
EEFREEREEF
EEEEEEEEEE
FE
EE
EE
EE
EEEEFREE
EEFEEREE
EF
EE
EE
EF
REEEEEEFEE
EREEEEFEEE

GGGGGGGG
GGGGGGGG

GG
GG
GG
GG
GG
GG
GG GGGGGG
GG GGGGGG
GG GG
GG GG

GGGGGG
GGGGGG

START* User ALLEN

Files: PS: <EMACS>EMACS,GUIDNE,131 Createds
17=Maye79 12:53:05

QUEUE Switches: /COPIES3: 10
Printed:

MM MM
MM MM
MMMM MMMM
MMMM MMMM
MM MM MM
MM MM MM
MM NM
MM MM
MM MM
MM MM
MM MM
MM MM
MM MM
MM MM

uu UU
uu UU
UU UU
UU UU
UU UU
UU UU
UU UU
UU UU
uu UU
UU UU
uu UU
uu UU
VUUUUUULUU
UUUUUUUUUU

Job

AARARA
AAAAAA

AA
AA
AA
AA
AA
AA
AAAAAAAAAA
AAAAAAAAAA
AA
AA
AA
AA

IIIIII
IIIIUIItl
IJIl
ItII
II
Il
II
IIIITIII

EMACS Seq,

AA
AA
AA
AA
BA
AA

AA
AA
AA
AA

ecececec
eccecccc

cc
cc
cc
ce
cc
ce
ce
cc
cc
cc
ececccce
ececcccc

DDDDDDDD
DDDDDDDD
DD DD
DD DD
DD DD
DD DD
DD PD
DD DD
DD DD
DD DD
DD DD
DD DD
DDDDDDDD
DDDDDDDD

SSSSSSSS
SSSSSSSS

SS
88
Ss
88
SSSSSS
SSSSSS

S8
ss
SS
8S

SSSSSSSS
SSSSSSSS

FEEEEEEEEE
EEEEEEEEEE
EE
EE
EE
EE
EEEEEEEE

EE
EE
EE
EE
EEEEEEEEEE
EEEEFEEEEE

4593 Date 17=May-79 12:30:38
Monitor 1031 Great Pumpkin, TOPS#20 Monitor *START*

QeJane79 15219350

/SPACING!0 /LIMIT82380 /FORMS3NARROW

@

d
e
e

@

@

e
e
@

e
e

7

e
e
@

e
e
e

EMACS REFERENCE GUIDF

CONTENTS

INTRODUCTION # #

It What You See on the Screen « « e

III How to Interpret the Information in the Mode

IV Basic Editing CommandS «

V Giving Numeric Arguments to EMACS Commands

VI The Mark and the Region , e . e

VII Deletion and Killing @ 8

VIII UneKilling

TX MM Commands e 8

X Arcane Information about MM Commands .

XI EMACS Documentation CommandS .

XII What To Do When EMACS Is Hung

XIII EMACS's Major Modes 8 8

XIV EMACS's Minor Modes e . e e e

XV Named Variables in EMACS e e e

Page ii

8 1

2

Line « « e 3

8 8 8 6

7 8 8 8

» e @ 10

@ 12

4

14

16

18

20

22

23

24

25

Controlling the EMACS Display ,

XVII Two Window Mode

Visiting Files

What to do if you make some changes to
regret them

Local Variables in Files;

e

Cleaning a File Directory
XXIV DIRED the Directory Editor Subsystem

XXV Miscellaneous File Operations

XXVI Searching

Replacement Commands

Indentation Commands for Code

XXXI Commands for Manipulating Comments

EMACS REFERENCE GUIDE

Buffers: How to Switch between Several Bodies of Text

XXIT Auto Save Mode Protection Against Crashes

XXIX Automatic Indication Of How Parentheses Match

Moving Over and Killing Lists and Seexpressions

file and then

Page iii

27XVI

29

31XVITI

XIX
33

34XX

37

39

41

42

44

46

48

50

54

52

54

di
x!XXI

XXIII

XXVIT

XXVIII

XXX

EMACS REFERENCE GUIDE

XXXII ® e e ®LISP Grinding

XXXIII
Commands for Editing Assembly Language

XXXIV e e
Commands Good for English Text

XXXV Sentence and Paragraph Commands

XXXVI e e ® ®

Indentation Commands for Text

XXXVII
Text Filling

XXXVITI e

Case Conversion Commands

XXXIX e e

Commands That Apply to Pages

XL Narrowing e r e

XLI Libraries of EMACS CommandS. « e »

XLII The Minibuffer # 8

XLIII 8 «

Keyboard Macros,

e e ®

Programs

® ®

® e

® ®

e ®

9 ®

e ®

e

e ® ®

® ®

®

Page iy

56

58

e 59

61

63

65

67

. 68

70

71

e 72

75

I INTRODUCTION

This document was prepared from the internal documentation
contained within the INFO subpackage of EMACS, All of this informationis available on-line within EMACS, It is assumed that vou have already
used the EMACS selfetutorial by giving the TEACH*EMACS command, If you
have not done so, it is recommended that you do,

@:

1

EMACS REFERENCE GUIDE Page 2

II What You See on the Screen

EMACS divides the screen into several areas, which contain
different sorts of information, The biqgest area, of course, is the one
in which you usually see the text you are editing, The terminal's
blinker usually appears in the middle of the text, showing the position
of "point", the location at which requested changes will be made, While
the cursor anpears to point AT a character, point should be thought of
as BETWEEN two characters; it points BEFORE the character that the
blinker appears on top of, Terminals have only one blinker, and when
type out is in progress it must appear where the typing is being done,
At those times, unfortunately, there is no way to tell where point is
except by memory or dead reckoning,

The top lines of the screen are usually available for text but are
sometimes preepreempted by an "error message", which says that some
command you gave was illegal or used improperly, or by printed output
produced by a command (such as, the description of a command printed by

The error message or printed output will go away and the text
behind it will be revealed again as soon as you type a command, If you
just wish to make the error message go away, you can type a space,

A few lines at the bottom of the screen compose what is called "the
echo area", It is the place where INFO types out the commands that you
give it, EMACS does not normally echo the commands it is given, but if
you pause for more than a second in the middle of a multi=character
command then the whole command (including what you have typed so far)
will be echoed, This behavior is designed to give confident users
optimum response, while giving nervous users information on what they
are doing,

EMACS also uses the echo area for reading and displaying the
arguments for some commands, such as searches, and for printing certain
information in response to certain commands such as Mes

The line above the echo area is known as the "More line" or the

(somethina)", Its purpose is to tell the user at all times what ts

important, and if you are surprised by how EMACS reacts to your commands
you should look there for enlightenment,

4

"Mode line", It is the line that usually starts with "EMACS

primarily, to state any reasons why commands
will not be interpreted in the standard way. The Mode line is veryon in the EMACS

@ y

EMACS REFERENCE GULDE Paqe 3

III How to Interpret the Information in the Mode Line

The line above the echo area is known as the "More line" or the
"Mode line", It is the line that usually starts with "EMACS
(something)", Its purpose is to tell the user at all times what is
going on in the EMACS = primarily, to state any reasons why commandswill not be interpreted in the standard way. The Mode line is very
important, and if you are surprised by how EMACS reacts to your commands
you should look there for enlightenment,

The normal situation is that characters typed in will be
interpreted as EMACS commands, when this {is so, you are at "top level",
and the Mode line will look like

EMACS type (major minor) bfr: file »=pos=«

"type" will usually not really be there, When it is there, it
indicates that the EMACS job you are using 1s not an ordinary one, in
that it is acting as the servant of some other job, A type of "LEDIT"
indicates an EMACS serving one or more LISPs, while a type of "MAILT"
indicates an EMACS serving as a : MAIL "edit escape",

"major" will always be the name of the "major mode" you are in, At
any time, FMACS is in one and only one of its possible major modes, The
major modes available include Text Mode, Fundamental Mode (which EMACS
starts out in), LISP Mode, and others, Sometimes the name of the major
mode will be followed immediately with another name inside squaree
brackets C'L]"), This name 1s called the "submode", The submode
indicates that you are "inside" of a command which causes vour editing
commands to be changed temporarily, but does not change WHAT text you
are editing, You can get out of any submode with CeC C#C,

is a list of some of the minor modes which are turned on at
the moment, "Fill" means that Auto Fill mode is on, "Save" means that
Autoesaving is on, "Save(off)" means that Autoesaving is on in general
but momentarily turned off (it was overridden the last time a file was
selected), "Atom" means that Atom Word mode {is on,

"btr" {s the name of the currently selected buffer = see the
section "Buffers", Normally, this will be the buffer "Main", which is
the one buffer that exists when EMACS is started, Note that when we
speak of "the buffer", we mean the one that is selected = but unless you
explicitly ask to make new ones the initial buffer "Main" will be the
only butfer there 1s,

EMACS REFERENCE GUIDE Page 4

"file" 4s the name of the file that you are editing, It is thelast file that was selected in the buffer you are in, If "(RO)" Cfor"read only") appears after the filename, it means that changes you makewill not be stored permanently on disk unless you say so explicitly(with a C#S or CeX Cew command,

"Pos" tells you whether there is additional text above the top ofthe screen, or below the bottom, If your file is small and it is all onthe screen, e=pos== is omitted, Otherwise, it {is Paw e=AOTe=, or
where nn is the percentage of the file above the top of thescreen, Sometimes you will see ==MOREe= instead, This implies that youcan see more of what was being displayed by typing a space, Inside some

commands, many of which have "List" or "View" in their names,typing anything other than a space when weMOREwe is visible will "flusn®
the additional display. This is what to do if you don't want to see therest, "FLUSHED" will be printed after the -"MORE==, and the character
Just be ignored),
you typed will be obeyed (unless it was a <Delete>, A <Delete> will

So much for what the Mode line says at top level, When the mode
Line doesn't start with "EMACS (", and doesn't look anything like the
breakdown given above, then EMACS is not at top level, and your typingwill not be understood in the usual way, You must not naively assume
that what will accomplish a certain thing at top level will still work,

For example, many commands read in arguments, While the arqument
to a command is being read, typed in characters will be interpreted as
part of the argument instead of as commands, At such times, the mode
line may contain text deseribing the command that {s reading the
arguments, If you invoked the command deliberately, you should nave had
some idea of what to do next. If you don't Know what to do, you can
type "2", which MOST commands will respond to with a description of what
alternatives are available, Alternatively, you can "get out" of most
commands and back to top level by typing Control-G,. There are a few
times when C=G won't work = they are when the Mode line is enclosed in
parentheses or in brackets, These special cases are now described.

: :

means that some command, invoked form EMACS, has in turn invoked EMACS
(recursively), because as part of its processing it wants you to edit
gome text, That text mignt be unrelated to the file you are editing
(which will be obvious from its appearance) and of special relevance to
the particular command? then the mode line serves to inform you that you
should edit the text so as to control the command as desired, In some
commands, the text being edited might be your file itself. In such
cases the mode line is to remind you that, although things otherwise
look like top level, you are really still inside the command; it hasn't

» *RI", Itwhen the Mode line says something Like "[command name

finished" its work yet, and you snould eventually return to it. In any
case, if the mode line says »°R] You can get out of the inner
EMACE invocation with the command Control*<ESC> or (CHC It

EMACS REFERENCE GUIDE Page 5

will get you back either into the command, or out of the command and
back to top level, depending on the particular command,

when the text in the Mode line is surrounded by parentheses, it
means that you are inside a "Minibuffer", A minibuffer is a special
case of the recursive EMACS it means that some command is requesting
input, However, it gives extra information, because all minibuffers are
handled alike in certain ways, You can get out of a minibuffer with a
ControleG if it is empty, or with two Control=G's if it is not (the
first ControleG clears out the text in it, and the second gets out).
Get in the habit of typing C#G when EMACS doesn't seem to be reacting
normally or when you are not sure what you have typed,

TH

EMACS REFERENCE GUIDE Page 6

Iv Basic Editing Commands

To insert printing characters into the text you are editing, justtype them, When EMACS is in its normal state, they will be stuck into
the buffer at the cursor, which will move forward, Any characters after
the cursor will move forward too, If the cursor is in between a FOO and
a BAR, typing XX will aive you FOOXXBAR,

Tne most important way to make a correction is <Delete>, <Delete>
deletes the character BEFORE the cursor (not the one that the cursor is
on top of or under; that is the character AFTER the cursor), The cursor
and all characters after it move backwards, You can rub out a line
boundary by typing <delete> when the cursor is at the front of a line,
Tf you have just inserted a character, <Delete> will remove that very
character, to undo the insertion,

To end aline and start typing anew one, tust type "Return"
(qenerally Known as "CR"), You can also tyne Return to break an
existing line into two, A <Delete> after a Return will undo it,

If you add too many characters to one line, without breaking it
with a Return, the line will grow to occupy two (Cor more) lines on the
screen, with a " " at the extreme right margin of all but the last of
them, The " " says that the following screen line is not really a
distinct line in the file, but just the "continuation" of a line too
long to fit the screen,

To do more than this, you have to Know how to move the cursor
around, Here are some of the characters provided for doing that,

CHA moves to the beginning of the line,
CHE moves to the end of the line,

moves forward over one character, If you do CeF at the end of
a line, vou will see that a line»boundary is really made up of
two characters, They are a CR and a LF, Even though it takes
only one command to insert or delete a line boundary, it is
still two characters being inserted or deleted,

CeN on the last line of the buffer will create a new line,
moves up one line, vertically,

C=T exchanges two characters (the ones before and after point).
Mad moves to the top of your text,
M=> moves to the end of your text,

o2.

:

O
H

C#B moves backward over one character,
Cen moves down one line, vertically, If you start in the middle

of one line, you end in the middle of the next.

Cap
CeL clears the screen and reprints everything,

wy a
:

EMACS REFERENCE GUIDE Page 7

With these commands, you can do anything, The other commands just
make things easier, But to keep any text permanently you must put it in
a file, You do that by choosing a filename, such as FOO, and typing Cwx
CeE FOO<cr>, This "visits" the fille FON on your working directory) so
that its contents appear on the screen for editing, You can make
changes, and then type C#X CeS to make the permanent and actually change
the file FOO, Until then, the changes were only inside your EMACS, and
the file FOO was not really changed, If the file FOO doesn't exist, and
you want to create it, that's no problems; just visit it as if it did
exist, When you save your text with Cex CS the file will be created,

One thing you should know is that it is much more efficient to
insert text at the end of a line than in the middle, So if you want to
stick a new line before an existing one, it {s better to make a blank
line there first and then type the text into it, rather than just go to
the pegqinning, insert the text, and then insert a line boundary, It
will also be clearer what is going on while you are in the middle, To
make a blank line, you could type Return and then two C#B's, There is
an abbreviation: C*0, So instead of typing FON Return, type C#O FOO,tf you want to insert many lines, you should type many at the
beginning Cor you can give C=O an "argument" to tell it how many blank
lines to make, You can then insert the lines of text, and you will
notice that Return behaves strangely: it "uses up" the blank lines
instead of pushing tnem down, This is so that EMACS can save itself the
trouble of moving the noneblank lines that follow them, If you don't
use up all the blank lines, you can type C#X C#0 (*R Delete Blank Lines)
to get rid of all but one of them (or all of them, if vou do it on the
last nonblank line),

M
O
O
RE

BUSIN
ESS

x

PRIN
TED

IN
U.S.A.

EMACS REFERENCE GUIDE Page 8

V Giving Numeric Arquments to EMACS Commands

Any EMACS *R Command can be given a numeric arqument, Some
commands interpret the argument as a repetition count, For example,
gQving an arqument of ten to the CeF command (move forward one
character) will move forward ten characters, With the CHF command, no
argument is equivalent to an argument of one,

Some commands care only about whether there is an argument, and not
about its value? for example, the command with no arguments fills
text, but with an argument justifies the text as well,

Some commands use the value of the argument, but do something
peculiar when there is no argument, For example, the CeK command with
an argument <n> will kill <n> lines and the line separators that follow
them, But CK with no argument is special; it kills the text up to the
next line separator, or, if there is none, the separator,

On terminals with Meta keys, entering any argument is easy, Simply
type the dicits of the argument, with the Control or Meta key held down
Cor both), The argument must precede the command it is intended for,
To give a neaative arqument, type a "#", again with the Control or Meta
key held down, before the digits,

On other terminals, an araument can be entered by typing CeU or
<ESC> followed by an optional minus sign, and the digits, The next none
digit 1s assumed to be the command for which the argument was intended,
Note that while CeU will work the same way on all terminals, <ESC> will
not: its function on noneMeta terminals is produced by redefining all
the Metaediaits to gobble all following digits, and that redefinition
would be undesirable on Meta terminals where M=3 1 means "insert three
i's",

(but not <ESC>!) followed by a nonedigit other than has
the special meaning of "multiply by four", Such a cel multiplies the
argument for the next command by four, Two such CeU's will multiply it
CeU Cell C#F would move forward sixteen characters, It is a good way to
move forward "fast", since it moves about 1/4 of Aa line on most
terminals, Other useful combinations are C#U CeN, C#U C=U CoN (move

lines), and CeU CeK (kill four lines),
with commands like MeG that care only whether there is any

argument, CU by itself serves aS a flag, Since the value of the

v'S
N

N
IG
aL
N
Id
d

M
O
O
RE

BUSIN
ESS

FO
RM

S,IN
C..

cel

by sixteen, Thus, 5 CeU CeF would move forward 5 * 4 characters,

"a lot" of blankdown a aood fraction of a screen), C#U C#U CeO (make

EMACS REFERENCE GUIDE Page 9

argument is ignored, a value of four is as good as anything, Because ofthe convenience of Cell, Some commands check for the specific argumentvalues 4 and 16 that result from one or two C=U's, Thus, C#Space sets a
mark 1f given no argument, but with an arqument of 4 it pops the markinto point, while with an argument of 16 it pops and discards the mark,

Users of non=Meta keyboards may prefer to operate in "Autoarg"
mode, in which digits preceding an ordinary inserting character are
themselves inserted, but digits preceding an <ESC> or control characterserve as an arqument to it and are not inserted, To turn on this mode,use MM Alter Options to set the variable <Autoara Mode nonzero,Autoaraument diqits will echo at the bottom of the screen; the first
nondigit will cause them to be inserted or will use them as an argument,
To insert some digits and nothing else, you must follow them with a
space and then rub out the space, C#G will cancel the digits, while
<Delete> will insert them all and then rub out the last,

M
O
O
RE

BUSIN
ESS

FO
RM

S, IN
C..HO

Z

EMACS REFERENCE GUIDE Page 10

VI The Mark and the Reqion
Cea Set the mark where point is,
CeSpace The same,
C=X C#X Interchange mark and point,
Mea Set mark after end of next word,
C=Mm@ Set mark after end of next seexpression,

Set mark at beginning of buffer,
C=> Set mark at end of buffer,
Mey Put region around current paragraph,
C=MmH Put region around current PEFUN,
C=X C#P Put region around current paae,

H Put region around entire buffer,
In aeneral, a command which processes an arbitrary part of the

buffer must be able to be told where to start and where to stop, In
EMACS, such commands start at the pointer and end at a place called the
"Mark", This range of text is called "the Region", For example, if you
wish to convert part of the buffer to all upper-case with the C#X CeU
command, you could first set go to the beginning of the text to be
capitalized, put the mark there, move to the end, and then issue the Cex
C=U command, Or, you could set the mark at the end of the text, move to
the beginning, and then issue the CX CeU, Cex CeU's full name is °R
Uopercase Region, signifying that the Region, or everything between
point and the mark, is capitalized,

The most common way to set the mark is with the C#@ command or the
CeSpace command, They set the mark where the pointer is, Tnen you can
move the pointer away, leaving the mark behind, It isn't actually
possible to type C#Space on non#Meta keyboards, Yet the command works
anyway! This 1s because trying to type a Control=Space on a noneMeta
Keyboard will actually send a Ce@, which is an equivalent command, A
few keyboards will just send a space, If you have one of them, you
suffer, or customize your EMACS,

If you want to reassure yourself that the mark is where you think
it is, vou can use the command CeX CwX (*R Exchange Point and Mark)
which puts the mark where point was and point where the Mark was, Thus,
the previous location of the mark is shown, but the Region specified is
not chanaed, Cex is also useful when you are satisfied with the
location of point but want to move the other end of the Region; just do
Cex CeX to put point at that end and then you can adjust it, The end of
the reaion which is at point can be moved, while the end which is at the
mark stays fixed,

e

Ce<

re
SUSIN

ESS
FO

RM
S,IN

C..HO

EMACS REFERENCE GUIDE Page 11

There are commands for placing the mark on the other side of acertain object such as a word or a list, without actually having to gothere, puts the mark at the end of the next word, while putsit at the end of the next Seexpression, C=> puts the mark at the end of
the buffer, while C#< puts it at the beginning, These characters allow
you to save a little typing, sometimes,

