

CHAPTER 1

Garbage In/Garbage Out 1-8
Database Integrity ~ ~ 1-9

Repeating a Procedure (Looping) ~ 1-11
Dealing with Possibilities (Conditions) 1-13

a

~¢
r

~z

•.:

Contents
PROGRAMMING WITH d6ASE.ll1 PLUS

INTRODUCTION ~~'
FROM USER TO PROGRAMMER ~ I-1

About This Section I-1 •
You Know More Than You Realize I-1 °'
Total Control ~ ' ' I-2 .
How to Use This Section I-3
What Each Chapter Covers I-S

PROGRAMMING IN A NUTSHELL. 1-1

What This Chapter Covers ~ 1-1
Preparing for This Chapter 1-1
What is Programming? ~ ~ 1-2
Programs and Applications ' 1-2
Languages and Interpreters ~ 1-2
Programming Concepts 1-3

Writing and Editing dBASE Programs 1-3
Running the Program ~ 1-6
Setting Up the Program Epvironment 1-6:
Input and Output 1-6

The Flow of a Program ~ 1-9
Making a Detour (Branching) ~ 1-10

One Entry, One Exit 1-16 a ~.
Menus 1-14 .

Designing and Writing the Program ~ °1-17 '

Meet the Programming Language Halfway ~ 1-20

Involve the User in the Design Phase ~ 1-18 "'
Top-Down Program Design ~ ~ 1=1'9 ••

Don't Reinvent the Wheel 1-21

Document Your Efforts ~ 1-22

Allow for Future Program Expansion 1-23

Summary: The Steps to Program Development ;..s.
~
, 1-24 .~

Test and Test Again ~ ~ 1-23
Put the Pieces Together ~ ~ 1-23

.j

r~

~~

.-,,

~`

it

~.

 .;

-. cyr+

1

4 ,

1'~ ~

A ! `~'.

y .ar:u

CHAPTER 2 :~

~'
- .oa

>i~rn .

dBASE PROGRAM:STRUCTURE AND FLOW o•ks'~ 2 =~~`

~~~ 2-1~~ 

~
-F 

'e :~ 

':~f•0.~ 

.-~ • . 
The Setup Area ' , ~ 2=2 
The Body of the Program 

   

1, 
r .t '3 

What This• Chapter Covers 
Preparing° for' ~ This ~Cliapter 
The Makeup of 'a dBASE Program 

The Preamble r :: ~ ° , 

        

•• ` 
- 

  

•, 
~, 

     

:,.~; 
2-2~~~• . 

2=2w!ea' 

~. The Closing Section`' 
Leaving the Program , 

      

• ,:;..• , 

    

... ., n 

^.e 
~~ ~~ 

dBASE Program Flow ~~' • 
Do (Branching) • " • • 

     

~• 

 

• ° DO WHILE...ENDDO (Looping) • ~` 
IF...ENDIF (Conditions) .~.. 2=7 . .. . ~ 

-:'s Expanding DO WHILE ENDDO and IF... ENDIF ..... ,~ . ° . 2-~s~ 
DO CASE...ENDCASE for Multiple Choices 2-10 
Nesting 2-12 
Another Way to Loop °~9 2-16 
How to Get Out of a Loop ..:T~~'~ 2-17 

 

.;ti 

~• . 

 

•~~~• ~ .... . 

      

• t, 

_ :•~ .... 

          

• 

          

CHAPTER 3 '~~~,~~.~ - .:_ 
USING MEMORY VARIABLES ' _ ~~~~ 3-1 

            

What ̀This Chapter Covers ~ 3-1 
Preparing for This Chapter 3-1 
Memory Variables Explained 3-1 
Initializing Memory Variables 3-2 

Logical Type Variables =•3-3 ` ~, 
Character Type Variables 3-4 

     

•~~ 

                     

Date Type Variables . ~ 3-4 
Numeric Type Variables ~ 3-5 • 
Li i a i ns 3~-6 ~` ' mt to 

                

How Memory Variafbles Work in Programs 3-7 
PUBLIC and PRIVATE Variables 3-8 

° PRNATE Variali~es 3-8~' 
PUBLIC Variables - 3-8 

 

~:,.. 

°' ~ 

             

°, .. . 

  

':'. . 

  

' stf '~''• ~ -

 

°.ti., 

     

v •. • 

   

v 

    

:' ~ ti 

•'~' +:ti 
°~a. ';~ 

                               

. p~ 
L .~6' . 

~, i 

~ ,!~• • ^ 

--'n • 
. •y~ 

 

'1 ♦• 

s~ 

        

~a 

       

Y , 

          

a ! ~ .r; 
~.i 

r 

     

.~; 

    

s "t 
•E' .:b: 'y. 

  



 

PROGRAMMING WITH dBASE III PLUS 

Getting Rid of Memory Variables 3-10 
Memory Files 3-11 

Setting Up Memory Files 3-12 
Restoring Memory Files 3-12 
Using Memory Files 3-14 

Logical Memon~ Variables as Program Flow Controls.... , .. 3-15 

CHAPTER 4 
SETTING UP THE MAIN PROGRAM 41 

What This Chapter Covers 
Getting Ready to Do This Chapter 
What the Main Program Does 
The Setup Area 

Closing Database Files in Use . 
The Working Environment 

Establishing Memory Variables 
The Continuous Loop 
The Rest of the Main Program Module 
Cleaning Up 

41 
41 
41 
42 
42 
42 

410 
4-11 
412 
4-12 

CHAPTER 5 
FUNCTIONS FOR FIELDS AND MEMORY VARIABLES 5-1 

• 
What This Chapter Covers 5-1 
Preparing for This Chapter 5-1 
Displaying Lnformation ............. . 5-1 
Type Conversion Explained 5-2 
Concatenation 5-3 
Comparing Strings S-'1 
Numeric Functions S-5 
String Functions 5-5 

The Length of a String 5-G 
Getting Patrt of a String .... ~ .. 5-7 
Left and Right Sides of Strings' S-$ 
Substring Position 5-8 
Changing Between. Upper Case and Lower Case 5-9 
Trimming an Entry 5-10 
Another Way to Concatenate 5-13 



 

PROGRAMMING WITH dBASE 111 PLUS -" 

Strings as ASCII Characters 5-14 
Controlling the Bell 5-14 

Numeric to Character Conversion 5-15 
The STRO Function 5-15 
Converting Numbers with Decimal Places 5-16 

Strings to Numbers ... 5-19 
Date Arithmetic 5-20 

Date Formats 5-21 
Date-to- Character Conversions 5-22 
Character- to-Dat.e Conversions 5-23 
Using Dates in Comparisons 5-24 
How to Initialize a Gate Variable 5-25 

Using Time .... 5-25 
Memo Fields 5-2b 
Logics! Fields 5-26 • 
CHAPTER 6 
COMMUNICATING WITH THE USER 6-1 

What This Chapter Covers ............................. 6-1 
Preparing for This Chapter 6-1 
Using Screen Forms - The Recommended Way 6-1 
Controlling the Screen........ ..... .. , ....... 6-3 

Screen Coordinates ..... .. , ...... 6-4 
Screen and Printer Coordinates 6-6 

6-6 
The TEXT...ENDTEXT Construction ........... W ~ .... 6-8 

How to Get User Input .... 6-9 
~... GET... READ 6-9 
Clearing the GETS 6-13 
Multiple Page Screens b-13 

Pressing ~ to Continue 6-13 
Accept and Input 6-13 
Wait 6-16 

 

Ways of Clearing the Screen 



  

t 

  

PROGRAMMING WITH dBASE III PLUS 
P 

CHAPTER 7 
USING TEMPLATES AND RANGES ....... 7-1 

What This Chapter Covers - 7-1 
Preparing for This Chapter 7-1 
How Templates Work .... 7-1 

 

Template Symbols 7-2 

 

Template Functions 7-4 
Limiting the Range of Numeric and. Date Input . . .. 7-8 

 

..... 
Transforming Displays 7-9 

Designing Screens .... , ... , .:.. 7-10 

CHAPTER 8 
FANCIER SCREEN FORMS AND FORMAT FILES &1 

 

• What This Chapter Covers 8-1 
Preparing for This Chapter 8-1 

 

Changing the Appearance of GET Blanks 8-1 
Relative Addressing 8-3 
Centering a String ...... .. .. 8-S 

 

Right-Justifying a String 8-6 

Stuffing a String 8-6 
Graphics and Other Special Characters . 8-7 
Don't Retype Screen Prompts ... .. 

  

Repeating Characters ...... ... 8-10 
Pseudo-Passwords ...... .......... .. ..... 8-11 

 

Format Files 8-12 
Creating Format Files 8-12 
Using Format Files 8-14 
Multiple-Page Screen Forms 8-15 

Working with Memo Fields 8-16 
Help for Fast Typists 8-1.7 

 

CHAPTER 9 r 

 

EVALUATING USER INPUT 9-1 

What This Chapter Covers 9-1 
Preparing for This Chapter 9-I 
Filtering the Input Line..... 9.1 

Using Numeric Choices ~"-~ 

  



 

ii 

 

t 

.. •q. ~~ 

PROGRAMMING WITH dBASE 111 PLUS r 

 

Anticipating the Correct Response 9-2 
Covering All Possibilities in Their Turn 9~ 

Special Keys 9-7 

 

The INKEYQ Function 9-7 
Getting Fancy 9-8 
The READKEY() Function 9-9 
The ~ Key 9-10 
The Spacebar 9-11 

Checking for Type 9-12 
Using the ON Command 9-12 

CHAPTER 10 
WORKING WITH THE DATABASE - 10.1 

 

• 

  

What This Chapter Covers 10-1 
Preparing for This Chapter 10-1 
Designing the Database 10.1 
Opening the Database File 10-3 

Using ALIAS Names 10-5 
Elaborate Indexes 10-6 
Using Several Index Files 10-6 

Disk File Management ~̀"' 10-8 
Finding Records _ 10-8 

LOCATE and CONTINUE 10-9 
FIND and SEEK 10.10 
FIND and SEEK Save Time 10-12 

The End-0f-File Condition 10-13 
Other File Functions 10.15 
Filtering Commands 10-16 

SET FILTER 10-17 
Skipping Deleted Records ~ 10-18 
Checking for Exactness 10-18 
Avoiding Duplicates 10-19 

0 

     



    

,r 

 

PROGRAMMING WITH dBASE I11 PLUS 

   

CHAPTER 11 
WORKING WITH DATA IN THE DATABASE 

 

~t" 

  

What This Chapter Covers 
Preparing for This Chapter 
Manipulating Data 11=I• ~;°:~t~ 
Changing the Database Information ~ 11=4~~' R 

Updating Data .1,1•_ 4.'"j .. 
The Posting Method 1 I =̀7~;~ _ .t' 
Deleting Records 1-1°- • . 
Co m Records 

4 
PY~ g 1°1=T0~,: fit, "'::t Different Work Areas •1.1=1~0.~; 

'r 

The Selected Work Area 11•=11 
SET RELATION ~ ~' ~'.1-

   

• 

Advanced Relations • •1'•1=1~ 
Setting Up Views and Fields ~1`.ll , • 

_,_ .~}~ CHAPTER 12 
PRINTING 

   

• 

What This Chapter Covers - • 
..,ti.., 

~ ~,~ ~.~~ ..1.~:;. 
Preparing for This Chapter • 121` °~~: 
Your Own Reports and the dBASE III PLUS Report Feature :~ •12-1,, •;r~, • 
Printers: Some•General Remarks - -: 1̀2=2;' ~~=5 
Connecting the Printer t2-2,' ~."' 
Sending Output to the Printer •~~ 1.2=3`.; ~ ̀~:~ '~ 
Printer Coordinates 12-4 ~:: ~: 

The Position of the Paper in the Printer 12-6 =• ` 
Paper Size 12-6 . ~ •'~ 
Typestyle Size 12-7 `"• •.• ,~ 

Switching Between Screen and Printer 12-7~~' :~~~ 
Page Formatting 12-8` ~• ,'~• . •.r•, 

Margins ~ ,21.2-8 , e,. 
Paper Length_ . 12-10 •` .~ ~~': 
Headers and Footers f2=10~:`'• 

4' ̀ lli 

Starting~a New Page ~ 12=10 '.:': .,~ -

 

Trouble Spots' ~` 12-.1U_ ~. -" 
The Last Line ~ ~ 3 ' - 12=1`l 

Realigning the Print Head ~ 12-:1 T •. ~~,, r,a 

 

"~ ° ,. , ~_ 

 



   

PROGRAMMING WITH dBASE III PLUS 

Suppressing Initial Page Ejects 12-I1 
Special Effects 12-12 

Escape Codes 12-12 
Printing Special Effects 12-14 
Different Printers 12-15 

Relative Addressing 12-15 
Determining Page Breaks 12-16 

CHAPTER 13 
HOUSEKEEPING 13-1 

What This Chapter Covers .... 13-1 
Preparing for This Chapter ...... , .. .... 13-1 
Completing the Program ... 13-1 

Closing Files 13-2 
Clearing Memory ............ , r . ............... 133 
Returning to the Default Environment 13-3 

Working with the Disk 13-4 
Finding a Database File ............ 13.4 
Examining the Work Area 13-5 
File Size and Disk Space 13-6 

 

File Maintenance .... 13-9 
Deleting and Renaming Files ..... 13-10 
Copying Files and Backups , .. 13-10 
Using Scratch Files .... 13-11 
Importing and Exporting Files ....... ... .. 13-11 

Modifying a Database Structure ......... .. , ..... 13-11 

CHAPTER 14 
PUTTING IT TOGETHER ................ .~. 

What This Chapter Covers 
Preparing for This Qhapter 14-1 
The Setup 
Getting User Input 14-3 
Testing for Conditions. ; ...... , 
The Cleanup Section . , . 
Summary ........... .............. 14-7 

.. ...... 14-6 
14-3 



PROGRAMMING WITH dBASE III PLUS 

CHAPTER 15 
TESTING AND DEBUGGING THE PROGRAM 15.1 

What This Chapter Covers 15-1 
Preparing for This Chapter 15-1 
What to Look for ...... .. 15-1 
Steps to Testing and Debugging ...... , , .... 15-5 
The Debugging Commands 15-6 

Using the History Buffer ............... . ....... 15-6 
Stepping through the Program 15-9 

Other Debugging Tricks 15-11 
Using the Esc Key 15-11 
DISPLAY MEMORY and DISPLAY STATUS 15-11 
Keeping a Record of What's Happening 15-12 • The ON ERROR Command 15-13 

CHAPTER 16 
MORE ADVANCED FEATURES..... .............. 16-1 

  

What This Chapter Covers , , . ......... 16-1 
Preparing for This Chapter .. ........ .. ...... 16-1 
A Shortcut for IF...ENDIF .. .... 16.1 
More Efficient Program Code ... . . ............... . ..... 16-2 

Procedures 16-2 
Hiding a Public Variable 16-5 
Parameter Passing ................... , .... 16-b 

Potential Errors ................. ... 16-9 
Using Assembly Language Routines .......... . ... 16-10 
dBASE Programs in a Larger Context .................:. 16-12 

The RUN Command 16-12 
The Operating System and dBASE Environment ... , ... 16-14 
Other Applications Programs ..... , , ..........>..... 16.14 

A Turnkey System ... 16-15 
Where Do You Go From Here? 16-16 



`e 
+ 

;a.. ~ .ia 
N 

r ,y . fi. y.,. s. -s. • ~ ~ -a.. • yl. ~f ._ t 
_l SIN I~ y-_ 

` 
'fy~ 

, 

~:Y 

T 

,5 

  

:.,s+, 
~;a 

     

J ~~~y~ 
tS°~1n4~.•k 

    

';}' -.ti 
.~ . 

.~.cj 

 

k' 

 

~Y 

Introduction • t. 

- ~ i=ROM USER TO PROGRAMMER 
;~ 
4° 

.:~ ~. 

    

The on-disk tutorial, Learning dBASE Ill PLUS, and Using 
dBASE 111 PLUS have taught you how to use dBASE III PLUS for all 
your database management needs. This book shows you how power-
ful dBASE III PLUS really is. 

     

;, 

        

~' dBASE III PLUS is not only a complete database management sys-
tem, but it also includes a programming language called dBASE. 
With this programming language, you can create customized appli-
cations for your specific needs, allowing you control of all your 
database management tasks. You can even sell your applications to 

      

others. 

    

If the word programming causes you chills of fear and apprehen-
sion, relax! Because dBASE III PLUS has so many built-in features, 
programming in dBASE is easier to learn than many other program-
ming languages. Programming can even be a great deal of fun. 

     

~~: , .~:~ 
.,,... 
•gar This section gets you started with programming in dBASE. It pro-

vides the essentials that you'll need to know to write your own pro-
grams. When you have finished this -section, you'll be familiar with 
the full power of dBASE III PLUS. 

About This 
Section 

   

• ~. ~u 
~. ...:_ 

 

ti 

  

If you already know how to program in earlier versions of dBASE, 
use this book as a reference guide for the many new features of 

      

dBASE III PLUS. 

   

You may not realize it, but you've been programming in dBASE 
right from the beginning. When you issue commands from the dot 
prompt or in The Assistant (for example, when you select or type 
LIST to show the contents of a database file), you aze telling 
dBASE III PLUS to perform certain operations. Generally, you issue 
a series of related commands in a certain sequence. Programming 
~in its simplest form means collecting this series of commands 
together into a program file, saving it to the disk; and then perform-
ing the commands by running the program file. 

You Know 
More Than 
You Realize 

                      

- . "!y~a~ 

        

_. ;{C~" 

    

PROGRAMMING WITH dBASE III PLUS PI-1 

    

+;y ~ 

C 
• - 

T 
_ .. .. k .~ 

  

. y. 

•.'~• 

 

• ~ 
tR 

          

•'x 

    

~~•. ate. _ __ 

o '.r 

     

• ~ .ig 
• •! 

. • A~ 

                

a 

    

- ♦ . V • • 

             



~y.•ja° ~~~;~ „z.~! ~~ i~ 
~+~.a~l 

~Y1..a ~~iP~fpp~~~~.c„ ~~ ~~~,~~-~$~~i.~7~ 7-~; 
sr~,zs~~~` . ~`~.'L =~~t° r'~ ~ s' ,2~,~ 

s 

 

Y ! 
S:.SL1t 

.: \' •t
\. - ` •i f..t• v ~ 

.i 
_ 

•1•• f•. -.. .'.•.~ .r `•4• ≥ ~ 4 ~' ~ •_~~~~ ~+~ 

    

i~ 

r.. - 

 

" 
.~ 

" 
.~~' , 

  

i 

. ' ~ 

. i 
3 • 

. Y• . 
• 

- 
• 

• ,. 

 

INTRODUCTION ~ •~ 

  

Take a look at the following series of commands. Suppose you 
have a database file, called Money.dbf, which contains informa-
tion about people who owe you money. Naturally, you would want 
to check this information on a regular basis to see who still owes 
you money. The Money.dbf file is INDEXed on the last name to 
the index file Last.ndx. Amount due is a numeric field; Owing and 
Pastdue are logical fields. Gimme and Scrooge are REPORT 
FORMs that report on which people have to pay up. What do 
these command lines do? 

                          

y, , 

~. _. 
;.USE~Moner,INDEX last 

r 
' `'* ,4}~~ - • 

:LIST, FOR Oi+~ng AND Pastdue. ~; ' ~ ~'4~ ~" ~` 

"~;SUM~,A~ount=tidue*FOR "Or~ng.~ \ ~-z ,~ 
`°SUM'A~oun! Que FOR>Oring" .ANON-Pastdue '}~z -. `~ 
`:REPORT FORM~x"6~ree~FOR~Oring,PL~IIN T,O~PRINT• ~ ~ -~' 

REPORT~`FORN` Scrooge FOR~sO~~.ng,-}:AMD ; Pastdue RLAIN TO`-PRINT ~• 
- 'USE ~•'... _ a ....!•G~-tar _ { 

1 rs _ ! -•':. -- ~ ,~ 
.r' -. 

•x 

- ~y: .44,:x^' d+~ti ~:# #" . ~..:a .. r.s"~.• ~ ii',. '~ ~ .. ~_ , .. ;, 

        

- 
'. '.~ . 

-.; • - • : . 

       

i •• 

 

That's a lot of typing to do on a regular basis! However, you can 
set up these same commands in a program file called Owing.prg, 
and all you would have to do is type Do Owing from the dot 
prompt to get the very same results. 

  

-• :; •: • 

   

This is a simple example, but it illustrates how much time you 

   

can save by learning a little dBASE programming. 

 

J ,. •• 
Where dBASE programming really shines is in its ability to allow 
you to control how your users work with dBASE III PLUS. This 
way, you can ensure that users don't have direct access to impor-
tant database information. Your program acts as an intermediary 
between users and the database, protecting your valuable infor-
mation from possible catastrophes and making dBASE III PLUS 
easier to use, especially for inexperienced users. You can even 
have dBASE III PLUS start your program automatically each day. 
This is known as a turnkey system. 

Total Control 

   

.! 

    

r •. 

       

~.." ~. 

 

~` _,1' 

           

r• •. ~ - 

"µ - . ~:~~ 

           

PI-2 ~ PROGRAAAMING WITH dBASE 111 PLUS ~~ 

;. 

    

~~~ 
~~

~, ~ -

. ~:~.. .

;:

~4`

~" ~ ~• ~,

VJR~V• ~. _.

•. .I ••

~'}
.d

• !•

.~S •.•off -¢ '- ,'cy:z- ,J

_, `?~•

3 ~!,
-... a . y ,(~

'1
s.

~~

r

:j
. ~~`" . .

.p r. .q. eA3,.~ c=

~::.~ ~~~ +_.

~~~ 
y: i 

~~.. . 

 

~`~. ~ ;° 
'3D.~ :} s 

        

FROM USER TO PROGRAMMER 

    

1.• 

 

If many people in your office share in daily tasks, for instance, 
entering aew records or updating database information, you can 
set up programs to guide them through these tasks. Such 
programs require less learning time for new users, and they  pro-
tect your database file. You can create menu-driven programs so 
that all users need do is follow the prompts and press a few keys 
for standard dBASE III PLUS operations, such as displaying infor-
mation, updating database files, and printing reports. 

              

~~: , 

   

You should have a general understanding of dBASE III PLUS by 
reading Learning dBASE III PLUS and Using dBASE III PLUS 
before you begin using this section. Because it is only meant to 
get you started with programming in dBASE, this section doesn't 
offer an exhaustive discussion of every dBASE programming fea-
ture. Work with this section and Using dBASE III PLUS, which 
contains an extensive reference section for all of the dBASE III 
PLUS commands and functions. 

 

How to Use 
This Section 

                

Rather than typing in commands from the dot prompt, you will 
primarily learn dBASE programming by studying a complete 
dBASE program - a checkbook management system that keeps 
track of a checking account. You can use it to balance your own 
checkbook, if you wish. 

     

.. 

            

.. 
i 

     

a 

 

°x 

                

.! 

 

•. 
~. 

~ ., ~: 

e~ 

e~~ 

      

r 

  

• :. 
~ : .; 

.'~ 

 

• •c 

 

f ~~ .' 

 

5 

 

.-~. 

PROGRAMMING WITH dBASE III PLUS 

 

.a-

      

~' 

   

j. . < J 

   

..._ .._ 

  

,PlS~:. 

 

.. ° p. 

 

o:.... ~ . 

    

o`,a Tom,=. 

   



  s. e;,~ ++~ ~ r ,-iY ~~ '~ ~~>r_ q i►.ch`Gxy~̀
~'~.~ ~y ti s.'~.~

~ 
~` ~~a`c~ 

x 
~. o- ri o"Y ~C;,.. t~ ,~ 

~~1 
'. ~'~r-•~ }~'~`~p.:ia~ ~ ~ '~ ~3'.. Y ;r'4~'n ~~ 

a ~6,w, ~~" "'yam-~'''~yL~r,~,',y •e i~vr7ra~:'~v'3- ~ ~+-~.i`v~r ~ ~ ~ f 
f„a `.,,'E a.,~ u ' ~ k ..~=5srx f ~~~"'~efsk"'cf :r Sr 's 

~.s y s 
_ d" 

i 3 ~ 

n te. .:..t } arl ~~ • '1.,1 
+ 

4T 
4 

~ ,(•~ s.<~p wI,M .~„~n ~ ~A Y'9 ..' Y 
ai: 

~~ i f.. . \' 
. c.. . 

 

~~~ 


I i.:
~ svM~i~~'i ~...L:

Y 8Ys`=Cr
; ..

^['
o

-9

P v
i'• .

INTRODUCTION

The checkbook management system is composed of a series of
files on the Sample Programs and Utilities disk. Here is a list of
these files:

.=
s .a~

x

i

3

Add.prg ~ Curson.bin
Bank.dbf Deposits.dbf
Cancl.prg Editvoid.prg
Cash.prg Help.prg .
Cbmenu.prg Maint.prg
Cbmenu2.prg Menumask.prg
Check.prg Numwords.prg
Checks.dbf Recon.dbf
Chkbook.mem Reconcil.prg
Chkmask.prg Reinit.prg
Chkno.ndx Reports.prg

Clrcash prg Tax dbf ~prg
Clydep.prg Taxcodes.prg_~
Cursoff.bin Yearend.prg _

:.~., .

~• - .. ._~i

~ ~ ... •'

... ~
.• , •.

~-',`,~

..qAi

You'll learn more about the checkbook management system in
Chapter 1. Because the following files provide most of the pro-
gramming examples in this book, you should print out these files,
following the instructions below, and refer to the printouts as you
study this book. Here they are:

.. ~-'~

Add.prg
Cancl.prg
Cbmenu.prg
Check.prg
Clrcash.prg
Clydep.prg
Reconcil.prg

~A

.~

9

• .. 's

~~

. ~ ~ ,

V. :~
-

'~44.
.

.

f

~~-.~~~~ ~ ̀• ' •• .' pl.q PROGRAMMING WITH dBASE 111 PLUS• ,:.~

~I
•~

,, 2

~-1, ~ ~' ~ ~ ..

. -
...

,
e

~~i

°'-: s

yr r" at `~ ` L.r ~ «+:~, s ►4 '•ir'• sW Ar.i>ti1' • ti +. "j { s'#~o• +r"~~: v~' ;,°, ,.~6 , a
~~~~ ~~~'~i.J~,$ ,3~.;.~'~~~w :r~.~`%~+~~' ~~'~~•:1~'~.~~'~v.d4ti~ h"~~~~'~ks~~'..,,~ ~ty~ ~a~ r ~ ~ ,,,.~33:,~ ~'~ ~'' R ~ _ r 

_fir ,Ny~ e~ y ~d R u- ~ .j~ ~.f- ti.'-~.2 ~. *'" tit, ~t -~' ~.ya; Y' , •'~'- ? .i ';l +~~3` 

 

.t~wiy,i 

- •✓ ~ 
,~:~` 

~F .~: `~.6, ~'^•ti• ' ~. .. a~ ~. ~ ~ - ~., .. 0 _ ~.a '~~ s Via„ ~{a_ 3
✓ 

~~~N,~~~Rsax 
_^~,

w t.~t~~ ~~• '. r `-•'•,. t~ -~'~~ ~s'r ~, ,'~1- 9 :u~~ t fs ~+rQ i1 .24 ~~~?'. i+~~'skY

.. ~ .~~ . 1.v]k.
f ,e i ..a .. w . r • . - ♦ • ~. x~.~ max. i:i•J.. .~~.,a. .. ~ . r t~ 1LYH1Y' !~ ,~.~'

:lsy~~r iii ~' ~
~ .,y..r;L': ~~

••R

V^.

Y

..: ~'~ ~ • ~a.. U

_ '•~i

FROM USER TO PROGRAMMER

~' ~~~

;i

You can use a~word processing program or dBASE III PLUS to
print the program files on continuous-form paper by following
these steps:

- _ ...:

1. Make a working copy of the Sample Programs and Utilities
disk. Put the original in a safe place.

2. Start dBASE III PLUS and SET DEFAULT TO the drive con-
taining the working. Sample Programs and Utilities disk. On
dual-floppy systems, the command is: SET DEFAULT TO B ~.

r

3. Turn on your printer and adjust the paper so that the top-0f-

form setting is correct. The top-0f-form is where the paper

:. .
. ,,.• ..

a

. ",

perforation is located.

4. Type at the dot prompt: TYPE Add.prg TO PRINT ~.

5. When you have printed Add.prg, repeat the previous step, sub-
stituting the correct filename, for each file in the list.

s -.._
sir O`',.
'` ~ ~ ~ - What Each

. ~ Chapter

The first three chapters of this section deal with essential pro-
gramming concepts and dBASE programming techniques. Read
these chapters in order. The rest of the section provides a break-
down of dBASE programming from a task-0rinted approach. You
can skip around as you wish~and study the topics you need in any
order. However, if you're new to programming, it's recommended
that you read the chapters in sequence.

Covers

~. .

Chapter 1 discusses basic programming concepts and how to

write programs.

Chapter 2 investigates the structure and makeup of dBASE pro-

grams.

Chapter 3 shows you how to use memory variables in programs.

Chapter 4 steps you through the Cbmenu.prg module of the check-

book management system as an example of what a main program

does. ~~

~..~

Chapter 5 introduces you to converting fields and memory vari-
ables from one type to another, such as from string to numeric.
This information is important for designing screen forms.

.- ...- ...-..: r,

:~~`~Y .N

,r .

;i

PROGRAMMING WITH dBASE 111 PLUS ~ PI-5

• . t~"~:Y...d

r
-..~- '-~ ._ ~.s~_~

. .'i.;

',
o

•

I'

. .. _;; t4.•.

a. _ i^

..'i

•a'°~'. t. a ,Y . r, o' _ .`~~ ~~
9

~r

1`'`~ Z~~.~ .b~;~y ~a~a ~-~-t-'; ;'1~'~F#' tL

_ •~'

~, ;S

:r ; ~ ~ -
>

.
i~ ;~~

.u~ -
a

' , . ~ -..

s - _

~
a

'q r~ -`~

. q e~~ •r
,-

•

.;^i4-4

.~C- ,

C

INTRODUCTION

•~ ~;•
~~

Chapter 6 shows you how to set up screen forms in your pro-

grams and how to get user input.

Chapter 7 continues the discussion of setting up screen forms by
presenting templates and ranges for filtering input. The end of the
chapter contains points to consider when designing screen forms.

Chapter 8 looks more closely at screen forms by providing many
tips for enhancing the look of your screens. It also explains for-
mat files and how to work with memo fields.

Chapter 9 discusses the important notion of error trapping and

how to check user input for correctness.

~~ .

Chapter 10 discusses the setting up of database and index files,

using several work areas at once, and retrieving information.

Chapter 11 investigates ways to use and change data in the data-

base file from your programs. It also talks about setting up rela-

tionships between work areas.

Chapter 12 takes a look at how to control printing in your pro-

(~

grams and special printing effects.

Chapter 13 discusses several aspects of housekeeping: how to
complete your programs, how to close database files and restore
the working environment, and how to handle file maintenance in
your programs. °

Chapter 14 steps you through one module program, Cancl.prg, .
from the checkbook management system as an example of how
programming tasks work together in a real-life situation.

Chapter 15 shows you ways to -test and debug your programs..

Chapter 16 investigates more advanced features, such as the use
of PROCEDURE files, parameter passing, hidden variables, and
assembly language routines. You'll also see how dBASE III PLUS
interacts with the operating system and other applications. The
end of the chapter illustrates a turnkey system.

C~ ..~

You're now ready to begin learning how to program in dBASE.

=;

~..

PROGRAMMING WITH dBASE 111 PLUS

Pl~i

~~ -

• ~+a'. , ' I ~i . ~ ''

..

.~

'::i:
~::,

. .,,

' .~ .~. .
'~;..

,.

~ ~~~~' L~~ z ~ ~L" '3T"~-cY ~y'~dT = F` 1 - F` ry .~P l V F } ay zSS =rgc """"S""'~,n~ ;}~ ,i ~ _
:.,.; t . 3 .'m~~ .,c- " a~'µti..v~.!"aa.~ - 34,4 ;~a~' d ,4

~_ ~~~~, ; c.-,t fills ~ Y s ~i ,~~r '~"~~ ~ µ
_ 3'3-B'~r'~•i u~F~ Sv ~. r~"v w _ ~: vti ~,•;.

F - ~ '. r ~ ' ^Y .Cr 4 ti -`s.. a` •. ~ •4Y . ~ ,•, s •1~''i.Ji
~~.~ d t :y ?~y ., c, t ~ - .'•i:: :. ♦~ • ~ f,. [~'L.-*F ♦ -9 a^tt

s 3tiw. r .e °.J• ~e ~ _,y~~ ss- •,1 . n4 • ~1•~''~ ~ :..- •s•'.'t .. t=z .i~ ate., r, -f~r~~ 'tt'. '2`~ -~-'•'t. ^ ~•:~'t ~c•~, is t•'•'}~ ~ *: V;r•-•:."'~-! . - ':' - ..

w
3" ~' i §~~1,. z

..~ ° _ M"•
_i

•oi

.~

;f;

c~.-

a
; . .

.~

i

Chapter 1

• :.9

PROGRAMMING IN A NUTSHELL

.~• .~

.;
a

r

a

If you're new to programming, you'll find it worth your while to
learn some general programming principles and good program-
ming techniques before actually writing dBASE programs. You
can then build your future programming efforts on this founda-
tion. Please read Chapters 1 through 3 in sequence. Each chapter
provides important information and builds upon concepts in pre-
vious chapters. If you're familiar with other programming lan-
guages, you might wish to review these first three chapters.

:. .aJ .~

.
e

•~I

F
i' .

•~•~'

. - ,.

What. ThIS ~ This chapter discusses the following:

Chapter • What programming is
COvers • The difference between programs and applications

• Things you should know, such as setting the working environ-
ment, input and output, error trapping, menus, and program
flow

_ i J

f
f

•_ The basic program flow control structures: branching, loop-

ing, and dealing with conditions .

• Some popular techniques for developing programs, including
using the top-down approach, structured programming, and
the importance of documentation

• The steps to desigr►ing programs

You should have a.working knowledge of dBASE III PLUS. Make
sure that you have your printout of the example program files
before using this book. See the Introduction for information
about printing program files. You'll also run the checkbook man-
agement program, so have yow Sample Programs and Utilities
disk handy.

Preparing for
This Chapter

.f

C_~

' e~

PROGRAMMING WITH dBASE 111 PLUS P1-1

~6•~ s_.e__

•,L •_ •

• •',

.,

CHAPTER 1

A program is the set of instructions ,and commands that tells your
computer to do specific tasks. Programming is not something
done only with. computers. In a sense., any series of instructions in
a specific order is a program. For. example, a recipe is really a
program. When you use a recipe, you follow a series of step-by-
step instructions to cook something. Each instruction is a com-
mand - for instance, add ~%: teaspoon of salt - just as each
dBASE instruction is a command.

The, difference between instructing a person to cook and program-
ming a computer to compute is that the person can choose to
alter the recipe slightly and thus bend the rules a bit. A computer
never bends its rules. It follows instructions to the letter -
whether they're correct or not.

A program must contain every instruction that you want the com-
puter to perform in a precise order. To organize and write these
instructions correctly and efficiently is what programming is all
about. Once you've written a program in dBASE, you can save it
to' the disk in a program file and run the program whenever you
wish.

A program can be a series of commands that do one basic task, or
an entire programming project tliat performs all your tasks. The
latter is often called an application program. You can •break down
the entire programming project into modules, each module per-
forming one specific task. One main program usually controls all
these modules.

So, a program can refer to the entire project or merely one modu-
lar part of it. The checkbook management system, for example, is
a series of modular programs working together.

use it crmtains Encilish words. such as IF and DO. the dBA""

yS. ,¢`y.,sh i.f~•~ ~ ^~...'~s~+;ty`~1.-~r+..~_•"! ;V•-~li.a~/,'~i!r•..~;, ,~~•!y"~.a• y; i .~'S~n; a ~•~ ~rT•' +"~w7',i
✓'Ji: .r.Hri~iNL~f~~:. ~ti'ry ,~y!~.- ~

--`~. .1•a' ~ ~~ -a. J.r:1S.aa~*aY.-'S._~~~SS!• :Z.:1.:~ a -l~s.."3~1_1-a!:.. -_ ~.j'._~, ~_.a.1_ _ _ ̂ :,_-...~+. _.:r _f_ ".~.~ar.t LSD-"'-~~r'•~•~! „ ..

., .,~.., =.. `1 •4.. .•1w

j.

. _ ;- ..

•

'4 ..~

5~~~ ~~.~

t.~. ,'r;'~~.,.

~~i '1aiw 1' ~. e...'

.,

i_.. i_`. •_ •P

., ~. •

:: , ~ y,, . ~ ~;.,
, .

ri,.,, -

.. _r . .

. ~'
v s~ ~-

..,

What Is
Programming

Programs and
Applications

0

.. .- . -~1 ., ' a

Y +r,~,~ ~. (!~
~.

~~.° SSA. ,1,~t ie~~r.
_e

~9 ~;- ...

i

- • ~ .

PROGRAMMING tN A NUTSHELL

When you tell dBASE III PLUS to CREATE a new database, the
dBASE III PLUS interpreter first compares the command's indi-
vidual letters, GR-E-A-T-E, to a table of commands. This is known
as parsing the command. If the interpreter finds an exact match
between what you typed and the commands in the table, it exo-
cutes the instructions that go with that command. If it doesn't
find an exact match, it gives you an error message. The inter-
preter can't understand an incorrect command, so you must enter
commands precisely.

-.;.

. ,~

a

i

b

You can save yourself many headaches by avoiding the four most
common programming mistakes:

• Misspelling commands

• Forgetting to separate commands from their expressions with
at least one space

• Syntax errors, that is, using a command incorrectly

• Issuing an incomplete command

Programming
Concepts

This section discusses some general concepts that apply to-dBASE
programming. These concepts are, on the whole, applicable to
other programming languages as well, although the specific com-
mands differ.

Writing and
Editing dBASE
Programs

You write a program and save it in a program file with the exten-
sion .prg. dBASE III PLUS has abuilt-in word processor designed
for creating and editing dBASE program files. It allows you to
stay in dBASE III PLUS, edit, and then run your programs.

To get into the dBASE III PLUS word processor, type MODIFY
COMMAND, followed by the filename. dBASE III PLUS automati-
cally supplies the .prg file extension for you. For example, if you
were beginning a new program file called Test.prg, the command
from the dot prompt would be MODIFY COMMAND Test.

PROGRAMMING WITH dBASE 111 PLUS P1-3

'~

.. .~

~.~.:

u~',.::

' "x
~.

. ~ •. -

CHAPTER 1

When you wish to edit an existing program file, you also use
MODIFY COMMAND with the name of the file. The editing com-
mands of dBASE III PLUS's word processor are very similar to
those of WordStar=M. When you use MODIFY COMMAND, you'll
see a menu of the most important edit commands at the top of the
screen. Press F1 to toggle the menu on or off. A complete list of
the edit commands is in the Quick Reference Guide and in Usfng
dBASE III PLUS.

When you've finished editing a program and wish to save it to
disk, press CtrlrEnd. If you don't want to save your changes, press
the Eae key and respond with Y to the prompt:
Abort editing T (Y/I1T). dBASE III PLUS reinstates the file to its
original form and returns you to the dot prompt.

You can use an_y word processor or text editor to create and edit
dBASE programs, provided that it can create an ASCII text file.
(The American. Standards Committee for Information Interchange,
ASCII, standardized the internal cedes used by your computer for
the upper case and lower case letters of the alphabet, numbers,
punctuation marks, and control characters. These standards are
known as the ASCII code.}

•

m

•

.,►

►
 ' '-•• . .

•.~ ~ ~ . .
:: .: ~i.

.,... ,

~; ~ - -

•• ..

:•.

~•'

Pty

Most popular word processors let you create text files without
formatting codes. Framework IITM permits DOS text files, while
WordStar uses the non-document mode. When using a word pro-
cessor to write dBASE programs, remember to include the .prg
extension in the filename. With Framework II, always save the file
as a DUS text. file from the Disk Menu, not as a regular
Framework II file.

Program files can contain only text. Each command is on a sepa-
rate line that ends with a ~. If you use a word processor other
than dBASE III PLUS's to write your programs, make sure that
your program text files do not contain any formatting codes, for
example, special page formats, hyphenation, and boldface print.

~~u~" ~.' ~. ~nr

PROGRAMMING WITH dBASE III PLUS

. ~~=-

::•

V..
1 ~

.r •f

. _~,
. ~ e

.,,.

" .,

• ~.

~: ~sz; ;, ~:: f a rF

t~.s,,
r~~ ~,f,~~ Fyn ~~~~ e-rt,..a~~_# _~~? ~.R tfi2~i~3S'R Z riY.~~~~fi ~+-~~7Cy~~y~~

~ . ~, - _r=a

. .a

.
1

'Y

•
.~

~S

-; 4-,.

' K~s~'^•jyQI
I~~

tin
~~:~`d~~~`,V

.~~

PROGRAMMING IN A NUTSHELL

TIP
If your computer has enough memory, you can set up the
Config.db file so that your word processor of choice is the
default word processor. Then, when you use MODIFY
COMMAND, dBASE III PLUS automatically loads your word
processor. See Using dBASE III PLUS for information about
the Config.db file.

Although a program file can be as long as you wish, the
dBASE III PLUS word processor can handle files of up to 5,000
characters, approximately 100-2001ines. Some of the files in the
checkbook management system are large. When you use MODIFY
COMMAI~ID to open a large program file, you may get the message
File too large, some data may be lost. If this happens, use another
word processor to view these files.

TIP
If you merely wish to view the contents of a program file, use
either MODIFY COMMAND or the TYPE command. When you
TYPE a file, it scrolls past you on the screen. Press Ctrl-rS to
stop the scrolling, then press any key to continue.

,:

P1-S

a

Tom•'

PROGRAMMING WITH dBASE III PLUS

;: i

•a~
,~~,._ ..

,w ~.

..S~;:~

., . ., ..

`
A.=... '_ ~ . -

~
S+a

., r ~, ~

f. '~S ~
P.~

~-~ 4F ~ w ~ "!~F ~ s ~.1 „t 9 _ :~ ti,
ar..

R `^ :.', r-' rv 7K ŝ ~ ~4+'N
4r. ~_ a'V' i ~ ~.~« ~3.. ~~~ ~~ +•,;3r°.~~ •, f. --,4 a ~ ,ice R»>~ ~~ r ,__ - rs

(a. -`qw~a '~ .~ ~ ~ ..> v "~ $~v~ .rte- F. a ~~- r }.'r .9 a'' :.2` ~ .. r ~ ~~ .r '"iv rj'`Zjm.: `~>'~ ~~~ ~ ~ _~,

,'y Ay 'rb' «~ • ;`~~~ ~. > . 'n~'r e - to ~:~ ''a• a _ y .~.(!''. - sr `ti'~ v.N ~`e c ~ ei.

,~;~'-


~~~iry'r tee' ,• 
.1 t,~_ _ __ ~ _. ._ 

  

• 

  

.c. -d 

            

CHAPTER 1 

 

l ~ ,t 

       

When you wish to run the program, issue the DO command, fol-
lowed by the name of the program file. dBASE III PLUS opens the 
program file and reads each line of the file, starting at the top of 
the file, performing each command in sequence. When it has 
reached the last command in the file, or if the user decides to can-
cel the program prematurely, dBASE III PLUS closes the program 
file and returns to the dot prompt. If the last command in a pro- 
gram file is QUIT, control returns to the operating system. 

Running the ' 

   

~~~ 


Program

;~. _
:.. -

When you work with dBASE III PLUS from the dot prompt, that
is the environment in which you are working. You have a large
number of ways to change this environment for your particular
needs. For example, if all your database and index files are on the
B drive and dBASE ffi PLUS is on the A drive, you normally use
SET DEFAULT TO B at the beginning of your session with dBASE
ffi PLUS. You would include at this point in the program other
environmental conditions, such as screen color. You'll learn how
to set the program environment in Chapter 4.

Setting Up the
Program
Environment

•' .',.

- °

(~

Every program accepts input and produces output. These are
terms for the source and destination of information, respectively.
For example, input could come from fields in a database file in_
USE, or the user could enter data from the keyboard during the
run of the program. Output could be information that updates
previous data in a database file, a listing of fields on the screen,
or a printed report.

Input and
Output

~,.• :.--

,. .

..~ .

i

..;::~ • .
.

_
:'~;

P1fi PROGRAMMING WITH dBASE 111 PLUS

~.
~S

- ~~=. ~ , a -

' -M1 . '

4 .•

S,
r:
Y,

."~'(,

.~

a

• ~:~.

• ter.

~, . ^ - ~'

. ~. ?. ~d.

' is

f

(
" S

1'

r►

• + -

., :~

s ~,

►y~ e ',mot ~~"c ff+~ . -t-y- ~e -N
mf :tib' .

°d - J

'- y' oR'_
W ~~?~ ~. ~.

•. 3 .n~~
J~~

~ti

io~

~• , .~. s

.. . w

-,~•

o - _. . - ~ 7 -. - ~_.~~ r

•

:'
e _ V'

• - .. ~+

. ~, . PROGRAMMING IN A NUTSHELL

,., .~.

,-

PROGRAM

Input Output

Database File Database File

Keyboard

Screen

Printed Report

- .G: . .

Figure 1-1 Types of input end output

Your customized program will handle input and output differ-
ently than dBASE III PLUS does from the dot prompt. The pro-
gram has to be able to deal with input and output without any
intervention on your part. You, the programmer, may not be
around-when someone else is running your program.

._

i~

Screen forms are a great way to handle input and output. For
input, screen forms act as fill-in-the-blank instructions, with
prompts and messages to guide the user. You can design screen
forms which mimic your own forms. This makes your program
more accessible to inexperienced users, because they will recog-
nize forms that they already know.

... .

D

•~M4'•.~~i r~; .~l'•

e, .~. -

L

~,. ..

"? ̀

. , •• .., PROGRAMMING WITH dBASE 111 PLUS Pt-7

*.

~~
v ; ,r~

:.~..
' ~~. ;x-4

K.

:.~.- ~. .p

~'o.,~

...'


~~~~,~ -/'+Yi.~~'-MF•'~N'k p ~yyJ ~~~~1~~~~...tiy~~"~-~~ ~°•i 
'C ~~ rrya 

w .t` s~1T~Yb* ~~rs 
... ~.... ~. ._ .. ... 

_ ) ._ 

y ~•6'~RC', j t «,4 ~;~' 

 

t 4 x.~,,.s +w ;.. ti Q.tir 
- f.'.~P c r ~ _ 

. _...:.. .. .....a .-.. .. . ~.S 

 
i~•a ~ 

l " 
`' 

   

a. to 
Y ..- 

t 
r .`.p._ai 

~~K ~y~: 

    

~ .f 

 

:~ 

   

• 

 

9':,~-. ~ 
1 %~~:'~ • 

,mss-. 
s 

. ~ i 

.~ 

. ~ _ ~. 

       

CHAPTER 1 

   

~Ap I~ul~ V a ff Y,~ ty,,... ~yy+~ '~C 
,flu ,~cLrtiT~MLCn~f~O~~tk~ S.~ tl • 'f 

~.w*'.~. ,• 
•-4. 

  

~~~ r 
NUMbErw~

q ;.

K.;4
iV

• ~ ~; : -

~ > ~"
}aa~ ~' .S.

•.~~..

Pay to~the`Order Ol',~r~', ~+,.~ ~ ~" ,~,'~ ' r ^3.~' ,~
Vtt %-. ~t~~~ ~.~ ~ ~rr~ e~,k}~' . s ~.~ ~•~. Jy+ j,; tirfF.L,~j`~' j~!'~S

~~`yA~~i~,+~~rs3'~~~~~rsZ .~~' e+1," .e`6'',is~~~d t"~~4#~%.#`~SS9...8& 01:1-Idr3=`~'.~
Y

~c
~`3_i'rJ L.'+:_ ~5. :.,̂ ,r _.~}t• ~ -~i~ _.~e~~o~ .. ̀~ f~r°r~~.₹~'~~.~+~,~+~~i

~=n~~'~i.'.i~u.c c'~b

~c •si+
r16v3~ - As~.~~` ~'

r.~M, x

Fgure 1-2 A typical screen form a!•'

.}"~",~.: ,e:: ~, .t
es • •+• •:

<<'•

You can also use screen forms to display output, show what the
user has just typed, ask for verification from the user that the
input is correct, or provide information that the user requests.
Designing screen forms is an important part of programming. You
will learn, more about them in Chapters 6, 7, and 8.

•

,.; - - -

You can store information, such~as data that the user has keyed
into an on-screen form, in temporary storage locations in the com-
puter's memory. In dBASE, these temporary storage locations are
called memory variables. Memory variables are like little cubby-
holes where you can store info=cnatiori and call up.this informa-
tion when needed with the ?, DISPLAY MEMORY, or LIST
MEMORY commands. You'll learn more about them in Chapter 3.

.. . , . .
. "<

,. _' '; - -
• ai ...

Computer programmers often refer to a concept known simply as
GIGO, which stands for garbage in/garbage out. This means that
the quality of the output is directly related to the quality of the
input. There are many ways to eliminate the GIGO problem. They
are collectively known as error-trapping routines. All well-
designed programs have provisions for error trapping.

Garbage
. In/Garbage
011t ,

r,
.

r~ ., 1L•
,

:~,'. € •,:
-i-

N. ~'~' '4:'<Fi

=. _. ..,;

„'F<': .
..r~ r. ~µ.. ~• ,_e's N.~

PROGRAMMING WITH dBASE 111 PLUS Pl$

S}";T~ K .~;" ~R°ifs
{wZ ~' M.4 M ~-

~v

~.~ 'k~'e ~s(1C

.r+,+ ~..r++}

i t ~%'r' ~ . r. -.

:~.•ri

t t
_

.

hi s..:.%,:.
"tip ~ 'ri ~:r~ ,. ,~

F _
.,.M ~ ~^

p fit, i -L2 .. _ ~~

,~~~, ~ r„

-- ~ -•--- -~-+r
+ryr.

~~

a~ _ _ aa!r,[_
Y+.-,.r tiyr ~

,,, s~~,o.xy;.."r.
~ ~ y ♦~

:: ?..?.! ~SZ

~~Y arc r`

a .. ~ . ..
• - ~

.. ...M

~!

~.~y
j4e "'iv

.
a~~

e w .
..

j~='~.`~ ~~

V -

~. ir'`~•a ~ ~'~~.' :.~~ is
•~• ~ .s

~~~ w 
.~ 

Y 

       

PROGRAMMING IN A NUTSHELL r'~ ~'~~, 

     

Remember that a computer has to have instructions for every pos-
sible situation or condition, so be sure to consider all potential 
errors that the user might make when you set up error trapping. 
For example, if you want the user to type Y or N in response~to a 
yes/no question, make sure that the program knows what to do if 
the user types another letter by mistake. You will learn more 
about error trapping in Chapter 9. 

                 

Keeping your database information correct is called maintaining 
the integrity of the database file. The program should maintain 
and safeguard the unity and accuracy of the database files. To 
achieve this, you can use memory variables to store new informa-
tion for validation before updating the database file. Also, your 
program should make frequent backups of database files. This is 
the topic of Chapter 13. 

Database 
Integrity 

                      

I 

 

Design your program so that the commands work in a logical, 
progressive order. This is known as program flow. However, if 
you want the program to repeat the same command a number of 
times, or to perform a command only if a certain condition exists, 
the step-by-step approach is impractical. You wouldn't watt to 
retype the same commands over and over, for instance, to display 
a menu on the screen every time the menu were to appear. Simi-
larly, you wouldn't want the program to evaluate a situation that 
may not occur. 

0 The Flow of 
a Program 

           

You can use control mechanisms that instruct the program to 
branch to subprograms that handle repetitive tasks, repeat a 
series of commands while a condition exists, or deal with a possi-
ble condition. These three types of control mechanisms are known 
as branching, looping, and conditions, respectively. Branching, 
looping, and conditions are all temporary changes to the basic 
program flow. They let you create programs with flexibility and 
power. 

                 

D 

             

-+ , 
., _ '. . 

,. '•' - a-

    

PROGRAMMING WITH dBASE 111 PLUS Pl-9 

     

~.9~ 

    

•i 

 

,~ 5 ! 

  

~a; 

        

f 

   

.s 

   

,~. 

          

•. .. . 

   

s. .. .. 

            

.~ 

           

• ~' 

          



    
a` ~`~ ° r 1, s 4 

F .~ ̀y. ̀ , 
.t 

o 
LJh 

.~ 

e ~{~ 
 

~f 4~. ..~ "g. 1 

~ i 
. 

~ .~ ~ 1 ~ 4` ~ a _ f~f - a - 

IG 

e i' 

w ~•v 

    

i 

 

r~ 

o ei 

    

.~ , 
` 

V ''r 

  

• 
Q 

            

n. 
• 

 

.a~Y 

              

CHAPTER 1 

          

Some kind of true or false condition governs all three basic pro- 
gramming control structures. That is why the logical operators 
.NOT., .AND., and .OR. are important for computers. They let you 
determine actions according to whether a condition'is met, true 
.T., or not met, false = .F. When programming, you will use logi-
cal operators often. Below is a brief discussion of the basic pro- 
gramming control structures. You will investigate them in more 
detail in Chapter 2. 

              

To use the recipe analogy from the beginning of the chapter again, 
suppose you're making stuffed peppers. At a certain point, the 
recipe tells you to fill each pepper with the stuffing, which is in 
another recipe. You would turn your attention away from the 
main recipe for a while to make the stuffing recipe. After you'd 
made the stuffing, you would return to where you left off in the 
main recipe and continue. This procedure, called branching, is 
also an important concept in computer programming. . 

 

Making a 
Detour 
(Branchinp~ 

           

._ 

               

You will use the branching technique a great deaf to direct the 
flow of the program according to what the user wants to do. A 
simple example of branching is a menu, which lists the choices 
available in the program. After the user has chosen a task, the 
program branches to the. instructions for that task, which are in a 
subprogram file. Wherl 'the task is completed, program flow 
returns to the program containing the main menu for another 
choice from the user. ~ . 

               

In dBASE, you issue the DO command, followed by the name of 
the subprogram, for branching. The program module which con-
tains the DO. command is the calling program. When it comes to a 
DO instruction, the computer performs the instructions at the 
branch location and, when finished, returns to the calling pro- 
gram to execute the next command in sequence. Here is a graphic 
illustration ~of branchirig: 

                    

+-

                 

.;. 

      

- •,:. 
1 

  

Y 
i. _ aa1~ 

a i;.'. f . 

    

J 

Ie ~ .~ 

    

P1-10 PROGRAMMING WITH dBASE III PLUS • 

   

a '~ 
L i , 

_ ~: L o 
4'~.:. 

., _ i 
a P 

~ /'. 

 

• o~~ ... _ 
' 

~ f .,~~ 
,f~ 

•as 

 

~t.• SR. 

    



~-

   

~alsf ► a• -.. 

         

~:~ 

     

r•.o 

            

.~ 

 

~,,v~' 

..-'I 

.~., ` '.'~' ;a .# 

  

~~ 

       

PROGRAMMING IN A NUTSHELL . 

   

i 

r 

Subprogram 

        

eturn to 
calling program 

      

Main Program Flow 

      

~~ ~
 ~-

      

Command to branch 

I to a Subprogram I 

     

figure 1-3 Branching 

  

Normal program flow is interrupted by an unconditional branch 
to a subprogram. When the subprogram is finished, program flow 
returns to the line immediately following the branch command in 
the calling program. 

       

You may often want your program to perform the same steps 
repeatedly while a given condition is true. In computer program-
ming, this is known as looping. The program repeats the same 
commands in a loop until it reaches the point where the condition 
is no longer true. It then leaves the loop and continues with the 
next instruction in the program. In dBASE, you enclose the com-
mands to be performed in a loop within a structure that begins 
with a DO WHILE command and ends with an ENDDO command. 
These two commands constitute the boundaries of the loop. 

Repeating a 
Procedure 
(Looping 

         

As an example, suppose you want to replace each unit price field 
in a database file with an inflated price. With the looping tech-
nique, you instruc"t the program to do the loop while the record 
pointer has not reached the end of the file. dBASE III PLUS goes 
to the first record in the file, performs the desired operation, 
skips to the next record, and loops back to repeat the same 
operation. 

 

D 

                   

PROGRAMMING WITH dBASE III PLUS 

  

P1-11 ~e •::.. 

           

. ', 
~~ , 

     

`, 
r:~ 

   

,~ . 

              

`:: 

 

F 

                               

~' 

          

f, 

                 



 

.~ ~' Vie. `~ '.., •-

 
~G=~¢'1C'•3~' 

~`~- y'ar?w~ ~ ~'!~'fA~r ~~ 1'~7f~ '~~ ~ ~.'~.~
v
SaaF~;~~`~, ~ ~f~ CY ~~"~'t; ~. ~2~z~ 

-'~,. 4 1 ~ P. ~ F. yd 

  

4 
~J 

• 

      

s .~ 

       

• i 

• s 

_ 
. •, 3 

  

'e• 

 

- . ~T~: 

                    

CHAPTER 1 

             

Eventually, dBASE III PLUS will reach the end of the database 
file. This is the condition which it has been told to look for, so it 
ends the loop. The program continues with the next instruction 
following the loop. Figure 1-4 shows you how a loop works. 

               

Program Flo 

             

Condition is True ~ ~ Retum to start of loop 
begin Loop commands Condition is still true 

begin Loop commands 

                                

Condition is False 

     

n i of Pro ram End Loop and co t nue rest g 

  

Figure 1~ How a loop works 

        

%y 
• S 

  

Normal program flow arrives at a condition to be tested. If the 
condition tests as true, the program performs the commands in 
the loop and continues to repeat the loop as long as the condition 
at the beginning of the loop is true. When the condition is no 
longer true, the program leaves the loop and continues with the 
command following the loop. 

                  

,;~ 
• .~ 

       

- .. 

..~ 

~e 

       

PROGRAMMING WITH dBASE 111 PLUS P1-12 

 

~~,~.~~~ .~ 
.. . ~ •~ 

    

'
,yy 
1~"H ~ 

 

'q~ 

 

v~s V 

        

~~ .'i:-, 

. , 6•b' 

.,~'..~ 
~ 

rq... 
,t" ;: '...fig;::..: . . 

'%~,ey~~ _=,a 

  

_ ..~:~ 

     

,= 

  



..~ 

            

~~ 

         

i 
.~ 
.I 

I 

 

PROGRAMMING IN A NUTSHELL 

 

ti 

      

Looping is a good technique when the condition is always predict-
able, for example, there will always be an end-of-file somewhere. 
However, you may wish to link certain instructions to conditions 
that may or may not happen. Suppose you're replacing all price 
information with an inflated price, but only for items that haven't 
sold in the last six months. There might be no records that fit this 
condition, or there might be many. 

Dealing with 
Possibilities 
(Conditions) 

                     

You can set up this type of control in two ways, depending on the 
context. If there are only two possibilities, you normally use a 
construction that begins with an IF statement and ends with an 
ENDIF. The program checks each field in the file, making replace-
ments only in those fields that conform to the condition. 

                     

If the Condition Applies 

                  

0 

     

Program Flow 

    

~~ 

  

CONDITION t t CONDITION DOES NOT APPLY 

         

Figure 1~ Conditions 

      

When it reaches the condition, the program evaluates the condi-
tion. If the condition evaluates to true, the program executes the 
commands; if not, it skips the section and goes on. 

           

If there are several possibilities, that is, amultiple-choice situa-
tion, you use a construction that begins with DO CASE and ends 
with an ENDCASE statement. In either situation, after the pro-
gram has performed the commands within the IF... ENDIF or DO 
CASE...ENDCASE construction, it continues on the line following 
ENDIF or ENDCASE. 

                               

PROGRAMMING WRH dBASE III PLUS 

 

P1-13 

       

----o--R 

                       

.~i 

      

.M1; . 
• ~ t ~' 

           

:t 

..iS 

                                        

• rt 

                     

. .. 
_,. 

  

~ _ . _ . 

                



  

.t 

             

1 

                  

~1 

               

.;,>; 

                   

r 1 
Condition Applies Condition does not Apply 

 

Fgure 1~ Multiple~choice conditions 

   

Menus 

   

   

 

 

 

 

  

 

  

 

 CHAPTER 1 

   

~_ 
0 

Z 
U 

    

,5'. 

        

Program Flow 

 

Here's .the difference between a loop and dealing with conditions. 
In a DO WHILE loop, the program continues to test the condition 
at the end of each loop to see if it should perform another loop. 
The program can't leave the loop until the condition is no longer 
true. However, when it encounters an IF...ENDIF or DO 
CASE...ENDCASE construction, the program evaluates the condi-
tion only once. 

Most dBASE programs start with a main menu, which gives the 
user a list of program choices. To see this in action, run the 
checkbook management program now. Start dBASE III PLUS and 
SET the DEFAULT drive. Make sure that the Sample Programs 
and Utilities disk containing the program is in the default drive. 
Then type: 

. DO Cbmenu .~-~ 

DO is the dBASE command that runs a program, and Cbmenu is 
the name of the main program file in the checkbook management 
system. You don't have to type the .prg extension with the DO 
command. 

 

• ; ..• 

    

.v.. . ~' 

         

~:~ ~. 

S • 

           

~ • a~, 

ar 

.~' 

 

Pt_14 PRCiGRAMMING WITH dBASE III PLUS 

~G..•i ~,-.y.1r ~• i5 ~9 

 

¢w%~L' i1 

~y 
f x..'01. '~~ 

1. ,^ 

R •' ... - ~ • ' i 
~' 

,J 

,l 

r~ 

     

7. 

  

. .4..: Y 

 

~~ 

    



• 

 

- -~ 

~~ 
1 
r 

~' 
a 
i 
s 
y 
A 
e 

11

! 

!`„ 

c 

 

S 

 

,_ ~.~r 

 

Ff$ure 1-7 The dr..ckbaok m~nsgamsM symtem maDn Hama 

  

 

- o. 

 

   

      

PROGRAMMING IN A NUTSHELL 

 

NOTE 
This book uses upper case and lower case conventions to dis-
tinguish dBASE commands, in upper case, from filenames, in 
mixed case. However, you can type commands in lower case 
to save yourself unnecessary use of the Shut key. Although 
dBASE III PLUS requires only the first four letters of a com-
mand, your programs are much easier to read when you use 
the complete command. 

After the screen clears, the first thing you see is the main menu, 
shown below: 

PROGRAMMING WITH dBASE 111 PLUS Pt-1 S 

 

~' - 

 

 

 

- .-

  

 

       

 

 

 

 

 

 

       



 
+V 

 
~*~t~~.+~"a~-~'•'~i•~ is~t :~~4a~s q".~ s̀"►~-_'-'x',~~. ~'i~wr`4~O~ti~"f3~~riJ.~~sr.~+~C*: -`Y ~~~q~s ti +:a'f:~.~i ~~-~.r'~='=`s'~,~~,~~~ ~~ 
    

. ... ..._ J~,..1 .~. t' .~_.. ...`::.n.. :%~:!-'~L~a iS~_`I •. .5.••v. aL:/il 3~ ~.•'-a:0l~~_ .-.•... _~. .'.• 

• 

 

.i. 
•sir. 

.R•. 
,. 

j. 

1 

 

. ~• ~ ~ a 

                         

CHAPTER 1 

   

D 

       

Notice that the program gives the choices for balancing a check-
book. It also provides an out (X to quit) so that the user can leave 
the program easily. Always include a way to exit your program 
and return to the dot prompt. 

        

When you choose an item from the main menu, the program 
branches to a subprogram that performs the task. The subpro- 
gram may contain even more choices in another menu, called a 
submenu. Type H now to look at the Reports submenu: 

                       

. 
~ 

   

. •. _"REPORT'S ME191 - 

              

' ~, -`~ - 2-'Hank Deposits - ~ -

 

- ," ,.. .~ 3~- lndividaal Deposits. ~ ' ; h 
. • - ~ 4,- Cash~Nithdrauals _ . -

 

•.... ---- select :g ~ - 

     

~ '~_r 

   

.~ 

              

Figure 1~ The Report submenu of the checkbook management system 

       

When you are finished, press 0 to return to the main menu. 

   

The use of a main menu and submenus illustrates an important 
dBASE programming concept: one entry, one exit. That is, there is 
only one way to get to a submodule through the main menu, and 
there is only one exit returning to the main menu. In general, the 
main, or calling, program contains the main menu and governs all 
the other subprograms. 

 

One Entry, 
One Exit 

                   

- .t•. 

       

Take a look at the diagram of the checkbook management system, 
which is on the next page. There are subprograms that branch 
from the Cbmenu.prg file. Below these are other subprograms, 
such as Chkmask.prg, which branch from some of the subpro- 
grams above them. All subprograms return to their calling pro- 
gram, and the only way that the user can exit correctly from the 
entire program is through the main menu. This is tight control of 
program flow. 

                                    

.:~ , 

   

':~:. .. 

    

~. 

    

PRCtGRAMMING WITH dBASE III PLUS • . _,~'. 
~;. 

. r '-• e- a -~^ _ ♦ _Sw,-•. ~,.+" ..+t ,,M: C=1u .5., i ` Fes• '~ 
~~,~ -~ r 

. ~ . Ss+~ + `s ':~w y~~' ~!: f3•.r4• ~'.•r• *~+ ~'~ ~ ',ti~~~~'W~'~,t•s:~►_^,~.":~."1*if~"'fp, `~~''" ~i'i'""`,;6'SF ~'` - _ ~ 

.. -.'ri~~ ._ ., .. _, . ....".'' a -•. .. _ ,_a " .. .... •' J - • - . C-- . _. _. _ ...•r.~_ . _ 

 

r. •• ' 

  

-~- 

l 

.' 

^,ti . ~ 



 

_,,.:,! C; ~1ir_ ~.~, .r ~.t:. ~:~`s.,t.'s'y.,'.:r. _M~ a~Ei,.~s F;a 
' -•. •~ '-_ -.~:~,~,'~` :4-." -tis_~~t~•~ "gyp. 

ri; *. ,, ,l 
~Y~ 

 
i~a ~ '~' 3+'4 Nis. ~l.Rr ~'"~• I.. tom• 1S„ 't+t ~5~#1 

. 
4w 

• - ,t. 

 

_' .. .__. _~ ... ........ __.  r. 

     

$ "_ ̂•' 
• r` 

 

0 

 

v :'~' -~ 
.. - .. -~ 

1l' - i'..t -• ~' h t 

 

s 

'L~~~~ 

~C 

                

PROGRAMMING IN A NUTSHELL 

     

~4 

   

a 
• 

     

Cbmenu Menumask 

  

Clyde 

 

Editvoid Check Cash Clrcash Reconcil 

      

Chkmask Numwords Cleanup Yearend Rprtpro 

 

Taxcodes Reinit 

   

• Reporta2 Reporta4 Reportl4 Printer 

   

Reportal Reporta3 Re••rta5 Report24 

   

;; ., 

;;,~r: 
~*~-'' 
.Y' 

~ •' 

` 

6. r'~ „~ :.r ' 
o : r i~..'t 

. ~~~',,. ~'' 

            

PROGRAMMING WITH dBASE 111 PLUS 

Designing and 
Writing the 
Program 

Writing a program with the commands that the computer will 
understand is also known, as coding the program. In Chapters 2 
through 14, you'll learn how to code a dBASE program. This sec-
tion provides some basic steps to follow: 

"Is that all there is to programming?" you may ask. Essentially, 
yes; the basic concepts are simple. However, just as you can't 
expect to create a culinary masterpiece merely by writing a recipe 
with the steps in the correct order, you can't write a program 
using only branching, looping, and conditions. You will find that 
the fine points of programming will take you longer to master. 

Each box represents a program module in a separate program 
file. Although not shown here, each file ends with the extension .prg. Notice how the subprograms branch from the main 
program, Cbmenu. 

Fgure 1-9 Diagram of the checkbook management system 

  

~b=1r,.Jf .tn ..~ Wit. 
~' g'~t f~. •~ c ~' .~!~. ~ ': L ~~'.•{;" ~ ~?. `~ . 

~awev~`~~r. a:.,:bvkA._ ttR~r woNt~R ' 3rP+ex~l.vet^'aEwv 4aa~C_.r3..+ii:_.3Ta' 
4 ~L`s~M`'i.a~Ei ;a pM~~.~;-i 3'~ _t "t''~ ,~ ~~:` ♦ i ~ a ' f 1 ~ 1'S~ ~S "s  -

 

q'~sti~' 

x .. ~ J P f a4 Y. 

 



  
~~ 

.. Ye;:=;... rS•%s~ ; i 
  

J 
:r~`h~ M 

f M 

  

r_` 
~ 

z 

 

S 
• ~ ... 

i • . . ~. a .. • - 

  

.:~a~,  a.a  _d- rota. ^__ ~ 

         

^R e 

     

~~~ bl P~ 
`: Wit. c a ~ a

t

+,~ -r
fn~ ~

CHAPTER 1

Never underestimate the importance of involving users in the
design phase. When you've finished the program, you may have
other projects, but the users continue to work with your program.
If they have participated in the design phase, there is a better
chance that the program will meet their needs.

Involve the
User in the
Design Phase

Some questions to ask potential users are:

. • What do you want the program to do?

• Can the program meet your requirements?

• How do you want the program to work?

• Should the program contain on-line help screens?

Some questions you should resolve for yourself before starting to
write the program are:

• Can you expand or enhance the program easily?

• How should you set up the database file or files?

• Where will the program get its input, from the keyboard or

from database files?

• Will the program have to filter or change the input and

output? ~ _

• What kind of screen forms or printed reports are needed?

You must decide exactly what your program is to do before you
begin. Start with the kind of output you need, then decide how
you want the program to produce this output. For example, if
your program is to generate daily, monthly, and yearly reports,
decide what information is to be in these reports and how this
information will appear in print.

...

.~

t

•.-

PROGRAMMING WITH dBASE 111 PLUS

P1-18

._
` ~~.

Y , o ~, o V ~~ ~~.
C '`'

e

. 7:

. ~

,.7

V

r
•"

~
• ~ ''

~•

1..

•
1~sw~w

.~'

~•.

!'. _•

~~

.., ~
-`w

~~

PROGRAMMING IN A NUTSHELL

f-

An important programming concept to remember is the top-down
approach. You start with the general and gradually work down to
the specifics. After you've identified exactly what the program
does, write out the program design in English to clarify its overall
structure. Don't worry about the actual code yet. It's more impor-
tant to determine the correct steps in their proper order. For
example, if you want to write a program that displays a record
from a database file, you might write an outline like this one:

To~rpown
Program
Design

1. Set up the working environment.

2. Tell the user what the program does.

3. Get the name of the database and any related files, such as
index files.

4. Open the database and related files.

5. Determine what record to display.

6. Determine what fields to display.

7. Display the desired fields in the record.

8. Ask if the user wants to display another record.

9. If so, repeat steps 5 through 7 above.

O

10.If not, close the database files and return to the dot prompt.

After deciding the overall program flow, identify the basic activi-
ties that the program performs. Then, gradually break each gen-
eral activity into smaller and smaller units, or modules, like the
subsections of a general outline. Each module should ultimately
perform one specific task in the program. Think in terms of the
smallest possible unit.

Some programmers use flow charts to organize a programming
project visually. A flow chart is a diagram of how the various
modules in a program interrelate. It's similar to a family tree.
The flow chart doesn't have to be too elaborate; even a simple dia-
gram will help clarify the program structure. Figure 1-7, the dia-
gram of the checkbook management system, is a case in point.

D

PROGRAMMING WITH dBASE 111 PLUS P1-19

~'~. ~ .
'Lwr

-_, _;, .,•.~,

:~
t

_►
-.

.
~t

- • ~.

+
'7


~~~ 

 

• ~ ~ _ ' 

                      



~-~~~ ~ VG`~`y . ~'~i~ ~L~~~S~,11 ~~."~!~1~!.~ ~ ~~T~~3~~~~a ~~'F~~~i'~'~"i~ ~̀`''~~y ~• 

 

~' 
~` 

_ ti •: fir 
~ ti-- 

.•. 

7•.3. _s ~ • :,r1y..'Ys ice:- r{~'(':.f `/a.R 
, 

.~•-i.~ it «+tea lti ~_ 

~~ 

 

, ,' 1 ~ Y /~ 

•~' 

 

, 
l 

, ~ ~ 

S • 

~• r •~ 

. ~.•• •r,•.7~~-~ 

JL-: t..e . ~b~~+L i 
' . , s'• - 

 

• 

                

CHAPTER 1 

            

Once you have divided a program's individual tasks into distinct 
units, you can write the program code for each unit separately: 
Because you are only writing one basic task at a time, it's much 
easier to write a program in this fashion. Breaking an entire pro- 
gramming project into logical units is called structured program-
ming, or the modular approach. You outline, write, and test each 
modular unit individually. Once you have finished all the units, 
you can fit them together within the overall program design. 

                              

GENERAL PROGRAM OUTLINE 

                      

Logical Subdivisions 
of Program into 
Activities. 

 

D 

  

Activity 

     

• 

       

Modules for 
Specific Tasks. 

           

Fgure 1-10 The top~down approach to program design 

  

Begin with a general project outline, then gradually break it down 
into activities that logically go together. Finally, divide these into 
smaller and smaller tasks, eventually ending with individual mod-
ules that handle specific tasks. As illustrated, some specific task 
modules may be used in several different activities. 

          

..• 

      

Once you've completed the breakdown of each module, write out 
what the module does in a combination of English and program 
code. This technique is known as pseudocoding. It allows you to 
clarify the necessary operations and the coding for each unit by 
bringing in some of the actual program commands and syntax. 
Because dBASE commands are English verbs, you actually are 
doing part of the real coding at the pseudocode stage. 

Meet the 
Programming 
Language 
Halfway 

      

D 

                                     

PROGRAMMING WITH dBASE 111 PLUS P1-20 

     

6 -h- 

• •. 

   

= ~`~ 
.. r'-. 

~'L~: •. 

 

C C'y'i -~~~" 

'~f ~• . 

          

l; f, •` 

  

... 
a 

~~ ,• ~ ,≥ti 
. ~^ 

   

t ~t 

 

'~, 

. 

                          

. ~~r. 

    

~• 
• 

• t _ 
• ~- ~~ 

• _. _ _w._ . _.. _ ~_ .~~. ~. 

 

` i 

                

• ._ _ . \ 

 



.{z~ z~ * t 
. ~ 'fin '~, ~ +t' ''Q°'0~; ~~,,~ -~ ,~~ .{~i +~~'~ "` t'~`-~"r.,""' ~`~ ~i " J"' ~"~0~~ C 1""~'c~ r~ -~- 

~fltiv_~~i~i . iA~.r '7~+I~t~.12w~:'.`=~~
.~;`~~) 

~ 
~~•

,'., ~s Y~ { yi~1't~Tf~ A.. ~ ~~. `,;.. t .'-"- i. :~Aia,y ~ •.. Y4~e K•) '~a..t ~'4~ ~, ,~~~ ~S„~t - :•~ 

.Pi51•, 
it r -- 1 ~' i 

- 
1 'r.?A_ {.~1 f~u ~r ~~.~.M1,~Y-.. , ~,..y •'..

- I,.,i;~r ~i-~!` N' ~.~i lN- ..~ _•~_ 
. „t1r ,,. 

• ` i '• ' ~ - ~'~ .'. ~-` ' ,.`".. • •~ ill \,. ••~' •~.~. ..~ •.~ 
• ,•'. ~. '1: •_ 

_ 
.. 

.. . ". .... w ....s ... ... .. .ti. :ti ... .r. '. ~ .o vim. yii-::. L... ..~t.....y _.... ..._i...a CCr.:+.~''~•w' f~.' 1Vd 

.:- i ♦ 1 I 
' ~' .:~ 

.1• ~. . 

~.. 

.,'-

 

I'f 

i. t. • 

~~ . ~. 

                      

PROGRAMMING IN A NUTSHELL 

  

i 
..-~... 

1 

  

.~ 

 

Here's an example of a dBASE program module written in 
pseudocode. The dBASE commands are in upper case. Don't 
worry if you haven't learned some of these commands yet; just 

  

I 
f 

i 
read them as English words. What does this module do? 

    

~•.~.~m:R~--S-• ~,~~ ,.,. _.. r ~.--R» ~., , . - ~ s mac. a . ~. 
w~C.IEARF;the {screen „'~'x~~ 

X44' .. •.:'.~ ....~`s. ~ r~ y Y.: '+r ..~: 
~~USEaheldate_base file'Naies:dbf,.rhich,~s}INOEXedyON~ the. 
~;~}~~'l'ast,•nabe-'field •TO the~index:.fi le last'.ndx" - _ .'-'- . - .• 
x;;,Shorrase~een'"forb to•ask~:for".inforeation`.• -' . ~~~-..~~,;~ 
-'++=NO~s~CeeetYNi~Eb-the use~'i~rants.te`_find's nsen ...: - •- - 

             

i 

   

~FIND~~the~naae~in=the~database~f~le ~ ~ ,~ ~ .' rt~,r,` ~'~~ 
:~~~IF~the:naae;,~s=foundF~'T~Y~Y ~' '~`~ s~t..~. ~ ,~ .~-. 
'~-3,~~°i~DISPIAY~tAe„record~~ ~ ~Y ~ ;-~~'~~at ~ ~'~' `%.,`~ r; f• '~ .=~ 

~:.r , 
.ELSEx~~ '~' S-,'.•~̀,i"• 

~, 
. ~ ''_ .t 

4 fCYi ~` i +.ts ~ d 

.~,~~}~6~ve,,the user~a ■essage~thet theinaae ras,not ~1_found •r 
4 -•END. ofF,the IF1"const~'uct~on~ ;~:r*, ? i r 

~:~t~~'t~'Ask~ the-user if':anothe~`:`nabe:~is.desi~ed .." = ' 
~~.r~,;:a.IF~,tiie user.; saysyes~ ~r'~~.,~,:.:.:;• .. -_..: s'::_~: ~.. 

fir:*tee ~aL00P='back to the start of the~:DO clause and repeat ~t 

tw- :{ ; ELSE 3.Y. • .lc~~ 4. M W3~- y.~ ~.;F r a~ ~ ta. 5 
k 

`_~ ~ ,a 

~`"`~~+a ;~EXIT~the"loop;and~cont~nue nth- the..restrof~,,the-:progrei' 
~-~'' ~''EMO'ofwthe`?IFWconstruct~on~.,~~z>~~,~} -x ~, ~A1 ~~7 _ •~ 
',END of the~DO~YNILE loop.~,,~~~- '~'z„ ~f~~` t`~ z~•~~'~'~r~~,. ~..:r~~ 

:,.t~q~'~:....•ac:~L.~~~SG:uav... .. ~. ,.r : :.a:.u1`si~.Kw'R.•'.r:~.~e..i wa`.t~e~~r.` ''fir 

               

• 

 

.; 
/ ~. 

                                      

Notice that indentations in the example clarify which lines go 
together. After you've written the program in pseudocode, you've 
written part of the real code already. When you have checked the 
pseudocode and are ready to write the program, it won't take long 
to convert the lines into correct dBASE instructions. 

              

.: Besides simplifying a complex project, top-down and structured 
programming techniques allow you to reuse modules whenever 
you need them. You can even keep an entire library of modular 
routines at your service. Programmers often refer to this as a tool 

- kit. . 

Don't 
Reinvent the 
Wheel 

 

-,~ 
.: ~ .}~ 

   

• 
-,~ 

. .,{ 
~~ 

 

' . 

  

For example, if you write a module to display certain field names, 
-you may find that you can use this module in many different pro- ". 
grams. Once the module is written and tested, you can use it 
again and again. 

  

~•¢.. :C 

... ' . 
. ~ ,, 

' - .. 
a - _~ 

<<•~ a ,, . .~ 

'_ ~' • •~ 

            

PROGRAMMING WITH dBASE 111 PLUS 
.' 

. P1 21 

       

.., ;~ '. - 

         

' .~ 

                                        



„ ~ • c C 
,~ ~ FSy - 

-~~ v~y.. ... ~c •~. , ~. i 

.~. . ~ 

r 

~~ "~~           

r .~ 
%`v ", 

 

~~ 

        

a 

      

~ :;. 

       

.: 4ti:.. 
e 

   

^~~ ~ ~.~ 
~. ~. 

,V 

,,- ., 
_ a4-

         

CHAPTER 1 

     

Documentation of program code and of entire programs is an 
extremely important part of program development. It's beneficial 
to supply adequate comments to yourself in the program code 
that describe what each step does. In dBASE, a comment line 
begins with the word NOTE or an asterisk (*). The 
dBASE III PLUS interpreter disregards comment lines when you 
run the program. Here are some sample comment lines: 

Document 
Your Efforts 

                 

This tine tells you so~ethiny 
NOTE This tine tells you so~ething 

  

You cannot place a dBASE command after a comment on the 
same line, but you can supply a comment following a command 
by preceding the comment with &&. For example: 

     

DO Accounts 

  

i6 pun the escountin0 propre■ nodule 

    

J 

         

NOTE 
The && must be separated by at least one space from the 
actual command section on the line. 

      

The checkbook management programs contain extensive com-
ments about what the program is doing at each step of the way. 
Take a look at your printout of any program file to see what kind 
of information these comments contain. In addition, for every 
example of programming code mentioned in this book, there is a 
note in the program file indicating the chapter that describes the 
example. 

                     

Comments help to make the logic of your program code easier to 
follow. Later, you or someone else may need to modify the pro- 
gram code, or check for problems or bugs, and your original com-
ments will be invaluable: 

                     

.~ 

         

Pt-22 PROGRAMMING WITH dBASE 111 PLUS 

                                

r 

 



~ ; • " a„{ -

 

,~ c e ~~~. 

'§: ~• 
 

~~~~' 
1 -~i~

•~<""~~
t~•Fc ~.

L

e .~'

. .~ . ..~ .._. - 5c]I'. ..
.. _..

•~ •~ at Yam,
L. ~ ;~ ~9

..
F ~' _ . _..

...

:~..

d;
. •s

~y,

I.°F '~ o..
•i

P
i.. •. i

J

1

S

PROGRAMMING IN A NUTSHELL

. .

You should also document the entire programming project as you
go along. Tell the user what the program will do, how it will do it,
and whether your work is on schedule. When the program is fin-
ished, you can edit the documentation for a user's manual or ref-
erence guide to the program.

{~

5P

S

Designing your program in modules allows you to expand it more
easily later. For example, you can increase the number of choices
in the main menu without disrupting the rest of the program. Just
rewrite the menu program module, adding the new subprograms.
Allow for future growth of all major programming projects right
from the start. If users like your program, chances are they'll
want it to do more tasks later.

Allow for
Future
Program
Expansion

~~

~, ~ ~• ..

After you've written a module, test it thoroughly before you com-
bine it with other modules into a complete program. This method
isolates problems where they occur. When testing, try to crash
the program - that is, do everything to make it fail. If you don't
find any problems, your program may be fine. If you do find
problems, fix them by debugging the program. Chapter 15
discusses how to test and debug your programs.

Test and Test
Again

•

Even the most well-tested programs show problems, often months
after the program is in use. When the entire program is complete,
test it, and then test it again and again, until it seems to work cor-
rectly. Also, have others test it to see if they come up with prob-

lems that you've missed.

Put the Pieces
Together

When all the individual modules are completed, reverse the top-
down approach by gradually piecing together the modules within
the overall program design.. The end result will be your completed
program.

r •~

. ~,.

. ay

--~ . .

.r -

f •
4

PROGRAMMING WITH dBASE 111 PLUS P1-23
-4 ,

J

~:

nw , -

P

' '~CI.~~. , ,. ,.. ~ ~_..

V,'~• ~" 1iY•

w ~. . ~, • .
* ti

~>


~~~ y ~R• .t.. 

    



~.~~.;~ ,mss, ~~.~,~:~'e 
~r... 

 
~~ 

- 'Y .s7.~~Ly~~' r: 
:..a~w, 

_ _..t. 

~~^~s~~-°A* 
ci1~~A 

;. 

~~' ^,p'ti[i~ .rte ~ ~",`~~'-v 7iy 

~'''. 

_ .. 
.F 

.! ~ 
.. • .. 

l 

  
~3 "v,_ Tx.~~ Y

3 
~~ 

<. ~, y ~~ 
ns 

.r'r , -~-M''~. 

s•' 

   

1 a 
6.. • ~.\~~ • .Qf~ 

o _ - - ' ` 

   

~* a 
..' 

~ .. 
-Si 

~. ~ 
.1 

_ •~~a'. 

        

L 

        

c.a 
\~ r 

  

I 
.g>t~• 

     

5 .. n 

                     

CHAPTER 1 

        

You now know some basic programming concepts and practices. Summary: The 
Steps tO 
program 

     

You also know the steps to program development: 

   

1. Determine what the program is to do. 

  

®evelopment 2. Using the top-down approach, determine the general flow of 
the program. Divide the program into logical units, or mod-
ules, and continue breaking down the units until each module 
~dces only one specific task. Diagram your program design, if 
you wish. ` 

3. Write each module separately; first in English, then in pseudo- 
code, finally in dBASE code. 

                  

4. Document the project and your coding as you go along, not 
when you're finished. 

5. Test each module independently of the others before assem-
bling the final program: 

6. Test and debug the final program thoroughly. . 

         

0 

                                            

. ~ ofi 

        

.j 

             

:~' - 

         

. , 

                

PROGRAMMING WITH dBASE III PLUS P1-24 

       

s y. 
•~.. 

  

- L ~ ~• ti 
:V'n .. 

  

. ~ ;h.~ _ 

.* 

'.. .a 
~ 

~3. 

  

-.i .►" 

a s,. .. 

- .• .'.. 

. 

   



  
nL,•;w 

 
` R'1 

       -- ; . 
            

. .• 

    

Chapter 2 

     
~~~} _ .n  

r

~_ ,. ~~.

~}'9
t~

~y

dBASE PROGRAM STRUCTURE AND FLOW
l1

In the previous chapter, you looked at program flow and the basic
program control structures in brief. You can now investigate
examples of dBASE program control in more depth. You should
read this chapter in conjunction with the next, which continues
the discussion of essential dBASE programming concepts.

;. a

A

This chapter discusses the following: What This
Chapter
Covers

• The general makeup of dBASE programs, including the pre-
amble, setup area, and body of the program, and how dBASE
handles input and output

• How to use the four dBASE program flow constructions: DO,

DO WHILE...ENDDO, IF...ENDIF, and DO CASE...ENDCASE

• How to nest constructions

• How to use the LOOP and EXIT commands

You should have a working knowledge of dBASE III PLUS before
beginning this chapter. If you are new to programming, first read
Chapter 1.

