
Chapter 1 Page 1

G. Bell last edit 1/31/78 - latest edit 2/1/78
CYWAPTER 4 SEVEN VIEWS OF comeuTER SYSTEMS

A computer is determined by many factors: its architecture! and other

structural properties, the technological environment and human aspects of the

environment in which it was designed and built. Many of the non-architectural

design factors lie outside the control of the designer: the availability and

price of the mostly electronic technology, the various government and industry
rules and standards, the current and future market conditions, and the

cummulative investment in software of the various users. The computer is the

product of this total environment.

In this book we reflect on all the DEC computers: their goals, their

architectures, their various implementations" (and realizations") and

occasionally on the people who designed them. We limit this presentation to

the engineering of the basic computer hardware and do not describe, except as

interfacial design, the engineering of peripheral equipment and of software.

We attempt to show the interrelationship of the design beginning with the

architectural specifications, and observe how it was affected by technology,

by the engineering organization,the sales,application, > and manufacturing

aspects and finally how we perceive it is actually used. Figure 1 shows these

various factors: the organizational entities and implied design activities

affecting the resultant computer. The lines indicated the primary two-way

flow of information for product specification. The physical flow of materials

is more direct and easier to trace as it comes from basic technology suppliers

either inside or outside the DEC organization, moving through the plants that

build basic computer parts (memories, processors, cabinets, peripherals) and

Vat ehongh computer architecture has been used loosely to refer to computer
hardware, we will adhere to the original definition (Amdahl, Blauuw and

Brooks, 1964] to avoid further confusion. This definition is: "The term
architecture is used here to describe the attributes of a system as seen by
the programmer, i.e., the conceptual structure and functional behavior, as
distinct from the organization of the data flow and controls, the logical
gesign and the physical implementation."
Using the definitions of Blauuw, 197%.

Chapter 1 Page 2
G. Bell last edit 1/31/78 - latest edit 2/1/78

finally to where the final system is assembled. Finally it is shipped via
service personnel to the end user's site.

whe wae of
Computer engineering is the complete set of activities (e.g., avaxonomies,

theories, models, heuristics) associated with the design and construction of
3418 concur with

computers. Like other engineering, Awe especially eathere-te the definition
that Hamming once gave: engineers first turn to science for aswers and help,

then to mathematics for models and intuition and finally to the seat of their

pants.

In the few decades since computers were first conceived and built, computer

engineering has come from a set of design activities that were mostly seat-of-
+0 apotnt where some parts

the-pants based, are quite well understood and based on
.95 technology mootels, anol Some parts

ood models and rules of thumb, are

completely understood with useful theories
7

es gn a

h the reader must understand the design activities implied

by each the organizational entities in Fig. 1 in order to understand

Altho

f
computer eAgineering, such a presentation would be unduly philosophical,

boring, and incomplete. We are restricting this book to

design activiti that are not well described in papers and theories. We also

concentrate on the \object of the design (the concrete) rather than segmented Cae

ter conventional textbooks about computer architecture, and

4. Wr

Chapter 1 Page 3
G. Bell last edit 1/31/78 - latest edit 2/1/78

Each view is complete, and--forms-the-way-we.can vlew+he-compuLar .
FiveJour are Rough on how, as a complex system, the computer can be

One
decomposed and characterized for designers. Two view$ on how it is

one 's
characterized as a complete system within a marketplace and viewg ere

the general problem of design.

Since performance is such a major component of the objective function by which

a computer is judged, we look at the common ways for evaluatigng it, This is

Although technology fs clearly the dominant push for computer evolution

packaging, componen interconnection and power are complementary to and must

support\its use. ndeed, we believe how components are interconnected is

equally iportant/ to the component. These complementary views are given in

two section.

Section five its the manufacturing process, because without the ability to

produce machfnes, \he evolution wouldn't take place.

The final section gives\he reader several ways to approach the study of the

book.

Chapter 1 Page 4
G. Bell last edit 1/31/78 - latest edit 2/1/78

View 1: Structural Levels of a Computer Systea
In Bell and Newell, (1971) a set of conceptual levels for describing,

understanding, analyzing, designing, and using computer systems was posited.
The model has survived major changes in technology, e.g., the fabrication of a

complete computer on a single silicon chip, and changes in architecture, e.g.,
the addition of vector and array data types. The levels are shown in Figure

2, a refined version of the original. For a description of this view of a

computer system we rely entirely on the following [Bell and Newell, 1971: pp

3-10).

There are at least four levels of system description, possibly
five, that can be used for a computer. These are not alternative
descriptions in the sense that anything said one way can be said
another. On the contrary, each level arises from abstraction of
the levels below it. Each does a job that the lower levels could
not perform because of the unnecessary detail they would 'ie forced
to carry around.

A system (at any level) is characterized by a set of components,
of which certain properties are posited, and a set of ways of
combining components to product systems. When formalized
appropriately, the behavior of the systems is determined by the
behavior of its components and the specific modes of combination
used.

Elementary circuit theory is an almost prototypic example. The
components are R's, L's, C's, and voltage sources. The mode of
combination is to run wires between the terminals of components,
which corresponds to an identification of current and voltage at
these terminals. The algebraic and differential equiations of
circuit theory provide the means whereby the behavior of a circuit
can be computed from the properties of its components and the way
the circuit is constructed.

There is a recursive feature to most system descriptions. A

system, composed of components structured in a given way, may be
considered a component in the construction of yet other systems.
There are, of course, some primitive components whose properties
are not explicable as the resultant of a system of the same type.
For example, a resistor is not to be explained by a subcircuit but
is taken as a primitive. Sometimes there are no absolute

Chapter 1 Page 5
G. Bell last edit 1/31/78 - latest edit 2/1/78

For example, one can build logical design systems from many
different primitive sets of logical operations (AND and NOT, NAND,
OR and NOT, etc.).
A system level, as we have used the term in [Fig. 2], is
characterized by a distinct language for representing the system
(that is, the components, modes of combination, and laws of
behavior). These distinct languages reflect special properties of
the types of components and of the way they combine. Otherwise,
there would be no point in adopting a special representation.
Nevertheless, these levels exist in the system analyst's way of
describing the same physically existing system. The fact that the
languages are highly distinct makes it possible to be confident
about the existence of an additional intermediate level, it is
because new representations have not yet congealed into distinct
formal languages. As we noted, within each level there exists a
whole hierarchy of systems and subsystems, However, as long as
these are all described in the same language, e.g., a subroutine
hierarchy, all given in machine-assembly language, they do not
constitute separate system levels.

@ primitives, it being a matter of convention what basis is taken.

With this general view, let us work through the levels of computer
systems, starting at the bottom. Each level in [Fig. 2] actually
has two languages or representations associated with it: an
algebraic one and a graphical one. These are isomorphic to each

@ other, the same entities, properties, and relations being given in
both.

The lowest level in [Fig. 2] is the circuit level. Here the
components are R's, L's, C's, voltage sources, and nonlinear
devices. The behavior of the system is measured in terms of
voltage, current, and magnetic flux. These are continuously
varying quantities associated with various components, and so
there is continuous behavior through time. The components have a
discrete number of terminals, whereby they can be connected to
other components.

The circuit level is not in fact the lowest level that might be
used in describing a comoputer system. The deyices themselves
require a different language, either that of electromagnetic
theory or of quantum mechanics (for the solid-state devices). It
is usually an exercise in a course on Maxwell's equations to show
that circuit theory can be derived as a specialization under
appropriately restricted boundary conditions. Actually, even at
its level of abstraction, circuit theory is not quite adequate to
describe computer technology since there are a number of
mechanical devices which must be represented. Magnetic tapes and
drums are most likely to come to mind first, but card readers,
card punches, and Teletype terminals are other examples. These
devices obey laws of motion and are analyzed in units of mass,

Chapter 1 Page 6
G. Bell last edit 1/31/78 - latest edit 2/1/78

length, and time.

The next level is the logic level. It is unique to digital
technology, whereas the circuit level (and below) is what digital
technology shares with the rest of electrical engineering. The
behavior of a system is now described by discrete variables which
take on only two values, called 0 and 1 (or + and -, true and
false, high and low). The components perform logical functions:
AND, OR, NOT, NAND, etc. Systems are constructed in the same way
as at the circuit level, by connecting the terminals of
components, which thereby identify their behavioral values. The
laws of boolean algebra are used to compute the behavior of a
system from the behavior and properties of its components.

The previous paragraph described combinatorial circuits whose
outputs are directly related to the inputs at any instant of time.
If the circuit has the ability to hold values over time (store
information), we get sequential circuits. The problem that the
combinatorial-level analysis solves is the production of a set of
outputs at time t as a function of a number of inputs at the same
time t. As described in textbooks, the analysis abstracts from
any transport delays between input and output; however, in
engineering practice the analysis of delays is usually considered
to be still part of the combinatorial level.

The representation of a sequential switching circuit is basically
the same as that of a combinatorial switching circuit, although
one needs to add memory components, such as a delay element (which
produces as output at time t -). Thus the equations that
specify structure must be difference equations involving time.
Again, there is a distinction (even in representation) between
synchronous circuits and asynchronous circuits, namely, whether
behavior can be represented by a sequence of values at integral
time points (t = 1, 2, 3...) or must deal in continuous time. But
this is a minor variation.

A glance at Fis. ows that we have described only the lower
part of the logic level. There is another part, called the
register-transfer level (or RT level).... The components of an RT
system are registers and functional transfers between registers.
A register is a device that holds a set of bits . The behavior of
the system is given by the time course of values of these
registers, i.e., their bit sets.

The system undergoes discrete operations, whereby the values of
various registers are combined according to some rule and then are
stored in another register (thus "transferred"). The law of

'his assumes that the elementary state variable of the system
holds a bit (i.e., one of the two values, such as 0 or 1). This
need not be; sometimes the elementary variable holds a decimal
digit (one of 10 values) or a character (one of, say, 48 values).
For present purposes we can talk in terms of bits, without losing
anything thereby.

Chapter 1 Page 7
G. Bell last edit 1/31/78 - latest edit 2/1/78

combination may be almost anything, from the simple unmodified
transfer (A <-- B) to logical combination (A <-- B C) to
arithmetic (A <-- B +C). Thus a specification of the behavior,
equivalent to the boolean equations of sequential circuits or the
differential equations of the circuit level, is a set of
expressions (often called productions) which give the conditions
under which such transfers will be made.

We now move to the fourth and last level. In [Fig. 2] it is
called the Processor-Memory-Switch level, or PMS level for short.
The name is not recognized, nor is any other, since the level
exists only informally. Nevertheless, its existence is hardly in
doubt. It is the view one takes of a computer system when one
considers only its most aggregate behavior. It then consists of
central processors, core memories, tapes, disks, input/output
processors, communications lines, printers, tape controllers,
busses, Teletypes, scopes, etc. The system is viewed as
processing a medium, information, which can be measured in bits
(or digits, characters, words, etc.). Thus the components have
capacities and flow rates as their operating characteristics. All
details of the program are suppressed, although many gross
distinctions of encoding and information type remain, depending on
the analysis. Thus one may distinguish program from data, or file
space from resident monitor. One may remain concerned with the
fact that input data are in alphameric and must be converted into
binary, or are bit-serial and must be converted to bit-parallel.
We might characterize this level as the "chemical engineering view
of a digital computer," which likens it more to a
continuous-process petroleum-distilling plant than to a place
where complex FORTRAN programs are applied to matrices of data.
Indeed, this system level is more nearly an abstraction from the
logic level than from the program level, since it returns to a
simultaneously operating flow system.

One might question whether there is a distinct systems level here.
In the early days of computers almost all computer systems could
be represented as in the diagram in M.I.T.'s Whirlwind computer
programming manual in [Fig. 00]: with classic boxes of memory
(storage), control, arithmetic, and input/output. Actually, this
view of the computer in 1953 was considerably advanced; few texts
on the logic design of computers in the 1960s have such a detailed
model, This model has secondary memory (magnetic tape and drums
in the Whirlwind's case). The most interesting aspect of the
model, which text writers omit, is any kind of switching (the bus
of (Fig. 00]). The bus provides a communication path to link the
other components. Certainly the pushbuttons (actually the
console) is novel for such a model.

Chapter 1 Page 8
G. Bell last edit 1/31/78 - latest edit 2/1/78

We have dropped the program level from the original set of levels. It was

Placed between the RT level and the PMS level; experience showed that the

inclusion of this level was awkward and inconsistent. The primary reason$ 1% that
he program level is a functional attribute, whereas all the

other levels are structural. If it is to be included, a better location is on

top of the PMS level -- for uniprocessors it can be in either location;
however, for computer systems constructed from computer modules [Chapter 00]

it clearly must be located above the PMS level. reason for its
awkwardness is that for microprogrammed structures, there is clearly another

program level at the RT level. Moreover, the ISP notation, which was

introduced to describe the original program level, has been used to describe

behavior at the other levels. For example, at the PMS level the address

translation mechanism for inter-computer-module sharing (Fuller,et al, 1973b]

and at the RT level within DEC for simulation and microprogramming.

The state system representation, which appeared as an auxiliary representation

to the side of the logic level, has also been dropped. A system is
represented as capable of being in one of N abstract states at any instant of

time. Its behavior is specified by a transition function that takes as

arguments the current state and the current input and determines the next

state and the output. This representation has been dropped because it is

functional, not structural. Moreover, behavior at every level, not just the

logic level, can be represented by state transition functions.

Since the PMS level (processors, memories, and transducerg, interconnected by

switches (often in a bus structure) was tentatively proposed as a level in

Chapter 1 Page 9
G. Bell last edit 1/31/78 - latest edit 2/1/78

1971, it has become recognized as a formal level. Design at that level has

become important as we strive to build models of system-level behavior, and

will become more important as microcomputers become our standard structural

building block and as the cost of interconnect dominates system cost.

Many notations are used at each of the four structural levels. The commonly

used ones are given in table Notations. A complete description of the PMS and

ISP notations is given in [Bell and Newell, 1971: Chapter 2]. Those aspects

of PMS which are used in this book are described in Appendix 00. The ISP

notation has evolved to ISPS and is described in Appendix 00.

Chapter 1 Page 23
G. Bell last edit 1/31/78 - latest edit 2/1/78

view 4: Computer Classes: A Marketplace View
Because it is the complete marketplace process (Fig. 1) that produces the
computer, this view is the most complex. A computer is characterized (in
terms of marketability) as a function of price, performance, and time of
introduction in what might appear to be a commodity-like environment. Later,
the notion of function, or how the computer is applied must come in.
Because various computers operate at different performance rates, and at
various costs, price/performance ratios affect marketability since computation
can be supplied in so many ways. For example: computation can be supplied by
a shared large, central efficient batch computer; each organizational entity
can own and operate a shared minicomputer; an individual can operate a single
desk top system; or each individual may operate a programmable calculator.

When users write programs, there is a lifetime associated with use and a
possible need to have compatible products at a given time and for all time.
Although the supply of basic, rapidly evolving technology permits new designs
to be more cost effective, and even radical, continuity with the past must
exist.
This view begins with a description of how technology provides basic
improvements with each new generation (every 6 or so years). An example of
alternative new designs is given to show why most new designs are evolutionary
versions of the past, and usually provide increased performance at constant
price. With this background, the four classes, differentiated by price and
performance, that have evolved over the last four generations are presented.
This simple model is then elaborated and critiqued.

Desiegn(er) Styles Arising From Technology Advances
The influence of technology on the computers that we build and take to the
marketplace is so strong that the four generations of computers have been
named after the technology of their components: vacuum-tubes, transistors,
integrated-circuits (multiple transistors packaged together), and LSI circuits
(Large-Scale Integration). Every electronic technology has its own set of
characteristics (e.g., cost, speed, heat dissipation, packing density,
reliability), all of which the designer must balance. These factors combine
to limit the applicability of any one technology; typically, one technology is
used until a limit is reached, or another technology supersedes the old.

When an improved basic technology becomes available to a computer designer,
there are four paths designs can take to incorporate the
technology:

1. use the newer technology to build a cheaper system with the same

performance;

2, hold the price constant and use the technological improvement to get an
increase in performance;

3. push the design to the limits of the new technology, thereby increasing
both performance and price; or

Chapter 1 Page 24
G. Beil last edit 1/31/78 - latest edit 2/1/78

4, find a drastically new structure using the computer as a basic archetype
(e.g., calculators) such that the design can be considered off the
evolutionary path.

Figure x shows the trajectory of the first three of the design alternatives.
By going too far in price or performance, (i.e., building beyond the
technology) is dangerous and can lead to a zero performance, high cost
product. These design alternatives occur in an evolutionary fashion as in
Fig. y where there is a first (base) design, and subsequent designs evolve
from the base.

In the first emse, the performance is held constant and the improved
technology is used to build lower-cost machines -- new applications are
attracted. The minicomputer (for minimal computer) has traditionally been the
vehicle for entering new applications, since it is the smallest computer that
can be constructed with a given technology. Each year, as the price of the
minimal computer price declines, new applications become economically feasible.

The second, constant cost alternative using the improved techno to get
better performance, will usually yield the best increase in system-cost-
effectiveness. This approach provides a growth in performance and quality at a
constant price and is probably the best for the majority of existing users.

