TX-0, A Transistor Computer with a 256 by 256 Memory

J. L. MITCHELL K. H. OLSEN

Synopsis: TX-0 is a high-speed digital computer which was built at Lincoln Laboratory to demonstrate and operationally test 5 -megapulse transistor circuitry and a 65,536 -word magnetic-core memory. The word length is 19 bits; 1 bit is a parity check bit for memory, 16 bits are assigned to memory addressing, and the 2 remaining bits are used to select among three memoryreference instructions and one microprogramming instruction. The logic is performed by standardized packages using surface barrier transistors. Fig. 1 shows TX-0 with the arithmetic element just beyond the console and the memory on the far left. Part I of this paper covers the TX-0 memory, and Part II the TX-0 circuitry.

Part I, The TX-0 Memory

THE TX-O MEMORY, Fig. 2, is a high-speed, random-access, coinci-dent-current magnetic-core unit with a storage capacity of 65,536 19-bit words. The bits in the word are read out in parallel, and the cycle time is $7.0 \mu \mathrm{sec}$ (microseconds). (Cycle time is defined as the time between successive read operations.) Two 256 -position mag-netic-core switches are used to supply
the read and write current pulses to selection lines. The memory system contains 425 dual triodes and 625 transistors. It is interesting to note that the presently available 4,000-register mag-netic-core memories use almost as many active elements as are used in this 65,000 register memory. The memory was designed both electrically and mechanically so that the word length can be expanded to 37 bits. Two co-ordinates are used to select a register during the read operation, and three co-ordinates are used for writing. A 2 to 1 current selection ratio is used. A block diagram of the memory system and the timing diagram is shown in Fig. 3. The basic operation of this type of memory system has been adequately described in the literature and will not be repeated here. ${ }^{1}$

Memory Array

The memory array contains $11 / 4$ million ferrite cores which were manufactured at the Lincoln Laboratory. The outside diameter of the core is

80 mils, the inside diameter 50 mils, and the height 22 mils. When driven with an 820 -milliampere current pulse, the cores switch in $1 \mu \mathrm{sec}$ and give a peak output voltage of 100 millivolts. The cores used in this memory have a somewhat greater signal-to-noise ratio than available commercial cores. The cores are wired into 64 by 64 subassemblies, each subassembly being a complete operating memory plane with its own sense and digit winding. The same winding configurations are used in the 64 by 64 subassemblies as were used in the previous memories built at the Lincoln Laboratory. ${ }^{2}$ Sixteen 64 by 64 subassemblies are assembled in a square array and connected together to form each 256 by 256 plane. 3 The choice of a 64 by 64 subassembly size was a compromise between the number of soldered connections in the 256 by 256 plane and the ease of construction and test of the subassemblies.
The digit-plane winding in each 256 by 256 plane is divided into quarters, each quarter being made up of the digit winding of four subassemblies connected in series as shown in Fig. 4. Each quarter looks like a delay line with a characteristic impedance of 150 ohms

[^0]

Fig. 1. TX-0 computer

Fig. 2. TX-0 memory
and a delay time of $0.4 \mu \mathrm{sec}$. The choice on connecting only four subassemblies in series is a compromise between delay time and equipment. Any increase in digit-plane winding delay would result in an increased memory cycle time; for example, using one digit-plane wind ing per 256 by 256
μ sec to the cycle time
It should be noted that during the peration of the memory, it is practical o drive only one of the digit-plane plane at any $\begin{gathered}\text { in a given } 256 \text { by } 256\end{gathered}$ of current is supplied to the digit-plane winding the resultant voltages cause transient currents to flow through the
interwinding capacities from the digit winding to the X, Y, and sense windings. If the quarters of all the planes are driven at once, the currents flowing through the interwinding capacities are of sufficient magnitude to cause distorto create undesirable transients on the sense winding. When only one of the digit-plane winding quarters is pulsed at a given time, these effects are not harmful.

The sense winding in a 256 by 256 plane is also broken up into four sections, each section consisting of the sense inding subassemblies on a given sense winding
re connected in such a manner that no wo subassemblies on the same sense X or Y drive line common to the same be noted that with this. 5. It shoul nection the voltase ind winding by the half-selected cores is equal to that induced in a 64 by 64 memory. ${ }^{4}$ Each sense winding is also a delay line. To reduce the delay and resultant signal distortion, the four subassemblies on a given sense winding section are connected in series parallel as shown in Fig. 3 rather than in series. the signal amplitude of connection halves terminals of the sense winding section. Twenty 256 by 256 planes are stacked on $1 / 2$-inch centers and the X and Y wires are connected in series to form the complete memory array; see Fig. 6. Nineteen of the planes are used, and the 20th plane is retained as a spare. The total dimensions of the memory array are 31 by 31 by 10 inches. The X and Y windings are also delay lines, with a
characteristic impedance of 150 ohms and a delay of $0.15 \mu \mathrm{sec}$. It is interesting to note that the delay time for each

Fig. 3(A). Block diagram, 256 by 256

of the various types of winding in the memory is roughly $0.1 \mu \mathrm{sec}$ per 4,000 cores.

Magnetic-Core Switches

Each magnetic-core switch is made up of 256 tape-wound cores, each core containing 100 wraps of $4-79$ Mopermalloy tape $1 / 4$-mil thick and $1 / 4$-inch wide, ter of $1 / 4$ inch. Four winde diamplaced on each core: two windings are indins each core: two 12 -turn drive nd as, a 16 -turn output winding, and a 2 -turn bias winding. These cores a 2-co-ordinate switch of the switch is shown in Fig 7 operation cores in the switch are biased to point A with a d-c bias current. The application of either the u or v current pulses alone does not switch a core. The application of u and v together to a given core causes the core to switch and generate a 410 milliampere read current pulse at the secondary. When the
u and v pulses end, the bias current switches the previously selected core back to point A, generating the write pulse. The selected core is allowed to switch completely. The cores in the
 plane winding con-
nection schematic, 256 by 256 memory

Fig. 6 (right). Mem-
 ory array

switch were selected for uniformity open-circuit output voltage and switch ing time. The switch was wound as a current step-down device in order to
match the characteristics of the drive tubes to that of the 150 -ohm X and I selection lines. All current outputs from the switch are uniform within 5%

Circuit

The switch driver circuit used to drive one co-ordinate of a switch is shown in Fig. 8. A particular line in the switch is selected by first grounding one of the grid input lines and then pulsing on to sele current regulators. For example and current regulator input O is pulsed The current regulators hold the current The digit-plane driver circuit is shown in Fig. 9, and it is similar to the current Four such circuits each 256 by 256 plane, one for quarter of the digit winding

$$
\begin{aligned}
& \text { Iuarter of the digit winding } \\
& \text { The sense amplifier circui }
\end{aligned}
$$

Fig. 10. The specifications on the sense amplifier are as follows: it must accept

Fig. $7(A)$ (right). Operation of switch core.
$7(B)$ (below). Schematic

bipolar input signals, it must have balanced input and must reject commonmode signals, it must not block when hit by large voltage transients, it must accept a train of unipolarity signals, and mble periods of time. The circuit shown meets these specifications satisfactorily. The unwanted signal due to voltages from half-selected cores and zeros is sliced out applying the proper bias volage to transformer. The transformer bias voltage can be varied to give a measure of the signal to the noise ratio of the signal coming out of the sense winding. This is the method used to determine the margins of the system. The amplified input signals are mixed and rectified in the emitter-follower circuit, and then further amplified in the pulse-amplifier was read out and to zero volts if a zero was read out of the memory plane. The signal is transmitted to the memory buffer register where it is sampled with a $0.1-\mu$ sec strobe pulse. One 4 -input sense amplifier is associated with each 256 by 256 plane

Results

The memory system has been under test in the TX-0 computer for several
months with very satisfactory results. A number of the parameters of the sys tem have been plotted versus the sense amplifier transformer bias voltage. On Fig most important plots is shown in switch-driver this test the current in one varied, driver current regulator wa varied, and the sense amplifier trans
former bias voltage to all 19 sense plifiers was varied until an incorrect read

Fig, 9 . Circuit schematic, digit plane driver
out occurred. The test program used shifts itself through all memory addresses. It is as "tough" on the memory margins as an average program. When the switch drive current is varied, the amplitude of the read current pulse and the amplitude and shape of the write current pulse are changed; the switch drive current is therefore one of the most (Continued on p. 98)

Fig. 10. Circuit $\underset{\substack{\text { ematic, } \\ \text { amplifier }}}{\text { sense }}$

Fig. 11. Switch driver current margins

Fig. 13. Parallel emitter followers

Fig. 14. Parallel inverters

Fig. 12 (leff). Saturated emit
ter follower

OUTPUT WITH C

OUTPUT WITHOUT C
critical in the system. The upper curve in Fig. 9 corresponds to failure to read out a one and the lower curve represents failure to read out a zero correctly. The margins shown are comparable to those obtained on the 4,096 -word MTC memory at the Lincoln Laboratory. During the coming months the word length of the memory will be increased to 37 -bits to bring the total storage
capacity to 2.5 million bits, and the memory cycle time will be reduced to $6 \mu \mathrm{sec}$.

