Number 1 August 1966

MEMBERSHIP AND SUBSCRIPTION

Although I'd hoped to be able to send you the ACS Newsletter free, the costs of printing and postage are just too high, despite several contributions, unsolicited but highly welcome.

Therefore, a combined membership and subscription fee of $\$ 3.00$ has been established. There will be no dues, at least not in the foreseeable future. The number of Newsletter issues you will receive will depend on how many join, and should be at least 8 , probably more. The Newsletter will appear about every 6 or 8 weeks.

To become a member of the Amateur Computer Society and receive the ACS Newsletter issues that will follow this one, please send $\$ 3.00$ to

Stephen B. Gray
Amateur Computer Society 219 West 81 St
New York, N.Y. 10024
Those who sent contributions are ACS members as of now, and will have their subscriptions extended to the full amount of their gifts.

The Beginning

The Amateur Computer Society was launched on the afternoon of May 5 , 1966, when letters of announcement were sent to ten technical and hobby magazines. So far, ivve
have printed the letter: Control Engineering (June, p 12); QST (July, p 78); EEE (June, p 142); EDN (July, p 7); and Computer Design (August, p 12).

The original letter of announcement ran this way:
"This is an invitation to your readers who are anateur builders of digital computers to join the new Amateur Computer. Society, whose main purpose is to exchange information through a newsletter. To limit the membership to the really serious, the ACS is open only to those who are building or operating a homemade computer that can at least perform automatic multiplication and division.
"The newsletter will contain queries from members with problems, answers provided by mysele or other readers, details of computers built by members and by manufacturers, and information on surplus computer hardware, cheap integrated circuits, and relevant publications.
"Will qualified readers please send me information about their computers, such as word length, memory size, clock speed, number of instructions, sources of hardware and schematics, present problerns, and details of clever solutions to previous problems.
"If there is enough interest in a lower-level group, it may be possible to form an Amateur Computer Logic Society, " for those who want to construct logic circuits and simple computers."

The first Your magazines printed various parts of the ilrst three paragraphs. Only Computer Design printed the entire letter, so the great majority of responses were from a rather high caliber of amateur.

Response

As of today's mail, 54 letters and telephone calls have been received, from 19 states, including Hawai1, plus Canada and Switzerland, and continue to come in at the rate of one a day. A third came from IEEE members; two are Senior Members. Five gave their ham call letters.

Most of the prospective ACS members are in the New York area (19), the Los Angeles area (11), or the Chicago area (9). Many are engineers; several work for computer manufacturers (IBM, Univac, GE, Honeywell) in logic or mernory design. Two are in highschool.

As expected, only a very few are past the hall-way mark in the builaing of their computers. One man is about two-thirds of the way toward completion; the rest range from "I've been thinking about building a computer for some time" to "I have the shift registers completed."

The most cowmon problems are with input/output, memory, and finding overall computer schematics. This issue of the Newsletter will deal mainly with the problem of the schematics, as this is the main deterrent to getting started for most of us.

First ACS Mailing

To all those who wrote to the ACS, a two-page resume of the plans and aims of the Society was sent. Because this first issue of the ACS Newsletter will be sent
to all future enquirers, the ACS resume, which was dated July 1 , 1966, is reprinted here, in part:
"The main reason for the existence of the ACS is to enable amateur computer builders to help each other, saving time and money by trading ideas. And there are many areas where an amateur needs help:

"A. Circuits

1. Surplus. Where can they be bought? Where do you get the schematics? How do you use circuit boards whose terminal contacts have been broken off (as all surplus IBM SIIS boards, for example)?
2. Construction. Where can you find schematics, with parts values, for not-too-complicated circuits? What are the most practical and cheapest ways of mounting the components on a board? Are homemade printed-wiring boards cheap enough to use?
3. Integrated Circuits. Who makes the cheapest and most rellable IC's? What are the best and cheapest ways of mounting them?

"B. Mounting of Gircuit Boards

1. Fixed. Is there a practical way to do this?
2. Plug-In. What female connectors are cheap enough to use in quantity?
3. Modular Front Panels. Are commercial panels (with jacks) available? What types of homemade modular (individual) panels are most practical and cheapest?
(Continued next page)
"C. Interconnections
4. Fixed. Is fixed wiring practical? What are the most practical ways to use fixed wiring?
5. Plugwires. Is it practical to use plugwires to interconnect circuits? What plugwires, commercial or homemade, are cheapest and best? What cheap plugboards are available?
"D. System Design
6. Overall. Where can computer schematics be obtained? Can an amateur design his own computer?
7. Memory. What type of memory is cheapest? What is the overall cost of a core memory, per bit?
8. Display. Which is cheapest, neon or incandeescent lamps? What other displays are economical?
9. Output. What output is cheapest and most practical? Are there cheap tape punches? Is a printer too expensive?
"D. Help
10. What commercial companies are helpful in providing information or surplus parts, or both?
11. What companies refuse to give information, such as schematics for surplus components?
"The plan, at present, for the newsletter is to include the above listing of the basic problems in the first issue, and then go into each of the 14 categories
in one of the following issues. Each issue will also contain problems outlined by members and solutions furnished by myself (if I have the answer) or by other members in later issues. There will also be information on commercially made computer trainers, which are usually simple enough' to be built by a computer amateur, if he can get his hands on the schemat1cs.

> "P. S. As for my own background, I've been an editor and writer on computers for more than lo years, including five years as the computer editor of "Electronics" magazine.

COMPUTER SCHEMATICS

1. Flodac. The simplest computer for which schematics are available is the Univac Flodac, which is actually a pluid-logic demonstrator. However, if you have a good knowledge of logic, you should be able to convert the fluidics to elec-tronic logic. If any of you do, please let me know; perhaps we can make the electronic schematics available to others.

Flodac has a memory (4 words of four bits each), arithmetic register, function select, clock, four instructions, etc. It's a minimum computer, but contains all the essentials.

Although Univac would not provide the schematics, the patent gives all the details. Send 50 $\%$ to the Commissioner of Patents, Washington, D.C., and ask for a copy of patent 3,190,554, "Pure Fluid Computer," by A.J. Gehring, Jr. et al.

By the way, Univac recentiy started to market fluidics elements, but the prices are rather steep for an amateur, something :
over \$10 for a flip-flop.
2. Pedagac. Although never built, this "pedagogic automatic computer" is thoroughly described in three chapters of "Digital Computer and Control Engineering" (R.S. Ledley, McGraw-Hill Book Co., 1960, 835 pages, $\$ 15.50$).

Pedagac has 19-bit words, 17 instructions, a magnetic-drum memory, serial arithmetic and a single-address scheme. There are six types of circuit cards; the basic package is an AND-OR (three ANDs and one OR), the output of the $O R$ avallable direct and inverted.

The basic Pedagac transistor is a 2N643, which may be obsolete, and may bo equivalent to a 2N395 or 2N397. The basic diode is a DR435 ($\$ 80 / 100$), which may be equivalent to a TI55, IN4009, 1N698, 1 N910, 1N911, 1 N 497 or IN695. The IN911 seems the closest match, but this needs checking out.

Pedagac requires about 5,000 wre connections. The book gives a rack layout and a partial wiring table.

An associate of Dr. Ledley has written me that Pedagac has never been constructed. It was not designed to be built; as its purpose was pedagogical, the plans were not checked out as thoroughly as if construction had been the goal. It was noted that Pedagac has no real provision for input or output.
3. Digiac 3050. A $\$ 2500$ semiautomatic desk-top computer trainer without memory, this has 4-bit words, three registers, input pushbuttons and output lamps, and 7 instructions.

The parallel adden uses dif-
ferent logic in each notinthe four stages: NOR, NAND, DCTL and AND-OR-INV logic.

Digiac 3050 uses 382 IN60 diodes (\$23/100) and 204 transistors, designated "DEOI" on the schematics. These are made to order for the company, but are directly replacable by $2 N 404{ }^{\prime}$ g ($\$ 31 / 100$).

A schematic is included for the power supply, which furnishes the required ± 10 volta, and the -17.5 volts.

The Digiac 3050 manuals are \$10 for the set of two, one on computer description, the other on programing and applications. Digital Electronics Inc., Ames Court, Plainview, New York 11803.
(The Digiac 3080 manual, originally planned as a $\$ 50$ set of two, has finally been published as a single programming manual for \$8. Digiac 3080 is a $\$ 19,500$ computer trainer, desk-size, with 25-bit words, over 100 instructions, 4096-word magnetic-drum memory and paper tape I/O, plus IBM Selectric I/O typewriter.)
4. Bi-Tran Six. This \$5500 desktop computer trainer weighs 98 pounds, has a single-address binary parallel scheme, and thirty instructions. The core memory contains 1286 -bit words. Indicator lamps show the operation of all registers.

Volume I of the two Technical Operations Manuals covers operation; theory and schematics of individual cirouits. Complete parts descriptions are inciuded, except for transformers and core memory. The transistors used are: 2N1304, 2N1305, 2N1309. Diodes: 1N270.

Volume 2 covers maintenance
programs, wiring diagrams and logic diagrams.

Price for both manuals, \$29.95; Fabri-Tek Inc., 1019 East Excels1-: or \backslash Blvd., Hopkins, Minn. 55343.
5. Russian ENC. Vaouum-tube computer trainer, this "Educational Numerical Computer" uses 19-bit words, a single-address system, and has 11 instructions.

It also has a magnetio-drum memory of 1,024 worde, using a "drum from a machine of the series Urals-1." Photoelectric tave-reader input, printer output.

Seventeen types of circuits are used in ENC, total of 387 , including 163 filp-flops. Main tube types are 6N3P, 6P1P, 6Zh2P, for those of you with access to Soviet tubes.

The 168-page English translation of the original Russian (1963) book gives a complete discusaion of ENC; very interesting to read how the "other side" computes. Send \$3.00 for "Digital Computer for Training Purposes (ENC), by V.I. Natov, et al JPRS: 24,498, OTS 64-31219, to Clearing House for Federal Scientific and Technical Information, Springfield, Virginia 22151.

Negotiations are under way with 4 other manufacturers to see if they can sell us sets of overall schematios, but the outlook isn't good. If you know of other avallable computer schematics, let me know and I'll mention them in the next issue of the ACS Newsletter.

It was hoped that manuals would be obtainable for the Univac 422 computer trainer, with magneticcore storage, l5-bit words, nine
registers and 64 instructions. However, the 422 has been "destandaraized," according to Univac, and the manuals are no long-. er available.

BOOKS AND BOOKLETS

We Built Our Own Computers, A.B. Bolt, editor. Cambridge Univeraity Preas (New York office: 32 East 57 St.), 1966. 101 pages, $\$ 3.95$ hardcover; $\$ 1.95$ paperback.

This book, reviewed here only because several members had asked about 1t, describes very simple computers, analog and digital, made by 6th-form boys (12 years old) at a British school.

Of use only to beginners and those working with beginners. The algital "computers" all use relays and are quite small.

Integrated Circuit Projects From Motorola, available from HEP, Dept. ACS, Box 955 Phoenix,' Arizona 85001 ; $\$ 1.10$ ($\$ 1$ plús 10ϕ for handing and postage). Has 96 pages, is the first IC project book for the hobbyist and experimenter. Among the contents: a. square-wave generator with 10nsec rise time, frequenciea from 6 Hz to 60 kHz ; binary computer; organ, etc. (Haven't seen it yet but seems well worth the dollar.)

*******\#\#****

Design of Tranaistor Suritohing Circuits for Data-Processing Equipment, ${ }^{75}$ cents from RCA, Electronic Components and Devices, Harrison, N.J. Has 44 pages on dealgn considerations, procedures and examples, plus typical switching oircuits using RCA transistors. The 16 circuits use a variety of transistors and
voltages; there is not a unified set of circuita. The booklet enda with a computer transistor data chart: 6 memory-driver types, 44 logic types, maximum ratings and electrical characteristics limita for each.

PROBLEMS AND (SOME) ANSWERS
1-1. Where can I buy computer components?

These have been mentioned:
John Meshna, 19 Allerton St, Lynn, Mass, 25\% for catalog.

ALCO, 3 Wolcott Ave, Lawrence, Mass.

C and $\mathrm{H}, \mathrm{Pasadena}, \mathrm{Calif}$.
Salvage Depts of Autonetics and Hughes Aircraft, in California, Saturday mornings.

NOTE: Order by mail only as a last resort. Word on one store is that "much of the computer equipment is pretty junky ... the memory drums seemed beyond repair...." Caveat Emptor.

1-2. Does anyone have manuals or schematics for the magnetic-drum system built by LFE in 1955-6 for the RCA 501, with a 15-millionb1t capacity, 120 heads, 100 -plus mercury-wettea relays and what appears to be two separate amplifier chassis?

1-3. Where can I get "WY" IBM SMS circuit cards?

1-4. How can I solve the problem of high-speed, high-power drum... head-switching at low oost?

1-5. What is a suitable connector for a $10^{\prime \prime} \times 12^{\prime \prime}$ PD board? I'd like to use wire-wrap interconnections.

1-6. Where can I buy low-cost integrated circuite?

The cheapest IC's I've seen are the Fairchild RTL epoxy TO-5 devices, newly reduced to:

	1-99	100-999	1,000 up
Buffer	\$. 80	\$. 54	\$. 36
Dual 2- . ${ }^{\text {- }}$			
input			
JKate	.80 1.50	. 54	. 36

Fairchild Semiconductor, 313 Fairchild Drive, Mountain View, Calif.

The Motorola MC700P series includes a dual JK flin-flop for \$2, 1-999; the Philco E-line Series D'IL has a JK FF for $\$ 2.80,100-999$.

1-7. How can I design a $10-\mu \mathrm{sec}$ delay line using RC elementa?

1-8. What are the pros and cons on serial versus parallel address and associated circuit requirements?

1-9. Where can I locate a cheap electroluminescent output display?

YOUR ANSWERS TO THESE PROBLEMS WILL BE PRINTED IN THE NEXT ISSUE.

THE LAST WORD
That's it for the firat issue. As of today's mail, we have 60 potential members. And the latest word on the possibility of being able to buy overall schematics for a couple of standard computers is more encouraging now. See the next issue.

NEXT ISSUE will be about inputoutput equipment. If you have had any experience with this, or thoughts to share, send details. What is cheap and reliable? Can we make it? Where can we get it? How much of an interface does it require?

Copyright 1966 by Stephen B. Gray

Number 2 October 1966

MEMBHRSHIP

Inquiries about ACS membership have been received from 77 men thus far, in 23 states, Canada, Switzerland and Italy. Of these, 36 have sent in the $\$ 3$ to become members (4 have sent in more), incluaing the Canadian, so the ACS is now an international group.

INPUT/OUYPUT

Although there are a great many types of input/output equipment, nearly all are beyond the financial reach of the average amateur, or they take up too much space. Card readers and punches, magnetio tape, eleotrio typewriters, eleotroluminescent panels, printess, crt display -- these are usually too expenaive and most of them are too big. In the middle ground are such devices as rear-projection display, Nixie tubes, paper tape readers and punches, magnetio drums -- expensive if new, often reasonable when ueed or surplus. That leaves, at the oheap end of the scale, lamps and pushbuttons.

With only lamps and pushbuttons as input/output, automatic program loading is not poasible, nor is the readin of external data. Output consists of reading the register lamps.

This is well and good for the first stages of oomputer building, but sooner or later the amateur wants to get into automatio operation. His first step is often in the direction of Teletype gear.

The ACS is fortunate to have a
momber with much Teletype oxporience, JIm Haynes, who has analyzed the various models of Teletype equipment for us:

Teletrpe Equatpment

Although Teletype gear is alow and awkyard to use, it is readily avallable and relatively oheap. The only stuff that is widely avallable uses the 5-level Mumpay (often oalled Baudot) oode.

The old Model 12 has the adrantage, for computer use, of having a parallel-input printer and a parallel-output keyboard. This is so old it is obsolete oven for amatour use, but probably some of the machines oan be obtained from hame in the Now York area, which was ita mainatay.

The more recent and more popular Model 15 is quite widely available (for example, see the All-tronics-Howard ads in QSY magazine). This, like the rest of the later Teletype line, has the disadvantage for computer use of requiring serial signals. Thus one must build an electronio serial/ parallel/serial converter, or find an eleotromechanioal one (not too hard to find, partioularis in New York).

The ourrent Model 28 line is usually available, and although serial in operation, is more attraot1ve for computer use because of 1 ts higher speed oapability ($100 \mathrm{mpm}, 10$ char/sec) and beoause it is more readily recoded to a more computer-compatible oode. In fact, one who is ambltous could even convert it to a

Model 35, whioh uses the ASCII code. But probably it would be easier to keep the 5 -level code and just rearrange the numeric oharacters for a BCD code. However, once one has a program in and running, he can convert oode to Murray in the computer, so that odd-coding would be needed only to get the initial program in and running. For a serial computer, this might well be done as in the Raytheon 250 , loading one bit for each oharaoter of input.

For information on the availability of $28-1$ ine equipment, contact Bert A. Prail, 558 Ridge Ave., Winnetks, Illinois. If one plans to do his own rebuilding and repairing, this should be speoiiled, as the gear is much cheaper that way.

One can also get new Teletype gear from the factory; the Model 33 popular with small computer makers, and can be had for about \$600. Contact Mr. R. R. Bogdan, Teletype Coxp., 6555 Touny Ave., Skokie, Illinois.

Teletype also has punohed-tape apparatus capable of higher apeed (105 char/sec). There 1s very little of this on the surplus market, but Bert Prall 1s the one to try.

Some gaving can be had on the Teletype equipment new from the factory, by buying the bare-bones units (typing unit, keyboard) separately and doing your own cabinet or cover. The regular keyboard has to have the typing unit to make it work.

One nice feature of the 33 line is that the keyboard is parallel and there is an electrical parailel/ serial converter. Thus one can use the parallel interface rather then the serial interface that is nor-
mally used for communication purposes. Also, the paper tape reador in this ine is magnet-driven, which makes it nice if one wants to use the tape reader by itaelf. The punoh is made to be used with the typing unit and cannot praotioally be used alone.

Then there is the more mugged Model 35 line, but an amateur would not ilkely want any of this, as it is quite a bit more expensive. (This is used in some SDS and Univac oomputors, and others.)

If one wants to be a bit archaic, he could find out all he wants to know about the Teletype and mag-netio-wire I/O gear used with sTic by contacting the National Bureau of Standards. This is, of course, oompletely obsolete by today's standards. However, one might be able to do something in the way of working over a oheap tape recorder to get high-speed operation on the computer and slov-speed recording and playbaok from Teletype gear.
(National Bureau of Standards Ciroular 551 , issued Jan. 28, 1955, "Computer Development (skic and DYSEAC) at the National Bureau of standards "was at one time available for $\$ 2$ from the supt. of Doouments, Govt. Printing Office.)

This is about all except to mention that in San Francisco one should try Buckley's. He usually has Teletype gear, and he once had some old IBM ineotrduriter stuff, although the latter was in pretty bad condition. But the Eleotrowriter is not at all wanted by hame, which should hold its price dow.
P. S. The 5 -level Murray oode is a bit awkrard to handle, but then one could rearrange the Teletype keyboard and the type pallots to get his own 5-level code based on

BCD or excegs-3 or whatever 1s desired. But then, in a maohine of any aize, one can do the code conversion by programming, or by making an off-inge converter, so that the atandard machine may be ueed, thus preserving the normal keyboard arpangement. Therefore, the major I/O problem is what to do when Teletype equipment isn't fast enough.

Another member, Fred Strother, has furnished the names and addresses of companies that sell used Teletype equipment:

Where to Buy Used Teletype Geap

Atiantic Surplus Salea Corp. 250 Columbia Street
Brookiyn, New York
(catalog)
J. Thamsen W9YVP

11001 South Pulaski Road
Chioago, Illinois 60655
Alltronios-Howard Co. Box 19
Boston, Massaohusetts 02101
Hilott Buohanan V6VPC
1067 Mandana Boulevard
Oakland, California
Columbla mleotronlos (oatalog) 4365 T. P100 Boulevard
Los Angeles, California 80019
R. F. Goodheart Co., Inc.

Box 1220-A
Beverly Hills, California 90213
Fred auggesta the Teletype Model 14 reperforators and tape distributors, available at a very nominal price. These units print and perforate $9 / 16^{\prime \prime}$ tape from a flve-level coded signal. The keyboard and the tape distributor both generate the same $5-1$ evel oode.

Nen Drivera

IIm Faynea writes that a most e00nomion and satisfactory diaplay is a neon indioator driver by a high-mu triode such as a $12 A \times 7$ or 6965. The grid of the tube can be driven direct from the usual bort of logic voltages in a transistor syatem. A 100x series resistor at the signal source prevents the indicator-cirouit wiring oapacitance from loading the olreult at all.

One oan get very nice-looking neon indioators encased in plastio for panel mounting for around 20 conts each. Jim puts ton of the 12-volt tubes across the power line 80 that no filament transformer is neoded. An isolation transformer capable of aupplying about 1 ma per lamp is satisfactory for the plate supply. A fullwave bridge reotifier without a Pilter is aatisfactory.
This arrangement doesn't load the oirouit as a transistor-driven indiaator would, and it is muoh oheaper than eithor a transistordriven indioator or a 6977 indiwatos triode. It gives a nice bright light, and allows the use of isolating resistors to prevent oapacitive loading from bothering anything.

With integrated oirouits and lowvoltage transistor logio there are problems with this arrangemont, however, beoause the gain of the triodes isn't high enough. And there is the problem of all that heat from the tubes.

Heon Lamps

According to Pete showman, neen lamps are oheapor and more eff1ciont than inoandesoents, an NIM 2 costing 10f and a \#1819 with sooket oosting 32 $\%$. However, there doesn't seem to be ad2d,

70-volt neon-driver transiator, and incandescent drivers can be had for about 10\%, surplus. Sylvania's incandescent display lamps are much easier to use, but cost about 65% per bit, with sockets.

Information on how to age and select neon lamps is contained in "Build This Electronic Computer," In the November, 1966, issue of Eleotronios Illustrated. The device is aotually an acoumulator rather than a computer.

Voice Output

One member has a voice output for his computer. Two stereo heads are staggered to provide four tracks. Each track is subdivided into three sub-bands to provide ten channels and a control ohannel.

CRT Display

For those amateurs interested in cathode-ray-tube diaplay, an informative survey artiole is oontained in the January 1965 issue of Electro-Technology, "Digital-to-Visible Charaoter Generators," by Sherman H. Boyd, pages 77-78, 80, 84, 87-88. The systems most likely to appeal to amateurs are dot generators and vector generators.

Pete Showman believes a ort gystem to be considerably oheaper than a N1xie-tube readout for more than one register, and infinitely more versatile. He thinks an alphanumerio display could be built for under \$150, and a numeric-only system for about half as much.

An interesting twist is found in "Forming Handwritten-Like Digits on CRT Dieplay, " by R.L. White, in Electronics, Maroh 13, 1959,
pages 138 to 140. The ten number generators produce the necessary horizontal and vertical waveshapes by a simple shaping of a 60-oyole input.

COMPUTER SCHEMATICS
Control Data has, for \$34.50, a maintenance and training manual, containing some diagrame, on the LCP 21 and the FPC 4000, both in the aame publication, Pub. No. ESD 10600.

The CDC 160-A Compater System Customer Enginearing Diagramg Manual, Pub. No. 60014200 1s $\$ 2.70$ per copy.

All inquiries and orders should be sent to:

Ilterature Distribution Center
Control Data Corporation
1015 South 6th Street Minneapolis, Minn. 55440

The LGP and RPC were previously sold by the Librasoope Division of General Precision; before that, the RPC was sold by the Royal MoBee Corp.

The LaP 21 has 460 transistors, 375 diodes and no oores. Still' in production, its main frame costs \$16,000. Desk-aize, it weighs 90 pounds, has a magnetio-disk memory with 4,096 31-bit words, 23 instructions. Single-address, serial arithmetio. Paper tape and typewriter input/output.

The RPC 4000 contains 500 transiators, 4500 diodes, no cores. Original price, $\$ 87,000$; now, out of produotion, $\$ 28,000$. The size of two desks, it weighs 900 lbs, has a drum memory with 8008 words, 32 bita each. Two-address, serial arithmetio, 36 instructions. Paper tape and typewriter input/output.

The 160-A containg 1700 transistors, 11,900 diodes and 402 cores. Original cost, $\$ 90,000$; now, out of production, $\$ 35,000$. Desk-6ize, it weighs 850 pounds, has optional core, drum, disk or tape memory. Single-address, parallel arithmetio, 12-b1t words, 130 instructions. Paper tape I/O.

Although many ACS members write that designing the oomputer is half the fun, there aro just as many who are interested in obtaining schematics. So we'll keep on looking.

Integrated circuits in quantity

Pete Showman has volunteered to help ACS members take advantage of the much lower prices of IC's when bought in large quantities. If you want to buy IC's in quantities of 50 or more, write, giving full details of exaotly what you want, to:

Peter S. Showman
403 School st.
Watertown, Mass. 02172
ANSWERS TO PREVIOUS PROBLEMS
1-1. Who sells computer parta?
Horbail and Rademan, Inc.
1.204 Aroh St.
(oatalog)
Philadelphia, Pa. 19107
Gadgeteers Surplus Eleotronios
5300 Vine St. (catalog)
Cincinnati, Ohio 45217
Seleotronios
12 South Napa $8 t$.
Ph1ladelphia, $\mathrm{Pa}_{\text {. }}$
Leeds Radio Co.
75 Vesey St.
New York, N. Y. (no oatalog)

1-7. How can a $10-\mu$ reo delay line be designed uaing RC elements?

Jim Haynes doubts that a very practical delay line can be built with RC elements. If one insiats, perhaps an active oircuit will do:

This is an active low-pass illter, so presumably it produces a pure delay below the cutoff irequenoy. However, a lot of sections woula be needed if a good pulse shape is to be preserved, R2Cl should be maide equal to ReC2; and the cy/C2 ratio is a critical parameter.

Pete Showman says delay lines are easy to make, if you don't need large bandwidth and a long delay together. Look in the Radiotron Designer's Handbook under pisection low-pass LC filters for some data. $Z_{o}=\sqrt{L / C}, f_{c o}=1 /$

 winding the inductors on long polystyrene rods, with spacing about equal to winding length (or more). Choose I and C from cutops Prequency and impedance. The delay time determines the number of stages needed, so, for instance, a $300-0 \mathrm{hm}, 5-\mathrm{MHz}, 1-\mu \mathrm{sec}$ Ine neede: 30 stages.

3131 Greene says he's found two companies in the New York area that can oupply magnetostriotive delay lines for $\$ 125$ to $\$ 156$, for 2 to 5 -msec types:

Sealectro Corp. 139 Hoyt St. Mamaroneck, N.Y.

Digital Devices
212 Miohael Drive
Syosset, N.Y.

> The Amatour Computer Society is open to all who are interested in building and operating a digital oomputer that oan at least perform automatic multiplication and division, or is of a comparative oomplexity.

> For membership in the ACS, and a aubscription of at least eight issues of the Newsletter, send \$3 (or a cheok made out to me)tor Stephen B. Gray
> Amateur Computer Sooiety 219 West 81 St New York, N. Y, 10024 The Newsletter will appear about every elght weeks.

1-8. What are the pros and cons of serial versus parailel operation and associated circuit requirements?

Jim Haynes feels that the pro of serial operation is the small hardware requirement and the con is the slowess, which 1s why serial operation has all but disappeared from modern commerolal computers.

If serial operation is to be used, Jim strongly recommends that negative numbers be represented in two's complement form, which simplifies things enormously. A good write-up on a serial computer is in the book, "Analog and Digital Computer Technology," by soott.

Serial operation is good with drum or silek or delay-inne storage, which is a pretty cheap form of storage. For registers, one oould use short delay lines, drum or disk tracks with multiple read heads or the new IC ahift regiaters that have a lot of bits on one chip. These IC's are rather expensive (\$75 or so), but that 1s oheaper than most brand-new delay lines and is certainiy cheaper than a flip-flop regiater.

PROBLEMS FOR THIS ISSUE

2-1. Is there a book or article on designing memory-core drivers?

2-2. Where can one buy one of the now pushbutton telephone dials?

Herbach and Rademan have a 16button Western Blectrio 508 pushbutton ewitch for \$24.95.

See "A Pushbutton Telephone for Alphanumeric Input," in the April 1966 issue of Datamation, pages 27-30. The aystem described requires 12 pushbuttons.

2-3. Can hams get used Teletype gear from Western Union?

Yes. Through arrangements with the ARRL (American Radio Relay League) surplus teleprinter and related equipment is made available at no charge to licensed radio amateurs.

Western Union is disposing of aurplus equipment, including the Model 28 (same as Model 14 narrow tape printer), Model 26 and Model 100 page printers. Later WU expects to dispose of Model 14 reperforators as well as Model 15 and Model 19 equipment.

Hams desiring more info, write to: Frank C. White (Coordinator-WUSP) 2706 Harmon Road Sllver Spring, Maryland 20902

HIMT ISSUE will be about computer cirouits, mostly about build-your-own and where to get the schematics, also some info on surplus circuits and IC's. If you have any experience with these, or thoughts to share, please send details. Where do you get schematics for surplus olrouits? Are homemade printedwiring boarde cheap enough to use? How do you use boards with brokien-off terminal contaota?

Copyright 1966 by Stephen B. Gray NEWSLETTPER

COMPUTER CIRCUITS
a publication of the AMATEUR COMPUTER SOCIETY

Number 3 December 1966

MEMBERSHIP

The ACS is now intercontinental. We have a new member in Bologna, Italy, who may be known to some of you hams as illCF.

COMPUTER SCHEMATICS

Although many ACS members say they find that designing the circuits for their computers is the most interesting part of their hobby, there are just as many members who cannot design their own, and who need help. This issue tells where to get various circuit schematics.

Government Publiostiona

There is a variety of government publications about computers and their circuits, uaually much cheaper than commercial publications. One of the best known agencies, in digital work, 18 the National Bureau of Standards, which has published several Technical Notes of interest to the ACS.

NBS Technical Note 68 (76 pages)
This technical note, "Transistorized Building Blocks for Data Instrumentation," was pubilshed in September 1960, and is available for $\$ 2.00$ from the Clearinghouse for Federal, Scientific and Technical Information, Springfield, Virginia 22151.

These digital modules were developed for the "many data recording and preliminary processing tasks encountered in the scientific operations" of the Bureau. The modules were designed with three fac-
tors in mind: reliability, economy and versatility.

Most common is the $2 N 414$ transistor, with a few $2 N 363$ and $2 N 123$ types also used. The diode, a gold-bonded type, is the only expensive 1tem: this DR435 costs \$80 per 100. However, possible equivalents are the TI55, 1 N 4009 , 1N698, 1N910, 1 N911, 1N497, or IN695. The 1N911 seems the closest but this needs checking out.

The modules include a flip-plop, NAND gate, one-shot, analog switch, RCD gate, analog voltage comparator, decimal decoder, octal-hexadecimal decoder, power driver, indicator driver, read circuit (for drum or tape), write oircuit, and pulse generator. Printed-wiring layouts are also given, for those who wish to make their own.

Supply voltages are -12, +12 for bias, and a reference voltage for the analog circuits. The pulses have a propagation delay averaging $0.5 \mu \mathrm{sec}$, and a 6-voit rise in not more than one $\mu \mathrm{sec}$. The flip-flops operate at a $50-\mathrm{kHz}$ maximum.

NBS Teohnical Note 168 (112 pages)

Bearing the same title as TN 68, this technical note was published in 1963, and is avallable for 55 cents from the Supt. of Documents, U.S. Govt. Printing Office, Washington, D.C. 20402.

This TN contains several additional circuits (gated T input, preamplifier, pulse stretcher, sampler, BCD counter), modifications of some TN 68 circuite, and corrections of errors appearing in $T \mathbb{N} 68$.

The flip-flop drawings show that speed-up diodes may be added across the input-gate resistors. Although the text doesn't say 80 , these diodes increase the maximum flip-flop frequency to 400 kHz .

NBS Technical Note 268 (122 pages)
This technical note has the aame title as TN 68 and TN 168, was published in 1966, and is available for 60 cents from the Supt. of Documenta, USGPO.

This technical note makes some changes in the previous circuits, because of the apeoial requirements of a particular group at the iNBS. The basic logic tranaistor here is the 2N4O4; the complementary transistor is the 2N1302. For higher currents, a $2 N 659$ is used; for even higher currents, a $2 N 1039$.

For better temperature performance, a silicon series was also designed, using the 2N3638 inatead of the 2 N 404 , and the 1 N 270 diode, which costs half as much as the DR435. Silicon equivalenta are al so given for the other transistors.

In the germanium series of IN 268, the change to a $2 N 404$ has meant, with respect to the modules of the two previous notes, only that some base resistors and capaoitors have different values.

Several circuita are new: reed-relay card, 16×16 matrix, coil driver, comparator gate, ripple shift register, high-impedance amplifier, and oscillator/one-ahot. This last circuit can be used in three ways, depending on the outboard wiring.

According to the author of one of these technical notes, the use of
discrete-component modules has recently been abandoned at the NBS in favor of integrated circuits.

Application Notes

Although there have been many applications of these digital modules in various sections of the NBS, and a variety of application notes, all but one are NBS internal publications, and are not available to the public.

NBS Technical Note 64, "Design and Operation of the Ceilometer Computer, " was published in 1960, and is available from the Clearinghouse for $\$ 2.00$. This concerns the design of $\triangle M O S$, a apecial-purpose computer for keeping track of data relating to cloud heights, for automatic weather stations.

Because no computing oircuits are involved, this TN is of secondary interest to the ACS, although 1t does contained detailed schematics that give useful information on various interconnections.

The computer is more of an Information storage and retrieval device than a computer. A magnetic drum stores data on varying cloud heights. A few simple comparisons are made between data groups, and various cloud-height data is made available, either as lamp output or through awitch contacts for remote display or printing. Some 145 digital modules are used.

Data Systems Technician $3 \& 2$
This Navy Training Course was published by the Bureau of Naval Personnel as NAVPERS 10201. Available for $\$ 3.00$ from the Supt. of Documents, USGPO.

Th1s 468-page book, written for Navy men striking for a higher
rating, is highly recommended. It $1 s$ an excellent source of information, either for the computer expert, or for a novice with a good electronics background.

After three short chapters on introduction and number systems, there are six chapters (122 pages) on basic computer aubsystems: control unit, arithmetic unit, memory and storage units, input/output devices, programming, and $A-D$ and D-C conversion.

The next Ifve chapters (203 pages) discuss in detail, with many sohematics, the NTDS (Naval Tactical Data System) computer (CP 642A/ USQ-2OV), which is the Univac 1206. This military general-purpose computer has 30-bit words, 62 instructions, 36,768 words of core storage. The oircuits are almost all made up of inverters and indicator drivers; flip-flops are two inverters cross-connected. Add time is $16 \mu \mathrm{sec}$, including storage time; $9.6 \mu \mathrm{sec}$ without. There are 7 index registers, an acoumulator, and one other register that can be used as an accumulator. It contains 32,298 diodes and 10,702 transistors, and has a main-frame volume of only 58.6 cubic feet.

As the book says, "the coverage is not all-inclusive," 80 don't expect a full set of prints. How-
ever, the 50 partial sohematios go a long way.

The remaining four chapters oover other Navy computers (Control Data 160-A and 1604-A, brielly), teat equipment, maintenance information and maintenance procedures.

NOTE: The Navy has informed me that all 2500 copies of the first edition have been sold. However, a second edition should be available in about 12 months. So make your orders next winter. In the meantime, you can take a look at
this book (on microfiche) at any full depository of U.S. Government publications, which is usually the largest public library in the state. Ask for U.S. Govt. Publication 18658 (11sted in the Nov. 1965 monthly catalog).

Researching computer literature is a subject in itself, which will be covered in a future issue.

Preferred Circuits

The Handbook of Preferred Circuita, Navy Aeronautical Eleotronic Equipment, is in two volumes: the pirst is on vacuum-tube circuits; the second on semioonductor device circuits, NAVWEPS 16-1-519-2. Price \$1.75, Supt. of Documents, USGPO. The latest date I've seen is April 1962, although it may have been revised.

The 1962 edition contains 22 oircuits; 11 are computer-type: two NOR gates, flip-flop, one-shot, pulse shaper, pulse power amplifler, indicator, two more flip. flops, pulse generator and a relay control flip-ilop. The first 7 circuits use a $2 N 404$, and require $+6,-6$ and -18 volts.

The other circuits in this book inolude five d-c regulators and several video circuits.

Commercial Publications

There are a few commercial publications, and a lot of manufacturers' literature, that give logiocirouit information, other than computer textbooks. Here are some of the best of both:

Computer Logic Circuit Characteristios Tabulation, issued in two complete editions a year, August and February. Each new edition completely updated. Annual subscription \$32.50, D.A.T.A., Box 46B, Orange, N.J. O7050.

Contains schematics and major electrical characteristios of 3,200 off-the-shelf commercially available circuits produced by 66 companies. Includes price information.

NOTE: No component values, nor does the company sell outdated editions at lower prices.
D.A.T.A, has a similar service for transistor characteristics, diodes and $S^{\prime} R^{\prime} s$, and semiconductor device mounting hardware.

Manufacturers! Literature

Some of these cost money, others are free but often hard to get without a business letterhead.

Digital Logic Handbook, 328 pages, Digital Equipment Corp., Maynard Mass. 01754.

This handbook, which has gone thru geveral editions, is given away in huge quantities at computer shows, and contains much useful information. The DEC system of drawing circuits is highly stylized and takes awhile to get used to.

Short Cuts to Successful Data Processing Systems, 30 pages, Magnetic Sÿgtems Corp., 2000 Calumet St., Clearwater, Fiorida 33515.

Sections on how to implement logio with NOR-NAND gates, loading, applications, and circuit apecs.

Digital Module Application Manual, 114 pages, $\$ 1.50$, Ray theon Computer, 2700 South Fairview St., Santa Ana, Calif. 92704.

Many types of counters, shift reg1sters, adders, with 13 pages on logic design, 9 on circuit descriptions and symbols, and 9 on application rules.

Digital Application Notes, 68 pages, Interstate Electronics Corp., 707

East Vermont Avenue, Anaheim, Cal.
If still available (my copy is dated 1961), this easy-to-read booklet is well worth getting, with 37 pages on applications.

Standard Products and Circuit Modules, 88 pages, Systems Engineering Laboratories, Inc., P.O. Box 9148, Fort Lauderdale, Florida 33310.

My copy is a preliminary edition, so the final issue may have a different title, and be longer.
Unusual in that it gives all component values: $2 N 404$ (medium-speed series), 2 N1499A or 2N962 (highspeed series), using $+6,-6,-12$ volts. 1N192 diodes. 23 pages of applications.

Q-Seriea. Engineered Electronics Co. ${ }^{1441}$ East Chestnut Avenue, Santa Ana, Callf. 56 pages, 5 on applications.

EECO has the largest selection of off-the-shelf digital modules, with half a dozen families of modules. The full catalog, in the EECO looseleaf binder, is $2 k$ inches thick, with a quarter of an inch of application notes. The serfes of most interest to amateurs are probably the G, U and Q. There is a separate. application-note booklet for the Q series.

Fairohild Miorocircuits Handbook. Fairchild Semioonduotor, 313 Fairohild Drive, Mountain View, Calif. 94041.

This looseleaf handbook contains sections on the various types of Fairchild micrologic: $\mu \mathrm{L}$, MW $\mu \mathrm{L}$, DT $\mu \mathrm{L}, \mathrm{TT} \mu \mathrm{L}, \mathrm{CT} \mu \mathrm{L}$, 11 near circuits, plus application notes and teohnical articles. Hard to get.

IBM Cuatomer Engineering Manual of Instruction, Transistor Component

Circuits, 223-6889-3. 171 pages.
Gives full schematics and circuit operation descriptions for six series of SMS cards, used in the 7000 series, the 1401 , etc. Not all SMS carda are given here, for some reason. A great many of these circuits are level converters, coupling networks and line terminators.

Although pubilshed in White Plains, New York, this manual, like nearly ell other IBM publications, is available only through an IBM branch office. T.o get this particular one, of course, is not easy.

COMPUTER SGHEMATICS
DE-60 computer, by Clary Corp., a deak-size machine, 300 pounds, 200 transiators, 2,000 diodes, 14 thyratrons. Drum memory of 32 words, 18 decimal digits per word. Serial arithmetic, 37 instructions. Keyboard input, typewriter output. Tape and card I/O optional. Autonatic built-in subroutines are contained in plug-in diode cartridges. Original price, $\$ 18,000$. Add time, $3 \mathrm{msec} ;$ including storage access time, 60 msec . Time includes access to five addresses and automatic alignment of decimal point. Internal numbering system is BCD.

Clary is introducing a new machine line that obsoletes the DE-60. Therefore Clary can make the DE-60 wiring diagrams available to us "In limited quantities, free of charge." I have a set of these schematics, and it would be extremely difficult to build a computer from them. Frankly, I don't think I'd try. If you must, write:

Mr. Duane Langer, Service Mgr.
Clary Datacomp Systema
788 Bloomfield Avenue
West Caldwell, New Jersey 07007
subroutine cartridge information in the drawings I received.

CURRENT PUBLICATIONS

Scientific American, September, 1966. Special issue on computers. Covers the field fairly well, from describing how a NAND gate works to giving a computer program for playing checkers. Good bibllography for each of the 12 articles.

This issue sold out fast and the publisher has no copies left, so you may have to go to the library.

Computer design aeries in Electronic Design magazine, by an IBM advisory engineer. First article in the Sept. 27, 1966 issue, pages 86-91, "Digital computers are no mystery, " showing some of the basic combinations of circuit blocks. Second article, in the Oct. 25, 1966 issue, pages 72-81, gives'a checkilst to help evaluate module requirements. Three more articles will appear in this series, but they have not yet been scheduled.

Occupations in Electronic Computing Systems, 72 pages, 30ϕ from the Supt. of Documents, USGPO. If your friends and neighbors ask what kind of jobs there are in computers, or if you's like to know more about the subject, this is an excellent booklet. It describes the history of computing, current status, the digital work-flow process, and 23 computer occupations in detall. Also includes a glossary, a long and good bibliography, and sources of additional information, such as ACM, BEMA and IEEE.

CATALOGS

Among the current catalogs to be recommended are those of two companies that are very useful when you need to order by mail:

```
The Amateur Computer Society 1s open to all. who are interested in building and operating a dig1tal computer that can at least perform automatic multiplication and division, or is of a comparative complexity.
For membership in the ACS, and a subscription of at least elght 1ssues of the Newsletter, send \(\$ 3\) (or a check made out to me) toa Stephen B. Gray
Amateur Computer Society
219 West 81 st
New York, N.Y. 10024
The Newsletter will appear about every two months.
```

Allied Electronics
100 N . Western Avenue Chicago, Illinois 60690
(Get the Industrial catalog)
Newark Electronics Corp. 500 North Pulaski Road Chicago, Illinois 60624
(Branches in Inglewood, Callf.; Cincinatti; Grand Rapids; Denver; Detroit and New York)

Both catalogs list semiconductors in two ways: by N numbers and by manufacturer. Using the N list, you can compare prices.

The 1967 Newark catalog has ten pages on ICs, made by Motorola, Texas Instruments, Raytheon, General Electric, General Instrument, Sylvania and Sprague. Nearly all digital. Cheapest J-K flip-flop listed is Motorola's Unibioc MRTL dual FF for $\$ 2$, $1-999$, as noted in the first ACS Newsletter

ANS:TERS TO PREVIOUS PROBLEMS

2-1. Is there a book or article on designing memory-core drivers?

Doesn't seem to be. I've asked several core manufacturers, but none has found anything. Looks like the designers are keeping their secrets to themeelves.
Number 3 -- December 1966

PROBLEM FOR THIS ISSUE
3-1. Instead of using a set of pushbuttons for manual input to every register, how can one use one set of pushbuttons and some kind of switching system?

TRADING CORNER

A member wishes to dispose of 20 or 30 magnetostrictive delay lines; all but one is $1848 \mu \mathrm{sec}$ long. Originally made to operate above 1 Mc , but few seem to operate that fast. May work OK at lower Prequencies, or one could rewind the transducers for faster operation (tricky, but has been done). Complete with drive and read electronics, using surface barrier DCTL transistors. Designed for ± 3 volts. Asking price, $\$ 5$, postpaid. James H. Haynes, 1809 W . E1 Caminito, Phoenix, Ariz. 85021. Also has a few DCTL circuit boards, each with 30 or 40 SB transistors; some have 7 f11p-flops each, some have ?3?. Asking \$7 for these, postpaid, with oonnectors. Power supply for these boards, $\pm^{3} \mathrm{~V} \&-10, \$ 25$.

J1m Hayncs also says that Teletype sells circuit cards, etched but without components mounted, as maintenance parts. Reasonable cost, about 75¢ for a 2 ㅅㄹ $4 \frac{1}{2}$-inch card which goes into a 15-pin edge connector. J1m can supply the Teletype part numbers for various configurations.

NEXT ISSUE will be about memory circuits, with an article on how to check out magnetic cores of unknown origin, along with some general information on surplus. If you have any experience with computer memories, please send details for the next issue. Any 1deas on the overall cost per bit for a core memory, including read-write electronica?

Copyright 1966 by Stephen B. Gray

MEMORY
ISSUE

Number 4 February 1967

MEMBERSHIP

A letter about the ACS in the January IEEE Spectrum (page 129) has brought a fresh flow of inquiries about membership. The ACS now has members in 20 states, plus Canada, Italy and Switzerland.

WHAT TO DO WITH CORES OF UNKNOWN ORIGIN, by Sal Zuccaro
(Sal has been in memory design for 10 years, and has patents in core-diode logic.)

The used and surplus planes I've seen on the market are real antiques. I tested one originally made by Univac and found the switching time to be about two microseconds. A memory using this 80-mil core wouldn't be able to go faster than a five-microsecond cycle time. The size also would be excessively large.

There are several possible reasons for core planes being in the reject bin. One is that too many cores in the matrix need to be replaced. Another is that too many were replaced to pass the qualitycontrol requirements of some given project. One more is trouble in the manufacturing process where the magnet wires are corroding for some reason. In like manner, a batch of cores could be too weak or brittle and thus subject to breakage.

Sometimes a bunch of cores will have a shifting loop; that 1 s , they have a magnetic bias. Cores in this category used to get well into production before someone discovered the defect. Mechanical damage, such as lifted pads, etc.,
is a frequent cause for rejects.
Happily, however, the reject bin also gets good usable frames, from several causes.

Because every computer manufacturer uses a different size memory with any of a number of different cores, any event that stops a large production run in the middle, puts good matrixes into the scrap bin. Nobody wants anybody else's design.

Cores are not going out of style; in fact, the demand is increasing. As for speed, our fast cores are turning over in 75 to 80 nanoseconds. Down in this region, the transition time of the signal along a wire is quite significant.
[In one nanosecond, a pulse travels along some 9 inches of wire.]

Here is an outline of a few steps to take with a core of unknown origin. You need a bidirectional constant current source, so you can turn the core first in one direction and then in the other.

The simplest setup would be:

The amplitude of the current is monitored across the one-ohm resistor with an oscilloscope.

Some of the simplest forms of current generators are shown at the top of the next page. Parallel the output transistors as needed to get the required current.

From O.S. \&
pulse shaper
The pulse shaper can be just a Miller circuit:

For the negative, just replace NPN's with PNP's, and invert voltages.

A little simpler system is:

From O.S. \& Pulse Shaper

This circuit has the advantage that it can pass a constant current from either the positive or negative voltages. For positive, A goes to a positive voltage and B is the output. For negative, B goes to a negative and A is the output. Any number can be connected to the same output terminal.

Pulse widths should be around five microseconds. Rise and fall times, around 0.2 microseconds.

To check out a core, put a small magnet-wire through 1t:

This can be done even while it's in the matrix.

Set one pulse around one amp, and sync the scope to the beginning of this pulse. Now, starting at nearzero current, advance the other current until an output is just ready to form on the sense line. This should be the knee. A turnover signal looks like:

The value of current which, when increased, produces an output (first appearing at the noise poaition), is the value of the knee.

This, divided by 0.6 , should be equal to the maximum current needed to operate the core. This current divided by 2 is what goes down the X and Y innes. A core that has a knee lower than 0.6 is rather shaky. Some have knees much higher. In such a case the second pulse, called the write pulse, is increased to the point where the size of the output signal does not increase.

If you compare this value with the knee, you will get the true value of the disturb ratio.

********\#\#*******

Another member, Jon Lax, stresses the need to go to $50-$ and $30-\mathrm{mll}$ cores. This is because, although 80-mil cores are inexpensive, they are more trouble than they are worth, considering size, heat and drive currents.

Jon says that 80 -mil cores take about three times the space, twice the ourrent and about $2 \frac{1}{2}$ times the cooling as 50 - and $30-\mathrm{min}$ cores.

Also, they are about half as fast. What with the new, very fast logic available, and trende toward miniaturization and the least upkeep possible, it is possible that you can sacripice certain parta of the design rather than save a lew dollars by using the cheaper planes. It all depends on how you design your machine.

Jon is president of a company, made up of high-school seniors, that sells cores, planes, stacks and magnetic-tape loops, to help finance the computer they're building. The cores sell for $\$ 10$ to $\$ 80$ per thousand, up to 10,000 , and for $\$ 10$ to $\$ 40$ per thousand over 10,000. IEM-style buffer planes, 160 cores each, are sold at cost, $\$ 8.50$ each. For details:

Jonathan R. Lax, President The Information Organization 121 Gill Road
Haddonfield, New Jersey 08033
Jon figures that the cost of a core memory ranges from 15ϕ to 90ϕ a bit, depending on the ingenuity of the designer. The big difference is whether you use transistor or core sensing. The best source of schematics is textbooks, such as "Solid State Magnetic \& Dielectric Devices" by Katz and "Information Storage and Retrieval" by Becker and Hayes, both published by Wiley.

The best source of cores is the manufacturers, says Jon. However, if anyone is willing to forego perfect specs, his company can provide cores from their revolving stock of rejects which they obtain from various of the larger houses. Hany who do not need the ultimate in uniformity have been able to use them in the past, he adds.

Pete Showman says that the amount of sophistication needed in a core-
memory syetem seems to depend strongly on the physical size of the memory stack and on the threshold current of the cores. If the memory is small, diode decoding with drivers at each end of the line can be used. Some useful articles on such systems are "Designing a Small Core Memory" " by Jimerson, in Solid State Design, April 1964, pages 31-34, a wordselect system with partial driver schematios; "A Versatile Magnetio Core Store Driving and Detection System," by J.A. Borrie, Electronic Engineering (British), Jan. 1963, pages 28-31.

When a core stack is big enough to have reflection problems, things get messy. Such memories must be treated as transmiseion lines, which 1) makes bidirectional drive harder, and 2) means large driver voltage swing: since Z_{0} is 100 ohms or so, and the half select current for typical surplus cores is $\geqslant \pm 600$ ma, ± 60 volts are required. Transistors that can handle that much power in 100 nsec are far out of the amateur's price range. The best solution Fete has seen is the loadsharing matrix switch. This multiturn transformer array allows several (10, for example) smaller transistors to combine their outputs, and to send the pulse to any of geveral (16, for example) output lines. An article with good references is "Magnetic Core Access Switches, " by Minnick and Haynes, EC-11 IRE Trane, June 1962, pp 358-36. The articles referenced are mainly mathematical theory, not schematics, but are useful if given a little study. A1though the matrix switch 1s expensive, it can reduce overall system cost, since epoxy-cased transistors like the 2N3643 can be used as drivers.

Pete isn't sure where the dividing line between "large" and "small" memories is. The only way to find out is to try a diode-select aystem NENSLETTER
and see if errors occur, he says, adding that a wrong guess could be expensive.

Pete estimates the cost of the electronics for a 16 K by 13 -bit memory using a load-shering matrix to be about $\$ 800$, or about 0.4ϕ per bit. The stack is extra, of course. Because cost increases slowly with the number of bits, a 4 K system would probably cost $\$ 500$ or so. A very small memory gets simpler, but diodes with the required rating might be fairly expensive, too.

There are several articles on the gory details of sense-amplifier design, but Pete is not convinced that all the trouble is necessary in coincident-current systems (word-select memories evidently have greater noise problems). So far Pete has had grood results with a well-balanced differential amplifier.

In a previous letter, Pete said: In the real world, drum and diak menories are of course the cheapest, but hard to fix if damaged, and hard to find in good condition. Old core planes seem to be numerous, but about six identical ones. is the practical minimum for an efficient stack. I estimate mirimum driver 00sts at $\$ 1.35$ per driver, and sense amplifiers at $\$ 3-5$. Thus a 1024 by 13-bit memory would be ${ }^{\text {ph }} 160$, or an effective 8192 by 2 by 12 bits would be $\$ 425$, both excluding cores and decoding logic.

CCMMENYS, ANYONE?

A few comments have been received, all saying they like the ACS Newsletter. Nice to get that kind, but more helpful would be comments on what you don't like about the Newo letter. What should there be more of, or less of?

STANDARD ANATEUR CCIFUTER KIT
Anateur computer builders are now nuch like the early radio amateurs. There's a lot of home-brew equipment, much patchwork, and most commercial stuff is just too expensive.

The ACS can help advance the state of the amateur computer art by designing a standard anateur computer, or at least setting uv the specs for one. Although the mere 1dea of a standard computer makes the trueblue home-brew types shudder, the fact is that amateur radio would not be where it is today without the kits and the off-the-shelf equipment available.

For those who don't belleve in conformity, the computer kit can be a jumpinc-off place, a basic machine on which to build their own variations and special add-ons.

I propose a basic philosophy for the standard machine: it should be deaigned on the "bit-slice" principle, so that the basic kit can be bought with a minimum word length. Then, as the builder can afford, he buys bit-units, eech containing all the cards for adding one bit to the word length throughout the machine. A bare minimum of registers would be used in the bitslice stages, with further registers to be added on later, one by one (if this is feasible).

Possible oftional add-ons might include a printer, character generator, X-Y plotter, card punch, card reader, additional core memory, drum memory, maybe even a Teletype.

Many problems exist; here are some:

1. What is the minimum number of registers for it? Naximum?
2. What should be the price for the basic machine? $\$ 500$ too much?
3. What should be the maximum word length? And the minimum?
4. What options ahould be made available for add-ons?
5. Should the basic machine have more than manual input and lamp output? If so, what?
6. Should the contents of all registers be visible on the console? Or should one set of lamps do for alls
7. For the stage after manual input and lamp output, is paper tape okay? Or should we go directly to tape? Or drum?
8. How much assembly work should the kit-bullder have to do? Could he solder in the ICs without burning them up, or should sockets be used?

It may be possible to get some kit or IC manufacturer interested in putting the standard amateur 00 m puter kit (SACK for short) on the market, if there are enough prospective kit builders so he would not be left holding the bag.
Please give SACK some thought, and let me know what you think about 1t. A standard amateur computer will probably be on the market by 1970, whether or not we do anything about it. There's no reason why we can't steer the inevitable in the direction we think best.

BOOKS AND MAGAZINES

"Sense Amplifier Fits Any Memory," Electronics, Sept. 5, 1966, pages 89-94, by a Sylvania' engineer. New general-purpose amplifier can be used with most colncident-current remories. Designed to be compatible with the sylvania high-level (SUHL) logic family, for use with Sylvania's MSP-24 microcircult computer (Electronice, Oct. 18, 1965, page $\frac{72}{72}$.
(There are two modela of this senge amplipier, the sA-10, with high fanout, and the SA-11, with a lower fanout. Prices are:

$$
\begin{array}{lrrr}
\text { SA-10 } & \frac{1}{35.90} & \frac{25}{28.60} & \frac{100}{24.20} \\
\text { SA-11 } & 26.10 & 20.80 & 17.60
\end{array}
$$

Not cheap, but neither is the SUHL line, in which the cheapest flipflop costa $\$ 5.90$ for 1 to 24. However, that's a $20-\mathrm{Mc}$ J-K flip-flop.)
"Linear Pulse Transformers in Core Memory Design, "W.G. Rumble (Lockheed), Computer Deaign, Feb. 1967, pages 48 to 60.
Although pulse transformers are bulky and expensive, and are not amenable to IC techniques, there are some advantages. This survey article discusses the major design problems in four types of memory configurations without going into the finer details of circuit design; 28 figures, no component values.

** **

Small Computer Handbook, 544 pages, free Prom Digital Equipment Corp., 146 Main St., Maynard, Mass. 01754^{\prime}. Discusses in detail from a user': viewpoint, the PDP-8, FDP-8/s and the LINC-8 (PDP-8 and LINC combination). Chapters on computer basics, programming I/O devices, operation. Almost 100 pages on interface and installation, a variety of basic schematics illustrating programmed data transfers, data break transfers and digital logic circuits. Combines three separate, larger handbooks in one small, $5 \frac{1}{2}$ by 8 format. DEC describes $1 t$ as a "sourcebook of basic computer technology for the computer user and the student."

COMPUTER SCHEMATICS

Build-1t-yourself books on the LINC computer are available:

Vols. 1-11, \$63. Manufacturing Description (wiring tables, parts 11st for DEC cards required, etc.) Vol. 12, \$12. Logic Diagrams and

The Amateur Computer Society is open to all who are interested in building and operating a digital computer that can at least perform automatic multiplication and division, or is of a comparative complexity.

For membership in the ACS, and a subscription of at least eight issues of the Newaletter, send \$3 (or a check made out to me):

Stephen B. Gray
Amateur Computer Society
219 West 81 St
New York, N. Y. 10024
The Newsletter w111 appear about every two months.

Timing Diagrams. (This alone is not enough; you need the wiring tables, too.)
Vols. 13-14. Theory of Operation. (Not yet written).
Vol. 15, \$8. Assembly and Test Procedures.

The set of 13 available volumes weights about 35 pounds, will be sent postage collect. Send your cheok to:

Norman Kinch
Computer Research Laboratory
Washington University
700 S. Euclid Avenue
St. Louls, Missouri 63110
LINC is a computer designed to control experiments and to collect and analyze data in biomedical and environmental solence research. A single-address, fixed word length, parallel computer, using l2-bit binary arithmetic, LINC contains a crt display, an analog-to-digital converter, a relay register, and dual magnetic tapes (DECtapes, $3 \frac{1}{2}$ inch reels, transfer rate 6000 words a second). DEC combines LINC with a PDP-8, so the two share a 4096-word core memory. A IINC costs about $\$ 30,000$ assembled. Parts can be bought from DEC: cards, cages.

INTEGRATED CIRCUITS IN QUANIITY
Pete Shownan reports that only one

ACS member has responded to his offer to take charge of buying ICs in quantity (Issue 2, page 5). However, by finding another purchaser outside the ACS, he was able to persuade Fairchild to give the quantity price on 2400 pieces. Pete hopes to place a second order around May.

Anyone interested in ordering at least 50 of the Fairchild RTL ICs, please write to

Peter S. Showman
403 School St.
Watertown, Mass. 02172
Fete notes that using ICs would allow a 2-Mc clock, and figures the cost at about \$2.27-2.60 per stage of an "average ${ }^{11}$ arithmetic register, depending on purchase quantities. (Pete's typical register can shift two ways and load in parallel from another register.)

PROBLEMS FOR THIS ISSUE

4-1. A member who bought a skybolt computer welcomes and information available on this item, especially the core memory. Information sent to the ACS will be forwarded.
4-2. Another member could use a good solution to hardware floating point. Responses will be forwarded.

4-3. A member is looking for a supplier for used or rebuilt electric typewriters with electrical inputa for computer I/O use. Any help?

YOUR ANSWERS TO THESE PROBLEMS WILL APPEAR IN THE NEXT ISSUE. Please look through past issues for unsolved problems and send in your answers.

> NEXT ISSUF will be about how and where to look up articles and books on computer subjects of interest to amateurs, incluading some sources you may not have heard of, such as depositories.

SACK
ISSUE

a publication of the

ANIATEUR COMFUTER SOCIETY
Number 5 April 1967

MEMBERSHIF

The ACS now has 70 members, in 23 states, Canada, Italy, Iaran and Switzerland.

There are ACS members at IBM, GE, RCA, SEM, TRW, Eunker-Ramo, Hughes, Westinghouse, Lockheed, Litton, Hitach1, Eell Labs, Motorola, Goodyear Aerospace, Brookhaven, Western Electric, Teletype, General Radio, Harvard, MIT, Annapolis, Arizona State, Tennessee Tech, Lehigh, and the Universities of Illinois, Michigan and Mississippi.

SACK

This issue was to have told where to look up articles and references about computers. However, the comments received on the proposed Standard Amateur Computer Kit are of a more immediate value, so this issue will be about SACK instead. And there are many miscellaneous items, for which there will be no room in the reference issue.

As expected, comments on the SACK were mixed, both pro and con. Here are excerpts from several letters.

From Don Fronek:
A standard computer should have:

1. Plug-in cards (can buy ready niade cards, or cards without components).
2. Frame construction with card receptacles (allows the builder to locate his circuits as he wants them).
3. Power supplies to fit within the Prame.
4. Universal front panel (prepunched holes -- when using the kit-builders approach).
5. Input/output (plugs should be available at rear for additional or special outputs).

I find that plug-in cards are the most desirable, because of uniformity and because they do a good job of reducing the overall space. There are plenty of cards available with and without components mounted. If the circuit boards are purchased in cuantity (as by a kit-builder company), they should not be expensive. The frame chassis should have the guides (or slots) and the card receptacles mounted. All the card receptacles I've seen are quite expenaive, oven in quantity, but if the supplying company riveted a utilitygrade type to the frame, I don't think the cost woulc be too much, and would probably work fine (something on the order of riveted tube sockets on those cheap AM radios you buy for $\$ 5.99$).

I find that two things are the mest important: (1) printedcircuit boards and (2) frame chassis mounting hardware. With little exception, the rest of the machine can be expanded in bits and pleces. The frame chassis could come ready-made in rows, so the builder could buy a row at a tine. And cards as needed.

It would be desirable to have some sort of "standard" front for input/output that could be prepunched according to the kit one wishes to build. I think this whole system
could be like "tinker toys," with the emphasis on high fidelity. The more you buy, the more thirgs you are able to do and build, but everybody has his own ideas of riixing units, and perhaps the builder would use the kit idea to complement the equipment that he already has.

I would also use solderless connectors in all the wiring between receptacles. I find that I am continuously changing circuits. Vith close pin spacing, a soldered connection gets very messy even when you are trying to keep things neat. The wires get burned, the solder slops over onto the adjacent pin, and on and on. This means added cost, but I'll have to vote for solderless connectors.

From Jim Haynes:
Seems to be that the essential problem is trying to decide what you want to do with what you have. I guess memory is the pacing item. Anybody who goes in for core, even small core, is talking about money. Depending on the supply of delay ines, that is probably the way to go for a cheap machine.

I can see how one might build a sort of arithmetic unit demonstrator, perhaps with a couple of reg1sters and the ability to add, subtract, shift, etc.; and this might use the bit-slice idea. From this basis, one could exercise a lot of originality in the instruction set and instruction execution control logic -- so this sort of thing would be hard to standardize, unless one wanted to try to market it for educational purposes and build a course around it or something like that, which probably wouldn't appeal to ACS members.

But without some storage, there's
little point in building up the instruction execution logic. And I would really hate to see the thing get mixed up in a formalized educational setup, because then a lot of professional education marketers would get into the act, and the price would go skyhigh.

From Aubrey Hutchison:
Before embarking on an effort to generate an amateur computer kit, I recommend that serious consideration be given to several items which I feel are a littie more basic:

1. With the apparent talent available within the ACS, a set of recommended building biocks (that later could be adapted into a computer kit) possibly should be developed. Examples of building blocks could be shift registers, binary to octal converters, Ine drivers, sense amplifiers and adder circuits.
2. Consideration also should be given to an amateur standard instruction repertoire that will be versatile enough to allow either wired multiplication and division, or programmed multiplication and division. Also, enough initial consideration should be given to allow the deletion of instructions that an individual feels are not unique to his specific needs.
3. Since the software and hardware are usually related to a great degree, serious consideration should be given to both the hardware and sof'tware requirements before determining the word length. In my case, I have chosen a 12-bit word and the instruction repertoire used by Digital Electronics Corp. A word length longer than 12 bits tends to cause the hardware to increase at a rather rapid rate. A
word length less than 12 bits tends to make the programming unnecessarily complex. In my opinion, word lengths ranging between 10 and 14 bits are most suitable for the amateur. One advantage in using the 12-bit word length and the DEC instruction repertoire is the possibllity of using programs written for the DEC FDP-8 and PDP-5 series of computers.
4. Most people, so it appears, are concerned with the speed of operation of homemade computers, judging fron comments in the Newsletter. It is my opinion that this is an invalid concern; since with the order of speed allowed with Teletype, microsecond equipment seems to be a little on the high side for practical purposes. Milliseconds possibly will be ample in most cases. Therefore, if SACK becomes a reality, it appears that the most practical application would be a four-register serial machine using multi-purpose registers. For example, a bufferaccumulator combination.

From Bill Pfelffer:
The idea of the standard amateur computer is excellent. I don't see where it is incormatible with the home-brew idea. As a starter, just the specs would be enough. Those who can scrounge the necessary stuff can go from there. Those who need the works could get what they want. With the right kind of a beginning, all kinds of possibilities could develop for adding new features. Five hundred dollars seems quite high as a starting point.

I favor trying to track somewhat with a machine like the PDP-8/s with minimum features to reduce hardware and complexities.
****\#******

From Dave Vednor:

I must say that I am against the idea of SACK. By placing a kit of this type on the market, amateur computer builders would not have any major problems, and very few new ideas would result. Amateur radio is a good case in point. Today most of the gear in use is not home-brew, but manufactured to commercial standards. This is great for the hams who don't know how to build, but what. is the purpose of amateur radio? The FCC thinks that the U.S. hems should increase radio technology. This is being done, but not to the extent that it could be. If amateur radio gear was not produced commercially, we would not have as many hams, but those hams would make more contributions than all of the hams make today. I might add that I am also a radio amateur (WBGUHM).

There they are, five sets of opinions on SACK. They're given here, not to boost the idea of a computer kit, but for the value of their 1deas. Further comments welcome.

COMPUTER SCHEMATICS

Build Your Teaching Computer Hith $\mathrm{M}, \mathrm{E}, \mathrm{L}, \mathrm{Sub}-\mathrm{Assembil} \mathrm{e}, 16$ pages, free from Amperex Electronic Corp., 230 Duffy Avenue, Hickeville, N. Y.' 11802.

This booklet describes a simple computer that can be built in five stages. The first stage performs addition and subtraction on eightbit words, using one register and an accumulator. Control and data input are manual. Multiplication can be performed by successive addition, and division by succesive subtraction, manually.

The stage two computer can perform
automatic multiplication and division, by use of comparator and auto-restart circuits.

The stare three computer adds extra storage to the stage two computer, by incorporating two 8-bit ahift registers, along with circuits for transferring data between these registers and the aocumulator or the main register.

Detailed schematics are provided for these three computers. Speeds are $20 \mathrm{Kc}, 1 \mathrm{cps}$, and manual.

For the stage four computer, there is only a block diagran to show how a delay line can be added for extra storage. The stage five block diagram indicates how paper tape might be used for input, and perhaps for output.

The encapsulated logic modules are the Philips Series 2, sold by M.E.L. in England and by Amperex in the U.S.A. The cost of the circuits for stage 1 is about ${ }^{\text {® }} 230$; for stage 2, about $\$ 310$; and for stage 3 , about $\mathbf{~} \mathbf{~} 600$. These prices are for building the entire computer at that stage. The price of the K.E.I. delay inne is about \$155 without U.S. duty.

MORE ON CORES BY ZUCCARO

Sal writes that, in the last newsletter, when he said "the size of the output signal," he should have said, "the alze of the signal when integrated." He continues:

Here, a simple RG integrator is used to sum the $\int 1 \mathrm{dt}$. Therefore, as a square-loop core has only a certain amount of flux available, it can only charge a capacitor to some pre-determined value, no matter how fast or hard the core is driven.

The integrated signal looks like
this:

Here V X RC $(t)=$ flux in webers.
As to the remarks about 80 - and 50-mil cores, the EPMA memory in the Bank of America computer uses 80-mil cores. The half-select current is 180 ma. This is much lower than the half-select current of 410 na for a 30-imil lithiun core. Some of the fast $20-\mathrm{mll}$. cores have half-selects of around 500 ma .

For myself (says Sal), I can't imagine anyone in the ACS needing to operate memory to the point where heating becomes a problem. Almost any memory core will operate at 200 Kc , and most high-speed cores need special attention only above 500 Kc .

We have used load-sharing switches in the past, and now they are just novelties we talk about. For driving a stack of any reasonable size (16K, 40-bit) I would use diode decoding and just take care as to how I placed my current paths.

Incidentally, a single 4 K plane can be used as the heart of a swell calculator. By operating one axis serially and the other on diode decode, one has 64 words of 16 decirnal digits. A little logic hung on and you're in business.

CUPRENT FUBLICATTONS

Glow Lanp Manual, Second Edition, General Eiectric Co., Miniature Lamp Dept., Nela Park, Cleveland, Ohio 44112. If you write for this neon-lamp manual on company letterhead, it's free. Othersise it will cost you \$1.00. Frobably available at GE Miniature Lamp sales offices all over the country. Has 117 pages, incluaing 27 on re-
laxation oscillators, and 24 pages on logic and computer applications. Of those 24, 16 are on the binary system, basic logic operations, basic circuits (AND, OR, NOT) and waveforms; the rest is on a pulse generator, bistable and monostable multivibrators, ring counters and memory circuits. The memory circuit consiste of only two resistors, a capacitor and a neon lamp; very simple, but to set the menory circuit requires a positive voltage large enough to fire the lamp; to read it requires a positive voltage less than the piring voltage; to-reset it requires a negative voltage low enough to extinguish the lamp.

All About Teletype Equipment, 32 pages. Free from Teletype Corp., 5555 Touhy Ave., Skokie, Ill. 60076. For those who know nothing about TTY, this is a very basic beginning: how it works and what it consists of.

Motorola IC Application Notes. For a list of 47 Motorola IC application notes, see page 53 of the Jan. 9 issue of Electronics. of interest are (1) AN-234, MRTL Fam$11 y$ of ICs, (2) AN-251, Decade Counters Using URTL IC's (3) AN-252, Choosing RTL Integrated Logic Circuita, (4) AN-253, An Analysis of MRTL Integrated Logic Circuits, (5) AN-254, Using IIRTL IC FilipFlops, (6)'AN-264, MRTL IC Shift Registers, (7) AN-279, Setup and Release Times in the RTL J-K FIipFlop, (8) AN-285, Loading Factors and faralleling fules for MRTL ICs. May require a business letterhead to get from:

Motorola Semiconductor Products Box 955 Inc.
Phoenix, Arizona 85001
Of the 8 Notes listed above, only AN-285 is directly concerned with the MCTOOP series, the Unibloc low-cost elements.

Special Issue on Logic and Switching Devices, Control Engineering issue of January 1967. Of interest to ACS members may be: short article by Kintner on digital switching hardware (pages 64-67), such as DTL, RTL, etc.; reed switches for relay logic (84-88); six ways to make logic circuits, from optical switching to cores (116-119); and a round-up on relays for control applications (78-83) and on diettal fluidics (1c0-104). No break-throughs or really new items, but a good issue to browse thru. \$1 from Control Engineering, Circulation Dept., 466 Lexington Ave., New York, N. X.' 10017.

Minotaur, A Relay Computer. Not so new, but if you're interested in relay computers, this is avallable from the Clearinghouse for Federal Scientific and Technical Informa-
 for hard copy (55 pages), 754 for microfiche. The title is misleading, as Minotaur is not a computer, but a fancy reley breadboard, with all relay points and coils brought out to a large 35×39 fixed plugboard, to which are also connected 45 lamps, 15 pushbuttons, 35 diodes and five 4PDT lever switches. Of the relaya, 14 are 4PDT, and 20 more are 4PDT relays combined with 204 -pole ratchet relays. The ratchet wheel holds four relay swingers in the make position on every other pulse. This two-relay combination is the basis of counters. The report aescribes the set-up of logic circuits, binary counter, binary arithmetic, accumulator, and branch functions. Rather simple, but of interest for relay fans.

Large-Scale Integration, special report in E1ectroniog, Feb. 20, pages 123-182. Reprint availebie at $\$ 1.50 ; 330$ West 42 St , New York, N.Y. 10036. Six articles on LSI: system design, memory, customizing by interconnection, computer design of LSI, 1solation, MOS versus bi-
\square NEVSLEMTER

The Amateur Computer Society is open to all who are interested in building and operating a digital computer than can at least perform automatic multiplication and division, or is of a comparable complexity.

For membership in the ACS, and a subscription of at least eight issues of the Newsletter, send
\$3 (or a check made out to me):
Stephen B. Gray
Amateur Computer Society
219 :Vest 81 St
New York, N.Y. 10024
The Newsletter will appear about every two months.
polar ICs. Well worth reading, most of it, even if only for familiarization.

Computers Self-Taupht Through Experiments, by Jack Erayton, 192 pages, \$4.25, Howard !!. Same \& Co. Uses 2N1O7 throughout, 2N322 for lamp driver, lli34 diode. There are 28 projects. After building 13 gates, procedes to adders, diode natrix, counters, registers, lamp circuits, ends with a 10-stage adder/subtractor, with pushtutton input and lamp output. Simple circuits, but well presented.

Fairchild Technical Data Manuals are no longer free. The Microcircuit binder, plus updating for a year (12 mailings) costs \$5. The updating alone is \$2 a year, for data sheets, application notes and technical information.

Fairchild Semiconductor
P.O. Box 1058

Mountain View, Calif. 94040

SURPLUS INTEGRATED CIRCUITS?
The June 1ssue of Electionics Morla has two ads offering ICs. On page 93, flat-packs for $\$ 1-\$ 1.15$ each, "guaranteed to work." On page 95, TI "untested flat packs," 6 for \$1.89. Has anybody bought these?

ANSWER TO A FREVIOUS PROBLEM
4-3. A member is looking for a supplier for used or rebuilt electric typewriters with electrical inputs for computer I/O use. Any help?

Bob Shostak says 4-3 should forget about electric typewriter I/O.
"Thorough investigation reveals that Teletype equipment is much easier to obtain, and much cheaper than typewriters with a nonmechanical triggering system. Teletype equipment is advertised regularly in the ham-ads at the back of QST for as low as \$25. Also, it isn't necessary to use the 5-bit system. You can easily invent your own megnet-selector system, or change the character codes."

PROELEM FOR THIS ISSUE.
5-1. How does one calculate the component values for an RC filter decoupler to keep pulses fron circulating through the power-supply wiring and thus showing up where they're not wanted? Does this filter have to be on every circuit board?

TRADING CORNER

A member wishes to acquire either 4 K words of 13 bits of core memory, or the equivalent number of core necessary to build his own stacks. He has a TT4A Teletype, 60 and 100 wpm gears; a Hewlett Fackard 100D frequency atandard that can be used as a computer clock, with outputs of $100 \mathrm{cps}, 1 \mathrm{Kc}$, 10 Kc or 100 Kc ; and a General Radio 1304A BFO. He also needs three 7- to 9-track tape heads. Write:

Aubrey B. Hutchinson, Jr.
533 Barksdale Drive
Paleigh, N. Carolina 27604 (K4ANV)

Copyright 1967 by Stephen B. Gray

READING \&
REFERTENCE
Number 6 June 1967

READING AND REFERENCE

Although there are a great many publications dealing with computers, few are of interest to the amateur, for whom the IEEE Transactions on Electronic Computers are too sophisticated, and the occaaional computer in Electronics Worla, too simple.

Let's look at a few magazines that lie between these two extremes, and then at the indexes and abstract joumals that consist of items from these magazines. The publishers' addresses that follow are handy for getting tearaheets or reprints of referenced artioles.

First, there are some publications that are worth reading to keep up with the news of the world of computers and, to some extent, the state of the art. In order of preference (my own, that 1a), they are:

A1. Electronio News
A2. EDP Weekly
A3. Computers \& Automation
A4. Data Processing Digest
A5. Datamation
A6. Data Processing
A7. Buainess Automation
A8. Automation
For circuits and technical information, these publications are useful, in this order:

[^0]These British technical publications, all of which are available in the U.S., are of interest to the amateur, in this order:

C1. Electronic Engineering
C2. Radio and Electronic Engineer
C3. Wireless World
C4. Industrial Electronics
C5. Plessey Communications Joumal
C6. Control
Most of these three groups of publications are known to many ACS members. However, there are indexes and abstract journala that aren't nearly as well known, but which can be very useful to amateurs, in this order of preference:

D1. Information Processing Journal

D2. Mhectrical and Eleotronic Abstracts
D3. Computer Abstracts
D4. IEEE Computer Group News
D5. Engineering Index
D6. ACM Computing Reviews
D7. Monthly U. S. Government Publications
D8. U.S. Government Research \&
Development Reports
D9. Government-Wide Index to
Federal R\&D Reports
DIO. STAR-NASA
DII. Applied Science \& Technology Indez
D12. Union Serials
D13. Technical Translations
For those who aren't famillar with the publications listed in these four groups, here's a 11sting of publishers, adaresses and subscription information. But first, a word about readers' service, which can be a great help.

READERS' SERVICE

Most technical magazines provide tearsheets (pages taken from 1ssues) or reprints, through a Readers' Service Department. Tearsheets are usually available for two or three yeara back; reprinta are often avallable for five or more years back.

Tearsheets and reprints are usualif free, although there is often a charge when a reprint contains many pages. Some magazines will provide Xerox copies of articles no longer avallable in tearsheets, for as little as lod a page.

A few magazines that do not have a tearsheet service will send you the entire issue free, if available, or will sell it to you.

PUBLITHERS AND PRICES
Al. Electronio News
Fairohild Publications
7 East 12th Street
New Yorix, N.Y. 10003
Weekly, \$3 for 1 year, $\$ 5$ for two years, \$6 for three.

News tabloid with several
pages on computers. Late news, some technical artioles on new developrents.

A2. EDP Weekly
Industry Reports, Inc.
514 Tenth St. N.W.
Washington, D.C. 20004
Weekly, \$60 a year. \$45 to educational and non-profit institutions, Federal, State, County and City governments.

Contains a good amount of inside information.

A3. Computers \& Automation Berkeley Enterprises, Inc. 815 Washington St. Newtonville, Mass. 02160

Monthly, \$15 a year.
Good for new-product photos and new-development items.

A4. Data Proceasing Digeat
1140 S. Robertson Blva. Los Angeles, Callf.

Monthly, $\$ 24$ a year.
Excerpts from articles on data processing.

A5. Datamation
1830 West Olympic Blvd. Los Angeles, Callf. 90006

Monthly, \$15 a year. Free to certain qualified individuals employed by companies involved with automatic information handling equipment.

Highly regarded, many good articles.

A6. Data Processing
American Data Processing, Inc. 2and Floor, Book Tower
Detroit, Miohigan
Monthly, \$8.50 a year.
A7. Business Automation
288 Park Avenue West
Elmhurst, Illinois 60126
Monthly, \$5 a.year, \$8 for two.
A8. Automation
Penton Publishing Co. 1213 W. Third St.
Cleveland, Ohio 44113
Monthly, \$10 a year. Free to those involved with automatic production equipment and oomponents.

B1. EMAR
Mactier Publishing Corp.
820 Second Avenue
New York, N. Y. 10017
Monthly, free to engineers on-
gaged in the electronic cirouit design ongineering punction. Others write for prices.

Circuit Design Award Program, with 4 to 6 circuits in each 1ssue, such as "Pulse Generator with Variable Rate and Wiath " (Feb. 1967). Frequent specifying guides for devices such as unigunction transistors (Feb. 1967).

B2. BLectronic Design
Hayden Publishing Co., Inc. 850 Third Avenue
New York, N. Y. 10022
Every two weeks, iree to qualifled subscribers.

Good deaign articles, such as "IC Bidirectional Counters Cost Less" (Jan. 18, 1967). Also good circuits in "Ideas for Design" section.

B3. Electronics

McGraw-Hill Publiahing Co. 330 Weat 42 St
New York, N. Y. 10036
Every two weeks, \$8 a year to thiose actively engaged in the field of the publication.

Four to alx pages of good circuit ideas in the "Circuit Design" section, some good teahnical articles and tutoriale.
B4. EDN
Cahners Publishing Co., Inc. 3375 s. Eannock St Englewood, Colorado 80110

Monthly, $\$ 10$ a year, free to electronic/electrical deaigners and ongineers in the electronic original equipment manufacturing market, consulting flrms, and government research and development labs.

Good design articles, such as "Bidirectional Counting, Δ

Snap for ICs" (Feb. 1967).
B6. Blectro-Technology Conover-Mast Publications, Ino. 205 East 42 St
New York; N.Y. 10017
Monthly, free to qualified personnel engaged in development or design of electrical/electronic equipment; to others, $\$ 15$ a year.

Some good tutorials.
B6. Control Engineering R.H. Donnelles Corp. 466 Lexington Avenue New York, N.Y. 10017

Monthly. Free to quallified U. S.-based individuals. Nonqualified rate, $\$ 10$ a year.
Mostly about automatic control systems, occasionally items of interest, usually lowfrequenoy circuita.

B7. The Electronic Engineer
(Was Electronic Industries)
Chilton Co.
Chestnut \& 56 Sts.
Philadelphia, Pa. 18139
Monthly, \$12 a year.
Cccasionally a good article, guch as "Applications of Coilector Logic" (Aug. 1965).
B8. Computer Design
Professional Blag.
Baker Avenue
West Concord, Mass.
Monthly. Free to qualipied individuais, ${ }^{2 l 5}$ a year to the non-qualifieã.

Some intereating technical articles, such as "Magnetic Drum Clock Track Writer ${ }^{\text {n }}$ (Mar. 1966). Lists government reports in the computer field, has a good newproducts eection. of interest.
Cl. Electronic Ensineering Morgan Brothers (Publishers) 28 Eesex Street Ltd. Strand
London, W.C. 2, England
Monthly, \$8 a year in USA.
Excellent system articles, such as "A Small Transistorized Digital Computer -Arithmetic and Control Seotions" (June 1965).

C2. Radio and Eiectronic Engineer Institute of Electronic and Radio Engineers
8-9 Bedford .Square London, H.S. 1 , England

Monthly, \$80 a year to members in the USA.

Fine system articles, such as "A Technique for the Transmission of Digital Information over Short Distances using Infra-Red Radiation" (June 1965).

C3. Wireless Morld
Iliffe Electrical Publications Dorset House Ltd. Stamforã St
London, S.E. 1, England Monthly, 88 a year in USA.
\therefore Some good articles, such as "Data Transmission Demonstrations" (January 1967).

C4. Industrial Electronics
Iliffe Electrical Publications Dorset House Lta. Stamford St
London, S.E. 1, England
Monthly, \$10 a year in USA.
Interesting automatic control articles, such as "The Evolution of TTL Integrated Circuits," describing Texas Instruments circuits (Feb. 1967).

