

ALIEVU!

ii

'dam

Plexus Sys3 UNIX Programmer's Manual -- vol 2B

6~

f

:b-

T. - ^-~-mss..` - . ~. _.~~

j

0

N
Plexus Sys3 UNIX Programmer's Manual -- vol 2B

98-05037.3 dune 20, 1983

•

PLEXUS COMPUTERS INC

2230 Martin Ave

Santa Clara, CA 95050

408/988-1755

•

•

Copyright 1983
Plexus Computers Inc, Santa Clara, CA

All rights reserved.

No part of this manual may be reproduced in any form
without written permission from the publisher,

•

11

Printed in the United States of America

•

•

Plexus Sys3 UNIX Programmer's Manual -- vol 2B

PREFACE

This manual contains a collection of documents that describe specific
aspects of the UNIX* operating system. These include descriptions of
programming, language, administrative and maintenance tools.

Additional documents describing the operating system, document preparation
tools and programming and language tools are collected in the Plexus Svs3
UNIX Programmer's Ranual -- vol 2A.

Both these volumes (2A and 2B) should be used as supplementary documents
for the Plexus Svs3 UNIX Programmer'ja 14anual -- vol,lg and Plexus Svs3 UNTx
Programmerl.s)4anual -- vol J2, the basic reference manual for the operating
system.

Comments
Please address all comments concerning this manual to:

Plexus Computers Inc
Technical Publications Dept
2230 Martin Ave.
Santa Clara, CA 95050
408/988-1755

Revision jiistory
The second edition (#98-05037.2) contains new front matter.

This edition (#98-05037.3) contains a new VPM document.

•

} UNIX is a trademark of Bell Laboratories. Plexus Computers Inc is
licensed to distribute,UNIX under the authority of AT&T.

0

•

•
el
n c

0
y

•

•

•

BC - An Arbitrary Precision Desk-Calculator Language

Lorinda Cherry

Robert Morris

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

BC is a language and a compiler for doing arbitrary precision arithmetic on
the PDP-11 under the uNIXt time-sharing system. The output of the compiler
is interpreted and executed by a collection of routines which can input, output,
and do arithmetic on indefinitely* large integers and on scaled fixed-point
numbers.

These routines are themselves based on a dynamic storage allecator.
Overflow does not occur until all available core storage is exhausted.

The language has a complete control structure as well as immediate-mode
operation. Functions can be defined and saved for later execution.

Two five hundred-digit numbers can be multiplied to give a thousand digit
result in about ten seconds.

A small collection of library functions is also available, including sin, cos,
arctan, log, exponential, and Bessel functions of integer order.

Some of the uses of this compiler are

- to do computation with large integers,

- to do computation accurate to many decimal places,

- conversion of numbers from one base to another base.

November 12, 1978

WNIX is a Trademark of Bell Laboratories.

•

BC - An Arbitrary Precision Desk-Calculator Language

Lorinda .Cherry

Robert Morris

•

Bell Laboratories

Murray Hill, New Jersey 07974

Introduction

BC is a language and a compiler for doing arbitrary precision arithmetic on the UNIXt
time-sharing system (1]. The compiler was written to make conveniently available a collection
of routines (called DC (5]) which are capable of doing arithmetic on integers of arbitrary size.
The compiler is by no means intended to provide a complete programming language. It is a
minimal language facility.

There is a scaling provision that permits the use of decimal point notation. Provision is
made for input and output in bases other than decimal. Numbers can be converted from
decimal to octal by simply setting the output base to equal 8.

The actual limit on the number of digits that can be handled depends on the amount of
storage available on the machine. Manipulation of numbers with many hundreds of digits is
possible even on the smallest versions of UNIX.

The syntax of BC has been deliberately selected to agree substantially with the C language
[2]. Those who are familiar with C will find few surprises in this language.

Simple Computations with Integers

The simplest kind of statement is an arithmetic expression on a line by itself. For
instance, if you type in the line:

142857 + 285714
the program responds immediately with the line

428571

The operators -, *, /, %, and " can also be used; they indicate subtraction, multiplication, divi-
sion, remaindering, and exponentiation, respectively. Division of integers produces an integer
result truncated toward zero. Division by zero produces an error comment.

Any term in - an expression may be prefixed by a minus sign to indicate that it is to be
negated (the `unary' minus sign). The expression

7+-3

is interpreted to mean that -3 is to be added to 7.

More complex expressions with several operators and with parentheses are interpreted just
as in Fortran, with " having the greatest binding power, then * and % and /, and finally + and
-. Contents of parentheses are evaluated before material outside the parentheses. Exponen-
tiations are performed from right to left and the other operators from left to right. The two
expressions

tUNIX is a Trademark of Bell Laboratories.

•

•

a"b"c and a^ WO

are equivalent, as are the two expressions

a*b*c and (a*b)*c

BC shares with Fortran and C the undesirable convention that

a/b*c is equivalent to (a/b)*c

Internal storage registers to hold numbers have single lower-case letter. names. The value
of an expression can be assigned to a register in the usual way. The statement

x = x + 3

has the effect of increasing by three the value of the contents of the register named x. When,
as in this case, the outermost operator is an =, the assignment is performed but the result is
not printed. Only 26 of these named storage registers are available.

There is a built-in square root function whose result is truncated to an integer (but see
scaling below). The lines

x = sgrt(191)
x

produce the printed result

13

Bases

There are special internal quantities, called `ibase' and `obase'. The contents of `ibase',
initially set to 10, determines the base used for interpreting numbers read in. For example, the
lines

ibase = 8
11

will produce the output line

9

and -you are all set up to do octal to decimal conversions. Beware, however of trying to change
the input base back to decimal by typing

ibase 10

Because the number 10 is interpreted as octal, this statement will have no effect. For those
who deal in hexadecimal notation, the characters A-F are permitted in numbers (no matter
what base is in effect) and are interpreted as digits having values 10-15 respectively. The
statement

ibase = A

will change you back to decimal input base no matter what the current input, base is. Negative
and large positive input bases are permitted but useless. No mechanism has been provided for
the input of arbitrary numbers in bases less than 1 and greater than 16.

The contents of `obase', initially set to 10, are used as the base for output numbers. The
lines

obase = 16
1000

will produce the output line

•

•

3

3E8

which is to be interpreted as a 3-digit hexadecimal number.* Very large output bases are permit-
ted, and they are sometimes useful. For example, large numbers can be output in groups of
five digits by setting `obase' to 100000. Strange (i.e. 1, 0, or negative) output bases are han-
dled appropriately. .

Very large numbers are split across lines with 70 characters per line. Lines which are con-
tinued end with \. Decimal output conversion is practically instantaneous, but output of very
large numbers (i.e., more than 100 digits) with other bases is rather slow. Non-decimal output
conversion of a one hundred digit number takes about three seconds.

It is best to remember that `ibase' and `obase' have no effect whatever on the course of
internal computation or on the evaluation of expressions, but only affect input and output
conversion, respectively.

Scaling

A third special internal quantity called `scale' is used to determine the scale of calculated
quantities. Numbers may have up to 99 decimal digits after the decimal point. This fractional
part is retained in further computations. We refer to the number of digits after the decimal
point of a number as its scale.

When two scaled numbers are combined by means of one of the arithmetic operations,
the result has a scale determined by the following rules. For addition and subtraction, the scale
of the result is the larger of the scales of the two operands. In this case, there is never any
truncation of the result. For multiplications, the scale of the result is never less than the max-
imum of the two scales of the operands, never more than the sum of the scales of the operands
and, subject to those two restrictions, the scale of the result is set equal to the contents of the
internal quantity s̀cale'. The scale of a quotient is the contents of the internal quantity s̀cale'.
The scale of a remainder is the sum of the scales of the quotient and the divisor. The result of
an exponentiation is scaled as if the implied multiplications were performed. An exponent
must be an integer. The scale of a square root is set to the maximum of the scale of the argu-
ment and the contents of `scale'.

All of the internal operations are actually carried out in terms of integers, with digits
being discarded when necessary. In every case where digits are discarded, truncation and not
rounding is performed.

The contents of `scale' must be no greater than 99 and no less than 0. It is initially set to
0. In case you need more than 99 fraction digits, you may arrange your own scaling.

The internal quantities s̀cale', `ibase', and `obase' can be used in expressions just like
other variables. The line

scale = scale + 1

increases the value of s̀cale' by one, and the line

scale

causes the current value of `scale' to be printed.

The value of s̀cale' retains its meaning as a number of decimal digits to be retained in
internal computation even when `ibase' or `obase' are not equal to 10. The internal computa-
tions (which are still conducted in decimal, regardless of the bases) are performed to the
specified number of decimal digits, never hexadecimal or octal or any other kind of digits.

Functions
The name of a function is a single lower-case letter. Function names are permitted to col-

lide with simple variable names. Twenty-six different defined functions are permitted in addi-
tion to the twenty-six variable names. The line

•

•

1

The value of this function, when called, will be the product of its two arguments. •

-4-

•
define a(x){

begins the definition of a function with one argument. This line must be followed by one or
more statements, which make up the body of the function, ending with a right brace 1. Return
of control from a function occurs when a return statement is executed or when the end of the
function is reached.' The return statement can take either of the 'two forms

return
return (x)

In the first case, the value of the function is 0, and in the second, the value of the expression
in parentheses.

Variables used in the function can be declared as automatic by a statement of the form

auto x,y,z

There can be only one `auto' statement in a function and it must be the first statement in the
definition. These automatic variables are allocated space and initialized to zero on entry to the
function and thrown away on return. The values of any variables with the same names outside
the function are not disturbed. Functions may be called recursively and the automatic variables
at each level of call are protected. The parameters named in a function definition are treated in
the same way as the automatic variables of that function with the single exception that they are
given a value on entry to the function. An example of a function definition is

define a (x,y) It
auto z
z=x*y
return (z)

A function is called by the appearance of its name followed by a string of arguments
enclosed in parentheses and separated by commas. The result is unpredictable if the wrong
number of arguments is used.

Functions with no arguments are defined and called using parentheses with nothing
between them: bO.

If the function a above has been defined, then the line

a(7,3.14)

would cause the result 21.98 to be printed and the line

x = a(a(3,4),5)

would cause the value of x to become 60.

Subscripted Variables

A single lower-case letter variable name followed by an expression in brackets is called a
subscripted variable (an array element). The variable name is called the array name and the
expression in brackets is called the subscript. Only one-dimensional arrays are permitted. The
names of arrays are permitted to collide with the names of simple variables and function names.
Any fractional part of a subscript is discarded before use. Subscripts must be greater than or
equal to zero and less than or equal to 2047:

Subscripted variables may be freely used in expressions, in function calls, and in return
statements.

An array name may be used as an argument to a function, or may be declared as
automatic in a function definition by the use of empty brackets: .

•

•

•

5

fWD
define f WD
auto a[]

When an array name is so used, the whole contents of the array are copied for the use of the
function, and thrown away on exit from the function. Array names which refer to whole arrays
cannot be used in any other contexts.

Control Statements

The `if', the `while', and the `for' statements may be used to alter the flow within pro-
grams or to cause iteration. The range of each of them is a statement or a compound statement
consisting of a collection of statements enclosed in braces. They are written in the following
way

if.(relation) statement
while(relation) statement
for (expression 1; relation; expression2) statement

or

if (relation) (statements)
while(relation) (statements)
for (expression 1; relation; expression2) (statements)

A relation in one of the control statements is an expression of the form

x>y

where two expressions are related by one of the six relational operators <, >, < =, >
or ! _. The relation = = stands for `equal to' and ! = stands for `not equal to'. The

meaning of the remaining relational operators is clear.
BEWARE of using = instead of = = in a relational. Unfortunately, both of them are

legal, so you will not get a diagnostic message, but = really will not do a comparison.
The 'if' statement causes execution of its range if and only if the relation is true. Then

control passes to the next statement in sequence.
The `while' statement causes execution of its range repeatedly as long as the relation is

true. The relation is tested before each execution of its range and if the relation is false, con-
trol passes to the next statement beyond the range of the while.

The `for' statement begins by executing `expressionl'. Then the relation is tested and, if
true, the statements in the range of the `for' are executed. Then `expression2' is executed.
The relation is tested, and so on. The typical use of the `for' statement is for a controlled itera-
tion, as in the statement

for(i=1; i< =10; i=i+1) i
which will print the integers from 1 to 10. Here are some examples of the use of the control
statements.

define f(n){
auto i, x
x=1
for(i =1; i< =n; i=i+1) x =x'i
return (x)

The line

f(a) •

-6-

•
will print a factorial if a is a positive integer. Here is the definition of a function which will
compute values of the binomial coefficient (m and n are assumed to be positive integers).

define b(n,m)(
auto x,j
x=1
ford=1; j< =m; j=j+1) x=x*(n- j+1)/j
return (x)
)

The following function computes values of the exponential function by summing the appropri-
ate series without regard for possible truncation errors:

scale = 20
define a (x) It

auto a, b, c, d, n
a = 1
b=1
c=1
d=0
n=1
while (1= =1)(

a = a*x

•)

b = b*n
c=c+a/b
n = n + 1
if(c= =d) return (c)
d=c

Some Details

There are some language features that every user should know about even if he will not
use them.

Normally statements are typed one to a line. It is also permissible to type several state-
ments on a line separated by semicolons.

If an assignment statement is parenthesized, it then has a value and it can be used any-
where that an expression can. For example, the line

(x=y+17)

not only makes the indicated assignment, but also prints the resulting value.

Here is an example of a use of the value of an assignment statement even when it is not
parenthesized.

x = a[i=i+1]

causes a value to be assigned to x and also increments i before it is used as a subscript.

The following constructs work in BC in exactly the same manner as they do in the C
language. Consult the appendix or the C manuals [2] for their exact workings.

0

•

-7-

•
x=y=z is the same as
x =+ y
x =- y
x =* y
x =/ y
x =% y
x = y
x++
x__
++x
- -x

x=(y=z)
x = x+y
x = x-y
x = x*y
x = x/y
x = x%y
x = x
(x=x+1)-1
(x=x-1)+1
x = x+1
x = x-1

Even if you don't intend to use the constructs, if you type one inadvertently, something correct
but unexpected may happen.

WARNING! In some of these constructions, spaces are significant. There is a real
difference between x = -y and x = -y. The first replaces x by x -y and the second by -y.

Three Important Things

1. To exit a BC program, type `quit'.

2. There is a comment convention identical to that of C and of PL/I. Comments begin
with `/*' and end with `*/'.

3. There is a library of math functions which may be obtained by typing at command level

be -1

This command will load a set of library functions which, at the time of writing, consists of sine
(named `s'), cosine (`c% arctangent (`a'), natural logarithm (`1'), exponential (`e') and Besse[
functions of integer order (`j(n,x)'). Doubtless more functions will be added in time. The
library sets the scale to 20. You can reset it to something else if you like. The design of these
mathematical library, routines is discussed elsewhere [3].

If you type

be file ...

BC. will read and execute the named file or files before accepting commands from the keyboard.
In this way, you may load your favorite programs and function definitions. -

Acknowledgement

The compiler is written in YACC [4]; its original version was written by S. C. Johnson.

References

[1] K. Thompson and D. M. Ritchie, UNIX Programmer's Manual, Bell Laboratories, 1978.

[2] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978.

[31 R. Morris, A Library of Reference Standard Mathematical Subroutines, Bell Laboratories
internal memorandum, 1975.

[4] S. C. Johnson, YACC - Yet Another Compiler-Compiler. Bell Laboratories Computing Sci-

ence Technical Report #32, 1978.

[5) R. Morris and L. L. Cherry, DC - An Interactive Desk Calculator.

0

•

•

-8-

Appendix

1. Notation
In the following pages syntactic categories are in italics, literals are in bold; material in

brackets [] is optional.

2. Tokens

Tokens consist of keywords, identifiers, constants, operators, and separators. Token
separators may be blanks, tabs or comments. Newline characters or semicolons separate state-
ments.

2.1. Comments

Comments are introduced by the characters /` and terminated by '/.

2.2. Identifiers

There are three kinds of identifiers - ordinary identifiers, array identifiers and function
identifiers. All three types consist of single lower-case letters. Array identifiers are followed by
square brackets, possibly enclosing an expression describing a subscript. Arrays are. singly
dimensioned and may contain up to 2048 elements. Indexing begins at zero so an array may be
indexed from 0 to 2047. Subscripts are truncated to integers. Function identifiers are followed
by parentheses, possibly enclosing arguments. The three types of identifiers do not conflict; a
program can have a variable named x, an array named x and a function named x, all of which
are separate and distinct.

2.3. Keywords

The following are reserved keywords:
ibase if
obase break
scale define
sqrt auto
length return
while quit
for

2.4. Constants.

Constants consist of arbitrarily long numbers with an optional decimal point. The hexade-
cimal digits A- F are also recognized as digits with values 10-15, respectively.

3. Expressions

The value of an expression is printed unless the main operator is an assignment. Pre-
cedence is the same as the order of presentation here, with highest appearing first. Left or right
associativity, where applicable, is discussed with each operator.

I•

is

•

9

3.1. Primitive expressions

3.1.1. Named expressions

Named expressions are places where values are stored. Simply stated, named expressions
are legal on the left side of an assignment. The value of a named expression is the value stored
in the place named.

3.1.1.1. identifiers

Simple identifiers are named expressions. They have an initial value of zero.

3.1.1.2. array-name [expression I

Array elements are named expressions. They have an initial value of zero.

3.1.1.3. scale, ibase and obase
The internal registers scale, ibase and obase are all named expressions. scale is the

number of digits after the decimal point to be retained in arithmetic operations.. scale has an
initial value of zero. ibase and obase are the input and output number radix respectively. Both
ibase and obase have initial values of 10.

3.1.2. Function calls

3.1.2.1. function-name. ([expression[, expression ... I I)
A function call consists of a function name followed by parentheses containing a comma-

separated list of expression's, which are the function arguments. A whole array passed as an
argument is specified by the array name followed by empty square brackets. All function argu-
ments are passed by value. As a result, changes made to the formal parameters have no effect
on the actual arguments. If the function terminates by executing a return statement, the value
of the function is the value of the expression in the parentheses of the return statement or is
zero if no expression is provided or if there is no return statement.

3.1.2.2. sqrt (expression)

The result is the square root of the expression. The result is truncated in the least
significant decimal place. The scale of the result is the scale of the expression or the value of
scale, whichever is larger.

3.1.2.3. length (expressionY

The result-is the total number of significant decimal digits in the expression. The scale of
the result is zero.

3.1.2.4. scale (expression)

The result is the scale of the expression. The scale of the result is zero.

3.1.3. Constants
Constants are primitive expressions.

3.1.4. Parentheses

An expression surrounded by parentheses is a primitive expression. The parentheses are
used to alter the normal precedence.

0

- 10 -

3.2. Unary operators

The unary operators bind right to left.

3.2.1. - expression-

The result is the negative of the expression.

3.2.2. + + named-expression

The named expression is incremented by one. The result is the value of the named
expression after incrementing.

3.2.3. - - named-expression

The named expression is decremented by one. The result is the value of the named
expression after decrementing.

3.2.4. named-expression + +

The named expression is incremented by one. The result is the value of the named
expression before incrementing.

3.2.5. named-expression - -

The named expression is decremented by one. The result is the value of the named
expression before decrementing.

3.3. Exponentiation operator

The exponentiation operator binds right to left.

3.3.1. expression - expression

The result is the first expression raised to the power of the second expression. The
second expression must be an integer. If a is the scale of the left expression and b is the abso-
lute value of the right expression, then the scale of the result is:

min (axb, max (scale, a))

3.4. Multiplicative operators

The operators *, /, % bind left to right.

3.4.1. expression * expression
The result is the product of the two expressions. If a and b are the scales of the two

expressions, then the scale of the result is:
min (a +b, max (scale, a, b))

3.4.2. expression / expression

The result is the quotient of the two expressions. The scale of the result is the value of
scale.

3.4.3. expression % expression
The % operator produces the remainder of the division of the two expressions. More pre-

cisely, a%b is a- a/b*b.

The scale of the result is the sum of the scale of the divisor and the value of scale

0

•

•

-11-

3.5. Additive operators

-The additive operators bind left to right.

3.5.1. expression + expression
The result is the sum of the two expressions. The scale of the result is the maximun of

the scales of the expressions.

3.5.2. expression - expression

The result is the difference of the two expressions. The scale of the result is the max-
imum of the scales of the expressions.

3.6. assignment operators

The assignment operators bind right to left.

3.6.1. named-expression = expression

This expression results in assigning the value of the expression on the right to the named
expression on the left.

3.6.2. named-expression = + expression

3.6.3. named-expression = - expression

3.6.4. named-expression = *expression

3.6.5. named-expression =1 expression

3.6.6. named-expression =% expression

3.6.7. named-expression =" expression

The result of the above expressions is equivalent to "named expression = named expres-
sion'OP expression", where OP is the operator after the = sign.

4. Relations

Unlike all other operators, the relational operators are only valid as the object of an if,
while, or inside a for statement.

4.1. expression-< expression

4.2. expression > expression

4.3. expression < = expression

4.4. expression > = expression

4.5. expression = = expression

4.6. expression ! = expression

•

•

•

-12-

5.Storage classes

There are only two storage classes in BC, global and automatic (local). Only identifiers
that are to be local to a function need be declared with the auto command. The arguments to a
function are local to the function. All other identifiers are assumed to be global and available
to all functions. Ali identifiers, global and local; have initial values of zero. Identifiers declared
as auto are allocated on entry to the function and released on returning from the function.
They therefore do not retain values between function calls. auto arrays are specified by the
array name followed by empty square brackets.

Automatic variables in BC do not work in exactly the same way as in either C or PL/I.
On entry to a function, the old values of the names that appear as parameters and as automatic
variables are pushed onto a stack. Until return is made from the function, reference to these
names refers only to the new values.

6. Statements

Statements must be separated by semicolon or newline. Except where altered by control
statements, execution is sequential.

6.1. Expression statements

When a statement is an expression, unless the main operator-is an assignment, the value
of the expression is printed, followed by a newline character.

6.2. Compound statements

Statements may be grouped together and used when one statement is expected by sur-
rounding them with ().

6.3. Quoted string statements

"any string"

This statement prints the string inside the quotes.

6.4. If statements

if (relation) statement

The substatement is executed if the relation is true.

6.5. While statements

while (relation)-statement

The statement is executed while the relation is true. The test occurs before each execu-
tion of the statement.

6.6. For statements

for (expression; relation; expression) statement

The for statement is the same as
first-expression
while (relation) {

statement
last-expression

•

All three expressions must be present.

-13-

6.7. Break statements

break

break causes termination of a for or while statement.

6.8. Auto statements

auto identifier [,identifier]

The auto statement causes the values of the identifiers to be pushed down. The
identifiers can be ordinary identifiers or array identifiers. Array identifiers are specified by fol-
lowing the array name by empty square brackets. The auto statement must be the first state-
ment in a function definition.

6.9. Define statements

define((parameter[, parameter...]]) {
statements)

The define statement defines a function. The parameters may be ordinary identifiers or
array names. Array names must be followed by empty square brackets.

6.10. Return statements

return

return (expression)

The return statement causes termination of a function, popping of its auto variables, and
specifies the result of the function. The first form is equivalent to return (0). The result of the
function is the result of the expression in parentheses.

•
6.11. Quit

The quit statement stops execution of a BC program and returns control to UNIX when it
is first encountered. Because it is not treated as an executable statement, it cannot be used in a
function definition or in an if, for, or while statement.

is

•

DC - An Interactive Desk Calculator

Robert Morris

Lorinda Cherry

Bell, Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

DC is an interactive desk calculator program implemented on the UNIXt
time-sharing system to do arbitrary-precision integer arithmetic. It has provi-
sion for manipulating scaled fixed-point numbers and for input and output in
bases other than decimal.

The size of numbers that can be manipulated is limited only by available
core storage. On typical implementations of UNIX, the size of numbers that can
be handled varies from several hundred digits on the smallest systems to
several thousand on the largest.

November 15, 1978

tUNIX is a Trademark of Bell Laboratories.

•

.0

DC - An Interactive Desk Calculator

Robert Morris

Lorinda Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

DC is an arbitrary precision arithmetic package implemented on the UNIxt time-sharing
system in the form of an interactive desk calculator. It works like a stacking calculator using
reverse Polish notation. Ordinarily DC operates on decimal integers, but one may specify an
input base, output base, and a number of fractional digits to be maintained.

A language called BC [1] has been developed which accepts programs written in the fami-
liar style of higher-level programming languages and compiles output which is interpreted by
DC. Some of the commands described below were designed for the compiler interface and are
not easy for a human user to manipulate.

Numbers that are typed into DC are put on a push-down stack. DC commands work by
taking the top number or two off the stack, performing the desired operation, and pushing the
result on the stack. If an argument is given, input is taken from that file until its end, then
from the standard input.

SYNOPTIC DESCRIPTION
Here we describe the DC commands that are intended for use by people. The additional

commands that are intended to be invoked by compiled output are described in the detailed
description.

Any number of commands are permitted on a line. Blanks and new-line characters are
ignored except within numbers and in places where a register name is expected.

The following constructions are recognized:

number
The value-of the number is pushed onto the main stack. A number is an unbroken string
of the digits 0-9 and the capital letters A-F which are treated as digits with values 10-15
respectively. The number may be preceded by an underscore to input a negative
number. Numbers may contain decimal points.

+ - * 0/0 -

The top two values on the stack are added (+), subtracted (-), multiplied (*), divided
(/), remaindered M, or exponentiated C). The two entries are popped off the stack; the
result is pushed on the stack in their place. The result of a division is an integer trun-
cated toward zero. See the detailed description below for the treatment of numbers with
decimal points. An exponent must not have any digits after the decimal point.

tUNIX is a Trademark of Bell Laboratories.

•

•

•

•

•

sx

The top of the main stack is popped and stored into a register named x, where x may be
any character. If the s is capitalized, x is treated as a stack and the value is pushed onto
it. Any character, even blank or new-line, is a valid register name.

Ix

The value in register x is pushed onto the stack. The register x is not altered. If the 1 is
capitalized, register x is treated as a stack and its top value is popped onto the main stack.

All registers start with empty value which is treated as a zero by the command 1 and is treated
as an error by the command L.

The top value on the stack is duplicated.

The top value on the stack is printed. The top value remains unchanged.

All values on the stack and in registers are printed.

treats the top element of the stack as a character string, removes it from the stack, and
executes it as a string of DC commands.

puts the bracketed character string onto the top of the stack.

exits the program. If executing a string, the recursion level is popped by two. If q is capi-
talized, the top value on the stack is popped and the string execution level is popped by
that value.

<x >x =x !<x !>x !=x
The top two elements of the stack are popped and compared: Register x is executed if
they obey the stated relation. Exclamation point is negation.

V

replaces the top element on the stack by its square root. The square root of an integer is
truncated to an integer. For the treatment of numbers with decimal points, see the
detailed description below.

interprets the rest of the line as a UNIX command. Control returns to DC when the UNIX
command terminates.

c

All values on the stack are popped; the stack becomes empty.

d

P

f

x

[... 1

q

3

i
The top value on the stack is popped and used as the number radix for further input. If 1 •
is capitalized, the value of the input base is pushed onto the stack. No mechanism has
been provided for the input of arbitrary numbers in bases less than 1 or greater than 16.

The top value on the stack is popped and used as the number radix for further output. If
o is capitalized, the value of the output base is pushed onto the stack.

k

The top of the stack is popped, and that value is used as a scale factor that influences the
number of decimal places that are maintained during multiplication, division, and
exponentiation. The scale factor must be greater than or equal to zero and less than 100.
If k is capitalized, the value of the scale factor is pushed onto the stack.

z
The value of the stack level is pushed onto the stack.

A line of input is taken from the input source (usually the console) and executed.

DETAILED DESCRIPTION

Internal Representation of Numbers
Numbers are stored internally using a dynamic storage allocator. Numbers are kept in the

form of a string of digits to the base 100 stored one digit per byte (centennial digits). The
string is stored with the low-order digit at the beginning of the string. For example, the
representation of 157 is 57,1. After any arithmetic operation on a number, care is taken that all
digits are in the range 0-99 and that the number has no leading zeros. The number zero is
represented by the empty string.

Negative numbers are represented in the 100's complement notation, which is analogous
to two's complement notation for binary numbers. The high order digit of a negative number
is always -1 and all other digits are in the range 0-99. The digit preceding the high order -1
digit is never a 99. The representation of -157 is 43,98,-1. We shall call this the canonical
form of a number. The advantage of this kind of representation of negative numbers is ease of
addition. When addition is performed digit by digit, the result is formally correct. The result
need only be modified, if necessary, to put it into canonical form.

Because the largest valid digit is 99 and the byte can hold numbers twice that large, addi-
tion can be carried out and the handling of carries done later when that is convenient, as it
sometimes is.

An additional byte is stored with each number beyond the high order digit to indicate the
number of assumed decimal digits after the decimal point. The representation of .001 is 1,3
where the scale has been italicized to emphasize the fact that it is not the high order digit. The
value of this extra byte is called the scale factor of the number.

The Allocator
DC uses a dynamic string storage allocator for all of its internal storage. All reading and

writing of numbers internally is done through the allocator. Associated with each string in the
allocator is a four-word header containing pointers to the beginning of the string, the end of the
string, the next place to write, and the next place to read. Communication between the alloca-
tor and DC is done via pointers to these headers.

•

•

•

-4-

The allocator initially has one large string on a list of free strings. All headers except the
one pointing to this string are on a list of free headers. Requests for strings are made by size.
The size of the string actually supplied is the next higher power of 2. When a request for a
string is made, the-allocator first checks the free list to see if there is a string of the desired
size. If none is found, the allocator finds the next larger free string and splits it repeatedly until
it has a string of the right size. Left-over strings are put on the free list. If there are no larger
strings, the allocator tries to coalesce smaller free stt•ings into larger ones. Since all strings are
the result of splitting large strings, each string has a neighbor that is next to it in core and, if
free, can be combined with it to make a string twice as long. This is an implementation of the
`buddy system' of allocation described in [2].

Failing to find a string of the proper length after coalescing, the allocator asks the system
for more space. The amount of space on the system is the only limitation on the size and
number of strings in DC. If at any time in the process of trying to allocate a string, the alloca-
tor runs out of headers, it also asks the system for more space.

There are routines in the allocator for reading, writing, copying, rewinding, forward-
spacing, and backspacing strings. All string manipulation is done using these routines.

The reading and writing routines increment the read pointer or write pointer so that the
characters of a string are read or written in succession by a ser(es of read or write calls. The
write pointer is interpreted as the end of the information-containing portion of a string and a
call to read beyond that point returns an end-of-string indication. An attempt to write beyond
the end of a string causes the allocator to allocate a larger space and then copy the old string
into the larger block.

Internal Arithmetic

All arithmetic operations are done on integers. The operands (or operand) needed for the
operation are popped from the main stack and their scale factors stripped off. Zeros are added
or digits removed as necessary to get a properly scaled result from the internal arithmetic rou-
tine. For example, if the scale of the operands is different and decimal alignment is required,
as it is for addition, zeros are appended to the operand with the smaller scale. After performing
the required arithmetic operation, the proper scale factor is appended to the end of the number
before it is pushed on the stack.

A register called scale plays a part in the results of most arithmetic operations. scale is
the bound on the number of decimal places retained in arithmetic computations. scale may be
set to the number on the top of the stack truncated to an integer with the k command. K may
be used to push the value of scale on the stack. scale must be greater than or equal to 0 and
less than 100. The descriptions of the individual arithmetic operations will include the exact
effect of scale on the computations.

Addition and Subtraction

The scales of the two numbers are compared .and trailing zeros are supplied to the number
with the lower scale to give both numbers the same scale. The number with the smaller scale is
multiplied by 10 if the difference of the scales is odd. The scale of the result is then set to the
larger of the scales of the two operands.

Subtraction is performed by negating the number to be subtracted and proceeding as in
addition.

Finally, the addition is performed digit by ' digit from the low order end of the number.
The carries are propagated in the usual way. The resulting number is brought into canonical
form, which may require stripping of leading zeros, or for negative numbers replacing the
high-order configuration 99,-1 by the digit - 1. In any case, digits which are not in the range
0-99 must be brought into that range, propagating any carries or borrows that result.

•

•

•

Division

5

Multiplication

The scales are removed from the two operands and saved. The operands are both made
positive. Then multiplication is performed in a digit by digit manner that exactly mimics the
hand method of multiplying. The first number . is multiplied by each digit of the second
number, beginning with. its low order. digit. The intermediate products are accumulated into a
partial sum which becomes the final product:.The, product is put into the canonical form and its
sign is computed from the signs of the original operands.

The scale of the result 'is set equal to the sum of the scales of the two operands. If that
scale is larger than the internal re sca gister le and also larger than both of the scales of the two
operands, then the scale of the result is set equal to the largest of these three last quantities.

The scales are removed from the two operands. Zeros are appended or digits removed
from the dividend to make the scale of the result of the integer division equal to the internal
quantity scale. The signs are removed and saved.

Division is performed much as it would be done by hand. The difference of the lengths
of the two numbers is computed. If the divisor is longer than the dividend, zero is returned.
Otherwise the top digit of the divisor is divided into the top two digits of the dividend. The
result is used as the first (high-order) digit of the quotient. It may turn out be one unit too
low, but if it is, the next trial quotient will be larger than 99 and this will be adjusted at the end
of the process. The trial digit is multiplied by the divisor and the result subtracted from the
dividend and the process is repeated to get additional quotient digits until the remaining divi-
dend is smaller than the divisor. At the end, the digits of the quotient are put into the canoni-
cal form, with propagation of carry as needed. The sign is set from the sign of the operands.

Remainder
The division routine is called and division is performed exactly as described. The quantity

returned is the remains of the dividend at the end of the divide process. Since division trun-
cates toward zero, remainders have the same sign as the dividend. The scale of the remainder
is set to the maximum of the scale of the dividend and the scale of the quotient plus the scale
of the divisor.

Square Root
. The scale is stripped from the operand. Zeros are added if necessary to make the integer

result have a scale that is the larger of the internal quantity scale and the scale of the operand.

The, method used to compute sqrt(y) is Newton's method with successive approximations
by the rule `

X,,+l = '12(X.+ Y
Xn

The initial guess is found by taking the integer square root of the top two digits.

Exponentiation
Only. exponents with zero scale factor are handled. If the exponent is zero, then the

result is" I., If the exponent is negative, then it is made positive and the base is divided into
one: The scale of the base is removed.

The integer exponent is viewed as a binary number. The base is repeatedly squared and
the result is obtained as a product of those powers of the base that correspond to the positions
of. the 'one-bits in the binary representation of the exponent. Enough digits of the result are
removed to make .the scale of the result the same as if the indicated multiplication had been
performed.,

•

•

•

Input Conversion and Base
Numbers are converted to the internal representation as they are read in. The scale

stored with a number is simply the number of fractional digits input. Negative numbers are
indicated by preceding the number with a

T

. The hexadecimal digits A-F correspond to the
numbers 10=15 regardless of input base. The i command can be used to change the base of
the input numbers. This command pops the' stack, truncates the resulting number to an
integer, and uses it as the input base for all further input. The input base is initialized to 10
but may, for example be changed to 8 or 16 to do octal or hexadecimal to decimal conversions.
The command I will push the value of the input base on the stack.

•

Output Commands
The command p causes the top of the stack to be printed. It does not remove the top of

the stack. All of the stack and internal registers can be output by typing the command f. The o
command can be used to change the output base. This command uses the top of the stack,
truncated to an integer as the base for all further output. The output base in initialized to 10.
It will work correctly for any base. The command O pushes the value of the output base on the
stack.

Output Format and Base
The input and output bases only affect the interpretation of numbers on input and output;

they have no effect on arithmetic computations. Large numbers are output with 70 characters
per line; a \ indicates a continued line. All choices of input and output bases work correctly,
although not all are useful. A particularly useful output base is 100000, which has the effect of
grouping digits in fives. Bases of 8 and 16 can be used for decimal-octal or decimal-
hexadecimal conversions.

Internal Registers
Numbers or strings may be stored in internal registers or loaded on the stack from regis-

ters with the commands s and 1. The command sx pops the top of the stack and stores the
result in register x. x can be any character. Ix puts the contents of register x on the top of the
stack. The 1 command has no effect on the contents of register x. The s command, however,
is destructive.

Stack Commands
The command c clears the stack. The command d pushes a duplicate of the number 'on

the top of the stack on the stack. The command z pushes the stack size on the stack. The
command X replaces the number on the top of the stack with its scale factor. The command Z
replaces the top of the stack with its length.

Subroutine Definitions and Calls
Enclosing a string in [1 pushes the ascii string on the stack. The q command.,quits of in

executing a string, pops the recursion levels by two.

The load and store commands together with [1 to store strings, x to execute and the test-
ing commands `<', `>', `_', `! <', `! >', `! _' can be used to program DC. The x command
assumes the top of the stack is an string of DC commands and executes it. The testing com-
mands compare the top two elements on the stack and if the relation holds, execute the register'
that follows the relation. For example, to print the numbers 0-9,

•

 [lipl+ si Ii10>alsa

0si lax

Internal Registers - Programming DC

7

Push-Down Registers and Arrays
These commands were designed for used by a compiler, not by people. They involve

push-down registers and arrays. In addition to the stack that commands work on, DC can be
thought of as having individual stacks for each register. These registers are operated on by the
commands S and L. Sx pushes the top value of the main stack onto the stack for the register
.x Lx pops the stack for register x and puts the result on the main stack. The commands s and
1 also work on registers but not as push-down stacks. 1 doesn' t effect the top of the register
stack, and s destroys what was there before.

The commands to work on arrays are : and ;. :x pops the stack and uses this value as an
index into the array x. The next element on the stack is stored at this index in x. An index
must be greater than or equal to 0 and less than 2048. ;x is the command to load the main
stack from the array x The value on the top of the stack is the index into the array x of the
value to be loaded.

Miscellaneous Commands

The command ! interprets the rest of the line as a UNIX
command and passes it to UNIX to execute. One other compiler command is Q. This com-

mand uses the top of the stack as the number of levels of recursion to skip. _

DESIGN CHOICES
The real reason for the use of a dynamic storage allocator was that a general purpose pro-

gram could be (and in fact has been) used for a variety of other tasks. The allocator has some
value for input and for compiling (i.e. the bracket [...1 commands) where it cannot be known
in advance how long a string will be. The result was that at a modest cost in execution time, all
considerations of string allocation and sizes of strings were removed from the remainder of the
program and debugging was made easier. The allocation method used wastes approximately
25% of available space.

The choice of 100 as a base for internal arithmetic seemingly has no compelling advan-
tage. Yet the base cannot exceed 127 because of hardware limitations and at the cost of 5% in
space, debugging was made a great deal easier and decimal output was made much faster.

The reason for a stack-type arithmetic design was to permit all DC commands from addi-
tion to subroutine execution to be implemented in essentially the same way. The result was a
considerable degree of logical separation of the final program into modules with very little com-
munication between modules.

The rationale for- the lack of interaction between the scale and the bases was to provide an
understandable means of proceeding after a change of base or scale when numbers had already
been entered. An earlier implementation which had global notions of scale and base did not
work out well. If the value of scale were to be interpreted in the current input or output base,
then a change of base or scale in the midst of a computation would cause great confusion in the
interpretation of the results. The current scheme has the advantage that the value of the input
and output bases are only used for input and output, respectively, and they are ignored in all
other operations. The value of scale is not used for any essential purpose by any part of the
program and it is used only to prevent the number of decimal places resulting from the arith-
metic operations from growing beyond all bounds.

The design rationale for the choices for the scales of the results of arithmetic were that in
no case should any significant digits be thrown away if, on appearances, the user actually
wanted them. Thus, if the user wants to add the numbers 1.5 and 3.517, it seemed reasonable
to give him the result 5.017 without requiring him to unnecessarily specify his rather obvious
requirements for precision.

On the other hand, multiplication and exponentiation produce. results with many more
digits than their operands and it seemed reasonable to give as a minimum the number of
decimal places in the operands but not to give more than that number of digits unless the user

•

References

asked for them by specifying a value for scale. Square root can be handled in just the same
way as multiplication. The operation of division gives arbitrarily many decimal places and there
is simply no way to guess how many places the user wants. In this case only, the user must
specify a scale to get any decimal places at all.

The scale of remainder was chosen to make it possible to. recreate the dividend from the
quotient and remainder. This is easy to implement; no'digits are thrown away.

[1] L. L. Cherry, R. Morris, BC -An Arbitrary', Ptecisfon Desk-Calculator Language.

[2] K. C. Knowlton, A Fast Storage Allocator, Comm. ACM 8,.pp. 623-625 (Oct. 1965).

•

•

•

O

'xv

•

•

•

0.

A Portable Fortran 77 Compiler

S. L Feldman

P. J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The Fortran language has just been revised. The new language, known as For-
tran 77., became an official American National Standard on April 3, 1978. We
report here on a compiler and run-time system for the new extended language.
This is believed to be the first complete Fortran 77 system to be implemented.
This compiler is designed to be portable, to be correct and complete, and to
generate code compatible with calling sequences produced by C compilers. In
particular, this Fortran is quite usable on UNtxt systems. In this paper, we
describe the language compiled, interfaces between procedures, and file formats
assumed by the 1/O system. An appendix describes the Fortran 77 language.

0
1 August 1978

tUN1X is a Trademark of Bell Laboratories.

V .

A Portable Fortran 77 Compiler

S. L Feldrhan

P. J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION

The Fortran language has just been revised. The new language, known as Fortran 77,,
became an official American National Standard [1] on April 3, 1978. for the language, known
as Fortran 77, is about to be published. Fortran 77 supplants 1966 Standard Fortran [2]. We
report here on a compiler and run-time system for the new extended language. The compiler
and computation library were written by SIF, the 1/O system by PJW. We believe ours to be
the first complete Fortran 77 system to be implemented. This compiler is designed to be port-
able to a number of different machines, to be correct and complete, and to generate code com=
patible with calling sequences produced by compilers for the C language [3]. In particular, it is
in use on UNIXt systems. Two families of C compilers are in use at Bell Laboratories, those
based on D. M. Ritchie's PDP-11 compiler[4] and those based on S. C. Johnson's portable C
compiler [5]. This Fortran compiler can drive the second passes of either family. In this paper,
we describe the language compiled, interfaces between procedures, and file formats assumed by
the I/O system. We will describe implementation details in companion papers.

1.1. Usage

At present, versions of the compiler run on and compile for the PDP-11, the VAX-
11/780, and the Interdata 8/32 UNIX systems. The command to run the compiler is

f 77 Jugs file .. .

f 77 is a general-purpose command for compiling and loading Fortran and Fortran-related files.
EFL [6] and Ratfor [7] source files will be preprocessed before being presented to the Fortran
compiler. C and assembler source files will be compiled by the appropriate programs. Object
files will be loaded. (The f 77 and cc commands cause slightly different loading sequences to be
generated, since Fortran programs need a few extra libraries and a different startup routine than
do C programs.) -The following file name suffixes are understood:

.f Fortran source file

.e EFL source file

.r Ratfor source file

.c C source file

.s Assembler source file

.o Object file

The following flags are understood:

-S Generate assembler output for each source file, but do not assemble it. Assem-

tUNIX is a Trademark of Bell Laboratories.

0

2. LANGUAGE EXTENSIONS •

2

bler output for a source file x.f, x.e, x.r, or x.c is put on file x.s.
Compile but do not load. Output for x.f, x.e, x.r, x.c, or x.s is put on file x.o.
Apply the M4 macro preprocessor to each EFL or Ratfor source file before
using the appropriate compiler.

Apply the EFL or Ratfor processor to all relevant files, and leave the output
from x.e or x.r on x.f. Do not compile the resulting Fortran program.

_p Generate code to produce usage profiles.

-of Put executable module on file j. (Default is a.out).
-w Suppress all warning messages.

-w66 Suppress warnings about Fortran 66 features used.

-O Invoke the C object code optimizer.

-C Compile code the checks that subscripts are within array bounds.

-onetrip Compile code that performs every do loop at least once. (see Section 2.10).

-U Do not convert upper case letters to lower case. The default is to convert For-
tran programs to lower case.

-u Make the default type of a variable undefined. (see Section 2.3).

-I2 On machines which support short integers, make the default integer constants
and variables short. (-I4 is the standard value of this option). (see Section
2.14). All logical quantities will be short.

-E The remaining characters in the argument are used as an EFL flag argument.

-R The remaining characters in the argument are used as a Ratfor flag argument.

-F Ratfor and and EFL source programs are pre-processed into Fortran files, but
those files are not compiled or removed.

Other flags, all library names (arguments beginning -1), and any names not ending with one of
the understood suffixes are passed to the loader.

1.2. Documentation Conventions

In running text, we write Fortran keywords and other literal strings in boldface lower case.
Examples will be presented in lightface lower case. Names representing a class of values will be
printed in italics.

1.3. Implementation Strategy

The compiler and library are written entirely in C. The compiler generates C compiler
intermediate code. Since there are C compilers running on a variety of machines, relatively.
small changes will make this Fortran compiler generate code for any of them. Furthermore,
this approach guarantees that the resulting programs are compatible with C usage. The runtime •'
computational library is complete. The mathematical functions are computed to at. least 63 bit
precision. The runtime I/O library makes use of D. M. Ritchie's Standard C I/O package [8]
for transferring data. With the few exceptions described below, only documented calls are

Fortran 77 includes almost all of Fortran 66 as a subset. We describe the differences
briefly in the Appendix. The most important additions are a character string data type,
oriented input/output statements, and random access I/O. Also, the language has been cleaned
up considerably.

In addition to implementing the language specified in the new Standard, our compiler
implements a few extensions described in this section. Most are useful additions to the

•
-c
-m

-f

•

used, so it should be relatively easy to modify to run on other operating systems.

•

•

-3-

language. The remainder are extensions to make it easier to communicate with C procedures
or to permit compilation of old (1966 Standard) programs.

2.1. Double Complex Data Type

The new type double complex is defined. Each datum is represented by a pair of double
precision real variables. A double complex version of every complex built-in function is
provided. The specific function names begin with z instead of c.

2.2. Internal Files
The Fortran 77 standard introduces " internal files" (memory arrays), but restricts their
use to formatted sequential I/O statements. 'Our I/O system also permits internal files to
be used in direct and unformatted reads and writes.

2.3. Implicit Undefined statement
Fortran 66 has a fixed rule that the type of a variable that does not appear in a type state-
ment is integer if its first letter is i, j, k, 1, m or n, and real otherwise. Fortran 77 has an
implicit statement for overriding this rule. As an aid to good programming practice, we
permit an additional type, undefined. The statement

implicit undefined(a-z)

turns off the automatic data typing mechanism, and the compiler will issue a diagnostic
for each variable that is used but does not appear in a type statement. Specifying the -u
compiler flag is equivalent to beginning each procedure with this statement.

2.4. Recursion
Procedures may call themselves, directly or through a chain of other procedures.

2.5. Automatic Storage
Two new keywords are recognized, static and automatic. These keywords may appear as
"types" in type statements and in implicit statements. Local variables are static by
default; there is exactly one copy of the datum, and its value is retained between calls.
There is one copy of each variable declared automatic for each invocation of the pro-
cedure. Automatic variables may not appear in equivalence, data, or save statements.

