
CHAPTER 1: SEVEN VIEWS OF COMPUTER SYSTEMS

A computer is determined by many factors, including architecture, structural
properties, the technological environment, and the human aspects of the

environment in which it was designed and built. In this book various authors

reflect on these factors for a wide range of DEC computers - their goals,
their architectures, their various implementations and realizations, and

occasionally on the people who designed them.

Computer engineering is the complete set of activities, including the use of

taxonomies, theories, models, and heuristics, associated with the design and

construction of computers. It is like other engineering, and the definition
that Hamming once gave is especially appropriate: engineers first turn to

science for answers and help, then to mathematics for models and intuition,
and finally to the seat of their pants.

In the few decades since computers were first conceived and built, computer

engineering has come from a set of design activities that were mostly

seat-of-the-pants based, to a point where some parts are quite well understood

and based on good models and rules of thumb, such as technology models, while

other parts are completely understood and employ useful theories such as

circuit minimization.

In this chapter seven views are presented that the authors have found useful

in thinking about computers and the process which molds their form and
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function. The views are intentionally independent; each 1ss a different way

way

of

viewing a computer. A computer scientist or mathematician sees a computer as

levels of interperters. An engineer sees the computer on a structural basis,
with particular emphasis on the logical design portion of the structure. The

view most often taken by a buyer is a marketplace view. While these people

each favor a particular view of computers, each typically understands certain
aspects of the other views also. The goals of Chapter 1 are to increase this
understanding of other views and to increase the number of representations
used to describe the object of study and hence improve on its exposition.

Thus, these views form a useful background for the subsequent chapters on

past, present, and future computers.
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VIEW 1: Structural Levels of a Computer System

In Computer Stuctures [ Bell and Newell, 1971 ], a set of conceptual levels
for describing, understanding, analyzing, designing, and using computer

systems was postulated. The model has survived major changes in technology,
such as the fabrication of a complete computer on a single silicon chip, and

changes in architecture, such as the addition of vector and array data types.

As shown in Figure 1, there are at least five levels of system description
that can be used to describe a computer. Each level is characterized by a

distinct language for representing the components associated with that level,
their modes of combination, and their laws of behavior. Within each level

there exists a whole hierarchy of systems and subsystems, but as long as these

are all described in the same language, they do not constitute separate

levels. With this general view, one can work up through the levels of computer

systems, starting at the bottom.

The lowest level in Figure 1 is the device level. Here the components are

p-type and n-type semiconductor materials, dielectric materials, and metal

formed in various fashions. The behavior of the components is described in the

languages of semiconductor physics and materials science.

The next level is the circuit level. Here the components are resistors,

inductors, capacitors, voltage sources, and nonlinear devices. The behavior

of the system is measured in terms of voltage, current, and magnetic flux.

These are continuously varying quantities associated with various components,

and equations (includinghence there is continuous behavior through time,
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differential equations) can be written to describe the behavior of the
variables. The components have a discrete number of terminals, whereby they
can be connected to other components.

Above the circuit level is the logic level. While the circuit level in
digital technology is very similar to the rest of electrical engineering, the
logic level is the point at which digital technology becomes separate from

electrical engineering. The behavior of a system is now described by discrete
variables which take on only two values, called 0 and 1 (or + and -, true and

false, high and low). The components perform logical functions called AND,

OR, NAND, NOR, and NOT. Systems are constructed in the same way as at the

circuit level, by connecting the terminals of components, which thereby

identify their behavioral values. After a system has been so constructed, the

laws of boolean algebra can be used to compute the behavior of the system from

the behavior and properties of its components.

In addition to combinational logic circuits, whose outputs are directly
related to the inputs at any instant of time, there are sequential logic
circuits which have the ability to hold values over time and thus store

information. The problem that the combinational-level analysis solves is the

production of a set of outputs at time t as a function of a number of inputs

at the same time t. The representation of a sequential switching eircuit is

basically the same as that of a combinational switching circuit, although one

needs to add memory components, such as delay elements (which produce as

output at time t-). Thus the equations that specify sequential logic circuit
structure must be difference equations involving time, rather than the simple

boolean algebra equations which describe purely combinational logic ciruits.
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A glance at Figure 1 reveals there is another part to the logic level. This
part is called the RT (register-transfer) level. The components of the RT

system level are registers and the functional transfers between those

registers. The functional transfers occur as the system undergoes discrete
operations, whereby the values of various registers are combined according to

some rule and then are stored (transferred) into another register. The rule
or law of combination may be almost anything, from the simple unmodified

transfer (A <-- B) to logical combination (A <-- B (AND) C) or arithmetic
combination (A <-- B + (PLUS) C). Thus a specification of the behavior,

equivalent to the boolean equations of sequential circuits or to the

differential equations of the circuit level, is a set of expressions (often
called productions) which give the conditions under which such transfers will
be made.

The fourth and last level in Figure 1 is called the PMS (Processor-Memory-

Switch) level. At this level one sees only the most aggregate behavior of a

computer system. The PMS level consists of central processors, core memories,

tapes, disks, input/output processors, communications lines, printers, tape

controllers, busses, teleprinters, scopes, etc. The computer system is viewed

as processing a medium, information, which can be measured in bits (or digits,
characters, words, etc.). Thus the components have capacities and flow rates

as their operating characteristics.

The program level has been dropped from the original set of levels shown in

Bell and Newell, because it was a functional level rather than a structural

level.
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Many notations are used at each of the four structural levels. Two of the

less common ones are the PMS and ISP notations. A complete description of
these notations is given in [Bell and Newell, 1971: Chapter 2]. Those aspects
of PMS which are used in this book are described in Appendix 2. The ISP

notation has evolved to ISPS and is described in Appendix 1.
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VIEW 2: Levels of Interpreters

In contrast to the structural viewpoint given in View 1, this view is
functional. According to this view, a computer system consists of layers of

interpreters, much like the layers of an onion.

An interpreter is a processing system which is driven by instructions and

operates upon state information. The basic interpretive loop, shown in Fig.
2, is most familiar at the machine language level, but also exists at several

other levels.

To formalize the notion of levels of interpretation, one can represent a

processing system by the diagram in Figure 3.

linstructions!
1

v

linterpreter ! < ! state !<--
4---->

Figure 3: A processing system

The state information operated on by an interpreter is either "internal" or

"external". This can best be understood by considering the "onion skin" levels

of the five processing systems that form a typical airline reservation systen.

These levels are listed in Table 1.

Table 1
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Internal State:
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seat allocation request message

airline reservation system
number of requests pending at this moment
location of passenger list on a disk file
number of lines connected to systemrotational position of disk
number of reserved seats on a given flightairline name for a given flight

Fortran statement codes

Fortran execution system

memory management parameters
user name
Main storage size location of disk files
interrupt enable bits
expression evaluation stack
dimensions of arrays
subroutine names
values of data in arrays
statement number
program size
value of an expression
DO-loop variable value
printed characters on line printer

machine language instructions
processor
program registers
condition codes
program counter

data in main memory
disk-controller registers

microcode

micro machine

instruction register
flip-flops holding error status
stack of microprogram subroutine links

program registers
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condition codes
program counter

Level 0 Instructions: hardwired combinational network

Interpreter: sequential machine controlling the
micro machine

Internal State: clock, counters, etc., controlling
micro machine timing

External State: micro machine, console
machine. TheThe Level 0 system is the logic which sequences the Level 1 micro

Level 1 system is a microprogrammed processor implemented in real hardware. It
is the machine seen by the logic designer. The Level 2 system is the CPU. It

The Level 3 systemis the machine seen by the machine language programmer.

shown here is a FORTRAN-language processing system. The Level 4 system is an

airline-reservation system. These five systems form the hierarchy shown in

Fig. 4, where each system is an interpreter which sequences through multiple

steps in order to perform a single operation for the next-higher-level
interpreter. The highest level systen, the airline reservation systen, is an

interpreter operating on messages received from outside of the system. It

tests and modifies states, and generates messages to send back outside the

system, thus performing a single operation for the next-higher-level (outside)

interpreter.

