.

Plexus Sys3 UNIX Programmer!s Manual -~ vol 2B

68.05037.3 June 20, 1983

~
Plexus Sys3 UNIX Programmer's Manual ~- vol 2B

98-05037.3 June 20, 1983

PLEXUS COMPUTERS INC

2230 Martin Ave
Santa Clara, CA 95050

408/988=-1755

Copyright 1983
Plexus Computers Inc, Santa Clara, CA

All rights reserved,

No part of this manual may be reproduced in any
without written permission from the publisher,

Printed in the United States of America

form

Plexua Sys3 UNIX Programmer's Manual -~ vol 2B

PREFACE

This manua)l contains a colle¢tion of documents that describe specific
aspects of the UNIX® operating system. These 1ineclude descriptions of
programming, language, administrative and maintenance tools,

Additional documents describing the operating system, document preparation
tools and programming and language tools are collected in the Plexus Sys3
UNIX Programmer's Manual -- vol 2A.

Both these volumes (2A and 2B) should be used as supplementarj documents

for the Plexus Sys3 UMIX Programmer's Manual —-- vol 1A and Plexus Sys3 UNIX
Programmer's Mangal -- %0l 1B, the basic reference manual for the operating
system.

Comments
Please address all comments concerning this manual to:

Plexus Computers Inc
Technical Publications Dept
2230 Martin Ave

Santa Clara, CA 95050
408/988-1755

ﬁegision History
The second edition (#98-05037.2) contains new front matter,

This edition (#98-05037.3) contains a new VEM document,

® UNIX is a trademark of,Beil.Laboratories. Plexus Computers Inc is
licensed to distribute'UﬂIX pnder the authority of ATET.

Calculators

BC — An Arbitrary Precision Desk-Calculator Language

Lorinda Cherry
Robert Morris

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

BC is a language and a compiler for doing arbitrary precision arithmetic on
the PDP-11 under the UNIXt time-sharing system. The output of the compiler
is interpreted and executed by a collection of routines which can input, output,
and do arithmetic on indefinitely large integers and on scaled fixed-point
numbers. :

These routines are themselves based on a dynamic storage allecator.
Overflow does not occur until all available core storage is exhausted.

The language has a complete control structure as well as immediate-mode
operation. Functions can be defined and saved for later execution.

Two five hundred-dlglt numbers can be multlplted to give a thousand digit
result in about ten seconds.

A small collection of library functions is also avazilable, including sin, cos,
arctan, log, exponential, and Bessel functions of integer order.

Some of the uses of this compiler are
— to do computation with large integers,
— to do computation accurate to many decimat pléces,
— conversion of numbers from one base to another base.

November 12, 1978

tUNIX is a Trademark of Bell Laboratories.

BC — An Arbitrary Precision Desk-Calculator Language

Lorinda Cherry
Robert Morris

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

BC is a language and a compiler for doing arbitrary precision arithmetic on the UNIXt
time-sharing system [1]. The compiler was written to make conveniently available a collection
of routines (called DC {5}) which are capable of doing arithmetic on integers of arbitrary size.
The compiler is by no means intended to provide a complete programming language. It is a
minimal language facility.

There is a scaling provision that permits the use of decimal point notation. Provision is
made for input and output in bases other than decimal. Numbers can be converted from
decimal to octal by simply setting the output base to equal 8.

The actual limit on the number of digits that can be handled depends on the amount of
storage available on the machine. Manipulation of numbers with many hundreds of digits is
possible even on the smallest versions of UNIX.

The syntax of BC has been deliberately seiected to agree substantially with the C language
[2]. Those who are familiar with C will find few surprises in this language.

Simple Computations with Integers

The simplest kind of statement is an arithmetic expression on a line by itself. For
instance, if you type in the line:

142857 + 285714
the program responds immediately with the line
428571

The operators —, *, /, %, and ~ can also be used; they indicate subtraction, multiplication, divi-
sion, remaindering, and exponentiation, respectively. Division of integers produces an integer
result truncated toward zero. Division by zero produces an error comment.

Any term in-an expression may be prefixed by a minus sign to indicate that it is to be
negated (the ‘unary’ minus sign}. The expression

7+ -3
is interpreted to mean that —3 is to be added to 7.

More complex expressions with several operators and with parentheses are interpreted just
as in Fortran, with ~ having the greatest binding power, then * and % and /, and finally + and
—. Contents of parentheses are evaluated before material outside the parentheses. Exponen-
tiations are performed from right to left and the other operators from left to right. The two
expressions

tUNIX is a Trademark of Bell Laboratories.

a’bc and a"(b"c)

are equivaient, as are the two expressions
a*b*c and (a*b)*c

BC shares with Fortran and C the undesirable convention that
a/b*c is equivalent to (a/b)*c

Internal storage registers to hold numbers have single lower-case letter names. The value
of an expression can be assigned to a register in the usual way. The statement

XxX=x+3

has the effect of increasing by three the value of the contents of the register named x. When,
as in this case, the outermost operator is an =, the assignment is performed but the result is
not printed. Only 26 of these named storage registers are available.

There is a built-in square root function whose result is truncated to an integer {but see
scaling below). The lines

x = sqrt{191)
X

produce the printed result
13

Bases '] .

There are special internal quantities, called ‘ibase’ and ‘obase’. The contents of ‘ibase’,
initially set to 10, determines the base used for interpreting numbers read in. For example, the
lines

ibase = 8
11

will produce the output line
9

and you are all set up to do octal to decimal conversions. Beware, however of trying to change
the input base back to decimal by typing

ibase ="10

Because the number 10 is interpreted as octal, this statement will have no effect. For those
who deal in hexadecimal notation, the characters A—F are permitted in numbers (nc matter
what base is in effect) and are interpreted as digits having values 10—15 respectively. The
statement

ibase = A
will change you back to decimal input base no matter what the current input base is. Negative

and large positive input bases are permitted but useless. No mechanism has been provided for
the input of arbitrary numbers in bases less than 1 and greater than 16.

The contents of ‘obase’, }nitially set to 10, are used as the base for output numbers. The
lines- L
. obase =16
* 1000

will produce the output line

3E8

which is to be interpreted as a 3-digit hexadecimal number.” Very large output bases are permit-
~ ted, and they are sometimes useful. For example, large numbers can be output in groups of
five digits by setting ‘obase’ to 100000. Strange (i.e. 1, 0, or negative) output bases are han-
dled appropriately. . .

Very large numbers are split across lines with 70 characters per line. Lines which are con-
tinued end with \. Decimal output conversion is practically instantaneous, but output of very
large numbers (i.e., more than 100 digits) with other bases is rather slow, Non-decimal output
conversion of a one hundred digit number takes about three seconds.

It is best to remember that ‘ibase’ and ‘obase’ have no effect whatever on the course of
internal computation or on the evaluation of expressions, but only affect input and output
conversion, respectively.

Scaling

A third special internal quantity called ‘*scale’ is used to determine the scale of calculated
quantities. Numbers may have up to 99 decimal digits after the decimal point. This fractional
part is retained in further computations. We refer to the number of digits after the decimal
point of a number as its scale.

When two scaled numbers are combined by means of one of the arithmetic operations,
the result has a scale determined by the following rules. For addition and subtraction, the scale
of the result is the larger of the scales of the two operands. In this case, there is never any
truncation of the result. For multiplications, the scale of the result is never less than the max-
imum of the two scales of the operands, never more than the sum of the scales of the operands
and, subject to those two restrictions, the scale of the result is set equal to the contents of the
internal quantity ‘scate’. The scale of a quotient is the contents of the internal quantity ‘scale’.
The scale of a remainder is the sum of the scales of the quotient and the divisor. The result of
an exponentiation is scaled as if the implied multiplications were performed. An exponent
must be an integer. The scale of a square root is set to the maximum of the scale of the argu-
ment and the contents of ‘scale’.

All of the internal operations are actually carried out in terms of integers, with digits
being discarded when necessary. In every case where digits are discarded, truncation and not
rounding is performed.

The contents of “scale’ must be no greater than 99 and no less than 0. It is initially set to
0. In case you need more than 99 fraction digits, you may arrange your own scaling.

The internal quantities ‘scale’, ‘ibase’, and ‘obase’ can be used in expressions just like
other variables._The line

scale = scale + 1
increases the value of ‘scale’ by one, and the line
scale

causes the current value of ‘scale’ to tie printed.

The value of ‘scale’ retains its meaning as a number of decimal digits to be retained in
internal computation even when ‘ibase’ or ‘obase’ are not equal to 10. The internal computa-
tions (which are still conducted in decimal, regardless of the bases) are performed to the
specified number of decimal digits, never hexadecimal or octal or any ather kind of digits.

Functions

The name of a function is a single lower-case letter. Function names are permitted to col-
lide with simple variable names. Twenty-six different defined functions are permitted in addi-
tion to the twenty-six variable names. The line

define a(x)|

begins the definition of a function with one argument. This line must be followed by one or
more statements, which make up the body of the function, ending with a right brace }. Return
of control from a function occurs when a return statement is executed or when the end of the
function is reached.” The return statement can take either of the two forms

return
return (x)

In the first case, the value of the function is 0, and in the second, the value of the expression
in parentheses.

Variables used in the function can be declared as automatic by a statement of the form
auto x.y.z

There can be only one ‘auto’ statement in a function and it must be the first statement in the
definition. These automatic variables are allocated space and initialized to zero on entry to the
function and thrown away on return. The values of any variables with the same names outside
the function are not disturbed. Functions may be called recursively and the automatic variables
at each level of call are protected. The parameters named in a function definition are treated in
the same way as the automatic variables of that function with the single exception that they are
given a value on entry to the function. An example of a function definition is

define a{x,y)!
auto z
z = x*y
return(z)

}

The value of this function, when cailed, will be the product of its two arguments.

A function is called by the appearance of its name followed by a string of arguments
enclosed in parentheses and separated by commas. The result is unpredictable if the wrong
number of arguments is used.

Functions with no arguments are defined and called using parentheses with nothing
between them: b{).

If the function a above has been defined, then the line
a(7,3.14)
would cause the result 21.98 to be printed and the line
X = a(a-(3,4),5)

would cause the value of x to become 60.

Subscripted Variables

A single lower-case letter variable name followed by an expression in brackets is called a
subscripted variable (an array element). The variable name is called the array name and the
expression in brackets is called the subscript. Only one-dimensional arrays are permitted. The
names of arrays are permitted to collide with the names of simple variables and function names.
Any fractional part of a subscript is discarded before use. Subscripts must be greater than or
equal to zero and less than or equal to 2047

Subscripted variables may be freely used in expressions, in function calls, and in return
statements,

An array name may be used as an argument to a function, or may be declared as
automatic in a function definition by the use of empty brackets:

flalD
define f(a[])
auto al]

When an array name is so used, the whole contents of the array are copied for the use of the
function, and thrown away on exit from the function. Array names which refer to whole arrays
cannot be used in any other contexts.

Control Statements

The ‘if’, the *while’, and the ‘for’ statements may be used to alter the flow within pro-
grams or to cause iteration. The range of each of them is a statement or a compound statement
consisting of a collection of statements enclosed in braces. They are written in the following
way

if (relation) statement
while (relation) statement
for{expressionl; relation; expression2) statement

or

if (relation) {statements)
while(relation) {statements}
for{expression1; relation; expression2) [statements}

A relation in one of the control statements is an expression of the form

X>y
where two expressions are related by one of the six relational eperators <, >, <=, >=,
==, or '=. The relation == stands for ‘equal to’ and != stands for ‘not equal to’. The
meaning of the remaining relational operators is clear.
BEWARE of using = instead of == in a relational. Unfortunately, both of them are

legal, so you will not get a diagnostic message, but = really will not do a comparison. .

The ‘if” statement causes execution of its range if and only if the relation is true. Then
control passes to the next statement in sequence.

The ‘while’ statement causes execution of its range repeatedly as long as the relation is
true. The relation is tested before each execution of its range and if the relation is faise, con-
trol passes to the next statement beyond the range of the while.

The ‘for’ statement begins by executing ‘expressionl’. Then the relation is tested and, if
true, the statenients in the range of the ‘for’ are executed. Then ‘*expression2’ is executed.
The relation is tested, and so on. The typical use of the ‘for’ statement is for a controlled itera-
tion, as in the statement

for(i=1; i< =10; i=i4+1} i

which will print the integers from 1 to 10. Here are some exaniples of the use of the control
statements. ’

define f(n){

auto i, x

x=]

for(i=1; i< =n; i=i+1) x=x%
return{(x)

)
The line
f(a)

-6-

will print @ factorial if a is a positive integer. Here is the definition of a function which will
compute values of the binomial coefficient {m and n are assumed to be positive integers).

define b(n,m}

auto x, J

x=1

for(j=1; i< =m; j=j+1) x=x*(n—j+1)/j
return (x)

}

The following function computes values of the exponential function by summing the appropri-
ate series without regard for possible truncation errors:

scale = 20
define e (x)!
auto a, b,c,d, n
=1
=]
1
=0
=1
while(1==1){

S0 g R
It

{c==d} return(c)
=¢

amsoo o
]
a
+
.

Some Details

There are some language features that every user should know about even if he will not
use them,

Normally statements are typed one to a line. [t is also permissible to type several state-
ments on a line separated by semicolons.

If an assignment statement is parenthesized, it then has a value and it can be used any-
where that an expression can. For example, the line

(x=y+17)

not only makes the indicated assignment, but also prints the resuiting value,

Here is an example of a use of the value of an assignment statement even when it is not
parenthesized. R :

x = ali=i+1]
causes a value to be assigned to x and also increments i before it is used as a subscript.

The following constructs work in BC in exactly the same manner as they do in the C
language. Consult the appendix or the C manuals [2] for their exact workings.

x=y=z is the same as x=(y=z)
Xx=+y X = X+y
X=-—y¥ X =Xx-—y

x ="y X = x%y
x=/y X = x/y

x =%y x = xUy

x =" x=x"y

X+ + x=x+1)—1
x—— (x=x—1)+1
++X X =x+1
——X x=x—1

Even if you don't intend to use the constructs, if you type one inadvertently, something correct
but unexpected may happen.

WARNING! In some of these constructions, spaces are significant. There is a real
difference between x=—y and x= —y. The first replaces x by x—y and the second by —v.

Three Important Things
1. To exit a BC program, type ‘quit’.
2. There is a comment convention identical to that of C and of PL/I. Comments begin
with */*’ and end with **/".
3. There is a library of math functions which may be obtained by typing at command level
be —I

This command will load a set of library functions which, at the time of writing, consists of sine
(named ‘s’), cosine (’c’), arctangent (*a’}, natural logarithm (‘I'), exponential (‘e’) and Bessel
functions of integer order (‘j{n,x)’). Doubtless more functions will be added in time. The
library sets the scale to 20. You can reset it to something else if you like. The design of these
mathematical library routines is discussed elsewhere [3].

If you type
be file ...

BC.will read and execute the named file or files before accepting commands from the keyboard.
In this way, you may load your favorite programs and function definitions. -

Acknowledgement
The compiter is written in YACC [4]; its original version was written by S. C. Johnson.

References
[1] K. Thompson and D. M. Ritchie, UNIX Programmer’s‘Manua!. Bell Laboratories, 1978.
[2] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978.

[3] R. Morris, 4 Library of Reference Standard Mathematical Subroutines, Bell Laboratories
internal memorandum, 1975. .

[4] S. C. Johnson, YACC — Yet Another Compiler-Compifer. Bell Laboratories Computlng Sci-
ence Technical Report #32, 1978.

[S} R. Morris and L. L. Cherry, DC — An Interactive Desk Calculator.

-8-
Appendix

1. Notatior_l

In the following pages syntactic categories are in ifalics; literals are in bold, material in
brackets [] is optional. '

2. Tokens

Tokens consist of keywords, identifiers, constants, operators, and separators. Token
separators may be blanks, tabs or comments. Newline characters or semicolons separate state-
ments,

2.1. Comments
Comments are introduced by the characters /* and terminated by */.

2.2. Identifiers

There are three kinds of identifiers — ordinary identifiers, array identifiers and function
identifiers. All three types consist of single lower-case letters. Array identifiers are followed by
square brackets, possibly enclosing an expression describing a subscript. Arrays are. singly
dimensioned and may contain up to 2048 elements. Indexing begins at zero so an array may be
indexed from 0 to 2047. Subscripts are truncated to integers. Function identifiers are followed
by parentheses, possibly enclosing arguments. The three types of identifiers do not conflict; a
program can have a variable named x, an array named x and a function named x, all of which
are separate and distinct.

2.3. Keywords

The following are reserved keywords:
thase if
obase break
scale define
sqrt auto
length return
while quit
for

2.4. Constants.

Constants consist of arbitrarily long numbers with an optionat decimal point. The hexade-
cimal digits A— F are also recognized as digits with values 10—13, respectively.

3. Expressions

The value of an expression is printed unless the main operator is an assignment. Pre-
cedence is the same as the order of presentation here, with highest appearing first. Left or right
associativity, where applicable, is discussed with each operator.

3.1. Primitive expressions

3.1.1. Named expressions : .

Named expressions are places where values are stored. Simply stated, named expressions
are legal on the left side of an assignment. The value of a named expression is the value stored
in the place named.

3.1.1.1. identifiers ,
Simple identifiers are named expressions. They have an initial value of zero.

3.1.1.2. array-name lexpression |
Array elements are named expressions. They have an initial vatue of zero.

3.1.1.3. scale, ibase and obase

The internal registers scale, ibase and obase are all named expressions. scale is the
number of digits after the decimal point to be retained in arithmetic operations. . scale has an
initial value of zero. ibase and obase are the input and output number radix respectively. Both
ibase and obase have initial values of 10.

3.1.2. Function calls

3.1.2.1. function-name.(lexpression [, expression...]])

A function call consists of a function name followed by parentheses containing a comma-
separated list of expressions, which are the function arguments. A whole array passed as an
argument is specified by the array name followed by empty square brackets. All function argu-
menis are passed by value. As a result, changes made to the formal parameters have no effect
on the actual arguments. If the function terminates by executing a return statement, the value
of the function is the value of the expression in the parentheses of the return statement or is
zero if no expression is provided or if there is no return staterent.

3.1.2.2. sqrt (expiession)

The result is the square root of the expression. The result is truncated in the least
significant decimal place. The scale of the result is the scale of the expression or the value of
scale, whichever is larger.

3.1.2.3. length (expression) .
The result’is the total number of significant decimal digits in the expression. The scale of

the result is zero.

3.1.2.4. scale (expression)
The result is the scale of the expression. The scale of the result is zero.

3.1.3. Constants
Constants are primitive expressions.

3.1.4. Parentheses

An expression surrounded by parentheses is a primitive expression. The parentheses are
used to alter the normal precedence.

- 10 -

. 3.2. Unary operators

The unary operators bind right to left.

3.2.1. - expression-
The result is the negative of the expression.

3.2.2. + + named-expression

The named expression is incremented by one. The result is the value of the named
expression after incrementing.

3.2.3. — — named-expression

The named expression is decremented by one. The result is the value of the named
expression after decrementing.

3.2.4. named-expression + +

The named expression is incremented by one. The result is the value of the named
expression before incrementing.

3.2.5. named-expression — —

The named expression is decremented by one. The result is the value of the named
expression before decrementing.

3.3. Exponentiation operator
. . The exponentiation operator binds right to left.

3.3.1. expression = expression

The result is the first expression raised to the power of the second expression. The
second expression must be an integer. If 2 is the scale of the left expression and & is the abso-
lute value of the right expression, then the scale of the result is:

min (axb, max (scale,a))

3.4. Multiplicative operators
The operators *, /, % bind left to right.

3.4.1. expression * expression

The result is the product of the two expressnons If @ and b are the scales of the two
expressions, then the scale of the result is:

min { a +&, max { scale, a,))

3.4.2. expression [/ expression

The result is the quotient of the two expressions. The scale of the result is the value of
scale.

3.4.3. expression % expression

The % operator produces the remainder of the division of the two expressions. More pre-
cisely, a%b is a—alb*h.

The sczle of the result is the sum of the scale of the divisor and the value of scale

211 -
3.5. Additive operators
‘The additive operators bind left to right.

3.5.1. expression + expression

The result is the sum of the two expressions. The scale of the result is the maximun of
the scales of the expressions.

3.5.2. expression = expression

The result is the difference of the two expressions. The scale of the result is the max-
imum of the scales of the expressions.

3.6. assignment operators
The assignment operators bind right to left.

3.6.1. named-expression = expression

This expression results in assigning the value of the expression on the right to the named
expression on the left.

3.6.2. named-expression = + expression
3.6.3. named-expression = — expression
3.6.4. named—expression =* gxpression
3.6.5. named-expression =} expression
1.6.6. named-expression =% exprgssion

3.6.7. named-expression =" expression

. The result of the above expressions is equivalent 10 *““named expressmn named expres-
sion"OP expression’”, where OP is the operator after the = sign.

4. Relations

Unlike all other operators, the relatlonal operators are only valid as the object of an If
while, or inside a for statement.

4.1. expression < expression
4.2, expression > expression
4.3. expression < = expression
4.4, expression > = expression
4.5. expression == expression

4.6. expression '= expression

-12 -

5. Storage classes

There are only two storage classes in BC, giobal and automaltic (local). Only identifiers
that are to be local 10 a function need be declared with the auto command. The arguments o a
function are local to the function. All other identifiers are assumed to be global and available
to all functions. Al identifiers, global and {ocal; have initial values of zero. ldentifiers declared
as auto are allocated on entry to the function and released on returnting from the function.
They therefore do not retain values between function calls. auto arrays are specified by the
array name followed by empty square brackets.

Automatic variables in BC do not work in exactly the same way as in either C or PL/L.
On entry to a function, the old values of the names that appear as parameters and as automatic
variables are pushed onto a stack. Until return is made from the function, reference to these
names refers only to the new values.

6. Statements

Statements must be separated by semicolon or newline. Except where altered by control
statements, execution is sequential.

6.1. Expression statements

When a statement is an expression, unless the main operator-is an assignment, the value
of the expression is printed, followed by a newline character.

6.2. Compound statements

Statements may be grouped together and used when one statement is expected by sur-
rounding them with { }.

6.3. Quoted string statements
"any string”

- This statement prints the string inside the quotes.

6.4. If statements

if (relation) statement
The substatement is executed if the relation is true.

6.5. While statements

while (refation Y statement

The statement is executed while the relation is true. The test occurs before each execu-
tion of the statement. '

6.6. For statements

for (expression; refation; expression) statement

The for statement is the same as
first-expression
while (refation) {

statement

last-expression

}

All three expressions must be present.

-13 -

6.7. Break statements

break
break causes termination of a for or while statement.

6.8. Auto statements

auto identifier [jidentifier)

The auto statement causes the values of the identifiers to be pushed down. The
identifiers can be ordinary identifiers or array identifiers. Array identifiers are specified by fol-
lowing the array name by empty square brackets. The auto statement must be the first state-
ment in a function definition.

6.9. Define statements

define([parameter | ,parameter...]]) |
statements) '

The define statement defines a function. The parameters may be ordinary identifiers or
array names. Array names must be followed by empty square brackets.

6.10. Return statements
return

return { expression)

The return statement causes termination of a function, popping of its auto variables, and
specifies the result of the function. The first form is equivalent to return{0). The result of the
function is the result of the expression in parentheses.

6.11. Quit

The quit statement stops execution of a BC program and returns control to UNIX when it
is first encountered. Because it is not treated as an executable statement, it cannot be used in a
function definition or in an if, for, or while statement.

.

DC — An Interactive Desk Calculator

Robert Morris
Lorinda Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

DC is an interactive desk calculator program implemented on the unIxt
time-sharing system to do arbitrary-precision integer arithmetic. It has provi-
sion for manipulating scaied fixed-point numbers and for input and output in
bases other than decimal.

The size of numbers that can be manipulated is limited only by available
core storage. On typical implementations of UNIX, the size of numbers that can
be handled varies from several hundred digits on the smallest systems to
several thousand on the largest.

November 15, 1978

TUNIX is a Trademark of Bell Laboratories.

. . DC — An Interactive Desk Calculator

Robert Morris
Lorinda Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

DC is an arbitrary precision arithmetic package implemented on the UNIXT time-sharing
system in the form of an interactive desk calculator. It works like a stacking calculator using
reverse Polish notation. Ordinarily DC operates on decimal integers, but one may specify an
input base, output base, and 2 number of fractional digits to be maintained.

A language called BC [1] has been developed which accepts programs written in the fami-
liar style of higher-level programming languages and compiles output which is interpreted by
DC. Some of the commands described below were designed for the compiler interface and are
not easy for a human user to manipulate.

Numbers that are typed into DC are put on a push-down stack. DC commands work by
taking the top number or two off the stack, performing the desired operation, and pushing the
resuit on the stack. If an argument is given, input is taken from that file until its end, then
from the standard input.

SYNOPTIC DESCRIPTION

Here we describe the DC commands that are intended for use by people. The additional

commands that are intended to be invoked by compiled output are described in the detailed
description.

Any number of commands are permitted on a line. Blanks and new-line characters are
ignored except within numbers and in places where a register name is expected.
The following constructions are recognized:

number

The value.of the number is pushed onto the main stack. A number is an unbroken string
of the digits 0-9 and the capital letters A—F which are treated as digits with values 10—15
respectively. The number may be preceded by an underscore to input a negative
number, Numbers may contain decimal points.

+ -

The top two values on the stack are added (+), subtracted (=), multiplied (*), divided
(/), remaindered (%), or exponentiated (*). The two entries are popped off the stack; the
result is pushed on the stack in their place. The result of a division is an integer trun-
cated toward zero. See the detailed description below for the treatment of numbers with
decimal points. An exponent must not have any digits after the decimal point.

TUNIX is a Trademark of Bell Laboraltories.

X

The top of the main stack is popped and stored into a register named x, where x may be
any character. If the s is capitalized, x is treated as a stack and the value is pushed onto
it. Any charatter, even blank or new-line, is a valid registér name.

Ix

The value in register x is pushed onto the stack. The register x is not altered. If thel is
capitalized, register x is treated as a stack and ifs top value is popped onto the main stack.

All registers start with empty value which is treated as a zero by the command 1 and is treated
as an error by the command L.

d
The top value on the stack is duplicated.
p
The top value on the stack is printed. The top value remains unchanged.
f
All values on the stack and in registers are printed.
X
treats the top element of the stack as a character string, removes it from the stack, and
executes it as a string of DC commands.
[...]
puts the bracketed character string onto the top of the stack.
q

exits the program. If executing a string, the recursion level is popped by two. If q is capi-
talized, the top value on the stack is popped and the string execution level is popped by
that value,

<x »x =x I<x I>x '=x

The top two elements of the stack are popped and compared. Register x is executed if
they obey the stated relation. Exclamation point is negation.

¥
replaces the top element on the stack by its square root. The square root of an integer is
truncated to an integer. For the treatment of numbers with decimal points, see the
detailed description below.

!
interprets the rest of the line as a UNIX command. Control returns to DC when the uNIX
command terminates. ‘

[

All values on the stack are popped; the stack becomes empty.

The top value on the stack is popped and used as the number radix for further input. If i
is capitalized, the value of the input base is pushed onto the stack. No mechanism has
been provided for the input of arbitrary numbers in bases less than 1 or greater than 16.

0
The top value oa the stack is popped and used as the number radix for further output. If
o is capitalized, the value of the output base is pushed onto the stack.

k
The top of the stack is popped, and that value is used as a scale factor that influences the
number of decimal places that are maintained during multiplication, division, and
exponentiation. The scale factor must be greater than or equal to zero and less than 100.
If k is capitalized, the value of the scale factor is pushed onto the stack.

z

The value of the stack level is pushed onto the stack.

A line of input is taken from the input source {usually the console) and executed.

DETAILED DESCRIPTION

Internal Representation of Numbers

Numbers are stored internally using a dynamic storage allocator. Numbers are kept in the
form of a string of digits to the base 100 stored one digit per byte (centennial digits). The
string is stored with the low-order digit at the beginning of the string. For example, the
representation of 157 is 57,1. After any arithmetic operation on a number, care is taken that all
digits are in the range 0—99 and that the number has no leading zeros. The number zero is
represented by the emply string.

Negative numbers are represented in the 100’s complement notation, which is analogous
to two’s complement notation for binary numbers. The high order digit of a negative number
is always —1 and all other digits are in the range 0—99, The digit preceding the high order —1
digit is never a 99. The representation of —157 is 43,98,—1. We shall call this the canonical
form of a number. The advantage of this kind of representation of negative numbers is ease of
addition. When addition is performed digit by digit, the result is formally correct. The result
need only be modified, if necessary, to put it into canonical form.

Because the largest valid digit is 99 and the byte can hold numbers twice that large, addi-
tion can be carried out and the handling of carries done later when that is convenient, as it
sometimes is.

An additional byte is stored with each number beyond the high order digit to indicate the
number of assumed decimal digits after the decimal point. The representation of .001 is 1,3
where the scale has been italicized to emphasize the fact that it is not the high order digit. The
value of this exira byte is called the scale factor of the number,

The Allocator

DC uses a dynamic string storage allocator for all of its internal storage. All reading and
writing of numbers internally is done through the atlocator. Associated with each string in the
allocator is a four-word header containing pointers to the beginning of the string, the end of the
string, the next place to write, and the next place to read. Communication between the alloca-
tor and DC is done via pointers to these headers.

. 4.

The allocator initially has one large string on a list of free strings. All headers except the
one pointing to this string are on a list of free headers. Requests for strings are made by size.
The size of the string actually supplied is the next higher power of 2. When a request for a
string is made, the -allocator first checks the free list to see if there is a string of the desired
size. If none is found, the allocator finds the next larger free string and splits it repeatedly until
it has a string of the right size. Left-over strings are put on the free list. If there are no larger
strings, the allocator tries {o coalesce smaller free strings into larger ones. Since all strings are
the result of splitting large strings, each string has a neighbor that is next to it in core and, if
free, can be combined with it to make a string twice as long. This is an implementation of the
‘buddy system’ of allocation described in [2]. :

Failing to find a string of the proper length after coalescing, the allocator asks the system
for more space. The amount of space on the system is the only limitation on the size and
number of strings in DC. If at any time in the process of trying to allocate a string, the alloca-
tor runs out of headers, it also asks the system for more space.

There are routines in the allocator for reading, writing, copying, rewinding, forward-
spacing, and backspacing strings. All string manipulation is done using these routines.

The reading and writing routines increment the read pointer or write pointer so that the
characters of a string are read or written in succession by a series of read or write calls. The
write pointer is interpreted as the end of the information-containing portion of a string and a
call to read beyond that point returns an end-of-string indication. An attempt to write beyond
the end of a string causes the allocator to allocate a larger space and then copy the old string
into the larger block.

Internal Arithmetic

All arithmetic operations are done on integers. The operands (or operand) needed for the
operation are popped from the main stack and their scale factors stripped off. Zeros are added
or digits removed as necessary to get a properly scaled result from the internal arithmetic rou-
tine. For example, if the scale of the operands is different and decimal alignment is required,
as it is for addition, zeros are appended to the operand with the smaller scale. After performing
the required arithmetic operation, the proper scale factor is appended to the end of the number
before it is pushed on the stack.

A register called scale plays a part in the results of most arithmetic operations. scale is
the bound on the number of decimal places retained in arithmetic computations. scale may be
set to the number on the top of the stack truncated to an integer with the k command. X may
be used to push the value of scale on the stack. scale must be greater than or equal to 0 and
less than 100. The descriptions of the individual arithmetic operations will include the exact
effect of scale on the computations.

Addition and Subtraction

The scales of the two numbers are compared .and trailing zeros are supplied to the number
with the lower scale to give both numbers the same scale. The number with the smaller scale is
multiplied by 10 if the difference of the scales is odd. The scate of the result is then set to the
larger of the scales of the two operands.

Subtraction is performed by negating the number to be subtracted and proceeding as in
addition.

Finally, the addition is performed digit by digit from the low order end of the number.
The carries are propagated in the usual way. The resulting number is brought into canonical
form, which may require stripping of leading zeros, or for negative numbers replacing the
high-order configuration 99,—1 by the digit —1. In any case, digits which are not in the range
0—9% must be brought into that range, propagating any carries or borrows that result.

Multiplication

The scales are removed from the two operands and saved. The operands are both made
positive. Then multiplication is performed in a digit by digit manner that exactly mimics the
hand method of multiplying. The first number . is multiplied by each digit of the second
number, beginning with its low order. digit. The intermediate products are accumulated into a
partial sum which becomes the final product _The product is put into the canonical form and its -
sign is computed from the signs of the original operands.

The scale of the result’is set equal to the sum of the scales of the two operands. If that
scale is larger than the internal register scale and also larger than both of the scales of the two
operands, then the scale of the result is set equal to the largest of these three last quantities.

Division

The scales are removed from the two operands. Zeros are appended or digits removed
from the dividend to make the scale of the result of the integer division equal to the internal
quantity scale. The signs are removed and saved.

Division is performed much as it would be done by hand. The difference of the lengths
of the two numbers is computed. If the divisor is longer than the dividend, zero is returned.
Otherwise the top digit of the divisor is divided into the top two digits of the dividend. The
result is used as the first (high-order) digit of the quotient. It may turn out be one unit too
low, but if it is, the next trial quotient will be larger than 99 and this will be adjusted at the end
of the process. The trial digit is multiplied by the divisor and the result subtracted from the
dividend and the process is repeated to get additional quotient digits until the remaining divi-
dend is smaller than the divisor. At the end, the digits of the quotient are put into the canoni-
cal form, with propagation of carry as needed. The sign is set from the sign of the operands.

Remainder .

. The division routine is called and division is performed exactly as described. The quantity
returned is the remains of the dividend at the end of the divide process. Since division trun-
cates toward zero, remainders have the same sign as the dividend. The scale of the remainder
is set to the maximum of the scale of the dividend and the scale of the quotient plus the scale
of the divisor.

Square Root
-. The scale is stripped from the operand. Zeros are added if necessary to make the integer
result have a scale that is the larger of the internal quantity scale and the scale of the operand.
"'The method used to compute sqrt(y) is Newton's method with successive approximations
by the rule
FEARNRR Xpap = Y (x, +==)
. - xﬂ
: Ii_)'e' initidl guess is found by taking the integer square root of the top two digits.
_Exponentiation
" Only. exponents with zero scale factor are handled. If the exponent is zero, then the

" result is'1.” If the exponent is negative, then it is made positive and the base is divided into
“one. The scale of the base is removed.

. The mteger exponent is viewed as a binary number. The base is repeatedly squared and
.the result is obtained as a product of those powers of the base that correspond to the positions

" - of- the one- -bits-in the binary representation of the exponent. Enough digits of the result are

- removed to make .the scale of the result the same as if the indicated multiplication had been
performed. - -

Input Conversion and Base

Numbers are converted to the internal representation as they are read in. The scale
stored with a number is simply the number of fractional digits input. Negative numbers are
indicated by preceding the number with a _. The hexadecimal digits A—F correspond to the
numbers 10— 15 regardless of input base. The i command can be used to change the base of
the input numbers. This command pops the stack, truncates the resulting number to an
integer, and uses it as the input base for all further input. The input base is initialized to 10
but may, for example be changed to 8 or 16 1o do octal or hexadecimal to decimal conversmns
The command I will push the value of the input base on the stack.

Output Commands

The command p causes the top of the stack to be printed. It does not remove the top of
the stack. All of the stack and internal registers can be output by typing the command f. The o
command can be used to change the output base. This command uses the top of the stack,
truncated to an integer as the base for all further output. The output base in initialized to 10.
It will work correctly for any base. The command Q pushes the value of the output base on the
stack.

Output Format and Base

The input and output bases only affect the interpretation of numbers on input and output;
they have no effect on arithmetic computations. Large numbers are output with 70 characters
per line; a \ indicates a continued line. All choices of input and output bases work correctly,
although not all are useful. A particularly useful output base is 100000, which has the effect of
grouping digits in fives, Bases of 8 and 16 can be used for decimal-octal or decimal-
hexadecimai conversions.

Internal Registers

Numbers or strings may be stored in internal registers or loaded on the stack from regis-
ters with the commands s and 1. The command sx pops the top of the stack and stores the
result in register x. xcan be any character. lx puts the contents of register x on the top of the
stack. The | command has no effect on the contents of register x The s command, however
is destructive. ¥

Stack Commands

The command ¢ clears the stack. The command d pushes a duplicate of the nuimber on
the top of the stack on the stack. The command z pushes the stack size on the stack. The
command X replaces the number on the top of the stack with its scale factor. The command Z
replaces the top of the stack with its length.

Subroutine Definitions and Calls

Enclosing a string in [l pushes the ascii string on the stack. The q command quus or in
executing a string, pops the recursion levels by two. . .

Internal Registers — Programming DC

The load and store commands together with Il to store strings, x to execute and the test— ,
ing commands ‘<, ‘>, ‘=", ‘1<’ ‘I>’ ‘l=" can be used to program DC. The x command
assumes the top of the stack is an string of DC commands and executes it. The testing com-
mands compare the top two elements on the stack and if the relation holds, execute the reg:ster'
that follows the relation. For example, to print the numbers 0-9,

llipl + si 1il0>>alsa
Osi lax

Push-Down Registers and Arrays

These commands were designed for used by a compiler, not by people. They involve
push-down registers and arrays. In addition to the stack that commands work on, DC can be
thouyght of as having individual stacks for each register. These registers are operated on by the
commands S and L. Sx pushes the top value of the main stack onto the stack for the register
x. Lx pops the stack for register x and puts the result on the main stack. The commands s and
¥ also work on registers but not as push-down stacks. 1 doesn’t effect the top of the reglster
stack, and s destroys what was there before. :

The commands to work on arrays are : and ;. :x pops the stack and uses'this value as an
index into the array x. The next element on the stack is stored at this index in x. An index
must be greater than or equal to 0 and less than 2048. ;x is the command to load the main
stack from the array x. The value on the top of the stack is the index into the array x of the
value to be loaded.

Miscellaneous Commands

The command ! interprets the rest of the line as a UNIX
commmand and passes it to UNIX to execute. One other compiler command is Q. This com-
mand uses the top of the stack as the number of levels of recursion to skip.

DESIGN CHOICES

The real reason for the use of a dynamic storage allocator was that a general purpose pro-
gram could be (and in fact has been) used for a variety of other tasks. The allocator has some
value for input and for compiling (i.e. the bracket [...] commands) where it cannot be known
in advance how long a string will be. The result was that at a modest cost in execution time, all
considerations of string allocation and sizes of strings were removed from the remainder of the
program and debugging was made easier. The allocation method used wastes approximately
25% of available space.

The choice of 100 as a base for internal arithmetic seemingly has no compelling advan-
tage. Yet the base cannot exceed 127 because of hardware limitations and at the cost of 5% in
space, debugging was made a great deal easier and decimal output was made much faster.

The reason for a stack-type arithmetic design was to permit all DC commands from addi-
tion to subroutine execution to be implemented in essentially the same way. The result was a
considerable degree of logical separation of the final program into modules with very little com-
munication between modules.

The raticnale for the lack of interaction between the scale and the bases was to provide an
understandable means of proceeding after a change of base or scale when numbers had already
been entered. An earlier implementation which had global notions of scale and base did not
work out well. If the value of scale were to be interpreted in the current input or output base,
then a change of base or scale in the midst of a computation would cause great confusion in the
interpretation of the results. The current scheme has the advantage that the value of the input
and output bases are only used for input and output, respectively, and they are ignored in all
other operations. The value of scale is not used for any essential purpose by any part of the
program and it is used only to prevent the number of decimal places resulting from the arith-
metic operations from growing beyond all bounds.

The design rationale for the choices for the scales of the results of arithmetic were that in
no case should any significant digits be thrown away if, on appearances, the user actually
wanted them. Thus, if the user wants to add the numbers 1.5 and 3.517, it seemed reasonable
to give him the result 5.017 without requiring him to unnecessarily Spemfy his rather obvicus
requirements for precision.

On the other hand, multiplication and exponentiation produce._résults with many more
digits than their operands and it seemed reasonable to give as a minimum the number of
decimal places in the operands but not to give more than that number of digits unless the user

asked for them by specifying a value for scale. Square root can be handled in just the same
way as multiplication. The operation of division gives arbitrarily many decimal places and there
is simply no way to guess how many places the user wants. In this case only. the user must
specify a scale to get any decimal places at all. ~ Lt

The scale of remainder was chosen to make it p0551ble to recreate the dmdend from the
quotient and remainder. This is easy to lmplement no dnglts are thrown away

References , . e : :
(1] L. L. Cherry, R. Morris, BC — An Arb:rra:y Prec:smn Desk-Calcuiarar Language.
[21 K. C. Knowlton, A Fast Storage Allocator, Comm. ACM 8,.p_p. 623-625 (Oct. 1965).

Fortran

.34

A Portable Fortran 77 Compiler

S. I. Feldman
P. J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The Fortran language has just been revised. The new language, known as For-
~ tran 77, became an official American National Standard on April 3, 1978. We
report here on a compiler and run-time system for the new extended language.
This is believed to be the first complete Fortran 77 system to be implemented.
This compiter is designed to be portable, to be correct and complete, and to
generate code compatible with calling sequences produced by C compilers. In
particular, this Fortran is quite usable on UNIX} systems. In this paper, we
describe the language compiled, interfaces between procedures, and file formats
assumed by the I/0 system. An appendix describes the Fortran 77 language.

1 August 1978

+UNIX is a Trademark of Bell Laboratories.

A Portable Fortran 77 Compiler

S. 1. Feldman
P. I Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION

The Fortran language has just been revised. The new language, known as Fortran 77,
became an official American National Standard {1] on April 3, 1978. for the language, known
as Fortran 77, is about to be published. Fortran 77 supplants 1966 Standard Fortran [2]. We
report here on a compiler and run-time system for the new extended language. The compiler
and computation library were written by SIF, the 1/0 system by PIW. We believe ours to be
the first complete Fortran 77 system to be implemented. This compiler is designed to be port-
able to a number of different machines, to be correct and complete, and to generate code com-
patible with calling sequences produced by compilers for the C language [3]. In particular, it is
in use on UNIXt systems. Two families of C compilers are in use at Bell Laboratories, those
based on D. M. Ritchie’s PDP-11 compiler[4] and those based on S. C. Johnson's portable C
compiler [5]. This Fortran compiler can drive the second passes of either family. In this paper,
we describe the language compiled, interfaces between procedures, and file formats assumed by
the I/0 system. We will describe implementation details in companion papers.

1.1. Usage

At present, versions of the compiler run on and compile for the PDP-11, the VAX-
11/780, and the Interdata 8/32 UNIX systems. The command to run the compiler is

f77 flags file . . .

f77 is a general-purpose command for compiling and loading Fortran and Fortran-related files.
EFL [6] and Ratfor [7] source files will be preprocessed before being presented to the Fortran
compiler. C and assembler source files will be compiled by the appropriate programs. Object
files will be loaded. (The f77 and cc commands cause slightly different loading sequences to be
generated, since Fortran programs need a few extra libraries and a different startup routine than
do C programs.)-The following file name suffixes are understood:

g Fortran source file
EFL source file
Ratfor source file

C source file
Assembler source file
.0 Object file ’

The following flags are understood:
-5 Generate assembler output for each source.file, but do not assemble it. Assem-

oo

TUNIX is a Trademark of Bell Laboratories.

.2.

bler output for a source file x.f, x.e, x.r, or x.c is put on file x.s.

-C Compile but do not load. Qutput for x.f, x.e, x.r, X.c, or X.s is put on file x.0.
—-m Apply the M4 macro preprocessor to each EFL or Ratfor source file before
.. using the appropriate compiler. -

—f Apply the EFL or Ratfor processor to all relevant files, and leave the output
from x.e or x.r on x.f. Do not compile the resulting Fortran program.

—-p Generate code to produce usage profiles. '

-of Put executable module on file £ (Default is a.out).

-w Suppress all warning messages.

—wbb Suppress warnings about Fortran 66 features used.

-0 Invoke the C object code optimizer.

-C Compile code the checks that subscripts are within array bounds.

—onetrip Compile code that performs every do loop at least once. (see Section 2.10).

-u Do not convert upper case letters to lower case. The default is to convert For-
tran programs to lower case.

—u Make the default type of a variable undefined. (see Section 2.3).

-12 On machines which support short integers, make the default integer constants

and variables short. {(—I4 is the standard value of this option}). (see Section
2.14). All logical quantities will be short.

~E The remaining characters in the argument are used as an EFL flag argument.
-R The remaining characters in the argument are used as a Ratfor flag argument.
-F Ratfor and and EFL source programs are pre-processed into Fortran files, but

those files are not compiled or removed.

Other flags, all library names (arguments beginning —1), and any names not ending with one ot'
the understood suffixes are passed to the loader.

1.2. Documentation Conventions

In running text, we write Fortran keywords and other literal strings in boldface lower case: -
Examples will be presented in lightface lower case. Names representing a class of values wnll be
printed in italics. !

1.3, Implementation Strategy S
The compiler and library are written entirely in C. The compiler generates C compller

intermediate code. Since there are C compilers running on a variety of machines, relatively - .

small changes will make this Fortran compiler generate code for any of them. Furthermore, "
this approach guarantees that the resulting programs are compatnble with C usage. The runtime = -
computational library is complete. The mathematical functions are computed to at least 63 bit .-
precision. The runtime I/O library makes use of D. M. Ritchie’s Standard C I/0 package (8]
for transferring data. With the few exceptions described below, only documented calls are

used, so it should be relatively easy to modify to run on other operating systems. :

2, LANGUAGE EXTENSIONS

Fortran 77 includes almost all of Fortran 66 as a subset. We describe the differences - .
briefly in the Appendix. The most important additions are a character string data type, file-."

oriented input/output statements. and random access [/O. Also, the language has been cleaned'
~ up considerably. ; :

In addition to implementing the language specified in the new Standard, our compiler .
implements a few extensions described in this section. Most are useful additions to the

.3,

language. The remainder are extensions to make it easier to communicate with C procedures
or to permit compilation of old {1966 Standard) programs.

2.1,

2.2,

2.3.

2.4,

2.5.

2.6.

Double Complex Data Type

The new type double complex is defined. Each datum is represented by a pair of double
precision real variables. A double complex version of every complex built-in function is
provided. The specific function names begin with z instead of c.

Internal Files

The Fortran 77 standard introduces “*internal files” (memory arrays), but restricts their
use to formatted sequential 1/0 statements. Our 1/0 system also permits internal files to
be used in direct and unformatted reads and writes.

Implicit Undefined statement

Fortran 66 has a fixed rule that the type of a variable that does not appear in a type state-
ment is integer if its first tetter is i, j, k, 1, m or n, and real otherwise. Fortran 77 has an
implicit statement for overriding this rule. As an aid to good programming practice, we
permit an additional type, undefined. The statement

implicit undefined (a-z)

turns off the automatic data typing mechanism, and the compiler will issue a diagnostic
for each variable that is used but does not appear in a type statement. Specifying the —u
compiler flag is equivalent to beginning each procedure with this statement.

Recursion
Procedures may call themselves, directly or through a chain of other procedures.

Automatic Storage

Two new keywords are recognized, static and automatic. These keywords may appear as
*types'’ in type statements and in implicit statements. Local variables are static by
default; there is exactly one copy of the datum, and its value is retained between calls.
There is one copy of each variable declared automatic for each invocation of the pre-
cedure. Automatic variables may not appear in equivalence, data, or save statements.