Other commands set both point and mark, to delimit an object in thebuffer, MeH puts point at the beginning of the paragraph it was inside
of (Cor before), and puts the mark at the end, does all that's
necessary if you wish to indent, caseconvert, or kill a whole
paradraph, Cake similarly puts point before and the mark after thecurrent or next topelevel Seexpression (typically, a DEFUN), CeX Cwp
puts point before the current page (or the next or previous, according
to the argument), and mark at the end, The mark goes after the
terminating page delimiter (to include it), while point qoes after the
preceding page delimiter (to exclude it), Finally, cox H delimits the
entire buffer by putting point at the beginning and the mark at the end,

Aside from delimiting the region, the mark is also useful for
remembering @ spot that you may want to aoback to, To make this
feature more useful, 16 previous locations of the mark are remembered,
Most commands that set the mark push the old mark onto this stack, Torevisit a marked location, use the or C#Space command with an
argument, as in Cell) Ce@, This puts point where the mark was, like C#X
C-X, but whereas C#X CeX puts the mark where the point was, C#U C#@ pops
the previous mark off the stack, Thus, successive Cel Cea's will
revisit previous marks, The stack is actually cyclic, so that enough Ce
U Cea's will return to the starting Point,

Some commands whose primary purpose is to move point a great
distance take advantage of the stack of marks to give you a way to undo
the command, The best example is Me<, which moves to the beainning of
tne buffer, It sets the mark first, so that you can use Cel Cra later
to ao back to where you were, Searches sometimes set the mark = it
depends on how far they move, Because of this uncertainty, searches
type out "" df they set the mark, The normal situation is that searches
leave the mark behind if they move at least 500 characters, but the user
can change that value since it is kept in the variable Auto Push Point
Option, By setting it to 0, the user can make all searches set the
mark. By setting it to a very large number such as ten million, he can
prevent all searches from setting the mark,

EMACS REFERENCE GUIDE Page 12

VII peletion and Killing
c=D Delete next character,
<Delete> Delete previous character,Kill rest of line or one or more lines,Kill region (ie, from point to mark),

EMACS has several commands that erase variously sized blocks of
text from the buffer, Most of them save the erased text so that it can
be restored if the user changes his mind, or moved or copied to other
oarts of the file, These commands are Known as "Kill" commands, The
rest of the commands that erase text do not save it; they are known as
"Delete" commands, The commands which Delete instead of Killing are the
single-character delete commands CD and <Delete>, and those commands
that delete only spaces or CRLFS, Commands that can destroy significant
amounts of nontrivial data generally kill, The commands' names and
individual descriptions use the words "Kill" and "Delete" to say which
they do,

:

:

The simplest Kill command is the C#K command (*R Kill Line), If
given at the beginning of a line, it kills all the text on the line,
leaving it blank, If given on a blank line, the blank line disappears,
As a consequence, if you qo to the front of a noneblank line and type
two CeK's the line disappears completely,

line, unless it is at the end of a line, in which case the CRLF

next line into the current one,

More generally, C#K kills from the pointer up to the end of the

separating the line from the following one is killed, thus merging the

CeK with an argument of zero kills all the text before the pointer
on the current line,

If CeK is given a positive argument, it kills that many lines, and
the CRLFs that end them (however, text on the current line before the
pointer is spared), With a negative argument, "5 for example, all text
before the pointer on the current line, and all of the five preceding
lines, are Killed,

The most basic Delete commands are C=D and <Delete>, C#D deletes
the character after the cursor = the one the cursor is "on top of" or
"underneath", The cursor doesn't move, <Delete> deletes the character
before the cursor, and moves". the cursor pack over it, If you are
inserting text and notice a mistake in one of the last few characters,
just <Delete> back past it and type the text over again from that point,

=
7

EMACS REFERENCE GUIDE Page 13

A Kill command which is very general is CeW (*R Kill Reqion), whichKills everything between point and the mark, With this command, you canKill any contiguous characters, if you set the mark at one end of them
and goto the other end, first, A command *R Delete Reqion ysed to
exist, but it was too dangerous,

oc
Z

@ 5

Z

z

?

EMACS REFERENCE GUIDE Page 14

VIII UneKilling
Get back (re#insert) last killed text,

May Replace reeinserted killed text with the
previously killed text,

Mew Save reqion as last killed text without killing,
Append next kill to last bateh of killed text,

Killed text is pushed onto a list that remembers the last 8 blocksof text that were killed, The command Cry (*R Unekill) inserts into thebuffer the most recent block of text in the list, C#Y leaves the cursor
at the end of the text that it unekills, and puts the mark before it,
Thus, If you change your mind again, a single Cew will kill what the ceygot,

Tf you wish to copy a block of text, you might want to use MeW,
which copies the reafon inte the killed text list without removing it
from the buffer, This is approximately equivalent to followed by Ce
Y, but MeW will not mark the file the text comes from as "changed",This may be convenient when copying text into another file,

Normally, each kill command pushes a new block onto the killed textlist, However, when two or more successive kill commands are given, all
the text they kill is combined into one block of text on the list
combined in the same order that they were in before they were killed,
Thus, a single CeY command will undo all of the killing (Thus we join TV
in leading people to kill thoughtlessly), If a kill command is
separated from the last kill command by other commands, it will start a
new block on the list unless you tell it not to by saying (°R
Append Next Kill) in front of it, Tne CeMeW tells the following
command, if it is a kill command, to append the text it kills to the
last killed text, instead of pushing it separately,

If you wish to recover text that was killed some time ago (was not
the most recent victim), you need the MetaeyY command. The Mey command
snould be used only after a C= command or another MY, It "replaces"
the text resurrected by the previous command, which is the most recent
block of killed text, with the previous block of killed text. Thus, a
C#Y and a MY would restore the next to the last block of killed text,
The effect of the May is permanent in that CeY's following the MaY will
get the same text the May got, The MeY moves the most recent corpse to
the end of the list, where it will be the first to be foraqotten if more
Killing occurs, so that the previous corpse comes to the front of the
list. If you attempt to use MeY when the reqion is not identical to the
most recent string of killed text, it will refuse to operate, since it
would otherwise destroy the contents of the region unrecoverably.

EMACS REFERENCE GUIDE Page i5

MetaeY is also useful for recovering from certain commands that can
alter large portions of the buffer, such as MeG (*R Fill Region) and Cex
C=U (*R Uppercase Region), Such commands save the region on the killlist before acting. After the command, do Mew followed by MeY to
replace the altered text with the previous text, Can you figure out why
that works?

The procedure for finding text killed some time ago is simple: Just
do a If you see the text you want, you are done. Otherwise, do a
MY, If that doesn't bring you what you are looking for, keep doing Me
Y's until you find it, If after a while this starts to repeat, you have
seen the whole killering and the text you want is no longer in it, In
this case, you have lost; at any point you can type a CW to get rid of
the text that you don't want,

If you do "too many" May's and go past the last remembered block
of killed text (they aren't kept forever), you will get back to the most
recent one again, Thus, if you accidentally hit one MY too many, you
could recover by going all the way around, But an easier way is to do
MwY with an argument of e1, That moves backwards, to fresher corpses,
One MeY with -1 as argument undoes one MY with no argument (equivalent
to +1),

:
:

T you Know how many MeY's it would take to find the text you want,
then there is an easier alternative, with an argument greater than
one restores the text the specified number of entries down on the list,
Thus, C=U 2 Cay is gets the next to the last block of killed text, It
differs from Cay MY in that C#U 2 CeY does not move the blocks on the
list, QQ

:

af

EMACS REFERENCE GUIDE Page 16

IX MM Commands

while the most often useful EMACS commands are accessible via one
Or two characters, there are many commands for which the effort of
remembering a cryptic name would not be worth while, Such commands have
long descriptive names instead, and are accessed in a special way, They
are known as "MM Commands", as opposed to the one or two character
commands which are called "*R Commands" (unfortunately, only context can
determine which of those the word "command" means), One example of an
MM command is MM List Commands, which types out a list giving the full
names of all the MM commands, together with brief descriptions of what
they do,

The easiest way to invoke an MM command is to aive the command
MetawX or <ESC> X, This command should be followed by the name of the
MM command to be invoked, terminated by a Return, For example, the
command List Commands would be specified by Meta#X List Commands Return,

You can abbreviate the name of the command, @s long as the
abbreviation is unambiquous, If the name you specify is ambiquous or
impossible, you will get an érror message,

when you type the Meta-X, you will notice that the cursor moves
down to the echo area at the bottom of the screen, and "MM " appears
there, This is to remind you that you should next type the name of an
MM command, This sort of input is known as "reading a line in the echo
area", or as "& Read Line input", The string (in this case, "MM") which
appears in the echo area to support your memory is called a "prompt",
Many commands read arguments in this fashion, The prompt always tells
you what sort of argument is required and what it is doing to be used
for,

While you are typing the command name at the bottom of the screen,
you can use <€helete> to cancel one character, C#U or C#D to cancel all
the input you have typed and start over, and CeG to qet back to top
level (cancel the command name AND the Metaex), If the command name is
empty and you type a <delete>, that too cancels the MetaeX, Again, this
is generally true whenever anything reads a line in the echo area,

Some MM commands require "string arguments" or "suffix arguments",
For those commands, the command name should be terminated with a single
<ESC>, after which should come the arguments, separated by <ESCos,
After the last argument, type a Return to cause the command to be

executed, For example, the command MM fescribe prints the full
documentation of an MM command (or other EMACS subroutine) whose name

EMACS REFERENCE GUIDE Page 17

must be given as a string argument, An example of using it would be
Meta#X Describe<ESC>Apropos Return, which would print the full
description of MM Apropos,

Some MM commands can use numeric prefix arquments, Simply give the
MetaeX command an argument and MetaeX will pass it along to the MM

command, The araument will appear before the "MM" in the prompt, so you
don't forget it was typed,

YH
vo
s
A
N
IG
IL
IN
I

EMACS REFERENCE GUIDE Page 18

x Arcane Information about MM Commands

MM commands are called that, even though vou usually run them bytyrina MetawX and never say "MM" yourself, because "MM" ds the TECO
expression which looks up a command name to find the associated program,
and runs that program, Thus, the TECO expression

MM Apropos<ESCoWord<ESC>

means to run the Apropos command with the arqument "word", You
could type this expression into a minibuffer and get the same results as
you would get from Meta-X Apropos<ESC>Word Return, In fact, before
there was MetaeX, that's what people did, :

"MM" actually tells TECO to run the program named "M*, This
program uses a string argument as the command name and looks it up,
Processing named commands isn't built into TECO; it is implemented by
the program TECO calls "M", That's why "MM" is called that and not
"Run" or "F

MM commands can also vse one or two "prefix arguments" or "numeric
arguments", These are numbers (actually, TECO expressions) which go
before the "MM", Meta*X can only give the MM command one argument, If
you want to give it two, you must type it in using the minibuffer,

A command can be given two numeric arguments, separated by comma,
Either one can be omitted, If the one before the comma is omitted, the
comma should also be omitted, Note that the meaning of an argument is
NOT determined by whether there is another argument before it, but by
whether it precedes a comma, Thus, "1," omits the second argument,
while "1" by itself omits the first. Of course, when a command is only
interested in one argument, it looks at the second, so that you do not
need to (and should not) type a comma, For example, the command MM Auto
Save can meaninofully be given two arguments, The first, if present,
says how often to autoesave, while the second says how many past savings
should be remembered, Either arqument can be omitted, in which case the
associated quantity is not changed, Thus, "200,MM Auto Save" specifies
saving every 200 characters, but not change the number of saves that are
remembered, while "4MM Auto Save" specifies that the last four saves
Should be kept, but does not alter the period between saves,

Actually, the one and two character "*R Commands" all have names,

functions intended primarily to be called explicitly by the user, There
are other functions intended to be accessed very easily; EMACS causes
each detined *R Command to invoke one such function, Their names

MM commands are simplytoo, and could be run with MM using them,

EMACS REFERENCE GUIDE Page 19

usually start with "*R" (Uparrow R) so that they will not interfere with
attempts to abpreviate the names of other commands, In fact, asfunctions qo, there is little special about them, Any function (except
a few of the ones that read string arguments) can be put on any "R
Command for easy access, Usually, whenever a "R Command is described,
the name of the function which is its definition is given in
parentheses, Knowing the function's name is not necessary for normal
use, but it becomes important when you start customizing EMACS,

Yet other MM commands exist which are intended to be called as
Subroutines by other EMACS commands, Commands intended primarily as
subroutines usually have names starting with "&", as in "& Read Line",
the subroutine which reads aline in the echo area, Although most
Subroutines have such names, any MM command can be called as 4
subroutine, @ 8

Z

EMACS REFERENCE GUIDE Page 20

XI EMACS Documentation Commands

First of all, you should know about the documentation files for
EMACS,<DOCUMENTATIONDEMACS,GUIDE and <DOCUMENTATIONDSEMACS,CHART and
<DOCUMENTATIONDEMACS,NCHART, They contain complete printouts of EMACS'sbuilt in documentation, The first has a brief description of all the °R
Commands, the second has a brief list of the most useful commands
ordered by function while the last contains the full description of each
"R Command and each named function, FEMACS,CHART and EMACS,NCHART are
qood to post on the wall near your terminal whereas
<DOCUMENTATIONSEMACS,GUIDE are good to have in your library, You canlist yourself copies of these files 1f you want,

Aside from those documentation files and this file, the INFO
documentation, FMACS has commands for telling you what a command does,
how to doa particular thing, and what commands are available, In
addition, there is an EMACSewide Help character which can be used at all
times to ask for help, This character {is typed as C=. and as CC», H on
non=Meta keyboards, At top level, this character will offer several
options for asking for help, Inside a command, the help character will
tell you about that command, and what you are supposed to be typing
while within it, Unlike "?", which cannot always be used to request
help since sometimes it must be treated as a text character, the Help
Character will ALWAYS ask for help, and it is always safe you can type
it in the middle of absolutely anything, whether at top level or not.

If you want to know what a particular one or two character CMAR")
Command does, type the command Meta-?, followed by that command, In
particular, Meta=? Control-X <subcommand> describes what the given Cex
subcommand does, Note that Meta=? must be typed as <ESC> followed by ?
on non=Meta keyboards, This operation is also available as Help C,
normally,

If you want to know what a particular function ("MM command") does,
use the MM command "Describe", giving the particular funetion's name as
an argument, Or, type Help D, and the command name, For example, Metas=
X Describe<ESC>LISP Mode Return would give you the full documentation of
MM LISP Mode,

You can see the names of all the MM commands with MM List Commands,
If you are interested in a certain topic, MM Apropos will show you just
the functions that relate to that topic, Actually, it shows you all
functions whose names contain your topic as a substring. If a function
is accessible as a short ("*R") Command, MM Apropos will tell you that
also, Help A followed by a substring also does this, Thus, Metaex

O
H
"N

I'
SW

HO
S
SS
IN
IS
N
G

LO
M

PRIN
TED

IN
U.S./

EMACS REFERENCE GUIDE Page 21

Apropos<ESCoFile Return (no spaces!) would list all the functions whose
names contain the word "File", You can then run any of those functionsusing Meta=X, Some will also mention one or two character ways of
running them,

If you just wish to know which, if any, short command, runs aspecific function, give the command MM Where Is with the name of thefunction as a string argument: MetaeX Where IS<ESC>*R Describe Returnwill tell you that the function named *R Describe can be invoked usingMeta-?,
MM List Commands lists only the functions that are primarily

provided to be run by name with MM, using a Meta=X, for example,Functions whose expected major use is to be placed on a *R Command, and
functions intended primarily to be called by other functions, are not
mentioned, To see a list of them, use MM List *R Commands or MM List
Subroutines,

EMACS REFERENCE GUIDE Page 22

XIT What To Do When EMACS Is Huna

There are three general "quitting" procedures in EMACS: C@G, MM TopLevel, and restarting, The last is a drastic one for use when CeG does
not work,

C#G is an interrupt character which is effective most of the time,If you have started to type a command but not finished, C#G will cancelit. If you have specified a numeric argument, C#G will cancel it, If a
command is running, CeG will stop it and return to the °R Editing level
from which the command was issued, Inside the recursive *R Editinglevels established by many commands, CeG will often get you out one
level, A Similar guitting process occurs in
minibuffers: if the minibuffer is empty, CG quits out of it, but if
there is text present then the first just kills the text, so that
the second C#G will quit out,

:

C=G always takes effect between the TECO commands which make up an
EMACS program, never in the middle of one (a few long commands allow
quitting at any time), This is to prevent TECO from being destroyed by
guitting, However, sometimes EMACS will be hung inside a TECO command
Cif, for example, TECO is waiting in the middle of reading in a file),
In such a case, C#G will not work, but the more drastic procedure of
restarting TECO may work, Type CeC and then START to restart it, while
restarting TECO in this way is usually safe (especially at times when
TECO ts doing 1/0), there are certain times at which it will cause the
TECO data structures to be inconsistent, so do not try it unless other
measures have failed,

Restarting TECO is also a qood thing to do if you have moved from
one terminal to another which is of a different type. Every time TECO
is restarted, it finds out from the system what type of terminal you are
using. If you stopped TECO when it was trying to read from the
terminal, or by typing an EMACS command to return to the superior, then
this is sure to be safe,

There is one other quit mechanism which serves a somewhat different
purpose, MM Top Level is used, in a recursive "R Editing level, to exit
all the way to top level (top level is where the mode line says "EMACS

they ceased to have any effect would get you to the same place, but
there are some recursive *R Editing states which catch C#G's themselves,
(major eee) " with no submode), In most cases, typing C#G's until

MM Top Level is the only way to quit out of all of those,

EMACS REFERENCE GUIDE Page 23

XIII EMACS's Major Modes

when EMACS starts up, it is in what is called "Fundamental Mode",which means that the short (*R) Commands are defined so as to be
convenient in qeneral, For editing any specific type of text, such as
LISP code or papers, you can tell EMACS to change the meanings of a few
commands to hecome more specifically adapted to the task, This is done
by switching from Fundamental Mode to one of the other major modes,
Most commands remain unchanged; the ones which usually change are Tab,
<Delete>, and Linefeed, In addition, the commands which handle comments
use the mode to determine how comments are to be delimited,

Selecting a new major mode is done with an MM command, Each major
mode is the name of the MM command which selects it, Thus, you can
enter LISP mode by executing MM LISP (short for MM LISP Mode), The
major modes are mutually exclusive = you can be in only one major mode
at a time, When at top level, EMACS always says in the Mode line which
one you are in,

LISP Mode causes Tab to run the function *R Indent for LISP, which
causes the current line to be indented according to its depth in
parentheses, Linefeed, as usual, does a CR and a Tab, so it will move
to the next line and indent it, <Delete> is also redefined, so that
rubbing out a tab will cause it to turn into Spaces, Thus, the facet
that Tab uses Tabs as well as Spaces to indent lines is invisible when
you try to rub the indentation out, Comments start with "3", When in
LISP mode, the action of the word=motion commands is affected by whether
you are in Atom Word Mode or not = see the section on minor modes,

Text Mode causes Tab to run. the function *R Tab to Tab Stop, which
allows you to set any tab stops with MM Edit Tab Stops? however, in text
mode, Auto Fill does not normally indent new lines that it creates,
Comments are declared not to exist, Finally, the meaning of "word" as
understood by the wordemotion commands is chanaed so that is not
considered part of a word, while i s,

MIDAS Mode is for editing assembler language programs any
assembler language, It is very close to Fundamental Mode, but a few
specialepurpose commands are provided: CeM=A, Ce#M=E, CaMeN, CeMeP, and

Tabular Text Mode is mostly the same as Text Mode, except that
autoefill will indent new lines, If you use this mode, you will
probably want to call MM Edit Tab Stops to specify the Tab settings,

O
H
DN

I '
SW

YO
4
SS
AN

IS
N
G
IO
O
W

:

W
o

EMACS REFERENCE GUIDE Page 24

XIV. EMACS*s Minor Modes

Minor modes are options which you can use or not, They are all
independent of each other and of the selected major mode, Each minor
mode is the name of the MM command that can be used to turn it on or
off, Usually, no argument turns the mode on, while an arqument of zero
turns it off,