In practice, few systems are levels of pure interpreters, although layers are

present. Deviations from the model have occurred for both hardware and

software reasons.

In the hardware deviation case, the micro machine shown in Level 1 is often

not present, but rather the Level 2 CPU is implemented directly using Level 0

sequential controllers. This practice of skipping Level 1 was initially due to
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the lack of adequate read only memories, but is now generally limited to the

CG

case of ultra high speed machines (Cray and Amdah ) which cannot tolerate the

fetch and execute cycle times associated with a control store.

There are two primary software driven departures from the pure interpreter
model: (a) high-level-languages are usually executed by a compiler rather
than by an interpreter, and (b) some layers are bypassed when more ideal

primitives exist at deeper levels. Figure 5 illustrates this bypassing

process. A pure interpreter implementation of Fortran would use an object time

system (OTS) for all Fortran operations designated in the figure as "Type C".

The object time system would require an operating system (OPSYS) for the

interpretation of some of its operations, and the operating system in turn

would be interpreted by the instruction set interpreter (ISP interpreter).

However, the Type A operations in the figure would be directly interpreted by

the instruction set interpreter.

Having presented the pure interpreter model, one can now return to the onion

skin layered model and better understand how the different layers relate.

The macromachine hardware can be thought of as a base level interpreter. It is

most often extended upward with an operating system. There may be several

operating system levels so that the machine can be built up in an orderly

fashion. A kernel machine might manage and diagnose the hardware components

(disks, terminals) and provide synchronizing operations so that the multiple

processes controlling the physical hardware can operate quasi-concurrently.

Next, more complex operations like the file system and basic utilities are

added, followed by policy elements such as facilities resource management and
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accounting. As viewed through the operating system, one sees a much different
machine than that provided by the basic instruction-set architecture. In

fact, the resultant machine is hardly recognizable as the architecture most

usually given by a symbolic assembler. It includes the basic machine, but has

much more capable I/O and often the ability to be shared by many programs (or
tasks).

Operating systems designers believe all these facilities are necessary in

order to implement the next higher level interpreter--the standard language.
The language level may include interpreters or compilers to translate back to

the machine architecture for ALGOL, BASIC, COBOL, FORTRAN, etc. or any of the

other hundred standard languages and their dialects.

Often an additional special language is used because as application can't be

easily expressed using the standard language and it is necessary to have

operations that are within the domain of the problem. Using a special

language, varioous application subprograms can be created to enable specific
application programs to be written. One then may build the application and

finally the real user can get a problem solved iin a cost-effective fashion

provided there has been the right set of operations (languages) at each of the

levels.

Sometimes the stratification is done to help manage complexity or to allow

specialization of design activities. Sometimes the underlying layers are

completely hidden from the user to aid ease of use.

Finally, note that using fundamentally different outer layers for a common
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= --

inner set of layers creates quite different machines, hence a set of onions

Therefore it is important to realize that when dealing with common core

hardware, multiple operating systems, languages and applications, a network of
machines (a crop of onions) is formed, not just a single, layered machine.

In the final analysis, the number of levels is just another tradeoff.
Performance considerations lead to the deletion of levels, complexity leads to

the addition of levels.
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VIEW 3: Packaging Levels of Integration

This is a structural view that packages the various components (hardware and

software) into levels. The levels for DEC computers in 1978 were as follows:

applications
applications components
Special languages
standard languages
operating systems
cabinets (to hold complete hardware systems)

9
8
7
6
5
4

boxes
modules (printed circuit boards)

3
2

integrated circuits1

This view is the most important in the book, because it shows how computer

systems are actually structured, and hence how their costs are structured.

Being a structural view of the object being sold, however, it is completely a

function of the technology, the organization building the systen, and the

marketplace, all of which are so rapidly changing with time that the view

could better be titled "Dynamic Levels of Integration". There are three major

changes taking place:

1. Changes in the hardware levels, where the shrinking in physical size of

functions has three effects:

a. Lower levels subsume higher levels
b. The semiconductor component supplier is forced to assume higher and

higher level design responsibilities
e. Levels disappear
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2. Changes in the software levels, again with three effects:

a. Each level grows in size as more functionality is added over time

b. More levels are added as minicomputers are applied to a broader range

of applications
eC. Functions migrate downward from level to level

3. Changes in the hardware/software interface, where software functions

migrate into hardware for higher performance

For the first of these areas of change, hardware levels, it is interesting to

note that interconnection and packaging now constrain and limit design more

than any other factor, excluding the basic lowest level component

(semiconductor) technology.

The constraining and limiting by the interconnection and packaging take place

because most manufacturing costs are associated with the physical structure.

As interconnection levels must be introduced to build complex structures, many

usually unwanted side-effects occur. The interconnection requires space and

interferes with cooling air flow. Long interconnections increase signal

transmission delays, and these reduce performance. Signal transmission not

only makes the computer susceptable to electromechanical interference, but

Finally,also may radiate electromagnetic waves will need to be controlled.

there is the domain of industrial design or aesthetics, and everyone is a

self-based authority on appearance.
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Figure 6 shows the costs of various levels-of-integration versus time for.

small computers. The cost depends partly on implementation and architecture
word-length. As the word-length is made shorter, there is some economy

particularly for very small computers, because some levels of integration
cease to exist. For example most hand held calculators are implemented using
4 bit, stored program computers with fixed programs that occupy a single IC.
They have no associated modules, backplanes, boxes and cabinets--only a single
package that fits one's hand.

Note from Fig. 6 that semiconductors, the lowest level of technology, have had

the greatest price decline. Modules have a lesser price decline because they
are a mix of ICs, printed circuit boards, component insertion labor, and

testing labor. The price decline for the IC portion of the module cost is
moderated by the labor intensive nature of module fabrication, thus producing
a price decline for modules that is markedly less than that for ICs. At the

box level-of-integration, power supplies and metal or plastic boxes are also

labor intensive and further moderate the price decline provided by the IC's.
Finally, as boxes are integrated (by people), and applied at a system level

(by people), the price decline has almost disappeared.

Many of the cost improvements brought about by new technology are derivative.

They are by-products of using less power and less space, thus avoiding the

labor intensive levels of packaging integration.

An astute marketing-oriented person might ask, "How, with all the technology,

can we do something unique so that we can maximize the benefit from the

technology without having to pay so much for labor intensive items such as
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packaging?" One answer: prices by not providing a power supply and

mounting hardware. Let the user provide all added-on parts and mount the

computer as needed. In this way, the price, though not necessarily the total
cost to the user, is reduced. We'll sell at the board level." Computer

Reduce

Automation followed this philosophy when they introduced the "Naked Mini" TM

so that users could supply more added value - packaging and power technology.

A similar effect can be seen in the PDP-11 series since the PDP-11/20's

introduction in 1970. At that time, the 4,096 word PDP-11/20 (mounted in a

box) sold for $9300. In 1976, the boxed version @f an LSI11 cost $1995,

reflecting a factor of 4.7 improvement over the PDP-11/20. The 4,096 word

core memory module used in the 11/20 sold for $3500, while a 16,384 word MOS

memory module for an LSI11 sold for $1800, reflecting a factor of 7.8

improvement.

The changing levels of integration have also changed the domain of the

semiconductor suppliers. In the early 70s, Intel, North American Rockwell, and

other semiconductor companies began to use the higher semiconductor densities

to reduce the number of levels of integration by packaging a complete

processor-on-a-chip. These organizations had assimilated logic design, but

were frustrated because their customers could really not identify higher

functionality units (beyond memory) requiring on the order of 1,000 gates on a

chip. Also, the speed of these high density units was quite low.

They discovered that the best finite state machine to make was just a simple

computer, because it provided the finite state machine plus the useful
It became "simplyfunctions that were not covered by switching circuit theory.
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a small matter of programming" to do something useful. While programs for
these simple computers cost $1-$100 per instruction to write, the prices for

processors-on-a-chip have followed a very steep decline of up to 50% price
reduction/year.