Source Input Format

The Standard expects input to the compiler to be in 72 column format: except in com-
ment lines, the first five characters are the statement number, the next is the continuation
character, and the next sixty-six are the body of the line. (If there are fewer than
seventy-two characters on a line, the compiler pads it with blanks; characters after the

‘seventy-second are ignored),

In order to make it easier to type Fortran programs, our compiler also accepts input in
variable length lines. An ampersand (*&™) in the first position of a line indicates a con-
tinuation line; the remaining characters form the body of the line. A tab character in one
of the first six positions of a line signals the end of the statement number and continua-
tion part of the line; the remaining characters form the body of the line. A tab elsewhere
on the line is treated as another kind of biank by the compiler.

In the Standard, there are only 26 letters — Fortran is 2 one-case language. Consistent
with ordinary UNIX system usage, our compiler expects lower case input. By default, the
compiler converts all upper case characters to lower case except those inside character
constants. However, if the —U compiler flag is specified, upper case letters are not
transformed. In this mode, it is possible to specify external names with upper case letters
in them, and to have distinct variables differing only in case. Regardless of the setting of

-4-

the flag, keywords will only be recognized in lower case.

2.7. Include Statement

The statement
- include ‘stuff’

is replaced by the contents of the file stuff. includes may. _be"'.rreéted. t0'n" reasonable
depth, currently ten. ST

2.8. Binary Initialization Constants

A logical, real, or integer variable may be mltlahzed ina data statement by a binary con-
stant, denoted by a letter followed by a quoted string. If the: letter is b, the string is
binary, and only zeroes and ones are permitted. If the letter is o, the string is octal, with
digits 0—7. If the letter is z or x, the string is hexadecrmal with digits 0—9, a—f. Thus,
the statements

integer a(3)
data a / b'1010’, 0'12’, z'a" /

initialize all three elements of a to ten.

2.9. Character Strings

For compatibility with C usage, the follo;.ving backslash escapes are recognized:

\n newline
Wt 1ab

\b backspace
A form feed

\0 null .

\ apostrophe {does not terminate a siring)

\" quotation mark (does not terminate a string)
W\ \

\x ° x where xis any other character

Fortran 77 only has one quoting character, the apostrophe. Our compiler and 1/0 system
recognize both the apostrophe () and the double-quote (). If a string begins with one
variety of quote mark, the other may be embedded within it without using the repeated
quote or backslash escapes.

Every unequivalenced scalar local character variable and every character string constant is
aligned ori an integer word boundary. Each character string constant appearing outside a
data statement is followed by a null character to ease communication with C routines.

2.10. Hollerith

Fortran 77 does not have the old Hollerlth (nh) notation, though the new Standard
recommends implementing: the old Hollerith feature in order to improve compatibility
with old programs. In our compiler Hollerith data may be used in place of character
string constants, and may also be used to initialize non-character variables in data state-
ments. - -

2.11. Equivalence Statements :

As a very special and pecullar case Fortran 66 permits an element of a multiply-
dimensioned array to be- represented by a- singly-subscripted reference in equivalence
statements. Fortran 77 does not permit this usage, since subscript lower bounds may now
be different from 1. Our compiler permits single subscripts in equivalence statements,
under the interpretation that all missing subscripts are equal to 1. A warning message is

-5.

printed for each such incomplete subscript.

2.12. One-Trip DO Loops

The Fortran 77 Standard requires that the range of a do loop not be performed if the ini-
tial value is already past the limit value, as in

do10i=21

The 1966 Standard stated that the effect of such a statement was undefined, but it was
common practice that the range of a do loop would be performed at least once. In order
to accommodate old programs, though they were in violation of the 1966 Standard, the
—onetrip compiler flag causes non-standard loops to be generated.

2.13. Commas in Formatted Input

The 1/0 system attempts to be more lenient than the Standard when it seems worthwhile.
When doing a formatted read of non-character variables, commas may be used as value
separators in the input record, overriding the field lengths given in the format statement.
Thus, the format

(i10, £20.10, i4)
will read the record
—345,.05e~-3,12

correctly.

2,14, Short Integers

On machines that support halfword integers, the compiler accepts declarations of type
integer«2. (Ordinary integers follow the Fortran rules about occupying the same space as
a REAL variable; they are assumed to be of C type long int; halfword integers are of C
type short int.) An expression involving only objects of type integers2 is of that type.
Generic functions return short or long integers depending on the actual types of their
arguments. If a procedure is compiled using the —I2 flag, all small integer constants will
be of type integer~2. If the precision of an integer-valued intrinsic function is not deter-
mined by the generic function rules, one will be chosen that returns the prevailing length
(integer*2 when the —12 command flag is in effect). When the —I2 option is in effect, all
quantities of type logical will be short. Note that these short integer and logical quantities
do not obey the standard rules for storage association.

2,15, Additional Intrinsic Functions

This compiler supports all of the intrinsic functions specified in the Fortran 77 Standard.
In addition, there are functions for performing bitwise Boolean operations (or, and, xor,
and net) and for accessing the UNIX command arguments (getarg and iarge).

3. VIOLATIONS OF THE STANDARD
We know only thre ways in which our Fortran system violates the new standard:

3.1. Double Precision Alignment

The Fortran standards (both 1966 and 1977) permit common or eguivalence statements to
force a double precision quantity onto an odd word boundary, as in the following example:

real a{4)
double precision b,c

equivalence (a(l1),b), {a(4),c)

32

3.3.

-6-

Some machines (e.g., Honeywell 6000, IBM 360) require that double precision quantities
be on double word boundaries; other machines (e.g., IBM 370), run inefficiently if this
alignment rule is. not observed. It is possible to tell which equivalenced and common
variables suffer from a forced odd alignment, but every double precision argument would
have 1o be: assumed on a bad boundary. To load such a quantity on some machines, it

‘would be- .necessary- t0' use separate operations to move the upper and lower halves into
" the halves of an allgned temporary, then to load that double precision temporary; the
_-reverse would be.needed to store a result. We have chosen to require that all double pre-
- cision. re.al and complex guantities fall on even word boundaries on machines with

correspondinig hardware requirements, and to issue a diagnostic if the source code

~ demands a violation of the rule.

Dummg; P_rocedure Arguments

If any argument of a procedure is of type character, all dummy procedure arguments of
that procedure must be declared in an external statement. This requirement arises as a
subtle ¢orollary of the way we represent character string arguments and of the one-pass
nature of the compiler. A warning is printed if a dummy procedure is not declared exter-
nal. Code is correct if there are no character arguments.

T and TL Formats

The implementation of the t (absolute tab) and tl (leftward tab) format codes is defective.
These codes allow rereading or rewriting part of the record which has already been pro-
cessed. (Section 6.3.2 in the Appendix.) The implementation uses seeks, so if the'unit is
not one which allows seeks, such as a terminal, the program is in error. {People who can
make a case for using tl should let us know.} A benefit of the implementation chosen is
that there is no upper limit on the length of a record, nor is it necessary to predeclare any
record lengths except where specifically required by Fortran or the operating systerm.

4. INTER-PROCEDURE INTERFACE

To be able to write C procedures that call or are called by Fortran procedures, it is neces-

sary to know the conventions for procedure names, data representation, return values, and
argument lists that the compiled code obeys.

4.1,

Procedure Names
On UNIX systems, the name of a common block or a Fortran procedure has an underscore

appended to it by the compiler to distinguish it from a C procedure or external variable with the
same user-assigned name. Fortran library procedure names have embedded underscores to
avoid clashes with user-assigned subroutine names.

4.2,

Data Representations
The following is a table of correspending Fortran and C declarations:

Fortran C
integer*2 x short int x;
integer x long int x;
logical x long int x;
real x float x;
double precision x double x;
complex X struct { float r, i; } x;
double complex x struct { doubie dr, di; } x;
character»6 x char x[6];

(By the rules of Fortran, integer, logical, and real data occupy the same amount of memory).

4.3. Return Values .

A function of type integer, logical, real, or double precision declared as a C function that,
returns the corresponding type. A complex or double complex function is equivalent to a C
routine with an additional initial argument that points to the place where the return value is to
be stored. Thus,

complex function f(. ..)
is equivalent to

f (temp, ...)
struct { float r, i; | *temp;

A character-valued function is equivalent to a € routine with two extra initial arguments: a data
address and a length. Thus, ;

character«15 function g(. ..}
is equivalent to

g_(result, length, . . .)
char resultf{ 1;
long int length;

and could be invoked in C by
char charsf15];

g_(chars, 15L, .. .);

Subroutines are invoked as if they were integer-valued functions whose value specifies which
alternate return to use. Alternate return arguments (statement labels) are not passed to the
function, but are used to do an indexed branch in the calling procedure. (If the subroutine has
no entry points with alternate return arguments, the returned. value is undefined.) The state-
ment

call nret(«1, 2, *3)
is treated exactly as if it were the computed goto
goto (1, 2, 3), nret()

4.4. Argument Lists

All Fortran arguments are passed by address. In addition, for every argument that is of
type character or that is a dummy procedurs, an argument giving the length of the value is
passed. (The string lengths are long int quantities passed by value). The order of arguments is
then: ’

Extra arguments for complex and character functions
Address for each datum or function
A long int for each character or procedure argument

Thus, the call in

external {
characters7 s
integer b(3)

call sam(f, b{2), s)
is equivalent to that in

int f0;
char s[7];
long int b(3];

sam_(f, &b[1], s, OL, 7L);

Note that the first element of a C array always has subscript zero, but Fortran arrays begin at 1
by default. Fortran arrays are stored in column-major order, C arrays are stored in row-major
order.

5. FILE FORMATS

5.1. Structure of Fortran Files

Fortran requires four kinds of external files: sequential formatted and unformatted, and
direct formatted and unformatted. On UNIX systems, these are all implemented as ordinary files
which are assumed to have the proper internal structure.

Fortran I/0 is based on “‘records’. When a direct file is opened in a Fortran program,
the record length of the records must be given, and this is used by the Fortran 1/O system to
make the file look as if it is made up of records of the given length. In the special case that the
record length is given as 1, the files are not considered to be divided into records, but are
treated as byte-addressable byte strings; that is, as ordinary UNIX file system files. (A read or
write request on such a file keeps consuming bytes until satisfied, rather than being restricted to
a single record.) :

The peculiar requirements on sequential unformatted files make it unlikely that they will
ever be read or written by any means except Fortran 1/0 statements. Each record is preceded
and followed by an integer containing the record’s length in bytes.

The Fortran 1/0 system breaks sequential formatted files into records while reading by
using each newline as a record separator. The result of reading off the end of a record is
undefined according to the Standard. The 1/0 system is permissive and treats the record as
being extended- by blanks. On output, the 1/0 system will write a newline at the end of each
record. It is also possible for programs to write newlines for themselves. This is an errer, but
the only effect will be that the single record the user thought he wrote will be treated as more
than one record when being read or backspaced over.

5.2. Portability Considerations

The Fortran 1/0 system uses only the facilities of the standard C 170 library, a widely
available and fairly portable package, with the following two nonstandard features: The 1/0 sys-
tem needs to know whether a file can be used for direct 1/0, and whether or not it is possible
to backspace. Both of these facilities are implemented using the fseek routine, so there is a
routine canseek which determines if fseek will have the desired effect. Also, the inquire state-
ment provides the user with the ability to find out if two files are the same, and to get the name
of an already opened file in a form which would enable the program to reopen it. (The UNIX
operating system implementation attempts to determine the full pathname.) Therefore there are
two routines which depend on facilities of the operating system to provide these two services.
In any case, the /O system runs on the PDP-11, VAX-11/780, and Interdata 8/32 UNIX sys-
tems.

-9.

5.3. Pre-Connected Files and File Positions

Units 5, 6, and 0 are preconnected when the program starts. Unit 5 is connected to the
standard input, unit 6 is connected to the standard output, and unit 0 is connected to the stan-
dard error unit. All are connected for sequential formatted 1/0.

All the other ynits are also preconnected when execution begins. Unit » is connected to
a file named fort.n. These files need not exist, nor will they be created unless their units are
used without first executing an open. The defauit connection is for sequential formatted 1/0.

The Standard does not specify where a file which has been explicitly opened for sequential
1/0 is initially positioned. In fact, the 1/0 system attempts to position the file at the end, so a
write will append to the file and a read will result in an end-of-file indication. To position a file
to its beginning, use a rewind statement. The preconnected units 0, 5, and 6 are positioned as
they come from the program’s parent process.

REFERENCES
1. Sigplan Notices 11, No.3 (1976), as amended in X3J3 internal documents through
/90.1°,

2. USA Standard FORTRAN, USAS X3.9-1966, New York: United States of America Stan-
dards Institute, March 7, 1966. Clarified in Comm. ACM 12, 289 (1969) and Comm.
ACM 14, 628 {1971).

3. B. W, Kernighan and D. M, Ritchie, The C Programming Language, Englewcod Cliffs:
Prentice-Hall (1978). -

D. M. Ritchie, private communication.

5. &. C. Johnson, ‘‘A Portable Compiler: Theory and Practice™, Proc. 5th ACM Symp. on
Principles of Programming Languages (January 1978).

6. S. 1. Feldman, “‘An Informal Description of EFL"’, internal memorandum.

7. B. W, Kernighan, **RATFQOR — A Preprocessor for a Rational Fortran’®, Bell Laboratories
Computing Science Technical Report #53, (January 1977).

8 D. M. Ritchie, private communication.

-10 -

APPENDIX. Differences Between Fortran 66 and Fdrtran 71

The following is a very brief description of the differences between the 1966 [2) and the
1977 (1] Standard languages. We assume that the reader is familiar with Fortran 66. We do
not pretend to be complete, precise, or unbiased, but plan to describe what we feel are the most
important aspects of the new language. At present the only current information on the 1977
Standard is in publications of the X3I3 Subcommiitez of the American National Standards
Institute. The following information is from the */92”* document. This draft Standard is writ-
ten in English rather than 2 meta-language, but it is forbidding and legalistic. No tutorials or
textbooks are available yet. :

1, Features Deleted from Fortran 66

1.1. Hollerith

All notions of “‘Hollerith’* (#h) as data have been officially removed, although our com-
piler, like almost all in the foreseeable future, will continue to support this archaism.

1.2. Extended Range

In Fortran 66, under a set of very restrictive and rarely-understood conditions, it is per-
missible to jump out of the range of a do loop, then jump back into it. Extended range
has been removed in the Fortran 77 language. The restrictions are so special, and the
implementation of extended range is so unreliable in many compilers, that this change
really counts as no loss.

2. Program Form

2.1, Blank Lines
Completely blank lines are now legal comment lines.

2.2. Program and Block Data Statements

A main program may now begin with a statement that gives that program an external
name:

_program work
Block data procedures may also have names.
block data stuff

There is fiow a rule that only one unnamed block data procedure may appear in a pro-
gram. {This rule is not enforced by our system.) The Standard does not specify the effect
of the program and block data names, but they are clearly intended to aid conventional
loaders.

2.3. ENTRY Statement

Multiple entry points are now legal. Subroutine and function subprograms may have addi-
tional entry points, declared by an entry statement with an optional argument list.

entry extra(a, b, c)

Execution begins at the first statement following the entry line. All variable declarations
must precede all executable statements in the procedure. If the procedure begins with a
subroutine statement, all entry points are subroutine names. If it begins with a function
statement, e¢ach entry is a function entry point, with type determined by the type declared
for the entry name. If any entry is a character-valued function, then all entries must be.
In a function, an entry name of the same type as that where control entered must be
assigned a value. Arguments do not retain their values between calls. (The ancient trick

2.4.

2.5.

-11 -

of calling one entry point with a large number of arguments to cause the procedure to
‘‘remember’* the locations of those arguments, then invoking an entry with just a few
arguments for later calculation, is still illegal. Furthermore, the trick doesn’t work in our
implementation, since arguments are not kept in static storage.)

DO Leops

do variables and range parameters may now be of integer, real, or double precision types.
(The use of floating point do variables is very dangerous because of the possibility of
unexpected roundoff, and we strongly recommend against their use). The action of the
do statement is now defined for all values of the do parameters. The statement

do10i=1u,d

performs max(0, [(«—=0/d]) iterations. The do variable has a predictable value when
exiting a loop: the value at the time a goto or return terminates the loop;, otherwise the
value that failed the limit test.

Alternate Returns

In a subroutine or subroutine entry statement, some of the arguments may be noted by
an asterisk, as in :

subroutine s(a, *, b, *)

The meaning of the *‘alternate returns’ is described in section 5.2 of the Appendix.

3. Declarations

3.1.

CHARACTER Data Type

One of the biggest improvements to the language is the addition of a character-string data
type. Local and common character variables must have a length denoted by a constant
expression:

character+17 a, b(3,4)
character+(6+3) ¢

If the length is omitted entirely, it is assumed equal to 1. A character string argument
may have a constant tength, or the length may be declared to be the same as that of the
corresponding actual argument at run time by a statement like ‘

character*(*) a

(There is an intrinsic function len that returns the actual length of a character string).
Character arrays and common blocks containing character variables must be packed: in an
array of character variables, the first character of one element must follow the last charac-
ter of the preceding element, without holes.

3.2, IMPLICIT Statement

The traditional implied declaration rules still hold: a variable whose name begins with i, j,
k, 1, m, or n is of type integer, other variables are of type real, unless otherwise declared.
This general rule may be overridden with an implicit statement:

implicit real(a-c,g), complex(w-z), character*(17) (s}

declares that variables whose name begins with an a ,b, ¢, or g are real, those beginning
with w, X, ¥, or z are assumed complex, and so on. It is still poor practice to depend on
implicit typing, but this statement is an industry standard.

3.3.

.12 -

PARAMETER Statement
It is now possible to give 2 constant a symbolic name, as in

parameter (x=17, y=x/3, pi=3.14159d0, s="hello")

The type of aach parameter name is governed by the same implicit and explicit rules as

. for a variable. The right side of each equal sign must be a constant expression (an

expression made up of constants, operators, and already defined parameters).

3.4. Array Declarations

3.5.

3.6.

Arrays may now have as many as seven dimensions. {Only three were permitted in
1966). The lower bound of each dimension may be declared to be other than 1 by using a
colon. Furthermore, an adjustable array bound may be an integer expression involving
constants, arguments, and variables in common.

real a(=5:3, 7, m:n), b(n-1:2+n)

The upper bound on the last dimension of an array argument may be denoted by an aster-
isk to indicate that the upper bound is not specified:

integer a{5, »), b(+), c(0:1, —=2:+)

SAVE Statement

A poorly known rule of Fortran 66 is that local variables in a procedure do not necessarily
retain their values between invocations of that procedure. At any instant in the execution
of a program, if a common block is declared neither in the currently executing procedure
nor in any of the procedures in the chain of callers, all of the variables in that common
block also become undefined., (The only exceptions are variables that have been defined
in a data statement and never changed). These rules permit overlay and stack impiemen-
tations for the affected variables. Fortran 77 permits one to specify that certain variables
and common blocks are to retain their values between invocations. The declaration

save a, /b/, ¢

leaves the values of the variables a and ¢ and all of the contents of common block b
unaffected by a return. The simple declaration

save

has this effect on all variables and common blocks in the procedure. A common block
must be saved in every procedure in which it is declared if the desired effect is to occur.

INTRINSIC Statement

All of the functions specified in the Standard are in a single category, ‘‘intrinsic func-
tions’’, rather than being divided into *‘intrinsic” and ‘‘basic external’” functions. If an
intrinsic function is to be passed to another procedure, it must be declared intrinsic,
Declaring it external (as in Fortran 66) causes a function other than the built-in one to be
passéd.

4. Expressions

4.1.

Character Constants

Character string constants are marked by strings surrounded by apostrophes. If an apos-
trophe is to be included in a constant, it is repeated:

1

abce’
‘ain"t’

-13-

There are no null (zero-length) character strings in Fortran 77. Our compiler has two
different quotation marks, * ' ' and *“ " **. (See Section 2.9 in the main text.)

4.2. Concatenation

4.3,

4.4.

One new Operitor has been added, character string concatenation, marked by.a double
stash (**//>"). The resuit of a concatenation is the string containing the characters of the
left operand followed by the characters of the right operand. The strings

‘ab’ /f 'cd’

‘abed’
are equal. The strings being concatenated must be of constant length in all concatenations
that are not the right sides of assignments. (The only concatenation expressions in which
a character string declared adjustable with a “»(+)’* modifier or a substring denotation
with nonconstant position values may appear are the right sides of assignments).

Character String Assignment

The left and right sides of a character assignment may not share storage. (The assumed
implementation of character assignment is to copy characters from the right to the left
side.) If the left side is longer than the right, it is padded with blanks. If the left side is
shorter than the right, trailing characters are discarded.

Substrings
It is possible to extract a substring of a character variable or character array element, usmg
the colon notation:

a(i,j} (m:n)

is the string of (n—m+1) characters beginning at the m'" character of the character array
element a;. Results are undefined unless m<n. Substrings may be used on the left
sides of assignments and as procedure actual arguments.

4.5. Exponentiation

4.6,

It is now permissible to raise real quantities to complex powers, or complex quantities to
real or complex powers. {The principal part of the logarithm is used). Also, multiple
exponentiation is now defined:

asehrxg = 3 *=x (bt.c)

Relaxation of Restrictions

Mixed mode expressions are now permitted. (For mstance it is permissible to combme
integer and complex quantities in an expression.)

Constant expressions are permitted where a constant is allowed, except in data state-
ments. {A constant expression is made up of explicit constants and parameters and the
Fortran operators, except for exponentiation to a floating-point power). An adjustable
dimension may now be an integer expression involving constants, arguments, and vari-
ables in B common..

Subscripts may now be general integer expressions; the old cvzxc¢' rules have been
removed. do loop bounds may be general integer, real, or double precision expressions.
Computed goto expressions and 1/0 unit numbers may be general integer expressions.

-14-

§. Executable Stateménts

5.1. IF-THEN-ELSE

At last, the if-then-else branching structure has been added to Fortran. It is called a
“Block If*’. A Block If begins with a statement of the form

if (...) then
and ends with an
end if
statement. Two other new statements may appear in a Block If. There may be several
else if(. . .) then
statemnents, followed by at most one
else

staternent. If the logical expression in the Block If statement is true, the statements fol-
lowing it up to the next elseif, else, or endif are executed. Otherwise, the next elseif
statement in the group is executed. If none of the elseif conditions are true, control
passes to the statements following the else statement, if any. (The else must follow all
elseifs in a Block If. Of course, there may be Block Ifs embedded inside of other Block If
structures). A case construct may be rendered)

if (s .eq. ‘ab’) then
e-ls.e- if (s .eq. 'cd”) then
else'

e:n-d- if

5.2. Alternate Returns

Some of the arguments of a subroutine call may be statement labels preceded by an aster-
isk, as in

call joe(j, *10, m, *2)
A return statement may have an integer expression, such as
return k

If the entry point has » alternate return (asterisk) arguments and if 1< k< n, the return
is followed by a branch to the corresponding statement label; otherwise the usual return to
the statement following the call is executed.

6. Input/Qutput

6.1. Format Variables

A format may be the value of a character expression (constant or otherwise), or be stored
in a character array, as in

write (6, '(i5)") x

-15-

6.2. END=, ERR=, and IOSTAT= Clauses
A read or write statement may contain end=, err=, and iostat= clauses, as in

write(6, 101, err=20, iostat=a(4))
"-.read(5; 101, err=20, end==130, iostat=x)

Here 5 and 6 are the wnits on which the I/Q is done, 101 is the statement number of the
associated format, 20 and 30 are statement numbers, and a and x are integers. If an error
occurs during 170, contrel returns to the program at staternent 20. If the end of the file is
reached, control returns to the program at statement 30. In any case, the variable
referred to in the iostat= clause is given a value when the 170 statement finishes. (Yes,
the value is assigned to the name on the right side of the equal sign.) This value is zero if
all went well, negative for end of fle, and some positive value for errors.

6.3. Formatted 1/0

6.3.1. Character Constants

Character constants in formats are copied literally 1o the output. Character constants can-
not be read into. '

write(6,'(i2," isn""t ",il)") 7, 4
pro@uces
7 isn't 4
Here the format is the character constant
(i2," isn"t ",i)

and the character constant

isn't
is copied into the outpul.

6.3.2, Positional Editing Codes

t, tl, tr, and X codes control where the next character is in the record. trnor nx specifies
that the next character is n to the right of the current position. tln specifies that the next
character is # to the left of the current position, allowing parts of the record to be recon-
sidered. tn says that the next character is to be character number » in the record. (See
section 3.4 in the main text.)

6.3.3. Colon

A colon in the format terminates the 1/0 operation if there are no more data items in the
I1/0 list, otherwise it has no effect. In the fragment

x="("hello", :, " there", i4)’

write{6, x) 12

write (6, x)

the first write statement prints hello there 12, while the second only prints hello.

6.3.4. Optional Plus Signs

According to the Standard, each implementation has the option of putting plus signs in
front of non-negative numeric output. The sp format code may be used to make the
optional plus signs actually appear for all subsequent items while the format is active. The
ss format code guarantees that the I/0 system will not insert the optional plus signs, and
the s format code restores the default behavior of the 1/0 system. (Since we never put

- 16 -

out optional plus signs, ss and s codes have the same effect in our implementation.)

6.3.5. Blanks on Input

Blanks in numeric input fields, other than leading blanks- will be ignored following a bn
code in a format statement, and will be treated as zeros following 2 bz code in a format
statement. The default for a unit may be changed by using the open statement. (Blanks
are ignored by default.) ’ .

6.3.6. Unrepresentable Values

The Standard requires that if a numeric item cannot be represented in the form required
by a format code, the output field must be filled with asterisks. {We think this should
have been an option.) .

6.3.7. ITw.m

There is a new integer output code, iw.m. It is the same as iw, except that there will be at
least m digits in the output field, including, if necessary, leading zeros. The case iw.0 is
special, in that if the value being printed is 0, the output.field is entirely blank. iw.l is
the same as iw. .

6.3.8. Floating Point

On input, exponents may start with the letter E, D, e, or d. All have the same meaning.
On output we always use e. The e and d format codes also have identical meanings. A
leading zero before the decimal point in e output without a scale factor is optional with
the implementation. (We do not print it.) There is a gw.4 format code which is the same
as ew.d and fw.d on input, but which chooses f or & formats for output depending. on the
size of the number and of 4.

6.3.9. *“A’ Format Code

6.4.

6.5.

A codes are used for character values. aw use a field width of w, while a plain a uses the
length of the character item.

Standard Units
There are default formatted input and output units. The statement
read 10, a, b

reads from the standard unit using format statement 10, The default unit may be expli-
citly specified by an.asterisk, as in

read(+, 10) a,b
Similarly, the standard output units is specified by a print staternent or an asterisk unit:

print 10
write (+, 10)

List-Directed Formatting

List-directed I/0 is a kind of free form input for sequential I/Q. It is invoked by using an
asterisk as the format identifier, as in ’

read{8, =} a,b,c

6.6.

6.7.

17

On input, values are separated by strings of blanks and possibly a comma. Values, except
for character strings, cannot contain blanks. End of record counts as a blank, except in
character sitrings, where it is ignored. Complex constants are given as two real constants
separated by a comma and enclosed in parentheses. A null input field, such as between
two consecutive commas, means the corresponding variable in the 1/Q list is not changed.
Values may be-preceded by repetition counts, as in

4+(3.,2)) 2+, 4+'hello’
which stands for 4 complex constants, 2 null values, and 4 string constants.

For output, suitable formats are chosen for each item. The values of character strings are
printed; they are not enclosed in quotes, so they cannot be read back using list-directed
input.

Direct 170

A file connected for direct access consists of a set of equal-sized records each of which is
uniquely identified by a positive integer. The records may be written or read in any order,
using direct access [/0 statements.

Direct access read and write statements have an extra argument, rec=, which gives the
record number to be read or written.

read(2, rec=13, err=20) (a(i), i=1, 203)

reads the thirteenth record into the array a.

The size of the records must be given by an open statement.(see below). Direct access
files may be connected for either formatted or unformatted 1/0.

Internal Files

Internal files are character string objects, such as variabies or substrings, or arrays of type -

character. In the former cases there is only a single record in the file, in the latter case
each array element is a record. The Standard includes only sequential formatted 1/0 on
internal files. {I/0 is not a very precise term to use here, but internal files are dealt with
using read and write). There is no list-directed I/0 on internal files. Internal files are
used by giving the name of the character object in place of the unit number, as in

character+80 x
read(5,"(a)") x
read(x,"(i3,i4)") nl,n2

which reads a card image into x and then reads two integers from the front of it. A
sequential read or write always starts at the beginning of an internal file.

(We also support a compatible extension, direct I/O on internal files. This is like direct
I/0 on external files, except that the number of records in the file cannot be changed.)

6.8. OPEN, CLOSE, and INQUIRE Statements

These statements are used to connect and disconnect units and files, and to gather infor-
mation about units and files.

6.8.1. OPEN

The open statement is used 10 connect a file with a unit, or to alter some properties of the
connection. The following is a minimal example.

open(l1, file="fort.junk")

open takes a variety of arguments with meanings described below.

-18 -

unit= a small non-negative integer which is the unit to which the file is to be connected.
We allow, at the time of this writing, 0 through 9. If this parameter is the first one
in the open statement, the unit= can be omitted.

jostat= is the.same as in read or write.
err= js the same as in read or write.

file= a character expression, which when stripped of trailing blanks, is the name of the
file to be connected to the unit. The filename should not be given if the
status=scratch.

status= one of old, new, scratch, or unknown. If this parameter is not given, unknown
is assumed. If scratch is given, a temporary file will be created. Temporary files are
destroyed at the end of execution. If mew is given, the file will be created if it
doesn’t exist, or truncated if it does. The meaning of unknown is processor depen-
dent; our system treats it as synonymous with old.

access= sequential or direct, depending on whether the file is to be opened for sequen-
tial or direct 1/0.

form= formatted or unformatted.

recl= a positive integer specifying the record length of the direct access file being opened.
We measure all record lengths in bytes. On UNIX systems a record length of 1 has
the special meaning explained in section 5.1 of the text.

blank= null or zero. This parameter has meaning only for formatted 1/0. The default
value is null. zero means that blanks, other than leading blanks, in numeric input
fields are to be treated as zeros.

Opening a new file on a unit which is already connected has the effect of first closing the
old file.

6.8.2. CLOSE

close severs the connection between a unit and a file. The unit number must be given.
The optional parameters are iostat= and err="with their usual meanings, and status=
either keep or delete. Scratch files cannot be kept, otherwise keep is the default. delete
means the file will be removed. A simple example is

close(3, err=17)

6.8.3. INQUIRE
The inquire statement gives information about a unit {*“inquire by unit’’) or a file
(““inquire by file”). Simple exampies are:

inquire (unit=3, namexx)
inquire (file="junk’, number=n, exist=1)

file= a character variable specifies the file the inquire is about. Trailing blanks in the file
name are ignored.

unit= an integer variable specifies the unit the inquire is about. Exactly one of file= or
unit= must be used.

jostat=, err= are as before.

exist= a logical variable. The logical variable is set to .true. if the file or unit exists and
is set to .false. otherwise.

opened= a logical variable. The logical variable is set to .true. if the file is connected to
a unit or if the unit is connected to a file, and it is set to .false. otherwise.

.19 -

number= an integer variable to which is assigned the number of the unit connected to
the file, if any.

named= a logical variable to which is assigned .true. if the file has a name, or .false.
otherwise.

name= a character variable to which is assigned the name of the file (inquire by file) or
the name of the file connected to the unit {inquire by unit). The name will be the
full name of the file.

access= a character variable to which will be assigned the value 'sequential’ if the con-
nection is for sequential 170, 'direct’ if the connection is for direct I/0. The value
becomes undefined if there is no connection.

sequential= a character variable to which is assigned the value ‘yes' if the file could be
connected for sequential [/0, ‘no’ if the file could not be connected for sequential
170, and ‘'unknown' if we can’t tell.

direct= a character variable to which is assigned the value 'yes' if the file could be con-
nected for direct 170, ‘ne’ if the file could not be connected for direct 1/0, and 'unk-
nown'’ if we can’t teil.

form= a character variable to which is assigned the value 'formatted’ if the file is con-
nected for formatted 1/0, or 'unformatted’ if the file is connected for unformatted
1/0.

formatted= a character variable to which is assigned the value 'yes’ if the file could be
connected for formatted 1/0, 'no’ if the file could not be connected for formatted
[/0, and 'unknown' if we can’t tell.

unformatted= a character variable to which is assigned the value ‘yes' if the file could be
connected for unformatted 1/0, 'no’ if the file could not be connected for unformat-
ted 170, and ‘unknown' if we can't tell.

recl= an integer variable to which is assigned the record length of the records in the file
if the file is connected for direct access.

nextrec= an integer variable to which is assigned one more than the number of the the
last record read from a file connected for direct access.

blank= a character variable to which is assigned the value ‘null’ if null blank control is in
effect for the file connected for formatted [/Q, ‘zero’ if blanks are being converted to
zeros and the file is connected for formatted 1/0.

The gentle reader will remember that the people who wrote the standard probably weren't
thinking of his needs. Here is an example. The declarations are omitted.

open(l, file="/dev/console")

On a UNIX system this statement opens the console for formatted sequential I/O. An inguire
statement for either unit 1 or file "/dev/console” would reveal that the file exists, is connected
to unit 1, has a name, namely "/dev/console", is opened for sequential 1/0, could be connected
for sequential 1/0, could not be connected for direct I/O (can’t seek), is connected for format-
ted 170, could be connected for formatted 1/0, could not be connected for unformatted 1/0
{can’t seek), has neither a record length nor a next record number, and is ignoring blanks in
numeric fields.

In the UNIX system environment, the only way to discover what permissions you have for
a file is to open it and try to read and write it. The err= parameter will return system error
numbers. The inquire statement does not give a way of determining permissions.

RATFOR — A Preprocessor for a Rational Fortran

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Although Fortran is not a pleasant language to use, it does have the advantages of universality and
(usually) relative efficiency. The Ratfor language attempis to conceal the main deficiencies of Fortran
while retaining its desirable qualities, by providing decent control flow slatements:

® slalement grouping

o if-else and switch for decision-making

¢ while, for, do, and repeat-until for looping

break and next for controlling ioop exits
and some “‘syntactic sugar™:

® free form input {multiple statements/line, automatic continuation}
unobtrusive comment convention
translation of >, >=, etc., into .GT., .GE., eic.
return{expression) statement for functions

define statement for symbolic parameters
® jinclude statement for including source files
Ratfor is implemented as a preprocessor which translates this language into Fortran.

Once the control flow and cosmetic deficiencies of Fortran are hidden, the resulting language is
remarkabiy pleasant to use. Ratfor programs are markedly easier to write, and to read, and thus easier to
debug, maintain and modify than their Fortran equivalents.

It is readily possible to write Ratfor programs which are portable to ather env ironments. Ratfor is
wrilten in itself in this way, 50 it is also portable; versions of Ratfor are now running on at least two
dozen different types of computers at over five hundred locations.

This paper discusses design criteria for a Fortran preprocessor, the Ratfor language and its imple-
mentation, and user experience.

RATFOR — A Preprocessor for a Rational Fortran

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION

Most programmers will agree that Fortran
is an unpleasant language to program in, yet
there are many occasions when they are forced
to use it. For example, Fortran is cften the only
language thoroughly supported on the local com-
puter. [ndeed, it is the closest thing to a univer-
sal programming language currently available:
with care it is possible to write large, truly port-
able Fortran programs[t]. Finally, Fortran is
often the most “‘efficient” language available,
particularly for programs requiring much compu-
tation.

But Fortran is unpleasant. Perhaps the
worst deficiency is in the control flow stalements
— conditional branches and loops — which
express the logic of the program. The condi-
tional statements in Fortran are primitive. The
Arithmetic IF forces the user into at least wo
statement numbers and two (implied) GOTO’s; it
leads to unintelligible code, and is eschewed by
good programmers. The Logical IF is better, in
that the test part can be stated clearly, but hope-
lessly restrictive because the statement that fol-
lows the IF can only be one Fortran statement
(with some further restrictions!). And of course
there can be no ELSE part to a Fortran IF: there is
no way to specify-an alternative action if the IF is
not satisfied.

The Fortran DO restricts the user to going
forward in an arithmetic progression. It is fine
for **1 1o N in sieps of 1 {or 2 or ...}"", but there
is no direct way to go backwards, or even (in
ANSI Fortran{2]) w go from 1 to N—1. And of
course the DO is useless if one's problem doesn’t
map into an arithmetic progression.

The result of these failings is that Fortran
programs must be written with numerous labels
and branches. The resulting code is particularly
difficult to read and understand, and thus hard to
debug and modify.

When one is faced with an unpleasant
language, a useful technique is 10 define a new
language that overcomes the deficiencies, and to
translate it into the unpleasant one with a
preprocessor. This is the approach taken with
Ratfor. (The preprocessor idea is of course not
new, and preprocessors for Fortran are especially
popufar today. A recent listing [3] of preproces-
sors shows more than 50, of which at least half a
dozen are widely available.)

2. LANGUAGE DESCRIPTION

Design

Ratfor attempts to retain the merits of
Fortran (universality, portability, efficiency)
while hiding the worst Fortran inadequacies.
The language /s Fortran except for two aspects,
First, since control flow is central to any pro-
gram, regardless of the specific application, the
primary task of Ratfor is to conceal this part of
Fortran from the user, by providing decent con-
trol flow structures. These structures are
sufficient and comfortable for structured pro-
gramming in the narrow sense of programming
without GOTO's. Second, since the preprocessor
must examine an entire program to translate the
contrel structure, it is possible at the same time
to clean up many of the *‘cosmetic™ deficiencies
of Fortran, and thus provide a language which is
easier and more pleasant to read and write.

Beyond these two aspects — control flow
and cosmetics — Ratfor does nothing about the
host of other weaknesses of Fortran. Although
it would be straightforward to extend it to pro-
vide character strings, for example, they are not
needed by everyone, and of course the prepro-
cessor would be harder o0 implement.
Throughout, the design principle which has
determined what should be in Ratfor and what
should not has been Raifor deesn’t know any fFor-
tran. Any language feature which would require

This paper is a revised and expanded version of ce published in Sofiware— Practice and Experience, Ociober
1975. The Ratfor described here is the one in use on unix and Geos at Bell Laboratories, Murray Hill, N. J.

that Ratfor really understand Fortran has been
omitted. We will return to this point in the sec-
tion on implemeniation.

Even within the confines of control flow
and cosmetics, we have attempied 1o be selective
in what features wo provide. The intent has been
to provide a small set of the most useful con-
structs, rather than to throw in everything that
has ever been thought useful by someone.

The rest of this section contains an infor-
mal description of the Ratfor language. The con-
trol flow aspects will be quite familiar to readers
used o languages like Algol, PL/1, Pascal, etc.,
and the cosmetic changes are equally straightfor-
ward. We shall concentrate on showing what the
language looks like.

Statement Grouping

Fortran provides no way 1o group state-
ments logether, short of making them into a
subroutine. The standard construction “if a con-
dition is true, do this group of things,” for
example,

if (x > 100)

{ call error("x>100"); err = 1; return }

cannot be written directly in Fortran. Instead a
programmer is forced to translate this relatively
clear thought into murky Fortran, by stating the
negative condition and branching around the
group of statements:

if (x .le. 100) goto 10
call error(5hx>100)
err =1
return

10

When the program doesn’t work, or when it
must be modified, this must be translated back
into a clearer form before one can be sure what
it does.

Ratfor eliminates this error-prone and
confusing back-and-forth translation; the first
form is the way the computation is written in
Ratfor. A group of statements can be treated as
a unit by enciosing them in the braces { and).
This is true throughout the language: wherever a
single Ratfor statement can be used, there can be
several enclosed in braces. {(Braces seem clearer
and less obtrusive than begin and end or do and
end, and of course do and end already have For-
tran meanings.)

Cosmetics contribute 1o the readability of
code, and thus to its undersitandability. The
character **>"" is clearer than .GT.”, so Ratfor
translates it appropriately, along with several
other similar shorthands. Althcugh many For-
tran compilers permit character sirings in quotes

{like "x>100"), quotes are not allowed in ANSI
Fortran, so Ratfor converts it into the right
number of H's: computers count beuier than
pecple do.

Ratfor is a free-form language: statements
may appear anywhere on a line, and several may
appear on one line if they are separated by semi-
colons. The example above could also be written
as

if (x > 100) { .
call error("x >100")
err =1
return

In this case, no semicolon is needed at the end
of each line because Ratfor assumes there is one
statement per line unless wold otherwise.

Of course, if the statement that follows the
if is a single statement (Ratfor or otherwise), no
braces are needed:

if(y <=00&z <=0.0)
write(6, 20) v, 2

No continuation need be indicated because the
statement is clearly not finished on the first line.
In general Ratfor continues lines when it seems
obvious that they are not yet done. (The con-
tinuation convention is discussed in detail later.)

Although a free-form language permits
wide latitude in formatting styles, it is wise to
pick one that is readable, then stick to it. In par-
ticular, proper indentation is vital, to make the
logical structure of the program obvious to the
reader.

The “else’” Clause

Ratfor provides an else statement to han-
dle the construction *'if a condition is true, do
this thing, otherwise do that thing.”

if(a <=1)"

{ sw = 0; write(6, 1) a, b}
else

{sw=1; write(6, 1) b, a}

This writes out the smaller of a and b, then the
larger, and sets sw appropriately.

The Fortran equivalent of this code is cir-
cuitous indeed:)

if (a .gt. b) gote 10

sw=10 -
write(6, 1) a, b
goto 20
10 sw=1. .
write{6, 1) b, a
20

This is a mechanical translation; shorter forms
exist, as they do for many similar situations. But
all translations suffer from the same problem:
since they are translations, they are less clear and
understandable than code that is not a transla-
tion. To understand the Fortran version, one
must scan the entire program to make sure that
no other stalement branches 1o statements 10 or
20 before one knows that indeed this is an if-
else construction. With the Raifor version, there
is no question about how one gets to the parts of
the statement. The if-else is a single unit, which
can be read, understood, and ignored if not
relevant. The program- says whal it means.

As before, if the statement following an if
or an else is a single statement, no braces are
needed:

if (a <=b)
sw=10
else
sw =]

The syntax of the if statement is

if (legal Fortran condirion)
Ratfor statement
else
Ratfor statememnt

where the else part is optional. The legal Foriran
condition is anything that can legally go into a
Fortran Logical IF. Ratfor does not check this
clause, since it does not know enough Fortran to
know what is permitted. The Ratfor siatement is
any Ratfor or Fortran statement, or any collec-
tion of them in braces.

Nested if’s

Since the statement that follows an if or an
else can be any Ratfor statement, this leads
immediately to the possibility of another if or
else. As a useful exampie, consider this problem:
the variable fis to be set to —1 if x is less than
zero, o +1 if x is greater than 100, and to 0
otherwise. Then in Ratfor, we write

if (x <0)
f= -1
else if (x > 100)
f= +1
else .
f=20
Here the statement afler the first else is another
if-else. Logically it is just a single statement,
although it is-rather complicated.

This code says what it means. Any ver-
sion written in siraight Fortran will necessarily be
indirect because Fortran does not let you say
what you mean. And as always, clever shoricuts
may turn out to be tco clever o understand a
year from now.

Following an else with an if is one way to
write 2 multi-way branch in Ratfor. In general
the structure

if (..)

else if (...)

else if (...

else

provides a way lo specify the choice of exactly
one of several alternatives. (Ratfor alsc provides
a switch staiement which does the same job in
certain special cases: in more general situations,
we have 10 make do with spare parts.) The tests
are laid out in sequence, and each one is fol-
lowed by the code associated with it. Read down
the list of decisions until one is found that is
satisfied. The code associated with this condition
is executed, and then the entire structure is
finished. The trailing else part handles the
“*default™ case, where none of the other condi-
tions apply. If there is no defauft action, this
final else part is omitted:

if (x <0
x =0
else if (x > 100)
x = 100

if-else ambiguity

There is one thing to notice about cormpli-
caled structures involving nested if’s and else’s.
Consider

if (x > 0)
if (y > 0)
write(6, 1) x, ¥
else

write(6, 2) y

There are two ifs and only one else. Which if
does the else go with?

This is a genuine ambiguity in Ratfor, as it
is in many other programming languages. The
ambiguity is resolved in Ratfor {as elsewhere) by
saying that in such cases the else goes with the
closest previpus un-else’ed if. Thus in this case,
the else goes with the inner if, as we have indi-
cated by the indentation.

It is a wise practice to resolve such cases

by explicit braces, just 10 make your intent clear.
In the case above, we would write

if (x > 0 {
if {y >'0)
write(6, 1) x, v
else

write{6, 2) v
}

which does not change the meaning, but leaves
no doubt in the reader’s mind. If we want the
other association, we must wrilte

if (x > 0) {
if (y > @)
write{6, 1) x, ¥
}
else

write(6, 2) ¥

The **switch®’ Statement

The switch statement provides a clean way
to express multi-way branches which branch on
the value of some integer-valued expression.
The syntax is

switch (expression) {

case expr! :
siqlements

case expr?, exprd :
siatements

default:
statements

Each case is followed by a list of comma-
separated integer expressions. The expression
inside switch is compared against the case
expressions exprf, expr2, and so on in urn unti
one matches, at which time the statements fol-
lowing that case are executed. If no cases match
expression. and there is. a default section, the

statements with it are done; if there is no
default, nothing is done. In all situations, as
soon as some block of statements is execuied,
the entire switch is exited immediately.
{Readers familiar with C[4] should beware that
this behavior is not the same as the C switch.)

The “*do’* Statement

The do statement in Ratfor is quite similar
to the DO statement in Fortran, except that it
uses no statement number. The statement
number, after all, serves only to mark the end of
the Do, and this can be done just as easily with
braces. Thus

doi=1,n}
x(i) = 0.0
y(i) = 0.0
z(i} = 0.0

is the same as

do10i=1,n
x(i) = 0.0
y(i) = 0.0
z(i} = 0.0

10 continue
The syntax is:

do legal-Fortran-D0-text
Ratfor sratement

The part that follows the keyword do has to be
something that can legaily go into a Fortran DO
statement. Thus if a local version of Fortran
allows DO limits to be expressions (which is not
currently permitted in ANSI Fortran}, they can be
used in a Ratfor do. '

The Raifor statement part will often be
enclosed in braces, but as with the if, a single
statement need not have braces around it. This
code sets an array o zero: ’

doi=1,n
x(i) = 0.0
Slightly more complicated,
doi=1,n
doj=1,n

mii,p) =0

sets the entire array m to zero, and

dei=1,n
doj=1,n

ifrGi <
m(i,) = =1

else if (i == j)

. o m,j)=0

else

mi, j) = +1

sets the upper triangle of m to —1, the diagonal
to zero, and the lower triangle to +1. (The
operator == is “equals”, that is, *.EQ.".) In
each case, the statement that follows the do is
logically a single statement, even though compli-
cated, and thus needs no braces.

“‘break’’ and ‘‘*next™

Ratfor provides a statement for leaving a
loop early, and cne for beginning the next itera-
tion. break causes an immediate exit from the
do; in effect it is a branch to the statement qfier
the do. next is a branch to the bottom of the
loop, 5o it causes the next iteration 1o be done.
For example, this code skips over negative
values in an array:

doi=1,n{
if (x{i} < 0.0
next
process positive efement

break and next also work in the other Ratfor
looping constructions that we will talk about in
the next few sections.

break and next can be followed by an
integer to indicate breaking or iterating that level
of enclosing loop; thus

break 2

exits from two levels of enclosing loops, and
break 1 is equivalent to break. next 2 iteraies
the second enclosing loop. (Realistically, multi-
level break’s and next’s are not likely to be
much used because they lead o code that is hard
to understand and somewhat risky to change.)