2.6. Source Input Format

The Standard expects input to the compiler to be in 72 column format: except in com-
ment lines, the first five characters are the statement number, the next is the continuation
character, and the next sixty-six are the body of the line. (If there are fewer than
seventy-two characters on a line, the compiler pads it with blanks; characters after the
seventy-second are ignored).

In order to make it easier to type Fortran programs, our compiler also accepts input in
variable length lines. An ampersand ("&") in the first position of a line indicates a con-
tinuation line; the remaining characters form the body of the line. A tab character in one
of the first six positions of a line signals the end of the statement number and continua-
tion part of the line; the remaining characters form the body of the line. A tab elsewhere
on the line is treated as another kind of blank by the compiler.

In the Standard, there are only 26 letters - Fortran is a one-case language. Consistent
with ordinary UNIX system usage, our compiler expects lower case input. By default, the
compiler converts all upper case characters to lower case except those inside character
constants. However, if the -U compiler flag is specified, upper case letters are not
transformed. In this mode, it is possible to specify external names with upper case letters
in them, and to have distinct variables differing only in case. Regardless of the setting of

•

•

.4-

the flag, keywords will only be recognized in lower case.

2.7. Include Statement

The statement

include 'stuff'

•

is replaced by the contents of the file stuff. includes may. be :nested to, a ' reasonable
depth, currently ten.

2.8. Binary Initialization Constants ;
A logical, real, or integer variable may be initialized in •a "data.statement by a binary con-
stant, denoted by a letter followed by a quoted string. If the* letter is b, the string is
binary, and only zeroes and ones are permitted. If the letter is o, the string is octal, with
digits 0-7. If the letter is z or x, the string is hexadecimal, with digits 0-9, a-f. Thus,
the statements

integer a(3)

data a / b'1010', 0'12', i a' /

initialize all three elements of a to ten.

2.9. Character Strings

For compatibility with C usage, the following backslash escapes are recognized:

\n newline
\t tab
\b backspace
\f form feed
\0 null
\' apostrophe (does not terminate a string)
\" quotation mark (does not terminate a string)

\x x, where x is any other character

Fortran 77 only has one quoting character, the apostrophe. Our compiler and I/O system
recognize both the apostrophe () and the double-quote ("). If a string begins with one
variety of quote mark, the other, may be embedded within it without using the repeated
quote or backslash escapes.
Every unequivalenced scalar local character variable and every character string constant is
aligned on an integer word , boundary. Each character string constant appearing outside a
data statement is followed by a. null- character to ease communication with C routines.

•

2.10. Hollerith
Fortran 77 does not have the old• Hollerith (nh) notation, though the new Standard
recommends implementing - the old Hollerith feature in order to improve compatibility
with old programs. In our compiler, Hollerith data may be used in place of character
string constants, and may . also be used to initialize non-character variables in data state-

ments.

2.11. Equivalence Statements'
As a very special and peculiar .,case, Fortran 66 permits an element of a multiply-
dimensioned array to lierepresented. by a• singly-subscripted reference in equivalence
statements. Fortran 77 does not permit this ,usage, since subscript lower bounds may now
be different from 1. Our compiler permits single subscripts in equivalence statements,
under the interpretation that all missing subscripts are equal to 1. A warning message is •

•

5

printed for each such incomplete subscript.

2.12. One-Trip DO Loops

The Fortran 77 Standard requires that the range of a do loop not be performed if the ini-
tial value is already past the limit value, as in

do10i =2,1

The 1966 Standard stated that the effect of such a statement was undefined, but it was
common practice that the range of a do loop would be performed at least once. In order
to accommodate old programs, though they were in violation of the 1966 Standard, the
-onetrip compiler flag causes non-standard loops to be generated.

2.13. Commas in Formatted Input
The I/O system attempts to be more lenient than the Standard when it seems worthwhile.
When doing a formatted read of non-character variables, commas may be used as value
separators in the input record, overriding the field lengths given in the format statement.
Thus, the format

(i10, (20.10, i4)

will read the record

-345,.05e-3,12

correctly.

2.14. Short Integers
On machines that support halfword integers, the compiler accepts declarations of type
integer*2. (Ordinary integers follow the Fortran rules about occupying the same space as
a REAL variable; they are assumed to be of C type long int; halfword integers are of C
type short int.) An expression involving only objects of type integer*2 is of that type.
Generic functions return short or long integers depending on the actual types of their
arguments. If a procedure is compiled using the - I2 flag, all small integer constants will
be of type integer*2. If the precision of an integer-valued intrinsic function is not deter-
mined by the generic function rules, one will be chosen that returns the prevailing length
(integer*2 when the - I2 command flag is in effect). When the -I2 option is in effect, all
quantities of type logical will be short. Note that these short integer and logical quantities
do not obey the standard rules for storage association.

2.15. Additional Intrinsic Functions
This compiler supports all of the intrinsic functions specified in the Fortran 77 Standard.
In addition, there are functions for performing bitwise Boolean operations (or, and, xor,
and not) and for accessing the UNIX command arguments (getarg and iargc).

3. VIOLATIONS OF THE STANDARD
We know only thre ways in which our Fortran system violates the new standard:

3.1. Double Precision Alignment
The Fortran standards (both 1966 and 1977) permit common or equivalence statements to
force a double precision quantity onto an odd word boundary, as in the following example:

real a(4)
double precision b,c

equivalence (a(1),b), (a(4),c)

•

•

•

4.2. Data Representations

(By the rules of Fortran, integer, logical, and real data occupy the same amount of memory).

-6-

Some machines (e.g., Honeywell 6000, IBM 360) require that double precision quantities
be on double word boundaries; other machines (e.g., IBM 370), run inefficiently if this
alignment rule is. not observed. It is possible to tell which equivalenced and common
variables suffer from a forced odd alignment, but every double precision argument would
have to be- assumed 'on- a bad boundary. To load such a quantity on some machines, it
would be: necessary. W*use separate operations to move the upper and lower halves into
the halves: 'of an aligned temporary, then to load that double precision temporary; the

- reverse would be.'needed to store a result. We have chosen to require that all double pre-
cision- real. and complex quantities fall on even word boundaries on machines with
corresponding hardware requirements, and to issue a diagnostic if the source code

11. Dummy Procedure Arguments

If any argument of a procedure is of type character, all dummy procedure arguments of
that procedure must be declared in an external statement. This requirement arises as a
subtle corollary of the way we represent character string arguments and of the one-pass
nature of the compiler. A warning is printed if a dummy procedure is not declared exter-
nal. Code is correct if there are no character arguments.

3.3. T and TL Formats
The implementation of the t (absolute tab) and tl (leftward tab) format codes is defective.
These codes allow rereading or rewriting part of the record which has already been pro-
cessed. (Section 6.3.2 in the Appendix.) The implementation uses seeks, so if the'unit is
not one which allows seeks, such as a terminal, the program is in error. (People who can
make a case for using tl should let us know.) A benefit of the implementation chosen is
that there is no upper limit on the length of a record, nor is it necessary to predeclare any
record lengths except where specifically required by Fortran or the operating system.

4. INTER-PROCEDURE INTERFACE

To be able to write C procedures that call or are called by Fortran procedures, it is neces-
sary to know the conventions for procedure names, data representation, return values, and
argument lists that the compiled code obeys.

•

demands a violation of the rule.

4.1. Procedure Names
On UNIX systems, the name of a common block or a Fortran procedure has an underscore

appended to it by the compiler to distinguish it from a C procedure or external variable with the
same user-assigned name. Fortran library procedure names have embedded underscores to
avoid clashes with user-assigned subroutine names.

The following is a table of corresponding Fortran and C declarations:

Fortran

integer+2 x
integer x
logical x
real x
double precision x
complex x
double complex x
character-6 x

C

short int x;
long int x;
long int x;
float x;
double x;
struct (float r, i; } x;
struct { double dr, di; } x;
char x[61;

4.3. Return Values
A function of type integer, logical, real, or double precision declared as a C function that.

returns the corresponding type. A complex or double complex function is equivalent to a C
routine with an additional initial argument that points to the place where the return value is to
be stored. Thus,

complex function f(...)

is equivalent to

f (temp, ..)
struct (float r, i;) *temp;

A character-valued function is equivalent to a C routine with two extra initial arguments: a data
address and a length. Thus,

character*15 function g(...)

is equivalent to

g_(result, length....
char result[1;
long int length;

and could be invoked in C by

char chars[151;

g_(chars, 15L, ...);

Subroutines are invoked as if they were integer-valued functions whose value specifies which
alternate return to use. Alternate return arguments (statement labels) are not passed to the
function, but are used to do an indexed branch in the calling procedure. (If the subroutine has
no entry points with alternate return arguments, the returned value is undefined.) The state-
ment

call nret(*1, *2, *3)

is treated exactly as if it were the computed goto

goto (1,-2, 3), nret()

4.4. Argument Lists
All Fortran arguments are passed by address. In addition, for every argument that is of

type character or that is a dummy procedure, an argument giving the length of the value is
passed. (The string lengths are long int quantities passed by value). The order of arguments is
then:

Extra arguments for complex and character functions
Address for each datum or function
A long int for each character or procedure argument

Thus, the call in

0

•

0

•

external f
character•7 s
integer b(3)

•

call sam(f, 6(2), s)

is equivalent to that in

int fO;
char s[7];
long int b[3];

sam_(f, &b[1], s, 0L, 7L);

Note that the first element of a C array always has subscript zero, but Fortran arrays begin at 1
by default. Fortran arrays are stored in column-major order, C arrays are stored in row-major
order.

5. FILE FORMATS

5.1. Structure of Fortran Files

Fortran requires four kinds of external files: sequential formatted and unformatted, and
direct formatted and unformatted. On UNIX systems, these are all implemented as ordinary files
which are assumed to have the proper internal structure.

Fortran I/O is based on "records". When a direct file is opened in a Fortran program,
the record length of the records must be given, and this is used by the Fortran I/O system to
make the file look as if it is made up of records of the given length. In the special case that the
record length is given as 1, the files are not considered to be divided into records, but are
treated as byte-addressable byte strings; that is, as ordinary UNIX file system files. (A read or
write request on such a file keeps consuming bytes until satisfied, rather than being restricted to
a single record.)

The peculiar requirements on sequential unformatted files make it unlikely that they will
ever be read or written by any means except Fortran I/O statements. Each record is preceded
and followed by an integer containing the record's length in bytes.

The Fortran I/O system breaks sequential formatted files into records while reading by
using each newline as a record separator. The result of reading off the end of a record is
undefined according to the Standard. The I/O system is permissive and treats the record as
being extended by blanks. On output, the 1/O system will write a newline at the end of each
record. It is also possible for programs to write newlines for themselves. This is an error, but
the only effect will be that the single record the user thought he wrote will be treated as more
than one record when being read or backspaced over.

5.2. Portability Considerations

The Fortran I/O system uses only the facilities of the standard C I/O library, a widely
available and fairly portable package, with the following two nonstandard features: The I/O sys-
tem needs to know whether a file can be used for direct I/O, and whether or not it is possible
to backspace. Both of these facilities are implemented using the fseek routine, so there is a
routine canseek which determines if fseek will have the desired effect. Also, the inquire state-
ment provides the user with the ability to find out if two files are the same, and to get the name
of an already opened file in 'a form which would enable the program to reopen it. (The UNIX
operating system implementation attempts to determine the full pathname.) Therefore there are
two routines which depend on facilities of the operating system to provide these two services.
In any case, the 1/O system runs on the PDP-11, VAX-11/780, and Interdata 8/32 UNIX sys-
tems.

•

•

is

0

9

5.3. Pre-Connected Files and File Positions

Units 5, 6, and 0 are preconnected when the program starts. Unit 5 is connected to the
standard input, unit 6 is connected to the standard output, and unit 0 is connected to the stan-
dard error unit. All are connected for sequential formatted I/O.

All the other pnits are also preconnected when execution begins. Unit n is connected to
a file named fort. n. These files need not exist, nor will they be created unless their units are
used without first executing an open. The default connection is for sequential formatted I/O.

The Standard does not specify where a file which has been explicitly opened for sequential
I/O is initially positioned. In fact, the I/O system .attempts to position the file at the end, so a
write will append to the file and a read will result in an end-of-file indication. To position a file
to its beginning, use a rewind statement. The preconnected units 0, 5, and 6 are positioned as
they come from. the program's parent process.

REFERENCES

1. Sigplan Notices 11, No.3 (1976), as amended in X3J3 internal documents through
46/90.197.

/ 90.1 ".

2. USA Standard FORTRAN, USAS X.i'.9-1966, New York: United States of America Stan-
dards Institute, March .7, 1966. Clarified in Comm. ACM 12, 289 (1969) and Comm.
ACM 14, 628 (1971).

3. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Englewood Cliffs:
Prentice-Hall (1978).

4. D. M. Ritchie, private communication.

5. S. C. Johnson, "A Portable Compiler: Theory and Practice", Proc. 5th ACM Symp. on
Principles of Programming Languages (January 1978).

6. S. I. Feldman, " An Informal Description of EFL", internal memorandum.
7. B. W. Kernighan, "RATFOR - A Preprocessor for a Rational Fortran", Bell Laboratories

Computing Science Technical Report #55, (January 1977).

8. D. M. Ritchie, private communication.

- 10-

APPENDIX. Differences Between Fortran 66 and Fortran 77

The following is a very brief description of the differences between the 1966 [21 and the
1977 [11 Standard languages. We assume that the reader is familiar with Fortran 66. We do
not pretend to be complete, precise, or unbiased, but plan to describe what we feel are the most
important aspects df the new language. At present the only current information on the 1977
Standard is in publications of the X3J3 Subcommittee of the American National Standards
Institute. The following information is from the "/92" document. This draft Standard is writ-
ten in English rather than a meta-language, but it is forbidding and legalistic. No tutorials or
textbooks are available yet.

1. Features Deleted from Fortran 66

1.1. Hollerith

All notions of "Hollerith" (nh) as data have been officially removed, although our com-
piler, like almost all in the foreseeable future, will continue to support this archaism.

1.2. Extended Range
In Fortran 66, under a set of very restrictive and rarely-understood conditions, it is per-
missible to jump out of the range of a do loop, then jump back into it. Extended range
has been removed in the Fortran 77 language. The restrictions are so special, and the
implementation of extended range is so unreliable in many compilers, that this change
really counts as no loss.

2. Program Form

2.1. Blank Lines
Completely blank lines are now legal comment lines.

2.2. Program and Block Data Statements

A main program may now begin with a statement that gives that program an external
name:

program work

Block data procedures may also have names.

block data stuff

There is flow a rule that only one unnamed block data procedure may appear in a pro-
gram. (This rule is not enforced by our system.) The Standard does not specify the effect
of the program and block data names, but they are clearly intended to aid conventional
loaders.

2.3. ENTRY Statement

Multiple entry points are now legal. Subroutine and function subprograms may have addi-
tional entry points, declared by an entry statement with an optional argument list.

entry extra(a, b, c)

Execution begins at the first statement following the entry line. All variable declarations
must precede all executable statements in the procedure. If the procedure begins with a
subroutine statement, all entry points are subroutine names. If it begins with a function
statement, each entry is a function entry point, with type determined by the type declared
for the entry name. If any entry is a character-valued function, then all entries must be.
In a function, an entry name of the same type as that where control entered must be
assigned a value. Arguments do not retain their values between calls. (The ancient trick

0

•

•

•

of calling one entry point with a large number of arguments to cause. the procedure to
"remember" the locations of those arguments, then invoking an entry with just a few
arguments for later calculation, is still illegal. Furthermore, the trick doesn' t work in our
implementation, since arguments are not kept in static storage.)

2.4. DO Loops

do variables and range parameters may now be of integer, real, or double precision types.
(The use of floating point do variables is very dangerous because of the possibility of
unexpected roundoff, and we strongly recommend against their use). The action of the
do statement is now defined for all values of the do parameters. The statement

do10i=1,u,d

performs max(0 , Ru-h1 d]) iterations. The do variable has a predictable value when
exiting a loop: the value at the time a goto or return terminates the loop; otherwise the
value that failed the limit test.

2.5. Alternate Returns
In a subroutine or subroutine entry statement, some of the arguments may be noted by
an asterisk, as in

subroutine s(a, *, b, *)

The meaning of the " alternate returns" is described in section 5.2 of the Appendix.

•

3. Declarations

3.1. CHARACTER Data Type

One of the biggest improvements to the language is the addition of a character-string data
type. Local and common character variables must have a length denoted by. a constant
expression:

character*17 a, b(3,4)
character*(6+3) c

If the length is omitted entirely, it is assumed equal to 1. A character string argument
may have a constant length, or the length may be declared to be the same as that of the
corresponding actual argument at run time by a statement like

character*(*) a

(There is an intrinsic function len that returns the actual length of a character string).
Character arrays and common blocks containing character variables must be packed: in an
array of character variables, the first character of one element must follow the last charac-
ter of the preceding element, without holes.

3.2. IMPLICIT Statement
The traditional implied declaration rules still hold: a variable whose name begins with i, j,
k, 1, m, or n is of type integer, other variables are of type real, unless otherwise declared.
This general rule may be overridden with an implicit statement:

implicit real(a-c,g), complex(w-z), character*(17) (s)

declares that variables whose name begins with an a ,b, c, or g are real, those beginning
with w, x, y, or z are assumed complex, and so on. It is still poor practice to depend on
implicit typing, but this statement is an industry standard.

0

0

•

- 12-

3.3. PARAMETER Statement

It is now possible to give a constant a symbolic name, as in

parameter (x=17, y=x/3, pi=3.14159d0, s='hello')

The type of each parameter name is governed by the same implicit and explicit rules as
for a variable. The right side of each equal sign must be a constant expression (an
expression made up of constants, operators, and already defined parameters).

3.4. Array Declarations

Arrays may now have as many as seven dimensions. (Only three were permitted in
1966). The lower bound of each dimension may be declared to be other than 1 by using a
colon. Furthermore, an adjustable array bound may be an integer expression involving
constants, arguments, and variables in common.

real a(-5:3, 7, m:n), b(n+1:2*n)

The upper bound on the last dimension of an array argument may be denoted by an aster-
isk to indicate that the upper bound is not specified:

integer a(5, *), b(■), c(0:1, -2:*)

3.5. SAVE Statement
A poorly known rule of Fortran 66 is that local variables in a procedure do not necessarily
retain their values between invocations of that procedure. At any instant in the execution
of a program, if a common block is declared neither in the currently executing procedure
nor in any of the procedures in the chain of callers, all of the variables in that common
block also become undefined., (The only exceptions are variables that have been defined
in a data statement and never changed). These rules permit overlay and stack implemen-
tations for the affected variables. Fortran 77 permits one to specify that certain variables
and common blocks are to retain their values between invocations. The declaration

save a, /b/, c

leaves the values of the variables a and c and all of the contents of common block b
unaffected by a return. The simple declaration

save

has this effect on all variables and common blocks in the procedure. A common block
must be saved in every procedure in which it is declared if the desired effect is to occur.

3.6. INTRINSIC Statement

All of the functions specified in the Standard are in a single category, "intrinsic func-
tions", rather than being divided into "intrinsic" and "basic external" functions. If an
intrinsic function is to be passed to another procedure, it must be declared intrinsic.
Declaring it external (as in Fortran 66) causes a function other than the built-in one to be
passed.

4. Expressions

4.1. Character Constants
Character string constants are marked by strings surrounded by apostrophes. If an apos-
trophe is to be included in a constant, it is repeated:

•
'abc'
fain ft'

-13-

•

There are no null (zero-length) character strings in Fortran 77. Our compiler has two
different quotation marks, " ' "' and " " ". (See Section 2.9 in the main text.)

4.2. Concatenation

One new operator has been added, character string concatenation, marked by • a double
slash ("//"). The result of a concatenation is the string containing the characters of the
left operand followed by the characters of the right operand. The strings

'ab' // 'cd'
'abcd'

are equal. The strings being concatenated must be of constant length in all concatenations
that are not the right sides of assignments. (The only concatenation expressions in which
a character string declared adjustable with a "•(_)" modifier or a substring denotation
with nonconstant position values may appear are the right sides of assignments).

4.3. Character String Assignment
The left and right sides of a character assignment may not share storage. (The assumed
implementation of character assignment is to copy characters from the right to the left
side.) If the left side is longer than the right, it is padded with blanks. If the left side is
shorter than the right, trailing characters are discarded.

4.4. Substrings
It is possible to extract a substring of a character variable or character array element, using
the colon notation:

a(i, j) (m:n)

is the string of (n-m+l) characters beginning at the m" character of the character array
element a;;. Results are undefined unless m < n. Substrings may be used on the left
sides of assignments and as procedure actual arguments.

4.5. Exponentiation
It is now permissible to raise real quantities to complex powers, or complex quantities to
real or complex powers. (The principal part of the logarithm is used). Also, multiple
exponentiation is now defined:

a•«b••c = a •• (b••c)

4.6. Relaxation of Restrictions

Mixed mode expressions are now permitted. (For instance, it is permissible to combine
integer and complex quantities in an expression.)
Constant expressions are permitted where a constant is allowed, except in data state-
ments. (A constant expression is made up of explicit constants and parameters and the
Fortran operators, except for exponentiation to a floating-point power). An adjustable
dimension may now be an integer expression involving constants, arguments, and vari-
ables in B common..

Subscripts may now be general integer expressions; the old cv f c' rules have been
removed. do loop bounds may be general integer, real, or double precision expressions.
Computed goto expressions and I/O unit numbers may be general integer expressions.

•

•

- 14-

0 5. Executable Statements

5.1. IF-THEN-ELSE

At last, the if-then-else branching structure has been added to Fortran. It is called a
"Block If". A Block If begins with a statement of the form

if (...) then

and ends with an

end if

statement. Two other new statements may appear in a Block If. There may be several

else if(...) then

statements, followed by at most one

else

statement. If the logical expression in the Block If statement is true, the statements fol-
lowing it up to the next elseif, else, or endif are executed. Otherwise, the next elseif
statement in the group is executed. If none of the elseif conditions are true, control
passes to the statements following the else statement, if any. (The else must follow all
elseifs in a Block If. Of course, there may be Block Ifs embedded inside of other Block If
structures). A case construct may be rendered

if (s .eq. 'ab') then

else if (s .eq. 'cd') then

•
else

end if

5.2. Alternate Returns

Some of the arguments of a subroutine call may be statement labels preceded by an aster-
isk, as in

call joe0, +10, m, +2)

A return statement may have an integer expression, such as

return k

If the entry point has n alternate return (asterisk) arguments and if 14 k < n, the return
is followed by a branch to the corresponding statement label; otherwise the usual return to
the statement following the call is executed.

6. Input/Output

6.1. Format Variables
A format may be the value of a character expression (constant or otherwise), or be stored
in a character array, as in

write(6, '(i5)') x

(.

-15-

6.2. END=, ERR=, and IOSTAT= Clauses

A read or write statement may contain end=, err=, and iostat= clauses, as in

write(6, 101, err=20, iostat=a(4))
_. read(5; 101, err=20, end=30, iostat=x)

Here 5 and 6 are the units on which the I/O is done, 101 is the statement number of the
associated format, 20 and 30 are statement numbers, and a and x are integers. If an error
occurs during I/O, control returns to the program at statement 20. If the end of the file is
reached, control returns to the program at statement 30. In any case, the variable
referred to in the iostat= clause is given a value when the I/O statement finishes. (Yes,
the value is assigned to the name on the right side of the equal sign.) This value is zero if
all went well, negative for end of file, and some positive value for errors.

6.3. Formatted I/O

6.3.1. Character Constants
Character constants in formats are copied literally to the output. Character constants can-
not be read into.

write(6,'(i2," isn""t ",i1)') 7, 4

produces

7 isn't 4

Here the format is the character constant

(i2,' isn"t 'J I)

and the character constant

isn't

is copied into the output.

6.3.2. Positional Editing Codes
t, tl, tr, and x codes control where the next character is in the record. trn or nx specifies
that the next character is n to the right of the current position. tln specifies that the next
character is n to the left of the current position, allowing parts of the record to be recon-
sidered. to says that the next character is to be character number n in the record. (See
section 3.4. in the main text.)

6.3.3. Colon

A colon in the format terminates the I/O operation if there are no more data items in the
I/O list, otherwise it has no effect. In the fragment

x=T'hello", :, " there", i4)'
write(6, x) 12
write (6, x)

the first write statement prints hello there 12, while the second only prints hello.

6.3.4. Optional Plus Signs

According to the Standard, each implementation has the option of putting plus signs in
front of non-negative numeric output. The sp format code may be used to make the
optional plus signs actually appear for all subsequent items while the format is active. The
ss format code guarantees that the I/O system will not insert the optional plus signs, and
the s format code restores the default behavior of the I/O system. (Since we never put

•

•

is

•

•

-16

out optional plus signs, ss and s codes have the same effect in our implementation.)

6.3.5. Blanks on Input

Blanks in numeric input fields, other than leading blanks• will be ignored following a bn
code in a format statement, and will be treated as zeros following a bz code in a' format
statement. The default for a unit may be changed by using the open statement. (Blanks
are ignored by default.)

6.3.6. Unrepresentable Values

The Standard requires that if a numeric item cannot be represented in the form required
by a format code, the output field must be filled with asterisks. (We think this should
have been an option.)

6.3.7. Iw.m

There is a new integer output code, iw.m. It is the same as iw, except that there will be at
least m digits in the output field, including, if necessary, leading zeros. The case iw.0 is
special, in that if the value being printed is 0, the output-field is entirely blank. iw.1 is
the same as i w.

6.3.8. Floating Point
On input, exponents may start with the letter E, D, e, or d. All have the same meaning.
On output we always use e. The a and d format codes also have identical meanings. A
leading zero before the decimal point in a output without a scale factor is optional with
the implementation. (We do not print it.) There is a g w.d format code which is the same
as ew.dand fw.don input, but which chooses f or a formats for output depending. on the
size of the number and of d.

6.3.9. "A" Format Code
A codes are used for character values. aw use a field width of w, while a plain a uses the
length of the character item.

6.4. Standard Units
There are default formatted input and output units. The statement

read 10, a, b

reads from the standard unit using format statement 10. The default unit may be expli-
citly specified by an -asterisk, as in

read(*, 10) a,b

Similarly, the standard output units is specified by a print statement or an asterisk unit:

print 10
write(*, 10)

6.5. List-Directed Formatting
List-directed I/O is a kind of free form input for sequential I/O. It is invoked by using an
asterisk as the format identifier, as in

read(6, •) a,b,c

0

•

-17-

On input, values are separated by strings of blanks and possibly a comma. Values, except
for character strings, cannot contain blanks. End of record counts as a blank, except in
character strings, where it is ignored. Complex constants are given as two real constants
separated by a comma and enclosed in parentheses. A null input field, such as between
two consecutive commas, means the corresponding variable in the I/O list is not changed.
Values. may be- preceded by repetition counts, as in

4*(3.,2.) 2*, 4*'hello'

which stands for 4 complex constants, 2 null values, and 4 string constants.
For output, suitable formats are chosen for each item. The values of character strings are
printed; they are not enclosed in quotes, so they cannot be read back using list-directed
input.

6.6. Direct I/O
A file connected for direct access consists of a set of equal-sized records each of which is
uniquely identified by a positive integer. The records may be written or read in any order,
using direct access I/O statements.
Direct access read and write statements have an extra argument, rec=, which gives the
record number to be read or written.

read(2, rec=13, err=20) (a(i), i=1, 203)

reads the thirteenth record into the array a.
The size of the records must be given by an open statement (see below). Direct access
files may be connected for either formatted or unformatted I/O'.

6.7. Internal Files
Internal files are character string objects, such as variables or substrings, or arrays of type
character. In the former cases there is only a single record in the file, in the latter case
each array element is a record. The Standard includes only sequential formatted I/O on
internal files. (I/O is not a very precise term to use here, but internal files are dealt with
using read and write). There is no list-directed I/O on internal files. Internal files are
used by giving the name of the character object in place of the unit number, as in

character*80 x
read(5,"(a)") x
read (x,"(i3,i4)") n1,n2

which reads a card image into x and then reads two integers from the front of it. A
sequential read or write always starts at the beginning of an internal file.
(We also support a compatible extension, direct I/O on internal files. This is like direct
I/O on external files, except that the number of records in the file cannot be changed.)

6.8. OPEN, CLOSE, and INQUIRE Statements
These statements are used to connect and disconnect units and files, and to gather infor-
mation about units and files.

6.8.1. OPEN
The open statement is used to connect a file with a unit, or to alter some properties of the
connection. The following is a minimal example.

open(1, file='fort.junk')

open takes a variety of arguments with meanings described below.

is

0

•

-18 -

unit= a small non-negative integer which is the unit to which the file is to be connected.
We allow, at the time of this writing, 0 through 9. If this parameter is the first one
in the open statement, the unit= can be omitted.

iostat_= is the same as in read or write.
err= is the same as in read or write.
file= a character expression, which when stripped of trailing blanks, is the name of the

file to be connected to the unit. The filename should not be given if the
status=scratch.

status= one of old, new, scratch, or unknown. If this parameter is not given, unknown
is assumed. If scratch is given, a temporary file will be created. Temporary files are
destroyed at the end of execution. If new is given, the file will be created if it
doesn' t exist, or truncated if it does. The meaning of unknown is processor depen-
dent; our system treats it as synonymous with old.

access= sequential or direct, depending on whether the file is to be opened for sequen-
tial or direct I/O.

form= formatted or unformatted.
recl= a positive integer specifying the record length of the direct access file being opened.

We measure all record lengths in bytes. On UNIX systems a record length of 1 has
the special meaning explained in section 5.1 of the text.

blank= null or zero. This parameter has meaning only for formatted I/O. The default
value is null. zero means that blanks, other than leading blanks, in numeric input
fields are to be treated as zeros.

Opening a new file on a unit which is already connected has the effect of first closing the
old file.

6.8.2. CLOSE

close severs the connection between a unit and a file. The unit number must be given.
The optional parameters are iostat= and err with their usual meanings, and status=
either keep or delete. Scratch files cannot be kept, otherwise keep is the default. delete
means the file will be removed. A simple example is

close (3, err= 17)

6.8.3. INQUIRE
The inquire statement gives information about a unit (" inquire by unit") or a file
("inquire by file"). Simple examples are:

inquire(unit=3, namexx)
inquire (file = 'junk', number=n, exist=l)

file= a character variable specifies the file the inquire is about. Trailing blanks in the file
name are ignored.

unit= an integer variable specifies the unit the inquire is about. Exactly one of file= or
unit= must be used.

iostat=, err= are as before.
exist= a logical variable. The logical variable is set to .true. if the file or unit exists and

is set to .false. otherwise.
opened= a logical variable. The logical variable is set to .true. if the file is connected to

a unit or if the unit is connected to a file, and it is set to .false. otherwise.

•

•

•

-19-

number= an integer variable to which is assigned the number of the unit connected to
the file, if any.

named= a logical variable to which is assigned .true. if the file has a name, or .false.
otherwise.

name= a character variable to which is assigned the name of the file (inquire by file) or
the name of the file connected to the unit (inquire by unit). The name will be the
full name of the file.

access= a character variable to which will be assigned the value 'sequential' if the con-
nection is for sequential I/0, 'direct' if the connection is for direct 1/0. The value
becomes undefined if there is no connection.

sequential= a character variable to which is assigned the value 'yes' if the file could be
connected for sequential I/0, 'no' if the file could not be connected for sequential
I/0, and 'unknown' if we can' t tell.

direct= a character variable to which is assigned the value 'yes' if the file could be con-
nected for direct I/0, 'no' if the file could not be connected for direct I/0, and 'unk-
nown' if we can't tell.

form= a character variable to which is assigned the value 'formatted' if the file is con-
nected for formatted I/0, or 'unformatted' if the file is connected for unformatted
I/0.

formatted= a character variable to which is assigned the value 'yes' if the file could be
connected for formatted I/0, 'no' if the file could not be connected for formatted
I/0, and 'unknown' if we can' t tell.

unformatted= a character variable to which is assigned the value 'yes' if the file could be
connected for unformatted I/0, 'no' if the file could not be connected for unformat-
ted I/0, and 'unknown' if we can't tell.

reel= an integer variable to which is assigned the record length of the records in the file
if the file is connected for direct access.

nextrec= an integer variable to which is assigned one more than the number of the the
last record read from a file connected for direct access.

blank= a character variable to which is assigned the value 'null' if null blank control is in
effect for the file connected for formatted I/0, 'zero' if blanks are being converted to
zeros and the file is connected for formatted I/0.

The gentle reader will remember that the people who wrote the standard probably weren't
thinking of his needs. Here is an example. The declarations are omitted.

open(1, file="/dev/console")

On a UNIX system this statement opens the console for formatted sequential I/0. An inquire
statement for either unit 1 or file "/dev/console" would reveal that the file exists, is connected
to unit 1, has a name, namely "/dev/console", is opened for sequential I/0, could be connected
for sequential 1/0, could not be connected for direct 1/0 (can' t seek), is connected for format-
ted I/0, could be connected for formatted I/0, could not be connected for unformatted I/O
(can't seek), has neither a record length nor a next record number, and is ignoring blanks in
numeric fields.

In the UNIX system environment, the only way to discover what permissions you have for
a file is to open it and try to read and write it. The err= parameter will return system error
numbers. The inquire statement does not give a way of determining permissions.

•

0

RATFOR - A Preprocessor for a Rational Fortran

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Although Fortran is not a pleasant language to use, it does have the advantages of universality and
(usually) relative 'efficiency. The Ratfor language attempts to conceal the main deficiencies of Fortran
while retaining its desirable qualities, by providing decent control flow statements:

• statement grouping

• if-else and switch for decision-making

• while, for, do, and repeat-until for looping

• break and next for controlling loop exits

and some " syntactic sugar":

• free form input (multiple statements/ line, automatic continuation)

• unobtrusive comment convention

• translation of >, >=, etc., into .GT., .GE., etc.

• return(expression) statement for functions

• define statement for symbolic parameters

• include statement for including source files

Ratfor is implemented as a preprocessor which translates this language into Fortran.

Once the control flow and cosmetic deficiencies of Fortran are hidden, the resulting language is
remarkably pleasant to use. Ratfor programs are markedly easier to write, and to read, and thus easier to
debug, maintain and modify than their Fortran equivalents.

It is readily possible to write Ratfor programs which are portable to other env ironments. Ratfor is
written in itself in this way, so it is also portable; versions of Ratfor are now running on at least two
dozen different types of computers at over five hundred locations.

This paper -discusses design criteria for a Fortran preprocessor, the Ratfor language and its imple-
mentation, and user experience.

•

•

•

•

RATFOR - A Preprocessor for a Rational Fortran

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION

Most programmers will agree that Fortran
is an unpleasant language to program in, yet
there are many occasions when they are forced
to use it. For example, Fortran is often the only
language thoroughly supported on the local com-
puter. Indeed, it is the closest thing to a univer-
sal programming language currently available:
with care it is possible to write large, truly port-
able Fortran programs[l]. Finally, Fortran is
often the most "efficient" language available,
particularly for programs requiring much compu-
tation.

But Fortran is unpleasant. Perhaps the
worst deficiency is in the control flow statements
- conditional branches and loops - which
express the logic of the program. The condi-
tional statements in Fortran are primitive. The
Arithmetic IF forces the user into at least two
statement numbers and two (implied) GOTO's; it
leads to unintelligible code, and is eschewed by
good programmers. The Logical IF is better, in
that the test part can be stated clearly, but hope-
lessly restrictive because the statement that fol-
lows the IF can only be one Fortran statement
(with some firdter restrictions!). And of course
there can be no ELSE part to a Fortran IF: there is
no way to specify-an alternative action if the IF is
not satisfied.

The Fortran Do restricts the user to going
forward in an arithmetic progression. It is fine
for "1 to N in steps of 1 (or 2 or ...)", but there
is no direct way to go backwards, or even (in
ANSI Fortran[2]) to go from 1 to N-1. And of
course the DO is useless if one's problem doesn't
map into an arithmetic progression.

The result of these failings is that Fortran
programs must be written with numerous labels
and branches. The resulting code is particularly
difficult to read and understand, and thus hard to
debug and modify.

When one is faced with an unpleasant
language, a useful technique is to define a new
language that overcomes the deficiencies, and to
translate it into the unpleasant one with a
preprocessor. This is the approach taken with
Ratfor. (The preprocessor idea is of course not
new, and preprocessors for Fortran are especially
popular today. A recent listing [3] of preproces-
sors shows more than 50, of which at least half a
dozen are widely available.)

2. LANGUAGE DESCRIPTION

Design

Ratfor attempts to retain the merits of
Fortran (universality, portability, efficiency)
while hiding the worst Fortran inadequacies.
The language is Fortran except for two aspects.
First, since control flow is central to any pro-
gram, regardless of the specific application, the
primary task of Ratfor is to conceal this part of
Fortran from the user, by providing decent con-
trol flow structures. These structures are
sufficient and comfortable for structured pro-
gramming in the narrow sense of programming
without GOTO's. Second, since the preprocessor
must examine an entire program to translate the
control structure, it is possible at the same time
to clean up many of the "cosmetic" deficiencies
of Fortran, and thus provide a language which is
easier and more pleasant to read and write.

Beyond these two aspects - control flow
and cosmetics - Ratfor does nothing about the
host of other weaknesses of Fortran. Although
it would be straightforward to extend it to pro-
vide character strings, for example, they are not
needed by everyone, and of course the prepro-

cessor would be harder to implement.
Throughout, the design principle which has
determined what should be in Ratfor and what
should not has been Raffibr doesn't know anv For-
tran. Any language feature which would require

This paper is a revised and expanded version of oe published in Sq%nvare-Practice and Experience. October
1975. The Ratfor described here is the one in use on Unix and coos at Bell Laboratories, Murray Hill, N. J.

•

•

-2-

•
that Ratfor really understand Fortran has been
omitted. We will return to this point in the sec-
tion on implementation.

Even within the confines of control flow
and cosmetics, we have attempted to be selective
in what features to provide. The intent has been
to provide a small set of the most useful con-
structs, rather than to throw in everything that
has ever been thought useful by someone.

The rest of this section contains an infor-
mal description of the Ratfor language. The con-
trol flow aspects will be quite familiar to readers
used to languages like Algol, PLA, Pascal, etc.,
and the cosmetic changes are equally straightfor-
ward. We shall concentrate on showing what the
language looks like.

Statement Grouping

Fortran provides no way to group state-
ments together, short of making them into a
subroutine. The standard construction " if a con-
dition is true, do this group of things," for
example,

if (x > 100)
(call error("x>100"); err = 1; return I

cannot be written directly in Fortran. Instead a
programmer is forced to translate this relatively
clear thought into murky Fortran, by stating the
negative condition and branching around the
group of statements:

if (x .le. 100) goto 10
call error(5hx>100)
err - 1
return

10 ...

When the program doesn't work, or when it
must be modified, this must be translated back
into a clearer form_ before one can be sure what
it does.

Ratfor eliminates this error-prone and
confusing back-and-forth translation; the first
form is the way the computation is written in
Ratfor. A group of statements can be treated as
a unit by enclosing them in the braces (and ?.
This is true throughout the language: wherever a
single Ratfor statement can be used, there can be
several enclosed in braces. (Braces seem clearer
and less obtrusive than begin and end or do and
end, and of course do and end already have For-
tran meanings.)

Cosmetics contribute to the readability of
code, and thus to its understandability. The
character ">" is clearer than :•.GT.", so Ratfor
translates it appropriately, along with several
other similar shorthands. Although many For-
tran compilers permit character strings in quotes

(like "x>10011, quotes are not allowed in ANSI
Fortran, so Ratfor converts it into the right
number of H's: computers count better than
people do.

Ratfor is' a free-form language: statements
may appear anywhere on a line, and several may
appear on one line if they are separated by semi-
colons. The example above could also be written
as

if (x > 100) (
call error("x > 100")
err = 1
return

In this case, no semicolon is needed at the end
of each line because Ratfor assumes there is one
statement per line unless told otherwise.

Of course, if the statement that follows the
if is a single statement (Ratfor or otherwise), no
braces are needed:

if (y < = 0.0 & z < = 0.0)
write(6, 20) y, z

No continuation need be indicated because the
statement is clearly not finished on the first line.
In general Ratfor continues lines when it seems
obvious that they are not yet done. (The con-
tinuation convention is discussed in detail later.)

Although a free-form language permits
wide latitude in formatting styles, it is wise to
pick one that is readable, then stick to it. In par-
ticular, proper indentation is vital, to make the
logical structure of the program obvious to the
reader.

The "else" Clause

Ratfor provides an else statement to han-
dle the construction "if a condition is true, do
this thing, otherwise do that thing."

if (a < = b)
(sw = 0; write(6, 1) a, b }

else
(sw = 1; write(6, 1) b, a)

This writes out the smaller of a and b, then the
larger, and sets sw appropriately.

The Fortran equivalent of this code is cir-
cuitous indeed:

•

-3-

if (a .gt. b) goto 10
sw = 0 -

write(6, 1) a, b
goto 20

10 sw = 1 . .
write(6, 1) b, a

20 ...

This is a mechanical translation; shorter forms
exist, as they do for many similar situations. But
all translations suffer from the same problem:
since they are translations, they are less clear and
understandable than code that is not a transla-
tion. To understand the Fortran version, one
must scan the entire program to make sure that
no other statement branches to statements 10 or
20 before one knows that indeed this is an if-
else construction. With the Ratfor version, there
is no question about how one gets to the parts of
the statement. The if-else is a single unit, which
can be read, understood, and ignored if not
relevant. The program• says what it means.

As before, if the statement following an if
or an else is a single statement, no braces are
needed:

if (a <= b)
sw = 0

else
sw = 1

The syntax of the if statement is

if (legal Fortran condi►ion)
Ra{%r statement

else
Ra(%or statement

where the else part is optional. The legal Fortran
cot0tion is anything that can legally go into a
Fortran Logical IF. Ratfor does not check this
clause, since it does not know enough Fortran to
know what is permitted. The Ratfor statement is
any Ratfor or Fortran statement, or any collec-
tion of them in braces.

Nested if's

Since the statement that follows an if or an
else can be any Ratfor statement, this leads
immediately to the possibility of another if or
else. As a useful example, consider this problem:
the variable f is to be set to -1 if x is less than
zero, to +1 if x is greater than 100, and to 0
otherwise. Then in Ratfor, we write

if (x < 0)
f = -1

else if (x > 100)
f = +1

else -

f =0

Here the statement after the first else is another
if-else. Logically it is just a single statement,
although it is rather complicated.

This code says 'what it means. Any ver-
sion written in straight Fortran will necessarily be
indirect because Fortran does not let you say
what you mean. And as always, clever shortcuts
may turn out to be too clever to understand a
year from now.

Following an else with an if is one way to
write a multi-way branch in Ratfor. In general
the structure

if (...)

else if (...)

else if (...)

else

provides a way to specify the choice of exactly
one of several alternatives. (Ratfor also provides
a switch statement which does the same job in
certain special cases; in more general situations,
we have to make do with spare parts.) The tests
are laid out in sequence, and each one is fol-
lowed by the code associated with it. Read down
the list of decisions until one is found that is
satisfied. The code associated with this condition
is executed, and then the entire structure is
finished. The trailing else part handles the
"default" case, where none of the other condi-
tions apply. If there is no default action, this
final else part is omitted:

if (x < 0)
x=0

else if (x > 100)
X = 100

if-else ambiguity

There is one thing to notice about compli-
cated structures involving nested ifs and else's.
Consider

•

•

is the same as

if (x >0)
if (y >•0)

write(6, 1) x, y

-4-

if (x > 0)
if(y >0)

write(6, 1) x, y
else

write(6, 2) y

There are two ifs and only one else. Which if
does the else go with?

This is a genuine ambiguity in Ratfor, as it
is in many other programming languages. The
ambiguity is resolved in Ratfor (as elsewhere) by
saying that in such cases the else goes with the

closest previous un-else'ed if. Thus in this case,
the else goes with the inner if, as we have indi-
cated by the indentation.

It is a wise practice to resolve such cases
by explicit braces, just to make your intent clear.
In the case above, we would write

 (

statements with it are done; if there is no
default, nothing is done. In all situations, as
soon as some block of statements is executed,
the entire switch is exited immediately.
(Readers familiar with C[4] should beware that
this behavior is not the same as the C switch.)

The "do" Statement

The do statement in Ratfor is quite similar
to the no statement in Fortran, except that it
uses no statement number. The statement
number, after all, serves only to mark the end of
the oo, and this can be done just as easily with
braces. Thus

doi=l,n{
X

 (i) = 0.0
y(i) = 0.0
z(i) = 0.0

•

else
write(6, 2) y

}

which does not change the meaning, but leaves
no doubt in the reader's mind. If we want the
other association, we must write

if (x > 0) {
if (y >0)

write(6, 1) x, y
}
else

write(6, 2) y

The "switch" Statement

The switch statement provides a clean way
to express multi-way branches which branch on
the value of some integer-valued expression.
The syntax is

switch (expression)

dol0i=l,n
x(i) = 0.0
Y

(i) = 0.0
z(i) = 0.0

10 continue

The syntax is:

do l

egal-Fortran-DO-text
Rar%or statement

The part that follows ;he keyword do has to be
something that can legally go into a Fortran Do
statement. Thus if a local version of Fortran
allows D

o limits to be expressions (which is not
currently permitted in nrvsi Fortran), they can be
used in a Ratfor do. •

The Rar%r s

tatement part will often be
enclosed in braces, but as with the if, a single
statement need not have braces around it. This
code sets an array to zero:

doi=l,n
X (i) = 0.0

•

}

Each case is followed by a list of comma-
separated integer expressions. The expression
inside switch is compared against the case
expressions erpr/, eeprl, and so on in turn until
one matches, at which time the statements fol-
lowing that case are executed. If no cases match
expression, and there i

s. a default section, the

is

Slightly more complicated,

sets the entire array m to zero, and

(

case exprl
statements

case expr2, expr3
s

tatements

default:
s

tatements

doi= l,n
doj= l,n

m(i, j) = 0

-S-

doi =1,n
doj= 1,n

if (i < j)
m(i, j) _ -1

else if (i = = j)
m(i, j) = 0

m (i, j) _ +1

sets the upper triangle of m to -1, the diagonal
to zero, and the lower triangle to + 1. (The
operator == is "equals", that is, ".EQ.".) In
each case, the statement that follows the do is
logically a single statement, even though compli-
cated, and thus needs no braces.

"break" and "next"

Ratfor provides a statement for leaving a
loop early, and one for beginning the next itera-
tion. break causes an immediate exit from the
do; in effect it is a branch to the statement a%er
the do. next is a branch to the bottom of the
loop, so it causes the next iteration to be done.
For example, this code skips over negative
values in an array:

doi =1,n(
if (x(i) < 0.0)

next
process positive ele►nen►

break and next also work in the other Ratfor
looping constructions that we will talk about in
the next few sections.

break and next can be followed by an
integer to indicate breaking or iterating that level
of enclosing loop; thus

break 2

exits from two levels of enclosing loops, and
break 1 is equivalent to break. next 2 iterates
the second enclosing loop. (Realistically, multi-
level break's and next's are not likely to be
much used because they lead to code that is hard
to understand and somewhat risky to change.)