Robert Noyce, of Intel, presented Fig. 7 in October 1975. It illustrates what

has been happening in the semiconductor industry, and has been modified

slightly to show the technology that DEC has assimilated with time. It
indicates the breadth semiconductor manufacturers now have in technology,

starting from semiconductor device level, through the view Noyce has of the

various levels-of-integration, and continuing into end user applications.

The levels-of-integration viewpoint can be summarized as components of one

level being combined into a system at the next highest level in a hierarchy.
A level denotes that there is a single conceptual design discipline or set of

interacting disciplines which determine the function, structure, performance

and cost of the constituent level. "Level" is a deceptive word, because as

Fig. 8 shows, the structure is actually a lattice or network, and not a tree.

Furthermore, each level can be nested itself.
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VIEW 4: Computer Classes: A Marketplace View

Because it is the complete marketplace process that produces the computer,
this view is the most complex. A computer is characterized (in terms of

marketability) as a function of price, performance, and time of introduction
in what might appear to be a commodity-like environment.

Because various computers operate at different performance rates and at
various costs, computation can be purchased in multiple ways, and

price/performance ratios will thus affect marketability. For example:

computation can be supplied by a shared large, central batch computer; each

organizational entity can own and operate a shared minicomputer; an individual
can operate a single desk top system; or each individual can operate a

programmable calculator.

Price/performance is not the sole factor determining marketability, however.

Program compatibility with previous machines is very important. When users

write programs, there is a lifetime associated with the use of those programs,

and thus a need to have compatible processors for running those programs today

and for a substantial time into the future. Thus, while the supply of rapidly

evolving technology permits new designs to be more cost effective, and even

radical, continuity with the past must exist.

The Marketplace View begins with a description of how technology provides

basic improvements with each new generation at approxiamately six year

intervals. An example of alternative new designs is given to show why most new

designs usually provide increased performance at constant price. With this
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background, the four price/performance classes that have evolved over the last
four generations are presented.

The influence of technology on the computers that are built and taken to the

marketplace is so strong that the four generations of computers have been

named after the technology of their components: vacuum-tubes, transistors,
integrated-circuits (multiple transistors packaged together), and LSI circuits
(Large-Scale Integration). Every electronic technology has its own set of

characteristics (e.g., cost, speed, heat dissipation, packing density,

reliability), all of which the designer must balance. These factors combine

to limit the applicability of any one technology; typically, one technology is

used until a limit is reached, or another technology supersedes the old.

Design Alternatives

When an improved basic technology becomes available to a computer designer,

there are four paths the designs can take to incorporate the technology:

1. use the newer technology to build a cheaper system with the same

performance;

2. hold the price constant and use the technological improvement to get an

increase in performance;

3. push the design to the limits of the new technology, thereby increasing

both performance and price; or
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4. find a drastically new structure using the computer as a basic archetype

(e.g., calculators) such that the design can be considered off the

evolutionary path.

Figure 9 shows the trajectory of the first three of the design alternatives.
In general, the design alternatives occur in an evolutionary fashion as in

Fig. 10 with a first (base) design, and subsequent designs evolving from the

base.

In the first design style, the performance is held constant and the improved

technology is used to build lower price machines which attract new

applications. This design style has as its most important consequence the

concept of the "minimal computer". The minimal computer has traditionally
been the vehicle for entering new applications, since it is the smallest

computer that can be constructed with a given technology. Each year, as the

price of the minimal computer price declines, new applications become

economically feasible.

The second, constant cost alternative uses the improved technology to get

better performance, and will usually yield the best increase in total

system-cost-effectiveness. This approach provides a growth in performance and

quality at a con stant price and is probably the best for the majority of

existing users.

The third alternative i s to use the new technology to build the most powerful

New designs using this alternative often solve previouslymachine possible.
This designunsolved problems, and in doing so advance the state of the art.
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alternative must be used cautiously, however, because going too far in price
or performance, (i.e., building beyond the technology) is dangerous and can
lead to a zero performance, high cost product. There are usually two

motivations for operating at this leading edge: preliminary research
motivated by the knowledge that the technology will catch up; and national
defense, where an essentially infinite amount of money is available because
the benefit--avoiding annihilation--is infinite.

Table 2 shows the effect of pursuing the two design strategies of 1) constant

performance at decreased price, or 2) constant price at increased performance.
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Table 2: Using New Technology for Constant Price and Constant Performance.
Designs
Introduction time t t+1 t+1
(generation)
Design style base case constant price, constant constant

increased performance, performance,
performance decreased decreased

price price
Application base base base new base

Computer price 1 1 0.5 0.5

Operating costs 2-4 2-4 2-4 1-2
(range)
Total cost 3-5 3-5 2.5-4.5 1.5-2.5
Performance
(and improvement) 1 2 1 1

Improvement

Performance/price 1 2 2 2

(computer only
and improvement)

Performance/

(in total cost) 1 1 .83-.9 -5-.6

Total-cost .33-.2 .66-.4 4-.22 66-.4

(Perf./total cost) 1 2 1.21-1.1 2Improvement in

The first column gives the base case at a given time, t. Since this is the

base case, the price, performance and performance/price ratio of the computer

are all 1. As the computer is applied to a particular environment,

operational overhead is added at a cost of 2 to 4 times the original price of

the computer; the total cost to operate the computer becomes 3 to 5, and the

performance/total-cost ratio is reduced to between .33 and .2 (depending on

the total cost).

with the same fixed (overhead)
Now assume the same operating environment,
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at a new time t+1 when technology has "improved" by acosts to operate
factor 2. Two alternative designs are carried out, one is at constant
price/higher performance and the other is at constant performance/lower price
(cols. 2 and 3). The application is constant in three cases (cols. 1-3) and a

new application is discovered for the fourth case (col. 4). Both the constant
cost and constant performance designs give the same basic performance/cost
improvement--when only the cost of the computer is considered. However, when

one considers the high fixed overhead costs associated with the application
(cols. 1-3), there is a relatively small improvement in cost performance/cost,
although there has been a cost savings of 17 to 10 per cent. The greatest
gains come in applying the computer with greater performance and getting the

attendant factor of 2 gain in performance and in performance/price ratio.

To summarize, the constant-price / increased-performance design style gives a

better gain because operating costs remain the same. Its gain can only be

equalled by the constant-performance design style when operating costs are

halved upon its application. This only occurs when a new application is
tackled, such as that shown in column 4.

Computer Classes

Applying the three design styles shown in Fig. 9 over several generations

produces the plot given in Fig. 11. These figures lead to one of the most

interesting results of the Marketplace View, which is that computer classes

can be distinguished by price and named as follows: sub-micro (to come in the

Thenext generation--say by 1980), micro, mini, midi, maxi, and super.

classes midi- and maxi- are sometimes referred to by the single,
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non-descriptive name, mainframe.

When one distinguishes computer classes by price, a new range of price can be

made possible by new technology and create a new class. The new class appears

at the low end of the price scale where the minimal computer is introduced at

a significantly lower price level than existing computers.

While the measure used to define a new class is price, the measure defining an

established class is performance. This is because once a new class has become

established in the marketplace, the users become familiar with what computers

of that class can do for their applications, and tend to characterize that

class on a performance basis. The characterization of existing classes on a

performance basis is important to this discussion because at each new

technology time, performance increases by one category, and midi performance

becomes available on a mini, for example.

The effect of technology upon computer classes can be summarized in the

following thesis:

Continual application of technology via the two major design styles

results in

(a) price declines which create new classes of computers,

(b) new classes becoming established classes, and

(ce) established classes becoming encroached upon.

ine the thesis, some additional commentary is in order. First, some
To ref
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question may arise as to how much of a price reduction is necessary to create

create

a new class. The continuity implied by the thesis is deceptive in that it
suggests that new classes come about by the continual application of the

constant-performance, decreasing cost style of design. Viewing the industry
as a whole, this is true. However, a new class is usually not created by the
same organization that is designing computers in existing classes. A new

company, or new organization within a company, is usually required to provide
the requisite fresh viewpoint needed to create a new class. It is the fresh

viewpoint and not some arbitrary amount of price reduction that creates a new

class.