C5. Plesser Communications Journal
(Was A.T.E. Journal)
Automatic Telephone \& Electric Co., Ltd.
Strowger Works
Iiverpool 7, fingland
Monthly. Distributed free to organizations and companies, no individuals except in their capacity as senior officials of an organization.

Good system and circuit articles, such as "A Universal Binary Pulse Counter" (Oct. 1964).

C6. Control
Morgan Brothers (Publishers) 28 Essex Street Lta. Strand
London, W.C. 2, Ingland
Monthly, \$6 a year in USA.
D1. Information Processing Journal Cambridge Communications Corp. 238 Main Street
Cambridge, Mass. 02142
\$60 a year, appearance very irregular, often several monthly issues combined into one.

Excellent abstracts of $U_{G} S$. and foreign (mainly U.S.) journal articles, patents, rem search reports, and dissertations.

D2. Electrical \& Ehectronic Abstracts
The Institute of Electrical Engineers
Savoy Place
London, W.C. 2, England
Monthly, 30 a year, $x 10108$ to members.

Worldwide abstracta (22,000 annually), including Communistbloc publications. Look under the headings mectronic Cir-
ouits \& Devices (Pulse Csnm cuits) and under Computers.

D3. Computer Abstracta
Technical Information Co.
Martins Bank Chambers
P.O. Box 59, St. Helier

Jersey, British Channel Islande
Monthly, \$96 a year.
Excellent abstracts, patent digests, book reviews, covering a large part of the Western world.

D4. IERE Computer Group News IEEE Order Dept. 345 East 47 St
New York, N.Y. 10017
Free to members of IEEE COmputer Group and to non-member subscribers to that group's transactions. To non-members of the IEES, \$12 a year.

Each issue contains a dozen pages of abstracts of papers not usually indexed elsowhere, and a permuted title index to current computer literature. Copies of the abstracted papers are available at reasonable prices from the Computer Group Repository, at IEEF Headquarters.

A permuted title index means that the key words in the titles are ined up in a vertical column. The March 1967 News contains a liating of 500 titles from 20 journals and magazines published from April. to December, 1966.

D5. Ingineering Inder
345 East 47 St
New York, N. Y. 10017
Monthly, \$350 a year: \$250 a year to educational and nonprofit organizations.

Indexes U.S. and foreign magazines and journals. Look under Computers, where you'll ind a 11st of other headings under which to look. See also Memory Devices.

D6.

AcN Computing Reviers
211 East 43 St
New York, N. Y. 10017
Trice a month, subsoription included in \$18 annual dues. To non-members, \$15.

Reviews and abstracts of magazine articles,books, newspaper articles. Excellent reviows. Mostly software, but has a seotion on Design \& Construction.

D7. Month1y Catalog of U. S. Govt. Publications. Supt. of Document a U. S. Govt. Printing opfice Washington, D.C. 20402

Monthly, \$4. 80 a jear.
Fow items of interest to amateurs, nearly all of them publications of the National Bureau of Standards and the $\mathrm{Bu}-$ reau of Naval Personnel.

Contains over 20,000 items a yeas, 11sted according to the isauing governmental agency and in an alphabetic index. Most items are for sale by the Supts. of Documentre, some are for aale by the Clearinghouse. Others are for official use only, and not avallable to the public. gtill others are sent to depository 11braries, which are public and university libraries all over the countwy. Most are partial depositories, meaning that they reoelve only selected items. The full depositories get all itema. Among the full depositories ape:

New York- Public Library, Main
Chicago - Public Library John Grerar Library

Boston - Public Librayy State Library

Los Angeles - Public Library Each September issue of the Catalog contains a full list of all the depository libraries.

Many of the depository items, including all these for official use, are on microfiche cards and must be viewed with a special enlarging 71 ewer, whroh is not rery bright and is therefore a strain on the eyes. A full depository will also have many non-depository items, on microfiche or in hard copy.
(A microfiche is a card on whioh a great many pages of a book have been printed in highly reduced size. Fiche is the French word for a small card.)

If you ifind a government publication that looks interesting in a catalog, you may wish to take a look at it before ordering. The depository files are the only way of looking at many itema.

The December issue of the Monthly Catalog includes a complete index for the whole jear, so for 1966 and earlier, you need go through only one index per year. For computers, look under Electronic Computer, Electronic Data Processing, Electronic Circuits, Logic, and Computers.

D8. U.S. Government Research \& Development Reporta Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151

Twice a month, $\$ 30$ a year.
Occasionally contains items of interest. Computers are under category 9B, in the current volumes. an example is "Digital Computer User's Manual for EE Students and Faculty," \$3 in hard copy,

56 pages, AD-638-023.
Starting in 1967, the volume number is the same as the year. Effective 1-1-67, the Clearinghouse changed its pricing policy for document sales from a sliding price scale based on the number of pages, to a single price. The new price is $\$ 3.00$ for a paper copy (hard copy - HC); 65\% per document for microfiche (MF). The single price does not apply to multiple copy orders of a single document. Theae prices also apply to doouments announced before 1-1-67.
D9. Government-ifide Index to Federal heD Reporta Clearinghouse

Twice a month, \$22 a year.
Produced by computer from records generated by four Federal agencies that announce R\&D reports: AEC (Atomic Energy Commission), NASA, DDC (Defense Dooumentation Center), and CFSTI (Clearinghouse). GWI indexes all the reports announced in the U.S. Government R\&D Reports.

Alphabetical; look under Computer, Data Processing, Logical Design, Memory. Example: Memory Storage Unit, Theory and Design Teohniques for Magnetic-Core Memories," Vol. II, HC \$3 MF \$0. 65

DIO. STRAR-NASA

(Scientific and Technical Aerospace Reporta, published by NASA)
Supt. of Documents, USGPO
Twice a month, \$33 a year.
Look under Category 8, Computers. Inalde the baok cover is a 11 st of the 10 university librarles and 35 public libraries in 24 states, where

NASA doounents may be studied.
D11. Applied Salence \& Technology Index
The H. W. Wilson Co. 950 University Avenue Bronx, New York 10452

Monthly (except August), \$25 a year.

Contains abstracts of articles from a great many U. S. publications and a few British ones. Look under Computers, Electronic Data Processing, etc.

D12. Union Iist of Seriala in Libraries of the United States and Canada The H.W. W11son CO. 950 University Avenue Bronx, Now York 10462

Third Eaition, \$120.
Ifsts, by publication, the libraries in the USA and Canada that have the listed magazines, both US and forelgn. The third edition goes up to Dec. 31, 1949, includes 956 oooperating libraries.

Handy place to find out where you can look at a magazine. For example, the Digital Computer Newsletter can be seen at 41 librames in the USA and 3 in Canada.

D12A. New Serial Titlea
Card Diviaion
Library of Congress
Washington 25, D.C. .
Monthly issues and cumulative annual volume, \$75 a jear.

Updating supplementa to the Union List of Seriala. The annual cumulative volumes are in turn cumulated over 5- or 10-year periods, such
as 1950-1960, in 2 volumes.

D13. Teohnical Translations Clearinghouse

Twice a month, \$12 a year.
Mostly translations of Soviet and Communist Chinese publioationg. Very few items of interest. Computers are under category 9B. in these abstracts.

CURRENT PUBLICATIONS

M. E.L. Teaching Computer. If any of you have had trouble getting from Amperex the M. E.I. booklet deacribed in ACS Newsletter 5, page 3, write to Al Cerne in the Components Division of Amperex.

*

Deaign of a Low-Cost Character Generator for Remote Computer DFAplays, by T.B. Cheek, Project MC, at MIT. Ask for AD-631-269, from the Clearinghouse for Federal Solentific and Technical Information, Springfield, Virginia 22151, $\$ 3.00$.

Uses a 5-by-7 dot matrix raster and a resistor-array read-only charaoter memory for 96 symbols.

Drarback is that a standard CRT is not used, as regeneration would be necessary, requiring a highspeed memory. A storage ORT is used; in this case, a Tektronix 564 Storage Oscilloscope.

Partacosts are estimated to be under \$200. Parts include Fairchild Micrologic ICs (923 JK flipflop, 914 dual NOR, 900 driver), 2N2923 and 2N3569 transistors.

Jim Sutherland's ECHO-4 computer 18 described on page 36 of the March issue of wi (The Electyonic Engineer). Jim's computer, 7 feet long, 2 feet deep and 6 feet high,

```
The Amateur Computer Society is.
apen to all who are interested
in building and operating a dig-
ital computer that can at least
perform automatic multiplication
and division, or is of compara-
ble complexity.
    For membership in the ACS, and
a subscription of at least eight
issues of the Newsletter, send
\$3 (or a cheok made out to me):
    Stephen B. Gray
    Amateur Computer Society
    219 West 81 St
    New York, N.Y. 10024
The Newsletter will appear about
every two months.
```

took a year to build and will take 10 years to program.

LOGIC TEMPLATE

At the last IEEE Show in New York, the Semiconductor Division of Sprague Electric Company (Worcester, Mass.) gave away a logio template containing MIL Standard 806 logic symbols. The tempiate may be available from Sprague even without a letterhead. Worth a try. Has 18 symbols, from AND to read/write head.

TAPE, ANYBODY?
Computer tape, made by Scotch, Ampex: and Memorex, 250^{\prime} to 30001 spools, lan " $^{\prime \prime}$, 3/4" and 1" widthe, from Autometics and North American, and priced at $\$ 3$ and up, will be sent to you COD by

Pat Killmer
3442 Montair Avenue
Long Beach, Calif. 90808
if you let him know your needs.

INCIDENTAL INFORMATION
One estimate of IBM's manufacturing costs for the 360: 12-15\% of sales price. The same source guesses

RCA's costs to be 30-35\%. (From Datamation, Dec. 1966, page 113.)

HOW FAR ALONG IS YOUR COMPUTER?
Jim Haynes notes that my mention, in the first Newsletter, about some ACS members being hallway or two-thirds of the way toward completing their computers, is incorrect. He says, "I belleve it is in the 1956 or maybe the 1955 WJCC (Western Joint Computer Conference) Proceedinge that you will find that all computers which are not completed are 80% complete." Therefore, the computers of ail ACS members are officially 80% complete.

ChEAP PUSHBUTTON SVITCH

Most pushbuttons are too expensive to be bought new. However, Centralab has been Iicensed by fsostat of France to produce a new line of pushbutton switches that are simple enough to be cheap enough for the amateur, if bought in quantity.

A DPDT switch coats $\$ 2.68$ for one, 75% in quantities of 100. An 8PDI' switch is about $\$ 4.50$ for one, about \$1.22 in quantities of 100.

Write Centralab, P.O. Box 591, Milwaukee, Wisc. 53201.

NOTZ TO HERTZ

As of Newsletter \#4, I've gone back to Kc and family, leaving Hz in the lurch, where he belonga.

NEXT ISSUE will be about mounting oircuit boards and ICs, and about interconnections. If you have any experience with these and haven't written in yet, please send details.

Copyright 1967 by Stephen B. Gray
\qquad NEWSLJTTER

MOUNTING AND
a publication of the

Number 7 November 1967

These IBM cards are part of ...

Allan Sinclair's computer.

CHANGE OF ADDRESS
The new address of the ACS is
Amateur Computer Society
260 Noroton Avenue
Darien, Conn. 06820
Because of this move, and because of a new job (and a new computer to learn), there has been no Newsletter since Number 6 in June.

MOUNTING CIRCUIT BOARDS

Because it's seldom possible to buy used circuit cards with matching card cages, mounting such cards is usualiy a problem. Eapecially if they are IBM SMS carde, with the contacts broken off.

Card cages are usually expenaive, as are printed-circuit connectors. So, unless you've got a lot of money to spend, you'll probably have to invent a mounting system of your own.

The photo at left above shows how Allan Sinclair mounted a number of SMS cards. The front panel is Bakelite, with 16 long brass eyelets pressed into undersize holes, and with wire soldered to the rear of the eyelets. These eyelets will take an AMP terminal (the eyelets I use will also take IBM patoh oords).

The sMs card ia held to the panel with 2 pieces of Bakelite, as shown at right.
 Allan uses General Radio service cement. He says epoxy would no doubt be better, but the cement seems to work; as no etrain is involved.

For larger (Univac) cards, Allan bought similar panels, $4^{n \prime}$ by 5^{11}, with 54 jacks aiready instailed, and out them dow. These larger cards are epoxied into either blocke or oylinders of Bakelite, which are then screwed to the front panel. Some of the large
panels hold three cards, giving 12 flip-flops for a regiater.

Another mount for the SMs cards is a 16-contact Amphenol plug (which Allan bought for $5 \&$ each! $)$, whioh is glued to the card.

Allan uses Dymo tape to put the last four digits of the $37-\ldots-$ IBM number on each panel, for identification.

The photo at right on the first page shows Allan's computer. The permanent stainless-ateel front panel is off at the right. The computer operates on 12-bit words, with a 100-word 2ifd core memory.

The mounting racks are made from heavy-duty aluminum shaped like this $\rightarrow \longrightarrow$ S One side is bent down to look like this
The aluminum is then turned and mounted as shown at right. By grinding this part nearly off, the cards can be inserted and dropped into the groove to keep them in place. By not uaing sorews, the cards can be slid along to obtain different arrangements.

Using screws, a oheaper (but less flexible) mounting system can be set up, with similar Bakelite panels that have holes drilled at top and bottom. The panels are screwed to a aimple horizontal bar that is drilied and threaded to receive the sorews. The bar has two lines of holes: one for the bottom holes of one ron of panels; the other for the top holes of the other row. For rack mounting, the two horizontal bars at top and bottom need have only one row of holes. With this eystem, the full
height of the rack is made use of.

Jim Haynes uses Amphenol 15-pin connectors obtained from junk. When he runs out of junk ones, the new ones are only about 65d each, in lots of 100. Jim says there's a very inexpensive edge connector that is not very woll known, made by Cinah, and called (as he remembers) the 257 series.

Bill Pfeiffer has found that the most usable female connectors are the bifurcated-edge-type PC variety, made by Cinch-Jones, Amphenol (series 143 and 133 for single and double), and USC type UPCR. B111 has beon using the 22- and 44 contact types, mostly. Cost at surplus ranges from 25% on down.

MOUNTING INTEGRATED CIRCUITS

Mounting ICs is an oven bigger problem than mounting circuit boarda. There are several IC mounting boards available commercially, but they cost several times the price of the ICs they mount: $\$ 140$ for a Motorola 16-IC breadboard; $\$ 21$ for a Campion PC board that mounts 8 flat packs permanently.
Individual dual in-line sockets are expensive, too. Augat's \#314 costs from 40\& to 90\%, depending on quantity. Texas Instruments has an MPC18A socket in 14- and 16-pin DIL styles, solder-tail and wire-wrap types, for about $\$ 1.10$ each, or 52ϕ in quantities of 100-999.

Fred Strother has come up with a clever and very cheap method of mounting flat-paok ICs. He uses a perforated board with $0.05^{\prime \prime}$ hole spacing, and threads thin wires through the holes, in the desired circuit arrangements. The rlat packs are then soldered to the wire "pads." The in-inne packs have 0.1 "
pin spacing, 80 they fit the aame perforated board, which is available from Allied Radio (47R509 Micro-Vectorbord, 67" x $4^{\prime \prime}$, \$2.92, made by Vector), 100 N. Western Ave., Chicago, Illinoia 60680. The wire can be single strands from regular stranded wire. Of course, this system requires that the inter-circuit wiring be laid out completely beforehand, and later ohanges are difficult. Also, a steady hand 1s needed for soldering, as the contacts are only 0.05 inch apart. This method could be used for breadboarding, by connecting the wire "pads" of a single IC (or group of ICs) to eyelet panel jacks.

The largest size of Micro-Vectorbord is $17^{\prime \prime} \times 6^{\prime \prime}$, smallest 1s $4^{\prime \prime}$ $x 2^{\prime \prime}$. An 0.1" hole-spaoing is also avaliable. Vector also makes a "D.I.P. Piugboard," with pads for mounting 12 dual in-line types, with or without sookets. The plugboards are pre-punched, pre-etohed and pre-tinned, in an $x-y$ matrix, with parallel copper lines running horizontally on one side and vertically on the other. Pins are inserted where an $x-t 0-y$ conneation is deaired. The oopper lines can be broken with a pad-cutter, to make a variety of interconneotions. Connections to the pin contacts at the end of the board are made as desired. Several types are available, and 00 st about $\$ 10$ each. A similar $x-y$ matrix board for DIL circuits, without pada, is made by Vero, and sells for $\$ 8$ for a $5^{\prime \prime} x$ $8^{\prime \prime}$ board; a single-sided $5^{n} \times 8^{\prime \prime}$ board 1s \$5.31.

Vector Plectronioa Co., Inc. 1100 Elower $8 t$.
Glendale, Calif. 91201
Vero Electronics Inc. 176 Central Avenue, Box 26 Farmingdale, N.Y. 11736

Vero has an IC breadboarding kit
for $\$ 40$, consisting of a singleaided.118" board, a plug-in singlesided board, a double-sided plugin board, an epoxy glass plain board, 500 terminal pins, a pin insertion tool, a spot face cutter, dealgn sheet, and an edge connector. The holes in these Vero boards are on 0.1" centers, whereas the holes in the similar Micro-Circuit Veroboard kit, for \$23, are punched With holes on $0.05^{\prime \prime}$ centers, for IC mounting.

INTERCONNECTIONS
There are, as most of you have found out, problems with either fixed wiring or with plugwires. Fixed wiring, of course, is cheapest. But, as Don Fronek pointed out in ACS Newsletter 5 (page 2), when you have close pin apacing, a soldered connection gets very messy when you're trying to keep things neat. The wires get burned, the solder slops over onto the adjacent pin, etc. Because Don finds himself changing circuits all the time, he prefers solderless connectors.

On the other hand, plugwires are expenaive. Sometimes they can be bought surplus, such as the Hubbell plugs and plugwires I have. I bought sone card oages that had a number of these miniature, auto-matic-locking, quick-disconneot pluga and jaoks attached. The plugs cost \$11. 60 for 500 if you buy them from Hubbell: the eyelet panel jacks are \$2 for 500 . Jacka are alao available in terminal-post adapter and sorew binding-post types, as are orimp-terminal connectors and plug aplices. The eyelet setting punch 1s \$1.26, from Earvey Hubbeli, Inc. Bridgeport, Conn. 06602. Crimping plierg are \$2.40; minimuf oharge is $\$ 5.00$.

Eyelets, by the way, are about the oheapest way of mounting anything. Drill holes in a plastic board,
prese in eyelets and aet them with a punch, and solder the item to the eyelets.

IBM plugrires (or patoh cords, if you prefer) are plentiful, and are sometimes available cheapiy when a punched-card installation is boing changed over to a computer and is getting rid of all plugboards and wires. The plugboards can be used for mounting circuits; the only drawback 1s that 1t's often hard to solder to the large plugboard oontacts, and the contacts are so olose to each other that some oan't be used and are therefore wabted. Be sure to get the type of plugboard that has contacts on it; the self-contacting type of plugboard has no contacts on the board itself, and 1s of little or no use to the experimenter. Plugboards are sometimes sold by surplus houses such as Olian and Meshna.

Jim Haynes uses fixed wiring, says plug wiring in a projeot the size of his would be impractical. However, he notes, one type of Cinch connector has taper-tab terminals, so that one could make up a aort of semi-fixed wiring, using plugwires with the taper tab cilpa.

Bill Pfeiffer's plugwires cost about 5 f for eaoh good double-plug type. His plugboard is an IBM 22 a 34-hole type, to the rear of which he solders his fixed wiring. Several yows are used for bunohing purposes.

COMPUTER PC SALVAET

A one-page item on aalvaging computer PCs appeared in Popular Eleotronios (page 66, June 1966). The main 1tem disoussed is the type of desoldering iron with a rubber suction bulb attached. Also, five companies are listed as sources of PC boards: Arrow Sales, in Chicago, Radio shack, Meshna,

Poly Paks, and Tranaistors Unlimited.

BREADBOARDING ICS
An item in Electronion (page 103, July 25, 1966) shows how to breadboard ICs by plugging dual in-line packages directly into the type of connector used as edge connectors for PC boarde. The specified conneotor is the Hughea mis048DJ000, which has contact rows the right distance apart, and the $0.1^{\prime \prime}$ spaoing that matches the DIP lead spaoing. Ping inserted in the wiring slde of the connectors permit connecting the ICA to each other and to external circuits. The cost of the Hughes conneotor and pins for 54IICs is about $\$ 120$, which gets more expensive than the ICa, so perhaps other, cheaper connectors can be found.

TAPEREAD AND TRANGPORT
A tapehead and transport assembly is offered by Denson Electronics Corp. , P.O. Box 85, Rookville, Conn. 06066 . Made by ITT, the assembly is 6in" wide (five assemblies were mounted aide by side on a rack, on slidea), $45^{\prime \prime}$ high, $26^{\prime \prime}$ deep. Looks 11ke a tape-loop arrangement. The head has 22 tracks, used with one-inch computer tape. Cost: \$245.

The Denson 1967 catalog is 90% closed-oircuit and amateur to used gear, some RTTY stuff. 2leo a page on instrumentation tape and a 20 track recording head.

IBM TO GIKL GLT MODULES

IBM has announced that it will market sil modules, which are the hybrid ICs used in the 360 computers.

Fifty diode-transistor types are avallable, at $\$ 1$ to $\$ 1.50$ each; minimum order \$25. The DTL
modules include a NAND, NAND/NOR, flip-flop, exclusive OR, trans-mission-line receivers, line amplifiers and indicator drivers. Switching speeds are from 700 to 5 nanoseconds.

These modules are fallouts from the computer-grade types, and are called "industrial grade." Tolerances are about 3% wider than for computer-grade modules.

Information 18 available from IBM Corp., Industrial Produots Marketing Dept., 1000 Westchester Avenue, White Plains, N. Y. 10604.

SHIFT REGISTERS

National Semiconductor Corp., 2975 San Ysidro Way, Santa Clara, Calif. 95051, is selling a 50-bit shift register for $\$ 9.85$ in lots of 100 , and a 100-bit shift regiater for $\$ 14.80$ in 100 lots. Supply voltage is -10 volts, clock amplitudes are 16 volts. Model numbers are MM500 and MM502, reapectively.

PORTABLE HHLCTRONIC KEYBOARD FOR COMPUTER INPUT BY TELEFPHONE

An interesting article by the above name appeared in the June 1967 IGEH Transactions on Electronic Computere (pp 332-334), by Lewin of RCA. Although few if any of us are anywhere near being able to use this type of input, the article makes interesting reading.

The device, which is acoustically coupled to an ordinary telephone handset, generates coded tone sequences representing the full ASCII character set. The characters are input, one at a time, by a stylus, touohing the symbols on an electronic keyboard. The tone sequences correapond to those in most Teletype-Dataphone terminala in typical time-sharing systems.

The device is intended for communication with a machine that has voice answer-back.

Production cost is estimated "in the $\$ 50$ range." The device contains a decade counter, pulser, two-bit analog-to-digital converter, decoder, two-frequency voltage-controlled oacillator, a few logic gates, and a resiator encoder. The transistor types are 2N1307 (2N4O4) and 2N1306 (2N585); diodes are 1N34.

FAR-OUT MEMORY

The same 1saue of IEEE Transactions contains a short note (pp 370-371) on an optical-fiber memory, by Fispparst of olivettifGr. The optical fiber is used as a delay line, which is much faster than most of us vill ever need, as a light pulse travels through it at over 11 inches per nanosecond. Sut it is gimple.

WIRHLESS WORLD DIGITAL COMPUTER

The British magazine, Wireless World, has had a four-part article on building a small computer, in ita 1967 issues for August (366-372), Sept. (416-423), Oct. (488-494) and Nov. (543世548).

The WW computer will add, subtract, multiply and divide. There are 28 instructions: 7 for arithmetic, 9 for transfer to store, 6 for transfer from store, and 6 various resets. Kultiplication is by repeated addition, without shifting. Two 8bit numbers can be added at slow speed (4 seconds), high speed (3.2 msec), or bit-by-bit.

Input of instructions is by toggle awitches; input of data is by pushbuttons; output is by neon lamps.

The prototype was built for about \$160, without cabinet. The tranalators were rejeot germanium types that cost less than 14d each (2G371/

The Amateur Computer Sooiety 1s open to all who are interested in building and operating a digital computer that can at least performautomatic multiplication and division, or is of a comparable complexity.

For membership in the ACS, and a subscription of at least eight 1saues of the Newsletter, send
$\$ 3$ (or a cheok) to:
Stephen B. Gray
Amateur Computer Society
260 Noroton Avenue
Darien, Conn. 06820
The Rewsietter will appear about every eight weeks.

D1476, Texas Instruments). Diodes are 18130 types. The front panel contains 53 neon lamps, with 6 groups of 8 lamps each, for three arithmetio regiaters and three storage registers.

Basic oircuits are NOT, NOR, AND (diode-transiator), OR (diode), comparator and flip-flop.

A subroutine store is described briefly for those those who wish to add it to the computer. It provides 64 words of data or instructions, uaing wired-in diodes or diode "pegsin in a matrix programming board, or in a etepping switoh or a stepping drum. With this store, series of instructions could be carried out.

UNIVAC MBMOFY UNIT

Gadgeteers Surplus Electronios, 5300 Vine St., Cinoinnati, Ohio 45217 has one Univac memory unit for \$8. No information is available other than that the unit weighe 40 pounde, is "high density staoked" has murfin fans, and cost $\$ 40,000$ when new. 4 photo from Ken Hanson showe two stacke mounted one above the other, like a plgure 8 , attabhed to a panel 2 leet high. Money baok if not satisfied.

BUFFER MEMORIES FOR SALE

Sal Zucoaro has some buifor memorlea for sale. They are from Collins Rado gear, and uere made by General Ceramios (now Indiana General) and by Tol emeter Magnetics (now Ampex). Sal has three sizes, from 144 words of 4 bits each to 2048 words of 8 bits eaoh. The memories are complete with core stacks, drive eleotronica, power supplies, logic, eto., and with Amphonol glue Ribbon conneators for input/output. The smallest models take up about 101 of rack apace, the largest take about 2l".

Sal will provide coples of the instruction manuals, which oontain speos, sohematios, operating presedures, and timing diagrame.

The price per metory is $\$ 200$ to $\$ 300$, depending on sifo, plus the shipping oharges. Sal's addrese is 14442 \#imhurst Circle, Huntington Beach, Callf. 926t7.
gal may also know where to get 751ps Potter mag tape handlers for \$50-60, if there are any left by the time you read this.

ACS COMPUTER SURVEMY
The next page is a questionnaire for the ACS survey. Please fill it out (akip the personal data if you'd rather) and mail it in. Results of the survey will be in the next Newsletter if enough are received soon.
NEXKT ISSUE will contain, among other thinge, commente by you on mounting oircuita and interconneoting them; bhat 1s, if you send thom to me as soon as you inish reading this 1saue. And send along any other information, comments and photographs that other ACS members might like to read or look at.

Copyright 1967 by Stephen B. Gray

ACS GOMPUTER SURVEY

Serial __ Parallel __ Number of registers ___
Transistor *ypes
Integrated-dircuit types
Card types: IBM __ Univac __ Other \qquad
Memory type \qquad Number of worde in memory \qquad
Input \qquad Output \qquad
Number of instructions ___ Word length \qquad Clock speed \qquad Add speed Inatruction length \qquad
Speoial features: \qquad
\qquad
\qquad

Estimated cost when complete \qquad Cost 80 far \qquad
Estimated size when complete Present gize \qquad
How long working on $1 t^{\prime}$ ___ Fixed __ or non-fixed _ wiring?
In planning __, begun __ or completed \qquad
Source of oircuit sohematics: Self-designed _Other \qquad
Source of system schematics: Self-designed __ Other \qquad
Any other information?

Name \qquad
Position \qquad
Company \qquad
Eduoation \qquad
Interested in computers aince age \qquad

COMPUTER
SURV EY

Number 8 January 1968

ACS COMPUTER SURVEY RESULTS

Although not many ACS members sent in the computer survey forms, those who did are, not surprisingly, the furthest along with their machines. Two have finished.

Memory

Most of those who answered the survey are using core memory, with sizes ranging from 4K to 20K words; the majority are equally divided between 4 K and 8 K .

One member uses a delay line for memory, containing 512 words. Another uses a delay line (2K bytes), drum (8 K bytes) and core memory (4K bytea); 4-bit bytes.

For his small machine, one member uses flip-flops for memory. Another uses punched paper tape, having convinced himself that "tape would eliminate the memory limit."

Input

Teletype is the most common input device. One member, however, uses a Flexowriter. Another uses punched cards, keyboard, magnetic tape, paper tape, and keyboard switches.

Output

Again, Teletype is the most common output device. Others include a Kleinschmidt printer, paper tape punch, IBM Selectric typewriter, lamps, and Nixie tubes. One member uses magnetic tape, paper tape, Seleotric typewriter, printer and lamps. And the member with the
Flexowriter also uses it for output. Generally apeaking, beginning com-
puter amateurs hope to use a large number of instructions, from 50 to 100. Those who have gotten falrly well into the construction use no more than between 11 and 34. The one exception is a member who has spent \$1,000 and two years on his machine, and has (or has projected) 67 instructions. The average number, counting all those reported, is 44 . Leaving out those over 50, the average is 22.

Data-Word and Instruction Lengths

The data-word lengths specified range from 4 to 32 bits, with the average around 12 bits.

The instruction lengtha also range from 4 to 32 bits, with an average of about 12 bits also.

Add Speed

The range of add speeds is from $8 \mu \mathrm{sec}$ to 10 msec , with in-betweens of (1) $24 \mu \mathrm{sec}$, (2) $216 \mu \mathrm{sec}$, (3) $100-500 \mu \mathrm{seo}$, depending on the length of the binary number, (4) $8 \mu \mathrm{sec}$ for one memory referenoe, but circuitry will operate in 1 μ_{sec}, (5) $30 \mu_{\mathrm{sec}}$ add speed, 4 mese memory cycle time with a magnetostrictive delay ilne, (6) 20μ eec with one number in accumulator, $25 \mu \mathrm{sec}$ with both numbers in memory, (7) $32 \mu \mathrm{sec}$ per pair of decimal digits, (8) 1 to 10 msec .

Number of Registers

The range of number of registers is from 2 to 11, with 3 the most popular. One member has 2 memory, 2 data, 1 op code and 5 address registers.

Special Features

Here are some of the special features reported. Not all of these features have yet been translated into hardware; some are only in the planning stage, or partially
breadboarded.
(1) Over 100 Sylvania bulbs in strip sockets will monitor the major registers, etc. CRT displays planned, When completed it will be far more versatile than DEC's PDP8 line.
(2) Data-word length 16-32 b1ts (32-64 for Ploating). Planning modular op-code decoders (i.e., basic repertoire plus floating arithmetic, hardware stack operations, etc.). Basic structure is bus-oriented.
(3) Has D/A converted output to drive motor position. Machine has two 8-bit registers, one 15-bit accumulator.
(4) Variable-length instructions, variable-length indirect address fields.
(5) Contents of memory address zero and A register are swapped every oyole (inhibited on some instructiona). Therefore one register serves as aocumulator and program counter. Memory address 1 serves as index register.
(6) Double precision arithmetic; fixed and floating-point numbers; link on all arithmetic registers; full comparator; AND, OR, Exclusive OR registers for logical computations; data bus allows bi-directional transfer between any two registers.
(7) Will use IBM 1620 software, modified to use USASCII code and to get around unimplemented instructions.

Cost

As to "Cost so far," the range is from 0 to $\$ 1500$, with an average (among those reporting a cost) of \$650.

For "Estimated coat when complete,"
the range is from $\$ 300$ to "over $\$ 10,000.1$ with an arerage of $\$ 2,100$. Without that "over $\$ 10,000$ " estimate, the average is $\$ 1,100$.

Wiring
The large majority, over 80 percent, use fixed wiring.

How Long Working On It?

The range of time spent so far ranges from "one month on the present model" to 4 years, with an average of 2 years.

S120
Here are some present sizes: 3foot relay rack; 61 $\times 71 \times 18^{\prime \prime}$; 35" $\times 23^{\prime \prime} \times 20^{\prime \prime} ; 1$ work bench; 1 board complete; 30" $\times 36^{\prime \prime} \times 40^{\prime \prime}$; three 19" five-foot racks; $38^{\prime \prime} x$ 60" x 12" \& TTY. The "Estimated size when complete" is usually just the same.

Education

Most of those responding have at least one technical degree, including BSEE, MEE, BA in Math, PhD EE, "BA and BS and working on Ms," and several studenta.

Because the great majority of those sending in the aurvey have teohnical degrees, and because those who sent it in are among those who have advanced the most with their computers, it seems that lack of a technical education is holding back many ACS members from pushing ahead with their machines, or perhaps from just getting started. Unlike amateur radio, there just isn't enough circuit-level information available on how to build computers.

Other Information

(1) Presently supervising 5 Explorer scouts who are doing much of the
construction work; such as building PC carda. I became an Explorer advisor at my company's post to get more hands on the project and to force me to get on the ball and make some progress.... I am going to debug the power supply transients and add a line filter. RTL has low noise immunity and my first wiredup register is dropping and gaining extra bite.
(2) Wish disks and line printers were cheaper! Fortunately, I can build my own software -- assembler, compiler (FORTRAN and/or ALAOL) and operating system.
(3) Teletype controller and memory operational. Can presently transfer data from TTY to register to memory and back. Delay-Iine memory stability problems solved -- successfully retrieved data after eight hours. Using 81" $\times 17^{\prime \prime}$ Vectorboard with AA pattern, strengthened by ohrome-plated angle. Dual Inlines mounted by alternately bending pin pairs inward and outward. Wiring direotly soldered to ICs, using \#22 wire with high-temperature-resistant insulation.
(4) This has been an evolutionary process without a fixed idea of exactly what the pinal product would be. Now I have outrun myself in some ways. For example, I know how to get back and forth from memory to TTY. Also, how to add binary numbers. I don't know how to turn TTY characters into binary numbers in any alpple manner. I would appreciate any clues you might have on the subject. (ANY MEMBERS ABLE TO HIBLP HIIM ON THIS?)

Interested in Computers Since...

Those who put down a date gave: 1951, 1955, 1957, 1965. Those who put down an age gave: 13, 14, 15, 18,20 , 21. Those who gave the number of years gave $3,3,9$ and 17.years.

COMPLETED COMPUTERS

Only two ACS members have reported being anywhere near completing their computers:

ECHO-4

Jim Sutherland's ECHO-4 computer, reported briefly in ACS Newsletter 6, is 7 feet long $1 \frac{1}{h_{1}}$ feet deep and 6 feet high. It took Jim a year to build it and will take 10 years to program. He says the CPU is complete, but the input/output system 18 still growing.

ECHO-4 uses 2N4O4 transistors and RTL NOR logic elements. The NOR gates were used in process control systems built by Westinghouse about 8 to 10 years ago and were declared scrap. They are mounted on etched circuit boards with 35pin Elco connectors. A total of 120 boards were used in the entire system (input/output control, arithmetic units) but only 16 types of boards were used, so apare boards do not take up much room.

The memory unit, an Ampex 4096-RQ30A, came from an obsolete process control computer. Memory oycle 1s 6 usec, but aince the NORs require from 1 to 3 usec to switch, the add time suffers (add speed is 216 нsec).

Between instruction accesses, the memory is available as a refreahing buffer for a CRT display, which is planned but not built yet.

Jim says a story about ECHO-4 is tentatively scheduled for the April 1968 isaue of Popular Mechanics. He says it doesn't go into much construction detail, "but the pictures should be interesting."

ECHO-4 has 4 flip-flop registers, and three (P, A and X) in core memory. There are 8,192 words in core memory, each is bits long.

Clock speed is 160 Kc . There are 18 instructions, 4 bits long.

Special features: one's complement adder with end-around carry. Overflow and carry designators are stored in upper two bits of Program counter (location 0 of core memory). Interrupt automatically stores P and takes next instruction from specified SAVE routine entry. Using 15-pps sync derived from real-time clook. One index register, and also indirect addressing, can be specified by setting flags in the instruction word.

Input: alphanumerio keyboara, six control keyboards, 8-channel paper tape reader, 15 interrupts, 75 contact closures.

Output: Kleinschmidt printer, 60 contact closures, 8-channel paper tape punch, 4 digital clocks.

Interconnections are wire-wrapped.
By the way, ECHO standa for Eleotronic Computing Home Operator.

배-65

Hans Ellenberger, who Iives in Switzerland, worked a year on his computer and finished it in 1965. A small desk-top machine, looking a little like a Wang calculator with a separate keyboard, EL-65 has a keyboard input and Nixietube readout. Size is 40 by 40 by 20 centimeters.

A aerial-type computer, EL-65 has 3 regiatera, 30 words in flip-flop memory, and 15 instructions. The transistors are A0122 (AF pnp germanium) "because of price.

Addition and subtraction times are 1/50 second. The longest multiplication and division times require 1.3 secondis. In addition to these four basic functions, EL-65 can also perform negative multiplica-
tion, and accumulate producta.
The coat of materials alone was 1500 Swiss Irancs, which is about \$345. Hans tried to market his computer, calling it "der erste Sohweizer Pult-Elektronenrechner," meaning the first Swiss desk-top eleotronic calculator. But the sales price of 6000 SF ($\$ 1380$) seems to have put it beyond the means of most Swiss and also it may have been too much of a novel: ty on the market. As Hans notes, "It seems almost impossible for an amateur to build a computer that can compete with commercial machines. (The amateur who can do that would be, before long, employed by a computer company.)"

Hans is working on a new model, with 16 registers, using Philips LTC cores; and ICs by Fairchild (RTL epoxy), TI and Philipa.

MAGAZINE ARTICLES

Low-Cost Counters

The February Popular Electronics contains a construction article (pp 27-32) on a decimal counter with readout, whioh the magazine belleves to be a price breakthrough, as the decade costs only \$12, complete with counter, drivers and ten lampa. Parts are available from a Texas company at \$12 a decade, including a PC board. A power-supply schematic is given. The maximum rate is 10 Mc , although the unit has been used up to 18 Mc.

Later issues will feature items based on the counter: an "Electronic Stop Watch," which 18 an EPUT (events per unit time) oounter; a digital voltmeter; digital multimeter; and a Prequency counter.

The ICs used are all Motorola: two MC790P dual JK 1lip-plops, and one
each of the MC724P (quad, two-input) and MC715P (dual, three-input) NAND/ NOR gates. And seven transistors.

An interesting coincidence is the appearance by the same author of an Eleotronios article (Jan. 22, pp 74-76), "For low cost, count on RTL, " which compares the $\$ 12$ decade with a $\$ 10$ aigital display that uses a milliameter with a special scale, calibrated from 0 to 9 , and a biquinary 1-2-2-4 oode.

The authors aays in his last paragraph that the in-iine counter is superior in readability, but the meter design is cheaper and smaller.

Basic Digital IC Cirouits

Over a dozen simple digital circuits are given in "30 Basic IC Projects, " in Radio-Electronics (Jan. 1968, pp 50-53). This second part of a two-part article usea the Fairchild $\mu \mathrm{L} 914$ as the basis for inverters, pulse-enabling and disabling gates, NOR/NAND and OR/ AND gates, square-wave generators, one-shot, Schmitt trigger, flipflop, and others. All that's needed is a 914 and a few resistors and capacitors, plus diodes for the generator.

The article on the following pages (pp 54, 55, 62) describes how to "Buila a Low-Cost IC Signal Generator," with the same $\mu 4914$, to provide square waves from 5 cps to 50 Ko .

The first part of the IC article appeared in the December 1967 issue ($\mathrm{pp} \mathrm{43-45} \mathrm{)}$, basic description of the $\mu \mathrm{L} 914$, giving circuits for linear appilcations such as emitter followers and amplifiers.

Wireless World Dipital Computer

The four-part article on building a amall computer, described in the

The Amateur Computer Society 18 open to all who are interested in building and operating a digital computer that can at least perform automatic multiplication and division, or is of a comparable complexity.

For membership in the ACS, and a subscription of at least eight 1ssues of the Newsletter, send \$3 (or a oheck) to:

Btephen B. Gray
Amateur Computer Society
260 Noroton Avenue
Darien, Conn. 06820
The Newaletter will appear about every eight weekg.
previous Newsletter, has a fifth part now, completing the series. The December Wireless World (pp 601-605) covers the operation of the machine, with coding examplea.

Using Miniature Relays?

An interesting comparison of major characteristics of miniature relays appeared in a new-product item in the January 8 Electronics (pp 171-172). Comparisons are made between crystal-case relays, mer-cury-wetted and dry reed relays, and solid-state switohing devices. Each of the four types is said to provide certain advantages. "If speed is needed more than isolation, solid-state switches should be used. When coat is the prime factor and high isolation is also required, the reed relay is the best ohoice." The new product is a line of dry reed relays, made by Hi-G Inc. (Windsor Looks, Conn.) which sell for about $\$ 2$, compared with about $\$ 8$ for solid-state switches.

Would you belleve a relay in a TO5 transistor can? They're described in the January GEE (pp 20 \& 24). Not cheap, though; over \$20.

Copyright 1968 by Stephen B. Gray

BREADBOARDING INTEGRATED CIRCUITS
Wade White says he breadboards inline ICs with a board that holds 15 of the l4-pin packs, from J.R. Anderson Enterprises, Inc. 3691. Lee Road, Cleveland, Ohio 44120. The board, type MC-1, costs $\$ 4: 85$ for 1-9, $\$ 4.50$ for 10-24, and $\$ 4.25$ for 25-49.

No holes are drilled in the board. The components are soldered to the top, for easy removal or change. Slze is $3 / 32^{\prime \prime} \times 8-5 / 8^{\prime \prime} \times 5-49 / 64^{\prime \prime}$.

For permanent mounting of 12 of the 14- or 16-pin ICs, Wade uses an M-96003-PG board from Dyna Sales Co., 962t S. Atlantic Blva., Los Angeles, Calif. 90022. Phone (213) 268-1175, ask for Milt Hollingaworth.

For TO-5 and flat-pack ICs, use board M-96002-PG. The boards have holes drilled for mounting components, and pins to fit a 22-contact connector (Amphenol series 143). The connector costs about $\$ 1.55$ new, but can be bought surplus for much less.

Price for either board is $\$ 6.95$, with a discount of 5% for $5-14$, 10\% for 15 or more.

Wade also notes that the Vero IC board kit listed in Newsletter 7 at $\$ 40$, is available from Dyna Sales for $\$ 29.95$, as item MC-10.

NEXTI ISSUE

If any of you who have gotten into the conatruction of your machines fairly well would like to write up your experiences for the Newsletter, several pages are available for the gory details. Tell us all about your problems, solutions, discoveries, failures, components, and your future plans.

a publication of the
 AMATEUR COMPUTER SOCIETY

$$
\text { Number } 9 \quad \text { May } 1968
$$

MORE ACS COMPUTER SURVEY RESULTS
Several survey forms were received too late to be included in the last issue. Here is the data:

1. From Long Island: a decimal, variabie-word-length computer, with software similar to that of the IBM 1620. Will make extensive use of read-only storage to hold micro-programs by which regular machine instructions will be implemented. The decimal add and multiply tables will also be stored in read-only memory. Hopes are that the "1620 Model III" will be about 25\% faster than the 1620 Mod II and will have its complete instruction repertoire (about 60).

Main memory so far conalsts of 20K decimal digits (10K X 12 bits), with lo- $\mu \mathrm{sec}$ cycle time, using straight IBM circuits, and semiconductors mounted on PC boards of own design.

There are four two-digit data reg1sters and 32 memory address registers (high-speed core).
"My only consolation in attempting to improve on the IBM 1620 is that if my machine doesn't work right, at least I know that I have software that will."
"It should be emphasized that the popular analogy between the amateur computer builder and a radio ham is simply not valid. The oomplexity of even a small computer outweighs by at least an order of magnitude [ten timea] the deaign effort necessary to construct an amateur transmitter. This is doubly compounded by the fact that: the
nature of basic building blocks is changing at a rapid rate; many commercial deaigns are proprietary; there does not exist 40 years of computer design history to draw upon."
2. From a Harvard sophomore: 200-Kc machine, with 13-bit words, and instructions two words long. Teletype (Model 19) input/output includes paper tape. Memory is Honeywell TC-M30, 8 K words. Add speed 20 нsec. Six registers.

Built with Motorola 700P series of ICs, and npn silicon transistors from IBM SMS boards.
"Although there are well over 150 instructions, only around 16 are basic. The others come about as follows:
a) Each basic instruction may use a literal operand, or an indireot operand; e.g., ADD1 50 means add the contents of address 50 to the AC, whereas ADD2 50 means add the number itself.
b) Each basic instruction has 5 conditional variations. For example, in addition to the conventional CLA, we have

```
CLA on \(A C=0\)
CLA on AC less than 0
CLA on AC greater than 0
CLA on overflow
CLA on least order bit of AC.
```

These are, of course, the conventional transfer conditions. I found that they could be implemented for the entire instruction set with almost no additional hardware: three bits of the OP code, which comprises 13
bits, are devoted just for this purpose. Just before the execution of any instruction, the control checks whether or not the condition is satisiled; if not, the instruction is skipped. (This is one of the advantages of a long op code: certain bits may be devoted to specific functions.)"
"Here are some 1deas I found useful in my design. Firatly, if core 1s used, one can kill two birds with one stone by using the selection matrix decoder as the instruction interpretation decoder; if the memory selection decoder were for a 4 K (12×12) memory plane, then one 12-bit decoder could be used to hold the op code, while the other could generate the timing signals."
"The scheme of making every instruction conditional extends the effective ingtruction set, and is cheap to implement. Conditional instructions make the aet muoh more powerful."
"The cheapest SMS cards are sold by Brooks. Radio in NYC (Brooks Radio \& TV Corp., 487 Columbus Ave., New York, N.Y. 10024). They sell at 100 cards for $\$ 10$. There are an average of 4 tranaistors per card, in addition to other goodies."
"Someone should deaign parallelserial and vice-versa converters for TTY from integrated circults; that's one thing a goodly portion of ACS members could use. The converters could be standardized to the point where the ACS could manufacture pre-drilled PC boards."
3. From California: another 200-Kc machine, but with 36-bit words, and instruction lengtha the same as the IBM 7090. Input/output: Teletype, paper and magnetic tape. Also X-Y recorder for output.

Memory 1s 3D core, 32K. Add speed
is lese than $5 \mu \mathrm{sec}$. Over 100 instructions.
"The majority of the logic will be core-diode, which is slow in some respects, but has great flexibility, reliability and power savinge."

DO-IT-YOURSELF PROBLEMS
A one-page item on the advantage of buying digital modules instead of building them appears on page 42 of the April EEE. It points out some dandy iittie problems, including:

1. After final assembly, noise is found in the back-panel wiring and the noise amplitude is greater than the noise rejection of the circuitry.
2. Power-supply specs prove inadequate.
3. Signal reflections appear on back-panel wiring and intercabinet cabling. Unplanned signal delays violate timing requirements.
4. Logic-output current drives are too low to charge and discharge parasitic capacitances fast enough to meet clook-speed requirements. When fan-outs are reduced to compensate for charge and discharge times, the number of logic circuits must be increased, necessitating redesign.

COMPUTER HARDWARE

IC Breadboard

Cambion has announced an IC breadboard for 16, 32 or 64 of the 14lead DIP ICs. Although too expensive for amateur use, it can be adapted by anyone with enough patience to set 14 small eyelets for each IC, plus 14 larger eyelets just outside the smaller ones, and connected to them, for jumpers.

For a look-see at the pattern, see page 112 of the March EEE.

1024-Bit Memory on a Chip

A 1024-bit MOS read-only memory is now avallable from Philco-Ford's : if croelectronice diviaion, accordIns to Electronics (Feb. 19, page 45). The memory array consists of 128 eight-b1t words on a chip, on which is also the decoding circuitry, using 216 more MOS transistors.

Cnce a customer has paid the initial $\$ 750$ tooling charge for the coating and etching required for his particular interconnection needs, the chip will be available to anyone for the chip price alone, which will be about $\$ 70$ in small quantities, and $\$ 50$ in larger quantities.

A 2048-bit memory is in the works. The read-only memory has applications in subroutine storage, and table-lookup operations subh as sine and code conversion.

Adder on A Chip

An article by this title, subtitled "LSI helps reduce cost of small machine," appeared in the March 18 Electronics (pp 119-124).

This 8-bit integrated MOS arithmetic, measuring 86 by 116 mils and containing 200 gates, will be introduced by Fairchild Semiconductor as the 3800. On one chip 1s an input register, an addersubtracter, accumulator register, and output buffer. No price given.

Electronio Pocket Calculator

Hayakawa Electric hopes to introduce an 8-digit IC pocket calculator this fall. It will use miniature Digitron readout tubes, circuits with about 250 elements on a chip, total of 8 to 10 chips, and cost about \$280, Electronics says.

Photo-Transistor

Fred Strother calls our attention to the General Electric L14B phototransistor, which GE calls a planar allicon photo-darlington amplifier, as well as an Economy Light Deteotor.

Priced at 97\& in lots of 100-199, this high-sensitivity device 18 described by GE as having applications in card and tape readers. Fred says it makes a fine interpace.

For many applications, only the collector and emitter leads are used. A base lead is provided to control sensitivity and the gain of the device. The Li4B is packaged in clear epoxy encapalant.

Packaging Hardware

Wade White sent a catalog of packaging hardware (Bulletin 10000B) sent from:

$$
\begin{aligned}
& \text { Flug-In Instrumente, Inc. } \\
& \text { 1416 Lebanon Road } \\
& \text { Nashville, Tenn. } 37210
\end{aligned}
$$

An interesting variety of hardware. Plug-in cans with transistor circuit blanks, from \$3.45 up. Two dozen models of plug-in blanks, such as a board that will accomodate 1×14-pin plat-packs, for \$2. 60 without arilled holes, or $\$ 6.55$ with. Several types of cardmounting files, and various other hardware.

PUBLICATIONS

Digital Dealgn Aid

A method of designing the detalled logic of a digital system is given in "Flow Chart Methods of Logic Design" in the February Computer Design (pp 72-75). It shows how to make a flow chart from the basio considerations, then develop the
chart up to the point where it can be used for deriving equations for the logic.

The author says this method helps keep track of all the different sequences of operation, and minimizes redundancy.

Understanding Logic

"Eleotronio Digital Components and Circuits," by R.K. Fichards (D. Van Nostrand Co., $526 \mathrm{pp}, \$ 15$), explains how various components and circuite work. It gives the advantages and disadvantages of the major designs, provides alternate approaches, and compares the merits of diodes, transistors, tunnel diodes and super-conducting devices. Amond the topics included are speedup capacitors, DTL components and functions, core structures and accessing methods, filmstorage units, magnetic drums, discs, tapes, cards, and various switching methode.

Binary Logarithms

In the March 1968 issue of the British Computer Bulletin (pp 282285) is an article on "Some Applications of Controlled Shift Registers." No circuits; theory only.

The author shews how to control shift registers in such a way that they perform multiplication division, and code conversion. The process involves various combinations of shifting, adding (or aubtracting)jl and shifting, and shifting without adding (or subtracting).

One paragraph about binary-logarition converters may be of interest to several who have inquired about the process involved:

[^1]that the logarithms to the base 2 of binary integers may be derived approximately by a simple shift register and a counter. This can be extended to deal with nonintegral numbers as shown in the following example:

Caloulate $\log _{2} 13.625$
Binary $13.625^{2}=1101.101$
Count number of digits to the left of binary point commencing from zero and write this as the characteristic. Ignore most significant b1t of original number and place remainder of number to right of binary point as the mantisea. Thus $\log _{2} 1101.101=11.101101$.

This result is an approximation and techniques are available to reduce the error involved. ${ }^{\text {. }}$

The reference to Mitchell is his article, "Computer multiplication and division using binary logarithme," in the August 1962 IEEE Computer Transactions, page 512.

A Computer in the Basoment?

A four-page article with this title appeared in the April 1968 1s iue of Popular Mechanics (pp 7779, 209, 229), describing the ECHO computer built by ACS member Jim Sutherland, and described in Newsletter 8 (page 4).
ECHO IV will be used for family bookkeeping, by keeping track of monthily budgets and expenditures, so that when tax time oomes, deductions can be identified and grouped to simplify filling out the tax forms.

ECHO will also be programmed to keep track of real time, so that events can be soheduled up to a year ahead, with one-second accuracy. It could be used in the kitohon, to increase or decrease proportions for reoipes, and print out shopping lists. Jim plans to modify the kitchen cabinets to allow ECHO to take inventory automatically.

ECHO has been connected to the TV set for eventually regulating the schedule of watching. It may also be used to control the house temperature, by first querying the weather instruments outside, then adjusting temperature and humidity inside the house.

What Yill You Do With Your Computer?

Even if some of the planned uses for ECHO don't prove practical, Jim Sutherland has obviously thought a good deal about what to do with a computer once it's built.
And that's a question that a great many of us may not have given much thought to. What kind of problema will we run on our machines? Matrix inversion? Hardly. But just what? One non-member 18 using his for stock-market analysis. It may turn out that finding uses for our computers will be even harder than building them. Unlese you've, got your own business, there isn't much you'll want to program in the way of buainess appilications. And you'd soon get tired of most of the scientific types of programs, 1f you have no real use for the output.

If you've done any hard thinking about what to do with your computer when it's IIn1shed, let's hear about it.

HOOKUP WIRE

The telephone company uses a multi-conductor cable that is perfeot for amateur computer wiring. The next time telephones are being installed where you work, try to get some of the short lengths of cable that are thrown away. Some of these "short" pleces are 20 feet long, and not worth eplicing.
Some cables contain only a dozen of these solid 18-gage wires, in twisted pairs; some cables contain

30 or 40. In some cables, the wire insulation is solid-color, with the same 10 colors as used for redisistor coding. Other cables contain parti-oolored wirts, which have a body of one oolor, and stripes of another, every inch or so, in several dozen combinations.

MINIMUM KEYBOARD

For thase of you interested in a minimum input keyboard, IBM has an "Experimental Home Calculator" that uses a l2-button telephone attachment. At present, the pushbutton attachement is conneoted to the telephones of six Brooklyn highschool students, who do their math homework on an IBM 1710 computer 50 miles away, in Yorktown Heighta, N.Y. The computer's output is voice anawerback, from a magnetic drum prerecorded vocabulary. If a mistake is made in entering the problem, the computer's voice tells the student he's made an error.
There are several versions of the touch-tone coding; here is one:

The mathematical operations are programmed by:
ADD press + only

AC] SLEWSLETTER

Number 9 -. May 1968

The Amateur Computer Society is open to all who are interested in building and operating a dig1tal computer that can at least perform automatic multiplication and division, or is of a comparable complexity.

For membership in the ACS, and a subsoription of at least eight 1asues of the Newsletter, send
\$3 (or a check) to:
Stephen B. Gray
Amateur Computer Society
260 Noroton Avenue
Darien, Conn: 06820
The Newsietter will appear about every eight weeks.

SUB	press 0 and *
MOLT	4 and
DIV	7 and
SQ RT	5 and
END MESSAGE	and
MINUS	0 and
CLEAR	+ and **

For example, to multiply 2 times 8, press 24 **, and listen for the answer.

Pressing VERI FY INPUT will make the computer repeat the entry, by voice answerback.

PLASTICS

There are times when you may want to mount lamps a certain way, such as in a minimum-space decade, and the kind of mounting hardware you want is too expensive, or it just doesn't exist. One solution 1s to make the lamp-holder yourself, using some of the modern plastios that cure at room temperature.

First, make a model of the holder, from plastic or wood. Then make a mold of it, using something like General Electric's RTV-41 silicone plastic. This is recommended, as it has a "high modulus of elas~ ticity, " meaning that it's easy to separate from the original model.

Next best 1 e GE RTV-30, with a lower modulus. At one time you could get samples of both of these silicones with a letterhead. Perhaps you still can, from the GE S1licone Producta Dept., Waterford, N.Y.

Several plastics are available for pouring into the mold, to make the holder. A good one is Shell Epon Resin 828, which is mixed with Epon Curing Agent V-40, with a minimum of trouble. The result is an amber-colored plastic. For minimum light 108s, the plastic can be oolored black by mixing in some carbon black before pouring; other colors could also be used. You might try your local shell plastics dealer for a sample, by using a company letterhead.

Pour-your-own plastics might also be a cheap way to make segmented readouts, either 7-segment for numeric, or up to 14 or more segments for alphanumerio. You could pour black plastic around long Lucite strips arranged in the segmented pattern, then cut the finished bar into slices and make another mold for a lamp holder that channels the light to the individual segments. Or you could mold the entire segmented diaplay as one piece, Lucite strips and lamp-holder all together.

HELP!

Your assistance is needed to help
fill these pages. Please send me:

1. Answers to any of the problems in the early Newsletters.
2. Details of your computer, including problems and solútions.
3. Ideas about what you intend doing with your computer when it's finished. What programs are you going to kun?

Copyright 1968 by Stephen B. Gray

$\sqrt{\text { Acc }}$ B NEWSLETTER
 a publication of the AMATEUR COMPUTER SOCIETY

Number 10 August 1968

THE PDP-8 ROUTE

Fred Sias likes the Digital Equipment Corporation's PDP-8/S computer enough to borrow a lot of ideas from it. He writes:
"It is a little difficult for me to see a computer sitting around doing nothing: There are plenty of chances to use a machine to teach highschoolers. A number of PDP-8/S are in use for this purpose already. I think there is opportunity to develop low-cost inventory syetems for small businesses. These ideas are in the line of incomeproducing sidelines, but computer time is valuable and anyone with a machine should be able to produce income with it. A particularly fruitful area should be in software development. At the present state of technology, practically any company with an engineer or two can market a computer. Software support is the costly and time-consuming requirement for success in the computer business, however. This suggests that amateur-built machines could provide support to the vast software needs of the computer industry. To do this, an amateur machine would only need the same order structure as some commonly used commercial machine: There are over 2,000 machines in use of the PDP-5, 8, 8/8 and $8 / I$ series. These machines vary considerably, but share a common order structure.

The software problem is a two-way street, also. DECUS is a users' society for DEC machines that provides a medium for the exchange of programe and ideas. Probably an amateur computer builder could be-
come a non-voting member of the society. Interested persons might approach their local DEC sales representative. User-developed assemblers, statistical packagea, arithmetic subroutines, and special software for peripheral devices is available to any member. For instance, I just recently obtained a software symbol generator for displaying text on an oscilloscope. Text output by this route is very inexpensive. Keyboard input and scope output is probably the most inexpensive $1 / 0$ system for an amateur computer.

I'd like to present some of the features of the PDP-8 series of computers that make them worth looking at for ideas for amateur construction. Should I eventually construct a machine, it will start out looking like a PDP-8/S and may eventually be changed to a PDP-8. The difference is that the $8 / \mathrm{S}$ is a serial machine. That is, all transfer between regiaters is done through the adder, bit by bit. A serial adder has much less logic than a full parallel adder. Consequently the complete PDP-8/S has the following complement of logio:

$$
\begin{aligned}
& 92 \text { flip-flopa } \\
& 2 \text { clock multivibrators } \\
& 2 \text { one-shot delays } \\
& 52 \text { pulse amplifiers } \\
& 161 \text { inverters } \\
& \text { l60 NAND gates } \\
& 62 \text { diode gates } \\
& 70 \text { drivers for displays } \\
& 1 \text { Schmitt trigger } \\
& 1 \text { 4K, l2abit memory, and de- } \\
& \text { coding and driving logic. }
\end{aligned}
$$

-The commercial unit uses a 6-micro-
second parallel core-memory even though the rest of the machine is serial. Data is transferred into the memory buffer register serially and then into the memory in parallel. Consequently, two separate clocks are needed, and run independently, depending on the phase of the word timing. Incidentally, I understand the original design of the PDP-8/S was to use a drum or disc, but the cost of core memories dropped so radically that the machine was marketed with a core memory. That core is available from DEC for \$2000. Application notes and driving logic are available, too.

If I were starting to build a machine from aurplus parts, I think I would choose the PDP-8 instruction set, construct the serial logic with a disc memory first, later convert to a parallel core memory, and Pinally convert to full parallel logic. Even using serial logic, the slow version has a respectable 28 to 54 -microsecond operation time.

Some other features of the PDP-8 are worth mentioning. The machine has a l2-bit word size. Where analog devices are to be attached to the machine, 12 bits is a natural precision. A-to-D converters are usually 12 or less bits in precision (for a number of reasons) and a resolution of 1 part in 4096 is more than adequate for devices like scope diaplays. Multi-precision arithmetic software, both fixed-point and floating-point, is readily avallable, so a longer word length is unnecessary for anyone except a professional computer person who has a requiement demanding higher-speed, multiprecision arithmetic. In support of this statement, one might note that the IBM 360 series equipment has turned to the small basic word size with multiple-byte memory accessing to gain speed.

Early machines required large word size due to the slowness of memory access.

The PDP-8 has only eight basic instructions, but the set can be expanded to a hundred or more by mioro-programming the operate and input/output instructions. This permits one to use a simple octal decoder for decoding instructions.

Basic input/output transfer on the PDP-8 is via the accumulator. Transfer is in parallel, both for the standard and serial machines. A party-line bus system is used, with each peripheral device recognizing its own microprogrammed deviceselect code. The logic to do this is simple, with the commercial device-aelect logic costing only about $\$ 50$. This is one of the simplest input/output systems that I have seen, and it is thoroughly described in the DEC "small Computer Handbook," available free from any DEC salesman. I endorse this handbook as a liberal education in computer design.

Do you think there would be any interest in approaching DEC about supplying a basic kit for amateur construction of a version of the 8/s computer?

The parallel-to-serial conversion device mentioned in your laat newsletter is avallable from DEC for \$150. I recommend the free DEC "Logic Eandbook" as a second liberal education.

Incidentally, one does not need a separate device for parallel-toserial conversion. Cne merely needs to shift the data word out of the accumulator, testing the link bit each shift, and outputting a pulse if a one is present in the link bit. ("The link is a I-bit flip-flop register attached to the acoumulator, and is used primarily in caloulations in which 12 bits
are not enough to represent the numbers involved," according to the Small Computer Handbook.) See an article by Park and Ohkuma in the Fall 1967 DECUS Proceedings. The article, by the way, describee a magnetic-tape system using an ordinary unaltered audio-tape transport for recording digital data. Cost of the interface is about $\$ 200$, using commercial logic modules. This is one of the cleverest designs that I have seen for a digital magnetic-tape aystem at minimum cost.

Perhaps I have over-sold the virtues of the PDP-8 series of machines, but I think they have a number of minimum-cost deaign features that would beneflt an amateur who does not have special reasons for using other, possibly more complicated, approaches.

Here are a few hardware ideas. For a control panel: Drill holes for all regiater indicator bits. Cover the whole panel with solid translucent plastic, with decals for labels. Insert lamps in holes in back of panel with only wires for connections to a backup mother board. Take a look at the PDP-8/s to see result.

We use strands from telephone cables in our wirewrap tool. The \$50-or-so hand wirewrap tool from Gardner-Denver (Part. No. 14H-1C with No. 26263 bit and No. 18840 sleeve) is well worth the expense. Wire wrapping is a fantastio improvement over soldering conneotions. An unwrapping tool for $\$ 10$ makes changing conneotions very simple. I would suggest that these are esgential investments to ease much future pain.

The ACS member with the TTY codeconversion problem undoubtediy has a five-level Baudot code instead of ASCII. The simplest procedure for input would be to re-label T,

CR, O. $8 P, \mathrm{H}, \mathrm{N}, \mathrm{M}$ to represent the octal numbers 0 through 7 . Larger binary numbers can then be assembled by shifting in the accumulator in the standard way. A hardware Baudot-to-octal conversion matrix could be congtructed fairly easily, but once his computer can execute a few aimple instructions, a table look-up program is simple to write and won't use up much memory. Cutput to the TTY would be via table look-up also. Only the 8 numbers in the octal number system need be converted, since text would be stored as 1 s , and an assembler could be constructed by merely changing the symbol table definitions to Baudot, if his instruction set matches some commercial computer sold by a helpful al eaman.

Several months ago I noticed IBM 1620 core stacks and drivers available for around $\$ 200$. It happens that the 1620 accesses 12 bits per memory cycle, even though it is a decimal machine. That is, the memory is a 10K, $12-b 1 t$ word size, and two BCD characters are accessed each memory cycle. Perfect core for a l2-bit machine. The PDP-8/s uaes a 13-bit core, but the parity bit is really unnecessary since the machine comes to a screeching halt if a sense amplifier goes out and the machine starts getting incorrect parity. The 13 th bit is probably a carryover from its serial-memory ancestry. The 1620 memory has a 20microsecond cycle time, which reaulted in a relatively alow decimal machine, but would provide respectable speed in a binary configuration. Converting the decoding and core-driving logic might require some ingenuity.

Where one has some money to spend, I highly recommend the new Tektronix, storage scope display Type 601 at $\$ 1050$. I have just constructed an inexpensive interface, and find

1t a joy to get text output on the scope instead of waiting for the slow Try to pound out reaults. Analog displays with a $35-\mathrm{mm}$ camera for permanent records make this a very general-purpose interface.

Have thought about getting oheap logic cards. Of course, IBM SMS cards are readily available, but the connector is usually cut off. (Does anyone know where to get intact SMS carde?) Anyway, cut SMS cards probably could be most easily used by cementing on a short extension with an etched male PC connector. [For a cheaper way, see page 1 of the November 1967 ACS Newsletter.] A silk-screen outfit Prom your local art store is cheaper than the kit from Allied. Silk-screened and etched connectors for dozens of SMS cards could be made in a few hours.

This has been a rather rambling letter, but perhaps there are some 1deas that will be of use to ACS members. I will be pleased to communicate with anyone who has chosen to use the PDP-8 instruction set and has programming or interfacing problems."

Fred R. Sias, Jr.
University of Misa. Med. Ctr.
School of Medicine
Department of Medicine
Division of Neurology
2500 North State Street
Jackson 6, Mississippi.

```
* * * * * * * * * * * * *
```

Fred also sent along a short piece of paper tape to show why he chose those particular keys to be relabeled:
-0
ENHSOCT
PR

DEC recently announced the PDP-8/L, a stripped-down model of the PDP-8. The interfacing circuits have been removed, and only a TTY can be used for I/O. The memory is 4 K , With a maximum of 8 K. Price $1 \mathrm{~s} \$ 8500$, or $\$ 1500$ less than the PDP-8.

As to a PDP-8/S kit, DEC says that there is the queation of their responsability to the kit buyer.
What happens if he can't make the kit work? Does he ship it back to the manufacturer, like a Heathkit, and get it fixed up for a price? Also, if the back panel is furnished pre-wired, how can the kit cost much below the assembled and tested price, because there 1 an't much to the assembly. And if the back-panel weren't pre-wired, how long would it take a man to go crazy trying to wire it all himself? DEC says the only practical place for a kit is the power supply, which is handwired.

HEATH MODULAR DIGITAL SYSTEMS

Speaking of Heath, if anybody has been patiently waiting for Heath to come out with a reasonably priced computer kit - forget it.
Recent Heath Company ads show the new 805 Universal Digital Instrument, which can be used as a frequency meter, events oounter, digital voltmeter, time intervál meter, etc. The same ads show the 801 Digital Analog System Modules, which include a power module, binary information module (10 neon lamps, 8 SPDT switches, 2 SPDT epring-return switohes), timing module (0.1 cps to 10 Ko), and plug-in circuit cards (NANDs, dual JK flip-flops; dual one-shot, relay card, etc).

The 805 sells for $\$ 940$ without the digital voltmeter function; \$1250 with it, assembled. The 801 sells for $\$ 435 \mathrm{with}$ a fixed get of 13
cirouit cards. Other cards may be bought, at $\$ 10$ to $\$ 40$ each. Note that this is not a kit.

The 801 is for breadboarding oirouits, using patch-wires that plug into the special connector boards on top of each card, which uses TTL integrated circuits.

At these prices, whatever more sophisticated digital oircuita Heath may offer in the future will be quite expensive.

MOUNTING DIL ICS
Don Tarbell writes:
"I notioed some members are having trouble mounting dual in-line packages. A Priend and I have gone together to form a small company which, among other things, manufactures a board for mounting the DIP's. You push the IC into the board from one aide and solder to pads on the other side. There are two extra pads (also with holes) for interconnection to each pin. I use small telephone wire for interconnection, and find that a wire may easily be soldered and unsoldered many times without lifting a pad. A whole IC may be unsoldered by wicking the pads and prying it out, although i have found this not often necessary."

For a spec sheet on these IC breadboards, write:

> Advanced Digital Design p.O. Box 4409
> Huntsville, Alabama 35802

The boards hold 32 of the $14-\mathrm{pin}$ DIL ICs, cost $\$ 8$ each.

Don continues: "In reference to Newsletter Number 7 (November 1967), page 5, SHIFT REGISTERS (by National Semiconductor), I wish to warn members that these
shift registers are of the dynamio type, which require a continuous two-phase olook at a minimum of 10 Kc. This means that if the reg1ster is used to store data for future use, one must keop track of where it is in the continuous loop by an assoodated counter. I have done this, and have found that it loses no data if the power aupply is adequately filtered. National also makes a dual 100-bit (200bit) dynamic shift register which sella for $\$ 36$ in aingle quantities; part number MM506."

Incidentally, Ungar now has an IC desoldering tip, No. 859, designed to "remove ICa rapidly without causing delamination. It The desolderer melts all 16 solder pada et the terminals simultaneously. The device is designed for use with the Ungar $47 \frac{1}{2}$ watt heat unit, No. 4045, Which Iits the V77 or 776 handie. The Lafayette Radio price for the desoldering tip is \$1.65; for the heat unit, $\$ 2.97$.

WIRE-WRAP AND TERMI-POINT

For more information on toolapplied terminations, such as the wirewrap discussed by Fred Sias earlier in this issue, see the February 1968 שHE article, MPackaging/Int erconnections, Part 1: Tool-Applied Terminations," pages 66 through 74.

BOOKS AND ARTICLES
"How to Build a Working Digital Computer, " by Alcosser, Phillips and Wolk, Hayden Book Co., N. Y., 175 pages, \$3.75.

The blurb on the back cover notes that the book "shows the reader how to construct a working model of a digital computer, using simple, inexpensive components. ${ }^{\circ}$. The six basic units are "encoder,

```
The Amateur Computer Society is
open to all who are interested
in building and operating a dig-
ital computer that can at least
perform automatic multiplication
and division, or is of a compar-
able complexity.
    For membership in the ACS, and
    a subscription of at least eight
    Issues of the Newsletter, send
    $3 (or a check) to:
    Stephen B. Gray
    Amateur Computer Society
    260 Noroton Avenue
    Darien, Conn. 06820
The Newsietter will appear about
every eight weeks or 80.
```

arithmetic unit, control panel, drum memory, core memory, and decoder."

The blurb is misleading, but the computer, although manually operated, is quite ingenious. The core memory is really a read-only memory made of paper clipa, bent to form switches. The drum is also read-only, made of a large juice can and 29 paper clips that make contact with the drum through holes cut in graph paper wrapped around the can. The drum contains the program steps, using 26-bit instruction words.

The arithmetic unit consists of 39 DPDT switches and 5 SPST ones; the Appendix shows how you can build ycur own switches with paper clips and dowels.

This book may be of interest if you're working with a grade-school group or perhaps even a highsohool bunch that's low on funds.

square moor

IC'G Generate Instant Square Root, (EDN, March 1968, pp 26, 27), by Graham of Fairchild, gives a nice circuit for square root: To the 10's complement of the number is added $1,3,5,7 \ldots .$. , until the
most significant bit changen to 0 , at which point the total number of additions to the complement is the aquare root.

UNUSED LEADS

QReA from the "Test Your IC IQ" page in Electronic Design (page 198, March 14, 1968):

Is there a rule of thumb to help us decide what to do with "extra" leads on digital ICs?

What is done with unused leads often depends on the partioular circuit application. In general, it is safe to leave unused output leads open. Unused input leads, on the other hand, should be tied to ground or some other potential point to prevent parasitic transistor action or leakage under any possible signal combination. The best potential point to use will depend upon the oircuit geometry, and in most cases will be apparent from the circuit achematic, which can be obtained from the manufaoturer.

IC sOCKETS

An EHE survey on "Sockets for Integrated Circuitall appears in the July 1968 issue (pp 56, 58, 60, 61), and discusses packaging sockets, test socketa, contact problems and dielectric materials.

APPLICATION NOTES

The latest Application Note Catalog from Motorola, dated April 1968, lists 43 on digital circuits. Some are of little amateur interest, such as on IC reliability, but most give worthwhile deaign info, suoh as "Designing Integrated Serial Counters, or are about particular Motorola digital ICs.

Copyright 1968 by Stephen B. Gray

ACS NEWSLETTER
 a publication of the

 AMATEUR COMPUTER SOCIETY
Number 11 December 1968

IT's SUBSCRIPTION RENEWAL TIME
The money has finally run out, and so this is the last issue in this series of ACS Newsletters. For a new subscription, please send in $\$ 3.00$ ($\$ 3.50$ if you live in Italy, Japan or Switzerland).

If your name is Fronek, Gantner, Gruner, Hanson, Harrold, Haynes, Pfeiffer, Sundstrom, Van Ornum, Young or Zuccaro, you don't need to send any more money now, as you're already paid up, by virtue of previous contributions.

As of this isaue, there are 91 ACS members, in 27 states and 5 countries. I hope most of you will continue to be members, because the more of you there are, the more issues there will be in the new series of Newsletters.

Along with your renewal checks, please send me a few words about what you intend to do with your computer when it's inished.

One of the first Newsletters in the new series will be a roundup of the basic circuits used in ACS computers. So, if you buy ICs, please let me know in your renewal letter what make and types you use for lamp drivers, memory drivers, flip-flops and gates. If you build your own, please send schematics of these circuits.

IBM SMS CARDS
According to IBM Industrial Products, there are about 3800 different SMs circuit cards. Some of the cards are used in several pre-360
machines; others are in families of cards used in only one computer or group of computers, such as the 1400 series.

There is no list of code numbers and corresponding circuit types for these cards, according to IBM. The tabs are broken off because they are gold-plated, and Federal law requires that the gold be recovered, even though there is only a few cents' worth on each board.

SAVE THE MOSFETS

Walk across a rug, touch an unmounted MOSFET, and it's shot. Even less electrostatic potential than that is enough to destroy a MOS field-effect transistor. To get around this problem, some vendors ship MOSFETs with the leads soldered together, or shorted with a piece of metal foil.

That's fine until you're ready to mount the transistor in a circuit. But when you separate the leads for assembly, you can wreck the transistor by building up static charges.

Page 66 of the Dec, EEE shows how some NASA engineers use a loop of flexible nickel wire, attached to a music-wire spring, which is slipped over the transistor case and then around all the transistor leads, shorting them together and allowing them to be handled without damage to the transiator. The device is removed after the transistor is soldered into a circuit. If there's enough space, it can be removed and used again, but the wire can be cut and replaced if necessary.

AN XS3 COMPUTER

Don Tarbell, who was last mentioned in the August 1968 Newsletter (page 5) writes that his computer uses the excess-3 code, and its 4 registers are each 5 digits by 4 bits. Clock speed is 10 Kc at this time, but will probably be apeeded up to 100 Kc or 1 Mc later on. He is using mainly the Motorola MCYOOP Ine of ICs.

Don's computer at this time consists of the processor, a Teletype tape reader, TTY tape punch/printer, Weatern Union page printer, and two code-conversion boxes. It has add, subtract and hardware multiply, and will soon have a hardware divide. He can run programs from the paper-tape reader or from a magnetic-tape recorder. A 4 K memory will soon be added to the system.

His sources of hardware are Allied Radio, Alrwork Gulf, Lafayette Radio, Ampex Computer Products, Western Union, and friends. Alí the schematics came from his own design, or from fragmentary sources.
Here is a block diagram of Don's computer; most of the lines are actually several wires, and most of the junction points are 4-1ine digital switches:

Number 11 -- December 1968
2
$\sqrt{A} C \sqrt{S} L$ NEWSLETTER

Don says his present problems are:
(1) Find suitable drivers and sense amplifiers for a memory that requires $190-\mathrm{ma}$ drive current and has inin. 30 mv output to 200 ohms.
(2) Understand how present-day computer compilers and assemblers perform translation functions.
(3) Find equal and plus signs for his printer.

P-S AND S-P CONVERTERS FOR TTY

Back in the May 1968 ACS Newaletter, a member noted that someone should design parallel-serial and vice-versa converters for TTY from ICs, and which he belleves a "good numer of ACS members could use."

Jim Haynes writes that there are two such items in existence. One is a set of boards for 5-level TTY intended for amateur radio use for selective calling, and produced by Harold quinn of St. Louis. But Jim didn't have Quinn's address at the time. The other item is a Teletype send-receive converter that uses ICs. Another ACS member, who is with Teletype, says the only card that seems to be applicable is one used as the sending distributor on the Model 37. However, "it would be difficult to get these cards, since production at present is needed for sets being built." The card uses 21 ICs, three of which are Motorola MC853P dual JK Plipflops, or equivalents made by ITT or Fairchild.

SCRAP IBM EQUIPMENT
According to a special section on "Computer Trends" in the Dec. 9 issue (pages 44-45) of Electronic News, IBM now has a policy which says that, as of July 16, 1968, no scrap will be sold whose source of origin is IBM. The policy is said to be that such parts will be junked and melted down for salvage.

The new policy came about because of a junk dealer in Boulder, Colorado, to whom IBM was selling wornout tape drives. The first models sold were old tube models "not worth much to anyone." Newer models, such as the 727 and 2400 , began appearing, and aalvage hunters had a field day, at 25 to 30 cents a pound. Competition soon sent the prices up to 35 or 50 cents. But then some people began using the surplus parts in supposedly new equipment, even selling some of it back to IBM. IBM doesn't want old parts sold to the public; they carry its label and "might compromise $I B M^{\prime} s$ image."

Whether the new policy is countrywide, or applies only to tape drives, is not knom at this moment.

CRT NUMERIC CHARACTER GENERATOR
For those interested in CRT display, Fairchild Semiconductor has a seven-segment numeric character generator that is a MOS/LSI circuit with 150 gates on a chip.

The 3250 DIP accepts four-bit binary-coded words, and generates four deflection pulses synchronized with a serial train of video pulses that subsequentiy control the CRT beam. About 550 characters (the 10 numerals and a few special symbols) can be displayed at a 60 -cycle refresher rate.

The 3250 DIP sells for $\$ 60$ each in quantities of 1-24, operating at $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. A inmited-range unit $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ sells for $\$ 42$, in quantities of 1-24.

NEW FREE BOOK FROM DEC
A new 425-page book, "Introduction to Programming, " is available free from DEC as the latest in their Small Computer Handbook Series. It
is oriented toward the PDP-8 famlly of computers, of which over 3500 are in operation.

Single copies may be obtained free by writing Dept. P, Digital Equipment Corp., 146 Main St., Maynara, Mass. 01754.

S-P CONVERSION FOR TTY

Don Tarbell, noting that someone was looking for circuits to convert from Teletype to their computer, enclosed a circuit he uses for serial-to-parallel conversion from his Teletype tape reader. The capacitors in the schematic opposite may need to be adjusted somewhat, depending on the transistors used and the frequency desired. His unit runs at 60 words a minute.

Don says the best IC sense amplifier he's seen yet is Texas Instruments' SN7525N. This dual inline package has two sense amplifiers in it, and costs about $\$ 13$ in single quantities. He has tested some samples, and they work OK.

When he gets his memory hooked into the computer, Don intends to work on three software packages:
(1) A simple version of Fortran.
(2) A compiler for solving special math problems such as higher order equations, differential equations, and many simultaneous equations.
(3) An English conversational program to solve logical questions depending on previous input statements.

PRINTED CIRCUIT KIT
Kit \#500 contains PC boards and all chemicals and supplied needed to manufacture printed circuits. Each kit contains two PC boards, $4-3 / 4$ by $3-3 / 4$ inches; a resistink pen; one 6-oz bottle of
resist-ink solvent; and one $1 / 16$ inch arill bit. The kit is packed in an acrylic box which serves as a developing tray. Costs \$5.95 from Injectorall Electronics Corp., 4 North Road., Great Neck, NY 11024

ONE REASON FOR BUILDING A COMPUTER
One of the newest ACS members has an unusual reason for wanting to build a computer. Some years ago he had cerebral meningitis. Among other things, the accompanying fever damaged his memory considerably, both in the ability to remember things, and the memories that were already in it, back to when he was ll. As he puts it;
"Since I had never previously had much difficulty remembering thinge, it took quite a while for the new condition to be recognized. The trouble masked itself, as it were, since I couldn't keep in mind the fact that I couldn't remember things. Eventually I simply learned it."
"The first solution was to keep a journal of my activities and copies of everything I wrote (letters, orders, etc. . This worked for a while (10 years), but now I'm being driven out of the house by the mountains of accumulated paperwork. I am similarly obliged to keep all bills, recepts, canceled checks, etc., for years back. Simply finding the stuff is becoming a problem."
> "So the second solution is to put it all on mag tape and let a computer keep track of it. Obviously, such a computer will be more business-type than. scientific. (Of course, if it can do math problems as well, so much the better.)
> "My real problem, of course, is the computer's enormous complexity, with many different things going on simultaneously. A poor memory is

obviously a great handicap here. While I concentrate on what's going on in one area, the activity elsewhere escapes from me. For this reason, I am obliged, much more than most people, to depend on circuit diagrams. The diagram serves as a memory and I can switch my attention back and forth without any part getting away."
"But all the computers I have had anything to do with, have been far too big to get onto one circuit diagram, or even several, and I still get lost in the pages and pages of circuitry. However, it seems possible that the type of linited-scope, single-purpose computer I have in mind might be encompassed in only a few drawings that I could eventually comprehend.
"Some of the computer's functions might be of some use once it is built (such as listing), but there might also be things I could do right now that haven't occured to me. I will appreciate anything anyone can do."

Any suggestions? He has 30 reels of one-inch instrumentation tape, two 120 Kb core memories from the IBM 1620 , a 32 Kb core memory, and some 4 Kb frames.

THREE LOGIC PROBES

Within several weeks of each other, three logic probes were put on the market. Because ACS members may be interested in debugging digital circuits without having to use a scope, details of the three probes are given here. Is there an ACS member who will design us a probe using the best features of all 3 ?

A hand-held probe for detecting the presence and polarity of digital pulses as fast as 25 nsec is available at \$89 from Pulse Monitors, Inc., 351 New Albany Road,

Moorestown, N.J. 08057.
Thie Digi-Probe model 1210 uses ICs, operates from a 5 -volt 75-ma source, and has red and green indicator lights "to allow non-technical personnel to perform most digital circuit production-line checks with the probe, in lieu of a scope."

A second such probe is marketed by Automated Control Technology, 3452 Kenneth Dr., Palo Alto, Cal. 94303. A lamp at the end of the probe will light for logic $1(+2.0$ to $+6.0 \mathrm{~V})$, and remain off for logic 0 (zero to $0.8 \mathrm{~V})$. High input 1 mpedance prevents upsetting flip-flops and oneshots.

Hewlett-Packard has a logic probe with a lamp at the tip that flashes for 0.1 second for a positive pulse, goes out for momentarily for a negative pulse, turns on low for a pulse train, burns brightly for a high logic state, and turns off for a low logic state.