Preparing for
This Chapter

i

,.

c

In general, a dBASE program has certain well-defined sections. The Makeup
of a dBASE
Program

Below is a brief overview of them.

The first section, the program header or preamble, contains infor-
mation on the program's name, what it does, who wrote it, and an
editing history. The editing history reveals when writing began

The Preamble

and the last edit occurred.

Look at the example listing for any module of the checkbook man-
agement system to see the type of information included in the
program header. Although there is no mandatory format for the
program preamble, the format in the example program is the one
that Ashton-Tate's own staff uses and recommends.

{

.~.
PROGRAMMING WITH dBASE III PLUS P2-1

~~

~.-

-~

r s
' ' ~°~'

.-

r F''r
~

r

` -, R•'
. • n•~ ~ e

e • 4

~~-:~~i';n.~ y' ,~„`~..':~ir-i'~i~-`i`'~~',T~6~~ r .~„~. .~'-'~~:;i'~7~~~ l~l,~ji ..~ .- i~>~.1R T+r'vq~,'►=fir
.~ -'Y- '!mss/t. '~ ,Y _-i r

- - .~.

~ • • Y ~ .,

- + ~~•
• • ~ • (~

- - ,• 1 -

.
. -

~~ I S

+) . -

. t` _~ -

CHAPTER 2

A general setup area follows the preamble. This section deter- -
mines the operating environment for the program. There are sev-
eral important defaults for program files which the SET com-
mands establish. A detailed discussion of these settings is in
Chapter 4. The calling program generally sets the working envi-
ronment, although occasionally a different setting is needed in a
particular subprogram. Take a look at your printout of the
Cbmenu.prg file. The setup area in this program starts with the
command SET TALK OFF.

The Setup
Area

You might also need to specify the database relationships, that is,
what database and index files the program uses, and initialize
memory variables to store program input and output. Although
you haven't had much experience with memory variables yet, in
the next chapter you'll learn how important they are to effective
dBASE programming.

D The body of the program contains commands that do the work of
the program, such as getting input from the user, displaying
information, changing database information, and producing out-
put. Remember that programming gives you control mechanisms
to interrupt program flow and call other program modules. You
will investigate dBASE's program control commands in the fol-
lowing section.

The Body of
the Program

Every program requires some housekeeping. For instance, the
program needs to make sure that all database files are properly
closed to maintain database integrity. It must ensure that the
standard defaults are reinstated before control returns at the end
of the program to the dot prompt or operating system. House-
keeping is the subject of Chapter 13.

The Closing
Section

When you use RETURN in the main program module, it ends the
program and returns you to the dot prompt, or the next highest
level of program control. RETURN, however, does not close any
database files USEd in the program. If you don't close the files
USEd in your program, you risk corruption of your data. The only
commands that close database files are CLOSE DATABASES,
CLEAR ALL, USE, and QUIT. If you use QUIT, not only do you
end the program and close database files in USE, but you also
leave dBASE III PLUS and return to the operating system.

Leaving the
Program

P2-2 PROGRAMMING WITH dBASE III PLUS

. -• ..v . _ .

- -. v ~ . .:Z.~::- , ;-

r

!:~

,t:
e1,

 .~ R .~.

y~~~

~ e'

. . •_
~e .~~. -

J.

4

~.

- ~" ,• ,

L'°~'

D

o~

i

F

~~ a

t

~:

Main Program Fiow

1

d

Subprogram

calling program

RETURN

Return to

-~

to a Si ̀ nary
ranch Command to b

DO

"~~tOGRA ~ ~'

y

Ja

s

 n'. ~
Y

e.`T 1J~~ mil ~' A •f~ v,r

".. ~ i ~

~~ • ~

~: ~~ ~ ~j

~~~til 

- ~L~. 

~~ e6~::4 °`~ 
e +' y+ 

~~, . 

  

9 

i S .tl wr~~y ~! 
!„ . 

' ~ ~. 

       

~ .~; 

  

dBASE PROGRAM STRUCTURE AND FLOW 

In the previous chapter, you saw that there were several ways to 
control program flow, and you learned the dBASE commands for 
branching, looping, and conditions. In this section, you will inves-
tigate these commands in more depth. 

. dBASE 
Program Flow 

Do 
(Branching 

 

Besides using DO to run a program from the dot prompt, you also 
use the DO command from within a program to run a subpro- 
gram. The only way you can have a program branch to a subpro- 
gram is with DO, which represents an unconditional branch to the 
subprogram. When the subprogram is finished, the RETURN com-
mand, usually the last line in the subprogram, returns control to 
the calling program. The calling program then continues on the 
line following the DO command. 

 



  

o 
•. i 

                    

D 

e 

• 

     

.t 

 

DO WHILE...ENDD0 is the only dBASE construction for looping, 
repeating a series of actions while a condition is true. You can 
understand a DO WHILE...ENDD0 loop as meaning DO such-and-
such anaction or another program WHILE such-and-such a condi-
tion is true. The DO WHILE command starts the loop, which con-
tinues until the condition is no longer true. 

If you didn't tell the program where the loop ends, 
dBASE III PLUS would continue to repeat the commands follow-
ing DO WHILE indefinitely until you turned off the machine. So, 
you must mark the end of every DO WHILE loop with an ENDD0 
command. When the condition in the DO WHILE command is no 
longer true, the program can leave the loop and continue with the 
next command following ENDD0. 

        

..' . 

       
~:-

  

•s.. ,r 

        

r - ' 

  

`• 

 

,, ~ _ . • 
•a i~ 

 

6 

        

w i' =~.,• 

    

CHAPTER 2 

 

Listname is a separate program file, Listname.prg, which lists the 
names in the database file, Names.dbf. When this subprogram is 
finished, the RETURN command on the last line of Listname.prg 
sends program flow back to the next command in the calling pro- 
gram, which then branches again to another program called 
Newname.prg. 

TIP 
The RETURN TO MASTER command returns program con-
trol to the main, or top-level, program, no matter how many 
subprograms have been called. It's a good and quick way to 
bypass stepping back through several subprograms to get to 
the main program. 

- DO WHILE... 
- ENDDO 

(Looping 

    

- _ 
' ry;•• . 

.-'. 
,a' 

- 
•i• • 

e: ~ ~ ; c 

   

P2~ PROGRAMMING WITH dBASE 111 PLUS 

  

.~ • . 

  

• •;~+.~•.v -;.A~~}~4. ~•1'G~•f ~c •pry +~y1 ~ i .i ~~=, y Y • ~~•x~,~ .,~ s 
_ „•.~ t. ,• .. .:~,.t,ny~. stia~ ~t• a. .~ ti ~, _:~ ~. r:f: ...~.. `r.,'C~'`r"~"•".:a;;•.~.;;!` - ;,;;t', ,s -. -

 

r 
.~.:. .JCf .. , ~ X. .y,.~..4 ~.. ~.. 'sib. C r~eC7 •; r,~p~- _ . 

?~ .` ~.e dip:. ~' ~'4'til" _ ~'f; •+.. , ~, ~ i:. •. i : ~~i.'- '. •.+ . ~ .~ 't' R's.. ~' 
. Lai':ur~tllp'!~ ~.~w,~. _ .,.r.. a .~t~~~~_~°'~-~`\_ _~ `l!,. •d'• ~?~.1 "-f _~~₹t '?~'~•~.p~~•~~~.isa"...z'~_,_-_~~'~"•,~i;S::.d3~G.► _ r. 

 



~4~~~ 

~F '` ~ Y ~} ! 

~:-
 

~.'iyr. .^ r~ J,p..,f4~ it+.~j'rt', a'.~`6~14►.,~t '. 
~1y ''~Kre~~ ~ ` 'fir'-"w'~`~ 

• .. ..•. ~`1:.. .!A.~.i 

►~ r ~'L^ 

A ~. .. fvr •c#1, 

  

•i 

Ids 

Wit•"_5~?': :'~ ...~~'5~.'~i-:L ~~,z 
• •.r~~~ 

N .y 

             

'•n 

  

`• • 

              

dBASE PROGRAM STRUCTURE AND FLOW 

                          

,~.,~ 
Program Flo 

t. 
'~ 

-~ /~ 

                       

DO WHILE 

Condition is True Return to start of loop ` 
Sin Loop commands ~ Condition is still true 

begin Loop commands 

              

_" 

   

~~, 
~~ 

  

~'• 

                

r..~ . 

        

ENDDO 

    

t Condition is False ~ ~ . 

     

End Loop and continue rest of Program . 
' Fgure 2-2 Using DO WHILE...ENDDO br looping ';;' 

          

~;. ~, • . 

• ..~ `~-

   

...,. , 
_, .'.2 

N ,. 
-{~ . 

                        

PROGRAMMING WITH dBASE III. PLUS 

        

,~ 

^Y,~~~..r,,.~. 

~~t4'~~~~}~~?1,ti 

„a`r~~~s".a ~~. ~w`"~: 

 

~t' 

 

'SLY' 

   



          

..~? 
.s 

    

• ..•'w • ✓. L ~•..•' 
. ~ . o 

.j . 

                                  

CHAPTER 2 

    

~' 

                  

Note the use of the relational operator < >, not equal to, and the 

    

logical operator .NOT., as well as the end-of-file function, E0F(). 

            

Don't confuse DO WHILE...ENDD0 with DO; they are different 
commands. DO forces an unconditional branching to another pro- 
gram. DO WHILE...ENDD0 makes the program loop as long as 
the condition stated in the DO WHILE command evaluates as 
true. 

                

Here is a simple and complete DO WHILE...ENDD0 loop. Note 

      

that the first command is outside the loop and not part of it: 

        

°'Position the po~nter~a~t~the ~beg~nn ng'of  the~fi~le~ ~"'~~ 
60 -TOP. y~~W ~'~+~ 'w ~~'r~`~L~a~y- r''~~,~rv̀ 1~.~"•4``,~i." «~.• ~ r~~., ~~.'~,k '3!~, 

~* Oo.•rhi texthe,record pointer hasn!.t~,reached ~~~~`~ ~y~~~ 
the~end,~of~the;,fiEe:~~~ ~ ~~~~' fix. 

~CO'YNILE ;.NOT ;EOF,()~~~~~ ~~:~'`~,~ ~*,~,.',~~",'~,,~~^~ .,~~6~c~'! 
~`~*.'Shor`the~:first naae ~~ddlearmt~al; 3 last'naee'f~elds~~ 
.y "=3:OISPLAY~First,~M~ddle;" last ~~~~ ~ ~'t "~ ~; :~xr~ 

x~w"~r ~s ~`~`"~'* ~.Sk~ptothe~next record 
a
~
~

,~,'~~"'~ ~'; ~ *"~~ t~ 
SKIP ~ ~' ~' 

r 
''ENDDO :ya&'Eed of,: 00  ~YIIILE~;loop~~ ;z-~4 ~ '~ ' .,, ~~ ~r~°., 

.w ~. ~., __ ~ .. 4..: Z  _,  -fs - ~ ,~• .,~-- .. ~. Sty '.yz• ' t •. v.~'~'`§-- - • ' .r.S.•.;,.'"i 

                                      

• 

r-_ 

4 Li 

                        

This loop DISPLAYs the first name, middle initial, and last name 
field for each record in the database. It is very similar to issuing 
the command DISPLAY ALL First, Middle, Last from the dot 
prompt. When the record pointer reaches the end of the database 
file, the loop ends. 

                                  

Indentations help you distinguish what sections go with which 
constructions. It is standard dBASE programming practice to use 
three spaces for each indentation. The indentations don't affect 
the running of the program. ~ ~. 

                           

~` t 

           

.i 

    

.. ~~ 
~. 

• ~ ..•i 

'? 

     

. ~ P2~ ~ PROGRAMMING WITH dBASE III PLUS 

       

. , ~, 

                                         

..~ .'. 

                                    

.~ 

       



 

~~/ 

1 

\~~'~ 
L~.t.~µ' 

=l. _ ::s -

 

~' 

       

f.~.x _' dBASE PROGRAM STRUCTURE AND FLOW 

 

~~. ̀  
( .~ 

:~ • .. 

    

IF...ENDIF also relies on a logical condition, but the condition 
may or may not be present. The computer checks whether the 
condition is true only once at the beginning of the IF construction 
and performs the IF...ENDIF construction only once. You can 
think of an IF...ENDIF construction as IF _such-and-such a condi-
tion is true, then perform such-and-such an action. Even though 
you don't type it in, the word then is assumed. Like DO 
WHILE...ENDDO, the IF construction must have a corresponding 
closing command, ENDIF. 

  

IF...END~F 
(Conditions) 

                      

If the Condition Applies 

  

r 

    

_` 
;'• ., 
~' .t 

Program Flow 

     

• -~ -~ 

        

IF _ 
CONDITION 1 

 

I 
CONDITION DOES NOT APPLY 

 

ENDIF 

           

Figure 2.3 Using IF... ENDIF for oonditior~s 

       

Note the distinction between DO WHILE...ENDDO and 
IF...ENDIF. DO WHILE...ENDDO forces dBASE III PLUS to con-
tinue repeating the loop WHILE the condition is true, while 
IF... ENDIF asks dBASE III PLUS to decide if a specific condition 
is true only once and performs the commands in the IF... ENDIF 
construction only once. 

   

.; 

                    

A ~ .K,rw Tt •. A ,~.y ~+•. .3.c 6 a "+f.`• r ,+f.~-.~s,S'typw'^'"F Te~•'cs.: +w i 
`I FF Ba Lance ,~ f0~00~'~,~~ 88 yI f there's~no; ■oney~>I n~`;our~~,, 

~a~B.~~You ~etbroke~. *,b8~eccount."you,get$the ■esssge~ '~`~- 
~EMD  I F "~ ̀  ~ ^~j'' •~~ .~.~r-~,. ~,~~ ~~ ~par^ °3,-~ ~.'.'s'.

,y 
,., t~x~

"~"~~/ i.+~` +r~ ' ~"x;.± ~ Z.~
' .","~.~ ~Z` 4x .w~.•..x,Ja1~1'J.~..~Y~"`,,~ ~ ~, y '~' ~j7 

  

r 

1~ 
L 

" 

                                 

__._~.:' 
PROGRAMMING WITH dBASE 111 PLUS P2.7 

   

. ;s 

   

:,..-. ~..~ • 

         

.. 

             

. . ;: 

  

.: .-; 
-,. .. 

                    

• °a 

                                                          



  

CHAPTER 2 

  

You can also expand an IF...ENDIF construction to make the pro- 
gram choose between two possibilities: if. A is true, do B, else do 
C. So there can be an ELSE command, which governs the other 
possibility: You can have only one ELSE for every IF...ENDIF  sec-
tion. ELSE must be on a separate line. Here is another simple 
IF•...ENDIF construction. What does it do? 

                  

Answer: If the field called Last does not equal the name Smith, 
the program DISPLAYS the First, Middle, and Last fields. If the 
Last field does contain Smith, the program SKIPs to the next 
record. Note the use of the relational operator #, which is  equiva-
lent.to < >, that is, not equal to. If there is no ELSE statement, 
the program continues to the command after the ENDIF, when 
the IF condition is not true: 

  

The above IF...ENDIF construction makes the program branch to 
the Inflation.prg module only if the Amount field is greater than 
$100.00. Notice that you can include or nest a DO clause within 
another construction. You'll learn more about nesting in another 
section. 

    
~u"'_". 

;Lr' 
.+~ ~w yw!v~a~Lc '. ^~.Ffi..~;a} ~ ~w ~'j,.'k'f -~•3.• a~ ~%~'~~1 k' ~ ~~ '~'•~y

♦
y ~

,~
~R ~ ♦' ~ ~ - s~ }' `Ai Z.{ _ b 

~~ ~- ~~ ~ fit✓ 
t • 

't...y ~ 
I 

S L• 1 , f ~ +~. ti t :tai+-y '~ ! ~ S~,tl' ~''j ,4 ~~}f.~ ~7114~•YY ~~► ~S 

sy 
w ~, ♦-fJ •~~^S .,r 

;y• 

_. .t..• 

w -. 

k .~ 
ryy 

~ 
r• 

~~;.. .t -~ ~~. 

. 
^ . `?, ~ ,. ..y~p?••,~ ~~ -I• 

, 
.~•~~ ' • .. _ , 

~Qi ~ 7s 
Ji . •ti .• :'~~' ~r ..~?_. 

- 

may: 

'•~ ~.jl ., 

~~:'u: 'j~.'e 

•ti„' .~• .. .... ......._;e...,..~_•'s• _. .... ..~.. •~__.. _. -~_ :_ a.__..~.. ..., _. ....~.._ .tibia•.:.._ ~.... _ 

'M f-''\ 

    

T ~~ 

  
(~ 

~ a '«, 

lYA~~1 

r~_ 
~y 4 ~:.}7.Y1~. 

,, ~ 

~,/:T ''k ca~'c~- 

'~i ~~~~xyi'%~~'~y; '~-' 

$I, 

 

• ~:. 

   

., . 

'~e .. 

.• . 

-:~... 

 

„~t •sr~ - ...~ 

`~:~,.: :.r: 

   

!1'~ 
~~/ 

Fi+fi ..~ 

r~ ~ 
{ ~ 

~R"`if 
1~ 

F. ~": y't .~r~IiYray}~~~.i ~.y! 4y'4Y 4M.~IA 

   

P2~ 

~~~~7' -~ a ~Y'1~~:k~li.!'r
t~l~~~

`
r.

JFfi"
~̀...~'k'.Lih - ~ i ~ 't. s

+~
r`~~e`.~ ~~'~}~{i~e~t'~•~, ~y~a tt r

yata ~"w,,~~,s'-~ '~"~+r~.S,- ~ t~'~: i ~~~ir~~.~e:.{a.'~''~!';
~i'+~,,}~~'~:'S'' T'~~.e°'.~i'''r'~Tft +4[~`~' ,~..1~ ~+75'~,•L~t..4~,`!'!, a. ~ ~c y~~ ~~ ̀. *air "'r"p~~Y' -eF "k'«F ~
} >T ~T. . 'LET. ~y y}"~~' i•?~ y'~Y•~̀ ,y •,i ~k~4 .'n'4Ss.. y, ~C~ '~:iti w~~ -1~.~~ ~S ¢:~;G ~^! 'ck'1, ~x~~ ~~i~
~yr'.Y,.y~"'f'.:tX~4~j 'P.~'}::.1 ^k.Ky~"~yPsk ys i~ 'x..rir,~y.'a~f~. f~~~y~`~-'.y`(r•a!.r' f".

,r4r ~~• Vy~'~,,,<y' ,~1~:7t''+~t7~~t4'~~~~t~~'~;~~,.,t~,~A:.'~~». ~i~~y ~~ y~~se~µ~~~i.~;,
'Y~"~_vs ~'-'Xf...4w~.:" first=~.l~€rrT~:.'~nY~k.~-.r ..~;~u};.wi.1y.','~-..w~i7Ky}J~"^sr'xlw ~Y'ikt r..

,~,.~~;}
;~:.:.~.

S "~- ~
4~~~~

PROGRAMMING WITH dBASE 111 PLUS

z~
aK,M

yz y~ r ~.*X'OZ:s~tyiyal~lk ,r~.,~l~3~~1 r,x~ aw.r•c•-Yri ~.y{ s,(
}

i. ett J„r. ;3,
i•~~,'1,1+►u X{b~x'~' e~-i%~iAtlrf `zfi~r~i+

e~v'y.~i!'

s.
CC
e _

~S•'.

,. ,

a

~'

m

..'r

~~~"~+OJSP;LAY~.F~rst Niddle;'~ 

'~EMOI .t~'n~`~r'~ ~
'~""'%' 

~f~t? ~3s 

 

~~`~r 

 

'~`~IF fAiount;~"'100' 00" 
^S,~y00tlnflat,on 
lENOIF'~="'' '~' r" «, .:sue -~ ~`' a..w~. 

  

~~i ~~. 
d~~~ 

aY~ ~,,(~ ~y3....,,. aN . 
t •. ~• 

   

::, 

4.~~'~ it~a:~ ~~:,~ 
~~I 
~'~`~~ r n~ 

 

_ , .~ 

4- 

.~ 

- y 

           

_ ~ 
.. 

        



~'~!,'t`r,'t~'"~'."1' `~.lY ~'tF-4 i~~,~%'i'~r E~ Y,'~h~: vt~"S;, y ' #"b~,.`. .t =.•~ ' ~t MI ~?; ~~y~ ~~ ~~fY ~ ~`''E.r~w 1- ~ ~": TeY" *e 

•T a . • 't' •~ 1 

 

• -. •,, 
~ 

• 'r•'! 

      

._ a.. ..•t.w. ' 

 

' ~ . 

 

• 
h. 

     

{ 

i 

  

•  r  _. L • ' 

    

1'. ~'• 

• . "J. 

      

,.' 
' 

~Y 

  

~~ 

 

A 

         

} 

       

r dBASE PROGRAM STRUCTURE AND FLOW 

       

1. 

    

7 

       

e 

 

Be careful when you supply numeric ranges. In the above 
example, dBASE III PLUS skips over all Amount fields that 
are 100.00 or less. However, it doesn't skip over the amount 
100.01. You could include 100.00 in the condition in either of 
two ways: 

            

~i ll~ount > 99.99 ii Aoo et 
• (eoa~ands) 

~ENDIF; .. . 

treater than- 99.99 

      

or 

    

IF A~ount >= 100.00 ii Aaount (s griater tMn or edual to 100.00 

~EMD,IF - 
-- ,_ ,_-. 

    

Not being specific about numeric ranges causes needless prob-
lems. Avo)d this type of trap. 

 

.~ 

     

DO WHILE...ENDDO and IF...ELSE...ENDIF constructions can 
evaluate more than one condition. You could rewrite the 
IF...ENDIF example to evaluate the Amount field as being over 
100.00 but under 1,000.00: 

Expanding DO 
WHILE... 
ENDDO and 
IF...ENDIF 

        

IF ANount`> 100.00 .AND., A~ount < 1000.00 
*~ Eco~~ands)• 

     

ENDIf' . 

          

Although you don't have to repeat the IF, you must repeat the 
field name or memory variable in each part of a complex clause, 
even if the field or variable name is the same. You can construct 
more complicated DO WHILE constructions, too: 

                    

a. 

 

-~ 

PROGRAMMING WITH dBASE 111 PLUS P2-9 

            

' .:~ 

                                                   

'. 

       

. a 

      



:y~g~~ 

off,; a~ 
~ per/ 

• 
• ~ ~ 

~°~'~f Z 'Y~+L 

7 ~a _ . ~~kt v P ~e ~ .S.L.. *.~.t 4 y i e 

.. 

- a • ~ .. 1. ._  a. 

  
~~~~ ~~~~33~ 

.. 2•T` ~ti•5~-

Y 4~'a~: ~, `~~, :y 4
}
R

a~-~-+~..~ ~ r~:X< iIJ \+3; yam N~ ^t~'~~~~N

' is ":~.rfi.. ~ ~- _ i..q

f • -1`

-U e t _ - y
~

..r .

i j

•. , ..~ • 1

. 1

CHAPTER 2 - • _•~

~.~ ~. -

~ ~t
6oie'e ~,e_

~y
~.

;~

~.

~~

~~

-~~

n..-...~3~i

Be careful that you• use the correct logical•operator. Remember
• that .AND. implies both one condition and the other, while .OR.

signifies either the first or the second condition._ Refer to Using
dBASE III PLUS,for a discussion of logical operators.

You can also mix two conditions. In this example, Past_due is a
logical field, so the IF line means: if the amount is greater than
100.00 and Past due is true:

'S.

- -

~a~~' 1.i~iZnwl'i ~`l ~'~g ~7'".44:~ '! ~~.'F6'.~y~i

~SIF~Aeount~>~100~00~ ~ANPast~due~y
t ~ , (coesands) ~, ,~,

stds. . ~ _

e~~

u

s ~`"R ~~~

Similarly, if the amount is greater than 100.00r but Past_due is
- false:

.a:

.•

3.~AND ~~ NOTPa~st due% ~r ~.Y J~.r-t

.~ e ~

^~G

Because Past_due is a logical field;.you can't say Past_due = .T.
or, alternatively, Past_due _ .F. Note that when you use more
than one logical operator, you must have a space between them so
that dBASE can properly execute the command:. AND..NOT.

••4s

IF...ELSE...ENDIF is useful for having the program branch
depending on one .oi two conditions: if A. is true, do B, else do C.
When the program provides. a series of possible conditions, it's
much simpler to use the DO CASE...ENDCASE construction. This -
is just a list of t1►e possible.choices and what to do for each - a
multiple choice situation. •

DO CASE...
ENDCASE for
Multiple
CIlO1CeS

_ ~ i

_,,,

.,~

E ,,

e

P2-10~ PROGRAMMING WITH dBASE 111 PLUS

.,.,>
~,

.;:

;,

.,• _

~q r.~ }•'. +mot _ -s
_ :9 4 Y~~ ~. ~. ~.~ r. .;.C% ,.

~,~y, t 5 '. k) r w o .I•

Y ~ ~ ~•"'+~?'tS a.:Y ti V~:..~a."~~ .~ , ~.•''1• r7'•[' ~~~ ~l• •~~~.•• ,~•# ~~ t^,.~,Y~;v=i t ;~',a,•y~ aiK ~ yl/ ~ s.~y r..[
~

,r, ,,t f -
i y t ♦ - i .S '~•:~._ ;~ r'~_•t j.lS.•y.-~• a„y ¢., ~' t- .r': - V.r a•~•.A ,} i•t taa•~.✓'~ .b^r

:R., .. ~. .a _ ..t+y'... • _ _ •:. .':~.. '''1 ._ a _ ~_ ~ rys' -1~ -fir - ,~ y _- .~•"hli
r

.1

i:~ %ate •r ` `•~j~.

.Y
,:ten +.l• '~~`+•:'i

"r~~ `~a arm,`

'St

,~•

i

dBASE PROGRAM STRUCTURE AND FLOW

Because DO CASE alerts dBASE III PLUS that possibilities follow,
the DO CASE line contains only the command. Each possibility
appears on a separate line following the word CASE. Each differ-
ent choice must follow the word CASE. An ENDCASE line com-
pletes the construction.

~,

i

CASE D

CASE C
0 r

CASE B . U

CASE A

Program Flow ., .

1

ENDCASE DO CASE

Condition Applies Condition does not Apply

Fgure 2~ Using DO CASE...ENDCASE for multiple choices

The most frequent use of the DO CASE command is governing a
menu where the user has one of several options. For example, in
the checkbook management system main menu, the user has the
choice of letters A through L, and X. The program efficiently han-
dles these multiple choices with a DO CASE construction. A dis-
cussion of the main menu choices is covered in Chapter 4.

You can combine all other possible choices that don't need their
own CASE command by using OTHERWISE in the DO
CASE... ENDCASE clause. You can only have one OTHERWISE
for each DO CASE. The following is a typical DO CASE construc-

..
} -. .~;

tion. Each choice calls a different subprogram module:

.:r ;.+~

. ':

. ~,,

r;~~

`ih,It"~ r .,, e
.~'t; ,.

. e_ :~».
~•; i' ~i

r.-~ '
`3.1:J~ 1

PROGRAMMING WITH dBASE III PLUS P2-11
.~ :.

~i,'

i~

c-

' -a r a.. •

,•

y

•
i

a

S?, nk {r a b
IS ~ -yrS. .a. .Y +

•s{; ; •a

Wi ~I ~.rl..y A: • ~~N ~~}
FF s ~

rr f ~ •f, ~•...t a 1N .,L
c Ya, f

} t
~i r7r

a~•~. 4•s1_}~{CN~` in~j~ ~ r z~

*.
r

-_ 1. , ~~
~ ! , 1 A Y I'

+ti. S r •• '! '.err w e:1':et ..++

tit.,
"s

~ s yy
i

s. ~~ J~v'yti.r. rF i,.

. ~~ ,.: t:

»."'_~-j yr:,,... .n.-~ ,e- ~-s'.c~ , ~,rF . r.'','•rr~ u.~`_`"'3 !
~.

a ~ ♦i . r y ~ L f ''' r' • y "~ 4- +~1Mt''`~t.,f 'ie4 4~~t4', ~tr,~~il~it+ ~i +r`'• ~~ +r • tiK
'r.1 2: x •:. 1 F^r: y !`i"A ;s•~̀ •:w' ~ . i ~ a~wfrYy.., , i•y
r s. ; •.~; • Yt :r. ,~• S. 1'['~ '"" 'yxb.~t~}y~'y~F' fat t Fp l -~w*}~3.•~Sti•:~~:

t ~.. a : ;j.~}t y'C' a ~ 4~< ~~ Y ~iy ;~'M':st~„Si• ib t.:;i_ ~ ~Y i
~. '' tr+ ~Yc~ 1 a ~~a+ •ti ~~.• ?: v~.~•t~; .ts~Zf~a[s.~V. x~"t';~:+i

y '. t~a~'r.y~Y ti... ~-. « 1 r. i.•.~s f~d'1-. ~ ~'\~, i•tc! .i A.t~.~S ~~~`iy e.r a1.R.{~,+a ~r ru Tfi {..,a +p :^'~ ~` ~'r1 ~~'+{ ~ 1Y~~~~~ ",w" "~`.i+"+^.•a ~tt "'rE° +'r !~`," :s
r,y~'+~y.'~~yR--'• i %~a~i 'va;~~.'~ir'Rc^r`"• ~~~ ~~"`, ~~, Cti~F~j~o~-J"~~ h~ '.~' -

t;. ~ ar ₹ a ~ "i~ .,r.~~-•w. ~ }a c~ ,t~'.:~ a ! rti +.~•ttr.. .~ ~`
- ~'r'~ `~ ~- •: ea ^ ~ t , Pig ~j.+'" 3 i?

_
? 7 _ Ca r • ~': _ y,~ . • .

1 'f

;t ,.,. •7.'~ t,.~~x~-
., of rt 4~•~~-~t'~•° ~~i.S'-,+~+^~t~t''?~-~ ~ -a. .

S

E

CHAPTER 2

*` De:te~i'ine:~~het~.`eeti`onsto ~.t~eke;?on~~r ch'o~rce: ~ d'. ~~~,~, ~r

*~The,~,eho~e~is.~Arti,~•~r~.F,~~ ~-~~-,~'~~.~u~~ ;~^~~`~
~~~ASE~Ch~oi~ee,~sMA»~~,s~,~',*~~• ~ r~~~~ ..~~~~{~,-~,~,;»,.. . 

kY ~-"c-DO'~Aeiountt%~'~~5~88~Run4 eount~in9~ rograe~ ~'~ 
*4<. =~-~.:~~Tlis~telioiee~,ia~'fi.,ete.. ~~•~- J.~ zs~ ~~' ~~~, q'~~~,, ,~ ~'u 

r'~ CASE eehoiee !~•t.'~~ a' ,~.~~~~~,~~~~~~ ~~,~~oy~~~ F'~ ~~ 
.~~ ~~DO~Texes~ ;~, 88 Run taxes p~ograe ~~ ~ ~-;--~ a 

8 Run riports prog~ei ~~~~~ ~ ~µ 
.,,CASE ~cAoi ce o _ ``-._., ~ 

..: ~~ ~t 
~s~~~~','; '~~"'~~ ~ 88 ~Run exit progre■ ~ ~-~Yt~, ~ 

,, ~OTNERYISE_9a~ ~ ~ :~ .- 
j;~. 

~'~~'^'^~ ~`S00' Yarntng , X88 Run error •essage progre0`~~' 
ENOtASE~ ≥ r ~: '3~,.~,3i,~bt.~'',~.~~" y~~ .~~ ~ j6~^~ ~  ~`_ , ~ ~3~' 

 

DO CASE is very similar to IF...ENDIF. Both accomplish the 
same thing, but DO CASE usually determines several possible 
conditions, while IF...ENDIF governs one or two possible  condi-
tions. Soon you'll see how elegant a DO CASE construction can be 
when compared to IF...ENDIF. - 

 

Each of the four basic control structures can work within others. 
'Y'}tis is known as nesting. Far example, here is a DO 
CASE...ENDCASE construction nested within an IF...ENDIF 
clause: 

 

i 

        
~'.e a+~«.'~5~'~~rf~~ ~~;"-'_'~'.~•̀,~~.y~~s't:~~ ~'* ~ -~': ~r. ~` 

» 
~'~~~FJ~'~•yC'. ~ ~~'_~,[y~.c.~~ h ~~~k '~~~~ :"'~ 

J 
r:p~: 

.L+ar~ .s.~tt ~ r,~, Rv~. ^-R~ ,w. ~f j~a'y ~' .. ~ ♦ +~t',y " ~~'~i5~►
~~il"~'~~ 

~~~~'._ .~' • `~a~ ~~jfr~ r,~?. 'C'a9~ < T S 
S ~~t.• s +yy`r Sa ~. • 'f n ~. ' Y' _ ~t-s.- pis

y,.
.•

<.. ~:f~~,~1 4'I'. 'r"D
-j 1-"sr P~.. s0 .~.!.~CY.:

'~.~.~;~ ~.~ t •r~ a'f .. ~ • .; t'" ~.wi~:"'s~`nt°"- ~~` .t: ~~ Y ~ .. •t .' .: ~,:1:... i~ .+~'.., '~'~''.~.q.~ '.. ~{~ . :i ~' ,fit ~ ~'.w 'c~
..y"' d•'.. ~>~' ~'h;. .I a'~•e,ra J•~.' ~if~;~'~~.. Y+'~.t.. t..~b ~, •e +.. .a. ..rt ~~•yl ~"!. ~a' ~ '9k~~r+•~>"~f++~,t+~•Gry1S'~ "~ ~ s .e:•~ ✓i J••. t 1'!.•• A'~.+"~+w vac!

y' •. Ste•"" ! _ '. ..: '. fY `~ ii:M~' 0. ~.t .y' ~~.. '. .'~`:~.~':s:` '>T..•~r'-3~:i... ~... ''r,l ".~'~ ~.~..~~:. ~~~~'N~t ~. '. .s•~..~,, ..~.~::t',~ r't•i, •~.~~.`-'~... `~:
r... .~ » «`7." ~ ••.:~ :`.': "` «r'd: ~ti ..?3d•".~3a►s'•:.. ~ i '`--'~--'-Y~• •'~:i..6.~.~~' ." ~i ••~ • _ w::.~[:iY~..~'~u awtY :~•:us~ix•'` j.STu~.ni~

.:* c«~E:
..~.

.yM
.
,~-

.
`,~ ~

.

. ' . . .0.

~~' .i . ~. ,


~~~- ~ X00 leave 

  

P212 PR(?GRAMMING WITH dBASE 111 PLUS 

 

* If the condition is true 
IF last n~~e = '''S~ith" 

DO CASE 
CASE first nee = "Joe" 

• tcoeeinds) 
CASE First n~~e = "Mary" 

+ (coe~ends) 
01NERYISE 

* (co~~~nds) 
ENDCASE 

ENDIF 

  

~~ 
~~~,,,~.„.,~,~~ n~~re.:. 


yip•!'(: ~ •'?'~ ~'^)' ~ 5 -

.`
V ..

.
a .

.. , ~
.*..

,~ s

'~•~.

~ ~ .,c

. _ .; .

Nesting -

~i3.~~ ~ ~~ .~~'~~~~ t~'Y=~'ks
SStZ~~

yam.., yY r- 1:< ~.~~~' rl;~~~tiP ~~r~~ ~~ 4~ ~~~:~ tl~,
.. .,.:~ :.1.~ ~~

~'~,r4~;

. •• ,. .. e. 1.. - .-

 .f,~~ ~Axr
+~~~ ~ y~~. ~r'
r.. ~ ~'+ Z i -rya

::z.

~• (;~

-i'4,

_ ' Q

R kY r
,n

i .

~~ °.', s ~. ' ' ~.

5

I dBASE PROGRAM STRUCTURE AND FLOW

Take care that the ending command lines are in the correct order.
Each nested construction is an inviolable whole. Think of them as
a series of mixing bowls, one sitting inside another.

...

-.

DO WHILE

t.

d

_c

IF

i

DO CASE

CASE

CASE

IF

'~

.~

~'

~~

1

I

IF

~ ENDIF

S

ENDIF

CASE
OTHERWISE

ENDCASE

ENDIF

ENDDO

Figure 2-5 Nesting constructions

~~

~, '..
a'~i T:

;.,

PROGRAMMING WITH dBASE III PLUS P2-13

'`

~~ ~ n`

M1~`,

•-.• ~
e.

• ~S+

i)
:S

'' !~
.I~~

..s.

V ,~ ~ ~ ._ •

• , • •-~

~'.
• . . ,-~

. `

y
1.

• e • Se

y

1

• ~
3'

'i: a~ ~$~
' _ . ,{ ,

CHAPTER 2

.

;

Here is an incorrect construction. Why?

~• 00 •CASE
CASE selection = "1"
"DO <subprogra~>

• ••CASE selection = "2"
IF Balance = 0

_ .` t~"You're broke"
' ELSE

~? "You're still in the black"

* (co~~ands)
` OTNERYISE

* (co~~ands)
ENOCASE.

ENOI F ~ •

Because the IF is nested within the DO CASE, you must close the
IF construction before closing the DO CASE constriction. The
correct form of this short module is:

D

DO CASE

f CASE selection = "1"
' DO <subprogra~>

CASE selection = "2"
IF Balance = 0

~ "You're broke"
ELSE

"You're still in the black"
~ * lco~~ends)-

} ENDLF. -

,,- OTHERYISE
~ ~ ~ * (coeeands)

•

~ENDCASE

Using indentations is extremely helpful when you have nested
clauses. Indenting makes the code more readable and lets you •
determine at a glance whether control structures are properly ter-

minated. "

.Y• ~

.y

P2-14 PROGRAMMING WITH dBASE 111 PLUS
~;,'•

~': •'sue h ''3. ✓ ~ ~ ..~•~F'Y 'r.. Yt..~4. • rte. ~ .

. -:'. •1


~~~• 

   

4M 
• 

r. 
. '~ 

r. - a s -r - 

. ••yE, 

}. 

         

T ' 

    

. r 

  

~' 

        

.. r ..- . - 

S• .l• ~j" ,r• 

        

..~1' ., 

   

~' 

•.r: 

 

. • .'~ ~ - 

- '~•~ t •• 1-!i'~-

     

t 

  



=o 

     

TIP 
Always check that each beginning DO WHILE, IF, and DO 
CASE construction has a corresponding ENDDO, ENDIF, or 
ENDCASE, respectively. Make sure that there are no superflu-
ous ENDDO, ENDIF, or ENDCASE lines, and that ENDDO, 
ENDIF, and ENDCASE are spelled as one word. 

   

Another way to avoid confusion when you have nested clauses is 
to repeat the condition on the end line. This allows you to check 
visually which DOs go with which ENDDC}s. dBASE III PLUS dis-
regards anything else past the end command. You could thus 
write the previous DO WHILE example like this: 

* Position the pointer at the beginning of the file 
60 TOP 
+ Do chile tha pointer hasn't ruched the end of ih• file 
DO MNILE .MOT. EOF() 
* list the first n~~e, middle nitiel~ i lest rt~~e fields 
LIST First, Niddle~ lest 
• Skip to the next record 
SKIP 

ENDDO ti NNILE .MOT. EOF() 
CtEAA 

'h" , ~y.C~yi~vCKR"t ' ~~;~ 

. '^ ••a' ~ ~ • sf"•a: ̀!'~a~.~'~} S. •~ '.~a.~+'YI. t ~::i.iic K'i: :3=~~ 

r 

~~°~`'!~ ' 

 

_I 

 

~~ ..~' Vw`~~tj tti .lam• • ~ ~ a :j N.~ is =°,~'+t y~, 
i a1~ 

~'...g.~tw~y
.d~: ~:~Mt G•: ~ ~.'"LriJr~'~P~•;-'. L. ~ :a~~~ Y:y9~C2~ •;~i~5 

A,~i"iLe''~~'$,::t}~•it :~f:~t'••.ah~w".aw. tw":.+Y "il:~~~4'~r~{~:J~~ "'s.+:'w~~:~~ 

 o~. 

~., 

  

•~ 

dBASE PROGRAM STRUCTURE AND FLOW 

 

I•ROGRAMMING WITH dBASE III PLUS 

  

~~~. ~~ .. 


P2-t 5

i,.

.:~s;;,, ~ Vii:
.F~d~~~ tq,.

~r

:..'

..
•"~ .

'K!
- +7 -

w'
:.r ,~ •

w.

~~ ..

L• ..

•~ -

~,,,

o_

.t .

a
ti

i

1

i

i
i

i ~:

Another Way
to Loop

P2-16

F L K f,'~ ~GN ~.'T= K H~'Y~StTF G-- ,' ,~a '~."~' _ _ s.

{
ky~ ~~.1 .~3~._w

~+ri•: loopxas.long~ as•the~reeord pointer ,is not: at~,the~~{,, .~~tr~~.
*:l end ofa~tAe~f~ le~~~ y

{y

-
,
)
y
'~

~
~ ~~G~~~~ '~ ~,~-~ ~"'4'r~ t~ ~

it DO YNI LE NOT:'°~EOF O R ~
F

r , v•, ~ !J ti...

" ~ •;If~~thex~ecords~ady darked~forrdeletfon , ~
IF~OEtETEO()~~r ~ ~{ ~ ~-~~`•~~~"~~`~° ~~.:r r' ~'~-

,~.~.~_ ~~~ **
y
Nove~~torthe,nextr~~ecord ;̀and ~s,tart~taga~et"=.,Y ~s~z~y

Y..'
*~SI ► IP~

r ..~q.., n..rr., 1 y;' ~-~,*• _. - ;k sr ,r sr - ;h.'~;;

'~~~-~~*"(Many*aore~coaaands)~~~~`X, ',~~~ :~,~,x~x
,.~ENOIF~88~OEL'ETED()~~~ ~. ~'. ~`.~z~;,~~~- ,;a. ~~ ~ . ~"' ~

~END00883YNILE~'' NOT :~EOF(')~'l~L~~',tiri~•~'~-~~~:~ ~.~'~~;~ !;'~~~

•• °'

PROGRAMMING WITH dBASE III PLUS

S

~4; i

«~.: ~ -~a

F..
~ti iy

~~£~
~
.

y

"
L. ..n i'• It

"~Y~ .N F
i.s ! ~~~tìw.

}F z #.YfiY

~~- ` .V
~_

~Y` ~~

.'t'.

~~

t 1 "ti ~P~$i, ~~ '~ ~` r1"► wl i ^'_ ~~
7.t1. ~~ e~ ~i.-r !W~ i~ "S+ . S"~ a i-^ 'r t s_s ~"tT~F. 3h:?+~"~

~~„~~ ,z ,;: ufs - • 'r 2~ ~ 1~zY y'S.. r tiF- ~ ~ F,'~'~ ~` +V~` 3~S ~,.

CHAPTER 2

Sometimes you may wish to leave an IF...ENDIF or DO
CASE... ENDCASE construction nested within a DO
WHILE...ENDDO loop and return to the beginning of the loop.
Use the LOOP command, but be careful. LOOP immediately inter-
rupts the flow of the program and takes the program back to the
beginning of the most recent DO WHILE. Here's an example of
LOOP:

The test for deleted records is put at the beginning of this lengthy
DO WHILE loop so that the program doesn't have to evaluate the
rest of the commands in the loop. The LOOP command has no
meaning unless.it occurs in an IF...ELSE...ENDIF or DO
CASE...ENDCASE construction, which is nested within a DO
WHILE...ENDDO construction.

,Y~ w t~r r~ w
Yr -.4.NnY T l~si -

F a1 ~ A~ }`.^ .i
/ .

•it l .~~ -

~yy~ j~Tll~ ~.! ~M ;~r 'y. hV~ ~ ~~J k'~
L ~ . ~ ~

.? r%Z!~ ~r r z' .e: °a , ~ !•-,~.t.: y%` . > "'r :. ti .'. .:' s o S.~ ..

.._....._. __.,_«...._. _ _ .._. .,. ,_..t -...,...._ .._ . _ .~.r.. -._ _,.... ... -

.Y~

.. ."
~ .. .

~1
!L~ •-~

aka}:''~~ ►,

• •~ ~i •f. •~~

4

is s . i. ♦.
.,

. ,

. ' ' • • ''

- • .

x ;.

.~'
~'••i ~~~ ~

r, ti.
.

r' .
' -, : ;

%~y~',' ;•t
,

'r.

. ~ `.
-~~ ~' ;.

:, ..

{:~.

r,

'• ~'~tls'rS`.•;~ '~ "~.' art ~~~' Nf,i..

.rS.~s'.~a4 rte ~d►"6..f~y`~~y~{.~f~~~'t

Occasionally, you will need to leave a DO WHILE...ENDDO loop
earlier than the program expects, without performing the rest of
the commands in the loop. You can.do this with the EXIT com-
mand. Here is the previous nesting example rewritten with an
EXIT command: '

EXIT doesn't cancel the program. It merely causes the program
to leave the_ current DO WHILE...ENDDO loop. The program then
continues with the next command after the ENDDO line.

.~Y. t '~' ~~ 't`'`= ~' s s G air• `' 7i:.{~~'t~4.w~~L~~-~"~r ~~ ~1• DO YNILE T. r __ ~ •

~~~.̀~,~tASEselection w~~1~~,.,~ ,~:'~'~'"`,~~~'~~~'~'~ s 

t' ~'`rDO'<subpirogree> ~,~~~-~- ,-~~~~~,`~.~ ~' "'' 
i 

.^~~CASE~`selection~~~ 2 ~~~~µ~ Y{~. ~~;~' ' 
-Jt'e-y~"'~- ~ yt *tlf,~,You`r,̀ibalance+.~s ^0 ~s ~"„s! `~ ~•~+~,~~ -: ~ ~'.}~~ 

L"e"i- - ~. ~ Y F { ~v~rrP '~f ~.,- ~~.~tr,~, r ~• 
~~i X,,~„IF,;Balence, ~0 ~~ .- a ~•t.•..•'~` ~_. , , t••~ r 3~. x'z ,~. s 

;E;7C!•1r ` ~s.,.. ~~ ~~+ ~. .et -'tj ! h a, rs . rj+. , - ~_. 
` _ ~~*r 6et~ out3of'the~;loop~ t~-~~`~~'~~ ~~•`~~:~ ~•~ ~~ 

' r~.ENOI F , . ti ~~ .,~,,•. ~~;
Y
..p- ~ ~r~-'•gut.= r . 

r~~ ~OTHERYISE~~ ~~~` ~,.,~Mri~' r ~~ ~~~~ ~~~~, . 

.~ ~,EMOCASErban~s.~s"`~ ~t s^ ~'~~ rt~~.' z~ ~ ~•a '~~'" r 

~.~ENDDO iifYHItE,~.t ~ 
~a:+,c:.•x,rs~;r~+sxa: s:-~^•..[-~'~U~"~..r~GrL'.~.m ~~`~~~'~~ ;~`~yai.~"~~ar~~ 

                 

PROGRAMMING WITH dBASE III PLUS 

      

~.l 

      

.:~. .,ry ! .h :~ 
:c. 

      

i /~rf •Y•♦ .iy~ 

 

dBASE PROGRAM STRUCTURE AND FLOW 
~~~•~-~\ .. 

.'~~ - ,

How to Get
Out of a Loop

` ;' _

~~ 1
....'

;~ •.

~'~

~- ..

'~r .

P2.17

.r.°

.. '{.

• .•.1 • 1 f. 7'•
.^ .

.. .. .~y~. ~-• • .

•- l.~ s.

• .'r-

• ~ - .
a '.

•~N'..r• ... _. • • ~ ~ ._ _...

' .{ '

yr.. ~.

••

. j. '

~4 .
' '.a

G

Chapter 3
USING MEMORY VARIABLES

dBASE programming frequently needs to hold information tempo-
rarity in memory to control a program. This information is stored
in what dBASE calls memory variables. It is strongly suggested
that you thoroughly understand how memory variables work in
programs before you begin programming in dBASE.

What This This chapter discusses the following:

Chapter • How to set up memory variables in dBASE programs
Covers • The different types of memory variables

• How to use memory variables in programs

• How to declare memory variables PUBLIC or PRIVATE

• How to use memory variables as program flow controls

Preparing for
This Chapter

Memory
Variables
Explained

You should have a basic understanding of general programming
concepts and the dBASE control structures before reading .this
chapter.

A memory variable is a temporary storage location for informa-
tion. You identify a memory variable by its name, which can be
up to ten characters in length. A memory variable can contain
numbers, character strings, a date, or even a logical expression,
.T. or .F. When you wish to use the information in the memory
variable, you refer to the memory variable by its name, not by its
contents. The contents of a memory variable can change during
the course of the program, but its name remains the same.

Each variable takes up a certain number of bytes in memory,
depending on the type of variable. dBASE III PLUS assigns to
character-string memory variables the length of the assigned
string plus 2 bytes, to numeric and date variables a length of 9,
and to logical variables a length of 2.

PROGRAMMING WITH dBASE 111 PLUS P3-1

•

CHAPTER 3

MEMORY

SPACE(20) 0.00

working I

r

(name ~ m_amount

Figure 3-1 Memory variables

A

Initializing
Memory
Variables

P3-2 PROGRAMMING WITH dBASE 111 PLUS

Y

Lf;-
r

NOTE
There are no memo type memory variables.

You must create, or initialize, a memory variable before you can
use it. You do this by STOREing data in the variable. Whenever
you initialize a memory variable. dBASE III PLUS automatically -
assigns the variable type according to the information you've
STOREd in it. You initialize the memory variable's name and its
contents at the same time.

There are two ways to initialize memory variables. One is using
the STORE command: its name reminds you that you are tempo-
rarity storing information in a memory variable. The second
method is typing the memory variable name first, followed by an
equals sign and the information to be STOREd in it. Below are
some examples.

•

f

i

USING MEMORY VARIABLES

:~
:~
x

~~
a

S

1
~.

~,

The following command creates a memory variable named work-

ing and puts the logical value true, .T., in it.

STORE .T. TO corking

This next example is the equivalent of the previous example:

corking = .T.

The information on the right side of the equals sign becomes the
contents of the memory variable on the left side. If you are famil-
iar with programming, you realize that this. method is similar to
the way other programming languages initialize variables.

To change the contents of a memory variable, reinitialize it. For
example:

STORE .F. TO corking 88 The variable corking nor contains .F.

P

PROGRAMMING WITH dBASE 111 PLUS P3-3

-n..---.~. w ~,...._,-.-~

4

~+]

3

~,

3

3

~'
0

i
t

},

:;

~'.
~.

.~

~'

~'
l

i

y

~:.

a.

Logical Type
Variables

t
. ~;-^,

• ~ -

TIP
The dBASE III PLUS commands and functions, such as
CONTINUE or DELETED(), are reserved words. Because
using reserved words for memory variable names could cause
confusion, be sure to pick other names for variables.

•

CHAPTER 3

a

STORE SPACE(20) TO ■ first

. To initialize a character type memory variable, you must enclose
the character string in a delimiter, that is, single or double
quotes, or square brackets:

STORE "Vincent" TO ■fna■e

This creates a character type memory variable called mfname and
STOREs the string Vincent in it. The length of this variable is 7. If
the character string already contains a standard delimiter charac-
ter, use a different set of delimiters. For example, if a single
quote is in the string, enclose the entire string in double quotes or
square brackets:

STORE "That's incorrect try again" TO ■pro■pt1

In your programs, you will often wish to initialize character mem-
ory variables that contain nothing but blanks. A quick way to do
this is with the SPACE() function. For example, suppose you need
a memory variable called m_first to temporarily hold the user's
input for the actual First~ame field in a database file. This field
is 20 characters long. Initialize the m_first variable like this: -

You can create a date type memory variable with the DATE() func-
tion, but it only STORES today's date in the memory variable;
assuming, of course, that you entered that date when you started
your computer. The command would be:

•STORE ,DATED TO today

P3-4 PROGRAMMING WITH dBASE III PLUS

Character
Type
Variables

Date Type
Variables

•

•

USING MEMORY VARIABLES

To STORE another date in a memory variable, you employ the
character to date conversion function, CTODQ. You'll learn more
about this function in Chapter 5. The following command initial-
izes adate type variable called birthday:

birthday = CTOD("04/26/85")

To initialize a blank date to birthday, use:

birthday = CTOD(" / / ")

Numeric Yype
Variables

To initialize a numeric type memory variable, make sure that you
include the correct number of decimal places, if any. Otherwise,
dBASE III PLUS assumes that the memory variable only contains
integers. Thus:

.~ STORE 0 TO nu~ber

creates a new numeric memory variable called number and
STOREs 0 to it. dBASE III PLUS only allows integers to be in this
memory variable. However,

STORE 0.00 TO nueber

creates a numeric memory variable with two possible decimal
places.

You can initialize several memory variables of the same type and
length in one line, with each variable separated by a comma. This
example is from the Add.prg module: ~.

* initialize ■e~ory variables
STORE 0.00 TO subtotal,totals,cash

:,

PROGRAMMING WITH dBASE III PLUS P3-5

•

.~
t

1~ ,~ ';

t+

ti

jC/ji
td

Y

a

TIP
A standard convention in this book is for memory variables to
be shown in lower case italics. This distinguishes them from
database filenames and field names, which by convention are
written with initial capitals.

How you name memory variables is up to you, but a good
approach is to choose a name that describes what the mem-
ory variable does. It's possible to have a memory variable
called x, but later, when you're reading your program, it may
be difficult to remember what x represents. So use a descrip-
tive name:

STORE 129.50 TO cost

Then you can readily remember what this line means:

REPLACE A~ount PITH cost * 1.OS

Many programmers use the letter m or the characters m_ to
begin each memory variable name when there may be confu-
sion with an actual field name. For example, if there is a field
called Last~ame, a related memory variable could be called
m_last. This is a good way to show the relation"ship between
fields and memory variables. In Chapter 11, you'll see how
dBASE III PLUS can distinguish between field names and
variable names with the same name using the M-> feature.

CHAPTER 3

:F

~~: 1

•w ~":]
.'1.

~ ~
~. r .

l
7

•. ~
.\

4

Limitations You can have a total of 6,000 bytes of information stored in up to
256 different memory variables. This is more than adequate for
all but the largest of programs. If necessary, you can change the
amount of memory for variables with the MVARSIZE parameter
in the Config.db file. See Using dBASE III PLUS for more infor-
mation.

P3-b PROGRAMMING WITH dBASE III PLUS

USING MEMORY VARIABLES

•

Because they allow the programmer to control input and output,
memory variables are important for programming. The program
initializes a memory variable to hold the user's input. When the
user has supplied the information, the program STOREs this
input into the variable and asks the user to validate the informa-
tion.

This method ensures database integrity by not changing the data-
base immediately. When the user confirms that the information is
correct, the program REPLACES the current field information
with the contents of the memory variable. The memory variable
can then be cleared and used again for the same task.

For example, if the task at hand is to update information in the
Last~ame field, here's how to set it up:

1. Initialize acharacter-type memory variable called, for exam-
ple, must, to be the same length as the Last~ame field. Gen-
erally, you initialize memory variables of the exact type and
length as their related database fields.

2. Ask the user to supply the new information in an on-screen

How Memory
Variables
Work in
Programs

•
form.

3. Temporarily STORE the user's input TO m_last.

4. Display what the user has typed (that is, the contents of
m_last) and ask the user to confirm that the information is
correct.

5. If the information is incorrect, give the user a chance to cor-
rect it.

6. After the user confirms chat the information is correct, use
the REPLACE command to replace the current information in
the Last~ame field with the contents of the m_last memory
variable. Repeat the above steps for the next name.

7. When the user indicates that there are no more names to be
entered, close the database file.

The above steps are a general pattern to follow. You'll see these
steps in action when you learn how to design screen forms in
Chapters 6, 7, and 8, and how to evaluate and use input,
Chapter 9.

PROGRAMMING WITH dBASE 111 PLUS P3-7

•

CHAPTER 3

•

PUBLIC and
PRIVATE
Variables

In dBASE III PLUS, there are two classifications of memory vari-
ables: public and private. You declare the status of a variable with
the PUBLIC and PRIVATE commands. You can use a PUBLIC vari-
able in all program modules, no matter where you declare the
variable PUBLIC. A PRIVATE variable is in effect only in the cur-
rent program or subprogram, and all programs that depend on it.
The terms PUBLIC and PRIVATE variables are often called global
and local variables, respectively, in other programming languages.

In dBASE programs, memory variables are PRIVATE unless you
declare them PUBLIC. So, for a PRIVATE variable, you merely
initialize the variable: For example, the following variable is ini-
tialized in a subprogram:

PRIVATE
Variables

~ cost = 0.00.

PUBLIC
Variables

The m_cost variable is PRIVATE to that subprogram and all pro-
grams called by the subprogram. dBASE III PLUS releases the
variable when program control RETURNs to the calling program
from the subprogram in which the variable was initialized as
PRIVATE. -

The checkbook management program contains many PRIVATE
variables in subprograms that work in those subprograms only.
When a variable is PRIVATE to a subprogram, its contents won't
cause confusion with the same PRIVATE variable in an unrelated
subprogram. So, you can use standard names for variables that
do the same thing in each subprogram.

Setting up a PUBLIC variable is a two-step process: (1) declaring
the variable PUBLIC, and (2) initialising the variable. Here's an
example:

•

PUBLIC balance
balance = 0.00

This declares the variable balance as a PUBLIC variable and ini-

tializes it as a numeric type with a contents of 0.00.
dBASE III PLUS never clears PUBLIC variables unless explicitly
told to do so.

P3-8 PROGRAMMING WITH dBASE III PLUS

~•

•

USING MEMORY VARIABLES

MAIN PROGRAM

3

E~
P3-9

Here is an illustration of PUBLIC and PRIVATE variables:

Figure &2 PUBLIC and PRIVATE variables

SUBPROGRAMS

balance
m casn

PUBLIC balance

m amount m amount m amoum
oalanCe ba ante balance

L
balance
m amount

balance

l f

balance

i

i

3
r
R

a

a
i

s

The balance variable is PUBLIC in all programs, even though it's
declared PUBLIC in a subprogram. However, the m_amount vari-
able is PRIVATE only in the subprogram where it is initialized
and in all other subprograms that are called from it. The m_cash
variable is PRIVATE to one subprogram only.

A

a

PROGRAMMING WITH dBASE 111 PLUS

c

0

a

J

a,
R:
t,

1:

e

j

n

TIP
It's recommended that you initialize memory variables at the
beginning of a program in the main program file if you use
the variables throughout the entire program. You can then
locate these variables quickly. Because the main program is
the highest-level program, PRIVATE variables initialized in
the main program remain in effect in all modules and thus
act like PUBLIC variables.

3

.~

j

CHAPTER 3

All PRIVATE memory variables disappear when a program fin-
ishes or when the subprogram that initialized the variable
RETURNs to the calling program. There is another way to remove
a PRIVATE memory variable from memory before the program or
subprogram ends. To do this, use the RELEASE command:

RELEASE cost

You can also RELEASE certain PRIVATE memory variables and
retain others by using a wildcard, if the variables have similar
names:

RELEASE ALL IIKE ■*

•

The * is a wildcard that tells dBASE III PLUS to RELEASE ALL
memory variables that begin with m no matter what other letters
are in their names. You can also RELEASE some memory vari-
ables~with the exception of others of similar names. Thus,

RELEASE ALL EXCEPT •*

would RELEASE the variables that don't begin with the letter m.

PUBLIC variables are never released automatically. The only way
to remove PUBLIC variables from memory is with the one of

For example, to clear the two PUBLIC variables mcost and
mbalance from memory without clearing the other variables, use
this command:

RELEASE ■cost, balance •

P3-10 ~ PROGRAMMING WITH dBASE III PLUS

these commands: CLEAR MEMORY, CLEAR ALL, or RELEASE
<public variable list>. Because you might inadvertently clear
variables that you want to retain, be careful when using CLEAR
MEMORY or CLEAR ALL.

Getting Rid of
Memory
Variables

(PUBLIC)

(PRIVATE)

m_cost
balance

m_amount
m_check
m withdrawal

_-

~'
i ,

m cost
balance

1

•

 USING MEMORY VARIABLES

A PUBLIC variable can be PUBLIC to the entire system as well as
to the dot prompt and to programs that aren't even necessarily
related. So, take care when working with several programs that
you CLEAR MEMORY to remove unnecessary PUBLIC variables.
In Chapter 16, you'll see how to temporarily hide a PUBLIC
variable.

MEMORY

•

RELEASE all like m'

MEMORY

CLEAR MEMORY

IV~M0RY

Figure 3-3 How to RELEASE memory variables

Meimory Files You can reuse variables by setting them up in memory files. The
SAVE command SAVES the contents of memory in a memory file.
Memory files have the extension .mem. When you want to use
these memory variables, issue the RESTORE command to bring
the variables into active memory from the memory file.

 PROGRAMMING WITH dBASE III PLUS

P3-11

•

. SAVE TO Setup ►

Setup .mem
working
Iname
m_amount

 •

 CHAPTER 3

Setting Up
Memory Files

To set up a memory file, initialize at the dot prompt the memory
variables that you want in the file. When you have them all in
memory, issue the SAVE command with a memory filename. For
example, you have several variables in memory and you want to
SAVE them to a memory file called Setup. At the dot prompt, you
type SAVE TO Setup ~.

., dBASE III PLUS•DOT PROMPT

'. STORE ~ :T. TO working
. STORE SPACE(20) TO Iname

1

. m amount = 0.00

 Memory

 ~ working .T.

► Iname SPACE(20)
r m_amount 0.00

l

 9

•

 DISK

Figure 3-4 Setting up a memory file

Restoring
Memory Files

To return the contents of this file to active memory, type
RESTORE FROM Setup ~ . Both SAVE and RESTORE assume the
file extension .mem. However, whenever you RESTORE memory
variables from a file, you automatically RELEASE all the vari-
ables currently in memory unless you instruct dBASE III PLUS to
retain them. This is done with the ADDITIVE expression.

P3-12 PROGRAMMING WITH dBASE 111 PLUS

•

•

USING MEMORY VARIABLES

As its name implies, ADDITIVE adds the contents of the
RESTOREd file to the variables currently in memory. For exam-
ple, if the program is to RESTORE the memory variables that are
in a memory file called Chkbook.mem but not RELEASE the
other variables currently in memory, the command would be:

RESTORE fRON Chkbook ADDITIVE

working
(name
m_amount

MEMORY

m_cost
balance

Setup.mem

RESTORE FROM Setup
MEMORY

~l working ~
(name
m amount

m_cost
balance
working
Iname
m_amount

RESTORE FROM Setup ADDITIVE
MEMORY

Figure 3-5 Using RESTORE and what happens to memory

•
PROGRAMMING WITH dBASE 111 PLUS P3-13

NOTE
The PUBLIC/PRIVATE status of a variable is not saved to the
.mem file. If you RESTORE a memory file at the dot prompt,
the variables come back as PUBLIC. If you RESTORE a mem-
ory file within a program file, the variables come back as
PRIVATE. Remember that any memory variables initialized at
the beginning of the program in the main program file remain
in effect in all modules and subprograms.

To get variables to RESTORE as PUBLIC in a subprogram
file, you need to do a PUBLIC <memvar list> before doing
the RESTORE FROM. You need to use the ADDITIVE option
to retain variables already in memory.

For example, a memory file, Setup.mem, contains three vari-
ables: mcost, mbalance, and mamount. To RESTORE this file
during a program run and make these three variables PUBLIC
to the program, enter these commands in the program:

VUBLIC cost, ■balance, •mount "
RESTORE fRON Setup~ADDITIVE .

.,

a

'a

,Y

Using
Memory Files

i :a

g i

P3-14 PROGRAMMING WITH dBASE III PLUS

•

 CHAPTER 3

Programmers often use memory files both to initialize memory
variables at the beginning of the program and to reinitialize them.
This is another way to clear the contents of a memory variable. It
is possible to have several memory files that the program can
individually RESTORE whenever it needs them. The advantage to
this approach is "that you can RESTORE the original contents of
certain memory variables without affecting others.

0

z

T

i~
i~

7

i

3
s

,~

~~

f

i

a.
'S
7

~~ USING MEMORY VARIABLES

~.ogical
Memory
Variables as
grogram Flow
controls

You can use logical memory variables as controls, which is simi-
lar to using logical fields to help you retrieve information. For
example, a Christmas card database file may have a logical field
called Last_year, which indicates which people sent you Christ-
mas cards (that is, L.ast_year = .T.). When you prepare this year's
mailing list, you could check which people might not get cards,
because they didn't send you a card last year:

LIST FOR~.NOT. Last_year

The logical field allows you to isolate records quickly on a given
true/false, yes/no basis. Because program flow also relies a great
deal on true/false conditions, you can use logical memory vari-
ables in a similar fashion. One advantage to using logical memory
variables for program flow is that they can indicate by their name
exactly what is going on.

For example, suppose your program is to add records to a data-
base file. The program initializes a logical type memory variable
called adding:

adding = .T.

PROGRAMMING WITH dBASE III PLUS P3-i 5

9
i

•

a

s ~
s ~•._ ,•

i

ti

9

_~
.~

TIP
One benefit to using a .mem file is that you can add, change,
or delete memory variables if necessary during the course of
program development. For instance, if you forget to include a
variable, you can add it later to the Setup.mem file. At the dot
prompt, RESTORE the memory variable file. Then STORE the
new variable into memory. Finally, SAVE the file back to
disk. The SAVEd file will contain the previous memory vari-
ables and the new one, too.

f

r

~'

~:

NOTE
You can use the & function with a variable in the conditional
part of a DO WHILE loop only if the value of the variable
does not change during the run of the loop. dBASE III PLUS
evaluates the DO WHILE condition once only, at the begin-
ning of the loop. After the first time, it executes the loop from
memory. Here is an example:

°ST0RE "Lestna~e = 'Jones"' TO .condition
DO YHILE 8condition .AND. .NOT. EOF()

* (co~~ands) -
. EMDD0

The loop runs as expected, because the value of the variable
condition doesn't change during the run of the loop. However,
changing the value of condition inside the DO WHILE loop
may result in an infinite loop. See Using dBASE III PLUS for
more information on macro substitution.

 •

~~ CHAPTER 3

You can then use this variable in a loop or condition:

DO YNILE adding
* (co~~ends)

~ENDD0 YNILE adding

When you study this module later, you'll understand at a glance
what the DO WHILE...ENDDO loop does.

P3-16 ~ _PROGRAMMING WITH dBASE 111 PLUS

Chapter 4
SETTING UP THE MAIN PROGRAM

You are now ready to take a look at the different activities or tasks
that a dBASE program can do. Each of the following chapters cov-
ers related topics. If you are new to programming, study the chap-
ters in order. If you are already an experienced programmer, you
can skip to the topics that interest you.

What This
Chapter
Covers

Getting Ready
to Do This
Chapter

What the
Main Program
Does

Using the checkbook management system as an example of a
dBASE main program module, you'll learn that the main program
generally does the following:

• Closes previously opened database,files

• Establishes the program's working environment

• Initializes memory variables

• Contains a control structure that works for the entire pro-
gram, usually a DO WHILE...ENDDO loop

• Presents the main menu to users

- • Contains a control structure that handles the menu choices,
- usually a DO CASE...ENDCASE structure

• Closes database files and resets the working environment
before the program RETURNs to the dot prompt

Understand the basics of programming, how the dBASE program
control structures work, and what memory variables are before
reading this chapter. Start dBASE III PLUS and place the Sample
Programs and Utilities disk in the default disk drive. Take a look
at the diagram of the checkbook management system in Chapter
1, and have your printout of the Cbmenu.prg file handy. This is
the main program module for the checkbook management system.

The main module of any dBASE program controls the program as
a whole. It calls and runs the subprograms and establishes the
working environment for the entire program. It usually presents
the user with the main menu and contains a controlling structure,
such as a DO WHILE...ENDDO loop, which determines the entire
program flow.

PROGRAMMING WITH dBASE III PLUS P41

CHAPTER 4

The main program may also do housekeeping, ensuring that all
database files are closed properly at the beginning and at the end
of the program, before the user returns to the dot prompt.

You saw in Chapter 2 that all dBASE programs start with a pre-
amble and a setup area. You have already seen an example of the
program preamble. This section discusses at greater length what
goes in the setup area.

Immediately before running your program, the user may have
been working with dBASE III PLUS from the dot prompt, in The
Assistant, or using another application written in dBASE. So,
make sure that your program has a provision to close any
database files previously in USE. The CLEAR ALL command in
the Cbmenu.prg does this. Include this command at the beginning
of your main program.

When you use dBASE III PLUS from the dot prompt or from The
Assistant, a default working environment is provided for you. For
example, there is the menu bar at the top of the screen and the
status line at the bottom, along with various messages and
prompts.

However, when you write a dBASE program, it's up to you to
decide how the program is to look. You may wish to mimic the
dBASE interactive environment, or design your own, as in the
checkbook management system.

The Setup
Area

Closing
Database Files
in Use

The Working
Environment

P42 PROGRAMMING WITH dBASE III PLUS

P43

•

SETTING UP THE MAIN PROGRAM

SET Command

BELL
COLOR

Dot Prompt
Environment

ON
W/N, N/W

Program
Environment

OFF

WB, B/W
(for white on blue]

DEFAULT

ESCAPE
HEADING

HELP

MENU
PATH

SAFETY
SCOREBOARD
STATUS
TALK

B
[depends on
computer]

ON
ON
ON
ON
B:\

[depends on
computer]

ON
ON
ON [may be OFF]

oN

C
[for hard disk]

OFF
OFF

OFF
OFF

C:\DBASE \WORK
[for a
subdirectory]

OFF

OFF
OFF
OFF

Table 41 Difference between the working environment
at the dot prompt and in a program

Setting up the working environment is the next thing you do in
the main program module. To change the working environment
defaults, use SET commands. There are many SET commands .
that apply to dBASE programming. SET TALK and SET ESCAPE
are the most important.

PROGRAMMING WITH dBASE III PLUS

•

4
f
1

+
4yj!

9
7

0

I

f:

CHAPTER 4

NOTE
This section assumes that you are working with the dBASE
III PLUS default settings. Another way to establish defaults is
to put them in the Config.db file. See Using dBASE III PLUS
for more information.

SET TALK and
SET ESCAPE

P4-4 PROGRAMMING WITH dBASE III PLUS

F,

--__ :-~ ~~~,.~~ ,;~;~.yx

oM~ pa _~-~ti ,,, ,.~, .y~
~;•.

•

At the dot prompt or in The Assistant, dBASE III PLUS answers
your commands with messages on the screen. For example, if you
initialize a memory variable with the STORE command,
dBASE III PLUS shows on the screen the contents of the new
memory variable:

. STORE "Enter code number --~" ~0 pro®pt
Enter code number --> -

Because it is responding to your command, dBASE III PLUS calls
this TALK. The default is TALK ON. However, you probably don't
want dBASE III PLUS's TALK to disrupt your screen appearance.
So, issue the SET TALK OFF command. At the beginning of the
main program module, most dBASE programs include the com-
mand SET TALK OFF.

Pressing Esc on the keyboard interrupts and' cancels a dBASE III
PLUS command. Because you want to control when the program
stops, you may not want the user to have access to this key dur-
ing the run of the program. Include the SET ESCAPE OFF com-
mand to stop access to the Esc key.

SET ESCAPE OFF gives you strict control over how the user
leaves the program. For example, if the program is updating a
database file and the user accidentally hits the Esc key with SET
ESCAPE ON, the database information may be corrupted.

There are many other SET commands for governing the pro-
gram's working environment. Below is a discussion of those often
used in the setup area of the main program file.

Ya~l^

!•

•

i

o
9 r

_ _ SETTING UP THE MAIN PROGRAM

dBASE III PLUS rings a bell when input completely fills a field or
when the user types an incorrect entry. However, it's a good idea
to control the bell yourself. As you'll see in the next chapter, you
can sound the computer's bell with a simple command whenever
you want to alert users that they have made a mistake or call
their attention to something, such as an important screen prompt.
This can be controlled with SET BELL ON or OFF.

Use the SET COLOR TO command to determine the color attri-
butes of the screen and set high intensity and blinking displays.
However, don't go overboard on special effects. They are disrupt-
ing or irritating in a busy office. For example, the default color is
white letters on a black background, but if you wanted inverse
video, you would use the following command:

_ ';
This means a black foreground on a white background. The
Cbmenu program employs this technique when the user wishes to
change the date, the K choice from the main menu. Refer to the
reference section for SET COLOR in Using dBASE III PLUS for
more details. The first code SETS the foreground and background
colors of the standard display, the second code SETs the fore- '~
ground and background colors of the enhanced display, and the
third is for the border color.

SET COLOR ON/OFF switches between color and monochrome
display modes. If the .user has a color monitor, you must deter-
mine what mode the display is in. One method is to use the
ISCOLOR() function to test if the user has a color card. This func-
tion returns a logical value, .T. or .F. For instance, the following
module switches to monochrome mode if the display is in color
mode:

IF ISCOLOR()
SET COLOR OFF

ENDIF

F

PROGRAMMING WITH dBASE III PLUS P45

i

Ringing the Bell

Color Monitors

.~

1

y

s

s.

SET COLOR TO N/Y

1

)
1

d~

t
R
i

3

S

i` _~

w

•

CHAPTER 4
g

9

1

The Default Disk
Drive

The SET DEFAULT command tells the program where to find
files. When you start dBASE III PLUS, it assumes that the logged
drive is the default drive. A different default drive may contain
database files, a data catalog, or even the other subprograms that„
run under the main program. To change the default drive, for
example to the C drive, use the command:

SET DEFAULT TO C

where C is the new default drive. (Also see the Directory Paths
section below.)

The Function Keys You can configure nine of the ten function keys on the keyboard

mand:
SET FUNCTION 2 TO "CLEAR;"

Be sure to enclose the command that the function key is to per-
• form in delimiters - either single or double quotation marks or
square brackets. There is a limit of 30 characters, including semi-
colons, that you can program into a function key. If you have a
computer with named, instead of numbered, function keys, refer
to the discussion of the FKLABEL() and FKMAX() functions in the
reference section of Using dBASE III PLUS.

•
P4-6 PROGRAMMING WITH dBASE 111 PLUS

ar:..... e- -.c^4 = r_..q - _'.i w.rro syw~ 4«c~.cr- .a ~,~s9,y ~X`; Y ~!;!<.!'

to do whatever you want. (You can't configure the F1 key, which
is reserved by dBASE III PLUS for its help feature.) If you want
the function key to enter a command, end with a semicolon to
indicate the ~ key. For example, if you want the user to be able
to press the F2 key to issue the command CLEAR, use the com-

D

•

SETTING UP THE MAIN PROGRAM

TIP
It's good practice to reset the function keys to their default
settings at the end of the program and before the program
returns to the dot prompt. For example, this line resets the F3
key to its default setting:

SET iUNCTION 3 TO "LIST;"

A list of these default settings is in the reference section
under SET FUNCTION in Using dBASE 111 PLUS.

•

Database Field
Headings

The HEADING is the line that contains the field names when you
use certain commands, such as LIST or DISPLAY. Because they
usually create their own headings for screen displays, most pro-
grammers SET HEADING OFF so that this line doesn't appear.

The Help Message When the user types an incorrect command at the dot prompt or
in ASSIST, dBASE III PLUS responds with the message:

Do you want some help (Y111n?

If you don't want dBASE III PLUS to present this question, then
SET HELP OFF. There are other ways to give the user help in
your program. For instance, the checkbook management system
has an on-line help file, Help.prg, that describes what each choice
in the main menu does.

PROGRAMMING WITH dBASE 111 PLUS P47

•

NOTE ~ .
This command does not control the menus that you create. It
only governs the dBASE III PLUS on-screen menus.

Directory Paths

•

•

 CHAPTER 4

In full-screen applications, dBASE III PLUS presents the user
with a menu that shows what certain keys, such as the cursor
keys, do. You can see this menu by pressing F1. In your program,
however, you probably don't want the menu to be on the screen
by default, so use SET MENU OFF to turn it off. If your program
uses afull-screen command, such as BROWSE, the user can still
toggle the menu on with F1.

You can use SET PATH to tell dBASE III PLUS to look in other
subdirectories for files. If you are unfamiliar with the terms sub-
directory, root, and path, check your DOS manual. This command
is important for hard disk systems. For example, the command
line:

SET :PATH TO C:~YORK

The Menu Bar and
On-Screen Menus

The Safety Valve

directs the program to look for files in the. subdirectory WORK on
the C drive, if the program can't find "the files in the current
directory. The command SET PATH TO, without a path name,
releases the PATH.

When you attempt to overwrite a file that already exists, such as
m when you INDEX a database file to an existing index file or

COPY a file to an existing file, dBASE III PLUS asks you to verify
what you're doing. This is called SAFETY, and the default is ON.
If you don' t want users to see these messages, SET SAFETY OFF.

P4-8 PROGRAMMING WITH dBASE 111 PLUS

•

t
L
f

s,
z

.~
ti

i
fi

~-

3

~
S
i

~:

f ~~ ;,
:;
`s'

~.

f
.X

s
1

~c';

~-

~.

~:

~'

~,-,'

R

y s

i

l

Y

~~

K

-~

The Top Row of
the Screen

NOTE
If STATUS is ON, turning the SCOREBOARD OFF has no
effect, and dBASE III PLUS messages appear on the status
bar. If STATUS is OFF, the scoreboard is on line 0, and if
SCOREBOARD is ON, the dBASE III PLUS messages appear
on this line. If SCOREBOARD is OFF, the information is sup-
pressed.

PROGRAMMING WITH dBASE III PLUS

P49 ~~''

.____. .~....~-.....~- ,.. ~.. -~...z,--~.._z~,..

•

1

SETTING UP THE MAIN PROGRAM ~~
The Status Bar and The status bar that appears at the bottom of the screen is a useful
Message Line	 aid, but you may not want it on in your program. If so, make sure

to include the SET STATUS OFF command in your program's
setup area. If your intention is to mimic dBASE III PLUS's nor-
mal screen display, you can include the status bar in your pro-
grams. You can also use the SET MESSAGE command to put a
message below the status line. It works only with the APPEND,
CHANGE, EDIT, INSERT, and READ commands.

When STATUS is OFF, the top row of the screen is the SCORE-
BOARD. dBASE III PLUS reserves this line for its own messages.
For example, when you DELETE a record, dBASE III PLUS shows
the message Del on the scoreboard. In your programs, you can
use this line to display prompts, or headings, or to ensure that
dBASE III PLUS's messages on this line don't appear unexpect-
edly. So, include the command SET SCOREBOARD OFF in your
program: You'll learn more about the scoreboard when you study
screen displays in Chapters 6, 7, and 8. The checkbook manage-
ment program intends to include dBASE III PLUS's message, so
SCOREBOARD is ON.

There are many more SET commands that govern specific aspects
of the dBASE III PLUS working environment. You may have them
in the setup area, too, or at the point in the program where they
are necessary. Because they relate to topics in other chapters, you
will investigate them later.

•

.;

•

a
a

N
 CHAPTER 4

Establishing
Memory
Variables

'..;,;;0000)
0I

01

TIP
Write a standard boilerplate program preamble file that
includes the CLEAR ALL command and the SET commands
that you use regularly. Then you can copy it whenever you
begin a new programming project.

a .~

After deciding about the work environment, most programmers
initialize the memory variables that they will need throughout the
program. The checkbook management program RESTORES vari-
ables from a memory file called Chkbook.mem and initializes one
other variable:

RESTORE FROM Chkbook
today = DATE()

Recall that, although these variables are PRIVATE, because the
main program initializes them, they work throughout the entire
program.

Take a look at the Chkbook.mem file. At the dot prompt, type:

. RESTORE FROM Chkbook ~

The contents of this file are now in memory. Type

•
"II PLUS

:9
.,...

~i. a

t+

-~ ~'~~-

kK

S

ti'

• a

9

SETTING UP THE MAIN PROGRAM

e

•

s

These are numeric type memory variables, and the balance vari-
able has two decimal places. In the next chapter, you'll see how to
manipulate memory variables and field types for your own pur-
poses, such as displaying them on the screen.
Why does the checkbook management program use a memory
file? The variables in the Chkbook.mem file contain the last trans-
actions from the previous run of the checkbook management sys-
tem. When you first use this program these variables are all 0.00.
However, when you start adding deposits, withdrawals, and
checks, these variables retain the last transaction amounts.
So, when you run the program again, the RESTORE FROM
Chkbook command brings in the amounts. Because the program
should check if any changes were made to the amounts, it initial-
izes temporary variables that store the beginning amounts. These
are the variables mbalance, mlastchk, mlastdep, and mlastwth.
Later, when the user finishes the program, there are instructions
for the program to check whether any new transactions occurred.
It compares the contents of the temporary variables with the cur-
rent contents of the variables RESTOREd from Chkbook.mem.
These latter variables may contain new amounts during the run of
the program. -

°,'

s

x
i

i

,---~

~~

i'

a

•

Next follows a standard convention that many dBASE program-
mers use to govern the flow of the entire program. Most dBASE
programs have just one main menu, from which all other sub-
menus branch - the one entry/one exit concept. Because the pro-
gram continually returns to this main menu after each subpro-
gram ends, until the user decides to end the program and return
to dBASE III PLUS, the entire flow of the program is in just one
DO WHILE... ENDDO loop:

DO YRILE .T. .

The comment line above this command notes that this command
forces dBASE III PLUS to do the loop forever, because true is
always true: The main menu is in this DO WHILE...ENDDO con-
struction. This is a continuous loop, and for good reason. The pro-
gram loops continually back to the main menu until the user exits
by choosing the X choice.

PROGRAMMING WITH dBASE III PLUS P411

The
Continuous
Loop

5
~•
►,

r fi

1

~'
.j

Cleaning Up

CHAPTER 4

•

So, with one simple construction, you can ensure that the pro-
gram shows the main menu whenever control returns to the main
program. You don't have to resort to any complicated or tiresome
retyping.

The next DO WHILE .T. loop is somewhat fancy. It shows the cur-
rent time and counts off the seconds on the screen continually
until the user selects a choice. When you learn about the INKEY()
function in Chapter 8, this will make more sense to you.

For every choice from A to J, and choice L for help, the main pro-
gram will call a subprogram. The program handles this entire
multiple choice situation, except for the K choice, with the DO
CASE construction in the main program. The program picks a
subprogram, depending on what choice the user types. The pro-
gram uses the ASCII character function CHR() and the substring
search operator $, which instructs the program to look for either
an upper case or lower case letter choice. You will investigate
these features more thoroughly in Chapters 5 and 8, respectively.

The K choice is an exception, so the program has the instructions
to handle this choice first:

IF .NOT. CHR(i) S "Kk"
EXIT

EHOIF

These lines tell the program to EXIT the current DO WHILE loop
if the choice is not K or k. The program goes right to the DO
CASE construction immediately following the ENDD0 line. If the
choice is K or k, then the rest of the IF construction does a screen
display for changing the date.

Your programs should CLEAR ALL database files before the user
begins work, and they should do housekeeping when the user fin-
ishes, that is, when the user types the X choice. Take a look at the
CASE construction for this choice:

The Rest of
the Main
Program
Module

CASE CHR(i) i "Xx"

P412 PROGRAMMING WITH dBASE 111 PLUS

•

S

i P413 i

•

SETTING UP THE MAIN PROGRAM

Look at the IF...ENDIF construction below this choice:

IF balance <> ■balance .OR. lastchk <> ilestchk..OR~
lastrth <> ■lastrth .OR. lastdep <> ilas.tdep `.

The IF line instructs the program to check whether the original
amounts in the balance, lastchk, lastwth, and lastdep variables
have been changed. That is, the IF line checks to see if one or
more of them are not equal to the amounts in the temporary vari-
ables mbalance, mlastchk, etc. The program SAVES the contents
of the RESTOREd memory variables back to the Chkbook.mem
file for use the next time. However, the program only SAVES if
the user has entered new amounts, such as more deposits, checks,
or withdrawals:

Note also that the program first RELEASEs all temporary vari-
ables that begin with the letter m with the line:

RELEASE ALL LIKE m+

It also RELEASEs the other, now unnecessary, variables used in
the program. The program does this before using the SAVE com-
mand so that it doesn't SAVE the unnecessary variables in the
Chkbook.mem file.

Finally, the program resets the working environment to the way it
was before the program ran, CLEARs ALL database files, CLEARs
the screen, and RETURNS to the dot prompt.

Y

A

a

s

6~
t~

7

t.

PROGRAMMING WITH dBASE 111 PLUS

What This
Chapter
Covers

This chapter discusses the following:

• Why type conversions are necessary

• What concatenation means

i

P

R

f

4

!,

i
a
~.

.~

;;
a

3
S
i.'

z
i

.~

x
;~

`~~
.~;

~~

~.~

,.

s

~.

P5-1 ~~ PROGRAMMING WITH dBASE 111 PLUS

•
t

Chapter 5
FUNCTIONS FOR FIELDS AND MEMORY VARIABLES

You communicate with the user by means of screen forms,
prompts, and messages. Before you can learn how to set these up,
you have to know about the various ways to convert data to a
form acceptable for screen displays. The data can be either field
information or the contents of memory variables.

• How to use functions with field and memory variable types

• How to convert numeric fields and variables to strings,
strings to numbers, dates to strings, and strings to dates

• How to deal with the time in a dBASE program

Know the basics of programming in dBASE, field and memory
variable types, how to open and USE database files, the DISPLAY,
LIST, ? commands, and how to FIND a record. Because it's most

_ effective to see the examples in this section directly, start
dBASE III PLUS.

In dBASE programs, the DISPLAY or LIST commands work
exactly as you expect. Remember that the DISPLAY ALL com-
mand pauses the scrolling of database information when the
screen is full. For example, if the fields you wish to DISPLAY are
First, Middle, and Last, you might use the command line:

} Shos the three, fields pith the record nueber off
DISPLAY OFF ALL First, Middle, Last

However, this may disrupt any other screen messages or prompts
that you've set up. Because it can interrupt the nice look of your
screen displays, the LIST command is more dangerous from a pro-
gramming standpoint. Remember that LIST without any parame-
ters shows all the database file information on the screen, but
does not pause the display unless you type CM-S.

Preparing for
This Chapter

Displaying
Information

CHAPTER S

»~~-.-~

a"~`

Tq .._
•j ..

When you use your own customized screens, you will want to posi-
tion the field information differently on the screen than the way
dBASE III PLUS positions it. DISPLAY and LIST don't give you
much flexibility. Neither does the query command, ?.

In the next chapter, you'll learn a better way to display informa-
tion with the ...SAY command. (...SAY allows you to place
information, such as field information, the contents of memory
variables, or strings, anywhere on the screen.