The minicomputer class came about by DEC founders taking the view that simple

machines, unencumbered by the costly general purpose facilities of the

mainframes (many data types, sharing mechanisms, etc.), could be built and

would be viable.

While the minimal design philosophy pervaded for nearly 10 years as the

minicomputer, the semiconductor-based, processor-on-a-chip computer (called
microcomputers) name identifies a significantly lower priced computer. This

lower cost is fundamentally based on the elimination of a level of

integration, interconnection. The microcomputer is dispelling the lethargy

growing around the constant-price minicomputer of the mid-1970's and is

generally being promoted by companies not in the minicomputer business, or by

separate organizations within the minicomputer companies.

The sub-microcomputer is predicted to be a complete computer (with both

processor and program memory) on a single chip, although it is not as radical
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as the microprocessor which eliminated the concept of the box-of-boards
computer,

In both the mini and micro cases a fresh organization broke out. Why is a

fresh viewpoint needed? Because existing organizations, like most human

organizations, act to preserve the status quo, and produce constant-price
computers. This can be explained by examining each part of the organization
in turn.

1. The existing user, who is the potential customer for a new system has

a set of fixed costs (overhead). Thus by the same arguments that were

just discussed in conjunction with constant cost and constant

performance design styles, the existing user generally wants more

performance rather than lower price. Productivity improvements are

required to stay at equilibrium with his organization and to sustain

or increase funding. Operating costs (personnel, paper, power, etc.)
are likely increasing due to inflation, and although a lesser priced

machine could hold performance/cost constant, there would be no

productivity gain. Requiring less or equal funds, would ultimately

cause the loss of organizational power since this is based on people,

expenses, ability to provide increased service, etc. Thus, the

pressure is to get larger, more powerful machines. Furthermore, his

software investment requires that the new system be compatible with

his earlier systen.

2. The sales force respond mainly to orders which are lost because of

poor performance, because its measure is so tangible. Price (and even
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lack

lack of functionality) is considered only when the performance of two

alternatives is equal. The amount of work a Salesperson has to do is
measured in sales yields and, indirectly, the number of systems sold.
The reduction of the sales price of a given system by a factor of two,

requires selling twice the number of systems to bring in a constant
amount of sales dollars. This implies working significantly harder

(neglecting the effects of price elasticity). For example, within

DEC, because of the wide price range of its products, a salesperson
need sell only one large system per year, while at the low end he must

sell 1500.

Marketing reinforces the inputs from the sales force, while

interjecting its own bias and noise. Because of the broad range of

applications, it presents conflicting product definitions. Thus, a

new product must have: the performance of the current most

competitive machines; the price of the most marginal competitor (who

may be losing money to enter the market); the software of all the

competitors (since each differentiates itself by unique software); and

3.

all the service of the largest (and possibly highest price)

competitor.

Engineering. The new product specification input is to improve

performance as seen in paragraph 1 above. Technology pushes engineers

to use higher-performance components since technology suppliers behave

in an identical fashion to the computer supplier. Although there are

various styles of designs (and designers), the most common tendency of

the designer is to use new technology to provide higher performance,
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and to solve the problems inherent in subsequent designs rather than

working to reduce costs again. The PDP-8 family provides an example.

5. Manufacturing constraints and planning are similar to sales. A plant
is measured in units, quality level, and unit cost. Preserving a

given cash flow, when faced with radically different cost products,
usually requires substantially different planning, materials handling,

manufacturing, testing, etc. The radical changes for a higher volume

business (i.e., long term planning) is difficult. Product design

change ideas fed back to engineering usually address solving previous

problems that add to product cost, rather than addressing radical

concepts that could create a new computer class.

The new organization, in addition to providing a fresh viewpoint, must also

provide the capability and willingness to deal with progress in multiple areas

of technology if the maximum evolution rate for the computer price class

thesis is to be maintained. The computer class thesis may seem to suggest that

there is one monolithic technology, steadfastly progressing, which provides

incremental improvements. In fact, there are several technologies. For

example, to fully exploit each new cireuit technology improvement, a matching

advance in packaging technology is needed. Higher circuit densities demand new

lower-cost module carriers are needed to match the lower costcooligg methods:

microprocessor-based control techniques. However, since engineering projects

tend to minimize the number of risk dimensions, a new circuit technology is

once with existing packaging and a second time withgenerally used twice:

packaging that matches the technology. There are examples in both the PDP-11

and S/370 families. In addition to packaging technology, mass storage, primary
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memory, I/0 units, logic, and power are areas whose technology must move ahead
in step. Unfortunately, in practice this does not occur. Memory prices have

consistently halved every two years, whereas electro-mechanical technology is
Slowly increasing in price.

One of the by-products of the use of new technology is that conflicts occur

within the established computer classes. An established computer class, since
it is defined on the basis of performance, is entered by constant cost/higher
performance successors from the class below it. Moreover, suppliers within a

class are, by their dominant constant price/ higher performance evolution,
operating to move up out of their class.

While movement by computer designs and computer suppliers between and amongst

the various classes may be encouraged by price and performance trends, the

speed with which that movement occurs is moderated by software compatibility
considerations. The computer class thesis is not meant to imply that each

class implements the same instruction set and PMS-level configurations, and

that they differ only in speed. Rather, much specialization occurs in each

class and many of the attributes of the higher performance machines appear to

substantially lesser degrees in the lower performance classes. For example,

there are more data types in the larger machines, their address spaces (both

physical and virtual) are larger, and the software support is generally
broader. Resources devoted to increasing reliability and availability are

more common in the higher priced machines. The PDP-11 family, from the

VAX-11/780 down to the LSI-11, exemplify these functionality differences.

Definition of the Minicomputer



Chapter 1 30
G. Bell, C. Mudge, J. McNamara Last Edit 5/10/78; Latest Edit 5/16/78
The concept of computer classes that can be distinguished by price and named

sub-micro, micro, mini, midi, maxi, and super, may be of assistance in finding
a definition for the minicomputer, a definition which has thusfar been rather
cloudy.

While the above list of classes suggests that minicomputers are those

computers whose prices fall between microcomputers and midicomputers, and thus

somewhere near the middle of the range of computers available, earlier
definitions use the term mini to denote minimal. For example [Bell, 19711:

"Minicomputers (for minimal computers) are a state
of mind (or the designerst minds); the current
logic technology, and the characteristics found in
larger computers are combined into a package which
has the smallest cost."

'tann Baron [Computing Europe, December 1975] defined the minicomputer in

somewhat similar terms:

"Minicomputers are a state of mind. It is not
useful to define them in terms of price or
capability because of the rapid changes in
technology."

The Marketplace View defines new computer classes according to price and

established computer classes according to performance. This would suggest that

a definition of the minicomputer should include some historical data on

price and some comments on performance, or at least give some indications of

performance by discussing applications and configurations. In 1977, Gordon

Bell provided such a hybrid definition for the Director of Computer Resources,

U. S. Air Force. The definition was as follows:

"MINICOMPUTER: A computer originating in the early
1960's and predicated on being the lowest (minimum)
priced computer built with current technology. From
this origin, at prices ranging from 50 to 100
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thousand dollars, the computer has evolved both at
a price reduction rate of 20% per year and has alsoevolved to have increased functionality and a
Slightly higher price with increasing functionality
and performance.

Minicomputers are integrated into systems requiringdirect human and process interaction on a dedicated
basis (versus being configured with a structure to
solve a wide set of problems on a highly generalbasis).
Minicomputers are produced and distributed in a
variety of ways and levels of integration from:
printed circuit boards containing the electronics;
to boxes which hold the processor, primary memory,
and interfaces to other equipment; to complete
systems with peripherals oriented to solving a
particular application(s) problem. The price
range(s) for the above levels-of-integration, in
1978, are roughly: 500-2,000; 2,000 to 50,000; and
5,000 to 250,000."