Auto Fill Mode allows you to type text endlessiv without worrying
about the width or your screen, CR*S will be inserted where appropriate
to prevent lines from becoming too long, The column at which lines are
broken defaults to ten columns before the riqnt margin, but you can setit explicitly, C=X F (*R Set Fill Column) sets the column for breaking
lines to the column point Is at, Tne fill column is stored in the
variable Q<ESCOF{ 11 Column<ESC>,

Auto Save Mode protects you against system crashes by periodically
saving the file you are visiting, Whenever you visit a file, auto
saving will be enable if Q<ESC>AUtO Save Defavlt<ESC> is nonzero; in
addition, the command MM Auto Save allows you to turn auto saving on or
off in a given buffer at any time,

Atom Word Mode causes the word#=moving commands, in LISP mode, to
move over LISP atoms instead of words, Some people like this, and
others don't, In any case, the S=expression motion commands can be used
to move over atoms, Tf you like to use segmented atom names like
FOOBAR@READ@IN@NEXT@INPUT*SOURCE*TOeREAD, then you might prefer not to
use Atom Word Mode, so that you can use M#F to move over just part of
the atom, or to move over the whole atom,

OQverwrite Mode causes ordinary printing characters to replace

pictures, For example, if the point is in front of the B in FOOBAR,
then in Overwrite Mode typing a G would change it to FOOBAR, instead of
making it FOOBAR as usual,

existing text instead of shoving it over, It is qood for editing

automatically expand as you type them, For example, "wam" mignt expand
to "word abbrev mode", The abbreviations may depend on the major (,9,
LISP, TEXT, eee) mode you are currently in, To use this, you must load
the WORDAB library. To learn about this mode, see the menu below,

word Abbrev Mode allows you to define abbreviations that

Some minor modes are actually controlled by variables, Setting the
minor mode with a command just changes the variable, This means that
you can turn the modes on or off with Alter Options, make their values
local to a buffer or file, etc,

EMACS REFERENCE GUIDE Page 25

a Named Variables in FMACS

EMACS and TECO allow variables with arbitrary names to be defined
and given numbers or strings as values, EMACS uses many variables
internally, but also has several whose purpose is to he set by the user
to tell commands what to do. One example of such a variable is the Fill
Column variable, which specifies the position of the right margin (Cin
characters from the lett margin) to be used py the f111 and justify
commands,

The easiest way for the beginner to set a named variable is to use
the Alter Options command, This command shows you a list of selected
variables which you are likely to want to change, together with their
values, and lets you edit them with the normal editing commands, Don't
make any changes in the names, though! Just change the values, When
you are finished, type <ESC> to say so, and the changes will take
effect, Until then, Top Level will get you out with no ill effects,

However, Alter Options can be used only to set variable which
already exists, and is marked as an option, Some builtein commands
refer to variables which do not exist in the initial environment, Such
commands always use a default value if the variable does not exist, In
these cases you must create the variable yourself if you wish to use it
to alter the benavior of the command,

Variables can be made local to an individual file, The variable
will then magically have its local value whenever you are looking at
that file, When making variables local, you do not need to worry about
whether the variables already exist, because they will be created
automatically,

You can get a list of all variables, not just those you are likely
to want to edit, by doing MaX List Variables, M=X Describe can be given
a variable's name instead of a command's name; it will show the
variable's value and its documentation, if it has anv.

<val>U<ESC><varname><ESC>, which you can give in the minibuffer or in
your init file, This way is probably faster for the experienced user,

efficiency, are not checked every time they are relevant; instead,
commands are redefined based on their values, This command redefinition
is not automatic, but is done by the subroutine & Process Options,
EMACS calls this subroutine automatically when EMACS knows it ts
necessary (Alter Options calls it, and so do all MM commands which

SO
N
IG

AL
N
IN
d

You ean also set variable with the TECO command

However, there is a pitfall. Some variables, for the sake of

EMACS REFERENCE GUIDE Page 26

Change any of these variables), but otherwise you must call it yourself,
In particular, init files are likely to need to call & Process Options,
Here is a list of the variables which require tnat & Process Options be
calleds

Atom Word Mode
Autoarg Mode
Auto Fill Mode
FS CTLMTA
Lisp) Hack
Overwrite Mode

In mode line shows the settings of some of theseaddition, the
variables, In order to cause the mode line to be updated, call the
subroutine & Set Mode Line,

EMACS REFERENCE GUIDE Page 27

XVI. Controlling the EMACS Display
Clear and redisplay screen,
with point at specified place,
Scroll upwards (a screen or a few lines),

MeV Scroll downwards,
MeR Move point to given vertical position,

CeL

A file is rarely short enough to fit on the screen of a terminal
all at once, If the whole buffer doesn't fit on the screen, EMACS shows
a contiguous portion of it, containing the pointer, It will continue to
show the same portion until the pointer moves outside of its then EMACS
will show a new portion centered around the new pointer, This is
EMACS's guess aS to what you are most interested in seeing, But if the
quess is wrong, you can use the display control commands to see a
different portion,

The basic display control command is Cowl, "Rk New Window), In its
simplest form, with no araument, it tells EMACS to display a portion of
the buffer centered around where the pointer is currently located
(actually, the pointer goes 35% of the way down from the top? this
percentage can be set by the user by executing <pctoFS % CENTER<ESC> in
a minibuffer), Normally. EMACS only recenters the pointer in the screen
when it moves past the edge,

Cel with a positive arqument chooses a new window so as to put
point that many lines from the top, An argument of zero puts point on
the very top line, The pointer does not move with respect to the text)
rather, the text and point move rigidly on the screen, If you decide
you want to see more below the pointer this is the command to use.
with a neaative argument puts point that many lines from the bottom of
the window, For example, C=U =1 Cel puts point on the bottom line, and
Cel 5 Cel puts it five lines from the bottom,

If you want to see a few more lines at the bottom of the screen and
don't want to guess what argument to give to C*L, you can use the C#V

bottom of the screen, moving the text and point up toqether as CeL
might, C#V with a negative argument will show you more lines at the top
of the screen, as will Meta-V with a positive argument.

Often you want to read a long file sequentially. for this, the CeV
command is ideals it takes the last two lines at the bottom of the
screen and puts them at the top, followed by a whole screenful of lines
not visible before, The pointer is put after those two lines, Thus,
each shows the "next screenful", except for two lines of overlap to

command, Cey with an araument shows you that many more lines at the

::

EMACS REFERENCE GUIDE Page 28

provide continuity, To move backward, give C#V a negative arqument, or
use the MeV command which is like CeV but reverses the sign of its
argument,

If ALL you want to do toa file is read it sequentially, you might
want to use MM View File, Ask for a description of it with MM Describe
if you are interested, For in=between situations, MM View Buffer might
be useful,

CeL in all its forms changes the position of point on the screen,
carrving the text with it, Another command moves point the same way but
leaves the text fixed, It is called Meta-R, With no argument, it puts
point at the center of the screen, An arqument is used to specify the
line to put it on, counting from the top if the argument is positive, or
from the bottom if it is negative, Thus, MetaeQ Meta*R will put the
cursor on the top line of the screen, Meta*R never causes any text to
move on the screen; it causes point to move with respect to the screen
and the text,

O
H

M
O
O
RE

BUSIN
ESS

FO
RM

S,IN
C.,

EMACS REFERENCE GUIDE Page 29

XVII Two Window Mode

C=X 2 Start showing two windows,
Cex 3 Show two windows but stay "in" the top one,
C=X 1 Show only one window again,
COK O Switch to the other window

(when both are being shown),
C#xX * Make this window biager,
CeM=V Scroll the other window,

Normally, FMACS is in "Oneewindow mode", in which a single body of
text is visible on the screen and can be edited, At times, one wants to
have parts of two different files visible at once, For example, while
adding to a program a use of an unfamiliar feature, one might wish to
have the documentation of that feature visible, "Twosewindow mode" makes
this possible,

The command Cex 2 (*R Two Windows) enters twoewindow mode, A line
of dashes will appear across the middle of the screen, dividing the text
display area into two halves, Window one, containing the same text as
previously occupied the whole screen, fills the top half, while window
two fills the bottom half, The pointer will move to window two, If
this is your first entry to twoswindow mode, window two will contain a
new buffer named W2, Otherwise, it will contain the same text it held
the last time you looked at it, The mode line will now describe the
buffer and file in window two, Unfortunately, it's almost impossible to
provide a mode line for each window, so making the mode line apply to
the window you are in is the best we can do,

You can now edit in window two as you wish, while window one
remains visible, If you are finished editing or looking at the text in
the window, C#X 1 (*R Gne Window) will return to oneewindow mode,
Window one will expand to fill the whole screen, and window two will
cease to be visible until the next C#X 2,

while you are in two window mode you can use the command C#X 0 to
switch between the windows, After doing Cex 2. the cursor is in window
two, Doina Cex 0 will move the cursor back to window one, to exactly
where it was before the CwX 2, The difference between this and doing Ce
X 1 is that C#X 0 leaves window two visible on the screen, A second
0 will move the cursor back into window two, just where it was before
the first CX 0, And so on,

Often you will be editing one window while using the other just for
reference, Then, the command (*R Scroll Other Window) is very

iv

:

:

useful, It scrolls the other window without switching to it and

EMACS REFERENCE GUIDE Page 30

Switching back, It scrolls dust the way CeV does: with no arg, a whole
Screen up? with an argument, that many lines up (Cor down, for a negative
argument),

when you are finished using two windows, the CeX 1 command will
make window two vanish, It doesn't matter which window the cursor is in
when you do the C#X 13 either way window two vanishes and window one
remains,

The C#X 3 command is like Cox 2 but leaves the cursor in window
one, That is, it makes window two appear at the bottom of the screen
but leaves the cursor where it was, C=#X 2 is equivalent to CeX 3 CwX QO,

C#X 3 1s equivalent to C#X 2 C#X 0, but 3 is much faster,
Normally, the screen is divided evenly between the two windows,

You can also redistribute the lines between the windows with the Cex *

one line bigger, or as many lines as is specified, If given a negative
argument, the selected window gets smaller, The allocation of space to
the windows is always remembered and changes only when you qive a C#X *

command,

:

(*R Grow Window) command, It makes the currently selected window get

:

You can view the same buffer in both windows, Give 2 an
argument as in C#U C#X 2 and you will go into window two viewing the
Same buffer as in window one, Although the same buffer appears in both
windows, they have different cursors, so you can move around in window
two while window one continues to show the same text, Then, having
found in window two the place you wish to refer to, you can C#X OG back
to window one to make your changes, Finally you can do C#X 1 to make
window two leave the screen, If you have set the variable Tags Find
File nonzero, indicating that you normally use the C#X C#F command, then
when you enter two window mode for the first time the same puffer will
be viewed in both windows, rather than creating a buffer named w2, In
this situation, the C#X 2 command acts like a Cel C#=X 2 command,

Buffers can be selected independently in each window, The Cex B

Command selects a new buffer in whichever window the cursor is in, The
other window's buffer does not change, When you do C#X 2 and window two
appears it will snow whatever buffer used to be visible in it when it
was on the screen last, CeU C#X 2 makes window 2 select whichever
buffer was selected in window 1,

While in oneswindow mode, you can still use CwX 0, but the effect
Is slightly different, Window two does not appear, but whatever was

being shown in it appears, in window one (the whole screen), Whatever
buffer used to be in window one is stuck, invisibly, into window two,
Another C=X 0 will reverse the effect of the first, For example, if
window one shows buffer B and window two shows buffer W2 (the usual
case), and only window one is visible, then after a C#X 0 window one

will show buffer W2 and window two will show buffer B,

EMACS REFERENCE GUIDE Page 31

XVIII Visiting Files

The hasic unit of stored data fs the file, Each program, each
paper, lives usually in its own file, To edit a program or paper, the
editor must be told the name of the file that contains it, This is
called "visiting" the file, You can only edit a fille when you are
visiting it, Unless you use the multiple buffer and window features of
EMACS, vou can only be visiting one file at atime, The name of the
file you are visiting in the currently selected buffer is visible in the
Mode line when you are at top level, unless you aren't visiting anyfile,

The changes vou make to a file you are visiting are not actually
made in the file itself, however, but in a copy inside the EMACS, The
file itself is not changed, and the editing is not permanent, until the
file is "saved", You can save the file at any time by command. EMACS
will normally save the file whenever you switch files, so you don't have
to worry about forgetting to save before reading in another file over
your edited text, In addition, for those who are afraid of system
crashes, "Auto Save" mode is available, It performs a save at regular
intervals automatically,

To visit a file, use the commands C#X CwE, C=X C#V, or C#X CHR Cany
one), Follow the command with the name of the file you wish to visit,
terminated by a carriage return, If you can see a filename in the Mode
line, then that name is the default, and any Component of the filename
which you don't specify will be taken from it, If vou can't see a
filename in the Mode line (because you are on a printing terminal, or
because you hadn't visited any file yet), EMACS will print what the
defaults are, You can abort the command by typing CG, or cancel your

command, the new file will appear on the screen, and its name will show
up in the Mode line,

If you alter one file and then visit another, EMACS may offer to

command, because your typesahead might answer an unexpected question in
a wav that you will regret,

when you wish to save the file and make your changes permanent,
type C#X Ces. (*R Save File), After the save is finished, C#X CeS will
print "writtent <ilenames>" in the echo area at the bottom of the

not been changed since the last save or since the file was read in S50

you don't have to try to remember that yourself; when in doubt, type a

C#X CeS,

US
fia

typesin for the filename with CU, If you do type a CR to finish the

save the old one, You should not type ahead after a file visiting

screen, EMACS won't actually write out the file if the contents have

EMACS REFERENCE GUIDE Page 32

If you edit one file and then read in another without saving thefirst, the changes are lost, EMACS can protect vou from this, if you
wish, You have three options for such protections:
1) EMACS can allow you to clobber yourself, You must remember to save
your file explicitly with Cex C=S when you have changed it,
2) EMACS can automatically save the file for you when you ask to read
in another file,

3) EMACS can ask you, each time you deselect a file vou have edited,
whether to write it out.

You select one of these options each time you visit a file, by using
either C»X CeR to get option 1, CeE for option 2, and CeX CeV for
option 3, The option selected controls what EMACS will do later, when
you leave the file you are now visiting, It does not affect EMACS's
decision to write out the old file, which was determined when you
visited that file,

Thus, if you are SURE that you want to change a file, you should
read it in with CeX CeE, If you are sure that vou DON'T want to change
a file, you should use CeR, That way, any accidental changes you
make will not be saved, If you aren't sure, you might want to use Cex
CeV, Of course, you can use C*X CeR all the time 1f you prefer, but you
must take the responsibility for remembering to CeS, Note that the
old file will be saved if IT had been read in with C#X CWE,

CeX C#E, aS opposed to C=X CHR or Cex CV, causes Auto Save to
behave slightly differently, If you use Auto Save, you should be aware
of this, Also, users of C»X C#E MUST read about MM Revert!

If EMACS is about to save 4 file automatically and discovers that
the text is now a lot shorter than it used to be, it will tell you so
and ask for your consent ("Y" or "N®), If you aren't sure what to
answer (because you are surprised), type C#G to abort the visiting of a
new file, and take a look around,

what if you want to create a file? Just visit it. If vou save the
"ehanges", the file will be created, If you visit a nonexistent file
unintentionally (because you typed the wrong file name), just switch to
the file you meant, If you didn't "ehange" the nonexistent file (ie,
you left it empty the way you found it) no file will be created,

To look at a part of a file directory, use the Cwx CeD command (°R
Directory Pisplay). With no argument, it shows you the file you are
visiting, and related files, C=U Cex C#D reads a filespec from the
terminal and shows you the directory based containing that filespec,

M
O
O
RE

BUSIN
ESS

FO
RM

S, IN
C..HO

EMACS REFERENCE GUIDE Page 33

XIX What to do if you make some changes to a file and then regret them

If you read ina file with CeX C#E, make changes, and then regret
having made them, then simply not typing CeX CeS isn't enough. You
can't just type another CX CeE intending to read in the old file,
because that will first write back the very changes that you want to
throw away,

What you should do in such a situation is MM Revert File<ESC><ESC>,It will read in the last saved version of the file. If you have been
using Auto Save mode, the last Auto Save file will be read in, no matter
where your autoesaving is going, MM Revert File<ESC> does not change
point. If the file was only edited slightly, you will be at
approximately the same plece of text after the Revert as before, If you
have made drastic changes, the same value of point in the old file may
address a totally different piece of text,

If you make such a mistake fairly often, you might want to make C#X
C-V your habitual readeaefile command, Tnen EMACS will always ASK
whether to write back a file when you switch to another,

tH

3
:

EMACS REFERENCE GUIDE Page 34

XX Buffers: How to Switch between Several Bodies of Text

when talking of "the buffer", which contains the text you are
editing, I have given the impression that there is only one, In fact,
there may be many of them, each with its own body of text. At any time
only one buffer can be "selected" and available for editing, but it
isn't hard to switch to a different one, Each buffer individually
remembers which file it is visiting, what modes are in effect. and
whether there are any changes that need saving,

Fach buffer in EMACS has a single name, which normally doesn't
change, A buffer's name can be any length, and can't conflict with any
other kind of name, The name of the currently selected buffer is
visible in the Mode line when you are at top level, A newly started
EMACS has only one buffer, named "Main",

To create anew buffer, you need only choose a name for it (Say,
"FOO") and then do CX B FOO<CR>, which is the command CeX B (Select
Buffer) followed by the name, This will make a new, empty buffer and
select it for editing. The buffer will start out in Fundamental mode,
but you can change each bufter's major mode independently, A new buffer
is not visiting any file, so any text you type into it will not be saved
anywhere automatically.

To return to buffer FOO later after having switched to another, the
same command C#X B FOO<cr> is used, since C=X B can tel] whether a
buffer named FOO exists already or not, CX B Main<cr> reselects the
buffer Main that EMACS started out with, Just CeX B<er> reselects the
previous buffer, Repeated C=X Bécr>'s will alternate between two
buffers,

You can also read a file into its own newly created buffer, all
with one command: C#X C#F, followed by the filename, stands for
"Find", because if the specified file already resides in a buffer in
your EMACS, that buffer will be reselected, So you need not remember
whether vou have brought the file in already or not. A buffer created
by C#X C#F can be reselected later with B or CeF, whichever you
find more convenient, Nonexistent files can be created with Cex CHF
just as they can be by visiting them in an existina buffer.