Part II, TX-0 Circuitry
Reliability has been one of the promised advantages of transistors in computer

$T_{2}=$ TURN - OFF TIME
circuits, and indeed it has proved to be so. Reliability has come largely from the gross reduction in the number of parts, and from the expected long life of the transistors. But, in addition to reliacan give improvements in speed and tolcan give improvements in speed and tolthey lend themeter variations, and that building blocks.
Faster circuit speed is not a result of vacuum tubes, for as yet they are not, but because they operate at much lower voltage levels. A vacuum tube takes a signal of several volts to turn it from fully on to fully OFF but a transistor takes less than one volt to do this.
Tolerance to parameter variations

${ }^{m} \mu \mathrm{SEC}$
Fig. 16 (left). Turn-off time I

fig. 18 (above). TX-0 flip-flo

is the result of being able to saturate the transistor. Unlike vacuum tubes, which always need an appreciable voltage across them for operation, an on tran sistor can have almost no voltage across it. In fact, it can be usually considered as a switch that is either open or closed. This feature of the transisor are possible
circuits.
Standardized building blocks are practical because of the small number types of circuits required in a system, and because of the large driving capabilities of the saturated transistor. Even though the rated power dissipation of the transistor may be low, it can drive a large load because there is so little voltage across a saturated transistor

frequency in mcs

Fig. 21 (right).
TX-0 $\begin{aligned} & \text { logic units }\end{aligned}$.

Circuit Types
There are two general circuit configurations in TX-0: the saturated inWhen a transistor in these circuits is saturated or on there is only about 0.1 volt across it, so that an on inverter clamps its output to ground and an on emitter follower clamps its output to the supply voltage.
The saturated emitter follower is, in general, driven by an inverter as shown in Fig. 12. The output voltage as a with R returned to the -3 supply to show

Fig. 19 (leff).
Trigger
sensitiv Trigger sensitit
ity

Fig. 22 (right).
TX-0
mounting TX-O mounting panels

Fig. 20 (left)
TX-0 Aip-flop
Fig. 20 (left)
TX-0 flip-flop

Fig. 23 (right).

ig. 24 (right).
Tau margins
the characteristic of an unsaturated emitter follower, and then with R revoltage remains almost constant with load variations for a saturated emitter follower. R was changed to keep the inverter current the same in both cases. Transistor networks are used to per form logical operations. Emitter follow ers are combined in parallel to form nonnverting AND circuits for positive sig as in Fig. 13. Inverters are combine
in parallel and in series, as in Figs. 14 and 15 , and series-parallel combinations for other operations. The output of a logical network is combined with a sensing pulse to set a flip-flop. In the schematic of the saturated
verter shown in Fig. 16 the input resistor is selected so that in the on condition, enough current, plus a safety factor, flows from the base to keep the transistor collector to emitter. The resistor to the +10 supply voltage is chosen so that

Fig. 25 (leff).
-3 -volt
supply margins

Fig. 27 (right). $\underset{\text { gins }}{ }$

PULSE AMPLITUDE (volts)
of various parameters are shown in the amplitude are shown in Figs. 25 through figures. Fig. 23 shows the tolerance to the transistor current gain, and how marginal checking will indicate its deterioration.
Fig. 24 shows the tolerance to τ, a measure of hole storage. Margins to supply voltages, temperature, and pulse

 ${ }_{214-28 .}^{\text {Lloyd B. }}$

\qquad

when the input is close to ground and the transistor is cut off, the base is biased positive to give tolerance to noise and spurious signals. The by-pass capacitor C is made large enough to take all the transient. Fig. 16 shows the effect of this capacitor on the turn-off time. With surface barrier transistors, the holes are removed so fast that the turn-
off delay is difficult to measure
The input impedance of the saturated inverter is roughly equal to the parallel $R C$ in the base, so for driving economy R is made only small enough to saturate safely the transistor with the lowest exlarge enough to turn off safely the tran sistor with the largest specified amount of sistor with the largest specified amount of
hole storage. Minimum current gain and maximum hole storage were specified to give reasonably large yields from tran sistor production.

Flip-Flop

In designing TX-0 it was decided that the advantages of having one standard complication in the circuitry. The circuit diagram of the flip-flop package in Fig. 17 shows an Eccles-Jordan flipflop followed by a 3 -transistor amplifier on each side. The output amplifiers give excellent rise time. Input amplifiers isolate the pulse input circuits and raise the input impedance. Also these
amplifiers act as a delay line which allows the flip-flop to be set at the same time that it is being sampled. Fig. 18 shows the wave forms of this flip-flop package. The rise and fall times, about $25 \mathrm{~m} \mu \mathrm{sec}$, are faster than one normally cause on each output there is an inverter that pulls to ground and an emitter follower that pulls to -3 volts. Fig. 19 shows the pulse amplitude necessary to complement the flip-flop at various frequencies. Although this circuit will operate at a $10-\mathrm{meg}$ gapulse rate, it is normally run at a maximum of 5 megapulses per second
Circuits which are repeated often were designed with as few components as pos-
sible. In the case of less frequently used circuits, added comp frequently even redundancy were incorporated when they could simplify the system. For example, the number of flip-flops in a system like TX-0 is quite small compared to the gates which transfer information from one group of flip-flops to another. So the TX-0 transfer gates were made very simple. A transfer the emitter is connected to the inverter; the flip-flop being read, and the collector is connected to the input of the flip-flop being set. The output impedance of the flip-flop is so low that when the output is at the ground level, a pulse on the base flop.

Packaging

simple construction and maintenance of TX- 0 was accomplished by using large numbers of a few types of plug-in units For example, one package, Fig. 20, consmaller packages, Fig. 21, contained only one to three inverters or emitter followers. These then were plugged into panels like the one in Fig. 22, and in turn were interconnected with solderless connectors.

Marginal Checking

Marginal checking was incorporated in these circuits to locate deteriorating ampo useful for locating the design was of the various parameters, and for indicating the tolerance of circuits to these parameters. In addition, marginal checking was used after the TX-0 system was operating to find noise and other system faults which were not serious enough to cause failure, but which would have decreased the reliability
Operating conditions of the circuits can be indicated by varying the inverter 17, the inverters were divided into two groups for marginal checking, and the two leads labeled MCA and MCB are varied one at a time for most critical checking of the circuit.
Sample plots of margins as a function

Reprinted from Special Publication T-92 Proceedings of the Eastern Joint Computer Conference

TX-0, A Transistor Computer with a 256 by 256 Memory

J. L. MITCHELL
K. H. OLSEN

Synopsis: TX-0 is a high-speed digital computer which was built at Lincoln Laboratory to demonstrate and operationally test 5 -megapulse transistor circuitry and a 65,536 -word magnetic-core memory. The word length is 19 bits; 1 bit is a parity check bit for memory, 16 bits are assigned to memory addressing, and the 2 remaining bits are used to select among three memoryreference instructions and one microprogramming instruction. The logic is performed by standardized packages using surface barrier transistors. Fig. 1 shows TX-0 with the arithmetic element just beyond the console and the memory on the far left. Part I of this paper covers the TX-0 memory, and Part II the TX-0 circuitry.

Part I, The TX-O Memory

THE TX-O MEMORY, Fig. 2, is a high-speed, random-access, coinci-dent-current magnetic-core unit with a storage capacity of 65,536 19-bit words. The bits in the word are read out in parallel, and the cycle time is $7.0 \mu \mathrm{sec}$ (microseconds). (Cycle time is defined as the time between successive read operations.) Two 256 -position mag-netic-core switches are used to supply
the read and write current pulses to selection lines. The memory system contains 425 dual triodes and 625 transistors. It is interesting to note that the presently available 4,000-register mag-netic-core memories use almost as many active elements as are used in this $65,000-$ register memory. The memory was designed both electrically and mechanically so that the word length can be expanded to 37 bits. Two co-ordinates are used to select a register during the read operation, and three co-ordinates are used for writing. A 2 to 1 current selection ratio is used. A block diagram of the memory system and the timing diagram is shown in Fig. 3. The basic operation of this type of memory system has been adequately described in the literature and will not be repeated here. ${ }^{1}$

Memory Array

The memory array contains $11 / 4$ million ferrite cores which were manufactured at the Lincoln Laboratory. The outside diameter of the core is

80 mils, the inside diameter 50 mils, and the height 22 mils. When driven with an 820 -milliampere current pulse, the cores switch in $1 \mu \mathrm{sec}$ and give a peak output voltage of 100 millivolts. The cores used in this memory have a somewhat greater signal-to-noise ratio than available commercial cores. The cores are wired into 64 by 64 subassemblies, each subassembly being a complete operating memory plane with its own sense and digit winding. The same winding configurations are used in the 64 by 64 subassemblies as were used in the previous memories built at the Lincoln Laboratory. ${ }^{2}$ Sixteen 64 by 64 subassemblies are assembled in a square array and connected together to form each 256 by 256 plane. ${ }^{3}$ The choice of a 64 by 64 subassembly size was a compromise between the number of soldered connections in the 256 by 256 plane and the ease of construction and test of the subassemblies.