If the new technology is used to build the most powerful machine possible,
then the designs often advance the state of the art. New designs should solve
previously unsolved problems. There are usually two motivations for operating
at this leading edge: preliminary research motivated by the knowledge that
the technology will catch up; and national defense, where an essentially
infinite amount of money is available because the benefit--avoiding
annihilation--is infinite.
Using new technology fer constant oerformance and constant cost designs
The consequence of new generation technology is best seen by observing how the
technology can be applied to provide the two fundamentally different designs
based either on: constant performance and decreased price; or, constant price
and increased performance. The following table shows the effect of pursuing
the two design strategies.

Chapter 1 Page 25
G. Bell last edit 1/31/78 - latest edit 2/1/78

performance decreased decreased
price price

Application base base base new base

Computer price 1 1 0.5 0.5

Operating costs 2-4 2-4 2-h 1-2
(range)

Total cost 3-5 3-5 2.5-4 5 1 « 5-3

Performance
(and improvement) 1 2 1 1

Improvement
(in total cost) 1 1 -83-.9 5~.6
Performance/price 1 2 2 2
(computer only
and improvement)

Performance/
Total-cost 233-.2 66-,4 He, 22 66-.4

Improvement in
(Perf./total cost) 1 2 1.21-1.1 2

Table: Using New Technology for Constant Cost and Constant Performance Designs
Introduction time t t+1 t+1 t+1
(generation)

Design style base case constant cost, constant constant
increased performance, performance,

The first column gives the base case at a given generation/time, t. The
price, performance and performance/price ratio of the computer are all 1. As
the computer is applied to a particular environment, operational overhead is
added at a cost of 2 to 4 times the original price of the computer; the total
cost to operate the computer becomes 3 to 5, and the performance/total-cost
ratio is reduced to between .33 and .2 (depending on the total cost).

Now assume the same operating environment, with the same fixed (overhead)
costs to operate, at a new generation time, t+1 when technology has "improved"
by a factor 2. Two alternative designs are carried out, one is at constant
price and at constant performance (cols. 3 and 4). The application is
constant in 3 cases (cols. 1-3) and a new base application is discovered (col.
4), Both the constant cost and constant performance designs give the same

basic performance/cost improvement--when only the cost of the computer is
considered. However, when one considers the high, fixed overhead costs

Chapter 1 Page 26
G. Bell last edit 1/31/78 - latest edit 2/1/78

associated with a base application (cols. 1-3), there is a relatively small
improvement in cost performance/cost, although there is a cost savings of 17
to 10 per cent with the minimal design. The Breatest gains come in applying
the computer with greater performance and Betting the attendant factor of 2
gain in performance and in performance/price ratio.
To summarize, the constant-price design style gives a better gain because
operating costs remain the same. Its gain can only be equalled by the
constant-performance design style when operating costs are halved upon its
application. This only occurs when a new application is tackled.

USING PRICE AND PERFORMANCE [OQ DEFINE COMPUTER CLASSES

We have shown by example how a new generation of technology allowed a complete
design trade-off between price and performance, giving two equally valid
approaches to new products . Figure 5 plots price and performance planes for
three generation times, t, t+1, and t+2,

Computer classes are distinguished by price and are named as follows:
sub-micro (to come in the next generation--say by 1980), micro, mini, midi,

non-descriptive name, mainframe, but we will keep the two separated. Rat each
new technology time, she performance increases by one category (e.g., midi
performance is available on a mini); and a new class of computer; the
mini(mal) computer is introduced at a significantly lower price level.

maxi, and super. The midi- and maxi- usually called by the single

If we apply the three design styles shown in Fig. x over several generations
we obtain the plot given in Fig. 6.

We have developed the following thesis:

continual application of technology via the two major design
styles results in
(a) price declines which create new classes of computers,
(b) new classes becoming established classes, and
(c) established classes becoming encroached upon.

The measure used to define a yew class is price, whereas the measure defining
an established class is performance.

We now present several comments on the thesis, aimed at refining it.

1. A fresh viewpoint is needed to create a new class
The continuity implied by the thesis is deceptive. It suggests that new

classes come about by the continual application of the
constant-performance, decreasing cost style of design. Viewing the
industry as a whole this is true. However, a new class is usually not
created by the same organization. It seems that a fresh viewpoint is
needed to create a new class. A new company, or organization within a

company, can do this.

A subsequent discussion on technology will examine whether the tradeoff can be

made to such a high degree, but we will proceed assuming the trade-off is
possible. It is also necessary to assume that performance can be specified
easily as a single metric...as opposed to the n-dimensional space.

4

Chapter 1 Page 27
G. Bell last edit 1/31/78 - latest edit 2/1/78

The minicomputer class came about by DEC founders taking the view that
@ simple machines, unencumbered by the costly general purpose facilities of

the mainframes (many data types, sharing mechanisms, etc.), could be built
and would be viable.
While the mini(mal) design philosophy pervaded for nearly 10 years as the
minicomputer$, the semiconductor-based, processor-on-a-chip Aealied a

computer (called microcomputers) name identifies a
significantly lower priced computer. This lower cost is fundamentally
based on the elimination of a level of integration (interconnection), and
henoa i? paskapivc Saget The microcomputer dispells the lethargy growing
around the now constant-price minicomputer of the mid-1970's. In this
way, more radical thinking permit$ "different customers (and usage) to be
identified and the price to decrease more rapidly. ®Te sub-microcomputer
is predicted to be a complete computer (with both processor and program
memory) on a single chip, although it is hardly as radical as the
microprocessor which moved users to apply computers based on
interconnecting chips (on printed circuit boards) and interconnecting a
small number of boards (as opposed to designing boards to be placed in
minicomputer boxed computer configurations).
In both the mini and micro cases a fresh organization broke out. Why is a
fresh viewpoint needed? Because the process produces constant-price
computers. Most human organizations act to preserve the status quo. Let
us examine each part of the organization in turn.

a set of fixed costs (overhead). Productivity improvements are
required to stay at equilibrium with his organization and to sustain
or increase funding. Operating costs (personnel, paper, power, ete.)
are likely increasing due to inflation, and although a lesser priced
machine could hold performance/cost constant, there would be no

productivity gain. Requiring less or equal funds, would ultimately
cause the loss of organizational power since this is based on people,
expenses, ability to provide increased service, etc. The pressure is
to get larger, more powerful machines. His software investment
requires that the new system be compatible with his earlier system,

@ a. The existing user, who is the potential customer for a new system has

b. The gales force respond mainly to orders which are lost because of
poor performance, because its measure is so tangible. Price (and even
lack of functionality) is considered only when the performance of two
alternatives is equal. The amount of work a salesperson has to do is
measured in sales yields and,indirectly, the number of systems sold.
The reduction of the sales price of a given system by a factor of two,
requires selling twice the number of systems, This implies working
significantly harder (neglecting the effects of price elasticity).
For example, within DEC, because of the wide price range of its
products, a salesperson need sell only one large system per year,
while at the low end he must sell 1500.

ec, Marketing reinforces the inputs from the sales force, while

posf bhe. It is also necessary to assume that performance can be specified@*adubse
discussion on technology will examine whether the tradeoff can be

such high degree, but we will proceed assuming the trade-off is

ingle metric...as opposed to the n-dimensional space.

Chapter 1 Page 28
G. Bell last edit 1/31/78 - latest edit 2/1/78

2.

1

- -

interjecting its own bias and noise; moreover, because of the broad
range of applications, it presents conflicting product definitions.
There is little information about sales that were lost due to
substantially lower price or new potential products because an
existing organization does not lose sales to products it doesn't have.
Thus, a new product must have: the performance of the current most
competitive machines; the price of the most marginal competitor (who
may be losing money to enter the market); the software of all the
competitors (since each differentiates itself by unique software); and
all the service of the largest (and possibly highest price
competitor).

d. Engineering. The new product specification input is to improve
performance as seen above. Technology pushes engineers to use
higher-performance components since techno}ogy suppliers behave in an
identical fashion to the computer supplier , Although there are
various styles of designs (and designers), the most common tendency of
the designer is to use new technology and to provide higher
performance, and solve the problems inherent in subsequent designs
rather than working to reduce costs again. The PDP-8 family provides
an example.

e. Manufacturing constraints and planning are similar to sales. A plant
is measured in units, quality level, and unit cost. Preserving a
given cash flow, when faced with radically different cost products,
usually requires substantially different planning, materials handling,
Manufacturing, testing, etc. Since the basic time focus (weekly
production schedules) is short term within manufacturing, the radical
changes for a higher volume business (i.e., long term planning) is
difficult. Product design change ideas back to engineering often
address solving previous problems, that add to product cost.

The maximum evolution rate is not attained
To fully exploit each new technology improvement, a matching advance in
packaging is needed. For example, higher circuit densities demand new
cooling methods; lower-cost module carriers are needed to match
microprocessor-based control techniques. However, engineering projects
tend to minimize the number of risk dimensions. As a result, a new
circuit technology is used twice: once with existing packaging and a
second time with packaging that matches the technology. There are
examples in both the PDP-11 and S/370 families.

3. Conflicta eccur within the established classes
An established computer class, since it is defined on the basis of
performance, is entered by constant cost successors from the class below
it. Moreover, suppliers within a class are, by their dominant constant
price evolution, operating to move out of the class.

Figure w shove how inertia in the various producer-consumer pairings (of
Fig. 1) can cause a market to move away from a set of suppliers and users.
Here, we assume only two machine types

o

This is probably a conservative view. Since semiconductors are so commodity
oriented, performance is the only way to maintain market differentiation and

price.

Chapter 1

G. Bell last edit 1/31/78
Page 29latest edit 2/1/78

5.

1

With new technology, there are no subsequent truly higher
performance implementations, only lesser priced ones. In reality PC pairI goes on to build and apply higher performance machine types 3 and 4 at
times t+1 and, t+2, with the attendant danger of not being able to build
or utilize the attendant higher performance. Similarly, consumer set II,
who may have secondary users of PC pair I, now can become fully
independent at time t+1 with their own machines. This phenomenon of
migration is clearly visible as users of large, central computation
centers, (e.g., a small part of an organization) gets its own minicomputer
at time, t+1. Then at time t+2 the individuals of the small organization
get their own individual computers.

4, The classes have differen, functionality
The smoothness of the model is not meant to imply that each class
implements the same instruction set and PMS-level configurations, and that
they differ only in speed. Much specialization occurs in each class and
many attributes appear to lesser degrees in the lower performance classes.
For example, there are more data types in the lar 'machines, their

support is generally broader. Resources devoted to increasing reliability
and availability are more common in the higher priced machines. The
PDP-11 family, from the VAX-11/780 down to the LSI-11 exemplify these

address spaces (both physical and virtual) are and the software

functionality differences. >

Different technologies contribute
The model suggests that there is one monolithic technology, steadfastly
progressing, which provides incremental improvements. In fact, there are
several technologiesg: mass storage, primary memory, I/0 units, logic,
packaging, and power "re the principal ones. They improve at different
rates: for example, memory prices have consistently halved every two
years, whereas electro-mechanical technology is slowly increasing in price.

6. A definition of the minicomputer
Our model provides a named class, the, mini, to describe those machines in

However, the term mini has
also been used to denote computer [aell, Qari]:

pricn m
ai

"Minicomputers (for minimal computers) are a state of mind
(or the designer's minds); the current logic technology,
and the characteristics found in larger computers, are
combined into a package which has the smallest cost."

By this
definition, the processor-on-a-chip (i.e., the microprocessor)
microcomputers are minicomputers. 'wa, the primary goal is cost;
hardw.are/software tradeoffs are made to tfansfer any hardware costly
operations to the software. A price-based definition can be exacerbated by
people who collect and base analysis on time varying data; so one is
comparing different machines at different times in their lifetimes.

Computing Europe, as late as November 6, 1975 was frustrated and concerned

This is probably a conservative view. Since semiconductors are so commodity
oriented, performance is the only way to maintain market differentiation and

price.

Chapter 1 Page 30
G. Bell last edit 1/31/78 - latest edit 2/1/78

@ a minicomputer? Surelyit is time the industry faced the problem of evolving a standard
definition."

Many definitions use price to segment and the consensus seems to be that a
minimal configuration minicomputer should cost less than $50,000. Such a
price definition is reasonable, although one has to be careful of a pricediscriminator as the earliest low priced computers were short lived --

Iann Baron (Computing Europe, December 1975) made a simple, useful
definition: "Minicomputers are a state of mind. It is not useful to
define them in terms of price or capability because of the rapid changes
in technology."

Perhaps some of the difficulty is due to a lack of understanding of
evolving technology. We will therefore pursue a definition in the hope
that we provide some insight into technology use.

The wide variation in configurations and levels-of-integration causes the
greatest complications in comparison and definition. That is, each
instance (application) of a specific machine model varies greatly. The
notion of balancing a computer to handle any task in a general sense just

This is likedoes not usually apply to minicomputer applications.
designing a factory to make automobiles, with only one machine type to
handle the foundry, metal stamping, conveying, welding, assembly, etc. for
steel, aluminum, plastic and glass parts! Minis are generally applied to
specific tasks, using specific configurations, and operated with specific
software rather than being configured to handle any situation. The
configurations vary so that, in the case of a large data base problem, one
could have a $5,000 or $10,000 processor and several hundred thousand
dollars of disk memories. Users more often succumb to their other
instincts and get the biggest machine they can for a problem (to be safe)
even though it does lower the system reliability and raise the price.

A comment, Computing Europe, (December 1975) summed up the situation: "The
difference is similar to tungsten or fluorescent lamps...lower

Fluorescents are undoubtedly moreefficiency...or higher overheads.
efficient for business lighting, but have a minimal share of the Christmas

about a definition: "When is a minicomputer not

their high cost to manufacture caused the ultimate demise of theiv fa

1

tree lights market

try to characterize minicomputers by looking at how they
have changed over four generations. ant Lon the Tre park
shows the price, package, size, power, speed and logic technology
evolution with time.

In of Ae book wt

In July 1977 we supplied a definition to The Director of Computer
Resources Development, USAF.

MINJCOMPUTER: A computer originating in the early 1960's and

install a dozen 100 megabyte discs (each cost about $25,000) on a large

was not that it should be an 11/70, but whether he could use a lower model
number like an 11/40 (approximately $60,000), and thus get the attendant less
parts and higher reliability.

telephone company engineer whether he should

PDP-11/70 (approximately $125,000) for a data base application t
that he used to do with 370/168 (approximately $3,500,000). doubt

Chapter 1 Page 31
G. Bell last edit 1/31/78 - latest edit 2/1/78

predicated on being the lowest (minimum) priced computer built with
@ current technology. From this origin, at prices ranging from 50 to

100 thousand dollars, the computer has evolved both at a price
reduction rate of 20% per year and has also evolved to have increased

functionality and performance.

Minicomputers are integrated into systems requiring direct human and
process interaction on a dedicated basis (versus being configured
with a structure to solve a wide set of problems on a highly general
basis).
Minicomputers are produced and distributed in a variety of ways and
levels-of-integration from: printed circuit boards containing the
electronics; to boxes which hold the processor, primary memory, and
interfaces to other equipment; to complete systems with peripherals
oriented to solving a particular application(s) problem. The price
range(s) for the above levels-of-integration, in 1978, are roughly:
500 to 2,000; 2,000 to 50,000; and 5,000 to 250,000.

T. Economies of Scale
A topic covering different sizes of machines would be incomplete without a
discussion of economies of scale.

For nearly all man- ade objects (e.g., transportation vehicles,
electricity generat , buildings) there is usually some economy of scale
because there are high fixed costs that do not increase as rapidly as the
output of an object increases.

For computers, factors leading to economies of scale often apply over
several dimensions. The same software can be used on many models. Sales
and field service people can attend to a wide range of equipment.
Manufacturing facilities can be adapted to produce different models.

Grosch (1953) suggested that there was an economy of scale for computers
according to the performance/price relationship:

2
Performance = constant x Price

Several studies [Bell and Newell, 1971; Knight, 1966; Phister, 1976;
Sharpe, 1969; Turn, 1974] have examined whether this is true for a given
set of machines; conversely it is possible to use the relationship in
ricing. It is desirable that the performance increase more rapidly than
price for improved operating economy.

We might also conjecture that there is only a linear relationship between price and

performance and the square law relationship is only apparent (see Fig.
Groschlin) because the curve roughly "fits" for a factor of 4 increase in
price. For two alternative ways of performing the same function at
different price scales, the higher priced object provides proportionately

Chapter 1 Page 42
G. Bell last edit 1/17/78 - latest edit 1/23/78

C
basis). z

Minicomputers are produced and distributed in a variety of ways and

levels-of-integration from: printed circuit boards containing the

electronics; to boxes which hold the processor, primary memory, and

interfaces to other equipment; to complete systems with peripherals
oriented to solving a particular application(s) problem. The price

g
range(s) for the above levels-of-integration, in 197/, are roughly:

500 to 2,000; 2,000 to 50,000; and 5,000 to 250,000.

1€5
7. Economy of Scale

Grosch (1953) suggested that the
4

according to the performance/price relationsnip;

2

Performance = constant x Price

Several studies [Bell and Newell, 1971; Knight, 1966;/Phister, 1976; Sharpe,

1969; Turn, 1974] have examined whether this is true for a given set of

machinesg it is possible to nao tho/relationship im-pricing~A Zt is

.1166 >

Ow tay Rand

desirable that the performance increase more rapidly than price for improved

operating economy. nearly all man-made objects (e.g., transportationFor

vehicles, electricity generation, buildings) there is usually some economy of

scale because there are high fixed costs that do not increase as rapidly as

the sae of an object increases.
P tev

TT

Chapter 1 Page 42
G. Bell last edit 1/17/78 - latest edit 1/23/78

basis).