CeX C=F normally visits the file a la CeX CV, meaning ask about
writing back if you visit some other file in that buffer, on the
assumption that a user of CeX C#F doesn't intend to visit any other file
{n THAT buffer, However, Auto Save mode users miant prefer to have the
file visited a la C#E so that auto saving works more nicely, To

EMACS REFERENCE GUIDE Page 35

bring that about, set the variable Q<ESC>Find File Inhibit write<ESC> to
ZOLO,

To aet a list of all the buffers that exist, do CeB or do MM
List Buffers, Each buffer's name, major mode, and visited filenameswill be printed, A star at the beginning of a line indicates a buffer
which contains changes that have not been saved, The number that
appears before a buffer's name in a CeB listing is that buffer's
"buffer number", You can select a buffer py givina its number 4s a
numeric argument to B, which then will not need to read a string
from the terminal,

If several buffers have stars, you should save some of them by
doing MM Save All Files<ESC>, This will ind all the buffers that need
saving and ask about each one individually, Saving the buffers this way
is much easier and more efficient than selecting each one and typing Cex
Ces,

After using an EMACS for a while, it may 111 up with buffers
holding files that you no longer need to edit. If you have enough of
them, you can reach a point where you can't read in any more files, So
whenever it fs convenient you should do MM Kill Some Buffers<ESC>, which
will ask about each butfer individually, You can say Y or N to kill it
or not, Or you can say °R To take a look at it first, This does not
actually select the buffer, as the mode line will show, but you can move
around in it and look at things, When you have seen enough to make up
your mind, exit the °R With a CHC C=C and you will be asked the question
again, If you say to kill a buffer tnat needs saving, you will be asked
whether to save it,

: :

You can kill the buffer FOO by doing C=x K FOO<cr>, You can kill
the current buffer, a common thing to want to do if you use CeX CwF, by
doing C#X K<er>, If you kill the current buffer, in any way, EMACS will
ask you which buffer to select instead, Saying just <cr> at that point
will ask EMACS to choose one reasonably,

As well as the visited file and the major mode, a buffer can, if
ordered to, remember many other things "locally" independently of all
other buffers, Any TECO Variable can be made local to 4 specific buffer
by doing M,L<variable name><ESC>, Thus, if you want the comment column
to be column 50 in one buffer, whereas you usually like 40, then in the
one buffer you should do M,LComment Colmn<ESC>,. Then, you can do
SOU<ESC>Comment Column<ESC> in that buffer and all other buffers will
not be affected, To get a list of the local vartables in the current
buffer, do MM List Locals<ESC><ESC>, Note that every buffer nas a few

feature makes use of these local variables, which are created when you
visit the file and destroyed (made no longer local) when you visit some

The Local Modeslocal variables made automatically for internal use,

other file in the buffer, For information on how local variables work,
and additional related features, see

EMACS REFERENCE GUIDE Page 36

MM Rename Buffer<ESC><new name><ESC> changes the name of the
currently selected buffer, If <new name> is the null string, the first
filename of the visited file is the name of the buffer,

M
O
O
RE

BUSIN
ESS

FO
RM

S,IN
C..HO

PRIN
TED

IN
U.S.A

EMACS REFERENCE GUIDE Page 37

XXI Local Variables in Files:

By putting "local mode specifications" in a file you can cause
certain major or minor modes to be set, or certain character commands to
be defined, whenever you are visiting it, For example, EMACS can select
LISP Mode for that file, or it can turn on Auto Fill Mode, set up a
special Comment Column, or put a special command on the character
Local modes can specify the major mode, and the values of any set of
named variables and "R Command characters, Local modes apply only while
the buffer containing the file is selected; they do not extend to other
files loaded into other buffers,

The simplest kind of local mode specification sets only the major
mode, You put the desired mode's name in between a pair of
anywhere on the first nonblank line of the file, For example, if this
line were the first nonblank line of this file, =*=Text=*= would enter
Text Mode, In fact, a =*-Text=*= appears at the front of this file, but
you won't normally see it since it is before the start of the first
node, The ote can appear on the first nonblank line after the edit
history, if somebody insists on putting in an edit history,

To specify more that just the major mode, you must use a "local
modes® list, which goes in the LAST page of the file (it is best to put
it on a separate page), The local modes list starts with a line
containing the string "Local Modes: ", Whatever precedes that string on
the line is the "prefix", and whatever follows it is the "suffix"
(either or both may be null). From then on, each line should start with
the prefix, end with the suffix, and in between contain one local mode
specification in the form <varname>s<value>, To set a variable, make
<varname> the name of the variable and <value> the desired value, If
<value> is a numeral (which means no spacesi), the value will be a
numbers otherwise, it will be <value> as a string, To set a "R Command
character, make <varname> the name of the character as a qeregister,
Such @S For C=MeComma, and make <value> be a string of TECO
commands which will return the desired value (this is so you can write
M.MFOO<ESC> to define the character to run the command Foo). The local
modes list is terminated by a line whieh contains "End: instead of
<varname>: i<value>,

The major mode can be set by specifying a value for the variable
"Mode" (don't try doing it this way except in a local modes list!). An

setting for the variable named "MM Foo",

W
oo

MM command named MM Foo can be defined locally by putting in a local

EMACS REFERENCE GUIDE Page 38

Here is an example of a local modes list:
Local Modes? 3:33
Comment Columns0 23

? , i Comment Startiys3 232
H ee *R/3 m,m*R My Funny MetawSlasn<ESC>
ModerLISP 333
Ends 333

, H

Note that the prefix is "373 " and tne suffix is "332", Note also
that the value specified for the Comment Start variable is "333 " whichis the same as the prefix (convenient, eh?),

If you have local modes list, the last page of the file must be
no more than 10000 characters long or it will not be recognized, This
is because EMACS finds the local modes list by scanning back only 10000
characters from the end of tne file for the last "L, and then looking
forward for the "Local Modes: " string, This accomplishes these goals: a
Stray "Local Modes" not in the last page is not noticed; and visiting a
long file that is all one page and has no local mode list need not take
the time to search the whole file,

If you wish to make local one of the variables whose values take
effect only through the & Process Options subroutine, you must also set
the variable Switch Mode Process Options locally to 1, to make sure that
& Process Options is called at all the times necessary to make the local
values of the other variables to be activated and deactivated at the
rignt times,

EMACS REFERENCE GUIDE Page 39

XXII Auto Save Mode Protection Against Crashes

Tf you turn on Auto Save Mode, EMACS will save your file from time
to time (based on counting your commands) without being asked, Your
file will also be saved if you stop typing for more than a few minutes
when there are chances in the buffer, This prevents you from losing
more than a limited amount of work when the system crashes,

You can turn auto saving on or off in an individual buffer with MM

Auto Save, In addition, you can specify whether to do auto saving by
default in all buffers by setting O<ESC>AUto Save Default<ESC>, The
frequency of saving, and the number of saved versions to keep, can both
be specified,

:

Each time you visit a file, no matter whether you use C#X CeV, C#X
C-R, C#X or C#X CeF, auto saving will be on for that file if
Q<ESC>AUtO Save Default<ESC> is nonzero, However, by giving a nonzero
argument to the command, you can turn off auto saving FOR
THAT FILE ONLY, without changing the default, Once you have visited a
file, you can turn auto saving on with MM Auto Save, or off with OMM

Auto Save,
If you start typing anew file into a buffer without visiting

anything, auto save mode has no effect, However, you should not be
doing this, You should instead visit the noneexistent file and then
type in its contents. It will not bother EMACS that the "previous copy"
was imaginary; if vou change the file new copies will be saved by C#X Cx
S in the normal manner, and auto save mode will take effect,

Let us suppose that it is time for an automatic save to be done
where should the file be saved?

Two workable methods have been developed: save the file under the
names you nave visited, or save it under some special "auto save file
name", Fach solution has its good and bad points, The first one is
excellent some of the time, but intolerable the rest of the time, The

actual names means that you need do nothing special to gobble the auto
gave file when you need ity and it means that there is no need to worry
about interference between two users sharing a directory, a8 long as
they aren't screwing up by editing the same file at once, However, this
method can have problems:

If you visit a file with other than C#X C*E, then you are unwilling
to have EMACS rewrite that file even to avoid screwing you, 50
you presumably don't want mere auto saves to go there,

PRIN
TED

IN
U.S.A.

second is usually acceptable, Auto saving under the visited file's

EMACS REFERENCE GUIDE Page 40

So in all those cases, auto saves are written as the filenames in
Q<ESC>Auto Save Filenames<ESC>, But if none of those cases apply = if
you visit file ANYTHING with C#X CeE then auto saves are written out
with the very same filenames you visited, Users of CX CeF and the TAGS
package should note that TAGS normally visits the file a la CeX CeV,
Setting O<ESC>Find File Inhibit Write<ESC> to 0 will cause them to visit
the file a la C#X CE, and use the more winning auto save mode when
possible,

When auto saving is being done, C=X C#S writes out to the same
place that auto saves are going, Doing CeU C=X CeS will file out
"permanently" under the visited file names,

When it is time to recover from a system crash by reloading the
auto save file, if auto saving was using the visited file names you have
nothing special to do, If auto saving was using special auto save
filenames, you should read in the last auto save file (whose name was
printed out when the auto save was done), and then use C#X CeW to write
it out elsewhere, Alternatively, you can visit the file you were
editing, do HK in the minibuffer to kill the whole contents, and then do
MM Insert File to read in the auto save file instead,

MM Revert knows how to find the most recent save, permanent or not,
under whatever filenames, I repeat that if you change your mind about
changes, DO NOT simply revisit the file, because if you used C#X C#E to
visit it then the changed version will first be written out, Instead,
use MM Revert File, which is specifically desiqned for backing up to the
last version on disk,

For your protection, if a file has shrunk by more than 30% since
the last save, auto saving will ask for confirmation before saving it,

Although auto saving will generate large numbers of files, it will
not clog directories, because it cleans up after itself. Only the last
Q<ESC>AUtO Save Count<FSC> auto save files are kept; 48 further saves
are done, old auto saves are deleted, However, files which were not
made by auto saves (or manual but nonepermanent C#X CeS saves) such
as, old versions that were there before you started, or versions written
with CeU C=X C#S are never deleted in this wav, Giving an arqument
to MM Auto Save sets Q<ESC>Auto Save Count<ESC>, which starts at 2,

A preecomma argument to MM Auto Save sets the number of commands

"RMDLY<ESC> in the minibuffer,
Q<ESC>AUtO Save Filenames<ESC> is usually set Up. by the default

init file to .°RSV >, but you can change that, Or, if you use auto
saving in multiple buffers a lot, you might want to nave ae Buffer
Creation Hook which sets Auto Save Filenames to a filename based on the
buffer name, so that different buffers don't interfere with each other,

ad

between auto saves, Another way of setting this is to do <noFS

EMACS REFERENCE GUIDE Page 41

XXIII Cleaning a File Directory

The normal course of editing constantly creates new versions offiles, If you don't eventually delete the old versions, the directorywill f111 up and further editing will be impossible, EMACS has commands
that make it easy to delete the old versions,

For complete flexibility to delete precisely the files you want to
delete, you can use the DIRED package,

But there is a more convenient way to do the usual thina: keep only
the two (or other number) most recent versions,

MM Reap File<ESC><file><ESC> counts the number of versions of
<file>, If there are more than two, you are told the names of the
recent ones (to be kept) and the names of the older ones (to be
deleted), and ASKED whether to do the deletion (answer "Y" or "N"), In
addition, if there is a file with an FN2 of MEMO, @XGP, XGP or UNFASL,
you are asked whether it too should be deleted (this is actually
controlled by a TECO search string in Q<ESC>Temp File FN2 List<ESC>),

:

If you give MM Reap File a null argument (i.e., if you use MetaeX,
don't give it an arqument) then it will apply to the file you are
visiting,

MM Clean Directory<ESC><dirname><ESC> cleans a whole directory of
old versions, Fach file in the directory is processed a la MM Reap
File, MM Clean Dir<ESC><ESC> (null argument, or no arqument using Metae
X) cleans the directory containing the file you are visiting,

MM Reap File and MM Clean Dir can be given a numeric argument which
specifies how many versions to keep (instead of two), For example, 4MM
Reap would keep the four most recent versions, The
default when there is no argument is the value of Q<ESC>File Versions
Kept<ESc>, which is initially 2,

TH

EMACS REFERENCE GUIDE Page 42

XXIV DIRED the Directory Editor Subsvstem

DIRED makes it easy to delete many of the files in a single
directory at once, Tt presents a copy of a listing of the directory,
which you can move around in, marking files for deletion, When you are
satisfied, you can tell DIRED to go anead and delete the marked files,

Invoke DIREP with MM DIRED<ESC><ESC> to edit the current default
directory, or MM DIRED<ESC><dir><ESC> to edit directory <dir>, (Use
metaeX) You will then be given a listing of the directory which you can
move around in with all tne normal EMACS motion commands, However, some
EMACS commands are illegal and others do special things,

You can mark a file for deletion by moving to the line describing
the file and typing "D", "CeD", "K", or The deletion mark is
visible as a "D" at the beginning of the line, Point is moved to the
beginning of the next line, so that several "pH will delete several
files, Alternatively, if you give "D" an argument it will mark that
many consecutive files, Given a negative argument, it will mark the
preceding file (or several files) and put point at the first (in the
buffer) line marked, Most of the DIRED commands (D, U, !, <ESC>, P, S,
Cc, E, space) repeat this way with numeric arguments,

If you wish to remove a deletion mark, use the "U" (for Undelete)
command, which is invoked just like "Dp": it removes the deletion mark
from the current line Cor next few lines), However, if the current line
has noD on it, and the previous line does have aD, U removes that
deletion mark and moves upward, This allows you to undo a D with just a
U.

For extra conventence, Space is made a command similar to CeN,
Moving down a line is done so often in DIRED that it deserves to be easy
to type,

If you are not sure whether you want to delete a file, you can

file, which you can exit by typing Control#<ESC> or CeC CaC, The file
is not really visited at that time, and C#X C#S will not work, so it is
unwise to make changes to the file, After you exit the recursive "R,
You will be back in DIRED,

when you have marked the files you wish to mark, you Can exit DIRED

DIRED will then list them in a concise format, several per line, A file
with "I" appearing next to it in this list has not been saved on tape

O
H
UD

N
I'S
W
YO

S
BG

examine it by typing EF". This will enter a recursive "R Mode on the

by typina "xX", "QO", or Control=<ESC>", If there were any files marked,

EMACS REFERENCE GUIDE Page 43

and will be gone forever if deleted, A file with ">" in front of it is
the most recent version of a sequence and you should be wary of deletingit. Then DIRED asks for confirmation of the list. You can type "YES"(Just y" won't do) to go ahead and delete them, "N" to return to
editing the directory so you can change the marks, or "X" to give up and
delete nothing, Anything else typed will make DIRED print a list of
these responses and try again to read one,

There are some other ways to invoke DIRED, The Emacs command *XD
puts you in DIRFED on the directory containing the file you are currentlyeditind, with a numeric argument of 1 (*°1°XD, <FSC>1°XD, or *U1*XD),
only the current file is displayed instead of the whole directory, In
combination with the "H* command this can be useful for cleaning up
excess versions of a file after a heavy editing session, With a numeric
argument of 4 (*U*XD), it will ask you "Directory;", Type a directory
name followed by a semicolon, and/or a file name, If you explicitly
specify a file name only versions of that file are displayed, otherwise
the whole directory is displayed,

It is unwise to try to edit the text of the directory listing
yourself, without using the special DIRED commands, unless you Know what
you are doing, since you can confuse DIRED that wav, To make it less
likely that you will do so accidentally, the self=inserting characters
and <Delete> are all made illegal inside DIRED, However, deleting whole
lines at atime is certainly safe, This does not delete the files
described by those lines; instead, it makes DIRED forget that they are
there and thus makes sure they will NOT be deleted, Thus, MM Keep
Lines<ESC> is useful if you wish to delete only files with a FOO In
their names, m

Z

O
H
DN

'S
W
aO

d
SS
IN
IS
N
G
O
O
W

For more complicated things, you can use the minibuffer, When you Z

call the minibuffer from within DIRED, you qet a perfectly normal one,
The special DIRED commands are not present while you are editing in the
minibuffer, To mark a file for deletion, replace the space at the
beainning of its line with a "D", To remove a mark, replace the "D*
with a Space,

U.S.A.

EMACS REFERENCE GUIDE Page 44

XXV Miscellaneous File Operations

MM Insert File<ESC> <file> <ESC> inserts the contents of <file>
into the buffer at point, leaving point unchanqed before the contents
and mark after them, The current defaults are used tor <file>, and are
updated,

MM Write Region<ESC> <file> <ESC> writes the region (the text
between point and mark) to the snecified file, It does not set the
visited filenames, The buffer iS not changed, :

MM Append to File<ESC> <file> <ESC> appends the region to <file>,
The text is added to the end of <file>,

MM Prepend to File<ESC> <file> <ESC> adds the text to the beginning
of <file> instead of the end,

file being visited without reading or writing the data in the buffer,
MM Write File is equivalent to this command followed by CwX C#S,

MM List Files<ESC><dir spec><ESC> lists just the names of all the
files in <dir>, several to a line,

The default filenames for all of these operations are the "TECO
default filenames", Most of these operations also leave the TECO
default names set to the file they operated on, The TECO default is NOT
ALWAYS the same as the file you are visiting, when you visit a file,
they start out the same, but the commands mentioned above can change the
TECO default, thouant they certainly don't change the visited filenames
(so CeS knows where to save your file), Each puffer has its own
TECO default filenames,

If you wish to use the visited file's names as the defaults for a

minibuffer initialized with an ET command containing the name of the
visited file, That ET will, when executed, set the TECO default to that
name, You can type the operation you want into the minibuffer after the
ET, CeU C#X will put the old TECO default names into the ET instead
of the visited file's name, This just serves to show you what the TECO
default is.

At times you want to "Change the name" of a file you are editing.
The command CeX CeW allows you to save the buffer into a specified file,
which then becomes the file you are visiting, It takes its arguments

HO
D

w
od

d
N
I
SW

YO
d
SS
AN

IS
N
G

MM Set Visited Filename<ESC><file><ESC> changes the name of the

It qets you arandom file operation, use the Cex CeT command,

EMACS GUIDE Page 45

and handles the defaults just like C=X CeE, In fact, it is equivalentto writing the buffer out to the file and then visiting that file,
The operation of visiting a file is available as a random file

command under the name MM Visit File<ESC><file><ESC>, In this form, it
uses the TECO default as its defaults, though it still sets both the
TECO default and the visited filenames,

The variable Q<ESC>Auto Directory Display<ESC> can be set to make
many file operations display the directory automatically, The variableis normally 03 making it positive causes write operations such as MM
Write File to display the directory, and making it negative causes reads
(MM Read File) to display it as well, The display is done using the
default directory listing macro which is kept in Q<SC>Directory
Lister<F&SC>, Normally, in EMACS, this is the macro that displays only
the files related to the current default file, :

DH

EMACS REFERENCE GUIDE Page 46

XXVI Searching

Searching moves the cursor to the next occurrence of a string of
characters which you specify, In EMACS, searching is "incremental",
which means that as you type in the search string EMACS shows you where
it would be found, When you have typed enough characters to identify
the place you want, you can stop,

EMACS also has commands to find all or some occurrences of a string
and replace them, print them, or count them, The command to search is
CeS (*R Incremental Search), CeS reads in characters and positions the
cursor at the first occurrence of the characters that you have typed,If you type CeS and then F, the cursor will move to riqht after the next
"Fr". Type an "0", and see the cursor move to after the next "FO", Type
another "0", and the cursor will be after the first "FOO" after the
place where you started the search, At the same time, the "FOO" has
echoed at the bottom of the screen,

If you type a mistaken character, you can rub it out. After the

Rubbing out the "O" and "F" will move the cursor back to where you
started the search,

when you are satisfied with the place you have reached, you can
type an <ESC>, which will stop searching, leaving the cursor where the
search brovaht it. Any command except a printing character or CR will
stop the searching and then be executed, Thus, if you find the word FOO
you can type Meta=<Delete> to exit the search and kill the FOO, <ESC>
is necessary only if the next thing you want to do. is insert text, or
rub out, since those things are special while searching,

Sometimes you search for "FOO" and find it, but not the one you
expected to find, There was a second FOO that vou forgot about, before
the one you were looking for, Then, dust type another CS and the
cursor will find the next FOO, This can be done any number of times,
If you overshoot, you can rub out the C-S's,

If your string is not found at all, the mode line starts saying
"Failing I#Search". The cursor will be after the place where EMACS
found as much of your string as it could, Thus, if you search for FOOT,
and there is no FOOT, you might see the cursor after the FOO in FOOL,
At this point there are several things you can do, If your string was

place you have found, you can type <ESC> or some other EMACS command to

La
t

Te
nt

"S
w
at

FOO, typing a <delete> will make the "O" disappear from the bottom of
the screen, leaving only "FO", The cursor will move back ta the "FO",

If you like themistyped, you can rub some of {t out and correct it.

EMACS REFERENCE GUIDE Page 47

"accept what the search offered", Or you can type CG, which will throw
away the characters that could not be found (the "T" in "FOOT"), leaving
those that could be found (the "FOO" in "FoOoT"), A second CeG at that
point would undo the search entirely,

The C#G "quit" command does special things during searches, What
C-G does depends on the status of the search, Tf the seareh has found
what you specified and is waiting for input, CG cancels the entire
search, The cursor moves back to where you started the search, If C#G
is typed while the search is actually searching for something, or after
search failed to find some of your input (searched all the way to the
end of the file), then only the characters which have not been found are
discarded, Having discarded them, the search is now successful and
waiting for more input, so a second CeG will cancel the entire search,
Make sure you wait for the first C*G to ding the bell before typing the
second one} if typed too soon, the second C=G may be confused with thefirst and effectively lost,

You can also type CeR at any time to start searching backwards, If
a search fails because the place you started was too late in the file,
you should do this. Repeated CeR's will keep looking for more
occurrences backwards, A will start going forwards again,
can be rubbed out just like anything else, If you Know that you want to
search backwards, you can use CeR instead of C#S to start searching
backwards,

A noneincremental search is also available, Just type <ESC> right
after the to get it, Do MM Describe<ESC>*R String Searen<ESC> for
details, Some people who prefer noneincremental searches put that
function on Meta=S, and *R Character Searen (do MM Describe<ESC> for
details) on CeS,

7
Z

EMACS REFERENCE GUIDE Page 48

a

XXVII Replacement Commands

To replace every instance of FOO with BAR, vou can do MM

Replace<ESCOFOOXFSCOBAR<ESCD, Replacement is done only after the
pointer, so if you want to cover the whole buffer you must go to the
beginning first. Unless 0<ESC>Case Replace<ESC> is zero, an attempt
will be made to preserve case; give both FOO and BAR in lower case, and
if a particular FOO is found with a capital initial or all capitalized,
the BAR which replaces it will be likewise,

To restrict the replacement to a subset of the buffer, set the
region around it and type C=X N ("N" for "Narrow"), This will make all
of the buffer outside that region temporarily invisible (but the
commands that save your file will still know that it is there!), Then
do the replacement, Afterward, W ("Widen") to make the rest of the
buffer visible again,

Even if you are afraid that there may be some Foo's that should not
be changed, EMACS can still help YOu. Use MM Query
Replace<ESC>FOO<ESCOBAR<ESC>, This will display each FOO and wait for
you to say whether to replace it with a BAR, The things you can type
when you are shown a FOO are:

plain Replace, unless O<ESC>Case Replace<ESC> is Zero)?
<Delete> to skip to the next FOO without replacing this one?
Comma to replace this FOO and display the result.