Overload protection is from -50 to +200 V continuous; 120 V AC for 10 sec. Input impedance is 10 kohms.

Pulses as short as 30 nsec will cause a flash. Price of the HP 10525A Logic Probe is $\$ 95$.

The probes are all small: the DigiProbe is $1^{\prime \prime} x$ 1al" x 2ill $^{\prime \prime}$, with the probe extending. $1-3 / 4$. beyond the case. Weight is $2 \frac{1}{2}$ ounces.

REPEMBER TO RENEW

If you'd like to subscribe to Volume II of the ACS Newsletter, please send a check or money order for $\$ 3.00$ to:

Stephen B. Gray Amateur Computer Society
260 Noroton Avenue
Darien, Conn. 06820

Copyright 1968 by Stephen B. Gray

Volume II, Number 1
(Serial Issue 12) April, 1969

a publioation of the ANATEUR COMPUTER SOCIETY

FIRSI ISSUR OR
VOLUME TWO

HERE WE GO AGAIN
Enough money has inally been sent In to guarantee publication of at least eight issues of Volume II of the ACS Newsletter.
a Lemter of comment
Along with his check, Allyn Bothman writes that he "thought he might add some commenta and observations concerning the ACS Newaletter and members: activities." What he adds is quite construotives
"Let me preface my remarks by stating that I can't help getting the impression that many member. are having considerable trouble with their machines mainly because they don't seem to be arare of the huge work effort involved. Commercial computer manufacturers expend tens of thousands of manhours designing their products, and with all their engineering talent, computer aided design, eto., they atill have probleme! I think that for anyone without advanced technical training, knowledge about (or even access to) computerg and programming, designing a computer may prove 1mpossible altogether. This leaves, in order of deoreasing difficuity, improving on the design of an existing computer. copying an existing computer, or depending on some type of computer kit. I also think that, in general, members ought to concentrate more on technique, organization, and planning instead of didding around a flip-ilop at a time and considering the soldering of an IC into a circuit a "real" accompliahment as far as the progress of their machine is concemed. A computer is considerably more than the sum of 11 ite hardware. Getting a
partioular shift register to function is not the mejor stumbling blook; integrating the syatem is the problem. Now some more apealfic commenti.

In past issues of the Newsletter, some rather ingenious instruction sets have been devised which either almplify hardware, decoding, or oubsequent programming. It should be borne in mind, however, that the use of an instruction set which is already implemented on a commercial machine means a great reduction in problems with software, which would then be readily avaliable. Remember that commercial manufacturers also look for instruction eets mhich tend to optimize both hardware and coftware, and many maohinea have instructions worth oopying. If you've never writton an assembler or Fortran compiler, don't just laugh it off as an eaay projeot; it may woll take you longer than to build the machine itself. Coming up with a new, unique instruction set may be a thrilling idea, but getting someone else's instruction set to function with your hardware is no small feat either.

The report on the PDP/8 in issue \#10 of the Newaletter was most informative. As to the feasibility of a PDP/8 kit, you laughed off the possibility of having to do the baok panel wiring yourself as being an invitation to insanity. It seems to me that this is what amateur computer building is all about (the wiring and the insanity). Furthermore, I think that some important points ware miseed in the discusaion. The implication was that a kit would contain the standard DEC oirouit boarde and componente. The savinge in cost would certainly not acorue from the ama-
teur merely completing the backpanel wiring for a bunch of commercial (and expensive) circuit boards. The list of logical components which was provided was $1 \mathrm{~m}-$ pressively small. Implementing this logic with, say Fairch11d Micrologic would mean:
a) a real money saving-like you would be talking about a few hundred dollars for all the ICs required;
b) a large saving in space, since the PDP78S, small enough as it 1 s , is still not an IC machine;
c) not merely copying an existing machine, but turning a good second-generation one into an improved thirdgeneration model.

I think that the PDP/8S is an excellent machine to either improve or consider as a basis for a kit. While on the subject of kits, I will also add that the concept of a modularly expandable kit is completely unfeasible since, again, it does not solve the major problem, which is syatem integration; not just implementing a particular register. For those who do not have the background or the test equipment to design their machine, just the logic schematic of a small computer consisting of a few hundred cheap ICs would be more than a start. Provide a few circuit boards, and there's a kit. The PDP/8S is small, serial, and slow, but I think that none of us would mind having one, finished, working, and usable for whatever limited capabilities it would have.

As for the question of "what to do with your machine when it is completed, " I would like to state that if I had no use in mind for 1t, I wouldn't be wasting my time trying to build one. First of all, I am already using a computer to help me with both my logic design and my circuit-board layout. I am
also attempting to almulate my ontire micro-instruction sequences for my read-only memory on a computer to make sure that the machine's logic will really work. By the time I start plugging in actual components, I want my only problem to be noise, not logic organization. Anyone in the electronic design business, as any computer builder must be to some extent, would much rather substitute a few minutes of computer button-pushing for hours of silde-rule pushing. With all due respect (honest!), anyone who would have his homebuilt machine control his house's heating system is insulting his own creation. When I have programs which will enable my machine to completely design its successor, then I will wonder what to do with 1t (including whether or not to pull its plug out in a hurry to be on the safe side). Software development alone ought to keep most of our machines pretty busy.

A few odds and ends now. I am seriously dabbling with the idea of a PDP/8S kit, since the logic for the machine is rather simple, and thousands of PDP/8's are being used in industry for data collection and process control, and they all use the same software. Someday 1t might serve as a useful auxillary computer for my main CPU, but it atill is a very "apare" time projeot. If anyone else is interosted in pursuing this, it might be fun; it certainly will be easier than anything olse anyone is building.

Members may find the following manual very useful: "A Pocket Guide to Hewlett-Packard Computers," avallable from H-P, 395 Page M1ll Road, Palo Alto, Cálif. 94306. It containa detailed hardware descriptions of the H-P aeries of amall computers (detailed logical organiration, that 1s), as well as complete specifications for H-P Assem-
bly language, Fortran, and Basio, programming techniques, algorithms, etc. Well worth the $\$ 3.00$ they're asking for it. I am interested in obtaining any information that is available on CRI displays. Are any members working on them? A kit for one of those wouldn't be a bad 1dea. They can be built cheaply.

What I'm trying to do now is to get a computer to design my computer. It doesn't seem to be saving time, but it sure does save energy, not to mention hardware."

* * * * * * * *

Incidentally, DEC now manufactures the PDP-8/s only on order, with a 4-month lead time. As a DEC salesman put it, "The $8 / \mathrm{L}$ is cheaper and does more than the $8 / \mathrm{s."}$

COMPUTER SCHEMATICS?

A quick check with half a dozen IC manufacturers (Motorola, Signetics, Amperex, National, TI and Fairchild) showed that not one of them has a demonstration IC computer of any size, and thus no schematios for any such machine.

For one reason, these IC manufacturers don't have CPU designers. The computer manufacturers design their own circuits, often with computer-aided design that is beyond the means of IC makers.

Signetics says the most they do 1s try a little component-count reduction. In a couple of years, Signetios intends to market LSI building blooks, about 6 inches square, with a complete subsystem on each, so that a computer could be builf by conneoting several tom gether. But right now Signetios is concentrating on bringing out MSI circuits, to keep up with the oompetition.

Amperex has no more copies of "Build Your Teaching Computer Mith M. E.L. Subassemblies," mentioned in an early Newaletter. Although there were requests for the booklet (which Amperex bought from M.E.L. in England), nobody was buying the subassemblies.

CURRENT MAGAZINE ARTICLES

Quite a few magazine artioles of interest to ACS members have come out lately.

Customer Ingineering Cinio

For some months now, EDN has been running a department by this name, presenting problems that customer engineers have had, and showing how to solve them. So far, most of the problems have been with digital ICs. Examples of problems are "One-Shot Circuits Driven from Deoade Counter Give Multiple Pulaen," (Feb. 1, 1969, p 59-60); "8-B1t Serial Register Shifts Unprediotably (Apr. 15, 1969, pp 73-74).

Power Supplies

A design article, "Power Supplies for Solid-State Circuits -- a Quick Method for Designers in a Hurry, "appears in the April 15, 1969 gDN (pp 61-68).

Universal Frequency Counter

The most ambitions digital construction article Popular Electron10s will probably ever print was given in two parts (Mar. 1969, pp 33-47; Apr. 1969, pp 41-45).

As is often the case with PE, a kit of parts ($26 \mathrm{ICs}, 43$ transistors, 14 diodes, etc.) 1s available; this runs to over $\$ 200$, for a 2-Mc counter, typical accuraoy of 0.1\%.

The decimal counting units are not
described in either article, but only in the Winter 1969 edition of Eleotronic Experimenter's Handbook.

Segmented Digital Readout

Also in Popular Flectronion (Feb. 1969, pp 43-49) is a conatruction article on the Dialco 7-segment readout, "Third-Generation DCU." The artiole shows how to use the Dialco segmented display panel (\$5.46) with an IC decade counter and decoder (kit of parts, \$13.50), and how to make a similar segmented display panel yourself.

Program Loading

> "Read-Only Memory Loads Process Computer, by Marcon and Rosborough (Control Enginoering, Feb. l969, pp 89-91), shows how one group of users solved the problem of setting the initiating oode by building a read-only memory (ROM) to enter the read-in mode (RIM) instructions into a pDP-8. or $8 / \mathrm{s}$.
> You probably aren't in a position to really need thia Row, but the details are interesting, and
> "readerg are invited to contaot the authors for more detail.

Solid-State Optoeleotronics in 169
Want to know more about phototranaistors, laser arrays and photo SCRs? Read the speeial report with the above name in mon (Feb. 16, 1969 , pp 49-64), available as a reprint.

Output Circuits

*Which Output Circuitry Bhould You Use7" (ZGE, Feb. 1969, pp 68-71), discusses briefly five types of output circuits: resistor pull-up; complementary; totem-pole; diodeolamped totom pole; and tranala-tor-clamped totem pole.

Universal Digital Interface

This very brief olrouit-deaign item is in the Jan. 1969 EIS (pp 115-6) , and shows how to use the two halres of a 914 IC to "interface with many different types of logio, both positive and negative."

Tutorial 1

"Single building block proves logical choice for custom ICs" (Eleotronica, Apr. 28, 1969, pp 88-93) contains good tutorial information on logic. It is part of a study made by NCR to "determine some of the oharacteristios desired in the design of the IC used in the single building block for its Century Computer sories."

Tutorial 2

*A Primer on Priority Interrupt Systems," by Van Gelder and England of SDs (Control Enginering, Mar. 1969, pp 101-105), 1s an excellent tutorial, with four logio diagrams, to show interrupt hardware.

Delar Line

"Ultrasonic delay IIne needs no

 power aupply," (Bleotronio Desion, Aug. 15, 1968, pp 231-232), shows a 04-pgec delay Iine uaing a seveninoh glass rod driven by an ref osciliator, designed by an argTelefunken engineer.
Degign A1d

> "Bond Graphs for Designing Logic Circuits, by Krigman of Battelle (Control Engineering Feb. 1968, ppgi-92), gives an interesting and eeomingiy useful graphical method for designing logio circuite.

How to Drlay

"5 Waye to Dolay a slgnal," by Bauer of Digital Devioes (Control Macineering, April 1968, pp 92-94), briefly discuses magnetoatrictive delay innes, torsional delay lines,
glass and quartz delay lines, distributed and lumped-constant transmission lines, and mechanical methods (tape loops, etc.).

No Bounce

"Get Bounce-Free Digital Inputs From Switches," by Walker of Fairchild Semiconductor (Control Engineering, Mar. 1969, p 65), shows four simple circuits for eliminating switch bounce, using ICE such as the 9946.

Arithmetic Hardware

${ }^{\text {H }}$ Arithmetic Functions Using MOS Registers" is the title of MOS Brief 6 in the National Semiconductor series of ads (Electronio Design, Apr. 26, 1969, among many others), and shows very briefly how to use the MM515 triple 64bit MOS shift register (a 16-pin DIP) in three arithmetic circuits.

Driver

UUse a voltage regulator as a lamp/relay driver," (Electronio Engineer, Apr. 1969, p 81) 1a a very short item on using, for example, the General Instrument NC531 voltage regulator as a lamp, relay or motor driver.

Logic Probe 1
Newsletter \#11 mentioned three commercial logic probes. A construction article on such a probe, "IC Telltale," appears in the Apr. 1969 Popular Electronios (pp 6974).

The probe actually consista of two assemblies: a probe and a test set. The probe is a simple two-transistor lamp driver. The test set has a 2-ops and 10-cps trigger pulse generator, with 14-pin DIL and 8pin round socketa. The socket pins are brought out to spring-clip test terminals.

The probe will test, in or out of oircuit, "RTL ICs auch as the Motorola MCroop and the Fairchild $\mu \mathrm{L} 900$ series."

Logic Probe 2

An inexpenaive logic-level test probe is desoribed in the Jan. 1969 Electronic Engineer (p 96). It uses a TI $14-\mathrm{pin}$ DIL, SN15 844 N , and a lamp, mounted in the body of a felt-tip marking pen.

Small-Scale Integration

"New Logic Meets Needs of Adranced Integration," (MEE, Apr. 1969, p 52), describes some reaily indescribable SSI circuits such as the flop-flop, unigate, NON gate, make-shift register, and the hallfast adder. Some of the ohips used are so emall that they can include no more than half a diode.

Computer Simulation of Logie

"Computer-A1ded Design: Simulation of Digital Design Logic, " by Gwendolyn G. Hays (blond, 26 , and married), in the IEFE Computer Transactions (Jan. 1969, pp 1-10) gives details of a program (written in Fortran IV and used on a Univac 1108) that can simulate around 3000 logio elements, for debugging digital deaigns.

Building Your Ow Aooustio Coupler
Few 11 any of us will ever need to couple a Model 33 or 36 Teletype with a time-shared computer, but the article with the above titio makes interesting reading, in the Mar. 1, 1969 Eleatronic Design (pp 68-73).

Delay-Line Memory for CRT Display

"Standard Glass Memory Modules For
Low-Cost Computer-Driven Displays,"
(Computer Desicn Apr. 1969, pp 118-122) is realiy an ad for a Cor-

The Amateur Computer Sooiety is open to all who are interested in building and operating a digital computer that can at least perform automatic multiplication and division, or is of a comparable complexity.

For membership in the ACS, and a subscription of at least eight issues of the Newsletter, send $\$ 3$ (or a check) to:

Stephen B. Gray
Amateur Computer Society
260 Noroton Avenue
Darien, Conn. 06820
The Newsietter will appear about every two months.
ning Electronics product.
The glass memory (maximum capacity, 4 K bita) is used to store all the characters to be displayed in a single horizontal row, and is input to a character generator that controls the Z axis by brightening the proper parts of the raster display.

The computer places a frame of data in the display-system buffor memory. One full row of characters is then transferred from the bilfer to the delay inne; this data reoirculates in the "single ine storage device" to refresh the display.

HARDWARE ON THT MARKET

IC Breadboard

Although this IC breadboard (by EL Instrumenta Inc, 61 First St., Derby, Conn. 06418) is too expensive ($\$ 650$) for any of us, the brochure is something to drool over. The breadboard will aocept DILs of any size ($14,16,24$ or 36 pins) and will also accomodate resistors, capacitors, TO-5 cans, etc.; it contains a palse generator, power eupply, a dozen lamps, 9 switches. Interconnections can
be made by plugging in lengthe of \#22 hookup wire.

IC Pliers

Tochni-Tool, of 1216 Arch St., Philadelph1a, Pa. 19107, has pliers for removing 10 - and 14lead flatpacks when desoldering. The coated jaws allow use with live circuits.

Photatrangistor Array

Fairchild has a "low-cost" array, the FPA-700, with 9 npn phototranalstors in an 18-lead paokage for electronically reading standard 8 channel punched paper tape. Cost: $\$ 12.50$ (1000 up).

HBLP!

One of our newest members is a math teacher whose school is gathering components for a oomputer. They have a Remington Synchro Tape from an early Univac. Sperry seems to have run out of sohematies and operation manuals. The 8-level paper-tape punch and reader work fine, but the information is needed just in ease of trouble.

If any LCS member has access to a schematic and/or manual, and would sell it or let it be copied, please write to: Riohard P. Filchook Box 124 Hiller, Pa. 15444

The school also has a core memory from an IBM 1401. A number of ACS members have also acquired one of these; no doubt many of them oould also use help. If any of you have worked out drivers and sense amplifiers and so on for this partioular 16 -plane, 4 X memory, then please send in details.

Copyright 1969 by Stephen B. Gray

Volume II, Number 2
 (Serial Íssue 13) July, 1969

$\sqrt{A C} C \sqrt{S}$ NEWSLETTER
a publication of the AMATEUR COMPUTER SOCIETY

PDP-8/L
ISSUE

THE PDP-8/L
Many ACS members are interested in the PDP-8 family, so let's look into these best-selling small computers.

The PDP-S and 8/S are no longer made on a production basis. The current models are the $8 / L$ and the 8/I, both built with Texas Instruments TTL integrated circuits, by Digital Equipment Corp.

The 8/L is the cheaper model, at $\$ 8500$ for 4 K of memory and ASR33 Teletype. Maximum core is 8 K . The 8/I has the same capability plus an internal peripheral control and data-break panel for plug-in expansion. The $8 / I$ is faster, costs \$12,800 (In rack-mounted version) for 4X of menory and ASR33 TTY, and is more flexible than the 8/L. The 8/L was "designed for those who don't need plugin expansion."

Maintenance Manuals

To obtain the two-volume maintenance manuals (containing schematics) for either the $8 / \mathrm{L}$ or $8 / I$, send $\$ 50$ to the Field. Service Department, Digital Equipment Corp., 146 Main St., Maynard, Mass. 01754.

The $8 / L$ contains 360 TI TTL DIP ICs, if no options are included, and if my count is right. These 360 ICs, if bought from Texas Instruments in the quantities for building one computer, would cost \$1243.

One big problem is the core memory; DEC will sell you one for $\$ 2,000$. Nobody in the ACS has reported any success in hooking up drivers and sense amplifiers to any suitable
used IBM (or other) core stack.
The sense amplifiers in the $8 / L$ are Motorola MCl540G types, at $\$ 31.50$ each for 12 of them. This is the full count, as I figure it:

81	SN7400N	4 NAND 2-input
26	SN7402N	4 NAND 2-input driver
17	SN7410N	3 NAND 3-input
13	SN7420N	2 NAND 4-input
8	SN7430N	1 NAND 8-input
52	SN'7440N	2 NAND 4-input driver
5	SN7450N	2 AND-NOR
53	SNT7453N	4 AND-NOR
29	SN7460N	2 Gate expanders
58	SN'7474N	2. D-type flip-flops
6	SN7482N	1 Adder
12	MC1540G	Core Kiemory Sense Ampl

Another big problem is the "undefined" components, such as the DEC3009B transistors and the D664 diodes, as well as a few transformers. The $8 / L$ uses about 314 transistors and 959 diodes, of half a dozen different types each.

The $8 / L$ contains four card racks, with 22 slots each, holding one double-height or two single-height cards in each slot. Total number of cards: 104. There is room for option cards, which are needed for the high-speed reader, power-fail circuits, memory parity, and databreak options.

Half the $8 / L$ cards are standard DEC M-series cards, as described in recent DEC Logic Handbooks. These include:

6 M113 NAND 2-input
5 M115 NAND 3-input
2 M117 NAND.4-input
5 M160 AND-NOR

6	M310 Delay line
1	M360 Variable delay
1	M452 Variable clock
5	M617 NAND 4-input driver
2	M660 Positive level driver
1	M706 Teletype receiver
1	M707 Teletype transmitter
1	M901 Flexprint cable conn.
7	M903 Flexprint connector
3	M906 Cable terminator
$\frac{1}{54}$	M002 Logic source

The other cards seem to be special for the 8/L model:

$$
\begin{aligned}
& \text { M216 D-type Plipflops } \\
& \text { M220 Major registers } \\
& \text { M516 Positive bus receiver } \\
& \text { M623 Bus driver } \\
& \text { M700 Manual timing generator } \\
& \text { GO20 Sense amplif1er } \\
& \text { G221 Memory seleotor } \\
& \text { G228 Inhib1t driver } \\
& \text { G610 Diode board } \\
& \text { G611 Diode board } \\
& \text { G624 RC board } \\
& \text { G785 Power connector } \\
& \text { G826 Regulator control } \\
& \text { G921 Control panel } \\
& \text { WO25 Cable connector } \\
& \text { WO76 Teletype connector } \\
& \text { W-a Memory stack }
\end{aligned}
$$

These 104 PC cards contain the 360 ICs, 314 transistors, 959 diodes, some transformers, etc.

ICs Cheaper than TI 74N

Several members have expressed an interest in the Motorola MC700P geries of ICs. There are 45 different circuits in this RTL line. However, the M series of DEC logic modules, used in the PDP-8/L and 8/I, are built with the Texas Instruments 74 N serles, which has only 19 circuits in it.

Eleven other manufacturers have a TTL series similar to TI's 74N: Amperex, Hughes, ITT, Motorola (KC7400P), National, Nucleonio Products, Philco-Ford, Raytheon,

Signetics, Sprague, and Transitron. However, although the type numbers may be the same (or about the same), the circuits are not alway electronically equivalent. For example, the Sprague ICs are said to have differences in clamping and fanout.

Texas Instruments recently announced a price cut of about 30% in the 74N line, which may bring the cost of those 360 ICs for an $8 / \mathrm{L}$ down to just below $\$ 1,000$. But Motorola has also cut the cost of the MC7400P line, for a Motorola total cost of $\$ 932$, but still using the TI adder, which has no Motorola equivalent, and using the prices for 100 of each DIP. (DIP, for Dual In-11ne Package, seems to be more universally used than the DIL we've been uaing up to now.)

PDP-8 Simulation

If you have acceas to Applied Log1c Corporation's AL/COM timesharing syatem, their SIM-8 program simulates the PDP-8, as well as the PDP-5.

NOTES FROM ACS MEMBERS

Here are what a number of members have to say about their current efforts:

Millard McVay. Illinols

"So far I'm sticking to discrete circuitry, using DTL NOR gates of very standard design. I originally bought (from Meshna) 2N706's at 7 for $\$ 1.00$, less 20% in quantities of 1000 , but they graded out at just under 50% good enough for the job, 60 I'm looking for something better here. I bought diodes from Solld State Sales at 30 for $\$ 1.00$, less 30% in 1000 quantities, and they graded out about 87% good, which isn't bad. I'm etching my own circuit cards, and use Amphenol 15-contact card sockets. I've deoided that silk-soreen process is
much simpler than Kodak photoresist techniques for my purpose, where very many cards of the same type have to be made.
"My logic levels were chosen to be compatible with integrated circuits so they can be mixed if I decide to later. In fact, I already have purchased a couple hundred Fairchild type 914 gates, a hundred 923 flipflops, and some 900 buffers to play with when I find time."

Al Sinclair, Ontario, Canada

"I recently acquired three IBM back panels with almost 500 SMS sockets, and some 250 SMS cards complete with contacts (mostly 3 and 4 gates per card), also a considerable number of broken cards with contacts. I have been cutting the contacts off these latter cards and epoxying them onto other cards, mostly double height. Removing all the wiring off the back panels was a heart-breaking job, but I could not make use of it.
"This acquisiting resuited in a complete rebuild of my computer to eliminate all the plugs and jacks, and complete the conversion to the SMS aystem, soldering all connections. As you can imagine, this is a monstrous job, and it will be many months before I can use my machine again. I also took some damaged core-memory frames and rewired them to 1024 words of 14 bits, which took two months of steady work. So now my machine will be 14 bits (4 instruction, 10 address), all parallel operation, clock speed 1 Mc . I have also made a new front panel to spread out the indicating lamps for easier reading. The socket panels swing out like the PDP-8 for easier working on."

Norman Saundere, Mass,
"I've just spent 30 hours getting
the last bugs out of the modem (inodulator-demodulator) for going to and from magnetic tape and the Teletype. The original design probably took about as long to work out. This is a good device and probably ought to be used by others. But how to recover part of my costs so that I can eat while I go about developing other goodies? [Norm is a consultant in circuit engineering. ${ }^{0}$ Even if all the ACS members bought copies of the paperwork (schematics, theory, layouts, etc.) to reproduce the modem, it would take about $\$ 10$ a set to recover costs. I could supply printed circuit boards, raw but etched, but this would run about another $\$ 10$ apiece; and for parts, another \$10. If someone were to take over the last two items, they would each be half as much.
"I have a 33 Teletype TD, with one 11 -part character every 100 msec . The modem uses the Teletype suppiy, and typing is normal without switching when the magnetic-tape recorder is not playing back. It it is playing back, the keyboard can be used to intersperse characters, but if the keyed and played-back characters overlap, you get gibberish. The computer'itselif is required also to get the lockout function. If the recorder is recording while keying is done, a record of the keying is made, which can then be played back to, give machine operation identical to that which was caused by the keying. For time compression, to have the retyping at maximum nachine rate, and/or for editing, etc., the computer itself must also be called into play.
UEven though the modem is Iimited to literal key-to-magnetic-tape and magnetic-tape-to-print, it is quite useful. It al so serves to clean up the keyboard pulse-train output, which is horrible in noise and hash for one used to electronic signals. Another feature of this modem is
that it requires a bandwidth of only about one kilohertz at one or two kilohertz, which is all that the recorder I've assigned to the job has, being one of the earliest tape recorders sold for the home market. Any reoorder using a capstan would probably be all right, and those without might do if the tape were not cut or spliced, and were always played back on the same recorder."

Myron Calhoun, California

"At Fairchild R\&D we have quite complete and complex CAD (computeraided design). Interested ACS members might be able to get a copy of FAIRSIM (Fairchild Simulator)
User's Manual by writing to:
Fairchild Semiconductor
Distribution Services 440 Middlefield Road
Mountain View, Calif.
"We can go from equations to finished PC boards without touching anytring more "hardware" than a keypunch (and I let the keypunch service do most of that). Unfortunately, most of our CAD is proprietary.
"As for software: a compiler can get quite complex, but assemblers are easy. My dissertation, "Ma-chine-Independent Assemblers for Computing Systems," (order number 68-1647 from University Microfilms, 300 N. Zeeb Rd., P.C. Box 1346, Ann Arbor, M1ch. 48106; microfilm $\$ 3.20$, Xerox $\$ 11.05$) describes how to produce an assembler fast (using another computer -- by hand it would take a iittle longer). It gives complete flowcharts, listings, etc.
"I still have my original source decks around (as mun on the GE-225 computer at Arizona State University) and will send tape coples made on a 360/44 if anybody wants to pay our computer center fee of
$\$ 25.00$ (includes tape and mailing) for the reproduction.

Out here the dual inline package is called a DIP, not DIL. For what it is worth, the DIP is generally acknowledged to have been developed in my department (back before I got here, to be gure).
"I notice that Fairchild does not now actively sell RTH (or even make it, unless a large order is received), so don't plan on using it forever. It was nice stuff, though; low power, etc.
"I have shown your comment about 'these IC manufacturers don't have CPU designers...' to my boss. It amused him, since my department is full of engineers who elther have worked, or are working, on advanced computer dealgna. Normalily, however, our efforts are either proprietary or else directed to the manufacture of better components, LSI, etc."

Lt. Cdr. Lyle Pellock, New York, NY

"I am afraid my projects have come to a halt with the needs of my new assignment. Being the executive officer of a destroyer is a fulltime job plus. However, maybe one of these days I can get moving again."

B111 Mitchel1, Ontario, Canada

"The most interesting idea for the central processor I've seen lately is 'A Proposed Minimum Hardware Central Processor with General Purpose Computation Capability, ' by Robert W. Ehmann of Airborne Syatems, which was obtained as memo \#R-68-155 from the Computer Repository of the IEEE (345 East 47 St, New York, N.Y. 10017).
"Basically, the 1dea is that a 16K 24-bit computer could be built by using some of the memory (128-256 words) to store data, which would
be used as microprogram instructions for the sequencing of the processor. The resulting design, the logic equations of which are spelt out in the 23-page memo, would be quite complete with interrupt capability, normalizing logic for handling floating point, indirect and index addressing.
"Another article worth a mention is "Cauges and Cures of Noise in Digital Systems," which was published in three parts in Computer Design, Sept. - Nov. 1964. It has also been reprinted as a separate booklet by Computer Design for \$1.75. 1
(The IEEE memo costs \$1.50 for microfiche, \$3 for photocopy.)

Wade White, California

(Wade is now working for a new company, Electronic Arrays, in Woodland Hills; they make MOS devices such as dynamic registers; their latest is a $2560-\mathrm{bit}$ readonly memory containing the basic 64 characters of ASCII format, for CRT display.)
"I plan to use my company's products, as they are introduced, in the construction of my computer. The first project is a memory employing high-speed shift registers. After the memory I'll tackle the control logic, then the arithmetic unit, and last the I/O. With the availability of MOS devices and the assistance I can obtain from the rest of the company, I hope to develop a modular computer kit as a result of my playing around.
"I want to use the computer for stock analysis, game-playing and automated logic design. I am working at present on an interface for use with a cassette tape recorder (a Sony 124) to allow my computer some easy and inexpensive means of
bulk storage."

QUERIES AND ITEMS FOR SALE

Buffer Memory and Readout

Dave Vednor offers for sale a Telemeter Magnetics 144-B buffer memory; and a Sylvania electroluminescent 7-digit, 7-segment readout. Write:

David Vednor
2801 Willow Avenue
Fullerton, Calif. 92631
Dave also says: "I have been using Signetics JK flip-fiops at work, and they have proven far superior to the Motorola MRTL with respect to noise immunity. The DCL line is not that much more expensive, and more functions are offered.
"Have any members had any luck with the MOS registers or other MSI MOS devicea? I would like to try some, but the cost is a big high at this time."

Memory and Decimal-Point Query

Ted Naydan writes from New York State: "The availability of Motorola ICs encouraged me to get away from paper studies to hardware. Still, memory systems were not available to me.
"An opportunity to get my feet wet with a complete memory system, purchased from John Meshna of Lynn, Mass. for \$25, has kept me busy for some 3 months. It is a 64-word, 7bit random-access unit, with no schematics available. It consists of 3 boards, containing all of the X, Y and Z select functions. The core plane is a Univac C-164. Anybody have any information on the se units?
"Anyone have any 1 deas on how decimal point is selected in the electronic desk calculators now appearing on the market?

$$
\text { Vol.: II, No. 2-- July } 1969
$$

The Amateur Computer Society is open to all who are interested in building and operating a digital computer that can at least perform automatic multiplication and division, or is of a comparable complexity.

For membership in the ACS, and a subscription of at least eight issues of the Newsletter, send $\$ 3$ (or a check) to:

Stephen B. Gray
Amateur Computer Society
260 Noroton Avenue
Darien, Conn. 06820
The Newsietter will appear about every two months.

I'd like to hear more from Don Tarbell, as his activity parallels mine, as far as complexity is concerned. In addition, details on his 4 K memory, as he implements 1 t , would be appreciated."

Patohcords for Sale

A member has about 3000 patohcords for sale, in lengths of $4,7{ }^{9}$, 12 and 15 inches. They are IBM types, of two kinds: one is the self-contacting type, with pluge an inch long and more than $1 / 8^{11}$ in diameter; the other is the pixedwiring type, with plugs $5 / 8^{11}$ long and about $3 / 32^{\prime \prime}$ in diameter. Cost is 54 each, minimum order \$10, postage extra, from:

Johan Svanholm
Svanholm Research Laboratories
3205 Stanford St.
Hyatteville, Ma. 20782

Help Offered on SMS Carde

Don Paddock writes: "I've drawn about 100 circuits of the IBM SMS cards to date, and have identified about 30 of these in the manual (see Issue 3, page 4).
"If I could help any of the members in identifying thelr cards, I would be happy to do so. I would need the two or three letters given at the

Vol. II, No. 2 -- July 1969
lower left-hand corner of the card on the side the parts are mounted.
"The letters definitely do not 1dentify the use of the card. For example, a CW and a JZ card are triggers, with the same components and circuit, eacept that one has two more diodes for the S\&T function; the other has a direct connection to the bases for use as extender leads. ${ }^{\text {" }}$

For help, write: Donald Paddock, Rt. \#2, Box 54, Vero Beach, Fla. 32960.
the wang logarithmic circuit
Several members have agked about the log circuit used in the Wang calculators. The patent was issued to An Wang iast Fall, and is number 3,402,285, "Calculating Apparatus. ${ }^{\prime}$ For a copy send 50% to the Commissioner of Patents, Washington, D.C. 20231.

The caloulator generates the log of numbers by a series of successive approximations, using stored constants of the log to the base e of 10, 2, 0.3, 1.01, 0.999, and 1.0001. The antilog conversion works in the same manner, by successive approximations, using the same stored constants.

According to one of the top men at Wang, the log conversion teohnique is original with D_{r}. Wang, and was not known previousiy.

If anybody figures out how to make that log circuit work, how about telling the rest of us?

SEMSE AMPLIFIERS
The July EEE (pp 64-75) has three articles on sense amplifiers and comparators, used with core memory.

Copyright 1969 by Stephen B. Gray

Volume II, Number 3
 (Serial Issue 14) October 1969
 MORE ON TELETYPE

MORE ON TELETYPE

One of our newest members is Gordon White, who edits the Surplus Sidelights column in $C Q$ magazine. Gordon writes:
"After a quick skim through Vol.
I, I can offer these observations: I doubt if there are many model 12 Teletypes still around. I've never seen one in amateur handa, although they were the first RTIX machines, 23 years back.

Models 14, 15 and 19 are still very common, and if usable (60 wpm is pretty slow and they are not very flexible in other ways), are the cheapest good machines now available. I'm going to sell my complete \#19 (tape perf, keyboard, reader, printer, table and power supply, pretty fair shape) for $\$ 65$, as I go to all \#28 and later gear.

The 28,33 and 35 models are of course faster -- to 107 wpm , and 150 wpm on the model 37. Most of the latter are pretty costly for amateurs, however. A complete 28 ASR (roughly equal to the 19) is commercial-surplus priced at $\$ 1300$ up, though some MARS members get them free, and I have been able to provide some reassembled out of parts and surplus stuff for rather less.

The RTTY amateur wants serial machines, and parallel unita are no use to him. On the other hand, I can see that for ACS use, parallel units are more easily used. This is fortunate, since the parallel units are a drug on the market most of the time.

For example, there is a parallelfed tape perforator (LARP) by

Teletype that will perf to 100 wpm (1200 opm). It might be possible to parallel-feed a unit which prints on the tape, though I doubt the mechanism would take much more than 100-wpm speed. These LARPs were recently selling for $\$ 5$ each, plus motors. There are 8-level LARPS too, though the B-level gear is newer and more rare than 5-level.

There are several Western Union readers for parallel operation, most of them going cheaply. There is a Teletype LBXD reader which offers serial or parallel output, but has 7.00 unit serial code cams (Western Union type) which make it less useful to hams. I doubt an ACS member would care if the serial stop pulses were. 00 , .42 or . 50,80 these ought to be useful.

If one had a complete model 28 printer, he could put contacts on the code bars to generate parallel signals at the same time he gets hard copy from the serial keyboard (or parallel contacts could be put on the keyboard itself).

Further, you can code the "stunt box" of the 28 printer to give multi-wire output; that is, open or close a contact for up to 36 different characters (72 oharacters considering upper case/lower case). This might make the computer design easier -- read-in multi-wire, and read-out parallel to a 1200-opm perf, using the tape loop as buffer storage, reading from tape to the printer where 5-level parallel signals would be generated or, again, multi-wire.

I doubt that anyone would want to invest in the model 37 PC boarde, as prices are rather astronomical."

Gordon has a Frederick 670B Morse-to-Teletype translator, and "some 5:8 storage gear for communications handling." He adds:
"Using the model 28 typing unit, you could get a modified ASCII parallel input rather easily by using code-reading contacts and a latching contact on the letters-figure stunt level. ASCII, of course, uses five levels for character identipication and level 7 for US (spacing) and IC (marking), which could be derived from contacts on the 28.

You would not get even-parity on the 8th bit (you would have to be content with steady mark), nor the non-printing control functions on the 6th bit, but this might still be useful. It would be possible to arrange a separate button on the 28 keyboard to provide the 6th-bit information, I suppose.

On printout, you would have to provide a parallel-to-serial conversion to drive the printer, or use parallel-fed punches and a serial printer, as suggested previously. You'i have to rearrange the typebox if you used the actual ASCII coding as, for example, A in Baudot is bit 1 and 2 marking, the rest spacing, and in ASCII, A is bit 1 marking and the rest spacing. You'd have to put the A type-pallet in the place where the E normally is found.

This could be done in outrigger fashion on older stuff like the model 15, but I shudder to think of the haywire involved; the 28 is designed for that sort of thing -- the I5 was not.
up with transistors) are coming into surplus, and contain these units. The FGC-5 is larger, but its components are really a drug on the market -- useful for little else than the small parts. The UGC-1 is later, but is also becoming available.

There are sources here which have a lot of identified, undamaged computer parts: SASCO Electronics, 1009 King St., Alexandria, Va. and Ritco Electronics, Box 156, Annandale, Va. have this material. I have seen flip-flops, matrixes, PC card racks, etc. in quantity. Also, I have a man who wants to sell computer DC power supplies, 100, 180, 210, 280 volts, etc. -- anyone have any interest? I will supply the address on request. (Write to Gordon White, 5716 N. Kinga Highway, Alexandria, Virginia 22303.)

I'd like to hear reaction from members on my suggestions for the model 28, as I am a Teletype man, not a computer expert, and I may not have made myself clear."

Gordon also sent a notice of a sale of government property, by sealed bids, several months ago in New York. The item was a Philco 2000 computer. If, by some odd chance, a bidder managed to get this at some low price, he'd have to have quite a bit of room to put 1t in, as there were 21 tape transports with it, two printers, etc.

The 2000 was offered on an "as is, where is" basis, located at Westinghouse Electric in West Mifflin Borough, Pa. (the Bettis Atomic Power Lab.).

There are several military surplus units which contain rather straight-A MEMBER's PROGRESS forward serial-to-parallel and
parallel-to-serial modules. The AN/FGC-5 and AN/UGC-1 multiplex sets (the former built with tubes; the latter virtually the same set-

Bill Greene of New Jersey reports on his progress:

Last summer I made the decision to

Vol. II, No. 3 -- October 1969
switch from delay-line memory to core; after fighting long-term temperature stability problems and marginal operation for about six months. I have discovered that to start with a surplus core plane and end up with a working memory is no minor undertaking, especially on a spare-time basis. I am using a 16K plane with four sense windings and will go through a double cycle to end up with a 2 X byte memory. The complete unit is on five 8-by-8-inch Vero boards. One board contains the core plane, two contain the drivers, one contains the address registers, data registers, packing and unpacking logic and level shifters to drive the drivers, and the last board contains the gense amplifiers and timing logic. At the moment it looks like it will take about two more months of spare time to completion.

I still feel that a delay line is the best answer to many amateur memory needs, if the line is purchased from the manufacturer, rather than relying on surplus lines that were produced several years ago, before the state of the art improved.

With the switch to core and the exposure to more and better machines in the line of duty, came a change in system design for my comm puter. I will use an 8-bit instruction format, of which four bits are set aalde for the op-code, one of which is sub-coded, allowing a total of 31 instructions. The key is in using four 8-bit registers that are selectable by the instruction. One of these serves as the program counter. Two of the remaining four bits in the instruction select one of these regiaters, Which at the time contains the memory address to be accessed by the instruction. The remaining two bita select which of these regis-
ters contain the data to be trans-
ferred. By allowing the register selected by the memory address bits in the instruction to be incremented during the instruction, transfers of blocks of data become simple. Furthermore, if this register is \#3 (the program counter), the program will skip one byte and its contents can be transferred from memory to one of the registers, thereby giving a double word instruction capability and a means of loading a constant by program.

I have written several programs using this instruction set, and find that a program that takes 100 12-bit instructions in PDP-8 language can be written using 100 8-bit instructions in this format. Since 8 bits allow us to address only 256 addresses, a scheme of uaing a field register (as per PDP-8) of four bits gives a maximum memory size of 4096 locations. Two double-word instructions, namely a Jump to Subroutine and a Jump Indirect, allow simple access to all of memory.

I guess you can conclude from the preceeding paragraphs that I have become convinced that the smallest feasible computer for amateur purposes is not a 12-bit machine, but that it can be squeezed down to 8 bits.

Like many others, I am uaing Motorola RTL for all logic, and have found an excellent transistor for all-around use: the Motorola MPs 2923. Although it is listed in the category of a small-signal amplifier, I have found that it can awitch over 500 ma at one microsecond with no apparent harmful effects. It makes an excellent lamp driver, since you can put a 6.3-volt 50-ma lamp on the collector side and connect the base thru a 6l0-ohm resistor to the RTL element or even directly to an inverter output, if that inverter drives nothing else. Best of all, it is
priced at $43 ¢$ in small quantities, or 29ϕ if you buy more than 100.

I have also found a good buy on teletypewriter page printers. Atlantic Surplus Sales, 300 7th St., Erooklyn, N.Y. 11215, has on hand some model 10-15 machines built in West Germany. Many parts are inter changeable with the model 15; it is set up for the European standard of 63 wpm, although gears are available for conversion to 60 wpm . The unit is of much more recent vintage than the standard model 15 and 18 of lighter and more attractive construction. The price is $\$ 80$, and when I purchased mine in the midale of January, it was the tenth one sold within a week, out of a lot of 46 .

ANOTHER RESPONSE TO THE SURVEY
Dave Digby recently sent in the ACS computer survey, from Texas. The computer he has planned will have two registers, and will be built with RTL MC7OOP DIPs. The memory: 512- to 1024-word wire delay line. I/O: Teletype model 26 printer, MXD tape reader, RPE-26 tape punch. There will be 64 instructions, 6 to 10 bits long. Data words, 16 to 20 bits long, 1.6-4o clock. Add speed, 10 to 20 msec. (he must mean usec). Special features: lowest cost for off-theshelf components (except for surplus $1 / 0$); plans to develop it into a construction kit if there is any demand for it. Includes indirect addressing and one or more index registers (in memory); automatic multiply and divide optional at extra cost. Estimated complete cost less than $\$ 1,000$, total of 50 to 75 DIPs.

Dave'a four-register relay computer uses U and Y types from surplus telephone equipment, plus multicontact and stepping switches. The relay memory holds 16 words, of 16
bits each. I/O: switches and lamps, and maybe TTY. Add speed, $1 / 5$ sec, clock speed $1 / 10 \mathrm{sec}$, about 50 instructions, programmed by plugboard only. Present size, about 50 relays; 400 when complete.

Dave also aays, "I ran a 'Pree hamshop' ad in CQ to survey interest in a computer kit. The enclosed letter is what I sent the dozen replies I received. (in late 1967):
"Thank you for your interest. I hope the early state of my project will not discourage you. This is what you might call a 'market survey' -- I hope to get as much information from you as I have to give you right now. And the ad was published a month earlier than expected, so the following data leaves much to be desired. But here is the basic story and some tentative specifications...
"A few years ago, some computer fans indulged in fanciful speculation as to whether one could build a 'kilobuck computer,' a real digital computer to cost less than a thousand dollars. It was naturally assumed that all sorts of surplus and homemade parts would have to be used at that price. Sut today there is a tempting possibility that it can be done with new, off-the-shelf components.
"I have toyed with the 1dea of building my own computer for several years, but until recently I stuck to using free relays and helping to design computers for others to build. Early this year, stimulated by the trends in component prices, I sat down with a simple serial computer plan, and tried to further reduce it, throwing out every feature that could possibly be spared or substituted for. The only active registers I retained, for instance, were those clearly required in order to get information into and out of memory.

Then I devised means for substituting memory storage for most of the remaining registers required for useful computing. The result was so promising that I embarked on the current project to actually build such a machine.
"Subsequent work, although agonizingly slow as a part-time effort has been even more encouraging. It would appear now that our kilobuck will buy the materials to build quite a respectable little computer. With luck we might have enough change left over to buy a surplus Teletype for I/O.
"Having acquired a great deal of my computer education through direct access to a modest-sized computer, and having subsequentiy taught programming to students with similar privileges, I am convinced that even a very small computer, close at hand, can be a very large asset to the learning process. And, although I recognize that any computer buff worth his salt will aspire to bigger and more glorious gadgets, I also believe that small machines can perform many useful tasks.
"If you and/or enough other people agree with me as to the utility of such a small, slow but cheap computer, then there is every reason to expect that a kit for home or school construction of this design can be produced. It should be no more difficult to construct than most of the hi-fi and ham kits on the market.
"I cannot make any definite quotes on price or delivery dates at this time, but I am offering you a chance to express your wishes before it is too late to consider them in the initial model.
"The big question is this $-\infty$ what are you willing to do without, in order to get a useful machine at a
minimum price??? If you can wait until sometime next year for a small, slow digital computer at a price in the vicinity of one kilobuck, let me know what you think of the enclosed tentative specifications, and tell me which of the optional features you must have, and which ones you don't want to pay extra for. In particular, how much memory do you need, and what instructions are most vital? I/O is also a major concern, of course. Any additional suggestions you might have are equally of interest. I have already received a suggestion that circuita be explained in an educational manner, which I certainly hope to use, and there seems to be considerable interest in the Teletype angle, which I would like to explore further.
"MEMORY -- This will probably always remain the most costly item in any small-scale processor. The least expensive seems to be of the wire delay line variety. A single auch line can atore up to perhaps 20,000 bits, although the lowest cost-per-bit may occur at less than the maximum value. Larger storage capacity calla for more than one line. This introduces more complexity into the addressing structure, as well as the additional recirculation electronics for each separate delay line. This adds up to more than a minimal-sized computer, but is not otherwise incompatible with the proposed logio design.

[^2]The Amateur Computer Society 18 open to all who are interested in building and operating a digital computer that can at least perform automatic multiplication and division, or is or a comparable complexity.

For membership in the ACS, and a subscription of at least eight issues of the Newsletter, send \$3 (or a check) to:

Stephen B. Gray
Amateur Computer Society
260 Noroton Avenue
Darien, Conn. 06820
The Newsletter will appear about every two months.
just about double this -- 100 instructions per second -- by permitting an instruction and its addressed data both to be referenced during the same cycle. In either version, special programming techniques could be used to make important routines run several times as fast as this, but such programs can be very tedious to write.
"Glass delay lines have shorter cycles -- on the order of a few hundred microseconds -- so are naturally that much faster -- several thousand instructions per second. Sut the bit rate is faster, too, and more expensive logic elements may be required. Each line stores fewer bits, also, so that more than one may be required, even for a "minimal" machine.
"Any delay line constitutes "volatile" memory, meaning that all stored information is destroyed when the power is shut off. This is most annoying in a small computer, since the power may very well be shut off frequently, and aince input devices fast enough to reload memory conveniently are somewhat expensive. In many cases, however, one may wish to reload memory irequently anyway, due to its small size. In this case, a volatile memory may not be unduly
inconvenient.
"If a non-volatile memory is required, this would most likely be a rotating store -- disk or drum. The cost would be somewhat higher than wire delay lines, and slower operating speeds would be probable. However, no high-stability oscillator is required, since the "clock" is uaually derived from a recorded track on the device.
"Rotating memories can have cycle times as short as 10 msec , but the cheaper ones run to two or three times as long as that. Speeds as low as 15 to 30 instructions per second could easily result.
"INSTRUCTIONS -- There are successful computers on the market with extremely limited instruction sets. I am planning a somewhat more extensive repertoire, wherever this will substantially improve the utility of our small memory and slow speeds. Some otherwise borderline instructions and other features will be provided because they are also needed for internal functions.
"Probably the most controversial category is that of multiply and divide. Do you insist on having one or both of these at a decided increase in cost? A full-word-length operation definitely requires more registers than are needed by the basic machine. On the other hand, to program or simulate these instructions using memory for storage is very much slower than a wired-in instruction using active-element registers. Let's consider three preliminary choices in order of cost -- No multiply or divide; half-word instructiona; or fulllength, full-speed multiply and divide. We might package this as a separate option to be added to the basic kit."
(TO BE CONCLUDED IN NEXT ISSUE)
Copyright 1969 by Stephen B. Gray

Volume II, Number 4
(Serial Issue 15) December 1969

a publication of the
DECOUPLING
FILTERS

COMPUTER KIT

The previous issue contained most of a letter from Dave Digby in Texas, which contained a letter he'd sent to those who inquired about his computer-kit notice in CQ magazine. The letter ends:
"Index registers are fairly easy to include, if they occupy menory locations, rather than active registers. I favor at least one, possibly three. They can greatly facilitate loops and iterated algorithms.
"WORD LENGTH -- On the order of 20 bits. This would mean about 1000 words using a 20,000-bit delay line. The general idea is a word long enough to contain one complete instruction, including a full memory address. This is not too large in terms of data, representing about six digits in decinal, but will handle many useful problems. And double precision is not completely out of the question.

- "INPUT/OUTPUT -- I have mentioned only Teletype, 80 far, but other devices are not impossible. In particular, a small photoelectric tape reader would facilitate reloading the memory. Thus larger programs or data tablea can be contemplated. These come as low as a few hundred dollars, I am told. The general limits on other devices might be described as: only character-by-character devices, no faster than 100 characters per second. The number and complexity of control and synchronizing signals is also a factor."

Dave says he's still working on the computer kit, and is trying to build a small prototype. He's got
a couple of delay lines, which he says are a little short, as they hold only 100 words (heis considering words of 16 to 20 bits length). Dave hopes to cut the number of registers to a minimum, and says two might be used, one to address the memory location, the other to contain data. He's using Motorola RTL ICs. With the right backing, Dave would consider producing the computer kit commercially, but that kind of money is scarce.

RC DECOUPLING FILTERS

Our newest member is Louis Frenzel of Maryland, who has a working computer with minimum I / O, and who also gives some very helpful information on RC decoupling. He writes:
"I have build a complete working digital computer. It is in operation now, and as you might expect, 1s gradually undergoing various modifications and improvements as time, money and ideas permit. The machine uses an 8-bit word, and serial 2's complement arithmetic. It has 8 basic instructions, with multiply and divide being performed by subroutine. The computer is implemented with a mixture of DTL and THL ICs, including some of the MSI units. The basic add time is 3 milliseconds. So far I use only binary switches and lights for I/O.
"I'd like to comment on ... Problem 5-1: I don't really think that there is a set procedure for calculating RC decoupling (low-pass) filters for use in digital circults. Every system I've seen has been different. Some use series resistors; some don't. I recently saw a small RF choke used as the series element on one system.

That's going almost too far, but for this system it may have been needed. As for capacitor values, I've seen values from . 01 mfd to several thousand mfd. Almost anything works, but there are a few simple rules to follow.
"First, if possible, do decouple each PC board of circuitry. You won't go wrong if you use a fairly large tantalum or electrolytic, say 100 mfd , shunted by a . 01 to .1 mfd disc. The l00-mfd unit takes care of most noise problems and is large enough so that no series element is needed. However, the inductive reactance of this large capacitor is pretty high at switching frequencies, so it does not get rid of all the high-frequency stuff. The parallel disc takes care of this. I've used this successfully for years.
"In some systems the larger capacitor just isn't needed. The only way to find out is to experiment. Take a scope and look across your ground buss between the power supply terminal (scope ground) and a ground point in the system. You will probably see a lot of highfrequency junk here. Experiment by connecting capacitors at the point under observation and notice any change. Use the smallest capacitor that best minimizes the noise. A .l-mfd disc fixed my problem in a recent design.
"Decouplers are a necessary evil in digital systems, but their need can be minimized or even eliminated in some cases, if the reason for the noise problem can be found. In other words, treat the cause, not the symptoms. Noise on the ground and power busses generally means poor busses. These busses must have a very low impedance at high switching frequencies. This doesn't mean just low resistance; 1t means low inductance too. Thin solid or stranded wire just doesn't
make it. Try uaing some fat braid. The multiple strands keep both resistance and X_{L} low. I recommend at least a \ddagger ger if you have a high power consumption system with lots of circuits. Use it for both power and ground. This approach will often reduce the noise to a point where filters are unnecessary. If any noise is left, a .l-mfd disc on each board will get it.
"Good noise suppression is a must if you are using low noise immunity circuits. You can get away with murder if you use DTL or TML, since their noise immunity is relatively high. But if you use RTL; like a lot of guys do for low cost, you can literally be "eaten up" with noise problems. False triggering, erratic operation, and unusual logic problems will result.
"As a general word on wiring, don't bundle, cable or lace wires in parallel. Scramble-wire all circuits point-to-point. Use the biggest stranded wire you can stand and keep 1t short."

HOUNTING ICs
A recent look at the various ways of mounting ICs shows that prices are still high, no matter who makes the device, or how they make it.

Augat's Universal IC Packaging Fanel, which accepts 14-, 16-, 24- and 36-lead DIPs, and has WireWrap terminals on the back, costa about $\$ 1.50$ per position to mount 14-pin DIFs. Other Augat packaging panels cost $\$ 1.00$ per position. Augat DIP sockets are about 25 ψ each. Breadboards for flat-pack or TO-5 ICs cost $\$ 5$ to $\$ 6$ per position.

Cambion DIP sockets for 14-pin ICs cost 75 each in small quantities, or $\$ 550$ per thousand. The high-
density Wire-Wrap circuit boards cost from $\$ 1$ to $\$ 3$ per position. Breadboards are \$4 to \$5 per position.

Vero PC boards holding up to 20 14-pin DIPs cost $\$ 16$ in lota of 100 , or 80ϕ per position.

ELCO DIP sockets cost from 80\& each (1-19) to 55申 (200-999).

Vector Micro-Vectorboard is one of the cheapest methods of mounting DIPs (if permanent mounting is desired), by inserting the ICs thru the holes in the board and soldering directiy to the leads. Vector also makes sockets, but they are not cheap: a solderless DIP socket for 14-pin ICs costs \$4 for 1-19.

DI SPLAYS
Alco Electronic Products has some interesting displays:

Incandescent readout indicators, using a stacked set of plastic edge-lit plates with a dot-pattern number engraved on each; about $\$ 8$ each, for 6,14 or 24 volts.

Seven-segment incandescent readouts cost $\$ 6.45$ each; a "matrix-driver module" costs another \$25, plus \$1 for a connector.

Seven-segment neon readouts cost $\$ 5$ each; a "decode-display module" is $\$ 30$, plus $\$ 1$ for a connector.

BOOKS AND MAGAZINE ARTICLES

What To Do With Your Computer

Anyone wondering what to do with his computer after finishing it is referred to "Problems for Computer Solution," by Fred Gruenberger and George Jaffray (John Wiley \& Sons, 1965, 401 pages, paperback $\$ 5.95$), probably the only book of its kina.

The book contains 92 problems, ranging ail the way from "The Game of Dice" to "Economic Lot Slze," and includes problems in primes, games, random numbers, puzzles, geometry, and many others.

Even if your computer may never be able to handle Dartmough Basic, the paperback by the parents of Basic, John G. Kemeny and Thomas E. Kurtz, contains some interesting sidelights in computer programming: "Basic Programming," John Wiley \& Sons, 1967, 121 pages, $\$ 4.95$.

Apter a thorough diacussion of Basic, the authors preaent chapters on number theory, simulation (dealing a bridge hand, baseball, the knight's tour), games (NIM, ticktacktoe), business problems (compound interest, tax depreciation, decision trees), statistics, vectors and matrices, calculus, and special topics (teaching machines, codes and cyphers, and music harmony).

Software

Control Engineering has an interesting reprint of a series of 14 articles on programming (which ran from Oct. 1967 to Dec. 1968) and available for \$3. Although mainly about programming for process control, there is a lot of meat here, especially the article on "How Hardware Responds to Software" (Dec. 1967), which is recommended reading for those who are not too familiar with the subject.

Multiplexers and Logic Circuits

> "Multiplexers double as logic circuita, " by James Anderson of Fairchild (Electronics, Oct. 27, 1969, $\mathrm{pp} 100-105$) is about using the dual four-input 9309 and the eightinput 9312 multiplexers in place of interconnected gates.

The techntque requires a good know-

ACS NEWSLETTER
ledge of Boolean, truth tables and Karnaugh maps, which are required for translating a function into multiplexer inputs. The author says the multiplexer "is so versatile that it takes on the aspect of a universal logic circuit."
"The multiplexers are electronic switches that sequentially connect input-data innes to a aingle output. On the dual 4-input unit, the two select lines are common to both halves of the multiplexer, so that it behaves like a two-pole, four-position switch. On the 8-input multiplexer, three select lines control the eight input innes, and the device resembles a aingle-pole, eight-position switch.
"Applied as a universal logic circuit, the 4-input multiplexer can handie as many as three variables; two are applied to the select terminals, and the fourth variable or its complement goes to each of the input lines.
"Any of the possible functions of three variables -- there are 256 can be generated with one-hale of the dual, 4-input multiplexer. And any of the possible functions of four variables -- which amount to a prodigious 65,536 $-\infty$ can be handled by just one 8 -input unit."
A_{8} an example, the function $F=$ $X Y \bar{Z}+\overline{X Y Z}+X \bar{Y} Z+\overline{X Y Z}$ can be implemented on half of a dual 4-input unit, whereas, if it were built with discrete NAND gates, this even-parity function would require five 2 -input and two 3 -input gates.

MOS Memories

"MOS Memories Save Power" is the title of an article by Dale Mrazek of National Semiconductor in The Electronic Engineer (July 1969, pp 49-53). It is about the advantages of MOS shift registers over magnetic cores, for data storage
in low-power digital systems, and includes schematics for data input select circuits and for the data alighment section (for aligning the serial output of the parallel registers).

Inexpensive Pulse Source

"Inexpensive pulse source has 'high-priced' features," in The Electronic Engineer for Oct. 1969 (p 78) describes a circuit using only two Fairchild TTرL 9601 oneshots, yet it has adjustments for period/delay and for pulse width, switches for output-pulse polarity, for pre-trigeer output-pulse polarity and for internal or external trigger, a button for single pulses, and inputs for gate and for external trigger.

Reduce IC Package Count

"Cut binary-to-BCD conversion costs," by Roland B. Anderson of Eunker-Ramo, in Electronic Design (Oct. 11, pp 104-110), tells how to reduce your IC package count with a nonsequential circuit using full adders and TTL gates, rather than a static converter.

Application Memos

Signetics Corp. (811 East Arques Ave., Sunnyvale, Calif. 94086) recentiy put out a small book of several hundred pages, "Application Memos," which you may be able to get on a letterhead.

The book covers a lot of ground. The first section includes guideInes for selecting a digital IC family (relative comparisons), and a fine, illustrated glossary of logic terms.

The second section, on digital considerations by family, is the largest section, and includes applications in counters, shift registers, adders, comparators and de-
coders. Section 3 is on decoding and steering; 4 on counters, shift registers and memory ICs; 5; interface and display elements; 6, linear considerations; 7, timing circuits; and 7, parailel data handling.

This book seems well worth obtaining, which may not be so easy, as is usually the case with such pubilcations, except for those that DEC gives out in such quantities.

Understanding Core Memories

Two recent publications by Ferroxcube are about core memories. "Taking the Mystery Out of Memory" is a 5-page brochure that covers the basic facts. Much of this information is contained in "How to Use Ferroxcube Digital MagneticCore Memories, " a 28 -page booklet (Bulletin No. 666) well worth reading. After a brief review of how memories work, it gives some memory control techniques, and then goes into applications: data links, instrumentation, small business-data machines, process control and monitoring, telemetry and digital communications, and data organizers.

A letterhead might be required to get either of these, from Ferroxcube Corp., Systems Division, Englewood, Colo., or from a local office (Annapolis, Burbank, Cleveland, Denver, Minneapolis, Northlake, Orlando, Phoenix, San Francisco, Union (NJ), Waltham, or Toronto).

Logic Display

The "Wireless World Logic Display Ald" is described in a series of construction articles in the British magazine, Wireless World, by assistant editor B.S. Crank May 1969, pp 196-202; June pp 255-264; July pp 311-316; Aug. pp 372-377; Sept. pp 419-422; Oct. pp 466-470;

Nov. pp 27). The logic display ald produces, on a standard oscilloscope, the Venn diagram, Karnaugh map or truth table of any gate or logic circuit that is connected to the display aid. The display is a 16×16 dot matrix.

Author Crank priced out the componente, and liste half a dozen Eritish sources for the various groups of parts, at low cost. The ICs, for example, are by Ferranti, and cost $\times 33.15 .0$, or about $\$ 80$. Total parts cost, including cabinet, is X74.17,6, or about $\$ 180$.

SEQUENTIAL CIRCUITS -- INQUIRY

Don Fronek writes: "I have just finished some research in the area of sequential circuits and wonder if anyone in the ACS uses sequential programing. It's not a bad way to go for these smaller machines. Gives a cheap method of calling subroutines with only the basic commands (add, subtract, etc.).
I'm about ready to tear down my machine and re-do it in a parallel fashion (was series addition for process control).

Am interested in obtaining a cheap printer -- any suggeations?"

Later, Don writes: "Have obtained some core planes for the heart of a small 17-bit-word memory. Would like to know if anybody has a simple read-write circuit (including elementary circuits for transistor line drivers). I would like very much to obtain this information. These core planes are 16 X 16, and I'm planning on stacking them 17 deep. " Don Fronek, 520 E . "B" Street, Moscow, Idaho 83843.

QUOTRON MAGNETIC TAPE UNITS
Bill Pfeiffer sent some notes he

> The Amateur Computer Society 1s open to all who are interested 1n building and operating a digital computer that can at least perform automatic multiplication and division, or is of a comparable complexity. in the ACS, and
> For membership in the a subscription of at least eight issues of the Newsletter, send
> $\$ 3$ for a check) to:
> stephen B. Gray
> Amateur computer Society
> 260 Noroton Ave.
> Darien, Conn. O6820
> The Newsietter will appear about every two months.
wrote up on the Quotron tape handlers, which are available for about $\$ 100$ in Califormia. Also, he says, the modules and other parts are available. If anyone is intereated, write to Bill for a copy of his notes: William F. Pfeiffer, 932 Via Del Monte, Palos Verdes Estates, Cal1f. 90274.

WHERE TO EUY IT

B\&F Enterprises, P.O. Box 44, Hawthorne, Mass. 01937, has a catalog showing a memory core stack (12 planes with 2048 cores each) for \$90; PC logic boards at 10 for $\$ 3.50$ with connectors; one-psec delay line for $\$ 1.50$; and a magnetic drum with 146 heads for $\$ 95$, If you have 115 VAC 400-cycle.

IDEAS AND INQUIRIES FROM SHOSTAK

Bob Shostak has several ideas and questions: "Modification of a Fopular Electronics circuit makes a stable, simple yet reliable clock for any frequency up to around 3 Mc. Use one Motorola MC789F hex inverter IC (about a dollar) and a few components on a PC board. Four serles inverters square up the oscillator output. Harmonic suppression may be required, depend-

Ing on your luck -- a tuned circuit before the four squaring inverters should do the trick.

"Solution to the serial-parallel, vice-versa conversion problem with TTY I/O: software! The computer can wait around and pick off each serial bit as it comes (it might even do some calculation while waiting out the 22 msec between TTY pulses). I doubt many members have plans for interrupt systems, I/O buffers, etc., that would allow the CPU not to be tied up during I/O anyway.
"What is a source of cheap taperpin terminals to be crimped or soldered to the end of plugwires?
"What is a source of surplus neon drivers or indicators driven from ICs? What cheap transistor would brave the 90 V DC?
"Fossicle memory idea: a small tape loop on a regular tape recorder used as a delay line. Read, write heads must be apaced very closely for good access time; one could probably get bit densities of about 1000 bpi using just audio tones.

DON'S TRADING POSI
Don Tarbell (11200 Hillwood Drive, Huntsville, Ala. 35803) would like to trade, for items of equal value: 2 SN7483N (4-b1t adder, cost \$13.43 each); 6 MCr78P (dual D FF, cost $\$ 2.35^{\circ}$ each); 2 MC784P (dual half shift register, cost $\$ 2.30$ each). Don needs: MC717P, MC789P, MC7909.

Volume II, Number 5 (Serial Issue 16) February 1970
 ACS NEWSLETTER
 a publication of the
 AMATEUR COMPUTER SOCIETY
 LAMP
 DRIVERS

THOSE ADDRESS LABELS
If there is a machine-printed address label on the envelope this newsletter came in, the program used to print it was written in Cobol, for an IBM $360 / 30$.

The addresses are keypunched into cards, three cards per address, with a maximum of six lines per label. The program deck consists of 105 cards. The $360 / 30$ puts all the addresses on magnetic tape, then prints as many sets of labels as called for by a control card.

Another control card permits the labels to be printed "three up" (three across), or two up, or one.

LAMP DRIVERS
Louls Frenzel, the new member who contributed the item on RC decoupling filters to the previous issue, now comments on lamp-driver circuits. He says:
"This is an area usually neglected or taken for granted, as it is one of the less interesting and rather simple circuit requirements. I did dig into this area when I designed my computer, and found some interesting things.
"First, with all the sophisticated indicator lamps available today, you can literally spend a fortune on aimple offion indicators. Most of them look good, of course, but still do nothing more than go off and on. There are several good, cheap ways to make indicators that will serve your purpose and still look good. They are not as fancy as some of the commercial units available, but their low cost permits you to use more of them.

My initial thought was to use neons because of their low cost and availability. Besides, I had a batch of NE-2's on hand. But I quickly found that I needed some high-voltage transistors to drive them. These I didn't have, and since they are expensive, I didn't get them. However, I did find that high-voltage transistors weren't needed if care was taken to limit the collector voltage on a low-voltage transistor to a value within its ratings. I used this circuit:

The voltage divider keeps the voltage on the collector below the breakdown level when the transiator is off. The transistor is a 2N2369, whose breakdown is 40 volts. Almost any switching transistor can be used. Juat set the $R_{1}-R_{2}$ divider to a value high enough to prevent the lamp from remaining on when the transistor is off. The lamp sustaining voltage is lower than its ignition voltage, and when the transistor is off, the potential voltage across it is the supply voltage less the divider voltage.
"I mounted the lamps by pushing them through a $3 / 8^{\text {l! }}$ grommet in a panel. It's a snug fit, so no further support is needed.
"While this works fine electrically,

1t does leave somethine to be desired in appearance. Frankly, I hate neons and the high voltage they need. So I went to a standard incandescent. The cheapest is the old bayonet-base type. I used a \#49 (cheap), rated at 2 volts and 60 ma. I drive it with a $2 N 5134$ Fairchild npn (19\&) through a 47ohm dropping resistor. The supply voltage is the existing 5 -volt regulated logic supply. The driver transistor base can be fed directly from TTL or RTL gates or flip-flops. Inexpensive bayonet sockets can be used to mount the lamps behind a panel. No jewel or colored filter is needed. Just drill a hole in the panel a hair smaller than the diameter of the bulb. Then let the bulb end poke through the hole slightiy. The effect obtained is unusual but pleasing in appearance, and ever so cheap. Try it.

"I highly recommend a book titled, Digital Computer Design Fundamentals,' by Yaohan Chu. This is a McGraw-Hill book, and it outlines detailed design procedures and even describes a small hypothetical computer that could be easily modifled or added to, and built by an amateur."

NEWS FROM A MEMBER
Richard Dickey of California says:
"I have a nice full decimal one-
digit adder/subtractor built and tested. It takes juat 69 NAND gates. I found that the inclusion of direct subtraction takes so few extra gates that the nuisance of complementation is unnecessary. It is to go into a serial-by-digit, parallel-by-bit arithmetic unit based on the delay lines I got thru the ACS Newsletter.
"The price of the adder/subtractor, by the way, was 6 boards of 12 NAND circuits per board, at $69 \neq$ per board, for \$4.14 plus tax, plus a few hours of design.
"I plan to start out using this, at first, with the four-bit I/O register doubling as the MQ register. As a calculator, each digit of the multiplier, as it enters from the keyboard, can be counted down as the multiplicand is accumulated. On division, as each digit of the quotient is produced, it can operate the Flexowriter, thus printing the quotient as it is produced.
"Later I hope to get my drum memory working, and convert the kludge into a computer.
"I could get more done on my little computer if the big ones would stop breaking down. At the college we may have eatablished some sort of record last week, with all six of our G.P. computers down for one reason or another (one 360 , one B205, three G-15's, and an Athena)."

MORE ON ECHO IV
Some new information about Jim Sutherland's computer, ECHO IV, appeared in the February 11 issue of Computer Vorla.
ECHO IV has 17 machine-language instructions, 15-bit words and an 8K core memory, to which is being added 2 K words of read-only memory to eliminate bootstrapping. Another
expansion will be two tape drives, adaing 1.5 million characters on each drive.

Instead of punching up cards or tape, ECHO IV goes directly from keyboard to core, and then will transfer the programs onto the mag. tape after debugging.

Control keyboards can be plugged in at any of 16 receptacles scattered around Jim's house, using an 18-wire data trunk.

Jim plans to hook the TV picture tube to ECHO IV so the machine can communicate with the family thru an unused channel. On achool nights, the set will switch to that channel at a certain time and remind the children to go to bed.

Incidentally, by what may not be a coincidenoe, there was a book pub11 shed in 1965 by Little, Brown \& Company, "The Tin Men," by Michael Frayn, a reporter for the London Observer; in this comic novel, a small part is played by a computer named ECHO IV.

HARDWARE

Semiconductor Memories?

The technical magazines and journals are full of articles and news items about semiconductor memories. For instance, Motorola showed a 8192-bit random-access memory at the 1969 Fall Joint Computer Conference in Las Vegas. A hybrid, it contains both MOS and bipolar LSI circuits. The MOS circuits provide the high density and low power dissipation for the storage arrays, and the bipolar circuits provide the high speed for driving, sensing and decoding.

The memory access time is about

120 nsec ; the cycle time about 150 nsec. But how about cost? Motorola expects a price of about 10ϕ per bit "when the memory goes into mass production." By 1972, the price may be reduced to "about 5ϕ a bit." That would be about $\$ 800$ now, and $\$ 400$ in a couple of years. Cheap for an 8 K memory, if you can wait.

Electronic Typewriter Actuator

Here's an Idea that may be worth borrowing from:

Colorado Instruments, Inc. (One Park St., Broomfield, Colo. 90020) has designed an actuator for use with an IBM Selectric typewriter. The ETA-14 is a long, slim box containing 14 solenoids, and which clips on the Selectric to actuate the 0 to 9 keys, plus tab, dash, return and equal signs. A separate coupler provides the power and drive circuits.

Viatron has gone this one better: they will offer (or intended to at one time) a "solenoid robot" with 50 solenoids, for operating a Selectric at la characters a second, using an OCR font.

U-Shaped Cores

U-shaped cores are coming into use for read-only menories, with the sense wires strung through or around the cores, depending on whether a 1 or 0 is desired. However, these U-shaped cores do not seem to be available off-the-shele yet; companies such as Indiana General and Ferroxcube make them only to order.

Cheaper ICs by 19738

Toshiba will build a \$19-miliion plant to produce 100 million integrated circuita annually by 1973, according to Business Week.

Mitaubishi will also make ICs; by

1973 the two will be producing more than 250 miliion ICs a year, which is about 20% of U.S. production.

For years, U.S. semiconductor manufacturers have been saying that only strong Japanese competition could thwart their continuing, dramatic growth. If the tariffs are not changed, Japanese ICs may become as prevalent in the U.S. as Japanese transistor radios. (Presumably, nearly all these ICs will be for entertainment products at first, but digital ICs may come along a little later.)

N1xie Readout at 15 per Decade

The February 1970 Popular Electronics (pp 33-47) has a long construction article, "Build Numeric Glow Tube DCUII by Don Lancaster, based on the Eurrougha B5750 Nixie.

The counter operates from $D C$ to 8 or 12 Mc , depending on whether RTL or Signetics Utilogic is used. The article describes the 8-Mc RTL model (Motorola KCTOOP series). Complete information on the Utilogic version is available from a Texas address.

As usual with Lancaster articles, kits are available. A complete kit of all parts for a $2 \frac{1}{2}-$ digit counter costs $\$ 43.50$; for 3t $\frac{1}{2}$ digits, $\$ 59.50$; $4 \frac{1}{2}$ digits, \$75.00. Etched and drilled PC boards are available alone, at $\$ 4, \$ 5.75$, and $\$ 7.50$. That halfdigit is a neon lamp that indicates a one, permitting counts up to 199 with the $2 \frac{1}{2}$ digits. At the 200th count, an over-range neon indicates that the counter has gone beyond its limit. A power-supply kit is available at \$6.50.

Expensive Breadboard

The breadboard mentioned in Vol. II, No. 1 (page 6), now has a big brother, Elite 2, which has three power supplies instead of one; a
waveform generator that outputs sine, triangle and square waves, and positive and negative pulses. The cost is twice that of Elite l: \$1300.

The "universal matrix" that is the heart of both Elite models can be bought from AP Inc., 72 Corwin Dr., Painesville, Ohio 44077. The AP breadboard consists of 8 groupings of 64 terminals each, with 4 tiepoints per terminal, making 2048 tiepoints, plus two croups of 27 four-tiepoint terminals, for a total of 2264 tiepoints. Any DIP from 10 to 128 pins plugs in, also 8 - and 10-pin TO-5 cans, and standard discrete components. Interconnection is by any piece of wire, from size 10 to 30. Cost: $\$ 85$ each. Seems expensive for five acetal copolymer terminal strips on a glase epoxy base, even with a "goldplated copper ground plane" on the back, and "spring-loaded beryllium copper, gold-plated" tie-point contacts.

Lower-Cost Fairchild 7400 ICs

During the last week in January, Fairchild Semiconductor started offering 7400-series ICs at what they say are the lowest prices in the industry. And their ad compares prices (the first column gives the basic IC number):

Fair-

7400	TI Signetics Motorola chilo			
7404	1.58		1.36	1.07
7450	1.26	1.20	1.10	. 85
7474	2.52	2.40		1.88
7472	1.77	1.69	1.50	1.31

These are the 0° to $70^{\circ} \mathrm{C}$ types, in quantities of 100; only several of the 24 types are shown.

Fairchild is aiming at producing 2 million circuits a month. There are 17 gates, 6 flip-flops, and a BCD-to-decimal decoder/driver. Fairchild also aims to produce at
least two 7400 MSI elements every month.

Core Memory Drivers and Amplifiers

Texas Instruments published, last October, two applications reporte of interest. "The Operation and Use of Seriea 7520N Sense Amplifiers," CA-101, has 25 pages of not-too-technical information on the 7520 N , a 16 -pin plastic DIP family of three threshold-andstrobe circuits.

The SN7520/21N sense amplifier has dual sense-input preamplifiers with independent strobing of each sense channel. The outputs of the two sense channels are combined in a common-output circuit composed of two cascaded TTL gates. It is compatible with standard TTL.

The SN7522/23N also has dual sense-input preamplifiers with independent strobing of each sense channel. The outputs of the two sense channels are combined in a double-inverting open-collector output gate. It can be connected with logic gates with the wiredOR capability, such as most DTL gates and the SN7401 TTL gate.

The SN7524/25N is two separate single-preamplifier sense amplifiers. Each sense-input channel can be independentiy strobed. The output circuit of each channel features a simple TTL gate with a high fan-out capability. This is designed primarily for small memory applications where performance and cost are important considerations.

TI Bulletin CA-107, on the SN75: 324 monolithic memory driver, is a 5-page item adapted from the 1968 Spring Joint Computer Conference proceedings. The SN75 324 was designed specifically to replace the traditional discrete transistortransformer circuits. However, it
can also be used as a lamp driver, relay driver, or high-fan-out logic gate. It consists of four fast, high-current switches controlled by seven logic inputs that are compatible with 54/74 TTL and other standard logic systems.

TI Eulletin CA-122, "Monolithic interfacing in computers," briefly describes (in 10 pages) the 75109 line-driver circuit, 75107 line receiver, 75308 transistor array, 75324 menory driver, and core memory sense circuits.

Printed Circuits Without Photography
The "negative drafting system" of Bishop Graphics, Inc. (7300 Radford Ave., North Hollywood, Calif. 91605) permits making printedwiring boards without photography.

The secret is FC-component patterns on black matte acetate film, called "B Neg," with which one can make up the equivalent of a photographic negative. This eliminates two steps: making a photo positive, and photographing it.

A FC board is made by spraying a clean copper-clad laninate with Eishop Resist, placing the B Neg on the sprayed board and exposing it to ultraviolet, developing the pattern, and etching it.

Eishop sells a complete kit, containing 5" by ${ }^{\prime \prime}$ traye, photo resist, developer, stripper, etchant, contact pressure frame, and three $4^{\prime \prime}$ by 6^{11} boards, for \$28.70. For $\$ 36.80$ you get an 8^{11} by 10^{11} kit. All items are available separately. B Neg artwork patterns (1:1 scale) cost $\$ 7.55$ a roll of 100 patterns, and include DIP, flat-pack and TO-can types.

Cheapest Commercial Computer?

For $\$ 1800$, Unicom Ing sells the CP-8A, with a $1.5-\mu \mathrm{sec}-\mathrm{cycle}$ pro-

5 Vol. II, No. 5 _- February 1970

The Amateur Computer Society is open to all who are interested in building and operating a digital computer that can at least perform automatic multiplication and division, or is of a comparable complexity.

For membership in the ACS, and a subscription of at least eight issues of the Newsletter, send \$3 (or a check) to:

> Stephen B. Gray
> Amateur Computer Society
> 260 Noroton Avenue
> Dari

The Newsletter will appear about every two months.
cessor, 512 bytes of read-only memory, 4 scratchpad registers, and 40 byte-oriented instructions. Core is extra. The D model, with a million bytes of tape-cassette storage and IK of core, is "under $\$ 5,000$."

Unicom is at 1275 Bloomfield Ave., Fairfield, Hew Jersey

BOOKS AND ARTICLES

Computers for Amateurs?

"Computers for the Amateur Constructor," by R.H. Warring, was published in England in 1966, and is available from Sportshelf, P.O. Box 634, New Rochelle, I.Y. 10802 (102 pages, $\$ 6.75$).

Although the title is misleading, the book is of some interest, mainly because it is about the only one of its type. It tella how to build a counter, adder/subtractor, decade scaler, NAND, AND, NOR, OR , and lamp driver. These seem to have been designed by Mullard, and use transistors such as the OCfll and 0078 (there are substitution manuals that give the American equivalents).

However, the book tells nothing about how to connect the basic
modules together, except for a couple of simple logic circuits.

Semiconductor Memories

The November 1969 EEE contains an interesting section, on pages $52-$ 67. After a brief introduction and a list of 40 manufacturers, there is an article, "MOS Memories," by Leonard of TI, mainly about contentaddressable memories and read-only memories. "Bipolar Memories," by Snyder of Raytheon, mainly describes the operation of a memory array, and has almost a page on LSI meriory subsystems.

An Electronic Digital Slide Rule

A fascinating article with this title, by Schmid and Busch of GE Avionic Controls, appeared in The Electronic Engineer for July 1968 (pp 54-64). This hand-size calculator, weighing less than two pounds, measuring $5 \times 7 \times 1 \frac{1}{1}$ inches, contains 40 standard digital ICs, 8 rotary input switches, and four Nixie tubes.

The EDSR is based on integration, and has three basic sections: a pulse rate generator, output integrator/timing circuit, and function selector switch. The switch provides the proper interconnections for add, subtract, multiply, divide, square, square róot, exponential, logarithm, and sine-cosine functions.

The EDSR has not gone into commercial production, according to one of the authors, but has been offered for licensing to outside manufacturers. If nobody picks up this item, the authors may be able to release the detailed schematics, However, it looks possible to figure out the construction of the EDSR from the schematics in the article.

Copyright 1970 by Stepien B. Gray

Volume II, Number 6
(Serial Issue 17) May 1970

a publication of the AMATEUR COMPUTER SOCIETY

THOSE UNDEFINED DEC COMPONENTS

As the ACS Newsletter of July 1969 noted (page 1), one of the big problems in copying a PDF-8/L is that many of the components bear DEC numbers only.

One of the DEC District Managers very kindly provided some help.

For the transistors and diodes with no commercial equivalent, a DEC part number is given.

Transistors	
DEC 2	$(15-05369)$
DEC 1008	$(15-02155)$
DEC 2904	2N2904 0r 2N2905
DEC 3009B	$(15-03100)$
DEC 3568	2N3568
DEC 3790	$(15-03399)$
DEC 6534B	$(15-034090-1)$
DEC 6534D	$(15-03409)$

Diodes	
D662	1N645
D664	IN3604, 1N914, 1N3606
D671	IN3653
D672	IN3653
MR2064	IN4001

No information was received on the two delay lines (DEC 16-05530 and 500), rectifier (11-05397) and transformer (T2O37).

A NEW MEMBER's COMMENTS

Oui latest nember is Steve Wiebking in Nebraska, with the USAF. Among his interesting comments are these:

II have bought so-called tested ICs from Polypaks in the past. Their innear devices seem to be generally OK, but I have no confidence in the quality of their digital devices. At any rate, tested surplus is usually only marginally cheaper than
brand-new devices, and is not really worth it from the viewpoint of difference in quality.
"Polypaks also asks ridiculous prices for their unsorted devices. Mike Quinn and Electronic Components Co. (also known as General Sales Co.) are the only companies I know of that sell unsorted ICs in the 5ϕ each range. I cannot deny that getting these into usable conaition involves a lot of work, but as one of your correapondents pointed out, "insanity and wiring is what computer building is all about."
"So far I have built a tester for series 53 (TI) DTL, and also a device which allows me to easily identify unmarked ICs. At present, I am working on a more general teater, which will be able to handle TTL as well as a number of other IInes of ICs.
"I also have a couple thousand ICs in a narrow-gage TI DIF that I would like to sell once I get them tested. Frices would be 30ϕ for a 5360, 60\& for a 5302 (dual FF), and I also have some series 74 in this package, as well as many other series 53 types.
"Gadgeteers Surplus sells a number. of panels of lights at about lod per lamp assembly. These are generally low-current incandescent lamps; the ones I have are $10 \mathrm{v}, 20 \mathrm{ma}$.
"On the subject of making your own PC boards, I presently use a technique given to me by Bili MacBeth of Auatin. I draw my layout on graph paper, tape the paper to the PC board, and use a scratch awl to center-tap the hole positions. which I drill with a number 7o drill for ICs. This makes a fairly
tight fit on IC leads, but it makes soldering easier. After drilling the holes, I dip a draftsman's bow pen in alrplane dope and use this to draw resist lines on the board. I etch the boards by gripping the board with pliers and stirring the etch solution, using the board as a paddle. This gives me a better etch factor than merely laying the board in the tray and rocking it. The improvement is especially great with double-sided boards.
"The book, ${ }^{1}$ Circuit Design of Digital Computers,' by Hawkins (John Wiley \& Sons), contains a discussion of the transmission-line aspects of a core memory, and also takes a practical approach to many other aspects of discrete component deaign. As for the logical end of computers, my introduction to the subject was Understanding Digital Computers' by Siegel (Wiley), about 1961 or 1963.
"Fairchild has a nice application note on uaing the uAlli as a sense amplifier. However, things are getting to the point where 711s have only a marginal price advantage over straight sense-amplifier ICs. In the latest Electronics, National Semiconductor advertises dual sense amps for $\$ 4.80$ each in $100-u p$.
"In answer to question 4-2 (Feb. 1967, p 6), The Logic of Computer Arithmetic by Ivan Flores (Pren-tice-Hall 1963) containg the most information on floating-point hardware I have seen.
"You may already be aware that the Selectric typewriter can be converted for automatic operation using only about 10 low-power soleno1ds to operate the control rods under the keyboard. These rode can also provide coding of the keyboard for input to a computer. There 1s a company which does this commercially and has advertised in Computerworld.
"On breadboarding ICs: I haven't tried this yet except in a singleIC version, but I think I have a good arrangement. Mount three IC sockets side-by-side. Solder the leads of the two outside ones to the adjacent leads of the center socket. You now put your IC in the center socket and plug \#24 solid tinned wire into the two contacts that are connected to each pin of the IC. This is a little cheaper than commercial breadboards, almost as dense, and requires no special plugs.
"A possibility for an I/O device that no one seems to have mentioned yet is a FAX transmitter/receiver set changed to provide a digital output instead of an analog one. Through the use of software, the transmitter could be used to input ordinary typewritten material, or carefully lettered handwriting. The I/O of graphs and curves would be possible. I remember reading several years ago of an Australian univeraity that converted a standard FAX machine for use on their computer. Also, the Visicon company is now making a device of this type for computer input.
"I have bought a great quantity of surplus ICs for 5% each, from M1ke Quinn Electronics. In December I spent $\$ 750$ on 15000 ICE and expect the following yield of perfect devices, based on small samples: 7400-1500; 7410-500; 7420/7440 - 1100; 7441-90; 7473-300; 7474-150; 7475-650; 7442-50; and a handful of other types."