Minicomputers are produced and distributed in a variety of ways and

levels-of-integration from: printed circuit boards containing the

electronics; to boxes which hold the processor, primary memory, and

oriented to solving a particular application(s) problem. The price
3

range(s) for the above levels-of-integration, in 197//, are roughly:

interfaces to other equipment; to complete systems with peripherals

500 to 2,000; 2,000 to 50,000; and 5,000 to 250,000.

7. Economy of Scale

Grosch (1953) suggested that there was an economy of scale for computers

according to the performance/price relationship:

2

Performance = constant x Price

Several studies [Bell and Newell, 1971; Knight, 1966;/Phister, 1976; Sharpe,
.19664

1969; Turn, 1974] have examined whether this is true for a given set of
machines eenversely it is possible t- tes thn/relationchip, tn-pricing-4 It is

heats

desirable that the performance increase more rapidly than price for improved

operating economy. For nearly all man-made objects (e.g., transportation
vehicles, electricity generation, buildings) there is usually some economy of
scale because there are high fixed costs that do not increase as rapidly as
the of an object increases.

mang wats anol

Chapter 1 Page 43
G. Bell last edit 1/17/78 - latest edit 1/23/78

a linear relationshiy between rice and performance and the square law

relationship is only apparent (see Fig. Groschlin) because the curve roughly

"fits" for a factor of 4 ner se in price.

e. ceording to the IBM Telex

papers, the goal of IBM's 360/X0 models was provide a factor of 3 (not 4)

in performance each time the price Woubléd. Similarly, the higher PDP-11

models provide proportionately more"perXormance. This aspect of design will
be discussed in the following ection.

Prowse, Howe
ons casedLay

% tho authore believe that there is some economy of scale (although Ae, Agree
certainly not a square law relationship), it is important to understand why

such a relationship might exist. The high overhead, linear approximation to

@ square law is one clear explanation.

A
The onl} computer component that could be predicated on a square law

relationship has 'been the core memoryg, Csee-thre Memory structure,-
poge-09) There is an overhead cost associated with the base packaging, power

and interface. The electronic selection is square law; a doubling of the

selection circuitry provides access to a four times larger stack. All other

costs are roughly linear, although we might expect the manufacturing cost for

larger stacks to follow some economy of scale since there is a high set-up

cost to threading core memories.

con my of scale doco hold if we use memory-size processing-rate as the

definitn of performance. Gurrentamemopies-eperate

Chapter 1 Page 44
G. Bell last edit 1/17/78 - latest edit 1/23/78

@°ardyare, thus, there is a great dynamic range for economy scale béexinning

with IC and going to the: largost memorly ay--prayaded a processor

can operate on the resultant data.

On the other hayd, the more traditional view is that performance is simply the

number of accesseS/second into the memory. Therefore, there is no economy of

scale in modern computers over the range of the smallest to the largest!

Using memory-size x procdssing-rate, note that performance increases as the

price squared:

1. Processor cost is either nekligible (optimistically) or it is proportional

to memory size (e.g., a procedsor is added each time a memory chip is

added). Memory size and memory 'speed can be traded-off equally in an

application; thus, performance is heir product. Note, this is akin to

saying the performance of an automative vehicle is the product of its
speed times the number of passengers it carries.

Performance = Memory-data-rate x Memdry-size

2. In 1978, 4 Kbits of memory sell for about $25 or\§.05/byte:

Memory-size (in bits) = 4K/25 x Price (in $).

3. Each 4 Kbit memory chip can be accessed at a rate of 2 Mhz:

G. Bell last edit 1/17/78 - latest edit 1/23/78

Memory-data-rate = 2M/25 x Price.

4, Therefore) assuming an arbitrary number of chips can be accessed in

parallel by\naving either a 0 cost processor or proportionally priced

processor, the\performance is:

Performance = 8 x 10 /625) x Price

Note that using this measure 'Ways nothing about how processing is connected

with memory. All these structukes would appear to obey Grosch's law:

1. Each 4K chip could have an embedded processor which accessed it at a 2 Mhz

rate. The processors could be totally interconnected, somehow to work on

a single problem or they could be totally distributed and even completely

disconnected.

2, Each time another 4 Kbit chip is added to a\single system, 2 Mhz more

processing is required at a price proportion to the incremental memory

chip price. Only in this way, would there be a quare law relationship

associated with memory size additions.

For practical fixed width and fixed speed uniprocessors, pekformance would

increase linearly with price since memory size is the only fadtor that can be

varied after a base design is established.

lysing Amdahl's constant when 1 struction/second requires 1 byte o

primary memory.

Chapter 1 Page 4S

aM x

9 2 w

g

C
@

ayes

>

Ffwe

a chap

Cotte anol4Koohot Chup ; 979 te
a eyelet F

Processing wore =

R 10 Cn

10 o
wa A Oo

Z.uorK'n

PCL. KW
2S

and

= 4096 P par =

25 4096

P P04h
25

Chapter 1 Page 46
G. Bell last edit 1/17/78 - latest edit 1/23/78

Compatible Machine Price, Performance and Time Range

Nearly all modern computer designs are part of a compatible computer family

which extends over price and time. Compatibility considerations are based

on the economic necessity to utilize a common software base. The users!

investment in software dwarfs that of the manufacturer, assuming the

machine is successful. For example, if there is only one man year of

software investment associated with the 50,000 PDP-11s, and each man year

costs about $40,000 and produces something on the order of 5,000

instructions, then there is a cumulative investment of 2 billion dollars

8,

and 250 million lines of program for the PDP-11. This investment is

roughly the same scale as the original hardware cost.

Since technology provides such rapid changes over the generations, it is

@ obvious that there must be backward (in time) compatibility in order to

build on and preserve the user's program base. He must be able to operate

programs unchanged to take advantage of improvements brought about by

technology changes.

In a similar way, compatibility over a range of machines, at a given time

is desirable so a user may select a machine that matches his problem set,

while having the comfort that the problem can change and there will be a

sufficiently large or small machine. As the problem changes with time, it

is also desirable to have the appropriate, competitive, compatible machine.

Thus the goals for a complete, compatible computer product line (i.e., set

of products) might be:

truction/second requires 1 byte of
1Using Amdahl's constant when

primary memory.

Chapter 1 Page 47
G. Bell last edit 1/17/78 - latest edit 1/23/78

1. the widest range of products in terms of price offering;

2. the largest economy of scale factor for performance that separates the

models;

3. the smallest number of models to minimize costs of design, manufacture,

selling and spares inventory;

4. the most cost-effective/competitive products (nearest to competitive

machines) for each price in the space; and

5. backward compatibility with past machines.

Goals 3 and 4 are contradictory. How can the number of models be

minimized, while at the same time providing competitive machines over a

continuous space? In Bell and Newell (1971) we posited a multiprocessor

alternative to the System/360 to cover the range. We still believe this is

the best, and only way to meet both goals! Furthermore it provides

increased reliability and the ability to easily upgrade performance with

minor Huns 11%

tah9 whe
he IBM System 360/370 computers have been the most compatible, while

plying the widest equipment range. Models were separated by a factor of

price and 3 in perofrmance when the System 360 was introduced.2

The initiay 7 System/360 models included: 20, 30, 40, 50, 65, 75, and 91, and

Chapter 1 Page 48
G. Bell last edit 1/17/78 - latest edit 1/23/78

e
we

model : 25, 44, 85, and (a few) 95 were later added. Since the performa

range was about 128, each model covered the intended factor of two
7

Adding 3 mode s caused each machine to cover a factor of 1.6 in price. The

relationship between the performance and price (Bell and Newell, 1971):

1\36

300 65

The DEC PDP-11 family in\ 1977 is shown in Table PDP-11 Models.

Table PDP-11 Models

lore Range n K$ orman

03 10 -30 [15] 3

o4 20 -40 1

34 30 80 10?

45 45 150 40

60 -200 7055

[250] 6570 95 -300

Chapter 1 Page 49
G. Bell last edit 1/17/78 - latest edit 1/23/78

@
For the pric

1.76, and if we\assume 04/34 and 45/55 are a single model then each model

range of 300/10 = 30, each of the six models covers a factor

covers a factor 2.34.

46

1.76 = 30; 2 .34 = 30

The relationship between performance and price, using midpoint prices over the

price range of 250/15 (16.67) \s:

1.51

70 16.67

@ View 5: Functional Characterization of Computer Systems

Now we have to present a more refined view of inf processing in order

to more fully segment computers from one another an be able to identify those

In the first view we emphasized the comp ter strueture (the system) as the

particular object of design and described\it in terms of inter-related design

(and associated components) disciplines e third view bound the components

to nested levels physical levels of integration. In view four, the computer

was considered to be a black box consisting ething that could besom

specified in terms of cost and performance that evolved with time.

which are applicable for a given table (function).

Early computers were grouped simply into scientific and mmercial denoting

w

9. Kee

have
rhe

WE
wey We

oe

Chapter 1 Page 36
G. Bell last edit 1/31/78 - latest edit 2/1/78

5 Functional
View 9: Computer Classes:.7-

There is remarkably little shaping of computer structure to fit the function

to be performed. At the root of this lies the general-purpose nature of

computers, in which all the functional specialization occurs at the time of

programming and not at the time of their design.

The shaping that does take place uses five primary techniques.

1. PMS-level configuration

chooses the amount of primary memory, the number and types of secondary

arm 0matA
Th th ti to br pirformnd. The user (designer)

memory, the types of switches, and the number and types of transducers to

@ suit his particular application.

2. Physical packaging

Special environmental packaging is used to specialize a computer system

for certain environments, e.g., factory floor, submarine, or aerospace

applications.

3. Data-type emphasis
ious

Computers are designed with data types (and operates to match) that are

appropriate to their tasks. Some emphasize floating-point arithmetic,

others string handling. We special-purpose processors, such as Fastlace

Fourier Transform processors, in this category also.

Chapter 1 Page 37
G. Bell last edit 1/31/78 - latest edit 2/1/78

@
4, Operating-system

The generality of the computer is used to program operating systems that

emphasize batch, time-sharing, real-time, or transacting processing needs.

Current Dimensions of Use

Bell and Newell [1971: Chapter 3] traced the evolution of use from the early

days, when just two classifications -- scientific and commercial -- were

needed, to the point where they identify seven different functional

segmentations: scientific, business, control, communication, file control,

terminal, and time-sharing. We refer the reader to their exposition. Very

little has changed, in terms of functional characterization since then. Two

points re worthy of comment. First, file control computers are still yet to

materialize as mainstream separate functional entities, although there have

been isolated cases, e.g., the IBM 3850 mass-storage system. The second

remark applies to terminal computers. They have evolved to a much higher

degree than expected. Because the control for terminals (e.g., calculators)

is done with microprocessors, every terminal includes a stored program

computer. Given this generality, it is a small matter to provide the terminal

user with facilities to write programs. This phenomenon affects the evolution

of time-sharing (when we use the term to denote close man-machine interaction

as opposed to shared use of an expensive resource).

An alternative classification, which we find useful today, is the segmentation

scheme shown in Table Fundisc. It is based on the intellectual disciplines

and environment (e.g., home based) using and developing the computer systems.

Chapter 1 Page 38
G. Bell last edit 1/31/78 - latest edit 2/1/78

It shows the evolving structures in each of the disciplines...hence, one can

see that nearly all the environments evolve to provide some form of direct,
interactive use in a multiprogrammed environment. The structures that

interconnect to mechanical processes are predominately for manufacturing

control. Other environments, such as transportation, are also basically real-

time control. Another feature of discipline-based functional segmentation is
the fact that each of the disciplines operate on different symbols.

Commercial (or financial control) based environments hold records of

identifier names for entities (e.g., part number) and numbers which are values

for the entity (e.g., cost, number in inventory).

Table FupPisc: Discipline/Environment Based Functional Segmentation Scheme

Commercial environment [financial control for all
industry, retail/wholesale
distributionsbilling, inventory, payroll, accounts receivable/payable]
srecords storage and processing
traditional batch transaction
processing against data base business
analysis (includes calculators) *

Scientific*, engineering and design based environment
snumbers, algorithms, symbols, text, graphs storage and processing
traditional batch computation®
data acquisition*
interactive problem solving
real time (includes calculators and text processing)

signal and image processing*
data base [notebooks and records]

Manufacturing environment
srecord storage and processing
batch*
data logging and alarm checking
continuous real time control
discrete real time control
machine based
people/parts fiow

Chapter 1

G. Page 39Bell last edit 1/31/78 - latest edit 2/1/78
- - -

Communications and Message Based
(Message/Text transmission switching, storage and processing)
message switching
front end processing
store and forward networks
speech input/output
terminals and systems
word processing, including computer conferencing and publishing

Transportation systems
network flow control (excludes communication nets)
on-board control

Education-based (Computer Assisted Instruction)
salgorithms, symbols, text storage and processingdrill and practice
library storage

Home-based using TV set
(entertainment, record keepint, instruction)

*Implies continuous program development

The scientific, engineering and design-based disciplines use various

algorithms for deriving symbols or evaluating values. Text, graphs, and

diagrams are the major ways of representing objects, and have to be processed.

For these environments, we have seen the computer change from a calculator (as

it was initially funded to do trajectory calculations for ballistic weapons)

to a sophisticated notebook for keeping specifications, designs and scientific
records. It has also evolved for direct recording and analysis of time

varying signals and images. Initially the computer was only used as a
(WMAA come

transducer to collect data/from physical phenomena to be analyzed later on

larger machines, Eventually, the computer

was used in direct analysis and control. Now, many transducers have (or will
have) computers embedded in them in order to encode information at a high

level so that its output does not have to be processed by another computer.

These will invariably be connected to other larger computers in a network

Chapter 1 Page 40
G. Bell last edit 1/31/78 - latest edit 2/1/78

@
fashion to handle notebook graphical display and control functions. This

corresponds to the intelligent terminal that is prevalent in the human

interactive systems where processing is done at the lowest possible level and

only the meaning of symbol is transmitted not the values of individual, time

varying samples.

Manufacturing environment computers have evolved from a simple record keeping

function which is quite similar to records in the commercial environment to

direct on-line human control in a way identical to the other financial

control-based disciplines.

Process-control computers have evolved from their initial use as assisting
human operators (controllers) with data logging and alarm condition monitoring

@ to full control of processes with either human or a second computer backup.

The structure of the computer and the control task varies widely depending on

whether it be a continuous process (e.g., refinery, rolling mill) or a

discrete process (e.g., warehouse, automotive, appliance manufacturing).

Transportation for aircraft, trains, and eventually automotive vehicles is a

form of real time control that uses both discrete and continuous control.

Control is carried out in two parts: on board the vehicle and the network

(e.g., airspace, highway) that carries the vehicles. The transportation

control function dictates three unique characteristics for the computer

structure:

1. very high reliability. Society has placed such a high value on a single

e

Chapter 1 Page 41
G. Bell last edit 1/31/78 - latest edit 2/1/78

human life that all computers in this environment can not appreciably
raise the likelihood of a fatality.

2. very small size for on-board computers.

3. extreme operating and storage temperature range for on-board computers -

especially for automotive vehicles.

Communications and message based computers have evolved from telephone

switching control, message switching, and front ends to other computers to be

the dominant part of a communications system. With these evolving systems,

the communications links have changed from analog-based modulation

representation and transmission to sampled-data, digital transmission. By

using all-digital transmission, data and voice (and video) can ultimately be

used in the same system. Voice transducers enable speech communications with

the computer.

Word processing (i.e., creation, editing, and reproduction) together with the

long term storage and retrieval, and transmission to other sites (i.e.,
electronic mail) have evolved from several systems:

1. Conventional torn-tape message switching (e.g., TWX, Western Union, Telex).

2. Terminals with local storage and editing (i.e., flexowriters, teletype

ASR's, magnetic card/magnetic tape automatic typewriters, and the evolving

standalone word processing terminals.

Chapter 1 Page 42
G. Bell last edit 1/31/78 - latest edit 2/1/78

3. Large, shared text preparation systems for centralized documentation

preparation, newspaper publication, etc.

4, Large, systems with central filing and transmission (distribution). These

will negate need for substantial hard copy. With these systems, text can

be prepared either centrally with the system,, or with local intelligent
word processing systems.

5. Computer conferencing. People can sit at terminals and converse with

others without leaving their office.

The education-based environment implies a system which is a combination of

transaction processing (for the human interaction part), scientific
computation as the computer is required to simulate real world conditions

(i.e.s physical/natural phenonmena) and information retrieval from a data

base. These systems are evolving from the simple drill-and-practice

systems which use a small, simple algorithm; through simulation of

particular real-world phenomena; to knowledge-based systems which have a

limited, but useful, natural-language-communications capability.

Home based computers are beginning to emerge. The dominant use to date is in

providing entertainment in the form of games that model simple, real-world

phenomena, e. ping-pong. Appliances are beginning to have embedded

computers that have particular knowledge of their environments. For example,

computer-controlled ranges can cook particular food in fairly standard ways.

Alternatively, cooking can be controlled by embedded temperature sensors.

Chapter 1 Page 43
G. Bell last edit 1/31/78 - latest edit 2/1/78

Simple calculators to record checkbooks have existed for quite some time.