The digit-plane winding in each 256 by 256 plane is divided into quarters, each quarter being made up of the digit winding of four subassemblies connected in series as shown in Fig. 4. Each quarter looks like a delay line with a characteristic impedance of 150 ohms
J. L. Mitchell, author of Part I, and K. H. Olsen, author of Part II, are with Massachusetts Institute of Technology, Lincoln Laboratory, Cambridge, Mass.

The research in this paper was supported jointly by the Army, Navy, and Air Force under contract with the Massachusetts Institute of Technology.

Fig. 1. TX-0 computer

Fig. 2. TX-0 memory
and a delay time of $0.4 \mu \mathrm{sec}$. The choice of connecting only four subassemblies in series is a compromise between delay time and equipment. Any increase in digit-plane winding delay would result in an increased memory cycle time ing per 256 by 256 plane would add μ sec to the cycle time.
It should be noted that during the operation of the memory, it is practical to drive only one of the digit-plane winding quarters in a given 256 by 256 plane at any one time. When a pulse of current is supplied to the digit-plane winding the resultant voltages cause transient currents to flow through the
interwinding capacities from the digit winding to the X, Y, and sense windings. If the quarters of all the planes are driven at once, the currents flowing through the interwinding capacities are tion of the digit-plane current pulse and to create undesirable transients on the sense winding. When only one of the digit-plane winding quarters is pulsed at a given time, these effects are not harma give
ful.
Th
The sense winding in a 256 by 256 plane is also broken up into four sections, each section consisting of the sense windings from four 64 by 64 subassemblies. The subassemblies on a given sense winding

from memory adoress register decooers
(A)
re connected in such a manner that no two subassemblies on the same sense winding section are common to the same X or Y drive line; see Fig. 5. It shoul be noted that with this method of con winding by the half-selected cores equal to that induced in a 64 by 6 memory ${ }^{4}$. Each sense winding is also delay line. To reduce the delay and resultant signal distortion, the four subassemblies on a given sense winding section are connected in series paralle as shown in Fig. 3 rather than in series Of course, this type of connection halve the signal amplitude seen at the outp Twenty 256 by 256 planes are stacke $1 /$ inch centers and the X and V wire re connected in series to form the complete memory array; see Fig. 6. Nine een of the planes are used, and the 20th plane is retained as a spare. The total dimensions of the memory array are 31 by 31 by 10 inches. The X and Y windings are also delay lines, with a haracteristic impedance of 150 ohm to mote that the delay time for each ing to note that the delay time for each
is. 3(A). Block diagram, 256 by 256

of the various types of winding in the memory is roughly $0.1 \mu \mathrm{sec}$ per 4,000 cores

Magnetic-Core Switches

Each magnetic-core switch is made up of 256 tape-wound cores, each core containing 100 wraps of $4-79$ Mopermalloy tape $1 / 4$-mil thick and $1 / 4$-inch wide, wound on a bobbin with an inside diameter of $1 / 4$ inch. Four windings are placed on each core: two 12 -turn windings, a 16 -turn output winding and a 2 -turn bias winding. These cores are connected into a square array to form a 2 -co-ordinate switch. The operation of the switch is shown in Fig. 7. All the cores in the switch are biased to point A
with a d-c bias current. The application of either the u or v current pulses alone does not switch a core. The application of u and v together to given core causes the core to switch and generate a 410 milliampere read current pulse at the secondary. When the u and v pulses end, the bias curren switches the previously selected core back to point A, generating the write pwitch The selected the is allowed

Fig. 5. Sense-winding connection schemati for one sense-winding connection schematic memory plane

Fig. 4 (left). Digitplane winding connection schematic, plane
platy 256 memory plane

ig. 6 (right). Mem-

witch were selected for uniformity open-circuit output voltage and switch time. The switch was wound as currnt step-down disice ther the ubes to that of the $150-\mathrm{ohm} X$ and Y selection lines. All current outputs from the switch are uniform within 5%

Circuits

The switch driver circuit used to drive one co-ordinate of a switch is shown in Fig. 8. A particular line in the switch is
selected by first grounding one of the grid input lines and then pulsing one of the current regulators. For example, to select line O, grid input O is grounded and current regulator input O is pulsed. The current regulators hold the current

Fig. 7(A) (right). Operation of switch core. . Schematic, magnetic-core switch

bipolar input signals, it must have balanced input and must reject common mode signals, it must not block when hit by large voltage transients, it must ac cept a train of unipolarity signals, and it must have corme. The circuit shown meets these specifications satisfactorily The unwanted signal due to voltages from half-selected cores and zeros is sliced out by applying the proper bias voltage to the center tap of the secondary of the transformer. The transformer bias volt age can be varied to give a measure of the signal to the noise ratio of the signal coming out of the sense winding. This is the method used to determine the input signals are mixed and rectified in the emitter-follower circuit, and then further amplified in the pulse-amplifier section to a voltage of 3 volts if a one was read out and to zero volts if a zero was read out of the memory plane. The signal is transmitted to the memory buffer register where it is sampled with a $0.1-\mu$ sec strobe pulse. One 4 -inpu sense amplifier is associated with each 256 by 256 plane.

Results

The memory system has been under test in the TX-0 computer for several
months with very satisfactory results. out occurred. The test program used A number of the parameters of the system have been plotted versus the senseamplifier transformer bias voltage. One of the most important plots is shown in
Fig. 11. In this test the current in one switch-driver current regulator was varied, and the sense amplifier transformer bias voltage to all 19 sense amplifiers was varied until an incorrect readshifts itself through all memory addresses. It is as "tough" on the memory the switch drive current is varied, the amplitude of the read current pulse and the amplitude and shape of the write current pulse are changed; the switch drive current is therefore one of the most (Continued on p. 98)

Fig. 9. Circuit schematic, digit plane drive

Fig. 10. Circuit
schematic. $\underset{\substack{\text { ematic, } \\ \text { amplifier }}}{\text { se }}$

same as above

Fig. 11. Switch driver current margins

Fig. 13. Parallel emitter followers

Fig. 14. Parallel inverters

critical in the system. The upper curve in Fig. 9 corresponds to failure to read out a one and the lower curve represents failure to read out a zero correctly. The margins shown are comparable to those obtained on the 4,096 -word
ory at the Lis Laborato
length of the memory will the word to 37-bits to bring the to increased capacity to 2.5 million bits, and the memory cycle time will be reduced to $6 \mu \mathrm{sec}$.

Part II, TX-0 Circuitry

Reliability has been one of the promised advantages of transistors in computer

Fig. 18 (above). TX-0 flip-flop
is the result of being able to saturate the transistor. Unlike vacuum tubes, which always need an appreciable voltage across them for operation, an on transistor can have almost no voltage across
it. In fact, it can be usually considered as a switch that is either open or closed. This feature of the transistor makes possible very simple and very stable circuits.
Standardized building blocks are practical because of the small number o types of circuits required in a system, and because of the large driving capabilitie of the saturated transistor. Even though the rated power dissipation of the transistor may be low, is so little voltage across a saturated transistor.
 Fig. 19 (left).
Trisgere $\begin{gathered}\text { sensitiv- } \\ \text { ity }\end{gathered}$
puss

Fig. 22 (right).
TX-0 mounting TX-O
panels

Fig. 20 (left).
TX-0 flip-flop

Fig. 23 (right) Beta margins

Fig. 21 (right).
TX-O logic units

Fig. 24 (right).
Tau margins

Circuit Types

There are two general circuit config urations in TX-0: verter, atid the saturated saturated in When a transistor in these circuits is sat urated or on there is only about 0.1 volt across it, so that an on inverter clamps its output to ground and an on emitter follower clamps its output to the supply voltage.
The saturated emitter follower is, in general, driven by an inverter as show function of load current is plotted first with R returned to the -3 supply to sho
the characteristic of an unsaturated emitter follower, and then with R returned to -10 to show that the output load ve remains almost constant with follower. R was changed to keep the inverter current the same in both cases. Transistor networks are used to perform logical operations. Emitter followinverting and circuits for positive sig nals and or circuits for negative signals, as in Fig. 13. Inverters are combined

"0" SIDE T
in parallel and in series, as in Figs. 14 and 15 , and series-parallel combinations for other operations. The output of a logical network is combined with a In thise to set a flip-flop.
In the schematic of the saturated inverter shown in Fig. 16 the input resistor is selected so that in the on condition, flows from the base to keep the transistor saturated with less than 100 millivolts, collector to emitter. The resistor to the +10 supply voltage is chosen so that

Fig. 25 (lefft).
-3 -volt supply margins

Fig. 27 (right).

 gins

Fig. 26 (leff). margins

Fig. 28 (right). Pulse margins

PULSE AMPLITUDE (volts).
when the input is close to ground and the transistor is cut off, the base is biased positive to give tolerance to noise and
spurious signals. The by-pass capacito spurious signals. The by-pass capacitor C is made large enough to take all the transient. Fie base during the turn off this apacitor on the turneft of With surface barrier transistors, the hiln surface barrier transistors, the off delay is difficult to measure.

