o, 7;‘ Ty
ek

®

s e g e LA] Wt s ma e © Rm a3 e s

Contents '
— PROGRAMMING WITH dBASE lil PLUS
INTRODUCTION ™~ - .
FROM USER TO PROGRAMMER.................. (5
About This Section.oovvviinnniriiieiieiinnnn.. I-1
You Know More Than YouRealize -1
TotalControliiviiiniieriarnnancrae, e -2 .-
Howto Use ThisSectionccvvinin, I-3
What Each ChapterCovers it iiiinnarnnnn I-5
CHAPTER 1 :
PROGRAMMING IN A NUTSHELL AP N
What This Chapter Covers e, 1-1
Preparing for This Chapter......... et 1-1
What is Programming? e 1-2
h Programs and Applications.oiiiii.... 1-2
Languages and Interpretersi..c.ccviiianan.. .. 1-2
Programming Conceptsoeunernnann e 1-3
Writing and Editing dBASE Programs 1-3
Running the Program e e e 16
Setting Up the Program Epv:ronment 1-6:
InputandQutput. e tdeaeaea. 1-6
Garbage InfGarbage Qut ™.covvnvniini..., 1-8
Database Integrity.i..uumniiiinnnronnann..n, 1-9
The Flowof aProgram R S 19
Making a Detour (Branching) e 1-10
Repeating a Procedure (Looping)c....0.... 1-11
Dealing with Possibilities (Conditions) e . 1-13
Menus. T R R Ry prasans. 1-14
One Entry, One Exit 0.... S
Designing and Writing the Program E
Involve the User in the Design Phase
Top-Down'ProgramDesign................._...~ ’
_ Meet the Programming Language Halfway.
Don't Reinvent the Wheel e e
Document Your Efforts.................. e “..
Allow for Future Program Expanswn. Cereteeir e,
Testand Test Again e e,
Put the Pieces Together.........

Summary The Steps to Program Development

Tw e im tm e mmmma we mrin & Eyemter ERa

-ﬁ“
-,l T
e PROGRAMMING WITH dBASE |

IR CHAPTER! "
e dBASE PROGRAM smucrune AND FLOWoovvnnn
N ' ' What This’ Chapter Covers :"
Wi e Preparing’ ‘fof' This: Chapter L
TR : The Makeup ofa dBASE Program A
o The Preamble.;... .. vionenve i iiennenennie
T o The Setup Area et neseaateetranesnanannnns e
fr The Body of the Programc0un--. C

- The Closing Section’............covvuiiniininnnn. E,
. Leaving the Programi............... et reeareaas Y
. dBASE Program Flow . .0¥. iiiintiniinennnenainnt
g Do (Branching). .:.". . e et e e,
¥ * DO WHILE...ENDDO (Looping)

: ’ .'?’r'. .
. ' _ IE.. ENDIF(Condmons).........................‘_._-;.. -7 -
e - e "Expandxng DO WHILE...ENDDO and IF...ENDIF5.. 267 !
SR L DO CASE...ENDCASE for Multiple Choices. SRR

Another Way to LOOP. & ..ot vvvvrverrannareannnn. i, 216
HowtoGetOutofaloop.........covcvveunnnn, .

‘, - R P :u’,CHAmna % -
cELL USING MEMORY VARIABLES c.ocunennnens e, 3

a . What This Chapter COVErscoovuuererenurrenns 3.1

‘ N - : Preparing for This Chapter 31
. Memory Variables Explainedovvernvrenieniennss 31
Initializing Memory Variables. 32

_ Logical Type Variablescouvueiinnnnnanoneasi 33

. Character Type Variables0 vusn 34

Cx Date Type Variablescoiviununnnnn. .. 34 ‘
L Numeric Type Variables e 35 °
K Limitations. c.oc ittt i P 7.1
How Memory Variables Work in Programs 3.7

} ' PUBLIC and PRIVATE Variables 38

Cael TR " PRIVATE Variables............cooivvvnnneeneinnns 38
e a PUBLIC Variables el 38

o

- -.p.%*
PROGRAMMING WITH dBASE lII PLUS

Anticipating the Correct Response

Covering All Possibilities in Their Turm
Special Keys

The INKEY() Function

Getting Fancy

The READKEY() Function

The Spacebar
Checking for Type
Using the ON Command

CHAPTER 10
WORKING WITH THE DATABASE

What This Chapter Covers
Preparing for This Chapter
Designing the Database
Opening the Database File
Using ALIAS Names
Elaborate Indexes
Using Several Index Files
Disk File Management
Finding Records
LOCATE and CONTINUE
FIND and SEEK
FIND and SEEK Save Time
The End-of-File Condition
Other File Functions
Filtering Commands
SET FILTER
Skipping Deleted Records . -
Checking for Exactness
Avoiding Duplicﬁtes

PROGRAMMING WITH dBASE Il PLUS : .

CHAPTER 11
WORKING WITH DATA IN THE DATABASEi ¢
What This Chapter Covers.c.oiiviennnacinsn : LT

Preparing for This Chapter

UpdatingDatacooiiiiiiiiiiirnrnraraennan. 1
The Posting Method '
Deleting Records
Copying Records

Different Work Areas.coivvererroorannnrnnseen :
The Selected Work Areacovvvennnans Y ¢
SETRELATION oeeeeianinaniianenaennss
Advanced Relationscivvnranoncnnns I
Setting Up Viewsand Fields 11

CHAPTER 12 .
PR'NT'NG...oo-----o---.--o. ------ -o-lonuouo---‘--'-‘-:-

What This Chapter Covers.ooveeruneenans SRR

Preparing for This Chapter D512
Your Own Reports and the dBASE II1 PLUS Report Feature
Printers: Some General Remarks

Connecting the Printer PR 12
Sending Output tothe Printer.ccovevnnneinnnn 123
Printer Coordinates.0vntveernrnanmanacoasnnen
The Position of the Paper in the Printer...............
PaperSizeoiiiiiiiiiiien e
TypestyleSizet
Switching Between Screen and Printer. 7"
Page Formattingc.ccuuiiiienrernnnnnnnnnnnns 12.8 ¢
Marging o ...o.oooniinininiiiiiii 128
PaperLengthoovveeiinnnniierornnnnnnnnn 122107
Headers and FOOETS oovvveranronranennsons . 122107
Startinga New Page0e el 12-19
Trouble Spots: . .

The Last Lime.coovurerinrenraeananneannn - :
Realigning the Print Head. . .oovvereenmnnnannns S V5 § B

.o,

Introduction

™ FROM USER TO PROGRAMMER
A

()

About This
Section

You Know
More Than
You Realize

PROGRAMMING WITH dBASE Il PLUS

The on-disk tutorial, Learning dBASE HI PLUS, and Using

dBASE Il PLUS have taught you how to use dBASE III PLUS for all
your database management needs. This book shows you how power-
ful dBASE III PLUS really is.

dBASE III PLUS is not only a complete database management sys-
tem, but it also includes a programming language called dBASE.
With this programming language, you can create customized appli-
cations for your specific needs, allowing you control of all your
d:htabase management tasks. You can even sell your applications to
others. ‘

H the word programming causes you chills of fear and apprehen-
sion, relax! Because dBASE III PLUS has so many built-in features,
programming in dBASE is easier to learn than many other program-
ming languages. Programming can even be a great deal of fun.

This section gets you started with programming in dBASE. It pro-
vides the essentials that you'll need to know to write your own pro-
grams. When you have finished this section, you'll be familiar with
the full power of dBASE III PLUS.

If you already know how to program in earlier versions of dBASE,
use this book as a reference guide for the many new features of
dBASE 1III PLUS.

You may not realize it, but you've been programming in dBASE
right from the beginning. When you issue commands from the dot
prompt or in The Assistant (for example, when you select or type
LIST to show the contents of a database file), you are telling
dBASE III PLUS to perform certain operations. Generally, you issue
a series of related commands in a certain sequence. Programming
in its simplest form means collecting this series of commands
together into a program file, saving it to the disk; and then perform-
ing the commands by running the program file.

Pi-1

R

.

ez adan s o .__I."-"‘ ‘ n._‘ 75,

&

. .

LTI T Rl P

n.

INTRODUCTION ~ ,—~,

Total Control

Pi-2

Take a look at the following series of commands. Suppose you
have a database file, called Money.dbf, which contains informa-
tion about people who owe you money. Naturally, you would want
to check this information on a regular basis to see who still owes
you money. The Money.dbf file is INDEXed on the last name to
the index file Last.ndx. Amount_due is a numeric field; Owing and
Pastdue are logical fields. Gimme and Scrooge are REPORT
FORMs that report on which people have to pay up. What do
these command lines do?

USE !onev INDEX - 1,.5
5? LIST: FOR ?u‘mg

." ',‘_,,n- l'._!_

That’s a lot of typing to do on a regular basis! However, you can
set up these same commands in a program file called Owing.prg,
and all you would have to do is type Do Owing from the dot
prompt to get the very same results.

This is a simple example, but it illustrates how much time you
can save by learning a little dBASE programming.

Where dBASE programming really shines is in its ability to allow
you to control how your users work with dBASE 111 PLUS. This
way, you can ensure that users don’t have direct access to impor-
tant database information. Your program acts as an intermediary
between users and the database, protecting your valuable infor-
mation from possible catastrophes and making dBASE III PLUS

easier 10 use, especially for inexperienced users. You can even (

have dBASE III PLUS start your program automatically each day.
This is known as a turnkey system.

PROGRAMMING WITH dBASE NI PLUS

!
il

g §

)
o

S

FROM USER TO PROGRAMMER

If many people in your office share in daily tasks, for instance,
entering new records or updating database information, you can
set up programs to guide them through these tasks. Such
programs require less learning time for new users, and they pro-
tect your database file. You can create menu-driven programs so
that all users need do is follow the prompts and press a few keys
for standard dBASE III PLUS operations, such as displaying infor-
mation, updating database files, and printing reports.

You should have a general understanding of dBASE III PLUS by

:ll:;:st:ctliJ:: reading Learning dBASE 111 PLUS and Using dBASE III PLUS
before you begin using this section. Because it is only meant to
get you started with programming in dBASE, this section doesn’t
offer an exhaustive discussion of every dBASE programming fea-
ture. Work with this section and Using dBASE III PLUS, which
contains an extensive reference section for all of the dBASE III
PLUS commands and functions.

Rather than typing in commands from the dot prompt, you will
primarily learn dBASE programming by studying a complete

dBASE program — a checkbook management system that keeps
track of a checking account. You can use it to balance your own
checkbook, if you wish. :

PROGRAMMING WITH dBASE HI PLUS

INTRODUCTION

S The checkbook management system is composed of a series of
files on the Sample Programs and Utilities disk. Here is a list of
, these files: .
Add.prg : Curson.bin
Bank.dbf Deposits.dbf
Cancl.prg Editvoid.prg
o .o ; Cash.prg Help.prg
Se el e T Cbmenu.prg : Maint.prg
T e S T Cbmenu2.prg Menumask.prg
Check.prg Numwords.prg
Checks.dbf Recon.dbf
Chkbook.mem Reconcil.prg
Chkmask.prg Reinit.prg
Chkno.ndx Reports.prg
Cleanup.prg Rprtpro.prg
Clrcash.prg Tax.dbf
Clrdep.prg Taxcodes.prg_
- Cursoff.bin Yearend.prg .

You'll learn more about the checkbook management system in
Chapter 1. Because the following files provide most of the pro-
e amming examples in this book, you should print out these files,
e et ' following the instructions below, and refer to the printouts as you
T study this book. Here they are:

A - Add.prg
Do DT L Cancl.prg
PN Cbmenu.prg

P Check.prg
LTl T) . Clrcash.prg
ST Clrdep.prg

IV S . Reconcil.prg

PI4 " PROGRAMMING WITH dBASE 1l PLUS. . ..

¥
< -

A T N T A
e W %—#&;«E U«g&;\fé?sg. 3
P . T e ¥ v

S A

FROM USER TO PROGRAMMER

- S You can use a-word processing program or dBASE III PLUS to
e print the program files on continuious-form paper by following
SO . these steps:

1. Make a working copy of the Sample Programs and Utilities
disk. Put the original in a safe place.

2. Start dBASE III PLUS and SET DEFAULT TO the drive con-
taining the working Sample Programs and Utilities disk. On
dual-floppy systems, the command is: SET DEFAULT TO B «-.

3. Turn on your printer and adjust the paper so that the top-of-

_ form setting is correct. The top-of-form is where the paper
perforation is located.

4. Type at the dot prompt: TYPE Add.prg TO PRINT <.

E §. When you have printed Add.prg, repeat the previous step, sub-
‘ stituting the correct filename, for each file in the list.
! " What Each The first three chapters of this section deal with essential pro-
= Chapter gramming concepts and dBASE programmirig techniques. Read

these chapters in order. The rest of the section provides a break-
i ‘ Covers down of dBASE programming from a task-oriented approach. You
: can skip around as you wish and study the topics you need in any
: ' : : order. However, if you're new to programming, it's recommended
that you read the chapters in sequence.

RN Chapter 1 discusses basic programming concepts and how to
el write programs.

o Chapter 2 investigates the structure and makeup of dBASE pro-
grams.

'

Chapter 3 shows you how to use memory variables in programs.

O Chapter 4 steps you through the Cbmenu.prg module of the check-
: dbook management system as an example of what a main program
oes.

k J' Chapter 5 introduces you to converting fields and memory vari-
- - ables from one type to another, such as from string to numeric.
| This information is important for designing screen forms.

PROGRAMMING WI'i'H dBASE HI PLUS ' o

e ey - —_— e e R, ML (R MR T YRS ey ey = e e

“
-

9 ‘u-';},.-o‘j'j_'.
v
4
(C
“

INTRODUCTION

(7

Chapter 6 shows you how to set up screen forms in your pro- -
grams and how to get user input.

Chapter 7 continues the discussion of setting up screen forms by
presenting templates and ranges for filtering input. The end of the
chapter contains points to consider when designing screen forms.

Chapter 8 looks more closely at scréen forms by providing many
tips for enhancing the look of your screens. It also explains for-
mat files and how to work with memo fields.

Chapter 9 discusses the important notion of error trapping and
how to check user input for correctness.

Chapter 10 discusses the setting up of database and index files,
using several work areas at once, and retrieving information.

Chapter 11 investigates ways to use and change data in the data-
base file from your programs. It also talks about setting up rela-
tionships between work areas.

Chapter 12 takes a look at how to control printing in your pro-
grams and special printing effects.

Chapter 13 discusses several aspects of housekeeping: how to
complete your programs, how to close database files and restore
the working environment, and how to handle file maintenance in
your programs. °

Chapter 14 steps you through one module program, Cancl.prg,
from the checkbook management system as an example of how
programming tasks work together in a real-life situation.

Chapter 15 shows you ways to test and debug your programs.

Chapter 16 investigates more advanced features, such as the use

of PROCEDURE files, parameter passing, hidden variables, and

assembly language routines. You'll also see how dBASE III PLUS

interacts with the operating system and other applications. The

end of the chapter illustrates a turnkey system. (‘)

You're now ready to begin learning how to program in dBASE. -

PROGRAMMING WITH dBASE Ht PLUS

e e D el m e e omm me s meas i e = ——— e i iemier s e o e
<3

Van s : A

' Chapter 1

Rl

PROGRAMMING IN A NUTSHELL

What This
Chapter
Covers

y

~
®

:
i
i
;
oo
|

-

)

Preparing for
This Chapter

If you're new to programming, you'll find it worth your while to
learn some general programming principles and good program-
ming techniques before actually writing dBASE programs. You
can then build your future programming efforts on this founda-
tion. Please read Chapters 1 through 3 in sequence. Each chapter
provides important information and builds upon concepts in pre-
vious chapters. If you're familiar with othér programming lan-
guages, you might wish to review these first three chapters.

This chapter discusses the following:
* What programming is
* The difference between programs and applications

* Things you should know, such as setting the working environ-
gent, input and output, error trapping, menus, and program
ow

*_The basic program flow control structures: branching, loop-
ing, and dealing with conditions

¢ Some popular techniques for developing programs, including
using the top-down approach, structured programming, and
the importance of documentation

* The steps to designing programs

You should have a working knowledge of dBASE III PLUS. Make
sure that you have your printout of the example program files
before using this book. See the Introduction for information
about printing program files. You'll also run the checkbook man-
agement program, so have your Sample Programs and Utilities
disk handy.

N o e 7 % By TR R T £
R ReE R A R N R et
SR T T T, R A STy T I g
. 2 RN T e e A A T P R ot O S
T h sy S Y ST DN LR R Y g TN Lt L il SRR L oA T s UL DL S LRIV

CHAPTER 1

What Is A progiram is the set of instructions and commands that tells your
P amming? computer to do specific tasks. Programming is not something
TOgr B¢ done only with computeis. In a sense, any series of instructions in
a specific order is a program. For example, a recipe is really a
program. When you use a recipe, you follow a series of step-by-
step instructions to cook something, Each instruction is a com-
mand — for instance, add ¥ teaspoon of salt — just as each
dBASE instruction is a comimand.

The difference between instructing a person to cook and program-
ming a computer to compute is that the person can choose to
alter the recipe slightly and thus bend the rules a bit. A computer
never bends its rules. It follows instructions to the letter —
whether they're correct or not.

A program must contain every instruction that you want the com-
puter to perform in a precise order. To organize and write these
instructions correctly and efficiently is what programming is all
abouit. Once you've written a program in dBASE, you can save it
to t}l:e disk in a program file and run the program whenever you
WISIL.

Programs and A program can be a seriés of commands that do one basic task, or
Applications an entire programming project that performs all your tasks. The

PP latter is often called an application program. You can break down
the entire programming project into modules, each module per-
forming one specific task. One main program usually controls all
these modules. :

So, a program can refer to the entire project or merely one modu-
lar part of it. The checkbook management system, for example, is
a series of modular programs working together.

i e

)

PROGRAMMING IN A NUTSHELL

Programming
Concepts

Writing and
Editing dBASE
Programs

PROGRAMMING WITH dBASE 1ll PLUS

When you tell dBASE III PLUS to CREATE a new database, the
dBASE IIT PLUS interpreter first compares the command's indi-
vidual letters, C-R-E-A-T-E, to a table of commands. This is known
as parsing the command. If the interpreter finds an exact match
between what you typed and the commands in the table, it exe-
cutes the instructions that go with that command. If it doesn’t
find an exact match, it gives you an error message. The inter-
preter can't understand an incorrect command, so you must enter
commands precisely.

You can save yourself many headaches by avoiding the four most
common programming mistakes:

» Misspelling commands

» Forgetting to separate commands from their expressions with
at least one space

» Syntax errors, that is, using a command incorrectly
¢ Issuing an incomplete command

This section discusses some general concepts that apply to-dBASE
programming. These concepts are, on the whole, applicable to
other programming languages as well, although the specific com-
mands differ.

You write a program and save it in a program file with the exten-
sion .prg. dBASE III PLUS has a built-in word processor designed
for creating and editing dBASE program files. It allows you to
stay in dBASE Il PLUS, edit, and then run your programs.

To get into the dBASE III PLUS word processor, type MODIFY
COMMAND, followed by the filename. dBASE III PLUS automati-
cally supplies the .prg file extension for you. For example, if you
were beginning a new program file called Test.prg, the command
from the dot prompt would be MODIFY COMMAND Test.

PR TP T W S S

CHAPTER 1

When you wish to edit an existing program file, you also use
MODIFY COMMAND with the name of the file. The editing com-
mands of dBASE III PLUS's word processor are very similar to.
those of WordStar™, When you use MODIFY COMMAND, you’ll
see a menu of the most important edit commands at the top of the
screen. Press F1 to toggle the menu on or off. A complete list of
the edit commands is in the Quick Reference Guide and in Using
dBASE 111 PLUS.

When you've finished editing a program and wish to save it to
disk, press Ctri-End. If you don't want to save your changes, press
the Esc key and respond with Y to the prompt:

Abort editing ? (Y/N). dBASE III PLUS reinstates the file to its
original form and returns you to the dot prompt.

¥ word procasior oF tent

m PROGRAMMING IN A NUTSHELL

T

If your computer has enough memory, you can set up the
Config.db file so that your word processor of choice is the
default word processor. Then, when you use MODIFY
COMMAND, dBASE III PLUS automatically loads your word
processor. See Using dBASE 111 PLUS for information about
the Config.db file. :

Although a program file can be as long as you wish, the
dBASE III PLUS word processor can handle files of up to 5,000
characters, approximately 100-200 lines. Some of the files in the
checkbook management system are large. When you use MODIFY
COMMAND to open a large program file, you may get the message
File too large, some data may be lost. If this happens, use another
word processor to view these files.

TP

If you merely wish to view the contents of a program file, use
either MODIFY COMMAND or the TYPE command. When you
TYPE a file, it scrolls past you on the screen. Press Ctri-S to
stop the scrolling, then press any key to continue.

PROGRAMMING WITH dBASE Il PLUS P1-5

CHAPTER 1

. Running the
' Program

Setting Up the
: o Program
S Environment

Input and

L e e

. When you wish to run the program, issue the DO command, fol-

lowed by the name of the program file. dBASE III PLUS opens the
program file and reads each line of the file, starting at the top of
the file, performing each command in sequence. When it has
reached the last command in the file, or if the user decides to can-
cel the program prematurely, dBASE III PLUS closes the program
file and returns to the dot prompt. If the last command in a pro-
gram file is QUIT, control returns to the operating system.

When you work with dBASE III PLUS from the dot prompt, that
is the environment in which you are working. You have a large
number of ways to change this environment for your particular
needs. For example, if all your database and index files are on the
B drive and dBASE HI PLUS is on the A drive, you normally use
SET DEFAULT TO B at the beginning of your session with dBASE
III PLUS. You would include at this point in the program other
environmental conditions, such as screen color. You'll learn how
to set the program environment in Chapter 4.

Every program accepts input and produces output. These are
terms for the source and destination of information, respectively.
For example, input could come from fields in a database file in.
USE, or the user could enter data from the keyboard during the
run of the program. Output could be information that updates
previous data in a database file, a listing of fields on the screen,
or a printed report.

PROGRAMMING WITH dBASE Il PLUS

)
®

4
¥
-+

i

¥

PROGRAMMING IN A NUTSHELL

_PROGRAMMING. WITH dBASE Ul PLUS

PROGRAM

Input Output

Database File

Keyboard Screen

Figure 1-1 Types of input and output

Your customized program will handle input and output differ-
ently than dBASE III PLUS does from the dot prompt. The pro-
gram has to be able to deal with input and output without any
intervention on your part. You, the programmer, may not be
around when someone else is running your program.

Screen forms are a great way to handle input and output. For
input, screen forms act as fill-in-the-blank instructions, with
prompts and messages to guide the user. You can design screen
forms which mimic your own forms. This makes your program
more accessible to inexperienced users, because they will recog-
nize forms that they already know.

Database File

Printed Report

CHAPTER 1

Garbage
In/Garbage

Figure 1-2 A typical screen form

You can also use screen forms to display output, show what the
user has just typed, ask for verification from the user that the
input is correct, or provide information that the user requests.
Designing screen forms is an important part of programmirig. You
-will learn more about them in Chapters 6, 7, and 8.

You can store information, such-as data that the user has keyed
into an on-screen form, in temporary storage locations in the com-
puter’s memory. In dBASE, these temporary storage locations are
called memory variables. Memory variables are like little cubby-
holes where you can store information and call up this informa-
tion when needed with the ?, DISPLAY MEMORY, or LIST
MEMORY commiands. You'll learn more about them in Chapter 3.

Computer programmers often refer to a concept known simply as
GIGO, which stands for garbage in/garbage out. This means that
the quality of the output is directly related to the quality of the
‘input. There are many ways to eliminate the GIGO problem. They
are collectively known as error-trapping routines. All well-
designed programs have provisions for error trapping.

PROGRAMMING IN A NUTSHELL

Remember that a computer has to have instructions for every pos-

sible situation or condition, so be sure to consider all potennal
errors that the user might make when you set up error trapping.
For example, if you want the user to type Y or N in response to a

yes/no question, make sure that the program knows what to do if

the user types another letter by mistake. You will learn more
about error trapping in Chapter 9.

Database Keeping your database information correct is called maintaining
Integrity the integrity of the database file. The program should maintain
€8 and safeguard the unity and accuracy of the database files. To

achieve this, you can use memory variables to store new informa-

tion for validation before updating the database file. Also, your
program should make frequent backups of database files. This is
the topic of Chapter 13.

The Flow of Design your program so that the commands work in a logical,
a Program progressive order. This is known as program flow. However, if
08 you want the program to repeat the same command a number of

times, or to perform a command only if a certain condition exists,

the step-by-step approach is impractical. You wouldn’t want to

retype the same commands over and over, for instance, to display

a menu on the screen every time the menu were to appear. Simi-
larly, you wouldn't want the program to evaluate a situation that
may not occur.

You can use control mechanisms that instruct the program to
branch to subprograms that handle repetitive tasks, repeat a

series of commands while a condition exists, or deal with a possi-
ble condition. These three types of control mechanisms are known

as branching, looping, and conditions, respectively. Branching,
looping, and conditions are all temporary changes to the basic
program flow. They let you create programs with flexibility and
power.

PROGRAMMING WITH dBASE 11l PLUS P1-9

Making a
Detour
(Branching)

CHAPTER 1 O

Some kind of true or false condition governs all three basic pro-
gramming control structures. That is why the logical operators
.NOT., .AND., and .OR. are important for computers. They let you
determine actions according to whether a condition is met, true =
.T., or not met, false = .F. When programming, you will use logi-
cal operators often. Below is a brief discussion of the basic pro-
gramming control structures. You will investigate them in more
detail in Chapter 2.

To use the recipe analogy from the beginning of the chapter again,
suppose you're making stuffed peppers. At a certain point, the
recipe tells you to fill each pepper with the stuffing, which is in
another recipe. You would turn your attention away from the
main recipe for a while to make the stuffing recipe. After you'd
made the stuffing, you would return to where you left off in the
main recipe and continue. This procedure, called branching, is
also an important concept in computer programming. '

You will use the branching technique a great deal to direct the
flow of the program according to what the user wants to do. A
simple example of branching is a menu, which lists the choices
available in the program. After the user has chosen a task, the
program branches to the instructions for that task, which are in a
subprogram file. When the task is completed, program flow
returns to the program containing the main menu for another
choice from the user. R

In dBASE, you issue the DO command, followed by the name of
the subprogram, for branching. The program module which con-
tains the DO command is the calling program. When it comes to a
DO instruction, the computer performs the instructions at the
branch location and, when finished, returns to the calling pro-
gram to execute the next command in sequence. Here is a graphic
illustration of branching. T '

PROGRAMMING WITH dBASE Il PLUS .]

.

O

PROGRAMMING IN A NUTSHELL .

Repeating a
Procedure
(Looping)

PROGRAMMING WITH dBASE 11l PLUS

EEIUI’I’I to

calling program

Main Program Flow
—_—

ey

to a Subprogram

Command to branch T

Figure 1-3 Branching

Normal program flow is interrupted by an unconditional branch
to a subprogram. When the subprogram is finished, program flow
returns to the line immediately following the branch command in
the calling program.

You may often want your program to perform the same steps
repeatedly while a given condition is true. In domputer program-
ming, this is known as looping. The program repeats the same
commands in a loop until it reaches the point where the condition
is no longer true. It then leaves the loop and continues with the
next instruction in the program. In dBASE, you enclose the com-
mands to be performed in a loop within a structure that begins
with a DO WHILE command and ends with an ENDDO command.
These two commands constitute the boundaries of the loop.

As an example, suppose you want to replace each unit price field
in a database file with an inflated price. With the looping tech-
nique, you instruct the program to do the loop while the record
pointer has not reached the end of the file. dBASE III PLUS goes
to the first record in the file, performs the desired operation,
skips to the next record, and loops back to repeat the same

operation.

e

CHAPTER 1

R ’ Eventually, dBASE III PLUS will reach the end of the database {f)
Lo e file. This is the condition which it has been told to look for, so it
PRI ‘ ends the loop. The program continues with the next instruction
: following the loop. Figure 1-4 shows you how a loop works.

Condition is True T T Retum to start of loop
begin Loop commands Condition is still true
begin Loop commands

Condition is False . |
End Loop and continue rest of Program |

" Figure 1-4 How a loop works

Normal program flow arrives at a condition to be tested, If the :
condition tests as true, the program performs the commands in g
the loop and continues to repeat the loop as long as the condition
at the beginning of the loop is true. When the condition is no
longer true, the program leaves the loop and continues with the
command following the loop.

PROGRAMMING WITH dBASE Il PLUS

- - ~y % =" . ;
P P .._:. :-"-4‘-'4.-":"-

PROGRAMMING IN A NUTSHELL

Dealing with
Possibilities
(Conditions)

Looping is a good technique when the condition is always predict-
able, for example, there will always be an end-of-file somewhere.
However, you may wish to link certain instructions to conditions
that may or may not happen. Suppose you're replacing all price
information with an inflated price, but only for items that haven't
sold in the last six months. There might be no records that fit this
condition, or there might be many.

You can set up this type of control in two ways, depending on the
context. If there are only two possibilities, you normally use a
construction that begins with an IF statement and ends with an
ENDIF. The program checks each field in the file, making replace-
ments only in those fields that conform to the condition.

If the Condition Applies

E—

Program Flow

T ‘ﬁ" n."'?‘*.,

——— —)

CONDITION T T CONDITION DOES NOT APPLY

Figure 1-5 Conditions

When it reaches the condition, the program evaluates the condi-
tion. If the condition evaluates to true, the program executes the
commands; if not, it skips the section and goes on.

If there are several possibilities, that is, a multiple-choice situa-
tion, you use a construction that begins with DO CASE and ends
with an ENDCASE statement. In either situation, after the pro-
gram has performed the commands within the IF...ENDIF or DO
CASE...ENDCASE construction, it continues on the line following
ENDIF or ENDCASE.

PROGRAMMING WITH dBASE |1l PLUS P-13

..
[

,.:'
»d

N 1]
o LTS Y

¥

CHAPTER 1

i P
b om diaiaBat RS R Mt

Menus

Choices

Program Flow
———— . .
--_—-----——*

! T

Condition Applies Condition does not Apply

Figure 1-6 Mulliple-choice conditions

Here's the difference between a loop and dealing with conditions.
In a DO WHILE loop, the program continues to test the condition
at the end of each loop to see if it should perform another loop.
The program can’t leave the loop until the condition is no longer
true. However, when it encounters an IF...ENDIF or DO :
CASE...ENDCASE construction, the program evaluates the condi-
tion only once. '

Most dBASE programs start with a main menu, which gives the
user a list of program choices. To see this in action, run the
checkbook management program now. Start dBASE III PLUS and
SET the DEFAULT drive. Make sure that the Sample Programs
and Utilities disk containing the program is in the default drive.
Then type: '

. DO Cbmenu «

DO is the dBASE command that runs a program, and Cbmenu is
the name of the main program file in the checkbook management

system. You don’t have to type the .prg extension with the DO
command. .

. PROGRAMMING IN A NUTSHELL

NOTE

This book uses upper case and lower case conventions to dis-
tinguish dBASE commands, in upper case, from filenames, in
mixed case. However, you can type commands in lower case
to save yourself unnecessary use of the Shift key. Although
dBASE III PLUS requires only the first four letters of a com-
mand, your programs are much easier to read when you use
the complete command.

After the screen clears, the first thing you see is the main menu,
shown below:

Figure 1-7 The chackbook management syctem matn menu

PROGRAMMING WITH dBASE I PLUS Pt-15

e e B = aem s e T e W wmmm e meea

it~ —

T T L RTT o T

Il At st LM L T Ol R i e gt e S R s Ftig T f
. X 3 g
'5’ A AR f ."..'-:-r‘.“'-ﬁ'-‘? Ay A {3?‘?«': :'f}?*- SEs M
A e . AR e e AT A T Ty R
: o , ol N - o A AL
-4 ; I P L E e i .
O - a & P . T ‘.
AT 3 . ey ST 0.
. . . - - A LR
Y - -
< ST - e L I P I P ‘A .
. - - PR B - . - - PP .
PR S fesrh e e e astaia la vt S et i S R R AT el S e

CHAPTER 1 O

I Notice that the program gives the choices for balancing a check-

: book. It also provides an out (X to quit) so that the user can leave
the program easily. Always include a way to exit your program
and return to the dot prompt.

When you choose an item from the main menu, the program
branches to a subprogram that performs the task. The subpro-
gram may contain even more choices in another menu, called a
submenu. Type H now to look at the Reports submenu:

1 g
. o - c*s. _t‘.‘{“':\ . = _‘Ir
N % ‘Bank Deposits - ¢ - -
L I -= Individval Deposits. "~ -
R 4.7 Gshdithdravals =~ .-

S A

|3 I T I

B e L
. Ly e

l),'-p‘; .

select [=———

-2

P "

Figure 1-8 The Reports submenu of the checkbook management system

ot . , When you are finished, press 0 to return to the main menu.

- - 3 One Entry, The use of a main menu and submenus illustrates an important
R Ohe Exit dBASE programming concept: one entry, one exit. That is, there is
-t 2 only one way to get to a submodule through the main menu, and
o SRR there is only one exit returning to the main menu. In general, the
BT main, or calling, program contains the main menu and governs all

3 the other subprograms.

T o+] Take a look at the diagram of the checkbook management system, |

Loen 04 which is on the next page. There are subprograms that branch |
e from the Cbmenu.prg file. Below these are other subprograms,

S . such as Chkmask.prg, which branch from some of the subpro-

' ER grams above them. All subprograms return to their calling pro-

S - 3 gram, and the only way that the user can exit correctly from the
e - g entire program is through the main menu. This is tight control of
A -8 program flow.

P1-16 ‘ PROGRAMMING WITH dBASE Ill PLUS

PROGRAMMING IN A NUTSHELL

Designing and
Writing the

Program

" Dot Prompt

Cancl Add I Maint I | crrdee I | REEMSI

| Menumask

@E Check l Cash '] Clrcash I]Heconcil l f Hel
l | ?
|Chkr[nask' | Numwords' ICIeanup I] Rpripro .

] Yearend '

Reporta2

I Printer I

ITa:codes' | Reinit I
| Reportat I |Repor|24 I

Figure 1-9 Diagram of the checkbook management system

| Reporta3 '] Reenasl

Each box represents a program module in a separate program
file. Although not shown here, each file ends with the extension
-prg. Notice how the subprograms branch from the main
program, Cbmenu.

“Is that all there is to programming?” you may ask. Essentially,
yes; the basic concepts are simple. However, just as you can’t
expect to create a culinary masterpiece merely by writing a recipe
with the steps in the correct order, you can’t write a program
using only branching, looping, and conditions. You will find that
the fine points of programming will take you longer to master.

Writing a program with the commands that the computer will
understand is also known as coding the program. In Chapters 2
through 14, you'll learn how to code a dBASE program. This sec-

tion provides some basic steps to follow.

PROGRAMMING WITH dBASE If PLUS -

< k
!
i
Pt
¥
-
5
- 3
B :
5
k. 3
g o
34 b
.
Iy 3
gy 133
ke, ~
i
b L3
A
B -
‘3 %
'.
b
.
-
s ¢ -
k2.
B
B .
ey

< A R S N o
A, A R ML Py TS B LR
L P L S

CHAPTER 1
Involve the Never underestimate the importance of involving users in the
USEI: in the design phase. When you've finished the program, you may have

. other projects, but the users continue to work with your program.
Design Phase if they have participated in the design phase, there is a better
chance that the program will meet their needs.

- Some questions to ask potentia] users are:
. » What do you want the program to do?

e Can the program meet your requirements?

* How do you want the program to work?

Should the program contain on-line help screens?
Some questions you should resolve for yourself before starting to
write the program are:

« Can you expand or enhance the program easily?

» How should you set up the database file or files?

LT o ¢ Where will the program get its input, from the keyboard or
: . from database files?

» Will the program have to filter or change the input and
output? .

* What kind of screen forms or printed reports' are needed?

You must decide exactly what your program is to do before you
begin. Start with the kind of output you need, then decide how
you want the program to produce this output. For example, if
your program is to generate daily, monthly, and yearly reports,
decide what information is to be in these reports and how this
information will appear in print.

P1-18 PROGRAMMING WITH dBASE Ili PLUS

PROGRAMMING IN A NUTSHELL

Top-Down
Program
Design

An important programming concept to remember is the top-down
approach. You start with the general and gradually work down to-
the specifics. After you've identified exactly what the program
does, write out the program design in English to clarify its overall
structure. Don’t worry about the actual code yet. It's more impor-
tant to determine the correct steps in their proper order. For
example, if you want to write a program that displays a record
from a database file, you might write an outline like this one:

1. Set up the working environment.
2. Tell the user what the program does.

3. Get the name of the database and any related files, such as
index files.

Open the database and related files,

Determine what record to display.

Determine what fields to display.

Display the desired fields in the record.

Ask if the user wants to display another record.

If so, repeat steps 5 through 7 above.

10. If not, close the database files and return to the dot prompt.

After deciding the overall program flow, identify the basic activi-
ties that the program performs. Then, gradually break each gen-
eral activity into smaller and smaller units, or modules, like the
subsections of a general outline. Each module should ultimately
perform one specific task in the program. Think in terms of the
smallest possible unit.

o N e

Some programmers use flow charts to organize a programming
project visually. A flow chart is a diagram of how the various
modules in a program interrelate, It’s similar to a family tree.
The flow chart doesn't have to be too elaborate; even a simple dia-
gram will help clarify the program structure. Figure 1-7, the dia-
gram of the checkbook management system, is a case in point.

PROGRAMMING WITH dBASE Ill PLUS P1-19

CHAPTER 1

Meet the
Programming
Language
Halfway

Once you have divided a program’s individual tasks into distinct ~-
units, you can write the program code for each unit separately:

Because you are only writing one basic task at a time, it's much

easier to write a program in this fashion. Breaking an entire pro-
gramming project into logical units is called structured program-

ming, or the modular approach. You outline, write, and test each
modular unit individually. Once you have finished all the units,

you can fit them together within the overall program design.

GENERAL PROGRAM OUTLINE

Logical Subdivisions
of Program inta

Activites. (Activity , { Activity ’ Activity @

Moduies for

Specific Tasks. (TASK) (TASK) (TASK) (TASK) (TASK)

Figure 1-10 The top-down approach 1o program design
Begin with a general project outline, then gradually break it down
into activities that logically go together. Finally, divide these into
smaller and smaller tasks, eventually ending with individual mod-
ules that handle specific tasks. As illustrated, some specific task
modules may be used in several different activities.

Once you've completed the breakdown of each module, write out
what the module does in a combination of English and program
code. This technique is known as pseudocoding. It allows you to
clarify the necessary operations and the coding for each unit by
bringing in some of the actual program commands and syntax.
Because dBASE commands are English verbs, you actually are
doing part of the real coding at the pseudocode stage.

PROGRAMMING WITH dBASE Ill PLUS -

PROGRAMMING IN A NUTSHELL

. e - ey
PEFCALI IR IR . M 1 S

Don't

Reinvent the
Wheel

Here's an example of a dBASE program module written in
pseudocode. The dBASE commands are in upper case. Don't
worry if you haven't learned some of these cormmands yet; just
read them as English words. What does this module do?

ST T

W
u-:l:l.EAlI the SCreen,

,,_;’gm: loop HHILE the user ants to’find ‘e nane
-*?';..a:_aGETJthe ‘desired. nne frol;the Tuser t L

i%:g STORE: the ‘nane’

“‘%_IF Ethe nanes 1sdound‘%ﬁ£~"{‘
‘%‘mlsnn,the record :
53

5 ELSER R LienT
3 rhey et
e vaLihe uieia

.""’.;ﬁ?ﬂék the aser ‘lf another"
: az.,d the userasays yes

* "'—‘--ﬂ\,k z : e

2 END -ofalthe 20’ urms 1loop> @
Notice that indentations in the example clan'fy which lines go
together. After you've written the program in pseudocode, you've
written part of the real code already. When you have checked the
pseudocode and are ready to write the program, it won't take long
to convert the lines into correct dBASE instructions.

Besides simplifying a complex project, top-down and structured

programming techniques allow you to reuse modules whenever

you need them. You can even keep an entire library of modular

Loutmes at your service. Programmers often refer to this asa tool
t

For example, if you write a module to display certain field names,

grams. Once the modulie is written and tested, you can use it
again and again.

PROGRAMMING WITH dBASE NI PLUS ' . P1-21

.

you may find that you can use this module in many different pro- - -

o [T

et

W et
T

-

1

L et R L

CHAPTER 1

—~

Document
Your Efforts

P1-22

Documentation of program code and of entire programs is an
extremely important part of program development. It's beneficial
to supply adequate comments to yourself in the program code
that describe what each step does. In dBASE, a comment line
begins with the word NOTE or an asterisk (*). The
dBASE III PLUS interpreter disregards comment lines when you
run the program. Here are some sample comment lines:

* This line tells you sowething -
' NOTE This line tells you something
You cannot place a dBASE command after a comment on the
same line, but you can supply a comment following a command
by preceding the comment with &é&. For example:

- &8 Run t;e ucquntﬁiiﬁ_g‘prbgr_:l“;ﬁuﬁ)

. S P |

P DO Accounts -

NOTE .
The && must be separated by at least one space from the
actual command section on the line.

The checkbook management programs contain extensive com-
ments about what the program is doing at each step of the way.
Take a look at your printout of any program file to see what kind
of information these comments contain. In addition, for every
example of programming code mentioned in this book, there is a
note lnl the program file indicating the chapter that describes the
example.

follow. Later, you or someone else may need to modify the pro-
gram code, or check for problems or bugs, and your original com- -
ments will be invaluable.

Comments help to make the logic of your program code easier to (,_—;\

PROGRAMMING WITH dBASE 11t PLUS

=l

PROGRAMMING IN A NUTSHELL

Allow for
Future
Program
Expansion

Test and Test
Again-

Put the Pieces
Together

You should also document the entire programming project as you
go along. Tell the user what the program will do, how it will do it,
and whether your work is on schedule. When the program is fin-
ished, you can edit the documentation for a user’s manual or ref-
erence guide to the program.

Designing your program in modules allows you to expand it more
easily later, For example, you can increase the number of choices’
in the main menu without disrupting the rest of the program. Just
rewrite the menu program module, adding the new subprograms.
Allow for future growth of all major programming projects right
from the start. If users like your program, chances are they'll
want it to do more tasks later. '

After you've written a module, test it thoroughly before you com-
bine it with other modules into a complete program. This method
isolates problems where they occur. When testing, try to crash
the program — that is, do everything to make it fail. If you don't
find any problems, your program may be fine. If you do find
problems, fix them by debugging the program. Chapter 15
discusses how to test and debug your programs.

Even the most well-tested programs show problems, often months
after the program is in use. When the entire program is complete,
test it, and then test it again and again, until it seems to work cor-
rectly. Also, have others test it to sée if they come up with prob-
lems that you've missed.

‘When all the individual modules are completed, reverse the top- .
down approach by gradually piecing together the modules within

the overall program design. The end result will be your completed
program. ’

f;
p
o
|
¥
;
1
:

CHAPTER 1

I Steps to
R Program 1.
Development 2.

Summary: The You now know some basic programming concepts and practices.
You also know the steps to program development:

Determine what the program is to do.

Using the top-down approach, determine the general ﬂow of
the program. Divide the program into logical units, or mod-
ules, and continue breaking down the units until each module
does only one specific task. Diagram your program design, if
you wish.

Write each module separately. first in English, then in pseudo-
code, finally in dBASE code.

Document the project and your coding as you go along, not
when you're finished.

Test each module independently of the others before assem-
bling the final program.

Test and debug the fmal program thoroughly.

PROGRAMMING WITH dBASE 1l PLUS

T T o L

Chapter 2

dBASE PROGRAM STRUCTURE AND FLOW

ol m k

What This
Chapter
Covers

Preparing for
This Chapter

The Makeup
of a dBASE
Program

The Preamble

PROGRAMMING WITH dBASE 111 PLUS

In the previous chapter, you looked at program flow and the basic
program control structures in brief. You can now investigate
examples of dBASE program control in more depth. You should
read this chapter in conjunction with the next, which continues
the discussion of essential dBASE programming concepts.

This chapter discusses the following:

® The general makeup of dBASE programs, including the pre-
amble, setup area, and body of the program, and how dBASE
handles input and output

* How to use the four dBASE program flow constructions: DO,
DO WHILE...ENDDO, IF...ENDIF, and DO CASE...ENDCASE

¢ How to nest constructions
* How to use the LOOP and EXIT comunands

You should have a working knowledge of dBASE III PLUS before
beginning this chapter. If you are new to programming, first read
Chapter 1. i
In general, a dBASE program has certain well-defined sections.
Below is a brief overview of them,

The first section, the program header or preamble, contains infor-
mation on the program's name, what it does, who wrote it, and an
editing history. The editing history reveals when writing began
and the last edit occurred.)

Look at the example listing for any module of the checkbook man-
agement system to see the type of information included in the
program header. Although there is no mandatory format for the
program preamble, the format in the example program is the one
that Ashton-Tate's own staff uses and recommends.

SR el YL sl
LI Sn o L

&

L ol

RS s Lo 4 W O

Pk Mg e o b A R
" Faeth o S

e N T e TP W T % T A
- .. v ovedet 1 N

: The Setup
i Area

' The Body of
. ' the Program

. - The Closing
- _ Section

Leaving the
Program

CHAPTER 2 (\’

A general setup area follows the preamble. This section deter-
mines the operating environment for the program. There are sev-
eral important defaults for program files which the SET com-
mands establish. A detailed discussion of these settings is in
Chapter 4. The calling program generally sets the working envi-
ronment, although occasionally a different setting is needed in a
particular subprogram. Take a look at your printout of the
Cbmenu.prg file. The setup area in this program starts with the
command SET TALK OFF.

You might also need to specify the database relationships, that is,
what database and index files the program uses, and initialize
memory variables to store program input and output. Although
you haven’t had much experience with memory variables yet, in
the next chapter you'll learn how important they are to effective
dBASE programming.

The body of the program contains commands that do the work of
the program, such as getting input from the user, displaying -
information, changing database information, and producing out-

put. Remember that programming gives you control mechanisms

to interrupt program flow and call other program modules. You

will investigate dBASE's program control commands in the fol-

lowing section. '

Every program requires some housekeeping. For instance, the

program needs to make sure that all database files are properly

closed to maintain database integrity. It must ensure that the |
standard defaults are reinstated before control returns at the end i
of the program to the dot prompt or operating system. House- ;
keeping is the subject of Chapter 13. |

When you use RETURN in the main program module, it ends the

program and returns you to the dot prompt, or the next highest

level of program control. RETURN, however, does not close any W
database files USEd in the program. If you don't close the files
USEd in your program, you risk corruption of your data. The only
commands that close database files are CLOSE DATABASES,

CLEAR ALL, USE, and QUIT. If you use QUIT, not only do you

end the program and close database files in USE, but you also

leave dBASE III PLUS and return to the operating system.

PROGRAMMING WITH dBASE Il PLUS

dBASE PROGRAM STRUCTURE AND FLOW

dBASE
Program Flow

Do
(Branching)

In the previous chapter, you saw that there were several ways to

control program flow, and you learned the dBASE commands for
branching, looping, and conditions. In this section, you will inves-
tigate these commands in more depth.

Besides using DO to run a program from the dot prompt, you also
use the DO command from within a program to run a subpro-
gram. The only way you can have a program branch to a subpro-
gram is with DO, which represents an unconditional branch to the
subprogram. When the subprogram is finished, the RETURN com-
mand, usually the last line in the subprogram, returns control to
the calling program. The calling program then continues on the
line following the DO command.

Subprogram RETURN

\

Relurn to
calling program
Main Program Flow

Command to branch

toaSubon

CHAPTER 2

Listhame is a separate program file, Listname.prg, which lists the
ST names in the database file, Names.dbf. When this subprogram is

R o finished, the RETURN command on the last line of Listname.prg
o . sends program flow back to the next command in the calling pro-
' gram, which then branches again to another program called
Newname.prg.

TIP

The RETURN TO MASTER command returns program con-

trol to the main, or top-level, program, no matter how many
o subprograms have been called. It's a good and quick way to

* - bypass stepping back through several subprograms to get to
R the main program.

. - DO WHILE... DO WHILE...ENDDO is the only dBASE construction for looping,
o - ENDDO repeating a series of actions while a condition is true. You can
o k- . understand a DO WHILE...ENDDO loop as meaning DO such-and-
. ' (Looping) such an action or another program WHILE such-and-such a condi-
‘ | tion is true. The DO WHILE command starts the loop, which con-
o . 4 tinues until the condition is no longer true.

If you didn’t tell the program where the loop ends,
R dBASE III PLUS would continue to repeat the commands follow-
LR .y ing DO WHILE indefinitely until you turned off the machine. So,
» - you must mark the end of every DO WHILE loop with an ENDDO
. A : command. When the condition in the DO WHILE command is no
e L ¥ longer true, the program can leave the loop and continue with the
' next command following ENDDO.

PROGRAMMING WITH dBASE i PLUS

dBASE PROGRAM STRUCTURE AND FLOW

Program Flog

t» - —
DO WHILE

Condition is True T T Return to start of loop -
begin Loop commands '

Condition is still true
.begin Loop commands

Condition is False : |
) _ End Loop and continue rest of Program
Figure 22 Using DO WHILE...ENDDO for fooping

= __.-x‘?';?'“:’._{v.n_‘--:-m‘_'.,;. %) _,:_W‘

Y '."-r .
’f-.'f-' . nE

PR S SRR

CHAPTER 2

Note the use of the relational operator < >, not equal to, and the
logical operator .NOT., as well as the end-of-file function, EOF().

Don't confuse DO WHILE...ENDDO with DO; they are different
commands. DO forces an unconditional branching to another pro-
gram. DO WHILE...ENDDO makes the program loop as long as
the condition stated in the DO WHILE command evaluates as
true.

Here is a simple and complete DO WHILE.. . ENDDO loop. Note
that the first command is outside the loop and not part of it:

: mtheshegmnﬁ;g fithe?
G g -’.wmlﬂ.&,ﬂ xg@‘ﬂr-‘#H foran 7
;ﬁ' 007 Ihilnthe ‘record;pointer hosngt,lr,agg[l :
%.* ‘the! end fofsthazfilefat Sy
4700 WHILE; ,.uor.gsom;ﬂy,g‘}
«4 Shou the»hrst nue~n1

‘.z

B 2l

% ‘EIIDDO L4837 End; .on__gg “WHILE<loop {*5 SpedRe
This loop DISPLAYSs the first name, middle initial, and last name
field for each record in the database. It is very similar to issuing
the command DISPLAY ALL First, Middle, Last from the dot
prompt. When the record pointer reaches the end of the database
file, the loop ends.

R PP LN

Indentations help you distinguish what sections go with which
constructions. It is standard dBASE programming practice to use
three spaces for each indentation. The mdentanons don’t affect
the running of the program.

.

PROGRAMMING WITH dBASE 1ll PLUS

. ™
P
o
Mo

R ¥

Elan i

-t
o

LY

i

iy

U A QRO

2 o e O Ay
R R At L S

dBASE PROGRAM STRUCTURE AND FLOW

P e Tt e L
SR R L LAY PR N TP T SN T A L R SR T St R

IF...ENDIF
{Conditions)

PROGRAMMING WITH dBASE IH PLUS

IF...ENDIF also relies on a logical condition, but the condition
may or inay not be present. The computer checks whether the
condition is true only once at the beginning of the IF construction
and performs the IF...ENDIF construction only once. You can
think of an IF...ENDIF construction as IF such-and-such a condi-
tion is true, then perform such-and-such an action. Even though
you don’t type it in, the word then is assumed. Like DO
WHILE...ENDDOQ, the IF consiruction must have a corresponding
closing command, ENDIF.

If the Cendition Applies

R S b T o P TR T A TR R L Y VR R ARG b T 6T T £ L W

—_—

Pragram Flow

R T e T T

—

IF . ENDIF
CONDITION CONDITION DOES NOT APPLY

Figure 2-3 Using IF...ENDIF for conditions

Note the distinction between DO WHILE...ENDDO and
IF...ENDIF. DO WHILE... ENDDQ forces dBASE III PLUS to con-
tinue repeating the loop WHILE the condition is true, while
IF...ENDIF asks dBASE III PLUS to decide if a specific condition
is true only once and performs the commands in the IF...ENDIF
construction only once.

.' # iy T T __\‘ " Fa 2 2T .
i 1FiBalance:=:0.00 2
S *;g?égﬁou'l;ag:hrokeg'
b T i oy e 3 LI i h
i .»r--='*'r""?"¢ 3

- - - VoL ‘¥,
n RN .
. - 3= 3 =
o .
e
- ~ s
T .
EA . -
> ir
. : .
. ' .
4 -3 = -

CHAPTER 2

You can also expand an IF...ENDIF construction to make the pro-
gram choose bétween two possibilities: if A is true, do B, else do
C. So there can be an ELSE command, which governs the other
possibility. You can have only one ELSE for every IF...ENDIF sec-
tion. ELSE must be on a separate line. Here is another simple

Answer: If the field called Last does not equal the name Smith,
the program DISPLAYs the First, Middle, and Last fields. If the
Last field does contain Smith, the program SKIPs to the next
record. Note the use of the relational operator #, which is equiva-
lent to <>, that is, not equal to. If there is no ELSE statement,

the program continues to the command after the ENDIF, when
the IF condition is not true: ’

TaLAy T
TR AR el

g s i N Ak f
. e S AR To%A

4

The above IF...ENDIF construction makes the program branch to

the Inflation.prg module only if the Amount field is greater than

$100.00. Notice that you can include or nest a DO clause within

another construction. You'll learn more about nesting in another
- section., :

PROGRAMMING WITH dBASE ili PLUS

RGBT Aa‘. FodK

..\-vo.,

A LS P R P S e A B R
LT Lt . - . s : .-

_ _ g -:.;-.,g.r.é._: *s T s 4 g A T IR
. T e :-_ el _!v;' S T LS B - - .. w * F .‘—.” _.“‘
L3 s ".- : * N - P .:‘:l ‘: T ~ T -',-3.
- - - - - . "
- . - y . ! - T
- % LI a : - - 4
- K v - - oo cw by - . P f T - %
, v
T
[|
et .
o ol ’Q:.‘ T, ”;
- ol
v
» . i
- o’
i
:
i
- dBASE PROGRAM STRUCTURE AND FLOW :
\..‘ ’.
) .
b
P ;

Be careful when you supply numeric ranges. In the above
example, dBASE III PLUS skips over all Amount fields that
are 100.00 or less. However, it doesn't skip over the amount
100.01. You could include 100.00 in the condition in either of .
two ways: SR

A Lk o e R e e e S g A .
fIf Amcunt > 99.99 &t Amount 1s greater than $9.99
&“t (eellanda) : : -

. K

or

IF Amount 3= 100.00 ll Amount is grutcr tlun or nqu.l ta 100. 0o’
‘Eiln:l-'(““md" .) :

-3 : Not being specific about nuineric ranges causes needless prob-

TN

lerns. Avoid this type of trap.

. Expanding DO DO WHILE...ENDDO and IF...ELSE...ENDIF constructions can
. WHILE evaluate more than one condition. You could rewrite the

0 e IF...ENDIF example to evaluate the Amount field as being over

ENDDO and 100.00 but under 1,000.00:

IF...ENDIF D
IF Alount > 100. DD JAND. Asount < 1000 .00 .

* (conands) R ;

EID!F TN Lo o - - .

Although you don’t have to repeat the IF, you must repeat the
field name or memory variable in each part of a complex clause,
even if the field or variable name is theé same. You can construct
more complicated DO WHILE constructions, too:

.'.\.__
PROGRAMMING WITH dBASE Iil PLUS i
- — -,-E - - TIETSTVAT, T EI R .
‘-. 1 .. o '-"_ _3;.' “»’ N e . i - - : _ ‘ -

CHAPTER 2

hes ﬁ“%&&ﬁggﬁg
essothan:0iiorigrea
GRS ‘d"”*‘ﬂﬁ% i

#'f;k-{ﬂa%.g.- -:9 ¢

cORRa

Be careful that you use the correct logical operator. Rémember
that .AND. implies both one condition and the other, while .OR.
signifies either the first or the second condition. Refer to Using
dBASE III PLUS for a discussion of logical operators.

You can also mix two conditions. In this example, Past_due is a
logical field, so the IF line means: if thé amount is greater than
100.00 and Past_due is true: '

Similarly, if the amount is greater than 100.00, but Past_due is

- - false: -

Because Past_due is a logical field, you can’t say Past_due = .T.
or, alternatively, Past_due = .F. Note that when you use more
than one logical operator, you must have a space between them so
that dBASE can properly execite the command: .AND. .NOT.

DO CASE... IF...ELSE...ENDIF is useful for having the program branch
ENDCASE for depending on one of two conditions: if A.is true, do B, else do C.
L When the program provides.a series of possible conditions, it’s :
Muitiple much simpler to use the DO CASE...ENDCASE construction. This - ;
Choices is just a list of the possible choices and what to do for each — a T
multiple choice situation.

PRQGRAMMING WITH dBASE IH PLUS

dBASE PROGRAM STRUCTURE AND FLOW

. ' o .

','?.._.,

I’IQGRAMMING WITH dBASE Il PLUS

Because DO CASE alerts dBASE III PLUS that possibilities follow,
the DO CASE line contains only the command. Each possibility
appears on a separate line following the word CASE. Each differ-
ent choice must follow the word CASE. An ENDCASE line com-
pletes the construction.

CASE D
8 CASEC
g
35 CASE B
CASE A
Program Flow
T
[N N N N N R __§N N _§]

DO CASE T T ENDCASE

Condition Applies Condition does not Apply
Figure 24 Using DO CASE...ENDCASE for multipte choices

The most frequent use of the DO CASE command is governing a
menu where the user has one of several options. For example, in
the checkbook management system main menu, the user has the
choice of letters A through L, and X. The program efficiently han-
dles these multiple choices with a DO CASE construction. A dis-
cussion of the main menu choices is covered in Chapter 4.

You can combine all other possible choices that don't need their
own CASE command by using OTHERWISE in the DO
CASE...ENDCASE clause. You can only have one OTHERWISE
for each DO CASE. The following is a typical DO CASE construc-
tion. Each choice calls a different subprogram module:

DO CASE is very similar to IF...ENDIF. Both accomplish the .
same thing, but DO CASE usually determines several possible
conditions, while IF...ENDIF governs one or two possible condi-
tions. Soon you'll see how elegant'a DO CASE construction can be
when compared to IF...ENDIF. . - - .

Each of the four basic control structurés can work within others.