These will soon evolve to provide written transactions for recording and

control purpose. Many domestic activities are in essence scaled-down versions

of commercial, scientific, education, and message environments.

Convergence Towards Generaljty

As we observe the evolution of each machine class (super, mainframe,

minicomputer, microcomputer) and the hand-held calculators we can see several

cases of machine structures which begin as highly specialized and evolve to

being quite general. We believe that this trend will become more marked.

Operating systems take on multiple functions as they evolve with time. Users

specify additional needs and operating systems designers like to add function.

Thus we see a COBOL run-time environment added to a simple FORTRAN-based

real-time operating system. At the next stage a comprehensive file system

might be added.

In a computer installation using large, highly general computers,

minicomputers are installed to offload the large computers. The first

application of the minicomputer is thus on a well-defined single problem.

Soon more problems are added and the minicomputer system, with the help of a

general-purpose operating system, is soon performing as a general computation

facility. The offloading cycle begins again.

Part of this phenomenon is due to the inherent generality of a computer, and

Chapter 1 Page 44
G. Bell last edit 1/31/78 - latest edit 2/1/78

part is a consequence of constant-cost evolution. This applies also to

calculators. For example, the early scientific calculators evolved from just
having logs, exponentials and transcendental functions to include statistical
analysis, curve fitting, vectors and matrices.

Machines, then, evolve to carry out more and more functions. We believe that

the prime discriminant is data type. Figure datatype shows an estimate of
data type usage by application. We have postulated mostly high-level data

types, e.g., process description. We strongly warn that this distribution is
only a guess. Attempts to measure such distributions to date have not shown

marked differences across applications (except for numerical vs non-numerical)

because the data types have not been of a sufficiently high level.

Chapter 1 Page 4 5G. Bell last edit 1/31/78 latest edit 2/1/78
6

VIEW 4: The Practice of Design

Whereas in previous sections we gave different views of the object being

designed, here we present a view of the process which gives rise to the

object. We take the position that, by and large, computer design is like any

other design. Two models of design, those of Asimow and Simon, are presented.
We then conclude the view with some remarks on factors that particularly
influence computer design.

Asimow's model

In Tntroduction{Desian [1962], Asimow gives a general perspective of

engineering design and how the formal alternative generators and evaluating

procedures, i.e., mathematical programming, are used, and where these

formalisms break down and don't apply. Asimow defines engineering design as

"a purposeful activity directed toward the goal of fulfilling human needs,

particularly those which can be met by the technological factors of our

culture." He distinguishes two types of design: design by evolution and

design by innovation. We see examples of both in this book; however, we must

warn that most computer design is evolutionary. Asimow's first diagram (Fig.
Asimow) called, Philosophy of Design, shows what we believe to be basic design

process. He 'lists the following principles > 1942: $-6] .

1. Need. Design must be a response to individual or social needs
which can be satisfied by the technological factors of culture.

2. Physical realizability. The object of a design is material good
or service which must be phstial realizable.

Chapter 1 Page 46
G. Bell last edit 1/31/78 - latest edit 2/1/78

3. Economic worthwhileness. The good or service, described by a
design, must have a utility to the consumer that equals or
exceeds the sum of the proper costs of making it available to
hin,

4, Financial feasibility. The operations of designing, producing,
and distributing the good must be financially supportable.

5. Optimality. The choice of a design concept must be optimal
among the available alternatives; the selection of a
manifestation of the chosen design concept must be optimal amongall permissible manifestations.

6. Design criterion. Optimality must be established relative to a
design criterion which represents the designer's compromise
among possibly conflicting value judgments that include those of
the consumer, the producer, the distributor, and his own.

7. Morphology. Design is a progression from the abstract to the
concrete. (This gives a vertical structure to a design
project.)

8. Design process. Design is an iterative problem-solving process.
(This gives a horizontal structure to each design step.)

there is uncovered a substratum of subproblems; the solution of
the original problem is dependent on the solution of the
subproblem.

9. Subproblems. In attending to the solution of a design problem,

10, Reduction of uncertainty. Design is a processing of information
that results in a transition from uncertainty about the success
or failure of a design toward certainty.

11. Economic worth of evidence. Information and its processing has
a cost which must be balanced by the worth of the evidence
bearing on the success or failure of the design.

12. Bases for decision. A design project (or subprobject) is
terminated whenever confidence in its failure is sufficient to
warrant its abandonment, or is continued when confidence in an
available design solution is high enough to warrant the
commitment of resources necessary for the next. phase.

13. Minimum commitment. In the solution of a design problem at any
stage of the process, commitments which will fix future design
decisions must not be made beyond what is necessary to execute
the immediate solution. This will allow the maximum freedom in
finding solutions to subproblems at the lower levels of design.

Chapter 1 Page 47
G. Bell last edit 1/31/78 - latest edit 2/178

14, Communication. A design is a description of an object and a
prescription for its production; therefore, it will have
existence to the extent that it is expressed in the available
modes of communication.

Asimow goes on to define the phases of a complete project.

1. Feasibility study. The purpose is to determine some useful solutions to

the design problem. It also allows the problem to be fully defined and

tests whether the original need which initiated the process can be

realized. Here the general design principles are formulated and tested.

2. Preliminary design. This is the sifting, from all possible alternatives, +0

a useful alternative on which the detailed design is based.

3. Detailed design. This furnishes the engineering description of a tested

and producible design.

Succeeding
While trese are the primary design

phases,
there are four,iyphases resulting from

the need for production and consumption by the outside world.

4, Planning the production process. This is really another design process

which is simply a special case of design. The goal is to design and build

the system that will produce thr

5. Planning for distribution. This activity includes all aspects related to

sales, shiping, warehousing, promotion, and display of the product.

Chapter 1 Page 48
G. Bell last edit 1/31/78 - latest edit 2/1/78

6. Planning for consumption. This includes maintenance, reliability, safety,
use, aesthetics, operational economy, and the base for enhancements to

extend the product life.

7. Retirement of the product.

Obviously all these activities overlap each other in time, and interact as the

basic design is carried out. For example, any design that doesn't consider

the distribution and consumption phases will fail. Historical information

appears to constrain the first phases of the design. In reality, the later

phases occur concurrently with the design, but with less intensity as the

product moves from phase to phase. Phister (1974) posits a model of this

process (Figs and gives the amount of time spend in each

activity (Fig. for a hardware product.

The Generate and Test Model

A more abstract model of design is the one that Simon uses for human problem

solving; it is called generate (posit a structure--solutions) and test (the

alternatives). Tm The Sciences of the Artificial, Simon [1969] discusses the

science of design and breaks the problem into: representing the design

problem alternatives, the search (i.e., generating alternatives), and

computing the optimum. When it is too expensive to search for the optimum, as

is often the case, one resorts to selecting satisfactory (he calls them

satisfying) alternatives. For most parts of computer design, the design

variables are selected on the basis of satisfactory (satisfying) rather than

optimum choice. Simon also discusses the tools of design, including

Chapter 1

G. Bell last edit 1/31/78
Page 49latest edit 2/1/78

simulation as an alternative to building the complete system, and as a way to

evaluate the behavior of various alternatives.

In his discussion of the importance of the design hierarchy, Simon introduces
three

the notion of "architecture of complexity". The first foun views of this

chapter have been influenced by this hierarchies view. In practice, designers
and managers spend a great deal of effort in structuring complexity by various

levels and design activities.

An associated problem is that of design representation. The more

representations one has, the larger is the number of design problems that can

be tackled, and hence the closer one can get to a global optimum. Most
oh

disciplines have beth. schematic and visual representations. In chemical

engineering, heat balance is obtained by x, not from a plant piping diagram.

In the design of power supplies, transformer design is accomplished using
ow

equivalent circuits, not tte physical representation. In the design of

computer buses, most designers work with timing diagrams; however, alternative

representations are state diagrams and Petri nets.

In general, the importance of alternative representations in computer

engineering is not well understood. The large number of representations that

do exist at the programming level is deceptive. There are many different

algorithmic languages, but they differ mostly in syntax, not in semantics.

Classical Optimization

Chapter 1 Page 50
G. Bell last edit 1/31/78 - latest edit 2/1/78

@
It is too simplistic to think that computer design should be a well-defined

activity in which we can employ mathematical programming to obtain optimumseldom ,

There are five major problems.

1. the cost function is multi-variable

2. the primary measure, performance, is not well understood

3. the objective function that relates cost and performance is not understood

4, objectives are not as objective as they look

5. there is a dynamic aspect (because the technology changes rapidly) which

we find hard to quantify.

We use the following extract from a discussion of design given in (Bell,
123-UN

Grason, and Newell, 1972f] to cover the problems of objectives and evaluations.

Objectives can often be stated as maximizing or minimizing some
measure on a system. A system should be as reliable as possible, as
cheap as possible, as small as possible, as fast as possiblf, as
general as possible, as simple as possible, as easy to construct and
debug as possible, as easy to maintain as possible -- and 80 on, if
there are any system virtues that we have left out.

There are two deficiencies with such an enumeration. First, one
cannot, in general, maximize all these aspects at once. The fastest
system is not the cheapest system. Neither is the most reliable.
The most general system is not the simplest. The easiest to
construct is not the smallest, and so on. Thus, the objectives for
a system must be traded off against each other. More of one is less
of another and one must decide which of all these desirables n
weet most and to what degree .1

The second deficiency is that each of these objectives is not so

objective as it looks. Each must be measured, and for complex
systems there is no single satisfactory measurement. Even for
something as standardized as costs there are difficulties. Is it
the cost of the materials -- the components? Do we use a listed

@ 'Relief in the perversity of nature that forces all good things to trade off
against each other should not be carried to extremes. The field of digital
systems provides a counter-example. Digital systems now, compared to digital
systems even a few years ago, are: faster, cheaper, smaller, more reliable,
simpler, and easier to maintain. In short, they are better in every way, and

nothing had to be traded off in the final performing system to obtain them.
Within this, there always exist small trade offs, e.g., between speed and

cost. u s is arely s ginficant against the major trend.

Chapter 1 Page 51
G. Bell last edit 1/31/78 - latest edit 2/1/78

retail cost or a negotiated cost based on volume order? What about
the cost of assembly? And should this be measured for the first
item to be built, or for subsequent items if there are to be
several? What about the costs of design? That is particularly
tricky, since the act of designing to minimize costs itself costs
money. What about cost measured in the time to produce the
equipment? What about the cost of revising the design if it isn't
right; this is a cost that may or may not occur. How do we assign
overhead or indirect costs? And so on. In a completely particular
situation one can imagine an omniscient designer knowing exactly
which of these costs count and being able to put dollar figures on
each to reduce them all to a common denominator. In fact, none of
us knows that much about the world we live in and what we care
about.

The dilemma is real: there is no reducing the evaluation of
performance in the world to a few simple numbers. The solution is
to understand what systems objectives are: they are guides to
understanding and assessing system behavior in various partial
aspects. Various measures for each type of objective are developed,
and each shows something useful. Since all measures are partial and
approximate (even conceptually), rough and ready measures that are
easy to make, display and understand are often to be preferred to
more exact and complex measures. Standard measures are to be
developed and used, even if not perfect. Experience with how a
measure behaves on many systems is often to be preferred to a
better, but unique, measure with which no experience exists,

We do not treat systematically all the different system measures. Many of

them are illustrated throughout the book. However, Table BGN does provide a

guideline, listing in one place the components that contribute to overall cost

and performance.

Table BGN: Cost and performance components for a systes.

Cost components
designing

specifying
designing (drawing, checking, verifying)
prototyping
packaging
describing (documenting)
designing the production system
standardizing

producing
buying (parts)
assembling
inspecting

Chapter 1 Page 52
G. Bell last edit 1/31/78 - latest edit 2/1/78

testing
selling and distributing
using

understanding
configuring (i.e., user designing)
purchasing
applying
operating in the environment (heat, humidity, vibration, color, power,
Space)
repairing
remodeling

Performance
designing, producing, selling
using

environment
for a single task (operation times, operation rate, memory size,
utilization)
for a set of tasks
reliability, availability, maintainability, and error rate

mean time between failures (mtbf)
availability (percent)
mean time to repair (mttr)
error rate (detected, undetected)

Conflicts (Tradeoffs) Among the Various Factors

It is necessary to point out some conflicts among the various activities. The

list of conflicts is very real and taken from experience.

each of the packaging
System Cost Versus Component Cost. Rsenus DEC sells products at levels

constructed from lower ckageot \evas, 1@., the levels model strictly applies,
of integration (chips... turnkey application systems),

Because eachA

a

evy AEF 49 have desiqns ave optimally competitive at

y
iF CEC sola just hardware Systems (cabinetevevy leva, For example

level) ce of kr CPUS

pha RXT-/I

Chapter 1 Page 53
G. Bell last edit 1/31/78 - latest edit 2/1/78

Initial Sales Price Versus User Life Cvcle Cost. There is a cost associated

with parts that break and have to be repaired and maintained. Nearly every

part of the computer can be improved over a range of a maximum of a factor of
10 to provide increased reliability (extended MTBF) for a price. To the

extent these costs are added, means the product will be less competitive in

terms of a higher purchase price. However, if the total life cycle costs are

considered, the product may still be
buyeven at the higher initial cost.

Reliebility, Availability, Maintainability (and Producibility) Versus

Performance. By designing to take advantage of the fastest components and

operating them at the limit of their capability, one is able to have increased

performance. In doing s0, the tradeoff is clear, producibility, reliability
(error rate), and maintainability (ease of fixing) all generally suffer.

Performance Versus Cost. This is the most traditional design tradeoff. In

addition to the conventional product selection, the planning of a computer

family further increases selection/tradeoff process.

Rarly Shioment Versus Product Life and Qualitv. By delivering products before

in 4he
date but at a significant risk. If faults are found that have to be factory
they are fully engineered for manufacture, one is able to improve the ship

or field meene@ee, the cost far outweighs any early product availability.

Another Longer Design Versus Product Life. By taking longer to design, a

product can be designed in such a way that it is easier to enhance.

Chapter 1 Page 54
G. Bell last edit 1/31/78 - latest edit 2/1/78

Operating Environment Versus Cost. Here there are numerous tradeoffs even

within a conventional environment. In each of the packaging dimensions:

heat, humidity, altitude, dust, EMI, etc. there are similar tradeoffs that may

appeal to unique markets or may simply translate to increased reliability ina
given setting. The Norden 11/34M is an example of packaging to provide a

PDP-11 for the aerospace environment.

Responsible Pisciplines

Computer science and electrical engineering are the responsible disciplines.
From computer science we get many of the technical aspects, e.g.,
instruction-set architecture; the theory, e.g., algorithms and computational

complexity; and software design, e.g., operating systems, language

translators, that are applied in the practice of computer engineering.

However, in their construction, computers are electrical. Thus, the

discipline that has fundamental responsibility is electrical engineering. To

illustrate this point we include as Table Maxims a set of maxims, due to Don

Vonada, an experienced DEC engineer.

Chapter 1 Page 10
G. Bell last edit 1/31/78 - latest edit 2/1/78
caps

View 2: Levels of Interpreters.

Our previous view was structural. This present view, that a computer system

consists of levels of interpreters, is functional. It is the most uniform

view. Whenever one uses the onion skin model, for example the one in Figure IS
one is taking this view. There are indeed many layers, but as we analyze

the view we will discover that examples of layered pure interpreters are rare

in practice.

An interpreter is a processing system which is driven by instructions and

Operates upon state information. The basic interpretive loop, shown in Fig.
Iloop, is most familiar to us at the machine language level. It also exists

at several other levels. For example in a BASIC interpreter, the instruction

counter corresponds to the source statement number; at the microcode level a

microprogram counter sequences through the machine states which interpret a

machine instruction.

Chapter 1 Page 11G. Bell last edit 1/31/78 - latest edit 2/1/78

To formalize the notion of levels of interpretation we represent a processing
system by the diagram in Fig. formalproc.

finstructions!

i
v

linterpreter !

ea
m

eb
m

de
ca
m

cu
e

om
oe

m
cm

e
cm

e
on

e
om

state 1<------
> >

Figure Formalproc: A processing system

The state of an interpreter is either internal (components of the interpreting
mechanism) or external (state variables of the level being interpreted).
Consider the four processing systems listed in Table four.

Table Four

Level 4 Instruction:

Interpreter$:
Internal State:

External State:

Level 3 Instructions:

Interpreter$:
Internal State:

seat allocation request message

airline reservation system

number of requests pending at this moment
location of passenger list on a disk file
number of lines connected to system
rotational position of disk

number of reserved seats on a given flight
airline name for a given flight

Fortran statement codes

Fortran Execution System

memory management parameters

Chapter 1 Page 12
G. Bell last edit 1/31/78 - latest edit 2/1/78

user name@ main storage size location of disk files
interrupt enable bits
expression evaluation stack
dimensions of arrays

External State: subroutine names
values of data in arrays
statement number
program size
value of an expression

printed characters on line printer

Level 2 Instructions: machine language instructions

Interpreter : processor

Internal State:
preqvam registers

condition codes
program counterg

External State: data in main memory
disk-controller registers

@
Level 1 Instructions: microcode

:
icro machine
oropreeceserInterpreter$

Internal State: inter register
flip-flops holdin evvov Status
eondiiien sedans

99-loop variable value

4

Stack of micvoproqvam gubvoutine link 5
External State:

preqram registers
Condition eard-From Codes

program counter

Each level implements the one above it. The level 1 system is a

microprogrammed processor, implemented in real hardware, the machine seen by

the logic designer. The level 2 system is the CPU. The level 3 system shown

here is a FORTRAN-language processing system. The level 4 system is an

airline-reservation system. This interpreter operates on messages received

Chapter 1 Page 13
G. Bell last edit 1/31/78 latest edit 2/1/78

@
from outside of the system, tests and modifies the state, and generates

messages to send back. These four systems form the hierarchy shown in Fig.
Hier. Each interpreter is sequencing through multiple steps in order to

perform a single operation of the next-higher-level interpreter.