This, too, has its limitations. If you want to show numeric, date,
and character data on the very same line of the screen, you can't
mix and match different data types in the same (di...SAY
command, unless this data is in the form of character strings. So,
you must convert non-character data to character strings.

A character type field or memory variable can contain any print-
able character from the keyboard, including numbers and punctu-
ation marks. However, information requiring a calculated result,
such as a dollar amount, works better in a numeric field. In addi-
tion, the dBASE III PLUS date fields provide ways to check for
the day of the week or month. ~~-

Numeric, date, and logical fields contain printable characters,
but, as far as dBASE III PLUS is concerned, a numeric, date, or
logical field is not. in character format. dBASE III PLUS won't
allow you to mix numeric, date, and character fields on the same
line of the screen, or join together a numeric field with a string
field. You must first convert numeric and date information into a
character string.

Type
Conversion
Explained

PS-2 PROGRAMMING WITH dBASE III PLUS

w

•

., e - • J ~ • _ ~ ~ .,

NOTE
You convert fields or memory variables to character strings
merely for display purposes. You are not changing field types
in the database file, nor are you modifying the structure of
the database file.

• r

FUNCTIONS FOR FIELDS AND MEMORY VARIABLES

The many dBASE III PLUS conversion functions, discussed below,
help you do string conversions. Here are some general rules for
using these functions:

• If you use the name of a field or variable in the function,
dBASE III PLUS will automatically ascertain its type and
length.

• When you want to'use strings that aren't in fields or memory
variables, enclose them in delimiters, usually single or double
quotes.

• When converting a numeric field into a character string, be
aware of the length and number of decimal places of numeric
fields.

• Date fields are special fields with their own conversion func-
tions.

• For logical fields, all you need to do is supply the character
representatives of .T. or .F., such as True or Yes for .T.

•

• Memo fields are a special case.

Although it's logically impossible to add or subtract one character
string from another, you can assemble strings together to form a
new string. This is known as concatenation, and dBASE III PLUS
uses the plus sign, +, for it. When you concatenate strings, ensure
that the correct spaces are between them.

For example, you have a character field called Part~o which con-
tains asix-character part number, and the current record con-
tains ABC123. in the field. The program line to concatenate the
field information with the string The part number is would be:

? "The part nusber is" +Part no

which would result in: The part number isABC 123. The two
strings run together, because you forgot the space between them.
You could do this:

? "The part nu~ber is " + Part no

Concatenation

PROGRAMMING WITH dBASE III PLUS

P5-3

Notice the extra space after is. You could also do it this way:

~-~,

CHAPTER 5

a

Comparing
Strings

i

a

i .~

1

~•

-.
.~ a
'K.~

? "The part nu~ber is" * " " • Part no

Notice the extra space in the quotation marks. There is another
way to concatenate strings, which you'll learn about shortly.

Even though strings aren't numbers, you can still compare them.
That's because the ASCII code values for each printable character
are in a certain numerical order. Refer to the ASCII code table in
Appendix E of Using dBASE III PLUS for the code values. For
example, if you typed ? 'A' < 'a' you would get a .T. response,
because the ASCII code for A (65) is less than the ASCII code for a
(97).

Similarly, you can compare a character string with the line ? '950'
> 750'. Note that these are strings because they are delimited,
even though they contain numbers. Because the ASCII code for 9
(57) is higher than the ASCII code for 7 (55), you get a .T.
response. _

WARNING
Don't mix types in comparisons. For instance, you can't com-
pare astring to a number. Make sure that you're comparing
the same types. Otherwise, you'll get the error message Data
type mismatch. Moreover, in string comparisons, dBASE III
PLUS compares all characters until it runs out on the right-
hand side of the relational operator, _. For instance, if it
were doing this comparison:

? 'abcd' = 'abc'

it would give a .T. response. But this comparison:

? 'abc' = 'abcd'

gives a .F. response.

p5~ PROGRAMMING WITH dBASE III PLUS

(

i
t

i

-. _r-~..,..o _-- _ --- rte-, .. _~.-~.-.,. ~ ._ ,.

s

3~

7

i
a

s

I
t

5

t
3

z.

z

~~ f
3
~>
;.

r

$:

~,.

~~

~~

M

:~

a

a

•

today = DATE()

IF today = "September 12, 1986"

Date I t String

Data type mismatch

FUNCTIONS FOR FIELDS AND MEMORY VARIABLES

Figure 5-1 You can't compare fields or variables of different types

Nunoeric
Functions

String
Functions

• t

a.

There are several functions that work with numeric data to pro-
duce a numeric value. They are relatively straightforward::,You
can find thorough explanations of these functions in=Using' ~.

"dBASE III PLUS. Here they are: .~ '~
.. ~..

ABSQ - absolute value
EXPO - exponential value
INTO - integer value
LOG() - natural logarithm
MAX() - maximum value
MIN() - minimum value
MOD() - modulus (remainder)
ROUND() - round a number
SQRT() - ~ square root

These functions always return a numeric value. The INTQ func-
tion is important to the discussion of conversions here. However,
it will make more sense to you after you've first looked at the
string functions.

dBASE III PLUS has many functions that deal with character
strings. You'll use the following string to illustrate these
functions:

Your choice is incorrect - change it? (yln)

PROGRAMMING WITH dBASE III PLUS P5-5

•

CHAPTER S

So that you don't have to type in the same string continually, first

is 44. The delimiters are not included in the length.
returns the length of the initialized memory variable string, which

s

-„w ~,-,.~ ,~
., - ~~~

initialize it as a memory variable called string:

STORE 'Your choice is incorrect -- change it? (y/n)' TO string

You can determine a great many conditions using string func-
tions. One is to check whether or not the user has typed a correct
response.

Often you need to know how long a string is. For example, if the
user has typed in a command, you can check its length to make
sure that the input is correct. The function for this is LENQ. This
function always returns a numeric value. The entire string, the
character field name, or the memory variable name must be in
parentheses. Here are some examples:

? LEN string)

LEN("that's ■y line?")

returns 15, which is the length of the string What's my line?. If
there were a database file in USE containing a field named First,
the command

` ? LEN(First)

would return the length of this field. You can set up a simple IF
construction to test for string length:

* If the length of the input variable is not 5
IF LEN input) U S

DO Error 88 Branch to Error.prg
* The length is 5, so go on
ELSE

* lcos~ands)
ENDIF

PROGRAMMING WITH dBASE 111 PLUS

•

The Length of
a String

P5-6

a

.~

r;

FUNCTIONS FOR FIELDS AND MEMORY VARIABLES

-- change it? (y/n) i

Getting Part You can ask dBASE III PLUS to give you only a part of the string.
of a String This is known as a substring, and the function for it is SUBSTRQ.

You must tell dBASE III PLUS where to start in the string and r,
how many characters to count starting from that position. The
first number gives the starting position; the second number gives
the length from the starting position. For example:

? S~lBSTR(string,1,24)

tells dBASE III PLUS to display the memory variable string start-
ing at position 1 and continuing for 24 characters. The result is:
Your~choice is incorrect.

If you provide a starting number but no ending number, then
dBASE III PLUS assumes that you want the rest of the string,
starting at that position:

? SUBSTR(string,29)

results in the answer: change it? (y/n).

With the SUBSTR() function, you can reuse part of a string in
another string, without having to retype the whole string. For
example:

? "I don't like your ansrer, do you rant to " + ;
SUBSTR(string,29)

gives the new string:
I don't like your answer, do you want to change it? (yln).

PROGRAMMING WITH dBASE 111 PLUS P5-7

r ,r
N

~' k

y:

e

2

s

a

1 B T strin 1 24 SU S R(g,)

Figure 5-2 A substririg_is part of a string

t

i

r

Your choice is incorrect

left and Right
Sides of
Strings

You can get certain characters in the string starting from the left
or the right side with the LEFT() and RIGHT() functions, respec-
tively. LEFT() is like the SUBSTR() function, but you don't have to
supply a starting address, because it is automatically positioned
at the left side of the string. Conversely, RIGHT() starts with the
last position in the string and works backward (that is, right-to-
left). To illustrate:

s -..

Substring in a string. For example,
The AT() function returns the starting position number of the

d

,.:

PS-8

~o

PROGRAMMING WITH dBASE III PLUS

? IEfT(string,24)

would result in:

Your choice is incorrect

whereas

? RI6HT(string,l6)

would result in:

change it? (yln)

? AT ('change', string)

gives the number 29, the position where the string change starts.
If the substring is not in the string, then AT() returns the value 0.
Note that the Substring change is enclosed in delimiters.

~,..~

correctly spaced.

CHAPTER 5
~~

Note that there is a space after the first to, so the two strings are

Substring
Position

.s

•

i

i

FUNCTIONS FOR FIELDS AND MEMORY VARIABLES

Changing
Between
Upper Case
and Lower
Case

Sometimes you may want to convert a string to upper case or
lower case. The UPPER() and LOWER() functions will convert the
entire string:

° ~~ UPPERtst~ing)

would result in
YOUR CHOICE IS INCORRECT - CHANGE IT? (YIN)
whereas

because the SUBSTR() function starts the string at position two ~ !

and includes the rest of the string.
° The Add. r module uses the UPPE function to test for a user ~. ~ . P g ~) ~ ,

response: ,

IF UPPERtensre~)="Y" ~ :a
EXIT a 3

ENOIF "~

You can use the string functions in many different combinations,
but be careful to include the correct number of parentheses and s
to use the concatenation operator, +, between strings. 3 3

1

9

PROGRAMMING WITH dBASE III PLUS P5-9

A

i
'~

'T' • LOYER(SUBSTRCTNIS IS NOT COMPLETELY IN TOYER CASE',2)) -
-

gives the answer = ' i'. y

This is not completely in lower case

LOYERtst~ing)
- r

would result in •
3:

your choice is incorrect - change it? (yln) s •~

How would you convert only part of a string? Use the UPPER() or
LOWER() function with the SUBSTRQ function. For example:

~_

~~

CHAPTER S

Trimming
an Entry

It is important to avoid trailing blanks. When you enter informa-
tion in a character field and leave a few empty spaces in the field,
dBASE III PLUS fills them up with trailing blanks. If you don't
want them to appear when you display the field, use the TRIM()
function to take them out.

Last_name Trailing Blanks

Field~is 20 Characters Long

.? Trim (Last_name)

Figure 5-3 Trailing blanks

For example, the First~ame field in a database file is 15 charac-
ters long, and you want to display the field information for the
current record together with the Last~ame field. The two fields
contain the entries Joe and Palooka, respectively. The line

T First nape + .last nape

would result in

Jce Palooka

The entry

~ TRIM(First nape) + -last nase

would result in

JcePalooka

`~ ...~

P5-t0 PROGRAMMING WITH dBASE 111 PLUS •

•

i

u

f

A

i

Palooka

Palooka

•

D

,ti

•

FUNCTIONS FOR FIELDS AND MEMORY VARIABLES

~,
That's not what you want either. The solution is:

? TRIM(First nape) + ' ' + last nape

OR

-,~. •- ? TRIMIFirst_nase)~ last_nase

Either way gives you:

Jce Palooka

If First~ame contained Stephanie and Last~ame contained
Stevenson, the answer to the same query would be:

Stephanie Stevenson

TRIM() trims only the trailing blanks. There are two other trim-
ming functions: RTRIMQ and LTRIMQ. RTRIMQ is exactly the
same as TRIM(). It trims trailing blanks. LTRIMQ trims the lead-
ing blanks at the beginning of a string. This is very useful for
catching user errors. If the user inadvertently types a space to
begin a character entry, you can use LTRIM() in your program to
correct the entry.

Last_name Trailing blanks

_ Palooka

Leading blank typed in by mistake

? LTRMM (Last_name)

Palooka

Figure 5-4 Leading blanks

•

PROGRAMMING WITH dBASE 111 PLUS P~11

s
i

;v
3
t
i
:;
~,
i
e

~~~ 

is 

j 

~t 

3' 

~-

   



TIP 
Using the TRIM(), LTRIMQ, and RTRIM() functions will help 
you avoid user errors and increase data precision. When you 
want the program to STORE the contents of a character field 
in a memory variable, use LTRIMQ with TRIM() to avoid any 
unnecessary leading or trailing blanks in the field. Similarly, 
if the user is to type in a name, first make sure that you 
account for leading and trailing blanks in the name before 
doing anything else with it. 
For example, you initialize a memory variable called mlast to 
hold the user's input of a last name: 

STORE SPACE(20) TO ■lest 

The last name that the user types probably will contain under_ 
20 characters, but the user might type a space before the 
name accidentally. To ensure that dBASE III PLUS only deals 
with the real last name, and not the leading or trailing blanks, 
have the program do this: 

STORE LTRIM(TRIM~~lest)) TO Test 

Getting rid of trailing blanks is especially important when 
you need an exact match between the contents of a memory 
variable and field information. 

  

 

 

 

 

• 

 

 

 

CHAPTER S 

  

Another common use of the trimming function is to find the 
actual length of a field's contents. For example, if a database file 
contains a field called Name, LEN(Name) always returns the field 
length rather than the actual length of Name. LEN(TRIM(Name)) 
solves this problem. 

PS-12 PROGRAMMING WITH dBASE III PLUS 

• 



FUNCTIONS FOR FIELDS AND MEMORY VARIABLES 

 

Another Way 
t0 
Concatenate 

You can also concatenate strings with the - operator, which does 
two operations at once. It joins two strings, just like the +  opera-
tor, but it also moves the trailing blanks from the first string to 
the end of the resulting string. Thus: 

   

• If the Dep~o field contains " A " with three trailing blanks, and 
the Emp~o field contains 123X, the newnum variable contains 
the string "A123X ". Note that the three trailing blanks have 
been moved to the end of the new string. 

Last name First name 

Joe Palooka 

   

~ First nee - last nee 

 

results in: 

StephaaieStevenson 

This concatenation operator is most useful when you want to join 
two character fields, such as a department number field and an 
employee number field to result in a new, composite number. 
Here, you're creating a new employee number by concatenating 
the character field Dep.~to, with a length of four, with the charac-
ter field Emp~o, which also has a length of four: 

STORE Dep no - Epp no TO nernu■ 

  

., 

    

r 
i 

     

s 

     

. ? First name + Last name 

  

. ?•First name-Last name 

                         

• 

    

1 
s 
a 

E 

s 

     

7 

  

• 

• 

 

PROGRAMMING WITH dBASE 111 PLUS 

 

t 

e 
c 

 

R 

4 
i 
V 

   

Figure 5.5 Two types of concatenation 

  

P5-13 

 

x 
z 

  

Joe Palooka 

Palooka Joe 



    

• 

     

Strings as 
ASCII 
Characters 

    

r 

   

6 

     

a 

    

CHAPTER 5 

 

rte. 
t ~ 

Computers convert all characters to special numeric codes. Every 
printable, keyboard, and screen character has a unique ASCII 
code. These characters and their ASCII codes are in Appendix A 
of Using dBASE III PLUS. You can display a character with the 
CHR() function if you know its ASCII code number. 
Frequently, you will use this function to create special screen dis-
plays and to ring the bell, which also has an ASCII code number. 
For example, 

? CNR(201) 

is the same code which produces the upper left comer of the box 
in the checkbook management system main menu. 
There's also the ASC() function, which returns the ASCII code for 
a character. Thus: . 

 

? ASC('a') 

gives the integer 97, the ASCII code for a. You can use this func-

 

tion to increment letters. For example, 

 

gives the answer b. 

 

ASCII code ? is what makes the bell sound: 

? CNR(7) 

 

Use the bell sparingly for situations where you want to grab the 
user's attention. Remember that dBASE III PLUS also rings the 
bell when the user has typed in the contents of a field completely, 
unless you SET BELL OFF. CHR(7) will ring the bell regardless of 
whether BELL is ON or OFF. 

   

• 
.~'-~'~ 
~. ~ 

PS-14 PROGRAMMING WITH dBASE I11 PLUS i 
• 

          

Controlling 
the Bell 

f ~„ 

      

1 
Y i 

  



~., 

P. i 
t 
'r 

i 

1 
3 

L 

 

 

a, 

a 

r 

~,  

   

• 

   

~~ 

 

y 
r 

 

9 

~~ 

,~ 

ii 
1 
3 

:~ 

U 

Numeric to 
Character 
Conversion 
The STRq 
Function 

  

l 

   

FUNCTIONS FOR FIELDS AND MEMORY VARIABLES 

 

 

NOTE 
There are a few ASCII codes in the range 1-31 that have two 
meanings, depending on their context. When you learn about 
the ( ...SAY command in the next chapter, you'll see that the 
? command and the ®...SAY command can produce different 
characters for the same ASCII code number in the range 1-31. 

There are several functions that deal specifically with converting 
numeric data into character strings, a common conversion in pro- 
gramming. 

STR() is the dBASE III PLUS function that returns the string 
equivalent of a number. For instance, 

 

STR(3000) 

returns the character string " 3000" but without the quota-
tion marks. Notice the blanks at the beginning of the string. The 
STR() function normally returns a string that is ten characters 
long. dBASE III PLUS pads the number with blanks. However, it 
is advisable to give the STR() function two arguments to deter-
mine the length of the new string and the number of decimal 
places. For example, 

   

? STR(3000,4) 

gives the string answer 3000. The 4 refers to the four total display 
places of the string. You eliminate any leading blanks by deter-
mining the total number of places yourself. 

      

PROGRAMMING WITH dBASE 111 PLUS P5-15 

         

~,.r. 

  

  

 

 

   

 

         

  

 

 

  

 

,~ 

~~ 

~: 



.~ 

  

P5-16 

  
• 

~~ CHAPTER 5  

In the Reconcil.prg module of the checkbook management system, 
the program uses the STRQ function together with another string 
in an ®...SAY line. This line displays a memory variable called 
dif f converted to a string on row 19, column 23: 

 

~ 19,23 SAY "The difference is i"+STR(diff,10,2) 

Notice that the dollar sign° is not part of the STR() function, but 
by concatenating the two strings an amount is formed on the 
screen. For example: 

The difference is $ 23.05 

To display a period at the end of this line, concatenate it to the 
end: 

R 19,23 SAY "The difference is t"+STR(diff,10,2)+"." 

  

The string in the above example has two decimal places. Using an 
optional third argument in the STR() function signifies the num-
ber of decimal places in the new string. However, the total num-
ber of places, that is the second argument, must include the num-
ber of decimal places plus one space for the decimal point: 

 

gives you the string 35.50. The second argument, 5, refers to the 
total number of places, including one place for the decimal point. 
The third argument, 2, signifies the total number of decimal 
places. In addition, if the number is negative, the total number 
must include an extra place for the minus sign. 

PROGRAMMING WITH dBASE III PLUS 

 

Converting 
Numbers with 
Decimal 
Places 

 



   

i 

        

FUNCTIONS FOR FIELDS AND MEMORY VARIABLES 

      

• 

    

a 

   

P5-17 PROGRAMMING WITH dBASE III PLUS 

• 

If you give dBASE III PLUS arguments that don't make sense, for 
instance if you don't include the decimal places and decimal point 
in the total number of places of the string, dBASE III PLUS will 
give you an error message. For example: 

STORE 1 t0 nun 
? STR(nu~,1,2) 

results in the error message: 

*'*Execution error on STR() : Out of range 

because you can't have two decimal places but only a total of one 

 

STORE .SO TO nu• 
? STR(nu~,2,2) 

you get the same error message, because you need at least four 
total places for the display: two for the decimal places, one for 
the decimal point, and one for a leading 0. In the above example, 
dBASE does not return .50; it must return 0.50. Be careful when 
converting numbers with decimal points that you include the total 
number of places in the new string. 

Similarly, if you define a STRQ function with fewer places than 
the number, you get an overflow message, shown as a string of 
asterisks: 

nu■ = SSSSS 
? STR(nu~,4) 
s**• 

 

place for the string. Similarly, if you try this: 

            

i 

    

a 

  

,~ 

   



U 

    

 CHAPTER 5 

 

. num = 35.50 
l I 

2 decimal places - 
1 place for decimal 

 

j 
5 p~ ces total 

 

- . ? STR (num, 5, 2) 
35.50 

 

Figure 5-6.Take care with decimal places 

          

TIP 
You can control, the minimum number of decimal places that 
certain numeric functions show with the SET DECIMALS 
command. This command works only with the EXPO, LOG(), 
SQRTQ, and VALQ functions, and with division. The command 
SET DECIMALS TO instructs dBASE III PLUS to show the 
answers to these operations with two decimal places. How-
ever, if an answer returns a number with four decimal places, 
use the SET FIXED ON command, which establishes a fixed 
number of decimal places for display output. 

     

P5-18 PROGRAMMING WITH dBASE 111 PLUS 



You can convert a string to a number with the VAL() function: 

. STORE "599.85" TO string 
? VAL(string) 

Strings to 
Numbers 

 

NOTE 
Be careful when using the VALQ function with strings that 
don't contain numbers. dBASE III PLUS returns the value of 
0 in this case. For example, 

 

? YAl("hello there!") 

resulis in 0. 

    

(UNCTIONS FOR FIELDS AND MEMORY VARIABLES 

 

 

If a number has no decimal places, convert it to a string to dis-
play it with decimal places: 

string = 35 
• ? STR(string,S,2) 

 

gives the string 35.00. 

 

returns the number 599.85. To convert the string to an integer, 
you use the VAL() function with the INTO function: 

STORE "599.85" TO string •

 

STORE INT(VAL'(string)) TO•nerstring 
? nerstring 

returns the integer number 599. 

 

• 

    

• 

PROGRAMMING WITH dBASE 111 PLUS P5-19 



 

 

 

 

• 

 

 

CHAPTER S  

Date 
Arithmetic 

Although it displays dates in a format that you can readily under-
stand, dBASE III PLUS sees date fields and date type memory 
variables as special numbers. dBASE III PLUS has special func-
tions that manipulate date information. The date functions allow 
you to work with dates in general without knowing what the 
actual date is. For example, the DATE() function returns today's 
date, which you entered when you started DOS. It's in the form 
MM1DDlYY, although you can change that format. 

You can add a number to a date to get a new date. For example, if 
you are writing an accounting program that relies on dates. you 
can have a command like this: 

STORE OATEN) + 30 TO overdue 

 

The program adds thirty days to the current date to get a date 
variable called overdue which contains the new date. Then use 
this memory variable to test for a condition: 

* If the .account is overdue today 
IF overdue = DATE() 

Do Dunltr 88 Send out a dun letter 
ELSE 

* Or if the account is past due 
IF overdue > DATE(). 

DO Nasty 88 Send out.a strongerletter 
ENDIF 

ENDIF 

 

Similarly, you can also subtract a number from a date to get a 
new date, or you can subtract two dates to get the numeric result 
of the number of days between the dates: 

STORE DATE() TO today 
STORE today - 1 TO yesterday 
STORE yesterday - 1 TO daybefore 
STORE today - daybefore TO diff 

 

P5-20 PROGRAMMING WITH dBASE III PLUS 

     



   

• 

FUNCTIONS FOR FIELDS AND MEMORY VARIABLES  

You can get the numeric equivalents to the days of the week or 
month, the months of the year, or the year itself with other date 
functions. For example, if the current DATE() is September 12, 
1986, note what you get for each function below: 

 

? DDY(DATE()) 

6, for the sixth day of the week 

? oAr(oATEO) 

12, for the twelfth day of the month 

? NDNTN(DATE()) 

 

9, for the ninth month of the year 

? 9EAR(DATE()) 

1986, the year 

dBASE III PLUS considers Sunday as the first day of the_week. 
You can get the strings or substrings of these numbers if you 
wish: 

? SUBSTR(STR(YEAR(DATE()),4),3,2) 

 

gives the string 86, for the example used, September 12, 1986. You 
can also STORE the value of any of these functions in a memory 
variable for later use in your programs. If you do this, remember 
to declare the variable PUBLIC first. 

    

Date Formats The standard format for the date, MM/DD/YY, is the default 
American format. There are others you can use; for example, the 
British format is DD/MM/YY, and the German format is 
DD.MM.YY. You use the SET DATE command to change the for-
mat of date fields or variables. So, SET DATE BRITISH changes 
the format to DD/MM/YY. See Using dBASE III PLUS under SET 
DATE for the other date formats. 

 

PROGRAMMING WITH dBASE 111 PLUS P5-21 

  



 

CHAPTER 5 

• 

There is also a SET CENTURY command, which switches the dis-
play for the year between two digits and four. SET CENTURY is 
normally OFF, so use SET CENTURY ON to display a date in the 
form MM/DD/YYYY, for the American format. Thus September 
12, 1986 would appear as 09/12/1986. 

  

NOTE 
Use SET CENTURY ON if you want to input a century other 
than 1900. Even with SET CENTURY ON, a date will still 
take up only eight characters in a file structure and nine in a 
memory variable. 

  

Date-to- 
Character 
Conversions 

When you wish to use dates with character strings, you first have 
to convert the dates to strings. You do this with the date-to- char-
acter function, DTOC(). For example: 

 

? DTOC(DATE()) 

gives a string of the current date. If the date were September 12, 
1986, with SET CENTURY OFF, then the answer to the above 
inquiry is the character string 09112186. If you have SET the date 
to the BRITISH format, the answer to the same query is 12109186. 
With SET CENTURY ON and SET DATE BRITISH, the result is 
1210911986. 

You can, of course, use any of the other string functions once 
you've converted a date to a string. For example: 

 

SET DATE BRITISH 
? SUBSTR(DTOC(DATEO).1,2) 

  

gives the string 12. 

 

P5-22 PRO!GRAAAMING WITH dBASE III PLUS 

  



 

• 

 

FUNCTIONS FOR FIELDS AND MEMORY VARIABLES 

  

WARNING 
You can't perform arithmetic operations, such as adding num-
bers to dates, on strings which you create from dates. First, 
you have to convert the strings back to dates. You'll see how 
in a moment. 

There are other useful date-to-character functions that reduce 
needless programming efforts on your part. Note the string 
results for the following functions when DATE() is 09/12/86: 

? CD0Y(DATEO) 

Friday 

? CNONTH(DATE()) 

September 

 

You can provide your users with string equivalents to a date to 
make your printed reports look a lot better. For example: 

+ ~? CD0Y(DATEO)~+"~ "•+ CM0NTN(DATEO) +" " + ; 
LTRIMtSTR(DAY(DATEO),2)) +", " +~STR(~EAR(DATEO).6) 

gives the string: 

Friday, September 12, ~ 1986 

Once you've set up this command line, it works with the current 
DATE(), no matter what it is. 

Character-
to-Date 
Conversions 

You can convert a string in the correct date format to a date with 
the CTODQ, character-to-date, function. The correct format is 
MM/DD/YY. For example, assuming that the date format is AMER-
ICAN, and SET CENTURY is OFF: 

  

PROGRAMMING WITH dBASE 111 PLUS ~ PS-23 

• 

    

• 

    



• 

    

. , 
i CHAPTER 5 

 

in the correct date format, dBASE gives you a blank date: 
If you attempt to convert a string to a date, but the string is not 

 

However, if you convert a string that is in the correct date for-
mat, but the corresponding date is incorrect, dBASE III PLUS cor-
rects the date. For example: 

  

Using 
Dates in 
Comparisons 

 

gives the answer 03!01185, because dBASE III PLUS knows that 
February in 1985 only had 28 days. So it gives the next available 
real date. 

Because chronological comparisons are different than string com-
parisons, acomparison of two strings could give you an incorrect 
date. You must convert characters to dates to get correct results. 
For example, , 

December 31, 1985. The correct syntax is: 
gives the answer .F., although January 1, 1986 is the day after 

      

results in the date variable 09112186. If you use a string directly in 
a CTODQ function, you must enclose the string in delimiters: 

? CTOD('09 /12/86') 

09!12186 

? CT00('Septesber 12th, 1986') 

 

STORE '09/12/86' TO string , 
' STORE'CTOD(string) TO nerday 

 

/ / 

      

? '01 /01 /86' > '12/31 /85' 

? ctoo('01I01186') '> crooc'12I31I85') 

This yields a .T. response. 

 

P5-24 PROGRAMMING WITH dBASE III PLUS 

            

• 

  



• 
s 

~~ 

 

4 

   

FUNCTIONS fOR FIELDS AND MEMORY VARIABLES 

 

validate that what the user types is an actual date. 
You'll use this technique frequently in reports, for instance, to 

        

How to 
Initialize a 
Date Variable 

The only way to initialize a date variable is to use an existing date 
field or a function that returns a date, that is, either DATE() or 
CTOD(). To initialize a date variable, today, with the current date, 
you would enter: 

        

today = DATE() 

 

To initialize a date other than the current date in a memory vari-
able, use the CTODQ function: 

 

lastreek = CTOD('08 /07/85') 

You can also initialize a blank date variable: 

      

Using Time dBASE III PLUS's TIME() function returns the current time in the 
form hours/minutes/seconds, provided that you entered the time 
at the DOS prompt when you turned on your computer. 

        

REPLACE Nor PITH TIME() 

       

So, it's best to convert a string to a date before doing chronologi-
cal comparisons. For example, if you want to DISPLAY all data-
base records with a date field, Chg_date, containing the date 
09/12/86, issue the command: 

DISPLAY OFF ALL FOR Chg_date = CTOD~I'09 /12/86') 

  

gives the string answer 14:30:43 if it's 2:30 p.m. and 43 seconds. 

TIME() always returns a string. To save the current time in a 
database field, define the field as character type with a length of 
8, and then REPLACE its contents with a string made from the 
current time. For instance, if it's now 2:30 p.m. and the field 
name is Now: 

 

PROGRAMMING WITH dBASE III PLUS P5-25 . 

          

? TINE() 

        



Memo Fields 

logical Fields 

  

CHAPTER 5 

The field Now contains 14:30:43. The seconds, of course, will be 
different. You could then split Now into substrings if you wanted 
to include only part of the time: 

REPLACE Nor YITN SUBSTR(Nor,1,5) 

puts the string 14:30 into Now. 

You can't use the string functions on memo field information, 
because memo fields aren't strings. A memo field is like a sign-
post, pointing to a separate file which contains the free-form con-
tents for the memo in each record. 

The only way you can change a memo field from within a pro- 
gram is to set up a special format file. You'll see how to edit or 
add to memo fields in Chapter 8. There is no such thing as a 
memo-type memory variable. 

 

Use logical-type data to determine conditions in DO WHILE, DO 
CASE, and IF constructions. However, if you want to display the 
contents of a logical field or variable on the screen, you can use a 
string equivalent. This isolates the user from the dBASE III PLUS 
logical operators, .T. and .F., which might be confusing. 

Because a logical field can either be true or false, it's easy to dis- . 
play one of two responses. Here, mcorrect is a logical type mem-
ory variable: 

IF scorrect 88 That is, if mcorrect~is .T. 
? "That's correct!" 

ELSE 88 It's .F.~ 
? "Sorry,. that's not correct --try again!" 

ENDIF. 

 

• 

,-_ 

       

PS-26 PROGRAMMING WITH dBASE 111 PLUS 



 

\~ 

■ 

 

Chapter 6 
COMMUNICATING WITH THE USER 

• 

Because you can't assist your users personally, your program 
must communicate clearly, helpfully, and efficiently so they can 
work with the program easily. The most important part of any 
program is the user interface - the communication with the user. 

What This 
Chapter 
Covers 

The topics covered in this chapter are: 

• What screen coordinates are 

• How to position prompts and messages on the screen 

• The commands for receiving and controlling responses (input) 
from the user 

• How to use the SET CONFIRM command in ®...GET lines 

• The basic pattern for using screen forms in programs 

i 
Preparing for 
This Chapter 

By now you should have a general knowledge of dBASE program-
ming, including how to convert numeric and date type informa-
tion to character strings, discussed in Chapter 5. It's preferable to 
study this chapter in conjunction with the next two, which con-
tinue the discussion of designing screen forms. 

  

The primary function of the user interface is to make the pro- 
gram easy to use. The phrase uses friendly describes exactly how 
your program's user interface should be. Whenever possible, 
design customized screen forms that mimic the user's own forms. 
These screen forms also provide assistance and guidance so that 
the user is never lost or unsure about what to do next. Supply 
easy-to-understand messages and prompts to guide users through 
the program. At the end of the next chapter are some pointers for 
designing screen forms. 

Using Screen 
Forms - The 
Recommended 
Way 

    

PROGRAMMING WITH dBASE 111 PLUS P61 

 



 

■ 

 

n 

 

CHAPTER 6 

 

NOTE 
The discussion in this chapter relates to entire screen forms 
and to shorter, one-line prompts and messages. The setup 
techniques are the same for both. These methods are also 
used for obtaining and displaying information. 

  

r' 

Although you can show actual field contents on the screen, you 
might not want the user to be able to enter information directly 
from the keyboard to a database file. Remember that the full-
screen commands, APPEND, BROWSE, CHANGE, and EDIT, 
allow the program to do this. 

For the sake of database integrity, you may want to take firm con-
trol over how the user changes database information. For 
instance, if your users are inexperienced, you wouldn't want to 
give them access to the full-screen commands. Using on-screen 
forms is the recommended way to have users enter or change 
data in a database file. The discussion in the present chapter and 
the following ones stresses this approach. 

Using custom-designed screen forms, the program gets input from 
the user and STORES this input temporarily in memory variables. 
When the user verifies that the input is correct, the program 
REPLACES the current information in a database field with the 
new information. Using memory variables throughout your screen 
form design ensures maximum protection of the user's database 
file. 

 

Plr2 PROGRAMMING WITH dBASE 111 PLUS 

      



 

~, 

~~ 

~1 \ `\ 

  

COMMUNICATING WITH THE USER 

    

NOTE 
There is one exception to this practice: memo fields, which 
can only be changed directly. See Chapter 8 for. a discussion 
of this exception. 

 

~ 1 

     

tname 
minitial -
Iname 

SCREEN 
~ FORM ~ 

GET INFORMATION 

►  tname 
--►  minitial 
-..►  Iname 

MEMORY 
•  ~ J 

STORE IT IN VARIABLES 
HERE FOR VALIDATION  

First 
Middle 
Last 

DATABASE 
~ J 

WHEN VALIDATED REPLACE _ 
DATABASE FIELDS WITH CONTENTS 
OF MEMORY VARIABLES 

  

Controlling 
the Screen 

Figure fr1 Now a screen form works 

You already know how to initialize memory variables. Chapters 9 
and 11 deal with verifying user input and updating the database 
file. This chapter and the next concentrate on screen forms. 

Before you investigate the ways to implement the above pattern, 
you have to be able to position prompts, messages, and places for 
the user input exactly where you want them on the screen. This 
means learning how the computer works with the screen area. 

 

PROGRAMMING WITH dBASE 111 PLUS P6-3 

    

:s 



e 

Coordinates 
Screen The screen display is a grid of evenly spaced horizontal and verti-

cal lines. dBASE III PLUS refers to the horizontal positions on the 
. screen as rows and the vertical positions as columns. The inter-

section of a given row and column is called a screen coordinate. 
Every coordinate can display information. You can put any print-
able character on the screen by telling dBASE III PLUS the loca-
tion of the coordinate with the ®...SAY command. 

Microcomputer screens generally have 25 horizontal rows and 80 
vertical columns. These rows and columns are numbered from the 
top of the screen down to the bottom, and from left to right. A 
screen coordinate consists of two numbers: the horizontal row 
number is listed first, and the vertical column second, such as: 
1,5. 

SCREEN 

76 77 i8 9 0 1 2 3 4• 5 6 7 

     

J 

j 

    

Figure C~2 Screen coordinates `. 

  

Every character position on the screen has row and column coor-

 

dinates. 

P6-4 PROGRAMMING WITH dBASE 111 PLUS 

0 

1 

2 

3 

4 

23 

24 

      

■ 

■ 

 

r,~'~:. 

 

CHAPTER 6 

          

-, 

 



         

r ~. '; 

  

• _~ ~~ ~= . 

"" tyi. 

_ 
~ ez.•L 

The ®...SAY co~*nand requires that you supply correct screen 
coordinates after the ® commarid' and what you want to display 
following SAY. For example, if you want to display the current 
First name field of a database~file~in USE on row-5, column 10 of 
the screen, here is the way to do~it:~, ~,~.. 

  

~"...' 
~ ~ .~ ~ ~ ~ 

t~YW. 

PUBLIC eesse0e_~;V;_3 ;;~ ~:~~~~~`- ` 
STORE "That's ot~s:proper'~~esponse" TO ■essegel 
a 10,t SAt ■essagel~' ~• '~ _ 

~~~ 

If the program i~ to display a string, enclose the string in correct
delimiters: _ ~~.~_.',:

a 15,15 SAY "Co;youu~aent to+COfTaCt Your eistake? ty /n)"

M {i,
_ •=~! {,

.;

-~~- __ .~ _,
i 5,10 SA1f First naae , w,~."r,~~ _ _

If you want to display a memory;variable on the screen, make
sure that the var• able is initialized'before using ®...SAY. .

-,-:~.

s:w:.

.,.

COMMUNICATING WITH THE USER

n ~
■

■
•

•

PROGRAMMING WITH dBASE 111 PLUS

•

P~5

is row 0, and the bottom is row 24:• Similarly, the leftmost column
number is columns 0, while the-rightmost column is column 79. So
the coordinates ~,5 refer to the second row on the screen and the
sixth column. -~Y~% .-

~,

TIP `^~:~~,,
Remember that with SET STATUS OFF, the top row of the
screen, row 0, is the scoreboard:;}If you decide to display infor-
mation on this .row and don't wani certain dBASE III PLUS
messages to disrupt your screen; make sure that you have
SET SCOREBO_~itD OFF. °`~ '''

~'
~~~~~. 

..: 
Coordinates star€ with.0, rather~than 1. The top row of the screen 

~~~ r 


•

■

■

r, ~.

Screen and
Printer
Coordinates

Ways of
Clearing the
Screen

F

•

P6.6 PROGRAMMING WITH dBASE III PLUS

1

.~

wARxixc
Don't confuse the CLEAR command with the CLEAR ALL and
CLEAR MEMORY commands. Issue CLEAR by itself to clear
the screen.

CHAPTER 6

dBASE III PLUS paints the screen in the order that the ®...SAY
commands appear in the program file. It's best to have the pro-
gram show information on the screen from the top down and
from left to right. However, for some special effects you can
arrange the order of the ...SAY command lines in your pro-
grams to display information in any way you want.

In Chapter 12, you'll learn how to print from within a program
using ®...SAY lines to position output on the printed page. In this
case, you can have coordinates beyond those allowed for screen
displays. However, the highest coordinate you can use for either
horizontal or vertical positioning in printouts is 255, and in
screen displays, dBASE III PLUS gives you an error message if
you use a coordinate, such as (24,205), that is off the screen.

The screen display doesn't change unless you change it with
instructions in your program. Make sure that your program
clears away the previous screen display before it shows the user
another screen, or whenever you want the display to disappear.
The CLEAR command blanks out the entire screen. If you want to
clear only a part of the screen, there are ways to do so.

To clear the screen from a specific row to the bottom of the
screen, use ®...CLEAR with the beginning row's coordinates. For
instance, if you want to clear the screen from row 19, but leave
rows 0.18 intact, use:

` a 19,0 CLEAR

COMMUNICATING WITH THE USER

■

■

r-~ \`~

•

If you want to•clear only one row at a time, just supply the coor-
dinates of that row after ®. The following command lines clear
the screen from row 19 to the bottom of the screen, one row at a
time:

,= ~ 19,0
~ 20,0

~~ ~ 21,0
~ 22,0

'~~ 8 23,0
a 24,0

You can also clear a rectangular area of the screen by providing
its upper left and lower right coordinates:
~:,
~~;~ 8 5,1 CLEAR TO 10,75
4~~

The checkbook management system uses another technique to
clear part of a row. It fills that part with spaces, deleting the dis-
play in that section:

w• D 6,15 SAIf SPACE(20)

PROGRAMMING WITHdBASE III PLUS Pfr7

•

~.~j:

•
■

■

CHAPTER 6

•

12

CLEAR
.~

@ t 2.0 CLEAR

1

(@ 12.0
@ 13.0
@ 14. 0

@ 12, 5 CLEAR TO 12. 70

.-~
i

Figure 6-3 Ways to CLEAR a screen

You can CLEAR the entire screen from a specific row to the bot-
tom of the screen, certain rows only, or only parts of a -row.

The TEXT
...ENDTEXT
Construction

If you want to display large amounts of text on the screen - for
example, in a help screen - you don't have to set up coordinates
or use strings enclosed in delimiters for each and every row.
Instead, use the TEXT...ENDTEXT construction.
TEXT...ENDTEXT instructs dBASE III PLUS to display the con-
tents between the commands exactly as shown.

Keep in mind when you prepare your text that the screen is 80
columns wide. Make sure your display is centered correctly on
the screen. Take a look at the Help.prg file, which contains the
help screens for the checkbook management system. The very
beginning of the file looks like this:

P6.8 PROGRAMMING WITH dBASE 111 PLUS

.~ • • .

~ ~•

a .~.•.

■

r-i \`

COMMUNICATING WITH THE USER

How to Get
User Input

...GET
...READ

PROGRAMMING WITH dBASE III PLUS

•

Pfr9

CLEAR
TEXT

Yelco~e to the Checkbook Manage~ent Syste~. This syste~ is
designed to keep track of your deposits, your rithdrarals,
your checks, balancing your checkbook, and printing reports
of several co~binations. Belor are listed the ■enu selections
and a description.
(. .)
ENDTEXT

Notice how the program sets up each screen with
TEXT...ENDTEXT and the blank lines for spacing between para-
graphs. The TEXT command never uses the SCOREBOARD, even
if you SET SCOREBOARD OFF. You can't display field or mem-
ory variable information within a TEXT...ENDTEXT construc-
tion.

There are several commands for receiving input from the user.
Which one you choose depends on the kind of input that the pro-
gram needs. Generally, if the user is to supply more than one

- piece of information, use ®...GET and READ. If the user is to
respond to a one-line prompt, use ACCEPT, INPUT, or WAIT. .

~.

i

Use ®...GET followed by READ in on-screen forms to obtain user
input. Each ®...GET line displays a blank for user input, similar
to the way APPEND works. If you want two blanks on the same
screen row, issue two separate ®...GET commands. ,

 s

WARNIIITG
The ...GET instructions work only if the program has previ-
ously initialized all the memory variables it uses in the
®...GET commands.

E

i

■

■ ~
n

CHAPTER 6

•

•

With INTENSITY ON (the default),. each ®...GET line presents
the user with a blank form to fill in, just as if the user were work-
ing in APPEND or EDIT. ...GET uses the enhanced display to
show each blank in inverse video, unless you've changed the
enhanced display with SET COLOR TO. The fill-in blank is the
exact length of the memory variable. You can also use SET
DELIMITERS to show the boundaries of the fill-in blanks (see
Chapter 8).

The way you want the user to give the program input determines
how many READ lines you will need. Most of the time you pre-
sent the user with a screen form that contains several blanks for
filling in information. This type of setup enables the user to enter
all the information and backtrack with the ? key to make any nec-
essary changes. You only need one READ statement to handle all
the individual GETS. Alternatively, you can have the user enter
just one piece of information at a time if you use READ after each
GET line.

Here's how the two situations differ in practice. You are working
with three character type memory variables called m first,
mmiddle, and mlast. Each is of a different length. They corre-
spond to the actual fields in a name and address database file.
You have initialized these variables in the program:

■first = SPACE(15)
■piddle = SPAtE(2)
■last = SPACE(20)

When you want the user to input information for each variable,
you set up on-screen instructions, which look something like this:

CLEAR
8 1,0 SAY "Enter first nape:"
~ 1,25 6ET first
8.3,0 SAY "Enter riddle initial:"
a 3,25 6ET ■piddle
R S,0 SAY "Enter last naae:"
R 5,25 6ET Blast
READ

p(~tp PROGRAMMING WITH dBASE III PLUS

■

■

n ~~ COMMUNICATING WITH THE USER

'~-

..
•

t4 -~ ~.

Enter first naMe:

Enter~kiddle initial:

Enter last naMe:

4

•

When you use many GETs and one READ, all the fill-in blanks
appear at one time.

Fgure 64 How the above GETs look on the screen

The user can enter each variable and backtrack with the ~ key to
correct a mistake. When the user has entered the last variable,
the READ statement in the program STORES all the input in the
correct memory variables.

If you want the user to see only one fill-in blank at a time and
enter each variable individually before going on to the next, set
up the screen in this fashion:

CLEAR
R 1,0 SAY "Enter first naee:"
~ 1,25 6ET ~~first
READ
R 3,0 SAY "Enter ■fiddle initial:"
R 3,,25 6ET eaiddle
READ
B S,0 SAY "Enter last nape:"
R 5,25 6ET Blast
READ

In this case, the GET lines appear individually. The user must fill
in the previous GET information and press the ~ key before the
next blank appears. However, the user cannot use the T key to
back up to previous memory variables, unless you use the READ
SAVE option. READ SAVE lets you back up to previous GETs
after the READ SAVE. You could rewrite the above example with
READ SAVE instead of READ.

In the next chapter, you'll see how to set up templates with the
GET command to ensure that the input from the user is correct.
You'll also see how to include ranges for numeric or date input.

PROGRAMMING WITH dBASE III PLUS P[rt t

:~'~, .
'+.? L. . ~~~:

~:• , i s ~

r

--

~~ ~~Y..,,t.S~~~.r~~~itery,firstlnaMe
.;>~.». .

~~ ~~.s ~"Zri

Figure 6-5 Position of a GET blank

You can have several different GETs appear on the same screen
row, but you must still establish the GET instructions separately
in your program:

a 1,20 6ET ~ ■i
-••.8 1,25 6ET, ■_lna■e ~.
~' READ '

art .,7 t '-~: : a s -i ry ti- - ..~r•"~..rr ~ 7 J1~2
nr uaaiKl ~i i.~ Nr r.~a•^~`W~~' ~r~ _.3 x. ~Y ~≤ ~.a -k +•àri . ~ ,.~C:.r L~~`~~ •+-:~`.3i ~'J

Figure 6-6 Several GETS on one row

1
rn .

The default number of C~...GET commands that you can use at
one time is 128. This is more than sufficient for most purposes.
You can't send the results of ~...GET...READ operations directly
to the printer. You must first use ®...GET and READ to get input
in memory variables. Then you use (...SAY lines to print the con-
tents of the variables. You'll learn more about this in Chapter 12.

Make sure that the coordinates for the GET lines don't overlap
the coordinates for the ®...SAY lines. You can combine ®...SAY
and GET lines, but the SAY command must precede the GET com-
mand. Unless you provide other spacing within the string follow-
ing the SAY command, the GET blank is separated by one space
from the end of the string on the screen:

■ fna■e = SPACE(15)
~ 10,10 SAT "Enter first na■e:" 6ET ■ fna■e

looks like this:

CHAPTER 6

P(~12 PROGRAMMING WITH dBASE 111 PLUS

..~

■

~'~;.
Clearing the
GETS

Multiple-Page
Screens

Pressing f--i
to Continue

ACCEPT and
INPUT

COMMUNICATING WITH THE USER

After the READ instruction STORES the user input from the
...GET lines in the correct variables, it automatically clears the

GETs. If you want the information to remain in the GETs, as in
the example of individual GET blanks appearing on the screen,
you can use the SAVE option on the READ line. If you do use this
option, make sure that you also use the CLEAR GETS command
in your program when you are finished with the GETS.

You can design multiple•page screens for requesting user input by
putting in READ commands to go from one screen to the next.
You can have one READ line govern all the GETS in the multiple-
page screens.

In Chapter 8, you'll learn another way to set up format files for
screen forms, which also can have multiple screens.

When the user is entering information in a screen form,
dBASE III automatically positions the cursor at the next entry if
the user has filled in the. entire blank. Normally the user presses
~, because the fill-in blank is slightly larger than most entries.
The same thing happens when you're entering information in
fields with APPEND or EDIT.

If you want the user to press the ~ key_to end each entry before
.going on to the next, use the command SET CONFIRM ON. This•
method gives the user a reminder to check the entry and make
necessary corrections.

When the user is to enter information in several blanks, you usu-
ally use ®...GET and READ. However, the program may need just
one input, such as a response to a particular query. You can then
use the ACCEPT, INPUT, or WAIT commands, which don't require
a corresponding READ line. These commands also allow you to
present cone-line prompt without an ®...SAY construction.

ACCEPT and INPUT work in a similar fashion. They request a
response from the user. After the user types in the response and
presses ~, the program STOREs_ the response in a memory vari-
able. The memory variable can hold a maximum of 254 characters.

•

PROGRAMMING WITH dBASE III PLUS P[r13

~'

•. ,

.`•~:

`{ ~~ _ .~

r,'~:.
■

•

,•

CHAPTER 6

Unlike the ®...GET setup, when you use ACCEPT or INPUT you
don't have to initialize the variable that is to hold the user's
response. ACCEPT and INPUT do this automatically. However,
they don't show a blank form on the screen, as ...GET does.

The major difference between ACCEPT and INPUT is in the data
type of the memory variable. ACCEPT receives only character
strings and creates a character type memory variable. Even if the
user types in a number, ACCEPT treats it as a character string.
INPUT can accept character, numeric, date, or logical information
and initialize a corresponding memory variable. However, with
ACCEPT, the user doesn't have to delimit the input string with
quotes; this is mandatory with INPUT. What's more, INPUT is a
very flexible command; you can respond to it with the name of a
field or memory variable.

You must include a prompt line in both these commands so that
the user knows what the program is requesting. dBASE III PLUS
displays this prompt line on the screen and waits for the user's
input. Make sure that the prompt line is less than 80 characters
long, the maximum width of the screen.

Here are examples of the ACCEPT and INPUT commands:

ACCEPT "Yhat is rour~~first~na~e? " TO fna~e

This command requests a first name from the user and then
STORES the user's response in the memory variable f name. The
user doesn't have to enter the response in delimiters.

INPUT "Enter the mount of the check " TO ■check

This line requests a numeric answer from the user.
dBASE III PLUS STORES the input in a numeric type memory
variable named mcheck.

Pfr14 PROGRAMMING WITH~dBASE III PLUS

~~

Enter your choice 09/12186 ~ MCHOICE pub C "09!12/86"
1 variables defined,

255 variables available,
Program Code

INPUT 'Enter your choice ' TO mchoice

COMMUNICATING WITH THE USER

Program code

ACCEPT 'Enter your choice ' TO mchoice

Sci~eea

■

1
n

Result In Memory

Enter your choice A ~

Enter your choice 2 ~

Screen

MCHOICE pub C "A"
1 variables defined,

255 variables available,

MCHOICE pub C "2"
1 variables defined

255 variables available,

Result io Memory

3 bytes used
5997 bytes available

3 bytes used
5997 bytes available

10 bytes used
5990 bytes available

Enter your choice "A" ~

MCHOICE pub C "A"
1 variables defined,

255 variables available,
3 bytes used

5997 bytes available

Enter your choice 2 ~

MCHOICE pub N 2
1 variables defined

255 variables available,

(2.00000000)
9 bytes used

' 5991 bytes available

9 bytes used
5991 bytes available

Enter your choice CTOD('09/12/86') ~
MCHOICE pub D 09/12/86

1 variables defined,
255 variables available,

Table 6-1 The difference between ACCEPT and INPUT

When requesting numeric, date, or logical information with
INPUT, give the user a prompt describing what kind of informa-
tion to enter. This ensures that the information is in the correct
form and that the memory variable initialised with the INPUT
command is correct. So you could amend the above INPUT situa-
tion to look like this:

PROGRAMMING WITH dBASE III PLUS P~15

■

■
~\

1 1 \\

Wait

The WAIT command puts the following message on the screen:

Press any key to continue...

WAIT gives you the option to put pauses in your program so that
the user can read information on the screen or decide when to go
on. The program won't continue until the user has pressed a key.
It's good practice to SET ESCAPE OFF so that the user doesn't
accidentally end the program by pressing the Esc key.

If you don't like dBASE III PLUS's WAIT message, you can set up
your own message. For example, in the Cancl.prg module for can-
celed checks, the program includes this WAIT line:

CHAPTER 6

a 10,0 SAr "Please enter the aoount of the check"

INPUT "using the correct deci~al places t " TO •check

Note the use of the ? command to space the INPUT line from the
®...SAY line. The screen looks like this:

Please enter tl►e Mount of the check

using tke correct deciMal places S

Fgure Cs7 Using INPUT with ...SAY

You include the dollar sign in the prompt line to indicate that the
user need not enter it.

NOTE°
A special case occurs when the user presses only the ~ key
in response to any prompt for input, whether from an
ACCEPT, INPUT, or GET...READ construction. You'll learn
more about this in Chapter 9.

Plr16 PROGRAMMING WITH dBASE III PLUS •

.`
i ., o .

.'=~

. ..~•:

.. ~_

.'+

•

.•

Lf ~,.F % ~
,

" ..

•• •

. . ~ ~ '

~ ~ `~•

a

}

i

c

r

COMMUNICATING WITH THE USER

■

■ ~.

YAIT SPACE(19)+"Press any key to return to the Main Menu "

Normally, the WAIT message starts at column 0. Here, the
SPACE() function is used to center the message on the screen:

PPess,any key .to return to the Nain Nenu

Figure 6.8 Setting up the WAIT prompt

Unlike ACCEPT or INPUT, WAIT doesn't have to STORE the
user's input to a memory variable. The command simply allows
the program to wait for the user to press a key before continuing.
However, you can have WAIT initialize a variable:

YAIT "Press R to return to the Main ■enu, env other key " + ;
"to continue" TO choice

IF UPPER(~choice) = 'R' _ _
RETURN _

ELSE -

* (co~~ands)
ENOIF

•

PROGRAMMING WITH dBASE III PLUS Plr17

•

■

■
n

CHAPTER 6

NOTE
You can't use the screen coordinates with ACCEPT, INPUT,
and WAIT. As you've seen, you can use the ? command to
position the ACCEPT, INPUT, and WAIT lines relative to other
lines on the screen.

PROGRAMMING WITH dBASE III PLUS

P618

•y ~•`~'I~.. •~•

:'':• ~`~.; fir::

• _ .•~'

,c q•:

..

••

Chapter 7
USING TEMPLATES AND RANGES

■

What This
Chapter
Covers

Preparing for
This Chapter

How
Templates
Work

Your program will seem easy to use only if you make it easy to
use. One way to do that is to supply helpful prompts and mes-
sages. Another way is to use screen templates and ranges to con-
trol user input.

In this chapter you will learn:

• Why it's advisable to use templates for user input

• How templates work in PICTURE clauses

• The difference between template symbols and template
functions

• How to restrict the range of numeric or date input

• How to change data displayed with ?, DISPLAY, LIST, and
REPORT with the TRANSFORM() function

• Points to consider when designing screens

Besides having a general knowledge of dBASE programming,
understand how to set up screen forms and how to use string,
numeric, and date functions.

A template acts as a filter to ensure that the user types in accept-
able data. It lets the program restrict the display of data and
check for valid user input. For example, if the user is to type in a
numeric amount, the template can restrict user input to numbers
only.

A template is contained in a PICTURE clause, which is an exten-
sion of ®...SAY and ®...GET command lines. A PICTURE clause
contains a combination of one or more template symbols and
functions. A template symbol restricts the display or input of indi-
vidual keystrokes. Because each symbol represents one position
in the lA~.~..GET blank, you must include a symbol for every posi-
tion in the blank. A template function, which begins with the
sign, need only be typed once at the beginning of the PICTURE
clause.

PROGRAMMING WITH dBASE III PLUS P7-1

•

•

•

Template
Symbols

You can see template symbols at work in the Add.prg module of
the checkbook management system. They're used to control the
screen display of the subtotal memory variable:

nu~ber = 0
~~ get the nuaber rith 13 places
8 10,10 6ET nu~ber picture "9999999999999"

8 16,32 SAY subtotal PICTURE "9999999.99"

The number 9 here isn't a value. It's the template symbol that
instructs dBASE III PLUS to show only numbers. There must be a
template symbol for every position in the PICTURE clause. The
decimal point in the template instructs dBASE III PLUS to show
the subtotal variable with two decimal places.

For numeric variables, the default size of the GET is ten charac-

ters. For longer numbers, use the correct PICTURE clause:

Another frequently used template symbol is the !, which automati-
cally converts the user's input to upper case. In the following
lines, the program requests that the user enter y or n and
converts this input to upper case: -

STORE " " TO choice
8 10,5 SAIf "Do you rant to add yore record's? (y/n)"
a 10.44 6ET choice PICTURE "!"
READ

P7-2 PROGRAMMING WITH dBASE III PLUS

■

■ ~,.
n\

CHAPTER 7

11iOTE
When used with ...SAY lines, templates do not change the
actual information in fields or memory variables. They only
change their screen appearance. When used with GET lines,
templates restrict user input. You can't use templates with
the ACCEPT, INPUT, or WAIT commands.

i

.• . •.(:~Trr: ;t .

~. ~t ~'•'
fix.

%::;~~'
~~ ~ ~ •

., '~

You limit the size of a GET response by including the maximum
number of characters allowed. In the above example, the user can
type only aone-character response. The size of user input is deter-
mined by the size of the PICTURE template. In this next example,
the program accepts input of up to ten characters for a memory
variable that is to contain first name data:

R 10,10 6ET •first PICTURE "AAAAAAAAAA"

Because names normally don't contain numbers, the A symbol
tells dBASE III PLUS to accept alphabetic characters only. How-
ever, if you have a street variable, you would not want to filter
out numbers. You can use the X symbol instead:

8 10.10 6ET street PICTURE "XXXXXXXXXXXXXXXXXXXXXXXXX"

This symbol accepts any character in the PICTURE clause.

You can control the way numeric•fields or variables look on the
screen with a variety of template symbols. For example, the $
symbol displays dollar signs in the place of leading zeros in
numeric fields or variables only:

a 10,10 SAS ~esount PICTURE "tt=tilt.:S"

would display the amount 45.00 as:

$$$$$45.00

To display just one dollar sign, you would have to convert the
numeric variable to a string. Because this variable may contain
numbers of different lengths, the length of the string will vary.
The following module assumes that the mamount variable con-
tains anumber with five total places and two decimal places:

8 10,10 SAII "S"+ STR(~a~ount,S,2)

This would display the amount 45.00 as:

$45.00

Suppose you want to supply commas in PICTURE clauses with
(g)...GET commands. Here's how:

PROGRAMMING WITH dBASE 111 PLUS P7-3

•

1

s

■

■

~'~: USING TEMPLATES AND RANGES

. ~ ..'Si•'. .. •~.,, ., ~

,-

,~(

~: • C

.• '

•

When using date fields or variables, dBASE III PLUS automati-
cally validates that the user's input is a correct date and prompts
for a correct date if the user has typed an incorrect date. If you
want to use a string that you'll later convert to a date, employ a
template like this:

stoday = SPACE(8)
8 10,10 6ET stoday PICTURE "99/99/99"

The above example supplies the slashes and indicates to the user
where the entries should be. It ensures that the user types in only
numbers, but it won't validate this as a correct date. Your pro-
gram has to do this. For this reason, avoid using character vari-
ables for dates.

Another useful template symbol is Y, which restricts input into
logical fields or variables to Y for yes or N for no. In this exam-
ple, decision is a logical variable:

8 10,10 SAT "Are you finishedT (y/N)" 6ET decision;
PICTURE "y"

READ

Template functions govern the display of the entire PICTURE
clause, not just individual positions in the PICTURE clause. You
can use a mixture of template symbols and functions in a
PICTURE clause, but the function or functions must be the first
item in the clause. Use an (~ sign directly in front of the function,
and separate the function from the rest of the PICTURE clause by
a space. To avoid confusion with the other (~ command on the
line, you can use the word FUNCTION as a. substitute for the
function designator, ~.
For example, dBASE III PLUS normally right-justifies numeric
data, but you can display numeric information as left-justified on
the screen with the B function:

a 10,10 sAy ~asount PICTURE "ae 9,999,999.99"

cost = 0.00
8 10,10 6ET acost PICTURE "999,999.99"
READ

Template
Functions

■

■

r, ~,.

CHAPTER 7

P7-4 PROGRAMMING WITH dBASE III PLUS

e
■
r, ~;

x.

USING TEMPLATES AND RANGES

The , symbol shows commas when the figures are over three dig-
its, that is, for thousands and millions. You can write the same
line like this:

8 10,10 SAY easount (UNCTION "8" PICTURE "9,999,999.99"

•


~~~'~~~.~s.~t,. ~ .. .~ ~ o 
.• a 

.. .., 

    

If you have several functions, you only need one ~ sign for all of 
them. For instance, if you're writing an accounting program, you 
can have dBASE III PLUS display amounts as debits or credits. If 
the mamount variable contains the number - 45.00, the command 
line: 

  

8 10,10 SAr sasount PICTURE "8XC 999.99"~ 

gives the result: 

45.00 DB 

 

Similarly, the result for mamount containing 55.00 would be: 

SS.00 CR 

 

Two other frequently used template functions are (, which 
-encloses negative numbers in parentheses, and Z, which displays 
zero numeric values as a blank string. 

There are template functions that allow you to change the display 
of dates to either American or European format: 

 

sdate = CT00("09/12/86") 
8 10,10 SAT sdate PICTURE "~E" 

 

This returns mdate in BRITISH format, that is, 12109186. 

The R function instructs dBASE III PLUS that there are literal 
characters in the PICTURE clause. These characters are not inter-
preted as symbols. For example, you have a variable called mtitle 
which contains the following string, DEPOSITS, and you want to 
display this variable differently, with each letter separated by a 
space. Here's how: 

R 10,10 SAY ■title PICTURE "RR X X X X X X X X" 

 

PROGRAMMING WITH dBASE 111 PLUS P7-5 

 



               

naie of any length:" ; 
ii~~~ii~~~ii~iir~i~ii~~ 

   

CIEAR 
* Initialize variable 
■last = SPACE(20I 
8 10,20 SAY "Enter a last 

6ET Mast PICTURE "~S8 
READ 

    

CHAPTER 7 

 

dBASE III PLUS interprets the spaces literally as spaces. It sub- 
stitutes each letter in the contents of mtitle, DEPOSITS, only 
when it sees a valid template symbol. The result is: 

DEPOSITS 

With GETs, the literals in the PICTURE clause do not become 
pact of the variable. 

The new S function allows horizontal scrolling in ...GET lines. 
This is most helpful when you only have a certain amount of 
space on the row for a blank, but the information the user types 
into the blank may be longer. The S function scrolls the input in 
the blank to make room for more input, without increasing the 
size of the blank. You supply a number next to the S, which deter-
mines the width of the scrolling region, and template symbols to 
restrict the input further. 

For example, the following module displays a prompt and a blank 
that is ten characters in length. The scrolling region is eight char-
acters wide. Because the variable mlast is 20 characters long, the 
user can still enter a longer string into the blank: 

s 

 

When the user enters a name that is more than eight characters 
long, the input scrolls left to make room in the blank for the extra 
characters. 

  

~\ 

1 1 

■ 

 

• 

    

P7-6 PROGRAMMING WITH dBASE III PLUS 

• 

          
r 

J 

  

. 
` 

                                                            



       

Blank is 10 characters wide 

van 

    

• 

                                                  

PROGRAMMING WITH dBASE III PLUS P7-7 

     

• 

        

Entry scrolls to make space 

 

Figure 7-1 The scrolling function 

The name is too long for the blank, so it scrolls left as the user 
types more characters. 

In the next chapter, you'll see how to use this function to restrict 
user input within a box drawn on the screen. 

There are many more template symbols and functions listed 
under the ® command in Chapter 5 of Using dBASE III PLUS. 
Experiment a little with all of them to see how they work. 

Templates cannot possibly check for all input errors, however, so 
they do not take the place of thorough error-trapping routines 
after the user has entered data. At the very least, you'll want your 
program to request the user to verify that all newly input° infor-
mation is correct. This is the topic of Chapter 9. 

   

■~ 
r-i ~. 

■ 

USING TEMPLATES AND RANGES 

Beethoven 

NOTE 
Template symbols and functions relate to specific data types. 
If you use a template symbol or function with an incorrect 
data type, dBASE III PLUS disregards your instructions. For 
instance, the A symbol works only with character type data. 
In addition, some symbols and functions are only applicable 
for displaying data. For example, it makes no sense to use the 
C and X functions for validating input. 

van Beetho 



r,`~. 
■ 

  

CHAPTER 7 

You can also limit the entry of numeric and date information with 
the RANGE option. This works with ®...GET commands to pro- 
vide inclusive upper and lower limits. Recall that dates are actu-
ally special types of numbers. RANGE instructs dBASE III PLUS 
to accept only numeric or date information that is within the stip-
ulated RANGE. 

limiting the 
Range of 
Numeric and 
Date Input 

                                           

• 

 

8 10,10 GET amount RAM6E 25,100 

Similarly, you may want to restrict merely the lower range: 

 

~ 10,10 GET amount RANGE 25, 

 

Notice that you still have to add the comma at the end of the 
RANGE command. The Check.prg module in the checkbook man-
agement system uses this form of the RANGE clause. A lower 
RANGE of 0 prevents the input of negative check numbers. 

If you want to restrict only the upper range: 

- 8 10,10 GET amount RANGE ,100 

For date variables, you must convert the date ranges from charac-
ter strings to actual dates first. The following example allows 
entry of dates in the month of April 1985 only into the variable 
m_date 

 

8 10,10 GET ■ date RANGE CT0D("04/01/85"), tT0D("04/30/85") 

    

.. ~t~' 
a 

~~~~ •~ Vii_. 
~ /

For example, you want to restrict the user's input to an amount
variable to be between 25.00 and 100.00 for the price of an item:

P7-8 PROGRAMMING WITH dBASE III PLUS

Transforming
Displays

Once you've set up ranges for numeric or date information, if the
user types numeric or date data that doesn't fall within the •
RANGE, dBASE III shows the acceptable range on the status line
or scoreboard, depending on the SET STATUS and SET SCORE-
BOARD commands, and instructs the user to press the Spacebar
to clear the entry and try again.

Because they are part of PICTURE clauses, templates only work
with ...SAY and (...GET lines. There is also the TRANSFORM()
function, which works with the following dBASE III PLUS com-
mands to display data: ?, ??, DISPLAY, LABEL, LIST, and
REPORT.

USING TEMPLATES AND RANGES

• •

r, ~:.

■

■

•

You can use the template symbols and functions with
TRANSFORMQ, but you don't need the word PICTURE. Include
the field or variable name in the parentheses first, followed by a
comma, then the symbols or functions. In the following example,
Client is a character field containing client names. Using the R
function, the (~ symbol, and X symbols with the LIST command
displays the names with each letter separated by a space. (Client
is a character field containing client names.)

•

USE Accounts
LIST TRANSFORM(Client,'RR X X X X X X X X X X X X X X X')

Don't forget to enclose the symbols and functions in delimiters.
Because it allows for the display of fields with special effects, the
TRANSFORM() function is very useful when you're setting up
reports with dBASE III PLUS's CREATE REPORT command. As
with templates, the TRANSFORM() function does not change the
actual data in the database file.

PROGRAMMING WITH dBASE 111 PLUS P7-9

~:.

■

CHAPTER 7

•

Designing
Screens

Now that you know about screen coordinates and templates, here
are some points to keep in mind when you design your screen
forms and reports:

• Do screen forms mimic users' actual paper forms?

• Do the screens present a consistent appearance?

• Are the prompts and messages displayed in the same area of
the screen for each form?

• Is enough information given?

• Are the help screens helpful?

• Have you eliminated technical jargon?

• Can users change their minds after making a menu choice?

In the next chapter, you'll take a look at ways to make your
screen forms as appealing as possible.

•

P7-10 PROGRAMMING WITH dBASE 111 PLUS

•

Chapter 8
FANCIER SCREEN FORMS AND FORMAT FILES

■

~;

What This
Chapter
Covers

This chapter discusses the following:

• How to change the appearance of ®...GET blanks on the
screen

Preparing for
This Chapter
Changing the
Appearance of
GET Blanks

How you design your screens is up to you, but remember that the
friendliness of the user interface affects how the end user reacts
to your program. This chapter gives you some useful tips to make
your screen forms aesthetically pleasing. You'll also learn about
format files and how to work with memo fields in programs.

• What relative addressing does

• How to center, right justify, or insert strings within a string

• How to save yourself typing by using memory variables for
prompts and the REPLICATEQ function to repeat characters

• How to draw special characters and boxes on the screen

• How to turn the screen off temporarily

• What format files do and how to use them

• How to deal with memo fields and fast typists

You should have a basic understanding of dBASE programming,
conversion functions, and how to set up screen displays.

When you enter information in a field or on-screen form with a
full-screen edit command such as APPEND, EDIT, or GET,
dBASE III PLUS shows the field or the variable using the
enhanced display.

Unless changed by SET COLOR or SET INTENSITY, the
enhanced display is inverse video. The size of the blank delimits
the size of the field. If you prefer dBASE III PLUS to delimit the
fields with colons, use SET DELIMITERS ON. The default is for
DELIMITERS to be OFF.

PROGRAMMING WITH dBASE 111 PLUS P&1

•

,~

~\

1 1

■

[~

You can SET other characters, such as square brackets, [], or
braces, (), as delimiters, but you must enclose the new delimiters
in .single or double quotes:

SET DELIMITERS TO "I1"

Once you have SET other DELIMITERS, you have to turn them on
with the command SET DELIMITERS ON. So you will probably
use these two commands together. If you wish to revert to
dBASE III PLUS's default delimiter, type SET DELIMITERS TO
DEFAULT.

Even if you change the delimiters, dBASE III PLUS still shows the
fields using the enhanced display. To use the standard display for
lA~...GET fields, SET INTENSITY OFF. The default is ON.

Figure &1 Three different GET blanks

The first GET blank uses the enhanced display only. With SET
DELIMITERS TO `()', the second GET blank uses the enhanced
display and is delimited with brackets. With SET INTENSITY
OFF, the third GET blank is delimited with brackets only.

P&2 PROGRAMMING WITH dBASE III PLUS

■

CHAPTER 8

•

•

Usually you know in advance where to position (c~...SAY or GET
lines on the screen. However, occasionally the screen coordinates
may depend on the position of other screen rows, which may
change during the program. Say, for example, that you want the
program to show certain fields and then a prompt two rows
below them. You don't know exactly how many fields will be dis-
played; there may be two or ten. So how do you know on what
row your prompt is to appear?

You can use a technique known as relative addressing. This
means that the position of one screen coordinate is dependent on,
that is, relative to, the position of a previous coordinate.

dBASE III PLUS uses the two functions ROW() and COL() for rela-
tive addressing. The ROW() function returns the value of the row
on which the cursor is currently located, while the COL() function
returns the value of the column position. If you have a command
like this:

ii 5,10 SAY "hello there!"

then the current ROW() is 5 and the current COL() is 22, tfie_ end
of the displayed line. You can then- do this:

8 ROYt)+2,10 SAY "Nor ARE you?"

The new coordinate here is two rows down from the previous
row. Similarly,

8 ROY()+S,COI(~)-2 SAY "Yell. I hope"

Nello there!

Nou ARE you?

. Neil,. I lope ,

Figure &2 How relative addressing works

PROGRAMMING WITH dBASE 111 PLUS P&3

FANCIER SCREEN FORMS AND FORMAT FILES

■ ``'

l~ ~\

■

• . ••\~• ~ •t. -

. `
~ n . .

Relative
Addressing

CHAPTER 8

Figure 8-2 shows what the three examples look like on the screen.
No matter what number ROW() contains, the command ROW()+5
always positions the prompts five a-ows down. The only time you
can't use the ROW() and COL() functions is directly after a READ
statement. READ always resets the value of ROW() to 23 and the
value of COL() to 0.
The checkbook management system uses a different type of rela-
tive addressing to put an asterisk next to the the user's choice in
several of the submenus:

,.9 ..

i-, ~.
■

.~

~ put~esterisk on screen next to choice
8 6+YAL(choice2),24 SAY °*°

Note the use of the VALQ function to change the variable choice2
to a number for the column coordinate.

P8-4 PROGRAMMING WITH dBASE 111 PLUS

i

c i

FANCIER SCREEN FORMS AND FORMAT FILES

■

■

~'~<

•

TIP '
You can also use numeric memory~variables in ®...SAY lines,
which can make your programs more readable. For example,
in the Taxcodes.prg module, the program initializes a memory
variable called line and then uses a• DO WHILE loop to dis-
play all the tax codes from the Tax,dbf file, with each code on
a new line. The line number is incremented by one before
another repetition of the loop: -~ ,
* display all tax codes and titles
line=4
DO YNILE .NOT. E0FO '

ti line, 28 SAY Code ,~.

8 line,32 SAY Title
line=tine+l
SKIP '

ENDD0

Because the program doesn't know, how many tax codes are
in the file, it uses the relative addressing technique and a sim-

ple counter to display them. ,

P&5

Centering a
String

To center a string with a known length, subtract the length from
80, the total number of columns on the screen, then divide by two
to find the starting coordinate. Occasionally, you may need to cen-
ter asting in your program's display, without knowing what the
string length will be. An example would be when you want to
show what the user has typed. Here's-how you can center any
string.

First, get the user's input with any standard input command, such
as ...GET or ACCEPT: ,..

ACCEPT "Enter the client's first =naae TO ■first

PROGRAMMING WITH dBASE 111 PLUS

Right-
)ustifying a
String

You can use a similar technique to right justify a string of any
length. Here is a simple module that right justifies a memory vari-
able called string. The variable width contains 80, the total width
of the screen, and the variable currentrow contains th_e row on the
screen where the text is displayed:

•

CHAPTER 8

Then, trim the trailing blanks from the variable and take its
length, divide by two, and subtract it from 40, which is the exact
center coordinate of the line, to get the center position. STORE
this into a new memory variable, mcenter.

•first = TRIN(~first)
center = 40 - LEN(~first)/2

You can then use the contents of mcenter in.a screen coordinate:

8 20,31 SAID "You have entered:"
SET COLOR TO N/Y
a 22,~center SAY •first
SET COLOR TO Y/N

Notice the special effect of inverse video display that the example
uses.

STORE 80 TO rdth
STORE S TO currentror
a c~rrrentror,ridth - LEN(string)~SAtf string

The vertical coordinate of the position is determined by adding
the starting column position, 0, to a number which represents the
remaining number of blank columns.. This number depends on the
width of the screen and the length of the string.

Use the STUFF() function to insert a string within a string.
STUFF() either adds a new string to the existing string without
changing it, or replaces part of the string with the new string.

For example, you use a memory variable called prompt2, which
contains the following string:

Type X to Exit

P8-6 PROGRAMMING WITH dBASE III PLUS

':

.... ~

Stuffing a
String

■

■

r, ~:

FANCIER SCREEN FORAAS AND FORMAT FILES

■

r, ~.

r~

and you want to change it to:

Type C to Continue or X to Exit

First, STORE the new string to a memory variable:

extra= "C to Continue or "

Note the space at the end of the string. You could then do this
with the STUFF() function:

STUFF(pro~pt2, 6, 0, extra)

The first argument in the parentheses, prompt2, is the original
string. Next follows the starting position, 6, in the old string
where the new string will be inserted. The second number, 0, is
the number of characters to remove from the old string. Here, 0
means that you don't want to replace the first string with the sec- ,
and but merely to add the second to the first. The last piece of
information, extra, is the string that is inserted in the first string.

_ The above line is equivalent to:

SUBSTR(prospt2,1,5) + extra + SUBSTR(pro~pt2,6)

STUFF() is also useful when you want to REPLACE only part of a
character field without having to reconstruct the entire field.

For special visual effects, you can use ~... SAY with any ASCII
character. The checkbook management system uses graphics char-
acters in the ASCII set to give its menus a little pi~~-aT~

The best way to draw boxes in dBASE III PLUS is to use the
l~...TO command with an upper left and lower right range for the
box:

Graphics and
Other Special
Characters

PROGRAMMING WITH dBASE III PLUS P8-7

•

on the screen and have long input scroll, as in this module:
With the S template function, you can restrict user input to a box

PROGRAMMING WITH dBASE 111 PLUS P8-8

,• ,

':~~...

::. ~:

.~~ . ~'.

CHAPTER 8

>>

\ ~~

■

a 1,o To 5,79

draws a box from column 0 on row 1 to column 79 on row 5. You
must supply the two corners. The box contains a single border,
but you can draw adouble-bordered box with:

a 1,0 TO 5,79 DOUBLE

dBASE III PLUS draws the box from top to bottom of the screen.
If you use MODIFY COMMAND to look at the Menumask.prg, you
can follow how the program displays the boxes in the main menu.

If you use a range with the same row, then dBASE III PLUS
draws a horizontal line:

8 1,0 TO 1,79

Similarly, using the same column in the range instructs
dBASE III PLUS to draw a vertical line:

a 1,0 TO 23,0 DOUBLE

To clear a box from the screen, use ...CLEAR TO with the top
left and bottom right coordinates:

8 1,0 CLEAR TO 5,79

SET TALK OFF '
nase = SPACE(25)
CLEAR
a 5,10 TO 8,29
a 6,12 6ET nave PICTURE "aS15 XXXXXXXXXXXXXXXXXXXXXXXXX"
READ

•

•

■

■

~1 FANCIER SCREEN FORMS AND FORMAT FILES

NOTE
There are some special characters in the ASCII range 1
through 31 that can't be displayed with C~...SAY. When you
want to ring the bell in a program, you can't use ®...SAY.
You must use the ?? command:

8 15,0 SAII "that do you rant to do next?"
?? CNR(7)
8 17,0 SAIL "(A)dd a record, or (D)elete the record"

Because you don't have to position the bell on the visible
screen, using ?? does not pose a big problem. The computer
works very fast, and when the above line appears on line 15,
the user hears the bell immediately. If you plan to use special
characters from the ASCII set in reports, make sure that your
printer can print them.

•

Although you can use the Alt key with the numeric keypad to type
special ASCII characters on the screen, don't use this method to
type them in program files. When you edit these files with
MODIFY COMMAND, dBASE III PLUS won't save the special
characters. Use the CHR() function instead. However, you can
STORE the actual characters in memory files (see the next
section).

If you use the same screen prompts consistently, you can set them
all up in a memory file. Then, after the program RESTOREs the
file, they will reside in memory throughout the program. When
you're writing the program, you won't have to type each prompt
every time it appears. For instance, you will use the following
prompt frequently:

Is everything correct? (yln)

don't Retype
screen
prompts

PROGRAMMING WITH dBASE III PLUS P&9

•

You can STORE it in a memory variable and call it mpromptl.
Whenever you need to display the prompt on the screen, use
®...SAY:

8 10,10 SAT ■proaptl

You may have noticed that the Chkbook.mem file contains hori-
zontal and vertical lines made up of special characters. The pro-
gram uses these memory variables, svert for single vertical lines
and shoriz for single horizontal lines, in many screen displays.
Recall that the main program module RESTOREs this file at the
beginning of the run. In the Clydep.prg module, for example,
you'll see these lines:

8 1,20 SAY "Clear Deposits with Bank Stateaent"
~ 2,20 SAY LEFT(shoriz,34)
a 3,7 SAr "Date A~ount"
8 4,5 SAIf LEFT(shoriz,8)+" "+LEFT(shoriz,l0)

They appear like this on the screen:

■

■

r,`~.

CHAPTER 8

Clear Deposits with Bank StateMent.

Date ~ ANount

Figure 8-3 Using part of a memory variable for displays

The program uses the LEFT() function to display only a part of
the shoriz variable as underlining for the title lines. This is a
great way to reuse the same variable any number of times.

Another useful function is REPLICATE(). This function repeats
the same character a stipulated number of times. For example, in
Menumask.prg, which presents the main menu at the beginning of
the checkbook management system, the program uses REPLI- .
CATE() to display CHR(176) 75 times:

~ 22,2 SAY REPLICATE(CNR(176),T5)

P~10 PROGRAMMING WITH dBASE III PLUS

•

•

Repeating
Characters

PROGRAMMING WITH dBASE 111 PLUS

You must first type the character that you want to repeat, either
with the CHR() function, a character string, or any valid character
expression, then a comma, and finally the number of repetitions.

You may wish to have the user enter a password before being
allowed to use your program. Generally, you wouldn' t want this
password to appear on the screen when the user types it, so you
must use the SET COLOR command to hide the display. Because
GET blanks are governed by the enhanced display, you must
change its color. A sample module to request a password and
temporarily disable the screen might look like this:

CLEAR
STORE SPACEtS) TO passrord
*.set enhanced display to black on black
SET COLOR TO ,N/N
8 S,0 SAY !'Please enter your passrord: " 6ET passrord
READ
* (... cos~ands to check for correct passrord)
~ revert to noreal colors
SET COLOR TO
N 7,0 SAY,"Thank you"

Pseudo-
Passwords

P&11

•,,
~.. .

,~.

~~

~:

~..

'.

■

FANCIER SCREEN FORMS AND FORMAT FILES

•

WARNING •
This method of password protection is,not foolproof. Further-
more, if you are programming in dBASE III PLUS for users
on a local area network, you need much more protection than
this. There are special commands for maintaining security on
networks. Refer to Networking dBASE III PLUS for more
information.

Format Files If you plan to use the full-screen commands APPEND, EDIT,
CHANGE, or INSERT in your programs, you could also set up
format files, which determine how the field data looks on the
screen. These format files merely change the position of the infor-
mation to mimic the user's own forms. They offer an alternative
to dBASE III PLUS's default presentation.

Format files work only with the above full-screen commands, not
with other commands that you might include in your programs.
Format files only contain ®...SAY and (g~...GET commands for the
various fields in the database file. A format file automatically
CLEARS the screen when you issue afull-screen command, such
as APPEND, after SETting the FORMAT TO the format filename.

There are several ways to create and edit format files. The easiest
method is to use CREATE SCREEN < screen filename> . This
command allows you to USE a database file, presents you with
the fields in the file, and lets you choose which fields to display
and position anywhere on the screen. It then sets up a format file
for this screen.

Creating
Format Files

■

~,

~~

CHAPTER 8

~•

CREATE SCREEN actually creates two files, a screen file with the
extension .scr and a format file with the extension .fmt. You can

. use MODIFY SCREEN to make changes to the screen file, which
then updates the corresponding format file.

You can also use MODIFY COMMAND or another word processor
to write format files, but you must provide the file extension .fmt.
For example, the following command would be used to create or
edit the format file called New.fmt:

NODIFI COMMAND Ner.f~t

If you use your own word processor, make sure that you save
the format file as an ASCII text file, or a DOS text file in
Framework II.

.; k;•, r: •,~

P&12 PROGRAMMING WITH dBASE III PLUS

irb (•'r l7 ~~Y a1. tM~1=+..'?lt i •~'I .a\ •y,•.ao, ~~~ s' Ri/~! t /- r is y~.ay ; ;.;. ;S,`t.;' t. ~~J~ . ~ i~1~ •;I _ r •Y ~s~.u,+~. y~+`%:i..` . t`~~ .ryr•.!'~! ~•'.Y••.t+g•;':'~•"r.+tr~,bY~ :'•t ~.s.~ ~ L'.
;' ,,P~ ~ ~ ;1 ! ' t _• t• a: ~.•; ._ ;;s : s. Rte. .. _ ~., ~ .. .:

~: ~tt
•'T o . . ~r :!.• ~•. ..~.• • r. s'J,• ~•,•.~ ,_ - .tt •L. r•~~•. :4: •<•~i :J ~~:..ST

'•b ,, 1,: •' e\ I
L. ~...II •r._ •... , },pr• • -" ~ 11+'•~S. ~.L~ti,~~, :,.;t.~.4 '.+.' ~ i ,•..'. •. .~ •(• ~ •••r ~ .

~;~ j,•SZ•~,,~.~.. :~~~ir/'~4'.c~'_ ;T~! Ae• j~•~::•-:•_q~.fi•%e~:o-,~~5'j+' ~~%••rv:• '.!!• ••`.;~ •}Y~' _

jwi f~.~.. . ~. _
~4:{„,.

ice••

i ~~

~~~0•fi ~,'raS~~ .~.N~a~A 
r    

. r•:.. , 

• 

_ 

;,~ 
, 

• 

,, ~1 

• 'w 

.. ~ 

 

.. 

:~ 

  

r-

 

■ 

        

■ 

r,'~: 

     

FANCIER SCREEN FORMS AND FORMAT FILES 

  

•, 
;. • 

         

You must first type the character that you want to repeat, either 
with the CHRQ function, a character string, or any valid character 
expression, then a comma, and finally the number of repetitions. 

             

You~may wish to have the user enter a password before being 
allowed to use your program. Generally, you wouldn't want this 
password to appear on the screen when the user types it, so you 
must use the SET COLOR command to hide the display. Because 
GET blanks are governed by the enhanced display, you must 
change its color. A sample module to request a password and 
temporarily disable the screen might look like this: 

Pseudo- 
Passwords 

                                   

~.•~ ~ - tea,, i!„~ ~ ~*~: 
~~•STORE~SPACE(S)iTO~passuord:.,•,~.~~~~~~~~ "~~~'~" Yom; `~'t~ 
~'~t;`set~eriheneed~d~splayatoj black on' biack ~~~ ~~ r , 

SET ~~tOLOR T0•~"M/N'-~'~ ~ { {yy~~+
•~~^ ~ ~~ ~~a` ~•"~ ~ 

a~S,O~SAY='Please enteriTour~passuord'"~'!~6ET~passuord ~~r~. 
`f READ ~~. '~ ~~~~~~~~~r ~~r~̂ t;t ;' ~~,. ~~t~ «~~,.~~~ a~*~s~~'°{* t ~i~.~,~ 

-'Swx yJ ~~y~tirTct'' ~'T,. -~4~'~.~ ~,•t1y.'~ ra.~+.+Y ~~~H.a ~~ ~'~..?`~'Y. 
.''<e*n ~..~.eoaaands#to:eheck~for eorrect~pass~ord),~~r"~~ ~~Ka-.'-°t~ 

*~'reve~t~to.~no~ial~'colors~~~. ~~„r`~3,T~`~•=~Z'~~~_•:: 
.SET~COIOR 3T0~ ''.~3~k.~'w'"%3'k~`.~, ;~ ~,~.'~ ,w' ~-T~'fi,~s~ 
;a~7;0°`SAYS oThank~~r0u':~•t;i;,~ ~"a~a ~~~'E`~~*~fi,,~~ ~~~„~ ~-~ 

~"~ »+K..v.s~v'33kL ̀ $r+.e_Ye." ~• ~*.h§71~«~':Y~~~~'~4.~.~•c,t•«5. ~ .,;rc.~ tea.. •r•c• :±~t» _"~••~'o~i~.i;; 

  

i 

7 

           

• 

is 
~ 

. 

        

s 

           

i 

   

WARIITING 
This method of password protection is not foolproof. Further-
more, if you are programming in dBASE III PLUS for users 
on a local area network, you need much more protection than 
this. There are special commands for maintaining security on 
networks. Refer to Networking dBASE III PLUS for more 
information. 

                                            

~~ 

                 

• J 

       

_.• '~ 

    

~~ 

. 
..., 

 

PROGRAMMING WITH dBASE tll PLUS 

 

P8-11 

      

K 

        

~• ... ._ 

              

.~ . 

 

~'' 

                                                

'. ' ' - 

                                 



 
~.,L 

 
a{ a4 ♦fit'' ~-~~i 5->~"•, f" ~ i 3T' ✓ ! .-rFai : o a ro_ -w.~ .may} ~ S'r9 .:i .3e .5 Y: 
. ~' Y Itta a~. '~ r~...~p`' c j *•~ e4~" t,5 -rrs :a: ~... 1t 1 t ~ . f Y~J f'~i'~vsw ~'~ • • i, i'I. wr, 9,y j 1 . f ~ a 4 j j 

~~ „~ 44.E=y ,'~. t is. ,i 2 .J i'f •~, - . _ 
3 

_ 

' . 

..~ l ••~• ~iJ 

  

\ •~ i %r - 

.~'j~,i'iS { ?,l'~i~ f 

.'o l'~ •,.r •Lti`. 

  

• ~_ 

   

~•. a°~` 
'~l+..~, 

• 

    

•.. 
;? 

n ~'. 

   

■ 

   

CHAPTER 8 
~. 

    

If you plan to use the full-screen commands APPEND, EDIT, 
CHANGE, or INSERT in your programs, you could also set up 
format files, which determine how the field data looks on the 
screen. These format files merely change the position of the infor-
mation to mimic the user's own forms. They offer an alternative 
to dBASE III PLUS'S default presentation. 

Format Files 

          

Format files work only with the above full-screen commands, not 
with other commands that you might include in your programs. 
Format files only contain ®...SAY and ( ...GET commands for the 
various fields in the database file. A format file automatically 
CLEARS the screen when you issue afull-screen command, such 
as APPEND, after SETting the FORMAT TO the format filename. 

                      

There are several ways to create and edit format files. The easiest 
method is to use CREATE SCREEN <screen filename>. This 
command allows you to USE a database file, presents you with 
the fields in the file, and lets you choose which fields to display 
and position anywhere on the screen. It then sets up a format file 

 

Creating 
format Files 

        

(`; 

       

for this screen. 

      

CREATE SCREEN actually creates two files, a screen file with the 
extension .scr and a format file with the extension .fmt. You can 
use MODIFY SCREEN to make changes to the screen file, which 
then updates the corresponding format file. 

                      

You can also use MODIFY COMMAND or another word processor 
to write format files, but you must provide the file extension .fmt. 
For example, the following command would be used to create or 
edit the format file called New.fmt: 

                 

~ NOOI'Ft _,COMMAND, Me~.f~t 

      

If you use your own word processor, make sure that you save 
the format file as an ASCII text file, or a DOS text file in 
Framework II. 

         