The **while’ Statement

One of the problems with the Fortran DO
statement is that it generally insists upon being
done once, regardless of its limits. If a loop
begins

DOl =21

this will typically be done once with I set to 2,
even though common sense would suggest that
perhaps it shouldn’t be. Of course a Ratfor do
can easily be preceded by a test

if j <= k)
doi=j k {

}

but this has to be a conscious act, and is often
overlooked by programmers.

A more serious problem with the DO state-
ment is that it encourages that a program be
written in terms of an arithmetic progression
with small positive steps, even though that may
not be the best way to write it. If code has to be
contorted to fit the requirements imposed by the
Fortran Do, it is that much harder to write and
understand.

To overcome these difficulties, Ratfor pro-
vides a while statement, which is simply a loop:
*‘while some condition is true, repeat this group
of statements®”. It has no preconceptions about
why one is logping, For exampie, this routine 1o
compute sin(x} by the Maclaurin series combines
iwo termination criteria, .

real function sin(x, e)
returns sin{x) to accuracy e, by
#sin(x) = x — x#23/31 4+ xe5/51 —

sin = x
tlerm = x

i=3

while {abs(term)>e & i<100) |
term = —term * x+=+2 / float(i=(i—1))
sin = sin + term
i=i+ 2

return
end

Notice that if the routine is entered with
term already smaller than e, the loop will be
done zerg times, that is, no attempt will be made
to compute X+*+3 and thus a potential underflow
is avoided. Since the test is made at the top of a
while loop instead of the bottom, a special case
disappears — the code works at one of its boun-
daries. (The test i< 100 is the other boundary —
making sure the routing stops after some max-
imum number of iterations.)

As an aside, & sharp character ““#" in a
line marks the beginning of a comment; the rest
of the line is comment. Comments and code can
co-exist on the same line — one can make mar-
ginal remarks, which is hot possible with
Fortran's **C in column 1" convention. Blank
lines are also permitted anywhere (they are not
in Fortran); they should be used to emphasize
the natural divisions of a program.

The syntax of the while statement is

while (legal Fortran condition)
Raifor statement

As with the if, legal Fortran condition is some-

thing' that can go into a Fortran Logical IF, and
Ratfor sratement is a single statement, which may
be multiple statements in braces.

The while encourages a style of coding not
normally practiced by Fortran programmers. For
example, suppose nextch is a function which
returns the next input character both as a func-

tion” value and in its argument. Then a loop to-

find the first non-blank character is just

while (nextch{ich) == iblank)

A semicolon by itself is a null statement, which
is necessary here to mark the end of the while;
if it were not present, the while would control
the next statement. When the locop is broken,
ich contains the first non-blank. OF course the
same code can be written in Fortran as

100 if (nextch(ich) .eq. ibiank) goto 100

but many Fortran programmers (and a few com-
pilers) believe this line is illegal. The language at
one’s disposal strongly influences how ane thinks
about a problem.

The **for" Statement

The for statement is another Ratfor loop,
which attempts to carry the separation of loop-
body from reason-for-looping a step further than
the while, A for statement allows explicit initiali-
zation and increment steps as part of the state-
ment. For example, a DO loop is just

for{(i=1li.<=ni=i<+1)..
This is equivalent to
i=1
while (i <= n) {
i=i+1
]

The initialization and increment of i have been
moved into the for statement, making it easier to
see at a glance what controls the loop.

The for and while versions have the
advantage that they will be done zero times if n
is less than 1; this is not true of the do.

The loop of the sine routine in the previ-
ous section can be re-written with a for as

for (i=3; abs(term) > e & i < 100; i=i+2) {
term = —term « x++2 / floai{i=(i—=1))
sin = sin + lerm

The syntax of the for statement is

for { init |, condition | increment)
Ratfor siaiement

init is any single Fortran statement, which gets
done once before the loop begins. increment is
any single Fortran statement, which gets done at
the end of each pass through the loop, before
the est. condition is again anything that is legal
in a logical IF. Any of init, condition, and incre-
menr may be omitted, although the semicolons
must always be present. A non-existent condition
is treated as always true, so for(;;} is an
indefinite repeal. (But see the repeat-until in
the next section.)

The for statement is particularly useful for
backward loops, chaining along lists, loops that
might be done zero times, and similar things
which are hard to express with a DO statement,
and obscure to write out with IF's and GOTO's.
For example, here is a backwards Do loop to find
the last non-blank character on a card:

fori=80i>0i=i-1)
if (card(i) = blank)
break

(*'="" is the same as “.NE.”). The code scans
the columns from 80 through to 1. If a non-
blank is found, the loop is immediately broken.
(break and next work in for’s and while's just as
in de's). If i reaches zero, the card is ail blank.

This code is rather nasty to write with a
regular Fortran Do, since the loop must go for-
ward, and we must explicitly set up proper condi-
tions when we fall out of the loop. (Forgeting
this is a common error.) Thus:

DO10]=1,80
I=81~-1
IF (CARD(I) .NE. BLANK) GO TO 11.
10 CONTINUE
I=0
11

The version that uses the for handles the termi-
nation condition properly for free; t is zero when
we fall out of the for loop.

The increment in a for need not be an
arithmetic progression; the following program
walks along a list (stored in an integer array ptr)
uniil a zero pointer is found, adding up elements
from a parallel array of values:

sum = 0.0
for (i = first; i > 0; i = ptr(i))
sum = sum + value(i)

Notice that the code works correctly if the list is
empty. Again, placing the test at the top of a
loop instead of the bottom eliminates a potential
boundary error.

The “‘repeat-until’* statement

In spite of the dire warnings, there are
times when one really needs a loop that tests at
the bottom afier one pass through. This service
is provided by the repeat-until

repeat
Ratfor statement
until {{fegal Fortran condition)

The Ratfor statement part is done once, then the
condition is evaluated. If it is true, the loop is
exited; if it is false, another pass is made.

The until part is optional, so a bare repeat
is the cleanest way to specify an infinite loop. Of
course such a loop must ultimately be broken by
some transfer of control such as stop, return, or
break, or an implicit stop such as running out of
input with a READ statement.

As a matter of observed fact[8), the
repeat-until statement is much less used than the
cther looping constructions; in particular, it is
typically outnumbered ten to one by for and
while. Be cautious about using it, for loops that
test only at the bottom often don't handle null
cases well.

More on break and next

break exits immedizately from do, while,
for, and repeat-until. next goes to the test part
of do, while and repeat-until, and to the incre-
ment step of a for.

“return’’ Statement

The standard Fortran mechanism for
returning a value from a function uses the name
of the function as a wvariable which can be
assigned to; the last vaiue stored in it is the
function value upon return. For example, here
is a2 routine equal which returns 1 if two arrays
are identical, and zero if they differ. The array
ends are marked by the special value —1I.

equal . compare sirl to sur2;

return 1 if equal, 0 if not
integer function equal{strl, str2)
integer str1(100), str2{100)

integer i
for (i = Listrl{i) == str2(i); i =i+ 1)
if (sirl () == 1) {
equal = |
return
|
equal = 0
return
end

In many languages (e.g., PL/I) one instead
says

rewurn (expression)

to return a value from a function. Since this is
often clearer, Raifor provides such a return
statement — in a function F, return(expression)
is equivalent to

| F = expression; return |}
For example, here is equal again:

equal _ compare strl to str2;

return 1 if equal, 0 if not
integer function equal(strl, str2)
integer str1(100), str2(100)

integer i
for i = 1;strl(i) == sur2(i); i =i+ 1)
if (strl1(i) == -1}
return(l}
return{0)
end

If there is no parenthesized expression after
return, a normal RETURN is made. {Another
version of equal is presented shortly.)

Cosmetics

As we said above, the visual appearance of
a language has a substantial effect on how easy it
is 1o read and understand programs. Accord-
ingly, Ratfor provides a number of cosmetic
facilities which may be used to make programs
more readable.

Free-form Input

Statements can be placed anywhere on a
lineg; long statements are conlinued automati-
cally, as are long conditions in if, while, for, and
until. Blank lines are ignored. Multiple state-
ments may appear on one line, if they are
separated by semicolons. No semicolon is
needed at the end of a line, if Ratfor can make

some reasonable guess about whether the state-
ment ends there. Lines ending with any of the
characters -

= + - =+ ., | & (_

are assumed to be continued on the next line.
Underscores are discarded wherever they occur;
all others remain as part of the statement.

Any statement that begins with an all-
numeric field is assumed 1o be a Fortran label,
and placed in columns 1-5 upon output. Thus

write{6, 100); 100 format("hello")
is converted into

write(6, 100)

100 format{5hhello)

Translation Services

Text enclosed in maiching single or double
quotes is converled to nH... but is otherwise
unaltered (except for formatting — it may get
split across card boundaries during the reformat-
ting process). Within quoted strings, the
backslash *\' serves as an escape character: the
next character is taken literally. This provides a
way to get quotes {and of course the backslash
itself} into quoted strings:

W

is a string containing a backslash and an apos-
trophe. (This is nor the standard convention of
doubled quotes, but it is easier to use and more
general.)

Any line that begins with the character ‘%’
is left absolutely unaltered except for stripping
off the ‘%’ and moving the line one position to
the left. This is useful for inserting control
cards, and other things that should not be
transmogrified (like an existing Fortran pro-
gram). Use ‘%™ only for ordinary statements,
not far the condition parts of if, while, eic., or
the output may come out in an unexpected place.

The foliowing characler translations are
made, except within single or double quotes or
on a line beginning with a ‘%’

== .eq. = .ne.
> .et. >= .ge.
< At = le.
& .and. i .oT.

! .not, - .not.

In addition, the following translations are pro-
vided for input devices with-restricted character
sets.

S({ $) }

‘‘define’’ Statement

Any string of alphanumeric characters can
be defined as a name; thereafter, whenever that
name occurs in the input {delimited by non-
alphanumerics) it is replaced by the rest of the
definition line. (Comments and trailing white
spaces are stripped off). A defined name can be
arbitrarily long, and must begin with a letter.

define is typically used to create symbolic
parameters:

define ROWS 100
define COLS 50

dimension a(ROWS), b(ROWS, COLS)
if (i > ROWS | j > COLS) ...
Alternately, definitions may be written as
define(ROWS, 100)

In this case, the defining text is everything after
the comma up to the balancing right parenthesis;
this allows multi-line definitions.

It is generally a Wwise practice to use sym-
belic parameters for most consjants, to help
make clear the function of what would otherwise
be mysterious numbers. As an example, here is
the routine equal again, this time with symbolic
conslanis.

define YES ;
define NO 0
define EOS -1
define ARB 100

equal .. compare strl to str2;

return YES if equal, NO if not
integer function equal(strl, str2)
integer str1 (ARB), str2(ARB)
integer i

for i = L;strl(i) == str2(i);i =i+ 1)
if {str1(i) == EOS)
return(YES)
return{NQ) :
end

“include’ Statement
The statement

include file

inserts the file found on input stream fife into the
Ratfor input in place of the include statement.
The standard usage is to place COMMON blocks
on a file, and include that file whenever a copy is
needed:

subroutine x
include commonblocks

end
suroutine y
include commonblocks

end
This ensures that all copies of the CoMMON
blocks are identical

Pitfalls, Botches, Blemishes and other Failings

Ratfor catches certain syntax errors, such
as missing braces, else clauses without an if, and
most errors involving missing parentheses in
statements. Beyond that, since Ratfor knows no
Fortran, any errors you make will be reported by
the Fortran compiler, so you will from time to
time have to relate a Fortran diagnostic back 10
the Ratfor source.

Keywords are reserved — using if, else,
ete., as variable names will typically wreak havoc.
Don't leave spaces in keywords. Don't use the
Arithmetic IF,

The Fortran nH convention is not recog-
nized anywhere by Ratfor; use quotes instead.

3. IMPLEMENTATION

Ratfor was originally writlen in C{4] on the
unix operating systeml[S]l. The language is
specified by a context free grammar and the
compiler constructed using the YACC compiler-
compiler[6].

The Ratfor grammar is simple and straight-
forward, being essentialiy

prog : stat
| prog stat
stat : if () stat

| if (...) stat else stat

| while (...) sl

| for (.. ...; ...) stat

| do ... stat

| repeat sta1

| repeat stat untii (...)

| switek (...) { case ... prog ...
default: prog }

| return :

| break

| next

| digits stat

| { prog }

| anything unrecognizable

The observation that Ratfor knows no Fortran
foliows directly from the rule that says a state-
ment is "‘anything unrecognizable™. In fact most

of Fortran falls into this category, since any
statement that does not begin with one of the
keywords is by definition ‘“‘unrecognizable.”

Code generation is also simple. If the first
thing on a source ling,is not a keyword (like if,
else, etc.}) the entire statement is simply copied
to thé output with appropriate character transla-
tion and formatting. (Leading digits are treated
as a label.) Keywords cause conly slightly more
complicated actions. For example, when if is
recognized, two consecutive labels L and L+1
are generated and the value of L is stacked. The
condition is then isolated, and the code

if {.not. {condition)} goto L

is output. The statement part of the if is then
translated. When the end of the statement is
encountered {which may be some distance away
and include nested ifs, of course). the code

L continue

is generated, unless there is an else clause, in
which case the code is

golo L+1
L continue

In this latter case, the code
L+1

is produced after the siaremenr part of the else,
Code generation for the various loops is equally
simple.

continue

One might argue that more care shouid be
taken in code generation. For example, if there
is no trailing else,

ifi>0)x=a
should be left alone, not converted into

if (.not. (i .gt. 0)) goto 100
Xx=a

100 continue

But whal are optimizing compilers for, if not to
improve code? It is a rare program indeed where
this kind of ‘‘inefficiency’” will make even a
measurable difference. In the few cases where it
is important, the offending lines can be protected
by ‘%",

The wuse of a compiler-compiler is
definitely the preferred method of sofiware
development. The language is well-defined, with
few synlactic irregularities. Implementation is
quite simple: the original construction took
under a week. The language is sufficiently sim-
ple. however, that an ad hoc recognizer can be
readily constructed to do the same job if no
compiler-compiler is available.

The C version of Ratfor is used on UNIX
and on the Honeywell Gcos systems. C com-
pilers are not as widely available as Foriran,
however, so there is also a Ratfor written in
itself and ariginally bootstrapped with the C ver-
sion. The Ratfor version was writlen so as to
ranslate into the portable subset of Foriran
described in [11, so it is portable, having been
run essentially without change on at least (welve
distinct machines. {The main restrictions of the
poriable subser are: only one characier per
machine word; subscripts in the form ¢evzer
avoiding expressions in places like DO loops, con-
sistency in subroutine argument usage, and in
COMMON declarations. Ratfor itself will now gra-
tuitously generate non-standard Fortran.)

The Ratfor version is about 1500 lines of
Ratfor {compared to about 1000 lines of C): this
compiles into 2500 lines of Fortran. This expan-
sion ratio is somewhat higher than average, since
the compiled code contains unnecessary
occurrences of cCOMMON declarations. The exe-
cution time of the Ratfor version is dominated
by two routines that read and write cards.
Clearly these routines could be replaced by
machine coded local versions; unless this is
done, the efficiency of other paris of the transla-
tion process is largely irrelevant,

4. EXPERIENCE

Good Things

*It's so much better than Fortran™ is the
most common response of users when asked
how well Ratfor meets their needs. Aithough
cynics might consider this (o be vacuous, it does
seem o be irue that decent control flow and
cosmetics converts Fortran from a bad language
into quite a reasenable ong, assuming that For-
tran data structures arg adequate for the task at
hand.

Although there are no quantitative results,
users feel that coding in Ratfor is at least iwice
a5 fast as in Fortran. More important, debugging
and subsequent revision are much faster thun in
Fortrun. Partly this is simply because the code
can be read. The looping statements which test
at the top insteud of the botiom seem to elim-

-10 -

inate or at least reduce the occurrence of a wide
class of boundary errors. And of course it is
easy to do structured programming in Ratfor:
this self-discipline alsp contributes markedly to
reliability,

One interesting and encouraging fact is
that programs writlten in Ratfor tend to be as
readable as programs written in more modern
languages like Pascal. Once one is freed from
the shackles of Fortran’s clerical detail and rigid
input format, it is easy Lo write code that is read-
able, even esthetically pleasing. For exampie,
here is a Ratfor implementation of the linear
table search discussed by Knuth {7]:

Alm+1) = x

for{li=1LAMD!=xi=i+1)
if ¢i > m) |
m=i
B{i} =1
l
else
B(i) = B(i) + 1

A large corpus (5400 lines) of Ratfor, including
a subset of the Ratfor preprocessor itself, can be
found in [8].

Bad Things

The biggest single problem is that many
Fortran syntax errors are not detected by Ratfor
but by the local Fortran compiler. The compiler
then prints a message in terms of the generated
Forwran. and in a few cases this may be difficult
to relate back o the offending Ratfor line, espe-
cially if the implementation conceals the gen-
erated Fortran. This problem could be deait with
by tagging each generated line with some indica-
tion of the source line thar created it, but this is
inherently implementation-dependent, so no
action has yet been taken. Error message
interpretation is aciually not so arduous as might
be thought. Since Ratfor generates na variables,
only a simple pattern of {F's and GOTO's, duta-
related errors like missing DIMENSION statements
are easy to find in the Fortran. Furthermore,
there has been a steady improvement in Rafor's
ability to catch trivial syntactic errors like unbal-
anced parentheses und quotes.

There are a number of implementation
wenknesses that are 4 nuisance, especially to new
users. For example. keywords are reserved.
This rarely makes any difference, except tor
those hardy souls who want to use an Arithmetic
IE. A few swndard Fortrun constructions are nol
accepted by Ratfor. and this is perceived us a
problem by users with a krge corpus of existing
Fortran progrums. Protegting every line with a

%" is not really a complete solution, although it
serves as a stop-gap. The best long-lterm solu-
tion is provided by the program Struct [9]. which
converts arbitrary Foriran programs inte Ratfor.

Users who export programs often complain
that the generated Fortran is ‘‘unreadable™
because it is not tastefully formatted and con-
tains extrangous CONTINUE statements. To some
extent this can be ameliorated (Ratfor now has
"an option to copy Raifor comments into the gen-
erated Fortran), butl it has always seemed that
effort is beuer spent on the input language than
on the oulput esthetics.

One final probiem is partly auributable to
success — since Ratfor is relatively easy to
modify, there are now several dialects of Ratfor.
Fortunately, so far most of the differences are in
characler set, or in invisible aspects like code
generation.

5. CONCLUSIONS

Ratfor demonstrates thar with modest
effort it_is possible 1o convert Fortran from a bad
language into quite. a good one. A preprocessor
is clearly a useful way to exiend or ameliorate
the facilities of a base language.

When designing a language, it is important
to concentrale on the essential requirement of
providing the user with the best language possi-
ble for a given effort. One must aveid throwing
in “features™ — things which the user may trivi-
ally construct within the existing framework.

One must also avoid getting sidetracked on
irrelevancies. For instance it seems pointless for
Ratfor to prepare a neatly formatied listing of
either its input or its output. The user is
presumably capable of the self-discipline required
to prepare neat inpul that reflects his thoughts,
It is much more important that the language pro-
vide free-form input so he can format it neatly,
No one should read the oulput anyway excepl in
the most dire circumstances.

Acknowledgements

C. A. R. Hoare once said that *'One thing
[the language designer] should not do is to
include untried ideas of his own.”" Ratfor follows
this precept very closely — everything in it has
been stolen from someone else. Most of the
control Now structures are taken directly from
the language C[4] developed by Dennis Ritchie;
the comment and continuation conventions are
adapted from Altran[10].

I am grateful to Stuart Feldman, whose
patient simulation of an innocent user during the
early days of Ratfor led to several design
improvements angd the eradication of bugs. He

<11 -

also (ranslated the C parse-tables and YACC
parser into Fortran for the first Ratfor version of
Raifor.

References |

[1] B. G. Ryder, “The PFORT Verifier,”
Saftware— Practive & E\perreme. Qctober
1974,

(2] American National Standard Fortran.

American National Standards

New York, 1966.

For-word: Fortran Development Newsletter,
August 1975,

B. W, Kernighan and D. M. Riwchie, The C
Programming Language, Prentice-Hall, Inc.,
1978.

D. M, Ritchie and K. L. Thompson, ““The
UNIX Time-sharing System.” CACM, July
1974,

S. C. Johnson, “YACC — Yer Another
Compiler-Compiler.” Bell Laboratories
Computing Science Technical Report #32,
1973.

D. E. Knuth, *“‘Structured Programming
with goto Statements.’” Computing Surveys,
December 1974.

B. W. Kernighan and P. J. Plauger,
Sofiware Tools, Addison-Wesley, 1976.

B. S. Baker, “‘Struct — A Program which
Structures Fortran®”, B8ell Laboratories
internal memorandum, December 1975.

A. D. Hall, “The Aliran System for
Rational Function Manipulation — A Sur-
vey."" CACM, August 1971.

Institute,
(3]

(4]

(51

[6]

7

{8}

9

(o

Graphics

. N

PWB/Graphics Overview
A. R, Feuer

Bell Laboratories .
Piscataway. New Jersey 08854

1. INTRODUCTION

PWB/Graphics. or just graphics. is the name given. 1o a growing collection of numerical and
graphical commands available as part of the Programmer's Workbench {1]. In its initial release,
graphics includes commands 10 construct and edii nurnerical data pliots and hierarchy charis.
This memorandum will help you get siarted using zraphics and show vou where o find more
information. The examples below assume that you are familiar with the UNIX™ Sheli [1).

1. BASIC CONCEPTS

‘The basic approach taken in graphics is 10 generate a drawing by describing it rather than by
drafting it. Any drawing is seen as having two fundamenual atwributes: its underlving logic and
its visual layout. The layout encompasses one representation of the logic. For exampie.
consider the attributes of a drawing that consists of a plot of the function y=x? for x between 0
and 10. The logic of the plot is the description as just given. viz. y=x" 0<x<10. The layout
consists of an x-v grid. axes labeled perhaps 0 10 10 and 0 to 100. and lines drawn connecting
the x-v pairs 6.010].11024andsoon. ~

The way 10 generate a picture in graphics is
gather data | transform the data | generate a lavoul | display the layout.

To gensrate the specific plot of yr=x",0<x <10 and display it on a Tektronix* display terminal
would be:

" pas =s0.130 | af *x"2" | plot | td

gas generates sequences of numbers. in this case siarting a1 0 and terminating at
i0.

af performs gzneral arithmetic transformations.

plot bu:lds x-y plots.

td dnsplavs drawings on Tekironix terminals.
The resulting drawing i is shown in Figure 1.

The lavout generated by a graphics program may not aiways be precisely what is wanted. There
are wwo ways to influence the layout. Each drawing program accepis options to direct cenain
lavout features. For instance, in the previous example we may have wanted the x-axis labsis 10
indicate each of the numbers plotiad and we might not have wanted any v-axis labels at all. To
achieve this r.he pior command would be changed 10:

plot —xll va.
producing 1he dmwmz oi‘ ﬁgure 2.

The outpul fron any drawmg command can aiso be affected by editing it dirsctly a1 a display
terminal using the graphical edilor. ged. To edit a drawing really means (o edit the computer
representauon of the drawing. In the case of graphics the represemation is cglied a graphical
primitive siring. or GPS. All of the drawing commands (e.g.. plor) write GPS and all of the
device fillers fe. g.. 1d) read GPS. Ged allows vou 10 manipulate GPS at a display 12rminal b
interacting with the drawing the GPS describes.

------ . e sassfecnnsfrnnnachonnnefenvan:
[71] TSRS MUTRUPPII VRIS Saaevmen NNy SO0 ProwRtn SR (U SR SR ST i SO T SR IR DY A
mL --------------------- essverfapnnndesensnfonasnnravans 7 ------------

| -

. [——
)eecormrrrnfrarnnnnnan L LT TS PR S JA—— eennal annan | eeee. ““'T./ FU S—

ll-‘tl_lnu a 1 2 31 &« 5 a 1 & v @0

(ELL IR XY l.l-* o CELY (XL RELTEY o Lot 2

figrs L. oas ~s0.t 0 t af “x2° | plot | Figuwe 2, gas -sD.4¥3 | oF "w~2° | plot ~xilbya §

MO EYIBIINLM

PWBIGraphics Overview ’ 3

GPs describes graphical objects drawn within a Cartesian plane 65,534 units on each axis. The
plane, known as the universe, is partitioned into 25 equal sized square regions. Multi-drawing
displeys csn be producsd by placing drawings into adjacent regions and then displaying ea.h
region. .

Ty GETTING STARTED
" To wcss the graphics commands when logged in on a PWB/UNIX system type graphics. Your
I '.Shelf- varigble PATH will be altered to include the graphics commands and the Shell primary
.- prompt will be changed to *. Any command accessible before ryping graphics will still be
' sccessible; graphics only adds commands, it doesn’t take any sway., Ooce in graphics, you can

find out about any of the graphics commands using wharis Typing whsats by itself on =z
command line will generate 2 list of all the commands in gmph:cs along with instructions on

- how 10 find out more about any of them.
All of the graphics commands accept the same command line format:

A command is: a command-name foliowed by argumen:(s).

A command-name is: the name of any of the graphics commands,

An argument is: ¢ file-name o7 an option-string.

A file-name is: any file name not beginning with —, er 2 = by itself to0
reference the standard input.

An option-srring is: a — followed by option(s).

An option is: jenter(s) followed by an optional value. Options may be

sepaiated by comrmnas.

You will get the best results with graphics commands if you use -2 display terminal. Ploi(1)
filters can be used in copjunction with grop (see guti(1)) to get somewhat degraded drawings on
Versatec printers and Dasi-type terminals. And since GPS can be stored in 2 file, it can bz
created from any lerminal for later displaying on a graphical device.

To remove the graphics commands from your PATH Shelf variabis typs EOT (controi-d on mos:
terminals). To logoff UNIDX from graphics type quit.

4. EXAMPLES OF WHAT YOU CAN DO
4.1 Numerical Manipulstion sné Plotting

Swar(1) describes a collection of sumerical commands. All of these commands operate on
veutors. A vector is a lext file that contains numbers separated by delimiters, where a delimiter
is anything that is not a number. For example,

12345, end
arf tty47 Mar 5 09:52

are both vectors. (The latter being the vector; 47 § 9 52.)

Here is an easy way o generate a Celsius-Fahrenheit conversion table using gas 1o generate the
vecior of Celsius values:

gas —s0,t100,110 [af *C,9/5°C+32"

The output is:
0.0 32
10 50
20 .. 88. B
30 - 86 _ i
49 104 : A
5C 12
&0 140 : :
_10 158
20 176
%0 194.
100 212 :) .
This is what is going on: ' : _‘;)}.
gas —s0,1100,110 We have séen gur in an eariier example. In this case the

‘ sequence stuarts at 0, termimates at 100, and the increment
berween successive elements is 10.

al "C,9/5*C+32° We have also seen af Arguments o qf are expressions.
) Operands in an expression are either constants-or filenames, If
a flleaame is given that does not exist in the current dirsctary it
is taken as the name for the standard mput. In this example C
references the standard input. The output is a vector with odd
¢iements coming from the standard input and even eslements
being 2 function of the preceding odd eiement.

Here is an example that illustrates the use of vector titles and multiline plots:

gas | title —v*first ten integers" >N
rost N >RN

root =t3 N >RIN .

roat =rLL5 N >R1.5N

plat ~FN,g N R1.5N RN R3N|d

The resulting piot is shown in Figure 3.

title —v*zame Title associates 3 nome with a vector. In this case, first ten

integers is associated with the vector output by gas 'rhe vector

is stored in 8le N. -~
root =rn Roor outputs the nth root of esch element oz the mput. If

—=px i3 Dot given then the square root is cutput. Also, if the
input is 2 titled vector the title will be transformed to reﬁecz the
root funclion. '

plot =FX3 Yo This command generates a multiline piot with Y(o- plon.ed.'
versus I. The g option causes tick marks to appear instesd of
grid lines,

The gext exampie generates 2 histogram of random aumbers.
rand —=n100 | title —=v*100 random sumbers” | qsort | backet | hist}td
Tae output is shown n Figurs 4.

reen3 FIRST TEN INTECERS (cowwna)
1,5 FIRST TEN DNTECERS (aonvedd
FIXST TON DNTECIRS (salla)

woptl FIRST "IN INTEZIPE (any cawredd

ot

" ; F

F 7] [T — R —
mr........-..---.-... A ——
“ ------------------- passasa-Recssnrs LT LI TY T T Y PO LTSS Y F P TS
1V TR P cmee
| 7Y PP L everse]ensancansncnnsallonancas 4
n am e g o - csss f sonnen - fr—— e voassssflosnnens L oe
ol Lot =)
' ssaflevonwnadiennsus TTTTTTE FEYTE LA FITETERY Syt el FOS T
Y [ETY TYYCTTTY PP | eonvenfonamnen csasne-Borensncficsacanfien
'} O Ty | cesene Runnn PN RPPRS ETETTRTS RETERRTY T [
21 PR R . P PYTTYTN PYEPEFE SEEPTEEY CXTLT 1T ST
0

1t .07l 0,185 0.30) 0.43% D.574 0O.71 0.84F 0.953%

FIR3T 166 INTLCIRS

Figre 3. Sone roots of the Firse tan tniogore Figuwe 4. Histogras of 100 random mwbers

maang Suydoiommd

& ’ PWB/Graphics Overview

rand =nlg0 Rand outputs mndom aumbers using rand(3C). In this cass

. 100 aumbers are ourput in the range O ta 1.
qsort Qsort sorts the elements of 2 vestor in ascending order.
bucket : Bucker bresks the range of a vector inwo intervals and counts

now many elements from the vector [ail into esach intarvel
The output is a vector with odd elements being the intarval
boundaries and even elemeants being the counts.

hist Hizr builds a histogram based on interval boundaries and
counts.,

4.2 Drawings Built from Bazes

There is 2 large class of drawings composed from boxes and text. Examples are structure
chars, configuration drawings, and flow diagrams. In grophics the geaeral procedure to
construct such box drawings is the same as that for numerical plotting. Namely gather and
transform the data, build and display the layout.

As an example, consider hierarchy charts, The command line
dtoe | vtoe] td
outputs the drawing shown in Figure 5.

Droc outpurs 3 table of contznts that describes a directory structure {Figure 5a). The feids
rom left to right are level number, directory came, and the number of ordinary readabie files
contained in the directory. Vroc reads a (textual) table of contzaws and outputs a visual wble of
contents, or dierarchy chart. Imput w0 vrac consists of 2 sequence of entries, each describing a
box to be drawn. Ag eamy coasists of a level aumber, an optional style feid, 2 text string to
be placed in the box, and a mark field to appear abave the top right hand corner of the box.

5. WHERE TO GO FROM HERE

THe best way to learn about graphics is 10 log onto a PWB/UNTX system and use it. Tutoriais
exint for san(l) and ged(1). [2] contains administrative information for graphics. Refereacs
information can be found in the PWB/UNIX User's Manual under the following manual pages:

ged(1), the graphical editor; :

Zp5(5), a description of a graphical primitive string;

graphics(1}, the eatry point for graphies

guti1), a collection of utility commands;

sza«(1), gumerical manipulation and plotling commands;

1ex4000(1), a collection of commands to manipulate Tektronix 4000 series tzrminals; and
toc(1), routines to build tables of contents.

é. REFERENCES
(1] PWBIUNIX User's Manua! — Release 2.0., Bell Laboratories, 1979.

{21 R. L. Chen aad D. E Pinkston, Adminiswanrve Informarion for PWBiGraphics, Beil
Laboratories Memoraadum, 1979,

January 1930

TN
I
' -"‘,‘

PWC;mphiaOmm
Flgure 5. Dlrectory Structure for Graphlcs
1] : : 2
1 B i2
120 BLet 1%
2. putil.g 6
%; ::-vr-teg:..d' Z
. .
2.5 Bwma g
3 _swad
e ek <00, 8 ;
PSR 8
S. “wo2.d” 3
s. 1. “tioc.d 3
5-2. :V‘xnﬂ. 22
6. whatis.d® 108
Filgu-e Sa. Droc eutput
c
. t
msex
[2 1 » L | » & | 3) T | 3 a | =
_ LT erz. mwra FrRace. 5 =0 unm.s‘!
:]
|.n.|uu.luu.[v:.z._:z.:.l:-.& S IS.'I.Ilu.IE
oo |—u..a 1 |omema e "s: rno LY met rmn I

flgrs Sb. Vies oulput

e

Administrative Information For PWB/Graphics

Ruth L. Chen
Diane E. Pinkston

Bell Laboratories
Piscataway, New Jersey 08354

1. INTRODUCTION

This document is a reference guide for svstem administrators who are using or establishing a
PWB/Graphies facility [1] on UNIX™. It conuins informaiion about directory structure,
installation, makefiles, hardware requirements. and miscellanesus facilities of PWB/Graphics.

bR PWBIGrnphics STRUCTURE

Figure | contains a graphical representation of the directory structure ol' PWB/Graphics. In this
paper. the Shell variable $SRC will represent the parent node for graphics source. On
PWB/UNIX SSRC is /ust/src/emd. If PWB/Graphics is copied onio other systems. SSRC coutd
have other values but should. in ganeral, be the same as an PWB/UNIX.

The grophics command (see graphics(])) resides in /ust/bin. All other PWB/Graphics
executables are locsted in /usr/bin/grafl. /usr/lib/gral comams 1ext for whatis documentation
(see muil(1)} and editor scripts for moc (see roc(1)).

PWB/Graphics source resides below the direciory SSRCIgraJ' SSRC/graf is broken imc the
foltowing subdiretories:.

s include - coniains lhe followmg header files: debug.h. errpr.hi gsh.h, gpl.h. selopt.h. and
util.h. .

® S - comains source code partitioned into subdirsciories by subsystem. Each subdirecior
contains its own Makefile (or Install file for whaiis.d).

e glib.d - comains source used to build the graphical subroutine library In
SSRC/gral/lib/glib.a.

star.d - contains source for numerical analysis and plotting routines.

1ek4000.d - contains source for ged {the graphical editor}. #d {a Tekironix display
function). and other Tektronix dependent routines.

gutil.d - contains source for utility programs.

e tocd - ;:oma_ins source {or 1able of contents drawing routines.

. "whglis.d - contgins mm files and the insiall routine for quick-reference documemation.
o lib - contains glib.a which contains commonly used graphical subroutines.

e man - Figure } shows SSRC/graf/man as 2 dotied box because this direciory does not exist
on PWB/UNIX sysiems where ali manual pagss reside in /ust/man. SSRC/grai/man 1s
created if PWB/Graphics is copied onto another system (see section 3.). and will contain the
following manual page files: graphics.]. gutil.1, stat.]. 1ek4000.1. toc.1. ged.] and gps.5.

3. INSTALLING PWB/Graphics
Proczdures for installing PWB/Graphics:

{ &)

Administrative [nformation For PWBIGrephics

)
F ig F¥B/ Gr-aph-i cs Structure .

]_\)'3

- @ :
BIN 1B sc

GUF GRAF o0 d
W

: ').

NCLCE. sT us P

. F] 1
QIap STAT.O ToUSR.D w0 -1 N BATIS.C

Adsuniszative Informanon For PWEIGraphics . 3

1., PWE/UNIX aystems,

— To bulld the entire Graphics systemn (i.e. all boxes except man in Figure 1), execute
(as superuser)

J/:mkemd graf
J:mkcmd resides in /usr/sre, and el menual pages exist in /ust/man,
= To buiid a particular subgystem, execute
J/:mkemd graf subsystem
= To build a pzarticular command within a subsystem, execute
. Jmkemd graf subsystem command-nome
2. UNIX/TS sysiems pot rupaing PWB,
-~ See appendix for tape copying procedures.
- Bui.ld $SRC/graf/lib and PWB/Graphics executables {dashed boxes in Figure 1) by
typing: ' : :
make «f SSRC/graf/graf.mk

— To make a particular graphics subsystem use the Makefile in SSRC/grafl/src, e.g.
ed SSRC/gral/ste
make subsystem

— Note, thers is a2 name conflict between PWB/Graphics plor and UNDU/TS plor(1). The
recommended fix is to remove /usr/bin/plot and move the pior1) filters from /ust/lib
to /usr/bin.

A subsystem s either giid, star. 1ek4000, 10c, gutil or whatis. Glib must exist before other
subsystems can be built. Write permission in /usr/bin and /usr/lib is needed, and the
following libraries are assurned to exist:

/lib/libe.a Standard C library, used by all subsystems.

/ib/libm.a + Math librery, used by all subsystems.

Just/lib/macros/ [ntpevdbmm.ms Programmer’s Workbench memorandum macros
for [adroff, used by the whatis subsystem.

The build process takes spproximately one hour of sysiem time. If the maks must be
stopped, it is 8 good idea tw rebuild {rom the top. Upon completion, the {oliowing things
will be created and owned by bin.

/ust/lib/ gral A directory for data and editor scripts.
fust/vin/ graf _ A directory for executables, -
fust/bin/graphics Commniand entry point for FWB/Graphics.

Makefiles use executable Shell procedures cco and cea. Cro is used to compile C source
and install load modules in /use/bin/gral. The oo command compiles C programs and
loads object code into archive fles.)

Whatis.d contains source fles for whatis and the executable command faswsll
Install command-name

4 Administraove’ [nformadon For PWB/Graphics.

cails nroffto produce whatis documentation for command-name in /ust/lib/graf. Tao instail
" the entire whatis subsysm. use the Makefile in SSRC/graf/sre.

3.1 Yakedle Paramaters

Malkefiles use various macro parameters, some of which can be specified on the command line

10 redirect outputs or inpurs. Parametsrs specified in higher level Makefiles are passed 10 lower

leveis. Below is a list of specifisble parameters for Makefiles (ollowed by their default values in
. pagenthesis and an explanation of their usage.

1. $SRC/graf/graf.mk
BIN1 (/use/vin) installericn directory for the graphics command.
BINZ (/usr/bin/graf) instailatien directory for other graphic commands.
SRC (/usr/sre/end) parent direczory for sourcs code.

2. SSRC/graf/sre/Makefile |

BIN1 (/usz/bin) installatios directory for the graphics command.
BINZ (/usr/bin/graf) installation directory for other graphic commands.
LIB (/ust/lib/graf) instailation directory for whatis documentation.

3. SSRC/graf/src/stat.d/Makefile

"BIN (,././bin) instailation directory for executable commands.
4. SSRC/graf/sve/we.d/Makefile _
BIN (./../bin) installation directory for executabie commands.
5. SSRC/graf/src/1ekd000.d/ Makefile '
BIN (.././%in} installation directory {or exesutable commands.
6.- SSRC/graf/src/gutil.d/ Makefile
BIN (../../bin) i.ns:aﬂa:ion directory for executable commands.

The following example will maks a new version of the mphml editor, ged, in /al/pmt/dp/bin: _
&) $8RC/geal/sre/tek4000.4
mai2 Bl o /a1 /pmt/dp/ bin ged

4. TEXTRONIX TERMINAL

The PWB/Graphics display function :f and the graphical editor ged both use Tektronix Series
4010 storage tubes. Relew is a list of devies consderations necessary for PWBIGmphxcs
operation.

4.1 Gy Tabls Entry

When a Tektronix 4010 series terminal is connected via a dedicated line to UNIX, an entry in
the systern tabdle (in /usr/sre/cmd/genty.c) is suggesied, to store. terminal statys information.
This tabie eatry appears as follows on PWB/UNIX:

)

. Adsuniswragive Informatian For PWR/Grophics ' P

/® wble *6" —~ 4800/9600 -~ tekrronix 4014 */
161‘ 7. .
ANYP+ RAW+ FF1, ANYP+ ECHO+ CRMOD+ FF1,
B4200, B4800,
"\033\014\000!ogin: ",

IGI
ANYP+ RAW+ FF1, ANYP+ ECHO+ CRMOD-+ FF1,
89600, B9500,
"\033\014\000Iogin: *,

but on other gystems it may have to be created and then referenced in /etc/inittab. Standard
parity and a form-feed delay are necessary. The form-fecd delay gives the screen time 10 clear
b without Iosing information. Below is an example of the terminal status as printed by s

speed 4800 baud
ErESE = l#t; h~n - _‘@’
even odd — n! echo ~ tabs 1

4.2 Smp Optiens

" The mdard SUISp oplions as hst.ed below should be used (see the Reference Manual for the
‘Teiaronix 4014 [3]):

. 1. LF effect - LF causes line-feed only.
. ' 2. CR effest - CR caused carriage retury only.
3. Del implies Joy - Del key is interpreied as low-order y value,
4. Graphics Input terminators - Noge. '
4.3 Enbkanced Graphles Modale

The Enhanced Graphics Module of Tektronix terminals is required for PWB/Graphics. The
EGM provides different line styles (solid, dorfted, dot-dashed, dashed, and long-dashed), right
aad left margin cursor location, and 12-bit cursor addressing (4096 by 4096 screen points).

£

§. MISCELLANEOUS INFORMATION

§.1 Appemncemants

- The graphics command praovides a means of printing out announcements 1o vsers. To set up an
} - apouncement facility, creste a readable text file containing the announcements narned
sgnounce. Also in Iusrlbmlmphm redefine the Shell variabie SGRAF to be the directory

- pathname of the sonounce file.

5.2 Uselog

‘The graphics command also prowdes s means of monitoring its use by listing users in & fle. To
set up & uselog facility create s writeable file pamed .uselog (in the same direciory as announce
if sopoupcements are being used) and redefine the Skell variable $GRAF within

j /ust/bin/grapbics to specify the directory loestion. Each time a user executes graphics, an entry
of the iogin name, terminal pumber, and sysiem date are recorded in .aselog.

. 5.3 Restricted Envirorments

Restricted environments can be used to Hmit vser access to the system (se= rsa(l) [41). 1In a
festricted eavironment, commands i /rbin apd /usr/rbin are executed before those in /bin and
/ust/vin. The commands ed, mv, rm, 2nd sk require resiricted imerface programs which do not
allow users 10 move of remove files that begin with dot {.)lZ]

& - Adminisretve Informaton For PWB/Graphics

Creating restricied snvironments for graphics:
1. Cresie 3 restricted ged commaad in /usr/tbin as {otlows:

exee /use/bla/graf/ged =R

2. Create restricted logins for users or creats s comemuniry login with a working directory
(resched through .profla) szt up for each user. A reatricted login specifies /bin/rsk as
the terminal interface prograe 2nd i3 created by adding /bin/rsh to the end of the
/ et/ passwd file entry for that login.

3 Call graphies <r from m’uﬁ.le,

The executicn of graphics =—r changes SPATH to look far commands ia /rbin and /ust/rbin
and executes & restricted Shell The =3 option is appended 10 the ged command so that the
" escape from ged 1o UNIX (!command) will also use a restricted Shell .

ACENOWLEDGEMENTS

We wish to thank Alan R. Feuer for his valuable contributions, suggestions, and careful reading
of this docurment We also thank M. J. Petreila for his help in supplying information
concarning the PWB/UNIX eavironment

REFERENCES
(1] Feuer, A. R PWBIGrcphrcs Overview. Bell Laboratories, 1979
(2] Petrella, M. J. Reswrictad Access w0 PWEB/UNIX — DRAFT. Bell iaboratories, May 1979.
(31 Téaronix. Users's Manual for 4014 and 4014-1 Dispiay Terminal. July, 1974.
(4] PWBIUNIX Users’s Manual — Releass 2.0.

S/

Adminigranve Information For PWB/Graphics 7

APPENDIX

Procedures for tape copying (as superuser)

= Locate graphics source by changing directory to SSRC, the parent directory.
<= Then copy source snd msnual pages from the tape by typing

eplo ~idm < /dev/mtd (creates graf)
ed graf
cpio =idm < fdev/mt0 (creates man)

This will result in the directory structure indicated by the solid boxes plus SSRC/mﬂmxm in
Figure 1. Necessary sub-directories will be created (ses zpio(1)).

January 1 9_80

A Tutorial Introduction to the Graphical Editor
Alan R, Feuer

Bell Laboratories _
Pisqnwn)'. New Jersey 08854

1. INTRODUCTION

Ged is an interactive graphical editor used to display, edit, and construct drawings on
Tekironix® 4010 series display lerminals. The drawings are represented as a sequence of
objects in a token language known as GPS (for graphical primitive string). GPS is produced by
the drawing commands in PWB/Graphics [1} such as vioc and ploz as well as by ged itself,

The examples in this tutorial jllustrate how to construct and edit simple drawings. Try them 10
 become familiar with how the editor works, but keep in mind thet ged is intended primarily to
edit the output of other programs rather than 10 construct dmwings from scratch, A summary
of editer commands and optioas is given in Section 3.

As for notation, literal keystrokes are printed in boldfece. Mete-characters are also in boldface
and are surrounded by angled brackets. For example, <return> meaps return and <sp>
means space. In the examples, output from the tarminal is printed in normalface type. Inline
comrents ars in normaiface and are surrounded by parentheses.

2. COMMANDS

To start we will assume that you have successfully entered the graphics enviroament (as
described in graphics(1) of [2]) while iogged in at a display terminal. To enter ged type

ged <return>

After a moment the screen should be clear save for the ged prompt, », in the upper left corner.
The « teiis you that ged is ready to accept a command.,

Each command passes through a sequence of stages during which you describe what the
command is to do. All coramands pass through a subset of these stages:

1. command line
2. text
3. points

4. pivot

5. destination

As a rule, each stage is terminated by typing <return>> . The <return> for the last stage of a
command triggers execution.

2.1 The Command Line

“The simplest commands consist only of a command line. The command line is modeled after a
conventional command line in the Shell That is ’

command-name (= option(s)] {filename] <return>

? is an example of a simple command. It lists the commands and options understood by ged.
Type

*? <retum> {you type a question mark followed by 2 return)
10 generate the list.

]

1 Graphical Ediror Tuterial

-

A conimand is executed by typing the frst character of its name. Ged will echo the full name
and wait for the rest of the command line. For example, o ceferences the erase comumand. As
erase consists only of stage 1, typing <retarm> causes the erase action to occur. Typing
<rabout> after a command came and before the final <retara> for the command aborts the
comemand. Thus while

s¢rasg <retara>>
erases the digplay screzq,
* serass <rabeut>
brings tBe editor Back to o

Following the command-name, options may be eatered. Options control such things as the
width and style of lines to be drawn or e size and orientation of text. Most opticas have a
default vaiue that applies if a valus for the option is oot specified on the command line. The
ser command allows you to examine and modify the defauit values. Type

wgat <retam>
10 see the curreat default values.

The value of an aption is either of type integer, character, or Boolean, Boolean values are
represented by <+ [or true aad — {or false. A defauit value is modified by providiag it as an
optiona to the ser command. For example, to change the default text height to 300 units type:

sgat -EJGO <return>

Arguments oa e commangd line, but oot the com:ﬁand-name, may be edited uting the erase
aad kill characters {rom e Sheil (Actually, this applies whenever text is being entered.)

