpful in this regard, es-
pecially because, as Mr. Keene points out,
both the RDBMS and ODBMS have their

places in the business and technology pic-
ture today.

The right tool for the job will be the
watchword for 1993.

References

1. Zachman, J. A. A Framework forinforma
tion systems architecture IBM SYSTEMS
JouRNAL. 26(3):276-298.

2. Sowa, J.F. and J.A. Zachman. Extending and
formalizing the framework for information
systems architecture, IBM SysTE,Ms JOUR-
NaL 31(3):590-616.

3. Rhymer, I. R. Distributed object comput-
ing, DISTRIBUTED COMPUTING MONITOR,
7(8): August, 1992.

ho«,42fj .
O*GORIENTED

technology

Robert Shelton, Editor

SBS ADBSORY BOARD
Tom Atwood, Object Design

Grady Booch, Rational

George Bosworth, Digitalk
Brad Coxr Information Age Consuftng
Chuck Duff, The Wh:tewater Group
Adele Goldberg, Paroplace Systems
R. jordan Kreindler General Electro

Meilir Pagelones, Wayland Systems

Tom Love. Orgware inc.
Bertrand Meyer, interactive Software Engineering
Sesha Pratap, CenterL ne Software

R Michael Seashols, Versant Object Technology
Bjarne Stroustrup AT&T Bell Labs
Dave Thomas Obled Technology International

HoTUNE EDWOBAL BOARD

Jim Anderson, D,gralk, tne.
K.C. Branscomb, Lolus Development Corp
Mary E.S. Loomisr Versant Object Technology
Reed Phillips, Knowedge Systems.r Corp,
Bernadette G. Reiter ob:ective: Inc.
Steven WeaSS, Wayjand Systems
John A. Zachman Zachman International

SIGS Publications, Inc.
Richard P. Friedman, Founder & Group Publ sher

ART/PRODUCTON

Kristina Joukhadar. Managng Editor
Susan Culligan, Pilgrim Road, Ud„ Creative Direction
Elizabeth A. Upp, Production Editor
Jennifer Englander, Ait/Production Coordinator

CiRCULATION

Ken Mercado, Fulfillment Manager
Vicki Monck5 (11'0Iiation Assistant
John Schreiber, Crculation Assistant

MARKETING

Amy Friedman, Projects Manager
Lorna Lyle, Promotions Marager-Conferences
Sarah Hamilton, Promotons Manager-Publications
Caren Polner, Promotions Graphic Artist

Administration

David Chatterpaul, Bookkeeper

Ossama Tomoum, Business Manager

Margherita R. Monck, General Manager

Jane M. Gnu, Comilbutlng Editor

THE HOTLINE ON OBJECT ORIE-NTED TECHNOLOGY (ISSM
#1044·4319) spublished monthly by SIGS Publicatons,Inc.
588 Broadway, INF, NY 10012, (212)274·0640. ©Copyright
1992 SIGS Publications, Inc. All flghts reserved Reproduc-
hon of this material by electronic transmission, Xerox or any
other method will be treated as a willful violation of the U.S.

Copy.ght L aw and is flatly prohibited. Material may be repm
duced w® express permmssionfroni the publisher Mailed First
Oass. Subscription rate - one year (12 issues> $249. For-
eign and1 Canada $279 Single copy $25

POSTMASTER: Send address changes & subscriptmon orders
to HoTLINE, Subscriber Services, P O. Box 3000, Dept HOT,
Denville, NJ 07834.

Submit ed tor,al correspondence to Robert Shelton, 1850
Union Street, Suite 1548, San Francisco, CA 94123
voice: (415) 928·5842,fax (415) 928·3036

Pubbshers of HOTLINE ON OBJECT ORIENTED TECHNOLOGY,

JOURNAL OF OBJECT ORIENTED PROGRAMMING, OBJECT
MAGAZINE, THE X JOURNAL, C++ REPORT, THE SMALLTALK
REPORT, and THE]MEMERNATiONAL. OOP DIRECTORY.

3

ISIGS

GAUNTLET IMPLEMENTATIONS E E .0/19?,ted §27? pgr: 9

started with docks and digital logic, moving quickly to flip Oops,
integrated circuits, larger components, chips, and boards. Each
evolution produced more powerful building blocks that were
available to build a new computer starting from foundation
logic. This new approach produced a consistency and robust-
ness of products while dramatically reducing development cost
and time.

In a similar way, software evolved from early machine code
that forced developers to program in the numeric equivalent of
the instruction set. This layer gave rise to assembler languages
that allowed programmers to create applications in a symbolic
representation of the equivalent machine code. This layer was
then used to create third-generation languages that supported
£<high-level" computing constructs (e.g., total=quantity * price),
which then converted to many lines of assembler language code.
Third-generation languages and their predecessors are used not
Only to describe the logic of an application but also act as an in-
tegrator of technologies (e.g,, integration of database managers,
network drivers, terminal emulators, business graphics, statisti
cal packages, etc.).

Fourth-generation languages (4GLs) were an anomaly. They
arose from the database community allowing nontechnical
developers to implement ad hoc reports and simple transac-
tion interfaces.

Although each "generation» oflanguage evolution apprecia-
bly improved productivity and moved technologies closer to the
end user, none has produced the breakthrough "implementation
language"-the descriptive symbology-that revolutionized the
development ofhardware. For example, the concept/symbo]/func·
tionality of a math coprocessor, as opposed to the tens of thou-
sands of gates and low-level "components" needed to define it
from ground zero. The first four generations of software language
have not produced a similar breakthrough in their plodding evo-
hitionary process. Programs written in Ada, C, FORTRAN, Mod-
ula X, or Zeetalk are still hand built, tediousiv and repititiously
created from the equivalent of the earliest building blocks of the
third generation. Because of this, these creations are inevitably
slow to build, liable to failure, and difficult to change. Again in
hardware terms, there is no capability for identifying the faulty
board and swapping it out for a new one,

THE 5GL ALTERNATIVE

The obvious questions at this point are, "Surely there is a fifth-
generation language (5GL) around the corner and, if there is,
what is it and when will it arrive?" Quick answers to these are,
"Yes there is; it's almost certainly based on 'object-oriented' ap-
proaches; and it may be here already.'> These answers certainly
need expansion!

Firstly, what is a 5GL? Is it even a goal worth pursuing? This
is not an idle question as the phrase itself has already been de-
based by premature use. A decade ago, the search for the "holy
5GL Grail" was very fashionable. Japan, under the prestigious
auspices of MITI, sought to achieve dominance iIi software by
committing billions of yen a year for "as long as it takes» to cre-
ate a 5GL. To date, little has been achieved and even less heard

4

about it for the last five years or so. The target was, in somewhat
oversimplified terms, to build a "language" that would enable a
human to talk to a computer and have it do his/her bidding.
Significantiv, the phrase «obiect oriented" was never mentioned.

Object-oriented approaches today appear to offer the most
likely bases for 5GL environments, The concept of obiects has
been around for a long time but only recently have they been
touted as the new panacea for building computer software, The
concept of objects is simple. An object is a reusable "piece" of
code with a specific operation or functionality. Many objects can
(should be able to) be quickly bolted together to form an appli-
cation. New applications can be built much in the same way as
hardware. Obiects can inherit'> features from other objects. The
goals are: speed ofimplementation, modularity, reusability, and
robustness. The concepts are simple, the goals laudable,
but... once again, achievements lag well behind publicity.

Perhaps the key reason for this is a misunderstanding of what
an object should be-what precisely is the system buildertrying
to modularize and reuse? It can be argued that today most ob-
ject-oriented approaches focus on the wrong building blocks. For
example, many recent articles on object-oriented technologv
highlight its components as noun-based examples and analogies
Ce.g., a house inheriting a roof with "instance" thatched). How-
ever, real-life applications are based on verbs (e.g., hiring, buv
ing, selling, checking-in, boarding, etc.). To form the basis of a
truly useful new environment, the objects that should be created
and reused are therefore the verbs. or action (processing), as op-
posed to the nouns (data).

Further problems that arise iii selecting a noun-based start-
ing point are aggravated by inappropriate language goals. Cur-
rently, languages such as C++, Objective C (both derivatives of
C), and Smalltalk are being marketed as the way forward in the
implementation ofobject-oriented end-user applications. Tech-
nicall, a strong case could be made for C being a 2.5GL, For ex-
ample, memory allocation still remains in the hands of the pro-
grammer. The problem with a 2,5 or 3GL is that their vocabulary
is fixed. Language structures in 5GL software must evolve and
embrace new technologies and concepts. No matter how much
application logic is written with third-generation languages such
as C, the process does not enhance or expand the vocabulary of
the language itself.

Purists may argue that using these languages allows develop-
ers to create objects and use them elsewhere. However, using
them requires integrating their logic, again employing a fixed-
vocabulary language. This approach would be like creating new
native-language words (e,g., in English, French, German, etc.),
then using a fixed vocabulary iii, say, Latin to encapsulate a higher
concept, and then requiring the use of Latin again to integrate
them into Sentences.

Like anv spoken language that became fixed, earlier genera-
lion computer languages provide no foundations upon which to
evolve new languages that can cope with change. Once alanguage
becomes fixed, it ultimately ceases to be an appropriate form of
expressing new ideas and communicating problems and solu-

contin wed on page 8

HOTLINE ON OBJECT=OR&ENTED TECHNOLOGY

Object Design, Inc Object Design, Inc. introduced Release 2.0 of ObjectStore, the object-oriented database management sys-
tem software for networked UNIX workstations and high-end personal computers. It includes greater sup-
port for ObjectStore applications running in heterogeneous networks with multivendor server and client
computers, support for CD-ROM optical media, and enhanced security features. Pricing for development
licenses is on a per-seat basis, ranging from $1,495 to $6,000. Runtime license pricing is also available.

Object Design, Inc., One New England Executive Park,
Burlington, MA 01803, 617.270.9797; fax. 617.270.3509.

Management Information Management Information Technology Inc. (MITI) has developed SQL*C++, a software tool allowing
Technology inc developers to build object-oriented interfaces to relational databases without needing to change the cecIl-

pany's legacy systems and applications. Price varies by platform starting at $500 for versions running
under MS-DOS. Prices for UNIX platforms begin at $ 1,800.

Management Information Technology, Inck, 2895 Temple Ave.,
Long Beach, CA 90806, 310.424.4399; Fax: 310,424,9385.

Softeam Softeam announced the U.S. introduction of OBJECTEERING and CLASS RELATION. OBIECTEER-
ING is a powerful CASE product that automatically generates C-+ applications from CLASS RELA-
TION's object-oriented model. CLASS RELATION is a methodology that provides a single object-ori-
ented model to encompass the entire software development life cyde from specification to coding. Both
operate under UNIX on Sun, Hewlett-Packard, and DEC platforms. The product is $9,500 for the first
copy with discounts available for multiple licenses.

Softeam, 1 Kendell Sq., Ste. 2200, Cambridge, MA 02139, 617.621.7091; fax: 61 7.577.1209.

Emergent Behavior Emergent Behavior announced two new versions of their C++ framework solving problems using Ge-
netic Algorithms. MicroGA 1.0 for Microsoft Windows and MicroGA Version 1.1 for Macintosh. Mi-
croGA includes full source code to the library, three sample programs, and the Galapagos code genera-
tor, which allows users to create complete applications with MicroGA without writing any C++ code.

Emergent Behavior, 635 Wellsbury Way, Palo Alto, CA 94306 415.494.6763; eman: emergent@aot.com.

Computer Associates CA-Common View class library extends Computer Associates' commitment to industry GUI standards
induding CUA 91. CA-Common View 3.1 integrates with CA-C++ 3.0 to enable efficient development
of Presentation Manager 2,0 applications. A simultaneous release of CA-Common View 3.1 for Win
dows 3.1 integrates with Microsoft C/C+ + 7.0 and Borland C++ 3.1, CA has adapted CA-C++ 3.0 for OS/2
2.0 keywords and switches.

Computer Associates International, Inc., One Computer Associates Plaza,
ls[andia, NY 1 1788-7000, 516.342.5224; Fax: 516.342.8329.

Suite Software Suite Software announced that its Distributed Object Management Environment, SuiteDOME, is now
available on the HP9000 Series 700 and Series 800 platforms. SuiteDOME Release 2.1. is both a dis-
tributed operating environment and development tool set for building interoperable distributed appli-
cations. SuiteDOME prices for the HP9000 Series 700 and 800 range from $750 for entry-level models
to $12,000 for the high-end servers, Discounts are structured on a volume basis.

SuReSoftwake, 777 Alvarado Rd., Ste. 308, La Mesa, CA 91941, 619.698.7550; fax: 619.698.7567.

Versant Versant Object Technology Corp. announced Release 2 of the Versant C++ Application TooISet. Major
enhancements include the addition of two new products, VERSANT Report, a report generator, and
VERSANT Object SQL, which allows application developers to use queries based on industry- standard
SQL to access the VERSANT ODBMS. Release 2 also includes enhancements to VERSANT Screen, a
graphical application development tool,

Versant Object Technology, 4500 Bohannon Dr., Menlo Park, CA 94025,415.329.7500; fax: 415.325.2380.

ObjecTime ObjecTime 4,0. representing maior enhancements to an object- oriented CASE tool for distributed, event-
driven systems, was introduced by ObjecTime Limited. ObjecTime supports an advanced methodology
for the analysis and design of distributed, event- driven systems known as Real-Time Obiect-Oriented
Modelling (ROOM). The high-level object-oriented concepts are programming language independent.

ObjecTime Limited, 340 March Rd., Ste. 200, Kanata, Ontario, Canada
K2K 2Ed, 800.567.TIME, 613.591.3400; fax: 613.597.3784.

JANUARY 1993 21

Ab

Oth,*t*Awn,€All
Product Announcements is a service to our

readers. It is neither a recommendation nor

an endorsement of any product discussed.

Berkeley Productivity
Group

Berkeley Productivity Group is shipping The Smalltalk Interface to Objective-C, a set ofObjective-C and
Smalltalk classes that make it possible to send messages from a Smalltalk process to an Objective-C DLL
With the interface, both Objective-C and Smalltalk can be used together, or portable applications en-
gines can be written in Objective-C, moved to the platform of choice, and integrated with a new inter-
face developed in Smalltalk.

Berkeley Productivity Group, 35032 Maidstone Ct, Newark, CA 94560,510.795.6086; Fax: 510.795.8077

NovoTech, inc NovoTech, Inc. announced Objective-C vl.0 for PenPoint, providing the extensions necessary to use the
PenPoint Class Manager without maintaining method tables and class registration functions. NovoTech
is also providing IC Pak 101, the Objective-C foundation library for PenPoint. The Objective-C com-
piler is $150, IC Pak 101 is $80, and the Objective-C compiler/IC Pak 101 bundle is $200.

NovoTech, Inc, 88 Doolittle Dr., Bethany, CT 06524,203.393.3729; 203.393.3730 (fax)

Component Software
Corporation

Component Software Corporation announced the availability of COMPONENT WORKSHOP Vl.0 for
the Macintosh, a dynamic C++ application development environment. COMPONENT WORKSHOP in
cludes an application framework, flexible set ofintegrated tools, full suite of C-+ class libraries, and ha-
sic set of components. The Extruder, also included, frees the application from the dynamic environment,
highly optimizing it and ensuring that applications are small and fast. The suggested retail price is $2,495.

Component Software Corporation, 420 Bedford St., Lexington, MA 02173,617.862.9700; Fax: 617.862.7749.

Integrated Development Integrated Development Corp. announced the release of LibTools, a set of programmer's tools for cre-
Corp ating, managing, and exploring libraries of C, C++, Assembler, Xbase, and all other Intel-, Microsoft-,

and Borland-compatible object modules. LibTools works with object modules created with almost ev-
ery compiler including C, C-+, Assembler, Xbase, and others.

Integrated Development Corp„ 190 Main St., P.O. Box 592, Hampstead, NH 03841;
800.333.3429,603.329.5522; fax: 603.329.4842.

Lucid, Inc Lucid, Inc., announced XLT, a set ofproductivity tools for its Lucid Common Lisp programming envi-
ronment. Version 1.0 of XLT is shipping on the Surt SPARC platform and compatible hardware, HP Se-
ries 7600, IBM RiscSystem 6000, and DECsystem. XLT provides an X-windows system-based interface
to data inspectors, program and data analyzers, a stepper, debugger, and other tools including an inter-
face to GNU Emacs. XLT lists at $1,800. Site licenses are also available. Customer support starts at $480/yr.
including future updates of the product and hotline support.

Lucid, Pnc.,707 Laurel St, Menlo Park, CA 94025,415.329.8400; fax' 415.329.8480.

Vermont Creative
Software

Vermont Creative Software's cross-platform application-development tool now supports every major
MS/PC-DOS exteader. Vermont Views Pius allows developers and programmers to "draw" the user in-
terface without writing, testing, and debugging thousands of lines of computer code. Vermont Views
Plus costs $795, yet contains all the tools of the standard edition ofVermont Views plus supplemental
add-ons that formerly sold ata combined cost of almost $1,600 including Vermont Views MemEx, which
supports all major DOS extenders including the royalty-free extendersbundled free with compilers such
as Borland C++ 3.1 and Intel 386/486 C.
Vermont Creative Software, Pinnacle Meadows, Richford, VT 05475,802,848.7731,800.242.1114; Fax: 802.848.3502.

MADA MADA announced that ACIUS' OBJECT MASTER 1.0 is now available to US and Canadian MADA
members. OBJECT MASTER is an integrated Macintosh source-code editor that works with all Macin-
tosh software development environments, with editing and navigation features designed specifically for
O-0 programming. The MAE)A member price for OBJECT MASTER is $320 (retail price $395).

MADA, 10062 Miller Ave., Ste, 202-B, Cupertino, CA 95014,408.253.2755; Fax: 408.253.2767.

20 HOTLINE ON OBJECT-OR]ENTED TECHNOLOGY

SOFTWARE LICENSING ma

Infrastructure for a new
economics of softwa re

04':

In an industry embracing object-based technologies at a rapidly
increasing rate, one might have predicted that the software trade
would correspondingly migrate toward a world in which small-
to-medium software components and aggregates of such become
a dominant form. Instead, we are experiencing very little if anv
change from tradition. The products traded continue to be the
very large, monolithic software conglomerates we call applica-
tions, platforms, and environments. Why? What happened to the
obiect-based technologies' promise of encapsulation, modular
ity, and reuse? Why haven't they broken and restructured the
shape, size, and economics of software products themselves? Why
has the popularity of obiect-based technical principles, languages,
and architectures not yielded a similar growth int the market for
software components?

 never developed a commercially robust wayof buying and sell-Brad Cox attributes this phenomenon to the fact that «we have

ing easily copied intangible goods like electronic data and
software."1 And lie is right. We still sell software like potatoes.
We forget that while potato growers have a good handle on how
many potatoes there will be on the market (it takes two years for
a potato to germinate and yield another potato),software "grow
ers" don't have a clue: It only takes a few computer instructiong
and a bit more disk space to clone a piece of software.

As Miller,2 Cox,' and a few others'.4 have pointed out, the key
to the solution of this economic problem is to decouple revenue
collection from software distribution, i.e., turn the ability to eas-
ily clone software from a liability into an asset. This amounts to
distributing the software itself either freely or foravery low price
(merely to cover media, manufacturing, and shipping costs) and
charging the customer for its use only.

Charging for use (sometimes referred to as pay-per-use, me-
tered use, or meterware) is a new concept in the software indus-
try, but not a very new one in general. Other industries have em-
ployed it for a long time. Your gas company installs a meter in
your basement, reads the meter every couple of months, and
charges you only for the gas you actually used. Your telephone
company does the same with your long distance calls. The City
Hall collects parking fees from meters (both as voluntary charges
and as fines). Even the US Postal Office does a similar thing when

 it 61]s up your postage metet, except it charge you ahead oftime--more like your local gas station!
In many industries, pay-per-use hasbeenestablished as ama-

jor and often dominant method. However, even in these indus-

JANUARY 1993

Serglu S. Simmel

tries pay-per- use was not always the preferred method. Still, one
can see that the adoption of pay-per-use has been a sign of ma-
turity and economic realism.4 We believe that the same evolu-
tion is now taking place in the software industry.

Cox refers to this approach of distributing software distribu-
tion and collecting revenues as "revolutionary,"1 Throughout the
rest of this article, I will try to suggest that this approach can ac-
tually be made as evolutionary as you'd like bv complementing
it with the more familiar "floating licensing."

The mechanism used to implement this approach is critical
to its success. In practice, the mechanism required is very simi-
tar to that used to manage persistent data. It is another facet of
the general management of visibility of data and services. It is vi-
tal that the mechanism be constructed so it leaves policy entirely
iii the hands of software manufacturers. This is necessary to eii
sure that business and market considerations rather than tech-

nical impositions are the main factors determining policies.
Throughout, we will be using examples drawn from the Kala Per-
sistent Data Server-a software component product from Penob-
scot Development Corporation-which has provided an imple-
mentation of these "new" concepts for several years now.

KALA AND METERED SOFTWARE

Kala is a persistent data server. It is a software subassembly with
two areas of functionality:

1. managingthestorageand retrieval ofarbitrary datainahigh-
performance, compact, recoverable, shared, secure, distributed,
and robust manner

2. managing the visibility of data for flexible and inexpensive
support of arbitrary transaction, access control: versioning,
and configuration models.

The basis for metered software is the observation that objects
are trivialt able to monitor their own usel so long as the moni-
ton can be safely and securely stored persistently. Usage moni-
tors are nothing but data, and Kala's specialty is precisely these-
cure and safe storage o f data. This makes it the natural locale iii
the architecture to deal with these issues, The only question left
is how we can associate the usage monitor and the datum

The Kala facility supporting the pay-per-user approach is
called SoftMeter. The SoftMeter works like a postage meter ex-
cept it parcels out abstract meter units instead of postage. Appli-
cations can debit the Dieter (using Kala's API function Debit-

5

SOFTWARE LiCENSING 33 E

Meter()) down to empty. The putmeter utility program refills the
meter using a key provided bv the manufacturer or its resellers.
The same facility is also expressed through Kala's API by the Re-
fiUMeter() and MeteIBalance() primitives.

DebitMeter<) debits a given number of meter units from a me-
ter counter for the current application's vendor. DebitMeter<) suc-
ceeds silently if there are at least the required number of units
left in the SoftMeter. If there aren't enough meter units left to
satisfy the debit then Kala raises an exception.

In the spirit of flexibility, Kala allows you to replace its own
(default) persistent data access method with any arbitrary code.
You can do this on a per-data-item basis.5.6 For example, you can
supply a routine that loads the datum from the persistent store
using Kala's LoadO primitive and then decompresses it (or de-
codes it) using your own decompression (or decoding) algorithm.
Because the code you supply can be arbitrary, it may call any Kala
primitive. Iii particular, it can contain a call to DebitMeter().