In practice, few systems are levels of pure interpreters, although the layers

are present. There are two primary departures from the pure interpreter

model: (a) high-level-languages are usua'ly compilatively executed, and (b)
mart at Manin.

some layers are bypassed when

Compilative execution is a two-step process. Programs at level are

translated (compiled) into statements understood by the level 2 interpreter.

These are then executed.
practire Fon met of

Yat FORTRANISP m Me We Cat, wan "dng wontCrepe A) Aaa OME Can aol omHe

Figure pipes
pipes seer type B ent OTS

mee Gal AAR mna a

Posing the macromachine hardware (architecture) as a base level interpreter, it

is most often extended with an operating system. There may be several

operating system levels so that the machine can be built up in an orderly

fashion. A kernel machine might manage and diagnose the hardware components

(e.g., disks, terminals) and provide synchronizing operations so that the

multiple processes controlling the physical hardware can operate

Next, more complex operations like the file system and
quasi-concurrently.

Chapter 1 Page 14
G. Bell last edit 1/31/78 - latest edit 2/1/78

@
basic utilities are added, followed by policy elements such as facilities
resource management and accounting. As viewed through the operating system,

one sees a much different machine than that provided by the basic

instruction-set architecture. In fact, the resultant machine is hardly

recognizable as the architecture most usually given by a symbolic assembler.

It includes the basic machine but has much more capable i/o and often the

ability to be shared by many programs (or tasks).

Operating systems designers believe all these facilities are necessary in

order to implement the next higher level interpreter--the standard language.

The language level may include interpreters or compilers to translate back to

the machine architecture for ALGOL, BASIC, COBOL, FORTRAN, etc. or any of the

other hundred standard languages and their dialects. At the language level, a

user again observes a common language machine.

Often an additional special language is used because an application can't be

expressed easily using the standard language per se and it is necessary to

have operations that are within the domain of the problem. Finally, using a

special language, various application subprograms (a program library) are

wrtten to enable specific applications to be written. One then may build the

application and finally the real user can get a problem solved in a

cost-effective fashion provided there has been the right set of operations

(languages) at each of the levels.
0

Chapter 1 Page 15
G. Bell last edit 1/31/78 - latest edit 2/1/78

ea comp. add levels e.g., nanocode]

Finally, note that using fundamentally different outer layers for a common

inner set of layers creates quite different machines, hence a set of onions.

Therefore it is important to realize that when dealing with common core

ratification intentionally done to manage complexity, allow specialize -

design level, ease of use, e.g., DIAL.

2. doesn't really matter
P formance forces more compile or to do away with a level altogether.
Ran

hardware, multiple operating systems, languages and applications a network of

machines is formed, not just a single, layered machine.

td

whe

Chapter 1 Page 16
G. Bell last edit 1/31/78 - latest edit 2/1/78

View 3: Packaging Levels of Integration

This is a structural view that packages the various components (hardware and

software) into levels. The current levels for DEC edebcomputers ané@

are as follows.

9 applications
8 applications components
7 Special languages
6 standard languages
5 operating systems
4 cabinets
3 boxes
2 boards
1 integrated circuits

This view is the most important in the book, because it shows how computer

systems are actually structured and hence how their costs are structured.

It is the least general of the views and the most timely, i.e., easily dated.

It is a structural view of the object being sold, and as such, is completely a

function of the technology, the organization building the system, and the

marketplace. As we go through the view we will see how rapidly the

constituent parts at each level. have changed and how the computer industry

allocation across the levels has changed.

Indeed, the view could be titled "Dynamic Levels of Integration". We will

elaborate on the three major changes.

1. Changes in the hardware levels

The shrinking in physical size of functions has three effects.

Chapter 1 Page 17
G. Bell last edit 1/31/78 - latest edit 2/1/78

@
a. lower levels subsume higher levels

b. The semiconductor component supplier is forced to assume higher and

higher level design responsibilities
Levels disappear

2. Changes in the software levels

a. each level grows in size as more functionality is added over time

b. more levels are added as minicomputers are applied to a broader range

of applications

e. functions migrate downward from level to level

3. Changes in the hardware/software interface

a. software functions migrate into hardware for higher performance

The software levels were also discussed in the previous view. They are the

operating system; the languages; application library; and applications levels.

Within each level of the software there can, of course, be an arbitrary

nesting of levels using lower order primitives of the level in order to

provide the top-most, integrated resulting design. There will be little or no

discussion herein about these software levels except as they act as consumers

(users) of lower level hardware.

Hardware levels

@

Chapter 1 Page 18
G. Bell last edit 1/31/78 - latest edit 2/1/78

For the hardware levels, we might consider time to be the packaging view and

base it on the physical levels of interconnection. In fact, it is the

interconnection and packaging per se that determines the machine more than any

other factors excluding the basic lowest component (now semiconductors) level

technology. This base acts to constrain and limit all higher levels.

This constraining and limiting by the interconnection and packaging takes

place because most manufacturing costs are associated with the physical

structure--not the basic lowest level components that are interconnected. As

interconnection levels must be introduced to build complex structures, many

usually unwanted side-effects occur. The interconnection requires space and

interfaces with cooling which in turn creates noise. interconnectionsLong

increase signal transmission delays, and these reduce performance.
Signa
Stenatransmission makes the computer susceptable to electromechanical

electve mognerie
interference and it can radiateMf waves that must be controlled. Finally,
there is the domain of industrial design - aesthetics - and everyone is a

self-based authority on appearance.

Figure 11 shows how the levels-of-integration prices versus time for small

computers. The price depends partly on implementation and architecture

word-length; so, as the word-length is made shorter, there is some economy,

particularly for minimal computers. Note there is not a 4-bit computer shown

at the board level, but only as chips. In fact, most hand held calculators

are implemented using 4-bit, stored program computers with fixed programs that
They

occupy a single 1C. have no associated modules, backplanes, boxes and

cabinets--only a single package that fits one's hand. We see a movement in

Chapter 1 Page 19
G. Bell last edit 1/31/78 - latest edit 2/1/78

@ price versus time that is parallel; for various different scaled

machines--which means that all constituent components have the same fractional

"Reduce prices by not providing a power supply and mounting hardware. Let the

user provide all added-on parts and mount the computer as needed. In this

way, the price, though not necessarily the total cost to the user is reduced.

We'll sell at the board level." Computer Automation introduced the "Naked

use. An astute marketing-oriented person might ask, "How, with all the

technology can we do something unique to get off the curve?" One answer:

Mini® ™ in 1972 at a lower component price so that users could supply more

added value--packaging and power technology.

A similar effect can be seen in the 11 serie since the 11/20's introduction

in 1970. Most models are sold at the box and cabinet level with module level

options. In 1976 a module with 4,096 words of memory and processoresthe
LSI-11)was provided for $600 as described in chapter 00. The boxed version

costs/ reflecting negligible improvement in packaging, the bexeol

version Sola Lov x
Note from Fig. semiconductors, the lowest level of technology, have the\ \ woe

greatest price decline.
ante Ont

Modules have a lesser price decline because they are a mix of: Ics, printed

circuit boards, labor (and capital equipment to insert the components), and

testing labor (and capital equipment). At the module level there have been

negligible gains in fabrication and printed circuit board technology, and-

increased labor costs yield an over-all cost increase.

Chapter 1 Page 20
G. Bell last edit 1/31/78 - latest edit 2/1/78

At the box level-of-integration, power supplies and metal or plastic boxes

increase due to their labor intensive nature. The gains are by-products of

using less power and less space. Finally as boxes are integrated (by people),

and applied (by custom, people intensive programmers) the prices are

approximately constant.

The changjne domain of the semiconductor suppliers

In the early 70s Intel, North American Rockwell and other semiconductor

companies began to use the higher semiconductor densities to reduce the number

of levels of integration by packaging a complete processor-on-a-chip. These

organizations had assimilated logic design, and were frustrated because their

customers could really not identify higher functionality units (beyond memory)

@ requiring on the order of 1,000 gates on a chip. Also, the speed of these

high density units was quite low.

They discovered that the best finite state machine that one can make is just a

simple computer because it provides the finite state machine plus the useful

functions that are not covered by switching circuit theory.
1

Processors-on-a-chip have followed a very steep price decline of up to 50%

price reduction/year. A processor costs anywhere between $5-10.

Robert Noyce, of Intel, presented Fig. 12 in October 1975. It illustrates

what is happening in the semiconductor industry; and I have added to it

slightly showing the technology that DEC has assimilated with time. It shows

It is simply a small matter of programming to do something useful but we all

know that programs cost $1-$100 per instruction to write.

Chapter 1 Page 21
G. Bell last edit 1/31/78 - latest edit 2/1/78

the breadth semiconductor manufacturers have in technology, starting from

semiconductor device level, through the view Noyce has of the various

levels-of-integration continuing into end user applications.

&
The complete model

Figure 13 assigns ordinal numbers to the levels-of-integration we santo use

throughout the book. The assignment number to what might appear to be

quite fuzzy, is our attempt to be convinced that we can structure this

knowledge in precisely this fashion for quite some time--say 10 years. The

numbers correspond to the structure of mini (and larger) computers. Figure 13

also shows how a group of the levels are compressed for smaller systems, and

more spread out for largers systems. For very tiny systems such as a

keyboard and lights, power (perhaps a battery), package, operating system, and

machine language application program,
the entire structure has only two levels

of integration--within the chip and within the calculator via the printed

ot

@ hand-held calculator_which consistspot one chip, printed circuit board,

circuit board.

Figure 13 associates the physical levels-of-integration with: the

corresponding levels of the abstract machine (and its language); and with the

conceptual levels design disciplines. One can start from the top-most level

and go down below the chips and on to the atomic level. One could argue

whether the world is analog or digital at the atomic level, which is roughly

level 0. A physicist could probably decompose a semiconductor system many

more levels, but they do not correspond to machines.

Chapter 1 Page 22
G. Bell last edit 1/31/78 - latest edit 2/1/78

The levels-of-integration model is that components at one level, are combined Hower
into a system at the next highest level in a hierarchy, Nt Show),

be nested itself. A level also denotes that there is a single conceptual
design discipline or set of interacting disciplines which determine the
function, structure, performance and cost of the constituent level.

is actually a lattice or network, and not a tree. Each level can, of course, the

Chapter 1 Page 55
G. Bell last edit 1/31/78 latest edit 2/1/78

7 The
tar ABlaauw Characterization of Computer

Another framework (view) we use is based on the powerful, clear ated
ot Cant}.distinctionsBlaauwl . He distinguishes architecture,A

implementation. and reglizatjon as three separable levels in the construction

of anything, including computer structures.

The architecture of a computer system defines its functionality (behavior) as

it appears to the machine-level programmer, namely the instruction set we call
the ISP. The implementation is the actual hardware structure - the

register-transfer level behavior and data flow organization of a computer.

This also includes various algorithms for controlling a machine as it
interprets an architecture. Realization encompasses the actual technologies

used and includes the kind of logic, how it is packaged and interconnected.

@
Realization includes all the details associated with the physical.

"kr architecturesusually Res multiple implementations. For example, the

architecture and implementation (i.e., the RT structure) as the IBM 709. The

Modan have

LSI-11, 11/40, and 11/60 are different implementations of the same basic

PDP-11 instruction set. kFor example, the IB 7090 has the same

difference lies in realization: the 709 used vacuum tubes, the 7090 used

transistors. For a more recent example, two models of the PDP-11 architecture

that share the same implementation are the 11/34 and Norden's ruggedized

realization, the 11/34M. The latter uses militarized semiconductor components

and placement as well as a different packaging and cooling system.

The following table attempts to clarify the distinguishing characteristics of

Chapter 1 Page 56
G. Bell last edit 1/31/78 - latest edit 2/1/78

architecture, implementation and realization.

Characteristics of Design Areas (Blaauw and Brooks, Computer Architecture,

1979)

Architecture Implementation Realization

Purpose function cost and buildable and
performance maintainable

Product principles of logical design release to
Operation manufacturing

Language written block diagram, lists & diagrams
algorithms expressions

Quality measure consistency broad scope reliability

Meanings ISP RT-level machine; physical realization;
(used herein) Microprogrammed physical implementation

machine ISP sequential machine
(at logic level)

In this book, we concentrate on tke realization and implementation)a

Sev
Reconciliation of Design Views (Blaauw versus)

It is important to try to reconcile the differences between the views of Blaauw

and Brooks and ours because all of us engaged in computer engineering use the

words, architecture, implementation and realization--quite often to mean

different things. For architecture, although we have good congruence with the

definition, we prefer to not limit the definition of architecture to just a

machine as seen by a machine language programmer. Instead, we will use

architecture to mean the ISP associated with any of the machine levels

described in the interpretation levels view (page 00). Therefore, architecture

Chapter 1 Page 57
G. Bell last edit 1/31/78 - latest edit 2/1/78

standing alone will mean the machine language the ISP. We will also use:

architecture of the microprogrammed gachine as seen by a microprogrammed

machine's microprogrammer; architecture of the operating system as the combined

machine of operating system and machine language; and architecture of a

IpPeuare for each language machine. For example, ALGOL, APL, BASIC, COBOL and

FORTRAN all have as separate and distinct architectures as a PDP-10 and a
a

PDP-11

+e :

FORTRAN) -/V= PLUS C ow,
FORTRAN IV C &

ation 0 bel
2

Although Blaauw and Brooks define implementation and realization clearly, these

engineers we have overused and intermixed them so that the two words are used

interchangeably in the rest of the book to have roughly the same meaning (e.g.,
"The KI-10 was implemented using TTL H-series logic.") In the table, we have

given our definitions for the two words to further relate descriptions back to

these definitions if the reader chooses. Implementation is the Register
Transfer level machine roughly the microprogrammed machine and realization is

definitions aren't umbwentals TUTE As
wittywat. ia art Cath

the physical realization to us the physical implementation in terms of

packaging and technology.

We
ete On

Me
> ~ he

yeas
AL.

41
On

When a machine was finished, and a number of subroutines :

-were in use, the order code could not be altered without causing
a good deal of trouble. There would be almost as much capital
sunk in the library of subroutines as the machine itself, and
builders of new machines in the future might wish to make use of
the same order code as an existing machine in order that the sub-
routines could be taken over without modification."

View Surfaces in Computer Svstem Space85 :

Summary,

@ ebm this last view,we characterize computers by a number of distinguishing
attributes so that they can be positioned as surfaces in a computer space. The

function, structure, technology dimensions of the space are grouped according

to architecture and performance (see Table 6.Space). The values of the

attribute are given in order of increasing time as the computer has evolved.

When appropriate two or more of the attributes that are closely correlated with

_-

one another are grouped together. (For example the processor state and

addresses per instruction are closely correlated.) The original computer space

published in Bell and Newell (1971) has been updated to account for omissions
and advances, have caused extensions to the space both dimensions and tA

added dimensions.

(the DEC computers we make no claim that
traverse the complete space, nor even that they are the best example for a

point in the space. We do annotate the table so that the reader can see how

the DEC computer design examples in the rest of the book do fit the Space, and

have evolved with time.

ack 5
en though this book is not an

attempt to be either definitive or introductory,Wed
(claim that the space is fairly

easily be positioned within [ise We assume the readers will nod with

complete, all the existing computers can
We

appropriate understanding when viewing the table and all the terms should be

familiar to computer engineers.

Chapter 1 og 7 Page 76
G. Bell last edit 1/17/78 - latest edit 1/23/78

In this section we will discuss omputer hardware ferformance, neglecting .te
operating system and langua use because the Later so drastically affect

performance as to make the discussion meaningless. Performance parameters are
+

a combination of architecture (the ISP), hardware implementation and resources
(be Use)

(the PMS structure) being acted on by program For. though &

certain ;

pr

particular nrogram makes ise of the instructions.

overly simplistic hardware Ensures (e.g., instruction
t wy€

time) to characterize machine performance. The "ultimate performance parametersA

have to be based on actual use (i.e., workload) parameters, otherwise there is
dive Caveat of

no way to correlate the primitive measures to real performance. Benchmarks of
he x dane

(including standardized, benchmarks such as Whetstones for the algorithmic
and Comor La

scientific languages) amd synthetic or real workload provide the only real test

by which performance can be compared. The purpose of this section is to

discuss hardware performance generally, and ther sort out its various

co

When we measure performance, there is a tacit assumption that sufficient

software exists to exploit a hardware structure, and that the transformation

from this basic, lowest level hardware machine (i.e., the macro machine) to the

user machine (as provided by a language such as COBOL or FORTRAN) is relatively

constant across various architectures. As each level is crossed, a

Chapter 1 Page 77
G. Bell last edit 1/17/78 - latest edit 1/23/78

transformation takes place requiring computational work. The form of the work

with compiled languages is direct execution via the processor and run time

support program and with interpreted languages the processor executes an

interpretation program which indirectly interprets the final program)
(i. 2 ,

At the lowest level, the internal micro machine provides the architectural

facade, the ISP, forthemeeremachine and-operatge'at roughly 10 times the

aters speed. Thus a machine executing 1 million instructions per second may
a ay

have an effective microcycle time of 100 nanoseconds, permitting 10 mil ion
pa

micro instructions/sec. At the next level, a-conventienal macro machine (ISP)

executing 1 million instructions per second, is capable of perhaps 0.1 to 0.25

million higher level FORTRAN language statements (instructions) per second

depending on the mix of built-in functions and external functions called.