Economy of Scale

Another important aspect of the Marketplace View, in addition to the idea of

dividing computers into classes based on price for new classes and performance
for existing classes, is the concept of economy of scale in the computer

industry.

For nearly all man-made objects, such as transportation vehicles, electricity
generators, or buildings, there is usually some economy of scale because there

are high fixed costs that do not increase as rapidly as the output of an

object increases.

For computers, factors leading to economies of scale often apply over several

dimensions. The same software can be used on many models. Sales and field

service people can attend to a wide range of equipment. Manufacturing

facilities can be adapted to produce different models.
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Grosch (1953) suggested that there was an economy of scale for computers
according to the performance/price relationship:

2

Performance = constant x Price

Several studies [Bell and Newell, 1971; Knight, 1966; Solomon, 1966; Phister,
1976; Sharpe, 1969; Turn, 1974] have examined whether this is true for a given
set of machines. Over a narrow range of prices studied (a factor of four), a

linear approximation to the data appeared to fit nearly as well as the square
law did. See Fig. 12. While a square law performance/price relationship is
thus probably too extreme to apply to all computer system components, there

are some cases where a square law does apply, and other cases where

substantially nonlinear performance/price relationships do exist. In short,
the square law approxiamation, while not perfect, is a useful model.

A computer component that could be predicated on a nearly square law

relationship is the core memory. The electronic selection is square law; a

doubling of the selection circuitry provides access to a four times larger
stack. The manufacturing cost for larger stacks follows a less dramatic

economy of scale since there is a high set-up cost to threading core memories,

and larger memories spread this cost over more bits. All other costs are

roughly linear, including such overhead costs as memory packaging, memory

power, and memory interface.

Software Compatibility
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Equally important to the hardware considerations of the Marketplace View are

the software considerations. Nearly all modern computer designs are part of a

compatible computer family which extends over price and time. Compatibility
considerations are based on the economic necessity to utilize a common

software base. The users' investment in software dwarfs that of the

manufacturer, assuming the machine is successful. For example, if there is

only one man year of software investment associated with the 50,000 PDP-11s,

and each man year costs about $40,000 and produces something on the order of

5,000 instructions, then there is a cumulative investment of 2 billion dollars
and 250 million lines of program for the PDP-11. This investment is roughly

the same scale as the original hardware cost.

Since technology provides such rapid changes over the generations, it is

obvious that there must be backward (in time) compatibility in order to build

on and preserve the user's program base. He must be able to operate programs

unchanged to take advantage of improvements brought about by technology

changes.

In a similar way, compatibility over a range of machines, at a given time is

desirable so a user may select a machine that matches his problem set, while

having the comfort that the problems can change and there will be a

sufficiently large or small machine available to use in dealing with the new

problems.

Thus the goals for a complete, compatible computer product line (i.e., set of

products) might be:
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1. the widest range of products in terms of price offering;

2. the largest economy of scale factor for performance that separates
the models;

3. the smallest number of models to minimize costs of design,
manufacture, selling and spares inventory;

4y. the most cost-effective/competitive products (nearest to

competitive machines) for each price in the space; and

5. backward compatibility with past machines.

Goals 3 and 4 are contradictory. How can the number of models be minimized,

while at the same time providing competitive machines over a continuous space?

A possible method is described in Bell and Newell (1971) where a

multiprocessor alternative to the System/360 is proposed. This approach

provides increased reliability and the ability to easily upgrade performance

with minor additions.

Chapter 15 "The Evolution of the PDP-11" discusses quantitatively the

performance range spanned by the PDP-11, compares it with the span of the

S/360, and contrasts the different techniques used.

This discussion of the Marketplace View has been a qualitative explanation of

the effect of technology on the computer industry. It is an engineering view,

rather than one that would be given by technology historians or economists.

The twenty years described in this book and the individual cost and
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performance measures surely invite analysis by professionals. The studies

reported in [Sharpe, 1969] are a good departure point.
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VIEW 5: Computer Classes: an Applications/Functional View

Because of the general-purpose nature of computers, all of the functional
specialization occurs at the time of programming rather than at the time of
their design. As a result, there is remarkably little shaping of computer

structure to fit the function to be performed.

The shaping that does take place uses five primary techniques.

1. PMS-level configuration
A configuration is chosen to match the function to be performed. The user

(designer) chooses the amount of primary memory, the number and types of

secondary memory, the types of switches, and the number and types of

transducers to suit his particular application.

2. Physical packaging

Special environmental packaging is used to specialize a computer system

for certain environments, such as factory floor, submarine, or aerospace

applications.

3. Data-type emphasis

Computers are designed with data types (and operations to match) that are

appropriate to their tasks. Some emphasize floating-point arithmetic,

others string handling. Special-purpose processors, such as Fast Fourier

Transform processors, belong in this category also.

4. Operating-system
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The generality of the computer is used to program operating systems that
emphasize batch, time-sharing, real-time, or transacting processing needs.

Current Dimensions of Use

In the early days of computers, there were just two classifications of
computer use, scientific and commercial. By the early 1970's, computer use had

diversified to seven different functional segmentations: scientific,
business, control, communication, file control, terminal, and time-sharing.
Since that time, very little has changed in terms of functional

characterization, but two points are worthy of comment. First, file control

computers still have not materialized as mainstream separate functional
entities, despite isolated cases such as the IBM 3850 mass-storage system, and

second, terminal computers have evolved to a much higher degree than expected.

The high degree of evolution in terminals has been due to the use of

microprocessors as control elements, thus providing every terminal with a

stored program computer. Given this generality, it is has been an easy matter

to provide the terminal user with facilities to write programs. In turn, this

phenomenon has affected the evolution of time-sharing (when using the term to

denote close man-machine interaction as opposed to shared use of an expensive

resource).

Functional segmentation into categories with labels such as "business",

"control", communication", and "file control" reflects a naming convention

rooted in the old two category "scientific"/"commercial" tradition. An

alternative classification, more useful today, is the segmentation scheme
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shown in Table 3. It is based on the intellectual disciplines and environment

(e.g., home based) using and developing the computer systems. It shows the

evolving structures in each of the disciplines, permitting one to see that

nearly all the environments evolve to provide some form of direct interactive
use in a multiprogrammed environment. The structures that interconnect to

mechanical processes are predominately for manufacturing control. Other

environments, such as transportation, are also basically real time control.
Another feature of discipline-based functional segmentation is the fact that
each of the disciplines operate on different symbols. For example, commercial

(or financial control) based environments hold records of identifier names for

entities (e.g., part number) and numbers which are values for the entity
(e.g., cost, number in inventory).

Table 3: Discipline/Environment Based Functional Segmentation Scheme

Commercial environment

financial control for industry, retail/wholesale, and distribution
billing, inventory, payroll, accounts receivable/payable
records storage and processingtraditional batch transaction
processing against data base business
analysis (includes calculators)*

Scientific, engineering and design based environment

numbers, algorithms, symbols, text, graphs storage and processing
traditional batch computation*®
data acquisition*®interactive problem solving*
real time (includes calculators and text processing)
signal and image processing
data base (notebooks and records)

Manufacturing environment

record storage and processing
path*®
data logging and alarm checking
continuous real time control
discrete real time control
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machine based
people/parts flow

Communications and Message Based

message switching
front end processingstore and forward networks
speech input/outputterminals and systems
word processing, including computer conferencing and publishing

Transportation systems
network flow control
on-board control

Education-based

computer assisted instruction
algorithms, symbols, text storage and processingdrill and practice
library storage

Home-based using TV set

entertainment, record keeping, instruction, data base access

*Implies continuous program development

The scientific, engineering, and design-based disciplines use various

algorithms for deriving symbols or evaluating values. Text, graphs, and

diagrams are the major ways of representing objects, and have to be processed.