Jnown atnesting. For sxample, hevs 15,2 DO

Ny
A
Lo thlnT S

dBASE PROGRAM STRUCTURE AND FLOW

Take care that the ending command lines are in the correct order. 2) N
Each nested construction is an inviolable whole. Think of them as S
a series of mixing bowls, one sitting inside another. L

F3
T
’

-

i DO WHILE

o r ™)
, IF

DC CASE
. CASE

CASE
4 ™

| P T U Y S

»

___ENDIF)

CASE
OTHERWISE

ENDCASE

Figure 2-5 Nesting constructions

PROGRAMMING WITH dBASE Hll PLUS ' P2-13

A Rt ol Ao S T de i el BN e LN gt o ¢ -?:"%-“"‘ R H L A Sl R "rmi"ﬁ""ﬁ T Kok P g g T AT Ly g e
g ;,;'{,‘.‘.5.:__ _d“?ﬁ‘! -.-"""5.- s -?"i“,:‘t‘,.-f—:;‘f‘::‘-; g-}_;r.;g_-,ﬂi.*gﬁ-}é‘gir::_.\ %%,_.1'%%«_; ?‘; =3 s___v."?.fr':’;'_a_ﬁr E!"r\a :\;-.:i:_ ﬂ«::"i 5‘:{ :f:;(_‘?:}};; ;,,{ﬁ%lﬁ%h%%
A AT o L R S - LY L1 S e T NS A2 SR 06 - O - B Y o L

PRI | CHAPTER 2 O

Lo Here is an incorrect construction. Why? -

A AR gy o - mg e o =

{- 00 ‘CASE. -

- CASE selection = ™"
; ‘ o) : “90 <subprogram®
PRI P . *. ~CASE-selection = "2

AR . . - 1F Balance s 0

. 1 .0 %-™ou're broke"
- : : 1) " ELSE
© .2 "fou're stikl in the black®

X + {commands)
OTHERVISE ‘
g) + {commands)
. ENDCASE
) ' ENDIF

- L Because the IF is nested within the DO CASE, you must close the
, . IF construction before closing the DO CASE construction. The o~
LT correct form of this short module is:
- AU ' DO CASE
T ¢ CASE selection = ™"
. : s ' DO <subprogram> T
. CASE selection = "ev
. - IF Balance = 0
oL g . 7 "You're broke"”
.. o . ELSE
o - i T "You're still in the black”

' ’ + {commands) - |
ENDIF.
OTHERWISE -
L s 'Y " . . = (comsands) -
UGV { ENDCASE

.
R

b = e cm. em —_— - — e m—oa S o m———

NN) Using indentations is extremely helpful when you have nested
TR clauses. Indenting makes the code more readable and lets you
i . . determine at a glance whether control structures are properly ter- .
T e minated. ‘

- :
-]]
- - - -
. . . 3
. :
- 4
. ~]
- - n'
. = " -
. - .
- - b
[.
- v - ° *. L]
-

IS P2-14 PROGRAMMING WITH dBASE Il PLUS

- dBASE PROGRAM STRUCTURE AND FLOW

TP

Always check that each beginning DO WHILE, IF, and DO
CASE construction has a corresponding ENDDO, ENDIF, or
ENDCASE, respectively. Make sure that there are no superflu-
ous ENDDO, ENDIF, or ENDCASE lines, and that ENDDO,
ENDIF, and ENDCASE are spelled as one word.

Another way to avsxi_d_ confusion when you have nested clauses is

he.condition Thisallows vou

3

AR

CHAPTER 2

Another Way
to Loop

Sometimes you may wish to leave an IF...ENDIF or DO
CASE...ENDCASE construction nested within a DO X
WHILE...ENDDO loop and return to the beginning of the loop.
Use the LOOP command, but be careful. LOOP imniediately inter-
rupts the flow of the program and takes the program back to the
beginning of the most recent DO WHILE. Here's an example of
LOOP:

e
he =

v\bf,{ &)
i

srecord
g

oy

oady’ sarked
g L n W
FhEe
d}and

Nanymore<commands)Sroh
LL0ELETED () RN
LEZ:NOT S EO
P R 1

The test for deleted records is put at the beginning of this lengthy
- DO WHILE loop so that the program doesn't have to evaluate the
rest of the commiands in the loop. The LOOP command has no
meaning unless it occurs in an IF...ELSE...ENDIF or DO
CASE...ENDCASE construction, which is nested within a DO

WHILE...ENDDO construction.

PROGRAMMING WITH dBASE Ill PLUS

dBASE PROGRAM STRUCTURE AND FLOW

How to Get Occasionally, you will need to leave a DO WHILE...ENDDO loop
Outof al earlier than the program expects, without performing the rest of
O0P the commands in the loop. You can do this with the EXIT com-

mand. Here is the previous nesting example rewritten with an
EXIT command: -

4 s

foniaietuials o
: COMD bl
t eiis: i3
: s 5 o
- broke(, sy
: : . nl L SENE2 p
- . ‘.," '.H. .1"l 7 a-. g LK -
S - Fie ENDI PSR s d iy
£ JOTHERVISE R ¥E i S
Nl . i %“.’«lﬂt‘to-l,qu;%fq foan
S ENDCASE RSB e o
SENDDO TR INRILE & T - it PR R
My ec s~ Far o Ao Tl p i T N L ‘i A e el
i EXIT doesn't cancel the program. It merely causes the program
i to leave the current DO WHILE...ENDDO loop. The program then
H - continues with the next command after the ENDDO line.
|
1
o (/’:‘_) >
o
P217

e e - e o s e gy

Chapter 3

- USING MEMORY VARIABLES

What This
Chapter
Covers

Preparing for
This Chapter

Memory
Variables
Explained

dBASE programming frequently needs to hold information tempo-
rarily in memory to control a program. This information is stored
in what dBASE calls memory variables. It is strongly suggested
that you thoroughly understand how memory variables work in
programs before you begin programming in dBASE.
This chapter discusses the following:

¢ How to set up memory variables in dBASE programs

» The different types of memory variables

» How to use memory variables in programs

* How to declare memory variables PUBLIC or PRIVATE

» How to use memory variables as program flow controls

You should have a basic understanding of general programming

concepts and the dBASE control structures before reading .this
chapter.

A memory variable is a temporary storage location for informa-
tion. You identify a memory variable by its name, which can be
up to ten characters in length. A memory variable can contain
numbers, character strings, a date, or even a logical expression,
.T. or .F, When you wish to use the information in the memory
variable, you refer to the memory variable by its name, not by its
contents. The contents of a memory variable can change during
the course of the program, but its name remains the same.

Each variable takes up a certain number of bytes in memory,
depending on the type of variable. dBASE III PLUS assigns to
character-string memory variables the length of the assigned
string plus 2 bytes, to numeric and date variables a length of 9,
and to logical variables a length of 2.

PROGRAMMING WITH dBASE Ili PLUS P3-1

CHAPTER 3

MEMORY : |
1

.T. SPACE(20} 0.00
working Iname m_amaount 1

Figure 3-1 Mamory variables

NOTE
There are no memo type memory variables.

Initializing You must create, or initialize, a memory variable before you can
Memo use it. You do this by STOREing data in the variable. Whenever -
nory you initialize a memory variable, dBASE III PLUS automatically -
Variables assigns the variable type according to the information you've
: STOREJ in it. You initialize the memory variable's name and its
contents at the same time.

There are two ways to initialize memory variables. One is using
the STORE command: its name reminds you that you are tempo-
rarily storing information in a memory variable. The second
method is typing the memory variable name first, followed by an
equals sign and the information to be STOREd in it. Below are
some examples.

PROGRAMMING WITH dBASE I PLUS

AT P R T U P S

N R e T e o A NI o 2 T S vl b e i B ns L

USING MEMORY VARIABLES

Logical Type The following command creates a memory variable named work-
Variables ing and puts the logical value true, .T., in it.

STORE .T. TO working
This next example is the equivalent of the previous example:

vworking = .T.

The information on the right side of the equals sign becomes the
contents of the memory variable on the left side. If you are famil-
iar with programming, you realize that this. method is similar to
the way other programming languages initialize variables.

TIP
P The dBASE III PLUS commands and functions, such as
E CONTINUE or DELETED(), are reserved words. Because
' . using reserved words for memory variable names could cause
confusion, be sure to pick other names for variables.

To change the contents of a memory variable, reinitialize it. For
example:

"STORE .F. TO working 88 The varisble working now contains .F.

PROGRAMMING WITH dBASE IH PLUS P3-3

co— P U U A L -

4 e o a—

P 117 0 T s AT e i L BT £l AP L N TR R e 8

Ry

o b

A AP S S A A S IS e FEET b rn NT N Sl 1 1M g e 5378

| L

~ CHAPTER 3

Character
Typ.e
Variables

Date Type
Variables

P3-4

. To initialize a character type memory variable, you must enclose

the character string in a delimiter, that is, single or double
quotes, or square brackets:

STORE "Vincent" TO nfnane

This creates a character type memory variable called mfname and
STOREs the string Vincent in it. The length of this variable is 7. If
the character string already contains a standard delimiter charac-
ter, use a different set of delimiters. For example, if a single
quote is in the string, enclose the entire string in double quotes or
square brackets:

STORE “That's incorrect ... try again” TO lprospﬂ

In your programs, you will often wish to initialize character mem-
ory variables that contain nothing but blanks. A quick way to do
this is with the SPACE() function. For example, suppose you need
a memory variable called m_first to temporarily hold the user's
input for the actual First_name field in a database file. This field
is 20 characters long. Initialize the m_first variable like this: -

STORE SPACE(20) YO m_first

You can create a date type memory variable with the DATE() func-
tion, but it only STOREs today's date in the memory variable;
assuming, of course, that you entered that date when you started
your computer. The command would be:

-STORE DATE() TO today

PROGRAMMING WITH dBASE IIi PLUS

USING MEMORY VARIABLES

Numeric Type
Variables

To STORE another date in a memory variable, you employ the
character to date conversion function, CTOD{). You'll learn more
about this function in Chapter 5. The following command initial-
izes a date type variable called birthday:

birthday = CTOD("04/26/85")
To initialize a blank date to birthday, use:

birthday = cTOD(" [/ } ™)
To initialize a numeric type memory variable, make sure that you
include the correct number of decimal places, if any. Otherwise,
dBASE III PLUS assumes that the memory variable only contains
integers. Thus:

STORE D TO number

creates a new numeric memory variable called number and

STORE:s 0 to it. dBASE III PLUS only allows integers to be in this .

memory variable. However,

STORE (.00 TO nuaber

creates a numeric memory variable with two possible decimal
places.

You can initialize several memory variables of the same type and . - -

length in one line, with each variable separated by a comma. "This
example is from the Add.prg module:

* jnitialize memory variables “
STORE 0.00 T0 subtotal,totals,cash

PROGRAMMING WITH dBASE I PLUS P3-5

.
T o
iz g

AT st

mre e g mm. P B imoen e e aame

i

b bl i S et LR TS R T 1 P L

-

EoTr SR

CHAPTER 3

.

o e U e

~ra

TIP

A standard convention in this book is for memory variables to
be shown in lower case italics. This distinguishes them from
database filenames and field names, which by convention are
written with initial capitals.

Y 3

8

¥

LA

How you name memory variables is up to you, but a good
approach is to choose a name that describes what the mem-
ory variable does. It’s possible to have a memory variable
called x, but later, when you're reading your program, it may
be difficult to remember what x represents. So use a descrip-
tive name:

STORE 129.30 TO acost
Then you can readily remember what this line means:
REPLACE Amount MITH mcost + 1.05

Many programmers use the letter m or the characters m_ to
begin each memory variable name when there may be confu-
sion with an actual field name. For example, if there is a field
called Last_name, a related memory variable could be called
m_last. This is a good way to show the relationship between
fields and memory variables. In Chapter 11, you'll see how
dBASE III PLUS can distinguish between field names and
variable names with the same name using the M-> feature.

1
by
.

Limitations You can have a total of 6,000 bytes of information stored in up to
256 different memory variables. This is more than adequate for
all but the largest of programs. If necessary, you can change the
amount of memory for variables with the MVARSIZE parameter
in the Config.db file. See Using dBASE I1I PLUS for more infor-
mation.

P3-6 PROGRAMMING WITH dBASE ll PLUS

USING MEMORY VARIABLES

How Memory Because they allow the programmer to control input and output,

: memory variables are important for programming. The program
va"ab.les initializes a memory variable to hold the user’s input. When the
Work in user has supplied the information, the program STOREs this
Programs input into the variable and asks the user to validate the informa-

tion. i

This method ensures database integrity by not changing the data-
base immediately. When the user confirms that the information is
correct, the program REPLACEs the current field information
with the contents of the memory variable. The memory variable
can then be cleared and used again for the same task.

For example, if the task at hand is to update information in the
Last_name field, here's how to set it up:

1. Initialize a character-type memory variable called, for exam-
ple, m_last, to be the same length as the Last_name field. Gen-
erally, you initialize memory variables of the exact type and
length as their related database fields.

2. Ask the user to supply the new information in an on-screen
form. -

3. Temporarily STORE the user's input TO m_last.

Display what the user has typed (that is, the contents of
m_last) and ask the user to confirm that the information is
correct.

5. If the information is incorrect, give the user a chance to cor- i
rect it.

6. After the user confirms that the information is correct, use
the REPLACE command to replace the current information in
the Last_name field with the contents of the m_last memory
variable. Repeat the above steps for the next name.

7. When the user indicates that there are no more names to be
entered, close the database file.

The above steps are a general pattern to follow. You'll see these
steps in action when you learn how to design screen forms in
Chapters 6, 7, and 8, and how to evaluate and use input,
Chapter 9.

PROGRAMMING WITH dBASE Il PLUS P3-7

CHAPTER 3

PUBLIC and
PRIVATE
Variables

PRIVATE
Variables

PUBLIC
Variables

P3-8

In dBASE III PLUS, there are two classifications of memory vari-
ables: public and private. You declare the status of a variable with
the PUBLIC and PRIVATE commands. You can use a PUBLIC vari-
able in all program modules, no matter where you declare the
variable PUBLIC. A PRIVATE variable is in effect only in the cur-
rent program or subprogram, and all programs that depend on it.
The terms PUBLIC and PRIVATE variables are often called global
and local variables, respectively, in other programming languages.

In dBASE programs, memory variables are PRIVATE unless you
declare them PUBLIC. So, for a PRIVATE variable, you merely
initialize the variable: For example, the following variable is ini-
tialized in a subprogram:

n_cost = 0.00

The m_cost variable is PRIVATE to that subprogram and all pro-
grams called by the subprogram. dBASE III PLUS releases the
variable when program control RETURNS to the calling program
from the subprogram in which the variable was initialized as
PRIVATE. . -

The checkbook management program contains many PRIVATE
variables in subprograms that work in those subprograms only.
When a variable is PRIVATE to a subprogram, its contents won't
cause confusion with-the same PRIVATE variable in an unrelated
subprogram. So, you can use standard names for variables that
do the same thing in each subprogram.

Setting up a PUBLIC variable is a two-step process: (1) declaring
the variable PUBLIC, and (2) initializing the variable. Here’s an
example:

PUBLIT balance
balance = 0.00

This declares the variable balance as a PUBLIC variable and ini-
tializes it as a numeric type with a contents of 0,00,

dBASE III PLUS never clears PUBLIC variables unless explicitly
told to do so.

PROGRAMMING WITH dBASE 11l PLUS

L LN I R N AL TP S,

ST L Pt 30 et

ik

e e S a2) iy
-i.
.
'

. lﬁ"h\

USING MEMORY VARIABLES

Here is an illustration of PUBLIC and PRIVATE variables:

MAIN PROGRAM

‘ batance '
SUBPROGRAMS

balance
m_amount
talance balance halance
m_amount m_amourd m_gmaunt

Figure 3-2 PUBLIC and PRIVATE variables

balance

PUBLIC balance

The balance variable is PUBLIC in all programs, even though it's
declared PUBLIC in a subprogram. However, the m_amount vari-
able is PRIVATE only in the subprogram where it is initialized
and in all other subprograms that are called from it. The m_cash
variable is PRIVATE to one subprogram only.

TIP

It's recommended that you initialize memory variables at the
beginning of a program in the main program file if you use
the variables throughout the entire program. You can then
locate these variables quickly. Because the main program is
the highest-level program, PRIVATE variables initialized in
the main program remain in effect in all modules and thus
act like PUBLIC variables.

PROGRAMMING WITH dBASE 11l PLUS P39

= ST TR G T I P EADA TR S Duapa B PIIR 1ohra 0o copd il 4 iy IR ¢ (TS RTINSy PR T 1

e i RS IR WEE e Ty e M ke

o G SRR A B T MO g i, Nt

ryoren

CHAPTER 3

Getting Rid of
Memory
Variables

b L R]

e

All PRIVATE memory variables disappear when a program fin-
ishes or when the subprogram that initialized the variable
RETURNSs to the calling program. There is another way to remove
a PRIVATE memory variable from memory before the program or
subprogram ends. To do this, use the RELEASE command:

RELEASE mcost

You can also RELEASE certain PRIVATE memory variables and
retain others by using a wildcard, if the variables have similar
names:

RELEASE ALL LIKE nt

The * is a wildcard that tells dBASE III PLUS to RELEASE ALL
memory variables that begin with m no matter what other letters
are in their names. You can also RELEASE some memory vari-
ables with the exception of others of similar names. Thus,

RELEASE ALL EXCEPT me

would RELEASE the variables that don’t begin with the letter m.

PUBLIC variables are never released automatically. The only way
to remove PUBLIC variables from memory is with the one of
these commands: CLEAR MEMORY, CLEAR ALL, or RELEASE
<public variable list>. Because you might inadvertently clear
variables that you want to retain, be careful when using CLEAR
MEMORY or CLEAR ALL.

For example, to clear the two PUBLIC variables mcost and
mbalance from memory without clearing the other variables, use
this command:

RELEASE mcost, lhalancé

PROGRAMMING WITH dBASE I PLUS

W
L P T S P P T

USING MEMORY VARIABLES

‘Memory Files

A PUBLIC variable can be PUBLIC to the entire system as well as
to the dot prompt and to programs that aren’t even necessarily
related. So, take care when working with several programs that
you CLEAR MEMORY to remove unnecessary PUBLIC variables.
In Chapter 16, you'll see how to temporarily hide a PUBLIC
variable.

MEMORY
-
(PUBLIC) m_cost
balance
(PRIVATE) m_amount
m_check
m_withdrawal

RELEASE all like m* CLEAR MEMORY

MEMORY MEMORY

m_cost
balance

Figure 3-3 How to RELEASE memory variables

You can reuse variables by setting them up in memory files. The
SAVE command SAVEs the contents of memory in a memory file.
Memory files have the extension .mem. When you want to use
these memory variables, issue the RESTORE command to bring
the variables into active memory from the memory file.

PROGRAMMING WITH dBASE 1l PLUS) P3-11

A

CHAPTER 3

Setting Up .
Memory Files

&

+

Restoring
Memory Files

P3-12

To set up a memory file, initialize at the dot prompt the memory
variables that you want in the file. When you have them all in
memory, issue the SAVE command with a memory filename. For
example, you have several variables in memory and you want to
SAVE them to a memory file called Setup. At the dot prompt, you
type SAVE TO Setup «.

. dBASE Il PLUS DOT PROMPT

". STORE!.T. TO working
. STORE SPACE(20) TO Iname
. m_amount = 0.00

Memary

> working .T.
- Iname SPACE{20}
m_amount 000

DISK

| Setup .mem |

working
Iname
m_amount

. SAVE TO Setup

4

Figure 3-4 Setting up a memory file

To return the contents of this file to active memory, type
RESTORE FROM Setup «. Both SAVE and RESTORE assumne the
file extension .mem. However, whenever you RESTORE memory
variables from a file, you automatically RELEASE all the vari-
ables currently in memory unless you instruct dBASE III PLUS to
retain them. This is done with the ADDITIVE expression.

PROGRAMMING WITH dBASE Il PLUS

- USING MEMORY VARIABLES

As its name implies, ADDITIVE adds the contents of the
RESTORE(file to the variables currently in memory. For exam-
ple, if the program is to RESTORE the memory variables that are
in a memory file called Chkbook.mem but not RELEASE the
other variables currently in memory, the command would be:

RESTORE FROM Chkbook ADDITIVE

MEMORY
m_cost
balance
Setup.mem
working
Inamea
- m_amount -
RESTORE FROM Setup RESTORE FROM Setup ADDITIVE
MEMORY | MEMORY
working ‘ m_cbst
Iname balance
m_amount working
Iname

m_amount

Figure 3-5 Using RESTORE and what happens to memory

PROGRAMMING WITH dBASE Il PLUS P3-13

Vs Pl S A P B e - om

DA B O cemadt e iRt s Vet

A Bk ol el e B

e R T— T 4w e mme’p O ey me—g—— mee & amie . - - e b Aty e — TR —, e B e - e e 5 Y

CHAPTER 3

Pl

b’

NOTE

The PUBLIC/PRIVATE status of a variable is not saved to the
.mem file. If you RESTORE a memory file at the dot prompt,
the variables come back as PUBLIC. If you RESTORE a mem-
ory file within a program file, the variables come back as
PRIVATE. Remember that any memory variables initialized at
the beginning of the program in the main program file remain
in effect in all modules and subprograms.

To get variables to RESTORE as PUBLIC in a subprogram
file, you need to do a PUBLIC <memvar list> before doing
the RESTORE FROM. You need to use the ADDITIVE option
to retain variables already in memory.

For example, a memory file, Setup.mem, contains three vari-
ables: mcost, mbalance, and mamount. To RESTORE this file
during a program run and make these three variables PUBLIC
to the program, enter these commands in the program:

PUBLIC mcost, mbatance, mamount
RESTORE FROM Setup ADDITIVE

Using Programmers often use memory files both to initialize memory
Memory Files variables at the beginning of the program and to reinitialize them.

ry This is another way to clear the contents of a memory variable. It
is possible to have several memory files that the program can
individually RESTORE whenever it needs them. The advantage to
this approach is that you can RESTORE the original contents of
certain memory variables without affecting others.

O

j
i

]

P3-14 o PROGRAMMING WITH dBASE 1ll PLUS . J
' !

TR I RPTEL e W T T

- B,

USING MEMORY VARIABLES

Logical
Memory
Variables as
Program Flow
Controls

TIP

One benefit to using a .mem file is that you can add, change,
or delete memory variables if necessary during the course of
program development. For instance, if you forget to include a
variable, you can add it later to the Setup.mem file. At the dot
prompt, RESTORE the memory variable file. Then STORE the
new variable into memory. Finally, SAVE the file back to
disk. The SAVEd file will contain the previous memory vari-
ables and the new one, too. -

You can use logical memory variables as controls, which is simi-
lar to using logical fields to help you retrieve information. For
example, a Christmas card database file may have a logical field
called Last_year, which indicates which people sent you Christ-
mas cards (that is, Last_year = .T.). When you prepare this year's
mailing list, you could check which people might not get cards,
because they didn’t send you a card last year:

LIST FOR-.NOT. Last_year

The logical field allows you to isolate records quickly on a given
trueffalse, yes/no basis. Because program flow also relies a great
deal on true/false conditions, you can use logical memory vari-
ables in a similar fashion. One advantage to using logical memory
variables for program flow is that they can indicate by their name
exactly what is going on.

For example, suppose your program is to add records to a data-
base file. The program initializes a logical type memory variable
called adding:

adding = .T.

PROGRAMMING WITH dBASE Il PLUS P3-15

s e e e s o e AT a—— b T ST r — -

ot e oy

" R N SRR A oL T O A AT LI B s £ NSO MO AR ARy M AR TS K gt ST S 3 L

b & o at itz 3o 2 a

A ke At

CHAPTER 3

You can then use this variable in a loop or condition:

D0 WHILE adding
% (coamsnds)
ENDDO WHILE adding

When you study this module later, you'll understand at a glance
what the DO WHILE...ENDDO loop does.

NOTE

You can use the & function with a variable in the conditional
part of a DO WHILE loop only if the value of the variable
does not change during the run of the loop. dBASE III PLUS
evaluates the DO WHILE condition once only, at the begin-
ning of the loop. After the first time, it executes the loop from
memory. Here is an example:

-$TORE "Lastname = 'Jones™ TO condition
00 MHILE Bcondition .AND. .NOT. EOF(
+ {commands) -
. ENDDO

The loop runs.as expected, because the value of the variable
condition doesn't change during the run of the loop. However,
changing the value of condition inside the DO WHILE loop
may resuit in an infinite loop. See Using dBASE III PLUS for
more information on macro substitution.

P3-16 : -PROGRAMMING WITH dBASE Il PLUS

Chapter 4

SETTING UP THE MAIN PROGRAM

What This
Chapter
Covers

Getting Ready
to Do This
Chapter

What the
Main Program
Does

You are now ready to take a look at the different activities or tasks
that a dBASE program can do. Each of the following chapters cov-
ers related topics. If you are new to programming, study the chap-
ters in order. If you are already an experienced programmer, you
can skip to the topics that interest you.

Using the checkbook management system as an example of a
dBASE main program module, you'll learn that the main program
generally does the following:)

» Closes previously opened database files
» Establishes the program’s working environment
» Initializes memory variables

¢ Contains a control structure that works for the entire pro-
gram, usually a DO WHILE...ENDDO loop

» Presents the main menu to users

e Contains a control structure that handles the menu choices,
usually a DO CASE...ENDCASE structure

¢ Closes database files and resets the working environment
before the program RETURNS to the dot prompt

Understand the basics of programming, how the dBASE program
control structures work, and what memory variables are before
reading this chapter. Start dBASE III PLUS and place the Sample
Programs and Utilities disk in the default disk drive. Take a lcok
at the diagram of the checkbook management system in Chapter
1, and have your printout of the Cbmenu.prg file handy. This is
the main program module for the checkbook management system.

The main module of any dBASE program controls the program as
a whole. It calls and runs the subprograms and establishes the
working environment for the entire program. It usually presents
the user with the main menu and contains a controlling structure,
such as a DO WHILE...ENDDO loop, which determines the entire
program flow.

PROGRAMMING WITH dBASE Il PLUS P41

CHAPTER 4

The Setup
Area

Closing
Database Files
in Use

The Working
Environment

P4-2

The main program may also do housekeeping, ensuring that all
database files are closed properly at the beginning and at the end
of the program, before the user returns to the dot prompt.

You saw in Chapter 2 that all dBASE programs start with a pre-
amble and a setup area. You have already seen an example of the
program preamble. This section discusses at greater length what
goes in the setup area.

Immediately before running your program, the user may have
been working with dBASE III PLUS from the dot prompt, in The
Assistant, or using another application written in dBASE. So,
make sure that your program has a provision to close any
database files previously in USE. The CLEAR ALL command in
the Cbmenu.prg does this. Include this command at the beginning
of your main program.

When you use dBASE III PLUS from the dot prompt or from The
Assistant, a default working environment is provided for you. For
example, there is the menu bar at the top of the screen and the
status line at the bottom, along with various messages and
prompts. :

However, when you write a dBASE program, it's up to you to
decide how the program is to look. You may wish to mimic the
dBASE interactive environment, or design your own, as in the
checkbook management system.

PROGRAMMING WITH dBASE 11 PLUS

SETTING UP THE MAIN PROGRAM

SET Command Dot Prompt Program
Environment Environment
BELL ON OFF
COLOR WIN, N/'W W/B, B/W
(for white on blue]
DEFAULT B C
[depends on [for hard disk])
computer]
ESCAPE ON OFF
HEADING ON OFF
HELP ON OFF
MENU ON OFF
o PATH B:\ C:\DBASE\WORK
{depends on [for a
s computer] subdirectory]
SAFETY ON OFF
SCOREBOARD ON OFF
STATUS ON {may be OFF] OFF
TALK ON OFF

Table 4-1 Ditference betwesn the working environment

at the dot prompt and in a program

Setting up the working environment is the next thing you do in
the main program module. To change the working environment
defaults, use SET commands. There are many SET commands

that apply to dBASE programming. SET TALK and SET ESCAPE I

are the most important.

. PROGRAMMING WITH dBASE Il PLUS

P43

P T

.

A M T e m o s

SET TALK and
SET ESCAPE

P44

CHAPTER 4

NOTE

This section assumes that you are working with the dBASE
III PLUS default settings. Another way to establish defaults is
to put them in the Config.db file. See Using dBASE III PLUS

for more information.

At the dot prompt or in The Assistant, dBASE IIl PLUS answers

your commands with messages on the screen. For example, if you
initialize a memory variable with the STORE command,
dBASE III PLUS shows on the screen the contents of the new

memory variable:

« STORE “Enter code number —-->" 70 prompt
Enter code number --> -

Because it is responding to your command, dBASE III PLUS calls
this TALK. The default is TALK ON. However, you probably don't
want dBASE III PLUS's TALK to disrupt your screen appearance.
So, issue the SET TALK OFF command. At the beginning of the
main program module, most dBASE programs include the com-
mand SET TALK OFF.

Pressing Esc on the keyboard interrupts and cancels a dBASE III
PLUS command. Because you want to control when the program
stops, you may not want the user to have access to this key dur-
ing the run of the program. Include the SET ESCAPE OFF com-
mand to stop access to the Es¢ key.

SET ESCAPE OFF gives you strict control over how the user
leaves the program. For example, if the program is updating a
database file and the user accidentally hits the Es¢ key with SET
ESCAPE ON, the database information may be corrupted.

There are many other SET commands for governing the pro-
gram'’s working environment. Below is a discussion of those often
used in the setup area of the main program file.

PROGRAMMING WITH dBASE 1il PLUS .

®

- R L

I PR WY

[

s
! .
|

W,
o »

-

SETTING UP THE MAIN PROGRAM

Ringing the Bell

Color Monitors

dBASE III PLUS rings a bell when input completely fills a field or
when the user types an incorrect entry. However, it’s a good idea
to control the bell yourself. As you'll see in the next chapter, you
can sound the computer’s bell with a simple command whenever
you want to alert users that they have made a mistake or call
their attention to something, such as an important screen prompt.
This can be controlled with SET BELL ON or OFF.

Use the SET COLOR TO command to determine the color attri-
butes of the screen and set high intensity and blinking displays.
However, don’t go overboard on special effects. They are disrupt-
ing or irritating in a busy office. For example, the default color is
white letters on a black background, but if you wanted inverse
video, you would use the following command:

SET COLOR TO N/

This means a black foreground on a white background. The
Cbmenu program employs this technique when the user wishes to
change the date, the K choice from the main menu. Refer to the
reference section for SET COLOR in Using dBASE 11l PLUS for
more details. The first code SETs the foreground and background
colors of the standard display, the second code SETSs the fore-
ground and background colors of the enhanced display, and the
third is for the border color.

SET COLOR ON/OFF switches between color and monochrome
display modes. If the user has a color monitor, you must deter-
mine what mode the display is in. One method is to use the
ISCOLOR() function to test if the user has a color card. This func-
tion returns a logical value, .T. or .F. For instance, the following
module switches to monochrome mode if the display is in color
mode:

IF ISCOLOR()
_SET COLOR OFF
ENDIF

PROGRAMMING WITH dBASE 11l PLUS P45

S BAT Rt i

ST NWLNE TG AT N e e 1y Mg R by

S T D p MR

LN

hooBE L ol LNV T POV R

L gl]

LR

CHAPTER 4

The Default Disk
Drive

The Function Keys

The SET DEFAULT command tells the program where to find
files. When you start dBASE III PLUS, it assumes that the logged
drive is the default drive. A different default drive may contain’
database files, a data catalog, or even the other subprograms that.
run under the main program. To change the default drive, for
example to the C drive, use the command:

SET DEFAULT TO €

where C is the new default drive. (Also see the Directory Paths
section below.)

You can configure nine of the ten function keys on the keyboard
to do whatever you want. (You can’t configure the F1 key, which
is reserved by dBASE HI PLUS for its help feature.) If you want
the function key to enter a command, end with a semicolon to
indicate the « key. For example, if you want the user to be able
to press the F2 key to issue the command CLEAR, use the com-
mand: :

SET FUNCTION 2 TO "CLEAR;"
Be sure to enclose the command that the function key is to per-

-form in delimiters — either single or double quotation marks or

square brackets. There is a limit of 30 characters, including semi-
colons, that you can program into a function key. If you have a
computer with named, instead of numbered, function keys, refer
to the discussion of the FKLABEL() and FKMAX() functions in the
reference section of Using dBASE III PLUS.

PROGRAMMING WITH dBASE IH PLUS

4

P w Y

SETTING UP THE MAIN PROGRAM

Database Field
Headings

The Help Messageé

TIP

It's good practice to reset the function keys to their default
settings at the end of the program and before the program
returns to the dot prompt. For example, this line resets the F3
key to its default setting:

SET FUNCTION 3 TO "LisT;®

A list of these default settings is in the reference section
under SET FUNCTION in Using dBASE 111 PLUS.

The HEADING is the line that contains the field names when you
use certain commands, such as LIST or DISPLAY. Because they
usually create their own headings for screen displays, most pro-
grammers SET HEADING OFF so that this line doesn't appear.

When the user types an incorrect command at the dot prompt or
in ASSIST, dBASE III PLUS responds with the message:

Do you want some help (Y/N)?

If you don’t want dBASE III PLUS to present this question, then
SET HELP OFF. There are other ways to give the user help in
your program. For instance, the checkbook management system
has an on-line help file, Help.prg, that describes what each choice
in the main menu does.

PROGRAMMING WITH dBASE i1l PLUS P4-7

CHAPTER 4

The Menu Bar and
On-Screen Menus

Directory Paths

The Safety Valve

-

P4-8

In full-screen applications, dBASE III PLUS presents the user -
with a menu that shows what certain keys, such as the cursor
keys, do. You can see this menu by pressing F1. In your program,
however, you probably don’t want the menu to be on the screen
by defauilt, so use SET MENU OFF to turn it off. If your program
uses a full-screen command, such as BROWSE, the user can still
toggle the menu on with F1.

NOTE '
This command does not control the menus that you create. It
only governs the dBASE III PLUS on-screen menus.

You can use SET PATH to tell dBASE III PLUS to look in other
subdirectories for files. If you are unfamiliar with the terms sub-
directory, root, and path, check your DOS manual. This command
is important for hard disk systems. For example, the command
line:

SET PATH TO C:?HDRK

directs the program to look for files in the. subdirectory WORK on
the C drive, if the program can’t find the files in the current
directory. The command SET PATH TO, w:thout a path name,
releases the PATH.

When you attempt to overwrite a file that already exists, such as
when you INDEX a database file to an existing index file or
COPY a file to an existing file, dBASE III PLUS asks you to verify
what you're doing. This is called SAFETY, and the default is ON.
If you don't want users to see these messages, SET SAFETY OFF.

PROGRAMMING WITH dBASE HI PLUS

e e

LT g A N

SETTING UP THE MAIN PROGRAM

The Status Bar and The status bar that appears at the bottom of the screen is a useful

Message Line aid, but you may not want it on in your program. If so, make sure
to include the SET STATUS OFF command in your program’s
setup area. If your intention is to mimic dBASE III PLUS's nor-
mal screen display, you can include the status bar in your pro-
grams. You can also use the SET MESSAGE command to put a
message below the status line. It works only with the APPEND,
CHANGE, EDIT, INSERT, and READ commands.

-
-
e Ky s L T B © ¢

R W

The Top Row of When STATUS is OFF, the top row of the screen is the SCORE-

the Screen BOARD. dBASE III PLUS reserves this line for its own messages.
For example, when you DELETE a record, dBASE I PLUS shows
the message Del on the scoreboard. In your programs, you can
use this line to display prompts, or headings, or to ensure that
dBASE III PLUS’s messages on this line don’t appear unexpect-
edly. So, include the command SET SCOREBOARD OFF in your

. program. You'll learn more about the scoreboard when you study
{ﬁ} screen displays in Chapters 6, 7, and 8. The checkbook manage-
.- ment program intends to include dBASE III PLUS’s message, so
SCOREBOARD is ON.
NOTE

If STATUS is ON, turning the SCOREBOARD OFF has no
effect, and dBASE III PLUS messages appear on the status
bar. If STATUS is OFF, the scoreboard is on line 0, and if
SCOREBOARD is ON, the dBASE III PLUS messages appear
on this line. If SCOREBOARD is OFF, the information is sup-
pressed.

I 0 et A e M g s y*.‘-mmu\. TV R

There are many more SET commands that govern specific aspects
of the dBASE III PLUS working environment. You may have them
in the setup area, too, or at the point in the program where they
are necessary. Because they relate to topics in other chapters, you
will investigate them later.

:
?:-:
g
i
T
¥
H
i
:
fs'
i
a
!
3
X
%
&
3: -
&
%ﬂ,
5
£
§ .
%

@ PROGRAMMING WITH dBASE Il PLUS

e as mmran e

e Mls il R el -

CHAPTER 4

Establishing
Memory
Variables

TIP

Write a standard boilerplate program preamble file that
includes the CLEAR ALL command and the SET commands
that you use regularly. Then you can copy it whenever you

begin a new programming project.

After deciding about the work environment, most programmers
initialize the memory variables that they will need throughout the
program. The checkbook management program RESTORE:s vari-
ables from a memory file called Chkbook.mem and initializes one
other variable: ’

" RESTORE FROM Chkbook
today = DATE()

Recall that, although these variables are PRIVATE, because the
main program initializes them, they work throughout the entire
program.

Take a look at the Chkbook.mem file. At the dot prompt, type:
. RESTORE FROM Chkbook <}

SETTING UP THE MAIN PROGRAM

The
Continuous
Loop

These are numeric type memory variables, and the balance vari-
able has two decimal places. In the next chapter, you'll see how to
manipulate memory variables and field types for your own pur-
poses, such as displaying them on the screen.

Why does the checkbook management program use a memory
file? The variables in the Chkbook.mem file contain the last trans-
actions from the previous run of the checkbook management sys-
tem. When you first use this program these variables are all 0.00.
However, when you start adding deposits, withdrawals, and
checks, these variables retain the last transaction amounts.

So, when you run the program again, the RESTORE FROM
Chkbook command brings in the amounts. Because the program
should check if any changes were made to the amounts, it initial-
izes temporary variables that store the beginning amounts. These
are the variables mbalance, mlastchk, miastdep, and miastwth.
Later, when the user finishes the program, there are instructions
for the program to check whether any new transactions occurred.
It compares the contents of the temporary variables with the cur-
rent contents of the variables RESTOREd from Chkbook.mem.
These latter variables may contain new amounts during the run of
the program.) :

Next follows a standard convention that many dBASE program-
mers use to govern the flow of the entire program. Most dBASE
programs have just one main menu, from which all other sub-
menus branch — the one entry/one exit concept. Because the pro-
gram continually returns to this main menu after each subpro-
gram ends, until the user decides to end the program and return
to dBASE III PLUS, the entire flow of the program is in just one
DO WHILE...ENDDO loop:

DO WHILE .T. .

The comment line above this command notes that this command
forces dBASE III PLUS to do the loop forever, because true is
always true. The main menu is in this DO WHILE...ENDDO con-
struction. This is a continuous loop, and for good reason. The pro-
gram loops continually back to the main menu until the user exits
by choosing the X choice.

PROGRAMMING WITH dBASE 111 PLUS ' P411

o - - e eme. e mam e R R s oD gy

R LR R Y T TR T

AR e

e

o

e e RSN TTE) e N R R

PR R

CHAPTER 4§

The Rest of
the Main
Program
Module

~ Cleaning Up

P4-12

So, with one simple construction, you can ensure that the pro-
gram shows the main menu whenever control returns to the main
program. You don't have to resort to any complicated or tiresome

retyping.

The next DO WHILE .T. loop is somewhat fancy. It shows the cur-
rent time and counts off the seconds on the screen continually
until the user selects a choice. When you learn about the INKEY()
function in Chapter 8, this will make more sense to you.

For every choice from A to J, and choice L for help, the main pro-
gram will call a subprogram. The program handles this entire
multiple choice situation, except for the K choice, with the DO
CASE construction in the main program. The program picks a
subprogram, depending on what choice the user types. The pro-
gram uses the ASCII character function CHR{} and the substring
search operator §, which instructs the program to look for either
an upper case or lower case letter choice. You will investigate
these features more thoroughly in Chapters 5 and 8, respectively.

The K choice is an exception, so the program has the instructions
to handle this choice first:

F .NOT. CHRCi) § "Kk"
EXIT
ENDIF

These lines tell the program to EXIT the current DO WHILE loop
if the choice is not K or k. The program goes right to the DO
CASE constriction immediately following the ENDDO line. If the
choice is K or k, then the rest of the IF construction does a screen
display for changing the date.

Your programs should CLEAR ALL database files before the user

begins work, and they should do housekeeping when the user fin-

ishes, that is, when the user types the X choice. Take a look at the
CASE construction for this choice:

CASE CHR(i) § "Xx".

PROGRAMMING WITH dBASE Il PLUS .

AW | A e

SETTING UP THE MAIN PROGRAM

Look at the IF...ENDIF construction below this choice:

IF balance <> mbalance .OR. Lastechk <> mlastchk .OR: .
lastwth <> mlastuth .OR. lastdep <> slastdep - Tl

The IF line instructs the program to check whether the original
amounts in the balance, lastchk, lastwth, and lastdep variables
have been changed. That is, the IF line checks to see if one or
more of them are not equal to the amounts in the temporary vari-
ables mbalance, mlastchk, etc. The program SAVEs the contents
of the RESTOREd memory variables back to the Chkbook.mem
file for use the next time. However, the program only SAVEs if
the user has entered new amounts, such as more deposits, checks,
or withdrawals.

Note also that the program first RELEASEs all temporary vari-
ables that begin with the letter m with the line:

© RELEASE ALL LIKE m#

It also RELEASESs the other, now unnecessary, variables used in
the program. The program does this before using the SAVE com-
mand so that it doesn’t SAVE the unnecessary variables in the
Chkbook.mem file.

Finally, the program resets the working environment to the way it
was before the program ran, CLEARs ALL database files, CLEARs
the screen, and RETURNS to the dot prompt.

PROGRAMMING WITH dBASE HI PLUS - P413

- - a - = - P s T e e e S RS T

)

s,

.r_--u‘. O TN

FASTRE PR S N O AT B SR TR S

e INRANGE i

Chapter 5

FUNCTIONS FOR FIELDS AND MEMORY VARIABLES

You communicate with the user by means of screen forms, :
prompts, and messages. Before you can learn how to set these up, :
you have to know about the various ways to convert data to a !
form acceptable for screen displays. The data can be either field
information or the contents of memory variables.

What This This chapter discusses the following: :
Chapter e Why type conversions are necessary :]
Covers s What concatenation means i 1

¢ How to use functions with field and memory variable types

LT g

» How to convert numeric fields and variables to strings,
strings to numbers, dates to strings, and strings to dates

s How to deal with the time in a dBASE program : :

Preparing for Know the basics of programming in dBASE, field and memory
This Chapter variable types, how to open and USE database files, the DISPLAY,
P LIST, ? commands, and how te FIND a record. Because it's most
. effective to see the examples in this section directly, start / ;
dBASE III PLUS. ’ ' ' -

ke

Displaying In dBASE programs, the DISPLAY or LIST commands work 3 E
Information exactly as you expect. Remember that the DISPLAY ALL com- :

mand pauses the scrolling of database information when the 3
screen is full. For example, if the fields you wish to DISPLAY are .
First, Middle, and Last, you might use the command line:

+ Show the three fields with the record nulber.off ;
DISPLAY OFF ALL First, Widdle, Last -

However, this may disrupt any other screen messages or prompts
that you've set up. Because it can interrupt the nice look of your
screen displays, the LIST command is more dangerous from a pro-

P L

gramming standpoint. Remember that LIST without any parame- 2

ters shows all the database file information on the screen, but &

does not pause the display unless you type Ctd-S. ’E,

¢

PROGRAMMING WITH dBASE 1l PLUS P5-1 ;

L)

P - - =t e mm o e e comme e em aem = » T e g T A g TR

.

i)

T . BppP © . -

CHAPTER 5

i

s

Type
Conversion
Explained

When you use your own customized screens, you will want to posi-
tion the field information differently on the screen than the way
dBASE III PLUS positions it. DISPLAY and LIST don't give you
much flexibility. Neither does the query command, ?.

In the next chapter, you'll learn a better way to display informa-
tion with the @...SAY command. @...SAY allows you to place
information, such as field information, the contents of memory
variables, or strings, anywhere on the screen.

This, too, has its limitations. If you want to show numeric, date,
and character data on the very same line of the screen, you can’t
mix and match different data types in the same @...SAY
command, unless this data is in the form of character strings. So,
you must convert non-character data to character strings.

A character type field or memory variable can contain any print-
able character from the keyboard, including numbers and punctu-
ation marks. However, information requiring a calculated result,
such as a dollar amount, works better in a numeric field. In addi-
tion, the dBASE III PLUS date fields provide ways to check for
the day of the week or month. -- .

Numeric, date, and logical fields contain printable characters,
but, as far as dBASE III PLUS is concerned, a numeric, date, or
logical field is not in character format. dBASE III PLUS won't
allow you to mix numeric, date, and character fields on the same
line of the screen, or join together a numeric field with a string
field. You must first convert numeric and date information into a

character string. :

NOTE

You convert fields or memory variables to character strings
merely for display purposes. You are not changing field types
in the database file, nor are you modifying the structure of
the database file.

PROGRAMMING WITH dBASE Il PLUS

FUNCTIONS FOR FIELDS AND MEMORY VARIABLES

The many dBASE III PLUS conversion functions, discussed below,
help you do string conversions. Here are some general rules for
using these functions:

* If you use the name of a field or variable in the function,
dBASE III PLUS will automatically ascertain its type and
length.

* When you want to use strings that aren't in fields or memory
variables, enclose them in delimiters, usually single or double
quotes.

* When converting a numeric field into a character string, be
aware of the length and number of decimal places of numeric
fields.

¢ Date fields are special fields with their own conversion func-
tions.

. : * For logical fields, all you need to do is supply the character
representatives of .T. or .F., such as True or Yes for .T.

* Memo fields are a special case.

Concatenation Although it’s logically impossible to add or subtract one character
string from another, you can assemble strings together to form a
new string. This is known as concatenation, and dBASE III PLUS
uses the plus sign, +, for it. When you concatenate strings, ensure
that the correct spaces are between them.

For example, you have a character field called Part_no which con-
tains a six-character part number, and the current record con-
tains ABC123 in the field. The program line to concatenate the
field information with the string The part number is would be:

? "The part number is" + Part_no -
which would result in: The part number 1sABC123. The two
strings run together, because you forgot the space between them.
You could do this:

? “The part number is " + Part_no

. PROGRAMMING WITH dBASE 1! PLUS . P53

CHAPTER 5

Comparing
Strings

SRR bt Vs i < pm e b 1ttt o 1 o R e 5 3SR W W

P5-4

T et | ol b g S

Notice the extra space after is. You could also do it this way:
t "The part number is" + " " + Part_no

Notice the extra space in the quotation marks. There is another
way to concatenate strings, which you'll learn about shortly.

Even though strings aren’t numbers, you can still compare them.

That’s because the ASCII code values for each printable character

are in a certain numerical order. Refer to the ASCII code table in
Appendix E of Using dBASE III PLUS for the code values. For
example, if you typed ? ‘A’ < ‘a’ you would get a .T. response,

because the ASCII code for A (65) is less than the ASCII code for a

(97).

Similarly, you can compare a character string with the line ? 950’

> 750". Note that these are strings because they are delimited,
even though they contain numbers. Because the ASCII code for 9
(57) is higher than the ASCII code for 7 (55), you get a .T.

response. -

WARNING
Don’t mix types in comparisons. For instance, you can't com-
pare a string to a number. Make sure that you're comparing
the same types. Otherwise, you'll get the error message Data
type mismatch. Moreover, in string comparisons, dBASE 111
PLUS compares all characters until it runs out on the right-
hand side of the relational operator, =. For instance, if it
were doing this comparison:

? 'abed' = ‘abe’
it would give a .T. response. But this comparison:

? ‘abe’ = 'abed’

+

gives a .F. response.

PROGRAMMING WITH dBASE Il PLUS

e e wwwear T s e e e YA T BT I e e e ey gt e

I

@

o o — b (AT a8 b

i B g o et e vy, L o 0 S PR A o ks B e B, 2

._'. -
R

FUNCTIONS FOR FIELDS AND MEMORY VARIABLES

Numeric
Functions

String
Functions

today = DATE()

IF [todayl =["September12. 1986"] u

DateT

T String

Data type mismatch

Figura 5-1 You can't compare fields or variables of different types

There are several functions that work with numeric data to pro-
duce a numeric value. They are relatively straightforward. «You
can find thorough explanations of these functions m’Usmg
"dBASE III PLUS. Here they are:

ABS() — absolute value

EXP() — exponential value

INT() — integer value

LOG() — natural logarithm
MAX() — maximum value
MIN() — minimum value
MOD{) — modulus (remainder)
ROUND() — round a number

SQRT() — square root

These functions always return a numeric value. The INT() func-
tion is important to the discussion of conversions here. However,
it will make more sense to you after you've first looked at the

string functions.

dBASE III PLUS has many functions that deal with character
strings. You'll use the following string to illustrate these

functions:
Your choice is incorrect —

PROGRAMMING WITH dBASE 11l PLUS

change it? (yin)

%

T a b

ke e s L Aeym " et S

LY. DY LY L]

"

4

e L a8 GO R AT SR i - iy B ™ MR B VPN B S 4 cne &

s e

v

P5-5

R T TN S

. A rmare

T T

CEdads S e e

CHAPTER 5

3

So that you don’t have to type in the same string continually, fnrst
initialize it as a memory variable called string:

"o

STORE 'Your choice is incorrect -- change it? {y/n) 10 string

You can determine a great many conditions using string func-
tions. One is to check whether or not the user has typed a correct
response.

YA AT A Raihm D

UL

The Length of Often you need to know how long a string is. For example, if the
a Strin user has typed in a command, you can check its length to make
B sure that the input is correct. The function for this is LEN(). This

function always returns a numeric value. The entire string, the
character field name, or the memory variable name must be in
parentheses. Here are some examples:

? LEN{string)

returns the length of the initialized memory variable string, which
is 44. The delimiters are not included in the length.

? LEN("What's my line?")

B oo 5 TS o el e e e 5

returns 15, which is the length of the string What's my line?. If
there were a database file in USE containing a field named First,
the command

? LEN(First)

would return the length of this field. You can set up a simple IF
construction to test for string length:

% If the length of the input variable is not §
IF LENCinput) © § :
D0 Error 8& Branch to Error.prg
+ The length is 5, 50 go on
ELSE
+ {conmands)
ENDIF

P56 PROGRAMMING WITH dBASE 11 PLUS

-=.nl.nm..--a- . rm—

e trai,

FUNCTIONS FOR FIELDS AND MEMORY VARIABLES

Getting Part You can ask dBASE III PLUS to give you only a part of the string.
of a Strin This is known as a substring, and the function for it is SUBSTR().

8 You must tell dBASE III PLUS where to start in the string and
how many characters to count starting from that position. The
first number gives the starting position; the second number gives
the length from the starting position. For example:

7 SYBSTR(string,1,24)

_tells dBASE III PLUS to display the memory variable string start-
ing at position 1 and continuing for 24 characters. The result is:
Your choice is incorrect.

{Your choice is incorrect] - change it? (y/n)

Tsuasm’(string,1,24)

Figure 5-2 A substring.is part of a string

If you provide a starting number but no ending number, then
dBASE III PLUS assumes that you want the rest of the string,
starting at that position:

? SUBSTR{string,29)

results in the answer: change t? (y/n).

With the SUBSTR() function, you can reuse part of a string in
another string, without having to retype the whole string. For
example:

? "1 don’t like your ansuer, do you want to ™ + ;
SUBSTR(string,29) -

gives the new string:
I don't like your answer, do you want to change it? (y/n).

PROGRAMMING WITH dBASE 11 PLUS ' P5.7

o i e v D R L 3 T e e - P L vem e wmeme e = e e ey

D Ll AN

Ay

[T VRS

I ANTELIMNADIAG S - s Ege L Rk mARL et nEUT

;-;;gﬁ,-:r.-n_{.mpamﬂ; PO T e L A N 1 T T Rty SAG e ML ST

T P P P S I T

AN 2 ol P i Y

Ay b

CHAPTER 5

Left and Right
Sides of
Strings

Substring
Position

P5-8

Ty
. s . r o}
Note that there is a space after the first to, so the two strings are '

correctly spaced.

You can get certain characters in the string starting from the left
or the right side with the LEFT() and RIGHT() functions, respec-
tively. LEFT() is like the SUBSTR() function, but you don't have to
supply a starting address, because it is automatically positioned
at the left side of the string. Conversely, RIGHT() starts with the
last position in the string and works backward (that is, right-to-
left). To illustrate:

7 LEFT(string,24)

would result in:
Your choice is incorrect

whereas

? RIGHT{string, 16}

would result im:
change it? (yin)

The AT() function returns the starting position number of the
substring in a string. For example,

? A.t'('c_hange', string)
gives the number 29, the position where the string change starts.

If the substring is not in the string, then AT() returns the value 0.
Note that the substring change is enclosed in delimiters.

PROGRAMMING WITH dBASE Hll PLUS

L T Y L S Ll e

e i

: e,

FUNCTIONS FOR FIELDS AND MEMORY VARIABLES

Changi ng Sometimes you may want to convert a string to upper case or
Between lower case. The UPPER() and LOWER() functions will convert the
entire string:
Upper Case ,)
and Lower * -7 UPPER(string)
Case n
would result in
YOUR CHOICE IS INCORRECT — CHANGE IT? (YIN)
whereas
? LOMER{string)
would result in
your choice Is incorrect — change it? (ym)
How would you convert only part of a string? Use the UPPER() or
LOWER() function with the SUBSTR() function. For example:
T 'T' + LOWER(SUBSTRO'THIS 15 NOT COMNPLETELY IN LOMWER CASE’,2))
gives the answer
This is not completely in lower case
because the SUBSTR() function starts the string at position two
and includes the rest of the string.
The Add.prg module uses the UPPER() function to test for a user
response:
IF UPPER(answer)="Y"
TOEXIT
ENDIF
You can use the string functions in many different combinations,
but be careful to include the correct number of parentheses and
to use the concatenation operator, +, between strings.
PROGRAMMING WITH dBASE Il PLUS P5-9

P s wmmaege e oy o -~ o v e Nk T

PITEL MR R YY

b b AL e et

4, D IIRAEPAEALY:

S R DS TR SR ke 1 o4 B,

ERR T LT L e e T W RSN TR T

I TP T T I Pr- T TPCL.F ¥ 7 S ST Wl FRE. 1 PP SN §r S I 1 - I D B L L. T St NI SRy - T T TP T

AL

CHAPTER 5

Trimming
an Entry

B ORy S T

TR T Sy S

Getwr rocCrmcive wee s

"

It is important to avoid trailing blanks. When you enter informa-
tion in a character field and leave a few empty spaces in the field,
dBASE IIT PLUS fills them up with trailing blanks. If you don't

- want them to appear when you display the field, use the TRIM() |
function to take them out.

Last_name Trailing Blanks |

Field'is 20 Characters Long

.2 Trim (Last_name)

Figure 5-3 Trailing blanks

For example, the First_name field in a database file is 15 charac-
ters long, and you want to display the field information for the
current record together with the Last_name field. The two fields
contain the entries Joe and Palooka, respectively. The line

? First_name ¢ ,tasg_nﬁi'q_
would result in

Joe Palooka
The entry

? TRIN(First_neame) + 'Lgst_nan

would result in
JoePalooka

PROGRAMMING WITH dBASE Ill PLUS

LRI T it L R e R i i s AT

FUNCTIONS FOR FIELDS AND MEMORY VARIABLES

-

That’s not what you want either. The solution is:
? TRINCFirst_name) + ' ' ¢ lLast_name

OR
? TRIﬁ(First_nale). Last_name

Either way gives you:
Joe Palooka

If First_name contained Stephanie and Last_name contained
Stevenson, the answer to the same query would be:

Stephanie Stevenson

TRIM() trims only the trailing blanks. There are two other trim-
ming functions: RTRIM(} and LTRIM(). RTRIM() is exactly the
same as TRIM(). It trims trailing blanks. LTRIM() trims the lead-
ing blanks at the beginning of a string. This is very useful for
catching user errors. If the user inadvertently types a space to
begin a character entry, you can use LTRIM() in your program to

. correct the entry.

Last_name Traiting blanks
~Palooka _ _ _ _ _ . . o

Leading blank typed in by mistake

.? LTRIM (Last_name)

Palecka _ _ __ _ _ _ _ _ . _ _ _

Figure 54 Leading blanks

PROGRAMMING WITH dBASE Il PLUS ' P5-11

L

o AN R S R S o AN a1 P T ST IMRTAAT M ST SATHTIMIN AR .06 207 1

b

i

T PO

CHAPTER 5

P5-12

TIP

Using the TRIM(), LTRIM(), and RTRIM() functions will help
you avoid user errors and increase data precision. When you
want the program to STORE the contents of a character field
in a memory variable, use LTRIM() with TRIM() to avoid any
unnecessary leading or trailing blanks in the field. Similarly,
if the user is to type in a name, first make sure that you
account for leading and trailing blanks in the name before
doing anything else with it.

For example, you initialize a memory variable called mlast to
hold the user’s input of a last name:

STORE SPACE(20) TO mlast

The last name that the user types probably will contain under_
20 characters, but the user might type a space before the
name accidentally. To ensure that dBASE III PLUS only deals
with the real last name, and not the leading or trailing blanks,
have the program do this:

STORE LTRIN(TRINCmiast)) 70 mlast

Getting rid of trailing blanks is especially important when
you need an exact match between the contents of a memory
variable and field information.

Another common use of the trimming function is to find the
actual length of a field's contents. For example, if a database file
contains a field called Name, LEN(Name) always returns the field
length rather than the actual length of Name. LEN(TRIM(Name))

solves this problem.

PROGRAMMING WITH dBASE 11l PLUS .

FUNCTIONS FOR FIELDS AND MEMORY VARIABLES

Another Way
to
Concatenate

You can also concatenate strings with the — operator, which does
two operations at once. It joins two strings, just like the + opera-
tor, but it also moves the trailing blanks from the first string to
the end of the resulting string. Thus:

? First_name -~ Last_name

results in:
StephanieStevenson

This concatenation operator is most useful when you want to join
two character fields, such as a department number field and an
employee number field to result in a new, composite number.
Here, you're creating a new employee number by concatenating
the character field Dep_no, with a length of four, with the charac-
ter field Emp_no, which also has a length of four:

STORE Dep_no - Emp_no TO newnua

- If the Dep_no field contains *A * with three trailing blanks, and

the Emp_no field contains 123X, the newnum variable contains
the string "A123X ”. Note that the three trailing blanks have
been moved to the end of the new string.

First_name Last_name

Ee ___________ -:“Palonka________l_____._J

. ? First_name + Last_name

. 7 First_name-Last_name

Ife Palooka_ — . _ — o L o e e e o e e e e e e = — - J

Figure 5-5 Two types of concatenation

PROGRAMMING WITH dBASE ill PLUS P5-13

A TR Sl M Wi e e TR

LT T TR e PR TR Y

[PETOR I

R

L L e T)

e liods 1o

N atwhen 262t 0

CHAPTER 5

Strings as
ASCIl
Characters

Controlling
the Bell

P5-14

Computers convert all characters to special numeric codes. Every
printable, keyboard, and screen character has a unique ASCII
code. These characters and their ASCII codes are in Appendix A
of Using dBASE I1I PLUS. You can display a character with the
CHR() function if you know its ASCII code number.

Frequently, you will use this function to create special screen dis-
plays and to ring the bell, which also has an ASCII code number.
For example,

? CHR(201)

is the same code which produces the upper left corner of the box
in the checkbook management system main menu.

There’s also the ASC() function, which returns the ASCII code for
a character. Thus:

? ASC('a)

gives the integer 97, the ASCII code for a. You can use this func-
tion to increment letters. For example,

Y CHRCASC(a)) + 1)
gives the answer b.
ASCII code 7 is what makes the bell sound:

7 CHR(D)
Use the bell sparingly for situations where you want to grab the
user’s attention. Remember that dBASE 1II PLUS also rings the
bell when the user has typed in the contents of a field completely,

unless you SET BELL OFF. CHR(7) will ring the bell regardless of
whether BELL is ON or OFF.