If you're interested in buying some of those narrow-gage TI DIPs, write: Stephen A. Wiebking, 5802 South 14 , Apt. 6, Omaha, Nebraska 68107.

Inexpensive T/S Terminal

Within a year, one of the electronics hobby magazines may publigh a
construction article on a timesharing terminal to cost less than \$200. It will uge a CRT (for offline editing), a 21-inch tape loop with a cheap Japanese tape recorder, and one of the new Flex Key "integrated" keyboards.

A read-only memory will be used for ASCII conversion. Future options may include a color adapter, cassette storage, and a solenoid matrix for typewriter hard copy.

Two reasons for the long lead time are the metalworking problems, and the fact that no two Japanese taperecorder heads (of the cheap variety) are alike.

Flex Key Integrated Keyboards

Those Flex Key keyboards got a lot of attention at the March IEEE show in New York, because they are so simple, and the button travels only about 0.02 inch.

In the thin version, the keyboard is only $1 / 8$ inch thick; the extorior is all plastic. It uses a "proprietary structure of conductive elastomeric membrane, deformed under pressure through a thin aperture pilm on a printed circuit board, to accomplish effectively bounceless switching. "This seems to mean that pushing the surface will force a conductive plastic up against a rigid PC board, after which the plastic returns to its original position.

The thick keyboard, with raised numbers (0 to 9 and decimal point), 1 s inch thick. Both measure $2 \frac{1}{6}$ by 3 inches. The thin model is: $\$ 9.95$; thick, $\$ 12.95$ each, from: Flex Key Corp., 1277 Main St., Waltham, Mase. 02154.

An Even Cheaper PDP-8
Another version of the PDP-8 is slated to come out this summer. The

PDP-8E, a 12-bit computer slimmed dow to compete with the small 8bit computers, will sell for about $\$ 4000$ in quantities, with 4 K core and no Teletype.

Arithmetic Unit in a 24-Fin DIP

In March, Texas Instruments introduced the SN54/74181 arithmetic logic unit, claimed to be "equivalent to 75 TTL gates... it is the closest thing yet to a 4-bit CPU in a package."
The SN54/74181 performs 16 arithmetic binary manipulations on two 4-bit words, including add, subtract, compare, decrement, direct transfer and shift right.' It will also perform all possible 16 logic functions of two Eoolean variables, incluaing AND, NAND, exclusive-OR, OR and NOR.

Four of the SN54/74181 can be hooked up with a SN54/74182 carry lookahead generator (also new) to add/ subtract two 16-bit words in 36 nsec, more or less.

The SN74181 is $\$ 16.50$ in quantities of 100-999; the SN74182, \$3.63. The 1-24 price' is about 50\%' more than those prices.

IC Plugboards from Vector

New at Vector this year are the 3677 series DIP plugboards, which provide universal mounting for DIPs, flat packs, transistors and discrete components. The longest board in the series (3677) will hold up to 24 of the 14-pin DIPs, and costs $\$ 9.89$ for $1-19, \$ 8.90$ for 20-99. There are 22 tabs per side at the plug-in end. The 3677 is 9.611 X 4.5^{π} with two sides; $3677-1$ has only one side; 3677-2 is a 6.5" X 4.5 II version of the 3677 .

The 3682 DIP plugboard holds up to 54 14-0in DIPs. The size is the same as the three boards in the

3677 series, but the layout is different, and the prices are slightly less.

Within the last year, Vector has brought out two breadboard kits for IC experimenters. The 29 K , costing \$59.75, includes a 4.5" X 13.9" perforated Vectorboard with side and end rails, five 14-pin DIP sockets, two 16-pin DIF sockets, four 4-lead TO-5 sockets, two 10lead TO-5 sockets, four flatpack adapter plates, ten 12-hole mounting pads, and contacts, wire, terminals, lugs, bus strips, tools.

Another kit, for $\$ 17.95$, comes in two versions: 30X and 31X. The main difference is that these two kits contain no sockets. The 30X has two 4.5" X 8.5" Vectorboards with side and end rails; the 31 X has one 4.5" X 17" Vectorboard with raila.

These are not the only Vector DIP plugboards; for full information, write to Vector Electronics, Inc., 12460 Gladstone Ave., Sylmar, Calif. 91342.

Cross-Reference Guide for TTL ICB
National Semiconductor has put out a handy one-page cross-reference guide to the series 74N TTL ICs, giving the pin-for-pin replacements (or nearest equivalents) for the 74 N ICs made by National, TI, AEG (Germany), Amperex, Fairchila, Ferranti (England), ITT, Motorola, Sescosem (France), Siemens (Germany), Signetics, Sprague, Sylvania, and Transitron.

For a copy, write to National Semiconductor Corp., 2900 Semiconductor Drive, Santa Clara, Calif. 95051. They will also send a chart of "helpful general rules-of-thumb regarding practical uses of standard TTL. Series 54/74," plus a list of their own TTL ICs: 16 gates, four flip-flops, six counters, etc.

Heath and Digital Kita
One reason Heath hasn't gone into the digital-logic kit business is due to their designers' insistance on using, for esthetic reasons, decimal readouta such as Nixies, rather than a row of binary lamps. This raises the price to the point beyond "customer acceptance."

In talking with Heathkit men at the March IEEE, it seems that Heath had worked up a prototype kit several years ago for a combination Eput meter, frequency meter and interval timer, which would have been the TB-18 kit. The project was abandoned because the kit price would have been too high, due to such factors as Nixies being specified.

Incidentally, it would seem, at first glance, that Heath has lowered the price of its digital system from $\$ 435$ to $\$ 365$, on looking at the Spring 1970 catalog. However, the $\$ 435$ price, as noted in the August 1968 Newsletter (p 4) was for the 801-A Analog Digital Designer, with 13 plug-in cards. For the $\$ 365$, you get the 801C Computer Logic Teaching System. This seems to be just like the 801-A, but minus four of its cards: one-shots, relays, comparator, and operational amplifier. These four cards cost a total of $\$ 132$ (1969 catalog). Yet the 801C is only $\$ 70$ cheaper.... That's quite a bit of inflation in only one year.

Computer Designer's Conference

Called the "first national conference encompasing all areas of computer design," a Computer Designer's Conference \& Exhibition is scheduled for Jan 19-21, 1971, at the Anaheim Convention Center in Anaheim. Calif. Although most of the papers to be presented will be too far out for amateur applications, there may be one or two of interest. "Proceedings will be published and will in-
clude all papers."
The conference is being put on by Industrial \& Scientific Conference Hanagement, Inc., 222 West Adams St., Room 1098, Chicago, Ill. 60606, from which address is available a "free exhibit entrance badge," along with conference details.

"Low Cost Output Device"

Unicom, Inc., which has offered the lowest-cost computer so far ($\$ 1800$-- but without core), offers a "low cost output device for minicomputers," which turns out to be an Olivetti Fraxis typewriter with a soleno1d box over the keyboard, at \$790. The PR-2000A types at Io characters/aecond; for another $\$ 300$, an 8 -bit custom code-converter is attached to the back.

The Haynes Cookbook

Jim Haynes, an ACS member in California, recently became the editor of a new department on the Computer Group News (IEEE), called "The Cookbook." This new column "is an attempt to be of service to the practitioner of computer design," and will contain notes, suggestions, comments, "who-1s-doing-what-and-where-to-write-for-more-information," "questions, problems, gripes and goofs." Jim is at the University of California in Santa Cruz.

CURFENT ARTICLES

Einary-to-BCD Conversion

"Comparing Binary-to-BCD Conversion Techniques" by MacDonald and Sklar in the Dec. 1,1969 EDN ($\mathrm{pp} 33-39$) discuses parallel techniques (logic matrices, summation of BCD components, read-only memory), counter techniques, Couleur's technique (BIDEC, integers only), divide by 10 (binary integers oniy), and multiply by 10 (binary fractions only).

Microprogramming

An interesting semi-tutorial, "System Design of a Dynamic Microprocessor," by Cook and Flynn, was in the March 1970 IEEE Trans, on Computers (pp 213-222).

Nearly all the microprogramming done to date is of the static type, in which a machine instruction repertoire is implemented by a fixed program in a read-only memory. A dynamic microprocessor uses a read/ write menory for microinstructions, and permits a computer to be restructured to represent any computer instruction vocabulary that exists (or can be concelved of), by simply writing and loading its mioroprogram.

The article discusses a hypothetical computer, describes its basic operation, and gives several coding examples. In logical-type operations, the speed is about 10 times as fast for directly microprogrammed logical programs as for the machine-language equivalent, because the actual operation called for by a logical machine instruction is such a smali percentage of the overhead operations of instruction-fetching, decoding, and address generation. However, for programs involving arithmetic operations, the time savings 1 s much less (only 20% in the sample squareroot program), since the arithmetic instruction's loop will dominate the total execution time.

IC Flip-Flop Control Problem

If you've been applying (or removing) the preset and clear signals simultaneously to an IC flip-flop, youtve probably been having troubles. According to a Customer Engineering Clinic item in the Jan. 1, 1970 EDN (pp 74, 74), if the two signals are applied together, both outputs of a JK master-slave plip-flop such as TI's SN7495 will go high; simultaneous removal of both will permit

The Amateur Computer Society is open to all who are interested in building and operating a digital computer that can at least perform automatic multiplication and division, or is of a comparable complexity.

For membership in the ACS, and a subscription of at least eight 1ssues of the Newsletter, send $\$ 3$ (or a check) to:

Stephen B. Gray
Amateur Computer Society
260 Noroton Ave.
Darien, Conn. 06820
The Newsietter will appear about every two months.
random patterns to set up."
Trouble also arises when applying preset or clear signals while clock pulses are being received, even though IC makers may say "preset and clear are independent of the state-of-the-clock."

The solution is to avoid simultaneously applying or removing opposing control functions. Also, phase-lock all inputs, to prevent nonsynchronized inputs from drifting in their phase relationship.

Poor Packaging of LSI Chipg

LSI packages are being delivered with missing leads, broken or warped ceramic, loose caps, and bent pins, according to a March 30 articie in Electronics, "The broken promise of LSI: packaging" (pp 123-125).

According to the article, "the problems of packaging LSI devices seem to be growing faster than the market." "Reliability, assembly yield, and delivery problems plague users of large ceramic packages. "With chip makers throwing away two packages for every three deliveries, and using 2.5 packages for every delivered LSI device, price becomea an important issue."

Character Generator

A character generator using MOS read-only memories and shift registers is described in "There's a better way to deaign a character generator," by Carter and Mrazek of National Semiconductor, in the April 1970 Electronics (pp 107112). The memories shape the characters for CRT readout; the registers handle refreshment.
A.pair of ROM chips, either MM 5240 or MM 5241 (available in June, and designed for generating CRT display characters) generate the raster scan and vertical scan. A 5-by-7 dot matrix is used. The article shows a logic diagram for generating multiple-character lines.

Computer iusic

Not recent, but interesting, is a letter from Himelhoch of Martin Marietta in the Jan. 1969 Data Processing Magazine (p 14):
"... I have taken orchestration on a computer with no converter or other type of an adapter. This was accomplished by capacitor-coupling the output of some controllable flip-flop such as "sense light switch" direct to an audio amplifier or home-entertainment tape recorder.

The flip-flop was turned off and on under program control. Pulse width is produced by the length of time the FF is on, and frequency by the number of times per second the pulse is turned on and off. The pulse width controls the quality of the audio, producing a range of quality from that of clarinet to organ....
"Audible music can be produce directly from a chain printer such as an IBM 2403. I've heard "Jingle Bells" on a 1403 under program control of a 1401 computer."

Vol. II, No. 6 -- May 1970
president Lowell Wilkes (Cambridge Thermionic Corp., 445 Concord Ave., Cambridge, Mass. 02138), and mention the ACS.

Cambion's usual policy is to "withhold the sale of any products which fas 1 to meet our quality standards," bui they would "consider making an exception in the case of any sockets which might be avallable, so long as we can clearly distinguish such sockets from our first-quality sockets."

DIP IC Connectors

A new line of low-cost IC connectors by Molex has no insulator, just terminals that are inserted individually into a PC board, and into which you plug the IC.

The terminals are supplied loose or in chain form, for inserting into $0.10^{\prime \prime}$ holes. Cost is \$4.84 per thousand for 50,000 and up; for anything less than that, $\$ 6.06 / \mathrm{M}$. Minimum billing charge is $\$ 25$.
At $\$ 6.06 / \mathrm{M}$, the cost of terminals for a 14 -pin DIP is 8.54, about as cheap as you can get for plug-in terminals. For information and/or sariples: Molex Products Co., 5224 Katrine Ave., Downers Grove, Ill. 60515.

Imitation PDP-8/L

The DCC-112, recently introduced by Digital Computer Controls (23 Just Road, Fairfield, N.J. 07006), is plug, program and mechanicaliy interchangeable with the FDP-8 fam1ly, and looks like an $8 / \mathrm{L}$ or $8 / \mathrm{I}$. Sales are limited to OEM's, and the only software currentiy avallable is diagnostics. Built with TI 7400N TTLICs, it is all on five 13×16 PC boarda; two for the CFU
logic and standard-feature logic, two for the basic 4 K word core memory, and one for the memory extenaion control. Each additional 4K words of core adds one board. A diagnostic program determines which board is malfunctioning and should be replaced. The ICs, however, are soldered in, not plugged in, for economic reasons.

The DCC-112 has a $1.2-\mu s e c$ cycle (the $8 / I$ has 1.5 and the $8 / \mathrm{L}, 1.6$ usec). Basic price is $\$ 5900$, said to be lower due to: large volumes of the few types of PC boards; the number of connector points is reduced; and back-panel wiring is simplified.

Computer on a Chip

RCA has built a computer for NASA on a chip $1 / 7^{\prime \prime}$ square, according to the Wall Street Journal (June 22). "The tiny chip, which may accompany astronauts to Kars someday, can perform all the arithmetic functions of a medium-size, mediumspeed computer."

Logic Indicatore

Now that half a dozen logic probes are on the market, along come a couple of in-circuit logic indicators, which clamp onto the DIP and display the states of all logic pins, simultaneously. One or the other could probably be copied cheaply for amateur use.

Hewlett-Packard's Logic Clip 10528A, which costs $\$ 95$ each and weighs only 1.5 ounces, clips over the IC like a large clothespin. The state of each pin is show by individual LEDs, of which there are 16.

Caltron has a different aporoach that is more complex and more expensive. The Circuit-Vu 100 has the same type of spring-loaded clothespin clip, but it's connected by cable to a small box which has lamps

Vol. II, No. 7-- Auguat 1970

The Amateur Computer Society 1s open to all who are interested in building and operating a digital computer that can at least perform automatic multiplication and division, or is of a comparable complexity.

For membership in the ACS, and a subscription of at least eight issues of the Newsletter, send
$\$ 3$ (or a check) to:
Stephen B. Gray
Amateur Computer Society
260 Noroton Ave.
Darien, Conn. 06820
The Newsletter will appear about every two months.
on the front panel. Overlays for the specific IC types are held in place over the lamps with small magnets. Price: \$229.

LATE :YORD FROM WIESKING

A postcard from Steve Wiebking adds:
"Yore good news. Just got a call from Intel, and the ACS is definitely in the semiconductor memory business. Like the other companies, they had no specific details to offer, but Intel said that the types of devices that they feel would be most useful to us are the "cosmetic" and "hermetic" dropouts. The cosmetic dropouts have been tested in the package and would have a high yield. Intel, of course, is pretty exclusively in the memory and shift-register business, and could be counted on fir a good supply of a variety of products; note their recently announced 256-bit bipolar 120-nsec scratchpad."

SAL'S COMPUTER — AND AN OFFER
Sal Zuccaro says his computer now has about- 450 neon lights, to be driven with neon drivers he got at
10\& each; two 36-b1t 4 K word stacks have been built; the first language

Vol. II, No. 7 -- August 19706
will be 7090 Fortran IV, for which he already has an in-core compiler on punched paper tape.

Sal says "I still have a lot of PDP-8 information, prints, training tapes, etc., on the IC version, for anyone who wants them. Write 939 Breton Ave., Simi, Calif. 93065

HIGHIY ACCURATE DIGITAL CLOCK

The National Bureau of Standards has been experimenting with providing an extremely accurate time standard via TV sets. The NBS transmits a digital code in the vertical retrace, or blanking interval, in four cities: Denver (Ch. 7), Los Angeles (11), Washington, J.C. (5), and Cheyenne, Wyo. (5). NBS uses an atomic-standard clock, which is accurate to one part in a billion, or within one second in 300 years (my figures say 30 years).

The digital code signal is on the 20th line, and can be picked off the video amplifier (or detector or sync separator) and with various digital techniques can be used to drive an IC clock. One of the hobby magazines is working on an article on such a clock, for less than $\$ 50$.

A clock based on the digital code signal alone would not be as accurate as the original NBS standard, due to propagation delays. Therefore, the blanking interval contains a second signal, for correcting this error; proper use of it requires knowing, for one thing, the time difference between the TV transmitter and the HBS source.

Further information is contained in NBS publication TRG-6592W, a twopager called "New Role for TV: Atomic Clock."

Copyright 1.970 by Stephen B. Gray
type coded for either parity or non-parity ASCII code.

COMPUTERS ON AUCTION
The first computer auction ever held took place in New York last July 30; 93 lota were disposed of in 80 minutes by a fast-talking auctioneer.

The first item was a Univac Solid State 80 system, with six Uniservo tape units, read/punch, and printer; it went for $\$ 325, F O B$ NYC. A Univac I control panel, for display purooses only, 80 pounds of lamps and switches, went at $\$ 110$. Five identical LGP-30 computers sold at $\$ 300$ to $\$ 550$ each (FOB Mich1gan), mainly for the accompanying Flexowriters. An IBM 1401 CPU, 4 K , went at $\$ 1750$; a second one, for $\$ 1500$. One $360 / 20$ went at $\$ 52,500$, another for $\$ 29,000$.

Two minicomputers went high: a Varian 620i with ASR-33 and options, original cost $\$ 21,800$, went at \$7000; an Interdata 15-103 with 7 datasets, for $\$ 9000$. There were no bidders on an IBM 7072 that was opened at $\$ 2000$, nor for a 7094 that was started at $\$ 20,000$, and dropped to $\$ 15,000$; a 7070 went for $\$ 2250$.

The biggest item was a Univac llo7, with 7 tapedrives, card reader, punch, printer, and communications subsystem- no bidders at $\$ 100,000$ or at $\$ 50,000$. One of the last items was a Univac Solid State 90 , with 6 tapedrives, printer, punch and reader, which went at $\$ 425$; the 90-column card equipment to go with it (3 keypunches, verifier, interpreter, collator and sorter) went for \$75; an optical scanning punch for $\$ 75$, and an alphabetic tabulator for another \$75.

Before the auction, one publication had described it as a good place
for a hobbyist to pick up some useful computer items; perhaps he could "start with a processor and add to it later." There were several highschool and college stuaents at the auction, but after a few halfhearted bids on items that went too high after a few rounds, they cave up and just watched.

More than two-thirds of the $\$ 269,000$ worth of used computer equipment was bought back by the people who had consigned it to the Farke-Bernet gallery for sale, because the bidding "failea to reach the upset price," according to the nan who bought back both $360 / 20$ aystems, as well as about 60% of his 23 consignments, for which he will inave to pay a 15% commission.

EARDWARE

PDP-8/E to Replace $8 / I$ and $8 / L$

Digital Equipment Corp. announced in July its first under-\$ 5,000 member of the PDP-8 family, the 8/E. Cost is $\$ 4990$ for 4 K core and no Teletype. Fully compatible with the rest of the PDP-8 series, the 8/E will eventually replace both the $8 / I$ and $8 / L$, which are the current models.

Speeds are faster than previous nodels: I/O transfers are executed in one usec ($4.25 \mu \mathrm{sec}$ for $8 / I$ or $8 / L)$. One reason for the lower cost is the use of busing rather than wire-wrapped backpanels; all ootions are pre-wired for later plug-in, and logic modules are bus-independent.

A byte-swapping command has been added to the instruction set; it: operates on the right and left halves of the accumulator.

Fred Sias says that used $8 / 5$ models are having trouble finding buyers, as they are slower and serial. DEC gets several calls a day from $8 / \mathrm{s}$
owners wanting to trade for later models, but DEC doesn't.want to stock up on the $8 / \mathrm{S}$. In contrast, a used PDP-8 sells for at least \$7-8,000.

Another Look at Wire-Wrap Tools

Gardner-Denver Wire-Wrap tools "for solderless wrapped connections" are expensive. The electric-powered tools run about $\$ 180$ or more, the air-powered ones about $\$ 130$, and even the battery-run tool costs \$95. Wrapping bits and sleeves are extra.

There are manually operated tools: the squeeze type, for 22, 24 and 26-gage wire, is now $\$ 60$, plus bit and sleeve. The rod types run from $\$ 18$ to $\$ 23$, depending on sage, and terminal-hole diameter and depth. Unwrapping tools cost \$75 (squeeze type) or, for the rod type, \$4-5.

It would be much cheaper to make a wrapping tool from a short piece of tubing. Might be easier to use with an offset handle, something like the old Victrola windup handles, or an automobile crank.

Has anybody had any experience with home-made Nire-Wrap tools?

Price War Cuts IC Prices

A price fight between Texas Instruments and National Semiconductor has driven the cost of some 7400 TTL gates by National from 63\& (in 1000 quantities) down to 304. Motorola and Fairchild hope to remain competetive. From the others, no comment yet.

The 7400 gates have been sold below cost for several months now; some projections see gates sold for less than 20\& in 1971.

Paste-Up PC Boards

"Instant circuit boards" can be
made with the "sub-elements" marketed by Circuit-Stik, Inc., 1518 . 132 St., Gardena, Cal1f. 90249. Made of very thin metal, and backed with an adhesive that "withstands soldering temperatures," these IC pads come in two basic groups: one predrilled to match the .001" grid of pre-punched mounting boards; the other is not pre-drilled and is not "on grid," and is for maximum compactness.

Fatterns available are for $\mathrm{TO}-5$ and TO-18 cans (3 and 4 leads), DIP strips in various lengths (with and without power and ground connections), individual DIP pad sets (24 and 14-lead), flat-packs, connectors (15 and 22 pins), SCRs, TO-3 power transistors, distribution strips, and discrete components. Also in the catalog are pre- and un-punched boards, jumpers, and conductive and insulative tapes. These pads are not cheap; a package of ten sets of 14-lead DIP pads coats $\$ 3$, or 30% per IC. The strips, which mount six ICs each, cost from 22\& to 30\% per IC. Minimum order: ten dollars.

Cheaper GaAs Displays

Monsanto has been marketing segmented and dot-matrix displays. MAN 1 is a 7-segment GaAs readout; MAN 2 is a 5×7 LED matrix (plus a 36th LED for decimal point); and MAN 3 is a planar monolithic 7segment GaAs display, cheaper than MAN 1.

The news is that Monsanto will sell the fallouts from MAN 1 on the hobby market, calling it something like H4.

IC-Socket Fallouts

Cambion has some "manufacturer's seconds" of l4-pin sockets for DIF ICs, with !ire-Wrap terminals, style 703-3897-01-03-16, at 25d each for 100 to 499, 204 each for 500-999. If intereated, write to vice-

Vol II, No. 7 -- August 1970

Volume II, Number 7
 (Serial issue 18) August 1970

a publication of the
AMATEUR COMPUTER SOCIETY

LOW-COST ICS
Steve Wiebking, who letter was printed in the previous issue, has been negotiating with IC makers for their reject-but-usable ICs:
"I have written to six IC manufacturers so far and have received replies from Philco and Advanced Nicro Devices. They both seem interested in selling reject ICs to us (I would consolidate orders to avoid bothering them with small orders), but I have no specific details yet since this is not a standard line of business with most companies. In general, however, it should be possible to get the devices for less than the 5d per IC I've been paying Mike Quinn for mine.
"It is likely that some complex devices may run a little higher; Advanced Micro Devices makes only MSI TTL and Iinears, and Philco makes some 256-bit random-access memories (RAMs). Philco makes a limited but growing amount of series 74 TTL , including a wide variety of types, and some MSI. They indicated that the majority of their present output consists of series 930 DTL and RTL, but the proportion of TTL could be expected to rise in the future. So far, it looks like we would be able to buy only the series we actually wanted. Advanced Micro Devices makes a few series 9300 TTL MSI (9300 shift register, 9301 decoder, 9304 dual adder, 9309 dual 4-input multiplexer, 9310 decade counter, 9312 8-input multiplexer, 9316 hexadecimal counter, and two devices from the Signetics line) and a slightly larger variety of Fairchild and National series linears.

I do not yet know if it will be possible to buy mixes containing digital ICs only, but I presume that something of this variety could be worked out.
"All devices are untested, of course, and I presume some percentage of them will be unmarked - it was about 75% for the National ICs I bought from Mike Quinn. I am not particularly interested in trying to do sorting and testing for others, since my previous experience with this indicates that it takes up more time than I have, to do it for anyone but myself. It is possible that I might be abie to do sorting only (by this I mean identifying the unmarked devices), since I have this part of the operation semi-automated, but I would prefer to simply resell the ICs at cost and let everybody do their own sorting and testing.
"Naturally, I would publish in the Newsletter everything I have learned about sorting and testing from my past experience with many thousand ICs. The work required to sort and test enough ICa for a small computer should not keep a member busy for more than a few months of average spare time (not working continuously!!), and this is not really too much, considering how much time most members will wind up putting in on a discrete-parts machine. In addition, the ICs for a small computer should not cost much more than \$100 in a deal like this, and this will represent a savings of well over $\$ 1000$ even for the most modest machines a little larger than a PDP-8/L (compared to new IC cost). Further, the resulting benefits in the areas of decreased size, power, and design work
from using ICs should be plain enough, especially if compared to discrete parts, which the majority of members seem to be using. Consider, in particular, the advantages of semiconductor RAMs over using old core frames, if we are able to get the former.
"Of the four remaining companies that have not yet answered me Intel, Sprague, Advanced Memory Systems, and Computer Microtechnology - all but Sprague make large RAMs.
"In case anyone is worried about the reliability of ICs obtained in this manner, I used over 50 such rejects in a sorting ald I built last year, and I would estimate that it has been in operation 300 hours without any signs of failure. This, of course, is not very long for determining a useful reliability figure, but it is certainly a step in the right direction.
"Philco has mentioned the possibility of selling us "mechanical rejects," which are devices rejected simply because the sections of the case are misaligned, or the lead spacing is a little off, etc. These have been tested electricaliy and would therefore contain more than the usual number of electrically perfect devices. Ky past experience indicates that the yield of sood devices from rejects is generally $30-60 \%$, but Advanced Micro Devices feels their should be somewhat better, since they test all their devices to military standards.

[^3]from the various manufacturers. I would expect that nearly everyone would be interested in RAMs, so please write soon and give me some eatimate of how much you want of what. Remember that the distribution of types will be somewhat random, but we will most likely be able to control the series we are buying. I will send more information as it becomes available."

Steve's new address is: Stephen A. Weibking, Apt. 119, 251 W. DaytonYellow Springs Ra., Fairborm, Ohio 45324.

Steve also notes that anyone working on a delay-line machine would do well to consider the lo24-bit 5-Mc shift registers Intel now sells for \$38.50 (1-24), \$31 (2599), \$24.10 (100-999).

IS THERE AN AUTHOR IN THE HOUSE?
Fred Sias sent the first chapter, on general design principles, of a book he started on amateur computer construction. Eut now that he's finished his PhD work, and been promoted to Assistant Professor, he feels any writing he does now should be in his field, which is in applying computers to biophysics. (I think).

If any qualified ACS member would like to carry on with what Fred has started, please write to Dr. Fred R. Sias, Jr., School of Medicine, Dept. of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N. State St., Jackson, M1ss. 39216.

Fred is looking for an 8-level paper-tape punch operating at at least 50 cps , in working condition and reasonabiy priced. Or he will trade a new-condition 350-cps photoelectric paper-tape reader (CDC model 350) for the right punch. He would also like to locate a repairable ASR-33 or KSR-33 Tele-

Volume II, Number 8
(Serial Issue 19) November 1970
a publication of the AMATEUR COMPUTER SOCIETY

HARDWARE

Low-Cost ICs Again

Steve wiebking, who has been negotiating with IC makers for their usable fallouts, writes:
"Intel is. the only firm to give us a firm offer so far. Their offer is to sell us cosmetic rejects at half price. Taking half of their current price list, this comes to:

$$
1101-256 x 1 \text { RAM, } 1.5 \mu \mathrm{sec} .
$$

$$
\text { l1011- same, } 1 \text { usec }
$$

$$
1103 \text { - 1024x1 dynamic RAM, } 600 \text { nsec }
$$

$$
3101-16 \times 4 \text { RAM, } 60 \mathrm{nsec}
$$

$$
1402-256 \times 4 \text { dynamic shift reg, 5Mc }
$$

$$
\begin{array}{lllll}
1403-512 \times 2 & " & \text { " } & \text { " } & \text { " } \\
1404-1024 \times 1 & " & \text { " } & 15 & \text { " } \\
15.00
\end{array}
$$

"Any of Intel's other devices are also available on the same halfprice deal. The only thing here that interests me is the 1404 (or 1403), and I'm thinking about placing an order for some of these if nothing else turns up by next spring. If anybody else is interested in the registers, I'll be trying to build up an order of 100. (Write Steve at Apt. 119, 251 West Dayton-Yellow Springs Rd., Fairborn, Ohio 45324.)
"I wrote a reminder to Advanced Micro Devices about the middle of October, and still have no useful Information from them. Sprague and Philco have also both said they are interested, but have not yet made any kind of offer.
"Core Drivers: As long as semiconductor memories are not turning out to be as easily obtained as I had imagined, perhapa some of the members would like to consider a faster, cheaper and lower-powered
way of driving core stacks, which is described in "Submicrosecond Core Memories Using Multiple Coincidence," in the June 1960 issue of IRE Transactions of Electronic Computers, pp 192-198. Using standard 4-wire planes with the system described here gives a $2-\mu s e c$ cycle for $80-\mathrm{mil}$ cores, and a $1-\mu \mathrm{sec}$ cycle for $50-\mathrm{mil}$ cores. The lowcost driver system used with the

$1-24$	$25-99$	$100-999$
.$\$ 20.00$	$\$ 16.25$	$\$ 12.80$
24.00	19.50	15.38
30.00	24.38	19.20
20.00	16.25	12.80
20.00	14.00	9.00
15.00	10.00	6.00
15.00	10.00	6.00

read/write electronics. It was mentioned that multi-track heade can be ordered as an option.
"Have just purchased a model 533 IBM card-reader/punch from a local surplus dealer for $\$ 200$. Main reason it's so cheap (I guess) 1s that this is the reader for the IBM 650 and 1 sn't any good with anything else. If anybody wants the IBM 650, the dealer still has the rest of it. I didn't ask what the price was, since it is about $3 \times 7 \times 12 \mathrm{ft}$., and it would not blend in too well with the furniture. I hope to rebuild the reader into a somewhat smaller cabinet, so this. will divert me from my other projects for some time."
Earlier, Steve wrote: "I figure I can get my core stacke operating at around a $2-\mu \mathrm{sec}$ cycle time for $.06-.1 \phi / \mathrm{bit}$ ($\$ 360-\$ 600$ for 6×10^{5} bits)."

Low-Cost TTL, DTL, and Surplus
Norman Sanders sent word about lowpriced TTL, and shift-register and ferrite-core surplus.

The TTL (and DTL) is sold by Gerber Electronics, 852 Providence Highway, U.S. Rte. 1, Dedham, Mass. 02026. Their price sheet shows 7400 TTL and 930 DTL ICs; the 7402 quad 2 -input NOR at 60% each, 7472 master-slave J-K flip-fiop at \$1.11 each; 949 quad gate at 704, 9093 dual clocked $J-K$ FF at $\$ 1.30$, etc. Minimum order, 25 assorted circuits.

Norman says: "These are the lowest prices I've seen for new material. What I've gotten was Sylvania, and all have worked well on insertion.

[^4]The shift registers are the National MM5016 512 or $500-$ b1t dynamic ghift registers. In general, beware of dynamic registers, because they require odd voltages, excessive clock drive, and won't run slowly enough. These are the best I've found so far. I purchased in quantity because the single-unit factory price of $\$ 15$ was too much. I'll sell my surplus at $\$ 10$ each, the 25-up factory price. The factory driver is far too expensive, so I suggest discrete components for that.
> "The ferrite cores are General Ceramics CF123 in 0-5 material. They are suitable for 100-watt direct from the line to low-voltage loads with ultrasonic switching. The factory price is $\$ 5.70$ and I'Il let my surplus go at $\$ 5.00$. In the alarm, one is used to generate -12 V , -21 V , and -30 V from the +5 V supply. Thus only the +5 V supply needs to be taken from the mains and regulated, since the conversion introduces very little regulation at its outputs. The total load is one watt. A core with the semiconductors, capacitors, resistors, wire, and schematic and instructions for a one-watt supply with input from a 5 to 12 V source and outputs up to three, each from 5 to 30 volts, can be had for $\$ 10$ while the supply lasts.
"A preliminary check shows that it takes me about an hour to wire in each IC of the DIF type. I'm wondering what the experience of others is."

Write: Norman B. Saunders, 15 Ellis Road, Weston, Mass. 02193.

No Catalog From Mike Quinn

Steve Wiebking mentioned (on page 1 of the May and August 1970 issues) that he'd bought many unsorted ICs from Mike Quinn Electronics. At that time, quinn intended to put out a catálog. He has since decided
not to, says the stock changes too fast, even for another ad in Electronics. World (his last was back in November 1969).

Mike no longer sells unsorted DIFs, but he does have unsorted flatpacks at $\$ 13$ to $\$ 19$ per 100, depending on whether they're RTL or TTL. His DIPs are tested; a 7490 costs \$2.95, with 10% off for 10 (the 10 can be mixed). Mike supplies Polypak with 70% of their material, and also sells to a kit outfit in Indiana called Environmental Products. He also has core memories, mainly: fron IEM 1400 and Ramac, also some Ampex and GE types.

If you're in the area, you may want to drop in on Mike Quinn Electronics, 727 Langley St., Oakland Airport, Calif. 94614, (415) 569-1539.

One ACS member doesn't recommend Quinn. He sent a money order after seeing the magazine ad, never got a reply, and when he applied for a refund from the post office, found Quinn had cashed his money order two weeks after it had been sent.

LSI For a Calculator

Electronic Arrays (501 Ellis St. Mountain View, Calif. 94040, (4is) 964-4321) has developed the EAS100, a set of six MOS LSI circuits for a 16-digit calculator with 8-digit display capability. The six circuits are 24-pin DIP types, and provide the complete electronic portion of the calculator, except for the display.

The set includes a control array which uses a 1920-bit ROM to generate the basic control sequences that operate the calculator. The other five arrays are for: input, control logic, register, arithmetic, and output.

In adaition to the normal arith-
metic operations, the logic permits chained operations, negative sign and overfiow indication, and electronic interlock. Price for 1-10, \$158.46 a set; for 11-49, \$144.06. Applications material is available.

IC Dropout

The first victim of the TTL price war is Sylvania, which will end its IC operation in Woburn, Mass., by the end of 1970, thus ending the SUHL line by the originator.

Immediately after Sylvania's announcement, other IC makers ran ads for their SUHL lines; Philco-Ford, Motorola, TI, Transitron, Raytheon; all are hoping for a piece of Sylvania's \$8-\$10-million market in this ultra-high-level logic family.

In late September, Fairchild cut the prices of its 9300 line-up to 54\%. Advanced Micro-Devices has cut its 9300 prices to the point where gate functions in arrays are down to 8ϕ, in quantity; these compete with discrete TTL gates that are priced at 18ϕ in quantity.

Alterable Read-Only Core Memories

At least two companies have U-core ROMs that can easily be altered. To change a word in the Mempac memory from Datapac Inc. (Santa Ana, Calif.), clip a drive line at it's terminals, and weave a new arive line through or around the cores according to the new bit configuration. Datapac provides a "simple little wire dispenser."

Varian Data Machines uses a different approach for their VROM (variable ROM), a 20 Kb memory that costs about $\$ 500$. The braid is in a package that plugs onto the ROM board, and is quickly changed for another braid. Small changes can be made (at another part of the VROM) by removing or inserting

I-bars into the plastic holders around which the sense winding is wrapped. The entire configuration could be altered by changing the I-bars, but it's faster and easier to snap in a new braid board.

Arithmetic Logic Unit.

Fairchild has an MSI 4-bit arithmetic logic unit, the 9340, which can perform in parallel the add or subtract operations, or any of six logic functions on two fourbit binary words. The high-speed IC THL ALU incorporates full carrylookahead internally, and provides either a ripply carry output or carry lookahead outputs. Further information is provided in a data sheet and in a 16-page brochure on application notes, which covers, among others, interconnections for 8-bit, 12-bit, 16-bit and 28-bit ALUs; single-address and threeaddress arithmetic registers; 4x4 multiplication; and detection of overflow, all one's, and all zero's. Frice for 1-24, \$20.90; for 25-99, \$16.70 each.

Full Multiplier on a Chip

"Parallel multiplier gets boost from IC iterative logic," in the Oct. 12 Electronics (pp 89-93), discusses what is claimed to be the only TTL IC full multiplier on the market, the Fairchild 9344.

The H-P "Logic Clip" Again
Hewlett-Packard's $\$ 95$ Logic Clip, described on page 5 of the August 1970 issue, turns out to have quite a bit of circuitry in its two customized ICs. The clip can be clamped to an IC any way you like, including upside dow and off to one side. The clip contains 16 Decision Gate Networks of proprietary deaign, which determine if the input at each pin is Voc, ground, or logic signal (high or low), and automatically connect the clip's $V_{C c}$ and
ground connections to the proper pins, according to a March 1 article in EDN (pp 74-75).

Clock and Control with TTL
This is the title of an article in Electron1c Design (May 10; 1970, pp 82-88) on a digital clock, by Dennison of National Semiconductor.

For as little as $\$ 180$, a clock that will display time in the form 11: 43:56 with six Nixie tubes can be built with 14 TTL ICs of the SN7400 type, plus 7 transistors, 16 diodes and a transformer. The clock uses Ine frequency as the input. time base, which is accurate enough for most applications. If very precise timing signals are required, a crystal-controlled oscillator may be substituted. For actuating an external device at a specific time, a comparator circuit is described.

\$70 Data Modem

"Design pruning trims costs of data modem (Electronics, July 20, 1970, pp 99-101) by Stifle and Johnson of the University of Illinois, gives the full schematics for a 1200-bps tranamit-receive modem with a total parts cost of less than $\$ 70$, about 25% of the cost of commercial modems.

The modem can be built on two 3×4 inch PC boards, and consists of six ICs in the SN7400N series, three op amps, seven 2N2369 transistors, eight iN995 diodes and six 1N4i54 diodes.

The low cost was achieved by using digital techniques rather than analog, eliminating all "unnecessary" circuits such as data-set-ready and clear-to-send, direct interfacing with TTL to eilminate voltage-level shifting circuits, and use of only one oscillator.

Digital Tape Sensor

"Digital-tape sensor requires no
adjustments," in Electronic Design (May 10, 1970, pp 112-114), describes a simple five-transistor detector for beginning-of-tape and end-of-tape, using lN2175 photodiodes in a differential amplifier circuit. The design operates "without adjustment, over wide ranges of: illumination, detector sensitivity, wrinkled tape, dull reflective tabs, power-supply output, and temperature."

PUELICATIONS

Don's forget that if you don't have one of the referenced magazines in your company library or handily avalilable elsewhere, you can get tearsheets from nearly all of them by writing to their Readers Service Department, at the address given in the June 1967 issue of the ACS Newsletter. All of those listed are still being published, except for Electro-Technology, which died this last March, and Industrial Electronics, dead as of January 1969.

New DEC Book

Digital Equipment Corp. has recently published their second programming handbook in the PDP-8 series, "Programming Languages," as a companion to "Introduction to Programming," which appeared previously.

The new volume covers FOCAL, BASIC, 4 K and 8 K assemblers, FORTRAN, the floating-point package, and math routines. The first copy is free; additional copies are \$2.

Hypothetical Automatic Computer

CREI (Capitol Radio Engineering Institute) offers home-study "Major Elective" courses in Computers (\#253) and Automatic Control Engineering (\#255); both contain a lesson on the "Design of Hypothetical Automatic Computer (HAC). "As the forward phrases it: "In this assignment, we have called our pro-
posed product a 'hypothetical' automatic computer only because its performance will not match ordinary commercial demands; but for educational purposes, HAC is ideal -- and its paper design can be converted into real hardware. We know it can be made real because our advisors and authors at the U.S. National Bureau of Standards who conceived HAC for this study have produced the hardware and have made it work. You who study this design can also build HAC."

HAC has 64 ten-bit words of mag-netic-drum memory, eight instructions, and a serial adder. The drawing of the operator's control panel shows 42 lamps, 16 pushbuttons, a 3-position switch, and HALT and RUN buttons.

The logic diagrams are very' much like those in NBS Technical Notes 68 and 168 , as desaribed in the Dec. 1966 ACS Newsletter.

There are various block and logic diagrams, including a complete logic diagram of the arithmetic circuitry. There are no specs for any hardware; it would take a good man to build HAC from these lessons, particularly the memory-unit part. Input/output is theoretically by keyboard and printer; in the lesson, the I/O buffer pushbuttons and lamps on the console are used to enter and read out information.

Another lesson in both courses, on "Digital Computer Components," seems to have also been written by NBS men. After a description of various components, there are 18 pages on operating the HAC. This lesson notes that HAC was never built, but that "a much larger computer has been simulated to operate as HAC." A program to add five numbers (and check for overflow) is shown; it takes 50 instructions.

Incidentally, neither course is

The Amateur Computer Society is open to all who are interested in building and operating a digital computer that can at least perform automatic multiplication and division, or is of a comparable complexity.

For membership in the ACS, \& a subscription of at least eight issues of the Newsletter, send
$\$ 3$ (or a check) to:
Stephen B. Gray
Amateur Computer Society
260 Noroton Avenue
Darien, Conn. 06820
The Newsletter will appear about every two months.
available separately; the prerequisite for either is one of four "programs," in electronics, or electronics and mathematics.

MOS IC Course

A six-part course in MOS integrated circuits appeared in The Electronic Engineer between February and October of 1970.

Part 1 (Feb., pp 55-64): history and background. Part 2 (Mar. 5573): MOS circuits ($\mathrm{p}-\mathrm{MOS}, \mathrm{MNOS}$, and Si gates). Part 3 (Apr. 61-73): application of MOS circuits (interfacing MOS and bipolar logic; MOS arrays in a data terminal; MOS shift registers in arithmetic operations). Part 4 (May 51-57): complementary MOS logic and applications. Part 5 (June 63-81): randomaccess memories, static and dynam1c, performance and cost tradeoffs. Part 5B (July 63-69): MOS RAMs, performance and convenience tradeoffs. Part 5C (Aug. 53-56): MOS associative memories. Fart 5D (Sept. 49-54): memory costs. Part 6 (Oct. 41-46): testing MOS. The Nov. issue ($\mathrm{pp} 83-86$) contains an examination, "What's your MOS IQ?" Fill it out, send it in with \$1; if you pass, a certificate is sent.

Counter Survey

[^5]Vol. II - No. 8 -- November 1970 6
niques," by Langdon of IBM Endicott, appears in the October Computer Design (pp 85-93). The article covers a number of binary and non-binary trigger counters, shifting counters, and three other counters and includes block diagrams for 27 counters.

IC Digital Logic Families

A three-part article comparing the major IC logic families opened in the IEEE Spectrum with part one in the Oct. 1970 1ssue (pp 46-58), on "requirements and features of a logic family: RTL, DTL, and HTL devices." oy Garrett of Motorola Semiconductor. The advantages and disadvantages of the three families are discussed, along with input, transfer and output characteristics, plus a few basic gate designs.

Part II is on TTL devices (Nov. 1970, pp 63-72); Part III is on ECL and MOS devices.

Low-Cost Digital Record \& Flayback
"Low-cost stereo recorders can adapt to digital data" (Electronics, July 6, 1970, pp 90-93), by Newton and Buczek of Fort Monmouth, Includes block diagrams of the record and playback circuits. Combining data and clock on a single track beats the problems of intertrack phase-shift and head-gap spacing that audio machines have.

A tape speed of $15 / 16 \mathrm{ips}$ was used for maximum recording time; the higher speeds of $1-7 / 8,3-3 / 4$ and $7 \frac{1}{2} 1 \mathrm{ps}$ were used for data compression when playing back data.

The military version cost $\$ 650$ for the electronics, using TTL and an a-c power supply. A $\$ 750$ Uher recorder was used; a less expensive one with fewer speeds would cut the cost quite a bit.

[^6]
a publication of the AMATEUR COMPUTER SOCIETY

HARDWARE

Latest on Reject ICs

Steve Wiebking writes: "The possibility of getting reject ICs direct from the manufacturers seems to be dying a quiet death. I just read that Philco has gone out of the IC business, joining Sylvania.
"At any rate, the Gerber ad below makes it unlikely that anyone would be interested in rejects, unless we could get some MSI dirt cheap (very unlikely).
"In Electronic News, Feb. 8, Gerber Electronics advertised these unit prices for TTL: 7400-22\$... 7472 - 48申 ... 7491 - \$1.33 ... 9300 $\$ 2.73,9306-\$ 5.95 \ldots 9328$ \$4.62'. Inears: 709 - $53 \neq$. And a number of other types.
[In a previous Gerber price list, quoted on page 2 of the Nov. 1970 Newsletter, the 7472 was \$1.11]
"On that Gerber price list you quoted from, there is an interesting item you missed. The 2N2222's at $\$ 31$ per hundred should make pretty good core drivers, if you can believe the specs in the Motorola data book.
"If I had suspected that tested prices would ever be as low as this, I would never have bought the 15,000 ICs from Mike Quinn. I guess the best advice would be: den't buy any ICs until you absolutely need them."

Buying an 0ld Computer

Bill Pfeiffer writes: "Up until about a month ago I was building my version of a PDP-8/S and having
trouble shifting information between registers. The memory plan hadn't been nailed down but I had accumulated a lot of options to choose between. Naturally, each had disadvantages in terms of additional effort needed, and risks in regard to potential performance.
"For ingtance, I have 2000 26-bit words of twistor. (from Bell system military gear), 2 X 8-bit 1000 words of core with electronics and power, five 10,000 -usec delay lines with electronics and power, several other cores, some thin-film whisker planes (NOR), tape, several hundred bits of MOS, etc. I also have parts of several computers. One of these might be the major portion of an IC breadboard job, including core memory, all on four large boards. Another may be the major part of a small aircraft computer using core logic; it has power, memory, etc. No prints, though, and I gave up trying to figure it out.
"About a month ago I bought an RPC4000 at a graveyard-type disposal sale. A company that had been in the business of reconditioning LGP$30^{\prime} \mathrm{s}, \mathrm{G}-15^{\prime} \mathrm{s}$ and RPC-4000's had decided to quit that end of the business, and hence sold out. I got most of the RPC remains. Now I have to make it operate and then learn how to run it.
"As the result, I would be happy to dispose of my collections of computers, discrete-component cards including core drivers, etc., integrated circuits identified and unidentified, MSI, LSI, RTL, DTL, TTL, switches, power supplies, a display for an LGP-21, and a lot of other stuff that gets forgotten and rediscovered from time to time. For someone who can come and get it,

I could part with an RPC-4000 mainframe for, say, \$25. (This computer is still on maintenance contract with Control Data.) No memory for this one.
[Eill Pfeiffer is at 932 Via Del Monte, Palos Verdes Estatea, C̣alifornia 90274.]
"The PPC is a very fascinating machine. I have learned about adjusting the heads on 1ts magnetic drum, adjusting the electric typewriter, about free programs from the users' society, etc. It seems like it would be difficult to program without the regular assembier, which I have, and the compiler tapes, which I expect to get. The instructions have all sorts of masking, shifting, indexing variables, repeat and transfer modes, plus using hexadecimal 4-bit bytes or 6-bit symbols. My work is really cut out for me. What I learned about the PDP-8 doesn't seem to help much. I was getting to like octal. Now I have to get used to the 1dea that DFFOBF84D7FO3F80* is equivalent to
271270212702
2612700 12700."
In a later letter, Bill encloses a table of data on "Small Computers Produced Before 1964," listing the word-length, number of instructions, mode, memory type and size, number of tubes or transistors, I / O, power and weight, for 13 computers: CDC G-15, 160A, LGP-30, LGP-21, RPC4000; Librascope L-2010; NCR 310; Packard-Bell 250; Recomp III, SDS 910 and 920; TRW 230 and RW 300. The letter says:
"Enclosed are the results of an analysis of computers made before 1964. The sources were Department of Commerce publications describing about 300 computers. The criteria for selection was a considoration for the practicality for amateur usage. The main factors wore weight, power, number of ac-
tive circuit elements, input/output device, memory and such. Some omissions were made on the basis that my information suggested that perhaps only one machine had been manufactured. This may be of interest to some of the fellows who, like me, may be thinking that the purchase of an old computer may be the shortest route to getting a machine working that has some usable capabilities. Quite a few of these old machines are turning up on surplus sales. Most of these are too big to be useful to amateurs.
"The machine that is of particular interest is the LGP-30. Look at the number of active circuit elements, only 113 vacuum tubes. The clock rate is 120 KHz . The word length will handle 9 decimal digits. Manuals are available from Control Data. Also, there is quite a library of programs available to those who belong to the Users Society. The weak point of the machine is the drum or the senaitivity to pilot error. I understand that if you run the machine long enough to warm up the drum and then shut it down, you can't restart it until everything cools back down to ambient room temperature. Otherwise, the heads will scrape the magnetic coating off the drum. There were 40 or 50 of these machines offered at $\$ 25$ each without their drums. A few drums could be had for \$200 each. The main input/output device 1s a Flexowriter, but there is also a separate punch and a faster optical paper tape reader. The reader handles characters at about 250 per second.
!!The G-15 is still available, or at least was before Christmas, and is in the same price range. It is a bit too heavy (1000 lb .) and the power requirements (110V, 50A) present some problems. If my information is correct, the unit contains the tape equipment and uses a typewriter instead of a Flexowriter.

Vol. II - No. 9 -- March 1971

There are a lot of programa for the G-15 from the same Useral Society that is available to LGP users.
"The LGP-21 will catch one's attention too. It is a solid-state version of the LGF-30. It has the same instruction format, but is not as good as the LGP-30 from the standpoint of speed. The clock frequency is 80 KHz instead of 120 KHz . The book "Computer Structures" by Bell and Newell puts the LGP-21 performance below the LGP-30 by a factor of 3. The RPC-4000 design is apparently the result of an effort to recoup. It has twice as ruch memory, twice as many basic instructions with micro-variations that extend the capability considerably further. A next-ingtruction address is used in the instruction word, the clock rate is brought back up to 125 KHz , and options include a high-speed paper tape reader controlled by the computer to supplement the memory with external routines. The reader handles a 1200-foot reel of paper tape backwards and forwards at 500 characters per second in an on-line mode.
"The machine that really catches my eye is the CDC 160A. The chances are that we will never see it available at the right price for a noncommercial application. Another factor is the 1700 transistors. I look at this number as an indication of the problem I would have in keeping it running or even getting it going. You can see from my selection list that this is where I topped out. The SDS computers, I suspect, are in the same category."

Diode Matrices for Sale

John Green writes that he has some new diode-matrix circuit boards, MIL spec, for sale: seven 4×25 arrays, $\$ 2.75$ each postpaid; nine lox24 arrays, \$5 each ppd. They measure 5.6" $\times 6^{\prime \prime}$. Details on request. Write John K. Green, Box

1038, Boulder, Colorado 80302.

M1nuteman I Computer, Club?

A member asks if anybody knows of a club formed by those who have bought surplus Minuteman I computers. He adds:
"Just bought an old Univac SynchroTape typewriter (for \$25), which I understand, besides autoletter typewriting, was used in the early days to feed computer programs to the computer for medical purposes as well as for airport control purposes. Does anybody have any references and/or application data for this? It punches a 7 -level tape while typing. I'd like to know if possible and how to convert this type of equipment for generalpurpose data-processing purposes, as well as info on conversion to receive teletype from a shortwave receiver, a line, etc., and to posaibly use this paper-tape equipment for feeding standard computertimeshared equipment via telephone Ines."

If you have any of the angwers, pleage write Johan Svanholm, 6019 Baltimore Blvd., Riverdale, Maryland 20840.

A Simple Computer Kit

Many of the electronics hobby magazines have recently been running an ad for the National Radio Institute on a new course in computer electronics. Part of the course includes building a simple desk-top computer, which measures $19^{\prime \prime} \times 7 " x 14 "$, and weighs 22 pounds.

The Model 832 NRI Digital Computer contains 52 TTL ICs, 7400 type. The specs include: 1? storage locations for 8-bit words, expandable to 32 words; over 15 basic instructions; I/O is switches and lights. A close look at the photo in the ad shows that the memory is made up of slide

[^7]switches.
The NRI course, in Computer Electronics, with 58 lessons, costs $\$ 578$ cash. The advanced course, "For men with electronics exper1ence - first 19 lessons omitted," costs $\$ 503$ cash. Monthly-payment plans are available.

The 832 was designed by Louis E. Frenzel, NRI Assistant Director of Education, and Project Leader for the Computer Electronica course; he is also an ACS member. When asked for details on the circuitry of the 832, Lou said he plans to write an article on it for one of the electronics magazines. The 832 kit is not available apart from the course yet, but plans are underway to sell it separately, either in kit or wired form.

DEC Unified Bug

"Unified bus maximizes minicomputer flexibility" (Electronics, Dec. 21, 1970, pp 47-52), by Chertkow and Cady of DEC, describes the interconnection system used in two computers. The PDP-11 Unibus has 56 Ines; the PDP-8/E Omnibus has 96 signal lines connected to each module slot.

The article notes that solid-state memories "are not now avallable on DEC computers, but will probably be announced in the not too distant future."

How Cheap Can a Mini Get?

Coming this Fall is a $\$ 1700$ computer (in quantities of 200), a Computer Automation 8-bit model 208, with 4 K of core, but no power supply, console or chassis. The same company will offer the 16-b1t 216 on the same kind of stripped deal, for \$2400. A chassis-mounted 216 will cost $\$ 5600$ for one.... And what kind of modular processor does DEC have up its sleeve??

Passive DIPg

Now that so many integrated circuits are DIP types, a number of companies have adopted the DIL package for other components -- resistor networks, relays, capacitors, etc.

Beckman's Helipot Division has standard resistor networks in DIP form, such as digital pull-up networks (\$1.45, l-99), analog scaling networks (\$2.75, 1-99), and digital Ine-terminator arrays (\$1.25,199). Others making DIP resistor networks are Sprague, Mepco, XTS, IRC, Dale, and Centralab.

Daven has a "Dipswitch," with up to six contact arms, for a maximum 6pst or sp6ti. The unit has a piggyback option, allowing any 14-pin DIP to be plugged into its back; contacts of the mounting DIP are commoned to the Dipswitch terminals. A special coupling and rear-shaft extension permit tandem operation of another Dipawitch. Cost is \$2 to \$3 in 100-up quantities.

Corning Glass plans to put combinations of as many as 20 components into l6-pin "Cordips."

8K Bits for $\$ 240$ or $\$ 80$

A planar array of thick-film elements, called the Flux Ring memory, is being marketed by Signal Galaxles, Inc., 6955 Hayvenhurst Ave., Van Nuys, California 91406.

The manulacturer says the Flux Ring memory is about twice as fast as plated-wire types, requires less complex electronics and about hale the drive current. They call it the FIux Ring because "the magnetic flux from the film elements is provided with a low-reluctance path in the form of a ring surrounding the element."

Two adjacent memory elements per bit provide a 100% redundancy. If
power fails, the elements remain locked in their magnetized states due to a proprietary technique called "magnetic closure"; thus the memory is non-volatile.

The 8 Kb array costs $\$ 240$, or $\$ 80$ each in lots of 100. A 64 Kb stack costs $\$ 1415$, or $\$ 393.20$ in $100^{\prime} \mathrm{s}$. The exorbitantly high prices of the single "evaluation samples" seem intended to keep out all but OEM's, which is all that interests Signal Galexies, Inc.

In-Circuit IC Tester

The Aug. 1970 Newsletter described the Hewlett-Packard Logic Clip for $\$ 95$ (p 5), which clips over an IC like a large clothespin and indicates the state of each pin on individual LEDs.

A less compact, but similar and cheaper tester, the Digi-Viewer, is described in the March 1971 issue of Popular Electronics (pp 41-46). This is based on the IC test clip made by AP Inc., from which 16 wires run to a box containing 16 lamps driven by Darlington-pair amplifiers. A transparent overlay of the particular circuit arrangement is slipped between the two rows of lamps to show the IC logic.

A complete kit of parts (including a "basic set of the most-used circuit slides) is available at $\$ 19.85$ plus postage and insurance for 4 ib., from Southwest Technical Products, Box 16297, San Antonio, Texas 78216. The IC test clip is available at \$5.95.

Low-Cost Logic \& Minicomputers
"The Effect of Low Cost Logic on Minicomputer Organization, " by House and Henzel of Honeywell (Computer Design, Jan. 1971, pp 97-101) has several facts of interest.

While the cost of minicomputer mem-
ory decreased by a factor of 6 between 1965 and 1971 (from 34 a bit to $0.5 \phi \mathrm{a}$ bit), the cost of logic dropped by a factor of 27 (from $\$ 2.70$ for a discrete-component DTL gate, to 10ϕ for a DIP TTL IC gate).

The factory cost factors for the DEC PDP-8/E are 15% for logic, 47% for memory, 15% for power supply, and 23% for miscellaneous. The PDP-8/E is constructed of MSI and SSI TTL DIP packages mounted on double-sided boards.

The factory cost factors for the Honeywell H-112 are 24\% for logic, 44\% for memory, 10% for power supply, and 22% for miscellaneous. The H-1i2 is made of SSI DTL logic of the 930 series, mounted on circuit boards $2-3 / 411$ square. The memory is a l.6-psec, 4-wire, 3D design.

Magnetic Drums

Herbach and Rademan, Inc. (401 East Erie Ave., Phila., Pa. 19134) 11sts two magnetic drums in their Winter 1971 catalog. One is a FerrantiPackard 371-4A, 10-inch diameter, $12 \frac{1}{\mathrm{E}}$ inches high, 38 data tracks, 2 timing tracke, 180 pounds, $\$ 195$. Vertically mounted in aluminum housing, protected by dust cover.

The Ferranti 371-12A is also a 10inch drum, but 1 s 31 inches high, has 480 tracks (384 data, 3 timing, 58 spares and spacers), over 3 million bits (65 K words, 48 bits plus 6 parity bits), 500 ib., $\$ 395$.

H\&R also has an IBM core stack for $\$ 24.50$ (five planes, each with 14 rows of 16 cores) and a no-name stack for $\$ 89.50$ (7 planes, $15-u s e c ~$ cycle).

This is an expensive company, even more now than previously, many more high-priced items than a few years ago. (They also have a computer tape transport, without read/write heads or electronics or vacuum

ACCS NEWSLETTER 5

$$
\text { Vol. II - No. } 9 \text {-- March } 1971
$$

The Amateur Computer Society is open to all who are interested in building and operating a digital computer that can at least perform automatic multiplication and division, or is of a comparable complexity.

For membership in the ACS, \& a subscription of at least eight tssues of the Newsletter, send \$3 (or a check) to:
: Stephen B. Gray Amateur Computer Society 260 Noroton Avenue Darien, Conn. 06820
The Newsletter will appear about every two months.
pump, for \$99.50.)

More Paste-Up PC Boards

The Aug. 1970 Newsletter described (p 4) the Circuit-stik system of thin-metal IC pads with adhesive backing, for pasting up a PC board on laminate or perf board.

Bishop Graphics (7300 Radford Ave., N. Hollywood, Callf. 91605) has come up with a similar product, Circuit Zaps. Standard patterns are for DIP mounting, with 8,10 , 14 , 16, 24 or 36 leads; for TO cans with 3 to 16 leads; for flat packs with 10 to 36 leads; connector strips, etc. Also in the catalog are terminal pins, zap guns for staking, jumper cords, and laminate board. These pads aren't cheap elther; a package of 12 sets of $14-$ lead DIP pads costs $\$ 7.55$, or 63ϕ each, twice the cost of the CircuitStik equivalent.

Component Insulators

Robison Electronics (2134 West Rosecrans Ave., Gardena, Callf. 90249) makes tiny insulators for mounting axial-lead components, for increas1ng packaging density of DO-7 diodes and itwatt resistors. These Verti-Mouṇts resemble the gunracks found in some barracks, with the
components racked up vertically. One lead goes up over the top of the mount and down the other side. The Vert1-Mounts, for 1, 2, 3 or 4 components, cost 6 to $7 \neq$ in 100's and 3 $\frac{1}{2}$ to $5 \not /$ in 1000 's.

No-Solder IC Breadboard

The "universal matrix" that is the basis for the Elite breadboards
(Feb. 1970 Newsletter, p 4) is expensive: \$85 each. EL Instruments (61 First St., Derby, Conn. 06418) has now come up with a smaller and cheaper matrix, the SK-10 "universal component EL socket," for \$18.

It consists of a $6.5^{\prime \prime} \times 2.2^{\prime \prime}$ plastic board with 64 rows, each with two sets of five electrically-connected terminals, so that DIPs when plugged in have a fanout of four at each pin. Two rows of contacts along both the long sides provide power and ground connections. As many as eight 14-pin DIPs can be mounted at one time, along with any components with leads . 015 to . $032^{\prime \prime}$ thick. Interconnections are made with any solid \#22 to \#26-gage wire.

Book on Computer Organization

Prof. Ivan Flores' lateat book, "Computer Organization" (PrenticeHall, 1969, 371 pages, $\$ 12.95$) is an excellent description of computer systems "in terms of functional block organization and relates that organization to software components in their operating systems. Coverage of the IBM 360 is most extensive; several other popular systems are considered in detail: RCA Spectra 70, Honeywell 200, PDP-8, IBM 1401 and IBM 1130, among others. "

Copyright 1971 by Stephen B. Gray \square

Vol. II - No. 9 -- March 1971
6
\square NEWSLETTER

Volume II, Number 10
(Serial Issue 21) June 1971

MINUTEMAN

FROM \$5000 TO \$690 IN TEN YEARS?
A recent Auerbach study on minicomputers says the potential domestic market is well over half a million, but competition will be tough and prices will decline 18\% a year. Hmmm -- at that rate, a $\$ 5000 \mathrm{mini}$ would be down to $\$ 690$ in ten years. A PDP-8/W?

A MEMBER'S PROGRESS REPORT
Sal Zuccaro writes from California:
"My computer is coming along fine. The various tasks are as follows:

1. Build R\&W circuitry for the FR400 tape transports.
2. Finish assembly of memory, 32K, 36 bits (still testing stacks).
3. Build 2 NDRO memories for microprogramning.
4. Finish wiring up lights on front panel (over 300).
5. Build R\&W circuitry for drum.
6. Close the loop on the paper-tape-reader/punch/flexowriter setup.
"I've installed a CRT on the front panel for direct readout.
"Also, I've taken over the master bedroom for the installation and I find it helps a lot. There is a lock on the door to keep out little fingers and all of my test equipment is in two 6-foot racks on wheels at the end of the workbench. The scope is on a raised platform over the bench.
"This weekend I'll shift one of the tape transports into the room. I will install R\&W circuits and marry it to a buffer memory. This way I can flexowrite into the buffer incrementally and dump blocks onto
the tape. Also vice versa.
"Add to this the fact that every so often I have to design and build some special piece of test equipment to take data on some of my special circuits."

SENSE AMPS \& FOR-SALE

Steve Wiebking writes from Ohio:
"Gerber Electronics sent me another price list with a few additional ICs on it. They now have 7ll's for 70 ϕ each. On the back of the vrice list was this information: The digital circuits are almost all Sylvania or Philco; the linears are Philco, ITT, and Silicon General. There are no rejects or fallouts; all brandnew circuits, guaranteed to meet all specifications. No minimum -you can buy one circuit for 22ϕ plus shipping....
"I went down to the local DEC office a few months ago to see about buying a set of PDP-8 schematics. For some reason, the field engineer there decided to give me Vol. II for the $8 / L$ for free (this is the volume with the schematics; Vol. I is descriptive). Since then, I've decided that the PDP-8 is not really what I want. So I will pass the schematics along to the first person who sends $50 \notin$ to cover postage.
"I've been experimenting with using some of the small epoxy rectifiers that many places sell for 5ϕ as selection diodes for a core stack. I haven't run all the tests I should yet (translated: I haven't gotten around to building a complete pair of line drivers), but it looks like they may be OK at least for slower stacks in the $10-\mu \mathrm{sec}$ area. Also
hopeful is the use of 2N5451's as drivers; they are 15\% each in the 1000's. They are listed as audio transistors, but are billed as having a fairly high cut-off irequency, so they might work.
"Here is a schematic for using the 7ll's as sense amplifiers. The Fairchild data sheet from which I am taking the application is a reprint of an article by R.J. Widlar in EDN for Jan. \& Feb. 1966. There are two basic circuits; \#2 has a slightly 1 mproved insensitivity to common-mode noise. No indication. is given of what the threshold voltage was supposed to be on these, but they are probably set up for 30-mil or smaller cores. Threshold voltage should be variable by changing the biasing resistors.
\#1. [Same as \#2, but without the pair of 12K resistors to ground, and without the 20ohm resistors in the lines from the sense inputs to the plus inputs of the $711^{\prime} s_{2}$

The $V_{a d j}$ is not specified, but presumably is also 12%, as it was in \#l.
"I have a Kepro Silk-Screen PC Board Printer that has been sitting around for a couple of years. It cost $\$ 35$ and can be seen in the Allied catalog. It is all there,
untouched, except for a little of the printing ink I tried to use for resist. I will sell it for $\$ 10$ plus postage. -- Stephen Wiebking, Apt. 119, 251 W. Dayton-Yellow Springs Rd., Fairborn, Ohio 45324."

USED COMPUTERS AND MINUTEMAN

Bill Pfeiffer writes from Calif.:
"The Minuteman club mentioned in the Newsletter must be the Minuteman Users Society formed by Dr. Charles H. Beck at Tulane University, New Orleans. I would like to know where they are selling the computers. My understanding of the Users Society is that it is for the D-17 computer, which is part of the Minuteman system. The 400cycle 3-phase power requirements are an interesting problem that I would like a solution for. The best idea I have requires $6 \mathrm{SCR}^{\prime} \mathrm{s}$ and 3 tranaformers.
"I found the TRW engineers who bought the LGP-30's. They obtained 70 in total, with 20 memory drums and a similar shortage of Flexowriters. The G-15's are all gone. Another group of engineers bought them all."

In a later letter, Bill writes:
"My RPC is working but I can't get an assembly program more than 273 loaded. This produces lots of messages telling me my programs are bad; NO, ILLEGAL ORDER, NO LOAD CODE, etc., are the result. I suspect some memory aberrations, but the memory print routine won't load either. So I have been trying to write a simpler routine of my own in machine language. That is a drag. It is amazing how many ways you can make mistakes with 32-bit instructions.

[^8]
Minuteman Computers

Over 1,000 Minuteman D17B computers are being made available to qualifying applicants as a result of modernizing the Minuteman ICBM's. These units were designed and produced by Autonetics, vintage 1962, and are used in the missile as part of the inertial guidance system. It is a small, versatile, multi-purpose, serial computer, designed to meet the highest standards of ruggedness and reliability.

Structurally, the unit is doughnutshaped, with the computer occupying one half of the package and the power supply filling the other half. The computer weighs 65 pounds and is 20 inches high, 29 inches in dianeter. A 28 v , $20-\mathrm{amp}$ source should meet the primary power requirements. Secondary voltages are furnished by the power supply and include various voltages between +36 and -36 volts, as well as 28 volte, 3 -phase, 400 Hz . It is unclear as to whether power supplies will come with the computers.

The computer components are located on 75 plug-in circuit boards. There are over 1500 transistors, largely silicon or mesa-germanium, and 6000 diodes. The memory is a small, light disk system about 6 inches wide and 3 inches high. The disk turns at 6000 rpm and has a capacity of 2727 27-bit words of which only 24 bits are used; three are apacer bits. The disk also has a number of circulating registers and loops. The clocking is at 345 kHz .

The number system is binary, fixed point, $2^{\prime} \mathrm{s}$ complement. The machine operates serially and synchronous. There are 39 instructions decoded, an external direct interrupt, and numerous I/O lines which inciude digital, discrete levels, analog, and pulse. Three, four, or eight bit-parallel I/O lines can be selected.

In normal operation the D17 was programmed via an umbilical cord from a test stand on the ground. Typewriter, tape reader, printer, and a control unit were, therefore, separate. The control unit has switches, a keyboard, and a Nixie display. The ground equipment is not always available but has been seen on surplus. An interface unit and I/O devices are thus usually needed to put the DI7 into use."

WORD FROM DR. BECK ON MINUTEMAN
A telephone call to Dr. Eeck brought out this information:

The Minuteman computer is not avallable to individuals. The schedule of availability priority is first to the Defense Dept. (the Army uses them for automated data acquisition in laboratories); second, to DOD contractors; third, to universities with DOD grants or contracts; fourth, to civil agencies of the Federal government; then, much further down the list, the Dept. of Health, Education and Welfare, for colleges and universities.

As of mid-April 1971, DHEN had a waiting list of 125 universities for the computers as they become available at that level. (Some may want more than one computer.)

The MCUG has 63 paid members.
Only 100 of the D17B models were made. Then about 1000 of the D27 (Minuteman II), and about 1000 of the D3? (Minuteman III); this III is still in production.

Only six test stands were made; Dr. Beck has one. This part of the hookup, he says, could be the hardest for anybody who doesn't realize how simple the interface actually can be; the user's group will tell him how. For a typewriter, a Flexowriter or TTY can be used.

The computer, if for use on a government contract, costs the recipient only the shipping charges. If at DHEW level, the recipient pays about one percent of cost. The cost is $\$ 234,000$; one percent of this is over $\$ 2000$. However, some states limit the maximum cost, for a single item made available thru DHEW, to \$600.

There is a very slim chance of these computers becoming available to individuals.

The D37 is an integrated circuit version, takes up 0.6 cubic feet.

DEC'S PDP-16
What had been rumored as a highly modular computer, with any word length desired, turns out to be a custom-designed hard-wired nosoftware semi-computer that DEC has decided to call the PDP-16, even though some of the 16's will be no more than logic systems that perform a minimum of computing.

The PDP-16 is designed by a PDP-10, using "Chartware, which interprets your problem and generates the right logic design, hardware requirements, and system price. "Word length is 8,12 or 16 bits; these can be taken in multiples to make, for instance, a 32-bit system. The price of typical PDP-16 systems will be $\$ 800$ to $\$ 3000$.

Memory of the PDP-16 is up to 1 K of hard-wired read-only memory, 16 or 256 words of scratchpad menory. Up to 150 program steps.

So the PDP-16 is a minimum computer custom-tailored to the application, for some of which it will be no more than a calculator.

The PDP-16 demonstrated at the IEEE show in March (and described in the 4-page brochure) does only this: if
the switch-input number is positive, divide by eight and store in location Ll ; if negative, divide by 8 and store in location L2. Cost is $\$ 800$, if you order ten or more.

CALCULATOR CIRCUITS

The Nov. 1970 newsletter reported a set of six LSI circuita by Electronic Arrays for a l6-digit calculator with 8 -digit display capability, $\$ 158.46$ for one set.

Varadyne Systems (10060 Bubb Rd., Cupertino, Calif. 95014) has now come up with a $\$ 249$ MCM-14 MicroCalculator, a 7" x 9" PC board with 6 MOS/LSI arrays, 4 memory registers, and "the entire logic and controls functions required to perform l4-digit displayable arithmetic functions." Standard keyboard and display units are available as options.

CIRCUIT ZAPS MAY GET ZAPPED

The Bishop "Circuit Zaps" mentioned in the previous issue (p) won't be around long if the suit by Circuit-stik is successful. CircuitStik claims patent infringement and theft of trade secrets.

Circuit-Stik pads cost 30 to 50% as much as the Circuit Zaps, are plated to mil spec, the 1000 Series is drilled to a 0.100 " grid, and the connector tapes can be overlapped without shortcircuiting.

MOSTLY BREAD, LITTLE MEAT IN BOOK
"Computer Technician's Handbook, " by Brice Ward (Tab Books, 1971, 475 pages, $\$ 10.95$), is almost entirely about such basics as number systems and Booiean algebra; 160 pages on circuits (CDC, TI, Signetics); and 200 pages on the hardware and software of Computer Automation's PDC

808 minicomputer. Most of this material you can find in manufacturer's manuals. Only a page or two actually get down to the work of figuring out what's wrong and how to fix it.

EDP ON STAMPS

Even if you're not a stamp collector, you might be intereated in making a specialty of collecting only EDP stamps, more and more of which are beginning to be printed.

For inatance, several recent Swiss stamps have non-representational computer-art designs. The Canadian 6\% "Centennial of National Census Taking, " issued June 1 this year, shows a strip of perforated tape and two mag-tape reels, arranged to make "100."

TUTORIAL MANUALS

Tektronix, manufacturers of oscilloscopes and data-display terminals, publishes a series of "new concepts" books that provide much information. Most of these are in the CRT area: scope trigger circuits, spectrum analyzer circuits, storagr CRTs, etc. However, two are of interest to ACS members.
"Information Display Concepts" is one of half a dozen Measurement Concepts books, and discusses, with block diagrams, the basic principles of data display. The chapters on time-sharing, programming, etc. are rudimentary; the chapters on "D-to-A and A-to-D converters and vector and character generators" and on "characteristics and specifications of direct-view bistable storage tubes" are highly informative, and easily understood.
"Digital Concepts" is one of eight books. (so far) on Circuit Concepts, giving basic theory on digital log-

10 circuits, as used in Tektronix instrumenta. The circuits are analyzed in details; families such as RTL, DTL, DCTL, CML and TML are described, as are specific types used by Tektronix, such as the Fairchild 914 NAND/NOR, 923 clocked JK FF, Motorola MC 357 gage, MC 354 regulator, MC 360 NAND, MC 352 RS FF, and MC 358 JK FF. Some counting and counter-readout circuits are presented.

These books nominally cost a dollar but there seems to be no charge when sent to a company address.

ANALOG COMPUTER SIMULATION

For those with access to a General Electric time-sharing terminal validated for the Mark II system, there is a program in the on-line iibrary, ANALG $\$$, which simulates an analog computer.

ANALG is based on the PACTOLUS program, described in the paper by Brennan and Sano, "PACTOLUS -- A Digital Analog Simulator Program for the IBM 1620," published in the AFIPS Conference Proceedings 1964 Fall Joint Computer Conference.

In ANALG茧, the conventional patchboard interconnection used to operate a standard computer is simulated by specifying, using the terminal keyboard, the interconnections between the many types of blocks available. Thru using these blocks, the responge of any time-dependent linear or non-linear aystem can be obtained. For instance, the operation of mechanical, electrical, and hydraulic systems can be simulated by using this program.

Program features include: on-line configuration modification, on-line initial condition modification, onine timing changes, maximum of 250 blocks for defining a system, 31 different types of blocks available,

The Amateur Computer Society is
open to all who are interested
in building and operating a dig-
1tal computer that can at least
perform automatic multiplication
and division, or is of a compar-
able complexity.
For membership in the ACs, and
a subseription of at least eight
issues of the Newsletter, please
send $\$ 3$ (or a check) to:
Stephen B. Gray
Amateur Computer Society
260 Noroton Ave.
Darien, Conn. o68
The Newsietter will appear about
every two months.

and numeric output values may be printed or plotted.

MAKING PC BOARDS WITH RISTON
Du Pont has a new product, Riston, a photopolymer film resist, which comes sandwiched between two onemil films. The polyethylene cover sheet is removed just before laminating the resist to a copper-ciad board under heat. A negative (or positive) mask is laid over this, then exposed to an ultra-violet source. The other film, a protective layer of Mylar polyester, is then removed; the board is developed, the unexposed resist washed away, and the board dried.

Since the photoresist is solid, it has uniform thickness and neat sidewalla, and it covers the boards holes without penetrating in them.

Ordinarily, the film is laminated by a machine at $230-2500 \mathrm{~F}$. It may be possible, Du Pont says, to do this with an ordinary iron set at the right temperature; try to keep the film wrinkle-free and also free of airpockets. After lamination, allow the board to stand at least 30 minutes; the adhesive strength of the resist increases during this holding period; longer hold times
after lamination can be very beneficial.

After removing the Mylar, develop in Du Pont's Methyl Chloroform, Dow's Chlorothane NU, Ethyl's $1,1,1$ Trichlorethane Cold Cleaning Grade Inhibited, or PPG's NU Stabilized. A container of the $1,1,1$ trichlorethane with a soft brush, or adequate agitation, should work well for development. Rinse with water and dry after development.

Suitable U.V. sources are, in order of preference, mercury vapor lamps, carbon arc lamps, and pulsed xenon lamps. Riston should be handied under gold fluorescent or equivalent safelight.

The film comes in thicknesses of 0.5 to 2.5 mils , depending on the end use; the 0.5 and $1.0-\mathrm{mli}$ thicknesses are for etching. Five-inchwide rolls cost $\$ 112.50$ for 150 feet (minimum) of $0.5-\mathrm{mil} ; \$ 115.50$ for 125 feet (minimum) of $1.0-\mathrm{mil}$. Samples may be obtained (on suitable letterhead) from: E.I. Du Pont de Nemours \& Co., Photo Products Dept., Room 2428-A, Wilmington, Del. 19898.

HELP! HELP! HELP!

I'm running very short of material for this Newsletter, otherwise I wouldn't have run the last couple of items.

Please send a longish letter on how you hooked up a surplus core memory and made it work, how you figured out what to use for drivers and amplifiers, etc. Memory is the Number One problem of ACS members.

Copyright 1971 by Stephen B. Gray

Volume II, Number 11 (Serial Issue 22) November 1971

ACS \quad newsemtra

a publication of the AMATEUR COMPUTER SOCIEIY

THE ACS STORY

An article about the Amateur Computer Society has been accepted by Computers \& Automation magazine, and should appear shortly.

RECOMP II AND III FOR SALE

Autonetics is offering a very limited number of Recomp II and III general-purpose computers for 3% of the original cost: $\$ 3.000$; used but guaranteed to operate. Joe Tolbert says the II is more desirable, even though it's older, because it has, for one thing, more hardware instructions (71 to the III's 48). It has more available programs (50 subroutines, 80 programs and 185 users' programs) than the III (56 subroutines, but only 63 programs and 16 users' programs).

Both the II and III are fully transistorized and include: computer, control console, photoelectric tape reader, tape punch, typewriter and desk. Both operate from standard ll5-volt lines. Also available is a limited number of peripherala such as high-apeed tape punch/reader, and Versa tape and keyboard.

For further inforwation, and/or a system description and index of programs, contact H.O. Elkins, (714) 632́-3031. Address: Autonetics, North American Rockwell, P.O. Box 4192, 3370 Miraloma Ave., Anaheim, Calif. 92803. There may still be a couple left.

\$750 educational computer

Information about a new educational computer, the Kenbak-1, was sent by

John Ranelletti, a new member in California. Further info was obtained by a call to Kenbak Corp., 8714 Darby Ave.; Northridge, Calif. 91324, phone (213) 349-3861.

This $\$ 750$ machine weighs 12 pounds, measures 19 by $4 \frac{1}{2}$ by 12 inches, consumes 40 watts. To keep costs down, it is a minimal computer: I / O is by console switches and lamps; memory consists of 1024-bit Intel MOS shift registers; the Motorola, TI and Fairohild TIL ICs are soldered in.

There are no peripherals just now; a punched-card input device, manual type, will be available this winter for about $\$ 100$, with factory retrofitting. A more flexible model may be available in a year or two, but no work has been done on it yet, says president John Blankenbaker.

A 24-page programming reference manual costs $\$ 2.00$, and a manual of 30 laboratory exercises is $\$ 6.00$. A maintenance and theory-of-operation manual, containing complete schematics, will be published soon, at $\$ 10.00$.

The 8-bit Kenbak-1 has three programming regiaters, five addressing modes (constant, memory, indexed, indirect; indirect-indexed), two's complement arithmetic, serial operation. The memory consists of 256 eight-bit bytes. There are 21 basic instructions: Add, Sub, Load, Store, And, Or, Load Complement, 4 Jumpe, Skip on 0, Skip on 1, Set 0, Set 1 , Shift Left \& Right, Rotate Left \& Right, No Op, and Halt.

There are 34 register-to-register operations (tranefers, additions, subtractions, etc.) produced by a single instruction using the memory-
addressing mode.
There are no plans to offer a kit. "Our answer has always been that we might consider $1 t$, but only at a higher price. What we would potentially save on labor is lost in headaches and troubles (for us)!" However, it might be possible for some people to come in on several Saturdays and each build one under supervision, but no price has been established for this, say John Blankenbaker, who also says that Kenbak would be happy to receive members of the ACS for a visit to the plant.

MINUTEMAN COMPUTER INFO

Autonetics has prepared a Technical Data Package for the D-17B computer for $\$ 100$. The publication containg sections on logic fundamentals, a D-17B description, word formats and programming, circuits, functional logic description, and maintenance data. The 15 guidance electronics modules can be removed to reduce power consumption and heat generation. The cutoff date for ordering this package was 9-15-71, although it may atill be available.