~~~ 


. , r
• 9

' p '

1

~•.~ '

PROGRAMMING WITH dBASE III PLUS •

P&12 .

,.

~~

.~

it ~... ,:a

' ~ 9

•L;.

~ 3~̀ •a f E
i~

T.. 1r! .z f lC

V ` ✓'~j of K~f's~~~yyr~~S.~~Cyx~~ fy'.~~: ~~,~

^'"!~c'~ ~~~~ ~~;?~~..b^1f'd.~ •` psi \if -"'1•~•'

,.~
t• ~11-r~~

•
,
~
A

~ yii:.w S~
~f, ~ ̀ v ,.~_ fT s

f
t

}~,r''•raf ems ~ vi'~Zs ,=~ `'sC ~Y ~,f~v~.rsr^...~7~b. ,yw ~~ '~~~•`•.Y 1 r, r' c~ t. %j~~~'i~'n f ~ s ~:',yYs :~::='f~l.•.r. ~` =: ~ , ,.

1'?~4•~
r:~~~~
,~~~

~#wG

..
t

r_

Y__` ti

}:

\\

■

FANCIER SCREEN FORMS AND FORMAT FILES

(•

NOTE
,If you use CREATE or MODIFY SCREEN to set up a format
file and later edit this file with MODIFY COMMAND or
another word processor,~ the screen (.scr) file is not updated:

,~

Here is the New.fmt file, which displays the First, Middle, Last,
Street, City, State, and Zip fields in a database file called
Names.dbf, with screen prompts and ®...GET lines for receiving
user input:

.~ ~,~~
. s:

.~ ~:

~~NEYFMTF `~ ~` ~fo~aat~~i te'~fo~
1~~1 S~SA~X'F r~s t~neieY~~~y~

9~ 6ET~ F rrst
6:~ S A.Y ~~!' l'a s ~t~'~n e ~ e
20 ~6~ET~~last
~~SA:YStreet'~,

0,~6E:T~{St~eeetr~, ,Y::,.

,~. ~ ~, 6~ETC i t ~~~,.~
if,~,;9,,1.0 SAYr",Stete:'1
,Y~9„ 206ET$~State~
Y~1~1,12~SAY~~~2•ip !'

~~1120.=~6ET~2i'p ~~~£

,.:

a. ;

.~

. f:

~.

~~ev~=w

•.t

•. ;~

• r.~

;,

• i

.i
v

• .i

ti

.~
-i

. (I

.. .,

\~ .~/

~I
'?}

. •'1

. ~ '

• '~

PROGRAMMING WITH dBASE ill PLUS

P8-13

•:;

. !° .. '

,'•~ ..
~..- :. ,

"~r• -

.'

~~ f~
.]~ ~.

~.y~3~~}J~'~fi
~~ b'~~

1~ a 4'0- ✓^ti\

'''"'i~ i~~ 3' ~~""~h'~~' °e:;c~rti' w~ dirrvt~argj ~ ~w.r~

' Cli,..6Y1;r.1`: a
`e

.--- -
;S~r~r• ._mss.

y ~ ~+.►t'iat ~ , ~ 4 ti /,+,~r'M1~ i ~:t: ~~~.'.°il!~.~

y,~ ~ v+'` i ~.q'A» ~ar's°.trF"rsy .~ drtr̀~:,

d • - ~

~ '.tiS . • ~•.' a ,.
..- '+'., ..'e~fir': L,•r. ,_._.vim.._ _ ''a. °~:..+

_•'~ e
•..

O.~L Z

Lt
' rp

,.

1 1 ` `\

CHAPTER 8

~~
~~ ;

. Here is how this forma"t-file looks on the screen:

s;..:~,.
~~naiie:

~. 'rs;

!S''~y~~~F'c~.3'Y~.i

t~

~':

~,

;'

Figure 8.4 Screen appearance of ~e New.imt file

Because the entire format file is governed by whatever. full-
screen editing command you're using•at the time, you don't need
a READ line for the GETs unless you plan to have multi-page
screen formats, discussed below.

r.~~~

~..
•

.Once you have set up a separate format file, you can use it from
within a program with the SET FORMAT command. So,; to open a
database file called Names.dbf and use the New.fmt file with the
APPEND command, you write the following code in your ..
Program:

Using FoFinat
FI~E!S

rte.;~,~ ~"-"i°'t 3-s;'~~7
~~s'U$E~ Neies s~ ~

3~SE,T,~FORMAT ̀ t0a,e
}~.AP►END~;~;= mss:

a~

~~

Similar to the way MODIFY COMMAND assumes a program file,
the SET FORMAT command assumes the file extension .fmt. The
program opens the format file, but the screen form doesn't
appear until the program also issues one of the full-screen com-
mands, such as APPEND. To close a format file, use CLOSE
FORMAT or SET FORMAT TO without a filename.

,, -

1.:
4

. -,

~
-

~• ~

.t

• 1

PROGRAMMING WITH dBASE 111 PLUS '; P8-14

--~,
- a ..',~5

.. •~

~- ~
j

•
e~

• ~.

. ti"

.'f

.•~

•. ', •. w. •.~

• -~

.. `•F~

>
. }•:

• - r. -..

a~

• :.~~

~',

FANCIER SCREEN FORMS AND FORMAT FILES

TIP
Because the total number of files that can be open at one time
is restricted, get in the habit of inserting a CLOSE FORMAT
command to close every format file immediately after the pro-
gram is finished with the file.

9
_i

dBASE III PLUS alsa allows you to set up multiple-page screen
forms with format files. This way, you can spread the information
over several screen forms, allowing you to create more aestheti-
cally pleasing screen displays.

.:~ Muftiple~Page
Screen Forms

.~ ~~
~•!.

Use the READ command in a format file wherever you want your
program to CLEAR the screen and show a new on-screen form.
Recall that normally you don't use READ in single-page format
files. Make sure, of course, that you establish the correct screen

coordinates for the next form.

P

With multi-page screen forms, dBASE III PLUS automatically
shows the next page of the form when the user has filled in all
GET lines in the previous page. The user can also page backward

i

a .~
.~

through the forms with the PgUp key and forward with the PgDn

key.

xoTE
This use of READ for multi-page screen forms only works
with format files. In program files, READ functions normally.
Ho matter how many format file screens you string together
with READ, you still can have only a maximum of 128 total

E' ~ . .~

GETs.

..,

PROGRAMMING WITH dBASE 111 PLUS

P&1 S

. • •,
.,

. ~ -~..

.i
.. '.~

ji

i

.. .,.

•., •',

.~

}etc 'r .. : - %~ 'r~~~~

. _
.:~

• -,

•~ :. ••
. •, ~i
.,. •~

• ..
'.. '~

,•

.~

.! ' :•..

;.

.~•,: ,: .

. •• i
•.

■

■
n

CHAPTER 8

Working with
Memo Fields

r

-USE ;Nodes k~~~:.~ s,,;n_~:-, .. .
~' •`~ :F

.,~.,; ,
=,wSET;FORMAT~TO~Noteehnp
~CHAN6ENEXT~,I~FIELD Motes

CLOSEFORNATr"a,~ `t:~' u
~USE~ ~' ~~ b = ~~, -,

i~ 7 e~'~ yyr_a~
~` ~ ' ',~.'~ ~ ~ 1.

P~16 PROGRAMMING WITH dBASE III PLUS

Because memo fields are maintained by dBASE III PLUS in a sep-
arate file, they are treated differently. For instance, you can't
STORE the contents of a memo field in a memory variable, and
you can't display memo fields with ®...SAY lines. Although full-
screen commands such as EDIT or APPEND work with memo
fields, the user sees only the field name and may not know how to
open the memo field.

So, a good way to add to or change the contents of a memo field
from within a program is with a format file and either the EDIT
or CHANGE command with the scope option. The format file
guides users by instructing them to press Ctrl-PgDn to open the
memo field for editing and CM-PgUp to finish. Here is an example
of a setup for changing a memo field. The database file,
Names.dbf, has a memo field named Notes. The format file to add
to or change this memo field, Notechng.fmt, looks like this:

The commands in the program for changing the memo' field Notes
are below. The user has already supplied a record number in the
m~ecnum memory variable.

After typing in the corrections and pressing CM-PgUp to leave the
memo field, the user then presses ~ to leave the format file. The
program updates the memo Held, saves the database file, closes
the format Hle, and continues.

*4 Notechn~: fit'~~fo~iit~f ,i.le ~fa~~chengi ng ~ieko~f i el'd~~,~'
s.O 8 21~SAY Press <Ct~l><PgOn>' ~to edit N~tes,~;~

~"i1,10;1T SAY""To seve;~your~chanpes ~~p~ess <Ctri><pOUp " ~ '
~~a j1;16~SAY~',~;~<RETURN>Ytakes~j►ou'back" ~ ~ 4~~~-"'~~~~
s •a 12;3i?6ET Notes ~ ~,`" ~~~.`^~ ~'`'~'"' "~~~

• ~ t,: ;~..d~+ ~+La'.~...1+3'~` =Alb.. ~~ff ".~!".k~
 }. ,~' ~~k .t f'A^ _

~
°'!~''.

;
~~, +a~i;~~i.-~~

.
.Y: j'.

.

~'y~:~t ~ 1~5'67~ii~'",~°.L;Z+~„~~"~,+`'~~~d ̀'v.`~•sy-i2~ wc,~s~ ~.i ~.Y v.. , . = i'' '~*.`~.~ -'~'~,.a
~ ~'

`efe v r P - ~ ~-.
a . ,. ~,

_~,~,~~
,s

r•' •t, l~~ .~~~

'~~

.iy

rif

e?
~~. +n

•sue ?~

ti
~' V

,~

• ~a~

,~

c:

~~ J~43e.,ap~a~,~47 Jy'it~.~
~ _ `~.s ~d

c,

• ~

~
'

!. ..
.

•
• ~ ~

-
-. e•

e ~
-

.
G' ., • ' • -e .,

.

t, Lam.

L

• '; M

. ,~

■

■

n ~:

., FANCIER SCREEN FORMS AND FORMAT FILES

TIP
Because the total number of files that can be open at one time
is restricted, get in the habit of inserting a CLOSE FORMAT
command to close every format file immediately after the pro-
gram is finished with the file.

dBASE III PLUS also allows you to set up multiple-page screen
forms with format files. This way, you can spread the information
over several screen forms, allowing you to create more aestheti-
cally pleasing screen displays.

Multiple•Page
Screen Forms

-.
Use the READ command in a format file wherever you want your
program to CLEAR the screen and show a new on-screen form.
Recall that normally you don't use READ in single-page format
files. Make sure, of course, that you establish the correct screen
coordinates for the next form.

. With multipage screen forms, dBASE III PLUS automatically
shows the next page 'of the form when the user has filled in all
GET lines in the previous page. The user can also page backward
through the forms with the PgUp key and forward with the PgDn
key.

xoTE
This use of READ for multi-page screen forms only works
with format files. In program files, READ functions normally.
Ho matter how many format file screens you string together
with READ, you still can have only a maximum of 128 total
GETs.

~~

.: ~~

s

i

~~---

. ,.

~•f~

a

~~

._
• . ~ •. ;a

.. ~~

P~15
. - • `•a.

.. ~. . . , - ~~ ..

s

•1

PROGRAMMING WITH dBASE III PLUS

-; ' -~. . .

y,..
u

~~ -

:i~
tom•.

S.~
. 7

1
• l

~.~

'I

t•

.'~~~,1

."iti~ l

_ . ~.r e".

L• ~~
' • •

r-

■

r,~`:

CHAPTER 8

M1.~S
' :l i

Because memo fields are maintained by dBASE III PLUS in a sep-
arate file, they are treated differently. For instance, you can't
STORE the contents of a memo field in a memory variable, and

•you can't display memo fields with ...SAY lines. Although full-
screen commands such as EDIT or APPEND work with memo
fields, the user sees only'the field name and may not know how to
open the memo, field.

Working with
Memo Fields

So, a good way to add to or change the contents of a memo field
from within a program is with a format file and either the EDIT
or CHANGE command with the scope option. The format file
guides users by instructing them to press Ctrl-PgDn to open the
memo field for editing and Ctrl-PgUp to finish. Here is an example
of a setup for changing a memo field. The database file, '
Names.dbf, has a memo field named Notes. The format file to add
to or change this memo field, Notechng.fmt, looks like.this:

*NoTteChnp f~t~Yfforeet~f.~le~;for,~cheegin~~ae~o .field~'~
V~Nt8;21y~SAY~!!Press?<Ctrt><PgON~toedi t~Notas',~~~~~'~~,~~~~~ ~~

~~N;.10;17'SAY~`!',To -:save your changes ~` ~ess~<ttrU<P U >"~"'~~~`~
~~,N 14;16~SAY"!' <RETURN> takes r0u' beck" "n, ~~'~~~•~ ors
?'i1 12;34~6ET~-'N tes~:~ n",~::F-~~''~~~~~' ~x~~ ~~`

i~ -~

I

The commands in the program for changing the memo field Notes
are below. The user has already ~ supplied a record number in the
inrecnum memory variable.

< ~ _
~.mU§EuNeies~~~~~ '~'t~~'r`~`~~~~~c
r `~~,60T0_~;a~ecnue'w~,~•`~.~~~~{J~ L
~; -SET FORMAT{.TO'Notechng,~~~~.~~ix~,~ ~:
~.;~t`CNAN6E~NEXT~,I~FIELO~Motes ~ '~Y~-~i.
~CLOSE~FORNAT~~. ' .,~r'.~t ':A
~r3USEa e~Tu ~X~' ~ ~4~,~'• ;a'~i,~,~~i~f'~,

ỳ
"~

f i~~y
~!~ ~~P_t_ ~Y.R.fF1d] ~(y~Ni~' ~,; J'~".~'fJ sl`

a

~a~i r..t'~~G~~'

 ~7riL.'

After typing in the corrections and pressing Ctrl-PgUp to leave the
memo field, the user then presses ~ to leave the format file. The
program updates the memo field, saves the database file, closes
the format file, and continues.

~~

~_. .'

i
i .~

PROGRAMMING WITH dBASE III PLUS

P&16

-~'

~.. •. -•

. -~.--~.

''= i.:


~~~ 
,,; 

• ' ; 

          

-~~ 

                     

'~ 

                                                                                



 

•~ .. . 

                     
a ~}`~''. 

 
,1.ari`C~ 

  

.. 

 

r-, ~~~ 

 

■ 

■ 

                                                 

P 

       

FANCIER SCREEN FORMS AND FORMAT FILES 

   

You can DISPLAY or LIST the contents of a memo field on the 
screen. You can also use the ? command to display memo fields. 
Remember that these commands don't allow you much flexibility 
in positioning the memo information on the screen. However, SET 
MEMOWIDTH is one command that can help you. It changes the 
default line length of a memo field, 50, to another length for out-
put only. Thus, 

-~, 
Hetp for Fast 
Typists 

 

SET MEMOIIIDTN T0.6S 

    

 

 

        

DISPLAYs or LISTs the contents of a memo field with 65 charac-
ters per line. This command also works in a printed report. You 
can set MEMOWIDTH in the ~Config.db file. See Using dBASE III 
PLUS for more information. 

If your users complain that they type too fast for dBASE III PLUS 
when they are entering information, you can change the number 
of characters that dBASE III PLUS stores in its type-ahead buffer. 
This buffer zone catches characters and retains them until 
dBASE III PLUS is ready to interpret them. The default is 20, but 
you can SET TYPEAHEAD TO any number from 0 to 32,000, pro- 
vided you have enough memory in your computer. 

 

xoTE 
SET TYPEAHEAD will not work unless SET ESCAPE is ON, 
so it's best not to change the typeahead buffer unless abso- 
lutely necessary. You can clear out the type-ahead buffer with 
CLEAR TYPEAHEAD. This command is particularly useful in 
a program where you don't want the user to input informa-
tion before continuing with the program. See Using 
dBASE III Plus for more information. 

   

,~ 

  

P&17 

 

PROGRAMMING WITH dBASE 111 PLUS 

 



M ~ ,,y~ 

d. L1 G 

  
`r'i~-. ~ ~„@,v` 

a yy } 
- . 

aa~' ~ 
A yPC • ~ Y' 4 

.. :!- - 'a, - '~~ 

fir' 7r~1~~P~ T~a'$~f-►"."~ ~,~-j J ,.~~.~ ~!' ~„S' 
  

•a' 

~~~e 


~~

.. ~ _~;
'.' .. j...._~.::a~ . ~

~' :r "'~_ -. . ..-:.

b ~9

~1
~l~,1

!~ ~v. ~et`~sn~`~~eh

~ vl~,

~~

Chapter 9

EVALUATING USER INPUT

.~ ~.

~•~:.
Trapping users' mistakes, not only in screen forms but also after ~ ~ ~ `: ~:•1

the user has typed in responses, is a very important part of pro-
gramuning. Make sure that the program knows what to do when
the user types an incorrect response. The, program should also
ask the user to verify that the input is correct, and be able to han-
dle situations in which the user presses the special keys on the
keyboard.

~_~~'

~~~ ' ' ~ .~ 
k ...•-. 

    

~. a 

   

. .~i 
,, 

     

This chapter discusses the following: 

 

What This 
Chapter 
Covers 

 

• How to restrict input to certain characters in prompts and 

    

messages 
• . 

    

• How to check 'for users' mistakes .~~ 

.'~', 
•~ . '.. 

.~ 

    

• How to filter data to get only the information that your pro- 
gram needs 

       

;: • How to manage the special keys on the keyboard from within 

     

a program. 
• 

  

• How to use the-ON command to test for certain conditions 

    

Have a general understanding of the basics of dBASE program-
ming and of the information in Chapters 5 through 7. 

 

Preparing for 
This Chapter 

Filtering the 
Input Line 

       

In Chapter 7, you learned how to restrict input in on-screen forms 
by using templates and ranges. Whenever you'can, try to limit the 
user's choice's and then set up a filter so that the program only 
accepts a correct response. You do this most often in menus, or 
when you're prompting the user to hit particular keys, such as y 
for yes; or n for no. In the checkbook management system, for 
example, the main menu choices are limited to the letters A 
through L and X. 

                                           

--- . 

    

.p 

                               

PROGRAMMING WITH dBASE 111 PLUS ~ P9-1 

   

-~-°-' ., ~t- -_ ~ - -~_ •-- -_ --• 

     

----F: ~- . - - 

:lye, 
Iv . r 

        

A 

.,: 

                            

,~ 

            

~f 

                       

.. ~t 

      

~ < 

              

. .., 

           



.~~~~.`. ~i.t w ~ ,.~, ~~~~'' ~s~•~•3~~~; a~~~t~~y~'' 4• th±.sa:.76•]c~~ r•v~? r~~.~~~:"f~
"*~7~~{~~* !y ~*'~"* r~~~ r ^• ~ 

-Tel:.. ~ ~ ~ - .r. :;.~: ~.3`.'~ •y~'E 
..► 

l~ r-

 

• •~• rf 1 

     

•tit
«~~' ~ 1 ~,•~~~'~ • 

. ~ ~ ~ '~ •~9,-

 

t .. . r. ~' i 

~' .+. 

                          

CHAPTER 9 

         

.. 
~:, 

You can also set up the choices as numbers and then limit these ~'~*:3' 
choices to a particular numeric •range. Say you have a memory 
variable of numeric type named choice, which is for user input. If 
you set up the choices in the range 1 •through 8, you can easily 
restrict the user's input like this: 

     

Using 
Numeric 
Choices 

           

'~~" 1~„•- "§~.ir~~z`;~..•c.~t~="^C3.~J,,4.3 - rsa•„~"»qa~`a TL'F 
chop ce, e ~s~,. r ~~: ~` ,;.~ ^ t ~. Y - x-~, ~. ~ 

~
a
~F
' ~ ~ ~ ~ 

~R 10,10 6ET~cho~cePICTURE3'9' RAN6E 1;8~ ~'~r~"'""~~;~ °~`"~'~`f~l~~ 

        

~~ READ ~~~, .'~' t ~„e~..~~q 
}-~ ,~ 

~,~` "ez" 
•}L.a~~ r `Y - ~ ..+tt~..- }' " +4 ̀~^'~ "µmy L~ ~ 4 • ~ 

sy;~' }Ys'. ~~cY+-' ~~ -.~.jr.~k.u .+ .,~~~e. S..eY.-~.tf is::.a.`.' a.:.~w..S.~at~i. 

  

. •-•_ 

    

The program doesn't accept a number less than one or greater 
than eight. This technique also pievents the program from accept-

 

ing aletter key.. • • • 

   

~'" . . 
Because the program can't continue until the user enters a valid 
choice, a setup like this one catches the user's mistake before it 
can disrupt the rest of the program. 

                  

.~ 

     

After receiving a response, your program should always ask the 
user to verify that .the input is correct. The checkbook manage-
ment system uses this conventional prompt: 

 

Anticipating 
the Correct 
Response 

                       

Is this correct? (Y/11~ 

     

The grogram employs a DO WHILE loop to allow the user to cor-
rect mistakes on an n, or no, answer. Only after the user types y 
for yes does the program continue. It's easy to check for numeric 
ranges, but how do you set up the program to check for string 

• input such as y or n? ~ • 

                               

Fiist, think about the possible choices here. They may be only y 
or n, but the user may type •Y or H. The best way to get around 
this situation is to use a template in the GET line to convert the 
user's input to upper case: 

                      

•, -~ 4~ <"~~,{-4s..+C~ ~ ~~t~i, -yZ. o 
~,~~""~ ~"•~f 3~ ,i."' ~j x rt5~s 1►ri ~ z r ,., ,~ ~~STOREs ~•F~TO snsre~,~. ~~~~•+~~~~ ~~ .~;,~a "~"~~.~;~"~'~ ~ .~~"i, 

if 5,0; 6ET ansree PICTURE`'!' , ~,~•~~.~_~'~.~ ~• ~.~~~~ ~r ~a.,;,r,~. ~ 
."~ +t~ ~ Y - rfyr ..• p .~i1.5 ~, ~ ~ d yG. Ye• ~ its ~{ ~ a'+y i e3fnN 

     

~: ) 

                                     

P~2 PROGRAMMING WITH dBASE III PLUS 

     

. -~:: 

.: ~•~, 

                   

~, 

   

~~ 

 

.:; ~ •• .. 

     

. ,,~ 

 

., 

                    

.: . 

                        



~~~ !is'T's7.-~'~t 'Ri+~ i ~/1t,R•~l ~F~ 1 • ~i~ r J~.ra-fs +; 7 ~iVr! y ~ . y. lR~A~.Ir . R• ~ ~~ ~~a~~~: o~~~'~~7i`R~•~~~'T' -g'i"0"s'! _ *s,y,Z ••~ ~~••~ w,.w: r.~ i~'..•w-' -. :r' Imo'. ;~;~ ~ a~ ~ :~ .v y`!ti ~..'M.. ..q• 
~"L.-.

~ a •~✓ r-

•r.• . i.. .. .: ...♦,._ • .a. •'K if i.. 1~.. • ~ifi~~ ~~`=-~ l~. - vim.-.....- ~ ~
~~~' - 

~; 

_ ' 

H .ry 
~ 

~f','Y 

ZT 

   

• 

t •~~. •. 

,. 

. 

~~ 

       

EVALUATING USER INPUT 

    

•~; 

    

If the user types y or n, the program will convert this response 
into Y or N. That still dcesn't ensure that the user types only y or 
n. For that you need an instruction that loops back and requests a 
correct response as long as the user doesn't type y or n. You are 
excluding incorrect answers and including correct ones. 

        

dBASE III PLUS uses the $ operator For what it calls a substring 
search. This feature looks for the input in a string which contains 
all the possible choices and makes sure that the user's response is 
one of these choices. Here is an example of how to code the pro- 
gram to evaluate the above yes/no situation: 

                    

~DO.:YHILENOT:.ansiier ; 'YN:..;: ' ~.~ ~ "~ -~ ~ ~~'`~ ~~, ,,,. 
{ 

~:ii-

   

• 1f~ 

   

.. rG 

. ~ ' ~' 

 

Read this command line as: Do the loop as long as the contents of 
the variable answer are not found in the string YN. The string is 
enclosed in delimiters. As long as the user dcesn' t type y or n, 
which are converted to upper case at the time of input, the pro- 
gram loops until the user types a response that is in the string. 
Here is a pattern for filtering string input so that it's either y for 
yes or n for no. 

    

~~ 

 

..-~.; 'J. . 

 

{ ~ ,~. 

   

.• .t,-

    

r roe ~ . S ~~ .s.3syy, 'i~r. yR t i y
y ~~-i- ~~ ~,~'~; 4 . 

~ n,ry ~yel. . ~ r 
yco~Y011 ~0 

~"~ ►

#z~~ x~$"^~•y~l,.'~ Ufa rls,~ ~,~~ -..+f ~ ~ s,,.:. `"^ Yw i~" i '"~ rt.f~~ 3 ~3~~sy.. %~.~'''y~~~„y~~`s'w~k. k 'wr~.y~'?.t.~)~"~' 
„~.cho~celi r~IC/ .•.~~,~.a 7's T ~'C'~i~~ °~ ~'~~~lS ~,~.~1.4:. t; 
~00:YNILE;~:NOT ~choiee~s '1N'~. •,~,~~~fi~ +.. 

~~a~rror`~cotu0n~6ET4cho~cesPICTURE= 1~~;,i~~~,~- _~~~~~ 
4~~,iREAD~~,n„r~,.;~.~-~ ~~p' s'~.~`~r,~-~~~~" any 't 

- - - ..r;~ss. 

                                 

The line below DO WHILE is important: it tells the program to 
reinitialize the memory variable choice with a blank if the user 
dcesn't press either y or n. The program returns to the beginning 
of the loop if the user presses another letter, for instance, t. The t 
would be the current contents of the memory variable choice 
after the first try. It would then appear in the ®...GET blank and 
perhaps confuse the user. So, the module reinitializes choice with 
a blank at the beginning of every loop. This module of code effi-
ciently handles the input by converting it to upper case and mak-
ing sure that it is either Y or N before the program continues. 

., 
i 

      

- . 
i 

. ', .~ . 
i --

             

.{ 

    

.? 
i .~ 

                 

.i 

.' i 
'~ ~! 

   

PROGRAMMING WITH dBASE 111 PLUS P9-3 

     

.. --• ----,----~- -r---_.-

         

.a;. 

      

.. h.a,' 
~ 

             

. `s 

    

,,~ 

          

~,~ 
.. - 

                   



  
-w 

_.r... _ . r .~ ~' '':,,cw ~_. : ✓.' :;~+. ~ `;;1 ~-•r L:.e,•' •y'..,~~.., Yeti t , 
.~ ,r 

y. ~ _ ,i~. ~~ ̀  ~,;v •.1.:'' " ' ~•'H~" '. ~2~~I 
      

~~ 
~,3 

c ~. ~ 

 

• • 

    

, ~-,, ~ ~. 

 

CHAPTER•9 

   

,-~ 
:f 

    

Another example of the substring search technique is in the CASE 
lines in the main program module of the checkbook management 
system, Cbmenu.prg. Here the program uses the $ operator in a 
slightly different fashion. For example: 

                 

'..CASE CRRIi) S "A•" 
DO Cheek 

        

This CASE line uses the substring search operator to look for the 
ASCII character equivalent of the input variable, i, to be either A 
or a. 

     

NOTE 
Don't confuse the substring search operator, $, with the 
SUBSTR() function. The $ operator merely looks for asub-
string within another string, while the SUBSTR() function 
returns a portion of a character string. 

         

a 

 

i 

  

~. 
7 

        

• 

  

Two of the most difficult aspects of programming are testing for 
all possible input conditions and determining the order in which 
to have your program test these conditions. As your programming 
experience grows, you'll develop ways to handle user input. Here 
are some suggestions. 

Covering All 
Possibilities in 
Their Turn 

           

Most evaluations center around a logical condition. This means 
they can be set up in one of the standard dBASE constructions, 
DO WHILE...ENDDO, IF...ENDIF, and DO CASE...ENDCASE. For 
example, in the Check.prg, which enters checks in the checkbook 
management system, the following section of code tests for the 
user's typing of the check's payee by means of a variable called 
mpayto and a simple IF...ENDIF construction: 

                  

~. .~ 

                    

P9-4 PRCiGRAMMING WITH dBASE 111 PLUS 

                            

• 

                                      

.~ 

             

,~ 

' ~: 

                                               



. ~ ~ 
LS 

. 

Ct:':~) ~t~."f~.~;-,'~~}~se.an' ~ ~•,~F~~ri'r~{}mist's• 
 

j . • 4' 

. Jy .4~,k", 
.1• 

.1
\, 

~ 

'~`'~' r 'r - ~ ~~ _ . 

         

f 
. ;:~ 

  

,l 

    

:~;~~~ '.7. 

 

..R• 

    

Lam• 

~~ 

                 

EVALUATING USER INPUT 

    

,: 

    

° DD~MNILE;,:T.~`":•.s4~,r~S..`°"~;~~' .~r,~z~r•t,tc,••.. „~,,~,~ ~`ar5 
r~.s test~for 'naae on:check~ ,no blank,checkssallored+~! 

~~,a`~8;2S~6ET iperto~4~~~~~-"~ .: 'l4"" 4 ~Ra 
"`r

-r~,{~~-~ 

,~IF„apayto~oaSPACE(30);~~`' k ~' `~~~ ~; 
~,~frx~'~~~'4EXIT~ a~~~ f "lz~si';c.:'~ ~ ~~~,~i~Y~ y ,, 

~ "o ~ ~ n ~, 1 ,,,:. 818,1S3SAT,~.,NoF'bGnk~checks~allosed; please reenter .~ 
~F~K EI~~DD ~'n~~!' ~'X'i~~'~,~~~' rA ~`~yt 

'r.~~~144 u•~
"~isj. ~q(M!'~~, ~. ~' w. ~w+^~~`i~~y"y7 

               

Tit ~..r 

                     

The program uses a negative approach. It evaluates the contents 
of the variable mpayto to see if it is not equal to 30 blanks, 
SPACE(30). If the line 

l
..~ IF~,op~yto:.nmSPACE(30)+~Kr~~ '~~f`~~,; Y . ~.~' '~~1.'~,~ 

i~.~:T~:~. '•:Y .-X.•13ti~.rr'.i.~'.i.~°:~=F: '~ a.,~.j:.~tx ~,.'y~,~yst~•y~:~~` ~T.f asi 1 ~'~+ii 

       

~ u° 
r~ 

.~ .. 

           

1 

   

i 

 

evaluates as true, no other action is needed and the program 
EXITs the DO WHILE loop. If the line evaluates as false, that is, 
mpayto variable is equal to SPACE(30), the program gives an error 

' message and returns to the. beginning of the loop. In the above 
example, the program could have used a positive approach: 

 

.l 

:f 

        

' ~.. ' 

 

?".7a ..y mow-- .,++ 4.fs.~~ . _.~ Y :'.~..,,,, ^r„~ ~w~•~F~'sJf{': ~ {'w"~7~4~,w, ~, u ~sila";'w~.L,~y~-' Wit. ~'4,., -~e-+.~ 

~F~~
~IF`iparto~~ SSPACE(30)gr~~ ~~~'~-~ •,~-~~*~~"~̀i-~.~'~' k~~T'4+~"~,~.'~`^'~+y i'~•`,' 

iiiAt iZl~a~hiai ~.. Srs ~.~ ✓Y/~l. i~ .~' ~ >~'^.".~ ~__3_-. f tss'~_
IJYr-ra. ~`3L3 ~~ 

 

.t 
~~~ 


How you have your programs evaluate the user's input is up to
you. What is important, though, is that you try to anticipate all
possible conditions relating to the input. Think carefully about
the order in which your program deals with the possibilities. The
next example, from the same program module, Check.prg, evalu-
ates the user's input of the check amount, the variable mamt:

.~

~~

4

PROGRAMMING WITH dBASE 111 PLUS P9-5

;;

~~ ,. - . .

• .ti:.

a ~ .̂y .1 0l 3 x y SY _'~ ~4.R RJR 'r"i~ ViT'k
'• ~r

• ...~..•

- •i ~

$ _ . ~ ~ ̀ s

• ,~~, ~ + 'S•

•

r ~ • - ~+•

A

CHAPTER 9

DO YHILE .T.
~- ;~ •~-

,
E ~-.: " * -test for ~eeount~ leas ̀.than ~or. eque~l to :0

it 8,66 6ET iart'~~PICTURE" ~"999",999.,9.9"
~0. • READ _ _ , , - - ,•,

0 '18.0, - ='

I~F.=~e~t _ 0.00 ~ _ .,,;
a 18,15, SAr !'Check ius.t-; haves ens mount. - please -~eente~'~_~;

- 'ELSE ,
IF -i~~t <- 0:00 ~-~ ~ - ,

.R18,15~'SAY "Che~ck~_~rust `be~_e .pos"itive

e~ount

ELSE"

EXIT
~ENDJ_F~~

ENDJF

END00 ~~ ~ _ - _~;

* eheck to'~ake.,sute there ire "sufffei~ent-,funds to~eove~ eheek`~
3f balance -<',~eit=

8 18,.10'SAy` "T,here are`~eo; -suffici'en't ;aaount~ of "f.unds "+;.

t^ '~

•

* opt-ion ~to enter ,check ~any~ey

a 20,,15 SAT !!Oo you rich ̀to
8nS = n n _
DO YHILE :NOT. anst"YyNn!'

ans.= n n,
~- _~ =ii ;20.,61,°6ET -ens-

'~~~READ~- ~ ~ ..
~- EMDDO

: ~:,~ (~:•)~"
ENDIF ..,.

check anyreyT (t/N)"~ enter this

,~

The program first tests to see if the amount is equal to zero and,
if that is the case, presents the user with a message. It then
checks whether the amount is a negative number, which would
mean that the user has made an obvious mistake. The program
handles these two possibilities in the same DO WHILE loop,
because they are related input mistakes.

~.;

PROGRAMMING WITH dBASE 111 PLUS

F'9~6

.. r~

_.,

•~~

.+•

;it

:~

.:~. ..

!~ 'ctJa►̀,_i,~3%:.: !:.;,S.e..-~....,~Zt;~~~.- '".2lrns~...'".`~~t~'_ ~.~:S~~A"-.~_,.. +~..., x..r ti`ff's'.` - •~

,:

EVALUATING USER INPUT

The third possibility is more serious. If the user enters a correct
number, but there is not enough money in the account to cover
the check -

.;

- the program will generate a negative balance. The program
warns the user of this and lets the user decide what to do. In
Chapter 14, you'll look at another program module to get more
ideas about how to anticipate all possible conditions.

You may want your program to branch to certain subprograms
depending on what key the user presses.~ As well as providing
ways to filter and evaluate input of numeric and string informa-
tion, dBASE III PLUS gives you methods to evaluate whether the
user. has pressed a standard alphanumeric key or one of the non-
printing keys, such as the ? or the Backspace key.

Special Keys

~" ~.
ti .;

The INKEY()
function

The INKEY() function tests for input of most keys on the key-
board, including the cursor movement and other special keys.
INKEYQ returns an integer value which corresponds to the ASCII
code number of the last typed key.

,~. .

l~i~ _i.o~ ~~ ~ ~..:~''^ .Y
}~~

~z.,«£.~3 t~,~,i '~~,tcj r1x~. ~}
~

'r _j.v,a',

.;

z ~, ;s• J`c,~/~i
s1̀~

t
,,-~

..
~
,~].~w~ y

~,~
r ~ «~ bin ~`Tr. ' ~'.~~, yyar•~V ~G

•. ~~`..Y^✓. Y G.3iS~ •::AFL.! L~.i_ .ii_. 4. cL~/Avfr

The above program loops until a key is pressed. If the user
presses A, the program exits the loop and displays 65, the ASCII
code for A.

~.

All the non-printing keys on the keyboard return INKEYQ values
between 1 and 31.

t

PROGRAMMING WITH dBASE III PLUS P9-7

-'.' ' .

.- :;~ ,

• ' `. •-

•_..._

'' - ~::

CHAPTER 9

'1

WARNING
Don't be confused by the input values of ASCII codes for the
non-printing keys and their display value between 1 and 31.
For example, if the user has pressed the -+ key, the INKEYQ
response would be the integer 4. But if you do this:

you'll get a little diamond shape on the screen. The ASCII
codes refer to different keys when you are checking Eor input
than they do for displaying screen output. INKEYQ only
checks keyboard input. See.Using dBASE III PLUS for a list
of INKEY() values.

•:: '~ _

~,~' . i

.!

In Chapter 4, you were promised an explanation of how the check-
book management main program uses~the INKEYQ function in
the main program, Cbmenu.prg. Take a look at this module now:

Getting Fancy

~~ ~tr«r.s~ya~a -r• Ord n,~r-. _~.~br~y "1~"~r _ `...~_ r'•A
~ 0 i .£..:: St' ~' ~'"M"F w F C r,.~T' ~ l~~"+[y~ iii ~ .*' .a -~+. 's !" ~+

"ADO MNILE~~ 0?~;~'{^ ~ ~p,.r~#,,n~x~~., ~. } >~ ~~ ~ ~:. ~ ; ',,„,r
r'Y Z.~ .- _ _

'F ' t`."...3{i 'YS'~. i~.~L. -.. '~.'.!'~137".... ..._.s ~.. .MG_m'~

•~
.,

r~ ~ ~~~va ~n~.,.~anc~iy ~a *~{• .rz a+•wa z w

'~~~IFkUPPERICNR(t))=!'ABCDEF6NIJKlX"~ ~'~s''~~~x ~.~~ ~,' ̂ ~"f~~.~,,~

tai 3 x - .',~,'•,EXIT6~'' r`~' .' 2; ~=-'~s„~d~ s~ ~+ s'~ .~ ''„{•-"''`.~~"~' x~'r~
~"~'• „~~ ,a~~¢'' 3~ -.+x-<rc~xs`S ~ i 'I4,.?<lr~.I Fs..~~'t~-.~ f~ ,fir„-, ,~ ~:i-

_ ENOI F ~ ~.. ~y~j x •, - - y L. ~ "n

t ~ s.

This module sets up a continuous loop that waits for the user
type a key. The variable name i stands for keyboard input. The
loop waits for the user to press akey -

to

C :'

e
~'" : i = I NKEY ()

, a~'~~t~ ~f ~ s~
~

.~
~.yyf
.
..
: ~~},~~ ,x

,{
'~

-
,r̀'~t, ̀ +'~'.'~"a

y
"'€~``*~. s ~ ..'z f;.~

4 ~ isiY~ •~'~~-• ZA:.' .~?.~~JJ "~71~. 1`ylt yam.•.. '
A J.+•" •4i'I. +w~a. '~' j.. r«a`Lwi ..~,'~ Ti.F

.~

. I

• ~ •. ~
f

F'9-8 PROGRAMMING WITH dBASE III PLUS

.. ..

r.

i• ~-.
. • ~ • ~ \

.. .''' ..
-:;

•s•

.' -• ...

• _rt
.~~ti

.~
.•~n

. •,r

r. ',~ - ..

.. ~~

.. _.. , .,

~

Y
~~~j ~' 

 
.L a t~~ .. `'_ia  

_ . " ~ _ ~ F `c t :c ~, 

's~ k4:z;J 
+' - 

        

~~ ~~ 

                 

~~p~`y ti 

• 

        

;f. 

. ~ •r :_ 

%~at-.~e 

 

EVALUATING USER INPUT 

    

- and continues to initialize i to 0 and count the time as long as 
the user doesn't press a key. That's why you see the seconds 
count off on the menu. Although this command displays nothing: ' 

        

a 22,58 SAr ~~~~ 

     

the command positions the cursor at the bottom of the screen 

  

between the two colons and makes it appear as if it is prompting 
the user for an entry. It replaces the ®...GET and READ construc-
tion, because in ®...GET and READ lines, nothing happens until 
the user enters something. In the INKEY() example, however, the 
time is ticking away, and the use of INKEYQ in this loop is an 

      

active situation. 

       

When the user types a letter choice from the string 
"ABCDEFGHIJKLX," it activates the INKEY() function, which 
instructs the program to EXIT the loop. Otherwise, the program 
continues the loop and ticks off the seconds. 

         

-~. 

  

Initially, the variable i is a counter, and its value is numeric. 
However, the INKEYQ function allows any numeric or alphabetic 
keyboard input into i. The program reinitializes i to be 0 for each 
repetition of the loop if the user either doesn't press a key or 

• 

     

presses an incorrect key. 

When the user presses an acceptable key, the program displays 
the input in upper case: 

     

8 22,58 SAr UPPER(CNRfi))`~ 5 

    

and the program then evaluates which CASE command to execute 
for the menu choice. 

   

`. 

 

INKEY() works in menus and other situations such as prompts, 
where the program waits for the user to enter a response by 
pressing a key. In full-screen commands, such as in APPEND or 
®...GET lines, you can determine the user's input of a key with 
the READKEYQ function. This function works in a similar fashion 
to INKEY(), but only in full-screen situations, and it uses a differ-
ent table of key values. 

The 
READKEY() 
Function 

    

.' 

             

PROGRAMMING WITH dBASE III PLUS P9-9 

               

.. - ", .:~ 

                           

a 
~. 

              



• 

                                 

CHAPTER 9 

    

~~ 

   

.; ,~.~, . 

    

~~ For example, if you want to know whether the user has changed 
any information in an on-screen form, you can use READKEYQ to 
test if the user has pressed Ctrl-E,nd, the integer value for which is 
270. If the user has not changed any field, READKEY() returns a 0 
value, and the program need not alter the database information. A 
list of the READKEYQ values is in Usirig dBASE 111 PLUS under 
the 1tEADKEYQ function. 

                            

..' 
i 

. ; 
..i 

.. ~,~ 

             

The ~ Key Under certain circumstances, you may want the user to press ~ 
alone as a valid choice. For instance, if the user presses ~ 
instead of a letter choice, the program returns to the main menu. 
Because ~ has a null value, its length is 0. 

                

How do you test for this? If you want to have the program check 
if the user has pressed ~, you can set up a module like the exam-
ple below. Here, select is a character variable which the program 
initializes with a space. The user has just pressed a key: 

_, 

 

i 

 

.i 

 

(`' 
•,~; . 

       

c 
... .,~ 

aw .. f'~ 

~:vIF LEN(TRIM(select))• t 

             

..~~ 
~ ~DOsAnothe~ '~~ st, ~~s 

t:. ~ ~.~ ~~ i R 

             

Another way to check for the same condition is: 

   

. ~ '~.~. 

 

~~.•IF~~;!,~=RTRINIselect)~,'~~. ~i-~~ ,~_~~~n,,br~i :was• ~,
p
~~°'~s,~•~. 

;..,,,,~DO,~Soaethin~ .~~~"~~~~~~, x~.,,~r'~ ,- ,~r .. ~. 
u ELSE ~`~''~~~,'3~` .:•` ; ~ "` ~~ `~~~a'=~ 

,;,,~~~, 
>,.:i-~~~,•. 

'?S'._ ._: ..'..#'~jY `?ti .; K`c~F .~ " 4~#,. ;Hrty r ~,,,~,"a,; ~.'sn'~~ias. ~'?~ "v~'~+'~ ~. ~~ i~r•.4f~ 

                    

:C 

     

The ' ' means that the input string contains nothing, not even a 
space. This is the way dBASE III PLUS indicates a null string. 
There is no easy way to set up this test with the substring search 
operator, $, so always keep this point ' in mind when you're design-
ing your program. For instance, test for the ~ key first and then 
for the other choices. 

                

~-. 
~! 

                                    

. ;~, .. 
PROGRAMMING WITH dBASE 111 PLUS • 

  

P9-10 

 

.. ~..i ~:' ~ , 
~' ,. . `"`' 

     

{ 

         

t 

        

.'~'; , 

                 

.~ 

                                     

~. 

                    



    

.. . ,, 

    

f :_ : ,-_ 
;,'='~:' .~ 

.:Lr~ 

 

- ~. 

          

I 

   

EVALUATING USER INPUT 

 

:~ : . 

ti„ _-mot"'v 
-y 

•~ 

              

' . 

      

. ~ 
~ _ ~~~~ 

 

-. .. .~ 

• . , 

 

0 characters long 

1 character long 

  

Spacebar = " " 

Figure 9.1 The ~---~ key has a null value. 

     

Note the difference between the value of the ~ key and the value 
of the Spacebar. 

      

. . .. ~. 

~= .. 

•< . 

..:..~, 

- _ ~. , 

     

You will probably use the LTRIM(), RTRIM(), and TRIM() func-
tions to trim the leading and trailing blanks from the user's input. 
However, it may be important that the user not type any spaces in 
the middle of an input string. You can test for this potential prob-
lem with the AT() function. Here, the variable select holds the 
user's input: . 

iDOyYNIIE~.:T-~'}ky~"~~~,.'~',;, r~~:~ ~~<~~ ~~<h ~~,-

 

~~-'' ~AtCEPT;!'Yhat~,:~s the~aecount nuiper?,~~= ~` ` ~'r; ! TO select 
I~',~r; ~STORE.LTRIN(TRIM(select))^;TO select'~~~ "~" x ~~' ~ ~~` ~"~ 
"''"''r *~~f ~ .space;;is~~n=the''str.~ng~F«~ff-c ;~.~z .~~:~~~~~~:; 
,~.. ~tF~AT("~!', select)+>' p1~,.,~ ~~~~~~ ~~~~~~~~y ,~ 

~2~ ~'A{~h10j1~~SAT.: ~~ ~~ Q 8Pe1h~~~~~~J''T~.z'•
'~f ~' -1 _~} 

~ .,Don„tit' e-accounttnus r! 
:; } "~. ~~!".~~~ r 3.~.. ~1 ~.'~f`s: ~ I.., *' riN f,~~ ~'~'T`nr~~+ r~~awF,~^•~v;~w. *..S•'~r d "S~' 

~~ ~ '~YAITy"~,~,~.~~!"'~~Press •nr ker to try ,eDe~n:~'N`~'~~~ L 
., ,''~~~~REIEASE 1selecty~'~'~~.,"~"Y~~''~-~~~~'~,~, 7 = 

~~R""- .~ ,~~.. 

~~;~"~, 
ELSE;T ~=-~s~.t;~'"~~,. ,~ .~~ ~~ r- '~~~'~K,~ ~.~ 

~e ask- nt!i:~?.riP'~ } ~ # ~x',s4~.. .nf 'Y}7y'~1~ i r- ..v ~,,~^ 1 

;~~ ENDDO~ YNI LE T `~' ;~ u v ~`~-~~ tr,: '~.~^~ ~^ ~ ~~ 
~ 

~ 
>"t- of r " r7 fl, 

 

The Spacebar 

   

i 
~:. 
. .. --, 

   

•. 

           

,~ 

    

.~ 

                        

1 . 

   

After the user types the input, select is TRIMmed of leading and 
trailing blanks. The ATQ function then checks for any blanks 
within the string select. Because ATQ returns the numeric value of 
the substring's position in the string, or 0 if the substring is not 
in the string, you must test if ATQ returns a value greater than 0. 

  

. -~I' 
.~ 

     

.~.~ 

       

•:a 

       

-.7 
`a 

. =
s~ 

• ;. 3 

        

PROGRAMMING WITH dBASE III PLUS 

   

Fi9-11 

        

• -'•' _ 

        

•.~~•. 

      

._.~~ 

          

:; 

• -. 

  

., 

•~ 

.. ~: 

                                                            



   

. F.- ~~~. (', 

•.' 
• 

~~ 

   

{ 

            

CHAPTER 9 

          

You can test whether certain user input is of a specific type with 
the three functions ISALPHAQ, ISLOWER(), and ISUPPERQ. These 
functions return a logical true or false. For example, if you want 
to check that the user has input a letter of the alphabet, you can 
say: 

Checking 
for Type 

      

d 

   

4 

  

:; 

     

x:.il 20~ 10 6ET ~ select ~ 
'~~'~,~r ■•;.rt`~n ~~ • ,~ ~ ~~-- ~,"`"..~~•~t 

    

I 

 

~..ziF, ISALPHAIsete t )~;~a M~-+,'`~~A~'~`~c~"'~',,r~rwsj~~. 

~:,,+;• T DO}SoiethinD '̀ ~ ~ ,~.r ~: r+ ~r~,~.~w4 r; ~~~.vF_ 
~,~`ELSE -~r~~"~~>_;'~a~-s~is K3... ~,~ e y t ~~s~ ~Y *`',~4~ ~ ~~ 

 

~. 
:~ ~}~.. 
~~~'-; 


~- '~ • -YN ~.y ~~ 1. l.••.= -ADO ~ Error ~ ,t~rry~ ~.
2y ~f

-~~'

>R~~ Y9

~~~ 

 

---;•ENDIF,. ., =" ~ti~ ~..~k:x ~ ~« .~'~''se~,~•~ T'.~':'s~ ~"e ~3r'.F,~ -,✓t' 
,c . _ fy.,s ~ y-~~r'wl y . , vet ,e~~ -, + --.: ax ~,. S~ .~ Lr +a akic++u '~ 
w.s•.'`• : nLr ~.-.:t5.'.~°"ar. ~'.i:+~t, :S~w " aea:rc~Y:-r..'ra~F'~`~ =5.- _iw: . N+. e`].:r~y; ,.. Yi 

          

Similarly, the functions ISLOWERQ and ISUPPERQ test for lower 
case and upper case. These functions test the first character in 
the string only. - , 

   

:, 

.! 

-~ +. 

  

The TYPE() function, unlike the above three functions, returns the 
specific data type of a memory variable, that is, character, 
numeric, logical, date, or undefined. When using TYPE(), enclose 
the name of the variable in delimiters: 

 

~- __1 

 

• ,~: . 

  

• 

           

,STORE' 123~~0 eeeve~`'~` .~ .f A# .. 

.~. e:3 1 -r tt ar _
~+.i`.' "•"'J er _ .,~4F ~ r ~ aY~~ 'r '~ .sJ''Y.y.IF ~ ~ L ff per. 

N~, lF± :~"~ "YT~'~?~*~~a j'~sti'~ ~Z~ii~~t .r~»~1.,3 „~ =''~j,+~~r~~ ~rt ~k~ga.+~+~"$~'~'v. 

~ ~"r.ir' ~r~ '~k.,Yrt 
m x'f} ~' J h ffA i °~,++~t~Y R s~. ~. ~i.~t ~~v ~ ~ 

~~" V~} ~ ~ :t~~ ~~r+ ~ , Y.~ ~r :.. ,+fin  ̀•~..~ti^,"_~'.a_ ~3 . ,~.3'• y -~,t~'~'~t.:?'??~Y 

               

• - i 

      

' Here, the TYPE() function returns N for the numeric variable 
memvar, but U for the undefined variable memvar2. You can also 
use TYPE() to determine a Held data type, which can be charac-
ter, numeric, logical, date, or memo. 

                       

Using t he ON . The ON command allows your program to branch to subprograms 

Command depending on whether the user presses the E.ec key or any other 
key, or if a dBASE III PLUS error has occurred. There are three 

        

.~ 

      

versions of ON: 

       

ON ESCAPE - tests for Exec key 
ON KEY - tests for any other key 
ON ERROR - tests for a dBASE error condition 

        

•.,~ t 
.- .~ 

'. i 

         

PROGRAMMING WITH dBASE III PLUS P9-12 

  

•.i 

          

. •;' .'. . ~~' ,. 
-.,~ 
' ~' '' .:,=- . 

      

.~. _ 
..~~~ 

           

.'.~ 
..Y 

      

;.;.. 

                                            

•\ 

                          

. ' ~ '+ ' 

                  

.. , •, 

            



    

y~ ~~ 

~`" ~ , 

-. 

  

- ;~. 

          

EVALUATING USER INPUT 

       

The ON ESCAPE command allows you to set up a way to handle 
the user's pressing the E.sc key while your program is running 
without ending the program prematurely: 

           

OM E$CAVE DO .Yarning A 

       

These three commands, like the INKEY() and READKEYQ  func-
tions, should be set up in continuous loops to evaluate keyboard 
input. If you put them at the beginning of the main program 
file, they'll be in effect throughout the program, or you can 
turn them off when they're no longer needed. To turn off ON 
ESCAPE, type ON ESCAPE without any other command on the 
line. 

                         

o .--~ 

                                

~~ . 

       

~. 

                 

PROGRAMMING WITH dBASE 111 PLUS P4-13 

     

' •• . 

                           

S 

       

~~ 

               

~ t 

                        



~!i~7W~`~~y~;~'~'~1~CnI. ~+Y. r~p̀ ~w~1~,~~}`Fbl~ i.f r ~°~ ~;'Y~YisM"2!'YS~~ F~~i,~~ 
~~~ ~G ~.s ~~'~~Iq~A L-̀w„~`' 

:, • _ter _ _._ ._. '. ._;~: - - _ ...~, _... ,.

~;

- . i~
'r..

~.~ . N;

F

~ ~S
•'t- '

_ i..

4: .?.'

Chapter 10

.,

WORKING WITH -THE DATABASE

..

~w • r~:

In addition to getting information from the user through screen
forms and prompts, your program will make use of data in
database files. It has to open, or USE, the database file, with its
related index files, and locate the correct records. These are the
topics of this chapter.

. .

In this chapter you'll learn:
• How to design a database
• How to establish the database file in USE for a program

What This
Chapter
Covers

i

• How to set up work areas and ALIASes
• How to set up multiple-field INDEXes
• How to change the master index file
• How to locate data in the database file

~, 'i .~ /.

• What the end-0f-file and beginning-0f-Hle conditions mean and

• how to work with them

i

• How to filter database information

Understand the essentials of dBASE programming, how to work
with field and memory variable types, and the basics of getting
user input.

Preparing for
This Chapter

The designing of a database significantly affects the design of a
corresponding program. dBASE III PLUS really shines when you
follow the relational pattern for building database files. You will
probably design several different, yet related, database files as
part of your database, along with corresponding index files.

Designing the
Database

.:~
. ~~

.. ~~ .~

~'

-~

~~.
c

-~,

-~.~

. ~ : ~,

.~
-.'~

.PROGRAMMING WITH dBASE Ilt PLUS P~a~

.- - :~ ::

~9i~

.
io

~ ~. '

,~

. t

2i

y' ~~~!'!r~ }3r~Y 1~~~__~~'~ii.P}}~'~~'~+"v i~≥ ~r ~~i~ ..~~~~~+°'t"~,+!~~,~'~:i'~.6 ~►t~``~~'^,s"~ 1,.~.~i0~,~.*~'~t.
^+.r f^~'`~

r. _ - . .
R'2'J,~'~4e~~~ gS ~~~e.s~

., c

:~e> • :~

C '

•

~

. `
-.

J.

. ~ ® ~

CHAPTER 10

.~
•z

TIP
One cardinal rule to follow when designing database file rela-
tionships is: don't overlap fields. Tlie relational concept works
best with one field as the bridge, the relation, between differ-
ent files. When you have superfluous fields in several data-
base files, you waste disk space and make the program run
more slowly.

Customer.dbf

~•

Name

Street

City

State

Zip

Order.dbf

Phone

Cust_no Cust no

Order date

Product

Amount

Cost

Ship_date

Salesperson

Figure 10-1 A relational database

~'

In this example, the Cust~o field is the key that relates, links,

two separate files.

Pta2 PROGRAMMING WITH dBASE III PLUS •

u.

~..--~

!':'

a r

.~

• ~ ~e~

~4t

~Es i. - .. • ..

~~ ..
. 'i

v•

4~ °~
~~lS'p_ `x~'~~`~oi~, 'Yi. J~r, e ~ ̀ _ •+n'~~ r,. ter' ~ *'

. • 1. , ~ -. • • •
. ..

`r

~ -

•,c

rF,

.. +;',

•~ : .

..~

-¢=~ ~•' ,

__ WORKING WITH THE DATABASE

c

Sometimes the programming project uses an existing database,
but you should consider restructuring the database if you feel
that you can improve the speed and efficiency of your program.
dBASE programs run very fast, but if the program uses a large
database, you may find that performance is slower when the pro-
gram has to access files on the disk.

To lessen disk access times for a large database, break the data-
base into smaller relational database files. For example, instead
of maintaining all personnel data in one database file, keep less
frequently used data in a file that is related to the main personnel
database file on a key field, such as employee number. The pro-
gram doesn't have to sift .through this information all the time
and runs faster because the main database file is smaller. The
relational model lets you isolate sensitive data in restricted-access
database files. For example, you may require passwords to iden-
tify authorized personnel. This is especially important if you are
using dBASE III PLUS on a local area network. See Networking
dBASE III PLUS for more information.

:-~
(•,

Depending on the size and complexity of your program, you can
open, or USE, a database file and: any related index files at the
beginning of the program, or wait until the program actually
needs the database file before putting it in USE. The checkbook
management system follows the latter course. There are five data-
base files USEd by the program: Checks.dbf, which is INDEXed
ON Chkno TO Chkno.ndx; Deposits.dbf; Recon.dbf; Bank.dbf; and
Tax.dbf. The program doesn't USE a database file until absolutely
necessary.

Opening the
Database File

•i

Keeping a file closed until absolutely necessary maintains the
integrity of the database file. If databases are left open, they can
be corrupted by power failures or by the user accidentally turn-
ing off or resetting the computer. Whenever possible, have the
program close files with the USE command as soon as it's
finished with them.

PROGRAMMING WITH dBASE 111 PLUS P~a3

~~
r^

.:;

,~

~,

 ~..

..

CHAPTER 10

If your program USES two or more database files that are related •
to each other on a field, you must open files in different work
areas with the SELECT command. For example, this module sets
up two work areas:..

:ra.w~.w: - ~+ I S..M, :{'4~is~µ.i ~ "'~r;::l~ .r+.s""re~+'^~ r~;~e ~Y
~SELECT'•1,~?t~=~'r-~'~''r'~rt~ ~,,...~' ~~~,~.; r .~~ r ,~ r ~ ,

~SiUSE~Aeco~nts,~INDEX>#ccts -.~„ ;+~,:~,+~~ ~ ~ rr+ ~-'i, ~;K~+~ 3i ~, t~.•'~
~ :SELECT 2 t~,~~~r~,.~<•~r t ~- ~~..:r~.~~ y_,, }~~ {_ ~' , ,...~-~.s,~,.+"~~ ',~~, +.t
~ ~USE Bel ance;tINDEX Bath ~-_ ~ f..~cc~:~~s°~t~..~' ,~

-~t..~
~.

~~ .. ~~~_

SELECT 1

USE Accounts INDEX Accts

SELECT 2

USE Balance INDEX Bal

3 2 1

Balance.dbf
Bal.ndx

Accounts.dbf
Accts.ndx

Figure 1a2 Work areas
'•_

However, note that since you have USEd the files, they are open
until you close them. Issue the USE command to close the cur-
rently SELECTed work area only, or the CLOSE DATABASES
command to close all work areas simultaneously.

In the next chapter, you'll learn how to manipulate field informa-
tion between work areas with the SET RELATION command.

.;

.!

t
i .~

PROGRAMMING WITH dBASE III PLUS

P10-4 .

• 3v...

_*

~_ ~.

vii ~s~.9,~t-~'S'';'1~;ti~Rt=.t?~ta_.rr~t1'~l~¢+q̀ '~(~p,f~~ti;i't~=-+~'S:'.?,'T~i:r~r ►̀.~'~r~_:tr,_•j '.+o~~i*v.:-•-.` ,wfr~.~~~rC:~;,,3;',:

1•

r ,,1

~) r

~f •.

:i~=~ ..•{

WORKING WITH THE DATABASE

r'

"~'. ,.:,

Another method for selecting database files is to establish •
ALIASes for the database filenames. Suppose you have a database

• file that you use continually throughout the program with a
ielated index file. You could establish an ALIAS as in the follow-
ing example:

Using ALIAS
Names .

:~x
~::::~;

. r-~

_:~:

1,. +M yqi _

.FUSE Aecoun~s~INDEX~Accts~ALiASrA~tsdue_;~~;~ ~_ a;.,,~*'

~.

-~:

Whenever you need this database file and its index in your pro-

.., j

gram, you can insert the command:

~~FSELEtT Acct sdue~

-3

i

.^

Depending on the name you use, an alias can make it clearer what
database file is in what work area. Once you establish an alias,
you must use it to refer to the database file until you close it.

. °'s

.--.~
,~ •,

=~

SELECT 1

USE. Accounts INDEX Accts ALIAS Accounts

: .r.
~r~
's..

..oY:
3

ACCOUNTS :. 2

. ,•:.~.

,:~_

• =;'
J.

Accounts.dbf
Accts.ndx

•.;

~~';

..

Flgure 10-3 ALIAS names

°•. ~; ~~

;.

:~~~

.}

-~.

~~~ 

        

WARNI11iG 
Don't use the single letters A through J for ALIAS names, 
because these letters also represent work areas 1 through 10, 
respectively. 

      

.: 

   

n1 

     

c~

{{

A 

..i: 

  

"r 

  

PROGRAMMING WITH dBASE 111 PLUS 

  

P10-5 

 

..: 
•_ •~.;, 

• 
. w }. . 

~~ 

    

'! ~ ~ 

yCT 
~'b 

      

O 

~i~ 

  

:. ._ 

                 



 

' `•' ̀ • -

 

. ~. 

                    

•_,~ . 

                            

CHAPTER 10 

                 

You can have multiple-field indexes if you want records to be 
arranged according to several fields. One popular example is a 
name-and-address database file, ,where the first and last names 
and middle initial are in separate fields. The database file is 
INDEXed ON the last name, firsf•name, and middle initial in that 
order. If several fields in the database file contain the same last 
name, dBASE III PLUS arranges, the records according to the first 
name. If there are duplicate last~and first names, dBASE III PLUS 
uses the middle initial to arrange, the records. 

 

Elaborate 
Indexes ' 

                                                  

To set up a multiple-field index file, set up an expression that 
shows the fields. Use the + operator to concatenate the fields. 
List the main field first and then:the other fields in the order that 
you want dBASE III PLUS to INDEX them: • 

                       

_i 

      

fy.~` ~ ~ ,+x+f ~tl .~j~..~F ,~ ~ t S~ 1 t4 i e ..nF •rr t< s+.~ 
@ E~a~e.R °jam` Yr.+.n,,~,~•~~F`'a.r~C'~ ~ '~ yit:.'~~„ xS~;''~'see~ ti-.1~+-~~r-''''xis' ~! 

~~INDEX~ON Last~*~F,irstt`+~`N~ddle TOFNa~e~n~..~'~,~.~x~-~ s'`~ 
~"~^i. •.~+a~  _,.•:•.l.:a ~73r..~a.':r',,.a~ '~.~~s'~:;v`t~*: :~c3,'i•~'. •.~R,f ,,~'&~  r,.,-•.s• ~S'~~E 7~ ~ ' 

' ~'.~. 

           

;~ i 

      

-~t• 

     

NOTE 

 

•~, 

 

dBASE III PLUS INDEXes in ascending order. 

    

:u 

     

;.-., . 
~; 

     

Here is another example. The database file Accounts.dbf is 
INDEXed ON Order date, a date field, and Client, a character 

- field. However, to get correct cliTonological order in the dates, 
you must use separate character string conversions of the year, 
month, and day portions of the_ dates: 

                           

f f USE ~Acc{~.Oullt$~ a~6~~iZiI~^a544}f' ~3a~,'~^r
~~~~:~.~+.v~/T' ~5+~ a~~~i • 

.,~:INDEX~OM ~STR(YEAR(Order"date)i)~:+, STR(NONTN(Order~ date),,2)..;
~~ `f <t ̀ STR(DAY (O~der,dateS~2)~'~:zCl~entv;TO Clientiri~~*~".~~*~,~~; ~•`

$... a'* , rya ~ - ;r.~~.~j. ~~'~~'"-. N - -: s~= ...~.-t l._. r'.°,̀ ~C.i ~5~as

f •~'
1

`J

You can have several index files'set up for one main database file
and call them all up when you.USE the database file. In this
example, the program opens three existing index files when it

Using Several
Index Files

. ;

. •~

•

USES Accounts.dbf: -:t ~., .

USE'`Ae o tsfINDEX~Aoountin;~Cli~ent~i~`n.~Peyin~r'~•~,~,.~,~ ,

~S

Y

.t
f

.~~~

PROGRAMMING WITH dBASE III PLUS
_~

• P10~6

..~i

•
J;

• •.~:
•Y.

~
y.

s'-.a~'r~,~~%`
y.:''`;v'~'Z"y"~ Y: is;~cr{"~~4,~r1"+rs~f~!~'~.,~3~rT"~ 1.~~".*,ii# ,, -•"'~'~~ ~ t AP 'per Y.~ •yiy ~i~Y+lwef+~f'~~e~.` i!~_ ~t_1A' yja '~~~~I~~y , iP,~ •-.re; Y ~1

. _. ... ~ -
•'tY„ ,.C'~~i. .,. +_fit .'~ ~~

• ••. - .•. •~~ .-.. M1 ,~
•~

'/' r`

~~ ,~ _ y'2~'i

i. ^f~•
,II

• :t~

. ~~ys

.- - •• 5~

~'
`•'

. .

- ~

•' -,1
~.1

.:.,

. •
•

;

WORKING WITH THE DATABASE

The first index file is the master index. The master index controls
the order in which dBASE III PLUS displays and accesses the
database file. However, all index files in USE will be updated by
the program whenever you update information in the main
database file. You can have seven open index files related to a

- single database file.

... •• • •~

• i

•• • • ,

Sometimes you'll want to change the order of the index files to
make another index the controlling one. For example, if you're
finished working with the Amount_due field and your program
has to update the Client field,' you may want to display the client
information on the screen. Because this information is INDEXed
by client name in the Clientin.ndx file, make that file the master
index.

• a

• '1

. .~~

i;i
:1

You can change the order of the index files currently in USE with

the SET ORDER command, which takes a numeric argument.

;. ,~SELECTrAecounts ~+.t~~~~.~~x~~'~-~~~~"'~ ~~~~~F{~} ..~,~=~~ `~~_ ~.:.t
~'~SET ORDER T0~2~~+r~"~~~,~..w'~'3.:.'x's ~ ~~`'~`a~~.,,,~~ ~~ ~``R~'"'~ti,s'„~1r-~;

tiryr,~~~~
~,r4'...r .tom+-'~~;,~',:°w.-.~.~-~«c y ~~e,~.~*~a-~ -~ +.. ,~..r3L. ~ ~~~~~ -~~A~.a-,dr tea. ~ J ' rY ' .,

i

.~

.)

i

The above module makes the second index, Clientin.ndx, the con-
trolling one. You can use SET ORDER TO 0 to make the file
appear in its unINDEXed order while index files are still open.

.~ a
•~

If you want to open another index file that is not currently in

USE, use the SET INDEX command:

~~SEIECT~Accounts ~~~,,~r~; „~„x~~ ~,_~.,~~, "' ~~~ j ~~;
~«;SET ;INDEX~TO,{Sales~n~~t

•~
'~~ ``~.§,, t~~~~~~r~. dry `'„-. ~r ~~+

+~.~':T'~t~ (qf•. !tea SL̀H., .' ~.~3~ ~ ~~r. 4:iY~Kk }J."'~L ~4'Nut1

,;

Unless you specify the index files already in USE when you SET
another index, you'll have to repeat the entire list, because SET
.INDEX establishes the entire index list:

~~SEIECT~Accounts,,~' ~_ `~~•~ ̀ a~t,.~,~.,u~~`~~ ~I~~'~`~ ~~*"~
l^~~SET,:{INDEXuTO:Salesin~Clentie; Aaountin,,~►syin j ,~~ ̀ ~~,~~~'~ a,
~~~~ ~•~ L̀"i;ai~:.„•1~Otaaz~ s srlb_r..,.e]fEt.}'+~e'~ -~:~'E +.'~v`: frj.Yv: ~F~~rst" '~ '~s" :~".~ti'^'J  ~'•, 

  

i 

    

To close all index files but leave the database file in USE, type 

   

CLOSE INDEX or SET INDEX TO with no filename after it. 

  

• '~ 

                             

PROGRAMMING WITH dBASE III PLUS P~ a~ 

:. . ~~ 

 

• ~: 

    

.:~ 

         

• -.~ , . 

  

'a 

                 

• .•;.1 ~. 

                                          

~. 

                                



.e, .fie-. 
. w,.. :•,s ~ _ ~. .:tea--,.a '• , 

• 

          

t 

   

CHAPTER 10 

       

~~1 

                       

TIP 
Set up all the index files that you need once and then change 
the order with the SET ORDER command whenever neces-
sary. Look in Using dBASE 111 PLUS for more about multiple 
index files. 

                                      

The program should take complete control of the database and 
related files it USES. Whenever possible, set up these files when 
you design the program. However, occasionally the program 
won't know the name of a file in advance. It requests a filename 
from the user and checks whether such a file exists on the disk. 
dBASE III PLUS has functions that help the program to control 
disk space and directories. You'll learn about them in Chapter 13. 

Disk File 
Management 

   

~~ 

       

(~' 

           

Most dBASE programs use either GOTO or one of the search com-
mands, LOCATE, FIND, or SEEK, to isolate a record needed by 
the program. Which method you use depends on the way you've 
designed your program. 

    

Finding 
Records 

                       

The program may ask the user for a specific record number and 
then instruct dBASE III PLUS to GOTO this number. More often, 
however, the user won't know the record number and your pro- 
gram must find the record. Once the program isolates the correct 
record, it can display the record on the screen using either 
®...SAY commands, if you've developed your own screen forms, 
or ?, DISPLAY, or LIST. 

                            

To find a record, your program ascertains what data the user 
needs from the database file. Then, it isolates the data. For exam-
ple, if the user wants to look at all records in which the last name 
field contains the name Smith, the program isolates these 
records, if they exist: 

            

~\~ 

•.::.r 

                     

e 

                                  

P10-S PROGRAMMING WITH dBASE III PLUS 

          

. ::;:: 
. ~ ~: 

 

.~ 

a. 

"t 

                

.. -k. 

               

,~ 

.t' 
. • . =. . 

           

.~ 

                                                   



~.    
e  ~~~ <) 

  
.L ~.i, 

=z 1d ._ 
    

r. , ~ ~ ~-_ ,.i 

i•~ l . 

   
., i 

s' 

~.~ 

t .:.::~; .~ ~,,. 

     

~~~ ; 


.

t

WORKING WITH THE DATABASE

PROGRAMMING WITH dBASE III PLUS P1a9

°~

There are three commands to search for information: LOCATE,
FIND, and SEEK. A fourth command, CONTINUE, works with
LOCATE. These three commands and the t,OTO command move
the record pointer through the file and stop at the very first
record that fits the stipulated condition. However, there are ways
to repeat the procedure for any other records that meet the same
condition. The record pointer stay's at this record until the pro-
gram isolates another record.

When working with large database files, be sure to use a related
index file, because then dBASE III PLUS can search through the
database file very quickly. The FIND and SEEK commands only
work with INDEXed files. '

LOCATE and
CONTINUE

LOCATE works with any database file, INDEXed or not, but it is
the slowest of the three search commands. The LOCATE com-
mand also must include a condition. For example, the Clrcash.prg
looks for a withdrawal number equal to a control number.

IOCATE FOR'Nu~~ith=tnt~

LOCATE is most useful when you are looking for a record that
fits a specific condition. In the example below, from Clydep.prg,
the program searches for outstanding deposits in the Bank.dbf
file. It isolates those records that contain an amount over 0 in the
Num field and .F. in the Clear field:

` LOCATE FOR Nu■ > 0 .AND. .NOT. Clear

Once the program has LOCATEd a record, you can use the
CONTINUE command to locate the next record, if any, that fits
the same condition. CONTINUE only works with LOCATE. It
starts at the previous record number found with the LOCATE
command and continues the search.

I
---- - - ~

~,~.
±, fi-

~e

~r ~
., . ,

Fff~~R e'tr ~.~ ~~" y,~~-'Ma'~i2'~$Zi: +.e;~7.t :S" r +~t,~~~n:e ~~+v. _.~ v,sa,:4~•,'- __ ~E~C+
N. r ~ „ s ~ '~

~ . • .S ~ .q

.. ". . .. _ .~ . ~ - •~ a '~ '~~f'- i
. n- - ._. a ., .. ~._. :a:.. _.-.. -.: L.S.Q.-;', ,.. 'i ~. ~.. -~ ~~h^ _ .'

i

:Y: w' . i,~'
e r~

,e.

CHAPTER 10

...;,
`•~~_ .

NOTE
You can set up a separate LOCATE command for each work
area, but be careful that you know which is the currently
SELECTed work area when you use CONTINUE.

FIND and SEEK work in a similar manner but much more
quickly than LOCATE. However, you should exercise care when
using them; because they only function properly under the follow-
ing conditions:

FIND and
SEEK

.~

• The database file must be INDEXed on the field that you are

(I

•

FINDing or SEEKing.

• No matter where the record pointer is, FIND and SEEK
always begin at the TOP of the database file and locate the

_ first applicable record only. `

• There is no continuation command, like CONTINUE, that

works with FIND and SEEK.

• FIND and SEEK will match any string to be found, starting at
the first character and continuing only for the length of the
string. dBASE III PLUS stops at the first record that contains
the string, which may not be the string you want. For exam-
ple, you want to find the name Smith, but. FIND positions the
record pointer to a record containing the name Smithe. You
can remedy this situation with SET EXACT, discussed below.

Think of FIND as a subset of SEEK, a more powerful and versa-
tile command. FIND can only locate a character string which
doesn't have to be delimited with quotes, or numbers. SEEK can
evaluate an expression and locate its result. The values of this
expression can be character, date, or numeric. If you're using
SEEK to locate a string, remember to delimit the string. Here are
some examples:

P~o-io PROGRAMMING WITH dBASE III PLUS

.
~.~ -4.

~ .-. '

' !,e

y~ '

a ~~.

'~d ~

• ~} ..

..,I
. ~

'~ i ,~

1

~' c

• •• l

'
. P

'~ .

i

~`~`''iyT~"~i~'+ii`~'~ST~' ~'se~"i~i~i.",~~'SC;''~~`J~ ~`~ s~I~S'r*-~r ~~,~ ~'`-'_-',~~s~~ tw?=j, vi,''~`•~+s~.'+.N+a,, ~~-ti3 ~:.,;-''

. ~ ~ 4
..

,~ ♦ ~',
~o • ~.

_ ,.

'
' -

. .

• M~4.~

WORKING WITH THE DATABASE

* o find:a character: trin9:
-FINO 'S~ith. ~ LL,~
* the sear es: •:

. ..„

'' : s
SEEK "Smith" ,

~; ~~* t~o~~find an~ mount:
`SEEK 124:50~~

~~~* to find a~~~date: 

             

~" SEEK- CTOOI'09./1,2/86') 

    

You can use both FIND and SEEK with memory variables 
directly by ST0REing the user's input into a memory variable 
and then using this variable in FIND and SEEK commands, but 
you must use macro substitution with FIND. 

        

INPUT °that is'the, custo■e~'s, code ~nu■be~?"'! TO`eeode. . 
FIND 8ccode - ~ ; 

     

t 
'.SEEK ccode 

           

Here is an example of a program module using FIND: 

     

SET TALK OFF 

    

CLEAR 
* Request lest name fro■ user 

~ ■ last = SPACE(20) ' 
a 10,10 Say "Enter the lest ne■e:" 
if 10,31 6ET ■_lest PICTURE "iA"' 
READ 
* Remove leading end trailing blanks' 
STORE LTRIN(TRIN(~ lest)) TO•■ last 

~ * Open d~tgbese fire yhich'is ~MDEXed on •the lasf nape ;field._ 
USE Na■es•INOEX Lest ~ '• 
*•Find it 
FINO i■ lest . 
* Display certain•fields in the record 
CLEAR -

 

D 1,10 SAY TRIN(First) + " " + TRIN~Last) 
' D 3,10 SAY Street ' 

a 5,10 SAy TRINECity) + ", " + State'+•" '! + "Zi;p 
'SET TAIK ON 
RELEASE ■_last• 
RETURN ' ~ -, 

            

`; 

            

T 

        

i ~ ~~ 

                

PROGRAMMING WITH dBASE 111 PLUS P10-11 

               

r. 
r 

'•;" 
+ 

                                           

+. 
. 

 

t 

                                  



              

•••. 

. = ~_ . 

                    

CHAPTER 10 

     

c 

   

There is a major fault with this module: it doesn't consider the 
possibility that there is no last name that matches what the user 
types in. When there is no record found, the record pointer is at 
the end of the file. You'll see how to deal with this below. 

                            

-You can use -FIND and SEEK together with a DO WHII:E loop 

 

FIND.and 
SEEK•Save 
Time 

• to find similar records.. This method is like using LOCATE and • 
. CONTINUE. The trick is .to position the record~pointer at the first 

record with FIND or-SEEK. This is a^much faster method than 
LOCATE. Then use a loop. to show all similar records. For exam= 
ple, ~if the user wants all records with the last name of Smith, you 
could change the previous example to: ~ - 

            

., •,.. 

     

• ~ 

                

~.. ~- - .. 

. .. , 

r-- -
~z~`~~. 

 

--_ 

  

-:_~ 
~~ t;~~ 

~~=~~e: 

   

a ~w~~~ 

 

,., ,} ~ ,~ 

          

f n;, ij '~ b 

   

'~+.. ~~ 

  

P 

~ ~ y: ~ t't `y. ~e 

a y ~ . 

                         

.ti 

                  

e •• 

                                    

'! 

    

,•: 

  

z' ~+ 

  

{:.•• •~ 

     

fi 

   

^; ~: ~ ~' 

       

.I 

  

j 

  

'~ 

• ~. 

                                     

PROGRAMMING WITH dBASE III PLUS 

  

P10.12 

 

.:.. : ~„ .,~ 

              

• •-7 ~ . '•.f. . ~. 1. 

•}"•~ ~ . 

r r c. 

 

•• 
V•~ 

~''~. .:J .~'.4 0 

  

• M1y~i 
.. 

_ 
~ e 

- u ~ ®fit •"!. 

• . ... ~:~ 
..9~ ~ .. ti 

J .. ~ ,. 

                               



~1I~~i,~~•; ~~Y;i!'1Gfv7~~~ r~`iS Sw~','~~ ~+;~~{~ itx~►̂je~j'~:~"~'C~4~.'i~-,~~?,9,-A: Ni ~. :~!a.#eC ~fy, •''r~:y,; '~S~-~('~S~~M"ih,Tpv~V~ r{ r.~~~~"a,~.a~ 
' r•► ~ ~s~~j~~:P' .i. ~ 

. 
~~t' - ~ ter: Nr: ~ . si, - .. - . •a?1v,. ~'r"`y' A- •.'+~t"~I ~,.~~ 

'' ~. ~' 

  

• ••" ~~ 
- ~'r~ r si w~ 

.. 

, 

:.~ ~~ 

'-n~ 

.. .~ 

.•~" ~ •'~ 

 

.•_fit -~ 

, 

   

~.,, 

      

~ 1 

  

a 

 

WORKING WITH THE DATABASE 

 

\. 

., 

•+:' 

   

. ~~ENooo~~. ~ ~~~~;~~~;~~ : ~-; 
~SET~~TALK ON~~~~ ~r 

;,,RELEASE ~ test ' " 
~a~~~t 

~ RETURN ~,{ ,~~~~~~~ ^^ 

  

'r`3 

    

„-[.~.•.•. 
'~t .*s1".' ,, ~1~ h'v ~r.' 

  

~. :fin 

 

This program uses relative addressing to display information on 
the screen. The scrolling doesn't stop when the entire screen dis-
play is filled up with database information. An error message will 
occur when it tries to DISPLAY on row 25. So, you must add a 
counter in the program to make sure that the display doesn't 
reach row 25. See the Listnames.prg module in the next chapter 
for a way to handle this situation. "-

    

- ..~ 

    

• ~ .~~ 

         

.,:~ 

~S: 

• ~ r~. 

' :~' 

   

_" 

        

The 
End~f--File 
Condition 

Whenever you use GOTO or one of the search commands, 
dBASE III PLUS positions the record pointer at the specified 
record. Because the record pointer is at an existing record, the 
end-of- file condition is false, .F. 

        

. • ,~ 
''-

 

,► 
O ~~ 

:''r 
''~: 

~_~~. 
.•~, 

 

However, if the program tries to GOTO a record number that is 
higher than the last record in the file, or if LOCATE, FIND, or 
SEEK can't come up with a record that matches the condition, 
the record pointer reaches the end of the file. dBASE III PLUS 
then automatically sets the end-of--file condition to true, .T. 

   

• 

                  

NOTE 
The last record in the database file, that is, the BOTTOM of 
the database, is not~the end-0f-file. The end~f-file is directly 
after the last record. Similarly, the beginning-of--file, dis-
cussed below, is immediately before the first record. The ' 
terms TOP and BOTTOM do not refer to the beginning or the 
end-0f--file conditions but rather to the first and last records, 
respectively, in the database file. 

     

.•:~ 

  

~~ 

 

• ~. r~ 
.. • ~;.. 

   

rr~ .. ~, . 

•s~ w 

. '~i'l, 

      

:rte, 
:~, . ,}, 

• ' 
. ..,t. 

               

Your program must work with this end-of-file condition, and 
dBASE III PLUS provides you with a special function, EOF(). 

   

,~,. 
~4~ 
:~!'~ 

   

EOF() always returns a logical value, either true or false, depend- . • ....;~, 
ing on where the record pointer is. '`:~.~t 

. , _ ~,. 

   

~`=~' 

. ~ w;: 
.'~~. 

 

.r.. 

PROGRAMMING WITH dBASE 111 PLUS 

 

•'si„ 

.: ~1' 

  

}. 

  

- .. ~ ^z~i 

        

. , - ,. 

1.• ..... 

   

, .. 

         



c a 
~.y .~ l:C '~: 

f'., 

 

.~. 
a 

_ .. ~ yr. .. - 

',d~. 

F 
 

_ _ •~ ~ 

    

~y 
•R 

                

' 
_ 

~.1 
• 

                        

.) 

        

CHAPTER 10 

               

~-~~,~~ 60~ BOT~T,ON ~~~~Q"~, 4~ .~~~ •~ a~ '~~~,~ ~3~~,r `"~ ~}« '~gG 
~~4~~ 

's~yr~$'~E~f{/ ~"~r~.~'+,4 r 3~ '~ Tr ., ~, Kp~ .f 1 ~. j,r fr-' 
s~4tit i~ ~-S'~ 1 v~4h "~i~~f~"~~`~~~'?~ ~~~~~~'+~~e~,:'~}~~,t ~~.x++u°~> 2fi.r'~4~.o~er✓ 

 

. 
.f 

° ~ ~ 

        

if .4~yy~. a i' '5.-99' ~ "m~ ~ .r ~'i' ~ t ~ E, ~ ,~iaT`~ 'T~ 
- , ~ s~ ~ c ... j-a."~, ~w's~.$ -,' 3, +"~"~ rK;r •;~;~'?t'°4 ~?r..~0ffi~,,,.~aait 2v*' 

.~ T ~ ~ -~-~ A. ~r  ~, ,-- ~..., mar .~~. ~'~ '- '.rcrFx3~r~;tA~e~~~ys~•a~1~~~~:-~& r.-~` 3̀ r .'~^•.~''~'~=~s~.~-.~a:s..a,~~.~~.~ wr~S~'~rs. 

       

- ~ 

  

,~ 

 

• , 

          

•~. 

- .• ' ,. 

. ~. ~• 

~~ 

 

Whenever-you use either SKIP, LOCATE, FIND, or SEEK to move 

  

~~ _ .~ 

 

the record pointer, you should make sure that your program tests 
• for the end-of-file condition: Here is the original FIND example 
rewritten to include this test. Note the use of the DO 

. WHILE...ENDD0 construction. 

             

,~~:. ~~~~ ~~'~~ * 3 .~ :~~~~ Q 
uSET TALK~OFF~~"= ~ a~ ~. -

 

~3~*~.Requesttlest~na■e~~f~oo user~~ .. 
~~ ~=~lest~ PACE(20)~~~~~~•~~~~"aY~`yti~+"c 
-~ a~1010s SAY3~Enterthe'las~ nae~'.',y~~~;~ 
''"'~a3 10~31~'~6ET'■~'-le"st"P'I'CTURE`' RA":~'~'-=ads 

   

:~ 

        

•.~i 

                          

READ 

  

. L ,,; 

 

.~; 

   

* Re■ove leading end trei ling blanks ~~r>~t~~~ a ~~ ' •~,3 ~~~~ 
STORE LTRIM(TRIM(■ lest)) TO ■ lest ''• ~~~4~~ ~~-~~~•~~~~~ 
* Open database fife rhieA is IMDEXed o"n~'~~the~l~asf~'neie~f:,ie► 'd 
USE Nees INDEX lest ~, r,~~;t~`~~-~,~~~;~`~~~~ 
* Find it w 
FIRO j• lest ~,;~ ~~~, ~~x`'~'`~ ` ~'„~ "` 

* End-off-filet `°~~ ~ ~~ ~~~~~ ~x 
r ~. ~~~~x 

CLEAR k ~'' ~~~~wq ~~s~'~~! 
si 10,1 SA1 "Sorry, there is no"~+~~~,p>~l~asta+~,;,-~~,~~,_~N w~,s 
" in the database file." ~~ `~~" 

          

• ,.₹. :,.... f . 

 

a 

   

• _ 
~ ~' . 

~. '' 

         

:. ~ .~ 

    

it 13.0 ~ ~q ~"~~~~ €= ~`~ '`~~` '~;~~~ 
YAIT ~~~~~~~ ~

x~

n 

CLEAR 9~ ~ie'~1~~ ''n%~`,-iY.4""~~.e ~~.^yrfi*''~"`~u, 

~t. ~ "tt~hF:~ Ott! v tea. ~~ ~i~y&~~b~~ a~~.xF're~rr~P~y'~~i~~ 

~~~~~* S'et~;Yp~f~i 8,1'OY~}O~~S~~ ~~QII~Pd1SQ~l'8y~,~.''~~~~,~~~,w LFt', ,1"~~~~~ ~r~R~r 


;'"

;~

• `~ ~ ~ • . l

.~~- •~ ~~
. •.. .~ . 6

...... i

.. • ::

. a~ PROGRAMMING WITH 'dBASE III PLUS P~o-~a .