PROGRAMMING WITH dBASE il PLUS

£

L A,

FUNCTIONS FOR FIELDS AND MEMORY VARIABLES

3
. _—\
& i
3
: 2

et

? STR(300D)

ii
; NOTE .
There are a few ASCII codes in the range 1-31 that have two :
4 meanings, depending on their context. When you learn about s
? the @...SAY command in the next chapter, you'll see that the H
i ? command and the @...SAY command can produce different :
P characters for the same ASCII code number in the range 1-31. :
'§ U ;
4 Numeric to There are several functions that deal specifically with converting 3
§ Character numeric data into character strings, a common conversion in pro- ,
p gramming. 4
s, Conversion 2
‘ ‘ The STR(Q STR() is the dBASE III PLUS function that returns the string '
‘I. Function equivalent of a number. For instance, 3
E;;
ol

returns the character string * 3000” but without the quota-
tion marks. Notice the blanks at the beginning of the string. The
STR() function normally returns a string that is ten characters
long. dBASE III PLUS pads the number with blanks. However, it
is advisable to give the STR() function two arguments to deter-
mine the length of the new string and the number of decimal
places. For example,

? STR(3000,4) |
gives the string answer 3000. The 4 refers to the four total display

places of the string. You eliminate any leading blanks by deter-
mining the total number of places yourself.

PROGRAMMING WITH dBASE Il PLUS P5-15

CHAPTER 5

In the Reconcil.prg module of the checkbook management system,
the program uses the STR() function together with another string
in an @...SAY line. This line displays a memory variable called
diff converted to a string on row 19, column 23:

@ 19,23 SAY "The difference is $"+STR(diff,10,2)

Notice that the dollar sign is not part of the STR() function, but
by concatenating the two strings an amount is formed on the
screen. For example: ‘

The difference is $ 23.0%

To display a period at the end of this line, concatenate it to the
end:

19,23 SAY "The difference is $"+STR{diff,10,2)e" "

Converting The string in the above example has two decimal places. Usingan .

Numbers with optional third argument in the STR() function signifies the num- .
. ber of decimal places in the new string. However, the total num-

Decimal ber of places, that is the second argument, must include the num-

Places ber of decimal places plus one space for the decimal point:

7 STR(35.50,5,2)

gives you the string 35.50. The second argument, S, refers to the
total number of places, including one place for the decimal point.
The third argument, 2, signifies the total number of decimal
places. In addition, if the number is negative, the total number
must include an extra place for the minus sign.

P5-16 PROGRAMMING WITH dBASE lll PLUS

FUNCTIONS FOR FIELDS AND MEMORY VARIABLES

If you give dBASE II1 PLUS arguments that don’t make sense, for
instance if you don’t include the decimal places and decimal point
in the total number of places of the string, dBASE III PLUS will
give you an error message. For example:

STORE 1 TO num
7 $TR(nunm,1,2)

results in the error message:
++*Execution error on STR() : Out of range

because you can’t have two decimal places but only a total of one
place for the string. Similarly, if you try this: :

STORE .50 TO nua
? $TR(nunw,2,2)

you get the same error message, because you need at least four
total places for the display: two for the decimal places, one for
the decimal point, and one for a leading 0. In the above example,
dBASE does not return .50; it must return 0,50. Be careful when
converting numbers with decimal points that you include the total
number of places in the new string.

Similarly, if you define a STR() function with fewer places than
the number, you get an overflow message, shown as a string of
asterisks: |

num = 55555
? 5TR{num, %)
ki

PROGRAMMING WITH dBASE It PLUS | P5-17

e

Fgras o

Hg,
e

CHAPTER 5

P5-18

. num = 35.50
L1

2 decimal places —
1 place for decimal

5 pllaces total

v

. ? STR {num, 5, 2)
35.50

Figure 56 Take care with decimal places

- number of decimal places for display output.

TP :

You can control the minimum number of decimal places that
certain numeric functions show with the SET DECIMALS
command. This command works only with the EXP(), LOGY(),
SQRT(), and VAL() functions, and with division. The command
SET DECIMALS TO instructs dBASE III PLUS to show the
answers to these operations with two decimal places. How-
ever, if an answer returns a number with four decimal places,
use the SET FIXED ON command, which establishes a fixed

PROGRAMMING WITH dBASE 1Ii PLUS

FUNCTIONS FOR FIELDS AND MEMORY VARIABLES

If a number has no decimal places, convert it to a string to dis-
play it with decimal places:

string = 35
? STR(string,5,2)

gives the string 35.00.
Strings to You can convert a string to a number with the VAL() function:

Numbers .. STORE "599.85" TO string
? VAL(string)

returns the number 599.85. To convert the string to an integer,
you use the VAL() function with the INT() function:

STORE "599.85" T0 string
STORE INT(VAL(string)) TO newstring
7 newstring

returns the integer number 599.

NOTE

Be careful when using the VAL() function with strings that
don't contain numbers, dBASE III PLUS returns the value of
0 in this case. For example,

7 VAL("Hello there!")
results in 0.

PIIOGRAMMING WITH dBASE ill PLUS P5-19

CHAPTER 5

Date
Arithmetic

P5-20

Although it displays dates in a format that you can readily under-
stand, dBASE III PLUS sees date fields and date type memory
variables as special numbers. dBASE III PLUS has special func-
tions that manipulate date information. The date functions allow
you to work with dates in general without knowing what the
actual date is. For example, the DATE() function returns today’s
date, which you entered when you started DOS. It's in the form
MM/DD/YY, although you can change that format.

You can add a number to a date to get a new date. For example, if
you are writing an accounting program that relies on dates, you
can have a command like this:

STORE OATE() + 30 TO overdue

The program adds thirty days to the current date to get a date
variable called overdue which contains the new date. Then use
this memory variable to test for a condition:

* If the account is overdue today
IF overdue =z DATEQ)
Do Dunltr 82 Send out @ dun letter
ELSE
* Or if the account is past due
IF overdue > DATE() .
DO Nasty 82 Send out a stronger letter
ENDIF
ENDIF

Similarly, you can also subtract 2 number from a date to get a
new date, or you can subtract two dates to get the numeric result
of the number of days between the dates:

STORE DATE() TO today

STORE todesy - 1 TO yesterday
STORE yesterdsy - 1 T0 daybefore
STORE today - daybefore TO diff

PROGRAMMING WITH dBASE 11l PLUS

FUNCTIONS FOR FIELDS AND MEMORY VARIABLES

‘Date Formats

You can get the numeric equivalents to the days of the week or
month, the months of the year, or the year itself with other date
functions. For example, if the current DATE() is September 12,
1986, note what you get for each function below:

? DOW(DATE())

6, for the sixth day of the week

7 DAY{(DATE())

12, for the twelfth day of the month
? NONTH{DATE())

9, for the ninth month of the year
7 YEARCDATE())

1986, the year

dBASE III PLUS considers Sunday as the first day of the week.
You can get the strings or substrings of these numbers if you
wish: '

T SUBSTR(STR(YEAR(DATE()),4),3,2)

gives the string 86, for the example used, September 12, 1986. You
can also STORE the value of any of these functions in a memory
variable for later use in your programs. If you do this, remember
to declare the variable PUBLIC first.

The standard format for the date, MM/DD/YY, is the default -
American format. There are others you can use; for example, the
British format is DD/MM/YY, and the German format is
DD.MM.YY. You use the SET DATE command to change the for-
mat of date fields or variables. So, SET DATE BRITISH changes
the format to DD/MM/YY. See Using dBASE III PLUS under SET
DATE for the other date formats.

PROGRAMMING WITH dBASE it PLUS P5-21

CHAPTER 5

Date-to-
Character
Conversions

P5-22

There is also a SET CENTURY command, which switches the dis-
play for the year between two digits and four. SET CENTURY is
normally OFF, so use SET CENTURY ON to display a date in the
form MM/DD/YYYY, for the American format. Thus September
12, 1986 would appear as 09/12/1986.

NOTE

Use SET CENTURY ON if you want to input a century other
than 1900. Even with SET CENTURY ON, a date will still
take up only eight characters in a file structure and nine in a
memory variable.

When you wish to use dates with character strings, you first have
to convert the dates to strings. You do this with the date-to- char-
acter function, DTOC{(). For example:

? DTOHMTEU)_ -

gives a string of the current date. If the date were September 12,
1986, with SET CENTURY OFF, then the answer to the above
inquiry is the character string 09/12/86. If you have SET the date
to the BRITISH format, the answer to the same query is 12/09/86.
With SET CENTURY ON and SET DATE BRITISH, the result is
12/09/1986.

You can, of course, use any of the other string functions once
you've converted a date to a string. For exampile:

- SET DATE BRITISH
7 SUBSTR(DTOC(DATE()),1,2)

gives the string 12.

PROGRAMMING WITH dBASE Il PLUS

FUNCTIONS FOR FIELDS AND MEMORY VARIABLES

Character-
to-Date
Conversions

WARNING

You can't perform arithmetic operations, such as adding num-
bers to dates, on strings which you create from dates. First,
you have to convert the strings back to dates. You'll see how
in a moment,

There are other useful date-tocharacter functions that reduce

needless programming efforts on your part. Note the string
results for the following functions when DATE() is 09/12/86:

? COOM(DATE())
Friday
7 CHONTH(DATE())

September

You can provide your users with string equivalents to a date to
make your printed reports look a lot better. For example:

" "7 CDOWCDATEC)) +#, .+ CHONTHCDATEQ)) #7 % ¢ ;
‘LIRINCSTRCDAY(DATE()),2)) %, ™ +-STRCYEARCDATE()),4)

gives the string:

Friday, September 12, 1986

Once you've set up this command line, it works with the current
DATE(), no matter what it is.

You can convert a string in the correct date format to a date with
the CTOD{), character-to-date, function. The correct format is
MM/DD/YY. For example, assuming that the date format is AMER-
ICAN, and SET CENTURY is OFF:

PROGRAMMING WITH dBASE 111 PLUS : P5-23

[

i

o CHAPTER 5

Using
Dates in
Comparisons

P5-24

STORE 'D9/12/86' 10 string
STORE CTOD(string} TO newday

O

results in the date variable 09/12/86. If you use a string dire-ctly in
a CTOD() function, you must enclose the string in delimiters:

? CTOD('09/12/84")

09/12/86

If you attempt to convert a string to a date, but the string is not
in the correct date format, dBASE gives you a blank date:

7 CTODC'September 12th, 1984")

F | . ’
However, if you convert a string that is in the correct date for-
mat, but the corresponding date is incorrect, dBASE III PLUS cor-
rects the date. For example:

? CT00('02/29/35")

gives the answer 03/01/85, because dBASE III PLUS knows that
February in 1985 only had 28 days. So it gives the next available
real date.

Because chronological comparisons are different than string com-
parisons, a comparison of two strings could give you an incorrect
date. You must convert characters to dates to get correct results.
For example,

? "01/01/86' > "12/31/85'

gives the answer .F., although January 1, 1986 is the day after
December 31, 1985. The correct syntax is:

? CTODC01/01/86 > CTOD("12/31785") -

This yields a .T. response.

PROGRAMMING WITH dBASE IIf PLUS

FUNCTIONS FOR FIELDS AND MEMORY VARIABLES

How to
Initialize a
Date Variable

Using Time

So, it’s best to convert a string to a date before doing chronologi-
cal comparisons. For example, if you want to DISPLAY all data-
base records with a date field, Chg_date, containing the date
09/12/86, issue the command:

_ DISPLAY OFF ALL FOR ﬁhg_date = ¢T00('09/12/86")

You'll use this technique frequently in reports, for instance, to
validate that what the user types is an actual date.

The only way to initialize a date variable is to use an existing date
field or a function that returns a date, that is, either DATE() or
CTOD(). To initialize a date variable, today, with the current date,
you would enter:

_today = DATE()

To initialize a date other than the current date in a memory vari-
able, use the CTOD() function:

lastueek = CTOD('08/07/85")
You can also initialize a blank date variable:
newdste = €100 7 /)
dBASE III PLUS’s TIME() function returns the current time in the

form hours/minutes/seconds, provided that you entered the time
at the DOS prompt when you turned on your computer.

"2 TINEQ

gives the string answer 14:30:43 if it's 2:30 p.m. and 43 seconds.

TIME() always returns a string. To save the current time in a
database field, define the field as character type with a length of
8, and then REPLACE its contents with a string made from the
current time. For instance, if it's now 2:30 p.m. and the field
name is Now:

REPLACE Now WITH TINE()

PROGRAMMING WITH dBASE 1l PLUS P5-25

CHAPTER 5

" The field Now contains 14:30:43. The seconds, of course, will be
different. You could then split Now into substrings if you wanted
to include only part of the time:

REPLACE Now WITH SUBSTR(Now,%,5)
puts the string 14:30 into Now.

Memo Fields You can’t use the string functions on memo field information,
because memo fields aren’t strings. A memo field is like a sign-
post, pointing to a separate file which contains the free-form con-
tents for the memo in each record.

The only way you can change a memo field from within a pro-
gram is to set up a special format file. You'll see how to edit or
add to memo fields in Chapter 8. There is no such thing as a
memo-type memory variable,

i i Use logical-type data to determine conditions in DO WHILE, DO
LoElcaI Fields CASE, and IF constructions. However, if you want to display the
contents of a logical field or variable on the screen, you can use a
string equivalent. This isolates the user from the dBASE III PLUS
logical operators, .T. and .F., which might be confusing.

Because a 1ogical field can either be true or false, it’s easy to dis-.
play one of two responses. Here, mcorrect is a logical type mem-
ory variable:

IF mcorrect &% That is, if mcorrect is .T.
? "That's correct!™

ELSE 88 It's .F.. .)
? "Sorry, that's not correct --_try againi”

ENDIF.

P5-26 PROGRAMMING WITH dBASE Il PLUS

Chapter 6

COMMUNICATING WITH THE USER

What This
Chapter
Covers

Preparing for
This Chapter

Because you can't assist your users personally, your program
must communicate clearly, helpfully, and efficiently so they can
work with the program easily. The most important part of any
program is the user interface — the communication with the user.
The topics covered in this chapter are:

¢ What screen coordinates are

* How to position prompts and messages on the screen

* The commands for receiving and controlling responses (input)
from the user

e How to use the SET CONFIRM command in @...GET lines

¢ The basic pattern for using screen forms in programs

_ By now you should have a general knowledge of dBASE program-

ming, including how to convert numeric and date type informa-
tion to character strings, discussed in Chapter 5. It’s preferable to
study this chapter in conjunction with the next two, which con-
tinue the discussion of designing screen forms. -

The primary function of the user interface is to make the pro-

:;J‘::,nmgs ?f_rﬁz gram easy to use. The phrase user-friendly describes exactly how
your program’s user interface should be. Whenever possible,

Recommended design customized screen forms that mimic the user’s own forms.

Way These screen forms also provide assistance and guidance so that
the user is never lost or unsure about what to do next. Supply
easy-to-understand messages and prompts to guide users glrough
the program. At the end of the next chapter are some pointers for
designing screen forms.

PROGRAMMING WITH dBASE Ill PLUS P6-1

CHAPTER 6

NOTE

The discussion in this chapter relates to entire screen forms
and to shorter, one-line prompts and messages. The setup
techniques are the same for both. These methods are also
used for obtaining and displaying information.

Although you can show actual field contents on the screen, you
might not want the user to be able to enter information directly
from the keyboard to a database file. Remember that the full-
screen commands, APPEND, BROWSE, CHANGE, and EDIT,

allow the program to do this.

For the sake of database integrity, you may want to take firm con-
trol over how the user changes database information. For
instance, if your users are inexperienced, you wouldn’'t want to
give them access to the full-screen commands. Using on-screen
forms is the recommended way to have users enter or change

- data in a database file. The discussion in the present chapter and
the following ones stresses this approach.

Using custom-designed screen forms, the program gets input from
the user and STORESs this input temporarily in memory variables.
When the user verifies that the input is correct, the program
REPLACE:s the current information in a database field with the
new information. Using memory variables throughout your screen
form design ensures maximum protection of the user's database
file.

P6-2 PROGRAMMING WITH dBASE 11I PLUS

COMMUNICATING WITH THE USER

rE

H
.
&

L
z,
5

=
>

A%
n

’

oat

LI
v Bare s o'y

Controlling
the Screen

NOTE

There is one exception to this practice: memo fields, which

can only be changed directly. See Chapter 8 for a discussion
of this exception.

t-—g= fRame First
b= minitial = Middle
Iname p» Lasl

MEMORY DATABASE

frame
minitial
iname

SCREEN

FORM A\ /
GET INFORMATION STORE IT IN VARIABLES WHEN VALIDATED REPLACE
HERE FOR VALIDATION DATABASE FIELDS WITH CONTENTS
OF MEMORY VARIABLES

Figure 6-1 How a screen form works

You already know how to initialize memory variables. Chapters 9
and 11 deal with verifying user input and updating the database
file. This chapter and the next concentrate on screen forms.

Before you investigate the ways to implement the above pattern,
you have to be able to position prompts, messages, and places for
the user input exactly where you want them on the screen. This
means learning how the computer works with the screen area.

PROGRAMMING WITH dBASE Il PLUS . P6-3

CHAPTER 6

Screen
Coordinates

The screen display is a grid of evenly spaced horizontal and verti-
cal lines. dBASE III PLUS refers to the horizontal positions on the

. screen as rows and the vertical positions as columns. The inter-

section of a given row and column is called a screen coordinate.
Every coordinate can display information. You can put any print-
able character on the screen by telling dBASE III PLUS the loca-
tion of the coordinate with the @...SAY command.

Microcomputer screens generally have 25 herizontal rows and 80
vertical columns. These rows and columns are numbered from the
top of the screen down to the bottom, and from left to right. A
screen coordinate consists of two numbers: the horizontal row
number is listed first, and the vertical column second, such as:
1,5.

SCREEN

01 2 3 4-5 6 7 > BT TBM

™

Pae.

...--"""‘r-\

b W W = O
§ I S N I S R P
o
"] [~

Figure 6-2 Screen coordinates

Every character position on the screen has row and column coor-
dinates.

PROGRAMMING WITH dBASE 11l PLUS

.:-

COMMUNICATING WITH THE USER

A
Coordinates start with 0, rather than 1. The top row of the screen
is row 0, and the bottom is row 24." : Similarly, the leftmost column
number is column 0, while the- nghtmost column is column 79. So
the coordinates i,3 refer to the second row on the screen and the
sixth column. '

TIP
Remember that with SET STATUS OFF, the top row of the
screen, row 0, is the scoreboard!"If you decide to display infor-
mation on this row and don’t want certain dBASE III PLUS
messages to disrupt your scre2nmake sure that you have
SET SCOREBGARD OFF. -7

o B0
Aty Lo

.
s

L rfh
The @...SAY command reqmres that you supply correct screen
. coordinates after the @ command and what you want to display
following SAY. For example, if you want to display the current
First_name field of a database fil¢'in USE on row-S, column 10 of
the screen, here is the way to do’ 1t-

: : e 3 %
'@ 5,10 SAY rirs“i’jgine "w’%:f_-

If you want to display a memory vanable on the screen, make
sure that the varisble is 1n1t1alu.ed before using @...SAY.

ST ohear -

 pusLIC nssage L AR -
STORE "That's not., .proper? responsn" T0 lessagﬂ Co.
L 10 7 SAY leesagﬂm , ;:55:#‘_, T

If the program is to display a strmg, enclose the string in correct
delimiters: . ‘:_?—} -

o T3

- . = -

i 715,15 SAY "D you nnt to-.cnrrect your uistake’ ty!n)"

-_ 5

PROGRAMMING WITH dBASE Il PLUS .-

CHAPTER 6

-,

dBASE HI PLUS paints the screen in the order that the @...SAY
commands appear in the program file. It's best to have the pro-
gram show information on the screen from the top down and
from left to right. However, for some special effects you can
arrange the order of the @...SAY command lines in your pro-
grams to display information in any way you want.

Screen and In Chapter 12, you'll learn how to print from within a program
Printer using @...SAY lines to position output on the printed page. In this
. case, you can have coordinates beyond those allowed for screen
Coordinates displays. However, the highest coordinate you can use for either
horizontal or vertical positioning in printouts is 255, and in
screen displays, dBASE III PLUS gives you an error message if
you use a coordinate, such as (24,205), that is off the screen.

Ways of The screen display doesn’'t change unless you change it with

Clearing the instructions in your program. Make sure that your program -
B clears away the previous screen display before it shows the user o

Screen another screen, or whenever you want the display to disappear.

The CLEAR command blanks out the entire screen. If you want to
- clear only a part of the screen, there are ways to do so.

To clear the screen from a specific row to the bottom of the
screen, use @...CLEAR with the beginning row's coordinates. For
instance, if you want to clear the screen from row 19, but leave
rows 0-18 intact, use;

- 8 19,0 CLEAR

WARNING ,

Don’t confuse the CLEAR command with the CLEAR ALL and
CLEAR MEMORY commands. Issue CLEAR by itself to clear
the screen.

P6-6 PROGRAMMING WITH dBASE 11l PLUS

.]

COMMUNICATING WITH THE USER

PROGRAMMING WITﬂ'dBME i PLUS

If you want to clear only one row at a time, just supply the coor-
dinates of that row after @. The following command lines clear
the screen from row 19 to the bottom of the screen, one row at a
time:

r

TN R T e

oe e e

N A PO DD =

SN = OO
-

(=R -N-J—J—J)

’

You can also clear a rectangular area of the screen by providing
its upper left and lower right coordinates:

85,1 CLEAR 10 10,75
The checkbook management system uses another technique to
clear part of a row. It fills that part with spaces, deleting the dis-

play in that section:

S 8 6,15 SAY SPACE(20)

P6-7

PO A e

CHAPTER 6

The TEXT
«+.ENDTEXT
Construction

CLEAR @ 12. 0 CLEAR l@ @ 12, 5CLEARTO 12,70
@
@

K l

Figure 6-3 Ways to CLEAR a screen

You can CLEAR the entire screen from a specific row to the bot-
tom of the screen, certain rows only, or only parts of a-row.

If you want to display large amounts of text on the screen — for
example, in a help screen — you don't have to set up coordinates

- or use strings enclosed in delimiters for each and every row.

Instead, use the TEXT...ENDTEXT construction.
TEXT...ENDTEXT instructs dBASE III PLUS to display the con-
tents between the commands exactly as shown.

Keep in mind when you prepare your text that the screen is 80
columns wide. Make sure your display is centered correctly on
the screen. Take a look at the Help.prg file, which contains the
help screens for the checkbook management system. The very
beginning of the file looks like this:

PROGRAMMING WITH dBASE 11l PLUS

COMMUNICATING WITH THE USER

PA Iy 2., 0 I R TN N .
n e L, . R P T LV
. B . .

How to Get

User Input

@...GET
...READ

PROGRAMMING WITH dBASE Il PLUS

CLEAR
TEXT

¥elcome to the Checkbook Management System. This system is
designed to keep track of your deposits, your withdrawals,
your checks, balancing your checkbook, and printing reports
of several combinations. Below are listed the menu selections
:nd : description.

ENDTEXT

‘Notice how the program sets up each screen with
TEXT...ENDTEXT and the blank lines for spacing between para-
graphs. The TEXT command never uses the SCOREBOARD, even
if you SET SCOREBOARD OFF. You can’t display field or mem-
ory variable information within a TEXT... ENDTEXT construc-
tion.

There are several commands for receiving input from the user.
Which one you choose depends on the kind of input that the pro-
gram needs. Generally, if the user is to supply more than one
piece of information, use @...GET and READ. If the user is to
respond to a one-line prompt, use ACCEPT, INPUT, or WAIT. .

Use @...GET followed by READ in on-screen forms to obtain user
input. Each @...GET line displays a blank for user input, similar
to the way APPEND works. If you want two blanks on the same
screen row, issue two separate @...GET commands.

WARNING

The @...GET instructions work only if the program has previ-
ously initialized all the memory variables it uses in the
@...GET commands.

CHAPTER 6

P6-10

With INTENSITY ON (the default), each @...GET line presents
the user with a blank form to fill in, just as if the user were work-
ing in APPEND or EDIT. @...GET uses the enhanced display to -
show each blank in inverse video, unless you've changed the
enhanced display with SET COLOR TO. The fill-in blank is the
exact length of the memory variable. You can also use SET
DELIMITERS to show the boundaries of the fill-in blanks (see
Chapter 8).

The way you want the user to give the program input determines
how many READ lines you will need. Most of the time you pre-
sent the user with a screen form that contains several blanks for
filling in information. This type of setup enables the user to enter
all the information and backtrack with the T key to make any nec-
essary changes. You only need one READ statement to handle all
the individual GETs. Alternatively, you can have the user enter
just one piece of information at a time if you use READ after each
GET line.

Here's how the two situations differ in practice. You are working
with three character type memory variables called mfirst,
mmiddle, and mlast. Each is of a different length. They corre-
spond to the actual fields in a name and address database file.
You have initialized these variables in the program:

afirst = SPACE(15)
aniddle = SPACE(2)
nlast = SPACE(20)

When you want the user to input information for each variable,
you set up on-screen instructions, which look something like this:

CLEAR

1,0 SAY "Enter first name:"

1,25 GET afirst '

8 3,0 SAY "Enter middle initial:"
@ 3,25 GET amiddle

@ 5,0 SAY "Enter last name:"

@ 5,25 GET mlast

READ

PROGRAMMING WITH dBASE IlI PLUS

F T TR
r - . ‘--r_-'_".--"

T B T A

COMMUNICATING WITH THE USER

When you use many GETs and one READ, all the fill-in blanks
appear at one time.

ol B T P e e o . ‘ i -

o Enter first nane! o | """‘i D

ST nter widile initial! W e
Doter last nakel NN

.- — - —— B - AT - P A ——

Figure 6-4 How the above GETSs look on the screen

The user can enter each variable and backtrack with the T key to
correct a mistake. When the user has entered the last variable,
the READ statement in the program STOREs all the input in the
correct memory variables.

If you want the user to see only one fill-in blank at a time and
enter each variable individually before going on to the next, set
up the screen in this fashion:

CLEAR .
9 1,0 SAY “Enter first name:" -
1,25 GET afirst

READ

@ 3,0 SAY YEnter middte initial:"

8 3,25 GET uniddle

READ

® 5,0 SAY “Enter last name:"

9 5,25 GET mlast

READ

In this case, the GET lines appear individually. The user must fill
in the previous GET information and press the «J key before the
next blank appears. However, the user cannot use the T key to
back up to previous memory variables, unless you use the READ
SAVE option. READ SAVE lets you back up to previous GETs
after the READ SAVE. You could rewrite the above example with
READ SAVE instead of READ.

In the next chapter, you'll see how to set up templates with the
GET command to ensure that the input from the user is correct.
You'll also see how to include ranges for numeric or date input.

PROGRAMMING WITH dBASE Il PLUS P6-11

v ‘u."'_l"-"._:.‘."a L

CHAPTER 6

The default number of @...GET commands that you can use at
one time is 128. This is more than sufficient for most purposes.
You can't send the results of @...GET...READ operations directly
to the printer. You must first use @...GET and READ to get input
in memory variables. Then you use @...SAY lines to print the con-
tents of the variables. You'll learn more about this in Chapter 12.

Make sure that the coordinates for the GET lines don't overlap
the coordinates for the @...SAY lines. You can combine @...SAY
and GET lines, but the SAY command must precede the GET com-
mand. Unless you provide other spacing within the string follow-
ing the SAY command, the GET blank is separated by one space
from the end of the string on the screen:

a fname = SPACE(15)
i 10,10 SAY "Enter first name:" GET @ _fname

looks like this:

#l 149 E "f

““z}

- .) Figure 6-5 Position of a GET blank

You can have several different GETs appear on the same screen
row, but you must still establish the GET instructions separately
in your program:

-1 1 0 GET n_ fname
alznssr-n . -
~8 1,25 GET, m_ lnue .

o READ -)

-J

Figure 6-6 Several GETSs on one row

P6-12 " PROGRAMMING WITH dBASE HI PLUS

b
{
H

COMMUNICATING WITH THE USER

Clearing the
GETs

Multiple-Page
Screens

Pressing ¢
to Continue

ACCEPT and
INPUT

After the READ instruction STOREs the user input from the
@...GET lines in the correct variables, it automatically clears the
GETs. If you want the information to remain in the GETs, as in |
the example of individual GET blanks appearing on the screen,
you can use the SAVE option on the READ line. If you do use this
option, make sure that you also use the CLEAR GETS command
in your program when you are finished with the GETs.

You can design multiple-page screens for requesting user input by
putting in READ commands to go from one screen to the next.
You can have one READ line govern all the GETs in the multiple-
page screens.

_ In Chapter 8, you'll learn another way to set up format files for

screen forms, which also can have multiple screens.

When the user is entering information in a screen form,

dBASE III automatically positions the cursor at the next entry if
the user has filled in the entire blank. Normally the user presses
«J, because the fill-in blank is slightly larger than most entries.
The same thing happens when you're entering information in
fields with APPEND or EDIT.

If you want the user to press the « key to end each entry before

going on to the next, use the command SET CONFIRM ON. This’

method gives the user a reminder to check the entry and make
necessary corrections.

When the user is to enter information in several blanks, you usu-
ally use @...GET and READ. However, the program may need just
one input, such as a response to a particular query. You can then -
use the ACCEPT, INPUT, or WAIT commands, which don’t require
a corresponding READ line. These commands also allow you to
present a one-line prompt without an @...SAY construction.

. ACCEPT and INPUT work in a similar fashion. They request a

response from the user. After the user types in the response and
presses «, the program STOREs the response in a memory vari-
able. The memory variable can hold a maximum of 254 characters.

PROGRAMMING WITH dBASE ill PLUS Pe-13

CHAPTER 6

P6-14

Unlike the @...GET setup, when you use ACCEPT or INPUT you
don’t have to initialize the variable that is to hold the user’s
response. ACCEPT and INPUT do this automatically. However,
they don't show a blank form on the screen, as @...GET does.

The major difference between ACCEPT and INPUT is in the data
type of the memory variable. ACCEPT receives only character
strings and creates a character type memory variable. Even if the
user types in a number, ACCEPT treats it as a character string.
INPUT can accept character, numeric, date, or logical information
and initialize a corresponding memory variable. However, with
ACCEPT, the user doesn’t have to delimit the input string with
quotes; this is mandatory with INPUT. What's more, INPUT is a
very flexible command; you can respond to it with the name of a
field or memory variable.

You must include a prompt line in both these commands so that
the user knows what the program is requesting. dBASE III PLUS
displays this prompt line on the screen and waits for the user’s
input. Make sure that the prompt line is less than 80 characters
long, the maximum width of the screen.

Here are examples of the ACCEPT and INPUT commands:
ACCEPT "What is your;'fi rsg: name? " T0 fname

This command requests a first name from the user and then
STOREs the user’s response in the memory variable fname. The

- user doesn't have to enter the response in delimiters.

INPUT “Enter the nﬁdnt‘ of the cfieck " 10 _lc!s"'e"c‘l;‘
This line requests a numeric answer from the user.

dBASE III PLUS STOREs the input in a numeric type memory
variable named mcheck.

PROGRAMMING WITH dBASE IIf PLUS

COMMUNICATING WITH THE USER

Program code
ACCEPT 'Enter your choice ' TO mchoice

Screen Result in Memory
Enter your choice A «J " MCHOICE pub C ’A"

1 variables defined,
255 variables available,

Enter your choice 2 «J MCHOICE pub C *2*
! variables defined
255 variables available,

Enter your choice (09/12/86 «/ MCHOICE pub C "(9/12/86"
1 variables defined,
255 variables available,

Program Code
INPUT ‘Enter your choice ' TO mchoice
Screen Result in Memory
Enter your choice A" «! MCHOICE pub C 7"A’
. 1 variables defined,
i 255 variable._*» available,
Enter your choice 2 « MCHOICE pub N 2

1 variables defined
255 variables avail_able,

Enter your choice CTOIN'09/12/86") «2
MCHOICE pub D 09/12/86
1 variables defined,
255 variables available,

3 bytes used
5997 bytes available

3 bytes used
5997 bytes available

10 bytes used ‘ -
5990 bytes available {

3 bytes used
5997 bytes available

(2.,00000000)
9 bytes used
* 5991 bytes available

9 bytes used
5991 bytes available

Table 8-1 The difference between ACCEPT and INPUT

PROGRAMMING WITH dBASE 11l PLUS

When requesting numeric, date, or logical information with
INPUT, give the user a prompt describing what kind of informa-
tion to enter. This ensures that the information is in the correct
form and that the memory variable initialized with the INPUT
command is correct. So you could amend the above INPUT situa-
tion to look like this:

P6-15

Wait

P6-16

CHAPTER 6

@ 10,0 SAY "Please enter the amount of the check”
?
INPUT "using the ctorrect decimal places § " T0 mcheck

Note the use of the ? command to space the INPUT line from the
@...SAY line. The screen looks like this:

Please enter the amount of the checic. .
vsing the correct decimal places §-

Figure 6-7 Using INPUT with @...SAY

You include the dollar sign in the prompt line to indicate that the
user need not enter it.

NOTE-

A special case occurs when the user presses only the «! key
in response to any prompt for input, whether from an
ACCEPT, INPUT, or GET...READ construction. You’ll learn
more about this in Chapter 9.

The WAIT command puts the following message on the screen:
Press any key to continue... '

WAIT gives you the option to put pauses in your program so that
the user can read information on the screen or decide when to go
on. The program won't continue until the user has pressed a key.
It’s good practice to SET ESCAPE OFF so that the user doesn’t
accidentally end the program by pressing the Esc key.

If you don't like dBASE III PLUS’s WAIT message, you can set up
your own message. For example, in the Cancl.prg module for can-
celed checks, the program includes this WAIT line:

PROGRAMMING WITH dBASE IIt PLUS .

COMMUNICATING WITH THE USER

VAIT SPACE(19)+"Press any key to return to the Main menu "

Normally, the WAIT message starts at column 0. Here, the
SPACE() function is used to center the message on the screen:

' - Ph-es_s‘ang:lge;- _to_retum ﬁ.-.th'e: Main menu

[— = e e S

Figure 6-8 Setting up the WAIT prompt

Unlike ACCEPT or INPUT, WAIT doesn’t have to STORE the
user’s input to a memory variable. The command simply allows
the program to wait for the user to press a key before continuing.
However, you can have WAIT initialize a variable:

WAIT “Press R to return to the Main menu, anv other key " ¢+ ;
tp continue” TO mchoice
. IF UPPER(mchoice) = 'R’
. RETURN .
- ~ ELSE -
* {(commands)
ENDIF

PROGRAMMING WITH dBASE 1]l PLUS . P6-17

CHAPTER 6

NOTE

You can't use the screen coordinates with ACCEPT, INPUT,
and WAIT. As you've seen, you can use the ? command to
position the ACCEPT, INPUT, and WAIT lines relative to other
lines on the screen.

P6-18 PROGRAMMING WITH dBASE Il PLUS

Chapter 7

USING TEMPLATES AND RANGES

P
- .l..

What This
Chapter
Covers

Preparing for
This Chapter

How
Templates
Work

Your program will seem easy to use only if you make it easy to
use. One way to do that is to supply helpful prompts and mes-
sages. Another way is to use screen templates and ranges to con-
trol user input.

In this chapter you will learn:
= Why it's advisable to use templates for user input

How templates work in PICTURE clauses

The difference between template symbols and template
functions

* How to restrict the range of numeric or date input

How to change data displayed with ?, DISPLAY, LIST, and
REPORT with the TRANSFORM() function

* Points to consider when designing screens

Besides having a general knowledge of dBASE programming,
understand how to set up screen forms and how to use string,
numeric, and date functions.

A template acts as a filter to ensure that the user types in accept-
able data. It lets the program restrict the display of data and
check for valid user input. For example, if the useris totypein a
numeric amount, the template can restrict user input to numbers
only.

A template is contained in a PICTURE clause, which is an exten-
sion of @...SAY and @...GET command lines. A PICTURE clause
contains a combination of one or more template symbols and
functions. A template symbol restricts the display or input of indi-
vidual keystrokes. Because each symbol represents one position
in the @...GET blank, you must include a symbol for every posi-
tion in the blank. A template function, which begins with the @
sign, need only be typed once at the beginning of the PICTURE
clause.

PROGRAMMING WITH dBASE Il PLUS P7-1

e I T T - N
L L A

CHAPTER 7

Template
Symbols

P7-2

NOTE

When used with @...SAY lines, templates do not change the
actual information in fields or memory variables. They only
change their screen appearance. When used with GET lines,

templates restrict user input. You can’t use templates with
the ACCEPT, INPUT, or WAIT commands.

You can see template symbols at work in the Add.prg module of
the checkbook management system. They're used to control the
screen display of the subtotal memory variable:

& 16,32 SAY subtotal PICTURE "9999999, 99"

The number 9 here isn't a value. It's the template symbol that
instructs dBASE III PLUS to show only numbers. There must be a
template symbol for every position in the PICTURE clause. The
decimal point in the template instructs dBASE III PLUS to show
the subtotal variable with two decimal places.

For numeric variables, the default size of the GET is ten charac-
ters. For longer numbers, use the correct PICTURE clause:

nuaber = D .
‘# géet the number with 13 places
8 10,10 GET number picture "9999999999999n

Another frequently used template symbol is the !, which automati-
cally converts the user’s input to upper case. In the following
lines, the program requests that the user enter y or n and
converts this input to upper case:

STORE ™ " TO choice

d 10,5 SAY "Do you want to add more records? {y/n)"
8 10,44 GET choice PICTURE "§»

READ

PROGRAMMING WITH dBASE 11l PLUS

e e i

USING TEMPLATES AND RANGES

You limit the size of a GET response by including the maximum
number of characters allowed. In the above example, the user can

only a one-character response. The size of user input is deter-
mined by the size of the PICTURE template. In this next example,
the program accepts input of up to ten characters for a memory
variable that is to contain first name data:

9 10,10 GET mfirsy PICTURE "AAAAAAAAAA"

Because names normally don’t contain numbers, the A symbol
tells dBASE III PLUS to accept alphabetic characters only. How-
ever, if you have a street variable, you would not want to filter
out numbers. You can use the X symbol instead:

@ 10,10 GET astreet PICTURE "““lllK“““HXXXIKX!H"

This symbol accepts any character in the PICTURE clause.

You can control] the way numeric fields or variables look on the
screen with a variety of template symbols. For example, the §
symbol displays dollar signs in the place of leading zeros in
numeric fields or variables only:

9 10,10 SAY wawount PICTURE "$$85$$3.88"

would display the amount 45.60 as:
$$5$$45.00

To display just one dollar sign, you would have to convert the
numeric variabie to a string. Because this variable may contain
numbers of different lengths, the length of the string will vary.
The following module assumes that the mamount variable con-
tains a number with five total places and two decimal places:

5 10,10 SAY "g"+ STR(lalount.S,Zi
This would display the amount 45.00 as:
$45.00 ;

Suppose you want to supply commas in PICTURE clauses with
@...GET commands. Here’s how:

PROGRAMMING WITH dBASE I1f PLUS : P7-3

TR T S R I

CHAPTER 7

Template
Functions

P74

meost = 0.00
® 10,10 GET mcost PICTURE "999,999 99w
READ

When using date fields or variables, dBASE III PLUS automati-
cally validates that the user’s input is a correct date and prompts
for a correct date if the user has typed an incorrect date. If you
want to use a string that you'll later convert to a date, employ a
template like this:

mtoday = SPACE(S)
8 10,10 &ET mtoday PICTURE "99/99/99n

The above example supplies the slashes and indicates to the user
where the entries should be. It ensures that the user types in only
numbers, but it won't validate this as a correct date. Your pro-
gram has to do this. For this reason, avoid using character vari-
ables for dates.

Another useful template symbol is Y, which restricts input into
logical fields or variables to Y for yes or N for no. In this exam-
ple, decision is a logical variable:

8 10,10 SAY "Are you finished? (Y/N)" GET decision;
PICTURE "ym ’
READ

Template functions govern the display of the entire PICTURE
clause, not just individual positions in the PICTURE clause. You
can use a mixture of template symbols and functions in a
PICTURE clause, but the function or functions must be the first
item in the clause. Use an @ sign directly in front of the function,
and separate the function from the rest of the PICTURE ciause by
a space. To avoid confusion with the other @ command on the
line, you can use the word FUNCTION as a substitute for the
function designator, @.

For example, dBASE III PLUS normally right-justifies numeric
data, but you can display numeric information as left-justified on
the screen with the B function:

8 10,10 SAY mamount PICTURE "38 9,999,999.99"

PROGRAMMING WITH dBASE Iil PLUS

RS LT

USING TEMPLATES AND RANGES

The , symbol shows commas when the figures are over three dig-
its, that is, for thousands and millions. You can write the same
line like this:

® 10,10 SAY memount FUNCTION "8" PICTURE "9,999,999.99"

If you have several functions, you only need one @ sign for all of
them. For instance, if you're writing an accounting program, you
can have dBASE III PLUS display amounts as debits or credits. If

the mamount variable contains the number -45.00, the command -

line:
8 10,10 SAY manmount PICTURE “axc 999.99"

gives the result:
45.00 DB
Similarly, the result for mamount containing 55.00 would be:

55.00 CR

Two other frequently used template functions are {, which
encloses negative numbers in parentheses, and Z, which displays
zero numeric values as a blank string,.

There are template functions that allow you to change the display
of dates to either American or European format:

adate = CTOD("09/12/86") -
8 10,10 SAY sdate PICTURE "9E"

This returns mdate in BRITISH format, that is, 12/09/86.

The R function instructs dBASE III PLUS that there are literal
characters in the PICTURE clause. These characters are not inter-
preted as symbols. For example, you have a variable called mtitle
which contains the following string, DEPOSITS, and you want to
display this variable differently, with each letter separated by a
space. Here's how:

8 10,10 SAY mtitle PICTURE "8R X X X X X X X X"

PROGRAMMING WITH dBASE 11l PLUS P7-5

carerreya. B e

CHAPTER 7

P7-6

dBASE III PLUS interprets the spaces literally as spaces. It sub-
stitutes each letter in the contents of mtitle, DEPOSITS, only
when it sees a valid template symbol. The result is:

DEPOSITS

With GETs, the literals in the PICTURE clause do not become
part of the variable.

The new S function allows horizontal scrolling in @...GET lines.
This is most helpful when you only have a certain amount of
space on the row for a blank, but the information the user types
into the blank may be longer. The S function scrolls the input in
the blank to make room for more input, without increasing the
size of the blank. You supply a number next to the S, which deter-
mines the width of the scrolling region, and template symbols to
restrict the input further.

For example, the following module displays a prompt and a biank
that is ten characters in length. The scrolling region is eight char-
acters wide. Because the variable mlast is 20 characters long, the
user can still enter a longer string into the blank:
1

CLEAR

% Initialize variable

mlast = SPACE(20) ‘

8 10,20 SAY "Enter s last name of any length:" ;

GET mlast PICTURE "as8 1! LS RRRRRERRY: IRRR RN L
READ - oo ’ .

When the user enters a name that is more than eight characters
long, the input scrolls left to make room in the blank for the extra
characters. ’

PROGRAMMING WITH dBASE 1l PLUS

USING TEMPLATES AND RANGES

Blank is 10 characters wide

Entry scrolls to make space

van | Beethoven

Figure 7-1 The scrolling function

The name is too long for the blank, so it scrolls left as the user
types more characters.

In the next chapter, you’ll see how to use this function to restrict
user input within a box drawn on the screen.

NOTE

. Template symbols and functions relate to specific data types.

: : If you use a template symbol or function with an incorrect
data type, dBASE III PLUS disregards your instructions. For
instance, the A symbol works only with character type data.
In addition, some symbols and functions are only applicable
for displaying data. For example, it makes no sense to use the
C and X functions for validating input.

There are many more template symbols and functions listed
under the @ command in Chapter S of Using dBASE 11l PLUS.
Experiment a little with all of them to see how they work.

Templates cannot possibly check for all input errors, however, so
they do not take the place of thorough error-trapping routines
after the user has entered data. At the very least, you'll want your
program to request the user to verify that all newly input infor-
mation is correct. This is the topic of Chapter 9.

PROGRAMMING WITH dBASE JlI PLUS . P7-7

LRI SR L P R R A

CHAPTER 7

Limiting the
Range of
Numeric and
Date input

P7-8

You can also limit the entry of numeric and date information with
the RANGE option. This works with @...GET commands to pro-
vide inclusive upper and lower limits. Recall that dates are actu-
ally special types of numbers. RANGE instructs dBASE III PLUS
to accept only numeric or date information that is within the stip-
ulated RANGE.

For example, you want to restrict the user's input to an amount
variable to be between 25.00 and 100.00 for the price of an item:

8 10,10 GET amount RANGE 25,100
Similarly, you may want to restrict merely the lower range:
9 10,10 GET amount RANGE 25,

Notice that you still have to add the comma at the end of the
RANGE command. The Check.prg module in the checkbook man-
agement system uses this form of the RANGE clause. A lower
RANGE of 0 prevents the input of negative check numbers.

If you want to restrict only the upper range:

- @ 10,10 GET amount RANGE ,100 -

For date variables, you must convert the date ranges from charac-
ter strings to actual dates first. The following example allows
entry of dates in the month of April 1985 only into the variable
m_date :

3 10,10 GET m_date RANGE CTOD("04/01/85"), CTOD("04/30/85")

PROGRAMMING WITH dBASE Ifl PLUS

USING TEMPLATES AND RANGES

Transforming
Displays

Once you've set up ranges for numeric or date information, if the
user types numeric or date data that doesn't fall within the
RANGE, dBASE III shows the acceptable range on the status line
or scoreboard, depending on the SET STATUS and SET SCORE-
BOARD commands, and instructs the user to press the Spacebar
to clear the entry and try again.

Because they are part of PICTURE clauses, templates only work
with @...SAY and @...GET lines. There is also the TRANSFORM()
function, which works with the following dBASE III PLUS com-
mands to display data: ?, ??, DISPLAY, LABEL, LIST, and
REPORT.

You can use the template symbols and functions with
TRANSFORM(), but you don’t need the word PICTURE. Include
the field or variable name in the parentheses first, followed by a
comma, then the symbols or functions. In the following example,
Client is a character field containing client names. Using the R
function, the @ symbol, and X symbols with the LIST command
displays the names with each letter separated by a space. (Client
is a character field containing client names.)

USE Accounts
LIST TRANSFORMCCLlient,'aR X X X X X X X X X X X X X X X)

Don't forget to enclose the symbols and functions in delimiters.
Because it allows for the display of fields with special effects, the
TRANSFORM() function is very useful when you're setting up
reports with dBASE II1 PLUS's CREATE REPORT command. As
with templates, the TRANSFORMY() function does not change the
actual data in the database file.

PROGRAMMING WITH dBASE 11l PLUS P79

CHAPTER 7

Designing Now that you know about screen coordinates and templates, here
Screens are some points to keep in mind when you design your screen
forms and reports:

* Do screen forms mimic users’ actual paper forms?
* Do the screens present a consistent appearance?

* Are the prompts and messages displayed in the same area of
the screen for each form?

Is enough information given?
Are the help screens helpful?
* Have you eliminated technical jargon?

¢ Can users change their minds after making a menu choice?

In the next chapter, you'll take a look at ways to make your
screen forms as appealing as possible.

P7-10 PROGRAMMING WITH dBASE)1l PLUS

Chapter 8

FANCIER SCREEN FORMS AND FORMAT FILES

What This
Chapter
Covers

Preparing for
This Chapter
Changing the

Appearance of
GET Blanks

PROGRAMMING WITH dBASE 111 PLUS

- How you design your screens is up to you, but remember that the

friendliness of the user interface affects how the end user reacts
to your program. This chapter gives you some useful tips to make
your screen forms aesthetically pleasing. You'll also learn about
format files and how to work with memo fields in programs.

This chapter discusses the following:

s How to change the appearance of @...GET blanks on the
screen .

¢ What relative addressing does
¢ How to center, right-justify, or insert strings within a string

¢ How to save yourself typing by using memory variables for
prompts and the REPLICATE() function to repeat characters

» How to draw special characters and boxes on the screen
* How to turn the screen off temporarily

* What format files do and how to use them

* How to deal with memo fields and fast typists

You should have a basic understanding of dBASE programming,
conversion functions, and how to set up screen displays.

When you enter information in a field or on-screen form with a
full-screen edit command such as APPEND, EDIT, or GET,
dBASE III PLUS shows the field or the variable using the
enhanced display.

Unless changed by SET COLOR or SET INTENSITY, the
enhanced display is inverse video. The size of the blank delimits
the size of the field. If you prefer dBASE III PLUS to delimit the
fields with colons, use SET DELIMITERS ON. The default is for
DELIMITERS to be OFF.

P8-1

.k e 2 R . e

e Ry A -t

r e —— - Pte . & mpmp b

O

L R

CHAPTER 8

You can SET other characters, such as square brackets, [], or
braces, {}, as delimiters, but you must enclose the new delimiters
in single or double quotes:

SET DELINITERS TO ag)n
Once you have SET other DELIMITERS, you have to turn them on
with the command SET DELIMITERS ON. So you will probably
use these two commands together. If you wish to revert to
dBASE III PLUS's default delimiter, type SET DELIMITERS TO
DEFAULT.

Even if you change the delimiters, dBASE III PLUS still shows the
fields using the enhanced display. To use the standard display for
@...GET fields, SET INTENSITY OFF. The default is ON.

-

Figure 8-1 Three different GET blanks

The first GET blank uses the enhanced display only. With SET
DELIMITERS TO {7, the second GET blank uses the enhanced
display and is delimited with brackets. With SET INTENSITY
OFF, the third GET blank is delimited with brackets only.

PROGRAMMING WITH dBASE Il PLUS

PP 1

FANCIER SCREEN FORMS AND FORMAT FILES

Relative
Addressing

Usually you know in advance where to position @...SAY or GET
lines on the screen. However, occasionally the screen coordinates
may depend on the position of other screen rows, which may
change during the program. Say, for example, that you want the
program to show certain fields and then a prompt two rows
below them. You don’t know exactly how many fields will be dis-
played; there may be two or ten. So how do you know on what
row your prompt is to appear?

You can use a technique known as relative addressing. This
means that the position of one screen coordinate is dependent on,
that is, relative to, the position of a previous coordinate.

dBASE III PLUS uses the two functions ROW() and COL() for rela-
tive addressing. The ROW() function returns the value of the row
on which the cursor is currently located, while the COL() function
returns the value of the column position. If you have a command
like this:

8 5,10 SAY "Helle therel!

then the current ROW() is 5 and the current COLY) is 22, thie end
of the displayed line. You can then do this:

@ ROK()+2,10 SAY "How ARE you?"

The new coordinate here is two rows down from the previous
row, Similarly,

8 ROWO)*5,C0L()-2 SAY "Well, I hope"

Bello there!
" How ARE you?

. Kell, | hope

Figure 8-2 How relative addressing works

PROGRAMMING WITH dBASE Il PLUS P8-3

Cath 1 e e e s

CHAPTER 8

Figure 8-2 shows what the three examples look like on the screen.

No matter what number ROW() contains, the command ROW()+5
always positions the prompts five rows down. The only time you
can’t use the ROW() and COL() functions is directly after a READ
statement. READ always resets the value of ROW() to 23 and the
value of COL() to 0.

The checkbook management system uses a different type of rela-
tive addressing to put an asterisk next to the the user’s choice in
several of the submenus:

* pit- asterisk on screen next to- chmr.e
- 6+VAL(choicaZ) 2& SAY vetoo

Note the use of the VAL() function to change the variable choice2
to a number for the column coordinate.

P34 PROGRAMMING WITH dBASE HI PLUS

FANCIER SCREEN FORMS AND FORMAT FILES

P T TR S

Centering a
String

PROGRAMMING WITH dBASE 1l PLUS

TIP

You can also use numeric memory variables in @...SAY lines,
which can make your programs more readable. For example,
in the Taxcodes.prg module, the program initializes a memory
variable called line and then uses a. DO WHILE loop to dis-
play all the tax codes from the Tax.dbf file, with each code on
a new line. The line number is incremented by one before
another repetition of the loop: -

* disptay all tax codes and tittes
line=4
DO MHILE .NOT. EOF()
8 line,28 SAY Code
8 Lline,32 SAY Title
line=tine+1 S
SKIp
ENDDO L

Because the program doesn't lmo‘;v;how many tax codes are
in the file, it uses the relative addressmg technique and a sim-
ple counter to display them.

To center a string with a known length, subtract the length from
80, the total number of columns on the screen, then divide by two
to find the starting coordinate. Occasionally, you may need to cen-
ter a string in your program'’s display, without knowing what the
string length will be. An example would be when you want to

show what the user has typed. Here’ s how you can center any
string.

First, get the user’s input with any standard input command, such
as @...GET or ACCEPT: 4

ACCEPT "Enter the client’s first A‘ﬁqlle " T0 afirst

- P8-5

el e = e e AR

CHAPTER 8

Right-
Justifying a
String

Stuffing a
String

P8-6

Then, trim the trailing blanks from the variable and take its
length, divide by two, and subtract it from 40, which is the exact
center coordinate of the line, to get the center position. STORE
this into a new memory variable, mcenter:

nfirst = TRIM(mfirst)

mcenter = 40 - LEN(mfirst)/2

You can then use the contents of mcenter in.a screen coordinate:

20,31 SAY "You have entered:"

SET COLOR TO a/N
8 22,mcenter SAY afirst
SET COLOR TO W/N

Notice the special effect of inverse video display that the example

uses.

You can use a similar technique to right-justify a string of any
length. Here is a simple module that right-justifies a memory vari-
able called string. The variable width contains 80, the total width
of the screen, and the variable currentrow contains the row on the
screen where the text is displayed:

STORE 80 TO width
STORE 5 TO currentrow

8 currentrou,width - LEN{string) SAY stnng

The vertical coordinate of the position is determined by adding
the starting column position, 0, to a- number which represents the
remaining number of blank columns. This number depends on the
width of the screen and the length of the string.

Use the STUFF() function to insert a string within a string.
STUFF() either adds a new string to the existing string without
changing it, or replaces part of the string with the new string.

For example, you use a memory variable called prompz2, which

contains the following string:

Type X to Exit

PROGRAMMING WITH dBASE 11l PLUS

FANCIER SCREEN FORMS AND FORMAT FILES

and you want to change it to:
Type € to Continue or X to Exit

First, STORE the new string to a me;mory variable:
extra = "C to Continue or *

Note the space at the end of the string. You could then do this
with the STUFF(} function:

STUFF(prompt2, 6, 0, extra)

The first argument in the parentheses, prompi2, is the original
string. Next follows the starting position, 6, in the old string
where the new string will be inserted. The second number, 90, is
the number of characters to remove from the old string. Here, 0
means that you don’t want to replace the first string with the sec-
ond but merely to add the second to the first. The last piece of
information, extra, is the string that is inserted in the first string.
The above line is equivalent to:

SUBSTR{prompt2,1,5) *+ extra + SUBSTR{prompt2,f)

STUFF() is also useful when you want to REPLACE only part of a
character field without having to reconstruct the entire field.

Graphics and For special visual effects, you can use @...SAY with any ASCII
Other Special character. The checkbook management system uses graphics char-
Chale'actgl.::l acters in the ASCII set to give its menus a little pizzazz.
The best way to draw boxes in dBASE III PLUS is to use the
ﬁ...TO command with an upper left and lower right range for the
ox:
PROGRAMMING WITH dBASE IHl PLUS PB-7

CHAPTER 8

PB-8

a1,0v05,79

draws a box from column 0 on row 1 to column 79 on row 5. You
must supply the two corners. The box contains a single border,
but you can draw a double-bordered box with:

il

31,0 70 5,79 DOUBLE

dBASE III PLUS draws the box from top to bottom of the screen.
If you use MODIFY COMMAND to look at the Menumask.prg, you
can follow how the program displays the boxes in the main menu.

If you use a range with the same row, then dBASE III PLUS
draws a horizontal line:
a1,0 710 1,79

Similarly, using the same column in the range instructs
dBASE III PLUS to draw a vertical line:

@ 1,0 T0 23,0 DOUBLE T

To clear a box from the screen, use @...CLEAR TO with the top
left and bottom right coordinates:

8 1,0 CLEAR TO 5,79

With the S template function, you can restrict user input to a box
on the screen and have long input scroll, as in this module:

SET TALK OFF

nese = SPALE(25)

CLEAR

25,10 10 8,29

3 6,12 GET name PICTURE "a515 XXXKXIIIX!llll!llll!l!lll"
READ

PROGRAMMING WITH dBASE 11l PLUS

Maem e e e,

FANCIER SCREEN FORMS AND FORMAT FILES

'Il)on't Retype
Screen
Prompts

NOTE :

There are some special characters in the ASCII range 1
through 31 that can’t be displayed with @...SAY. When you
want to ring the bell in a program, you can't use @...SAY.
You must use the ?? command:

a 15,0 SAV "What do you want to do next’"
7? CHR(?)
@ 17,0 SAY "(A)dd a record or (D)elete the record”

Because ycu don’t have to position the bell on the visible
screen, using ?? does not pose a big problem. The computer
works very fast, and when the above line appears on line 15,
the user hears the bell immediately. If you plan to use special
characters from the ASCII set in reports, make sure that your
printer can print them.

Although you can use the Alt key with the numeric keypad to type
special ASCII characters on the screen, don't use this method to
type them in program files. When you edit these files with
MODIFY COMMAND, dBASE III PLUS won't save the special
characters. Use the CHR() function instead. However, you can
STORE the actual characters in memory files (see the next
section).

If you use the same screen prompts consistently, you can set them
all up in a memory file. Then, after the program RESTOREs the
file, they will reside in memory throughout the program. When
you're writing the program, you won't have to type each prompt
every time it appears. For instance, you will use the following
prompt frequently:

Is everything correct? (ﬂn)

PROGRAMMING WITH dBASE [l PLUS P89

CHAPTER 8

Repeating
Characters

P8-10

You can STORE it in a memory variable and call it mpromp:!.
Whenever you need to display the prompt on the screen, use
@...SAY:

10,10 SAY mprompti

You may have noticed that the Chkbook.mem file contains hori-
zontal and vertical lines made up of special characters. The pro-

~ gram uses these memory variables, svert for single vertical lines

and shoriz for single horizontal lines, in many screen displays.
Recall that the main program module RESTOREsS this file at the
beginning of the run. In the Clrdep.prg module, for example,
you'll see these lines:

20 SAY "Clear Deposits with Bank Statement”
20 SAY LEFT(shoriz, 34)

T SAY "Date Amount"

5 SAY LEFT(shoriz,8)¢" ™+LEFT(shoriz,t0)

21,
?2,
33,
3 &,
They appear like this on the screen:

Clear Deposids vith Bank Statenent
. Date- fuount - ' '

Figure 8-3 Using part of a memaory variable for displays

The program uses the LEFT() function to display only a part of
the shoriz variable as underlining for the title lines. This is a
great way to reuse the same variable any number of times.

Another useful function is REPLICATE(). This function repeats
the same character a stipulated number of times. For example, in
Menumask.prg, which presents the main menu at the beginning of
the checkbook management system, the program uses REPLI-
CATE(} to display CHR(176) 75 times:

22,2 SAY REPLICATE(CHR(174),75)

PROGRAMMING WITH dBASE 1ll PLUS

PP ER— |

FANCIER SCREEN FORMS AND FORMAT FILES

You must first type the character that you want to repeat, either
with the CHR(} function, a character string, or any valid character-
expression, then a comma, and finally the number of repetitions.