Autonetics has also developed an Input/Output Interface for the Minuteman I D-17B computer. It comes with or without an ASR-33 Teletype. With, \$5200 (all electronics are in the TTY console); without, $\$ 3500$. Interface schematics are not available separately.

CODE IN, PRINTED TAPE OUT

"Automatic radiotel egraph translator and transcriber, by Gonzales and Vogler (Ham Radio, Nov. 1971, pp 823), uses several dozen TTL ICs in digital circuits to decode Morse (at up to 120 wpm) and feed it to a strip printer. The printer described is the Model 4 by Computer

Terminal Systems in Plainview, N. Y., and costs \$129.99 for an ilevaluation sample." On page 99 of the same issue is an ad by the authors, offering detailed construction plans for \$14.95.

SIGNS OF THE TIMES

Several ambitious construction projects have been mentioned in these pages as forthcoming in one of the electronics hobby magazines. Well, the magazine has decided to out out the big build-1t-yourself articles and go to the smaller stupf. So don't look for an IC clock run by TV digital code (Aug. 1970 Newsletter, p 6) or the inexpensive time-sharing terminal (May 1970, p 2). (The magazine is Popular Electronics, which, starting next January, will be merged with Electronics World, and will be known as Popular Electronics including Electronics World. After all the converted EW subscriptions run out, the EW name will be dropped.)

desk calculator kit

The last big construction article Popular Electronice will run is "An Electronic Desk Calculator You Can Build, " (Nov. 1971, p 27-32). The calculator adde, aubtracts, divides and multiplies up to 16 digits, and has an electro-luminescent segmented display of eight digits. A shift key causes the first or last 8 digits of the 16 -digit results to be displayed. The six LeSI ICs can be bought separately for $\$ 75$ (this is called item EA-80, which sounds like an Electronic Arrays 1 tem), as well as a keyboard for \$21, etc.; the complete calculator kit, with case, is $\$ 179$ plus $\$ 5$ for postage from MITS, 2016 San Mateo N.E., Albuquerque, New Mexico 87110. The article hasn't enough details to permit builaing the calculator; you'd have to buy the kit. MITs

Vol. II - No. 11 -- November 1971
has another calculator, with squareroot capability, but none of the electronics hobby magazines are runhing big construction articles any more. The emphasis is now on the easier-to-build items.

NIXIE TUBES AND ROLEX IC TERMINALS
Joe Colbert mentioned a company with low prices on several items: Black Mountain Engineers, P.O. Box One, Corinth, Vermont 05039.

They have type AZK Nixies, manfacturer's rejects, at $\$ 2.90$ each, for 1 to 19; socket for 554. Mole IC-mounting terminals (see Newsletter for Aug. 1970, p 5) are 67% per strip of 56 (for four 14-pin or vt 16 -pin DIPs); over 500 (9 or more strips), 56% a strip; over 5000 terminals, $0.9 \not \subset$ each.

Black Mountain sends several applycation notes on numerical indicantors. They also sell first-quality 7400-series Cs; a 7400 gate is 35ф each; the 7483 4-bit full adder is \$2.25 each.

XIS MEMORY STACKS
Valley Computer Corp., 17027 Roscoe Blvd., Northridge, Calif. 91324, sells used computers such as the RPC-4000 (\$14-21K), LGP-21 (\$1214K), LGP-30 ($\$ 5-7 \mathrm{~K}$) and XDS 930 and 940 ($\$ 50 \mathrm{~K}$ up). They have ten XDS memory stacks, 16 K words of 24 bits, $1.75-\mu \mathrm{sec}$ cycle time, for $\$ 300$ each; "some of them have' minor problems, but all are generally operational."

WORD FROM WIEBKING

Steve Wiebking writes from Ohio:

[^9]with drive electronics, for $\$ 80$. He cant guarantee it, but he expets that more such units will be available from time to time. They are failures from G.E. computers; one or two of the inhibit ines have burned out, leaving 38 or 39 usable bits. Otherwise, they are supposedly OK. Present units are of Ampex manufacture. Future units may be Fabri-Tek or Lockheed. The complete unit is $4 \times 10 \times 12$ in., and weighs 12 pounds.
"The dealer is Mr. Gary Forbes, 3641 E. Van Buran, Phoenix, Ariz. 85008. He mentioned that he gets other "interesting" Honeywell items from time to time: IC boards, Peletype and other interface circuitry, CPU's (GE 200 and 400 series), and miscellaneous peripheral equipment."

Steve's letter of July 8:
"I have finally regained my sanity long enough to settle firmly on building a PDP-8. I am nearing the end of about 4 weeks of leave of which I spent a large part giving closer consideration to the various machines I have collected informalion on. While I still feel that there are many machines I would prefer to a PDP-8, I all forced to the conclusion that any machine I can build in a reasonable length of time is better than any machine I cant. I can use DEC's plans right down to the last logic board except around the memory controls, and this will save me a lot of work over trying to design my own from scratch.
"So, I won't be giving away that manual as in the previous letter but I can still supply Xeroxes at the following postpaid prices:

PDP-8/I	Vol.	1	$\$ 7$
PDP-8/L	Vol.	2	$\$ 12$

Volume 2 in either case contains all the logic diagrams. Volume 1 is probably not necessary.
"On memories: I haven't gotten around to testing the rectifiers yet, but it has occured to me that part of the advantage of 3-to-1 selection ratio in a core stack can be had without the need for separate drivers for the X direction on each plane. (Three-to-one selection ratios are usually achieved by using the inhibit line to blas all cores in the plane with - $\frac{1}{3}$ unite of current and driving the X and Y lines with +1 full units of current each. This results in $+3 / 2$ units of current at the selected core and $+\frac{1}{2}$ or $\frac{1}{2}$ at all other cores in the plane. Unfortunately, inhibiting will not work with this arrangement even if you had a fifth wire to do it with. Consequently, separate driving of the X lines is required for each plane; this much of the system is similar to a $2 \frac{2}{2} D$ conventional system.)

Note that the only problem arises in the write cycle. There is no real dipficulty connected with using $3: 1$ selection in the read cycle when the inhibit wire is not used anyway, and using the $2: 1$ selection system in the write cycle. There may be a problem if your drivers are transformer-coupled to the drive line, but I will be coupling my drivers direct to the selection lines, and the only change required in the design to have different read and write currents will be to have different load resistors in the drivers at opposite ends of the lines. It would also be neceseary to change the inhibit drivers to bi-directional operation.
"Members may be wondering "why bother" if they have not read the two articles I referenced in the Nov. 1970 Newsletter (p 1). The $3: 1$ selection allows a higher current at the selected core; this results in faster switching, which means a faster read cycle in the case I've described. Because the core switches about twice as fast, the output is
higher for a stored "1" (about 250300 mV in the case of my $80-\mathrm{mll}$ cores). Alternately, the value of the $\frac{1}{2}-$ eelect current can be reduced so that the memory will operate over a wider temperature range without a temperature-compensated power supply. Since you are still using 2:I selection in the write cycle, you can't reduce it too much, but increased speed in the read cycle over a $2: 1$ system should more than make up for what you lose by lowering the drive currents."

Steve's postcard of Sept. 11:
"At the rate things are going, I may not get any more work done on my computer until I graduate from AFIT next March. 2N5451's work OK as high-current switches. The switching speed looks like it is OK for memorles as fast as 1-2 $\mu \mathrm{sec}$ if used in circuit 1. Note

that there is no base resistor. Use of a base resistor in this circuit with 2N5451's or other cheap transistors causes the turn-off time to become longer than the memory cycle. Circuit 1 has been built and will definitely work. Circuit 2 has not yet been tried, but should be OK as the positive-end-of-the-drive-line switch. (No. 1 is for ground end.) While testing teating \#1, I found that a little bypass capacitance on the power supply is worse than none. I originally put . $01 \mu \mathrm{~F}$ across the supply, but thia converted the . $2 \bar{v}$ spikes into a 3 or 47 sinewave on the $5 v$ supply. A large ($\sim 10 \mu \mathrm{~F}$) electrolytic finally smoothed them
V.01. II - No. 11 -- November 1971

Steve's letter of October 19:
"I never have quite given up on the IBM $360 / 50$, although I have off and on considered a number of smaller, more sensible machines. Lately, though, a number of things have happened to make this a much more reasonable project.

> "About a year ago I bought a copy of 'Microprogramming: Principles and Practicea' by Samir S. Hugson (Prentice-Hall, \$l 6,95). Mr. Husson was one of the leading designers of the 360 series, and the book concentrates on the "how it was done. approach to the subject. There are long chapters on the $360 / 40$ and $360 / 50$ as well as two other machines. Reading the chapter is sufficient to put you in a position to write your own microprograms, but the chapters cover a lot of ground: it took me about 10 days to get through the one on the $360 / 50$.
"A very helpful feature of the book is the many references to IBM engineering manuals. I ordered the model 50 manuals referred to by Mr. Husson a few months ago, and I have just ordered the ones referred to in the first set of manuals. The logic diagrams in these manuals are much easier to follow than the DEC PDP-8 manuals, mostly because they are broken up into small functional units and all signals flow from left to right. The manuals generally seem to be directed to field engineers learning how to service the machines, and are loaded with explanations and charts.
"I bought one manual on the 360/25 last year, and it is not nearly as clear as the ones on the 50. Different models of the 360 were developed by independent teams.

[^10]I can't see any of the 360 models falling into this category. I would guess that a model 40 with a $4 \mathrm{~K} \times$ 18 memory could be put together using surplus core and cheap ICs for a little over $\$ 1000$ (would you believe $\$ 1500$, mayber). The 50 with minimum memory ($4 \mathrm{~K} \times 36$) should cost me about twice as much.
"If there are any members interested in apending this amount on their machine, I would be more than happy to write them a letter on the sorts of problems likely to be encountered in building such a machine. I don't have any information on the 30. I don't recommend the 25. It is interesting from the point of view of havings its microprogram in main core, but unless you think the ability to change your instruction set at will is an advantage, the only thing it has to offer is upward compability. Even though it uses 900-nsec core, a PDP-8 could easily beat it in terms of 'numbers crunched per second.'

"The thing that has kept me from

 taking the 360 seriously before now was the need to build a large, fast ROM without going broke; in the case of the 50, a 1408-word by l76-b1t ROM with about 100-nsec accesa and 500-nsec cycle is required. Assuming half the bits are 1's, over 100,000 diodes would be needed for a diode ROM, so that approach is out...."Steve's letter of Oct. 28:
"American Micro-Systems offers a dual 480-bit shift register for \$3.50 in quantities over 25. Depending on which part of the country you live in, the distributor is Cramer, Induatrial Electronics, Bodellé, or Century Electronics. I didn't have any luck the last time I tried to coordinate an order for registers, but the price is lower and the quantity is smaller this time, so I'm willing to try it again. The regiaters are guaranteed to 1

The Amateur Computer Society is open to all who are interested in building and operating a digital computer that can at least perform automatic multiplication and division, or is of a comparable complexity.

For membership in the ACS, and a subscription of at least elght issues of the Newsletter, please send \$3 (or a check) to:

Stephen B. Gray
Amateur Computer Society
260 Norot on Ave.
Darien, Conn. 06820
The Newsietter will appear about every two months or so.

MHz with a "typical" 2 立-MHz rate. [Steve's address is Apt. 119, 251 W. Dayton-Yellow Springs Rd., Fairborn, Ohio 45324.]
"Incidentally, members who are willing to put up with a serial memory no longer have any excuse for putting off construction; 1024 words of 15 bits will cost only $\$ 56$ plus drive oircuits.
"The rest of the IBM manuals I ordered arrived. They did not contain all I had expected, but the combined set contains diagrams of all the logic "whose function is not immediately apparent" and has flowcharts of all instructions that will convert to microinstructions rather easily. Actual logic and microinstruction diagrams are apparently buried in manuals referred to as the ALD's and CLD's. These are frequently referred to, but no form number is ever given, so it is probably not possible to order them From a sour-grapes point of view, what I have might be optimum, aince it will require me to get a fairly good understanding of the machine before I start filling in the missing parte.
"Direct substitution of TTL is feasible for all 360 models from 50 on down. The logic used is almilar to
serles 930 DTL. The easiest way to collect a set of hardware manuals for a model is to order a few known ones, then order the ones referred to in these, etc. Starter sets for several of the models are:

360/20 Y26-5909, Y25-3027
360/25 Y24-3527, A24-3510, R25-5402 360/30 A24-3231, 225-3360, 225-3362 360/40 223-2840 thru 223-2844 360/50 Y22-2821, Y22-2822
"Particularly with the newer models 20 and 26 , you may occasionally find that some of the manuals are "restricted distribution" and cannot be bought. On the other hand, depending mostiy on the time of day, you may be able to buy them after all. In the case of hardware manuals, they apparently all start out with 2 prefixes, which means they can't be sold to anybody, including the fellow who wrote them. Only one of the 360/50 manuals I ordered was restricted (the time of day was wrong that partioular time) and this was volume one of a pair for which the second one is not restricted."

WANTED: HELP WITH 8/L
Al Kilburn writes that he has a PDP $8 / \mathrm{L}$. He's interested in information on interfacing an audio tape recorder with it, and in cheap peripherals such as printer, card reader; and also used boards compatible with DEC sockets; 6844 S. Ogiesby, Chicago, Illinois 60649.

CONNECTORS FOR SALE

I have 62 used Amphenol connectors, female, type 26-190-32, 3 3/4 in. long. These have 32 contacta; two opposed sets of 16 , the sets $i \mathrm{in}$. apart. Originally held $\frac{1}{4}$-inch-thick analog boards. Catalog price (for 50-99), \$2.60 each. Sale price for all 62: \$30 or best offer.
Copyright 1971 by Stephen B. Gray

Volume II, Number 12
(Serial Issue 23) March 1972
a publication of the AMATEUR COMFUTER SOCIETY

LAST ISSUE OF
VOLUME II

RENEWAL TIME AGATN

The Volume II money has run out, so this is the last issue of the second series. For a subscription to Volume III, please send $\$ 5.00$ (\$5.50 foreign).

Sorry about the rise in price, but the cost of printing and mailing the ACS Newsletter has gone up almost 50% since 1966.

THE ACS STORY
"Euilding Your Own Computer" appeared in Computers \& Automation in two parts: Dec. 1971, pp 25-31; Jan. 1972, pp 20-22, 40-42.

Eight photos of five amateur computers were sent to C\&A; none was used, because C\&A, for reasons of economy, contains a minimum of photos, only 1 or 2 per issue. The manuscript was printed exactly as submitted, except that the references to photos were changed by the editor. Where the original had "The logic for the delay-ine version of Bill's computer is shown in Fig. 3," for example, the C\&A article says, "The logic for the delay-line version of Bill's computer was not very difficult."
Sorry about that, Bill.
Responses to the CrA Article
In the three montha after the CreA article appeared, 28 people wrote in to say they'd seen it, and wanted more information. Of the 28 , at least four have operating computers, four or more are building their own machines, and 12 joined the ACS, including our first couple, Dr. \& ifrs. Jun of Ohio.

Computerworld Letter

A brief letter from Steve Wiebking about the ACS was printed in the Jan. 12 Computerworld. Over 100 people responded; two have operating computers, three are building, one has a complete Univac File 0 computer, and 62 goined the ACS, including the first two women members (in Virginia and Alabama), who both joined on the same day.

Most of the money from these new members went toward reprinting Vol. I, because back in 1966 I didn't believe that more than 100 people would ever join the ACS.

Grand Totals

As of 3-26-72, 310 people have inquired about the ACS, 195 have received Volume I, and 113 have subscribed to Volume II.

KENBAK S:ITTCHING TO CASSETTE INPUT
Development of the card-input device for the Kenbak-l training computer (see Nov. 1971 1ssue, p 1) has been shelved in favor of using cassette-tape input.

The audio cassette will be recorded in $F M$, with severál cycles per bit. The user will be able to record on the tape directiy from the previousiy loaded memory of the Kenbak-1, and Kenbak w1ll sell pre-recorded cassettes for games, etc.
Newer models of the Kenbak-1 will contain the neaessary interface circuits. Kenbak will recommend and market a cassette recorder, for about \$100. A user can try'his own cassette recorder, but Kenbak won't
guarantee success with any but the recommended model.

Kenbak-1 Schematics

The Kenbak-1 maintenance and theory of operation manual, for $\$ 10.00$, contains complete schematics. The input and output lines to and from each group of ICs are identified only by a signal name, such as HT or 13 , so you'd have to make up your own wiring lists if you want to copy this ingenious computer.

The Kenbak-l uses 131 ICs, of which 129 are 14 dipferent types in the 7400 series, and two are Intel 1404 1024-bit dynamic shift regiaters ($\$ 16.30$ each from Intel). The 129 ICs, if bought from Solid State Systems, Inc. (P.O. Box 773, Columbia, Mo. 65201), would come to $\$ 62.15$; add $\$ 32.60$ for two 1404's, for a total of $\$ 94.75$. If the 129 ICs are bought from B\&F Enterpriaes (P.O. Box 44, Hawthorne, Mass. 01937), the total including the 1404's, would be $\$ 100.83$.

No values are given for the Kenbak -l's couple of dozen resistors and capaoitors; most of the resistors are 1K. The power supply, clock multivibrator and clock driver are $a l l$ shown without component values. There is no parts list in the manual, although one could be obtained from Kenbak.

Kenbak-1 Logic Alone?

John Blankenbaker, president of Kenbak, says they're been thinking of offering the Kenbak-1 logic board alone, as a tested item (taken from a tested computer). This would be the full set of ICs, on the one board, without front panel, switches, lamps, power supply or case, for about \$450. If you're interested, write John at Kenbak Corp., 12167 Leven Lane, Los Angeles, Callf. 90049, or call h1m at (213) 472-8347.

IS A SCOFE NEEDED?
Several members have asked if an oscilloscope is needed for building an amateur computer.

John Blankenbaker, who developed the Kenbak-1 computer, says that one of the big problems many people have with using a scope, no matter how good it is, is inadequate grounding, so there are noise problems that can be tracked dow only with a high-irequency scope. John says he feels he could now troubleshoot the Kenbak-1 with a logic probe. And if he were to use a soope, he could get by with a $1-\mathrm{MHz}$ model. For design, though, he'd want to use at least a $15-\mathrm{MHz}$ type, and 30 to 50 MHz if possible. He bought a used $50-\mathrm{MHz} \mathrm{H}-\mathrm{P}$ scope for $\$ 700$.

Dual-trace and dual-beam scopes are helpful at times, but John says he can get along without them, as well as delayed sweep.

The biggest problems are grounding, power distribution, and clocking. Amateurs often try asynchronous logic, says John, and this is a mistake, because it causes race conditions, unusual delays, etc. He recommende the fully-clocked syatem.

According to Tektronix, an electronic awitch is OX only up to about 100 KHz . Beyond that you need a dual-beam or a dual-trace scope for eynohronized alternate aweeping. The latter 1s part of a number of Tektronix plug-ins. Tektronios markets the British-made Telequipment scopes: the dual-trace transistor D54 has a bandwidth of DC to 10 MHz , costs \$595. The dual-beam vacuum-tube D51 has a DC-to-6-MHz bandwidth in channel 1, DC-to-3-MHz in channel 2, costs \$375.---Any comment on scopes?

COMPUTER PARTS IN KINGSTON, N.Y.
Various computer peripherals and
components are available at P\&D Surplus, 198 Abeel Street, Kingston, N.Y. 12401, 100 miles northweat of New York City, off exit 10 on the Thruway; (914) 338-6191.

They have mostly components in the retail store: ICs, capacitors, PC boards, etc. They do get peripherals; Wayne Ely got a complete IBM 728 tape handier there. IBM equipment, though, is available only if it comes through government surplus, as IBM shreds and recycles their own used equipment. P\&D does get equipment from other makers, such as Univac card readers. They have no catalog or flyer, so you have to go take a look.

A NEW MEMBER WRITES

Bob Carpenter writes from Maryland:
"Over the past four yeara, I have been in the process of builaing a computer. The actual hardware wotk got underway about three years ago. The machine really started working only a year ago. My machine uses the PDP-8 command set and runs at about the speed of a PDP-8/S (24$\mu \mathrm{sec}$ eyole time). My memory is from an IBM 1620, obtained from Herbach \& Rademan. I have implemented only 4 K at present, though I have designed the boards to allow easy expansion to 8 K (which still leaves part of the core stack free). My only references have been the DEC Small Computer Handbook give-aways, plus a few library books. The NBS reports are pretty useless since they are so old and slow. I use Signetics Utilogic (it was cheap when I started the design) and some 7400 series where 1t's best. I bought an ASR-33 after I was sure my machine would run!
"I have copies of the DEC software, which all seem to run: Focal, Editor, PAL III, etc. While I use the DEC software, I have made a point
of never looking at their PDP-8 hardware diagrams, etc. I'm sure I leamed more this way. After all, I'm supposed to be an EE.
"I haven't made much use of my machine; it is less reliable than I would like. It seems to pick up extra bits now and then. At present I am writing a program to reduce the data that the Radio Amateur Satellite Corp. (AMSAT) expects to receive from the telemetering on their "bird" which may be launched in the summer.
"With the recent drastic reduction in semiconductor memory prices, it looks like a fast amateur computer will soon be within the price range of many. My machine must have cost $\$ 1200$ plus the ASR-33. With cheap 7400-series and semi menories, it should be possible to make a good machine for not much more, nowadays. After all, TI will sell you a complete machine for under $\$ 3000.1$

In h1s next letter, Bob answered a few questions:
"I) How to get the IBM 1620 memory to work: The 1620 core stack is 100×100 (a total of 10000 words). Since it was the only source of memory I could come across at a reasonable price at the time (Fall 1968), it seemed to lead the way to a 12 -bit machine. Hence the PDP-8.
"As for getting the memory going, I initiaily used trapezoldal waves in the four awitch-core drive lines. I experimentally decided what the blas current should be for the switch-cores. To elaborate: the 1620 had switch-core matrices for each axis. Each switch-core corresponded to one X or Y line in the main core stack. A bias-current wire runs through all the switch cores. There are also two input windings (4 turns) on each core.
"These switch cores are arranged
in a $10 x 10$ matrix (100 cores) for X and a similar set for Y. For one side of a loxlo matrix, the 10 lines may be called the "units" lines and each goes to 10 cores. The other side of the $10 x 10$ matrix may be called the "tens" side and each line also goes to 10 cores. If there is a one-ampere bias current, and a $250-\mathrm{mA}$ current is put through a "units" line, all the cores it feeds will have zero field. If now 250 mA is put on one of the "tens" lines, the core that has both $1^{\prime \prime} s$ and lo's current in it $^{\prime}$ will flip and produce a Read pulse in the main core X line driven by it. When the $I^{\prime \prime} s$ and $10^{\prime \prime} \mathrm{s}$ currents have both been removed, the switchcore will be flipped back by the bias-current field and the frite pulse will occur on the line in the main core stack. Thus we have a way to drive the X and Y select lines of the main stack from unidirectional current drivers, and without any selection diodes.
"Since I felt I could get by with only 4 K of the stack, I use only 8 of the 10 lines to each side of each switch-core matrix, giving 64 driven wires on each axis of the main core stack. The fact that my stack came with the switch matrices was a major stroke of luck, at least as far as money was concerned. Of course, the cycle time is pretty slow, around $20 \mu s e c$.
"In the aummer of 1970 I was at the NBS location in Boulder, Colo., where tapes were being added to an old 1620 and I was able to get a look at its diagram, etc. They drive the core with non-time-coincident rectangular pulses (to ease the voltage compliance requirements of the bias current regulator). Since then I have changed to a similar setup. I used the Motorola MC 1440 or 1540 for the sense amplifiers. At less than \$2 each they are a real buy. There is none of the foolishness you have to
go through with things like the 710 or 711 to get the desired characteristics, and they include strobe, etc..
"2) How to accomplish the PDP-8 command set: In the first place a large part of my notive for building the machine was to learn something about minicomputers. Therefore it seemed to be defeating the purpose to blindly copy a commercial design. Reason prevalled to the extent that I wanted something that would run with readily available software, since my interest lies in hardware development, primarily. I went through a period of looking at other command sets, but the fact seems to be that the PDP-8 is logically the simplest machine in common use. I have carefully avoided using any DEC drawings, etc., in my design. In fact, my whole source was their "Small Computer Handbook" of the late $60^{\prime} \mathrm{s}$. This is the reference manual on the $8^{\prime} \mathrm{s}$, but gives no detailed hardware info.
"I deaigned both serial (PDP-8/s) and parallel versions, and the extra price for parallel seemed to be worth it. I have mainly used the Signetics Utilogic II series since it was the cheapest 5-volt logic series at the time I got to building. Nowadays one would use the 7400 series most places. I note that DEC uses Utilogic II for buss recelvers in both the FDP-11 and PDF-8/E. Construction had many fits and starts. Finally I felt confident enough to invest in a Teletype AsR-33. This represents about 40% of the total cost of the project. I was able to obtain the hardware diagnostic tapes for the 8 which identified a couple of instructions that aren't fully described in the older Small Computer Handbook. Simple wiring changes fixed these up.
"As you see, all I can say about how to duplicate the PDP-8 instruction set is to efigure it out. It

Vo1. II - No. 12 -- March 19724
really is pretty simple. I fear that no one will be able țo get a machine running if they can't design the control logic for this set. The secret seems to be to draw a time chart to plan what happens at what time in each memory cycle (if you want to build a memory-synchronous machine). \therefore DEC is good enough to tell you in what order things are done in the "microinstructions."
"If I were atarting over today, I might choose the Nova instead, if a l6-bit memory could be found. The PDP-ll looks very powerful, but is doubtless very much more complex.
"What do I have for my \$2000? The main thing is a reasonably good insight into the workings of the simpler minicomputers. I also have a small, though unreliable, machine which has enough software available to be of some practical use. Homegrown ingtruction sets are ine, but who has the time to write a Fortran or Basic, or even an assembler? If your main interest is softrare, buy a machine."

A 320-NOR COMPUTER
For \$1.25, you can get a "Computer Lab Workbook" from Indiana Instruments, 15054 Gulf Blvd., Made1ra Beach, Fla. 33738. The workbook is used with a logic laboratory (cost: \$425) based on NOR gates. On four PC boards are 80 NORs, each consisting of an npn transistor, four resistors and a capacitor on the input lines, and a collector resistor, in a square 9-pin pattern. Various "logic symbol plates" are laid over one or more of the NORs and then leads are clipped on according to the lines on the plate, to create flip-flops, gates, oneehots, exclusive-0Rs, clocks, etc.

The student progresses from gates
up through interoonnected groups of circuits, such as adders, deooders, counters, and memory. The last construction is of the "Baros computer," using four logic labs, two 256-bit MOS memory ICs, and four mounting frames (total cost: \$l804) to build a single-address, 8-bit sequential machine with 8 Instructions. Not bad for only 320 transistors and two ICs.

The new version of the workbook, coming out in April, will also contain a logic-lab schematic for an interface required to connect an ASR-33 Teletype to the Baros mini.

SPEAKING OF SCOPES....
For \$595, there is also a Heath/ Schlumberger EU-7OA assembled scope, with dual trace, triggered sweep, and $15-\mathrm{MHz}$ bandwidth.

COMPUTER ART
Computra (Box 608, Upland, Indiana 46989), has a booklet of computergenerated art, all originals, from \$ $\$ 5$ to $\$ 16$ for standard items, and \$5 to \$20 for a "unique revision of the catalog version."

FOR SALE

Ke1th Stoicheff (P.O. Box 74, Burnham, Pa. 17009) has a M11go ir35-1A analog/digital plotter for \$295 (originally \$20K), a model FL Flexowriter (some repairs needed) for \$95, and the main frame of a Logistics Research CRC-105 decimal digital differential analyzer for $\$ 150$.

Herbach \& Rademan (401 East Erie Ave., Philadelphia, Pa. 19134), has a Feb/Mar catalog with: Friden Flexowriters ($7-1$ evel Daspan code), \$395; Hewlett-Fackard 565A digital printers, \$280; Univac llo3 singleplane memory (4K bits). \$14; 11K-

The Amateur Computer Society is open to all who are interested in building and operating a digital computer that can at least perform automatic multiplication and division, or is of a comparable complexity.

For membership in the ACS, and a subscription of at least eight issues of the Newsletter, send \$3 (or a check) to:

Stephen B. Gray
Anateur Computer Society
260 Noroton Avenue
Darien, Conn. 06820
The Newsletter will appear about every two months or so.
bit core stack, $\$ 60$; Ferranti 37112A magnetic drum (480 tracks, 3 million bits), \$295; Ferranti 371$4 A$ drum (38 tracks, 3 K bits per track),

IN FRINT

Display Terminal Under $\$ 200$

"Convert your scope to a display terminal, " by Armstrong and Hern of Marquette University (Electronic Design, Nov. 11, 1971, pp C20C24), describes a display generator that uses any general-purpose oscilloscope. It's based on a 22stroke starburst pattern, portions of which are blanked to form the various characters. Flip-flops and gates generate the four required bit-patterns, which are summed and integrated by op amps to give the X and Y deflection voltages. Up to 250 characters can be diaplayed with a software package (interrupt program, table look-up subroutine and output character table) using no more than 410 core locations.

Schematics for PDC 808 Computer

A member writes that Brice Wardis "Computer Technician's Handbook" (mentioned in the June 1971 Newsletter, p 4; TAB Books, \$10.95)

Gives schematics of Computer Automation's PDC 808 computer, which was deaigned for communications, control, and monitoring applicat1ons. The eleven schematios are: processor (4), processor timing circuits, processor control (2), memory regulator, driver awitches, memory data, and Teletype control. The ICs are SN'7400 and MC800 types. Values are given for all discrete components except the transformers in the core-driver circuits. This looks like most of the schematics; it may be all needed for the 808.

1103 Handbook

Get the 32-page booklet on the 1103, a l024-bit dynamic MOS RAM chip, from Intel Corp., 3065 Bowers Ave., Santa Clara, Calif. 9505l.

Magnetic Heada

Nortronics' "Design Digest for MiniDigital Magnetic Recording" is a 32-page booklet on magnetic heads designed for minicomputers, desk-top calculators, I / O systems and other peripherals. The first 9 pages discuss technical considerations, 5 are on test procedures; the rest is product data. Nortronics Co., Inc., 8101 Tench Ave. North, Minneapolis, Minn. 55427.

Logic Systems Design Handbook

In mid-May, DEC will publish a "Logic Systems Design Handbook," which will be a uger's manual of typical applications.

STARTED A PDP-8?

If you've built, or started to make, a copy of one of the PDP-8 family, please send info on your work, success, problems, etc., especially about getting a core menory to work.

Copyright 1972 by Stephen B. Gray

FIRST ISSUE OF VOLUME THREE AMATEUR COMPUTER SOCIETY

Volume III, Number 1
(Serial Issue 24) June 1972

VOLUME III IS UNDERWAY

Thanks to all who mailed in checks so oromptiy, enough were received within only 40 days after mailing the last issue of Volume II to pay for printing and mailing eight issues of Volume III. Of course, the rise from $\$ 3$ to $\$ 5$ for a subscription meant that only half as many checks were needed.

A WORKING COMPUTER

Don Tarbell wrote from Alabama:

"My machine is now in working order! I have done quite a bit of programming with it in the past several months. My first piece of software was an editor, which enables me to type programs on the Teletype, into memory, and to modify them from the keyboard. The editor receives letters for commands: N for new entry, L for list the buffer, A for append, D for delete, I for insert, and P for print. The D, I and P are followed by the appropriate line number.
"The second piece of software I designed is the CALCULATOR. With 1t, I can add, subtract, multiply, and divide integers up to 256 digits long. It does not yet accept decimal points, but it will in the near future.
"I am still working on the third piece of software, the ASSEMBLER. It will convert symbolic programs into machine language, and will at first be a stripped-down version, later to be expanded, by using itself to create more subroutines.
"The machine is an 8-bit byteoriented machine, all integrated
circuita, with 16 8-bit file registers, and 4 K bytes of core at present (soon to be expanded to 65K!). The 16 8-bit file registers are used for 5 16-bit index registers, 1 16-bit accumulator, 1 16-bit program counter, 1 8-bit terminator register, and 1 8-bit temporary register. The cycle time is at present 7 usec, but w1ll be speeded up to 2.4 usec shortly. The 8 -bit byte organization does not really slow things down, since six 8-bit transfers between registers can take place during one cycle. The byte orientation also speeds up list-processing-type subroutines, which will be used considerably in my work in artificial intelilgence. Even with the 7-usec cycle time, I can multiply a 140-digit number (all nines) times itself in about 40 seconds.
"There are eight address modes: direct relative, indirect relative, direct indexed, indirect indexed, extended, literal, direct to X3, direct to X 4 . The last two modes use only one byte; the extended uses 3 bytes (instruction and mode, 16-bit address); and the rest use 2 bytes. There are 8 conditional jump instructions, all of which are relative addressing. There are arithmetic instructions which handie both single and double bytes: ADD, SUBTRACT, LOAD, STORE, and AND. One of the conditional jump instructions decrements an index register, then jumps if it is not equal to one. This is very effective for loop control. There is also a jump which may be in any address mode, and also a jumb to subroutine.
"My present organization allows for 16 I/O devices, but this will shortly be increased to 256. The I/O devices I have working are: keyboard,

Teletype, cartridee tape write and read. The 8-track cartridge tape is useful as a paper-tape replacement. I run it about 100 characters per second. It is not yet as reliable as I would like it, but as I have error-checking write and read subroutines, it is no problem to read or write again if it is not correct. I use one track for clock and one for data, which automatically compensates for speed variations. I have a 6.5-mililion-bit disk, and am presentiy building: its interface. I also have an IBM 727 tape drive, but it will have to wait for the disk. A friend and I also have a joint project: a CRT display. It is about half done.
"So I should have a big enough system in the near future to do some really meaningful work in the field of artificial intelligence. Pight now, my machine has 45 active instructions, and I'll be adding about 20 more.
"One problem which set me back some was the fact that I had a 20-volt Dower line (for lamps) running next to an ALU control line. Well, a scope probe slipped, and zorked two of the TI SN74181N ALU chips. If anybody needs a couple of these with the 53 line non-functional, let me know. I learned one great lesson about using MSI: when using high-cost chips, be very careful. to protect them against accidents such as this. Another thing I found is that interboard wiring on connectors using solder-ligg-type terminals can turn out to be a mess. It's too late for me, but I advise anyone who $1 s$ starting out to use wire-wrap if possible, or at least connectors with widely-spaced terminals.
"Another thing. I am using the 36place DIP breadboarde with 44-pin edge connectors. If possible, use boards with more connections, at least 56. Several times I have had
to use another board only because of insufficient pin count. If you use TTL, always use plenty of . O1-.l-uf capacitors on the board to bypass noise. Keep the main computer clock duty-cycle to a bare minimum. In other words, it should be a spike-type clock of, say, 100-nsec spikes. This is becauge many flip-flops are sensitive to what happens on their J and K inputs while the clock input is high. So if you have a control signal running to these inputs, then a spike for the clock allows the maximum time for your control signal to propagate through the logic. This was a major source of problems for me as long as I had a 50% dutycycle clock.
"While designing your major-state generator (the counter that changes state once per menory cycle), keep in mind that it will need to be stalled in one position for halt, for I/O interrupts, and for direct. menory access. In control-unit design (about half my machine), I found it a good concept to make control lines wire-ORed or tristate. In other words, when the machine is halted, the required position for the control innes in this state should be defined as normally high. Instructions are then implemented by "puling down" the proper control lines in the proper sequence, with open-collector or tri-state gates (e.g., SN7401N is good). This organization allows you to build a minimum instruction set on one card which can be used to check out the memory and other parts of the system. Then instructions can be added on in logical sets. I also wire-ORed my 8 databus Ines to allow attaching more registers."

INTEL MICRO COMPUTER SETS
Intel Corp. (3065 Bowers Avenue, Santa Clara, Cal1f. 35051) has two
"Micro Computer Sets," the MCS-4 and MCS-8, whioh are sets of LSI chips for microprogrammable gene-ral-purpose computers. The MCS-4 has a 4-bit parallel CPU with 45 instructions; the MCS-8 is 8-bit with 48 commands. The MCS-4 consists of the 4001 programmable ROM control memory (256×8-bit), 4002 RAM data storage (320-b1t), 4003 I/O expansion (10-bit shift register), and 4004 CPU .

The last three are pairly cheap: $\$ 50, \$ 10$, and $\$ 100$, respectively, for 1 to 24. The catoh is the 4001; you have to order at least 25, at \$25.50 each, plus mask charges of \$600. If you don't know exactly how you want the 4001 ROM oustomprogrammed by Intel, you can do 1t on a cut-and-try basia with eleotrically programmable ROMs such as the 1601, 1602, 1701 or 1702, which are $\$ 91$ to $\$ 109$ each, for 1 to 24. You can have these ROMa programmed by Intel for $\$ 10$ if you provide the tape, or $\$ 90$ additional if Intel prepares the tape.

To program one of these ROMs yourself, you need the SIM4-01 microcomputer ($\$ 500$, or you can build one from the schematics in the MCS-4 user's manual), MP7-02 programmer board (\$400; schematics also available), thres controlprogram FOMs at $\$ 101$ each (\$91 plus $\$ 10$ for programing), and one ASR-33 Teletype.

The MCS-8 is not just an 8-bit MCS-4; for details see the 45-page brochure. An MCS-8 is made up of an 8008 CPU chip that contains circuits quite different from the 4004 , and which costs $\$ 200$ for 1 to 24; :RAMg (such as the 1101); ROMs (such as the 1701) and TTL interface circuitry. To program a 1701 (or 1601) yourselp, use the same setup as for the MCS-4, except that you use a 8IM8-01 microcomputer at $\$ 900$, along with the MP7-02, three control ROMs, and an

ASR-33. All in all, if you want only one MCS-4 or -8, it's cheaper to buy a SIM4-01 or SIM8-01 and add ROMs and RAMs.

THE TRADING POST

RPC-4000 Parts?

Lyle Blokley (2351 Ridley Creek Rd., Media, Pa. 19063) writes:
"I recently purchased an entire RPC-4000 system which was in working order for $\$ 1000$, less shipping. It consists of an RPC-4010 CPU with 8 K of 32-bit drum memory and a RPC4437 I/O control unit, Tally paper tape reader (120 cps), Tally paper tape punch (60 cps), and an $180 \times \mathrm{x}$ console typewriter. Thrown in "free" Was a Flexowriter in good working order. The entire system required a good deal of cleaning up and the I/O gear needed adjustments and preventive maintenance. I have completed all this, having easily obtained the service manuals from CDC and Tally. There is a complete get of diagnostic, assembler, compiler and problem-oriented program packages avallable from the CDC user organization, Focus (Forum of Control Data Users).
"One can purchase RPC-4000's (also LGP-30's and LGP-21's) directly from organizations upgrading to more powerful equipment. The names of these organizations are available from CDC saleamen or from ads in the FOCUS newsletter.
"I am interested in finding some parts of RPC-4000 equipment, especially a 300-cps Ferranti reader, and spare heads for the drum."

A Store in Dallas

KA Sales (1312 Slocum st., Dallas, Texas 75207) sent a flyer showing aome EDP hardware, such as a "World Computer Unit" containing 58 Signet-
ics Uniloric ICs, power supply, etc.; and also used Nixie tubes, computer-grade canacitors, etc.

TTY Farts for Sale

Fer Biorn writes from N.J.: "A friend of mine sells TTY equipment and ham stuff. Although a rather sharp businessman, he is a helpful fellow and has quite a few goodiea in his shop. It is also possible to get T'ry parts from him at reasonable prices. His address is: Van, YZULTT, 302 Passaic Ave., Stirling, N.J. 07980. He has a catalog he will be glad to send. Or call. him at (201) 647-3639, at night only. Say Per sent you; it may (or may not) help."

Computer Farts for Sale

Gary Forbes (2028 in. Indian School Rd., Box 100, Phoenix, Ariz. 85015) vrites:
"Your menbers may be interested in some computer parts I have for sale, some of which are: (1) computer-toEIA interface boards (all ICs), (2) discrete logic which is compatible with MTL (this is a complete logic line), (3) a nice $32 \mathrm{~K} \times 20-\mathrm{bit} \frac{1}{2}-$ usec memory, complete except for yower and computer interface, (4) a real nice core controller; this is a small IC sequencer and address and parity checker for an 18-bit word, (5) a lot of nice ICs mounted on boards, mostly TML Sylvania SUHL II, (6) good technical assistance in getting these things operating. I have coples of many of the manuals."

Later Gary wrote to say he also has several boards out of a GE DN500. Datanet, an IC version of the DN3O; "these cards would make into a nice minicomouter, I have some of the CR10 table-top card readers at \$75 and an I/O interface board at $\$ 25$. I have several core memories. The most complete ones are 2-usec Ampex

36-bit plus parity, 16 K words. Some of the other core stacks I have are (1) $16 \mathrm{~K}, 2$ usec, 37 b1ts (2) 16 K , 2 usec, 24 bits (3) 5.6 usec, 1 K , 8 bits (4) 10 usec, $8 \mathrm{~K}, 20$ bits. Most of the memories are avallable with drawinge and technical info to get them running. Another item is a 300-1pm 120-colum line printer. This stuff comes out of General Electric large computers. A friend and I are rebuilding a GE computer and hope to have it running soon."

A N.J. Member Has. . .

Wayne Ely (209 Lees Ave., Teaneck, N.J. O7666), who writes that he got a PDP-8 without core for about \$1000 from Maynard, Mass., wants to sell a 728 tape drive, complete with maintenance manuals; this is the old tube model; \$125, you haul. Also a switch panel, $\$ 50$. And some core array from an IBM computer, 3 feet square, 16 planes with 4×4 arrays. Wayne needs PDP-8 core and an ASR-33 and PDP-8 cards for extended memory and extended arithmetic, etc.

Integrated Circuits

Steve Wiebking saw in Electronic News an ad for Intel-compatible 1101 's, at $\$ 5.50$; 1402, 1403,1404 at \$6.50; 2150 256-bit TTL RANS, \$28.50; for 1 to $100, \$ 10$ minimum order, from: Roni Discount Electronic Supply Co., 61 First St., Derby, Conn. 064i8́, (203) 735-9333.

Used DEC Computers and Modules

American Used Computer Corp. (15 School St., Boston, Mass. 02108) sells a $4 \mathrm{~K}^{\prime} \mathrm{PDF}-8 / \mathrm{L}^{\prime}$ or $8 / I$ for $\$ 3000$, an $8 \mathrm{~K} 8 / I$ for $\$ 6500$, and a 12K $8 / L$ for $\$ 8000$. They have various DEC peripherais, from \$IK to \$3K, such as a TU-5S DECtape for $\$ 1200$. And DEC modules (series B, G, K, M, R, S, W) and hardware such as $8 / L$ racks, power supplies, etc., at 35% off DEC prices.

MORE ABOUT INTEL'S MCS
The MCS-4 directly drives up to 16 of the $4001^{\prime} \mathrm{s}$ and 16 of the $4002^{\prime} \mathrm{s}$. Without a 4003, there are 128 I/O lines; with $4003^{18} \mathrm{~s}$ I/O is unlimited. Minimum MCS-4 is one 4004 CFU and one 4001 ROM.

The MCS-8's 8008 CFU can directly address $16 \mathrm{~K} \times 8$ bits of memory (any mix of PAM (including the ll03), ROM or shift register), and 32 different I/O ports.

HARDIVARE

Dynanic Digital IC Tester

The May 1972 Radic-Electronics has a constructior article, "Build RE's Digital IC Tester," (pp 33-36, 85). Heart of the Digi-Dyna-Check is a $20 x 10$ matrix switch that connects various inputs to any of the DIF pins; these inputs include 0 , l, a stepping pulse from a pushbutton, and an internal $50-\mathrm{kHz}$ clock. Sixteen lamps monitor the logic levels. External input to and output from the IC is connected through binding posts. An adapter cable permits in-circuit testing of ICs.

The June R-E (op 55-5.9) tells how to use the Digi-Dyna-Check, and is mainly concerned with how to set the matrix switch for the various ICs (SN7400 series, mostly) and then how to test them.

The July R-E (pp 59-61, 94) shows how to use the Digi-Dyna-Check in breadboarding circuits. A complete kit for builaing the DIC is $\$ 79.95$ from MITS; a manual listing the pin connections for over 500 ICs is \$2.75.

DEC PDP-8/F
The new PDP-8/F is exactly the same as the $8 / E$, except that it isn't as
deep - it has room for only 20 card slots for expansion, instead of 40 . So the $8 / F$ is for the user who knows he'll stay within those 20 slots. The $8 / F$ is 3990 ; the 8/E is \$4990. If the 8/F user needs more than 20 slots, he can buy an expander box for - guess - $\$ 1000$.

LED Edge Card Lights

Monsanto has introduced low-power edge card lights, for diagnostics and for indicating malfunctions. Typical operation is 15 mW at 5 volta, 3 mA . An internal resiator permits operation at 2.2 volts, with maximum set at 6 v DC. The lamps can be stacked 10 to the inch, and they fit in standard DIP sockets. Frice for 1 to 3 is $\$ 2$ each, from Monsanto - Electronic Special Froducts, 10131 Bubb Rd., Cupertino, Calif. 95014.

LSI for a Calculator

The Nov. 1970 Newsletter (p 3) mentioned the Electronic Arrays set of 6 MOS LSI circuits for a 16-digit calculator with 8-digit display capability; price, 1-10, 苄158.46, for 11-49, \$144.06.

Now there are two cheaper sets from Electronic Arrays, the S-101 and S-114, for 8- and l6-digit entries. Each set consists of four chips: input, control \& memory, arithmetic \& register, and output. Both sets provide add, subtract, multiply, divide, stored-constant operation, keyboard setting of decimal-point location, and BCD outputs for display control. For 100 to $249, \$ 40$.

An Expensive Kit

Lockheed has developed a modular line of minis called SUE (Syatem User Engineered), which involves a kit of parts from which you select the various ones you want: basic chassis, CPU, core, I / O controllers. One minimum configuration, with $4 K$

The Amateur Computer Society is ocen to all who are interested in building and operating a digital computer that can at least perform automatic multiplication and division, or is of a comparable complexity.

For membership in the ACS, and a subscription of at least eight issues of Vol. III of the Newsletter, send \$5 (or a check) to:

Stephen B. Gray
Amateur Computer Society
260 Noroton Avenue
Darien, Conn. 06820
The Newsletter will appear every two months or so.
of core, costs $\$ 3425$ each.

Minuteman Computers

Computerworla notes that "only about five of the 100 installations actually have their D17's running." These 100 are the members of the Minuteman Computer Users Group.

Computer-Generated Grey Shades

According to Computerworld, Computax Corp. uses computerized graphics in their office interior design. Variable density was achieved by using ten shades. The \#O shade is blank; \#8 is superimposed $0, A$ and X; \#9 is superimposed $0, A, X$ and V. Different fonts may require other combinations. The 10 shades:

More on Scopes

That Heath/Schlumberger EU-70A dual-trace $15-\mathrm{MHz}$ scope, mentioned in the previous newsletter as available assembled for $\$ 595$, is also available as a kit, model IO-105, for $\$ 430$ from a Heath store.

And as for electronic switches, the 10:1 rule does say that the highest
frequency to input to an electronic switch should be no more than a tenth of the switch's switching frequency. However, in practice it has been found that ratios as low as 2:1 are often suitable, so that if the electronic switch's top rate is 100 KHz , you can input up to 50 KHz ' without missing too much in the chopping of the signal. Eeyond these limits, you either have to examine one signal st a time, or use a dualgun scope.

TI's Low-Friced Minicomputer

Texas Instrument's 16-bit 960Ags with a $750-$ nsec cycle Eime and 4 K words of semiconductor memory, Is $\$ 2850$, for 1 to 100. The 960A ise built with standard 7400 TTL MSI The CFU is on one 10-Iayer board, with a front panel also formed from a circuit board. LEDs are used in the panel diaplay. Added MOS memory is $\$ 1500$ per 4 K words. Software includes Fortran, monitors, loaders, microprocessors. For OEMs.

Heathkit Peripheral Interface

A do-it-yourself peripheral interface kit for the PDP-8 family of minis (L, E, M or I), the Heath/ Schlumberger "EU-801E Computer Interface ADD" costs $\$ 1250$, consists of the three-module Analog-Digital Designer (see the Aug. 1968 Newsletter, p 4), an interface-buffer assembiy, and a workbook.

A GENEROUS OFFER OF HELP

E. Douglas Jensen (M.S. A3340, Honeywell, Inc., 2345 Walnut St., St. Paul, Minn. 55113) writes: "Since I design computers for a living, and also have a lot of contacts in the surplus and excess inventory business, perhaps I can be of help to other members. Anyone is free to write to me on either topio.

Copyright 1972 by Stephen B. Gray

Vol. III, No. 1 - June 1972
AC 8 NEWBLIWMTER
a publication of the AMATEUR COMPUTER SOCIETY

Volume III, Number 2 (Serial Issue 24) Soptember 1972

HAL CHAMBERLIN's COMPUTFR
According to Hal (Howard) ChamberIIn's Survey Form, his operating "HAL-4096" computer has 6 registers and is $3 / 4$ made of $I E M$ cards, $1 / 4$ home-built cards. Core memory: IBN 1620 stack, 16-usec, 4096 16-bit words. I/O is Selectric typewriter, paper tape reader/punch, dataphone. The clock speed 1s 1 MHz ; there ars 16 instructions. Add speed: $3 \mu s e c$ carry propagation, $16 \mu \mathrm{sec}$ total.

Speoial features: "16 Index registers in upper core, 6-level neated priority interrupt system, programmed $1 / 0$ to slow devices in 2 groups and 2 independent data channels for fast devices. Trace interrupt permits control program to trace untried program on console typewriter. 4-level priority memory-access scheme." The CPU cost $\$ 500$, total time was $2 \frac{1}{2}$ years to build, with wire-wrapped construction.

Other information: "Paper-tape reader is entirely homemade, with step-mot or drive, 125 char/sec; photocell read; total cost with new step motor, \$45. I/O devioes available but not connected: 384K-word drum, two 7330 tape drives, two 100-cpm card readers, 180-column/ sec card punch, alphanumeric keyboard, facaimile machine. A homebuilt line printer is $1 / 3$ complete; 52 -charaoter ohain, about 200 lpm . Current use is object machine for computer science class projects. Current programming projeot is a 4 remote user (by home-built dataphones) Basic-language time-sharing system."

Hal has written 20 pages of notes and schematios, "Uaing Complete 1620 Memory Units for Binary Addressing." Here are some of the notes:

UThis set of drawings and plans represents the original work I did in adapting a complete 1620 memory unit for operation in a 16-bit homemade computer. The method used for converting to binary addressing was optimized for minimum alteration of the unit itself and aimplified driving circuitry at the expenae of speed. The unit that will be described has been built and operating for about 6 months. Reliability has been perfect. The complete 1620 memory stacks may be purchased from Mike Quinn Electronios, 727 Langley St., Oakland Airport, Calif. 94614, for \$175. They inolude a stack of 12 planes of 10,000 bits each, divided into two sense-inhibit groupa each, and X and Y-axis switch core matrices. No electronics are included.
"statistios on the unit built are as follows: Cycle time, 16 microseconds full cycle read, write, read-modify-write, 6 mioroseconds acoess. Slze: 4086 words of 16 bits each, l2-bit binary addressed. Special features: split-cycle operation; a cyole may be suspended halfway through it, the data in the memory data register may be manipulated, and the oycle restarted. The data in the memory data register will be written back into the same looation. The memory data regiater is also an up-dow counter so that the contents of a memory location may be incremented or deoremented. in only one cycle. Writing in a location can be all bita, the upper 8 , the lower 8, or the lower 12. Where only a portion of a word is written, the rest of the word is unaltered.

[^11]the jumpers out to the wire-wrap terminal boards. Conversion from the decimal addressing to binary addressing was accomplished with 12 3-input NOR gates, 12 2-input NOR gates, 4 4-input NORs, and 12 inverters. The current drivers are simple saturating awitches capable of carrying $350 \mathrm{ma} ; 40$ are used. The drivers have 5-input NOR inputs; all inputs must be logical zero to have drive ourrent. The other logic gates should be capable of dot-ORing. In this deaign, 4 planes in the stack were wasted. If one wants a 24-bit word, all that would be required is 8 additional sense amplifiers and inhibit drivers. No modifications to the drivers should be necessary. A slight change in address decoding logic would allow 8192 locations of 12 or fewer bits.
"The logic gates, sense amplifiers, filp-fiops, and inhibit drivers are all of IBM origin. The current drivers are an original design. Circuits of all plug-in cards are given so that the entire unit could be duplicated, given a good supply of IBM parts boards."

The remainder of the 20 pagea contain a page on address decoding and driving, another on the procedure for aligning the drivers and sense amplifiers, and schematics for a timing signal generator, X and Y switch core matrix decoders and drivera, memory data regiater, and the various NORs, inverters, amplifiers, drivers, etc. The last three pages concern memory driving with ICs, with four schematica.

Perranti 371-12A Memory Drum
Hal next sent 13 pages of text and schematics on a Ferranti drum. Part of the text is as follows:
"This memory drum is currently being sold for $\$ 295$ by Herbach \& Rademan [401 E. Erie Ave., Phila, Pa. 19134]
and is ideal for the advanced amateur computer builder. Although there ia space for 480 tracks on the drum surface, only 384 data heads are mounted. As a result, if part of the aurface is damaged (H\&R do not guarantee a perfect aurface, but I haven't found any bad tracks yet), the affected heads can be moved. Along with the data heads there are 6 olock tracks with heads. A read clock, write clock, and index clock along with a spare for each is provided. Actually, I use only the read and index clocks, since the write clock is simply a delayed version of the read clock. The index clock, in oonjunction with the read clock, will generate a pulse each revolution at the beginning of the data tracks."

There are schematics for bit and track timing circuits, drum matrix driver, drum amplifier, peak detector, drum write driver, etc.

Plans Available

Later, Hal wrote, "I would be happy to provide copies of the 1620 memory plans to interested people for \$2.00. I can reproduce and mail the Ferranti drum information for \$1.50. [Hal Chamberinn, 516-B West Cabarru: St., Rale1gh, N.C. 27603].
"I would emphasize that the 1620 stack is very flexible in that 8192 locations of 12 or fewer bits are posaible for short-word fans, and 4096 words of 13 to 24 bits can be done also simply by rearranging cirouits slightly. The cycle time of $16 \mu s e c$ 1s unaffected by the word length chosen.

[^12]Volume III, No. $2-$ Sept; 19728

or less. The 4 basic circuits (source-sink drivers, inhibit driVers, sense amp-data register, and load resistors) are laid out on 22-pin edge-connected single-sided circuit boards. I can soon offer a complete package for $\$ 5.00$, on these universal memory-driver cards, including theory of operation, schematics, timing diagrams, instructions on how to adapt to nearly any kind of surplus memory stack, and a set of layout negatives along with assembly diagrams. All components are readily avaliable on the surplus market from a number of suppliers, and all circuits generate 7400 TTL outputs and accept TIL inputs:
"Any interested person can have a copy of the principles of operation manual on my computer, and a sample program, for 50\%."

Other Surplus Available

"For the moderate-size-memory maker, two items have shown up in surplus catalogs lately. First, Star-Tronica (Box 17127, Kenton Station, Portland, Oregon 97217) 1s offering a 1024-word by 8-bit, 50-mil core memory stack for $\$ 20$. The selection diode matrix is included and all connections terminate in a connector with mate supplied.
"A perfect complement is a PC board sold by Delta Electronics Co. (P.O. Box 1, Lynn, Mase. 01903) for \$12. This board has all of the sourceaink drivers, inhibit drivers, and sense amplifiers for two of the Star-Tronics memory stacks, which would provide 1024 words of 16 bits each with about 6-usec cycle time. The only items needed for a working memory are a timing generator, a handful of 3-input gates for address decoding, and 8 dual D fllp-flops for a data register. Inputs and outputs are TTL compatible. Delta al so has another board for \$20 which appears to be the same thing
except for a 4096 -word by 16-bit memory."

Hal's Uges of HAL

"As to what kind of programs I run on my computer, the story goes something like this: The computer was built to control an electronic music synthesizer (analog) which I built up during high school for science fairs. In the course of building the computer it became clear that the syntheaizer could be greatly improved if the analog circuits were replaced by digital circuits. So here I am with a computer and without a satisfactory music synthesizer to connect it to.
"I have two friends who are regular users and who are helping write a f1rm software base. So far we have written a full-function debug program which doubles as an operating system, a complete in-core assembler, and are about 75\% finished with a 4-user timesharing Basic system. When the hardware catches up, access to the Basic system will be on a dial-up basis from any standard Teletype terminal. Since the compiler, interpreter, telecommunications routines, and math routines take up nearly 3 K words, a 20X-word memory expansion is being put on to give a reasonable-sized user partition. My Herbach \& Rademan drum should be up in 2 or 3 months, which will give users the ability to save programs and data."

Home-Grown Instruction Sets

"At this point I wish to take issue with Bob Carpenter's remark March 1972 Newsletter about "home-grown instruction sets." The HAL-4096 has a homebrew instruction set which seems to be optimized simultaneously for aimplicity and effectiveness. The simplicity is borne out by the fact that the softwear mentioned above has all been written and debugged since last December [6 or.7

$$
\text { Vol. III, No. } 2 \text {-- Sept. } 1972
$$

months ago]. The effectiveness shows when a full-function assembler fite in 1200 words, or a stripped assembler (such as PALIII for the PDP-8) fits into about 750 words. The ploating-point package is 30% smaller than the one supplied for the IBM 1130, which uses the same data format, and the 1130 has automatio multipiy/divide!
"In short, I think that a big part
of amateur computing is programming
and discovering programming tricks
that can be done with oneis own in-
struction set. To me, copying a
production machinels instruction
set is like building a kit in that
you can't honestyy say that the
final result is ail yours. Anyway,
commercial machine with decent
I/0 provisions are way too expen-
sive. If you exclude the 453 oscil-
loscope, then the computer, I/o
gear, 4ox words of add-on memory,
and dum have all cost less than
$\$ 1500$.
"At any rate, I still plan to connect the machine to a digital music synthesizer (the design of the synthesizer is my Master's theais top1c), an organ keyboard, and a graphics display so I can experiment with computer-aided composition and performance of music. When the hardware 1s ready, I would also like to set up an amateur modem network with other members' computers which have data modems."

Hal sent a photo that shows the console keyboard get into one end of an L-shaped deak, with the CPU and its lamps and switches directly behind, in a cabinet about 61 high, 31 wide, and maybe 61 deep. At the other end of the desk is a Selectric typewriter; in between is the 453 scope for alphanumerio display. To one side is steel shelving with the tape reader and punch, pacsimile machine, etc., and next to that the magnetic-tape drives. Most of it is in quiet, pastel shades of
green and yellow, and blue.
WHAT OTHER MEMBERS PLAN TO DO
The latest version of the Survey Form asks "What kind of programe do you intend to run on your computer when operational?" Here are most of the responses so far:

Engineering calculations, statistical data reduction, data storage and retrieval, entertainment graphics, perhaps automatic machine-tool control (Durk Pearson, Calif.). Compu-ter-generated music (J. Hemenway, Calif.). Games, personal income tax, bookkeeping, etc. (Steve Marum, Ind.). Data storage, number crunching with "programmable calculator," computerized music (G. Chamberlain, Fla.). Mostly educational programs (Daie Schutte, Ariz.). Interpreter, compiler, assembler, editor; realtime appiications; i.e., monitoring, timing (Bob Dipfely, Ore.). Accounting programs (tax, general ledger, financial, etc.) (Jim Law, Tex.). Usual games and deak-calculator-type programe, and simulation and learning programe. Would like to try multiprogramming when core and drum permit (Pete Bayly, Ontario, Canada). Number experiments, linguistics, CAD for a bigger machine, high-school student math projects, home economics (Jerry Bryson, Va.).

Fortran CAD programs (Rickey Caldwell, Okla.). Desk calculator, computer demonstrator and trainer, music synthesizer, and processor for a programmable terminal (Elmer Beachley, Pa.). The first task will be to write utility routines and an assembler. After that, I am primarily interested in exploring the development of new languages designed to allow non-programers to utilize computers. One example might be something to permit young children to interact with a computer. Another might be a language to facilitate progranming of games. Of course, I also intend to write household ac-
counting programe and things like that (Gene Witherup, Pa.). Intend to use machine as proving grounds for software systems experiments, and eventually to build a timesharing machine (Ira Baxter, Cal.). General purpose; e.g., home "MIs," possibly service-type operation. Hope to develop commeroially (Jim Melton, N.J.). Mainly for educational purposes (Michel Dreyfus, France). The machine will be used for dedicated real-time control of a robot (Chria Dewhurst, B.C., Canada). Artificial intelligence (after assembly language and operating system are written) (Ron Carlson, Calif.). Statistical analysis, computer-aided education, and language translation (George Dinsmore, Calif.).

THE TRADING POST

A Garage Full

Ron Carlson (6717 \#44 La Cienega, Inglewood, Callf. 90301) has "an entire garage full of atuff that needs cleaning out," and will sell (1) a Douglas experimental digital computer in two 6-foot relay racks, without backpanel wiring; all achematics; will deliver within 75 miles, \$60. (2) Two Goodyear analog computers, 24 amplifiers each, two patchboards each, one set manuals; 600 lb . each, so bring a trailer; $\$ 400$ each, $\$ 600$ both. (3) Teletype model 18, 4 char/sec, \$100. More information on requeat.

IC Mounting Boards

Gary Forbes (2028 W. Indian School Rd., Box 100, Phoenix, Ariz. 85015) has ' lsome reál nice boards for mounting $14-\mathrm{pin}$ IGs. They are mounted dead (pins up) and soldered to wire-wrap pins. This board will mount 200 ICs. One side of board is $+V_{c}$, other is ground. The mating connector will handle 6 of these boards. Boards, $\$ 3$ each; connector rack, \$6. I think this would solve
the IC-socket problem if you're willing to solder the ICs."

PC-Board Layoute

Peter Stark (196 Forest Drive, Mt. ${ }^{\text {P }}$ X1sco, N.Y. 10549) has several PCboard layouts he'll send you for a self-addressed atamped envelope: (1) frequency counter (to 20 MHz), uses Fairchild ECL and 7400 TTL Numitron or LED readout (costs \$90 with all new parts), ECL scaler (about \$25) extends range to 300 MHz (see 73 magazine, May, June, Sept. 1972); (2) touchtone decoder.

HELP WANTED

Bendix G-15 Computer

Charles Kiessling (P.). Eox 539, Endicott, N. Y. 13760) is rebuilaing an old Bendix G-15 computer, and is "interested in contacting others with G-15's either as hobby or business.

AWCIS MA-1 Computer

Alvin Marshall (412 Oakwood St., Angola, Ind. 46703) is "thinking of using the drum unit from an AWCIs MS-1 computer -- some sort of USAV Nav-Attack system -- as a pile unit. Has anyone used one? What is the drum speed, what data rate - bpi did you use, what did you use to drive the heads? Any problems with the arum coating, heads, etc. $?$ If anyone has a drum and no data, I have prints for head-to-socket-pin data. Send a SASE and I'll send you a copy. Would be glad to hear from anyone using disk/drum for fast mass memory."

Associative Memory

Darrell Foster (8220 Research B1va., Apt. 173C, Austin, Texas 78758) would like to know if anyone is working on a "general purpose" aseociative memory or processor.

The Amateur Computer Society is
open to all who are interested
in building and operating a dig-
ital computer that oan at least
perform automatio multiplication
and division, or is of a compar-
able oomplexity.
For membership in the Acs, and
a subscription of at least eight
issues of Vol. III of the News-
letter, send \$5 (or a check) to :
Stephen B. Gray
Amateur Computer Society
260 Noroton Ave.
Darien, Conn. O6820
The Newsietter will appear every
two months or so.

His computer "is not going to be designed around the CPU, but around the memory (e.g., to give the memory a data-processing capability). As is indicated by various computer projects (e.g., CDCls STAR, TI ACs), the wave of the future is in high memory utilization (not high CPU utilization alone.):

Ampox Memory Unit

Louis Taber (3520 N. Prescott P1., Tucson, Ariz. 85715) asks for information on an Ampex memory unit, model MA6, Assy. No. 3227339-10 M, Issue No. O88.

HARDWARE

More on the NRI Computer K1t

The 16-pound desk-top 832 computer is built as part of a $\$ 500$ National Radio Institute course (March 1971 Newsletter, p 3).

ACS member Louis Frenzel, who designed the 832 for NRI, and is their Director of Instruction and Product Research, has very kindly arranged to make the 832 Reference Manual loKX available for $\$ 10$, if there is enough demand. The manual contains block diagrams and full schematics, with all component val-
ues except the power-supply transformer and rectifiers.

The 832 computer will soon be offered separately from the course, In wired form, for $\$ 600-\$ 700$. There are 16 8-bit words in a read-only memory consisting of slide switches. For another $\$ 35$, the student gets another 16 worde of semiconductor RAM memory, plus the 118 manual on how to instail the RAMs, along with 10 programming experimenta including square root, floating point, and some games.

The ten PC boards will be available for about $\$ 10$, without ICs or IC sockets or terminals. If you're interested in either the manuals or boarda, write Louia E. Frenzel, Jr., National Radio Institute, 3939 Wisconsin Ave., Washington, D.C. 20016.

The full 832, with bipolar RAM memory, consists of 74 ICs, 7400 types. The 832 has 15 instructions.

The 10K manual contains ten programming experimenta for the 832, and the assembly manual has a set of diagnostic programs for checkout.

Digital Kits
Environmental Products (Box 1014, Glenwood Springs, Colo. 81601) hás a 52-page catalog that includes quite a variety of counter/display modules, with both LED and Numitron (vacuum-tube) segmented displays, and several types of counters, pius several assembled instruments, 7400series ICs and other componente. No aurplus, all new from the factory. Quarteriy, they publish application notes, mostly digital, for $\$ 5$ a year, and they pay authors for new notes. EP invites ACs members to submit circuits.

Copyright 1978 by Stephen B. Gray

ATCS NEWSLETTER

a publication of the AVATEUR COMPUTGR SOCIETY

Volume III, Number 3
(Serial Issue 26) November 1972

BOB BENJAMIN'S COMPUTER
From Texas, Bob Benjamin first sent the following:
"I read your article on building your own computer. I have built one and thought you might be interested. I'm an electronic engineer with LTV Electrosystems. Never had digital experience. Built the computer to learn. Now doing digital work as a result. Started October 1968, was operating stored programs by Feb. 1969. Have added instructions and I/O features since....
"Started with model 19 Teletype and worked I/O first. Memory: 62 words, 25 bits, dynamic shift register.
"Registers: ACC, MQ, 1 Index, I/O status, program count save for subroutine save. Arithmetic: $2^{\prime \prime} \mathrm{s}$ complement; add, subtract, logical And, mult, divide $2^{\prime} s$ comp; increment ACC, clear + add, clear ACC, etc. Branches: jump if minus, not zero, unconditional; decrement Index and branch if not zero.
"Five-bit byte symbol string oriented. "FIGS" used as op code prefix for digit keys causes automatic decimal to binary conversion into ACC. If op code (5 bits) needs address, next byte is address. FIGS prefix on address op codes causes displacement by index register value.
"Op codes semi-mnemonic: AX means Add contents of location X to ACC. $\mathrm{D}=$ divide, $\mathrm{M}=$ subtract, $\mathrm{L}=$ load ACC \leftrightarrows Index register, $X=$ multiply, $S=$ store, $0=$ output one byte off ACC to TTY and shift 5 bits, $C=$ clear $A C C, H=$ halt, etc.
"Word organization for programs is 5 consecutive symbols - address not in particular bit positions - reads symbols in sequence - ops that don't need address just 5 bits then next op examined.
"Binary to decimal conversion and print on TTY is software but takes only 8 words (less for positive numbers). $E=$ external execute, takes instructions from paper tape if actuated or from keyboard if tape not actuated, such as for loading bootstrap program. Some op codes required an extra byte, use next 5 bits as modifier, such as for shifts: long, short, left, right, circular, non-circular, etc.
"Some software: wife's adding machine, desk calculator for me, random flash-card exercises for children with messages typed to user, line by line text edit.
"FIG F in program prints following message until FIG H, then proceeds to compute "F" by itself, prints next symbol such as for decimal point. Each key on Teletype is a potential address (31), "LF" changes pages of memory. Machine serial and very slow; $100-\mathrm{kHz}$ clock, 400 symbols/sec execution. Following is a program example for binary-to-decimal conversion and printing result:

Program				Loc. Loc. Letter Bin.	
	\#, 0	000,00	000)	E	01
F	-	N	G SP	If	02
J	LF	F +	$+\mathrm{SP}$	A	03
1	C	FG 7	7 L	SPACE	04
D	E	2		S	05
I	S	F	CR F	I	06
IF	R	SP S	SP SP	J	07

"Main program would say KGA, meaning Return Go to location A (03). R remembers program count by swapping with 5-bit register. J LF (O2) means jump if aCC neg to location If (O 2). F - means print a minus sign. $N=$ negate ACC. $G S P$, go to location SPACS (04). L = swap ACC and index to save ACC. C FG $7=$ clear ACC, lo.ids binary 7 to ACC. $\mathrm{L}=$ swap index and ACC. D E = divide $A C C$ by $E, 1,000,000$. $Z=$ print digit of 4 LSB's of ACC (quotient ends up in $A C C$, remainder in $M Q$). $Q=$ swap $A C C$ with $M Q$ to get remainder. $\emptyset=$ mult aCC by 10. I $S=$ decrement index, if not zero go to location S (05), otherwise continue. F CR F $L F=$ print carriage return and line feed. $R=r e t u r n ~ t o ~ m a i n ~ p r o g r a m . ~$ (Spaces are no op.)
"Branch points must be beginning of 5-symbol block. Numbers are 24 bits and sign. This machine has been functioning for $2 \frac{1}{2}$ years. Made for $\$ 400$ with samples and surplus. Have a 4 K core memory now that this computer can read and write with -planning PDP-8 with old computer primarily as ASR33 simulator and executive control."

Bob's second letter said, in part:
"Scientific Controls Corp. in Dallas went bankrupt and had an auction. Couldn't make the auction but friend bought me a $4 \mathrm{~K} \times 12-$-bit complete Fabri-Tek memory system (new) for \$25. I've added a general I/O instruction to old computer to talk to it. Can load data and retrieve data with 12-bit address and 12-bit data from ACC of old computer. Have loaded TTY pictures and played back. also have run worst-case test patterns.
"Plan is to build PDP-8/I. Got all ICs for $1 \frac{1}{2} \notin$ apiece, including such items as l-out-of-16 decoders at

Vol. III, No. 3 - November 1972

SCC auction.
"Design of computer was at random, no previous conceptions or books, except Richards' "Arithmetic Operations in Digital Computers." Machine is serial. The 25 -bit word was shortest National Semiconductor dynamic shift register. Also, machine was originally wanted for stock market, and 25 bits is approximately correct for personal finances and hopes 300, 000 dollars (wishful thinking). The PDP-8 software can be bought for a nominal fee including FOCAL which would make a nice home scientific machine.
"Incidentally, I find my easy-toprogram computer more useful for doing some work problems than the IBM 360, H-P 9100B, or Raytheon 703, particularly in simulating digital algorithms related to hardware."

In his third letter, Bob notes:
"I've been amazed at how useful only 62 words (two 3l-word pages) of memory can be when symbol byte oriented. Memory size has not yet limited what I have wanted to do with the machine. If the problem is much larger it is done at work on the 360/50."

HISTORICAL PERSPECTIVE
Doug Jensen, who kindly offered to help ACS members with design problems (June 1972 Newsletter), writes:
"I cannot imagine better advice to an ACS newcomer than for him to read straight through from issue 1 to (the current) issue 24. The historical perspective of computer technology that can be obtained could well be one of the most important benefits he receives from his amateur. computer activities. Semiconductor cost/complexity curves have changed
by orders of magnitude over the design cycle of a typical ACS computer. This will continue to be true: SSI circuits will be $10 \notin$ and microprocessors such as the Intel 8008 will be $\$ 25$ in the near future. ACS members should carefully consider their motives and goals in the light of rapidly changing technology. Even if a builder's principal objective is to acquire engineering experience, it is still frustrating to see hundreds (even thousands) of hours and dollars be replaced by a \$10.IC. A member who is more concerned with having and using a computer would be wise to concentrate on the systems and software aspects of the machine rather than the detailed design of its processor. Even if it were free, the 8008 is not much of a processor - how could you build a more capable machine from several of them? Learn to program the PDP-11 and/or the Nova - the next generation of IC processors will have instruction sets which are compatible with these popular minicomputers."

In an earlier letter, Doug wrote:
"Much more sophisticated 16-bit and larger processors are now imminent from several major IC manufacturers. Some of these will be directly program and I/O compatible with today's popular PDP-ll and Nova minicomputers. Many other valuable units (such as complete 103-type modems) will also be introduced soon as ISI chips. This indicates that perhaps amateur computer builders should stop worrying about a level of design which for the most part they are ill-equipped to cope with. Vol. 1, No. 8 noted that successful members have been professional EE's. The availability of low-cost TTL ICs may have altered that situation slightiy, but the emergence of LSI subsystems should allow serious hobbyists to construct their own
machines. This goal will still require substantial technical knowledge, and in some cases the traditional EE will be no better prepared than the amateur. For example, LSI microprocessors like the 8008 may be inexpensive, but they are also very low performance, which raises the question of how to effectively interconnect more than one of them to increase throughput. This is a very broad and complex problem that is the subject of study at many corporations and universities.
"In the area of excess inventory, I list below several sources that I have found to be productive. Few, if any, of these advertise in national media; most do not have catalogs or mailing lists - write and tell them what you need.

Vide Corp. Teco
1918 Ottawa P.O. Box 1050 Houston, TX 77043 Garland, TX 75050

AC E'quipment
KA Sales
10616 Hempstead Hwy. 1312 Slocum St. Houston, Texas Dallas, TX 75207

Acme Electronics
224 washington ave. N. Minneapolis, Minn. 55401

> Gordon Elliott white 1502 Stonewall Ave. Alexandria, Va. 22303
"It should also be noted that large companies everywhere frequently operate surplus stores; these almost always require personal visits. Another extremely good way to find components, subsystems, and even complete systems, is to attend electronics company bankruptcy auctions. These are usually advertised in the local papers; some auctioneers maintain mailing lists. You must attend personally and bring cash, but even travelling a consid-
erable distance can sometimes be worth the time and cost. However, not everything sold at an auction is a bargiin - particularly beware of test equipment, which often goes for near new prices.
"I am afraid that I am unable to assist your readers in the design or selection of core sense amps and drivers.
"I have for sale some new, factorysealed Lambda 5V/48A power supplies. These are $3 \frac{1}{2}$ " rack-mounted units. The manufacturer's current price is $\$ 475$ each; my price is $\$ 150$ each. [Doug also has Augat 8136-PGl high-density DIL packaging panels, new, unused, list price over $\$ 350$, for $\$ 100$. Also for sale: a variety of IC's, mainly SN7000N types, at " 10% less than any advertised prices."]
"I do quite a bit of consulting in the area of computer organization and design; I would be happy to donate whatever assistance I can to your readers. My response time is always a function of my business commitments. I encourage that requests be sent on cassettes; a phone number where the individual can be reached during the day will allow me rapid reaction to particularly time-critical or interesting problems."

Doug is a Principal Research Engineer/Scientist, in Computer Technology. His address is: E. Douglas Jensen, M.S. a3340, Honeywell, Inc. 2345 walnut St., St. Yaul, Minn. 55113. (That's Honeywell's Government and Aeronautical Products Div.)

CALCULATING WITH BASSIC?

The thin, fuzzy line between computers and calculators seems to have
been erased by the Wang Laboratories 2200, which is the first calculator that operates in Basic language. The 2200 looks like a terminal, with an 8-by-10 $\frac{1}{2}$-inch CRT display, cassette data store, and keyboard. The keyboard has a key for each Basis instruction (which is fast and also reduced errors), numeric keys, exponential and math function keys, plus 16 special-function keys to which subroutines can be assigned by the user.

The microprogram architecture involves a 6-kilobyte braided-wire read-only memory, used instead of MOS because it's cheaper. The basic 2200 has 4096 program steps, expandable to 32 K steps. The CRT shows 14 lines of 64 alphanumeric characters per line.

The 2200 is modular: the CPU with 4K programming steps is $\$ 3500$; additional 4 K steps are $\$ 1500$ each. The combined CRT and cassette unit is $\$ 2500 ;$ CRT alone, $\$ 1500$. The keyboard is $\$ 700$. So a minimum 2200 is $\$ 6700$; without cassette storage, only \$5700.

Hewlett-Packard's 9830A (Model 30) calculator was announced a few weeks later. The Model 30 looks more like a combination typewriter and calculator, with integral 32-character LED alphameric display and built-in tape cassette.

The minimum 30 has 3520 -bit bytes (1760 words) of read/write memory, expandable to 7616 bytes. The keyboard includes all typewriter keys, a set of numeric keys, edit keys, and 10 special-function keys. The single cassette can hold up to 80 , 000 bytes.

Add-on ROMs provide optional features such as matrix operations, plotter control, extended I/O and string
variables.
The minimum 30 is $\$ 5975$. Each addon ROM, \$485. Peripherals include plotter, paper-tape reader, pagewidth printer (\$2975), external cassette unit, Teletype, etc.

ELECTRKONIC VIUSIC CLUB
The bilectronotes Newsletter appears every 20 days or so (!!) and covers construction, theory and use of synthesizers, etc., as well as reviews of literature, performances and products. For further information, write: B.A. Hutchins, 60 Sheraton Dr., Ithaca, N.Y. 14850. As he puts it, "Computers have lost some favor in electronic music, people preferring the synthesizers, but recently there is a trend back, as more and more computer equipment is available to more people, and also digital generation of sound is very big." ACS member John Bottoms is cited as having "teamed up with Gary Nelson at Purdue, using a CDC 6500 computer in a modified version of "Music V" called "Music 65."" A copy of the program from the line printer is $1 \frac{1}{2}$ inches thick. There is also mention of DECUS (the DEC Users society in Maynard, Nass.) having "a couple of music-type programs in its program list."

TEMPLaTe FOR DRanING PC BOaRDS
The quad-'Template by kiandu provides four types of symbols: (1) for PC boards: conductors, pads, card-edge connectors; (2) for logic, gate and function-box outlines; (3) for drill jig: lead-hole patterns for transistors, ICs and components; (4) for schematics: alphabet, components, arrows, etc. Nade of a rather thin plastic, the Quad-Template is \$2.50 from Kandu, Inc., 6115 Miller St., Arvada, Colo. 80002.

THE TRADING POST

Used PDPs

Ken Karow writes from Chicago that Newman Computer Exchange (222 S. Seventh St., Ann Arbor, Mich. 48103) offers a PDP-8 4K for \$1500. Also a 4K PDP-8/L for $\$ 2640$, 4K PDP-8/I for $\$ 2900$, and a TU-55 DECtape at $\$ 1150$.

Keadout Samples

Barry Mulligan of New York writes about the limited-time offer by Dialight Corp. (60 Stewart Ave., Brooklyn, N.Y. 11237) of a number of readout modules (both segmented and dot-matrix) at around halfprice, for prototyping.

Computer Equipment Source

For 50d, a catalog from MNH - Applied Electronics (P.O. Box 1208, Landover, Md. 20785) lists used computer equipment such as control panels, RCA memory systems (\$485), address registers, arithmetic units, cabinets, etc. also a complete communications processor that needs some logic debugging and interface wiring. Also listed: TTL ICs, electric wire-wrap guns (\$87), etc.

Surplus Burroughs Computers

Dick Breidenbach of Michigan writes that "Silverstein's, a surplus store in Detroit, has about 90 Burroughs $\mathrm{B}-200$ computers for sale. The CPU with 4 K storage is going for $\$ 150$, the 132 -position line printer for $\$ 150$, and the card reader for \$100.... Documentation is hard to come by.... Unfortunately only those who live near Detroit will be able to take advantage of these machines, is they are strictly cash and carry, and the printer weighs about 1700 pounds!'I bought one door of the CPU with the core, all drivers and buffers, for \$35."

The Amateur Computer Society is open to all who are interested in building and operating a digitul computer that can at leust perform automatic multiplication and division, or is of a comparable complexity.
for membership in the ACS, and a subscription of at least eight issues of Vol. III of the Newsletter, send $\$ 5$ (or a check) to: Stephen B. Gray Amateur Computer Society 260 Noroton ave.
Darien, Conn. 06820
The ACS Newsletter will appear every two months or so.

Logic Cards, Anyone?

Dave Digby (311 South Brown ave., Orlando, Fla. 32801) writes:
"I have acquired a fair number of logic cards, discrete transistor type, of various brands (Milgo, Raytheon, Milgo, etc.) and would gladly part with them for little more than the cost of shipping. Not enough of any type to build a whole computer, but maybe enough to construct an I / O interface or supplement one's existing supply. Let anyone interested send me their limitations - connector type and contact spacing, number of pins, transistor types, card dimensions - whatever, and I'll let them know if and how many I have to match. and I have telephone-type relays by the pound! ind some lab instruments."

Help Needed

Bob Harrington (2228 Ft. Stockton Dr., San Diego, CA 92103) writes:
"I'd be interested to know of anyone who has built a cassette drive for 3M's belt-driven cassettes. It looks like it would be easy, but may not be.

I'm having trouble trying to program the Signetics 8223 256-bit P/iKMs, They seem to be re-linking, as they do not take. Anyone else having this problem?"

Audio Heads for Drums?

Jerry Bryson (618 W. 33 St., Richmond, Va. 23225) writes, in part:
"Since I announced my intentions, I have received a lot of advice about core ("Don't try it!"). Indeed, the drum may be better, from the standpoint of expense, capacity and word size. I'm not interested in great speed. I'm wondering about audio heads for the drum. Will 20,000-cps audio heads work for 20,000 bits/ sec? will they work faster? Will they work at all?
"I visited the computer exhibit at the Smithsonian. Nost of the relics were built by hand and should be an inspiration to "datamaniacs." The exhibit does leave something to be desired, however. Many displays are not yet labelled and most of the stuff is from space and military applications. An Atlas control system is still alive and does demonstrations daily. There is no 1401, which should certainly be there. and the miscellany of memory stacks, etc., is just so much junk without any captions, unless you already know what you're looking at. If the Smithsonian accepts volunteer help, washington-area ACS members could make a contribution to both history and public education with their services."