You are then asked for another input character,
except that since the replacement has already been
made, <Nelete> is treated like Space,

<ESC> to stop replacing, not replacing this FOO;

to replace all remaining FOO's without asking
(Replace actually works by calling Query Replace
and pretending that a ! was typed in);
to go back to the previous FOO (or, where it was),
in case you have made a mistake, This works by
jumping to the mark (Query Replace sets the mark each

pe edited rather than just replaced with a BAR, When

you are done, exit the recursive EMACS with CeC CHC,

When you are finished editing whatever is to replace
the Foo, exit the recursive EMACS with Cet CHCe

O
M

Space to replace the FOO (preserving case, just like

Period to replace this FOO but not look for any more}

time it finds a FOO),
CeR to enter EMACS recursively, in case the FOO needs to

to delete the FOO, and then call EMACS recursively.

EMACS REFERENCE GUIDE Page 49

If you type any other character, the Query Replace will be exited,
and the character will be then executed as a "R Command, To restart the
Query Replace, assuming you invoked it using the mini=buffer, use Cwx
<ESC>, which is a command to reeexecute the previous minibuffer command,

If you give Replace or Query Replace an argument, then it insists
that the occurrences of FOO be delimited by break characters (or an end
of the buffer), So you can find only the word FON, and not FOO when it
{s part of FOOBAR,

Metae% will give you a miniwbuffer preeinitialized with "MM Query
Replace<ESC>", This is the easiest way to invoke Query Replace,

The FOO string argument to Replace and Query Replace is actually a
TECO search string, This means that the characters CX, C#B, CeN, C0,
C-0 and Ce] have special meanings, CeX matches any character, c=B
matches any "delimiter" character (anything which the word commands
consider not part of a word, according to the delimiter dispatch table
in Qereaister C#N neqates what follows, so that Cen A matches
anything but A, and Cen CeB matches any nonedelimiter, CrO means "or",
so that XYXY ce0 ZZZ matcnes EITHER XYXY or ZZ, C#Q quotes the
following character, in case you want to search for one of the special
control characters, Ce) is special in a more fundamental way, which is
probably useless to you; to search for aCe), you must put TWO Ce)*s in
the string you specify, Remember that these characters (and all control
characters) must be quoted by C#Q just to insert them in the minibuffer,
Thus, to insert C#Q CB in the minibuffer, you must type 3 C#Q's and a
CmB,

:
:

: :

Here are some other commands related to replacement, Their
arauments are TECO search strings, They all operate starting from the
pointer, on to the end of the buffer (or where C#X N stops them),
MM Occur<ESCOFONO<ESC>

which finds all occurrences of FNO after the pointer,It prints each line containing one, With an argument,it prints that many lines before and after each
occurrence,

MM How Many<ESCOFOO<ESC>

pointer,
MM Keep Lines<ESC>FOO<ESC>kills all lines after the pointer that don't contain

FOO,

MM Flush Lines<ESC>FOO<ESC>Kills all lines after the pointer that contain FOO,

types the number of occurrences of FOO after the

EMACS REFERENCE GUIDE Page 50

XXVIII Indentation Commands for Code

Most programming languages have some indentation convention, For
LISP code, lines are indented according to their nesting in parentheses,
For MIDAS code, almost all lines start with a single tab, but some have
one or more spaces as well, Indenting TECO code is an art rather than a
science, but it is often useful to indent a line under the previous one,

The way to request indentation is with the Tab command, Its
precise effect depends on the major mode, In LISP mode, Tab aligns the
line according to its depth in parentheses, No matter where in the line
you are when you type Tab, it aligns the line as a whole, In MIDAS
mode, Tab inserts a tab, that being the standard indentation for
assembly code, PL/I mode knows in great detail about the keywords of
the language so as to indent lines according to the nesting structure,

The command Linefeed does a Return and then does a Tab on the next
line, Thus, Linefeed at the end of the line makes a following blank
line and supplies it with the usual amount of indentation, just a5
Return would make an empty line, Linefeed in the middle of a line
breaks the line and supplies the usual indentation in front of the new
line,

The inverse of Linefeed is Meta** or C=Me*, This command deletes
the indentation at the front of the current line, and the line boundary
as well, They are replaced by a single space, or by no space if before
a")" or after a "(" or To delete just the indentation of a line,
go to the beainning of the line and use Metae\, which deletes all spaces
and tabs around the cursor,

To insert an indented line before the current one, do CeA, CO, and
then Tab,

To make an indented line after the current one, use CE Linefeed.
To move over the indentation on a line, do Meta»M or C#M=M (*R Back

to Indentation). These commands, given anywhere on a line, will
position the cursor at the first nonblank character on the line,

EMACS REFERENCE GUIDE Page 51

XXIX Automatic Indication Of How Parentheses Match

If you enable the closeparenematchnig feature, whenever you type a
Closeparen FEMACS will automatically show you, for an instant, the
openparen which matches it,

To enable the feature, set Q<ESCOLISP Hack<ESC> to 1 using MM

Alter Options, The typing of a closeparen will then move the cursor to
the matching openparen for 1 second, and then back again to the
closeparen, If you type another command before the second is up, the
cursor moves immediately back to its real location and the command is
executed with no delay,

Tt is worth emphasizing that the real location of the cursor the
Place where your typeein will be inserted is not affected by the
Closeparen matching feature, It stays after the closeparen, where it
would normallv be. Only the spot on the screen moves away and back,
You can type ahead freely as if the matching feature were not there, In
fact, 1f you type fast enough, you won't see the cursor move, You must
pause after typing a closeparen to see the openparen shown, Also, if
there is no matching closeparen, nothing will happen,

7
4
wn

x

Setting Q<ESC>LISP Hack<ESC> to 1 instead of 1 will cause the
matching openparen to be shown only if it is already on the screen,

2

while this feature was intended primarily for LISP, it can be used
Just as well for any other lanquage, and it is not dependent on what
major mode you are in (it originally was enabled only in LISP mode), If
you wish to use it in a language which has several parenthetical
characters, you can do so as long as you set uP eeD appropriately and
then put MM *R Lisp on the appropriate close=characters, Better yet,
you can make define characters to indirect through the definition of
"yt, See the definition of the Muddle Mode command,

EMACS REFERENCE GUIDE Page 52

XXX Moving Over and Killing Lists and S-expressions

By convention, EMACS commands that deal with LISP objects are
usually ControleMeta» characters, They tend to be analogous in function
to the Control= and Metas characters with the same basic character,

To move forward over an Seexpression, use (°R Forward Sexp),If the first none"useless" character after point is an "(", moves
past the matching ")", If the first character is a ")", CoM=F just
moves past it, If the character begins an atom, CeM=F moves to the
atom=break character that ends the atom, CeMeF can with an argument
repeats that operation the specified number of times; with a negative
argument, it moves backward instead,

The command CeMeB (*R Backward Sexp) moves backward over an
expressions; it is like C=MeF with the argument negated, If there are

characters in front of the Seexpression moved over, they are
moved over as well, Thus, with the pointer after " 'FOO ", C#M=B would
leave the pointer before the """, not before the wer,

Se

These two commands (and most of the commands in this section) do
not know how to deal with the presence of comments, Although that would
be easy to fix for forward motion, for backward motion the syntax of
LISP makes {it nearly impossible, Comments by themselves wouldn't be so
bad, but handling comments and "I" both is impossible to do locally, In
a line " CCFOO 3 | BAR are the open parentheses inside of a "I ees
i" atom? I do not think it would be advisable to make handle
comments without making CeM=B handle them as well,

For this reason, two other commands which move over lists instead
of Seexpressions are often useful, They are C#MeN (*R Forward List) and

C°R Backward List), They act just like CeMeF and except
that they don't stop on atoms; after moving over an atom, they move over
the next expression, stopping after moving over a list, with this
command, you can avoid stopping after all of the words in a comment,

Killing an Seexpression at a time can be done with and
<Delete> (*R Forward Kill Sexp and "R Backward Kill Sexp), CeMeK kills
the characters that C#MeF would move over, and CeMe<cDelete> kills what
C=M=B would move over,

C@M@F and stay at the same level in parentheses, when that's
possible, To move UP one (or n) levels, use C=M#(or CeM=) (°R Backward
Up List and *R Forward Up List), C=M#(moves backwards up past one
containing "(", C#M=) moves forwards up past one containing ")", Given

a positive argument, these commands move up the specified number oflevels of parentheses, C#M=U is another name for C=M=(, which is easier
to type, especially on non=Meta keyboards, If you use that name, it is
useful to know that a negative argument makes the command move up
forwards (ie, behave like C=Me)),

nearly the same as searching for a "(",

use
one s-expression, dragging the previous s-expression along, An argument
serves as a repeat count, and a negative argument drags backwards (thus
cancelling out the effect of a positive argument), An argument of zero,
ratner than doing nothing, exchanges the seexpressions at the point and
the mark,

the
place that C#MeF would move to, takes arguments like In
particular, a negative argument is useful for putting the mark at the
beginning of the previous Seexpression,

because such lists usually are DEFUNS, regardless of what funetion it
actually calls, There are EMACS commands to move to the beginning or
end
beginning, and CeM=) (*R End of DEFUN) moves to the end, If you wish to
operate on the current Defun, use C#MeH (*R Mark DEFUN) which puts point
at the beginning and mark at the end of the current or next Defun,
Alternate names for these two commands are CeM=A for Come and for

The alternate names are easier to type on many noneMeta
Keyboards,

driven, Any character can, for example, be declared to act like an open
paren, If you find that you are being "Screwed by macro characters"
then you may pe able to win by changing their syntax, The table is the
TECO "delimiter dispatch" held in qeregister ..D, You can use MM Edit
«eD<ESC> to change the entries in it, See TECO ORDER for full details,

EMACS REFERENCE GUIDE Page 53

To move DOWN in list structure, use C=M@D (*R Down Sexp), It is

A somewhat randomesounding command which is nevertheless easy to
is C=MeT (*R Exchange Sexps), which moves the cursor forward over

m
aoC

To perform a miscellaneous operation on the next Seexpression in
buffer, use or CeMe@ (*R Mark Sexp) which sets mark at the same

Z

an

@ 5

In EMACS, a list at the top level in the buffer is called a Defun,

of the current Defuns (°R Beginning of DEFUN) moves to the
7
Z

Z
c
>

The list commands' understanding of syntax is completely table=

EMACS REFERENCE GUIDE Page 54

XXXT Commands for Manipulating Comments

The command that creates a comment is Controle; or Metaw? (*R
Indent for Comment), It moves to the end of the line, indents to the
comment column, and inserts whatever string EMACS believes comments are
supposed to start with (normally "7"), If the line goes past the
comment column, then the indentation is done to a suitable boundary
Cusually, a multiple of 8),

Controle; can also be used to align an existing comment, If a line
already contains the string that starts comments, then Ce? just moves
point after it and indents it to the right place (where a comment would
have been created if there had heen none),

Even when an existing comment is properly aligned, Ce; is still
useful for moving directly to the start of the comment,

If you wish to align a large number of comments, you can give
Controle? an argument and it will indent what comments exist on that
many lines, creating none, Point will be left after the last line
processed (unlike the nowargument case),

If you are typing a comment and find that you wish to continue it
on another line, you can use the command Meta=J or MetaeLinefeed (°R
Indent New Comment Line), which terminates the comment you are typing,
creates or gobbles a new blank line, and begins a correctly indented
comment on it, Note that if the next line is not blank, a blank line is
created, instead of putting the next line of the comment on the next

:

line of code,
The comment column is stored in the variable Q<ESC>Comment

Column<ESC>, Thus, 40U<ESC>Comment Col<ESC> sets it to column 40,
Alternatively, the command CX; (°R Set Comment Column) sets the comment
column to the column point is at, Cel C#X? sets the comment column to
match the last comment before point in the buffer, and then does a Metae
: to alian the current line's comment under the previous one,

Because the major modes supply default values for the comment
column, switching buffers will reset it to the default unless you make
the variable Q<ESC>Comment Column<ESC> local in the buffer in which you
want to respecify it, C#X} and Cell CX; do this automatically,

(*R Kill Comment) kills the comment on the current line,
there is one, The indentation before the start of the comment is killed
as well, If there does not appear to be a comment in the line, nothing
is done,

:

:

EMACS REFERENCE GUIDE Page 55

The string recognized as the start of a comment is stored in thevariable Q<ESC>Comment Start<ESC>, while the string used to start a new
comment is kept in O<ESC>Comment Begin<ESC> (if that is zero, CommentStart is used for new comments), This makes it possible for you to have
any "3" recognized as starting a comment but have new comments beginwith

The string used to end a comment is kept in the variable
Q<ESC>Comment End<ESC>, This is used only rarely? usvally you mustinsert the end of comment yourself, In many lanquages no comment endis needed as the comment extends to the end of the line,

EMACS REFERENCE GUIDE Page 56

XXXII LISP Grinding

The best way to keep LISP code indented properly is to use EMACS to
reeindent it when it is changed, EMACS has commands to indent properlyeither a single line, a specified number of lines, or all of the lines
inside a single Seexpression,

The basic indentation function is *R Indent for LISP, which gives
the current line the correct indentation as determined from the previouslines' indentation and parenthesis structure, This function is normally
found on C=M=Tab, but when in LISP mode it is placed on Tab as well
(MetaeTab inserts a Tab), when given at the beaqinning of a line, it
leaves point after the indentations when given inside the text on the
line, point remains fixed with respect to the characters around it.

:

:

:

when entering a large amount of new code, it becomes useful that
Linefeed is equivalent to a CR tollowed by a Tab, In LISP mode,a
Linefeed will create or move down onto @ blank line, and then give it
the appropriate indentation,

:

If you wish to join two lines together, you can use the Metae* or
Control=Meta=* command (*R Delete Indentation), which is approximately
the opposite of Linefeed, It deletes any Spaces and Tabs at the front
of the current line, and then deletes the CRLF separating it from the
preceding line, A single space is then inserted, if EMACS thinks that
one is needed tnere,

If you are dissatisfied about where Tab wants to place the second
and later lines of an Seexpression, you can override it, If you alter
the indentation of one of the lines yourself, then Tab will indent
successive lines of the same list to be underneath it, This is the
right thing for functions which Tab indents unaesthetically, Of course,
it is the wrong thing for PROG tags (if you like to unwindent them), but
it's impossible to be right tor both,

when you wish to reeindent code which has been altered or moved to
a different level in the list structure, you have several commands
available, You can resindent a specific number of lines by giving the
ordinary indent command (Tab in LISP mode) an argument, Tt will indent
as many lines as you say and move to the line following them, Thus, if
you underestimate, you can give a similar command to indent some more
lines,

You can reeindent the contents of a single Seexpression by
positioning point before the beginning of it and typing ControleMeta=Q

EMACS REFERENCE GUIDE Page 57

(*R Indent Sexp), The line the Seexpression starts onis not ree
indenteds thus, only the relative indentation with in the S#expression,
and not its position, is changed. To correct the position as well,
simply give a Tab before the CeMo0,

Another way to specify the range to be resindented is with point
and mark, The command CeMe\ (*R Indent Region) applies Tab to everyline whose first character is between point and mark, In LISP mode,this does a LISP indent,

M
O
O
RE

BUSIN
ESS

FO
RM

S. IN
C..HO

PRIN
TED

IN
U.S.A.

EMACS REFERENCE GUIDE Page 58

XXXIII Commands for Editing Assembly Language Programs

MM MIDAS Mode<ESC> provides several commands that Know the format
of labels and tnstructions in MIDAS and other PDP#10 and
assemblers, These commands are

C=MeN Go to Next label
C-Map Go to Previous label

Go to Accumulator fleld of instruction
Go to Effective Address fieldKill next word and its Delimitina character
move up to previous paragraph boundary

Mew) move down to next paragraph boundary

Any line which is not indented and is not just a comment is taken
to contain a label, The label is everytning up to the first whitespace
(or the end of the line), C=MeN and C#M=P both position the cursor
riqnt at the end of a label; C#MeN moves forward or down and CeMeP moves
backward or up, At the beginning of a line containing a label,
moves past it, Past the label on the same line, C»M=P moves back to the
end of it. If you kill a couple of indented lines and want to insert
them riaht after a label, these commands put you at just the right
place,

CeM*A and C=MeE move to the beginning of the AC or EA fields of a
instruction, They always stay on the same line, and will move

either forward or backward as appropriate, If the instruction contains
no AC field, C»M#A will position to the start of the address field, If
the instruction is just an opcode with no AC field or address field, a
svace will be inserted after the opcode and the cursor left after the
space,

Once you've gone to the beginning of the AC field you can often use
CeM=D to kill the AC name and the comma which terminates it, You can
also use it at the beginning of a line, to kill a label and its colon,
or after a line's indentation to kill the opcode and the following

the characters are saved on the kill ring, together. C#D, a "deletion"
command, doesn't save on the kill ring,

The and M=] commands are not, strictly speaking, redefined by
MIDAS mode, since they alwayS go up or down to a paragraph boundary,
However, in MIDAS mode the criterion for a paragraph boundary is
redefined by changing Q<ESC>Paragraph Delimiter<ESC> (so that only
blank lines (and pages) delimit paragraphs, So, M={ will move up to the
previous blank line and M=) will move to the next one,

O
H

PRIN
TED

IN
U.S.A.

space, This is very convenient for moving label from one line to
another, In general, C=M#D is equivalent to C#D, except that all

EMACS REFERENCE GUIDE Page 59

XXXIV Commands Good for Enalish Text

EMACS has commands for moving over or operating on words, By
convention, they are all Meta» characters,

Move Forward over a word
M=B Move Backward over a word
MeD Kill up to the end of a word
Me<Delete> Kill back to the beginning of a word
Mea Mark the end of the next word
MeT Exchange two words} drag a word forward or

backward across other words,
Notice how these commands form a group that parallels the character

based commands CF, C=B, CeD, CT and <Delete>, Me@ is related to Cre, :

The commands Meta=F and Meta-B move forward and backward over
words, They are thus analogous to ControleF and Control#B, which move
over single characters, Like their Control» analogues, and Meta#
B will move several words if qiven an argument, and can be made to go in
the opposite direction with a negative argument, Forward motion stops
right after the last letter of the word, while backward motion stops
right before the first letter,

It is easy to kill a word at a time, Meta-D or MetaeK (*R ForwardKill Word) kills the word after point, To be precise, it kills
everything from point to the place Meta-F would move to, Thus, if point
is in the middle of a word, only the part after point is killed. If
some punctuation comes after point and before the next word, it Is
killed along with the word. If you wish to kill only the next word but
not the punctuation, simply do Meta-F to get the end, and kill the word
backwards with Metae<Delete>, Meta=D takes arguments just like Meta-F,

Meta=<Delete> (°R Backward Kill Word) kills the word before point,
It kills everything from point back to where Meta=B would move to, If
point were after the Space in "FOO, BAR", "FOO, " would be killed, In
such a situation, to avoid killing the Comma and Space, do a Meta-B and
a MetaeD instead of a Metae<Delete>,

MetaeT (*R Exchanae Words) moves the cursor forward over a word,
draaging the word behind (or around) the cursor forward along with it,
A numeric argument serves as a repeat count, A neqative argument undoes
the effect of a positive argument; it drags the word behind the cursor
backward over a word, An argument of zero, instead of doing nothing,
exchanges the word at point with the word at mark,

EMACS REFERENCE GUIDE Page 60

To operate on the next n words with an operation which applies
between point and mark, you can either set the mark at point and then
move over the words, or you can use the command Metae@ (*R Mark Word)
which does not move point, but sets the mark where MetaeF would move to,
They can be given arguments just like Meta*F, The case conversion
operations alternative forms that apply to words, since they are
particularly useful that way,

Note that if you are in Atom Word Mode and in LISP mode, all the
word commands move over/kill/mark LISP atoms,

The word commands' understanding of syntax is completely table-
driven, Any character can, for example, be declared to be a delimiter,
The table is the TECO "delimiter dispatch" held in aeregister ..D, See
TECO ORDER for full details, Also look at the documentation of MM Edit
eeD<ESC>, a command for interactively changing the delimiter dispatch,

N
O
G

>
Sw

EMACS REFERENCE GUIDE Page 61

XXXV Sentence and Paragraph Commands

The EMACS commands for manipulating sentences and paragraphs areall Meta» commands, so as to resemble the word=handling commands,
move back to the beginning of the sentence,

MoE move forward to the end of the sentence,
move back to previous paragraph boundary.
move forward to next paragraph boundary,
put point and mark around this paragraph
Caround the following one, if between paragraphs),

C#X <Pelete>Kill back to beginning of sentence,
The commands Metaes and MetaeE (*R Backward Sentence and *R Forward

Sentence) move to the beginning and end of the current sentence,
respectively, They were chosen to resemble Control#A and ControleE,
which move to the beginning and end of a line, but unlike those Control
characters Meta*A and Meta-E will if repeated move over several
sentences, EMACS considers a sentence to end wherever there is a ",",
"2" or "gy" followed by the end of a line or two Spaces, with any
number of ")""s, "J""s, Fh, s, or ene fs allowed in between, The
sentence which is ending there is currently considered to include the
Spaces or CRLF, so that MetaeE moves past them while MetawA stays after
them,

The command CeX <Delete> (*R Backward Kill Sentence) is useful when
you change your mind about a thought after a phrase or two,

There are similar commands for moving over paragraphs, Metae((°R
Backward Paragraph) moves to the beginning of the current or previous
paragraph, while Metae] (*R Forward Paragraph) moves to the beginning of
the next paragraph, More precisely, a paragraph boundary occurs on any
blank line followed by a non=blank line, and also on any noneblank Line
following a non=blank line and beginning with one of a userespecifiable
set of characters, usually Space, Tab and Period, or beginning with a
pageeseparator, Meta={ moves backwards till it finds such a boundary,
while moves forwards till it finds one, In addition, whenever a
Line starting with Period or "=" starts a paragraph, that line ts a
paragraph to itself; the next nonblank line always starts another
paragraph, This is useful for text justifier commands.