The input impedance of the saturated inverter is roughly equal to the paralle $R C$ in the base, so for driving economy R is made only small enough to saturate safely the transistor with the lowest expected current gain, and C is made only large enough to turn off safely the tran hole storage Minimum current gain and maximum hole storage were specified to give reasonably large yields from transistor production.

Flip-Flop

In designing TX-0 it was decided that the advantages of having one standard flip-flop would be worth the cost of some complication in the circuitry. The circuit diagram of the flip-flop packag flop followed by a 3 -transistor amplifier on each side. The output amplifier give excellent rise time. Input amplifiers isolate the pulse input circuits and raise the input impedance. Also these
amplifiers act as a delay line which allows the flip-flop to be set at the same time that it is being sampled. Fig. 18 shows the wave forms of this flip-flop package. The rise and fall times, about $25 \mathrm{~m} \mu \mathrm{sec}$, are cause on each output there is an inverter that pulls to ground and an emitter follower that pulls to -3 volts. Fig. 19 shows the pulse amplitude necessary to complement the flip-flop at various frequencies. Although this circuit will operate at a 10 -megapulse rate, it is normally run at a maximum of 5 megaulses per second.
Circuits which are repeated often were designed with as few components as possibed circuits, added components and even redundancy were incorporated when they could simplify the system. For example, the number of flip-flops in a system like TX-0 is quite small compared to the gates which transfer information from one group of flip-flops to another. So the TX-0 transfer gates were made very simple. A transfer gate is in fact only a single inverter; the flip-flop being read, and the collector is connected to the input of the flip-flop being set. The output impedance of the flip-flop is so low that when the output is at-the ground level, a pulse on the base of the transfer gate sets the other flipflop.

Packaging

Simple construction and maintenance of TX-0 was accomplished by using large For example, few types of plug-in unit, tained only a soand fig. 20, consmaller packares, Fis 21, one to three inverters or emitter follow ers. These then were plugged into panels like the one in Fig. 22, and in tur were interconnected with solderless connectors.

Marginal Checking

Marginal checking was incorporate in these circuits to locate deterioratin omponents before they failed. It wa Iso useful for locating the design cent of the various parameters, and for indicating the tolerance of circuits to thes parameters. In addition, marginal check g was used after the TX-0 system wa operating to find noise and other syste cause failure, but not serious enough to creased the reliability
Operating conditions of the circuit can be indicated by varying the inverte bias. In the flip-flop schematic in Fis 17, the inverters were divided into tw groups for marginal checking, and th .eads labeled MCA and MCB ar hecking of the circuit
Sample plots of margins as a function

Reprinted from Special Publication T-92 Proceedings of the Eastern Joint Computer Conference

Transistor Circuitry in the Lincoln TX-2*
 KENNETH H. OLSEN \dagger

Circuit Configurations

ONLY TWO BASIC circuits are needed to perform most of the logical operations in the TX-2 computer; a saturated transistor inverter and a saturated emitter follower. To the logical designer who works with them, these circuits can be considered as simple switches which are either open or closed.

The schematic diagram of an emitter follower and the symbol used by the logical designers is shown in Fig. 1.

Fig. 1-Emitter follower.

[^1]With a negative input, the output is "shorted" to the -3 -volt supply as through a switch. When several of these emitter followers are combined in parallel, as in Fig. 2, any one of them will clamp the output to -3 v .

Fig. 2-Parallel emitter follower.
We have then an OR circuit for negative signals and an AND circuit for positive signals. The transistor inverter is shown in Fig. 3 (next page) with its logic symbol. Basic AND, OR circuits result from the connection of these simple switches in series or parallel (Figs. 4 and 5). More complex networks like the TX-2 carry circuit use these elements arranged in series-parallel (Fig. 6).

In Fig. 3 the resistor R_{1} is chosen so that under the worst combinations of stated component and power
 $T^{P R}$

Fig. 3-Inverter.

Fig. 4-Parallel inverters.

Fig. 5-Series inverters.

Fig. 6-TX-2 carry circuits.

$\mathrm{T}_{2}=$ TURNOFF TIME
Fig. 7-Turn-off time.
without the need for clamp diodes. Unlike vacuum tubes which always need an appreciable voltage across them for operation, a transistor requires practically no voltage across it. In spite of the delay in turning off saturated transistors, that the transistors are faster than vacuum tubes, but because they operate at much lower voltage levels. A vacuum tube takes a signal of several volts to turn it from fully "on" to fully "off;" a transistor takes less than one volt.

Flip-Flop

On the basis of previous experience, we decided that the advantages of having one standard flip-flop were worth some complication 1 N-2 circuitry. The circuit diagram or trigger circuit with a three-transistor Eccles-Jor on each output. The input amplifiers isolate the pulse input circuits and give high input impedance. The amplifiers give enough delay to allow the flip-flop to be set at the same time that it is being sensed. Fig 9 shows the waveforms of this flip-flop package when complemented at a 10 -megapulse rate. The rise and fall

Fig. 8-TX-2 fip-flop.

times, about 25 millimicroseconds, are faster than one normally sees in a single inverter, or an emitter follower to ground and an emitter follower inverter that pulls

Fig. 10-Trigger sensitivity
. plement the flip-flop at various frequencies. Note the independence of trigger sensitivity to pulse repetition rate. This circuit will operate at a 10 -megapulse rate, twice the maximum rate at which it will be used in Th
The TX-2 circuits reproduced most often were designed with a minimum number of components to achieve economies in manufacture and maintenance. The design of less frequently reproduced circuits made long life and broad tolerance to component to achieve The goal was system simplicity and high performance with a lower total number of components than might otherwise be possible. For example, the number of flipflops in the TX-2 is small compared to the gates which transfer information from one group of flip-flops to another; so the flip-flops were allowed to be relatively complicated but the TX-2 transfer gates were made very simple. A transfer gate is only a single inverter. The emitter is connected to the output of the flip-flop be-

Fig. 11-Tau margins.

Fig. 12-Beta margins.

Fig. 13--10-volt supply margins.
ing read and the collector is connected to the input of the flip-flop being set. The output impedance of the flipflop is so low that, when the output is at the ground level, a pulse on the base of the transfer gate shorts the input of the other flip-flop to ground and sets its condi tion.

Marginal Checking

We planned, of course, to incorporate marginal checking in the design of these circuits so that, under a program of regularly scheduled maintenance, deteriorating components could be located before they caused failure in the system. We also found it practical to use the design center of the various parameters and to indicate the tolerance of circuit performance to these parame-

Fig. 14--3-volt supply margins.

Fig. 15-Temperature margins.

Fig. 16-Pulse margins.
ters. A further application of marginal checking has been found in other systems during shakedown and nitial operation to pin point noise and other system faults not serious enough to cause failure and therefore very difficult to isolate by other means.
The operating condition of the inverters is indicated by varying the $+10-\mathrm{v}$ bias. In the flip-flop schematic in Fig. 8, the inverters were divided into two groups for marginal checking, and the two leads labeled MCA and MCB were varied one at a time for most critical checking of the circuit. The following curves show the locus of failure points for various parameters as a function of the marginal checking voltage. Fig. 11 shows the tolerance tau, a measure of hole storage and Fig. 12 shows the for supply voltages, temperature, and pulse amplitud are shown in Figs. 13 through 16.

Fig. 17-TX-2 plug-in unit.

Packaging

The number of types of plug-in units was kept small for ease of production and to keep the number of spares to a minimum. The circuits are built on dip soldered etched boards and the components are hand soldered to solid turret lugs. The boards are mounted in stee shells shown in Fig. 17 to keep the boards from and gold plated. The sockets are hand wired and soldered in panels as in Fig. 18.

Fig. 18-TX-2 back panel.