Pseudo- You may wish to have the user enter a password before being
Pas d allowed to use your program. Generaily, you wouldn’t want this
asswords password to appear on the screen when the user types it, so you

must use the SET COLOR command to hide the display. Because
GET blanks are governed by the enhanced display, you must
change its color. A sample module to request a password and
temporarily disable the screen might look like this:

CLEAR

STORE SPACE(5) TO password

* set enhanced display to biack on black

SET COLOR TO ,N/N

8 5,0 SAY "Please enter your password: " GET password
READ

* (... comsands to check for correct passvord)

* revert to norsal cnlors

SET COLOR TO

2 7,0 SAY "Thank you"

WARNING

This method of password protectlon is not foolproof. Further-
more, if you are programming in dBASE III PLUS for users
on a local area network, you need much more protection than
this. There are special commands for maintaining security on
networks. Refer to Networking dBASE I1I PLUS for more
information.

PROGRAMMING WITH dBASE 11l PLUS : P8-11

CHAPTER 8

Format Files

Creating
Format Files

.. P8-12

If you plan to use the full-screen commands APPEND, EDIT,
CHANGE, or INSERT in your programs, you could also set up
format files, which determine how the field data looks on the
screen. These format files merely change the position of the infor-
mation to mimic the user’'s own forms. They offer an alternative
to dBASE IIl PLUS's default presentation.

Format files work only with the above full-screen commands, not
with other commands that you might include in your programs.
Format files only contain @...SAY and @...GET commands for the
various fields in the database file. A format file automatically
CLEARs the screen when you issue a full-screen command, such
as APPEND, after SETting the FORMAT TO the format filename.

There are several ways to create and edit format files. The easiest
method is to use CREATE SCREEN <screen filename>. This
command allows you to USE a database file, presents you with
the fields in the file, and lets you choose which fields to display
and position anywhere on the screen. It then sets up a format file
for this screen.

CREATE SCREEN actually creates two files, a screen file with the
extension .scr and a format file with the extension .fmt. You can

use MODIFY SCREEN to make changes to the screen file, which

then updates the corresponding format file.

You can also use MODIFY COMMAND or another word processor
to write format files, but you must provide the file extension .fmt.
For example, the following command would be used to create or
edit the format file called New.fmt:

MODIFY CONNAND New.fat
If you use your own word processor, make sure that you save

the format file as an ASCII text file, or a DOS text file in
Framework II.

PROGRAMMING WITH dBASE il PLUS

nh...._..-...-...u...._dmj

- e

FANCIER SCREEN FORMS AND FORMAT FILES

Pseudo-

Pa_sswords

.
a

PROGRAMMING WITH dBASE il PLUS . P8-11

You must first type the character that yoﬁ want to repeat, either
with the CHR() function, a character string, or any valid character
expression, then a comma, and finally the number of repetitions.

You may wish to have the user enter a password before being
allowed to use your program. Generally, you wouldn't want this
password to appear on the screen when the user types it, so you
must use the SET COLOR command to hide the display. Because
GET blanks are governed by the enhanced display, you must
change its color. A sample module to request a password and

_temporanly disable the screen might look like this:

K CLEAR ,.;4;';;*.-_,_?;\,. "" § i
s‘?sronsssmu %p s e Rap 2
wseﬁenhanceﬁdlsp}% to bluk ong,bl%ek
ISETZCOLORITO I R/N 2R S M FELRT
"355 Disa:g:igdis‘e%:tergoukpazssu;;:l ¥
4550% R A e A
mﬂ(t 23 ¥connands 4to icheckffor
‘* revert‘to ‘nornals colurs_
,,gser*comaro-“ P
1591710 SAY " Thankiyou"ici

WARNING

This method of password protectlon is not foolproof. Further-
more, if you are programming in dBASE III PLUS for users
on a local area network, you need much more protection than
this. There are special commands for maintaining security on
networks. Refer to Networking dBASE [1] PLUS for more
information.

L
)
a s

Lol
e p ”'f!‘ B M‘.- M
LTI ”.&‘}'ﬂg’: ..
-;'i;xéfjri’fz;.-;gﬁr’-.-?f*‘

A

1 CHAPTER 8

e L Format Files If you plan to use the full-screen commands APPEND, EDIT,
SRR P . CHANGE, or INSERT in your programs, you could also set up
et format files, which determine how the field data looks on the
R screen. These format files merely change the position of the infor-
' - mation to mimic the user’s own forms. They offer an alternative
I to dBASE HI PLUS's default presentation.

Format files work only with the above full-screen commands, not
with other commands that you miight include in your programs.
Format files only contain @...SAY and @...GET commands for the
various fields in the database file. A format file automatically
CLEARs the screen when you issue a full-screen command, such

: ;=; o o, as APPEND, after SETting the FORMAT TO the format filename.
Lone T Creating There are several ways to create and edit format files. The easiest
e Format Files method is to use CREATE SCREEN < screen filename>. This

command allows you to USE a database file, presents you with
the fields in the file, and lets you choose which fields to display
and position anywhere on the screen. It then sets up a format file
for this screen.

- . CREATE SCREEN actually creates two files, a screen file with the
e o extension .scr and a format file with the extension .fmt. You can

R use MODIFY SCREEN to make changes to the screen file, which
S nL then updates the corresponding format file.

You can also use MODIFY COMMAND or another word processor
to write format files, but you must provide the file extension .fmt.
For example, the following command would be used to create or
edit the format file called New.fmt:

 NODIFY CONNAND Wew.fat - ~ ~ . . .

e, . If you use your own word processor, make sure that you save
- the format file as an ASCII text file, or a DOS text file in
Framework II. C

S

P8-12 . PROGRAMMING WITH dBASE Ill PLUS

¥
L T I T TP).""J

t . L

- -

PR |

Ve e 3

o e e H
< T :
- :

AP - 1
- - 4
' - - ‘
LT T 4
.) H
-]
LT 3
Lo £ 'e'i

U]

as v i

.- P i
. P

T . ;
. L}

v
- "

-

ta

&

i

———— e S e

5. '
>,
yr w
1
- "
ai
. .
'

FANCIER SCREEN FORMS AND FORMAT FILES

NOTE - ' - :
If you use CREATE or MODIFY SCREEN to set up a format

file and later edit this file with MODIFY COMMAND or |
another word processor, the screen (.scr) file is not updated.
Here is the New.fmt file, which displays the First, Middle, L#st. ..

~ Street, City, State, and Zip fields in a database file called ..
Names.dbf, with screen prompts and @...GET lines for receiving'

user input:

PB-13

R T I ot

CHAPTER 8

| Here is how this format filé looks on the écreen:

Figure 84

Because the entire fqn:hat file is governed by whatever full-
- screen editing command you're using at the time, you don't need
a READ line for the GETs unless you plan to have multi-page

screen formats, discussed below.

. " Using Format -Once you have set up a separate format file, you can use it from
T Filels'g - within a program with the SET FORMAT command. So, to open a

I : database file called Names.dbf and use the New.fmt file with the

s , APPEND command, you write the following code in your

I : program: .

the SET FORMAT command assumes the file extension .fmt. The
program opens the format file, but the screen form doesn't
appear until the programi also issues one of the full-screen com-
mands, such as APPEND. To close a format file, use CLOSE .
FORMAT or SET FORMAT TO without a filename. i" .

FANCIER SCREEN FORMS AND FORMAT FILES

Multiple-Page
Screen Forms

=

J—
K *,

P ’

Because the total number of files that can be open at one time
is restricted, get in the habit of inserting a CLOSE FORMAT
command to close every format file unmedjately after the pro-
gram is finished with the file.

dBASE III PLUS also allows you to set up multiple-page screen
forms with format files. This way, you can spread the information
over several screen forms, allowing you to create more aestheti-
cally pleasing screen displays.

Use the READ command in a format file wherever you want your
program to CLEAR the screen and show a new on-screen form.
Recall that normally you don't use READ in single-page format
files. Make sure, of course, that you establish the correct screen
coordinates for the next form.

With multi-page screen forms, dBASE III PLUS automatically

shows the next page of the form when the user has filled in all

GET lines in the previous page. The user can also page backward

ihmugh the forms with the Pglp key and forward with the PgDn
ey

NOTE

This use of READ for multi-page screen forms only works
with format files. In program files, READ functions normally.
No matter how many format file screens you string together
with READ, you still can have only a maximum of 128 total
GETs.

PROGRAMMING WITH dBASE JIl PLUS : P8-15

Fam et

_. &
L

%ﬁ

i

W*sﬁﬁ

CHAPTER 8

R Working with Because memo fields are maintained by dBASE III PLUS in a sep-
Sl e Memo Fields arate file, they are treated differently. For instance, you can't -

or CHANGE command with the scope option, The format file

R . STORE the contents of a memo field in a memory variable, and |
RTINSO you can't display memo fields with @...SAY lines. Although full- |
Tl U e screen commands such as EDIT or APPEND work with memo |

Uy fields, the user sees only the field name and may not know how to |
R, open the memo field. ;
el . So, a good way to add to or change the contents of a memo field |
ST : from within a program is with a format file and either the EDIT |

A R _ guides users by instructing them to press Ctri-PgDn to open the
e e _ memo field for editing and Ctrl-PgUPp to finish. Here is an example s
Tl e ‘ of a setup for changing a memo field. The database file, ;
ST P Names.dbf, has a memo field named Notes. The format file to add .
R T to or change this memo ﬁeld Notechng.fmt, looks like this:) ;
: BRI e Iotechng fats forutfl Lefor;e : 2
.ot s e ,"_,,It‘! 217SAY; "Pr;;f“«trl;ﬂwnx, o*'odit lotes:;, :‘%.i?-'u
L = g:10,17% SIY;"N sauwougﬁgbangesf’;prlss‘?"«trb(uup)
: e AT 167 SAYEL RETURNX® takesyou' back! i ot]
Vo I 971234 (GET Notes PNTRIPAI S Sticn |
. - PR et e i T y . :
o . The commands in the program for changing the memo'field Notes
. R T are below. The user has already supplied a record number in the
S PO . mrecnum memory variable.
. LR ' hserﬂrommognoteehng SRSl Y T
o 2 CHANGEENEXTS1 SFTELD Notes Shyamscthis o i
L , = CLOSE; FOI!R_Mg; v s
e ’ . a:.:USE?‘ S -- gy SR N AR ARy A S
. P Lo Yooy y T ,r-.'. ey r JI'-"n LA YT RANTNG YR LY 5 i
5 After typing in the corrections and pressing Ctrl-PgUp to leave the
memo field, the user then presses « to leave the format file. The o
program updates the memo field, saves the database file, closes { .
the format file, and continues. St
o - ' l
T |
R PB-16 PROGRAMMING WITH dBASE Il PLUS
. : o
T . =) b A
‘ 7 : X : it 3
A .) i 3
e, . ¢ i, H -4

WALy I T
= :’ai—t ::Q?;‘_-;,?:-,

T &%

FANCIER SCREEN FORMS AND FORMAT FILES

TP

Because the total number of files that can be open at one time
is restricted, get in the habit of inserting a CLOSE FORMAT
command to close every format file immediately after the pro-
gram is finished with the file.

P g L)

Multiple-Page dBASE III PLUS also allows you to set up multiple-page screen SRS]

“ Scree?l Fornﬁs forms with format files. This way, you can spread the information e
over several screen forms, allowing you to create more aestheti-
: : cally pleasing screen displays.

- Use the READ command in a format file wherever you want your
. ' - program to CLEAR the screen and show a new on-screen form.
Recall that normally you don't use READ. in single-page format
- files. Make sure, of course, that you establish the correct screen
coordinates for the next form.

~With multi-page screen forms, dBASE III PLUS automatically
shows the next page of the forrn when the user has filled in all L
GET lines in the previous page. The user can also page backward T k
Lhrough the forms with the PgUp key and forward with the PgDn Lo
ey.

NOTE

: : ‘ This use of READ for multi-page screen forms only works

| with format files. In program files, READ functions normally.
' No matter how many format file screens you string together

. : with READ, you still can have only a maximum of 128 total

- GETs. .

P - .
N T N T AP W

kg -,

v .
by U ant e SR L

PROGRAMMING WITH dBASE 1l PLUS _ ' P8-15

o 4 e

' N
| . = N
{
]
1
L]
1]
T L L LT S

oy i - e TRy e s T s e

",

N . T
G e e tae, Bttt

PN
emah . -)

-._‘-;e ‘\.-.lq-

G B S e A AR ‘*#’f‘WﬁWFﬁ@;f :M

CHAPTER 8

' Working with Because memo fields are maintained by dBASE III PLUS in a sep- |
Memio Fields arate file, they are treated differently. For instance, you can't |
) ; STORE the contents of a memo field in a memory variable, and
-you can't display memo fields with @...SAY lines. Although full-
screen commands such as EDIT or APPEND work with memo
fields, the user sees only the field name and may not know how to
open the memo field.

So, a good way to add to or change the contents of a memo field
from within a program is with a format file and either the EDIT
or CHANGE command with the scope option. The format file
. guides users by instructing them to press Ctri-PgDn to open the
o R memo field for editing and Ctri-PgUp to finish. Here is an example
et X . . of a setup for changing a memo field. The database file,
Cea . Names.dbf, has a memo field named Notes. The format file to add
R to or change this memo field, Notechng.fmt, looks like this:

g‘} lotechng’flt-;- ﬂjornt‘*flledﬁf«r chanoinguelo#held“t{-
8’21&8"‘"Press"<0trl><Pgnn>gtoaediti_lotes":aﬂ%‘&

......

;iaﬂl‘ﬂ SAY."To" Save . your: chnnges};puss;ﬂtrggugrp' kg 5
}'-: Y !

ﬁ’ 3114:16ISATHEICRETURRD takes “you Backt RS
312,345 6ET; Notes: S g b

'Mzb-'-hn#.:t._-hg

. . The comrmands in the program for changing the memo field Notes
A are below. The user has already supplied a record number in the
o : _mrecnum memory variable.

S : After typing in the corrections and pressing Ctﬂ-Pg!.lp to leave the

memo field, the user then presses « to leave the format file. The P

program updates the memo field, saves the database file, closes (\ [
the format file, and continues.) et

PB-16 . ’ PROGRAMMING WITH dBASE Ili PLUS

,_..._.‘_-.- -
LI S
e . "4

3

FANCIER SCREEN FORMS AND FORMAT FILES

Help for Fast
Typists

You can DISPLAY or LIST the contents of 2 memo field on the
screen. You can also use the ? command to display memo fields.
Remember that these commands don’t allow you much flexibility
in positioning the memo information on the screen. However, SET
MEMOWIDTH is one command that can help you. It changes the
default line length of a memo field, 50, to another length for out-
put only. Thus,

f. ssr neﬁdul_nrn T0. 65 .'

. A

DISPLAYs or LISTs the contents of a memo field with 65 charac-
ters per line. This command also works in a printed report. You
can set MEMOWIDTH in the Config.db file. See Usmg dBASE I1I
PLUS for more information.

If your users complain that they type too fast for dBASE III PLUS
when they are entering information, you can change the number
of characters that dBASE III PLUS stores in its type-ahead buffer.
This buffer zone catches characters and retains them until
dBASE IO PLUS is ready to interpret them. The default is 20, but
you can SET TYPEAHEAD TO any number from 0 to 32,000, pro-
vided you have enough memory in your computer.

NOTE

SET TYPEAHEAD will not work unless SET ESCAPE is ON,
so it’s best not to change the type-ahead buffer unless abso-
lutely necessary. You can clear out the type-ahead buffer with
CLEAR TYPEAHEAD. This command is particularly useful in
a program where you don't want the user to input informa-
tion before continuing with the program. See Using

dBASE III Plus for more information.

PROGRAMMING WITH dBASE Il PLUS : Pe-17

R e

Chapter 9

EVALUATING USER INPUT

What Ti\is
Chapter
Covers _

Preparing for
This Chapter

Filtering the
Input Line

“..,,__. P e — e g mm mrmm+ am——ame—am = o
- h Pl . s
oy - . L I R
’ -

Trapping users’ mistakes, not only in screen forms but also after
the user has typed in responses, is a very important part of pro-
gramming. Make sure that the program knows what to do when
the user types an incorrect response. The program should also
ask the user to verify that the input is correct, and be able to han-
dle situations in which the user presses the special keys on the

keyboard.
This chapter discusses the following:

¢ How to restrict input to certain characters in prompts and
messages

* How to check for users’ mistakes

* How to filter data to get only the information that your pro-
gram needs

* How to manage the special keys on the keyboard from within
a program. '

¢ How to use the-ON command to test for certain conditions -

Have a general understanding of the basics of dBASE program-
ming and of the information in Chapters 5 through 7.

In Chapter 7, you learned how to restrict input in on-screen forms

by usmg templates and ranges. Whenever you can, try to limit the

user's choices and then set up a filter so that the program only
accepts a correct response. You do this most often in menus, or
when you're prompting the user to hit particular keys, such as y
for yes, or n for no. In the checkbook management system, for
example, the main menu choices are limited to the letters A
through L and X.

. PROGRAMMING WITH dBASE Il PLUS - pay

3
-
i

4l i St R S g R M n ey ——-

P PP

g

BRES

" CHAPTER 9

Using .
Numeric
Cholces

Anticipating
the Correct
Response

.'b

You can also set up the choices as numbers and then limit these N
choices to a particular numeric range. Say you have a memory

variable of numeric type named choice, which is for user input. If

you set up the choices in the range 1-through 8, you can easily

restrict the user’s input like this:

The program doesn’t accept a number less than one or greater
than eight. This technique also prevents the program from accept-
ing a letter key. -

Because the program can’t continue until the user enters a valid
choice, a setup like this one catches the user's mistake before it
can disrupt the rest of the program.

After receiving a response, your program should always ask the .
user to verify that the input is correct. The checkbook manage-
ment system uses this conventional prompt:

Is this correct? (Y/N)

The program employs a DO WHILE loop to allow the user to cor-
rect mistakes on an n, or no, answer. Only after the user types y
for yes does the program continue. It's easy to check for numeric
ranges, but how do you set up the program to check for string
input such as y or n?

First, think about the p0551ble chonces here. They may be only y
ornm, ‘but the user may type Y or N. The best way to get around
this situation is to use a template in the GET line to convert the
user's input to upper case:

PROGRAMMING WITH dBASE lil PLUS

-
M 5y
Ea ‘

.._‘ -'

%@1‘-”1“-!;@ ;‘::._, "_
. . ,r

EVALUATING USER INPUT

If the user types y or n, the program will convert this response
into Y or N. That still doesn’t ensure that the user types only y or
n. For that you need an instruction that loops back and requests a
correct response as long as the user doesn’t type y or n. You are
excluding incorrect answers and including correct ones.

dBASE IO PLUS uses the $ operator for what it calls a substring
search. This feature looks for the input in a string which contains
all the possible choices and makes sure that the user’s response is
one of these choices. Here is an example of how to code the pro-
gram to evaluate the above yes/no situation:

&_M_HII!LE?;IIDT.: ansuer S i

Read this command line as: Do the loop as long as the contents of
the variable answer are not found in the string YN. The string is
enclosed in delimiters. As long as the user doesn’t type yor m,
which are converted to upper case at the time of input, the pro-
gram loops until the user types a response that is in the string.
Here is a pattern for filtering string input so that it's either y for
yes or n for no.

The line below DO WHILE is important: it tells the program to
reinitialize the memory variable choice with a blank if the user

- doesn’t press either y or n. The program returns to the beginning -

of the loop if the user presses another letter, for instance, t. The t
would be the current contents of the memory variable choice
after the first try. It would then appear in the @...GET blank and
perhaps confuse the user. So, the module reinitializes choice with
a blank at the beginning of every loop. This module of code effi-
ciently handles the input by converting it to upper case and mak-
ing sure that it is either Y or N before the program continues.

PROGRAMMING WITH dBASE H PLUS

CHAPTER 9

Covering All
Possibilities in
Their Turn

Another example of the substring search technique is in the CASE
lines in the main program module of the checkbook management
system, Cbmenu.prg. Here the program uses the $ operator in a
slightly different fashion. For example:

CASE CHRCi) $ "Ag™.
b0 Check oo

e e

This CASE line uses the substring search operator to look for the
ASCII character equivalent of the input variable, i, to be either A
or a.

NOTE

Don't confuse the substring search operator, §, with the
SUBSTR() function. The $ operator merely looks for a sub-
string within another string, while the SUBSTR() function
returns a portion of a character string.

‘Two of the most difficult aspects of programming are testing for
all possible input conditions and determining the order in which
to have your program test these conditions. As your programming
experience grows, you'll develop ways to handle user input. Here
are some suggestions.

Most evaluations center around a logical condition. This means
they can be set up in one of the standard dBASE constructions,
DO WHILE.._. ENDDQ, IF...ENDIF, and DO CASE...ENDCASE. For
example, in the Check.prg, which enters checks in the checkbook
management system, the following section of code tests for the
user’s typing of the check’s payee by means of a variable called
mpayto and a simple IF...ENDIF construction:

PROGRAMMING WITH dBASE 1l PLUS

it cm = e w em . - - o = e L T r——— -——— =

T
Il
'

P P

-E%M@r;'snﬁmm

EVALUATING USER INPUT

za"a zng s <
é-,nennq@:gﬁﬁa‘@ﬁ%&* P
E‘ ,lF-nplvtou<>‘SPACEt50)-d. G
'%,,- SR ENT TR EEag A,

%‘v SENDIF ST et i
SRS, 1518AY: 'uetbunk checks
BT i

The program uses a négative approach. It evaluates the contents
of the variable mpayto to sée if it is not equal to 30 blanks,
smcmo). If the line

evaluates as true, no other action is needed and the program
EXITs the DO WHILE loop. If the line evaluates as false, that is,
mpayto variable is equal to SPACE(30), the program gives an error
message and returns to the beginning of the loop In the above
example, the program could have used a positive approach

.,_.."Tn..; m——y

Eia ‘IF; lpayto

it'ﬂtahu\-.-

e -v-‘:‘-.,i

“RSPACE (3D

How you have your programs evaluate the user’s input is up to
you. What is important, though, is that you try to anticipate ail
possible conditions relating to the input. Think carefully about
the order in which your program deals with the possibilities. The
next example, from the same program module, Check.prg, evalu-
ates the user’s input of the check amount, the variable mamt.

PROGRAMMING WITH dBASE Hi PLUS - ' P9.5

- [
(Y
. '.“

&

N

e
. -p J l

CHAPTER 9
T G o e ey v)
‘ _‘po uuns .T DU R EA 14
T £ 98,66 m aant”
. IIEAD
R RIAS
! A,I‘ mant = _
B 10 N |
!F'-lnt < 0;00 .
Tese T - ‘
ekt
. _ ENDIF: B |
. . EMNOJF a
' 'EIDDO
| (M
* option t0 entar check anvuv e ' ; ’
@ 20,15 SAY "Do you nsh to enter tlns check anyuay’ (Yll)" -
ans =" " . -
. D0 WHILE .IOT. ll‘lSS'“Irln") _ Lo ' 4'
. . ang 3 M 0. e Tl R
. N3 20, 61 °6ET. ans’ e T e
READ
} Elﬁbo - -
4“-. ‘-c-, ‘v_
- E'n.lr . - . Lpacn oo, dmcim Tlal st T el P - P
The program first tests to see if the amount is equal to zero and,
if that is the case, presents the user with a message. It then
checks whether the amount is a negative number, which would
mean that the user has made an obvious mistake. The program
handles these two possibilities in the same DO WHILE loop,)
because they are related input mistakes. (,«— A
. -
P9-6 PROGRAMMING WITH dBASE Il PLUS
._|_i :':'E A ":_ - M ’.%
B '-.-~ N ';
, _ - -"L‘&‘ - ,3

I
- EVALUATING USER INPUT
B R The third possnbihty is more serious. If the user enters a correct
R number, but there is not enough money in the account to cover
PRI the check —

TR

L

iFibalance <aant FRETRTIE

ST LR X2 L

— the program will generate a negative balance. The program
: warns the user of this and lets the user decide what to do. In atE

I Chapter 14, you'll look at another program module to get more T,
’ ideas about how to anticipate all possible conditions. ‘

1 " ¢

pecial You may want your program to branch to certain subprograms
S al Keys depending on what key the user presses. As well as providing

. ' ways to filter and evaluate input of numeric and string informa- - o
L tion, dBASE III PLUS gives you methods to evaluate whether the A
i user has pressed a standard alphanumeric key or one of the non- IR
S~ printing keys, such as the T or the Backspace key. : AR
Aom [) . .

The INKEY() The INKEY() function tests for input of most keys on the key-
Function - board, including the cursor inovement and other special keys.
. INKEY() returns an integer value which corresponds to the ASCII
code number of the last typed key.

N .
i

. The above program loops until a key is pressed. If the user o
R presses A, the program exits the loop and dlsplays 65, the ASCII Lo e
" - code for A. T
L ' All the non-printing keys on the keyboard return INKEY() values [ROEY
Co A . between 1 and 31. ot
(. |
PROGRAMMING WITH dBASE NI PLUS P9.7
-, .t , ! ' ¢ T, ':'L]
- N) - v I'\.- ‘.

R

e Ry O S e S

%
-..- R TI -

: CHAPTER 9
(5
e T " | WARNING
A SR - Don'’t be confused by the input values of ASCII codes for the
Lo non-printing keys and their display value between 1 and 31.

For example, if the user has pressed the - key, the INKEY()
S response would be the integer 4. But if you do this:
L . ! i Teay i
o : | R
you'll get a little diamond shape on the screen. The ASCII
codes refer to different keys when you are checking for input
. than they do for displaying screen output. INKEY() only

' oLt 1 checks keyboard input. See Using dBASE III PLUS for a llst
T . of INKEYO values. .

K -, ! s - . . T

I Getting Fancy In Chapter 4, you were pronused an explanation of how the check-

’ T _ : book management main program uses the INKEY() function in

] the main program, Cbmenu.prg. Take a look at this module now:
E _ " 20’ HHILE§1= ‘
.- i ; - ‘* ‘1=l.‘E'()§*"~$
=, .t . o .:." . "’;'9"‘ { A 3
' cle N ?»:m:&em: f&’*z@%

FTENDIFY
R %o Ty
%P N,

This 'module sets up a co;ltinuous loop that waits for the user to

i e type a key. The variable name i stands for keyboard mput The (ﬂ
SN e loop waits for the user to press a key — —
) : T "Q; T = ; LYy U ; "W- :
_ T ACINKEY OB G e RO Lo e Vg gl Sl
LA T L et e
i
T " ,i Po-8 PROGRAMMING WITH dBASE ill PLUS
)) - . ——— 4 gtk - e e = e e = - e e e e PETINTY R e e g s e p— -
. ’, ' - :
o S C 5 - N Tl -Z:‘}
- - ; ° Co-) i "—,‘
o : E
' = u_’ - . . :_ 4
s L
) N]
N _? . s - ’ l:L.g !‘
A B -. LA) .,:E
I . & '_.'.'-'n Bt
. .] » - X

T TN R R T R R e T
LR - ’ v B T AT T
) - e - -7 u- - ‘5 b

- :. #
. .
° s
A T
. - - . - - . 3 X
| . . X . 2 .t -ty PR TR :
. . N - ' .‘@.'- ‘o
PRI * . .. T ia e a4 e ama el s e £ -
Pas.
" .
- .

EVALUATING USER INPUT

— and continues to initiadlize { to 0 and count the time as long as
the user doesn’t press a key. That's why you see the seconds
count off on the menu. Although this command displays nothing:

8 22,58 SAY " T

[TR T S,

the command positions the cursor at the bottom of the screen
between the two colons and makes it appear as if it is prompting
the user for an entry. It replaces the @...GET and READ construc-
tion, because in @...GET and READ lines, nothing happens until P
the user enters something. In the INKEY() example, however, the
time is ticking away, and the use of INKEY() in this loop is an
active situation.

When thé user types a letter choice from the string
“ABCDEFGHIJKLX,” it activates the INKEY() function, which
instructs the prograin to EXIT the loop. Otherwise, the program
continues the loop and ticks off the seconds.

. Initially, the variable i is a counter, and its value is numeric.
. However, the INKEY{() function allows any numeric or alphabetic

keyboard input into i. The program reinitializes { to be 0 for each
repetition of the loop if the user either doesn’t press a key or
presses an incorrect key.

When the user presses an acceptablé key, the program displays
the input in upper case:

| @ 22,58 SAY UPPER(CHR(i))-:

and the program then evaluates which CASE command to executé
for the menu choice. .

f The INKEY() works in menus and other situations such as prompts, e
| READKEY() where the program waits for the user to enter a response by

‘ . pressing a key. In full-screen comimands, such as in APPEND or

oo Function @...GET lines, you can determine the user’s input of a key with

the READKEY() function. This function works in a similar fashion
to INKEY(), but only in full-screen situations, and it uses a differ-
ent table of key values.

PROGRAMMING WITH dBASE Ill PLUS P99

3 ‘ .
c- - . B - = i mbmr x ey mg = b " ;

- R R - 2 s - T e T LTS T . " - Lo 3 ¢ - ' ‘

. : . . g e PR : - v . B R
sl “ . P - . o . - . T . L T e e - . L A " - ._r’.;; -, #
. . L .. N . . . T .

AN ;

) - i

§ .

- .

% :

Y |

F

E

;

- VR r S ey e
o i [l -

f‘.@\;umzaﬁ.‘:ﬁ, iy 4..-”_,3_3,-\ mﬁ?"‘ ,m-mp{.‘i‘-'f'f?:_:w ;j;h‘?iﬁ%

AT Y

3 gt
= ehee Y. ful . 8 " 2, ot
- : ; Foe

‘ CHAPTER9
- , \ o
Y - For example, if you want to know whether the user has changed el
. any information in an on-screen form, you can use READKEY() to
o test if the user has pressed Ctri-End, the integer value for which is
- : 270. If the user has not changed any field, READKEY() returns a 0

; value, and the program need not alter the database information. A
{ _ "~ list of the READKEY() values is in Usirig dBASE III PLUS under

the READKEY() function.
i The ¢ Key Under certain circumstances, you may want the user to press ¢!
e alone as a valid choice. For instance, if the user presses « .
e e . _instead of a letter choice, the program returns to the main menu.

Because « has a null value, its length is 0.

How do you test for this? If you want to have the program check
if the user has pressed «J, you can set up a module like the exam-
ple below. Here, select is a character variable which the program
initializes with a space. The user has]ust pressed a key:

Ty

. m Lsutmu(seleétnf&
- E . ‘§"‘D0 Sole{_thfngfi‘g»
Efie LSEEhTzips

o The * * means that the input string contains nothing, not even a
oL space. This is the way dBASE III PLUS indicates a null string.
e S . There is no easy way to set up this test with the substrmg search
operator, $, so always keep this point'in mind when you're design- "™,
. ing your program. For instance, test for the « key first and then L_’ /

for the other choices.

i
L P9-10 : PROGRAMMING WITH dBASE NIl PLUS
L :
- . ‘ - - .f' ' \‘

- . .
. LI -t -t »
- Dol .o Vawl -, - PLJ
e, Wt 4], . - B -
-,l.-_' .';-7- . ., - .- P
A R R P T M e
RS L P I O PR R i} Ny

EVALUATING USER INPUT

< 0 characters long

N Spacebar = " 1 character long

Figure 9-1 The <~ key has a null value.

Note the difference between the value of the « key and the value
of the Spacebar.

' : ar You will probably use the LTRIM(), RTRIM(), and TRIM() func-
-The Spav;eb tions to trim the leading and trailing blanks from the user’s input.

ce However, it may be important that the user not type any spaces in

the middle of an input string. You can test for this potential prob-

o . P ' . lem with the AT() function. Here, the variable select holds the

user's input: _ :

Fi00, WNTLEG: T o7 o Bt L ot m L FE R e et v
=7 ACCEPT ."What lis: thé-account “number?:" - 10 se.
LA LSTOREZLTRIN(TRIRCseLéct)) TO seléct Ry a5
D) "iﬁgfif,‘.'afs '“i:-:iFéi“ét!"i?,!l[riﬁiﬁ'@ﬁﬁg e
- R %i“%’f?ﬁf-“-v’fﬂ-’ SR LEs

.";-_5_{'- ,,.,#“ Erfism by Ly

A e 2
Sl 25 CHRAT) o L
; ; A% ces;?‘-.in»

' S5 S

2 e A o etk L R e Y

S ATTLELE Ppresstany Tkey "to try againt
FRELEASE-select Sixi o st i !*?“51 -

2 o S AL AL 5
SRR LOOP 242 :-g%f‘_’ :

'
.5 W
X

L% ELSE of vhans

".’? ‘-‘-Eiﬁls,@‘gggﬁf@w«“

T ENDOO;WHILE é“‘ Pk

e T L e e

o After the user types the input, select is TRIMmed of leading and
trailing blanks. The AT() function then checks for any blanks
within the string select. Because AT() returns the numeric value of
the substring’s position in the string, or 0 if the substring is not
in the string, you must test if AT() returns a value greater than 0.

PROGRAMMING WITH dBASE 1l PLUS . PS-11

a . LETS - . — EmmE e wwr iAo - 0 TV e remrmr . *
e L v -2 - : . s T T ST T e
! : " Sl ar STy
- I T . A
- 2 v r .
.
™ - & ?
. .
.-] - -
- * .
P
- ks
- W
- T

h = TP Pt ca . an]

RIS P At X
ALY LA Rl B N

SRR
it T e

-~

Y iyl
'

4

pet o

AR AT T T

by
." _-,., ..‘-r! '¥'

[A

‘_-‘

;_‘..-_

CHAPTER 9

Using the ON .

Command

You can test whether certain user input is of a specific type with .
the three functions ISALPHA(), ISLOWER(), and ISUPPER(). These
functions return a logical true or false. For example, if you want |
to check that the user has input a letter of the alphabet, you can |
say:

?;3,8 '20; 10 GET seleet.v c,.-.‘ *"’f.’éw*w"*}-? = <
2 Th :snunmelaetfﬁw’@éﬂ‘“

..“;k‘?‘

wlﬂ_!_‘ Something. -w

Similarly, the functions ISLOWER() and ISUPPER() test for lower
case and upper case. These functions test the first character in
the string only.

The TYPE() function, unlike the above three functions, returns the
‘specific data type of a memory variable, that is, character,
numeric, logical, date, or undefined. When using TYPE(), enclose
the name of the variable in delimiters:

FEL 7 "FE('luur’Jf"?

E@, \?“";ﬂi «"'3?1“"15
e .PH ﬂ"E:f'nunr?’J

R

L STORE 123 ra”rnnv“ar"‘% e

* Here, the TYPE() function returns N for the numeric variable

memvar, but U for the undefined variable memvar2. You can also
use TYPE() to determine a field data type, which can be charac-

ter, numeric, logical, date, or memo.

The ON command allows your program to branch to subprograms -
depending on whether the user presses the Esc key or any other -
key, or if a dBASE III PLUS error has occurred. There are three (}
versions of ON: ./

ON ESCAPE — tests for Esc key
ON KEY — tests for any other key
ON ERROR — tests for a dBASE error condition

PROGRAMMING WITH dBASE Il PLUS

r
IEH

o

- _,;
41
-4

vt
av

EVALUATING USER INPUT

PROGRAMMING WITH dBASE Hi PLUS

The ON ESCAPE command allows you to set up a way to handle
the user’s pressing the Es¢ key while your program is running
without ending the program prematurely

ON ESCAPE no llurninu
These three commands, like the INKEY() and READKEY() func-
tions, should be set up in continucus loops to evaluate keyboard
input. If you put them at the beginning of the main program
file, they'll be in effect throughout the program, or you can
turn them off when they’re no longer needed. To turn off ON
FSCAPE, type ON ESCAPE without any other command on the
ine.

- mhmmme ew e e emmwrm e Dm s e e e m— g — =

P9-13

L y .
ey

P

Chapter 10

WORKING WITH THE DATABASE

e ?rfg*” '7’{:‘“-"'.; %

What This
Chapter
Covers

'Preparing for

This Chapter

Designing the
Database

In addition to getting information from the user through screen
forms and prompts, your program will make use of data in
database files. It has to open, or USE, the database file, with its
related index files, and locate the correct records. These are the
topics of this chapter.

" In this chapter you'll learn:

* How to design a database

* How to establish the database file in USE for a program
* How to set up work areas and ALIASes -

* How to set up multiple-field INDEXes

* How to change the master index file

* How to locate data in the database file

* What the end-of-file and beginning-of-file conditions mean and
how to work with them

s How to filter database information

Understand the essentials of dBASE programming, how to work
with field and memory variable types. and the basics of getting
user input.

The designing of 4 database significantly affects the design of a
corresponding program. dBASE III PLUS really shines when you
follow the relational pattern for building database files. You will
probably design several different, yet related, database files as
part of your database, along with corresponding index files.

PROGRAMMING WITH dBASE Il PLUS P10-1

CRAE ke
-

. o, L.
P SR N DY SRR R JTL . S o

it

a e S A

"

) .;.’.'—-4-%.-.-4.—'1

»

' ", .
Ty SO X T S PRI

g 8 i

o

.

- 9-i

o «.@‘R{v«m". ?}M&}‘%wq 119&%_?;.‘,%"& et

CHAPTER 10

TIP '

One cardinal rule to follow when designing database file rela-
tionships is: don't overlap fields. The relational concept works
best with one field as the bridge, the relation, between differ-
ent files. When you have superfluous fields in several data-
base files, you waste disk space and make the program run
more slowly

Customer.dbf

Name

Street .

City -

State

Zip

Phone Order.dbf

Cust_no _——a— - Cust_no
Order_date
Product
Amount
Cost
Ship_date
Salesperson

Figure 10-1 A relational database

In this example, the Cust_no field is the key that relates, links,
two separate files.

PROGRAMMING WITH dBASE lll PLUS

SRR

- ks g e

oo,

e
'

WORKING WITH THE DATABASE

Opening the
Database File

Sometimes the programming project uses an existing database,
but you should consider restructuring the database if you feel
that you can improve the speed and efficiency of your program.
dBASE programs run very fast, but if the program uses a large
database, you may find that performance is slower when the pro-
gram has to access files on the disk.

To lessen disk access times for a large database, break the data-
base into smaller relational database files. For example, instead
of maintaining all personnel data in one database file, keep less
frequently used data in a file that is related to the main personnel
database file on a key field, such as employee number. The pro-
gram doesn’t have to sift through this information all the time
and runs faster because the main database file is smaller. The
relational model lets you isolate sensitive data in restricted-access
database files. For example, you may require passwords to iden-
ufy authorized personnel. This is especially important if you are
using dBASE III PLUS on a local ared network. See Networking
dBASE III PLUS for more information.

Depending on the size and complexity of your program, you can
open, or USE, a database file and any related index files at the
beginning of the program, or wait until the program actually
needs the database file before putting it in USE. The checkbook
management system follows the latter course. There are five data-
base files USEd by the program: Checks.dbf, which is INDEXed
ON Chkno TO Chkno.ndx; Deposits.dbf; Recon.dbf; Bank.dbf; and
Tax.dbf. The program doesn’t USE a database file until absolutely
necessary. ‘

Keeping a file closed until absolutely necessary maintains the

- integrity of the database file. If databases are left open, they can -

be c.orrupted by power failures or by the user accidentally turn-
ing off or resetting the computer. Whenever possible, have the
program close files with the USE command as soon as it's
finished with them.

PROGRAMMING WITH dBASE Il PLUS P10-3

S‘fftﬁi’

D‘"\.

- CHAPTER 10

s

If your program USEs two or more database files that are rélated - ~ -
— - | ' to each other on a field, you must open files in different work
T - areas with the SELECT command. For example this module sets

N up two work areas: .

*"jmm [JF o e
?‘USE;Accnunts me; EACetS o

. < SELECTS ze*%f-? R T
. o - ;i_';.'-ﬁf iBalance? xnoex;eat 4

!h}..-‘m

.- e e . SELECT 1 ‘
AR : USE Accounts INDEX Accls

RPN .| sELECT 2
L A ‘ USE Balance INDEX Bal

A 1 2 3 .
c. o Accounts.dbf Balance.dbf
B 7 Accts.ndx * Bal.ndx

Figure 10-2 Work areas

However, note that since you have USEd the files, they are open
P) until you close them. Issue the USE conimand to close the cur-
- : . ' rently SELECTed work area only, or the CLOSE DATABASES
S - o command to close all work areas slmultaneously

. ' ‘ In the next chapter, you'll learn how to manipulate field informa-

tion between work areas with the SET RELATION command : L "

-

[P, S ———

PIC4 ~ PROGRAMMING WITH dBASE Il PLUS

[
e |

- - L
et -"r'

. - ey L T == a "! ".':‘- ‘q_"a yﬁﬂ‘
N a0 pomaer B
Chatx e i}}wfs:‘: -l_ Liaat LR R = e é
bRl H: " :
. . - #a
- i H P > -t -
¢t) P
s e Sa ANl .
AL S . -
-1 .
-, ..
- .

WORKING WITH THE DATABASE

- Using ALIAS Another method for selecting database files is to establish .
_ Names ALIASes for the database filenames. Suppose you have a database
T - file that you use continually throughout the program with a
R C related index file. You could establish an ALIAS as in the follow-
y _, ing example:

e SELECT 1 o e e T e B AP e o o

) - e USE Accounts'.r!llbﬂ Accts,ALIAs"Acctsduem:\-w 3
. A b T~ LSO SR e AT A L
Whenever you need this database file and its index in your pro- ' =y
‘ gram, you can insert the command: : s
. oo - ECSELECT Acctsdue 2Pk T TR
T me LU
Depending on the name you use, an alias can make it clearer what
< e database file is in what work area. Once you establish an alias, g
e o you must use it to refer to the database file until you close it. RS
' . o o . SELECT 1 -
. USE Accounts INDEX Accts ALIAS Accounts ; -
- <3
: _ ACCOUNTS -2 3’ R
=
Accounts.dbf -‘
‘ Accts.ndx g4
i Figure 10-3 ALIAS names
N
i
L WARNING
- Don't use the single letters A through J for ALIAS names,
4 because these letters also represent work areas 1 through 10,
respectively.
: _
. b PROGRAMMING WITH dBASE 1l PLUS P10-5 -
,. . . . T, ; PO - - . ‘;‘: N A :._.-. : -- F : ... - . . S
: .',“_.‘ \ . -) A B i‘._f: . : H) .
: L = \'\ -

¢

[

AT

G-
bl . RS Yau i)
- WS RN T

R

e

CIY
a_;;’i'i'-‘
R

-

L

"

R
Rk

* b, "
S RIT LN '.'.::-&f

Gk

Lt

3!

. .
o agaal

CHAPTER 10

Elaborate
Indexes

-2

r

Using Several
Index Files

P10-6

You can have multiple-field indexes if you want records to be
arranged according to several fields. One popular example is a
name-and-address database file, where the first and last names
and middle initial are in separate fields. The database file is
INDEXed ON the last name, first name, and middle initial in that
order. If several fields in the database file contain the same last
name, dBASE III PLUS arranges the records according to the first
name. If there are duplicate last'and first names, dBASE III PLUS
uses the middle initial to arrange the records.

To set up a multiple-field index flle set up an expression that
shows the fields. Use the + operator to concatenate the fields.
List the main field first and then'the other fields in the order that
you want dBASE III PLUS to II‘{DEX them:

FTUSE Nanes 1 L oM ra e i TR
%mex Ol-Last lﬂhrstz 4ﬂlddle}103ltlﬂh¥--'.
L.s M\n_.‘ﬁ :

= M-....e’.‘ﬁ!n&.....

f&'—
.y

NOTE T
dBASE III PLUS INDEXes in ascendmg order.

Here is another example. The database file Accounts.dbf is
INDEXed ON Order_date, a date field, and Client, a character
field. However, to get correct chironological order in the dates,
you must use separate character string conversions of the year,
month, and day portions of the dates

comy -a..-:pv——v— -y

r, USE ‘Accounts i3I R IR ?gea .
TI!(!IOII‘IH(OrderJ da'te) gn-

1 TNDEX" ON . STRCTEAR(OFdar -date)’ n,h,:
e STRIDAY(Order. date);2)7 ¢ Cliant iT0. To.Cligntin o
t. AR S N ot TR oii ‘u-....u FCRGEE B AT LN AL)
You can have several index flles.,set up for one main database file
and call them all up when you.USE the database file. In this
example, the program opens three existing index files when it
USEs Accounts. dbf

iy

JJUSE Accnunts;llbtl A:ountln,
A ‘i—-"i,# 5 5). .'l !‘ﬁm -

Lt]

PROGRAMMING WITH dBASE i1l PLUS

|
o
i

TG R

}
H

Cen

»’ﬁ‘ré:'-ww-w EeReT SRRl

\

C -
- O ,
. -

i I WORKING WITH THE DATABASE

A The first index file is the master index. The master index controls
- the order in which dBASE III PLUS displays and accesses the
o database file. However, all index files in USE will be updated by
; the program whenever you update information in the main
- database file. You can have seven open index files related to a
single database file.

1
A md™ o ot

Sometimes you'll want to change the order of the index files to
make another index the controlling one. For example, if you're
finished working with the Amount_due field and your p.
3 has to update the Client field, you may want to display the client
‘ information on the screen. Because this information is INDEXed
T bydcllent name in the Clientin.ndx file, make that file the master RETEN
index [

- ' You can change the order of the index files curremly in USE with
' the SET ORDER comm'and which takes a numeric argument.

The abmre module makes the second index, Clientin.ndx, the con-
trolling one. You can use SET ORDER TO 0 to make the file
appear in its unINDEXed order while index files are still open.

R : If you want to open another index file that is not currently in . - ..]
4 . USE, use the SET INDEX command: . B

. ' mwf" b ~andes-v eyl R
!' ;%SELECTgAccountsffée‘; e M T i
o -+ SETAINDEX-TO Sales inigy i isies

i . Unless you spec1fy the index files already in USE when you SET
: another index, you'll have to repeat the entire list, because SET
INDEX establishes the entire index list:

1HSELECTIAccounts A 7S
MSET ‘;IIIDEHTO.Selesin, iC

I i To close all index files but leave the database file in USE, type
CLOSE INDEX or SET INDEX TO with no filename after it.

PROGRAMMING WITH dBASE 1IF PLUS . P10-7 .

e

AR e

CHAPTER 10

Disk File
Management

Finding
Records

P10-8

TIP 3
Set up all the index files that you need once and then change
the order with the SET ORDER command whenever neces-
sary. Look in Using dBASE 1II PLUS for more about multiple
index files.

The program should take complete control of the database and
related files it USEs. Whenever possible, set up these files when
you design the program. However, occasionally the program
won’t know the name of a file in advance. It requests a filename
from the user and checks whether such a file exists on the disk.
dBASE III PLUS has functions that help the program to control
disk space and directories. You'll learn about them in Chapter 13.

Most ABASE programs use either GOTO or one of the search com-
mands, LOCATE, FIND, or SEEK, to isolate a record needed by
the program. Which method you use depends on the way you've
designed your program.

The program may ask the user for a specific record number and
then instruct dBASE III PLUS to GOTO this number. More often,
however, the user won't know the record number and your pro-
gram must find the record. Once the program isolates the correct
record, it can display the record on the screen using either

' @...SAY commands, if you've developed your own screen forms,

or ?, DISPLAY, or LIST.

To find a record, your program ascertains what data the user
needs from the database file. Then, it isolates the data. For exam-
ple, if the user wants to look at all records in which the last name
field contains the name Smith, the program isolates these
records, if they exist:

PROGRAMMING WITH dBASE HI PLUS

Lp i

‘ﬁ*\

pa

WORKING WITH THE DATABASE

There are three commands to search for information: LOCATE,
FIND, and SEEK. A fourth command, CONTINUE, works with
LOCATE. These three commands and the GOTO command move
the record pointer through the file and stop at the very first
record that fits the stipulated condition. However, there are ways
to repeat the procediire for any other records that meet the same
condition. The record pointer stays at this record until the pro-
gram isolates another record.

When working with large database files, be sure to use a related
index file, because then dBASE II PLUS can search through the
database file very quickly. The FIND and SEEK commands only
work with INDEXed files. -

LOCATE and LOCATE works with any database file, INDEXed or not, but it is

CONTINUE the slowest of the three search commands. The LOCATE com-
mand also must include a condition. For example, the Clrcash.prg
looks for a withdrawal number equal toa control number:

LoclTE Fon Iunuith-cntr

LOCATE is most useful when you are lookmg for a record that
fits a specific condition. In the example below, from Clrdep.prg,
the program searches for outstanding deposits in the Bank dbf
file, It isolates those records that contain an amount over 0 in the
Num field and .F. in the Clear field:

: Locm FOR nu- >0 LAND, uor. cmr

Once the program has LOCATEd a record, you can use the
CONTINUE command to locate the next record if any, that fits
the same condition. CONTINUE only works with LOCATE. It
starts at the previous record number found with the LOCATE
command and continues the search.

PROGRAMMING WITH dBASE il PLUS P10-2

W

e

I S S

. . u St
O T ¥ T ST e R VL. L

-
.

CHAPTER 10

FIND and
SEEK

NOTE '

You can set up a separate LOCATE command for each work
area, but be careful that you know which is the currently
SELECTed work area when you use CONTINUE.

FIND and SEEK work in a similar manner but much more
quickly than LOCATE. However, you should exercise care when
using them, because they only function properly under the follow-
ing conditions:
* The database file must be INDEXed on the field that you are
FINDing or SEEKing.

* No matter where the record pointer is, FIND and SEEK
always begin at the TOP of the database file and locate the

. first applicable record only.

There is no contmuatwn command, like CONTINUE that
works with FIND and SEEK.

* FIND and SEEK will match any string to be found, starting at
the first character and continuing only for the length of the
string. dBASE III PLUS stops at the first record that contains
the string, which may not be the string you want. For exam-
ple, you want to find the name Smith, but FIND positions the
record pointer to a record containing the name Smithe. You
can remedy this situiation with SET EXACT, discussed below.

Think of FIND as a subset of SEEK, a more powerful and versa-

tile command. FIND can only locate a character string which ‘
doesn't have to be delimited with quotes, or numbers. SEEK can -
evaluate an expression and locate its result. The values of this (’)
expression can be character, date, or numeric. If you're using

SEEK to locate a string, remember to delimit the string. Here are

some examples:

PROGRAMMING WITH dBASE 11l PLUS

- ‘- % - o S s ey oy | oo

L e -
Tt

D eg m i wm w e
€=y O

WORKING WITH THE DATABASE

T to find T] cl’uruter string.' L

FIHO Smith. = N T S e
. ® is the same as: .- - oL T e

SEEK “Sllth"

: ‘* to tind an alount.
-*SEEI 124.50 .

*+ to find & date:)
" SEEK cront*nmmefa |

s e bR o (PSP A S . WU - ST

You can use both FIND and SEEK with memory variables
directly by STOREing the user’s input into a memory variable
and then using this variable in FIND and SEEK commands, but
you must use macro substitution with FIND.

o IIIPU! "llhat is the custoaer s coda nunber? " ro :coda
FIND &ccode - ; . ,
{ SEEX ccode

—m— o S U S S S

Here is an example of a program module using FIND:

T SET TALK OFF A

CLEAR . :

* Request last name from user

. m_last = SPACE(2D)

i 710,10 Ssy "Enter the last nlle'“

- 910, 31 GET m_ lllt PICTURE “@A""

READ

+ Remove leading and trailing blanks s '

~ STORE LTRIN(TRIN(m last)) TO m_last '

.+ Open database fiTe vhich is Tthlad on the llst nlle fleld
USE Names . IKDEX Llst . ' _ A R A

*.Find it ‘ O . H-;

FIND Em_last B

*+ Display certain: fields in the record ";'1 e

CLEAR Lol e T

9 1,10 SAY TRIN(First) ¢+ * " & Tl!l(l.tst)

Y - 8 3,10 SAY Street * ‘”V:T4Eﬂ ff”ﬁ

. @ 5,10 SAY TRINCCity) + », + State +-m e le
'SET .TALK ON o
RELEASE m_Last .

RETURN - -

L — — : . -

PROGRAMMING WITH dBASE Il PLUS P10-11

R .

A pas

‘ : o S "~ CHAPTER 10

e SR There is a major fault with this module: it doesn’t consider the

S . possibility that there is no last name that matches what the user
L o s in. When there is no record found, the record pointer is at

L ') e end of the file. You'll see how to deal with this below.

L F|ND and . Youcan use FIND and SEEK together with a DO WHILE loop
R ' SEEK Save to find similar records. This method is like using LOCATE and - '
s T g . CONTINUE. The trick is to position the record pointer at the first = . _
T L © Time , record with FIND or SEEK. This is a much faster method than

A B ' © " LOCATE. Then use a loop to show all similar records. For exam- _ X
7 E S ple, if the user wants all records with the last name of Smith, you -
Lo : : could change the previous example to:

|L ""

e “m?o by : ‘u___iﬂbj";'fﬁ"%“{'c% a’w Yi’ﬁ&’w gt ?’1«..& (AR i ";

4“‘4‘ o iy,

WORKING WITH THE DATABASE

SSETSTALK: on} ;";j;_

Il

1

o]
© _ ¥ RELEASE (0 4

This program uses relative addressing to display information on
the screen. The scrolling doesn’t stop when the entire screen dis-
‘play is filled up with database information. An error message will
occur when it tries to DISPLAY on row 25. So, you must add a
counter in the program to make sure that the display doesn't
: reach row 25. See the Listnames.prg module in the next chapter .
S) for a way to handle this situation.

.- The Whenever you use GOTO or one of the search commands,
: End-of-File " dBASE III PLUS positions the record pointer at the specified
Conditi record. Because the record pointer is at an existing record, the
ondition end-of- file condition is false, .F.

;.-"I F ! However, if the program tries to GOTO a record number that is
i
t
j
H

o
Fiw et K
g e X

e ' higher than the last record in the file, or if LOCATE, FIND, or
. SEEK can’t come up with a record that matches the condition,
theé record pointer reaches the end of the file. dBASE III PLUS

then automatically sets the end-of-file condition to true, .T.

i

]
-
LTI

" NOTE :
H The last record in the database file, that is, the BOTTOM of
i : the database, is not the end-of-file. The end-of-file is directly
- after the last record. Similarly, the beginning-of-file, dis-
cussed below, is immediately before the first record. The
terms TOP and BOTTOM do not refer to the beginning or the
end-of-file conditions but rather to the first and last records,
respectively, in the database file.

-r—

Pama
-

Your program must work with this end-of-file condition, and
dBASE III PLUS provides you with a special function, EOF().
EOF() always returns a logical value, either true or false, depend-
ing on where the record pointer is.

PROGRAMMING WITH dBASE Ili PLUS P10-13

Ls

S : Whenever you use either SKIP, LOCATE, FIND, or SEEK to move -
S ST e . . the record pointer, you should make sure that your program tests
T - . - . for the end-of-file condition. Here is the original FIND example
. oLt . rewritten to include this test. Note the use of the v
. -_i ~ . 3
st
; - ‘ 3
et o : + Remove leading and trailing blanks :
SRR : ' i STORE LTRIM(TRIN(m_last)) TO »_last ‘1
s Open database file which is INDEXed on:t
" - USE Wames IWDEX Last .
JETRRR "¢ Find it T
. . i " FIND B last
; |+~ End-of-file?
R SRR | IF EOFO
: | : CLEAR
AP i 2 16,1 SAY "Sorry, there is
. - : ; * in the database file."
. : 2 13,0
’ WAIT
-
.l 1

.
s, -ty oy
- e
R .
. - &

i

[~
WORKING WITH THE DATABASE -'
) T e o m ——— . T
Yo 1~ Show information on.three rows
1 @ r, 10 SAY TRINCPirst) ¢ ™ ™ + TRIN(Last)
8 r¢1,10 SAY Street : : , .
. 8 re2,10 SAY TRIN(City) + ©, " + State ¢+ " " 2 lip
- % Add blank row -
? L _ . . ;
i . % Skip to next record that fits the condition R |
! SKIf ‘ ' . - .)
« Increment row for next record :
I LARAE
* toop back
ENDDO C
| ENOIF
¢ USE . K , - - .
{ SET TALK ON : . - L
- RELEASE ALL) : :
L I e
f‘ B There are two points in the the module where the program must
. test for the end-of-file condition:
* When the program attempts to FIND the last name
* In the DO WHILE loop when the program SKIPs to the next
record :
Other File Similar to the EOF() function is the BOF() function, which returns
Functions the logical value .T. if the record pointer is at the beginning of the
file. Use this function in the same way as you use the EOF() func-
tion. Use BOF() when the record pointer SKIPs backward and you
want the program to test when or if the record pointer has
reached the very beginning of the file.
r— . ~—= e - :
b . USE NANES 1
10 2 RECNOC)]
! 1 . '
: o ? BOF() o ; o
) E » F - - . - N . i
\ ©oLSKIP -1 N L
! Record Ho. - 1t g - : ‘ :
.7 B0FO) :
L -A.T. . p— et o b < A——— it e e —
PROGRAMMING WITH dBASE 1l PLUS P10-15

S
=4 e T
AL
P

£
T

. LR
PO S Jp,

CHAPTER 10

Filtering
Commands

You can also use the RECNQX) function to return the current -
record number, for instance, to STORE it in a memory vanable sO
that you can GOTO it later:

IF;‘? NOT EOF()}- Pt
5 STORESRECHO ()7 tourecord £
;Emr' ol s e ae

LOCATE, FIND, and SEEK all work with the end-of-file condition.
In the above examples the program is looking for specific data
and locates a record which contains the data. If no record exists,
the end-of-file condition is set to true, and the program returns an
appropriate message.

Sometimes, however, all you‘ll need to know is wﬁether there is a
match or not. For example, in the Check.prg, the followmg section
of code checks for duphcate check numbers:

Fusek s

0 mrouuo(mm,

rgh -FQ!: T -
#£o0.19.118,157 SAY, "Chaek
f‘*nsewsﬂﬂmﬁtf’@ s
-_?, x Eﬁ - i

When the program SEEKs the check number, mchkno, it only
needs to know whether another check with that number already
exists. It uses the FOUND() function, which returns a logical
value, true or false, depending on whether the record pointer
stops at a record or not. In this example, if FOUNDY) is true, the

- program advises the user to enter another check number. It

doesn’t matter what record contains the check number, only that
there is an exact match. .

There are several commands that are useful filters for informa- | RN
tion in database fields. Programmers use these filters with such (» :
commands as LOCATE or FIND to bypass unnecessary data. -~

These filtering commands are SET FILTER, SET DELETED, SET
EXACT, and SET UNIQUE.

PROGRAMMING WITH dBASE Il PLUS

it Ak el ma .. = .

.

7

r,"- »
'

WORKING WITH THE DATABASE

s = - = m T T ¥ - y T e . g s bt
et T e R SR 2

"

SET FILTER

If your program USEs a very large address database file, and all
you want are listings for California, you can have

dBASE III PLUS filter out all other states from the State field
when looking for records:

SET FILTER TO “CAY § Stlte
SET FILTER makes the database flle appear to dBASE III PLUS
as if it contained only CA in the State field. The filter can also be
a more complicated expression:

" SET FILTER TO "CA" § State .AND. Zip < "91400" |
If you want to SET FILTER TO a date, you must convert a charac-
ter string to a date:

* Filter only tbose l'u:tmls~ ;;i;!‘e-d after lanuary 1. 1986 o

+ Add _date is.a date field in the database file

SET F?I.'I'EI! 1o Add date) CTOM‘M 101 IBG'J
The database file is not smaller when you use SET FILTER TO, so
it still takes dBASE III PLUS the same amount of time to scan the
entire file. Because it may affect the working of your program
later, make sure that you remove the filter with SET FILTER TO
without a condition after you're finished with this command.