In major modes for programs (as opposed to Text mode), paraaraphs
are determined only by blank lines, This makes the paragraph commands
continue to be useful even though there are no paragraphs per se,

M
O
O
RE

BUSIN
ESS

FO
RM

S, IN
C..HO

EMACS REFERENCE GUIDE Page 62

when you wish to operate on a paragraph, you can use the command
MetaeH COR Mark Paragraph) to prepare, This command puts point at the
beginning and mark at the end of the paragraph point was in, Before
setting the new mark at the end, a mark is set at the old location of
point; this allows you to undo 4 mistaken Meta#H with two C=#U Cea's, If
ooint is between paragraphs (in a run of blank lines, or at a boundary),
the paragraph following point is surrounded by point and mark, Thus,
for example, MetawH CeW would kill the paragrabh around or after point,

One way to make an "invisible" paragraph boundary that will not
show if the file is printed is to put Space-Backspace at the front of a
line, The Space will make the line appear (to the EMACS pararaph
commands) to be indented, which will usually mean that it starts a
paragraph (according to Q<ESC>Paragraph Delimiter<ESC>),

The variable Q<ESC>Paragraph Delimiter<ESC> should be a TECO searen
string composed of various characters separated by CeO's A line is
taken to start a paragraph if it begins with one of those characters (or
with a page separator: see O<ESC>Page Delimiter<ESC>), In addition, if
the first character of Q<ESC>Paragraph Delimiter<ESC> is a ",", then any
line starting with a "," is considered to be a complete paragraph by
itself. This is the riant thing for most text justifiers, Of course,
any blank line followed by a nonblank line always starts a paragraph
regardless of Q<ESC>Paragraph Delimiter<ESC>,

EMACS REFERENCE GUIDE Page 63

XXXVI Indentation Commands for Text
Tab Indents line "appropriately",
MeTab Inserts a Tab character,
Linefeed Is the same as Return and Tab,

Undoes a Linefeed, Merges two lines,
M=M Moves to the line's first nonblank character,
Mal Indent to Tab stop

Indent several lines to same column,
Tab Shift block of lines rigidly right or left,

The way to request indentation is with the Tab command, Its
precise effect depends on the major mode, In Text mode, it indents to
the next tab stop, You can set the tab stops with the Edit Tab Stops
command,

For English text, the usual convention is that only the beginning
of a paragraph is indented, You don't need any special hackery not to
indent lines, But sometimes you want to nave an indented paragraph,
For this, use the Fdit Indented Text command, which enters a submode in
which Tab and the paragraph commands are suitably redefined,

when AutoeFill mode needs to break an overlong line, it usually
indents the newly started line, However, in Text mode, this is
inhibited by clearing O<ESC>Space Indent Flag<ESC>, This is so that
Auto Fill can avoid indenting without denying you the use of Tab to
indent, The Edit Table and Edit Indented Text commands temporarily
change the value of Space Indent Flag,

To undo a lineebreak, whether done manually or by Auto Fill, use
the Meta#* command to delete the indentation at the front of the current
line, and the line boundary as well, They are replaced by a single
Space, or by no space if before a ")" or after a "(" or To delete
Just the indentation of a line, go to the beainning of the line and use
Meta=\, which deletes all spaces and tabs around the cursor,

To insert an indented line before tne current one, do C#A, C#0, and
then Tab,

To make an indented line after the current one, use Linefeed,
To move over the indentation on a line, do Meta=M or C=MeM (*R Back

to Indentation), These commands, given anywhere on a line, will
position the cursor at the first nonblank character on the line,

For typing in tables, you can use Text mode's definition of Tab, °R
Tab to Tab Stop, which may be given anywhere in a line, and indents from

command, which displays for you a buffer whose contents define the tab

7

4

@ 2

on

there to the next tab Stop. Set the tab stops using the Edit Tab Stops

EMACS REFERENCE GUIDE Page 64

StODS, The second line contains a colon or period at each tab stop,
Colon indicates an ordinary tab, which you fill to with whitespace; a
period specifies that characters be copied from the corresponding
columns of the line above it, Thus, you can tab to a column
automatically inserting dashes or periods, The third line in the tab
Stops buffer contains column numbers for your convenience in editing thefirst two lines,

There are also commands for ehanging the indentation of several
lines at once, ControleMeta=\ (*R Indent Region) gives each line whosefirst character is between point and mark the "usual" indentation (as
determined by Tab), With a numeric argument, it gives each line
precisely that much indentation, Cex Tab (*R Indent Rigidly) moves all
of the lines in the reqion riqht by its arqument (left, for negative
arguments),

Usually, EMACS uses both tabs and spaces to indent, If you don't
want that, you must redefine both & Indent and & Xindent to insert only
spaces (do MM Describe<FSC> on them), To convert a1) tabs in a file to
spaces, you can use MM Untabify<ESC>, whose arqument is the number of
positions to assume hetween tab stops (default is 8), MM Tabify<ESC>
performs the opposite transformation, replacing pairs of spaces with
tabs whenever possible,

oe
oe

ee
?e
es
dt
#s
ee
st
ee
8t
se
08

80
@

"w
'S
'T
N
IG

IL
N
id
d

EMACS REFERENCE GUIDE Page 65

XXXVII Text Filling
Space in Auto Fill mode, breaks lines when appropriate,
MeQ Fill paragraph,Fill reqion (G is for Grind, by analogy with Lisp),
MoS Center a line,

EMACS's auto fill mode lets you type in text that is filled (broken
up into lines that just fit into a specified width) as you go, If you
alter existing text and thus cause it to cease to be properly filled,
EMACS can rearranged it to be filled if you ask,

Entering auto fill mode is done with the command MM Auto Fill, with
no argument, From then on, lines will be broken automatically at spaces
when they get longer than the desired width, New lines will usually be
indented, but in Text Mode they are not, To leave auto f1ll mode,
execute MM Auto Fill with an argument of zero, :

when you finish a paraqraph, you can type Space with an argument of
Zero, If the last word of the paragraph doesn't fit in its line, it
will move to a new one, But no spaces will be inserted, Return will
nave the same eftect, as well as inserting a line boundary,

If you edit the middle of a paragraph, it will cease to be
correctly filled, To re-fill a paragraph, use the command Meta-Q (*R
Fill Paragraph). Tt causes the paragraph that point is inside, or the
one after point if point is between paragraphs, to be rewfilled, All
the are removed, and then new ones are inserted where
necessary, If the paragraph contains extra spaces (for example, if it
was justified), giving Meta-Q a negative argument will remove them,

If you are not happy with MetaeQ's idea of where paragraphs start
and end (the same as MetaeH's; Sometimes, it is ok to fill a region of
several paragraphs at once, MetaeG will recognize a blank line or an
indented line as starting a paragraph and not fill it in with the
preceding line, The sequence Space#Backspace at the front of a line
will prevent it from being filled into the preceding line but will be
invisible when the file is printed, However, the full generality of
MetaeH (such as recognizing TJ6 command lines) is not available,

Giving an arqument to M=G or M=Q causes the text to be justified
instead of filled, This means that extra spaces will be inserted
between the words so as to make the right margin come out exactly even,
You can unjustify it (remove the spaces) by giving MeG or MQ a negative
argument.

O
H

:

EMACS REFERENCE GUIDE Page 66

The command (°R Center Line) centers a line within thecurrent line width, With an argument, it centers several lines and
moves past them,

The maximum line width for filling is stored in
Column<ESC>, Both tvpes of filling make sure that no line exceeds this
width, The easiest way to set this variable is to use the command C#X F
(*R Set Fill Column) which places the margin at the column point is on,
or wherever you specify with a numeric argument, If the f111 column has
never been set (or has been set to zero) then the margin is defaulted to
column 60,

The beginnings of a facility for filling text which is all indentedis embodied in the variable Prefix<ESC>, If this variable {s
nonzero, it should be a string which {is the current "prefix" for text
lines, Betore filling, the prefix is removed from the front of everyline, After fllling, the prefix is reinserted at the front of everyline, The command C#X , (*R Set Fill Prefix) sets the f111 prefix to
what is on the current line up to the pointer, This feature doesn't
totally win, so suagestions are solicited,

The variable Q<ESC>Space Indent Flag<ESC> controls whether auto
fill mode indents the new lines that it creates, A nonzero value means
that indentation should be done, O

H
"D
N
I
'S
W
AO

d
SS
AN

IS
N
G

PRIN
TED

IN
U.S

A.

EMACS REFERENCE GUIDE Page 67

XXXVIII Case Conversion Commands

EMACS nas commands for converting either a single word or any
arbitrary range of text to upper case or to lower case,

MeL Convert following word to lower case,
Mel) Convert following word to upper case,

Capitalize the following word,
cex CeL Convert region to lower case,
CeX Cel) Convert region to upper case,

The word conversion commands are the most useful, MetaeL (*R
Lowercase Word) converts the word after point to lower case, moving pastit. Thus, successive MetaeL's will convert successive words,
(*R Uppercase Word) converts to all capitals instead, while MetaeC (*R
Uppercase Initial) puts the first letter of the word into upper case and
the rest into lower case, All these commands will convert several words
at once if given an argument,

When given a negative argument, the word case conversion commands
apply to the appropriate number of words before point, but do not move
Point. This is convenient when you have just tvped a word in the wrong
case, You can give the case conversion command and continue typing,

Note that if one of the word case conversion commands is given in
the middle of the word, the part of the word before point is iqnored,

The other case conversion commands are cox Cel (*R Uppercase
Reaion) and Ce#X CeL (*R Lowercase Region), which convert everything
between point and mark to the specified case, Point 4nd mark do not
move, These commands ask for confirmation if the region contains more
than O<ESC>Regqion Query Size<ESC> characters; they also save the
original contents of the region on the kill stack, so that MeW Mey will
undo them,

Vo
s

e

:

:

EMACS REFERENCE GUIDE Page 68

XXXIX Commands That Apply to Pages

Cem], Insert formfeed,
C#X CP Put point and mark around this page

(or another page),
Cex t Move point to previous page boundary,
C#X j Move point to next page poundary,
C=X P Narrow down to just this Cor next) page,
Cex L Count the lines in this paqe,

Most editors make the division of a file into pages extremely
important, The page separators have fundamental effects on the editors'
behavior, EMACS, on the other hand, treats a formfeed character just
like any other character, It can be inserted or deleted in the ordinary
way (but, for convenience, C#MeL inserts a formfeed), Thus, you are
free to paginate your file, or not, according to other criteria,
However, since pages are often meaningful divisions of the file,
commands are provided to work on them,

The CX ((*R Previous Page) command moves point to the previous
pace delimiter (actually, to right after it), If point starts out right
after a page delimiter, it skips that one and stops at the previous one,
A numeric argument serves as a repeat count, The CX) (*R Next Page)
command moves past the next page delimiter,

The C#X C#P command (*R Mark Page) puts point at the beginning of
the current page and the mark at the end, The page terminator at the
end is included (the mark follows it), That at the front is excluded
(point follows it). Thus, this command can be followed by a Cew to kill
a page which is to be moved elsewhere, Or, it can be used just to go to
the top of the page,

A numeric argument to CeX C#P is used to specify which page to go
to, relative to the current one (The design of TECO is such that it is
not possible to know the absolute number of the page you are in), Zero

previous one,

The command CeX P (*R Set Bounds Page) narrows down to just one
pade, Everything before and after becomes temporarily invisible and
inaccessible (Use C=X to undo this, Both page terminators, the
preceding one and the following one, are excluded from the visible
reqion, Like C#X C=P, the P command normally selects the current
page, but allows you to specify which page explicitly relative to the

narrowed down to one page, C#X P moves you to the next page (otherwise,

33
r

DN
IS
W
a

Di
a

ad

:

means the current page, One means the next paqe, and 1 means the

current one with a numeric argument, However, when you are already

EMACS REFERENCE GUIDE Page 69

it would be a useless noon), One effect of this quirk is that several
P's in a row get first the current page and then successive pages,
Just what delimits pages is controlled by the variable Page

Delimiter, which should contain a TECO seareh strina which will find a
page separator, Normally, it contains a string containing just *L, For
this file, it contains (In any case, page separators are recognized as
such only at the beginning of a line, The paragraph commands consider
each page boundary to delimit paragraphs as well,

The C#X L command (*R Count Lines Page) is good for deciding where
to break a page in two, It first prints (in the echo area) the total
number of lines in the current page, and then divides it up into those
preceding the current line and those following, as in "96 (72425)",
Notice that the sum is off by ones that will happen whenever point is
not at the front of a line,

EMACS REFERENCE GUIDE Page 70

XL Narrowing

C=-X N Narrow down to between point and mark,
Widen to view the entire buffer,

P Narrow down to the page point is in,
"Narrowing" means focusing in on some portion of the buffer, making

the rest temporarily invisible and inaccessible,
When you have narrowed down to apart of the buffer, that part

appears to be all there is, You can't see the rest, you can't move into
it (motion commands won't go outside the visible part), you can't changeit in any way, However, it is not gone, and if you save the file you
are editing all the invisible text will be saved, In addition to
sometimes making it easier to concentrate ona single subroutine or
paragraph by eliminating clutter, narrowing can be used to restrict the
range of operation of a replace command,

The primary narrowing command is CX N (*R Set Bounds Region), It
sets the "virtual buffer boundaries" at point and the mark, so that only
what was between them remains visible, Point moves to the top of the
now=visible range, and the mark is left at the end, so that the region
marked is unchanged,

The way to undo narrowing is to widen with C=X (°R Set Bounds
Full), This makes all text in the buffer accessible again,

Another way to narrow is to narrow to just one pade, with Cex P,

Note that the virtual buffer boundaries are 4 powerful TECO

commands described here set them permanently, many others set them
temporarily,

N
ad

mechanism used internally in EMACS in many wavs. While only the

#
EMACS REFERENCE GUIDE Page 71

XLI Libraries of EMACS Commands,

All EMACS commands, including the ones described in this document,reside in sharable libraries, A command is not accessible unless thelibrary that contains it is loaded, Every EMACS starts out with one
library loaded: the EMACS library, which contains all of the commands
described in this document, except those explicitly stated to be
elsewhere, Other libraries full of commands are provided with EMACS,
and can be loaded explicitly when requested to make the commands in them
available,

To load a library permanently, say Load
Library<ESC><libname><ESC>, Tne library will be found, either on vour
own directory or whichever one you specify, or on the EMACS directory,
and loaded in, All the commands in the library are then available for
use, Whenever you use MeX, the command name you specify is looked up in
each of the libraries which you nave loaded, If any library contains a
definition for that name, the definition is executed,

:

You can also load a library temporarily, just long enough to use
one of the commands in it. This avoids taking up space permanently with
the library, Do this with the MM command Run Library, as in
RUN<KESC><libname><ESC><command. name><ESC>, The library <libname> will
be loaded in, and <command name> executed, Then the library will be
removed from the EMACS job, You can load it in again later,

MeX List Loaded Libraries types the names and brief descriptions of
all the libraries loaded, last loaded first, You will see that the last
one is always the EMACS library,

Libraries are loaded automatically in the course of executing
certain commands, You will not normally notice this, For example, the
TAGS librarv is automatically loaded in whenever you use the M=, %F
Visit Taq Table commands for the first time, This process 18 known As
"autoloading", It is used to make the commands in the TAGS library
available without the user's having to know to load the library himself,
while not taking up space in EMACS's of people who aren't using them,

You can make your own libraries, which you and other people can
then use, if you know how to write TECO code,

3H

EMACS REFERENCE GUIDE Page 72

XLII The Minibuffer

The minibuffer is a facility by means of which EMACS commands can
read input from the terminal, allowing you to use EMACS commands to edit
the input while you are typing it, The minibuffer also allows the EMACS
user to type in a TECO program and execute it,

You can always tell when you are in a minibuffer, because the Mode
line will contain something in parentheses, such as "(Minibuffer)" or
"(Query Replace)", There will also be a line of dashes across the
screen a few lines from the top, Strictly speaking, the minibuffer is
actually the lines above the line of dashes, for that is where you edit
the input that the minibuffer is asking you for, The editing region has
been limited to a few lines so that most of the screen can continue to
show the file you are editing,

Often, a minibuffer will start out with some text in it, This
means that you are supposed to add to that text, or, sometimes, to
delete some of it so aS to choose among several alternatives, For
example, Meta»% (*R Query Replace) provides vou with a minibuffer
initially containing the string "MM Query Replace<ESC>", The cursor
comes at the end, You are then supposed to add in the arauments to the
Query Replace, MM @ TECO<ESC> needs to Know how you want it to output
your listing, so it offers you a minibuffer containing three lines, each
of which will output the listing in one way, and asks you to delete the
lines you don't want.