Conclusion

The result of these design considerations is a 5 -megapulse control and arithmetic element which will take ess than 40 square feet of space and dissipate less than 800 watts of power. The simplicity of the circuits has encouraged a degree of logical sophistication which would not have been chanced before.
Acknowledgment

A number of people took part in the work reported here. Major contributions were made by B. M. Gurley Petersen

Discussion

 R. D. Gloor (Ramo-Wooldridge Corp.):What is the estimate of the expected mean-free-time between component failures for
TX-2? TX-2? Olsen: The TX-0 Computer, which has been running eight hours a a day since
last April, has lost no transistors. So our last April, has ost no transistors. So our
experience with the TX-0 is that we expect experience with the TX-O is that we expect
the transistor portion of the machine to go for weeks without an error.
John Hayes (U.S.N.E.L.): What type John Hayes (U.S.N.E.L.): What type of transistors are used in the flip-flops?
Mr. Olsen: The Philco Service Barrier Transistor was a key part of this development. It is tested to computer specifications.
We also use two or three thousand Micro-alloy transistors. We would like to
use 100 per cent Micro-lloy use 100 per cent Micro-alloy transistors, but
there were only two or three thoussand available at the time we needed them. They have
higher gains, particularly higher current, and appear to be much better transistors propagation time per carry digit?
Mr. Olsen: About 40 millmi per digit. We made no effort to speed this up. This is a straightforward cascaded inverter, and it was the simplest type carrier
we felt we could make. Even though it is slow compared to the rest of the circuits in
the over-all system it contributes very little to it in time or calculations.
Win Soule (Digital Techniques): How do you obtain visual indication of flip-flop
position?
Mr. Olsen: We drive incandescent bulbs with a jumping transistor-a hardly satis-
factory way of doing it: 400 transistors factory way of doing it: 400 transistors
drive 400 incandescent bulbs. This is probably the best system as a whole, because it is not too expensive. We have been looking
for less expensive ways for getting informa tion.
L. H. Crandon (Autonetics): Are there any other sensitive parameters, different rom voltage, wich are used in marginal
checking? Mr. Olsen: One of course, can spend lifetime comparing every parameter with every other parameter. Marginal checkin tive areas, and this is the one we concen trated on, and we feel that this is a reasonable approach to it, when one is limited by R. O. Barnes (Boeing): How much cir cuitry is represented in one plug-in unit (as
shown in the figure) ie.e. how mayy fin per unit? Mr. Olsen: The figure shows that it contained one of the ten transistor flip-flops,
plus three volume transistors. Three is One package of cross section of one by two
inches, one flip-flop plus Inches, one flip-flop plus a little logic; eight
to twelve converters, or eight to twelve interto twelve
followers.

Transistor Circuitry in the Lincoln TX-2*

KENNETH H. OLSEN \dagger

Circuit Configurations

ONLY TWO BASIC circuits are needed to perform most of the logical operations in the TX-2 computer; a saturated transistor inverter and a saturated emitter follower. To the logical designer who works with them, these circuits can be considered as simple switches which are either open or closed.

The schematic diagram of an emitter follower and the symbol used by the logical designers is shown in Fig. 1.

Fig. 1-Emitter follower.

* This work was supported jointly by the U. S. Army, Navy, and Air Force under contract with Mass. Inst. Tech.
\dagger Lincoln Lab., M.I.T., Lexington, Mass.

With a negative input, the output is "shorted" to the -3 -volt supply as through a switch. When several of these emitter followers are combined in parallel, as in Fig. 2, any one of them will clamp the output to -3 v .

Fig. 2-Parallel emitter follower.
We have then an OR circuit for negative signals and an AND circuit for positive signals. The transistor inverter is shown in Fig. 3 (next page) with its logic symbol. Basic AND, OR circuits result from the connection of these simple switches in series or parallel (Figs. 4 and 5). More complex networks like the TX-2 carry circuit use these elements arranged in series-parallel (Fig. 6).
In Fig. 3 the resistor R_{1} is chosen so that under the worst combinations of stated component and power

Fig. 3-Inverter.

Fig. 4-Parallel inverters

Fig. 5-Series inverters.

OUT

Fig. 6-TX-2 carry circuits.

$\mathrm{T}_{2}=$ TURN - OFF TIME

Fig. 7-Turn-off time.
without the need for clamp diodes. Unlike vacuum tubes which always need an appreciable voltage across them for operation, a transistor requires practically no voltage
across it. In spite of the delay in turning off saturated across it. In spite of celay in turning of saturated tube circuits. Faster circuit speed is not due to the fat that the transistors are faster than vacuum tubes, but because they operate at much lower voltage levels. A vacuum tube takes a signal of several volts to turn it from fully "on" to fully "off;" a transistor takes less than one volt.

Flip-Flop

On the basis of previous experience, we decided that the advantages of having one standard flip-flop were worth some complication in TX-2 circuitry. The circuit diagram of the flip-flop package in Fig. 8 is basically an Eccles-Jordan trigger circuit with a three-transistor amplifier on each output. The input amplifiers isolate the pulse input circuits and give high input impedance.
The amplifiers give enough delay to allow the flip-flop to be set at the same time that it is being sensed. Fig 9 shows the waveforms of this fip-flop package when complemented at a 10 -megapulse rate. The rise and fall

Fig. 8-TX-2 fip-flop.

output (UNLOADED)
output
LOADED WITH
(100 MMFD, 1000Ω) Fig. 10 is a plot of the pulse amplitude necessary to complement the flip-flop at various frequencies. Note the plement the flip-flop at various frequencies. Note the rate. This circuit will operate at a 10 -megapulse rate, twice the maximum rate at which it will be used in TX-2.
The TX-2 circuits reproduced most often were designed with a minimum number of components to achieve economies in manufacture and maintenance. The design of less frequently reproduced circuits made liberal use of components even redundancy to achieve long life and broad tolerance to component variations. The goal was system simplicity and high performance with a lower total number of components than might otherwise be possible. For example, the number of flipflops in the TX-2 is small compared to the gates which transfer information from one group of flip-flops to another; so the flip-flops were allowed to be relatively complicated but the $\mathrm{TX}-2$ transfer gates were made very simple. A transfer gate is only a single inverter. Th

Fig. 12-Beta margins.

Fig. 13- -10 -volt supply margins.
ig. 15-Temperature margins.

duLSE AMPLITUDE (voits)
Fig. 16-Pulse margins.
ters. A further application of marginal checking has been found in other systems during shakedown and initial operation to pin point noise and other system faults not serious enough to cause failure and therefor very dificult to isolate by means.
yo thers is indicated Fig. 8 the marginal checking and the two la low gra MCB were varied one at a time for most critical check ing of the circuit. The following curves show the locus of failure points for various parameters as a function of the marginal checking voltage. Fig. 11 shows the tolerance to tau, a measure of hole storage and Fig. 12 shows the tolerance to beta, the current gain. Operating margins for supply voltages, temperature, and pulse amplitude are shown in Figs. 13 through 16.

Fig. 17-TX-2 plug-in unit.

Packaging

The number of types of plug-in units was kept small or ease of production and to keep the number of spare to a minimum. The circuits are built on dip soldered etched boards and the components are hand soldered to solid turret lugs. The boards are mounted in stee The male and female contacts are machined and gold plated. The sockets are hand wired and soldered in panels as in Fig. 18

Fig. 18 -TX-2 back panel.
Conclusion
The result of these design considerations is a 5 -megapulse control and arithmetic element which will tak less than 40 square feet of space and dissipate less than 800 watts of power. The simplicity of the circuits ha would not have been chanced before.

Acknowledgment

A number of people took part in the work reported . Major contributions were made by B. M. Gurley, Petersen.

Discussion

R. D. Gloor (Ramo-Wooldridge Corp.): What is the estimate of the expected mean-ree-time between com
TX-2?
Mr. Olsen: The TX-0 Computer, which has been running eight hours a day since last April, has lost no transistors. So our
experience with the TX-0 is that we expect experience with the 1X- of that we expect go for weeks without an error John Hayes (U.S.N.E.L.): What type
transistors are used in the flip-flops? transistors are used in the flip-flops?
Mr. Olsen: The Philco Service Barrier Transistor was a key part of this develop-
ment. It is tested to computer specifications We also use two or three thousand Micro-alloy transistors. We would like to
use 100 per cent Micro-alloy transistors, but use 100 per cent Micro-alloy transistors, but
there were only two or three thousand available at the time we needed them. They have
higher gains, particularly higher current, and appear to be much better transistors. propagation time per carry digit? Mr. Olsen: About 40 millmicroseconds per digit. We made no effort to speed this
up. This is a straightforward cascaded in up. Ter, and it was the simplest type carrier
verter
we felt we could make. Even though it is we felt we could make. Even though it is
slow compared to the rest of the circuits, in slow compared to the rest of the circuits, in
the over-all system it contributes very little to it in time or calculations.
Win Soule (Digital Techniques): How do you
position?
Mr
Mr. Olsen: We drive incandescent bulbs with a jumping transistor-a hardly satis-
factory way of doing it: 400 transistors drive 400 incandescent bulbs. This is probably the best system as a whole, because it
is not too expensive. We have been looking is not too expensive. We have been looking
for less expensive ways for getting information.
L. H. Crandon (Autonetics): Are there ny other sensitive parameters, different rom voltage, which are used in margina Mr. Olsen: One of course, can spend a lifetime comparing every parameter with
every other parameter. Marginal checking every other parameter. Marginal checking tive areas, and this is the one we concen-
trated on, and we feel that this is a reasontrated on, and we feel that the se a reason-
able approach to it, when one is limited by limited length of time.
R. O. Barnes (Boeing): How much circuitry is. represented in one plug-in unit (as
shown in the figure) i.e. how many fip-lops per unit? Mr. Olsen: The figure shows that it con-
tained one of the ten transistor flip-lops tained one of the ten transistor flip-flops,
plus three volume transistors. Three is in one package of cross section of one by two nches, one fip-flop plus a little logic; eight to twe ve
followers.