For these environments, the computer has changed from a calculator (it was

initially funded to do trajectory calculations for ballistic weapons) to a

sophisticated notebook for keeping specifications, designs and scientific
records. Whereas the computer was initially only used as a transducer to

collect data to be analyzed later on larger machines, it has since evolved to

direct recording and analysis of time varying signals and images and even to

direct analysis and control. Many transducers now have, or will have,

computers embedded in them in order to encode information at a high level so

that their output does not have to be processed by another computer.
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Connections to other larger computers are instead used solely in a network

fashion to handle graphical display and control functions.

The function of computers in both the manufacturing environment and the

commercial environments has evolved from simple record keeping to direct
on-line human control.

Process-control computers have evolved from their initial use as assisting
human operators (controllers) with data logging and alarm condition monitoring

to full control of processes with either human or second computer backup. The

structure of the computer and the control task varies widely depending on

whether it be a continuous process (e.g., refinery, rolling mill) or a

discrete process (e.g., warehouse, automotive, appliance manufacturing).

Transportation applications for aircraft, trains, and eventually automotive

vehicles, are a form of real time control that use both discrete and

continuous control. Control is carried out in two parts: on board the

vehicle and the network (airspace, highway) that carries the vehicles. The

transportation control function dictates three unique characteristics for the

computer structure:

1. very high reliability. Society has placed such a high value on a single
human life that all computers in this environment can not appreciably
raise the likelihood of a fatality.

2. very small size for on-board computers.

3. extreme operating and storage temperature range for on-board computers -

especially for automotive vehicles.
Communications and message based computers have evolved from telephone

and front ends to other computers to be
switching control, message switching,
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the dominant part of communications systems. With these evolving systems, the

communications links have changed from analog-based transmission to

Sampled-data, digital transmission. By using all-digital transmission, data

and voice (and video) can ultimately be used in the same System. Voice

transducers enable speech communications with the computer.

Word processing (i.e., creation, editing, and reproduction) together with the

long term storage and retrieval, and transmission to other sites (i.e.,
electronic mail) have evolved from several systems:

1. Conventional torn-tape message switching (e.g., TWX, Western Union, Telex).

2. Terminals with local storage and editing (i.e., Flexowriters (R), Teletype
(R) ASR's, magnetic card/magnetic tape automatic typewriters, and the
evolving stand-alone word processing terminals.

3. Large shared text preparation systems for centralized documentation
preparation, newspaper publication, etc.

4. Large systems with central filing and transmission (distribution). These
will negate need for substantial hard copy. With these systems, text can
be prepared either centrally with the system,, or with local intelligent
word processing systems.

5. Computer conferencing. People can sit at terminals and converse with
others without leaving their office.

The education-based environment implies a system which is a combination of

transaction processing (for the human interaction part), scientific

computation as the computer is required to simulate real world conditions

(i.e., physical/natural phenonmena), and information retrieval from a data

base. These systems are evolving from the simple drill-and-practice systems

which use a small simple algorithm, through simulation of particular

real-world phenomena, to knowledge-based systems which have a limited, but

useful, natural-language-communications capability.
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computers

The dominant use to date is in

providing entertainment in the form of games that model simple, real-world

phenomena, such as ping-pong. Appliances are beginning to have embedded

computers that have particular knowledge of their environments. For example,

computer-controlled ranges can cook particular food in fairly standard ways.

Alternatively, cooking can be controlled by embedded temperature sensors.

Simple calculators to record checkbooks have existed for quite some time.

These will soon evolve to provide written transactions for recording and

Home based computers are beginning to emerge.

control purpose. Many domestic activities are in essence scaled-down versions

of commercial, scientific, education, and message environments.

With the evolution of each machine class (super, mainframe, minicomputer,

microcomputer, and the hand-held calculator), one can see several cases of

machine structures which begin as highly specialized and evolve to being quite

general. This evolution is driven by applications in accordance with the

Applications/Functional View of computer classes.

The applications-driven evolution toward generality applies to both hardware

and software. As a hardware example, consider the case of a computer

installations using large, highly general computers, where minicomputers are

applied to offload the large computers. The first application of the

minicomputer is thus on a well-defined problem, but then more problems are

added, and the minicomputer system is soon performing as a general computation

facility, with the help of a general-purpose operating system. A similar

effect can be in software, where operating systems take on multiple functions

as they evolve with time because users specify additional needs, and operating

systems designers like to add function. Thus a COBOL run-time environment
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might be added to a simple FORTRAN-based real-time operating system.
the

'next stage a comprehensive file system might be added. In the hardware system,
the next step in the evolution is usually offloading the minicomputer, and in

At the

the software case, the next step is often the development of a new small,
simple, and fast operating system.

Part of this evolution is due to the inherent generality of a computer, and

part is a consequence of constant-cost design philosophy. The evolution is
observable in computers of all classes, including calculators. The early
scientific calculators evolved from just having logs, exponentials and

transcendental functions to include statistical analysis, curve fitting,
vectors and matrices.

Machines, then, evolve to carry out more and more functions. Since a prime

discriminant is data type, Figure 13 is presented to show an estimate of data

type usage for various applications, using mostly high-level data types, e.g

process descriptions. The estimates shown are very rough, because attempts to

measure such distributions to date have not shown marked differences across

applications (except for numerical vs non-numerical) because the data types

have not been of a sufficiently high level.
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VIEW 6: The Practice of Design

Whereas previous views emphasized the object being designed, this is a view of
the design process which gives rise to the object. Two models of design,
those of Asimow and Simon, are presented, followed by some remarks on factors
that particularly influence computer design.

In [ntroduction to Design [1962], Asimow gives a general perspective of

engineering design and how the formal alternative generators and evaluating

procedures are used. He also indicates where these formalisms break down and

where they don't apply. He defines engineering design as "a purposeful

activity directed toward the goal of fulfilling human needs, particularly
those which can be met by the technological factors of our eulture."

Asimow distinguishes two types of design: design by evolution and design by

innovation. While there are examples of both in this book, design by

evolution predominates both in this book and in the computer industry.

Asimow's first diagram (Fig. 14), called Philosophy of Design, shows the basic

design process. Asimow lists the following principles [Asimow, 1962: 5-6].

1. Need. Design must be a response to individual or social needs
which can be satisfied by the technological factors of culture.

2. Physical realizability. The object of a design is a material
good or service which must be physically realizable.

3. Economic worthwhileness. The good or service, described by a

design, must have a utility to the consumer that equals or
exceeds the sum of the proper costs of making it available to
him.

4, Financial feasibility. The operations of designing, producing,
and distributing the good must be financially supportable.
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5. Optimality. The choice of a design concept must be optimal
among the available alternatives; the selection of a
manifestation of the chosen design concept must be optimal amongall permissible manifestations.

6. Design criterion. Optimality must be established relative to a
design criterion which represents the designer's compromise
among possibly conflicting value judgments that include those of
the consumer, the producer, the distributor, and his own.

7. Morphology. Design is a progression from the abstract to the
concrete. (This gives a vertical structure to a design
project.)

8. Design process. Design is an iterative problem-solving process.
(This gives a horizontal structure to each design step.)

9. Subproblems. In attending to the solution of a design problem,
there is uncovered a substratum of subproblems; the solution of
the original problem is dependent on the solution of the
subproblem.

10. Reduction of uncertainty. Design is a processing of information
that results in a transition from uncertainty about the success
or failure of a design toward certainty.

11. Economic worth of evidence. Information and its processing has
a cost which must be balanced by the worth of the evidence
bearing on the success or failure of the design.

terminated whenever confidence in its failure is sufficient to
warrant its abandonment, or is continued when confidence in an
available design solution is high enough to warrant the
commitment of resources necessary for the next phase.

12. Bases for decision. A design project (or subprobject) is

13. Minimum commitment. In the solution of a design problem at any
stage of the process, commitments which will fix future design
decisions must not be made beyond what is necessary to execute
the immediate solution. This will allow the maximum freedom in
finding solutions to subproblems at the lower levels of design.