1.1 Comstrueiing Graphical Objects

Drawings are stored as GF3 in a display buffer internal 10 the editor. Typically, a drawing in ged
is composed of instances of three graphical primitives: are, lines, and texz

2.2.1 Generating wxz. To put a line of t2xt gn the display screen use the Texr command. First
enter the comvmand line (stage 1):

*Text <retara>

Next enter the rexr (stage 2):
a lng of text <retura>,

And then enter the starting poinr for the text (stage 3):
< pagition caxsor> <retwra>

Positioning of the graphic cursor is doune either with the thumbwhee! knobs om the terminal
keyboard or with an auxiliary joystick. The <requra> establishes the location of the cursor to
be the starting peint {or the text string. The Text command ends at stage 3, so this <retura

" {nitiates the drawing of the text string,)

Text aczepts optioas to vary the angle, beight, and line width of the characters, and to either
czater or right justifly the text object. The text string may span more than ong line by escaping
the <rezumm> (La, \<retam>) to [ndicate comtinuadon. To idlustrate some of these
capabilities, try the [cllowing:

. Graphical Edicor Tusoriel ' 3

+Text =1 <return> (right justify text)
top\<retura> ’

risht <return>

<paosition curser> <geturn> -

aText —290 <retarn> (rotate text 90 degrees)

} ' lower\< return>
left <return>
" «<position cursor> <retarm> {pick a point below and left of the previous point)
top
right
& o
Firs
oQ
g gy

Figure 1. Geperating text objec:; '

. . 22.2 Drawing lines, The Lines command is used 1o construct objects built from a sequence of
straight lines. Tt consists of stages 1 and 3. Stage 1 is straightforward:

sLines possible options <return>
Lines accepts options 1o specify line style and line width.

Stage 3, the entering of poinss, is more interesting. Poines are referanced either with the graphic
cursor or by name, We have already entered a point with the cursor for the Jexr command.
- For Lines it is more of the same. As an example, let us build a triangle:

»Lines <returm>

<position cursor> <sp> (locate the first point)
< position ¢cnrser> <sp> (the second point)
< position cursor> <sp> (the third point)
< position cursor> <sp> (back 10 the first point)
<refurn > . {terminate poines, draw triangle)
) "~ Typing <sp> enters the location of the crosshairs as a point. Ged identifies the point with an
integer and adds the location to the current poinr se.. The last point entered can be erased by
" typing # . The current point set can be cleared by typing @ . On receiving the final <return>
the points are connected in numerical order.
2.2.2.1 Accessing points by name. The points in the current point set may be.referenced by
name using the $ operator, $n refsrences the point numbered a. Using § we can redraw the
triangle of Section 2.2.2 by enteriang:
sLines <return> .
< position cursor> <sp>
< pagsition cursor> <sp>
. < position cursor> <sp>
$0 <retorn> (reference point)

<feturn >

4 Graghical Edirar Tusarial

firsy palny emtorsd) _
Foueth palnt ‘ thire psint),

L

Figure 2. Building a triangle

At the start of 2ach command that includes stage 1, poinz, the current point set is empty. The
point set [rom the previous command is saved and is accessible using the . operator. . swaps
the points in the pravious point set with those in the current set. Tae ™= gperator can be usad

to identify the current points. To illustrate, let us use the triangte just entered as the basis far
drawing a quadrilaterai:

alines <retum>

J

. . {access the previous point set)
' (identify the current points)
8 {erase the last point)

< pasition cursor> <sp> {add 2 new painr)

$0 <retarn> : (close the figure)

. Qrethrag >

. Grophica! Editor Tumrial

Figure 3. -Accessing the previous point set

Individual points from the previous point set can be referenced by using the . operator with §.
We will build a triangle that shares an edge with the quadrilateral:

- o *Lines <return>
. - $.1 <return> (reference point 1 from the previous point set)
. 8.2 <return > (reference point 2)
<sp> (enter a new point)
‘$0 <return> {or $.1, 1o close the figure)
<refurn >

polnt | fron previous polnt =@t L poine

point 2 from previows polnt set

Figure 4. Referencing points from the previous point set

A point ¢an also be given a pame. The > operator allows you 1o associate an upper case letter
with a point just eatered. A simple example is:

§ . ‘ - . Graphical Editar Tutorial

«Lices <return>

< positioa cursor> <sp> ~(enter a point)
>A . " (zmame the poiat A)
< pasitioa cursor> <sp>

. <retuga>

In comraands that foilow you can gow referencs point A using the § operator, as in:

«Lines <return>
A

© < pogitisn cursor> <sp>
< refugns>

2 2.1 Drawing curves. Curves are interpolated from 2 sequencs of three or more points. The
Arc command generates 3 circular arc given three points oa a circle. The arc is drawm starting
at the frst point, through the second point, and ending at the third paint. A circle is an are
with the first and third poinis coincident. One way to draw a circle is thus:

T eArc <refurn>
<positioa cursor> <sp>
< pogition cursor> <sp>
S0 <return>
<returg>

2.3 Edlting Objects T

&3 Aﬁdressing oljects. An object is addressad by pointing to ome of its handles. All objects

‘have an object-handle, Usuaily the objest-handle is the first point entered when the abject was

created. The odjecrs command marks the location of sach objest-handle with ag O. Type
ggjects —=v <retum>

10 sse the handles of all the objects en the screen.

Some objects, Lines [or example, also have point-handles, Typically zach of the points satared

when an object is constructed becumes a point-haadle. (Yes, an object-handle is also 2 point-
handle.) The poines command marks each of the point-handles.

A handle is pointed to by inciuding it within a defined-area. A defined-area is generated sither
with a commaad line option or interaciively using the graphic cursor. ~\s an example, try
~ deleting oae of the ohjects you have created on the screen.

+«Delete <retury>

< poaition corser> <sp>. (above and to the left of some object-handle)
<pssition carsor> <sp> {below and to the right of the object-handle)

< retnra > ' o {the defined-arsa should include the object-handla)
<retarn> (if ail is well, deiete the object)

The defiped-area is outlined with dotted lines, The reason for the seemingly extra <retarm>
at the ead of the Delete command is to give you aa opportunity to stop the command (using
<rubsut>) if the defined-area i not quite right. Every command that accapts a defined-area
will wait for a confirming <return> . Uszs the #ew command to get a fresh cnpy of the
remaining objects,

Natice that defined-areas ave catered as por‘ms in the same way that objests are created.
Actually, a defimed.area @iy be generated by giving aaywhers from zero w 30 points.
Inpusting zero poiats is psedicularly ugeful to point to 2 single Raadle. It cremes a small
defimed.arss 2Bout the location of the tevminating <rsiesn>> . Using a zero point defined-area,
t2g Dalsvz comumand would ber

Grapiical Editor Tuegrial : ' 7

eDeiete <returm>

<position cursor> {ceoter the crosshairs on the object-handle)
<retmrn> (terminate the defined-area)

<jpsturp> (delete the object)

A defined-sres can also be given as a command line option. For example, to delete everything
in the display buffer give the universe opiion to the Delete command. Note the differznce
between the commands Delete =u and erase,

2.3.2 Changing the location of an object. Objects are moved using the Move command. Create a
_circle using Arc, then move it as follows:

sfifove <eturn> _ :
< paslilon curscr> <retom> (centered on the object-handle)

<refnm > (this establishes a pivor, marked with ap asterisk)
< position cursor> <return> l(this establishes a destination)

The basic move operation relocates every point in each cbject addressed by the distance {rom
the pivor to the destinarion. lo this case we chose the pivor to be the object-hmdlc. $o0
- effectively we moved the object-handie to the destination point.

2.3.3 Changing the shape of an object. The Box command is a special case of generating lines.
Given two points it creates a rectangle such that the two points are at opposite corsers. The
sides of the rectangle lie paratlel to the edges of the screen. Draw a box:

«Rox <returmn>
< position cursor> <sp>
<posltien cursor> <return>

Box generates point-handles at each vertex of the rectangle. Use the points command to mark
the point-handles. The shape of an object can be altzred by moving point-handles, The next
exaraple illustrates ane way to double the height of a box.

Move ~p+4 <retum>

< position cursor> <sp> (left of the box, between the top and bottom edses)
< position cursor> <returm> (right of the box, below the bottom edge)
<position cursor> <retara> (on the top edge)

< position cursor> <return> (directly below on the bottom edge)

3) Graphical Editor Tutoral

tve painis For Box

plvat

dagilrnation

twg palnis for daf lred-aerae

Flgore 8, Growing 2 box

Singe the poiats flag is true, the operation is applied to =ach poiat-haadle addressed. [n this
case cich point-handle within the dzfined-area is moved the distance {rom the pwot to the
destigation. I p were false only the object-handle would have been addressed.

2.2.4 Changing dtc size of an objzce. The size of an object can be changed using the Scale
command. Scale scales objects by changing the distancs from each handle of the object to a
pi_vot by a factor. Pur a line of text o the sereen and try the following Scale commands:

sScale =200 <retora> (lactor is in percaat)
< position carsor> <retura> (point to abject-handle)
< prsitien cursor> <returad> '(set pivot w0 rightrnost character)
<ratmsu> '
*Scale ={50 <return>
. Lretmra> . (refarence the previous defined-area)
< pesitica ecarsar> <raturm> (set pivot above a character near the middle)

< retmen >

-}
—

__.;

Graphical Edicrr Turorial 9

s plvv;t for Scale ~S0
A LINE OF TEXT.
K LINE HE ﬁ —pivetr for Scale —F200
erlginal lira
of Lamt

Flgure §. Scaling text

* . A uvseful insight into the behavior of scaling is 10 apte that the ;;osmon of the pivot does not

change. Also observe that the defined-area {3 scaied to preserve its rejationship to the graph.lcal
objects.

The size of objects can also be changed by moving point-handles. Generate a circle, this time
using the Circle command:

«Circle <return>
< positien cursor> <sp> {specify the center)
< position cursor> <retura> (specify a point on the circle)

Circle generates an are with the first and third point at the point specified on the circle. The
second point of the arc is located 180° around the circle. One way to change the size of the
circle is to move one of the point-handles (using Move —p).

The size of text characters can be changed via a third mechanissn. Character height is a

property of a line of textt The Edir command allows you to change character height as follows:

«Edit =hheight <return> (Aeight is in universe units, see Section 2.4)
< position cursor> <retarn> (point 1o the object-handle)
<return>

2.3.5 Changing the orientation of an object. The orientation of an object can be altered using
Rowate, Route yorates each peint of an object about a pivot by an angle Try the following
rotations o a line of text:

sRotate =280 <retum> (angie is in degrees)

<position cursor> <return> (point to object-handie)

< position cursor> <return> (set pivot to rightmost character)

<return>

sRotate =g—90 <yetorn> .
. <return> (reference previous defined-area)

< position cursor> <return> (set pivot to a character near the middie)
<retum>

i0 . Graphical Editor Tuzarial

erigingl ta=t X
1vat for Ralgre o]
aHQTHER LINE &F

LJNER UBE OF TEXT

a2ivot for Rotats -2=30

mmm/r'jgaewm

Figars 7. Ratating text

2.3.8 Changing the siyle or width of lings. In the currzat editor objects can be drawa from lines
" in any of five styles (solid, dashed, dot-dashed, daotted, long-dashed) and thres widths (narrow,
medium, bold}. Style is controlled by the 3 opticn, width by w.

sLines —wmn,sde <return>
" < pagitien cursor> <sp>
. <pagiiion cursor> <sp>
< retnyn > '

cTeates a narrow width dotied line.

sEdit —~wh,sdd <returun>

< pasition corsor> <retura> (point o object-handle of the line) ‘
< retarp - . .

changes the line 0 boid dot-dashed.
2.4 View Comcannds

All of-lhe objects we have drawm lie within a Cartesian plane, 65,534 units on each axis,
knowa as the universe. Thus {ar we have displayed only a smail portion of the universe aog the
display sereea. The command

. avigw =g <rotura>
displays the entire universe.

2.4.1 Windowing. A wmapping of a portion of the universa cnto the display scrmen is called 2
window, The extent or maggification of a window is altered using the svom command. To builg
a window that includes ail of the objects you have drawnt type -

‘gpom <Lreturad>

< pasitica curser> <3p> (above. and to e left of any object)
< pseitfon carser> <retara> (belgw and to the right, also end poing)
< petura> {vesify) : .

Zooming can be either in of out ZoIeins in, 28 with 2 camera lags, incresses the magnification
of e window. The ares cutlined By zoing 19 expanded to Bl the sereen. Zooming out

Graphical Ediror Tuwrial . 1

" decreases magnification. The current window is shrunk so that it fits within the defined-area.
The direction of the zoom is controlled by the sense of the out flag; o true mesns zoom out.

The location of & window is alteted using view. View moves the window so that 2 given point.in
the universe lies at a given location on the screen.

sview <return>-
<pesition carsor> <return> (locate 2 point in the universe)
<position carsor> <ctum> (locate a point on the screen)

View also provides access 10 severnl predefined windows. We have aiready seen view —gp. view
=h displays the home-window . The home-window is the window that circurnscribes all of the
objecis in the universe. The resuft is similar to that of the example using zoom given earlier.

Lastly, using view you may select to window con a particular region. The universe is partiticned
into 25 equal sized regions. Regions are numbered from 1 to 25 beginning at the lower left and
proceeding toward the upper right. Region 13, the center of the universe, is used as the default
region by drawing commands such 2 plor and vioe (see {1]).

2.5 Other Comnmands

2.5.1 Interacting with files. To save the contents of the display buffer copy it to a file using the
write command:

ewrite filename <return>

The contents of filename will be a GPS, thus it.can be displayed using any of the device filters
(e.g.. «f 11]) or read back into ged,

A GPS is read into the editor using the read command:
sread filename <seturn>

The GPS from filename is appended to the display buffer and then displaved. Because read does
not change the current window only some or none of the objects read may be visible. A useful
command sequence to view averything read is

oread —e- JSilename <returm>
sview —h <return>

The display function of read is inhibited by setting the echo flag 10 fals: view —h windows on
and displays the full display buffer.

The read command may also be used to input text files. The form is:
read [-=opron(s)] filename <teturn>

foliowed by a single point to locate the first line of text. A text object is created for each line
of 1ext from filename, Options to read are the same as those for the Texr command.

2.3.2 Leaving the editor. Use the guit command 10 terminate an editing session. As with the
text editor ed, quit responds with ? if the internal buffer has been modified since the last write.
A second quit forces exit.

2.6 Othger Useful Things to Know.
2.6.1 One line UNIX escape. As it ed, ! provides a temporary escape to the Sheil

2.6.2 Typing ahead. Most programs under UNIX allow you 10 type input before the program is
ready to receive it. In general this is not the case with ged; characters typed before the
appropriate prompt are lost.

12 | Graphiea! Editor Tutoria!

2.6.3 Spaeding things up. Displaying the contents of the display buffer can be time coasuming,
particulagly if much text is iavolved. The wise use of two (lags to control what gets displayed
on awake life morz pleasast: the echo flag controly echoing of new additions w the display
" buffer; the text {lag controls whether text will be outlined or drawm. -

3. COMMAND SUMMARY

- In the summary, characters actually typed are printed in boldface. Command stages are printed
in italics. Arguments surrounded Sy brackets are opticmal. Parentheses surrounding argumeats
separated by ‘‘or' means that exactly one of the arguments must be given. For example, the
Delere command (Section 3.2) asgepts the arguments =-universe, —view, and poincs.

311 Crastruct ammands:

Are (=echo,style, width] points
Box [seccho,style,width] poins
Circle [;echo,:tyle.wid:hl poings
Hardware [—echo] text poins
Lines {=echa,style, width] poinss :
Text [—angie echo, height, midpoint, rightpoint, text, width] ext poines
- 3.2 Edit commznds: . T
. Detete - (= (universe ot view) or poinz)
Edit [=angle,echo, height, style, width] { —~ (universe or view) or poing)
Kopy [=—=echo,poiats,x] poinss pivat destinacion
Move [-~echo,points,x} poins zivor destination
Rotate (~angie,echo, kopy,x] points givor destination
- Scale {=echo, factor kopy,x] pomes pivar destination

3.3 View camasnapds:

coordinates poing

erase _
aew’
objects (= (aniverse or view) or poings }
points (= (labelled-points or universe or view) or painn')
view (= (home or universe or region) or [=x] pivor deszination)
x {=view] poincs
100m © {=eut] poing
3.4 Other commands:
quit .
read [~ engle,echo, height, midpcint, rightpoint, text, width] filename [degination]
set {~sangle, echo, factor, eight. kopy, midpoint, points, rightpoiat, style.text, width, x]

- wyite filsroray

"

Graphical Editor Tutgrial ' . 13

icommand
? -
3.5 Opilona:

Oprions specily parameters used to construct, edit, and view graphical objects. If a parameter
used by a command is not specifed as an oprion, the default value for the parameter will be
used. The format of command options is

= optien [,option] .

where option is keylener{vaiue]. Flags take on the vaiues of true or faise indicated by + and —
respectively. I no value is given with a flag, true is assumed.
Object options: .

anglen Specify an angle of # degrees.

echo When true, changes to the display buffer will be echoed on the screen.

factorn Specify a scale factor of n percent, .

heightn .- Specify height of texy 1o be n universe-units (0 < n<1280). .

kopy . - The commands Scale and Rotate can be vsed to either create new objects or
: to a!t;r old ones. When the kopy flag is true, new objects are created.

midpoint When true, use the midpoint of a text string to locate the string.

out When true, reduce magnification during zoom.

points When true, operate on points otherwise operate on objects.

rightpoint When true, use the rightmost point of a text string 10 locate the string.
* styletype Specify line style to be one of following types:

50 solid
—_ : da dashed
: dd dot-dashed
do dotted
1d long-dashed
text _ Most text is drawn as a sequence of lines. This can sometimes be painfully

slow, When the text flzg is false, iext strings are outlined rather than drawn.
widthgype Specify line width 1o'be one of following types:

n BATTOW
m medium -
. _ b bold
b 1 One way to find the center of a rectangular ares is to draw the diagonals of
the rectangle. Whea the x flag is true, defined-areas are drawn with their

Area options:

bome _Reference the home-window.

regioan Reference region n.

universe Reference the universe-window.,
view . Reference those objects currently in view.

1 Graphical Ediror Tusarial

4. ACENOWLEDGEMENTS

Ged borrawa {reely from the ideas and code of the gex program by D. I Jackowski, The frst S,
© version of ged was written by D. E. Pinkston..

$. REFERENCES. .
1] Feuer, A. R.; "PWB/Graphics Qverview”, T™ 79-1782-1, June {1, 1979.
(2] PWBIUNIX User's Manual Release 2.0, Beil Laboratories, 1979.

e d
pI—

. " Graphical Ediror Tumrial
APPENDIX: SOME EXAMPLES OF WHAT CAN BE DONE

1. Text Centersd Within a Clrele

=Circle <>

<paosition cursor> <sp> (establish center)

< position cursor> <cr> {establish radius)

oText =m <er> (text is to be centered)

some text <>)

$.0 <> (first point from previous set, i.e., circle center)
<>

16 Graghieal Editor Tutorial

2. Making Notx3 on 2 Plat .
o! gas|plot =g >A <ct> {generats a plot, put it in fle A)

etead —e— A <cr> (inpue the plot, but do aot dlsplay i)
sviewr =h <c£> (window on the plot) .
sLines —ado <cr> {draw dotted liney) V)

< position carser> <sp>
< pesition carsor> <sp>
< pazition cursor> <sp>

<> (ead of Lines)
«set =h130,70 <> {set text height to 130, line width to narmw}
aTaxt =g <> (nsht justify text)
threshold 2ayoad which nothing matters <cr>
< position cnzser> <cr> (set right point of téxt) Ty
«Text =a=90 <cr> (rotate text negative 90 dagreas) i
threshold beyand which nothing mattery <cr>
< position curser> <er> {sat top end of text)
ax <> {find center of plot).
< position carsor> <3p> (zop left of plot)
< position. cursor> <cr> (bottom right)
sText =h300,vm.mn <cr> » (build title: height 300, weight medium, centered)
'SOME XIND OF PLOT <>
< pasitica cursor> <cr> {set title ceatersd above plot)
SOME KIND OF PLOT
1 : '
10
@ =)
a [-
7 b= :
vrgsald sagnd whnich rewtiing nsviars o) J
= =g_ g
Y
S g
g
3 3
Z
' 3
Z
)
& |

10

o
N
Wd
™~
Al
L e
=3
(1]
O

pN—

. Graphical Ediror Tumrigl 17

. 3, A Psge Layout with Drawings sod Text

o! rand ~s31,0100 | title =v"se2d 1% | gsort | bucket | hist =212 >A <ecr>
(put a histogram, region 12, of 100 random numbers into file A)

»f rand ~32,n100 | title =v“sced 2° | qzort | bucket | hist =r13 >B <ecr>
(put another histogram, region 13, into file B)

=!ed <er> (create a file of text using the text editor)
a <er> ‘

On this page are two histograms <er>

from a series of 40 <er>

designed to {llustrste the wenkneys <cr>

of multipiicative congruential random number generators. <cr>

ol \n(alu <er> {mark end of page)

. <> '

w C <er> (put the text into file C)

156

q <er>

»! nroff C|yoo C <er> (format C, Jeave the output in C)
sview ~u <cr> (window on the universe)

sread A <er>

sread B <er> . :
sread ~h300,wn,m C <cr> " {(text height 300, line weight narrow, text centered)
< position cursor> <er> (center text pver two piots)

. ' " eview =h <er> (window on the resultant drawing)

11}

0861 Ksomunf

Dn wnls page ors o histogroms from f sorlos of 40 designod o
liiustirais 1ha waauness of nuldipilcative congrusntial randaon :
: generalors, : :

3

IYE T T LT TITEY absneay

8

P

s s ¥y

splue assanaun -y

ey emepEman

EASALSRSNANS BETVONT WY - LLJ

7] (VP FRLPITE FEPTESE. FEPCTITY [EYRRITPPTTERITYY. (FPTRITH PRPPPPE ——

esenss acar= - ...1
LY - o o

....... 1

1wf---1- Lessnsesfessnnee cunmscnsfranmrreifiancaas eand

| TEY TSR SEPWIVES SERPUR NN PR PN R DY— T
J & FITPTTTY T PRTNTE LIIEINEY. PO - e

STTTSTTY PPCTTIS PRSYROTL CTTTTTTY [RPPOTTE PRFPERR FPeR
‘ eas g anassn.bisassnaf ssyvonafonpunwn - appempa fanad

(TT'S- PRPPIRN SR emeanasfleneanas + N

XY TETTT I

Y. PESTERS] SERERY ELSEEES ARInliet casavanfaan

ste g ssnsnsrfrrtucnaGivsmaseflrovisnaBesagnbnfinovossaf emnmanan - g F --'Wﬂ"”‘- emsnas g ecsersrjasennducy saRssen Al

B w ~ e = 5 8 % B E

0
.63 0.%5 0.30% 0.43 0.5 O0.71 0.547 0.083 a.00781 0. W6 0.259 0.43 2.570 O.700 0.852 0.W3

#iD 0) X2

ol Jodpg jeandeis

‘ Nomr™ e — —
h2 p— —
. R .

- X3

Lex - A Lexical Analyzer Generator

M. E. Lesk and E. Schmidt
Bell Laboratories
' Murray Hill, New Jersey 07974

Lex helps write programs whose control flow is directed by instances of regular expressions in the in-
put stream, It is well suited for editor-script type transformations and for segmenting input in prepara-
tion for a parsing routine.

Lex source is a table of regular expressions and corresponding program fragments. The table is
translated to a program which reads an input stream, copying it 10 an output stream and partitioning the
input into strings which maich the given expressions. As each such string is recognized the correspond-
ing program fragment is executed. The recognition of the expressions is performed by a deterministic
finite automaton generated by Lex. The progrum fragments written by the user are executed in the ord-
er in which the corresponding regular expressions occur in the input stream.

The lexical analysis programs written with Lex accept ambiguous specifications and choose the longest
match possible at each input point. If necessary, substantial lookahead is performed on the input, but
the input stream will be backed up to the end of the current partition, so that the user has general free-
dom to manipulate it.

Lex can be used to generate analyzers in either C or Ratfor, a language which can be translated au-
tomatically to portuble Fortran. It is available on the PDP-11 UNIX, Honeywell GCOS, and IBM OS
systems. Lex is designed to simplify interfacing with Yacc, for those with access to this compiler-
compiler system.

Table of Contents

Introduction.

Lex Source.

Lex Actions.

. Usage.

- Y I T T R

. Examples.

Lex Regular Expressions.

. Ambiguous Source Rules.
. Lex Source Definitions.

. Lex and Yacc.

O 00 00 1 WA L e

10. Left Context Sensitivity. 11

11. Character Set.

12. Summary of Source Forfnat. 12
13. Caveats and Bugs. 13
14. Acknowledgments. 13

- 15. References.

1 Introduction.

Lex is a program generator designed for lexical process-
ing of character input streams. [t accepts a high-level,
problem oriented specification for character string match-
ing, and produces a program in a general purpose
language which recognizes regular expressions. The regu-
lar expressions are specified by the user in the source
specifications given to Lex. The Lex written code recog-
nizes these expressions in an input stream and partitions
the input stream into strings matching the expressions.
At the boundaries between strings program sections pro-
vided by the user are executed. The Lex source file asso-

L S
s R
ciates the regular expressions and the program fragments.
As each expression ‘appears in the input to the program
written by Lex, the corresponding fragment is executed.
The user supplies the additional code beyond expres-
sion matching needed to complete his tasks, possibly in-
cluding code written by other generators. The program
that recognizes the expressions is generated in the general
purpose programming language employed for the user’s
program fragments. Thus, a high level expression
language is provided to write the string expressions to be
matched while the user’s freedom to write actions is
unimpaired. This avoids forcing the user who wishes to
use¢ a string manipulation language for input analysis to

Source — — yylex

Input — — Output

An overview of Lex

Figure 1

write processing programs in the same and often inap-
propriate string handling language.

Lex is not a complete language, but rather a generator
representing a new language feature which can be added
to different programming languages, called ‘‘host
languages.™ Just as general purpose languages can pro-
duce code to run on different computer hardware, Lex
can write code in different host lanpuages. The host
language is used for the output code generated by Lex
and also for the program fragments added by the user.
Compatible run-time libraries for the different host
languages are 2lso provided. This makes Lex adaptable to
different environments and different users. Each applica-
tion may be directed to the combination of hardware and
host language appropriate o the task, the user’s back-
ground, and the properties of local implementations. At
present there are only two host languages, C[1] and For-
tran (in the form of the Ratfor language[2]). ‘Lex itself
exists on UNIX, GCOS, and 0S/370; but the code gen-
erated by Lex may be taken anywhere the appropriate
compilers exist.

Lex turns the user’'s expressions and actions (called
source in this memo) into the host general-purpose
language; the generated program is named yylex. The
ywlex program will recognize expressions in a stream
(called jnput in this memo) and perform the specified ac-
tions for each expression as it is detected. See Figure 1.

For a trivial example, consider a program to delete
from the input all blanks or tabs at the ends of lines.

%%
f\l+s

is all that is required. The program conlains a %% delim-
iter to mark the beginning of the rules, and one rule.

LEX-2

This rule contains a regular expression which matches
one or more instances of the characters blank or tab
(written \t for visibility, in accordance with the C
language convention) just prior to the end of a line. The
brackets indicate the character class made of blank and
tab; the <+ indicates “‘one or more ...”"; and the ¥ indi-
cates “‘end of line,” as in QED. No action is specified, so
the program generated by Lex {yylex) will ignore these
characters. Everything else will be copied. To change any
remaining string of blanks or tabs to a single blank, add
another rule:

%%
{\]+S
[\t]+

)

printf(" ");

The finite automaton generated for this source will scan
for both rules at once, observing at the termination of the
string of blanks or tabs whether or not there is 2 newline
character, and executing the desired rule action. The first
rule matches all strings of blanks or tabs at the end of
lines, and the second rule all remaining strings of blanks
or tabs.

Lex can be used alone for simple trgnsformaticns, or
for analysis and statistics gathering on a lexical level. Lex
can also be used with a parser generator to perform the
lexical analysis phase; it is particularly easy to interface
Lex and Yace [3]. Lex programs recognize only regular
expressions; Yacc writes parsers that accept a large class
of context free grammars, but require a lower level
analyzer to recognize input tokens. Thus, a combination
of Lex and Yacc is often appropriate. When used as a
preprocessor for a later parser generator, Lex is used to
partition the input stream, and the parser generator as-
signs structure to the resulling pieces. The flow of con-
trol in such a case (which might be the first half of a
compiler, for example) is shown in Figure 2. Additional
programs, written by other generators or by hand, can be
added easily to programs written by Lex. Yacc users will
realize that the name yylex is what Yacc expects its lexical
analyzer to be named, so that the use of this name by
Lex simplifies interfacing.

Lex generates a deterministic finite automaton from the
regular expressions in the source [4]. The automaton is
interpreted, rather than compiled, in order to save space.
The result is still a fast analyzer. In particular, the time

lexical grammar
rules rules
{ 1
| Lex | [Yacc |
i l

Input~ [yylex | — | yyparse | — Parsed input

Lex with Yacc

Figure 2

taken by a Lex program to recognize and partition an in-
put stream is proportional to the length of the input. The
number of Lex rules or the complexity of the rules is not
important in determining speed, unless rules which in-
clude forward context require a significant amount of re-
scanning. What does increase with the number and com-
plexity of rules is the size of the fnite automaton, and
therefore the size of the program generated by Lex.

In the program written by Lex, the user’s fragments
(representing the actions 10 be performed as each regular
expression is found) are gathered as cases of a switch (in
C) or branches of a computed GOTQ (in Ratfor). The
automaton interpreter directs the control flow. Opportun-
ity is provided for the user to insert either declarations or
additional statements in the routine containing the ac-
tions, or to add subroutines outside this action routine.

Lex is not limited to source which can be interpreted
on the basis of one character lookahead. For example, if
there are two rules, one looking for ab and another for
abedefg, and the input stream is ebcdefh, Lex will recog-
nize ad and leave the input pointer just before cd. . .
Such backup is more costly than the processing of simpler
languages.

2 Lex Source.
The general format of Lex source is:

{definitions}

{user subroutines}

where the definitions and the user subroutines are often
omitted. The second %% is optional, but the first is re-
quired 10 mark the beginning of the rules. The absolute
minimum Lex program is thus

%%

(no definitions, no rules) which translates into a program
which copies the input to the output unchanged,

In the outline of Lex programs shown above, the rules
represent the user’s control decisions; they are a table, in
which the left column contains regwlar expressions (see
section 3) and the right column contains actions, program
fragments to be executed when the expressions are recog-
nized. Thus an individual rule might appear

integer printf("found keyword INT");
to look for the string irteger in the input stream and print
the message *‘found keyword INT' whenever it appears.
In this example the host procedural language is C and the
C library function printfis used to print the string. The
end of the expression is indicated by the first blank or tab
character. If the action is merely a single C expression, it
can just be given on the right side of the line; if it is com-
pound, or takes more than a line, it should be enclosed in

LEX~3

braces. As a slightly more useful example, suppose it is
desired to change 4 number of words from British to
American spelling. Lex rules such as

colour printf{"color");
mechanise printf("mechanize");
petrol printf{"gas”);

would be a starl. These rules are not quite enough, since
the word peiroleurn would become gaseunr, a way of deal-
ing with this will be described later.

3 Lex Regular Expressions.

The definitions of regular expressions are very similar
o those in QED (5], A regular expression specifies a set
of strings to be matched. It contains text characters
(which match the corresponding characters in the strings
being compared) and operator characters (which specify
repetitions, choices, and other features). The letters of
the alphabet and the digits are always 1exi characters; thus
the regular expression

integer

matches the string integer wherever it appears and the ex-
pression

a57D

looks for the string aJ7D.
Operators. The operator characlers are

NEI -2 e+ OS8R < >

and if they are to be used as text characters, an escape
should be used. The quotation mark operator (") indi-
cates that whatever is contained between a pair of quotes
is to be taken as text characters, Thus

xyz"++"

matches the string xyz+ 4+ when it appears. Note thal a
part of a string may be quoted. It is harmless but un-
necessary to quote an ordinary text character. the expres-
sion

"Xyr++"

is the same as the one above. -Thus by quoting every
non-alphanumeric character being used as a text charac-
ter, the user can avoid remembering the list above of
current operator characters, and is safe should further ex-
tensions to Lex lengthen the list.

An operator character may alse be turned into a text
character by preceding it with \ as in

xyz\ +\+

which is another, less readable, equivalent of the above

expressions. Another use of the quoting mechanism is to
get a blank into an expression; normally, as explained
above, blanks or tabs end a rule. Any blank character not
contzined within []1 (see below) must be quoted. Several
normal C escapes with \ are recognized: \n is newline, \t
is tab, and \b is backspace. To enter \ itself, use \\.
Since newline is illegal in an éxpression, \n must be used;
it is not required to escape lab and backspace. Every
character but blank, tab, newline and the list above is al-
ways a text character.

Character classes. Classes of characters can be
specified using the operator pair []. The construction
fab] matches a single character, which may be a, &, or ¢
Within square brackets, most operator meanings are ig-
nored. Only three characters are special: these are \ —
and ~. The — character indicates ranges. For example,

fa—z0-9<>_]

indicates the character class containing all the lower case
letters, the digits, the angle brackets, and underline.
Ranges may be given in either order. Using — between
any pair of characters which are not both upper case
letters, both lower case letters, or both digits is impie-
mentation dependent and will get a warning message.
{(E.g., [0-z] in ASCII is many more characters than it i§ in
EBCDIC). If it is desired to include the character — in 2
character class, it should be first or last; thus

(—+0-9}

matches all the digits and the two signs.

In character classes, the * operator must appear as the
first character after the left brackel; it indicates that the
resulting string is to be complemented with respect to the
computer character set. Thus

*abc]

matches all characters excepl a, b, or ¢, including all spe-
cial or control characters; or

[Fa-zA-Z]

is any character which is not a letter. The \ character pro-
vides the usual escapes within character class brackets.

Arbitrary character. To match almost any character,
the operator character

is the class of all characters except newline. Escaping inte
octal is possible although non-portable:

N\40-\176]

matches all printable characters in the ASCII character
set, from octa! 40 (blank) to octal 176 (tilde).

Optional expressions. The operator ? indicates an op-
tional element of an expression. Thus

LEX—4

ablc

matches either ac or abe.
Repeated expressions. Repetitions of classes are indicat-
ed by the operators » and +.

ae

is any number of consecutive a characters, including zero;
while

a+
is one or more instances of @. For example,
[a-z] +
is ali strings of lower case letters. And
[A-Za—2][A—Za—20-9]-

indicates all alphanumeric strings with a leading alphabetic
character. This is a typical expression for recognizing
identifiers in computer languages. *

Alternation and Grouping. The operator | indicates
alternation:

(ablcd)

maltches either ab or ¢d. Note that parentheses are used
for grouping, although they are not necessary on the out-
side level;

abjed

would have sufficed. Parentheses can be used for more
complex expressions:

{ablcd+) 1 eh)=

matches such strings as abefef, efefef, cdef, or cddd; but
not abe, abed, or abedef.

Context sensitivity, Lex will recognize a smafl amount
of surrounding context. The two simplest operators for
this are ~ and §. If the first character of an expression is
*, the expression will only be matched at the beginning of
a line (after a newline character, or at the beginning of
the input stream). This can never conflict with the other
meaning of °, complementation of character classes, since
that only applies within the [] operators. If the very last
character is §, the expression will only be matched at the
end of a line (when immediately followed by newline).
The latter operator is a special case of the /operator char-
acter, which indicates trailing context. The expression

ab/cd

matches the string ab, but only if followed by ¢d. Thus

ab$
is the same as
ab/\n

Left context is handled in Lex by siart conditions as ex-
plained in section 10. If a rule is only to be executed
when the Lex automaton interpreter is in start condition
x, the rule should be prefixed by

<x>

using the angle bracket operator characters. If we con-
sidered “‘being at the beginning of a line' to be start con-
dition ONE, then the * operator would be equivalent to

<ONE>

Start conditions are explained more fully later.

Repetitions and Definitions. The operators {} specify ei-
ther repetitions (if they enclose numbers} or definition
expansion (if they enclose a name). For example

{digit}

looks for a predefined string named digit and inserts it at
that point in the expression. The definitions are given in
the first part of the Lex input, before the rules. In con-
trast,

a{l1,5)

looks for 1 to 5 occurrences of 4.
Finally, initial % is special, being the separator for Lex
source segments.

4 Lex Actions.

When an expression written as above is matched, Lex
executes the corresponding action. This section describes
some features of Lex which aid in writing actions. Note
that there is a4 default action, which consists of copying
the input to the output. This is performed on all strings
not otherwise matched. Thus the Lex user who wishes to
absorb the entire input, without producing any output,
must provide rules to match everything. When Lex is be-
ing used with Yacc, this is the normal situation. One tmay
consider that actions are what is done instead of copying
the input to the output; thus, in general, a rule which
merely copies can be omitted. Also, a character combina-
tion which is omitted from the rules and which appears as
input is likely to be printed on the output, thus calling at-
tention Lo the gap in the rules.

One of the simplest things that can be done is lo ignore
the input. Specifying a C null statement, ; as an action
causes this result. A frequent rule s

[\t\n]

LEX—3

which causes the three spacing characters (blank, tab, and
newling) to be ignored.

Another easy way to avoid writing actions is the action
character |, which indicates that the action for this rule is
the action for the next rule. The previous example could
also have been written

"

"\l“

ll\nn

n

with the same result, although in different style. The
quoles around \n and \t are not required.

In more complex actions, the user will often want to
know the actual text that matched some expression like
fa—z]+. Lex leaves this text in an external character ar-
ray named yytext. Thus, to print the name found, a rule
like

[a-z]+ printf("%s", yytext);

will print the string in yyiext. The C function printf ac-
cepts a format argument and data to be printed; in this
case, the format is “‘print string’” (% indicating data
conversion, and s indicating string type), and the data are
the characters in yyrext. So this just places the matched
string on the output. This action is so commeon that it
may be written as ECHO:

la-zi+ ECHO;

is the same as the above, Since the default action is just
to print the characters found, one might ask why give a
rule, like this one, which merely specifies the default ac-
tion? Such rules are often required to avoid matching
some other rule which is not desired. For example, if
there is a rule which matches read it will normally match
the instances of read contained in bread or readjust, to
avoid this, a rule of the form fa—z/+ is needed. This is
explained further below.

Sometimes it is more convenient to know the end of
what has been found; hence Lex also provides a count
yvleng of the number of characters matched. To count
both the number of words and the number of characters
in words in the input, the user might write

[a-zA-Z]+ {words+ +: chars + = yyleng;)
which accumulates in chars the number of characters in
the words recognized. The last character in the string
matched can be accessed by

yytext{yyleng-1]
inCor

yytext(yyleng)

in Ratfor.

Occasionally, a Lex action may decide that a rule has
not recognized the correct span of characters. Two rou-
tines are provided to aid with this situation. First,
yymore() can be called to indicate that the next input ex-
pression recognized is to be tacked on to the end of this
input. Normally, the next input string would overwrite
the current entry in ywext. Second, yyless (n) may be
called to indicate that not all the characters matched by
the currently successful expression are wanted right now.
The argument n indicates the number of characters in
vtext to be retained. Further characters previously
matched are returned to the input. This provides the
same sort of lookahead offered by the / operator, butin a
different form.

Example: Consider a language which defines a string as
a set of characters between quotation (') marks, and pro-
vides that to include a " in a string it must be preceded by
a \. The regular expression which matches that is some-
what confusing, so that it might be preferable to write

L i CI |
if {yytextlyyleng-11 == 1\
yymore();
else
... normal user processing

which will, when faced with a string such as "abd\"de/™
first match the five characters "abe\; then -the call to
yymore() will cause the next part of the string, "def, to be
tacked on the end. Note that the final quole terminating
the string should be picked up in the code labeled “‘nor-
mal processing’.

The function yyless(} might be used to reprocess text in
various circumstances. Consider the C problem of distin-
guishing the ambiguity of ‘““==—a’", Suppose it is desired
to treat this as *=— a" but print a message. A rule
might be

=—[a-zA-Z] |
printf("Operator {(=—) ambiguous\n");
yyless (yyleng-1);

... action for =— ...

which prints a message, returns the letter after the opera-
tor to the input stream, and treats the operator as “‘=-"",
Alternatively it might be desired to treat this as ““‘= —a",
To do this, just return the minus sign as well as the letter
to the input:
=—[a-zA-Z] |

printf("Operator (=—) ambiguous\n");
yyless(yyleng-2);

... action for = ...

will perform the other interpretation. Note that the ex-
pressions for the two cases might more easily be written

LEX—6

=—/[A-Za-z]
in the first case and
=/-{A-Za-z]
in the second, no backup would be required in the rule
action. It is not necessary to recognize the whole

identifier to observe the ambiguity. The possibility of
*=-3"_ however, makes

=—/[\t\n]
a still better rule.

In addition to these routines, Lex also permits access to
the I/0 routines it uses. They are:

1) input() which returns the next input character;
2) output(c) which writes the character ¢ on the out-
put; and
3) unput(c) pushes the character ¢ back onto the in-
put stream to be read later by inpur().
By default these routines are provided as macro

definitions, but the user can override them and supply
private versions. There is another important routine in
Ratfor, named /lexshf, which is described below under
““*Character Set’’. These routines define the refationship
between external files and internal characters, and must
all be retained or modified consistently. They may be
redefined, to cause input or output to be transmitted to or
from strange places, including other programs or internal
memory; but the character set used must be consistent in
all routines; a value of zero returned by impuf must mean
end of file; and the relationship between umpur and input
must be retained or the Lex lookahead will not work.
Lex does not look ahead at ailt if it does not have to, but
every rule ending in + « ? or $ or containing /implies
lookahead. Lookahead is also necessary to match an ex-
pression that is a prefix of another expression. See below
for a discussion of the character set used by Lex. The
standard Lex library imposes a 100 character limit on
backup.

Another Lex library routine that the user will some-
times want to redefine is yywrap() which is called when-
ever Lex reaches an end-of-file, If yywrap returns a |1,
Lex continues with the normal wrapup on end of input.
Sometimes, however, it is convenient to arrange for more
input to arrive from a new source. In this case, the user
should provide a yywrap which arranges for new input
and returns 0. This instructs Lex to continue processing.
The default yywrap always returns 1.

This routine is also a convenient place to print tables,
summaries, etc. at the end of a program. WNote that it is
not possible to write a normal rule which recognizes end-
of-file; the only access to this condition is through
yywrap. In fact, unless a private version of input() is sup-
plied a file containing nulls cannot be handled, since a
value of returned by input is taken ta be end-of-file.

In Ratfor all of the standard I/0 library routines, input,

‘

output, unput, yywrap, and lexshf, are defined as integer
functions. This requires input and yywrap to be called
with arguments. One dummy argument is supplied and
ignored.

5 Ambiguous Source Rules.

Lex can handle ambiguous specifications. When more
than one expression can match the current input, Lex
chooses as follows:

1Y The longest match is preferred.

2) Among rules which matched the same number of
characters, the rule given first is preferred.
Thus, suppose the rules

keyword action ...;
identifier action ...;

integer
[a-z]+

to be given in that order. If the input is integers, it is tak-
en as an identifier, because fa-zJ+ matches 8 characters
while integer matches only 7. If the input is integer, both
rules match 7 characters, and the keyword rule is seiected
because it was given first. Anything shorter (e.g. int} will
not match the expression infeger and so the identifier in-
terpretation is used.

The principle of preferring the longest match makes
rules containing expressions like .» dangerous. For exam-
ple,

might seem a good way of recognizing a string in single
quotes. But it is an invitation for the program to read far
ahead, looking for a distant single quote. Presented with
the input

‘first’ quoted string here, ‘second’ here
the above expressicn will maich
"first’ quoted string here, 'second’

which is probably not what was wanted. A better rule is
of the form

'["\a}+’

which, on the above input, will stop after first’ The
consequences of errors like this are mitigated by the fact
that the . operator will not match newline. Thus expres-
sions like .» stop on the current line. Don’t try to defeat
this with expressions like [\n/+ or equivalents; the Lex
generated program will try to read the entire input file,
causing internal buffer overflows.

Note that Lex is normaliy partitioning the input stream,
not searching for all possible matches of each expression.
This means that each character is accounted for once and
only once. For example, suppose it is desired to count
occurrences of both she and hAe in an input text. Some

LEX—17

Lex rules to do this might be

she s++;
he h++;

\n |
. N

where the last two rules ignore everything besides ke and
she. Remember that . does not include newline. Since
she includes he, Lex will normally not recognize the in-
stances of ke included in she, since once it has passed a
she those characters are gone.

Sometimes the user would like to override this choice.
The action REJECT means “‘go do the next alternative.”
It causes whatever rule was second choice after the
current rule to be executed. The position of the input
pointer is adjusted accordingly. Suppose the user rezlly
wanis to count the included instances of Ae

she [s++; REJECT:]
he |h++; REJECT;)
\n

these rules are one way of changing the previous example
to do just that. After counting each expression, it is re-
jected; whenever appropriate, the other expression will
then be counted. In this example, of course, the user
could note that she includes he but not vice versa, and
omit the REJECT action on he, in other cases, however,
it would not be possible a priori to tell which input char-
acters were in both classes.
Consider the two rules

albel+
afed] +

{ ... REJECT}
{...; REJECT:}

If the input is ab, only the first rule matches, and on ad
only the second matches. The input string acch matches
the first rule for four characters and then the second rule
for three characters. In contrast, the input accd agrees
with the second rule for four characters and then the first
rule for three.

in general, REJECT is useful whenever the purpose of
Lex is not to partition the input stream but to detect all
examples of some items in the input, and the instances of
these items may overlap or include each other. Suppose a
digram table of the input is desired; normally the digrams
overlap, that is the word the is considered to contain both
th and he. Assuming a two-dimensional array named di-
gram to be incremented, the appropriate source is

%%
(a-z}[a-z] {digram [yytext{01] [yytext[11]+ +; REJECT;}
\n ;

where the REJECT is necessary to pick up a letter pair
beginning at every character, rather than at every other
character,

LEX—8

6 Lex Source Definitions.
Remember the format of the Lex source:

|definitions]

{user routines)

So far only the rules have been described. The user
needs additional options, though, to define variables for
use in his program and for use by Lex. These can go ei-
ther in the definitions section or in the rules section.
Remember that Lex is turning the rules into a program,
Any source not intercepted by Lex is copied into the gen-
erated program. There are three classes of such things.

1) Any line which is not part of a Lex rule or action
which begins with a blank or tab is copied into the

Lex generated program. Such source input prior

to the first %% delimiter will be external to any
function in the code; if it appears immediately
after the first %%, it appears in an appropriate
place for declarations in the function written by
Lex which contains the actions. This material
must look like program fragments, and should
precede the first Lex rule.

As a side effect of the above, lines which begin
with a blank or tab, and which contain 2 com-
ment, are passed through to the generated pro-
gram. This can be used to include comments in

gither the Lex source or the generated code. The -

comments should follow the host language con-
vention.

2) Anything included between lines containing only
%{ and %) is copied out as above. The delimiters
are discarded. This format permits entering lext
like preprocessor statements that must begin in
column 1, or copying lines that do not look like
programs.

3) Anything after the third %% delimiter, regardless
of formats, etc., is copied out after the Lex out-
put.

Definitions intended for Lex are given before the first
%% delimiter. Any line in this section not contained
between %| and %), and begining in column 1, is as-
sumed to define Lex substitution strings. The format of
such lines is

name translation

and it causes the string given as a transiation to be associ-
ated with the name. The name and translation must be
separated by at least one blank or tab, and the name must
begin with a letter. The translation can then be called out
by the (name] syntax in a rule. Using |D}] for the digits
and |E) for an exponem field, for example, might abbre-
viate rules to recognize numbers:

D (0-91

E [TEde][-+]?{D} +
%%

{DY+ printf ("integer");

{D}+"."{D}=({ED? |
{D}+~"{D}+((ED? |
(D} +(E}

Note the first two rules for real numbers; both require a
decimal point and contain an optional exponent field, but
the Ffirst requires at least one digit before the decimal
point and the second requires at least one digit after the
decimal point. To correctly handle the problem posed by
a Fortran expression such as 35.EQ.I, which does not
contain a real number, a context-sensitive rule such as
[0-9]1+/""EQ printf("integer");
could be used in addition to the normal rule for integers.
The definitions section may also contain other com-
mands, including the selection of a host language, a char-
acter set lable, a list of start conditions, or adjustments to
the default size of arrays within Lex itself for larger
source programs. These possibilities are discussed below
under ‘*Summary of Source Format,” section 12.