It is difficult to use the simplistic constant ratio measures across each level

of interpretation when comparing machines of differing classes (e.g., micro to

super) because there is not a consistency of data-types (e.g., micros currently

for machineshave no built-in real arithmetic, whereas minis do). However,

within a class (e.g., mini) where the data-types are implied by the class name,
as:

same data-types. Hence a count of the number of data-types reflecting the

built-in operations is one of the more significant architectural performance

indicators, whether it be for a micro machine, macro machine or a language

machine.

PMS (f... Resources) Performance Parameters

@

.6

t

is probably all right, since the two machines most likely have about the

Chapter 1 Page 78
G. Bell last edit 1/17/78 - latest edit 1/23/78

@ The PMS structure, with the corresponding attributes determining performance

(e.g., memory cycle time, processor execution rate) provides the basis for

understanding machines and comparing them with each other. Figure BPMS gives a
to @ Asta {2 (24.0

PMS diagram of a basic computer, with the parameters that

characterize performance. 'The

Alternatively, one might use a more descriptive, or tabular form; but the goal

here is to provide a structural/performance basis for parameterization,

comparison, and specifying the finite resources of the computeram <°

ws imperative to consider the resource constraints, and the effect of their

interaction as each next layer of a machine is designed. For example, a

certain line printer requires buffer space (Mp. size) and processing time (Pe.

@ speed) which is then unavailable at the next machine level (e.g., FORTRAN).

Although a clear layering is needed to characterize each level, we will not

perfor
Care

earry on this layering beyond the hardware.

Bell and Newell (1971) argued that a machine (at any level) can be described

with any number of parameters, and carried out the exercise for up to 5

parameters:

Number of parameters

allowed: 1 2 3 4 5

1 Pe(i.rate) Pe(op.rate) wnt"

Chapter 1 Page 79
G. Bell last edit 1/17/78 - latest edit 1/23/78

2 Mp(size)

3 Ms(size)

QO

Pe(i.width)
3ge

indicate basic computational performance used-in-the ecarlier-view were not

@
allowed.

Dr

5 No. of terminals

nformation -rate between the processor and memory, is used as the processor
3

speed indicator instead of the more conventional instructions per second.3 2

3 Compound indicators such as the product of processor speed times memory size to
3

The following example shows 3 different architectures with 2 implementations of

a stack architecture one has the stack in the primary memory, Mp, and the

other assumes the stack is in the processor, Pc, using fast registers}. The

hardware implementations are held roughly constant (the Pc-Mp data rate) and

the architecture is varied in order to compare the effect on performance. Note

the difference in the various measures in what should fundamentally be about

the same performance for a given problem.

The benchmark program is the simple expression, A : =B+C

Stack Stack j-address or

Chapter 1

G. Bell

Program

No. of Instns.

Accesses

Program size

(bits*)

Bits accessed

Hop'+3a+6d

64

164484192

=266

Time to execute** 0.54+1.5+6

(microseconds)

Statement exec.

rate(actual

performance)

Oper.rate

=8

1/8 = .125m

2/8 = .25m

Page 80
last edit 1/17/78 - latest edit 1/23/78

(top in Pe)

Yop'+3a+3d

64

16+48496

=160

0.541.543

1/5

2/5 4m

general res.

load B

add C

store A

30p+3a+3d

T2

24448496

=168

25.25

1/5.25

2/5.25

. 19m

. 38m

3-address(top

add B,C,Apush B push B

push C push

add add

pop A pop A

3 14

lop"+3a+3d

60

124+48+96

=156

.3741.543

=4.87

1/4.87 =.21mem

2/4.87 =.42m

Chapter 1 Page 81
G. Bell last edit 1/17/78 - latest edit 1/23/78

e Inst. rate 4/8 = .5m 4/5 = .8m 3/5.25 = .57m 1/4.87 = .21m

Pe(i.rate)/ 32m = 1m 32m = 1m 32m = im 32m = 1m

word length

*#assumes: address/a = 16b; data/d = 32b; op = 8b; op' = 4b; op" = 12b

*#assumes a memory limited processor which can access 32b/microsecond

The statement execution rate (the actual performance) is the highest for the

3-address machine, reflecting the highest performance whereas the conventional

shows it to have the lowest performance (by a factor of 4)

over the fastest machine. A more subtle measure, operation-rate, is correlated

@ with the true benchmark statement execution rate. It should be noted,

(ignoring the first machine, a stack machine with stack in Mp) that the

information-rate is a good performance indicator - versus the conventional, but

poor, instruction-rate measure. For more unconventional machines,

instructions/sec. tends to become a significantly poorer measure. The various

vector/array machines (e.g., ILLIAC IV, CDC STAR, CRAY-1) have single

instructions to operate on at least 64 operands per instruction, hence

measure finstns/sec

instructions/second would be a poor measure.

Similarly hand held calculators have single instructions such as Sin, Polar to

Cartesian co-ordinate conversion; AMY using anything but a final benchmark

problem would be unfair. Accesses/sec. will be used as a Pe performance

measure.

Chapter 1 Page 82
G. Bell last edit 1/17/78 - latest edit 1/23/78

The multiprocessor case

For multi-processors the number of processors x the memory accesses/sec.

roughly gives the total Pe.rate can be computed more precisely by

using the number of primary memory modules, Mp, and their data-rate as can be

seen in Chapter 00 on the C.mmp computer. For a system where the memory access

time, and the memory rewrite time equal the time for a Pe to operate on a word,

the performance [Strecker 1970] is roughly:

p

Pe.speed (in accesses/sec.) = (m/t.access) x (1 - (1 - 1/m))

where m = # of Mp modules, and p = # of Pc's

asym ptote
Note that when p = m = large, the performance reaches an aseymtepe:

= m/te x (1/e)

In the case of multiprogramming systems (e.g., real time, transaction, and
Hare wa aw high

context switching rate 3 e

timesharing), the time to switch from job to jl j "7 "str

ro

The memory sizes (in bytes) for both primary and secondary memory gives memory

capability. The memory transfer rates are needed as secondary measures,

Chapter 1 Page 83
G. Bell last edit 1/17/78 - latest edit 1/23/78

) especially to compute memory interference when multiple processors are used.

This measure also permits system performance to be computed by subtracting the

secondary memory transfers and external interface transfers. For file systems

which require multiple accesses to secondary memory for single items, the file
access rate capability is needed in order to compute performance. Similarly,
for multiprogrammed systems which use secondary memory to hold programs, the

access rate is needed.

Communications capability with humans, other computers, and other electronic

encoded processes are equally important structure and performance attributes.

Each channel (e.g., a typewriter) has a certain data rate and direction (full
duplex for simultaneous two way communication). Collectively, the data rates

and the number of channels connected to each of the 3 different environments

@ (people, computers, other electronically encoded processes) signify quite

different styles of computing capability, structure and ultimately use. For

example, having no communications connection to other computers implies a

standglone system. Having only interconnection to mechanical processes via
4 electronically encoded links implies a real time structure. Similarly only

human intePcommunication with multiple terminals denotes a timesharing or

transaction-prowessing orientation.

Figure PLOT uses a Mviat graph to display the above six main resource

dimensions of processing, rimary and secondary memory capacity, and the three

communication channels in a Single 6-d graph, with 3 additional dimensions.

Each dimension is logarithmic ov a factor of 1,000,000 with the value 0,

denoting the absence of an attribute (e.g., there is not communication with

Chapter 1 Page 84
G. Bell last edit 1/17/78 - latest edit 1/23/78

externa\ systems beyond human and standard communication). Secondary measures

and unit Quantities are denoted by separate numbers by each dimension. Unit

quantities can either be multipliers, x (denoting the measure is for 1 unit

such as a dis or divisors, / , (denoting the measure is for all the combined

units of the system). A number-sign, #, is equivalent to a multiplier, x,
denoting the graph\value is for just one unit. Additional attribute: values

are plotted parallel or as marks on a given dimensional scale. Occasionally

dimensions are furthar specified (e.g., audio, video). Arrows denote

directionality of information flow. Note that if the Pe speed is "balanced"

with Mp size according to mdahl's constant, then the value of the two should

be about the same. (Here Pe\is accessing 300,000 bytes/sec. corresponding to

say 100,000 instructions/sed., with Mp of 100,000 bytes). The graph

conventions include subtletie of showing fixed points (i.e., ROM or

hardwired), and averages, range and verhead due to other resources.

The arrangement of the six dimensions aNows easy recognition of a structure in

terms of the relative mix of the resourceNperformance attributes. Figure BPMSR

gives a diagram of a computer system i the same order as the graph's

dimensions.

Figure EXAMPLES shows how the 6-d plot can\be used to represent and

differentiate various computing structures in wh h we're interested. The

first two structures are keyboard i/o, i.e., a single \information transducer we

know as the typewriter which has half-duplex i/o at W characters (or bytes)

per second. A 10 char./sec. teletype is formed by adding line interface.

Chapter 1 Page 85
G. Bell last edit 1/17/78 - latest edit 1/23/78

The simple, early fixed function hand-held calculator, e.g., the HP35, which

has a fixed processing/memory structure with about 4 x 10 digits (or 20 bytes
to be mone precise, of primary memory and store, limited keyboard input and 10

light LED Qutput at about 10 char/sec. The internal fixed program is stored in

about 2,000\ ROM bytes--hence there is a single, fixed point; and the

operation-rate\of the unit is fixed at about 100 accesses/sec. of the HP35's

powerful data-t The HP65 programmable calculator is shown next withes.

various fixed funct ons being replaced by programs, and Mp and Ms are each 500

bytes. The functions in ROM, though still present are not apparent to the

user, hence are removed.

The second line gives grafhs of various terminal structures beginning with a

fixed function operating at \0,000 accesses/sec. (or 100 usec) with about 1,000

bytes of local memory and 00 bits/sec. or 300 bytes/sec. access to a

computer. The unit can be made programmable at 20,000 accesses/sec. by proving

processing on a 4,000 byte primary\memory. Mass storage, here a floppy disk,

is also added in the second case--which also serves aS a communication link.

Communication to the external world is Mt 2,400 baud, or 300 bytes/sec. Output

to the screen is at 2,400 bytes/sec. on 19,200 bits/sec. with input at 10

char/sec.

The next two systems are remote job entry station the first is fixed function

and the second programmable. There are two i/o c tgnnels, one of 2,400 baud

(i.e., 300 8-bit bytes/sec.) for the card reader ayd 4,800 baud (or 300

lines/min. = 5 lines/sec. at 120 bytes/line = 600 bytes/sae.) for the line

printer connected via a 4,800 baud full duplex link. The Second RJE terminal

Chapter 1 Page 86
G. Bell last edit 1/17/78 - latest edit 1/23/78

also includes a Pe at 50,000 accesses/sec. and an Mp of 16Kbytes. A tape unit

of 50Kbytes/sec. which holds 300 Mbytes.

The next system \s a programmable, store and forward system with 16 Kbytes,

with a Pe which had an access rate of 100,000, with a context switching time of

1 millisecond. are 32 lines of 10 to 150 bytes/sec. The fourThare

communication links to\other computers operate at 600 or 1,200 bytes/sec. (or

4,800 or 9,600 baud). The next system is a fixed function, remote full duplex

analog multiplexor with channels operating at 16 x 100 bytes/sec. and

multiplexed into a 1,200 byte/sec. (9,600 baud) line--hence the line limits the

maximum sampling rate.

The next system is a programmabl,\ remote, standalone process control system.

Note the absence of any lines to comhunicate with other machines. A secondary

memory system of 10 million bytes used for communication with other

computers. Both gross and net Pe (2,000 Accesses/sec.) (2,000 bytes) resources

are given. Net capabilities are after "he other resources are managed.

One-hundred transducers are sampled each 10 \milliseconds with 3 transducers

connected to humans at a data-rate of 30 bytes/sde.

The last series of systems are, general purpose, tiprogrammed computers.1

The first is a batch system with card and line printer.\ The next is an 11/70

with 100 real time inputs, 60 terminals, and 2 connection& to other computers.

The KL10 is a large, multi-user (100) timesharing system. FA ally the largest

computer, the CRAY-1 is given, showing the dependence on external computers for

Ms, and terminals.

Chapter 1 Page 87
G. Bell last edit 1/17/78 - latest edit 1/23/78

ISP. (Architecture) Parameters

Whereas the hardware structure and operation rates mainly determines
conti but

performanee, the architecture does have o minor offoot as seen-

minis), we helieve architecture hasthine. given machine cla (say
Qva
a minor effect on performance provided the data-types are embedded. simple,

addresssize-The values for the data-types

dimension is given in order of increasing complexity in Table computer-space.

However, it is difficult to order the dimensions, except by complexity, because
Sey

the qa"e to performance is whether a given problem requires the

embedded data-type.

LOU
particular hardware implement of the number of bits

whieh arr statically required to encode the algorithm (s-measure) and the

number of bits that are dynamically flow between the Pe and (Mfmeasure Mp. A

third measure gave the activity of the internal register processor (R-measure) .

by A
which lead toIn the (CFA) study [

A
the selection of the PDP-11 architecture, benchmarking was used to compare

several architectures.
eta1, 14775 baw 14975

Fuller

The benchmarks (see Table 3; from [Bereeees et al, 1977)» oriented to real

4 VU 1 My
time use were each programmed by progra ers using assembly language. The

resultant programs were run on a simulato a bhat interpreted the formal ISPS

descriptions of the machines. The ISPS

Chapter 1 Page 88
G. Bell last edit 1/17/78 - latest edit 1/23/78

the above

The CFA project also developed a single architectural measure based on a

weighted average of various ISP parameters. The weightings were determined by

the CFA user community and each parameter was evaluated in comparison with

several competitive architectures. The parameters and their weights are given
cullen

Table 1 - Absolute Criteria for CFA Evaluation

in Table 1 [frem R nt "1, 1977

1. Virtual Memory Support. The architecture must support a virtual to

physical translation mechanisn.

2. Protection. - The architecture must have the capability to add new,

experimental (i.e., not fully debugged) programs that may include I/0

without endangering reliable operation of existing programs.

3. Floating Point Support. - The architecture must explicitly support one or

more floating point data types with at least one of the formats yielding

more than 10 decimal digits of significance in the mantissa.

capable of executing a procedure to respond to any trap condition and then

4, Interrupts and Traps. - It must be possible to write a trap handler that is

resume operation of the program. The architecture must be defined such

that it is capable of resuming execution following any interrupt.

Chapter 1 Page 89
G. Bell last edit 1/17/78 - latest edit 1/23/78

@
5. Subsetability. - At least the following components of an architecture must

be able to be factored out of the full architecture:

Virtual-to-Physical Address Translation Mechanism

Floating Point Instructions and Registers (if separate from general purpose

registers)

Decimal Instructions Set (if present in full architecture)

Protection Mechanism

Multiprocessor Support. - The architecture must allow for multiprocessor

configurations. Specifically, it must support some form of "test-and- set"

instruction to allow the implementation of synchronization functions such

6.

as P and V.

7. Controllability of I/0. - A processor must be able to exercise control over

any I/0 Processor and/or I/O Controller.

8. Extendability. - The architecture must have some method for adding

instructions to the architecture consistent with existing formats. There

must be at least one undefined code point in the existing opcode space of

the instruction formats.

Read Only Code. - The architecture must allow programs to be kept in a
9.

Chapter 1 Page 90
G. Bell last edit 1/17/78 latest edit 1/23/78

read-only section of primary memory.

Quantitative Criteria for CFA Evaluation

Weight

1. Virtual Address Space

(a) : The size of the virtual address space in bits. 4,3

(b) V5: Number of addressable units in the virtual address space. 5.3

2. Physical Address Space

(a) Pat The size of physical address space in bits. 6.1

(b) P,: The number of addressable units in the physical 5.1

address space.

3. Fraction of Instruction Space Unassigned 6.0

4, Size of Central Processor State

(a) C2: The number of bits in the processor state of the full 4.9

(b) 2: The number of bits in the processor state of the minimum 3.7

1

subset of the architecture (i.e., without Floating Point,

Decimal, Protection, or Address Translation Registers.

Chapter 1

G. Bell

(e) Catt The number of bits that must be transferred between 6. 0

the processor and primary memory to first save the processor
state of the full architecture upon interruption and then

restore the processor state prior to resumption.

(da) Cae? The measure analogous to C 1 for the minimum subset of
the architecture.

5. Virtualizability

K: is unity if the architecture is virtualizable as defined in

[Popek and Goldberg, 1974] otherwise K is zero.

6. Usage Base

(a) Ba: Number of computers delivered as of the latest date for 3. 1

which data exists prior to 1 June 1976.

(b) Bo: Total dollar value of the installed computer base as of

the latest date for which data exists prior to 1 June 1976.