TP

It’s a good idea to GOTO the TOP of the database file after
you SET FILTER and before you start another operation,
such as SORT or SUM. However, the INDEX command
indexes all records in the file, whether or not they meet the
filter condition.

PROGRAMMING WITH dBASE Ill PLUS P10-17

r U - .',. -‘v‘l_'_'-q

.-;a,‘??ﬁ%‘}ﬁmw«,wwﬁm-:zur *-s;_:*-:; et e ,.Tt‘_‘fg* égf-*@ifm {i@%‘;{:& s st

[~
L - ' . CHAPTER 10
, R) Skipping If you want to exclude records already slated for deletion in a "\
s e - Deleted - FIND, LIST, SEEK, or DISPLAY operation, you can use the SET.
e e DELETED ON command. This command, normally OFF, filters
LT ~ Records gut the deleted records. Another way to do the same thing would
e:
- TP e oo NOT 5 DF PR '.g".}""-""' o : o TR TR {
(& SETTRLLTER 0 1 HOT SDELETEDO) oy 70 s b e

The SET DELETED ON command is also helpful when you are
using the COPY TO command to copy only current and active
records to a new database file, or the APPEND FROM command
to copy in records from another database file. Note that with
L T e APPEND FROM, SET DELETED ON is not equivalent to SET FIL-
AT : : TER TO .NOT. DELETEIX). Filters only apply to the active data-
) base file while SET DELETED refers to the entire dBASE operat-
ing environment.

Checking for . Use SET EXACT ON to ensure that a comparison between two
Exactness character strings is done exactly, character for character. Nor-
; mally in comparisons, dBASE III PLUS starts on the left and does
a character by character comparison until the character string on
the right side of the operator runsout of characters. If all charac-
ters up to that point are the same, the strings are equal. Other-
wise, they are not. So, the following commands:

53 r“—~
. a%s_roneuwms'wo nunhergﬁa;?gg@g__, St ts
,,m?‘nunberz ,,;nulher'l;"‘aﬁﬁ.ﬁ -5;* NEAA

would be evaluated by dBASE HI PLUS as being .T., true,
although as far as you're concerned, it's false.

If you SET EXACT ON, however, dBASE III PLUS compares the
strings exactly, and the answer to the above query is .F. Similarly,
if you want your program to search for information that matches
what the user types exactly, then you should SET EXACT ON
immediately before the operation. -

P10-18 PROGRAMMING WITH dBASE il PLUS

e e wm————— ot - 4 A e m e e

Yeiirace Ak S R

WORKING WITH THE DATABASE
N ; ;i "b. -g-,.;&
o WARNING Aoy
- dBASE III PLUS finds exact matches of character strings only 5 -
. - with SET EXACT ON. Make sure that you SET EXACT OFF P
' ' _ as soon as you are finished with it to prevent this command P
- from interfering with the rest of the program. :
: {
' Avoiding A database file may contain records with duplicate information in .
Duplicates a field. If you prefer not to see duplicate information in a field, i
P first SET UNIQUE ON, then create an index file using that field [
. | as the key field. With SET UNIQUE ON, dBASE III PLUS includes]
- T e~ only the first record with the key information in the index file.
S Y A Then when you use APPEND, BROWSE, CHANGE, DISPLAY,
- EDIT, LIST, or REPLACE, you will not see records with duplicate
. i information in the key f:eld because they are not part of the index
' file.
) In addition, that index file will always be updated as a unique !
index file. However, make sure that you SET UNIQUE OFF before .
i creating any index files that are to include all records. b
. : i ~
! .-
o
J
H
!
I
| B
L PROGRAMMING WITH dBASE Il PLUS . P10-19 I o

% %*’F',*“#:‘:Nr’;" *‘F"

L

tg,'i'g.t‘\'a-‘.g?b S LT e

LR R TEVERIM T U INIOS [RET NI e g

- -
PO 5
- ,.“s o ATy, L

CHAPTER 10

. USE Nomes

« LIST
Racordl FIRST LAST
1 George dones
2 Steven Snith
3 Sue Saith
; .. & eJean Valker
! 7’8 “dohn Saithe
. 6 HNelanfe Thomss
1 HNslenie Thomss
« SET FILTER TO State § 'CA'
« LIST
Recordk FIRSY LAST
2 Steven Snith
& Relanie Thomas
T HNelanie Thomas
« SET FLILTER-TO
. SET DELETED ON
. LIST) .
Recordd FIRST Last
1 George Jones
2 Steven Smith
3 Sue Smith
5 Jobn $aithe
& Relanie Thoses
7 Relanie Thones

. SET DELETED OFF
« SET UNIQUE ON
« INDEX ON Last TO Lastname

5 records indexed

. LIST

Record? FIRST LAST
1 George Jones
2 Steven Snith
5 Jdohn Snithe
6 Nelanie Thomes
b sdean - Nolker

. SET UNIQUE OFF

. F18D - Sait

« DISPLAY-

Recordf FIRST LASY

: 2 Steven Suith

. SET EXACT ON
. FIND Smit
No find

Figure 104 Tha dlﬂerenoo bmeen SET FILTEFI SEI' DELEI‘ED
SET EXACT,

P10-20

STREET A {11

404 Rain Strest Hightoun

1% Goary Strast " San Franéisco

125 West Avenue Rochester

Route & . N South Fork
303 toth SEFoRtNE, “Henttle

£102 Los Féliz llvd.'”
4102 Los Feliz llvd.

" Los Angeles
Les Angeles

STREET R cITy

33 Geary Street San Francisco
4102 Los Feliz Blvd. Los Angeles
$102 Los Feliz Bivd. Los Angeles

eniy e

STREET.

404 Myin ! Hightnun

n Eeary‘:troet CEE eyt Fran:ls:n
125 West Avenue - - Ro:hester .
305 téth Street, N.E. Seattie:

Los Angetes
Los Angeles

4102 Los feliz Blvd.
4102 tos Feliz Blvd.

sreeer _ eIy

404 Wain Street = ‘Hightown -

33 Geary Strest - - . San Francisco
308 tidth Street, M.E. Seattie. .
4102 Los Foli: llvd. Lot “Angeles
aoute‘ﬁ - South Fark:
STREET 184

33 Geary Street San Francisco

ce ¥

R S

and SET UNIQUE

L1
tA
L3

m'r:' P

(A 91405
A 90027

fﬁ_l!.
+CA

A

PROGRAMMING WITH dBASE I PLUS

Chapter 11

~. WORKING WITH DATA IN THE DATABASE

What This
Chapter
Covers

- Preparing for
‘ (‘ This Chapter
H

. Manipulating
Data

After the program isolates the data it needs, it uses the datain a
variety of ways. The program displays the data, puts it into mem-
ory variables, manipulates it with functions, and updates it. The
program may also use data from two or more related database
files.
In this chapter you'll lé_arn:

* How to work with database information

* Ways to update database information from within a program

s How to work with information in two or more work areas

e How to set up relationships between work areas

Make sure you understand the basics of dBASE programming and

that you have read the previous chapter before working with this
chapter.

You have learned that there are many commands and functions
for manipulating the data in a database file. These commands and
functions work either from the dot prompt or from The Assistant.
They work exactly the same in dBASE programs.

For instance, the Reconcil.prg module in the checkbook manage-
ment system reconciles the bank statement to the records in the
database files Checks.dbf and Bank.dbf. It also uses the SUM
command and, if the balance is a negative amount, the ABS()
function:

i st,totalfdepontssand cﬁh’ymthdrauls' 5

t;tnnnt} ,gat?frﬁ s

jiuSEtnanm@‘ﬁ;‘gﬁ' i
=SUNZABtTO notclearFOR: l!un:> 05 S e

4=,s|llp‘llt \JO:notcash; FOltallu-uiltM{ﬂL)“’ L

PROGRAMMING WITH dBASE il PLUS , P11-1

.=

el Bt ¥ Rl T L
R e RN
R AU,
. -
« e = F
- -t - - I

CHAPTER 11

L. ' " There are countless other ways to use database files. Your pro--
< - gram may show field information with the ?, ??, DISPLAY, LIST,
ST - or @...SAY commands in customized screen forms. The following
.. L : module displays the first name, middle initial, and last name

e T : fields in the regular columns of a screen form. It keeps a counter
' C ' of the row number. When the display reaches row 21, it stops and
requests the user to press a key to see more names. When the
user presses any key, it begins a new screenful of names.

1
+
*
.
- .
. .-
7

lst llne" 2

E%|

- %

. a3
. y Qﬁ
e

. - ..l:i,_ b ol ? -;,...u.'b pifrfirdipsuti-g T}
I G500 WM. TSSEOR() ZioErki e

e B ' T H) {rhrstuﬁ-%:«, X _-i

Niddtefmiogs

' . ' : 2 “', o~ ..‘,‘. Ao

. : g viskipito n'e'xt.-
. . ‘ . e atae %" £

: ésm:’* REaRE Y

: e P11-2 o : PROGRAMMING WITH dBASE IIt PLUS

Wt - N . -
. - N
\ . K
ks .
f 3)
ey :
B b
i <4
% . .
k)
. .
. ‘ .
. - L3
" -

e e T T et = e N sy

. ———

W memmn e i omssme

———

s,

WORKING WITH DATA IN THE DATABASE

DT AT e e e g

kiy to: vieu,nore;nalas we! LICATE

-Lesve topmof screen d1spl|y' or nev It
s) LT

LTy
7430; ug_ 5,‘,,,."<_,~;f.:;:;g. ok
’. ?Re:urn" orou k fo; n;u“stcre%?'
) 13 L. ; = "‘{*‘-"f ,“I’h e .‘P
= s A SLien, kﬁﬁ’i’—?@%ﬁ{-" :
;{lncrelentﬁrouFnulbarn-for next,;,iteratwn f lo
l'#-vll‘l*""“"*\""‘;iﬁ“" (A L T, }5“'—'&:""‘ i "-‘
R I %&"f

1.1.

TIP)
Learn how to use the various scope options in such com-
mands as DISPLAY and LIST. You can specify four scopes:

* Just one record: DISPLAY RECORD 2

* A number of records beginning with the current record:
DISPLAY NEXT 10

¢ All the records in a database file: DISPLAY ALL

» The rest of the file starting at the current record: DISPLAY
REST .

Many more examples of using database information are in this
and the following chapteérs, as well as in the checkbook manage-
ment files. Here are some particularly important operations for
working with database information from within dBASE programs.

PROGRAMMING WITH dBASE lI PLUS Pi1-3

CHAPTER 11

Changing the
Database
Information

. Updating
Data

P11-4

This section deals with how to update database files from within
other programs. In Chapter 13, you'll see how to modify a data-
base file structure.

After your program has allowed the user to change or add data in
an on-screen form and has verified the correctness of the data, it
must eventually add the new or updated data to the database file.
If your program doesn’t use the standard full-screen commands,
APPEND, BROWSE, CHANGE, and EDIT, it must locate the cor-
rect record and REPLACE the old data with the new data.

In Chapter 2 of this manual, you learned the basm pattern for
changing database data:

1. Initialize memory variables to hold the user’s input. These
memory variables correspond to the actual fields in the data-
base file. Many programs give the variables similar names,
such as mfirst to correspond to the First field. Make sure that
the type and length of each variable are the same as the type
and length of the corresponding field in the database file.

2. USE the database file, with INDEXes where appropriate, and
GOTO, LOCATE, FIND, or SEEK the correct record.

3. If this is not a new record, STORE the contents of the fields in
the corresponding memory variables.

4. Display a screen form to request the input from the user and

store the input into the corresponding memory variables. This -

screen form shows the current contents of the fields. The user
can then make the desired changes. Use templates to filter
incorrect information. For a new record, the user is presented
with blank fill-in forms, as in APPEND.-

5. When the user types in the information, prompt the user to
verify that all information is correct. If not, give the user a
chance to correct it.

6. REPLACE the information currently in the fields with the new
information in the memory variables.

PROGRAMMING WITH dBASE I PLUS

e

WORKING WITH DATA IN THE DATABASE -.

7. If there are no more changes or additions to be made to the
database file, close the file and clear the memory variables to
use them again.

When you use the REPLACE command, there are two possibilities
to consider:

» The record already exists.
¢ A new record must be created.

In the first case, the program REPLACEs the current contents of
the record with the new data. Make sure, however, that the record
pointer is at the correct record number. Remember that the
pointer doesn’t move unless you move it, so it should be at the
last record used by the program.

For example, the Clrdep.prg clears an outstanding deposit once
that deposit has cleared at the bank. The program first finds the
correct record number in the Bank.dbf database file:

I.OEA-"I'E fOR Num=number

It chécks to see if the number exists, that is, if the record pointer
is not at the end-of-file, and determines whether the deposit has
already been cleared. It then verifies from the user that the
deposit is the right one to be cleared. When the user says yes, the
program updates the database file:
‘1F UPPER(Cansuer)= Y™ ,

* if correct - replace fields in database

* file and erase deposit display from screen

REPLACE Clear WITH .T. - '

REPLACE Num MITH O~
Cow) o
: ENDIF
Because the record pointer hasn’t moved since the program
LOCATEd the record, dBASE III PLUS REPLACE:s the contents of
the current record with the new information.

PROGRAMMING WITH dBASE Il PLUS P11-5

CHAPTER 11

TIP

Your program can‘t know which fields may have been
changed or updated by the user, so it's a good idea to
REPLACE them all with the new information in the memory
variables. For example, if a database file contains ten fields
and the user is presented with all ten in an on-screen form,
make sure that the program REPLACE:s all ten fields with the
ten memory variables.

The second possibility, that of a new record, is easily handled in a
program without using the normal APPEND command. The pro-
gram uses APPEND BLANK instead and REPLACEs the empty
fields in the BLANK with the new information. In the Check.prg
module, for example, after the user has verified that the new
check information is correct, the program updates the database
file in this fashion:

IF UPPEn(ansuerf= A
* data is correct - add to database
APPEND BLANK

REPLACE Chkno VITH mchkno
REPLACE Date WITH mdate
REPLACE Payto NITH mpayto
REPLACE Amt WITH mamt
REPLACE Xemo WITH mmemo
REPLACE Can WITH mcan

* ypdate batance and lastchk
balance = balance - Amt
Lastchk = Chkno
* {...)

ENDIF

Because this information also changes with éach new check, the

program updates the current balance and the last check number
at the same time.

P11-6 PROGRAMMING WITH dBASE Il PLUS

s
-
r”.

e s ey s e . —— —— i

WORKING WITH DATA IN THE DATABASE

The Posting
Method

TIP

In both cases, the program uses the CLOSE DATABASES com-
mand at the end of the module to close the database file prop-
erly. Don't allow your programs to leave database files open.

Many accounting firms use the posting method to update data.
They keep a temporary posting file with additions or changes, but
they don’t update the main database file every time they make an
addition or change. Periodically, usually daily, weekly, or
monthly, depending on the amount of business they do, they
incorporate all the changes from the posting file to the main
database file.

The UPDATE command performs this operation. If you are writ-
ing accounting programs, you may wish to use this command
instead of or in addition to the REPLACE command. It's fully
explained in Using dBASE III PLUS.

If your program has to check what date changes were last made
to a database file, use the LUPDATE() function. This function
returns a date value, so you can compare the date of the last
update with any other date. See the example in the Commands
and Functions sections of Using dBASE III PLUS for one practical
use of LUPDATE().

Another method of updating information is to combine two data-
base files with the JOIN command. Be aware of the difference
between UPDATE and JOIN. UPDATE replaces information in the
current database by copying in current information from a sepa-
rate file. JOIN combines two files and creates a new, composite
file. At the end of this chapter is an interesting program that sim-
ulates the JOIN command.

PROGRAMMING WITH dBASE Il PLUS P17

)

G Mg ann e e

CHAPTER 11

Old1.dbf) Old1 .dpf
+‘-‘_‘ . '
1 changes from
UPDATE N Oid2.'gbl '
~

[Old2.dbf [Old2.dbf '
~ 3
Old1.dbf OCld1.dbf
. New.dbf

' JOIN
l Old2.dbt ' Old2.dbt
L Figure 11-1 UPDATE and JOIN
Deleting Deleting records is the same in dBASE programming as it is from
Records the dot prompt or ASSIST. Position the record pointer to the cor-
rect record number, using GOTO or one of the search commands,

and then DELETE the record. You can also use DELETE ALL
with a condition, as the checkbook management program does in
the Yearend.prg module:

DELETE ALL FOR YEAR(Date)=myear

You can, of course, RECALL a record marked for deletion as long
as you haven'’t PACKed the database file. Don't forget to issue the
PACK command to clean up the database file.

P18 PROGRAMMING WITH dBASE Il PLUS

= .
Y

WORKING WITH DATA IN THE DATABASE

TP .

Some programmers choose not to PACK database files on a
daily basis, but rather to maintain scratch files. They then
consolidate files as part of their periodic housekeeping. This
allows them to reinstate records if anything goes wrong. It's
up to you how often you clean up your database files with
PACK.

You can also use the quick and efficient ZAP command, but use it
sparingly. This command DELETEs and PACKs all records at
once. The checkbook program uses this command only in the
Reinit.prg module, which clears the entire active database file to
begin again for the next year:

¢ reinitialize all database files

USE Checks R
ZAP

INDEX ON Chkno TO Chkno

USE Bank

AP

USE Deposits

ZAP

* (,..)
CLOSE DATABASES

After the program ZAPs all th; records from the Checks.dbf file,
it must again INDEX the file in preparation for the next year's
checks.

PROGRAMMING WITH dBASE 1If PLUS P11-9

CHAPTER 11

Copying
Records

Differeht
Work Areas

P11-10

You can copy records to other database files, just as if you were
working at the dot prompt. For example, in the Yearend.prg,
before the program DELETEs ALL records from the active data-
base files, it first COPYs the records to archive files with the year
of transaction. Here are the commands that set up the three
archive files:

filel= "Dep"+STR(myear, 4,0}
file2= "Bank"+STR(myear,4,0)
file3= “Chk"+5TR(myear,4,0)

The three new files contain the last year's check records. They
relate in name to the active files Deposits.dbf, Bank.dbf, and
Checks.dbf, which are used by the program for each year's check-
book activities. At the end of the year, the program copies the
past year’s records from the active database files to archive files.
Then it DELETEs the records from the active files so that it can
use the three active files for the next year's activities:

USE Deposits
COPY TO &fitel FOR YEAR(Date)=ayear
DELEYE ALL FOR YEAR(Date)=myear -

PACK

USE Bank

COPY TO Efile2 FOR YEAR{Date)=myear
-DELETE ALL FOR YEAR(Date)=myear
PACK B

USE Checks INDEX Chkno

LOPY TO &filel FOR YEAR(Date)=myear

DELETE ALL FOR YEAR(Date)=ayear . "
PACK

* {...)
CLOSE DATABASES

If you're working with two or more database files at once, you
can work with fields from all the files in USE without switching
between work areas. However, you must access them by filename
or ALIAS name.

PROGRAMMING WITH dBASE 1l PLUS

WORKING WITH DATA IN THE DATABASE

The Selected
Work Area

SET RELATION

It’'s important to know which work area is currently SELECTed.
For example, say you have set up two areas like this:

SELECT A

USE First INDEX First
SELECT B

USE Second INDEX Second

You have opened the two database files, First.dbf and Second.dbf,
with their respective index files, given them ALIASes, and pilaced
them in two work areas. You then SELECT A, the First.dbf. This
database file has two fields, First and Last. Second.dbf, currently
unSELECTed, has a character field catled Street. So you can do
this:

DISPLAY First, Last, Second->5treet

This command DISPLAYs the First and Last fields in the current
record in the First.dbf file and the Street field in the Second.dbf
file. The pointer, ->, is dBASE III PLUS's way of referring to a
field in a database file in another work area. The filename or
ALIAS name precedes the pointer.

NOTE

If there is ever any confusion between field names and mem-
ory variable names, dBASE III PLUS always gives the field
name. However, to reference a memory variable name, you
can use the pointer M->. It's reserved to refer only to mem-

ory.

The above examples show field information from the current
record of the database files in two work areas, but they don’t
relate the two files together on a field. The Street field in the first
record of Second.dbf may contain information that has nothing to
do with the First and Last fields in the first record of First.dbf.

PROGRAMMING WITH dBASE 1l PLUS P11-11

[E—g

CHAPTER 11

If two database files are related by a field, you can make the
record pointer automatically go to related records in the second
work area, as determined by the position of the record pointer in
the first work area. The SET RELATION command establishes a
link between two work areas.

You can only have one active RELATION for each work area. One
good way to think of SET RELATION is as a way of temporarily
linking two database files in USE by means of something they
both have in common.

SELECT 1
SET RELATION TO Emp_noc INTO Private

1 2 3

Public.db! : Private_dbf

Name Name

Emp_no » Emp_no

Sireet Salary

City Priv.ndx

Slate

Hiredate

Figure 11-2 Establishing a relationship between work areas

NOTE

The SET RELATION command is most effective when both
files have corresponding records. If there is no record in the
linked file that matches the key field, dBASE III PLUS posi-
tions the record pointer at the end of the file.

P11-12 " PROGRAMMING WITH dBASE I} PLUS

WORKING WITH DATA IN THE DATABASE

a5

PROGRAMMING WITH dBASE llI PLUS

The most common use of SET RELATION is with the key expres-
sion option. When the record pointer in the first work area
moves, the record pointer in the second work area moves to a
record whose INDEX key matches the value of the relation key
expression. The second work area file must be INDEXed.

For example, you are working with two files, Public.dbf and
Private.dbf, containing personnel information and related to each
other by the field called Emp_no, an employee number. The
Private.dbf file is INDEXed on Emp_no to Priv.ndx. You have set
up the work areas like this:

. SELECT 1
. USE Public
~ SELECT 2
". USE Private INDEX Priv
. SELECT 1

You can then SET the RELATION from the currently SELECTed
work area to the other work area on the employee number:

" SET RELATION TO Eap_no INTO Private

Whenever the record pointer moves in the first work area, the
record pointer in the second work area will be positioned to the
related record:

<00 MHILE .NOT. EOF() o

DISPLAY- First, last, Private->Salary
: SKIP .

- ENDDO

If you have more than one occurrence in the related file,
dBASE III PLUS will only point you to the first occurrence.

SET RELATION establishes a temporary relationship between
two files. Using SET RELATION is not the same as INDEXing
files, which creates and saves an index file for the database file.
The relation disappears when you close the work areas or when
you issue the command SET RELATION TO.

o
-""
R

P11-13

[-

i}

CHAPTER 11

Advanced
Relations

P11-14

NOTE
When using a function, place the entire field reference,
including the ALIAS name, in the parentheses:

a 10,10 SAY SUBSTR(Private->hddress.1,25)

Below is an example of a more complicated relationship. This
module program simulates the JOIN command and makes use of
the SET RELATION feature. Notice that it uses the standard
REPLACE technique that you investigated earlier in this chapter.

* Progral.. 5-JOIN.PRG

+ Author..: Luis A, Castro, sodified by David NcLoughlin

and Vincent Alfieri, Ph.D. °

bates...: 01/11/83, 01717785, 06/24/84,11/16/85, 06/26/85
» Notes...: This program Simulates the JO{N colaand The
LI filenames may be requested from the user and

. entered from the keyboard with ACCEPT statements

»

*

SET TALX OFF
. !

firstfile = "OLDNAMES"
secondfile = "NEUNANES"
joinfile = "TDGETHER"

key_expr = "Lastneme*Firstname"
* . -~

-

= Initialize macro to replacé thé joinfile from the
* secondfile. Only the Amount fields are to be replaced

lreplace = "Amount HiTH B- >lloﬁnt")
Joinfile has all the fields to be JOINed and was created

prior to the beginning of this progral.
It contains no records. :

L I

&*

SELECT A

USE Rjoinfile

APPEND FROM &firstfile

PROGRAMMING WITH dBASE Il PLUS

WORKING WITH DATA IN THE DATABASE

Setting Up
Views and
Fields

60 TOP

SELECT 8

* It is assumed that the secondfile and its INDEX have the

» same name. The INDEX file must be indexed on the key expr

USE 2secondfile INDEX Bsecondfile

SELECT A

v Set relation between the.tuo work areas

SET RELATION TO Bkey e:nr'luro B

DO MHILE .MOT. EOF()™
SELECT &

u

IF .NOT. EOF() T
: SKIP
SELECT A _
~ * Add to joinfile from secondfile

REPLACE EZareplace
ENOIF .NOT. EOF()
ENDDO WHILE .NOY. EOF{)
CLEAR ALL
SET TALK ON
RETURN
* End-of-file: $~JOIN.PRG

The program uses work areas and macros. The two files are
joined according to the RELATION "Lastname + Firstname”.

Two new features in dBASE III PLUS can help you quickly estab-
lish relations between work areas and narrow down the database
fields you need. The CREATE VIEW command is a full-screen
operation that allows you to choose from a list of the database,
index, and format files and set up relationships between the files.
CREATE VIEW also establishes any filtering options you may be
using with the files. You then save the VIEW to a view file, which
has the .vue extension.

Whenever you want to reuse the same relationships, instead of
recreating the relationships and filters, use SET VIEW TO <view
filename >. To change a .vue file, use MODIFY VIEW <view
filename>.

Of help to programmers is the CREATE VIEW <view filename >
FROM ENVIRONMENT command. This command establishes a

view file from the current working relationships. It's an alterna-
tive to using the full-screen CREATE VIEW feature.

PROGRAMMING WITH dBASE 11§ PLUS P11-15

CHAPTER 11

P11-16

One aspect of a view may be a list of the specific fields you need.
The new SET FIELDS command allows you to pick and choose
only the fields necessary and keep them in a pool of fields. When
you issue commands such as LIST, DISPLAY, and BROWSE,
dBASE III PLUS automatically uses only the fields in the pool.

In the original example used to illustrate SET RELATION, after
establishing the relation, you could have set up the fields you
wanted to DISPLAY with SET FIELDS TO <field names>:

SET FIELDS TO First, Last, Private->Salary

Then, whenever you want to use only these three fields, you
must first SET FIELDS ON, and then set up the appropriate

commands:

SET FIELDS ON

DO WHILE .NOT. EOF())
*+ No need to List .the fields here,
+ because they're in the pool -
DISPLAY
SKIP

ENDDO

You can add more fields to the current pool without removing the
other fields by using SET FIELDS TO <fieldnames>. When you
want to have access to all fields but keep the pool active, use SET
FIELDS OFF. Use SET FIELDS TO or CLEAR FIELDS to remove
all fields from the pool.

PROGRAMMING WITH dBASE 131 PLUS .

Chapter 12

PRINTING
Besides presenting information on the screen, your program may
also provide printed output, such as reports. Therefore, you need
to write program code tailored to your printer.

What This In this chapter you will learn:

Chapter * What things about your printer are important to

Covers dBASE III PLUS

Preparing for
This Chapter

Your Own
Reports

and the
dBASE I PLUS
Report
Feature

* How to change the printer port from within dBASE III PLUS
* How to use printer coordinates for customized printed output
* The factors involved in determining page formatting

* How to do special printing features from within your
programs

¢ How to set up a counter for printed lines and page numbering

Have an understanding of dBASE programming in general and a
thorough understanding of screen coordinates. If you're not famil-
iar with your printer already, have your printer manual handy for
reference.

The word report, as used in this chapter, refers to any printed
output. For many situations, you may wish to use the REPORT
FORM <report filename> TO PRINT command in your pro-
grams. dBASE III PLUS’'s REPORT generator is useful for produc-
ing quick reports and for calculating totals for numeric fields. See
Learning dBASE I1I PLUS for more information about the
REPORT command.

If you want or need more elaborate printed output in your pro-
grams, dBASE III PLUS has other special commands and func-
tions for printing that can make your programming tasks easier.

PROGRAMMING WITH dBASE 1If PLUS . P12-1

o

CHAPTER 12

Printers: Some
General
Remarks

Connecting
the Printer

P12-2

Unlike most application programs, dBASE III PLUS doesn't
require you to run a special printer installation procedure. As far
as dBASE III PLUS is concerned, your printer is just another out-
put device, like the screen, that shows information.

There are three important rules about using the printer:
¢ The printer must be correctly connected to the computer.

» The printer must be turned on and paper must be properly
inserted before you issue a printing command.

* You must tell dBASE III PLUS when to start and when to stop
sending output to the printer. '

Because dBASE TII PLUS requires so little information about
your printer, you must create any desired special printing effects
in your programs. This will entail more careful planning on your
part.

For information on properly connecting your printer, read your
printer manual. However, here are some general things you
should know.

You must notify the operating system regarding the port to which
the printer is attached and the specific configurations that it
needs. This is especially important if you're using a serial printer
connected to a serial port named by DOS — either COM1 or
COM2. The computer’s operating system assumes by default that
you're working with a parallel printer connected to a parallel port
called LPT1. For a serial printer, you have to set up a batch com-
mand to redirect the output to the proper port, COM1 or COM2,
and change the type of output.

For most computers, you use the DOS MODE command with the
specific settings for your serial printer. Here's an example for a
serial printer connected to COM1 which operates at 1200 baud,
usés odd parity, 7 data bits, and 1 stop bit:

" MODE LPT1:=CON:
MODE £ON1:21200,0,7,1,p

PROGRAMMING WITH dBASE Il PLUS

et
-
L .
.

PRINTING

Sending
Output to
the Printer

The first MODE line redirects the output from the default printer,
LPT], to the serial printer connected to COM1. The second line
issues the settings for the serial printer. Note the p parameter,
which stands for printer, at the end of the line.

Set these commands up in a batch file, such as th;: Autoexec.bat

* file, with the DOS Mode.com file on the dBASE III PLUS System

Disk #1. Then they will run automatically when you start your
computer. You can also issue them from dBASE III PLUS with
the RUN command, but only if the Mode.com file is also on Sys-
tem Disk #2.

A new feature of dBASE programming allows you to change
printer ports with the SET PRINTER command. For example, if
you are working with two printers connected to COM1 and COM2,
you can switch between them by typing SET PRINTER TO COMt.

Note that you don't need the colon at the end of COMI1 in dBASE
programming.

There are two commands for sending output to the printer in
dBASE III: SET DEVICE TO PRINT and SET PRINT ON. They are
not the same command, and you should be thoroughly aware of
their differences before you use them.

In dBASE III PLUS, the default output device is the screen. You
use SET DEVICE TO PRINT when you have elaborately designed
reports. Make sure that you immediately return the output to the
screen after printing is finished, by issuing the command SET
DEVICE TO SCREEN. When you SET DEVICE TO PRINT, you
can use @...SAY and coordinates to position the output anywhere
on the page, just as you do with output to the screen. This is
called formatted output. Printed output is not simultaneously
shown on the screen.

PROGRAMMING WITH dBASE Ill PLUS : P12-3

Crm e hw tme ham < a adbeiv poErwdemt =ey b =

n ot

R ¥

I T, =

CHAPTER 12

Printer
Coordinates

P124

The SET PRINT ON command sends output to the printer and to
the screen, unless you SET CONSOLE OFF. However, SET PRINT
ON won't send the contents of @...SAY lines to the printer. It can
only handle unformatted output, the kind produced by the DIS-
PLAY, LIST, ?, or ?? commands. The checkbook management sys-
tem, which requires a snnple display, uses SET PRINT ON
exclusively.

Command . Printer Used with;

SET DEVICE '1‘0 Freezes Starts Printing @...SAY

PRINT o)

SET DEVICE TO | Can Change | Stops Printing @...SAY, ?, 7?

SCREEN DISPLAY, LIST

SET PRINT ON Can Change | Starts Printing ?, 2?, DISPLAY,
LIST

SET PRINT OFF | Can Change | Stops Printing @...SAY, ?, ??
DISPLAY, LIST

Tabte 12-1 The screen and print commands

Both SET DEVICE TO SCREEN and SET PRINT OFF, the
defaults, allow you to use any display command.

SET PRINT ON has another useful function: it allows you to
instruct the printer to do special effects, such as prmtmg in ital-
ics or condensed type.

Use @...SAY commands with the command SET DEVICE TO
PRINT so that you can format the exact position of the printed
output, with row and column coordinates. When designing
reports, you can use copies of your on-screen forms as the models
for printed reports, and make changes to the coordinates as nec-
essary. This saves planning and design work. With one-page
reports, you can often use the original screen form without any
major changes.

PROGRAMMING WITH dBASE I PLUS

PRINTING

The alternative is to use ? and ?? commands with SET PRINT ON.

For example, the checkbook management system uses a simple
routine, Printer, to toggle output between the screen and the

. printer in all its reports. This routine is a PROCEDURE file.
PROCEDURE files are the topic of Chapter 16. Here is the Printer
routine:

3 rou 6 SAY- "Do you want the output Sent to the " +;
"printer or the screen? (p/5)"
pr = nn

DO WHILE .NOT. prl"PpSs"
pr = un .
a8 row,70 GETY pr
READ

ENDDO

CLEAR)

IF UPPER{pr) = wp»

SET PRIKT ON

ENDIF

RETURK

WARNING

dBASE III PLUS can’t make the printer go backwards or skip
up to a previous line. You must issue the @...SAY commands
in top-to-bottom and left-to-right order for printing output.
This is decidedly different from setting up screen displays. If
you issue a coordinate that is lower than the previously
issued one, dBASE III PLUS causes the printer to eject a
page. For example, if you've just printed text at coordinates
5,10 and then try to print something else at 4,10,

dBASE III PLUS knows it just printed on line 5, so the printer
ejects the paper to the next top-of-form setting and moves
down to row 4 to print the next line.

You can't use the @...GET and READ commands in printed
output. You must first GET the information in memory vari-
ables, SET DEVICE TO PRINT, and then use @...SAY lines to
print the data.

PROGRAMMING WITH dBASE Ill PLUS) P12-5

(o wnah PmamR g =4 fL i wem s wd w1 o eEr

...............

CHAPTER 12

The Position
of the Paper
in the Printer

Paper Size

P12:6

How you set up printer coordinates also depends on several con-
siderations that you don’t need to know when you design screen
coordinates: (1) where the paper is in the printer, (2) the size of
the paper you're using, and (3) the size of the typestyle.

dBASE III PLUS does not know where the top-of-form setting is
on your printer, nor does it know where the printer begins to
print at the left edge of the paper.

After you have determined these two locations, always make sure
that the paper is inserted at the same spot and that the print head
begins at the same location. Consider putting a message in your
program as a reminder before printing begins.

Perforation = Top of form
Leit margin where printer - - - ===
prints first character
{on the line} L i A

Figure 12-1 The tap-ol-form and left edge of paper settings

Just as you have to restrict your screen displays to the size of the
screen, you must consider the size of the paper, labels, or enve-
lopes. dBASE 1II PLUS assumes that you are printing on standard
8 ¥ by 11 inch paper, which has 66 lines. You'll reserve some of
these lines for blank top and bottom margins, but your program
still has to keep count of them to ascertain when one page is
filled and when to issue a form feed instruction for the next page.
If you use a paper size other than 8 ¥ by 11 inches, you must
adjust your printer coordinates.

PROGRAMMING WITH dBASE 11l PLUS

PRINTING

Typestyle Size

Switching
Between
Screen and
Printer

PROGRAMMING WITH dBASE [PLUS

NOTE :

This book refers to horizontal lines of printed output to dis-
tinguish them from horizontal rows of screen output,
although they are really the same thing:

a 5,10 SAY 'Hetto there’

can mean either the sixth row on the screen or printed line
six. The vertical coordinate is called a column in both cases.

It’s entirely possible to have printer coordinates that go beyond
the normal screen coordinates. For example, the bottom of the
screen is row 24, but you can have many more than 24 printed
lines on a page. The highest coordinate you can use in either a
line or.column is 255. ,

Most printers use a pica typestyle that prints ten characters per
horizental inch. So, there are approximately 85 characters, or col-
umns, across the page, although you’ll need to reserve a few col-
umns for the left and right margins. However, if you use a
smaller typestyle, such as elite, which prints 12 characters per
inch, you’ll have to adjust your screen coordinates accordingly.

When you SET DEVICE TO PRINT, the screen does not go blank;
it stays the same as it was immediately before you routed output
to the printer. Take advantage of this by prompting the user with
messages on the screen, for instance, when the user has to insert
a new sheet of paper. To do this, you must switch back and forth
between the two devices, SCREEN and PRINT:

P12-7

CHAPTER 12

Page
Formatting

Margins

P12-8

CLEAR
2 10,25 SAY ‘Insert paper correctly’
WAIT SPACE(20)+'Press any kev to beg1n printing’
SET DEVICE TO PRINT .
t Do printlng

* {...)
* One page completed
SET DEVICE TO SCREEN
CLEAR
7 CHRCT)
7 CHR(T)
8 10,22 SAY ‘Insert another piece of paper and '’
?
WAIT SPACE(25) + 'Press any key to begin again’
SET DEVICE TO PRINT
v (...)
Because the user may not be watching the screen, you've pro-
grammed the bell to ring twice to draw attention to the screen
message,

Because you can't position characters on the screen border, the
screen coordinates don’t allow you to use the entire screen. How-
ever, you can take control of your entire printed page. Determin-
ing the look of the page is known as page formatting. Here are
some observations about page formatting.

The white space bordering the top, bottom, left, and right sides of
the text is called the margin. The top and bottom margins are
just blank, unprinted lines. The left and right margins depend on
the position of the paper in the printer, where the printing begins
on the page, the length of the printed line, and the size of the
typestyle used.

It's important to know where the vertical screen column 0 posi-
tion prints on your printer, After you have determined that and
adjusted your paper accordingly, you can set up your printer
coordinates relative to this position. For example, use a simple
program like this one to see where column 0 prints:

PROGRAMMING WITH dBASE 1l PLUS

i

-
v

e apiante el A e dm———_——— i an e ad

PRINTING

Current
left margin

* TEST.PRG - tests where output appears on the printer page
SET DEVICE TO PRINT

8 0,0 SAY 'Testing ...’

EJECT :

SET DEVICE TO SCREEN

Then adjust the paper position accordingly. Another useful fea-

ture is the SET MARGIN command, which changes the beginning

{:.ft margin for printed output. You must supply an integer num-
er:

SET MAREIN TO 5

The printer starts printing at the new left margin, which is five
columns to the right of the default printing position. However, the
printer coordinates will still start at 0. Using SET MARGIN is
therefore a good way to adjust where the printing is to start on
the page without changing the numbering of the coordinates in
your program or the positioning of your paper in the printer.

PRINT-OUT . SET MARGIN TO 20 PRINT-OUT

~ New’

> . left margin

i
|
>
|
i
|
I
|
1
|
1
|

Figure 12-2 How the SET MARGIN command works

The printer prints the very same output starting at a different left
margin on the page.

PROGRAMMING WITH dBASE Il PLUS P129

-y

3 4 -y

[S

e
e

CHAPTER 12

Paper Length

Headers and
Footers

Starting a
New Page

Treuble Spots

P12-10

See where dBASE III PLUS prints screen line 0 on your paper and
then adjust the top-of-form setting accordingly. You could use the
same sample test program shown above. Then, for both top and
bottom margins, you can skip some blank lines to start the print-
ing on a specific line.

Keep track of how many lines are left on the page and how many
blank lines you want for a bottom margin. If your printouts are
always the same length, you'll have little trouble here. However,
if the number of lines in the printout varies, you will have to set

-up counters to regulate printing, which you'll learn more about

below.

You may wish to have running titles at the top or bottom of your
printed pages. These titles are known as headers and footers. One
common header or footer is a page number.

You must consider the total number of lines per page, the number
of blank lines for the top and bottom margins, and the number of
lines of your headers and footers when you set up your pages. At
the end of the chapter is an example which shows you how to cre-
ate a three-line header.

You can force the printer to begin a new page with the EJECT

. command. It issues what is known in the computing world as a

form feed, which is ASCII code 12. This code instructs the printer
to advance the paper the number of unprinted lines left on the

page.

WARNING
This command can only work properly if the top-of-form has
been set correctly before you begin printing.

The last line of the page and the position of the print head are
Sivo tﬁotential problem areas in your program. Here’s how to han-
e them.

PROGRAMMING WITH dBASE Il PLUS

.)’_',,.:

AT . ————— ——_— vt

e e s

PRINTING

The Last Line

Realigning the
Print Head

Suppressing
Initial Page
Ejects

Printers often have a buffer area to store the individual charac-
ters in a line before printing the line. The print buffer is like a
holding zone for these characters. A printer will print the entire
line and clear the buffer only when it receives a carriage return
code, ASCII 13. Most programs send the carriage return code at
the end of the line, but dBASE III PLUS sends this instruction at
the beginning of the line, so your printer may not print out the
very last line as soon as you hoped. So, always include an EJECT
command, which sends a carriage return code and a form feed
code, at the very end of the print job. Alternatively, you could put
this module at the end of your print job:

SET PRINT OB .
77 CHR(13) &k Sends carriage return code
SET PRINT OFF

or this:

SET DEVICE TO. PRINT _ =
@ 23,0 SAY ¢HRCID) 88 Sends carriage return code
SET DEVICE TO SCREEN C

Make sure that you instruct the printer to realign the print head
to its normal location at the end of each printout, because
dBASE III PLUS doesn't do this automatically. Using an EJECT
command at the very end of the printout forces the print head
back to its home position.

In certain cases, printing with @...SAY will result in an initial
page eject. This situation often occurs when the last printer or
screen row and column position is greater in value than the first
print position. To work around the problem, do the following:

1. Check that the last print operation was terminated with an
EJECT command.

2. Issue an @ 0,0 just prior to the SET DEVICE TO PRINT state-
ment in your printing routine.

3. Issue an EJECT command prior to the SET DEVICE TO
SCREEN command in your printing routine.

PROGRAMMING WITH dBASE 1l PLUS P12-11

e

CHAPTER 12

Special Effects

Escape Codes

Setting the Form
Length

P12-12

If you're using a REPORT FORM, use the NOEJECT option to
suppress the intial page eject.

You can take advantage of most of your printer’s special effects,
such as italics on dot-matrix printers, from within

dBASE III PLUS if you know what codes the printer needs to
print them.

Printers need a control code from the software to do a special
printing effect. There is no standardization for these codes among
printer manufacturers, so you'll have to refer to your printer
manual to find the codes you need. However, most printer control
codes begin with the Esc key {ASCII 27), followed by other ASCII
codes, so they are often referred to as escape codes. Here's an
example. Perhaps your dot-matrix printer will print in italics
when it receives the control codes Es¢ F. You can write this in
dBASE as:

SET PRINT ON '
77 CHR(27) + "f"

Note that the entire control code is a string. Similarly, the way to
stop italic printing on your printer is with Es¢ G, which trans-
lates in dBASE to: -

SET PRINT ON
77 CHR(Z?) + "g"

If you are using a form that has a page length less than the stan-
dard 11 inches, and you are sending a report to the printer with
the REPORT FORM or @...SAY statements, send a control code
sequence that configures your printer for shorter page length. By
doing this, an EJECT or form-feed will advance the paper to the
proper top-of-form for the nonstandard page length.

PROGRAMMING WITH dBASE 1l PLUS

i
L

PRINTING

For example, you may wish to print checks from a command file
using @...SAY statements. Each check has a page length of
between five and eight inches. To set up the print run:

SET PRINT ON
77 CAR(27) + "C" + CHRU4S) i
SET PRINT OFF :

If you are using the REPORT FORM, be sure that you define the
page length in the REPORT FORM to less than the number of
lines that you have set for the form length. Otherwise, your page
breaks may not occur at the line you expect.

Null Characters In dBASE III PLUS you cannot send null characters (00 hexadeci-
mal) to the printer. This can be a problem for printers that
require a null character to be sent as part of a string of control
codes. For example, in order to change the form length or engage
underlining with any of the Epson line of printers, you must send
a null character to the printer.

There is a way around this. CHR(0) is a null character which can-
not be sent to a printer or any device. However, some printers
interpret CHR(128) as CHR(0). Notice that the binary representa-
tions of CHR(0) and CHR(128) are very similar:

CHR() = 0000 0000
CHR(128) = 1000 0000 .
’ A—eighth bit ;

If your printer supports 8-bit characters and has an option to
turn off the eighth bit, first send the printer control codes to turn
off the eighth bit, then send CHR(128). Your printer will read
CHR(128) as 0000 0000 and interpret it as CHR(0). If your printer
does not support 8-bit characters, send only CHR(128) to substi-
tute for CHR(0). .

The following example will set the page length to seven inches on
an Epson FX-80 printer. The first escape code sequence turns off
the eighth bit, the second escape code sequence sets the page
length to seven inches, and the third escape code sequence
returns the printer to normal. The ? issues a line feed.

PROGRAMMING WITH dBASE Il PLUS P12-13

CHAPTER 12

Printing
Special Effects

P12-14

SET PRINT ON

77 CHR{27) ¢ n=nt

7 CHR(27) + CHRC6T) + CHR(128) ¢ CHR(T)
7?7 CHR(27) + g

?

SET PRINT OFF

Once you know the exact escape code sequences you need, you
can instruct the printer to do special effects with the SET PRINT
ON command and the correct escape codes, before you begin
printing:

SET PRINT ON
7?7 CHR(27) + vg»
SET PRINT OFF

Because you don’t want a superfluous carriage return/line feed
instruction to be sent to the printer, which is what the ?
command does, use the ?? command.

TIP

Set up the escape codes just before you begin printing and
then return the printer to normal just after you've finished.
Otherwise, the printer continues to print in the special mode
the next time you use it.

If you want several special printing features at once, such as con-
densed, bold, and italic print, include all the correct escape codes
on one commangd line:

SET PRINT ON
77 CHR(27) + YWE" + CHR(27) + "PI" + CHR(27) + "@n
SET PRINT OFF ! !

Make sure to issue all the necessary cancellation codeé at the end
of the print job. o

PROGRAMMING WITH dBASE Il PLUS

e
ol
o

PRINTING
Different If your program has to control several different printers, set up
Printers separate memory files with the specific control code sequences
for each printer. Use common names for the special printing
effects. For example, here are the setup variables for printer
model XYZ;
* Set italics on
STORE CHR(27) + ‘&' TO italicon
s Set italics off
STORE CHR(27) + 'F' TO italicoff
* Set expanded print on
STORE CHR(27) + ‘6’ TO expandon
*+ Set expanded print off
STORE CHR{27) + 'W' T0 expandoff
SAVE each set of codes in a memory file. Even if you have differ-
ent control codes for printers, use the same memory variable
names. Instruct your program to RESTORE the memory variable
file containing the correct cades for the printer it needs. Then,
whenever you want to assign an attribute in your program, use
.' the memory variable name:
* Turn on italics
" SET PRINT ON
77 italicon
SET PRINT OFF
This method allows you to use many different printers without
’ altering the program code.
Relative As with screen displays, if you know the exact length of fields and
Addressin variables, you can set up exact printer coordinates. However,
8 you'll have to use other techniques with data of differing lengths
and for such changing situations as page numbering.
i PROGRAMMING WITH dBASE Il PLUS P12-15

CHAPTER 12

Détermining
Page Breaks

P12-16

Just like the ROW() and COL() functions for the screen, you can
use relative addressing techniques in printed forms with two spe-
cial functions, PROW() and PCOL(). They return the current
printer row and column coordinates. So, you can use these func-
tions to advance the printing down the page:

SET DEVICE TO PRINT
[PROH(),PCOI.U SAY TRIN(Last) ¢+ ', * + First
+ Next one is two lines down from the first
? PROW()+2,PCOLC) SAY Street

* (...)
SET IIEVH:E T0 SCREEN

" When used with the SET MARGIN command, the value of the cur-

rent print head’s vertical position, PCOL{), depends on the new
margin setting. If you use the ? and ?? commands to position out-
put, you must use the SET PRINT ON command, not SET
DEVICE TO PRINT. Refer to Chapter 8 for more about relative
addressing techmques

With multiple page reports, you'll probably want to write a pro-
gram that keeps track of the number of printed lines on the page
and then starts a new page when the previous page is filled. This
program should also keep track of the current page number. You
can use simple counters for both these numbers.

The following module is adapted from an example in the
Advanced Programmer's Guide, pages 384-385. It keeps track of
the line and page counters, and begins a new page when the line
counter is greater than 60. It also uses a trick to avoid the EJECT
command. When the line counter, tline, is greater than 60, the IF
construction decreases tline to 1. Because dBASE III PLUS auto-
matically starts a new page if the printer coordinates are less
than the previous coordinates, the IF construction begins a new
page without an EJECT command.

PROGRAMMING WITH dBASE 111 PLUS

IR NI R

Ceer

PRINTING

* Initialize counters to starting velues
* Start tline high enough to take the branch
+ for a new page just inside the first DO WHILE loop
SET TALK OFF
STORE 61 TO tiine
STORE 5 TO tcolumn
STORE O TO pagenua
* Prepare the name and address file for printing
USE Names INDEX Last
60 TOP
* Route output to printer
SET DEVICE TO PRINT
* Start loop
DO MHILE .NOT. EOFQ)
+ Branch for new page
1F tline > &0
STORE 1 to tline
+ Increment page number counter
STORE pagenun + 1 to pagenum
* Start new page becsuse tline is now less than
* at the beginning of the IF construction
@ tline, tcoluan+66 SAY "pPage” + STR{pagenun,d)
3 tline+1, tcolumn+bé SAY DATE()
3 tline+éd, tcolumn+30 SAY "Names and Phone Numbers"”
STORE tlrne+6 to tline
ENDIF
+ Show information from database file, in this instance
* the First, Last, Area, and Phone fields .
8 tline,tcolumn SAY TRIM(First) + » " + TRIN{Last) + ;
n " g lrea $ N, Phﬂﬂl
* Go to next record and increment line counter

SKIp

STORE tline + 1 to tline
ENDDO
* Reset printhead
EJECT

* Route output to screen
SET DEVICE TO SCREEN
RETURN

Notice how this module also sets up a series of running header
lines at the top of each new page.

PROGRAMMING WITH dBASE Ill PLUS ’ P12:17

Chapter 13

HOUSEKEEPING

What This
Chapter
Covers

. Preparing for -

" . This Chapter

Completing
the Program

In programming, housekeeping refers to the finishing touches put
at the end of your program. In the world of computers, house-
keeping also means keeping track of files, regulating available
disk space, making backup files, copying files or records, and
related operations.

In this chapter you will learn;

What to do before ending your program
» How to reinstate the dBASE III PLUS working environment
* Important issues of day-to-day file maintenance

* How to manipulate files without knowing their names

How to deal with disk space from within your program

How to modify the structure of a database file from within
your program

You should have a general understanding of the basics of dBASE
programining.

If you follow the one entry/one exit rule when designing your pro-
grams, your user will have one, and only one, way to end the pro-
gram and return to the dot prompt. However, before the program
officially ends, it should tidy up the work space that it has used
and make sure that there are no loose ends, such as open data-
base or format files.

The housekeeping your program has to do at the end of the run
depends on how you have designed it. In the checkbook manage-
ment program, for example, there are no open database files that
must be closed when the user chooses X to exit. All database files
are closed by the subprograms that USE them.

PROGRAMMING WITH dBASE 11i PLUS P13

[—

et s ——

e,

o

CHAPTER 13

Closing Files

P13-2

However, the main program module does have to check if any
transactions have been made during the run of the program,
before returning to the dot prompt. Here's the section of code
that handles this chore:

* test for exit condition
CASE CHR(i) 8§ "Xx"
*+ retain variables -'balance’,’lastchk’,'lastuth’ and
*+ 'lastdep' only if changes were made.
1F batance<>mbalance .OR. lastchk<>alastchk .OR. ;
lastwth<>mlastwth .0R, lastdep<>mlastdep
RELEASE ALL LIXE m#
RELEASE i, today
SAVE T0 Chkbook.men .
ENDIF

The program ascertains if any changes have been made to the
original amounts in the Chkbook.mem file by comparing them to
the contents of the four variables mbalance, mlastchk, mlastwih,
and mlastdep. If so, it RELEASEs the variables used by the pro-
gram so that only the four original variables, balance, lastchk,
lastwth, and lastdep, are left in memory. It then SAVEs these vari-
ables to Chkbook.mem for the next time.

Make sure that the program closes all database and format files
before returning to the dot prompt. The checkbook management
system does this in the subprogram modules, by adding this com-
mand to the end of the subroutine:

CLOSE DATABASES

This useful command closes not just database files, but INDEX
and FORMAT files too. :

When you design your programs, remember the importance of
database integrity and have your program close database files as
soon as the program is finished with them.

PROGRAMMING WITH dBASE 1li PLUS

e agL hE

. -

HOUSEKEEPING

Clearing
Memory

Returning to
the Default
Environment

With the RETURN command, dBASE III PLUS automatically
clears PRIVATE memory variables but not PUBLIC variables.

" However, if you want to clear all memory variables at the end of

the program, use the CLEAR MEMORY command. Because it
erases everything from the memory buffer and the next highest
program level may need these variables, using CLEAR MEMORY
is a potentially hazardous situation. Make sure that you under-
stand what you're doing.

It is important that the user return to the standard

dBASE III PLUS working environment, the dot prompt. Always
reset the working environment to the way it was immediately
before your program began. This means changing all the SET
commands that your program uses. For example, you probably
SET TALK OFF, so at the end of the program just SET TALK ON.
The checkbook management program does this immediately after
determining whether any transactions have been made. SET STA-
TUS ON is left optional; if you want the status bar to appear,
remove the asterisk at the beginning of that line:

* glear variables and return to calling program
* or dBASE system -
SET TALK ON . '
SET ESCAPE ON

SET BELL ON

SET HEADING ON

SET HELP ON

SET SAEETY OB

+ SET STATUS ON

CLEAR ALL

CLEAR -

RETURN

Similarly, if you've changed any of the function keys for other
purposes in your program, reset them to their default settings. A
list of these defaults is under SET FUNCTION in the Commands
and Functions reference sections of Using dBASE III PLUS.

PROGRAMMING WITH dBASE 1l PLUS P13-3

LR e et e

s

i
,r'*

CHAPTER 13

Working with
the Disk

Finding a
Database File

P134

Notice that the program also uses the CLEAR ALL command to
clear out memory variables and close all files. Finally, the pro-
gram CLEARSs the screen and RETURNS the user to the dot
prompt. The dot prompt is always on line 21 of your screen.

Without knowing the names of files, your program may have to

choose among many files on the current disk drive, or to deter-

mine how much disk space is available. Here are some standard
operations for dealing with the disk.

Most of the time, your program works with specific database files
that you set up during the design of your project. You open the
file with USE, just the same as at the dot prompt. Because file-
names and relationships are determined during the program
design stage, this method affords you the most control over the
application. However, if the program must request a filename
from the user, use the FILE() function.

The FILE() function returns a logical value, true or false, depend-
ing on whether or not the file specified in the parentheses exists
on the current disk in the current directory. You supply the file-
name as a memory variable (containing the filename character
string) or directly, enclosed in quotes. In addition, FILE() must
have the complete filename, including extension. So, make sure
tl];at you set up the filename correctly by using a memory vari-
able.

Here's a typicail program-module that requests a dBASE III PLUS
database file, converts it to a full name with extension, and then
ascertains whether it exists on the current drive:

PROGRAMMING WITH dBASE Hl PLUS

HOUSEKEEPING

Examining the
Work Area

* Initialize memory variable to hold file name
- without extension '
sfile = SPACE(8)
CLEAR
* Get fite name converted into uppercase
8 10,5 SAY 'Enter the filename:’ GET ofile PICTURE 'a!’
READ
* Convert to full filename with extension
afile = LTRIN(TRIM(nfile)) + '.DBF
* Check to see if file is on the disk
If FILE(afile)
* More commands
cx (L..)

ENDIF

Unless otherwise instructed, the FILE() function searches only the
current drive and directory, even if you SET PATH TO another
directory. If you want to search another directory, include the
path name with the filename in the FILE() function:

. STORE 'C:\DBASE\WORK\' TO path
STORE ‘FILE.DBF’' TO file
IF FILE(path + file)
* (..
ENDIF .

Your program may need to know what database and index files
are open in the currently SELECTed work area. This is especially
helpful if files are open before the program begins and the pro-
gram has to USE these files later, or if the program doesn't know
the names of the database files. :

The DBF() function returns the name of the current database file
in USE, if any, or a null string if no file is in USE. If there are
several work areas in USE, you must SELECT each one and use
DBF{() in each to determine the name of the database file cur-
rently in USE in that work area.

PROGRAMMING WITH dBASE Il PLUS : P13-5

}‘,..ﬁl

mrmtmt = s e ———————

ey Ty =

CHAPTER 13

File Size and
Disk Space

P136

Similarly, the NDX() function lists the name of the index file or
files in USE in the currently SELECTed work area. Because
dBASE III PLUS allows up to seven index files to be open for each
database file, the syntax of this function is slightly different than
for DBF(): you must use the number of the index file that you're
looking for. If no index file is open, dBASE III PLUS returns a
null value.

You can iase the NDX() function to manipulate the index files
without knowing their real names:

SELEET 1
STORE NDX(1) T0 firstndx
USE Fite INDEX &firstndx

You can also determine the names of fields in a database file from
a program, without knowing the structure of the database file,
with the FIELD() function. This function requires an integer from
1 to 128, the number of possible fields in any dBASE III PLUS
databise file, as its argument. It returns the field name for the
position in the database file represented by that number:

STORE FIELD(1) to firstfld
60 TOP
DISPLAY &firstfld

Note that ali three functions, DBF{), NDX(), and FIELD(), return
strings. These three functions allow your program to work with
any database and index files without knowing the specific file or
field names in advance.

In addition, you can check when the database file in USE in the
currently SELECTed work area was last changed or edited. The
LUPDATE() function returns a date value. This function is handy
if your program needs to prevent duplication of certain opera-
tions, such as a daily totaling of amounts.

Because dBASE III PLUS needs disk space to INDEX or SORT a
file, the program’s ability to determine available space can be cru-
cial. There are three useful functions for dealing with available
space: RECCOUNT(), RECSIZE(), and DISKSPACE().

PROGRAMMING WITH dBASE il PLUS

1"'.-’

HOUSEKEEPING

The RECCOUNT() function gives the total number of records in a
database file. This number always includes records marked for
deletion, even if SET DELETED is ON. Use this function to see if
a database file is getting too big:

USE Names

IF RECCOUNT() > 2000
7 {HRLT)
@ 10,10 SAY ‘Time to delete a few records’
* {...)

ENDIF

The RECSIZE() function gives the size, in bytes, of one record in
the database file. It presents the sum of all fields in a record. One
byte equals one character of information, such as a letter or punc-
tuation mark. To get the total size of all records in the database,
multiply RECSIZE() by RECCOUNT():

USE ‘Names
STORE RECCOUNT() = RECSIZE() to size

This is not the total size of the database file, because .

dBASE III PLUS also maintains what it calls a header of infor-
mation in the database. The header keeps track of field names,
lengths, and types. You must add the size of the header to the cal-
culation of total file size. To determine the size of the header, first
you need to know the number of fields in the database file. To get
this number, use the following program:

USE Naaes

nuafields = 0

null =

DO WHILE null < FIELD(pumfields + 1}
nunfields = numfields + 1

ENDDO

USE

PROGRAMMING WITH dBASE il PLUS P13-7

- ——————_— i gt F

CHAPTER 13

The DO WHILE loop increments the number of fields variable,
numfields, by one, as long as the value of the FIELD() function,
which is a string, is greater than the null string. Recall that a null
string has a length of 0. So, if there is a field corresponding to
numfields + 1, the result of the FIELD(numfields + 1) function
will be the name of the field, that is, a string that is larger than
null. However, as soon as the DO WHILE loop gets to the field
number after the last field in the database, FIELD{(numfields + 1)
returns a null value and the loop terminates.