T Usage.

There are two steps in compiling 4 Lex source program.
First, the Lex source must be turned into a generated
program in the host general purpose language. Then this
program must be compiled and loaded, usually with a li-
brary of Lex subroutines. The generated program is on a
file named lex.yy.c for a C host language source and
lex.yy.r for a Ratfor host environment. There are two
1/0 libraries, one for C defined in terms of the C stan-
dard library [6], and the other defined in terms of Ratfor.
To indicate that a Lex source file is intended to be used
with the Ratfor host language, make the first line of the
file %R.

The C programs generated by Lex are slightly different
on 05/370, because the OS compiler is less powerful than
the UNIX or GCOS compilers, and does less at compile
time. C programs generated on GCOS and UNIX are the
same. The C host language is default, but may be expli-
citly requested by making the first line of the source file
%C.

The Ratfor. generated by Lex is the same on all sys-
tems, but can .not-bé compiled directly on TSO. See
below for instruclidrig'.'\ The Ratfor I/QO library, however,
varies slightly .becaué_e' the different Fortrans disagree on
the method)-of‘-indiéating end-of-input and the name of
the library routine for logical AND. The Ratfor I/Q li-
brary, dependent on Fortran character 1/0, i5 quite slow.
In particular it reads all input lines as 80A1 format; this
will truncate any longer line, discarding your data, and
pads any shorter line with blanks. The library version of
input removes the padding (including any trailing blanks
from the original input) before processing. Each source

fitle using a Ratfor host should begin with the %R com-
mand.

UNIX. The libraries are accessed by the loader flags
-llc for C and -lIr for Ratfor; the C name may be abbrevi-
ated to -/ So an appropriate set of commands is

C Host Ratfor Host

lex source
rc -2 lex.yy.r -lir

lex source
cc lex.yy.c -l -IS

The resuiting program is placed on the usual file a.out for
later execution. To use Lex with Yacc see below.
Although the default Lex I/0 routines use the C standard
library, the Lex automata themselves do not do so; if
private versions of input, ouwiput and unput are given, the
library can be avoided. Note the **-2°’ option in the Rat-
for compile command; this requests the larger version of
the compiler, a useful precaution.

GCOS. The Lex commands on GCOS are stored in the
' library, The appropriate command sequences are:

C Host Ratfor Host

Jlex source /1ex source
“Jee lex.yy.c Jlexclib h=

The resulting program is placed on the usual file .program
for later execution (as indicated by the ‘*h="" option); it
may be copied to a permanent file if desired. Note the
“a="" pption in the Ratfor compile command; this indi-
cates that the Fortran compiler is to run in ASCII mode.

TSO. Lex is just barely available on TSQ. Restrictions
imposed by the compilers which must be used with its
output make it rather inconvenient. To use the C ver-
sion, type

exec 'dot.lex.clist(lex)’ 'sourcename’
exec ‘dot.lex.clist{cload)’ libraryname membername’

The first command analyzes the source file and writes a C
program on file lex.yy.text. The second command runs
this file through the C compiler and links it with the Lex
C library (stored on ‘hr289.1cl.load’) placing the abject
program in your file libraryname. LOAD{membername) us
a completely linked load module. The compiling com-
mand uses a special version of the C compiler command
on TSO which provides an unusuaily large intermediate
assembler file to compensate for the unusual bulk of C-
compiled Lex programs on the OS system. Even so, al-
most any Lex source program is too big to compile, and
must be split.

The same Lex command will compile Ratfor Lex pro-
grams, leaving a file lex.yy.rat instead of flex.yy.lext in
your directory. The Ratfor program must be edited, how-
ever, to compensate for peculiarities of IBM Ratfor. A
command sequence to do this, and then compile and
load, is available. The full commands are:

exec 'dot.lex.clist (lex)’ 'sourcename’

LEX—9

Jrca= lex.yy.r .Jlextlibh=

exec 'dot.lex.clist(rload)’ libraryname membername’

with the same overall effect as the C language commands.
However, the Ratfor commands will run in a 150K byte
partition, while the C commands require 250K bytes to
operate.

The steps involved in processing the generated Ratfor
program are:

a. Edit the Ratfor program.

1. Remaove all tabs.

2. Change all lower case letters to upper case letters.

3. Convert the file 1o an 80-column card image file.

b. Process the Ratfor through the Ratfor preproces-
sor to get Fortran code.

¢. Compile the Fortran.

d. Load with the libraries ‘'hr289.Irl.load’ and

'sys1.fortlib’.
The final load module will only read input in 80-character
fixed length records. Warning: Work is in progress on
the IBM C compiler, and Lex and its availability on the
IBM 370 are subject to change without notice.

8 Lex and Yace.

If you want to use Lex with Yacc, note that what Lex
writes is a program named yplex(), the name required by
Yacc for its analyzer. NWormally, the defauit main pro-
gram on the Lex library calls this routine, but if Yacc is
loaded, and its main program is used, Yacc will call
wylex(). In this case each Lex rule should end with

return{token);

where the appropriate token value is returned. An easy
way 10 get access to Yace’s names for tokens is to compile
the Lex output file as part of the Yacc output file by plac-
ing the line

include "lex.yy.c”

in the last section of Yacc input. Supposing the grammar
to be named “good™ and the lexical rules to be named
“*better” the UNIX command sequence can just be:

yace good
lex better
¢c y.tabeg -ly -1l -IS

The Yacc library (-ly) should be loaded before the Lex li-
brary, to obtain a main program which invokes the Yacc
parser. The generations of Lex and Yacc programs can be
done in either order.

9 Examples.
As a trivial problem, consider copying an input file

while adding 3 to every positive number divisible by 7.
Here is a suitable Lex source program

LEX-10

%%
int k;
091+ {
scanf(-1, yytext, "%d", &k);
if (k%7 ==0)
printf{"%d", k+3);
else .
printf ("%d" k)

to do just that. The rule [0-9]+ recognizes strings of di-
gits; scanf converts the digits to binary and stores the
result in k. The operator % (remainder) is used 1o check
whether k is divisible by 7; if it is, it is incremented by 3
as it is written out. It may be objected that this program
will alter such input items as 49.63 or X7. Furthermore,
it increments the absolute value of all negative numbers
divisible by 7. To avoid this, just add a few more rules
afier the active one, as here:

%%
int k;

-10-91+ |

. scanf(-1, yytext, "%d", &k);

printf ("%d", k%7 == 0? k+3
|

-?0-9.1+ ECHO,

{A-Za-z][A-Za-z0-91+ ECHO;

46 ¥

Numerical strings containing a ‘“.” or preceded by a letter
will be picked up by one of the last two riles, and not
changed. The if-else has been replaced by a C conditional
expression to save space; the form a?b:c means “if a
then belse ¢,

For an example of statistics gathering, here is a pro-
gram which histograms the lengths of words, where a
word is defined as a string of letters.

int lengs[100];
%%
fa-z] + Ilengs[yyleng]++;
\n s
%%
{ywrap()
int i;

printf("Length No. words\n");
for(i=0; i< 100; i+ +)
if (engsli} > 0)
printf ("%5d%10d\n",i,lengsi]);
return(1};

This program accumulates the histogram, while producing
no output. At the end of the input it prints the table.
The final statement return{(1); indicates that Lex is to per-
form wrapup. If yvwrap returns zero (false) it implies
that further input is available and the program is to con-
tinue reading and processing. To provide a yywrap that

1K)

never returns true causes an infinite loop.

As a larger example, here are some parts of a program
written by N. L. Schryer to convert double precision For-
tran to single precision Fortran. Because Fortran does
not distinguish upper and lower case letters, this routine
begins by defining a set of classes including both cases of
each letter:

a [aA)
b [bB])
c [eCl
z [z2)

An additional class recognizes white space:

W [\t]e
The first rule changes **double precision™ to *‘real”, or
“DOUBLE PRECISION" to ““REAL™. ’

{d}{o}{u}{bH1}He} {WHp}{r}{eHcHi}{sHiHo}{n]} {
printf (yytext [0]=="d"? "real" : "REAL");

Care is taken throughout this program to preserve the
case {(upper or lower) of the original program. The condi-
tional operator is used to select the proper form of the
keyword. The next rule copies continuation card indica-
tions to avoid confusing them with constants:
™ *{"0] ECHO;

In the regular expression, the quotes surround the blanks.
It is interpreted as ‘‘beginning of line, then five blanks,
then anything but blank or zero.” Note the two different
meanings of . There follow some rules to change double
precision constants to ordinary floating constants.

[0-91+{WHal (W} [+-]1?{W}[0-9]1+ |
0-9) +{wi . (whdaliwl[+-]7{wllo-9]+ |
« {W}H0-9] +{WHdH{W}H+-12{W}0-9]+ {
{+ convert constants */
for(r=yytext; wpl=0;p++)

if (sp =='d’|p == D)
sp=+ gl !dr,'

ECHO,

}

After the floating point constant is recognized, it is
scanned by the for loop to find the letter 4 or D. The
program than adds ‘e’-‘d’, which converts it to the next
letter of the alphabet. The modified constant, now
single-precision, is written out again. There follow a
series of names which must be respelled to remove their
initiat d By using the array ytex: the same action
suffices for all the names (only a sample of & rather long
list is given here).

LEX—11

{aH{sHiHn} |
{dHcHol(s) |
{¢HsHql{r){t} |
{dHalt){aln} |
:[:i}{i' HilolHaHil printf ("%s", yytext+1);

Another list of names must have initial d changed to ini-
tial a:

{d}{1} (oHzgl |
{d}{1}{o}{g}10 |
{d}{m}{itnlt |
{d{{mMHalixi1 |
' yytext[0] =+ %'- 'd"
}ECHO;

And one routine must have initial & changed to initial ~

{dh{mHalclih} {yytext[0) =+ 7 - g%

To avoid such names as dsinx being detected as instances
of dsin, some final rules pick up longer words as
identifiers and copy some surviving characters:

(A-Za-z][A-Za-20-9]+ |
[0-9]+ I
\n |
; ECHO:

Note that this program is not complete; it does not deal
with the spacing problems in Fortran or with the use of
keywords as identifiers.

10 Left Context Sensitivity.

Sometimes it is desirable to have several sets of lexical
rules to be applied at different times in the input. For ex-
ample, a compiler preprocessor might distinguish prepro-
cessor statements and analyze them differently from ordi-
nary statements. This requires sensitivity to prior con-
text, and there are several ways of handling such prob-
lems. The ° operator, for example, is a prior context
operator, recognizing immediately preceding left context
just as § recopnizes immediately following right context.
Adjacent left context could be extended, to produce a fa-
cility similar to that for adjacent right context, but it is
unlikely to be as useful, since often the relevant left con-
text appeared some time earlier, such as at the beginning
of a line.

This section describes three means of dealing with
different environments: & simple vse of flags, when only a
few rules change from one environment to another, the
use of start conditions on rules, and the possibility -of
mazking multiple lexical analyzers all run together. In
each case, there are rules which recognize the need to
change the environment in which the following input text

is analyzed, and set some parameter to reflect the change.
This may be a flag explicitly tested by the user’s action
code; such a flag is the simplest way of dealing with the
problem, since Lex is not involved at all. It may be more
convenient, however, to have Lex remember the flags as
initial conditions on the rules. Any rule may be associat-
ed with a start condition. [t will only be recognized when
Lex is in that start condition. The current start condition
may be changed at any time. Finally, if the sets of rules
for the different environments are very dissimilar, clarity
may be best achieved by writing several distinct lexical
analyzers, and switching from one 1o another as desired.

Consider the following problem: copy the input to the
output, changing the word magic to first on every line
which began with the letter a, changing magic to second
on every line which began with the letter b, and changing
magic to third on every line which began with the letter c.
All other words and all other lines are left unchanged.

These rules are so simple that the easiest way 1o do this
job is with a fag:

int flag;
%%
“a {flag = "a", ECHO;}
b {flag = ‘b", ECHO;}
“c {fMag = "¢, ECHO;}
\n {fag = 0; ECHG;}
magic |

switch (flag)

case ‘a”: printf("first"); break;
case 'b’: printf("second™); break;
case 'c”: printf("third"); break;
ilefault: ECHO:; break;

}

should be adequate.

To handle the same problem with start conditions, each
start condition must be introduced to Lex in the
definitions section with a line reading

%Start namel name?2 ..,
where the conditions may be named in any order. The
word Start may be abbreviated to s or 8 The conditions

may be referenced at the head of a rule with the <>
brackets:

< namel > expression

is a rule which is only recognized when Lex is in the start
condition ramel. To enter a start condition, execute the
action statement

BEGIN namel;

which changes the start condition to namel. To resume
the normal siate,

LEX—12

BEGIN 0;

resets the initial condition of the Lex automaton inter-
preter. A rule may be active in several start conditions:

<namel,name2,name3>
is a legal prefix. Any rule not beginning with the <>
prefix operator is always active.

The same example as before can be written:

%START AA BB CC

%%

"a {ECHO; BEGIN AA;}
b |ECHO; BEGIN BB;}
"¢ : |ECHO:; BEGIN CC;}
\n {ECHO; BEGIN 0;}
< AA>magic printf ("first");

< BB>magic printf ("second");

< CC>magic printf ("third");

where the logic is exactly the same as in the previous
method of handling the problem, but Lex does the work
rather than the user’s code.

11 Character Set.

The programs generated by Lex handle character 1/0
only through the routines input, output, and unput. Thus
the character representation provided in these.routines is
accepted by Lex and employed to return values in yyfext.
For internal use a character is represented as a small in-
teger which, if the standard library is used, has a value
equal to the integer value of the bit pattern representing
the character on the host computer. In C, the I/O rou-
tines are assumed to deal directly in this representation.
In Ratfor, it is anticipated that many users will prefer
left-adjusted rather than right-adjusted characters; thus
the routine Jexshf is called to change the representation
delivered by input into a right-adjusted integer. If the
user changes the 170 library, the routine lexshf shouid
also be changed to a compatible version. The Ratfor li-
brary [/0O system is arranged to represent the letter a as
in the Fortran value JHag while in C the letter a is
represented as the character constant ‘a’. If this interpre-
tation is changed, by providing 1/0O routines which
translate the characters, Lex must be told about it, by giv-
ing a translation table. This table must be in the
definitions section, and must be bracketed by lines con-
taining only “%T". The table contains lines of the form

{integer} {character string)

which indicate the value associated with each character.
Thus the next example maps the lower-and upper case
letters together into the integers 1 through 26, newline
into 27, + and - into 28 and 29, and the digits into 30
through 39. Note the escape for newline. If a table is
supplied, every character that is to appear either in the

%T

1 Aa

Bb

% 2z
21
28 +
9 -
o 0
k]| 1
v 9
%T

Sample character table.

rules or in any valid input must be included in the table.
No character may be assigned the number 0, and no char-
acter may be assigned a bigger number than the size of
the hardware character set.

It is not likely that C users will wish to use the charac-
ter table feawure; but for Fortran portability it may be
essential.

Although the contents of the Lex Ratfor library rou-
tines for input and output run almost unmodified on
UNIX, GCOS, and 05/370, they are not really machine
independent, and would not work with CDC or Bur-
roughs Fortran compilers. The user is of course welcome
to replace input, output, unput and lexshf but to replace
them by completely portable Fortran routines is likely to
cause a substantial decrease in the speed of Lex Ratfor
programs. A simpie way to produce portable routines
would be to leave input and oufput as routines that read
with 80A1 format, but replace lexshf by a table lookup
routine,

12 Summary of Source Format.
The general form of a Lex source file is:

{definitions]

%%

{rules)

%%

luser subroutines)

The definitions section contains a combination of
1) Definitions, in the form ‘*name space transla-
tion™.
2) Included code, in the form “‘space code’”.
3) Included code, in the form

%
code
Y

LEX—13

4) Start conditions, given in the form
%S namei name2 ...
$) Character set tables, in the form

%BT
number space character-string

%T
6) A language specifier, which must also precede any

rules or included code, in the form “‘%C* for C
or “%R" for Ratfor.

7) Changes to internal array sizes, in the form
%x nnn

where nnn is a decimal integer representing an ar-
ray size and x selects the parameter as follows:

Letter Parameter
p positions
n states
€ tree nodes
a transitions
k packed character classes
o output array size

Lines in the rules section have the form ‘“‘expression ac-
tion”* where the action may be continued on succeeding
lines by using braces to delimit it.

Regular expressions in Lex use the following operators:

X the character "x"

"x" an “x", even il X is an operator,

\x an "x", even if x is an operator,

[xyl the character X or ¥.

[x-2] the characters x, y or z.

["x] any character but x.

. any character but newline.

"x an x at the beginning of 2 line.
<y>x an X when Lex is in start condition y.
x$ an X at the end of a line.

x? an optional x.

X 0,1,2, ... instances of x. °

x+ 1,2,3, ... instances of x.

xy an X or a v.

x) an x.

x/y an X but only if followed by y.

{xx) the translation of xx from the definitions section.
x{m,n} mthrough a cecurrences of x

13 Caveats and Bugs,

There are pathological expressions which produce ex-
ponential growth of the tables when converted to deter-
ministic machines; fortunately, they are rare.

REJECT does not rescan the input; instead it
remembers the results of the previous scan. This means
that if a rule with lrailing context is found, and REJECT
executed, the user must not have used unput to change
the characters forthcoming from the input stream. This is
the only restriction on the user’s ability Lo manipulate the
not-yet-processed input.

TSO Lex is an older version. Among the non-
supported features are REJECT, start conditions, or vari-
able length trailing context, And any significant Lex
source is too big for the IBM C compiler when translated.

14 Acknowledgments.

As should be obvious from the above, the outside of
Lex is patterned on Yacc and the inside on Aho’s string
matching routines. Therefore, both S. C. Johnson and A.
V. Aho are really originators of much of Lex, as well as
debuggers of it. Many thanks are due io both.

The code of the current version of Lex was designed,
written, and debugged by Eric Schmidt.

15 References.

1. B. W. Kernighan and D. M. Ritchie, The C Pro-
gramming Language, Prentice-Hall, N. J. (1978).

2. B. W. Kernighan, Ra{fm-:'A Preprocessor for a
Rational Fortran, Software — Practice and Experi-
ence, 5, pp. 395-496 (1975).

3. 5. C. Johnson, Yacc: Yet Another Compiler Com-
piler, Computing Science Technical Report No.
32, 1975, Bell Laboratories, Murray Hill, NJ
07974.

4. A. V. Aho and M. J. Corasick, Efficient String
Matching: An Aid to Bibliographic Search, Comm.
_ ACM 18, 333-340 (1975).

5.. B. W.; Kernighan, D. M. Ritchie and K. L.
" - Thompson, QED Text Editer, Computing Science
* .. Technical Report Neo. 5, 1972, Bell Laboratories,
" Murray Hill, NJ 07974.

6. D. M. Ritchie, private communication. See also
M. E. Lesk, The Portable C Library, Computing
Science Technical Report No. 31, Bell Labora-
tories, Murray Hill, NJ 07974,

M4

The M4 Macro Processor

Brign W. Kernighan
Dennis M. Ritchie

Bell Labdratories
Murray Hill, New Jecsey 07974

ABSTRACT

M4 is a macro processor available on UNIXT and GCOS. Its primary use
has been as a front end: for Ratfor for those cases where parameterless macros
are not adequately powerful. It has also been used for languages as disparate as
C and Cobol. M4 is particularly suited for functional languages like Fortran,
PL/I and C since macros are specified in a functional notation.

M4 provides features seldom found even in much larger macro proces-
sors, including

® arguments

. condition testing
arithmetic capabilities
string and substring functions
file manipulation

®

This paper is a user’s manual for M4.

Juiy 1, 1977

T UNIX is a Trademark of Bell Laboratories.

The M4 Macro Processor

Brian W. Kernighan
Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

A macro processor is a useful way to
enhance 2 programming language, to make
it more palatable or more readable, or to
tailor it to a particular application. The
#define statement in C and the analogous
define in Ratfor are examples of the basic
facility provided by any macro processor —
replacement of text by other text.

The M4 macro processor is an exten-
sion of a macro processor cailed M3 which
was written by D. M. Ritchie for the AP-3
minicomputer; M3 was in turn based on a
macro processor implemented for [1].
Readers unfamiliar with the basic ideas of
macro processing may wish to read some of
the discussion there.

M4 is a suitable front end for Ratfor
and C, and has also been used successfully
with Cobol. Besides the straightforward
replacement of one string of text by
another, it provides macros with arguments,
conditional macro expansion, arithmetic, file
manipulation, and some specialized string
processing functions.

The basic operation of M4 is to copy
its input to its output. As the input is read,
however, each alphanumeric ““token’ (that
is, string of letters and digits) is checked. If
it is the name of a macro, then the name of
the macro is replaced by its defining text,
and the resulting string is pushed back onto
the input to be rescanned. Macros may be
called with arguments, in which case the
arguments are collected and substituted into
the right places in the defining text before it
is rescanned.

M4 provides a collection of about
twenty built-in macros which perform vari-
ous useful operations; in addition, the user

can define new macros. Built-ins and user-
defined macros work exactly the same way,
except that some of the built-in macros have
side effects on the state of the process.

Usage
On UNIX, use

md [files]

Each argument file is processed in order; if
there are no arguments, or if an argument is
‘—? the standard input is read at that point.
The processed text is written on the stan-
dard output, which may be captured for sub-
sequent processing with

m4 ffiles! > outputfile

On GCOS, usage is identical, but the pro-
gram is called ./m4d. .

Defining Macros:

The primary built-in function of M4 is
define, which is used to define new macros.
The input

define(name, stuff)

causes the string name to be defined as
stuff. All subsequent occurrences of name
will be replaced by stuff. name must be
alphanumeric and must begin with a letter
(the underscore _ counts as a letter). stuff
is any text that contains' balanced
parentheses; it may stretch over multiple
lines.

Thus, as a typical example,
define(N, 100)

ifi >N
defines N to be 100, and uses this "symbolic

constant’ in a later if statement.

The left parenthesis must immediately
follow the word define, to signal that define
has arguments. If a macro or built-in name
is not followed immediately by ", it is
assumed to have no arguments. This is the
situation for N above; it is actually a macro
with no arguments, and thus when it is used
there need be no (...} following it.

You should also notice that a macro
name is only recognized as such if it appears
surrounded by non-zlphanuomerics. For
example, in

define{N, 100}

if (NNN > 100)

the variable NNN is absolutely unrelated to
the defined macro N, even though it con-
tains a lot of N's.

Things may be defined in terms of
other things. For example,

define(N, 100)
define(M, N)

defines both M and N to be 100.

What happens if N is redefined? Or,
to say it another way, is M defined as N or
as 1007 In M4, the latter is true — M is
106G, so even if N subsequently changes, M
does not.

This behavior arises because M4
expands macro names into their defining
text as soon as it possibly can. Here, that
means that when the string N is seen as the
arguments of define are being collected, it is
immediately replaced by 100; it’s just as if
you had said

define(M, 100)

in the first place.

If this isn’t what you really want, there
are two ways out of it. The first, which is
specific to this situation, is to interchange
the order of the definitions:

define(M, N)
define(N, 100)

Now M is defined to be the string N, so
when you ask for M later, you’ll always get
the value of N at that time {because the M
will be replaced by N which will be replaced
by 100).

Quoting

The more general solution is to detay
the expansion of the arguments of define by
quoting them. Any text surrounded by the
single quotes ° and " is not expanded
immediately, but has the quotes stripped off.
If you say

define(N, 100)
define(M, 'N’)

the quotes around the N are stripped off as
the argument is being collected, but they
have served their purpose, and M is defined
as the string N, not 100. The general rule is
that M4 always strips off one level of single
quotes whenever it evaluates something.
This is true even outside of macros. If you
want the word define to appear in the out-
put, you have to quote it in the input, as in

‘define’ = 1;

As enother instance of the same thing,
which is a bit more surprising, consider
redefining N:

define (N, 100)

define (N, 200)

Perhaps regrettably, the N in the second
definition is evaluated as soon as it’s seem;
that is, it is replaced by 100, so it's as if you
had written

define(100, 200)

This statement is ignored by M4, since you
can only define things that look like names,
but it obviously doesn’t have the effect you
wanted. To really redefine N, you must
delay the evaluation by quoting:

define(N, 100)
defineCN’, 200)
In M4, it is often wise to quote the first

argument of a macro.

If * and * are not convenient for some
reason, the quote characters can be changed
with the built-in changequote:

changequote(],)

makes the new quote characters the left and
right brackets. You can restore the original
characters with just

changequote

There are two additional built-ins
related to define. undefine removes the
definition of some macro or built-in:

undefine{'N")

removes the definition of N. (Why are the
quotes absotutely necessary?} Built-ins can
be removed with undefine, as in

undefine (‘define’)

but once you remove one, you can never
get it back.

The built-in ifdef provides a way to
determine if a macro is currently defined.
In particular, M4 has pre-defined the names
unix and gcos on the corresponding sys-
tems, so you can tell which one you're
using:

ifdef('unix’, ‘define{(wordsize,16)")
ifdef('gcos’, 'define(wordsize,36))

makes a definition appropriate for the partic-
ular machine. Don’t forget the quotes!

ifdef actually permits three arguments;
if the name is undefined, the value of ifdef
is then the third argument, as in

ifdef Cunix’, on UNIX, not on UNIX)

Arguments

So far we have discussed the simplest
form of macro processing — replacing one
string by another (fixed) string. User-
defined macros may also have arguments, so
different invocations can have different
results. Within the replacement text for a
macro {the second argument of its define)
any occurrence of $n will be replaced by the
nth argument when the macro is actually
used. Thus, the macro bump, defined as

define(bump, $1 = §1 + 1)

generates code to increment its argument by
1:

bump(x)

x=x+4+1

A macro can have as many arguments
as you want, but only the first nine are
accessible, through $1 to $9. (The macro

name itself is 80, although that is less com-
monly used.) Arguments that are not sup-
plied are replaced by null strings, so we can
define a macro cat which simply concatan-
ates its arguments, like this:

define(cat, $152$354$5%65$758%9)

* Thus

cat{x, y, z)
is equivalent to
Xyz

$4 through $9 are null, since no correspond-
ing arguments were provided.

Leading unquoted blanks, tabs, or
newlines that occur during argument collec-
tion are discarded. All other white space is

. retained. Thus

b o
defines atobe b «c.

definefa,

Arguments are separated by commas,
but parentheses are counted properly, so a
comma “protected™ by parentheses does not
terminate an argument. That is, in

define(a, (b,c))

there are only two arguments; the second is
literally (b,e}). And of course a bare comma
or parenthesis can be inserted by quoting it.

Arithmetic Built-ins

M4 provides two built-in functions for
doing arithmetic on integers (only). The
simplest is iner, which increments its
numeric argument by 1. Thus to handle the
commgon programming situation where you
want & variable to be defined as “one more
than N*, write

define(N, 100)
define(N1, “incr(N)’)

Then N1 is defined as one more than the

. current value of N.

The more general mechanism for
arithmetic is a built-in called eval, which is
capable of arbitrary arithmetic on integers.
It provides the ocperators {in decreasing
order of precedence)

unary + and —
*» or " {exponentiation)
» [/ % (modulus)

' (not)
& or && (logical and)
lorll (logical or)

Parentheses may be used to group opera-
tions where needed. All the operands of an
expression given to eval must ultimately be
numeric. The numeric value of a true rela-
tion (like 1>0} is 1, and false is 0. The
precision in eval is 32 bits on UNIX and 36
bits on GCOS.

As a simple example, suppose we want
Mto be 2«+N+1. Then

define(N, 3)
define(M, ‘eval(2++*N+1)")

As a matter of principle, it is advisable to
quote the defining text for a macro unless it
is very simple indeed (say just a number); it
usually gives the result you want, and is a
good habit to get into.

File Manipulation

You can include a new file in the input
at any time by the built-in function include:

include (filename)

inserts the contents of filename in place of
the include command. The centents of the
file is often a set of definitions. The value
of include (that is, its replacement text) is
the contents of the file; this can be captured
in definitions, etc.

It is a fatal error if the file named in
include cannot be accessed. To get some
control over this situation, the alternate
form sinclude can be used; sinclude (“'silent
include’) says nothing and continues if it
can’t access the file.

It is also possible to divert the output
of M4 to temporary files during processing,
and output the collected material upon com-
mand. M4 maintains nine of these diver-
sions, numbered 1 through 9. If you say

divert{(n)

all subsequent output is put onto the end of
a temporary file referred to as n. Diverting
to this file is stopped by another divert com-

mand; in particular, divert or divert{0)
resumes the normal output process.

Diverted text is normally cutput all at
once at the end of processing, with the
diversions output in numeric order. It is
possible, however, to bring back diversions
at any time, that is, to append them to the
current diversion.

undivert

brings back all diversions in numeric order,
and undivert with arguments brings back
the selected diversions in the order given.
The act of undiverting discards the diverted
stuff, as does diverting into a diversion
whose number is not between 0 and 9
inclusive,

The value of wundivert is nor the
diverted stuff. Furthermore, the diverted
material is not rescanned for macros.

The built-in divaum returns the
number of the currently active diversion.
This is zero during normal processing.

System Command

You can run any program in the local
operating system with the sysemd built-in.
For example,

sysemd{date)

on UNIX runs the date command. Normally
syscmnd would be used to create a file for a
subsequent include.

To facilitate making unique file names,
the built-in maketemp is provided, with
specifications identical to the system func-
tion mktemp: a string of XXXXX in the
argument is replaced by the process id of the
current progess.

Conditionals

There is a built-in called ifelse which
enables you to perform arbitrary conditional
testing. In the simplest form,

ifelse(a, b, c, d)

compares the two strings a and b. If these
are identical, ifelse returns the string ¢; oth-
erwise it returns d. Thus we might define a
macro called compare which compares two
strings and returns “yes” or "no” if they
are the same or different.

define (compare, ‘ifelse($1, $2, yes, no)’)

Note the quotes, which prevent too-early
evaluation of ifelse, '

If the fourth argument is missing, it is
treated as empty.

ifelse can actually have any number of
arguments, and thus provides a limited form
of multi-way decision capability. In the
input

ifelse(a, b, ¢, d, &, f, g)

if the string a matches the string b, the
result is c¢. Qtherwise, if d is the same as e,
the result is £ Otherwise the result is g. If
the final argument is omitted, the result is
null, so

ifelse(a, b, ¢)

is ¢ if a matches b, and null otherwise.

String Manipulation
The built-in len returns the length of
the string that makes up its argument. Thus
len (abedef)

is 6, and len((a,b)) is 5.

The built-in substr can be used to pro-
duce substrings of strings. substr(s, i, n)
returns the substring of s that starts at the
ith position (origin zero), and is n charac-
ters long. If n is omitted, the rest of the
string is returned, so

substr('now is the time’, 1)
is

ow is the time
If i or n are out of range, various sensibie
things happen.

index (s1, s2) returns the index (posi-
tion} in sl where the string s2 occurs, or
—1 if it doesn’t occur. As with substr, the
origin for strings is 0.

The built-in translit performs charac-
ter transliteration.

translit(s, f, 1)

modifies s by repiacing any character found
in £ by the corresponding character of t.
That is,

translit(s, aeiou, 12345)

replaces the vowels by the corresponding
digits. If t is shorter than f, characters
which don’t have an entry in t are deleted;
as a limiting case, if t is not present at all,
characters from f are deleted from s. So

translit(s, aeiou)

deletes vowels from s.

There is also a built-in called dnl
which deletes all characters that follow it up
to and including the next newline; it is use-
ful mainly for throwing away empty lines
that otherwise tend to clutter up M4 output.
For example, if you say

define(N, 100)
define (M, 200)
define(L, 300)

the newline at the end of each line is not
part of the definition, so it is copied into the
output, where it may not be wanted. If you
add dnl to each of these lines, the newlines
will disappear.

Another way to achieve this, due to J.
E. Weythman, is

divert(—1)
define(...)

divert

Printing
The built-in errprint writes its argu- -

ments out on the standard error file. . Thus *

you can say

errprint (‘fatal error’)

dumpdef is a debugging aid which
dumps the current definitions of defined
terms. If there are no arguments, you get
everything; otherwise you get the ones you
name as arguments. Don’t forget to quote
the names!

Summary of Built-ins

Each entry is preceded by the page
number where it is described.

changequote(L, R)

define (name, replacement)
divert (number)

divhum

dnl

dumpdef{'name’, ‘name’, ...)
errprint{s, s, ...)

eval (numeric expression)
ifdef ("name’, this if true, this if false)
ifelse(a, b, c, d)

include(file) .

incr{number)

index (s1, s2)

len (string)
maketemp (... XXXXX...)
sinclude (file) '
substr(string, position, number)
syscmd (s)

translit (str, from, to)
undefine "name”)

undivert (number,number,...)

Pl n bvhd fBhr Wb AW R BB

Acknowledgements

We are indebted to Rick Becker, John
Chambers, Doug Mcllroy, and especially
Jim Weythman, whose pioneering use of
M4 has led to several valuable improve-
ments. We are also deeply grateful to
Weythman for several substantial contribu-
tions to the code.

References

(11 B. W. Kernighan and P. J. Plauger,
Software Tools, Addison-Wesley, Inc.,
1976.

My

UNIiX Remote Job Entry User’s Guide

A. L. Sabsevitz
K. A. Kelleman

. Bell Laboratories
Piscataway, New Jersey 08854

1. PREFACE

A set of background processes running under UNIXt support remote job entry to IBM Sys-
tem/360 and /370 host computers. RJE is the communal name for this subsystem.! UNIX
communicates with IBM’s Job Entry Subsystem by mimicking an 1BM 360 remote multileaving
work station. The UNIX User's Manual entry rje(8) summarizes its design and operation. The
manual also contains a description of the send(1C) command, which is the user’s primary
method of submitting jobs to RJE, and rjestat{1C), which allows the user to monitor the status
of RJE and to send operator commands to the host system. This guide is a tutorial overview of
RIE and is addressed to the user who needs to know how to use the system, but does nor need
to know details of its implementation. The two following sections constitute an introduction to
RIE.

2. PRELIMINARIES

To become a UNIX user, you must receive a login name that identifies you to the UNIX system.
You should also get a copy of the UNLX User's Manual; it contains a fairly complete description
of the system and includes the section How to Gert Started, which introduces you to UNIX; you
should read that section before proceeding with this guide.

In order to begin using RJE, you need only become familiar with a subset of basic commands.
You must understand the directory structure of the file system, and you should know some-
thing about the attributes of files: see cd(1), chmod(1), chown(1), cp(1), In(1), Is(1), mkdir(1),
mv(1), rm(1). You must know how to enter, edit, and examine text files: see car(1), ed(1)},
pr(1). You should know how to communicate with other users and with the system: see
mail(1), mesg(1), who(l), write(1). And, finally, you might have to know how to describe
your terminal to the system: see asai(5), sity(1), tabs(1).

3. BASIC RJE

Let's suppose that you have used the editor, ed(1), to create the file, jobfile, that contains your
job control statements (ICL) and input data. This file should look exactly like a card deck,
except that for convenience alphabetic characters may be in either upper or lower case. Here is
an example: . .

+ UNIX is a trademark of Bell Laberatories.

1. In this paper, RJE refers to the facilitics provided by UNIX, and not 10 the Remote Job Entry feature of IBM's
HASP and JES subsystems.

2 UNIX RJE User's Guide

$ cat jobfile
//gener job (9999,r740),pgmrname,class=x usr=(mylogin,myplace)
//step exec pgm=iebgener
//sysprint dd sysout=a
//sysin dd dummy
//sysut2 dd sysout=a
[fsysutl dd =
first card of data

‘last card of data
/n
To submit this job for execution, you must invoke the send{1C) command: .
$ send jobfile

[

The system will reply:

10 cards .
Queued as fusr/rje/rd3125

Note that send tells you the number of cards it submitted and reports the file name that con-
tains your job in the queue of all jobs waiting to be transmitted to the host system. Until the
transmission of the job actually begins, you can prevent the job from being transmitted by
doing a chmod 0 on the queued file to make it unreadable. For our example, you could say:

chmod 0 fusrfrje/rd3125

When your job is accepted by the host system, a job number will be assigned to it, and an ack-
nowledgement message will be generated. This indicates that your job has been scheduled on
the host system. Later, after the job bas executed, its output will be returned to the UNIX sys-
tem. You will be notified automatically of both of these events: if you are logged in when RJE
detects these events, and if you are permitting messages to be sent to your terminal (see
" mesg(1)). The following two messages will be sent to you (still using the example above) when
the job is scheduled and when the output is returned, respectively:

Two bells

12:18:42 gener job 384 —— rd3125 acknowledged
Two bells -

12:21:54 gener job 384 —— /fal/user/rjef/prnt0 ready

Two bells, with an interval of one second between them, precede each message. They shouid
be interpreted as a warning to stop typing on your terminal, so that the imminent message is
not interspersed with your typing.

L

If you are not logged in when one of these events occurs, or if you do not allow messages to be
sent to your terminal, then the notification will be posted to you via the mail(1) command.
You can prevent messages directly by executing the mesg(1) command, or indirectly by execut-
ing another command, such as pr(1), which prohibits messages for as long as it is active. You
may inspect (by invoking the mail command) your mail file (/usr/mail/logname) at any time for
messages that have been diverted. Setting your MAIL variable to the name of your mail file
will cause the shell to notify you when mail arrives. For this example, the mail might look as
follows: : ’

—

UNIX RJE User's Guide _ 3
$ mail)
From rje Mon Aug 1 12:20:36 1977
12:18:42 gener job 384 —— rd3125 acknowledged
T d

From rje Mon Aug 1 12:21:55 1977
12:21:54 gener job 384 —— /al/user/rje/prntQ ready

?2d

The job acknowledgement message performs two functions. First, it confirms the fact that your
job has been scheduled for eventual execution. Second, it assigns a number to the job in such

a way that the number and the name together will uniquely identify the job for seme period of
time.

The output ready message provides the name of a UNIX file into which output has been written
and identifies the job to which the output belongs (see Is(1)):

$1s —1 prnt0
—r——r—xr—— 1 e 1184 Aug 1 12:21 pmt0

Note that rje retains ownership of the output and allows you only read access to it. It is
intended that you will inspect the file, perhaps extract some information from it, and then
promptly delete it (see rm(1)): ;

$ rm —f prnt0

The retention of machine-generated files, such as RJE output, is discouraged. It is your respon-
sibility to remove files from your RJE directory. RJE output files may be truncated if the output
excecds a set limit. This limit is tunable by the system administrator. Output beyond the
current limit will be discarded, with no provision for retrieval. If the output were truncated in
the previous example, the second notification message would have been:

Two bells
12:21:54 gener job 384 —— falfuser/rje/prnt0 ready (truncated)

The user should also be aware that RJE attempts 1o keep a set number of blocks free on any file
system it uses. This number is also tunable by the system administrator. Warning messages or
suspension of certain functions will occur as this limit is approached.

The most elementary way to examine your output is to caf it to your terminal. The Appendix
of this document shows the result of listing the output of our sample job in this way. Because
UNIX has no high volume printing capability, you should route to the host’s printer any large
listings of which you desire a hard copy.

The structure of an output listing will generally conform to the following sequence:

HASP log

el information
data sets
HASP end

Normally burst pages will not be present. Single, double, and triple spacing is reflected in the
output file, but other forms controls, such as the skip to the top of a new page, are suppressed.

Page boundaries are indicated by the presence of a blank {space character} at the end of the Jast
line of each page.

The big file scanner df5(1) or the context editor ed(1) provide a more flexible method than

car(1) for examining printed output; &fs can handle files of any size and is more efficient than
ed for scanning files.

-

4) UNIX RJE User’s Guide

RIE is also capable of receiving punched output as formatted files (see pnck(5)); this format
allows an exact representation of an arbitrary card deck to be stored on the UNIX machine.
However, there are few commands that can be used to manipulate these files. You will prob-
ably want to route your punched output to one of the host's output devices.

4. SEND COMMAND

The send(1C) command is capable of more general processing than has been indicated in the
previous section. In the first place, it will concatenate a sequence of files to create a single job
stream. This allows files of JCL and files of data to be maintained separately on the UNIX
machine: In addition, it recognizes any line of an input file that begins with the character ™ as
being a comtrol line that can call for the inclusion, inside the current file, of some other file.
This allows you to send a top level skeleton that ““pulls’ in subordinate files as needed. Some
of these may be “‘virtuai” files that actually consist of the output of UNIX ‘commands or Shell
procedures. Furthermore, the send command is able to collect input directly from a terminal,
and can be instructed to prompt for required information.

. Each source of input ¢an contain a format specification that determines such things as how to
expand tabs and how lang can an input line be. The manual entry for fspec(5S) explains how to
define such formats. When properly instructed, send will also replace arbitrarily defined key-
words by other text strings or by EBCDIC character codes. (These two substitution facilities are
useful in other applications besides RJE; for that reason, send may be invoked under the name
gath to produce standard output without submitting an RJE job.)

Two options of send that everyone should be acquainted with are: the ability to specify to which
host computer the job is to be submitted, and a flag that guarantees that a job will be transmit-
ted to the hast computer in order of submission (relative to other jobs submitted with the same
flag). To run our sample job on a host machine known to RJE as A, we would issue the com-
mand:

$ send A jobfile

When no host is explicitly cited, send makes a reasonable choice.

To insure that a job will be transmitted in order of submission, set the —x flag:
$ send —x jobfile

This flag should be used sparingly. The complete list of arguments and ﬂags that control the
execution of send can be found in send(1C).

5. JOB STREAM

It is assumed that the job stream submitted as the result of a single execution of send consists
of a single job, i.e., the file that is queued for transmission should contain one JOB card near
the beginning and no others. A priority control card may legitimately precede the JOB card.
The JOB card must conform to the local installation’s standard. At BISP, it has the following
structure:

//name job {acctl,...]),pgmrnamel,keywds="?] [usr=...]

6. USER SPECIFICATION

A *‘usr’ specification is required on print or punch output that is to be delivered to a UNIX:

user.
usr={login,place, {level])

where login is the UNIX login name of the user, leve/ is the desired level of notification (see end
of this section for an explanation), and place is as follows:

UNIX RJE User's Guide 5

A. 1If place is the name of a directory (writable by others), then the output file is placed there
as a unique prat or pach file. The mode of the file will be 454. '

B. If place is the name of an existing, writable (by others), non-executable {by others) file,
then the output fle replaces it. The mode of the file will be 454,

C. If place is the name of a non-existent file in a writable (by others) directory, then the out-
put file is placed there. The mode of the file will be 454.

D. If place is the name of an executable (by others) file, then the RIE output is set up as
standard input to place, and place is executed. Five string arguments are passed to place.

For example, if place is a shell procedure, the following arguments are passed as $t ...
55:

1. Flag indicating whether file space is scarce in the file system where place resides. A
0 indicates that space is not scarce, while 1 indicates that it is.

Job name.

Programmer’s name.

Job number.

Login name from the “usr=..." specification,

bl ol ol o

A ;" is passed if a value is not present. The current directory for the execution of place
will be set to the directory containing place. The environment (see¢ environ(T)) will con-
tain values for LOGNAME and HOME based on the login name from the “usr=..."
specification, and a value for TZ. Since the login name supplied on the “‘usr=..."
specification cannot be believed for security purposes, the UID will be set to a reserved
vatue.

E. Inall other cases, the output wili be thrown away.

The place value must not be a full path name, unless it refers to an executable file (see D
above). For cases A, B, and C above (and case D, if a full path name is not supplied), the
name of the user’s login directory will be used to form a full path name.

The “usr=..."" field may occur anywhere within the first 100 card images sent and within the
first 200 output images received by the UNIX system. The only restriction is that it be con-
tained completely on a single line or card-image. Therefore, the ‘‘usr=..." field may be
placed on a JOB card or comment card. It may also be passed as data.

For redirection of output by the host, a *‘usr=.,..” card, if not already present, must be sup-

plied by the user. This can be done by placing a job step that creates this card before your out-
put steps.

Messages generated by RIE or passed on from the host are assigned a level of importance rang-
ing from 1 t0 9. The levels currently in use are:

3 transmittal assurance
5 job acknowledgement
6 output ready message

The optional level field of the ‘“‘usr=..." specification must be a one or two-digit code of the
form mw. A message from the host with importance x (where x comes from the above list) is
compared with each of the two decimal digits in level. If x=w and if the user is logged in and
is accepting messages, the message will be written to his or her terminal. Otherwise, if x=m,
the message will be mailed to the user. In all other cases, the message will be discarded. The
default level is 54. You should specify level 1 if you want to receive complete notification, and
level 59 to divert the last three messages in the above list to your mailbox,

] . UNIX RIE User's Guide

7. MONITORING RJE _

RIJE js designed to be an autonomous facility that does not require manual supervision. RJE is -

initiated automatically by the UNIX reboot procedures and continues in execution until the sys-
tem is shut down. Experience has shown RJE to be reasonably robust, although it is vulnerable
to system crashes and reconfigurations.

Users have a right to assume that when the UNIX system is up for production use, RJE will also
be up. This implies more than an ability to execute the send(1C) command, which should be
available at all times; it means that queued jobs should be submitted 1o the host for execution
and their output returned to the UNIX system. If a user cannot obtain any throughput from
RJE, he or she should so advise the UNIX operators.

The rjestat (1C) command, invoked with no arguments will report the status of all RJE links for
which a given UNIX system is configured. It may sometimes also print a'message of the day
from RJE.

$ rjestat
RIE to B cperating normally.
RJE to A down, reason: IBM not responding.

A host machine may be reported to be not responding to RJE because it is down, or because of

its operator’s failure to initialize the associated line, or because of a communications hardware
failure.

Rjestat also has the ability to send operator commands to the host machine and retrieve the
responses generated by the commands. Refer to the rjestar(1C) manual entry for a complete
description of this command.