7. I/O Initiation

I: The minimum number of bits which must be transferred between

main memory and any processor (central, or I/O) in order to

output one 8-bit to a standard peripheral device.

Page 91
last edit 1/17/78 - latest edit 1/23/78

4.5

5.6

2.5

12.4

nm

Chapter 1

G. Bell last edit 1/17/78 - latest edit

8, Direct Instruction Addressability

D: The maximum number of bits of primary memory which one

instruction can directly address given a single base register
which may be used but not modified.

9. Maximum Interrupt Latency

Let L be the maximum number of bits which may need to be

transferred between memory and any processor (CP, IOC,

between the time an interrupt is requested and the time that the

computer starts processing that interrupt (given that interrupts

are enabled).

10. Subroutine Linkage

J,: The number of bits which must be transferred between the

processor and memory to save the user state, transfer to the

called routine, restore the user state, and return to the

calling routine, for the full architecture. No parameters

are passed.

Jo: The analogous measure to Si above for the minimum architecture

(e.g., without Floating Point registers).

Page 92
1/23/78

10.2

9.2

6.3

4.5

trout)
Actual (i.e.. Compound PMS /ISP) Performance Measure

leKy 6, >

1,, Cm, > Tye

pec
PDP=8 POP=11 PDP=10

16,580 20,000 23.170 35.000
V2 15.580 19,000 23.170 35.000
Pl 18.580 25,000 27.170 33.000
P2 18,5380 24,000 27.170 33.000
U 0.090 0,043 0.030 0.800
csi 78.000 11638,000 756.000 786.000
CS2 38.000 144,000 684.000 632.000

964.000 1130.,000 144,000 1464.000
CM2 264,000 496,000 144,000
K 1.000 1.000 0.000 0.000
Bl 0.000 14700,000 0.000 0.000

v 11.580 19,000 23.170 35.000
L 108.000 112,000 216.000 256.000
Ji 1272.000 1424,000 1476.000 1152.000
J2 864.000 400,000 1476,000 1152.000

CM1
1336.000

@ 311.000 L 0.000 0.0000.000 a

12.900 10.000 36.000 04,000

Comparing

Comparing

Comparing

Comparing

04 tet

the PDP=8.

pOP=#11
PoP=3

1.16_-
85

PDP=10
PoP=8

1 01
1.00

VAX=11
1.04

96

the PDP=i1.

PDP=8 85
1 16

POP=10
PDP=11

1.05
95:

the

PDP=10
PDP=8

PDP=10

VAX"11
PDP=10

VAX=11.

POP=3
VAX"11

VAX=il

VAX@11
PDP#-10

VAX-11
PDP=8

PpP=10

1.23
1.09
1.03
266

1 01
1.00 :

1 01 a:
1.00
1 05

95

1 17
64

1.04
96

1 00
1 01

1 i7
84

:

i +

a

Chapter 1 Page 93
G. Bell last edit 1/17/78 - latest edit 1/23/78

In order to measure the performance of a specific computer (e.g., an 11/55), it
is necessary to know the ISP, the hardware performance and the frequency of use

for the various instructions. That is the execution time, T, is the dot

product of the fractional utilization of each instruction Ui times the Ti time

to execute each instruction, Ti.

There are three ways to estimate the instruction utilization, U and hence

obtain T; each providing increasingly better answers. The first, simply

defines either a typical or average instruction. The second uses "standard"

benchmarks to characterize a machine's performance precisely. In this way

machines can be compared and there is an absolute measure. Finally, since the

actual use has not been characterized in terms of the standard benchmark (and

may even not be easily characterized in terms of it) a specific teot (isesy

unique benchmarkf may be necessary. This later characterization is quite

possibly needed for real time and transaction prrocessing where computer

selection and installation is predicated on exactly doing the job.

Typical instructions

The simplest, single parameter of performance is the instruction time for some

simple operation (e.g., add). These were used in the rinst tions

especially since high level languages were less used. Such a metric is an

approximation to the average instruction time and assumes all machines have

about the same ISP and hence there is little difference among instructions, or

that a specific data-type will be used more heavily than another, or that a

typical add time will be given (e.g., the operand is in a random location in

Chapter 1 Page 94
G. Bell last edit 1/17/78 - latest edit 1/23/78

primary memory call versus being cached or in a fast register).

Although it is possible to take the average instruction time by executing one

of every possible instructions, since the instruction use depends so much on

the data they interpret, this average is relatively meaningless. A better

measure is to keep statistics about the use of all programs and to give the

average instruction time based on use on all programs. Again, such a measure

while useful for comparing two machines implementations of models of the same

architecture, is also relatively useless, when it comes to particular specific

useage.

Many years ago, there were attempts to make better characterizations by

weighting the instructions use (i.e., forming a typical U) as to what they did,

(e.g., floating point versus indexing and character handling) to give a better

performance measure. We found for such instructions mixes that begain to

better approximate performance. These mixes, from Bell and Newell (1971) are

given in Table Mix.

Table Mix Instruction-mix weights for evaluating computer power

b

Arbuckle[1966] Knight(scientific) Knight (commercial)

Fixed +/- 6 10(25)° 25(45)?

3 6 1

Divide 1 2

son 1

Floating +/- 9.5 10

Chapter 1 Page 95
G. Bell last edit 1/17/78 - latest edit 1/23/78

Floating X 5.6

Floating divide 2.0

Load/store 28.5 25(move)

Indexing 22.5

Conditional 13.2 20

branch

Compare 24

Branch on 10

character

Edit 4

I/O initiate T

Other 18.7 72 74

@ 'published reference unknown.

eextra weight for either indirect addressing or index registers.

commercial flavor, and quite possibly reflects the proportion of machines

The best known Gibson is still used even today. It has a decidedly
?)

executing commercial mixes with character operations as opposed to scientific,
switching and control where proportional more integer and floating-point data

types are used. Such mixes are still better approximations than a single

instruction average, because use enters in. We muot warn that if the data-type

operation is not present in the machine, the programmed subroutine time must be

given -- typically a factor of 10-20 greater than for built-in operations.

Chapter 1 Page 96
G. Bell last edit 1/17/78 - latest edit 1/23/78

Standard Benchmarks

The best estimate of real use comes from carefully designed tf

tbe 4 +
benchmarks' Several organizations, particularly those who purchase or use many

machines extensively have one or more programs that they believe characterize

their own work load. Whether a standard benchmark can be of value in

characterizing performance depends on the degree it is typical of the actual

computers use. A further advantage of benchmarks is that they are the language

that the computer is to be used, and hence, reflect the application and also

characterize the language machine architecture. To illustrate the variability
in the scientific FORTRAN benchmark metrics, performance of a number of

machines, VAX-11/780 with floating point accelerator option, is compared with

the 11/70 and with the 2050 Model B for 17 benchmarks. Two scientific
benchmarks of the National Physical Laboratory in the UK are

singled out as being the most useful because of the extensive effort (e.g.,
frequencies of the trigonometric functions, subroutine calls, and I/O were

considered) and considerations into designing them as typical. Although these

characterize scientific mix with FORTRAN, they can be used to compare various

languages.

There are similar benchmarks for commercial processing which generally use the

COBOL language.

Exact, yse characterization

In the event a machine has to be fully characterized before installation, there

Chapter 1 Page 97
G. Bell last edit 1/17/78 - latest edit 1/23/78

is no alternative to running the exact problem which will be run on the final

system. This is the most expensive alternative to characterize performance and

should be avoided because of the dynamic nature of use. Showing that an

application will yield a given performance on a particular machine is a weak

guarantee about performance if any part of the problem changes.

Chapter 1 Page 98
G. Bell last edit 1/17/78 - latest edit 1/23/78

Popek, G. J. and Goldberg R. P., Formal Requirements for Virtualizable Third
Generation Architectures, Communications of the ACM, vol. 17, no. 7, July 1974,

412-421.

Wald, B. and Salisburyf/A. Editors, "The Computer Family Architecture Project:
Service Perspectiy and Overview", Special Issue of Computer, vol. 10, no. 10,

Oct. 1977, 9-

Barbacci, M. R., Burr, W. E., Fuller, § and Siewiorek, W. E., Editors

Evaluation of Alternative Computer chitectures, Dept. of Computer Science,

Carnegie-mellon University, Pittfburgh, Pa. Feb. 1977.

Knight, K. E. Changes in Computer Performance Datamation, vol. 12, no. 9, pp.

4O-54, Sept. 1966.

Arbuckle, R. A., Computer Analysis and Throughput Evaluation Computers and

Automation p. 13, Jan 1966.

foan, ?Wich

Turn, Rein, Computers in the 1980s, Columbia University Press, N.Y., 1974.

Sharpe, W. F., The Economics of Computers, Columbia University press, N.Y.,

1969.

Phister, M.

Cowle.Mawico.

Chapter 1

G. Bell Page 99last edit 1/17/78 - latest edit 1/23/78

Asimow, Morris, Introduction to Design, Prentice Hall, 196A.

Simon, Herbert A., The Scipfces of the Artificial M.I.T. Press, 1969.

ec 0.

ons Low D, of
Compartir, Rh aie Teste repos , Puc AFIPS

160,PP
NCC 1977

Barr Coleman, AH,
Arete Selection . Pree AFIPS

NCC 1495 > PP

AMLUrns >

ono He CEA Computer
Proc AFIPS NCC IAIT, pp. 134-146

349
SS,

d

Anton Prec AFIPS NCL 1497f Ibl-17y,

Manan TC.

4

4 4 Co t

2 SMa CAaarme Lol,
Onion

Sloop the haaic

formal prec a any tom,

hev hierarchy o tH ev pretevs

pipes Peper
14 Ant fannie

I>

@ 1% Sar of | nit pase.
14

4 &

vs (
6 VS

BOP Migration

Perce

P-C pam

a

@

eS,Simow
a

e

L

2

4-24. 7 Cp. 20

Taste 3 1 tate om CFA,

Ue

BPM

* p-38
P ert91 'ance

In this section we will discuss computer hardware performance, neglecting the

e operating system and language use because the later so drastically affect

Performance parameters areperformance as to make the discussion meaningless.

a combination of architecture (the ISP), hardware implementation and resources

+

Chapter 1

G. Bell last edit 1/31/78
Page 59latest edit 2/1/78

(the PMS structure) being acted on by some program. For example, although a

certain machine (hardware) can deliver 500,000 instructions/per second to a

program, we must also define what the instructions are (the ISP) and how a

particular program makes use of the instructions.

Most of the time we use overly simplistic hardware measures (e.g., instruction

time) to characterize machine performance. The ultimate performance parameters

have to be based on actual use (i.e., workload) parameters, otherwise there is
no way to correlate the primitive measures to real performance. Benchmarks

(including standardized benchmarks such as Whetstones for the algorithmic

scientific languages) and synthetic or real workload provide the only real test

by which performance can be compared. The purpose of this section is to

discuss hardware performance generally, and then to sort out its various

components.

When we measure performance, there is a tacit assumption that sufficient

software exists to exploit a hardware structure, and that the transformation

from this basic, lowest level hardware machine (i.e., the macro machine) to the

user machine (as provided by a language such as COBOL or FORTRAN) is relatively

constant across various architectures. As each level is crossed, a

transformation takes place requiring computational work. The form of the work

with compiled languages is direct execution via the processor and run time

support program and with interpreted languages the processor executes an

interpretation program which indirectly interprets the final program.

At the lowest level, the internal micro machine provides the architectural

Chapter 1 Page 60
G. Bell last edit 1/31/78 - latest edit 2/1/78

facade, the ISP, for the macro machine and operates at roughly 10 times the

later's speed. Thus a machine executing 1 million instructions per second may

have an effective microcycle time of 100 nanoseconds, permitting 10 million
micro instructions/sec. At the next level, a conventional macro machine (ISP)
executing 1 million instructions per second, is capable of perhaps 0.1 to 0.25

million higher level FORTRAN language statements (instructions) per second

depending on the mix of built-in functions and external functions called.

It is difficult to use the simplistic constant ratio measures across each level

of interpretation when comparing machines of differing classes (e.g., micro to

super) because there is not a consistency of data-types (e.g., micros currently
have no built-in real arithmetic, whereas minis do). However, for machines

within a class (e.g., mini) where the data-types are implied by the class name,

it is probably all right, since the two machines most likely have about the

same data-types. Hence a count of the number of data-types reflecting the

built-in operations is one of the more significant architectural performance

indicators, whether it be for a micro machine, macro machine or a language

machine.

PMS (I.E.. Resources) Performance Parameters

The PMS structure, with the corresponding attributes determining performance

(e.g-, memory cycle time, processor execution rate) provides the basis for

understanding machines and comparing them with each other. Figure BPMS gives a

PMS diagram of a basic computer, with the parameters that will be used to

characterize performance. The diagram shows the structure and key performance

Chapter 1 Page 61
G. Bell last edit 1/31/78 - latest edit 2/1/78

parameters of each component as they provide a total computing environment.

Alternatively, one might use a more descriptive, or tabular form, but the goal
here is to provide a structural/performance basis for parameterization,

comparison, and specifying the finite resources of the computer.

It's imperative to consider the resource constraints, and the effect of their
interaction as each next layer of a machine is designed. For example, a

certain line printer requires buffer space (Mp. size) and processing time (Pc.

speed) which is then unavailable at the next machine level (e.g., FORTRAN).

Although a clear layering is needed to characterize each level, we will not

carry on this layering beyond the hardware.

Bell and Newell (1971) argued that a machine (at any level) can be described

with any number of parameters, and carried out the exercise for up to 5

parameters:

Number of parameters

allowed: 1 2 3 4 5

1 Pe(i.rate) Pe(op.rate)

2 Mp(size)

3 Ms(size)

4 Pe(i.width)

5 No. of terminals

Information.rate between the processor and memory, is used as the processor
speed indicator instead of the more conventional instructions per second.
Compound indicators such as the product of processor speed times memory size to
indicate basic computational performance used in the earlier view were not
allowed.

Chapter 1

G. Bell
Page 62

last edit 1/31/78 - latest edit 2/1/78

The following example shows 3 different architectures with 2 implementations of
a stack architecture -- one has the stack in the primary memory, Mp, and the
other assumes the stack is in the processor, Pc, using fast registers. The
hardware implementations are held roughly constant (the Pe-Mp data rate) and
the architecture is varied in order to compare the effect on performance. Note
the difference in the various measures in what should fundamentally be about
the same performance for a given problem.

The benchmark program is the simple expression, A :=B+C

Stack Stack 1-address or
(top in Mp) (top dn Pe) seneral reg. 3-address

Program push B push B load B add B,C,A
push C push C add C
add add store A

pop A pop A

No. of Instns. 4 4 3 1

Accesses Yop'+3a+6d Hop'+3a+3d 30p+3a+3d lop"+3a+3d

Program size 64 64 T2 60
(bits*)
Bits accessed 164484192 16+48+96 24448496 12448496

=266 =160 =168 2156

Time to execute**® 0.541.546 0.541.543 1541.543
(microseconds) 28 =5 25.25 4.87

Statement exec. 1/8 = .125m 1/5 = .2m 1/5.25 =.19m 1/4.87 =.21m
rate(actual
performance)

Oper.rate 2/8 = .25m 2/5 = .4m 2/5.25 = .38m 2/4.87 42m

Inst. rate 4/8 = .5m 4/5 = .8m 3/5.25 = .57m 1/4.87 = .21m

Pe(i.rate)/ 32m = Im 32m = 1m 32m = 1m 32m = Im

37+1.543

word length

#assumes: address/a = 16b; data/d = 32b; op = 8b; opt = 4b; op" 12b

##assumes a memory limited processor which can access 32b/microsecond

The statement execution rate (the actual performance) is the highest for the
reflecting the highest performance whereas the conventional

measure (instns/sec) shows it to have the lowest performance (by a factor of 4)3-address machine,

over the fastest machine. A more subtle measure, operation-rate, is correlated

Chapter 1

G. Bell last edit 1/31/78
Page 63latest edit 2/1/78

ith the true benchmark statement execution rate. It should be noted,
(ignoring the first machine, a stack machine with stack in Mp) that the
information-rate is a good performance indicator - versus the conventional, but
poor, instruction-rate measure. For more unconventional machines,instructions/sec. tends to become a significantly poorer measure. The various
vector/array machines (e.g., ILLIAC IV, CDC STAR, CRAY-1) have single
instructions to operate on at least 64 operands per instruction, hence
instructions/second would be a poor measure.

Similarly hand held calculators have single instructions such as Sin, Polar to
Cartesian co-ordinate conversion, and using anything but a final benchmark
problem would be unfair. Accesses/sec. will be used as a Pe performance
measure.

The multiprocessor case

For multi-processors the number of processors x the memory accesses/sec.
roughly gives the total Pe.rate. Pc.rate can be computed more precisely by
using the number of primary memory modules, Mp, and their data-rate as can be
seen in Chapter 00 on the C.mmp computer. For a system where the memory access
time, and the memory rewrite time equal the time for a Pe to operate on a word,
the performance (Strecker, 1970) is roughly:

Pc.speed (in accesses/sec.) = (m/t.access) x (1 - (1 - 1/m)

@ where m= # of Mp modules, and p = # of Pc's

Note that when p = m = large, the performance reaches an assymtope:

= m/te x (1/e)

In the case of multiprogramming systems (e.g., real time, transaction, and
timesharing), the time to switch from job to job is critical. This measure,
process context switching rate is one of the main attributes since most
computer systems operate with some form of multiprogramming.