:,
- -~

'.Y, ..
-

-~ .:ti .

rt -
b

• wed

'••
.. •• . {.

~•~

•~' ..

~~

f' ..

.. 'a ~. _

•
~~~ 

       

'' - ~ 

            



. n.~ '~j. ?~±'? j.. f'-'3Y~jr~I~~~~t~;tf~"~1'f i~ Pts?t: ~l.:~vk+~ ~ t~'-.c y..I~ ~iM'a ~; is "~ • 
e,.r"".ci!r .i2¢" .L:~.arS.~. '`~~J~ ~~"tt~ 1`~ r 'C,~+?K"~~ t 'f +'~_''~-.~' +t't°r~~ '~ y'F s ~ .. ~, ~ titre ,tom ~ ~i 

r ~.+-. ~ :'"~}. ~ #•,~•~.~ . .a. i , 'f 

1{ I ~ . 
~ .. 

T 
•• i-

   

t 

 

- ~`i..' a ,~-~ : ~.~ 

 

rti 

  

• ~ ~ ..: ~ . 

  

WORKING WITH THE DATABASE 

 

i 

  

• Slior inforretion on. three rocs 
a ~t10 SAY TRIN(Firs3) t " !'~+ TRIN(Ust) 
a r+1,10 SAY _Street. 
it r+2110 SAY TRIN(6ity) + "~ " + State + " " + tip 
* Add blink roc 

* Skip to next record that fits the condition 
SKIP 
* incre~~ent roc for next record 
r=r +i 
* loop back' ' 
END00 • 

ENOIF ' 
USE ' 
SET TALK ON 
RELEASE ALL - 
RETURN 

    

.~ 

c" ':~ '-';:*;*dam 

   

t 

i 

4 

   

i 

                        

1 

  

.~ 

  

There are two points in the the module where the program must 
test for the end-of-file condition: 

• When the program attempts to FIND the last name 

In the DO WHILE loop when the program SKIPs to the next 
record 

      

t 

      

Similar to the EOFQ function is the BOFQ function, which returns 
the logical value .T. if the record pointer is at the beginning of the 
file. Use this function in the same way as you use the EOFQ  func-
tion. Use BOFQ when the record pointer SKIPs backward and you 
want the program to test when or if the record pointer has 
reached the very beginning of the file. 

Other File 
Functions 

                      

USE NAMES 

        

~ ; ? BECMO!) 
1 

~ i BOF!) 
~ .F. 
a . sxrv -t 

Record No. f 
. ? BOFII ~` ' 
.T. 

                                

PROGRAMMING WITH dBASE 111 PLUS P~a~S 

     

~~ 

           

aq 

r` 

                                     

1 

                                       

r 

           



         

... ,,., 
.. - :. _ 

~` 
.. :~ 

 

• 

               

CHAPTER 10 

           

You can also use the RECNOQ function to return the current 
record number, for instance, to STORE it in a memory variable so ' 
that you can GOTO it later: ' 

                        

' 
.. 

y 

   

.a ~~ 

_. ,FINDx6ellest 
~.~_.. 
tT.'rL 

 

~a 
IFyNOT.§ EOF.t)a~~¢̀~ 

~~~STORE yRECNO() hto~record~,~ -~ ~~~a} ,~ ~ ., , xENDIF.'~ ,~xr~+5~,r a ~ ~ ~~ '~' n ~~.. K. ~e`~,:,.~,,.-+,r~'~c~' 
~.. f-...+~~``~3~~a~+~ +~C~_..e~ 'tf~'+f~r'~'. ~,~tl~w~e 4Y~~y;~y"~~'~s"~ ~'.i'~`rW

t

LOCATE, FIND, and SEEK all work with the end-0f--file condition.
In the above examples, the program is looking for specific data
and locates a record which contains the data. If no record exists,
the end-of-file condition is set to true, and the program returns an
appropriate message.

Sometimes, however, all you'll need to know is whether there is a
match or not. For example, in the Check.prg, the following section
of code checks for duplicate check numbers: '

,r-~ .
(• '.~,

~'"t~r to 4:~' - i7.v.'i~aYC=~~ 3 ~ `E ~1~~'t lr .e * -~C " '~'x~
f '•~SEEKa~chkllo,"''A~f~„a+..~,~~y.~ ''~ 4 r

~
mt~~,~,.~`~ :~'',,~~'"`'°"".~C~,a.r'"~+`.

~' 1'v3
r... .spf ~.[r+~iey S~^' +i +?7r,̂p~ , `1..+Y ~'~ Fr -C i

4
ti~

1,+~
~Yi;~~~

~; IF.gFOUNDt)~`t Y~f1►!,s'' ~`
~,̀^'4` ,

,r w~'~""~f ~, ..-'`'~ ,~,t
w'~`b.s ~s ~_,, , ~ y. '~' t a ~A'~ ~w~ as ̂ T - .~ pia

8 18,15•.SAY "Cheek;~nueber~alreedy~;ex~sts~ Please reenter "
ELSE ~ ra- ,. ̀ ~ ~ ~

•~:~''~ ~ r ~~ ,,, ,.a~.._ ~ ; 3 ~
.'EXIT

x~~~~ ~~ H a ~.'F.`K~ LAS 4'- .iw Y ~._~ LL r -rr .. a~. it .~
'w Y• t "~~5.~' s~~{Y,. c ~ ~ '.~-a ~ ~r ~ r}~ ri.~ ~. ~%i,y} r vX t~: i:.s ~,..~

~;yy

~

-.ENDIF '' > r~̂ F'-""" "Y tr~.~'3~'~'~~'.riM~i~'~~s ~t ^J.t,'}^r`i ~r}.'~ j~-;
~~.7 i r ~ ~z~'',_.~"Z'~'" ~;.rk ~ -, ~~5~'i.~;:Ky'S z.. ?rs.. `~ ~~ •.aw;s ~`u ~t ~' *-. tr, a.

t~~.:.aa..+zw=

When the program SEEKS the check number, mchkno, it only
needs to know whether another check with that number already
exists. It uses the FOUND() function, which returns a logical
value, true or false, depending on whether the record pointer
stops at a record or not. In this example, if FOUND() is true, the
program advises the user to enter another check number. It
doesn't matter what record contains the check number, only that
there is an exact match. _

.~

Filtering
Commands

There are several commands that are useful filters for informa-
tion in database fields. Programmers use these filters with such
commands as LOCATE or FIND to bypass unnecessary data.
These filtering commands are SET FILTER, SET DELETED, SET
EXACT, and SET UNIQUE.

r,.--..,

! ;'

.~

..
..- ~

.i

.~

P1Q16 PROGRAMMING WITH dBASE 111 PLUS

'.t

. a.

r. - -

.• 1..f. .~s .

1

''~

'`L

i

WORKING WITH THE DATABASE

SET FILTER makes the database file appear to dBASE III PLUS
as if it contained only CA in the State field. The filter can also be
a more complicated expression:

SET FILTER TO "CA" t-State :ANO. Zip < "91400"

' - ~ SET FILTER If your program USEs a very large address database file, and all
you want are listings for California, you can have
dBASE III PLUS filter out all other states from the State field
when looking for records:

SET FILTER TO "CA'! = State

.~
s

.,

~~

1 ~

P1a» PROGRAMMING WITH dBASE III PLUS

If you want to SET FILTER TO a datg, you must convert a charac-
ter string to a date:

* Filter only those records added after ,lanua~y 1. 1986 , ?
* Add date is.a date fietd in the database file ~ .

~, SET FILTER TO Add date > tTOD(~01/01/86'). ~ '

The database file is not smaller when you use SET FILTER TO, so
it still takes dBASE III PLUS the same amount of time to scan the
entire file. Because it may affect the working of your program
later, make sure that you remove the filter with SET FILTER TO
without a condition after you're finished with this command.

TIP
It's a good idea to GOTO the TOP of the database file after
you SET FILTER and before you start~another operation,
such as SORT or SUM. I~owever, the INDEX command
indexes all records in the file, whether or not they meet the
filter condition.


~~~ ~~~r~ ~kx~'~~F~~~~~' riS '~~~; ~ vt~ ~~.s *:.-~,ysy`:~,'' j ''~V'~'~r?~~Gi~^''%~~'~'{%.~-'s~~~,~'t n~'~`!'.E.ii 7s►~+i"'g3''~• ~~pl~~, i . •,.~~ 
     

• ~ ~ 

.. ; 

 

• 

 

L "i y.•- - 

        

- CHAPTER 10 

      

^•~ :1 

               

If you want to exclude records already slated for deletion in a 
FIND, LIST, SEEK, or DISPLAY operation, you can use the SET. 
DELETED ON .command. This command, normally OFF, filters 
out the deleted records. Another way to do the same thing would 
be: 

 

Skipping 
Deleted 
Records 

                             

s ~` SET~fIITER~T0~.M0.T.~DEIETEDO~`. a~~~4~~;~''~;',,;~ ~',,,~ ~ `' ~`~"•.' 
~:Z+`.. -.a a4., '.K •w✓a.'~= ~i~i~'y'i,r _. ♦ -- .I,y.' • ~p `~ •.x'},s~.rC~ 

            

The SET DELETED ON command is also helpful when you are 
using the COPY TO command to copy only current and active 
records to a new database file, or the APPEND FROM command 
to copy in records from another database file. Note that with 
APPEND FROM, SET DELETED ON is not equivalent to SET FILr 
TER TO .NOT. DELETED(). Filters only apply to the active data-

                                   

base file while SET DELETED refers to the entire dBASE operat-

     

ing environment. 

                    

.~ 

Use SET EXACT ON to ensure that a comparison between two 
character strings is done exactly, character for character. Nor-
many in comparisons, dBASE III PLUS starts on the left and does 
a character by character comparison until the character string on 
the right side of the operator runs-out of characters. If all charac-
ters up to that point are the same, the strings are equal. Other-
wise, they are not. So, the following commands: 

   

Checking for 
Exactness 

                           

'« ' 
x;~STORE~y123"~TO

~,K}~ 
~~?~~ ~ :`~` Y~`'i~'"`+~^~ ~~~ ~ti 

'r~.STORE4=12315;~,TO~,nu~be~2►~ ~~~~`w~` ~~'~~~^}`t ̀+'~I~i~'`'"~~" 
`~;T ~nu~be~2~~~nu~tie~1~e

'
1}

:~~~.~r.~
y

~̀ ~..
~~,-,~a~,~~~~•~~w~~~;,,~~ +q 

~..•'./ .e .r...,~3~•=.:+~a~tw`~D~.i•k6i'~`i~•a,~„~ib'~'F~~.d~.:.1.-~n~ef S:w~-,~.~,»X 

               

. • '~ 

   

would be evaluated by dBASE III PLUS as being .T., true, 
although as far as you're concerned, it's false. 

          

If you ~ SET EXACT ON, however, dBASE III PLUS compares the 
strings exactly, and the answer to the above query is .F. Similarly, 
if you want your program to search for information that matches 
what the user types exactly, then you should SET EXACT ON 

                

~`~~ 
~~ ~ 

       

immediately before the operation. 

                                           

p1Q-18 PROGRAMMING WITH dBASE 111 PLUS 

           

•wi 

      

- . . .' 
. 

                                                    

. • '\ 

                                                         



;`~-``t. t`i3i4'zbi.w.. ~. ~`tr-•µ`,iV'`~~~~,:~y ;Y'~,~~~cf~~7~'~~, ~'.".`~i.,w,"~`_ ".:: ~i*~,L ~~9` 

e 
.. .. a .. e'.. , . ~.. : ~. ... ~ . 

~" 

3 ~ 'E`1'+«" yi.J~~,~q~~~'YH~~'Fc -9 t'~°"7~w •s ~zs,si• :zr~J~ 
  

.r 
~Ii ' 

     

'.S. 

      

a. i~ 

     

.¢ 
%-

 

R; 

              

WORKING WITH THE DATABASE 

             

WARNING 
dBASE III PLUS finds exact matches of character strings only 
with SET EXACT ON. Make sure that you SET EXACT OFF 
as soon as you are finished with it to prevent this command 
from interfering with the rest of the program. 

                          

A database file may contain records with duplicate information in 
a field. If you prefer not to see duplicate information in a field, 
first SET UNIQUE ON, then create an index file using that field 
as the key field. With SET UNIQUE ON, dBASE III PLUS includes 
only the first record with the key information in the index file. 
Then when you use APPEND, BROWSE, CHANGE, DISPLAY, 
EDIT, LIST, or REPLACE, you will not see records with duplicate 
information in the key field because they are not part of the index 
file. 

Avoiding 
Duplicates 

                       

,~, 
1 

            

In addition, that index file will always be updated as a unique 
index file. However, make sure that you SET UNIQUE OFF before 
creating any index files that are to include all records. 

                                                 

f~ 
~.o 

                           

PROGRAMMING WITH dBASE III PLUS P~a~9 

           

_ ~._ _ 

          

..,~.-

               

..~.. 
° :;; 

       

.P 

       

.\ 

                                     

. S 

                               



`"i ~ t~ 
                                  

V. 

        

CHAPTER 10 

            

• . usE Ma..: 
LIST 

Racordt .FIRST 
1 ieorpe 
2 iihvan 
3 Sup 
4 *Jan 

- `~ S 'John 
6 Nel~nie 
7 Melanie 

       

_..:,~.,~..r , 
STATE ~•IIP ,{~:.:-._ 
RT .,10301;`' 
to :'91405'' . 
Rr ~=_i46os • 
RO . '~7T632 
YA ,•.4/021 •  .~-

 

CA =: ~~".90027 

  

' ' tiTT . 
Yightorn 
San"Freneieco 
Rochester 

...~Soufh. Fork 
' -' Siatle :~ 

Los Angeles 
Los Angeles 

STREET 
404 Main Street 
33 ioarY Street 
125 Yest Avenue 

• 303 14th. SfrA~t.,~!~RE. 
4102 Loi'Fil"i: tlvd 
4102 .Los •Feltz .Olvd: 

LAST 
Jones 
Saith 
S~ith 
W lter 
S~ithe' 
TAo~a: 
Tho~es 

               

CA :9,0027- ,~ 
~.~~~ ,~ 

 

. SET iIITER TO State S 'CA' 
tiST 

R~eordt FIRST IAST 
2 Steven Seith 
6 Melanie Thoees 
7 N~lanie Tho~aa 

     

STATE ~~21~4~, 
CA ~ ~ :,9105 
CA .:.' 90027 

 

CITT 
San Francisco 
Los Angeles 
Los Angeles 

STREET 
33 leery Sheet • 
4102 Los Feltz tlvd. 
4102 tot Felis~Slvd. 

   

. - ~=;~: 

STATE:?~2IP = ~ . 

RT `:~y14605' :' 
`YA ~'9l021:" 
CA : 90027 
to 90027 

 

• ~ ::~. -. 
{, ;~ _. 

STREET. ~~~' •`• 
404 Nain ;Street ~• ` 

12S Yest Avenue ' :' 
303 14th Sheet,°R.E. 
4102 Los F~li: Olvd. 
4102 Los Fel,i Otyd. 

 

. SET FILTER 'TO 

. SET DELETED ON 
. LIST -

 

Reeordt 

   

:~ ; _ 

     

CITE 
. ,.. 

•: NiSAto~e 
"`~ Sin ~'F,.~inN sco 

Rochester ' 
Seittle:~. 
Los Angeles 
Los Angeles 

 

FIRST 
ieorpe 
Steven 

3 Sue 
S John 
6 Melanie 
t Melanie 

IAST 
Jones 
SeitA 
Seith 
Saithe 
Thoeas 
Thoeas 

 

'1 
2 

           

. SET DELETED OFf 

. NET URIgUE ON 

. INDEX ON Last TO lastn~~e 

         

S reeorda indexed 
LIST 

Recordt FIRST LAST 
'1 ieorpe Jones 
2 Steven Saith 
S John Seithe 
6 Nelanie TAoea: 
4 ~Jeen Yalker 

 

' vti'► 

STATE "~ZIf1_: ",;::; 

YA i9d021 ̀ ~ x 

`CA .:a9002Tr , 

. '4`i_. _~.~ 

• ;:„; 

  

tITT . 
Nightorn 
San Princiseo 
Seattle.;:. 
loa~Angete: 
South Fork' 

 

STREET 
404 Main Street " ~~•''~. 
33 teary Street •• 
303 14th Street, M.E. 
N02 Los Feli: Nlvd:-

 

Route ̀ 6 ~. ~: ._ 

_~ ~:s .. 

         

. SET UMIOUE OFF 

. FINO~Stit 
DISPLAY• 

Reeo~dt• FIRST LAST 
• 2 Steven Seitb 

      

STATE. ~ 2IP ~` • ~' 
CA ..91i0S' 

_ ax. 

  

STREET '• CITY 

    

San Francisco 33 S~a~Y;"Street 

    

. SET EXACT ON 

. FIRO Spit 
No find 

  

~. 

         

Figure 1Q~ The difference between SET FILTER, SET DELETED, 
SET EXACT, and SET UNIQUE 

       

P10-zo PROGRAA!IMING WITH dBASE 111 PLUS 

                                                                     



- ..• -. +~ +.~ 

! ~.. .. •fit•••', 
~-

 

• ~ •` 

. .'~ 

                     

' ~ • ♦. 

 

Chapter 11 
;'~. WORKING WITH DATA IN THE DATABASE 

      

i 
: t. 

~P After the program isolates the data it needs, it uses the data in a 
variety of ways. The program displays the data, puts it into mem-
ory variables, manipulates it with functions, and updates it. The 
program may also use data from two or more related database 
files. 

     

R 

In this chapter you'll learn: What This 
Chapter 
Covers 

• How to work with database information 

  

• Ways to update database information from within a program 

• How to work with information in two or more work areas 

• How to set up relationships between work areas 

                    

Make sure you understand the basics of dBASE programming and 
that you have read the previous chapter before working with this 
chapter. 

Preparing for 
This Chapter 

     

1,~ ,; 

          

You have learned that there are many commands and functions 
for manipulating the data in a database file. These commands and 
functions work either from the dot prompt or from The Assistant. 
They work exactly the same in. dBASE programs. - 

Manipulating 
Data 

          

For instance, the Reconcil.prg module in the checkbook manage-
ment system reconciles the bank statement to the records in the 
database files Checks.dbf and Bank.dbf. It also uses the SUM 
command and, if the balance is a negative amount, the ABS() 
function: 

                       

*rtotil outstendin~~checks~;r 

,'SUN~Aat~TOloutstend~fOR NOT~:f 

`ss ~total{depos~ts4end ceshrnthdrarels 
M~*st rens~tl'i•rT,~~~.4.e ~~ 

4, T sue^]''"--'] 

SUM,AetwTO~notcleer =FOR Nuol>~0~~~v~,~ 
~~~~SUN Aat;~TO notcesh ~FOR~iNueu~ ih ~>~~0 

y~-..

:,~:notcash~~.~ABS,~n~otcas~h)`~~r-~,1~~~ '„

.~ss~-
~~~~ ~ , 

3'. -,+'r`e'f Y,~ ~yk:'s4 

a is r r ~5.~_. ~~~ 

                  

( .' ~ ~ 
~, 

               

a 

   

.~ 

., 

                              

.q 
.. ~~ 

  

PROGRAMMING WITH dBASE III PLUS 

 

P11-1 

                        

_.._.~~ 

                                                              



at ._ .. 

   

1 
1 

        

• 

    

• '.ti - 

                    

CHAPTER 11 

          

.y 
:'~:.; 

    

t 

 

There are countless other ways to use database files. Your pro- • 
gram may show field information with the ?, ??, DISPLAY, LIST, 
or ®...SAY commands in customized screen forms. The following 
module displays the first name, middle initial, and last name 
fields in the regular columns of a screen form. It keeps a counter 
of the row number. When the display reaches row 21, it stops and 
requests the user to press a key to see more names. When the 
user presses any key, it begins a new screenful of names. 

   

I 

                       

i 

    

.c -.... r ~ ,. ~. , .-. i:.a ~! v,5r7'y+ ~ e1~T7~'.''" ~ ^.^,' ~ ~-}r~ra ~ ~ ~ 
~.* P~o9reb .~listneee prg x;.~~~~~~ ~-~~ ~.~~; ~;~ ~' ~~-~k ~{~, ~ i 
r*.Author Yince~t'ACf1erl~rph D'~'Y'~~''*;~ '~ '~~~ L ~ `~'''' 

«*"Dite..:::06/26/SS ,~ x t`• r~~~~.~°~.r~~rts~ ,. ,; ~ , ~~ 
~' *Motes: ̀ :.Th:s~progree`lists•the_First,~Middlesand~last 
~,;;*~x~= .~~,~f~elds3;frob,~Nbres dbf ~Chenge~file =aed field ~x~,, ~ 
-*~~~G-s~~'- 'naeesc~for~user~ih~other~deteb~ese f:l

~
e
s
s
r 

~;~'t'~s~~w i ,r:-r qC',~i v'•~ri.Y ~~~~w ju~~.t,~► i '~ i.y~ tR,~it.n~,,~g , fit . y"'T ~ .w•' aw i~ ~'4` ~~c,
4
t
y
~~ 

` ^xoyl~ ̂ ` 
-!~ - w .e. ..~7,~`' •-ts,• r,► t~j s~bnn".'v ~•s...~ t~ictry~"'Z+'; ~J-°'f `'~' 

, ~ ~-~,t~$ rLrr"3~~1,3~~'~F
,~,f

~
"
S
~ 

X ~ ~~-r`E j~J~,s~y~~%~ ~t~~~,~y~} ,̀~~-

 

s„ C FEAR «. ~~~ •~ .q~ a r;7 3R ' ; ~ 5. >- a s. .~•~ ~~(ts Itr ~ i ~ 

~~*~Open'detabase and~~ndex~,fi lesl=t'~•~f~'-`--;~ ~°~a~,-` ~~~ .f~'"`~~~rk`. "~ ;. 
~~~USE}NebeS INDEX Ne~eS,~s„'~t``~''~riti;~~, f ~,. r 1_ } y~' 3~~~ti ~ ~E :s , xn CL . a^tt ir' ~ •s. . a. 

~,~,;~,Topof screen d~sp[ay «rkt ~r~~~~ ,~zs'~~ F..,~•-..~.- ~~,'~'~,'4
~~='fi~1,11 :SArA,First Naee' -~ a`r ~~'~ %~r~~s.. r l`~: T .'•~«~`~~r~ I
?•.-~.a .1 30?SAY !N~iddle~In~tiel' • ~~"~ ~ ~ -' ~<~
s , a ~ r - .- rk't+, ~ ~ti ~f-. ~ ~ .rye f - _ r -,, ,f.,~.=,

{ ~~Yif~t,SZ'SAr 'Lest~NeieF,,, f.:.. Q.£`~+.~f~t~.-t~t,~ , ~.~ ^'y^~.,.w i ~
1 ',~ *,O:splar~broken°Line ecross;screentfi, ,~ , x~*s

t a i ~ tYLx~ ~ i
~~`'^-~ " '° REPLICATE(' ' 73) r~"r',"' ~~r "'~:,.. :~- zx~.. ~t,;~ L~Y,i)t2,1 SAY. .~. .~ ~ t ~►~ ~ ~,.~ ~..'~w<~ ~ ~{isr~ ,~*~Set~~upk:n~t~el"screen ~or?~`'~~+~~P. z~'~~,~_,;~~~.;~~

* loo ~for~all~ecocds~in' database f~.le~. t~.{-.~.• ~- t:~.z' -~
~DO}YNIIE,':NOT.~~EOF.(.),~st~̀~~ ~~

'y~y~,
Y~~~~ .{~' ~, ~~ Y`''#~~{~r̀.s~'„'~~ ;s

x~~'•N~r:12~SAY~,First~lx'r~r~ f ~;~`~~,~ ~~,.cr ~~1~.~}f!

~{~."si ~~3T"SAY M~ddlet`~ ~~_~» .~~¢~~ •;~~-~ ~»~~ A~"

a ~r,;S3~SAY~Iast.~ 'mss "~` ~ F ~~~~"'~ ~ .

*Sk~p~to'~next~`record '~` ~ 7'~w~~~`''~' -/t~ S} f:
~ ~~ or ~ /~ x✓~is',,: 31i~''Y!y~ "j 'S'

*
~. ~,;r~'~n~

s
va 2y` ~"~'i

~olr.~SKIP i~' ~'L~`a1-~iey+r~l~tir!+' ~~~~~s'i}~,~'~ ~wt9~~v~ G~S~ x'~'~ e.k`rz,7.,~~
,~;~+~Clieck~,~for=~lest:~ror on..s,creen ~, ~-. ~ ~, ~~ '~'~`'n:F~:,~x
~~IF~r...,t21 . AND ~ NOT EOF1)~"tit^ .~~;_~r~~ ,~- ~~ ~~~~.~~f

-
ran°~ 1'. .~~'~~,'1

~1
"' ._ ~r't"~ a~`~,R~i~~ * r„ ~+y''~z 'c,sr,~ , .y~•

a~'.~ '"E t v .~i c"",eZf~-%Fi~2~nw
hen? - ~. -y~,.v«i ~ 5~."~, st~7'Sa .r ;+c'j,.sY r ~., ~ S'~~t}' f,~ ~._"y _ ~. _'~ ,- ~" ` aka rr ~'l~+aeL̂ ~:a. - J

'" I

~•

' •1

i

1

PROGRAMMING WITH dBASE 111 PLUS

P11-2

,~

r

,..

.~

'~af~~~rnr JIjO; +~'fx •"~q;,T ~r .";i.' :.7,~ - :s: •_:tia~~.,~; ~.: G~i,;~ ±~. .i.-~r: :ta:~~,T►+"Cy~S ~.~'~M~ ~~`~~.~t1tT

• '- - ~ ' •~ • ~ ~ ' • ~ ~ ~ ~ • • ~ ~ .. •.~ .r a ~, -•• -

~

y

!.. ' r~.
ti '~•.a

6;~,r

1

i

i

4.<.~~ :•st.-.jam

WORKING WITH DATA IN THE DATABASE

,~};;~r r 4,,YAITxREPIICATEt;~* 20),~ Press.~an err ., ~ y ~ ~>> ,ryr
key to vie~;aore~naees ;!'~ * REP~LItATEt"*'!;20).x., f~~ `'

~~~''~ '~~*...leave top7of-screen display ~fo~'ner~`':T~: ~•„ ~~~~~°•~ '~~ 
~,• ~y s- * screen: f _:~ 3~ ,' . , ~~;. ~ ~ ~.-t ~-3;`~t~,~`"" L 

>~ ' ' - -~ t ~~• i t. r ,~ t *"+'~ -v ' ~'n a tw• 

y' " r,-* Return to'ror ~ for_'ner screen i3 ~'~~~"~~~{~`~~̀ ~'f'~..~.•~
! ~Rz''.»~lyt~r~- ..`..j +~ ~+ t~7l ~l'1+r~'f ~y~~ ~t~~.` ~a°,~r~s4l~wL~ ti ~c~*""w.~~d 

fi`+-x.Y'`~ .e f~ ~Ly~ti'~~.~t ~. ~ a..r'o ` ' ~'~ ~^ ; 4.~ $~lyli~~h. 

':~~~~* Incredent~ror~nuober~for•next,~iterot~on of ,loopx";~ * w -~ 
~1~' rx, ~ d r J + ~ ~ r ~„`+- ~*r fr ~'~s M°i~°s~'~£*'K!4' . • c 'k. ~,~r"~y"'..'} M̀ ~ ~~ :ri. ~ ~•r ;,, C ►i7y.~ f ~; ~ Yt r r a r 1,:, ~ .r .?' • "~ tea, #' 

~~ENDDO YNILE :NOT EOF.,t) ~' ,~~~+~-v~'= "~~ ~s~~ ~ ''`~`~~*~~~, ~;~ 
'?~~~~ IISE ~ ` i* ~ ~, ]S ri ~ ._ ~ `~,rj b .~„~+̂ • ,~' rr'rr~,:`~'.~ 3 ~~"F3 h ~-~~~.RElEASE r:.; ~~F~ e. ~~' ,~ <~` ~ ti ~: ~ ~ ~ z,~^ ?~/ ~-` ` •. ,,;,,~-, ~ .~ 

y6~SET,TALK,ON'' '~.~f.t-t~FK4^~"Y~ ~~~'~ y,,z~,a , A rRr;~'r7 ~~ ~~}x~n 

~Y i '""_....~.~:~~"₹~` ~'-~~ r~+'~'."~~,~,~..̀7.''i~.~''-."SI".4~raerlt~~~2.L~`a~ir~.ts..:+'i'~.'i ~Y~'' ~ a,. .,t,:.c:...s.~-' ~",~ 

               

i 

                            

t 

  

2 I TIP 
Learn how to use the various scope options in such com-

 

mands as DISPLAY and LIST. You can specify four scopes: 

          

• Just one record: DISPLAY RECORD 2 

      

• A number of records beginning with the current record: 
DISPLAY NEXT 10 

• All the records in a database file: DISPLAY ALL 

• The rest of the file starting at the current record: DISPLAY 
REST 

                        

..r 

             

Many more examples of using database information are in this 
and the following chapters, as well as in the checkbook manage-
ment files. Here are some particularly important operations for 
working with database information from within dBASE programs. 

     

i 
r` 

              

', 

  

I 

            

PROGRAMMING WITH dBASE 111 PLUS P11-3 • ~ 

                  

y 

     



   
►~: .1 ~, 

 
:y 

   
'~i ;' 

     

CHAPTER 11 

         id` V . ~a 

v ~ .. 

gip, ~~r~~ 

~• r. 

         
.. •-~ 

   .4 ~~~~~w: 
. 

                           

Changing the 
Database 
Information 

. . Updating 
Data 

 

This section deals with how to update database files from within 
other programs. In Chapter 13, you'll see how to modify a data-
base file structure. 

After your program has allowed the user to change or add data in 
an on-screen form and has verified the correctness of the data, it 
must eventually add the new or updated data to the database file. 
If your program doesn't use the standard full-screen. commands, 
APPEND, BROV4'SE, CHANGE, and EDIT, it must locate the cor-
rect record and REPLACE the old data with the new data. 

In Chapter 2 of this manual, you learned the basic pattern for 
changing database data: 

1. Initialize memory variables to hold the user's input. These 
memory variables correspond to the actual fields in the data-
base file. Many programs give the variables similar names, 
such as mfirst to correspond to the First field. Make sure that 
the type and length of each variable are the same as the type 
and length of the corresponding field in the database file. 

2. USE the database file, with INDEXes where appropriate, and 
GOTO, LOCATE, FIND, or SEEK the correct record. 

3. If this is not a new record, STORE the contents of the fields in 
the corresponding memory variables. 

4. Display a screen form to request the input from the user and 
store the input into the corresponding memory variables. This 
screen form shows the current contents of the fields. The user 
can then make the desired changes. Use templates to filter 
incorrect information. For a new record, the user is presented 
with blank fill=in forms, as in APPEND. 

5. When the user types in the information, prompt the user to 
verify that all information is correct. If not, give the user a 
chance to correct it. 

6. REPLACE the information currently in the fields with the new 
information in the memory variables. 

                         

P11-4 

  
. Y- y • 4~e' ~ ~ 

. 
                   

PROGRAMMING WITH dBASE III PLUS  
• 

 



s 

           

i 

       

WORKING WITH DATA IN THE DATABASE 

• 

 

7. If there are no more changes or additions to be made to the 
database file, close the file and clear the memory variables to 
use them again. 

When you use the REPLACE command, there are two possibilities 
to consider: 
• The record already exists. 

 

• Anew record must be created. 
In the first case, the program REPLACEs the current contents of 
the record with the new data. Make sure, however, that the record 
pointer is at the correct record number. Remember that the 
pointer doesn't move unless you move it, so it should be at the 
last record used by the program. 
For example, the Clydep.prg clears an outstanding deposit once 
that deposit has cleared at the bank. The program first finds the 
correct record number in the Bank.dbf database file: ~ 

.. _. ~ 
LOCATE FOR Nun=nu~ber 

    

It checks to see if the number exists, that is, if the record pointer 
is not at the end-of-file, and determines whether the deposit has 
already been cleared. It then verifies from the user that the 
deposit is the right one to be cleared. ~IVhen the user says yes, the 
program updates the database file: 

 

IF UPPER(ansrer~)= "Y" 
* if correct - replace fields in database 
* file and erase deposit display frog screen 
REPLACE ClearLL YITN .T. 
REPLACE Nu■ YITN 0 

* (. .) 
s .ENOIi 

    

Because the record pointer hasn't moved since the program 
LOCATEd the record, dBASE III PLUS REPLACES the contents of 
the current record with the new information. 

   

PROGRAMMING WITH dBASE 111 PLUS P11-5 

•~ • 

    



          

y 
1 

• 

     

• 

   

CHAPTER 11 

 

The second possibility, that of a new record, is easily handled in a 
program without using the normal APPEND command. The pro- 
gram uses APPEND BLANK instead and REPLACEs the empty 
fields in the BLANK with the new information. In the Check.prg~ 
module, for example, after the user has verified that the new 
check information is correct, the program updates the database 
file in this fashion: 

  

IF UPPER(ans~e~)= "Y" 
* data is correct - add to database 
APPENO BLANK 

REPLACE Chkno YITN ~chkno 
REPLACE Date YITM date 
REPLACE Payto YITN ~payto 

• REPLACE Apt YITN ■apt 
REPLACE Nero YITN ■~e~o 
REPLACE Can YITN ■can 

*update balance and lastchk 
balance = ba.lance - Apt 
lastchk = Chkno 
(...) 

ENDIF 

 

Because this information also changes with each new check, the 
program updates the current balance and the last check number 
at the same time. 

P11-6 PROGRAMMING WITH dBASE III PLUS 

          

TIP 
Your program can't know which fields may have been 
changed or updated by the user, so it's a good idea to 
REPLACE them all with the new information in the memory 
variables. For example, if a database file contains ten fields 
and the user is presented with all ten in an on-screen form, 
make sure that the program REPLACEs all ten fields with the 
ten memory variables. 



• 

    

 

 

 

  
  

WORKING WITH DATA IN THE DATABASE       
      

TIP 
In both cases, the program uses the CLOSE DATABASES com-
mand at the end of the module to close the database file prop-
erly. Don't allow your programs to leave database files open. 

      

The Posting 
Method 

Many accounting firms use the posting method to update data. 
They keep a temporary posting file with additions or changes, but 
they don't update the main database file every time they make an 
addition or change. Periodically, usually daily, weekly, or 
monthly, depending on the amount of business they do, they 
incorporate all the changes from the posting file to the main 
database file.  

 

     

 

     

 

The UPDATE command performs this operation. If you are writ-
ing accounting programs, you may wish to use this command 
instead of or in addition to the REPLACE command. It's fully 
explained in Using dBASE III PLUS. 

If your program has to check what date changes were last made 
to a database file, use the LUPDATE() function. This function 
returns a date value, so you can compare the date of the last 
update with any other date. See the example in the Commands 
and Functions sections of Using dBASE III PLUS for one practical 
use of LUPDATEQ. 

  

    

 

Another method of updating information is to combine two data-
base files with the JOIN command. Be aware of the difference 
between UPDATE and JOIN. UPDATE replaces information in the 
current database by copying in current information from a sepa-
rate file. JOIN combines two files and creates a new, composite 
file. At the end of this chapter is an interesting program that sim-
ulates the JOIN command. 

PROGRAMMING WITH dBASE 111 PLUS P11-7 

 

.• 

 



    

• 

      

1 

l 

 

OIdl.dbf 

   

OId2.dbf 

 

OId2.dbf 

UPDATE 

 

OIdl.dbf 

OId2.dbf 

 

1 

New.dbf 

    

J 

 

OId2.dbf 

OIdl.dbf 

   

• 

 

JOIN 

  

y 

DELETE All FOR TEAR(Dete)=~yea~ 

      

~ Figure 11-1 UPDATE and JOIN 

 

Deleting records is the same in dBASE programming as it is from 
the dot prompt or ASSIST. Position the record pointer to the cor-
rect record number, using GOTO or one of the search commands, 
and then DELETE the record. You can also use DELETE ALL 
with a condition, as the checkbook management program does in 
the Yearend.prg module: 

You can, of course, RECALL a record marked for deletion as long 
as you haven't PACKed the database file. Don't forget to issue the 
PACK command to clean up the database file. 

P11~ PROGRAMMING WITH dBASE 111 PLUS 

     

Deleting 
Records 

    

• 

CHAPTER 11 

  

OIdl.dbf 
+.~ '~ 

changes from 
OId2:dbf 

  



,~ 

 

•'. 
 

 

~ WORKING WITH DATA IN THE DATABASE     

 

TIP 
Some programmers choose not to PACK database files on a 
daily basis, but rather to maintain scratch files. They then 
consolidate Files as part of their periodic housekeeping. This 
allows them to reinstate records if anything goes wrong. It's 
up to you how often you clean up your database files with 
PACK. 

I 

   

You can also use the quick and efficient ZAP command, but use it 
sparingly. This command DELETES and PACKS all records at 
once. The checkbook program uses this command only in the 
Reinit.prg module, which clears the entire active database file to 
begin again for the next year: 

* reinitialize all database files 
USE Checks 
tAP 
INDEX ON Chkno TO Chkno 
USE Bank 
tAP 
USE Deposits 
ZAP 

* (. .) 
CLOSE DATABASES 

   

After the program ZAPS all the records from the Checks.dbf file, 
it must again II~IDEX the file in preparation for the next year's 
checks. 

 

PROGRAMMING WITH dBASE 111 PLUS P11-9 

•s. 

    



   

Copying 
Records 

 

Differen# 
Work Areas 

  

CHAPTER 11 

You can copy records to other database files, just as if you were 
working at the dot prompt. For example, in the Yearend.prg, 

- before the program DELETEs ALL records from the active data-
base files, it first COPYs the records to archive files with the year 
of transaction. Here are the commands that set up the three 
archive files: 

 

filel= "Dep"+STR(~year,4,0) 
filet= "Bank"+STR(~year,4,0) 
file3= "thk"*STR(~year,4,0) 

The three new files contain the last year's check records. They 
relate in name to the active files Deposits.dbf, Bank.dbf, and 
Checks.dbf, which are used by the program for each year's check-
book activities. At the end of the year, the program copies the 
past year's records from the active database files to archive files. 
Then it DELETEs the records from the active files so that it can 
use the three active files for the next year's activities: 

USE Deposits 
COPY TO 8filel FOR yEAR(Date)=year 
DELETE ALL FOR YEAR(Date)=aeear - 

PACK 
USE Bank 
COPY TO 8file2 FOR 1EAR(Date)=year 
DELETE All FOR tEAR(Date)=year 
PACK 

USE Checks INDEX thkno 
.COPY TO 8file3 FOR YEAR(Date)=■year 
DELETE ALL FOR YEARIDate)=year 
PACK 

* (. .) 
CLOSE DATABASES 

If you're working with two or more database files at once, you 
can work with fields from all the files in USE without switching 
between work areas. However, you must access them by filename 
or ALIAS name. 

• 

  

• 

    

P11-10 PROGRAMMING WITH dBASE 111 PLUS 



     

WORKING WITH DATA IN THE DATABASE 

 

The Selected 
Work Area 

It's important to know which work area is currently SELECTed. 
For example, say you have set up two areas like this: 

P11-11 

 

PROGRAMMING WITH dBASE 111 PLUS 

     

•~ 

  

SELECT A 
USE First INDEX First 
SELECT B 
USE Second INDEX Second 

You have opened the two database files, First.dbf and Second.dbf, 
with their respective index files, given them ALIASes, and placed 
them in two work areas. You then SELECT A, the First.dbf. This 
database file has two fields, First and Last. Second.dbf, currently 
unSELECTed, has a character field called Street. So you can do 
this: 

DISPLAY First, Lest, Second->Street 
This command DISPLAYS the First and Last fields in the current 
record in the First.dbf file and the Street field in the Second.dbf 
file. The pointer, ->, is dBASE III PLUS'S way of referring to a 
field in a database file in another work area. The filename or 
ALIAS name precedes the pointer. 

   

The above examples show field information from the current 
record of the database files in two work areas, but they don't 
relate the two files together on a field. The Street field in the first 
record of Second.dbf may contain information that has nothing to 
do with the First and Last fields in the first record of First.dbf. 

        

SET RELATION 

      

NOTE 
If there is ever any confusion between field names and mem-
ory variable names, dBASE III PLUS always gives the field 
name. However, to reference a memory variable name, you 
can use the pointer M-> . It's reserved to refer only to mem-
ory. 

 



  

t 2 3 

    

Public.dbi 
Name 
Emp no 
Street 
City 
State 
Hiredale 

Private.dbf 
Name 

►  Emp_no 
Salary 

Priv.ndx 

SELECT 1 
SET RELATION TO Emp_no INTO Private 

       

• 

  

       

• 
 

 

 

  

 

 

 

 CHAPTER 11          

If two database files are related by a field, you can make the 
record pointer automatically go to related records in the second 
work area, as determined by the position of the record pointer in 
the first work area. The SET RELATION command establishes a 
link between two work areas. 

You can only have one active RELATION for each work area. One 
good way to think of SET RELATION is as a way of temporarily 
linking two database files in USE by means of something they 
both have in common. 

 

figure 11-2 Establishing a relationship between work areas 

NOTE 
The SET RELATION command is most effective when both 
files have corresponding records. If there is no record in the 
linked file that matches the key field, dBASE III PLUS posi-
tions the record pointer at the end of the file. 

   

P11-12 PROGRAMMING WITH dBASE 111 PLUS 

        

•. 



WORKING WITH DATA IN THE DATABASE 

;--

 

:, SET RELATION TO Epp no INTO Private 

   

;} 

 

The most common use of SET RELATION is with the key expres-
sion option. When the record pointer iri the first work area 
moves, the record pointer in the second work area moves to a 
record whose INDEX key matches the value of the relation key 
expression. The second work area file must be INDEXed. 

For example, you are working with two files, Public.dbf and 
Private.dbf, containing personnel information and related to each 
other by the field called Emp~o, an employee number. The 
Private.dbf file is INDEXed on Emp~o to Priv.ndx. You have set 
up the work areas like this: 

You can then SET the RELATION from the currently SELECTed 
work area to the other work area on the employee number: 

 

Whenever the record pointer moves in the_first work area, the 
record pointer in' the second work area will be positioned to the 
related record: 

~`~~DO YHIIE NOT. E0FO 
DISPLAY~First, lest, Private->Salary 

• SKIP 
ENDDO 

 

If you have more than one occurrence in the related file, 
dBASE III PLUS will only point you to the first occurrence. 

SET RELATION establishes a temporary relationship between 
two files. Using SET RELATION is not the same as INDEXing 
files, which creates and saves an index file for the database file. 
The relation disappears when you close the work areas or when 
you issue the command SET RELATION TO. 

  

PROGRAMMING WITH dBASE 111 PLUS 

 

f r~ 
i 
i 

P11-13 

       

SELECT 1 
USE Public 
SELECT 2 
USE Private INDEX Priv 
SELECT 1 

  

• 

 

M1 

 

a 
i 

0 

         



  • 

 

 

 

CHAPTER 11 

 

     

NOTE 
When using a function, place the entire field reference, 
including the ALIAS name, in the parentheses: 

a 10,10 SAy SUBSTR(Private->Address,1,25) 

Advanced 
Relations 

Below is an example of a more complicated relationship. This 
module program simulates the JOIN command and makes use of 
the SET RELATION feature. Notice that it uses the standard 
REPLACE technique that you investigated earlier in this chapter. 

 

* Progra~.:.S-JOIN.PR6 
Author..: Luis A. Castro, codified by Oavid McLoughlin 

* and Vincent Alfieri, Ph.O. ` 
* Oates...: 01/11/83, 01/17/85, 06/24/84,11/t6/85, 06/26/85 

• * Notes...: This program ~ieulates the JOIN coaaand. The 
* filena~es gay be requested fro■ the user and 
* entered fro■ the keyboard pith ACCEPT statesents 

SET TALK OFF 

firstfile = "OLONANES" , 
secondfile = "NEYNANES" 
joinfile = "T06ETNER" 
key_ezpr = "Lastna~e~Firstna~e" 
• -• ~ , 
t Initialize macro to replace the joinfile fro■ the 
+ secondfile: Only the A~ount fields are to be replaced 

 

replace = "Asount YITN B->A~ount" 

* Joinfile has all the fields to be JOINed and gas created 
* prior to the beginning of this progra~. 
* It contains no records. 

 

SELECT A 
USE 6joinfile 
APPENO FROM;Sfirstfile 

P11-14 PROGRAMMING WITH dBASE III PLUS 

   

;t . 

   

r 

 



 

WORKING WITH DATA IN THE DATABASE  

60 TOP 
SELECT B 
* It is assured that the secondfile and its INDEX have the 
* sase nape. The INDEX file ■ust~be indexed on the key expr 
USE 8secondfile INDEX 8secondfile 
SELECT A 
• Set relation betreen the.tro cork areas 
SET RELATION TO 8ker exprslNTO 8" 
DO YHIIE .NOT. E0FO _ 

SELECT B r, .~ 
IF .NOT. EOF() - - 

SKIP 
SELECT A 

* Add to joinfile~fro■ secondfile 
REPLACE 8~replace 

ENDIF .NOT. EOF() 
ENDDO YHILE .NOT. EOF() 
CLEAR ALL 
SET TALK ON 
RETURN 
* End-of-file: S-JOIN.PR6 

The program uses work areas and macros. The two files are 
joined according to the RELATION °Lastname+Firstname". 

 

Two new features in dBASE III PLUS can help you quickly estab-
lish relations between work areas and narrow down the database 
fields you need. The CREATE VIEW command is afull-screen 
operation that allows you to choose from a list of the database, 
index, and format files and set up relationships between the files. 
CREATE VIEW also establishes any filtering options you may be 
using with the files. You then save the VIEW to a view file, which 
has the .vue extension. 

0 
Whenever you want to reuse the same relationships, instead of 
recreating the relationships and filters, use SET VIEW TO <view 
filename>. To change a .vue file, use MODIFY VIEW <view 
filename> . 

Of help to programmers is the CREATE VIEW <view filename> 
FROM ENVIRONMENT command. This command establishes a 
view file from the current working relationships. It's an alterna-
tive to using the full-screen CREATE VIEW feature. 

    

Setting Up 
~/iews and 
Fields 

   

PROGRAMMING WITH dBASE 111 PLUS P11-15 



  

  

 

 

 

 

 

   

 

 

CHAPTER 11     

One aspect of a view may be a list of the specific fields you need. 
The new SET FIELDS command allows you to pick and choose 
only the fields necessary and keep them in a pool of fields. When 
you issue commands such as LIST, DISPLAY, and BROWSE, 
dBASE III PLUS automatically uses only the fields in the pool. 

In the original example used to illustrate SET RELATION, after 
establishing the relation, you could have set up the fields you 
wanted to DISPLAY with SET FIELDS TO < field names > 

 

SET FIEIOS TO first. Last, Private->Salary 

Then, whenever you want to use only these three fields, you 
must first SET FIELDS ON, and then set up the appropriate 
commands: 

 

SET FIELDS ON 
DO YNIIE .MOT. EOF() 

* No need to-list .the fields here, 
* because they're in the pool _ 
DISPIA~ . 
SKIP 

ENDDO 

You can add more fields to the current pool without removing the 
other fields by using SET FIELDS TO <fieldnames>. When you 
want to have access to all fields but keep the pool active, use SET 
FIELDS OFF. Use SET FIELDS TO or CLEAR FIELDS to remove 
all fields from the pool. 

          

P 

   

P11-16 PROGRAMMING WITH dBASE 111 PLUS . 



      

e 

 

• 

  

Chapter 12 
PRINTING 

 

What This 
Chapter 
Covers 

 

Preparing for 
This Chapter 

 

Your Own 
Reports 
and the 
dBASE III PLUS 
Report 
Feature 

   

Besides presenting information on the screen, your program may 
also provide printed output, such as reports. Therefore, you need 
to write program code tailored to your printer. 

In this chapter you will learn: 

• What things about your printer are important to 
dBASE III PLUS 

• How to change the printer port from within dBASE III PLUS 

• How to use printer coordinates for customized printed output 

• The factors involved in determining page formatting 

• How to do special printing features from within your 
programs 

• How to set up a counter for printed lines and page numbering 

Have an understanding of dBASE programming in general and a 
thorough understanding of screen coordinates. If you're not famil-
iar with your printer already, have your printer manual handy for 
reference. 

The word report, as used in this chapter, refers to any printed 
output. For many situations, you may wish to use the REPORT 
FORM <report filename> TO PRINT command in your pro- 
grams. dBASE III PLUS's REPORT generator is useful for produc-
ing quick reports and for calculating totals for numeric fields. See 
Learning dBASE III PLUS for more information about the 
REPORT command. 

If you want or need more elaborate printed output in your pro- 
grams, dBASE III PLUS has other special commands and  func-
tions for printing that can make your programming tasks easier. 

       

PROGRAMMING WITH dBASE III PLUS P12-1 

    

., 

  



      

 

  

 

 

     

   CHAPTER 12                

Printers: Some 
General 
Remarks 

Unlike most application programs, dBASE III PLUS doesn't 
require you to run a special printer installation procedure. As far 
as dBASE III PLUS is concerned, your printer is just another out-
put device, like the screen, that shows information. 

There are three important rules about using the printer: 

 

;, • The printer must be correctly connected to the computer. 

• The printer must be turned on and paper must be properly 
inserted before you issue a printing command. 

• You must tell dBASE III PLUS when to start and when to stop 
sending output to the printer. 

Because dBASE III PLUS requires so .little information about 
your printer, you must create any desired special printing effects 
in your programs. This will entail more careful planning on your 
part. 

  

Connecting 
the Printer 

For information on properly connecting your printer, read your 
printer manual. However, here are some general things you 
should know.  

 

  You must notify the operating system regarding the port to which 
the printer is attached and the specific configurations that it 
needs. This is especially important if you're using a serial printer 
connected to a serial port named by DOS, - either COM1 or 
COM2. The computer's operating system assumes by default that 
you're working with a parallel printer connected to a parallel port 
called LPT1. For a serial printer, you have to set up a batch com-
mand to redirect the output to the proper port, COM1 or COM2, 
and change the type of output. 

 

  

 

 

 

 

For most computers, you use the DOS MODE command with the 
specific settings for your serial printer. Here's an example for a 
serial printer connected to COM1 which operates at 1200 baud, 
uses odd parity, 7 data bits, and 1 stop bit:  

  

 

• MODE LPTI:=COM1: 
MODE tOM1:=1200,0,7,1,p 

 

 

P12-2 PROGRAMMING WITH dBASE 111 PLUS 

    

;h 

    



~' 

_ \~ 
y 

y 

      

PRINTING 

The first MODE line redirects the output from the default printer, 
LPT1, to the serial printer connected to COM1. The second line 
issues the settings for the serial printer. Note the p parameter, 
which stands for printer, at the end of the line. 

 

Sending 
Output to 
the Printer 

     

P12-3 PROGRAMMING WITH dBASE III PLUS 

            

Set these commands up in a batch file, such as the Autcexec.bat 
file, with the DOS Mode.com file on the dBASE III PLUS System 
Disk #l. Then they will run automatically when you start your 
computer. You can also issue them from dBASE III PLUS with 
the RUN command, but only if the Mode.com file is also on Sys-
tem Disk #2.  

 

A new feature of dBASE programming allows you to change 
printer ports with the SET PRINTER command. For example, if 
you are working with two printers connected to COM1 and COM2, 
you can switch between them by typing SET PRINTER TO COM1. 

 

Note that you don't need the colon at the end of COMI in dBASE 
programming. 

 

There are two commands for sending output to the printer in 
dBASE III: SET DEVICE TO PRINT and SET PRINT ON. They are 
not the same command, and you should be thoroughly aware of 
their differences before you use them. - 

 

In dBASE III PLUS, the default output device is the screen. You 
use SET DEVICE TO PRINT when you have elaborately designed 
reports. Make sure that you immediately return the output to the 
screen after printing is finished, by issuing the command SET 
DEVICE TO SCREEN. When you SET DEVICE TO PRINT, you 
can use ...SAY and coordinates to position the output anywhere 
on the page, just as you do with output to the screen. This is 
called formatted output. Printed output is not simultaneously 
shown on the screen. 

        

~. 



. '_ 
'Screen Printer Used with: 

®...SAY 

C~...SAY, ?, ?? 
DISPLAY, LIST 

~ ?~, DISPLAY, 
LIST 

C~...SAY, ?, ?? 
DISPLAY, LIST 

SET DEVICE TO 
PRINT 

SET DEVICE TO 
SCREEN 

SET PRINT ON 

SET PRINT OFF 

Freezes 

Can Change 

Can Change 

Can Change 

Starts Printing 

 

Stops Printing 

Starts Printing 

Stops Printing 

Command 

 

 CHAPTER 12  

The SET PRINT ON command sends output to the printer and to 
the screen, unless you SET CONSOLE OFF. However, SET PRINT 
ON won't send the contents of ®...SAY lines to the printer. It can 
only handle unformatted output, the kind produced by the DIS-
PLAY, LIST, ?, or ?? commands. The checkbook management sys-
tem, which requires a simple display, uses SET PRINT ON 
exclusively. 

Table 12-1 The screen and print commands 

Both SET DEVICE TO SCREEN and SET PRINT OFF, the 
defaults, allow you to use any display command. 

SET PRINT ON has another useful function: it allows you to 
instruct the printer to do special effects, such as printing in ital-
ics or condensed type. 

       

Printer 
Coordinates 

Use ®...SAY commands with the command SET DEVICE TO 
PRINT so that you can format the exact position of the printed 
output, with row and column coordinates. When designing 
reports, you can use copies of your on-screen forms as the models 
for printed reports, and make changes to the coordinates as nec-
essary. This saves planning and design work. With one-page 
reports, you can often use the original screen form without any 
major changes. 

 

P12-4 PROGRAMMING WITH dBASE 111 PLUS 

    

"1 

.E 

 

• ` 

  

 

 

 

 

} 

  

 

 
1 

 

 

 

   



 

WARNING 
dBASE III PLUS can't make the printer go backwards or skip 
up to a previous line. You must issue the ( ...SAY commands 
in top-to-bottom and left-to-right order for printing output. 
This is decidedly different from setting up screen displays. If 
you issue a coordinate that is lower than the previously 
issued one, dBASE III PLUS causes the printer to eject a 
page. For example, if you've just printed text at coordinates 
5,10 and then try to print something else at 4,10, 
dBASE III. PLUS knows it just printed on line 5, so the printer 
ejects the paper to the next top-of-form setting and moves 
down to row 4 to print the next line. 

You can't use the ®...GET and READ commands in printed 
output. You must first GET the information in memory vari-
ables, SET DEVICE TO PRINT, and then use (g~...SAY lines to 
print the data. 

  

• 

  
 

PRINTING     

The alternative is to use ? and ?? commands with SET PRINT ON. 
For example, the checkbook management system uses a simple 
routine, Printer, to toggle output between the screen and the 
printer in all its reports. This routine is a PROCEDURE file. 
PROCEDURE files are the topic of Chapter 16. Here is the Printer 
routine: 

8 ror,6 SAY"Do you rant the output sent to the 
"printer or the screen? (P/S)" 

pr = o n 

DO YNILE .NOT. prS"PpSs" 
p r = ~~ ~~ - 
8 ror,70 6ET pr 
READ 

ENDDO 
CLEAR 
IF UPPER(pr) = "P" 

SET PRINT ON 
ENDIF 
RETURN 

PROGRAMMING WITH dBASE 111 PLUS Pt2-5 

 

~~ ~: 

           

:y 

 



Leff margin where printer 
prints first character 
(on fhe line) 

Perforation = Top of form 

      
.= 

  

CHAPTER 12 

How you set up printer coordinates also depends on several con-
siderations that you don't need to know when you design screen 
coordinates: (1) where the paper is in the printer, (2) the size of 
the paper you're using, and (3) the size of the typestyle. 

  

The Position 
of the Paper 
in the Printer 

dBASE III PLUS does not know where the top-of-form setting is 
on your printer, nor does it know where the printer begins to 
print at the left edge of the paper. 

After you have determined these two locations, always make sure 
that the paper is inserted at the same spot and that the print head 
begins at the same location. Consider putting a message in your 
program as a reminder before printing begins. 

 

Figure ~12-1 The top-0f-form and left edge of paper settings 

  

Paper Size Just as you have to restrict your screen displays to the size of the 
screen, you must consider the size of the paper, labels, or enve-
lopes. dBASE III PLUS assumes that you are printing on standard 
8 ~/: by 11 inch paper, which has 66 lines. You'll reserve some of 
these lines for blank top and bottom margins, but your program 
still has to keep count of them to ascertain when one page is 
filled and when to issue a form feed instruction for the next page. 
If you use a paper size other than 8 '/z by 11 inches, you must 
adjust your printer coordinates. 

 

P12-6 PROGRAMMING WITH dBASE 111 PLUS 

   



 

• 

Typestyle Size 

 

Switching 
Between 
Screen and 
Printer 

  

                 

~°~ ~~ _ ` 
~~~\- ._ 

•~_ -

~~

 PRINTING

NOTE
This book refers to horizontal lines of printed output to dis-
tinguish them from horizontal rows of screen output,
although they are really the same thing:

8 5,10 SAY 'cello there'

can mean either the sixth row on the screen or printed line
six. The vertical coordinate is called a column in both cases.

It's entirely possible to have printer coordinates that go beyond
the normal screen coordinates. For example, the bottom of the
screen is row 24, but you can have many more than 24 printed
lines on a page. The highest coordinate you can use in either a
line or.column is 255.

Most printers use a pica typestyle that prints ten characters per
horizontal inch. So, there are approximately 85 characters, or col-
umns, across the page, although you'll need to reserve a few col-
umns for the left and right margins. However, if you use a
smaller typestyle, such as elite, which prints 12 characters per
inch, you'll have to adjust your screen coordinates accordingly.

When you SET DEVICE TO PRINT, the screen does not go blank;
it stays the same as it was immediately before you routed output
to the printer. Take advantage of this by prompting the user with
messages on the screen, for instance, when the user has to insert
a new sheet of paper. To do this, you must switch back and forth
between the two devices, SCREEN and PRINT:

PROGRAMMING WITH dBASE III PLUS P12-7

.~ •

Page
Formatting •

Margins

CHAPTER 12

CLEAR
it 10,25 SAY 'Insert paper correctly'

?

YAIT SPACE(20)*'Press any key to begin printing'
SET DEVICE TO PRIMT
* Do printing
+ (...)
* One page co~pleted
SET DEVICE TO SCREEN
CLEAR-
? CNR(7)
? CNR(T)
a 10,22 SAY 'Insert another piece of paper and '

YAIT SPACE(2S) + 'Press any key to begin again'
SET DEVICE TO PRINT
* (. .)

Because the user may not be watching the screen, you've pro-
grammed the bell to ring twice to draw attention to the screen
message.

Because you can't position characters on the screen border, the
screen coordinates don't allow you to use the entire screen. How-
ever, you can take control of your entire printed page. Determin-
ing the look of the page is known as page formatting. Here are
some observations about page formatting.

The white space bordering the top, bottom, left, and right sides of
the text is called the margin. The top and bottom margins are
just blank, unprinted lines. The left and right margins depend on
the position of the paper in the printer, where the printing begins
on the page, the length of the printed line, and the size of the
typestyle used.

It's important to know where the vertical screen column 0 posi-
tion prints on your printer. After you have determined that and
adjusted your paper accordingly, you can set up your printer
coordinates relative to this position. For example, use a simple
program like this one to see where column 0 prints:

P12-8 PROGRAMMING WITH dBASE 111 PLUS

 ..
~, .

.~

a
i

 •

i
i
i
i
i
I
I

i

I
I

SET MAR6IN TO S

PRINTING

* TEST.PR6 - tests There output appears on the printer page
SET DEVICE TO PRINT
N 0,0 SAY 'Testing ...'
EJECT
SET DEVICE TO SCREEN

Then adjust the paper position accordingly. Another useful fea-
ture is the SET MARGIN command, which changes the beginning
left margin for printed output. You must supply an integer num-
ber:'

The printer starts printing at the new left margin, which is five
columns to the right of the default printing position. However, the
printer coordinates will still start at 0. Using SET MARGIN is
therefore a good way to adjust where the printing is to start on
the page without changing the numbering of the coordinates in
your program or the positioning of your paper in the printer.

PRINT-OUT SET MARGIN TO 20 PRINT-OUT

Current
left margin

. New
left margin

► ~

Figure 12-2 How the SET MARGIN command works

E

Y

i

i

i

r

7 e

s

1

a

I

i

3,
1

'ey

The printer prints the very same output starting at a different left
margin on the page.

PROGRAMMING WITH dBASE 111 PLUS P12-9

•

•

•

•

WARMING
This command can only work properly if the top-of-form has
been set correctly before you Begin printing.

..~: .~~;

CHAPTER 12

Paper length

Headers and
Footers

Starting a
New Page

See where dBASE III PLUS prints screen line 0 on your paper and
then adjust the top-of-form setting accordingly. You could use the
same sample test program shown above. Then, for both top and
bottom margins, you can skip some blank lines to start the print-
ing on a specific line.

Keep track of how many lines are left on the page and how many
blank lines you want for a bottom margin. If your printouts are
always the same length, you'll have little trouble here. However,
if the number of lines in the printout varies, you will have to set
up counters to regulate printing, which you'll learn more about
below.

You may wish to have running titles at the top or bottom of your
printed pages. These titles are known as headers and footers. One
common header or footer is a page number.

You must consider the total number of lines per page, the number
of blank lines for the top and bottom margins, and the number of
lines of your headers and footers when you set up your pages. At
the end of the chapter is an example which shows you how to cre-
ate athree-line header.

You can force the printer to begin a new page with the EJECT
. command. It issues what is known in the computing world as a

form feed, which is ASCII code 12. This code instructs the printer
to advance the paper the number of unprinted lines left on the
page.

Trouble Spots The last line of the page and the position of the print head are
two potential problem areas in your program. Here's how to han-
dle them.

P12-10 PROGRAMMING WITH dBASE III PLUS

~~

•

~o
1

PRINTING

The Last Line

Realigning the
Print Head

Suppressing
Initial Page
Ejects

Printers often have a buffer area to store the individual charac-
ters in a line before printing the line. The print buffer is like a
holding zone for these characters. A printer will print the entire
line and clear the buffer only when it receives a carriage return
code, ASCII 13. Most programs send the carriage return code at
the end of the line, but dBASE III PLUS sends this instruction at
the beginning of the line, so your printer may not print out the
very last line as soon as you hoped. So, always include an EJECT
command, which sends a carriage return code and a form feed
code, at the very end of the print job. Alternatively, you could put
this module at the end of your print job:

SET PRINT ON
?? tNR(13) 88 Sends carriage return code
SET PRINT OFF

or this:

SE.T DEVICE TO_PRINT
~ 23,0 SAY CNR(13) 88 Sends carriage return code
SET DEVICE TO SCREEN

Make sure that you instruct the printer to realign the print head
to its normal location at the end-of each printout, because
dBASE III PLUS doesn't do this automatically. Using an EJECT
command at the very end of the printout forces the print head
back to its home position.

In certain cases, printing with ®...SAY will result in an initial
page eject. This situation often occurs when the last printer or
screen row and column position is greater in value than the first
print position. To work around the problem, do the following:

1. Check that the last print operation was terminated with an
EJECT command.

2. Issue an ® 0,0 just prior to the SET DEVICE TO PRINT state-
ment in your printing routine.

3. Issue an EJECT command prior to the SET DEVICE TO
SCREEN command in your printing routine.

•

PROGRAA+UNING WITH dBASE 111 PLUS P12-11

•

z
:s

i

•

 CHAPTER 12

If you're using a REPORT FORM, use the NOEJECT option to
suppress the intial page eject.

You can take advantage of most of your printer's special effects,
such as italics on dot-matrix printers, from within
dBASE III PLUS if you know what codes the printer needs to
print them.

Printers need a control code from the software to do a special
printing effect. There is no standardization for these codes among
printer manufacturers, so you'll have to refer to your printer
manual to find the codes you need. However, most printer control
codes begin with the Esc key (ASCII 27), followed by other ASCII
codes, so they are often referred to as escape codes. Here's an
example. Perhaps your dot-matrix printer will print in italics
when it receives the control codes Esc F. You can write this in
dBASE as:

SET PRINT ON

Note that the entire control code is a string. Similarly, the way to
stop italic printing on your printer is with Esc G, which trans-

lates in dBASE to: -

Special Effects

Escape Codes

SET PRINT ON

Setting the Form
Length

If you are using a form that has a page length less than the stan-
dard 11 inches, and you are sending a report to the printer with
the REPORT FORM or (...SAY statements, send a control code
sequence that configures your printer for shorter page length. By
doing this, an EJECT or form-feed will advance the paper to the
proper top-of-form for the nonstandard page length.

P12-t2 PROGRAMMING WITH dBASE 111 PLUS

,;
9`

•

PRINTING

•

a

_~.
-!

For example, you may wish to print checks from a command file
using ®...SAY statements. Each check has a page length of
between five and eight inches. To set up the print run:

SET PRINT ON

SET PRINT OFF

If you are using the REPORT FORM, be sure that you define the
page length in the REPORT FORM to less than the number of
lines that you have set for the form length. Otherwise, your page
breaks may not occur at the line you expect.

In dBASE III PLUS you cannot send null characters (00 hexadeci-
mal) to the printer. This can be a problem for printers that
require a null character to be sent as part of a string of control
codes. For example, in order to change the form length or engage
underlining with any of the Epson line of printers, you must send
a null character to the printer.

There is a way around this. CHR(0) is a null character which can-
not be sent to a printer or any device. However, some printers
interpret CHR(128) as CHR(0). Notice that the binary representa-
tions of CHR(0) and CHR(128) are very similar:

CHR(0) = 0000 0000
CHR(128) = 1000 0000

• ^--eighth bit

If your printer supports 8-bit characters and has an option to
turn off the eighth bit, first send the•printer control codes to turn
off the eighth bit, then send CHR(128). Your printer will read
CHR(128) as 0000 0000 and interpret it as CHR(0). If your printer
does not support 8-bit characters, send only CHR(128) to substi-
tute for CHR(0).

The following example will set the page length to seven inches on
an Epson FX-80 printer. The first escape code sequence turns off
the eighth bit, the• second escape code sequence sets the page
length to seven inches, and the third escape code sequence
returns the printer to normal. The ? issues a line feed.

Null Characters

•

PROGRAMMING WITH dBASE III PLUS P12-13

.'

~,

..-

y+

~,.

CHAPTER 12

SET PRINT ON

?? CNR(27) + CNR(67) + tNR(128) + CNR(7)

SET PRINT OFF

Printing
Special Effects

Once you know the exact escape code sequences you need, you
can instruct the printer to do special effects with the SET PRINT
ON command and the correct escape codes, before you begin
printing:

SET PRINT ON

SET PRINT° OFF

Because you don't want a superfluous carriage return/line feed
instruction to be sent to the printer, which is what the ?
conunand does, use the ?? command.

TIP
Set up the escape codes just before you begin printing and
then return the printer to normal just after you've finished.
Otherwise, the printer continues to print in the special mode
the next time you use it.

If you want several special printing features at once, such as con-
densed, bold, and italic print, include all the correct escape codes
on one command line:

SET PRINT ON
?? CNR(27) + "F" + CNR(27) + !'P1" * CNR(27) + '!0"
SET PRINT OFF

Make sure to issue all the necessary cancellation codes at the end
of the print job.

P12-14 PROGRAMMING WITH dBASE III PLUS

,k

,o.
\~

- _`~
:~_

•~-

•~ _

PRINTING

~,

I

Different
Printers

~~

.,: w

If your program has to control several different printers, set up
separate memory files with the specific control code sequences
for each printer. Use common names for the special printing
effects. For example, here are the setup variables for printer
model XYZ:

* Set italics on
STORE CNR(27) + 'E' TO italicon
* Set italics off
STORE CNR(27) * 'F' TO italicoff
* Set expanded print on
STORE CHR(27) + '6' TO expandon
* Set expanded print off
STORE CNR(27) + 'N' TO expandoff

SAVE each set of codes in a memory file. Even if you have differ-
ent control codes for printers, use the same memory variable
names. Instruct your program to RESTORE the memory variable
file containing the correct codes for the printer it needs. Then,
whenever you want to assign an attribute in your program, use
the memory variable name:

* Turn on italics
SET PRINT ON
?? italicon
SET PRINT OFF

This method allows you to use many different printers without
~ altering the program code.

Relative
Addressing

As with screen displays, if you know the exact length of fields and
variables, you can set up exact printer coordinates. However,
you'll have to use other techniques with data of differing lengths
and for such changing situations as page numbering.

i PROGRAMMING WITH dBASE 111 PLUS P12-15

~'

R'

CHAPTER 12

Just like the ROW() and COL() functions for the screen, you can
use relative addressing techniques in printed forms with two spe-
cial functions, PROW() and PCOL(). They return the current
printer row and column coordinates. So, you can use these func-
tions to advance the printing down the page:

SET DEVICE TO PRINT
N PROY(),PCOI() SAY TRIN(Last) + ', ' + First
* Next one is tro lines dorn frog the first
8 PROYt)+2,PCOl() SAY Street

* (. .)
SET DEVICE TO SCREEN

When used with the SET MARGIN command, the value of the cur-
rent print head's vertical position, PCOLQ, depends on the new
margin setting. If you use the ? and ?? commands to position out-
put, you must use the SET PRINT ON command, not SET
DEVICE TO PRINT. Refer to Chapter 8 for more about relative
addressing techniques.

With multiple page reports, you'll probably want to write a pro-
gram that keeps track of the number of printed lines on the page
and then starts a new page when the previous page is filled. This
program should also keep track of the current page number. You
can use simple counters for both these numbers.

The following module is adapted from an example in the
Advanced Progsammes's Guide, pages 384-385. It keeps track of
the line and page counters, and begins a new page when the line
counter is greater than 60. It also uses a trick to avoid the EJECT
command. When the line counter, Cline, is greater than 60, the IF
construction decreases Cline to 1. Because dBASE III PLUS auto-
matically starts a new page if the printer coordinates are less
than the previous coordinates, the IF construction begins a new
page without an EJECT command.

P12-16 PROGRAMMING WITH dBASE III PLUS

Determining
Page Breaks

~i "~ ~~
eu ~ - \

PRINTING

•

* Initialize counters to starting values
* Start tune high enough to take the branch
* for a ner page just inside the first DO YHILE loop
SET TALK OFF
STORE 61 TO tune
STORE S TO tcoluan
STORE 0 TO pagenus
* Prepare the naae and address file for printing
USE Names INDEX last
60 TOP
* Route output to printer
SET DEVICE TO PRINT
• Start loop
DO YHILE .NOT. EOF()

* Branch for ner page
IF tune > 60

STORE 1 to tune
• Increment page number counter
STORE pagenus + 1 to pagenus
* Start ner page because tune is nor less than
* at the beginning of the IF construction
a tune, tcoluan*66 SAY "Page" + STR(pagenua,3)
8 tune+1, tcolumn+66 SAY DATE()
8 dine+4, tcoluan+30 SAT "Names and Phone Nusbers"
STORE dine+6 to dine

ENDIF
* Shor inforaation Eros database file, in this instance
* the First, last, Area, and Phone fields -

, A tline,tcolusn SAif TRIN(First) + " " + TRIN(last) + ;
" " + Area +~" " + Phone

* 6o to next record and increment line counter
SKIP
STORE dine + 1 to dine

ENODO
* Reset printhead
EJECT
* Route output to screen
SET DEVICE TO SCREEN
RETURN

Notice how this module also sets up a series of running header
lines at the top of each new page.

PROGRAMMING WITH dBASE III PLUS P12-17

..

Preparing for
This Chapter

Completing
the Program

Chapter 13
HOUSEKEEPING

In programming, housekeeping refers to the finishing touches put
at the end of your program. In the world of computers, house-
keeping also means keeping track of files, regulating available
disk space, making backup files, copying files or records, and
related operations.

What This
Chapter
Covers

In this chapter you will learn:

• What to do before ending your program

• How to reinstate the dBASE III PLUS working environment

• Important issues of day-to-day file maintenance

• How to manipulate files without knowing their names

• How to deal with disk space from within your program

• How to modify the structure of a database file from within

your program

You should have a general understanding of the basics of dBASE
programming.

If you follow the one entry/one exit rule when designing your pro-
grams, your user will have one, and only one, way to end the pro-
gram and return to the dot prompt. However, before the program
officially ends, it should tidy up the work space that it has used
and make sure that there are no loose ends, such as open data-
base or format files.

The housekeeping your program has to do at the end of the run
depends on how you have designed it. In the checkbook manage-
ment program, for example, there are no open database files that
must be closed when the user chooses X to exit. All database files
are closed by the subprograms that USE them.

PROGRAMMING WITH dBASE III PLUS P13-1

. -
•,

CHAPTER 13

However, the main program module does have to check if any
transactions have been made during the run of the program,
before returning to the dot prompt. Here's the section. of code
that handles this chore:

t test for exit condition
CASE CMR(i) S "Xx"

* retain variables -'balance','lastchk','lastrth' and
t 'lastdep' only if changes rere aade.
IF balanceosbalance .OR. lastchk<>alastchk .OR. ;

lastrth<>alastrth .OR. lastdep<>~lastdep
RELEASE ALL LIKE'*
RELEASE i~today
SAVE TO Chkbook.ses ,

ENDIF

The program ascertains if any changes have been made to the
original amounts in the Chkbook.mem file by comparing them to
the contents of the four variables mbalance, mlastchk, mlastwth,
and mlastdep. If so, it RELEASEs the variables used by the pro-
gram so that only the four original variables, balance, lastchk,
lastwth, and lastdep, are left in memory. It then SAVES these vari-
ables to Chkbook.mem for the next time.

Closing Files Make sure that the program closes all database and format files
before returning to the dot prompt. The checkbook management
system does this in the subprogram modules, by adding this com-
mand to the end of the subroutine:

CLOSE DATABASES

This useful command closes not just database files, but INDEX
and FORMAT files too.

When you design your programs, remember the importance of
database integrity and have your. program close database files as
soon as the program is finished with them.

P13-2 PROGRAMMING WITH dBASE 111 PLUS

Returning to
the Default
Environment

i

•

 HOUSEKEEPING

With the RETURN command, dBASE III PLUS automatically
clears PRIVATE memory variables but not PUBLIC variables.
However, if you want to clear all memory variables at the end of
the program, use the CLEAR MEMORY command. Because it
erases everything from the memory buffer and the next highest
program level may need these variables, using CLEAR MEMORY
is a potentially hazardous situation. Make sure that you under-
stand what you're doing.

It is important that the user return to the standard
dBASE III PLUS working environment, the dot prompt. Always
reset the working environment to the way it was immediately
before your program began. This means changing- all the SET
commands that your program uses. For example, you probably
SET TALK OFF, so at the end of the program just SET TALK ON.
The checkbook management program does this immediately after
determining whether any transactions have been made. SET STA-
TUS ON is left optional; if you want the status bar to appear,
remove the asterisk at the beginning of that line:

Clearing
Memory

* clear variables and return to calling progra~
* or dBASE system
SET TALK ON
SST ESCAPE ON
SET BELL ON
SET NEADIN6 ON
SET NEIP ON
SET SAFETY ON
* SET.STATUS ON
CLEAR ALL
CLEAR
RETURN

Similarly, if you've changed any of the function keys for other
purposes in your program, reset them to their default settings. A
list of these defaults is under SET FUNCTION in the Commands
and Functions reference sections of Using dBASE III PLUS.

PROGRAMMING WITH dBASE III PLUS Pt3-3

~...'4

•

CHAPTER 13

Notice that the program also uses the CLEAR ALL command to
clear out memory variables and close all files. Finally, the pro-
gram CLEARs the screen and RETURNS the user to the dot
prompt. The dot prompt is always on line 21 of your screen.

Working with
the Disk

Without knowing the names of files, your program may have to
choose among many files on the current disk drive, or to deter-
mine how much disk space is available. Here are some standard
operations for dealing with the disk.

Finding a
Database File

Most of the time, your program works with specific database files
that you set up during the design of your project. You open the
file with USE, just the same as at the dot prompt. Because file-
names and relationships are determined during the program
design stage, this method affords you the most control over the
application. However, if the program must request a filename
from the user, use the FILE() function.

The FILE() function returns a logical value, true or false, depend-
ing on whether or not the file specified in the parentheses exists
on the current disk in the current directory. You supply the file-
name as a memory variable (containing the filename character
string) or directly, enclosed in quotes. In addition, FILE() must
have the complete filename, including extension. So, make sure
that you set up the filename correctly by using a memory vari-
able.

Here's a typical program module that requests a dBASE III PLUS
database file, converts it to a full name with extension, and then
ascertains whether it exists on the current drive:

P13.4 PROGRAMMING WITH dBASE III PLUS

.L

'i5~

HOUSEKEEPING

Examining the
Work Area

Your program may need to know what database and index files
are open in the currently SELECTed work area. This is especially
helpful if files are open before the program begins and the pro-
gram has to USE these files later, or if the program doesn't know
the names of the database files.

The DBFQ function returns the name of the current database file
in USE, if any, or a null string if no file is in USE. If there are
several work areas in USE, you must SELECT each one and use
DBF() in each to determine the name of the database file cur-
rently in USE in that work area.

~,

5

* Initialise seeorr variable to hold file naee
* rithout extension
tfile = SPACE(8)
CLEAR
* 6et file naae converted into uppercase
8 10,5 SAS 'Enter the fi lena~e:' 6ET sfi le PICTURE '~!'
READ
* Convert to full filenase rith extension
sfile = LTRIN(TRIM(sfile)) ~ '.DBE'
* Check to see if file is on the disk
IF FILE(sfile)

* Nore cosaands
., (...)

ENDIF

Unless otherwise instructed, the FILE() function searches only the
current drive and directory, even if you SET PATH TO another
directory. If you want to search another directory, include the
path name with the filename in the FILE() function:

. STORE 'C: \DBASE\MORK\' TO path
STORE 'FILE.DBF' TO file
IF FILE (path • file) _
* (. .)

ENDIF _

PROGRAMMING WITH dBASE III PLUS Pt3-5

i

File Size and
Disk Space

,~

CHAPTER 13

Similarly, the NDX() function lists the name of the index file or
files in USE in the currently SELECTed work area. Because
dBASE III PLUS allows up to seven index files to be open for each
database file, the syntax of this function is slightly different than
for DBF(): you must use the number of the index file that you're
looking for. If no index file is open, dBASE III PLUS returns a
null value.

You can use the NDXQ function to manipulate the index files
without knowing their real names:

SELECT 1
STORE NDX(1) TO firstndx
USE File INDEX 8firstndx

You can also determine the names of fields in a database file from
a program, without knowing the structure of the database file,
with the FIELD() function. This function requires an integer from
1 to 128, the number of possible fields in any dBASE III PLUS
database file, as its argument. It returns the field name for the
position in the database file represented by that number:

STORE FIELD(1) to firstfld
60 TOP
DISPLAY 8firstfld

Note that all three functions, DBF(), NDX(), and FIELD(), return
strings. These three ,functions allow your program to work with
any database and index files without knowing the specific file or
field names in advance.

In addition, you can check when the database file in USE in the
currently SELECTed work area was last changed or edited. The
LUPDATEQ function returns a date value. This function is handy
if your program needs to prevent duplication of certain opera-
tions, such as a daily totaling of amounts.

Because dBASE III PLUS needs disk space to INDEX or SORT a
file, the program's ability to determine available space can be cru-
cial. There are three useful functions for dealing with available
space: RECCOUNT(), RECSIZE(), and DISKSPACEQ.

P13~i PROGRAMMING WITH dBASE III PLUS

•

HOUSEKEEPING

The RECCOUNT() function gives the total number of records in a
database file. This number always 'includes records marked for
deletion, even if SET DELETED is ON. Use this function to see if
a database file is getting too big:

USE Napes
IF RECCOUNT() > 2000

? tNR(7)
8 10,10 SAI 'Tire to delete a fey records'
* (...)

ENDIF

The RECSIZEQ function gives the size, in bytes, of one record in
the database file. It presents the sum of all fields in a record. One
byte equals one character of information, such as a letter or punc-
tuation mark. To get the total size of all records in the database,
multiply RECSIZE() by RECCOUNT():

r USE°Napes
STORE RECCOUNT() * REtSIZEt) to size

This is not the total size of the database file, because -

dBASE III PLUS also maintains what it calls a header of infor-
mation in the database. The header keeps track of field names,
lengths, and types. You must add the size of the header to the cal-
culation of total file size. To determine the size of the header, first
you need to know the number of fields in the database file. To get
this number, use the following program:

USE Naoes
nusfields = 0
null = ""
00 YHILE null < FIELD(nu~fields + 1)

nunfields = nunfields + 1
EMDDO
USE .

PROGRAMMING WITH dBASE 111 PLUS P13-7

:y

•~

~.~. ~'

 •

 CHAPTER 13

The DO WHILE loop increments the number of fields variable,
numfields, by one, as long as the value of the FIELD() function,
which is a string, is greater than the null string. Recall that a null
string has a length of 0. So, if there is a field corresponding to
numfields + 1, the result of the FIELD(numfields + 1) function
will be the name of the field, that is, a string that is larger than
null. However, as soon as the DO WHILE loop gets to the field
number after the last field in the database, FIELD(numfields + 1)
returns a null value and the loop terminates.

Once you know the number of fields in a database file, you can
find out the size of the database file header by multiplying the
number of fields in the database times 32 and then adding 34:

header = (32 * nunfields). + 34

Using all the above modules and memory variables, the program
can compute the size of the entire database, that is, the total
records plus header and the end-of-file marker, which takes up
one byte:

totatsize = size +. Meader + 1

The program can then compare the total size of the database file
with the amount of space left on the disk. The DISKSPACE() func-
tion returns the available disk space in bytes. You can use
DISKSPACEQ~with RECCOUI~ITQ and RECSIZEQ to ensure that
there is enough room for a backup or temporary file.

For example, your program has determined the total size of a
database file and STOREd this amount in the totalsize variable.
Before the program SORTs this file, it can test to see if there is at
least twice as much space as the size of the file on the disk to
accommodate the sorted file:

P13-8 PROGRAMMING WITH dBASE 111 PLUS

b

t

HOUSEKEEPING

USE File '
* Deter~ine size of file and STORE in variable totalsize
* See above exa~ples using FIELD(), RECCOUNTt.), and RECSIZEt)
* t. .)
* Mhen~that is done, check space
IF DISKSPACEt) < totalsize * 2

? CHR(7)
~ 10,10 SAY "There isn't enough roo~ on the disk to sort ;

this file"

i
i

t •

P13-9 . PROGRAMMING WITH dBASE 111 PLUS

3

:~

i

ELSE.
SORT ON A~ount DESCENDING TO Te~p

ENDIF

Another use for DISKSPACE() is to allow a program to back up a
large file from a hard disk to several floppies by copying only a
certain number of records. Check out the example of this opera-
tion under the RECSIZE() function in the Commands and Func-
tions sections of Using dBASE III PLUS.

File
Maintenance

You've probably devised your own methods and schedule for man-
aging your disk files. Here are some additional suggestions.

i

NOTE
Depending on how complicated they are, index files may take
up more disk space than the original database file. A SORTed
file generally takes up the same amount of room, if all
records are SORTed. However, a SORT requires that there be
twice as much disk space available as the size of the file.

Copying Files
and Backups

 CHAPTER 13

Deleting and
Renaming
Files

You must know the complete name of a file in order to delete or
rename it. So, use the technique outlined under the FTLE() func-
tion to include the file extension in the name. Better yet, try to
get your user to give you the complete filename. Use a template
as a guide:

file = SPACE(12)
8 1010~`SAY 'Enter na~e~ of file to delete'
8 12,10~~SA1l ' including file extension:'
8 14,5 6ET file PICTURE '~~~~~~~~ ~~~'
READ
STORE LTRIN(file) to file
IF FILE (~fi le)

ERASE- 8fi le
ELSE

? CNR•;(7)
8 18,;10~SAY 'There is no file by that nape on the disk'

ENOIF
* (...)

You can't use wildcards with the ERASE or RENAME commands
to delete or rename groups of similarly named files. You must
repeat the deleting or renaming step for each file.