The "while" Statement

One of the problems with the Fortran Do
statement is that it generally insists upon being
done once, regardless of its limits. If a loop
begins

DOI =2,1

this will typically be done once with I set to 2,
even though common sense would suggest that
perhaps it shouldn't be. Of course a Ratfor do
can easily be preceded by a test

if Q <= k)
doi=j,k (

)

but this has to be a conscious act, and is often
overlooked by programmers.

A more serious problem with the Do state-
ment is that it encourages that a program be
written in terms of an arithmetic progression
with small positive steps, even though that may
not be the best way to write it. If code has to be
contorted to fit the requirements imposed by the
Fortran Do, it is that much harder to write and
understand.

To overcome these difficulties, Ratfor pro-
vides a while statement, which is simply a loop:
"while some condition is true, repeat this group
of statements". It has no preconceptions about
why one is looping. For example, this routine to
compute sin(x) by the Maclaurin series combines
two termination criteria.

real function sin(x, e)
. # returns sin(x) to accuracy e, by

sin(x) = x - x■•3/3! + x••S/S! - ...

sin = x
term = x

i =3
while (abs(term) >e & i<100)

term = -term • x ■ ■2 / float(i■(i-1))
sin = sin + term
i = i + 2

return
end

Notice that if the routine is entered with
term already smaller than e, the loop will be
done zero li►rres, that is, no attempt will be made
to compute x••3 and thus a potential underflow
is avoided. Since the test is made at the top of a
while loop instead of the bottom, a special case
disappears - the code works at one of its boun-
daries. (The test i<100 is the other boundary -
making sure the routine stops after some max-
imum number of iterations.)

As an aside, a sharp character "#" in a
line marks the beginning of a comment; the rest
of the line is comment. Comments and code can
co-exist on the same line - one can make mar-
ginal remarks, which is not possible with
Fortran's "C in column 1" convention. Blank
lines are also permitted anywhere (they are not
in Fortran); they should be used to emphasize
the natural divisions of a program.

•

e Ise

•

•

f
-6-

The syntax of the while statement is

while (legal Fortran condition)
Ratjor statement

As with the if, legal Fortran condition is some-
thing that can go into a Fortran Logical IF, and
Ra(/or statement is a single statement, which may
be multiple statements in braces.

The while encourages a style of coding not
normally practiced by Fortran programmers. For
example, suppose nextch is a function which
returns the next input character both as a func-
tion' value and in its argument. ' Then a loop to.
find the first non-blank character is just

while (nextch(ich) == iblank)

A semicolon by itself is a null statement, which
is necessary here to mark the end of the while;
if it were not present, the while would control
the next statement. When -the loop is broken,
ich contains the first non-blank. Of course the
same code can be written in Fortran as

100 if (nextch(ich) .eq. iblank) goto 100

but many Fortran programmers (and a few com-
pilers) believe this line is illegal. The language at
one's disposal strongly influences how one thinks
about a problem.

The "for" Statement

The for statement is another Ratfor loop,
which attempts to carry the separation of loop-
body from reason-for-looping a step further than
the while. A for statement allows explicit initiali-
zation and increment steps as part of the state-
ment. For example, a DO loop is just

for (i= 1;L<= n;i= i+ 1)...

This is equivalent to

i =1
while (i <= n) (

i=i +l
}

The initialization and increment of i have been
moved into the for statement, making it easier to
see at a glance what controls the loop.

The for and while versions have the
advantage that they will be done zero times if n
is less than 1; this is not true of the do.

The loop of the sine routine in the previ-

ous section can be re-written with a for as

for (i=3; abs(term) > e & i < 100, i=i+2) {
term = -term - x--2 / float(i-(i-1))
sin = sin + term

}

The syntax of the for statement is

for (init ; condition ; increment)
Ra(%or statement

init is any single Fortran statement, which gets
done once before the loop begins. increment is
any single Fortran statement, which gets done at
the end of each pass through the loop, before
the test. condition is again anything that is legal
in a logical IF. Any of init, condition, and incre-
ment may be omitted, although the semicolons
must always be present. A non-existent condition
is treated as always true, so for(;;) is an
indefinite repeat. (But see the repeat-until in
the next section.)

The for statement is particularly useful for
backward loops, chaining along lists, loops that
might be done zero times, and similar things
which are hard to express with a Do statement,
and obscure to write out with IF's and GOTO's.
For example, here is a backwards Do loop to find
the last non-blank character on a card:

for (i=80;i>0;i=i -1)
if (card(i) != blank)

break

("!_" is the same as ".NE."). The code scans
the columns from 80 through to 1. If a non-
blank is found, the loop is immediately broken.
(break and next work in fors and while's just as
in do's). If 1 reaches zero, the card is all blank.

This code is rather nasty to write with a
regular Fortran DO, since the loop must go for-
ward, and we must explicitly set up proper condi-
tions when we fall out of the loop. (Forgetting
this is a common error.) Thus:

DO 10 J = 1, 80
1=81-J
1F (CARD(l) .NE. BLANK) GO TO I I.

10 CONTINUE
1=0

11 ...

The version that uses the for handles the termi-
nation condition properly for free, i is zero when
we fall out of the for loop.

The increment in a for need not be an
arithmetic progression, the following program
walks along a list (stored in an integer array ptr)
until a zero pointer is found, adding up elements
from a parallel array of values:

•

•

•

.
-

7 -

sum = 0.0
for (i = first; i > 0; i = ptr(i))

sum = sum + value(i)

Notice that the code works correctly if the list is
empty. Again, placing the test at the top of a
loop instead of the bottom eliminates a potential
boundary error.

The "repeat-until" statement

In spite of the dire warnings, there are
times when one really needs a loop that tests at
the bottom after one pass through. This service
is provided by the repeat-until:

equal _ compare strl to str2;
return 1 if equal, 0 if not

integer function equal(strl, str2)
integer strl (100), str2(100)
integer i

for (i = 1, strl(i) _= str2 W; i = i + 1)
if WHO) __ -1)

equal = 1
return

equal = 0
return
end

•

repeat
Ratfor statement

until (legal Fortran condition)
says

In many languages (e.g., PL/i) one instead

The Ra(%r sta►ement part is done once, then the
condition is evaluated. if it is true, the loop is
exited; if it is false, another pass is made.

The until part is optional, so a bare repeat
is the cleanest way to specify an infinite loop. Of
course such a loop must ultimately be broken by
some transfer of control such as stop, return, or
break, or an implicit stop such as running out of
input with a READ statement.

As a matter of observed fact(81, the
repeat-until statement is much less used than the
other looping constructions; in particular, it is
typically outnumbered ten to one by for and
while. Be cautious about using it, for loops that
test only at the bottom often don't handle null
cases well.

More on break and next

break exits immediately from do, while,
for, and repeat-until. next goes to the test part
of do, while and repeat-until, and to the incre-
ment step of a for.

"return" Statement

The standard Fortran mechanism for
returning a value from a function uses the name
of the function as a variable which can be
assigned to; the last value stored in it is the
function value upon return. For example, here
is a routine equal which returns 1 if two arrays
are identical, and zero if they differ. The array
ends are marked by the special value -1.

return (expression)

to return a value from a function. Since this is
often clearer, Ratfor provides such a return
statement - in a function F, return(expression)
is equivalent to

(F = expression; return)

For example, here is equal again:

equal _ compare strl to str2;
return 1 if equal, 0 if not

integer function equal(strl, str2)
integer strl(l00), str2(100)
integer i

for (i = 1; strl(i) _= str2(i); i = i + 1)
if (strl(i) __ -1)

return(1)
return(0)
end

If there is no parenthesized expression after
return, a normal RETURN is made. (Another
version of equal is presented shortly.)

Cosmetics

As we said above, the visual appearance of
a language has a substantial effect on how easy it
is to read and understand programs. Accord-
ingly, Ratfor provides a number of cosmetic
facilities which may be used to make programs
more readable.

•

Free-form Input

Statements can be placed anywhere on a

line; long statements are continued automati-
cally, as are long conditions in if, while, for, and
until. Blank lines are ignored. Multiple state-
ments may appear on one line, if they are
separated by semicolons. No semicolon is
needed at the end of a line, if Ratfor can make

 •

& (-

are assumed'to be continued on the next line.
Underscores are discarded wherever they occur;
all others remain as part of the statement.

100 format(5hhello)
write(6, 100) if 0 > ROWS I j > COLS) ...

YES
NO
EOS
ARB

1
0
-1
100

define
define
define
define

&
i

.ne.

.ge.

.le.

.or.

.not.

.eq.
.gt.
.It.
.and.
.not.

{

(
V • S)

-8-

some reasonable guess about whether the state-
ment ends there. Lines ending with any of the
characters

Any statement that begins with an all-
numeric field is assumed to be a Fortran label,
and placed in columns 1-5 upon output. Thus

write(6, 100); 100 format ("hello")

is converted into

"define" Statement

Any string of alphanumeric characters can
be defined as a name; thereafter, whenever that
name occurs in the input (delimited by non-
alphanumerics) it is replaced by the rest of the
definition line. (Comments and trailing white
spaces are stripped oft). A defined name can be
arbitrarily long, and must begin with a letter.

define is typically used to create symbolic
parameters:

define ROWS 100
define COLS 50

dimension a(ROWS), b(ROWS, COLS)

•

Translation Services

Text enclosed in matching single or double
quotes is converted to nH... but is otherwise
unaltered (except for formatting - it may get
split across card boundaries during the reformat-
ting process). Within quoted strings, the
backslash '\' serves as an escape character: the
next character is taken literally. This provides a
way to get quotes (and of course the backslash
itself) into quoted strings:

is a string containing a backslash and an apos-
trophe. (This is nor the standard convention of
doubled quotes, but it is easier to use and more
general.)

Any line that begins with the character '%'
is left absolutely unaltered except for stripping
off the '%' and moving the line one position to
the left. This is useful for inserting control
cards, and other things that should not be
transmogrified (like an existing Fortran pro-
gram). Use '%'- only for ordinary statements,
not for the condition parts of if, while, etc., or
the output may come out in an unexpected place.

The following character translations are
made, except within single or double quotes or
on a line beginning with a '%'.

Alternately, definitions may be written as

define(ROWS, 100)

In this case, the defining text is everything after
the comma up to the balancing right parenthesis;
this allows multi-line definitions.

It is generally a wise practice to use sym-
bolic parameters for most constants, to help
make clear the function of what would otherwise
be mysterious numbers. As an example, here is
the routine equal again, this time with symbolic
constants.

equal _ compare strl to str2;
return YES if equal, NO if not

integer function equal(strl, str2)
integer strl (ARB), str2(ARB)
integer i

for 0 = 1; strl 0) _= str2 0); i = i + 1)
if (strl 0) = = EOS)

return(YES)
return(NO)
end

"include" Statement

In addition, the following translations are pro-
vided for input devices with-restricted character
sets.

The statement

include file

inserts the file found on input stream.hle into the
Ratfor input in place of the include statement.
The standard usage is to place COMMON blocks
on a file, and include that file whenever a copy is
needed:

•

suroutine y
include commonblocks

r

-9-

•
subroutine x

include commonblocks

end

end

This ensures that all copies of the COMMON

blocks are identical

Pitfalls, Botches, Blemishes and other Failings

Ratfor catches certain syntax errors, such
as missing braces, else clauses without an if, and
most errors involving missing parentheses in
statements. Beyond that, since Ratfor knows no
Fortran, any errors you make will be reported by
the Fortran compiler, so you will from time to
time have to relate a Fortran diagnostic back to
the Ratfor source.

Keywords are reserved - using if, else,
etc., as variable names will typically wreak havoc.
Don't leave spaces in keywords. Don't use the
Arithmetic IF.

The Fortran nH convention is not recog-
nized anywhere by Ratfor; use quotes instead.

3. IMPLEMENTATION

Ratfor was originally written in C[4] on the
UNIX operating system[$]. The language is
specified by a context free grammar and the
compiler constructed using the YACC compiler-
compiler[6].

The Ratfor grammar is simple and straight-
forward, being essentially

prog stat

I prog stat

stat if (::.) scat
if (...) scat else scat
while (...) scat
for (...; ...; ...) scat
do ... stat
repeat scat
repeat scat until (...)
switch (...) (case ...: prog ...

default: prog }
return
break
next
digits scat

(prog }
anything unrecognizable

The observation that Ratfor knows no Fortran
follows directly from the rule that says a state-
ment is " anything unrecognizable". In fact most

of Fortran falls into this category, since any
statement that does not begin with one of the
keywords is by definition "unrecognizable."

Code generation is also simple. If the first
thing on a source line, is not a keyword (like if,
else, etc.) the entire statement is simply copied
to the output with appropriate character transla-
tion and formatting. (Leading digits are treated
as a label.) Keywords cause only slightly more
complicated actions. For example, when if is
recognized, two consecutive labels L and L+1

are generated and the value of L is stacked. The
condition is then isolated, and the code

if (.not. (condition)) goto L

is output. The statement part of the if is then
translated. When the end of the statement is
encountered (which may be some distance away
and include nested iFs, of course), the code

L continue

is generated, unless there is an else clause, in
which case the code is

goto L+ 1
L continue

In this latter case, the code

L+ 1 continue

is produced after the siaremew part of the else.
Code generation for the various loops is equally
simple.

One might argue that more care should be
taken in code generation. For example, if there
is no trailing else,

if(i>0)x =a

should be left alone, not converted into

if (.not. (i .gi. 0)) goto 100
x = a

100 continue

But what are optimizing compilers for, if not to
improve code? It is a rare program indeed where
this kind of "inefficiency" will make even a
measurable difference. In the few cases where it
is important, the offending lines can be protected
by '%'.

The use of a compiler-compiler is
definitely the preferred method of software
development. The language is well-defined, with
few syntactic irregularities. Implementation is
quite simple; the original construction took
under a week. The language is sufficiently sim-
ple, however, that an ad hoc recognizer can be
readily constructed to do the same job if no
compiler-compiler is available.

- 10-

0
The C version of Ratfor is used on UNIX

and on the Honeywell GCOS systems. C com-
pilers are not as widely available as Fortran,
however, so there is also a Ratfor written in
itself and originally bootstrapped with the C ver-
sion. The Ratfor version was written so as to
translate into the portable subset of Fortrah
described in [1], so it is portable, having been
run essentially without change on at least twelve
distinct machines. (The main restrictions of the
portable subset are: only one character per
machine word; subscripts in the form c+vtc:
avoiding expressions in places like Do loops; con-
sistency in subroutine argument usage, and in
COMMON declarations. Ratfor itself will not gra-
tuitously generate non-standard Fortran.)

The Ratfor version is about 1500 lines of
Ratfor (compared to about 1000 lines of C); this
compiles into 2500 lines of Fortran. This expan-
sion ratio is somewhat higher than average, since
the compiled code contains unnecessary
occurrences of COMMON declarations. The exe-
cution time of the Ratfor version is dominated
by two routines that read and write cards.
Clearly these routines could be replaced by
machine coded local versions; unless this is
done, the efficiency of other parts of the transla-
tion process is largely irrelevant.

4. EXPERIENCE

Good Things

"It's so much better than Fortran" is the
most common response of users when asked
how well Ratfor meets their needs. Although
cynics might consider this to be vacuous, it does
seem to be true that decent control flow and
cosmetics converts Fortran from a bad language
into quite a reasonable one, assuming that For-
tran data structures are adequate for the task at

hand.

Although there are no quantitative results.
users feel that coding in Ratfor is at least twice
as fast as in Fortran. More important, debugging
and subsequent revision are much faster than in
Fortran. Partly this is simply because the code
can be rand. The looping statements which test
at the top instead of the bottom seem to elim-

inate or at least reduce the occurrence of a wide
class of boundary errors. And of course it is
easy to do structured programming in Ratfor;
this self-discipline also contributes markedly to
reliability.

One interesting and encouraging fact is
that programs written in Ratfor tend to be as
readable as programs written in more modern
languages like Pascal. Once one is freed from
the shackles of Fortran 's clerical detail and rigid
input format, it is easy to write code that is read-
able, even esthetically pleasing. For example,
here is a Ratfor implementation of the linear
table search discussed by Knuth [7]:

A(m+I) = x
for (i= 1.A(i)!= x;i=i+ 1)

if (i > m)
m =i
B(i) = I

else
B(i) = B(i) + 1

A large corpus (5400 lines) of Ratfor, including
a subset of the Ratfor preprocessor itself, can be
found in [8].

Bad Things

The biggest single problem is that many
Fortran syntax errors are not detected by Ratfor
but by the local Fortran compiler. The compiler
then prints a message in terms of the generated
Fortran, and in a few cases this may be difficult
to relate back to the offending Ratfor line, espe-
cially if the implementation conceals the gen-
erated Fortran. This problem could be dealt with
by tagging each generated line with some indica-
tion of the source line that created it, but this is
inherently implementation-dependent, so no
action has yet been taken. Error message
interpretation is actually not so arduous as might
be thought. Since Ratfor generates no variables.
only a simple pattern of WS and GOTO's, data-
related errors like missing DIMENSION statements
are easy to find in the Fortran. Furthermore,
there has been a steady improvement in Ratfor's
ability to catch trivial syntactic errors like unbal-
anced parentheses and quotes.

There are a number of implementation
weaknesses that are a nuisance, especially to new
users. For example, keywords are reserved.
This rarely makes any difference, except for
those hardy souls who want to use an Arithmetic
IF. A few standard Fortran constructions are not
accepted by Ratfor, and this is perceived as a
problem by users with a large corpus of existing
Fortran programs. Protecting every line with a

•

•

-11-

•
'%' is not really a complete solution, although it
serves as a stop-gap. The best long-term solu-
tion is provided by the program Struct [91, which
converts arbitrary Fortran programs into Ratfor.

Users who export programs often complain
that the generated Fortran is "unreadable"
because it is not tastefully formatted and con-
tains extraneous CONTINUE statements. To some
extent this can be ameliorated (Ratfor now has
an option to copy Ratfor comments into the gen-
erated Fortran), but it has always seemed that
effort is better spent on the input language than
on the output esthetics.

One final problem is partly attributable to
success - since Ratfor is relatively easy to
modify, there are now several dialects of Ratfor.
Fortunately, so far most of the differences are in
character set, or in invisible aspects like code
generation.

5. CONCLUSIONS

Ratfor demonstrates that with modest
effort it. is possible to convert Fortran from a bad
language into quite. a good one. A preprocessor
is clearly a useful way to extend or ameliorate
the facilities of a base language.

When designing a language, it is important
to concentrate on the essential requirement of
providing the user with the best language possi-
ble for a given effort. One must avoid throwing
in "features" - things which the user may trivi-
ally construct within the existing framework.

One must also avoid getting sidetracked on
irrelevancies. For instance it seems pointless for
Ratfor to prepare a neatly formatted listing of
either its input or its output. The user is
presumably capable of the self-discipline required
to prepare neat input that reflects his thoughts.
It is much more important that the language pro-
vide free-form input so he can format it neatly.
No one should read the output anyway except in
the most dire circumstances.

Acknowledgements

C. A. R. Hoare once said that "One thing
[the language designer] should not do is to
include untried ideas of his own." Ratfor follows
this precept very closely - everything in it has
been stolen from someone else. Most of the

-control flow structures are taken directly from
the language C[4] developed by Dennis Ritchie;
the comment and continuation conventions are
adapted from Altran(10).

I am grateful to Stuart Feldman, whose
patient simulation of an innocent user during the
early days of Ratfor led to several design
improvements and the eradication of bugs. He

also translated the C parse-tables and Yncc
parser into Fortran for the first Ratfor version of
Ratfor.

References .

[11 B. G. Ryder, "The PFORT Verifier,"
Sq%nvare-Practice & Experience. October
1974. •

(2] American National Standard Fortran.

[31 For-word: Forn•an Development Ne+vslcuer:

[41

[51

[6] S. C. Johnson, "YACC - Yet Another
Compiler-Compiler." Bell Laboratories
Computing Science Technical Report #32,
1978.

[71

(81 B. W. Kernighan and P. J. Plauger,

[91 B. S. Baker, "Struct - A Program which
Structures Fortran", Bell Laboratories
internal memorandum, December 1975.

[10] A. D. Hall, "The Altran System for
Rational Function Manipulation - A Sur-
vey." CACM, August 1971.

American National Standards Institute,

New York, 1966.

August 1975. `

B. W. Kernighan and D. M. Ritchie, The C
Programming Langua,Qe. Prentice-Hall, Inc.,
1978.

D. M. Ritchie and K. L. Thompson, "The
UNIX Time-sharing System." CACM, July
1974.

D. E. Knuth, " Structured Programming
with goto Statements." Computing Surveys,
December 1974.

is Sofi+vore Tools, Addison-Wesley, 1976.

•

•

0
n
-o T
A H

•

PWB/Graphics Overview
A. R. Feuer

Bell Laboratories
Piscataway. New Jersey 08854

1. INTRODUCTION

Pva/Graphics, or just graphics. is the name given. to a ;growing collection of numerical and
graphical commands available as pan of the Programmer's Workbench [I]. In its initial release.
graphics includes commands to construct .and edit numerical data plots and hierarchy chars.
This memorandum will help you get started using graphics and show you where to find more
information. The examples below assume that you are familiar with the UNIXTm Shell (1].

2. BASIC CONCEPTS

The basic approach taken in graphics is to generate a drawing by describing it rather than by
drafting it. Any drawing is seen as having two fundamental attributes: its underlying logic and
its visual layout. The layout encompasses one representation of the logic. For example.
consider the attributes of a drawing that consists of a plot of the function -x= for x between 0
and 10.. The logic of the plot is the description as just given. viz. y-x2.0<x<10. The layout
consists of an x-y grid. axes labeled perhaps 0 to 10 and 0 to 100. and lines drawn connecting
the x-y pairs 0.0 to 1.1 to 2,4 and so on. '

The way to generate a picture in graphics is

gather data 1 transform the data i generate a layout I display the layout.

To generate the specific plot of -x 2.04x < 10 and display it• on a Tektronix • display terminal
would be:

gas -s0.tl01 of 'a'2' 1 plot j td

gas generates sequences of numbers. in this case starting at 0 and terminating at

]0.

of performs general arithmetic transformations.

plot builds x-y plots.

td displays drawings on Tektronix terminals.

The resulting drawing is shown in Figure 1.

The layout generated by a graphics program may not always be precisely what is wanted. There
are two ways to influence the layout. Each drawing program accepts options to direct certain
layout features. For instance, in the previous example we may have wanted the x-axis labels to
indicate each *of the numbers plotted and we might not have wanted any y-axis labels at al!. To
achieve this the pia command would be changed to:

plot -xi I,ya ..

producing the thawing pf Figure 2.

The output from-•any drawing command can also be affected by editing it directly at a disp!a%
terminal using the graphical editor. ged. To edit a drawing really means to edit the computer
representation of the -drawing. In the case of graphics the representation is called a graphical
primitive strinc.' or GPS. All. of the drawing commands (e.g., plot) write GPS and all of the
device filters (e.g.'. &) ,read GPS. Geri allows you to manipulate GPS at a display terminal b%
interacting with the drawing.'the GPS describes.

0

i 1 1

1
{

0 1 T ! t 1 i
i

i 1 10

Z

i

m

40

Ptg v 1. gas -s0.c10 1 at 'x"2' 1 plot 1 td ~Igwe 2. gas -10.110 1 at 'x"2' 1 plat -xi 1.4a 1 td

. 1.

•

i

A command-name is.

A command is:

An argument is:

a command-name followed by argument(s).

the name of any of the graphics commands.

a frk-name or an option-string.

•
Here is an easy way to generate a Celsius-Fahrenheit conversion table using gas to generate the
vector of Celsius values:

gas -s0,t100,110 (of 'C.9/5°C+32'

PR'A09phies Overview 3

OPS describes graphical objects drawn within a Cartesian plane 65,534 units on each axis. The
plane, known as the unhoerse, is partitioned into 25 equal sized square regions. Multi-drawing
displays can be produced by placing drawings into adjacent regions and then displaying each
region.

3. GETTING STARTED

To access the graphics commands when logged in on a PWB/UNIX system type graphics. Your
'Shell variable PATH will be altered to include the graphics commands and the Shell primary
prompt will be changed to Any command accessible before typing graphics will still be

.. accessible; graphics only adds commands, it doesn' t take any away. Once in graphics, you can
find out about any of the graphics commands using wharis. Typing whatis by itself on a
command line will generate a list of all the commands in graphics along with instructions on
how to find out more about any of them.

All of the graphics commands accept the same command line format:

A fi'ck-name is: any file name not begiooing with -, or a - by itself to
reference the standard input.

An option-string is: a - followed by option(s) .

An option is: lener(s) followed by an optional value. Options may be
separated by commas.

You will get the best results with graphics commands if you use - a display terminal. Plot (1)
filters can be used in conjunction with glop (see gutil(1)) to get somewhat degraded drawings on
Versatec printers and Dasi-type terminals. And since GPS can be stored in a file, it car, be
created from any terminal for later displaying on a graphical device.

To remove the graphics commands from your PATH Shell variable type EOT (control-d on most
terminals) . To logo$ UNIX from graphics type quit.

4. EXAMPLES OF WHAT YOU CAN DO

4.1 Numerical Manipulation and Plotting

Star(1) describes a collection of numerical commands. All of these commands operate on
vectors. A vector is a text file that contains numbers separated by delimiters, where a delimiter,
is anything that is not a number. For example,

12345, and
arf tty47 Mar .5 09:52

are both vectors. (The latter being the vector: 47 5 9 52.)

•

4

32
s0
69.
86
104
122
140
158
176
194.
212

T, A output it

0.0
10
20
30
40
s0
60
_70

s0
90
100

PWB/Gmplucs Ovvv" -

We have seen gas in an earlier example. In this case the
sequence starts at 0, laminates at 100, and the Increment
between successive elements is 10.

if 'C,9/S'C+32' We have also seen af. Arguments to of are expressions.
Operands in an expression are either constants- or filenames. If
a filename is given that does not exist in the current directory it
is taken as the name for the standard input.- In this example C
references the standard input. The output is a vector with odd
elements coming from the standard input and even elements
being a function of the preceding odd element.

Here is an example that illustrates the use of vector titles and multiline plots

ps (title - v'Srst ten integers' >N
roet N > P..N
root -r3 N. > R3N
root - rLS N > R1.5N
plot -FN,g N R1.SN M R3N (td

The resulting plot is shown in Figure 3.

Tale associates a name with a vector. In this case, first ten
integers is associated with the vector output by gas The vector
is stored in file N.

Root outputs the n th root of each element on the input If
-r,r is not given then the square root is output Also, if the
input is a titled vector the title will be transformed to -reflect the
root function.

This command generates a multilane plot with Y(s)- plotted.
versus Z The = option causes tick marks to appear instead of
grid lines.

title - Y' name

roes. -rn

The next example generates a histogram of random numbers.

rand - n100 I title -v'100 random numbers' I gsort I bucket I bast I td

The output is shown in Figure 4.

This is what is going on:

gas - s0,i100,110

plot -FX.= Y(j)

•

•

2 3 4 3 • 7 e

rlRST TIN [NIECE"

11 10 9

a~

C '•

1n~

H

7'

2

1

-

. .lf .. r

riggra 3. Some roots of the first tan Intoyor s

u

10

t

e

6

S

4

loo mum NUNN"

rigs-e 4. HistoWas or 100 random numbers

24

22

20

18

K

12

10

a

s

2

0.161 0.163 0.301 0.438 0.374 0.71 0.647 0.943

•

•~ J

6 PwBc mPhia owerwew

rand - n100 Rand oumlits ;=dom numbers wins rand(3C). In this case
100 numbers are output in the mare 0 to 1.

gsort Qsorr sorts the elements of a vector in ascending order.

bucket 9ycksr breaks the tease of a vector into intervals and counts
how many eleraenss from the vector fall into each interval.
The output is a vector with odd elements being the interval
boundaries and eves elements being the counts.

hiss Hisr builds a histogram based an interva

l

 boundaries and
counts.

4.2 Dt: wia

s

s Built from

Boxes

i'hre is a l

arge class of drawings c

omposed from boxes and text. Examples are stricture

chars, con

f

iguration drawings, and f

low diagrams. In graphic the general procedure to
c

onstruct such box d

rawings is the saute as that for numerical plotting. Namely gather and
transform the data,

build

 and display the layout.

As as example, consider hierarchy charts. The c

ommand line

mtac I

 rtoc I td
o

utputs the drawing s

hown is Figure

S.

Dw

c outputs a rabic of contents that describes a directo

r

y stricture (

Figure Sa). The fields
from left to right are level number, d

irectory name, and the cumber of ordina

r

y readable files
c

ontained in the directory. Vroc reads a (textual) table of contents

and

 outputs a v

i

sual table of
eaatants

,

 or hie:atc.hy chart. Input to vroc consists of a s

equence of entries. each describing a
box to be draws A

n catty consists of a lovel number, an optional s

t

yle f

ield, a text string to

be placed is the box, a

nd a mark field to appear above the top r

ight hand corner of the box.

S. WHERE TO GO FROM HERE

Tie best way to l

earn about graphics is to log onto a PWB/L*N1JC system a

nd use it. Tutorials
e

xist for star(l)

and

 grd(I). (

21 contains ad*^'nf

s

t*''tlvC i

nformation f0? graphic. Reference

information can be found is the PwB/UMX User's Manual under the fo

l

lowing manual pages:

Srdil), the graphical editor, .
gps(S) , a d

escription of a graphical primitive string;
grapJrics(1) , the entry point for graphics:
gutrKl), a c

ollection of utility commands,
stat(1). num

e

rical m

anipulation and plotting commands;
ttk

4

000(1), a c

ollection of commands to manipulate T

ektronix 4000 series terminals;

and

roc

(

 1) , r

outines to build rabies of c

ontents.

i. BEFERENCFS .

(11 PWBltlNIX Ilssr's Manua! _ Release 2.0., B

ell Laboratories, 1979.
(

21 R L. Chew a

nd. D. E. Pinlatoa, Jldminisaarrve .I>tformartoR f

or PNB/Graphics, Bell
Laboratories Memorandum, 1979.

Janua

r

y 1980

1. --'\

_0 /.)

9--

-oooor

0.11

Pw3 Gaphia Owe wow

I•

7

F 1 gure 5. Directory 5 true tune Tor Graph 1 cs

•

oLs.o
I

XLJ

Opp eaar~

F I gurv Sb. V tae ou :pu t

0. -:arcs' 2
1:1. 'gpL.0 12
1.2. 'psL.d 14
2. 'outlL.n0 6
2.1. ewrSmt. d' 7
2.2. :Q%W-d• a
2.3. -,p Log. d' 5
3. s to t. d'
4. 'tek=.d•
i.i. tC.d• 8
S. '%=.d' 3
S.I. 'oLoe.d• 3
5.2. 'vtoo.d' 22
6. 'b+etis.d• 103

F I gtsv Sa. 0 tac ou%pu t

L :
mm

s
ora.a

s i f •. l ~

mri

earsI Rs~.o

M L!. r 7 LL

.. L I J/ 4... i L-1, 1 - 3
t►~.L 9M.0

m6 nst

•

1

•

Administrative Information For PWB/ Graphics
Ruth L. Chen

Diane E Pinkston

Piscataway. New Jersey 08854

Bell Laboratories

1. INTRODUCTION

This document is a reference guide for system administrators who are using or establishing a
PWB/Graphics facility (1) on UNIXTM. It contains information about directory structure,
installation, makefiles, hardware requirements. and miscellaneous facilities of PWB/Graphics.

2. PWB/Graphics STRUCTURE

Figure I contains a graphical representation of the directory structure of PWB/Graphics. In this
paper, the Shell variable SSRC will represent the parent node for graphics source. On
PWB/UNIX SSRC is /usr/src/cmd. If PWB/Graphics is copied onto other systems. SSRC could
have other values but should, in general, be the same as on PWB/UNIX.

The jeraphics command (see grvphics(D) resides in /usr/bin. All other PWB/Graphics
executables are located in /usr/bin/graf. /usr/lib/graf contains text for whatis documentation
(see Xtril(1)) and editor scripts for nor (see roc(1)).

PWB/Graphics source resides below the director%, SSRC/graf. SSRC/graf is broken into the
following subdiretories:.

• include - contains the following header files: debug.h, errpr.h: gsl.h. gpl.h, setopt.h, and
util.h. '

• src - contains source code partitioned into subdirectories by subsystem. Each subdirector}
contains its own Makefile (or Install file for whatis.d).
• glib.d - contains source used to build the graphical subroutine library in

SSRC/graf/lib/glib.a.

• stat.d - contains source for numerical analysis and plotting routines.

. tek4000.d - contains source for ged (the graphical editor), rd (a Tektronix display
function), and other Tektronix dependent routines.

e gutil.d -'contains source for utility programs.

o toc.d - contains source for table of contents drawing routines.

. whatis.d - contains mm files and the install routine for quick-reference documentation.

• lib - contains glib.a which contains commonly used graphical subroutines.

• man - Figure l shows SSRC/graf/man as a dotted box because this directory does not exist
on PWB/ UNIX systems where all manual pages reside in /usr/ man. SSRC/graf/man :s
created if PWB/ Graphics is copied onto another system (see section 3.), and will contain the
following manual page files: graphics.l. gutil.l, stat.l, tek4000.1, toc.l, ged.l and gps.:.

3. INSTALLING PWB/Graphics

Procedures for installing PWB/Graphics:

Adrunisroov lnformwuon Fool PW3fCfcph=

•

•

1;

~B

Fig. 1 M /Graphics S o-mcturs

1fVV CAF

oc

! L
t

GRW

vc

T

~.a ~u;tsc

•

i

•

. inisa'adw h4fwma ion For PWJVGmpW= 3

1. PWB/UNIX systems,
- To build the entire Graphics system (i.e. all boxes except man in Figure 1). execute

(as superunt)

J:mkemd ad
J:mkcmd resides in /usr/src, and all m=. ual pages exist in /usr/man.

- To bind a particular subsystem, execute

./:mkcmd graf subsystem

- To build a particular command within a subsystem, execute

./-.mkcmd gmf subsystem command-name

2. UNMM systems not funning PWB,
- See appendix for tape copying procedures.

- Build SSRC/gmf/lib and PWB/Graphics executables (dashed boxes in Figure 1) by

typing:

make -f SSBC/gsaf/ graf.mk

- To make a particular graphics subsystem use the Makefile in SSRC/graf/src, *e.g.

ed SSRC/graf/src
make subsystem

- Note, there is a name conflict between PwB/Graphics plot and UNDUTS p/or(1). The
recommended fix is to remove /usr/bin/plot and move the plor(1) filters from /usr/lib
to /usr/bin.

A subsystem is either glib, star, tek4000, roc, gutil or whatis. Glib must exist before other
subsystems can be built. Write permission in /usr/bin and /usr/lib is needed, and the
following libraries are assumed to exist:

/lib/libc.a Standard C library, used by all subsystems.

/Ub/libm.a Math library, used by all subsystems.

/usr/Ub/macros/ Int)pwbmm.m• Programmer's Workbench memorandum macros
for Ind roff, used by the whatis subsystem.

The build process takes approximately one hour of system time. If the make must be
stopped, it is a good idea to rebuild from the top. Upon completion, the following things
will be created and owned by bin.

/usr/lib/graf

/usr/bin/graf

/usr/bin/graphics

A directory for data and editor scripts.

A directory for executables.

Command entry point for PWB/Graphics.

Makefiles use executable Shell procedures cco and cca. Cco is used to compile C source
and install load modules in /usr/bin/graf. The cca command compiles C programs and
loads object code into archive files.

Whatis.d contains source files for whatis and the executable command Install.

Install command-name

•

installation

installation

installation

directory for the graphic command.

directory for other graphic commands.

directory for whatis documentation.

4. TEMONIX TEMMAL

4 Adminimcaw-In mmOon For PWMGfVWci.

calls nMf to produce whads, documentation for command-crane in /usr/hb/graft To install
the entire whatis subsystem, use the Makefile in SSRC/graf/Sec.

3.1 mahadle PR= tars

Makefiles use various macro parameters, some of which can be specified on the command line
to redirect outputs or inputs. Parameters Specified in higher level Makedles are passed to loaner
levels. Below is a list of specifiable parameters for Makefiles followed by their default values in
pthesis and an explanation of their wage.

1. SSRC/ jraf/grfmk

DINT (/use/bin)

BIN2 (/usr/bin/graf)

SRC (/usr/=I=d)

2. SSRC/graf/sm/Makefile

Bail (/ua/bin)

BV42 (/usr/bin/gmf)

LIB (/usr/lib/graf)

inst~ on directory for the graphics command.
instillation directory for other graphic commands.

parent directory for source code.

I SSRC/zraf/src/stat.dIM. Akefile

ELN (.J.Jbin) installation directory for executable commands.

4. $SRUgraf/src/toc.d/Makcfile-

BIN (.J.Jbin) installation directory for executable commands.

S. SSRC/ZW/src/tek4000.d/Makefile

BIN (../.Jbin) installation directory for executable commands.

6-- SSRC/graf/src/gutil.d/Makefile

WN (.J.Jbin) installation directory for executable commands.

The following example will make a new version of the graphical editor: zed. in /al/pmt/dp/bin:_

-ad MRC/grWsrdtek40O0.a1
make BIN- /s1/pmt/dp/bin Zed

The PWB/Graphics display function rd and the graphical editor led both use Tektronix Series
4010 storage tubes. Below is a list of device considerations necessary for PCB/ Graphics
operation.

4.1 tarry Table E=7

When a Tektronix 4010 series terminal is connected via a dedicated line to U?TM an entry in
the system table (its /usr/src/c=d/geuy.c) is suggestl, to store. terminal status information.
This table entry appears as follows an PWB/L'NM-

•

..may

1

Ad ainiaa lyr rwmaor For !s'>p',1fAG i

/' table '6' - 4800/9600 - tektronix 4014 •/ .6., 7,
ANYP+ RAW+ FFI, ANYP+ ECHO+ CRMOD+ FF1,
II4800, 54800,
'\033\014\0001csi= 0.

7 '6,
ANYP+ RAW+ FFl, ANYP+ ECHO+ CRMOD+ FF1,
WAM, 89600,
\033\014\0001*gim

but on other systems it may have to be created and then referenced in /etc/inittab. Standard
parity and a form-feed delay are rte-,-sary. The form-feed delay gives the screen time to clear
without losing information. Below is an example of the terminal status as printed by sny:

speed 4800 baud
erase - W., kill
even odd - nl echo - tabs S'1

4.2 Strap Options

The standard strap options as listed below should be used (see the Reference Manual for the
Tektronix 4014 (31):

1. LF effect - LF causes line-feed only.

2. CR effect - CR caused carriage return only.

3. Del implies loy - Del key is interpreted as low-order y value.

4. Graphics Input terminators - None.

4.3 Enhanced Graphics Module

The Enhanced Graphics Module of Tektronix terminals is required for PWB/Graphics. The
EGM provides different line styles (solid, dotted, dot-dashed, dashed, and long-dashed): right
and left margin cursor location. and 12-bit cursor addressing (4096 by 4096 screen points) .

S. MISCELLAPIEOUS INFORMATION

5.1 Announcements

The graphics command provides a means of printing out announcements to users. To set up an
anouncement facility, create a readable text file containing the announcements named
announce. Also in /usr/bin/graphics redefine the Shell variable $GRAF to be the directory
pathmme of the announce file..

5.2 Uselo=

The graphics command also provides a mesas of monitoring its use by listing users in a file. To
set up a uselog facility create a writeable file named .uselog (in the same directory as announce
if announcements are being used) and redefine the Shell variable SGRAF within
/usr/bin/graphics to specify the directory location. Each time a user executes graphics, an entry
of the login name, terminal number. and system date are recorded in .uselog.

5.3 Restricted Environments

Restricted environments can be used to limit user access to the system (see rsh(1) (41). In a
restricted environment, commands in /rbin and /usr/rbin are executed before those in /bin and
/csr/bin. The commands ed, mv, rat, and sh require restricted interface programs which do not
allow users to move or remove files that begin with dot (.) (21.

•

i

6 Adioni wom 14*M ian For PWS/GraPhitt

Chating restrict ed environmeats for graphics:

1. Create a restricted ged command in /usr/ibin as follows

exec /tr /blalsraf/Sed -R

2. C.-em restricted login for users or c: eats a community login with a woricing directory
(rershed through .profile) set up for each user. A restricted login spesides /bin/msh as
the terminal interfame program and is created by adding /bin/rsh to the end of the
/ew/pwwd file entry for that login.

L Call gtphlcs -r from .profile.

The execution of graphics -r changes SPATH to look for commands in /rbin and /usr/rbin
and executes m restricted SheLL The -R option is appended to the Vd command so that the
escape from Zed to UNIX (!camman4 will also use a restricted Shell .

AC'RNOWLEDGEN. MNTS

We wish to thank Alan L Feuer for his valuable contributions, suggestions, and careful reading
of this document We also thank M. J. Petrella for his help in supplying information
concerning the PWB/U.41X environment.

REFEREINCU

(1) Feuer, A. R PWB/Grcphics Overview. Bell Laboratories, 1979.

(21 Petrella, NL J. Rewicigd Access to PWB/UNIX - DRAFT. Bell laboratories, May 1979.

(31 Tektronix. Usen s .lfamial for 4014 and 4014-1 Display Terminal. July. 1974.
(4) PWBIUNIX Users's Manual - Release 2.0.

•

•

.l

Ad"Aiwa#w lpforwason For PW2kGWM= 7 •

APPENDIX

Procedures for tape copying (as superuser)
- Locate graphics source by changing directory to SSRC, the parent directory.

- ')den copy source and manual pages from the tape by typing

epio -idm < /der/mt4 (creates gran

ed graf

epio -Mm < /dev/mto (Creates man)

This enU result in the directory structure indicated by the solid boxes plus SSRC/Smf/man in
Figure 1. Necessary scab-direetories will be created (see gp o(1)).

Jomiary 1980

i.

•

2. COMMANDS

A Tutorial Introduction to the Graphical Editor
Alan R. Fewer

Hell Laboratories
Piscataway, New Jerzy 08854

1. INTRODUCTION

Ged is an interactive graphical editor used to display, edit, and construct drawings on
Tektronix* 4010 series display terminals. The drawings are represented as a sequence of
objects in a token language known as GPS (for graphical primitive string). GPS is produced by
the drawing commands in PTV$/Graphics (11 such as vroc and. plot as well as by ged itself.

The examples in this tutorial illustrate how to construct and edit simple drawings. Try them to
become familiar with how the editor works, but keep in mind that ged is intended primarily to
edit the output of other programs rather than to construct drawings from scratch. A summary
of editor commands and options is given in Section 3.

As for notation, literal keystrokes are printed in boldface. Meta-characters are also in boldface
and are surrounded by angled brackets. For example, <return> means return and <sp>
means space. In the examples, output from the terminal is printed in normalface type. Inline
comments are in normalface and are surrounded by parentheses.

To start we will assume that you have successfully entered the graphics environment (as
described in graphics(1) of 121) while logged in at a display terminal. To enter ged type

ged < return >

After a moment the screen should be clear save for the ged prompt, •, in the upper left corner.
The • tells you that ged is ready to accept a command.

Each command passes through a sequence of stages during which you describe what the
command is to do. All commands pass through a subset of these stages:

1. command line

2. tart

3. points

4. pivot

S. destination

As a rule, each stage is terminated by typing <return> . The <return> for the last stage of a
command triggers execution.

2.1 The Command Line

The simplest commands consist only of a command line. The command line is modeled after a
conventional command line in the She1L That is

command-name I-option(s)1 (filenamel <returrn>

? is an example of a simple command. It lists the commands and options understood by ged
Type

•? < return > (you type a question mark followed by a return)

to generate the list.

•

i

•

t

•

1

J

2 c~~icai ~~. rcrsariai

A command is executed by typing the first character of its name. Ged will echo the full name
and wait for the rest of the command line. For example, a references the erase command. As
erase consists only of stage 1. typing '<retura> causes the erase action to occur. Typing
<rnbout> after a command name and before the final <refiim> for the command aborts the
command. Thus while

off= <remra>

erases the display screen.

•erase <rabaut>

brings the editor back to

Following the command-came, options may be entered. Options control such things as the
width and style of lines to be drawn or the size and orientation of teat. Most options have a
default value that applies if a value for the option is not specified on the command line. The
set command alloys you to examine and modify the default values. Type

,1
~J

*set <return>

to see the current default values.

The value of an option is either of type integer, character, or Boolean. Boolean values are
represented by + for true and - for false. A default value is modified by providing it as an
option to the set command. For example, to change the default text height to 300 units type:

•set -h3OO <return>

Arguments on the command line, but not the command-name, may be edited using the erase

and kill characters from the SheiL (Actually, this applies whenever text is being entered.)

2.1 Ceeatr8cti ag Grapb1caal ablest

Drawings are stored as CPS in a display buffer internal to the editor. Typically, a drawing in ged
is composed of instances of three graphical primitives: arc. 11net and tm=

2.2.1 Genemring r= To put a tine of text on the display screen use the Text command. First
enter the command line (stage 1):

-Text <remm>

Next enter the rata (store 2):
a Baas of text <rstm>.

And then enter the starting point for the text (stage 3):
<pwitlon carsar> <romrn>

Positioning of the graphic cursor is done either with the thumbwheel knobs on the terminal
keyboard or with an auxiliary joystick. The <rem=> establishes the location of the cursor to
be the starting point for the text string. The Ten command ends at stage 3, so this <retura>
initiates the drawing of the text strin&

rear accepts *options. to vary the angle, height, and line width of. the characters, and to either
center or right justify the text object. The text string may span more than one line by escaping
the <remm> G.s., \<retuara>) to indicate continuation. To illustrate some of these
capabilities, try the following:

J •

3

(right justify text)

(rotate text 90 degrees)

(pick a point below and left of the previous point)

*Lines <return>
<position cursor> <sp>
<position cursor> <sp>
<position cursor> <sp>
<position cursor> <sp>
< return >

• GraAxal FAmr TuonW

*Text - r <return>
top\< return >
right <return>
<position cursor> <retum>
Text - a90 <retnra>

lower\< return >
left < return >
<position cursor> < return >

top
rIgh

L
d J
34•
OM

Figure 1. Generating text objects

2.2.2 Drawing lines. The Lines command is used to construct objects built from a sequence of
straight lines. It consists of stages 1 and 3. Stage 1 is straightforward:

•Lines possible options <return>

Lines accepts options to specify line style and line width.

Stage 3, the entering of points, is more interesting. Points are referenced either with the graphic
cursor or by name. We have already entered a point with the cursor for the Text command.
For Lines it is more of the same. As an example, let us build a triangle:

(locate the first point)
(the second point)
(the third point)
(back to the first point)
(terminate paints, draw triangle)

Typing <sp> enters the location of the crosshairs as a point. Ged identifies the point with an
integer and adds the location to the current point sea. The last point entered can be erased by
typing * . The current point set can be cleared by typing On receiving the final < return >
the points are connected in numerical order.