FAST FLIP-FLOYS

Motorola has a new MeCL III IC, the MiCl690, a master-slave D flip-flop with a toggle rate over 500 MHz , at $\$ 55$ each for 1 to 24 .
Copyright 1972 by Stephen B. Gray
a publication of the AMATEUR COMPUTER SOCIETY

Volume III, Number 4
(Serial Issue 27) February 1973

ROTHMN WRITES AGAIN
Allyn Rothman writes from New York:
"I don't have much progress to report on the hardware side, but my loeic design has undergone several revisions. My basic philosophy still remains that of implementing the machine inatructions by means of a microprogran stored in some type of read-only-nemory or alterable ROM. This neatly divides my work effort into two convenient sections. I can design and test the lovic of my microprogram on another computer using simulation techniques, thus saving the expense and tine of building complex logical functions with hardware. The hardware I require, then, becones just the ROM plus relatively simple data busses and cates. I have redesigned the micro-logic several times, since as various ICs become cheaper on the market, it pays to take advantage of them in the overall design. Prices are droppinci rapidly, so I tend to spend more time developing my "firmware," and less on the hardware. ROMs are still expensive, and vith my computer depending heavily on them, the longer I wait to buy, the cheaper my machine becomes. For me, looking at the output from a successful inicrologic sinulation run is just as satisfying as seeing the lights blinking on the finished machine.
"I have been lucky in one respect. My memory, which is a lOK x l2-bit unit taken from an IBM 1620, is working satisfactorily in a breadboard setup. It runs with a 10 microsecond cycle time and appears to be 100\% reliable as far as errors are concerned. I see that Bob Carpenter is also making use of an IBM 1620 memory [Kar. 1972,
p 3], which he obtained from the same source thet I did, Herbach \& Rademan. I regret not having bought additional modules, because the slow cycle tine plus the core matrix switches usea for drive-line selection make the unit relatively easy to operate. The lo-pece cycle time also gives me plenty of room for micro-programming to control all the necessary functions between cycles. is 500-nsec cycle time may be right with the atate of the art, but I d sooner avoid the problems and ageravation from such ingh frequencies, and settle for a slower menory that works reliably. I think Eob is at a decided disadvantage using his 12-plane unit for a 12bit word. Having a spare plane (which I would advise his somehow adding) provides a parity bit, and this is crucial to reliable operation. Not just by indicating obvious catastrophic failures, but for "tuning" the memory to operate in the niddle of its error-free operatime area. I check the narity error count and I vary the select drive currents and the matrix switch bias current to develop a plot which neatly defines for me in what region my memory is most reliable.

[^13]instructions therefore control hardware gates, latches, and data channels at a much lower level in the machine hardware than is necessary to merely implement the instruction set. For the fun of it, I have partially developed microcode from which most of the 360 machine functions could be controlled, and it appears that far less than the 1408-word x 176-b1t ROM which IBM presently uses is needed to actually support the instruction set. Leave out the floating-point instructions, and you are not left with an impossibly large task. As the book on micro-programming by Husson explains, Honeywell has taken the opposite approach from IBM, resulting in more compact microcode that controls the actual machine hardware at a much higher functional level. I find the deaigning of a microlanguage to implement machine instruction sets to be one of the most interesting aspects of computer design. To come up with optimal control microinstructions which minimize ROM requirements while maximizing control flexibility is tricky business, but far more satisfying (to me) than cetting a shift register to work. I would like to know if anyone is seriously considering tackling a $360-11 \mathrm{ke}$ machine, especially with a microprogram approach.
"In the March 1972 Newsletter was a small blurb on the utility or necessity of using an oscilloscope in developing machine hardware. I find an oscilioscope indispensible; so much so that I am in the process of putting together a more adequate one than the simple one now at my disposal. A delayed sweep doesn't seem to be that essential, since you can always find some pulse in the system advanced enough to provide a trigger signal for the waveform you actually want to look at. That is a real convenience is a dual trace, because very often it 1s the time relationship between
two pulses that is of interest. For those who want to build a kit, I re commend the Heathkit 10-105 3olla State $15-\mathrm{MHz}$ Dual Trace Triggered Scope, at ${ }^{(2)} 429$. Ifm makine it an even better buy by scratch-building 1t myself fron Heath schematice and using a less expensive CRT (flatface tubes aren't cheap). I expect to finish the job for about $\$ 100$. And I started out building a computer!
"The longer I wait, the cheaper ICs become, so I feel very little pressure to rush my machine to completion. The software simulation of my micro-instructions provides me with enough of a sense of accomplishment for the time being. I would be interested in hearing from any members who have successfully used ROMs, especially the semiconductor types. Has anyone attempted a CRs I/O device? llany such units have been mentioned, but has anyone actually managed to buila one? [Allyn Rothman 19 Roberta Lane, Syosset, NY 11791]"

TWO :OORKING COMPUTERS
D.A. Sowman writes from Arizona:
"I have built two computers from scrap parts in the past 4 years. Both are 12-bit, $2-\mu \mathrm{sec}$ machines patterned after the FDF-8 instruction set. The first was built from second-generation discrete-component DTL NAND logic. The memory was of my own design. Ky second computer was built to get around the power dissipation problem (1.5W) of the first machine. It gets expensive to operate and refrigerate that kind of system in Arizona. The second machine is made out of 7400 series TTL and has an $8 \mathrm{~K} \times 12$ main core memory.
"I have also designed and have operating the following extensions to my computer: high-speed reader and punch (General Electric); Calcomp 565 incremental plotter; 32K-word
x 12-bit extended core memory; ASR 33 Teletype; video display (16 lines of 64 characters, ik refresh menory, 5×7 dot-matrix characters); $X-Y D / A$ converter and storage scope.
"All of the PDP-8 software works on my system. This has saved considerable time, as you can well imagine. I have used the following DEC software: compilers (Focal 8 K , Easic - Foly, Fortran - 8K); assemblers (Macro 8, Pal III, Saber); maintenance programe, disk monitor systems (my 32K core memory looke like a DF32 Disk System).
"My entire system logics are mounted in a 19-inch rack and all of the packages are wire-wrapped together using 30 -gage wire. I use wire-wrap boarde on which you can mount 200 TML packages. They are mounted upside down and soldered to pins that go through the board and are wirewrapped on the other side. This allowed me to put my whole computer logic (registers plus control and timing) on one card. I have a module that holds 10 such cards, including: one for video displey logic, one 32 K interface logic, two core temory, one Teletype and highspeed reader/punch logic, one computer card.
"I have devoted most of my spare time for the last four years in accumulating the parts and developing my software."

THE TRADING FOST \& HELP WANTED

1101 RAMs

Dave Veanor (P.O. Box 1317, Tustin, Callf. 92680) writes: "I've had a mpr offer me 2700 pleces of a CMI 1101 256-b1t RAM. These are new, but have been scrapped due to a product change." "Ifth at least 16 , at $\$ 1.50$ each, you've got a $4 \mathrm{~K} \times 1$ memory, at \$24. With at least 256,
at $\$ 1.25$ each, a $4 \mathrm{~K} \times 16$ menory for $\$ 320$. And with at least 512 of these, at $\$ 1.17$ each, an $8 \mathrm{~K} \times 16$ menory, for $\$ 600$. "I need a total order of 500 minimum to get these prices. If I can move all 2700, prices would be about 10-15\% lower. Again, these devices are new and are being offered to me by a computer infr. However, I can offer no guarantee."

Time-Sharing Club

Frank Eperjesi (P.O. Box 221, Burbank, Calif. 91503) writes: "I would like to etart a local club in either LA or Orange County. I live in Orange County but am in LA so much that I don't care which area - it depends on where I could drum up the other members. The purpose of the club would be to buy a small time-sharing system. I figure that if 20 people were to kick in $\$ 250$ each to join, and possibly \$250 a year thereafter, this would allow me and the other members to have a fairly powerful system at minimum expense, and expandable as extra members join. The other possibility would be for ten people to get together to purchase an Intel computer development syatem (about $\$ 1 \mathrm{~K}$) and a TI printer/dual mag-tape unit with keyboard (\$2400) and misc. hardware at about $\$ 1 \mathrm{~K}$. This would be a fairly powerful inini-computer system at minimum expense."

727 Tape Drives

Alvin Marshall (412 Oakwood, Angola, Ind. 46703) says: "I have some 727 tape drives - with the books $\$ 100$; you haul 'em. These are tube, but worked when removed. They are stored at Focomoke, Md., not at my place, but they can be picked up at almost any time."

727 Circuit Info?

Al Sinclair (941 Hedge Dr., Mississauga, Ont., Canada): "I acquired an IBM 727 tape drive in perfect
condition and spent the next four months tracing out all the circuits. Is there no way of getting this information? I use a lathP 3-ph motor and a 240-to-208V autotransformer to generate the threephase power to run the taje drive. I am dispensing with all parity and deskewing circuitry at this time since the relatively few errors don't matter to me anyway. The outfit sure generates a lot of noise in the house!

On a visit to Kingston, N. Y., dropped in to P\&D Surpius [Mar. 1972 Newsletter] and picked up a card reader, keyboards, control panels and a host of other parte at ridiculously low prices."

Surplus Items

Gary Forbes (2028 \%. Indian School, Box 100, Phoenix, Ariz. 85015) sent a list of items advertised in the Dec. 1972 Popular Electronics; he has a $2 \mathrm{~K} x$ l-bit core plane for \$5, driver board for $\$ 3$, sense amplifier for \$2, IBM electric typewriter with solenoids, $\$ 50$; ICs; IC mounting boarãs, core stack, etc. Write him for a copy of the list.

Any Readers Involvedr

Dave Digby (311 S. Erown Ave., Orlando, Fla. 32801) writes:
"Over the past year or two here in Florida, I have been too busy designing computers at work to feel much like doing it also at home. Have not given up the project, however, but keep accumulating little bits and pieces. Let me list a few minor projects in various gtates of non-completion: (I) A one-pass assembler, hopefully tailored to very small computers. Few restrictions on features for paper tape object tape, but obviously requires an optional second pass for complete address data in listing. (2) An all digital modera -- except for
line interface. (3) A display buffer and generator to display on conventional TV set.

Are any readers currently involved in accumulating orders for shift registers or other menories? Or in evaluating currently available logic lines for home computer use? Or in projecting possibilities coming up with MOS, CMOS, etc?"

KENBAK DROFS CASSETME INPUT
Development of the cassette input for the Kenbak-1 training computer (Warch 1972 Newsletter, p 1) has been shelved, as it isn't needed in the educational field, toward which the Kenbak-1 is oriented. Kenbak is concentrating on the secondary and post-secondary schools, which can obtain Federal funding for such hardware.

Half a dozen of the Kenbak-l (which is now $\$ 850$) have been sold to private individuals, half of whom are programmers and EE's. As one programmer put 1t, "I have an IBM computer at work with half a million words of storage, but I didn't have a computer at home."

Kenbak Corp. is now at 12167 Leven Lane, Loa Angelea, Calif. 90049, (213) 472-8347; Jóhn Slankenbaker, president.

A $\$ 695$ COMPUTER KIT

The System One computer kit will soon be available from EPD, P.C. Box 1014, Glenwood Springs, Colo. 81601. There are 16 individual kita that make up the entire computer, with IK of memory, and addressing for 8 K . System One contains 82 ICs and has a control and display console that displays the contents of most of the major registers. Input is by pushbutton; output ky lamps. There are 29 micro-instructions
and 28 combined micro-commands programmed in a diode matrix that is in the form of a read-only memory. This matrix can be altered by the user who wishes to try out his own instructions. The entire System One is $\$ 695$. The plans, with all schematics and parts layout, is $\$ 25$. The first ad will appear in the May Radio-Electronicg.

You w1ll need a good scope (at least 10 MHz), preferably dualtrace, for setting the core levels. System One has a data-bus terminator connector, and there are instructions for setting up I/O to anything that operates on an 8-bit binary code. Only 15 machines will be offered at this time, because EPD has only 15 IBM 1401 core menories, bought surplus, and no nore are available. Then the core is gone, they will switch to solldstate memory, either Intel 1106 or Signetics 2601 l024-bit types. This will add about $\$ 200$ to the price; this machine will be Systen Two; another change will be from 8-bit with link to 16-bit with link.

System One is patterned after the PDP-8, but comes only with a list of commands. There is no user group yet -- only 11 of the original System One machines were made (blus 2 prototypes).

Also available is an 80-page Memory Core Booklet, MPB-1, for \$5, on setting up a core memory, with values for the 1401 memory as used in System One, but with all the equations for adapting to any core menory.

IN PRINT

Cryptology and Computers

By coincidence, two articles on a subject quite rare in trade magazines appeared in January: "Computers and Cryptology" by Chesson in

Datamation (Jan. 1973, pp 62-64, 77-81) and "How to protect data with ciphers that are really hard to break" by Geffe in Electronica (Jan. 4, 1973, pp 99-101). The first is about programs for cryptoanalysis and includes a Fortran program for simple work; the second deacribes enciphering methods.

ROMa in Digital Systems

"ROMs are versatile in digital systems" by Percival of National SemiConductor (Electronic Deaign, June 8, 1972, pp 66-71) goes into lookup tables, programming the ROM, arithmetic with ROMs, converting codes, and microprogramming.

LSI and Central Processors

In the Nov. 1972 IEEE Spectrum, "MOS/LSI launches the low-cost processor" (pp 33-40) is well worth reading (reprint is $\$ 1.50$ from IEEE, $345 \mathrm{E} .47 \mathrm{St} . \mathrm{NY}$ NY iOO17; ask for article X'̇2-1i2 within a year).

The devices outlined are the American Picrosystems 7200, Fairchild PPS-25, Intel MCS-4 and MCS-8, National MAPS and GFC/F. The MCS-4 is noted as having an extensive software library compared with other processor families.

The article points out the slower execution times of MOS processors, the minimum applications support from the makers, and the need to buy large quantities of an IC to offset customized masking chargea.

TV Set for Data Display

"TV set is display for data terminal, " by Eratt of Motorola (Electronic Design, Sept. 14, 1972, pp 134-141), has an all-digital char-acter-generation circuit; 1024 characters, each in a 5×7 dot matrix, with 16 rows of 64 columns; full set of 64 ASCII alphanumeric characters available. Six 1024-bit

RAMs refresh the display; a spec1alized ROM (HCMII31) generates the characters; the remaining circuits require much construction, on four logic cards.

Computer Logic Book

For your son or a young friend, "Beginner's Guide to Computer Log1c" is a recent one from Tab Books (Blue Ridge Summit, Pa. 17214). By Gerald Stapleton, it has 192 pages, is $\$ 7.95$ hardbound, $\$ 4.95$ paperbound.

The first 96 pages are on logic theory. The rest is on bullaing logic projects. A discrete-component breadboard (DTL) is built. Then come ICs, RTL and DTL, with breadboards for each. The pinal IC DTL experiment is an δ-bit binary adder-subtractor.

Laboratory Manual for Integrated Computer Circuits.

The paperback with this name, by Robert F. Coughlin (Prentice-Hall, 152 pages, $\$ 5.95$) has a some what misleading title. The manual atarts off with facts and principles about RS flip-flops, and then asks the student to design several of these with various parameters. It discusses and gives some applications
of some ICs: inOR gates, Schmitt triggers, JK flip-flops, and counters, and describes some lak experiments for each. Some 25 pages are devoted to "Design and Bulld an Analog Computer" without going into much detail. The appendix provides circuits for a regulated power supply and an "IC control and readout board,". alone with photos of a breadboard usine Augat sockets, subminiature banana jacka, and a vectorboard with holes on $\frac{2}{2}$ l centers.

Computer Structures: Readings and Examples

This is the title of a 668-page book, by Eell and Newell of CarnegieMellon University (McGraw-Hill, 1971, $\$ 16.50$). It is a "case-study approach covering 40 diatinct computer types."

In one convenient volume, the authors have collected a variety of historical and/or technical papers that cover the recent history of computers. Many of these papers are unpublished or difficult to obtain. Among the computers covered are the DEC PDP-8; LGP 30 and 21; IEM 1800, 1401, 7094 and 650; Midac; Illiac IV; and two desk calculators, the 011 vetti Progranma 101 and the $\mathrm{H}-\mathrm{P}$ 9100A. Fine for browsing.

As Gene Witherup of Pa. puts it: "This is an excellent study of the development of computer systems, with emphasis on the language set and central-processor conflguration. It contains 688 pages....It is not a "how to" book, but it is definitely of interest to the serious student of computer organization."

SURVEY FORMP

If you were sent a Survey Form and haven't returned it yet, please f111 it in and send it to Darien.

[^14]Vol. III, No. 4 -- February 19736
a publioation of the AMATEUR COMPUTER SOCIETY

USED UNIVAC COMPUTERS

Ed Moakler (Moakler Electronics, 500 E. Chestnut St., Jeffersonville, Ind. 47130) has a Univac 0 File Computer, which he bought as scrap. Ed has the arithmetic unit, program-control unit, 90-column reader/punch, sort-collate un1t, tape-drive program controller, and six magnetic tape units. Original value, over $\$ 164,000$. Ed hopes to make it work, and maybe use it in his business.

The File 0 takes much power and air-conditioning. Ed writes, "I had figured to use the outaide winter air to get it turned on and see what I've got, and just close down In summer. As to apace, not too bad: only about 400 or 500 square feet, pretty compact. I'm presently having 220 V installed to begin to turn on some of it."

Univac says they oan't provide schematics for any machine this old. Each machine was somewhat different, various changes having been made to each during its life, and careful documentation had to be kept as to what was inside each. Many of the old schematics and documentation have been thrown out, and "no amount of money" could pro' vide relevant schematics for one of these old machines, antiques at age 16.

There are manuals available for the Univac IIO8: 20 to 30, each three inches thick, each costing $\$ 50$.

A Pair number of Univac Solid State computers were given away, to schools, which then came to Univao for documentation. The aituation turned out to be "impossible," as there were no records available on updated blueprints.
"Maintenance in those days was a tricky thing," aays Univac, "and the man who did it has long since been asaigned to newer equipment, so there is nobody available from us today who knows how to service the old machines."

As to whether there are still any File Computers in operation, Univac says anybody who has one must have bought it, and so 1t's out of Univac's control, both as to documentation and maintenance.

One company was getting rid of its Univac I, and wanted to give it away. But Univac found that to take it apart carefully and reaseemble it elsewhere would cost $\$ 100,000$, so the machine was scrapped.

At one time, Univac did give older vacuum-tube machines to schools and non-profit institutions, but there were so many headaches with proper dooumentation that this was dropped. Even with some of the older transistorized computers, it's hard or imposeible to orovide updated schematios.

Univac gets 50 letters a month asking for information about computers, mainly from students. Univac sends a couple of booklets and a list of helpful books.

HARRINGTON'S MICROPROGRAMMED UNIT
Bob Harrington writes irom Calif.:
"I solved the problem with programming the $8223 \mathrm{P} / \mathrm{ROMs}$ (Nov. 1972, p 6). I tried more juice to the point of frying the chip with no success. It turned out that the tranaient on the +12 volts caused by the current rush thrcugh the $V_{c c}$ pin was in effect de-selecting
the output I was trying to program. I solved this by using separate 12-volt supplies.
"My computer is nearing completion. It has been operating through the panel controls (no I/O yet) for a couple of months. I an working on the I / O board now and have some microprogramming to do. Here are some updated specs:
"Word length: 12 bits. Registers (12 bita): accumulator, accumulator extension, index (i), atorage address, storage buffer, instruction address, 16 scratch, console switches. Core memory: 3200 words, B-usec cyole time. Clook: 1.26 MHz. Addressing: direct, relative, index. $I / 0: 8-b 1 t$ bus, 8 interrupts, 8 strobes.
"Instructions: block load/atore to/from scratch (1 to 4 words), load accumulator, store accumulator, add operand in any scratch register (load accum., add, aubtract, multiply, and, exolusive or, or, increment, decrement, decrement \& skip if neg.), branoh \& store inst. addr., jump on condition (8 cond.), 4 shift right N, 2 shift left N, shift left and count (normalize), clear link, add \& clear link, enable interrupt, load output buffer \& issue atrobe, 1ssue strobe, input data.
"I'm using a 5-bit op oode, 3 modifier bits, and 4 bits for soratoh register address. Some instructions use a second word for an address. The op-code bits control the address of a 256-bit ROM, the output of which controls the address in an array of four 256-b1t ROMs arranged to give 64 16-bit words. Thege 16 bits are deooded in groups of four to 64 control lines. The address of the 64-word ROM is sequenced at 1.25 MRz beginning at the location selected by the firstinentioned ROM. Each instruction occupies one to five microprogram
ateps. I made elementary loops by using one control line to reset the least two significant bits of the address counter. Another resets all b1ts, causing a branch to 000000 , where the fetch-nextinstruction instruction resides.
"I used ordinary logic in addition to the microprogramming to equeeze more out of it. The four types of shift-right instructions, for example, all use the same microprogram, the differences being generated by hardware logio using the three modifier bits.
"The control panel is an $8-3 / 4$ " by $19^{\prime \prime}$ rack panel. The computer is completely enclosed in a cabinet which is $16^{\prime \prime}$ deep. The panel has four 12-lamp displays plus six auxiliary. All working registers can be displayed by means of a selector switoh. The instruction addreas register can be loaded manually with the contents of the console ewitches, and core locations then examined or loaded in sequence. There is proviaion for single-step operation, and a manual interrupt is available.
"I am planning to use my computer in soientifio/enginerring applications mostly. One application I've used it for so far was for testing commas for use in a digital communication system.
"For any who are juat starting or not too far along, I would highly recommend (a) mioroprogramming (whioh I did), and (b) planning for Puture expansion (which I did not do)."

REHE 88 ON LSI AND MICROPFOGRAMEING

Russ Relas of Conn. wrote last year:

"For about aeven years now I've

 been planning to build my computer. Finally last June [1971] I oomplet-Vo1. III, No. $5-$ May 1973
ed the PhD in EE/Computer Science and thought I might have time to get going. The courses I'm now teaching as Asst. Prof. at RPIHartford Graduate Center such as Compiler Design, Digital Syatem Design, Digital Communications, and Minioomputers, have really apurred my. interest.
"Cost-wise the CPU is no problem. Mhis summer I bought 600 ICs from Gerber Eleotronics when the price dropped to 22d, but still haven't found the time. Memory is the killer! I'm convinced that core is on the way out and would like to go with IC memory. The recently introduoed Intel in-20 does look like a pretty good deal, but not exactly cheap. Perhaps in quantities a group of ACS members could make this an economical approach. The cost factor keeps telling me to use a shift-register memory (such as the 1402A), but the speed would be horrible. I am considering some "tricky" swapping sohemes between small RAM and SR memories, such as the "cache" system, but this problem is yet to be resolved.
"Enter the Intel 4004 and 8008 CPU on a chip!!! Both are complete CPUs with quite a bit of power (45 instructions) and flexibility (internal address stack for subroutine nesting, eto.). The 4004 is not as desirable since it is more complicated to control and doesn't look as much like a typical computer. The 8008, however, is a beaut?....
"The only drawback I see on these devices is their slow speed (about 1 MHz clock), yielding about 75k instructions per second. For amateur (and many commercial) uses this should be no real problem. Whether we wait 1 sec or 3 sec for an anawer does not really matter. But a cost of $\$ 5 k$ or $\$ 1 k$ does matter! I believe this approaoh would be ideal for a "conversational/1nteractive" gyetem ueing FOCAL, BA-

SIC, APL-type languages. Writing the interpreters are not THAT much trouble either. My students are inding this out in Compiler Design class where each student writes his own compiler for a special-purpose language he creates -- In about $\frac{1}{2}$ semester.
"One other point I've concluded is that any computer (and espeoially an amateur job for experimental usea) should be mioroprogrammed and (dynamically) microprogrammable. Commercially available ROMs are now reasonably priced (one can bulld his own programmer), or one could go the diode-matrix route. But I see no meaningful justifioation for hard-wired instruction sets. The use of an IC ALU with two input buses whioh derive signals from any register through a multichannel MUX, and the use of mioroprogramming, offer a very neat, aimple, and flexible arrangement for any computer. Through mioroprogramming auch a computer could emulate any other computer. Sixteen-bit registers also seem like the most appropriate choice. But I really think something like the Intel 8008 is an even less expensive route. This might form the basis of a "general" ACs computer as was discussed in the initial issues of the ACS Newsletter. I'd be happy to work with others toward this goal." (R.A. Reise, RFD 1, Box 176A, School Rd., Bolton, Conn. 06040.)

The Intel in-20 is a $1 k \times 12$ memory system, 950-nsec speed on a $6^{\prime \prime} \times 8^{\text {I }}$ PC board, one for $\$ 620$. The in-26, announced three months ago, is tailored for the 8008: $4 \mathrm{k} \times 8$ bits, 900 naec, same size board, \$750 for one.

PROCRESS REHPORT ON MOLASSES I
Richard Diokey writes from Calif:
"With integrated-oirouit technology aimplifying computers faster than we can get the old stuff to work, it takes some determination not to junk the carefully-built arithmetic unit and just buy a tiny lump for $\$ 15$ which does the whole job!
"Molasses I is still making progress. In 1966 I bought the diodes for switching the drum tracks; last year I got them soldered onto the printed-oircuit boards. I have acquired a complete photoreader from a G-15, and am modifying it $s 0$ that all the control logic is located inside the box, including a rewind aystem it never had before. Now if I only had the rest of the G-15, I'd be happy.
"Right now I have access (inoluding keys) to $8 \mathrm{G}-1^{\prime} \mathrm{s}$, a CDC 046, Burroughs 205, PDP-8L, and an Athena, but there's nothing like having your own."

HARDHARE: LSI

Slgnetics PIP Chip

Durk Pearson (Calif.) says that Signetics has a PIP (Programmable Integrated Processor) chip. The data sheet says "all data operations are performed on 8-bit bytes, and an 8-bit bus is used for all menory and I/O data transfers. A l3-bit memory address 18 used for direct addressing of up to $8 k$ bytes of storage. There are four 8-bit general-purpose regiaters." Unit price is leas than $\$ 100$ (the FIP may be as low as $\$ 25$ by 1974).

Another Microsystems MOS LSI IC CPU
Ken Karow sends word from Illinoia on the Microsystems International
(Canada) CPS/I Micro-Computer System. The bulletin says: "The CPU contains two memory pointers: the usual program counter (PC) and a data pointer (DP), which allows
logical, as well as physical separation, of program and data. Eoth PC and DP are 12 bits long and can directly address 4096 memory locations. A memory-expander chip 1s avallable to extend addresaing capacity to 256k. Each memory location containg 4 bits of data (one nibble, which is half a byte)." A nibble??

MI also has a MFY114 (4-bit parallel Arithmetic Unit \& 12-bit memory reference unit \& Instruction and Control Unit) and an MP8008 (8-bit parallel adder \& six 8-bit data registers \& 8-bit accumulator \& two 8-bit temporary registers \& four flag bits \& eight l4-bit address registers).

Oriental Vizardry
Myron Calhoun (Kansas) found this in Modern Data:

> "Tang Juan, 22, an undergraduate at the National Chengkung University (Chenta), has succeeded in making the Republic of China's first fourth-generation computer. Nioknamed "Tang Go Go" (Brother Tang) it cost all of \$60 and took Tang Juan six months to build. Except for the LSI components, all parts were bought from junk shops in Taiwan. "

PUBLICATIONS

Computer Architecture

This is the title of a 225-page book by Caxton Foster of the Univ. of Masg. (Van Nostrand Reinhold, \$12.50). It begins with binary numbers, has chapters on logic, storage, addressing, I / O, speeding up the computer, parallelism, and tessellated computers. Chapter 5 is 30 pages on An Elementary Maohine, describes a "very simple computer, one that might sell for about $\$ 10,000$ or so. BLUE (named
for the color of the cabinet; the author says "I'm weary of acronyms") has $4 k$ words of i-usec core, 'ls bits per word, 16 commands, and a common-bus soheme. It looks possible to build a machine from the black-box diagrams, although the last sentence says the computer ia "so simple that probably nobody would actually want to buy one." As Foster puts it previously, "none of the 'goody features' present on most current machines, e.g., indireot addressing, index registers, interrupt, etc., are present."

Computer History

> "The Computer from Pascal to von Neumann" (Princeton University Press, 378 pages, $\$ 12.50$) is. by Herman H. Goldstine, who helped create ENIAC. The first part involves the early pioneers: Babbage, Boole, Hollerith, Bush, etc. The second covers Enilac and EDVAC at the Moore School, and the third 18 on the postwar years at the Institute for Advanced Study at Princeton, through 1957 (after which the author joined IBM). There are only a couple of simple schematics, and the text does not get very technical, as it was intended for an audience beyond computerniks, but it is an interesting and informative narrative by a man who was there at the beginning.

DEC Sells a Book

Digital Equipment Corp., whioh has been giving books away for years, now has a "Digital Preas" that publishes books for sale. The first of these is "Designing Computers and Digital Systems, " by Bell, Grason and Newell of Carnegie-Melion University; 447 pages for $\$ 3.35$. The ad for this book is slightly misleading as it says only that this is. a guide to the design of digital equipment using register tranafer modules as the basic component." The subtitle of the book
itself is properly explicit: "Using PDP-16 Register Transfer Modules." So this is not a cookbook on computer deaign, but rather a lengthy application note on DEC's RTMs, and thus is of little or no interest to amateurs. Any comment a?

Popular Computing

This is the title of a monthly publication by Fred Gruenberger, which began last month, and is "designed for those who are interested in computing for its own sake." The first isgue is 12 pages long, contains.itemg on the $3 X+1$ probiem, the Wella/Ulam Conjecture, notes on the Hewlett-Packard HP-35, statistical data on the calendar system, a book review of "Program Test Methods," and a list of subfactorials. The cost is \$15 a year (or \$12 if remittance accompanies the order): Popular Computing, Box 272, Calabasas, Calif. 91302.

Logic Newsletter

The "Logic Newsletter," advertised in at least one electronica hobby magazines at \$1 for a sample copy (and for each issue) from UTI (P. O. Box 252, Waldwick, N.J. 07463) 1s published 10 times a year (Sept. to June) and is a curious mixture of bits and pieces. The first issue (Sept. 1972) consists of a 4 page wraparound with a page on 10gic function generatore, in textbook style, five simple circuits (gate, flip-flop, latohing FF, RTL NOR, clock circuit), a book' review, and very brief news items on publications and ICa. The four ingerta are: truth-table summary of functions; powers of two; logic function chart; table of combinationa (of two variables). And a 6-page logic-design example: decimal-to8421 ECD encoder.

The first isaue statea: "Starting next month, each issue will contain a 4-pane application note on

Vol. III, No. 5 -- May 1973

Abstract

The Amateur Computer Saciety 1s open to all who are interested in building and operating a digital computer that can at least perform automatic multiplication and division, or 18 of a comparable complexity.

For membership in the ACS, and a subscription of at least elght isaues of Volume III of the Newgletter, send $\$ 5$ (or a oheck) to:

Stephen B. Gray Amateur Computer Society 260 Noroton Ave. Darien, Conn. 06820 The ACS Newsletter will appear every two months or so.

the most popular UTI 7400 Series integrated circuits. " A logic design example is to be inciuded in each issue. The price is $\$ 9$ for one year, ${ }^{\mathbf{W}} 15$ for two.

UTI also sells hardware, including 7400 ICs, a breadboard kit, sem1conductor memories, etc.

HELP FROM TITUS OR INSTRUMENTS
Jonathan Titus (Titus Labs, P.O. Dox 242, Elacksburg, Va. 24060) writes: "The logic probes that we are using here for trouble-shooting were developed here by our staff. They are better than the Hewlett-Packard probes and at least as good as the Kurz-Kasch probes that currently sell for $\$ 80$ to \$100. He have two designs for pulae and logic-level detection and one design for a pulser probe that allows in-circuit generation of pulses.

Whe also have our own design for a logic olip, along the same lines as the HP type, but ours has only a couple of simple ICs inside and 1t still has the +5 and ground auto-seek features.
"We have been using two types of
trace adaptors for some inexpensive
scopes auch as any of the Heath general-purpose soopes. One adapter uses a switched amplifier and the other uses a standard diodeowitoh arrangement. The diode switch is the one I would recommend. It has individual position and gain controls for each channel and it may be used with either AC or DC soopes. Chop rate is between 100 kHz and 1 MHz , and it can also be used in the alternate mode!
"Since we are in the buainess of doing apecial development of interfaces, we don't usually make our internal technical reports available to the public, but since there seems to be a need among amateurs, we have made an exception. Members of the ACS may obtain these reports from us for the cost of duplication and malling. Please refer to the numbers and costs shown below:
"Technical Report \#67, Logic Indicator Probes, \$1; \#68, Logic Fulser Probe, \$1; \#69, Logic C11p, \$1; \#72, Two- and Four-Trace Scope Adapters, \$3. For $\$ 5$ we will send all four Tech Reports. The reports contain a list of all needed parts (all standard) and full directions for duplioation, along with schematics and checkout procedure."

About the Foster book (p 4), Jon says "It is an extremely easy to read, informative book that shows how a computer is developed. It is worth its coat many times over. Perhaps before any of the newer ACS members start on a computer they should read Computer Architecture."

FOR SALE: Jim Mims (307 Sudbury R., , Linthicum, Ma. 21090) has Ampex memories, 4 K of 16 bits with read/ write electronics, $\$ 300$ or best of fer; similar with 4 K of 8 bits, half price; two Univac 1105 core staoka, 4 K by 36 bits, $\$ 75$ each, Bryant 7505 drum, aaking $\$ 80$.
Copyright 1973 by Stephen B. Gray

a publication of the AKATEUR COMPUTER SOCIEYYY

Volume III, Number 6
(Serial Isaue 29)
September 1973

DICX SNYDER'S MININOVA 721

From Fiorida, Dick Snyder sent several dozen pages about h1s computer, and also h1s resume, whose last line says "Deaigned and built 8-bit computer." Dick says:
"The Mininova 721 1s designed to be a miniature Nova 1200. I've used and programmed Data General's Nova 1200 minicomputer, and have been exposed to many other mfr's minicomputers. I feel the Nova is the finest mini available. I wanted to have a Nova for my very own, but couldn't afford it. I thought "someday when the price of ICs comes down I'll design and bulld my own minicomputer, a small-scale version of the Nova."
"Well, the prices of ICs came down tenfoid or more in 1971-72, and that made my aream practioal. The rest was innovation, enthusiagm, and a lot of careful planning. The result is my very own minicomputer, of which I'm really proud! The Mininova 721 has an instruotion set very much like the Nova's, (The Nova has the fineat, most powerful instruction set of any minicomputer on the market today, and I've carefully studied most of them.) The Mininova 721 has control switches very much like the Nova's. (The Novale controls are the most praotical I've seen on a minicomputer.)
"So I've incorporated very oarefully the best features of the Nova instruction set and programmer's oonsole, and deaigned the circuite to make a true stored-program, programmable digital computer (complete with loade of integratedcircuit MOS-RAM memory) that would execute 16 different very carefully selected instructions. These in-
structions were ohosen so that some functions of the Nova instruction set could be performed directly, and others by a group of 3 or 4 instructions. For example, the Mininova instruction set includes a right-shift inetruction, but no left-shift instruction. This is because it is hard to produce a right shift using other instructions, but easy to duplicate a left ehift by adding two identical operande.
"After choosing my instruction set and control-panel-switch functions, I started (on paper) blocking out major registers. The instruction set was chosen to allow the machine to have two program-accessible data registers. These were set down, alone with a few adaress registers. I determined what ragister transfers were needed to implement eaoh instruction. Then I grouped related operations together, and placed them under the control of mode flip-plops. Then I began to assign the times when these operations would be enabled. I specified all the conditions and times to enable setting and clearing of the mode flip-flops, and then I was able to begin considering waveforms and circuits. I chose my logic family (7400 series TTL) and began to design. I chose my memory ICs (MOSRAMB that require only the +5V DC power supply) and designed the circuits associated with the memory and major registers. I designed the circuits that implement the operations to be performed by the programmer's console control switches, and designed circuits to enable my computer to do DSA (1.e., DMA) transfers to and from a standard audio hi-f1 cassette recorder. All this time I was involved in procuring, wiring, and test. I "design-
ed" my power supplies ($I^{\prime \prime m}$ using a Lambda Power Kit and IC voltage regulators mounted on heat ainks for the $+5 V$ supply, and a homebrew rig with IC regulators to provide +12 V for the lamps) and assembled these.
"All together I've put about Pive monthe worth of evenings and weekends, $\$ 360$, and about $1^{\prime 75}$ ICs and IC sockets, and a few hundred feet of wire into my minicomputer. I've made loads of plans for the future, such as new I/O capabilities like digital cassette and 4 K of memory, all MOS RAM ICs, the kind that require only the +5 V power supply. I've written and executed programa on my computer, and learned how painful it can be when you don't have indirect addressing, and when you have only two program-accessible data registers. Maybe I'll add an indirect addressing capability; I haven't decided yet. But anyway, it sure is rewarding! I've shown the Mininova to my employers and former employers, and friends, and received a wonderful red-oarpet treatment wherever I've taken 1t.
"Most of all, I have the aatisfaction of having done all this, and done it to the best of my ability. Some parts of the design of programe and design of machine timing took an awful lot of intense concentration on abstracts. I've got volumes of design notes, schematlos, waveforms, etc., all carefully arranged, including every problem I encountered, and how I overcame the problems; the errors and overlooks in design philosophy, the wiring errors, etc. I realize that computers are easy to deaign, and kind of standard in makeup, but I started from scratoh, with little more than enthusiasm and a desire to have a computer of my very own at any oost (exoept cost in money greater than about $\$ 500$). I got a lot of general concepts and timing help from the old CDC 1704, whioh

I know forward and backward, but most of it all I designed from scratch, and I'm very pleased with the reault. I've learned a lot, and I'll learn lots more in the future as I continue the project. I don't intend to expand anything on this machine except memory eize and address-register size (this will make all storage-reference instructions 4-word instructions) and I/O capability. To add more registers or enlarge the regieters or add more bits to the instruction worde (meaning add more bits per each memory location, more bits to the instruction registers, etc.); 1.e., add more instructions, would change the machine too greatIy and take it too far from the original challenge. Also it would require too much wiring! If I want a larger processor of the same (approx.) size, I'll buy an Intel MCS-4 system, based on the Intel 4004 computer-on-a-chip CFU.
"The Mininova is my dream come true, and also it is my resume in hardwired form. I've got a lot of initiative, ambition, and imagination, and I feel the Mininova clearly demonstrates my capability as a digital systems and cirouitdeaign engineer."

The Mininova 721 is a mixed 4, 8 and l2-bit machine, with $4-b 1 t$ and 12-bit inatructions, $4-$ bit storage words, 8 -bit operands (data words) and 8-bit atorage addresses. The 16 instructions include 4-bit register reference instructions (shift, increment, complement, arithmetic, logical, test) and a control instruction (HALT). The storage reference instructions are three 4 -bitwords; the first word is the instruction, the other two are storage address. There is a $4-b i t$ I/O instruction. No parity checking, no interrupt syatem, no program protect system.

The instructions are KLT (halt),

Vol. III, No. 6 -- Sept. 1973 . 2

JMP (jump), JSR (jump to subroutine), sMZ (skip if memory oontents are zero), LDA (load A register), LDB (load B), STA (store A), STB (store B), RSB (right shift B), INA (increment A), CMA (complement A), MOV (move B'to A), ADD (add A to B), AND (logical AND), SZC (skip on zero carry), SNB (skip on negative B).

The 721 operates on 8-bit singleword operands, handles algned numbers from -128_{10} to $+127_{10}$ and unalgned númbers from 0 to 255. The random-sccess memory has 256 storage. locations, each containing a 4-bit word, addressed directly. The 721 executes about 300 instructions per second in run mode, 150 a second in mixed mode.

Future additions include changing the SKZ instruction to DSZ (decrement and skip on zero), the SZC to sCs (skip if carry is set), SNB to IOT (input/output tranafer).

Dick asks if anyone's computer in the ACS does direct-storage transfers (DMA or DSA) to a cassette recorder or other magnetic-tape unit (Richard Snyder, 1910 N.W. 23ra Blva. Apt. 181, Gainesville, Fla. 3260i).

INTHLLEC 4 AND 8 MICROCOMPUTERS
Two of the better-known CPU-on-achip ICs are the Intel 4004 and 8008, which are 4-bit and 8-bit, respectively. To help in developing hardware around these CPUs, Intel came out with the MCS-4 and MCS-8 "micro computer gets" of chips that oan be combined and programmed to make a variety of microprogrammable general-purpose computers (see the June 1972 Newsletter, page 2).

Now Intel has gone a step further and "to make it easier to use these sets, now offers complete

4-bit and 8-bit modular microoomputer development aystems oalled Intellec 4 and Intellec 8." They "provide a flexible, inexpenaive, and simplified method for developing O FM sy steme. They are sellcontained, expandable systems complete with central processor, memory, I / O, crystal clock, power suppllea, standard software, and a control and display console."

The "complete table top development system" costs \$2195 for the Intellec 4, \$2395 for the 8. They come with system monitor, resident assembler, and text editor. At extra cost are a PL/M (derived irom PL/I) compiler, and an assembler and a simulator, all three written in Fortran IV, and also available through three time-sharing companies (GE, Tymshare, Applied Logic).

Another option is a complete PROM programmer. After the program is firm, it may be placed in the nonvolatile storage of the Intel 1702A PROM.

The cards making up the two computers can be bought separately. "The major benefit of the Inteliec modular microcomputers is that random-access memories (RAMs) may be used instead of read-only memories (ROMs) for program storage. Ey using RAMs, program loading and modification is made much easier. In addition, the Intellec front panel control and display console make it easier to monitor and debug programs."

The Intellec 8 can directly address up to 16 K -bit bytes of memory, which can be any mix of ROMs, PROMs or RAMs. There are 48 instructions, plus 8 input and 24 output ports ($8-b i t$).

Intel has a Kicrocomputer Workshop in California for the MCS 4 (3 daye, \$360) MCs-8 (2 days, \$250), and PL/M. (2 days, $\$ 300$); hands-ón labs.

3
Vol. III, No. 6 -- Sept. 1973

DIGITAL EQUIPMENT RTM BOOK

The Kay 1973 Newsletter had an item (page 5) about the DEC book, "Designing Computers and Digital Systems," saying it is a long application note on DEC's PDP-16 Register Transfer Modules, and so is of little or no interest to amateurs, and asked for comments.

Doug Jensen comments:

"In Pact, this is a very important text in the professional computer literature, and should be of considerable value to the serious amateur. The register-transfer level of design has always been important but rather neglected; now technology (MSI, LSI) is forcing it into prominence. The book 1llustrates the concepts with the PDP-16 register transfer modules (which are the only ones commercially available as such), but the 1deas apply directly to digital machines designed with conventional ICs. Almost no one designs their own gates from resistors and transistors any more (except for the fun or experience). Few professional engineers ever design counters, registers, etc.-- they use MSI and LSI. Design will continue to occur primarily at higher and higher levela; that's what designing with Register Transfer Modules is all about (there is an even higher level called the Processor/ Memory/Switch level).

[^15]acquiring a machine."

Glen Langdon also comments:

"On Foster's book, Computer Architecture (May 1973 Newsletter, page 4), it is true that in Chapter 5 on BLUE, it lacks many "goody" features -- but read on to the next chapter where he defines INDIGO with indexing. The book may not be as easy for a beginner to read as it seeme to us....
"On the RTM book by DEC by Bell et al, don't sell it short. There is a lot of wisdom in it, involving their languages ISF and FMS, introduced in the book Computer Struotures. The PDP-16 really 1sn't a computer, it's a set of cards. The timing philosophy one uses in applying these cards is "asynchronous" in the sense of "invitation" and "completion" signals controling the sequencing of events. In this sense, it is not a cookbook on current practice, which uses a system clock."

DEC now offers the DEClab-RT, a training unit consisting of building blocks: arithmetic units, bus sense, memories, interfaces and controls, for learning to "understand digital system design utilizing the register transfer concept." The Basic Kit is $\$ 1425$.

THE UGLY DUCKLING COMPUTER

Glen Langdon of upstate New York was loaned by IBM to the University of Sao Paulo in Brazil for a year ending June 1972. For the "Patinho Feiol" (ugly duckiing) computer project, Glen's group of graduate studente deaigned "an ingtruction set to have about the power of the PDP8 , although the word alze is 8 bits. The power supplies were designed and built by students. The 4 K memory was imported from Philips. The cirouite were $\mathrm{T}^{2} \mathrm{~L}$ from Fairchild.

Vol. III, No. 6 -- Sept. 1973

We had a printed-circuit lab, and all the cards were done there. Some cards (the control cards) were mounted with 14-pin DIP sookets and wire-wrapped, to Iacilitate debugging. Having had success with making one-aided printed circuits, an attempt was made to do 2-sided ones with the plated-thruhole. We got two data-plow cards done with this technology (after much sweat; many neoessary ohemicals are not yet available in Brazil) before abandoning it and going to soldered wiring on the card. The carda plug into a Cam. bion raok, with wire-wrap sockets. The back panel was wire-wrapped; a computer program aided by listing the desired connections and their lengthe.
"The I/O bus was sort of a cross between the PDP-8 scheme and the HP 2116 B bus. A Teletype terminal, a plotter, and an optical papertape reader were interfaced with it. The panel diaplay was LED, controls include read/write memory from switches/to display, plus single-instruction cycle, and single maohine cycle."

NATIONAL SEMICONDUCTOR'S IMP-16C
Doug Jensen wrote further:
"R.A. Reisa' enthusiasm in the May issue over the primitive Intel 8008 is rather misplaced. For less than $\$ 500$ in singles, one can purohase the five National Semiconductor GPCP MOS LSI chips and the two dozen TML ICs needed to construct a 16-bit microprocessor. The resulting IMP-16C (as National calls it) has an instruction set similar to the Nova, although at about 5... 10 microseconds per instruction it is quite a bit siower than a Nova. However, the IMP-16C is not only faster than an 8008 but also infinitely easier to program and to interface with. (Intel will short-

Iy announce a much improved chip called the 8080.) Professional computer users are becoming more and more aware that programmability is crucial because software development usually requires far more time (and thus money) than hardware development.
"The subject of software brings me to the advantage that commercial microprocessors have over home-built machines, in that at least an assembler and some diagnostics and utilities are already available, although uaually at a fee. Private individual members of ACS who have purchased the National GPCP components are welcome to contaot me for a copy of the software listings at a nominal reproduction cost instead of the $\$ 2000$ or so charged by National.
"If you are interested in the IMP-16-C approach, it is a worthwhile investment of $\$ 5$ to purchase the application manual (4200021A) from National Semiconductor Corp., 2900 Semiconductor Drive, Santa Cíara, California 95051.
"Because the MOS microprocessors are so inexpensive, it is tempting to conalder how a more powerful machine might be constructed out of more than one of them. This is a very non-trivial task; I have extensive experience in this area (including using IMP 18Cs), and will be happy to discuss the matter with those interested. Inci-.. dentally, the GPCP parta can be used to build a full 32-bit prooessor at less than twice the cost of a l6-bit one.
"A couple of TTL LSI microprocessors are nearing introduction, as is a one-chip MOS replacement for the PDP-8 CPUU.
"Let me close with a crase commercial mention that I still have a few 5 volt/48 amp power supplies

The Amateur Computer soolety is open to all who are interested in building and operating a digital computer that oan at least perform automatic multiplication and division, or is or a comparable complexity.

For membership in the AOS, and a subsoription of at least eight 1saues of Volume III of the Neweletter, send $\$ 5$ (or a check) to:

Stephen B. Gray
Amateur Computer Society
260 Noroton Avo.
Darien, Conn. 06820
The ACS Newsletter will appear every tro months or so.
left for sale. These very high quality units are new, factorysealisd Lambda LMF-5s, which currently list for $\$ 475$ each; my price 1a only \$150." (E. Douglas Jensen, M.S. A3340, Honeywell, Inc, 2345 Walnut St., St. Paul, Minn. 55113.)

MORE FROM DICK SNYDER

Right at this point I found a later letter from Dick Snyder that I'd forgotten. Perhape I ehould rewrite this Newsletter, but I'd hate to delete Dick's infectiously enthuaiastic letter. Dick wrote:
"I'm pleased that you intend to print up a lot of my introduction, but after carefully looking through all the ACS Newslettere I've juet recelved, I'm afrald I'd be embarrassed to see some parts of that intro in the Newsletter. Really, my machine is almost nothing compared to some of these people's maohines; I have such a amall amount of memory, and no program acoess I/O yet, only DMA acoesa I/O, and oniy to one external device..... Perhaps I'd better juat eay I like the Nova best, better thap other multi-eocumulator machines with atandard arohiteoture and complex instruction sets....

The only thing I think any of your readers would be interested in is my DMA oirouita, since I'm using a standard unmodified audio cassette recorder. I'd be glad to share the plans for that with anyone who is interested, for \$1.50...."

Diok also asks if any info is available on the pine, voltage levels, otc., for R / W control and data, for an Ampex $1 \mathrm{~K} \times 16$ core memory, model 1024 RVS 16, aseembly \#3223634-10A, serial \#414.

THE TRADING POSI
A Batch of Boards. ICs, etc.
Ed Kirkley (7-B Ridge Rd., Greenbelt, Md. 20770) has a number of DEIC Flip-Chip boarde, digital IOs, relaya, keyboard, and core memory (2I X 16), all for $\$ 250$, with data shoets, and mostly unused. Also a Tektronix 511AD ecope for $\$ 130$.

Core Planes and Amplifiers.

Gene U1therup (8220 Michener Ave., Philadelphia, Pa. 19150) has 8 planes of core, each 18×8 words, 18 bits. Also 4 boards of sense ampliflers for these cores. And 22 new and 45 used Motorola RTL oirouits. For a llat of items, send a self-addressed envelope.

KNH - Applied Eleotronics

Digital computer equipment is : : available from MNH - Applied Eleotronios, P.O. Box 1208, Landover, Md. 20785. Their lateat catalog inoludes a Dataoraft oore system, 512×9, with 7400 series TTL, 845; keýboard, computer contról and I / O devioe, $\$ 77$; tape traneport, $\$ 118$; computer baokplane and empty oards, space for 7000 ICs, \$33. Mank aiso sells ICe, conneotors, chasels hardvare, oto.
Copyright 1975 by Stophon B. Gray

Vol. III, No. 6 -- Sopt. 1975

a publication of the AMATEUR COMPUTER SOCIETY

(Serial Issue 30)
December 1973

TYING A COMFUTER TO A TAPE RECORDER
Norm Saunders (Mass.) wrote the following some time ago to help a member wanting to use tape:
"Ferhaps I can help on the tying of a computer to a tape recorder. You have stated that you want to go between a computer and tape. You need to consider all the peripherals as well, before you start to tie the two together. As for card readers, I have had no use for them for the last 20 years since magnetic recorders became easily available.
"To give you an idea of what is involved, I'll tell you of my sequence of developments. This copy, inoidentally, is printed from a 60-cent aeven-inch reel of tape on a 15-year-old tape recorder by a Teletype SK33 or some such machine with speed of 3-3/4 inch/second on the tape. About ifve years ago I bought the Teletype new. The first priority seemed to be to make retrievable records. Hence I first built a modulator-demodulator (modem) to get to the tape recorder from the keyboard and from tape to printer. To get some editing facility, this was designed and built so that the keyboard could break into the print stream at any gap in the text and insert additional characters.
"The next need was found to be a motion-controlled recorder, so I built one. This lets me compress the rough and uneven entry of characters from the keyboard, or as played back from the real-time tape-recording, into substantially full-printer-apeed capability. In my cose this is especially necessary, since with only occasional use of the Teletype, some of the
bearings tend to freeze when the machine heats up after long operation, and if this happens when a copy is being printed from an analog recording and I'm not around, I've got a 25 -dollar repair bill.
"The next step was the buffers to go from real-time Teletype format to a simple 8 bits at computer speeds, and back again. I chose to build a special-purpose buffer for each direction, since th1s, among other things, made Teletype control of the computer easier, and allowed continuous recording (with subsequent printout when desired) of any portion of the computer operation. You will realize that this is a godsend in debugging and/or recovery, at low cost, of an operation that went sour somewhere before it was completed. At present under development is 8-channel input and output, to allow sort and merge using the almost unlimited atorage of tapes. Eight of the basic input/ output units would use half as much TTL as my whole computer (less the CRT store and display part) does. Thereas my design for 8 channels at a time uses only a few packages more. The next step will be to go to tape recording at a one-kilobit-per-second rate, and after that to flve kilobits per second or possibly more.
"A typical recording sequence starta with turning on the power. It is necessary to load the thread the tape. The next actions are: start moving, get up to speed, locate working location, read or write, decelerate, stop, reverse (speed and distance, etc., are considerations here too; often you must reverse to re-read, because an error check falled or you missed the desired location), iterate, and shut down when ilnished.
"There are many typea of decisions required:
A. How much of the above sequence is going to be manual and how much computer-controlled?
B. Is the data to be recorded and read incrementally, with stop and atart around each blook (whioh may be as amall as a single character or even a aingle bit) or are read and write to be switched in while running?
C. How is the data going to be entereds One or multiple tracka? By blocks? of what alze? (1,8 , 64, 512-bit block sizes have proven useful to me.) With charaoter parity? With bit-place parity per block? These last two are sometimes called row and column parities. Or is Teletype or some other special format to be used? (When I go to $1 \mathrm{Kbit} / \mathrm{seo}$, I'll probably go from Tr to a self-clocking for mat.) In any case, representation for the printer or diaplay should be in ASCII if at all possible.
D. What means of synohronization is to be used? For bits? For blocks? If synchronous 1dle, 1001 0110, or null is used for blook synohronization, there may be trouble if this gets out into a public carrier's innes at some future extension of your system.
E. What means of error detection 18 to be used?
F. What means of error correction is to be used? The TT format is of some help with both of these, but if synchronization is lost in a solidly-packed TT recording, the printout 18 real garbage. Parity is mentioned above. Multiplicity of recordings is another approach; that 1s, many copies of data in proportion to its importance.
G. What mode of recording is to be used? Amplitude, amplitude modulation, frequency modulation, phase modulation, pulse width modulation, eto. Duplioation, par1ty, self-clocking, permanent clock, come in here too.
H. What quality of recorder 18
available? The 4LO Japanese recordor is in some ways my favorite (make that ten-dollar -- I'm not going to run this through the editing process but am going to keep the original and send you direct printouts from the tape so that you can see why I need the editing process). But it has many headaohes, such as the lack of a capstan, and under-powered motor. The 100-dollar unit borrowed from the household is my mainstay. This is not really so cheap when your wife then goes out and buys a couple of her own. The three-motored solenoldactuated deok was going to be my basic unit, but after getting optico-mechanical-electrical servos tied to it so as to get the onem1llisecond starts and stops from high speed that I sought, I found that in overall operation these speeds, rather tremendous accelerations, were simply not needed and probably inadiviaable aince they stressed the tape to about a quarter of that which would begin to stretch 1t. When a data-processing syatem needs interface with only one man, the problems are quite different and some very simple and elegant solutions can be used. The wow, flutter and frequency response of the recorder to be used may diotate several of the choioes mentioned. Speeds of 1-7/8, 3-3/4, 7-1/2, 15 inches per second and others are usable, but again, a choice is needed. A compiete data-procesaing eystem for one man or one household could well use at least three speede; but each speed would be used only on those units dedicated to it."

FREE COMPUTER

Mark Jamea (Calif.) ran letters in two publications, asking for the donation of a oomputer, and this is what happened:
"Please excuse me for not writing
sooner; however, I had had very little luok in reeponse to my letteme in Computemorla and Datametion. Finally my long shot paid off. A company responded to my lotter in Datamation by aaying that they had some undisolosed computer equipment that they would be willing to give to me. What transpired was boyond my greatest expectations. The machine that was given to me is a 32K, third-generation, mioroprogrammabio computer systom with eight 556/800-bpi tape drives, a Soleotric I / O unit, and a $100-\mathrm{cpm}$ reader.
"The main memory consiata of 32, 768 locations in core, with a full cycle time of 2 microseoonds, and access time of 800 nsec . The system is highly microprogrammable, with ik X 36 bytes (used in 18-bit bytes) of microprogrammable coré that oycles in one microsecond. After hauling the computer from Newport Beach, Calif. to Belmont, Calif. Where I live, and moving the 1300 CPU, the tapes and control console' to the lower level of our split-level home, with the help of several rather huaky friende of mine, I was ready to start modifying the 208-volt, 3-phase power oupply in the CFU. Very fortunateiy, once again I lucked out in that the power-supply design used a bank of three separate tranaformers to supply the main $V_{C C}$ and $V_{\text {FE. }}$ voltages. Merely by rewiring the $A C$ inputs of the tranaformera and adding an additional amount of filtering to the output of the power supply, I've been able to get VCC and VEE. Fortunately, all of the most critical voltages such as sense-amp supply and inhibitdriver supply came from singlephase aupplies, and thus no additional filtering was necessary.
HThe main frame uses approximately 6000 Fairchild CTL microoircuits, and is appropriately named an IC' 6000. The system was manuractured
by Standard Computer Corp. The unique capability of this aystem is that it can emulate other computer ayatems by the use of a mioroprogramming language oalled Miniflox. I presentiy have IBM 7094 emulation eoftware on carde which I can read into the mioromemory. However, I also have a rather persiatant parity error in the memory, which has defled my best efforts to locate. I suspect a sence-amplifier probiem; howevor, I haven't been able to locate it because I haven't been able to get my hands on a wideband oscillogcope. Hoperully, though as soon as I can borrow this, fill be able to scope out the problem. One drawback in having a eystem with this architecture is that the microprocessor handles all I/O channel functions, and thus I can't load diagnostics or even display a reg1ster on the control panel until the microprocessor is functioning. However, this machine is going to have virtually unilmited potential in graphics processing. I have also had some rather drastic environmental problems, considering the fact that the entire syatem disalpates 48,000 BTU of heat per hour, and consumes approximately 14 kilowatts of electrical energy. However, I've been able to operate the CPU, one tape-control unit and two tape drives from the electriodryer outlet in the house."
the trading post \& hecr wanted

NCR CRAM Memory

Buster Killion (2773 N. Winrock, Altadena, Calif. 91001) writes: "I've got an NCR CRAM (Card Random Access Momory), which is basically a drum memory with a vacuum drum with 338 different surfaces in the ahape of magnetic carda. Each oard 1s held on a rack and can be individually selected, dropped, held
to the drum and read/writton like a drum memory. I've got the complete mechanical transport. I don't have read/write logio or timing logic but I do have full dooumentation from NCR, including all diagrame, parts lists, maintenance manuals. I'm asking $\$ 300$; pick it up at my house or trade for a dual-trace triggered-aweep scope (hopefully around 10 Miz)."

Buster would also like a Selectric I/O typewriter, will pay up to $\$ 500$. He has an RC-70, and would like to hear from ACs members who have data terminals such that programs and data could be traded via a Data-Phone type setup.

Core Electronics: Softrare Needed
Sal Zuccaro (2116 Athens Ave., Simi, Calif. 93065) vrites, in part:
"For the local member who may have a 4 K core stack, I have a number of sets of Ampex R.F. 6 memory electronics boards (2). The sets are complete for 18 or 36 bits, expandable to 20 or 40 bits. Stack and diodes are all that's needed. Cycle time 1s 900 nsec, but may be used at slower timing. I think the sets are worth $\$ 50$ each, and any local who uses one car teat his unit here on my equipment.
"Redcor Computer busted and I, the greatest scrounger of all time, juet happened to be on hand and out of work. I have a complete data-processing center in operation and making money. I am presently on a tape operating system, and only time is needed for me to upgrade to DOS. From Ampex, I purchased ten mass memories of 5 mililon cores each. I plan to use these on DOS, uning core ingtead of disc. I have all of the Redcor software. Locally there are about a doren senior-level types. who have Rodcor gystems in operation. We all share software and hardware
info. The result it that we have an unbelievable amount of coftware in use. We are looking for source listings of BASIC, COBOL, and NABAP. If anyone knows where we can get carda or mag-tape coples, please yell.
"The ins and outs of system software is quite an education for a hardware type like me. Fortunately we have a couple of professional programmer types in our group. They help over the bumps."

Core and Keyboard

Steve Wiebking (910 Pleacure Park, San Antonio, Texas 78227) writes:
"I have nine of the 4096-word x 40-bit core-memory unita that Gary Forbes was selling about two years ago. One has a single burned-out inhibit line; the rest are probably usable on all bits, although I have not tried any of them. The stack is mounted on a plug-in unit with space for 19 PC cards. The whole unit is about 12xi2x4 inches and has four 50-pin connectors on the back. I have enough PC carde for about 3 units. Cards will go to first buyers at $\$ 80 /$ stack, which is what I paid for them. I also have one of the Univac keypunch keyboards that I would 11ke to sell for \$20; the oase has a slight crack."

Trouble with 8223 ROMs?
Steve Wiebking almo wrote: "I may be able to holp Bob Harrington, who vas having trouble programing the 8223 ROMs (Nov. 1972 1ssue). I was having what I think is probably the same trouble programming some of thece at work, until I notioed that the program won't take unlese there is a bypasa oapaoitor acrose the 12.5v supply (put it olose to the $R O M$) -- I was using about $20 u F .{ }^{\prime \prime}$

Empty Tape Reeis?

Tom Crosley (14-3 King Arthur Ct., Northlake, Ill. 60164) asks if anyone knows where he can get about 6 7-inch-diameter empty tape reels, for h-inch tape, standard large hub, for use on his transports.

Modem Ciroult?

Jim Hart, Jr. (101 N. 8 St., Murray, Ky. 42071) asks: "Does anybody have a cheap and dirty acoustio modem oircuit?"
(Jim has quit working for NASA as a physicist and is now going to medical school.)

Info on a Eabri-tek Core Memory?
Gene W1 therup (D 4, Bloomsburg, Pa. 17815) asks: "Would any reader have information about Fabri-tek core, model 3509 (Rev. C)? Th1s is a 16 K -byte core with pulse transformers and diode oircuitry intact, and so far I haven't seen any circuits using pulse transformers in the address ilnes."

Working on Computer Nusic?

Ned Lagin (Box 269, Fairfax, Cal. 94930) writes: "Would like to hear from others working on computer music projeote. ine will need software help or collaboration perhape. "Ned plans to buy a Nova 2/ 10 or PDP-11/40, "depends on funds."

COMMUNITY-GROUP COMPUTER
Resource One (1380 Howard St., San Francis00, Calli. 94103) is a nonprofit community group to which has been donated an XDS-940 timesharing computer eystem. Projeots in planning inolude uaing the computor for health care (accounting, billing and statistical roports for community clinica; developing information syatema usable by clinios to 1 mprove and evaluate their servioes to health-oare consumers),
community-group aervicea (helping with mailing lists, aooounting and other time-consuming clerical work; developing a network of shared resourcea, information and cooperation among many different groupa), etc. A Resource One member writes: "We deaire only sufficient commercial applications to support our total operation." They would no doubt welcome assistance from any local ACS members in keeping the 940 in shape and in other computer and eleotronic projecte. (According to their llyer, One is a "community of 200 artists, craftsmen, technicians and ex-professionals, living, working and sharing their skills in a converted 5-story warehouse in the south-of-Market area. ${ }^{1 /}$

IN PRINT

Computer Terminal

An artiole by Don Lancaster, "TV Typewriter, " in the Sopt. 1973 Radio-Eloctronice (p 43-45, 50-52) describes a conatruction project for a computer terminal using a TV set for CRT alaplay. Complete conetruction details are available in a 16-page booklet (which inoludes the original article) for $\$ 2.00$ from: TV. Typewriter, Radio-EIectronios, 45 East 17 St., New York, N.Y. 10003.

Parts are avallable from Southweat Technical Producta: 5 PC boards for \$32.75, keyboard for \$18.75. A set of semiconductors will oost about $\$ 50$.

Radio-Eleotronics may be running an article in a couple of monthe on a simple computer to go with the TV terminal, which generatea and atores 512 oharaoters, arranged as 16 lines of 32 rastor-scan dotmatrix charactera each. Any keyboard will work with this terminal, providing it can generate 7 blta
B
Vol. III, No. 7 -.. Deo. 1973

of TTL-compatible ASCII code, and had a keypressed output that is normally high and drops to ground when a key is pressed.

Coneervative Design

Elmer Beaohley (Penn.), commenting on the "Computer Technician's Hendbook" by Brice Ward (June 1971 newsletter), says "I have found that many commeroial sohematios are more conservatively designed than is necesalary for the amateur, who usually must gacriploe rellablility for oost. In this respect, industry designs can be misleading."

Computer in a Cornifiold
Page one of Computernorla for Oct. 3, 1973, has an article titled "In Hoonier Cornfield rises.... a Computer?!" and 1t starts: LIBERTY, Ind. - In the middle of a cornf1eld, outside this sleapy tom of 2,000, sits an old concrete barn. Rented by two men for $\$ 50 / \mathrm{mo}$, the barn houses a $\$ 2$ milition computer system they built for $\$ 20,000$ prom aurplus and scrounged hardware components and software so oheap "1t might as well have been iree." ${ }^{\prime \prime}$

The two mon are Blll Eaton and Gary Forben, both ACS membera.

Eaton, while with the Air Force in Phoonix, arizona, worked in an oleotronics surplus store that bought and sold computer parta dumpod by the GII Salvage Operation. Forbes, an old friend, sent him $\$ 800$ to buy three tape driven, a controller, a typewriter and some oircuit boarde. Later Eaton bought a GE 645 Series line printer, the I/O control, and other components for $\$ 800$. Later came 32 K (36 -bitword) of memory for $\$ 800$.

Out of the Alr Force in 1970, Eaton bought a 645 CPU for $\$ 350$. A fully operational 12,000 line/min printer was $\$ 750$. A full set of cables for the 645 was 12 cents a pound, or \$200 in all.

Eaton and Forbes bouight a Datanet CRT terminal for $\$ 500$ and 32 K more worde of memory for $\$ 300$. Forbes took a job in Phoenix to be olose to the "store" and Eaton quit h1s job to epend full time on assembling a syatem. Uaing Eaton's WIfe's salary and Forbes' salary, they bought all the misaing power aupplies, 64X words more of oore, and a 50 M -byte $G E$ DSU 204 diax subsyatem. The complete programming for the 645 was found being sold for scrap paper and scrap tape.

Eaton and Forbes are looking for "a buyer, a backer, a proposal anything in the form of money. ${ }^{h}$ They claim the system 1s totally compatible with another 645 or 635. The last quote from Eaton: "we don't oare who buye it; we know if bought from ar the syatem would cost more than $\$ 2$ million. After cix years it would be nice to get some money and stop ilving in a cornfield in Indiana.:

Your Computery

If you haven't writton to the acs about your computer, send detalle.

[^16]WANG
PATENTS
a publication of the AMATEUR COMPUTER SOCIETY
(Serial Isaue 31) March 1974

WANG PATENTS

The July 1969 Newsletter carried an item about the basic patent on the ingenious logarithmic circuit used in the Wang calculators.

Cdr. Lyle Pellock, back from duty in Vietnam, has been researching Wang patents. He is now stationed in Washington, so "getting to the Patent Office is no problem." His first letter:
"Patent 3,402,285 of Sept. 17 1968, "Calculating Apparatus," gives the basic theory of the Wang log generation aystem, replete with examples. Patent $3,428,950$ of Feb. 18, 1969, "Programmable Calculating Apparatus, gives details on the Wang card reader Patent 3,509,329 of April 28, 1970, "Calculator," is very detalled and includes many logic diagrams and logic flow diagrams. There are 47 sheets of drawings and 17 pages of text. While I have not checked it out completely, it would appear that there is more than enough detail to allow building a similar systen. All in all, a very good buy for 50 5 . [To get a copy of a patent, send the number and 50\% to the Commissioner of Patents, WashIngton, D.C. 20231.] Fatent 3. 511 , 974 of May 12, 1970, "Automaticaliy Controlled Caiculating Apparatus," is a further expansion of 3,402 , 285 and discusses card programming. Patent 3.524,970 of Aug. 18, 1970, "Automatically Controlled Calcula, ting Apparatus," is a continuation of 3,428,950. It gives details of interfacing more than one card reader. Patent 3,573,746, "Calculating System, 11 also continues 3 , 428,950 and subjects as branching and looping. Patent 3,594,734 of July 20, 1971, "Programmable Calculator," gives logic-diagram de-
tails on a tape-reader-controlled calculator. Also, patent $3,474,437$ of Oct. 21, 1969, "Scanne \bar{d} D1splay Device, " and patent $3,449,555$, "Paraliel Binary to Binary Coded Decimal and Einary Coded Decimal to Binary Converter Utilizing Cascaded Logic Blocks," are informative. Patent $3,474,437$ includes a schematic of the system along with component values."

Later: "The Patent Office has an excellent cross-referencing system (just like a library). All you need is one of the following: patent, inventor, application serial number (prior to patent isauance), or assignee. I am not aure if Wang is coming out with any new patents; however, the F.O. is tight-lipped on pending applications."

Letter 3: "Made another trip to the Patent Office and found the latest assigned to liang. In ny experience (imited though it is), it is kinda rare to get so detailed a patent (3,727,201, Apri1 10, 1973 "Information Storage System"); 1.e., complete with core part numbers, current levels, access tine, et al. Another recent Wang patent discusses an automated braided ROM wiring machine which I'm sure matches $3,727,201$. The wire size suggested in the automated loom was 28-32 AWG.
"Also enclosed is the foreward page from a March 1973 NAVELEX (Naval Electronic Systems Command) publication. Volume I (of the Digital Computer Systems Handbook) would not be too useful to ACsers. Vol. II uses the Fabri-Tek Bi-Tran Six Educational Computer [described in the Aug. 1966 Newsietter] as the functional description vehicle, and covera the 6-bit, 30-instruction machine in great detail (func-
tional logic). I feel Vol. II would make a worthwhile addition to a technical library. I have noted the Gov't Frinting Office atock number (0859-0010) and the price (\$3.25).
"My latest job involves daily contact with all facets of shipboard naval electronic equipments, including, for example, NTDS, AN/ UYK-7, AN/UYK-13, AN/UYK-15, etc. I am evaluating available information on Navy-used computers to see which way I want to go. The one problem with these computers is that, except for what is called the mini-UYK (AN/UYK-15), the machines are big. I am still looking at the Wang method, and may settle for a relatively simple programmable paeudo-calculator."

Letter 4: "I made another trip to the Patent Office and can bring you up to date on Nang. $3,760,171$, "Programmable Calculators Having Display Means and Multiple Memoriea." This Sept. '73 patent addresses the Model 700 calculator and discusses the internal programming. Additionally mentions 3,727, 201 (see previous letter) as covering the ROM of the calculator composed of 2048 43-bit words. 3,754,631, "Fositioning Typewriter." This Aug. 'i73 patent discloses the Wang modifications to a Selectric to allow its use, primarily as an output device for graph plotting, etc. 3,470,54?, "Modular Systems Design." Busing techniques, probably used in their old Model 4000 series. However, the detalls would have further applications. 3,567,911, "Sensor for Punched Carda, Details on the Wang card reader, whose basic concopt is that of a non-moving card with multiple contacts for reading.

Non-Wang Patents

I have also found some interesting non-Wang patents. 3,781,820 "Portable Electronic Calculator. This

Dec. ${ }^{173}$ patent assigned to $\mathrm{H}-\mathrm{P}$ uses a recirculating shift register concept for store/recall. Very detailed, down to the logic-element level, but only for addition, store, recall, enter, and aign change. A good start for a simple desk calculator. 3.676,656, "Eleotronic Digital slide Rule." This is a very interesting device, asaigned to G. E. [see the Feb. 1970 Newsletter, p $6^{[}$], uses a pulse-rate generator and decimal rate multiplier to generate multiplication, diviaion, squaring, square root, addition, subtraction, exponential, logarithm, sine and cosine. The idea is a replacement for your slipstick, with inputs and answers to 4 significant ifgures. The patent is very detailed, down to the lo-gic-device level, complete with recommended devices such as 7490, 9307, and B-4021 N1xie tubes. Might juat build one and throu away my K\&E. 3,766,370, "Elementary Floating Foint CORDIC Function Processor and Shifter." This Oct. 173 patent, assigned to H-P, has got to be the best $50 \&$ bargain around: 233 pages of diagrama, complete with logic-device identification (including pin assignment), parts values, etc. This embodiment of the CORDIC technique (see the article by Volder in the Sept. 1959 IRE Trans. on Electronic Computers, pp 330-334) is deaigned to interface with the H-P Kodel 2115/2116 minicomputer and thereby generate up to triple preciaion on 20 functions. $3,778.775$, "Microprogrammed Terminal."This Dec. 173 patent, assigned to Computek, discusses a microprogrammed, alphanumeric, single-bus computer display terminal.

[^17](and all to save a few bucks - I guess it's the challenge that this pastime is all about). The other option is to use 353 2-input ANDs and some ORe. Well, I'm still working on the problem. These ROMs are used to calculate in, in (for square root) and $2 \ln$ (for x^{2}), in accordance with the basic WANG method. I have also replaced the core memory described with 7489 RAMs, which is one heck of a lot cheaper (there I go again trying to save bucks) and simpler. I have been through a couple of iterations of the design (more than one to correct mistakes) but don't believe I have minimized parts count yet. For example, I decided to standardize on NAND logio, 1.e., the 7400 , but an OR application would be'a lot easier (and cheaper?) with a 7402 and I do have a lot of OR/NOR needs."

THE NEWEST PDF-8
The latest DEC minicomputer in the PDP-8 line is the PDP-8/A, $\$ 895$ each, or $\$ 537$ in quantities of 1000. The 8/A has ROM, RAM and p/ROM memory options, a 1.5 -usec cycle time, and is hardware and software compatible with the earlier $8 / E, 8 / M$ and $8 / F$ models.

COMPUTER KIT
A nodular computer kit has been offered alnce late last year by SCHBI Computer Consulting (125 Edgefield Ave., M1lford, Conn. 06460).

The PC cards can be bought separately, or in combinations. The SCELEI-8H starter get of five cards - CPU, DBB (data bus buffer) and output, input, frontpanel card, and RAM card (256 8b1t words) - is $\$ 440$. One step up is the 8 H standard card set, with 1024 words of RAM memory: \$565. The standard computer consists of
the standard card set plus card chassis (with console ewitches, card sockets, I/O and power connectors), separate power supply; \$795 in kit form, \$950 assembled. The 8 H deluxe computer has 4086 words of RAM memory, and a higherrated power supply; $\$ 1400$ in kit, $\$ 1600$ assembled. The memory can be expanded to 16 K words, for about $\$ 2760$ more.

Peripherals include oscilloscope alphanumeric interface (requires a scope with a bandwidth of 5 MHz or more); \$200 kit; audio cassette tape unit interface, $\$ 100 \mathrm{kit}$; and an ASCII keyboard (reconditioned, less case), with interface, $\$ 100$. The bit-serial interface for a 33 Teletype is $\$ 50$ without relay for tape reader, $\$ 75$ with relay.

The SCELBI-SH is a "fully programmable machine having a basic instruction set of 48 instructions, with variationa of these... allowing approximately 170 different instructions."

The machine has one pull accumulator and six additional temporary registers. The OFU program counter is on a seven-level pushdown stack allowing subroutine nesting to seven levels. All eight output and aix input ports are fully TrL compatible. The SCEUBI-8H is 10 inches wide, $9.5 \mathrm{~h} 1 \mathrm{gh}, 12$ deep.

Instructions require 3 to 11
"states" and a typical instruction requires about 5 states (20 microseconds) to execute.

SCELBI has a "wide range of programs and software support for the BH and SCELBI-developed peripheral interfaces." Frograms now available include program loaders, memory dumps, and CRT display programs. Editor and assembler programs and a "'sophisticated calculator packagell are being developed. The programs cost about $\$ 5$ to $\$ 20$; a 1isting of the calculator program
(with 2K of core) is $\$ 50$; the object coding is \$20. A program is available for assembling 8H programe on a PDP-8.

SCELBI stande for Scientific, Electronic and Blological.

MORE ON THE PDP-8/A; THE MPS
The \$875 unit price for the DEC 8/A Includes 1000 words of MSI memory. There are optional increments of $2 K$ and $4 K$ in RAM; 1 K , $2 K$ and 4 K in ROM; and 1 K and 2 K in p/ROM. Frices for these have not yet been established. Maximum nemory for the $8 / \mathrm{A}$ is 32 K words.

Computers have become cheaper than a few K of memory. The $8 / E$, for instance, is now $\$ 4490$ with its initial 4 K ; an additional 4 K costs $\$ 2500$. It will be interesting to see what prices DEC puts on $8 / A$ memory.

Al so new at DEC is the MPS microprocessor series, an 8-bit wiOS/LSI processor for the low end of the controls market. Based on the Intel 8008 chip, the MPS has 48 dataoriented instructions, RAM memory with increments of 1 K words, up to 4 K words, PROM with maxiraum storage up to 4 K words. Price is less than $\$ 750$ each, with 1 K RAM. Applications include intelligent terminals, process control, and dedicated controllers on industrial machinery.

THE TRADING POST \& HELP WANTED

Core Memory, Sense Amps
Ron Carlson (7333 West 90 St., Los Angeles, Calif. 90045) has a 4K X l4-bit core stack with driver transformers and resistors, mounted in a l9-inch card cage ready for timing, sense and driver cards; $\$ 75$ or trade. Also, 28 SN7529N dual sense amps by TI, cost \$1.59
each, will sell at $\$ 1.00$ each.
Ron also has "a note on my Intel 8008 computer. Proceeding slowly but sure hope to be running soon. Currently debugging the solidstate console; uses only touch switches and LEDs. If anyone is intereated, will give them my circuit for it. Works quite nicely."

TV Typewriter as TTY Substitute?

Dick Snyder (621 Old Colony Terrace, Tiverton, R.I. 02878) asks "Do you know of anyone who has modified one of the Radio-Eleotronice TV typewriters to use with a computer as a.Teletype substitute?"

Memory Chips

William Mitchell (39 Rockfield Crea., Ottawa, Ont. K2E 5L6, Canada) writeg: "After a year of negotiation, I am finally able to offer "production drop-out": memory chips to ACS members. Both 2102 RAM and 1702 PROM unite are available. The 2102 is a 1024-word by l-bit MOS static RAM; single +5 V supply, di-. rectly TTL compatible, fully decoded, 16-1ead DIP. Typical access time is 500 nsec, but this may be one of the reasons for rejection.
"The 1702 is a 256-word by 8-bit programmable ROM, requiring +5 and -9V. Typical cyole time is 1.0 usec; TTL compatible.
"The price for the units is \$11.00 per pair for the $2102 ' s$ and $\$ 11.00$ each for the $1702^{\prime} s$, postpaid, and Including Federal Sales Tax.
"Because the 1702's are rather difilcult to program. without the proper equipment, I am prepared to perform thia operation for an additional \$2.50 per unit provided that the required bit pattern is supplied on punched cards, ooded in hexadecimal, 2 columns per word and 32 words per card, it will require only 8 cards. Use columns 73-

Vol. III, No. 8 -- March 1974

80 for a serial number so they will be in the right order, and doublecheck your coding as I can only provide what is asked for. An acceptable alternate layout for the card is to separate each pair of digits by a space for better checking, and using col. I to 72 as required.
"If I get a chance I will try to run some teats on the units before shipping, but the samples provided to date have been operable as represented. I'm busy designing my own computer around them, as you might imagine."

Later: "I have confirmed that the units meet all spec. tests except for cycle time: the 2102 's operate between 1 and 3 usec, while the 1702's are between 1 and 2 usec."

Selling, Buying

M1chael Guerre (204 Faxon St., Spring Valley, Calif. 92077) has theae for sale: "one Clary 703 programmer without keyboard; this is an 8-level paper-tape punch operating at 20 cps ; removable diode matrix board; $\$ 30$. One Geotech 24888/14R magnetic tape head, 14track, 1 -inch, used, about 2/3 11fe left, \$5. One FL Flexowriter, missing part of tape reader, needs some work done; $\$ 55$. Buyer pays postage, or picks up:
"I am looking for: keyboard (nonmechanical); printer, alphanumeric, any type; inoremental casaette tape drive; technical manuals (schematics, operation, etc.) for any of these computers: IME 86 SR, Unicom $C P-8$, Applied Systems 1100 and Home-Ec VII, Autonetica RECOMP (CP266), H-P 2114 and 9100 A or B."

Who Has a Ken bak-1?

Tom Crosley (14-3 King Arthur Ct., Northlake, Ill. 60164) writes: "My computer is basically a Kenbak-1 [see the Nov. 1971 Newsletter], to
which I have been making additions. Right now I am working on the memory addition; then will come the CRT, seoond TTY, and mag tape. Even with only the original 256 worde of memory, I have enjoyed writing programs for the Kenibak-1, such as a line-by-ilne text editor for the TTY; games (e.g., Nim); and a Turing machine simulator. After adding the 2 K of memory, allowing much larger programs, I still don't feel the slow cycle time will be a drawback; since most of my applications will be TTY-oriented, most of my programe will still be I/O-bound.
"I would be interested in corresponding with anyone else who has a Kenbak-1 and has made or 1s thinking of making additions to it."

NRI Computer Kit Manual

Robert W. Kelley (5806 Mt Terminal Dr., Waco, Texas 76710) writes that the NRI 832 computer reference manual 10KX once available from National Radio Institute (see the Sept. 1972 1ssue) is no longer available; he would like to buy or buy a copy. Note: NRI has dropped plans to sell a wired 832 separate from the course.

Fants IEEE and ACM Publications

A1 Marshall (412 Oakwood, Angola, Ind. 46703) would like to obtain: IEEE Systems, Man, and Cybernetics Vol 1, \#3; IEEE Trans on Computers Vol 20, \#4 \& \#8; ACM Comm Vol 15 \#1 thru \#6; ACM J, Vol 16 \#4, Voi 17 \#3 \& \#4. Al adds: "For others who may be missing issues, I found some extras and I have some $I^{\prime} \mathrm{m}$ not going to keep. Drop me a line if you have a hole in your collection."

IBM r05 for Sale

Willis H. Hard writes: "Although I have never seen your publication, I have been informed by some of my

associates that, despite its rather small oirculation, it does reach many dedicated amateurs.
"I have juat decommissioned my IBM 705 computer and put it in storage pending its sale. Since it is a first-generation computer, it is unlikely to be sold to a commercial user because of its cost of operation and maintenance. Therefore, I would like to offer it to a more receptive group of potential buyers through your journal.
"The system consists of a 705 CPU with a 40K-byte core (7 bits per byte), a console (including typewriter), 745 power supply, and a card reader. It also contains a 754 tape-control unit and eight 727 tape decks (I just sold 2 of the original 10 to an amateur who is going to convert them to solid state). The system is for aale as an entity or by the piece, and my addrese 1e: F.O. Eox 1132, Canoga Park, Cal1f. 91304."

IN PRINT

Modem Circuits

In response to Jim Hart's request for "cheap and dirty acoustic modem circuits" in the previous issue, several members sent him info.

Mark Messinger (New York) sent copies of several articles: "Lowspeed modems are easy to design" (Electronic Deaign, Sept. 2, 1971, pp 50-52); "Design pruning trims oosts of data model" (Eleotronics, July 20, 1970, pp 99-101); "Bu11d your own acoustic coupleri (Electronic Design, Miar. 1, 1969, pp 68-73).

Jim Knock writes from Illinois, in part: "Another poseibly useful plece of information is the product description available from Exar Integrated Systens, 750 Falomar Ave., Sunnyvale, Calif. 94086, on the XR-210 FSK modulator/denodulator. I believe there are companies selling modem kits for something in the range of $\$ 50$. Ads can be found in occasional issues of EDN, Electronic Design, Computer Design, and Electronics. There are a lot of different considerations: Prequencies, switchable speeds, number of bits per character, oharacter representations of special characters, etc. One should also be aware of the fact that the typical han RTTY setup is distinctly different from what is generally used in the field surrounding digital computer communications.