Once you know the number of fields in a database file, you can
find out the size of the database file header by multiplying the
number of fields in the database times 32 and then adding 34:

header = (32 + nulfield.s). + 34

Using all the above modules and memory variables, the program
can compute the size of the entire database, that is, the total
records plus header and the end-of-file marker, which takes up
one byte:

totalsize = size ¢ header ¢ 1 | -

The program can then compare the total size of the database file
with the amount of space left on the disk. The DISKSPACE() func-
tion returns the available disk space in bytes. You can use
DISKSPACE() with RECCOUNT() and RECSIZE() to ensure that

there is enough room for a backup or temporary file.

For example, your program has determined the total size of a
database file and STOREGQ this amount in the totalsize variable.
Before the program SORTSs this file, it can test to see if there is at
least twice as much space as the size of the file on the disk to
accommodate the sorted file:

PROGRAMMING WITH dBASE 11l PLUS

-

o

HOUSEKEEPING

USE File
* Determine size of file and STORE in variable totalsize :
* See :bove examples using FIELD{), RECCOUNT(), and RECSIZE()
(... :
* Yhen that is done, check space 1
IF DISKSPACE() < totalsize * 2 {
7 CHR(?) o '
@ 10,10 SAY "There isn't enough room on the disk to sort ;
this file" ’
ELSE
SORT ON Amount DESCENDING TO Temp
ENDIF

NOTE

Depending on how complicated they are, index files may take
up more disk space than the original database file. A SORTed
file generally takes up the same amount of room, if all i
records are SORTed. However, a SORT requires that there be
twice as much disk space available as the size of the file.

Another use for DISKSPACE() is to allow a program to back up a .
large file from a hard disk to several floppies by copying only a i
certain number of records. Check out the example of this opera- P
tion under the RECSIZE() funttion in the Commands and Func-
tions sections of Using dBASE III PLUS.

File You've probably devised your own methods and schedule for man-
Maintenance aging your disk files. Here are some additional suggestions.

PROGRAMMING WITH dBASE 111 PLUS P13-9

Lt
i;

CHAPTER 13

Deleting and
Renaming
Files

Copying Files
and Backups

P13-10

You must know the complete name of a file in order to delete or
rename it. So, use the technique outlined under the FILE() func-
tion to include the file extension in the name. Better yet, try to
get your user to give you the complete filename. Use a template
as a guide:

fite = SPACE(12)
8 10,10 'SAY ’Enter name of file to delete’
8 12,10-5AY ' including file extension:’
8 14,5 GET file PICTURE *11 000501 141
READ -
STORE LTRIM(file) to file
IF FILE(file)

ERASE: &file
ELSE ©

? CHRLT)

8 18,10° SAY 'There is no file by that name on the disk’
ENDIF .
e (,,.)

You can’t use wildcards with the ERASE or RENAME commands
to delete or rename groups of similarly named files. You must .
repeat the deleting or renaming step for each file.

You use temporary scratch files from ASSIST or the dot prompt
when you COPY certain or all records from a database file. Your
program can make use of scratch files for the same purpose. It is
important that the program first ascertain whether there is
enough space on the disk for the copied file. Periodically, your
prggraﬁm should also make backups of all database files, including
index files.

WARNING . :

If you have a hard disk, don't use the DOS RESTORE com-
mand to restore backup files without first uninstalling
dBASE III PLUS.

PROGRAMMING WITH dBASE 11l PLUS

HOUSEKEEPING

Using Scratch
Files

Importing and
Exporting Files

Modifying a
Database
Structure

You've seen that the use of scratch files is not unique to program-
ming. You have already learned that many accounting firms main-
tain all daily transactions in a temporary posting file. Periodi-
cally, they update the general ledger file with the information
from the posting file. Consider using scratch files if your program
makes many changes to the database file. Scratch files are merely
copies of the original database files to which changes or additions
are made. Be sure to provide for frequent and periodic updates of
the scratch files into the main database file. Delete unnecessary
scratch files when you're finished with them so that you don’t get
confused.

Copying files usually refers to making an exact copy. However, if
your program has to copy, or import, files that are in another for-
mat, such as files originally created in WordStar’s non-document
mode, you will either use the APPEND FROM <filename>
DELIMITED or the APPEND FROM <filename> SDF command.
Similarly, if you want to copy dBASE III PLUS files to another
format, or export them, use the COPY TO DELIMITED command.
There are also special commands, IMPORT and EXPORT, for
working with files in the pfs:File™ format. Look in Using

dBASE 111 PLUS for more information about these commands.

One full-screen command to avoid using in your programs is
MODIFY STRUCTURE. Think of what could happen if your users
were allowed to change the structure of a database file. There is a
dBASE programming alternative for MODIFY STRUCTURE
which, again, gives you more control over what's happening and
ailows you to verify the user’s request before actually changing
the database.

To modify the structure of a database file from a program, first
COPY the file's structure to a temporary database file, using the
EXTENDED option. This option turns the structure into a series
of records. Deleting or changing the records that you don't want
actually deletes or changes the fields. You then use the CREATE
FROM command to create a database file with the new structure
and, fcilnally, the APPEND FROM command to bring in the original
records. '

PROGRAMMING WITH dBASE 11l PLUS P13-11

.
K

IR

CHAPTER 13

P13-12

Start dBASE III PLUS, SET the DEFAULT drive, and insert the
Sample Programs and Utilities disk in this drive. Then, USE the
Checks.dbf file from the checkbook management system. The fol-
lowing exercise shows how to modify a database file structure
from within a program.

WARNING .
If you want to work along with this example, make a copy of
the Checks.dbf file first. Do NOT use the original.

If you DISPLAY the STRUCTURE of the Checks.dbf file, here’s
what you would see:

Structure for database: B:checks.dbf

Nuaber of data records: 0
~ Date of last update : 06/10/85
Field Field Name Type Width Dec
1 CHEND Numeric &
2 PAYTO Character - 30
3 T Numeric 100 2
& CAN Logical 1
5 DATE Date]
6 MNENO Character 25
7 TAX MNumeric 1
*+ Total ¢ B0

To modify the structure from a program, first COPY this struc-
ture TO a temporary file STRUCTURE EXTENDED:

USE Checks .
COPY TO Teap STRUCTURE EXTENDED
USE Temp

PROGRAMMING WITH dBASE 11l PLUS

HOUSEKEEPING

The fields of the original Checks.dbf file become a series of
records in the Temp.dbf file, each record identified by four fields,
Field_name, Field_type, Field_len, and Field_dec:

Structure for database: B:temp.dbf

Number of data records: 7
Date of last updete : 06/26/85
Field Field Name: Type Width Dec

1 FIELD NAME Character 10
2 FIELD TYPE Character 1

3 FIELD_LEN MNumeric :
& FIELD_DEC Numeric 3
*k Total »+ : 18

If you LIST this file now, here’s what you would see:

_ Record# FIELD NAME FIELD_TYPE FIELD_LEN FIELD_DEC ;

1 CKKNO™ N 4 0 ;
2 PAYTO C 30] 5
| 3 ANT N 10 2 :
& CAN L 1 0
.' S DATE D (] 0
6 MEMO c 25 0
7 TAX N 1 0

Request from the user which records to DELETE. You're actuaily
deleting fields and thus modifying the structure of the original
database file. For example, if you wish to eliminate the Tax field,
have the program: :

DELETE RECORD 7
You can also use the REPLACE command to REPLACE a field
with another value to change the type or length. For instance, to
reduce the length of the Payto field to 25 characters:

REPLACE Field_len MITH 23 FOR Field_name = "PAYTO"

PROGRAMMING WITH dBASE Jit PLUS P13-13

CHAPTER 13

P13-14

After the program has made all necessary changes and asked the
user to verify that the changes are correct, PACK the file, if any
fields were DELETEd, and then save the changed file with USE.
Finally, set up a new file from the extended structure of the
Temp.dbf file with the CREATE FROM command. This command
only works with extended structure files:

CREATE New FRON Temp

The records in the Temp.dbf file now become the fields in the
New.dbf file. The program then APPENDs the records from the
original Checks.dbf file to New.dbf:

APPEND FROR Checks

Finally, close the New.dbf file, delete the old files, Temp.dbf and
Checks.dbf, and rename the new file to the original file,
Checks.dbf:

use :

DELETE FILE Temp.dbf

DELETE FILE Checks.dbf
RENAME Mew.dbf TO Checks.dbf

PROGRAMMING WITH dBASE Il PLUS

Chapter 14

PUTTING IT TOGETHER

What This
Chapter
Covers
Preparing for
This Chapter

The Setup

In this book, you've seen how dBASE programming accomplishes
specific tasks, such as getting user input and working with data-

base information. By looking at a completed program, you'll also
get a larger view of how the tasks interact.

As an example of how an entire program module works, this
chapter steps you through the Cancl.prg file, which registers can-
celed checks.

Know the basics of dBASE programming, and have your printout
of the Cancl.prg file handy.

When the user chooses D from the main menu, the main program,
Cbmenu.prg, branches to the subprogram, Cancl.prg. First,
Cancl.prg opens the Checks.dbf database file and its correspond-
ing INDEX, Chkno.ndx:

USE Checks INDEX Chkno

Cancl.prg then branches to Chkmask.prg, which draws a check
display on the screen. The checkbook management system uses
this display in two other subprograms that deal with checks:
when it adds checks, Check.prg, and when it edits or voids checks,
Editvoid.prg. Above the check representation, Cancl.prg then
presents the title CHECK CANCELLATION ROUTINE on row 1 at
column 26.

PROGRAMMING WITH dBASE 1l PLUS P14-1

l‘d
.

[RP—

T

CHAPTER 14

T . P14-2

" CHECK CANCELLATION ROUTINE

! . Nunbep
- o © Date '
! Pay To The Order OF ' ’ ' -
Dollars
- Memo

‘ ‘ Enter Check Nunker to be canceled {or @ fo exit} WEY

Figure 14-1 The beginning of the check cancellation program

Even before the user can enter canceled checks, Cancl.prg verifies
that there are indeed checks that can be canceled. If not, it gives
the user a message to that effect:

* check to see if there are any records in Checks.DBF -
IF RECCOUNTO)= 0. -
8 18,24 SAY "There are no checks in the file"
MAIT SPACE(19)+"Press any key to return to the Main menu "
CLOSE DATABASES
RETURMN
ENDIF

Cancl.prg uses the RECCOUNTY() function to determine whether
the number of records in Checks.dbf is equal to 0. It isn’t con-
cerned with the content of the records yet. It just checks to see if
there are any records. If there are no records, Cancl.prg doesn't
continue. To allow the user time to read this message and act on
it, Cancl.prg uses the WAIT command. When the user presses any
key, the program CLOSEs the DATABASE and RETURNS to the
main menu.

If there are checks to be canceled, the program establishes the
controlling ioop for the rest of the check canceling routine:

00 WHILE .7.

PROGRAMMING WITH dBASE il PLUS

e el v mnadmdre E e e —

PUTTING IT TOGETHER

The DO WHILE .T. loop continues to request a check number and
repeatedly goes through the check cancellation process, so that
the user can cancel more than one check.

Getting User Cancl.prg is ready to request a check number from the user. It

Input initializes a memory variable, mcan, to hold the user’s input of
the check number. It then requests the user to type the check
number:

wcan = 0

* jnput check number to be canceled

2 18,11 SAY "Enter Check Number to be canceled {or O to exit)";
GET mcan PICTURE "9999" RANGE 0,

READ

The RANGE clause makes sure that the user doesn't input a nega-
tive check number.

NOTE

| Even though mcan contains 0, the PICTURE clause regulates
how large an integer number the user can type. The entire
checkbook management system is set up for check numbers
of four digits or less. You may wish to change the PICTURE
clause for larger check numbers. Make sure, however, that
you also MODIFY the STRUCTURE of the Checks.dbf file to
increase the length of the Chkno field and then INDEX the
database file ON Chkno TO Chkno. Change references to
check numbers in the other subprograms, too.

Testing for Eventually, the user finishes canceling checks and returns to the
Conditions main menu. After the user enters a check number, Cancl.prg first
ascertains whether this number is 0 and, if so, EXITs the loop:
IF scan = 0
EXIT
ENDIF
PROGRAMMING WITH dBASE Il PLUS P14-3

At -

- merLrawre st M de e

e

CHAPTER 14

144

When determining what conditions to test, the order is important.
First, test for check number 0. That way, Cancl.prg doesn’t con-
tinue if the user just wants to return to the main menu.

Once the user has typed in a check number greater than 0,
Cancl.prg CLEARs the screen at row 18 and looks for the check
number in the database file:

3 18,0 CLEAR
* search for canceled check number
SEEK mcan

The Checks.dbf file is INDEXed on the Chkno field, which is

numeric. So, Cancl.prg uses SEEK. There are now four possible
conditions:

¢ There is no check humber at all in the Checks.dbf file, which
means that the user has entered an incorrect check number.

» The check number exists, and the check has not been
canceled.

¢ The check number exists and the check has not been canceled,
but this isn't the right check.

¢ The check number exists, but the check has already been can- -
celed.

Cancl.prg handles these conditions in the next IF... ENDIF con-
struction. However, it breaks down these four conditions by nest-
ing them within the main condition test, which checks to see if
there is a check number at all:

IF FOUND()

If the check number, that is, the record containing this number in
the Chkno field, is not FOUND(), Cancl.prg displays a message to
that effect. This situation is handied in the ELSE command at the

end of the IF FOUNIX) command:

* check is not in file .
d 20,21 SAY "Check "+LTRIN(STR{mcan,4))+" tanpot be found."
WAIT SPACE{20)+"Press any key to continue®

PROGRAMMING WITH dBASE 11 PLUS

el

PUTTING IT TOGETHER

Cancl.prg converts the mcan variable to a string to include it in
the display. Because dBASE III PLUS pads a numeric integer with
blanks when it converts the number to a string, the program uses
the LTRIM() function to trim these leading blanks.

- The second and fourth conditions are also handled with one IF
clause. If there is a check number, then it must either be canceled
or not canceled. Cancl.prg uses a logical field in Checks.dbf, Can,
to govern this and an IF construction nested within the first IF
construction to test for the condition. If the check has already
been canceled, Cancl.prg displays a message:

ifF Can
3 18,19 SAY "This check is already canceled”
WAIT SPACE(22)+"Press asny key to continus"

The final condition is whether the check number, which has been
found and which is not canceled, is indeed the one that the user
wants. The program handles this situation with a DO WHILE loop
to accept only a yes or no answer from the user:

. . answer = " ¥

DO WHILE .NOT. answer$"YyNn"
answer = * ¥
@ 18,23 SAY "Is this the right check? (Y/NK)" GET answer
READ

ENDOO

After Cancl.prg has evaluated all the above conditions, if the
uncanceled check is the correct one and the user presses yor Y,
the program changes the logical field Can by REPLACEing .F.
with .T. and displays a message. If the user types n or N, the pro-
gram merely displays an appropriate message:

IF UPPER{answer)s"y"

REPLACE Can WITH .T.

8 20,34 SAY "CANCELED”
ELSE

3 20,32 SAY "NOT CANCELED"
ENDIF

PROGRAMMING WITH dBASE 1) PLUS P14-5

CHAPTER 14

The Cleanup
Section

P14-6

The ELSE section of the IF FOUND() construction actually han-
dles two different situations: it acts if no check number is found,
and it clears the screen display if a check number is found and
canceled. Because the screen doesn’t change if the check number
isn't found, the command lines to clear part of the screen seem
inoperative. However, if a previous check was displayed, it is
erased from the screen so that the user is not contused. These
lines are:

4,71 SAY SPACE(4)
6,68 SAY SPACE(®)
8,25 SAY SPACE(30)
8,66 SAY SPACE(10)
4,10 SAY SPACE(25)

1

Cancl.prg uses a little trick. The lines always execute, but for
unfound checks, there’s no screen display anyway. So, there’s no
visible change on the screen. For found checks, the lines clear the
screen display of the check information without clearing the
chéck border display. Moreover, because all messages appear on
row 20, the command

8 20,0 CLEAR
erases any message. With a thoughtful design, you can eliminate a

great deal of unnecessary code.

At this point, the DO WHILE .T. loop repeats the entire procedure
and asks the user for another check number until the user types
0. As a convenience, Cancl.prg then shows the user a list of the
currently uncanceled checks:

PROGRAMMING WITH dBASE I PLUS

PUTTING IT TOGETHER

* display to the screen a tist of remaining uncleared checks
CLEAR

? SPACE(17) ¢ "LIST OF RENAINING UNCLEARED CHECKS"

7

? "CHKNO PAID TO AMOUNT OATE RENG"

? LEFT(shoriz,5)+" "+LEFT(shoriz,30)+" "+ LEFT(shoriz, 10)0" E
LEFT(shorlz g)e® "+LEFT(shuru 14)

DISPLAY OFF ALL Chkno ,Payto,Ant,Date, TRIN(Nemo) FOR NOT. Can

]

?

WAIT SPACE(13)+"Press any key to return -to the Main menu ”

Notice how Cancl.prg uses the LEFT{() function to break the shoriz
variable, which is a horizontal line in the Chkbook.mem file, to
use as underscores for the various titles on the screen. This is a
good example of how to save space by reusing the same display
variable in several situations.

Finally, Cancl.prg closes the Checks.dbf and Chkno.ndx files,
which are part of the databases, and then returns to the calling
program:

CLOSE DATABASES
) RETURN

Remember: open database files only as you need them, and close
them as soon as you're finished. This cuts down on potential
problems from power shortages, from rebooting, or from turning
the computer off accidentally.

Summary With the Cancl.prg module as an example, you have stepped

through a typical dBASE program to see how the various compo-
nents fit together to work as a whole program.

PROGRAMMING WITH dBASE 11l PLUS P14-7

[R T T T

Chapter 15

TESTING AND DEBUGGING THE PROGRAM

What This
Chapter
Covers

Preparing for
This Chapter

What to
Look for

Once you've completed your program, test it and correct the mis-
takes. Correcting mistakes is known as debugging the progran..

You test and debug programs simultaneously.

In this chapter you will learn:

¢ What the most frequent programming errors are and how to

look for them

The steps to testing and debugging a program
The built-in dBASE debugging commands

¢ The two basic ways to debug programs during the run of a
program: suspending the program and stepping through the

program

development

Other debugging techniques that you can use during program

Have a thorough understanding of dBASE programming before

doing this chapter.

There are several types of programming mistakes: (I) misspelling

commands, (2) forgetting to separate commands from their
expressions with at least one space, (3) syntax errors, that is,

using a command incorrectly, (4) issuing an incomplete command,

{5) run time errors.

If you're good at spelling, spelling errors aren’t difficult to catch.
Printing your program files and proofreading them for spelling

mistakes is the most effective way to catch them.

I’IROGRAMMING WITH dBASE Ill PLUS

P1541

CHAPTER 15

Pi15-2

dBASE III PLUS groups errors in spacing and incomplete or
incorrectly used commands under syntax errors. These errors are
more difficult to pinpoint, but here are some general clues to
guide you:

Check the proper spacing between commands. Remember that
every command must be separated by at least one space from
the other information on the command line. You can catch
this type of error when you proofread your files.

Make sure that you haven’t misspelled memory variable
names, file names, and field names.

Check to see that all PUBLIC variables are declared PUBLIC
before you use them, and that you never declare a variable
PUBLIC more than once.

Watch out for data type mismatches. For example, don’t
attempt to SAY a date field and a string field with the same @
command. Use string conversions to correct this type of mis-
take. A data type mismatch also occurs when you attempt to
perform a numeric operation, such as SQRT{), on a non-
numeric field or memory variable.

Check and double check the order of the arguments in a com-
mand line. For example, this command iine is incorrect:

10,10 GET mneme SAY "Enter client's name:"
The correct form is:

@ 10,10 SAY “Enter client's name:” GET aname

Be careful about providing the correct options in commands
when you use them. For example, this is incorrect:

DO FOR Name = "Smith"
The correct form is:

DO WHILE Name = "Smith"

PROGRAMMING WITH dBASE Il PLUS

TESTING AND DEBUGGING THE PROGRAM

L

Run time errors are by far the most difficult bugs to find. They're
called run time errors because they don't appear until you actu-
ally run the program. Most run time errors are mistakes in logic.
You may think your code is correct, but the program doesn’t do
what you expect. Either you're not writing the commands as
dBASE expects them, or your logic is different.

One of the most frequent types of mistakes in logic occurs when
you've misused the logical operators themselves. It’s important to
remember the distinction between .AND. and .OR. Keep in mind
that logical .AND. means that both the first condition and the sec-
ond condition must be true. Logical .OR. means that either one or
the other condition must be true.

When using these operators, it may help you to think graphically
and to draw circles to illustrate how the conditions evaluate. For
example, to show in a diagram what this line means:

DISPLAY FOR Stéte = 'CA' LAND. Zip < 91400

the intersection of the circles, that is, the shaded area, illustrates
where both conditions are met:

AND.

'

ZIP < 91400

Figure 15-1 How logical .AND. works

PROGRAMMING WITH dBASE Il PLUS - P15-3

e e Sy g i -

P SOV S

. ——-r brwa— e L g g a4

Teamdnd

CHAPTER 15

P154

However, this command
DISPLAY FOR State = 'CA’ .OR. Zip < 80000

would look different in a graphic representation:

.OR.

'

ZIP < 80000

Figure 15-2 How logical .OR. works

The shaded area indicates where either one or the other condition
is met.

Another logic mistake occurs when you misunderstand how to use
logical .T. and .F. in situations calling for reverse logic. For exam-
ple, this line:

00 WHILE .NOT. EQF()
means: do while the end-of-file condition is false, that is, not true.

Keep track of trues and falses. Check Using dBASE III PLUS for
more help with logical operators.

PROGRAMMING WITH dBASE Il PLUS

I]

TESTING AND DEBUGGING THE PROGRAM

Steps to In Chapter 1, you learned that the modular approach to program-

Testing and

ming is preferred. If you get used to writing modular programs,
you'll discover that they have another important advantage. You

Debugging can test and debug modular files as you write them. Because
these modules are as small as possible, and generally do one spe-
cific task, you can test and debug them quickly. dBASE III PLUS
gives you a variety of commands that facilitate testing and debug-
ging. Before you investigate these commands, get to know the
basic steps to testing and debugging your programs:

1.

Write each module, document it as you write it, and test it as
soon as you've finished it.

Use the built-in debugging features with other techniques to
debug your program modules as you go.

When you have tested a module, and it appears to work cor-
rectly, go to the next module.

After you've completed the necessary modules that go
together, combine them into a composite program. Run and
test this new, composite program, using the same features.

Continue to build your programs in larger units, gradually
adding new, thoroughly tested moduiles.

When the entire project is completely assembled, do thorough
testing of it, too.

Give your program to others for their independent testing.

. This is called alpha testing. It occurs before you actually

begin using the program. Correct any mistakes, again using
the built-in dBASE features.

When the program passes the alpha test stage to your satisfac-
tion, let a limited number of users test it. This is the beta test
stage. Make sure that those users running the program know
how to document any problems that they discover during the
testing. -

PROGRAMMING WITH dBASE 111 PLUS P15-5

DPTp——

i3

CHAPTER 15

The
Debugging
Commands

Using the
History Buffer

P15-6

9. After the program has passed the beta test stage, it’s ready to
be used by others. However, never consider a program bug-
free. Testing and debugging never really end. A good program
may not exhibit bugs for months, even years, after it's in gen-
eral use. With good documentation, you will be able to find
and fix even the most elusive bugs.

These steps mirror the top-down approach of the design stage.
When you have finished your modules, assemble them in larger
and larger units, starting from the bottom and working your way
up to the top, until finally you have the finished application pro-
gram.

TIP

Before atternpting to correct a bug in a program that's in the
alpha and beta test stages, make a copy of the program file,
in case your newly debugged version doesn’t work. You can
then go back to the original if your attempt at debugging
takes you too far astray. Occasionally, you may find that the
best way to debug a program module is to rewrite it entirely.

J

dBASE III PLUS has commands that allow you to test and debug
programs as you run them. They are, in alphabetical order,
RESUME, SET DEBUG, SET DOHISTORY, SET ECHOQ, SET HIS-
TORY, SET STEP, and SUSPEND. How you use them depends on
the way you want to debug your programs.

{

One debugging method is to check the most recent commands
that you issued. dBASE IH PLUS automatically keeps track of the
last 20 commands that you enter at the dot prompt. This is known
as the history buffer. At any time, you can use the T key to see
the commands currently in the buffer to determine what led up to
a mistake.

PROGRAMMING WITH dBASE Il PLUS

o mdiR e

A

TESTING AND DEBUGGING THE PROGRAM

Using the history buffer also lets you repeat a command without
retyping it. Just press the T key to move to the command you
want, and press «! to reissue the command.

You can set the number of command lines stored in the buffer to
be more or less than 20 with the SET HISTORY TO command.
For exampile,

SET HISTORY TO 30

instructs dBASE III PLUS to retain the last 30 commands in the
buffer . You can also use DISPLAY HISTORY and LIST HISTORY
to view the contents of the buffer. DISPLAY HISTORY pauses the
screen, whereas LIST HISTORY does not.

Normally, dBASE does not record commands from programs in
the history buffer because it is slow and there is usually no need
to do this. However, sometimes a particular program has a prob-
lem and you can't figure out what's going on. If you SET
DOHISTORY ON, that telis dBASE to record in the buffer the
commands in the program in the order of their execution. You
may discover by doing this that the statements are not executing
as you expected. If you want dBASE III PLUS to retain more than
20 lines of code in the buffer, SET HISTORY TO another integer
number at this point.

Then, when you test your program, if dBASE III PLUS finds a
command that is incorrect, it stops execution of the program and
gives you an error message, such as Syntax error or Data type
mismatch. However, it also presents you with a choice about
what to do next: .

Cancel, Ignore, or Suspend? (C, I, or §)

When debugging programs, you would type S to SUSPEND the
program. dBASE returns to the dot prompt, but leaves the pro-
gram’s working environment, including memory variables, intact
in active memory, and keeps all database files open. To see what
command line in the program caused the program to stop, you
would type DISPLAY HISTORY at the dot prompt.

PROGRAMMING WITH dBASE I PLUS P15-7

-‘.f

R e e LI LT L R

LY SHUURPP

T

[T e .

CHAPTER 15

dBASE shows you the contents of the history buffer and allows
you to edit the incorrect line. You would resume running the pro-
gram by typing RESUME at the dot prompt.

This type of interactive debugging is an effective way to catch
program errors and make corrections during the run of the
program. '

NOTE ' :

When correcting errors with SUSPEND and RESUME, the

changes don't alter the original program file. Therefore, it's

important to keep track of your changes. Later, use MODIFY

gOMMAND to make your changes permanent in the program
ile.

If you choose to CANCEL the entire run, dBASE III PLUS returns
to the dot prompt and clears memory. See below for more infor-
mation about the CANCEL command. If you choose to IGNORE
the error, dBASE III PLUS continues to run the program.

The history buffer only records the commands that were executed
during the program run. For example, if you have a series of
CASE lines, the CASE statements are executed in order until one
evaluates as true. Then, the commands associated with that CASE
statement are executed and the ENDCASE is executed. If there is
a problem, dBASE shows you the commands in that CASE state-
ment. Here is an example. Something has gone wrong when you
press C, and the program has stopped. When you DISPLAY HIS-
TORY, dBASE III PLUS shows you these lines:

PROGRAMMING WITH dBASE 11l PLUS

TESTING AND DEBUGGING THE PROGRAM

-

¢ | Stepping
. Through the
Program

00 MWHILE .T.
CLEAR
ielg .10 SAY 'What is your choice? GET choice PICTURE '!’
R
1f choice $ PABcnO
DO CASE
CASE choice = 'A'
* There are commands here, but they don't pertain
* to the probiem, s0 they don t appear in
* the history buffer .
cASE choice = "B’ ,
+ Same for this cho1ce.
] tASE choice = 'L’
* This was the probiem line:
b0 Cancel

dBASE III PLUS shows you the command lines executed prior to
the DO CASE statement and the command line for the € choice,
but not the command lines for the other CASE statements.

The other way to debug programs allows you to see each program
command line on the screen or the printer as you run your pro-
gram. These commands are helpful if you can’t isolate the sus-
pected bug within the 20 or so lines of the history buffer. For
example, if you have a lengthy IF...ENDIF construction, you
might not find the mistake in the buffer.

With SET ECHO ON, dBASE I PLUS shows each program line
on the screen. The program continues to run unless a major error
occurs, so you can check what command does what operation,
Using SET STEP ON, however, steps you through the program
one command at a time. The program stops after each command
and only continues when you tell it.

With SET ECHO ON, both the commands in the program and the
program's own screen displays appear on the screen. The two will
probably get in the way of each other. If you use SET DEBUG ON
with SET ECHO ON, dBASE III PLUS routes the listings of com-
mands to the printer rather than to the screen.

PROGRAMMING WITH dBASE Ul PLUS P15-9

o

et v e g & = e

CHAPTER 15

4 A SET ECHO ON
Checkbook Management System SET DEBUG ON

'@_ | {___IZI_—I_ CLEAR

@1,10 say'
@25 say'
(— — S—
\) I
Screen Printer

Figure 15-3 Using SET ECHO ON with SET DEBUG ON

So that the screen displays of the program are not disrupted, the
actual command lines are routed to the printer.

So, to step through the program as it's running, first SET STEP
ON and SET ECHO ON immediately before running the program.
Use SET DEBUG ON if you want a printout of the debugging ses-
sion. dBASE III PLUS shows each command line on the screen.
Then it gives you this choice:

Press SPACE to step, S to suspend, or Esc to cancel...

If you wish to SUSPEND the program and check the history
buffer, make sure that you also SET DOHISTORY ON before run-
ning the program. The normal way to use the SET STEP ON/SET
ECHO ON procedure is to press the Spacebar to step through
each command. When you get to the point where a problem
occurs, you can examine your code with SUSPEND and DISPLAY

HISTORY, make any changes and try continuing the program run,

or cancel the entire program by pressing the Esc key.

P

During the initial stages of testing and debugging, use the
DOHISTORY/SUSPEND/RESUME procedure for debugging. If
you still have problems finding the mistakes, use the SET
ECHO/SET STEP/SET DEBUG commands.

PROGRAMMING WITH dBASE il PLUS

Pt N

TESTING AND DEBUGGING THE PROGRAM

Other
Debugging
Tricks

Using the Esc
Key

DISPLAY
MEMORY and
DISPLAY
STATUS

Sometimes, even with the above debugging aids, you’ll find that
you just can’t isolate a mistake. In this case, you could try some
other debugging techniques.

During program testing and debugging leave SET ESCAPE ON,
the default. Then, with SET DOHISTORY ON, you can interrupt
the program yourself by pressing the Esc key, and

"dBASE III PLUS will give you the same choices:

Cancel, Ignore, or Suspend? (C, 1, or §)

The advantage to this approach is that you can check program
code during the run, even though the code doesn’t necessarily
cause dBASE III PLUS to interrupt the program. Later, you can
SET ESCAPE OFF so that the user can’t stop the program with
the Esc key.

You can also use the command ON ESCAPE SUSPEND, which
bypasses the above message and automatically suspends program
execution when you press the Esc key.

Many times a problem occurs because the memory variable is
incorrect, nonexistent, or of the wrong type. To determine if this
is so, insert the SUSPEND command into your program at the
suspected trouble spot. When the program SUSPENDs, you would
type DISPLAY MEMORY to view the variables. You could continue
the program by typing RESUME, or you could type CANCEL and
correct your errors.

This is a good way to work your way through a complex program
file. When you've isolated and corrected your mistake, make sure
that you delete the SUSPEND command from your program.

Because the DISPLAY STATUS command shows you the working
environment, use it for debugging by substituting DISPLAY
STATUS for DISPLAY MEMORY in the above instructions. If
you're working with a database file, use one of the DISPLAY or
LIST options to pinpoint a problem.

PROGRAMMING WITH dBASE 1l] PLUS : - P15-11

CHAPTER 15

Keeping a
Record of
What'’s

Happening

P15-12

NOTE

The CANCEL command is abrupt. It closes all program files
and RELEASEs all variables from active memory. This can
hinder your efforts to find the problem in your program. For
this reason, use SUSPEND and DISPLAY MEMORY. Neither
CANCEL nor SUSPEND closes database files in USE, so

be sure to CLOSE DATABASES either before or after you
CANCEL your program.

Another useful trick is to use the SET ALTERNATE command to
save what's happening on the screen in a disk file. SET ALTER-
NATE TO <filename> sets up the file in which this record will
be kept. dBASE III PLUS appends the file extension .txt to the
filename unless you specify another extension. The SET ALTER-
NATE ON command starts the recording by opening the file. SET
ALTERNATE TO without a filename closes the file and stops
recording.

The best way to use this trick is with the DISPLAY MEMORY and
DISPLAY STATUS commands at those points in your program
where you've discovered bugs. For instance:

L A . .
. * Set up file Problems.txt to record
what's happening on the screen

. SET ALTERNATE TO Probleas
#* Open file.to receive screen output
SET ALTERNATE ON
DISPLAY REMORY
DISPLAY STATUS
* Close file
SET ALTERNATE TO
VALY ”
CANCEL

PROGRAMMING WITH dBASE 11} PLUS

TESTING AND DEBUGGING THE PROGRAM

The ON
. ERROR
‘ . Command

You can refer to this file later to check what was in the active
memory. Use the TYPE command to view the file, or MODIFY
COMMAND with the filename, including the .txt extension. In a
similar fashion, you can get a printed list like this:

DISPLAY NEMORY TO PRINT
 WALT
CANCEL

Make sure the printer is on before you run the program. If you
use the DOHISTORY technique, you can also SET PRINT ON
immediately after the program run is SUSPENDed and before you
LIST HISTORY to get a snapshot record of the debugging step
and what’s going on in the computer at that point.

You can also set up the ON ERROR DO <program filename >
command to alert you when an error occurs by branching to a
subprogram specifically designed to handle such errors. This-
command stays in effect throughout the program run, unless you
turn it off with ON ERROR. The following module SETs
DOHISTORY ON. ¥ an error occurs, it branches to Error.prg,
listed below, which gives you a message and automatically
DISPLAYs HISTORY. Use this setup before you begin testing a
program:

SET DOHISTORY ON
ON ERROR DO Error

Error.prg contains these lines:

* ERROR.PRG - tells you that an error occurs asnd

L shows you the program code responsible
CLEAR oo

10,10 SAY "An error has occurred!™

DISPLAY HISTORY" e

ALY

RETURN

See also the discussion of the new ERROR() and MESSAGE() func-
tions, and the RETRY command in the next chapter.

PROGRAMMING WITH dBASE I PLUS P15-13

15
i

CHAPTER 15

TIP

Whatever debugging techniques and commands you use, make

sure that you turn these commands off, or delete the debug-

ging commands from your program files when you're finished
. testing and debugging your programs.

P15-14 PROGRAMMING WITH dBASE 1l PLUS

kY
~-
[}
e

R T

Chap

ter 16

MORE ADVANCED FEATURES

What This
Chapter
Covers

This chapter discusses some of the more advanced features of
dBASE III PLUS and serves as a bridge to your own independent
study of dBASE programming. You will learn:

* A shortcut for IF...ENDIF constructions: the IIF() function
¢ What PROCEDURE files are and how to use them

* How to hide a PUBLIC memory variable temporarily within a
subprogram

* How you can use parameter passing to make generic program
modules that work in any situation

* How to retry commands after rectifying an error condition
¢ How to use assembly language routines in dBASE programs

* Ways to work with the operating system and exchange data
between dBASE III PLUS and other applications

* How to set up a turnkey system

dBASE has programming features that speed up your programs
and make them more efficient. These features allow your pro-

grams to deal directly with the operating system and with other
application programs, such as word processors or spreadsheets.

Preparing for Besides having a general knowledge of dBASE programming, be
This Chapter familiar with the commands and terminology of your computer's

operating system.

A Shortcut for There is a shortcut to the 1F...ENDIF construction: IIF(), the

IF...ENDIF

immediate IF function. It lets you set up the entire IF condition
and resulting action in one line. You don’t need the ELSE or
ENDIF lines. The IIF() function requires a slightly different syn-
tax. List the condition ‘and the results in parentheses following
the IIF. Separate the condition and results with commas.

PROGRAMMING WITH dBASE Il PLUS ‘ P16-1

»

CHAPTER 16

More EfflClent
Program Code

.

Here's an example Your b:rthday is April 26th, so you're testing
whether the current date is your birthday. The program is to give
you an appropriate message. This example uses the memory vari-
able mday to hold the message:

""""'F"’:'F_'r 5
IF DA'I'E()~=“CTOD('DUZG!86')_:¢ "
o ldlr f{ 'Ilapwvhrthday!'-f"",f'

‘.4:"-—,'11'. ;
i 1 - -.-'-'}_" =L
A M‘ 3
5 e -

i“s-..‘
il ”"ﬂiﬁ.’m‘-‘%&&& ‘.hm.‘zi")

PNt W

".lust’anoth P

n - r T "m—""""‘l’!"‘

;;“3& i1t todav Sadate lS“Apnl 26*‘.\1906“4store the'ﬂiirst

i,; lessue“toé’the varnble"lday '3‘11f~notwst6rl the‘.:,e
X aday, 3% "-*;-f “-‘~is'§§~,¢‘-'-“i Sy

;:L-

i [y

L*-;a? ldaw‘}:‘i-{

AP b L em

4); _croopqui;usgga “@jg“"b@vl'
Thekinor) y SEESETY] ;;.r;. ,if’v “":#f"‘:'?ﬂ
,*’:Shourthe Ly SR ﬂ:‘ﬁ%

e iS g-}

¥ 77 TR L L]
T, 3}’{}.!.-. ﬁ{ : -';:‘??_;u
AT TR INE

J e a 5
é:’.i AR ALY

Note that you first establish what variable will contam the result
of the HF() function's evaluation, ritday =. Thé first expression in
the IIF function is the condition to be tested. The second expres-

sion is what results if the condition is true, and the third expres-
sion is the result if the condition is false. Both expressxons must
be of the same type. + .

IIF() is a way to stréamline your program codmg, which in turn
makes your program run faster."

Aside from the standard dBASE control structures, DO
WHILE...ENDDO, IF...ENDIF, IIF(), and DO CASE...ENDCASE,
dBASE has other commands and features that help you write
more efficient code. These commands help you with program flow
and handling memory variables.

PROGRAMMING WITH dBASE IIf PLUS

p OO

£ Sl T TR a7 e Wi S e STt Bt R e Hu S Ry L L
S SR RTITTR e gng-‘..“ =5 i-}%&uﬁ KAt sy TS g

- P « 2" = _. z L .

. STy W1 e

. - . S S £ TR R I P 1 e X
- B % R A S e I G -2

RN

Yo) MORE ADVANCED FEATURES

L N Procedures When you are designing and developing your program, you’ll
" probably use certain key modules repeatedly. Each time you want
L to run a module, you use the DO command to call it. Because the
e module is in a separate program file, dBASE III PLUS has to go
RS to the disk and open the file.

Lo Using a procedure file reduces disk access time and delay. A
R procedure file contains modules of program code that stay in
S the computer’s memory for the duration of your program.

e dBASE III PLUS doesn’t have to access the disk each time the

S program needs the program module.

A procedure file contains only module PROCEDURE:s. It has the
R same .prg extension as any normal dBASE program file. You cre-
o ate and edit a procedure file using MODIFY COMMAND. Within N
IS the file, each module PROCEDURE must begin with a S
PROCEDURE line, which includes the name of the PROCEDURE. .

S Next come the actual commands. The last line of each PROCE-
- N B A DURE, as with all module programs, should contain a RETURN i
e T N statement. Y

. For example, the checkbook management system uses a proce-
dure file, Rprtpro.prg, for all reports. The PROCEDURE called
Printer handles whether output shows on the screen or is printed. :
This PROCEDURE begins like this:

-_— - . vm- = - e -

_PROCEDURE. Printer ’ ' & .. Lo

e tu

- = -

Each separate report is in a different PROCEDURE in the
Rprtpro.prg file.

TP

Write and test youy modular PROCEDURES s separately. Then .-
‘combine them in a‘procedure file later. To do this, issue .
MODIFY COMMAND and name the new procedure file. Press T
Ctri-K R to read each module file into the procedure file. -
dBa?iSE IIT1 PLUS prompts you for the name of each file to be)

read in.

()

PROGRAMMING WITH dBASE Il PLUS P63

- 2
-, T a e ee— - - - . R . S LT ¢ - - -, e —— ———
¢ * - - * - 'm o - " ‘- - "o - " ' - - r . .
- - - LN . - P - L .- -t S ~ . .
- N © . . . f AR . - R . L - - . - - 2
[l

2o
1 *
)

HOR- TRl AP
St e AN L et a

CHAPTER 16

If you plan to use a procedure file during the entire program,
include the SET PROCEDURE TO < filename> command to open
a procedure file at the beginning of the program.

The checkbook management system only uses a procedure file for
reports. When the user types H from the main menu and program
control branches to Reports.prg, the first line in this program
opens the procedure file:

SET PROCEDURE TO Rprtpro

After you have opened a procedure file with SET PROCEDURE,
use DO to run any PROCEDURE in the procedure file. .
dBASE III PLUS first checks the PROCEDUREs in memory. If
there are no PROCEDURESs with the filename, dBASE III PLUS
then checks the disk for the file.

S - . T When it needs the PROCEDURE Reporta in the Rprtpro.prg file,
o : AT the checkbook management system uses the command:

Do Repottaf. 5

You can have only one procedure file open at a time. The proce-
dure file can have at most 32 PROCEDURE:S. If you wish to open
another procedure file, use SET PROCEDURE TO with the new
filename. dBASE III PLUS automatically closes the previous pro-
cedure file. To close a procedure file without opening another,
type either CLOSE PROCEDURE or SET PROCEDURE TO, with-
out a filename.

T l P16-4 PROGRAMMING WITH dBASE M1 PLUS

o,

MORE ADVANCED FEATURES

NOTE S
During debugging, if you attempt to edit an open procedure o

file, dBASE III PLUS will tell you that the file is currently
open. Type CLOSE PROCEDURE first.

Using procedure files, you can effectively expand the power of
dBASE III PLUS by providing your own routines. Because you
can use procedures over and over, they are almost like new
dBASE III PLUS functions. .

Another excellent use of procedure files is for help screens. Most

. of the time, the program doesn’t need these procedure files until

" i the user wishes additional help. You can set up your help screens -

R ' in a separate procedure file and SET the PROCEDURE file when

e necessary. Once the entire procedure file is in memory, the help
. screens appear very quickly on the screen.

Hiding a A PUBLIC memory variable remains in memory while the pro- .

Public gram in which it is declared PUBLIC and all subprogram modules

. . called by that program are in effect. However, you may at times Tl

L Variable wish to use a memory variable name in a subprogram but not to T

-" change its PUBLIC value in relation to the program as a whole. T
You can temporarily hide the PUBLIC variable.

A practical use of this feature is to make the names of memory .
variables consistent and your programs more understandable, -
For example, you may want to use the balance variable, which is B
PUBLIC, in a subroutine for another balance amount,

To hide a PUBLIC variable in a subprogram, write the command

s PRIVATE and the memory variable name at the beginning of the
E_‘o : subprogram:

. PRIVATE balance

e i O . S S

PROGRAMMING WITH dBASE III PLUS P16-5

& | “"

1.0
v ad W N

CHAPTER 16

Main Program

The PRIVATE command hides the PUBLIC variable and declares

a new PRIVATE variable with the same name. You can use the
PRIVATE variable in this subprogram and all other programs that
it calls. When the subprogram is finished and program flow
RETURNSs to the main program, the PUBLIC variable automati-
cally loses its hidden status, and still has its previous value. Here
is an illustration of how hiding a PUBLIC variable works:

PUBLIC balance
/ '
Sub1.prg . Subl.prg
PRIVATE balance - bafance

The balance variable, declared PUBLIC in the main program, con-

Figure 16-1 Hiding a PUBLIC variable

o o o tains the value 350.00 before program control branches to

: . Subl.prg. There, the PUBLIC version is hidden and cannot be
T . accessed or changed; a new PRIVATE balance is declared. The
L : subprogram considers balance as PRIVATE to it only. At the end
of this module, balance contains the value 175.00. However, when
program control RETURNS to the main program, the PUBLIC

i B - oo ‘ variable balance is again accessible and contains 350.00.

Parameter Module program design allows your program to use modules over
Passin - and over, either as separate programs or combined in a procedure
: 8 file. You can also reuse the same module, with a few changes for

L o similar situations.

PROGRAMMING WITH dBASE Il PLUS

S

= M&-

1 4

L

L e

}

o’

b,

MORE ADVANCED FEATURES

. E For example, you want to draw a box on the screen, but your pro- -
oot _ gram occasionally needs the same box at differerit locations, or RO
T : with a different size. The program code for drawing the box ' R
N would be the same, but the size of the box, its parameters, would A
E T be different. It wastes disk space to write another module to draw R
cl ey - a different-sized box. e
You can set up a generic box-drawing program that depends on)
the speécific parameters it gets from the calling program. For s
exarnple, if the calling program needs a box that is to be dis- S S
played at the very top of the screen and is five rows deep, it gives T
the correct coordinates to the box-drawing module. Later, when
the calling program needs a box at the bottom of the screen and
ten rows deep, it presents a different set of parameters to the
same module | program. This is known as parameter passing.

The beginning command line of the module must contain the

L n — names of the PARAMETERS that are being passed to it from the -

SPITALIREE R SR B calling program. You must separate two or more PARAMETERS IR

. . o : with commas. Here is a program module that uses PARAMETERS S

. to draw any size double-lined box anywhere on the screen: RN
.) - .- . -] W J";“‘qﬁl""" ,‘-*"‘\A;;W"' .- f"""'.!“"“'" Fa) ..‘P-—"F-:.' _' PR

_ﬂ*’inl PRE'- draus 8°box3g gwen the: passed;purueters " >0
+PARAMETERS: begmrou,‘bagmcot qndrou;#endcol}'“"- e

S CLEAR I S R A a0y ;
: i . fi“ibeginrov; gegm%?loﬂ ndrov, en;;%;i’&
- ’ v-‘t'.,n ML F i e N
ERenimE s g L
. The four PARAMETERS are begmrow, begmcol endrow, and R,
; . ~ endeol. T Lo
WARNING , -

You'll get an error message if you add superfluous spaces
- after the list of memory variables in a PARAMETERS
statement.

LAY

RIS

rm—— s

R ! . ' PROGRAMMING WITH dBASE Ill PLUS P17

AN

CHAPTER 16

—

The calling program must initialize the passed variables and pro-
vide their values. It also must tell the module what
PARAMETERS to use in the same order as they're listed in the
PARAMETERS statement. It uses the DO...WITH command for
this; that is, DO the file WITH the following PARAMETERS. So, to
draw a box from row 10, column 5 down to row 23, column 75,
use the following commands in the calling program:

Py sl SO

‘“?bo Box ¥ HITH 10,5,23; 75-*;$
m'..._ﬂ’..'s‘.ﬁ:ﬁ.- .

-;...-P:-*..e-s.-i'o.-

If a procedure file contains PARAMETERS, the PROCEDURE line
comes before the PARAMETERS line. For example, when the user
chooses H from the main menu, the program asks whether the
report should be displayed on the screen or printed:

Do you want the output sent to the printer or the screen? (P/S)

The program code that handles display of this prompt is in a pro-
. o . cedure file called Printer in the Rprtpro.prg file. The screen row
S of this prompt varies, so the Printer module uses PARAMETERS.
oo Here is the entire Printer module:

e e ..---

"W‘ﬂ'.! ”
pnocenune*pranterﬁg

T .

PROGRAMMING WITH dBASE Il PLUS

v "Jl

o~
%

MORE ADVANCED FEATURES

Potential
Errors

The two variables row and pr get their values from the calling
program. The calling program passes the row and column coordi-
nates as PARAMETERS to the module. Generally, the calling pro-
gram supplies the same parameter names that are in the PARAM-
ETERS line of the called module. You can use other variable
names, but the order in which you pass them must correspond to
their order in the PARAMETERS command. For example, the
Reportal module in the procedure file Rpripro.prg of the check-
book management system calls the Printer module like this:

* ask for output ‘to prmter or screen :

Do Printer llml neuron,pr
The Reportal module uses a dlfferent vanable name, newrow, for
the first parameter, but its value is still correctly passed to the
row parameter in the Printer file.

If the program using the PARAMETERS command changes the
value of a parameter, this value is passed back to the calling pro-
gram. Using parameter passing enables you to use your program
modules in many different variations.

Sometimes your program will encounter potential errors that can
be corrected without ending the program prematurely. For exam-
ple, the program can check to see if enough disk space is avail-
able before copying a file and, if there isn’t, delete an unnecessary
file.

The ERROR() function returns the integer error riumber for what-
ever dBASE III PLUS error occurred, and the MESSAGE() func-
tion returns the string error message for these messages. Your
program can check these values and eliminate the error condition.
A list of these error humbers and messages is in Using

dBASE 111 PLUS.

Also be aware of the RETRY command, which is like RETURN
except that it returns to the exact line of the calling program,
instead of the next line. RETRY allows the program to reexecute
the problem at the spot where an error originally occurred. Use
RETRY in situations where you've made a change after an error
and wish to RETRY the program run.

PROGRAMMING WITH dBASE 11l PLUS P16-9

T ERSY
AT oS

Tl FaNETIT

CHAPTER 16

ST

Using
Assembly
Language
Routines

s
3
1
"

The dBASE III PLUS interpreter must interprét every command
line before it can exécute a program’s command. This process is
slower than if the commands were written in a language that the
computer uses directly.

Because it works with the computer’s microprocessor, assembly
language is closer to the actual hardware of the computer than
dBASE. Programs written in assembly language and assembled
into binary code are executed muich faster than interpreted
dBASE commands. What is more, assembly language routines can
control more of the hardware of your computer, such as aspects
of the cursor that dBASE doesn’t control.

WARNING : . - ,

This is a very advanced téchnique. Be very familiar with
assembly language before attempting these suggestions. If
you are an experienced assembly language programmer,
check the specifications under LOAD in thé Commands and
Functlons section of Using dBASE 111 PLUS for dealing with
addresses, memory, and segments.

dBASE allows you to use separate modules written in assembly
language within dBASE programs. These modules must first be
assembled and linked, two processes that transforni them into-
machine language, and finally converted into binary form. You
must have an assembler and linker program to work with assem-
bly language routines, as well as DOS's Exe2bin.com file.

I

PROGRAMMING WITH dBASE IIl PLUS

MORE ADVANCED FEATURES

SN) 2 The procedure for using assembly language subprograms is to

T AT, LOAD the programs and then CALL them. The LOAD command

oo : places the assembly language routine in memory. It assumes that

the assembled program has the file extension .bin, which is pro-
duced when you use the DOS EXE2BIN command. The routine is
not treated as an external program on the disk but is ready at any
time, like a procedure file. The CALL command executes the rou-
tine. You can have up to sixteen different assembly language rou-
tines in memory at one time, and each can be as large as, 32,000
bytes. To remove a LOADed program from memory, use the com-
mand RELEASE MODULE with the correct filename. Check the
commands and functions of Using dBASE III PLUS for more
S restrictions when working with assembly language programs and
G . for an example of how to write, assemble, link, and convert to
A T binary form an assembly language routine.

TR If you want to see an assembly language routine in action, run the
R S Cbmenu2.prg. This is the same main program as Cbmenu.prg,
e : with the addition of two assembly language routines to control
Cer - the cursor. You have probably noticed that the INKEY() function
_ . ' - makes the cursor jump around a bit on the screen. The two
assembly routines included on the disk, Cursoff.bin and
Curson.bin, control this. Cbmenu2.prg first loads the two assem-
bly routines as part of the setup stage:

;" ».Load two binary files to turn cursor on.snd off
: LOAD Curson - CoL : e
~ .LOAD. Cursoff .

e e e ———— e et mr———e e+ e I - ——

Py

S PROGRAMMING WITH dBASE Il PLUS P16-11) P

CHAPTER 16

1t then CALLs thése routines during the DO WHILE loop to accept
the user's input:

DO MRILE 7T R ey
. " &':“i‘né?é?‘ _‘. T
5 ‘“'W

;i=lll£7() S PRELi
'thurn oﬂhcursor'
i cnl.l.’gtursoffﬁﬂ"‘
92177633 SHMIHE(
s sﬁsm--* o
ﬁ,_t Turn.on curnr' :
FIE I CALLY Cur SOR IS e :
%IF}:HPPE%(CMHHS“ABWEFGHIJKLI it i

The screen dlsplay looks much more regular and less distracting
.when you run this version of the main menu program. Note that
when the user wishes to quit the program, the X choice, the pro-
gram RELEASEs the two MODULE routines.

dBASE In Chapter 13 you learned how to work with disk sp‘aée and file

management from within your programs. At times you'll need to
Pmrams, ma relate your dBASE III PLUS applications to the operating system,
Larger MS-DOS™ or PC-DOS™, and to other apphcat:ons programs,
Context ' such as word processors.
The RUN, . You can run other programs from w1th1n dBASE Il PLUS, These.

programs can be resident operating system commands, such as

Comma“d COPY or DIR, transient operating system programs, such as .
FORMAT or CHKDSK, batch files with the .bat extension, or other .
application programs. (. ‘)
.Use dBASE Il PLUS's RUN command for running these external e

programs. You can use ! instead of RUN if you wish.

PIG12 o ~ PROGRAMMING WITH dBASE il PLUS

'
r - b
-
t v r -
v,

o

%,
L
N

s e

o
*

MORE ADVANCED FEATURES
2 7 ’ However, make sure that your computer has enough memory and _
; . that you have correctly sét up the Config.db file. For more infor-
mation about Config.db, see Using dBASE III PLUS. R
One of the common uses for the RUN command is when you want)
to reset the system date or time. dBASE III PLUS does not have
commands to do this. You can STORE the new date or time in a -
memory variable and then substitute the variable for the date
when RUNning the DOS DATE command. The variable must be a
string, but you can first use a dBASE III PLUS date variable to :
test for correct input: K
(e Initinlize datesvariable Sr Sl iy
’gtodifjé‘z‘"onngﬁ' ’fig’,;%ﬁf‘ﬁg ﬁg i e Ea "-’f;.;:';if"j \. E
Sati6etinev date. withicorrectyerror checking wa nrs :
82105 102SAY Whatli s the: Correct date?. GET: today: B
B READ Sfbhes Tod g igiulan BN A B
o~ ._Jﬁicpgngeito_::stgiqg?'?. % = ; :
o E7t0day;i=10T0C (today) 5 PRk
Poh zeschangecurrent ‘date il ol B
| L RNONTE Btodayl S e ol i
: To change the system time, make sure that you ask for the time
- from the user in the correct form — hours:minutes. When RUN- .
o ning batch files, for instance, the batch file Files.bat, use the :
g filename without the extension.
:
NOTE . .
The operating system’s command processor program, .
Command.com, must be in the root directory of the boot
) drive. If you're using a dual-floppy system, have these files on
. - | dBASE HI PLUS System Disk #2. See the RUN command in
£ the Commands and Functions section of Using
X~ ' dBASE I1I PLUS for more information. .
PROGRAMMING WITH dBASE Il PLUS ' P16-13 -
- -
T S : . 'j '

R i‘m’“ﬁ"f
% o

1-"‘!

CHAPTER 16

The Operating
System and
dBASE
Environment

Other
Applications
Programs

When you write programs for commercial release, you may have
to determine under what operating system dBASE III PLUS is
running, certain specifications of the operating system environ-
ment, or what version of dBASE III PLUS is being used. There are
three functions that give you this information.

If your program has to check the operannq‘ system under which
it’s running, for instance PC-DOS or UNIX™, use the 0S() func-
tion. This function returns a siring value of the operating systemn.
It is useful if your program coding, such as memory variables,
depends on which operating system is running:

———

™

WS T

. STORE 0S()-TD ‘opsys r--. o @;z *3@?34.-;;_. .

* If the operating svstnqs UNIX

IF SUBSTRCopsys;1,4) = 'Illl!tl_f,zg,
<k Rune spe:ral setup prqs

: - 00 Setumix .. RN T4

L M;,r}-:

.~ . g b P95 i . L

:

1

1

N
-

If your program has to check one of the operating system’s envi-
ronments, such as the current PATH, use the GETENV/() function.
For example, your program needs the current setting for DOS's
COMSPEC:

——— * 7T

STORE GETENVI“COHSPEt") 0 environ~h; ol el o T

™ .
L s v [Ml ,'_tﬁ

The environment name itself is a string enclosed in delimiters.
This function works only for those commands issued at the oper-
ating system level, such as PATH or SET COMSPEC. When deter-
mining the current path, GETENV() does not work after you use
the SET PATH comr?and from within dBASE III PLUS.

Finally, the VERSION() function returns the string value of the
current version of dBASE III PLUS. This function, like 0S(), does
not require any arguments.

Your program may have to bring in data from other applications
programs, or sendy out data to other programs. dBASE IIl PLUS
now allows you to bring in and send out information from and to
pfs:File with the IMPORT and EXPORT commands. These com-
mands expand on the abilities of the APPEND FROM and COPY
TO commands.

)

e

PROGRAMMING WITH dBASE 1} PLUS .

R e

R

MORE ADVANCED FEATURES

All microcomputer applications, including dBASE III PLUS, han-
dle their files in different ways. Usually they supply information
that is necessary to keep track of the data in the files. For exam-
ple, dBASE III PLUS usés a header which contains specifics about
the number of fields in a database file, their type and length, and
other facts. This header would be of no use to another program
such as WordStar. Similarly, WordStar's formatting specifi-
cations would be meaningless to dBASE III PLUS.

When you import or export data from files created by other pro-
grams you must strip out this superfluous information and leave
just the raw data. dBASE III PLUS calls these files system data
files. Usually, the data is delimited with cominas or spaces. When
. A COPYmg data to other programs, use the DELIMITED WITH and
e SDF options. When bringing in data from other programs, you
LT must first use the other program to put the data into a format
s o . acceptable to dBASE III PLUS. Then use the APPEND FROM com-
. . : s ' mand with the DELIMITED WITH and SDF options. These are

" _ R - -explained in Using dBASE 11l PLUS.

M ., 'T‘ 3 _ NGTE
Tl T APPEND FROM and COPY TO can now read and write Lotus
1-2-3™, VisiCalc™, and Multiplan™ files directly.

A Turnkey = Learning how to use dBASE III PLUS in its larger context, espe-

_ System cially with the' operating system, can be useful when you wish to
i set up a turnkey environment. This is an application that literally
. runs itself as soon as the user inserts the dBASE Iil PLUS pro-
gram disk and turns on the computer. It's like turning a key to

. o start a car. A turnkey system makes use of a special DOS batch
[] , file and the ability of dBASE I PLUS to begin running a pro-
= gram when you start dBASE III PLUS.

B . R, PROGRAMMING WITH dBASE Ill PLUS P16-15

CHAPTER 16

Where Do
You Go From
Here?