You use temporary scratch files from ASSIST or the dot prompt
when you COPY certain or all records from a database file. Your
program can make use of scratch files for the same purpose. It is
important that the program first ascertain whether there is
enough space on the disk for the copied file. Periodically, your
program should also make backups of all database files, including
index files.

WAR11iI11iG •
If you have a hard disk, don't use the DOS RESTORE com-
mand to restore backup files without first uninstalling
dBASE III PLUS.

Pt 3-10 PROGRAMMING WITH dBASE III PLUS

M1

:~

Using Scratch
Files

Importing and
Exporting Files

Modifying a
Database
Structure

HOUSEKEEPING

You've seen that the use of scratch files is not unique to program-
ming. You have already learned that many accounting firms main-
tain all daily transactions in a temporary posting file. Periodi-
cally, they update the general ledger file with the information
from the posting file. Consider using scratch.files if your program
makes many changes to the database file. Scratch files are merely
copies of the original database files to which changes or additions
are made. Be sure to provide for frequent and periodic updates of
the scratch files into the main database file. Delete unnecessary
scratch files when you're finished with them so that you don't get
confused.

Copying files usually refers to making an exact copy. However, if
your program has to copy, or import, files that are in another for-
mat, such as files originally created in WordStar's non-document
mode, you will either use the APPEND FROM <filename>
DELIMITED or the APPEND FROM <filename> SDF command.
Similarly, if you want to copy dBASE III PLUS files to another
format, or export them, use the COPY TO DELIMITED command.
There are also special commands, IMPORT and EXPORT, for
working with files in the pfs:FileTM format. Look in Using
dBASE III PLUS for more information about these commands.

One full-screen command to avoid using in your programs is
MODIFY STRUCTURE. Think of what could happen if your users
were allowed to change the structure of a database file. There is a
dBASE programming alternative for MODIFY STRUCTURE
which, again, gives you more control over what's happening and
allows you to verify the user's request before actually changing
the database.

To modify the structure of a database file from a program, first
COPY the file's structure to a temporary database file, using the
EXTENDED option. This option turns the structure into a series
of records. Deleting or changing the records that you don't want
actually deletes or changes the fields. You then use the CREATE
FROM command to create a database file with the new structure
and, finally, the APPEND FROM command to bring in the original
records.

PROGRAMMING WITH dBASE 111 PLUS P13-11

i

;1

 CHAPTER 13

•

Start dBASE III PLUS, SET the DEFAULT drive, and insert the
Sample Programs and Utilities disk in this drive. Then, USE the
Checks.dbf file from the checkbook management system. The fol-
lowing exercise shows how to modify a database file structure
from within a program.

WARNING
If you want to work along with this example, make a copy of
the Checks.dbf file first. Do NOT use the original.

If you DISPLAY the STRUCTURE of the Checks.dbf file, here's
what you would see:

Structure for database: B:checks.dbf
Nusber of data records: 0
Date of last update 06/10/85
Field Field Nape Type Yidth Dec

_ 1 CHKNO Nueeric 4
2 PAYTO Character 30
3 AMT Nu~eric 10` 2
4 CAN Logical 1
5 DATE Date 8
6 MEMO Character 2S
7 TAX _ .Nu~eric 1

** Total ** 80

To modify the structure from a program, first COPY this struc-
lure TO a temporary file STRUCTURE EXTENDED:

USE Checks .
COPY TO Tesp STRUCTURE EXTENDED `
USE Tesp

P13-12 PROGRAMMING WITH dBASE 111 PLUS

•~

HOUSEKEEPING

The fields of the original Checks.dbf file become a series of
records in the Temp.dbf file, each record identified by four fields,
Field.~ame; Field_type, Field_,.len, and Fielcl_dec:

Structure for database: e:te~p.dbf
Nuaber of data records: 7
Date of last update 06/26/85
Field Field Nase~ Type Yidth Dec

1 FIELD NAME Character 10
2 FIELD TYPE Character 1
3 FIELD LEN Nu~eric 3
4 FIELD_DEC Nu~eric 3

*t Total ** ~ 18

PROGRAMMING WITH dBASE III PLUS P13-13

If you LIST this file now, here's what you would see:

Recordp FIELD NAME FIELD TYPE FIEID_LEN FIELD_DEC
1 CNKNO N 4 0
2 PAYTO C 30 0
3 AMT N 10 2
4 CAN L 1 0
5 DATE D 8 0
6 MEMO C 25 0
7 TAX N 1 0

Request from the user which records to DELETE. You're actually
deleting fields and thus modifying the structure of the original
database file. For example, if you wish to eliminate the Tax field,
have the program:

DELETE RECORD 7

You can also use the REPLACE command to REPLACE afield
with another value to change the type or length. For instance, to
reduce the length of the Payto field to 25 characters:

REPLACE Field len YITN 25~FOR Field,eaee = "PArTO"

. ~ ~~

•~

..p=,
. ,~..r

•

 CHAPTER 13

After the program has made all necessary changes and asked the
user to verify that the changes are correct, PACK the file, if any
fields were DELETEd, and then save the .changed file with USE.
Finally, set up a new file from the extended structure of the
Temp.dbf file with the CREATE FROM command. This command
only works with extended structure files:

CREATE Ner FROM Te~p

The records in the Temp.dbf file now become the fields in the
New.dbf. file. The program then APPENDS the records from the
original Checks.dbf file to New.dbf:

APPEND FROM Checks

Finally, close the New.dbf file, delete the old files, Temp.dbf and
Checks.dbf, and rename the new file to the original file,
Checks.dbf:

USE
DELETE FILE Te~p.dbf
DELETE FILE Checks.dbf
RENAME Ner.dbf TO Checks.dbf

 •

Pt3-t4 PROGRAMMING WITH dBASE III PLUS

. ~ ,

What This
Chapter
Covers
Preparing for
This Chapter
The Setup

Chapter l4
PUTTING IT TOGETHER

In this book, you've seen how dBASE programming accomplishes
specific tasks, such as getting user input and working with data-
base information. By looking at a completed program, you'll also
get a larger view of how the tasks interact.

As an example of how an entire program module works, this
chapter steps you through the Cancl.prg file, which registers can-
celed checks.

Know the basics of dBASE programming, and have your printout
of the Cancl.prg file handy.

When the user chooses D from the main menu, the main program,
Cbmenu.prg, branches to the subprogram, Cancl.prg. First,
Cancl.prg opens the Checks.dbf database file and its correspond-
ing II~IDEX, Chkno.ndx:

USE Checks INDEX Chkno

Cancl.prg then branches to Chkmask.prg, which draws a check
display on the screen. The checkbook management system uses
this display in two other subprograms that deal with checks:
when it adds checks, Checlc.prg, and when it edits or voids checks,
Editvoid.prg. Above the check representation, Cancl.prg then
presents the title CHECK CANCELLATION ROUTINE on row 1 at
column 26.

PROGRAMMING WITH dBASE III PLUS P141

.~

n

* check to see if there are any records-in Checks.O6F
IF RECCOUNT()= 0-

8 18,21 SAS "There are no checks in the file"
YAIT SPACE(19)+"Press any key to return to the Main ■enu
CLOSE DATABASES
RETURN

EMOIF

I

~,
•

CHAPTER 14

CREC1i CANCELLATION ROUTINE

Enter Check NuMber to be canceled (or 0 to exit) ~

i

v

NeNo '

Dollars

Pay To The- Order Of,

NuMber

Date

S

0

..
r

ti.._

.~

;;

•,~ ,

, ~~.

f.

,q~

S ,
x~~'
7. .

r

'i

ti ,~
,

_• -.~

~,

.: ~.
~r

e''

Fgure 141 The beginning of the check cancellation program

Even before the user can enter canceled checks, Cancl.prg verifies
that there are indeed checks that can be canceled. If not, it gives
the user a message to that effect:

•

Cancl.prg uses the RECCOUNTQ function to determine whether
the number of records in Checks.dbf is equal to 0. It isn't con-
cerned with the content of the records yet. It just checks to see if
there are any records. If there are no records, Cancl.prg doesn't
continue. To allow the user time to read this message and act on
it, Cancl.prg uses the WAIT command. When the user presses any
key, the program CLOSEs the DATABASE and RETURNs to the
main menu.

If there are checks to be canceled, the program establishes the
controlling loop for the rest of the check canceling routine:

DO YNILE .T.

P142 PROGRAMMING WITH dBASE 111 PLUS

~;

i

Getting User
Input

NOTE
Even though mcan contains 0, the PICTURE clause regulates
how large an integer number the user can type. The entire
checkbook management system is set up for check numbers
of four digits or less. You may wish to change the PICTURE
clause for larger check numbers. Make sure, however, that
you also MODIFY the STRUCTURE of the Checks.dbf file to
increase the length of the Chkno field and then INDEX the
database file ON Chkno TO Chkno. Change references to
check numbers in the other subprograms, too.

IF scan = 0
EXIT

ENDIf

PROGRAMMING WITH dBASE 111 PLUS P143 ~

.)

1

F

t

 PUTTING IT TOGETHER

The DO WHILE .T. loop continues to request a check number and
repeatedly goes through the check cancellation process, so that
the user can cancel more than one check.

Cancl.prg is ready to request a check number from the user. It
initializes a memory variable, mcan, to hold the user's input of
the check number. It then requests the user to type the check
number:

ocan = 0
*-input check nu~ber to be canceled
of 18,11 SAY "Enter Check Nu~ber to be canceled (or 0 to exit)";

GET scan PICTURE "9999" RANGE 0,
READ

The RANGE clause makes sure that the user doesn't input a nega-
live check number.

Testing for
Conditions

Eventually, the user finishes canceling checks and returns to the
main menu. After the user enters a~ check number, Cancl.prg first
ascertains whether this number is 0 and, if so, EXITS the loop:

~r

Once the user has typed in a check number greater than 0,
Cancl.prg CLEARs the screen at row 18 and looks for the check
number in the database file:

When determining what conditions to test, the order is important.
First, test for check number 0. That way, Cancl.prg doesn't con-
tinue if the user just wants to return to the main menu.

8 18,0 CLEAR
* search for canceled check nusber
SEEK ■tan

The Checks.dbf file is INDEXed on the Chkno field, which is
numeric. So, Cancl.prg uses SEEK. There are now four possible
conditions:

• There is no check number at all in the Checks.dbf file, which
means that the user has entered an incorrect check number.

• .The check number exists, and the check has not been
canceled.

• The check number exists and the check has not been canceled,
but this isn't the right check.

• The check number exists, but the check has already been can-

celed.

Cancl.prg handles these conditions in the next IF...ENDIF con-
struction. However, it breaks down these four conditions by nest-
ing them within the main condition test, which checks to see if
there is a check number at all:

. IF FOUND()

If the check number, that is, the record containing this number in
the Chkno field, is not FOUNDQ, Cancl.prg displays a message to
that effect. This situation is handled in the ELSE command at the
end of the IF FOUND() command:

* check is not in file
a 2021 SAY "Check "+LTRIN(STR(mcen,4))+" cannot be found."
MAIT SPACE(20)+"Press eny key to continue"

P14-4 PROGRAMMING WITH dBASE III PLUS

•

CHAPTER 14

l

•

•

~~

PUTTING IT TOGETHER

Cancl.prg converts the mcan variable to a string to include it in
the display. Because dBASE III PLUS pads a numeric integer with
blanks when it converts the number to a string, the program uses
the LTRIMQ function to trim these leading blanks.

The second and fourth conditions are also handled with one IF
clause. If there is a check number, then it must either be canceled
or not canceled. Cancl.prg uses a logical field in Checks.dbf, Can,
to govern this and an IF construction nested within the first IF
construction to test for the condition. If the check has already
been canceled, Cancl.prg displays a message:

IF Can
8 18,19 SAY "This check is already canceled"
YAIT SPACE(22)•"Press any key to continue"

The final condition is whether the check number, which has been
found and which is not canceled, is indeed the one that the user
wants. The program handles this situation with a DO WHILE loop
to accept only a yes or no answer from the user:

ansrer = " "
DO YNILE .NOT. ansrert"YyNn"

ansrer = " "
a 18,23 SAY "Is this the right check? (Y/N)" 6ET ansrer
READ

END00

After Cancl.prg has evaluated all the above conditions, if the
uncanceled check is the correct one and the user presses y or Y,
the program changes the logical field Can by REPLACEing .F.
with .T. and displays a message. If the user types n or N, the pro-
gram merely displays an appropriate message:

IF UPPER ansrer)="Y"
REPLACE Can YITN .T.
8 20,34 SAY "CANCELED"

ELSE
8 20,32 SAY "NOT CANCELED"

EMDIF

PROGRAMMING WITH dBASE 111 PLUS P145

•

 CHAPTER 14

The ELSE section of the IF FOUND() construction actually han-
dles two different situations: it acts if no check number is found,
and it clears the screen display if a check number is found and
canceled. Because the screen doesn't change if the check number
isn't found, the command lines to clear part of the screen seem
inoperative. However, if a previous check was displayed, it is
erased from the screen so that the user is not confused. These
lines are:

E 4,71 SAY SPACE(4)
~ 6.68 SAY SPACE(8)
B 8,25 SAY SPACE(30)
E 8,66 SAY SPACE(10)
8 14,10 SAY SPACE(25)

Cancl.prg uses a little trick. The lines always execute, but for
unfound checks, there's no screen display anyway. So, there's no
visible change on the screen. For found checks, the lines clear the
screen display of the check information without clearing the
check border display. Moreover, because all messages appear on
row 20, the command

8 20,0 CLEAR

erases any message. With a thoughtful design, you can eliminate a
great deal of unnecessary code.

At this point, the DO WHILE .T. loop repeats the entire procedure
and asks the user for another check number until the user types
0. As a convenience, Cancl.prg then shows the user a list of the
currently uncanceled checks:

The Cleanup
Section

P146 PROGRAMA+IING WITH dBASE 111 PLUS

•

r ~f

PUTTING IT TOGETHER

* display to the screen a list of reeaining uncleared checks
CLEAR
? SPACE(1T) + "LIST OF RENAININS UNCLEARED CBECKS"

? "CNKNO PAID TO AMOUNT DATE NENO"
? LEFT(shoriz,S)+" "+LEFT(shoriz,30)+" "+ LEFT(shori:,10)+" "+;

LEFT(shoriz,8)+" "+LEFT(shoriz,l4)
DISPLAY OFF ALL Chkno,Payto,Ast,Date,TRIM(NeAo) FOR .MOT. Can

YAIT SPACE(13)+"Press any key to return to the Main Menu "

Notice how Cancl.prg uses'the LEFT() function to break the shoriz
variable, which is a horizontal line in the Chkbook.mem file, to
use as underscores for the various titles on the screen. This is a
good example of how to save space by reusing the same display
variable in several situations.

Finally, Cancl.prg closes the Checks.dbf and Chkno.ndx files,
which are part of the databases, and then returns to the calling
program:

CLOSE DATABASES

RETURN

?

Remember: open database files only as you need them, and close
them as soon as you're finished. This cuts down on potential
problems from power shortages, from rebooting, or from turning
the computer off accidentally.

With the Cancl.prg module as an example, you have stepped
through a typical dBASE program to see how the various compo-
nents fit together to work as a whole program.

Summary

PROGRAMMING WITH dBASE III PLUS P147

•

i

What This
Chapter
Covers

In this chapter you will learn:

• What the most frequent programming errors are and how to
look for them

Preparing for
This Chapter
What to
look for

.... :..

 ,;.,~
."- .;,- ,

Chapter 15
TESTING AND DEBUGGING THE PROGRAM

Once you've completed your program, test it and correct the mis-
takes. Correcting mistakes is known as debugging the program.
You test and debug programs simultaneously.

• The steps to testing and debugging a program

• The built-in dBASE debugging commands

• The two basic ways to debug programs during the run of a
program: suspending the program and stepping through the
program

• Other debugging techniques that you can use during program
development

Have a thorough understanding of dBASE programming before
doing this chapter.

There are several types of programming mistakes: (f) misspelling
commands, (2) forgetting to separate commands from their
expressions with at least one space, (3) syntax errors, that is,
using a command incorrectly, (4) issuing an incomplete command,
(5) run time errors.

If you're good at spelling, spelling errors aren't difficult to catch.
Printing your program files and proofreading them for spelling
mistakes is the most effective way to catch them.

PROGRAMMING WITH dBASE III PLUS P15-1

~.

CHAPTER 15

dBASE III PLUS groups errors in spacing and incomplete or
incorrectly used commands under syntax errors. These errors are
more difficult to pinpoint, but here are some general clues to
guide you:

• Check the proper spacing between commands. Remember that
every command must be separated by at least one space from
the other information on the command line. You can catch
this type of error when you proofread your files.

• Make sure that you haven't misspelled memory variable
names, file names, and field names.

• Check to see that all PUBLIC variables are declared PUBLIC
before you use them, and that you never declare a variable
PUBLIC more than once.

• Watch out for data type mismatches. For example, don't
attempt to SAY a date field and a string field with the same
command. Use string conversions to correct this type of mis-

perform a numeric operation, such as SQRT(), on a non-
take. Adata type mismatch also occurs when you attempt to

numeric field or memory variable. _

• Check and double check the order of the arguments in a com-
mand line. For example, this command line is incorrect:

a 10,10 6ET ■naae SAY "Enter client's nase:"

The correct form is:

it 10,10 SAY "Enter client's naee:" 6ET enaae

• Be careful about providing the correct options in commands
when you use them. For example, this is incorrect:

DO FOR Nape = "S~ith"

The correct form is:

DO YNILE Nape = "S~ith"

P15-2 PRCiGRAMMING WITH dBASE III PLUS

S .

.AND.

STATE _ ZIP < 91400
'CA'

Figure 15-1 How logical .AND. works

a

I
s

i
s

i
i

•

TESTING AND DEBUGGING THE PROGRAM

Run time errors are by far the most difficult bugs to find. They're
called run time errors because they don't appear until you actu-
ally run the program. Most run time errors are mistakes in logic.
You may think your code is correct, but the program doesn't do
what you expect. Either you're not writing the commands as
dBASE expects them, or your logic is different.

One of the most frequent types of mistakes in logic occurs when
you've misused the logical operators themselves. It's important to
remember the distinction between .AND. and .OR. Keep in mind
that logical .AND. means that both the first condition and the sec-
ond condition must be true. Logical .OR. means that either one or
the other condition must be true.

When using these operators, it may help you to think graphically
and to draw circles to illustrate how the conditions evaluate. For
example, to show in a diagram what this line means:

DISPLAY FOR State = :CA' .AND. iip < 91400

the intersection of the circles, that is, the shaded area, illustrates
where both conditions are met:

•

1
i'
i

PROGRAMMING WITH dBASE III PLUS P15-3

•'

i

CHAPTER 15

Figure 1r2 How logical .OR. works

The shaded area indicates where either one or the other condition
is met.

Another logic mistake occurs when you misunderstand how to use
logical .T. and .F. in situations calling for reverse logic. For exam-
ple, this line:

However, this command .

DO YHILE .NOT. E0F()

means: do while the end-of-file condition is false, that is, not true.
Keep track of trues and falses. Check Using dBASE III PLUS for
more help with logical operators.

•

DISPLAY f0R State = 'CA' .OR. tip < 80000

would look different in a graphic representation:

.O R.

STATE _ .ZIP < 80000
'CA'

.~

a i

.~

i 3

P15-4 PROGRAMMING WITH dBASE 111 PLUS

a

•~

•

TESTING AND DEBUGGING THE PROGRAM

Steps to
Testing and
Debugging

In Chapter 1, you learned that the modular approach to program-
ming is preferred. If you get used to writing modular programs,
you'll discover that they have another important advantage. You ,
can test and debug modular files as you write them. Because
these modules are as small as possible, and generally do one spe-

cific task, you can test and debug them quickly. dBASE III PLUS
gives you a variety of commands that facilitate testing and debug-

ging. Before you investigate these commands, get to know the
basic steps to testing and debugging your programs:

1. Write each module, document it as you write it, and test it as
soon as you've finished it.

2. Use the built-in debugging features with other techniques to

debug your program modules as you go.

3. When you have tested a module, and it appears to work cor-
rectly, go to the next module.

4. After you've completed the necessary modules that go
together, combine them into a composite program. Run and
test this new, composite program, using the same features.

5. Continue to build your programs in larger units, gradually
adding new, thoroughly tested modules.

6. When the entire project is completely assembled, do thorough
testing of it, too.

7. Give your program to others for their independent testing.
This is called alpha testing. It occurs before you actually
begin using the program. Correct any mistakes, again using
the built-in dBASE features.

8. When the .program passes the alpha test stage to your satisfac-

tion, let a limited number of users test it. This is the beta test
stage. Make sure'that those users running the program know
how to document any problems that they discover during the
testing.

PROGRAMMING WITH dBASE III PLUS P15-5

.• •

•

The
Debugging
ComEnands

Using the
History Buffer

•

CHAPTER 15

9. After the program has passed the beta test stage, it's ready to
be used by others. However, never consider a program bug-
free. Testing and debugging never really end. A good program
may not exhibit bugs for months, even years, after it's in gen-
eral use. With good documentation, you will be able to find
and fix even the most elusive bugs.

These steps mirror the top-down approach of the design stage.
When you have finished your modules, assemble them in larger
and larger units, starting from the bottom and working your way
up to the top, until finally you have the finished application pro-
gram.

TIP
Before attempting to correct a bug in a program that's in the
alpha and beta test stages, make a copy of the program file,
in case your newly debugged version doesn't work. You can
then go back to the original ~f your attempt at debugging
takes you too far astray. Occasionally, you may find that the
best way to debug a program module is to rewrite it entirely.

dBASE III PLUS has commands that allow you to test and debug
programs as you run them. They are, in alphabetical order,
RESUME, SET DEBUG, SET DOHISTORY, SET ECHO, SET HIS-
TORY, SET STEP, and SUSPEND. How you use them depends on
the way you want to debug your programs.

3
One debugging method is to check the most recent commands
that you issued. dBASE III PLUS automatically keeps track of the
last 20 commands that you enter at the dot prompt. This is known
as the history buffer. At any time, you can use the ? key to see
the commands currently in the buffer to determine what led up to
a mistake.

•

P15-b PROGRAMMING WITH dBASE III PLUS

i

.!

I a

•
I

TESTING AND DEBUGGING THE PROGRAM

Using the history buffer also lets you repeat a command without
retyping it. Just press the ? key to move to the command you
want, and press ~ to reissue the command.

ti

.~

You can set the number of command lines stored in the buffer to 0
be more or less than 20 with the SET HISTORY TO command.
For example,

SET HISTORY TO 30

instructs dBASE III PLUS to retain the last 30 commands in the
buffer . You can also use DISPLAY HISTORY and LIST HISTORY
to view the contents of the buffer. DISPLAY HISTORY pauses the o
screen, whereas LIST HISTORY does not. _
Normally, dBASE does not record commands from programs in ;
the history buffer because it is slow and there is usually no need
to do this. However, sometimes a particular program has a prob-

lem and you can't figure out what's going on. If you SET `
DOHISTORY ON, that tells dBASE to record in the buffer the
commands in the program in the order of their execution. You
may discover by doing this that the statements are not executing
as you expected. If you want dBASE III PLUS to retain more than -

201ines of code in the buffer, SET HISTORY TO another integer
number at this point.

Then, when you test your program, if dBASE III PLUS finds a
command that is incorrect, it stops execution of the program and
gives you an error message, such as Syntax error or Data type r
mismatch. However, it also presents 'you with a choice about
what to do next:

Cancel, Ignore, or Suspend? (C, I, or S)

When debugging programs, you would type S to SUSPEND the
program..dBASE returns to the dot prompt, but leaves the pro-
gram's working environment, including memory variables, intact
in active memory, and keeps all database files open. To see what
command line in the program caused the program to stop, you
would type DISPLAY HISTORY at the dot prompt.

PROGRAMMING WITH dBASE 111 PLUS P15-7

•

i

 CHAPTER 15

dBASE shows you the contents of the history buffer and allows
you to edit the incorrect line. You would resume running the pro-
gram by typing RESUME at the dot prompt.

This type of interactive debugging is an effective way to catch
program errors and make corrections during the run of the
program.

NOTE
When correcting errors with SUSPEND and RESUME, the
changes don't alter the original program file. Therefore, it's
important to keep track of your changes. Later, use MODIFY
COMMAND to make your changes permanent in the program
file.

If you choose to CANCEL the entire run, dBASE III PLUS returns
to the dot prompt and clears memory. See below for more infor-
mation about the CANCEL command. If you choose to IGNORE
the error, dBASE III PLUS continues to run the program.

The history buffer only records the commands that were executed
during the program run. For example, if you have a series of
CASE lines, the CASE statements are executed in order until one
evaluates as true. Then, the commands associated with that CASE
statement are executed and the ENDCASE is executed. If there is
a problem, dBASE shows you the commands in that CASE state-
ment. Here is an example. Something has gone wrong when you
press C, and the program has stopped. When you DISPLAY HIS-
TORY, dBASE III PLUS shows you these lines:

P15~ PROGRAMMING WITH dBASE III PLUS

Stepping
.through the
Program

a

~~ !

TESTING AND DEBUGGING THE PROGRAlv1

DO YRILE .T.
CLEAR '
R 10,10 SAY 'Yhat is your choice?' 6ET choice PICTURE '!'
READ
If choice t ('A9CD')

DO CASE '
CASE choice = 'A'

* There are co~~ands here, but they don't pertain
* to the probie~, so they don't appear in
* the history buffer

CASE choice = 'B' ,
* Sage for this choice_

CASE choice = 'C'

dBASE III PLUS shows you the command lines executed prior to
the DO CASE statement and the command line for the C choice,
but not the command lines for the other CASE statements.

* T,his ras the proble~ line:
DO Cancel

The other way to debug programs allows you to see each program
command line on the screen or the printer as you run your pro-
gram. These commands are helpful if you can't isolate the sus-
pected bug within the 20 or so lines of the history buffer. For
example, if you have a lengthy IF... ENDIF construction, you
might not find the mistake in the buffer.

With SET ECHO ON, dBASE III PLUS shows each program line
on the screen. The program continues to run unless a major error
occurs, so you can check what command does what operation.
Using SET STEP ON, however, steps you through the program
one command at a time. The program stops after each command
and only continues when you tell it.

With SET ECHO ON, both the commands in the program and the
program's own screen displays appear on the screen. The two will
probably get in the way of each other. If you use SET DEBUG ON
with SET ECHO ON, dBASE III PLUS routes the listings of com-
mands to the printer rather than to the screen.

PROGRAMMING WITH dBASE III PLUS P15-9

9V

r-.

Checkbook Management System

CLEAR
@1,10 say'_

@2,5 say_
@3,5 say;

 CHAPTER 1 S

Screen

SET ECHO ON
SET DEBUG ON

Printer

Figure 15-3 Using SET ECHO ON with SET DEBUG ON

So that the screen displays of the program are not disrupted, the
actual command lines are routed to the printer.

So, to step through the program as it's running, first SET STEP
ON and SET ECHO ON immediately before running the program.
Use SET DEBUG ON if you want a printout of the debugging ses-
sion. dBASE III PLUS shows each command line on the screen.
Then it gives you this choice:

Press SPACE to step, S to suspend, or Esc to cancel...

If you wish to SUSPEND the program and check the history
buffer, make sure that you also SET DOHISTORY ON before run-
ning the program. The normal way to use the SET STEP ON/SET
ECHO ON procedure is to press the Spacebar to step through
each command. When you get to the point where a problem
occurs, you can examine your code with SUSPEND and DISPLAY
HISTORY, make any changes and try continuing the program run,
or cancel the entire program by pressing the E.sc key.

TIP .
During the initial stages of testing and debugging,_ use the
DOHISTORY/SUSPEND/RESUME procedure for debugging. If
you still have problems finding the mistakes, use the SET
ECHO/SET STEP/SET DEBUG commands.

P15-10 PROGRAMMING WITH dBASE 111 PLUS

..-: .~,.

TESTING AND DEBUGGING THE PROGRAM

P

f

Sometimes, even with the above debugging aids, you'll find that
you just -can't isolate a mistake. In this case, you could try some
other debugging techniques.

During program testing and debugging leave SET ESCAPE ON,
the default. Then, with SET DOHISTORY ON, you can interrupt
the program yourself by pressing the Esc key, and
dBASE III PLUS will give you the same choices:

Cancel, Ignore, or Suspend? (C, I, or S)

The advantage to this approach is that you can check program
code during the run, even though the code doesn't necessarily
cause dBASE III PLUS to interrupt the program. Later, you can
SET ESCAPE OFF so that the user can't stop the program with
the Esc key.

You can also use the command ON ESCAPE SUSPEND, which
bypasses the above message and automatically suspends program
execution when you press the Esc key.

Many times a problem occurs because the memory variable is
incorrect, nonexistent, or of the wrong type. To determine if this
is so, insert the SUSPEND command into your program at the
suspected trouble spot. When the program SUSPENDs, you would
type DISPLAY MEMORY to view the variables. You could continue
the program by typing RESUME, or you could type CANCEL and
correct your errors.

This is a good way to work your way through a complex program
file. When you've isolated and corrected your mistake, make sure
that you delete the SUSPEND command from your program.

Because the DISPLAY STATUS command shows you the working
environment, use it for debugging by substituting DISPLAY
STATUS for DISPLAY MEMORY in the above instructions. If
you're working with a database file, use one of the DISPLAY or
LIST options to pinpoint a problem.

~~
i

Other
Debugging
Tricks
Using the Esc
Key

DISPLAY
MEMORY and
DISPLAY
STATUS

P

i'

PROGRAMMING WITH dBASE III PLUS ~ ~ Pt 5-t t

.~

i

s

... _ ~ ~

~.... _

;_..

..

NOTE
The CANCEL command is abrupt. It closes all program files
and RELEASES all variables from active memory. This can
hinder your efforts to find the problem in your program. For
this reason, use SUSPEND and DISPLAY MEMORY. Neither
CANCEL nor SUSPEND closes database files in USE, so
be sure to CLOSE DATABASES either before or after you
CANCEL your program.

Keeping a
Record of
What's
Happening

~~

•

 CHAPTER 15

Another useful trick is to use the SET ALTERNATE command to
save what's happening on the screen in a disk file. SET ALTER-
NATE TO <filename> sets up the file in which this record will
be kept. dBASE III PLUS appends the file extension .txt to the
filename unless you specify another extension. The SET ALTER-
NATE ON command starts the recording by opening the file. SET
ALTERNATE TO without a filename closes the file and stops
recording.

The best way to use this trick is with the DISPLAY MEMORY and
DISPLAY STATUS commands at those points in your program
where you've discovered bugs. For instance:

-~.
~' * Set up file Proble~s.txt to record
` v* chat's happening on the screen
-.'SET ALTERNATE TO Proble~s
* Open file:fo receive screen output
SET ALTERNATE ON
DISPLAY NEMORr
DISPLAY STATUS
* Close file
SET ALTERNATE TO
YAIT '"
CANCEI

P15-12 PROGRAMMING WITH dBASE 111 PLUS

The ON
ERROR
Command

•'

• • .
.~ •;.

:':-,.

~';.

TESTING AND DEBUGGING THE PROGRAM

You can refer to this file later to check what was in the active
memory. Use the TYPE command to view the file, ~or MODIFY
COMMAND with the filename, including the .txt extension. In a
similar fashion, you can get a printed list like this:

DISPLAY NENOR~ TO PRINT
YAIT
CANCEL

Make sure the printer is on before you run the program. If you
use the DOHISTORY technique, you can also SET PRINT ON
immediately after the program run is SUSPENDed and before you
LIST HISTORY to get a snapshot record of the debugging step
and what's going on in the computer at that point.

You can also set up the ON ERROR DO < program filename>
command to alert you when an error occurs by branching to a
subprogram specifically designed to handle such errors. This
command stays in effect throughout the program run, unless you
turn it off with ON ERROR. The following module SETs
DOHISTORY ON. If an error occurs, it branches to Error.prg,
listed below, which gives you a message and automatically
DISPLAYS HISTORY. Use this setup before you begin testing a
program:

SET DONISTORI ON
ON ERROR DO Error

Error.prg contains these lines:

* ERROR.PR6 °tells you that an error occurs and
* shops'you the progra~ code responsible
CLEAR -
~ 1010 SAY "An error has occurred!" .
DISPLAY HISTORY' ~'~
YAIT -. -
RETURN

See also the discussion of the new ERROR() and MESSAGE() func-
lions, and the RETRY command in the next chapter.

PROGRAMMING WITH dBASE III PLUS P15-13

•~

 •

CHAPTER 15

TIP
Whatever debugging techniques and commands you use, make
sure that you turn these commands off, or delete the debug-
ging commands from your program files when you're finished

. testing and debugging your programs.

:•

P15-t4 PROGRAMMING WITH dBASE 111 PLUS

.~,

•`0'

Jy _r>
~~ x \. .A

i, E~ sa ~~j 'z'"' ~ ~i~t~.s~~~,f~'~'a'~~' i ,~"~t~fT'~tdi
~'cc".~i Ga", ?~~! St„ a l .`~ l~ ~~ tij ~ t D r mow, s

al' ~ 1 a r.~

q
fI ~ r0 i

't

~1~1e

_•.+~~u
l'

~,~i ie

° ~~

.. • ~

_-

1

i, s.-5-

.~.

Chapter 16

. ~~~ ~ ro
,, : ~ . .

.:...

:°a MORE ADVANCED FEATURES

This chapter discusses some of the more advanced features of
dBASE III PLUS and serves as a bridge to your own independent
study of dBASE programming. You will learn: .

What This
Chapter
Covers

.,

• A shortcut for IF...ENDIF constructions: the IIFQ function

• What PROCEDURE files are and how to use them

.. .

• How to hide a PUBLIC memory variable temporarily within a
subprogram

• How you can use parameter passing to make generic program
modules that work in any situation

• How to retry commands after rectifying an error condition

•i

..

:,
;•;:.

• How to use assembly language routines in dBASE programs

• Ways to work with the operating system and exchange data
between dBASE III PLUS and other applications

----~

0

,'
. ~ ,,

= ~~

• How to set up a turnkey system

. ..
:..•:

:~ dBASE has programming features that speed up your programs
and make them more efficient. These features allow your pro-
grams to deal directly with the operating system and with other
application programs, such as word processors or spreadsheets.

..,

Besides having a general knowledge of dBASE programming, be
familiar with the commands and terminology of your computer's
operating system.

Preparing for
This Chapter

~' . ~ °.~

•~`~~
°:y
.:..3

A Shortcut for There is a shortcut to the IF...ENDIF construction: IIF(), the
immediate IF function. It lets you set up the entire IF, condition
and resulting action in one line. You don't need the ELSE or
ENDIF lines. The IIF() function requires a slightly different syn-
tax. List the condition Viand the results in parentheses following
the IIF. Separate the condition and results with commas.

IF...ENDIF

~• a

~~

• ~~

~r

°

":
•=~

•-

° •,

._~~

° -;

° °.~,

~~

=.

° PROGRAMMING WITH dBASE III PLUS P161

.. r ~ -A- ~

.. ~ ''°

~~

u

. ''

• .. • 4

°
G

.~

;3

• a
' .~

.. :
~', . °: f.

;. c

• 'a

•

(••-•

CHAPTER 16

•~•~ ... ~ •Y.

. - '•, . -

•a, ~ a.

:~:, . ;

•
_t; i ..

r. .~•..

More Efficient
Program Code

Note that you first establish what variable will .contain the result
of the IIF() function's evaluation, mday =. The first expression in
the IIF function is the condition to be tested. The second expres-
sion is what results if the condition is true, and the third expres-
sion is the result if the condition is false. Both expressions must
be of the same type. .

IIF() is a way to streamline your program coding, which in turn
makes your program run faster.

Aside from the standard dBASE control structures, DO
WHILE...ENDDO, IF.••ENDIF, IIFQ, and DO CASE...ENDCASE,
dBASE has other commands and features that help you write
more efficient code. These commands help you with program flow
and handling memory variables:

PROGRAMMING WITH dBASE III PLUS

 .,

• •-•- •yid: .~'' •..~: J:f~ >' aS ~"t~Il, ~
r a

.~

• • - .~
:;..-,;

;•. .~. •G~ a~.a~

Here's an example. Your birthday is April 26th, so you're testing
wheiher the current date is your birthday. The program is to give
you an appropriate message. This example uses the memory vari-
able mday to hold the message:
~+~,i'~.~.C."-~ z's --s^~cFtir - ~•, - ,r. mss. ~•s~T ~ - -;r-•+~ -~-s,,..,j.~^~-v^ -cs-~ c +^ .~^•~ ':,~~ : ~

~,̀ -IFrpATE()~?CT00('04/26/86') :~~
~--. ~,~' ~~>G~~~ ~';~~ r . ~ ~'i~.:

4.~ 4~dsy ~. ;NepPy~~Birthdey!'~r ,~~; r''r 4f ~ ~~ ,;~ ,~, ~
3 ELSE. , . •c, z-~: ~~~'. =x

.~ : ~._ , ~ ~ . .a ~ •~ : $ '<2'
~.

:!~ :y a ,yC ,~ I ~ a-rY Y ~ !:.: 4 ~f Yr~.r~ •' ,.~ .s-s ̀ ~"+-,.a,r ~i
~~;.~.~eday '',lust another day' ~'~,~ ~~~~~3~r~r~ `'`,~-~~"~'~! ~~r

w• r, ~r ,a• •>k•~ c! ~ x^ ~,,' k £ a ti~ s { ~r ' 1 y. ~r;;.,

~
,~.

idaj► a.
g~ti

...~ ,}~'~r,RsYE s ..,.~cy,~.£° ..D+~t3 n - 4~' Y~
•ik;uw•'~i.~'..~.i+ :r~E '. _.:«rruH"."~.}~:.'.'~t. :'r:k~k~i ~ .tzi3a~~•as%:+'i:~_ , Ai_,`.E..~a.f'~

This can be rewritten with the IIF() function as:
• f ~+!r»Mzrr! ~wa''s•~+_'~.~~~ J -=>.-R,, ~~•'~E'F•"~"r.,..- ~:r;--~ <'s

~4~*.Ifstoday's dete~R:is~-Ap~il`26 ~1986;~store~the.f~~st ,;~~4,~~y
~_ {*~desse9e ~fo~the~,varieble~edey;-Y~f not~st®re fhe }~y~~, r N: ~
~ ~ta.seC011ds~185e9e~ to dday~y,~'...~!~ `.,aur,'ds-'~ ~'r('~ ~,'~~~w,c~'"~'' :" y~~~x w,~

~,ede =~~IIF(DATEO` - CTOD('04/26/86')~`''Ha x ~rthdey!'„~1; ~'~~+'~
,~ ~s!~~+iu dust S another'dey►

)~q ~,~~~•.~~.~,~. „~.'~t~~ ~r~r. y~~~'~~.,~,rxl

r~-~*'Shortthe iesss e'~.~~ ~.~~ w- ~ « ~ ,~;
f

k~- r t ~ 9.s,~,.~ k ~ ~ }rr ,,,1c +•Z' ~t.•. 3.•>.".. f ~7~r'- r ~ K ~ ~5 c~ ~r'~4
x a ~,`~daY~ "~i~~,~'•"Y r~ :~~e•'1 ;~~.`'~ ~c,,. ~,Y't+~ j'i +.~ .1 ̀ ~,~ ~-x s~.~." •~.~:-~ •Y~'.K -~-,. ,. ~.~ :..

., ..

_~

.•, -

~~. -~ " '
.. •,; -

_ ,:~.
i• _

:.; • ~ .
~= .

'i,~. ~~ _

ti~jy~. •a __ r•

. ,-

P1C~2

• f~ ,

.~,~r.rd., ,. ...,f^:j.
•,`

`•.
•Jt

~
'

,, ~•
i s , ,- _ .. _ ~.j-. _. - _ •j. ._._ .. _ .._

:j
... .

~Lk ,
l~ \•ii

}.'';~`+~""t-cs } .. ~~`,~Y ! ~.. '4"r -~t~'~T'~"'~i'Q+fii~li7G ~ti ~'~`~,ay~"~"-,`Ti; ~4~~{{•Y f`~~i:~t'y p~{ a..
}~ GT i ~{"5~~ . J'Y•., i./"'F, l * ~~.-~~. y~! !~' ~ a~Y r' ~1ya .. ~'~~i.~." ..~-

:. ~; •\ i `~ .e t.01 ~-`'t ,a V ~ r C r ~Sr Y An
l

<i ~j; f?.C ~~'•-~
~~ w's bird et~yyS~r~ ~.1~3~ ~.~' ~' i . ~i e. i ~

_.f..-

i ° ~}

Yr

• :j

..

• . a,~i
~'~ ••

~•~
. • :•

«~

r ~ '

'` ; . . MORE ADVANCED FEATURES

.\

When you are designing and developing your program, you'll
probably use certain key modules repeatedly. Each time you want
to run a module, you use the DO command to call it. Because the
module is in a separate program file, dBASE III PLUS has to go
to the disk and open the file.

Procedures ~•;.: _ .

•S

Using a procedure file reduces disk access time and delay. A
procedure file contains modules of program code that stay in
the computer's memory for the duration of your program.
dBASE III PLUS doesn't have to access the disk each time the

.'
• 4

,• . . .

program needs the program module.

A procedure file contains only module PROCEDURES. It has the
same .prg extension as any normal dBASE program file. You cre-
ate and edit a procedure file using MODIFY COMMAND. Within
the file, each module PROCEDURE must begin with a
PROCEDURE line, which includes the name of the PROCEDURE.
Next come the actual commands. The last line of each PROCE-
DURE, as with all module programs, should contain a RETURN


~~~ ~-

           

~'~ 

~~ 

  

. 

~ . 

': 

 

statement. 

 

For example, the checkbook management system uses a proce-
dure file, Rprtpro.prg, for all reports. The PROCEDURE called 
Printer handles whether output shows on the screen or is printed. 
This PROCEDURE begins like this: 

       

---~---

 

_PROCEDURE. Print ~`;_ ̀ . 

                 

Each separate report is in a different PROCEDURE in the 

  

Rprtpro.prg file. 

       

TIP 
Write and test you; modular PROCEDUREs separately. Then 
'combine them in a`procedure file later. To do this, issue 
MODIFY COMMAND and name the new procedure file. Press 
Ct~K R to read each module file into the procedure file. 
dBASE III PLUS prompts you for the name of each file to be 
read in. 

          

,~ ~.. , 

                 

i, 

     

.~ 

        

- ., PROGRAMMING WITH dBASE 111 PLUS P163 

          

'-,~-

       

•i .~ 

                        

~r;. 

   

i 

        

,, 

                                                 

S 

                   

. • .. t . 

               



F 
K ..~ 

li ;~ 
'J~. 

Z. ~~ ' ~ R f {~ ✓~ ~l 

~i " }.'lw ~Y^ "N~ - ~tL~,~ir,.h 'xit 0 ,~4w V. , ̀: ,'PP 
~~~ t~.n 

- ~~ - ro .ms's
.30 ;.~

.~,Y°`,.r~,,, ~
11

-s(~~jf~r'~7~,f~.•I.3,\tt~ ~~=~,y~ti~s*~f~:~.5t-~,L~y3°~~.3'~y~P.~:.~'*,G~tN

"j~,..3;rG:,w pis\~~~.•.\..•.Q i`:i~4i.~.i'~•3: ~~ S /\~=sir' ~•~ jl

•''r:._ .fir::. 1~'~~3•~::r.i•4trC"?1;.: •'a'•.~, ._ - .~ _ .~ .;~~

•

y,. 0 5-

~_ '

t'

.\
.:. CHAPTER 16

'6

- '~1 .

If you plan to use a procedure file during the entire program,
include the SET PROCEDURE TO <filename> command to open
a procedure file at the beginning of the program.

'. ~ . The checkbook management system only uses a procedure file for
reports. When the user types H from the main menu and program
control branches to Reports.prg,.the first line in this program
opens the procedure file:

~~ .:

:., o

:.~~'..

SET PROCEDURE TO Rp~tp~o

After you have opened a procedure file with SET PROCEDURE,
use DO to run any PROCEDURE in the procedure file.
dBASE III PLUS first checks the PROCEDURES in memory. If
there are no PROCEDUREs with the filename, dBASE III PLUS
then checks the disk for the file.

. .. u

'
a..

-

F~~
1

When it needs the PROCEDURE Reports in the Rprtpro.prg file,

the checkbook management system uses the command:

DO Reports.

You can have only one procedure file open at a time. The proce-
dure file can have at most 32 PROCEDUREs. If you wish to open
another procedure file, use SET PROCEDURE TO with the new
filename. dBASE III PLUS automatically closes the previous pro-
cedure file. To close a procedure file without opening another,
type either CLOSE PROCEDURE or SET PROCEDURE TO, with-
out afilename.

.~
i

J .;'
. ~

' "A

i

e

a

1

P164 PROGRAMMING WITH dBASE 111 PLUS

r .

~~ ..

. , •,

;` .

.~

t

;4{°'_lam; r~b~/_'l~ .j/. 4:r

44,
~ f.

♦~

b•

... ti'• ~ o~. ...

:~
,~,~ . .

-'D~+.`

. ~f ~ .

MORE ADVANCED FEATURES `
,_

'`•
'•.

.. • `•, .
•~, -

NOTE
During debugging, if you attempt to edit an open procedure
file, dBASE III PLUS will tell you that the file is currently
open. Type CLOSE PROCEDURE first.

• _• ~ .

a .

e

• z~+,

;~

... ,

Using procedure files, you can effectively expand the power of
dBASE III PLUS by providing your own routines. Because you
can use procedures over and over, they are almost like new
dBASE III PLUS functions.

Another excellent use of procedure files is for help screens. Most
of the time, the program doesn't need these procedure files until
the user wishes additional help. You can set up your help screens
in a separate procedure file and SET the PROCEDURE file when
necessary. Once the entire procedure file is in memory, the help
screens appear very quickly on the screen.

A PUBLIC memory variable remains in memory while the pro- ~ -
gram in which it is declared PUBLIC and all subprogram modules
called by that program are in effect. However, you may at times
wish to use a memory variable name in a subprogram but not to
change its PUBLIC value in relation to the program as a whole.
You can temporarily hide the PUBLIC variable.

Hiding a
Public
Variable

Y

A practical use of this feature is to make the names of memory
variables consistent and your programs more understandable.
For example, you may want to use the balance variable, which is
PUBLIC, in a subroutine for another balance amount.

To hide a PUBLIC variable in a subprogram, write the command
PRIVATE and the memory variable name at the beginning of the
subprogram:
r _~.~- -- - ----- - - , --- ~- .. --- -

~~.

PRIIGATE balance .: '

PROGRAMMING WITH dBASE III PLUS P16.5

~,

.~

.*

oc ~.

' ~.

_~, s .

-. ~1ct . .~ 3~ ~ ; ~L o, S+rirc2~ ~. ~ . a .~+trtii' K *~. ~. „_ L rvs'~-y: ~fj~E~r:Pi t~~ ~
I.. ~. 1~ SP~+~~ 9a

~.j Cr.

Y• '~~ .
~~~ 

.' 

  

.,~ 

     

;-

   

o •,.e~• : ~; .-. 

        

CHAPTER 16 
4e' . , 

 

~~-. 

  

,~ . 

... • `•, 
•; .. 

 

The PRIVATE command hides the PUBLIC variable and declares 
a new PRIVATE variable with the same name. You can use the 
PRIVATE variable in this subprogram and all other programs that 
it calls. When the subprogram is finished and program flow 
RETURNs to the main program, the PUBLIC variable automati-
cally loses its hidden status, and still has its previous value. Here 
is an illustration of how hiding a PUBLIC variable works: 

  

'~i` py" 

 

a 
.~ 

   

Main Program 

 

PUBLIC balance 

 

•s 

      

350.00 

 

.~•~ . 

      

baWirce 

     

Sub2.prg 

 

Subl.prg • 

  

PRIVATE balance balance 

        

350.00 

 

balance balance 

             

Figure 16-1 Hiding a PUBLIC variable 

              

The balance variable, declared PUBLIC in the main program, con-
tains the value 350.00.before program control branches to 
Subl.prg. There, the PUBLIC version is hidden and cannot be 
accessed or changed; a new PRIVATE balance is declared. The 
subprogram considers balance as PRIVATE to it only. At the end 
of this module, balance contains the value 175.00. However, when 
program control RE~'URNs to the main program, the PUBLIC 
variable balance is again accessible and contains 350.00. 

          

5. 

       

~F 
;~ 

~. 

            

Module program design allows your program to use modules over 
and over, either as separate programs~or combined in a procedure 
file. You can also reuse the same module, with a few changes for 
similar situations. 

  

Parameter 
Passing 

                            

P166 PROGRAMMING WITH dBASE III PLUS 

     

~. 

                        

. •., . 

  

.. ~. 

   

r• : -o 

i 
• '~ 

         

~~ 

        

,~ 

                                        

,.. ., 

      

,~ 

;, 

         

r, e 

                            

' °`-

      



~ 
r
j„~ir' 

~~..a~M' - - n ~ . 1~1 

_ .-

 
~~~Ct?~ ~' M~`r 

,.., ~

rr

~ ~"'.,^~~.~,--.s.i~̀~1'',7+tp+
°'t''n'~""'F3i~y",~~'t~`'/a'

-... ... r 3 ~~-

~.. _` - .. .~'. _ _ c.A ~%!'a.`S'a.' ~. %~, ,,i •~ i. %3• ~d ti"~'rC~~'c. •{~,i¢r~',

4 ~~~.~
~: 1 ~fi

._ _ .:. _ ,'_ : `- 1, f

4~

`r `-. - .d. .' :3~.;: ?.~ ~i~'1 ~ S•li li~~y~"5 ~. +,~ rA:i ~~~ ,~ ~~a /~.`te"KG.•

. .~~ __
,

• ' ~~ •~

•`,' ~' •:

:: t`

.ems' ~ i`~,ti ~~ ~1°~~ ~~'' g,`t . ~J,~ •," ~'~~ :!.-iii ~-•'\'. _'~•~• ~` li f~G ~.: -~.:., f:
:~-.`.j'..~L_ ~. 'L~. S;t~t.".t ~!: 'i:.tc-~c ','a.el...... ~...-~'S 3~!~r.~'i~t_~t~.•~.'_..

•~~'

;•~;~

e.
T

.,

•~ • ~ ~.i

f.' 1 ' ..

1 \e~ 1

.~

.

;

. ,• ~: :.~

..4i • ~.
,

. ... ~
~~

.. •:

. :~ ~-.

MORE ADVANCED FEATURES r--,
I 'e

For example, you want to draw a box on the screen, but your pro-
gram occasionally needs the same box at different locations, or
with a different size. The program code for drawing the box
would be the same, but the size of the box, its parameters, would
be different. It wastes disk space to write another module to draw

a different-sized box.

You can set up a generic box-drawing program that depends on
the specific parameters it gets from the calling program. For
example, if the calling program needs a box that is to be dis-
played at the very top of the screen and is five rows deep, it gives
the correct coordinates to the box-drawing module. Later, when
the calling program needs a box at the bottom of the screen and
ten rows deep, it presents a different set of parameters to the
same module program. This is known as parameter passing.

~'•..

The beginning command line of the module must contain the
names of "the PARAMETERS that are being passed to it from the
calling program. You must separate two or more PARAMETERS
with commas. Here is a program module that uses PARAMETERS
to draw any size double-lined box anywhere on the screen:

,.~
r- -.
i~.

►~t"s"`~"t•"';~'' • * x '~ ".' ~f^~"""r'r'.~"''".: s~wS -~? ' ~ ---rte- t '+e"r -+^~" ~"~:

~`*r90X PR6 dyers a;box given theKpassed,pa~a~eters~.
PARAMETERS beg~nror,~beg~ncot; endror;~endcoi "~F o ~~ ~w°

~CLEAR rr~~.}~tiaf~'t:4:',,::~v~~~' ~' y~~cci`,~1~'~„s,s 3W,:r~-' r:46~ t ~
~~ E°beg~n~or;beg~ncol~TO~endror'.endcol~000BlE~, ~

~~►
~~~~~~T! 

~#~ RETURNS.. fa F ~'=~,~,~.~s ~: ~k~t.~:~:.`~x r,~,t~'".fi.,^`" `',~'~~~~ ~c ~ ~s ;~- f r`"fir 1.°~ 
34~  •~.- ~ ~~- -  ~:.1~h~'rti.:~i✓= s...r' a . .s~+ii..~::al~t. ~ ~r  'F~ 't~"~..5.:,~~...~~.. 

                   

.. ••; 

  

The four PARAMETERS are beginrow, begincol, endrow,~ and 

  

endcol. 

               

WARNING ! 
You'll get an error message if you add superfluous spaces 
after the list of memory variables in a PARAMETERS 
statement. 

               

4 ~ 

.y 

                                   

PROGRAMMING WITH dBASE III PLUS 

 

P167 

      

~' 

          

..' 
_ti ~ 

s. 

,~ 

       

'1 

                             



_ - - ,}- - fit: _ -.n•i...,, :. ti ~' ~ - :. 

. - . _ dd ':try :, '! ,.'+: ;'', 

r i •t +s _1', ~ 1 1 ~
II
'r fir/ ' '~ 

• 

 

.Y;~ 
doe 

  

~~r , 

        

CHAPTER 16 

   

i~-., 

     

~~~ 
:w..a~

-~ ~ .,

The calling program must initialize the passed variables and pro-
vide their values. It also must tell the module what
PARAMETERS to use in the same order as they're listed in the
PARAMETERS statement. It uses the DO... WITH command for
this; that is, DO the file WITH the following PARAMETERS. So, to
draw a box from row 10, column 5 down to row 23, column 75,
use the following commands in the calling program:

• :~ _ _

`ADO Box YITH~:10,5,23,75 '`= 'r =;'° ~i •~~ r ' ~•' ~~, ., ::.~=
:~t'2.1: .•a-. ,1"+s~+tltt'r•a.. ~ ^ c. rr' ~[.,'.~..'+~Tu.Sn'ii~'~,E~'.~r} :i-+"'r'f ~.;2~~..~.~.. .~.. s. _:.j

. ''+~

If a procedure file contains PARAMETERS, the PROCEDURE line
comes before the PARAMETERS line. For example, when the user
chooses H from the main menu, the program asks whether the '
report should be displayed on.the screen or printed:

.• ;

Do you want ,the output sent to the printer or the screen? (PIS)

The program code that handles display of this prompt is in a pro-
cedure file called Printer in the Rprtpro.prg file. The screen row
of this prompt varies, so the Printer module uses PARAMETERS.
Here is the entire Printer module:

..... ~i

•.,- s ,.~

b '~~._ y `Y '? ii ~,~w•t +yam. g~~ ~ ~}1 ti t4' 'R1f~ a Ff ,ft~~
~rPARANETERS:roY,p~*~~~°L~~~.~~•~-~~~~~,~~~~tw'~ ., .~..~~, ~ ;~+' c
zz'~~'1'OY~b'SA~j'~,"DOS,yOU•Y811t:thl=;OUtpUt3sentnt0';the~"•+~ '" °'~~~'t~
A~•~''~~~~'`'~,"Pr~nterTorthe~c,̀ sc~een~ (P!S)'ri.~J~?'L•.aN••E~L~ ~ • ~- ~ ~,.`.~

PROCEDUREspr nter~.~~~~ ~~~`' ~`' ~ -~', ski ~ t ~'~ ~. ;'y'
r

~~`"`DO{~YNIIE MOT prf"ppSs"~~~~' "'~ ~, ~~..~~~~
Vii" ~ ~~ -- ,~., ~,u ~ ~i rz ` ~~

~ ,, , Y a
ate r 'a.. a~ror,70 6ET pr,~¢ ~"t'~?'+~-.~ ~~,~- ~..S~,S..~ '~,a.

`'~L'' BREAD h` ~ r ~ ~' ~4 L ~~~y~~ : i~'~-~"~`;•• r y`'~' ~'NG

:

J °.' ,`''~ r ~, ~ + w - - f „}r„R~l+.' ~ "t l,." ;T } }3, v '•' ~ ^t! ~ f qt'-V' "' :'~

~ : -~ ~ _ ..[... . ,..~ • s + L..w.~.. lsiL..:'Y":w:c..`.. -u...,..a~i`~r':~1A ~~:.9...i :C.e.•+r^ t~ ~ a.._... ~`~~~

ly

• . :a•
.

' ,: _' '

' P1ls8

PROGRAMMING WITH dBASE III PLUS .

f

•} • •

• :~
.

~
.

_
.

~Yh
-

- ..

J ~I. ~ ~ --

. Y ~'

+

~ 'a•~

'`s
. o•.

E

~y
1 .,
~. •
,15

.

MORE ADVANCED FEATURES

,. .

. ~...,

The two variables row and pr get their values from the calling
program. The calling program passes the row and column coordi-
nates as PARAMETERS to the module. Generally, the calling pro-
gram supplies the same parameter names that are in the PARAM-
ETERS line of the called module. You can use other variable
names, but the order in which you pass them must correspond to
their order in the PARAMETERS command. For example, the
Reportal module in the procedure file Rprtpro.prg of the check-
book management system calls the Printer module like this:

~;

..

* esk.fo~ output ̀ to printer or screen

~;- ~.
:3 . 00 'Printer YITN ne~~or,p~

The Reportal module uses a different variable name, newrow, for
the first parameter, but its value is still correctly passed to the
row parameter in the Printer file.


~~~ 

 

If the program using the PARAMETERS command changes the 
value of a parameter, this value is passed back to the calling pro-
gram. Using parameter passing enables you to use your program 
modules in many different variations. 

            

Sometimes your program will encounter potential errors that can 
be corrected without ending the program prematurely. For exam-
ple, the program can check to see if enough disk space is avail-
able before copying a file and, if there isn' t, delete an unnecessary 
file. 

Potential 
Errors 

                   

The ERROR() function returns the integer error number for what-
ever dBASE III PLUS error occurred, and the MESSAGE() func-
tion returns the string error message for these messages. Your 
program can check these values and eliminate the error condition. 
A list of these error ,'numbers and messages is in Using 
dBASE III PLUS. 

             

Also be aware of the RETRY command, which is like RETURN 
except that it returns to the exact line.of the calling program, 
instead of the next line. RETRY allows the program to reexecute 
the problem at the spot where an error originally occurred. Use 
RETRY in situations where you've made a change after an error 
and wish to RETRY the program run. 

                                 

PROGRAMMING WITH dBASE III PLUS P1f~9 

' `'~ - 

                

-, 

                                                     

. ' -. 

                         



  

a •.~....i ;+: ~ 

E~~ 
- +'Sr ~ 

y-1.y►~.~ y.3~"f~~.~~,~:, rt 1 ~~~~~+ ~3 r R~Y .P..~- a Yj i''cy =.~4jr w: ~ d 

2,1. ~ :s •~ w R• ~ t i t 

rii'~{~~-~a~S:•C. _...!. td's 

np ~..~,: 

• F~~^ ?14 
~/ • •, 

C 
~~.• , e.. .~. 

              

• 

 

i~ . 

             

CHAPTER 16 
•S , 

• ~~.._ . 
~ 

.J 

  

The dBASE III PLUS interpreter must interpret every command 
line before it can execute a program's command. This process is 
slower than if the commands were written in a language that the 

Using 
Assembly 
Language 
Routines 

• ,• ' _ • G. 

. ;;.: :; ~y,~3Y ;. 
°~' •:' ~. 

. ~. 

   

computer uses directly. 

Because it works with the computer's microprocessor, assembly 
language is closer to the actual hardware of the computer than 
dBASE. Programs written in assembly language and- assembled 
into binary code are executed much faster than interpreted 
dBASE commands. What is more, assembly language routines can 
control more of the hardware of your computer, such as aspects 
of the cursor that dBASE doesn't control. 

              

;': 

             

WARNING 
This is a very advanced technique. Be very familiar with 
assembly language before attempting these suggestions. If 
you are an experienced assembly language programmer, 
check the specifications under LOAD in the Commands and 
Functions section of Using dBASE III PLUS for dealing with 
addresses, memory, and segments. 

   

i 7 

                                

dBASE allows you to use separate modules written in assembly 
language within dBASE programs. These modules must first be 
assembled and linked; two processes that transform them into 
machine language, and finally converted into binary form. You 
must have an assembler and linker program to work with assem-
bly language routines, as well as DOS's Exe2bin.com file. 

r 

          

'~. 

      

•i 

   

"` 
t 
4 

. 

                       

t 

         

B 
i 

  

i 

       

PROGRAMMING WITH dBASE III PLUS 

 

P16-10 

    

~' 

i; 
. ~~' 

                      

. ~~ ,~ 

      

., 

     

,i 

        

a 
;` 

      

~• •, 

C' • • 
S . 

                 

. ̀ . 

   

:.i 
.~ 

.. .i .. 

                      



~s` ~,,Ki ±e~~Vx 6-~~-`wry '•7., .Yl '~Y.. 'fie ~'v .9~>2~~)z ~.k=~%~I ~i ~~ *~L ;'?-nA ~ay~<:~~~y<!;J~,~,'.y~`~~'nd s~~ 
'r s  - ~' r .." ~' • J'~c ~" ' c~<* 'ti ~ r r '~. .3...~ ^s ~ r,C ~ ~5..~,'j `S Y( ̀ Y~ ~ -.,' t ~C ~'-ir_Yi ~. ~ _ ?!'~. 

• '~ ~ ~f1i?ir Jo
?,~: '~~~? •/~t~:. .: "..•RV'v l(.it ;'; 

e•tl~. I,"-~*.. r ~~.~c- 

.. .:~: • .. ~ °. ar_:Y~P. +.v.~...1•ti.0..-ti`. ~ ~ .,. d:~1 .__. ~:f i :v ~~:.`a:  ._s.+-.~. •e~_ '~_~ J fie. 

      

-~' ... 

  

:•: 
,.;t .r 

         

1 
•-~-r''- 

~r ~.. ~.• 9'. • 

.-.. - 
~., 

  

I~ 

i -4c 

. ° ~r 
t' ̀ 1' 

   

r 

    

e :.• r, 
•~ 

  

s 
l MORE ADVANCED FEATURES 

   

.~ ° . ,, 

    

• '•, 
•~ - . 

The procedure for using assembly language subprograms is to 
LOAD the programs and then CALL them. The LOAD command 
places the assembly language routine in memory. It assumes that 
the assembled program has the file extension .bin, which is pro-
duced when you use the DOS EXE2BIN command. The routine is 
not treated as an external program on the disk but is ready at any 
time, like a procedure file. The CALL command executes the rou-
tine. You can have up to sixteen different assembly language rou-
tines in memory at one time, and each can be as large as, 32,000 
bytes. To remove a LOADed program from memory, use the com-
mand RELEASE MODULE with the correct filename. Check the 
commands and functions of Using dBASE III PLUS for more 
restrictions when working with assembly language programs and 
for an example of how to write, assemble, link, and convert to 
binary form an assembly language routine. 

      

r• ~~ = ~:~w 

,♦ 

   

~•~ 

~,~. . 

            

If you want to see an assembly language routine in action, run the 
Cbmenu2.prg. This is the same main program as Cbmenu.prg, 
with the addition of two assembly language routines to control 
the cursor. You have probably noticed that the INKEYQ function 
makes the cursor jump around a bit on the screen. The two 
assembly routines included on the disk, Cursoff.bin and -
Curson.bin, control this. Cbmenu2.prg first loads the two assem-
bly routines as part of the setup stage: 

        

~Y 

    

•, • 

              

~' *"load tro bina~r files to .turn cursor on.snd off 
LOAD turson ,~ • 
LOAD.Cursoff . •' 

I 

                                

i 

                             

E 

    

PROGRAMMING WITH dBASE III PLUS P1Cr11 

                      

- ,' • , 

                    

:♦ 

                         

°q 

                                                 



 

a ~•~Yi~~~~'~~l~Y 

,, ~ ~ ,r .. 

 
. k. 

~~~MX~ i 


.••-

:'~';

.~

.~ .;

N •~`
.. •1 .

~S.
•.1

•

.G"r!

,- ..

--, ~ .. ~, .
-.,~ .

CHAPTER 16

~i
_'~ 1

It then CALLS these routines during the DO WHILE loop to accept

'~.::;'9:L ar

the user's input:

h~:.

~~DO~YNILE F T
~'t~;sp+~i~;~~tl

°~

:~

. -..'.. '~,-

a
.€

~'.~, 't~Tu~e~off„cup:orr'~- :~~~~`",

,~; ~a;~1T ~63 =SAY TIMEt)^ ~ "~
y a~"~. it ~~22 ~ S8~SAlf~u~" ~~~~

•, ,, ~.
*~-:Tiirn~on~curso~ y

tIM Y ; 1'._ b ~ Cn

~` `'~~IF~UPPERtCNRii))i"Al1CDEf6NI)KlX"

r ~~ ~ s0+ ~„ ,S i`r`ySi~ , y~` ~ ,a.Ry :_ '''~t_ f'~.

jr~

,#
;

. ~ _-

:.. ~
.'l

. -..'

.~. ~,

..ac.•rFt'w y~w~lti ,s ..~,,.~'-w~'.~il~~. -~;•-S>~t*'_.'~,`~'ry~~ "t`3YasTy. ~~3::~'.+1~~=~

` .,~.

'~,y ~.

The screen display looks much more regular and less distracting
. when you run this version of the main menu program. Note that
when the user wishes to quit the program, the X choice, the pro-
gram RELEASEs the two MODULE routines.

. ••;
:~

dBASE In Chapter 13 you learned how to work with disk space and file

Programs in a management from within your programs. At times you'll need to
relate your dBASE III PLUS applications to the operating system,

Larger ~ MS-DOSTM or ~PC-DOSTM, and to other applications programs,
Context ~ such. as word processors.

~'

..'

.., - :.,

The RUN.
Command

' .. - . ~~
• "i

:~

You can run other programs from within dBASE III PLUS. These.
programs can be resident operating system commands, such as
COPY or DIR, transient operating system programs, such as
FORMAT or CHKDSK, batch files with the .bat extension, or other

••~.

application programs.
'•.1 •.,._;

Use dBASE III PLUS'S RUN command for running these external
programs. You can use ! instead of RUN if you wish.

... i

PROGRAMMING WITH dBASE III~PLUS Pl (r12

~~
.;

.,x„y

~.
~ ,.

,.
~.y

y
i;. n,y.

~.~

.
k

.~

i

.~~~~R ^'~`-ir➢~'~-~''~e'~ i'r.Jf .7•~r c;1~~~~'t R !~yy~~y`~~'~'_` ~r~,~f~`~ . ,~~i .V +~+G`'~~ ~ +M~SM =+i ~WH.*t ~+ iy ~S
,:

t~}~A4nj .'~•~t:a 3K -sr•~._ 1 •+•'~ R. Prj+ _J.yY. ` 4 e r t'•.TS• ~•F_ ~j~i 5...~+,.~`'e+'
~.'. .' !J'• ~.••~~'..;

%~7't
tie ,~,•-i•

\j \tj~f ~:+'st.'`C• s~~•~♦ ~• "•i ` '• `•.
'

~
.

•. M

,• ,- .,_
-

....
•+ .•• -`Sg~~~.f~ -~~,I~~C ~ a +f~ :• f.'•t 1..~~~,...s,frS+,r~~s..~f•MY~i.~•=

. ', • •_ . -

,- f - •

may: - •/:~,;~ ' ~

. 'a,~ ~~t~c -

''tL,',~j'; •, ciP • ~%: • .~;~'~ ~ .~`S~ y~'re~t. ~J'Ss~'~~,.-~ •
,

~ ...

',

s

' .1`ir ~`

l;

... ~

••'••
•i.

S.
.~

S • ' ~ ' ...

b'
~-••'

•

.

•

-, T

i t• • ~

~! ...

1. •~

•

• '~\ . •

MORE ADVANCED FEATURES

\" ~••

However, make sure that your computer has enough memory and
that you have correctly set up the Config.db file. For more infor-
mation about Config.db, see Using dBASE 111 PLUS.

- ~'w:

• '' ;I

•. .

One of the common uses for the RUN command is when you want
to reset the system date or time. dBASE III PLUS does not have
commands to do this. You can STORE the new date or time in a

• memory variable and then substitute the variable for the date
when RUNning the DOS DATE command. The variable must be a

' string, but you can first use a dBASE III PLUS date variable to
test for correct input: •

. ': ; - ..

• ~;

:~,
:,

*~In~t~elize4date~ver~etite'~~'~~~~~~~;.~~~ A~.~~~
. p'r'`"` to4er~.=~cToo(~s'I7'~,k'),~iK,~, r~'r w'~'~~ ~'.e;-''~~~"~~y"`c'~r'~*'~ ~*56et'~'ne~~dete rith ~co~rect error checking~'~~~ sa.*~~~..~~'-a'~

Y,a X1010~SAY,~'Yhat~is~the,;cor~ect detet,~6ET~todar~~f.~ ~~:~~ ''READ"„~y]'.~ ' ~Y4~'i ~.~ " "`"F x '~s`~'~ tub`' • ~--.,•ti ~ ~"' s'~'~~,,r..~',~~`' .
~~*Chan e~to~~ tin ~ .~'`~l~=~~~,~,~t *c,~ a~ ~~~~-r>? •7=~'
~tode 9's, DTOC (todag`~~.~.

~~'~~~~.~~ j~~` t ,f ~ ~•'~,~k ~, ~:,,~~-~ ,,~.

~'~* Change current '~ ~' F'~'k ' • ,RUN DATE 3tOdeY~~~?a~~.~=-, i ~,f~s' #~~' e. Y'~.*~r
*~i ~,~ 4,,~~;:

'' `~ .~..~.~~"""` '.,..$i' .~aa~S37L'n .r~" ~i.:f'~ `.ss ~'. •u~~ "~..3.1.~~" :,':i~~ r•-̀'~~~

~;~~
>~; he

`• ;

•~

~~:

~ _.

To change the system time, make sure that you ask for the time
from the user in the correct form - hours:minutes. When RUN-ning batch files, for instance, the batch file Files.bat, use the
filename without the extension.

:~ `~ {.~:7`'
I-:•n"i'

NOTE •
The operating sys4em's command processor program,
Command.com, must be in the root directory of the boot
drive. If you're using adual-floppy system, have these files on
dBASE III PLUS System Disk #2. See the RUN command in
the Commands and Functions section of Usin_ g
dBASE III PLUS for more information.

(~``i
~: =

•z~

~: •.

;~ • .:

PROGRAMMING WRH dBASE 111 PLUS

4

P1Cr13

~~

• ...%: ;~

.~ •,.

• ~ ' A

i

..

Y -

. -i •

'ft~K ~.~. ~'~'',{~~~±~';~'~'~
^~'~`~~~► ~ ,-;'- + ~y •~,'hi~~`'si~v5~,x,Lk23.;,~':~~" cif ~•f ~^' .i ~.~_ ~ s.rr::::,•.-rte .i'~. /t {6t►. t ;y~

► •~'+ •y: ,) ~\•\r .:f-'~X~~I..~~~c.."''•"~~

.t.`.
~.~ + + ♦ a - \ , ~ ' , + . ~" tai ,. a.t• 1 ~. 4

'i. .y. •- •' .. \~:;~i~'.f f:ro i!'bt +J ~~.:~~- c y _\~:p~,•• :fr'~;~.t~`' ~`'' _
_

' ~__.... .. n1• .~. ♦ ~ r- •f .. ._~!,'~:. •.1i •r YY.':?4iAt. t••y: ••,..-
_ .-. ._ _..... °e.te to-~:.. ..

.. _. •~

. -_...4 •S•... •.

v. c, .•' ' ~'~ ~ '..•'

•= a . _ t.

X~

I~

°.~
y

•~ ;.
~'

' '~ .

• `\- , CHAPTER 16

r. -~.
~. .•'~

When you write programs for commercial release, you may have
to determine under what operating system dBASE III PLUS is
running, certain specifications of the operating system environ-
ment, or what version of dBASE III PLUS is being used. There are
three functions that give you this information.

The Operating
System and
dBASE .
Environment

;:•' - .
• _ ':

• •~~'=

If your program has to check the operatin~ system under which
it's running, for instance PC-DOS or UNIX "I, use the OSQ func-
tion. This function returns a string value of the operating system.
It is useful if your program coding, such as memory variables,
depends on which operating system is running:

. StORE OSU`:TO 'opsya .- ~Q.-"` :+~ * ~r ~:.`.. T
If the operating srste~yis;,UNIX~ ~. `

IF SU9STR(opsys;l,~) 5,'UNIX';t„;~~:°- '.,.
• ''. * Run'speciel' setup~p~o~cao:fd,,:;UNIX

rfi..~.t.

:-

.,-, _.

'' ,

1~
~..

If your program has to check one of the operating system's envi-
ronments, such as the current PATH, use the GETENV() function.
For example, your program needs the current setting for DOS's
COMSPEC:

' -

-' ? -~: ~. -
StORE•6ETENY("CONSPEC'!)~TO env~ron

. `~ti !

The environment name itself is a string enclosed in delimiters.
This function works only for those commands issued at the oper-
ating system level, such as PATH or SET COMSPEC. When deter-
mining the current path, GETENV() does not work after you use
the SET FATH command from within dBASE III PLUS.

Finally, the VERSION() function returns the string value of the
current version of dBASE III PLUS. This function, like OS(), does
not require any arguments.

~,.

Your program may have to bring in data from other applications
programs, or send out data to other programs. dBASE III PLUS
now allows you to bring in and send out infonriation from and to
pfs:File with the IMPORT and EXPORT commands. These com-
mands expand on the abilities of the APPEND FROM and COPY
TO commands.

Other
Applications
Programs

.;

Plf>14 PROGRAMMING WITH dBASE 111 PLUS

c

`~

• '',.

w
esr„~73"``= "~f"'ls tVa'~' ~J~ o~~~ et d `;~w~ W.rY +. fir": a~. 7~ , ~ ~,Q, r 'rf - ~ `'~' l~•':s.~'+~.jy "'y-~"t'.= ~ ~ ~ ~ f ̀ > >. • 5, 'r' e~r~ Y y `y `Sl~y~ y" ~~-o- . ~~.~::_~. `~r~~ '~y~.J'' ~ ~. • i ~.; ;.1 ~"'• y g~1 rya v~ d :'a~• ~~v~ .~ '

. -

_

~;f. •'7i:(~f!,•a~~e,~^~f~•.i'•~"~r!•`/ {tit ~~. ~... i •I ~Y.. •1f

c, ~ .

e•

>
.

% ,

`~• ..

`'~°:• ..

`~

•r'

MORE ADVANCED FEATURES

.G

All microcomputer applications, including dBASE III PLUS, han-
dle their files in different ways. Usually they supply information
that is necessary to keep track of the data in the files. For exam-
ple, dBASE III PLUS uses a header which contains specifics about
the number of fields in a database file, their type and length, and
other facts. This header would be of no use to another program
such as WordStar. Similarly, WordStar's formatting specifi-
cations would be meaningless.to dBASE III PLUS.

.~ .

. :~; - - .

• i..

..4;~ .•

When you import or export `data from files created by other pro-
grams, you must strip out this superfluous information and leave
just the raw data. dBASE III PLUS calls these files system data
files. Usually, the data is delimited with commas or spaces. When
COPYing data to other programs, use the DELIMTTED WITH and
SDF options. When bringing in data from other programs, you
must first use the other program to put the data into a format
acceptable to dBASE III PLUS. Then use the APPEND FROM com-
mand with the DELIMITED WITH and SDF options. These are
•explained in Using dBASE III PLUS.

•

NOTE
APPEND FROM and COPY TO can now read and write Lotus
1-2-3TM, VisiCalcTM, and MultiplanTM files directly.

A Turnkey
System

Learning how to use dBASE III PLUS in its larger context,•espe-
cially .with the operating system, can be useful when you wish to
set up a turnkey environment. This is an application that literally
runs itself as soon as the user inserts the dBASE YII PLUS pro-
gram disk and turns on the computer. It's like turning a key to
start a car. A turnkey system makes use of a special DOS batch
file and the ability of dBASE III PLUS to begin running a pro-
gram when you start dBASE III PLUS.

~Y
.~~

.'.

~:

PROGRAMMING VYITH dBASE III PLUS P16-15

'~

 eZ~ yar
r l.'t:

Fv

•'

~..y .~ J'~~~, .. _

' ~',A~

•

~:

r
~'

/

n

"~.

. ~, ••

CHAPTER 16

As an example, you can set up the checkbook management system
to begin as soon as you start the computer. First, set up the spe-
cial automatically loading DOS batch file, Autcexec.bat. Use your
word processor or dBASE III PLUS's MODIFY COMMAND to cre-
ate this batch file. You can include the standard DATE and TIME
commands and then the command to start dBASE III PLUS.
Remember, each command must be on a separate line:

~'ti~'w -~

~, .~

..e~

- DATE ~ -

{ TIME
DBASE 1:Cb■enu

;:.

:,~-

In the Cbmenu.prg file, you also have to use the SET DEFAULT
TO B command in the setup area if you have dual floppy disk
drives. That way, the checkbook management system finds its
database files. You can also SET the DEFAULT drive in the
Config.db file by inserting the statement DEFAULT=B. See Using
dBASE III PLUS for more information. If you delete Help.dbs
from dBASE III PLUS System Disk ~2, you may have enough
room for your entire application program on the A drive. If you
need more help with DOS batch files, look in the DOS manual
under BATCH.

~~

•

TIP
Many programmers change the name of the dBASE III PLUS
program file from Dbase.com to Do.com. Then they can issue
the command:

DO B:Cbeenu

from a batch file or the DOS prompt.

`.~ ~~

.~

You have investigated the basics of dBASE programming using a
typical dBASE applications program as an example of its power.
You are now ready to begin writing your own applications in the
dBASE language.

Where Do
You Go From
Here

P16-16 PROGRAMMING WITH dBASE III PLUS

. ~.

-~

~~ ..:

~1

'.<

a

.r" ̀ -

~ ~ ~l4:..ss .aj t r~~.' ~i ~.+`~"' 1~_ti of
'¢s`.~~L~.l.~ I,i 't ~:c~'!¢. fit, \`. ~Y.~ ~~~¢. r~.a~~j~~ ~I"~.,::a :?;2°i

'l IrsI1 ix~.
~: •rr'I. C: 1•x(1 ~~.f. r:;t~,~;~Y_

;sus¢L~~~~~~.~~~ipa

'p Qe~,.a~)r .~~ .~ ¢ -

- o

.~

MORE ADVANCED FEATURES

When you're more comfortable with dBASE, you may even want
to develop applications that you can sell. You can encrypt your
program code and protect against unlawful tampering or copying
with RunTime+. It also condenses the size of your application by
linking all the module programs in one unit, which makes your
program run substantially faster. See the RunTime+ section for
more information.

There is much more to dBASE than what's covered in this book.
You may wish to look at two other extremely helpful publications
of Ashton-Tate: the Advanced Programmer's Guide and TechNotes,
a journal of programming tips and useful sample programs.
TechNotes is issued monthly by the Ashton-Tate Software Support
Center. To purchase the Advanced Programmer's Guide, call
Ashton Tate at (213) 329-8000. To subscribe to TechNotes, call the
Ashton-Tate Subscription Service at (619) 747-1666.

~.

fir-.•

::j

0

i

~1

'. 9

PROGRAMMING WITH dBASE 111 PLUS P1Ea17

~~

'~,

• .y

• . •~a

.~ 't. $'P~;'~ !w: -S•tt►g .'zn • eF •~1~-, i
~. `+`y c+, j,~'+'~.`•,',:a:.•..c "'~ 71'~ ~, -rcav ~

-
-

-dam •~` .t /A~ ` 1~~'>~ ~~ .ta rf.~as~i ..~~~~.~ c ~~{ ~ t~ ~~;o
.

...
.. - i •

,i': t .~ii ~: ~•tp•~ h2t2 '.•'
.r -.i.~ _ r •w. i-. ~. ., ,.,•1, ` :i .rTC~y

•..' -

• •t ~' "s
'~ ~ 6 r••• •~; •.~ a•q~ :.•1 'Le':•r, .~f t '..:.~-- C~jp. +.- ..•~~p~~•r.v,~•,f•~ t::•` :` d:,•,,~a ~ ' •.` %'(:

•,!.
`+~. :.e`~Sa:C.9+ t~~~~i~ }f:,e`i ~.f~ ~t.ee~b-. .•_

.~.L ii f~,..,6~w t .r 1. -~' ~ ..• ~:

..-r. • ea.•^•t~-

-, .:. '~'
.V~[b:~ ~~.r,.H~

.~
. .

.Nat. •.9•
.~••

r'~, •., ,', Qf;:7 .•- :. .~

•9o~A~ - •ff '-~I e-

~•

!•a•

U• J.s

.~• 'ti. .. `~.

.

;
Y'

.l

_ - ' `I

- •~•

• •~• ;'`

- 1 ,\~.