2.2.2.1 Accessing points by name. The points in the current point set may be • referenced by
name using the S operator. Sn references the point numbered n. Using S we can redraw the
triangle of Section 2.2.2 by entering:

•Lines <return>
<position cursor>
<position cursor>
<position cursor>
$0 < return >
< return >

<sp>
<sp>
<sp>

 •

(reference point 0)

•

1

•

<position cursor> <sp>
SO <retwn>
<retwa>

(acs the previous point set)
(identify the current points)
(erase the last point)
(add a new point)
(close the figure)

i

F ►tomt point ant€rad
Fairth point thLr d polnt

ngure L Building a triangle

sseasnd po l n t

s Giaphicai Editor rumnai

At the start of each command that includes stage 3. points, the current point set is empty. The
point set from the previous command is savedL and is accessible using the operator. . swaps
the points in the previous point set with those in the current set. The a operator can be used
to identify the current points. To illustrate, let us use the triangle just entered as the basis for
drawing a quadrilaterai:

-Lines <rem=>

•

O

-Lines <return>
&I <return>
S.2 < return >
<sp>
$O < return >
< return >

(reference point 1 from the previous point set)
(reference point 2)
(enter a new point)
(or S.1, to close the figure)

Graphical E41wr Tumrial S

Figure 3. Accessing the previous point set

Individual points from the previous point set can be referenced by using the . operator with S.
We will build a triangle that shares an edge with the quadrilateral:

point 1 fran prevIo ws point sett ROW pCInc

point 2 from pr-evlous point set

Figure A. Referencing points from the previous point set

A point can also be given a name. The > operator allows you to associate an upper case letter
with a point just entered. A simple example is:

•

.1

•

(enter a point)
(name the point A)

-Lines <rstttra>
<position cursor> <sp>
>A
<position Cursor> <sp>
<rMrn>

6 Grykital Editor Tutorial

In commands that follow you can now reference point A using the S operator. as in:

-Lines <rsturn_>
SA
<position =nor> <sp>
< return>

?.I.3 Drawing curves. Curves are interpolated from a sequence of three or more points. The
Arc command generates a circular arc given three points an a circle. The art; is drawn starting
at the first point, through the second point, and ending at the third point. A circle is an arc
with the first and third points coincident. One way to draw a drele is thus.

•Arc <return>
<position cursor> <sp>
<position Cursor> <sp>
w < reru= >
<retura>

1.3 Edltieg objects

.1.3.1 Addressing objects. An object is addressed by pointing to one of its handles. All objects
'have an object-handle. Usually the object-handle is the first point entered when the object was
created., The objects command marks the location of each object-handle with an O. Type

cob.I== -v <return>

to see the handles of all the objects on the screen.

Some objects, Lines for example, also have point-handles. Typically each of the points entered
when an object is constructed becomes a point-handle. (Yes. an object-handle is also a point-

handle.) The points command marks each of the point-handles.

A handle is pointed to by including it within a defined-area. A defined-area is generated either
with a command line option or interactively using the graphic cursor. As. as example, try
deleting one of the objects you have created on the screen.

-Delete < return >
<pwitiou curs®r> <sp>.
<posidon cumr> .<sp>
< return >
<rettt~>

(above and to the left of some object-handle)
(below and to the right of the object-handle)
(the defied-area should include the object-handle)
(if all is well, delete the object)

The defined-area is outlined with dotted lines. The reason for the seemingly extra < return>
at the end of the Delmar command is to give you an opportunity to stop the command (using
<eut>) if the defined-area is not quite right. Every command that accepts a defined-area
will vidt, for a confirming <rattum> . Use the new command to get a fresh copy of the
remaining objects.

Notice that defined-arcs are entered as points in the same way that objects are created
Actually, a defined-uea may be generated by giving anywhere from zero to 30 points.
Inptutim zero points is psrd Amy useful to point to. a single idle. It creates a small
defted-uas about the lo=tion of the tt:rnatinadnS <r .> . Using a zero point defined-area.
the Dekw ctstmand would be;

i

•

• Graphical UAW rus"al 7

•Delete <return>
<position Cursor>
<return>
<return>

(center the txosshairs on the object-handle)
(terminate the defined-area)
(delete the object)

A defined-area can also be given as a command line option. For example, to delete everything
in the display buffer give the universe option to the Delete command. Note 'the difference
between the commands Delete mu and erase.

2.3.2 Changing the location of an object Objects are moved using the Move command. Create a
circle using Arc, then move it as follows:

"Move <return>
<position curscr> <return>
<return>
<position cursor> <return>

(centered on the object-handle)
(this establishes a pivot, marked with an asterisk)
(this establishes a destination)

The basic move operation relocates every point in each object addressed by the distance from
the pivot to the destination. In this case we chose the pivot to be the object-handle, so
effectively we moved the object-handle to the destination point.

2.3.3 Changing the shape of an object The Box command is a special case of generating lines.
Given two points it creates a rectangle such that the two points are at opposite corners. The
sides of the rectangle lie parallel to the edges of the screen. Draw a box:

-Box

<return>

<position

 cursor> <sp>
<position c

u

rSOP> <

return>

Box generates point-handle at each ve

r

tex of the rectangle. Use the points command to marl:
the point-handles. The shape of as object can be altered by m

oving point-handles. The next
example i

l

lustrates one w

ay to double the height of a box.

*Move

-

p+ <return>

<position cuPsor> <sp>
<

position CnISOi> <return>

<position carsor> <return>

<.

p

osition cursor> <

 return >

(left of the bozo between the top and bottom edges)
(right of the bozo below the bottom edge)
(on the top edge)
(directly below on the bottom edge)

i

0

J
•

l

-Scale - 08 <remrn>
< raTurn>

< paitton eursar> < return >
<return>

(reference the. previous defined-area)

(set pivot above a character aear the middle)

8 Of6phdcal "aw TuMRW

•

Figure S. Growing a box

Since the goints flag is true, the operation is applied to each point-handle addressed. In this
case each point-handle within the defined-area is moved the distance from the pivot to the
destination. If P were false only the object-handle would have been addressed.

2.3.4 Changing die sine of as objea. The size of an object can be changed using the Scale
command. Scale scales objem by changing the distance from each handle of the object to a
pivot by a factor. Put a line of text on the screen and try the following Scale cotnrnands:

-Sete -(200 <retura>
<pasition cUMr> <retu=>
<pwition cumr> <retura>
< raturn>

(factor is in percent)
(point to object-handle)

'(set pivot to rightmost character)

•

t~ Ptzinss 6'ar tS~

%we pa l n is for daf trisd- ersse

Plves

ciast:nesion

a

(specify the center)
(specify a point on the circle)

Gr4pltial EBiwr Tulonal 9

pivot for- Scale -fm

•
A LME 131E ?irXT.

LINE CFK

"-P ivot for Stale -fz[n

orl~ln'f Hrm
of t~srt

Figure 6. Sailing text

A useful insight into the behavior of scaling is to note that the position of the pivot does not
change. Also observe that the defined-area is scaled to preserve its relationship to the graphical
objects.

The size of objects can also be changed by moving point-handles. Generate a circle, this time
using the Circle command.

*Circle <return>
< position cursor> <sp>
< position cursor> <return>

Circle generates an arc with the first and third point at the point specified on the circle. The
second point of the arc is. looted 1800 around the circle. One way to change the size of the
circle is to move one of the point-handles (using Move -p).

The size of text characters can be changed via a third mechanism. Character height is a
property of a line of text The Edit command allows you to change character height as follows:

-Edit mhheight <r-etarn>
<position cursor> <return>
<return>

(height is in universe units, see Section 2A)
(point to the object-handle)

.1.3.5 Changing the orientation of an object The orientation of an object can be altered using
Rotate. Rotate .rotates each point of an object about a pivot by an angle. Try the following
rotations on a line of text:

-Rotate -O0 <return>
<poosition cursor> <return>
<position cursor> <return>
<return>

-Rotate -a- 90 <return>
. <return>
<position cursor> <return>
<return>

(angle is in degrees)
(point to object-handle)
(set pivot -to rightmost character)

(reference previous defined-area)
(set pivot to a character near the middle)

s

~l

•

10 Graphical Fdiror Tem.ial

crigin'.1 tit

GrrdR LIM lF

vot for- Rotate -a,;0

A= 9R L~ OF TEXT
__\\pivot far- Rotate -a-90

Figun 7. Rotating text

•2.2.6 Changing the style o/ width of Unex In the current editor objws can be drawn from lines
in any of be styles (solid, dashed. dot-dashed, dotted,. long-dashed) and three widths (narrow,
medium. bold). Style is controlled by the s option, width by w.

-Lines - wu.sdo <retara>
<position cursor> .<sp>
<position cr >. <sp>
<

urso
return

creates a narrow width dotted line.

-Edit --w0,sdd <return>
<position cursor> < return >
<ret rn>"

chaanges the line to bold dot-dashed.

(point to object-handle of the line)

2.4 View canzaands

'•tmW <retttrn>
<pe3ition cursor> <sp>
<pasition carsor> <retnrn>

(above. and to the left of any object)
(below and to the right, also and poina)
(vefify)

.U of - the object we have drawn lie within a Cartesian place, 65,534 units on each axis,
known as the univerma Thus far we have displayed only a small portion of the universe on the
display screen. The command

-view --n <retnra>

displays the entire universe.

2.4.1 Windowing. A mapping of a' portion of the universe onto the display 3c -̂.en is called a
window. The extent or magnification of a window is altered using the mom command. To boil¢
a window that includes all of the objects you have dram type

zgo wns can be either in or M Z00ming in, as with a €camera lees in=vwas the magni,t wion .
of the window. The area outlined by yoina is ex-o3tded to 02 the screen. Zooming out

•

i

•

•

Graphical Edi or Tr and 11

decreases at cation. The current window is shrnnlc so that it fits within the defined-area.
The direction of the zoom is controlled by the sense of the out ft o true means zoom out

The location of a window is altered using view. View moves the window so that a given point. is
the universe lies at a given location on the screen.

-view <r+etarn> -

<Position cursor> <retura>
<Position carsor> <rehun>

(locate a point in the universe)
(locate a point on the screen)

View also provides access to several predefined windows. We have already sees view - a. view
-h displays the home-window. The home-window is the window that circumscribes all of the
objects in the universe. The result is similar to that of the example using zoont given earlier.

Lastly, using view you may select to window on a particular region. The universe is partitioned
into 25 equal sized regions. Regions are numbered from I to 25 beginning at the lower left and
proceeding toward the upper right Region 13, the center of the universe, is used as the default
region by drawing commands such as plot and vtoc (see 111).

2.S Other Ce&mands

2.S.1 Interacting with files. To save the contents of the display buffer copy it to a file using the
. write command:

*write filename <return>

The contents of filename will be a GPS, thus it-can be displayed using any of the device filters
(e.g., td 111) or read back into ged

A GPS is read into the editor using the read command-

-read filename <return>

The GPS from filename is appended to the display buffer and then displayed. Because read does
not change the current window only some or none of the objects read may be visible. A useful
command sequence to view everything read is

-read -e- filename <return>
-view -h <retura>

The display function of read is inhibited by setting the echo flag to false. view -h windows on
and displays the full display buffer.

The read command may also be used to input text files. The form is:

read i-option(s)1 filename <return>

followed by a single point to locate the first line -of text. A text object is created for each line
of

 text from fikrane. Options to read are the same as those for the Ter command.

2.3.2 Leaving the e

ditor. Use the gttir command to terminate as editing session. As with the
text editor ed q

uit responds with ? if the internal buffer has been modi

f

ied since the last wrier.
A second grtir forces exit

Z.6 O

ther Usetai Thta; s to K

now.

2.6.1 One Gne UNIX escape. As is e

d. : provides a tempora

r

y escape to the Shell

2.6.2 Typing ah

e

ad Most programs under UNIX allow you to type input before the p

r

ogram is
wady to re

c

eive it is general this is not the case with ged; characters typed before the
a

ppropriate prompt are lost

"4

•

12 Graphical Fdifor ruwrW

2.6.3 Speeding dunes up: Displaying the contents of the display buffer can be time can3itrning.
particularly if much text is involved. The wise use of two flags to control what gets displayed
can make life more pleasant. the echo flag controls echoing of new additions to the display
buffer. the text flag controls *whether text will be outlined or drawn.

3. COMMA;lD SUMMARY

In the summmT, characters actually typed are printed in boldface. Command stages are printed
in italics. Arguments surrounded by brackets are optional. Parentheses surrounding arguments
separated by "or" means that exactly one of the arguments must be given. For example, the
Delete command (Section 3.2) accepts the arguments - universe, view, and points

3.1 Caastn et commands:

ate I-echo,styie,iidthl points

Box [-i-echo,style,widthl points

Circle [-echo,style,width] points

Hardware [-echo] um points

Lines I- echo,styie,widthl points

Text [- sagle,echo,height,midpoint,rightpoint,text,,widthl tea poina

3.2 Edit csmmands:

Delete (- (universe or view) or points)

Edit [-angle,echo,height,style.Widthl. (- (universe or view) or points)

Kopy [®eeho,points,zl points pivot destination

Move [-echo,points.zl points pivot destination

Rotate [-angle, echo,kopy,zl points pivot destination

Scale [-echo,factor,kopy,zl points pivot destination

3.3 Ylew cocaands:

coordinates points

.l

J

@la8~

new,

object (e (universe or view) or points)

points (- (labelled-points or universe or view) or points)

view (- (home or universe or region) or xl pivot destinadon)

x (-view] points

zoom I-outl points

3.4 Other commands:

quit

read I-engje,who,Height.midpcint,rightpoint,text,widthl Jilenaata (destinadoal

set 1-un6a,acho,fmar,beiglat.kopy,midpoint.$Dints Aghtpoint,style.text,width.ai

Mite A MM

1

Grophaw "or Tuond 13

kommand

3.3 Options:

Options specify parameters used to construct, edit, and view graphical objects. If a parameter
used by a command is not specified as an option, the default value for the parameter will be
used. The format of command options is

- option L option)
where option is keykner{value). Flags take on the values of true or false indicated by + and -
respectively. If no value is given with a flag, true is assumed.

Object options:

Specify an angle of n degrees.

When true, changes to the display buffer will be echoed on the screen.

Specify a scale factor of n percent. .

Specify height of text to be n universe-units (0 < n <.1280).

The commands Scale and Rotate can be used to either create new objects or
to alter old ones. When the kopy flag is true, new objects are created.

When true, use the midpoint of a text string to locate the string.

When true, reduce magnification during :oorn.
When true, operate on points otherwise.operate on objects.

When true, use the rightmost point of a text string to locate the string.

Most text is drawn as a sequence of lines. This can sometimes be painfully
slow. When the text flag is false, text strings. are outlined rather than drawn.

Specify line style to be one of following types:

solid
dashed
dot-dashed
dotted
long-dashed

so
da
dd
do
id

Specify line width to*be one of following types:
n narrow
In medium
b bold

One way to And the center of a rectangular area is to draw the diagonals of
the rectangle. When the x flag is true, defined-areas are drawn with their
diagonals.

midpoint

out

points

rightpoint

stylerype

text

widthrype

x

Area options:

home

regionn

universe

view

•

•

Reference the home-window.

Reference region n.

Reference the universe-window.

Reference those objects currently in view.

anglen

echo

factors

heightn

kopy .

1 Omphica(Editor rutorial

s. ACMNOWLEDGEMEM

Cred borrows freely from the ideas and code of the gex program by D. J. JackowskL The first
version of ged was v+ritten by D. L Pinkston..

S. REFIRMIS .

'(11 Feuer. A. R: 'PWB/Graphics Overview": T 179-3782-1. June 11, 1979.

(21 PWB/Uv1X User's Manual Release 2.0, Bell. Laboratories, 1979.

i

J •

6r*plr=i Mw Tugon ! •

APPENDIX[: SOME EXAMPLES OF WHAT CAN BE DONE

1. Text Centered Within a Circle

-Circle <cr>
<position cursor> <sp>
<position cursor> <a>
*Text -m <a>
some text <a>
3.0 <a>
<a>

(establish center)
(establish radius)
(text is to be centered)

(first point from previous set, i.e., circle center)

some text

is

Z. Making Mates on a Plot

•! gss I plot -g >A <cr> (generate a plot, put it :m file A)

(window on the plot)
(input the plot, but do not display it)

1® 9 7 8 1

6

16 Graphical Editor rutorial

*read - e- A <a>
eview - h <a>
-Lines -sdo <cr>
<position cursor> <sp>
<position cursor> <sp>
<position cursor> <sp>
<cr>
-set ®h1A wn <cr>
•Text -r <cr>
threshold boyond which nothing
<positioni cursor> <cr>
-Text -am90 <cr>
threshold beyond which nothing
< position cursor> <cr>
•x <a>
< position cursor> <sp>
< position. cursor> <cr>
-Text -h300,wm.m <cr>

'SOME YIN& D OF PLOT <cr>
<position cursor> <cr>

SOME KIND OF PLOT

1.

t "Sftld Csjw+d which motl4tr+q ns♦ tw-s

I I

c
OF

s

(dray dotted lines)

(end of Lines)
:(set text height to 150, line width to narrow)
(right justify text)

utters <cr>
(set right point of text)
(rotate text negative 90 degrees)

matters <cr>
(set top end of text)
(fled center of plot) .
(top left of plot)
(bottom right)
(build title: height 300, weight medium, centered)

(set title centered above plot)

to

9

8

7~

6

5

4

3

2

Gmphiwl "or 7uwrW 17

. 3. A Page Layout with Drawings aW Test

•! mad -s1,a100 I title -v' seed 1' I gsort bucket hist - r12 >A <cr>
(put a histogram, region 12, of 100 random numbers into fits A)

+: rand - s2,a100 I title -v' seed 2' I gsort bracket hist -r13 >H <a>
(put another histogram, region 13, into file B)

-' ed <cr> (create a file of text using the text editor)
a <cr>
On this page are two histograms <cr>
from a series of 40 <cr>
designed to illustrate the weakness <cr>
of multiplicative congmential random number generators. <cr>
.pl \n (nlu <cr> (mark end of page)

•

. <cr>
W C <cr>
156

(put the text into file C)

q <cr>
•! uroS C J 'roo C <cr> (format C, leave the output in C)

*view -u <cr>
-read A <cr>
-read B <cr>
-read - h300.wn.m C <cr>
<position cursor> <cr>
-view -h <cr>

(window on the universe)

(text height 300. line weight narrow. text centered)
(center text over two plots)
(window on the resultant drawing)

•

e

0

00

e
0

On this page ar® two histograms from s sar ors of 60 defsl ned to
illustrate the weakness of multlpllcatIva COngruontlal 9%WW FA

n ffber generators.

•

0.301 O.UO O.S14 0.11

YID 1

20

a

~o

0a j
0.0731

1

9

0.64? 0."1

Y.QD 8

?a
uo

tn
j

J
W

IP
3

P*
!y

d
a
v

'

m
>o

16

1~

18

6

t

0 0.00761 0. NY 0.28A O-o 811% 0.110 0.662 0.900

22

sr

0

4

2

8.%S

•

•

 k

•

Lex - A Lexical Analyzer Generator

M. E. Lesk and E. Schmidt
Bell Laboratories

Murray Hill, New Jersey 07974

Lex helps write programs whose control flow is directed by instances of regular expressions in the in-
put stream. It is well suited for editor-script type transformations and for segmenting input in prepara-
tion for a parsing routine.

Lex source is a table of regular expressions and corresponding program fragments. The table is
translated to a program which reads an input stream, copying it to an output stream and partitioning the
input into strings which match the given expressions. As each such string is recognized the correspond-
ing program fragment is executed. The recognition of the expressions is performed by a deterministic
finite automaton generated by Lex. The program fragments written by the user are executed in the ord-
er in which the corresponding regular expressions occur in the input stream.

The lexical analysis programs written with Lex accept ambiguous specifications and choose the longest
match possible at each input point. If necessary, substantial lookahead is performed on the input, but
the input stream will be backed up to the end of the current partition, so that the user has general free-
dom to manipulate it.

Lex can be used to generate analyzers in either C or Ratfor, a language which can be translated au-
tomatically to portable Fortran. It is available on the PDP-11 UNIX, Honeywell GCOS, and IBM OS
systems. Lex is designed to simplify interfacing with Yacc, for those with access to this compiler-
compiler system.

Table of Contents

•

•

1 Introduction.

Lex is a program generator designed for lexical process-
ing of character input streams. It accepts a high-level,
problem oriented specification for character string match-
ing, and produces a program in a general purpose
language which recognizes regular expressions. The regu-
lar expressions are specified by the user in the source
specifications given to Lex. The Lex written code recog-
nizes these expressions in an input stream and partitions
the input stream into strings matching the expressions.
At the boundaries between strings program sections pro-
vided by the user are executed. The Lex source file asso-

1
3
3
5
7
8
8
9
10
11
12
12
13
13
13

r.

ciates the regular expressions and the program fragments.
As each expression appears in the input to the program
written by Lex, the corresponding fragment is executed.

The user supplies the additional . code beyond expres-
sion matching needed to complete his tasks, possibly in-
cluding code written by other generators. The program
that recognizes the expressions is generated in the general
purpose programming language employed for the user's
program fragments. Thus, a high level expression
language is provided to write the string expressions to be
matched while the user's freedom to write actions is
unimpaired. This avoids forcing the user who wishes to
use a string manipulation language for input analysis to

1. Introduction.
2. Lex Source.
3. Lex Regular Expressions.
4. Lex Actions.
5. Ambiguous Source Rules.
6. Lex Source Definitions.
7. Usage.
8. Lex and Yacc.
9. Examples.

10. Left Context Sensitivity.
11. Character Set.
12. Summary of Source Format.
13. Caveats and Bugs.
14. Acknowledgments.
15. References.

0

M-2

Source - Lex - yylex

Input - yylex - Output

An overview of Lex

Figure I

write processing programs in the same and often inap-

propriate string handling language.
Lex is not a complete language, but rather a generator

representing a new language feature which can be added

to different programming languages, called "host
languages." Just as general purpose languages can pro-
duce code to run on different computer hardware, Lex
can write code in different host languages. The host
language is used for the output code generated by Lex
and also for the program fragments added by the user.
Compatible run-time libraries for the different host
languages are also provided. This makes Lex adaptable to
different environments and different users. Each applica-
tion may be directed to the combination of hardware and
host language appropriate to the task, the user's back-
ground, and the properties of local implementations. At
present there are only two host languages, C[11 and For-
tran (in the form of the Ratfor language[21). 'Lex itself
exists on UNIX, GCOS, and OS/370; but the code gen-
erated by Lex may be taken anywhere the appropriate
compilers exist.

Lex turns the user's expressions and actions (called
source in this memo) into the host general-purpose
language; the generated program is named yylex. The
yylex program will recognize expressions in a stream
(called input in this memo) and perform the specified ac-
tions for each expression as it is detected. See Figure 1.

For a trivial example, consider a program to delete
from the input all blanks or tabs at the ends of lines.

[\tl+$;

is all that is required. The program contains a %% delim-
iter to mark the beginning of the rules, and one rule.

This rule contains a regular expression which matches
one or more instances of the characters blank or tab
(written \t for visibility, in accordance with the C
language convention) just prior to the end of a line. The
brackets indicate the character class made of blank and
tab; the + indicates "one or more ..."; and the $ indi-
cates "end of line," as in QED. No action is specified, so
the program generated by Lex (yylex) will ignore these
characters. Everything else will be copied. To change any
remaining string of blanks or tabs to a single blank, add
another rule:

[\t1+$
[\tl+ printf(" ");

The finite automaton generated for this source will scan
for both rules at once, observing at the termination of the
string of blanks or tabs whether or not there is a newline
character, and executing the desired rule action. The first
rule matches all strings of blanks or tabs at the end of
lines, and the second rule all remaining strings of blanks
or tabs.

Lex can be used alone for simple transformations, or
for analysis and statistics gathering on a lexical level. Lex
can also be used with a parser generator to perform the
lexical analysis phase; it is particularly easy to interface
Lex and Yacc [31. Lex programs recognize only regular
expressions; Yacc writes parsers that accept a large class
of context free grammars, but require a lower level
analyzer to recognize input tokens. Thus, a combination
of Lex and Yacc is often appropriate. When used as a
preprocessor for a later parser generator, Lex is used to
partition the input stream, and the parser generator as-
signs structure to the resulting pieces. The flow of con-
trol in such a case (which might be the first half of a
compiler, for example) is shown in Figure 2. Additional
programs, written by other generators or by hand, can be
added easily to programs written by Lex. Yacc users will
realize that the name yylex is what Yacc expects its lexical
analyzer to be named, so that the use of this name by
Lex simplifies interfacing.

Lex generates a deterministic finite automaton from the
regular expressions in the source [41. The automaton is
interpreted, rather than compiled, in order to save space.
The result is still a fast analyzer. In particular, the time

is

•

lexical
rules

1
Lex

1

grammar
rules

1
Yacc

1

Input-

yylex

yyparse - Parsed input

Lex with Yacc

Figure 2

40

M-3

taken by a Lex program to recognize and partition an in-
put stream is proportional to the length of the input. The
number of Lex rules or the complexity of the rules is not
important in determining speed, unless rules which in-
clude forward context require a significant amount of re-
scanning. What does increase with the number and com-
plexity of rules is the size of the finite automaton, and
therefore the size of the program generated by Lex.

In the program written by Lex, the user's fragments
(representing the actions to be performed as each regular
expression is found) are gathered as cases of a switch (in
C) or branches of a computed GOTO (in Ratfor). The
automaton interpreter directs the control flow. Opportun-
ity is provided for the user to insert either declarations or
additional statements in the routine containing the ac-
tions, or to add subroutines outside this action routine.

Lex is not limited to source which can be interpreted
on the basis of one character lookahead. For example, if
there are two rules, one looking for ab and another for
abcdefg, and the input stream is abcdejh, Lex will recog-

nize ab and leave the input pointer just before cd.. .
Such backup is more costly than the processing of simpler
languages.

2 Lex Source.

The general format of Lex source is:

braces. As a slightly more useful example, suppose it is
desired to change a number of words from British to
American spelling. Lex rules such as

colour printf ("color");
mechanise printf ("mechanize");
petrol printf ("gas");

would be a start. These rules are not quite enough, since
the word petroleum would become gaseunr, a way of deal-
ing with this will be described later.

3 Lex Regular Expressions.

The definitions of regular expressions are very similar
to those in QED [5]. A regular expression specifies a set
of strings to be matched. It contains text characters
(which match the corresponding characters in the strings
being compared) and operator characters (which specify
repetitions, choices, and other features). The letters of
the alphabet and the digits are always text characters; thus
the regular expression

integer

matches the string integer wherever it appears and the ex-
pression

•

•

(definitions)

(rules)

(user subroutines)

a57D

looks for the string a57D.
Operators. The operator characters are

where the definitions and the user subroutines are often
omitted. The second %% is optional, but the first is re-

quired to mark the beginning of the rules. The absolute
minimum Lex program is thus

and if they are to be used as text characters, an escape
should be used. The quotation mark operator (") indi-
cates that whatever is contained between a pair of quotes
is to be taken as text characters. Thus

xyz" + +"
(no definitions, no rules) which translates into a program
which copies the input to the output unchanged.

In the outline of Lex programs shown above, the rules
represent the user 's control decisions; they are a table, in
which the left column contains regular expressions (see
section 3) and the right column contains actions, program
fragments to be executed when the expressions are recog-
nized. Thus an individual rule might appear

integer printf("found keyword INT");

to look for the string integer in the input stream and print
the message " found keyword INT" whenever it appears.
In this example the host procedural language is C and the
C library function printf is used to print the string. The
end of the expression is indicated by the first blank or tab
character. If the action is merely a single C expression, it
can just be given on the right side of the line; if it is com-
pound, or takes more than a line, it should be enclosed in

matches the string xyr++ when it appears. Note that a
part of a string may be quoted. It is harmless but un-
necessary to quote an ordinary text character; the expres-
sion

"xyz + +"

is the same as the one above. Thus by quoting every
non-alphanumeric character being used as a text charac-
ter, the user can avoid remembering the list above of
current operator characters, and is safe should further ex-
tensions to Lex lengthen the list.

An operator character may also be turned into a text
character by preceding it with \ as in

xyz\ +\ +

which is another, less readable, equivalent of the above •

M --4

expressions. Another use of the quoting mechanism is to
get a blank into an expression; normally, as explained
above, blanks or tabs end a rule. Any blank character not
contained within [] (see below) must be quoted. Several
normal C escapes with \ are recognized: \n is newline, \t
is tab, and \b is backspace. To enter \ itself, use \\.
Since newline is illegal in an expression, \n must be used;
it is not required to escape tab and backspace. Every
character but blank, tab, newline and the list above is al-
ways a text character.

Character classes. Classes of characters can be
specified using the operator pair H. The construction
[ab] matches a single character, which may be a, b, or c.
Within square brackets, most operator meanings are ig-
nored. Only three characters are special: these are \ -

and The - character indicates ranges. For example,

[a- z0-9<>]

indicates the character class containing all the lower case
letters, the digits, the angle brackets, and underline.
Ranges may be given in either order. Using - between
any pair of characters which are not both upper case
letters, both lower case letters, or both digits is imple-
mentation dependent and will get a warning message.
(E.g., [0-z] in ASCII is many more characters than it is in
EBCDIC). If it is desired to include the character - in a
character class, it should be first or last; thus

[-+0-9]

matches all the digits and the two signs.
In character classes, the " operator must appear as the

first character after the left bracket; it indicates that the
resulting string is to be complemented with respect to the
computer character set. Thus

["abc]

matches all characters except a, b, or c, including all spe-
cial or control characters; or

["a-zA-Z]

is any character which is not a letter. The \ character pro-

vides the usual escapes within character class brackets.
Arbitrary character. To match almost any character,

the operator character

is the class of all characters except newline. Escaping into
octal is possible although non-portable:

R40A 176]

matches all printable characters in the ASCII character
set, from octal 40 (blank) to octal 176 (tilde).

Optional expressions. The operator ? indicates an op-
tional element of an expression. Thus

ab?c

matches either ac or abc.
Repeated expressions. Repetitions of classes are indicat-

ed by the operators • and +.

as

is any number of consecutive a characters, including zero;
while

a+

is one or more instances of a. For example,

[a-z] +

is all strings of lower case letters. And

[A-Za-z] [A-Za- z0-9]•

indicates all alphanumeric strings with a leading alphabetic
character. This is a typical expression for recognizing
identifiers in computer languages.

Alternation and Grouping. The operator I indicates
alternation:

(ab lcd)

matches either ab or cd. Note that parentheses are used
for grouping, although they are not necessary on the out-
side level;

ablcd

would have sufficed. Parentheses can be used for more
complex expressions:

(ab Icd+)?(ef)-

matches such strings as abejej, ejejej, cdej, or cddd; but
not abc, abcd, or abcdej.

Context sensitivity. Lex will recognize a small amount
of surrounding context. The two simplest operators for
this are " and $ If the first character of an expression is

the expression will only be matched at the beginning of
a line (after a newline character, or at the beginning of
the input stream). This can never conflict with the other
meaning of complementation of character classes, since
that only applies within the [I operators. If the very last
character is $, the expression will only be matched at the
end of a line (when immediately followed by newline).
The latter operator is a special case of the /operator char-
acter, which indicates trailing context. The expression

ab/cd

matches the string ab, but only if followed by cd. Thus

•

•

is

\t,,
,.\n„

LEX-5

ab$

is the same as

ab/\n

Left context is handled in Ldx by start conditions as ex-
plained in section 10. If a rule is only to be executed
when the Lex automaton interpreter is in start condition
x, the rule should be prefixed by

<x>

using the angle bracket operator characters. If we con-
sidered " being at the beginning of a line" to be start con-
dition ONE, then the

-
operator would be equivalent to

< ONE>

Start conditions are explained more fully later.
Repetitions and Definitions. The operators () specify ei-

ther repetitions (if they enclose numbers) or definition
expansion (if they enclose a name). For example

(digit)

•
looks for a predefined string named digit and inserts it at
that point in the expression. The definitions are given in
the first part of the Lex input, before the rules. In con-

trast,

a(1,5)

looks for 1 to 5 occurrences of a.
Finally, initial % is special, being the separator for Lex

source segments.

4 Lex Actions.

When an expression written as above is matched, Lex
executes the corresponding action. This section describes
some features of Lex which aid in writing actions. Note
that there is a default action, which consists of copying
the input to the output. This is performed on all strings
not otherwise matched. Thus the Lex user who wishes to
absorb the entire input, without producing any output,
must provide rules to match everything. When Lex is be-
ing used with Yacc, this is the normal situation. One may
consider that actions are what is done instead of copying
the input to the output; thus, in general, a rule which
merely copies can be omitted. Also, a character combina-
tion which is omitted from the rules and which appears as
input is likely to be printed on the output, thus calling at-
tention to the gap in the rules.

One of the simplest things that can be done is to ignore
the input. Specifying a C null statement, ; as an action
causes this result. A frequent rule is

• [\t\nl ;

which causes the three spacing characters (blank, tab, and
newline) to be ignored.

Another easy way to avoid writing actions is the action
character 1, which indicates that the action for this rule is
the action for the next rule. The previous example could
also have been written

with the same result, although in different style. The
quotes around \n and \t are not required.

In more complex actions, the user will often want to
know the actual text that matched some expression like
[a-zJ+. Lex leaves this text in an external character ar-
ray named yytext. Thus, to print the name found, a rule
like

[a-z] + printf (" %s", yytext);

will print the string in yytext. The C function printf ac-
cepts a format argument and data to be printed; in this
case, the format is "print string" M indicating data
conversion, and s indicating string type), and the data are
the characters in yytext. So this just places the matched
string on the output. This action is so common that it
may be written as ECHO:

[a-z] + ECHO;

is the same as the above. Since the default action is just
to print the characters found, one might ask why give a
rule, like this one, which merely specifies the default ac-
tion? Such rules are often required to avoid matching
some other rule which is not desired. For example, if
there is a rule which matches read it will normally match
the instances of read contained in bread or readjust, to
avoid this, a rule of the form [a- zj+ is needed. This is
explained further below.

Sometimes it is more convenient to know the end of
what has been found; hence Lex also provides a count
yyleng of the number of characters matched. To count
both the number of words and the number of characters
in words in the input, the user might write

[a-zA-Z) + {words++; chars += yyleng;)

which accumulates in chars the number of characters in
the words recognized. The last character in the string
matched can be accessed by

yytext[yyleng-1l

in C or

yytext (yyleng)

in Ratfor.

•

M-6

Occasionally, a Lex action may decide that a rule has
not recognized the correct span of characters. Two rou-
tines are provided to aid with this situation. First,
yymore() can be called to indicate that the next input ex-
pression recognized is to be tacked on to the end of this
input. Normally, the next input string would overwrite
the current entry in yytext. Second, yyless (n) may be
called to indicate that not all the characters matched by
the currently successful expression are wanted right now.
The argument n indicates the number of characters in
yytext to be retained. Further characters previously
matched are returned to the input. This provides the
same sort of lookahead offered by the / operator, but in a
different form.

Example: Consider a language which defines a string as
a set of characters between quotation (") marks, and pro-
vides that to include a " in a string it must be preceded by
a \. The regular expression which matches that is some-
what confusing, so that it might be preferable to write

if (yytext[yyleng-11 \')
yymore ();

else
... normal user processing

which will, when faced with a string such as "abc\"def
first match the five characters "abc\ ; then .the call to
yymoreO will cause the next part of the string, "dej, to be
tacked on the end. Note that the final quote terminating
the string should be picked up in the code labeled "nor-
mal processing".

The function yylessO might be used to reprocess text in
various circumstances. Consider the C problem of distin-
guishing the ambiguity of "=-a". Suppose it is desired
to treat this as "_- a" but print a message. A rule
might be

_- [a-zA-Z] (
printf("Operator (_-) ambiguous\n");
yyless(yyleng-1);
... action for =- ...
1

which prints a message, returns the letter after the opera-
tor to the input stream, and treats the operator as "_-".
Alternatively it might be desired to treat this as "_ -a".
To do this, just return the minus sign as well as the letter
to the input:

_- [a-zA-Z1
printf("Operator (_-) ambiguous\n");
yyless(yyleng-2);
... action for = ...
}

will perform the other interpretation. Note that the ex-
pressions for the two cases might more easily be written

_-/ [A-Za-z]

in the first case and

_/- [A-Za-zl

in the second; no backup would be required in the rule
action. It is not necessary to recognize the whole
identifier to observe the ambiguity. The possibility of
"=-3", however, makes

_-/ [' \t\n]

a still better rule.
In addition to these routines, Lex also permits access to

the I/O routines it uses. They are:

1) input() which returns the next input character;

2) output(c) which writes the character c on the out-
put; and

3) unput(c) pushes the character c back onto the in-
put stream to be read later by input O.

By default these routines are provided as macro
definitions, but the user can override them and supply
private versions. There is another important routine in
Ratfor, named lexslt/; which is described below under
"Character Set". These routines define the relationship
between external files and internal characters, and must
all be retained or modified consistently. They may be
redefined, to cause input or output to be transmitted to or
from strange places, including other programs or internal
memory; but the character set used must be consistent in
all routines; a value of zero returned by input must mean
end of file; and the relationship between unput and input
must be retained or the Lex lookahead will not work.
Lex does not look ahead at all if it does not have to, but
every rule ending in + • ? or $ or containing / implies
lookahead. Lookahead is also necessary to match an ex-
pression that is a prefix of another expression. See below
for a discussion of the character set used by Lex. The
standard Lex library imposes a 100 character limit on
backup.

Another Lex library routine that the user will some-
times want to redefine is yywrap() which is called when-

ever Lex reaches an end-of-file. If yywrap returns a 1,
Lex continues with the normal wrapup on end of input.
Sometimes, however, it is convenient to arrange for more
input to arrive from a new source. In this case, the user
should provide a yywrap which arranges for new input
and returns 0. This instructs Lex to continue processing.
The default yywrap always returns 1.

This routine is also a convenient place to print tables,
summaries, etc. at the end of a program. Note that it is
not possible to write a normal rule which recognizes end-
of-file; the only access to this condition is through
yywrap. In fact, unless a private version of input() is sup-
plied a file containing nulls cannot be handled, since a
value of 0 returned by input is taken to be end-of-file.

In Ratfor all of the standard I/O library routines, input,

•

•

•

she
he

\n

M-7

• output, unput, yywrap, and lexshf, are defined as integer
functions. This requires input and yywrap to be called
with arguments. One dummy argument is supplied and
ignored.

5 Ambiguous Source Rules.

Lex rules to do this might be

she
he

\n

s++;
h ++;

;

Lex can handle ambiguous specifications. When more
than one expression can match the current input, Lex
chooses as follows:

1)* The longest match is preferred.
2) Among rules which matched the same number of

characters, the rule given first is preferred.
Thus, suppose the rules

integer keyword action ...;
[a-z] + identifier action ...;

to be given in that order. If the input is integers, it is tak-
en as an identifier, because [a-zl+ matches 8 characters
while integer matches only 7. If the input is integer, both
rules match 7 characters, and the keyword rule is selected
because it was given first. Anything shorter (e.g. int) will
not match the expression integer and so the identifier in-

terpretation is used.

The principle of preferring the longest match makes
rules containing expressions like .• dangerous. For exam-
pie,

might seem a good way of recognizing a string in single
quotes. But it is an invitation for the program to read far
ahead, looking for a distant single quote. Presented with
the input

'first' quoted string here, 'second' here

the above expression will match

'first ' quoted string here, 'second'

which is probably not what was wanted. A better rule is
of the form

,r%n]•'

which, on the above input, will stop after fiast. The
consequences of errors like this are mitigated by the fact
that the . operator will not match newline. Thus expres-
sions like .• stop on the current line. Don't try to defeat
this with expressions like [.\nl+ or equivalents; the Lex
generated program will try to read the entire input file,
causing internal buffer overflows.

Note that Lex is normally partitioning the input stream,
not searching for all possible matches of each expression.
This means that each character is accounted for once and
only once. For example, suppose it is desired to count
occurrences of both she and he in an input text. Some

where the last two rules ignore everything besides he and
she. Remember that . does not include newline. Since
she includes he, Lex will normally not recognize the in-
stances of he included in she, since once it has passed a
she those characters are gone.

Sometimes the user would like to override this choice.
The action REJECT means " go do the next alternative."
It causes whatever rule was second choice after the
current rule to be executed. The position of the input
pointer is adjusted accordingly. Suppose the user really
wants to count the included instances of he.

{s++; REJECT;)
(h ++; REJECT;)

f

these rules are one way of changing the previous example
to do just that. After counting each expression, it is re-
jected; whenever appropriate, the other expression will
then be counted. In this example, of course, the user
could note that she includes he but not vice versa, and
omit the REJECT action on he, in other cases, however,
it would not be possible a priori to tell which input char-

acters were in both classes.
Consider the two rules

a [bc] + (... ; REJECT;]
a [cd] + (... ; REJECT;)

If the input is ab, only the first rule matches, and on ad
only the second matches. The input string accb matches
the first rule for four characters and then the second rule
for three characters. In contrast, the input accd agrees
with the second rule for four characters and then the first
rule for three.

In general, REJECT is useful whenever the purpose of
Lex is not to partition the input stream but to detect all
examples of some items in the input, and the instances of
these items may overlap or include each other. Suppose a
digram table of the input is desired; normally the digrams
overlap, that is the word the is considered to contain both
th and he. Assuming a two-dimensional array named di-
gram to be incremented, the appropriate source is

[a-z][a-z] (digram[yytext[0]][yytext[1]]++; REJECT;)
\n

where the REJECT is necessary to pick up a letter pair
beginning at every character, rather than at every other
character.

•

•

•

LEX-8

6 Lex Source Definitions.

Remember the format of the Lex source:

(definitions)

(rules) .

(user routines)

So far only the rules have been described. The user
needs additional options, though, to define variables for
use in his program and for use by Lex. These can go ei-
ther in the definitions section or in the rules section.

Remember that Lex is turning the rules into a program.
Any source not intercepted by Lex is copied into the gen-
erated program. There are three classes of such things.

1) Any line which is not part of a Lex rule or action
which begins with a blank or tab is copied into the
Lex generated program. Such source input prior
to the first %% delimiter will be external to any
function in the code; if it appears immediately
after the first %%, it appears in an appropriate
place for declarations in the function written by
Lex which contains the actions. This material
must look like program fragments, and should
precede the first Lex rule.

As a side effect of the above, lines which begin
with a blank or tab, and which contain a com-
ment, are passed through to the generated pro-
gram. This can be used to include comments in
either the Lex source or the generated code. The
comments should follow the host language con-
vention.

2) Anything included between lines containing only
M and %) is copied out as above. The delimiters
are discarded. This format permits entering text
like preprocessor statements that must begin in
column 1, or copying lines that do not look like
programs.

3) Anything after the third %% delimiter, regardless
of formats, etc., is- copied out after the Lex out-
put.

Definitions intended for Lex are given before the first
%% delimiter. Any line in this section not contained
between %(and %), and begining in column 1, is as-
sumed to define Lex substitution strings. The format of
such lines is

name translation

and it causes the string given as a translation to be associ-
aced with the name. The name and translation must be
separated by at least one blank or tab, and the name must
begin with a letter. The translation can then be called out
by the (name) syntax in a rule. Using (D) for the digits
and (E) for an exponent field, for example, might abbre-
viate rules to recognize numbers:

D [0-91
E [TEde1[-+1?(D)+

(D)+ printf ("integer");
(D)+"."(D)- QEW
{D)•":'(D) + ((E))?
(D) +(E)

Note the first two rules for real numbers; both require a
decimal point and contain an optional exponent field, but
the first requires at least one digit before the decimal
point and the second requires at least one digit after the
decimal point. To correctly handle the problem posed by
a Fortran expression such as 3S.EQ.I, which does not
contain a real number, a context-sensitive rule such as

[0-91 +/"."EQ printf("integer");

could be used in addition to the normal rule for integers.
The definitions section may also contain other com-

mands, including the selection of a host language, a char-
acter set table, a list of start conditions, or adjustments to
the default size of arrays within Lex itself for larger
source programs. These possibilities are discussed below
under " Summary of Source Format," section 12.

7 Usage.

There are two steps in compiling a Lex source program.
First, the Lex source must be turned into a generated
program in the host general purpose language. Then this
program must be compiled and loaded, usually with a li-
brary of Lex subroutines. The generated program is on a
file named lex.yy.c for a C host language source and
lex.yy.r for a Ratfor host environment. There are two
I/O libraries, one for C defined in terms of the C stan-
dard library [61, and the other defined in terms of Ratfor.
To indicate that a Lex source file is intended to be used
with the Ratfor host language, make the first line of the
file %R.

The C programs generated by Lex are slightly different
on OS/370, because the OS compiler is less powerful than
the UNIX or GCOS compilers, and does less at compile
time. C programs generated on GCOS and UNIX are the
same. The C host language is default, but may be expli-
citly requested by making the first line of the source file
%C.

The Ratfor, generated by Lex is the same on all sys-
tems, but can not . be compiled directly on TSO. See
below for instructions.~ The Ratfor I/O library, however,
varies slightly _because: the different Fortrans disagree on
the method of - indicating end-of-input and the name of
the library routine for logical AND. The Ratfor I/O li-
brary, dependent on Fortran character 1/O, is quite slow.
In particular it reads all input lines as 80A1 format; this
will truncate any longer line, discarding your data, and
pads any shorter line with blanks. The library version of
input removes the padding (including any trailing blanks
from the original input) before processing. Each source

•

•

LEX-9

file using a Ratfor host should begin with the " %R" com-
mand.

UNIX. The libraries are accessed by the loader flags
-1/c for C and -Ur for Ratfor; the C name may be abbrevi-
ated to -11. So an appropriate set of commands is

C Host Ratfor Host

lex source lex source
cc lex.yy.c -11 -IS rc -2 lex.yy.r -Ilr

The resulting program is placed on the usual file a. out for
later execution. To use Lex with Yacc see below.
Although the default Lex I/O routines use the C standard
library, the Lex automata themselves do not do so; if
private versions of input, output and unput are given', the
library can be avoided. Note the " -2" option in the Rat-
for compile command; this requests the larger version of
the compiler, a useful precaution.

GCOS. The Lex commands on GCOS are stored in the
"." library. The appropriate command sequences are:

C Host Ratfor Host

./lex source ./lex source
/cc lex.yy.c ./lexclib h= ./rc a= lex.yy.r ./lexrlib h=

The resulting program is placed on the usual file .program
for later execution (as indicated by the "h=" option); it
may be copied to a permanent file if desired. Note the
"a-" option in the Ratfor compile command; this indi-
cates that the Fortran compiler is to run in ASCII mode.

TSO. Lex is just barely available on TSO. Restrictions
imposed by the compilers which must be used with its
output make it rather inconvenient. To use the C ver-
sion, type

exec 'dot.lex.clist(lex)' 'sourcename'
exec 'dot.lex.clist(cload)' 1ibraryname membername'

The first command analyzes the source file and writes a C
program on file lex.yy.text. The second command runs
this file through the C compiler and links it with the Lex
C library (stored on 'hr289.lcl.load') placing the object
program in your file libraryname.LOAD(membername) as
a completely linked load module. The compiling com-
mand uses a special version of the C compiler command
on TSO which provides an unusually large intermediate
assembler file to compensate for the unusual bulk of C-
compiled Lex programs on the OS system. Even so, al-
most any Lex source program is too big to compile, and
must be split.