Vendor ids are assigned by Kala's manufacturer, which guar
antees their uniqueness and e.stablishes a channel through which
vendors can obtain revenue. Meter units are sold by the Kala man-
ufacturer or resellers, DebitMeter{) uses the vendor identifier to
record in the Kala Store the running total of debits broken down
by vendor. Periodically this information is transmitted to the man-
ufacturer or its authorized reseller, who pays to the corresponding
vendors an appropriate share of the proceeds of meter unit sales.
While this process is likely to be partly manual at first, it is fully
mechanizable to the point of requiring no human intervention.

The scheme is fexible enough to impose few if any constraints
on the business model ofan actual manufacturer-reseller-ven-

dor-customer relationship chain. In particular, the point of rev-
enue collection and redistribution can be located either with the

manufacturer, reseller, or any of the vendors in between.

Using DebitMeter() in coniunction with the non-default ac-
cess methods and other visibility control primitives, you can im-
plement a very simple data access and creation metering policy,
a very sophisticated one, or something in between. For instance,
you can choose to meter the access only to certain data; charge a
flat fee for any use of the application (regardless of how much
data is actually accessed); meter only the initial access to a clus-
ter of data but not to individual components; vary the amount
debited depending on the data, etc.

Kala data can be anything that can be represented as bits and
pointers. In particular, it can be executable code. When programs
or dynamically linked libraries are stored in Kala, their use can
be metered using the same general principle.

As explained above, Kala's SoftMeter is used to monitor the
access to data or programs stored in the Kala Store. How about
Kala's own services? When in metered mode, Kala will charge for
each ofthree fundamental operations: attaching to a Kala Server,
loading a Kala datum, and creating a new Kala datum. Kala uses
the same DebitMeter() primitive internally, but now it doesn't
charge on behalf of the datum's vendor, but on behalf of Kala's
manufacturer. The vendor can have confidence in the meter sys-
tem because Kala itself uses it for its own revenues.

Kala>s ability to ensure the safety and security of the meter-

6

ing information is one ofthe keys to the success ofthis scheme. 4
Not only can Kala's identifiers not be forged, but also Kala's ac-
cess to its data is as secure as the operating environment. More-
over, Kala's dynamically managed Persistent Store makes it im-
possible for someone to even pinpoint where the metering
information is stored. Kaila rearranges the Store dynamically to
increase performance and collect garbage and, in the process,
moves data around, making clever hacks difficult. Even hacking
application code to branch around the DebitMeter() calls is de-
tectable when the application has been well integrated with Kala,

PREDICTABLE USAGE AND LICENSES

Basing a major portion of software trade on mechanisms like
Kala's SofiMeter will require substantial changes in the design,
implementation, and packaging of the software being traded, as
well as in its quality. Such changes will not happen overnight.
Thus, in addition to metering, support for conventional licens-
ing is still essential. It turns out that a proper implementation of
the floating license preserves the principle of separation betweenl
distribution and revenue collection mentioned above.

Licenses do not grant ownership to a piece of software. They
only grant the right to use it. A Kala license opens a path between
a Kala Store and the application. A License makes the Kala Store
visible to the application.

An application (Kala client) acquires a license by calling the
AcquireLicense() API function. Licenses can be general (any ap-
plication can acquir e the license) or vendor specific (ontv a cer- 4
tain application or an application from a certain vendor can ac-
quire it). The function silently returns true if successful, false if
not. The application decides what to do if acquisition fails. Ac-
quired licenses may be surrendered by a call to ReleaselicenseO,
and any remaining acquired licenses are automatically released
when die application detaches from Kala.

There is an interplay between the metering and licensing inech
anisms. On the one hand, they are independent of each other.
An application can decide to run off the SoftMeter or use a li-
cense. On the other hand, ifAcquireLicense{) actually fails but the
application decides to continue, its Kala-related activity will au-
tomatically be charged against the SoftMeter resources the Kala
Store may have, if any, for this application. Ifthere are no meter
units left, Kala will raise an exception. An application can use the
same policy for its own licenses, silently segueing to metering if
it finds no license installed.

This dual mechanism is essential to the evolutionary approach
Kala introduces to software distribution and revenue collection.

Let's look at a typical example:
Suppose that you are the manager of a medium-size software

development group, say, 30 people. You have 25 software engi-
neers and 5 software writers. Your platform is a network of U NIX
workstations. You are faced with the purchase of an authoring
system to be the writers' main tool, which also must be usable by
the engineers. Typically, you'll be presented with a floating li-
cease-based product. You know that your writers will use the sys- 1
tem intensive}v every day. You also know that your engineers will
rarely use it, but once a month they will ali want to use it simul-

HOTUNE ON OBJECTOREENTED TECHNOLOGY

1. Communication layer (sends, receives, routes, and queues
messages).

2. Interface layer (provides translation between communication
and computation).

3. Computation layers (applications, databasemanagers objects).

Iii general, as the coupling between applications becomes weaker
tlie I]ilddleware API level ofabstraction in the iiiterface layer should
increase (e.g., a lower middleware API in the interface layer might
be adequate for tightly coupled applications while a middle mid-
dleware object API will be necessary for many medium-coupled
application frameworks). This provides modularity and facilitates
the maintenance and enhancement of communication and com-

pirtation components without disrupting the entire system.
Some of the major middleware challenges for system archi-

tects and developers are:

• What combination of middleware tools should be employed
in building the new applications?

· Which level ofrniddleware API should be used in specific ap
plications?

· What standardizations are required in the middleware area
to ensure future interoperability, portability, and maintain-
ability of distributed data and application environment ?

· How can legacy environments be integrated or migrated into
the new applications?

• How should the system design, development, maintenance,

and management process be changed to cope with the new
distributed heterogeneous applications?

CONCLUSION

In the next few years, there will be a rapid growth in the imple-
mentation of distributed applications using cooperative process-
ing. The new middleware products will make it possible to extend
these applications across heterogeneous and legacy environments.
This will provide an opportunity for a cost-effective reengineering
ofcurrent business processes. The challenge for system developers
and business planners is to develop a strategy for an orderly trail-
sition to the new processes. This will require a detailed knowledge
of the new middleware products including their capabilities and
weaknesses. The development ofstandards enabling portability and
interoperability will be also be crucial. The integration of object-
oriented technology and communications middleware will be akey
factor in building future distributed object environments, m m

Reference

1. King, S. Message-delivery APIs: the message is the medium, D.TA
COMMUNICA'lioNs 21(6): 85-95,1992.

Robert Marcus holds a B.S, and PhDin Mlathematics andtaught Math-
ematics and Computer Science at the City University of New York. He
previous v 'worked at the Hewlett-Packard Knowledge Systems Labo
ratory. He is currently a Coordinator for Obiect-Oriented Technology at
Boeing's Research and Technology Center. In 1991, he initjated the
CFOOT end-users group

3¢tduw.,-154€4,
An independent Canadian software company, ObjecTime Limited, has been established as a spin-off from Bell-Northern Research
(BNR), the research arm of Northern Telecom. Northern Telecom has granted ObjecTime Limited world wide license rights to the
software design tool technology originated at BNR's lab in Ottawa, Canada.

Grady Booch and Benjamin/Cummings Publishing Co. iointly announced they will develop a new series of books devoted to im-
portant contributions in object-oriented technology called the Benjamin/Cummings Series in Object- Oriented Software Engi-
neering. It will be launched next year with two books by Booch. Both Booch and Benjamin/Cummings said they will accept pro-
posals from prospective authors via e-mail,and US mail.

7 he Object Management Group (OMG) announced that British Telecommunications plc has joined enduser participation iii the
consortium. In addition, Lotus Development Corporation and United Technologies have joined as corporate members,

Guidance Technologies, Inc. together with Fujitsu Systems Business of Canada (FSBC), a subsidiary of Fujitsu Ltd., Japan, an-
Bounced they have signed an agreement for FSBC to become the exclusive Canadian distributor of Choreographer. FSBC will as-
sume responsibilities for both the sales and support of Choreographer in Canada.

NCR Corporation and Objectivity Inc. announced the availability of the Obiectivity/DB object database management system on
NCR's System 3000 computers, and a partnership to jointly market both products.

Objectivity Inc. announced a partners program for vendors of object information technology designed to provide marketing and
technology partnerships that provide application development tools to increase software development productivity for obiect database
applications. The first participants are Digital Equipment Corporation (DEC), Hewlett-Packard, NCR, CenterLine Software, Pro-
toSoft, Inc., Associative Design Technology, Persistence, Interactive Development Environments and ParcPlace.

SunPro announced a technology development and licensing agreement with Rogue Wave Software, Inc. The agreement centers on
Rogue Wave's Tools. h++ class library product, which SunPro intends to distribute at a future date as an add-on to its SPARCworks
Professional C++ development environment.

JANUARY 1993 19

4A

DISTRIBUTED COMPUTING EE =

dors and standards groups to work on the requirements of end-
user corporations.» In this time of rapidly changing technology,
there has arisen a proliferation of standards groups, multiven-
dor consortia, proprietary products, and systems integrators. It
is essential that end usersg become well informed and proactive
in comprehendingand evaluating new developments and trends.
Our goal can be stated as: "Technology + Business Case + Mi-
gration Plan = Success."As part ofour work, the CFOOT group
has raised a number of initial requirements related to middle-
ware. These are listed below for your information:

· Requirements for object-oriented technology vendors

1. Consider your products as components of larger and/or
legacy systems.

2. Focus on areas where your product can add value.

3. Avoid unnecessary proprietary features and interfaces.

4. Interoperate with other products and components.

5. Plan to interface with multiple legacy platforms, systems,
processes, aiid organizatioils.

6. Supply tools for supporting total lifecycle project man-
agement, methodologies, and metrics.

7. Provide robust class libraries to encapsulate non-object-
oriented systenis,

8. Provide application- and interface-generating tools built
on top of these databases, libraries, and encapsulations.

9. Provide methodologies, tools, and training for object-
oriented system analysis, design, implementation, man-
agement, and maintenance oflarge software proiects. Iii
particular, estimation/planning and code/test genera-
tion tools.

10.Supply specification, code-generation, and test-genera-
tion tools.

· Requirements for object-oriented technology standards and
multivendor groups

1. Standards and tools for interoperability among all en-
capsulations, databases, languages, and libraries.

2. Standard interfaces for portability across databases.
3. An information systemframework (environment) that pro-

vides services for individual objects such as communica-

tion, translation, resource management, and ownership.
4. Repository specifications to aid in the configuration con-

trol, integration, and management ofthe libraries, tools,
and encapsulations.

5. Object model and terminology standards.

THE MIDDLEWARE CHALLENGE

TO BUSINESS PROCESSES

The expanding capabilities of middleware products provide a tremen-
dous opportunity for business process reengineering, It is impor-
tant that these changes take place in a controlled, planned fashion
to avoid disrupting the corporate environment. Planners must be„

18

gin considering the implications of the new technology now. Eli-
terprise data and legacy applications will theoretically, be accessi-
ble froii) many distributed desktops. It will be possible to build in-
tegrated automated workilow processes within and across functional
boundaries. Applications like concurrent product definition, so-
phisticated docuinent flow manageinent, and [arge-scale computer
i}itegiated inanufacturing will be far easier to develop.

There are many challenges that must be addressed to realize
the full potential of middleware for business processes. Some of
these challenges are'

· Giventhaiapplications willsoon beableto communicate and
retrieve data throughout an enterprise in a timely fashion,
how should the business processes be changed to reduce
cost/flowtime and increase product quality?

· What types ofdistributed enterprise-level applications must
be developed using the new middleware capabilities to sup-
port the new business processes?

· How can legacy processes be integrated or migrated into the
new processes?

· What cultural and institutional changes are necessary to in-
troduce the new processes?

THE MIDDLEWARE CHALLENGE

TO SYSTEM ARCHITECTS
The design and implementation of the new middleware-based
distributed applications will be very difficult due to their het-
erogeneous environments and the wide range of alternative ap-
proaches that must be considered. Iii general, the coupling level
between the system components is a crucial factor for decision
makers, One possible classification of levels might be:
1, Tightly coupled

· Single applications with distributed services.
· Client-server RPCs.

· Direct communication between client and server.

· Fine-grained obiects encapsulating procedures.

2. Medium coupling

• Application fi-ameworks with multiple tools.

· Peer-to-peer, broadcast, notification, shared services.

· Communication in a homogeneous domain.

· Medium-grained objects encapsulating tools.

3. Loosely coupled

· Multiple independeritapplicationsincludinglegacysystems.

• Peer-to-peer messaging with queuing and reliability.
• Communication across multiple heterogeneous domains.
· Large-grained objects encapsulating applications.

From a middleware viewpoint, there are thr+ee layers that must
be developed for new systems:

HOTLINE ON OBJECT-ORIENTED TECHNOLOGY

taneously to write their status reports to management. The giles-
tion is: how many fioating licenses should you buy?

If you buy 5, then either no engineer will be able to use it or
they will constantly fight over licenses with the writers. What a
waste of time, energy, and perhaps even people! If you buy 30,
then everybody will be happy, except for your CPO: you will end
up with 25 licenses sitting around unused for most of the time.
What a waste of money! If you buy any number between 5 and
30, youllbe worse offbecause you'llstill waste purchasing money
and have to force people to work at odd hours to use their licenses.

With a Kala-basedauthoringsystem, voudon'thavetoworry
about any of the above. You buy 5 licenses to satisfy the pre-
dictable, steady usebythewriters. Youalsobuysome amount of
meter units, and have the application run off the meter any time
more than 5 people try to use it. Ifyou run out of meter, you call
your vendor with your credit card and buy more. Problem solved:
save both headaches and money at the same time with a simple
but flexible approach.

Licensing andmetering are not mutually exclusive. Insteadof
replacing each other, they complement each other. The licens-
ing mechanism is the best fit for predictable, relatively constant
use. The metering mechanism is the best fit for intermittentbouts
of heavy use. Since both levels ofactivity are common in the ac-
tual practice of using a shared application, a combination ofme-
tered and licensed software offers the best of both worlds.

THE SUPPLIER'S SIDE

Over tile past few years, the food chain between the infrastrue-
ture software developerandtheconsumerhasbeen continuously
lengthening, and this will increase iii the future. Platform software
vendors often sell to middleware vendors who often sell to ap-
plication vendors who often sell to integrators who finally sell to
theend user. Licensing and metering must trace these often com-
plex paths and allow the proper disbursements of revenue.

Alicensing and metering mechanism must be flexible enough
to allow negotiations and business deals to proceed smoothly,
unencumbered by technical limitations. For example, the mech-
anism must be totally recursive. each consumer should be able
to turn around and become a supplier and, in the process, use
the same mechanism to satisfy its needs without jeopardizing the
negotiated rights of its own suppliers.

Kala accomplishes this by offering access to the entir·e mech-
anism through its administrative API. You can install licenses iii
a Kala Store using the API InstallUcense<) and ShowKalaLicense-
Stat() functions, Licenses hold information about the vendor (for
vendor-specific licenses), the duration oflicense validity (as short
as a day and as long as infinity, to provide perpetual licensing),
and the number of seats (licenses).

Installing a license requires a keythe user obtains from its ap-
plication vendor. Application vendors get the newlic program
that generates such keys when they obtain their vendor id from
the manufacturer. Thenewlic can onlygeneratekeys forthat ven-
dor, not keys for licenses for vendors with other ids. Thereafter,
the Kala manufacturer need not be involved in the license grant-
ing, sales, or administration of the application vendor. An alter-

JANUARY 1993

native is to have the manufacturer dispense licenses on behalf of
the vendor, at lower cost due to volume.

As with the SoftMeter facility, Kala Stores hold licensing in-
formation persistently in a totally safe and secure manner. The
use of a =cookie" (an identifier tag produced at the Kala Store

site by a supplied utility) in fabricating the license key guaran-
tees a one-to-one mapping between licenses and Kala Stores.

The supplier using Kala licensing and me'tering can use a con-
ventional distribution system through retail stores, dedicated
sales staff, or mail order. However, the Kala system opens an-
other possible distribution model that may be appropriate for
many software developers. For example, suppose you are a small
garage shop that has produced a multiplaver interactive game
program that stores game history and player state on Kala. You
can place the game itself on bulletin boards for free and let users
try it out on the (small) SoftMeter balance that comes with ev-
ery Kala system without charge. When play eventually exhausts
the meter, your players will contact the manufacturer or reseller
for as many licenses (or meter refills) as they need. You, in turn,
get a regular check from the manufacturer or reseller without
sales force, marketing costs, or hassles. The pricing for each ven-
dor is subject to negotiation, and may be structured in any fash-
ion deemed necessary to satisfy- business needs.

This model is obviously very much like shareware. It has the
shareware virtues oflowdistribution costs (from the developer's
point of view) as wei[as low trial cost and, hence, low risk (from
the customer's point of view). With Kala, unlike shareware, the
developer's revenue is not determined by the conscientiousness
and good will ofthe customer but rather the license and meter
policies and prices chosen by the developer.

CONCLUSION

As the software industry matures, its dominant methods for s)ftware
distribution and revenue collection are expected to migrate toward
a combination between floating licensing and metered use. To al-
low the industry to settle on the methods most likely to provide
long-term revenue streams and discourage massive fraud and in-
equity, the proper infrastructure must be put in place.

Metering and licensing are complementary, not mutually ex-
elusive. They should be used in conjunction to cover both pre-
dictable and random use, both constant and intermittent usage.

Metering and licensing are specific ways of controlling the vis-
ibility of data and services based on paid-for rights. To ensure the
safety and security of metering and licensing information, the me-
tering and licensing mechanism must be located where persistent
data is stored and guarded-iii the persistent data store, At this low
level, a persistent data server such as Kala can ensure the protec-
tion and inviolability of licensing and metering information, thus
guarding the economic interests of all parties involved in the software
trade: manufacturer, resellers, vendors, and customer. E a

References and suggested reading

1. Cox, B. What if there is a silver bullet JOURNAL OF OBJECT-ORIENTED
PROGRAMMING, 5[3]: 8-9,76, 1992.

continued or page 12

7

GAUNTLET IMPLEMENTATIONS m E conmvedirompee 4

tions. For example, suppose English were fixed on a finite set of
primitive vocabulary, prior to the invention of airplanes, and a
user wants to express the concept of "airline check-in proce-

dure."This would have to be expressed iii fixed "building blocks"
such as "a mammal standing upright on two legs with two arms
walks over to the square object made ofwood and makes sounds
to another mammal standing upright on two legs"As you
can see, this rigidity in a vocabulary introduces inconsistency in
expression, incompleteness, inaccuracies, and conflict. However,
software implementations still suffer from these problems. ThereM
fore, computer languages and their evolution should be treated
no differently than the necessity that drove the evolution ofspo-
ken languages.

With the right focus, 5GLs cain now be built via object-
oriented procedures. With the development of verb objects,
reusable building blocks can be created that express business pro-
cesses. These, in turn, can be rapidly integrated into large sys-
tems, which can quickly embrace not just existing "legacy " ap-

plications but also the ever-increasing base of new technologies
and enhanced requirements. As usual, the $64,000 question is,
"Can this be true and, if it is, can it be done today?»

EXISTING SOLUTIONS

Theanswertoboth these questions is an emphatic Yes. At
least one development exists today, called MacroScope, that has
all the 5GL capabilities briefly outlined here plus many more.
Its design goal was to provide application developers with the
type of accelerated implementations achieved by hardware evo-
lution. The architecture that evolved in MacroScope started
with the creation of detailed layers ofcomputer-science build-
ing blocks. These then evolved into a language, first of high-
level "technology verbs," then into high-]evel «business verbs."
These verbs correspond to some extent with methods in con-
ventional object-oriented parlance, but their different design
provenance makes them much more powerful. The infinitely
flexible logic of an application is achieved by the sending and
receiving of messages, much as one person might call another
on the phone.

In fact, this parallel with the way people work is central to the
extended object-oriented paradigm in MacroScope. For exam-
ple, objects can be built that know how to buy. sell, evaluate a
portfolio value, etc. These can now be used in, say, a dealer trad-
ing system, in treasury cash management, for investment analy-
sis, etc. A developer simply invokes the "sell" object/verb: what
it then does (its processing), in terms of database access, com-
munications, and logic (e. g., technology obiects being invoked),
is transparent to tlie developer.

This layered, evolutionary approach to software in fact pro-
vides a programming revolution; namely, programming lan
guages with extensible vocabularies. Due to object-oriented ca-
pabilities, an implementation language with this "organic
structure can grow mto even higher components. This is achieved
by the creation of development vocabularies that embody specific
industry or corporate processes. What this development revolu-
tion provides is the ability for more people to create their own

8

y.

solutions, like the impact of the calculator on use of the slide-
rule. The calculator allowed a very wide audience ofusers to work
effectively with mathematics without needing to understand al-
gorithmic detail. Users can now apply/employ high-level busi-
ness concepts without needing to understand the detailed pro.
cessing logic underneath the concept (e. g., a monthly payment
based on principle, interest, duration of time, etc.)

THE CHALLENGE

A fifth-generation object-oriented language dramatically shifts
traditional programming paradigms, so much so that a (natu
ral) first reaction is incredulity. This skepticism is to be en-
couraged. This article started by highlighting the excessive claims
that have always been made for software. In fact, it is difficult to
make credible comparisons between a 5GL and traditional ap-
plication development approaches. With a 5GL, complex solu-
tions can be developed in man months of effort, and weeks of
elapsed time, How does one make a believable comparison be-
tween applications that have been written over two to five vears,
by hundreds of programmers, and a solution that can "redle-
velop" that application in three months, with more functional-
ity, and interfaces that require virtually no training or docu-
mentation and are capable of running on smaller, cheaper, more
robust hardware?

A practical way of removing this incredulity is to have users
'<lay down a gauntlet" and have vendors "pickitup" and put their
money and resources where their marketing musde hasbeen. This
is certaintv something that MacroScope has done many times in
the years during which it was growing to maturity: many com-
plex applications have been created in man months (even man
days) that otherwise would have taken many man years to build.
This is an appropriate way to combat skepticism. ln fact, in an in-
dustry that has never been reticent in making outstanding claims
for itselfit could be an interesting approach. If the technology de-
livers on its daims, there should be no shortage of organizations
willing to take it up. This could be really useful to the wide audi-
ence that must be extremely interested in knowing whether the

future has really arrived for software development, Take this ap
proach. Challenge us tool vendors to prove that ourproducts can
deliver more than traditional languages at a lower cost. Some of
us can and will rise to the challenge.

In this era of rapid and accelerating change in all business cli-
mates, very large programming backlogs in all environments, ag-
ing legacy systems, and ever-rising software maintenance costs,
developments can no longer be viewed in the brute-force con-
text of "everyone program faster." What is needed is the next leap
forward in technology: the equivalent that "Beam me up, Scotty"
was to ground-to-air transportation. Perhaps an object gaunt-
let would help us know for how much longer we will have to use
the people-mover, shuttle, and airlock. E •

Bernadette G. Reiter s founder, President. and CEO of Ob3ective: Inc.,
the manufacturers of the Macroscope Mth-generation development en-
vironment. Based in Boulder, CO, Objective. Inc. provides custom ob-
jed-onented software solutions to Fortune 500 companies wrhin the
US and abroad.