INTEL 8080 CHIF
Intel's new WMOs 8080 microprocessor is an improvement on the PMOS 8008, with a 2-usec instruction cycle and 74 basic instructions (26 more than the 8008). The 8080 can addrese up to 65 K bytes of memory without an external address register. It can perform doublepreciaion arithmetic, in BCD and binary, and costs $\$ 360$ for 1 to 24. For a TML I/O interface, the 8080 requires six ICs; the 8008 needed 20. The 8080 comes in a $40-\mathrm{pin}$ package and operates from +12 and ± 5-volt supplies. There are assemblers, editors, and simulators.
Copyright 1974 by Stephen B. Gray
a publication of the AMATEUR COMPUTER SOCIETY

Volume III, Number 9
(Serial Issue 32) June 1974

NARK-8 MINICOMPUTER KIT

The July 1974 Radio-Electronics has a short article (pp 29-33) on a minicomputer kit. As with the TV Typewriter (see the Dec. 1973 Newsletter, page 5), a 52-page booklet containing the full details is available, for $\$ 5.50$ (plus 7\% tax for New York State residenta) from Radio-Electronics, Micro-Computer, P.O. Box 1307, Radio City Station, New York, N. Y. 10019.

The Mark-8 is built around the Intel 3008 microprocessor and uses 7400 -series TTL ICs, plus the 1101 (or 1101A or 1101A1) type 256-bit RAM as memory. Register readout is by four groups of eight LEDs.

A set of six PC boards costs $\$ 47.50$ for the CPU, address latch, input multiplexer, 1 K memory, LED register display, and output ports. The 8008 from Intel is $\$ 120$, but can be had for $\$ 50$ or so elsewhere. No cabinet is available. The 1101 is available in quantity for about $\$ 1.80$ each. Since the 1101 RAMs are volatile memories, "information stored in them will be altered or lost if the power is shut off. If you want to save a program, leave the power on."

The six boards use a total of 74 ICs in the minimum 256-word veraion; for every additional 1 K of menory, add 32 of the 1101 RAMs.

The Mark-8 can be used with the TV typewriter or with the ASCII Keyboard, the latter described on page 5 of this Newsletter.

According to the Mark-8's designer, ACS member Jonathan Titus (see the May 1973 Newsletter, page 6), a
minimum Mark-8, with 256 8-bit words, is about $\$ 300$. The Mark-8 circuits provide a basic capacity for up to 4 memory boards, for a maximum of 4 X words; however, by adding external addressing decoders, up to 16 K words can be addressed directly.

The Mark-8 is programmed in Intel assembly language, which has 48 instructions for the 8008. There is an Intel user!s group; membership is obtained either by contributing software or by paying $\$ 100$ a year.

Add-ons are planned for later, and include a modem, cassette-storage interface, and a calculator interface.

COIMPUTER BUILDERS ABROAD

The ACS Newsletter has been the inspiration for two foreign ones. Mike Lord ran a letter in a British electronics hobby magazine asking if anyone was interested in joining a computer club. I sent him copies of this newsletter. In March 1973 the Amateur Computer Club Newsletter appeared, with a firgt issue looking very much like its American cousin. However, by Vol 1 Isa 3, it had established its own identity, and included a cartoon, flowchart, some "analogue computer" circuits, a page on the game of Life, part of a tutorial on cores, etc. The ACC Newsletter (7 Dordells, Basildon, Essex, England) appears every 2 to 3 months; Vol 1 is 50p.

Michel Dreyfus, an ACS member, is president of the AFACO, founded this spring in France (42, rue de la Barre, 95880 Enghien-les-Bains).

AFACO is the Association Française des Amateurs Constructeurs d'ordinateurs. The newsletter is entirely in French; the firat issue describes plans to establish contacts between those who want to and those who have built a computer, publish basic articles for beginners, pub1.1sh technical articles on subjecta such as memory, peripherals, and computing circuita, publish the characteristics of new ICs, try to get ICs from manufacturers at low cost or free, etc. There is a brief note on memory, stating that this is the most difficult part of a computer to get working; a few words about a Universal Computer being built with a read-only storage, to use PL/I; circuit for a 5-volt power supply; 3 pages describing the "Machine Originale Numerique et Logique," a paper microcomputer. No subscription price is given for the AFACO newsletter, which the founders intend to issue every two months. The AFACO is rather optimistic, declaring that "Building a computer is relatively simple; simpler, perhaps, than building an electronic organ. 11

SYSTEM ONE COMPUTER KIT
The System One computer kit, mentioned in the Feb. 1973 Newsletter (page 4) is no longer available. The company marketing it, EPD (Environmental Products, Glenwood Springs, Colo. 81601), has gone out of buainess. Rights to publish the User Technical Notes (see the Sept. 1972 Newsletter, page 6) were bought by Technical Publications Corp., Box 954, same town; plans are to publish them more often.

TPC plans to bring out a system Two computer kit, with solid-state memory, half the number of ICs, and at about the same price.

Jim Gaudreault of Maryland writes that he bought the plans for a Sys-
tem One, and says: "The System One is a nice simple machine for an amateur to try in ICe. A word of caution: the Boolean logic equations for the Programmed Logic Array that are given in the documentation have several errors. A machine wired according to the plans would never work. Even after the errora had been corrected, the resulting machine would lack several of the features (including four instructions and any type of programmed I / O) advertised for the System One. The designers obviously ran out of room in their FLA to implement all that they had hoped for. All of this is on top of great inefficiencies in the implementation of the PLA logic. Also, the diagram of the memory timing board was omitted."

ADDING TO THE KENBAK-1
Tom Crosley writes from Illinois: "To the basic Kenbak-1, so far have added interrupt aystem plus realtime clock (1 second interrupt); am just completing a full duplex TTY controller (at first I used serial I/O for the TTY); am adding a paging register to select one of (in1tially) 16 128-word pages (only in effect for addresses 204-376; the lower addresses - and all registers in memory - will be available independent of the page register). Am making use of the "don't carell bits of the NOP instruction to add $15 \mathrm{I} / 0$ instructions which will be aingle word (data set up in regiaters)." Tom will be using a TV Typewriter as a CRT terminal, and two mag-tape transports.

THE TRADING POST \& HETP WANTED
CRAM, Transports, Core, Etc.
Buster Killion (2773 N. Winrock, Altadena, Calif. 91001) writes: "(1) Since I've acquired other
equipment, I no longer need my CRAM [see the Dec. 1973 Newsletter, page 3] and I am asking only $\$ 100$ so I can get the storage space back. (2) Scientific Data Systems (Xerox) dual cartridee drive (two cartridge drives in one 19-inch rack intg) minus plug-in cards but with some documentation, $\$ 100$. (3) NCR thermal printer, 80 characters per line, $8 \frac{1}{2}$-inch wide paper (TTL state of the art), \$250. (4) Marconi "IBM card" reader, about $400 \mathrm{cpm}, \$ 75$. (5) Ampex TM-4 transport deck, t-inch 7-track, sans head and vacuum assembly, $\$ 50$.

Also I have brand-new Ampex 850nsec core stacks, l8-bit $x 4 K$ words, $\$ 35$ each. And I purchased the IBM 727's from the other amateur that Willis Hard mentioned in the last Newsletter and would like some help, if anybody has any diagrams for head R / W electronics I can build for these machines. Also I have some Century Data floppydisc drives model 127 sans head \& electronice for $\$ 75$ each."

Core Search \& Patents

Stephen E. Flocke (1407 Croyden Rd., Lyndhurst, Oh10 44124) writes:
"I'm in the crocess of builaing a 16-bit microprogrammed machine with a small core mernory. My only major problem is finding some ferrite cores for a transformer-type readonly menory. The type I'm looking for have about a $\frac{1}{2}$ by-inch crosssection core and about a one-squareinch opening. They were used in some rope memories made at MIT in the 1960's.
"I have been looking thru patents for computers; the Cleveland Fublic L!brary has a very complete file. One thick one, $3,400,371$, has the IBM 360/30 complete with microprogram and internal logic diagrams. The Interdata Model 2, complete with microprogram listing 1s 3,675 ,
214. For hiatorical buffa, the anIIAC is patent $3,120,606$, and the Univac 1 had patent $3,784,983$ 1ssued Jan. 8, 1974 - 22 years efter 1t was filed."

8008 for $\$ 50$

Steve Whebking writea from Texas that there was an ad in 1973 offering the 8008 for $\$ 50$, by Bill Godbout Electronics, Box 2673, Oakland Alxport, Calif. 94614.

Equipment Source

Gary Colemen writes from Ohio: "I have finished wiring up my CPU for my little machine. Big deal, 15 chips. I have found that ham conventions are great sources of cheap equipment. I bought an IBM I/O typewriter at one for $\$ 50$ in perfect condition."

Disc Controller Designs?

Owen Phair1s (1908 12th St. Apt 1, Santa Mon1ca, Calif. 90405) says: "I am working on a 16-bit machine and I have a Memorex 630A disc drive for it as well as two IBM 727 mag-tape unita. Estimate one year before completion. Would be very intereated in designs for a disc controller."

ACS Data Net?

Jim Hart (101 N. 8 st, Murray, Ky. 42071) writes: "I have often been frustrated by the need to ask the ACS membership about small thinga such as the availability of parts or information about a particular circuit, while realizing at the same time that these matters are of too little consequence to be carried in the Newsletter. In light of this, I would like to hear from ACS members who would be interested in designing a rather loosely organ1zed data net to function as a read1ly accessible "bulletin board" for ACS members. The equipment could be

Vol. III, No. 9 - June 1974
fairly simple: a 100-wpm modem and a mag-tape transport on a dedicated telephone number. Ideally, euch a facility would be accessible to someone with a bare minimum of equipment, and would be intelligent to take care of itself most of the time.
"The cost of construction and maintenance of such an installation, given a little ingenuity in the design, could be made quite small and could be borne in several waye, including a aubscription fee or, better, a small fee for posting "for sale" notices.
"It should be emphasized that such a facility would in no way diminish the importance of the Newsletter. Instead, it should augment it by serving as a medium for communicating items of limited interest and notices of short-lived interest which the time-frame of the Newsletter publication makes it impractical to carry.
"For the present, at least, I don't have the time or the resources to act as prime mover in auch a project, but I would enthusiastically give what help and support I could to any person or group that cared to undertake, or at least to study, a project of this sort. I feel it would be of benefit to all of us."

Interdata 7/16
Dave Vednor (14914 D Newport Ave., Tustin, Calif. 92680) writes: "I have purchased five Interdata 7/16 CPU's at work. If any members are interested, I have sets of schematics for the CPU, memory, and many of the interfaces, and most of the software (BOSS, DOS, RTOS, assemblers, Easic, Fortran IV, etc.). If any members are contemplating the purchase of a 7/16 or have done so, they should contact me regarding hardware multiply/divide and memory parity options, as I
can supply these for less. A copy of the Want 720 service manual can also be obtained from me."

Disk Headg?

Don Tarbell (144 M1raleste Dr., Mraleste, Calif 90732) writes: "I just got my diak operating system going good, and it really helps out in program development. I also have a simple version of BASIC going, and a modem has been added to the system. I was wondering if anyone knows where I could get a set of 2311 or 2314-type disk heads. I would like to experiment with that kind of drive, as it would allow me more storage capacity.
"In response to Dick Snyder's question, I have a direct memory channel operating on my computer for the diak drive. I will soon be adapting it to an IBM 727 tape drive, which a friend of mine has converted to solid-state. The channel operates thus: index register 3 is first loaded (by the program) with the block starting address; $X 5$ is then loaded with the block length; an instruction (block transfer) is then given to write; the disk interface counts the number of $1^{\prime} \mathrm{s}$, module 256, and attaches this 8-bit byte on the end of the block; for a read, the same registers are loaded, and the read-block command is given; after the data is transferred into core, the last byte (check) is automatioally put into the upper half of the l6-bit accumulator; the l's counter, which alao counts during a read, is then read into the lower half of the $A C$, and the two halves compared for the check. A separate CHECK-BLOCK instruction is used for checking the block integrity after a write without altering core. It works the same as the RFAD-BLOCK, except core is not tampered with. The main drawback to this system is that concurrent I/O is not possible, as with a

Vol. III, No. 9 - June 1974
cycle-steal type of DMA. This is beoauge the program counter is "frozen" at the instruction location until the transfer is complete. However, this is no problem in my system, because my disk data transfer speed is close to the cycle time of my computer. As far as the error-detection scheme goes, I realize it is not foolproos, but has worked quite aatisfactorily for me. If anyone is interested in more detail, or has 1deas, please feel free to write to me.

IN PRINT

TTL Cookbook

This is the title of the latest book by a new ACS member, Don Lancaster. Very little material is rem peated from Don's previous book, the "RIL Cookbook."

After a chapter on the basics is an 84-page chapter on circuits, with a page each on 77 TML ICs, mostly 7400 and 74100 types. The next five chapters are on: logic; gate and timer circuits; clocked logio; divide-by-N counters; and shift registers, noise generators and rate multipliers. The last chapter, "Getting It All Together," deacribes such TTL applications as a frequency counter, digital voltmeter, digital tachometer, IV Typewriter, etc., many of whioh are availabie in kit form from SWTP, which also has kits for TTL and RTL breadboard labs.

There are various circuita of interest to ACS members, such as Baudot-to-ASCII, keyboard encoder, keyboard debouncer, readout driVers, ASCII-to TTY-code, eto.

The "TIL Cookbook" is \$8.95 Prom Sams, but Don writes that "gouthwest has agreed to offer the text at discount for ACS members. The
price is \$7.95 from Southwest Technical Products, 219 Vest Rhapsody, San Antonio, Texas 78216."

Mi snamed Book

The "Handbook of Computer Maintenance \& Troubleshooting" (Reston, 366 pages, $\$ 18.00$) should really be titled "Some Information on Maintaining \& Troubleshooting Digital Cirouita in Military Systems." The first 100 pages are general, and could go into almost any book on electronic maintenanoe. The machines involved in later chapters are not computers, but mainly the digital circuits in radar and other military systems. There are compu-ter-oriented chapters, but on printers, programming, and military test equipment. The 39-page chapter on troubleshooting is of some value, going into Boolean algebra, logic analysis, patterns and waveforms, signal-tracing, and oscilloscopes.

Microcomputer Chips

"Current Microcomputer Arohitecture" by Holt and Lemas of Compata, in Computer Design (Feb. 1974, pp 6573) discusses the recentiy introduced microcomputers. There is a chart of the operational characterlatics of seven of them (AMI 7300 and CK114, Fairchild PPS-24, Intel 8080, National IMP-16, Rockwell PPS, Signetica PIP), the block diagrams of the 7300, CKil4, and 8080, a discussion of the circuitry of all seven, and a 35-iten bibliography.

HARDWARE

ASCII Keyboard and Encoder

An article with this title, by Don Lancaster, appeared in the April 1974 Popular Electronics (pp 2731). A complete kit of parts 1s $\$ 39.50$ from Southwest Technical Products, and includes two MC789AP hex

The Amateur Computer Society is
open to all who are interested
in building and operating a dig-
ital computer that oan at least
perform automatic multiplication
and division, or is of a compar-
able complexity.
For membership in the Acs, and
a subscription to Vol. III of
the Newsletter, send $\$ 5$ to:
Stephen B. Gray
Amateur Computer Sooiety
260 Noroton Ave.
Darien, Conn. O6820
The Acs Newsletter will appear
every two or three months.

inverter ICs, 20 1N914 diodes, 49 keyswitches and keytops, etc. The user muat supply the +5 volts. The keyboard is assembled on a single double-sided PC board. Detaila are included for using a Monsanto MDA111 or MAN-2 as a single-character readout. The text notes that "the keyboard can be used as a computer timesharing terminal, either in commercial service or for home or school. The keyboard, with a simple parallel-to-series converter, forms half an ASR-33 Teletype at a very reasonable cost."

IC Digital Logic Memory Probe

An article with this name (Popular Electronios, Mar. 1974, pp 33-35) describes a penlitemsize probe for checking 5-volt logic devices. The indicators are three LEDs; the ICa are a 9601 used as a triggerable multivibrator, and a 7404. Pulsestretching keeps the center LED on for 200 ms , for pulses as short as 50 nsec , giving enough time to observe them. The top LED lights for logic 1 , the bottom LED for logic O. A switch allows the center LED to remain on permanently after a pulse. A kit of all parts is \$17.50.

Teletype Vodel 40

A year ago, Teletype introduced a new terminal, the Model 40, \$2500
to \$3500 with keyboard and CRT display, $\$ 1000$ more for a highspeed printer. The printer rate is five lines per second, with both upper and lower case. VIth ita logio and memory circuits, the 40 permits editing text on the soreen; when a word, line or letter is erased, the space is closed up automaticaily. And the 40 will store up to three 24-line pages of text without external storage, as well as formatted data.

Add $\$ 2 \mathrm{~K}$ of logic and memory, and the 40 becomes a atand-alone minicomputer, although Teletype won't be going that route, leaving it to others.

Across the Counter

A variety of equipment is sold by Data Instrumentation Aseociates (208 S. Pulaski St., Baltimore, Ma. 21223). They have teat equipment (scopes, counters, Generators), power aupplies, ICs, and digital equipment (LGP-30, \$250). "A number of items are so costiy to pack that we offer them only on a pickup basia, including magnetic-tape unite. Open to the pubilc saturdays, 9:30 to 5:00."

1964 Digital Computer Kit

Back in the sixties there was a company called the Tesla Researoh Foundation, with offices in Salt Lakie City, Utah, and Phoenix, Ariz. The manager was John Sehlmeier. Tesla offered a variety of analog and digital computer kits, plans for digital gadgets, and home-study courses. The DI-TR5' digital computer cost \$365 in kit form, \$440 assembled. The DI-TR5 used'germaniumtranaistor NAND logio and diode ORs, had 15 instructions, and two registers. Input/output was with switches and lamps. Does anybody know whatever happened to Tesla and/or Sehlmeier last heard from in 1964 ? Copyright 1974 by Stephen B. Gray

a publication of the AMATEUR COMPUTER SOCIETY

Volume III, Number 10
(Serial Isaue 33) November 1974

COMPUTER KITS

Altair 8800 Computer Kit

The Jan. and Feb. 1975 issues of Popular Eloctronice will have a descriptive article on the Altair 8800 computer kit from MITs, based on the Intel 8080 chip, an $8 \rightarrow b 1 t-$ word/16-bit-address machine with 78 instructions.

The Jan. 1ssue will cover the $\$ 397$ computer kit, which inoludes the 8080, 50 ICs, PC boarda, a case ($19 \times 19 \times 8$), switches, 36 LEDa and 1 X of memory. The case is $3 / 4$ ompty, but there are 17 connectora on an I / O bue, for adding memory (65 K words max) or I/O boarde. The cost without case, switches or power supply is \$298; assembled and tested, \$498. MITS will send free the etching and driliing guides, component-placing diagrame, and miso. info., for a self-addressed $8 \frac{1}{2} \times 11$ envelope with 40% postage on $1 t$.

The Feb. Pe issue will be about programming the 8800. Later in the year will be the PI Ismart terminal," with built-in CRT, 32-oharacters, 16 lines, 4 pages, modem, and keyboard, for about $\$ 300$ in $k i t$ form. There are plans to publish articles about a hard-copy device, a floppy-disk memory, and the Cyolops CCD solid-state TV camera that can be connected to the 8800.

The complete coat of an Altair 8800 with 65X memory and the CRT terminal is said to be under \$1500. MITs 18 at 6328 Linn N. F., Albuquerque, New Mexico 87108.

Yore on the Mark-8 Computer Kit
The Dec. 1974 Rad10-mlectronice has letters about the Mark-8 00m-
puter kit (June 1974 Newsletter), with anewers by the deaigner, inoluding corrections and explanations, and also a lettor about how to obtain certain parts. There is ala an article on "computer modifications," on how to inorease the input capability up to 8 input ports and how to use an additional 16 output commands to generate pulses for control.

SCELBE Computer Kit Prices

The prices of the SCELBE-8H modular computer kits (Mar. 1974 Newsletter) have been reduced, due to "some improvements in our manufacturing effioienoy."

The standard computer kit is now \$695; assembled, \$750. The deluxe kit is now \$1249; assembled \$1295. The oost of expanding the memory to 16K words, which was about $\$ 2760$ more, is now \$2465 more.

The CRT interface and audio-cassotte interface were available in kita; now, asaembled and tested, they are each $\$ 25$ more. The cas-sette-interface aystom is said to be "remarkably roliable" with oassette recorders costing $\$ 50$ to $\$ 75$, whioh do not have to be modified.

The SCBLBE-8H User's Manual ($\$ 5.00$) assumes no knowledge of computere. atarte with 26 pagea on basice. followed by chapters on the instruction aet, operating information, and on conneoting peripherala.

SCHLBE now also solls "unpopulated" sets of cards, without the ICe: the five carde alone for \$135; amme with the master clock cirouit installed, \$149; and so on up to the set with clook, 8008 IC, eight 1101 RAMi installed, plus chaseis kit, for $\$ 429$.

As for goftware, 24 programs are non avallable, either in object code or as "source mnemonic listinge, " for editors, memory dumpa, paper-tape loaders, mag tape read. mag tape write, etc.

There is now a SCELBI "Computer Digest and User's Bulletin," pub11ehed quarterly, 87 a year for 8 H owners, \$12 for others.

TERMINAL KITS

MITS Comter 256 Xit

"First Computer Terminal You Build From A Kit" (Radio-Electronica, Nov. 1974) 18 a desoription of the MITS Comter 256 kit , which is $\$ 495$ complete, or $\$ 395$ without cabinet or power supply, or $\$ 695$ asembled. The terminal has a built-in acoustic coupler, auto-tranamit, cursor control, tape-reoorder I/O jack, 32-character Burroughs diaplay standard ASCII-encoded keyboard, and an internal memory of 256 characters per page, with up to four pages of memory.

SWTP CT-1024 K1t

The SWIP CT-1024 terminal system displays up to 16 lines of 32 characters each, with a two-page memory capaoity, and can be used with any TV set for diaplay. Input may be any source of parallel ASCII code. The kit without cabinet or power supply is \$175, power supply is $\$ 15.50$, keyboard kit is $\$ 39.95$, etc. SWTP 1s Southwest Technical Produots Corp., 219 W. Rhapsody, San Antonio, Texas 78216.

HOME/SCHOOL COMPUTER
"A Practical, Low-Cost Home/School M1croprocessor gystem, " by Joe Welsbecker of RCA Labs, in the Aug. 1974 IEEE Computer (pp 20-31) desoribes a low-cost (under \$500)
syatem called FRED (Flexible Recreational and Educational Devioe), based on the RCA COBMAC mioroproceser.

FRED 1s designed to be used in sohools for educational games, aimulation exeroises, otc., and in the home for games, caloulator, controllable TV puppet, low-fldelity musio synthesis, shooting gallery, puzzles, etc. Some of these functions have already been developed. Over 30 programe are running on prototypes.

Program loading is via an audio cassotte player, which also gives the computer 1 ta voice, music, and sound effects. After loading, FRED is operated with a l6-button keyboard. FRED is attached to the antenna terminals of any TV set, for output diaplay, using a dot pattern to form letters, numbers, or simple pictures. The basio FRED consists of the COSMAC mioroprocessor, 1024 bytes of rAM, keyboard, oresette player, and a TV set.

The article mentions "adding a \$26 punched card reader and $\$ 10$ manual punch" and "adding a module for recording the contents of memory on cassettes turns the FRED system into a user-programmable computer for serious hobbyista. Other possible attachments inciude light guns, extra memory (RAM), prestored programs or tables (ROM), and output relays for control uses. 1

Reached by phone, the author adid that further details are not avallable, as they are proprietary. He hopes that RCA may some day make ohips for FRED avallable, although there are no such plans now.

DEC HOME COMPUTER
According to rumor, Digital Equipment Corp. is planning to market, in a year or trio, a "Home Computer"
with 16K of memory, CRT, full koyboard, two floppy diaks, and hard copy, for under $\$ 5,000$. It will probably be baced on e1ther the PDP-8 or PDP-11; right now, both the 8 and 11 groups at DFC are lobbying for their deaigne to be used in the new maohine, so thore are two prototypes. It is sald the syatem will cost DEC about \$2200 to manufaoture.

ONE WAY TO BUILD YOUR OWN
According to Computerworla, an 18-year-old programmer at DEC atole parte of a minicomputer and put the aystem together at the place of business of his father, who thought the parta were aalvaged. Police estimate the equipment could be worth up to $\$ 75,000$.

DEC PDP-8/A
Prices for the PDP-8/A, described in the previous Newsletter, have been established. The 8/A with ix of semiconductor RAM is $\$ 1745$; with 2x, \$2100; with 4x, \$2600. For more than 4 K of mainframe memory, the memory extenaion board must be used; that board, which also includes power fail/autoreatart, time-ahare control and a 128-Inatruotion bootetrap loader, 1s \$500. Memory can be expanded up to 32x, using various combinationg of $2,3-\mu \mathrm{sec}$ RAY in ix ($\$ 480$), 2K ($\$ 835$), $4 \mathrm{~K}(\$ 1335) ; 1.5-4 \pi 00$ ROM in 1K ($\$ 480$), $2 \mathrm{~K}(760)$, 4K (1300) ; and $3.4-\mu 8 e 0$ PROM in $1 x$ (\$995). The boarde are available eoparately; for ingtanco, the CPU and IX of RAM are $\$ 895$, for the two boards. The I/O option board 1s \$500, and the programmer in oonsole another 8400. So an 8/4 with 4K of RAM 10 \$3500; 8K RAM, \$6335.

IN PRINT

The Origina of Digital Computers

This is the title of a book of celeoted historical papers (mont of thom printed from the originals) edited by Brian Randell, who provides much conneoting text (pub. Springer-Verlag of Berlin, and in New York at 175 Fifth Ave. 464 pages, 120 figures, $\$ 23.90$). The 32 papers include a doz on that are unfamiliar to most of us on this side of the Atlantic, such as two by Torres y quevedo, on automatice and on an electromechanical oaloulating machine, and two by Courfignal on caloulating machines. Two by Zuse are a little better known here. There is an 1889 paper by Hollerith on a tabulating syetem, a 1946 one by Aiken and Hopper on The Automatic Sequence Controlled Caloulator, several on relay computers, a 1946 paper by the Goldstines on $\operatorname{HNIAC,} a$ von Neumann EDVAC report, and the last two are on EDSAC. There is an exoellent, annotated 42-page bibliography.

Rather expensive, but most of these papers would be difficult to locate today, so this is a sine Christmas present for the computer-history aflcionado. (or afioionada).

Microprocessor Roundup Article.
"Foous on Microprocessorg" is a 171-page artiole in Electronic Design (sept. 1, 1974, pp 52-69) that includes a table ilsting 19 microprocessors, 11 of which are available off the shelf or as gamplea, 6 have been announced, one rumored (Intel 4014), and one oustom-made (Burrougha Min1-D).

Of partioular interest 18 the announced Intersil I8D-8, "deaigned to be a CKOS/LSI equivalent of DEC ' popular PDP-8 minicomputer" and which "benefita from the eizable software support that oxiets for the PDP-8.... However, the unit's repertoire of elght basio

Vol. III, No. 10 -- Nov. 1974
memory-reference inatructions tende to limit the range of applioationa.... Intersil plans to dovelop a full set of circuitry and momory, all using CMOS, to operate with the processor. Conceivably, the ond result could be a pooketcized, portable PDP-8."

M1orocomputer Softuare

"Microcomputer software makes its dobut" (IMEE Bpeotrum, Oot. 1974, pp 78-84; reprint (1.50) is a iń tutorial on miorosoftware, with a chart of what 10 companies (from Control Logic to Toahiba) have currently available, in selfasaemblers, editore, loaders, debuggers, simulators, and other programe. Intel has many of these, but many are avallable only to development system usera. National Semiconductor has many; some come with the prototyping system.

Intel has set up a microcomputer user's program ilbrary, with memberchip costing $\$ 100$, but free to those who submit a program. National is planning a aimilar ilbrary.

Interfacing a TTY with an IC NP

"Interfacing a teletypewriter with an IC microprocessor" (Eleotronice, July 25, 1974, p 96) says that "the lengthy software service routine generally required" for an interface to such as the Intel 8008 "can be oliminated.... A anift register and some control logic are all that it takes, bringing total component cost to only about \$6.50."

16-bit $\mu \mathrm{p}$ on a single Chip

"single monolithio ohip holde 16bit mioroprocessor" (ELeotronio Destran, Dec. 6, 1974, p 105-6) 1s a nev-product item about the National Semiconductor proceseing and control element (PAOH) that "offors all the basic features of the company' multiohip model. Though not
as fast nor as flexible as the older version, PACE provides the convenience and cost savings of singlo-DIP packaging. And it can be used for either 8 or 16-b1t data processing." Tentative prices are under $\$ 400$ in single quantities, below \$100 in very high volume. "Excluding memory, only ix ICs are needed when PACE is used, compared with 20 to 25 for the IMP16. When speoial oirouits become available, PACE and just 10 other ICs will constitute a microcomputer With IR words (each 16 bita) of ROM and 256 words (also 16 bits each) of read/write memory."

Kiorooomputer Digent

This new monthly started in July 1974, has 12 to 16 or more pages, is $\$ 60$ year, published at $2368-\mathrm{C}$ Walsh Avo., santa Clara, Calif. 95050. The third issue had a page on Japan's first microcomputer (Tosh1ba TLCs-12) teohnology items about sos, TI's IZL $\mu \mathrm{C}$, etc; micro-computer-based products; memories and peripherale; ilterature, meetings and people.

Creative Computing

This is a new, non-profit magazino of educational and recreational computing, published 6 timea a year, \$15 a year to institutions, $\$ 8$ for individuale, $\$ 6$ for students, from P.O. Bos 789-M, Morristown, New Jersey 07960.

THE TRADING POST \& HELP WANTED

Amateur Computer-Builder Vorkshop

Jeffrey Viola (846 Spring Valley Rd., Maywood, N.J. 07607) writes: "I am very intereated in an idea to start an amtour computerbuilder workehop in my area. The Acs Nowsletter fulfills ite purpose, but for people like me with relatively ifttle experienoe in

Vol. III, NO. 10 -- Nov. 1974
oomputer building, we need aomething more. I think a workshoptype thing mould be invaluable. Anyone who 1a interested, pleage oontact me. I would like to, for tranoportation conslderationa, 11mit the New York City - northeastorn Now Jersey area to any offort as such."

Torminal Help Manted

Derrell V. Fonter (Dept. of Computer Science, Duke U., Durham, NC 27706) writes: "I am ourrentiy trying to design an intoractivetype computer terminal which satiafies these oriteria: (1) it worke and is sufficently flexible (baud rates, keyboard oharacters, etc.), (2) it minimizea my time for construction, and (3) $1 t$ minimizea my cost for construction. If you have any ldeas for this type of project (say used terminals, kiti, PC boards), please let mé know."

To Sell \& Vant List

Write to Miohael Guerre (204 Faxon St., Spring Valley, Callf. 92077) for a full liat of his offerings (including a dieplay torminal, Nixie tubes, B-Tran 6 manuala; Nova operating manual, two books) and wants (information on the HOME-EC VII minicomputer, the Interatl "PDP-8" microprocesaor; a 32-character Burroughe Self-soan panel, 8-digit LEDe eto).

4-Bit ALU

Gary Coleman (3227 N. Vernon st., Arlington, Va. 22207) writes: "To support my habit I'm selling 74s181's, the schottky version of the 4-bit ALU, for the amaring price of \$2.50. I alao have a boxful of signotio Utilogic ITL IOs which make good bua recoivers; DixC uses scads of them in the PDP-11; the price on theae is negotiable."

Card Racke?

Tom Mintner (P.O. Box 2598, Iowa City, Iowa. 52240) aeks: "Does anyone have, or know whore to get, oard racks and/or analier backplane assemblies with cards?"
"I have built several modular deFices for sound proceasing which have digital control. These are such items as envelope generators, sequencers (really an analog memory device), gating and panning controls, otc. These are hybrids with the facility for digital specipication of their operating parametera. These will then bo coupled to a large (by eleotronio music atandards) SC memory syatem."

Tape-Traneport Controller Boarde

Gary Coleman also has some CEs tapo-transport controller boards, "In case some members have the CES tape transports sold by Meshna, and by MNH-Applied EMeotronics."

Demo Computer

Colin S.L. Keay (U of Newcantle Now South Wales 2308, Australia): "I am reaponsible for an undergraduate course in Eiectronics and Instrumentation in which I am endeavouring to give the students some insight into the working structure of small oomputera. I would like to build one or two emall demonstration computers (wherein the cost of the processor oirouitry would run to no more than $\$ 200$ or $\$ 300$ at the most), and I belleve that members of your society have developed ayetems which would fall within this cost range. io The PDP-11 (or which we have 4 on campua) is a honey of a machine, and if I could find a smallocale demonstration computer kit with some of its features, I would

RAM and ROM Chipe

William Mitchell (39 Rockfield Cres., ottawa, ont. K2T 5L6, Canada) writes: "Just a note to conf1rm that I still have 2102 RaM and 1702 ROM memory ohips, as mentioned in the Maroh 1974 Newsietter. The $1702^{\prime} \mathrm{s}$, however, are now production rejects due to eingle bits being unprogrammable. Each is marked with the location of the "stuok" bit, so I will select a suitable one if you send along a copy of the pattern you are going to use. Otherwise they meet all apecs, including speed. The price 1s still \$11 per pair of 2102's or per 1702 (payable in Canadian dollars, please)."

Identify ICe?

Jeffrey Viola (address p 4) has a prototype CPU with 436 ICs, some of which he can't identify. Anybody recognize these?: ceramio chips labeled M134, marked Op Code and Addr; S8889, s8883, RM944, SN5580, $\operatorname{sN} 74948$.

Help offered

John Youngquist (899 Niagara Blvd. Fort Erie, Ontario, Canada) is one of the newest members, and writes:
"I have conalderable hardware and dealgn and would be glad to help anyone needing it with deaigne or with Intel 8008 or PDP-8 related
projects."

Kore Terminal Help Wanted

G. Deprs (V. Beauduinatr. 91, B3300 Tlenen, Belgium) writes: "I am developing a Video-Torminal (CRT Display), connected to a local Computer, but also incluaing a CPU and ALU for uaing it as an independent caloulator with possibility of vector-display. I would welcome any information at all on this kind of terminal, even at a charge."

Commercially Available

MNH-Applied Electronics (P. O, Box 1208, Landover, Ma. 20785) has a 1900-baud modem for $\$ 45$, power supply ($+5,+12,-12$) at $\$ 45,7400$ serles TTL rejects at $\$ 15$ for 1000 , computer key switches, LEDs, etc.

A MEMABER'S COMPUTER

Bob Robbins of Ohio has completed 90% of his 8 -bit, 8 -word machine, using DDL Utilogic, TTL, and MOs/' LSI. Memory is Datacraft core. It "uses same instruction set as Intel 8008; 5 tape drives, one of Which 1s IBM 9-track compatible; $a l l$ registers and memory locations are accessible from maint enance panel." Input/output is with TTY, modem, tape drives, plus keyboard, CRT display, and tape reader. "The basio processor is complete with the exception of interrupts; and all I/O devices are interfaced and working with the exception of two of the non-compatible tape drives."
gave a scmue or mark-8 OR altair?
If anybody has a SCELBE-8R or a Mark-8 Radio-Eleotronice computer, or will be getting an Altair 8800, please write the ACs about your opinions of the machine. pro of on. Copyright 1874 by Staphen E. Gray

$\sqrt{A C R}$ S_NEWSLETTER
 MORE Oiv KITS
 a publication of the AMATEUR COMPUTER SOCIETY
 Volume III, Number 11
 (Serial Issue 34)
 Harch 1975

MORE ABOUT COMFUTER KITS

Altair 8800

Popular Electronic's Altair 8800 computer kit from MITS, described in the previous Newsletter, gets a whole page in the Dec. 1974 Computer Decisions, where it is said to be "comparable to (and in many respects better than) the Nova II mini from Data General, from a hardware viewpoint." Aithough the basic cycle time of 2 microseconds is slower than the $1 \mu \mathrm{sec}$ of the Nova II, Ed Roberts of MITS notes that "it is still possible for the PE 8800 to outperform the Nova.... It a particular problem requires decimal arithmetic and a lot of I/O capability, then the MITS mini has the advantage because the 8080 contains a decimal converter that makes it easy to perform arithmet1c on BCD numbers.... If the problem is a cpu-related problem that requires speed, the Nova may be significantly faster."

The 8800 can directly address up to 65 K words of memory. The memory 1s. expandable in blocks of 256 , 1 K or 4 K S-bit words, at about $\$ 200$ for each 4 K of words.

MITS is working on a disc operating system for the floppy-disk menory; the controller will cost about as much to build as the computer; the drive will be $\$ 600$ to $\$ 700$.

Acoording to Roberts, "a atandalone unit that will consist of a processor, terminal and several disc drivers will be available for about \$3,000. That would be comparable to a system that now lists for 15 to 20 thousand dollars." That's a processor with 16 K memory. (The previous Newsletter's assumption of $\$ 1500$ for a 65 K machine
with CRT was from an overly optim1stic PE editor.)

From the Top

Ed Roberts aays (by phone) that MITS generates all the software for the Altair 8800, because programs from Intel are expenaive: the 8080 assembler is $\$ 1500$ to an individual; to MITS, it would be $\$ 5000$ for the licenaing fee, plus :i25 per unit.

About 700 of the Altair 8800 units were shipped in February. The industrial percentage of the mix is going up. The production 8800 is different from the PE model, uses 100-pin plugs, not ribbon cable.

The disk controller will be about \$450. Software will be featured in the next Altair catalog. There is a resident assembler, which requires 8 K memory and some sort of I/O device. The assembler is free with a system that will support it. BASIC (extended version) is coming along, could be used with 8 K , although very little memory would be left for programming. FORTRAN is also in preparation, avallable sometime after May.

Nathaniel Wadsworth of SCELBI says there wil? be a SCELBI book on machine language this Spring. A third of the SCELBI computer kits are sold to schools, a third to businesses, a third to hobbyists.

Comments on Computer Kits

These comments have been recelved:
"The Altair 8800 was hastily thrown together. Very little thought has been given to interfacing it with the outaide world. The availability of peripherals is a lot of hot alr.

Some Altair owners are finding it extremely diffioult to interface to. It uses 256x4 memories, great stuff, but imposeible to add on to the original system; you have to buy another memory board. For amateur use, they should use memory that amateurs can go out and buy; they use ROMS that are not easily available."
"It's ridiculous to make a higherlevel language for ouch a machine. Why duplicate the effort already made, as on the PDP-8 and others? ${ }^{\prime \prime}$
"The 8800 is a better machine than the SCELBI, a much more powerful chip (8080 versus 8008); however, the Altair has a poor interconnection design, seems to be solderedon ribbon cable!
"I don't think much of the 8008, it's slow and not very good. As for the Mark-8, it hes problems, such as the difficulty of adding more than 1 K of memory, the $1 / 0$ problem, and it's aleo a mechanical nightmare."
"There's a rumor-repeat, a rumor -that the price dip of the Altair 8800 is due to the chip not having the full temperature range; in other words, it's a temperature pallout."

M1crocomputer Newsletter

The M1cro-8 Newsietter is published by the Micro-8 Computer User Group (Cabrillo Computer Center, 4350 Constellation Road, Lompoc, Cal11. 93436). It was originally the Mark-8 user group, but widened its scope to include all microcomputer systems. A subsoription 1s \$6 for six 1ssues.

The Micro-8 Newsletter mentions The Digital Group (Box 6528, Denver, Colo. 80206), which has been working on modifications to the Mark-8 micro. Dr. Robert Suaing
has developed pluggable boards, octal readout, large power supply, keyboard data entry, and an FSK cassette interface.

The Micro-8 Newsletter writes of the Altair 8800: "More and more people keep wondering about the Altair 8800 and how they can make the kit prices so low. A lot of people have gambled on it. (Several thousand back orders, according to one report.) I suspect that it's a loss leader, to try to lock people into buying their add-ons. At least one rumor is floating around about them using factoryfallout $8080^{\prime} \mathrm{s} . .$. . With the kind of backlog they are supposed to have, you may have to wait many months for delivery and then you will atill be stuck with the problems of memory and peripherals.. .. If the future articles on peripherale in Popular Electronios are glorified advertisements as the last two have been, then what?.... Even the information pack didn't contain any real construction information."

JOKN FREDERICK'S MICRO
John Frederick (306 West 100, \#81, New York, N.Y. 10025) writes: "After much backing and filling, I've gotten on the microprocessor bandwagon for my computer project. I'm using an Intel 8008 from Elll Godbout and 2102 memory. The deaign is a mixture of the SIMB-01 oneboard system sold by Intel, the Radio-Electronics Mark-8 and the PDP-II Unibus. The 8008 has memory address bits for 16 K bytes but I / O addressing for only 8 input and 24 output devices. Adapting the Unibus 1dea, the $1 / 0$ devices are connected to the memory bus and referenced by addresses whose high-order 4 bite are all ones. Bits 0 and 1 address four 8-bit device-control, status and data registers associated with each device, and the middle 8 bits
allow 256 devices to be addressed. Doing it this way adds to the parts count, but should make life easier later.
"My first objective is a flexible controller for all my peripherala, which include (at this point) a Tally 420 tape punch, a Tally 424 tape reader, acoustic ooupler and the first Radio-Electronics TV typewriter. If I can use this to emulate the PDP-8, the PDP-11 and an ASR33-compatible CRT terminal, I can utilize software which already exists.
"I have some advice for ACS members who are concentrating on sophisticated architectures and homemade instruction sets. It is that writing good software is very difficult and time-consuming. You'll get more computing done with a slow, simple machine for which free software exists.
"There's a boom right now in the use of microprocessors as dedicated peripheral-device controllers. Those of you who have surplus I/O devices but no controllers or convenient interface to the rest of your system might look at this approach. I'd be happy to correspond with anyone who wants to try $1 t$. I'm trying to net up a flexible prototyping lab for this sort of thing."

THE TRADING POST

Buster Killion (2773 Winrock Ave., Altadena, Calif. 91001) has a core FIFO buffer designed to buffer tape drives, $\$ 50$; two IBM 727 drives with all manuale, \$150 each, \$250 both; Century Data floppy-disk drives, $\$ 250$ each; 4 K word x 18-bit Ampex core stacks, $\$ 35$ each; card cages with connectors, \$15 each; plus documentation on several computers, and wire, cable and Amphehol connectors. Write for details.

Tape Decks

John Marshall (Box 242, Renton, Wash. 98055) has several extra Wangeo tape decks, model $7^{\prime \prime} \mathrm{s}$, both 7 and 9-channel, brand new. Write for detailed specs or make offer.

Digitizer

Mark Messinger (85 East End Ave., New York, N.Y. 10028) has a Summagraphics digitizer with an 11"xll" tablet and binary display; cost $\$ 2150$, is a few months old, Mark would like $\$ 1300$. He can also supply the wiring list and diagrams for a PDP-11 interface using a DEC M1710 module.

Core Stack

Steve Marum (Westwood Manor Apt. 136-J, Howe, Texas 75059) says he now has enough MOS RAMs for his main memory, will sell his core stack, 16K by 24 bits, Fabri-Tek, $\$ 300$ or best offer; he'll "even throw in 34 TI 7528 core sense amps extra."
"If you know of anyone using a TI 980 who might want to trade programs, let me know. At a surplus sale I got an old one, which appears to be the grandaddy of TI's present 980 and looks to be program compatible."

COMMERCIAL HARDWARE

M \& R Enterprises (Box 1011, Sunnyvale, Calif. 94088) has an 8008 with application manual, $\$ 60 ; 8008$ with all the resistors, caps and 15 7400's for the Mark-8, \$75; plus 1101A RAMs starting at $\$ 5$ each, 2102 RAMs starting at $\$ 10$, and the 1702A pROM starting at \$40 each. Send for a price liat.

A1 Sardo (2032 S.W. Expressway, San Joae, Calif. 95126) sells the 1101A RAM for $\$ 2,2102$ at $\$ 7,1702 A$
for $\$ 13,8008$ for $\$ 40,8008-1$ for $\$ 60,251664 \times 6 \times 8$ character generator for $\$ 3$; $\$ 5$ to program the 1702A with listing included.

WALK IN AND COMPUTE
The public library in white Plaing, New York, has what may be the first walk-in-and-compute installation in the country. Since the beginning of 1975, a Wang 2200 hard-wi red BASIC computer has been available at 256 for five minutes. Input is magnetic-tape cassette. There is a ilbrary of tapes for games, math, statistics, etc. Anyone who wants to write his own programs and save them has to buy a data cassette.

Because there is no off-line preparation of programs, as with an ASR33, a lot of machine time (at a nickel a minute) can be used up in preparing input.

IN PRINT
Designing Microprocessors With
Standard-Logic Devices
This is the title of a two-part article by Robert Jaeger of Signetios (Electronics, Jan. 23, 1975, pp 90-95; Feb. 6, pp 102-107). The author notes that although MOS microprocessors are growing in popularity because of the few ICs required, there are drawbacks such as being slower and less flexible than random-logic TTL systems. "Rut there is a third deaign route avallable to meet certain system requirements: the small, applica-tions-oriented processor built with standard high-speed logic devices, either ECL 10K or schottky. ... Aithough they require more ICs than MOS microprocessors, they can replace random-logic TTL designs that need flve to 10 times as many devices."

Part 1 outlines the requirements for the three basic processor ele-ments-the regiater/arithmetic/logio unit, the control memory, and the input/output circuitry. Part 2 discusses how proper selection of the microinstruotion format can minimize control-memory size, and also covers memory branohing and outlines some designs for standardlogic processors.

For Teaching or Learning Digital

EkL Instruments (61 F1rst St., Derby, Conn. 06418) has a new LR Innovator series for teaching (or learning) digital electronics. The serles includes preassembled modu-
lar hardware, cailed Outboards, which plug directly into the sk-10 solderless breadboarding socket, allowing for quick set-up and interconnection.

The Outboards are used as input and output to standard ICa (mainly 7400 series), and consist of logic switches, LED display, pulse input, clock and power. The basic system is $\$ 247.70$. The two manuals, called Bugbooks I and II, are $\$ 16.95$; in their 750-plus pages they cover experiments with gates, truth tables, counters, decoders, multiplexerp, sequencers, displays, Tri-State logic, flip-flopa, oneshots, memoriea (RAM and ROM), registers, and arithmetic elements.

The preface givea credit for significant participation in the design and implementation of the Outboards to Jonathan Titue, deal gner of the Mark-8 microcomputer kit and an ACS member.

The Origins of Digital Computers

This book of historioal papers, described in the previous Newsietter and printed by Springer-Verlag at $\$ 23.90$ in hardoover, is now available in a second printing for only $\$ 14.80$, also in hardcover.

A FOURIH MICROCOMPUTER KIT

Several microcomputer kits are being offered by companies that specialize in selling ICs at low prices. One of the better known is the MIL MOD 8, made in Canada by Space Circuits and sold here by Mini Micro Mart, 1618 James St., Syracuse, N.Y. 13203.

The MIL (Microsystems International, Ltd.) MOD 8 costs $\$ 85$ for the seven basic boards, "uses a minimum of components, provides for a good deal of expanaion, is designed around a TTY as the I/O device, has no front panel and you probably can get by without one. And if you want to go to an 8080, you put in a new CPU board, eliminate the buffer board, and it is an 8080 system. ${ }^{\text {! }}$

Mini Micro Mart has this to say about other micros: "SCELBI is the most expensive route and probably the beet-aurely the way to go if you don't WANT to build your own, or even if you want to build your own and have a minimum of technical or software background. Good boards, good design, and most $1 \mathrm{~m}-$ portant, FULL support, even to the systems level.... The Altair 8800: the first of the 8080's attracting the amateur market, the best packaged, and the slickest promotion, and a rich man's toy as far as I am concerned. If you take their basic kit, add 3 memory add-ons, 3 I/O, and a TTY interface, the extras come to $\$ 549$, more than the kit itself, and you still have only a IK microprocessor. Buy MITs boards, come to us for the parts, and save about 50\%. My blood pressure was starting to rise, because I started thinking about the stor1es in Popular Eheotroniog. I quote "but it can be economically expanded to 65,000 words." "That economioal expansion will cost you a mere $\$ 4224$ if you order the economical version of their memory (which I
don't think they are delivering). Assembled MITS memory is about the same price as DEC's memory boards. ... If you've gotten the impression that I'm partial to the MIL MOD 8 , you have reached the right conclusion: 8008 system that modifies to an 8080, software, audio cassette interface, TTY interface, a floppy disk interface sOON."

Mini Micro Mart sells IC kits for the Mark 8, Altair 8800 and SCELBI, as well as memory ICs, keyboarde and other hardware, and the MIL MOD 8080 for $\$ 294.50$ ($1 \mathrm{Kx8}$ memory), without power supply or front panel. The MIL MOD 8, with 6 PC boards, all the TTL, 8008 , and 1 Kx 8 memory (no ROM board or mother board) is $\$ 219.95$ plus $\$ 2.50$ for postage, etc.

Another MMM quote: "The Mark 8 surely not the best but it started it all - the mass interest started with this - the boards would have been nicer with plated-through holes - but is still the least expenalve way to start for a novice; \$5 gets you the manual, the boards are available, and there is aupport to get you out of trouble (thanks to Hal Singer."

MACHINE LANGUAGE PROGRAMMING BOOK

SCELBI Computer Consulting, Inc. (1322 Rear, Boston Post Road, Milford, Conn. 06460) has just announced their new manual, "Machine Language Frogramming for the 8008 (and similar microcomputers, " containing a detalled presentation of the 8008 instruction set, and coverage of flow-charting, mapping, editing and assembling, search and sort routines, mathematical operations, multiple-precision arithmetic, floating-point-package, I/O programming, and many other areas.

The price is \$14.95 until April 30, 1975 , after which it will be $\$ 19.95$.

The Amateur Computer Society 18 open to all who are interested in building and operating a dig1tal computer.

For membership in the ACS, and a subscription to Vol. III of
the Newsletter, send $\$ 5$ to:
Stephen B. Gray
Amateur Computer Society
260 Noroton Ave.
Darien, Conn. 06820
The ACS Newsletter will appear every two or three months.

LATEST ON MICROSYSTEMS INT.
Microsystems International is part of Northern Electric (the Weatern Electric of Canada), which decided to stop making ICs, so MIL is in shut-down mode and will close May 30. However, Mini Micro Mart aays MMM will still offer the MOD 8, will design its own board for the MOD 8080, and hopes to have software for the latter before long.

One of MIL's customers designed a discrete version of the 8080 with 7400-series TTL, for only \$90. Although it uses more power and takes more space than the 8080 , it is a great deal faster. And proprietary.

It should be noted that MMM kits are sets of PC boards and ICs, without full construction plans, for engineers and advanced hobbyists.

JOHN YOUNGQUIST'S TAPE CONTROLLER
John Youngquist (899 Niagara Blvd., Fort Erie, Ontario, Canada) writes: "I have completed my low-cost tapedrive controller and interface. Deaigned around a two-track aigital tape drive and 4X PDP-8/L, it emulates TDBE DECtape with a one-page (128-word) handler program. The DEC TDEE handier is twice as long. The standard PDP-8 DECtape format is fixed-length 129-word blocks, each numbered and individually addressable, much like disk format. Thus
my interface and software allow bidireotional searches for any block without counting file gaps. Adaress error detection and verification 1s done before a block is read or written, to prevent accidental loss of data. A parity bit for each 6-bit byte is written and verified for all data words. Blocks with parity errors are re-read up to three times before the appropriate error exit takes place.
"The interface is based on a phaselocked UART chip (i.e., General Inst. AY5-1013). Data is written serially with start-stop bits on one track and reference clock on the other. When read, the clock is phase-look multiplied and applied to the UART. The data rate is IOK baud and tape speed is 15 1ps, but could change to suit a particular tape drive. The tape drive used is a two-track and uses $8 \frac{1}{2}$-inch reels of $\frac{1}{2}$-inch IBM tape. It was made by Computer Entry Systems for a special application.... The complete interface and controller contains only 20 ICs, a MOS LSI UART some CMOS and TTL, at a cost of \$20. It can of course be applied to a varlety of tape drives and CPUs. I can provide schematics, software, and application assistance to anyone interested. Please enclose \$l with inquiries, to cover duplication costs, and request PDP-8 program 11stings if you need them.
"To support the tape drive, I have written a series of tape commands in FOCAL 69. I can read/write blocks of integer, 3 or 4-word floatingpoint variables, and chain to new programs, starting execution at any line number. This allows FOCAL to run in "batch mode" unattended for hours. I can provide the software.
"I have an Intel 8008 CPU (new, not surplua) for sale or trade. I wish to acquire some floppy-disk drives, preferably in complete working order. Copyright 1975 by Stephen B. Gray

Vol. III, No. 11 -- March 1975

a publication of the AMATEUR COMPUTER SOCIETY

Volume III, Number 12
(Serial Issue 35)
July 1975

COMPUTER KITS, PART 3

Altair 8K BASIC Special

Unt11 Sept. 15, 1975, MITS is offoring the Altair 8800 computer kit, two 4K-word memory boards (ikit), your ohoice of interface board, and the Altair 8K BASIC language, for \$995. That's a saving of \$139 to \$175, depending on the interface you choose.

Altair 8K BASIC uses 6250 words, leaving 1750 words for programming and storage. There is also a 4 K BASIC, and an Extended BASIC (12K). The 4 K BASIC has 15 statements, 6 math functions, and 4 commands; the 8 K BASIC has 4 more statements, 8 more functions, 1 more commend, and advanced string functions. The Extended BASIC adds PRINT USING, disk I / O, and double-precision math. BASIC is available on either paper tape or cassette tape.

Altair Systems

The April Computer Decisions carries a full-page MITS ad that looks more like an ad by a mini-naker than by a kit company.

According to the ad, "... we're selling our BASIC Language System for $\$ 2,461$ (fully assembled Altair Computer with 8K of menory, a serial interface, computer terminal and BASIC language software). We're selling our EXTENDED BASIC Language System for \$2,806 (Altair with 12K of meriory, serial interface, computer terminal, and EXTENDED BASIC software). Our' DOS EXTENDED BASIC Language System goes for $\$ 6,649$ (Altair with 16 K of memory, serial interface, computer terminal; disk controller and 2 disk drives, DOS and EXTENDED BASIC software).... we're selling our Advanced Account-
ing/Engineering system for $\$ 10,489$ (Altair with 32K of memory, serial interface, teletype [or terminal], line printer, disk controller and disk drives, DOS and EXTENDED BASIC software)."'

Sound like they intend to compete with DEC. In fact, part of the ad reads, "It's almost embarassing. We've only been on the computer scone a short while, yet we're selling more computers and peripherals than many of our long-time, established competitors."

MITS is said to have sold over 2500 Altair kits, and has opened two regional sales offices, in Orange, Calif and Mami, Florida, "with the ultimate goal of maintaining operating service centers and display areas at these locations."

Altair Experience \#l

Doug Penrod vrites from California: "I ordered a MITS Altair 8800. It has been coming in bits and pieces, especially after I wrote Mr. Roberts (pres.); he called me on the phone, to get the order straightened out. Their paper-work crew is overloaded and gets things all mixed up.
"Yesterday UPS brought 2 boxes from MITS. One contained a 4 K dynamic RAM board kit and a 4-slot expansion to the bus board. And a note saying that 8 chip sockets had been backordered. The other box contained two 4 K dynamic RAM kits, complete. Now I have 3 manuals for the 4 K RAM. Now all I lack are the 8 chip sockets and the software: the assembler and utilities package; and the 12 K BASIC package.
"As you no doubt know by now, they
have 3 versions of BASIC--for 4 K ,

8 K , and 22 K . No source code is available for any software, only object code, and that only in paper or audio mag tape form so far. So modifying their software won't be easy.
"I have some criticisms of the Altair. I notice that the new ads mention the use of fans, and all of the four machines at a local MITS "seminar" had fans. However, they aren't much more helpful than the blower on the motor of a Teletype, which has no air inlet or outlet. The MITS has inlets all along the top of the sides of the cabinet, and the motor blows out an outlet in the rear of the cabinet. Better. But there is no alrflow pattern in the board layout or cabinet design.
"In particular, the front-panel PC board has a heat sink for the $8 v$ to $5 v$ regulating transistor mounted on the front side of the PC board, where the aink is trapped in a narrow space between the PC board and the aluminum sub-panel which mounts the switches. The sub-panel, in turn, is behind, and in contact with, the thin aluminum dress panel. At any rate, there is no way for air to circulate around that heat sink, which is mounted on the top of the board, thus precluding even normal convection in the space between panels. So I changed mine, and mounted the heat sink (augmented, in my case, by a copper addition to increase the area by a factor of 2) on the rear of the PC board, where it can get some air.
"I also expect to design and biild some baffles to systematically channel air-flow through the PC boards in a manner determined to keep the chips cool and keep the heat-aink air away from the chips. Actually, I feel that appropriate thermal design would have obviated the need for a fan, even in a full-
house machine. I think that the bulk of the gross regulating could be done outboard, with just enough on-board to keep the glitches away.
"I wish the MITS had an optional 18 or 19-slot bus board available in i plece. Now you have to use 100 jumper wires to connect each pair of 4-slot boards together, $\max 16$ slots. Need 16 to handle the max 64 K memory, plus a CPU and at least one I/O board. In my Altair, every chip has a socket; I think they ought to oome stock that way.
"At the MITs "seminar" in Van Nuys, the MITS guys were saying that another Popular Electronics cover story will be coming out, presumably with a successor or alternate to the Intel 8080 machine. They sald they were working with Motorola 8-bit chip, and didn't deny the National Semiconductor IMP-16. It is obvious that the cheap computer world is changing radically and rapidly this year and next. It hardly pays to design and build your own computer anymore, if results is what you're after. Eapecially if you consider the time and effort involved in the sof'tware. It ain't every solder mechanic who can write a compiler.
"Pretty soon. it ought to be possible to buy slightly-used Altairs cheaply. Unless the buyers want to up-grade to BASIC. Inoidentally, I found that their machine won't accept program input from paper tape. Too slow. Apparently doing line-byline diagnostics. Also, there's the matter of a Line Feed on the paper tape and another one from the computer; they don't have a TAPE mode of entry. I tried some experiments to see if this can be bypassed. But for computer-generated ilstings, the only cure is to get at the soft. ware. I suspect that a tape which had no Line Feeds (only Carriage Returns); and nulls or rub-outs for

Vol. III, No. 12 -- July 1975
time between lines, might work. I:
Altair Experience \#2
Dick Schwanke writes from Illinois: "I am now well along in the construction of my Altair 8800, thanks to rainy weather. The construction section of the manual seems to be entirely adequate for anyone whowill read the instructions carefully and can identify the parts. The theory of operation section covers the operation of the parts they added, but the explanations are not easy to follow unless one is quite familiar with this type of design. The debugging section is nearly useless, and the almost complete absence of explanation of the CPU chip itself means that trouble can be anticipated in $10^{-}-$ cating the reasons for not working. There is also a very obvious lack of application data, including. failure to indicate how I / O is accomplished.
"The answer to the I/O question 1 s , of course, that a tap must be put on the data, address, and control busses; and an interface controiler must be constructed. I have not done sufficient research to know if there are family members (8080) designed for the specific. job, but I am sure that I will sooner or later find the applications data that I need.
"The Motorola 6800 applications manual contains designs for both statio and dynamic memory modules as well as huge quantities of information on I/O with or without interrupts and priority sohemes. I have not yet figured out how to get a front panel on the 6800.
"Back to Altair. I am not particularly happy with the method of hooking the panel to the CPU and' bus. It looks very subject to noise and crosstalk. The CPU and memory boards looks as though they were
noisler than had been anticipated and have had many capacitors added to soak up the noise.
II do expect to get my 8800 working although I have no idea as to the problems I may run into. If I have too much difficulty figuring out the I/O problem, I can always purchase the manuals from Altair and see how they did it.
"P. S. There is a shortage of wire and solder in my kit. The panel 18 going to be very difficult to repair in case of difficulty because all of the switches are bolted down.
iThere are some new 4 K statio RAMs which cost \$22.75 each for 10-99. "

Altair Experience \#3

The writer of this letter asked that his name not be alused: "I have $\because j u s t$ received my Altair 8800. I was extremely skeptical from the advertising but decided to gamble anyway.
"The printed-circuit work is of very good quality, with plated-thru holes, and takes. solder well. The case is excellent and expensive, and can be disassembled as requíred to work on the circuitry. The bus is constructed of two rails with PCB wiring and $100-\mathrm{pin}$ connectors and card guides which ought to make an adequate mechanical and electrical assembly. It is sold in increments of 4 positions but came with only 2 connectors. While it is not clear; it appears that MITS hopes to make out by selling memory and peripherai adapters to people who will. be unable to expand the bus by any other means. I believe most buijders would be put to it to construct such a nice package for less than twice the price I.paid for the

[^18]NEWSLETTER
assortment of input/output devices are needed to do any useful computing in a reasonable length of time. Short word lengths and limited instruction sets do not prevent good results but make the memory requirements more difficult and expensive and cost a lot of time. Oribits for cyclotrons were calculated on a machine with 256 words of memory at one time (when there was nothing better).
"Unfortunately, static memory is not the way to go in these microprocessors. The cheap 1101's take up a lot of board space and will undoubtedly produce bus problems before the memory reaches a satisfactory size. The recent-design static chips are too expensive. It is hoped that the new 4 K dynamic RAMs will produce a digestible solution.
"Motorola has introduced an evaluation package which includes seven compatible chips, a CPU, a ROM with a monitor program built in, 256 bytes of RAM, two parallel interfaces, and one serial interface. The system devotes one parallel interface to a Teletype machine to be used as the console, leaving the other parallel interface and the serial interface to the user. The monitor program uses some of the RAM (possibly as much as half). The bus loading rules are such that these seven chips can be connected together without any bus drivers, so getting the whole thing working can probably be done with less than $\$ 50$ worth of parts plus an 8-level. Teletype or similar console. A panel is not needed.
"Any attempt to expand the machine will require spending considerable money and effort on the bus driving and receiving arrangement, and the memory problems are the same as above.
"The Motorola instruction set is
much better than the 8080 set as far as economical use of memory is concerned. The 8080 is much better than the Motorola in the input/out put interrupt structure area, as it can point to 8 separate locations in memory, compared to one for Motorola.
"It is a temptation to use the empty space in the Altair cabinet to install a Motorola 6800 and try to interface it to the 8800^{\prime} s panel and memory.
"I likely will not ever try to make a large useful machine out of my Altair, but will use it as an educational tool to study the programming problems of this type of machine, the results of which I can use in my job."

Altair to go Motorola?

According to a rumor in the July Computer Decisions, "the next version of the Altair... will be built around the liotorola 6800 chip.... Intel's 8080 was judged less powerful than the Motorola micro...."

Seems that the two best bets for a company going into the computer-kit business right now are the Motorola 6800 (for which there isn't much software) and the Intersil IM6100 microprocessor ($\$ 394$ in 1-24 quantities) which, as the ad says, "recognizes the instruction set of a popular minicomputer, the PDP-8/E. No need to generate complex special software. No need to learn new languages. It's already there in software everyone knows and understands. ...the most extensive software Iibrary of any microprocessor."

Two More Kits

In addition to the MITS Altair, Scelbi-8H, Radio Electronics Mark8, MIL MOD 8 and. MOD 8080, there are also the Sphere I and the Martin Research MIKE 2. (Actualiy,
there are now some 13 kits on the market; more in the next 1ssue.)

Sphere (96 East 500 South, Bountiful, Utah 84010) offers a 4 x " "Hob-bylstl-computer kit, based on the Motorola 6800 microprocessor, with 512-character TV terminal, keyboard and power supply, for \$650 (\$870 assembled). Memory is expandable to 64 K ; at about $\$ 240$ for a 4 K board, $\$ 400$ for $8 \mathrm{~K}, \$ 750$ for 16 K memory-board kit:

An asserabler, editor, debugging aid, and drivers for the CRT are built into a read-only memory. Available software includes Extended BASIC (with string and matrix manipulation, machine-language subroutine calls, trig functions, and disk-file I/O, plus FDOS-flexible disk operating system).

The "Intelligent" kit adds serial communications and audio-cassette capability at $\$ 750$ (until Sept. . 1975; \$999 afterwards). The "BASIC" system kit adds 16 K more of memory, for \$1345 (\$1765 after Sept.); the "Classic" aystem kit includes 65lpm printer, two IBM-compatible floppy disks, and DOS, at $\$ 5250$ (\$6100 after Sept. 19\%5).

Sphere also has a paper-tape reader/perforator, and will have a network operating system, RPG II, and an integrated data-base system. Plus "unique developments in procese control for the home and in:duatry and an ultra low-cost mass storage system" by early 1976.

According to Mike Wise, president, "Sphere was started by computer. professionals, and their computer was started as a system."

Martin Research (1825's. Halstead St., Chicago, Ill. 60608) has the MIKE 2-1 CPU board, with 8008, cryatal-controlled oscillator, and all the timing for the system, at: $\$ 55 \mathrm{kit}, \$ 75$ assembled. The MIKE:-

2-20 console boara has a six-digit didplay and $20-\mathrm{key}$ calculator-type keyboard; "unlike systems with banks of toggle switches and lights, this micro 16 easy to program, since codes are easily visualized. " The kit, \$69; \$84 wired. The MIKE 2-3 PROM/RAM board has room for up to 1 K of RAM and 2 K of PROM; handies up to eight 2l12's and up to eight 1702A's.
\cdots The basic system, the MIKE 203, uses 256 words of $R A M$ and 256 words of PROM; \$230 kit wi thout 8008, $\$ 270 \mathrm{kit}$ with 8008 , $\$ 276$ kit with 8008-1 and fast XTAL. A memory board with 2 K RAM $(450 \mathrm{nsec})$ is \$108 kit; 3K, \$137; 4K, \$165 kit.
Options under development include a CRT didplay interface, cassette recorder interface, Teletype interface, PROM programmer.

THE TRADING POST

ECL Source?

D. B. Lamkins (Magnolia Ave, Manchester, MA 01944) "would ilke to buy unused, tested ECL 10,000 ICs iṇ small quantities. If anyone has a source at below distributor's list prioes; pleäse send type numbers, prioes, and quantities."

Peripherala for Sale

Dan. Miller (1191 Risa Place, Santa Ana, CA 92705) has several ine printers, mag-tape drives, disk drives, card readers, tape punches and drums. Send for his price ilst.

DEC Modules for Sale

Steven Roy (Electronic Assembly Associates, P.O. Box 3711, Amity Station, CT O6525) has various DEC modǜes, including M8300 (major regitters), M8310 (maj. reg. control $)$, M837 (extended memory control)". etc. Write for price list.

```
The Amateur Computer Society is
open to all who are interested
in building and operating a dig-
1tal computer.
    For membership in the ACS, and
a subscription to Vol. III of
the Newsletter, send \$5.to:
    Stephen B. Gray
    Amateur Computer Society
    260 Noroton Ave.
    Darien, Conn. 06820
The ACS Newsletter will appear
every two or three months.
```

Steven also has some fixed-head 4-platter disk drives, with $30-1 n$. platters, $256 \mathrm{~h} / \mathrm{W}$ heads per side; \$200 per unit, you cart.

New Address for MNH
MNH-Applied Electronics has moved, to PO Box 367, Jamul, CA 92035. Their latest catalog includes an FSK moden card for ${ }^{\$} 30$, small power supplies from $\$ 5$ to $\$ 8$, digital cassette-tape cartridges at $\$ 2$, etc.

Chips, ICs, Transistors

At 128 N. 81 St, Mesa, Ariz. 85207, Electronic Discount Sales offers the Intel 8080 at $\$ 155$, and a wide variety of transistors, RAMs, digital and Inear ICs, switches, etc.

IN PRINT

Another Newsletter

One of the newest hobby publications is the "Homebrew Computer Club Newsletter, "Fred Moore, editor, 568 Santa Cruz Ave., Menlo Park, Callf. 94025.

Computer Column

Starting with the June 1975 issue, Popular Electronics magazine is running a column called "Computer B1ts" by Jerry Ogdin. The column was intended to be a quarterly feature, but readers are said to
be demanding that it run every time.

Computer Hobby Magazine

Scheduled to appear on the newsstands in September is BYTE!, an 81 zine for the computer experimenter, at $\$ 1.50$ an issue, or $\$ 12$ for 12 issues (\$10 introductory) from Green Publishing, Inc., Peterborough, New Hampshire 03458

BUYING MINIS IN QUANTITY

A member has suggested that the ACS look into the possibility of buying a mini in quantity for ACS members, to take advantage of the quantity pricing. Well, the prices would still be rather high:

The Fabri-Tek MP12 (which is almost software-compatible with the PDP-8) with 4 K core has been-advertised at $\$ 990$ in quantities of 100 . That machine is without power supply or I/O interface, and costs $\$ 1340$ for one. An MPI2 with I/O interface and power supply is \$2395 each for 1-4, $\$ 2258$ for 5-9, $\$ 2181$ for 10-24, and $\$ 1922$ each for 100.

The PDP-8/A from DEC, with 8 K of core memory (and inciuding programmer's console and I/O option board) is \$3695 for one, with discounts of up to 30% for quantities of 100 bringing an $8 / \mathrm{A}$ down to about $\$ 2 \times 600$. The same $8 / A$ with $8 K$ of RAM memory 1s $\$ 3895$ for one.

FASTER INTEL 8080 CHIPS

The Intel 8080 A chip operates at a 1. 5-usec cycle time, compared with 2.0 usec for the 8080. Intel also plans to market a l3-chip processor set for $\$ 250$, including 8080 A CPU , two 256x4 RAMs, two bus drivers, a 1 Kx8 erasable ROM, decoder, priority interrupt control unit, etc. Copyright 1975 by Stephen B. Gray

KITS: PART 4 ROSTER

ACS NEWSLETTGR
a publication of the AMATEUR COMPUTER SOCIETY

Volume III, Number 13
(Serial Issue 36)
November 1975

KIT ROSTER

Over a dozen microcomputer kits are now on the market, so maybe it's time to make a list.

1. One of the first (non-micro) kits was the 832 (March 1971 Newsletter), still offered by National Radio Institute as part of their computer electronics course. Built With 7400-type TTL, it has a memory made up of slide switches, for aimplified teaching of bit storage. Input/output 18 by switches, lamps.
2. The Scelbi-8B is about the same as the 8 H (March 1974 NL), but uses 2102 RAMs, "which allow the $8 B$ to be directiy expanded up to 16,384 words of memory at a cost comparable to that of 4,096 worde of memory in an 8H." The 8B kit, with 8008 MPU and 1 K memory, \$499; empty 4K RAM card, \$49; eight (1024 words) type 2102́ Rass, \$59.
3. Radio-Eleotronics' Mark-8 (June 1974 NL) is also build around the Intel 8008 microprocessor unit.
4. The MITS Altair 8800 (March 1975 NL), based on the 8080 MPU , can directly address up to 65K of memory, has a variety of peripherals, and can be programmed in assembiy language and in BASIC.
5. The Sphere (July 1975 NL), using the 6800 MPU, is now offered at $\$ 860$ for CRT dieplay, ROM monitor, real-time clock, typewriter keyboard, 4X memory. Extended BASIC is avallable (more memory needed). The CPU board, with 4R RAM, " 512 times 8 PROM," serial TTY interface and hardwired ROM monitor (console emulator) is $\$ 360$.
6. The Mike 2 from Martin Research (July 1975 NL) is based on the 8008;
kit is \$295, with monitor PROM and 256 bytes of RAM. Expandable to 16 K bytes. For $\$ 12$, a kit of ICs for a l6-channel display on a trig-gered-sweep scope, for debugging and educational purposes.
7. The Mike 3 kit is $\$ 395$ ($\$ 445$ after Dec. 15), with 8080, monitor PROM, 512 bytes of RAM.
8. The FéL Micro-Designer Syatem (E\&L Instrumenta, 61 First St., Derby, Conn. 06418) is an 8080 system, composed of three plug-in carde, control panel (with LED displays and control switches), interface board, power supply, and software. Can use up to 65K of memory ("can mix R-W or PROM"). The basic unit is $\$ 1,695$, for a microcomputer also known as the Mark 80.
9. The MOD 8 (March 1975 NL) from MiniMicroMart is based on the 8008 , sold as unpopulated boarda or as a kit with 1 K memory.
10. The MOD 80 from MMM uses the 8080 MPU . The C-MOD6800, a 6800 MPU on a board, is compatible with the MOD 8 and MOD 80 bus structure, input, output, etc., is for the owner of an 8 or 80 who wante to plug in a 6800 and try it out.
MMM's R-M terminal is a surplus hotel reservation terminal, with 9 electronic boards in 1t. Any of the MMM micros fit in it; a Teletype 32 or 33 printer also fits inside, for another $\$ 330$ or so; the RM terminal is $\$ 109.95$.
11. MMN's RM6800 MPU "is for the person who is starting from scratch and who doesn't want to try to try the other MPU $\mathrm{A}, \mathrm{\prime} \mathrm{\prime}$ according to Maury Goldberg of MinimicroMart. It will also fit in the R-M terminal, which has modem and TV-display options.
12. RGS Electronics (3650 Charles St., Suite K, Santa Clara, Callf. 95050), has the 008A k1t, with an $8008 \mathrm{MPU}, 1024 \times 8$ memory, all ICs and parts except cabinet, $\$ 375$; ASCII keyboard input kit, \$135; audio cassette adapater kit; \$100.
13. The Godbout kit, called "George" (because "it seemed nice and friendly") based on the National Semiconductor 16-bit PACE MPU, has been delayed a little, now has a dellvery date of 1-1-76. The projected price is to be just under $\$ 600$, with 1R words of memory, provisions for 7 K more, editor and assembler, provisions for 4 K ROM and for serial cassette interface, for 3 audio cassettes, and with keyboard rather than toggle-switoh input. Wath 8 K of RAM, the price is "still under $\$ 800$." There will be no peripherals; the cassette interface will be supplied with a cassette containing editor and assembler.

Contrary to rumor, there 1 s no relationship between the Godbout kit and the kit to be offered shortly by Radio Shack, also based on the PACE microcomputer.

For a "complete data packet" on the k1t, send $\$ 2.50$ (refundable) to B111 Godbout Electronics, Box 2355, Oakland Airport, Calif. 94614.
14. Detalls on the MITS Altair 680 kit, based on the 6800 MPU from Motorola and American Micro-Systems, were withheld until the publication of the November Popular Electronices article.

The 880 is less than a third the alze of the Altair 8800, only 11 x $11 \times 43 / 4$. This "makes internal expandability significantiy less," which means, although the article doesn't say so, that the chassis $w 11$ hold only three more boards suoh as two 12K raM boards (atill in deaign) and an interface board. Most of the 680 is on one PC board,
which has a built-in Teletype interface, and which pluge directly into the front-panel board. The 680 is TTL-compatible, and uses only one 5-volt power supply. The 680 is slower than the 8800, with a 4-usec minimum cycle time, compared with 2 usec.

The software for the 680 includes a monitor on PROM, assembler, debug, and editor. The 680 has three 1nterrupt levels; the 8800 has 8. Both can be expanded to 65 K bytes.

A \$293 kit (\$345 after 12-31-75) includes 1 K bytes of RAM. Options are: I/O socket kit, \$29; fan kit, \$16, PROM kit (256 x 8-bit), \$42; there are provisions on the main PC board for another 1 K bytes, of ROM or PROM, mainly for dedicated versions of the 680; there is a blank front panel for turnkey uee.

The 680's main PC board will be sold separately for $\$ 180$ ($\$ 195$ after 12-31-75) for OEM use or "for the experimenter who wishes to purchase an absolute minimum."

As the latest MTTS "Computer Notes" puts it, "MITS has decided to await customer response to determine the course of further 680 development in both the areas of software and hardware." If enough users ask for a BASIC compiler, it will be provided. No price has yet been set for the 12K RAM board. Also being oonaldered is a board containing half raMs and half ROMs. Anything requiring more than three additional boards will also require an expander chaseis, which is in design. The 680 seems to be aimed primarily at OMM controller applications.
15. SWPP (Southwest Technical Products Corp., Box 32040, San Antonio, Texas 78284) has announced "The computer system you have been walting for," 1te 6800 , which contains a ROM with "the program necessary to automatically place not only a load-
er, but also a mini-operating ay $8-$ tem into the computer's memory.

The 6800 is controlled by any ASCII-coded terminal. The basio 6800 inoludes the ROM, a l28-word static soratchpad RAM, 2K memory, serial control interface, power supply and oase, plus test programs and the Motorola Programmers Manual, at \$450.
16. The Micro 440 by Camp-Sultanta Inc. (P.O. Box 1016, Kuntsville, Ala. 35807) is based on the Intel 4040 chip, and is atailable with 256 bytes of RAM, power supply, oase, I/O port and Teletype interface, for \$275 kit, \$375 wired.

The 440 features 60 instructions and 24 on-chip registers. For \$176 you can get the full GPU board, front-panel controls and diaplays, and the 256 bytes of RAM. The case has room for 8K of RAM or PROM, in 2K increments.
17. The SRI-1000 by gysteme Researoh Inc. (P. O. Box 161280, Salt Lake City, Utah 84115) uses the PACT MPU, and includes full keyboard control, 4x RAX, \$599 assembledxand teated. Options include more RAM; Interfaces for cassette, Video, MTY, RS-232, TTL; Iloppy diak, line printer, and tape reader.
18. Imbal (IMS Associates, Inc., 1922 Repubilc Ave, San Leandro, Cal1f. 94577) has the Imeal 8080 , "compatible with the Altair 8800." The basio computer includes CPU, IX RAY, front panol, control panel with 8 extra liade to indicate the output port, all ilghts and awitched, power supply, expiander board and case, $\$ 439 \mathrm{kit}, \$ 621$ assembled.

Imsal also sella boards that are interchangeable with Altair's, inoluding CPU, 4K RAM, 1K RAM on 4K board, 2K 펴N on RK board, etc. And a multiprooeseor/ahared memory facility that "allows up to 3 Im
sa1 8080's or Altair 8800's to share the same memory"; \$295 kit, $\$ 335$ assembled.

Are there any others?
OMS EVALUATION. KITS
Many microprocessors are now available as part of a PC board marketed for engineering evaluation, in kit or wired form, usually with a minimum of memory, and without power supply, chassis or case.

1. The JOLT (Pehaco Corp., Microcomputer Associates, Inc., 111 Main St., Los Altos, Calif. 94022) has a \$249 GPU card kit built around a MOS Technology 6502, which can address directily 65K of memory. ROM program memory on the CPU card consista of IK bytes of monitor/debugger with an automatic power-on bootstrap program. A 4K RAM card kit is \$265; I/O card (peripheral interface adaptor)ldt, $\$ 96$; power supply (will support CPU, I/O and a 4 X card), $\$ 145 \mathrm{kit}$. An accessory bag, with enough parts to connect one JOLT card to another, is $\$ 40$. That would make a 4K kit cost about \$850. The 6502 has 68 instructions and 11 addressing modes, and sells for \$25.
2. The Mostek F8 Evaluation Kit, at $\$ 297$, includes the 3850 MPU , a ROM, static memory interface, ik $x 8$ of static RAM, crystal, 2 CMOS buffers, and a $6.75^{\prime \prime} \times 5.6^{\mathrm{h}} \mathrm{PC}$ board. A Teletype or CRT can be connected directly to the board. The ROM software permits "program loading, storing, modification, debugging (with "traps") and even hexadecimal afithmetio-all from the Teletype.
3. Cramer Hiectronios (85 Wells Ave, Newton, Mass. 02169) offers three evaluation kits, built around the Intel 8080A, Texas Instruments 8080, Motorola 6800. These are $\$ 495$ each, and include eight 1024×1 sta-

3 Vol. III, No. 13 -- November 1975
tic RAMs, a 1024x8 erasable ROM preprogrammed with eystem monitor, controls (toggle, pushbutton, and DIP switohes) and ब1splays (LMDs and 7-segment) for programming with or without a terminal. Inoludea both ourrent loop and RS-232 interfaces for any terminal, and an audio cassette with teat programe (audio osesettes can also be used for extra program storage). "The erasable ROM oontains a system monitor that makes your microcomputer usefal as soon as you turn it on.. ..A cassette full of other useful programs is inoluded to help you debug and demonatrate your microcomputer.

Power supply is not provided. Memory 1e expandable to 12 additional 1X RAMs. Coming up: kits based on the AMD 9080, Mostek F8, and RCA COSMAC. And in early 1976, bipolar Cramerkits using the Intel 3001, AMD 2901, TI SBP 0400, and Motorola 10800.

The $\$ 495$ does not inolude a PC board. The Augat boards shown in the brochures are about $\$ 275$ each.
4. Pro-Log Corp. (2411 Garden Road, Monterey, Callf. 93940) offers a variety of assembled cards, for logic processing (using the 4004 or 4040) and for microprocessors ($8008,8800,6800,58$), all ueling "l702d yOS PROMs or equivalent.

Where is minbax today?

The Kenbak-1 (June 1974, Feb. 1973, and Mar. 1872 Nowsletters) $\$ 850$ training oomputer ia no longer being marketed by its dealgner, John Blankenbaker. It is now in the hands of C.T.I. Eduoation Products, Inc. (695 Coleman Blva., Mt. Pleasant, 8.O. 29464), and is the Model 5050 Digital Computer Syatems Trainer, at 1,035 . ORI aleo markets $\log 10$ labs and a variety of eleotronic training dovices.

8080 AND 6800 PRICE CUTS
In Ootobier, Intel cut the prices of the 8080 ramily; the new 100lot price for the 8080A MPU is \$40; 25-99, \$60 (was \$110); under25, \$75 (was \$150).

Advanced Micro Devices offers its 9080A version of the 8080 MPU at \$29.95, in lots of 100.

Motorola'e M6800 MPU 1s $\$ 69$ for 199 (was \$175 for 1-9). The MCM6810 1K RAM is now $\$ 6$ for 1 - 99 (was $\$ 15$ for 1-9). The Design Kit, with PC board, is now \$149; it wae \$300 before, without a PC board.

PACE HIGH-LEVEL LANGUAGE
National Semiconductor, makers of the 16-bit PACE MPU, will soon have a Disk Operating Syatem (DOS) and SK/PL, a resident high-level language; "th1s makes PACF the only fully supported one-chip microprocessor in the industry," according to the advertisement.

IN PRINT

Deaigning Your Om Microcomputer

This is the title of an article in the Sept. 27 Electronic Design, on how to use bipolar bit-slice microprocessors to bulld, for example, a 16-bit processor with 24 ICs, built around four 6701 4-b1t MPUs (by Monolithic Memories?), and featuring 16 general-purpose regieters, ability to address 65 K words of memory, and instruction execution times from 0.9 to 1.2 useo.
"Increase microcomputer efficiency" by the same author, David Wyland (ED, Nov. 8), shows how to add interrupt and DMA (direct memory address) capabilities with only seven extra ICs, six new instructions, and nine extra control-ROM bits.