The same Lex command will compile Ratfor Lex pro-
grams, .leaving a file lex.yy.rat instead of lex.yy.text in
your directory. The Ratfor program must be edited, how-
ever, to compensate for peculiarities of IBM Ratfor. A
command sequence to do this, and then compile and
load, is available. The full commands are:

exec 'dot.lex.clist (lex)' 'sourcename'

exec'dot.lex.clist(rload)' 7ibraryname membername'

with the same overall effect as the C language commands.
However, the Ratfor commands will run in a 150K byte
partition, while the C commands require 250K bytes to
operate.

The steps involved in processing the generated Ratfor
program are:

a. Edit the Ratfor program.
1. Remove all tabs.
2. Change all lower case letters to upper case letters.

3. Convert the file to an 80-column card image file.

b. Process the Ratfor through the Ratfor preproces-
sor to get Fortran code.

C. Compile the Fortran.
d. Load with the libraries `hr289.lrl.load' and

'sys l.fortlib'.
The final load module will only read input in 80-character
fixed length records. Warning: Work is in progress on
the IBM C compiler, and Lex and its availability on the
IBM 370 are subject to change without notice.

8 Lex and Yacc.

If you want to use Lex with Yacc, note that what Lex
writes is a program named yylexO, the name required by
Yacc for its analyzer. Normally, the default main pro-
gram on the Lex library calls this routine, but if Yacc is
loaded, and its main program is used, Yacc will call
yylexO. In this case each Lex rule should end with

return(token);

where the appropriate token value is returned. An easy
way to get access to Yacc's names for tokens is to compile
the Lex output file as part of the Yacc output file by plac-
ing the line

include "lex.yy.c"

in the last section of Yacc input. Supposing the grammar
to be named "good" and the lexical rules to be named
"better" the UNIX command sequence can just be:

yacc good
lex better
cc y.tab.c -ly -11 -1S

The Yacc library (-ly) should be loaded before the Lex li-
brary, to obtain a main program which invokes the Yacc
parser. The generations of Lex and Yacc programs can be
done in either order.

9 Examples.

As a trivial problem, consider copying an input file
while adding 3 to every positive number divisible by 7.
Here is a suitable Lex source program

•

•

•

-?[0-91+

-?[0-9.1+
[A-Za-z] [A-Za-z0-91 +

[a-z] + lengs [yyleng] + +;

\n ;

yywrap ()
(
int i;
printf("Length No. words\n");
for (i=0; i<100; i++)

if (lengsGl > 0)
printf ("%5d%10d\n",i,lengs [il);

return (1);

)

LEX-10

int k;
[0-91+ {

scanf(-1, yytext, "W', &k);
if (k%7 = = 0)

printf("%d", k+3);
else

printf ("%d",k);
}

to do just that. The rule [0-9] + recognizes strings of di-
gits; scanf converts the digits to binary and stores the
result in k. The operator % (remainder) is used to check
whether k is divisible by 7; if it is, it is incremented by 3
as it is written out. It may be objected that this program
will alter such input items as 49.63 or X7. Furthermore,
it increments the absolute value of all negative numbers
divisible by 7. To avoid this, just add a few more rules
after the active one, as here:

never returns true causes an infinite loop.
As a larger example, here are some parts of a program

written by N. L. Schryer to convert double precision For-
tran to single precision Fortran. Because Fortran does
not distinguish upper and lower case letters, this routine
begins by defining a set of classes including both cases of
each letter:

a [aA]
b [bB]
C [CC]

z [zZ]

An additional class recognizes white space:

W [\t]•

The first rule changes "double precision" to "real", or
"DOUBLE PRECISION" to "REAL".

is

int k;
(
scanf(-I, yytext, "W', &k);
printf("%d", k%7 == 0 ? k+3 : k);

ECHO;
ECHO;

Numerical strings containing a "." or preceded by a letter
will be picked up by one of the last two rdles, and not
changed. The if-else has been replaced by a C conditional
expression to save space; the form a ?b:c means "if a
then b else c".

For an example of statistics gathering, here is a pro-
gram which histograms the lengths of words, where a
word is defined as a string of letters.

int lengs[100];

This program accumulates the histogram, while producing
no output. At the end of the input it prints the table.
The final statement return(1), indicates that Lex is to per-
form wrapup. If yywrap returns zero (false) it implies
that further input is available and the program is to con-
tinue reading and processing. To provide a yywrap that

(d)(o)(u)(b)(1}(a){W}(p)(r)(e)(c)(i)(s)(i)(o)(n)
printf (yytext (01= =W? "real" : "REAL");
)

Care is taken throughout this program to preserve the
case (upper or lower) of the original program. The condi-

tional operator is used to select the proper form of the
keyword. The next rule copies continuation card indica-
tions to avoid confusing them with constants:

'T O] ECHO;

In the regular expression, the quotes surround the blanks.
It is interpreted as "beginning of line, then five blanks,
then anything but blank or zero." Note the two different
meanings of ". There follow some rules to change double
precision constants to ordinary floating constants.

[0-9]+{W)(d)(W)[+-]'?(W)[0-9]+ 1
(0-9]+(W)" "{W)(d)(WI[+-]'?(W)(0-91+
"."(W)(0-9]+(W){d} {W}[+-]'?(W)[0-91+ {

/ ■ convert constants •/
for (p =yytext; ■p != 0; p++)

{
if(■p-_W *p V)

•p = + 'e'- W;
ECHO;
}

After the floating point constant is recognized, it is
scanned by the for loop to find the letter d or D. The
program than adds 'e -Y, which converts it io the next
letter of the alphabet. The modified constant, now
single-precision, is written out again. There follow a
series of names which must be respelled to remove their
initial d. By using the array yytext the same action
suffices for all the names (only a sample of a rather long
list is given here).

•

I
I

I

printf ("%s",yytext + 1);

tial a:

"a
"b
"c
\n
magic

LEX-11

(d)(s){i)(n)
(d)(c){o)(s)
(d)(s)(gI(r)(t)
(d)(a)(t)(a)(n)

{d}(f}{1}{o}(a}{t}

Another list of names must have initial d changed to ini-

(d)(1)(o}(g) I
(d)(11(o)(g)10 I
(d)(m)(i){n}1 I
(dl (m)(a)(x)I (

yytext [01 =+ 'a' - W;
ECHO;

And one routine must have initial dchanged to initial r.

{d)1(m)(a){c)(h) {yytext [0) = +'r' -'d;

is analyzed, and set some parameter to reflect the change.
This may be a flag explicitly tested by the user's action
code; such a flag is the simplest way of dealing with the
problem, since Lex is not involved at all. It may be more
convenient, however, to have Lex remember the flags as
initial conditions on the rules. Any rule may be associat-
ed with a start condition. It will only be recognized when
Lex is in that start condition. The current start condition
may be changed at any time. Finally, if the sets of rules
for the different environments are very dissimilar, clarity
may be best achieved by writing several distinct lexical
analyzers, and switching from one to another as desired.

Consider the following problem: copy the input to the
output, changing the word magic to first on every line
which began with the letter a, changing magic to second
on every line which began with the letter b, and changing
magic to third on every line which began with the letter c.
All other words and all other lines are left unchanged.

These rules are so simple that the easiest way to do this
job is with a flag:

•

int flag;

To avoid such names as dsinx being detected as instances
of dsin, some final rules pick up longer words as
identifiers and copy some surviving characters:

[A-Za-z][A-Za-z0-91• I
[0-91+
\n I

ECHO;

Note that this program is not complete; it does not deal
with the spacing problems in Fortran or with the use of
keywords as identifiers.

10 Left Context Sensitivity.

Sometimes it is desirable to have several sets of lexical
rules to be applied at different times in the input. For ex-
ample, a compiler preprocessor might distinguish prepro-
cessor statements and analyze them differently from ordi-
nary statements. This requires sensitivity to prior con-
text, and there are several ways of handling such prob-
lems. The " operator, for example, is a prior context
operator, recognizing immediately preceding left context
just as $ recognizes immediately following right context.
Adjacent left context could be extended, to produce a fa-
cility similar to that for adjacent right context, but it is
unlikely to be as useful, since often the relevant left con-
text appeared some time earlier, such as at the beginning
of a line.

This section describes three means of dealing with
different environments: a simple use of flags, when only a
few rules change from one environment to another, the
use of start conditions on rules, and the possibility -of
making multiple lexical analyzers all run together. In
each case, there are rules which recognize the need to
change the environment in which the following input text

(flag = 'a; ECHO;)
(flag = b; ECHO;}
(flag ='c; ECHO;)
(flag - 0 ; ECHO;)
{
switch (flag)
(
case 'a': printf("first"); break;
case b': printf("second"); break;
case 'c': printf ("third"); break;
default: ECHO; break;

should be adequate.
To handle the same problem with start conditions, each

start condition must be introduced to Lex in the
definitions section with a line reading

%Start namel name2 ...

where the conditions may be named in any order. The
word Start may be abbreviated to s or S. The conditions
may be referenced at the head of a rule with the < >
brackets:

< name 1 > expression

is a rule which is only recognized when Lex is in the start
condition namel. To enter a start condition, execute the
action statement

BEGIN namel;

which changes the start condition to namel. To resume
the normal state,

•

•

LEX-12

BEGIN 0;

resets the initial condition of the Lex automaton inter-
preter. A rule may be active in several start conditions:

<narne l,name2,name3>

is a legal prefix. Any rule not beginning with the <>
prefix operator is always active.

The same example as before can be written:

%START AA BB CC

"a (ECHO; BEGIN AA;)
-b (ECHO; BEGIN BB;}
-c (ECHO; BEGIN CC;)
\n (ECHO; BEGIN 0;)
< AA> magic printf ("first");
< BB> magic printf ("second");
<CC> magic printf ("third");

where the logic is exactly the same as in the previous
method of handling the problem, but Lex does the work
rather than the user's code.

11 Character Set.

The programs generated by Lex handle character I/O
only through the routines input, output, and unput. Thus
the character representation provided in these .routines is
accepted by Lex and employed to return values in yytext.
For internal use a character is represented as a small in-
teger which, if the standard library is used, has a value
equal to the integer value of the bit pattern representing
the character on the host computer. In C, the I/O rou-
tines are assumed to deal directly in this representation.
In Ratfor, it is anticipated that many users will prefer
left-adjusted rather than right-adjusted characters; thus
the routine lexshf is called to change the representation
delivered by input into a right-adjusted integer. If the
user changes the I/O library, the routine lexshf should
also be changed to a compatible version. The Ratfor li-
brary I/O system is arranged to represent the letter a as
in the Fortran value Ma while in C the letter a is
represented as the character constant 'a. If this interpre-
tation is changed, by providing I/O routines which
translate the characters, Lex must be told about it, by giv-
ing a translation table. This table must be in the
definitions section, and must be bracketed by lines con-
taining only " %T". The table contains lines of the form

(integer} (character string)

which indicate the value associated with each character.
Thus the next example maps the lower-and upper case
letters together into the integers 1 through 26, newline
into 27, + and - into 28 and 29, and the digits into 30
through 39. Note the escape for newline. If a table is
supplied, every character that is to appear either in the

%T
1 Aa
2 Bb

26 Zz
27 \n
28 +
29 -

30 0
31 1

39 9
%T

Sample character table.

rules or in any valid input must be included in the table.
No character may be assigned the number 0, and no char-
acter may be assigned a bigger number than the size of
the hardware character set.

It is not likely that C users will wish to use the charac-
ter table feature; but for Fortran portability it may be
essential.

Although the contents of the Lex Ratfor library rou-
tines for input and output run almost unmodified on
UNIX, GCOS, and OS/370, they are not really machine
independent, and- would not work with CDC or Bur-
roughs Fortran compilers. The user is of course welcome
to replace input, output, unput and lexshf but to replace
them by completely portable Fortran routines is likely to
cause a substantial decrease in the speed of Lex Ratfor
programs. A simple way to produce portable routines
would be to leave input and output as routines that read
with 80A1 format, but replace lexshf by a table lookup
routine.

12 Summary of Source Format.

The general form of a Lex source file is:

(definitions)

(rules)

(user subroutines)

The definitions section contains a combination of

1) Definitions, in the form " name space transla-
tion".

2) Included code, in the form " space code".

3) Included code, in the form

code

•

•

•

the character 'Y'
an 'Y', even if x is an operator.
an 'Y', even if x is an operator.
the character x or y.
the characters x, y or z.
any character but x.
any character but newline.
an x at the beginning of a line.
an x when Lex is in start condition y.
an x at the end of a line.
an optional x.
0,1,2, ... instances of x.
1,2,3, ... instances of x.
anxoray.
an x.
an x but only if followed by y.
the translation of xx from the definitions section.
m through n occurrences of x

x
11x,

\x
[xy]
[x-z]
[-x]

'x
<y>x
X$
x2
x+
x+
xly
(x)
x/y
(xx}
x(m,n)

LEX-13

4) Start conditions, given in the form

%S name name2 ...

5) Character set tables, in the form

%T

number space character-string

%T

6) A language specifier, which must also precede any
rules or included code, in the form "%C" for C
or " %R" for Ratfor.

7) Changes to internal array sizes, in the form

%x nnn

where nnn is a decimal integer representing an ar-
ray size and x selects the parameter as follows:

Parameter
positions
states
tree nodes
transitions
packed character classes
output array size

Lines in the rules section have the form " expression ac-
tion" where the action may be continued on succeeding
lines by using braces to delimit it.

Regular expressions in Lex use the following operators:

13 Caveats and Bugs.

There are pathological expressions which produce ex-
ponential growth of the tables when converted to deter-
ministic machines; fortunately, they are rare.

REJECT does not rescan the input; instead it
remembers the results of the previous scan. This means
that if a rule with trailing context is found, and REJECT
executed, the user must not have used unputto change
the characters forthcoming from the input stream. This is
the only restriction on the user's ability to manipulate the
not-yet-processed input.

TSO Lex is an older version. Among the non-
supported features are REJECT, start conditions, or vari-
able length trailing context, And any significant Lex
source is too big for the IBM C compiler when translated.

14 Acknowledgments.

As should be obvious from the above, the outside of
Lex is patterned on Yacc and the inside on Aho's string
matching routines. Therefore, both S. C. Johnson and A.
V. Aho are really originators of much of Lex, as well as
debuggers of it. Many thanks are due to both.

The code of the current version of Lex was designed,
written, and debugged by Eric Schmidt.

15 References.

1. B. W. Kernighan and D. M. Ritchie, The C Pro-

gramming Language, Prentice-Hall, N. J. (1978).

Letter
p
n
e
a
k
0

2. B. W. Kernighan, Rat/or. A Preprocessor for a
Rational Fortran, Software - Practice and Experi-
ence, 5, pp. 395-496 (1975).

3. S. C. Johnson, Yacc: Yet Another Compiler Com-

piler, Computing Science Technical Report No.
32, 1975, Bell Laboratories, Murray Hill, NJ
07974.

5. B.`~ W.: Kernighan, D. M. Ritchie and K. L.
Thompson, QED Text Editor, Computing Science

,,.Technical Report No. 5, 1972, Bell Laboratories,
Murray'Hill, NJ 07974.

6. D. M. Ritchie, private communication. See also
M. E. Lesk, The Portable C Library, Computing
Science Technical Report No. 31, Bell Labora-
tories, Murray Hill, NJ 07974.

4. A. V. Aho and M. J. Corasick, Efficient String
Matching: An Aid to Bibliographic Search, Comm.
ACM 18, 333-340 (1975).

0

•

•

•

:1

M4 is a macro processor available on UNIxt and GCOS• Its primary use
has been as a front end. for Ratfor for those cases where parameterless macros
are not adequately powerful. It has also been used for languages as disparate as
C and Cobol. M4 is particularly suited, for functional languages like Fortran,
PL/I and C since macros are specified in a functional notation.

Bell Laboratories

The M4 Macro Processor

Brian W. Kernighan

Dennis M. Ritchie

Murray Hill, New Jersey 07974

ABSTRACT

M4 provides features seldom found even in much larger macro Proces-

sors, including
• arguments
• . condition testing
• arithmetic capabilities

• string and substring functions
• file manipulation -

This paper is a user's manual for M4.

July 1, 1977

tUNIX is a Trademark of Bell Laboratories.

•

The M4 Macro Processor

Brian W. Kernighan

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

A macro processor is a useful way to
enhance a programming language, to make
it more palatable or more readable, or to
tailor it to a particular application. The
#define statement in C and the analogous
define in Ratfor are examples of the basic
facility provided by any macro processor -
replacement of text by other text.

The M4 macro processor is an exten-
sion of a macro processor called M3 which
was written by D. M. Ritchie for the AP-3
minicomputer; M3 was in turn based on a
macro processor implemented for [1].
Readers unfamiliar with the basic ideas of
macro processing may wish to read some of
the discussion there.

M4 is a suitable front end for Ratfor
and C, and has also been used successfully
with Cobol. Besides the straightforward
replacement of one string of text by
another, it provides macros with arguments,
conditional macro expansion, arithmetic, file
manipulation, and some specialized string
processing functions.

The basic operation of M4 is to copy
its input to its output. As the input is read,
however, each alphanumeric " token" (that
is, string of letters and digits) is checked. If
it is the name of a macro, then the name of
the macro is replaced by its defining text,
and the resulting string is pushed back onto
the input to be rescanned. Macros may be
called with arguments, in which case the
arguments are collected and substituted into
the right places in the defining text before it
is rescanned.

M4 provides a collection of about
twenty built-in macros which perform vari-
ous useful operations; in addition, the user

can define new macros. Built-ins and user-
defined macros work exactly the same way,
except that some of the built-in macros have
side effects on the state of the process.

Usage

On UNIX, use

m4 [files]

Each argument file is processed in order; if
there are no arguments, or if an argument is
'-', the standard input is read at that point.
The processed text is written on the stan-
dard output, which may be captured for sub-
sequent processing with

m4 Ifilesl > outputfile

On GCOS, usage is identical, but the pro-
gram is called . /m4.

Defining Macros -

The primary built-in function of M4 is
define, which is used to define new macros.
The input

define(name, stuff)

causes the string name to be defined as
stuff. All subsequent occurrences of name
will be replaced by stuff name must be
alphanumeric and must begin with a letter
(the underscore _ counts as a letter). stuff
is any text that contains- balanced
parentheses; it may stretch over multiple
lines.

Thus, as a typical example,

define(N, 100)

if 0 > N)

defines N to be 100, and uses this " symbolic

•

• constant" in a later if statement. Quoting

The left parenthesis must immediately
follow the word define, to signal that define
has arguments. If a macro or built-in name
is not followed immediately by '(', it is
assumed to have no arguments. This is the
situation for N above; it is actually a macro
with no arguments, and thus when it is used
there need be no (...) following it.

You should also notice that a macro
name is only recognized as such if it appears
surrounded by non-alphanumerics. For
example, in

define(N, 100)

if (NNN > 100)

the variable NNN is absolutely unrelated to
the defined macro N, even though it con-
tains a lot of N's.

Things may be defined in terms of
other things. For example,

define(N, 100)
define(M, N)

defines both M and N to be 100.
What happens if N is redefined? Or,

to say it another way, is M defined as N or
as 100? In M4, the latter is true - M is
100, so even if N subsequently changes, M
does not.

This behavior arises because M4
expands macro names into their defining
text as soon as it possibly can. Here, that
means that when the string N is seen as the
arguments of define are being collected, it is
immediately replaced by 100; it's just as if
you had said

define(M, 100)

in the first place.
If this isn ' t what you really want, there

are two ways out of it. The first, which is
specific to this situation, is to interchange
the order of the definitions:

define(M, N)
define(N, 100)

Now M is defined to be the string N, so
when you ask for M later, you'll always get
the value of N at that time (because the M
will be replaced by N which will be replaced
by 100).

The more general solution is to delay
the expansion of the arguments of define by
quoting them. Any text surrounded by the
single quotes ' and ' is not expanded
immediately, but has the quotes stripped off.
If you say

define(N, 100)
define(M, 'N')

the quotes around the N are stripped off as
the argument is being collected, but they
have served their purpose, and M is defined
as the string N, not 100. The general rule is
that M4 always strips off one level of single
quotes whenever it evaluates something.
This is true even outside of macros. If you
want the word define to appear in the out-
put, you have to quote it in the input, as in

'define' = 1;

As another instance of the same thing,
which is a bit more surprising, consider
redefining N:

define(N, 100)

define (N, 200)

Perhaps regrettably, the N in the second
definition is evaluated as soon as it's seen;
that is, it is replaced by 100,- so it's as if you
had written

define(100, 200)

This statement is ignored by M4, since you
can only define things that look like names,
but it obviously doesn't have the effect you
wanted. To really redefine N, you must
delay the evaluation by quoting:

define(N, 100)

define('N', 200)

In M4, it is often wise to quote the first
argument of a macro.

If ' and ' are not convenient for some
reason, the quote characters can be changed
with the built-in changequote:

changequote(l, 1)

makes the new quote characters the left and
right brackets. You can restore the original
characters with just

•

•

3

xyz

changequote

There are two additional built-ins
related to define. undefine removes the
definition of some macro or built-in:

undefine'CN) '

removes the definition of N. (Why are the
quotes absolutely necessary?) Built-ins can
be removed with undefine, as in

undefine Cdefine)

but once you remove one, you can never
get it back.

The built-in ifdef provides a way to
determine if a macro is currently defined.
In particular, M4 has pre-defined the names
unix and gcos on the corresponding sys-
tems, so you can tell which one you're
using:

ifdef('unix', 'define(wordsize,16Y)
ifdefCgcos', 'define(wordsize,36)')

makes a definition appropriate for the partic-

ular machine. Don't forget the quotes!

ifdef actually permits three arguments;
if the name is undefined, the value of ifdef
is then the third argument, as in

ifdef('unix', on UNIX, not on UNIX)

Arguments

So far we have discussed the simplest
form of macro processing - replacing one
string by another (fixed) string. User-
defined macros may also have arguments, so
different invocations can have different
results. Within the replacement text for a
macro (the second argument of its define)
any occurrence of $n will be replaced by the
nth argument when the macro is actually
used. Thus, the macro bump, defined as

define(bump, $1 = $1 + 1)

generates code to increment its argument by
1:

bump(x)

is

x = x + 1

A macro can have as many arguments
as you want, but only the first nine are
accessible, through $1 to $9. (The macro

name itself is $0, although that is less com-
monly used.) Arguments that are not sup-
plied are replaced by null strings, so we can
define a macro cat which simply concaten-
ates its arguments, like this:

define(cat, $1$2$3$4$5$6$7$8$9)

Thus

cat (x, y, z)

is equivalent to

$4 through $9 are null, since no correspond-

ing arguments were provided.

Leading unquoted blanks, tabs, or
newlines that occur during argument collec-
tion are discarded. All other white space is
retained. Thus

define.(a, b c)

defines a to be b c.

Arguments are separated by commas,
but parentheses are counted properly, so a
comma " protected" by parentheses does not
terminate an argument. That is, in

define(a, (b,c))

there are only two arguments; the second is
literally (b,c). And of course a bare comma
or parenthesis can be inserted by quoting it.

Arithmetic Built-ins

M4 provides two built-in functions for
doing arithmetic on integers (only). The
simplest is incr, which increments its
numeric argument by 1. Thus to handle the
common programming situation where you
want a variable to be defined as "one more
than N", write

define(N, 100)
define(N1, 'incr(NY)

Then. N1 is defined as one more than the
current value of N.

The more general mechanism for
arithmetic is a built-in called eval, which is
capable of arbitrary arithmetic on integers.
It provides the operators (in decreasing
order of precedence)

•

•

•

-4-

unary + and -

** or - (exponentiation)
* / % (modulus)

! (not)
& or && (logical and)
I or II (logical or)

Parentheses may be used to group opera-

tions where needed. All the operands of an
expression given to eval must ultimately be
numeric. The numeric value of a true rela-
tion (like I >0) is 1, and false is 0. The
precision in eval is 32 bits on UNIX and 36
bits on GCOS.

As a simple example, suppose we want
M to be 2**N+1. Then

define(N, 3)
define(M, 'eval (2**N+1)')

As a matter of principle, it is advisable to
quote the defining text for a macro unless it
is very simple indeed (say just a number); it
usually gives the result you want, and is a
good habit to get into.

File Manipulation

You can include a new file in the input
at any time by the built-in function include:

include (filename)

inserts the contents of filename in place of
the include command. The contents of the
file is often a set of definitions. The value
of include (that is, its replacement text) is
the contents of the file; this can be captured
in definitions, etc.

It is a fatal error if the file named in
include cannot be accessed. To get some
control over this situation, the alternate
form sinclude can be used; sinclude (" silent
include") says nothing and continues if it
can't access the file.

It is also possible to divert the output
of M4 to temporary files during processing,
and output the collected material upon com-
mand. M4 maintains nine of these diver-
sions, numbered I through 9. If you say

divert(n)

all subsequent output is put onto the end of
a temporary file referred to as n. Diverting
to this file is stopped by another divert com-

mand; in particular, divert or divert (0)
resumes the normal output process.

Diverted text is normally output all at
once at the end of processing, with the
diversions output in numeric order. It is
possible, however, to bring back diversions
at any time, that is, to append them to the
current diversion.

undivert

brings back all diversions in numeric order,
and undivert with arguments brings back
the selected diversions in the order given.
The act of undiverting discards the diverted
stuff, as does diverting into a diversion
whose number is not between 0 and 9
inclusive.

The value of undivert is not the
diverted stuff. Furthermore, the diverted
material is not rescanned for macros.

The built-in divnum returns the
number of the currently active diversion.
This is zero during normal processing.

System Command

You can run any program in the local
operating system with the syscmd built-in.
For example,

syscmd (date)

on UNIX runs the date command. Normally
syscmd would be used to create a file for a
subsequent include.

To facilitate making unique file names,
the built-in maketemp is provided, with
specifications identical to the system func=
tion mktemp: a string of XXXXX in the
argument is replaced by the process id of the
current process.

Conditionals

There is a built-in called ifelse which
enables you to perform arbitrary conditional
testing. In the simplest form,

ifelse(a, b, c, d)

compares the two strings a and b. If these
are identical, ifelse returns the string c; oth-
erwise it returns d. Thus we might define a
macro called compare which compares two
strings and returns "yes" or "no" if they
are the same or different.

•

•

•

5

you can say

define(compare, 'ifelse($1, $2, yes, no)')

Note the quotes, which prevent too-early
evaluation of ifelse.

If the fourth atgument is missing, it is
treated as empty.

ifelse can actually have any number of
arguments, and thus provides a limited form
of multi-way decision capability. In the
input

ifelse(a, b, c, d, e, f, g)

if the string a matches the string b, the
result is c. Otherwise, if d is the same as e,
the result is f. Otherwise the result is g. If
the final argument is omitted, the result is
null, so

ifelse(a, b, c)

is c if a matches b, and null otherwise.

String Manipulation

The built-in len returns the length of
the string that makes up its argument. Thus

len (abcdef)

is 6, and len((a,b)) is S.

The built-in substr can be used to pro-
duce substrings of strings. substr(s, i, n)
returns the substring of s that starts at the
ith position (origin zero), and is n charac-
ters long. If n is omitted, the rest of the
string is returned, so

substr('now is the time', 1)

replaces the vowels by the corresponding
digits. If t is shorter than f, characters
which don ' t have an entry in t are deleted;
as a limiting case, if t is not present at all,
characters from f are deleted from s. So

translit (s, aeiou)

deletes vowels from s.

There is also a built-in called dnl
which deletes all characters that follow it up
to and including the next newline; it is use-
ful mainly for throwing away empty lines
that otherwise tend to clutter up M4 output.
For example, if you say

define(N, 100)
define(M, 200)
define(L, 300)

the newline at the end of each line is not
part of the definition, so it is copied into the
output, where it may not be wanted. If you
add dnl to each of these lines, the newlines
will disappear.

Another way to achieve this, due to J.
E. Weythman, is

divert (-1)
define(...)

divert .

Printing

The built-in errprint writes its argu-
ments out on the standard error file. .Thus­

•

•

is

ow is the time

If i or n are out of range, various sensible
things happen.

index(sl, s2) returns the index (posi-
tion) in sl where the string s2 occurs, or
-1 if it doesn ' t occur. As with substr, the
origin for strings is 0.

The built-in translit performs charac-

ter transliteration.

translif (s, f, t)

modifies s by replacing any character found
in f by the corresponding character of t.
That is,

translit (s, aeiou, 12345)

errprintCfatal error')

dumpdef is a debugging aid which
dumps the current definitions of defined
terms. If there are no arguments, you get
everything; otherwise you get the ones you
name as arguments. Don't forget to quote
the names!

Summary of Built-ins

Each entry is preceded by the page
number where it is described.

•

6

3 changequote(L, R)
1 define(name, replacement)
4 divert(number)
4 divnum
5 dnl
5 dumpdef('name', 'name', ...)
5 errprint(s, s, ...)
4 eval(numeric expression)
3 ifdef('name', this if true, this if false)
5 ifelse(a, b, c, d)
4 include(file)
3 incr(number)
5 index(sl, s2)
5 len (string)
4 maketemp(... XXXXX...)
4 sinclude(file)
5 substr(string, position, number)
4 syscmd (s)
5 translit(str, from, to)
3 undefine ('name')
4 undivert(number,number,...)

•

Acknowledgements

We are indebted to Rick Becker, John
Chambers, Doug McIlroy, and especially
Jim Weythman, whose pioneering use of
M4 has led to several valuable improve-
ments. We are also deeply grateful to
Weythman for several substantial contribu-
tions to the code.

References

[11 B. W. Kernighan and P. J. Plauger,
Software Tools, Addison-Wesley, Inc.,
1976.

•

•

a r.,
T

•

•

1

•

•

UNIX Remote Job Entry User's Guide .

A. L. SabseWiz
K. A. Kelleman

. Bell Laboratories
Piscataway, New Jersey 08854

1. PREFACE

A set of background processes running under UNIXt support remote job entry to IBM Sys-
tem/360 and /370 host computers. RJE is the communal name for this subsystem.) UNIX
communicates with IBM's Job Entry Subsystem by mimicking an IBM 360 remote multileaving
work station. The UNIX User's Manual entry rje(8) summarizes its design and operation. The
manual also contains a description of the send(1C) command, which is the user's primary
method of submitting jobs to RJE, and rjestat(IC), which allows the user to monitor the status
of RJE and to send operator commands to the host system. This guide is a tutorial overview of
RJE and is addressed to the user who needs to know how to use the system, but does not need
to- know details of its implementation. The two following sections constitute an introduction to
RJE.

2. PRELIMINARIES

To become a UNIX user, you must receive a login name that identifies you to the UNIX system.
You should also get a copy of the UNIX User's Manual, it contains a fairly complete description
of the system and includes the section How to Get Started, which introduces you to UNIX; you
should read that section before proceeding with this guide.

In order to begin using RJE, you need only become familiar with a subset of basic commands.
You must understand the directory structure of the file system, and you should know some-
thing about the attributes of files: see cd(1), chmod(1), chown(1), cp(I), !n(1), ls(1), mkdir(l),
mv(1), rm(l). You must know how to enter, edit, and examine text files: see cat(l), ed(1),
pr(1). You should know how to communicate with other users and with the system: see
rnail(1), mesg(1), who(1), write(l). And, finally, you might have to know how to describe
your terminal to the system: see aseii(5), stty(1), tabs(l).

3. BASIC RJE

Let's suppose that yob have used the editor, ed(1), to create the file, jobfile, that contains your
job control statements (JCL) and input data. This file should look exactly like a card deck,
except that for convenience alphabetic characters may be in either upper or lower case. Here is
an example:

L

1

f UNIX is a trademark of Bell Laboratories.
1. In this paper. RJE refers to the facilities provided by UNIX, and not to the Remote Job Entry feature of IBM's

HASP and JES subsystems.

•

7tivo bells .

2 UNIX RJE User's Guide

•

$ cat jobfile
//gener job (9999,r74U),pgmrname,class=x usr=(mylogin,myplace)
//step exec pgm=iebgener
//sysprint dd sysout=a
//sysin dd dummy
//sysut2 dd sysout=a
//sysuul dd +

first card of data

last card of data

To submit this job for execution, you must invoke the send(1C) command:.

$

 send jobfile

The system will reply:

10 cards
Queued as /usr/rje/rd3125

Note that send tells you the number of cards it submitted and reports the file name that con-
tains your job in the queue of all jobs waiting to be transmitted to the host system. Until the
transmission of the job actually begins, you can prevent the job from being transmitted by
doing a chmod 0 on the queued file to make it unreadable. For our example, you could say:

chmod 0 /usr/rje/rd3125

When your job is accepted by the host system, a job number will be assigned to it, and an ack-
nowledgement message will be generated. This indicates that your job has been scheduled on
the host system. Later, after the job has executed, its output will be returned to the IJNDC sys-
tem. You will be notified automatically of both of these events: if you- are logged in when RJE
detects these events, and if you are permitting messages to be sent to your terminal (see

' mesg(1)). The following two messages will be sent to you (still using the example above) when
the job is scheduled and when the output is returned, respectively:

7ivo bells
12:18:42 gener job 384 - - rd3125 acknowledged

12:21:54 gener job 384 -- /al/user/rje/prnt0 ready
Two bells, with an interval of one second between them, precede each message. They should
be interpreted as a warning to stop typing on your terminal, so that the imminent message is
not interspersed with your typing.

i

If you are not logged in when one of these events occurs, or if you do not allow messages to be
sent to your terminal, then the notification will be posted to you via the mail(1) command.
You can prevent messages directly by executing the mesg(1) command, or indirectly by execut-
ing another command, such as pr(1), which prohibits messages for as long as it is active. You
may inspect (by invoking the mail command) your mail file (/usr/mail/logname) at any time for
messages that have been diverted. Setting your MAIL variable to the name of your mail file
will cause the shell to notify you when mail arrives. For this example, the mail might look as
follows:

0

•

•

1

0

•

UNIX RJE* User's Guide 3

$ mail
From rje Mon Aug 1 12:20:36 1977
12:18:42 gener job 384 -- rd3125 acknowledged

?d
From rje Mon Aug 1 12:21:55 1977
12:21:54 gener job 384 -- /al/user/rje/prnt0 ready
?d

The job acknowledgement message performs two functions. First, it confirms the fact that your
job has been scheduled for eventual execution. Second, it assigns a number to the job in such
a way that the number and the name together will uniquely identify the job for some period of

time.

The output ready message provides the name of a UNIX file into which output has been written
and identifies the job to which the output belongs (see /s(1)):

S is -1 prnt0
- r-- r-xr-- 1 rje 1184 Aug 1 12:21 prnt0

Note that rje retains ownership of the output and allows you only read access to it. It is
intended that you will inspect the file, perhaps extract some information from it, and then
promptly delete it (see nn(1)):

$ rm -f prnt0

The retention of machine-generated files, such as RJE output, is discouraged. It is your respon-
sibility to remove files from your RJE directory. RJE output files may be truncated if the output
exceeds a set limit. This limit is tunable by the system administrator. Output beyond the
current limit will be discarded, with no provision for retrieval. If the output were truncated in
the previous example, the second notification message would have been:

Two bells
12:21:54 gener job 384 -- /al/user/rje/prnt0 ready (truncated)

The user should also be aware that RJE attempts to keep a set number of blocks free on any file
system. it uses. This number is also tunable by the system administrator. Warning messages or
suspension of certain functions will occur as this limit is approached.

The most elementary way to examine your output is to cat it to your terminal. The Appendix
of this document shows the result of listing.the output of our sample job in this way. Because
UNIX has no high volume printing capability, you should route to the host's printer any large
listings of which you desire a hard copy.

The structure of an output listing will generally conform to the following sequence:

HASP log
jcl information
data sets
HASP end

Normally burst pages will not be present. Single, double, and triple spacing is reflected in the
output file, but other forms controls, such as the skip to the top of a new page, are suppressed.
Page boundaries are indicated by the presence of a blank (space character) at the end of the last
line of each page.

The big file scanner bjs(1) or the context editor ed(1) provide a more flexible method than
cat(1) for examining printed output; bjs can handle files of any size and is more efficient than
ed for scanning files.

•

•

4 UNIX RJE User's Guide

RJE is also capable of receiving punched output as formatted files (see pnch(5)); this format
allows an exact representation of an arbitrary card deck to be stored on the UNIX machine.
However, there are few commands that can be used to manipulate these files. You will prob-
ably want to route your punched output to one of the host's output devices.

4. SEND COMMAND

The send(1C) command is capable of more general processing than has been indicated in the
previous section. In the first place, it will concatenate a sequence of files to create a single job
stream. This allows files of JCL and files of data to be maintained separately on the UNIX
machine. In addition, it recognizes any line of an input file that begins with the character - as
being a control line that can call for the inclusion, inside the current file, of some other file.
This allows you to send a top level skeleton that "pulls" in subordinate files as needed. Some
of these may be "virtual" files that actually consist of the output of UNIX commands or Shell
procedures. Furthermore, the send command is able to collect input directly from a terminal,
and can be instructed to prompt for required information.

Each source of input can contain a format specification that determines such things as how to
expand tabs and how long can an input line be. The manual entry for jspec(5) explains how to
define such formats. When properly instructed, send will also replace arbitrarily defined key-
words by other text strings or by EBCDIC character codes. (These two substitution facilities are
useful in other applications besides RJE; for that reason, send may be invoked under the name
Bath to produce standard output without submitting an RJE job.)

Two options of send that everyone should be acquainted with are: the ability to specify to which
host computer the job is to be submitted, and a flag that guarantees that a job will be transmit-
ted to the host computer in order of submission (relative to other jobs submitted with the same
flag). To run our sample job on a host machine known to RJE as A, we would issue the com-
mand:

S send A jobfile

When no host is explicitly cited, send makes a reasonable choice.

To insure that a job will be transmitted in order of submission, set the -x flag:

$ send - x jobfile

This flag should be used sparingly. The complete list of arguments and flags that control the
execution of send can be found in send(1C).

S. JOB STREAM

It is assumed that the job stream submitted as the result of a single execution of send consists
of a single job, i.e., the file that is queued for transmission should contain one JOB card near
the beginning and no others. A priority control card may legitimately precede the JOB card.
The JOB card must conform to the local installation's standard. At BISP, it has the following
structure:

//name job (acct[,...]),pgmrname[,keywds=?] [usr= ...]

6. USER SPECIFICATION

A "usr" specification is required on print or punch output that is to be delivered to a UNIX
user.

usr= (logi n,place, [level])

where login is the UNIX login name of the user, level is the desired level of notification (see end
of this section for an explanation), and place is as follows:

•

•

•

UNIX RJE User's Guide 5

A. If place is the name of a directory (writable by others), then the output file is placed there
as a unique prat or pnch file. The mode of the file will be 454.

B. If place is the name of an existing, writable (by others), non-executable (by others) file,
then the output file replaces it. The mode of the file will be 454.

C. If place is the name of a non-existent file in a writable (by others) directory, then the out-

put file is placed there. The mode of the file will be 454.

D. If place is the name of an executable (by others) file, then the RJE output is set up as
standard input to place, and place is executed. Five string arguments are passed to place.
For example, if place is a shell procedure, the following arguments are passed as $1 ...
$5:

1. Flag indicating whether file space is scarce in the file system where place resides. A
0 indicates that space is not scarce, while 1 indicates that it is.

2. Job name.
3. Programmer's name.
4. Job number.
5. Login name from the "usr=..." specification.

A ":" is passed if a value is not present. The current directory for the execution of place
will be set to the directory containing place. The environment (see environ(7)) will con-
tain values for LOGNAME and HOME based on the login name from the "usr=..."
specification, and a value for TZ. Since the login name supplied on the " usr=..."
specification cannot be believed for security purposes, the UID will be set to a reserved
value.

E. In all other cases, the output will be thrown away.

The place value must not be a full path name, unless it refers to an executable file (see D
above). For cases A, B, and C above (and case D, if a full path name is not supplied), the
name of the user's login directory will be used to form a full path name.

The "usr=..." field may occur anywhere within the first 100 card images sent and within the
first 200 output images received by the UNIX system. The only restriction is that it be con-
tained completely on a single line or card - image. Therefore, the "usr=..." field may be
placed on a JOB card or comment card. It may also be passed as data.

For redirection of output by the host, a "usr=..." card, if not already present, must be sup-
plied by the user. This can be done by placing a job step that creates this card before your out-
put steps.

Messages generated by RJE or passed on from the host are assigned a level of importance rang-
ing from 1 to 9. The levels currently in use are:

3 transmittal assurance
5 job acknowledgement
6 output ready message

The optional level field of the " usr=..." specification must be a one or two-digit code of the
form mw. A message from the host with importance x (where x comes from the above list) is
compared with each of the two decimal digits in level. If x?w and if the user is logged in and
is accepting messages, the message will be written to his or her terminal. Otherwise, if x2:m,
the message will be mailed to the user. In all other cases; the message will be discarded. The
default level is 54. You should specify level 1 if you want to receive complete notification, and
level 59 to divert the last three messages in the above list to your mailbox.

0

6 UNIX RJE User's Guide

7. MONITORING RJE

RJE is designed to be an autonomous facility that does not require manual supervision. RJE is
initiated automatically by the UNIX reboot procedures and continues in execution until the sys-
tem is shut down. Experience has shown RJE to be reasonably robust, although it is vulnerable
to system crashes and reconfigurations.

Users have a right to assume that when the UNIX system is up for production use, RJE will also
be up. This implies more than an ability to execute the send(1C) command, which should be
available at all times; it means that queued jobs should be submitted to the host for execution
and their output returned to the UNIX system. If a user cannot obtain any throughput from
RJE, he or she should so advise the UNIX operators.

The rjestat(1C) command, invoked with no arguments will report the status of all RJE links for
which a given UNIX system is configured. It may sometimes also print a 'message of the day
from RJE.

$ destat
RJE to B operating normally.
RJE to A down, reason: IBM not responding.

A host machine may be reported to be not responding to RJE because it is down, or because of
its operator's failure to initialize the associated line, or because of a communications hardware
failure.

Rjestat also has the ability to send operator commands to the host machine and retrieve the
responses generated by the commands. Refer to the rjestat(1C) manual entry for a complete
description of this command.

0

0

•

JOB 384 .

UNIX R/E Usei s Guide ~
•

' APPENDIX

Sample JES2 Output Listing

$ cat rje/prnt0
14.40.31 JOB 384 EHASP373 GENER STARTED - INIT 26 - CLASS X - SYS RRMA
14.40.32 JOB 384 SHASP395 GENER ENDED

JES2 JOB STATISTICS

l AUG 77 JOB EXECUTION DATE

54 CARDS READ

• 76 SYSOUT PRINT RECORDS

0 SYSOUT PUNCH RECORDS

0.01 MINUTES EXECUTION TIME
1 //GENER JOB (9999,R740),PGMRNAME,CLASS=X

«» USR=(MYLOGIN,MYPLACE)
2 //IEBGENER EXEC PGM=IEBGENER
3 //SYSPRINT DD DUMMY
4 //SYSIN DD DUMMY
5 //SYSUT2 DD SYSOUT=A
6 //SYSUTI DD •

•

• //
IEF236I ALLOC. FOR GENER IEBGENER
1EF2371 DMY ALLOCATED TO SYSPRINT
1EF2371 DMY ALLOCATED TO SYSIN'
IEF2371 lES ALLOCATED TO SYSUT2
IEF237I JES ALLOCATED TO SYSUTI
IEF1421 GENER IEBGENER - STEP WAS EXECUTED - COND CODE 0000
IEF285! JES2.JOB0384.SO0102 SYSOUT
1EF2851 JES2.JOB0384.SI0101 SYSIN
lEF3731 STEP /IEBGENER/ START 77242.1440
lEF3741 STEP /IEBGENER/ STOP 77242.1440 CPU 0MIN 00.13SEC SRB 0MIN 00.0ISEC V1RT 36K SYS 188K

•~. SERVICE UNITS=0000174 SERVICE RATE=0000268 SERVICE UN[TS/SECOND
PERFORMANCE GROUP=005
EXCP COUNT BY UNIT ADDRESS

IEF375i JOB /GENER / START 77242.1440
IEF376! JOB /GENER / STOP 77242.1440 CPU 0MiN 00.13SEC 'SRB 0MIN 00.0ISEC

sewea•• SERVICE UNITS=0000174 SERVICE RATE=0000268 SERVICE UNITS/SECOND
eecossa APPROXIMATE PROCESSING TIME= .01 MINUTES
•wracr~. EXCPS=000000000 '
cees^~m. PROJECTED CHARGES= .0l

first line of data

last line of data
•O6/VS2 REL 3.7 JES2• END JOBNAME=GENER BIN =R740 JOB / =384 PGMRNAME
•O6/VS2 REL 3.7 JES2• END JOBNAME~GENER BIN=R740 JOB 8=384 PGMRNAME
•OS/VS2 REL 3.7 JES2• END JOBNAME=GENER BIN=R740 JOB / =384 PGMRNAME

$ rm -f rje/prnt0

1..

January 1981

•

1

•

•

UNIX Rewrote Job Entry Administrator's Guide
M. J. Fitton

Bell Laboratories
Piscataway, New Jersey 08854

1. INTRODUCTION

1.1 Purpose

This document is intended to augment the existing body of documentation on the design and
operation of UNIXt IBM RJE'. The reader should be familiar with rje(8), and the UNIX Remote
Job Entry User's Guide, April 1, 1980. There will be assumptions made concerning allocation of
responsibilities between UNIX and IBM operations, hardware configuration, etc. Although these
assumptions may not fully apply to your location, they should not interfere with the intent of
this document.

The major topics discussed in this paper are as follows:

e SETTING UP - hardware requirements and RJE generation on the IBM and UNIX systems.

e DIRECTORY STRUCTURES - the controlling RJE directory structure and a typical RJE sub-
system directory structure.

• RJE PROGRAMS - programs that make up an RJE subsystem.

e UTILITY PROGRAMS - utility programs that are available for debugging or tracing.

e RJE ACCOUNTING - the accounting of jobs done by RJE, and some methods for using this
accounting data.

e TROUBLE SHOOTING - error recovery and procedures for identifying and fixing RJE prob-

lems.

1.2 Facilities

Discussions will focus on a hypothetical RJE connection between a UNIX system, pwba, and an
IBM 370/168, referred to as B. We also assume that pwba is connected to an IBM 370/158,
referred to as C. The UNIX machine emulates an IBM System/360 remote multi-leaving work
station. For more information on the multi-leaving protocol, see Appendix B of OS/YS MYS
JES2 Logic (SY24-6000-1).

2. SETTING UP

2.1 Hardware

To use RJE on a UNIX system the following hardware is needed (one per remote line):

e KMCI l-B Microprocessor - used to drive the RJE line

e DMC11-DA or DMCII-FA line unit - the DMCII-DA interfaces with Bell 208 and 209 syn-
chronous modems or equivalent. Speeds of up to 19,200 bits per second can be used. The
DMCI l-FA interfaces with Bell 500 A T.I/5 synchronous modems or equivalent. Speeds of
up to 250,000 bits per second can be used.

t UNIX is a trademark of Bell Laboratories.
1. In this paper. RJE refers to the facilities provided by UNIX and aot to the Remote Job Entry feature of IBM's

HASP and JES2 subsystems.