14. Communication. A design is a description of an object and a

prescription for its production; therefore, it will have
existence to the extent that it is expressed in the available
modes of communication.

Asimow goes on to define the phases of a complete project.

1. Feasibility study. The purpose is to determine some useful solutions to

the design problem. It also allows the problem to be fully defined and
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tests whether the original need which initiated the process can be

realized. Here the general design principles are formulated and tested.

2. Preliminary design. This is the sifting, from all possible alternatives,
to find a useful alternative on which the detailed design is based.

3. Detailed design. This furnishes the engineering description of a tested

and producible design.

While the above are the primary design phases, there are four succeeding

phases resulting from the need for production and consumption by the outside

world.

4. Planning the production process. This is really another design process

which is simply a special case of design. The goal is to design and build

the system that will produce the object.

5. Planning for distribution. This activity includes all aspects related to

sales, shipping, warehousing, promotion, and display of the product.

6. Planning for consumption. This includes maintenance, reliability, safety,

use, aesthetics, operational economy, and the base for enhancements to

extend the product life.

7. Retirement of the product.

and interact asObviously all of these activities overlap each other in time,
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the basic design is carried out. Phister (1974) posits a model of this
process (Figs. 15 and 16) and gives the amount of time spend in each activity
(Fig. 17) for a hardware product.

A more abstract model of design is the one that Simon uses for human problem

solving and calls "generate and test". In The Sciences of the Artificial,
Simon [1969] discusses the science of design and breaks the problem into:

representing the design problem alternatives, the search (i.e., generating

alternatives), and computing the optimum. When it is too expensive to search

for the optimum, as is often the case, one resorts to selecting satisfactory
alternatives (which Simon calls "satisficing" alternatives) and testing them.

For most parts of computer design, the design variables are selected on the

basis of satisfactory rather than optimum choice. Simon also discusses the

tools of design, including the use of simulation as an alternative to building
the complete system, and the use of simulation as a method of evaluating the

behavior of various alternatives.

In addition to the contribution of "generate and test" to the Practice of

Design View presently being discussed, Simon's work has also contributed

indirectly to views discussed earlier in the chapter. In his discussion of the

importance of the design hierarchy, Simon introduced the notion of

"architecture of complexity". The first three views of this chapter have been

influenced by this hierarchies view.

The search for design optimums, whether it be by "generate and test" or some

other alogrithm, often encounters the problem of design representation. The

ons one has, the larger is the number of design problems that
more representati
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can be tackled, and hence the closer one can get to a global optimum. Most

disciplines have at least two: schematic and visual representations. In

chemical engineering, heat balance is obtained by thermodynamic equations, not

from a plant piping diagram. In the design of power supplies, transformer

design is accomplished using equivalent circuits, not by using physical
representations. In the design of computer buses, most designers work with

timing diagrams, although state diagrams and Petri nets are alternative

representations.

In general, the importance of alternative representations in computer

engineering is not well understood. The large number of representations that

do exist at the programming level is deceptive. There are many different

algorithmic languages, but they differ mostly in syntax, not in semantics.

It is too simplistic to think that computer design should be a well-defined

activity in which mathematical programming can be employed to obtain optimum

solution. There are major problems, five of which are listed below:

1. the cost function is multi-variable
2. the primary measure, performance, is not well understood

3. the objective function that relates cost and performance is not understood

4, objectives are not as objective as they look

5. there is a dynamic aspect (because the technology changes rapidly) which

is hard to quantify.

These problems are explored in the following extract from a discussion of

design given in [Bell, Grason, and Newell, 1972: 23-24].
can often be stated as maximizing or minimizing someObjectives

A system should be as reliable as possible, asmeasure on a system.
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cheap as possible, as small as possible, as fast as possible, as
general as possible, as simple as possible, as easy to construct and
debug as possible, as easy to maintain as possible -- and so on, if
there are any system virtues that have been left out.
There are two deficiencies with such an enumeration. First, one
cannot, in general, maximize all these aspects at once. The fastest
system is not the cheapest system. Neither is the most reliable.
The most general system is not the simplest. The easiest to
construct is not the smallest, and so on. Thus, the objectives for
a system must be traded off against each other. More of one is less
of another and one must decide which of all these desirables one
wants most and to what degree.
The second deficiency is that each of these objectives is not so
objective as it looks. Each must be measured, and for complex
systems there is no single satisfactory measurement. Even for
something as standardized as costs there are difficulties. Is it
the cost of the materials -- the components? Does one use a listed
retail cost or a negotiated cost based on volume order? What about
the cost of assembly? And should this be measured for the first
item to be built, or for subsequent items if there are to be
several? What about the costs of design? That is particularly
tricky, since the act of designing to minimize costs itself costs
money. What about cost measured in the time to produce the
equipment? What about the cost of revising the design if it isn't
right; this is a cost that may or may not occur. How does one
assign overhead or indirect costs? And so on. In a completely
particular situation one can imagine an omniscient designer knowing
exactly which of these costs count and being able to put dollar
figures on each to reduce them all to a common denominator. In
fact, no one knows that much about the world they live in and what
they care about.

The dilemma is real: there is no reducing the evaluation of
performance in the world to a few simple numbers. The solution is

understanding and assessing system behavior in various partial
aspects. Various measures for each type of objective are developed,
and each shows something useful. Since all measures are partial and
approximate (even conceptually), rough and ready measures that are
easy to make, display and understand are often to be preferred to

developed and used, even if not perfect. Experience with how a
measure behaves on many systems is often to be preferred to a

better, but unique, measure with which no experience exists.

to understand what systems objectives are: they are guides to

more exact and complex measures. Standard measures are to be

While this book does not treat systematically all the different system

measures, many of them are illustrated throughout the book. Table 4} provides

a guideline, listing in one place the components that contribute to overall

cost and performance.
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Table 4: Cost and performance components for a system.
(Bell, Grason, and Newell, 1972, p24)

Cost Components

Cost Components Arising From the Design Effort
specifying
designing (drawing, checking, verifying)
prototyping
packaging design
describing (documenting)
production system design
standardizing

Cost Components Arising From Production

buying (parts)
assembling
inspecting
testing

Cost Components Arising From Selling and Distribution

understanding
configuring (i.e., user designing)
purchasing
applying
operating in the environment (heat, humidity, vibration, color, power,
space)
repairing
remodeling

Performance Components

Performance Factors Arising From Designing, Producing, & Selling
environment
for a single task
for a set of tasks

operation times
operation rate
memory size & untilization

reliability, availability, maintainability, and error rate
mean time between failures (mtbf)
availability (percent)
mean time to repair (mttr)
error rate (detected, undetected)

It is necessary to point out some conflicts among the various activities.

list of conflicts is very real and taken from experience.

The
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Versus

packaging levels of integration from chips to turnkey application systems.
Because each product is constructed from lower packaged levels, and the levels
model (View 3: Packaging Levels of Integration) Strictly applies, it is very
difficult to have designs that are optimally competitive at every level. For

example, if DEC sold just hardware systems (cabinet level) it would not need a

boxed version of its CPU's. The box level could then be deleted and the price
of the systems product would be proportionately lower. When primitives are to

be used as building blocks, there is a cost associated with providing

generality. For example, some boxes are overpowered for most of their final

applications because the powering was designed for the worst possible

configuration of modules within the box. (Some boxes have also been

System Cost Versus Component Cost. DEC sells products at each of the

underpowered as increases in logic density were accompanied by increases in

power density, permitting new worst case configurations in existing boxes.)

Initial Sales Price Versus Yser Life Cycle Cost. There is a cost associated

with parts that break and have to be repaired and maintained. Nearly every

part of the computer can be improved over a range of a maximum of a factor of

10 to provide increased reliability (extended MTBF) for a price. To the

extent these costs are added, the product will be less competitive in terms of

a higher purchase price. However, if the total life cycle costs are

considered, the product may still be better even at the higher initial cost.