P16-16

As an example, you can set up the checkbook management system
to begin as soon as you start the computer. First, set up the spe-
cial automatically loading DOS batch file, Autoexec.bat. Use your
word processor or dBASE I PLUS's MODIFY COMMAND to cre-
ate this batch file. You can include the standard DATE and TIME
commands and then the command to start dBASE III PLUS.
Remember, each command must be on a separate line:

DlTE

TINE .

blASE l Chlenu
In the Cbmenu. Prg file, you also have to use the SET DEFAULT
TO B command in the sétup area if you have dual floppy disk
drives. That way, the checkbook management system finds its
database files. You can also SET the DEFAULT drive in the
Config.db file by inserting the statement DEFAULT =B. See Using
dBASE III PLUS for inore information. If you delete Help.dbs
from dBASE III PLUS System Disk #2, you may have enough
room for your entire application program on the A drive. If you
need more help with DOS batch files, look in the DOS manual
under BATCH.

TIP

Many programmers change the name of the dBASE III PLUS
program file from Dbase.com to Do.com. Then they can issue
the command:

Lno B:Cbmenu
from a batch file or the DOS prompt.

T
1

You have investigated the basics of dBASE programming using a
typical dBASE applications program as an example of its power.
You are now ready to begin writing your own applications in the
dBASE language.

PROGRAMMING WITH dBASE It PLUS

L
o Y
L

s ._..,_,.._: . L .. R S ...-.._...T......—'v-g
L T e ot e e B . ERA

Y I R VT F SPAPLA 3 D Lot LT e T Al
SRR RS
TS A A B

v
- PO

¢
" e - - .
- T o - =
. . . i

[- H

: e

MORE ADVANCED FEATURES

When you're more comfortable with dBASE, you may even want
to develop applications that you can sell. You can encrypt your
program code and protect against unlawful tampering or copying
with RunTime+. It also condenses the size of your application by
linking all the module programs in one unit, which makes your
program run substantially faster. See the RunTime + section for
more information.

There is much more to dBASE than what’s covered in this book.
You may wish to look at two other extremely helpful publications
of Ashton-Tate: the Advanced Programmer's Guide and TechNotes,
a journal of programming tips and useful sample programs.
SR et TechNotes is issued monthly by the Ashton-Tate Software Support
e Oy Center. To purchase the Advanced Programmer's Guide, call

o] Ashton Tate at (213) 329-8000. To subscribe to TechNotes, call the
T ST Ashton-Tate Subscription Service at (619) 747-1666.

i,
t

J—

\—/

PROGRAMMING WITH dBASE Il PLUS P16-17

Index

1.2 Mbyte drives, NIi-8
256K Configuration, U4-10
3COM 3+ Network, NI-8, ND-1 - ND-17
& (macro substitution), U2.9, U2-10, U6-7 -
U6-9
&& command, P1-22, U3-5, U5-159
? catalog query clause, U2-54, U5-1, U5-198 -
U5-199, Us-201
2/2? query command, US5-15
with memo fields, P3-17
with printed output, P12-4, P12-5
in programs, PS5-2, P11-2
for special printing effects,
P12-14
with templates, P7-9
AND., P15-3, U2-6
.NOT., PI1-10, P15-4, U2-6
in program flow, P2-10
logic errors, P15-4
.OR.,, PI1-10,U2-6
logic errors, Pi5-4
in program flow, P2-10,
@ function, in PICTURE clauses,
Us-21
@...CLEAR, P67, P14-4, P14-6, U5-16
@...CLEAR TO, P6-8, P8-8, U5-23, U5-24
@...GET...SAY, U5-16 - U5-22
Us-170

P7-4, US-17,

activating @ ...GETs,
activating a format file, U5-20, U5-232
changing appearance, P8-1
clearing, P6-13, U5-22, US-47, U5-50
confirming input, P6&13
converting data entry to upper case,
creating a format file, see

CREATE/MODIFY SCREEN
editing fields and variables, US-16
editing memo fields, US5-16
horizontal scrolling, P7-6, US-18 — U5-19
in format files, P8&-12, U5-16, U5-170

Us-21

maximum number of GETs, P6-12, U5-170

on-screen appearance, Pé-11, P8-1, P14-6

order of screen display, P6-6

with page ejects, P12-12, U5-16

PICTURE function, US5-18 (table), U5-17 -
Us-19

dBASE 111 PLUS

P12-5 P12-12 -

with PICTURE templates,
Us-19 .

with printed output, P12-3 - P12-4

with ranges, P7-8

with relative addressing, P8-3

release all @...GETs, U5-50

routed to printer or screen,

row and column coordinates,

several on one line, P6-12

specifying a RANGE, U5-17
‘@...TO, P8-7,U523-U5-24
« key

evaluating, P9-10

in @...GET blanks,

testing for, P9-10

A

Abandoning
changes made, L3-12 (note), U2-19
PROTECT entries, N3-31

ABS() function, P5-5, P11-1, U6-10

Absolute value, P5-5, P11-1, U6-10

ACCEPT, US5-25. See also INPUT, WAIT
difference from INPUT, Pé6-14

Accepting character input, see Input, verifying

ACCESS disk, N1-7, N2-3
on a 3Com network, ND-13
on an IBM network, NB-13
on a Novell network, NC-11

ACCESS() function, NS5-28

Access level(s)
establishing,

P7-1, U5-17 -

U5-16, US-218
US-16

P6&-13.

N3-20, N3-26, N3-27
field privileges, N3-5, N3-27
file privileges, N3-5, N3-26
for users, N3-4, N3-21
Account name, N3-19
Action line, L1-13 (figure), L1-14, U2-14
Action section, status bar, N3-13
Activating files, see Opening files
Adding records. See also APPEND, BROWSE,
INSERT
in The Assistant, LI1-20 - L1-22, L3-7 - L3-9
copying data from previous, US5-196

E
|

i T T o mem e mw s —

Key to Index Page Numbers:

L — Learning

N — Networking

NA-ND — Networking Appendices
P — Programming

R — Runtime

U — Using

INDEX

Adding users, see Adduser program
ADDITIVE option, see RESTORE
Adduser program
definition, NI1-6, N2-3
error messages, NA-3
running on a 3Com network, ND-13
running on an IBM network, NB-13
running on a Novell network, NC-11
Administrator, see dBASE Administrator
Advanced Programmer’s Guide, P16-17
ALIAS, P10-5, P11-1t, U2-38, U5-99, U5-223 -
U5-224, U5-227 - US-228
ALL scope '
with DELETE, P11-8
with DISPLAY, P11-3
Alphabetic key, testing for, P9-12
American Standards Committee for
Information Interchange, P1-4
APPEND, U2-23, U5-26 - U5-27. See also
SET FORMAT TO
with active index files, U5-26
in The Assistant, L3-3 (table), L3-7 - L3-10
with BLANK, N4-7, N5-4, P11-6, U5-26
format files and, P8-12, U5-26
updating data, P11-4, P11-6
APPEND FROM, N4-7, N5-4, U5-28 - U5-31.
See also EXPORT, IMPORT
defaults, U5-28 :
DELIMITED, U5-2%
to export/import files, P13-11, P16-14
file types, US5-29
records marked for deletion, U5-28
with SET DELETED, P10-18, U5-28
Application planning, N2-4 - N2.5
Applications, Al-1, P1-2, R1-1
Applications, sample
airline reservation network, N4-15, N4-22 -
N4-25
checkbook manapement system, P1-15 -
P1-i8, R1-4 - R1-10
Applications Generator, AI-1 - AI-2
adding records, A4-6
advanced features, A8-1
changing color display, Al-3 - Al-4 .
changing existing application, A7-5 - A7-6

ERT

R e R e s o § ‘-.

i
CREATE screen, A2-2 - A2-3.-
creating an application, A3-1 — A3-3, A6-4 -
A6-5, A7-1 - A75 -
creating a database file, A2-2 - A2-7
creating a label, A6-3 - A6-4
creating a report, A6-1 - A6-3
creating a screen form, AS5-1 - A5-6
deleting records, A4-7
editing records, A4-6 — A4-7
exiting, Al-3
main menu, Al-2 (figure)
reviewing records, A4-&
running the application, A4-1
saving file structure, A2-6 - A2-7
selecting menu options, Al-3
starting, Al-i
- Applications program. See also Applications
" Generator
control command file, R4-4
with dBRUN IiI PLUS, RI1-2

documentation, Pi-22, R1-1, R1-11 Q

encrypting, R2-1 - R2-6
linking encrypted files, R3-1 ~ R3-6
multi-disk, R4-4 -
overlay file, R4-4
shipping, R4-4
starting from DOS, P16-16 (tip)
technical support, RI1-1, Ri-11
Arithmetic, see Mathematical operations
Arranging records, see INDEX, Index (.ndx)
files, SORT
ASC() function, P5-14, U6-11
ASCII
displaying file, see TYPE
files, importing and exporting, U2-55 -
U2-58, US-28 - U5-31. See also EXPORT,
IMPORT
file formats accepted, U2-57 {table)
response file, R1-3, R1-6. See alsoResponse r‘
file S
value, see ASC()
ASCII codes, P1-4
for data types, UC-3 (table}
when comparing strings, P5-4
determining, P5-14

A2

dBASE HI PLUS

. fv_]f"“

INDEX

different meanings, P5-15
evaluating, P9-7
form feed, Pi12-11
for praphics, P8-7
tables, UD-1 - UD-3
to character, see CHR()
with @...8AY, P89
Assembly language routines,
LOAD, RELEASE
executing, P16-10, U543
limitations, Pl16-10, U5-43
loading into memory, P16-11, U5-149
releasing from memory, P16-11, U5-173
ASSIST, U5-32 - U5-3B. See also Assistant,
The .
Assistant, The, L1-6 - L1-15, L1-7 {figure). -
action line, L1-13 (figure), L1-14
cancelling selections, L1-14
Create Menu, L1-15, U5-33 - U5-34
exiting to dot prompt, L1-14
{(warning), L19-2
help in, L}-15
menu(s), L1-1 (figure), L.1-7 (fgure), L1-8 -
L1-12, U5-32
menu bar, LI1-8
message line, L1-13 (figure), L1-14
Mecdify Menu, U5-37
navigation line, L1-13 (figure), L1-14
opening menus, L1-8 -L1-9
Organize Menu, L4-12 - L4-13, L4-19 -
L4-20, U5-36 - US5-37
Position Menu, te find records, 14-2 -
L4-9, L4-14 - L4-17, U5-35 - US-36
quitting dBASE III PLUS, L1-26, U5-29
Retrieve Menu, 14-9 - 1L4-11, L6-16, L6-24 -
L6-27, U5-36
selecting menu options,

see also CALL,

L19-L1-12

Set Up Menu, to open files, 13-Z -
L3-3, U5-32

starting from the dot prompt, 14-14, L9-4 -
L9-5

status bar, L1-13 - Li-14 (figure)

Tools Menu, L1-25, L8-2 — L8-5, US-38

Update Menu, L3-3 {table), L3-3 - L3-17,
US-34 - U5-35

dBASE il PLUS

AT(;, P5-8, U6-12
testing for spaces,
ATTRIB command
3Com network, ND-8
IBM network, NB-8
Novell network equivalent, NC-8
Attributes
file access,
file open,

Po-11

N4-15

N4-2, N4-6

screen, U5-194 - U5-197, U5-232
Autoexec.bat (DOS), NB-10, ND-13, P16-15
Automatic file locking, see Locking
AVERAGE, US5-39. See also COUNT, SET

TALK, SUM, TOTAL

on a network, N4-7, N5-4

Backing up .
disks, NB-2, NC-3, ND-3
files, P13.10
Backup
procedures, L1-25 - L1-26, U2-59, U5-59
program files, P13-10
records from hard disk, P13-9
Backup files
database (.bak), Ul-5, U5-92 - U5-93
memo (.tbk), Ul-6
program, P13-10, Ul-6
Batch files, Pi2-3, P16-12, P16-15 :
using RUN with, P16-12 -
Batch record editing, U225, US-176 - U5-177,
U5-279 - US-280
Beginning-of-file, see also BOF()
‘condition, P10-13, UB-1 - UB-2 (tables)
determining, U6-13
difference from TOP, PI10-13
Bell. See also SET BELL, SET CONFIRM
as ASCII character, P5-14
controlling in programs, P4-5
ringing in programs, P5-14
Binary (.bin) files, P16:10, Ul-5, see also
CALL, LOAD
calling, U5-43
loading, U5-149 - 1J5-152

X-3

Key to Index Page Numbers:

L — Learning

N — Networking

MNA-ND — Networking Appendices
P — Programming

R — Runtime

U — Using

INDEX

releasing, US-173 - U5-174
Blackboard, L2-5 {figure), U2.44, US-84
See also CREATE/MODIFY SCREEN, Screen
form(s), Screen Painter
editing keys, L2-9 {table)
field highlight, L2-7
field labels versus field names,
status bar, L2-7
Blanks
as delimiters, U5-29, U5-56. See also
APPEND FROM, COPY
generating, see SPACE()
leading, P5-11. See also LTRIM()
trailing, 16-22, P5-10. See also RTRIM(),
TRIM()
BOF() function,
See also EOF()
Bottom margin,
Boxes
clearing, P8-8, U5-23
drawing, L12-30 - L2-31, P8-7, U5-19 -
Us5-20, U5-23 - U5-24
stretching and shrinking, L2-31
for user input, P8-8 .
Branching, P1-10, P2.3, U3-3, See also CALL,
DO .
conditional, in program, US-113, US-128
BROWSE, 19-18, N4-7, N5-4, U2.22, U2-25,
US-40 - U5-42. See also DISPLAY, Displaying
in The Assistant, L3-3 (table), 134 -137
adding records in, L3-6
in application programs P6-2, Pll 4, P11-16
command line options, .U5-40- U5-41
editing and appending records in,;” US5-40
menu bar, L3-5 (figure), L3-6 (table), U5-41
- Us-42
on a network, N4-7, N5-4
BUCKET, see Configuration commands
Buffer
history, L9-6, U5-107, US-145, US-219,
U5-237 - Us-238
print, P12-11, U5-107, U5-145
type-ahead, U5-48, US-263

L2-17

L10-6, P10-13, P10-15, U6-13
Pi12-8

X-4

Catalog (.cat) file(s),

c

-c option, R2-4, R3-4 -
Calculation commands, see AVERAGE,
COUNT, Mathematical functions, SUM,
TOTAL, ?/??
CALL, P16-10, U5-43. See alsec LOAD
maximum number of binary files, U5-43
with parameters, U5-43
Calling program, P2-3
CANCEL, P15-8, P15-12, U5-44
Cancelling
changes to record, L3-12 (note)
- file privilege scheme, N3-30
menu selections, L1-14 :
Case conversions, L14-17, P5-8. See also :
LOWER(). UPFPER()
L7-11, Ul-5, U2-49 -
-J2-54. See also SET CATALOG
activating, L7-13, U2-52, U5-29, U5-197 -
Us-198
adding entries,
Us-201
changing, L7-14
changing entry names,
closing, U2-53, U5-198
creating in The Assistant,
creating at the dot prompt,
U2-52, U5-197 - U5-198
deleting entries, U2-53, U5-198
fields, U2-51, U5-199
file title prompt, U2-51, U5-197 - U5-198
master (catalog.cat), U2-51, U5-197
opening, U2-52, U5-197
query (?) clause, U2-54, U5-198
renaming entries, U2-53
selecting in The Assistant,
L9-13
selecting a file from, 1.9-13, U5-198 .
structure, U2-51, U5-199 {)
CDOW() function, P5-22, U6-14. See also ‘o
DOwW{() =
Century, see SET CENTURY
changing, P5-22
prefix, U5-203

L9-11 - LS-13, U2-52,

U2-53

o9 O

L7-13 (note)
199 -1%-10,

L7-13, L9-10 -

dBASE il PLUS

R T R ek a TR Ty
. . _ E > -

L

LCRPIEN ':.""' 'y
LA

e

<, O
ere

v ame g

INDEX

CHANGE, N4-13, N5-6, P6-2, P8-12, P11-4,
US-41 - U5-42, U5-45. See also EDIT
with memo fields, P8-16
on a network, N4-13, N5-5
Changes from dBASE 1. See dBASE BRIDGE
Changing records, _see CHANGE, EDIT,
Editing records
Character
field, UI1-9, US-89
manipulation functions, Ué-5 (table)
memory vaiiable, P3-4, U2-10
Character string
centering, P8.5 - P8-6
converting to ASCII, P5-14. See also ASC(),
CHR()
converting date to, see DTOC() .
converting to date, see CTOD() “
converting to lower case, see LOWER()
converting a number to, see STR()
converting to numeric, P15-19, U6-89 -
U6-90. See also VAL()
converting to upper case, see UPPER()
determining case, see ISLOWER(),
ISUPPER()
extracting characters from, P5-8. See
also LEFT(), RIGHT(), SUBSTR()
formatting, seé TRANSFORM()
functions, P5-5 - P5-19
inserting one, within another, P§-6 - P8-7.
See alse STUFF()
length of, P5-6, U6-49. See also LEN()
operators, L5-8 (table), U2-5 - U2-6
position of substring, P5-8. See alsoAT()
removing leading blanks, see LTRIM()
removing trailing blanks, U6-74, U6-86. See
also RTRIM(), TRIM()
repeating, P8-10, U6-70. See also
REPLICATE()
replacing part of, P8-6. See also
REPLACE, STUFF()
returning first character's ASCII value, see
ASC()
right justifying, P86
show starting position within another
string, see AT()

dBASE I}l PLUS

substrings, P5-7
Checkbook management system
diagram, P1-17
list of files, PI-4, R1-7, RI1-10
RunTime + files, RI-10
starting the program, PI1-14
CHKDSK (DO0S), P16-12
CHR() function, P5-14, P8-9, U6-15 - U6-16.
See also ASC()
Chronological order, see INDEX, SORT
Classes of commands, N5-2, U5-3 - U5-14
Addition of Data, US-4
Creation of Files, U5-4
Data Display, U5-6
Debugging, U5-13
Deletion of Data, U5-5
Editing of Data, U5-5
Environmental, U5-10
Event Processing, U5-14
External Program Interfacing, US5-13
Manipulating Database Files, U5-7
Manipulating Other Types of Files, U5-7
Parameter Control, U5-10 - U5-12
Positioning the Record Pointer, U5-6
Programming, US-9 :
User Assistance, US5-3
Using Memory Variables, US5-8
Classes of functions, U§-4 - U6-6 (1able)
CLEAR, L10-3, P6-7, P6-13, U5-47. See also @,
CLEAR GETS '
erasing the screen, U5-47
releasing pending GETs, US-50.
CLEAR ALL, U5-48. See also CLEAR
MEMORY, CLOSE, RELEASE ALL
to close database files, P3-2
leaving a program with, P2-2
to release PUBLIC variables, P3-10
to unlock file records, N4-12
CLEAR FIELDS, Pl11-16, U549,
SET FIELDS, SET VIEW
CLEAR GETS, P6-13, Us-50
CLEAR MEMORY, P3-10, P13-3, U5-51
CLEAR TYPEAHEAD, P8-17,U5-52. See also
SET TYPEAHEAD TO °

See also

rh

o = oad

P

P

Key to Index Page Numbers:
L — Learning

N — Networking

NA-ND — Networking Appendices
P — Programming

R — Runtime

U — Using

INDEX

Clearing
a box, US5-23 - U5-24
memory, P13-3
the screen, Pé6-6.5ee also @...CLEAR,
@...CLEAR TO, CLEAR
the type-ahead buffer, -see CLEAR
TYPEAHEAD
CLOSE, N4-12, U5-53

CLOSE DATABASES, 1.9-3, P2-2, P1C-4, P11-7,

P13-2, US-53

CLOSE FORMAT, P&8-14

CLOSE INDEX, Pl0-7

CLOSE PROCEDURE, P16-4, U3-11

Closing files, L1-25, L9-30, P13-2, U2-33,
U2-35 (table). See also CLEAR ALL, CLOSE,

USE

Cluster networks, N2-4

CMONTH() function, P5-22, U6-17. See also
MONTH()

COL() function, P8-3, U6-18, See also PCOL(),

ROW(}
Collision, N4-2, N4-10
Color menitors, P4-5, U2-20, U5-204 -
US-208 _
Color, testing for. See ISCOLOR()
Column(s), see also CREATE/MODIFY
REPORT
coordinate, Pé-4
heading in report, L16-10 - L6-13
inserting into report, L6-14 - L6-15, U5-78
layout in reports, L6-10 - L6-15, US-78 -
U5-79_
totals in report, L6-13, US5-79
Command(s), U2-1, see also Classes of
commands .
abbreviating, L9-4, U2-7
branching, P2-33, P2-34, U3-3
commonly used, L9-8 - L9-9 (1able)
conditional execution of, US-114 - U5-117,
Us-128
configuration, U4-3 - U4-5
correcting, L£9-3
editing data, 19-22, US-5
entering from dot prompt, L9-3 - L9-6,
uU2-1 -u22 -

S e w me mcciorpm e = e o ey rme: . B o malmmmmscmdsamearest s 4 AL W limmem A RER E 4 A e o T mmae s

expression list, in U2-3
format file, L9-16 - L.9-17
full-screen, U2-20
history, U2-2, U5-107, U5-145, U5-219,
Us-237 - U5-238
to invoke dBASE ADMINISTRATOR, N2-6
length of, L9-21
memory variable, L9-26 — L9-29, U5-8
network programming, N5-1 - N5-3
" not supported in RunTime +, R4-1
programming, U3-2 - U3-4, U5-9
re-entering, U2-2
requiring exclusive use, NS5-4
requiring a lock, N3-4
reserved names, U2-8
rules for writing, U2-7 - U2-8
" scope, U2-3
scrolling, L19-21
structure, U2-3
syntax, U2-3
verb, U2-3 .
Command fles, L10-1 - L10-4,-U1-5
See also Program (.prg) files, MODIFY
COMMAND
closing, U5-44
creating, L10-1 - L10-3, U5-155 - U5-157
executing, U5-106
modifying, L10-3, U5-155 - U5-157
stopping execution of, U5-44
Command line
Insert and QOverwrite modes, 19-3
length, 19-21, R3-6, U2-7
dBCODE formats, R2-1 - R2-6
dBLINKER formats, R3-1 - R3-6
options with d4BCODE, R2-4
options with dBLINKER, R3-3
specifications, Ul-1 - Ul-2
Command processor (DOS), P16-13
Command.com (DOS), N2-10, P16-13, N5-22,
U4-6, US-185.
Comment lines, L10-3, P1-23, U5-159
Comparisons
between different types, P5-4
exact, P10-18 ;

COMSPEC (DOS), P16-13, U5-185

dBASE HI PLUS

h——

N |

P

s

L TP TES N
A T
R .

Y
B

3 L
po il

P e

TS g:‘:f:am\'-e‘-ya_ mrm“’"im

e ol

for determining input, P94

in program Aow, P2-10-P2-12

scope, L4-18 -14-19

search, L4-4 - 14-7, 1.4-10 - L4-11, L5-2 —

L5-9

testing for, P14-3
Confi256.db, U4-10
Confi256.sys, U4-10
Config.db, U4-2

at a workstation, NI1-13

commands and values,

creating, U4-7 - U4-8

dBASE configuration commands,

U4-4 - U4d-6

with default drive, P16-16

with default settings, P4-3

function keys in, U4-7

modifying, U4-7 - U4-8

with RUN command, Pl16-12 -

SET commands in, U4-6

storing, U4-3, U4-8 '

on System Disk #1,

256K conlfiguration,
Config.sys, U4-1

at a 3Com workstation,

creating, U4-2

DOS configuration commands, U4-1

FILES parameter, U2-33, U4-1

at an IBM file server, NB-3

at an IBM workstation, NB-4

modifying, U4-2 .

at a Novell workstation,

storing, U4-2

on System Disk #1, U4-1
Configuration commands

BREAK (DOS), U4-1

BUCKET, U4-4

BUFFERS (DOS),

DEVICE (DOS),

FILES (DOS),

for function keys,

GETS, U4-5

U4-2, -

U4-2
U4-10

ND-3

NC4

U4-1, U5-234
Ug-1
U4-1
U4-7

dBASE HI PLUS

U4-9 - U4-10 (1able)

Converting

INDEX
. Concatenation, P5-3, P5-13. See also String MVARSIZE, U4-5
operators . PROMPT, U4-6
Condition(s), L4-7, U2-3 SET commands, U4-6. See also individual
SET entries :
SHELL (DOS), U4-1
TEDIT, U4-6
WP, U4-6
Configuration file, see Config.db, Corifig.sys

CONTINUE, P10-9, U5-54
in The Assistant, L4-6 - L4-7
Continuous loop, P4-11
Control characters, UD-3 (table)
Conventions, see Symbols and conventions
Conversion
functions,
guidelines,

U6-5 (table)
P33

see LOWER(), UPPER{()
see CTOD()

case,
character to date,
data types, P5-2
date 10 character, see DTOC()
files from dBASE II to dBASE III PLUS
format, see dBASE Bridge
input, with templates, P7-2, U5-18
number to character, see CHR(}, STR()
numeric expression to integer, see INT{(),
ROUNIX) ,
Coordinates, P6-4. See also COL(), PCOL(),
PROW(), ROW()
limits for printed output,
numbering, P6-4
printer, P12-4
with relative addressing, P8-3
COPY, U2-58, U5-55 - U5-58 .
in The Assistant, 1.1-25 - L1-26, L4-21 -
L4-22 .
encrypted (.crp) files, N5-15
on a network, N4-7, N5-4
with other programs, Pl16-14
scratch file, P13-10
COPY FILE, U2-59, US5-59
COPY STRUCTURE, N4-7, N5-4, U5-60
COPY STRUCTURE EXTENDED, P13-11,
U5-61 — US5-62
with encrypted files,

P12-7

N3-16

e e e e e i s b e s

Key to Index Page Numbers:

L — Learning

M — Networking

NA-ND — Networking Appendices
P — Programming

R — Runtime

U — Using INDEX
Copying in The Assistant, L&-4 - L6é-16
encrypted files, NS5-15 Columns Menu, L16-10 - L6-15

fields, L4-21 - 14-22, U5-58
file structure, US5-80, U5-61 - U5-62
files, L1-25 - L1-26, P13-10, U2-58 -
U2-59, U5-55 - U5-58, U5-59
files, foreign, see APPEND FROM, COPY,
EXPORT, IMPORT
memg fields, US-55
records, P11-10
records marked for deletion,
Copyright notice
in applications programs,
R34
COUNT, N4-7, N5-4, US-63
Counter
for page ejects, P12-16
setting up, Pl11-2
defining update interval of, U5-246
Counting records, see RECCOUNT()
CPUs supported on networks, N1-7
CREATE FROM, P13-11, P13-14, U5-65. See
.aiso COPY STRUCTURE EXTENDED
CREATE VIEW FROM ENVIRONMENT, P11
- 15, Us-101
CREATE/MODIFY LABEL, U2-43, U5-66 -
US-69. See also Label(s), LABEL FORM,
Label form ¢.lbl) files.
in The Assistant, L6-17 - L6-24, US-30
Contents Menu, L6&-21 - L6-24, U5-68 -
U5-69
menu bar, L6-18 (figure)
Options Menu, L6-18 - L6-19, L6-20 (table),
US-66 - US-67 -
predefined sizes, U5-67 (table)
zoom option, U5-68 -
CREATE/MODIFY QUERY, U5-70 - US-72.
See also Query (.qry) files, SET FILTER
in The Assistant, L5-1 - L5-17
menu bar, L5-3 (figure)
Nest Menu, L5-10, U5-71 - U5-72
Set Filter Menii, L5-5 (figure), U5-71
CREATE/MODIFY REPORT, Lé6-4 (figure),
L9-24, U2-42, US-73 - U5-81. See also
REPORT FORM, Report form (.frm) files

U5-55
R1-8, R1-9, R2-4,

Groups Menu, Lﬁ 8 - L6-9, L6-10 (mble)
Us-77 - U5-78 .

Locate Menu, L6-14, US-79

Options Menu, L6-3 - Lé-6, L6-7 (table),
Us-75.- U5-76 ~

page layout codes,

report option ranges,

" U5-80 (table)
U35-81 (table)

CREATE/MODIFY SCREEN, L9-16 - L9-17,

P8-12, U2-44 - U2-45, U5-82 - U5-87. See also
Blackboard, Screen forms, Screen Painter,
SET FORMAT TO
blackboard, U5-84
Screen Painter, U5-82

CREATE < newfile > /MODIFY

-

STRUCTURE, L9-10 - L9-12, N5-4, U5-88 -

U5-93. See also Creating, Modifying
with encrypted (.crp) files, N5-16

CREATE/MODIFY VIEW, P11-15, U241,

U5-84 — US-100. See also SET RELATION,
SET VIEW TO, View (.vue) files
in The Assistant, L7-3 - L7-10, U5-30

definition, Ul-7
Options Menu, L7-8 -
Relate Menu, L7-5 - L7-6, U595
Set Fields Menu, L7-7 -L7-8, U598
Set Up Meni, U5-95 - U5-98
Creating -
an application program, see Applications
Generator
catalogs, see Catalog (.cat) files, SET

CATALOG TO
data entry forms, see Screen forms
database files,see CREATE/MODIFY

STRUCTURE, Database files
labels see CREATE/MODIFY LABEL, Label

{.Ibl) files
new files from existing, U2-57 - U2-59
program files, see MODIFY COMMAND,

Program (.prg) files
query (filter) conditions,

TO .

see SET FILTER

dBASE I PLUS

N

INDEX

query (filter) files, see CREATE/MODIFY
QUERY, Query (.qry) files, SET FILTER
TO

reports, see CREATE/MODIFY REPORT,
Report (.frm) files
screen forms, see CREATE/MODIFY
SCREEN, Screen forms
view files, see CREATE/MODIFY VIEW,
CREATE VIEW FROM ENVIRONMENT, View
{.vue) files
CTOD() function, P5-23, Ué-19. See also :
DTOC() .
for initializing variables, P5-24 _
Cursor control keys, U2-2 (table) ..
controlling, P16-10
in full-screen operations, UA-{ - UA 3
in menus, U2-15
in MODIFY COMMAND, U5- 155 US 156
in Screen Painter, L2-9 (table)
Cursor position functions, see COL(), ROW()
Customizing
dBASE III PLUS, NI1-11 - N1-12, U4-1 -
U4-9
routines, P16-5
screen forms, see @, CREATE/MODIFY
SCREEN, Screen form

Data
access, simultaneous, N4-2
" backing up, U2-59
catalogs, see Catalog {.cat) files, SET
CATALOG
integrity, NI1-5
merging from two files, U2-57
protection on a network, N4-1 - N4.2. See
also dBASE security, PROTECT
relating, U2-38 - U2-40, U5-94 - US-101,
U5-255 - US-256. See also
CREATE/MODIFY VIEW, SET
RELATION, View {.vue) files
summarizing, L6-24 - L6-26
type, evaluating, see TYPE()
Data commands, US5-2 - US4

dBASE Il PLUS

Data encryption, N3-7. See also dBASE
security, PROTECT, SET ENCRYPTION
for applications programs, see dBCODE,
dBLINKER, RunTime +
Data entry, see APPEND, CHANGE, EDIT
Data entry forms, see Screen forms
Data integrity, P1-9, P3-7, P&-2, P10-3
Data type
converting, see Converting
in database fields, LI1-5 (table), Ul-8 - Ul-9
in memory variables, L19-27, U2-10
mismatches, PI15-2 |
Database file(s) ‘
adding fields, L1-5-L1-20, L2-22 - L2-25
adding records, L1-20 - L1-22, U2-22, U5-26
- U5-27, US-137
arranging records,
{.ndx) files, SORT
changing feld width, L2-19 - Lz21 -
closing, L1-25, L9-30, P10- 3 P10-4, P13-2,
U2-35, U5-49 P
combmmg. P11-7 : .
copying, L1-25-L1-26, P13- 10 U2 58 -
U2-59. See also COPY
copying fields, L14-21 - 14-22
creating in The Assistant, L1-15 - L1-20
creating at the dot prompt, 19-10 - L9-11,
u2-22 .
creating new from old, US-81 - U5-62, ;
U5-134 - U5-136 ‘
currently selected, P13.5. See also DBF()
deleting, P13-10, U5-97, U5-121
. deleting all records from, see ZAP
deleting records from, L3-13 - L3-17. See
also DELETE, PACK, RECALL
designing, L1-4 - L1-5, P10-1
determining size of, P13-7
displaying records, L1-22 - L1-24, L3-4 -
L3-7, L9-18 - L9-21, U5-105
editing records, L3-11 - L3-12, U2-24 -
U2-26, U5-118, U5-169 - U5-170
exporting, L8-4 - L8-6, U2-57 - U2-58
finding records in, L4-1 - L4-11
importing, L8-2 - L8-4

see INDEX, Index

*

Key to Index Page Numbers:

L — Learning

N — Networking

NA-ND — Networking Appendices
P — Programming

R — Runtime

U — Using

INDEX

indexing, 14-12 - L4-13,19-22, P10-6, U2-28

- U2-30, U5-131 - U5-134. See also INDEX,
Indexing, SORT

integrity of, P1-9, P3-7, P6-2, P10-3

determining last update, P13-6. See also
LUPDATE()

maintaining, P13-10

managing, P10-8

maximum open at one time, U2-33

modifying structure, 19-12, P13-11, U2-22.
See also COPY STRUCTURE EXTENDED

opening, L3-2-L3-3, 1L9-13, P10-3, U2-34
{table), U5-281

opening more than one, P11-11, U2-36

organizing, U2-26 — U2-30. See also INDEX,
SORT

printing records, L6-1 - L6-30. See also
CREATE/MODIFY REPORT, DISPLAY,

LIST

related, P11-12 I

relating, L7-3-L7-8, P10-2, P10-4, P11-12,
U2-38 - U2-40, U5-94 - U5-101, U5-255 -

- U5-256, U5-266 - US-267. See also SET

= RELATION, View (.vue) files '

relational, P10-2
renaming, P13-10
requesting filename, P10-8
restricted access to, P10-3

restructuring for programs, P10-3
saving data, L1-25
searching for data, L4-1 -14-11, U2-30 -

U2-32. See also FIND, SEEK

selecting, L3-2 - L3-3,19-13 - L5-14

size, P13-6

sorting, L4-19 - 14-20, 1.9-23, L.2-29 -
U2-30, US-269 - U5-270

specifications, U1-1 - U1-2

status, L9-14, L9-15 (figure), US-104,

US5-141. See also DISPLAY STATUS, LIST
STATUS
structure, L1-16 - L1-19, L9-15 (figure),
U1-8, US-88 - U5-90. See also DISPLAY
STRUCTURE, LIST STRUCTURE
structure of file header, UC-1 - UC-2 (table)
updating, L3-1 - L3-19, P11-4, P11-7

.'Database manipulation commands, U5-7

Database memo (.dbt) files,see Memo (.dbt)
files
Database structure, L1-16, Ul-8. See also
CREATE < newfile > /MODIFY STRUCTURE
copying, US5-57 - U5-58
creating, U5-80 - U5-65, U5-66
header, UC-1 - UC-4
memo, UC-3 -UC-3
records, UC-2
Date field, Ul-8. See also Dates
Date functions, U6-4 (table)
Date memory variable, U2-10
DATE() function, P3-5, P5-20 - P5-25, Ué-20.
See also TIME()
initializing variables, P5-25
Dates
century prefix,
in comparisons,
in conversions,
converting from strings,
DTOC()
converting to strings,
See also DTOC()
formats, P5-21
output format, US5-200
Day, from a date, P5-21
Day of month, determining,
Day of week determining,
DOW() .
DAY() function, P5-20, U6-21. See also
CDOW(), DOW()
DBA command
on a 3Com network, ND-10
on an IBM network, NB-10
on a Navell network, NC-11
dBASE ADMINISTRATOR
with an application program, NB-11,
NC-10, ND-11
definition, N1-5, N2-2
_error messages, NA-5
installing on a network, NB-1, NC-1, ND-1
in a multiple file server network, N2-3 -
N2-4
requirements, NI1-8

U5-193
PS5-24 - P5-25
P5-23 - P5-24
see CTOD{),

P5-22 - P5-23, U6-26.

see DAY()
see CDOW(),

dBASE 1l PLUS

S e e p— |
ety PR N DI S ¥ . PR)

INDEX

in single-user environment, N2-2
uninstalling from a network, NB-15, NC-13,
ND-15 '

dBASE ADMINISTRATOR directory
creating for 3Com network, ND-4
creating for IBM network, NB-5
creating for Novell network, NC-4

dBASE II, converting to dBASE III PLUS, see
dBASE Bridge

dBASE III PLUS LAN Pack, NB-13, NC-11,
ND-13 :

dBASE III PLUS word processor, P1-5, U3-8,
U4-6

dBASE network commands
automatic file locking, N5-4 L
classes of, NS5-2 (table)
guidelines, N3-33
programming, N4-21, N5-3 {1able)
requiring exclusive use, NS-4
requiring lock functions, N5-4

dBASE programming language, P1-2
dBASE security : -
access levels, N3-4 - N3-5
creating system, N3-9
data encryption, N3-1, N3-6
Dbsystem.db file, N3-8, N3-32 - N3-33
field access, N3-1, N3-5. See also Field
access privileges
file access, N3-1, N3-5. See also File access
privileges
guidelines, N3-36
keeping a record of,
log-in, N3-1 - N3-4
from network applications programs, N4-19
network, keeping record of, N3-22 - N3-33
programming, N4-20
request form, N3-35 - N3-36
types, N3-1 - N3-2, N3-2 (table)
user access levels, N3-4. See also PROTECT
dBCODE, RI1-2, R2-1-R2-6
command line formats, R2-1, R2-2, R2-3
command line options, R1-8, R2-3
copyright header file, R2-4
encrypting files, R1-8§ R2-1 - R2-6
file size restrictions, R4-3

N3-32

help screen, R2-3
information file, R2-5
response file, R2-5
sample session, Rl1-4 - R1-10
DBF() function, P13-5 - P13.6, U6-22. See
also NDX()
dBLINKER, RI1-2, R3-1 - R3-6
command line formats, R3-2, R3-3

command line options, R3-3 - R3-6 "
copyright header file, R3-4 - ... ~
help screen, R3-3 ‘ R

v

information file, R3-5

linking files, R1-9, R3-1 - R3-6

response file, R3-6

rooct files, R4-4

sample session, RI1-9
DBNETCTL.300 directory

definition, N1-7, NB-7, NC-8, ND-8

uninstatling from a 3Com file server, ND-17
uninstalling from an IBM file server, NB-16
uninstalling from a Novell file server,
NC-14
dBRUN III PLUS, RI1-2, R4-1, R4-2
commands not included in, R4-1 - R4-2
purchasing copies, R1-2, 4-1
Dbsystem.db file, N3-8, N3-32 - N3-33
Deadlock, N4-9
Debupging programs, P15-1
with disk file, P15-12
interactive, P15-8

with modular programs, P15-5
with the printer, P15-9
program files, U3-9 - U3-10
- stepping through the program, P15-9, -
US-252. See also SET STEP :
suspend program execution for, U5-274,
Us-182
Decimal places
controlling display of, P5-18
in conversions, P3-16
fixing number of, P5-18
in memory variables, P3-5
setting, US-213, U5-231

P A aE i— o am a

Key to Index Page Numbers:

L — Learning

N — MNetwaorking

NA-ND — Networking Appendices
P — Programming

R — Runtime

U — Using

INDEX

DELETE, P13-13, U2-25, U5-102. See also
ERASE, PACK, RECALL
in The Assistant, L3-13 - L3-17
on a network, N4-7, N5-4
Delete file privilege, N3-5, N3-26
Deleted records
bypassing, P10-18
reinstating, L3-14, U2-25, U5-103, US-164
DELETE FILE, US5-97

DELETED() function, P10-18, U6-23. See also

. SET DELETED

Deleting
all records,
data commands,
fields, L2-25
files, P13-10, U5s-121
leading blanks from string, see LTRIM()
marking records for, U2-25, U5-102. See
alsec DELETED{), PACK, RECALL, SE.'I‘
DELETED
memory variables, U5-173 - U5-174
multiple records, L3-14 - L3-17, P11-8,
U5-102
single record, L3-13-13-14,P11-8
trailing blanks from string, see RTRIM(),
TRIM()
user profile,
Delimiters
ASCII, U5-25
changing, P8-1, U4-10
in Config.db,. U4-7, U4-10
for field widths, U5-216 - US-217
Dialogue box, U2-12 L
DIF files Tt
exporting, U2-55 - U2-57, US-55 - U5-57
importing, U2-55 - U2-57, U5-28 - U531
DIR, Pl6-12, U5-103 - U5- 104 o ’
Directory
destination, R2-5
development, R4-6
listing, P16-12, U5-34, US-103 - U5S-104
path, P4-8
source, RI1-5, R4-4,
Disk access time, P10-3, P16-3
Disk drive, default, P4-6

U2-25, U5-284
Us-5

N3.23

DISKSPACE() function,
See also RECSIZE()
DISPLAY, P11-2, U5-105 - U5—106 -
in The Assistant, L3-3 (table) "% £

with memo fields, ;

P13-8, P13-9, U6-24,

.t

'-n

P8-17 LT

DISPLAY HISTORY, P15-7, P15-10, U2- 2
US-107. See alse LIST HISTORY SET

HISTORY .

DISPLAY MEMORY, PI15-11, U5-108

DISPLAY STATUS, L19-14 (figure), P15-11,
Us-109

. on a network, N2-6, N5-7

DISPLAY STRUCTURE, L9-15 (figure), US- 110

DISPLAY USERS, N2-8, N5-9
before umnstalhng 3Com network, ND-16
before uninstalling IBM network, NB-15

™

.+ _before uninstalling Novell network, NC-14

Display user count option (for Adduser

program)

on a 3Com network, ND-14

on an IBM network, NB-13 -

on a Novell netwnrk,_ NC-12

Bisplaying

data commands, US-4

data with templates, P7-9

fields in view files, Pl1-16

history, L19-6

records in The Assistant,
L3-11 - L3-12

records from the dot prompt L9-18 -
L9-21. See also BROWSE, DISPLAY, EDIT,

LIST

records, in screen form, L2-1-L12-30

structure, L9-15 (figure). See also DISPLAY
STRUCTURE, LIST STRUCTURE

_ user-created message, U5-245
DO, Pl-6, U5-106, U5-111 - U5-112

for branching, P1-10, P2-3

difference from DO WHILE...ENDDO, P2-6

with ON command, U3-4, R4-2 (

with parameters, P16-7

with PROCEDURE files,

L34 - 137,

Plé6-4

dBASE Il PLUS

INDEX

Bt bl bt
gy RiaE s hntng

Tamt

DO CASE...ENDCASE, Pl-14, P2-10, U3-3,
U5-113
difference from IF...ENDIF, P2-i2
in debugging, P15-9

DO WHILE...ENDDO, P24, P1-11, P14-2,
P14-5,U3-2, U5-110 - U5-114 - US-117
for continuous loop, P4-11
difference from DO, P26
difference from IF...ENDIF, P2-7
EXIT, P2-17, P4-12, P14-3

LOOP, 2-16 ‘.

with macro substitution, P3-16
DO...WITH, Pl16-8
Do.com, Pl6-16
DOS .
command execution, US5-178
configuration commands, U4-1. See also
Config.db, Config.sys ~
device, set for printing, US-218, U5-251 -
Us-252
exiting to, L1-26, L9-30, U5-162
path,” . NB-10, ND-10
printer port names, P12-2
text files (Framework IT), P14
version and network software, NI1-7
Dot prompt. See also Command line
displaying from The Assistant, L9-2
enterinig commands, L19-3 - 1L9-5,
U2-1 - U2-2 :
returning to, ' L9-2, P13-4, U4-5
starting dBASE at, L9-2 (note)
Dot prompt line, see Command line
DOW() function, P5-21, U6-25. See also
CDOW()
Drawing
boxes, see Boxes, drawing
lines, see Lines, drawing
Drive, set default, U5-203 N
DTOC() function, P5-22, U6-26. See also
CTOD() . ;
Duplicate records’ ™ -~
igrioring, .P10:19 *
Duplicating *.° ‘-7
any file type, 'U2-59, U5-59
ASCII files, ~ U2-59, U5-55 - US-58

QBASF 1t PLUS

database files, LIi-25 - L1-26, U2-58, U2-59,
U5-55 - US-58

fields, 1.4-21 - 14-22

file structure, U5-56, U5-61 - U5-62

EDIT, 19-22, P6-2, P8-12, P11-4, U5-118 -
U5-119. See also CHANGE :
in The Assistant, L3-11 - L3-12
on a network, N4-13, N5-6
Editing
commands, U5-5
keys, L3-4, U2-2
labels, L6-25, U5-66 - U5-69
in MODIFY COMMAND, 115-155 - U5-157
records, L3-11 -13-12,19-22, U2-24 -
U2-25, U5-114. See also BROWSE,
CHANGE, EDIT
report form, L&-16,U5-73 - U5-81
EJECT, P12-11, P12-12, U5-120
ELSE, see IF...ENDIF _
Encrypted (.crp) files, N3-1, N3-6. See also
- dBASE security, PROTECT, SET
ENCRYPTION S
creating, N3-6 .
and Dbsystem.db, N3-8 - -
Encrypted (.prg) files. See also dBCODE,
dBLINKER .
creating, -R2-1 - R2-6
linking, RI1-9, R3-1 - R3-6
named in a response file, R3-6
ENDIF, U5-123
End-of-file
condition, P10-14, UB-1 - UB-2 (table)
difference from BOTTOM,
testing for, see EOF()
Entering data, see Data entry
Enumerated data, N3-16, U2-17
Environment
dBASE I1I PLUS, U4-1 - U4-10
network, NI1-2 - N1-3
operating system, P16-13
Environmental commands, U5-8

4 n -

Key to Index Page Numbers:
L — Learning

N — Networking

NA-ND — Networking Appendices
P — Programming

R — Runtime

U — Using

INDEX

EOF() function, P10-13, U6-27. See also
BOF()
ERASE, P13-10, Us-121
Erasing, see Clearing, Deleting
ERROR() function, Ué-28 - U6-29, U7-1. See
also MESSAGE(), ON ERROR
in network programming, N4-16, N5-30
during program run, P15-i3, P16-9
Error messages. See also ERROR(),
MESSAGE(), ON ERROR
Adduser program, NA-3
dBASE ADMINISTRATOR, NA-5
IDLAN program, NA-l
installation, NA-2
list, U7-1-1U7-21
when programming, P16-9
RunTime +, RA-1
uninstallation, NA-2
Error trapping, N4-16 - N4-20, P16-9. See
alse ON ERROR
at the dot prompt, N4-16
in a program, N4-16, N4-17, P9-1 - P9-4
Esc key
to cancel selections, L1-14
for debugging, P15-11
in dBRUN III PLUS, R4-2
with ON command, P9-12 R4-2
Escape codes, U5-15, U6-15 -~ Ub6-16
Evaluating expressions, see ?, ?? commands
Exact comparisons, P10-18
Executing
binary files, see CALL, LOAD, RELEASE
command file or procedure, see DO,
PROCEDURE, SET PROCEDURE
Exiting '
dBASE III PLUS, L1-26, L9-30, U5-169
The Assistant, L1-14 (warning), L9-2
EXP() function, P5-5, U6-30
Explicit file locking, N4-8
Exponents, see EXP()
EXPORT, US5-122 - U5-123.
in The Assistant, L8-4 - 18-6
pls:File, US5-122 - U5-123
screen form options, L8-6
Exporting files, see EXPORT

Expression(s), U2-4

evaluating, L19-25 - L9-26
evaluating data type, see TYPE()
with index files, P10-6, U5-2, US-13t
limitations, U5-2

list, 19-20

nesting, L5-13¢ - L5-11

with SEEK, P10-10, U5-188

types, U2-4

Extend file privilege, N3-5, N3-26
Extensions, file, see File extensions
'F

-f option, R34

Field(s}

access levels, N3-27

" . access privileges, see Field access

privileges

adding new, LI1-15-L1-19, 1222 -12-24

changing contents, U2-22. See also

« BROWSE, CHANGE, EDIT, REPLACE,

UPDATE

changing width, L2-19 - L2-21

copying selected, L[4-21 - 14-22, U5-28 -
Us-31, US-55 - 58

definition, L1-3,L1-4

deleting, L2-25

displaying column headings above, U5-226

displaying contents of, see Displaying
records

list, N3-30 - N3-31. See also SET FIELDS

moving, L2-12 -12-17

names, see Field names

release all, U5-49

replace, US-176 - U5-177

selecting, US5-212 - US-218. See also SET
FIELDS

set automatic advance, US-209 O

size limitations, Ul-1
types, see Field types
in view files,” L7-5 - L7-8, U5-92
width, see Field width

FIELD() function, P13-6, P13-8, U6-31 - U6-32

dBASE 1l PLUS

INDEX

Field access privileges

access levels, N3-27
establishing, N3-27 - N3-29
types, N3-27

Field names
determining, see DISPLAY STRUCTURE,
FIELD()
precedence over memory variables, U2-9
requirements, L1-4, Ui-8, U5-2

Field types, L1-4 - L1-5 (table), U1-8 - U1-9
Field width
changing, L2-19-L2-21
definition, L1-4, U1-8 v
entering, L1-17 - L1-18

indicated in full-screen mode, U5-205
File(s). See also individual file types

access attribute, N4-15

access level, N3-26

Autoexec.bat, NB-10, ND-13, P16-15

closing, L1-25, L9-30, U2-35, U5-48, U5-53

.concurrent use of, N4-2

Config.db, N3-3, U3-2

Config.sys, NIi-11, N1-12, N1-27, U4-1

converting from other formats, LB-2 — L8-4,

U5-28 - U5-31, U5-55, US-129
copying any, L1-25, U2-59, U5-59

copying database, U2-59, U5-55 - U5-58
copying structure, U5-60, U5-61 - U5-62
creating, U5-83, US-88 - U5-92

creating in The Assistant, L1-15 ~ L1-20,
Us-33

creation commands, US-2

database, defined, LI1-2-L1-3

Dbsystem.db, N3-8, N3-32 - N3-33

deadlock, N4-9

deleting, U5-34, U5-97, U5-116

determining existence, see DIR, FILE()

determining size, P13-6

exporting and importing,
EXPORT, IMPORT

see COPY,

extensions, see File extensions
group, N3-7, N3-26
local, N2-5

locking, see Locking
Login.db, NI1-11

dBASE IlI PLUS

File access attribute,

File access privileges.

File extensions,

maintenance, P13-10

management, P10-8 ’

maximum number open, U2-33

merging data, U2-57

naming conventions,

non-network, N2-5 .

open attributes, see File open attributes

opening database, L3-2 - [3-3, 19-i3 -
L9-14, U2-33 - U2-34

opening database and index, L4-14, L9-22,
U5-281

opening, on a network, N4-2 - N4-6

operations, specifications, Ul-1

protecting, U2-60, US5-51 - U5-54, U5-55

relating, see CREATE/MODIFY VIEW, SET
RELATION, View (.vue) files

renaming, US5-34, U5-59, U5-175

security, N3-1

selecting, see Selecting

SET PATH TO, U5-249 - U5-250

sharing, NI1-4

size, R2-2

types, L9-16 (table), Ui-4 (table), Ui-5 -
U1l-8. See also individual types under .

{period)
using simultanecusly, U2-36
N4-15. See also File

Pi-15, U5-2

open attribute

See also Field access
privileges

access levels, N3-26 — N3-27

cancelling, N3-31

changing, N3-31

creating; N3-2 - N3-27

precedence over field privileges, N3-28
privilege scheme, N3-21

restricting, N3-28

storing, N3-32

types, N3-5, N3-26

L9-16 (table), Ul-4 {table)},
U5-2. See aiso individual extensions under .

(period)

File open attributes

default, N4-3
definition, N4-2

]
s

£ . gy
A 3-- ",ué-.':« | aab

R '-rsti'.';‘ ot A S e R I R
.R. -lf A vy 2L
"r'.l.".'.:. e -f(:ece{t AT R

'},;'- S L gl

Key to Index Page Numbers:

L — Learning

N — Networking

NA-ND — Networking Appendices
P — Programming

R — Runtime

requirements, NI1.7 - N1-8
. uninstalling dBASE ADMINISTRATOR,
NB-15, NC-13, ND-15
R . FILE() function, P13-4 - P13-5, R4-4, U6-33
- ‘ Filenames, "Ul-4,U5-2
¢ Files Menu, PROTECT, N3-22 - N3-30

U — Using INDEX
exclusive, N4-2 Flow charts, P1-21
by file type (table}, N4-4 - N4-5 Footers in printed output, P12-10
shared, N4-2 FOR, condition, L19-21, U2.3 .

File server, NI1-3 Form feed command, P12-10, U5-120
Config.sys, NB-3 Format, date, U5-200. See also CTOD(),
instailing dBASE ADMINISTRATOR, NB-6, DTOC()

NC-5, ND-6 Format (.fmt) files, P8-12 - P8-17, Ul-6, U243

-.U2-47. See also CREATE/ MODIFY

SCREEN, Screen form, SET FORMAT

closing, P8-14, U2-35 (table), U2-47, US-48,
US-33, U5-232 - U5-233

creating, L9-16 - L9-17, P8-12, U2-45 -
U2-46, U5-82 - US-87

with memo fields, P8-16
multiple page, P8-15, U5-20
opening, L9-17, P8-14, U2-34 (table), U247,
U5-82 - U5-87, U5-232 - U5-233. See also
APPEND, CHANGE, EDIT

file privilege scheme, N3:31
‘) field access level, N3-27
o e ; field access privileges, N3-27 — N3-29
o - ’ summary of entries (table), N3-24
Filter conditions, UB-3 (table) .

: : Filter file, see Query (.qry) files Formatted output, P12-3 e
: ! el Filtering Formatting of printed page, P12-8 (3
K commands, P10-16 - P10- 20 Forms

data entry, see APPEND, CHANGE, EDIT,
CREATE/MODIFY SCREEN, Screen forms .
see CREATE/MODIFY LABEL, Label

a database file, L5-1 - 15-17. See also
CREATE/MODIFY QUERY, Query (.qry)
file, SET FILTER label,
in different work areas, P11-11
effect on dBASE commands, UB-3
in views, Pl11-16
: ' - input, P7-1, P9-1
T . . options, establishing, P11-15 - P11-16
, - FIND, P10-10, U2-32, U5-124 - U5-125
end-of-file, P10-13 - P10-14
isolating next record, P10-12
with memory variables, P10-11 Full-screen operations
Finding. See alse FIND, LOCATE, Searching, cursor contro} keys, UA-1 - UA-3
; SEEK - data entry, US-26 - U5-27, US-40 - U5-42,
i files, P13-4 U5-45, US5-118
records, P10-8, L4-1 - 14-11, U2-30 - U2-32 determining last key, P9-9, U6-65 - U6-67
string within string, see AT() exiting, see READKEY()
FKLABEL() function, P4-6, U6-34. See also with format files, P8-12 T
indicating field widths, U5-216 - U5-217 C :

(.Ibl) files -
report, see CREATE/MODIFY REPORT, .
Report (.frm) files
screen, seeCREATE/MODIFY SCREEN,
Screen forms
FOUND() function, P10-16, P14-4, U6-36
Framework II, P1-4,20
FULL field privilege, N3-5, N3-27

FKMAX() /
i FKMAX() function, P4-6, Us-35. See also Function(s), L10-5 - L10-7, U2-11, U6-! - Ué-2. <
} FKLABEL() See also individual functions
! FLAG command {Novell network), NC-8 classes of, U6-4 — Ub-6 (table)
% Flag aoptions, R2-3, R3-3 commands requiring lock, N5-4

FLOCK() function, N4-10, N5-32 - N5-34 for conversions, see Converting

S T Xae dBASE 1l PLUS

-

et

)

W,
A LN

{i:'i ey

s
'

AT AT R Y W

INDEX
data type produced by, U6-2 - U6-4 (table) H "
definition, L10-5, Ué-1
entering, Ué6-2 Hardware
in expressions, U2-4, U2-5 requirements, N1-8, N1-9
network, NS5-27 - N5-37 sharing resources, N1-4
numeric, P5-5 Headers

L10-5 - L10-7,
P1l-14°

in program files, U3-é
with relations,
string, P5-5
template, P7-1,4
with @ commands, U5-14 - U5-15
Function keys, U5-224 - U5-225
determining name of, U6-34
determining number of, U§-35
programming, P4-6, U4-6
resetting to defaults, P13-3
Function option
in PICTURE template,

G

Garbage.in/garbage out, P1-8

GETENV(} function, P16-13, U6-37. See also
0S()

GETS. See also Configuration commands
clearing, see CLEAR GETS, U5-47, U5-50
with lock functions, N4-9, N54

Global variables, see Public variables

GO/GOTO, L9-21, P10-8, P10-9, P11-4, U2-32,
US5-126
in The Assistant, L4-1 - L4-3
with end-of-file, Pi0-13
with SET FILTER, Pi0-17

Graphics
i screen forms,

US5-24, U5-87

Group{s), see PROTECT

Grouping
database files in catalogs,

L9-9 - L9-10
records in a report, L6-8 - L6-10, U5-77 -
Us-78

P7-4

L2-30 - L2-31, P8-7, U5-23,

L7-11 - L7-14,

dBASE I3l PLUS

in database files, P13-7, UC-1
in printed output, P12-10, U5-78

Headings
column, L6-10 - 16-13
field, P4-7, U5-78, U5-178
Help

in The Assistant, L1-15
at dot prompt, L9-3 - L9-4, P4-7
setting up your own, P16-5
HELP, US5-127. See also SET HELP
Help.dbs file, P16-16
Hiding a PUBLIC variable,
variables
Highlight L1-9, U2-12, N3-15
History buffer, L9-6, P15-16, U2-2. See also
DISPLAY HISTORY, LIST HISTORY
changing size of, L%-6, P15-7, U2-2, U5-237.
See also SET HISTORY
displaying, U5-107, U5-145
edit commands in, U22
executing commands, U2-2
storing command file commands, US5-219
with program testing, P}5-7 - P15-8
Horizontal scrolling, P7-6, P8-8

-i option, R2-5, R3-5
IBM PC LAN Program, NI1-8
IBM PC network, N1-8, NB-1
IBM PC Network Program, NI1-8
Identification functions, U6-6 (table). See also
individual functions i
IDLAN program o '
definition, NI1-6
error messages, NA-1
running on a 3Com network, ND-2
running on an IBM network, NB-1
running on a Novell network, NC-2

see Public

X-17

i W,

oo a— e

Key to Index Page Numbers:
L — Learning

N — Networking

NA-ND — Networking Appendices
P — Programming

R — Runtime

U — Using

INDEX

IF...ENDIF, PIl-14, P2-7, P14-3, P14-4, U3.3,
US5-128. See also IIF()
HF() function, P16-1, U6-38 - U6-39. See also
IF...ENDIF
IMPORT, Pi6-14, U2-56, US-124 — U5-125,
U5-129 - U5-130)
in The Assistant, L3-2 - L84, US-38
files created, L8-4
Imponrting files, see IMPORT
Incomplete commands, P15-1
INDEX, L19-22,P10-3, P10-6, P11-4, P11-11,
US-126 - U5-129, U5-131 - U5-134. See also
SET INDEX, SET ORDER, SORT
in The Assistant, L4-12 - 14-13, US-33
compared with SORT, L4-20
with FIND and SEEK, PI10-10
on a network, N4-7, N54
with SET RELATION, Pi11-13
with ZAP, P119
Index (.ndx) file(s),
U5-134
active, see NDX() N
allowed field types, L4-13 _
‘and file access, N3-5
changing order, P10-7, U5-247 - U5-248
clesing, P10-7, U2-30, U549
creating in The Assistant, 14-12 - L4-13
creating at dot prompt, L9-22, U2-28,
U5-131 - US-134
creating for encrypted (.crp) files, N3-5
definition, L4-11, Ul-6
determining names, P13-6. See also NDX()
with duplicate records, P10-19. See also
SET UNIQUE
index key, U5-2 .
key expression, L14-12, U5-131 — U5-134
to locate records, P10-9
master {controlling), 1414, 1L9-23, P10-7,
U5-247
more than one,
P10-6
multiple-feld, P10-6, U5131
names in use, P13-6
opening, L9-22, Pt0-6, P10-7, US-239 ~
1J5-240, U5-281 ~ U5-282

L4-11 - L4-18, US-131 -

L4-13, L4-14 (note) L9-23,

rebuilding, L14-18 (note), U2-28, U5-172 O
with relations, P1}-13. See also
. CREATE/MODIFY VIEW, SET RELATION
selecting, L4-14
size of, P13-9
unique, P10-19
updating, L4-18, L9-23
Index key expression, L4-12. See also INDEX,
Index {.ndx) files
Indexes, see Index (.ndx) files
Indexing a database file, see INDEX, Index
* (.ndx) files, SORT
Information file -
created by dBCODE (.dbg extension), R2-5
created by dBLINKER (.map
. extension), RI1-9, R3-5
-files, defined, R3-5
files, referenced, R3-5
INKEY() function, P9-7, P16-11, U6-40 -
U6-42. See also READKEY()
values, U6-41 (table)
Input
accepting, US5-25, U5-135 - U5-136, U5-283
verifying, PI-6, P9-1, P9-2, P14-3
determining last key pressed, P9-7, P99,
See also INKEY(), READKEY()
evaluating special keys, P9-7
evaluating type, P9-12
formatting, P7-3
functions, see INKEY(), READKEY()
pausing for user, P6-16, U5-274
specifying a range, P7-8
testing, see Testing
INPUT, U5-135 - U5-136. See also ACCEPT,
WAIT
Input data, see Data entry
INSERT, P8-12, U2-23, U5-137 - US-138
with BLANK, NS-4, U5-137
Insert mode, L2-10,19-3 SN
Installation overview, Ni-10 C !
Installing dBASE ADMINISTRATOR -
error messages, NA-2
on a 3Com network, ND-1
on an IBM network, NB-!
on a Novell network, NC-1

dBASE 1l PLUS

&

s

-

¥

L E R
a3 s

r
FUTCEA T TN
AR A

e N
BTN
i, ¥

oa) .
SRS

Y

INDEX

ur,
} 4.
Ly

%, W#.!:_:gt?‘{ :ﬂﬁ!r
e "i-‘}‘r,_;&;\
Pt g N

i ,"‘-..;L-;u.,
v e T MY
R A SR YRS

INT() function, P5-5, P5-18, U6-43. See also
ROUNID{)
Integers
converting to, see INT()
in memory variables, P3-5
Interrupting program execution, US5-175,
U5-274
Inverse video, US-207, US-24]
ISALPHA() function, P9-12, U6-44
ISCOLOR() function, P4-5, U6-45
ISLOWER() function, P9-12, Ué-46
ISUPPER() function, P9-12, U6-47

J ’..