. i
a

! -fi•

~V f

~~~~ 

  

Index 

 

i 
A 

~ L >_ 

    

with PICTURE templates, P7-1, U5-17 -

 

U5-19 
with printed output, P12-3 - P12-4 
with ranges, P7-8 
with relative addressing, P8-3 
release all @...GETs, US-50 
routed to printer or screen, U5-16, U5-218 
row and column coordinates, U5-16 
several on one line, P6-12 
specifying a RANGE, US-17 

' Qa ... TO, P8-7, U5-23 - US-24 

1.2 Mbyte drives, N1-8 
256K Configuration, U4-10 
3COM 3 + Network, N1-8, ND-1 - ND-17 
& (macro substitution), U2-9, U2-10, U6-7  -

 

U6-9 
&& command, P1-22, U3-5, US-159 
? catalog query clause, U2-54, U5-1, US-198 -

 

U5-199, U5-201 
?/?? query command, US-15 

with memo fields, P8-17 
with printed output, P12-4, P12-5 

                               

~--~ key in programs, PS-2, P11-2 
for special printing effects, P12-5, P12-12 - 

P12-14 

  

evaluating, P9-10 
d in Qa ...GET blanks, P6-13. 

with templates, P7-9 
.AND., P15-3, U2-6 
.NOT., P1-10, P15-4, U2-6 

in program flow, P2-10 
logic errors, P15-4 

.OR., P1-10, U2-6 ' 
logic errors, P15-4 
in program flow, P2-10, 

~a function, in PICTURE clauses, P7-4, U5-17, 
US-21 

Qa ...CLEAR, P6-7, P14-4, P14-6, US-16 
~a ...CLEAR TO, P6-8, P8-8, U5-23, U5-24 
~a ...GET...SAY, US-16 - U5-22 

activating ~a ...GETs, US-170 
activating a format file, US-20, U5-232 
changing appearance, PS-1 
clearing, P6-13, U5-22, U5-47, U5-50 
confirming input, P6-13 
converting data entry to upper case, U5-21 
creating a format file, see 

   

testing for, P9-10 

  

.. ~ 

  

A . ; 

    

Abandoning 
changes made, L3-12 (note), U2-19 
PROTECT ~niries, N3-31 

ABS() function, PS-5, P11-1, U6-10 
Absolute value, P5-5, P11-1, U6-10 
ACCEPT, U5-25. See also INPUT, WAIT 

difference from INPUT, P6-14 
Accepting character input, see Input, verifying 
ACCESS disk, N1-7, N2.3 

on a 3Com network, ND-13 
on an IBM network, NB-13 
on a Novell network, NC-11 

ACCESS( ) function, N5-28 
Access levels) 

establishing, N3-20, N3-26, N3-27 
field privileges, N3-5, N3-27 
file privileges, N3-5, N3-26 
for users, N3-4, N3-21 

Account name, N3-19 
Action line, L1-13 (figure), L1-14, U2-14 
Action section, status bar, N3-13 
Activating files, see Opening files 
Adding records. See also APPEND, BROWSE, 
INSERT 
in The Assistant, L1-20 - L1-22, L3-7 - L3-9 
copying data from previous, U5-196 

                                                       

CREATE/ MODIFY SCREEN 
editing fields and variables, US-16 
editing memo fields, US-16 
horizontal scrolling, P7-6, U5-18 - U5-19 
in format files, P8-12, U5-16, U5-170 

.	 maximum number of GETs, P6-12, US-170 
on-screen appearance, P6-11, P8-1, P14-6 
order of screen display, P6-6 
with page ejects, P12-12, US-16 ' 
PICTURE function, U5-18 (table), US-17 -

 

U5-19 

         

~_ . 

"! 

                  

•~•. 

    

_~.•~ ' 
-,~ 

 

dBASE •III PLUS X-1 

                                

.., 

                      

' `~# 

                      



. - # 
.s 

,~'4., tl_,,.. ~-..-¢~,~ ;•.t1,~•~ti i~ 'I~`wrV~ ~ r~r`.a ~~+"~`'~+~ ;~;.w,~~~'Y't' =Td~ E~~~'~fr~ 
- __ - .• ~!,- a /~ iI". '~ c1,.• iT.1 ~taC.-1r.,-"~•rt~r`. '~:;. ,{),' fsLJ~~~~l~ ti~.,~ ' -~t.~'~... ~ ..:t~: 

r' ,.; .i„ 
`,o ~,, .i,:l~c' 4t;/.~ }44 •'4i.E~.pe+.. -,~~!~I:.L.~K''~' ;t • ~r ~ ~ t •'• .l: ~ yr•.J E,~~ 

 

..w,.• Y ' - -~B .e'. ~~ ~ ~. ~~.-r,, .. .• 
P e.' •~=. 

+1 ~7 S`ti ~`~sr$.Jv:, •. - ~j_ i`~ r --!i .~•~~~.. !~/ s ~~4 

. - .. o:,3fa.. Rf~., _. .•....., ... ~..~ ~-.!f,`a:Ci::, f:~~•..'!.'•:'~i.+: .e ...t .l~aJ';,Ttfi; .;Vw. . _ e•l'~ , ..,... ~.-s ._~~~•~: aa~~_.•:.... :`:Y 

,:,. 
~~: off,:., 

i ~.: 
. ,~ +. 

   

• 

• 

Key to Index Page Numbers: 
L - Learning 
N - Networking 
NA-ND - Networking Appendices 
P - Programming 
R - Runtime 
U - Using 

  

~:: 

.,., 

,i.:. ~.. 
'ft~~?ivtia~ 

   

INDEX 

  

CREATE screen, A2-2 -. A2-3 .- 
creating an application,' A3-1 - A3-3, A6-4  -

 

A6-5, A7-1 - A7-5 -

 

creating a database file, A2-2 - A2-7 
creating a label, A6-3 - A6-4 
creating a report, A6-1 - A6-3 
creating a screen form, A5-1 - AS-6 
deleting records, A4-7 
editing records, A4-6 - A4-7 
exiting, Al-3 
main menu, Al-2 (figure) 
reviewing records, A4-6 
running the application, A4-1 
saving file structure, A2-6 - A2-7 
selecting menu options, Al-3 
starting, Al-1 

Applications program. See also Applications 
Generator 

Adding users, see Adduser program 
ADDITIVE option, see RESTORE 
Adduser program 

definition, N1-6, N2-3 
error messages, NA-3 
running on a 3Com network, ND-13 
running on an IBM network, NB-13 
running on a Novell network, NC-11 

Administrator, see dBASE Administrator 
Advanced Programmer's Guide, P16-17 
ALIAS, P10-5, P11-11, U2-38, US-99, US-223 -

 

U5-224, U5-227 - US-228 
ALL scope 

with DELETE, P11-8 
with DISPLAY, P11-3 

Alphabetic key, testing for, P9-12 
American Standards Committee for 

Information Interchange, P1-4 
APPEND, U2-23, US-26 - U5-27. See also 

SET FORMAT TO 
with active index files, U5-26 
in The Assistant, L3-3 (table), L3-7 - L3-10 
with BLANK, N4-7, N5-4, P11-6, US-26 
format files and, P8-12, U5-26 
updating data, P11-4, P11-6 

APPEND FROM, N4-7, N5-4, U5-28 - U5-31. 
See also EXPORT, IMPORT 
defaults, U5-28 
DELIMITED, US-29 
to export/ import files, P13-11, P16-14 
file types, US-29 
records marked for deletion, U5-28 
with SET DELETED, P10.18, US-28 

Application planning, N2-4 - N2-5 
Applications, AI-1, P1-2, RI-1 
Applications, sample 

airline reservation network, N4-15, N4-22  -

 

N4-25 
checkbook management system, P1-15  -

 

P1-18, R1-4 - R1-10 
Applications Generator, AI-1 - AI-2 

adding records, A4-6 
advanced features, AS-1 
changing color display, AI-3 - Al-4 
changing existing application, A7-5 - A7-6 

                                   

.~ 

  

• ~ 
.. N 

 

control command file, R4-4 
with dBRUN III PLUS, R1-2 
documentation, P1-22, Rl-1, R1-11 
encrypting, R2-1 - R2-6 
linking encrypted files, R3-1 - R3-6 
multi-disk, R4-4 -

 

overlay file, R4-4 
shipping, R4-4 
starting from DOS, P16-16 (tip) 
technical support, RI-1, R1-I1 

Arithmetic, see Mathematical operations 
Arranging records, see INDEX, Index (.ndx) 

files, SORT 
ASC() function, PS-14, U6-11 
ASCII 

displaying file, see TYPE 
files, importing and exporting, U2-55  -

 

' U2-58, US-28 - U5-31. See also EXPORT, 
IMPORT 

file formats accepted, U2-57 (table) 
response file, R1-3, R1-6. See alsoResponse 

 

n 

 

:' 

                                               

N 

9 

. '~ 

.i 

.•' 

             

file 
value, see ASC( ) 

ASCII codes, P1-4 
for data types, UC-3 (table) 
when comparing strings, P5-4 
determining, PS-14 

                   

dBASE--111 PLUS 

 

X-2 

         

.;. 

                

•• e 

                            

.~ 

                                  

',. 

             



 

p .r.~~~.y. } e vA~V. 
• )~_ i 

.i .'; . . , •: •., .111 e" S ~.~.~ 
•r~ 

•'? 
' ~ ✓ • 1.: '~ ̀ = :•_:: ̀ v... (~•,~p«.iY. ~ ~ ••1°' e~' 

~e • v, ~!,r:y• l ~~•, r +:• 31 •tom' _ !. • ': :pia::: :~•. ;t 
;•~;scab •` _l~'~1:f14~`:~~ -- ~~ '.i.e ac•-:~ _ e•~.,'u+ 

 

li 
•:J 

   

.•1 ~u 
_.a`~ 

!• 

~! _ 
„~;% 

 

\~ 

\~ G e 

A 
L ~ 

 

-•• ,~ 

   

- :,~. 

. •~' 

Via.;. •.•3fea6~.;?r'-~ ~ •.; • 

~~•; x . 

INDEX 

    

different meanings, P5-15 
evaluating, P9-7 
form feed, P12-11 
for graphics, P8-7 
tables, UD-1 - UD-3 
to character, see CHR() 
with @ ...SAY, P8-9 

Assembly language routines, see also CALL, 
LOAD, RELEASE 
executing, P16-10, U5-43 
limitations, P16-10, U5-43 
loading into memory, P16.11, U5-149 
releasing from memory, P16-11, U5-173 

ASSIST, US-32 - U5-38. See also Assistant, 
The 

AT(), PS-8, U6-12 
testing for spaces, P9-11 

ATTRIB command 
3Com network, ND-8 
IBM network, NB-8 
Novell network equivalent, NC-8 

Attributes 
file access, N4-15 
file open, N4-2, N4-6 
screen, U5-194 - US-197, U5-232 

Autoexec.bat (DOS), NB-10, ND-13, P16-15 
Automatic file locking, see Locking 
AVERAGE, US-39. See also COUNT, SET 

TALK, SUM, TOTAL 
on a network, N4-7, N5-4 

                                                 

,. 
Assistant, The, Ll-6 - L1-15, L1-7 (figure). 

action line, L1-13 (figure), L1-14 
cancelling selections, •LI -14 
Create Menu, L1-15, U5-33 - US-34 
exiting to dot prompt, L1-14 

(warning), L9.2 
help in, L1-15 
menu(s), LI-1 (figure), Ll-7 (figure), Ll-8  -

 

LI-12, US-32 
menu bar, Ll-8 
message line, L1-13 (figure), L1-14 
Modify Menu, US-37 
navigation line, L1-13 (figure), L1-14 
opening menus, Ll-8 -L1-9 
Organize Menu, L4-12 - L4-13, L4-19  -

 

L4-20, US-36 - US-37 
Position Menu, to find records, L4-2  -

 

L4-9, L4-14 - L4-17, US-35 - U5-36 
quitting dBASE III PLUS, L1-26, U5-29 
Retrieve Menu, L4-9 - L4-11, L6-16, L6-24  -

 

L6-27, U5-36 
selecting menu options, Ll-9 - L1-12 
Set Up Menu, to open files, L3-2  -

 

L3-3, U5-32 
starting from the dot prompt, L4-14, L9-4  -

 

L9-5 
status bar, L1-13 - LI-14 (figure) 
Tools Menu, L1-25, L8-2 - L8-5, U5-38 
Update Menu, L3-3 (table), L3-3 - L3-17, 

US-34 - U5-35 

. = e ~ ; 

 

B •'.~ 
- ,., 

 

Backing up 
disks, NB-2, NC-3, ND-3 
files, P13-10 

Backup 
procedures, L1-25 - L1-26, U2-59, US-59 
program files, P13-10 
records from hard disk, P13-9 

Backup files 
database (.bak), U1-5, U5-92 - US-93 
memo (.tbk), U1-6 
program, P 13-10, U 1-6 

Batch files, P12-3, P16-12, P16-15 
using RUN with, P 16-12 

Batch record editing, U2-25, U5-176 - U5-177, 
US-279 - U5.280 

Beginning-of--file, see also BOF() 
`condition, P10-13, UB•1 - UB-2 (tables) 
determining, U6-13 
difference from TOP, P10-13 

Bell. See also SET BELL, SET CONFIRM 
as ASCII character, P5-14 
controlling in programs, P4-5 
ringing in programs, P5-14 

Binary (.bin) files, P16=10, U1-5, see also 
CALL, LOAD 
calling, US-43 
loading, US-149 - U5-152 

              

~I 

                                                                  

,_-._ , 
~•. 

                             

dBASE 111 PLUS X-3 

      

• ~' 

    

.'•_ , 

   

9: 

                                                               

• . ..• ..3T :. 

                         



• ~ .'~~ ~s°~i •~ - .°~•: ~:~ : t ..J ̂ •`.:i`E. ~ .. . ~. ~ . •~'t~~::~1~:+?- Sa~l~Ci,~t-:a~:r: •~•f '!, 

1Tf~~~r1'1j 
~iT~~~.t+.SS /-♦a'~MMf'..,~,yy~--,~~,,..>~ r 

c ~'i •f ~ ~ J. '~'~`f,~~,,v!•.:~•:~ti_+tip. -t r i 
+ 

° ~. 
_ 

~~ 
•.• _ -y -. •.. ~... 

    

f 
>ti^ ~. 

:~~ ° .. 
°j1 j~P i~ .~ ~~~:Y y .. 

 

Key to Index Page Numbers: 
L - Learning 
N - Networking 
NA-ND - Networking Appendices 
P - Programming 
R - Runtime 
U - Using 

 

• 

• 

   

- ,. ° '•~ 
^. 

• ~. 

;. ,~; 

.+~ '~~ . 

INDEX 

  

releasing, US-173 - US-174 
Blackboard, L2-5 (figure), U2-44, US-84 

See also CREATE/MODIFY SCREEN, Screen 
form(s), Screen Painter 

editing keys, L2-9 (table) 
field highlight, L2-7 
field labels versus field names, L2-17 
status bar, L2-7 . 

Blanks 
as delimiters, U5-29, US•56. See also 

APPEND FROM, COPY 
generating, see SPACE( ) 
leading, PS-11. See also LTRIM() 
trailing, Lb-22, PS-10. See also RTRIM(), 

TRIM( ) 
BOF() function, LI0-6, P10-13, P10-15, U6-13 

See also EOF( ) 
Bottom margin, P12-8 
Boxes 

C 

 

-c option, R2-4, R3-4 ' 
Calculation commands, see AVERAGE, 

COUNT, Mathematical functions, SUM, 
TOTAL, ?/?? 

CALL, P16-10, US-43. See also LOAD 
maximum number of binary files, US-43 
with parameters, US-43 

Calling program, P2-3 
CANCEL, P15-8, P15-12, U5-44 
Cancelling 

changes to record, L3-12 (note) 
file privilege scheme, N3-30 
menu selections, L1-14 

Case conversions, L4-17, PS-8. See also 
LOWER(), UPPER( ) 

Catalog (.cat) file(s), L7-11, U1-5, U2-49 -

 

U2-54. See also SET CATALOG 
activating, L7-13, U2-52, U5-29, U5-197 -

 

U5-198 
adding entries, L9-11 - L9-13, U2-52, 

U5-201 
changing, L7-14 
changing entry names, U2-53 
closing, U2-53, US-198 
creating in The Assistant, L7-13 (note) 
creating at the dot prompt, L9-9 - L9-10, 

U2-52, US-197 - US-198 
deleting entries, U2-53, US-198 
fields, U2-51, U5-199 
file title prompt, U2-51, US-197 - U5-198 
master (catalog.cat), U2-51, U5-197 
opening, U2-52, U5-197 
query (?) clause, U2-54, US-198 
renaming entries, U2-53 
selecting in The Assistant, L7-13, L9-10 -

 

L9-13 
selecting a file from, L9-13, U5-198 
structure, U2-51, U5-199 

CDOW() function, PS-22, U6-14. See also 
DOW() 

Century, see SET CENTURY 
changing, P5-22 
prefix, U5-203 

                                         

0 clearing, P8-8, U5-23 
drawing, L2-30 - L2-31, P8-7, U5-19  -

 

U5-20, US-23 - U5-24 
stretching and shrinking, L2-31 
for user input, P8-8 

Branching, P1-10, P2-3, U3-3. See also CALL, 
DO ' 

conditional, in program, US-113, US•128 . 
BROWSE, L9-18, N4-7, NS-4, U2-22, U2-25, 

US-40 - US-42. See also DISPLAY, Displaying 
in The Assistant, L3-3 (table), L3-4 - L3-7 
adding records in, L3-6 - 
in application programs, P6-2, P,11-4, P11-16 
command line options, ,US-40~- U5-41 
editing and appending records in; U5-40 
menu bar, L3-5 (figure), L3-6 (table), US-41 

- U5-42 -

 

on a network, N4-7, NS-4 
BUCKET, see Configuration commands 
Buffer 

history, L9-6, US-107, US-145, US-219, 
U5-237 - U5-238 
print, P12-11, US-107, U5-145 
type-ahead, U5-48, US-263 

        

• 

• 

                                   

/~ ~ 

                           

dBASE III PLUS 

 

X-4 

                        

-~:° 

                                                                             

- n'4 

            



  

_:~, 

  

:..5~. .t • s c 

.. 

''e 
~^ 

.,., 
;e• 
r 

 

~. . 

   

.,i. 

 

A 
INDEX L 

    

:~ . 

r. 
. ~, 

::.f*% 

CHANGE, N4-13, NS-6, P6-2, P8-12, P11-4, 
U5-41 - US-42, U5-45. See also EDIT 
with memo fields, P8-16 
on a network, N4-13, N5-5 

Changes from dBASE II. See dBASE BRIDGE 
Changing records, , see CHANGE, EDIT, 

Editing records 
Character 

field, U1-9, U5-89 
manipulation functions, U6-5 (table) 
memory variable, P3-4, U2-10 

Character string 
centering, PS-5 - PS-6 
converting to ASCII, P5-14. See also ASC(), 

CHR( ) 
converting date to, see DTOC( ) 

substrings, PS-7 
Checkbook management system 

diagram, P1-17 
list of files, PI-4, R1-7, R1-10 
RunTime + files, R1-10 
starting the program, P1-14 

CHKDSK (DOS), P16-12 
CHR() function, PS-14, PS-9, U6-15 - U6-16. 

See also ASC() 
Chronological order, see INDEX, SORT 
Classes of commands, NS-2, US-3 - U5-14 
• Addition of Data, US-4 

Creation of Files, U5-4 
Data Display, US-6 
Debugging, U5-13 • 
Deletion of Data, U5-5 
Editing of Data, U5-5 
Environmental, U5-10 
Event Processing, U5-14 
External Program Interfacing, US-13 
Manipulating Database Files, US-7 
Manipulating Other Types of Files, US-7 
Parameter Control, U5-10 - US-12 
Positioning the Record Pointer, US-6 
Programming, US-9 
User Assistance, U5-3 
Using Memory Variables, U5-8 

Classes of functions, U6-4 - U6-6 (table) 
CLEAR, L10-3, P6-7, P6-13, U5-47. See also @, 
CLEAR GETS 
erasing the screen, U5-47 
releasing •pending GETS, U5-50• 

CLEAR ALL, US-48. See also CLEAR 
MEMORY, CLOSE, RELEASE ALL 
to close database files, P4-2 
leaving a program with, P2-2 
to release PUBLIC variables, P3-10 
to unlock file records, N4-12 

CLEAR FIELDS, P11-16, US-49. See also 
SET FIELDS, SET VIEW 

CLEAR GETS, P6-13, U5-50 
CLEAR MEMORY, P3-10, P13-3, US-51 
CLEAR TYPEAHEAD, P8-17, U5-52. See also 

SET TYPEAHEAD TO 

                                 

converting to date, see CTOD( ) 
converting to lower case, see LOWER( ) 
converting a number to, see STR() 
converting to numeric, P15-19, U6-89  -

 

U6-90. See also VAL( ) 
converting to upper case, see UPPER( ) 
determining case, see ISLOWER(), -

 

ISUPPER( ) -

 

extracting characters from, PS-8. See 
also LEFT(), RIGHT(), SUBSTR( ) 

formatting, see TRANSFORM( ) 
functions, PS-5 - P5-19 
inserting one, within another, P8-6 - P8-7. 

See also STUFF( ) 
length of, P5-fi, U6-49. See also LEN(} 
operators, L5-8 (table), U2-5 - U2-6 
position of substring, P5-8. See a1soAT() 
removing leading blanks, see LTRIM( ) 
removing trailing blanks, U6-74, U6-86. See 

also RTRIM(), TRIM( ) 
repeating, P8-10, U6-70. See also 

REPLICATE( ) 
replacing part of, PS-6. See also 

REPLACE, STUFF( ) 
returning first character's ASCII value, see 

  

~~ 

 

'' . 

   

• 

                                         

• ~, 
~^ 

        

ASC( ) 
right just; Eying, P8-6 
show slanting position within another 

string, see AT( ) 

                          

dBASE III PLUS 

  

X-5 

    

•' ~ - 

   

,. 

                          

'~ 

                                                                      



 

r .......:~. ; 
 

y r 
 

~~~r~ s~i ~ 


f n~'Y .fir .~~: ~

. ~fi'~
~tiv{.~ ~ ~ a ~~

t

~ ~~

tMJ;.~c
. ~ ~<<~y _
~~

is
s~~`'

~'

M ~

`w " 1-

. '' ~,i

S _
- -

•
-

.. - --..• . ~

.• - ,l•.

•~~.

ra ^7 !:
- ' ~.;

J

Key to Index Page Numbers:
L - Learning
N - Networking
NA-ND - Networking Appendices
P - Programming
R - Runtime
U - Using

.. -,~.
~~

~
~

~

.
1 ~ t ,. . .

.t• •1 e .
`••

-.~ .

INDEX

~~4

expression list, in U2-3
format file, L9-16 - L9-17
full-screen, U2-20
history, U2-2, US-107, U5-145, U5-219,

US-237 - U5-238
to invoke dBASE ADMINISTRATOR, N2-6
length of, L9-21
memory variable, L9-26 - L9-29, US-8
network programming, N5-1 - NS-3

Clearing
a box, U5-23 - U5-24
memory, P13-3
the screen, P6-6.See also @...CLEAR,

@...CLEAR TO, CLEAR
the type-ahead buffer, •see CLEAR
TYPEAHEAD

CLOSE, N4-12, US-53
CLOSE DATABASES, L9-3, P2-2, P10-4, P11-7,

P13-2, US-53
CLOSE FORMAT, P8-14
CLOSE INDEX, P 10-7
CLOSE PROCEDURE, P16.4, U3-11
Closing files, L1-25, L9-30, P13-2, U2-33,

U2-35 (table). See also CLEAR ALL, CLOSE,
USE

not supported in RunTime + , R4-1
programming, U3-2 - U3-4,~U5-9 •
re-entering, U2-2
requiring exclusive use, NS-4
requiring a lock, N5-4
reserved names, U2-8
rules for writing, U2-7 - U2-8
scope, U2-3
scrolling, L9-21
structure, U2-3
syntax, U2-3
verb, U2-3

Command files, L10-1 - L10-4,~U1-5
See also Program (.prg) files, MODIFY

COMMAND
closing, US-44
creating, L10-1 - L10-3, US-155 - U5-157
executing, U5-106
modifying, L10-3, U5-155 - US-157
stopping execution of, U5-44

Command line
Insert and Overwrite modes, L9-3
length, L9-21, R3-6, U2-7
dBCODE formats, R2-1 - R2-6
dBLINKER formats, R3=1 - R3-6
options with dBCODE, R2-4
options with dBLINKER, R3-3
specifications, U1-1 - U1-2

Command processor (DOS), P16-13
Command.com (DOS),. N2-10, P16-13, NS-22,

U4-6, US-185
Comment lines, L10-3, P1-23, US-159
Comparisons

between different types, PS-4
exact, P10-18 '

COMSPEC (DOS), P16-13, US-185

Cluster networks, N2-4
CMONTH() function, PS-22, U6-17. See also

MONTH()
COL() function, PS-3, U6-18. See also PCOL(),

ROW()
Collision, N4-2, N4-10
Color monitors, P4-5, t12-20, U5-20.4 -

US-208
Color, testing for. See ISCOLOR()
Column(s), see also CREATE/MODIFY
REPORT
coordinate, P6-4
heading in report, L6-10 - L6-13
inserting into report, L6-14 - L6-15, U5-78
layout in reports, L6-10 - .L6-15, US-78 -

US-79
totals in report, L6-13, US-79

Command(s), U2-1, see also Classes of
commands
abbreviating, L9-4, U2-7 •
branching, P2-33, P2-34, U3-3
commonly used, L9-8 - L9-9 (table)
conditional execution of, U5-114 - U5-117,

US-128
configuration, U4-3 - U4-5
correcting, L9-3
editing data, L9-22, US-5
entering from dot prompt, L9-3 - L9-6,

U2-1 - U2-2 •

~~

4
~ ~~~

~,..

dBASE III PLUS X-6

•

+ ~,
L .~ Y

-
_ !'tie.

, ~`
tr,i4.

- -~.~Ay •»), . ~ -~:.:.t ~~~'~.~1'.'~'! u.-i.". fob C ~r

n ~[e
 r~•+r~

~'~}~', ~
~

A-11 ~ ~I S'y.~

- 'y `''.

+'~ k~o+tcj f

''•~ en
L .J

::1 l'ti ~i:

- ..111

~'.

,~~ 1
;`4'

•f` 1
G

~\`~

g

L ~

.;
1:~

'. ✓

~1,,

.1..

'r~• ''
cr~~u

-.'e
.

.i

'•~•.

.~

INDEX ~-..
~.

• Concatenation, PS-3, P5-13. See also String
operators

Condition(s), L4-7, U2-3
for determining input, P9-4
in program flow., P2-10 - P2-12
scope, L4-18 - L4-19
search, L4-4 - L4-7, L4-10 - L4-11, L5-2 -

L5-9
testing for, P 14-3

Confi256.db, U4-10
Confi256.sys, U4-10
Config.db, U4-2

at a workstation, N1-13
commands and values, U4-9 - U4-10 (table)
creating, U4-7 - U4-8

MVARSIZE, U4-5
PROMPT, U4-6
SET commands, U4-6. See also individual

SET entries
SHELL (DOS), U4-1
TEDIT, U4-6
WP, U4-6

Configuration file, see Config.db, Corifig.sys
CONTINUE, P10-9, US-54

in The Assistant, L4-6 - L4-7
Continuous loop, P4-11
Control characters, UD-3 (table)
Conventions, see Symbols and conventions
Conversion

functions, U6-5 (table)
guidelines, P5-3

Converting
case, see LOWER(), UPPER()
character to date, see CTOD()
data types, P5-2
date to character, see DTOC() _
files from dBASE II to dBASE III PLUS
format, see dBASE Bridge
input, with templates, •P7-2, ,U5-18
number to character, see CHR(), STR()
numeric expression to integer, see INTO,

ROUND()
Coordinates, P6-4. See also COL(), PCOL(),

PROW(), ROW()
limits for printed output, P12-7
numbering, P6-4
printer, P12-4
with relative addressing, P8-3

COPY, U2-58, U5-55 - U5-58
in The Assistant, L1-25 - L1-26, L4-21 -

L4-22
encrypted (.crp) files, NS-15
on a network, N4-7, NS-4
with other programs, P16-14
scratch file, P1'3-10

COPY FILE, U2-59, US-59
COPY STRUCTURE, N4-7, NS-4, U5-60
COPY STRUCTURE EXTENDED, P13-11,

e

c

dBASE configuration commands, U4-2, ••
U4-4 - U4-6

with default drive, P16-16
with default settings, P4-3
function keys in, U4-7
modifying, U4-7 - U4-8
with RUN command, P16-12
SET commands in, U4-6
storing, U4-3, U4-8 •
on System Disk # 1, U4-2
256K configuration, U4-10

Config.sys, U4-1
at a 3Com workstation, ND-3
creating, U4-2
DOS configuration commands, U4-1
FILES parameter, U2-33, U4-1
at an IBM file server, NB-3
at an IBM workstation, NB-4
modifying, U4-2
at a Novell workstation, NC-4
storing, U4-2
on System Disk # 1, U4-1

Configuration commands
BREAK (DOS), U4-1
BUCKET; U4-4
BUFFERS (DOS), U4-1, U5-234
DEVICE (DOS), U4-1
FILES (DOS), U4-1
for function keys, U4-7
GETS, U4-5

f_~_
1s

,'

••
.

t

US-61 - US-62
with encrypted files, NS-16

dBASE 111 PLUS X-7

.
•.

, .~

~:

~.

.~

• '•,.

:o '.

. 't,. ,
~ 1 +..

r

c ',

a -

p,.•. ' r is '•
_ ..; ~ A:~,-_-

fA ~ ~c ; 1' a ~ °p i! A~~t ~ ,~~~Aa~ ~a~4.ar' , +;aa~~
~..

~ i ~ t jam' r ~iN ~) ~ ~r ~ a +v: ,a a ~ L • t` v
,~ ~~ ~a'j~; `: ''j'~•~'{:'•~a. ,. •,. ° _ '' ~'..v-~yY'~I t"fir

Key to Index Page Numbers:
L - Learning
N - Networking
NA-ND - Networking Appendices
P - Programming
R - Runtime
U - Using

.w~~Y.~
~•~- ~:

- o '•:;' -

• :i ,-•
:'; ... : =~ •:~

,`

INDEX .~-

~...~

~. p r: .. in The Assistant, L6-4 - Lb-16
Columns Menu, Lb-10 - L6-15 •
Groups Menu, L6-8 - L6-9, Lb-10 (table),

U5-77 - US-78 . •
Locate Menu, Lb-14, U5-79
Options Menu, Lb-5 - L6-b, Lb-7 (table),

U5-75•- U5-76
page layout codes, US-80 (table)
report option ranges, U5-81 (table)

CREATE/MODIFY SCREEN, L9-16 - L9-17,
P8-12, U2-44 - U2-45, US-82 - U5-87. See also

Blackboard, Screen forms, Screen Painter,
SET FORMAT TO

blackboard, US-84
Screen Painter, U5-82

CREATE < newfile > /MODIFY
STRUCTURE, L9-10 - L9-12, NS-4, US-88 -

• U5-93. See also•Creating, Modifying
with encrypted (.crp) files, N5-16

CREATE/MODIFY VIEW, P11-15, U2-41,
US-84 - US-100. See also SET RELATION,

SET VIEW TO, View (.vue) files
in The Assistant, L7-3 - L7-10, U5-30
definition, U1-7
Options Menu, L7-8 -
Relate Menu, L7-5 - L7-b, US-95
Set Fields Menu, L7-7 - L7-8, U5-98
Set Up Menu, US-95 - U5-98

Creating
an application program, see Applications

Generator
catalogs, see Catalog (.cat) files, SET
CATALOG TO

data entry forms, see Screen forms
database files,see CREATE/MODIFY

STRUCTURE, Database files
labels, see CREATE/MODIFY LABEL, Label

(.lbl) files
new files from existing, U2-57 - U2-59
program files, see MODIFY COMMAND,

Program (.prg) files
query (filter) conditions, see SET FILTER
TO

Copying
encrypted files, N5-15
fields, L4-21 - L4-22, U5-58
file structure, US-60, U5-61 - U5-62
files, L1-25 - L1-26, P13-10, U2-58 -

U2-59, U5-55 - US-58, US-59
files, foreign, see APPEND FROM, COPY,

EXPORT, IMPORT
memo fields, US-55
records, P11-10
records marked for deletion, U5-55

Copyright notice
in applications programs, R1-8, Rl-9, R2-4,

R3-4
COUNT, N4-7, NS-4, U5-63
Counter

for page ejects, P12-16
setting up, P11-2
defining update interval of, U5-246

Counting records, see RECCOUNT()
CPUs supported on networks, N1-7
CREATE FROM, P13-11, P13-14, US-65. See

. also COPY STRUCTURE EXTENDED
CREATE VIEW FROM ENVIRONMENT, P11
- 15, U5-101

CREATE/MODIFY LABEL, U2-43, US-66 -

US-69. See also Label(s), LABEL FORM,
Label form (.lbl) files.

in The Assistant, Lb-17 - L6-24, U5-30
Contents Menu, Lb-21 - Lb-24, U5-68 -

U5-69
menu bar, L6-18 (figure)
Options Menu, L6-18 - L6-19, Lb-20 (table),

U5-66 - US-67
predefined sizes, US-67 (table)
zoom option, US-68'

CREATE/MODIFY QUERY, U5-70 - US-72.
See also Query (.qry) files, SET FILTER
in The Assistant, L5-1 - LS-17
menu bar, LS-3 (figure)
Nest Menu, LS-10, U5-71 - US-72
Set Filter Menu, LS-5 (figure), US-71

CREATE/MODIFY REPORT, L6-4 (figure),
L9-24, U3-42, U5-73 - US-81. See also

REPORT FORM, Report form (.frm) files

- ',. ..
• ;.~

Via% .V-ia

•

•

dBASE 111 PLUS X-8

f --

.. ~,'.. -
9

jj

4

5'

•~~

1

. `,
o

• _. a


~~~ 

  
`• •^.~'- 

J~~, ~'r `~?''4 i''~~ tir' • 
,+'' 

i~w 
mss', ~~{ ~~o.•~' s t 

S-~•~'~~.Y.~„? fit; ::,.•r•:'~ • ~ : .°fs.. • •-r``•~ 5 ; ~• - r r • 'fi 

 

- - :A-ir: -. ,' rrt~. f, i' i'~: ~~:: f;q ~;'7•t :•t•'~~L ̀ :e -7,-

 

lY:• 

•~ - 

 

1; 

,Y~ ~~f 
';;C=; 's %'t:« 
.. _'~=. 

~i~ 

 

t s 

. ■

~ 

G 
8 

` L 
A~ 

    

-:. 

' ~' 
INDEX 

       

Data encryption, N3-7. See also dBASE 
security, PROTECT, SET ENCRYPTION 

for applications programs, see dBCODE, 
dBLINKER, RunTime + 

Data entry, see APPEND, CHANGE, EDIT 
Data entry forms, see Screen forms 
Data integrity, P1-9, P3-7, P6-2, P10-3 
Data type 

converting, see Converting 
in database fields, L1-5 (table), U1-8 - U1-9 
in memory variables, L9-27, U2-10 
mismatches, P15-2 

Database files) 
adding fields, Ll-5 - L1-20, L2-22 - L2-25 
adding records, L1-20 - L1-22, U2-22, US-26 

- US-27, U5-137 
arranging records, see INDEX, Index 

(.ndx) files, SORT 
changing field width, L2-19 - L2-21 
closing, L1-25, L9-30, P10-3 - P10-4, P13-2, 

U2-35, U5-49 
combining, P11-7 

query (filter) files, see CREATE/MODIFY 
QUERY, Query (.qry) files, SET FILTER 
TO 

reports, see CREATE/MODIFY REPORT, 
Report (.frm).files 

screen forms, see CREATE/MODIFY 
SCREEN, Screen forms 

view files, see CREATE/MODIFY VIEW, 
CREATE VIEW FROM ENVIRONMENT, View 

(.vue) files 
CTOD() function, PS-23, U6-19. See also 

DTOC( ) 
for initializing variables, PS-24 _ 

Cursor control keys, U2-2 (table) . - . 
controlling, P16-10 

  

.~ 

                                          

in full-screen operations, UA-1 - UA-3~ 
in menus, U2-15 
in MODIFY COMMAND, US-155 - U5-156 
in Screen Painter, L2-9 (table) 

Cursor position functions, see COL(), ROW( ) 
Customizing 

dBASE III PLUS, N1-11 - N1-12, U4-1  -

 

U4-9 
routines, P16-5 
screen forms, see Qa , CREATE/MODIFY 

SCREEN, Screen form 

          

~" 

        

copying, L1-25 - L1-26, P13-10, U2-58  -
U2-59. See also COPY 

copying fields, L4-21 - L4-22 
creating in The Assistant, L1-15 - L1-20 
creating at the dot prompt, L9-10 - L9-11, 

u2-22 
creating new from old, US-61 - U5-62, 

U5-134 - U5-136 
currently selected, P13-5. See also DBF() 
deleting, P13-10, U5-97, US-121 

. deleting all records from, see ZAP 
deleting records from, L3-13 - L3-17. See 

also DELETE, PACK, RECALL 
designing, Ll -4 - Ll-5, P10-1 
determining size of, P13-7 
displaying records, L1-22 - L1-24, L3-4  -

L3-7, L9-18 - L9-21, U5-105 
editing records, L3-11 - L3-12, U2-24  -

 

U2-26, US-118, U5-169 - US-170 
exporting, L8-4 - L8-6, U2-57 - U2-58 
finding records in, L4-1 - L4-11 
importing, L8-2 - L8-4 

           

D 

         

Data 
access, simultaneous, N4-2 
backing up, U2-59 
catalogs, see Catalog (.cat) files, SET 
CATALOG 
integrity, N1-5 
merging from two files, U2-57 
protection on a network, N4-1 - N4-2. See 

also dBASE security, PROTECT 
relating, U2-38 - U2-40, US-94 - U5-101, 

US-255 - US-256. See also 
CREATE/MODIFY VIEW, SET 
RELATION, View (.vue) files 

summarizing, L6-24 - L6-26 
type, evaluating, see TYPE() 

Data commands, US-2 - US-4 

        

.~ 

     

r 

    

y 

                               

~. 'd 

   

~~. - .~ o 

   

dBASE III PLUS X-9 

                                                               

`~ ~ " .. 

          



~ ° f~lf 
~ "~ .S• , , .~ .w ~f, , 

~ '• ~ ac,Y~ y t' i ats f. 

1e :;..• - 

'° .,ice r ~.. ''.q l :~h`~a. 

 a i.3-Fi 
 

,z p-~'1 ~, ,f ~f- ~~ P' L ~~ ~`~t6 s~`~SJ7 ~r+,~,~ w ~ e: i~'O `~•~a'a F ~ a~~M~ ~i:. 
• ~~ •~ / ~t t,7.:I C a' ~ ' ' i~ .~•.. ,~ ̂  ~_ ~A,~:,i:~t, i. ~ t ~+y a '7tf ~ T x r. 

°.~~w~:..,A~'f .~f~{t~,~~.~'..e,- ,',? .i ter., ~ "a ~••~t~;~~.}4~~ S'•,`,`.,. 

~,~` 
  

• i t 

`tip ;~%: 
~~. 

l~. 

  

• 

  

Key to Index Page Numbers: 
L - Learning 
N - Networking 
NA-ND - Networking Appendices 
P - Programming 
R - Runtime 
U - Using 

  

. '" 
;` 

.~ ~,' 

~c:%~ ~~ . 

 

INDEX 

   

`Database manipulation commands, U5-7 
Database memo (.dbt) files,see Memo (.dbt) 

files 
Database structure, L1-16, UI -8. See also 

CREATE < newfile > / MODIFY STRUCTURE 
copying, U5-57 - U5-58 
creating, US-60 - U5-65, US-66 
header, UC-1 - UC-4 
memo, UC-3 - UC-3 
records, UC-2 

Date field, UI-8. See also Dates 
Date functions, U6-4 (table) 
Date memory variable, U2-10 
DATE() function, P3-5, PS-20 - PS-25, U6-20. 

See also TIME( ) 
initializing variables, PS-25 

Dates 
century prefix, U5-193 
in comparisons, PS-24 - PS-25 
in conversions, P5-23 - PS-24 
converting from strings, see CTOD(), 

DTOC( ) 
converting to strings, PS-22 - PS-23, U6-26. 

See also DTOC( ) 
formats, PS-21 
output format, U5-200 

Day, from a date, PS-21 
Day of month, determining, see DAY( ) 
Day of week determining, see CDOW(), 

DOW( ) 
DAY() function, P5-20, U6-21. See~also 

CDOW(), DOW() 
DBA command 

on a 3Com network, ND-10 
on an IBM network, NB-10 
on a Novell network, NC-11 

dBASE ADMINISTRATOR 
with an application program, NB-11, 

NC-10, ND-11 
definition, N1-5, N2-2 
error messages, NA-5 
installing on a network, NB-1, NC-1, ND-1 
in a multiple file server network, N2-3  -

 

N2-4 
requirements, N1-8 

 

indexing, L4-12 - L4-13, L9-22, P10-6, U2-28 
- U2-30, U5-131 - US-134. See also INDEX, 

Indexing, SORT 
integrity of, P1-9, P3-7, P6-2, P10-3 
determining last update, P13-6. See also 

LUPDATE( ) 
maintaining, P13-10 • 
managing, P10-8 
maximum open at one time, U2.33 
modifying structure, L9-12, P13-11, U2-22. 

See also COPY STRUCTURE EXTENDED 
opening, L3-2 - L3-3, L9-13, P10-3, U2-34 

(table), US-281 
opening more than one, P11-11, U2-36 
organizing, U2-26 - U2-30. See also INDEX, 

SORT 
printing records, L6-1 - L6-30. See also 

CREATE/ MODIFY REPORT, DISPLAY, 
LIST 

related, P11-12 • • 
relating, L7-3 - L7-8, P10-2, P10-4, P11-12, 

U2-38 - U2-40, US-94 - US-101, U5-255  -

 

- US-256, U5-266 - US-267. See also SET 
- RELATION, View (.we) files 

relational, P10-2 
renaming, P13-10 
requesting filename, P10-8 
restricted access to, P10-3 
restructuring for programs, P10-3 
saving data, L1-25 
searching for data, L4-1 - L4-11, U2-30  -

 

U2-32. See also FIND, SEEK 
selecting, L3-2 - L3-3, L9-13 - L9-14 
size, P 13-6 
sorting, L4-19 - L4-20, L9-23, L2-29  -

 

U2-30, US-269 - US-270 
specifications, U1-1 - U1-2 
status, L9-14, L9-15 (figure), US-104, 

U5-141. See also DISPLAY STATUS, LIST 
STATUS 

structure, L1-16 - L1-19, L9-15 (figure), 
U1-8, U5-88 - U5-90. See also DISPLAY 
STRUCTURE, LIST STRUCTURE 

structure of file header, UC-1 - UC-2 (table) 
updating,' L3-1 - L3-19, P11-4, P11-7 

                              

.o 

                     

n 

              

• 

                                                        

t'-

 

~.. 

                 

n• . 

    

dBASE III PLUS X-10 

 

a 
~~ 

                                                

,.e 

                                    



..i 
r. 4; 

t :,i- .~(LrK .y: ~ ~9:' ".~i '~ ~ ~ r : ~- Os. 
3 , n 

`~'fy 
~A✓:Y`f ~. 

\cQ 
."7F ` '~. ✓

c'. 
I '~'~ ~ +".v _~~:'~~ ~: ~~' •~'l*S, '~Sp ~ t'- ~"-},.,.,y~,~„{..A c. ~'.ti.~z w:~ ' ~ 

+ Y ~~' t. r y~., q ti ~ I,i 4t ~ >~{j7f',,ci t':Y~•.AiiS•. 4~✓.w 
i~ ~'~o'..~ 

. ....... ~ .I. _ _., a .~.•_~f~ . ~ .,t i` ~aiT "• .aif4 .. /.,!!. <;'ti*•► t•w_ .. ~ls.. ~:: ~~! ~.~ - •s l~ ~ .~:.a 

   
1 r  

:.ufi• 

:.L~J~~~4'`'\►'~i'~ _• 1,-~~! :t•)~\`.'~. •:t..~i.~i leJrl'~.. t' 

. .. .r ... .. .. .. ..r ~JJ.'~Sr..o 

;i; 
, •~ ~ 

l ✓ . „1 
.... .--. (. f- . 

\. ~ .• '~ 

°~~~ .n". -a~iFy'•• •.~~~~:).'aj- het.: :~.t1\; .t,q.~. ~'~•~S' tf.-,iAt'i~'tt''.. . - -• _ _-... r. :.~t~ 'l . _. _.. ".. dr,e : w.i..... l.. . a.t,t1 :J1..... ...r _ ~ .. _ -e 
:' : t:,, 

,v 
~.-.- 

~r 
~' i' ~. a 

- - 

  

'~L~~ 
ti •~. S`:~: F 4 

4` . 
~, 

 

~~~~~ 

d 1/

` L
A~

.t~ 'i'.

.
~~

t' -~" \:

. .. ~^,•i

" . r• .~
at% ~ `
~~ ..

INDEX •--.

.. ..; .

in single-user environment, N2-2
uninstalling from a network, NB-15, NC-13,

ND-15 '
dBASE ADMINISTRATOR directory

creating for 3Com network, ND-4
creating for IBM network, NB-5
creating for Novell network, NC-4

dBASE II, converting to dBASE III PLUS, see
dBASE Bridge

dBASE III PLUS LAN Pack, NB-13, NC-11.,
ND-13

dBASE III PLUS word processor, P1-5, U3-8,
U4-6

dBASE network commands
automatic file locking, N5-4 _
classes of, N5-2 (table)
guidelines, N3-33
programming, N4-21, N5-3 (table)
requiring exclusive use, N5-4
requiring lock functions, N5-4

dBASE programming language, P1-2
dBASE _security

access levels, N3-4 - N3-5
creating system, N3-9
data encryption, N3-1, N3-6
Dbsystem.db file, N3-8, N3-32 - N3-33
field access, N3-1, N3-5. See also Field

access privileges
file access, N3-1, N3-5. See also File access

privileges
guidelines, N3-36

• keeping a record of, N3-32
log-in, N3-1 - N3-4
from network applications programs, N4-19
network, keeping record of, N3-22 - N3-33
programming, N4-20
request form, N3-35 - N3-36
types, N3-1 - N3-2, N3-2 (table)
user access levels, N3-4. See also PROTECT

dBCODE, R1-2, R2-1 - R2-6
command line formats, R2-1, R2-2, R2-3
command line options, R1-8, R2-3
copyright header file, R2-4
encrypting files, R1-8, R2-1 - R2-6
file size restrictions, R4-3

help screen, R2-3
information file, R2-5
response file, R2-5
sample session, Rl-4 - R1-10

DBF() function, P13-5 - P13-6, U6-22. See
also NDX()

dBLINKER, Rl-2, R3-1 - R3-6
command line formats, R3-2, R3-3
command line options, R3-3 - R3-6 ''~-

copyright header file, R3-4 ~ ` . " ,
help screen, R3-3

information file, R3-5
linking files, Rl-9, R3-1 - R3-6
response file, R3-6
root files, R4-4
sample session, R1-9

DBNETCTL.300 directory
definition, N1-7, NB-7, NC-8, ND-8
uninstalling from a 3Com file server, ND-17
uninstalling from an IBM file server, NB-16
uninstalling from a Novell file server,

NC-14
dBRUN III PLUS, R1-2, R4-1, R4-2

commands not included in, R4-1 - R4-2
purchasing copies, R1-2, 4-1

Dbsystem.db file, N3-8, N3-32 - N3-33
Deadlock, N4-9
Debugging programs, P15-1

with disk file, P15-12
interactive, P15-8
with modular programs, P15-5
with the printer, P15-9
program files, U3-9 - U3-10

• stepping through the program, PIS-9, '
US-252. See also SET STEP

suspend program execution for, U5-274,
US-182

Decimal places
controlling display of, P5-18
in conversions, PS-16
fixing number of, P5-18
in memory variables, P3-5
setting, US-213, U5-231

. '~j

(~

.~

.
~.

~`

E

dBASE III PLUS X-11

,,

.fir-

''`~ • ~-

' .. .~.:

.
..

•
..,s.•~..c

-
I`, :r..

a F-*.4 ~v ~
•`.:`

~'\: ~~iT^•, t;•a1 rt ,.•i.%~~?'\YV~
`

r~rj.._i,h r .̀~:i:.'ar~i t~•#~~
`.!•

J'•, /"~~

.. a:- ,. - , . t' '• . tom.' ~4 i:.• ~+ ., ~ .t ~~, ' rr ~ ., 7 '~•'#. ~• 5; 44~~- 'a Wa~~ i r i(a •
a
~,~ ~ 3 + •"' -~ ; d'~.. E. .~~tj •,~11j:~.t..~'1:~~ ~~t •\•aY~ 6c` i^~~ rf ~C.L~~;.' «?~~, v~' ~i", .Y a. • ~...4 •` .(~/ ~ ~! i ~t

`~ ~ . ~ - .~
• •9 f - t • L~ :~1• . ~ f: t. .)'• .a::' is : ,ya ~ ~ •, } a • M ~ •,tJj.• 1 . t•. , ~ ♦ y .s .~ q,R,

.. •~ • .,,i ~ =. V't~3~ ~~ ~•,t~}{a~'1 t :•s~4~ ~. •. .J• :`I ~
•~ry`i

~ • ~ S.....a.,:. e b.. ~ `~
.t

r
- .. '_~, ._.7esl.i. .. ._ w•.:.eS (_ C e • ~ t•• ~~'j. t~

rte.
1r ~a:- .- -.

•- •:.'"~
a

- • r.• .: r .,, «aa
- - _ 9~'.te e_{.'_.. S:a t !. ~ \.i L ~ -1.~2 «~fr6~'-a:.: ... ~SY.Lr•~.~ r_ .-.L_t ~iy~,,~a..+a•~:.a~~.: a.G '-• =..•a~;a',

,' ~,~`.
'•~

.,..
` =;' ~:~

t:•

. r_; ~ .
fS, ~ i'?1 ?A

7

•

Key to Index Page Numbers:
L - Learning
N - Networking
NA-ND - Networking Appendices
P - Programming
R - Runtime
U - Using

INDEX

~~

DISKSPACE() function, P13-8, P13-9, U6-24.
See also RECSIZE()

DISPLAY, P11-2, U5-105 - U5-106 ...
in The Assistant, L3-3 (table) "'~' ~;~. .;
with memo fields, PS-17 . ~ - '~ = r

DISPLAY HISTORY, P15-7, PIS-10, U2-2, ~,
US-107. See also LIST HISTORY, SET

HISTORY ~ -' -
DISPLAY MEMORY, P15-11, U5-108
DISPLAY STATUS, L9-14 (figure), P15-11,

U5-109
. on a network, N2-6, NS-7
DISPLAY STRUCTURE, L9-15 (figure), US-110
DISPLAY USERS, N2-8, NS-9

before uninstalling 3Com network, ND-16
before uninstalling IBM network, NB-15

' before uninstalling Novell network, NC-1"4
Display user count option (for Adducer

program) ,'
on a 3Com network, ND-14
on an IBM network, NB-13
on a Novell network,_ NC-12

Displaying '
data commands, US-4
data with templates, P7-9
fields in view files, P11-16
history, L9-6
records in The Assistant, L3-4 - L3-7,

L3-11 - L3-12
records from the dot prompt, L9-18 -

L9-21. See also BROWSE, DISPLAY, EDIT,

DELETE, P13-13, U2-25, U5-102. See also
ERASE, PACK, RECALL
in The Assistant, L3-13 - L3-17
on a network, N4-7, NS-4

Delete file privilege, N3-5, N3.26
Deleted records

bypassing, P10-18 '
reinstating, L3-14, U2-25, U5-103, U5-164

DELETE FILE, US-97
DELETED() function, P10.18, U6-23. See also

.SET DELETED
Deleting

all records, U2-25, U5-284
data commands, U5-5
fields, L2-25
files, P13-10, U5-121
leading blanks from string, see LTRIM()
marking records for, U2-25, U5-102. See

also DELETED(), PACK, RECALL, SET
DELETED '

memory variables, U5-173 - U5-174
multiple records, L3-14 - L3-17, P11-8,

U5-102
- single record, L3-13 - L3-14, P11-8

trailing blanks from string, see RTRIM(),
TRIM()

user profile, N3-23
Delimiters

ASCII, U5-25
changing, P8-1, U4-10
in Config.db, . U4-7, U4-10
for field widths, U5-216 - US-217

Dialogue box, U2-12 -
DIF files ~ -

exporting, U2-55 - U2-57, U5-55 - U5-57~ ''
importing, U2-55 - U2-57, U5-28 - US-31;

DIR, P16-12, U5-103 - U5-104 -
Directory

destination, R2-5
development, R4-6
listing, P16-12, US-34, US•103 - U5-104
path, P4-8
source, R1-5, R4-4,

Disk access time, P10-3, P16-3
Disk drive, default, P4-6

LIST

records, in screen form, L2-1 - L2-30
structure, L9-15 (figure). See also DISPLAY

STRUCTURE, LIST STRUCTURE
user-created message, US-245

DO, P1-6, US-106, US-111 - U5-112
for branching, P1-10, P2-3
difference from DO WHILE...ENDDO, P2-6
with ON command, U3-4, R4-2
with parameters, P16-7
with PROCEDURE files, P 16-4

~,

.~ .

dBASE III PLUS X-12

. ~ _.
' -

...

.a

[y: • e ~-
J

"':",' ~"q'
.....+~.~;r'';7R'•d~'"` ~

w~`'•'a "~:'?7~
~:~ : ~~i.' ..~ ~: ','~a'~1~,'`~l~'i `~f~~'~°~„•i"' Sv's",~~'i'~~~~~

''~ . , ° ~) ~ 1a I~4 ;+~t ~?... w ~td•'ti"''.r._y_'1} } Fi er•'~;. to,,•',•I~ `^ ~ +i'{ t t `s
` r' o" •` i •=~et 'i~~1='C f'•`Ci F~ °`t'~::CP~4;j,~~~\~!q \'•~'~r'1 S' E.f+'~ve~ ~ "o'ij1)•'~L'1=.^~;~~;a~•'~t~ ii~~~~Y i=•~a~

i1y',:'• ~t ;~'~
.~ rl~ ~/:•1~i~ •r~ ' r- ~. t.. y•~. r•t., "'rr~~ •~r.E~•~~~ ~"e i:•"-r`t'4 t ~'~ ~.,°J ~1~'4 ' a7~~~w;

• `~ '~ .~ ~ J ~1'r)~ ~ ~ ~ ~~
L.`s V~~\: 0,i! ~ ~. ~•Sv;i:t' •'`r',;..~f '~•1t'%~• °' -

„S ~~,,•~`:'.: ̀~~~ / S i'.~
- °~~ its ~ ~ w ~ft•R 1.. `,rl~ i' p,~f=~~ ~ :tf a (i t`~i'a'•' ~~'S;l~~l~~~~-~~` ~ ~ ~ 01 .tr .' .c .Z tf.~~:::

~ A • i~ ° ` ~ n•. GR:'.~f~ - P, ~ !, i • tj. ; ~`I ~~~, ~ 1~• t~►~-7i"' ,.~ L: l4 s C i ~~:'- r 'S ,t. - ~ e~~ ~ ''~~'. :~
t ~,y: ~e' - ~ „ ...a t, 'K~~a:w~,t~`+?,.A °i,'Y.~;~~a~ ,ai'1 .C•

1.,5 ts eti. fy rs'r ..,1 e•i°~ ! .1 ,~ ~? - ,
. •.. r';v$p .~„ri 1,; t•j •d \t. rj.'- ', Cr•~ . y• ; f• ri a ~• '.i

'' , ~:. . VC..'.°~ ~i. .~:, .
a". w^w ~ •~. =its' r. 11~T~1.,. ~•. ~ ~,, . s . i ~'1 t t s ' i~• ~~'~ s td ~t =z~ , .~ . ~ ': , c.~ ! f, :.1,r. 'i
,. ~

^'.
er °,s .. oti)~. /~1 ~4 2 ~r•.TP !.. .i 't~.'~•n. ~(J i~~'r.~l:

►i '. ~ .~ar~ - i. °a .,~ j r 3. J- ,
a~~~~ r,•

$fl;i\~!' '• ~";•,Sh~~ I.,,'~: \".~'K!'`1•~~r°.'."t'°~~~f~~1 ~i\lor! ?~irft~~Y~•tJ P .z -; °s-P! ~•~rw~ w' • 6 ". e°'`_ai. ^P!! .,. _ `~

•~, ~ ,.&a ., ,r s..~.i.j:°3 `.~.a'It+'_ a.~Yto^:y~.Y? j` -!• ~. L.~. ¢Tx.CYY..?.~~"' f 7~ Y "' 1w c•~♦ ...,~•°._.~•' •a Ry ,•~v~ '- .'t
5 0 .~_. ~" ~.. } _ s. `a .~ ~.~ `~ ~e.~°x"T~`:~ i. ~~.V ys~f~y~6~:~\~4'~ rL~~ ! + a.i~~r ,v~ ,, s o rp yiP `'~f

ryi
;~ ~ t~~ ̀ • .i!"'_~.e

~ ~,. i ~ Y(QY ^ti.•'r ti °: ~. y`lf r1~ <~7c~t+jy s,_' •~ •, v~ ~' ,~ •~

~ , ir: ~''',ad'~S`~~~G-,'
- r•isa.~r «4. ti sR.~•.4e..Lki'a9 L`•r'1"i::.e .o: e...°y°s~..,a.s~~~~~ _~~:;~~~ e.~`~;.~....,j .~`_:.... _.. -a ~.-~S

L +^:F~!~
-â `~ , ao:' ~ • .~~y o .~.

'•1

i o,~
r, •,~' ~

\ ~~C

~r a ;

` L
P~

~ty ~'•~ -

INDEX

DO CASE...ENDCASE, P1-14, P2-10, U3-3,
US-113
difference from IF...ENDIF, P2-12
in debugging, P15-9

DO WHILE...ENDDO, P2-4, PI-11, P14-2,
P14-5,°U3-2, U5-110 - U5-114 - US-117
for continuous loop, P4-11
difference from DO, P2-6
difference from IF... ENDIF, P2-7
EXIT, P2-17, P4-12, P14-3
LOOP, 2-16
with macro substitution, P3-16

database files, LI-25 - L1-26, U2-58, U2-59,
US-55 - US-58

fields, L4-21 - L4-22
file structure, U5-56, U5-61 - US-62 '

E

EDIT, L9-22, P6-2, P8-12, P11-4, U5-118 -

• U5-119. See also CHANGE
in The Assistant, L3-11 - L3-12
on a network, N4-13, N5-6

Editing
commands, US-5
keys, L3-4, U2-2
labels, L6-25, U5-66 - US-69
in MODIFY COMMAND, U5-155 - US-157
records, L3-11 - L3-12, L9-22, U2-24 -

U2-25, US-114. See also BROWSE,
CHANGE, EDIT

report form, L6-16,U5-73 - U5-81
EJECT, P12-11, P12-12, U5-120
ELSE, see IE...ENDIF
Encrypted (.crp) files, N3-1, N3-6. See also

dBASE security, PROTECT, SET
ENCRYPTION

creating, N3-6
and Dbsystem.db, N3-8 ~ -

Encrypted (.prg) files. See also dBCODE,
dBLINKER' '
creating, •R2-1 - R2-6
linking, R1-9, R3-1 - R3-6
named in a response file, R3-6

ENDIF, U5-123
End-oE file

condition, P10-14, UB-1 - UB-2 (table)
difference from BOTTOM,
testing for, see EOF()

Entering data, see Data entry
Enumerated data, N3-16, U2-17
Environment

dBASE III PLUS, U4-1 - U4-10
network, N1-2 - N1-3
operating system, P16-13

Environmental commands, U5-8

• ~

DO... WITH, P16-8
Do.com, P16-16
DOS

command execution, US-178
configuration commands, U4-1. See also

Config.db, Config.sys
' device, set for printing, U5-218, US-251 -

• U5-252
° exiting to, L1-26, L9-30, U5-162

path,• . NB-10, ND-10
printer port names, P12-2
text files (Framework II), P1-4
version and network software, N1-7

Dot prompt. See also Command line
displaying from The Assistant, L9-2
entering commands, L9-3 - L9-5,

U2-1 - U2-2
returning to,' L9-2, P13-4, U4-5
starting dBASE at, L9-2 (note)

Dot prompt line, see Command line
DOW() function, P5-21, U6-25. See also
CDOW()
Drawing

boxes, see Boxes, drawing
lines, see Lines, drawing

Drive, set default, US-203
DTOC()' function, P5-22, U6-26. See also

.~

A '

9

• °
°

_~.
y

CTOD()
Duplicate records- '~

ignoring, : P10;19)4'_
Duplicating ~ . ~ ~ .

any file type, ~U2-59, U5-59
ASCII files, - U2-59, U5-55 - U5-58

• •~

dBASE 111 PLUS X-13

• ~: ' ~ a e • e{

°
f •

f -

.T a r'' :i- ~ 4
♦•:;ei mow \~ ..T Lw~t :: 'k+~1.: ~~~~f: .,,

r*`"'L~'L: ;c...'r✓ ~-::••~..~ ~ . .~i.~f a y - • f- ,~~
~ • '6{ r •t f~ f C:b'..i1r :, C, N -., :~;~w 'j },i~~.~•~ f. •,.k: r + ~n;~ p, Aar; _,

! 'LSy 44 -:Z'.Z;Jn. f ,s.
4 t1~~';:. ~l~p 1 . -L• i re ~a'asSJ'Y!`si

.i q
t
y

,~;t'S J~ f .~ryrs~('Qa t• }. f:'~t ~.. a. •• _,. '•:.r•J r' •:ay-. ~., rS ~% 4
i....t/s~•[.'•t,.i~l :a~1~~ Z .1t1Pii~«~.rs•~i..~4' a+~..Lu ~~:~ia ~6a~:~a••~~...^.L'..S•'~~.....,...r~4._..

Thy -/i ~~• L r1 ~~~ f~'

~?.~ . ~-.. e:

r it
t r-%

"` to s{ .~
. ~ Y... 4t

_~~
.`

'~' ~₹~
~4 t~~ •`-

~'7~ iii 4~; ~' 7 ~+: 30 ̀ • ̀- ~-• ~
P.71

Yom: s-:~.i' ;~' ̀:
;= •ter • = 'd~r

, _ ~ .Y

:` o,`._

~- :• '~~:

~; ~i - ~

Key to Index Page Numbers:
L - Learning
N - Networking
NA-ND - Networking Appendices
P - Programming
R - Runtime
U - Using

INDEX

EOF() function, P10-13, U6-27. See also
BOF()

ERASE, P13-10, U5-121
Erasing, see Clearing, Deleting
ERROR() function, U6-28 - U6-29, U7-1. See

also MESSAGE(), ON ERROR
in network programming, N4-16, N5-30
during program run, P15-13, P16-9

Error messages. See also ERROR(),
MESSAGE(), ON ERROR
Adduser program, NA-3
dBASE ADMINISTRATOR, NA-5
IDLAN program, NA-1
installation, NA-2
list, U7-1 - U7-21
when programming, P16-9
RunTime + , RA-1
uninstallation, NA-2

Error trapping, N4-16 - N4-20, P16-9. See
also ON ERROR
at the dot prompt, N4-16
in a program, N4-16, N4-17, P9-1 - P9-4

Esc key
to cancel selections, L1-14
for debugging, P15-11
in dBRUN III PLUS, R4-2
with ON command, P9.12 R4-2

Escape codes, U5-15, U6-15 - U6-16
Evaluating expressions, see ?, ?? commands
Exact comparisons, P10-18
Executing

binary files, see CALL, LOAD, RELEASE
command file or procedure, see DO,

PROCEDURE, SET PROCEDURE
Exiting

dBASE III PLUS, L1-26, L9-30, US-169
The Assistant, L1-14 (warning), L9-2

EXP() function, P5-5, U6-30
Explicit file locking, N4-8
Exponents, see EXP()
EXPORT, US-122 - US-123.

in The Assistant, L8-4 - L8-6
pfs:File, US-122 - US-123
screen form options, L8-6

Exporting files, see EXPORT

Expression(s), U2-4
evaluating, L9-25 - L9-26
evaluating data type, see TYPE()
with index files, P10-6, US-2, US-131
limitations, US-2
list, L9-20
nesting, LS-10 - LS-11
with SEEK, P10-10, US-188
types, U2-4

Extend file privilege, N3-5, N3-26
Extensions, file, see File extensions

. .•~

.'

. F

-f option, R3-4
Fields)

access levels, N3-27

. .- ;
• ':-'

` ~ , access privileges, see Field access
privileges

adding new, LI-15 - L1-19, L2-22 - L2-24
changing contents, U2-22. See also

BROWSE, CHANGE, EDIT, REPLACE,
UPDATE

changing width, L2-19 - L2-21
- copying selected, L4-21 - L4-22, US-28 -

U5-31, U5-55 - 58
definition, Ll-3, Ll-4
deleting, L2-25
displaying column headings above, U5-226
displaying contents of, see Displaying

records
list, N3-30 - N3-31. See also SET FIELDS
moving, L2-12 - L2-17
names, see Field names
release all, U5-49
replace, U5-176 - US-177
selecting, US-212 - US-218. See also SET

FIELDS
set automatic advance, US-209
size limitations, U1-1
types, see Field types
in view files, ' L7-5 - L7-8, US-92
width, see Field width

FIELD() function, P 13-6, P 13-8, U6-31 - U6-32

. ••j
• • ~

3

0

I

dBASE III PLUS

X-14

. - •~

f
'~

.:r. •.u • ..
--a..

... i~
v

.

i~-

M• ~ f -

`:

•. b~ .

.,

,.

.s

'y.. •. .~ .
-i:

n. «~' ~~1<i.. .ry= •!~ljd::;'~,,' f,:,f : •ta rAt~~r. aa♦ ~ 4+i : .fyr'~:.. °e. Nls2tc .'• ~. "ca ~ r , ,N
s aE . ~•~t' ;{. ' .! ► :.\ :• ~ , 2rf ,) p..rt t., .r^,.c» ~"

F. r , . ~ a• .~ ~. t: ~ ' .~
b . ' ~ ~. ~ f t .• A y w i~: l r, e..F' rt } 5'1w a * y e ., i,._ -;'~~, ..r. ~~~~

•t~
•$a.:, ~~ f. (~-•Bj1 'wt ~. •a•9`•:f, 7. A.r\,~P ~~. ~r-t~ {r ~~ 7p .•: ltif ~:e +.. ~~~~ ~i yr• f~ t^.,v.?5t ~Cw.~ F~.. v`

••t ._jr .'.k''r=
♦

r..r.,r r yr <'; •,/r t. ~-.~ t~I:•
^~Sf ~. s..-o;~Y`,>„T r ~..b'R

~. •'r- ~-v ' 7G ,l• tic:'r _ .ii. o C• '1 y •r'' '~~ Via`: ..
~;ti. .:r'• :,,lj.L...~.. `~.'P..i ;.r: -S...L~ti'~`~r\'-7F►,:r'..f.~ r';°~•ff : ~:~~~. %-l ~yf'r~~.ds`' tiS~*~.• y,.i..~ ~~ !, .~ ,,. :i: ~,~'F`'y~.a ~fi,• ~••:;! ':+,e . ~-•- ..: r ~ :'ak..:~.a]•.,.•.~,.:~~.`y ♦S.'r..R:. r . • . •~ ~ • 's.. C~ f:.j~,rN- •p~..i wS,Ap;'Y •~[; •w.y ~,_'.: • •C' ~r:.:e•.!-Y :`::bi ~Jj{y ~ .~ wi• ~~~+. ~ ~.,at`'.•. ;;y_ ~~.~~,~ :'t'.~,.t•.._\,. a;o^-.?•:1..J. /a..~:p~•f!is. d~. _ .y. :'t':•s .. '•a i ..~` ..i,- •1 ..q•C.C!~ '~`f ,. .•~:/,~. \.,~ .1 f,: •:~~'.,~i '' ,:~ `• w.\5 .,. :v:ifte !'' ,,Q`._ Cast 'Si'•:w :1U°•e-~~.i.. ••d. ^.

.. .•..• - ~ r: ..: ,~S ~.;:~.L?..7.d~'~`-j~i i'.~ -• -•.t ! . .i•a' ;'!• -~p-: i't''~: faa t•..::•,,~,, ~ . 5. .r.
z

.... .•f .~
• ::! •,~ .ltiJ- 'fit.; '.r't N : •d0 .r ,.i' .~;~ .'a' :•r i:~ .aJ.~: ." •A,~.r ~:i~,11"L:• -"F, .'•9 ":; ,=:.; r~.~:.e t'*it'~?aq: +~C=~y.•r,>'+ tlam:: c: ..;. .! :.~.~• }!,7.ft~ 4r ..fF.'~ . fy~ ;. .-~~. = :J.t ••~. w...e=> J :Y::

`fir ~' • rr l~iv Ur.'• .a,;;~. •)~.•d, ~ j .;~ •~. •.~;M• it`T: 't•.:. ti.. ~ Ind~ ..~' • •yr = J~-:i ••n f- .+. ...!.-e,. /.5..-,,.. •t • ••{ „~.: E,~~:. ;:.l~s.!•i: %.+1~,:.'•;; _ .:.~.y,,• ~~~~ .~1gt'~'•t '~,.i~~ri;.t~..,~fa,~;.•d•' ,.r,w
~~~_..,~~' 

~ ;. .. :-_ 
`~: '^:.~f-'i ). fir':• ..,.,~iF~:,,~~:~'76°t •,~... '2. t.r~~l"".Pr:.~,. t ti.ya~} g

g•.ti .~.q:Yr f•:1•r t.`.~•-'~~•.-.►ql~`3~~. 'v~y•' ~~~r~ji; ~. ti '~~.f: 3':'.iw~,:J:tiS~•"%~i~::w:~'~,"~' Y~~a'~~.' - •r4 r"~~ "p ~e S. ~' R.:.~w,f ''f.~ :s Ci ~. ' ,,er,Y~ t~Rtry/`~ wtt„.rt a:w. :5.., \." r;. ~. 5i ~t .' t~,.,~'1%f~. •.. ;3.- `'~' .2 )• 
r.""t' •tT1 r:-, •,;:~a T ~r 11 w! •N if.~ •.~.. • :~~. ~ w`. ._ _S.v-.. R'1 i t.1 .a'1•I,:.rS.f: :a.• . ., _ .- ._•~_.+. •.. w:_. _.r'S .r.ia••.. .. .-...-.-5%-•.t  ~Sf.-ai~..-:.v':.~1.:i .~ . _: •'a 5 

~'ai r 

R:: : ,t. ~ .:. 
~•: 

~: ~" ~~. 

S' •• 

~~ • 
v 

'.~• ••z... : 

t 
7 ~: 

• 
. ~f 

           

~\
\
~

D 

c ~ 
r 8 

A 
L ~ 

   

INDEX 

 

Field access privileges 
access levels, N3-27 
establishing, N3-27 - N3-29 
types, N3-27 

Field names 
determining, 

FIELD( ) 
precedence over memory variables, 
requirements, Ll-4, U1-8, US-2 

Field types, L1-4 - Ll-5 (table), U1-8 - U1-9 
Field width 

changing, L2-19 - L2-21 
definition, Ll-4, U1-8 
entering, L1-17 - L1-18 
indicated in full-screen mode, 

File(s). See also individual file types 
access attribute, N4-15 
access level, N3-26 
Autoexec.bat, NB-10, ND-13, P16-15 
closing, L1-25, L9-30, U2-35, U5-48, U5-53 
concurrent use of, N4-2 
Config.db, N3-3, U4-2 
Config.sys, N1-11, N1-12, N1-27, U4-1 
converting from other formats, L8-2 - L8-4, 

US-28 - US-31, U5-55, US-129 
• copying any,, L1-25, U2-59, US-59 

maintenance, P13-10 
management, P10-8 
maximum number open, U2-33 
merging data, U2-57 
naming conventions, P1-15, U5-2 
non-network, N2-5 
open attributes, see File open attributes 
opening database, L3-2 - L3-3, L9-13  -

 

L9-14, U2-33 - U2-34 
opening database and index, L4-14, L9-22, 

US-281 
opening, on a network, N4-2 - N4-6 
operations, specifications, U1-1 
protecting, U2-60, U5-51 - US-54, US-55 
relating, see CREATE/ MODIFY VIEW, SET 

RELATION, View (.vue) files 
renaming, US-34, U5-59, U5-175 
security, N3-1 
selecting, see Selecting 
SET PATH TO, U5-249 - U5-250 
sharing, N1-4 
size, R2-2 
types, L9-16 (table), U1-4 (table), U1-5  -

 

U1-8. See also individual types under . 
(period) 

using simultaneously, U2-36 
File access attribute, N4-15. See also File 

open attribute 
File access privileges. See also Field access 

privileges 
access.levels, N3-26 - N3-27 
cancelling, N3-31 
changing, N3-31 
creating; N3-2 - N3-27 
precedence over field privileges, N3-28 
privilege scheme, N3-21 
restricting, N3-28 
storing, N3-32 
types, N3-5, N3-26 

File extensions, L9-16 (table), U1-4 (table), 
US-2. See also individual extensions under . 
(period) 

File open attributes 
default, N4-3 
definition, N4-2 

           

see DISPLAY STRUCTURE, 

          

U2-9 

       

. ••~ 

  

• : •~ • - 

:~,~ - 

          

U5-205 

 

'•i 

                   

copying database, U2-59, US-55 - US-58 
copying structure, U5-60, U5-61 - US-62 
creating, U5-83, U5-88 - U5-92 
creating in The Assistant, L1-15 - L1-20, 

US-33 
creation commands, US-2 
database, defined, LI-2 - Ll-3 
Dbsystem.db, N3-8, N3-32 - N3-33 
deadlock, N4-9 
deleting, US-34, U5-97, U5-116 
determining existence, see DIR, FILE() 
determining size, P13-6 
exporting and importing, see COPY, 

EXPORT, IMPORT 
extensions, see File extensions 
group, N3-7, N3-26 
local, N2-5 
locking, see Locking 
Login.db, N1-11 

                                            

!,. 

\• •~ 

~• 

          

.; 

 

s dBASE III PLUS X-15 

    

-.••• 

 

Viz. .~.:..:~ ~,•. 

  

~: 

                       

- =d.. 

     

~.;;.~. 

  

,. 
_ ,. •~r•' .. ~. 

               



w ., 

rra~ 

` .~• • ~s ̀ *1 
S 

~. ..:Or ... ~ ~:.: L'.:f a. 

• „i- aer T.~ 
a~~• ..~tfL. C;y:a~.v i ~ '. C•y~'a tjr, j ~ 7Fa~•. r • „~ a t . ~ ~'+.' < S ~~: t' ~ J s * f.Yj at- ~ .r~ ̀ Y~e,u,y t`. rtaNi ~; i~, ti 

e ` ''~tRy';l,.e tw4!=t., a: -P Y* r ~ .x 
~ •" ~ ~~ .}a ~ i,~{ a St~;t~ t ~'.. ~;:. 

• ~ ~~• ~! ~ f f , `t ~'.`•~t a . t j i~t3 ~ 4.va~~ .. a a - L..,,a ! i f'.=~ { . ! ! ~ AS• .L~e gran J it( i'c ~,y.~" •,! _ P' ~ ~}~ 
a ~- ,tom a .W a. J,r • ~f 2 ••1 °, , , w '~ y a 

  

"J~a. ~'•` o 

.~`~~ 

~ w~ ~ 

   

S 

-e.n 

 

- ^ice - '.~.'~. 

 

•.I... ~, ~~' 

~~ °, ~ ~ 'aa.' v 

'~r 
_ P ; ', . 

. y` ~,_, 
a.",fit 

N , 
.. ~ . ~,-'_, 

 

Key to Index Page Numbers: 
L - Learning 
N - Networking 
NA-ND - Networking Appendices 
P - Programming 
R - Runtime 
U - Using 

,~~g 
• .~, 

 

INDEX 
Fo~1, 

^ A 

Flow charts, P1-21 
Footers in printed output, P12-10 
FOR condition, L9-21, U2-3 . 
Form feed command, P12-10, US-120 
Format, date, U5-200. See also CTOD(), 

DTOC( ) 
Format (.fmt) files, P8-12 - P8-17, U1-ti, U2-43 

--U2-47. See also CREATE/ MODIFY 
SCREEN, Screen form, SET FORMAT 

closing, P8-14, U2-35 (table), U2-47, US-48, 
U5-53, US-232 - U5-233 

creating, L9-16 - L9-17, P8-12, U2-45 -

 

U2-46, U5-82 - US-87 
with memo fields, P8-16 
multiple page, P8-15, U5-20 
opening, L9-17, P8-14, U2-34 (table), U2-47, 

U5-82 - U5-87, US-232 - US-233. See also 
APPEND, CHANGE, EDIT 

Formatted output, P12-3 
Formatting of printed page, P12-8 
Forms 

data entry, see APPEND, CHANGE, EDIT, 
CREATE/ MODIFY SCREEN, Screen forms 

label, see CREATE/MODIFY LABEL, Label 
(.lbl) files 

exclusive, N4-2 
by file type (table), N4-4 - N4-5 
shared, N4-2 

File server, N1-3 
Config.sys, NB-3 
installing dBASE ADMINISTRATOR, NB-6, 

NC-5, ND-6 
requirements, N1-7 - N1-8 

o uninstalling dBASE ADMINISTRATOR, 
NB-15, NC-13, ND-15 

FILE() function, P13-4 - P13-5, R4-4, U6-33 
Filenames, ' U1-4,•U5-2 
Files Menu, PROTECT, N3-22 - N3-30 

file privilege scheme, IV3-31 
field access level, N3-27 
field access privileges, N3-27 - N3-29 
summary of entries (table), N3-24 

Filter conditions, UB-3 (table) 
Filter file, see Query (.qry) files 
Filtering 

commands, P10-16 - P10-20 
a database file, LS-1 - LS-17. See also 

_ CREATE/ MODIFY QUERY, Query (.qry) 
file, •SET FILTER 

in different work areas, P11-11 
effect on dBASE commands, UB-3 
in views, P11-16 
input, P7-1, P9-1 
options, establishing, P11-15 - P11-16 

FIND, P10-10, U2-32, U5-124 - US-125 
end-of--file, P10-13 - P10-14 
isolating next record, P10-12 
with memory variables, P10-11 

Finding. See also FIND, LOCATE, Searching, 
SEEK 
files, P13-4 
records, P10-8, L4-1 - L4-11, U2-30 - U2-32 
string within string, see AT( ) 

FKLABEL( ) function, P4-6, U6-34. See also 
FKMAX( ) 
FKMAX() function, P4-6, U6-35. See also 
FKLABEL( ) 
FLAG command (Novell network), NC-8 
Flag options, R2-3, R3-3 
FLOCK() function, N4-10, NS-32 - NS-34 

                  

- - 

          

~~ 

                      

• 

  

report, see CREATE/MODIFY REPORT, 
Report (.frm) files 

Screen, seeCREATE/ MODIFY SCREEN, 
Screen forms 

FOUND() function, P10-16, P14-4, U6-36 
Framework II, P1-4,20 
FULL field privilege, N3-5, N3-27 
Full-screen operations 

cursor control keys, UA-1 - UA-3 
data entry, U5-26 - U5-27, US-40 - US-42, 

US-45, US-118 
determining last key, P9-9, U6-65 - U6-67 
exiting, see READKEY( ) 
with format files, P8-12 
indicating field widths, IJ5-216 - US-217 

Function(s), L10-5 - L10-7, U2-I1, U6-1 - U6-2. 
See also individual functions 
classes of, U6-4 - U6-6 (table) 
commands requiring lock, N5-4 
for conversions, see Converting 

                            

x 
9 
s 
k 
d 

a 
I 

r i 
a 

              

X-16 

   

a , ~ a 

dBASE 111 PLUS 

           

-_ - 

    

o -; 
- 

'a 

 

m 

                  

ti.• 

                            

.~ 

   

i M1 - 

      

n 

               



a ~~..,t'..a'... S '~~!,,,. • :~• '•" C "•!,• . LV.. ~jS ~ ~; .Pn.-t e7. E'5~~~"'e.•t ,j~:.t',p~ ~ ~ , ~ ~:. •. of•~ t« ~~ ~~. .~'~a t r'`r' 
~~,. .A. f 

t~ t~1 ~ .~ :+,.•~T~ ~~~. ~ ~ t• i ~_ ~ i1,t ~.-~tTe~^~i'~!'S j"' 

b ~ ~ -Z~ z ,'~ -`i =i ,ri.'t~ a~ `'Z+e3~,,,11 r.1~1,•Y~rYlf~jj!i .,~iy :~. ✓, ri~'; t~,~;r /~'~ ',~f ~. ~• - -•1.:. ~•~ • Spa 'r~`iv~ h %~.~ 

a. 
av- - '~~'~'•~•^iif tY.F'k~ T A~'~ fCR•«[

~. ~- '.. • s'el -• i1~ •i~ ~: t .i ~t~trl~_.'K~~~~~ ;•; ~~t .L'✓ ' - ~~~ •+o'C . 
r.. 

'tY a . ~~-'r 'i•r ' :~w 
, ~ ~ .h+;.w..•s y~5 r e ~;.~.̀rC - ~ t\ ~t,. :5.:'S +i t rrh~yL; , e, a ,L ~ , i-. ~~" 

I ,'; .1~✓̂  - n.~A..-~1....~~ v~•(~.i~~l .~,'►; t~ ti; l::d►t ~ ~ 
"'.y.~ 

~~•5~i ~; i•• ~.+.:i 'C ~~ A• .'- `, ,t •~• `•;:•.. %~ ,Ve.'.~ ~.~+• t 
.^ '1.' ~.. ■ ~n~.4.~v:.e~,e~i7+~~.c,f ,(.r~.. . _.•_.:-r:~,.n.~'C ~_.»t_t,i•.u ':~!.r ty'-•: r.. ,.: i~..E:..~..F:..~•~ .___..., ~.. ems. .1..,._...b. :.~.:: ..._.. _. <...~.« --:-`.J ... .: ni,. 

. _ ~•~: ~ l ~• f'i ~~•:~'`~•► y•'~•:~ -t .~ ~1.1~.l. tj rr~h•~'`arb ~,~',.-\ ~vr r )r+~f,~P ..v~.•, t.{t ,, ~,~ ;mil .b~r.~a`Y ~t'~.}`. ~. s. ! .~•~. .. P~ .~• •;+ '. •. ems: -:r'. e. .•;:,,o' ~:• •=.. :.. 
  

r ~ ~~►''tiN~''r,'<', firs ~~~ ~~, 
~~ ! ~• 

  

~~C 

►̀ ~ e 
r, 

P 
L 

     

W 

 

,~'. 

~- ~ .~'• 

.. :'"° 

  

• 

  

INDEX 

  

- 
~ 

  

data type produced by, U6-2 - U6-4 ( table) 
definition, L10-5, U6-1 
entering, U6-2 
in expressions, U2-4, U2-5 
network, N5-27 - N5-37 
numeric, PS-5 
in program files, L10-5 - L10-7, U3-6 
with relations, P11-14' 
string, P5-5 
template, P7-1,4 
with @ commands, US-14 - US-15 

Function keys, US-224 - U5-225 
determining name of, U6-34 
determining number of, U6-35 
programming, P4-6, U4-6 
resetting to defaults, P 13-3 

Function option 
in PICTURE template, P7-4 

  

Hardware 
requirements, N1-8, N1-9 
sharing resources, N1-4 

Headers 
in database files, P13-7, UC-1 
in printed output, P12-10, U5-78 

Headings 
column, L6-10 - L6-13 
field, P4-7, U5-78, US-178 

Help 
in The Assistant, L1-15 
at dot prompt, L9-3 - L9-4, P4-7 
setting up your own, P16-5 

HELP, U5-127. See also SET HELP 
Help.dbs file, P16-16 
Hiding a PUBLIC variable, see Public 

variables 
Highlight Ll-9, U2-12, N3-15 
History buffer, L9-6, P15-16, U2-2. See also 

DISPLAY HISTORY, LIST HISTORY 
changing size of, L9-6, P15-7, U2-2, U5-237. 

See also SET HISTORY 
displaying, U5-107, U5-145 
edit commands in, U2-2 
executing commands, U2-2 
storing command file commands, US-219 
with program testing, P15-7 - P15-8 

Horizontal scrolling, P7-6, P8-8 

 

• - 'a 

                      

+ 

      

. •_ 

   

., 

 

.'` -' 
- 
--a 

s . 

     

• .i 

  

- ~ ~ .: ~~ . 

    

G 

     

Garbage_in/garbage out, PI-8 
GETENV(~ function, P16-13, U6-37. See also 

OS( ) 
GETS. See also Configuration commands 

clearing, see CLEAR GETS, US-47, U5-50 
with lock functions, N4-9, NS-4 

Global variables, see Public variables 
GO/GOTO, L9-21, P10-8, P10-9, P11-4, U2-32, 

US-126 
in The Assistant, L4-1 - L4-3 
with end-of--file, P10-13 
with SET FILTER, P10-17 

Graphics 
in~.screen forms, L2-30 - L2-31, P8-7, US-23, 

US-24, U5-87 
Group(s), see PROTECT 
Grouping 

database files in catalogs, L7-11 - L7-14, 
L9-9 - L9-10 

records in a report, L6-8 - L6-10, U5-77  -

 

US-78 

        

.~ 

 

t 

           

. 
,°• -i option, R2-5, R3-5 

IBM PC LAN Program, N1-8 
IBM PC network, N1-8, NB-1 
IBM PC Network Program, N1-8 
Identification functions, U6-6 (table). See also 
individual functions 
IDLAN program 

definition, N1-6 
error messages, NA-1 
cunning on a 3Com network, ND-2 
Winning on an IBM network, NB-1 
running on a Novell network, NC-2 

   

a-

 

r' 

         

,--

         

~~ 

      

.. ~. 

           

• fir• • . 

  

dBASE 111 PLUS ..~ ..~- 
'.~- 

~' : r..- 
, .mow,'•: 

X-17 

           

.~ b. ' i:. 

     

.7•I'- - 

       

\. 
f" F_ 

           

• 

~ 
-.~ •-

                    

. 
~ _ ~' _ ,. 

      



   

4 .x :+~ •.. ~ r - -' '!r ~: ~ 'w 'tom' }~ ~/ S~. l '+•t_'i~~ ~ 4 ~ d. ~ i,S arm s C! y. ~.st^'~' + ~'.t a'.I' ~ t ~y ' '~. 
'.~ ;~Vi ~•-' ( `t;!'~Nf ~:' f. • t~~Q.eap~i~ay~ e+~•t.f (' f 9 -. ••tom ~I ~3 

  

.f ~__. ~ ✓  "•-r
~
^_.tom. ~ •~•e~ - 

t• 

 

~y •~ - 1~( a+~`.tfs '•'.~ •~ .sir ~'•`'►'. ~,• Cse,i~.+'t4 ~ ._~. 
J ~ ~ ~ ~ I' ( ~ t ♦ r . i^ + 

v. -. ~. ~ .•.F,,,~a '- ! ~"• y ~• CRS- t :+ ''w' ~•v `•1'r.i .aNy :~:: t»~ `oC=~ .t ~ .+ . c t tier : : i t c ~~~~ 
1~y;" ;r~+, - . .~+=:.> ~.(.~~+awa'b .~'La.:''t.n:. •.. -..!~~t~[:2'~S_ 91~•. .... t -' o... -• 't 

.. .+Y 

  

;. ,~•••,~ ,.;~• ~.~ ; .ry.a 

' ~'t' ~~ 
. _. ,_ 

..;; 
~~i 

  

•`. Key to Index Page Numbers: 
L - Learning 
N - Networking 
NA-ND - Networking Appendices 
P - Programming 
R - Runtime 
U - Using 

     

°~~~. 
INDEX 

e~~`• 

't •' 
rebuilding, L4-18 (note), U2-28, US-172 
with relations, P11-13. See also 
. CREATE/MODIFY VIEW, SET RELATION 
selecting, L4-14 
size of, P 13-9 
unique, P10-19 
updating, L4-18, L9-23 

Index key expression; L4-12. See also INDEX, 
Index (.ndx) files 

Indexes, see Index (.ndx) files 
Indexing a database file, see INDEX, Index 

(.ndx) files, SORT 
Information file 

created by dBCODE (.dbg extension), R2-5 
created by dBLINKER (.map 

IF...ENDIF, P1-14, P2-7, P14-3, P14-4, U3-3, 
US-128. See also IIF() 

IIF() function, P16-1, U6-38 - U6-39. See also 
IF ... ENDIF 

IMPORT, P16-14, U2-56, US-124 - US-125, 
US-129 - US-130 
in The Assistant, L8-2 - L8-4, US-38 
files created, L8-4 

Importing files, see IMPORT 
Incomplete commands, P15-1 
INDEX, L9-22, P10-3, P10.6, P11-4, P11-11, 

U5-126 - US-129, U5-131 - U5-134. See also 
SET INDEX, SET ORDER, SORT 

in The Assistant, L4-12 - L4-13, US-33 
compared with SORT, L4-20 
with FIND and SEEK, P10-10 
on a network, N4-7, N5-4 
with SET RELATION, PI1-13 
with ZAP, P 11-9 

Index (.ndx) file(s), L4-11 - L4-18, U5-131 -

 

US-134 
active, see NDX( ) 
allowed field types, L4-13 _ 

"and file access, N3-5 
changing order, P10-7, U5-247 - US-248 
closing, P10-7, U2-30, U5-49 
creating in The Assistant, L4-12 - L4-13 
creating at dot prompt, L9-22, U2-28, 

U5-131 - US-134 
creating for encrypted (,crp) files, N3-5 
definition, L4-11. U1-6 
determining names, P13-6. See also NDX() 
with duplicate records, P10-19. See also 

SET UNIQUE 
index key, US-2 . 
key expression, L412, U5-131 - U5-134 
to locate records, P10-9 
master (controlling), L4-14, L9-23, P10-7, 

U5-247 
more than one, L4-13, L4-14 (note) L9-23, 

P 10-6 
multiple-field, P10-6, US-131 
names in use, P13-6 
opening, L9-22, P10-6, P10.7, US-239 -

 

US-240, U5-281 - U5-282 

  

• `Q 
i 

i~~:.a 

9C 't 
~;~-

 

.~, 

                            

extension), R1-9, R3-5 
R 

 

files, defined, R3-5 
files, referenced, R3-5 

INKEY() function, P9-7, P16-11, U6-40  -

 

U6-42. See also READKEY( ) 
values, U6-41 (table) 

Input 
accepting, U5-25, U5-135 - U5-136, U5-283 
verifying, P1-6, P9-1, P9-2, P14-3 
determining last key pressed, P9-7, P9-9. 

See also INKEY(), READKEY( ) 
evaluating special keys, P9-7 
evaluating type, P9-12 
formatting, P7-3 
functions, see INKEY(), READKEY() 
pausing for user, P6-16, US-274 
specifying a range, P7-8 
testing, see Testing 

INPUT, U5-135 - US-136. See also ACCEPT, 
WAIT 

Input data, see Data entry 
INSERT, P8-12, U2-23, U5-137 - US-138 

with BLANK, N5-4, U5-137 
Insert mode, L2-10, L9-3 
Installation overview, N1-10 
Installing dBASE ADMINISTRATOR 

error messages, NA-2 
on a 3Com network, ND-1 
on an IBM network, NB-1 
on a Novell network, NC-1 

.. u 

                                     

y '. 

           

~~ 

                      

i . 

•..° . 
2_ :y=Q-.~.: 

c - 

    

dBASE III PLUS X-18 

        

;-s-. r s. 

u .,• 

. . - , : ~--r---^~^~. ~. ~c ... 
~i, 

f: .. J~ 

     

~~ 

      

, 

f , 

       

F. • ° .. 

t

1• a 

  

;, . 

        

•~ . 

  

~. 
'o 

       



_ 
~ J 'rs ~ e Y ~ Id ers,l ~'~^.~ 

~rK,~- 
7Y'=,~ng ~. ~X;~ 2 t~Crv~i 

h;7....~ 

-~, ~,• •,i 'zc ~~ F ter, ~ ~:'~~s 
* ~~f v 

~~L 
~~ -.T~r~T p ;~:ly r r t ,Y~ ~~~ f ~ ~~ ri vrS'Jti.}a. r~ ~F. ~., ~, .~ « 

- ..3 " <~ .Y a' ~. ? 4 ♦•,f, ~`.i~t1 i •. ~' ~ ~~; r ! j'f`.t' '`r ~.~}•`~ .. 
V~~-- 

t t ~ tea: {~%L: r. t ♦♦ • 9t=•-

 
V .:, 

i , 
I
-• ~-~ ♦ ' ,:': •.\/~ L• 1~C~t- eu•~.,}~,~ ~`, 

~~~~;i ~.t~ . , ~,(~ •' ►y^' rrt ~ t►S';:.:
~?