1

•

•

a

•

2 UNIX RJE Administrator's Guide

On the DMCI l line unit, the Cyclic Redundancy Check (CRC) switch should be set to inhibit
automatic transmission of CRC bytes. The line unit should hold the line at logical zero when
inactive. For a more detailed description of the above hardware, see Terminals and Communica-
tions Handbook, Digital Equipment Corporation, 1979.

2.2 IBM Generation

The following applies to the host IBM system. The remote line to the UNIX machine should be
described as a System/360 remote work station. The following parameters must be initialized
and must agree with their counterparts on the UNIX machine:

o Number of printers (NUMPR) - the number of logical printers (up to 7)

e Number of punches. (NUMPU) - the number of logical punches (up to 7)

® Number of readers (NUMRD) - the number of logical readers (up to 7)

The JES2 parameters for our hypothetical connection to IBM system B are as follows:

RMT5 S/360,LINE=S,CONSOLE,MULTI,TRANSP,NUMPR=5,
NUMPU= I,NUMRD=5,ROUTECDE=5 .

R5.PR1 PRWIDTH=132
R5.PR2 PRWIDTH=132
R5.PR3 PRWIDTH=132
R5.PR4 PRWIDTH=132
R5.PR5 PRWIDTH=132
R5.PU1 NOSUSPND
R5.RD1 PRIOINC=0,PRIOLIM=14
R5.RD2 PRIOINC=0,PRIOLIM=14
R5.RD3 PRIOINC=0,PRIOLIM=14
R5.RD4 PRIOINC=0,PRIOLIM=14
R5.RD5 PRIOINC=0,PRIOLIM=14

System pwba is referenced by line 5 (LINE=5), remote 5 (RMT5). It is defined as having a
console, for the rjestat(1C) command, five printers, one punch, and five readers. Although you
may have up to seven printers or punches, the total number of printers and punches may not
exceed eight. The line is described as a transparent (TRANSP), multi-leaving (MULTI) line.
The remaining information describes attributes of the printers, punches, and readers.

Normally, separator pages are transmitted with IBM print files. UNIX RJE does not remove
separator pages. To prevent transmission of separator pages on printer 1 of the previous exam-
ple, its attributes would be:

R5.PR1 PRWIDTH=132,NOSEP

NOSEP should be included for all printers when separator pages are not desired. Most IBM sys-
tems can also be told via a console command to cancel transmission of separator pages on
printers. This can be done from the IBM system console, or from the remote UNIX machine
via rjestat. For example, the following JES2 command would cancel separator page transmission
on printer 1:

STR5.PRI,S=N

2.3 UNIX Generation

If the RJE remote dialing facility is to be used, the administrator must make sure that the
definition for RJECU in the file /usr/include/rje.b is the device to be used for remote dialing.
RJECU is defined to be /dev/dn2 when distributed. To compile and install RJE, the normal
make(1) procedures are used (see Setting up UNIX). Once an RJE subsystem has been installed,
the remote line must be described in the configuration file /usr/rje/lines. This file as it exists
on our hypothetical system pwba is as follows:

•

•

1

•

0
UNIX R.IE Administrator's Guide 3

. B pwba /usr%rjel 'rjel vpm0 5:5:1 1200:512:y
C pwba /usr/dc2 del vpm 1 1:1:1 1200:512

/usr/rje/lines is accessed by all components of RJE. Each line of the table (maximum of 8)
defines an RJE connection. Its seven columns may be labeled host, system, directory, prefix,
device, peripherals, and parameters. These'columns are described as follows:

e host - The IBM System name, e.g., A, B,' C. This string can be up to 5 characters long.

• system - The UNIX System name (see uname(1)).

• directory - the directory name of the servicing RJE subsystem (e.g., /usr/rje2).

• prefix - the string prepended to most files and programs in the directory (i.e., rje2).

• device - the name of the controlling Virtual Protocol Machine (VPM) device, with /dev/
excised. In order to specify a VPM device, all VPM software must be installed, and the

. proper special files must be made (see vpm(4) and mknod(1M)).

e peripherals - information on the logical devices (readers, printers, punches) used by RJE.
There are three subfields. Each subfield is separated by ":" and is described as follows:

1. Number of logical readers.
2. Number of logical printers.
3. Number of logical punches.

Note: the number of peripherals specified for an RJE subsystem must agree with the number
of peripherals that have been described on the remote machine for that line.

• parameters - this field contains information on the type of connection to make. Each
subfield is separated by ":". Any or all fields may be omitted; however, the fields are posi-
tional. All but trailing delimiters must be present. For example, in:

1200:512:::9-555-1212

subfields 3 and 4 are missing. Each subfield is defined as follows:

1. space - this subfield specifies the amount of space (S) in blocks . that RJE tries to
maintain on file systems it touches. The default is 0 blocks. Send(1C) will not submit
jobs and rjeinit issues a warning when less than 1.5S blocks are available; rjerecv stops
accepting output from the host when the capacity falls to S blocks; RJE becomes dor-
mant, until conditions improve. If the space on the file system specified by the user
on the " usr=" card would be depleted to a point below S, the file -will. be put in the
job subdirectory of the connection's home directory rather than' in, the place that the
user requested.

2. size - this subfield specifies the size in blocks of the largest file that_can be accepted
from the host without truncation taking place. The default is no truncation. Note that
UNIX has a default one Mega-byte file size limit.

3. badjobs - this subfield specifies what to do with undeliverable returning jobs. If an
output file is undeliverable for any reason other than file system space limitations
(e.g., missing or invalid " usr=" card) and this subfield contains the letter y, the out-
put will be retained in the job subdirectory of the home directory, and login rje is
notified via mad(1). If this subfield has any other value, undeliverable output will be
discarded. The default is'n.

4. console - this subfield specifies the status of the interactive status terminal for this
line. If the subfield contains an 1, the status console facilities of rjestat will be inhi-
bited. In all cases, the normal non-interactive uses of rjestat will continue to. function.
The default is y.

1

•

•

4 UNIX RJE Administrator's Guide

•

5. dial-up - this subfield contains a telephone number to'be used to call a host machine.
The telephone number may contain the digits 0 through 9, and the character "-",
which denotes a pause. If the telephone number is not present, no dialing is
attempted, and a leased line is assumed.

When multiple readers have been specified, jobs that are submitted for transmission- to IBM are
assigned to the reader with the fewest cards on it. Each reader gets an equal amount of service. .
This prevents smaller jobs from having to wait for a previously submitted large job to be
transmitted. When multiple printers or punches have been specified, returning jobs get
assigned to free printers (or punches) allowing smaller output files to bypass large output files.

Deciding how many peripherals to specify depends on the use of that RJE subsystem. If an RJE.
subsystem is heavily used for oft'-line printing (i.e., output does not return to the UNIX
machine), the administrator would want to specify multiple readers, but would not have a need
for multiple printers or punches.

3. DIRECTORY STRUCTURES

3.1 Controlling Directory

The controlling directory used by RJE is /usr/rje. This directory contains RJE programs for use
by separate RJE subsystems (e.g., rjel, rje2, rje3), and the shell queuer's directory. Most RJE
programs existing here have been compiled such that each RJE subsystem shares the text of
these programs. A snapshot of this directory on our hypothetical machine is as follows:

2 rje rje
1 rje rje
2 rje rje
2 rje rje
2 rje rje
2 rje rje
2 rje rje
2 rje rje
2 rje rje
1 root rje
2 rje rje
2 rje rje

4068 Mar. 4 10:42 cvt
42 Apr 10 09:52 lines

15096 .Apr 10 13:01 rjedisp
2328 Mar 4 10:21 rjehalt
10396 Apr 15 10:07 rj.einit
785 Apr 8 09:00 rjeload
5040 Mar 27 09:28 rjeger
4072 Apr 1 15:40 rjerecv
3888 Mar 27 09:35 r'jexmit
2696 Mar 27 14:42 shger
5920 Apr 2 15:47.snoop.
80 Mar 25 13:26 sque

-rwxr-xr-x
-rw- r - -r--
-rwxr-xr-x
-rwxr-xr-x
-rwxr-xr-x
.-r-x
-rwsr,xr-x
-rwxr-xr-x
-rwxr-xr-x
-rwsr-xr-x
-rwxr-xr-x
drwxr-xr-x

RJE subsystems are generated in their own directory by linking the program names in this direc-
tory to the appropriate names in the subsystem directory. The programs are described in Sec-
tion 4. The file lines is the configuration file used by all RJE subsystems. The directory sque is
used by the Shell queuer (shger). This directory contains:

-rw- r - -r -- 1 rje rje 0 Feb 14 14:0'4•'errors

-rw- r - -r-- 1 rje rje 0 Feb 14 14:04' log'.

When shger has work to do, the files log and errors will be of non-zero length, and temporary
files (turps) will also appear here. For a complete description of shger and these. files, see-Sec

The RJE subsystem described in this section maintains the connection between pwba and IBM.
B, and will be referred to as rjel. The first line of /usr/rje/lines (see Section 2.3).describes
rjel. As noted in this file, rjel runs in the directory /usr/rjel. A snapshot of .this directory is _
as follows:

tion 4.8.

3.2 Subsystem Directory

Y

1

•

.' UNLY RJE Adndnhiratoi s Guide s

-rw- r--r--
-rwxr-xr-x
-rw- r- - r- -
drwxrwxrwx
-rw- r - -r--
-rw-r--r--
-rwxr-xr-x
-rwxr-xr-x
-rwxr-xr-x
-r-x
-rwsr-xr-x
-rwxr-xr-x
-rwxr-xr-x
drwxr-xr-x
-rwxr-xr-x
drwxrwxrwx
drwxr-xr-x
-rw-r- r--
-rw-r--r--

l Yje
2 rje
1 rje
2 rje
1 rje
1 rje
2 rje
2 rje
2 rje
2 rje
2 rje
2 rje
2 rje
2 rje
2 rje
2 rje
2 rje
1 rje
1 rje

4990. Apr -15. 08:30 acct 1 og
4068 Ma.r ' ,4 10:42 c v t

1.94 Apr 15 08:11 joblog
0 Apr 15 08:11 resp

•15096 Apr 10 13:01 rjeldisp
2328 Mar 4 10:21 rjelhalt
10396 Apr 15 10:07 rielinit
785 Apr 8 09:00 rjelload
5040 Mar 27 09:28 rjelqer
4072 Apr 1 15:40 rjelrecv
3888 Mar 27 09:35 rjelxmit
144 Apr 15 08:30 rpool

5920 Apr' 2 15:47 snoop0
176 Apr 10 13:03 spool
224 Apr 10 13:56 squeue
0 Apr 15 10:30 stop

274 Mar 7 20:25 testjob

rje
rje
rje 0~Apr 15 04:02 errlog
rje 192 Apr 10 09:51 job
r j•e: '
r j' e
r j.e
rje
rje
rje
rje
rje
rje
rje
rje
rje
rje
rje
rje

The programs rjels, cvt, and snoopO are linked to the corresponding programs in /usr/rje, and
are described in detail in Section 4. The remaining files and their uses are as follows:

e acctlog - accounting data is stored in this file, if it exists. This file is the responsibility of
the R] E administrator. For a discussion of its uses, see Section 5.

e errlog - used by rjel to log errors. It can be useful for debugging rjel problems.

e joblog - used by rjelqer and rjestat to notify rjelmnit that a job (or console request) has
been submitted. It also contains the process-group number of the rjel processes. The pro-
gram cvt can be used to convert this file to a readable form.

e resp - contains console messages received from IBM B. These messages can be responses
for rjestat, or IBM responses to submitted jobs (i.e., on reader messages). This file is trun-
cated if it grows to,a size greater than 70,000 bytes.

o stop - indicates that r1el haft has been executed. 'The existence of this file indicates to rjes-
tat that rjel has been halted by the operator.

e testjob - a sample job that can be submitted to test the rjel subsystem. Originally, the job
control statements may have to be changed to suit your IBM system.

When rjel terminates• abnormally, the file dead should appear in this directory. This file con-
tains a short message indicating why rjel is not operating, and is used by rjestat to report the
problem. The remaining directories and their uses are as follows:

e job - used to save undeliverable jobs, if the proper parameter has been specified in
/usr/rje/lines. The sample job described above is also delivered to this directory. This
directory should be mode 777.

e rpool - contains temporary files used to gather output from the remote machine. These
files are named prs (for print output files), and pus (for punch output files). Once a com-
plete file has been received, the file _is dispatched in the proper way by rjeldisp.

e spool - used by send to store temporary files to be submitted to the remote machine. This
directory must .be mode 777.:. '

o squeue - used by rjel to store submitted files until they are transmitted. The program
rjelqer is used, by send to move the temporary files in the spool directory to this directory.

•

1:

4. RJE PROGRAMS

1

6 UNIX RJE Admfnuvatar's Guide
•

All programs described below, with the exception of rjestat, exist in /usr/rje. These programs
are "shared text" and are linked (except shger) to the proper names in each subsystem direc-
tory. The names described below are generic; the programs in the rje2 directory would be
rje2ger, rje2init, etc.

Each available RJE subsystem occupies three process slots. The slots are used for rje?Xmit, the
transmitter; rje?recv, the receiver; and rje?disp, the dispatcher. One additional process slot is
used for shqer, regardless of how many subsystems are available.

Each RJE subsystem tries to be self-sustaining, and logs any errors encountered during normal
operation in its errlog file.

4.1 Rjeqer

This program is used by send to queue files for transmission. When invoked, it performs the
following steps:

1. Moves the temporary pnch(5) format file in the spool directory to the squeue directory.

2. Writes an entry at the end of the file joblog containing:

e the name of the file to be transmitted

® the submitter's user ID

e the number of card images in the file

o the message level for this job

The file joblog is used to notify rjem t of work to be done.

3. Notifies user that file has been queued.

Send determines which host system is desired, and invokes the proper rje?qer by getting the
prefix from the lines file (e.g., if sending to IBM C from our machine, rje2ger would be
invoked).

• 4.2 Rjeloed
This program is used to start an RJE subsystem. Its prefix determines which subsystem to start
(e.g., rje2load starts-rje2). To start the RJE subsystems on our machine, the following com-
mands are executed in /etc/rc when changing to init state 2 (multi-user):

rm -f /usr/rje/sque/log
su de -c "/usr/rjel/deIload vpb0 kmc0"
su de -c "/usr/rje2/rje2load vpbl kmcl"

The file /usr/rje/sque/ log is removed to ensure the correct operation of shger. When invoked,
rjeload performs the following steps:

1. Uses the VPM device from /usr/rje/lines to link the proper devices (see vptnset(IC)).

2. Uses kasb(1) to perform the following:

o reset the KMC

o load the VPM script (/etc/rjeproto)

e start the KMC running

3. Executes rje?init to start the rje? processes (e.g., rje2load executes rje2init).

•

•

4.4 Rjeinit

•

UNIX RJE Administratoi s Guide 7

.This .program is used to halt an RJE subsystem. To halt rje2 on our machine,
/usi/rje2/rje2halt is executed. This should be done in the shutdown procedure for your
machine to ensure graceful termination of RJE. Rjehak will allow only those users with permis-
sion to halt an RJE subsystem. Rjehalt uses the header on the file joblog to get the process-
group of the RJE subsystem processes. This group is signaled to terminate. When all processes
have terminated, rjehalt sends a "signoff" record to the host machine. This signoff record is
taken from the file signoq (ASCII text), if it exists, otherwise a "/•signofr" record is sent. On
completion, rJehalt creates the file stop in the subsystem directory, that causes rjestat to report
that RJE-to the corresponding host has been stopped by the operator.

4:3 . Rjebalt

This program initializes an RJE subsystem. It is used by rjeload, and can be used to restart a
subsystem if the VPM script has previously been started. Rjeinit should only be executed by
user rje. Rjeinit fails if there are less than 100 blocks or 10 inodes free in the file system. It
issues a warning if there are less than 1.5X blocks, (where X is the first field in the parameters
for that line), or 100 inodes free in the file system. If rgeinit fails, the reason for the failure is
reported, and the file dead is created containing " Init failed". This will be reported by rjestat
until a subsequent rjeinit succeeds. Rjeinit performs the following functions:

1. Dials a remote host if specified (see Section 2.3).

2. Truncates the console response file resp.

3. Sends a signon record to the host. The signon record is taken from the file signon (ASCII
text), if it exists, otherwise rjeinit sends a blank record as a signon.

4. Sets up pipes for process communication.

5. Resets process-group for RJE subsystem and restarts error logging:

6. Rebuilds the joblog file from jobs queued for transmission.

7. Notifies rjedisp (via a pipe) of any returned files still remaining in the rpool directory.

8. Starts the appropriate background processes (rje?xmit, rje?recy, and rje?disp).

9. Reports started or not started.

If failure occurs in a buckground process, it is reported by that process (error logging). The
failing process will normally attempt to reboot the subsystem by executing rje?init with a -1- as
its argument (see Section 7). When rjeinit is executed with + as its argument, this indicates an
attempted reboot, and rjeinit will behave differently (no re-dialing is done to remote hosts,
errors are logged rather than printed, etc.).

4.5 Rlexmit

This program writes data to the VPM device. Rjexrnit is started by rleinit and runs in-the- back-
ground. When running, rjexmit performs the following processing:

1. Checks the joblog file for files to be transmitted. This is done every 5 seconds when not
transmitting data. When transmitting data, the joblog is checked after transmitting 1
block from each active reader2, and the console3.

2. Reader refers to the logical readers used by RJE.
3. Console refers to the RJE logical console, which is separate from the logical readers.

•

•

•

rjerecv.

4.6 Rjerecr

I

8 UNIX RJE Administrator's Guide

2. Queues files. from the joblog according to the first two characters of the file name:

a rde - these files are queued on the reader with the fewest cards. Normal use of the
send command creates these files.

• sqs - these files are queued on the last available reader to assure sequential transmis-
sion. Using the - x option to the send command creates these files.

• cos - these files are queued on the console. The rjestat command creates these files.

All files described above contain EBCDIC data.

3. Sends information to rjedisp (via a pipe) for use in user notification of job status (see Sec-

tion 4.7).

4. Builds blocks for transmission from active readers and the console. These blocks are built
according to the multi-leaving protocol. -

5. Performs the following peripheral control:

• Sends requests to open readers when jobs have been assigned to them. These readers
are not active until a grant is received from rjerecv (via a pipe).

• Halts and activates readers when waits or starts (respectively) are received from

• Sends printer or punch grants when an open request is received from rjerecv.

6. Notifies rjedisp that a file has been transmitted, and unlinks the file.

If rjexndt encounters fatal errors, it creates the dead file with an appropriate message, and sig-
nals the other background processes to exit. If possible, rjex► dt will attempt to reboot the RJE
subsystem by executing rjeinit.

This program reads data from the VPM device. Rjerecv is started by rjeinit and runs in the back-

ground. When running, rjerecv performs the following processing:

1. Reads blocks of data received from the host system.

2. Handles data received according to its type. The two types of data are:

• Control infdrmation - rjerecv performs the following peripheral device control:

a. Notifies rjemdt of grants to its requests to open readers.

b. Passes wait and start reader information to rjexmit.

c. Passes open requests (for printers and punches) from the host to rjemWt.

. o User Information - the three major types of user information received are:

a. Console responses and job status messages. This data is appended to the resp file
for use by rjestat and rjedisp.

b. The printer output from user jobs. This data is collected in temporary files (pr*)
in the rpool directory. When a complete print job has been received, rjerecv
notifies rjedisp (via a pipe) that the file is to be dispatched.

c. The punch output from user jobs. This data is handled the same as printer out-

put except that the rpool files are named pus.

3. If the console response file resp exceeds 70,000 characters, rjerecv truncates the file.

4. Rjerecv stops accepting output from the remote machine if the number of free blocks in
the file system falls below space blocks (space is described in Section 2.3).

•

1

•

•

•

UNIX RJE Administrator's Guide 9

5. Rjerecv truncates files to size blocks if a received file exceeds this value (size is described
in Section 2.3). .

If rjerecv encounters fatal errors, it creates the dead file with an appropriate error message, sig-
nals the other background processes to exit, and reboots the RJE subsystem.

4.7 Bjedisp

This program dispatches user information. Reedisp is started by rJeinit and runs in the back-
ground. When running, ry'edisp performs the following processing:

1. Dispatches output; the two types of output are printer and punch output. After receiving
notification of output ready from rjerecv, rjedisp searches fora " usr=" line in the .
received file. The format of a "usr=" line is as follows:

usr= (user,place,level)

Reedisp dispatches the output according to the place field. See UNIX Remote Job Entry
Usei s Guide for a detailed description of the user specification.

2. Dispatches messages. The three types of messages are as follows:

• Job transmitted - this message is sent to the submitting user when rjedisp reads this
event notice from the rjexrnit pipe.

• Job acknowledgement - rjedisp dispatches IBM acknowledgement messages to submit-
ting users. If a job is not acknowledged properly or within a reasonable amount of
time, a "Job not acknowledged" message is dispatched.

e Output processing - rjedisp dispatches job output messages according to the options
specified on the " usr=" card. A normal output message indicates the returned file
name is ready.

Messages can be masked by using the level on the " usr=" card.

3. Whenever output is to be handled by shger, rjedisp checks that Shqer is running. This is
done by looking for the shger log file. If this file does not exist, rjedisp starts shger.

~.8 Shqer

This program executes user programs when they appear in the place field of the ."usr=" line in
a returned output file (print or punch). Shqer is started by rjedisp when the first output file
using this feature is returned. Subsequent files using this feature are logged for execution by
rjedisp. When started, Shqer performs the following processing:

1. Builds the log file from file names in the /usr/rje/sque directory. Each log entry is the
name of a file (tmpT) that contains the following information:

• the name of the file to be executed

• the name of the input file (file returned from IBM)

i • the name of the IBM job

e the programmer name

. the IBM job number

• the user's name from the "usr=" line

e the user's login directory

• the minimum file system space

2. Shqer uses two parameters. The first is the delay time between. log file reads. The second
is a nice(2) factor which is applied to any programs spawned by Shqer. These values are

1

CL Closed

CL Clean

OP Opened

The VPM device has been closed.

The VPM driver is cleaning up for this device.

The VPM has been successfully opened.

•

10 UNIX RJE Administrator's Guide

defined in /usr/ include/rje.h (QDELAY and QN1CE).

3. When each log entry is read, the appropriate program is spawned with the following
characteristics:

• The returned RJE file is the standard input to the program.

® The standard and diagnostic outputs are /dev/null.

s The LOGNAME, HOME, and TZ variables are set to the appropriate values.

o The arguments to the spawned program, in order, are:

a. a numerical value indicating that the file system free space is equal or above (0)
or below (1) space blocks (see Section 2.3).

b. the IBM job name.

c. the programmer name.

d. the IBM job number.

e. the user's login name.

4. After executing each program, the tmp? file and the returned RJE file are removed.

S. UTILITY PROGRAMS

5.1 Snoop

Snoop is the generic name of a program that can be used to trace the state of a VPM device and
its associated communications line. Snoop depends on the trace(4) driver for its information.
It reads trace entries from /dev/trace and converts them into a readable form that is printed on
the standard output.

The usable name of snoop for a particular RJE subsystem is snoopN, where N is the low order
three bits from the VPM minor device number. If VPM device names adhere to the vpm0.
vpml, vpmn naming convention, each snoop name corresponds to its VPM device. In our
hypothetical system, vpm0 is used by the rjel subsystem, and vpml is used by the rje2 subsys-
tem (see Section 2.3). Therefore, /usr/rjel/snoop0 and /usr/rje2/snoopl are linked to
/usr/rje/snoop.

Each snoop prints trace entries for its associated VPM device. Trace entries are printed in the
following form:

sequence type information

where:

o sequence specifies the order of trace occurrences. It is a value between 0 and 99.

• type specifies the action being traced (e.g., transfers, driver activity).

• information describes data being transferred and driver activity.

The following table explains the meaning of trace types and their associated information.

type information meaning

0

1

•

i

f

RX Buf

RD num bytes

SC Exit(num) .

ST' Startup

ST Stopped

TR Started

TR R-ACK

i

• UN/X RJE Admiriisdotar's Guide

OP Failed(open) The open failed because the device was already open.

OP Failed(dev) The open failed because the device number was out of
range.

} OP Failed set) The open failed because the KMC could not be reset.

RR Buf The VPM script has returned a receive butler to the
VPM driver.

The VPM script has returned a transmit buffer to the
VPM driver.

Num bytes were read from the VPM device by ge~ew.

The VPM script bas terminated. The VPM exit code is
num. Exit codes are defined in vpm(4).

The KMC has been started.

The VPM script has been stopped.

The script has started tracing.

A two byte acknowledgement (ACK) string has been
received from the remote system. This indicates that
the previous transmission was properly received. • TR S-ACK A two byte acknowledgement (ACK) string has been
transmitted to the remote system.

TR R-NAK A ~ "not-acknowledged" (NAK) character has been
received from the remote system. This indicates that
the previous transmission was not properly received.

TR S-NAK A "not-acknowledged" (NAK) character has been
transmitted to the remote system.

TR R-ENQ A enquiry (ENQ) character has been received from the
remote system.

TR S-ENQ

TR R-WAIT

A enquiry (ENQ) character has been transmitted to the
remote system.

The remote machine has requested that no data be
transmitted to it.

f TR R-OKBLK A valid data block was received from the remote

TR R-ERRBLK

TR R-SEQERR

machine.

An invalid Cyclic Redundancy Check (CRC) was
received with a data block.

The block sequence count on a received data block was
invalid.

TR R-JUNK An invalid data block was received from the remote
system.

•

TR TIMEOUT

TR S-BLK

The remote machine did not respond within 3 seconds.

A data block has been transmitted to the remote sys-
tem.

•

12 UNIX RJE Adndnisoator's.Guide

WR num bytes Num bytes were written to the VPM device by rjexmit.

Trace entries of type TR are traces from the VPM script. Section 7.5 describes required
responses to events and shows examples of typical snoop output.

5.2 Rjestat

This program is supplied as a user command. The program's two functions are to describe the
status of the RJE subsystems and to provide a remote IBM status console. The remainder of
this section describes these two functions.

•

5.2.1 RJE Status

When invoked, rjestat reports the status of the RJE subsystems. If remote system (host) names
are specified, only those statuses are reported. Rjestat uses the following rules to report the
status of a subsystem:

e Rjestat prints the contents of the file status if it exists in the subsystem directory. This file
can contain any message the administrator wishes to have printed when users use rjestat.

e If the file dead exists in the subsystem's directory, the subsystem is not operating and the
reason is contained in the file. Rjestat reports that RJE to host is down and prints the con-
tents of the dead file as the reason.

• If the file stop exists in the subsystems directory, the rjehah program has been used to inhi-
bit that RJE subsystem. Rjestat reports that RJE to host •has been stopped by the operator.

e If neither the dead nor the stop file exists, rjestat reports that RJE to host is operating nor-
orally.

Rjestat is supplied as the user's vehicle for checking the status of RJE. It is not meant to be an
administrative tool; however, the reason for failure can be used to track the problem.

5.2.2 Status Console

To use rjestat as a status console, the -short argument is used. Rjestat prints the status of the
subsystem, then prompts with host: if the subsystem is up. Each console request is submitted
to the RJE processes for transmission, and output is handled as specified. Rjestat checks the
status prior to submitting each request, and will tell the user to try later if the subsystem goes
down. Rjestat allows the rje or super-user logins to submit other than display requests. For a
complete description of how to use the status console features, see rjestat(1C).

5.3 Crt

This program converts any subsystem's joblog file to readable form. The first line printed is the
process group number of the subsystem processes. The remaining output consists of entries in
the following form:

file user-id records level

Where file is the name of the submitted file, user-id is the submitters user number, records is
the number of "card" images, and level is the message level. The records and level fields are
not used if the file name is cos (console request submitted by rjestat).

6. RJE ACCOUNTING

Each RJE subsystem will store accounting information in the nectlog file, if it exists. It is the
responsibility of the RJE administrator to create and maintain this file in the subsystem's direc-
tory. Entries in this file describe RJE line use and are of the following form:

day time file user records

•

}

UNIX RJE Adntinistrotoi s Guide ' ~~ 13

Each field is delimited by ~a tab character. The meanings of each field is as follows:

1. day - The day of occurrence in the form mm/dd.

2. time - The time of occurrence in the form hh:mm:ss.

3. file - The name of the UNIX file. The first two characters identify its type as follows:

s rd/sq - the file was transmitted to the remote system

• pr - the print output file was received from the remote system

s .pu - the punch output file was received from the remote system

4. user - The user ID of the user responsible for the transfer.

5. records - The number of records (card images) transferred for this file.

Since acctlog data is not used by RJE, it should not be allowed to grow too large. This can be
accomplished by moving or processing the file during a system reboot (i.e., in /etc/re before the
RJE subsystems are started).

The following list describes some of the reports that could be generated from the acctlog data.
Implementation of a program to produce accounting reports is the responsibility of the adminis-

trator.

• Periodic Reports - by using the day and time fields in the data, periodic usage reports can
be produced.

• Iiy User Reports - by using the user field in the data, usage-by-user reports can be pro-

duced.
e By Subsystem Reports - by using the /usr/rje/lines file information and each acctlog file,

a usage-by-subsystem (or remote system) report can be produced.

Other reports can be produced using the type of file, size of jobs, etc.

• 7. TROUBLE SHOOTING

This section deals with RJE problems, and some methods for resolving them. The topics dis-
cussed in this section are as follows:

• Automatic Error Recovery

o Manual Error Recovery

e RJE Problems

• ICMC/VPM Problems

• Trace Interpretation

7.1 Auto®atic Error Rernvery

RJE attempts to be self-sustaining with respect to its availability. In general, if problems occur
on the communications line or the remote machine (e.g., a crash) RJE will continually try to
restart itself (this action will be referred to as a "reboot"). For example, if an RJE subsystem
is started using rjeload, but the IBM system is not available, a fatal error will occur. The pro-
cess that detects this error (usually rjexntit or rjerecv) will reboot the subsystem by executing
rjeinit with a + as its argument. When rjeinit detects a + argument, it waits one minute before
attempting to bring up the subsystem.

The tyehak program can be used to prevent an R]E subsystem from rebooting itself when the
remote system is not available for a known period of time. When the remote system is made
available, the subsystem may be started in the normal way.

•

1

•

1

•

14 UNIX RJE Administrator's Guide

•

7.2 Manual Error. Recorery

In order to manually recover from errors, one must know how to start and stop an RJE subsys-
tem. There are two ways to start an RJE subsystem:

e rje?load. - this program loads and starts the VPM script, and executes rjOinit.

e rje?init - this program starts the rje? subsystem. In order to use this, program, the VPM
script must be loaded and started.

To stop the rje? subsystem, the rje?hah program should be executed. This stops the subsystem
gracefully and will prevent a reboot.

The rleload program must be used to start RJE for the first time (after a UNIX system reboot).
Subsequently, as long as the script is running, execution sequences of rjehalt and rjeinit will stop
and start RJE.

1

•

Manually starting and stopping RJE can be useful in tracking down problems. For example, if
user jobs are not being submitted to the , host machine, the following sequence can ease
identification of the problem:

1. Halt the ailing subsystem.

2.• Start a snoop process in the background with its output redirected to a file.

3. Restart the subsystem.

4. Scan the snoop output to determine where the problem is.

The snoop program is the most useful software tool for identifying RJE problems. Its uses are
described in Section 7.5.

7.3 RJE Problems

This section describes problems that can occur in an RJE subsystem. These problems generally
occur when the subsystem has not been set up properly. The following is a list of things to
check to ensure that an RJE subsystem has been set up properly.

1. IBM description - the description of the remote UNIX machine must be consistent with
the description in Section 2.2.

2. UNIX description - the file /usr/rje/lines must be• set up properly. Section 2.3 describes
this file in detail:

3. KMC/VPM setup - the VPM software must be installed and the proper VPM and KMC
devices made. Each VPM device must correspond to the proper KMC device; see vpm(4).

4. Free space - as a general rule, all file systems must have a reasonable amount of free
space. File systems containing RJE subsystems must have sufficient free space as
described in Section 2.3 to ensure proper RJE operation.

5. Directories - each subsystem's directory and the controlling directory should be checked
for the following:

e All needed files exist.

e The proper prefix is on each applicable RJE program.

e The link count is correct for files that are linked.

e All file and directory modes are correct.

A sample subsystem directory and the controlling directory are shown in Section 3.

6. Initialization - peripherals information must be consistent on both systems (see Section
2.3). The line must be started on the IBM system, proper hardware connections made,

•

•

1

•

UN/X RJE Adndnisdetor's Guide , 1 S

etc.

Problems with a subsystem are indicated by error messages. Rjeinit checks for obstacles in
bringing up RJE. If an obstacle is found, an error message indicating the obstacle is printed on
the error output. If a problem is encountered during normal operation, the message is logged
in the errlog file. This file, error messages, the output from snoop, and the checklist above
should be used to determine and fix any 'subsystem problems. Generally, if a subsystem is set
up properly but will not operate, the problem is the way the VPM or ICMC has been set up, the
remote system, or the hardware.

7.4 ItMC/VPM Problems

This section describes the KMC and VPM uses, and problems that can occur. After installing
KMC hardware and making KMC devices, all VPM software and devices must be made (see
vptn(4)). The program rjeload links the devices to be used by the corresponding RJE subsys-
rem.

The following is a list of items to check when problems occur:

1. Proper hardware - the line unit must be compatible with the modem and have the proper
settings (see Section 2.1). Be sure that the KMC address and interrupt vector are correct.

2. Proper Devices - the major and minor device numbers for the KMC and VPM devices
must be correct. It should also be verified that the rje%ad program is called with the
correct KMC and VPM device names.

3. Script runs - verify that the VPM script is able to run. This is done by tracing the proper
VPM with the proper snoop program. Snoop will print " started" entries for both the KMC
and VPM script (see Section 5.1). If no output appears from snoop when rjeload is exe-
cuted, either the KMC is not working properly, or the KMC or VPM has not been set up
properly (see items 1. and 2). Output of any other type from snoop should indicate where
the problem is occurring.

7.5 Trsce Interpretation

This section describes how to interpret trace output from the snoop program, and gives several
examples. Section 5.1 describes the format and meaning of trace output lines, and should be
read before this section.

Lines with type TR are traces from the •VPM script. All others are driver traces and indicate the
following:

• e CL - activity occurring when the device has been closed.

• OP - activity occurring when the device has been opened.

e RD - read from device occurred.

• WR - write to device occurred. .

• RR - a receive buRer has been returned.

• RX - a transmit buffer has been returned.

ST - start or stop activity.

• SC - script exit type, exit value is given.

Section 5.1 enumerates all possible trace lines for each type, and describes the event. The
remainder of this section consists of example trace output and its interpretation. Comments
describing events will appear after the "•" in trace output. If more than one VPM were run-
ning, sequence numbers might not appear in order. For clarity, example sequences will be in
order. •

•

1

•

1

* Block acknowledged
* Transmit buffer returned
* Handshaking
*
s
s
*
s
s
s

* Handshaking

•

Tracing vpm0
86 ST
87 TR
88 TR
89 ST
90 OP
91 WR
92 TR
93 TR
94 TR
95 TR
96 TR
97 TR
98 TR
99 TR

Startup
Started
S-ENQ
Start
Opened
84 bytes
TIMEOUT
S-ENQ
TIMEOUT
S-ENQ
TIMEOUT
S-ENQ
TIMEOUT
S-ENQ

* KMC started
* Script started
* Enquiry byte sent
* VPM Driver start
s VPM device open
* Signon record written
* No response to enquiry
* Enquiry byte sent
* No response
* Enquiry byte sent
* No response
* Enquiry byte sent
* No response
* Enquiry byte - sent

16 UNIX RJE Administrator's Guide

7.5.1 Norma! RJE startup

The following is an example of trace output when RJE has been started up. In this case the
remote machine responds to the enquiry byte (ENQ). The RJE subsystem signs on to the
machine, then follows the handshaking protocol (exchanging ACKs).

Tracing vpm0
0 ST Startup * KMC start ed
1 TR Started * Script start ed
.2 TR S-ENQ * Enquiry byte sent
3 ST' Start s VPM Driver start
4 OP Opened * VPM Device open
5 TR R-ACK * Received acknowledgement
6 TR S-ACK * Handshaking
7 WR 84 bytes * Signon record written
8 TR R-ACK * Handshaking
9 TR S-BLK * Sent signon block

10 TR R-ACK
11 RX Buf
12 TR S-ACK
13 TR R-ACK
14 TR S-ACK
15 TR R-ACK
16 TR S-ACK
17 TR R-ACK
18 TR S-ACK
19 TR R-ACK
20 TR S-ACK

If any jobs had been submitted via the send command, or jobs were waiting to be returned, the
traces would reflect the transfers rather than handshaking (see Section 7.5.3).

7.5.2 RJE startup-IBM not responding

This example shows trace output when RJE has been started, but does not receive a response
from the remote machine. In general, the RJE script will timeout if a response is not received
from the remote machine within 3 seconds of the last transmission. When a timeout is
detected while starting up, the enquiry byte (ENQ) is retransmitted. This is repeated 6 times
before the script gives up. Other timeout responses will be discussed later.

•

U1HIX RJE Ad»dnistrator's Guide I~

0 TR TIMEOUT • No response
1 TR 'S-ENQ • Enquiry byte sent
2 TR TIMEOUT + No response
3 RR Buf + Receive buffer returned
4 RD 1 bytes * 1 byte read (error)
5 SC Exit(0) • Script exits normally
6 CL Clean « Cleanup done
7 ST Stopped • KMC stopped ..
8 CL Closed r VPM device closed

•

The above sequence will be repeated approximately every minute until a positive response is
received from the host. During that minute the RJE subsystem is dormant, and the rjestat com-
mand will report that IBM is not responding.' When this occurs, either the IBM machine is not
available, 'down, line not started, etc., or there is a communications problem somewhere from
where the KMC transmits data to where it receives data. The RJE administrator should first
verify that the IBM machine is up, and the communications line has been started. If so, a
hardware trace of the communications line should be done to aid in detecting the problem.

7.5.3 Transmitting and Receiving

This example shows trace output from the start of job transmission through its return. For
simplicity. only one job is being transmitted and returned.

Tracing vpm0
94 TR R-ACK a Handshaking
95 TR S-ACK +
96 ~ ~ TR R-ACK s
97 TR S-ACK • Handshaking .
98 WR 4 bytes + Open reader request written
99 TR R-ACK ~ + Handshaking
0 TR S-BLK s Sent open request block
1 TR R-OKBLK * Received block (grant)
2 RX Buf * Transmit buffer returned
3 RR Buf • Receive buffer returned
4 TR S-ACK • Block acknowledged
5 RD 7 bytes * Read 7 bytes (grant)
6 TR R-ACK . Handshaking
7 TR S-ACK • Handshaking
8 WR 481 bytes + First block written
9 WR 470 bytes + Second block written
10 TR R-ACK s Handshaking
11 TR S-BLK + First block sent
12 TR R-ACK' • Block acknowledged
13 RX Buf * Transmit buffer returned
14 WR 470' bytes * Third blocky written
I S TR S-BLK s Second block sent
16 TR R-OKBLK * Received block (on reader msg)
17 RX Buf * Transmit buffer returned
18 RR Buf • Receive butler returned
19 WR 470 bytes • Fourth block written
20 RD 66 bytes ; Read 66 bytes (on reader msg)
21 TR S-BLK • Third block sent
22 TR R-ACK * Block acknowledged
23 RX Buf • Transmit buffer returned
24 WR 147 bytes s Fifth block written

•
* More of the same

r

is UNIX RJE Adnninisrrntar's Guide

25 TR S-BLK * Fourth block sent
26 TR R-ACK * Block acknowledged
27 RX Buf * Transmit buffer returned

•

93 TR R-ACK * Handshaking
94 TR S-ACK • Handshaking
95 TR R-OKBLK * Received block (request)
96 RR Buf * Receive buffer returned
97 TR S-ACK * Block acknowledged -

98 RD 7 bytes * Read open printer request
99 TR R-ACK * Handshaking
0 TR S-ACK
1 TR R-ACK
2 TR S-ACK
3 TR R-ACK •
4 TR S-ACK * Handshaking
5 WR 4 bytes * Printer grant written
6 TR R-ACK * Handshaking
7 TR S-BLK * Block sent (grant)
8 TR R-OKBLK * First block received

.9 RX Buf * Transmit buffer returned
10 RR Buf * Receive buffer returned
11 TR S-ACK * Block acknowledged
12 RD 64 bytes * Read first block
13 TR R-OKBLK * Second block received
14 RR Buf * Receive buffer returned
15 TR S-ACK • Block acknowledged
16 RD 505 bytes * Read second block
17 TR R-OKBLK * Third block received
18 RR Buf * Receive buffer returned
19 TR* S-ACK * Block acknowledged
20 TR R-OKBLK * Fourth block received
21 RR Buf * Receive buffer returned
22 TR . SACK * Block acknowledged
23 TR R-ACK * Handshaking
24 TR S-ACK
25 TR R-ACK
26 TR S-ACK * Handshaking
27 RD 470 bytes * Read third block
28 RD 494 bytes * Read fourth block
29 TR R-ACK * Handshaking
30 TR S-ACK * Handshaking

• And so on
•

Requests and grants are part of the multi-leaving protocol. Appendix B of OS/VS MVS JES2
Logic (SY24-6000-1) describes this protocol in detail. When jobs are being transmitted and
received simultaneously, as in a busier RJE subsystem, much less handshaking is involved.
Rather than acknowledging blocks with ACKs, the protocol allows a block to be returned (this
implies acknowledgement of the received block). The following example shows trace output at
a busy time:

•

•

i

•

UNIX RJE Administrator's Guide ~ 19

tracing vpm0 -

41. TR R-OKBLK s Received block
42 RX Buf s
43 RR ~ Buf s
44 TR S-BLK s Sent block
45 WR 493 bytes +
46 RD 496 bytes s
47 TR R-OKBLK • Received block
48 R7C Buf •
49 RR Buf +
50 RD 65 bytes s '
S1 WR 4 bytes s '

.52 TR S-BLK s Sent block
53 TR R-OKBLK s Received block
54 RX Buf s
SS RR Buf s
56 ~TR S-BLK s Sent block
57 WR 493 bytes •
58 RD 7 bytes s
59 TR R-OKBLK * Received block
60 RX Buf s
61 RR Buf s
62 WR 493 bytes +
63 RD 496 bytes s

64 TR S-BLK s Sent block
65 TR R-OKBLK * Received block

Notice that since there is work to be done on both sides, acknowledgements are implied.

•
7.5.4 Timeout Error Recovery----~ ---~-

This example shows activity resulting from timeouts occurring during normal operation. These
timeouts were caused because the remote 11:53 system has performance problems, and occasion-
ally does not respond in the required three seconds.

Tracing vpml
27 TR S-ACK s Handshaking
28 TR R-ACK •
29 TR S-ACK s
30 TR TIMEOUT s No response
31 TR S-NAK + Not acknowledged
32 TR TIMEOUT s No response
33 TR S-NAK s Not acknowledged
34 TR R-ACK s Response
35 TR S-ACK s Handshaking
36 TR R-ACK s

•
•

54 TR R-ACK s
55 TR S-ACK s Handshaking
56 TR ~ TIMEOUT s No response
57 TR ~ S-NAK s Not acknowledged
58 ~ TR R-ACK * Response
59 TR S-ACK a Handshaking

i

I

•

. 20 UNIX RJE Administratar+ s Guide

•

The response to these timeouts are NAKs (not acknowledged). RJE will respond this way up to
six times before giving up and attempting a reboot. At this time rjestat would report that there
are "Line Errors". NAK is a request to retransmit the previous response. '

7.5.5 Communication Line Errors

This example shows trace output from an RJE subsystem that uses a dial-up connection. The
phone line is noisy and is prone to dropping.

,i

Tracing vpml
63 TR S-ACK « Handshaking
64 TR R-ACK' «
65 TR S-ACK •
66 TR R-JUNK * Noise on the line
67 TR S-NAK « Not acknowledged
68 TR R-ACK « Recovery
69 TR S-ACK «
70 TR R-ACK «
71 TR S-ACK- «
72 TR TIMEOUT * Line has dropped
73 TR S-NAK * Attempting to recover
74 TR TIMEOUT *
75 TR S-NAK
76 TR TIMEOUT
77 • TR S-NAK
78 TR TIMEOUT «
79 TR S-NAK +
80 TR TIMEOUT
81 TR S-NAK
82 TR TIMEOUT
83 TR S-NAK «
84 RR Buf * Receive buffer returned
85 RD 1 bytes * 1 byte read (error)
86 SC Exit(0) * Script exits
87 CL Clean * Cleanup
88 ST Stopped * KMC Stopped
89 CL Closed * VPM device closed

The error read in the above sequence causes RJE to reboot and rjestat to report line errors. If
this type of thing were to occur frequently, a different method of communication should be
used.

7.5.6 Error Responses

As seen in the sections above, the response to most errors is to send a NAK. The only excep-
tion is when starting up (see Section 7:5.2). Whenever a NAK is received on either side, it
indicates that the previous transmission was not properly received. Thii should be followed by
retransmission of the previous data. Generally, NAKs should not occur frequently, and should
be followed by recovery. If errors occur frequently or NAKs do not cause recovery, the line.
should be checked for problems.

On some IBM systems, (e.g., JES2), an I/O error is printed at the system console whenever a
NAK is received. These I/O errors can also be helpful in detecting the problem; however, they

•

UNIX R/E Ad►ntnistrator's Guide 21 ,,

will not be discussed here as they vary with the system. It is assumed that someone in IBM
support can assist if needed.

January 1981

t

1

•

1

•

~.

H T v

ABSTRACT

•

SED - A Non-inf~ractive Text Editor

•.,•Lee E. McMdhon

.• : ~.••.: Bell Laboratories

..•Murray Hill; New Jersey 07974

Sed is anon-interactive context editor that runs on the UNlxt operating
system. Sed is designed to be especially useful in three cases:

1) To edit files too large for comfortable interactive editing;
2) To edit any size file when the sequence of editing commands is too

.complicated to be comfortably typed in interactive mode.
3) To perform multiple `global' editing functions efficiently in one pass

through the input. •

This memorandum constitutes a manual for users of sed.

August 1 S, 1978

tUivlX is•a Trademark'of Bell Laboratories.

•

•

0

SED - A Non-interactive Text Editor

•

Lee E. McMahon

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

Sed is a non-interactive context editor designed to be especially useful in three cases:

1) To edit files too large for comfortable interactive editing;
2) To edit any size file when the sequence of editing commands is too complicated to

be comfortably typed in interactive mode;
3) To perform multiple `global' editing functions efficiently in one pass through the

input.

Since only a few lines of the input reside in core at one time, and no temporary files are used,
the effective size of file that can be edited is limited only by the requirement that the input and
output fit simultaneously into available secondary storage.

Complicated editing scripts can be created separately and given to sed as a command file. For
complex edits, this saves considerable typing, and its attendant errors. Sed running from a
command file is much more efficient than any interactive editor known to the author, even if
that editor can be driven by a pre-written script.

The principal loss of functions compared to an interactive editor are lack of relative addressing
(because of the line-at-a-time operation), and lack of immediate verification that a command
has done what was intended.