In a minibuffer, you can edit your input until you are satisfied
with it, when that happens, you have to tell EMACS that you wish to
submit the input. You do that by typing two <ESC>s, An <ESC> not
followed by another <ESC> is simply inserted in the buffer, This is
because it iS common to want to put <ESC>s into the minibuffer, which
usvally contains a string of TECO commands, For example, in Metae% C*R
Query Replace) each argument must be ended by an <ESC>,. The two <ESC>s
you use to exit are automatically moved to the end, since <ESC>S are 50
often needed there,

Since <ESC> is selfeinserting, typing Meta characters can be a

problem, You can do it by using Ce\ instead of <FSC> as the Metae
prefix, If you type a ControleMeta character on your keyboard, the
correspondina ASCII control character is inserted in the minibuffer,
This is becavse the Lisp commands are rarely useful when editing TECO
commands, but insertion of control characters is frequent, If you
really want to use a Control=Meta EMACS command, you must use CeC to
type it,

Cu
vD

N
ES
W
aO

d
SS
Aa

N
iS
ng

aY
O
O
W

EMACS REFERENCE GUIDE Page 73

You can cancel your input in a minibuffer and start all over again
by typing CeG, That will kill all the text in the minibuffer, A C#G
typed when the minibuffer is already empty will exit from the
minibuffer, Usually, this will abort whatever command was using the
minibuffer, so it will return without doing anything more, For example,
1f you type two CG's at Meta-%'s minibuffer, you will return to top
level and no query replace will be done, Typing a single CG at a
preinitialized minibuffer to empty the buffer is not very useful, since
you would have to retype all the initial text,

If you want to type in a TECO command, you can invoke the
minibuffer with the EMACS command Metas<ESC>, or <ESC> <ESC> (°R Execute
Minibuffer), An empty minibuffer will appear, into which you should
type the TECO command string, When you exit with <ESC> <ESC>, the two
<ESC>s that you exit with will be moved to the end of the command
string, so if you wanted an <ESC> where the cursor was you should have
inserted one with a C#Q <ESC>, Then the command string will be
executed, in the environment from which the minibuffer was invoked,

The last five distinct minibuffer commands you have issued are
remembered in a qevector in qeregister .M. (M=X commands are also
remembered there), The <ESC> command (*R Rewexecute Minibuffer)
will re=execute the last command (minibuffer or M=X) in that list, With
an argument <n>, it will execute the <n>*th previous command, Just in
case the command is an MM Revert, it is printed out (only the first 40
characters or so) and you are asked to confirm with "Y" or "N#,

You can also get your previous minibuffer and MeX commands back
into the minibuffer to be edited and reeexecuted with chanaes, Giving
M=<ESC> and arqument, as in Cwll Me<ESC>, causes the minibuffer to be
loaded up with the most recent previous command, just as if you nad
typed it in again from scratch, You can then edit it, execute it by
typing two <ESC>s, or cancel it with C*G, To get an earlier command
string instead of the most recent one, use the command CeC C# once you
are in the minibuffer, This command will "rotate" the ring of saved
commands much as M#Y rotates the ring of killed text. Each C=C CeY will
reveal an earlier command string, until the ring has rotated all the way
around and the most recent one reappears, CeC CY is actually a way of
saying , but in the minibuffer that's the only way to type it,
since <ESC> inserts itself and ControleMeta characters insert control
characters,

If you exit from Meta#<ESC> with a CeG, nothing is executed and the
previous minibuffered command string is still remembered as the last
One,

The command MetaeX (*R MM Via Minibuffer) which is used for
executina a named EMACS command works by means of a minibuffer which is
initialized with an "MM", You can get the same result with Meta#<ESC>
{f you type the MM yourself, Or, if you type and delete the MM

O
O
H

y

EMACS REFERENCE GUIDE Page 74

which is provided for you, you can execute any TECO command string,
Most commands that provide an initialized minibuffer simply run whatever
is in the minibuffer when you exit,

while in a minibuffer, { you decide you want the minibuffer to use
more lines on the screen, you can use C#X * (*R Grow Window) to get.
more, It gets one more line, or as many lines as its argument says,

BUSIN
ESS

FO
RM

S, IN
C..HO

EMACS REFERENCE GUIDE Page 75

XLITI Keyboard Macros,

A keyboard macro is a command defined by the user to abbreviate a
sequence of other commands, If you discover that you are about to type
CeN CeD forty times, you could define a keyboard macro to do C#N CeD and
call it with a repeat count of forty, To use keyboard macros, you must
load the KRDMAC library,

Keyboard macros differ from ordinary EMACS commands, also commonly
Known as macros, in that they are written in the EMACS command language
rather than in TECO, This makes {it easier for the novice to write them,
and makes them more convenient as temporary hacks, However, the EMACS
command language is not powerful enough as a programming language to be
useful for writina anything intelligent or general, For such things,
TECON must be used,

om

You define a keyboard macro while executing the commands which are
the definition, Put differently, as you are defining a keyboard macro,
the definition is being executed for the first time, This way, you can
see what the effects of your commands are, so that you don't have to
figure them out in your head, When you are finished, the keyboard macro
is defined and also has been, in effect, executed once. You can then do
the whole thing over again by invoking the macro,

TH

To start defining a keyboard macro, type the Cex command (*R
Start Kbd Macro), From then. on, your commands continue to be executed, Z

but also hecome part of the definition of the macro. when you are
finished, the C#=X) command (*R End Kbd Macro) terminates the definition
(without becoming part of it!), The macro thus defined can be invoked

numeric argument to execute the macro many times, An argument of zero
means to repeat the macro indefinitely (until it gets an error), C#X)
can also be given a repeat count as an argument, tn which case it ree
invokes the macro, but defining the macro counts as one repetition
(since it is executed as you define it), So, giving C#X an argument
of 2 would execute the macro one additional time,

2

again with the C#xX E command, which may be given a repeat count as a

If you wish to save a keyboard macro for longer than until you
define the next one, you must give it a name, Do MeX Name Kbd
Macro<ESC>FUO<ESC> and the last keyboard macro defined == the one which
CmX F would invoke is given the name FOO, FOO will from then on

invoke that particular macro, Name Kbd Macro will also read a character
from the keyboard and redefine that character to invoke the macro, If
you don't want to redefine any character, type a Return or <Delete>,
Only selfeinserting and undefined characters, and those that are already

€
EMACS REFERENCE GUIDE Page 76

keyboard macros, can be redefined in this way, Prefix characters may be
used in specifying the character to be redefined,

To examine the definition of a keyboard macro, use the View Kbd
Macro command, Either supply the name of the MM command which runs the
macro as a string argument, or type the character which invokes the
command on the terminal when the command asks for it,

You can aet the effect of Query Replace, where the macro asks you
each time around whether to make a change, by using the command Cex Q
COR Kbd Macro Query) in your keyboard macro, When you are defining the
macro, the Q does nothing, but when the macro is invoked the Cex Q
reads a character from the terminal to decide whether to continue, The
special answers are Space, <Delete>, <ESC>, CeL, C=R, A Space means to
continue, A <Delete> means to skip the remainder of this repetition of
the macro, starting again from the beqinnina in the next repetition, An
<ESC> ends all repetitions of the macro, but only the innermost macro
Cin case it was called from another macro), CeL clears the screen and
asks you again for a character to say what to do, CeR enters a
recursive *R Mode edit? when you exit, you are asked again Cif you type
a space, the macro will continue from wherever you left things when you
exited the CeR), Anything else exits all levels of keyboard macros and
{s reread as a command,

AD

1

4:

t

tt 7

7

7

te+ 7

+

T
r

7ajMog. 4

7

a

:
4t

PoeTytiter~
4

gt.1

7

~~

pug4

whe

1
I

7

A

ITY+tad:if::fw: :

::
:::

:

: ::

fox i
1

papeat

1

twerdmeThat
1 7

+
1

4 J
7

:

1 ::

Te

4

1
1

1

1
t

re

4

rs

ox
]

r,t

a

4
4

Peo.

t

ral

t f

d.
q "fie

i

:

J

a TE

4

1

+
1

T ~

1

4

17

-11: +
4

1,

an y
7I :

7

7

7

1 T

{
a

tt. tt

rr V7
tr "oad

fey

pke TM}

UPLGS Ce M

7
71

47 +

4 +

7

1

+ We

k

~ woulda Fabs 'ine
1

7 f

t Tt. :

Leto erJ t
{ te LP
Writ Cab caries Smt OO bat be ens1 :

our

"Serpe?

rows

"Pra
ola

owe wont bu cast bree gro.
feet

cred pee

y

THE (Ene Is wort ile.
2

+ bie ad tamer

eed Pr tu TF i +

Mirna
Tait 1 13

1
1

to
1 1 4

41 :

i1

Ti & 41

tat

7T

a 1 { 1

ab
y

214

Laie
::

ASSOWits :+ :

:

A forecast of the characteristics
of computer systems, peripherals, andsoftware during the latter half of the 1970s

The Next
(and Last?) Generation.,............
The pace of technological evolution in
the computer field is as fast as ever.
Indeed, it may be accelerating: prob-
ably more new computers and com-
puter-related products appeared during .

1970 and 1971 than in any compa-
rable previous period. Apparently new
generations of computers will continue
to appear. The technical staff of Ar-
thur D. Little, Inc., is frequently called
upon to forecast technological devel-
opments in the various component
sectors relevant to computer systems
and to advise system manufacturers'
product planners. This article contains
a distillation of our current thinking,
and a view of what the result will be as
realized in the computer systems of
1975 or so.
Fig. 1 forecasts the cost of comput-

ers (central processors and memories
only) during the 1970s. Three bands
are shown: large computers (which to-
day cost about $1 million), small but
complete business computers (today
costing about $15,000), and the least
expensive minicomputers (today cost-
ing about $4,000). The large comput-
ers of 1980 should cost no more than
one tenth as much as comparable ma-
chines today, because of the extreme
drop expected in the manufacturing
cost of electronics for both logic and
memory. Larger machines than these
will exist, costing more, but their pow-
er will be so great that few users can be

expected to need them The smaller
computers can also be expected to de-
cline in cost, though less sharply; a
factor of approximately five can be

expected. Late in the decade low man-
ufacturing costs for monolithic circuits
will make possible memories cheaper

. than any today (two cents per bit)
with high performance by today's
standards, while the highest perfor-
mance memories will offer cycle times .

well under 100 nanoseconds.
Fig. 2 (page 73) forecasts the trend

of random-access mass storage devices,
probably as important as the computer
trend for most users. It shows cost per

May, 1972

bit as a function of time; average access
times are assumed to remain tens of
milliseconds (though the more exotic
devices may-late in the decade-be
much faster).

Rotating magnetic devices today
dominate the field, and we believe they
still have considerable improvement
potential (perhaps another fourfold in-
crease in packing density). A host of
new technologies are in development,
however, including magneto- and elec-
tro-optical technologies, lasers, mag-
netic bubble and holographic ap-
proaches. Each of these has its prob-
lems, and in each case after cost-effec-
tive devices have been produced new
software and system approaches will be
required to exploit them. We therefore
doubt that they will seriously challenge
magnetic devices for another five
years, but in the latter part of the
1970s the tremendous performance

$1,000,000

100,000

10,000

1,000Co
st
of

Av
er
ag
e
Pr
oc
es
so
r

100
1970

may at best cost one half as much as
comparable devices today (in constant
dollars). The devices containing a
higher proportion of electronics are
likely to show greater improvement,
however: these include nonimpact
printers, cathode ray tube terminals
and optical character readers. We be-
lieve each of the latter will decline in
cost to such a degree that they will be
considered inexpensive options for
modular terminals. Some manufactur-
ers' announcements already foreshad-
ow the result: a terminal subsystem
based on a versatile minicomputer;
incorporating small discs, cassettes
(eventually monolithic stores) for data
retention; employing a crt display and
keyboard either for regular use or for
system control; several levels of print-
er; and optical reading modules for
data entry and also for facsimile trans-
mission and even office copy. Such ter-

4 :
:

Large : :

General- :

>" Purpose ; :

pet opie

General~
: : :

Purpose :

:

: : : : :

: :

: +

: : ::

:

te

: Minimum
: :

:
:

:
: :

: :

:
: :: : :

19801975

Fig. 1. Cost of Central Processors

improvements they promise should be
realized in one or more of the compet-
ing technologies.
Highly mechanical input-output de-

vices (impact printers, tape drives) are

already quite mature and are unlikely
to improve a great deal: in 1980 they

minal subsystems will combine in sur-
prising ways the functions of data pro-
cessing with those of today's office ma-
chines, and will probably cause consid-
erable change in today's office rou-
tines.
These impressive improvements in

71

:

:

t +:
4

set .

MIDWEST:
Minneapolis, MN 612/941-6500
Chicago, IL 312/992-0850
Detroit MI 313/642-3383
Lansing Ml 517/489-1700
St. Lows, MO 314/878-4911
Dallas, TX 214/638-7946
Houston, TX 713/772-2483
Dayton, OH 513/278-6723

SOUTHEASTERN
Washington OC 703/893 4356
Nashville, TN 615/329-3699
Greensboro. NC 919/273-6789
Raleigh NC 919/782 2185
Atlanta, GA 404/432-7791

WESTERN.\ Los Angeles CA 213/645 4300
Palo Alto, CA 415/428-2100
Seattle, WA 206/228-4770

EASTERN:
New York, NY 212/868-7590
Nutley, NJ 201/667-2960
Philadelphia, PA 215/643-7677
Pittsburgh, PA 412/833-3633
Boston, MA 617/749-2683
Buffalo, NY 716/691-6036
Hartford, CT 203/525-7701

CANADIAN:
Montreal, Quebec 514/842-1721
Toronto, Ontario 416/447-6413

ENGLAND:
Wattord, Herts Walford 39611
Heme! Hempstead, Herts
Hemel Hempstead 61711
Poynton, Cheshire Poynton 2129

Fed Abea
+

DATA 100 Model 78, Modet 70, and Model 88-23 Terminals are at wor
right now saving users money and speeding up data communications?
in talking with 360's, 370's, 6600's.1108, and Spectras throughout theworld DATA 100,.the leading supplier of plug-in replacement Batch
Terminals, offers the following products

Model 70 Remote Batch Terminal truly plug compatible with 2780 6

featuring-
Faster throughput on lines up to 9600 BPS
Selection of following peripherals: 300 & 600 CPM card readers, 300,"

:

400, 600 LPM line printers, card punch :
15% to 30% savings in monthly rental

Model 78 Programmed Batch Terminal, plug compatible.with'360/20:
Simulation of 2780, 1004, DCT 2000, and 200 UT Terminals, f
All Model 70 peripherals plus magnetic tape, paper tape, CRT's and:

high speed transmisston to central computer... .
30% to 50% savings in monthly rentals.
Interleaving data transmission.
Magnetic tape applications to fit your requirements.

:

featuring-

TTYs
Capability to concentrate data input from low speed terminals fora they

Compat Model 88-23 family of Data Entry Terminals that--
Validate input data at source and transmit directly to 360/370
central computer.
Offers optional central off-line pooling. of remote data entry
terminals, thus freeing CPU of communications processing.
Offers application software for order processing, billing, inventory »

control, and many others.

Find out today what DATA 100 can do for you to help solve your data
communications problems with quality products, on-time delivery, and es :

competitive pricing-all backed up with an established sales and
service organization. :

We

CIRCLE 47 ON READER CARD

Next
Generation

posting, program compilations, report
requests) will be received by a conver-
sational scheduler, which verifies the
acceptability of the stimulus and
schedules the required operation. The
conversation with users will be con-
ducted primarily in an improved com-
mand language, simpler and closer to
English than the present primitive
command languages. New programs,
report specifications, etc., will be stated
by the users in improved versions of
present programming languages.
File organization, memory alloca-

tion, linking and all other internal sys-
tem management functions will be
conducted by automatic, universal
methods; the user will have no knowl-
edge of the location of data or the
detailed status of the system except
through monitor programs. This will
be inefficient, but the use of hardware
assists such as virtual addressing and
stacks will improve the efficiency, and
improvements in the price-perfor-
mance of memories and processor elec-
tronics will help. The ambitious and
skilled user will, of course, have the
opportunity to optimize the system's
internal operation.
The system will be configured so

that it cannot be incapacitated by any
single element's failure, and diagnostics
will be run automatically to detect fail-
ures. Detection of a failure will cause
automatic rescheduling so that opera-
tions on high priority jobs can contin-
ue without pause at a reduced rate.
Stored logic will be used extensively

to perform these automatic functions
without intolerable loss of efficiency,
and will also make possible versatile
emulation of past generations of soft-
ware and hardware-conversion pains
should have dwindled to mere twinges.
The peripheral equipment used will

(through 1975) consist mainly of im-
proved versions of present devices. The
bulk of them will be at remote loca-
tions, because fast-response processing
will be the primary justification for
such systems In addition to conversa-
tional and remote batch terminals we
believe there will be widespread use of
satellite systems: small (under $5,000
per month) but fully equipped modu-
lar systems used most of the time for
local processing but connected to the
central complex and serving when nec-
essary as terminals.
Fig. 4 depicts the kind of equipment

we believe will be employed in the
central complex of such a system. In-
terleaved, separately powered memory
banks (for both speed and reliability)
will be connected via a network of
busses to numerous processing mod-

74

ules. Two or more identical computers
will be used, each relatively inexpen-
sive. Any one can arbitrarily be desig-
nated to run the scheduler, which will
function whenever a new stimulus en-
ters the systenr to generate queues of
interlinked task descriptions that the
various processors call upon asyn-
chronously for instructions. Two or
more independentlyprogrammed input-
output controllers will handle local
peripherals; communications proces-
sors will deal with remote ones; and file

Machine

tion cycles" we have become fami#ar
with should end, and orderly evolution
should become the rule.
The user's personnel problems will

also be eased. If he is willing to use the
methods built into the system he will
no longer need system software special-
ists (though they may often pay their
way by achieving higher efficiencies
through optimization). Programming
will also become easier; programmers
will have less to think about in the way

2

of machine constraints, and their indi-

New Programs, Run Requests,
Report Request: Inquiries

Programming Command
Languages Language

Conversational
Scheduler- a
Diagnoser

Outputs 7 Inputs

Fig. 4. User Interaction with Network System

controllers will handle file building and
reference (the functions of these con-
trollers will probably be combined into
multipurpose units of lower speed for
less expensive systems). In general, the
emphasis will be on the use of multiple
relatively low cost units distributing a
large workload in parallel fashion,
rather than on single fast, sequential
units. However, batch applications
with lower reliability requirements can
still be served adequately by single
modules.
The user will probably pay as much

for such systems as he does today for
systems with comparable throughput,
the brute force automatic methods
used will offset the lower component
costs. However, implementation of ad-
vanced information systems should be-
come much easier. Independence of
program modules from one another,
from files, and from equipment config-
urations should be complete, evolution
of the information system will be facil-
itated. The same should be true of the
equipment. The operating system will
permit the network of processing mod-
ules to be widely varied; the user will
be able to add, subtract, and upgrade
them individually, without undergoing
the pain of a conversion. The "genera-

vidual programs will be more indepen-
dent. Even system analysis will become
a little easier. The systems will accom-
modate evolutionary change easily,
and the costs of adding a forgotten
function or superseding an old method
will be much lower than they are to-
day. The man-machine interface will
have shifted a little closer to the man.

:

e :

Mr. Withington has been with Arthur
D. Little for over 11 years as a data
processing consuitant. He was previ-
ously with Burroughs Corp. and the
National Security Agency. He is a
Datamation contributing editor and
has published two books on the use
of computers in business; a third is
nearing completion.

DATAMATION

Next
Generation

technology will be of only limited value
if they are not matched by improve-
ments in software and system design.
Indeed, most users' problems with ad-
vanced information systems arise more
from inadequate software than from
any shortcoming in the cost-effective-
ness of the hardware. It is therefore of
at least equal importance to review the
improvements to be expected in soft-
ware and computer system design.

Perhaps most important, machine
independence of programming and
operations seems likely. Procedure-
oriented languages are already nearly
at the point where any program can be

compiled and executed on a wide vari-
ety of machines. Data management
languages have not reached this state
but are advancing fast; they seem likely
to reach maturity within five years.
Command languages (by which com-
puter systems are directed in the opera-
tion of completed programs) are still
in a primitive state, but the manufac-
turers have become aware of command
languages' importance and are working
hard on improving them. Command
languages can become machine-inde-
pendent when the system is capable of
automatically scheduling itself and al-
locating its resources to meet the com-
mands given it; a standard command
language can then be applied to any
system. A few computer systems al-
ready approach this capability, and all
may be expected to.
Among their operating system func-

tions, the new machines are likely to
offer completely automatic tools for
file, communication and input-output
management. Completely general
methods of performing these functions
are already known, but they are rarely
used unmodified because of their ex-
treme inefficiency. The general meth-
ods are likely to become more sophisti-
cated and efficient. More important,
perhaps, the cost-performance im-
provement in the machines will render
the inefficiencies more tolerable. It
should be possible for the user of the
late 1970s to employ computer systems
without ever "lifting the hood"; with-
out knowing (for example) how his
files are structured or indexed, or what
the machine is doing at any given mo-
ment. Of course, those who want to

optimize their systems' performance
will continue free to do so.