. ~'~•
_ r y, ,, .. ~A Sy ~ t ~i ~~ 'y• r ~ ~^'s.

-~K.Va-Y ~ 'y~1-~•!~/=(~l•tf.'~ ~ T:y'~s`,I tt ,1 '~J~3 • !~ ~•n~•f:t y~•~
}t~~~ t- rS ~ ,1r.. !` ter'•

»t?TQ.'y {. ~~ ~ .~! lr3 .TC,• r ✓ .. ~~ r .5.4.,Y 4.-✓ /mil ' `a • J_s ~~}~y@~~~G/ ~~5e4~~• -'a..`., ~, r '•♦' • ~C+,sr '".ice, ~-

`+ tiew ~v<y 1 e.f tr '1z:~ ~.~ j ra t, ir,.► ~~t ~4 r ~~ I+K!"~€a~:~ ~ .~C;~ •-K'r .1 `l. A.. ~ r iT 'o. 0 6.. „T..!..~,2~ .1~ r ~, ~• sM'~r•. ~ `. r~r-' .~ ,♦ r t ~ t i t ♦ r :" :a' t '~.::
.'4.

t "~ .•s. rl ;•'rC~. L ~'i .a''tl: .1 L I' '~i~ ,~ G• ~r ~ r tJ•' .r- i. .Pa:::'-.•~.+a~:- •t.^,~
° - ~- ~awa~t•j::~:- y~~ =t-.z=tr ~t9. 4 fir; 2 .y`t?y., ?°} ~.1 ~t•jre'1.~~`-. y::n~~. .~.; iv..o.:. .••. ~.•. ~i.r'°~ i°• Sri•' ~; • .,•".,,

'f."cii T[~•'i?'^ .~..:,ty~.(T 4. :,• c'-~1.•~ f .~,`~•.b l` i'e~,. ~ - 'po ~.°'• ^J'1SS~~° a~ a♦.~• ~♦ 'r ,;,~~• `-r,~ ••>~: ~4 . T_.•. ~
_ a" ~ ~' -c tii .~:' ~~a-~ ~iyL!~'°~~'u. ~ ~.:•+,~^•"J, q.,'~ h A / ' •7 y ~ s Y "r. ~ ~ ~. ~4

.~
•
~~~ 

~: 

;} •jam „t. >S~aS h~ a } a ♦- e~;!d~~ D T! Yf .A4-i~.e .~i.Sv:.,:~i ~4E4.~i+'~A s'r`+'.w ~. -,.,r4,~:' 1e'.. .. .A ~; .a ~ ~~°V ~ SN- +i.:ia~•d ~ti. n.tr~. L`a 2i6 .... ,wl.,~ Y: '.1!0..@. ~... ~._J.:..r.c' i - 're« ~~ "f°tif:~~riaii - ~~ 

  

\~ ,~~ 

6 • 

~. r 

   

,~..: 

~~,. 
~ • 

L• 

o' - . .•. 
.~ 

c • 
~. 

  

L 
A 
t~ 

 

INDEX 

. •t 

 

INTO function, PS-5, PS-18, U6-43. See also 
ROUND( ) 

Integers 
converting to, see INTO 
in memory variables, P3-5 

Interrupting program execution, US-175, 
U5-274 

Inverse video, US-207, U5-241 
ISALPHA() function, P9-12, U6-44 
ISCOLOR( ) function, P4-5, U6-45 
ISLOWER() function, P9-12, U6-46 
ISUPPER() function, P9-12, U6-47 

printing, L6-24 - Lb-25, US-137 
saving, L6-24 
sizes, L6-20 (table), US-67 

LAN, see Network 
Layout, report, L6-10 - L6-13, US-68 
Leading blanks, P5-11, P5-12. See also 

LTRIM( ) 
Left margin, P12-9 
LEFT() function, PS-8, P8-10, P14-7, U6-48. 

See also RIGHT( ) 
LEN() function, PS-b, PS-b, P9-10, U6-49 
Length of strings, see LEN() 
Letter, testing for, see ISALPHA(), 

ISUPPER(), ISLOWER( ) 
Lines, drawing, PS-8, US-23 - U5-24 
Linked file, creating, R3-1 - R3-6 
Linking database files, P11-12. See also 

CREATE/MODIFY VIEW, SET RELATION, 
View (.we) files 

LIST, PS-1, P11-2, P11-16, P15-11, US-138, 
US-144' 
in The Assistant, L4-9 - L4-11 
memo fields, P8-17 
with templates, P7-9 

List filenames, see Filenames, list ' 
LIST HISTORY, P15-7, US-145 
LIST MEMORY, P1-8, US-146 
LIST STATUS, US-147 

on a network, N2-b, N5-10 
LIST STRUCTURE, U5-148 
Listing records, see Displaying records, 

Printing records 
LOAD, P16-10, U5-149 - US-152 
Local area network (LAN), see Network 
Local files, N2-5 
Local variables, see Private variables 
LOCATE, L9-21, P10-9, U2-29 - U2-31, US-153 

- US•154 
in The Assistant, L4-3 - L4-7, U5-35 
and CONTINUE, L4-6 - L4-7, U2-30  -

 

U2-31, U5-54 

           

_'' . 

                 

.• ~ ' ' 

 

• - z - - 
_ .. 

J 

     

JOIN, P11-7, U5-139 - U5-142 
on a network, N4-7, NS-4 
with encrypted files, NS-15 
simulation of, P11-14 

-tl 
° .s ° 

    

~~ .. 
~O, 
_~ °"~ K_ 

      

Key expression, L4-12. See also Index (.ndx) 
files 

Key pressed, see INKEY(), READKEY( ) 
Keyboard lock indicators, N3-14 
Keys. See also Function keys 

full-screen cursor control keys, U5-156 
navigation and editing, U2-2 (table) 
MODIFY CMMAND cursor control 

keys, US-150 

                        

L 

        

LABEL FORM command, N5-4, U5-143 
Label form (.Ibl) files, Lb-1, L6-28, L9-24, 

U2-1, U2-43. See also CREATE/MODIFY 
LABEL 

commas in, L6-22 - L6-23 
contents, Lb-21 - L6-24, U5-68 - US-69 
controlling spacing, Lb-22 - L6-23 
creating in The Assistant, L6-19 - Lb-24 
creating at the dot prompt, US-66 - US-69 
displaying, U5-143 
modifying, L6-25, US-66 
opening, L6-18 

                               

. . - +~, comparison with FIND and SEEK, U2-30 
with different work areas, PIO-10,' U5-15.4 
with end-of--file condition, P10-14; •.. 

        

.-`: 
• ~'~. 

   

~r'::~: 

 

_ •'~'-, 

 

.. , . 

 

dBASE III PLUS X-19 

   

.• ''. ~{ .:,:, -~ 

     

!i 

              

• ' .j 

.:.J' • .! 

       

e ~-~S 

             



  

., 

  

~~ 

    

i 

    

c 

     

- ,'.• . 

                        

• .. :1~~ 

    

;,, 

                      
.~. y, ,~ 
r}~̂~ -fir` :._~

[,-_ ( 
1 AA ' t~ Y~ r 

:l:i~' r'~~`r j.17^~~~. 
~ Q•fi-~.S 1•~:1f ~r::tti 

,,, 
.,,~ •~. ~- Ya~9 r~ v { 

- ~` ,• •~~ ,err., .~, stf i~l^ ...•{w: •~• 
-~ 

• Ir'  C' A' _ L:v~S~'1".'.4"~- a:-9Y~~', y " ̀  v...~_5.=~~ • ~e-e..a • v ~ •~ 

  

_ .+•. / ~... ~^. , "'~~'~~~"f1,T-L,"~'~`~t:;~ar~S~ ~ 1.h;~
y
l
y
=~~i: • ~ .ŷlO 

-iyii, ~~.s - 

~fw~a-^- _ -~~i!jL~~. b-C1 
f~./.•P~ ~, ~ t ►  it ~-~ r~ ,_.terra. .,..s.. •=~ ;.qK-+.;~.:f! ~,Sy..a ~.L; a L 

PPr~ . - :t:~.l ■ .~ 1j:... 
~6- 7 :~ ''1~:+~ ,o i•. .:'Js~_ir.•Taeb3~'C~~~r.~l:~: Ei~w~~~~~~ti. ~.~s.~ 

.._ 
'•t 

• 

  

Key to Index Page Numbers: 
L - Learning 
N - Networking 
NA=ND - Networking Appendices 
P - Programming 
R - Runtime 
U - Using 

specific records, L4-2 - L4-7; U2-30e-} 
U2-32, US-35, US-54, U5-153,•U5-188 

LOCK() function, N4-11, N5-4, N5-36 
Locking, N4-10 - N4-14 

in application programs, N4-14 
' avoiding deadlock, N4-9 

automatic, commands, N4-7, NS-4 
at the dot prompt, N4-11 - N4-13 
explicit file, N4-8 
files, N4-2, N4-11, NS-32 
functions, N4-11, N5-32, N5-36 
levels, N4-7 
records, N4-8 
related files, N5-32, N5-36 
releasing a lock, N4-12 - N4-13 
shared files, N4-8, N4-17, N5-32, N5-36 
testing for, N4-11 
toggle, N4-12 - N4-13 
values returned, N4-11 

LOG( ) function, P5-5,-U6-50. See also EXPO 
Log in 

Dbsystem.db file, N3-8 - N3-9 
network administrator screens, 
PROTECTed system, N1-12 
security, N3-2 - N3-4 
unauthorized, N3-10 - N3-11 
user name, N3-3, N3-21, N3-33 

Logarithm function, see LOG() 
Logical field, Ll-5, U1-9 
Logical operators, U2-6' ;,' 

in program flow, P1-10, P2-9 - P2-10, P15-3 
Logical memory variables,. • P3-3,~U2-10 
Login.db file, N1-11 
LOGOUT, N4-19, N5-I1 
Looping, Pl-9, P1-11, P2-4 
Lotus 1-2-3 "files, P16-15, U2-57 - U2-58, U5-28 

- US-31, US-55 - U5-58 
LOWER( ) function, L4-17, PS-8, U6-51. See 

also ISLOWER(), UPPER() 
Lower case. • See also ISLOWER, 
LOWER(), UPPER( ) 

converting from upper case, P5-9, U6-51 
converting to upper case, PS-9, U6-88 

X-20 

 

'R-•, 
- 

• }` 

 

J: . 

 

INDEX 

testing for, P9-12, U6-46 
LTRIM() function, U6-52. See also RTRIM(), 

TRIM( ) 
LUPDATE() function, P11-7, P13-6, U6-53 

M 
M-> (pointer), P3-6, P11-11, U2-9, U2-38 
Macros) 

in DO WHILE loop, U5-115 
. with FIND and SEEK, P10-11 

limitations, R4-3 - R4-4 , 
in program flow, P3-16 
substitution function, see & function 

Main program, P1-2, P4-1 ' 
'MAP command (Novell network), NC-5 
MAP SEARCH (Novell network), NC-4 
Master (catalog.cat) catalog, US-197 
Matching strings, P10-10 
Mathematical functions, U6-5 (table). See also 
individual functions 
Mathematical operators, U2-5 
MAX() function, P5-5, U6-54. See also MIN() 
Memo field, U1-9 

adjusting width for output, US-234 
changing display, P8-17 
editing in The Assistant, L3-11 - L3-12 
editing in programs, PS-16, P6-3, P8-16 
limitation when exporting, LS-5 (note), 

US-55 
Memo (.dbt) files, U1-6 

backup, see Backup files U1-6 
structure, UC-3 - UC-4 

Memory, see CLEAR MEMORY, DISPLAY 
MEMORY, LIST MEMORY, RESTORE, SAVE 
Memory (.mem) files, P3-11 - P3-15, U1-7, 

US-173 
creating, P3-12, U5-187 
not encrypted, N3-5 
for printer configurations, P12-15 
during program development, P3-15 

• restoring from', US-180, US-181 
saving on disk, U5-187 

. •;, ;; 
- 

;aa 
.1; 

„,: 
a ;! c 
. .`Sa ̀ . F." ~ 

.~~• 

.z • ~~ . 
G~;,, ~. _ 

.. . . 

  

Locating. See also FIND, LOCATE, SEEK 
next record, US-54 

N3-10 

        

.,,i, dBASE 111 PLUS 

      

;• _ , 

     

., ~ ~:._ - 

    

;;K 

Pi~Y ~w . 

~~'- ~P: 

  

:why A-

      

:tea • 

~'r: r i 
~'. 

  

'~ .. 

,=•! 

~•~4~ 

 

.a 

  



y~~ ' mU•i 
A 
~a:•+:;C: is 

io _ .--~.i;~r~1 e 

.r'~~ 
_~ 

~~~ 

.t_ r.

.~.

\~
~~

`~

G •

A
L

INDEX

~.

e~

~i

Menu(s), L•1-6, U2-10 - U2-11
abandoning work, U2-19
action line, U2-14
cancelling selections, L1-14
commands which display, 2-12
dBASE program, P 1-14
definition, Ll-6
dialogue box, U2-14
enumerated values, • U2-17
exiting; U2-19
highlight, U2-13 •

- main menu, P1-14,•U2-13
menu bar, Ll-8, N3-12, U2-13
message line, N3-14, U2-14
navigation keys, U2-13 - U2-14, US-235
navigation line, N3-14, U2-14
opening, Ll-8 - Ll-9
option types, U2-16 - U2-19
pull-down, L1-8
saving work, N3-18, U2-19
selecting opiions, Ll-9 - L1-12, U2-16
selection bar, N3-15 -

status bar, U2-14
structure, U2-13 - iJ2-14
submenu, Ll-9 - L1-12, U2-14
submenu lists, U2-18
user-defined values, U2-18

Merging data, see JOIN
Message(s), L1-14, L1-13 (figure), N3-15; P4-9,

U2-14. See also Prompt, SET MESSAGE TO;
SET SCOREBOARD TO

error, see Error messages
MESSAGE() function, P15-13, P16-9, U6-55.

See also ERROR()
Message line see Messages)

on a network, N4-16, N5=35
MIN() function; - P5-5, U6.56. See also MAX()
MOD() •function, P5-5, U6-57 - U6-58
MODE command (DOS), P12-2, US-252
MODIFY COMMAND, L10-1, P1-3, P15-8,

P15-13, U2-44, U2-46, U3-7, U3-8, US-149 -

U5-151, U5-155 - U5-157
with ASCII codes, P8-9
with batch files, P16-15, P16-16
with format files, P8-12, U2-44

` Memory variables (memvars), L9-26 - L9-30,
P3-1, Ul-lb, U2-8 - U2-9
with ACCEPT, P6-13 - P6-16, US-25
activating, from.a memory file, P3-12,

US-180 - US-181
clearing, ̀ P#-14, P13-3, U5-48, US-51
commands, U5-8
to control program flow, P3-16 - P3-17
creating, L9-27, P3-2
current status, US-108, US-146
deleting, U1-10, US-173 - U5-174
displaying values, L9-27
distinguishing from fields, L9-28 (note),

P3-6
editing contents of, U2-9
with FIND and SEEK, P10-11, U5-124,

iJ5-188
~~ hiding PUBLIC, U3-11; P16-5

- 9 :. ~ -:~~;~~ • : ., initializing, L9-27, P3-2, U2-8, US-262
_ • initializing dates, P5-25, P3-4, U6-19
• ~ ~~ ::•..`_' ,e . limitations, P3-6 s- `~ name length,' L9-27 •a3c~ ~ `

• 5 ~ ~ number in memory, L9-27
;~' c: •: pointer to, P11-I 1

- . PRIVATE, ,see Private variables
in program files, PI-8, P3-12
in program flow, P3-7
PUBLIC, see Public variables
releasing, P3-10 - P3-15, US-48, U5-51,

US-173 - US-174
restoring, P3-12, US-180 - U5-181
reusing, P14-7

of

.~

~°

~9

• ~

-I

.~
•~

.;
,,, .

.. ~ ° ~~~ . y

e ~.~•

'• -

,~ .. ~ .
C

same as field name, U2-9
saving in a file, L9-29, P3-12, US-187
for screen displays, P8-5, P8-9, P14-7
size in memory, L9-27, P3-1
specifications, U1-2, U1-10, P3-1, P3-6
types, L9-27, P3-3 - P3-6, U2-9 - U2-10
for updating records, P11-4 '. _.
with @...GET, P6-9, US-16 ~..
with @...SAY, PS-5, US-16 -

Memvars, see Memory variables
Menu bar, N3-12, U2-13, Ll-8

turning off, P4-8

..,,~.
. ~~~

~~ .

- , ;'ill :.~~ w,il(3

• 're jr, ..

•

X-21 dBASE 111 PLUS

• n9~' •

i

• ~ d
• :r•.

.;7., .. •

..
• J.

i,
J•

-.~• ,_
o

• ~ .,~

•

N
Navigation keys, U2-2 U5-156(table)
Navigation line, L1-13 (figure), L1-14, N3-14,

U2-14
NDX() function, P13-6, U6-60, US-247,
U5-248. See also DBF()
Nesting

expressions in query files, L5-10 - L5-11
in programs, P2-12 - P2-15, U3-3

NET SHARE command (IBM network), NB-9
NET USE command (IBM network), NB-10
Network

administration, N1-1
administration password, N3-9
application planning, N2-4 - N2-5
and dBASE III PLUS, N 1-3 - N 1-5
commands, see dBASE network commands
description, N1-2 = N1-3
driver, N1-3
environment, N1.2
error messages, NA-1 - NA-4
functions, NS-26 - N5-37
hardwaze/softwaze requirements, N1-7,

N1-8, NI-9
installation, NB-1, NC-1, ND-1
log-in, NI-10 - N-11
node, N 1-3
programming for, applications, N4-1, NS-3

(table)
programs, N 1-5
protection against collision, N4-1 - N42
shell, N1-4
software requirements, N1-8

Network administrator
log-in, N3-9
password, N3-9

Networks
3COM 3 + Network, ND-1
IBM PC, NB-1
installation overview, NI-10
Novell, NC-I

New page, see EJECT
NONE field privilege, 'N3-5
NOTE/*/&&, P1-22, U3-4, U5-159

-c

X-22

• .. ~!~ ~ vet ~~ `^ ~' ~ .L

aU~ ,Srp a ,- ~ ,~,,•e~t ,~ ~ ~~ ~ ~

'.~~i! ._'~' • e4`~~=1`~,'• J +i~'1~~~5

*, •' ~.=JvS
`

~;e! ~.t~~1'!~ s♦f`h
.~t~!~~.~

+'~ 1 ,: ~ • •I ~~t~•p~t ~ ~. * f /~• ~ ~~'> ;T~~~f7M ~~♦•~~~fy~. ~ ♦ ~./Iar t rig
~~

-t.
► •r!, I ! a4`' ~~~!•} t ~ ~S+t~,l!-rte'•' r•1 •rte^ 13' •• f- s't1 i :~• ~ t.
,I`y,• e~6

,, ~•`~•Sdi)r.7 y. ~~~V~~y~`~„•1~• ",• -e •s'`~ o~t ~-^ a..sy .~ ~~.~~ ♦.,~* /S%
tf ~l; i~a•~.,r:°.~.~~ fiZM~~'!~r=~`t•. .~

«•E` ~;.,'. Y .s+ ~,• „'.` F.. p~•:aa. ~~ -~'i

► ~~e:
S~ ►

1•♦ • ~ t~.-,.14i ter •f ~` ~~•° ,: ~~61 ••e ~~- •~ rj`~. .~ ~. C: i~~r,^'~•1,~,~!

~\.
v~y ~~

~ ~~" l99~Y'~i<,:~
5 3 L `• ~r~o•• o T d-,fi•; ~',~C. ~ V,, c ;`-

s
~~

t r. ~r
~ ..- .._ .

ma.?~~~1'':
tY .~ ••,.

9 ° o~ .4e< ®,, ~[
t O w~,~ • w~i.. ~P V ~ a

;~ h

••~ ►

a••
se

,: s ~' •

~ ,.
a

't°

iii
~~'ci.~

,
~~

o~

Key to Index Page Numbers:
L - Learning
N - Networking
NA-ND - Networking Appendices
P - Programming
R - Runtime
U - Using

. •.

`•~~ , o.

~s~° ~cQa S"r3 ,
INDEX

program files, P16-3, U3-7, U3-8, R4-3
- ` with a word processor, P1-5, U4-6

MODIFY < filetype > , see specific file type
MODIFY LABEL, see CREATE/ MODIFY
LABEL

MODIFY QUERY, see CREATE/ MODIFY
QUERY

" MODIFY REPORT, see CREATE/MODIFY
REPORT

MODIFY SCREEN, see CREATE/MODIFY
SCREEN

n MODIFY STRUCTURE, see
CREATE < newfile > / MODIFY STRUCTURE

MODIFY VIEW, see CREATE/ MODIFY VIEW
Modular programming, P1-2, P1-19 - P1-24

` in debugging, P15-5
Module, see Modular programming
Modulus, determining, see MOD()
Monitor

changing color display on, U2-20, U5-204 -

U5-208
monochrome, U2-20

" set attributes, P4-5, US-194 - US-197
set reverse video, P8-2, US-207, U5-241
special effects on, see CHR()
testing for color, see ISCOLOR()

Month
from a date, PS-21
determining, see CMONTH(), MONTH()

MONTH() function, P5-21, U6-59. See also
CMONTHO

Multiplan files, P16-15, U2-55, US-28 - US-31,
US-55 - US-58

Multiple choices
conditions, P1-13, P2-10
in program flow, P2-10

Multiple file server networks, N1-3, N2-4
Multiple page forms, P8-15
Multiple page screens, P6-13
MVARSIZ, seeConfiguration commands

-li

. r
~~~ . - ,., 

      

• 

      

a 

 

dBASE 111 PLUS 

        

- -, 

  

ej 

• • ~ ° s 

    

.~:.' -. 

     

o.t 

        



      

dBASE III PLUS X-23 

                 

~= 
•a 

         

-, _ :;--

 

_. -~ :U~ ~ ,. 

 
l r-;~, 

rjo ~ ~ ,iy''.. - ~` ~~~rl tw> _~ ore ~ 1', 
t~ 

,:~ ;•; '.~;r ~'.. - ~- ~p >,,ar 
r'{ ! 4t r1 ~ %y - - "T 

ti^
•~l9e;.

R 1. 
°.~ 

r , r`ta f~• .P< ;~., li rbrb~,+ ~ ~ + L C~~. f S;,* t. ~,-~`_ ~ 
_ 

j °e ti '~! ~- ~Sf~••eYa1i`; ~4'S~ ..men •e~ }~ S~~.i/fe'V`° ~') of~)~' , +~ j_ C•.~ tr~•RsL ~~ ~ er`. 
y f~~ '.~j': ir'~~ +1 ~~=•w~~ r,c., 1~~J ~. ~~C~'~i';~ • ~ ,.:eTw ~j°'~J ̀ S ~°~ 

• _ . °a - ~. t - s~ t 1► W•''3, ia~', ,~- 3 ~'I ~i ~a 1 P , I,~~ .1 r) 
-.nl;a ~^,r(~r ?tZ.~R~C Wyk ~ r•..! fit, :~~~1,.~:!'f r~T~=N~f`+r~ 1 ~' r~ " Try°a ~ `,\ mj~_ F . 

° a ~r_~,•1v''Y~ C.+j~t~r 11 is 
et ~t -:C {!l f1j:± e. y•'~, ,?:•••~4°~i~f•~ .Y• v .J. •f a .'a ~,•e' ~. .b.. r 4' 1 . 

T 1~*~f ,°~ 
+~

+f i !° °.d • t • er: 6 °•:, ~1 ~jfyii ~
tt~~, ~~~ 7,r ~~.+.• ar: a,. . ~. n "` + , ,au I ~ .j ~ i 

~~°s 
fT y ìi~~ e. •p r Q ~,~ ~,,,,~' a s ,~'t,yy a! tC` H . ~: w~;,r d., r .'r'i •~o• 

~Ti ~ r ~ y p • '11i° rbe~, •6t~' °~an~~ % ~~~Lr.9 "~.k~~ ~ fx , ~ . w r p + ., x <t ~ ...a. ~ 
~~,fa; 

b~~ ,IDq ~b"~~~(c`r "Tti_~¢°
iVt e2~~'~y [y.~'l~ ~ y~,j ~~S' ~ °D d:`~w,. ~'o o~ ~ 

c. ; 
.o ~' ~ ~'~ - •{~'"'~s• s•~~ ~~° r,1. ~Y~ ~ oc icy c•'!. y • 6. is •~ ~ °. _.o: ^.. ~ •'^ 's• ", 

i~:. ,. ~a r~.r~ ♦y ~t+~ e~g~1~` r~~ t. ~~ o 'ar~~e.. - o . f~, c wr•°. 's 
~~<t ~~~t «`~~ea'"~-~'~~t ~~Q °t,R ) v ,+ ~° ,.~r'° ~.. ~+e ~~ = s~ . a. ti~'.~ ~R,`..,~op~-~. ~.)` p 

9 
-ao .:~~ e4rft,t-k ~~:~ ~ t o ° - T" ~ ~, o "~ + e^ . 

.y °Q a 'k - G e • ~: 

/-'. _ _ .. 

     

~f 
Y 

r~~ 
un

l 
..+ 

ry 
. 

 

INDEX 

                  

0 

  

w 
o,i, 

 

• \•`p . 
► c' o s 

       

,~ l~\,' y~ \`; 

,• L1`~~ 

'• f! •. 

.~ 

~ . 

  

° • .. - %~ 

t 

 

~~ 

0 

G 
B 

P 
L 

           

:. ° 

_- , ~, 

   

° .~ , 

  

°-

                

0 

-o option, R2-5 
ON, U5-160 - US-162 

in debugging, P15-11, P15-13 
in linked files, R4-2 

OH ERROR, N4-16, N5-30, P9-12, R4-2, 
US-161 
ON ESCAPE, P9-12, R4-2, US-160 

EsC key ignored, R4-2, U5-160 
Opening files, L9-1~3 - L9-14, U2-33 - U2-34 

in work areas, U2-37, US-189 - US-190, 
r U5-281 

in The Assistant, L3-2 - L3-3 
format files, U5-20 -. 
maximum number, • U2-33, US-189 
table of commands, '• U2-34 

Opening menus, Ll-8• 
Operating system.._ •See, also OS( ) .. 

determining, P16-14 
with printers, P12-2 

     

Novell Advanced NetWare/86, N1-8, NC-1 
Novell network, N1-8, NC-1 
Null string, P9-10 
Numbers) 

converting to strings, PS-15. See also 
CHR(), STR( ) 

maximum, see MAX() 
minimum, see MIN() 
rounding, see ROUND(), INTO 
square root of, see SQRT( ) 

Numeric 
accuracy, U1-2 
data, formatting, see TRANSFORM( ) 
memory variables, P3-5, U2-10 
output, display fixed decimals, U5-231 
out~iut, set decimals for, U5-213 
ranges, problems with, P2-9 

Numeric fields, U1-9 
calculating totals in, U2-58, US-276 
finding averages, U5-39 
summarizing data in, L6-25 - L6-27 
totalling, in reports, L6-13, U5-79 
totalling to another database, U5-276 

  

running from dBASE III PLUS, P16-13, 
NS-22 

version for networking, N1-7 
Operators 

order of precedence, U2.6 
substring, U2-6 
types, U2-5 - U2-6 

Options ° 
dBCODE, R2-1 - R2-6 

' dBLINKER, R3-1 - R3-6 
Order of arguments, P15-2 
Order of precedence, operators, U2-6 
Ordering records, see INDEX, Index (.ndx ) 

files, SORT 
OS() function, P16-14, U6-61. See also 

GETENV( ) 
Other programs 

running from 
dBASE III PLUS, N2-10, NS-22, P16-12, 

US-185 - U5-186 
using data from, see IMPORT/EXPORT 

OTHERWISE, P2-11 
Output, P1-6 

blocks of text, U5-275, US-278 
left margin setting, U5-242 
device, P12-3, U5-252 
formatted, P12-3 
in program design, P1-19 
to printer, US-242 
saving on disk, US-193 - U5-194 
to screen, U5-251 
unformatted, P 12-4 

Overwrite mode, L2-10, L9-3 

P 
-p option, R3-6 
PACK, NS-4, PI1-8, P11-9, US-163 

in The Assistant, L3-13 - L3-14, U5-35 
Page breaks, P12-16 
Page ejects. See also EJECT 

suppressing, P12-11 
Page format 

in printed output, P12-8 
in reports, U5-72, U5-79 • _ 

 

z 

        



 

- ._ _.._. ._ _T~-;.1...~. s-~, 
. 

.urEr~. .. ~ ._ • ..L:+G !• .~. l •~l~t_ ia.. ss L Y •) t "~.:.V. '•~...-1.~ c~ 

    

.,,e; ~~~.~ti!! a~i 
• o 

  

a 
J. • S-'' 

 

~i ~~1~ ~.' ~;: r, N.. 

=a''-:n 
_ ,,,. _ 

  

Key to Index Page Numbers: 
L - Learning 
N - Networking 
NA-ND - Networking Appendices 
P - Programming 
R - Runtime 
U - Using 

     

s;~-

 

~ ~•~.~. . ~ ,, 
oy, 

- - .. ; ., - 
INDEX 

  

head position, PI2-11, PI2-12. See also 
PCOL( ) 

output, P 12-3 
output blocks of text to, U5-275, US-278 
parallel, PI2-2 
ports, N2-9, N5-22, PI2-2 
route @...SAY and @...GETS to, PI2-13, 

U2-47, U5-16, US-218 
rules for using, PI2-2 
send ASCII codes to, PI2-12 - PI2-14. See 

also CHR( ) 
serial, P 12-2 

• special effects, PI2-12, PI2-13, PI2-14 
switching, N2-10, N5-22, PI2-3 
top-of-form setting, PI2-6 
using several, PI2-15 

Paper 
length, PI2-10 
position in printer, 
size, PI2-6 

Parameter(s), L9-3 
changing values,. P16-8 
initializing, P16-7 
order; P16-7 , 
passing to named program, P16-6 - P16-9, 

U5-43, US-111, US-164 
with procedure files, P16-8 

PARAMETERS, P16-7, US-158, U5-164. See 
also DO 

Parsing, PI-3 
Password(s), P8-11, P10-3 

network administrator, N3-9 
user, N3-3, N3-21 

Password protection, N3-2, N3-33 
PATH command (DOS), PI6-13, NB-10, ND-10 
Paths, P4-8, P13-5, P13-8. See also SET PATH, 
SET DEFAULT 

Pausing for user input, P6-16, U5-283 
PCOL() function, PI2-16; U6-62 

See also COL(), PROW() functions 
Peripheral devices, N1-3 
pfs:File, see' EXPORT, IMPORT 
PICTURE function, U5-18 - U5-19. See 

@ ...GET ...SAY, .CREATE/MODIFY 
SCREEN 

Pointer, see Record pointer 
Posting method, P11-7 
Precedence of operators, U2-6 
Previous versions of dBASE, NB-6, NC-6, 
ND-6 

Print buffer, PI2-11 
Printer, P 12-4 

adjust left margin, 
column, PI2-15 
connecting', PI2-2 . 
controlling, U2-47 ,. 
coordinates, P6-6, PI2-4, US-16 
direct output to screen and, US-218, US-251 
ejecting page, PI2-10, US-120 
escape codes, PI2-12, U2-47, US-IS 

  

PI2-6 
_''rs 

- ._ i `~. - 

                                

Print head position, PI2-I1, PI2-12 
Printing 

backwards, P 12-5 

     

i 

 

commands (table), U2-48 
customized, U5-]5 
database information, US-15, U5-179 
elite type, P12.7 • 
envelopes, PI2-6 
escape code sequences, PI2-12, U2-47, 

U5-16 
setting form length; ~ PI2-12 
format files, U2-43 - U2-45,' U5-73 - US-81 
labels, L6-24 - L6-25, U2-43, U5-143 
last line, PI2-I1 
null characters, PI2-13 
pica type, PI2-8 
program files, PI-5 
records, from the dot prompt L9-21 
records, from the Assistant, L4-9 - L4-11 
reports, L6-16, L9-24, U2-42 
responses to commands in 

programs, US-261 
screen forms, L2-32, O2-47, US-86 
spooled files, N5-20 
special effects, . PI2-12 
stricture, i15;i48 
table of 'cotitinands, U2-49 

. PRIVATE;' P3=8; P3-14, P16-5. US-159, US-165 
- to hide a variable; P16-5 

                   

also 

                         

US-75 - U5-76, U5-242 

       

.~ 

                                   

dBASE 111 PLUS X-24 :~. ~. 

      

..~, 

      

'y  --

 

-:' - 

  

~, •.: 
a i.: - •': ; ~ - 

 

T'9-

 

.•\ 

    

r . T r . .• 

      

1i 

;7 - 

      

y 
`A 

      

W - 

 

f 

  

•~ 1 

                        

f • ~ • •.. , • •a - - • 

               



 

r^Y`~y,~"~ ✓•,~_. .. •,a• _~~ ~ e r~«l+~.`,'~*~fi ~.''~-:sue' "`rLi'?~'-~irc~-t~'''ic~~r, 
R•• 

Y 

 

e; 

~yr~~ `r~`ili ~~~~i~'~r'!'S4.. Ir 6~1s~T,('i~" 

~ f ~' :•`~ 

~:~N - ...'. 
. 

~• r. ~ ~,s:; _ . -~ ~ - INDEX 
•~ • ; .. 

.' ' • . ' '~" ` Private variables, P3-8, U3-6 

' - "' ~ creating„ N3-4, N3-21 - N3-30 
' _ field access, N3-27 - N3-29 

' . • ' ..,. ~ . , •. file level, N3-26 - N3-27 
• ~ '. ~'~:' .~ PROCEDURE, P16-3, US-166 

-, •' .. • ~ ~ ••~ ~~ ~ ' ' ' ~ Procedure (.prg) files, P16-3, U1-5, U3-9  -

 

•• "- U3-10 
.. .~; ~ - : ; ~ ; } , . _ closing, P 16-4, U3-1.1, US-53 
' • _ : "• - encrypting, R1-7 

  

..~... 

      

.. ' ' ; •.~ 

'V 
•.; 

i1t:~ _fi 
:.~ •' 

      

~
.r 

`~'` + chi ~ ~`"t .i ~ i~tra :~:~ Sri<~~~~'•'.~a~~~:'~u~`4yt 

 

_ ~. •. • 

~. 

  

' f ' ~ - 

• ' :;r•., 

      

. • - ''~ 

. • 
•~~.-

   

•L-f 
,,.: 

  

.;~•~ , 
.t 

 

. ~.~ ,;:; tit ~„limitations, .,P16-4, U5-253 
' linking, R1=7, R4-3 

opening, ;'P16.-3, US-245, US-253 
-.. ,r witli PARAMETERS, P16-7 
' ~ ' wiili'RunTime ~;, R4-3 

Profile, user, ~N3=18 - N3-21 
'~ ~~ Program, P1-2 
- ~~ } cancel execution of, US-44 

' comments, U5-1, US-159 
' control display of responses, U5-261 

• control method of escape, U5-221 

    

• z..: 

 

error recovery, U5-160 - US-162, U5-183 ' 
execution of, U5-11 - US-12 

' " ~ ,;execute a line at a time, US-260 
locking 'features, . N4-6 - N4-14 
output blocks;of,fext from,.. U5-275 - 2.78 .: , 
pre~anz3g:foi:ltunTime + , R1-1, Rl-4 . -

 

'~;'. ̀  .~ resitme'exect~tiori"of,- US-182 - ~• 
' ̀ ,'stivctur~, 'P2'1, ='P2-2 .. 
'	 ~ ~` suspend'ezecu[ion ~of, U5-274 

testing, P1-23, P15-5 
i	 Program (.prg) file(s), L10-1. 8ee also 

Command files, Procedure files, MODIFY 
COMMAND 

advanced features, P16-1, U3-11 
boilerplate, P4-10 
branch to binary (.bin) files, U3-11 

°---\ 
' ' .i 

  

h...' _. 

•' designing, P1-17 - P1-24 
. echo commands, U5-220 • 

 

.. ~•~ 

dBASE 111' PLUS X-25 . 

executing, U5-111, U5-166 .., , , . •~~ ; ~ .. •~ executing, U3-8, US-112 
for help screens,;, P16-5 ~ ~, ; functions in, L10-5 - L10-7, U3-6 
how to set up, 1?16-3, US-166, U5=253- } • • ~ . long command lines in, L10-7, U5-157 

• memvars and, U3-5 - U3-6 
nesting commands, U3-3 
printing, PI.S 
procedure file, U3-10, P16-3 - P16-5 
restore control to calling, US-184 
running, L10-4, U3-7 
saving to disk, Pl-4 
size limitations, P1-5 
structure, U3-4 - U3-5 

Programming, P1-2. See also Applications 
Generator 
commands, U3-2 - U3-4, U5-7 
common mistakes, P1-3 
concepts for networks, N4-1 - N4-25 
conditional commands, U5-108, US-123, 

..U5-154 - U5-146 
control mechanisms, P1-9 - P1-14, P2-3 
controlling loop, P14-2 
data protection, N4-1 - N4-2 
documentation, P1-22 
efficiency in, P16-2 
flow charts, P1-19 
function keys, see Function keys, 

control screen display in, US-204 - US-208, 
US-218, US-251 

debugging a, P15-1 - P15-14, U3-9 - U3-10 

          

' programming 
housekeeping, P4-12 
main controlling structure, P4-1, P4-11 
main program module, P4-1 
modular, Pl-2, P1-19 - P1-24 
network commands, see dBASE network 

commands 
network concepts, N1-3, N4-1 
reusing modules, P1-21, P16-6 

,.branching execution, U5-111, U5-113, 
US-128, U5-154 - US-156 

closing, U3-8 - U3-9, U5-44 
command file, U3-10 
creating, L10-1 - L10-3, U3-7, U5-155 -

 

US-157 
debugging, P1-23, PIS-1 - P15-14, U3-9  -

 

.. . U3-10 
~~documentation, P1-23 - P1-24, P15-6 

• editing, P1-3, US-149 - U5-155 - US-157 

 
Y ~/~ ~ i~ It /~'I,I 

~ 
'. 

x j~~ ~! i r3 t r + Y' 

iv ~ ~ .. 

       

e 

      

\ ~~G 

8 

L 
P~ 

    

.~ ~+ * ~~ 

        

'1 •.,; 

i 

:~ 

• ~. 

     

1 ~.. ~ 

  



~ ► Wit; ~~'~~'~~ 
 

-a ~~~~ 1' L ti' +~ 
~v ' ~ i 'r f C 1 ! ~, i S' ~ •~' ~ ~ t' off' ► rev 
- .~~+~- •c. ~t~r.as;ttRL~~r~<< .~~ t -..r~,.'•.or~;.-t.~:t~.~•:~~•r'' ita 

~= 

;:- 
"
-use. 

,'e+.y. 

 

~ ~ k 
. _ Iy` 
~~_'. ~~ 

' ~•: a 
-~` - . 

t= v 'r .J' r , s1}?" ~~ _a~`1 ~r y0 ~.~~g 1•:l-7~'Y: °! ~ w S:`a ~. 
s a w`.- .. ~..~~',9 4~~%.a4}ta _. .. 'sue _. _ :. .IFS: :",~ 1~-Sr vst ♦ L.iti9 s~- -..x~a'.'9~., :: :.' 

..♦ { 1 

•a 
v1.\ ~ ~ c`t 

 

4' 4ri1 

~\ 

'if 

::, ~P. 

 

-ef ~'pi 

~%1 ,v~ p ~ 
•y4c fit+ _ 

Key to Index Page Numbers: 
L - Learning 
N - Networking 
NA-ND - Networking Appendices 
P - Programming 
R - Runtime 
U - Using 

 

..t 

~:~rvi~s 

INDEX n 

 

security for network applications, N4-19  -

 

N4-20 
toolkits, P1-21 
top-down approach, P1-19 
working with database files, P10-3 

PROMPT, see Configuration commands 
Prompt 

for keyboard entry, US-25, U5-135 - US-136, 
U5-238 

setting up for user input, P6-14 
PROTECT, N3-1, N3-9, N3-18 . 

abandoning entries, N3-31 
access levels, N3-4 , 
assigning file to group, N3-26 ' ' 
definition, N1-5, N2-3, N3-1 
entering values, N3-16 - N3-17 
Exit Menu, N3-25, N3-31 
exiting, N3-31 ~ " ' 
field access privileges, N3-5, N3-27 - N3-29 
fields list, N3-27, N3-29, N3-30 
file access privileges, N3-5, N3-24, N3-28 
file list, N3-24 

   

~.. o 
Query clause (?), L9-25, L9-26, U2-54 - U2-56 
Query command, see ? (query) command 
Query (.qry) file(s), LS-1, L9-23 - L9-24, Ul-7, 

U5-70. See also CREATE/ MODIFY QUERY, 
SET FILTER TO 

creating from dot prompt, US-70 
creating in The Assistant, LS-1 - LS-11, 

U5-33 
entering conditions, LS-2 - L5-9, LS-4 
_ (figure), LS-9 (figure) 
modifying, US-70 
nesting expressions, LS-10 - L5-11, US-71  -

 

U5-72 
opening, LS-2; L9-24, U5-32, U5-229 
printing, LS-13 - L5-14 
storing, LS-1°3. 

QUIT, N4-12, ~1-6,-P2-2, US-169 

                     

. 

            

0 

 

'~ . 

             

.~ 

     

- dBASE III PLUS, LI-26, U5-33 
from t̀he dot prompt, L9-30, U5-169 
program ,executioa, P1-6, US-210 

Quitting 

    

Files Menu, N3-22, N3-24 
in anon-network environment, N2-2 
initiating, N3-9 
menu bar, N3-12 
menus, N3-11 - N3-18 
message line, N3-14 
navigation line, N3-14 
data encryption, ~N3-6 - N3-7 
password, N3-10 
status bar, N3-13 - N3-14 
types of security (table), N3-2 
user group, N3-3, N3-7, N3-19 °' 
Users Menu, N3-18, N3-19.(table) 

Protecting data, U2-59 - U2-61, US-5'1, - US-54, 
U5-55, US-249 ` 

PROWO function, P12-16, U6-63 
See alsoPCOLO, ROWO functions 

PUBLIC, P3-8 - P3-9, US-167 = US-168 
Public variables, P3-8, P3-11, P15-2, P16-5 

hiding, P 16-5 
with memory files, P3-14 0 

Pull-down menu, Ll-8 

   

R 

      

-r option, R2-5, R3.6 
RANGE option 

to define value limits, US-17. See also 
@ ...SAY ...GET, P7-8, P 14-3 

Ranges, U5-17 
with dates, P7-8 
for limiting input, P9-2 
with numeric data, P7-8 

READ, P6-9 - P6-13, U5-170 
to clear GETS, P6-13, US-170 
in :format files, P8-15, U5-16 
in multiple-page,screens. P16-13 
with ,,@~:.,~GE~'; P6-10, P14-3, U5-16 

'Read file privilege; ~ N3-5, N3-26 
READ SAVE, ~P6-11 
Read-0nly file access attribute, N415 
Read-only field`privilege, N3-5, N3-26 
Read-write access attribute, N4-15 

                                 

_~~"- . 

          

.~ - _` 

 

.•. 6,~. 

            

dBASE 111 PLUS • 

  

X-26 

       

I 

             

.' 
- _ . =7 •a 

        

- ., 

               



:+p ff,/~,ii8~ 
~ii°1 . o 

~l~ ~ •a~~~;.~1[~ rn[ 
1•!'i4a.at~a~~~ 

'~. 

%̂ L' 99.1 L,;1 

   

a-:i:'• 'i'a ~ .-its.. 1 i~~•"t/ ~ ~~I=~, eflj~ 

~'- " ::\+ f ~~`%:..aa•. ~~ :°'- e.! slCp4v' 't~ $ i .c ..t`= i ~ )t X13_ - .•`' ., -. ~rw$•a-• '~::~`.7`F't'~y~.y/a
\ti\: 

rlaj ~4~a, vr.- p~j ..4 
~+ 

L - -• '~.."•'.M1\;~ ^~'~' ~'!Sn eRt~.lal~r'~,\=C ~~ti ~:t✓~" ~ 
,r~ fc , ^- ~it 

f~ ~~~.s .y 
r v~~..r~,z'•.`~~~tti iv~r y,y.:~l~-.'d ~7ti ' stn ~~~ :~ 'i~~~k~ '~~gid"~~~~. 

i s'• 4f I v t 

Jf~ Ii - :r Z ti-Y 

• -~' n~i_iT~ 

~.% , ;. a 
!{ 

'' ~s 

ice• i y:r+~J~.• 

e ."ni ::r;~. 

~.f-}til~ ~ti . 

e• i ~.,.' ~• ^i t~►Z. a : sp~\~~.~:.~.t ~N ~ ...raj+: ~~~ ~•~•:: 

~~ - - 

  

~;~:~~ €e~_~~: - ,rf•.w .o. .~'=tr: "'i•~al~ •Ce6u~~fNf ~~•i1 
•~M.X• 

'~~ .,:'~it ~~ .i'•:• •s 
y,~rr '-a '~ ' 

yi'r i.\W~~_:l•!.:.~t•^~v.~~~..:'~L. 't •-°~~~?~~•\l~. •.F ~~: ail -~'I.~'`,.•. 

 

;~ 
!~a 

    

..y i•f :~3.r. . ,r 

    

`-~ 

~_ c 
0 a 

nn 
i 

Y` 
L >~ 

 

i 

   

. ,., .. rx .y . 

   

;~ 

     

..... .... -..-
INDEX... 

    

\`r. ;•• •,~ ~. 'I, •RENDKEYO function, P9-9, U6-64 - U6-66 removing marked, U5-171 
• • ~ ~ V ~ ~~'' 

•.•`~ 
~~~ •.values (table), UG-65 ,re,"trieving groups of, L4-9 - L4-11 

• _ ; : •.: : Rearranging records,'• see INDEX, Index seaarch for, U2-30, US-124, U5-153, U5-188
- ° '~,. t ~{•;','~ ~'; (.ndx) files, SORT ` ~✓ ~ size,` P13-7. See also RECSIZEO

• • sorting, L4-9 - L4-20, U5-269
total number of, P13-7. See also

RECCOUNT()

RECALL, PI1-8, US-171
••• ••, , in The Assistant, L3-3 (table); L3-14 :: , :., .,

• ; r•' ~'; .; ' on a network, N4-7, N5=4 ' ' •' • '.

•-•"f ~••'• RECCOUNTO function, P13-7, P14-2„ U6-67 .undeleting, US-171

q• ; _ -e.

. - .~ " ' •; ,-•. , _ :: f See also RECSIZEO ` •~ ~ . ,updating, Pl l-4, P11-5, P11-7
r • •' • • - . : ='= ~ •' ' ~ RECNO() function, P 10-16, U6-68 Record count update interval, see SET

• r L•1-3 ~ ODOMETER TO • Reco d(s), 4
-• • - '='= "~, ;-: ~::. • adding, in The Assistant, L1-20 - L1-22,~ • , Record locking, see Locking

.• • L3-7 -•L3-9 •` ~„ ~"-Record pointer
adding at .the.dot nromnt _ P11-5. P1.1-6": : commands. US-6

y „~ ~`•.• - U2-23, U5-26 - US-27, U5-137 - US-138' ,. ';,,. -;with functions, Pl 1-14
'! changing;'', U2-24: - U2-25, US-40- US-42, ``•~ `GO/GOTO, U5-126

- ,• ;fog memory variables, PI1-11 , •~
• moving in The Assistant, : L4-1 - L4-3

_ in related files, P11-13' -

with SET RELATION, P11=13 ~:~°,,'.~
•for work areas, P11-11

• ,' ;,<<. • ;, U5-11;8;r :~US-119,• - : - .
• • • ` ' ` ' - copying to othe files, PY 1=]0, U5-55 -

.. -~ :U5-58 • :~.

• :~' ~•~~, • K 'i - •...:cop~!ing,from previous, U5-196. See Also
"."~' ~ =' ~ 4 , APPEND _FR0JI~I; EXPORT; IMPORT . w•: ~:

_• - copying fields-from, L4-21 - L4-22
. - counting, U5-62, U6-67

• definition, Ll-3, LI -4 (figure)
• ~' deleting, L3-13 - L3-17, P11-8, U2-25,
. U5-102, US-163

displaying, L3-4 - L3-7, U5-4, U5-105. See ,'
also BROWSE, EDIT _

duplicate, P10-19 •
editing, L3-11 - L3-12, U2-24 - U2-26, .^

RECSIZE() function, P13-7, P13-9, U6-69
Redirecting printer output, N2-8, N5-20,

US-252
Re-entering, P15-7, U2-2

• REINDEX,. N5-4, U2-28, US-172
Relating database files, see View (.vue) files,
SET RELATION, CREATE/MODIFY VIEW
Relation chain, L7-6, U5-96 - U5-98

locking, NS-32, NS-36

. . "I•

,• ,

. i)5-41, U5-118, U5-170 • . • ; . , Ielational database files, P10-2
filtering deleted, P10-18, US-215. See,"also •': ;,Relational operators, L4-8 (table), U2-5

'` ' .~~ • SET DELETED = ' ` ~~° - menu, L3-16 (figure)
'~_ : ~'`•• - -•finding; ' L4-2 _ L4-9, P10c8, U2-30 ~.,U2=32: ~ :Relations, P11-12, U2-38 - U2-41. See also

. • . ~: ~ •' SeeAlso FIND, LOCATE; SEEK SET VIEW TO

~:• ':'

'. -• •,

r . r'1.:.r.•..;='•:groupirg ;~• L6=8%~ L6-10 ,. e • closing, P11-13
. .~~~ .in diffeent~wosk 'areas, P11-I1 ' • ", with functions, P11-14

'.~.`~'~~+ .~ =~` ind'exi'ng; " see INDEX, Index (.ndxj files,,.`, .•: ,. reusing, PI1-15

• ~'~.•.
~. i ~ -SORT~a ~ °,' `.::'-= •`': :: ," ~ • .. ~ ~: saving, P11-15, U5-101

~` ~ •'~a~'t>>~~ isolating; _ '•P10-8~: ~'i ~ ~ ~ ' ' •setting up, P10-4, Pl 1-15, U5-255 - U5-256
~y ~z~~tocatingrieXt~one;~°zP10-9 , _ ~. with view files, P11-15, U5-94 - U5-100
• .~t~,r~• mergiifg ~with' òthei;;' U2-59, US-139 - US-142 ,Relative addressing, P8-3

:: •.

moving to, P10-8 with 'FIND and SEEK, P10-13, P10-14
number, see RECNO() with printed output, P12-15
rearranging, L4-11 - L4-20, U2-26 - U2-30

.., •.~• '

a

X-27 dBASE III PLUS

..•
• .. "' •~/•• ~ t

' ~•' f~

.`• 4~ .

6~70rr;~`~r., ~,:~ ~',i~ :;+~r`ti ~~~;"?w~~r~;'~ :~ •. f • ; ~ fir` ~~~,'~"
•'~!`'.

-_ 'l.~• . - :r ~ ~r•L +., ~•• ..~ r''I •i~M,r.ic 3.w~ ~ •~;~: •k•~jlf~'y' ~- :it,t 4:. j ~i~,~y .,. :.f ',`~i wy•*; tit4s,Y ~,.r gin,. ~..
Y t1

..
S ~Z • .t .~'~ '~ <

,- .. - _ .~ ,•.~ ..-•~, ,~ +~'j1~yy~i ,~%~~ A•'t~-~ ~•L~ ~fd~r~=hl,(~•t'rsv<.~•#/r~~•• t 'to '~.rj~•a5r~T4,1~y~'y~~.t~~+`%v ;=i-! r:,y r , • i 7 , ♦ _ • !~ . f t w6~t + S. v /'t T : J: r '~
w • .~~~.. p ~..~C.j~ '~';.. t~.~1~t,-~'J3 j,• ~.i'J i.~•~~ r I~j'~, •~ -.~'•~.~ Y,~. r„r«•-~. .• '`.

~~=~ : •• ':~, o•AwlASa-.'~
_

,,'.?i2 ~Lf t'' t. ~~itr i~• j=~ ~ r S1 •~«~~•"f2 •.r~/'!~w • . '~ .'~••:~ ~~ t:~•ri.4?~L
:~. J~~„ .,;fir ..4 y.~ ~ ~.r .mot „- a:

f ~L' •i .-. w~'~. ..r ~' c~~! ~:.•,. ~~ ~~: ..~t, i.4t t.•~tS.; •i rj V• i~: ~~i.t :Y ~~. ,.. •~. ,,~t•,. i r, ►. lin.'-•
~• ~ ~~ ~ '~~• L - r .. '•-~~~~.. X11•. ~.+t~,y~ jC~=• ~• • '~ ~.1~~ii~~i~~~ :`!.•~~~r`~~Y.. J.'ySi•ti~a•'• -.• ~•.~~ ~i- •~t^''~~: :. .:IS:~:~~'w .tr :!.Z.y ~4~;,•! t.~: ~:,•. _ ~.- rc. .~~: J4 i aid •~ t 1'~.•: t i" ~,(~~y-..`~'7 ;fir ..,i~ •~-- .S }~~,, ~• :•• - ..,

'i•Y. ✓.•(<^~-. - .. I,ti~w'; ~t'„ b~9~•~~t~~i,~'t'~•'t'is`P'~'i~: •~ti'~~~[.~,+t•~~,fJti,~f{.Si~ .Mr`~"s"" ••'~~•., •~ .y
••~~ti't1~1 ;•,is-i'r~,"'~~~•,•ll:+'. ~~::; ~;, -1-1 :'....~

ti ~,.~~~'~'~~• 'i tl2~=•r SY'.1+_.t eE.. r.v1•~Yw wS ~ltia:` 'e!~'~•-~ ~• •t.r•:i~.i~.~ d .w•1L• .[i•iJ~C::. •. =~[ia'..~t- • i.ita: ~..J: iwt 4~.._.ai:- .~=aZ ~~.: -- ~!.:i:: -~`- ~i•..~ J. y,- - -b, w+ ' t -41~ 1~- s. ' ~• '~` ~ r
L' • ~ ~~•-• • i ~ • is

v JM+

.
~:

..
.~:.

.~~~
-i

y- . , f

Key to Index Page Numbers:
L - Learning
N - Networking
NA-ND - Networking Appendices
P - Programming
R - Runtime
U - Using

A ~. 3.

INDEX

. 1 .,

RELEASE, P3-10, P3-11, US-166, US-173 - ''
US-174 ~~
with ALL, US-~73
ALL with EXCEPT, P3-11
with wildcards; P3-10, U5-173

Releasing
@ ... GETs, U5=50
fields, U5-49, U5=223
memory variables, 5-48, US-51, US-166,

US-173

wrapping text 'in'column, L6-11 (note)
zooming into teict entry azea, L6-8, U5-74

' " Requirements '
file server, N1=9~
network, N 1-8
workstation, NI-10

Reserved words, P3-3
Resources. sharing, N1-4
Response file, R3-5, R3-6
' creating, R1-3, RI-6

. ; storing, R1-4, Rl-6
REST scope, P11-3
RESTORE, P4-10, US-180 - U5-181

,• , ADDITIVE option, P3-12 - P3-IS
RESTORE (DOS), P13-10
RESUME, P15-8, US-182

RELEASE MODULE, P16-10, US-173-; .
RENAME, P13-10, U5-175
Renaming files, 'P13-10, U5-34, US-175
Reordering records,; see INDEX, Index (.ndx)

files, SORT . ,
Repeating characters; see REPLICATE , . -, •
REPLACE, P3-7, P6-2, P11-4 - PI l-6, U5-176

in The Assistant, • •L3-3 (table) • , ,
on a network, 'N4-7, N5.4

Replacing. See also REPLACE, UPDATE
fields, P11-4 - P11-6, US-270

RETRY, N4-16, N4-17, N5-12, P16-9, US-183
_RETURN, _• P2-2„Ply-3, P13-4, P14-2, US-184

with PROCEDURE, P16-3, U3-11
RETURN.TO MASTER, P2-4, U5-184 _

• Right mazgin,• ̀ •P} 2-8

•
4

. . Right justifying •string, P8-6
RIGHT()~function, ,-PS-8, U6-71. See also

LEFTO. ,: .

part of string,, ' see STUFF(), REPLACE
REPLICATE() function, P8-10, U6-70
REPORT FORM, L'9-24, P12-1, U5-171, US-178

Ringing the belt, P8-9, US-195, US-209
RLOCK() function, N4-11, NS-36 - NS-37
Root file, R3-1, R4-3
ROUND() function, PS-5, U6-72. See also

INT()
ROW() function, P8-3, U6-73. See also COL(),

PROW()
RTRIM() function, L10-7, P5-11, U6-74. See

- US-179 ''•
on a network, N4-7, NS-4

Reports, see Report form (.frm) files
Report form (:frm) files, U1-7. See also

CREATE/MODIFY REPORT
entering column headings, L6-10 - L6-11
creating in The Assistant, L6-2 - L6-16
customized, P12-1

-~ •- .. - , r'

• ~ '-

also LTRIM(), TRIM()
RUN, N2-10, NS-19, U5-185 - US-186

binary (.bin) files, . P16-12
• ,with ,operating.system, N2-10, N5-22
,Runtime errors. - P.15-1, P15-3

definition, L6-1; U1-7
format options; L6-7 (table), U5-75 - U5-76,

US-81 (table)' .
formatting, Lfi-6
grouping records, L6-8 - L6-10, U5-77 -

• RunTime ~
checkbook management system, Rl-4, 7, 10
dBCOAE, ~i2-1.-•R2-6
dBLINKER, R3-1 - R3-6
error messages, RA-1 to RA-3
using EsC key in, R4-2
linkage editor. R3-1
macro 1}'mit,3tions~,~:R4-3

inserting a column, ' L6-14
modifying, L6-16; U2-42, US-74 - U5-81
opening, L6-4
entering page titles, L6-5, U5-75
printing, L6-16, US-178
saving, L6-16
totalling numeric data, L6-13. U5-79

c

_ ~.

i
1

r= '

~•• ;.

:~
.
'

:~
dBASE III PLUS X-28

~~

\~

.'

J

- - T~ .--....

• f

.+ .• ~ - •

.. rr
.

i .
_
• ,t . ~ !''~

~;: .\:.~ tr... t t , . c;' t .r s. •.. r. '4;~~.t. y~k'r a~, ~'• -s . •r. =-.
f,

+~~ ..-.i.
t

~tl~;;•i,.~ •Si,~l t ~V~~~~._;iZ, ~.~!► .t~• f
r

`i «e~
I•r: r'~•~~~ft ~`.i• ' ~~J"`i~ A,.-~h~i'`•f yl~: ~1

~. -•s~~~ :•i _ -..~'Yi~.•~.'1-t~.LVti:?~,...:~! v~..ti•J:'.:.!.~ s~d~3:Ys':-.i~Yt:.~..~.,.-- •. - a..~..`.:..~~-...:.._r~~'_.r'~ r' .. r1 _~..

•'•~~~.~~-. 'ti . ~ ~~-,

1••.
~,

~\
\~'

1

~ ~

,~y~~ .

.. "•
.

-

.± .

INDEX

l~~•

multi-disk applications, R4-4
options, dBCODE, R2-3 - R2-5
options, dBLINKER, R3-3 - R3-6
procedure files, R4-3
,program specifications, R4-1 ,.
programming tips, R4-6
response file, Rl-3, Rl-6
root files, R4-3
source code requirements, R4-1 - R4-3
sample session, Rl-4 - R1-11
tips, Rl-4

_ =,S

Screen (.scr) files, • UI-7, PS-12
creating, L9-16 - L9-17, U5-82 - U5-87

Screen forms, U2-20 - U2-21. See also
• APPEND, CHANGE, CREATE/ MODIFY

SCREEN, EDIT
adding a message, L2-18, US-83 - U5-84, •

US-245
adding a title, L2-11 - L2-12

• .:adding fields, L2-3 - L2-6, L2-22 - L2.25,
U5=86

advantages, P1-7
centering a title, L2-11
changing field width, L2-19 - L2-21
creating database file in, L2-33
creating at dot prompt, L9-16 - L9-17,

U2-43 - U2-47, US-82 - US-87
creating in The Assistant, L2-2 - L2-31
deleting fields, L2-25, US-84
deleting labels, L2-18

• deleting lines, L2-11, US-84
deselecting fields, L2-4 (note)
designing, P7-10
drawing lines and boxes, L2-30 - L2-31,
.. ~ PS-'7,-P8-8, U5-23 - U5-24, U5-87
editing text; US-84
increasing field width, L2-19 - L2-21, US-84
inserting blank lines, L2-10
inserting,or deleting spaces, L2-11
labelling fields, L2-17 - L2-19
modifying, see CREATE/MODIFY SCREEN
moving fields, L2-12 - L2-17
opening, in The Assistant, L2-2
overlapping fields, L2-15 (note)
PICTURE function, US-17 - U5-19, US-86
printing, L2-32, U2-47
in a.program file, P6-1 - P6-18, U5-20

- , ~ prompting for input in, US-130
- RANGE option, US-86

saving, L2-32
selecting fields, L2-3 - L2-6
stretching or shrinking a box, L2-31 (note)
for~updating records, P11-4

'- . _

-s option, R2-6, R3-6
SAVE, '~ L9-29, P3-12, P12-15, U5-187
Saving • •

'' data in The Assistant, L1-25 - LL-26
• ~ • data entry forms, • L2-32 • ` -

1

file privilege~scherries, N3-18
t~." ; _ files, see individual file types under .

" - (periddj .

~:

- - - rrremory variables, ' U5-187
• • ' `- output -to'a text file, U5-193

• ~ -'' 'PROTECT en[rties, ' N3-17
report forJns, L6-16, U5-79

` -•'SET RELATION TO•A VIEW, [l2-41
' `•' user input, - see ACCEPT, INPUT, WAIT

user profiles, ~ N3-20
` Scope, L9-20, U2-3

• Scoreboard, P4-9, US-258. See also SET
_ STATUS

` with customized screens, P6-5

~"

., f

with status line, ' P4-9

Scratch files, P11-9, P13-11
Screen -

clearing, P6-6, U5-47
controlling, P6-3
coordinates, P6-4, US-16
direct output to, US-218, US-261
graphics characters, P8-7
•outputting •blocks of text to, US-275 '
relative addressing, ~ ~ P8-3
templates•, " P7-1

- top row, -1?4=9 -' ,
-- .- .. ,.

•.~

~.: .

~ `•

. Screen Painter, L2-1, P8-12. See also
- ~ - GREATE/MODIFX SCREEN

creating a database file with, L2-33

~••c1,

. ' J ,.

- - dBASE III PLUS-

X-29

• . . ,:

1

' .~- .,.
• :~

.INDEX

Key to Index Page Numbers:
L - Learning
N - Networking
NA-ND - Networking Appendices
P - Programming
R - Runtime
U - Using

Self-starting programs, see Turnkey system
SET, P4-3'- P49,,~13-3, L9-5 - L9-6, U5-191 -

U1-192. See also. Config.db
commands in Config.db, U4-6 - U4-10

(table) F...
on-a network; N5=13,= N5-14

° SET. ALTERNATE, P 15-12, US-193 - US-194
SET BELL:, P4-S,.P5-14, US-195 ,

=SET CARRY., oU5-196 ~ '
~e SET 'CATALOG, L9-9 - L9-10, NQ-7, N5-4,

' . U2-52 - U2-55, i15-~ 97 - U5-202
SET CENTURY, ~ , P~-22, US-203
SE'l; COLOR, ~-,P4-5, rU2-209, U5-204 - U5-208

with,passwords, '" P8-11

SET'"CONSOLT,.~ `ir12-4, US-210 -

SET DATE, ' P5.21,, U5-211
SET DEBUG,' '.P15-9, R4-2, US-212
SET DECIMALS,` ' PS-18, U5-213
SET DEFAULT, ' P>"-6, P4-5, P16-16, U5-214

' SET DELETED,. P10-18, P13-7, U5-215
SET DELIMITERS; P6-10, P8-1, US-216 -

US-217
with TO DEFAULT option, P8-2

SET DEVICE, Pf2-3, P12-4, P12-7, US-218
SET DOHISTORY, P15-7, P15-10, R4-2,

US-219 °
SET ECHO, P15-9, R4-2, US-220
SET ENCRYPTION,, N4-21, NS-15 - N5-16
SET ESCAPE'; , P4-4; P15-11, U5-221

.wi~th,type-alie~,d~buffer, P8-17
. `.with WAIT ~' p6=16

'SETBXACT,'' P10-IU, P10-18, U5-222
SET EXCLUSIVE,,;a ̀ N4-6, N5-18
SET FIELDS,,. P11'-16, US-223 - U5-228
SET~FIL:TER, . °P10-17, US-229 - US-230, UB-3

dBASE 111 PLUS

~-~-~ m~:_~_ "- sue._ --~ .~~....-~_ = v.-_-~'T T+i

~~:~~-

g'' '~. °° .~' -.
'e: • ~:

~ g„a,~"e

oY

Y~

~°.
- ~"i ti~ .~

,~
._ ~'"~

-., ~`

~ - ~a Y ~~, `I`1i'. ~ r̀ '+f~~+Ji~~'C SjZS, tt~ ~:'"tt.\~ItA~1 «`~
~~'~•~~G'' .teyl'

`.♦ . e `
.~~ f '

O
• .~irl'~ j U+I ~;;

~`f ~41\`=
~ '~ ~~ ~~'~Ji; f J y~°~1~~~•f:•,a~e

~^- y: :9A
-_

..+r.gn
,~; kt~ ?•>;''J~:~`•+1'.~k••~~~L~'-~~\fi

~•.~~~~~~1•i~.~'%C`~..yi~ •t•.~~~ g-,a• °..[~

~,~~: 3v° n:. - q.rw. ra'.a'4~+ A ~~ a 1S'.. i.: •::~ t:
dal iaC. <''.. ie'i•~ ~.~°lar1~ ~.`~.••:y:is? - ~ .. - ° t

`r.,! .•~ ;
b• ; _~., .~ .; •.o

~a. °.

SEEK, P10-9, P1°l,-4,' P14.-4,, U5-188 :'. ;
in The Assistant, ~ L4-14 = L4-17 ,; '
with end-of--fire;' P10-13 '
with end-oEfile condition, P-10-14
for indexed files, U2-31 - U2=32 , ~, '
isolating next record, P10-12
with memory variables. P10-11
with partial string, L4-16

SELECT, P10-4,; P11;-11, P13-5, U2-37 - U2-38,
U5-189 - US-1`90 ~`~

for partiah string, L4-16 .. ',
by record number, L,4-1 -.L4-3
for records, ;P L4-1 - L4-11, P10-8, U2-30 -

U2-32, US-50 ~ '
for starting pgsition of string,within a string,

see AT() ' - '
Security, see "dBASE security

Search conditions) •~ ~
building a, L:4-4 - L4-11
combining, L4-1,0
definition, L9-2I° • - °
if not matched, ̀ ~ L4.6 ~ -
speEifying, L`9-21~ ,~

Searching. See also CONTINUE, FIND,
LOCATE, SEEIC,~
in The Assistant, L4-2 - LA-11
and case sen~itirity, L4-17.

insert mode, L2T10 Selecting e - ,, . e
menus, L2-2 (table) e ° a database. fide,' I;3-2, L9-13, U5-190, U5-281
modifying database file structure,. ~ L2-21 ' ; ~ - U5-Z82 .. ' ~~
overwrite mode. I1-10 ~ an index ;file, L4;13 - L4-14, L9-23, US-190,
PICTURE function option, L2-26 - L2-27, :.. US-239_ - U5-240

L2-29 (table) ' ` ~ a.format file, i:3-~, L9-17, U5-232 - US-233
PICTURE 'template option; •L,2-28R L2-29 ~ $election~bar, N3-15, U2-13

:•

(table)
Range option; L2-28, L2-29 (table),-U5=85 .''

Scrolling data,entry forms, US-18.'-US-19 „ `'
SDF (System Data Format) files, see ASCII'' ;

e°

m :• r

for contents .of memory variable,- see &..°' ~ ., ,SET~C.ONFIRIVI;- ~-6-13, US-209
fuuction -

for data, `, U2-3,0`- U2-32
an indexed file, r L4-14 - L44-17
by matching a search condition, L4-3 -

L4-11 °' '

. (tabled;, See also~CREATE/MODIFY QUERY, ...
Query Ggry).`files

i •' ~ -. ~ FSo i''~~.

' • .,-

. :4p •
-

•= o•,.•~i=
~...~

,." -~ • - .

- ~.

~I

. ;•••'

o.

.1Ero,-
- _ .- m .-- _ ,

.bJ~ ~ -

X-30

. ~..
..-~-

a~ ~.

,.'

-
C.

~~.

r
~,i

i
A

X-31 •

dBASE III PLUS

,~ C~

~~ a.~

;d

.~ j~, ,~,
J ~

v
p`.'

,A~
•• •.. cp

INDEX

.•.
r

t

- . .a ~ .

~ .'~•.

1\~_ 13

F\

~ •t{f

SET FIXED, ° P5-18, U5-231
SET FORMAT, PS-14, US-232 - US-233
SET FUNCTION, P4-b, P13-3, U5-234
SET HEADING, P4-7, US-235 ,
SET HELP, P4-7, U5-236
SET HISTORY, P15-7, R4-2, US-237 - U5-238
SET INDEX, P10-7, U2-28, US-239 - 1T5=240
SET INTENSITY, Pb-10, P8-2, U5-241 0

SKIP, LI0-4, U2-32, U5-268
in The Assistant, L4-3
backwards, P 10-15
with end-of--file condition, P10-14

SORT, L9-23, P13-b, U2-30, US-269 - U5-270
on a network, N4-7, NS-4

Sorted files, see SORT, sorting, L4-10
Sorting, U2-30

SET MARGIN, P 12-9, P 12-16, U5-242
SET MEMOWIDTH TO, P8-17, US-243
SET MENU, P4-8, U5-244
SET MESSAGE TO, P4-9, U5-245
SET ODOMETER, US-246
SET options ignored, R4-1, R4-2
SET ORDER, P10-7, U5-247 - U5-248
SET PATH, , P4-8,.P13-5, U5-249 - US-250 °

with GETENVO function, P16-14-

SET PRINT, P12-4 - P12-5, U5-251
in debugging, P15-13

SET PRINTER, P12-3, U5-252

US-253 - US-254
SET RELATION, Plyl-11 - P11-15, U2-38 -

U2-41, US-259 - U5-256
SET SAFETY, P4-8, US-257
$ET SCOREBOARD, P4-9, US-258

with customized screens, P6-5
SET STATUS, L9-b, P4-9, P 13-3, US-259

with customized screens, P6-6
SET STEP, P 15-9, R4-2, U5-260
SET TALK, L10-3, L10-4, P4-4, P13-3, U5=261
SET TITLE, US-262
SET TYPEAHEAD TO, P8-17, US-263
SET UNIQUE, P10-19, U2-29, US-264 - US-265
SET VIEW TO, PI1-15, U2-41, U5-266 -~

in The Assistant, L4-19 - L4-20
compared to indexing, L4-20
descending order, L9-23
records into groups, L6-8 - L6-9. See also

INDEX, Index (.ndx) files, SORT
Source directory, RI-5, R4-6
Souirce files

.src extension for program files, Rl-5, R2-2
SPACE() function, P3-4, P5-12, P 14-b, U6-75
Space on disk, determining, see

DI$IC3PACE()

creating blank, see SPACE()
Special effects, see Printing, special effects
Specifications, U1-1

command line, U1-2
e database file, U1-1

field size, U1-1
file operations, U1-1

' memory variables, U1-2
numeric accuracy, U1-1

Spooled files, N2-9, NS-20, N5-21
Spreadsheets, see APPEND FROM, COPY TO
SQRT() function, PS-5, U6-76
Starting dBASE III PLUS

with an application program, NB-11,

SET PROCEDURE, P16-3, P16-4, U3-11, in concatenation, P5-3

Spaces
on a network, N2-8 - N2-10, NS-20 - NS-22, in command lines, P15-1

US-267 '
° SHARE command (3Com network), ND-4

Shared directories; - NB-9, NC-8, ND-4'
- Sharing resources

- files, N1-4:
peripherals, , N1-4,
software, N 1-4~ „~ ~ °

f Shell, network, see Network shell
Simultaneous data access, N4-2

NC-10, ND-11
with a batch file, NB-12, NC-10, ND-11
on IBM PC network, NB-10
on Novell network, NC-9
in a PROTECTed system, N1-12
on 3Com network, ND-9

Status bar, L9-2, N3-13, U2-14, US-259
in The Assistant, L1-13 - L1-14 (figure)
controlling display of, L9-b, U5-259

r• -~

Key to Index Page Numbers:
L - Learning
N - Networking
NA-ND - Networking Appendices
P - Programming
R - Runtime
U - Using

•

INDEX

~`
~s
:;

i~

YS

in programs, P4-9
on PROTECT screens, N3-13

STORE, P3-2, P6-2, P11-4, US-271 - US-272
STR() function, PS-15, U6-77 - U6-78. See

also CHR(), VAL()

Summarizing data
with COUNT, US-62
with SUM, U5-273
with TOTAL, U5-276 - U5-277

SUSPEND, US-274 •
debugging with, P15-7 - P15-8, P15-10,

Pl_5-11
with RunTime + , • R4-1

SYLK files, ' See also dBASE Bridge
exporting, • U2-57, US-55 - US-58
importing, U2-57, US-28 - US-31

Symbols . j
template, P7-1' - P7=4

Symbols and conventions, used in manuals,
U5-1 '

• Syntax, command, ' if2-3
Syntax errors,• P15-1, U3-9
System date and time, see DATE(), TIM(r()

with decimal places, PS-16
String(s).See also Character string, Converting

combining, PS•3, P8-6
changing case, PS-9. See also LOWER(),

UPPER()

comparing, PS-4, P10-18
String operators, U2-6
Structure

catalog, U2-53,-US-199
command, ; U2-3.
copying, U5-56, U5-57 - US-58
creating, U5-59, U5-88 - US-91

database file,- U1-8, UC•1 - UC-2. $ee also

CREATE < newfile > /MODIFY - ' System variables, determining, see GETENV()

STRUCTURE
displaying, see_DISPLAY STRUCTURE,

LIST STR_ UCTURE
memo file, UC-3 ; UC-4

_ Structured programming, PI-21
' STUFF() function, P8-6, t~6-79 - U6-80. See

also SUBSTRO
Subdirectorie& -

for network users . N2-5
path to, P4-8

• with RunTime+, .R1~4,~R4-6
Subprograms, P1-i, P1-10, P1-17, P2-3
Substring, PS-7 _

position in string, PS-8
search, P9-3, U6-81 Y
selection functions. See also LEFT(),

RIGHT(), STUFF() '
SUBSTR() functions , PS-7, PS-8, U6-81

compared to .substring operator, P9-4
Subtracting users . •

from a 3Com network ND-15
from an IBM petwork, NB-14
•from a Novell network, NC-13 _

SUM, N4-7,-N5-4, P11-1, US-273
in The Assistant, L6-25 - L6-27, U5-32

. _~.
T • -

TechNotes, P16-17 ~ '
TEDIT, , .see Configuration commands

- Templates. L1-19, P,7-1 - P7-7
•with-charactgr variables, P7-3
for confrolligg •displays, P7-3, U5-19
for converting input, •~P7-2, US-19
with date variables, P7:5
functions, -P7-4„-P7-5, US-18 - U5-19
for horizontal scrolling, TP7-6
for limiting input, P7-3, P14-3
with literal characters,. P7-5
with logical variables, _ P7-4 ~'•
with numeric variables, . P7-2 ~ • r•
symbols, P7-1, U5=16, U5-18 - U5-19 .
with TRANSFORM() function, P7-9 ' • -

Testirig. See also Debugging
for •beginning of ~le, see BOF()
for character, see ISALPHA(j, ISLOWER(),

. ISUPPER() '
• ~ for color, see I_ SCOLOR()

for deleted file, see DELETED()
• - for end of file, . see EOF()

i ~• •

{

i

~.

,.

.~

r

,

.;'

dBASE III PLUS X-32

s

•~ ~ .

_ _ __ _ r_-

. '

. • . ~:• ;;~i•t:t~•;;:.
- tia -.~s:. ~'.

- ;
AA
i

'1r - i..~~ .l J';

•- •.~•~•- "rte - -.w.. -..._tir -. .. - -.•r -.. •.• ..

' "' - - - for error,. P9-12.
for,•Esc key,.;~l?9-1.2.•

• .i~ ..

.•~ . • •'.
F, s

4'••
-•

i .• .-.

.. -s •.... ..,
-

•OC

a

P
L

. -. - •

f ~•r i "e.: ~-i"

.e~ . -: '

- eY.T..

..:• ,,:.Type ;ahead buffer, P8-17. See also CLEAR .
' TYPEAHFAD, SET TYPEA_ HEAD

-, Typestyle size,,,; P12-8 •_ ,

:. "~-• • -

' ~ ~:.• fo ypress; see. ~N.I~EYO •l •;;'., ~t.. • •,• ~•~~ . t t:.ke
• a : ?'..~ c for,last ~ kcy' pressed, sge READKEYO

-~

• - • - ;1.-~'; _ ~ for:a lock.: N4-1 L,.•, '
• • ' programs, P1•-24, P~1~5;1 - P15-14, R1-15

Unformatted output, P12-4
Uninstalling dBASE ADMINISTRATOR

error messages, • • + NA-2
_ from a~3Com network, ND-15

• -~ from an ̀IBM network, NB-15
•'•fibm°a Novell network,'• NC-13

for'rssult.of FIND; hOCATE, SEEK, see

- . - - for ~ key, P9-10 •~ ,_
- -- ~ forSpacebar,-,:•P9-1.1~•
' ' - ,. - ~ TEXT,..ENDTE~CT,-; P6-9,"IJS-275

r:~ '

' •- , .:::.'1' ,: j ~'~ ~:c~Text editor, . U~ 7„U4 r6,~~5-155 -~U5;157 1 ; -• Unique index, ' see'SET UNIQUE .. ~':,•: ~~•`~a'v •:::~ ,~,rText,(.t~t)~fles,~~'U1;7P.,See•nlso APPEND'. :F ., i;;;.
' FROM, COPY, MODIFY COMMAND, SET ~ - Unlinking -ielated files, U2-40

ALTERNATE UNLOCK, ". ••N4-•~2, iN5-24

", - 1;: ~='. Unlocking. • .
_ files -'N4'~12, I~IS•32, N5-36

records; _~ ~N4-~T2 =' N4-13
~RUPDATE•°~•~1y4'-7' NS'=4''Pl l-7 U5-279 - U5-280•

Time
counting on xscreen•, - fP9;~9

._ ;.'iii programs; ''P5-25 ••

- ' ~ res'ttin~~ °1?16-13'"~'•%`'~"
•

/
~-• TIM£°co~gmand (DOSj'`~rP16.15

-•a
~.~?~ - '~ '• Update~file• privii'ege,:-'N3-5; N3-26

p
-~~•~~-`'~TIME~S'functioii '' P5'2~4~ U682 See also Updating •_ -;-' ~ --

o: =•E ~ ~ : ~...; . - - '~ data Pll-4:-•P11=8 ~~`~'• • .. _•.. ,.:-. pATE'O .: . •.: ,a.. .~.:
fields, '~ ~i:l l-'6' -.

Tiiles, co7uirin;' `U5-74;'i15-197, US-198, Updating retdtls ..'.i; - h s -ir:. •US'-200 ̀U5=262 • ,; ... L
..

~•.• ~ r • -• 1 adding, L3-7 - L3-10;•U5-26 - U5-27, US-40 • To le lockin records; N4-13 ,._k~ : •+ gg ~ ~ ~r• - • ~ • • ` • =3,U5-42, •tJ5-137'- U5-•138 .. Top margin, P12-8• deleting, ~ °L3-13'- L3-16, U2-25, U5-102,
`~
-r,

P15-6 • ~'op-down approach,' ••P1-19,
- 'Top-oEform; •'=~J5-16'3;~U5-284 °t• • ;~,•,• P12-6, P12-11, U5-120 editing; -~ .1.3=11 - I:3-12', US-118 - US-119 • .~ ; ~OTAL, N4-7, N5-4, i~2-58, US-276 - U5~2:77.- .:: ~ ' ,:with• fields from another database, U5-279 - • • - with encrypted (.crp) files, NS-15 • • ~ selecting'•file foi, • L3-2 - L3-3

~;:.i3
.. ; :t

' '`~I'i•ailing blanks: -
in concatenation, P$=13,.

. ''' '; ~emoving~, " PS-10 = P5=I2 ~ ~` ,~-
' ̀ ' RTR~1ViOtzr' ~ ̀ U6=74`~ „~

• `• ~UPpei• case •~ • - '-

• - • • `' 'con~ieifing from lower case, P5-9, U6-88
• converting to lower case, PS-9, U6-51

r

' - ~'~•• J"`` ̀ •' 'eke' `'`AIMO ' U6° 8'4 ~"U6`85 r' '•"~ testingfo"r;'"• P9-12, U6-47
- ' • - - =~ - ~ ' ' -' * 'UPPERO °unction, PS-9, P 14-5, U6-88. See

Transferring data 'be`twrr~'fi'programs, L8-1 ~ ~ • ::r ,,., also ISUPPER(~),•LOWERO
. L,'8'6 See ipso COP1~, EXPORT, IMPORT ~ '- - USE, r •'1~T4-12, P10=3; Pl~ly4, US-281 - US-282 :_ ~r.:, ~ : ~.:. ' ~;: TRANSF'QRM()`:function. P7-9, U6-133 :- •...=• ,

'• '' '•TRI'MO 'funcffon;' =P5-1~0; P8-6, U6-84 - U6-85 " •USE EXCLUSIVE;' N5-25

' with ~ key, P9-l0. See also LTRIM(),
User

• access level, N3-4, N3-20

• ...i
i

•. ,
•- ,

~~• RTRIM()
Turnkey system, P16-15
TYPE command, P1-5, US-278
Type conversions, P5-2
TYPE() function, P9-12, U6-86 - U6-87

group, • N3-7
group name, N3-7 - N3-81
input, P6-9

interface, P6-1

..~ '.. -

dBASE III PLUS X-33

-,

.~

 e;,`sco ~~arkti, _ --:~~:~rs.c-wsj~sa~'E,r:..pra~rr-: ag
z

p
•fit ~~`~~~~ ,'' 'A' ^~ ,',4`•;~s ' `• ,~,'`~1`' ~~'- •`~

~~

•• ,.. s. -S,.r, ~.~
- -vu - °- ~7i : ~ ~.s l';~4ti ,- Apr ~

~'

_ _~ts-

...r

~.
. . • s.

Key to Index Page °Num'bers:
L - Learning
N - Networking
NA-ND - Networking Appendices
P - Programming
R - Runtime
U - Using

"~:.
° :~~

•.. ~~•

,(,. ..
.

s ;4 •d°. ... , •~,
•:•.

•INDEX

~'

log-in N3-2 - N3-4,,N3.21
profile, N3-4, N3-18 - N3=21

User count '
display option, NB-13, NC-12,.ND-14

W

WAIT, U5-283
changing message, P6-16 '

Week, day of, see CDOW(), DOW()
Wildcards

with DIR, U5-103
with RELEASE, P3-10, US-173

WICS files
• exporting, U2-56 - U2-57, U5-55 - U5-58

importing, U2-Sg - U2=57.,. US-28 - USo31~•
WordStar, Pl-4, P16-15
Work areas, P10-4, U2-37

examining, P13-5
with relations, PI1-12, U5-1.01, US-255 -

- US-256
° release fields from all, US-49

resetting to default, P13-3
SELECT, US-189 - i~5-190` °
select by ALIAS name, • U2-38, US-190
setting up, Pl 1-10

"Workstation
Corifigsys file, NB-3, NB-4; ~NC=4, ND-3
definition, N1=3, 'N2-2 (figure), -N2-4 (figure)
requirements, Nl-8, N1-9 '-

WP, see Configuration commands

.;
in DBNETCTL.300, N1-7, NB-7, NC-8, ND-8

User-defined values, N3-16, U2-18
User profile(s), N3-4, N3-18 - N3-21

V

VAL() function, P5-18, U6-89 - U6-90. See
also STR()
Variables, see Memory variables
Verifying input, see Input, verifying
VERSION() function,. P16-14, U6-91
View (.vue) files, L7-1 - L7-3, Ul-8. See also

CREATE/MODIFY VIEW, SET VIEW TO'
appending data in, L7-3 (note)
common field, L7-5 - L7-6, L7-10

(warning), US-96
controlling file, L7-2, US-96
creating. in The Assistant, L7-3 - L7-9, L5-30
creating at the dot prompt, U2-41, U5-93 -

U5-99
creating from the environment, Pl.l-15 -

P11-16, U5-101
definition, L7-1 - L7-2, L7-2 (figure) ;
elements of, US-94 - US-95 _. •

° modifying, U2-41, US-93 ..'f
opening, L7-9, L9-25, US-266 •- U5-267 '
relation. chain in, L7-6 (figure), US-96..;•~
saving, L7-9

Y

Year, see SET CENTURY
from a date, PS-21

YEAR() function, PS-21, Ub-92 ~ See also
DAY(), MONTH()

•• '. ' r ~
selecting, L7-9, L9-25, U5-266 - U5-267
'selecting data entry form for, L7-8, U5-99
selecting database files for, L7-4 - L7-5,

US-95
selecting fields for, L7-7 - L7-8, US-97 •
selectively changing, US-71 - US-73
storing a SET RELATION, U2-41, US-101

VisiCalc files
exporting, U2-56 - U2-57, US-55 - U5-58
importing, U2-56 - U2-57, US-28 - US-31

Z~

ZAP, N5-4, P11-9, U2-25, US-284 ~`
Zoom ~in/out, see CREATE/MODIFY LABEL,

CREATE/MODIFY REPORT •~

o -
i

dBASE 111 PLUS

X-34