Sed is a lineal descendant of the UNIX editor, ed. Because of the differences between interac-
tive and non-interactive operation, considerable changes have been made between ed and sed,•
even confirmed users of ed will frequently be surprised (and probably chagrined), if they rashly
use sed without reading Sections 2 and 3 of this document. The most striking family resem-
blance between the two editors is in the class of patterns (`regular expressions') they recognize;
the code for matching patterns is copied almost verbatim from the code for ed, and the descrip-
tion of regular expressions in Section 2 is copied almost verbatim from the UNIX
Programmer's Manual[1]. (Both code and description were written by Dennis M. Ritchie.)

1. Overall Operation

Sed by default copies the standard input to the standard output, perhaps performing one or
more editing commands on each line before writing it to the output. This behavior may be
modified by flags on the command line; see Section 1.1 below.

The general format of an editing command is:

(addressl,address2] (function) (arguments)

One or both addresses may be omitted; the format of addresses is given in Section 2. Any
number of blanks or tabs may separate the addresses from the function.' The function must be
present; the available commands are discussed in Section 3. The arguments may be required or
optional, according to which function is given; again, they are discussed in Section 3 under each
individual function.

Tab characters and spaces at the beginning of lines are ignored.

1.1. Command-line Flags

Three flags are recognized on the command line:
.. ~ ~ -n: tells sed not to copy all lines, but only those specified by p functions or p flags after

. ~ . -~ s functions (see Section 3.3);
'. -e: tells sed to take the next argument as an editing command;

-f: tells sed to take the next argument as a file name; the file should contain editing
commands, one to a line.

.: ~ 1.2. Order of Application of Editing Commands

•	 Before any editing is done (in fact, before any input file is even opened), all the editing com-
mands are compiled into a form which will be moderately efficient during the execution phase
(when the commands are actually applied to lines of the input file). The commands are com-
piled in the order in which they are encountered; this is generally the order in which they will

. be attempted at execution time. The commands are applied one at a time; the input to each
•. command is the output of all preceding commands.

The default linear order of application of editing commands can be changed by the flow-of-
control commands, t and b (see Section 3). Even when the order of application is changed by
these commands, it is still true that the input line to any command is the output of any previ-
ously applied command.

1.3. Pattern-space

The range of pattern matches is called the pattern space. Ordinarily, the pattern space is one
line of the input text, but more than one line can be read into the pattern space by using the N
command (Section 3.6.).

1.4. Examples

Examples are scattered throughout the text. Except where otherwise noted, the examples all
assume the following input text:

In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river; ran
Through caverns measureless to man
Down to a sunless sea.

(In no case is the output of the sed commands to be considered an improvement on Coleridge.)

Example:

The command

2q

will quit after copying the first two lines of the input. The output will be:

In Xanadu did Kubla Khan
A stately pleasure dome decree:

2. ADDRESSES: Selecting lines for editing

Lines in the input files) to which editing commands are to be applied can be selected by
addresses. Addresses may be either line numbers or context addresses.

The application of a group of commands can be controlled by one address (or address-pair) by
grouping the commands with curly braces (`{)')(Sec. 3.6.).

3

2.1. Line-number Addresses

A line number is a decimal integer. As each line is read from the input, a line-number counter
is incremented; a line-number address matches (selects) the input line which causes the inter-
nal counter to equal the address line-number. The counter runs cumulatively through multiple
input files; it is not reset when a new input file is opened.

As a special case, the character $ matches the last line of the last input file.

2.2. Context Addresses

A context address is a pattern (`regular expression') enclosed in slashes (`/'). The regular
expressions recognized by sed are constructed as follows:

1) An ordinary character (not one of those discussed below) is a regular expression,
and matches that character.

2) A circumflex '^' at the beginning of a regular expression matches the null character
at the beginning of a line.

3) A dollar-sign `$' at the end of a regular expression matches the null character at the
end of a line.

4) The characters `\n' match an imbedded newline character, but not the newline at the
end of the pattern space..

5) A period `.' matches any character except the terminal newline of the pattern space.
6) A regular expression followed by an asterisk ` matches any number (including 0)

of adjacent occurrences of the regular expression it follows.
7) A string of characters in square brackets `(P matches any character in the string,

and no others. If, however, the first character of the string is circumflex " ,
the regular expression matches any character except the characters in the string
and the terminal newline of the pattern spate.

8) A concatenation of regular expressions is a regular expression which matches the
concatenation of strings matched by the components of the regular expression.

9) A regular expression between the sequences `\(' and `\)' is identical in effect to the
unadorned regular expression, but has side-effects which are described under
the s command below and specification 10) immediately below.

10) The expression '\d' means the same string of characters matched by an expression
enclosed in A C and AP earlier in the same pattern. Here d is a single digit; the
string specified is that beginning with the dth occurrence of `\(' counting from
the left. For example, the expression `"\(. \)\1' matches a line beginning with
two repeated occurrences of the same string.

11) The null regular expression standing alone (e.g., `//') is equivalent to the last reg-
ular expression compiled.

To use one of the special characters (" $. ' I l \ /) as a literal (to match an occurrence of itself
in the input), precede the special character by a backslash `\'.
For a context address to `match' the input requires that the whole pattern -within the address
match some portion of the pattern space.

2.3. Number of Addresses

The commands in the next section can have 0, 1, or 2 addresses. Under each command the
maximum number of allowed addresses is given. For a command to have more addresses than
the maximum allowed is considered an error.

If a command has no addresses, it is applied to every line in the input.

If a command has one address, it is applied to all lines which match that address.

If a command has two addresses, it is applied to the first line which matches the first address,
and to all subsequent lines until (and including) the first subsequent line which matches the
second address. Then an attempt is made on subsequent lines to again match the first address,

is

•

is

and the process is repeated.

Two addresses are separated by a comma.

-4-

•

Examples:

/ari/
/an."an/
/"an/
/./
/\./
/r'an/

3. FUNCTIONS

matches lines 1, 3, 4 in our sample text
matches line 1
matches no lines
matches all lines
matches line 5
matches lines 1,3, 4 (number = zero!)
matches line 1

All functions are named by a single character. In the following summary, the maximum
number of allowable addresses is given enclosed in parentheses, then the single character func-
tion name, possible arguments enclosed in angles (< >), an expanded English translation of
the single-character name, and finally a description of what each function does. The angles
around the arguments are not part of the argument, and should not be typed in actual editing
commands.

3.1. Whole-line Oriented Functions

(2)d -- delete lines

The d function deletes from the file (does not write to the output) all those
lines matched by its address(es).

It also has the side effect that no further commands are attempted on the
corpse of a deleted line; as soon as the d function is executed, a new line is
read from the input, and the list of editing commands is re-started from the
beginning on the new line.

(2)n -- next line

The n function reads the next line from the input, replacing the current line.
Tl~e current line is written to the output if it should be. The list of editing
commands is continued following the n command.

(1)a\

<text> -- append lines

The a function causes the argument <text> to be written to the output after
the line matched by its address. The a command is inherently multi-line; a'
must appear at the end of a line, and <text> may contain any number of
lines. To preserve the one-command-to-a-line fiction, the interior newlines
must be hidden by a backslash character (`\') immediately preceding the new-
line. The <text> argument is terminated by the first unhidden newline (the
first one not immediately preceded by backslash).

Once an a function is successfully executed, < text> will be written to the out-
put regardless of what later commands do to the line which triggered it. The
triggering line may be deleted entirely; < text> will still be written to the out-
put.

The <text> is not scanned for address matches, and no editing commands are
attempted on it. It does not~cause any change in the line-number counter.

(1)i\
<text> -- insert lines

•

•

5

The i function behaves identically to the a function, except that < text> is
written to the output before the matched line. All other comments about the a
function apply to the i function as well.

(2)c\
<text> -- change lines

The c function deletes the lines selected by its address(es), and replaces them
with the lines in < text>. Like a and i, c must be followed by a newline hid-
den by a backslash; and interior new lines in <text> must be hidden by
backslashes.

The c command may have two addresses, and therefore select a range of lines.
If it does, all the lines in the range are deleted, but only one copy of < text> is
written to the output, not one copy per line deleted. As with a and i, <text>
is not scanned for address matches, and no editing commands are attempted on
it. It does not change the line-number counter.

After a line has been deleted by a c function, no further commands are
attempted on the corpse.

If text is appended after a line by a or r functions, and the line is subsequently
changed, the text inserted by the c function will be placed before the text of the
a or r functions. (The r function is described in Section 3.4.)

Note: Within the text put in the output by these functions, leading blanks and tabs will disap-
pear, as always in sed commands. To get leading blanks and tabs into the output, precede the
first desired blank or tab by a backslash; the backslash will not appear in the output.

Example:

The list of editing commands:

n

a\'
XXXX
d

applied to our standard input, produces:

In Xanadu did Kubhla Khan
XXXX
Where Alph, the sacred river, ran
XXXX -
Down to a sunless sea.

In-this particular case, the same effect would be produced by either of the two following com-
mand lists:

n n

i\ c\
XXXX XXXX
d

3.2. Substitute Function

One very important function changes parts of lines selected by a context search within the line.

.(2)s< pattern> <replacement> <flags> -- substitute

The s function replaces part of a line (selected by <pattern>) with <replace-
ment>. It can best be read:

Substitute for <pattern>, <replacement>

•

•

•

The <pattern> argument contains a pattern, exactly like the patterns in
addresses (see 2.2 above). The only difference between <pattern> and a con-
text address is that the context address must be delimited by slash (`/') charac-
ters; <pattern> may be delimited by any character other (han space or new-
line:

By default, only the first string matched by <pattern> is replaced, but see the
g flag below.

The <replacement> argument begins immediately after the second delimiting
character of <pattern>, and must be followed immediately by another instance
of the delimiting character. (Thus there are exactly three instances of the
delimiting character.)

The <replacement> is not a pattern, and the characters which are special in
patterns do not have special meaning in <replacement>. Instead, other char-

acters are special:

& is replaced by the string matched by < pattern>

\d (where d is a single digit) is replaced by the dth substring matched
by parts of <pattern> enclosed in `\(' and `\)'. If nested sub-
strings occur in <pattern> , the dth is determined by counting
opening delimiters (`\(').
As in patterns, special characters may be made literal by
preceding them with backslash (`\').

The <flags> argument may contain the following flags:

g -- substitute <replacement> for all (non-overlapping) instances of
<pattern> in the line. After a successful substitution, the
scan for the next instance of <pattern> begins just after the
end of the inserted characters; characters put into the line from
<replacement> are not rescanned.

p -- print the line if a successful replacement was done. The p flag
causes the line to be written to the output if and only if a sub-
stitution was actually made by the s function. Notice that if
several s functions, each followed by a p flag, successfully sub-
stitute in the same input line, multiple copies of the line will be
written to the output: one for each successful substitution.

w <filename> -- write the line to a file if a successful replacement was
done. The w flag causes lines which are actually substituted by
the s function to be written to a file named by <filename>. If
<filename> exists before sed is run, it is overwritten; if not, it
is created.

A single space must separate wand <filename>.

The possibilities of multiple, somewhat different copies of one
input line being written are the same as for p.

A maximum of 10 different file names may be mentioned after
w flags and w functions (see below), combined.

•

-7-

• Examples:

The following command, applied to our standard input,

s/to/by/w changes

produces, on the standard output:

In Xanadu did Kubhla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

and, on the file `changes':

Through caverns measureless by man
Down by a.sunless sea.

If the nocopy option is in effect, the command:

s/ [.,;?:]/*P&*/gp
produces:

A stately pleasure dome decree*P:*
Where Alph*P,* the sacred river*P,* ran
Down to a sunless sea*P.*

Finally, to illustrate the effect of the g flag, the command:

/X/s/an/AN/p

produces (assuming nocopy mode):

In XANadu did Kubhla Khin

and the command:

/X/s/an/AN/gp

produces:

In XANadu did Kubhla KhAN

3.3. Input-output Functions

Mp -- print

The print function writes the addressed lines to the standard output file. They
are written at the time the p function is encountered, regardless of what
succeeding editing commands may do to the lines.

Mw <filename> -- write on <filename>

The write function writes the addressed lines to the file named by <filename>.
If the file previously existed, it is overwritten; if not, it is created. The lines
are written exactly as they exist when the write function is encountered for
each line, regardless of what subsequent editing commands may do to them.

Exactly one space must separate the wand <filename>.

A maximum of ten different files may be mentioned in write functions and w
flags after s functions, combined.

Mr <filename> -- read the contents of a file

The read function reads the contents of <filename>, and appends them after
the line matched by the address. -The file is read and appended regardless of
what subsequent editing commands do to the line which matched its address.
If r and a functions are executed on the same line, the text from the a

•

so

functions and the r functions is written to the output in the order that the func-
lions are executed.

Exactly one space must separate the r and <filename>. If a file mentioned by
-~	 a r'function cannot be opened, it is considered a null file, not an error, and no

diagnostic is given.

NOTE: Since there is a limit to the number of files that can be opened simultaneously, care
should be taken that no more than ten files be mentioned in w functions or flags; that number
is reduced by one if any r functions are present. (Only one. read file is open at one time.)

Examples

Assume that the file `note l ' has the following contents:

Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the
Mongol dynasty in China.

Then the following command:

/Kubla/r notel

produces:

In Xanadu did Kubla Khan
Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the
Mongol dynasty in China.

A stately pleasure dome. decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

3.4. Multiple Input-line Functions

Three functions, all spelled with capital letters, deal specially with pattern spaces containing
imbedded newlines; they are intended principally to provide pattern matches across lines in the
input.

(2)N -- Next line

The riext input line is appended to the current line in the pattern space; the two
-input lines are separated by an imbedded newline. Pattern matches may extend
across the imbedded newline(s).

(2) D -- Delete first part of the pattern space

Delete up to and including the first newline character in the current pattern
space. If the pattern space becomes empty (the only newline was the terminal
newline), read another line from the input. In any case, begin the list of edit-
ing commands again from its beginning.

(2)P -- Print first part of the pattern space

Print up to and including the first newline in the pattern space.

The P and D functions are equivalent to their lower-case counterparts if there are no imbedded
newlines in the pattern space.

•

•

9

•

hold area.

Example

The commands

lh

Is/ did.'//
Ix
G
sAn/ J

applied to our standard example, produce:

3.5. Hold and Get Functions

Four functions save and retrieve part of the input for possible later use.

(2)h -- hold pattern space

The h functions copies the contents of the pattern space into a hold area (des-

troying the previous contents of the hold area).

(2)H -- Hold pattern space

The H function appends the contents of the pattern space to the contents of the
hold area; the former and new contents are separated by a newline.

(2)g -- get contents of hold area

The g function copies the contents of the hold area into the pattern space (des-

troying the previous contents of the pattern space).

(2)G -- Get contents of hold area

The G function appends the contents of the hold area to the contents of the
pattern space; the former and new contents are separated by a newline.

(2)x -- exchange

The exchange command interchanges the contents -of the pattern space and the

In Xanadu did Kubla Khan :In Xanadu
A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu

3.6. Flow-of-Control Functions

These functions do no editing on the input lines, but control the application of functions to the
lines selected by the address part.

M! -- Don't

The Don't command causes the next command (written on the same line), to
be applied to all and only those input lines not selected by the adress part.

(2)(-- Grouping

The grouping command `(' causes the next set of commands to be applied (or
not applied) 'as a block to the input lines selected by the addresses of the group-
ing command. The first of the commands under control of the grouping may
appear on the same line as the `(' or on the next line.

40

0

-10-

• The group of commands is terminated by a matching `~' standing on a line by
itself.

Groups can be nested.

(0):<label> -- place a label

The label function marks a place in the list of editing commands which may be
referred to by b and t functions. The <label> may be any sequence of eight
or fewer characters; if two different colon functions have identical labels, a
compile time diagnostic will be generated, and no execution attempted.

(2)b<label> -- branch to label

The branch function causes the sequence of editing commands being applied to
the current input line to be restarted immediately after the place where a colon
function with the same <label> was encountered. If no colon function with
the same label can be found after all the editing commands have been com-
piled, a compile time diagnostic is produced, and no execution is attempted.

A b function with no <label> is taken to be a branch to the end of the list of
editing commands; whatever should be done with the current input line is
done, and another input line is read; the list of editing commands is restarted
from the beginning on the new line.

(2)t<label> -- test substitutions

The t function tests whether arty successful substitutions have been made on
the current input line; if so, it branches to <label>; if not, it does nothing. • The flag which indicates that a successful substitution has been executed is
reset by:

1) reading a new input line, or
2) executing a ~ function.

3.7. Miscellaneous Functions

(1)= -- equals

The = function writes to the standard output the line number of the line
matched by its address.

(1)q -- quit

The y function causes the current line to be written to the output (if it should
be), any appended or read text to be written, and execution to be terminated.

Reference

[1] Ken Thompson and Dennis M. Ritchie, The UN/X Programmer's Manual. Bell Labora-

tones, 1978.

•

•

•

0

H

H

•

1

Source Code Control System-

User's Guide

Bell Telephone Laboratories. Incorporated

I. E. Bonanni
C. A. Salemi

1. .

l~

•

Sawn Code Control System 0
User's Guide

1. INTRODUCTION 1

2. SCCS FOR BEGINNERS 1
2.1 ~ Terminology 1
2.2 Creating an SCCS File-The "admin" Command 2
2.3 Retrieving a File-The "Set" Command 2
2.4 Recording Changes-The "delta" Command 3
2.5 More about the "get" Command - 4
2.6 The "help" Command 5

3. HOW DELTAS ARE NUMBERED 5

4. SCCS COMMAND CONVENTIONS 7

5.' SCCS COMMANDS 8
,5.1 get 9
5.2 delta 16
5.3 admin 18
S.4 prs 21'
5.5- help 22
5.6 rmdel 22
5.7 cdc 23
5.8 what 23
5.9 scesdiff 24
5.10 comb 24
5.11 val ' 25

6. SCCS FILES
6.1 Protection 25
6.2 Format 26
6.3 Auditing 27

REFERENCES 28

)

•

-i-

25

i

LIST OF FIGURES

Figure 1. Evolution of an SCCS File 6

Figure 2. Tree Structure with Branch Deltas 6

Figure 3. Extending the Branching Concept 7

•

Bell Laboratories
Piscataway, New Jersey 08854

C. A. Sakmi

Source Code Control System User's Guide
L L Sonanni

•

Pell Laboratories
Piscataway, New Jersey 08854

1. INTRODUCTION

The Source Code Control System (sccs) is a collection of Pws commands that help individuals
or projects control and account for changes to files of text (typically, the source code and
documentation of software systems). It is convenient to conceive of sccs as a custodian of
files; it allows retrieval of particular versions of the files, administers changes to them, controls
updating privileges to them, and records who made each change, when and where it was made,
and why. This is important in environments in which programs and documentation undergo
frequent changes (because of maintenance and/or enhancement work), inasmuch as it is
sometimes desirable to regenerate the version *of a program or document as it was before
changes were applied to it. Obviously, this could be done by keeping copies (on paper or other
media), but this quickly becomes unmanageable and wasteful as the number of programs and
documents increases. SCes provides an attractive solution because it stores on disk the original
file and, whenever changes are made to it, stores only the changes. each set of changes is called
a "delta."

This document, together with relevant portions of Ill, is a complete user's guide to sca. This
manual contains the following sections:

• SCCS for Beginners. How to make an secs file, how to update it, and how to retrieve a
version thereof

• How Deltas Are Numbered How versions of sea files are numbered and named.
• SCCS Command Conventions. Conventions and rules generally applicable to all SCCS

commands.
• Secs Commands.- Explanation of all SCCS commands, with discussions of the more useful

arguments.
• Secs Filer Protection, format, and auditing of sCCs files, including a discussion of the

differences between tying secs as an individual and using it as a member of a group or
project. The role of a "project secs administrator" is introduced.

2. SCCS FOR BEGINNERS

It is assumed that the reader knows how to log onto a Pw8 system, create files, and use the text
editor I ll. A number of terminal-session fragments are presented below. All of them should
be tried: the best way to learn SCCS is to use it.

To supplement the material in this manual, the detailed SCCS command descriptions (appearing
in (11) should be consulted. Section 5 below contains a list of all the Sccs commands. For the
time being, however, only basic concepts will be discussed.

2.1 Terminology

Each secs file is composed of one or more sets of changes applied to the null (empty) version
of the file, with each set of changes usually depending on all previous sets. Each set of changes
is called a "delta" and is assigned a name, called the SCCS 1Dentification string (SID),
composed of at most four components, only the fast two of which will concern us for now•,
these are the " release" and "level" numbers, separated by a period. Hence, the first delta is
called 'G1.1", the second "1.2", the third " 1.3", etc. The release number can also be changed
allowing, for example, deltas "21", "3.19", etc. The change in the release number usually

1

.`

~1 ~;

.~

2 SCCS Us~'t GvrQi

iadi a for change to the file.

Zac2t delta of sa sees file deanes a particular veasioa of the file. For example. delta 1.S defines
versloa 1.S of the secs file, .obtained by applying to the nuII (empty) version of the file the
chaag~ tit constitute deltas 1.1. 1.2, etn., up to and iacludiag delta 1.5 itself, is that order.

2.2 Crea8lag as SCCS Fils-T~e '•adt+gin'• Cot~aad

Consider. for exaaaple, a file called "laag" that coataia~s a list of progra~miag languages:

C

p!/i
fottraa
~~
algoi

ale vri~ to give custody of this file to stes. The following adttriR command (which is used to
admisisrar sCCS files) creates as stcs file sad iaitialues delta 1.1 ~ from the file "tang":

adanin - hang• slang

X11 sets files r.~ttu have names that begin with "s.", hence, " s.lang". The -t keyietter.
together with its value "fang", indicates that adnin is to create a new stt:s ale sad initiclir it
with the contents of the file "fang". This initial version is a set of changes applied to the null
5C~ ale; it is delta I.1.

~•; ,,

The edntie cartimand replies:
Yo id keywords (can7)

Thin is a warning message (which clay also be issued by other sCCS comtnaads) that is to be
ignored for the purposes of this section Its signi$caace is described in Secsian 5.1 below. In
the falling examples, this warning message is not shown, although is ffiay actually be issued
by the various costmand.

The file "lane" should ba re$toved (beause it can be easily recansvucted by using the ger
coatmaad; below):

cis tang .

2.3 lae~s~lag a Fil©mThe '•get" Cot~aad

The cot~2atd:

gn: s.laag

csty-cgs the cPeatioa (retrieval) of the Lit version of file " s.iaag", and prints the following
• rn

1.1
S line

• This ffiea~ that ~ retrieves version 1.1 of the alo, which is made up of S tines of text. The
. retrieves . text is placed is a file whose mane is formed by deleting the "s." prefix (rota the

naffie of the sCCs ®le; hence, t$e file '•laag" is acted.

•

•

SCCS User s Grrids 3

The above ger command simply creates the file "fang" read-only, sad kelps ao information
whatsoever regarding its creation. On the other head, is order to be able to subsequently apply
changes to an SCCS • file arith the delta command (see below), the get command must be
informed of your intention to do so. This is done as follows:

get ~e s.lang

The -ye keyletter causes get to scale a file "fang" for both rtadiag sad writing (so that it may
be edited) and places certain information about the SCCS file in another new file, called the p*
frle. that will be read by the delta command. The ger command prints the same messages as
before. except that the stn of the version to be created through the use of delta is also issued.
for example:

get -e s.laag
1.1
new delta 1.2
S lines

The file " fang" may now be changed, for example, by:

ed fang .
27
~Sa
saobol
ratfor

w~
Q1

~~ 2.4 Recording Changes- The "delta" Comtaaad

In order to record within the sCCS file the changes that have been applied to "fang", execute:

delta slang

. ~zlra prompts with:

comments?

the response to which should be a description of why the changes were made; for example:

comments? added more languages

$elra rhea reads the p-fr/e, and deterettines shat changes were made to the file " fang". It does
this by doing its own get to retrieve the original version, sad by applying d18(1) t to the original
version and the edited version.

1. AU references of the form nacres (.N) refer to item Hass is command writeup sgctioa N of I11.

1

1

•

SCCS User's Gui~

'rhea this process is eocnplete. at which point the; changes to "laag" hive been stored is
"s.laag ' , dolts outputs:

1.2
_.

2 inserted
0 deleted
S uachataged

The ~atamber " I.Z" is the came of the delta just czeated, and the next three lines of output
refer to the number of lines is the file "slang".

Z.S ~®~ at~ut the "get" Corcaffi~1

~s v►e have seen

,et s.laag

retrieves the latest version (now 1.Z) of the file "s.lang". This is done by starting with the
original version of the file and succ_ssiveiy applying deltas (the changes) in order. until all have
been applied.

i

get me -r2 s.laag

ilecause ~ celeage 2 does net exist, g¢r eetriev~ the latest version beporr release 2: it also
interprets this 2s a request to change the release number of the delta we wish to create co 2,
thereby causing it to be naffied 2.1. raz$er than 1.3. This infoeffiatioa is conveyed to delta via
the p-jrle. Get then outputs:

I.2
new delta Z.1
7 tines

For our example, the following cornmaads are all equivalent:

get slang

get ~rl slang

get - r1.Z slang

The numbers following the --r keyleuei are sIDs (se. Section 2.1 above). Noce chair omitting
the level number of the sal (as is the second example above) is equivalent to specifying the
h~glfest level number that exisu within the specified release. Thus, the second cammand
requests the retrieval of the latest vezsioa is release 1, namely 1.Z. The third command
spe~~iea(ly requests the retrieval of a particalar version, in this case. also 1.Z.

~tteaever a truly major change is made to a file, the significance of that change is usually
indicated by changing the release number (first component of the stD) of the delta being made.
Since aoetI121. automatic. aurabering of deltas proceeds by inaemeating the level cumber
.(second coaapoaent of the ~s~). we must indicate. to aces that we wish to change the release
auntber. This is dose with 'the get comffiand:

>~

l~

~.

•

,:

example, by: If the file- is now edited, for

SCCS User's Guide 3

which indicates that version 1.2 has been retrieved and that 2.1 is the version delta will create.

ed lane
41
/coboVd
w
35
q

and delta executed:

delta s.lang
comments? deleted cobol from list of languages

we will see, by delta's output, that version 2.1 is indeed created:

2.1
0 inserted
1 deleted
6 unchanged

Deltas may now be crested in release 2 (deltas 2.2, 2.3, etc.), or another new release may be
created in a similar manner. This process may be continued as desired. • .

2.6 The " help" Command

If the command:

get abc

is executed, the following message will be output:

ERROR (abc): not an SCCS file (col)

The string "col" is a code for the diagnostic message. ' and may be used ' to obtain a fuller
explanation of that message by use of the help command:

help col

This produces the following output:

col:
.not an SCCS file"
A file that you think is an SCCS file
does not begin with the characters 's.'.

Thus, help is a useful command to use whenever there is any doubt about the meaning of an
secs message. Fuller explanations of almost all secs messages may be found in this manner.

3. IOW DELTAS ARE NUMBERED

It is convenient to conceive of the deltas applied to an SCCS file as the nodes of a•tree, in which
the root is the initial version of the file. The root delta (node) is normally named "1.1" and
successor deltas (nodes) are named " 1.2", "1.3", etc. The components of the names of the
deltas are called the " release" and the " level" numbers, respectively. Thus, normal naming of
successor deltas proceeds by incrementing the level number, which is performed automatically
by sCCS whenever a delta is made. In addition, the user may wish to change the release number
when making a delta, to indicate that a major change is being made. When this is done, the
release number also applies to all successor deltas, unless specifically changed again. Thus. the
evolution of r particular file may be represented as in Figure 1.

•

•

i

1

•

L

t 1.4

-

t.s.t s

LI 1.3

t.= t. t

Flgtara 2. Tree Structure with Branch Deltas

gramik

t

t.i.c.t

b SCCS Uur's Guide

1.3 t.=

!
!
I

1.4 1 E.t U

is

Affirm 2

Flan I. Evolution of an Sccs File

Such a structure may be termed the "trunk" of the secs tree. It represents the normal
sequential development of as SCCS file, in which changes that are part of any given delta are
dependent upon all the preceding deltas.

However, there are situations in which it is aec.asu7r to cause a branching in the tree, in that
. changes- applied as part of a given delta are not dependent upon all previous deltas. AS an

exazaple, consider a program which is in production use at version 1.3, and for which
development work as release 2 is already is progress. Thus, release 2 may already have some
deltas, precisely as shown in Figure 1. Assume that a production user reports a problem is
version 1.3, and that the nature of the problem is such that it cannot wait to be repaired is
release 2. The changes necessary to repair the trouble will be applied as a delta to version 1.3
(the version is production use). This creates a new version that will then be released to the
user, but will not affect the changes being applied for release 2 (i.e., deltas 1.4, 2.1, Z.2, etc.).

The new delta is' a node on a "broach" of the tree, and its name consists of four components,
namely, the release and level numbers. as with trunk deltas. plus the "broach" and
"sequence" numbers, as follows:

releasg.level.braach.sequence

The branch number is assigned to each breach that is a descendant of a particular trunk delta,
with the iirsi such branch being 1, the next one 2, and so an. The sequence number is
assigned, in order, to each delta on a particular branch Thos, 1.3.1.2 identifies the second delta
of the first breach that derives from delta 1.3. This is shown is Figure 2.

The concept of branching may be extended to any delta is the tree; the naming of the re'ultin$
deltas preceeds in the manner just illustrated.

Two ob .tiona are of iffiaca with d to naming deltas. Fist, the names of trunk
deltas contath exactly two coffipoaeats, and the aaanes of branch deices contain exactly four
componenss. Se ond, the first two components of the name of branch deltas are alerayn those
of the aace3ta-4 truce delta. and the branch component is assisted in the aides of creation of
the bTat3slt, independently of its location relative to the trunk deltab Thus. a branch deity may
always be i

dentiged as such f

rom its e≥ame. Although the anc

e

tr

a

l

 trunk delta try be
id

kw

x

d

from

 the brand d

elta's tame, it is n

ot p

o

tzibie to dMr-mane the e, m path loaslaag

•

~ ~.s.~.t

a~ ~ ~

t
t

~ ta.t.t ~.~.z.2

t.I.t ._

s~ t

•

SCCS User's Glide 7

from the trunk delta to the beaaeh delta. For example, if delis 1.3 hms one branch emaaatiag
from it. all deltas oa that bunch sill be named 1.3.1.x. Tf a delta sat this breach than has
another breach emaasting from ir, aII deltas on the nee branch will be aaaaFd 1.3.2.x (see
Figure 3). The only information that stay be derived from the name of delta 1.3.2.2 is that it
is the cluoxologlcally second delta oa the cltroxotogrcally second breach whose trunk ancestor is
delta 1.3: Ia particular, it is Rot possible to deurmiae from the same of delta 1.3.2.2 all of the
deltas between it and its trunk ancestor (1.3). ~r

t.t ~s ~s t.a tt u

Flgtare 3. Exteadiag the Braachiag Concept

It is obvious that the concept of breach deltas allows the generation of arbitrarily complex tree
structures. Although this capability has been provided for certain specialized uses, it is strongly
recommended that the secs tree be kept as simple as possible, because compreheasioa of iu
structure becomes extremely dii$cult as the nee becomes more complex.

d. SCCS COM~[AND CONVENTIONS

This section discusses the coavendons and rules that apply to secs commands. These rules sad
conventions are generally applicable to all sCCs commands, except as indicated below. SCCS
commands accept two types of arguments: ktyktrer arguments and fr/e arguments.

~Ceyletter azgumeau . (hereafter called simply '•keyletters") begin with a minus sign (-).
followed by a lower-case alphabetic character, sad, is some cases, fotlos+ed by a value. These
keyletters control the execution of the command to which they are supplied.

file arguments (which may be names of files and/or directories) specify the files) that the
gives SCCS command is to process; naaniag a d'uectory is equivalent to naming al! the SCCS files
within the duectory. Idon-SCCS Sles and unreadable= files is the gamed directories aze silently
ignored.

Ia general, file arguments may Trot begin with a ntintas sign. However, if the name "-" (a
lone minus sign) is specified as as argument to a command, the command reads the standard
input for lines sad takes each lice as the naxu of as SCCS file to be processed. The standard' .
input is read until end-of•file. This feature is often used is pipelines (11 with, for example; the
h»d(1) or Ls(1)~commaads. Again, names of non-SCCS files sad of unreadable files are silently
ignored.

All keyletten specified for a gives command apply to alt file arguments of that eommaad. All
keyletters are processed before any file arguments, with the result that the placement of
keyletters is arbitrary (i.e., keyletters may be interspersed with file arguments). File argumeau, _ ,

•
2. cleanse of permissioe modes (see eAxeod(1)).

8 SCCS Gsa's Gwde

however. are processed left to right.

Sorsaewhat di~ereat argument conventions apply to the help, ~vhas. scads sad va! commands
(see S~tioas S.S, 5.8, 5.9, sad 5.11).

C-maid aatioas of various SCCS commands are controlled by flags appeatiag is sCes files. Some
of these ©age are discussed belo~r: For a complete description of all such flags. see adntiit(1).

The distiaetioa betv►eea the real iassr (see passwd(1)) sad the e~eaive user of a Pwa system is
of costars is discussiog various actions of SCCS commands. For the present, it is assumed that
both the real user and the efl'ective user ate oae sad the same (i.e., the user who is logged into
a ~~ system); this subject is further discussed in Section 6.1.

ail sCt:S commands t13at modify an SCes file do so by waiting a temporary copy, called the x-file.
which assures that the SCCS file will not be damaged should processing terminate abnormally.
'The saate of the x-/rle is formed by eeplaeiag the "s." of the secs file name with "x.". alltea
peocessing is corttplete. the old sees file is removed sad the x ale is renamed to be the SCCS file.
The x ~4le is created in the directory containing the SCCS file. is gives the same mode (see
ch,aod(1)) as the sCCS file. and is oaraed by the e$'ettive user.

To prevent simultaneous updates to an SCCS file. commands chat modify sCCs files create a
lock-frle. called the : -jrle. whose same is formed by replacing the "s." of the sCCS file name
with "z.". The :-frle coataias the process nsrmber (11 of the command that creates it, and its
existence is as indication to other commands that that sees file is being updated. Thus, ocher
commands that modify sees files will not process an SCCSS file if the corresponding :-ftle exisu.
The : nle is created with mode #~4 (read-only) in the directory containing the sCCS file, sad is
owned by the effective user. 'this file exisu only for the duration of the execution of the
comataad that aeates it In general, users can igaate x-files and :--frles; they may be useful is
the event of system c:~shes or similar situations.

SCCS camtttaads produce diagnostics (on the diagaosuc output.(11) of the form:

ERROR Iaaffie-of-file-being-procassedl: message toxt (code)

The code is parentheses rosy be used as an argument to the help comraaad (see Section S.S) to
obtain a further explaaatioa of the diagnostic message.

Detection of a fatal error during the processing of a file cages the sCCS command to terminate
processing of chat file sad to proce_d with the next file. is order. if more rhea oae file has been
named.

S. SCCS COI~'ASA.YDS

This seetiotc describes the majoe features of all the SCCS camtaaads. Detailed descripuons of
the commands and of all their argumeav are given is the PSYB User s .lfanual. and should be
consulted for further information. The discussion below covers only the more common
arguments of the various sCCS camtaaads.