UNILX RJE User's Guide 7

APPENDIX
Sample JES2 Output Listing

$ cat rje/prntd
14.40.31 JOB 384 SHASP373 GENER STARTED — INIT 26 — CLASS X — S5YS RRMA
§4.40.32 JOB 384 3HASPI95 GENER ENDED

— — — — — = JES? JOB STATISTICS — — — — — —
1 AUG 77 JOB EXECUTION DATE
54 CARDS READ
" 76 SYSOUT PRINT RECORDS
0 SYSOUT PUNCH RECORDS

0.01 MINUTES EXECUTION TIME

1 /{GENER JOB (9999,R740),PGMRNAME,CLASS=X JOB 384
- USR = (MYLOGIN,MYPLACE)

JNNEBGENER EXEC PGM=IEBGENER

//SYSPRINT DD DUMMY

//SYSIN DD DUMMY

//{SYSUT2 DD SYSOUT=A

//SYSUT!I DD «

[- L7 B T

-

1EF2381 ALLOC. FOR GENER 1EBGENER

1IEF231 DMY ALLOCATED TO SYSPRINT

1EF2371 DMY ALLOCATED TO SYSIN

1EF2371 JES ALLOCATED TO SYSUT2

1EF2371 JES ALLOCATED TO SYSUT1

1EF142] GENER 1ESGENER — STEP WAS EXECUTED — COND CODE 0000
IEF2851 JES2.JOB0384,SC0102 SYSOUT

IEF2851 JES2.JOB0384.810101 SYSIN

IEF373] STEP /IEBGENER/ START 77242.1440

IEF3741 STEP fIEBGENER/ STOP 71242.1440 CPU OMIN 00.135EC SRB OMIN 00.01SEC VIRT 36K SYS 188K

sasswe SERVICE UNITS=0000174 SERVICE RATE=0000268 SERVICE UNITS/SECOND
assss PERFORMANCE GROUP=005

woene EXCP COUNT BY UNIT ADDRESS

1EF3751 JOB /GENER / START 77242.1440

IEF3T6] JOB /GENER / STOP 77242.1440 CPU OMIN 00.13SEC SRE OMIN 00.01SEC

saxoes SERVICE UNITS=0000174 SERVICE RATE=0000268 SERVICE UNITS/SECOND
sowcees APPROXIMATE PROCESSING TIME= .01 MINUTES

wacme EXCPS=000000000

ssescae PROJECTED CHARGES= 01

Jirst line of data

last line of data

=05/vS2 REL 3.7 JES2» END JOBNAME=GENER BiIN=R740 _JOoB 4 =384 PGMRNAME
«05/VS82 REL 3.7 JES2« END JOBNAME=GENER BIN=RM0 JOB § =384 PGMRMNAME
+0S/VS2 REL 3.7 JES2¢« END JOBNAME=GENER BIN=RM0 JOB §==1334 PGMRNAME

$ rm —f rje/prat0

January 1981 :

.. UNIX Remote Job Entry Administrator’s Guide
M. J. Fitton '

Bell Laboratories
Piscataway, New Jersey 08854

1. INTRODUCTION
1.1 Purpose

This document is intended to augment the existing body of documentation on the design and
operation of UNIXt IBM RJE'. The reader should be familiar with rje(8), and the UNIX Remote
Job Entry User's Guide, April 1, 1980. There will be assumptions made concerning allocation of
responsibilities between UNIX and IBM operations, hardware corfiguration, etc. Although these
assumptions may not fully apply to your location, they should not interfere with the intent of

this document.

The major topics discussed in this paper are as follows:
o SETTING UP — hardware requirements and RJE generation on the IBM and UNIX systems.

» DIRECTORY STRUCTURES — the controlling RJE directory structure and a typical RJE sub-
system directory structure.

¢ RJIE PROGRAMS — programs that make up an RJE subsystem.
e UTILITY PROGRAMS — utility programs that are available for debugging or tracing.

e RJE ACOOUNTING — the accounting of jobs done by RJE, and some methods for using this
accounting data,

» TROUBLE SHOOTING — error recovery and procedures for identifying and fixing RJE prob-
lems. .

1.2 Facilities

Discussions will focus on a hypothetical RJE connection between a UNIX system, pwba, and an
IBM 370/168, referred 10 as B. We also assume that pwha is connected to an IBM 370/158,
referred to as €. The UNIX machine emulates an 1BM System/360 remote multi-leaving work
station. For more information on the multi-leaving protocol, see Appendix B of OS/¥S MVE
JES2 Logic (SY24-6000-1).

2. SETTING UP

2.1 Hardware

To use RIE on a UNIX system the foilowing hardware is needed (one per remote line):
o KMCI11-B Microprocessor — used to drive the RJE line

s DMCI11-DA or DMCI11-FA line unit — the DMC11-DA interfaces with Bell 208 and 209 syn-
chronous modems or equivalent. Speeds of up to 19,200 bits per second can be used. The
DMCI1-FA interfaces with Bell 500 A LI/5 synchronous modems or equivalent. Speeds of
up to 250,000 bits per second can be used.

1 UNIX is a trademark of Bell Laboratories.

1. In this paper, RIE refers to the facilities provided by UNIX and #or 10 the Remote Job Entry feature of 1BM's
HASP and JES2 subsystems. :

2 UNIX RJE Administrator's Guide

Cn the DMC11 line unit, the Cyclic Redundancy Check (CRC) switch should be set to inhibit
automatic transmission of CRC bytes. The line unit should hold the line at logical zero when
inactive. For a more detailed description of the above hardware, see Terminals and Communica-
tions Handbook, Digital Equipment Corporation, 1979.

2.2 IBM Geaneration

The following applies to the host IBM system. The remote line to the UNIX machine should be
described as a System/360 remote work station. The following parameters must be initialized
and mest agree with their counterparts on the UNIX machine:

o Number of printers (NUMPR) — the number of logical printers (up to 7)
@ Number of punches (NUMPU) ~- the number of logical punches (up to 7)
e Number of readers (NUMRD) — the number of logical readers (up to 7)
The JES2 parameters for our hypothetical connection to IBM system B are as follows:

RMTS S/360,LINE=5,CONSOLE,MULTI,TRANSP,NUMPR =5,
NUMPU=1,NUMRD=5ROUTECDE=5.

R5.PR1 PRWIDTH=132

R5.PR2 PRWIDTH=132

RS5.PR3 PRWIDTH=132

RS5.PR4 PRWIDTH=~132

R5.PR5 PRWIDTH=132

RS5.PU1 NOSUSPND

R5.RD1 PRIOINC=0,PRIOLIM=14

R5.RD2 PRIOINC=0,PRIOLIM=14

R5.RD3 PRIOINC=0,PRIOLIM=14

R5.RD4 PRIOINC=0,PRIOLIM=14

R5.RDS PRICINC=0,PRIOLIM=14

System pwba is referenced by line 5 (LINE=35), remote 5 (RMT5). It is defined as having a
console, for the rjestat(1C) command, five printers, onie punch, and five readers. Although you
may have up to seven printers or punches, the total number of printers and punches may not
exceed eight. The line is described as a transparent (TRANSP), multi-leaving (MULTI) line.
The remaining information describes attributes of the printers, punches, and readers.

- Normally, separator pages are transmitted with IBM print files. UNIX RJE does not remove
separator pages. To prevent transmission of separator pages on printer | of the previous exam-
ple, its attributes would be:

R5.PR1 PRWIDTH=132,NOSEP

NOSEP should be included for all printers when separator pages are not desired. Most IBM sys-
tems can also be told via a console command te cancel transmission of separator pages on
printers. This can be done from the 1BM system console, or from the remote UNIX machine

via rjestaz. For example, the following JES2 command would cancel separator page transmission:

on printer 1:
$TRS5.PR1,S=N
2.3 UNIX Generation

If the RJE remote dialing facility is to be used, the administrator must make sure that the
definition for RJECU in the file fusr/include/rje.h is the device to be used for remote dialing.
RIECU is defined to be /dev/dn2 when distributed. To compile and install RJE, the normal
make(1) procedures are used (see Setting up UNIX). Once an RJE subsystem has been installed,
the remote line must be described in the configuration file /usr/rjo/lines. This file as it exists
on our hypothetical system pwba is as follows:

ey

UNLX RIE Administrator's Guide] 3

B pwba fusr/rjel rjel vpmO 5:5:1 1200:512:y
C pwba fusrfrije2 rje2 vpml 1:1:1 1200:512

Jusr/rie/lines is accessed by all components of RJIE. Each line of the table (maximum of 8)
defines an RIE connection. Its seven columns may be labeled host, system, directory, prefix,
‘device, peripherals, and parameters. These columns are described as follows:

o host — The IBM System name, ¢.g., A, B, C. This string can be up to 5 characters long.
s system — The UNIX System name (see urame(1)).

e directory — the directory name of the servicing RJE subsystem {e.g., fusr/rje2).

o prefix — the string prepended to most files and programs in the directory (i.c., rje2).

e device — the name of the controlling Virtual Protocol Machine (VPM) device, with /dev/
excised. In order to specify a VPM device, all VPM software must be installed, and the
. proper special files must be made (see vom{4) and mknod(1M)). .

* o peripherals — information en the logical devices (readers, printers, punches) used -by RJE.
There are three subfields. Each subfield is separated by *‘:*” and is described as follows:

1. Number of logical readers.
2. Number of Jogical printers.
3. Number of logical punches.

Note: the number of peripherals specified for an RJE subsystem must agree with the number
of peripherals that have been described on the remote machine for that line.

. ﬁarsmeters — this field contains information on the type of connection to make. Each
subfield is separated by **:". Any or all fields may be omitted; however, the fields are posi-
tional. AH but trailing delimiters must be present. For example, in:

. 1200:512:::9-555-1212 _
subfields 3 and 4 are missing. Each subfield is defined as follows:

1. space — this subfield specifies the amount of space {(§) in blocks that RJE tries to
maintain on file systems it touches. The default is 0 blocks. Send{1C) will not submit
jobs and rjeinit issues a warning when less than 1.55 blocks are available; zjerecy stops
accepting output from the host when the capacity falls to S blocks; RIE becomes dor-
mant, until conditions improve. If the space on the file system specified by the user
on the ““usr="" card would be depleted to a point below 5, the file will be put in the
job subdirectory of the connection’s home directory rather than in. the place that the
user requested.

2. size — this subfield specifies the size in blocks of the Iargest file that can be accepted
from the host without truncation taking p]ace The defauit is no truncatlon. Note that
UNIX has a default one Mega-byte file size limit.

3. badjobs — this subfield specifies what to do with undelivemb!e retuming iobs, If an
output file is undeliverable for any reason other than file system space limitations
{e.g., missing or invalid *“‘usr="" card) and this subfield contains the letter y, the out-
put will be retained in the job subdirectory of the home directory, and login rje is
notified via mail(1). If this subfield has any other value, undehverabh: qutput wilt be
discarded. The default isa. : . -

4. console — this subfield specifies the status of the interactive s!atus termmal for thls
line. If the subfield contains an i, the status console facilities of rjestar will be inhi-
bited. In all cases, the normal non-interactive uses of rjestat will continue to functlon.
The default is y.

4 UNIX RIE Administrator’s Guide

5. dial-up — this subfield contains a telephone number to be used to call a host machmc
The telephone number may contain the digits O through 9, and the character *
which denotes 2 pause. If the telephone number is not present, no dlalmg ls
attempted, and a leased line is assumed.

‘When multiple readers have been specified, jobs that are submitted for transmission to IBM are

assigned to the reader with the fewest cards on it. Each reader gets an equal amount of service. .

This prevents smaller jobs from having to wait for a previously submitted large job to be
transmitted. When multiple printers or punches have been specified, returning jobs get
assigned to free printers (or punches) allowing smaller output files to bypass large output files.

Deciding how many peripherals to specify depends on the use of that RJE subsystem. If an RIE.

subsystem is heavily used for off-line printing (i.e., output does not return to the UNIX
machine), the administrator would want to specify multiple readers, but would not have a need
for multiple printers or punches.

3. DIRECTORY STRUCTURES
3.1 Controlling Directory

The controlling directory used by RJE is fusr/rje. This directory contains RJE programs for use
by separate RIE subsystems (e.g., rjel, rje2, rje3), and the shell queuer’s directory. Most RJE
programs existing here have been compiled such that each RIE subsystem shares the text of
these programs. A snapshot of this directory on our hypothetical machine is as follows:

-ITWRT-XIr-X 2 rje rje 4068 Mar _ 4 10:42 cvt
~TW-T=--T-- 1 rje rie 42 Apr 10 09:52 lines
-TWXTr-Xr-X 2 rje rje 15096 Apr 10 13:01 rjedisp
-TWXT-XT-X 2 rje rje 2328 Mar 4 10:21 rjehalt
-TWXI-Xr-X 2 rje rje 10396 Apr 15 10:07 rjeinit
ER £F TERETE 2 rje rje 785 Apr 8 09:00 rjeload
“IWST<XI-X 2 rje rje 5040 Mar 27 09:28 rjeqer
-IWXTr-XTr-X 2 rje rje 4072 Apr 1 15:40 rjerecv
“TWXT-%XT-X 2 rje rje 3888 Mar 27 09:35 rjexmit
«IWST-XI-X 1 root rje 2696 Mar 27 14:42 shger
-rwxr-xr-x 2 rje tje 5920 Apr 2 15:47 .snoop,
drwxr-xr-x 2 rje rje 80 Mar 25 13:26 sque

RIJE subsystems are generated in their own directory by linking the program names in this direc-
fory to the appropriate names in the subsystem directory. The programs are described in Sec-
tion 4. The file lines is the configuration file used by all RJE subsystems. The d:rectory sque is
used by the Shell queuer (shger). This directory contains:

“fW-T~~T~-~ P rje rje 0 Feb 14 14:0'_4"-'errors
-fW-T--T-- 1 rje rje 0 Feb 14 14:04 log - -

When shger has work to do, the files log and errors will be of non-zero lengtli - an'd. t.e':i‘nporary

files (tmps) will also appear here. For a complete description of shger and these ﬁles. see- Sec-
tion 4.8. I :

3.2 Subsystem Directory

The RJE subsystem described in this section maintains the connection betweén pwha and IBM

B, and will be referred to as rjel. The first line of /usr/rje/lines (see Section 2.3) .describes

rjel. As noted in this file, .qe] runs in the directory /usr/rjel. A snapshot of this darectory is : ,-' .

as follows:

e

—

UNLX RIE Administrator's Guide i 5
-TW-r--F-= 1 rje rje - 4990 Apr 15 08:30 acctlog
~IWXr-xr-x 2 rje. rje- .. 4068 Mar .4 10:42 cvi
-rw-r--r-- 1 rje " rje . . .- . O Apr 15 04:02 errlog
drwx rwx rwx 2 rje rje = Lo 192 Apr 10 09:51 job

¥ -tw-r--r-- 1 rje rje: © .. 194 Apr 15 08:11 joblog
-[W-T--T-- 1 rje rje -7 17 . 0 Apr 15 08:11 resp
- TWRKT-XI-X 2 rje rje . ..15096 Apr 10 13:01 rjeldisp
-TWXT-XT-X 2 rje rje ©-2328 Mar 4 10:21 rjelhalt
~IWRKr-Xf~X 2 rje rje 10396 Apr 15 10:07 rjelinit
+F-X-=---- 2 rje rje 785 Apr 8 09:00 rjelload
-rwsr-xr-x 2 rje rje 5040 Mar 27 09:28 rjelger
-rWXT-Xr-X 2 rje rje 4072 Apr 1 15:40 rjelrecv

\ -rwxr-xr-x 2 rje rje " 3888 Mar 27 09:35 rjelxmit
drwxr-xr-x 2 rje rje 144 Apr 15 08:30 rpool
~TWX[-XT-% 2 rje rje 5920 Apr " 2 15:47 snoopO
drwx rwx twx 2 rje rje ' 176 Apr 10 13:03 spool
drwxr-xr-x 2 rje - rje 224 Apr 10 13:56 squeue
~fW-F-=-T-- 1 rje tje 0 Apr 15 10:30 stop
“ITW-f-«T~~ 1 rje rje 274 Mar 7 20:25 testjod

The programs rjels, ot, and sneop0 are linked to the corresponding programs in /usr/rje, and
are described in detail in Section 4. The remaining files and their uses are as follows:

e acctlog — accounting data is stored in this file, if it exists. This file is the responsibility of
. the RJE administrator. For a discussion of its uses, see Section 5.

a errlog — used by rjel to log errors. It can be useful for debugging rjel problems.

o joblog — used by rjelger and rjestat to notify rjelxmit that a job {or console request) has
been submitted. It also contains the process-group number of the rfel processes. The pro-
gram cvi can be used to convert this file to a readable form.

e Tesp — contains console messages received from IBM B. These messages can be responses
for rjestat, or IBM responses to submitted jobs (i.c., on reader messages). This file is trun-
cated if it grows to a size greater than 70,000 bytes.

o stop — indicates vthat_lly'elhafl has been executed. ‘The existence of this file indicates to 7jes-
tat that rjel has been halted by the operator.

o testjob — a sar_ppie job that can be submitted to test the rjel subsystem. Originally, the job
control statements may have to be changed to suit your 1BM system.

k When rjel tcnﬁinatcs.abnormally. the file dead should appear in this directory. This file con-
12ins a short message indicating why rjel is not operating, and is used by rjestat to report the
problem. The remaining directories and their uses are as follows:

e job — u;‘q& to save undeliverable jobs, if the proper parameter has been specified in
Jusr/rie/lines. The sample job described above is also delivered to this directory. This
directory should be n_m'de 771.

@ rpool — contains temporary files used to gather output from the remote machine. These
) files are named pre (for print output files), and pus (for punch output files). Once a com-
plete file has been received, the file is dispatched in the proper way by rjeldisp.

o spool — used by send to store temporary files to be submitted to the remote machine. This
. directory must be mode 777.. -

e squeue — used by rjel to stor"q submitted files until they are transmitted. The program
rjelger is used by send to move the temporary files in the spool directory to this directory.

6 UNIX RIE Administrator's Guide

4. RIJE PROGRAMS

All programs described below, with the exception of rjestat, exist in fusr/rje. These programs
are “‘shared text” and are linked {except shger) to the proper names in each subsystem direc-

tory. The names described below are generic; the programs in the rje2 directory would be
rie2qer, rje2init, etc.

Each available RJE subsystem occupies three process siots. The slots are used for rje?onit, the
transmitter; rje?recv, the receiver; and rfe?disp, the dispatcher. One additional process slot is
used for shger, regardless of how many subsystems are available.

Each RJE subsystem tries to be self-sustaining, and logs any errors encountered during normal
operation in its errlog file.

4.1 Rjeqger

This program is used by send to queue files for transmission. When invoked, it performs the
following steps:

1. Moves the temporary pnch(S) format file in the spool directory to the squeue directory.
2. Writes an entry at the end of the file joblog containing:

@ the name of the file to be transmitted

a the submitter’s user ID

o the number of card images in the file

o the message level for this job

The file joblog is used to notify rjexmit of work to be done,

3. Notifies user that file has been gueued.

Send determines which host system is desired, and invokes the proper rje?ger by getting the

prefix from the lines file (e.g., if sending to IBM C from our machine, rie2ger would be
invoked).

-4.2 Rjeload

This program is used to start an RJE subsystem. Its prefix determines which subsystem to start
(e.g.. rje2load starts-rjel). To start the RJE subsystems on our machine, the following com-
mands are executed in fete/re when changing to init state 2 {multi-user):

rm —f fusrfrje/sque/log
su rje —c "fusr/rjel frielload vpb0 kmcO"
su rje —c¢ "/usr/rje2/rje2load vpbl kmcl®

The file /usr/cje/sque/log is removed to ensure the correct operation of shger. When invoked,
rjeload performs the following steps:

1. Uses the VPM device from fusr/rje/lines to link the proper devices (see vpmset(1C)).
2. Uses kasb(1) to perform the following: '

o reset the KMC

o load the VPM script {/etc/rjeproto)

e start the KMC running
3. Executes rje?init to start the rje? processes (e.g., rje2load exccutes rjelinit).

UNIX RIE Administrator's Guide 7

s R]elmlt

"-'.'l'hls program is used to halk an RIJE subsystem. To halt re2 oan our machine,
_'--'/usr/rp!/r;elhah is executed. This should be done in the shutdown procedure for your

+7.* .- machine to ensure graceful termination of RJE. Rjehalt will allow only those users with permis-
".: " sion to halt an RJE subsystem. Rjehalt uses the header on the file joblog to get the process-

group of the RJE subsystem processes. This group is signaled to terminate. When all processes
have terminated, rjehalt sends a **signoff™” record to the host machine. This signoff record is
taken from the file signoff (ASCII text), if it exists, otherwise a “‘/»signoff®’ record is sent. On
completion, rjehalt creates the file stop in the subsystem directory, that causes rjestar to report
that RJE to the corresponding host has been stopped by the aperator.

4.4 Rjeinit

This program initializes an RIE subsystem. It is used by rjeload, and can be used to restart a
subsystem if the VPM script has previously been started, Rjeimit should only be executed by
user rje. Rjeinit fails if there are less than 100 blocks or 10 inodes free in the file system. It
issues a warning if there are less than 1.5X blocks, (where X is the first field in the parameters
for that line), or 100 inodes free in the file system. If rjeinit fails, the reason for the failure is
reported, and the file dead is created containing *'Init failed’”. This will be reported by rjestar
until a subsequent rjeinit succeeds, Rjeinit performs the following functions:

1. Dials a remote host if specified (see Section 2.3).
2. Truncates the conscle response file resp.

3. Sends a signon record to the host. The signon record is taken from the file signon (ASCII
text), if it exists, otherwise rjeinit sends 2 blank record as a signon.

Sets up pipes for process communication.

Resets process-group for RJE subsyst_t;.m and restarts error logging.

Rebuilds the joblog file from jobs queued for transmission.

Notifies rjedisp (via a pipe) of any returned files still remaining in the rpool directory.
Starts the appropriate background processes (rje?xmit, rje?recv, and rje?disp).
Reports started or not started, '

b R AR A o

If failure occurs in a buckground process, it is reported by thet process (error logging). The
failing process will normally attempt to reboot the subsystem by executing rje?init with a + as
its argument (see Section 7). When rfeinf is executed with + as its argument, this indicates an
attempted reboot, and rfeinit will bebave differently {no re-dialing is done to remote hosts,
errors are logged rather than printed, etc.).

4.5 Rjexmit) .
This program writes data to the VPM device. Rjexmir is started by rjeinjt and runs in-the back-
ground. When running, rjexmit performs the following processing:

1. Checks the joblog file for files to be transmitted. This is done every 5 seconds when not
transmitting data. When transmitting data, the joblog is checked after transmitting 1
block from each active reader?, and the console’.

2. Reader refers to the logical readers used by RIE.

3. Censole refers to the RJE logical console, which is separate from the logical readers.

8 ’ UNLX RJIE Administrator's Guide

2. Queues files from the joblog according to the first two characters of the file name:

o rds — these files are queuved on the reader wnh the fewest cards. Normal use of the
send command creates these files.

e sqs — these files are queued on the last available reader to assure sequential transmis-
sion. Using the —x option to the send command creates these files.

» cos — these files are queued on the console. The rjestar command creates these files.
All files described above contain EBCDIC data.

3. Sends information to rjedisp (via a pipe) for use in user notification of :ioh status (see Sec-
tion 4.7).

4. Builds blocks for transmission from active readers and the console. These blocks are built
according to the multi-leaving protocol.

5. Performs the following peripheral control:

@ Sends requests to open readers when jobs have been assigned to them. These readers
are not active until a grant is received from rjerecv (via a pipe).

e Halts and activates readers when waits or starts (respectively) are received from
rjerecy.

o Sends printer or punch grants when an open request is received from rjerecy.
6. Notifies rfedisp that a file has been transmitted, and unlinks the file.

if rjexmit encounters fatal errors, it creates the dead file with an appropriate message, and sig-
nals the other background processes to exit. If possible, rjexmir will attempt to reboot the RJE
subsystem by executing rjeinit.

4.6 Rjerecy

This program reads data from the VPM device. Rjerecv is started by rjeinit and runs in the back-
ground. When running, rjerecv performs the following processing:

1. Reads blocks of data received from the host system.
2. Handles data received according to its type. The two types of data are:
o Centrol information — rjerecv performs the following peripheral device control:
a. Notifies rjexmit of grants to its requests to open readers,
b. Passes wait and start reader information to rjexmit.
¢. Passes open requests (for printers and punches) from the host to rjexmir.
_a User Information — the three major types of user information received are:

a. Console responses and job status messages. This data is appended to the resp file
for use by rjestat and rjedisp.

b. The printer output from user jobs. This data is collected in temporary files (pre)
in the rpool directory. When a complete print job has been received, rjerecy
notifies rjedisp (via a pipe) that the file is to be dispatched.

¢. The punch output from user jobs. This data is handled the same as printer out-
put except that the rpeol files are named pus.

3. If the console response file resp exceeds 70,000 characters, rjerecv truncates the file.

4. Rjerecv stops accepting output from the remote machine if the number of free blocks in
the file system falls below gpace blocks (space is described in Section 2.3).

UNIX RIE Administrator's Guide 9

5. Rjerecv truncates files to size blocks if a received file exceeds this value (size is described
in Section 2.3).

If rjerecv encounters fatal errors, it creates the dead file with an appropriate error message, sig-
nals the other background processes to exit, and reboots the RJE subsystem.

4.7 Rjedisp

This program dispatches user information. Rjedisp is started by rjeinit and runs in the back-
ground. When running, rjedisp performs the following processing:

1. Dispatches output; the two types of output are printer and punch output. After receiving

notification of output ready from rjerecv, rjedisp searches for a ‘‘usr="' line in the

received file. The format of a **usr="" line is as follows:
usr=(user,place, levet)

Rjedisp dispatches the output according to the place field. See UNLX Remote Job Entry
User’s Guide for a detailed description of the user specification,

2. Dispatches messages. The three types of messapges are as follows:

» Job transmitted — this message is sent to the submitting user when rjedisp reads this
event notice from the rfexmit pipe.

s Job acknowledgement — rjedisp dispatches IBM acknowledgement messages to submit-
ting users. If a job is not acknowledged properly or within a reasonable amount of
time, a '*Job not acknowledged™ message is dispatched.

e Qutput processing — rjedisp dispatches job output messages according to the options
specified on the *‘usr="" card. A normal output message indicates the returned file
name is ready. ’

Messages can be masked by using the level on the “u-sr=" card.

3. Whenever output is to be handled by shger, rjedisp checks that shger is running. This is
done by locking for the shger log file. If this file does not exist, rjedisp starts shger.

4.8 Shkqer

This program executes user programs when they appear in the place field of the ““usr="" line in
a returned cutput file (print or punch). Shger is started by zjedisp when the first output file
using this feature is returned. Subsequent files using this feature are logged for execution by
riedisp. When started, shqer performs the following processing:

1. Builds the log file from file names in the /usr/rje/sque directory. Each log entry is the
name of a file (tmp?) that contains the following information:

e the name of the file to be executed

e the name of the input file (file returned from IBM)
e the name of the IBM job

o the programmer name

e the IBM job number

e the user’s name from the “"usr="' line

o the user's login directory

o the minimum file system space

2. Shger uses two parameters. The first is the delay time between. log file reads. The second
is a nice(2) factor which is applied to any programs spawned by shger. These values are

10 : UNLX RIE Administrator’s Guide

defined in fusr/include/rje.h (QDELAY and QNICE).

3. When each log entry is read, the appropriate program is spawned with the following
characteristics:

e The returned RJE file is the standard input to the program.

o The standard and diagnostic outputs are fdev/null.

o The LOGNAME, HOME, and TZ variables are set to the appropriate values.
e The arguments to the spawned program, in order, are:

a. a numerical value indicating that the file system free space is equal or above (0)
or below (1) space blocks (see Section 2.3}, .

the IBM job name.
the programmer name.
the IEM job number.

P o @

€. the user’s login name.

4. After exécuting each program, the tmp? file and the returned RJE file are removed.

. 5. UTILITY PROGRAMS
5.1 Snoup

Sneop is the generic name of a program that can be used to trace the state of a VPM device and
its associated communications line. Snoop depends on the trace(4) driver for its information.
It reads trace entries from /dev/trace and converts them into a readable form that is printed on
the standard output.

The usable name of snoop for a particular RJE subsystem is sroopN, where N is the low order
three bits from the YPM minor device number. If VPM device names adhere to the vpmO,
vpml, vpmn naming convention, each smoop name corresponds to its VPM device. In our
hypothetical system, ypm0 is used by the rjel subsystem, and vpml is used by the rje2 subsys-
tem (see Section 2.3). Therefore, fusr/rjel/smoop0 and /usr/rje2/snoopl are linked to
Jusr/rje/snecop.

Each snoop prints trace entries for its associated VPM device. Trace entries are printed in the
following form:

sequence tyge information
where:
o sequence specifies the order of trace occurrences. It is a value between 0 and 99.
e type specifies the action being traced (e.g., transfers, driver activity).
o information describes data being transferred and driver activity.

The [ollowing table explains the meaning of trace types and their associated information.

type information _meaning

CL Closed The VPM device has been closed.

CL Clean The VPM driver is cleaning up for this device.
OP Opened The VPM has been success{ully opened.

UNIX RIE Administrator's Guide
OP Failed(open)
OP Failed(dev)
OP Failed(set)
RR Buf
RX Buf
RD num bytes
SC Exit(num)
ST Startup
ST Stopped
TR Started
TR R-ACK
TR S-ACK
TR R-NAK
TR S-NAK
TR R-ENQ
TR S-ENQ
TR R-WAIT
TR R-OXBLK
TR R-ERRBLK

‘TR R-SEQERR
TR R-JUNK
TR TIMEOUT
TR S-BLK

The open failed because the device 'was already open.

The open failed because the device number was out of
range.

The open failed because the KMC could not be reset.

The VPM script has returned a receive buffer to the
VPM driver.

The VPM script bas returned a transmit buffer to the
VPM driver.

Num bytes were read from the VPM device by riereey.

The VPM script has terminated. The VPM exit code is
num. Exit codes are defined in vom{4).

The KMC has been started.
The VPM script bas been stopped.
The script has started tracing.

A two byte acknowledgement (ACK) string has been
received from the remote system. This indicates that
the previous transmission was properly received.

A two byte acknowledgement (ACK) string has been
transmitted to the remote system.

A - "not-icknowledged“ {NAK) character has been
received from the remote system. This indicates that
the previous transmission was not properly received,

A *“not-acknowledged' (NAK) character has been
transmitted to the remote system.

A enquiry (ENQ) character has been received from the

* remote system.

A enguiry (ENQ) character has been transmitted to the
remote system.

The remote machine has requested that no data be
transmitted to it. -

A valid data block was received from the remote
machine.)

An invalid Cyclic Redundancy Check (CRC) was
received with a data block.

The block sequence count on a received data block was
invalid. :

An invalid data block was received from the remote
system.

The remote machine did not respond within 3 seconds.

A data block has been transmitted to the remote gys-
tem.

11

12 UNIX RJE Administrator's. Guide

WR num bytes Num bytes were written to the VPM device by rjexmil.

Trace entries of type TR are traces from the VPM script. Section 7.5 describes required
responses to events and shows examples of typical snoop output.

5.2 Rjestat

This program is supplied as a user command. The program’s two functions are to describe the
status of the RJE subsystems and to provide a remote IBM status console. The remainder of
this section describes these two functions.

5.2.1 RIE Status

When invoked, rjestat reports the status of the RIE subsystems. If remote sys.tem {kost) names
are specified, only those statuses are reported. Rjestar uses the following rules to report the
status of a subsystem:

e Rjestat prints the contents of the file status if it exists in the subsystem directory. This file
can contiin any message the administrator wishes to have printed when users use rjestat.

e If the file dead exists in the subsystem’s directory, the subsystem is not operating and the
reason is contained in the file. Rjestat reports that RJE to host is down and prints the con-
tents of the dead file as the reason.

o If the file stop exists in the subsystems directory, the rjehalt program has been used to inhi-
bit that RJE subsystem. Rjestar reports that RJE to host has been stopped by the operator.

e If neither the dead nor the stop file exists, rjestar reports that RIE to host is .operating nor-

mally.

Rjestat is supplied as the user’s vehicle for checking the status of RJE. It is not meant to be an
administrative tool; however, the reason for failure can be used to track the problem.

5.2.2 Status Console

"To use rjestat as a status console, the —shost argument is used. Rjestat prints the status of the
subsystem, then prompts with host: if the subsystem is up. Each console request is submitted
to the RIE processes for transmission, and output is handled as specified. Rjestat checks the
status prior to submitting each request, and will tell the user to try later if the subsystem goes
down. Rjestat allows the rje or super-user logins to submit other than display requests. For a
complete description of how to use the status consaole features, see rjestar{1C).

5.3 Cvt

This program converts any subsystem’s joblog file to readable form-. The first line printed is the.
process group number of the subsystem processes. The remaining output consists of entries in
the following form:

file user-id records level

Where file is the name of the submitted file, user-id is the submitters user number, records is
the number of *‘card’ images, and level is the message level. The records and leve! Gelds are
not used if the file name is cos (console request submitted by rjestar).

6. RJE ACCOUNTING

Each RJE subsystem will store accounting information in the acctleg file, if it exists. It is the
responsibility of the RJE administrator to create and maintain this file in the subsystem’s direc-
tory. Entries in this file describe RJE line use and are of the following form:

day time file user records

UNIX RJE Administrator’s Guide 13

Each field is delimited by a tab character. The meanings of each field is as follows:

1. day — The day of occurrence in the form mm/dd.

2. time — The time of occurrence in the form hh:mm:ss.

3. fle — The name of the UNIX file. The first two characters identify its type as follows:
o rdfsq — the file was transmitted to the remote system
o pr — the print output file was received from the remote system
e pu — the punch output file was received from the remote system

4. user — The user ID of the user responsible for the transfer.

5. records — The number of records {card images) transferred for this file.

Since acctlog data is not used by RJE, it should not be allowed to grow too large. This ¢can be
accomplished by moving or processing the file during a system reboot (i.e., in fete/re before the
RJE subsystems are started).

The following list describes some of the reports that could be generated from the acctleg data.

Implementation of a program to produce accounting reports is the responsibility of the adminis-
trator.

» Periodic Reports — by using the day and time fields in the data, periedic usage reports can
be produced.

» By User Reports — by using the user ficld in the data, usage-by-user reports can be pro-
duced.

o By Subsystem Reports — by using the fusr/rje/lines file information and each acctlog file,
a usage-by-subsystem (or remote system) report can be produced.

Other reports can be produced using the type of file, size of jobs, etc.

-7. TROUBLE SHOOTING

This section deals with RJE problems, and some methods for resolving them. The toplcs dis-
cussed in this section are as follows:

o Automatic Error Recovery
o Manual Error Recovery

e RIJE Problems

e KMC/VPM Problems

a Trace Interpretation

7.1 Automatic Error Recovery

RJE attempts 10 be self-sustaining with respect to its availability. In general, if problems occur
on the communications line or the remote machine (e.g., 2 crash) RJE will continually try to
restart itself (this action will be referred to as a “‘reboot’*). For example, if an RIE subsystem
is started using rjeload, but the IBM system is not available, a fatal error will occur. The pro-
cess that detects this error (usually rjexmit or rjerecv) will reboot the subsystem by executing
rjeinit with a + as its argument. When rjeinit detects a + argument, it waits one minute before
attempting to bring up the subsystem.

The rjehalt program can be used to prevent an RJE subsystem from rebooting itself when the
remole system is naot available for a known period of time. When the remote system is made
available, the subsystem may be started in the aormal way.

14 . UNIX RJIE Administrator's Guide

* 7.2 Maxnal Error.Recovery

In order to manually recover from errors, one must know how to start and stop an RJE subsys-
tem. There are two ways to start an RJE subsystem;

o rje?load — this program loads and starts the VPM script, and executes rje?init.

o rje?init — this program starts the rje? subsystem. In order to use this program, the VPM
script must be loaded and started.

To stop the rje? subsystem, the rje?hal program should be executed. This stops the subsystem
gracefully and will prevent a reboot.

The rjeload program must be used to start RJE for the first time (after a UNIX system reboot).

Subsequently, as long as the script is running, execution sequences of rjehalr and rjeinit will stop
and start RJE. '

. Manually starting and stopping RJE can be useful in tracking down problems. For example, if
user jobs are not being submitted to the host machine, the following sequence can ease
identification of the problem;

1. Halt the ailing subsystem. _
2. Starta .;noap process in the background with its output redirected to a file.
3. Restart the subsystem.

4. Scan the snoop output to determine where the problem is.

The sroop program is the most useful software tool for identifying RJE problems. Its uses are
described in Section 7.5.

7.3 RJE Problems

This section describes problems that can occur in an RJE subsystem. These problems generally
occur when the subsystem has not been set up properly. The following is a list of things to
check to ensure that an RJE subsystem has been set up properly.

1. IBM description — the description of the remote UNIX machine must be consistent with
the description in Section 2.2.

2. UNIX description — the file /ust/rje/lines must be set up properly. Section 2.3 describes
this file in detail.

3. KMC/VPM setup — the VPM software must be installed and the praper VPM and KMC
devices made. Each VPM device must correspond to the proper KMC device; see vpm(4).

4. Free space — as a general rule, all file systems must have a reasonable amount of free
space. File systems containing RJE subsystems must have sufficient free space as
described in Section 2.3 to ensure proper RJE operatien,

5. Directories — each subsystem’s directory and the controlling directory should be checked
for the following:

o All needed files exist.
o The proper prefix is on each applicable RJE program.
e The link count is correct for files that are linked.
e All file and directory modes are correct.
A sample subsystem directary and the controlling directory are shown in Section 3.

6. Initialization — peripherals information must be consistent on both systems (see Section
2.3). The line must be started on the IBM system, proper hardware connections made,

UNIX RIE Administrator’s Guide , 15

ete.

Problems with a subsystem are indicated by error messages. Rjeinit checks for obstacles in
bringing up RJE. If an obstacle is found, an error message indicating the obstacle is printed an
the error output. If a problem is encountered during normal operation, the message is logged
in the errlog file. This file, error messages, the output from smoop, and the checklist above
should be used to determine and fix any subsystem problems. Generally, if a subsystem is set
up properly but will pot operate, the problem is the way the VPM or KMC has been set up, the
remote system, or the hardware.

7.4 KMC/VPM Problems

This seciion describes the KMC and VPM uses, and problems that can occur. After installing
KMC hardware and making KMC devices, all YPM software and devices must be made (see
vpn(4)). The program rjeload links the devices to be used by the corresponding RJE subsys-
tem.

The following is a list of items to check when problems occur:

1. Proper hardware — the line unit must be compatible with the modem and have the proper
settings (see Section 2.1). Be sure that the KMC address and interrupt vector are correct.

2. Proper Devices — the major and minor device numbers for the KMC and VPM devices
must be correct. It should also be verified that the rjeload program is called with the
correct KMC and VPM device names.

3. Script runs — verify that the VPM script is able to run. This is done by tracing the proper
VPM with the proper snoop program. Snoop will print *‘started” entries for both the XMC
and VPM script (see Section 5.1). If no output appears from snoop when rjeload is exe-
cuted, either the KMC is not working properly, or the KMC or VPM has not been set up

properly (see items 1 and 2). Output of any other type from snoop should indicate where
the problem is occurring.

7.5 Trace Interpretation

This section describes how to interpret trace output from the snoop program, and gives several
examples. Section 5.1 describes the format and meaning of trace output lines, and should be
read before this section.

Lines with type TR are traces from the VPM script. All others are driver traces and indicate the
following: :

e CL — activity occurring when the device has been closed.
o OP — activity occurring when the device has been opened.
¢ RD — read from device occurred.

e WR -~ write to device occurred. |

o RR — a receive buffer has been returned.

e RX — a transmit buffer has been returned,

e ST — start or stop activity.

e SC — script exit type, exit value is given.

Section 5.1 enumerates all possible trace lines for each type, and describes the event, The
remainder of this section consists of example trace output and its interpretation. Comments
describing events will appear after the **»™’ in trace output. If more than one VPM were run-

ning, sequence numbers might not appear in order. For clarity, example sequences wili be in
order. '

16 UNIX RJIE Administrator's Guide

7.5.1 Normal RJE startup

The following is an example of trace output when RJE has been started up. In this case the
remote machine responds to the enquiry byte (ENQ). The RJE subsystem signs on to the
machine, then follows the bandshaking protocol (exchanging ACKs). .

Tracing vpm0

RN TG R SR

ST Startup = KMC started
TR . Started = Script started
TR S-ENQ + Enquiry byte sent
ST Start * VPM Driver start ,
OP Opened * VPM Device open
TR R-ACK = Received acknowledgement
TR S-ACK + Handshaking
WR 84 bytes » Signon record written
TR R-ACK » Handshaking
TR S-BLK » Sent signon block
10 TR R-ACK = Block acknowledged
11 RX . Buf + Transmit buffer returned
12 TR S-ACK + Handshaking
13 TR R-ACK = .
14 TR S-ACK »
15 TR R-ACK »
16 TR S-ACK =
17 TR R-ACK »
18 TR S-ACK™ »
19 TR R-ACK =
20 TR S-ACK = Handshaking

If any jobs had been submitted via the send command, or jobs were waiting to be returned, the
- traces would reflect the transfers rather than handshaking (see Section 7.5.3).

7.5.2 RJE startup—IBM not responding

This example shows trace output when RIE has been started, but does not receive a response
from the remote machine. In general, the RJE script will timecut if a response is not received
from the remote machine within 3 seconds of the last transmission. When a timeout is
detected while starting up, the enquiry byte (ENQ) is retransmitted. This is repeated 6 times
before the script gives up. Other timeout responses will be discussed later.

" Tracing vpm0
86 ST Startup » KMC started
87 TR Started » Script started
88 TR S-ENQ » Enquiry byte sent
8% ST Start s VPM Driver start
90 OP Opened » VPM device open
91 WR 84 bytes » Signon record written
92 TR TIMEQUT « No response to enquiry
9 TR S-ENQ » Enquiry byte sent
94 TR TIMEOUT = No response
95 TR S-ENQ = Enquiry byte sent
9% TR TIMEQUT « No response
97 TR S-ENQ » Enquiry byte sent
98 TR TIMEOUT » No response

99 TR S-ENQ » Enquiry byte'sent

UNIX RIE Administrator's Guide 17

TR TIMEOUT = No response

TR S-ENQ * Enquiry byte sent

TR TIMEOUT < No response

RR Buf s Receive buffer returned
RD 1 bytes = | byte read (error)

SC Exit{0) * Script exits normally
CL Clean # Cleanup done

ST Stopped » KMC stopped .
CL Closed = VPM device closed

PP P T ¢ oy}

The above sequence will be repcated approximately every minute until a positive response is
received from the host. During that minute the RJE subsystem is dormant, and the rjestat com-
mand will report that IBM is not responding. When this occurs, either the IBM machine is not
available, down, line not started, etc., or there is a communications problem somewhere from
where the KMC transmits data to where it receives data. The RJE administrator should first
verify that the IBM machine is up, and the communications line has been started. If so, a
hardware trace of the communications line should be done to aid in detecting the problem.

7.5.3 Transmitting and Receiving

This example shows trace output from the start of job transmission through its return. For
simplicity, only one job is being transmitted and returned.

Tracing vpm0
94 TR R-ACK + Handshaking
"9 TR S-ACK .
96 - TR R-ACK * .
97 TR S-ACK » Handshaking .
98 WR 4 bytes » QOpen reader request written
9% TR R-ACK s Handshaking :
0 TR S-BLK + Sent open request block
1 TR R-OKBLK » Received block (grant)
2 RX Buf * Transmit buffer returned
3 RR Buf * Receive buffer returned
4 TR S-ACK = Block acknowledged
5 RD 7 bytes » Read 7 bytes (grant)
6 TR R-ACK * Handshaking
7 TR S-ACK » Handshaking
8 WR 481 bytes * First block written
9 WR 470 bytes * Second block written
10 TR ~ R-ACK * Handshaking
11 TR S-BLK » First block sent
12 TR R-ACK’ « Block acknowledged
13 RX Buf * Transmit buffer returned
14 WR 470 bytes = Third block written
15 TR S-BLK » Second block sent
16 TR R-OKBLK + Received block (on reader msg)
17 RX Buf + Transmit buffer returned
18 RR Buf » Receive buffer returned
19 WR 470 bytes » Fourth block written
20 RD 66 bytes = Read 66 bytes (on reader msp)
21 TR S-BLK + Third block sent
2 TR R-ACK » Block acknowledged
23 RX Buf » Transmit buffer returned
WR

o~
-

147 bytes « Fifth block written

18 UNIX RJE Administrator's Guide

25 TR S-BLK » Fourth block sent
26 TR R-ACK ° »Block ackriowledged
27 RX Buf » Transmit buffer returned
. . ;
s More of the same : i .
. *
93 TR R-ACK s Handshaking
94 TR S-ACK » Handshaking
95 TR R-OKBLK = Received block (request)
96 RR Buf » Receive buffer returned
97 TR S-ACK » Block acknowledged -
28 RD 7 bytes » Read open printer request .
99 TR R-ACK » Handshaking : 3
0 TR S-ACK . . ’
i TR R-ACK »
2 TR S8-ACK .
3 TR R-ACK » .
4 TR S-ACK » Handshaking
5 WR 4 bytes » Printer grant written
6 TR R-ACK » Handshaking
7 TR S-BLK + Block sent (grant)
8 TR R-OKBLK = First block received
9 RX Buf ' » Transmit buffer returned
i0 RR Buf s Receive buffer returned
11 TR S-ACK » Block acknowledged
12 RD 64 bytes » Read first block
13 TR R-OKBLK Second block received
14 PRR Buf » Receive buffer returned
15 TR . S-ACK » Block acknowledged
16 RD 505 bytes * Read second block
17 TR R-OKBLK » Third block received
18 RR Buf .« Receive buffer returned
19 TR S-ACK = Block acknowledged
20 TR - R-OKBLK = Fourth bleck received
21 RR Buf « Receive buffer returned
22 TR. S-ACK » Block acknowledged
23 TR R-ACK . » Handshaking
24 TR S-ACK » . :
25 TR R-ACK =+ . -)y
26 TR S-ACK » Handshakin
27 RD 470 bytes = Read third block
28 RD 494 bytes = Read fourth block
29 TR R-ACK s Handshaking
30 TR S-ACK = Handshaking
N -]
« And so on
- --)

Requests and grants are part of the multi-leaving protocol. Appendix B of OS/V'S MVS JES2?
Logic (SY24-6000-1) describes this protocol in detail. When jobs are being transmitted and
received simultancously, as in a busier RIE subsystem, much less handshaking is involved.
Rather than acknowledging blocks with ACKs, the protocol allews a block to be returned (this
implies acknowledgement of the received block). The following example shows trace output at
a busy time:

g

UNLX RIE Administrator’s Guide o 19

tracing vpm0 . .
41. TR R-OKBLK = Received block

42 RX Buf »

43 RR - Buf » '

44 TR S-BLK = Sent block

45 WR 493 bytes .

46 RD 496 byles -

47 TR R-OKBLK =» Received block
48 RX Buf -

49 RR Buf .

50 RD 65 bytes .

51 WR 4 bytes » :
.52 TR S-BLK = Sent block

53 TR R-OKBLK ¢ Received block
54 RX Buf *

55 RR Buf »

56 TR S-BLX = Sent block

57 WR 493 bytes .

58 RD 7 bytes *

5 TR R-OKBLK =+ Received block
60 RX Buf »

61 RR Buf »

62 WR 493 bytes »

63 RD 496 byltes s

64 TR ‘S-BLK « Sent block

65 TR R-OKBLK + Received block

Notice that since there is work to be done on both sides, acknowledgements are implied.
7.5.4 Timeout Error Recovery—-— --— -

This example shows activity resulting from timeouts occurring during normal operation. These
timeouts were caused because the remote JES3 system has performance problems, and occasion-
ally does not respond in the required three seconds.

Tracing vpml

27 TR S-ACK » Handshaking
28 TR R-ACK .
29 TR S-ACK 2 .
30 TR TIMEOUT = No response
31 TR S-NAK » Not acknowledged
32 TR TIMEOUT ¢ No response
33 TR S-NAK » Not acknowledged
34 TR R-ACK = Response .
35 TR S-ACK » Handshaking
3 TR R-ACK .,
.
]
.]
54 TR R-ACK . .
55 TR ~ S-ACK # Handshaking
56 TR ~ TIMEOUT » No response
57 TR . SNAK « Not acknowledged
58 ‘TR R-ACK s Response

59 TR S8-ACK s Handshaking

20 UNIX RJE Administrator’s Guide

The response to these timeouts are NAKs (not acknowledged). RJE wiil respond this way up to
six times before giving up and attempting a reboot. At this time rjestar would report that there
are “‘Line Errors. NAK is a request to retransmit the previous response.

7.5.5 Cgmmunican‘on Line Errors

This example shows trace output from an RJE subsystem that uses a dial-up connection. The
phone line is noisy and is prone to dropping.