JOIN, PI11-7,US-139 - U5-142
on a network, N4-7, N5-4
with encrypted files, N5-15
simulation of, P11-14
- KF
Key expression, L4-12. See also Index (.ndx)
files
Key pressed, see INKEY{), READKEY()
Keyboard lock indicators, N3-14
Keys. See also Function keys
full-screen cursor control keys, U5-156
navigation and editing, U2-2 {table)
MODIFY CMMAND cursor control
keys, U5-150

L

LABEL FORM command, N5-4, U5-143
Label form (Ibl) files, Lé-1, L6-28, L9-24,
U2-1, U2-43, See also CREATE/MODIFY
LABEL .
commas in, L6-22 - L6-23
contents, L6-21 - L6-24, U5-68 - U5-69
controlling spacing, L6-22 - L6-23
creating in The Assistant, L6-19 - L6-24
creating at the dot prompt, US-66 - U5-69
displaying, U5-143
modifying, L6-25, U5-66
opening, L6-18

dBASE IlI PLUS

printing, L6-24 - L6-25, U5-137
saving, L6-24
sizes, L6-20 (table), U5-67

LAN, see Network

Layout, report, L6-10 - L6-13, US5-68

Leading blanks, P5-11, P5-12. See alse
LTRIM() :

Left margin, P12-9

LEFT() function, PS-8, P8-10, P14-7, U§-48.
See also RIGHT()

LEN() function, P5-6, P8-6, P9-10, U6-49

Length of strings, see LEN()

Letter, testing for, see ISALPHA(),
ISUPPER(), ISLOWER()

Lines, drawing, P8-8, UU5-23 - U5-24

Linked file, creating, R3-1 - R3-6

Linking database files, P11-12. See also
CREATE/MODIFY VIEW, SET RELATION,

View (.vue) files -

LIST, #5-1, Pi1-2, Pil-16, P15-11, U5S-138,
US-144-
in The Assistant, L4-9 - L4-11
memo fields, P8-17
with templates, P7-9

List filenames, see Filenames, list

LIST HISTORY, PI15-7, U5-145

LIST MEMORY, P1-8, U5-146

LIST STATUS, US5-147
on a network, N2-6, N5-10

LIST STRUCTURE, U5-148

Listing records, see Displaying records,
Printing records

LOAD, P16-10, US-149 - U5-152

Local area network (LAN), see Network

Local files, N2-§

Local variables, see Private variables

LOCATE, L9%-21, P10-9, U2-29 - U2-31, US5-153
- US-154
in The Assistant, L4-3 - L4-7, U5-35
and CONTINUE, L4-6 - 14-7, U2-30 -
U2-31, US-54 -
comparison with FIND and SEEK, U2-30
with different work areas, P10-10; US-154
with end-of-file condition, P10-14. -..

*y

L

X-19

Key to Index Page Numbers:
L — Learning

N — Networking

NA-ND — Networking Appendices
P — Programming

R — Runtime

U — Using

INDEX

Locating. See also FIND, LOCATE, SEEK
next record, U5-54 CHELET s
specific records, L4-2 - [4-7, U2-30'-

U2-32, US-35, U5-54, U5S-153, US-188

LOCK() function, N4-11, N5-4, N5-36:

Locking, N4-10 - N4-14 o
in application programs,

" avoiding deadlock, N4-9
automatic, commands, N4-7, N5-4
at the dot prompt, N4-11 - N4-13
explicit file, N4-8
files, N4-2, N4-11, N5-32
functions, N4-11, N5-32, N5-36
levels, N4-7
records, N4-8
related files, N5-32, N5-36
releasing a lock, N4-12 - N4-13
shared files, N4-8, N4-17, N5-32, N5-36
testing for, N4-11
toggle, N4-12 - N4-13
values returned, N4-11

LOG() function, P5-5,-U6-50. See also EXF()

Log in .
Dbsystem.db file, N3-8 - N3-9
network administrator screens,
PROTECTed system, NI1-12
security, N3-2 - N3-4
unauthorized, N3-10 - N3-11
user name, N3.3, N3-21, N3-33

Logarithm function, sez LOG() .

Logical field, L1-5, U1-9. i

Logical operators, U2-6-:, -~
in program flow, P1-10, P2-9 - P2-10, P15-3

Logical memory variables, - P3-3, U2-10

Login.db file, N1-11 n

LOGOUT, N4-19, N5-11

Looping, P1-9, P1-11, P2-4 ,

Lotus 1-2-3 files, P16-15, U2-57 — U2-58, U5-28
~ US-31, US-55 - U5-58

LOWER() function, L4-17, P5-8, U6-51. See
also ISLOWER(), UPPER()

Lower case. See also ISLOWER,

LOWER(), UPPER()
converting from upper case, P5-9, U6-51
converting to upper case, P5-9, U6-88

N4-14

N3-10

P9-12, Ué-46
U6-52. See also RTRIM{(),

testing for,
LTRIM() function,

TRIM({)
LUPDATE() function, P}1-7, P13-6, U6-53

M- > {pointer),
Macro(s)
in DO WHILE loop, U5-115
. with FIND and SEEK, P10-11
limitations, R4-3 - R4-4
in program flow, P3-16
substitution function, see & function
Main program, Pl1-2, P4-1
‘MAP command {Novell network), NC-5
MAP SEARCH (Novell network), NC-4
Master (catalog.cat) catalog, U5-197

Matching strings, P10-10
Mathematical functions, Ué-5 (table). See also (.
v2-5 ‘"j/)

individual functions
Mathematical operators,

MAX() function, P5-5, U6-54. See also MIN()
Memo field, U1-9

P3-6, P11-11, U2-9, U2-38

adjusting width for output, U5-234
changing display, P8-17
editing in The Assistant, L3-11 - 13-12
editing in programs, P5-16, P6-3, P8-16
limitation when exporting, L8-5 {note),
US-55

Memo (.dbt) files, Ul-6
backup, see Backup files Ul-6
structure, UC-3 - UC-4

Memory, see CLEAR MEMORY, DISFLAY
MEMORY, LIST MEMORY, RESTORE, SAVE
Memory {.mem) files, P3-11 - P3-15, Ul-7,
U5-173 _
creating, P3-12, U5-187
not encrypted, N3-5
for printer configurations,
during program development,
-restoring from, U5-180, U5-181
saving on disk, U5-187

P12-15
P3-15

B]

dBASE Il PLUS

INDEX

Memory variables (memvars), L9-26 - L9-30,

P3-1, U1-10, U2-8 - U2-9

with ACCEPT, Pé6-13 - P6-16, U5-25

activating, from.a memory file, P3-12,
US-180 - US-181

clearing, * P3-14, P13-3, U5-48, U5-51

commands, U5-8

to control program flow, P3-16 - P3-17

creating, L19-27, P3-2

current status, U5-108, US-146

deieting, U1-10, U5-173 - US-174

displaying values, L9-27

distinguishing from fields, L9-28 (note),
P36 . -

editing contents of, U2;9 -

with FIND and SEEK, P10-11, U5-124,
U5-188
hiding PUBLIC, U3-11; P16-5

.. initializing, L9-27, P3-2, U2-8, US-262

initializing dates, P5-25, P3-4, U6-19

.-+ limitations, P3-6

name length,” L9-27

number in memory, L9-27

pointer to, P11-i}

PRIVATE, see Private variables

in program files, P1-8, P3-12

in program flow, P3-7

PUBLIC, see Public variables

releasing, P3-10 - P3-15, U5-48, U5-51,

U5-173 - US-174

rvestoring, P3-12, U5-180 - U5-181

reusing, P14-7

same as field name, U2-9

saving in a file, 19-29, P3-12, U5-187

foi: screen displays, P8-5, P89, P14-7

size in memory, L9-27, P3-] .

specifications, Ul-2, Ul-10, P3-1, P3-6

types, 19-27, P3-3 - P3-6, U2-9 - U2-10 -

for updating records, P11-4 T

with @...GET, P6-9, U5-16 o

with @...SAY, P8.5, U5-16
Memvars, see Memory variables
Menu bar, N3-12, U2-13, L1-8

turning off, P4-8

dBASE Il PLUS

Menu(s), L1-6, U2-10 - U2-11
abandening work, U2-19
action line, U2-14
cancelling selections, Ll1-14
commands which display, 2-12
dBASE program, Pl1-14
definition, L1-6
dialogue box, U2-14
enumerated values, U2-17
exiting; U2-19
highlight, U2-13 - °
main menu, P1-14,0U2-13
menu bar, L1-8, N3-12, U2-13
message line, N3-14, U2-14
navigation keys, U2-13 - U2-14, U5-235
navigation line, N3-14, U2-14
operiing, L1-8 - L1-9
option types, U2-16 - U2-19
pull-down, L1-8
saving work, N3-18, U2-19
selecting options, L1-9 - L1-12, U2-16
setection bar, N3-15 :
status bar, U2-14
structure, U2-13 - U2-14
submenu, L1.9 -L1-12, U2-14
submenu lists, U2-18
user-defined values, U2-18
Merging data, see JOIN)
Message(s), L1-14, L1-13 (figure), N3-15; P4-9,
U2-14. See also Prompt, SET MESSAGE TO;
SET SCOREBOARD TO
error, see Error messages
MESSAGE() function, P15-13, P16-9, U6-55.
See also ERROR()
Message line see Message(s)
on a network, N4-16, N5:-35 .
MIN() function, - P5-5, U6-56. See dlso MAX()
MOD() function, P5-5, U6-57 - U6-58
MODE command (DOS), P12-2, U5-252
MODIFY COMMAND, LIl0O-1, P1-3, P15-8,
P15-13, U2-44, U2-46, U3-7, U3-8, U5-149 -
US5-151, U5-155 - US-157
with ASCII codes, P8-9
with batch files, P16-15, P16-16
with format files, P8-12, U2-44

X1

i S gy e 4 o o e eyverareiy

kS - - T o bl

Key to index Page Numbers:
L — Learning

N — Networking

NA-ND — Networking Appendices
P — Programming

R — Runtime

U — Using

INDEX

program files, P16-3, U3-7, U3-8, R4-3
with a word processor, P1-5, U4-6
MODIFY < filetype >, see specific file type
MODIFY LABEL, see CREATE/MODIFY
LABEL
MODIFY QUERY,
QUERY
MODIFY REPORT, see CREATE/MODIFY
REPORT
MODIFY SCREEN,
SCREEN
MODIFY STRUCTURE, see
CREATE < newfile > /MODIFY STRUCTURE
MODIFY VIEW, ses CREATE/MODIFY VIEW
Modular programming, P1-2, P1-19 - P1-24
in debugging, P15-5
Module, see Modular programming
Modulus, determining, see MOD()
Monitor
changing color display on,
U5-208
monochrome,
set attributes, P4-5, U5-194 - U5-197
set reverse video, P8-2, U5-207, US-241
special effects on, see CHR()

see CREATE/MODIFY

see CREATE/MODIFY

U2-20, U5-204 -

U2-20

testing for color, see ISCOLOR()
Month
from a date, P5-21
determining, see CMONTH(), MONTH{)
MONTH() function, P5-21, U6-59. See also
CMONTH()
Multiplan fies, P16-15, U2-55, U5-28 - U5-31,
U5-55 - U5-58
Mutltiple choices
conditions, P1-13, P2-10

in program flow, P2-10
Multiple file server networks, NI1-3, N2-4
Multiple page forms, P8-15
Multiple page screens, P6-13
MVARSIZ, seeConfiguration commands

X-22

Navigation keys,
Navigation line,
u2-14

U2-2 U5-156(table)
L1-13 (figure), L1-14, N3-14,

NDX() function, P13-6, U6-60, U5-247,
U5-248. See also DBF()
Nesting

expressions in query files, L5-10 - L5-11

in programs, P2-12 - P2-15, U3-3
NET SHARE command (IBM network), NB-9
NET USE command (IBM network), NB-10
Network

administration, NI-1

administration password, N3-9

application planning, N2-4 - N2.5

and dBASE III PLUS, N1-3 - NJ-§

commands, see dBASE network commands

description, NI1-2 ~ N1-3

driver, NI-3 -

environment, NI1-2

error messages, NA-1 - NA-4

functions, N5-26 - N5-37

hardware/software requirements, N1-7,

N1-8, N1-9

installation, NB-1, NC-1, ND-1

log-in, N1-1¢ - N-11

node, N1.3)

programming for, applications, N4-1, N5-3
(table)

programs, NI1-5

protection against collision, N4-1 - N4-2

shell, NI1-4

software requirements, N1-8
Network administrator

log-in, N3.9

password, N3-9

Networks

3COM 3+ Network, ND-1
IBM PC, NB-1
installation overview,
Novell, NC-1
New page, see EJECT
NONE field privilege, 'N3-5
NOTE/*/&&, P1-22, U3-4, US-159

N1-10

dBASE W1l PLUS

W INDEX
5 . L !ﬁ&

Novell network, NI1-8, NC-1

Null string, P9-10

Number({s)
P converting to strings, P5-15. See also
A CHR(), 5TR()

R maximum, see MAX()
A : minimum, see MIN()
STy o rounding, see ROUND(), INT()
VLo et square root of, see SORT(}

o Numeric

e o accuracy, Ul-2

_ . ., data, formatting, see TRANSFORM()

. N memory variables, P3.5, U2-10

- 5oL Jeren o0 ' output, display fixed decimals, US-231

e SR G output, set decimials for, U5-213

ranges, problems with, P2.9

S, Numeric fields, U1-9

el T e calculating totals in, U2-58, U5S-276
2ot t finding averages, U5-39
summarizing data in, L6-25 - L6-27
totalling, in reports, L6-13, U5-79
totalling to another database, U5-276

o

-0 option, R2-5
ON, U5-160 - Us-162
in debugging, P15-11, P15-13
in linked files, R4-2
ON ERROR, N4-16,
U5-161
ON ESCAPE, P9-12, R4-2, U5-160
Esc key igniored, R4-2, U5-160

in work areas, U2-37, U5-189 - U5-190,
U5-281 e

in The Assistant, L3-2 - L3-3

formac files, U5-20

\ C maximum number, U2-33, U5-189
table of commands, . U2-34 -

Opening menis, L1-8- .

A Operating system. . See.also OS()

i determining, P16-14 -

: with printers, P12-2

< Novell Advanced NetWare/86, N1-8, NC-1

N5-30, P9-12, R4-2,

Opening files, - L9-13 - L9-14, U2-33 - U2-34

running from dBASE III PLUS, P16-13,
N5-22
version for networking, Ni-7
Operators
order of precedence, U2-6
substring, U2-6
types, U2-5-U2-6
Options ‘
dBCODE, R2-1-R2-6
dBLINKER, R3-1 -R3-6
Order of arguments, P15-2
Order of precedence, operators, U2-6
Ordering records, see INDEX, Index {.ndx)
files, SORT
08() function, P16-14, U6-61. See also
GETENV()
Other programs
running from
dBASE IH PLUS, N2-10, NS5-22, P16-12,
U5-185 - US-186
using data from, see IMPORT/EXFORT
OTHERWISE, P2-11
Output, Pl1-6
blocks of text, 15-275, US-278
left margin setting, U5-242
device, P12-3, U5-252
formatted, P12-3
in program design, P1-19
to printer, U5-242
saving on disk, U5-193 - U5-194
to screen, U5-251
unformatted, P12-4
Overwrite mode, L12-10, L9-3

P

-p option, R3-6
PACK, N5-4,Pi1-8, P11-9, 1U5-163
in The Assistant, L3-13 - L3-14, U5-35
Page breaks, P12-16
Page ejects. See also EJECT
suppressing, P12-11
Page format .
in printed output, P12-8 .
in reports, U5-72, US-79°

o

e e

Key to Index Page Numbers:
L — Learning

N — Networking

NA-ND — Networking Appendices
P — Programming

R — Runtime

U — Using

INDEX

Paper .
length, P12-10
position in printer, Pi2-6
size, P12-6
Parameter(s), L9-3
changing values, P16-8
initializiig, P16-7
order; P16-7
passing to named program, P16-6 - P16-9,
U5-43, US-111, U5-164
with procedure files, P16-8
PARAMETERS, P16-7, US-158, U5-164. See
also DO
Parsing, P1-3
Password(s), P8-11, P10-3
network administrator, N3-9
user, N3-3, N3-21
Password protection, N3-2, N3-33
PATH command (DOS), P16-13, NB-10, ND-10
Paths, P4-8, P13-5, P13-8. See also SET PATH,
SET DEFAULT
Pausing for user input, P6-16, U5-283
PCOL() function, P12-16; U6-62
See also COL(), PROW() functions
Peripheral devices, N1-3
pfs:File, see EXPORT, IMPORT
PICTURE function, U5-18 - U5-19. See also
@...GET ...SAY, CREATE/MODIFY
SCREEN
Pointer, see Record pointer
Posting method, P11.7
Precedence of operators, U2-6
Previous versions of dBASE, NB-6, NC-6,
ND-6
Print buffer, P12-11
Printer, P12-4
adjust left margin, US-75 - U5-76, U5-242
column, PI2-15 '
connecting, P12-2
controlling, U2-47
coordinates, P66, P12-4, US-16
direct output to screen and, U5-218, U5-251
gjecting page, P12-10, U5-120 .
escape codes, P12-12, U2-47, U5-15

X-24

B A
te LR

hiead position, P12-11, P12-12. See also
PCOL() .
output, P12-3
output blocks of text to, U5-275, U5-278
parallel, P12-2
ports, N2-9, N5-22, P12-2
route (@...SAY and @...GETs to, P12-13,
U2-47, U5-16, U5-218
rules for using, P12-2
send ASCII codes to, P12-12 - P12-14. See
also CHR()
serial, P12-2
- special effects, P12-12, P12-13, P12-14
switching, N2-10, N5-22, P12-3
top-of-form setting, P12-6
using several, P12-15

. Print head position, P12-11, P12-12

Printing
backwards, P12-5
commands {table), U2-48
customized, U5-15
_database information, U5-15, U5-179
elite type, P12.7
envelopes, P12-6
escape code sequences, P12—12, U2-47,

Us-16 N
setting form lengﬂh PIZ 12,
format files, U2-43 - U245, US-73 - US-81
labels, Lé-24 - L6-25, U2-43, U5-143
last line, P12-i1 '
null characters, PI12-13
pica type, P12-8
program files, PI-5
records, from the dot prompt L9-21
records, from the Assistant, 14-9 - L4-11
reports, L6-16, 1.9-24, U2-42
responses to commands in
programs, U5-261

screen forms, L1.2-32, U247, US-86
spooled files, N5-20
special effects, P12-12

, stmcture. US-148"
table of 'commimiands, U2-49

.PRIVATE, P3:§; P3-14, P16-5, U5-159, US-165

to hide a variable, P16-5

dBASE 11 PLUS

IR ~ " " Private variables, P3-8, U3-6
- - ..~ Privilege scheme, N3-4
creating, N3-4, N3-21 - N3-30
ficld access, N3-27 - N3-29
file level, N3-26 - N3-27
_ PROCEDURE, P16-3, U5-166
" Procedure (.prg) files, P16-3, UL-5, U3-9 -
U3-10
closing, P14, U3-11, U5-53 .
encrypting, RI1.7
et T W executing,
B 8 .. - forhelp screens,., P165 ;- .
et TRCE R ““ " howtosetup, P16-3, US-166, US:253
. B . _I_-,-_f 2j 2 ,,llmltatlons, sP16-4, U5-253 P
he SEEERR T S linking, Ri:7, R4-3
o ! opening, "Pi6:3, U5-245, U5-253
. .. with PARAMETERS, Pl6-7
“ With’ RunTlme +, R4-3
.. Profile, user, N3:18 - N3-21
Progiam, P1-2
cancel execution of, U5-44

P comments, U5-1, U5-159
oL e control display of responses, U5-261
R control method of escape, U5-221
Coee \' ; control screen display in, U5-204 — U5-208,
ST R R S Us-218, Us-251
e e s e RENE debugging a, P15-1 - P15-14, U3-9 - U3-10
“ie e T T ... designing, P1-17 - P1-24

: . echo commands, U5-220 . ..
e error recovery, US5-160 - US-162, U5-183 "
TS sy Cbswy :poe; execution of, US-11 - US-12
SRR SEN Jexecute a line at a time, U5-260
o Jocking features, . N4-6 - N4-14
output blocks of text from,.
iy prepanng for RunTlme+ R1-1, R1-4
1 resume execuunn of Us-182 .
' stmcture. . P_Z-l = P2-2 .
suspend execution of U5-274
testing, P1-23, P15-5
Program (.prg) file(s),

L10-1. See also

US-111,US-166 ., ¢« - o

.. . . documentation,
Us-275 - 278)

.. branching execution, U5-111, U5-113,
US5-128, U5-154 - U5-156
closing, U3-8 - U3-9, US-44
command file, U3-10
creating, L10-1 - L10-3, U3-7, U5-155 -
.U5-157
~ debugging,
.. . U310
"documentation, P1-23 - P1-24, P15-6
editing, P1-3, U5-149 - U5-155 ~ U5-157
.executing, U3-8, U5-112
fanctions in, L10-5-L10-7, U3-6
long command lines in, L10-7, U5-157
memvars and, U3-5 - U3-6
hesting commands, W3-3
. printing, PIL-5
procedure file,
restore control to calling,
running, L10-4, U3-7
saving to disk, P14
size limitations, P1-5
structure, U3-4 - U3-5
Programming, PI1-2. See also Applications
Generator
commands, U3-2 - U34, US-7
common mistakes, P1-3
concepts for networks, N4-1 - N4-25
conditional commands, U5-108, U5-123,
- US5-154 - U5-146
" control mechanisms, P1-9 - P1-14, P2-3
controlling loop, P14-2 :
data protection, N4-1 - N4-2
P1-22
. efficiency in, P16-2
flow charts, P1-19
function keys, see Function keys,
' programming
housekeepmg. P4-12
main controlling structure, P4-1, P4-11
main program module, P4-1

P1-23, P15-1 - P15-14, U3-9 -

U3-10, P16-3 - P16-5
U5-184

P SO es B Command files, Procedure files, MODIFY modular, PI1-2, P1-19 - P1-24
SRV S AR COMMAND network commands, see dBASE network .
el v advanced features, P16-1, U3-11 commands :
boilerplate, P4-10 network concepts, N1-3, N4-1 .
branch to binary (.bin) files, U3-11 reusing modules, P1-21, P16-6 4
dBASE ItI PLUS X-25 -
:
R LML P T 05 SN A L A I D A R A R wde T T

Key to Index Page Numbers:
L — Learning

N — Networking

NA-ND — Networking Appendices
P — Programming

R — Runtime

U — Using

INDEX

security for network applications, N4-19 -
N4-20 ‘
toalkits, P1-21 ,
top-down approach, P1-19 .
working with database files, P10-3
PROMPT, see Configuration commands
Prompt
for keyboard entry,
U5-238
setting up for user input, P6-14
PROTECT, N3-1, N3-9, N3-18
abandoning entries, N3-31
access levels, N3-4]
assigning file to group, N3-26 - °
definition, N1-5, N2-3, N3-1 ‘
entering values, N3-16 - N3-17
Exit Menu, N3-25, N3-31
exiting, N3-31 . :
field access privileges, N3-5, N3-27 - N3-29
fields list, N3-27, N3-29, N3-30
file access privileges, N3-5, N3-24, N3-28
file list, N3-24
Files Menu, N3-22, N3-24
in a non-network environment,
initiating, N3-9
menu bar, N3-12
menus, N3-11 - N3-18
message line, N3-14
navigation line, N3-14
data encryption, "N3-6 - N3-7
password, N3-10
status bar, N3-13 — N3-14
types of security {table), N3-2
user group, N3-3, N3-7, N3-19
Users Menu, N3-18, N3-19 (table)
Protecting data, U2-59 - U2-61, U5-51 - U5-54,
U5-55, U5-249 :
PROW() function, P12-16, U6-63
See alsoPCOL(), ROW() functions
PUBLIC, P3-8 - P3-9, US-167 - U5-168
Public variables, P3-8, P3-i11, P15-2, P16-5
hiding, P16-5
with memory files, P3:14 .
Pull-down menu, L1-8

US5-25, US-135 - U5-136,

i

N2-2

X-26

- Quitting

Q

Query clause (?), 19-25, L9-26, U2-54 - U2-56
Query command, see ? (query) command
Query (.qry) file(s), L5-1, L9-23 - L9-24, U1-7,
US-70. See also CREATE/MODIFY QUERY,
SET FILTER TO

creating from dot prompt, U5-70
creating in The Assistant, L5-1 - £5-11,
Us5-33
entering conditions, L5-2 - L5-9, L54
. (figure), L5-9 (figure)
modifying, US-70
. nesting expressions, L5-10-15-11, U5s-71 -
Us-72
_ opening, L5-2, L9-24, U5-32, U5-229
printing, L5-13 - L5-14
storing, L5-J3
QUIT,

N4-12, P1-6; P2-2, U5-169

-~ dBASE II PLUS, L1-26, US-33
from the dof prampt, L9-30, U5-169
program execution, P1-6, U5-210

-r option, R2-5, R3-6
RANGE option
10 define value limits, US-17. See also
@...SAY...GET, P78, P14-3
Ranges, U5-17
with dates, P7-8
for limiting input, P9-2
with numeric data, P7-8
READ, P69 - P6-13, US-170
to clear GETS, P6-13, U5-170
in format files, P8-15, U5-16
in multiple-page screens, P16-13
.. with @...GET, P6-10, P14-3, U5-16
- Read file privilege, - N3-5, N3-26

READ SAVE, Pé-11
Read-only file access attribute, N4-15
Read-only field privilege, N3-5, N3-26

- Read-write access attribute, N4-15

dBASE 1l PLUS

¥

- -

TINDEX

. 2

adrm v em s

L]
EAT DN L E

v (,\; .- READKEY() function,
DA Cvalues (table), U6-65

Rearrangmg records,” see INDEX, Index
(.ndx) files, SORT L

RECALL P11-8, U5-171 - .
.in The Assistant, L3-3 (table); L3-14 .

P99, U6-64 ~ Ub-66

L.

s

- . AP f ‘on a network, N4-7, N54 '~
. T RECCOUNT() fl.mctlon P13.7, P14-2, U6-67
. . i .:z: See also RECSIZE() i
. - " . RECNO() function, P10-16, U6-68)
B " Record(s), L1-3
- i adding, in The Assistant, L1-20 - Ll-_ZZ.f-.;
. 13-7 -'L3-9 B
: - _.adding at the.dot prompt, P11-5, P11- 6,

]
i

¢ T U223, U5-26 - US-27, U5-137 - U5-138°
changmg. ..U2 24 - U2-25, US-40- U5-42,
. U5-118.~:U5:119;
) copying 10 other files,
. .' Sl T : U5 58 E R
e &' copying from previous,
Api'END 'FROM: EXPORT; IMPORT

se p e u.y
T R
Helel L ua

U5-196. See Also

i H ~:L\

* - e Tl
SO0 a4 copymg fields from, L4-21 - L4-22
. TR counting, U5-62, U6-67
ot I definition, L1-3, L1-4 (figure)
SR = deleting, L3-13 - L3-17, P11-8, U2-25,
: U5-102, U5-163
. . RUE R displaying, L3-4 - L3-7, U5-4, U5-105. See
L S also BROWSE, EDIT
. duplicate, P10-19
= L edmng. L3-11 - L3-12, U2-24 - U2-26,
- AT US5-41, US-118, Us-170
) . ':_‘-." ﬁltermg deleted, P10-18, US-215. See also

SET DELETED

[

Pli-10 U5-55 -

:,'_ w:th functlons

removing marked, U5-171
, refrieving groups of, L4-9 - L4-11
search for, U2-30, U5-124, US-153, U5-188

. . size,’ P13-7. See also RECSIZE()

“sorting, L4-9 - L4-20, U5-269
total number of, P13-7. See also
RECCOUNT()
., undeleting, US5-171
updatmg, Pl1-4, P11-5, P11-7
Record count update interval, see SET
ODOMETER TO
Record locking, see Locking

- Record pointer

commands Us-6
Pi1i-14
)GO/GOTO U5-126
for memory variables,
movmg in The Assistant; :
_in related files, P11-13 - . .
" with S?.T RELATION, P11-13 % ‘
for work areas, P11-11 ° v

P11-11
b4-_l - L4-3

RECSIZE{) function, P13.7, P13-9 U6-69

Redirecting printer output, N2-8, N5-20,
U5-252

Re—en_ten:mg, P15-7, U2-2

. REINDEX, N5-4, U2-28, U5-172

" ° Relation chain,

" Relational database files,

" Reldting database files,

see View {.vue) files,
SET RELATION, CREATE/MODIFY VIEW
L7-6, U596 - US-98
locking, NS5-32, N5-36

Pi0-2

. f,Relanonal operators, L4-8 (table), U2-5

menu, L3-16 (figure)

o $T Do ﬁndmg. "L4-2 - L4-9 P10-8, U2- 30 = UZ-32=} _ Relations, P11-12, U2-38 - U2-41. See also
S Ty -5 SééAlso FIND; LOCATE; SEEK st SET VIEW TO
- ; "gro'up'ing,, L6-8i+ L6-10 ... closing, PI11-13
g 2i-24n dnfferent‘work areas, P11-11 .’,- . with functions, P11-14
dexing ;eINDE.X Index (ndx) ﬁles. -y , reasing, P11-15
. o i Lo saving, P11-15, U5-101
}w 75 isolating} " P10-8e33 AR setting up, P10-4, P11-15, US-255 - US-256

s lgciting next-one; - P10-9

Tearranging,

dBASE I PLUS

£

L4-11 - 14-20, U2-26 — U2-30

with view files, P11-15, U5-94 — U5-100

s ekging withvother? U2-59, U5-139 - U5- 142 .Relative addressing, P8-3
- moving to, P10-8 with FIND and SEEK, P10-13, P10-14
number, see RECNO() with printed output, P12-15

) &
.3
\igs:.c r’-.’

Key to Index Page Numbers:
L — Learning
N — Networking

NA-ND — Networking Appendices-- - - -

P — Programming
R — Runtime
U — Using

a INDEX

RELEASE, P3- 10 P3-11, U5-166, U5-173 -

Us-174 :

with ALL, U5-173

ALL with EXCEPT, P3-11

with wildcards; P3-10, U5-173
Releasing

..GETs, U5:50
ﬁelds, U5-49, U5-223
memory variables,
U5-173 E

RELEASE MODULE, P16-10, U5-173-.
RENAME, Pi13-10, U5-175
Renaming files, ‘P13- 10, U5-34, US-175

Reordering records,, see INDEX, Index (. ndx) -

files, SORT ' °

Repeating characters, see REPLICATE, ‘

REPLACE, P3.7, P6-2, P11-4 - P11-6, U5-178

in The Assistant, - L3-3 (table)
on a network, 'N4-7, N5-4
Replacing. See also REPLACE, UPDATE
fields, P11-4 - P11-6, US-270 -
part of string, ' see STUFF(), REPLACE
REPLICATE() fundnon P8-10, U6-70

REFORT FORM L9-24, P12-1, U5-171, US-178

- US-179 ,
on a network, N4-7, N5-4
Reports, see Report form {.frm) files
Report form (frm) files, Ul.7. See also
CREATE/MODIFY REPORT

entering column headings, L6-10 - Lé-11

creating in The Assistant, L6-2 - L6-16

customized, P12-1

definition, L6-1, U1-7

format options;
U5-81 (table} -

formamng, L6-6

grouping records Lé-8 - L6-10, U5-77 -

Us-78
inserting a column, *L6-14
modifying, L6-16, U2-42, U5-74 - U5-81
opening, L6-4 -
entering page titles, L6-5, U5-75
printing, L6-16, U5-178
saving, L6-16
totalling numeric data, Lé6-13, U5S-79

X-28

5-48, Us-51, U5-166,

L4-7 (table), U5-75 - US-76,

wrappmg text'in’¢olumn, Lé-11 (note)
] zooming into téxt entry area, L6-8, US-74
" Requirements
file server, NI1-%:
network, NI!-8
workstation, NI-10
Reserved words, P3-3
Resources, sharing, N1-4
Response file, R3-5, R3-6
: creaung. R1-3, Ri-6
1 storing, RI1-4, R1-6
" REST scope, P11-3
RESTORE, P4-10, U5-180 - U5-181
- ADDITIVE option, P3-12 - P3-15
RESTORE (DOS), P13-10
-RESUME, PI15-8, Us-182
RETRY, N4-16, N4-17, N5-12, P16-9, U5-183
. RETURN, . P2-2, P13-3, P134, P14-2, U5-184
with PROCEDURE P16-3, U3-11 8

. RETURN.TO MASTER, P24, U5-184

* Right margin, .P]2-8

Right-justifying a string, P8-6

RIGHT() functlon. .. P5-8, Ub-71. See also

LEFI() ; .
Ringing the bel! 'P8-9, US-195, U5-209
RLOCK() function, N4-11, N5-36 — N5-37
Root file, R3-1, R4-3
ROUNIX) function, P5-5, U6-72. See also
INT()
ROW() function, P8-3, U6-73. See also COL(}),
PROW()

RTRIM{) function, L10-7, P5-11, U6-74. See
also LTRIM(), TRIM()
RUN, N2-10, N5-19, U5-185 - U5-186
binary (.bin) files, . P16-12
. with operating system, N2-10, N5-22
,JRun time errors, - P15-1, P15-3
RunTnme+ ot
checkbook management system, R1-4,7,10
dBCODE RZ 1 ~.R2-6
dBLINKER, R3-1 - R3-6
error messages, RA-1to RA-3
using Es¢ key in, R4-2
linkage editor, R3-1
macro limitgtions, ..R4-3

dBASE 11l PLUS

INDEX

multi-disk applications, R4-4
options, dBCODE, R2-3 - R2-5
options, dBLINKER, R3-3 - R3-6
procedure files, R4-3
- program specifications,
. programming tips, R4-6
response file, R1-3, Ri-6
root files, R4-3
source code requirements, Rd4-1 - R4-3
sample session, Rl1-4 - R1-11
tips, R1-4
- s
'8 ,
e = option, R2-6, R3-6
Coel SAVE, "19-29, P3-12 PIZ—lS U5-187
LY ..] sawng .
“y %Y 7 datain 'I‘heAssnstant
- data entry forms,
file privilege schemies, N3- 18
B .. fles, seeindividual file types undcr
e . “(period) -

o - - memory vanables. ‘Us-187
output toa text ﬁle U5-193
PROTECT entries, ' N3-17
report forms, L6-16, US-79
* * - 8ET RELATION TO-A VIEW, U241
L L user input, - see ACCEPT, INPUT, WAIT
L . . user profiles, * N3-20

R Scope, 19-20, U2-3

-« <" . Storeboard, P4-9, U5-258. See also SET
- . STATUS
L T with customized screens,
. , ,‘ with status line, - P4-9
© = 7 Scratch files, P119,P13-i1
.) Screen .
) e clearing, P6-6, U5-47
‘o . controlling, Pé-3-
oL coordinates, P6-4, U5-16 -
. direct output to, US5-218, US5-261

R4-1 .

Li- 25 Li-26

R LY P B

P6-5

y ot t_‘ '/ sgraphics characters, PB-7
-outputting blocks of text to, US-375 "
4 relative addressmg, :P8-3
: '+ - témplates, “P7-1 - - "
- Lo toprow P49’* T
iy, f -

L2-32 - S

., creating at dot prompt,

Screen (.scr) files, Ul-7, P8-12
creating, L9-16 - L9-17, U5-82 - U5-87
Screen forms, U2-20 - U2-2%. See also
APPEND, CHANGE, CREATE/MODIFY
. SCREEN, EDIT

adding a message, L2-18, U5-83 - U5-84,

U5-245
adding a title, L2-11 - L2-12
" _adding felds, L2-3 - L2-6, L2-22 - 1L2-25,
U5-86
advaniages, P1-7

centering a title, LE2-11

. changing field width, L2-19 — L2-21
creating database file in, L2-33

LS-16 - 19-17,
U2-43 - U2-47, U5-82 - U5-87

creating in The Assistant, L2-2 - L2-31

deleting fieids, L2-25, US-84

deleting labels, L2-18

deleting lines, 12-11, US-84

- deselecting fields, L2-4 (note)

designing, P7-10

- drawing lines and boxes, 1.2.30 - L2-31,
P8-7, P8- 8 U5-23 - U5-24, U5-87

edltmg text, US-84

increasing field width, L2-19 - L2-21, US-84

inserting blank lines, L2-10

inserting,or deleting spaces, L2-11

labelling fields, L2-17 - L2-19

modifying, see CREATE/MODIFY SCREEN

moving fields, L2-12 -L1L2-17

opening, in The Assistant, L2-2

overlapping fields, L2-15 (note)

PICTURE function, US-17 - U5-19, US-86

pnntmg. L2-32, U2-47

in a program file, P6-1 - P6-18, U5-20

-, prompting for input in, U5-130
- RANGE option, U5-86
saving, L[2-32

selecting fields, L2-3 - L2-6
stretching or shrinking a box,
for updating records, P11-4
Screen Painter, L2-1, P8-12. See alsa
CREATE/MODIFY SCREEN
creating a database file with, £2-33

L2-31 {note)

-

. :."‘ ""J-.Jlal

Key to Index Page Numbers:
L — Learning

N — Networking
NA-ND — Networking Appendices
P — Programming

R — Runtime

U — Using . INDEX
insert mode, L2:10 ‘ Selectmg e C\
menus, L12-2 (sable) .. 7 adatabase ﬁ!e L3 2, L9-13, U5-190, U5-281
modlfy'mg database file structure, . l,f.Z—Il N . =Us-282 ..
overwrite modc. L2-10 . " an index ﬁle L4-13 L4-14, L9-23, U5-190,
PICTURE functnon optlon, L2-26 - L2-27, U5-239 5- 240

1.2-29 (table) ~ e aformat file, . L3-3, L9-17, U5-232 — US-233
PICTURE template option, [32-23! L2-29 Selectiont bar, N3-15, U2-13

(tabie) . T Selfstarting programs, see Turnkey system
Range optiof, 1.2-28, 1.2-29 (table),-US-85 .© SET, P4-3- P4.9, P13 -3, L9-5 - L9-6, US5-191 -

Scrolling data entry forms, US-18-15-19 - U1-192. Sée a!so Conﬁg db

SDF (System Data Format) files, see ASCII" _ commands in Config. db U4 6 — U4-10

Search condition(s) Lo "7 {table) bl
building a, L4-4 — L4-11 on-a network, N5- 13 . N5- 14
combining, L1L4-10 SET ALTERNATE, P15-12 US-193 - U5-194
definition, . L9-21 s . SET BELL, P45, P5-14, US 195 |
if not matched,” 'L4-6 : -SET CARRY, ,U5 196 :
specifying, 1921 $ET CATALOG, 199 — L9-10, N4-7, N5-4,

Searching. See also CONTINUE, FIND
LOCATE, SEEK,)
in The Assistant,
and case sensitivity,

14-2 - L4-11 _
L417.

for contents of memory variable, " see}&g.._,'
funcuon , te
. for data, " U2- 30 U2-32
an indexed file, 1414 - L4-17
by matc mg a search condmon 14-3 -

L4-11 P .

for partial string, L4~16 N

by record humber, 1L4-1-14-3

for records, |, L4-1 - L4-11, P10-8 U2-30 -
U2-32, Us- 50

for starting positign of string. w1thm a string,
see AT() . .

Security, see dBASE security -

SEEK, P10-9, F1i-4, P14-4, U5-188
in The Assistant, L4 14 = 14-17 . '_ -
with end-of-file, P10-13 o
with end-of-file condition, P10-14
for indexed files, U2-31 - U2-32 .
isolating next record, P10-§2
with memory variables, Pi0-11
with partial string, L4-16

SELECT, P104, P11-11, P13-5, U2-37 - U2-38,

US-189 - Us- 190 °

AR

" "SET EXACT,’ P10-10, P10-18, US-222

U2-52 - U255, U5-197 - U5-202
SET CENTURY _P3-22, U5-203
_SET, COLOR, .P4-5, U2-209, U5-204 - U5-208
with. passwords P8-11
.SET CONFIRM.. P6-13, U5-209
SET'CONSOLE, 'P12-4, US-210 -
SET DATE, P5-2! Us-211
SET DEBUG, ' P15-9, R4-2, U5-212
SET DECIMALS,” " P5-18, U5-213
SET DEFAULT, ~ P1-6, P4-5, P16-16, U5-214
" SET DELETED, P10-18, P13-7, U5-215
SET DELIMITERS, P6-10, P8-1, U5-216 -
U5-217
with TO DEFAULT option, P8-2
SET DEVICE, Pi12-3, P12-4, P12-7, US-218
SET DOHISTORY, P15-7, P15-10, R4-2,
Us-219
SET ECHO, P15-9, R4-2, U5-220
 SET ENCRYPTION, N4-21, N5-15 - N5-16
SET ESCAPE, . P4-4P15-11, US-221
-with type-ahegd buffer, P8-17
- “with WAIT, - P6-16

@®

O
1

SET EXCLUSIVE, , N4-6, N5-18 R
SET FIELDS,. P11-16, US-223 - U5-228

SET FILTER P10-17 US5-229 - US-230, UB-3

) {table) See also CREATE/MODIFY QUERY,

. Query (qry) files

far dBASE 11 PLUS

INDEX

SET FIXED," P5-18, U5-231

SET FORMAT, P8-14, U5-232 - U5-233

SET FUNCTION, P4-6, P13-3, U5-234

SET HEADING, P4-7, U5-235

SET HELP, P4-7, U5-236

SET HISTORY, P15-7, R4-2, U5-237 - U5-238

SET INDEX, P10-7, U2-28, U5-239 - U5-240

SET INTENSITY, P6-10, P8-2, U5-241

SET MARGIN, P12-9, P12-16, U5-242

SET MEMOWIDTH TO, P8-17, U5-243

SET MENU, P4-8, U5-244 ’

SET MESSAGE TO, P4-9, U5-245

SET ODOMETER, US5-246

SET options ignored, R4-1, R4-2

SET ORDER, P10-7, US-247 - U5-248 .

SET PATH, . P4-8, P13-5, U5-249 - U5-250 -
with GETENV() function, P1é-14

SET PRINT, Pi12-4 - P12-5, U5-251
in debugging,” P15-13

o

* SET PRINTER, P12-3, U5-252 L
on.a network, N2-8 - N2-10, N5-20 - N5-22°
~ SET PROCEDURE, P16-3, P16-4, U3-11,

U5-253 - U5-254

- SET RELATION, PI11-11 - P11-15, U2-38 —

U2-41, U5-255 - U5-256

' SET SAFETY, P4-8, U5-257

SET SCOREBOARD, P4-9, U5-258
with customized screens, P6-5

SET STATUS, L9-6, P4-9, P13-3, U5-259

with customized screens, P66
SET STEP, P15-9, R4-2, U5-260 “
SET TALK, L10-3, L10-4, P4-4, P13-3, U5:261
SET TITLE, U5-262
SET TYPEAHEAD TO, P8-17, U5-263
SET UNIQUE, P10-19, U2-29, U5-264 - US-2485
SET VIEW TO, P11-15, U241, U5-266-"
US-267 o é
SHARE command (3Com network), ND-4
Shared directories, NB-9, NC-8, ND-4

. Sharing resources

files, Ni4. .

peripherals, Ni-4.
. software, NI1-4 -
Shell, network, see Network shell
Simultaneous data access, N4-2

dBASE 1Il PLUS

SKIP, LI10-4, U2-32, U5-268
in The Assistant, L4-3 i
backwards, P10-15
‘with end-of-file condition, P10-14
SORT, LS-23, P13-6, U2-30, U5-269 - U5-270
on a network, N4-7, N5-4
Sorted files, see SORT, sorting, 14-10
Sorting, U2-30
in The Assistant, L4-19 - L4-20
compared to indexing, L4-20
descending order, 19-23
records into groups, L6-8 - L6-9, See also
INDEX, Index (.ndx) fles, SORT
Source directory, RI-5, R4-6
Source files
sre extension for program files, R1-5, R2-2
SPACE() function, P3-4, P5-12, P14-6, U6-75

" Space on disk, determining, see

DISKSPACE()
Spaces
in command lines, P15-1
in concatenation, P5-3
creating blank, see SPACE(}
Special effects, see Printing, special effects
Specifications, Ul-1
command line, Ul-2
database file, Ul-1
field size, Ul-1
.fite operations, Ul-1
" memory variables, Ul-2
numeric accuracy, Ul-1
Spooled files, N2-9, N5-20, N3-21
Spreadsheets, see APPEND FROM, COPY TO
SORT{() function, P5-5, U6-76

Starting dBASE IH PLUS

with an application program, NB-1},
NC-10, ND-11
with a batch file, NB-12, NC-10, ND-11
on IBM PC network, NB-10
on Novell network, NC-9
in a PROTECTed system, N1-i2
on 3Com network, ND-9
Status bar, L9-2, N3-13, U2-14, US-259
in The Assistant, L1-13 - L1-14 (figure}
controlling display of, L9-6, U5-259

X-31

o,

-.‘,71"

V37 184 Qe s ALY D
5.1 (el j-';@'{?,.. G ek
Jogtigh Ty YA i o

(»a.] }“":L?"J_-

STR() function, P5-15, Us-77 - U6-78. See
alsc CHR(), VAL())

with decimal places, P5-16

SRk SERES LS AN

Iy o String(s).See also Character string, Converting

P5-3, P8-&
P5-9. See also LOWER(),

. r]

. combining,
- changing case,
UPPER()
comparing, P5-4, P10-18
String operators, U2-6
Structure .
B . catalog, U2-53,-U5-199
command, U2-3

copying, WUS5-56, U5-57 - U5-58 ..

.. creating, US5-59, U5-88 - U5-91
' database file, U1-8, UC-1 - UC-2. See also
CREATE < newfile > /MODIFY ~ -

STRUCTURE .- =t

LT T e displaying, see DISPLAY STRUCTURE
SR . LIST STRUCTURE
S memo file, UC-3 - UC-4
- . Structured programming,
- U . STUFF() function, P8-6, U6-79 — U6-80. See
- T _ also SUBSTR() _ -
T Subdirectories,
for network users . N2- 5
path to, P48
» . with RunTime +, R1-4 ‘R4-6
Subprograms, Pl- 1 Pi-10, P1-17, P2-3
- Substrmg, P5-7
position in string, "P5-8
: . search, P9-3, U6-81. o
o Coe selection functions. See also LEFTY{),
, RIGHT(), STUFF() '
' SUBSTR() functlon,, P5-7, P5-8, U6-81
compared to substring operator, P9-4
‘ Subtracting users
| from a 3Com network ND-15

Pi-21

from an IBM network, NB-14
.from a Novell network, NC-13
. SUM, N4-7,N5-4, P11-1, U5-273 :
t in The Assistant, L6-25 — L6-27, US-32

T

X-32

T S L .o L A

L. for end of file, ;

(4 ‘|". .2' v".'-’
A SR NIV S
Ly .\p«.. -un'}h’t.dst.l At "{f.':.'.'v‘i ;b'::'-a FA ;.nj*-t’« SeARCITL e vt

Key to Index Page Numbers:
L. — Learning
N — Networking
NA-ND — Networking Appendices
P — Programming
R — Runtime
U — Using INDEX

in programs, P49 Summarizing data

on PROTECT screens, N3-13 with COUNT, US-62
STORE, P3-2, P6-2,P11-4, US-271 - U5-272 with SUM, U5-273

with TOTAL, U5-276 - U5-277
. SUSPEND, U5-274 }
debugging wnh P15-7 P15-8, P15-10,
P15-11 -
with RunTime + .+ Ré-1
SYLK files, * See also dBASE Bridge
exporting,- U2-57, U5-55 - U5-58
importing, U2 57 U5-28 U5-31
 Symbols
template, P7- l - P7-4
Symbols and convennons used in manuals,
Us-1 -’
Syntax, command, ‘U2-3.
Syntax errors, P15-1, U5- 9
System date and time, see DATE(), TIME()
. *Systg:rrg_variab_lgs, determining, see GETENV()

TechNotes, P16&17

TEDIT, = see Configuration commands

" Templates, LlI- 19, P7-1 - P7-7
-with-character variables, P7-3
; rfor controlling i(lsplays. P7-3, US-19
" for converting input, P7-2, U5-19
with date variables, P7-5
functions, -P7-4 ~ P7-5, U5-18 - U5-19
for horizontal scrolling, ~P7-6
for limiting input, P7-3, P14-3
with literal characters, P7-5 .
with loglcal variables, . P7-4
with iumeric variables, P7-2 ~ -
_symbols, P7-1, U5-16, U5-18 .- US- 19
with TRANSFORM() function, P79
with 2, P7-8 T

Testirig. See also Debugging -
for beginning of file, see BOF()
for character, see ISALPHA(), ISLOWER()

. ISUPPER() ;
see ISCOLOR() :‘

: for color,
for deleted file, see DELETED()
. see EOF() |

.

——

-~

‘ 07 dBASE I PLUS

TR ETRD g

S) forerror, RTCIR
R for Esc ey, .. 1P9-12.. -
S awirvd 37 for.keypresss see INKEY() gy,
' of 2 - . for’]ast key pressed, see R.EADKEY()
{6-2'7 - ¢ foratock, Né-11..

_ programs, Pi-24, P15:1 - P15-14, R1-15
for result.of FIND, LOCATE, SEEK, see
FOUNDQ), &, .. wii~ ~ :
for « key, P9-10

LTS G D

Eor'Spacebar ~ P91k . AR

-'., LT LT “I‘ext edltar U3-7.,U4-6,,US-155 US; 157
sext, (.txt) ﬁles, e Ud;7..See also APPEND
' FROM, COPY, MODIFY COMMAND SET

L ALTERNATE SRETL R T (o

Time .,
countmg on screen P9-9

PR ey s 0 -y 3 I3
LA SITUN - m'programs S P5 251-.. L g

o~ 7 reseuting, P16-13T1s ond e
{ E} TIME Eomimand (DOS], ‘P16-15
! :,”_ ;‘:IIM TSE&induo_ " P52 U6-82. See also
SR .Y .,DA) RHN 3H .v}f TN
U TltLes. colurim US 74 _U'S -197, U5-198,
U -4t gs. 200,°U5:262 -~ ¥

i

-

EaA Top margm Pi2-&

&

- -*\ Tap-down approach, "P1-19, P15-6

‘. ‘ 4Top-ofform P12-6, P12-11, U5-120
IOTAL N4-7, N5-4, U2-58, U5-276 - US+277- .
- with encrypted (crp) files, N5-15 '
’I‘rmlmg blariks: o
i in concatenauon PS 13, b
g “removmg, P5-10 =~ P5-12

- -
e '.'=_l

B 1 51N *3.-
J:st!l)._!i K “-}"\.%"‘ 1 TRIM()' - U6 84 4 Udlgs
. , Transferring data’ betwe

e 2186 S2e Also COPY, EXPORT, IMPORT
pELER TRANSFGRM() funcnon P7-9, U6-83 -

\ .} _ witheJkey, P9-10. See also LTRIM(),
- RTRIM()

Turnkey system, P16-15

TYPE command, P1-5, US-278

Type conversions, P5-2

TYPE() function, P9-12, U6-86 - U6-87

dBASE 111 PLUS

<" RTRIM()m* U674 A ; :

programs L8-1 %: .

<~ 'TRIM() functibn,’ P5-10; P8-6, U6-84 — U685

v Type-ahead buffer P8-17. See also CLEAR
TYPEAHEAD 'SET TYPEAHEAD

. Typestyle size, | PlZ 8
N U B R)

P2 BECO

Unformatted output P12-4
Uninstalling dBASE' ADMINISTRATOR
fror meSsages, *NA-2
_from a-3Com network, ND-15
" from an"IBM network, NB-15
~-florm’‘a Novell network; NC-13
= Uniqué index, : see-SET UNIQUE
Unlmkmg relatéd files, U2-40
UNLOCK “N4-12, t1“515-24-
Unlnckmg 1
files, N4—12 N5-32, N5 36
reco‘rds ¢ IN4-12 <~ N4-13
‘UPDATE n.:N4-7; N5:4,P11-7, U5-279 - US- 280
-~ Updaté-file prmlege N3~5‘ N3-26
Updating .-
data Pl]-.4’ Pll—8
ﬁelds P11e
Updating re¢drils

2t Toggle lockmd record; N4-13 - 2 adding,™ L3-7 - 13-10, U5-26 - U5-27, U5-40

" AUS-42,US-137 - U5-138
deleting, : ‘L3-13.~ L3-16, U2-25, U5-102,
-~'U5 163,U5:284 -
editing, .L3-11 - L3-12, U5-118 - U5-119
*wirith-fi€lds from another database, US5-279
select}ng file for, "L3.2 - 1.3 3

':'Upper case s -

P5-9, U6-B8
P3-9, U6-51

A conv’erﬁng from lower case,

converting 1o lower case,-
‘*’ testingifor; ™ P9-12, U6-47
“LYPPER()function, P5-9, P14-5, U6-88. See
'*"i alsg ISUPPER(), LOWER()

- USE, ' 'N4-12, P10:3] P11<4, U5-281 - U5-282

- USE EXCLUSIVE N5-25 :

User)
access level,
group,- N3-7
group name,
input, P69
interface, Pé-1

N3-4, N3-20
N3-7 - N3-81

Xx-33

!
!
]
|
]

Facy B . s

1

TR _y:“ ‘lwﬂ“"—gﬂl.g Pkt
Al

Key to Index Page Numbers:

L — Learning

N — Networking

NA-ND — Networking Appendtces
P — Programming

R — Runtime

U — Using

INDEX

log-in N3-2 - N3-4, N3-21
profile, N3-4, N3-18 - N3-21
User count)
display option, NB-13, NC-12, ND-14
in DBNETCTL.300, NI1-7, NB-7, NC-8, ND-8
User-defined values, N3-16, U2-18
User profile(s), N3-4, N3-18 - N3-21

v

S VAL() function,
- . also STR()
Variables, see Memory variables
Verifying input, see Input, verifying
VERSION() function, P16-14, U6-91
v View (.vue) files, L7-1 -L7-3, Ul1-8, Sez also .
BRI - CREATE/MODIFY VIEW, SET VIEW TO'
e e appending data in, L7-3 (note) ’
e . common field, L7-5-L7-6,L7-10
o - (warning), U5-96
L7-2, U5-96
L7-3-L79, L5-30
U2-4I U5-93 -

P5-18, U6-89 - U6-90. See

controlling file,
creating in The Assistant,
creating at the dot prompt,
Us-99
creating from the environment,
P11-16, U5-101
definition, L7-1 -L7-2, L7-2 (ﬁgure)
elements of, U594 -U5-95 _ -
modifying, U2-41, U5-93 . “‘f
opening, L7-9, L9-25, U5-266 - U5-267"
relation chain in, L7-6 (ﬁgwre) U5 96 .~
L7-9 NP
L7-9, L9-25, U5-266 - U5-267
L7-8, U5-99
L74 - L7-5,

P11-15 -

saving,
. selecting,
i selecting data entry form for,
selecting database files for,
U595 : _
selecting fields for, L7-7 - L7-8, U5-97
selectively changing, US5-71 - U5-73
storing a SET RELATION, U2-41, U5-101
VisiCalc files
exporting,
importing,

U2-56 - U2-57, U5-55 - U5-58
U2-56 - U2-57, U5-28 - US-31

X-34

w

WAIT, US5-283

changing message, P6-16
Week, day of, see CDOW(), DOW()
Wildcards

with DIR, U5-103

with RELEASE, P3-10, U5-173

WKS files
exporting, U2-56 - U2-57, U5-55 - U5-58
importing, U2-56 - U2-57, U5-28 - U5-31+

WordStar, P1-4, P16-15
Work areas, P10-4, U2-37
examining, P13-5
with relations, P11-12, U5-101, US-255 -
- U5-256)
" release fields from all, US5-49
resetting to default, P13-3
SELECT, U5-189 - U5-190°
select by ALIAS name, - U2-38, U5-190
setting up, P11-10 - :
‘Workstation .
Config:sys file, NB-3, NB-4, NC-4, ND-3
definition, N1-3, N2-2 (figure), N2-4 (figure)
requirements, NI-8, N1-9 ~
WP, see Configuration commands -

Y

Year,

" e

{
‘@

see SET CENTURY
from a date, P5-21 L
YEAR() function, P5-21, Ué-92 See also
DAY(), MONTH()

Z

ZAP, N5-4,Pl119,U2-25,U5-284 =
Zoom in/out, see CREATE/MODIFY LABEL,
CREATE/MODIFY REPORT

* dBASE Il PLUS