HOTLINE ON OBjECFOBENTED TECHNOLOGY

network protocols: TCP/IP, DECnet, Netbios
operating environments: VAX/VMS, Netware NLM

· Peerlogic: Pipes; 415.626.4545

Peerlogic supports DOS, OS/2, UNIX, Netware, and MS-
Windows. A mainframe version is under development The
product claims to provide dynamic and flexible communica-
tion across many heterogeneous network protocols. Peerlogic
has just joined the OSF and plans to build a DCE services-
based environment using their product as an alternative to
the DCE/RPC. Clients include American express, DHL Air-
ways, and Unum Life Insurance.

network protocols: LU6.2, TCP/IP, Netbios
operating environments: IMS

· Suite Software: SuiteTalk, SuiteDDM, and SuiteDOME;
619.698.7550

Suite So ftware makes a messaging product called SuiteTalk,
a distributed object management system named SuiteDOME,
andadistributedheterogeneousdatabasemanagementproduct
named SuiteDDM. All these products have just been released. In
addition to the currently supported environments, ports to Net-
ware, LU6.2, MS-Windows, and OS/2 are underway.

The Suite Software product set seenis to provide the most
complete set offunctionality ofall the messaging]·elated prod
ucts. SuiteDOME does not correspond to the OMG Object Re-
quest Broker specification but they have stated their intention
to converge toward industry standards. Customers include
American Airlines, NASA, and JPL.

network protocols: TCP/IP, DECnet
operating environments: VAX/VMS, UNIX

· SUN: ToolTalk

A messaging facility, ToolTalk, will be bundled with Open-
Windows. It is built on top of the TI-RPC product. Too[Talk
has received early support from the CAD Framework Initia-
tive and the CASE Interoperability Alliance and has been li-
censed by Silicon Graphics. It is not certain what other envi
ronments it will support, athough the TI-RPC should allow
it to be very portable.

network protocols: TCP/IP.
operating environments: Solaris

• Symbiotics: Networks; 617.876.3635
Symbiotics has a sophisticated product based on distributed

agents cominutiicating by messaging. It does not support as many·
platfornis or protocols as die other vendors. lhe Networks prod-
uct has an object-oriented foundation that may be an example
of the future direction for some other messaging products.

network protocols: TCP/IP

The company has an agreement with Transarc to interface
lizbridge with Transarc's Encina transactional RPC. This could
provide a gatewaybetween OSP/DCE environments and asyn-
chronous messaging capabilities. System Strategies is the largest
of the non-hardware messaging vendors.

network protocols: LU6.2, TCP/IP, DECnet
operating environments: 1MS, VAX/VMS, Netware NLM

· ANSA (Advanced Networked Systems Architecture);
dme@ansa.co.uk

ANSA is a European Esprit project with similar goals to
the OSF distributed computing environment. ANSAware im-
plements their architecture. It has been used by NASA to build
a wide-area distributed information system. ANSAware is
based on an RPC foundation,

· BBN: Cronus

Cronus is a distributed computing environment that pro-
vides asynchronous execution by means of an RPC.

· Gradient Technologies Inc.; 508.562.2882
Gradient has built a version ofthe OSF/DCE RPC for PCs.

· IlyperDesk; 508.366.5050
Hyperdesk has built the first commercial implementation

of the ONIG's Object Request Broker. It provides an object
layer over RPCs like Netwise or DCE. Hyperdesk supports
asynchronous behavior in its product.

· Netwise; 303.442.8280

Netwise offers an RPC supported by Sun and Novell. Net-
wise has been used in industrial applications and supports a
wide range ofnetwork protocols and platforms including IBM
mainframes. Netwise's products include RPC TOOL for MS-
Windows, RPC EXEC for MVS/CICS, and DUET for multi-
protocol dient-server RPCs.

* Open Software Foundation's Distributed Computing Envi
ronment (DCE RPC)

Based on the HP/Apollo Network Computing System, this
RPC has the most multivendor support but has not yet been
used iii any large-scale commercial applications. (Candie Corp.
has just announced a ioint development agreement with OSF
to port the DCE RPC to MVS.)

+ Transarc: Encina; 412.338.4420

Transarc has built a transactional RPC based on DCE RPC.

· Wonderware: NeiDDE; 714.727.3200

Wonderware NetDDE extends the functionality of MS-
Windows DDE across network protocols induding NetBios,
DECnet, and TCP/IP.

operating environnielts: U nix

• System Strategies: Ezbridge Transact; 212.279.8400
System Strategies is a subsidiary of the NYNEX phone coin-

pany. Its product runs on CICS, OS/2, DOS, and VAX/VMS.

CFOOT

Understanding management, technology, and products Oil£e
those listed above) is the reason behind the Corporate Facilita-
tors of Object-Oriented Technology. CPOOT is a mailing-list
based group with over 200 subscribers, formed to influence veil

JANUARY 1993 17

DISTRIBUTED COMPUTING a a

the RPC client-server type of communication may be adequate
and could be simpler to program.

The efforts of many multivendor consortiums seem to be fo-
cused on this RPC dient-server approach, e.g., the OSF/DCEand
the O]VIG Object Request Broker.

At the same time, there are many commercial products ap-
pearing that provide synchronous messaging capabilities across
heterogeneous networks and platforms. Unforturlately, most of
these products have proprietary interfaces. Some ofthe strongest
supporters of the OMG/ORB approach are also working on in-
dependent messaging products (e.g., Sun's ToolTalk and HP's
Broadcast Message Server). It is unclear how these product:s will
interoperate with OSF/DCE, OMGNORB, or each other.

The APIs for the higher levels of middleware have to encap-
sulate the capabilities of the lower levels to enable portability and
interoperability. This is much more difficult than it sounds. Sev-
eral probelms already being addressed by the OMG are:

1. ORB Object-Level Specifications are not specific enough to
guarantee interoperability or portability between different
environments.

2. ORB Object-Level Specifications are not adequate to encap-
sulate peer-to-peer communication (e.g.> message queuing,
broadcasting, notifi cation).

3. There may be a need to build an upper middleware layer on
top of ORBs.

MESSAGING PRODUCTS

Almost all vendors of middleware application intercommunica-
tion products support MS/DOS, MS-Windows, and OS/2, and
some support UNIX. In general, the products provide message
communication, management, and queuing facilities with rela-
tively simple APIs. This corresponds to lower middleware. An
important next step will be building middle middleware frame-
works on top ofthese messaging capabilities (e.g., Suite Software
and HyperDesk below).

An excellent detailed surveyof some ofthese products can be
found in an article by Steven King in DATA COMMUNICATIONS.1
To assist readers wanting to explore these products further, a list
of some current offerings follows including information about
some of the network protocols and operating environments cur-
rently supported,

, Covia Technologies: Communications Integrator; 708.518.4000
Covia Technologies is the system iii tegrator for a very large

airline reservation system used by United and other airlines.
Covia was part of the initial development effort for LU6.2. It
has been ported to Tandem, Stratus, Unisys, MS-Windows
VAX/VMS, MS-DOS, and OS/2. UNIX and Novellsupport are
under development Covia's product is designed around OSI
system management but can link to Netview and Netmaster.

network protocols: LU6.2, Netbios
operating environments: IMS

16

· Creative System Interface: Application to Application Inter-
face (AAI); 508.872.0965

Creative Systems began with CICS, MVS, VTAM, DOS,
and OS/2 functionality. Since then, AS/400 Windows and AIX
versions have been released. Upcoming ports to DEC, Net-
ware, and other UNIX platforms have been announced. Clients
include Dun & Bradstreet. AAI has been licensed by Micro-
Focus for its COBOL product.

network protocols: LU6.2, Named Pipes
operating environments: IMS

' DEC: DECinessag¢Q
DECmessageQ began as a tool for linking manufacturing

applications but is being positioned as an enterprise integra-
tion tool. It currently supports VAX/VMS, Ultrix, 092, DOS,
and Macintosh. Linking it to LU6.2 and TCP/IP requires some
additional development.

network protocols: LU6.2, TCP/IP, DECnet
operating environments: VAX/VMS, Mac

, Hewlett-Packard: Broadcast Message Service (BMS)
BMS is used by SofiBench. There is a multivendor group

called CASE Communique that is encouraging the use of BMS
as a CASE tool communication standard,

network protocols: TCP/IP
operating environments: HP-UX, Sun

· Horizon Strategies: Message Express; 617.444.7575
Message Express is known for its flexibility and function-

ality. It can deliver messages reliably even when networks, ap-
plications, or platforms are temporarily unavailable. It was
initially developed for IBM mainframe and DEC VAX ma-
chinesbut has since ported to smaller platforms. Message Ex-
press can serve as a backend to the Sybase Open Server. Cus-
tomers include Scott Paper, Munich Reinsurance, and the
New York Power Authority.

network protocols: LU6.2, Named Pipes, Netbios
operating environments: IMS, VAX/VMS, Netware NIM

· IBM: DAE or Datarade

The IBM DAE was originally developed for manufactur-
ing system integration but is being repositioned as an enter-
prise integration system. Datarade is a product developed by
IBM's financial services group. It does not currently support
mainframe platforms.

network protocols: LU6,2, TCP/IP, Named Pipes
operating environments: AIX, OS/2

· Momentum Software: X-IPC; 201.871.0077
Momentum Software supports semaphores and virtual

shared memory as well as messaging in a single API. The ini-
tial releases of X-IPC were for UNIX and OS/2. Since then

VMS, MS-Windows, and DOS havebeen added. Coming ports
include Novell, MVS, and Macintosh. Customers include
American Airlines, FMC, and Canadian Pacific.

HOTUNE ON OBJECT-ORIENTED TECHNOLOGY

DATABASESEE

You can have your objects
and be relational tool

4*%%3

| You may be one of those fence sitters who concedes the benefits
 of object orientationbut complainsthat, because ofthe invest-
I ment your company has made in relational databases, "there's

no way to get tliere froni hei·e.>> This article describes how to make
a smooth transition to object technology by building object-
oriented business applications that store and access data in rela-
tional databases-

This article will coverthreepoints: (1) Companies need atran-
sition strategy that enables them to build new object-oriented
applications on top of existing relational databases; (2) Con-
necting objects to relational databases is a straightforward but
very time-consuming job; (3) Tools are available that automate
this task, enabling companies to build applications that treat re-
lational databases as if they «understood" objects.

COMPANES NEED A TRANSITiON STRATEGY

Every significant new technology brings with it two opposing
 campsofprophets: those whoclaimthattheonly way toget there
I isto abandon everything you have and take up the new standard,
 and those who daim that the risks are too great and it's better

just to stay put. Not surprisingly, object technology has spawned
its own set of fanatic believcrs and stern detractors.

Nowhere is this conflict as apparent as in the database arena.
' On the one side, object database gurus label relational databases

as dinosaurs ready for the relic heap. On the other side, relational
database vendors deride object databases as toys, not worthy of
serious consideration.

Reality falls somewhere between these positions. Relational
databases whatever their other faults, are extremely flexible and
can serve quite well as obiect repositories. With careful planning,
companies can make the transition to obiect-oriented develop-
ment bv starting with existing relational tables. Over time, they

I can use this approach to create object-oriented applications that

 leverage existing data and work side by side with legacy systems.Relational Data Has High Inertia
Although relational databases have been around for more than
20 years, hierarchical and network databases still account for
more than 50% of all corporate data. The number one rule of
database management is that data has high inertia. Thus, any new
object application that needs corporate data is going to have to
find away to access the data "where it lives."

While objectdatabases mayeventuallytakeover the database

JANUARY 1993

Christopher Keene

world, the revolution will be a long time coming. What compa-
nies need today is a viable transition strategy that will allow them
to begin using object-oriented techniques today and gradually
shift their data over time to the most appropriate repository.

In fact, there is often no choice about where to store objects
for an application, For example, the attributes of the objects may
already exist in a relational table. In addition, the application may
need certain features that are not yet available in object databases
such as sophisticated locking and concurrency mechanisms.

In other situations, it maybe important to store some objects
in a relational database and others in an object database. This
would allow for «hybrid» object models, where existing data is
stored in a relational database while new complex data is stored
in an object database. Much of the financial industry is con-
templating this kind of arrangement for building new object-
oriented applications.

Benefits of Relational Mappings

There are a number of important benefits to building object-
oriented applications on top of relational databases. The first is that
these objects have full access to the SQL query engine. While purists
argue that SQL queries violate object exicapsulatiorl, S{)I. reillains
the most powerful queryinglanguageavailable, andthecurrent re-
lational database vendors have had over ten years to expand the car
pabilities and optimize the performance oftheir SQL tools.

Next, objects in relational databases call be accessed bv non-
object-oriented applications. This is an important consideration,
as few companies are going to go "all-objects" overnight. Keep-
ing the data in traditional relational datastores while beginning
to use object orientation for new development provides an in-
cremental approach that will allow companies to make a smooth
transition to object orientation,

CONNECTING OBJECTS AND RDBMSs:
FEASBLE BUT TIME-CONSUMING

The mechanics for mapping objects to relational databases are
straightforward. In fact, many of the core ideas for object orien-
tation come from the world of relational data modelling. The
difficulty is that writing the code to perform the mapping be-
tween objects and tables is very labor intensive.

Current Data May Be More Object Oriented Than You Think
In the past, major system design efforts had two teams, one of

DATABASES a m

which pursued the functional decomposition while the other
worked out the logical data model. Because structured develop.·
meat put an emphasis on the functional side of development, the
functional team usually got its way in resolving conflicts with the
data modeling team. As a result, the delivered systems met the
original specifications but often lacked flexibility to accomodate
changes in the business requirements.

Object-oriented development, on the other hand, takes a more
data-centric view of the application. Objects are built around
core sets of data, combining a set of data with a set of responsi-
bilities for that data. In many ways, object orientation can be cori-
sidered the revenge of the data modellers.

After all, it's not as if the data modellers have been sitting idle
all these years. They have developed powerful techniques for
modeling the datarequirements oftheirbusinesses using entity-
relationship diagrams. Iii many cases, they have defined the en-
titles, attributes, and relationships required to run the business.
In short, they have gone a long wav towards building an enter-
prise obiect model.

For anyone who doubts the similarities here, try this simple ex-
periment. Grab anybook on database design and open it to a ran-
dom E-R model. Now grab any book on object-oriented design
and open it to a random object model. Finally, convert the nota
tions and try to find a difference between the resulting models.

Objects Map Readily To Relational Tables
The relational algebra that forms the underpinnings for relational
databases guarantees a relational database can handle any kind of
data you care to throw at it. Yes, there is a performance penalty for
certain kinds ofhighly fragmented or structured data, but the fact
is that relational databases are more flexible than you might think.

At Persistence Software, for example, we created a benchmark
application with 160 classes, 480 relationships, and 30,000 in-
dances stored in Sybase. In our testing (run on a Sun IPX with
32MB RAM) the application loaded the entire data structure in
little more than a minute and was able to traverse the data struc-

ture in less than a second, using object caching techniques sim-
ilar to Versant. In comparing these results with the findings from
similar benchmarks, such as Rick Cattell's 001 benchmark, the

loading time is 20 to 30% slower than for an OODB while the
time to traverse the structure in cache is almost identical.

Mapping Tables To Objects

The translation between an E-R model of the existing tables and
an obiect model of the corresponding objects is almost automatic.
Entities become classes and relationships between entities can
become relationships between classes. Views can also map to
classes, allowing developers to provide "de-normalized" data for
their classes.

User-Defined Types

This handles "well-behaved" data. What about user-defined types
such as addresses? These can be handled by creating a table for
each abstract data tvpe and creating a foreign key mapping be-
tween the class and its abstract type members. For example, ad-

10

dress may be a user-defined type, stored in its own table. If the
employee class contained an attribute oftype address, the employee
table could contain a foreign key pointer to the address table.

Repeating data types can be handled in the same wav. For ex-
ample, an invoice might contain any number of line items. This
can be represented as a one- to--many relationship between the
invoice table and the line item table-a pointer in the C++ world
and a foreign key in the relational world.

Class relationships can also be represented through foreign
keys. For example, if the employee class is related to the depart-
merit class through the relationship worksIn. this would be rep-
resented in the database as a foreign key in the employee table that
pointed to the department table.

Inheritance

There are several ways to represent inheritance in relational ta-
bles. The simplest wav is to create a table for each "leaf class" in
the inheritance hierarchy. Each table would contain all the in-
herited attributes while each class would inherit attributes and

methods from its superclasses. For example, ifemployee andcus-
tomer inherited from person, there would be two tables in the
database (one for employee and one for customer). employee and
customer would inherit attributes and methods from person.

A second way to handle inheritance is to have a table for each
class containing only the unique attributes for that class. Each
subc}ass would also have a relationship with its superclass to get
the full attribute set for an instance. In this situation, person, em-
ployee, and customer would each have a table in the database, with
a one-to-one relationship between each empioyee instance and
a particular person instance (and between each customer and a
person).

The third way to handle inheritance is to create a 'supertable'
in the database thatcontains al] attributes for the inheritance hi-

erarchy, along with a type attribute to indicate the type of class
to which each row iii the tab}e corresponds. Here there would be
only a person table in the database, with an attribute to indicate
whether this instance was really a person, employee, or customer.

Problem: Mapping Objects To
Relational Tables Takes Time

While the mapping between objects and relational databases is rel-
atively straightforward, writing the code to implement this map-
ping is hard work Today, object-oriented developers must hand-
code routines to translate between each object and its corresponding
table. For each dass, the developer must supply methods to cre-
ate,read, update, and delete the class (the C.R.U.D. operations).
Each class also needs methods to set and access related objects.

Foreign keys entail not only performing cross table lookups
but also enforcing referential integrity when key values are up-
dated and delete constraints when objects are deleted. Together,
these methods can add hundreds of lines of code to each class

the developer wants stored in the database. In working with our
customers, we have found that developing the database interface
typically consumes 20-30% of the total development time for the
project, or somewhere between one and two weeks per class.

HOTLINE ON OBJECT·OREENTED TECHNOLOGY

DISTRIBUTED COMPUTING

The middleware

challenge

Middleware products are a new generation of tools that allow
application programmers to write programs in heterogeneous
distributed environments without having to deal with the intri-
cacies of underlying system software. During the last few years,
there has been a slow but steady development of this type of tool.
Middleware has not gotten the same attention as the new GUIs,
databases, languages, and operating systems but it could prove
more important in the development ofcorporate computing en-
vironments. The integration between the rew middleware prod-
ucts and object-oriented technology will be very important for
future distributed systems.

The purpose of this article is to draw attention to what may
be an upcoming revolution iii future delivery systems and the
major implications for possible business process reengineering.
Some layers and sublayers will be defined to darify the distinc-
tions in middleware functionality. Then there will be a brief dis-

cussion of the client-server vs. asynchronous messaging paradigms
and the implications for the Obiect Management Group's (OMG)
Object Request Broker (ORB). An overview of sonic of the asyn-
chronous messaging and RPC products follows. An end user's
group called the Corporate Pacilitators of Object-Oriented Tech-
nology (CPOOT) has been started to keep corporate technolo-
gists abreast of trends like middleware and some information
about this group is provided. Finally, some future challenges for
developers and business process planners are listed,

TWO REFERENCE MODELS

I have found two reference models to be helpful when trying to cat-
egorize the middleware products. A first step is to locate middle-
ware in the spectrum oftools that facilitate software development,

One workable classification is:

- outerware-helps end users develop programs (e.g., macro
and visual programming languages)

* middleware-helps application programmers develop pro-
grains (e.g. messaging products described below)

innerware-helps sYstem programmers develop programs
Ie.g., object layers on top of the operating system).
There are several different types of middleware including data

access, mail messaging, user interface, and interapplication com-
munication. This article will focus on middleware for interap-
plication communication. Middleware can be further categorized
by the level of abstraction provided to the application program-

JANUARY 1993

-

-

Dr. Robert Marcus

mei. For interapplication communication in distributed systems,
one possible partition with corresponding application program-
ming interfaces (APIs) is:

· upper middleware-mediator API encapsulates the receivers
of messages (e.g., software brokers, traders, mediators, and
intelligent agents)

· middle middleware-obiect API encapsulates the receiver's
implementation (e. g.,object request brokers)

· lowermiddleware-generic APIencapsulates underlying op-
erating systems and network. (e.g., remote procedure calls
and messaging products)

The basic principle in distributed svstems middleware is to
hide the complexity ofnetwork communication protocols from
the application programmer. For example, remote procedure
calls (RPO) are used asthe basis ofsystemslikethe Open Software
Foundation's (OSF) Distributed Computing Environment. An
even higher level of abstraction can be achieved by using object-
level APIs such as the Object Request Broker from the OMG. An
ORB can hide the differences between the underlying RPC or
messaging implementation. The mediator level mav be necessary
to provide interoperability between different ORB implementa-
tions or construct large-scale heterogeneous environments, The
International Standards Organization's (ISO) Open Distributed
Processing (ODP) group's Trader is an attempt to specify 5tan
dards for this type offunctionality.

PEER-TO-PEER VS. STRICTLY CLIENT-SERVER

One of the most important issues in distributed interapplication
communication middleware is the choice ofthe peer-to-peer vs.
sti·ictly client -server paradigm. This is sometimes posed as asyn-
chi-onous messaging vs. remote procedure calls. However, it is
possible to implement peer-to-peer interactions on top of RPCs
by using multiple threads (e.g., Sun's ToolTalk on top of their
transport-independent RPC). It is alsoeasyto build synchronous
client-server applications on top ofasynchronous messaging.

From a pragmatic viewpoint, when components of a dis-
tributed system are relatively independent or run in heteroge-
neous distributed environments, an asynchronous peer-to-peer
approach seems more suitable as the foundation paradigm. This
allows capabilities such as guaranteed delivery, priority message
queuing, notification, and broadcasting to be supported, For dis-
tributed application components working in a local environment,

15

4

DISTRIBUTED INFORMATION E E

Application Interfuce Applicalic

1

DMi & DDE (SQL, C+-, Smal,talk) DB Interface. DML

7/imi."mim

Transachon M.inage]

Tramtional Implementation

e Only access to]DML & DDL
e Closed System

CO

* Accens ti

e Extensib

* Open Sy

Figure 2. Traditional vs. CODB implementations.

they are generally secondary to language interface support. DOBs
approach the problem from the traditional database perspective
and concentrate on adding objects to the typical database mech-
anisms. These systems can be viewed as an evolution of the cur-
rent RDB, with classes and objects replacing tables and rows.

In contrast to PLEs, DOBs place more emphasis on multi-
user transaction capabilities than language integration. DOBs
offer more flexible locking protocols and are designed to be used
in multi-user environments. For example, PLEs often offer no
locking at all or page-level locking. DOBs provide locking at the
obiect level. This feature makes the DOB a more complex sys-
tem but offers the flexibility needed to support concurrent use
in commercial applications such as financial trading.

AD Wiellit.