Tracing vpml

63 ‘TR S-ACK » Handshaking

64 TR R-ACK- .

65 TR S-ACK » .

66 TR R-TJUNK * Noise on the line

67 TR S-NAK » Not acknowledged

68 TR R-ACK » Recovery

69 TR S-ACK » .
‘79 TR R-ACK .

71 TR S-ACK: .

72 TR TIMEOUT = Line has dropped

73 TR S-NAK * Attempting to recover -

. 74 TR TIMEQUT » . :

75 TR S-NAK »

76 TR TIMEOQUT »

77 TR S-NAK »

72 TR TIMEOUT =

7o TR S-NAK *

80 TR TIMEOUT = -
81 TR S-NAK .

82 TR TIMEOUT =

83 TR S-NAK * .

. 84 RR Buf * Receive buffer returned

85 RD 1 bytes » | byte read (error)

86 SC Exit(0) » Script exits

87 CL . Ciean .2 Cleanup

88 ST Stopped = KMC Stopped

89 CL Closed = VPM device closed

The error read in the above sequence causes RJE 10 reboot and rjestar to report line errors. If
" this type of thing were to occur frequently, a different method of communication should be
used.

7.5.6 Error Responses

* As seen in the sections above, the response to most errors is to send a NAK. The only excep-
tion is when starting up (see Section 7.5.2). Whenever a NAK is received on either side, it
indicates that the previous transmission was not properly received. This should be followed by
retransmission of the previous data. Generally, NAKs should not occur frequently, and should
be followed by recovery. If errors occur frequently or NAKs do not cause recovery, the line
should be checked for problems.

On some IBM systems, (e.g., JES2), an I/O error is printed at the system console whenever a
NAK is'received. These 1/O errors can also be helpful in detecting the problem; however, they

UNIX RJE Administrator’s Guide 21

will not be discussed here as they vary with the system. It is assumed that someone in 1BM
support can assist if needed. :

January 1981

ais

- . SED - A Noﬂ-iﬁféra'ciifé_Text Editor
o 2 LeeE Qf}r;l‘ldtd.hdn

RPN "Béll Laboratories
- Murray Hill, New Jersey 07974

ABSTRACT

Sed is a non-interaclive context editor that runs on the UNIXT operating
system. Sed is designed to be especially useful in three cases:

1) To edit files too large for comfortable interactive editing;
~2) To edit any size file when the sequence of editing commands is loo
.complicated o be comfortably typed in interactive mode.
3) To perform multiple *global’ editing functions efficiently in one pass
through the input. |

This memorandum conslitutes a manuat for users of sed.

. August 15, 1978

. UNIX is a Trademark ‘of Bell Laboratories.

SED — A Non-interactive Text Editor

Lee E. McMahon

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction
Sed is a non-interactive context editor designed to be especially useful in three cases:

1) To edit files too large for comfortabie interactive editing;

2) To edit any size file when the sequence of editing commands is too complicated to
be comfortably typed in interactive mode;

3) To perform muitiple ‘global’ editing funcuons efficiently in one pass through the
input.

Since only a few lines of the input reside in core at one time, and no temporary files are used,
the effective size of file that can be edited is limited only by the requirement that the input and
output fit simultaneously into available secondary storage.

Complicated editing scripts can be created separately and given to sed as a command file. 'For
complex edits, this saves considerable typing, and its attendant errors. Sed running from a
command file is much more efficient than any interactive editor known to the author, even if
that editor can be driven by a pre-writien script.

The principal loss of functions compared to an interactive editor are lack of relative addressing
(because of the line-at-a-time operation), and lack of immediate verification that a command
has done what was intended. .

Sed is a lineal descendant of the UNIX editor, ed. Because of the differences between interac-
tive and non-interactive operation, considerable changes have been made belween ed and sed:
even confirmed users of ed will frequently be surprised (and probably chagrined), if they rashly
use sed without reading Sections 2 and 3 of this document. The most striking family resem-
blance between the two editors is in the class of patterns (‘regular expressions') they recognize;
the code for malching patterns is copied almost verbatim from the code for ed and the descrip-
tion of regular expressions in Section 2 is copied almost verbatim from the UNIX
Programmer’s Manuallll. (Both code and description were written by Dennis M. Ritchie.)

1. Overall Operation

Sed by default copies the standard input to the standard output, perhaps performing one or
more editing commands on each line before writing it to the output. This behavior may be
modified by flags on the command line; see Section 1.1 below.

The general format of an editing command is:
{address],address2] [function] [argumenits)

One or both addresses may be omitted; the format of addresses is given in Section 2 Any
number of blanks or tabs may separate the addresses from the function.” The function must be
present; the available commands are discussed in Section 3. The arguments may be required or
optional, according to which function is given; again, they are discussed in Section 3 under each
individual function.

Tab characters and spaces at the beginning of lines are ignored.

1.1. Command-line Flags -

. ‘Three flags are recognized on the command line:
- -n: tefls sed not to copy all lines, but only those specified by p functions or p flags after
- sfunctions (see Section 3.3);
-e: tells sed 1o take the next argument as an editing command;
-f: tells sed 1o take the next argument as a file name; the file should contain editing
commands, one to a line.

1.2. Order of Application of Editing Commands

Before any editing is done {in fact, before any input file is éven opened), all the editing com-
mands are compiled into a form which will be moderately efficient during the execution phase
{when the commands are actually applied to lines of the input file}. The commands are com-
piled in the order in which they are encountered; this is generally the order in which they will
be attempted at execution lime. The commands are applied one at a time; the input 10 each
command is the output of all preceding commands

The default linear order of application of editling commands can be changed by the ﬂow of-
control commands, ¢ and b (see Section 3). Even when the order of application is changed by
these commands, it is still true that the input line to any command is the output of any previ-
ously applied command.

1.3. Pattern-space

The range of pattern matches is called the pattern space. Ordinarily, the paltern space is one
line of the input text, but more than one line can be read into the pattern space by using the &
command (Section 3.6.).

1.4. Examples _
Examples are scattered throughout the text. Except where otherwise noted, the examples all
assume the following input text:

In Xanadu did Kubla Khan

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless (o man
Down to a sunless sea.

{In no case is the output of the sed commands to be considered an improvement on Coleridge.)

Example:
The command
2q
will quit after copying the first two lines of the input. The output will be:

In Xanadu did Kubla Khan
A stately pleasure dome decree:

2. ADDRESSES: Selecting lines for editing

Lines in the input file(s) to which editing commands are to be applied can be selected by
addresses. Addresses may be either line numbers or context addresses.

The application of a group of commands can be controlled by one address (or address-pair) by
grouping the commands with curly braces (‘{ }") (Sec. 3.6.).

2.1, Line-number Addresses

A line number is a decimal integer. As each line is read from the input, a line-number counter
is incremented; a line-number address matches (selects) the input line which causes the inter-
nal counter to equal the address line-number. The counter runs cumulatively through multiple
input files; it is not reset when a new input file is opened.

Asa speciai'case, the character $ matches the last line of the last input file.

2.2. Context Addresses

A context address is a patlern (‘regular expression’) enclosed in slashes (*/*). The regular
expressions recognized by sed are constructed as follows:

1) An ordinary character {not one of those discussed below) is a regular expression,
and matches that character.

2) A circumflex ™" at the beginning of a regular expression matches the null character
at the beginning of a line.

3) A dollar-sign ‘3" at the end of a regular expression matches the null character at the
end of a line.

4) The characters ‘\n’ match an imbedded newline character, but not the newline at the
end of the pattern space..

5) A period °." matches any character except the terminal newline of the pattern space.

6) A regular expression followed by an asterisk “*' matches any number (including 0)
of adjacent occurrences of the regular expression it Tollows.

7) A siring of characters in square brackets ‘[1’ matches any character in the string,
and no others. If, however, the first character of the string is circumflex *™,
the regular expression matches any character excepf the characters in the string
and the terminal newline of the pattern space.

8) A concatenation of regular expressions is a regular expression which matches the
concatenation of strings matched by the components of the regular expression.

9) A regular expression between the sequences ‘\(’ and ‘\}* is identical in effect to the
unadorned regular expression, but has side-effects which are described under

] the s command below and specification 10) immediately below.

10) The expression ‘\d’ means the same string of characters matched by an expression
enclosed in ‘\(* and *\)’ earlier in the same pattern. Here dis a single digit; the
string specified is that beginning with the Jth occurrence of \{* counting from
the left. For example, the expression *"\(.*\)\1" matches a line beginning with
two repeated occurrences of the same string.

11) The null regular expression standing alone (e.g., *//') is equivalent to the lasi reg-
_ular expression compiled.

To use one of the special characters (" $.* []\ /) as a literal (to malch an occurrence of itself
in the input), precede the special character by a backslash \".

For a context address to ‘match’ the input requires that the whole pattern within the address
malch some portion of the pattern space.

2.3. Number of Addresses

The commands in the next section can have 0, 1, or 2 addresses. Under each command the
maximum number of allowed addresses is given. For a command to have more addresses than
the maximum allowed is considered an error.

If a command has no addresses, it is applied to every line in the input.
If 2 command has one address, it is applied to all lines which match that address.

If a command has two addresses, it is applied to the first line which matches the first address,
and to all subsequent lines uatil (and including) the first subsequent line which matches the
second address. Then an attempt is made on subsequent lines to again match the first address,

and the process is repeated.

Two addresses are separated by a comma.

Examples:
fan/ matches lines 1, 3, 4 in our sample text
fan.*an/ matches line 1
/"an/ matches no lines
/. matches ali lines
AW) matches line 5
/r*an/ matches lines 1,3, 4 (number = zero!)

Alan\)."\1/ matches line 1

3. FUNCTIONS

All functions are named by a single character. In the following summary, the maximum
number of allowable addresses is given enclosed in parentheses, then the single character func-
tion name, possible arguments enclosed in angles {< >}, an expanded English translation of
the single-character name, and finally a description of what each function does. The angles
around the arguments are nof part of the argument, and should not be typed in actual editing

commands.

3.1. Whole-line Oriented Functions
(2)d -- delete lines

The d function deletes from the file (does not write 10 the output) all those
lines matched by its address(es).

It also has the side effect that no further commands are attempted on the
corpse of a deleted line; as soon as the o function is executed, a new line is
read from the input, and the list of editing commands is re-started from the
beginning on the new line.

{2)n -- next tine

(Da\

The » function reads the next line from the inpul, replacing the current line.
The current line is written to the output if it shouid be. The list of editing
commands is continued following the # command.

<text> -- append lines

(1i\

The a function causes the argument <text> to be written to the output after
the line matched by its address. The g command is inherently multi-line;, a
must appear at the end of a line, and <text> may contain any number of
lines. To preserve the one-command-10-a-line fiction, the interior newlines
must be hidden by a backslash character (*\') immediately preceding the new-
tine. The <text> argument is terminated by the first unhidden newline (the
first one not immediately preceded by backslash).

Once an a lfunclion is successfully executed, <text> will be written to the out-
put regardiess of what later commands do to the line which triggered it. The
triggering line may be deleted entirely; <text> will still be written to the out-
put. '

The <text> is not scanned for address matches, and no editing commands are
attempted on it. It does not-cause any change in the line-number counter.

<text> -- insert lines

-5.

The i function behaves identically o the a function, except that <text> is
wrilten to the outpul before the matched line. All other comments about the a -
function apply to the i function as well.

(2)c\
<text> -- change lines

The ¢ function deletes the lines selected by its address{es}, and replaces them
with the lines in <text>. Like a and i ¢ must be followed by a newline hid-
den by a backslash; and interior new lines in <text> must be hidden by
backslashes.

The ¢ command may have two addresses, and therefore select a range of lines.
If it does, all the lines in the range are deleted, but only one copy of <text> is
written to the output, nor one copy per line deleted. As with a and /, <text>
is not scanned for address matches, and no editing commands are attempted on
it. It does not change the line-number counter.

After a line has been deleted by a ¢ function, no further commands are
attempted on the corpse.

If text is appended after a line by a or r functions, and the line is subsequently
changed, the text inserted by the ¢ function will be placed before the text of the
a or r functions. (The r function is described in Section 3.4.)

Note: Within the text put in the output by these functions, leading blanks and tabs will disap-
pear, as always in sed commands. To get leading blanks and tabs into the output, precede the
first desired blank or tab by a backslash; the backslash will not appear in Lthe outptt.

Example:
The list of editing commands:

n
a\’
XXXX
d

applied to our standard input, produces:

In Xanadu did Kubhla Khan
- XXXX
Where Alph, the sacred river, ran
XXXX -
Down to a sunless sea.

In-this particular case, the same effect would be produced by either of the two following com-
mand lists:

n n
i\ c\
XXXX XXXX
d

3.2. Substitute Function
One very impdrlanl function changes parts of lines selected by a context search within the line.

(2)s<pattern> <replacement> <flags> -- substitute

The s function replaces part of a line (selected by <pattern>) with <replace- _
ment>>. It can best be read: .

Substitute for <pattern>, <replacement>>

-6-

The <pattern> argument contains a pattern, exactly like the patterns in
addresses (see 2.2 above). The only difference between <pattern> and a con-
text address is that the context address must be delimited by slash (*/°) charac-
ters; <pattern> may be delimited by any character other than space or new-
tine.

"By default, only the first string matched by < pattern> is replaced, but see the

£ flag below.

The <replacement> argument begins immediately after the second delimiting
characier of < pattern>, and must be followed immediately by another instance
of the delimiting character. (Thus there are exaclly three instances of the
delimiting character.)

The <replacement> is not a pattern, and the characters which are special in
patterns do not have special meaning in <replacement>. Instead, other char-
acters are special:

& is replaced by the string matched by <pattern>

\d {where 4 is a single digit) is replaced by the ¢th subsiring matched
by parts of <pattern> enclosed in “\(" and *\)". If nested sub-
strings occur in <pattern>>, the dth is determined by counting
opening delimiters (4(}. '

As in patterns, special characters may be made literal by
preceding them with backsiash (*\’).

The <flags>> argument may contain the following flags:

g -- substitute <replacement> for all {non-overlapping) instances of
<pattern> in the line. After a successful substitution, the
scan for the next insltance of < pattern> begins just after the
end ol the inserted characters; characters pul into the line from
< replacement> are not rescanned. '

p -- print the line if a successful replacement was done. The p flag
causes the line to be written to the output if and only if a sub-
stitution was actually made by the s function. Naotice that if
several s functions, each followed by a p flag, successfully sub-
stitute in the same input line, multiple copies of the line will be

. written 1o the output: one for each successful substitution.

w <filename> -- write the line to a Ale if a successful replacement was
done. The wflag causes lines which are actually substituted by
the s function to be written to a file named by <filename>. If
<filename>> exists before sed is run, it is overwritten; if not, it
is created.

A single space must separate wand <filename>.

The possibilities of multiple, somewhat different copies of one
input line being written are the same as for p.

A maximum of 10 different file names may be mentioned after
w flags and w functions (see below), combined.

Examples:

The following command, applied to our standard input,
s/10/by/w changes

produces, on the standard output:

In Xanadu did Kubhia Khan

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

and, on the file ‘changes”:

Through caverns measureless by man
Down by a-sunless sea.

If the nocopy option is in effect, the command:
s/[.,;:1/*P&* /gp
produces:

A stately pleasure dome decree*P:*
Where Alph*P,* the sacred river*P,* ran
Down to a sunless sea*P.”

" Finally, to illustrate the effect of the g flag, the command:
/X/sfan/AN/p
produces (assuming nocopy mode):
- In XANadu did Kubhla Khan
and the command:
/X/stan/AN/gp
produces:
In XANadu did Kubhla KhAN

3.3. Input-output Functions
(2)p -- print
The print function writes the addressed lines to the standard output file. They

are written at the time the p function is encountered, regardless of what
succeeding editing commands may do to the lines.

{2)w <filename> -- write on <filename>

The write function writes the addressed lines o the file named by <filename>>.
If the file previously existed, it is overwritten; if not, it is created. The lines
are written exactly as they exist when the write function is encountered for
each line, regardless of what subsequent editing commands may do to them.

Exactly one space must separate the wand <filename>.

A maximum of ten different files may be mentioned in write functions and w
flags after s functions, combined.)

(1)r «<filename> -- read the contents of a file

The read function reads the contents of <filename>>, and appends them after
the line matched by the address. ‘The file is read and appended regardless of
what subsequent editing commands do to the line which matched its address.
If r and a functions are executed on the same line, the text from the ¢

-8-

functions and the r functions is written to the output in the order that the func-
tions are executed.

Exactly one space must separate the r and <filename>. If a file mentioned by
a rTunction cannot be opened, it is considered a null file, not an error, and no
diagnostic is given.

NOTE: Since there is a limit to the number of fles that can be opened simultaneously, care
should be taken that no more than ten files be mentioned in w functions or flags; that number
is reduced by one if any r functions are present. (Only one.read file is open at one time.)

Examples
Assume that the file ‘notel’ has the following contents:

Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the
Mongo! dynasty in China.

Then Lhe following command:
/Kubla/r notel
produces:
In Xanadu did Kubla Khan)
Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the
Mongol dynasty in China.
A stately pleasure dome. decree:
Where Alph, Lhe sacred river, ran
Through caverns measureless to man
DDWH to a sunless sea.

3.4. Multiple Input-line Functions '

Three functions, ali spelled with capital letiers, deal specially with pattern spaces containing
imbedded newlines; they are intended principally lo provide pattern matches across lines in the
input.

(2)N -- Next line

The next input line is appended to the current line in the pattern space:; the two
-input lines are separated by an imbedded newline. Pattern matches may extend
across the imbedded newline(s).

{2)D -- Delete first part of the patlern space

Delete up to and including the first newline characler in the current pattern
space. If the pattern space becomes empty (the only newline was the terminal
newline), read another line from the input. In any case, begin the list of edit-
ing commands again from its beginning.

(2)P -- Print first part of the pattern space
Print up to and including the first newline in the pattern space.

The Pand D functions are equivalent o their lower-case counterparts if there are no imbedded
newlines in the paltern space.

3.5, Hold and Get Functions
Four functions save and retrieve part of the input for possible later use.

(2)h -- hold pattern space

The 4 functions copies the contents of the pattern space into a hold area (des-
troying the previous contents of the hold area).

(2)H -- Hold pattern space

The H function appends the contents of the pattern space to the contents of the
hold area; the former and new contents are separated by a newline.

(2)g -- get contents of hold area

The g function copies the contents of the hold area into the pattern space (des-
troying the previous contents of the pattern space).

(2)G -- Get contents of hold area

The G function appends the contents of the hold area to the contents of the
pattern space; the former and new contents are separated by a newline.

" (2)x -- exchange

The exchange command interchanges the contents of the paltern space and the
hold area. .

Example
The commands

lh

ls/ did.*//
1x

G

si\n/ /

épplied to our standard example, produce:

In Xanadu did Kubla Khan :In Xanadu

A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu

3.6. Flow-of-Control Functions

These functions do no editing on the input lines, but control the application of functions to the
lines selected by the address part.

{2)! -- Don’t

The Don’t command causes the next command (written on the same line), to
be applied to all and only thase input lines not selected by the adress part.

(2)(-- Grouping

The grouping command “{* causes the next set of commands to be applied (or
not applied) as a block to the input lines selected by the addresses of the group-
ing command. The first of the commands under control of the grouping may
appear on the same line as the {* or on the next line. .

-10-

The group of commands is terminated by a matching *}* standing on a line by
itself.

Groups can be nested.

{0):<label> -- place a label

The label function marks a place in the list of editing commands which may be
referred to by & and r functions. The <label> may be any sequence of eight
or fewer characters; if two different colon functions have identical labels, a
compile time diagnostic will be generated, and no execution attempled.

(2)b<label> -- branch to labei

The branch function causes the sequence of editing commands being applied to
the current input line o be restaried immediately after the place where a colon
function with the same <label> was encountered. If no colon function with
the same label can be found after all the editing commands have been com-
piled, a compile time diagnostic is produced, and no execution is attempted.

A b function with no <labei> is taken to be a branch to the end of the list of
editing commands; whatever should be done with the current inpul line is
done, and another input fine is read; the list of editing commands is restarted
from the beginning on the new line.

(2)t<label> -- test substitutions

The r function tests whether any successful substitutions have been made on
the current input line; if so, it branches to <label>; if not, it does nothing.

The flag which indicates that a successful substitution has been executed is

reset by:

1) reading a new input line, or
2) executing a ¢ function.

. 3.7. Miscellaneous Functions
{1)= -- equals

The = function writes to the standard output the line number of the line

matched by its address.

(1)q -- quit

Reference

The g function causes the current line to be written to the output Gf it should

be), any appended or read lext (o be written, and execution o be terminated.

[1] Ken Thompson and Dennis M. Ritchie, The UNIX Programmer’'s Manual. Bell Labora-
- tories, 1978.

SCCS

Source Code Control Systern

User’s- Guide

‘L. E. Bonanni
C. A. Saiemi

- Bell Telephone Laboratories, Incorporated

.x-j

Source Code Control System
User's Galde

LINTRODUCTION . & . & & & ¢ &+ v & &

2. SCCSFORBEGINNERS . . . « & . « &

2.1 : Terminology 1 ‘

2.2 Creating an SCCS File=The “admin' Command 2
2.3 Rerrieving a File=-The “gat* Command 2

2.4 Recording Changes—The “‘delta’ Command 3

2.5 More about the *“‘get’” Command - 4

2.6 The *“help” Cornmand 5

3. HOW DELTAS ARENUMBERED
" 4, SCCS COMMAND CONVENTIONS

S SCCSCOMMANDS« + + « + &
get 9
delta 16
admin 18
prs 21

- help 22
rmdel 22
ede 23
what 23
scesdiff 24

5.10 comb 24

£.11 val 25

6. SCCSFILES ¢ - « o « 4+
6.1 Protwection 2§

6.2 Format 26

6.3 Auditing 27

REFERENCES .- . . . + « « . .

ummmgn_my-g.ny.
D 00wl Oh A bt B e

s
aje

‘._/’

LIST OF FIGURES

Figure 1. Evolution of ap S5ccs File .
Figure 2. Tree Structure with Branch Deltas .
Figure 3. Exiending the Branching Concept

)

Source Cede Control System User’s Guide
L. E. Bonanni

Eell Laboratories
Piscataway, New Jersey 08854

C. A Sailemi

Bell Laboratories
Piscataway, New Jersey 08854

1. INTRODUCTION

The Source Code Control System (scCs) is a collection of Pws commands that help indlviduals
or projects control and account for changes to files of text (typically, the source code and
documentation of software sysiems). It is convenient to conceive of 5CCS as a custodian of
files; it allows retrieval of particular versions of the files, administers changes to them, coatrols
updating privileges 10 them, and records who made cach change, when and where it was made, .
and why. This is imporant in environments in which programs and documentation undergo
frequent changes (because of maintenance and/or enhancement work), inasmuch as it is
sometitses desirable to regenerate the version of a program or document as it was before
changes were applied to it. Obviously, this could be done by keeping copies (on paper or other
media), but this quickly becomes uzpmanageahie and wasteful as the npumber of programs and
documents incresses. SCCS provides an attractive solution because it stores on disk the original
file and, whencver changes are made 1o it, stores only the changer; cach set of changes is called
a ‘‘delta.™

This document, together with relevan! portions of {11, is a complete user’s guide to sccs. This
manual contains the following sections:

s Sccs for Beginners: How to make an sCC$ file, how to update it, and how to retrieve a
version thercof.

o How Deltas Are Numbered: How versions of sccs Bles are aumbered and named.

v Sccs Command Conventions: Conventions and rules generally applicable to all scCs
commands.

o Sccs Commands: Explanation of all $CCS commands, with discussions of the more useful
arguments.

e Sccs Filess Protection, format, and auditing of sccs files, including a discussion of the
differences berween using SCCS as an individual and using it as z member of & group or
proiect. The role of a “‘project SCCS sdministrator™ is introduced.

2. SCCS FOR BEGINNERS

It is assumed that the reader knows how to log onto a Pwp system, create files, and use the text
editor {1]. A number of terminai-session fragments are presented below. All of them shouid
be tried: the best way to learn SCCS is 10 use it.

To supplement the maierial in this manual, the detailed 5CCS command descriptions {appearing
in {1]) should be consulted. Section 5 below contains a list of all the SCCS commands. For the
time being, however, only basic concepts will be discussed.,

2.1 Terminology

Each sces file is composed of one or more sets of changes applied to the aull (empty) version
of the file, with each set of changes usually depending on all previous sets. Each set of changes
is called a ‘‘delta and is assigned a name, called the Sccs [Dentification string (SID).
compased of at most four components, only the first two of which will concern us for now,
these are the *'release’ and “‘level™ numbers, scparated by a period. Hence, the first delta is
calied **1.1™, the second “1.2", the third **'1.3", eic. The release numbaer can also be changed
allowing, for example, daltas **2.1°, “3.19", etc. The change in ithe release number usually

1 SCCS Usar's Guide

indicates a major change 1o the file.

Each delta of an sccs flle defines a particular version of the fle. For example, deita 1.5 defines

verzion 1.5 of the sCC3 fle, obtained by applying to the aull (empty) version of the fle the
changes that constitute deltas 1.1, 1.2, ete., up 0 and inciuding daita 1.5 itself, in that order.

2.2 Creatlug an SCCS Flle—The *zdmin’ Command
Considez, for exampie, a file called “'lang’™ that contains a list of programming languages:

¢

pl/i
forran
cobal

algol

We wigh to give custedy of this fle to sccs. The {oHowing admin command (which is used to
adminiszer SCCS fles) creates an SCCS file and initializes deita 1.1 from the Hle “‘tang'":

adntin —ilang s.lang
All sces files must have names that begin with “s.', hence, “s.!ang" The =l keylettzr,
together with its vaiue “lang', indicates that cdmin is to create 2 gew SCCS fle and initialize it

w#ith the conteats of the fle **lang’. This initial version is a set of changes applied to the null
sCCs file; it is delta 1.1.

The admin comtmand reviies:
No id keywords (cm7)

This is a warning message (which may also be issued by other SCCS commands) that is to be
ignored {or the purposes of this section. [ty significance is described in Section 5.1 beiow. In
the follawing sxamples, this warning meseage is aot showm, ajmough it may actually be issued
by the various command.

The fle *““lang" should be removed (because it can be ea.sdy reconstructed by using the zer
command, be!.ow)

m lagg
2.3 Retrieviag a Flle<=The *““got”* Command
The commasd: .

gst s.lang

causes the creation (retrieval) of the latest version ot’ ﬁle “s.lang", and prints the following
- messagen

1.1

S lines

- This means that ger retrieved version 1.! of the 8le, which is made up of § lines of text. The
. retrieved 1text is placed in 3 file whose asme is formed by deleting the ‘‘s.”” prefix from the
namie of the sCCS ﬁ]e; hence, the file “lang™ is created.

.._,
:

SCLS User's Guide 3

The sbove ger command simply creates the file **lang" resd-only, and keeps no information
whatsoever regarding its creativn, On the other hand, in order to be able to subsaquenty apply
changes to an sccs-file with the deita command (sez below), the ger command must be
informed of your intention to do so. This is done as follows: :

get —e s.lang

" The —e keyletter causes ger to create a file “*lang™ for both reading and writing (so that it may
be edited) and places certzin information about the sccs file in another new fle, called the p-
Jile, that will be read by the defta command. The ger command prints the same messages as
before, except that the SID of the version 10 be created through the use of delg is also issued
For example:

ger —e s.lang
i1
new delta 1.2
§ lines
The file “'lang’’ may now be changed, for example, by:
ed lang .
27
Sa
snobol
ratfor
_ -
41 -
q . .
- 2.4 Recording Changes—The *‘delta” Commaand
In order 1o record within the SCCs file the changes that have been applied to *'lang”, execute:
delta s.lang
Dela prompts with:
comments?
* the response to which should be a description of why the changes were made; for exarnple:
comments? added more languages '

Dzlta then reads the p-file, and determines what changes were made to the file ““lang™. It does
this by doing its ovm get to retrieve the original version, and by ‘applying dif (1)! to the ongmal
version and the edited version.

1. Al referancas of the form name (N) refer to item aome in command writeup section N of [1].

‘ . . SCLCS User's Guide

When this process is complete, at whick point the changﬂ to “lang” have been storad in
“s.lang’, da!za sutpuls:

1.2

2 inseried

0 deleted

$§ unchanged

The aumber *“1.2" is the nania of the delta just created, and the next three lines of output
refer to the aumber of lines in the file *'s.jang”™.

2.5 Morse about the “get’’ Commaad
AS wa have sgens
get s.lang

retrieves the latest version {now 1.2) of the file “*s.lang™. This is done by starting with the
original version of the file and succ.sswely appiying deitag (the changese) in order, until all have
been applisd

For our example, the following commands are all equivaleat:
‘ get s.lang

get —rl s.lang
-get --rl.2 s.lang

The numbers (ollowing the -=r kaylettsr are SIDs (ses Section 2.1 above). Note that omining
the level auraber of the sto (as in the second example above) is squivalent to specifying the
highest level number that existy within the specified release. Thus, the second command
raguests the retrieval of the latest version in release 1, namely 1.2, The third command
specifically requests e retrieval of a particular version, in this case, also 1.2,

Wheaever a truly major change is made to a fle, the significance of that change is usually
indicated by changing the refease number (first somponent of the sI0) of the deita being made.
Since nortaal, autormatic, aumbering of deltas proczeds by incremeating the level aumber
{second component of the Sp), we must indlcate to SCCS that we wish o change the release
fumber, This is done with the ger command:

get e —rl slang

Because telease 2 does aot exist, ger ratrieves the latest version before release i it also
interprets chis as a request to change the relesse aumber of the delta we wish to create to 2,
theredy causing it 10 be named 2.1, rather than 1.3. This information is conveyed to deim via
the p-file. Ger thea outputs:

- 1.2 '
new delta 2,1
7 lines

»

P
p—

LI
v
[

.

SCCS User's Guide ' 5

which indicates that version 1.2 has been retrieved and that 2.1 is the version defto will create.
I the file'is now edited, for example, by:

ed lang)

41 '

fcobol/d
w

35
q

and dalia executed:

delta s.lang
comments? deleted cobol from list of languages

we will see, by deha's output, that version 2.1 is indezed created:

2.1

0 inserted

1 deleted

6 unchanged

Deltas may now be crested in release 2 (deltas 2.2, 2.3, etc.), or another new release may be
created in a similar mannper. This process may be continued as desired.

2.6 The *“help” Command

If the command:
get abc

is executed, the foliowing message will be output:
ERROR [abe]: not an SCCS file {(col}

The string *“col™ is a code for the diagnostic message, and may be used to obtain a fuller
explanation cof that message by use of the help command;

help col
This produces the following output:

col: .
"not an SCCS file”
A file that you think is an SCCS file
- does not begin with the characters ®s.”.

Thus, help is a useful command to use whenever there is any doubt about the meaning of an
scCs message. Fuller explanations of aimost all SCCs messages may be found in this manner.

3. HOW DELTAS ARE NUMBERED

It is convenient to conceive of the deltas applied to an SCCS file as the nodes of a‘tree, in which
the root is the initidl version of the file. The root delta (node) is normally named **1.1" and
successor deltas (nodes) are named **1.2", **1.3™, ewc. The components of the names of the
deltas are called the “release™ and the “leve]l” numbers, respectively. Thus, normal naming of
successor deltas proceeds by incrementing the level number, which is performed automatically -
by SCCs whenever a deita is made. In addition, the user may wish to change the release number
when makiag a delta, to indicale that a major change is being made. When this is done, the
release number also applies to all successor deltas, uniess specifically changed 2gain. Thus. the
evolution of & particular file may be represeated as in Figure 1.

5 | SCCS User's Guide

1.1 13 1.4 ut 2

1
N\ N Vo WL . |
O TN NN @
Retzzon | : Aty 2

Figare 1. Evoluticn of an Scrs File

Such a strueture raay be termed the ‘‘trunk™ of the sccs tree. It represents the normal
szquencial development of an sccs Gle, in which changes that are part of any given deita are
degendant upon all the preceding deltas,

However, there are siluations in which it is secassary to cause a branching in the tree, in that
. changes applied as part of a given delta ace aor dependent upon all previous deitas. As an
example, consider a program which is in production use at version 1.3, and for which
development work on releass 1 is alrzady in progress. Thus, relesse 2 may already have some
deltag, precisely as shown in Figure 1. Assume that a production user reports 2 provlem in
version 1.3, and that the namwre of the problem is such that it cannot wait o be repaired in
release 2. The changes aecessary 10 repair the trouble will be applied as a daita o version 1.3
(the version in production use). This creates a new version that will then be releasad to the
user, but will ot aifec: the changes being applied for release 2 (i.e., deitas 1.4, 2.1, .2, eta).

The dew delta is 2 node on 2 “Sranch™ of the tree, and its name consists of four components,
famely, e release and level noumbers, as with trugk deltas, pius the “branch” and
. '"sequences” numbers, as {ollows:

release.lavel, branch.sequencs

The dranch aumber is assigned to each dranch that is a descendant of a particular trunk deita,
with e Arst such branch being 1, the next one 2, and so on. The seguemcs number is
assighied, in order, w0 each deita on a particular branch. Thus, 1.3.1.2 identifies the second delta
of the first branch that derives from deiwa 1.1. This is shown in Figure 2.

O
_ .1.1 1.2

Flgure 2. Tree Structure with Branch Deltas

13 1.4 1

The concept of branching may be extended o any deita in the tree; the aaming of the resulting
deltas precgeds in the manner just lustrated.

Two obzarvetions are of importance with regard to naming deltas, First, the names of trunk
deitas contin exactly two cumpoaents, and the oamed of braneh deitas contain exactly four
components, Second, the firs two componeats of the aame of branch deitas are always those
of thiz apcestral trunk delta, and the brénch componeat is assisned in the order of creation of
the branch, indegendenily of it3 location relative to the trunie delta, Thus, a brageh delta may
alweys bg identified as such frowa i3 name. Although the ancsstral trunk deita may be
identified (rom the brasch deles's pzsme, it is nor poszible to determine the entire path leading

o e
e

SCCS User's Guide 7

from the trunk deltaz to the branch delta. For example, if dsita 1.3 hes one branch emanating
from it, all deltas on that branch will be nomed 1.3.1.n If a delta on this branch then has
another branch emapating from i, all deliss on the new branch will be named 1.3.2.n (see
Figure 3). The only information that may de derived from the pame of delta 1.3.2.2 is that it
is the chronologically second deita on the chronologically second branch whose trunk ancestor is

delta 1.3, In particulsr, it is not possible to determine {rom the name of deita 1.3.2.2 all of the
deltas between it and jts trunk ancestor (1.3).

Ee
@)

Figare 3. Extending the Branching Concept

It is obvious that the concept of branch deltas allows the geseration of arbitrarily complex tree
structures. Although this capability has been provided for certain specialized uses, it is strongly
recommended that the SCCS tree be kept as simple as possible, because comprehension of its
structure becomes exwemely difficult as the wree becomes more complex.

4. SCCS COMMAND CONVENTIONS

This section discusses the conventions and rules that apply to SCCS commands. These riles and
conventions are genarally applicable to all SCCS commands, except as indicated below. SCCS
commands accept two types of arguments: keylerter arguments and file arguments.

Keylener atguments (hereafier called simply “Keyletters') begin with a minus sign (=),
followed by a lower-case alphabetic character, and, in some cases, followed by a value. Tbese
keyletiers control the execution of the command t¢ which they are supplied.

File arguments (which may be nares of files and/or directories) specify the file(s) that the _
given SCCS command is 1o process; naming a directory is equivalent 10 naming ail the sCCs files

within the directory. Non-sccs files and unreadabie? files in the named directories are sileatly
ignored. P

In general, file arguments may not begin with a minus sign. However, if the name “~" (a
lone minus sign) is specified as ap argument to a command, the command reads the standard
input for lines and takes each line as the name of an scCs file 10 be processed. The standard

itsput is read until end-of-file. This feature is often used in pipelines [1] with, for example, the .

find (1) or Is(1) commands. Agaia, names of non-SCCS files and of unreadable files are sileotly
ignored.) o

All keyletters specified for a given command apply to all file arguments of that cotnmand; All
keyietters are processed before any file arguments, with the result that the placement of
keyletters is arbitrary (i.e., keyletters may be interspersed with file argumnents). File arguments, |

1. Beoyuse of permistion modes (see chmosf(1)),

b SCCS User's Guide

however, are procassed left to right.

Sontewhat differsnat argurnent conventions appiy to the hefp, what scesdif, and val commands
(see Sections 5.5, 5.3, 59 andSIl)

- Cartain actions of various 5CCS commands are controiled by flags appearing in sccs files. Some
of these flags are dissussed below. For a complete description of all such flags, see admin(1).

The distinction detween the real user (ses passwd (1)) and the efecrive user of a PWR system is
of concern in discussing various actions of 5CCS commands. For the present, it is assumed that
both the real user and the effective user are one and the same (i.e., the user who is logged into
a4 pwa sysiam); this subject is further discussed in Section 6.1.

All 5¢Cs commands that medify an sccs fle do so by writing a tempom-y copy, called the x-fle,
which easurss that the sccs fle will not be damaged should processing terminate abnormally,
The aame of the x-file is (ormed by rzplacing the “*v.™ of the sccs fle aame with “x."”. When
processing is complete, the oid sces file is remnoved and the x-file s renamed to be the sCCs fle.
The x-ile is created in the directory containing the sccs file, is given the same mode (ses
chmod(1)) as the sccS file, and is owned by the sffective user,

To prevent simultaneous updates to an Sccs fle, commands that modify s¢¢s Bles create a
lock-file, called the =-file. whose name is formed by replacing the “‘s.”” of the sccs fie name
with “2.”". The :-file contains the process number [1] of the command thar creates it. and its
axistence is an indication to other commands thae that sccs file is being updated. Thus, other
comimands that medify sccs files will sot process an sccs fle if the corresponding z-file exista,
The :-file is created with mode 444 (read-only) in the directory containing the sccs file, and is
aowned by the effective user. This file existy only for the duration of the sxecution of the
command that creates it. In gemeral, users can ignore x-files and =-files; they may be useful in
the event of system crashes or simnilar situations.

SCcs commands produce diagnostics (on the diagnostic output (11) of the form:
ERROR [name-of-fle-being-processed]: message taxt {code)

The code in parentheses may be used as an argument to the help command (see Section 5.5)
obtain a further explanation of the diagnostic message.

Detection of a fatal error during the procassing of a file causes the SCCS command to terminate

processing of that file and to procesed with the next file, in order, if more than one file has been
gamed.

5. SCCS COMMANDS

This section describes the major features of all the sccs commands. Detailed descriptions of
the commands and of all their arguments are given in the PwB {Jter’s Manaual and should be
consulted for further information. The discussion beiow covers oaly the more common
arguments of the various SCCS commands,

Because the commands ger and delrg are the most frequentdy used, they are presented ﬁ.rS‘L The
ather comrnands {ollow in approximate erder of irnportance.

—

3
."

. SCCS User's Guide ' : 9

The {ollowing is 3 summary of all the SCCS commands and of their major functions:

get -:Retrieves versions of sccs files. .

delta Applies changes {deltas) 1o the text of 5cCs files, Le., creates new versions.
. edmia Creates sccs files and spplies changes to parameters of sCcs files.
' pis Prints portions of an sCCs file in user specified format.

help " Gives explanations of diagnostic messages.

rmdei Removes 2 delta from an sccs file; allows the removal of deltas that were created
by mistake,

ede Changes the commentary associated with a delta,

Searches any pwB file(s) for ail occurrences of 2 special pattern and prints owt
what follows it; is usefu] in finding identifying information inserted by the ger
command.

scesdiff Shows the differences between any two versions of an SCCs file.

comb Combines two or mere consecutive deltas of an sccs file into a single delta; often
". reduces the size of the scCs file, :

vai * Validates an sccs file.
£.1 get

g
&

. The ger command creates a text file that contzins 2 particular version of an sccs file. The

' particular version is retrieved by beginning with the initial version, and then applying deltas, in
erder, usntil the desired version is obtained. The created file is called the g-file; its name is
formed by .removing the **s.” from the sCCs file name., The g-file is created in the currsnt
directory [1] and is owned by the real user. The mode assigned to the g-file depends on how
the ger command is invoked, as discussed below,

The mos! common iavocation of geris:
get s.a.bc_

which normally retrieves the latest version on the trunk of the 5CCS file tree, and produces (for
exawmple} on the standard output [1]:

1.3
67 lines '
No id keywords (em7)

which indicates that:

1. Versicn 1.3 of file **s.abc™ was retrieved (1.3 is the latest trunk della)

2. This vzrsion has 67 lines of text,

3. No D keywords were substituted ig the file (ses Section 5.1.1 for a dxscuss:on of ©
keywords). -

The generated g-file (fle **abc™) is given mode 444 (read-only), since this pamcular way of
invoking ger is intended to produce g-files only for inspection, compilation, etc., and nor for
) editing (i.e., nor for making deltas).

10 ' SCCS User's Guide

In the case of several file arguments (or directory-name arguments), similar information is
given for sach file processed, but the sCCs file name pracedes it. For example:

get s.abs s.def -
produces:

s.abes -

1.3

‘§7 lines
- No id keywords {cm?)
s.def:

1.7

35 liges

No id keywords (em7)
S5.1.1 Ip Keywords
{n generating 3 g-file to be used for compitation, it is useful and informative to record the date
. and time of creation, the version retrieved, the module’s came, ete., within the z-file, o0 as to
hava this information appear in a load module when one is eventually created. ScCs provides a
convesieat mechanism for deing this automatically. [dentification (ID) keywords appearing
agywhere in the gensrated fle are repiaced by appropriate values according to the definitions of

these I keywords. The format of an M keyward is an upper-case letter enclosed by percent
signs (3). For exampie: :

%%
i3 defized as the © keyword that is reptaced by the ST of the retrieved version of a file.

Sirnilarly, %H% is defined as the D Xeyword for the curreat date (in the form “mm/dd/yy"),

and 4M?% is defiged as the game of the g-fle. Thus, executing get on an SCC$ fle that contains
the PL/] declaration:

DCL ID CHAR(100) VAR INTT("%M% %% %H%');

" gives (far exampie) the following:

DCL (D CHAR(100) VAR INTT(CMODNAME 1.3 07/07/77°);

, _When ﬁo ™ keywords are substituted by 22, the following message is issued:
~ No id kaywords (emT) '

This message i3 normally treated as a warning by ger, aithough the presence of the | flag in the
sccs file causas it to be treated as an ervor {see Sectien 5.2 for further information).

For a complete list of the approximately tvegiy 1D Keywords provided, see ger(l).
5.1.2 gewml of Differemt Versions

- Varioug Zeyletters are provided to allow the retrieval of other thas the default version of an
sccs file. Normally, the default version is the most receat deita of the highest-aumbersd
relesse on the zwmk of the sCC3 file ree. However, U the sccs file being procsssed has a d
(defauit sm) flag, the s specified as the value of this flag is used 23 a3 dafault, The default 31D
is {nterpretsd in exactly the 1ame way as the value supplied with the ~-r keylester of get

The ~r kayletier is used to specify an SIO o be retrieved, in which case the d (default sp) flag
(if any) is ignored. For example:

get ~rl.3 s.abe

— "

[R5

SCCS User’s Guide 11

retrieves version 1.3 of file “s.ab¢™, and produces (for example) on the standard output:
1.3
64 lines
A branch deita may be retrieved similarly:
get =rl.5.2.3 s.zbc
which produces (for example) on the standard output:
1.5.2.3
234 lines

When a two- or four-component SID i5 specified as a value for the «—r keyletter (as above) and
the particular version does not exist in the sccs file, an error message resulis. Omission of the
level pumber, as in:

get =13 s.abc
causes retrieval of the runk delta with the highest level number within the given release, if the
given release exists. Thus, the above command might output:

17

213 lines

If the given release does oot exist, ger retrieves the frunk delta with the highest level number
within the highest-numbered existing release that is lower than the given release. Far exampie,
assuming release 9 does not exist in file "s.abc™, and that release 7 is actually the highest-
numbered release below 9, execution of:

get =19 s.abc
might produce:

1.6
420 lines

which indicates that trunk delta 7.6 is the latest version of flle *‘s.abc’™ bdelow reicase 9. -
~ Similarly, omission of the sequence number, as in: :
get —r4.3.1 s.abe

resulis in the retrieval of the branch deita with the highest sequence sumber on the given

braach, if it exists. (If the given branch does not exist, an error message results.) This might
result in the following output:

4.3.2.8
89 lines

12 SCCS User's Guids |

The =t keylener i3 used to retrieve the latest (**top™) version in a particular refease (i.e., when
a0 ~f keyletter is supplied, or when its value is simply a release number). The latest varsion
is defined ag that delta which was produced most recently, independaat of ns location oa the
sces file tree. Thus, if the most recont delta in raiease 3 is 3.5,

get <] - sabc
might produse:

3.5
59 lines

However, if branch delta 3.2.1.5 were the latest delt.a (created after de!u 1.5), the same
coramiand might producs:;

3.2.1.5
44 lines

_ 5.1.2 Rerrigval with Intent ta Make a Delta

Specification of the —e keyietter to the get command i3 an indication of the intent 10 make 2
delta, and, as such, its use is restricted. The presence of this keyletter causas zer lo check:

1. The user list (which is the list of login cames and/or group /s of users allowed to make
deltas (see Section 6.2)) to determine if the login name or group © of the user executing

. getis on that list. ‘Iole that a nuil (empty) user list behaves as if it contzined all pautble
login names.

2. That the release (R) of the version being retrieved satisfies the relation:
floor & R £ ceiling
19 determine if the release being accessed is a protecied celease, The Aoor and cziling are
specified as Aagein the sqes file.

3. Thart the release (R) is aot locked against editing, The lock is specified as a flag in the SCCS
file.

4. Whether or aot muliiple concurrent edits are allowed for the sccs file as specified by the |
lag in the sces fle (multipie concurrent edits are described in Section 5.1.5).

‘A failure of any of tke flrst three conditions causes the processing of the corresponding 3CCs
file t0 terminata.

If the abeve checks succzed, the —e keyletizr causes the creation of a g-file in the current '

directory with mode 844 (readable by everyone, writable only by the owuer) owred by the real
user. If a writable g-file already exists, ger terminates with an error, This is to preveat

inadverieat destruction of a 2- ﬁb that aiready exists and is being edited for the purpose of
making a deita.

Any (D Xeywords appearing im tha z-fle are nor subdstituted by ger when the —e kayletter is
specified. because the gemerated g-/ile is t0 be subsequently used 1o create another deita, and
replacement of [keywords would cause them ta be permanenily changed within the sccs fle.
. In view of this, zer does not need to check for the presence of ID keywords within the g-/ile, s0
that the message:

No id keywords (em?)
is pever output whea ger is invoked with the ¢ keyletter.

In addition, the -=o keyletter causes the creation (or updating) of a p-file, which is used to pass
information o the deka command (see Sectica 5.1.4).

o
-

SCCS User's Guide 1

The following is an example of the use of the —e keyletter:
get —=e¢ s.aabc
which produces {for example) on the standard output:

1.3
new delta 1.4
67 lines

If the =1 and/or =t keyletters are used together with the —e keyletter, the version retrieved
for editing is as specified by the «—r and/or =t keyletiars.