Because the commands get and dales are the most frequently used. they are presented first The
ocher comtttaads follow in approximate order of importance.


~~~1 
~% 

    

.' 

 

)• 

 

)~ 

   



• 

 

SCCS User's Oude 9 

 

The following is a summary of all the sCCS commands and of their major functions: 

get _:Retrieves versions of sccs files. 

delta Applies changes (deltas) to the text of secs files, i.e., creates new versions. 

admin Creates sccs files and applies changes to parameters of secs files. 

prs Prints portions of an secs file in user specified format 

help Gives explanations of diagnostic messages. 

rmdel Removes a delta from an secs file; allows the removal of deltas that were created 
by mistake. 

cdc Changes the commentary associated with a delta. 

what Searches any PWB  file(s) for all occurrences of a special pattern and prints out 
what follows it; is useful in finding identifying information inserted by the 8a 
command. 

sccsdiff Shows the differences between any two versions of an sccs file. 

comb Combines two or more consecutive deltas of an sccs  file into a single delta; often 
reduces the size of the sccs  file. 

vai Validates an secs file. 

5.1 Bet 

 

The get command creates •a text file that contains a particular version of an secs file. The 
particular version is retrieved by beginning with the initial version, and then applying deltas, in 
order, until the desired version is obtained. The created file is called the gfile; its name is 
formed by .removing the "s." from the sccs  file name. The g file is created in the current 
directory [l) and is owned by the real user. The mode assigned to the g-file  depends on how 
the get command is invoked, as discussed below. 

The most common invocation of get is: 

get s.abc 

 

which normally retrieves the latest version on the trunk of the secs file tree, and produces (for 
example) on the standard output (1J: 

• 

         

1.3 

  

67 lines 
No id keywords (cm7) 

which indicates that: 

 

1. Version 1.3 of file " s.abc" was retrieved (1.3 is the latest trunk delta). 
2. This version has 67 lines of text. 
3. No ® keywords were substituted in the file (see Section 5.1.1 for a discussion of ID 

keywords). 

 

The generated g-frle (file "abc") is given. mode 444 (read-only), since this particular way of 
invoking get is intended to produce g-files only for inspection, compilation, etc., and not for 
editing (i.e., not for making deltas). 

0  

   



                       

• r~ 

10 SCCS Uss's eeide 

 

In the Case of several file arguments (or directory-name arguments), similar information is 
given for each file processed, but the sees file name precedes it. For example: 

get s.abc s.def -. 

produce 

s.abse 
1.3 
67 lines 
No id keywords (c=7) 

s.def: 
1.7 
85 lines 
No id keywords (cm7) 

5.1.1 1D Keywords 

In generating a g-file  to be used for compilation, it is useful and informative to record the date 
and time of creation, the version retrieved, the module's name, etc., within the g-fife, so as to 
have this information appear in a load module when one is eventually created. Sees provides a 
convenient mechanism for doing this automatically. Identification  lm) keywords appearing 
anywtiere in the generated file are replaced by appropriate values according to the definitions of 
these M keywords. The format of an m keyword is an upper-case letter enclosed by percent 
signs (%). For example: 

 

%1% 

is. defined as the m keyword that is replaced by the sM of the retrieved version of a file. 
Similarly, %H% is defined as the m keyword for the current date (in the form "mm/dd/yy"), 
and %M% is defined as the mate of the g-file. Thus, executing lei on an sccs file that contains 
the PLA declaration:  - 

DCL ID CHARO00) VAR OM('° M%, M% %H46'); 

gives (for example) the following: 

DC:L ID CHAR(100) VAR RMCMODNAME 2.3 07/07/77'); 

     

This mete is normally treated as a warning by get. although the presence of the f flag in the 
secs file causes it to be treated as an error (see Section 5.2 for further information). . 
For a complete list of the approximately twenty m keywords provided. see get (1)  

S. 1.2 Reriml of Differesat Vetzions 

Various keyletters are provided to alloy the retrieval of other than the default version of an 
SCC3 file. Normally, the default version is the most recent delta of the highest-aumbered 
relesw on the marek of the sccs file tree. However. if the.sces file being processed has a d 
(default Sty) flag, the sm specified as the value of this flag is used as a default. The default sm 
is interpreted in exactly the same way as the value supplied with the -r kayletter of get. 

The mr kayletter is used to specify an sm to be retrieved, in which case the d (default sm) flag 
(if any) is ignored. For example: 

get ®r1.3 s.abc 

     

• 

    

• 

 

No id keywords (cm7) 

When no m keywords are substituted by get; the following message is issued: 

      

t~ 

 



     

1 

SCCS User 's Guide 11 

retrieves version 1.3 of file "s.abc", and produces (for example) on the standard output: 
1.3 

   

64 lines 
A branch delta may be retrieved similarly: 

get -r1.5.2.3 sabc 
which produces (for example) on the standard output: 

1.5.2.3 
.234 lines 

When a two- or four-component SM is specified as a value for the -r keyletter (as above) and 
the particular version does not exist in the sccs file, an error message results. Omission of the 
level number, as in: 

 

Set -r3 s.abc 
causes retrieval of the trunk delta with the highest level number within the given release, if the 
given release exists. Thus, the above command might output: 

3.7 
213 lines 

If the given- release does not exist, get retrieves the trunk delta with the highest level number 
within the highest-numbered existing release that is lower than the given release. For example, 
assuming release 9 does not exist in We "s.abc", and that release 7 is actually the highest-
numbered release below 9, execution of. 

 

get -r9 s.abc 
might produce: 

7.6 
420 Bats 

 

which indicates that trunk delta 7.6 is the latest version of file " s.abc" below release 9. 
Similarly, omission of the sequence number, as in: 

get - x4.3.2 sabc 
results in the retrieval of the branch delta with the highest sequence number on the given 
branch, if it exists. (If the given branch does not exist, an error message results.) This might 
result in the following output: 

 

4.3.2.8 
89 lines 

  

0  

          



 

DI: 

12 SCCS Uswr's Guide 

 

The -t keyletter is used to retrieve the latest ("top") version in a particular release (i.e., when 
no -r keytetter is supplied, or when its value is simply a release number). The latest version 
is defined as that delta which was produced most recently, independent of its location on the 
secs file tree. Thus, if the most recant delta in release 3 is 3.5. 

get -r3 - t s.abc 
might produce: 

3.5 
59 lines 

However, if branch delta 3.2.1.5 were the latest delta (created after delta 3.5), the same 
cot=atnand might produce: 

3.2.1.5 
46 lines 

5.1.3 Retrieval with Intent to .Make a Delta 

Specification of the - e keyletter to the gar command is an indication of the intent to snake a 
delta. and, as such, its use is restricted. The presence of this keyletter causes get to check: 

 

1. The user list (which is the list of login names and/or group ms of users allowed to make 
deltas (see Section 6.2)) to determine if the login cause or group tD of the user executing 
get is on that list. Note that a null (empty) user list behaves as if it contained, all possible 
login names. 

2. That the release (R) of the version being retrieved satisfies the relation: 

floor S R 5 ceiling 

to determine if the release being accessed is a protected release. The floor and ceiling are 
specified as flags in the scCS file. 

3. That the release (R) is not locked against editing. The lock is specified as a flag in the SCCS 
file. 

4. Whether or not multiple concurrent edits are allowed for the secs file as specified by the j 
flag in the secs file (multiple concurrent edits are described in Section 5.1.5). 

 

A failure of any of the first three conditions causes the procepsing of the corresponding secs 

  

If the above checks succeed, the -e keyletter causes the creation of a g-file  in the current 
directory with mode 644 (readable by everyone, writable only by the owner) owned by the real 
user. If a writable g file already exists, gat terminates with an error. This is to prevent 
inadvertent destruction of a g/ lile that already exists and is being edited for the purpose of 
making a delta. 

Any ID keywords appearing in the g-fik are not substituted by get when the -e keyletter is 
specified. because the generated g-fLe is to be subsequently used to c:este another delta, and 
replacement of tD keywords would cause them to be permanently changed within the sccs ale. 
In view of this, get does not need to check for the presence of M keywords within the g-frk. so 
that the message: 

No id keywords (cml) 

is never output when get is invoked with the -e keyletter. 

 

In addition. the ®e keyletter cau= the creation (or updating) of a p-file, which is used to pass 
information to the delta command (sae Section 5.1.4). 

        

file to tettninate. 

     



1.3 
new delta 1.4 
671ines 

  

SCCS !:Isar s G,ude 13 

The foUov+ing is as example of the use of the - e keyletter. 

get -e sabe 

 

which produces (for exaacuple) on the standazd output: 

• 

If the - r aad/or -t keyletters are used together with the -e keyletter, the version retrieved 
for editing is as specified by the -r aad/or - t keyletters: 

The kcyletters -! and mz may be used to specify a list (see ger(!) for the syntax of such a 
list) of deltas to be included a~ad e~clr~ded, respectively, by get. Including a delta mesas fortdag 
the changes that constitute the particular delta to be included is the retrieved version. This is 
useful if one weals to apply the same changes to more than one version of the secs file. 
Excluding a delta means forcing it to be not applied. This may be used to undo, is the version 
of the SCCS file to be created, the eil'ects of a previous dclta ~Erhenever deltas are included of 
excluded, ger cheeks for possible interference between such deltas and those deltas that are 
normally used is retrieving the particular version of the SCCS file. (Two deltas qa interfere, 
for exaatple, when each one changes the same lice of the retrieved g-jrle.) Any interference is 
indicated by a warning that shows the range of liars within the retrieved g-jtk is which the 
problem may exist. The user is expected to examine the g-jrle to detertaine whether a problem 
actually exisu, and to take whatever corrective measures (if nay) are deemed necessary (e.g.. 
edit the file). 

 

t~ T/te -1 and - z keylerrers should be uud with taca~eint can. 

The -lt keyletter is provided to facilitate regeneration of a g-jtle that may have bean 
accidentally removed or ruined subsequent to the execution of ger with the -e keyletter. or to 
simply generate a g-frle in a+hich the replacement of ID keywords has been suppressed. Thus, a 
g-frle generated by the -k keyletter is identical to one produced by .ger executed with the -e 
keyletter. However, ao processing related to the p-jrle takes place. 

5.1.4 Corcturent Edits ojD~erznt sIDs 

The ability to retrieve different versions of as SCCS file allo~+s a number of deltas to be "ia 
progress" at any given time. This means that a atunber of get commands a+ith the -~e keyletter 
tray be executed on the same file, provided that no tao executions retrieve the same version 
(unless multiple concurrent edits are allowed, see Section 5.1.5). 

The p~jrlr (which is created by the ger command invoked with the -e keyletter) is named by 
replacing the "s." is the SCCS file name with "p.". It is created in the directory containing the 
secs file, is given mode 644 (readable by everyone, writable only by the owner), and is owned 
by the effective user. The p-~1e contains the following information for each delta that is still 
"ia progress";~ . 

• The sID of the retrieved version. 
• The sID that will be given to the new delta when it is created. 
• The login name of the real user executing set 

The first execution of "get - e" causes the crpacion of the p-jrle for thecorresponding secs file. 
Subsequent executions only updau the p-jrle by inserting a line containing the above 
inforta2tioa. before inserting this tine, however, get checks that ao entry already in the p-jtle 

3. Other itsfotttsation taay he Present, put is not of ootscera here. see der(t) for fttrther diaeunioa. 

       

.1 

• 



 

• 
   

Ya(p Oates aq: aoammm 9x aen on vast!tC are esen  aaaragrr  eao$ Jo =wr-*-

 

lp s uJ t'9 S 99S  t 

 

ardmoo £ ="M oge•s amOOK Peas 

 

:aid=xa 20.4  •putmuuoo (1) Peas 
s&d am jo swaumbs ..S.. ao ..;., am glua pasn uaam injasn Lirsirornd n ral3aiLaX dam- atU 

amQuaDV-L= .gre < og8•s d- iaS 

:tams= Lreai1gn glum salg8 aiv= 01 `aidta m wj •peen aq A= s?U Indino 311500 2M 
am of P92=1 pa=aaip q (paeaia7a] saarl jo sagtann DID PM pahauiaj noisraA alp jo Ms am 
se mans) mdtno paeptzms ag1 0l paeoarYp LD aou indxno  Tp •oontppv ui ~jl!•8 a ol aaai~ 
•1ndino prxpueas am  oi  sxal panaiaiaa - am an=ts of ra8 sa~ w aanalAoX d- am jo uonl og1sadc 

jn&no ..1 uzvolay 9•r s 

  

i 

 

'III  'i'l r1jap O3upoad US puooas am of Suipuod=oo puvuaoo 
aJlap Oat ptte '  (xtiap V= (Iuaoa: 2Som) lsate1 alp S1 1.1 luimnsn) Z•i 1:1iap saonpord 181  lug 
age of Smpuodsa.= pu=tuoa =lap E •am M u1 -Map jo uonnoaxa Smuaea9= ue Inogum 

 

i' 

  

saml S 
1.1.1.1 TIM mau 

1'1 
og4•s a® IDS 

•rtq pamoi}o~ ~tiatt:tpamm~ aq ~teu: 

OR S 
Z-1 eliap A= 

ag4•s a® iaE 

Mqj •ajg ors am m aas 0 Stu t alp p pamolp aaa (Cas 
panautaj =toes aap  oo paseq Supipa aoj ia8 jo suoiinaaxa aA.tsrv=a aaom so  oAM  aq of paugap) 
sit pa 3uaunouoo aidninm •sana~moH wS snomwd agi p his amss am it patnoaxa C1 SupT pa aoj 
lab juanbasgns a asojaq pamoaxa aq isnm mlap `si ivU •Lpua=ovo: arooo of paurmad iou 
are ms auras age uo pasvq (paguads s► rauailCa)i  aQ-) SmMD aoj stab •suonipttoo i uoo aapu.-I 

 

cls a,aVS ay; jo S7.n ruaan-VI o,) ;7 _c 

7aLP 
07 pagioads caS agl jo uouzunj a se •mlap Lq pairaz 4pniuat a aq 03 bOWaA aaI jo GIS agt se 
Data it 7a8 Lq pQ&OLnar v a(tj s»s ue jo uolsran regret `oam injasn 1Sow oqa aoj •staogs 1 aige j• 

•(1j Laoaoaalp St~airom 
itaaaaj~.p a sea Ap=ov aasn got:= aoms `ann iou s=op maigoad stq1 am.  os V`ssasn wasa.W 
Lq paurojrad an snopwaxa aidttinm gins •aoiiaerd ui •uonipuoo aoua sox  ut s! p igm 'all!-S 
s/gmlea, iz a jiam•aaAo o> >dmain  pinoM suonnzaxa luanhasgns =ours •paaoons Due uonnoaxa lsag 
alp  Liuo àsumaaaYO •capo3oaa?p iuarapip morj mo pagm aq pinogs sal jo tuotinsaxa snouu 
age IM aioo of jumod= q 11 •slinsaj o2nsam aona in  •slcej Xoago aamta J1 •eanw1uoa 
Suissaooad pue `ssarSord m are m1ap satpo irgi pamsojm si aasn atn •pa=ns axe=d= 11toq jl 

•pamolp aag saga 
suaunouoa aidnintt ssatun •panausa~ aq of noisaan aa1 jo ms age panaiaaa~ r(paariE se sagtoads 

   

+P!"D =,,wA ox t1 

 

 

 

 

• 

  

 

 



• 
SCGt User s Guide 

R a mR 
R >mR 
R ~ mR 

mR.mL mR.mL.(mB+ 1).1 
mR.mL mR.mL.(mB+ 1).1 

  

1S 

TABLIr 1. Determlaation o[ 1°Iea SID 

mR.(mL+ 1) mR.mL 

hR.mL•• hR.mL.(mB+ 1).1 R < mR and 
R dots not exist 

R.ial.. (mB + 1).1 R.mL 
True: suetxssor 

- is release > R 
aced R exists 

R.(L + 1) 9. R.L ao No trunk successor R.L 

R.L.(mB+ 1).1 
R.L.(mB+ 1).1 

No breach successor R.L.B.S R.L.B.(S + 1) 
No breach successor R.L.B.S 
Breach successor R.L.B.S 

~ This case is turd to torte the a~eacion of the Jltsr delta in a +~ release. 
M •'hR" is the highest esttttint release that is loc+et than the speafied. aor.~stavK, teletesr R. 

. 
~~ SID -~b Keylettrr 

Specked• Usedt ~. ..__. 
l~l/!el 

Conditions 
SID SID of Delm 

Reaievrd m be Gusted 

 

no R defaults to mR mR.mL 
yes mR.mL. (mB + 1) .1 R defaults to mR mR.mL 

 

R.1~ 

1. nonea 
2. noses 

mR.(mL+ 1) 

3. R 
4. R 
S. R 
6. R 
7. R 

S. R 

 

no R > mR mR.mL 
no 
yes 

Y~ 

yes No trunk sutxessor 
Trttak successor 
in release ~ R 

R.L R.L.(mB+ I).1 

R.L R.L.(mB+ 1).1 

10. R.L 

 

11. R.L 
12. R.L.B 
13. R.L.B 
14. R.L.B.S 
15. R.L.B.S 
16. R.L.B.S 

no No branch successor R.L.B.mS R.L.B.(mS+ 1) 
yes No branch successor R.L.B.mS R.L.(mB+ 1).1 

:~ 
ao 

Yes 

 

• "R", "L", "B", and "S" art the "release". " level". ••branch", and "sequeaot;" componenu of the SID. 
respectively: " m" means " maximum". Thus. for example. "R.mL" means " the maximum level attmber ~vithia 
release R": "R.L(m8+ t).t" mesas " the Srst sequence number on the net branch (i.e., maxamam branch 
number plus 1) of level L ryithia release R". Note that if the SID sped6ed is of the form " RL". "R.L.B". or 
"R.L.B.S", each of the specified components muu exist. 

* The -b Iceyletur b effective only (f the 6 Osp (see adnun(1)) is DrExat in the Sle. Ice this table, as entry of "-

 

•• means "itrelevaat". 
s This case applies i! the d (delatth SID) ~i is eor present in the tile. It We d llas is present in the Sle, then the 

SID obtained from the d Qog is iutetpreted u if it had bean specified on the eommsad lice. Thus. otte of the 
other ass in this able applies. 

if file " compile" contains: 

   

//plicomp job job-card-information 
/ /steel exec plickc 
//pii.sysia dd • 
-s 

'!get -p - rREL MOD 
/• 
// 

will send the highest level of release 3 of file " s.abc". Note that the line ""- s", which causes 
sand (1) to snake m keyv►oed substitutions before detecting sad interpreting wntroi lines, is 
necessary if send (1) is to substitute "s.abc" for MOD aQd " 3" for REI. is the lice ""!gee  -
p -rREL MOD". 

     

• 



 

,, . 

16 sea User's Guide - 

 

The -s keyletter suppresses all output that is norm4 directed to the standard output. Thus, 
the SM of the retrieved version, the number of lines retrieved, etc., are not output. This does 
not, however. affect_ messages to the diagnostic output. This keyletter is used to prevent  aon-
diagnostic messages from appearing on the user's terminal, and is often used in conjunction 
with the -p keyletter to "pipe" the output of gX as in: 

 

get -p --s s.abc I nro@' 

The -g keyletter is supplied to suppress the actual retrieval of the text of a version of the Sccs 
Ste. This may be useful in a number of ways. For example, to verify the existence of a 
particular sm in an sees file. one may execute: 

Set -g - r4.3 s.abc 

This outputs the given sm if it exists in the secs file, or it generates an error message, if it does 
not. Another use of the -g keytener is in regenerating a p-frk that may have been accidentally 
destroyed: 

get -e -g sabc 

The -1 keyletter causes the creation of an 1-frk, which is named by replacing the "s." of the 
sCCS file name with "1." This file is created in the current directory, with mode 444 (read-
only). and is owned by the real user. It contains a table (whose format is described in get (0) 
showing which deltas were used in constructing a particular version of the SCCS file. For 
example: 

get -r2.3 -1 s.abc 

 

generates an 1-file showing which deltas were applied to retrieve version 23 of the SCCs file. 
Specifying a value of "p" with the -1 keyletter, as is 

get -lp -r2.3 s.abc 

causes the generated output to be written to the standard output rather than to the l ille. Note 
that the -g keyletter may be used with the -i keyletter to suppress the actual retrieval of the 
text. 

  

The -m keyletter is of use in identifyin& line by line, the changes applied to an SCCS Me. 
Specification of this keyletter caum each line of the generated g-f le to be preceded by the SM 
of the delta that caused that line to be inserted. The sw is separated from the text of the tine 
by a tab character. 

The -a keyletter causes each line of the generated g-f le to be preceded by the value of the 
%M% ID  keyword (sea Section 5.1.1) and a tab charaaw. The -a keyletter is most often used 
in a pipeline with grep(l). For example, to dud all lines that match a given pattern in the latest 
version of each secs file in a directory, the following may be executed: 

get -p -a -s directory I Sm pattern 
If both the -m and -a keyletters are specified, each line of the generated g-frk is preceded by 
the value of the %M% M keyword and a tab (this is the effect of the -a keyletter), followed by 
the line in the format produced by the - m keyletter. Because use of the - m keyietter and/or 
the -a keyletter causes the contents of the g-frk to be modified, such a g-frk must not be used 
for creating a delta. Therefore, neither the .mm keyletter nor the -a keyletter may be 
specified together with the -e keylener. 

See get (1)  for a full description of additional gar keyletter. 

5.2 delta 

   

The del= cor mand is used to incorporate the changs made to a g-frk into the corresponding 

      

• SCCs file, i.e., to create a delta, and, therefore, a new version of the Ste. 



 

1 

SCCS User's Guide 17 

Invocation of the delta command requires the existence of a p-fik (see Sections 5.1.3 and 
5.1.4). De4a examines the pfrk to verify the presence of an entry containing the user's login 
name. If none is found, an error message results. Delta also performs the same permission 
checks that get performs when invoked with the -e keyletter. If all checks are successful, delta 
determines what has been changed in the g-frk, by comparing it (via dif(1)) with its own, 
temporary copy of the g-fik as it was before editing. This temporary copy of the g A is called 
the d-frk (its name is formed by replacing the "s." of the secs file name with " d.") and is 
obtained by performing an internal get at the SID specified in the p-file  entry. 

The required pfrk entry is the one containing the login name of the user executing delta, 
because the user who retrieved the g-ftk must be the one who will create the delta. However, 
if the login name of the user appears in more than one entry (Le., the same user executed get 
with the - e keyletter more than once on the same secs file), the -r keyletter must be used 
with delta to specify an sm that uniquely identifies the p-file entrys. This entry is the one used 
to obtain the s1D of the delta to be created. 

 

In practice, the most common invocation of delta is: 

delta s.abc 

which prompts on the standard output (but only if it is a terminal): 

comments? 

 

to which the user replies with a description of why the delta is being made, terminating the 
reply with a newline character. The user's response may be up to 512 characters long, with 
newlines not intended to terminate the response escaped by "\". 

If the SCCS file has a • flag, delta first prompts with: 

   

MRS? 

  

on the standard output. (Again, this prompt is printed only if the standard output is a 
terminal.) The standard input is then read for MRb numbers, separated by blanks and/or tabs, 
terminated in the same manner as the response to the prompt " comments?". 

The --y and/or -m keyletters are used to supply the commentary (comments and MR 
numbers, respectively) on the command line, rather than through the *standard input. For 
example: 

 

delta - y'descriptive comment' - ni'mmuml mrnum2' s.abc 

 

In this case, the corresponding prompts are not printed, and the standard input is not read. 
The -m keyletter is allowed only if the Sccs file has a v flag. These keyletters are useful when 
delta is executed from within a Shell procedure (see sh(1)). 

The commentary (comments and/or MR numbers), whether solicited by delta or supplied via 
keyletters, is recorded as part of the entry for the delta being created, and applies to all SCCS 
files processed by the same invocation of delta. This implies that if delta is invoked with more 
than one file argument, and the first file named has a • flag, all files named must have this flag. 
Similarly, if the first file named does not have this flag, then none of the files named may have 
it. Any file that does not conform to these rules is not processed. 

S. The SID specified may be either the SID retrieved by en or the SID deice is to Create. 
6. In a tightly controaW environment, it is expecW that ddms are created only as a resort of some trouble Man. 

change request, trouble ticket, etc. (collectively called here Modifi ation Requests, or MRs) and that it is desirable 
or necessary to record such MR number(s) within each delta. 

 

• 
1 

  

• 

      

• 

 



is SCCS User's Guide 

When processing is complete, delta outputs (on the standard output) the sW of the created 
delta (obtained from the pfile  entry) and the counts of lines inserted, deleted, and left 
undinged by the delta. Thus, a typical output might be: 

 

1.4 
14 inserted 
7 deleted 
345 unchanged 

It is possible that the counts of lines reported as inserted, deleted, or unchanged by delta do. not 
agree with the user's perception of the changes applied to the g-file. The reamn for this is that 
there usually are a number of gays to describe a set of such changes, especially if lines are 
;roved around in the g-file. and delta is likely to find a description that differs from the user's 
perception. However, the total number of lines of the new delta (the number inserted plus the 
number left unchanged) should agree with the number of lines in the edited g-file. 

If, in the process of making a delta, delta fads no tD keywords in the edited g-file, the message: 

No id keywords (cm i ) 

 

is issued after the prompts for commentary, but before any other output. This indicates that 
any iD keywords that may have existed in the Secs file have been replaced by their values. of 
deleted during the editing process. This could be caused by creating a delta from a g-file  that 
was created by a get without the -e keyletter (recall that tD keywords are replaced by get in that 
case), or by accidentally deleting or changing the tD keywords during the editing of the g-file. 
Another possibility is that the file may never have had any rD keywords. In any case, it is left 
up to the user to determine what remedial action is necessary, but the delta is trade, unless 
there is an I flag in the secs file, indicating that this should be treated as a fatal error. In this 
last case, the delta is not created.. 

 

After processing of an SCCS file is complete, the corresponding p-,41e  entry is removed from the 
p-file.' If there is only one entry in the p file. then the p-file  itse.1 is removed. 

In addition, delta removes the edited g-file. unless the -a keyletter is specified. 'thus: 
delta -a s.abc 

will keep the g-file  upon completion of processing. 

The og ("silent") keyletter suppresses all output that is normally directed to the standard 
output, other than the prompts "cor=ents?" and "NU s?". Thin. use of the -s keyletter 
together with the -y keyletter (and possibly, the -m keyletter) causes delta neither to read the 
standard input nor to write the standard output. 

The differences between the Ole and the d-filt (see above), which constitute the delta, may be 
printed on the standard output by using the -p keyletter. The format of this output is similar 
to that produced by diff(1). 

         

5.3 sdala 

  

The adsrtin command is used to administer secs files, that is, to create new SCCS flies and to 
change parameters of existing ones. When an secs file is created, its parameters.are initialized 
by use of keylettm or are assigned default values if no keyletters are supplied. The same 
keyletters are used to change the parameters of existing filed. 

 

1. Alt updam to ft Ok ate male to a teffipstW oogy, the Q filz whose use is similar to to use of he z.4k which 
is described in soon 4 &WVIL 

    

0  



• 

 

I 

    

0 

    

i 

   

1 

0 

SCCS User 's Geode 19 

 

Two keyletters are supplied for use in conjunction with detecting and correcting " corrupted" 
sas files, and are discussed in Section 6.3 below. 
Newly-created sccs files are given mode 444 (read-only) and are owned by the effective user. 

Only a user with .write permission in the directory containing the sces file may use the admin 
command upon that file. 

3.31 Creation of SCCS Piles 

An sccs file may be created by executing the command: 

admin - ifirst s.abc 

in which the value C`fitst") of the - 1 keyletter specifies the name of a file from which the text 
of the iniaial delta of the S= file " sAbc" is to be taken. Omission of the value of the -1 
keyletter indicates that ectrain is to read the standard input for the text of the initial delta. 
Thus, the command: 

admin - i s.abc < Arst 

  

is equivalent to the previous example. If the text of the initial delta does not contain M 
keywords, the message: 

No id keywords (cm7) 

is issued by admin as a warning. However, if the same invocation of the command also sets the 
f flag (not to be confused with the -1 keyletter), the message is treated as.an error and the 
Sccs file is not created. Only one sccs file may be created at a time using the -i keyletter. 
When an secs file is created, the release number assigned to its first delta is normally " I", and 
its level number is always " 1". Thus, the fast delta of an secs file is normally " 1.1". The -r 
keyletter is used to specify the release number to be assigned to the fast delta. Thus: 

admin -ifirst -r3 s.abc 
indicates that the first delta should .be named " 3.1" rather than "1.1". B=use this keyletter 
is only meaningful in creating the first delta, its use is only permitted with the -1 keyletter. 

 

S. 3.2 Inserting Cornmennuy jar the Initial Delia 

When an sccs file is created, the user may choose to supply commentary stating the reason for 
creation of the 

- 
file. This is done by supplying comments (- y keyletter) and/or MR numbers: 

(-m keyletter) in exactly the same manner as for delta. If comments (-y keyletter) -are 
omitted, a comment line of the fom: 

odate and time created YY/MMMD HH:MM:SS by lop ame 

is automatically generated. 

If it is desired to supply MR numbers (- m keyletter), the v flag must also be set (using the 
- f keyletter described below). The • flag simply determines whether or not MR numbers 
must be supplied when using any sea command that modifies a delta commentary (see 
sces ile (5)) in the sccs file. Thus: 

 

admin -ifirst - mmrnuml - fv s.abc 

Note that the -y and -m keyletters are only effective if a new sccs  file is being created. 

 

S. The aeation of an SCCS file may sometimes be the direct tes ttt of an MR 

    



 

. ~ Dame of a 61e from which the descriptive text is to be taken. For example, the command: 
, ~~hen an SCCS file is being created aad the - t keytester is supplied, it must be followed by the 

 

.) %~ 

    

• adatin -ifirst - tdese s.abe 

  

,: • 

 

20 SCCS User's Gdids 

  

3.3.3 lairialiaatiaa aad :~lod~rcation of Sees Frk Paramours 

t'se portion of the SCCS file reserved for drscripdw next (see Seczion 6.2) cagy be initialized or 

 

ehang+~d through the use of the - t keytetter. The descriptive teat is intended as a summary of 
~: , :lie contents aad purpose of the SCCS file, although its contents may be arbitrary, and it may be 

: ~ arbitrarily tong. . 

specifies that the descriptive text is to be taken from file "desc". 

   

g~'hen processing as eacisrfRg SCCS file, the -t keytetter specifies that the desripave text (if 
any) currently in the file is to be replaced with the text is the named file. Thus: 

adstia -tdesc s.abc 
species that the descriptive text of the 5CC5 file is to be replaced by :he contests of "desc"; 
omission of the file acme afar the =t keyiesur as in: 

admix - t s.abc 

causes the removal of the descriptive text from the sea file. 

The ,~iags (rte Section 6.2) of as sCCS file may be initialized and changed, or deleted through 
the use of the -f and -d keyfetters, respectively. The flags of an SCCS file are used to direct 
certain actions of the various commands. See adntr'rc(1) far a description of all the flags. For 
example. the t flag specifies that the warning message stating there are no to keywords 
contained is the SCCS file should be treated as an error. aad the d (default SID) flag specifies the 
default version of the SCCS file to be~ reuieved by the ger command. The -f keyletter is :trod 
to set a flea and. possibly, to set its value. For example: 

 

adntia - ifit3i - $ - famodaame s.abC 

sets the 1 flag and them (module acme) flag. The value "modnarae" sperfied for the to flag 
is the value that the gar command will use to replace the °~,l~i!4 tD keyv+ord. (Itt the absence of 
the m flag, the frame of the g-jcf~s is used as. the repfacemeat for the '~►lri9~. tt) keyword.) Yote 
:hat several - f keyiettezs may be supplied on a single invocation of adntin. aad chat -t 
keyietters may be supplied whet~ez the command v cuing a new SCes file or processing an 
existing one. .. . 

The -d keyiester is used to delete a flag from as sea file. aad may only be sperfied whey 
processing ars existing file. ~s as example, the command: 

~~ 

   

aciaain -~dm s.abc ) 

removes the m f]ag from the secs fife. Several -d keytetters ;nay be supplied on a single 
invocation of adstin. aad may be intermixed with - f keyieners. 

SCCS fcles cantaia a list (asst lisr) of logic names and/or group tDs of users who are allowed to 
create deltas (see Sections 3.1.3 aad 6.2). 'Phis list is empty by default. which implies chat 
anyortt msy create deltas. To add login Hama and/or group ms to the list, the -a keyletur is 
used. Fvt example: 

admin - axgz -av►gi -a123~ s.abc 

adds the login games " xyz" and " wql" and the group ID "1234" to the list The -a keyieaez 
may be ~.tsed whesher ad>rrle is creating a n6vr SCCS file or procc~ing an existing one, aad say 
appear several times. The - ' kcyletter is usgdl in aft analogous maatner if one avishp to 
esffiovc ("atzxa.•) logic naffi~ of group tar from tlxee list. 

   

• 



 

• 

  

• 

• SCCS Uteri Guide 

 

21 

   

3.4 prs 

.Frs is used to print on the standard output all or parts of an secs file (see Section 6.2) in a 
format, called the output data specification, supplied by the user via the.-"d keyletter. The data 
specification is a string consisting of SCCS file data keywordr9 interspersed with optional user 

 

text. 

 

Data keywords are replaced by appropriate values according to their definitions. For example: 

:I: 

is defined as the data keyword that is replaced by the SID of a specified delta. Similarly, :F: is 
defined as the data keyword for the SCCS file name currently being processed, and :C: is defined 
as the comment tine associated with a specified delta. All parts of an secs file have an 
associated data keyword. For a complete list of the data keywords, see prs (1). 

There is no limit to the number of tithes a data keyword may appear in a data specification. 
Thus, for example: 

prs -d!-I: this is the top delta for :F::1: s.abc 
may produce on the standard output: 

   

2.1 this is the top delta for s.abc 2.1 

Information may be obtained from a single delta by specifying the sm of that delta using the 
-r keyletter. For example: 

prs - d":F:::1: comment line is: :C:"  -rl.4 s.abc 

may produce the following output: 

s.abc: 1.4 comment line is: THIS IS A COMMENT 

If the -r keyletter is not specified, the value of the Sm defaults to the most recently created 
delta. 

 

In addition, information from a range of deltas may be obtained by specifying the -1 or -e 
keyletters. The -e keyletter substitutes data keywords for the sm designated via the -r 
keyletter and all deltas created earlier. The -1 keyletter substitutes data keywords for the Sm 
designated via the - r keyletter and all deltas created later. Thus, the command: 

prs -d:I:..-rl.4 -e s.abc 

may output: 

1.4 
1.3 
1.2.1.1 
1.2 
1.1 

   

9. Not to be confused with rr. ID keywords. 

     



       

22 sea Users eu;de 

                                              

may produce: 

3.3 
3.2 
3.1 
2.2.1.1 
2.2 
2.1 
1.4 

       

and the command: 

prs -d:1: -r1.4 -l s.abc 

                      

Substitution of data keywords for all deltas of the secs file may be obtained by specifying both 
the -e and -1 keyletters. 

  

5.3 help 

     

The help command prints explanations of sc S commands and of messages that these 
commands may print. Arguments to help. zero or more of which may be supplied, are simply 
the names of secs commands or the code numbers that appear in parentheses after sCCS 
messages. If. no argument is given, help prompts for one. Help has no concept of keykner 
arguments of file arguments. Explanatory information related to an argument, if it exists. is 
printed on the standard output. If no information is found, an error message is printed. 'Note 
that each argument is processed independently, and an error resulting from one. argument will 
►rot terminate the processing of the other arguments. 

Explanatory information related to a command is a synopsis of the command. For example: 

help ge5 rmdel 

                    

5.6 t tn'dei. 

 

The rmdel cdmzr nd is provided to allow removal of a delta from an sCCS file. though its use 
should be. reserved for those cases in which incorrect. global changes were made a part of the 
delta to 'be. retaoved_ 
The .delta. to be removed must be a " leaf" delta. That is, it must be the latest (most recently 
creatio) delta. on .its branch or on the trunk of the sCCs file tree. In Figure 3, only deltas 
1.11.2`1.3.1,2, and 2.2 can be removed; once they are removed, then deltas 1.3.2.1 and 2.1 
can .be removed,` and so on. 

  

To be allowed to remove, a delta, the effective user must have write permission is the directory 
containing the seps file.: In addition, the real user must either be the one who created the delta 
being removed; or be .the o-►aer of the SCCS file and its directory. 

                 

rmdel: 
- rtatda! mrSID name ... 

  

a) 

producrs: 

ge5: 
'nonexistent sid' 
The specified  sid does not exist in the 
given Me.. 
Check' for. typos. 



       

~r 

  

• 

SCCS Ussr s Ge~ede 23 

 

The -r keyletter, which is mandatory, is used to specify the co~rpkte stn of the delta to be 
removed (i.e., it must have two coffiy^oaeats for a ttuak delta, and four components for a 
branch delta): 'I'htts: 

rmdel -r2.3 s.abc 

 

specifies the ~emoval of (trunk) delta " 2.3" of the SCCS file. fiefon removal of the delta, rr~tdel 
checks that the release number (R) of the given sID satisfies the elation: 

floor s~ R. ~ ceiling 

Rmdtl also checks that the sm specified is rat that of a version for which a get for editing has 
Been executed and whose associated delta has not yet bees made. In addition, the login name 
or group iD of the user ffiust appear is the file's user liu, or the user list trust be empty. Also, 
the release slrgcified can not tie locked agsinst editing (i.e., if the 1 flag is set (see adt~vin(1)), 
the release specified trust not be coata~ed is the list). ff these conditions are not satisfied. 
processing is terminated, and the delta is not removed. After the specified delta has been 
removed, its type indicator in the delta table of the sCcs~ file (see Section 6.2) is changed from 
"D" (for " delta") to "R" (for " removed"). 

 

3.7 do 

 

The cdc cozlamadd is aced to change a delta's commentary that was supplied when that delta was 
created. Its invocation is analogous to that of the rmde! contmaad, except that the delta to be 
processed-is nor required to be a leaf delta. For example: 

cdt sr3.4 s.abc 
specifies that the commentary of delta ••3.4" of the sCCS file is to be changed. 

The new commentary is solicited by cdc in the same manner as that of delta. The old 
commentary associated with the specified delta is kept, but it is preceded by a comment line 
indicating that it has been changed (i.e., superseded), and the new commentary is entered 
ahead of this comment Bate. The "inserted" comment line records the logic name of the user 
executing cdc and the time of its execution. 

Cdc also allows for the deletion of selected MR numbers associated with the specified delta. 
This is specified by preceding the selected MR auanbers by the charaeter ":". Thus: 

cdc -r1.4 s.abc 
MRs? maaum3 Ialrnuml 
comtaeats? deleted wrong MR number and inserted correct MR number 

inserts "mt~uta3" and deletes " a~rnuml" for delta 1.4. 

S.g what 

'The what command is used to find identifying iafotraadoa within eny pwB file whose nasie is 
given as as argument to what. Directory names cad a name of "®" (a lose minus sign) are 
r:or treated specially, as they are by other SCa commands, cad no keylerrers are accepted by the 
command. 

Wfisat searches the gives. file (s) for all ocxurreaces of the string "C~ (#) ", which is the 
replacement for the SSZX ® keyword (see get(1)). and prints (on the standard output) what 
follows that string until the first double quote ('}, greater than (>), backslash (V, newtiae, or 

• 

   



                     

as follow 

The ®9 kayletter specifies the oldest delta that is to 9e preserved in the .ceccnstructioa. All 

       

} 

      

• 

14 SCCS Usrr's Garde 

   

(non-printing) NU character. Thus, for example,. if the secs file "s.prog.c" (which is a C 
program), contains the following line (the %M% and %1% M keywords were defined in Section 
5.1.1): 

    

is executed, and finally the resulting 'g-frle is compiled to produce " prog.o" and " Lout", then' : 

     

The differences are printed in the form generated by diff (1). The fallowing is an example of 
the- invocation of sccsdif 

sccs€iff ®r3.4 -rS.6 s.abc 

5.10 comb 

Comb generates a Shell mcedum  (see sh (1)) which attempts to re sonsirua the aaffied SCCS files 
so that the reconstructed files are smaller than the originals. 'T'he generated Shell procedure is 
written on the standard output 

named secs files are reconstructed by discarding unwanted deltas and combining specified other 
deltas. The intended use is for those Seca files that contain deltas that are so old that they are 
no longer useful. It is not recommended that comb be used as a utter of routine; its use 
should be restricted to a wry small number of times in the.life-of an secs file. 

In the absence of any keyletters, comb preserves only leaf deltas *and .the *minimum number of 
ancestor deltas necessW to preserve the' "shape" of the sees file tree: The effea of this is to 
eliminate "middle" deltas on the trunk and on all branches of the' ties. Thus, in Figure 3. 
deltas 1.2. 1.3.2.1. 1.4. and 2.1 should be eiiminm- ted. Some of ihe'  keyleners: are summarized 

older deltas are discarded. 

                     

the command: . 
what prog.c prog.o Lout 

produces: 

prog.c: 
prog.c:3.4 

prog.o: 
prog.c:3.4 

a.out: 
prog.c:3.4 

Tate string searched for by what need not be inserted via an m keyword of get; it may be 
inserted in any convenient manner. 

 

5.9 sccsdlff 

 

The sccsdir command determines (and prints on the standard output) the differences between 
two specified versions of one or more- secs files. The versions to be compared are specified by 
using the -r keyietter, whose format is the same as for the get command The two versions 
must be specified as the first two arguments to this command in the order in which they were 
created. i.e., the older version is specified first. Any following keyletters are interpreted as 
arguments to the pr(1) command (which actually prints the differences) and must appear 
before any file names. SCCS files to be processed are named last. Directory names and a name 
of " (a lone minus sign) are not acceptable to smsdiff. 

            

and then the command: 

get -r3.4 s.prog.c 

  

char id(l "941Z'°~~b2+i°6:45I96'; 

             



 

• 

SCCS User's Gdde 25 

The -c keyletter specifies a its (see get (1)  for the syntax of such a list) of deltas to be 
preserved. All other deltas ate discarded 

The -s keyletter causes the generation of a Shell prccedure, which, when run, produces only a 
report summarizing the percentap sp .ce (if arty) to be saved by reconstructing each named 
secs fate. It is reaommende€1 that comb be run with this keyletter (in addition to any others 
desired) b4bre any actual re nstructions. 

It should be noted that the Shell procedure generated by comb is not guaranteed to save any 
space. In fact, it is possible for the reconstructed file to be larger than the original. Note, too, 
that the shape of the SCCS file tree may be altered by the reconstruction process. 

6.11 Val 

   

Val is used to determine if a file is an secs file meeting the characteristics specified by an 
optional list of keyletter m3uments. Any characteristics not met are considered errors. 

Val checks for the existence of a particular delta when the SM for that delta is ewliddy specified 
via the - r keyletter. The string following the - y or -m keyletter is used to check the value 
set by. the t or m flag respectively (see admin (1) for a description of the !lags). 

 

*Val treats the special argument " differently from other sees commands (see Section 4). 
This argument allows vat to read the argument list from the standard input as opposed to 
obtaining it from the command line. The standard input is read until end-of-file. This 
capability allows for one invocation of vat with different values for the keyletter and file 
arguments. For example: 

 

val - 
-yc -mabc s.abc 
-mxyz -ypll s.xyz 

fast checks if file "s.abc" has a value " c" for its type flag and value "abc" for the module name 
flag. Once processing of the first file is completed, vat then processes the remaining files, in 
this case "s.xyz", to determine if they meet the characteristics specified by the keyletter 
arguments associated with them. 

Val returns an 8-bit code which is a disjunction of the possible errors detected That is, each 
bit set indicates the occurrence of a specific error (see vat (1) for a description of the possible 
errors and their codes). In addition, an appropriate diagnostic is printed unless suppressed by 
the -s keyletter. A return code of "0" indicates all named files met the characteristics 
specified. 

 

6. SCCS FILES 

This section discusses several topics that must be considered before extensive use is mode of 
secs. These topics deal with the protection mechanisms relied upon by secs, the format of 
SCCS files, and the recommended procedures for auditing sces files. 

 

6.1. Protection 

Sccs relies on the capabilities of the Pws operating system for most of the protection 
mechanisms required to prevent unauthorized changes to secs files (i.e., changes trade by 
non-sees commands). The only protection features provided directly by sees are the release 
lock flag, the release floor and telling flags, and the user list (see Section 5.1.3). 

New secs files created by the admin command are given mode 444 (read only). It is 
recommended that this mode not be changed, as it prevents any direct modification of the files 
by non-sccs commands. It is further recommended that the directories containing SCCS  files be 
given anode 755, which allows only the owner of the directory to modify its contents. 

• 
    

   

 

   

 

  • 
 

 

 

      



       

rroject. 

6.e Fortam 

  

:6 SCCS llsa s Guide 

   

SCCS files should be kept in directories that contain only secs files and any temporary files 
cr..ated by sea .commands. This simplifies protection and auditing of secs files (see Section 
6.3). The contents- of directories should correspond to convenient logical groupings, e.g., sub-
systms of a large project. 

SCCS files must have only one link (name). The reason for this is that those commands that 
modify sccs flies do so by creating a temporary copy of the file (called the x-file. see Section 4) 
and, upon completion of processing. remove the old ftle and rename the x file- If the old file 
has more than one link, removing it and renaming the x-file  would break the link. Rather than 
prods such files, sccs commands produce an error message. All sees files must have names 
that begin with "s.". 

When only one user uses secs. the real and effective user ms are the same, and that user m 
owns the directories containing sees dles-'0. Therefore, secs may be- used directly without any 
preliminary preparation. 

However, in those situations in which several users with unique user ms are assigned 
responsibility for one sccs file (for example, in large software development projects), one user 
(equivalently, one user m) must be chosen as the " owner" of the secs files and be the one 
who will "administer" them (e.g.. by using the admin command). This user is termed the SCCS 
administrator for that project. Because other users of sees do not have the same privileges and 
permissions as the sees administrator, they are not able to execute directly those commands 
that' require write permission in the directory containing the sccs files. Therefore, a project-
dependent program is required to provide an interface to the get. delta, and, if desired, rmdei 
iad cdc commands. 

  

The interface program must be owned by the sccs administrator, and must have the 
set user tD  on meurion bit on (see chmod(1)), so that the effective user m is the user m of the 
administrator. This program's function is to involve the desired sccs command and to cause it 
to inherit the privileges of the interface program for the duration of that command's execution. 
In this manner, the owner of an sccs file can modify it.at will- Other users whose login names 
or sm ua rues are in the user list for that file (but who are not its owners) are given the nee-ssary 
permissions only for the duration of the execution of the interface program. and are thus able 
to modify the sccs files only through the use of delta and. possibly. rrndel and cdc. The 
project-dependent interface program. as its name implies. must be -cuustom-built for each 

SCCS files are composed of lines of ASCII texttl arranged in six parts. as follows: 

 

Check= A line containing the "logical" suns of all the characters of the file (not 
including this checksum itself).. 

    

Laser Names List of login names and/or group ms of users who are allowed to modify 
the file by adding or removing deltas. 

 

10. Previously, tha Operating Sysu= under why SCCS estenw2d allowed for only ?:6 unique user ms. This 
presented the situation in which 52veral us^rs named to share user >Ds (and thus shared idenaol Ale Permissions). 
The O9matim System oa mdy in vas (version 1 of UNIM allows for 65.336 unique ruse ms. and it is 
recommended than ezcb user have a unique =a M. 

IL Previom •ernow of SCCS up to and indadias Version 1 used nob-ASCII 51es. Therefore. Mes awed by artier. 
vergm of SCCS ago incomr-ahta snob the c3arrent von of SCCS. 

           

• 

  

'l. 

  

j. 

        

Delta Table Information about each delta, such as its type, its sm, date and time of 

 

creation, and commentary. 



SCCS User's Guide 27 

 

Flags Iadirators that control certain actions of various sCCs commands. 

Descriptive Text Arbitrary text provided by the user, tt~ually a summary of the contents 
• and purpose of the file. 

~fiody Actual text that is being administered by SCCS, intermixed with internal 
SCCS conUol lines. 

Detailed information about the contents of the various sections of the file may be found in 
sccs/r/e (S): the checksum is the only portion of the file which is of interest below. . • 

It is important to note that because SCCS files are ASCII files, they may be processed by vario"cis 
Pws commands, such as ed(1), 8rep(1), and cat(1). This is very convenient is those instances 

. in which as SCCS file mtast be modified manually (e.g.. when the time and date of a delta was 
recorded incorrectly because the system eioek ens set incorrectly), or when it is desired to 
simply " look" at the file. 

t~ Exrrejne can should b< exercised when 'modifying SCOT fries reirh non-StCS commands. 

.6.3 Aaditiag 

 

• 

 

1 

~', 

   

On raze occasions. perhaps due to as operating system or hardware malfunction, as scCs file, or 
poRions of it (i.e., one or more " blocks") ran be destroyed. Secs commands (like most Pw8 
commands) issue as error message when a file does not exist. In addition, SCCs commands use 
the checksum stored in the SCCS file to determine whether a file has been corrupted since it was 
last accessed (possibly by having lost one or more blocks, or by having been modified with, for 
example, ed(1)). No sCCS command will process a corrupted SCCS file except the adnrin 
command with the -h or -z keyletters, as described below. 

It is recommended that SCCs files be audited (checked) for possible corruptions on a regulaz 
basis. The simplest and fastest way to perform as audit is to execute the admin command with 
the --h keyletter on all scCs files: 

adtnin - h s.filel s.file2 ... 
or 

admix ~h dtrectoryl duectory2 ... 

 

Tt the new checksum of nay file is not equal to the checksum is the first line of that file, the 
message: 

corrupted file (cob) 

 

is produced for that file. This process continues until all the files have bees examined. When 
examining directories (as is the second example above), the process just described will not 
deeeet misting files. A simple way to detect wheehet arry files are missing from a directory is to 
periodically execute the Ls (1) command oa that directory, aad compare the outpuu of the most 
current and the previous executions. Any file whose name appear is the previous output but 
not is the current one has been removed by some mesas. 

Whenever a file has been corrupted, the meaner in which the file is restored depends upon the 
extent of the corruption. If damage is extensive, the best solution is to contacr the Iocal Pw'B 
operations group to request a restore! of the, file from a backup copy. Ia the case of minor 
damage, repair through use of the editor ed(1) may be possible. Ia the latter case, after such 
repair, the following command must be executed: . 

admix et s.file 

 

The purpose of this is to recompute the checksum to bring it into agreement with the actual 
contents of the file. After this command is executed on a file, any corruption which may have 
existed in that file will no longer be detecutble. 

 

• 

   

1 

• 

 



 

• 

23 SCCS Usw's Guide 

 

REFERENCES 

 

(1) Beu Laboratories, Doacmeno jar Uss with the FWD Time-Sharing Sysrenc 

                

• 

         

• 



 

• 1.1 comb 

  

~•.. 

                         

. ~ •'• ~ ~ ADDENDUM 

                           

SCCS User's Guide 

         

The ~~llowing changes to~the Source Code Control System are effective with the 
UNIX System III release. 

     

1. Modified commands 

Three SCCS commands have been modified: 

  

a 

 

1. comb 
2. get 
3. secsdfff 

 

Modifications to each of these commands are described below. 

m enhancement 

~o~b generates a shell procedure that, when executed, 
wil.l.(hopefully) reduce the size of an SCCS file. 
Because of temporary file naming conventions, two or 
more~sorab generated shell procedures could not be 
executed concurrently. Temporary files are now 
+an.iquely named so that simultaneous execution is 
pns.sible. 

1 .2 get • 

   

e.~enhancement 

~:~Pr.e.vi~ously the -~ and -,g keyletters ( for forced 
~~.iticlusion or exclusion of deltas to produce the 

••generated file) could imply the -$ keyletter. That is, 
.~~ ~the..:ge~n~erated file could be created with mode 644 and 
•:i~dent •if~i~cation keyword replacement could be suppressed. 

Ttie -.i. aad -~ keyletters no longer imply the -$ 
.. keylet~ter. •. 

. o.•eoding error .correction 

• ~~Under certain circumstances, temporary files that 
should on~ly • have existed for the duration of the 
'executiori.•of  Aet •would not De removed then ~g.,~ 
te~rmina•ted.•• Temporary fi12s are now properly removed. 

     

I 

  



 

print current SCCS file editing activity sact 

SCCS User's Guide • 2 

 

1.3 sccsdiff 

e new capability 

 

A new keyletter (-.1), which takes a numeric argument, 
allows the user to specify the file segmentation size 
that bdiff(1) (used by  sccsdiff; will pass to diff(1). 
This can be useful when a high system load causes Jiff 
to fail due to lack of space, etc. 

 

® change 

The output of sccsdiff is no longer piped'through ZZ(1) 
by default. A new keyletter (-.2) specifies that the 
output is to be piped through ZZ but arguments can not 
be passed to ZM as was the previous case. This 
alleviates scesdiff'knowing anything about =. 

2. New Commands 

Two new commands have been added to SCCS: 

     

• 

 

unaet undo the effect of a previous Ret(1) for 
editing of an SCCS file. 

 

The manual entries for these commands are provided in the 

UNIX TM System III User's Manual 

        

i 

 

40 

 



L. E. Bonanni . 

           

Function and Use of an SCCS Interface Program 

 

A. Guyton (4/1/80 revision) 

     

Bell laboratories 

 

Piscataway, New Jersey 08854 

 

 

 

   

ABSTRACT 
 

This memorandum discusses the use of a Source Code Control System Interface 
Program to allow more than one user to use SCCS commands upon the same set 
of files. 

 

1. INTRODUCTION 

In order to permit UNIXt users with different user identification numbers (user IDs) to use 
SCCS commands upon the same files, an SCCS interface program is provided to temporarily 
grant the necessary file access permissions to these users. This memorandum discusses the 
creation and use of such an interface program. This memorandum replaces an earlier version 
dated March 1, 1978. ' 

 

2. FUNCTION 

  

When only one user uses SCCS, the real and effective user IDs are the same, and that user ID 
owns the directories containing SCCS files. However, there are situations (for example, in large 
software development projects) in which it is practical to allow more than one user to make 
changes to the same set of SCCS files. In these cases, one user must be chosen as the owner of 
the SCCS files and be the one who will administer them (e.g., by using the admin command). 
This user is termed the SCCS adirrinist

 

r

 

ator for that project. Since other users of SCCS do not 
have the same privileges and permissions as the SCCS administrator, they are not able to exe-
cute directly those commands that require write permission in the directo

 

r

 

y containing the SCCS 
files. Therefore, aproject-dependent program is required to provide an interface to the get, 
delta. and, if desired, rnudel, cdc, and angst commands.l 

The interface program must be owned by the SCCS administrator, must be executable by non-
owners, and must have the set user ID on execution bit on (see chr.:od ( I )2), so that, when exe-
cuted, the effective user ID is the user ID of the administrator. This program's function is to 
invoke the desired SCCS command and to cause it to inherit the p

 

r

 

ivileges of the SCCS  adminis-

 

trator for the duration of that command's execution. In this manner, the owner of an SCCS file 
(the administrator) can modify it a

 

t will. Other users whose login names are in the user list] for 
that file (but who are not its owners) are given the necessa

 

r

 

y permissions only for the duration 
of the execution of the interface program, and are thus able to modify the SCCS files only 
through the use of delta and, possibly, rmdel and cdc. 

    

t UN

 

I

 

X is a trademark of Be

 

ll

 

laboratories.

 

1. Other S(.'GS commands either do not require write permission in the directo

 

ry

 

containing

 

 S(X5 files or are 
(genera

 

l

 

ly) reserved for use only by the administrator. 

2. All references of the form name (N) refer to item eercte in s

 

ection N of the UNJX User's M

 

ara

 

ud.

 

3. This is the fist of login names of users who are allowed to modify an SCCS file by adding or removing deltas. The 
login names are specified using the a

 

&

 

riin(1) command. 

 

0 

 



 

• 

  

2 SCCS Interface Priogranr 

3. A BASIC PROGRAM . 

When a UNIX program is executed it is passed (as argument 0) the rtarrte by which it is 
. invoked, followed by any additional user-supplied arguments. Thus, if a program is given a 

number of links (names), it may alter its processing depending upon which link is used to 
invoke it. This mechanism is used by an SCCS interface program to determine which SCCS 
command it should subsequently invoke (see exec(2)). 

A generic interface program (inters, written in C) is shown in Attachment I. Note the refer-
ence to the (unsupplied) function filearg. This is intended to demonstrate that the interface 
program may also be used as apre-processor to SCCS commands. For example, function tilearg 
could be used to modify file arguments to be passed to the SCCS command by supplying the jell 
path name of a file, thus avoiding extraneous typing by the user. Also, the program could sup-
ply any additional (default) keyletter arguments desired. 

4. LINKING AND USE 

In general, the following demonstrates the steps to be performed by the SCCS administrator to 
create the SCCS interface program. It is assumed, for the purposes of the discussion, that the 
interface program inters resides in directory /xl/xyz/sccs. Thus, the command sequence: 

cd /xl/xyz/secs 
ce ... inters -o inter ... 

 

compiles inters to produce the executable module inter (... represents arguments that may 
also be required). The proper mode and the set user ID on execution bit are set by executing: 

chmod 4755 inter 

Finally, new links are created, by (for example):° 

In inter get 
In inter delta 
!n inter rmdel 

Subsequently, arty user whose shell parameter PATH (see sh(1)) specifies that directory 
/xl/xyz/sccs is to be searched first for executable commands, may execute, for example: ' 

get -e /xl/xyz/secs/s.abc 

from any directory to invoke the interface program (via its link get). The interface program 
then executes /usr/bin/get (the actual SCCS get command) upon the named file. As previously 
mentioned, the interface program could be used to supply the pathname /xi/xyz/secs, so that 
the user would only have to specify: 

get -e s.abc 

to achieve the same results. 

5. CONCLUSION 

An SCCS interface program is used to permit users having di6erent user IDs to use SCCS  com-
mands upon the same files. Although this is its primary purpose, such a program may also be 
used as apre-processor to SCCS commands since it can perform operations upon its arguments. 

• 

  

  

    

.` 
  

       

4. The names of the links may be arbitrary. provided the interface program is able to determine Gom them the names 
of S<)GS commands to be invoked. 

• 



SCCS Interface Program inters ,' 

  

• 

  

• • SCCS Interface Progra►n 3 

   

Attachment I 

   

  

main(argc, argv). 
int argc; 
char oargv[]; 
{ 

 

 

 

register int i;  

 

 
char cmdstr[LENGTH] 

 

 

/~ 
Process file arguments ( those that don't begin with "-"). 
s/ 

for (i = I; i < argc; i+ +) 

argv[i] = filearg(argv[i]); 

/' 
Get "simple name" of name used to invoke this program 
(i.e., strip off directory-name prefix, if any). 
s/ 

argv[0] = sname(argv(0]); 

/* 

 

Invoke actual SCCS command, passing arguments. 
w/ 

sprintf(cmdstr, "/usr/bin/°!os", argv[0]); 
execv(cmdstr, argv); 

 

} 

 

January 1981 

     

• 