CODBs, in contrast, ai·e implemented
in modular component class Libraries.
These component class libraries can be

in Interftice : accessed and extended independently,
-- which makes CODBs flexible, accessible,

' A aild extensible at all layers of the systent
(as shown in Fig. 2). For example, the
storage management component of an

7

(2<ncurreicv object can be changed independently of
Control the application's use of the object. This

flexibility enables the developer to make
changes to the storage model of the ob-

,r ject without affecting the logic of the ap-

SM,·age Manacer 1i plication. An excellent separation is cre-
2»_=:»==a=1! 1 ated between the use of objects in an

application and the source of objects on
01

disk. Performance bottlenecks iii database
i all I 13'ers
le a[all layer: applications can thus be addressed with-
efils out recoding the application or chang=

ing the application design.
Another important benefit of the

CODB approach is that new require-
ments can be added to an existing system by either the vendor or
the developer. In this sense, the CODB is truly an enabling tech-
nologybecause customers can extend the system without vendor
assistance, thereby responding to changing requirements more
rapidly than is possible when vendor release cycles are involved,
One obvious example ofthis is multimedia, where rapid advances
are being made iii technology for storing and retrieving digital
video, voice, and other media forms. With a CODB, a new class
of storage manager to handle digital video streams can be added
to an existing system by the vendor or customer. Applications can
use this storage manager without adding code, recompiling, or
relinking, enabling existing applications to take advantage ofthe
new technology-a true competitive advantage for organizations.

Component Object Databases
Finally, there are component obiect databases, which use an
entirely new architecture based on object technology. This ar-
chitecture adds unique extensibility and flexibility to the ca-
pabilities of PLEs and DOBs, For example, the object-oriented
architecture of CODBs enables the use of multiple low-level
implementations of object storage in a manner transparent to
the developer.

Another unique advantage is that the extensibility of CODBs
enables new technology to be integrated without changing sys-
tems. For example, when new technologies such as special hard-
ware and software to support audio and video become available
they can be seamlessly integrated into the CODB and immedi-
ately used by applications without having to recode or recom-
pile any application logic.

CODBs build on top ofboth PLE functionality and DOB func
tionality by using objects to change the implementation archi
tecture ofthe database. PLEs and DOBs are implemented as large,
dosed systems similar to the traditional RDBs shown in Figure 2.

14

CONCLUSION

Object database technology is being used more and more to cre-
ate high value applications for organizations. Object databases
can be roughly placed into three categories. Persistent language
environments focus on tight integration with a compiler to ease
programming for the low level coder Databases of objects pro-
vide a traditional database architecture using classes and objects
as the descriptive mechanism replacing tables and rows. Com-
ponentobject databases use obiect technology to modularize the
system and enable components to be freely mixed and extended
to accommodate a wide variety of applications. Products in all
of these categories are providing significant value to developers
and users. E -

Tim Andrews is Chief Technica Officer at ONTOS Inc. and one of its

primary designers.He has a background in object technology, database
implementation, and technical marketing. He can be reached at ON-
TOS, Three Burlington Woods, Burlington MA 01803, 617.272.7100;
fax: 617.272.8101.

HOTUNE ON OBJECT-OR]ENTED TECHNOLOGY

The code that results from hand-coding object interfaces is
generally not reusable across projects and certainly riot portable
between databases. In addition, each developer tends to use differ
ent standards for locking data and maintaining referential in-
tegrity and delete constraints.

TOOLS AUTOMATE INTEGRATION

BETWEEN OBJECTS AND RDBMSs

While relational databases are in manv respects well suited as
repositories for most object data, there are integration and per-
formance issues involved. To a large extent, these problems can
be solved by application development tools that automate the
generation of the database interface and speed runtime perfor-
mance through object caching.

Database Interface Builder Automates

Coding of Data Access Methods

Developers building graphic user interfaces today are accustomed
to having tools that help automate their task. For example, there
are a number of libraries available that provide object-oriented
interfaces to the X Window System. There are also a number of
graphic interface builders that automatically generate interface
methods based on a screen mockup.

Another benefit of object databases is
their tight language integration.

Similar tools are available for developers building database
interfaces. As in the GUI world, there are libraries that provide
an object-oriented interface to the underlying database. This kind
of library allows the developer to send SQL queries to the database
and get back tuple objects as the result of the query.

This approach simplifies interaction with the database but still
leaves the developer with the task of hand-coding the translation
routines between the generic tuple objects and their application
objects. One example of an object-oriented class library for rela-
tional databases is db H (available through the Qualix Group).

There are also tools for generating database interfaces auto-
matically, much like the graphic interface generators available
today. These tools take an application object model as input and
generate "data smart classes" as output. These classes contain all
the methods needed to read and write themselves to the database.

In addition, they have methods to set and access instances of re-
lated classes.

Our product, Persistence, is an example of a database interface
builder. Once the developer has specified the object model for ati
application, the Persistence Database Interface Generator produces
a custom interface for each object, complete with create, read, up-
date, and delete methods and methods to set and access related

objects (e.g., how to perform foreign key lookups). Because each

JANUARY 1993

object «knows" how to store and retrieve itself the developer can
treat the relational database as if it were object oriented.

Caching Can Speed Performance For Complex Data Types
A second issue in working with relational databases is their per-
formance. This can be split into two separate issues: speed iii re-
trieving the data and speed in traversing highly structured data
(c.g., bill of materials or multimedia documents).

To improve speed in retrieving obiect data, it may be neces-
sarv to denormalize the database tables to achieve adequate per-
formance. Another option is to create a view that represents a
join between several tables and then map that view to an object.

To provide speed in traversing object structures, object
databases such as ObjectStore from Object Design cache objects
in memory. With an object cache, a large, complex object can be
brought into memory and then traversed there rather than hav-
ing to go back to the database each time the data is accessed.

But, object data from relational databases can also be cached
with similar performance benefits. For example, Persistence au-
tomatically performs database locking and object caching for ob-
jects accessed within a transaction. In our benchmarking we have
found that object caching can speed relational database perfor-
mance by a factor of ten for data-intensive applications.

The Role For Object Databases
This is not to minimize the role and potential market for object
databases. There are fundamental differences between relational

and object-oriented databases. As Esther Dyson says, "relational
databases are good for data, object databases are good for struc-
ture." As companies become more comfortable with the obiect
paradigm, they will find more and more valuable applications
for object databases. Yet for companies just starting with objects,
or for companies with significant investments in relational
databases, it is more practical to start with applications built on
top of existing database management systems.

The most important reason for using object databases is to
achieve adequate performance for haindling complex object struc-
tures. Object databases store information about the structure of
their data directly while relational databases don't. For example,
databases]ike ObiectStore store pointer in formation rather than
foreign keys. For highly structured data, this can improve per-
formance in retrieving and storing the data.

Another benefit of object databases is their tight language iii-
tegration. By sparing the developer the difficulty of flipping be-
tween their procedural language and the database's declarative
language, object databases offer faster development. On the other
hand, tools are becoming available to provide a tight language
interface between the developer's object model and relational
databases as well.

SUMMARY

Obiect popularizers have so far focused too much on describing
the wonders of this new technology and too little on offering
practical advice about how to get started. Like the pioneers of
old, they sometimes seem more interested in holding audiences

11

DATABASES - E

spellbound with tail tales than iii building roads so that others
can go where they have gone.

While obiect orientation offers significant benefits to software
developers. these benefits are hollow if they first require compa-
nies to abandon their existing information infrastructure to achieve
them. Thus. the first order of business for getting corporate ac-
ceptance of obiects is to show how to build object applications
on top of existing data. Now that enabling products are appear-
ing on the market, many previously hesitant companies are mov-
ing more aggressively to adopt object technology, as shown by
the growing attendance at shows like Object Expo, ObjectWorld,
and OOPSLA.

Over time, adoption of object technology will drive a steady
migration to more powerful databases. This wilI come as devel-
open use the power of object encapsulation to create more so-
phisticated object designs. As this happens, new applications will
use a hybrid approach to access existing data in relational databases
while storing more complex object data in object databases. a a

Chnstopher Keene is president of Persjstence Software, Inc. of San
Mateo, CA. Before founding Persistance Software, Chris was a man-
ager with McKinsey & Co., worked in marketing at Ashton-Tate. and
was a sofbware engineer at Hewlett-Packard He can be reached at
415.341 7733 or ckeene@persistencecom

SOFTWARE LICENSING a a CD:uf'/med i'0 71 nege 7

2. Miller, M. Xanadu Operating Company, private conversation on
software pay-pei-use, July 1992.

3. Mori: R. and M. Kawahara. Superdistribution: An Overviewandthe
CUrrent StatUS, TECHNICAL REs]EARCH REPORTS oF THE INSTITUTE
<>F ELECTRONICS, INFORMATION, .AND('OMMUN]CATION ENCNEERS,
89[44],19xx

4. Hemnes, T.M. S.,Ropes, and Gray. SOFTWARE RM E.NUE GENERATION
IN NETWORK ENVIRONMENTS, Massachusetts Computer Software
Cound] Annual Legal Update Program, Noveniber 1992.

5. Simmel, iS. KALA-INTERFACE REFERENCE PART I: KALA FACH-1-
Tips, Rev. 2.0, Software Version 2.1, Penobscot Development Cor-
poration, Arlington, MA, 1991,

6. Simmet, S.S. KALA-MAIN CONCEPTS, Revision 1.0, Penobscot De-
velopnient Corporation, Arlington, MA, 1990.

7. Simmel, S.S. and I. Godard. The Kalabasket--asemantic primitive
unifying object transactions, access control, versions, and conftgu-
rations, PRocEEDINGs of OOPSLA '91, October 1991.

8. Simmel, S.S. and I. Godard. Obiects of substance, BYTEMAG.AZ]NE
15(]'1992.

Sergi,u S. Simmel is cofounder of Penobscot Development Corporation
of Arlington, MA. He has been involved in the Kala project for the past
six years as a codesigner, author, communicator, implementor and busi-
ness manager. H s background covers CASE systems, object- oriented
technologies and languages, software engineen no, and databases. He
can be reached at 617.646.7935: fax: 617.646.5753.

-:i-:0-

Calendar '1-

THE HOTLINE CALENDAR presents conferences and meetings that focus exclusively on obiect-oriented technology. To have a meeting or
conference listed, please send the dates, conference name and location, sponsor(s) and contact name and telephone number to Dylan
Smith, 588 Broadway, Suite 604, New York, NY 10012; fax: 212.274.0646.

February 1-4 and 4-5,1993
OOP '93/C++ World

Munich, Germany
Contact: 212.274.9135

, February 15-19,1993
MADACON'93

San Diego Hilton Beach and
1 Tennis Resort

Contact: 408.253.2765

February 21-26,1993
Software Development
Spring'93
Santa Clara Convention On-

ter, Santa Clara, CA
Contact 415.905.2319

March 8-11,1993
X-World

Marriot Marquis
New York. NY

Contact: 212.274.9135

March 8-11,1993

TOOLS EUROPE 93

Versailes, France

Contact: +33.1.45.32.58.80

March 30-April 1,1993

Object Technology <93

Cambridge, England
Transfer +44,491.410222

April 19-23,1993

Object Expo
Hilton Towers

New York, NY
Contact: 212.274.9135

April 22 & 23, 1993
International Symposium &
Exhibition on Object Technol-
ogy: Methodologies and Tools

Frankfurt, Germany

Contact: i 49.69.52.19.82.

Note to our readers:

To make it easier to save ami protect Vour copies for back reference, the HOTLINE has been redesigned to fit i
into a standard three-hole punch looseleaf binder.

Customized HoTLINE binders Aold two volume gears and can be purchased for 615 (including shipping and i
handling) by calling 212.274.0640.

12 HOTLINE ON OBJECT-ORIENTED TECHNOLOGY

DISTRIBUTED INFORMATIONEE

A description of
object databases

ne of the questions most frequently asked of people in my po-
sition is'"What is an object database and what is it good for?" The
next few columns will be devoted to answering these questions.
I'll start with a description of the technology.

The object database represents a new database technology
rapidly gaining acceptance in the marketplace. There is some con-
fusion surrounding the impact of object database technologv and
the segmentation of the products available. The object database
represents the convergence oftwo substantial technology streams:
object-oriented programming languages and database manage-
ment systems. A complete understanding ofobject database tech-
nology requires in-depth knowledge of bothobject-oriented pro-
gramming languages (OOPLs) and database management systems
(DBMSs). In fact, one ofthe challenges of trving to explain ob-
jed databases is that most technical people have a heavy bias in
either the DBMS or OOPL direction and, as a result, are missing
an important body of knowledge needed to properly interpret
the technology.

"Objects» were originally a language phenomenon, first ap-
rearing in the language Simula in 1967. Today obiects are em-
bodied in C. 2, Smalltalk, and a host of other languages. Database
management systems originated in the 1960s with the IMS sys-
tem from IBM and have evolved into relational database prod-
ucts such as Oracle, Ingres, and Sybase and PC database prod-
ucts such as Paradox, Dbase, and FoxBase.

Products in the object database market fall roughly into three
categories: persistent language environments (PLEs), databases
of objects (DOBs), and component object databases (CODBs).
These categories are more or less functionally layered. In other
words, databases of objects provide a superset of the
functionality of persistent language environments,
and component obiect databases add additional ca-
pabilities to databases of objects (Fig. 1).

PERSISTENT LANGUAGE ENVIRONMENTS

A PLE's primary function is to facilitate the storage
and retrieval ofobiects from within a given language
environment. This category is focused on develop-
ers who use a specific langliage wit]3 the products gen
erally very closely bound to the language. usually C
or Smalltalk. These products are used more in sin-
gle-user environments where a single developer cre-
ates an application, e.g., by converting an existing

Tim Andrews

C++ application. CAD applications, in particular, are well suited
to this approach in the workstation marketplace.

One reason for the development of PLEs is the desire of pro-
grammers using an OOPL to store and retrieve objects from a
secondary storage device such as a hard disk. Since the objects in
an OOPL are created and managed bythelarguage environment,
support must be added if the programmer wants to save objects
for use in a subsequent session. The programmer has a range of
choices in this case: write code to save and recall objects from
di51, use an existing DBMS, such as a relational database man-
agement system (RDBMS), or use an ODB. A PLE can increase
the productivity of the developer in this case by eliminating the
need to write special code to store and retrieve objects.

Databases of Objects
Databases of objects (DOBs) are systems that provide, in addi-
tion to the basic persistence of PLEs, storage and retrieval of ob-
jects from multiple languages along with more traditional database
features such as concurrent access, 4GLs, and higher-level tools
for developing database applications. Currently, the languages
supported are C++ and Smalltalk, with LISP and other languages
garnering some support. These svstems allow for the develop-
ment of multi-user applications. In addition, DOBs that work
with graphical programming toots are accessible to a much broader
group ot programmers.

In the discussion of PLEs, the features normally associated
with database systems, such as multi-user access and reliable
transactions, were not mentioned. PLEs approach the problem
from the language perspective; if database features are present,

/ 0 Extensible Architecture
* Flexible Components
4 Multiple Storage Managers

 . Multiple Languages• Multi-user

* Some Tools

Single Language

Low-level Intertace

Lim#ted Concurrency

Figure 1. Product catagories.

CODB

DOB

JANUARY 1993 13

MA

hotline0 on
OBJECT- ORIENTED hotlineq on

0 0 OBJECT-ORIENTEDBackissues

All back issues of the HOTLINE are available. Please call 212.274.0640 for details. · technology
Vol. 4, No. 3/jan uary '93 E Gauntlel frnple, ental·ins: the 56 L object-oriented chal-
lengem Infrastructure for a new e conomics of,Noftware • You Lan ha ve your obiects and
be relational too' E A description at olilect Atabases m The middleware· challe,ige
Vol. 4, No.2/Delember'92 - Zero-cost portability- Design by contract: building bug-
free 0-(3 software - Object interes[group: phase lwo E Towards a framework forsoft-
ware ROTE Anim.d "objects"

Vol. 4, No. 1/November '92 -Combiningobject technologywith data standards for the
next industrial revulution • Congla iL qualitv management a Evolving markets for soft-
ware components E the quest for v.,lue a Reviewing OOSE: a use case-driven approach

port on the Object-Oriented COBOL Task Group - Interview with K.C Branscomb

Vol.3, No.4/February '92 E lhe bigprizf: acceptance of O-0 by the MIS cominunity E
Retrospective J991-thevearitallchangedEMakingthetransitimt„OOtechn,>logy
5 Interviewwith Beatrizinfante

Vol.3, N<.. 3/January 192.Enterprise object,nodeling: knowing what we know. Adopt-
ing objects: pitfallb = Adoption rate of obiect technologv: a survey of NSW industry

Vol.3, No. 2/December '91 - Accepting object Technology - Adopting objects: a pathl
E Incorporating graphical content Into multimedia presentations

VOL. 4, NO. 4 THE MANAGER'S SOURCE FOR TRENDS, ISSUES & STRATEGIES

The Need For Quality

FEB. 1993

Vol. 3, No. 12/October '92 E ROk development cnvironments for the litecycle = Se
leai„g the right object-oriented method E Choosing an obiect-oriented language E Ob-
ject clatab.I.x te,hnology: who's using i[and why? i Obiects and reuse

Vol. 3, No. 1 1/September '92 - Developing strategiC businesssvitcms using object tech-
nology m Object Iraining harder than it looks E Object-oriented ROI. extending the
(:RC aeross [lie lifecv.le e Wha I OM means for OT

Vol.3, No.10/August '92 - Object technology toward software manitfactuiing = Re-
Lurn on investment. software assets and the CRC technique = Object.onented tech-
nology iii Japan - Providing commonality while supporting diversity

Vol.3, No.9/Julv '92 • OOD: Research or ready m Enierprise modeling an object ap-
proach . OMG's 18-24 month view E Design for object-oriented applications a CASE
for wishful thinking.
Vol.3, No.8/kine 92 = Business in the Information Age - Prom data modeling to ob
iect inodeling E H o w fra lne„ 01 ks enable applica,ion portabil ity - Inteiview with Vall@kali
Merlvn

Vol.3. No.6/April '92 =Thinking the unthinkable: reducing the risk of tallure E Mitigat-
ing madness with metliod: first establish what you value- Championing object technol-
ogy fur career success in the 19903 - Objects and actions in end-user documentation

Vol.3, No.5/March '92 E TA large-scale users' assessment of object mientation e Re

1-1 Yes, plug me into the latest thinking and developments in ot

vol.3, No. 1/November '91 0 Leading the U.S. semiconductor manufacturing in-
dustry toward an object-oriented technology standard - Coping with complexiLY:
OOPS and the economists' critique of centia] planning- Choosing Object Technol-
ogy. What's the obJect? = OOP: the MISsing link

Vol.2, No. 12/October '91 a A modest survey ofOOD approaches e What isa "ce fied'"
object programmer? Perspective: investing in obiects today. Objector,ented in Mel
bcurne. Australia . The Object Management Group

Vo].2, No. 11/September '91 - From application. to frameworks - Report on the Ob
ject-Oriented COBOL Task Group E Getting started with owect technology efffectively
planning for change = Object statistics on the way a On objects and bullets

Vol.2, No. 10/August '91 = Distributed object management: improving worker pro-
ductivity E Getting the best from objects: the experience of HP • APPLIC. 1 ·IONS: EC
employs obiecat Lechnology E CAPACIn' PL.ANNING: Fiddling while ROMs buin

Vol.2, No. 9/July '91 = Mulrimedia is everywhere! = Developing an object technology
prototype-Object-orientedcapacityplanning- How OOP has changed our develop- Al
mentallifecycle= Modularization of the coinputer system

VOL.1 Nu 8/kine '91 . Domain „f objects: 1]1: Object Request Broker E Obiect-based
approach m wer documemalion - Report (m the Object-Oriented COBOL Task Group
a Do we need object-oriented design metrics?

-oriented technology. Enter me as a subscriber at the term marked

SUBSCRIBE NOW TO THE HOTLINE ON OBJECT-ORIENTED TECHNOLOGY-
DON'T MISS ANOTHER VALUE-PACKED ISSUE!

While the United States is the'

unequivocal leader in the
global software market, it is
no secret that our software is infested

with bugs. The existence of this
anomaly is possible only in the ab-
sence of serious international com-

petition. Like the automobile in-
dustry in the 1950s and 1 960s a]id

Greg Pope the semiconductor industry in the
19705 and 1980%, the American
software industry has used its pio-

neering innovations to sustain a prolonged period of unchal-
lenged prolific growth.

This period is now over. Foreign software developers are con-
tinuing to produce more innovative products with high-quality
code, forcing the U.S. software industry to reevatuate its entire
software development methodology. RAP, for example, the Ger-

:244 342
TO ERR IS HUMAN

The development of software appl ications is a complex and ar-
duous task, sometimes requiring several hundred thousand lines
of software code for a single application. Because software de-
velopment is still largely a human endeavor, it will, by its nature,
generate errors. Tf these errors are not detected and cort·ected,
they can cause the software to malfunction. Depending on the
specific application, a software inalfuriction can be a minor nui-
sance or, in the case of systems controlling hazardous materials,
result in injury or death.

THE SOFTWARE DEVELOPMENT REVOLUTION

The demand for efficient and thorough software testing tools is
magnified by the advent of computer-aided software engineering
tools (CASE), software reengineering, object-oriented program-

continued on page 4

IN THIS ISSUE

below and rush mc the current issue. This is a risk-free offer - I may cancel my subscription at any time and promptly receive a refund 1 Cover Feature Greg Pope

for the unused portion. man-based MRP-lI software vendor, is Europe's largest manu- The need tor quality

facturing software vendor and one of the emerging COMMS play-1 year (1 2 issues) 2 years (24 issues) Back issues @ $25 each ($27.50 foreign): From the Editor Robert Shelton

ers in North America and worldwide. If quality does not become1 $249 0 $478 CSuve $20) Vo[.2, Nos. Vol.3, Nos.-
a priority, foreign software vendors like SAP will devour the US's 5 Retrospective-1993-The Year

f i>u aide US add $30 per year for „ir service) Vol 4, Nos. of Commercialization Tom Love

worldwide market sliare. MIS radar detects objects for the tirst time

The issue ofsoftware quality transcends the domain ofAmer- 7 Applications Richard DudU Phone/fax order ican economic competitiveness and impacts everyone living in In pursuit d oblect engineering
Call Subscriber Services at 212.274,0640 an industrialized society. As heirs of the technology revolution, 11 Object Methods Patti Dock
or fax this form to 212.274.0646 Name

we unwittingly interface with several million lines of 5oftware 0-0 transitions require cultural changes
U Bill me Title code everyday. Making a phone call for instance, depends on the 13 Distributed Information Tim Andrews

existence o f over 500,000 lines of reliable software code. Digital Oblect databases, sottware ROI,
3 Check enclosed • alarm clocks, stereo systems, traffic signals, aviation equipment, and the movement toward a

Make check payable to the HOTLINE and mail to: Company/Mail Stop manufacturing model for software
The HOTLINE Subscriber Services medical devices, televisioni and car braking systems all rely on

15 Book Review Michael Fuller
P.O. Box 3000, Dept. HOT quality software programs. Software is also a priinary tool forStreet/Building# Designing quality databases with
Denville, NJ 07834 writing letters, calculating financial reports, and designing elec- IDEF1 X information models
(fi.«noiders in.,s, b€ prepaid En US do#arsdrawnon„ US bank)

City/Province tronic circuits and buildings. 17 Down Under Brian Henderson-Sellers

C) Credit card orders .. that belongs exclusively in the software testing laboratory. It is 18 Product Announcements
The need for reliable, bug-free software is no longer an issue The Australian oblect-oriented scene

U MasterCard J Visa U ArnEx ST/Zip/Country
an issue affecting our economic position in the global market-

Card# Expiration Date Telephone place aswellasoureverydaysafety andwell-being. 21 FYI

Signature

D2KC

FROM THE EDITOR EE

 arly last year, surveys indicated
that 4096 ofall United States IT Orgalliza-
tions would start pilot or full-bore devel-
opment efforts using obiects. Telling, how-
ever, was that 60% of mainframe IT shops
expected to start using or exploring ob-
jects last year. Informal project surveys
support the direction, if not the magni-
tude, of industry growth. Often these saint
shops were downsizing, experimenting
with client-server architecture, and look-

ing for ways to deliver applications to serve
very dynamic, short-fused, short-lived mar-
let opportunities. Against this backimp,
Mr. Tom Love, noted industry consultant
and president of OrgWare, brings us his
annual commentary on events in the ob-
jectindustry. While the maineventin]991
was seeing the term object-oriented in the
business press, Mr. love points out that
1992 was the first commercial year for the
technology, Object technology addresses
critical needs for the large IT shop. The
significant uptake of this technology by
such organizations suggests that 1993 will
be an even stronger year for the industry
than was 1992.