The memory sizes (in bytes) for both primary and secondary memory gives memory
capability. The memory transfer rates are needed as secondary measures,
especially to compute memory interference when multiple processors are used.
This measure also permits system performance to be computed by subtracting the
secondary memory transfers and external interface transfers. For file systems
which require multiple accesses to secondary memory for single items, the file
access rate capability is needed in order to compute performance. Similarly,
for multiprogrammed systems which use secondary memory to hold programs, the
access rate is needed.

Communications capability with humans, other computers, and other electronic
encoded processes are equally important structure and performance attributes.
Each channel (e.g., a typewriter) has a certain data rate and direction (full

Chapter 1 Page 64
G. Bell last edit 1/31/78 - latest edit 2/1/78

duplex for simultaneous two way communication). Collectively, the data rates
and the number of channels connected to each of the 3 different environments
(people, computers, other electronically encoded processes) signify quite
different styles of computing capability, structure and ultimately use. For
example, having no communications connection to other computers implies a
standalone system. Having only interconnection to mechanical processes via
electronically encoded links implies a real time structure. Similarly only
human intercommunication with multiple terminals denotes a timesharing or
transaction-processing orientation.

Figure PLOT uses a Kiviat graph to display the above six main resource
dimensions of processing, primary and secondary memory capacity, and the three
communication channels in a single 6-d graph, with 3 additional dimensions.
Each dimension is logarithmic over a factor of 1,000,000 with the value 0,
denoting the absence of an attribute (e.g., there is not communication with
external systems beyond human and standard communication). Secondary measures
and unit quantities are denoted by separate numbers by each dimension. Unit
quantities can either be multipliers, x (denoting the measure is for 1 unit
such as a disk) or divisors, / , (denoting the measure is for all the combined
units of the system). A number-sign, #, is equivalent to a multiplier, x,
denoting the graph value is for just one unit. Additional attribute: values
are plotted parallel to or as marks on a given dimensional scale. Occasionally
dimensions are further specified (e.g., audio, video). Arrows denote
directionality of information flow. Note that if the Pe speed is "balanced"
with Mp size according to Amdahl's constant, then the value of the two should
be about the same. (Here Pc is accessing 300,000 bytes/sec. corresponding to
say 100,000 instructions/sec., with Mp of 100,000 bytes). The graph
conventions include subtleties of showing fixed points (i.e., ROM or
hardwired), and averages, range and overhead due to other resources.

The arrangement of the six dimensions allows easy recognition of a structure in
terms of the relative mix of the resource/performance attributes. Figure BPMSR

gives a diagram of a computer system in the same order as the graph's
dimensions.

Figure EXAMPLES shows how the 6-d plot can be used to represent and
differentiate various computing structures in which we're interested. The
first two structures are keyboard i/o, i.e., a single information transducer we

know as the typewriter which has half-duplex i/o at 10 characters (or bytes)
per second. A 10 char./sec. teletype is formed by adding a line interface.

The simple, early fixed function hand-held calculator, e.g., the HP35, which
has a fixed processing/memory structure with about 4 x 10 digits (or 20 bytes
to be more precise, of primary memory and store, limited keyboard input and 10

light LED output at about 10 char/sec. Toe internal fixed program is stored in
about 2,000 ROM bytes--hence there is a single, fixed point; and the
operation-rate of the unit is fixed at about 100 accesses/sec. of the HP35's
powerful data-types. The HP65 programmable calculator is shown next with
various fixed functions being replaced by programs, and Mp and Ms are each 500

bytes. The functions in ROM, though still present are not apparent to the
user, hence are removed.

Chapter 1 Page 65
G. Bell last edit 1/31/78 - latest edit 2/1/78

The second line gives graphs of various terminal structures beginning with a
fixed function operating at 10,000 accesses/sec. (or 100 usec) with about 1,000
bytes of local memory and 2400 bits/sec. or 300 bytes/sec. access to a
computer. The unit can be made programmable at 20,000 accesses/sec. by proving
processing on a 4,000 byte primary memory. Mass storage, here a floppy disk,is also added in the second case--which also serves as a communication link.
Communication to the external world is at 2,400 baud, or 300 bytes/sec. Output
to the screen is at 2,400 bytes/sec. or 19,200 bits/sec. with input at 10
char/sec,

The next two systems are remote job entry stations, the first is fixed function
ard the second programmable. There are two i/o channels, one of 2,400 baud
(i.e., 300 8-bit bytes/sec.) for the card reader and 4,800 baud (or 300
lines/min. = 5 lines/sec. at 120 bytes/line = 600 bytes/sec.) for the line
printer connected via a 4,800 baud full duplex link. The second RJE terminal
also includes a Pe at 50,000 accesses/sec. and an Mp of 16Kbytes. A tape unit
of 50Kbytes/sec. which holds 300 Mbytes.

The next system is a programmable, store and forward system with 16 Kbytes,
with a Pe which has an access rate of 100,000, with a context switching time of
1 millisecond. There are 32 lines of 10 to 150 bytes/sec. The four
communication links to other computers operate at 600 or 1,200 bytes/sec. (or
4,800 or 9,600 baud). The next system is a fixed function, remote full duplex
analog multiplexor with 16 channels operating at 16 x 100 bytes/sec. and
multiplexed into a 1,200 byte/sec. (9,600 baud) line--hence the line limits the
maximum sampling rate.

The next system is a programmable, remote, standalone process control system.
Note the absence of any lines to communicate with other machines. A secondary
memory system of 10 million bytes is used for communication with other
computers. Both gross and net Pe (2,000 accesses/sec.) (2,000 bytes) resources
are given. Net capabilities are after the other resources are managed.
One-hundred transducers are sampled each 10 milliseconds with 3 transducers
connected to humans at a data-rate of 30 bytes/sec.

The last series of systems are, general purpose, multiprogrammed computers.
The first is a batch system with card and line printer. The next is an 11/70
with 100 real time inputs, 60 terminals, and 2 connections to other computers.
The KL10 is a large, multi-user (100) timesharing system. Finally the largest
computer, the CRAY-1 is given, showing the dependence on external computers for
Ms, and terminals.

TSP (Architecture) Parameters

Whereas the hardware structure and operation rates mainly determines
performance, the architecture does have a minor effect as seen in the previous
example. Within a given machine clan (say minis), we believe architecture has
a minor effect on performance provided the data-types are embedded. A simple,
yet effective single metric is the address size. The values for the data-types
dimension is given in order of increasing complexity in Table computer-space.
However, it is difficult to order the dimensions, except by complexity, because

Chapter 1 Page 66
G. Bell last edit 1/31/78 - latest edit 2/1/78

the issue relevant to performance is whether a given problem requires the
embedded data-type.

One can compare architecture relatively precisely (eliminating the effect of
particular hardware implementations) by comparing a count of the number of bits
which are statically required to encode the algorithm (s-measure) and the
number of bits that are dynamically flow between the Pe and (Mpmeasure) Mp. A
third measure gave the activity of the internal register processor (R-measure).

In the CFA study [Barbacci et al, 1977; Wald and Salisbury, 1977] which lead to
the selection of the PDP-11 architecture, benchmarking was used to compare
several architectures.
The benchmarks (see Table 3; from [Barbacci et al, 1977]), oriented to real
time use were each programmed by programmers using assembly language. The
resultant programs were run on a simulator that interpreted the formal ISPS
descriptions of the machines. The ISPS interpreter was instrumented to give
the above measures.

The CFA project also developed a single architectural measure based on a
weighted average of various ISP parameters. The weightings were determined by
the CFA user community and each parameter was evaluated in comparison with
several competitive architectures. The parameters and their weights are given
in Table 1 [from Barbacci et al, 1977].

Table 1 - Absolute Criteria for CFA Evaluation

1. Virtual Memory Support. - The architecture must support a virtual to
physical translation mechanism.

2. Protection. - The architecture must have the capability to add new,
experimental (i.e., not fully debugged) programs that may include 1/0
without endangering reliable operation of existing programs.

3. Floating Point Support. - The architecture must explicitly support one or
more floating point data types with at least one of the formats yielding
more than 10 decimal digits of significance in the mantissa.

4, Interrupts and Traps. - It must be possible to write a trap handler that is
capable of executing a procedure to respond to any trap condition and then
resume operation of the program. The architecture must be defined such
that it is capable of resuming execution following any interrupt.

5. Subsetability. - At least the following components of an architecture must
be able to be factored out of the full architecture:
Virtual-to-Physical Address Translation Mechanism

Floating Point Instructions and Registers (if separate from general purpose
registers)

Chapter 1

G. Bell last edit 1/31/78
Page 67latest edit 2/1/78

9.

Decimal Instructions Set (if present in full architecture)
Protection Mechanism

6. Multiprocessor Support. - The architecture must allow for multiprocessor
configurations. Specifically, it must support some form of "test-and- set"
instruction to allow the implementation of synchronization functions such
as P and V.

T. Controllability of 1/0. - A processor must be able to exercise control over
any I/O Processor and/or I/0 Controller.

8. Extendability. - The architecture must have some method for addinginstructions to the architecture consistent with existing formats. There
must be at least one undefined code point in the existing opcode space of
the instruction formats.

Read Only Code. - The architecture must allow programs to be kept in a
read-only section of primary memory.

Quantitative Criteria for CFA Evaluation

1.

2.

Weight

Virtual Address Space

(a) V.,: The size of the virtual address space in bits. 4,3
(b) V5: Number of addressable units in the virtual address space. 5.3

Physical Address Space

(a) P,: The size of physical address space in bits. 6.1

address Space.

3. Fraction of Instruction Space Unassigned 6.0

4, Size of Central Processor State

(a) C2: The number of bits in the processor state of the full 4.9

subset of the architecture (i.e., without Floating Point,
Decimal, Protection, or Address Translation Registers.

(c) C1: The number of bits that must be transferred between 6.0

5.1(b) The number of addressable units in the physical

3.7(b) 2: The number of bits in the processor state of the minimum

the processor and primary memory to first save the processor
state of the full architecture upon interruption and then
restore the processor state prior to resumption.

(d) cate The measure analogous to 1 for the minimum subset of 45

Chapter 1 Page 68
G. Bell last edit 1/31/78 - latest edit 2/1/78

the architecture.

5. Virtualizability
K: is unity if the architecture is virtualizable as defined in 5.6
[Popek and Goldberg, 1974] otherwise K is zero.

6. Usage Base

(a) B : Number of computers delivered as of the latest date for 3.1
which data exists prior to 1 June 1976.

1

the latest date for which data exists prior to 1 June 1976.
2.5(b) Total dollar value of the installed computer base as of

7. r/o Initiation
I: The minimum number of bits which must be transferred between 12.4
main memory and any processor (central, or I/O) in order to
output one 8-bit to a standard peripheral device.

8. Direct Instruction Addressability
D: The maximum number of bits of primary memory which one 10.2
instruction can directly address given a single base register
which may be used but not modified.

9. Maximum Interrupt Latency

Let L be the maximum number of bits which may need to be 9.2
transferred between memory and any processor (CP, roc, etc.)
between the time an interrupt is requested and the time that the
computer starts processing that interrupt (given that interrupts
are enabled).

10. Subroutine Linkage
6.3: The number of bits which must be transferred between the

processor and memory to save the user state, transfer to the1

called routine, restore the user state, and return to the
calling routine, for the full architecture. No parameters
are passed.

J.: The analogous measure to S1 above for the minimum architecture 4.5
(6.g., without Floating Point registers).

Actual (i.e. Comnound PMS/ISP) Performance Measure

In order to measure the performance of a specific computer (e.g., an 11/55), it
is necessary to know the ISP, the hardware performance and the frequency of use
for the various instructions. That is the execution time, T, is the dot

Chapter 1 Page 69G. Beil last edit 1/31/78 - latest edit 2/1/78

product of the fractional utilization of each instruction Ui times the Ti time
to execute each instruction, Ti.
There are three ways to estimate the instruction utilization, U and hence
obtain T; each providing increasingly better answers. The first, simplydefines either a typical or average instruction. The second uses "standard"
benchmarks to characterize a machine's performance precisely. In this way
machines can be compared and there is an absolute measure. Finally, since the
actual use has not been characterized in terms of the standard benchmark (and
may even not be easily characterized in terms of it) a specific test (i.e.,
unique benchmark) may be necessary. This later characterization is quite
possibly needed for real time and transaction prrocessing where computerSelection and installation is predicated on exactly doing the job.
Typical instructions
The simplest, single parameter of performance is the instruction time for some
simple operation (e.g., add). These were used in the first few generations
especially since high level languages were less used. Such a metric is an
approximation to the average instruction time and assumes all machines have
about the same ISP and hence there is little difference among instructions, or
that a specific data-type will be used more heavily than another, or that a
typical add time will be given (e.g., the operand is in a random location in
primary memory call versus being cached or in a fast register).
Although it is possible to take the average instruction time by executing one
of every possible instructions, since the instruction use depends so much on
the data they interpret, this average is relatively meaningless. A better
measure is to keep statistics about the use of all programs and to give the
average instruction time based on use on all programs. Again, such a measure
while useful for comparing two machines implementations of models of the same
architecture, is also relatively useless, when it comes to particular specific
useage.

Many years ago, there were attempts to make better characterizations by
weighting the instructions use (i.e., forming a typical U) as to what they did,
(e.g., floating point versus indexing and character handling) to give a better
performance measure. We found for such instructions mixes that begain to
better approximate performance. These mixes, from Bell and Newell (1971) are
given in Table Mix.

Table Mix Instruction-mix weights for evaluating computer power

Arbuckle[1966] Givson' Knight(scientific) Knight(commercial)

Fixed +/- 6 10(25)* 25 (45)*
3 6 1

Divide 1 2
Floating +/- 9.5 10

5.6Floating X
Floating divide 2.0

@

Chapter 1 Page 70
G. Bell last edit 1/31/78 - latest edit 2/1/78

Load/store 28.5 25 (move)
Indexing 22.5
Conditional 13.2 20
branch

Compare 24
Branch on eee 10
character

Edit
I/O initiate eee 7
Other 18.7 T2 74

'published reference unknown.

2extra weight for either indirect addressing or index registers.
The best known Gibson mix is still used even today. It has a decidedly
commercial flavor, and quite possibly reflects the proportion of machines
executing commercial mixes with character operations as opposed to scientific,
switching and control where proportional more integer and floating-point data
types are used. Such mixes are still better approximations than a single
instruction average, because use enters in. We must warn that if the data-type
Operation is not present in the machine, the programmed subroutine time must be
given -- typically a factor of 10-20 greater than for built-in operations.
Standard Benchmarks

The best estimate of real use comes from carefully designed "standard"
benchmarks, Several organizations, particularly those who purchase or use many
machines extensively have one or more programs that they believe characterize
their own work load. Whether a standard benchmark can be of value in
characterizing performance depends on the degree it is typical of the actual
computers use. A further advantage of benchmarks is that they are the language
that the computer is to be used, and hence, reflect the application and also
characterize the language machine architecture. To illustrate the variability
in the scientific FORTRAN benchmark metrics, performance of a number of
machines, VAX-11/780 with floating point accelerator option, is compared with
the 11/70 and with the 2050 Model B for 17 benchmarks. Two scientific
benchmarks of the National Physical Laboratory in the UK [Witchman??] are
singled out as being the most useful because of the extensive effort (e.g.,
frequencies of the trigonometric functions, subroutine calls, and I/0 were
considered) and considerations into designing them as typical. Although these
characterize scientific mix with FORTRAN, they can be used to compare various
languages.

There are similar benchmarks for commercial processing which generally use the
COBOL language.

Exact use characterization
In the event a machine has to be fully characterized before installation, there
is no alternative to running the exact problem which will be run on the final

Chapter 1 Page 71
G. Bell last edit 1/31/78 - latest edit 2/1/78

system. This is the most expensive alternative to characterize performance and
should be avoided because of the dynamic nature of use. Showing that an
application will yield a given performance on a particular machine is a weak
guarantee about performance if any part of the problem changes.

a

Chapter 1 Page 72
G. Bell last edit 1/31/78 - latest edit 2/1/78

Popek, G. J. and Goldberg R. P., Formal Requirements for Virtualizable Third
Generation Architectures, Communications of the ACM, vol. 17, no. 7, July 1974,
412-421,

Wald, B. and Salisbury, A., Editors, "The Computer Family Architecture Project:
Service Perspectives and Overview", Special Issue of Computer, vol. 10, no. 10,
Oct. 1977, 9-43.

Barbacci, M. R., Burr, W. E., Fuller, S. H. and Siewiorek, W. E., Editors
Evaluation of Alternative Computer Architectures, Dept. of Computer Science,
Carnegie-mellon University, Pittsburgh, Pa. Feb. 1977.

Knight, K. E. Changes in Computer Performance Datamation, vol. 12, no. 9, pp.
40-54, Sept. 1966.

Arbuckle, R. A., Computer Analysis and Throughput Evaluation Computers and
Automation p. 13, Jan 1966.

Wichtman, ?

Turn, Rein, Computers in the 1980s, Columbia University Press, N.Y., 1974.

Sharpe, W. F., The Economics of Computers, Columbia University press, N.Y.,
1969,

Phister, M. 1976

Asimow, Morris, Introduction to Design, Prentice Hall, 1964.

Simon, Herbert A., The Scineces of the Artificial M.1.T. Press, 1969.