The keyletters =} and —x may be used to specify a list (see ger(l) for the syntax of such a
list) of deitas to be inclided and excluded, respectively, by ger Including a delta means foreing
the changes that constitute the particular delta to be included in the retrieved version. This is
useful if poe wants to apply the same changes to more than ope version of the sccs file.
Excluding 2 delta means forcing it to be nor applied. This may be used to undo, in the version
of the sccs file to be created, the effects of & previous delta. Whenever delias are included or
excluded, ger checks for possible interference between such deltas and those delas that are
normally used in retrieving the particular version of the sccs file. (Two deltas can interfere,
for example, when esach onz changes the same line of the retrieved g-file.} Any interference is
indicated by a warning that shows the range of lines within the retrieved g-file in which the
problem may exist. The user is expected 10 examine the g-file 1o deterinine whether a problem
actually exists, and to take whatever corrective measures (if any) are deemed necessary (e.g.,
edit the file).

&~ The =] and ==X keyletters should be used with extreme care.

The —~k keyletter is provided to facilitate regeneration of a g-file that may have besn
accidentally removed or ruined subsegquent to the execution of ger with the —e keyletter, or 10
simply generate a g-file in which the replacement of ID keywords has been suppressed. Thus, 2
g-file generated by the =k keyletter is identical to one produced by ger executed with the —e
keyletter. However, ao processing related to the p-file takes place.

S.1.4 Concurrent Edits of Different SIDs

The ability 1o retrieve different versions of an sccs file allows a number of deltas to be “in
progress™ at agy given time. This means that 4 number of ger commands with the --e keyletter
may be cxecuted on the same file, provided that no two executions retrieve the same version
{unless multiple concurrent edits are aliowed, see Section 5.1.5).

The p-filz (which is created by the get command invoked with the = keyletter) is named by
replacing the “s.” in the SCCs file narne with *p.". It is created in the directory contaiding the
sccs file, is given mode §44 (readable by everyone, writable only by the owner), and is owned
by the effzctive usar, The p-file contains the following information for each delta that is still
*“in progress™:? :

s The SID of the retrieved version.
s The SID that will be given to the new Jelta when it is created.
¢ The login name of the real user executing get.

‘The first execution of “‘get —~e™ causes the crearion of the p-file for the corresponding 5CCs file.
Subsequent executions only wupdate the p-file by insening a line containing the above
information. Before inserting this line, however, get checks that no estry aiready in the p-file

3. Onher information may be Freseat, but is aot of coacern here, Sez ger(l) for funher discussion.

SO WS OF: WO SPEVIMES ST BV O PIBNIUSE At SIeth ITRIANT AOT JO DORSTHNP ¥ J8] 1°p BOTRSS DIG y

MNAWAY ¢ =TIY MES =0 DU

:9|durexs 303 pUENNOS (])puss
Ead 31 jD siwenmire | g, 30 .. S Wile pOST WAy [njasn fprepronred 51oangjday d— 2yl

IWECIP-ARNIQIE < Xes d— 128

®3TwT LIENIGRE Mk 527y-8 315a2 0) ‘a1dmexs 20 ‘posn g Avm STy IndIne SiEoudEp
SG) 01 PEMST] PARIM F1 (PAARLOAI EHTI] JO QMU N PHE PIAIWNSI VOMIA 21 JO C(US o
ST gons) 3ndine RIEPDEIS S 01 PILSAND A[{etuIor IndIne Mo ‘CONEPE U] I/~ T O TED JOUiTy
“ndingd pIEpEmS ST (11X PIADINAI AN MU 01 137 D Jgnaiay d— 30y J0 UonEdmsedg

nding paffy ry] sEokay 91

11171 23ap seonpoad 108 puosds o 01 Smpuodsaliod pUETIICS
pijap aq: PUT '(BNIP HUNN (IEIdAr 1SOW) 18I1E] IM §) 1°] BOURENESE) 771 VISP sEonpolé saf sy
oI 07 SUIpDOdssi0D PUTLIWIOD WA ® 'ASEY S1N U] 5P JC DORMDIXS BOmaalsm Ui mouum

=1
T1° 11 ©ep man
11
aqes o= 158
Lo pamd(lo; Limieipawminn ag Aew

£2uT] §
2°1 TIop MU

' 1°1

oS o= 3aE
gl e[y SOt am: m 19S5 Bep [am 2 pamOlE a42 (LIS
pm\:m:: aweEs M Ne paseq BUNIPS J0] 108 JO SUCHNISXS aaissasons 2JO0W J0 OM) 2Q D1 panpsp)
fIPa JTIUNITED IENMT “JaAsm0H %28 SnOAZIE oM 6@ (IS STOES oM 1® DOINOSXS &1 Bunips Joj
338 0anbasqns T 210J3Q PIINSIXD 2Q ISNW Hj2p B WYL "AQUALMSDOY N3N0 01 pINMLIed j0U
aJe (s 9Wes A U0 paseq (PAgLads 51 a4y =) BONIPR 30) £ ‘SUONIPUGY ULIOY ISPUN

QIS 2uiDS #Yi fo SUPT waumu0d 1€

788
o1 pegseds @S aM Jo ubp.snng ® 5® ‘vyep AQ PRIRRSD LJRRIUDAY G O) GOWSISA ST JO (NS S 5e
124 ST 438 £4Q peAsLNa) B 9l $D5 U JO TBOISIAA JEGA “Basyd [NJash 1501 S J0) *S40Ls | oyue]

_ {1} Asowap Sonpoa
WWAIPIp ® Fey A[EELICT 2SN §IES SOTIS ‘P6LE 10U £20D m2iqoid SIM G 05 ,‘SI95N 1DBIOLIP
&g pyunousd SIE SDOUNDOXS SEUMID [INS *SINIEIM T] 'TONIPUCH JOMD SDI5 Ut §) §olm ‘Zjpf-8
NGoum © Nam-3540 O 1MSNE PINOA SUONNIIXS ININDILANS SIS *P33IONS s DORNSIXD IRIY
am 4[RO ‘ISIID SIVOINEND 1IDHIIPID W] O PILIED 3¢ PINONS 155 JO BUCHNIZXS ENOLRA
S I WOV 0] JWORULOGEN B 1] RN J8eSSAM JOMS TE ‘AR XI9WD JOWNS J] ERNIMDOD
Suisteo03d pue ‘s591806 W B3¢ SEISP IPTIO IEWI POWIOHT 51 328N M 'PSSSONS SIS Moy J]

"POAO[[E 3I¢ SUPS
JALTODE? S|ARINT SSI[TN ‘PaAdLIIc) 5 01 BOISIIA OT1 JO CIS) PeasLN2l LPEAJTE ST Sa[noads

apmp 5,50 $30S . | *

SCCS User's Guide : - 15

TABLE 1. Detsrminutior of New SID _
% — DT

Case

g Specified™ Usedt Conditions Rerrieved to be Creared
. fones no R defauits to mR mR.ml, mR.imL-l- li

it

2. nones es R defaults to mR mR.mL mR.mL.{mB+ }).]
3. R no R > mR mR.mL R.!g
4 R no R = mR mR.mL mR.(mL+ 1)
L R ves R > mR mR.mL mR.ml.(mB+ 1).1
6 R yes R= mR mR.mL mR.mL.(mB+1).]
< and as
7. R - A a Rl e BRmL™ bRmL.(mB+1).1
Trusk successor
8 R - in release > R R.mL R.mL.(mB+1).1
_=and R exists
9. R.L no No truak successor R.L R.(L+1)
10. R.L yes No trunk successer - R.L R.L.{mB+1).1
Trunk successor
1. R.L - in release > R R.L R.L.(mB+1).1
12, R.L.B no No braoch successor R.L.BmS R.L.B.(mS+1
13. R.L.B yes No branch successor R.L.B.mS R.L.(mB+1).1
14. R.L.B.S oo No branch successor R.L.B.S R.L.B.(S5+1)
15. R.L.B.S yes No dranch successor R.L.B.S R.L.(mB+1).1
16 RLBS = Branch successor R.L.B.S R.L.(mB+1).1

R™, “L", "B™, aed “'S™ are the “relexse™, “level”, “‘branch™, and ““sequence’ componems of the S(D,
respestively: “m” means "maximum™. Thus, for example, “R.ml" means “the maximum level aumber within
release R*; “R.L.(mB8+ 1).1" means *“‘the first s=quence aumber on the aew hranch (ie., maxitaum braach
number plus 1) of level 1, within release R'. MNote that if the SID specified is of the form “R.L™, “R.L.B™. or
*R.L.B.S™, each of the spacified components muss exist,

+ The =h keylener is effective only i the b flag (see admua (1)) is present in the file. In this @ble, an entry of “*—
* means “irrelevant™.

t This sase applies if the d (default SID) flag is act present in the fGle. If the d Dag i present in the fle, then the
SID obleined from the d flag is interpreted as il it had been specified on the command line. Thus, oze of the
other cagess in this table applies.

§ This cnse is used 1o force the creation of the Jfirsr deits in & xow relegse.
* “hR™ is the highest exisring reiesse that is lover than the specified, nonstyent. relenss R

if file “‘compile™ contains:

//plicomp job job-card-information
{/stepl exec plicke

//pli.sysin dd »

o

“iget —p =~rREL MOD

/e

i

will send the highest level of release 3 of file *s.abc™. Note that the line **~ 5", which causes
s2nd (1) to make ID keyword substitutions before detecting and interpreting contsel lines, is
necessary i send (1) is to substitute '*s.abc’ for MOD and “3" for REL in the line ““!'ge1 =
p =tREL MQD". .

16 . SCCS User's Guide

The «s keylanzer suppresses all cutput that is normally directad to the standard output. Thus,
the siD of the retrieved version, the aumber of lines retrieved, ets., are not output. This does
aot, however, affect messages (o the diagnostic output. This keyletter ia used to prevent aca-
diagnostic messages {rom appearing oa the user's tarminal, and is oftzn used in cogjunction
with the —p keylertar to “*pipe™ the output of ger as im:

get —p == sabc | aroff

The =g keyletter is supphed 10 suppress the actual retrieval of the text of a version of the sCCs
file. This may be useful in 2 oumber of ways. For example, to verify the existencs of 2
particular ST in an sCCs fle, one may axsrute;

get —=g «rd3 sabe

This outputs the given S if it exists in the sCCs fle, or it generates an error message, if it does

not. Anocther use of the —g keyletterisin reseneranns 1 p-file that may have been accidentally
destroyed:

get —8 —g s.ab¢

The =1 keyletter causes the creation of an [-file, which is named by replacing the *s."* of the
sccs fle name with *“1."". This file is created in the current directory, with mode 444 (read-
only), aod is owned by the real user. [t contains a table (whose format is described in ger(1))
showing which deitas were used in constructing a particuiar version of the sC¢s fle, For
axample:

get =rl.3 =l s.abe

generatas an [-file showing which deltas were applied to retrieve version 2.3 of the sCCS file.
Specilying a value of “'p"* with the =1 keyletter, as in:

get =lp =r2.3 s.abc

causes the generated ourput to be written to the standard output rather than to the [L5le. Note

that the =g keyletter may be used with the -1 keylerter 10 suppress the actual retrieval of the
taxt.

The —m keyletter is of use in identifying, line by line, the changes appiied to an sCCs file.
Specification of this keyletter causes each line of the geaerated g-file to be precaded by the S

of the delta that caused that line to be inserted. The SO u separated {rom the text of the line
by a tab character.

The ~n keyletter causﬁ each line of e generated g-file to be preceded by the value of the
%hvi% D keyword (sez Section 5.1.1) and a tab character, The —~n keyletter is most often used
in a pipeline with grep(1). For example, to fad all lines that mawch a given pattern in the latext
version of each sCcs file in a directory, the following may be sxecuted:

get =p =a =4 dirsctory | grep panem

If both the —m and —n keyleners are specified, sach line of the generated g-file is pracaded by
the value of the %M% D keyword and 2 tab (this is the effzct of the —n keytenter), [oflowed Dy
the line in the format produced by the —m keyletter. Because use of the —m keyletter and/or

the «n keyletter causes the contenrs of the g-file to be modifled, such a g-file must not be used

for creating a delta. Therefore, oeither the «—m keyletter nor the —n keyleter may De
specified together with the —e keylettar,

See zer(1) for a full description of additicaal ger keylattena.
5.2 delta '

The drizs command is used to incorporate the changes made to a g-file inta the corresponding
sces fle, i.e., to create 1 deits, and, therefors, 2 aew version of the fle.

-

p——

P

SCCS User's Guide 17

Invocation of the defte command requires the existence of a p-file (see Sections 5.1.3 and
5.1.4). Delra exaraines the p-file to verify the presence of an entry contsining the user's login
came. If none is found, an error message results. Dela also performs the same permission
checks that ger performs when invoked with the —e¢ keyletter. If all checks are successful, delta
determines what has been changed in the g-file, by comparing it (via diff{1)) with its own,
temporary copy of the g-file as it was before editing, This temporary copy of the g-file is called
the d-file (its name is formned by replacing the *'s.” of the sccs file name with “d.”) aad is
obtained by performing an internal ger at the SID gpecified in the p-file entry.

The required p-file entry is the onc containing the login name of the user executing delta,
because the user who retrieved the g-file must e the one who will ereate the delta. However,
if the login narae of the user appears in more than one entry (i.s., the same user sxecuted ger
with the -¢ keyletter mare than once on the same sccs file), the —r keyletter must be used
with delia to specifly an SID that uniquely ideatifies the p-file entry®. This entry is the one used
10 obtain the SID of the delta to be created.

In practice, the most common invocation of delra is:
delta s.abe

which prompts on the standard output (but cnly if it is a terminal}:
comments?

to which the user repiies with a description of why the delta is being mede, terminating the
reply with 8 newline character. The user’s response may be up to 512 characters long, with
newlines nor intended to terminate the response escaped by '\,

i3 thq sces file has a v flag, delta first prompts with:
MRs?
on the standard output. (Agsin, this prompt is printed only if the standard output is a

terminal.) The standard input is then read for MR® numbers, separated by blanks and/or tabs,
terminated in the same manner &s the respense to the prompt “comments?",

The «y and/or --m keyletters are used 1o supply the commentary I(commenl.s and MR
numbers, respectively) on the command line, rather than through the standard input. For
example: .

delta —y"descriptive comment® -—~m"mrmuml mraum2® s.abc

. In this ease, the corresponding promapts are not printed, and the standard input is not read,

The —m keyletter is allowed only if the sCCS file has a v flag. These keyletters are useful when
delta is executed from within a Shell procedure (sce sh(1)).

The commentary (comments zad/or MR numbers), whether solicited by delra or supplied via
keyletters, is recorded as part of the entry for the delta being created, and applies to ail sCCs
files processed by the same invocation of defta. This implies that if defta is invoked with more
than one 8lle argument, and the first file zamed has 2 v fiag, all fles named must have this flag.
Similarly, if the first file named does not have this flag, then none of the files named may have
it. Any file that does not conform to these rules is not processed.

S. The SID specificd may be either the SID retrieved by ger or the SID deler is to create.

& In » tightly cosirolled eaviconment, it is expesied that deltas sre sreatcd only as & result of some trouble repan,
chrage request, trouble ticket, eie. (collestively alled bere Modifestion Requems, or MRs) and that it is desirabie
or necessary 10 record such MR number(s) within tech delta

14 SCCI User's GQuide

When processing is complete, defia outputs {on the standard output) the S of the created
delta (obrained from the pofilz entry) and the counts of lines inserted, deleted, and left
unchaaged by the deita. Thus, a typical output might be:

1.4

14 ingerted

7 deleted

345 unchanged

[t is possible that the counts of lines reporied as inserted, deleted, or unchanged by defta do aot
agree with the user’s perception of the changes applied to the g-file. The reason for this is that
there usually are a number of ways to describe a2 set of such changes, especially if lines are
moved arouad in the gofile, and deltr is likely w0 find a descripticn that differs {rom the user’s
perception. However, the roral sumber of lines of ke new deita (the aumber insarted plus the
aumber left unchanged) should agrze with the qumber of lines int the edited g-file.

If, in the process of making a delta, deftz Bnds no © keywords in the edited g-filz, the message:
No id keywords (cmm?)

is issued after the prompts for commentary, but before any other output. This indicates that
any D keywords that may Mave existed in the sccs file have been replaced by their values, or
deletad during the editing process. This could be caused by creating a deita {rom a g-file that
wag creatad by a ger without the —e keyletter (recall that D keywords are replaced by gerin that
case), or by accidemtslly deleting or changing the (D keywords during the editing of the g-/le.
Anothier possibility is that the file may never kave had agy © keywords. In any case, it is left
up to tie user to determine what remedial action is aecassary, but the deita is made, unless
there is an | flag in the sc¢s fle, indicating that this should be treated as a fatal error. In this
last case, the delta is oot created. . '

After’arocessing of an sccs Ble is complete, the corresponding p-file satry is removed from the
Jfile.’ [\Berz is only one 2ntry in the pofile, then the p-file itsa:] is remaoved.

lo addition, de'tz removes the edited g-file, uniess the ~—a keylettar is specified. Thus:
deita -—=n s.abe
will Xeep the 2-file upon completion of processing.

The -3 (“silemt”) Kkeyletter suppresses all gutput that is mormally directed ta the standard
output, othzr than the prompts “‘comments?’” and “MRs?", Thus, use of the =s keyietter

. together with the =¥ keyletzer (and possibiy, the —m keyletter) causes deha neither to read the

standard input aor to write the standard cutput.

The differences between the g-file and the 4-/ilz (see above), which constitute the delta, may be
printed on the standard gutput by using the —p keyletter. The format of this output |s similar
to that producsd by duﬁ" (1).

5.3 admin

The admin command is used to aedminister SCCS files, that is, to create new SCCS files and to
chauge parameters of existing ones. When an 5¢¢s file is created, its parameters are initialized
by use of keyletters or are assigned dafault values if no keyletters are supphed. The same
keyletters are used (0 change the parameters of existing Sles.

LA Anusdamammmmmwamwmyuw.maq,ﬂk.emsmumﬂumm-md.nzﬂhm
is desceibed in Sestion 4 above,

SCCS Usar's Guide 19

Two ir.e{rleners are supplied for use in conjunction with detecting and correcting *‘corrupted™
sccs files, and are discuseed in Section 6.3 below.

Newly-created sccs files are given mode 444 (read-only) and zre owned by the effective vzer.

Oaly a user with write permission in the directory containing the sccs file may use the gdmin
command upon that file.

3.3.1 Creation of Sccs Files
An 5CCs file may be created by executing the command:

admin --ifirst s.abe
in which the value (*first*") of the =1 keyletter specifies the same of a file from which the text
of the initial delta of the sccs file *'s.abe™ is to be taken. Omission of the value of the =1
keyletter indicates that adwun is to read the standard input for the text of the imitial delta,
Thus, the cornmand:

admin ~i s.abc < first
_is equivalent to the previous example. If the text of the initial delta does not cunmn i0]
keywords, the message:

No id keywords (cm7)

is issuéd by admin as a warning. However, if the same invocation of the command also sets the
1 flag (not to be confused with the —{ keyletter), the message is treated 25 an etror and the
sCcs file is not created. Only oae SCCS file may be created at 2 time using the =1 keyletter,

When an sCCs file is created, the relesse number assigned to jts Grst delta is nprmally **1", and
its feve/ number is always *“‘1™. Thus, the first deita of an sCcs file is pormally **1.1". The =r
keyletter is used to specify the reiease number to be assigned to the first deita, Thus:

admin =—ifirst —r3 s.abc

indicates that the first delta shouid be named *°3.1" rather than **1.1". Because this keyletter
is only meaningful in creating the first delta, its use is only permitted with the =i keylcner

3.3.2 Insemng Commentary for the Initial Delha

When an ScCs file is created, the user may choose to supply commentary stating the reason for
creation of the file. This is done by supplying comments (—y keyletter) and/or MR numbers?
(=—im keyletter) in exactly the same manner as for dela. If comments (~y keyletter) -are
omitted, a comment line of the form:

‘dste and time created YY/MM/DD HH:MMSS by logname
is automatically generated,

If it is desired 10 supply MR numbers (--m keyletter), the v flag must also be set (using the
wf keyletter described below). The v flag simply determines whether or not MR numbers
must be supplied when using say sccs cummand that modifies a deitz commensary (see
scesfiie (5)) in the sccs file. Thus:

tdmin —ifirst —mmmum! —=fv s.abc .
Note that the —y and —m keyletiers are only eflective if 4 new sces file is being created,

8. The creation of an SCCS fle may sometimes bz the direct result of 2a MR.

- 20 SCCS User's Guide

~5.3.3 [nitialization and Modification of SCCS File Parameters

The portioa of the $<Cs Ole reserved for descripive wexe (see Section §.2) may be initialized or

changed through the use of the —t keyletter. The descriptive text is intended a3 2 suramary of
‘- the contents and purpose of the sccs file, although its contents may be arbitrary, and it may be
© arbitrarily long. '

'When an sccs file is being created and the —t keyletter is suppliad, it must be {ollowed by the
nanie of a Sle {rom which the descriptive taxt is to be taken. For example, the cornmand:

admin =—ifirst —tdese s.abc
specifies that the descriptive text is to be taken (rom fle **desc’.

When processing an exisning scCs file, the ~t keyletter specifies that the descriptive text {if
any) currently in the fle is to be replaced with the taxt in the naraed file. Thus:

admiin —tdes¢ s.abe

specifies that the descriptive text of the sccs fle is to be replaced by the cooteats of *‘desc'”,
omission of the file name aftar the =1 keylester 25 in-

admin =t 5.adc
causes the removal of the descriptive text from the sccs fle.

The fags (see Section §.2) of an sccs file may be initialized and changed, or deleted through
the use of the —f and —d kayletters, respectively. The flags of am sCCs file ars used to direct
certzin actions of the various commands. Ses admin(l) f{or a description of all the flags, For
example, the 1 flag specifies that the warning message stating there are no D kaywords
cantained in the $CCs file should be traated as an error, and the d {default SID) flag specifies the
default versioa of the sccs file to be retrieved by the get command. The —[keyletter is used
to set a fag and, possibly, ta set its value. For example:

admin —ifirt = —{mmodname s.abe

sets the | flag and the m (module name) flag. The value “modaame’” specified for the m (lag
i$ the value that the ger command will use o replace the %M% D keyword. (Ia the absence of
the @ ilag, the name of the g-file is used as the replacement for the “4M% D keyword) Note
that several -—{ kaylsttars may be supplied on a single invocation of admin, and that —f
keyletters may be supplied whether the command is coeating a gew 5Ccs file or procassing an
existing one. " ’

The =4 keyletter is used to delete a flag from an sccs file, and may only be specified when
procaasing aa existing flle. As an example, the command:

dmiz -—dm s.abc

removes (e m flag from the sces file, Several =4 keylatters may be supplied om a single
invoeation of admin, and may be intermixed with ={ keyletters.

Sces files contain 2 list (user lit) of login names and/or group s of users who are allowed o
create deitas (see Sections 5.1.3 and 6.2). This list is empty by default, which implies that
anyone msy create deltas. To add login names and/or group [Os to the list, the —~a kayletter is
used. For example: , .

admin «axyz -awql --al234 sabe

adds the login names “*xyz’* and “wql™ and the group © **1234” to the list. The —a kayiemer
giay be used whetker gdmin s creating 2 new SCCS Hle or processing an existing oge, and may
appesr soveral times. The =4 Keylerter is used ir an analogous maoner if oae wishes to
regiove (“erzse’) login names or group D {rom the lisy,

—— f

)

SCCS User's Guide , 11

5.4 prs

Prs is used w print on the standard output all or parts of an 5¢cs Ble {see Section 6.2) in 2

format, called the output data specificarion, supplied by the user via the. —d keyletter. The data
specification is 2 string cossisting of sccs file dota keywords® interspersed with optional user
1ext. ' :

Data keywords are replaced by appropriate values according to their definitions. For example:
:1:

is defined as the data keyword that is replaced by the SID of a specified delta. Similarly, :F: is
defined as the data keyword for the sccs file name currently being processed, and :C: is defined
as the comment ling associated with a specified delta. All parts of ap sc¢s file have an
associated data keyword. For a compiete list of the data keywords, see prs(1).

There is no limit 10 the number of times a data keyword may appear in a data specification.
Thus, for example:

prs =~d":[: this is the top delta for :F: :I:" s.abc
may produce on the standard output:
2.1 1his is the top delta for s.abc 2.1

lnformaﬁon may be obtained from a single delta by sm.cifyi.ﬁg the sID of that dalta using the
-t keyletter. For example:

prs -d":F::: :1: comment line is; :C:" —r1l.4 s.abc
may produce the following output: '
s.abe:- 1.4 comment line is: THIS 1S A COMMENT

If the —r keyletter is nor specified, the value of the SID defaults to the most recently created
delta. -

In addition, information from 2 range of deltas may be obtained by specifying the =1 or —e
keyletters. The —e keyietter substitutes data keywords for the SID designated via the —r
keylener and all deltas created eariier. The ~1 keyletiar substitutes data keywords for the SID
designated via the —r keyletter and all delias created lgrer. Thus, the command:

prs —d:l: —=rl.4 —e sabc
may output:

1,
1.
1.2.1.1
1.

1

— R e

9. Not w be confused with ger [D keywords.

2 ' ‘ P A . SCCS User's Guide

and the comrmand:
prs d:l: -rl 4 = s.abc
may produce

3.3
12
il
.2.1.1
2.2
a1
1.4

Subsiitution of dawa keywords for all deltas ot' the sCCS file may be obtamed. by specilying both
the «¢ and -=| keyletters. .

5.5 help

The help command prints explagationy of sCCS commands and of messages thac these
commands may print. Arguments 1o kelp, zZero or more of which may be supplied, are simply
the names of SCCS commands or the code numbers that appear in parentheses after SCCS
messages. I no argument is given, keip prompts for one. Help has no concspt of keyletter
arguments or file arguments. Explanatory information related to an argument, if it exists, is
printed oa the standard cutput. If no informaticn is found, an error message is printed. Note
that each argument is processed independently, and an error resulting from one argument will
not tenminate the procassing of the other arguments.

Explanatory i_nfo:maticn related to 4 commiand is a synopsis of the command For example: -
help ged rmdal
praducss:

ges:

“nonexistent sid”

Tae specified sid does not exist in the
given fle. .

Chesk’ !‘or typos.

rmdel. R
rrﬂdel --rSID name

5.6 fmdal

The mdgl catnma.nd is prowded to allew removal of a deita from aa sces fle, though its use

should: be reserved for those cases in which incorrect. global changes were made a part of the
delta to be remaved_

The dei:a to be removed must be a “leaf™ deita. That is, it must be the latest (most recently
created) delta om its branch or on the trunk of the sccs fle tree. ln Figurs 3, only deltas
L3112 132.2,and 2.2 can be removed: once they are remaved, thend,el:as 1.3.2.1 and 2.1
ca.nberemoved.. andsoon.)

To 32 allowed to remove a deita, the eifective usey must have write permission in the dirsctory
contzining the 5CCS nlg [n addition, the real user must either be the one wio created the deita
being remaved, or be the owaer of the sccs fle and its directory.

SCCS User's Guide 23

The —r keyletter, which is mandatory, is vsed to specify the complete SID of the deha to be
removed (i.e., it must have two componeats for a trunk delm. gnd four components for a
branch delta); Thus:-

rmdel w3 z.abc

specifies the removal of (truak) delta **2.3™ of the sccs file. Before removsl of the deita, rmde!
checks that the refease number (R) of the given SID satisfies the relation:

floor £ R £ ceiling

Rrmdel also checks that the 5D spzcified is not that of a version for which a get for editing has
been executed and whose assccisted delta hes not yet been made. In eddition, the login name
or group 1D of the user must appear in the file’s user list, or the user list rust bz empty. Also,
the release specified can not be lecked agninst editing (i.e., if the | flag is set (sze admin(l)),
the release specified smust not be contained in the list). If these conditions are not satisfied,
processing is terminated, and the deita is not removed. After the specified delta has been
removed, its type indicator in the defta iable of the sccs file (see Section 6.2) is changed from
“D" (for “deita™) to “R" (for “ramoved"}

5.7 ode

The cde commard is used to change a delta’s commentary that was supplied when that delta was
created. Its invocation is analogous to that of the mnde! command, except that the delta to be
processed-is nof required to be 3 leaf delta. For example:

cde —rl.4 s.abe
specifies that the commentary of delta **3.4" of the sCC$ file is 10 be changed.

The new commentary is solicited by cdc in the same manner as that of delta. The old
commentary associaled with the specified delta is kept, but it is preceded by 2 comunent line
- indicating that it has been chasged (i.e., superseded), and the new commentary is entered
ahead of this comment line. The “inserted” comment line records the login name of the user
executing cde and the time of its execution.

Cdc also allows for the deletion of selected MR numbers associated with the specified delta,
This is specified by preceding the selected MR gumbers by the character '™, Thus:

cdc =rl.4 s.abc
MRs? mraum)d !mroum]l
comments? deleted wrong MR nuniber and inserted correct MR number

inseris “myaum3l® and deletes *‘mmauml’ for delta 1.4.
5.8 what

"The whar command is used to find identifying information within aay pwB file whose name is
given as an argument to what Directory names and a name of **="" {a lone minus sign) are

not treated specially, as they are by other $CCS commands, and ao keyleners are accepted by the
command.

What searches the given fiie(s) for all ocourrences of the siring “@(#)“. 'which is the
replacement for the $3Z% O keyword (see ger(1)), and prints (on the stapdard output) what
follows that string until the first double quote ("), greater than (>), backslash (\), pewline, or

% : SCCS User's Guude

(non-printing) NUL character. Thus, [or example,.if the sccs file **s.prog.c’ (which is a C
program), containg the following line (the %M% and %I% D keywords were defined in Section
511

char id{] "HZoH3M%:%I%";
and then the comimand:
get 3.4 $.prog.c

is execu:ed. and Gnslly the resulting g-file is compiled to producs “prog.a" and “a.out th.gn

the command: .
what prog.é peog.o a.out
groduces: '

prog.c:
prog.c:l.4

prog.as
prog.c:3.4

a.0utl;
prog.c:3.4

The string searched {or by what need not be imserted via an ™ keyword of ger it may be
inserted in any convenient manner.

4.9 scosdif

The scesdiff command determines (and prints on the standard output) the differences berwesn
two specified versions of oane or more sccs files. The versions to be compared are specified by
using the —r Keylenter, whose format is the same as for the ger comtmand. Thsa two versions
must be specified as the frst two arguments to this command in tha order in which they were
created, i.e., the older version i3 specified first. Aay following keyletters are interpreted as
arguments to the zr{l} command (which actuaily prints the differences) aad must appear
before any file names. SCCS files 1o be processed are named last Dtrec'ory names and 2 name
of =" (a lone minus sign) ars 707 acceptable o scosdif .

The differencas ars printed in the form generated by dif (1). 'l'he I'ollowmg is an example of
the-invocation of sesdift

Sccsdi&' =tl.4 ~r5.6 sabe
5.10 comd

Comd generates a Shell procedure (see sh(1)) which atampts t0 recons:ruct the aamed sccs fles
so (hat tie reconstrucied filexs are smaller than the ona.u:als I'he g.ueﬁlcd Shell procedure is
writteg of the standasd output.

Named sces files are recunstrus:ed by discarding unwaated dena.s and comhuung specified other
deltas. The intended use is for these sccs files that contain deltas that are 50 cid that they are
no louger useful. It is xor recommended that comb be used s a maiter of routine; its use
sbould be restricted o 2 very small aumber of times in the life-of an sCC3 ﬁle

In the absence of any keyletters, comd preserves oply leaf deitas and the ‘minimum gumber of
anicegtor deltas necessary to preserve the “‘shapge™ of e sccs fle tree. The efect of this is o
elirinate ‘‘middle” deitas onm the trunk and oa ail hranches of e tree. Thus, in Figure 3,

deltag 1.2, 1.3.2.1, L. 4 and .1 would te eliminated, Some of the keylenm are summarizad
ag follows:

The —p keylsiar specifies the oldess deita that i3 w0 Se pfeserved in the .eccn.um:aou. All
older daleng are discarded,

SCCS User's Guide 25

The —c keyleter specifies a Ix (see ger(1) for the syntax of such a list) of deltas to be
presecved., Mi other de!t.as are discarded.

The s keylener causec the genersticn of a Shel! precedure, which, when run, produces only a
report summarizing the percentage spece (if any) to be saved by reconstructing each named
sces file. It is recommended that comd be run with this keyletter (in addition to any others
desired) &zfore any actual teconsiructions. :

It shouid be noted that the Shell procedure generated by comb is nor guaranteed to save any
space. Im fact, it is possible for the reconstructed file 1o be larger than the original. Note, too,
that the shape of the scCs file tree may bde altered by the reconstruction process,

© 8.11 val

Val is used to determine if a f§le is an sccs fle meeting the characteristies specified by an
optional list of keyletter arguments. Any characteristics not met are considered ervors,

Val checks for the existence of a particular deita when the I for that delta is explicitiy specified
via the -7 keyletter. The string following the —y or —m keyletter is used to check the value
set by.the t or m fiag respectively (see admin (1) for a descriptioe of the flags).

‘Val trests the special argument “="" differently from other SCCS commands (see Section 4).
This argument allows val to resd the argument list {rom the standsrd input as opposed to
obtzining it from the command line. The standard input is resd until end-of-file. This
capability allows for one invocation of val with different values {or the keyletter and file
arguments, For example:

val -
-yt --mabc S.abc
—=mxyz -ypil s.xyz

first checks if file “*s.abc™ has a value “‘c™ for its fype flag and value *‘abe’ for the module name

flzg. Once processing of the frst file is completed, val then processes the remaining files, in
this case “‘s.xyz””, to determine if they meet the characteristics specified by the keyletter
arguments asscciated with them.

Val returns an 8-bit code which is a disjunction of the possible errors detected. That is, each
bit set indicates the occurrence of a specific error (see val(1) for a description of the possible
errors and their codes). In addition, an appropriate diagnastic is printed unless suppressed by
the -~s keyletter. A return code of 0" indicates all named files met the characteristics
specified. - :

6. SCCS FILES

This section discusses several topics that must be considared before extensive use is mede of
sccs. These topics deal with the protection mechanisms relied upon by sccs, the format of
sces files, and the recommended procedures for auditing sCCs files.

8.1 Protection

- $ccs relies on the capabilities of the PWB operating system for most of the protection
mechanisms required to prevent unauthorized changes to sCCs files (i.e., changes made by
noa-5CCS commands). The only protection features provided directly by sCCs are the release
iock flag, the release floor and ceiling {iags, and the user list (see Section $.1.3).

New sccs files created by the admin command are given mode 444 (read ounly). It is
recommended that this mede nor be changed, as it prevents any direct modification of the files
by non-SCCS commands. It is further recommended that the directories containing sCcs files be
given wmode 755, which allows oaly the owner of the directory to modify its contents,

28 SCCS User's Guide

Sccs files should be kapt in diractories that contain only 5¢CS files and any temporary fles
croszed by SCCs commands. This simplifies protection and auditing of sc¢s files (ses Section
6.3). The contexms. of directories should correspond o convenient logical groupings, e.g., sub-
systems of a large project.

Sces fles must have only ore link (name). The reason {or this is that those commands that
medify sces files do so by creating a temporary copy of the file (cailed the x-file, see Section 4)
and, upon completion of processing, remove the old file and rename the x-file. If the old file
fas more than one link, removing it and renaming the x-file would break the link. Rarther than
procass such files, SCCS commands produce an error message, All 5¢CS files musr have names
that begin with “*1.”.

When oanly one user uses $ccs, the real and affective user (Ds are the same, and that user ©
ovwrs the directories containing sccs dles‘d. Therefore, 3CCS may be. used directly without any
preliminary preparation. :

However, in those situztions in whick several users with unique user s are assigned
responsibility {or oge sccs file {for example, in large software development projects), one user
(equivalently, one user) must be chosen as the “owner™ of the sces fies and be the one
who will “administer’ them (e.g3., by using the admin command). This user is termed the sccs
administrator [or that project. Because other users of 5¢Cs do not tave the same privileges and
permlissions as the $CCS administrator, they are not able to execute directly those commands
that require write permission in the directory coataining the sccs files. Therefore, a project.
dependent grogram is required to provide an imterface to the ger deima, and, if desired, rmdei
:ad cde commands,

The interface program must be owmed by the 5CCs administrator, and must have the
ser user (D on execution bit on (see chAmod (1)), so that the effective user (D is the user @ of the
administrator. This program’s fuaction is to invoke the desired sCCs command and to cause it
0 ‘nherir the privileges of the interface program for the duration of that command’s execution.
In this manger, the owaer of an SCCs Ole can medify it at will Other users whose login cames
or group IDs are in the user lisz for that fila (but who are not its owners) are given the gecsssary
peraiissions only for the duration of the sxscution of the intarface program, aad are thus able
to modify the sccs files only through the use of defia and, possibly, rmdel and cde, The

peoject-dependent interface program, as 1:3 name u‘nphﬁ must be custom-built for each
-rc]ecz. .

s.z. Formug

-

Sces fles ara mmposed of lines of ASCT text'! arranged in six parts, as follows:

Checlsum A line containing the *‘logical™ sum of all the characters cf the file (1ot
including this checksum itself)..
Delta Table Information about each deita, such as its type, its S, datz and time of

creation, and commentary.

User Names List of login names and/or group s of users who are allowed m medify
the flle hy adding or removing deltas.

10 Proviousiy, s Operstosg Symam under whish SCCY executed ulowed for only 25§ usiqus user (Ds. This
greacated e situation o which saveral uso3 nesdad W share usee TDY9 (and thus shared idcatcal Ale parmiszicas).
The Ovoratng Symsm curready in use (Versien 7 of UNDQ allows for 55.538 unique user IDs. ind it s
recommended thot e2ch user have a vaique wser TD.

1L Frévions versiosa of SCCS up 0 and indeding Yertion 7 used nom-ASCYH Hes, Th-n!’en.mumadbymhu,

versions of SCCS aro igoomapetibla with the cugneat versgen of SCCS.

)
N
P

S

SCCS User’s Guide)

Flags Indicators that control ¢ertain actions of various $CCS commands,
Descriptive Text Arhitrary text provided by the user, usually a summary of the contents

. - and purpose of the file, _
‘Body Actual text that is being administered by sCCs, intermixed with mtemal :

sCcs coatrol lines.

Detiled information about the contents of the various sections of the file may be l'ound m _

secyfile (5); the checksum is the oaly portion of the file which is of interest below.

It is important to note that because sccs files are Asch files, they may be processed by varibus
PWB cominands, such as ed{1), grep(1), and car(1). This is very convenient in those instances

. in which an s¢cs file must be modified manually (e.g., when the time and date of a delta was

recosded incorrectly because the system clock was set incorrectly), or when it is desired to
simaply “‘look" at the file.

e Extreme care should be exercised when modifying SCCS files with ron-SCCS commands,

.6.3 Auditing

On rare occasions, perhaps due to an operating system or hardware malfunction, an scCs file, or
portions of it (i.e., one or more “'blocks™) can be destroyed. SccCs commands (like most PWB
commands) issue ap error message when z file doss not exist. In addition, SCCS commands use
the checksum stored in the sccs file to determine whether 2 file bas been corrupted since it was
last accessed (possibly by having lost one or more blocks, or by having been modified with, for
example, ed(1)}). Mo s¢cs command will process a corrupted sces file except the admin
command with the ~h or ~2 keyletters, as described below.

It is recommended that sccs files be andited {checked) for possibie corruptions on a regular
basis. The simplest and fastest way to perform an audit is to execute the gadmin command with
the -h keyletter on all sccs files:

adogin ==h s.filel s.file2 ...
or
admin -—h directoryl directory2 ...

If the new checksum of any file is not equal to the checksuti: in the first line of that file, the
message:

corrupted flle (coé)

is produced for that file. This process costinues until all the ﬁles have besn examined. When
examining directories (as in the second example above), the process just described will not
detect missing files. A simple way 1o detect whether any files are missing from a directory is to
periodically executs the [s(1) cornmand on that directory, and compare the outputs of the most
current and the previous executions. Asny file whose name appears in the previous output but
not in the current ooe has been removed by some means.

Whenever g file has been corrupted, the manner in which the file is restored depends upon the
extent of the corruption. If damage is extensive, the best solution is to contact the local PWB
operations group 1o request a restoral of the file from a backup copy. In the case of minor
damage, repair through use of the editor ed(i) may be possibie. In the latter case, after such
repair, the foliowing command must be executed:

admin =z s.file

The purpoze of this is 10 recompute the checksum td brinsy it inwo agree:i:ei:t with the actual

contents of the file. After this command is executed on a file, any corruption which may have
existed in that file will no loager be detectable. R

L _ ' SCCS User's Guide

REFERENCES)
{1] Bell Laboratories, Documents for Use with the Pwa Time-Sharing System. T h
D]

SCCS User's Guide

; L nis EUET ADDENDUM

The fﬂllouing changes to the Source Code Control System are effective with the
UNIX"" System III release.

1. Hodifiled commands

4

Three SCCS commands have been modified:

1. comb
2. Eet
3. scesdiff

HModifications to each of these commands are desceribed below.

. 1.1 comb

-] enhahcement

Lomb generates a shell procedure that, when executed,
will (hopefully) reduce the size of an SCCS file.
Because of temporary file naming conventions, two or
more; comd generated shell procedures could not be
executed concurrently. Temporary files are now

uniquely named so that simultaneous executlion is
possible.

1.2 gaﬁ ;;
d?enhaneement

:iPreviously the -4 and -x keyletters (for forced
“.inclusion or exclusion of deltas to produce the
-!generated file) would imply the -k keyletter. That is,
- ‘the. .generated file would be created with mode 644 and
'uidentirication keyword replacement would be suppressed.
‘The -1 and -x keyletters no longer imply the =k
-;.=keyletter..

.e;coding error .eorrection

'5_3 Under certain circumstances, temporary files that
. should only have existed for the duration of the

execution of get would not be removed vhen get
terminated . Temporary files are now properly removed,

n

SCCS User's Guide

1.3 sccadiffr

@ new capabllity

A new keyletter (-3), which takes a numeric argument,
allows the user to specify the Tile segmentation size
that Rdiff(1) (used by sccsdiff; wilil pasas to diff(1).
This can be useful when a high system load causes diff
to fail due to lack of space, etc.

@ change

The output of scesdiff is no longer piped through pr{1)
by default. A new keyletter (~p) specifies that the
output i3 to be piped through pr but arguments can not
be passed to pr as was the previous case. This
alleviates gcesdiff knowing anything about pr.

2. MNew Commands

Two new commands have been added to SCCS:

Sact print current SCCS file editing activity

unget undo the effect of a previcus get{(1) for
editing of an SCCS file.

The manual entries for these commands are provided in the
uNIXT! System III User's Manual

o

Function and Use of an SCCS Interface Program

L. E. Bonanni
A. Guyton (4/1/80 revision)

Bell Laboratories
Piscataway, New Jersey 083354

ABSTRACT

This memorandum discusses the use of a Source Code Control System Interface

Program to allow more than one user to use SCCS commands upon the same set
of files.

1. INTRODUCTION

In order to permit UNIXY users with different user identification numbers (user IDs) to use
SCCS commands upon the same files, an SCCS interface program is provided to temporarily
grant the necessary file access permissions to these users. This memorandum discusses the
creation and use of such an interface program. This memorandum replaces an earlier version
dated March 1, 1978. :

2. FUNCTION

When only one user uses SCCS, the real and effective user IDs are the same, and that user ID
owns the directories containing SCCS files. However, there are situations (for example, in large
software development projects) in which it is practical to allow more than one user to make
changes to the same set of SCCS files. In these cases, one user must be chosen as the owner of
the SCCS files and be the one who will administer them (e.g., by using the admin command).
This user is termed the SCCS administrator for that project. Since other users of SCCS do not
have the same privileges and permissions as the SCCS administrator, they are not able to exe-
cute directly those commands that require write permission in the directory containing the SCCS
files. Therefore, a project-dependent program is required to provide an interface to the get,
delta, and, if desired, rmdel, cdc, and unget commands.’

Tbhe interface program must be owned by the SCCS administrator, must be executable by non-
owners, and must have the sef user ID on execution bit on (see chimod (1)%), so that, when exe-
cuted, the effective user ID is the user ID of the administrator. This program’s function is to
invoke the desired SCCS command and to cause it to inkerit the privileges of the SCCS adminis-
trator for the duration of that command’s execution, In this manner, the owner of an SCCS file
(the administrator) can modify it at will. Giher users whose Jogin names are in the user list® for
that file (but who are mof its owners) are given the necessary permissions only for the duration
of the execution of the interface program, and are thus able to meodify the SCCS files only
through the use of delta and, possibly, rmdel and cdc.

t UNIX is a trademark of Bell Laboratories.

1. Other SCCS commands either do not require write permission in the directory containing SOCS files or are
(generally) reserved for use only by the administrator.

2. All refercnces of the form name (V) refer 1o item rome in section N of the UNLX User's Marmual.

3. This is the list of login names of users who are allowed to modify an SCCS file by adding or removing deltas. The
login names are specified using the admin (1) command.

2 ' . . SCCS Interface Program

3. A BASIC PROGRAM

When a UNIX program is executed it is passed (as argument 0) the name by which it is
. invoked, followed by any additional user-supplied arguments. Thus, if a program is given a
number of links (names), it may alter its processing depending upon which link is used to
invoke it. This mechanism is used by an SCCS interface program to determine which SCCS
command it should subsequently invoke (see exec(2)).

A peneric interface program (imter.c, written in C) is shown in Anachmenr I. Note the refer-
ence to the (unsupplied) function filearg. This is intended to demonstrate that the interface
program may also be used as a pre-processor to SCCS commands. For example, function learp
could be used to modify file arguments to be passed to the SCCS command by supplying the fil
path name of a file, thus avoiding extraneous typing by the user. Also, the program could sup-
ply any additional (default) keyletter arguments desired.

4. LINKING AND USE

In general, the following demonstrates the steps to be performed by the SCCS administrator to
create the SCCS interface program. It is assumed, for the purposes of the discussion, that the
interface program inter.c resides in d:rectory /x1/xyz/sces. Thus, the command sequence:

cd /x1/xyz/sccs
cC ... inter.c —o inter ...

compiles inter.c to produce the executable module inter (... represents arguments that may
also be required). The proper mode and the sef user ID on execution bit are set by executing:

chmod 4755 inter
Finally, new links are created, by (for example):*

In inter get
In inter delta
In inter rmdel

Subsequently, any user whose shell parameter PATH (see sh(1)) specifies that directory
/x1/xyz/sces is 1o be searched first for executable commands, may execute, for example: -

get —e /x1/xyz/sccsfs.abe

from any directory to invoke the interface program (via its link get). The interface program
then executes fasr/bin/get (the actual SCCS ger command) upon the named file. As previously
mentioned, the interface program could be used to supply the pathname /x1/xyz/sces, so that
the user would only have to specify:

get —e s.abc

to achieve the same results.

5. CONCLUSION

An SCCS interface program is used to permit users having different user IDs to use SCCS com-
mands upon the same files. Although this is its primary purpose, such a program may also be
used as a pre-processor to SCCS commands since it can perform operations upon its arguments.

4. The names of the links may be arbitrary, provided the interfuce program is eble to determine from them the names
of SCCS commands 10 be invoked.

e

- SCCS Interface Program

Attachmernt I

SCCS Interface Program inter.c

main(argc, argv),
int arpe;
char =argv[];

register int i;
char cmdstr[LENGTH]

/*

Process file arguments {those that don't begin with *—"),

s/
for (i = 1;i < arge; i+ +)
if (argv[il[0] 1= =9
argv[i] = filearg(argv(il);

FL
Get "simple name" of name used to invoke this program

(i.e., strip off directory— name prefix, if any).
]

argv[0] = sname(argv[0});

/*

Invoke actual SCCS command, passing arguments.
»/

sprintf(cmdstr, "/ust/bin/%s", argv([0));
execv{cmdstr, argv);

January 1981