Continued growth depends on setting
reasonable customer expectations and
meeting those expectations while the
prospective customer is focused on this iii.
dustry. Setting reasonable expectations is
a function of accurate communication be-

tween vendors and customers. How ven-

dors communicate to customers about

themselves and their products is vitaL For
example, recent press materials distributed
by ODBA/IS vendor Obiectivity gave in-
conrct impressions of the market share of
several ofits successful competitors-com-
panics like ODI, ONTOS and Servio that
are, based on available evidence, actually
outperforming Objectivity in the market-
place. Distributing accurate product in-
formation is a first step to setting reason-
able market expectations and spurring
market growth. Let's keep ourselves on
track.

Meeting expectations and growing the
market also depend heavily on delivering
quality products. Software quality is that
elusive concept that some define as the lack

of defects. We call them bugs
but remember that the term

bug originated with finding a
moth stuck in the register re
lays of the Iliac! Software de-
fects are more sinister ai.d far less pretty
than a moth. Others define software qual-
ity as possessing characteristics that fasci-
nate the customer. Being defect-free is a
necessary prerequisite but is not itself
sufficient. By this definition, a qualityprod
uct is not only true to specifications but
anticipates its users' interests, work chal-
lenges, and creative insights. It is pleasing
to use, supportive ofthe worker, and stim-
ulates creative business thinking-a]1 while
helpingus getourjobs done.Meeting mar-
ket expectations depends on both aspects
ofquality. For growth ofthis market to ac-
celerate in 1993, object technology prod-
ucts need to do what they're supposed to
and what the customer needs. This is

equally true for commercial products and
business applications.

Both aspects of quality are a function
ofour approach to software development.
The process of producing defect-free
software starts with developing a sound
understanding of user requirements, de-
pends on rigorous testing, and remains
critical throughout the entire field life of
the software product. Developiiig software
that fascinates also depends on our un-
derstanding of the user's needs and ex-
pectations, but effecting fascination is more
a function of the professional developer's
ability to innovate within the user's prob-
lem space than a result of creativity with
the tools of the software trade. Prom var-

ious viewpoints, our authors this month
examine the prerequisites to delivering
quality software.

Mr. Greg Pope o f Tiburon Systems
writes about rigorous product testing as a
key part of the quest for quality software.
Mr. Pope observes that the traditional
global leadership position of the U.S.
software industry is in serious jeopardy.
Anyone who saw the influx of superb
French-built 0-0 software tools at indus-

try conferences during 1992 would agree.
Japan has taken a sudden and fierce inter-

est in object technology,
which, added to their strength
in applied fuzzy logic, could
manifest itself in a powerful
new generation of consumer

products. I have previously mentioned In-
dia and Ireland, where low-cost labor and

high-talent people combine to deliver a
competitive software manufacturing en-
vironment. As Mr. Pope observes, we may
have been the pioneers, but we cannot sir-
vive oIl naive anticipation of unchallenged
growth.

Mr. Pope's particularly thought-pro-
voking observations on the impact of
software oil our lives caused me to inven-

tory the software-dependent services on
which you and I are compite{, dependent
Consider these additions to his list: bank-

ing back office and ATM networks; stock
market automated trading; E911 emer
geney dispatch for medical, fire and po
lice; electrical power grid control; cash reg-
isters and credit card transaction

processing. How would a day in complete
darkness, isolated from your money, cus-
tomers, business associates, and emergency
services, sound? Relaxing? Perhaps we do
care about software quality!

Why, then, do commercial and corpo-
i·ate develop,112]it inaiiagers afid developers
place testing so low on the real priority list?

Mr. Pope's comment on market com-
placency is painfully accurate. How many
of us customers put up with exactly the
scenario he describes: encouraging ven-
dors by purchasing defective and incom-
plete products; tolerating vendors who ex-
pect us to spend days strip-testing their
problems on our machines, at our expense,
on our time-as though the vendor>s prob-
lem is our most important task? Is your
firm dependent ori Microsoft Windows?
In my office we are. When Windows 3.1
shipped, our postscript printer failed. Word
for Windows would not print envelopes
correctly. The demonstration projects in
Microsoft Project 3.0 would hang the
printer. After well over 20 hours on the
phone-mostly at our expense-per-
forming various regression tests with Mi-
crosoft technical support staff one deter-

2 HOTLINE ON OBJECT·ORIENTED TECHNOLOGY

much ofthecomplexity in a large system is hidden from programmers, leaving them more time to con-
centrate on making programs work as designed....

Tech insider: Object-oriented software-of paradigms and pizzas;
Curtis Franklin, Jr., VAR BUSNESS, 10/92

. .Not only is object modeling a potent technique for more effective programming, but it is a verypow-
erful communication tool that can enhance understanding and cooperation in Complex team efforts.
Not that all of the examples above have described objects, event and operations in terms of the overall
team's business focus, not iii terms ofthe concerns of anv specific team member. The graphic artist can
work out issues of color and shading, the programmer can fine tune his windows and widgets, but the
multimedia team as a whole needs to fully understand and agree upon how the overall drama is going
to unfold. Properly employed, an object modeling method can greatly facilitate this process, and cut your
costs and time to market.

Object modeling can ease multimedia development,
Robert E. Damashek, COMPUTER PICTURES, 10/92

. . . "When youhave to support a lot of vendors' products, object-orientated software pays offbig time,"
[NeoCAD's Bruce Talley] points out. 'You can keep the same underlying data structures and add per-
sonality modules.». - . .

Start-up crafts device-independent FPGA tools, John Haystead, EDN NEws, 10/22/92

... «In the object world you start by defining classes," explained Lanny Lampl, a technical consultant in
Levi Strauss' Information Resources Group. "You have to parcel out the responsibilities of each object
and decide how dasses will interact with each other,>' Carrying out an object-oriented analysis turned
out to be harder than switching to SmallTalk. "The syntax of the language is not the big thing," Lampl
said. "The important thing is learning how to think about objects.»

Levi Strauss cuts client/server pattern, Jean S. Bozman, COMPUTERWORLD, 1 1/16/92

MODELING - . The "dimensions" of encapsulation and reactiveness provide a framework for distinguishing mod-
eling paradigms based on objects from deductive reasoning paradigms based on logic. Object-oriented
systems are both encapsulated and reactive while logic programming systems are nonencapsulated and
nonreactive. Concurrent logic programs are ireactive but not encapsulated. Advocates ofconcurrent logic
programming feel that this compromise combines the advantages of logic with the power of reactive-
ness> while skeptics feel that the compromise falls between two stools by compromising the integrity of
logic without providing a systematic framework for programming iii the large....

Dimensions of object-oriented modeling, Peter Wegner, COMPUTER, 10/92

APPLICATIONS . . . [Bob Zurich,vice president of research and education for Infinity Systems Corp] says the three biggest
mistakes IS shops make regarding object-oriented applicationdevelopmentare'building stuff that's not
really reusable, overdoing it, not getting into it not." Like most OOP experts, Zurich recommends an
incremental approach to OOP. One thing many IS shops still don't realize is that, in OOP environments,
Prototypes don'thave to be discarded when the real application is coded. Instead, prototypes go through
many iterations and end up becoming the production code. I Wayne Adams of Southern California Gas]
uses Enfin i Ii this type of environment. He says prototyping often works so well that even the project
done to evaluate Enin wound up being used in production....

Windows drives OOP on the desktop, Lee Th@, DATAMAnON, 1 1/1/92

THE BUSNESS OF OBJECTS

The market for object-oriented software systems in the US and Europe will grow from $865 million now
to well over $4 billion in 1997. But a new report by the London-based Ovium Ltd. market research firm
says this growth is slower than expected because "the worldwide recession has affected company invest-
ment plans and object-oriented products are not taking off as quicldy as previously assumed.': . .

Object-oriented market to grow steadily: OVUM, SOFFWARE WNDUSTRY REPORT. 11/2/92

FEBRUARY 1993 23

J

FYI EE

Unlike a number of object-oriented programming languages, C++ does not reify the notion of a class.
Stated in simple terms, classes in C++ are not represented by objects. Objects are instances of classes, but
there is no way to write a class that has other classes as its instances. This is not usually a problem, and it
certainly keeps witt·i the general design philosophy of the language. C++ is designed to do type checking
at compile time whenever possible,Generally, thereisnoneedtohave objects representing types that sup-
ply run-time information about the type. But occasionally it would be nice to obtain, store, and muck
about with information about a class of objects, especiallywhen attempting to instrument a program

C++ Advisor: Global static. Jim Waldo, UNIX Review, 11/92

DESIGN . . . Object- oriented analysisand design methodologies are rapidiyevolving, but the fieldisby no means
fully mature. None of the methodologies reviewed here (with the possible exception of Booch OOD)
has-as of this writing-achieved the status of a widely recognized standard on the order of the con-
ventional methodologies ofYourdon and Constantine or DeMarco. Object-oriented methodologies will
continue to evolve, as did conventional methodologies before them, as subtler issues emerge from their
use in a wide array of problem domains and project environments. As discussed above, three areas-
system partitioning, end-to-end process modeling, and harvesting reuse-appear to be especially strong
candidates for further development work. In the meantime, adopters of current object-oriented method-
ologies may need to develop their own extensions to contend with these issues or, alternatively, limit ap
plication of the methodologies to problem domains where these issues are oflesser importance....

Object-oriented and conventional analysis and design methodotogies,
Robert G. Fichman and Chris F. Kemerer, COMPUTER, 10/92

OOP is inclusive, just as structured programming was two decades ago. It differs, however, from struc·
hired programming's traditional association with functional design methods such as functional de-
composition, dataflow diagrams or data structure design. In OOP, objects are first categorized into classes
and organized hierarchically according to their dependency and similarity. Each class com prises a set of
attributes reflecting the objects' generally static properties and a set of routines (in Smalltalk, methods)
that manipulate these attributes. Then relations between classes, such as inheritance, are designed....

Object-oriented computing, David C. Rine and Bharat Bhargava, COMPUTER, 10/92

...The combination of inheritance, redeclaration, polymorphism, and dynamic binding shields much
o f the power and flexibility that result from the use ofthe object-oriented approach. Yet these techniques
may also raise concerns of possible misuse: What is to prevent a redeclaration fi·om producing an effect
that is incompatible with the semantics ofthe original version-fooling clients in a particularly bad way,
especially in the context ofdynamic binding? Nothing, ofcourse, no design technique is immune to mis-
use. But at least it is possible to help serious designers use the technique properly....

Applying "Design by Contract." Bertrand Meyer, COMPUTER, 10/92

...Although it's nice that operating systems are becoming object- oriented for the user, there's no doubt
that maintaiiiing backward compatibility with a straight C API brings with it an inherent complexity. Ob-
jectmanagementneeds to beintegrated muchmoresmoothly intotheoperatingsystemservices and made
to fit naturally with object-oriented languages. In effect, you want the operating system support for ob-
jects to be as transparent as support for memory allocation and deallocation, file services, and so on. The
approach must be sufficiently general that it can accommodate a range of languages, not just C++ and
Pascal. There will always be a place for interpreted languages such as Smalltalk and Actor, and I hope that
future obiect-oriented operating systems will make cross-language sharing of objects a reality.

Polymorphism unbound, Zack Urlocker, WINDOWS TECH JOURNAL, 10/92

. .Object-oriented software takes the spotlight off actions and puts it onto data. Think of it this way:
In procedural languages, data are passed around the program. Bouncitig from step to step iii die pro-
cess. In an object-oriented system data stay put while messages telling them what to do are sent hither
and yon. It sound like a rather academic distinction until you realize that this new way of doing things
forces programmers to rethink their approach to programming. More important focusing on data means

22 HOTLINE ON OB,ECT-ORIENTED TECHNOLOGY

mined support technician actually repli-
cated the problem on a stripped-down sys-
tem at Microsoft. When the alleged fix
shipped a few months later, we discovered
to our horror that the problem had actu-
ally been made worse: now the work-
around we originally had been given no
longer worked, and neither did the new
driver. Back to ground zero! A spicy letter
to Mr. Bill Gates brought phone calls from
a new support person. By this time, Mi-
crosoft had lost all records of our earlier

phone calls and had no record whatsoever
of the postscript driver problem. After
weeks o f fruitless e fforts to reach this new

support person, we were told by letter that
we should-once again-start with astrip-
test of our machine. This time, Microsoft

did not have the resources to test "our»

problem. It' s your turn, IBM.
We ourselves have unwittingly con-

tributed to this problem by continuing to
purchase product upgrades. We need the
software badly enough that we accept
untested and defective products. The idea
of Windows is excellent but the imple-
mentation is harming each and every one
of us whose work is inhibited by software
defects. With tools like those described by
Mr. Pope, there is positively no excuse for
continued distribution of ill- or untested

software products.
Shifting focus upstream, Mr. Richard

Dud discusses Object Engineering, his con-
cept for a software development process
that use; object orientation from the en-
terprise level through to construction. Mr.
Dut observes that object technology has
followed a bottom-up course, from devel-
opment tools to design to analysis. We do
know that development of high-quality
business applications depends on a solid
start at the enterprise level, not just on slick
development tools and application-ori-
ented analysis. Working out the interac-
tion of such concepts as contracts, layered
business object models from enterprise
through implementation, and scenario
modeling will be the challenge of 1993 for
Mr. Dul, Mr. Hendersen-Sellers, and oth-

ers looking to raise object orientation to
the enterprise level. The challenge is in-
tensified by the fact that Due really is tai-
ing development concepts and trying to
raise them to the enterprise level-design
by contract, das libraries, and use cases.
How this delivers a shared base ofbusiness

objects and accurately captures business

semantics, while avoiding the pitfalls of
traditional information engineering, is yet
to be determined. The tie between the bud.

ness ofbusiness and business objects them-
selves will facilitate or break application
fitness, flexibility, utility, and return on iii-
vestment. Go forth!

Mr. Timothy Andrews of ONTOS fo
cuses his column this month on the move··

ment toward a manufacturing model for
software. Mr. Andrews picks up the theme
of Mr. Brad Cox and others: the compo-
nent approach to software will achieve
benefits similar to what we have experi-
enced iii the computer chip and other in-
terchangeable parts manufacturing pro-
cesses. flow will we achieve the

manufacturing model? Mr. Pope has
identified part of the problem: changing
customer attitudes and eliminating com-
placency. Mr. Dut has struck a second
chord with Mr. Ber trand Meyer's concept:
design by contract for rigorous interface
specification and business components that
link the enterprise-level need to the im-
plementation-level part. Mix in standard
application program interfaces, as pro
moted by the Object Management Group's
Common Object Request Broker Archi-
tecture (OMG CORBA), and a manufac-
turing model for distributed object com-
puting begins to emerge from the soup.

Ms. Patti Dock of OrgWare directs her
colurnn to the cultural changes required
for a successful transition to object tech-
nology. Returning to one of Mr. Pope's
themes, we are talking about changing in-
ternal attitudes - not just about testing and
product quality, but also about roles, re-
sponsibilities, learning, openness to con-
structive criticism, and loss ofsomeof the

mystique that has long inhibited truly high-
quality development.

Quality results require a different ap-
proach-use the tools and concepts in a
successful manner and better results are

achieved.

hotline.,A on

OBJECISORIENTED
technology

Robert Shelton, Editor

SIGS ADVISORY BOARD
Tom Atwood, Object Design
Grady Booch, Rational

George Bosworth, Digitalk
B f ad Cox, George Mason University

Chuck Duff, The Whitewater Group
Adele Goldberg, Parcplace Systems
R. Jordan Kieindler, General Electr c
Meilir Page-Jone5, Wayland System.

Torn Love, Orgwarer inc.
Bertrand Meyer, nteractive Software Engineering
Sesha Pratap, CenterL,ne Software

R Michael Seashols, Versant Obled Technology
Bjarne Stroustrup, AT&T Bell Labs
Dave Thomas. Oblect Technology Internat,onal

HOTUNE EDHOBAL BOARD

Jim Andeson, Digtalkr ix
K.C. Branscomb, Lotus Development Corp
Mary E.S. Loomis, Versant Object Technology
Reed Phillips, Knowledge Systems, Corp.
Bernadette G. Reiter Objectlve Inc.
Steven Weiss, Wayland Systems
John A. Zachman, Zachman International

SiGS Publications, Inc.

Richard P. Friedman, Founder & Group Publisher

ART/PRODUCTION

Kristina joukhadar, Managing Editor
Susan Culligan, Pilgrim Road, Ltd., Creative Direction

E]izabeth A. Upp, Production Eddtor
Jennifer Engiander, Ar/production Coordinator
CiRCULATION

Stephen W. Soule, C rculatio,3 Manager

Ken Mercado, Fulfillment Manager
Vicki Mon¢k: C„cuat,on Assistant
John Schreiber, arculat,on Assistant
MARKEUNG

Amy Fnedman. Projects Manager
Lorna Lyle, Promotions Manager-Conferences

Sarah Hamilton, Promotions Manager-Pubilcations
Caren Pc>Iner, Promotions Graphic Artist

Administration

David Chatterpaul, Bookkeeper
Ossama Tomoum, Business Manager

Margherita R. Monck, GenerEd Manager

Jane M. Grau, Contributmg Ed,tor

THE HOTLINE o N OBJECT-ORIEN-TED TECHNOLOGY (ISSN
#1044·4319) 26 Dublished monthly by SIGS Publications, ino..
588 Broadway, NY, NY 10012.(212)274-0640. © Copyright

1992 SIGS Publ ons, irc. All rights reserved. Reproduc
ton of this matenal by electronic transmismon, Xerox or any
other method will be treated as a witful violation of the U.S.

Copyright Law and is flatly prohibited. Material may be repro-
duced with express permission from the put>isher. Mailed First
Oass. Subscrophon rate - one year (12 issues) $249, For-
eign and Canada $279 Single copy $25.

POSTMASTER: Send address changes & subscription orders

to HOTLINE, Subscriber Services, P.O. Box 3000, Dept HOT,
Denville, N. 07834.

Submit editorial correspondence to Robert Shelton, 1850
Union Street, Suite 1548, San Francisco, CA 94123
voice: (415) 928-5842: fax: (415) 928 3036.

rISIGS
 PUBLICATIONS

Publishers of HOTLINE ON OBJECT ORIENTED TECHNOLOGY,
JOURNAL OF OBJECT·OR ENTED PROGRAMMING, OBJECT
MAGAZINI , THE X JOURNAL, C++ REPORT, THE SMALLTALK
REPORT, and THE INTERNA MONAL OOP DWRECTORY.

FEBRUARY 1993 3

THE NEED FOR QUALITY m a continued hoin page 1

ming, and other automated software development support, These
newtools and methodologies have enabled programmers to gen-
erate with increasing rapidity an unprecedented amount ofoode.
The result is a backlog of software that cannot be adequately tested
with today's debugging tools and manual testing methodologies.
More than ever, there is a profound need for automated testing
methods that help increase the attention paid to software quality.

Moreover, the emergence of graphical user interfaces (GUIs)
and cross-platform software applications has created the need
for a new generation of graphical-based test tools that operate
independent of the platform, operating system and language. By
remaining outside the system under test, the test tool avoids ob-
solescence and a single tool can systematically test and evaluate
all current and future software applications.

SOFTWARE DEVELOPMENT: BLACK MAGIC

OR SCIENCE?

There exists in the American software industry a mythical six-
staGe software development process (the "waterfall"). This sched
ule is predicated on the belief that:

1. System design requirements will remain frozen over the
entire development period.

2. Development resources will remain stable.

3. Software will be tested for up to half the period using state-
of- the-art debugging tools.

4. The project schedule is adequate for all stages of the process.

At the completion of this development process, the myth holds,
the software will be bug-free and ready for market.

III the real world, however software testiiig is generally regarded
as the step-child of the software development process, rarely re-
ceiving the attention it deserves. Based on the assumption that
software can never le perfect, software management has come to
accept the inotion that incomplete or flawed software is acceptable.
This dangerous fine of reasoning is often used by management to
compress testing cydes to ensure a timdy delivery to maiket. And
management typically reinforces the acceptance of flawed prod-
ucts by rewarding software developers for their creativity and in-
genuity, not their qua]ity. The result is often defective software and
a continual devaluation of the software testing process.

Too often software testing is relegated to second-class status
iii the development process because the system design is always
more difficult and complex than originally planned. Additional
code and significant design modifications are fiequently required.
Because the ship date must remain constant, delays in develop.
ment frequently diminish the software testing phase. The real-
world software development process reinforces the all-too-com-
monly held assumption that software testing is inconsequential,
an impediment to the development and financial goals of the
software vendor.

THE DEMISE OF QUALITY

The demands of a crowded and competitive marketplace require
software vendors to deliver product in a timely fashion. Because

4

delays in ship dates can be devastating to a company's market
share, management has come to accept the short-term solution
of shipping incomplete and buggy software.

Beta testing andearlyadopterprograms areoftenusedasasub-
stitute for thorough system testings creating the potential for de-
fects to go undetected. While beta testing was originally conceived
as a method for evaluating the customer's software preferences, it
now has grown into a bug detection methodology. The problem,
however, is that a corporate beta tester rarely has the time to
significantly evaluate the product; when bugs are detected, the user
zisualiv gets frustrated and discontinues evaluating the product with-
out forwarding the relevant information to the test engineer.

Another explanation for the prevalence of defective software
is a complacent and undemanding software consumer. For what-
ever reason, the public perpetuates the existence of software bugs
by continually purchasing defective and incomplete products and
by tolerating vendors who expect customers to spend hours or
days strip-testing the problem on their own machines as though
they have no real work to do.

CURRENT QUALITY SOLUTIONS

Intrusive Software Tools

Software-only test tools, which have gained iii popularity with
the advent of windows-based GUIs, reside on the same CPU

with the application under test. Priced between $300 and $6,000,
these tools help automate the regression testing process at the
user interface level because they interact with the application
under test via the windows application programming interface
(API).