INSTRUCTION CONTROL FRAME

TESTING

Abstract

\section*{Abstract}

This report contains a description of how the Instruction Control Frame will be tested and is written to familiarize new men in the group and any other interested parties in the test procedure planned as of now for testing the InstrucLion Control Frame.

The frame will be divided into two sections. Group "A," which will be assigned to Section one, will proceed to get the time pulse distributor and associated controls working. Group "B!' which will be assigned to Section two, will proseed to get the command decoder operating. As it is planned now, each group will be able to work independently of each other. If one group falls behind schedule, the other group can switch over to help. A definite sequence of pluggable unit insertions in the frame has been listed for each group. The list includes sequence, type, and a short logical description of the pluggable unit use in the frame. This list is: included in this report.

It is desirable that all who test the frame should use the \log book in a manner that can be followed by any member of the Instruction Control Frame group, or any other interested party. In order to expedite this difficult task, Figure 1 illustrates how the frame log book will be kept.

The time pulse distributor and associated controls are almost entirely located at the left side of the frame. The command decoder is located at the right side of the frame. Each of these units can work independently of each other. This allows
a double barrel attack for testing the frame. When both these sections are working satisfactorily, the time pulses and +10 or -30 levels are at the correct pins of the command generators pluggable units for each instruction, then the command generators pluggable units will be inserted. The insertion of the command generators will be in an ordered sequence by registers or controls. Each will be checked out before the gucceding register or control is inserted. This will be done by putting the 48 instructions associated with XD-1. in the operation register and checking output points for commands associated with the instruction in the operation regiater.

With the command generators inserted and operating, another incomplete check will be made to be sure pulses associated with commands occur on the cor rect instructions. Next, the push button operations will be tested.

To facilitate the elimination of excess thumbing through block diagrams, a chart has been made for each of the 48 XD-1 instructions. These charts have pulse pin numbers, supressor grid pin numbers, tube numbers, locations, and driving circuits, etc. for each command associated with an instruction. Charts have also been made up for time pulses and instruction pulses which will indicate the destination of these pulees and what operation they perform.

In order to perform the tests indicated above, Figure 2 and Figure 3 show how test equipment will be wired to the frame.

It should be pointed out that it is very difficult to foresee all problems that will develop as testing of the frame progresses. The above procedure of testing may have to be changed. However, it is felt that our plan of attack will allow us to
proceed with testing in the quickest possible way with a maximum amount of reliability of data. Any suggestions for improvement of our test procedure will be welcomed.

R. W. Shur

FIGG Z

FIG. 3
GROUP E

Pluggable Unit Sequence Insertion List

Sequence Code	Type	Location	Logical Definition
1 A	6002	4 CX	Oscillator
2 A	6020	4 BM	TPD Control FF Continue FF
3 A	6001	4 BG	Gate Tubes: TPD ON Continue No Break 10 Interlock
4 A	6007	4 BF	P. A. - IP Driver 2 me pulses Clear, comp. FF
5 A	6005	4 BN	$\begin{aligned} & 2 \mathrm{mc} \text { FF } \\ & \text { Inst. Step. FF } \\ & \text { Memory Cycle FF } \end{aligned}$
6 A	6007	4 BK	P. A. - TP Driver Clear, Comp. FF
7 A .	6016	4 ED	R. D. - TP Register Driver IP Register Driver Clear Comp. TPD Register Driver
8 A	6008	4 CE	TPL - 0
9 A	6024	4 CF	TPL 1
10 A	6024	4 CG	TPL 2
11 A	6024	4 CH	TPL 3
12 A	6024	4 CJ	TPL 4
13 A	6024	4 CK	TPL 5
14 A	6024	4 CL	TPL 6

Sequence Code	Type	Location	Logical Description
15 A	6024	4 CM	TPL 6 A
16 A	6008	4 CN	TPL 7
17 A	6024	4 CP	TPL 8
18 A	6024	4 CR	TPL 8 A
19 A	6024	4 CS	TPL 9
20 A	6024	$4 C T$	TPL 10
21 A	6024	4 CU	TPL 111
22 A	6024	4 CV	TPL 11 A
23 A	6024	4 CW	TPL 11 B
24 A	6016	4 EC	IP 9 Driver IP 10 Driver IP 7 Driver IP 0 Driver IP 8 Driver Comp. DVTPD; Step Counter, and Mem. Sel. FF's
25 A	6016	4 FC	2 mc Drizer IP 5 Driver IP 6 Driver IP 11 Driver
26 A	6016	4 ED	IP 3 Driver IP 1 Driver IP 2 Driver IP 4 Driver Clear St ep Counter DVTPD, Mem Sel. FF
27 A	6005	4 CD	DVTPD 0, 1, 2
28 A	6005	4 DC	DVTPD 3,4
29 A	6007	4 DD	P. A. Drivers for DVTPD 0, 1 2, 3, 4 Clear Step Counter and DVTPD - PT 6 Add one to Step Counter

Sequence Code	Type	Location	Logical Description
49 A	6001	4 ER	Adder Command Generator
50 A	6001	4 EU	Adder Command Generator
51 A	6007	4 ESq	Adder Command Generator
52 A	6007	4 ET	Adder Command Generator
53 A	6001	4 FH	B Register Command Generator
54 A	6001	4 FL	B Register Command Generator
55 A	6007	4 FJ	B Register Command Generator
56 A	6007	4 FK	B Register Command Generator
57 A	6001	4 FS	Accumulators Command Generato:
58 A	6001	4 FT	Accumulators Command Generato:
59 A	6001	4 FW	Accumulators Command Generator
60 A	6001	4 FX	Accumulators Command Generator
61 A	. 6001	4 GX	Accumulators Command Generator
62 A	6007	4 FU	Accumulators Command Generator
63 A	+6007	4 FV	Accumulators Command Generato:
64 A	6007	4 GX	Accumulators Command Generator
65 A	6007	4 GY	Accumulators Command Generator
66 A	6001	4 EW	Input-Output Command Generator
67 A	-6007	4 EX	Input-OUtput Command Generator
68 A	6001	4 FD	Selection Control Command Generator
69 A	6001	4 FF	Selection Control Command Generator
70 Aq	6007	4 FE	Selection Control Command Generator

Sequence Code	Type	Location	Logical Description
1 B	6007	4 HX	P. A. - Clear and Comp. Cycle Control and Operation Register
2 B	- 6016	4 HY	R. D. - Drivers for Clear and Comp. Cycle Control and Operation Register
3 B	6010	4 HU	A, B FF
4 B	6010	4 HT	PT, OT, FF
5 B	6010	4 JY	Bits 1-10 of Operation Register
6 B .	6010	4 JY	Bits 1-10 of Operation Register
7 B	6010	4 JW	Bits 1-10 of Operation Register
8 B	6010	4 JV	Bits 1+10 of Operation Register
9 B	6010	4 JU	Bits 1-10 of Operation Register
10 B	6010	4 JT	Bits 1-10 of Operation Register
11 B	6010	4 JS	Bits 1-10 of Operation Register
12 B	6010	4 JR	Bits 1-10 of Operation Register
13 B	6010	4 JP	Bits 1-10 of Operation Register
14 B	6010	4 JN	Bits 1-10 of Operation Register
15 B	6017	4 JM	Mult - OT Mult - PT
16:	6227	4	Mult (
1516 B	6017	4 JL	Shift Misc - OT Misc-PT Misc