The schematic show is basically the same as in the previous article, with the required addition.

M1oro Depts.

Starting with its Nov. 22 1saue, Eleotronic Design will have a "M1croprocessor Design" section in every issue.

And Digital Deaign started a "Mioro Notesil department, in 1ts Sept. 1975 issue.

ALTAIR-TYPE PC BOARDS

Jim Garrett (322 Rollingridge In., Garland, Texas 75041) writes: "In contacting MITS about the availability of their Altair 8800 PC boards I have found that they are no longer going to supply them to the hobbyist. If there is enough interest, I will make an equivalent improved set of boards for us at cost. The purpose of this letter is to gauge interest.
> "Everyone intereated in Altair-8800-like boards, drop me a postcard (or letter) stating thoir needs. These are 1 mproved boards (DISCLAIMER: I do not offer Altair prodinots or kits; I sell parts and accessories which can be used in the Altalr 8800).

"The diaplay board will contain the nedessary mods to provide an octal diaplay (for about $\$ 16$ more in components you can read ootal instead of binary), AC switch improvements will be instituted, grounding on all boards will be improved, mods to the CPU boards will include reducing switoh noise and a more conventional connecting to the display board. The memory boards will have provisions for a DIP awitch for address seleotion (no more jumpers), eto.
"rentative prices are: CPU, 18.60;

4K memory (static or dynamic), \$18; power supply, \$13.50; a1splay and control, \$33; SET I (1 each CPU, PS and D / C), $\$ 58.50$; SET II (4 each, atatic or dynamio), $\$ 65$; SET III (SETS I \& II), \$115. This includes postage, insurance and full documentation of all mods.
"I am wllling to produce any other boards if there is enough demand. Along the same lines I may be abie to supply the DIP switches, connectors (both $100-\mathrm{pin}$ and IC) and miniature awitches, if there is enough interest, at OMM prices."

BUILDING FROM SCRATCH
Despite all the activity in microkits, many ACS members are still building their machines from their own design, or copying a commercial machine. Billy H. Pettit (1277 Indian Rd. Mississauga, Ontario, L5H IK7 Canada), writes: "I'm building a l2-bit, 8 K machine completely compatible with the CDC $160-\mathrm{A} / 8090$. Using TTL, naturally, with a solidstate RAM memory. Been playing around with ll03's, but finally gave up. They juat aren't worth the extra interfaces. Will probably go to 74S206's. [CDC = Control Data]
"Have always felt the 160-A had about the best instruction set and versatility of any l2-bit machine. In my opinion it is superior to the PDP-8 set, and easier to use. Plus, for me, the big advantage of softvare. For 10 years, I've used the 160-A and now have hundreds of programs. Espeoially useful is a very, very sophistioated FORTRAN for a 12-bit machine. There is a second FORTRAN, more primitive and similar to DEC's 8K version. Also a pseudoCOBOL and half a doz on floatingpoint simulator packages.

All of which means that when it is built (my version), I can use it for something. All of the software

5 Vol. III, No. 13 - November 1975

The Amateur Computer Society 16 open to all who are interested in building and operating a digital computer.

For membership in the ACS, and a subscription to Vol. III of the Newsletter, send $\$ 5$ to:

Stephen B. Gray
Amateur Computer Society
260 Noroton Ave.
Darien, Conn. 06820
The ACS Newsletter will appear every two or three months.
is in the pubilc domain, and the user's group is still active.
"If any reader ever buys a scrapped CDC component and wants some info, have him write. I can probably get a sohematic of anything likely to be on the surplus market."

SURPLUS IN SWEDEN
Eskil Hedetun writes from Sweden: "As you probably know, computers are manufactured in Europe by just a few, and very big, companies; 1. e., Siemens-Fhilips, IBM-Europe and perhaps the Swedish SAAB (same company that makes the car). This means that surplus is very scarce, and 11 the "goodies" ever come out of the factories, they go to var1ous schools and universities. Surplus to amateurs is "zero." As regards components and "rejects," it is mostly sold in England, and due to the FFTA-EEC free-trade it ia rather easy to get a shipment from England. For more complicated ICe like RAMa, we have to go to the US to get them. Most US dealers are very speedy and efficient. The inflated dollar has made it favourable to buy components and even computer kits from the states. In this region (southern Sweden) I know at least two persons who have bought the Altair."

TooLs

An excellent catalog of "more than 2500 tools for electronic assembly and precision mechanical comes from Jensen Tools and Alloys, 4117 North 44 St., Fhoenix, Ar1z. 85018. Some of the prices may seem high, but that's because these are all firstquallty tools, including over 60 pliers, 10 pages on soldering equjpment, and many fine tool kits.

THE TRADING FOST
Gary Coleman (14058 Superior F.d., Apt. 8, Cleveland, Oh10 44116) has acoustic couplers, modems, keyboards, CES tape drives, etc. For a price list, send a SASE.

NEW COMPUTER CLUBS
Doug Penrod (1334 La Cima Rd., Santa Barbara, Calif. 93101) has started a new computer club.

John Vullo (230 Main St.,Rte. 28, North Reading, Mass. Ol864) is president of the Boston-area Alcove Computer Club.

IBM'g MINI

The IBM 5100 "portable computer" looks more like a CRT terminal than a mini, with a 1024-character display screen, typewriter keyboard, and an integrated cartridge tape drive. Memory ranges from 16 K to 64 K characters, and prices from \$9K to \$20K, depending on memory size and on choice of printer, auxiliary tape-storage unit, and other options. The 5100 comes with either APL or BASIO, or both. Three program libraries, each consisting of two mag-tape cartridges and a user guide, are $\$ 500$ each, for buainess analysis, math problem-solving, and statistical problem-solving.

Copyright 1975 by Stephen B. Gray

KITS: FARI 4 ROSTER II.
a publication of the 'AMATEUR COMPUTER SOCIENY

Volume III, Number 14
(Serial Issue 37) February 1976

KIT ROSTER (continued)
Many more microcomputer items have been advertised or announced since the listing in the previous isaue. Here are over a dozen:
19. From Sphere, the Micro-Sphere 200 is sold as a wired unit only, with 4 K RAM, ROM cassette loader, 128x128 black-and-white dot-matrix graphics system; and a games package; $\$ 860$. The MPU is a 6800.
20. The Systems Research SRI-500 $\overline{1 s}$ also a wired-only unit, with F8 MPU, available as modules: board with IK RAM, TTY interface, debug in ROM ("Fairbug"), $\$ 325$; power supply, $\$ 55$; keyboard, $\$ 100$; etc.
21. Wave Mate's Jupiter II comes in both kit and assembled forms; with 6800 IMU, 8 K dynamic RAM, RS232 interface, software (editor, debug, assembler, BASIC), wirewrap tool, \$1299 kit. (1015 West 190 St., Gardena, Callf. 90248).
22. The ERKA 6502 Familiarizor has a hex keyboard and two-digit diaplay on the same PC board as the circuitry, so it doesn't require a terminal for a beginner to learn the basics. For the MOS Technology 6502 MPU, 1K-byte RAM, 256-byte PROM (monitor): \$229 kit, \$285. wired. (EBKA Industries, $6920 \mathrm{Mel}-$ rose Lane, Oklahoma City, OK 73127)
23. The OSI 300 fron Ohio Scientific Instruments (P.O. Box 374, Hudson, Ohio 44236) is a wired trainer using the MOS 6502 MPU with.128word RAM, 7 address awitches, 8 data switches, displays that indicate data, address, and program execution, lab manual with 20 experiments; $\$ 99$.

OSI has an interesting alternative:

Send in \$110, get a 315 computer trainer (identical to the 300), return it within 60 days, and you receive three PC boards (superboard, I/O board, video board) and software for TV typewriter and audio cassette monitor, for a system based on either the 6502 or 6800 MPU. To quote from the OSI Feb/Mar flyer: "The 6502 is:currently the fastest N-channel microprocessor available.... It is also very inexpensive in small quantities and features an internal clock. These features are very important to the hobbyist on a budget, especially if he doesn't have a good scope. The 6800 is somewhat more expensive and requires an external clock. It is rated for'a l-us cycle time and therefore can operate at only one hall of the speed of the 6502. It does feature two accumulators and a more extensive instruction set than the 6502. Therefore, the potential user should carefully consider it when real-time applications are not anticipated."
24. Techtra Corp. (130 Webster St., Oakland, Callp. 94607) will offer the. TMC 112, "a replacement for the PDP-8," with operator!s control panel, up to 32 K of core or semiconductor memory, "a coraplete range of peripherals," otc. Based on the Intersil 6100 MPU, the TMC 112 is sti:ll in prototype, they telil me.
25. The Micro-68, from Electronilc Product Associates (1157 Vega St., San Dlego, Callf. 92110) is a wired unit with 6800 IMPU, integral hex keyboard and 6-digit display, 512word "John-Bug" PROM, 128 words of RAM; \$430.
26. The KIM-1 from MOS Technology is a similar unit, with 6502 MPU, 23-button keyboard and 6-digit dísplay mounted. on the PC boara, 1 K

RAM, monitor in 2R ROM; \$245.
27. The Dyna-Micro kit will supersede the Radio-Electranics Mark-8. A microcomputer learning system, it comes with a series of books on learning the 8080 and the system, and is scheduled for introduction in the May-June R-E.

The Dyna-liforo will be marketed by its manufacturer, E\&L, as the MiniWicro Designer, MMD-1, featuring the 8080 A MPU, with everything on a PC board, including 16-key keyboard and 24 LEDs, plus a built-in interfacing breadboarding socket. Keyboard entry is controlled by a ROM, and the 256 words of RAM are expandable to 512. The complete set of parts and boards 1s \$350; assembled and tested, $\$ 500$.
28. Hamilton/Avnet offers the Pacer, with the 16-bit PACE MFU, IX ROM monitor, IK RAM, two 4-digit displays, $32-\mathrm{key}$ pad, power suppiy and case; \$695; assembled, $\$ 160$ more. For assembly-language programming, a TTY interface/program assembler 1s $\$ 175$.
29. The PCM-12, from PCM (Box 215, San Ramon, Calif. 94583), uses the 12-bit Intersil IM6100 MPU, has a full set of switches and lamps, and is software-compatible with the PDP-8/E. Price: $\$ 400$ to $\$ 600$, depenaing on options. DEC's 4 K BASIC 1s included, and is the only software available from PCM right now.
30. According to the Micro-8 Computer User Group Newsletter, the Astral 2000 klt (M\&R Eleotronics, Box 1011, Sunnyvale, Calif. 94080) is based on the 6800, features 8 K of memory, serial TTY I/O, and comes with BASIC. It has a l2-amp power supply, DMA, real-time clock, binary and hex pront-panel alaplay, and front-panel switches that can be used as I/O while running. Availability was scheduled for Dec. 1975, at under $\$ 1000$.
31. HAL Communications (807 East Green St., Box 365, Urbana; Ill. 61801), best known for their RTTY CRT terminals, has taken the 8080A board out of their DS-3000 and DS$4000 \mathrm{KSR} / \mathrm{RO}$ terminals, and offers it as the HAL MCEM-8080 microcomputer aystem, a "complete operating syatem on a single PC board, exclusive of power supply and Teletype or CRT terminal." Included are LED indicators, awitches for system control, a break-point register, 1K bytes of PROM with system monitor, IX bytes of RAM, for $\$ 375$. Options include keyboard/video display, power supply, ROM programmer.
32. From Texas Instruments (Box 5012, M/s 54, Dallas, Texas 75222), the Microprogramer is the Pirst in a series of Microprocessor Learning Modules. The 3 -pound hand-held TI Microprogrammer (LCM-1001) comes in a plastic case, only 6\% $\times 5 \frac{1}{2} \times 13 / 4$ inches, has 20 toggle ewitches for entering instructions, data and addresses, etc., and 29 LEDs. Available wired only, with rechargeable batteries and charger and 148-page manual, at $\$ 149.95$, it has a $40-\mathrm{pin}$ IC connector for expansion; future units will include a controller (with PROM), memory, input/output.
33. The UT 8100 mioroprocessor from Infinite Inc. (P.O. Box 906, 151 Center St., Cape Canaveral, Fla. 32920), using the RCA COSMAC MFU, will be avaliable in June as a "completely self-contained microcomputer," with built-in|keyboard programming, 256 -byte RAM expandable to 4 K -byte RAM or ROM on-board, external memory expandable (via $16-b 1 t$ address) to 65K bytes of RAM or ROM, 4-digit hex readout, 16 keyboard switches. Avallable wired or kit, prices to be announced.

NOTE: The Techtra TMC 112 may not be the only unit atill in prototype. There is no way of knowing from an ad if the advertiser has units all ready to ship, or has only a proto-

Vol. III, INo. 14 -- Feb. 1978
type and is waiting for enough response to start up production.

MICROKIT UPDATE
As new as it is, the microcomputer scene has already. witnessed some major changes:

Scelbi Drops Hardware

Scelb1 Computer Consulting is no . longer manufacturing either the 8 H or the $8 B$, but is concentrating on software, and at the moment.18. working on BASIC for the 8008 and 8080 MPUs. Other MPUs are being considered.for future software.

Incidentally, the Scelbi "Machine Language Programming-for the 8008 (and similar microcomputers) If is highly recommended by many microkit manufacturers; and $1 s$ now in a second. edition, typeset on: both sides of the page (the firat was all in Teletype capitals, on one side of the paper), st111. \$19.95 (1322 Rear, Boston Post Road, Milford", Conn. 06460).

MITS Upgrades Both Microg

The 8800 B "is an entirely new Altair, the control and display panels are an entirely new design and contain PROM memory..... The clock width is crystal controlled as well as the irequency..... The interface card and front panel are connected by plugtable ribbion, cable. The system bus has 18 slot's. \therefore the new switches have longer, flat: handles." Four new front-panel functions are available for accumulator control:... display, deposit, output, input. A slow function single-stepa the processor at: 32 instructions per second. Front-panel functions can be redefined by reprogramming the front-panel. PROM. "Exi'sting Altair owners will be able to purchase a xit. from MITS to upgrade'their. existing Altair to a B., at signifi-
cantly. less cost than purchasing a new machine."

The new design of the 680 includes an automatic PROM loader, and à BASIC interpreter is being developed. (The:original 680 had "sone: buge, and only two or three were sold before they were all recalled.)

SRI-1000:Delayed

The Systens Research SRI-1000 (Nov. 1975 Newsletter) was designed around the PACE MPU, but there were component delivery problems, 60 the . wired-only SRI-500 is now being offered, with the Fairchild FB MPU.

MICROCOMPUTER TYPẸS
The microcomputer scene seems to have settled down to seven basio types:

1. Box with full oet of switches and lamps: Altair 8800, Altair 680, Imsal 8080, PCM-12, etc:
2. Box with very few switches or lamps: SwTP 6800, Jupiter II, etc.
3. Box with keyboard, but no switohes or lamps: Micro-Sphere 200.
4. Box with $\dot{\text { xeyboard and CRT: the }}$ Sphere.
5. PC boara without keyboard or display: Wintek, engineering evaluation boards (JOLT, Cramerkits, Pro-Log); etc.
6. PC board with keyboard and display: MRE Mike-2 and M1ke-3, EBKA 6502, Familiarizor, EPA M1cro-68, MOS Technology. KIM-1.
7. Surplus: サiatron.

VIATRON COMPUTERS

Verada 214.(38 Frenoh st . , Box 438 ,

Lowell, Mass. 01852) got 20 of the Viatron 2111 Microprocessors, hopes to get more. The 2111 "is a complete computer with keyboard input, two cassette tape drives built-in, a video display, an operating aystem on ROM.... Guaranteed working when they left our plant": \$699, FOB Lowell.

Meshna (E. Lynn, Mass. O1904) is offering the "System 21," which appears to be the same unit offered by Verada 214 , "sold as it; due to 4 years of storage, may require some adjusting/cleaning "; \$425, FOB E. Lynn.

Note that these units are no longer being manufactured, and that most of the mechanical parta (and perhaps some of the eleotronic parts) are thus not available if needed for repairs. A letter to Interface cries out: "HETP! I have a Viatron model 2101 that doesn't work. Would appreciate contact with anyone who could provide technical information or programming assistance...." Caveat emptor.

FIVE MPUs
Gregory Peterson says, in the Dec. 1975 Denver ACS Newaletter, in part:
"The PACE chip prom National... is in a class by itself, a l6-bit machine whereas the other chips mentioned are all 8-bit units. Therefore, it handles more data at a time, but uses a relatively slow semiconductor technology and loses some of what it gained in data volume in relation to speed of execution. It has 48 instructions but only three addressing modes. It is also quite expensive in comparison to the other chips mentioned, costint more than twice the others...."
"If you are of the opinion that any computer uorthy of the name is at least 16 bits in word length, con-
sider the LSI-ll or the monolithic implementation of the PDP-8 offered as the IM1 600 by Interail. The initial investment in these machines may be greater, but the availability of software is unparalleled.
"There is a large following of people devoted to the smaller 8-bit machines. The 8008 was the first microprocessor avallable with which to construct a home computer. It is also probably the most prolific of the microproceasor chips. There is a fair amount of home-generated software available to a person who constructs with one of these chips. Unfortunately, the internal arohitecture can now be considered archaic.
"The 8008 requires a fair amount of supporting TTL logic to make it work, and thus could never be considered for a minimal deaign offort. The 8080 is very popular too. ... As with any chip, software support is at least as important a conaideration as the actual chip itself. In this regard, the 8080 la one of the better chips avallable. There is a large number of homebrew programe for these chips, and there is a very powerful BASIC interpreter package available from MITS. A FORTRAN package is available from another source. It does require 16 K of memory to run, tho. The 8080 is a serious and powerful chip with large oommunity of users. Yet, even this chip is only a scaled-up and 1 mproved 8008 . Recent trends in microprocessor degign have rendered even this chip obsolete, though it will continue for aome time on the sheer momentum of its usage.
"The 8080 is not as integrated a machine as the 6800 and requires that more ohips be added around it to enable it to function. The 6800 also differs radically in input and output approach from the 8080. Whereas the 8080 is parti-

Vol. III, No. 14 -- Feb. 1976
tioned along the classicalilines of computer architecture, with input and output functions being clearly defined in relation to the flow of other data within the system, the 6800 places all input and output on the data bus as addressabie memory locations. Some of the benefits gained from this are the availabil1.ty: of all memory reference instructions to manipulate the input and output ports. The decoding and acceseing of input and output locations is easier in this. system, and it requires fewer chips to support the microprocessor chlp.
"There is also available a readonly menory chip for the MC6800 containing a very nice little monitor systen for control of a 6800. This chip is what makes possible the stark front panel of the MITS and SWTPC 6800-based microcomputers. All the lights and switches that are synonymous with data processing are replaced by a small operating system in a ROM chip: This controls operation of the microcomputer and allows one to diaplay viemory locations and register values, and alter them at will as one develops his programs. This chip also costs a lot less than ail those lights and switches, and simplifles the design of a conputing system. Therefore, a computer constructed along these lines is less expenaive, but at no sacrifice in computational power. It does predicate the ownership of an input and output medium which speaks serial ASCII code; though. A modern Teletype or a TVT with suitable interface board works well; but tends to drive up the initial investraent in equipment for a func: tional system....

[^19]8008). It'ranks as the most powerful chip avallable now to the home constructor, having 55 basic instructions selectively operating over l3, distinct addressing modes. This addressing plexibility gives the chip unparalleled ease in manipulating data in memory. The chip follows the 6800 . In assigning all input and output to locations in: memory. It 'is also the only chip discuased here that incorporates an on-chip clock oscillator. This convenience, should not be overlooked. The complexity added by, the high-level clook drivers the other chips require, and the increased wiring complexity, can be appreciated only after one uses the 6502.
"The 6502 is strictly a plus-5-volt machine, requiring no multiple supply voltages for chip operation. It interfaces directly to TTL. It is also very fast... The 6502 is the only chip considered here with two distinct true index registers. This little convenience makes for unmatched ease in constructing. progranming loops. It al so allows data to be easily shuttled about in menory with minimal programalng effort. The internal architecture al so in'corporates an 8-bit accumulator, a fairly standard stack capability, and a good selection of testable. status bits to monitor internal operations and allow the chip to elter its. processing on the reaults of its computations:. The multiolicity of on-chip registers that 8008 and 8080 users are accustomed to are absent. Computation in this machine is intended to take place between the accumulator and memory; and"In a sense the adaressing flexibility gives one a whole memory full of register's to use in their computations. One cannot overstress the programing ease the multiple memory addresidng modes convey. Rather than having to cleverly juggle the data in on chip registers to trick the chip into accessing the portion of memory you are interested

The Amateur Computer Society is
open to all who are interested
in building and operating a dig-
ital computer.
For membership in the ACS, and
a subscription to Vol. III of
the Newsletter, send $\$ 5$ to:
Stephen B. Gray
Amateur Computer Society
260 Noroton Ave.
Darien, Conn, 06820
The ACs Newsletter will appear
every two or three months.

in, there somehow always seems to be an addressing mode to do just what you want. \because." "

TRADING POST -- For Sale
John L, Marshall (Box 242, Boston, Mase. 98055) writes: "Well, I IInally broke down and bought a box from IMSAI. I sure hope that it is as good as advertised. I also bought memory and CRT interface from Processor Teohnology.
"I have a few items for sale. Interested persons may inquire and make offers: Wangoo 7 tape drive, MFE cassetto drives, 4 Kx 12 memory syotems, line printers, paper tape reader, paper tape punch, TMS 2105 NC, 3002, 3003, 3113, 7491, 1414L, 710, 741.:

HARDWARE -- ICs, MPUs, etc.
Cybertronics (Box 18065, Louisville, Ky. 40218) has a 28-page catalog of ICs, MPUs, and wirewrap and packaging items, including the 7400 series, CMOS DIPs, op amps, voltage regulators, 7-segment displays and LEDs, $8008(\$ 19.95), 8080(\$ 50)$, PACE ($\$ 125$), PROMs, RAMs (2102, \$2.50), EROM kits, IC sockets, power supply kits, capacitors, etc.

THE TARBELL CASSEITE INTERFACE
Don Tarbell (144 Miraleste Drive
Vol. III, No. 14 -- Feb. 1976
\#106, M1raleste, Calif. 90732) says: "I have been using an inexpensive audio cassette recorder in my homedesigned computer aystem since 1972 I have over 600 files on cassettes, mostly about 4 Kbytes each. My estimate is that the error rate is less than 1 error in $1,000,000$ bits. I say this because I can usually record 304 -Kbyte files on one side of a C-60 caseette without any errors."

The letter goes on to say that the speed 1s up to 540 bytes per second (2200 bytes per inoh); 187 bytes per second for ANSI standard 800. b1ta/inch; 30 bytes per second for "Byte/Lancaster" standard. Cost: $\$ 100$ for kit, $\$ 150$ built and checked out. Write for further detalls. on the Tarbell cessette Interface.

ONE MORE MICRO
34. Just leamed of the RCA COSMAC Microtutor that uses the 1801 MPU (which has 16 16-bit registers), $\$ 349$ wired. The Miorotutor may later use the nev 1802 MPU, and may later be available as a kit, cheaper. The small box, about $5 \times 7 \times 2$ inches, has 256 words of haM memory, 8 input toggle switches, and a twodigit LED output display.

A TALL ORDER

Most questions asked of the ©CS are reasonable, but this one from upstate New York a couple of years ago, asked one that I just couldn't answer: "I would also appreciate some information on the atructure, current and past activities, general state of development, and overall orientation of the organization. A run-down on the various levels of accomplishment of the major computer building projeots and the "atate-olthe art" within the group would also be appreciated."

Copyright 1976 by Stephen B. Gray

LAST ISSUE OF VOLUME III

a publication of the AMATEUR COMPUTER SOCIETY

Volume III, Number 15
(Serial Isaue 38)
June 1976

TIME AGAIN TO PRNEW

This is the last lasue of Volume III of the ACS Newsletter. If you would like to subscribe to Volume IV, which will consist of at least eight issues, please send $\$ 5.00$ ($\$ 6.00$ overseas).

The first issue of Volume IV is scheduled to appear during August 1976, the month of the tenth anniversary of the publication of the first iasue of Volume I.

KIT ROSTER (PART III)
Several more kits have appeared on the market since the last Newsletter, and I've gotten info on several that have been around awhile. These should bring the list up to date. If you know of any not included in these 42 , let me know.
35. The ETC-1000, from Electronic Tool Company (4736 W . El Segundo Blvd., Hawthorne, Calle. 90250) is a wired-only system based on the MOS Technology 6502. The front panel has an 8-digit segmented alphanumeric display and 40 switches for data/address entry (hexadecimal), control, and special functions. Word length is 8 bits; instructions are 8, 16 or 24 bita. The basic system includes 1 K bytes of RAM current-loop interface, and a 256-byte EAROM containing the system control programs, for $\$ 575$. A IK RAM expansion is $\$ 118$, 4 K for $\$ 235$. Other CPU modules are available (8080A, M6800, and F8) for "sharing system resources," meaning main memory and peripherals.
36. The M1cro-88 (formerly the Wicro-Altair) from Polymorphic syatems ($737 \mathrm{~S} . \mathrm{Kellogg}, \mathrm{Goleta}, \mathrm{Calif}$.
93017) consists of a video board with graphics capability, CPU/ROM/ RAM board, backplane with power supply, and cabinet. The CPU board includes an 8080 MPU , 512 bytes of RAM, space for 3 K bytes of ROM, and vectored interrupts. Several CPU boards may be plugged into the same backplane for parallel processing. Data may be entered in octal, hex or ASCII, and edited on a TV ecreen. The Micro-88 is compatible with KITS Altair peripherals and software. The complete syatem, including operating system on PROM, is $\$ 575$ in kit form. Beards are available separately.
37. The ANT 2650 from Applied Microtechnology (100 N . Winchester Blva., Suite 260, santa Clara, Cal1f. 95050) is a self-contained card micro using the signetics 2650 MPU. The control panel, mounted directly on the PC board, has 14 mini toggle switches, a run LED, and four sets of 8 LEDS Por ADDRESS, DATA I, DATA C and DATA D. The 256-byte RAM memory is expandable to 32 K bytes via the 62-pin edge connector. Price 1s $\$ 195$ wired-oniy; an optional 5V/3A power supply 1s $\$ 39.95$.
38. From Computer Shack (P.O. Box 662, Littleton, Colo. 80120), the $8080+$ is a wired-only all-on-oneboard microcomputer, requiring only a 5 -volt power supply (the "single $5 v$ supply is internally stepped to $-5,-9,+12$ and tapped for +5 v , all available in wire wrap areall). Onboard RAM 1s 1 K , monitor is in two 256-byte FPROMs, MPU is an 8080. The control panel includes 16 hex keys, 4 -digit LEDs, address/data diapiay, Teletype interface. Price is \$995, plus $\$ 18$ for ahipping and handling.
39. Mikra-D (30 Main St., Ashland,

Mass. 01721) has these: VT-1920 is a CRT terminal with monitor, keyboard, housing, interface for 8080. CPU, and power supply, \$695 kit. MTS-8 includes the VI-1920 plus 8080 CPU, 1 K bytes of $\mathrm{ROM}, 4 \mathrm{~K}$ bytes of RAM, serial interface, cassette interface, assembler, editor and debug software, $\$ 1195$ kit. BASIC-8 includes the MIS-8 plus 4 K more of RAM plus BASIC software, $\$ 1695 \mathrm{kit}$. All systems have 80-character by 24-line display.
40. The Digital Group (P.O. Box 6528, Denver, Colorado 80206) has a computer kit that can take any one of three different CPUS: 8080A, 6800 , or $6501 / 6502$. "You can change from an 8080 to a 6800 by ilterally unplugging the 8080 card and plugging in the 6800 card. Switch on power, read in the 6800 operating system and you have changed your system to a 6800.... Each of the CPUs is completely interchangeable at the CPU card level with any other." An 8080 3-board system with 2K RAM is $\$ 425$ kit, \$645 wired; 4-board 8080 system with 10K RAM, $\$ 625$, assembled $\$ 895$. The 6501/2 system with 2K RAM is $\$ 375 / \$ 595$, 10K RAM $\$ 575 / \$ 845 ; 6800$ system with 2K PAM, \$425/\$645, IOK RAM \$625/ \$895. A 3-board aystem consists of CFU card, I/O card, TV readout and cassette-interface board, and mother board; the 4-board system has an additional 8K of memory. Options include power supply, video monitor, etc. A case is underway, may be available this summer.
41. Moducomp Inc (75 Califormia Ave., Brockville, Ontario, Canada K6V 5Y6) has wired boards for the MOD8 microcomputer: CPU board with 8008, \$135; PROM board with Mon1tor8 software programmed into 8 PROMs, \$233; TTY I/O board, \$62; RAM board with 2Kx8 RAM, \$120; inyut board with $3 x 8-b i t$ channels, $\$ 51$, output board with $3 \times 8-b i t$ channels, \$62; backplane with PROM programmer, \$272. "typical minimum
system is \$720." (These prices are as of last year, may be more now.)
42. OSI (new address: 11679 Hayden St., Hiram, Ohio 44234) now has the 400 computer system: several boards now, more boards (and 2 enclosures and 2 power supplies) to come later. The 400 Superboard alone is $\$ 29$; with 6502, \$54; with 6800, \$69. The 412-A is a 400 with 6502, eight 2102 memory, monitor PROM, 6850 ACIA "and all miscellaneous parts to talk to a Teletype," \$139. Same but with 6800, \$159. The 420 memory expansion board is a 4 K of 2102 memory, $\$ 119$. The 430 Super I/O board has high-speed analog I / O, with A / D converter and two 8-bit D/A converters, serial and parallel interfaces, $\$ 29$ (must be an empty board). The 440 graphics board is \$29; 470 floppy disk (GSI 105 disk drive, OSI bare interface board and operating systiem), \$599; 495 prototyping board, \$29; 480 backplane board, \$39.

Coming: 460 PDP-8 emulator using 6100 LPU, to be used w1th 6502based 400 board; Superboard that will take the $\mathrm{Z}-80$ MPU; 450 PROM calculator-chip board, an interface to an MOS Technology calculator chip; 490 distributed-prooessing network backplane boards, which will support four processor systems.

THE REST OF TI'S LEARNING SYSTEM

The Texas Instruments Microprogrammer (Feb. 1976, p 2) has been joined by three new Learning Modules: Controller Module, to lprogress from micro to macro-level programming, " \$189.95 wired; Memory Module, read/write, with 1 K of 12-bit words, \$189.95; Input/Output Module, 4 input and 4 output ports, each 4 bits, can be combined for 8-bit ports, \$109.95. Also new is the TI book, "Software Design for Microprocessors," 500 pages for \$12.95. (The modules are wired, no kits; each has its own battery/
charger system; modules are interconnected by ribbon cable.)

FIX-KIT FOR ALTAIR 800. CPU CLOCK
Parasitic Engineering (P.0. Box 6314, Albany, Calif. 94706) asks, "Is your Altair 8800 slow to start up? Writing all $0^{\prime} s$ or l's into memory? Producing the wrong STATUS? Having troubles running BASIC? Then your Altair may have CPU clock problems." They offer a "permanent fix-kit" that includes a "special bi-polar M.S.I. integrated circuit" for \$15.

"MICRO-8 NEWBLETTER" PHASE-OUT

That's the heading of the sad-news paragraph in Hal Singer's fine newsletter that paoked so much information into its always-welcome pages.

As Hal notes, one of the main factors contributing to his decision was the time required. Anybody who has started a hobby-computer newsletter soon discovers that there's a point where the growing number of subscribers will make it necesaary for him to either have his list of subscribers handled by a professional "subscription maintenancel organization, or else find volunteers who will spend a great deal of time changing addresses, taking care of renewals, etc. And there's also the big (and expensive) problem of getting the newsletter printed, collated, and addressed. This all costs money, but the subscription price has to be kept reasonable, so that unless the newsletter sells advertiaing (which is a whole new-and hairy:game), it may lose money. So it all has to be a labor of love.

All this helps explain why I've kept the ACS Newsletter subscription list at a mintmum of geveral
hundred, and have run it entirely by myself for 10 years. By doing the collating, folding, stuffing and addressing myself, I save enough money to give subscribers more issues of the newsletter than otherwise, and by not using outside help, I have only myself to blame if anything goes wrong. fiaving been the editor of magezines or professional newsletters for many years, it's nice for once to know exactly who did what wrong.

TRGNTON COMPUTER FESTIVAL

The Trenton Computer Festival, held at Trenton State College in New Jersey on May 2, was very well run, and should serve as a model for future events. There were dozens of exhlbita along the engineering-school halls, including Byte, EPA, Hal, MOS Technology, OSI, RCA, and a num ber of computer stores. The halls were narrow and not very well lit, but this seems to be typical of many engineering schools (besides which, the halls weren't deaigned for computer festivala).

A Flea Market operated in the parking lot, with tailgate sales of anything and everything, some old and some new, including CRNs, ICs, TTY tape, capacitors, power supplies, MiniMioroMart, PC boards. One had Soelbi's BASIC for 8008\% 8080, for $\$ 43.95$.

Two dozen "forums and talks" were presented, on computer music, Altair 8800 rap session, writing a systems monitor, RCA Microtutior tutorial, microprocessors in amateur radio, computers in the home, computer graphics, interfacing, computer games, data recording, etic. Some were interesting, some were dull, some too far out with predictions....

The DEC setup included a computer with disk memory and video terminal.

During the day a $13-y$ yar-old sat down at the terminal, and with Pingers flying aocessed the batoh processorl, wrote a program to put a message on the CRT, using the editor, put it out from file to execute. It came up fine the ifirst time, and the boy walked away with a amile. Later the DECmen found he'd also dropped out the bootstrap loader, and although there was a hardware loader, nobody knew its starting address. It took half an hour to find a listing for the loader, which was then keyed in so the computer could get back into operation.

A clever gimmiok to get people to stay around: drawing for door prizea, at 4 P.M.

The Altair 8800 Rap Session was given by Dennis Dupre, who repairs Altairs and other kits that their buyers can't make work, at $\$ 5$ to $\$ 10$ an hour, on an informal basia; average job takes about two hours. The most common problems, he said, are solder bridges, the Altair clock, bad ICs, and ICs that were put in backward.

Much of the big, old stuff didn't sell, suoh as the huge old Ampex tape drive, offered for $\$ 50$, free delivery, but no takers.

Next Computer Fair

Upooming is the "Personal Computing 76 Fair," the weekend of August 28 and 29, at Atlantic City, NiJ. For a "Trip-Kit," write: Personal Computing 76 Fair Headquarters, Shelburne Hotel-Motel, Box ll38, Boardwalk and Michigan Ave., Atlantic City, NJ 08404.

Admission is \$5 in advance, \$7.50 at the door. I've signied on to talk about "Current Trends in Hobby Computers," and will have much more time than the 23 minutes I had at the National Computer Conference on

June 8 to give a paper on "Building Your Own Computer.!

SCIENCE FAIR
If the Student Computer Fair at the 1976 National Computer Conference in June is any criterion, there may not be many scratch-built or even kit-build computers being entered in science pairs these days.

The 1976 NCC Fair included 58 exh1bits selected from some 300 entries. There were 4 computer stories, 6 drawings, 1 poem, 1 ventriloquist, 1 dancer; 1 planist, 1 synthesizer, 2 scratoh-built computers, and 41 software exhibita.

Both computers were complete homebrew, using 7400-series TTL, no MPU, and the dealgner's own instruction set. The 1lth-grader from Scarsdale had 10K of semiconductor memory, vectored interrupt, DMA, and two addressing modes (present page and indirect). The Ilth-grader from Florida had 8 K of 16-bit core memory, and used wirewrapping.

The software exhibits included 3 music-writers, 2 simulators (plane cockpit, factory-machine usage), 2 graphics, 1 maze, 7 games (Life, 2 Monopoly, poker, pinball, football, Battieship) 2 éinanoial, 3 physice, 1 biology, 2 astronomy, 1 language tranglation (Latin), 2 translators (BASIC to APL), 1 dating, 4 for school use (library system, class 11sts, school inventory, attendance), and 3 programming (batch processing, multi-language aystem, minicomputer system simulator).

The grand prize, an Altair 8800 kit, went to a 9th-grader from Pennaylvania who developed a "computer prediction of the apread of fire, " a simplified model based in internal energy, heat capacity, ignition temperature, and total combustion time of the material in each posi-
tion in eight $10 x 10 x 10$ matrices. (The student uses a time-sharing system evenings at the Univac plant in Blue Bell, Pa., where his father is a chemist.)

The initial 300 entries showed the same low proportion of hardware to software. Many of the hardware entries were too elementary, such as binary counters, and a circuit, made up of knife switches, that could count from 1 to 8.

A SPHERE EXPERIENCE

Allen Solomon writes from Erooklyn: "I wrote to you a few months ago concerning the Sphere System 3 I had ordered and was waiting for. Well, after waiting 4 nonths and making many long-distance calls to Utah (Sphere never called or wrote to me) to find out why they hadn't delivered my system within the 90 days they had promised when I paid forit (remember, they were holding almoat $\$ 2,000$ of my money all that time), after all that aggravation, I received my computer in pieces.
"They had packed it so poorly that the circuit boards had smashed into each other and also broken the CRI. The power supply was in equally bad shape. I called Sphere, and they said to send it back, and they would fix 1t. I told them to either sh1p out a new one or send my money back.

> "A week later, a second Sphere computer arrived. This time, because they hadn't used lock washers. In mounting the transormers in the power supply, one of them was laying loose inside with a wire broken off.
"I still was stupid enoügh to deal with Sphere, so I cailed them and agreed to make repairs myself if I could. I fixed the power aupply. It still didn't work properly. I'call-
ed them again. They recommended adding caps to the CRer board to stop the image from shaking, and to add heavier bus wire for the power connections between boards (even they admitted that the connectors and wiring used to connect the boards together was causing problems in other spheres as woll).
"I tried everything they or I could think of for two weeks. It juat wouldn't work reliably. I finally gave up and oent it back again, with a letter saying to either fix it properly or send my money back. I didn't hear from them. After another week, I called Sphere again. They said. that my system had had a power supply problem caused by the transformer having broken something inside, that nothing I had done in trying to make it work had caused any problems, and that it was 100% checked out and being shipped back to me.

"Two weeks later, I got another broken Sphere. This'time, somebody had

 left one of the bus cables attached to the keyboard, and this resulted in a broken keyboard connector. I gave it one last chanoe.... I bought and replaced the connector. The thing still didn't work properly (shaking CRT image, assembler failures, random characters popping up... just like before). I packed it up, ahipped it back to Sphere, and sent a letter telling them that I didn't want to deal with them any more, send me my money."Another week went by, but no word from Sphere. I called Utah again (thla was costing me a fortune), and told the operator at Sphere that if somebody from Sphere didn't call me back that day, I was taking legal action. Lo and behold, Sphere called me (the one and only time). I was told that, if I insisted, they would send my money back (they tried to talk me into letting them fix it again...ha ha!). They also told me

The Amateur Computer Society is open to all who are interested in building and operating a dig1tal oomputer.

For membership in the ACS, and a subscription of at least elight issues of the Newsletter, send \$5 (or a check) to:

Stephen B. Gray
Amateur Computer Society
260 Noroton Ave.
Darien, Conn. 06820
The Newsietter will appear about every two or three months.
they would deduct 10% of the refund amount for "restocking" charges. I told them to do what they liked, but I would take them to court if they gave me anything less than the full amount I had paid.
"Now, a week later, I recelvea a check for $\$ 245$ less than I had paid. On top of that, it had cost me almost $\$ 50$ in long-distance calls, plus the interest lost on my money while Sphere held it for 6 months. I am furious...."

IN PRINT

An Introduction to Microcomputers
This outstanding book, published by Osbourne \& Associates (2950 7th St. Berkeley, Callf. 94710) at $\$ 7.50$ is well worth every penny.

The first six chapters cover the fundamentals, of binary and Boolean, microcomputer organization, the MPU, CPU logic, and programming. Chapter 7, the 138 -page meat of the book, covers seven of the top MPUs: FB, PACE and SC/MP, 8080, M6800, PPS-8' (Rookwell), 2650. It goes into, for each MPU, the registers, addressing modes, status flage, pins and signals, interfaces, interrupts, DMA, instruction set, and a benchmark program.

This is not an easy book to read,
Vol. III, No. 15 -- June 1976
as it's so terse as to be sometimes confusing unless you've carefully read every word. And the type is too small. But the brainstrain and eyestrain are worth it; no other book on the market today contains so much information about microcomputers in such a small package.

Dr. Dobbls Journal

The full title is "Dr. Dobb's Journal of Computer Calisthenics \& Orthodontia, " published by People's Computer Company (Box 310, Menio Fark, Callf. 94025), at \$10 a year.
The emphasis here is on software, with each is u offering, for example, a system monitor, or a Tiny BASIC, or a memory-test program, or a computer game (all these and more are in only two issues-April and May!).

There is no Dr. Dobbs; his name is a contraction of the first names of the two PCC people who are 11sted as "Watchaogs" on the journal's masthead: Dennis Allison and Bob Albrecht.

Although there may be other hobbycomputer software journals coming up soon, they'll have a long way to go to equal this one, the first of its kind. Thank you, Dr. Dobbs.

IV Typewriter Cookbook

Another in the Sams series of computer Cookbooks by Don Lancaster, this $\$ 9.95$ paperback tells all about "low-cost television display of alphanumeric and graphics data for microprocessor systems, computer hobbyists, ham RTTY, TV titiling, word processing, and video games, " to quote from the front cover. The 256 pages cover basics, ICs for TVT use, memory, system timing, oursor and update circuits, keyboards and encoders, serial and TV interfaces, $\frac{\text { and hard copy and color graphica, }}{\text { Copyright }} 1976$ by Stephen B. Gray

a publication of the AYATEUR COMPUTER SOCIETY

Volume IV, Number 1
(Serial Iasue 39) Auguat 1976

TRNTH ANNIVERSARY
The first ACS Newsletter was published in August 1966, ten years ago this month, and has soen many changes in the ileld of hobby computers, eapecially the flood of kits in the last year and a half. Until then, it was all home-brew, and although many of us are stili building from scratch, the ompha-. sis today is on kits, whioh certainly do help out down on time.

KIT ROSNER (PART IV)
Although I thought the 11st was pretty much up to date ulth Part III, several more miorokits have turned up, inoluding several that were introduced in atiantic city. at the end of this month.
43. The Sol Terminal Computer, by Processor Technology (6200 Hollis St., Emeryville, Calif. 94608), is based on a single Altair-bus-type board that includes an 8080 MPU, ik RAM, UART, video display oircuit (identical to PT's VDM-1), parallel I/O port, keyboard input port, audio-cassette interface, and a PROM/ROM stored-program "personality module" with up to 2 k words. A CONSOL program in PRON permits simple terminal operations. The optional second level is the goLnd editing terminal. A third PROM, SOLOS, turns Sol into a standalone computer, with BASIC inoluded. The Sol-PC board alone 18 \$475. Sol-10, with cabinet, power gupply and 70-key keyboard, 18 \$795. Sol-20 is Sol-10 plus 8 more amps of power, five-slot expansion chassis and oard frame 15 more keys (arithmetic keypad). The soLisp or gOLOS modulea oan be added to Sol-PC, -10 or -20 for $\$ 100$, if
bought at the same time.
44. The Quay 80A1 usea the Z-80 KIPU, with a 2.5-MHz clock, "so you can run Altail 8800 aoftware." The kit includes the Z-80, PROM monitor, ik static RAM, parallel port, BPROM programmer, sockets for up to Iour 8k HPROMS, parallel ASCII keyboard, and interifacea for RS232C and $20-\mathrm{mA}$ current loop; $\$ 450$ kit, \$600 wired.

Quay also has a $0-8 \phi$ ODM micro, on a larger board, with 4k dynamio RAM, on-board expansion room for memory, I/O ports, counter timer, DMA controiler; 8695 wired. Quay 1s at P.O. Box 386, Freehold, NJ 07728. (That's Quay Corp.)
45. O8I's Challenger uses their 400-series boards in a cage with only one switoh. The 65-1K model, with 6502 MPU , serial interface, If memory, is \$439 wired; 65-4K, 8529; 65V-4K, with video board, $\$ 675$. The 68-1 K, With 6800 MPU, 1s \$439; 68-4K, \$529. (OSI 11679 Hayden 8t., Hiram, Ohio 44234.)
46. CGRS Microteoh (P.O. Box 368, Southampton, PA 18966) offers the K-PUTER, with 6502 MPU, as bare boards, kits, and wired units. The complete system, at \$539.95, inoludes CPU board, control panel with 7-segnent hex displays, mother board with 7 connectors, I/o module, porer supply, wooden oabinet.
47. The Veras 78 (Veras Systema, DIv. of Solid state Sales, Inc. Box 74D, Somerville, MA 02143) has a OPU that includes the F8 MPU, Fairbug monitor, programmable timer, 20-mil loop and/or RS-232 interface, 1r:Ral. The CPU, plus buffered
motherboard, power aupply, and oábinet, 18 \$429 kit, \$679 assembled (after Sept. 25, $\$ 459 \mathrm{kit}, \$ 709$ wired). Motherboard accepts four 4k static RAM boards, at \$149 kiteach. Under development: UV PROX board, DKI and DMA board, oassette, modem, video board.
48. Three 6800 evaluation boards rrom AMI (American Microsystems, Inc., 3800 Homestead Road, Santa Clara, CA 95051), feature a built. in BROM programmer: EUKIOO kit, with PC board, minimum of parta, \$295; EVK200 kit, with 512-byte EROM, \$595; wired EVK300, with 2k EROM and Tiny BASIC, \$950.

The EVKI99, advertised by Advanced Micro Computer Produots, is the same as the EVK100 but with 1 ess to it, made for hobbyists and computer stores, sold only in quantity to computer clubs and stores.
49. EPIC 2, Prom Burkeahire Systems (P. O. Box 512, Mountain V1ew, CA 94040) features a board with 8080 MPU, 2k RAK, 256-byte PROM bootstrap, 16 I/O ines, video interface, cassette interface, programs inoluding monitor, text editor, Life, blackjack; separate keyboard; $\$ 775$.
50. Intercept Jr. from Intersil (10900 North Tantau Ave., Cupertino, CA 95014) is an all-CMOS "low-cost tutorial syatem" using Intersil's IM6100 CMOS KPU and related CMOS devices; $1 t$ recognizes the DEC PDP-B/E instruction set. Basic module is a 10wby-11-inch double-sided PC board, with multifunction alphanumeric koyboard, two four-digit LED displays, reaident micro-interpreter; and battery power; \$281 wired. Memory can be extended up to 12 non-volatile IM6518 1024xi CMOS RAMs; \$145 per RAM module. A power-strobed PROM module supplies up to 2k words of user program; \$74.65. Serial I/O module with both RS-232 and Tele-.
type interfaces is \$81.70. Terminals permit using external 5- or 10-Volt power supply.
51. The Data Handler from Weatern Digital Syatems (3650 Charles St. Suite Z, Santa Clara, Calif 95050) uses the MOS Teohnology 6502 MPU and a single 13.75-inch by 11.5inch PC board. "The Data Handler is plug-in compatiblen with the Altair 8800; "even the 8800 CPU will plug right in." The bare-bones kit, with PC board, 25 switches, wooden stand, is *79.95. The comm plete kit includes this plus a full set of ICs, Ik RAM, resistors, capacitors, LEDs and $1-M H z 6502$. The Data Handier can directly address 65k of memory. There is an "easy to use full-function hardwarecontrolled front panel."
> "The Data Handler has dual interrupt lines (one maskable), slow-down cirouitry for slow memories, DMA (direct memory address), and also contains one 8-bit parailel-input port, one 8-bit paraliel-output fort, separate I / O address control and memory-control lines, single voltage, and oycle times to 250 nsec .
52. The Apple-1, Irom Apple Computer Company (770 Weloh Road, Suite 154, Palo Alto, CA 94304) is an assembled board using the 6502 MPU, comes with video generator, 4k bytes of RAM (board will hold 8 k), monitor in PROM, breadboard area; $\$ 666.66$. Also available: casaette interface, which includes a tape of pseudo-compiled Apple BASIC; $\$ 75.4 \mathrm{k}$ RAM expansion, \$120.
63. Gnat Computers (8869 Balboa, Unit C, San Diego, CA 92123), offers a dozen boards, and five assembled systems, based on the 8080 MPU. System 1, with CPU, 1k RAM, 512 words of ROM, Gnatbug, serial and parallel interfaces, hardware package (power supply, card rack with motherboard and Iive oonnectors): ${ }^{\circ}$ \$925. System 2, ${ }^{\text {minimum }}$
system for hardware checkout, "has CPU, lk RAM, front panel, hardware package; \$985. System 3, PASICoriented, has CPU, 8k RAM, 768 ROM worda, Gnatbug monitor, interface, hardware package with 6 connectors; \$1695. System 4, "minimum for PROM programming," has CPU, ik RAM, ik ROM, Gnatbug, interfaces, PROK programmer, hardware package; $\$ 1696$. System 5, the "oomplete development system, "has CPU, 16k RAM, RAM/ROM for floppy-disk drivers, ik ROM for monitor, interfaces, front panel, 19-inoh cage, cabinet; \$2995. Adding to System 5 a Lear Slegler ADM 3 terminal, Teletype 40, 1COY floppy-disk system and high-6peed paper tape reader brings the total system to \$10,320.
54. BABY! is a wired mioro in an attache case, from STM systems (P. O. Box 248, Mont Vernon, N.H. 03057), uaing the 6502 MPU, comes with 2k RAM, 5l2-byte bootstrap loader and monitor in PROM, DNA, video interface, audio oassette interface, 63-key keyboard with upper and lower case (plus Greek with control key), power supply, speaker, audio oasaette tape with dump program, text editor, three games, music program, for \$850. Same with 4k RAM, \$1000. Optional video monic tor, \$150. Floppy diskette with power supply and controller, $\$ 750$. Maintenanoe contraots availáble!
55. The SC/MP PC-board kit from National Semiconductor uses the SC/MP MPU (ISP-8A/500D), features static operation, 46 instruction types, single- and double-byte operation 512 bytes of ROM with "Kitbug monitor and debug program, 256 bytes of RAM crystal clock, TTY interface, 62-pin edge connector, at \$99.
56. The P8-810 from Pronetics Corp. (\$.O. Box 28582, Dallas, Texas 75228), is an assembled PC board, 4. $5^{\prime \prime} \times 6.5^{\mathrm{n}}$, with 1 k RAM, 1k 11 mm ware (Fairbug monitor), 32 bidireo-
tional latched I / O ports, Teletype interface, $\$ 179$.
57. The M-8 Educator, from Technical Communications, Inc. (11495 Lenexa Dr., P.O. Box 306, Olathe, Kansas 66061) uses an F8 MPU, has 4k bytes of RAM (expandable to 16 k), $2 k$ bytes of RAM for CRT refresh, ik Fairbug monitor, with CRN, keyboard and electronics in plastio housings. The 12-inch CRT has 31 lines of 64 characters each; keyboard has 53 keys. Serial 20-mA 100p for Teletype, 300 -baud I / O for mag tape, parailel port for high-apeed tape reader. Optional: resident assembler in 3 k ROM; ROM board has space for additional 5k. Frice: \$1895.
58. The Intecolor 8001 kit , from Intelligent Systems Corp. (4376 Ridge Gate Drive, Dulugh, Georgia 30136), although advertised as an 8-color intelligent terminal, is actually a computer, based on the 8080 MPU, with 25 Ines of 80 characters eaoh on a 19-inch 8-color CRT, 4k RAM/PRON software, baud rates up to 9600 baud, ASCII keyboard; 81395. Options include RAM to 32k, 48 lines of 80 characters each, light pen, ilmited graphics mode, background color, special graphics characters. Later this Year they'll offer check-balancing and inventory programs, and will advertise the 8001 as a personal computer.

CHANGES IN THE COMPUTER ROSTER
There are some changes and correotLons to be made to the computer rosters in the last three issues of Volume III.

The PolyMorphic Micro-Altair name was changed to Poly-88, not M1cro88, as reported in the June 1976 1ssue, item \#36.

A couple of computer companies may be out of business, or relocating:

Systems Research, Inc. (SRI-1000, \#17, Nov. 1975 Newsletter, and SRI500, \#20, Feb. 1976 NL) has a disconnected phone. Techtra (TMC 112, \#24, Feb. 1976 NL) is having its phone number changed, new phone not in yet....

Ons of the very firat microcomputers was the RGS 008A (\#l2, Nov. 1975 NL), which is now available only on special order, as RGS is now working on a now aystem, using many of the same boards, such as for RAN and ROM, but with new CPU boards, for the $8080,6800,6502$, 1802 (COSMAC). Avallability date depends on capitalization.

Computer \#38, the 8080+, 11sted in the June 1976 NL as ooming from the Computor shaok, is actually the MSC 8080+, a product of Monolithio Systoms Corp. (14 Inverness Dr. East, Englewood, Colorado 80110), and is one of the beat-looking micros available, with a very neat and functional-looking control panel. This wired-only two-board (stacked) micro has a big brother, a four-board OBM and evaluationtype aystem, which adds to the 8080+ an OS board (atatic PAM with battery, and strapped write-access) and a l6k memory board; \$1976.

PERSONAL COMPUTING 176
The two-day Consumer Trade Fair, Aug. 28 and 29, at Atlantic City, Nev Jersey, was hectic, orowded, and had 80° or more booths crammed with computer goodies. Setween 3000 and 3500 people attended, and nearly 40 papers were presonted, ranging from "The KIM Syatem" to "Software for speech Synthesis."

Multiprooessing with Microprocessors
This paper, by Mike Cheiky of OSI, was about the new 4602 CPU expander board, which allows a user to "run 8080, Z-80 and 6100 (PDP-8) soft-
ware on his 400 system without modifying the software." Inserted in the 400 bus between a 6502-based 400 board and the rest of the 400 system, the $460 Z$ containg both a 2-80 and Intersil 6100 MPU , with room for a third MPU. The hexecutive" 6502 controls each line of the $2-80$ and 6100, monitors system signals, and permits multiprocessing.

Cheiky said that the reason to go to multiprocessing is to protect against obsolescence, since "any processors you use today and in the future can be run under the executive of the extremely fast 6502." The 6602, which is the fastest MPU available, due to its pipeline processing, which increases spoed by overiapping operations, will be superseded by an even faster IPU, the 6502C.

Talking Computers

Both Votrax and Computalker exhibited computer-controlled speeoh synthesizers. The Votrax takes 8 bits to select one of 61 phonemes, which are the individual sounds that make up words. The word "and" takes six bytes, and is coded as 2/PAl, 1/AEM, I/ENS, 1/I3, $1 / \mathrm{N}, 1 / \mathrm{D}$. The rirat byte is a pause; the numbers before the remaining siashes are stress levels, with the highest number indicating the principal atreas in the word. Votrax has a "diotionary" of words with their codings, which would have to be stored in a table.

The Hobbyist Standard

Some manufacturers decided to find a short name for the 100-pin bus that has become known as the "Altair/ Imeai/PolyMorphic/Sol bus." They picked "S-100," meaning the Standard $100-$ pin bus. However, MITs says they have that bus patented, and will not advertise in any magazine that uses "S-100" instead of just plain "Altair bus," which is what

Vol. IV, No. 1 -- Augugt 1976

MITS inaists on. Well, it's short.
Me-Too Boards for the Surp 6800
Until recently, anybody who was making only the boards for a hobby computer, would make them for the Altair 8800 bus; an example is the Vector prototype board. But now you can get prototype boards for the Southweat 6800 system, in cev/ memory size at $\$ 19.95$ and $I / 0$ aize a: \$9.95, from Personal Computing Co., 3321 Tonerwood Dr., Suite 107, Dallas, Texas 75234.

Sase for the CF-1024

Ir you need a case for your Southwest CT-1024 terminal (or for any cimilar keyboard terminal), a fine metal one, with welded joints, ia available from E, s, \& L Industries, Inc. (867 Rose Place, Anahoim, CA 92805). There are 8 models, from $\$ 45$ to $\$ 55$; you ohoose the one that fits your partioular keyboard and which has, if you need it, a outout for a 5 -key or 12-key pad for curscr control or numerios. Send for The info sheet, which also ahows ine drawings of their computer stands and the console.

Expanaion for All-On-One Board

Several of the companies that make "computer-on-a-board" machinea, with keyboard and diaplay on the pl board, are now offering expanaion units.

MOS Technology has, to expand the KIM-1 computer, a KIM-2 4F tatio AAM memory board (\$170), KIM-3 8K atatio MN memory board (\$298). In the woris are a reaident asaembler, full BASIC, 2k EROM board.

EBKA will soon have an expander board for its 6502 Famillarizor or for any 6502 or 0800 based miczo, with all sorts of options:三RON programmer, 4k RAM, parallel interface, baudwrate clock, semial
interface, dual oassette interface, plus connecting cables. The whole works, complete, is $\$ 496 \mathrm{kit}, \$ 575$ assembled. Ip to eight of these boards may be daisy-ohained together, for a total of 33x of RAy.

The ReL Mini-Micro Designer (same as the Radio-fioctronios Dyna-Micro)
now has a plug-in accessory board, with extra RAY (lk eupplied, 2k capaoity), Teletype and audio-0assette interfaces, paper-tape controller, room for more PROM or ROM (none supplied). \$175 kit; \$225 asaembled and tested.

Digital Group Case

A case will soon be available for all those Digital Group boards; a prototype was show, with space for a dozen cards or so, no frontpanel suitohes or lights other than for power and reset. CPU boards now available include $\mathrm{Z}-80$, 8080A/ 90804, 6800_{2} and 6502. A complete four-boasd z-80 systen, with 10x memory, power oupply, motherboard and cabinet, is \$895 kit, \$1295 wired; same with 18k, \$1095 kit, $\$ 1645$ wired. Eimilar 8080 or 6800 systems are $\$ 50$ oheaper; the 6502 aystem 1s $\$ 100$ oheaper.

Altair Kit-A-Month

Pirst I'd seen of an easy-payment plan, offering the 8800b at $\$ 107$ per month for 8 months, 8800a at 779 a month for 7 monthe, 680 b at \$95.20 per month for 5 months.

KIY-1 Power Supply

For thoae who don't have a ready source of +5 and +12 volta, a powe supply $1 s$ avallable at $\$ 50^{\circ}$ (plus $\$ 2.60$ handiing and shipping; NJ residents add 5\% sales tax) from Soarpa Iaboratories, Inc., 46 Liberty St., Erainy Boro station, Motuchen, New Jersey 08840.

BASEC Tutorial

> The amateur Computer society 1a open to all who are interested in building and operating a digital computer.

> For membership in the ACS, and a subscription of at least eight issues of the Newsletter, senc \$5 (or a check) to:

> Stephen B. Gray
> Amateur Computer Society
> 260 Noroton Ave.
> Darien, Conn. 06820
> The Newsietter will appear about every two or three months.

Wave Mate, manufacturers of the Jupiter II and IIC computors, are planning to offer a BASIC tutorial on cassette.

COMING COMPUTER SYSTEM
Godbout may be on the way toward the computer he's been talking about for some time, He's now advertiging a 16-bit PACE CPU board, although "not soliciting orders (yet), so please don't write us just now. When we have a complete syatem, avallable off-the-shelf, you'll see it in our ads. Fiang in..." They do have a Naked RAM board, 4 k , with 40 -pin connector; \$88. And Eoonoram, 4k Altair-compatible, \$99.95.

VECTOR B800V BOARD

Vector's 8800V univergal microprooessor board is the same aize as Altair and Imsal boards, prepunched for DIP ICs. Power and ground planes are on opposite sides of the board. Tho heat-sink positions; one heat-sink supplied; \$19.95 each.

IN PRINT
A unique publication is the lit-inch thick "Bug Book III, Mioro Computer Interfacing: Experiments using the liark 80 Microcomputer, an 8080

Systom, " \$14.95 from peil Instruments (61 Flrgt St., Derby, Conn. 06418). The Mark 80, also known as the Micro-Designer Syatem (Nov. 1975 NL), has two $8 \mathrm{~K}-10$ breadboard sockets, permitting the use of a wide variety of "LR Outboards," modular electronic oircuits that "each perform a single digital function, " such as LED diaplay, pulser, timer, olock, line driver/receiver, UART, etc.

After a long section on the 8080, there are dozens of experiments, some involving running simple programs, others that use outboards and simple programs.

Sylvania Technical Sohool Manuals
One of the $A C S$ members says he leamed everything he knows about computers from the Computer Lab Books publiahed by the sylvania Technioal School (63 Seoond Ave., Waltham, Masa. 02154).

The Computer Phase III Student Handout/Lab Book (\$3.23) is a 212page primer that examines the basics of Boolean algebra, truth tables and logic cirouits, combinational logic, timing diagrams, numbering systems and conversion, binary arithmetic, and logic fami11es, and is a workbooz with many blanks for the student to illl in.

The Computer Phase IV Integrated Circuit Handout/Lab Book (not seen) is \$4.36. The Computer Fhase V PLC-1 Computer Operations Lab Book ($\$ 4.50$) is a manual for a pre-MPU teaching computer, an 8-bit, singleaddress, bus-transfer-organized, parallel processor with ROM control.

The books "may be bought on the premises through the school Book Store, if someone lived nearby. Other arrangements might possible be made." If you don't live nearby, you might write to the Book Store. Copyright 1976 by Stephen G Gray

Vol. IV, No. 1 -- August 1976

KIT ROSTER PART V
a publication of the AMATHUR COMPUTER SOCIETY

Volume IV, Number'2 (Serial Iseue 40): December 1976

KIT ROSTER (PART:V)
There's just no end to the proces-: sion of mioroprocessor. kits (and wired units): 18 were 1isted in the Nov. 1975 Newsletter, 16 in Feb. 1976,8 in June $1976 ; 16$ in Aug. 1976, and here we go again:

59: The Iasis 7301, from Iasis, Inc. (815 W. Maude Ave. Suite i3, Sunnyvale, Calif. 94086)., is an all-on-one-board computer, wired only, with 8080 MPU, 1k RAM, 2k PROM, 24-key keyboard, eight 7-segment readouts, Iasis-developed monitor in 1k of the PROM; $\$ 450$. Accompanying the "1a7301" is a 250 page programming course. Both computer and course are contained in a three-ring binder. Iasis also has a \$7.95 Microcomputer Applications Handbook.
60. The COMPAL 80 computer, from Computer Power \& Light (12321 Ventura Blvd., Studio City, Calif: 91604) is an assembled system "for homes and smalil businesses for only \$1863." The system includes a computer with only two front-panel switches, separate keyboard, and 9-inch TV monitor. Uses 8080A MPU, two serial. I/O ports, 12k words of RAM, 16-1ine by 64-character video display, and extended BASIC residing in 10k, including formatted. PRINT, double precision, etc. Options include additional memory up to. 32k, dual 1loppy-disk drive, hard-copy devices, disk•BASIC, applications programs.in BASIC (payroll, inventory control, general ledger, etc.). The typical business system, including disk and printer; is under $\$ 9000$. In a letter, CPRA said, "We use modifled versions of boards manufactured by PolyMorphic Systems and by Processor Technology.

Our CFU board 18 essentlally that. provided by PolyMorphic in their Poly 88, with the exception that the resident monitor on PROM is addressed at EOOO hex, and that we perform a hardware jump to this. address upon roset. Also, our monitor includes some features not found in other microcomputers...."
61. The Motorola MEK6800D2 Evaiuation Kit has everything on one board, except power supply. The \$235 kit- Peatures 16 hex keys, 8 . function: keys, 6 hex LED. 11 splays. 256 bytes of RAM, room for more RAM (or ROM or: PROM), wire-wrap area for up to 20 16-pin. ICs, ACIA for casset te interface, PIA for keyboard and display, second PIA for user, J-BUG monition in ROM (examine and change memory \& registera, set up to ifve breakpoints; trace one:ingtruction, etc. . cry-stal-controlled clock. Motorola started shipping the :D2 this month.
62. First offered about a year ago, the Motorola MEK6800Dl design evaluation kit. consists of PC board, 6800 MPU, PIA; ACIA; two 128-byte RAMa (room for 4 more oñ board). 1k ROM with Mikbug monitor, $\$ 149$. The additional required ICes sockets, resistors; etc. cost around $\$ 75$ more: (not avallable from. Motorola):

The J-BUG in the DZ is like the KIM (Keyboard Input Monitor). In the KIM-1; the M1kbug in the Dl is for use. With Teletype or Rs-232 Interface; these are two incompatible systems..
63. The M1crokit-8/16 MOD. 8080 and MOD 6800 are from: Microkit Inc. (2180 Colorado Ave:, Santa, Monica, Calif. 90404), which says "Don't be
misled by our name, our system comes fully assembled, fully teated...." The two "M1crocomputer Development systems" are identical except for the MPU. Each includes a black-box computer (with only a power switch), keyboard, TV monitor and two cassette-tape units, at $\$ 3850$ each. Other features include an interactive debugger, ealtor, and resident assembler. Options include 8080 and 6800 incircuit emulators (\$2250 each), conversion packages for adding a 6800 to the 8080 system and vice versa ($\$ 950$ each). printers and floppy disk, additional 8k dynamic RAM memory ($\$ 800$), prototype board, PROM/RAM board, PROM programmer, BASIC interpreter ($\$ 900$), word processor for text editing (\$100), and terminal simulator and PL/M loader. This 1 sn 't really a hobby item, but it's interesting....
64. MicroMind, from ECD Corp. (196 Broadway, Cambridge Mass. 02139) is based on the 6512A MPU (secondgeneration 6502), with character and graphics generator, I/O interface, rf modulator, power supply, 80-key keyboard. Software includea interactive editor, assembler, monitor, cassette-based file system, an extended form of BASIC calied notsobAsIC, and "many games and utilities." Has sockets for 16k of memory, with 8k supplied. A memory-mapping option allows addressable memory space to be extended to 64 megabytes; $32 k$-byte memory expansion boards are available. Each of the 128 possible characters is software-defined, can be changed in real time, for detailed graphics. The cassotte interface operates at a tranafer rate of 400 -bit bytes a second. Assembled only, $\$ 987.54$. The notsobASIC geens to be a version of Tiny BASIC, as floating-point is an option. Black-and-white graphics is included; 16-color graphics is optional.
65. The Gemini-68 Prom M\&R Enterprises (P.0. Box 61011, Sunnyvale, Callf. 94088) consiats of several assembled boards. The $\$ 279.95$ stand-alone CPU board, with 6800 MPU, 384 RAM bytes, serial I/O, DMA, dual 22-pin edge connector, is about the same as the M\&R Astral 2000 CPU board, except that Gemini uses the Mikbug monitor while Astral uses a $2 k$ custom monitor; the PROM and ROM boards are the same. An 8k RAM board, \$269.95; 8k EPROM board, with all ICs except the 5204 HPROMs, \$89.95. There's also a CPU board with only 128 RAM bytes for \$259.95. World-wide distribution rights have beon assigned to James Electronics (1021-A Howard Ave., San Carlos, Calif. 94070): M\&R will handle only OEM orders for 100 or more. The Gemini boardis fit one of the Vector cabinetis; if the volume of orders warrants it, M\&R may provide a backplane. M\&R advertising emphasis is now on the Gemini-68; presumably M\&R has had the same trouble with the Astral 2000 that most other computer-kit manufacturors are having: many phone calls requesting assistance, and many PC boards sent in "all screwed up," as one company puts it.
66. In addition to the 1801-based Microtutor (\#34, Feb. 1976), RCA now has the CDP18s020 Evaluation Kit with 1802 MPU, PC board, byte input and byte output porta, terminal interface, 512-byte ROM with "utility programs of commonly required functions, " 256-byte RAM (room on-board for 4k max.), LED display, \$249.
67. Cromemco (Onc First St., Los Altos, Calif. 94022), famous for the "TV Dazzier," há an assembledonly aystem using the Z1log $2-80$ MPU, along with 8k RAM, PROM programmer, monitor in PROM, Rs-232 interface, and mainframe with 22 alots. Actually, the mainframe is an Imsai. The price is a little beyond the usual hobby range: \$2495.

This is justified by calling the Z-1 a "microprocessor development system."

HOBBY COMPUTERS: TWO DIRECTIONS
Two trends dominate hobby computers today. One is for computer freaks, and involves advanced hardware. Such as an Altair-compatible board that will store digitized versions of your voice in "training" mode, and then, in speech mode, when it recognizes your voice speaking one of the previously recorded words, will cause that word to be printed. (this is coming up in 1977). There are already computer boards that synthesize speech from stored vocabularies (August 1976 Newsletter, p 4). So 1t won't be long before computer ireaks will be trying to get one computer to talk to another, not through wire, but by voice!

Other computer-freak areas involve advanced graphics, computer music, interfacing to a breadboard, digitizing the output of a TV camera, etc. So much time is spent on getting these devices to work, that very little time is actualiy spent by these hobbyists on computing. The emphasis here 18 on gadgeteering, on a constant search for the far-out and complex.

The other trend is more and more toward the average consumer's use of hobby computers. This means a certain amount of using all-on-oneboard machines such as the KIM-1, EBRA 6502 Familiarizor, and IMPA68, programmed in assembly language. There are more of these all-on-one-board type of hobby computer than any other, one reason being that it's the simplest complete computer in a single package, With a minimum of parts, and is thus much easier for a manufacturer to design and produce than the more complex multi-board machinea such
as the Imasi 8080 or Digital Group system. For the manufacturer, there's very ilttle labor involved, no sheet-metal work, no point-topoint wiring, and no construction manual to have to supply. A KIM-l offers the hobbyist the cheapest way to get his foet wot, to learn the basics of computing at minimum cost, without the need for an external keyboard, or connection to a TV set or printer.

Some of these all-on-one-board computers are so simple and cheap that they'd be hard to expand, and are fine for the person who's quite sure all he wanta is to learn the elements of computing without havint to put too much money into a machine he might not use much after he figures out how it works.

For those who think they may want to expand their computer so as to be able to write longer programs, or to hook on an alphanumeric keyboard or cassette memory aystem, etc., several of these "compacts" have add-on boarda. KIM-1 owners can buy the KIM-2 4k RAM memory board, or KIM-3 8k memory. KIM-4 is a 6-slot motherboard with all connectors and a regulator. And further KIMs are in the works. The EBKA expander board, which will "expand any 6502 or' 6800-based m1crocomputer, " oan be bought as an empty board, or with any or all of seven options, including kita for a PROM programmer, 4 k RAM, 2 k PROM, baud-rate clock, and interfaces for serial, parallel and dualcassette operation.

But a muoh more important trend is to the wired-only computer that can be programmed in BASIC. As the hobby warket appeals to more and more non-technical people, it will have to provide this high-level language, since such people will be interested in programming, and not at all in assembly language, which is too tedious and time-consuming
for all but the computer freak. As it turns out, incidentally, there are very fow hobbyists who are really into heavy assembly-language programing; most of them use BASIC.

Aimed directly at the mass computerhobby market is a $\$ 495$ BASIC computer, with CRT and keyboard, scheduled to be shown in prototype at the January 1977 Consumer Electronice Show in Chicago, and made by a calculator manufacturer that recontly bought an IC manufacturing company. Another calculator manufacturer is said to be working on a similar home computer, although more expenaive: with 32k, \$2,000.

This is where the major hobby-computer market of the future lies, not in the far-out hardware, but in an all-in-one-box computer that sells for less than $\$ 1000$. The user won't care if the MPU is a Zilog Z-80 or an Intel 4004. He wants to program, and he needs to be supplied with plenty of software and with plenty of tutorial material to teach him how to use the software and to write his own programe. A couple of the larger hobby-computer manufacturers are already conaidering hard-wired BASIC computers. This meane a BASIC interpreter in some form of readonly memory. A couple of hobby-computer manufacturers have BASIC in ROM now; one has $4 k$, $8 k$ and 12k BASIC in firmware, but at prices that make his complete BASIC machine too expensive for the mags market. However, 1977 should aee geveral new BAsic machines, assembled only, ready to run, for less than \$500.

MICROPROCESSOR IN AN FM TUNER

The first use of a microprocessor in hi-fi tuners is in the Sherwood Mioro/CPU 100, a synthesized digital $F M$ tuner. The entire tuner 1: said to be "controlled by a mini
computer circuit, which all but eliminates tuning errors (accurato to . 0024\%), stringing dial cords and all mechanical functions." The tuner reads out the tuned-atation call letters on a separate display, which can be programmed to display any four alphanumeric characters in place of the call letters. And there's also a display of the frequency tuned.' Four stations can be called up from memory by simply toucing one of four paira of eleotronic touch-switches. There is no dial pointer; LEDs indicate the relative position on a standard inear scale, in analog fashion. Other touch-switch controls allow scanning up or down the FM band. The memory is "non-volatile." And the price is about $\$ 2,000$.

PUBLICATIONS

End of "M1 crotrok"

One of the half-dozen hobby-computer magazines has already ceased publication. The flrat issue of Microtrek was published in August 1976, and the eecond in December. It has since merged wi th Permonal Computinc, and will become a "opecial section" in that magarine.

Computer Musio Journal

The People's Computer Company (PCC), which publishet Dr. Dobb's Journal, has announced a "Computer Music Journal," which "will be devoted to the development of computer systems which are capable of producing highquality music." Topics to be covered include synthesis of tones, design of real-time playing instrumenta, real-time controliers, reviews of hardware components, composition of music uaing a computer, digital illtering, envelope generation, otc. A one-year subacription (6 issues) is \$14 (firat issue due Jan. 1977), from PCC, Box t, Menlo Park, Calif. 94025.

More Magazines on the Way

In addition to Byte, Personal Computing;' Kilobaud, Interface Age, SCCS Interface, Creative Computing, Dr. Dobb's Journal, and People's Computer Company, two more hobbycomputer magazines are said to be in the works for 1977: ROM, originally planned by New York maga2ine, and due in June 1977; and. a Hearst magazine, as yet unnamed.

HARDWARE

Z1log Boards

The 2-80 company, Zilog, has introduced a set of three boards. The MCB is a CPU. board using the Z-80, with 4 k bytes of RAM, sockete for up to 4 k bytes of ROM, PROM or EROM, -5 volts power, four programmable counter-timer circuita; $\$ 415$ kit, \$475 assembled.

The Disk Controller board, MDC, permits storing and retrieving data from up to four floppy disks, and contains 12k bytea of RAM; \$745 assembled.

Third is the RMB memory board, for expanding memory up to 65k in 16k increments of RAM; \$750 assembled. As an option, Zilog offers a system including card cage; chassia, power supply, two floppy disks and a front panel, at $\$ 6990$.

Imali Terminal and Printer
Imsal now offers a keyboard terminal and a printer. The ASCII-encoded 53-key keyboard terminal has two-key rollover with audio feedback; and a display panel with indicator LEDs for the shift and control key as well as the ASCII bit pattern. Assembled only, \$199.

The 44-column dot-matrix printer interfaces to an 8-bit paralleloutput port with handshaking, and
offers multiple-copy printing by using carbon or NCR paper. Kit $\$ 399$, assembled $\$ 549$.

FROM OUR READERS

Need Help on the Mark-8?

From Ron Carlson: "I got my MARK-8 running last year and have been rapidly developing a system around 1t. In addition to advancing my own computer,. I have helped several other local MARK-8 users get thoir machines debugged and up. From my experiences I have been asked to be the "MARK-8 Coordinator" for sCCS (Southern Calif. Computer Society) and I have accepted.' I have several things to offer to MARK-8 users at this time: Some rather simple programs to play music and some very nice test programs, maybe my operating syetem in the near future (inquire with a SASE); and a MARK-B corrections/mods package.

The MARK-8 package is the culmination of a lot of work and finishes up the design of the system. It fixes over 50 errors in the schematics, the interrupt structure, clock phases, buffered CPU, open inputs, LED drivers, etc. There 1s a complete set of redrawn, correoted schematios and an instruction booklet of 10 pages. A parts kit is also included, with even a drillbit to allow one to make the mods or corrections as neatly as they wish. The price 1s $\$ 10$ to cover costs and postage, from

Ronald E. Carlaon
14014 Penay Way \#255
Marina del Rey, Calif. 90291 Any questions or troubleshooting inquiries are welcome."

Printers

R. David Vednor (RDV Engineering, 14914-D Newport Ave., Tustin, CA 92680) writes: "I have three' Centronics 306C printers for $\$ 2000$

```
The Amateur Computer Soclety 1s
open to all who are interested
in building and operating a dig-
ital computer.
For membership in the ACS, and a subscription of at least eight 1ssues of the Newsletter, send \(\$ 5\) (or a check) to:
Stephen B. Gray
Amateur Computer Society
260 Norotion Ave.
Darien, Conn. 06820
The Newsietter will appear about every two or three months.
```

each. These are new and have never been installed. Also, I am in the business of manufacturing Inter-data-compatible interfaces. I have some used items, and know of several used aystem components available for someone with the money."

COMPUTER-STORT ROBBERY
The Computer Store at 55 West 39 St. In New York City was robbed over a weekend several months ago, by burglars who knew exactly what they were after. As the store manager put it, "They took two of everything that was useful and not tied down," including a color TV set, two Altair 8800a computers, an Altair 680 computer, oscilloscope, two disk drives, at least three Design Mates, two 16k memoryboard kita for 8800, eeveral 4k memory, two CRTs, four Super scope cassette rocorders, and a few assorted odds and ends.

PROBE AND MONTTOR
Speaking of Design Mates (made by Continental Specialtiea Corp., 44 Kendall St., P.O. Box 1942, New Haven, Conn. 06509), the eame manufacturer makes a couple of interesting and very useful test instruments.

The LP-1 logic probe ($\$ 44.95$) is
five inchea long and an inch wide, with three LEDs and two awitohes. One switch is set for the type of logic being checked out, TML/DTL or CMOB. The other swito has PULST and MEMORY positions. When the switch is set to PULSE, frequenoies up to 10 MHz will cause the PULSE LED to blink on and off at a $3-\mathrm{Hz}$ rate, due to a pulseatretcher in the probe. If a single pulse is to be detected, the MBMORY position permits the event to be atored indefinitely. The HI and LO LEDs bilnk on and off, tracking the one and zero states at square-wave Irequencies up to 100 HHz . Clip leads connect to the circuit's power supply.

The logic probe is fine for tracing signals through one IC pin at a time. But if you need to check out an entire IC all at once, just clip on the LM-1 logic monitor. Hinged something like a clothespin, it clips over any DIP IC up to 16 pins. automatically locates the power leade and feede them to the LM-1's internal circuitry. Each of the 16 contacts connects to a level detector that drives a numbered highintensity LED, 80 you know right away which pina are high and which are low. The LM-1 is $\$ 84.95$.

ARE YOU A SOFTWARE WRITER?

Is anybody out there good at writing about hobby-computor software, such as an article on how to set up a hifi-ip inventory aystem, going into flowchart, record format, and a program in BASICT (This is for a hobby-computer magazine that pays for contributed articles, and which has asked me to help look for such a writer.)

[^20]Amateur Computer Society
Newsletter
To Cease Publication

There are only a few left of the two issues in Volume IV, at \$2.00 for both, in the USA, Canada, or overseas.

A refund check is enclosed for the unused portion of your subscription. If there was anything extra in your account beyond what you sent in for Volume IV, that amount is also herewith refunded.

Thank you all for your support over these last $10 \frac{1}{2}$ years. It was fun while it lasted.

Stephen B. Gray
Amateur Computer Society 260 Norton Ave. Darien, Conn. 06820

So long to one of the "old-timers," dating back to early 1967. Sorry I couldn't keep it up, but am quite busy in a new job, as editor-in-chlef of Creative Computing.

[^0]: Bl. EAE
 B2. Electronic Design
 B3. Electronics
 B4. EDN
 B5. Eleotro-Technology
 B6. Control Engineering
 B7. The Eleotronic Engineer
 B8. Computer Design

[^1]: "The use of logarithmic computation eases the extraction of powers and roots and simplifies multiplication and division. Mitchell has shown

[^2]: "SPEED -- We are talking about a memory circulation time on the order of ten milliseconds. In the simplest version, most memory accesses would use up a whole 10maec cycle. Since both instruction and data require access, this gives a typical speed of about fifty instructions per second. The addition of an extra address counter, plus a judicious allocation of memory between program and data, could

[^3]: "For the time being, I would like to hear from all members who think they might be interested in purchasing any of the types of ICs mentioned above. I am not asking anyone to commit himeelf, but I would like to be able to estimate the total amount of ICs that we would eventually want to purchase

[^4]: "The surplus is from my intruder alarm, a piece of new equipment developed in the course of my work. This is for manufacture and sale by the security people. I overbought for my engineering work.

[^5]: "A Survey of Counter Design Tech-

[^6]: Copyright 1970 by Stephen B. Gray

[^7]: Vol. II - No. 9 -- March 1971

[^8]: "Attached are some notes I put together on the Minuteman computer:

[^9]: "I've located a dealer who will be of interest to many members. He has a $4 \mathrm{~K} \times 40$-bit, $1-\mu \mathrm{sec}$ memory unit

[^10]: "From what I have read in the Newsletter, most members seem to be intereated in a machine that will cost only a couple hundred dollars.

[^11]: "The only modifications made on the memory stack were the cutting of 4 jumper wires on the switch core matrices and bringing the free end of

[^12]: "For people who prefer faster oyole times with more costly drive circuits, I am completing a similar set of plans for a diode-matrix arive which will cycle in $4.5 \mu \mathrm{sec}$. The drive oircuits can drive any memory of 30,50 or $80-\mathrm{mil}$ cores with half-select currents of 350 ma

[^13]: "Steve wiebking quotes an excellent text [ivov. 1971, p 5] on micro-programing concepts, but I submit that it is possible to implement the micro-logic to support the IEM 360 instruction set in a far more simple manner than the approach taken by IBM. IBM's micro-logic was not designed to minimize the number of separate functions needed to support its instruction set. It was designed, rather, for complete flexibility so that emulators for their older computers and a very complex I/O channel system could be included in the machine capabilities. The 360 micro-

[^14]: Copyright 1973 by Stephen B. Gray

[^15]: "If you recall, in a past issue of the ACS Neweletter I proposed that the Processor/Memory/Switch level
 (the use of commercially available microprooessors, memories, etc.) is the appropriate level for those ACS members whose primary goal is having and uaing their own computer. The only justification for getting involved with gate-level design is for the experiencethese days it is rarely going to be a oost-effeotive approach to

[^16]: Copyrlighis ligh by stephen B. Crav

[^17]: "Enough on patents. I have just about completed the implementation 1nto TTL of Wang's 3,509,329 but am hung up on a ROM problem. Need three 256×4-bit-word ROMs from 8223's by cascading to reduce parts count. A real problem that has so far consumed untold hours

[^18]: "It is well known among computer types that lota of memory and an

[^19]: "I. chose the 140 Technology 6502 chip for my design for aeveral important reasons. It is possibly the least expensive of the available microprocessor chips (don! t forget all that support TML for the

[^20]: If you've asaembled anything other than an Altair 8080, please write in about your comments and opinions.
 Copyright 1976 by stephen B. Gray