Automated regression testing is a method whereby a test suite
(a group of test cases) is recorded and then executed on every
software build in the development cycle. This method helps elim-
inate the tedious process of manually retesting every software
build and ensures that any code repairs or enhancements made
as a result of test findings do not cause any additional software
bugs or side effects. Moreover, software-only tools manage the
capture and playback oftest scripts, allowing test engineers to re-
construct exactly what caused an unexpected failure.

Theproblen, with software oniytest tools, according to Heisen
berg's principle, is that the introduction of an outside element
affects the thing under test. By sharing CPU cycle time (and other
resources such as stacks and interrupts) with the software under
test, the performance of the machine is altered, thereby render-
ing inexact test results.

Software-only tools are operating-system and platform-de-
pendent. As a result, test engineers are required to purchase and
learn a different test tool for every operating system and platform
that supportstheir software application. While test engineers can
port a specific test tool to a different platform, this process typ-
ically diminishes the test tool's effectiveness and introduces the
potential ofbugs into the ported tool. This obsolescence and non-
adaptability factor results in increased time spent learning new
tools and less time spent evaluating software,

con*jed on page 90

HOTLINE ON OBJECT-ORIENTED TECHNOLOGY

/32

Excerpts from leading industry publications on aspects of
object technology

DATABASES . .What'smore,the object-oriented paradigm-through the notions of encapsulation and inheritance
(reuse)-is designed to reduce the difficulty of developing andevolving complex software systems of de-
signs. This is precisely the goal that drove the data management technology from file systems to rela
tional database systems. An object-oriented data model inherently satisfies the objective of reducing the
difficulty of designing and evolving very large and complex databases. Encapsulation and inheritance are
a key to the search for further productivity enhancement ill database application development. . . .

Unifying the relational and object models, Won Kim, DATAMATioN, 1 1/1/92

Ifyou don't know how-or if-yourcompany willbe moving to object-oriented technology, take pride in
this, most relational database vendors haven>t fully decided how to handle objects, either. In fact, vendors
differ on what constitutes an object database manage]Ile]it system (ODBMS) and how object-oriented and
other unstructured data types-voice, graphics, video images and objects created through object-<,riented
programming (OOP) languages-will coexist with diaracter-based data stored in relatioiial formats....

, ., Vendors are also building new features into their database engines to allow users to query both ob-
ject-oriented and relational data either in some extended version of SQLor inone oftwo OOP languages,
C++ or Smalltalk. [Codeveloper of the DB2 relational DBMS while at IBM, and now vice president of
database technology at Orade Corp, Jnan Dash] says that the next published specification for SQL, ex-
pected next year from the American National Standards Institute (ANSI), will includedstandards spec-
ifying how vendors should implement these extensions....

RDBMS vendors face an object future, Mike Riccluti, DATAMATION, 11/1/9

...Is the decomposition ofthe Open OODB system into modules arbitrary, or will other efforts to build
a system with similar functionality result in a similar factoring? It is too early to report that such exper-
iments necessarily result in similar factorings, but the Open OODB's factoring into modules is very sim-
ilar to the application integration framework being developed by the industrial consortium Obiect Man-
agement Group... Thus, the OMG and the Open OODB architectures are almost isomorphic. It is
interesting that one is viewed as an application integration framework architecture and the other as an
OODB architecture. . .

Architecture of an open object-oriented database management system,
David L. Wells, Jose/ A. Blakeley, and Craig W. Thompson, COMPUTER, 10/92

. . . The power of objects is in their robustness, extensibility, flexibility, and modularity. Actually I wish
engineers did not have to know or care about objects. Except as interesting metaphors, they are not use-
ful to anyone but computer professionals. But we are not yet able to reach that level of information hid-
ing. If you are selecting an engineering database management system today, it probably should be ob-
ject-oriented-and if it isn't, you should know why not.

What's the big deal about objects?, Joel N. Orr, COMPUTER-AIDED ENGINEERING, 11/92

LANGUAGES As a C programmer moving to G., you face a double challenge that can put you into an endless loop of
misunderstanding. Cpi, as an extension ofa procedural language, lets you use the principles ofobject-ori-
cited programming (OOP) but does not teach them to you. Yet getting up to speed in any new language
requires memorizing alotofthelanguage syntax. And, learning syntax by brute-forcememorizationis in-
ordinately time consuming if you lack a higher level view of its purpose, such as, for G+, implementing
OOP principles. One way to break out of this loop and teach yourself the]IliSSing chunk of Ce is to aim
foi· a detailed understai,ding ofhow you use C-+ tO iillpletneflt the core OOP concept, inheritance.,..

Build a strong foundation to program in C++, John C. Napier, EDN, 10/29/92

FEBRUARY 1993 21

- 44
PRODUCT ANNOUNCEMENTS as V

work, object-Menu currently allows the C++ developer to rapidly integrate a state-of-the-art graphical
user interface environment into a DOS-based application. object-Menu version 2 provides a stainless
port of its advanced DOS features into Microsoft Windows. object-Menu is priced at $369. Source is
available for an additional $529

Island Systems, 7 Mountain Road, Burlington, MA 01803, 617.273.0421, fax: 617.270.4437

Objectivity Inc. Objectivity/DB Version 2.0 introduced new capabilities for distributed object-oriented applications
Objectivity/SQL++ for ad-hoc query using SQL, and new application lifecycle features that help ad-
minister distributed databases and update deployed applications, Objectivity/DB is currently available
on UNIX workstations from DEC, DIP, IBM, Silicon Graphics, and Sun, as well as on DEC's VMS op-
erating system on VAX computers.

Objectivity Inc., 800 El Camino Real, Menlo Park, CA 94025,415.688.8000

Mercury interactive
Corporation

TestRunner for Windows NT lets developers automatically verify and validate all of the features and
functions of Windows NT software applications utilizing output synchronization (patent pending) and
text recognition technologies to monitor events on the computer screen-processing all UO in real
time. Per seat cost for a typical installation is approximately $30,000.

Mercury Mnteractive Corporation, 3333 Octavius Drive, Santa Clara, CA 95054,408.987.0100, fax:408.982.0149

ICL Inc. ICL announced Dialogue Management System (DMS), a client development environment for online
transaction processing that integrates multiple existing TP systems across an enterprise without reengi
neering. Users of DMS can access the enterprise>s varied TP systems as if they were a single integrated
service with an easy-to-use front end. Currently on limited release for pilot development in partner-
ship with ICL, general availability is planned for December 1992.

3CL mnc., Press Office, 9801 Muidands Blvd., P.O. Box 19593, irvine, CA 92713·9593, 714.458.7282, fax: 714.458.6257

Virtual Technologies Inc. Virtual Technologies announced new· ports for the SENTINEL Debugging Environment: HP 9000
Model 7xx, IBM RS/6000 model 2xx /3xx /4xx /5xx /7xx/9xx, NCR UNIX, and SCO UNIX and Open
Desk Top (ODT). SENTINEL is designed to assist C/C++ programmers in locating and resolving hid-
den bugs with the use of dynamic memory, as weI as assisting developers hi determining the cause of
memory leaks.The SENTINEL debugging environment is priced from $195 to $795 depending on the
platform architecture. Substantial discounts apply for multiple unit purchase.

Virtual Technologies lnc., 46030 Manekin Plaza, Suite 160, Dulles, VA 20166,703.430.9247, fax' 703.450.4560

Dashboard Software Dashboard Software released TrackDeck, a new programmer's utility for Windows and OS/2 develop-
ers. TrackDeck is a software dashboard that allows you to examine any variable from your code and track
its value as your program executes at its normal speed. In addition to finding program bugs, Trac]<Deck>s
control panel lets you set up permanent displays of crucial parameters. TrackDeck works with any lan-
guage that can access DLLs. There are special interface components for C/C-„p„ TrackDeck for Windows
is now selling at a promotional price of $129. TrackDeck OS/2 license agreements are available.

Dashboard Software, 4 Louis Avenue, Monsey, NY 10952,914.352.8071, fax: 914.352.8071

McCabe & Associates McCabe & Associates announced the release of BattlePlan, a forward engineering addition to the Mc-
Cabe Tools Set, which provides forward engineering within the reverse engineering environment. The
tool gives software developers instantaneous testing, verification, integration, and application of the
McCabe methodology in the design phase-showing discrepancies between what you said you wanted
to do and what the code you generated actually does. BattlePlan works with all the languages and di-
alects currently supported by McCabe Tools, including C, Cpt, Ada, and FORTRAN.

Mceabe & Associates, 5501 Twin Knolls Road, Suite 111, Columbia, MD 21045, 301.596.3080
Baltimore 410.995.1075, 800.638.6315, fax: 410.995.1528

20 HOTUNE ON OBJECT-ORIENTED TECHNOLOGY

RETROSPECTIVE 2 a

MIS radar detects objects
for the first time

Objects appeared on the radar screens of leading-edge MIS di-
motors for the first time in 1992. A little awareness by MIS di-
rectors can mean a huge increase in a tiny (few hundred million
dollar) market like the 0-0 market.

For the first time, several major corporations kicked off ob-
ject-oriented projects to replace traditional batch data process-
ing systems. Most remarkably, more than one such project is be-
ing done iII Smalltalk. The batch systems are being redesigned as
distributed systems with the data residing on one or more servers
or host computers and the "application code" residing on work-
stations. Building distributed systems requires objects.'

In 1992, objects gained penetration in three market segments-
network management systems, the oil and gas industry, and the
securities market. For any given new project beginning in one of
these markets, there is a better than 50% chance that objects will
be used. I am personally aware of more than 10 major develop-
ment projects under way iIi each of these market segments.

The consolidation of the industry predicted last year (see my
artideiii HOTI,INF. 3141) has continued throughout the year. Liant
acquired CNS's C+4/Views product, Borland acquired Brief for
C H, Symantec acquired Gain Wong from Borland and White-
water Group from its investors, ParcPlace has acquired Infoware
from Enseinble Software and the C-+ tools development group
from Solbourne, AMS acquired a stake iii KSC, Gemini Consult-
ing acquired a stake in Par(Place, Computer Associates acquired
Glockenspiel, and Enfin was acquired by Easel Corporation.

Even James Martin has begun to invest i n object technology
companies (Versant and IntelliCorp).

Momenta also managed to ship an aggressive product built
using Smalltalk but later had to ship the company's keys back to
the venture capitalists when disappointing hardware performance
was coupled with a lackluster response from the market.

Meanwhile, Taligent was formed as an independent joint ven-
tue between Apple Computer Corp. and IBM. Taligent's char-
ter is to develop a completely object-oriented environment from
the operating system up,

Sun has embarked upon a major project to produce an ob-
ject-oriented distributed environment called Project DOE. To
support this major new development, the company has been ac-
quiring 0-0 talent at a prodigious rate- Its most notable acqui

See Chapter 5 in my new book, OBJECT LESSONS, to be published soon by SIGS
Publications.

FEBRUARY 1993

Tom Love

sition is Bud Tribble, a vested founder of NeXT Computer Cor-
poration. Only a few months before initial product was expected,
Sun announced a technical joint venture with HP to build a dis-
tributed operating system. One can only guess that as the pro-
ject progressed, a more capable O/S was found to be extremely
desirable. This unquestionably major undertaking will consume
Sun for at least the balance of the decade .

On the product front, Microsoft now holds the record for hav-
ing shipped the "biggest" product-a C++ compiler andi class li-
brary with 4,000 pages of documentation. One person is rumored
to have read it all, but she haan't slept in months.

One of the year's most innovative products came from the
object masters at HP in Loveland, CO. In my opinion, the VEE
(visual engineering environment) product is a sleeper. This
product is actually a higher level environment within which ar-
bitrary objects can be assembled to form assemblies of objects.
It is fast, transportable, and very capable. See the October issue
Of HP JOURNAL for three articles describing this product and
some experiences building it.1,2,3

NeXT Computer is about to become the most recent addi-
tion to the list ofobject-oriented software companies as it begins
its challenging transformation from a high-end hardware sup-
plier to a software company trying to build vendor-independent
software development environments. Yet as one wanders around
the financial community, one sees more and more trucks lining
up at the loading clock with NeXT workstation boxes.

One ofthe more significant happenings this year has been the
emergence of Smalltalk as an application development environ-
ment for commercial application developers. American Airlines,
for example, has deployed a commercial system to manage the
resources required for all flights worldwide. This high-
reliability, high availability distributed system was programmed
in Smalltalk and is considered a major success.

1992 was also the year that Smalltalk companies got "pro-
fussional management. As one with some direct experience in
this area, I am very skeptical of any software company leader
who cannot use the products made by that company. "General
managers" can solve some problems of an emerging company
but, ultimately, deep knowledge will be required to make the
tough decisions required to grow and prosper. I sincerely hope
these new CEOs can prove me wrong.

The other challenge facing new professional managers of
Smalltalk companies is that MIS directors can be very demand-

5

RETROSPECTIVE E E

ing to do business with. They demand services and insist upon
delivering new products on or about the published schedules. As
they evaluate Smalltalk, they see a lot missing. The challenge for
the next couple of years will be to rapidly add capability without
losing focus. Development environment companies should build
strong development environments and kernel classes for their
language. Their business partners should build CASE tools, de-
velopment methods, specialized class libraries, database systems,
reportwriters, and communicationsoftware. Thegoal: focus, de-
liver, and hope to dominate. Trying to provide one-stop shop-
ping is not possible.

Just as Smalltalk has begun to creep into mainstream busi-
nesses, the harsh, cruel realities of using C++ as an application
development language have been felt in company after company.
While C++ can be used as an object-oriented language, it typi-
cally is not. Rather it is used as a more complex C with esoteric
new features that someday must be understood. NeXT and Ap-
pie continue to plug the virtues of a dynamic object-oriented en-
vironment but theydon't get heard above the shrill voices ofpro-
fessional marketeers selling compilers in the ads of street-corner
magazines.

(Here's a trivia question: can you name the CEO of a com-
pany that exhibited at OOPSLA '86 who is still that company's
CEO? To my knowledge there are none, though some former
CEOs remain with their companies in another role, often as
Chairman.)

1992 saw serious commercial products being deployed with
OODBMs for the first time. The most compelling example is the
Air Pone system of Hughes Network Systems, which involves
over 100 users connected to the Versant OODBMS. Another is

Domestic Automation, which has delivered a commercial net-

work management system product based upon Object Design's
ObjectStore product. There are a number of further examples
from these vendors as well as others.

The 0-0 methodology business has been awash with new
books touting new paper and pencil graphical notations that pro-
duce "better" 0-0 designs. Most ofthese "diagram touters'have
less than two years' experience in the 0-0 business. Serious 0-
0 designers read, listen, then pull out their index cards and pro-
ceed to analyze and design with the help of a couple ofexperts.
These same designers look to people like Booch, Runlbaugh, la-
cobson, and Embley (and HP), hoping they can provide reallever-
age and real tools that will help.

A rather startling change has been in the paychecks of highly
competent 0-0 designers and developers. Some have doubled;
a few have tripled in the last year. Companies are beginning to
recognize that someone who really knows existing object-oriented
libraries and tools can be worth more than five greenhorns. For
this time-to-market advantage, they are willing to pay hand-
somely. I have seen individual Smalltalk programmers working
for $2,000 per day on long-term contracts and Obiective-C pro-
grammers making a salary of $200,000 per year. And this trend
will accelerate.

Training companies can't find enough qualified instructors
to satisfy the demand; this shortage will worsen substantially

6

next year. My advice to large companies is to book your train-
ing courses for next year now. Otherwise you will have to wait
or settle for brand-new instructors who are only a few steps ahead
of their class.

What carl we predict about this industry for the coming year?
Mainframe computer companies and software companies will
start noticing objects and buying their way in the door. Some of
these companies are loaded with cash and have an imminent need

In the coming year mainframe
computer companies and software

companies will start noticing objects
and buying their way in the door.

to change their strategy as the mainframe business evaporates
during the coming decade.

As the big boys enter the game, expect it to be the year that
irrational hopes meet the harsh reality of building commercially
distributed systems with objects. Adopting objects does not cre-
ate instantaneous nirvana nor spectacular productivity. Yet you
will achieve neither by failing to adopt objects. Experience says
that much hard work and dedication are required to learn how
to build distributed object-oriented systems. You should think
about transforming your organization over a decade, nota year.

2003 is sooner than you think.
P.S. No company managed toshipadass library withonetest

case for every method again this year. My challenge remains in
effect!

References

1. Hunt, W. L. and D. C. Beethe. A visual engineering environment for
test software development, HP JouRNAL 43(5):72-77,1992.

2. Hunt, W. L. Developing an advanced user intel face for VEE, HP
JOURNAL 43(5):78-83, 1992.

3. Beethe, D. D. HP VEE: a dataflow architecture, HP JOURNAL 43(5):
84-88,1992.

Dr. Tom Love is President of OrgWare, Inc. in Roxbury, CT and an in-
dependent software consultant specializfng ln object technology. In 1983,
he founded Stepstone, the first company to deliver an 0-0 develop-
ment environment and libraries, Dr. Love is author of the book OBJECT

LEssoN's, available this sphng from SIGS Books, and host of the train-
ing video DESIGN MASTERS, also available from SIGS, He can be reached
at 203.350.4331.

HOTLINE ON OBJECT-ORIENTED TECHNOLOGY

pwauket-
• 6*uteweeme,th

Product Announcements is a service to our

readers. It is neither a recommendation nor

an endorsement of any product discussed.

Pacific HiTech,Inc. Pacific HiTech, Inc. announced plans to regularly release updates to its Info-Mac CD-ROM disk. The
first edition of the disk, released in September, contains 3,384 shareware and freeware Macintosh pro-
grams and files. The disk programs came from the Info-Mac archive on internet. Since so many new
programs appear every week on Internet, Pacific HiTech is planning to update the disk four times a
year. Info-Mac CD-ROM, priced at $39.95, is available directly from Pacific HiTech.

Pacific HiTech, inc.,4760 Hightand Drive, Suite 204, SaR Laketity, UT 84117-5009, 801.278.2042

Quinn-Curtis Quinn-Curtis announced the Windows Charting Tools for Microsoft C/C++ and Borland C+ pro-
grammers, a collection of general-purpose graphics and user-interface routines that solve the most
common charting problems encountered in scientific, engineering, and common business charting ap-
plications. The product has been specifically written for the Microsoft Windows 3.1 programming en-
vironment Standard Package, $400; with complete source code to the Quinn-Curtis Charting DLL
$800.

Quinn-Curtis, 35 Highland Circle, Needham, MA 02194, 617.449.6155, fax: 617.449.6109

SunSoft SunSoft introduced Solaris 2.1, its distributed computing environment. The Solaris 2.1 computing en-
vironment incorporates more than 1,000 product improvements, delivering up to a 40% increase in
areas of network performance and up to a 50% increase in user interaction performance over Solaris
2.0. The Solaris 2.1 software includes full symmetric multiprocessing and multithreading capabilities,
in addition to major enhancements iIi the graphics area, providing users with 2D-3D capabilities. The
Solaris 2.1 environment for the desktop is priced at a suggested retail price of $795 in single quantity.
Volume discounts to system manufacturers are available.

Sunsoft 2550 Garcia Avenue, Mountain View, CA 94043 415.336.0678

ImageSoft Inc. ImageSoft Inc. announced it is shipping Object/Designer its extensible C++, C, and Pascal generator
for Windows. Object/Designer 2,0 includes the ability to generate custom source code for custom con-
trols and user code regeneration. ImageSoft also announced the availability of the Microsoft C/C-+ vcr-
sion of ImagingObjects 2.0, its C++ imaging toolkit. ImagingObjects 2.0 enables developers to easily
write imaging applications. A Windows 3.1 interface kit is included with ImagingObjects 2.0.

EmageSoft Inc., 2 Haven Avenue, Port Washington, NY 11050, 516.767.2233,516.767.9067

Scientific and Engineering Scientific and Engineering Software, Inc. (SES) is expanding into the object-oriented application soft-
Software, jnc. ware development marketplace with SES/objectbench, a UNIX-based, object-oriented analysis (OOA)

toolset for developers and programmers using the C and C++ languages. SES/objectbench-based on
the Shlaer-Mellor OOA methodologv-offers on-screen animation and dynamic checking of models.
A «VCR-like" interface allows users to watch models execute. The product is priced at $14,500 per con-
current user, which includes the animated simulation feature. The graphic capture package feature is
offered for an additional $4,900 per concurrent user.

Scientific and Engineering Software, Inc., 4301 Westbank Drive, Building A,

Austin, TX 78746-6564,512.328.5544,512.327.6646

ConVal Software ConVal Software introduced ToolDriver, a software management environment for MS-DOS with cross
reference and naming convention changing capabilities. It supports software written with any combi-
nation of Oracle, C C++, Pascal, COBOL, FORTRAN, batch files, and other languages. It also works
with text files containing project documentation. 7 001Driver's software management environment has
a window interface complete with menus, mouse support, and online help. ToolDriver is priced at
$59.95.

ConVal Software, 11607 E. Butter Creek Road, Moorpark, CA 93021, 805.529.6847

Island Systems Island Systems announced cross-platform support for the object-Menu DOS graphics application frame-

FEBRUARY 1993 19

4

3*,Lit.;e.g-159*+

Trinzic Corporation, the company formed by the merger of AICorp and Aion, announced an expanded marketing agreement with
Stone & Webster Advanced Systems Development Services, Inc. Under the agreement, Stone & Webster will market, license,
and support Trinzic's Aion Development System (AionDS) in conjunction with STONE rule, a sophisticated software tool that al-
lows for the use of knowledge base systems during computer-aided design sessions.

Objectivity Inc. and MICRAM Microelectronic GmbH and Co. KG announced a distribution relationship. Under the terms of the
agreement, MICRAM will distribute Objectivity>s Objectivity/DB object database management system in Germany. MICHAM will
handle sales, marketing, and customer support in Germany. In addition, Objectivity and MICRAM will work together on joint pro-
lects with customers.

Objectivity Inc. announced it would support SunSoft's Project DOE (Distributed Objects Everywhere) by delivering the Objec-
tivity/DB object database management system with an interface to the SunSoft DOMF (Distributed Object Management Facility),
SunSoffs implementation of the Object Management Group's Common Object Request Broker Architecture (CORBA). Objectiv-
ity and SunSoft also agreed to jointly· develop and publish an open specification to provide other ODBMS vendors with a standard
interface between DOMF and ODBMSs.

Objectivity inc. announced that its object database management system, Objectivity/DB, was selected by Adm Systems Inc. of
Lowell, MA, for use in the development of its next-generation, mechanical computer-aided design (MCAD) and product man-
agem<tnt systems.

Objectivity]Ac. and Spatial Technology Inc. announced that Objectivity will provide ACIS/DB, an integration between Spatial
Technologfs ACIS geometric modeler and the Objectivity/DB object database management system.

Virtual Technologies appointed Engineering Software Ltd, based in Manchester, England, to be its new European distributor for
its SENTINEL debugging environment.