Sequence Code	Type	Location	Logical Description
55 B	6011	4 GP	Mult. Class Instruction Matrix
56 B	6012.	4 GS	Store Class Instruction Matrix
57 B	6012	4 GT	Store Class Instruction Matrix
58 B	6012	4 GV	Store Class Instruction Matrix
59 B	-6011	4 GU	Store Class Instruction Matrix
60 B	6010	4 DN	Memory Unit Selection Controls
61 B	6010	4 DP	Memory Unit Selection Controls
62 B	6010	4 DS	Memory Unit Selection Controls
63 B	6023	4 DR	Memory Unit Selection Controls

 . x^{2}- DistRycrica COATAOA FAAME $\times 0.1$ gestavcrion teascuTzon

若
4. 1. Kurkjan

January 7, 1954
 Cotitrol rawa. It describes the bishc comyouter mamory cyele,
 thot-uctiong. The refort al so describetin tomed detail the sfecution
 takive treffic diegramo are provided. A Hating of the intatuction

TAMAE GE CENTENE

rese

1
Introductiona
2
Easic Nuchize Cyclos
4
Irattie thagranio 4
 4
 7
Desafitetion of in intucesssa 9
Kibctianustu Citsay 12
AdA Claze 13
Multi,ly Class 16
Store Clants 18
Shift Class 22
Banctéticic 23
Linut-uthut Ciaed 27
Reset Clabs 3 3
Traific Hixgranas 32
Refcyences 34

Hitacouctiony

The paryose of this roppit is to facceith the execution of the
 for the execution of the fait-tectlons by the circuite of thd hastruction

 reptefratative tratfc Alegramy illinstrete sworel Instructions velldin

 equi londeil and isur numbers ate sizelitiod.

WWenver Informatioa is iniberted of oxtracted frop the canputer

 porite reilebty, The t-wacroescond interyit ip dictated by the ageest

HASIC HACHINE OXCLES

Thery art two ka alc rakchinh cyclets riferred to at jrogran

 Wutc gapd 3 me mattiple of 0,5 wicc.

 vxita chanise © Lutring

The hatruetion (

 cranter. When the cumitet ia radiced to sert, wa thdtcation it givan of the eorcpitction of 2 wic, operation, the TPD is yertartent, end the generf Hion of 2 mic, clock can mand paile 辛 lo atoged.

 extract fronit motinoxy the invtruction to te extcutted, and to deccite that tinatruetton. turing the fottowixy memory Eyclo fajozecion cifoll that

 tions whlch requito paude at the ead of the tro mmoryory cycles. Again, durthe the panife 2 zec. opurations tuite place. Hutzettions gequiring tha
 It Again goat witied by the oftp equater.

Hactrectiono which yetivire thre mosmory cyite for exacuition use

 \% 2
Whentvez an of "ration time mopoory cycle (without furthex Hentifictitiont

THATETC DLGMAS

 An instruction fe exesutod and the tirie e withis the mimery cyele phom o parthcular comindind in oxecuted. A eommind may he deffed es an rlonem-
 treffic diagrama are inclucted in this fepovt. The tratfic diagrasoz show wertiral memury cyclet oiz sheet, eath stemony cycle being divited tnto twelve equal epacye, each division repreveatiny a 0.5 microescond lime fitarial. The be biegrans theretort, show the total time aecenaury to execule an to etruction. It uheuld bo borac ln miad that the te diagraxc
 mismory cycle fenith

sexay cycios

 meniory is foilitied by o ogta it menory' putes, This fuler to fod into vifliat delay theo fo cuifo memory to cycle throuif e zequence of rezd, write and tisturb ectimo. The 33 -hit ward ts ritad orit of the wingaetic cores fito the meniony baffer megistere at ax sefone Tr-6. The edgnt

 mancmy In indteatod ly the propram cotinfino

$13 \times 0.035=1.16$ natcrobecinds mhere 33 terrasentis the numper of gete

 ncedndery log the gartiy fifp-itop to cottle, and the rerazining 0.34 microwectal reprement 2 bufaty tector.

 e. . $\%$. $x-5$ b $C x-6$.

 inititiction to se arecited. Th, ight haif word, whot mationlog the aditeat
 fusction of atiel lep raghtess will bestederibet tastr.

1t priri, the decodiag t completed und the nacesrary d. ci levelo -are genernfid to qate the 12 lnutruction pul ges Irom the TPD. for execu-

On dertal instructions it is wecessery to modify the adirenof part of the opetand yefote it is extracted frem rmemory. This groceso i由
 Hion occur' at FT-9. At PT-11 a yarity check io porformed to determine Ciecorfidctness of the parity bit aseociated tith the instruction word. If
 Itgai to gonerated. Thia sction Completily the proptime kima memory gicic. If the Introction requirea an oper tion timotintmory cycte to
 tion time. " puring the eqecution of any gyan instrititho, the pregram counter it advanceA by one to indicite the mbitory 2 didrese of the next Intrubtlon. Durlint bach dpectution time wionory cycte, the contenty of the addrepe regieter are trinnfitred bo the memany adiress rogfoter at OT-1.

AE fanil bf evory poempry cycle, the computer sensos whathot any

 corsiphet acases fay auch breakis at a 2 mic y ate.
argaik cycles sifo further Alitigguinhed as brenf In and breat owt A. bratik in eycle fo anocheted wik the tranfor of toformatlon form the selected inpat-onip at ualt to the computer menary, aread ogazation,

 trangeriked luring tay tazut-output operation La controlled by the wo wha countar, Appropxtate type bramich ary requented whtil the requodrea mumber of ferdis are manifored. It moeld be ngtof that an to byem doos not interfeve with the exoceti on of an indtruction ewedyt to delay lte coun ptetipm.

H+2RUETHON RXGESE

The sther: functisat of the baitrution rugigter are thy foltowing:

1. Index indicator (lite 1 thytagh 3) Iv iged to celect une of twe tadien register of me, ind
 used in Instructive findexing bgephtions fout. Refarence \%
2. Instriction code futea a firough 10113 zsed 40 SHentify the instrectlow to be porionnad. The Inet rwotiona of the $\mathrm{XD}-1$ wre trovgeed ing if ht cinasey. "uthla chas instructions are dia1

- dingulahed by, veriation. Eita 4 through 6 of the opiration code indicate the clas and bis: 7
 enca 11.

3. Indax intervel (oits 10 kirangh 15 If usect with the ifotruetims "Mense, Select *-Cperate. ead ngranch and addx (see Xelerence 4). Urhet function yerfarngee by thesu bits ate:
4. Aits 14 zna 13 are uged co teaficate the node of of uxition on the coygntiow feature.
b. Dita 33 through is aro viget in tradiemte bhe

1. Humgry unit selector (bite 1 turoogh 3), is used io ralact ore of the iolloginy
A. Nizinctic core meniany if of 2 .

plug board, and one de e fip-fiop regieter.
Test oforaye la ueed for teltiny nomory end for teatles other portions of the compister Without the twe of magnetic-core memory (see Defarence 2).
c. Mechenical clock to obtain real tirzo mikyuremients ises Reforamed 3 .
2. Adqreas part (ble 1 emrough 15) ip zeed to epecify
the eddrestes of the $40 \% 6$ reginters in magnetic core meinory. Bits 5 through 13 sfecify the drum +
tddresete. Ina bity 12 through 15 pecify toat gtor-

DESCRTETLON OF ASTE UCTIONS

4

There $i r o 49$ inetrucfiopenasociatad with the XD-1 camputer. Thewe Inifuctions are frouped in aight classe (wae Refererices 1 mid 7 . In depcribing the opertions of thent instructione, it shatl be tomurned that the profram tirne mernary cycle has betn execated up te PI-9, and that the Intructioh has been decoded.

The chofce of the airthméti pyoges: for the XD-I was besed on aelect-
 glironiaed tergion of the asychronous edd-and-shift schame whe choced. \$p-uyfecheme, addition results in the displacement of the sum one position Wh the xight a correction shift left must follow,

MEscetynvous elies

The milacphanstose cless of frntructipuay contain thoso inctructions Whes 40 hot that the wher clagies pertheuligity toll. The shift Lult and

 forms recuites out memoxy cycle dad a puige?
 ap cumper of chthone folloperi gequired to drye the 6t-wis matix. At

 pzevicuty clared at 0\%-6.

The execution of the program stay Instriection (pa) is delayed at the 10

 tion ragiftex fal bean clwared and the programe counter ha beet zivancod

 follompa by a found peration whercver the nccefony copaitions br \& mat.
 during progtene tirne to the value indicated by the aleress pert of the fatrues

 patfi dieration ls cormalated the THD is reteerted, unt mempry cincle is

 bit equal one. timilaz aperationy to thote dexexibed ule bethy exacintivy the inyht arithmetif elemisah.