On-line information systems de-
mand a higher level of equipment
availability than was needed for batch

processing systems; in the worst case,
the organization must stop functioning
when its machine is" down. It seems
that the best ways of attaining the re-

May, 1972

quired reliability will be found in im-
proved system designs rather than just
in component reliability improvement.
1BM's 370s and Burroughs' 6700 in-
corporate diagnostic programs which
intermix with the normal job stream.
When these are combined with multi-
processing and an automatic self-
scheduling capability, we have systems
that can truly "fail soft": diagnose, cut
out and schedule around any failed
module without interrupting opera-
tions and continue to function, though

be eliminated. The self-scheduled sys-
tem can accommodate the necessary
interrupts: in fact, the data entry and
inquiry functions merge (as they al-
ready do in an airline reservation sys-
tem). Lower data entry cost and im-
proved responsiveness appear to be ar-
riving together.
How will these technological and

systems improvements be combined
into the next generation of computer
systems? We think the more advanced
systems of today point the way clearly,

.01

Ce
nt
s
Pe

r
Bi

.001

.0001

.00001
1970 1975 1980

Fig. 2. Cost of Mass Storage

Memory Banks

CPU

cpu

File Conzroller

1/0 Processor om
1/0 Processor

Comm,Processor

Comm. Processor

File Controller

Fig. 3. Components of Network System

at a reduced performance level.
Finally, there is a ferment of new

ideas in data capture and data entry. In

many cases error control can be as-
sured if the original entry of a transac-
tion is immediately compared to the
record to be updated, to a catalog of
items and prices, to range and reason-
ableness guidelines, or to a combina-
tion of these. Where this can be done,
the costly key verifying operation can

and that the next generation will have
the following characteristics,
Fig. 3 depicts the system (called a

"network system" for convenience) as

it appears to the user. It operates en-

tirely in higher level languages, and is

entirely self-scheduling and self-orga-
nizing in the sense of memory, file
and communication management. All
stimuli presented to the system (run
requests, inquiries, transactions for

73

4

4175

OBJECTIVES

1. GET EVERYONE EXCITED ABOUT THE INTEGRATION OF COMPUTATIONAL

NEEDS WITH PUBLIC NETWORK ACCESS AND TO IMMEDIATELY INTEGRATE

THESE INTO A "PERSONAL" COMPUTER PRODUCT.

2- UNDERSTAND DIGITAL'S POSITION RELATIVE TO THESE PRODUCTS.

3- EVOLVE A STRATEGY FOR DEVELOPMENT OF SOLUTION ORIENTED

PRODUCTS WHICH INTEGRATE STAND ALONE COMPUTER USAGE WITH

PUBLIC NETWORK ACCESS AND CAPTURE THIS MARKET-

+

4

TERMS

SOLUTION: A SYSTEM WITH ALL THE SPECIFIC CHARACTERISTICS
NECESSARY TO BE MARKETABLE (AND COST EFFECTIVE) TO THE

SOLUTION'S POTENTIAL CUSTOMER. (NOT JUST PRODUCT, BUT

SUPPORT, TRAINING, DOCUMENTATION ETC.)

PERSONAL COMPUTER: A SINGLE USER SYSTEM MARKETED AS A

COMMODITY.

MARKET.

PUB LIC AND PRIVATE DATA BASES.

THE NON-TECHNICAL USER WANTS SIMPLE ACCESS TO MANY SOURCES OF

INFORMATION FROM HIS TERMINAL. THOSE WHO SEVERELY LIMIT
ACCESS BY TYING A TERMINAL TO A SPECIFIC INFORMATION SOURCE

WILL SOON LOSE

THE STRATEGY I S TO TIE A NUMBER OF SOURCE INDEPENDENT ACCESS

(BOTH ACCESS T0 DATA AND ACCESS TO COMPUTATION) TOOLS TOGETHER

WITH LOCAL COMPUTATION CAPABILITIES IN ORDER TO GIVE

REASONABLE PRI CE PERFORMANCE IN:

SMA LL BUSINESS

DESKTOP USE FOR LARGER BUSINESSES

PART OF THIS PRODUCT IS DEPENDENT ON ACCESS THROUGH PUBLIC

NETWORKS TO

LOOK AT WHAT TELENET OFFERS TODAY THAT, WHEN INTEGRATED WITH

PROPER COMPUTATION AND INFORMATION HANDLING WOULD BE SALEABLE

IMMEDIATELY.

SOME PUBLIC INFORMATION AVAILABLE TODAY FROM TELENET

AMERICAN HOSPITAL SUPPLY ORDERING

MAJOR BIBLIOGRAPHIC DATA BASES

BOOK ORDERING

REAL TIME PRICING FOR BONDS/STOCKS/OPTIONS/AND COMMODITIES

ELECTRONIC MAIL

CLASSIFIED ADS

SPORTS SCORES

RESTAURANT/THEATRE GUIDE

HOROSCOPE/BIORHYTHMS

GLOBAL WEATHER

NEW YORK TIMES DATA BASE

AIRLINES SCHEDULES

FUNDING ORGANIZATIONS/SOURCES OF GRANTS

HISTORICAL AND FORECAST DATA FOR INDUSTRIES, PRODUCTS, AND

WORLDWIDE END USE.

LEGISLATION

FINANCIAL MODELING AND ANALYSIS

EDUCATIONAL PACKAGES

4

TWO EXAMPLES:

PHARMACY:

LOCAL:

PUBLIC:

DATA BASE/RECORDS

INVENTORY

ACCOUNTS RECEIVABLE

ACCOUNTS PAYABLE

LABEL PRINTING

CONTROLLED DRUG ACCOUNTING

PAYROLL

ORDERING OF SUPPLIES

ADVERTISEMENT OF NEW PRODUCTS

SHORTEST - ROUTE CALCULATIONS FOR DELIVERIES
INCOME TAXES

STOCKS/BONDS

ELECTRONIC FUNDS TRANSFER

BLUE CROSS/BLUE SHIELD/MEDICARE REPORTING

DRUG INTERACTIONS

YOUR DESK:

LOCAL: DRAFT PREPARATION

CALCULATOR

CALENDAR

TICKLER

ORGANIZATION CHARTS

PRESENTATION PREPARATION

PHONE LOG

PHONE DIRECTORY

PUBLIC: AIRLINE SCHEDULES

ELECTRONIC MAIL

BIBLIOGRAPHIC SEARCH

WEATHER

RESTAURANT GUIDE

NEW YORK TIMES DATA BASE

CURRENT GRANTS

LEGISLATION

CURRENT PRODUCT COST/SHIPMENT/REVENUE DATA

MARKETING RESEARCH DATA

WHERE IS DIGITAL?

PLUSES:

WE HAVE THE CONCEPT

WE HAVE THE TOOLS

WE HAVE THE TECHNOLOGY

WE HAVE THE DESIRE

MINUSES:

WE DO NOT HAVE THE SOLUTIONS OR SOLUTION BUILDERS

WE DO NOT YET HAVE THE PROPER DISTRIBUTION CHANNELS

WE DO NOT HAVE THE CORRECT ORGANIZATION

IN THE RED BOOK STRATEGY GURDON WROTE:

"PROVIDE GENERAL APPLICATIUNS-LEVEL PRUDUCTS THAT RUN
UN 6, 10/20 AND 11/VAX-1i ABOVE THE LANGUAGE-LEVEL TU
MIWIMIZE USER COSTS, INCLUDING:

@ WORD PROCESSING, ELECTRONIC MAIL,
PRUFESSION-BASED CRT-ORIENTED CALUCULATORS ;

@ TRANSACTION PROCESSING AND DATA BASE QUERY;

@ GENERAL LIBRARIES, SUCH AS PERT, SIMULATION,

ETC. AIMED AT MANY

@ PROFESSIONS THAT CRUSS MANY INSTITUTIONS

(INDUSTRY, GOVERNMENT, EDUCATION, HOME); AND

@ GENERAL MANAGEMENT LIBRARIES FOR VARIGUS SIZED

BUSINESS.

PRUVIDE SPECIFIC PROFESSIUN (E-G- ELECTRICAL

ENGINEERING, ACTUARIAL STATISTICIAN) AND INDUSTRY

(E.G. URUG DISTRIBUTOR, HEAVY MANUFACTURER) PRODUCTS

AS WEEVED VIA THE PROUUCT LINE GRUUPS."

YET THERE 1S LITTLE UR NUTHING IN PROCESS TU ACCOMPLISH THIS

OBJECTIVE. LET'S LOUK AT POSSIBLE SOLUTION BUILDERS:

POSSIBLE SOLUTION BUILDERS - CONS

PRODUCT LINES:
@ SOLUTION SPACES DO NOT FOLLOW SIC CODES

e CAUSE INDEPENDENT PRODUCTS LIKE WP.

e GET BETTER ROI ON LARGER SYSTEMS.

2. ENGINEERING

e TOOL ORIENTED

@ FOR BUILDING SOLUTIONS IT IS MORE IMPORTANT TO KNOW

USAGE THAN TECHNOLOGY (GRADED ON USABILITY, NOT

ELEGANCE)

e TOTAL BUSINESS MODELS NECESSARY

CSS AND PL90

e HARD TO COORDINATE

e DIFFICULT TO GENERALIZE SOLUTIONS

e NEED TOTAL BUSINESS MODELS

"VENTURE" CAPITAL

e CAUSES UNIQUE PRODUCTS LIKE WP

e HARD TO STRATEGIZE

e CUASES TOO MUCH INTERNAL COMPETITION

5+ "INTERNAL" PRODUCT LINE:

6- OEM'S

7. OTHER?

e

®

A SIGNIFICANT CHANGE IN THE WAY PRODUCT LINES ARE

GRADED

CAN EASILY BE PUSHED IN TOO MANY DIRECTIONS AT THE

SAME TIME

WHAT HAPPENED WITH GRAPHICS?

TOO LOW PRICE FOR SMALL OEM'S TO MERCHANDISE

LITTLE CONTROL ON IMAGE

LOSE A GREAT DEAL IN FOLLOW-ON OR CENTRAL FACILITY
BUSINESS

THIS IS GOOD BUSINESS WE COULD GET FOR OURSELVES

IF THIS IS A GOOD SOLUTION WHY ISN'T IT WORKING

ALREADY?

COMPLETE BUSINESS MODEL

ABLE TO DEVELOP STRATEGY

MUST KNOW CUSTOMERS NEEDS INTIMATELY

PARTITIONED INTO USER SPACES

CAUSE "CORPORATE" SOLUTIONS

MY SUGGESTED STRATEGY

IN CENTRAL ENGINEERING SET UP SWAT (SOLUTIONS BY WORKING AS A TEAM)

GRUUPS.

EACH HAS 4-7 MEMBERS

PRODUCT BUSINESS MANAGERi-

1-4

USER

DEVELUPS BUSINESS MODEL (INCLUDING SUPPURT/SALES)

DEVELOPS BUSINESS PLAN

IS RESPONSIBLE FOR PROUUCT'S BUSINESS SUCCESS

SUMEONE WHO HAS USED THE APPLICATION

HAS DEVELOPMENT EXPERIENCE

IS RESPONSIBLE FOR PRODUCTS USABILITY

1S RESPONSIBLE FOR PRUDUCT TESTING

LDOCUMENTER

IS ReSPUNSIBLE FOR MANUALS

IS RESPONSIBLE FOR USER TRAINING

IS RESPONSIBLE FUR ALL DISPLAYS

IS RESPONSIBLE FOR PRODUCT MESSAGE

DEVELOPERS

SOME HARDWARE ANU SOFTWARE CAPABILITY

PRUBLEM SOLVING RATHER THAN TECHNOLOGY ORIENTATION

RESPUNSIBLE FOR PRODUCT'S QUALITY AND RAMP

RESULTS GRIENTAT1UN

EACH SWAT GRUUP HAS A PRESET LIFETIME OF BETWEEN 6-16 MONTHS.

SUPPURT HANDLED ELSEWHEKE- (SHIELDS)

WkED A CENTRAL URGANIZATIUN TO STRATEGIZE AREAS UF ATTACK ANU TU

AUMINISTRATE/MUTIVATE/EVALUATE SWAT GRUUPS.-

a

PROPOSAL

$-7 MILLION FY80

$1.2 MILLION FY81 GIVE YOU 5 SALEABLE SOLUTION PRODUCTS (5 SWAT

TEAMS) -

THESE WILL BE MARKETED BY ALL PRODUCT LINES WITH SPECIAL INTEREST FROM:

RETAIL PRODUCTS GROUP

COMMERCIAL OEM

SMALLER COMMERCIAL END USER PRODUCT LINES (TURNER)

AND BE THE BASIS OF ESTABLISHING DIGITAL IN THE PERSONAL COMPUTER

MARKET.

OTHER POTENTIAL DISTRIBUTION CHANNELS TO BE EXPLORED:

PUBLIC NETWORKS

TERMINAL DISTRIBUTORS

TODAYS INVESTMENT IN PDT SOFTWARE IS:
$1-15 MILLION FY80

$1.38 MILLION FY81

WITH NO END USER PRODUCTS.

EXAMPLE PERSONAL COMPUTER APPLICATIONS

NO PRIORITIES

ELECTRONIC MAIL RELATED APPLICATIONS: OTHER APPLICATION AREAS:

WORD PROCESSING
DATA ENTRY - FORMS PROCESSING
DRAFT ENTRY
DISPLAY REPROCESSING
CALENDAR
TICKLER FILE
MAIL ENTRY
MAIL PICKUP
RUNNING MONTHLY REPORT
SCHEDULING MEETINGS
AIRLINES/HOTEL RESERVATIONS
WEATHER REPORTS
CALCULATOR
STOCKMARKET
INTERNATIONAL TIME
PHONE BOOK (DIRECTORY)
CURRENCY CONVERSION
LIBRARY BOOK ORDER
HEALTH INSURANCE FORMS
TRIP EXPENSE REPORTS
SYSTEM "HELP" MESSAGES
ORDER ENTRY
TROUBLE DESK SYSTEM" (E.G. FIELD
SERVICE AT EACH UNIT WITH ELECTRONIC
MAIL TO LARS)
ROI CALCULATIONS

GAMES

TRIVIA QUIZ
CHESS
BRIDGE
ART
BIORHYTHMS
ADVENTURE
STAR TREK
CARIBBAGE
BACKGAMMON
SLOT MACHINE
ETC.

PROGRAMMER WORKBENCH
SLIDE PREPARATION
TABLE TO GRAPHICS CONVERSION
ACCOUNTS RECEIVABLE
ACCOUNTS PAYABLE
"CHECKING ACCOUNT"
INVENTORY
KEYLESS ENTRY
HANDICAPPED PERSON TERMINAL
EDUCATIONAL MACHINE
INCOME TAX PREPARATION
ELECTRONIC FUNDS TRANSFER
RECIPES/DIET
MEDICAL CONSULTING
REAL ESTATE
SPORTS SCORES
BUY BY COMPUTER ADVERTISING
LOTTERY
RESTAURANT/BOOK/MOVIE REVIEWS
AGRICULTURAL INFORMATION
CAREER/PERSONNEL PLACEMENT
FIRST AID
MAPS
CONSUMER INFORMATION
CREDIT CHECKING
COMPUTER CONTROLLED MICROFILM

RETRIEVAL
CRYPTOLOGY
NAVIGATION
COMMUNICATION/INFORMATION CENTER
ENVIRONMENTAL CONTROL SYSTEM
SECURITY SYSTEMS
STATISTICAL PACKAGES
CASH REGISTER

NOV 16 'Sy

DIGITAL EQUIPMENT CORPORATION INTEROFFICE MEMORANDUM

TO: George Poonen DATE: 12-Nov-79
Rick Peebles
Chuck Kaman FROM: Ed Lowry

DEPT: Corp. Research
Group

EX-MS: 223-7686 ML3-2/E41
CC: Gordon Bell Bob Lynch

Dave Butchart James Nickson
Bruce Delagi Jeff RudyUlf Fagerquist Dick Snyder
Bob Grimes Ollie Stone
Per Hjerppe Corporate Research Group
Jan Jaferian RAD Committee

SUBJECT: Self-Teaching Profession Based System - A Research
Proposal

I think Dawn can provide a sound architecture for the user
interface of a Profession Based System like the one described
by Gordon Bell on November 1. Reasons why include the
following:
1.

how to do things while leaving the user fully in charge of
what is to be done. Doing that with a reasonable amount
of software requires that knowledge of the
problem environment be shared by the user and the system
and be coded in a form that is usable by both. This way
the system can make "intelligent" suggestions and the user
can make high level decisions. The declarations of Dawn
are at the leading edge of this capability. They make it
possible for Dawn's interactive facilities (as now
planned) to provide users with a substantially higher
level of control than alternative systems. They also
contribute to the natural language style and the
elimination of unnecessary proceduralness.

A basic requirement is that the system lead the user on

2. The professional will need highly readable, evolvable
application packages. Ninety-five percent of application
programs continue to be written or adapted by someone who
understands the specific end user's needs. Dawn seems to
have a strong lead in that area.

while supporting a variety of professional users. This
requires much generality. The freedom from representa-

3. high degree of consistency in the interface is neededA

tional irrelevancies enables Dawn to be substantially more
general than other candidates.

4. Professionals will access information from many sources
through heterogeneous networks. Since representational
irrelevancies are compounded when viewing data through
multiple interfaces it is important to use a languagelike Dawn which minimizes that problem. The canonical
form of Dawn data looks like the best way to transmit data
between systems because it is self-describing, strongly
typed, machine indpenedent, implementation independent,
and it accurately describes any kind of digital data
without adding to its representational irrelevancies.

5. The editor generator facility of Dawn can make good use of
the declarations which describe the permissible structure
of the problem environment to easily customize editors
which allow the users to easily manipulate models of the
environment and other data.
Taken as a whole I think Dawn is very far ahead of

whatever is in second place as an effective basis for the user
interface of a Profession Based System. I would be interested
in hearing of contrary views. I recommend the use of Dawn in
the Profession Based System and appropriate integration of
projects.

One desirable characteristic of the Profession Based
System which was emphasized by Gordon Bell but that Dawn does
not satisfy is that the system have zero manuals. I think thisis an important and difficult problem, and the most significantresearch challenge presented. Again the generality of Dawn
provides major advantages in reducing the stack of manuals and
improving ease of learning over other possible candidates but
by itself it is unsatisfactory for untrained users with sizabletasks. I therefore propose that a project be started soon to
make the Dawn system self-teaching and to enhance the
self-teaching capabilities of applications written in it. The
main goal would be to develop facilities which teach the userjust what he needs to know when he needs to know it.

The declarative style of Dawn helps the prospects forsuccess, One way is that both questions and answers on bothsides of the dialog can deal with relatively small pieces ofinformation which are mutually intelligible. In adddition the
System can use whatever declarations it has to specialize its
communications in terms of the user's problem.The following approaches may be developed:
1.

internally, and an associated program analyzer so the usercan point to any line or phrase in an application program

Provide a parameterized form of the language manual

and get a carefully specialized statement of what it means
geared to his level of expertise,

Develop some sample application programs in a style that
makes their utilization as self-explanatory as possible
and develop guidelines and other tools to encourage this
quality in later application programs. The editor
generator and report generator may be expanded to provide
more control over levels of explanation provided with
application outputs and requested inputs. Answers to
natual language questions about an application may be
attempted by extracting apparatently relevant statements
from a full description of the application. The relevance
may be judged by word associations through a thesaurus.

2.

Develop a semi-automated on-line diagnostic and user
assistance facility. A user who is having serious
difficulty, or who does not mind paying for the service,
should be able to quickly communicate his situation to a
system expert (local or remote) for consultation.
Formalized methods for expressing the user's distress and
the consultant's replies should be developed.
Like telephone operators, the role of such consultants
should increasingly be automated, but not entirely.

3

Enhancements to the natural language style of Dawn should
be provided. This may include langauge changes but the
emphasis would be on a front end analyzer which extracts
all the useful information it can out of intuitively
expressed statements by users. The analyzer should
interactively resolve ambiguities, confirm intended
meanings, and optionally teach the correct forms.

4.

An interactive statement building facility is needed which
responds to "How do I...?" questions and responds with
menus of possible approaches. It should explain the
possible approaches as needed, and recursively present
skeleton statements and expressions to be filled in,
Menus of plausible things to be inserted should be
presented based on whatever knowledge of user's problem
environment has been previously declared.

5.

A book may be published in both paper and electronic
versions which provides Dawn declarations describing a
wide variety of plausible professional environments and

many of the functions the professional can use to
manipulate models in those environments. When installing
his system the professinal would have a dialog with the
system answering questions about the major parameters of
his environment as compared with those typical of his
field. The system would select, specialize, and explain
the resulting proposed initial data base description and
whatever usable functions can be provided that way.
During the dialog the user could watch the way in which

interrupt with questions about the meaning of the variant

6.

his answers affect the form of the declarations and

forms.

An interactive program customizng facility could operate
by explaining the program using a mixture of Dawn and
English (or French etc.). It could be dynamically
adjusted to the user's improving skill. The user could
interrupt with questions for clarification and complaints
when the system description looks inappropriate for his
need. The system would then attempt to propose variations
and pose clarifying questions.

7

A number of subsets of the language and interactivefacilities may be defined. The user could specify what
subset he would like to restrict himself to. All
diagnostics and explanatory messages would try to respect
such limits.

8.

Before delimiting the scope of such a project, I would
like to see some thought given to the probable effect of our
overall expertize in this area on DEC's profitability during
the 1980's. I would welcome suggestions, prioritizations,
counterproposals, and other comments from any source.