Object Technology International announced the integration ofVisualworks, ParcPlace's recently announced product with ENVY/De-
veloper. Availability and pricing for this integration has yet to be finalized. Object Technology and Servio Corporation also an-
nounced a cooperative relationship to support Smalltalk application development and delivery.

Visual Edge Software, Ltd. announced that its interface development tool, UIM/X 2.0, will be available for use with Object De-
sign, Inc.'s ObjectStore Releasel.2.

Versant Object Technology Corporation announced that it signed agreements to integrate the VERSANT Object Database Man-
agement System (ODBMS) with tiveleading object-oriented development tools. Agreements were made with IntelliCorp (PROKAPPA);
Lucid, Inc, (Lucid's Energize Programming System); STEP (STEP Toolkit); Protosoft (Paradigm Plus); and Persistence Software
Inc. (Persistence).

KAPRE Software, Inc. announced the successful completion ofits second refinancing for the development of KAPRE's Object-
Oriented Application Software and C++ Application Development Environment

18 HOTLINE ON OB,ECT-ORIENTED TECHNOLOGY

APPLICATIONS E a

In Pursuit of

Object Engineering

56 here do objects come from?... Heaven!" is how Dr. Adele
Goldberg, Chairman of ParcPlace Systems, summarized tile "just
do it" mentality of many of today's object technology practi-
tioners during her presentation at OOPSLA '92.

According to Dr. Goldberg, the deficiencies ofcurrent obiect
technology projects are related to the lack of object paradigm
training and education; the lack of effective OOP, OOA, and
OOD systems development and project management method-
ologies; the lack of systems development metrics; and the lack of
effective reuse policies.

Objects don't come from heaven but from dynamic, reusable
simulation models of the enterprise. Strategic understanding of
the enterprise is key to reuse in-the-large (at the business pro-
cess level) instead of reuse in-the-small (code scraps level).

) This article presents three key concepts necessary to the im-
plementation of reuse in-the-large: the layered class library, de-
sign by contract, and replicable modeling.

The integrated application of these three concepts in a new
planning, analysis, and design methodology may be key to the
development of a strategic, object-engineering approach to ob-
ject technology.

The development and implementation of object technology
seems to be following the same bottom-up path as the develop-
ment and implementation of software and information engi-
neering (see Table 1). It has taken 25 years for software engineers
to]earn that developing good structured code requires good struc-
tured design dependent upon good structured analysis depen-
dent upon a good strategic plan linked to the goals ofthe orga-
nization. Hopefully, OT practitioners will apply the lessons of
the software and information engineering learning curve, instead
of try to develop bottom-up 0-0 programing, design, and anal-
ysis techniques and methods in the absence of a strategic, disci
plined understanding of the enterprise. OT practitioners hope-
fully also witllearn thatthetime-consuming, resource-intensive,
top-down, static-enterprise models developed by information
engineers must be replaced by dynamic, iterative models repre-
senting continual integration of the enterprise's applications.

Object technology is not just an incremental improvement
to programming languages or to analysis and design techniques.

 It is a fundamentally new way oflooking at the planning, de-
velopment, and maintenance of information systems. Instead
of the process and data-oriented concerns of software and in-
formation engineering, object engineering is concerned with the

FEBRUARY 1993

Richard T. Du€

reuse of models that actively simulate the enterprise. Reuse at
the enterprise level allows users to analyze, design, and imple-
ment systems that are direct representations of the enterprise.
Dr. Brian Henderson-Sellers forecasts that 50% of systems will
be developed in O-0 by the year 2000. He points out that we
must first teach the paradigm, not an 0-0 language, because
there is, as yet, no perfect 0-0 language.2 In fact, by shifting fo-
cus to reuse in-the-large of previously developed models from
creating code, object engineering may render the requirement

Software/information

Engineering Object Technology

Structured Programming Object-Oriented Programming

Dijkstra, Parnas (19608- Some preliminary work {Coad's

1970s) object patterns, Smalitalk's model

Four basic programming view controller, but no generally

structures (sequence, do accepted standards

whie, if then else, case)

Structured Design Object-Oriented Design

Yourdon,etc (1970s) Scenarios. use cases, CRC,

Inputs, Central transform numerous notations, but no

outputs, structure charts, disciplined methods

HIPO diagrams

Structured Analysis Object-Oriented Analysis

DeMarco, etc. (19703) Numerous notations but no

Data flow diagraming, disciplined methods. Some

functional decomposition preliminary work by Henderson-
Sellers and Edwards; and

ParcPlace Systems' object

behavior analysis

Information Engineering Object Engineering

Enterprise Modeling Some preliminary work by Jacobson

Martin, Finkelatein (1980s) and Henderson-Sellers

Table 1.A comparison of softwarehnformaton engineering and object technology.

7

41

APPLICATIONS E m

for a perfect language superfluous to most application develop-
ers. Instead of our current concern with developing OOP, OOD,
and OOA techniques, object engineering will allow us to con-
centrate on the real payoff issue: the stepwise development of
reusable business models.

To use the full power of the object paradigm we have to over-
come a significant resistance to change. Discussing the difficulties
encountered in tryingto convert traditionally trained information
systems developers to the obiect paradigm, Charles Kahn writes:

Object-oriented programming has no concept of a func-
tion being called to perform some algorithm and produce
some result. To think of a message passing facility as sim-
ply a function call, however, would be to look once again
at the problem iii a functional manner and would defeat
the goal of an object-oriented approach to the problem.
This problem of a message being implemented as a func-
tionisone ofthe major arguments against object-oriented
extensions to more traditional, procedurallanguages (e.g.,
C++ extensions to C). It seems that most professional pro-

grammers often revert to a functional viewpoint when im-
plementing a program if not forced by the language to
work in an object-oriented fashion.3

The first key concept for object engineering is the layered ap
proach to class libraries, which views classes from four levels of
abstraction (see Table 2). The first level consists of basic, or atomic.

classes, where 0-0 programmers develop the lowest level system
building blocks. Thislevel maybesubdivided into further layers
or clusters of classes that provide basic services for string han-
dling, graphical user interface, mathematical functions, database,
communications, etc. This level probably contains 5,000 or more
members (an estimate based on the size of existing Eiffel, C++,
and Smalltalk libraries), which should be developed by OOP lan-
guage or class library vendors, and provides the essential infras-
tructure of the object technology approach.

The second layer consists of business process classes, which
are the fundamental, stable building blocks of all applications.
Data is not necessarily the stable component of the enterprise,
especially as enterprises continually reinvent themselves, merge,
downsize, and divest. The stable parts of the enterprise are the
basic business processes of purchasing, reportin* control, secu-
rity, etc. These classes are specified by business systems analysts
by combining the basic Atomic classes. Little or no code devel-
opment should be performed at this level. Surprisingly, based on
preliminary estimates, this layer probably only contains 20 to 30
business process models. These fundamental models induce pro-
cesses like mediation (one object requesting a service from an-
other object via a third object), transaction (one object request-
ing a service directly from another object), transformation
(conversion of a service into another form), edit (verification of
a service against a standard), etc. If there is a need for additional
atomic classes to specit? a business process, business systems an-
alysts must negotiate with atomic class developers to provide the
new atomic classes. Business systems analysts should not be al-
lowed to program new atomic classes.

8

V,

The third layer consists ofrnanagement or application classes. dIA
Developed by users, these classes are assemblies of business pro-
cesses. Only minimal coding (just enough to tie together exist-
ing classes) should be undertaken at this level. If business pro-
cess classes do not exist in the business process layer for application
modelers to use, the user must negotiate with the business pro-
cess modeler to provide the required class.

The fourth layer of the model is the enterprise engine level.
At this layer, object engineers model the interaction of the ap-
plication classes to provide a dynamic simulation of the enter-
prise. These dynamic, real-world simulations will eventually evolve
into the accounting, communications, and MIS reporting sys-
tems of the organization.

The layered approach offers an opportunity to leverage and
reuse work undertaken at the lower levels of the class library. Peo-
ple working at their own levels have no need to understand the
internal workings of other levels. As Jeff Sutherland, a trainer at
Semaphore, describes it:

No matter how long you study cells in the human body
(the atomic layer),you Will never understand the English
language (the application layer)!

Layer 4. ENTERPRISE ENGINE-object engineers
(A distributed expert system-inference engine, rule
base, database)

Gradual merging of models and applications, collabora-
tive effort throughout organizations, depends on stan.
dard classes and structures. Not just a model-an ac-
live engine that continues to evolve along with the
company

Layer 3. APPLICATIONS-prototypers, users

Solves a business problem, can mix and match models,
independent of model details, very little new code, soft-
ware by assembly, built through rapid prototyping

Layer 2. MODELS-model builders, business sys-
tems analysts

Comparable to PC boards, handles standard functions
(purchasing cycle, customer interactions), maximizes
reuse of every class, corporate process more stable
than applications

Layer 1. CLASSES-class constructors

Libraries, software IC's, standard components,
reusable functionality, common business objects,

standard packaging, multiple vendors
Table 2. The Layered Modem.

HOTLINE ON OBJECT-ORIENTED TECHNOLOGY

DOWN UNDER a -

The Australian

Object-Oriented Scen

You may wonder at mv silence over the last few months. T'he
major reason is that for the first half of 1992 I was based in the
United States and so unable to comment on the Australian O-0

scene, where object-oriented interest continues to grow more
rapidly. Since returning, I (and others) have been inundated by
requests for information on object-oriented techniques from or-
ganizations wishing to commence object-oriented developments,
and from people already working in this area who wish to up-
date their knowledge of this rapidly changing technology. It is
encouraging to see the increasing acceptance of 0-0 as part of
mainstream information systems, computer science, and software
engineering, rather than as a curiosity demanding its own con-
ferences and its own alienated devotees. Speakers on 0-0 are
now slotted into timetables at conferences not specifically fo-
cused on 0-0. Such acceptance is surely what we are all seeking!

In addition to increasingly frequent appearances at more tra-
ditional organizations and conferences, there are still, of course,

 specialist 0-0 meetings and conferences. We have seen "The Ob-
ject-Oriented Symposium; SPOOK and TOOLS in 1992, and
are looking forward to the first Obiect World to be held on this
continent iii 1993.

Australian object-oriented special interest groups go from
strength to strength, with the main two, Victoria and New South
Wales, trying to outdo each other! Rivalry is fun as is the close co-

===.11.--29.44%4
0& -446

./2 3%/i q- CALEI
-1111-==-1.=---=-11=
L o have a meeting or conference listed, please send the dates, confere
phone number to Dylan Smith, 588 Broadway, Ste. 604, New York, P

 February 1-4 and February 21-26,1993 March 8-11,
February 4-5,1993 Software Development X World
OOP '93 and C++ World Spring >93

Santa Ciara Convention
Munkl, Germaw Clr., Santa Clara, CA. I New York, ta

| Contact: 212,274.9135 ' Contact 415.905.2319 Contact: 212.7
March 8-12,1993 March 17-19,1993 March 30-Al
TOOLS Europe '93 Uniforum '93 Object Techi

Versailes, Praiice San Francisco, CA 1 Cambridge, Ej
Contact +33.1.45.32.58.80 Contact: 800.323.5155 Contact: +44.4

by Brian Henderson-Sellers

operation between several groups across the country. Network-
ing, both interacademic and academic-industry, is basicallygood.

One ofthe concerns most frequently voiced by Australian iii-
dusty is the current lack of good CASE tools. Those available ei-
ther seem to have no Australian distributor or have such heavy
computing demands that those still focused on the DOS market
for their customers are denied access. Project management guide-
lines and metrics are also sorely needed but their prognosis is
good for the relatively near future.

Also encouraging is the number ofgraduates with 0-0 skills
being sought. Universities around the country are beginning to
respond by introducing good 0-0 courses. Most of these are
still at the more specialized level (final year Bachelor's and op-
tions on Master's programs); ideally students should commence
training in their first term but few universities are yet able to
offer that.

There is, of course, one overriding advantage to working with
objects in the southern hemisphere-we are stilllooking forward
to this year's summer!

Brian Henderson-Sellers is associate professor in the Schod of infor-
mat,on Systems at the University of NeN South Wales and cha man of

the O-0 speaa interest group of the NSW Branch of the Australian
Computer Society. He can be contacted via brianhs@cumulus.
csd.unsw.edu.au

-&"i/--Fi#am--AP.meal-/3;63#Aqi"ar<r/r#%m/#Fi

NDAR
- 111'k'111..../...........
nce name and location, sponsor(s), and contact name and tele-
JY 10012, fax: 212.274.0646

1993 March 8-10,1993] March 8-12,1993
WOOD'93 INTEROP

Snowbird Conference

Center, Snowbird, UT Washington, DC
'74.9135 Contact: 414.789.5253 800.INTEROP

iril l, 1993 April 19-23,1993 May 3-7,1993
lology '93 : Object Expo DPExpo

Hilton Towers

igIand New York, NY Saii Francisco, CA
91.410222 Contact: 212.274,9135 Contact: 415.966.8440u

AAA

EEBOOK REViEW

formation models. One alternative use ofan information model

is to "recover" a database design, i.c., reverse engineering. The
basic premise is that by documenting and normalizing an exist-
ing system you will understand the nature ofyour legacysystems.
This understanding then can be used in forward engineering a
new and improved system. Tile technique described in the book
is complete and rigorous but, as Mr. Bruce points out, the lilia]
result is based on past mistakes augmented by analvsts> assump·.
tions about the intent of the original designers.

One practical issue is to support information models with
CASE tools and repositories. The author provides an overview
and sample output of commercial tools that support the IDEF1X
notation and includes vendor contact information. A brief de-

scription of the ANSI, ISO, and IBM repositories is pre.sented
along with a discussion of their common traits and distinguish„
ing features. A more comprehensive description ofIBM's repos-
itory modeling language is included iii the appendix.

A second practical issue is how to conduct and what to expect
from your modeling sessions. This material is presented in an
appendix that summarizes the rules and steps of modeling ses-
sions-sort of a one-minute guide to the fields of interviewing
and time management. An elaborate case study is used to demon-
strate how an information model can be developed, reviewed,
and evolved during several modeling sessions. The case study is
presented as.in annotated transcript of a series of modeling ses-
sions and the resulting information model. This rather unusual
format is very effective iIi conveving the tenor and pace of an in-
formation model developed with a supportive user. The natural
ebb and flow of analysis become clear as you read the transcript
and match it against the evolving data model.

The fourth and final section describes Robert Brown's evolu-

tion ofIDEF1X intothe object modelitig twiguage DMT'/2.* 1)MI72
extends IDEFiX byinduding methods iii the current diagrammitig
notation and adding a message pattern view of the model. These
enhancements are similar to the work by Rumbaugh, Sblaer/Mel-
lor, ancl otrhers who are extending traditional structured techniques.
'The use of a semiformal specification language to describe meth
ods and rules sets DM.I72 apart from these other approaches. The
language is declarative in nature atid intended to be executable. If
realized, this opens significant possibilities for developing models
thai can drive simulations, act as prototypes, or be included in a
multimedia presentation. A second major difference is DMT/2's
use of condition/action rides. These are written in the specification
language as a query over object property values that invoke a method
if true. The definition of rules appears to be independent of the
definition of methods or object/entity-types.

I recommend this book to anyone involved with information.

A novice would be spared many hours of frustration. As an ex-
perienced modeler I found numerous insights, tips, and warn-
ings, A manager or instructor will find an excellent discussion of
database design. The section on business rules and normalization
alone justify the price. Finally, the forward look toward object
modeling gives the data modeler a bridge to object teclitiology.

M chael Fuller is an nformation engineering consultant and has devel-
oped large-scale, distributed applicatons w,th a variety of technologies
including Eiffel. He can be reached at 415,928.7067.

' Reviewer's note: be aware that this material is now three years old and Brown
has (apparently) made numerous enhancements and refinements.

Other iource; of information on objecttechnology from SIOS Pliblk@tiom...
lOURN,!UOF

OiNECT-ORIENTED Jooris writtenbvand forprogrammers and developers using object technology. International in
scope, editorial features are code-intensive, technical, and "hands-on," offering readily usable advice
and programming techniques. Readers receive the most accurate, cutting-edge and objective infer-

mation available on object-orientation. Annual subscription (domesnd $59,00. Back issues: 312,00.

OBIECT
Object Magazine is written for software managers seeking to increase software productivity through objectJ magazine

technology. The magazine looks at the implications of using object technology in the workplace, including its
effects on productivity, interdepartmental relationships, business trends, and the bottom line. Object Magazine walks readers through
the steps needed to implement their own object-based strategy. Annual sub.scription (domestic): 329.00. Back issues: 37.00.

++REPORT C++ Report guides readers on how to get the most from C++. As a code-intensive, language-specific publ-
Cation, the C++ Report is geared toward increasing productivity iii the programming environment. Plat
form-independent and written for C++ users at al] levels, this magazine is packed with new ideas, tips,

tricks, shortcuts, and usable advice on everv aspect of C i i. Annuat subscription (domestic); $69.00. Back issues: 38,00,

Call flut Publication; at212/174-0640 or fax: 212/214-0646 for subicription information.

The second key concept for the object engineering approach
is design by contract. Each class ofobjects in each layer has a five-
part contract describing the class's protocol Haim Kilov, an ob-
ject modeler at Bellcore, describes this contract as follows:

A contract may be visualized as a [service request] pro-
tectedbyconstraints, i.e.,surroundedbyaprecondition
(specification of the conditions that must exist before
the class can be invoked), a postcondition (a specifica-
tion of the conditions that will exist after the class is in-

voked),and existing within an environment (context)
characterized by an invariant (statements specifying what
must always be true of business information outside of
any operation).5

In addition, the contract may also contain exception clauses
(specifications of conditions requiring exceptions to standard be-
havior) and, perhaps, methods clauses (specifications ofthe be-
havior owned bytheclass).Whileencapsulationshouldhidethe
implementation of a class, human modelers apparentlystillwant
to know the methods of a class.

For example, consider a class called personnel management
One of its protocols is the abilityto add an employee to an orga-
nization. The contract attached to this class would include the pre-
conditions (budget exists, management approval exists, employee
exists, etc.), the postcondition (one new employee will be added
to the enterprise), the invariant (no supervisoi· has more [hain seven
directly reporting employees; all employees have a supervisor), the
exception (the president does not have a supervisor), and the op-
tional method (specification of the add-an-employee process).

Design by contract is the concept of designing systems by de-
veloping contractual specifications that will be used at every level
of the layered class library to specify what behaviors are required,
These contracts may be written iii natural language, 0-0 pro-
gramming language (e.g., Eiffel), or, more likely, as formal
specifications (e.g., predicate calculus or conceptual graphs). At
a recent presentation at CASE WORLD in Hamburg, Germany,
Dr. Roger Pressman stated that the formal specification ofsys-
tems (especially human-critical systems like avionics, air traffic
control, or intensive care medical systems software) will be ac-
cepted practice by the year 2000.

Contractual specifications and services will be matched among
objects by traders (e.g., OMG's CORBA [Common Obiect Re-
quest Broker Architecture]). It is possible that classes will actively
advertise their services to potential users through these traders.

The third key concept for object engineering is the use of repli
cable modeling techniques, which should lead to the develop-
ment of rigorous, normalized models of the problem space.
Promising approaches to replicable models include entity trace
diagrams,6 which describe the lifecycle of an object in the real
world, and play scripting (modeling the enterprise as play with
a number of acts and scenes).7 Both approaches model the en-
terprise iii terms of scenarios that describe the actual operations
of the organization. The enterprise model will be developed in
terms of when things happen in the organization, who performs
them, where they are performed, how they are performed, what

FEBRUARY 1993

resources are used, what the purpose is, etc. The purpose of the
scenario approach to enterprise modeling is to provide a com-
mon framework forcommunication and model comparison. To-
days modeling techniques (e.g., CRC modeling scenarios from
object perspective) lack the perspective of the overall enterprise.
There is no notion of the enterprise's environment and no no-
tion of sequential and concurrent operations. The dynamic-
enterprise model must be composed ofa number of rich semantic
descriptions (e. g., data, function, behavior, resources, organiza-
tion, finance, network, etc) ofthe organization at various points
in the enteprise's lifecycle.

The layered approach offers an
opportunity to leverage and reuse work

undertaken at the lower levels of the

class library.

Object engineering, with its interrelated use of layered Class
libraries, design by contract, and replicable modeling, promises
to bean effective approach to enabling object practitioners to ap-
pty reuse in-the-large power ofthe object paradigm. Each object
within the layered model will have its own contract; contracts
will be written between layers to develop applications; and ap-
plications will be integrated into replicable play script models of
the enterprise.

In future articles I will describe the resulting object engineer-
ing methodology.

References:

1. Henderson-Sellers, B. and I.M. Edwards. BooK Two op OMEr-
ORIENTED KNOWLEDGE: THE WORKING OB jur, Prentice Hall, 1993
(m press).

2. Henderson-Sellers, B. A BOOK op O-0 KNOWLEDGE, Prentice Hall,
1992.

3. Kahn, C. Object-oriented programming techniques foratraditional
environment, HANDBooK or IS MANAGEMENT, June, 1992.

4. Taylor, D. OBJECT-ORIENTED INFORMATION SYSTEMS: PI.ANNING AND
IMPLE,MENTATION, John Wiley & Sons, 1992.

5. Kilov, H. and j. Ross. THI[FRAMEWORK: A DISCIPLINED APPROACH
To ANALYSIS, Bellcore, 1992.

6. Runibaugh, 1. and M. Blaha, et al. OBJECT-ORIENTED MODELING AND
1)psIGN, Prentice Hall, 1991.

7. Due, R.T, Enterprise modeling: still in pursuit, DATABASE pRO-
GRAMMING AND DEsIGN, November, 1992.

Richard T. Du6, President of Thomsen Dud and Associates Ltd., de-
velops and presents object technology training courses. He can be
reached at 403.439.4627; Internet: 70544.3665@compuserve.com.

9

.

THE NEED FOR QUAUTY E E C'OfTilled 10771 lage 4

INTRUSIVE HARDWARE TOOLS

Intrusive hardware tools consist o f a video card or adapter that is
inserted into the computer performing the test, along with a software
testing application that resides on the same CPU as the applica-
lion under test. In addition to the features found in software-only
tools, intrusive hardware tools allow more precise graphics com-
parison testing. Graphics comparison testing, which is essential in
today>s world of graphical user interfaces, allows the comparison
and display of expected to actual graphical test results

The need for reliable, bug-free software
is no longer an issue that belongs
exclusively in the software testing

laboratory.

While intrusive hardware tools add graphics comparison test-
ing to their list of capabilities, they suffer from the same liabilities
as software-only tools, These tools change test performance be-
cause the software and hardware share CPU cydes with the appli-
cation under test. Additionally, these tools add a complexityofin-
terrupt and bus resource contention, which sometimes can be an
issue. As a result, test engineers never can be sure that the software
that was shipped is the same as the software that was tested.

NONINTRUSIVE TOOLS

In an effort to create a new standard in software quality, software
test tool vendors are beginning to develop nonintrusive software
testing systems.'I'hese new computer aided software testing (CAST)
systems typically consist of a workstation computer using an in-
terface box that intercepts and converts the mouse, keyboard, and
video signals from the system under test into standard protocols,
which the system then can use to automate the testing process.