Reliabilitv. Availabilitv. Maintainability (and Producibility) Versus

Performance. By designing to take advantage of the fastest components and

operating them at the limit of their capability, one is able to have increased

performance. In doing so, the tradeoff is clear, producibility, reliability
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(error rate), and maintainability (ease of fixing) all generally suffer.

Performance Versus Cost. This is the most traditional design tradeoff. In

addition to the conventional product selectionm, the planning of a computer

family further increases selection/tradeoff p

Early Shipment Versus Product Life and Qualitvy. By delivering products before

they are fully engineered for manufacture, on

date but at a significant risk. If faults are

retro-fitted in the factory or field, the cost far outweighs any early product

availability.

Another J,onger Design Versus Product Life. By taking longer to design, a

product can be designed in such a way that it is easier to enhance. On the

other hand, if prospective customers, especially new customers, are faced with

a choice between the competitor's available non-optimum product and your

non-available optimum product, they may not be willing to wait.

Operating Environment Versus Cost. Here there are numerous tradeoffs even

within a conventional environment. In each of the packaging dimensions:

heat, humidity, altitude, dust, EMI, etc. there are similar tradeoffs that may

appeal to unique markets or may simply translate to increased reliability in a

given setting. The Norden 11/34M is an example of packaging to provide a

PDP-11 for the aerospace environment.

The principles of computer design and the optimization efforts associated with

those principles are parts of computer science and electrical engineering,
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are

which are the responsible disciplines for these actvities. From computer
computer

science come many of the technical aspects, such as instruction-set
architecture; much of the theory, such as algorithms and computational

complexity; and almost all of the software design, such as operating systems

and language translators, that are applied in the practice of computer

engineering. However, in their construction, computers are electrical. Thus,

the discipline that has fundamental responsibility is electrical engineering.

Thus discussion of the Practice of Design View concludes with Table 5, a set

of maxims compiled by Don Vonada, an experienced DEC engineer. Many other

engineers in many other companies 'have developed similar sets of maxims.

Table 5 - Vonada's Engineering Maxims

1. There is no such thing as ground.

2. Digital circuits are made from analog parts.

3. Prototype designs always work.

h, Asserted timing conditions are designed first, unasserted timing
conditions are found later.

5. When all but one wire in a group of wires switch, that one will switch
also.

6. When all but one gate in a module switches, that one will switch also.

7. Every little pico farad has a nano henry all its own.

8. Capacitors convert voltage glitches to current glitches (conservation of
energy).

9. Interconnecting wires are probably transmission lines.

10. Synchronizing circuits may take forever to make a decision.

11. Worse case tolerances never add - but when they do they're found in our
best customer's machine.

12. Diagnostics are highly efficient in finding solved problems.
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13. Processing systems are only partially tested since it is impractical to
stimulate all possible machine states.

14. Murphy's Laws apply 95% of the time. The other 5% of the time we're on
coffee break.
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VIEW 7: The Blaauw Characterization of Computer Pesirn
Another view is based on the work of Blaauw [1970]. He distinguishes

The

architecture, implementation. and realization as three separable levels in
the construction of anything, including computer structures.
architecture of a computer system defines its functionality (behavior) as
it appears to the machine-level programmer, and can be characterized by
the instruction set processor, the ISP. The implementation of a computer
System is the actual hardware structure - the register-transfer (RT) level
behavior and data flow organization. This also includes various algorithms
for controlling a machine as it interprets an architecture. Realization
encompasses the actual technologies used and includes the kind of logic,
how it is packaged and how it is interconnected. Realization includes all
the details associated with the physical aspects of the machine.

Modern architectures (ISPs) usually have multiple (RT) implementations. For
example, the LSI-11, 11/40, and 11/60 are different implementations of the
same basic PDP-11 instruction set. Sometimes, although rarely, a
particular implementation has more than one realization. For example, the
IBM 7090 has the same architecture and implementation (i.e., the same ISP
and RT structure) as the IBM 709. The difference lies in realization:
the 709 used vacuum tubes, the 7090 used transistors. For a more recent
example, two models of the PDP-11 architecture that share the same
implementation are the 11/34 and Norden's ruggedized realization, the
11/34M. The realization differs, however, as the latter uses militarized
semiconductor components, militarizaed component mounting, and a different
packaging and cooling systen.

The following table attempts to clarify the distinguishing characteristics of
architecture, implementation and realization.

Table 6
Characteristics of Design Areas (Blaauw and Brooks, Computer Architecture,

1978, in preparation, Chapter 1)

Architecture Implementation Realization

Purpose function cost and buildable and
performance maintainable

Product principles of logical design release to
operation manufacturing

Language written block diagran, lists & diagrams
algorithms expressions

Quality measure consistency broad scope reliability

Meanings ISP RT-level machine; physical realization;
(used herein) Microprogrammed physical

machine ISP sequential machine implementation
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(at logic level)

This book concentrates on the realization and implementation columns in the

above table. Instruction set architecture is discussed only insofar as it
interacts with the other two characteristics. There are also some differences
between the views of Blaauw and Brooks and those expressed in this book. It is
important to try to reconcile these differences, because everyone engaged in

computer engineering uses the words architecture, implementation, and

realization - quite often to mean different things. This book will not limit
the definition of architecture to just a machine as seen by a machine language

programmer. Instead, it will use architecture to mean the ISP associated with

any of the machine levels described in View 2, Levels of Interperters.
Therefore, architecture standing alone will mean the machine language, the

ISP. This book will also use: architecture of the microprogrammed machine as

seen by a microprogrammed machine's microprogrammer ; architecture of the

operating system as the combined machine of operating system and machine

language; and architecture of a language for each language machine. For

example, ALGOL, APL, BASIC, COBOL and FORTRAN all have as separate and

distinct architectures as a PDP-10 and a PDP-11 do. This use of architecture,

since it describes behavior, is quite consistent with Blaauw's. Moreover,

when applied to software structures, Blaauw's framework fits well. There are

two implementations, FORTRAN-IV-PLUS (an optimizing compiler) and FORTRAN IV

(a threaded code system), of the one ANSI FORTRAN architecture. Moreover,

different implementations use different realization techniques: some use

BLISS, others use assembler language.

Although Blaauw and Brooks define implementation and realization clearly,



Chapter 1 57
G. Bell, C. Mudge, J. McNamara Last Edit 5/10/78; Latest Edit 5/16/78

are both

sensitive to technology changes and hence interact closely. Computer

engineers tend to overuse and intermix them so that the two words are used

interchangeably. This is reflected in this book, where they are used to have

roughly the same meaning (e.g., "The KI-10 was implemented using TTL H-series
In the table, definitions are given for the two words to further

these definitions aren't widely used. The main problem is that they are both

logic
relate descriptions back to these definitions if the reader chooses.

"Implementation" is the Register Transfer level machine, roughly the

microprogrammed machine, and "realization" is the physical realization, the

physical implementation in terms of packaging and technology.

The most useful distinction is between architecture on the one hand and

implementation (subsuming realization) on the other. Seeing the distinction
clearly enables one to preserve architectural compatibility between machine

models, and this is crucial if users' and manufacturers! software investments

are to be preserved. Implementation can then be as dynamic as desired, being

continually changed by technology. Architecture must remain static for long

periods (ten years is a common goal).

Maurice Wilkes, in 1949, only one month after his EDSAC computer was

operational, and before any stored program computers in the United States were

operating, had already perceived the value in having a series, or set, of

computers share the same instruction set. He said the following.

"When a machine was finished, and a number of subroutines
were in use, the order code could not be altered without
causing a good deal of trouble. There would be almost as
much capital sunk in the library of subroutines as the
machine itself, and builders of new machines in the future
might wish to make use of the same order code as an existing



Chapter 1

G. Bell, C. Mudge, J. McNamara Last Edit 5/10/78;
58

Latest Edit 5/16/78
machine in order that the subroutines could be taken over
without modification."
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