Unlike all other test tools, the CAST system's nonintrusive
approach to software testing ensures that a single tool now can
be used to test software on all popular platforms, operating sys-
tems, and language types.

A nonintrusive test tool has several advantages over its intru-
sive predecessors:

• Accuracy. Because a nonintrusive tool remains outside the
system under test, it does not alter the application under test
by requiring the same CPU cycles and memory needed by
the system under test. As a result, software vendors can be
assured that the shipped software is the same software that
was tested.

• Automation. 1 fa test tool causes the application under test to
completely hang up, the nonintrusive test system can log the

10

error, reboot the system, and continue testing. With an intru·-
sive tool, if the application crashes, the test tool will crash too.

· Non-Obsolescence. By existing outside the svstem under test,
a nonintrusive test too] provides the highest degree of pro-
tection against test tool obsolescence by simply adding a new
interface box that can be connected to the new platform or
operating system. While the software running the CAST sys-
tem potentially can become obsolete, its multi-platform and
multi-operating system features allow a single tool to sys-
tematically test and evaluate the broadest range of current dIld
future software applications.

INTEGRAMON

In todafs world ofsoftware development, the testing phase is gen-
erally regarded as an afterthouglit. As a result, the test engineer, who
does not have access to all requirement and design specifications,
is incapable of designing test cases that will ensure comprehensive
coverage. To achieve accurate test results, the testing phase must
commence and proceed along with the development phase.

In an effort to integrate development and software testing stages
into a single, automated process, CAST systems will be able to in-
terface with CASE technology. Theresult is an automated software
development system capable ofautomatically generating and exe-
cuting test scripts derived from the data flow diagrains, structure
charts and data dictionaries used to design the software itself.

With the integration of CASE and CAST, a software developer
would first use CASE technology as a front-end analysis and design
tool. A test case generator then would provide an automatic trans-
lation ofthe CASE tool's graphical notation ianguage into test cases
using well-known test design rules, which the CAST systeni would
then automatically execute. This scenario would provide the most
precise and efficient software testing methodology possible.

Integrating CASE and CAST enables the test engineer to develop
testware iii conjunction with software, thereby achieving the high-
est level ofsoftware development integration and automation.

THE QUALITY IMPERATIVE

The software industry is fast becoming a commodity market.
Product differentiation has traditionally been characterized by
features and performance. But now that the market has matured
and many vendors are offering similar products with similar fea-
tures, qualitywill become the characteristic that determines suc-
cess iii a crowded marketplace.

Achieving a higher level of quality does not happen by acci-
dent. By making long-term strategic investments in qualitypro-
grams such as automated test tools, US software vendors can be-
gin to build quality and customer satisfaction into the very fiber
of the product development process.

Perhaps it is time that our industry challenge itself to produce
defect-free software-before the offshore competition emerges
with products that capture the lion's share of the market.

Greg Pope is the General Manager of the Test P roducts Group at Tibutor
Systems, inc, Mr Pope has over 20 years' exper ence as a software
development engineer, He can be reached at 408.293.9098.

HOTLINE ON OB,ECT·OmENTED TECHNOLOGY

BOOK REVIEWE E
=im

 DESIGNING QUALITY
DATABASES WITH IDE Fl X
INFORMATION MODELS
Thomas A. Bruce

Dorset House Publishing, 1992
547 pp.

This book could have been titled «Everything you ever wanted
to know..." and still would have met the most stringent label-
ing requirements. The amount ofinformation between thecov-
ers is difficult to absorb, even after multiple readings. Fortunately,
the large type, airy layout, and Mr. Bruce's style make this an ex-
ceptionally easy book to read.

DEsIGNING QUALITY DATABASES WITH IDEFiX INFORMATION
MODELS is built around the premise that "an information model
is developed to capture the needs and policies ofa business in a
uniform and unambiguous manner. " This leads to a single mea-
sure of quality: "An information model is successful only when
it adds value to the business.» The book develops these ideas us-
ing four major sections that address the:

1. need for and perspective of information models
1 2. components and structure of information models

· entity types
• attributes

· relationships
· super/sub type hierarchies
• insert/replace/delete rules

3. use and practical considerations of information models
4. evolution of information models to include procedural and

dynamic aspects, forming a basis for object modeling in the
business environment

The first section of the book describes the need for and per-
spective of information models. Mr. Bruce provides a briefbistory
of design methodologies and their limitations and the evolution
ofIDEF1X from the early work of Robert Brown at Bank ofAmer
ica. He concludes with a discussion ofJohn Zachman's framework
and its role in understanding the needs and viewpoints of each of
the stakeholders in an information model The key point made by
Mr. Zachman and reinforced by Mr. Bruce is that each model is
describing the same thing, namely the business. The differentmod
els reflect the individual stakeholder's specific requirements and
areas ofresponsibilitybut not the differing levels of detail. IDEF1X
models are excellent at describing a business>s data perspectives,
while other methods and techniques are needed to describe the
functional (how) and network (where) viewpoints.

The second section discusses the components and develop-
ment of information models. Each topic is introduced with a
clear and concise definition followed by discussion, examples,

FEBRUARY 1993

reviewed by Michael Fuller

and exercises. The appendix contains answers to selected ques
tions plus something I have never seen before: an explanation of
the answer. This innovation allows you to check your under-
standing of the text and compare your reasoning with that of an
expert modeler, The discussion of entity types, attributes, andre-
lationships is straightforward and holds no surprises. Mr. Bruce
does emphasize the role that accurate names and definitions play
in developing a model that satisfies the business requirements of
our customers. This critical and often overlooked topic is ex-
plained by working through several examples demonstrating both
good ancl bad names or definitions.

the book really stands above its peers when generalization hi
erarchies (super„type/sub-type) are introduced. Stai·ting with com-
mon traits among entity types, the author takes you through de
velopment and refinement of a generalization hierarchy. At each
step be provides insights and tips for ensuring the quality of the
model and points out pitfalls and common mistakes. This dis
cussion woutdapply equally well tothedevelopment ofaclass hi-
erarchy in an object-oriented environment. He completes the dis-
cussion of generalization hierarchies by describing the limitations
of the current version of [DEF]X and possible extensions to the
language. The second section concludes with the best discussion
of business rules and normalization I have seen published,

The discussion of normalization begins with Mr. Bruce>s
mantra: «One fact in one place-get the business rules right.'

Normalization is presented as a practical business goal and not
as a mathematical concept. The chapter is built around the ex-
ample EMPLOYEE chas> zero or mode CHILDs. Mr. Bruce develops
a model demonstrating the features and problems of each nor-
mal form (1 through 3) and demonstrates the very real problems
that (de)normalization can cause. This deceptivelysimple exam-
ple highlights issues such as "overloading' attributes, multiple oc-
currences of the same fact, conflicting facts, loss of facts, incor-
rea facts, and coiifusing facts (entity/attributes) with relationships.

His discussion of business rules proceeds from the negative,
finding and correcting hidden errors, which are buried in a model
resulting from mechanical application of normalization or "ex-
pert advice." Examples of advice include «always use surrogate
keys" or "never use identifying relationships.» This poses an iii-
teresting question regarding the object communities near unan
imous use of object IDs: "How are business rules captured and
enforced in these sptems?"

The third section deals with issues surrounding the use of in-

15

DISTRIBUTED NFORMATION E E

• Interchangeable parts can be produced by multiple vendors,
increasing competition and quality while lowering prices. This
is the 'open systems' promise.

· Assemblers and maintainers do not need nearly the skill of
creators. For example, many people can change their own oil
and perform other minor maintenance without a professional
background in auto repair and engine tuning. This means or-
ganizations can lower the cost of software maintenance and
reduce the risk of becoming dependent on small numbers of
skilled professionals.

TAKING IT TO THE NEXT LEVEL

Now that we have established a basic understanding of where
we are, where we are going, and what objects have to do with it,
we can proceed to a deeper examination. What can we learn
from the manufacturing model to help us create the appropri-
ate infrastructure? The most important difference between the

current software industry and a manufacturing industry is that
a manufucturing organizatkn places primary emphasis on for-
mal communication and specification of a product's behavior.
This essential step enables the creation of large integrated prod-
ucts from multiple-source components. In producing a car, for
example, every part is formally specified in a document used for
formal communications, from the diameter of the rivets to the

tolerance of the door hanging. Every process used to manufac-
ture the auto, and every piece of knowledge necessary· for main-
tenance, is formally specified and communicated both internally
and externally,

It is precisely this attention to formality and detail that en-
ables the creation of interchangeable parts.2 If I know an engine's

OBJECT METHODS E E co,.b,L ed bum pee 12

nology transitions. From a personal perspective, many software
professionals are used to working more independently than the
object-oriented paradigm encourages. Things like CRC designs
or code walk thrus require a different perspective. We have to
create new roles and change old ones. Some old practices must
be discarded and new ones implemented. We must accept that
less is better as well as readjust our reward systems for output
that is produced by one individual but used for others. The °ex-
perts" of the traditional world are most likely not experts in the
new world and may never be.

SOME STEPS TO MAKE IT EASIER

I believe there are several steps to make the transition easier. In
general, recognize that the tasks people perform every day will
change. Understand that a combination of training existing per-
sonnel and access to experienced personnel is key to success.
Learn to value cooperation and sharing among employees, ex-
pect that reward structures need to be reviewed, and anticipate
that new roles wiI exist. Some other specific actions include:

· Commit to walk thrus.

14

temperature range, electrical characteristics, etc., 1 can produce
a suitable set of replacement spark plugs.

How different this is from today's software market! Can you
imagine Lotus making public the exact internal specifications of
its spreadsheets so I could create an independent replacement
for the recalc engine? Or Borland doing the same so I might ac-
tually produce an engine thai could work on both Lotus' and
Borland's spreadsheets? The same goes for Microsoft.

This is not a judgment on Lotus, Borland, or Microsoft but a
reflection of current industry Iiiechanics. Gui+rentspreadslieet prod-
ucts are large proprietary packages and vendors have no reason to
change overnight. But as objects are used to construct the next gen-
eration of spreadsheets, change will occur. Objects represent a nat-
ural move toward a manufacturing model. They are based on for-
mal specifications (protocols), and formal communications
(messages). Next month I will continue this discussion with: how
objects in languages and databases relate to the manufacturing
model; where standards fit (and don't fit); and how organizations
can maximize their ROI froni this indlistry change.

References

1. Stewart, M.K. Thenatural history ofobjects, "Happy 25th Anniver-
sary Objects!,» special supplement to C++ REPORT, SIGS Publica-
Lions, 1992.

2. Cox, B. Planning the software industriat revolution, IEEE SOFTWARE,
November, 1990.

Tim Andrews is Chief Technical Officer of ONTOS, Inc., and may be
reached at ONTOS, Inc., Three Burlington Woods, Burtingtor. MA
01803, by voice mail at 617.272.7110 x288, or via emad at
andrews@ontos.com.

• Create and support a quality philosophy.

• Create naming conventions.

· Recognize the role of good class documentation.
• Commit to stable interfaces.

· Provide access to code, documentation, testing cases, tools,
andplans.

CONCLUSION

The transition to object-oriented paradigm is, and has, paid off
handsomely. Successful transition opens up tremendous oppor-
tunites for organizational optimization. Fewer people do more
or the same number ofpeople accomplish a lot more. It also mea-
surablyimproves the «time to production." It is not an overnight
process. Success is usually accomplished in years, not months,
but it is worth the effort.

Patti Dock is Vice President at Orgware Inc., consulting with organiza-
lions as they migrate to object-oriented techn ques. She teaches a course
called OBJECTMethodsi which compares and contrasts :eading oblect
onented design methods. She can be reached at 903.270.1242.

HOTLINE ON OBAECTORIENTED TECHNOLOGY

OBJECT METHODS E E

0-0 transitions require
cultural changes

Over the past few months, I have worked with several compa-
nies as they move to an object-oriented paradigm. One of the
most interesting aspects of this transition is the cultural trans-
formation that must occur. Whether it's ahigh„tech engineering
firm or a large corporation with a traditional MIS organization,
most companies find it difficult to grasp cultural changes. From
an organizational aspect, this change is not easy or fast. Success
requires commitment from the highest levels in the organization
down as well as acceptance from respected te€hnical proponents.

WHY THE CULTURAL CHANGE IS NECESSARY

Object-oriented transitions are not about languages or hardware
or methodology selections. Although each of these selections
plays a key role, successful transitions are centered around re-
structuring what individua15 do on a daily basis. Everything-
from an organization>s structure to its programming languages,
idioms, style, tools, methods, development practices, and even
its project management approach-will directly· affect the benefits
derived from this shift.

The extent to which a corporation takes advantage of reuse is
key to maximizing the potential benefits of an object-oriented
transition. Reuse implies sharing and trust: both qualities we have
espoused in software engineering for decades but often have not
practiced. How can people reuse code without being reasonably
certain it works as documented? Ilow can they use code if it is
not documented at all? How many times will they reuse code if
the first time they try it doesn't work correctly or, more subtly,
if it doesn't work the way they expected it toy

WHAT CULTURAL CHANGE INCLUDES

Cultural change encompasses code walk thrus; use ofoutside tab
ent; and visible organizational commitment to quality, testing,
naming conventions, documentation, and stable interfaces.

The cultural changes required for successful walk thrus are
threefold: 1) simple understanding and acceptance of public re-
view of design and code, 2) acceptance that iess is better, and 3)
disciplined adherence to naming consistency.

Iii many organizations, people simply do not perform code
inspections or walk thrus. The idea that people outside your pro-
ject team will examine your code and publicty comment on it is
new. This is a difficult obstacle to overcome. I recommend that

organizations commit energy and resources to developing, doc-
umenting, training, and implementing a standard approach for

FEBRUARY 1993

Patti Dock

walk thrus so that the experience is consistent, constructive, and
useful to the developer. In other groups, the most difficult hur-
die is the idea that "less is better." Many organizations still re-
ward people for amount produced instead of amount reused. An
interesting observation from sitting in on many design and code
walk thrus of object-oriented systems is that, especially in a ma-
ture environment, the amount of software that comes in shrinks

before it goes out, That is, the group's participants most often
have suggestions for reusing existing software or inaking it smaller.

The practice of rewarding based on amount produced rather
than amount reused must change for successful implementation.
Reward must not go just to individuals who reused the class but
also to those who designed and implemented the reusable class.

Classes and methods are often named from too narrow a per-
spective. This, as well as areas where naming can come in line
with already existing classes, is often discovered in walk thrus.
The amount of change likely to occur iii the naming of classes
and methods is therefore high. Time spent on name selection is
time putto gooduse; theprobability ofaclass being reused is di
rectly tied to the proper naming of the class and its methods.

EXPECT TO NEED OUTSIDE HELP

Obiect-oriented expertise grows with experience. It is not un-
usual to require two to three projects before someone rea14 pro-
duces good object-oriented design and implementation. The
more access developers have to experienced individuals, the
quicker the transition. Whether vour organization hires experi-
enced individuals or hires external consultants, access to experi-

enced individuals will improve your position on the learning
curve.

Some organizations traditionallv use external consultants and
some regularly hire from the outside. In cases where either of
these actions is the exception rather than the rule, the organize-
lion must change its practices. The cost o f growing internal ex-
pertise iii a vacuum exceeds the cost of bringing in skilled peo
pie-and the resulting quality is better.

Another type of «outside help" is interproject movement. The
more experienced members from one project are used as litter-
nal consultants to seed new projects.

QUALITY PHILOSOPHY

Introduction of anv technology creates opportunities for im-
proving the development process. If the organization is invest-

11

OBJECT METHODS E E

ingin a transition to object-oriented software, take advantage of
this opportunity and implement a high-quality object approach.
With that in mind, it is worth noting some ofthe object-oriented
qualitylessonslearned in commercial projects. If we hope to eval-
uate quality improvements, we must measure quality. Encapsu-
lation eliminates side effects but inheritance introduces new test-

ing requirements. Testing wilI require as much effort as
development-a lot more if proper tools are not available-

Development of high-quality object software requires a cul-
ture in which both objective and subjective quality are routinely
measuredatevery stage ofthedevelopment. This means youniust
measure the extent to which you meet the specification as well
as the extent to which you meet the needs of the user, Often these
are two different criteria. Ifyou are expecting to produce reusable
components (which we highly recommend), you must also read-
just who the user is-sometimes it is another programmer,

Objects reduce the probability of many kinds of errors. This
is attributed to models that are more accurate and easier to tin-

derstand as well as to encapsulation, which isolates how we do
something from what we do. However, a less discussed phe-
nomenon is that inheritance actually breaks the encapsulation
and therefore introduces unique quality requirements.

Investing iii testing tools is a new concept for many organi
zations. (The most common exception seems to be successful
networking projects that traditionally invest heavily in testing
tools.) Because of inheritance, projects need to verify that all in-
herited methods used by a class are correct, that subclasses of the
specified argument type are correct, that all methods by the same
name perform the same logical operation, and that the docu-
mentation is accurate and sufficient enough for an isolated user
to use the component. This can be a daunting set of tasks if the
organization does not invest in testing tools or, for that matter,
test cases that live with the class.

PROJECT SCHEDULE

Most proponents of object-oriented technology espouse the need
for naming conventions, documentation, stable interfaces, and
an iterative approach, but few organizations have either the cul-
ture or the structure to support these changes. The structure must
accommodate these changes and the culture must adapt to allot
appropriate time in the project schedules.

Naming Conventions
Naming conventions have always been important in software en-
gineering, but polymorphism and widespread reuse increase the
need for well-thought-out, consistent naming. Time spent think-
ing about names for classes and methods is time well spent. Or-
ganizations must learn to budget time for this in their project
schedule and enforce adherence to standards.

Documentation

Documentation for dasses is very different in an object-oriented
system than in a non-object-oriented system. The most impor-
tant measure of a well-documented class is that it>s descriptive
enough for users to recognize that it fits the system requirement,

12

and accurate and detailed enough for them to utilize the com-
ponent.

Stable Interfaces

Stable interfaces don't come automatically. One expects the in-
terface ofthe first iteration of a class to change. Before a class is
"certified" as a reusable class, its interface must have reached a
maturity level that ensures its relative stability. Upon being certified
reusable, a new set of rules that are well thought out and viable
must arise. Modifications are premeditated, often publicly de-
bated, certainly well thought out, and most definitely well-
publicized actions. When deletions must occur, be sure to un-
derstand the impact. If you treat the stable interface lightly, project
teams will burn out and be wary of reusing classes again,

Iterative Approach

Most organizations do not use an iterative development approach
although some have experimented with rapid development. One
ofthe largest differences in almost al] successful object-oriented
transitions is the use of iteration. The difficulty lies in convinc
ing management that the software is not ready to ship because it
is up and working but requires another iteration. Again, com-
panies must learn to budget time for iterations in their project
schedule.

Development of highquality object
software requires a culture in which
both objective and subjective quality

are routinely measured at every stage
of the development.

ACCESS TO CODE, DOCUMENTAMON,TEST
CASES, TOOLS, AND PLANS
Real structural changes are required ifacorporation wants to en-
courage reuse. It is no small task to solve the configuration con-
trol issues associated with the code, documentation, test cases,
and test plans for all the projects. If these are not accurate, up-
to-date, and readily available to individuals in a timely manner,
they won'tbeused, whichiscounterproductive. The importance
placed on these activities and the respect accorded those playing
key roles will be proportional to the success of cultural changes
throughout the rest of the organization.

WHY MS IT SO HARD?

Change is difficult. People naturally resist change. But the ob-
ject-oriented change is even more difficult than many other tech-

confoced©npaye 14

HOTUNE ON OBJECT-ORIENTED TECHNOLOGY

DISTRIBUTED |NFORMATION E E

Object databases, software ROI,
and the movement toward a

manufacturing model for software

A CHANGE OF EPIC PROPORT]ONS

There is a great movement under way that is changing the way
software is created, distributed, and maintained. The software

industry is attempting to move toward a manufacturing model,
where "cookie cutte I#" software coniponents are created and dis-
tributed in large numbers and then assembled into ever larger
systems. This represents a radical departure from the current
model, which is much closer to the print media industry:
Software is "written" in self-contained "packages"; the "author"
is often paid a "royalty»; and the software £'publisher" hopes for
a -best-seller."

I firmly believe that this movement toward a manufacturing
model will have a profound and positive effect on the entire
software industry and its customers. Further, I believe that ob
iect technology, and object databases in particular, will play a
crucial role in this industry reorganization.

IF YOU DON'T KNOW WHERE YOU ARE, YOU CAN'T
KNOW WHERE YOU'RE GOING

Software creation today is still largely a craft, with large pieces of
software being written by small numbers of highly skilled indi-
viduals. A much larger body of professionals creates the final
package, testing for quality, documentation, marketing, sales,
distribution, and customer support and logistics of the software
product

This model has significant advantages:

· The cost of entry is fairly low. Almost anyone or any small
group can] produce a software package. The emphasis is on
creativityand innovation, and new product development oc-
curs at a furious pace.

· The potential return is enormous. With very low overhead for
production, a successful software package generates an ob-
scene profit margin. Despite the emergence of huge compa-
nies such as Microsoft, every year small companies experience
phenomenal growth when they introduce a successful prod-
ula into the market. (A good example is Powersoft, a com-
pany virtually unknown two Years ago that posted approxi-
mately 20 million dollai·s in 1992 revenue.)

THE WORLD OF SOFTWARE MANUFACTURING

Now let's examine the "software manufacturing marketplace."

FEBRUARY 1993

Tim Andrews

A true, high-level manufacturing market is almost the opposite
of the current software market

· The cost ofentry is verv high. Large initial investments are re-
quired and a substantial organization must be in place before
the product can ship.

• The return is average but predictable. Because of a much larger
initial investment in infrastructure, product must be amor-
tized over a much longer time period. In other words,you
have to sell a lot more before you break even.

In a large manufacturing environment, such as the auto in-
dustry, there is a fairly even set of skills distributed through all
phases of the product lifecycle. Manufacturing planners are per·
ceived as peers to the designers and planners-there is no hero
worship. Who is the Phillipe Kahn of Mercedes Benz? The Bill
Gates of Honda? They do not exist because the industry is not
organized around the creative talents of a small group. That is
why such industries are more predictable.

SO WHAT DOES ALL THIS HAVE TO DO WITH

OBJECTS?

Objects, by their very nature, encourage the manufacturing model.
Theyhave the characteristics of components, like IC chips or parts,
and they are more like manufacturable products than programs.
One of the primary notions of object technology is the £'virtual
machine." Alan Kay recently described this very eloquently:

The shock of realization was so great that it was the last
time I ever thought in terms of subroutines and data struc
tures. I could see right away that you didn't need to di
videcomputersintoanythinglesssimplethanothercom-
puters, and that...virtual machines...were exactly the
right way to go.1

It's easy to see how one can envision a market of off-the-shelf
software components made out of objects. Each object compo-
nent is a self-contained machine that performs specific functions
within predefined constraints.

The benefits of this model to the customer are great:

· Standard parts will be produced at lower costs, lowering the
cost of software.

13