 Ha adattion. The adcition reguires 1.5 micrasoequis. Tbe groceet of atai-

 Ghe. This canailetes ths execurtou of the labiruetion.

 counter contains the why conthement of the nombet of wor is renwialige
 the sering of the caunte:

$\frac{1 \text { yon thes }}{10}$

 thenther

 regulyte for the remeining instructions in the fidy ctag, whe the conimitnats

The eferations of the 1 inin frotructidind. Toin tiat A dd (tad) evd Twin
 Hvety. Ftopporend If extractad at $07-7$. In the subtract inatrictione phe A Fogistify are complemiated et of-o and at GT-10 the carty eiro tinge

 fonkration acecrfatal bopwe.

 OT-8 If the cosfutpondita a reficter signity-flop lo tegal to one dito

 Hons zequired bafore the computsr mey frocect with the narmal adi ogeteHots dencrkbad ebove.

WUL2xy T Ct.igs

 of mutifyey and dride mave bean de sczibed in zeference 2 .

 b.

 loter reghstey is clearse. The muthilicana which wis yoced in tha A

with bl - O. Nelifgilication io completed within thit memery eyele. The eng of 2 nuc njeretion to makeated by the stef coyute: belno reduced to

 fleted sind the step counter controte tye ktayed. The zohahthith coba-

 coniflementatise procets, bocente theto regieters together holcithe ifo nat $32-4 t$ rexite.

 itep corantet te adranced once for eech divide cycic. Thereforg, to execute

- divide-type faatruction $16 \mathrm{x} 5=80$ pulsea are reguired. Sae of the five
 is reduced ta sero. the Thil 12 restarted and progrem. time mernury cycle is reouncd with 5 T $\rightarrow 0$. The remsindny comadudd deat with the correction

 Ceteb toro the "carry equ" tho fs futian, Thia is followed at yT-5 by a shift loik carinand. Final eorraction of sligna was dejcribed as a pett of the nualtisty instrwecions.

㘶2at cidas
The store Cland containg ? Inctruetions. Thi elass is indezable.
 cyclesto compiete. In eqneral, the comonuter control circuite begh with

 valife the other intenctions that require 2 memory cycles in that grugram tinse iz fullorind by cres instesa of ORA.

In ail thw instructions of tind class, excejat store, folloning conaminds art executsal At brit-C cha memiory adirect registor is clenred, and af OTA-I the centonts of the fdilets regtoter are tranoferred to the memery ahirens reginter. At thin tive the menory buffer regizets are cieareit in preytetation for the transfer of the bjeraed from the monroxy fegister. At

OTA-6, the a registex are clearec. and at ©TA-7 the cootonta of the monory Guffer register: Are tratsferrea to the A registera. thea executing the Depoait instiuction, the A registera are aot cieared at OTA-6. The new word from the mevsury buffor cegistazis io read inio the A regleter at orA-7 on top of the word alroady there. Finan eqecating the store Adareds inatruction, the cosumancis of OTA-S end OTA-7 concera aniy the left A registaz hatead of both A registers. fif Dig - 1 the contents of the adizoms refister are once mote thanaferred to the niemary achrese regheter which wist cleared at CTI-0. The meravyy buffer registery are cleared is prepuration for subser, wout kraafara of information. In all the instructiont of thiz claze, the "record overflow" comzrand is executed. Thiz conswand lo uncoaditionat and cauaca no harminl affect on any of the inatractions of this class. The conmand pecalfar to ekch motraction will now te deseribed.

The Leit givee inatruction (1st) is cumplated when at UTE-Z the content of the right A fegieter are tranderred to the right memory buffer regiater and the contente of the left accumulator register are tranterred to the left manoory buffer regiater. The contents of the right if register represcat tho haif-xord originally stored in memory. This half-voxi was tranofer red from the right miemory buffer cegistar to the right A regleter 3t CTA- 7 to prevent the destriction of this word through the occurrence of an IO ereak betnota the A and ti weration than memory cyclez.

The Right Store inatractlor (ret) is similar to the instraction deteribed above excopt tint at orin- 2 the contonts of the baft A register are tranaforred
to the dight sevenity baffer regiztor.
 instruction, except that the confent of the A zfiatery are cranafetred ta the mane ory buffer vogistera d City-c time.

 In srder to Eucomalish this action, the accummiation register and the uado: circuita raust be seed. Cousequently, st UZA-6 the right acecmuiatur rejs iater is cleared. At UT $A-8$, that 16 , after the worbi bas been piaced in the A registefs, the right carry cif lime ia pulace to cause e one to be afded to the contento of the tignt A register and the if jit accurnulstur yegistet. Inis aura is placed in tho right aremantator, Dut disylaced one position to
 lociag mextiony cycle et ZTE -1 time, fright ond cerfy after adé wae commona is exceuted if the figh carry fip-flop in equal to one. In the jur ticular casa in which az end carty would vecur, it is oniy decessary to wet the fiftaenti bit of the right accurfulatior to one. Sa actuat acdition for this correction is wot yequired. The right carys fliz-ftop is cleares. At the

 te2. Af CTTB-2 the canterty of the right acconaulsioz yegister are transferied ta the fight mampey bafier centwiez, and the cantent of the left A reginter are tranuferred to the lift werrigry buffer regithty.

In the Exchaage instzuction (ec), the contsut: of the epecifled meteory register and the contents of the accumathator regioterf are laterchangec. In the execution of this inatinetion the contenis of the nccurnulatoz registers
 to this thme, it was neceasary to tranofir the original contents of the oyecified miemory register to the A regintore viz the niemiory buifer registera. Aftor the oxigisal content of the accumalatur reytatert are triatsfanzect to 2 the mercory buffer regiters at CTy-2 time, the accumulator regiotors are
 the addition of the contents of the A regicter 5 and the cleared eccumulator regiaters. This action fo followed at FT - 1 by a ohift left operation und at PT-6 by "record overfow. The timing of the above "xat tyie" comanande whe miade eandistent with the reguler Add class inatructions.
iregositit-dep 08.10.52

The bepabit inatruction (efy) is describud in refereace i. Th tae execution of this instruction the A registers are cloazed at rizA-1 tixne. At UTA -2 the contents of the accumalatse registays are cemylementwi. At OTA-\& the coatenty of the E register are trazgicirad lo tho A fegidtere and at of A-S the Hegical natiltifly" comamand is axecuted. SEe dencrijtija of Lixtract iteotruction fo the miacellaneovs ciass.). The roitult of the logical multiply constanad io Row in the accumnulator yeginters. The nex word is extiacted frout wermory at OCA-7 and placed in the A reataters. This tranefor consbines with the previous intorniallon of the A registegs. At GTA-7 the
the acermulator regintors are complemeated once agafi, fallowed by aathe: $*$

Hogicel maitiply comionind at OTA -9 . That, the contert: of the 3 reginters have dotermieed what hinery poolion: of she wipecified word in menoty are to bo replaced by the corresponíng binary fositiong of the zecuzaulatof regiatare. The content of the ts reglaters are at affected, hawever, the contedit of the accumulator ragisteris are transferred is the raemery buffer restatery for starage in the suagnetic-cora momory.

The Store instruction (3t) requiret that the coatupt of the accarnyletor registers be traneferrwd to the memory buffor regtotert for torage ia the zagnetic-core nemory. The conteate of the accumulater regiaters arit mechaged; however, the original contants of the inaifated meriory register are tost.

8HITTCLASS

The Ghift ciaza contain eight inutructiono, etich of which is sialiker to tithor the shift Left of the khaft Right instruction. The execation of tho featrucHons in this cian rogeires the accurnularor regiaters facd the B registera to be comected in sevaral wzys (ree reference 6). Botis regicterz zzec capable of akiftiag thatir contents one povition to ko fight ar one position to the left. In the accumalator registers, the bit in position is lost whon leff shifts care executed. This bit is tot lost on cycle ingtruction. Similar statements agply to the bit in p saition 15 or sither of the instractions of thit cians.

In all thate initruetions the edtrean port of are ingtruction syecifies the numbar of timses to shift, and maximum of 64 shifit is provided. At

At $z^{2}-10$ the 日hift o, reration is etarted. For every 2 me shift operakion hat step cinumer which containg the nuriber of cimes to fhlft in reciuced by one. AtET-11 the TOD is itopied, tod only 2 ouc ghitt command gulses aze now

 vince the shifi opetation is coropleted. The TPD Is zestarted and the mernory cycie is resurned whenn the atep countar ie reduced to five to save thme, Eix
 time tha peeration ceginter is clesced and the iastraction if leat. tia chift eperationz coull hercfuze be ecconimodated. However, only four whif pperationk ȧ̇e parformed to maike tise operation conefotant with the Multiply iestructions. The thecitied aumber of sbifta is five ox leot, Be Triv peed not be stogjed. The 4 y and "ty note on all thatraftic diagrams of this Cias indicate the tyas of accemmator register and W register operations rexpectively.

SNANGH TGLAS5

The biauch Citas cunteias bin instructione. This clastlenot indest able. The genoe and Braach on ervinat;udiono reciulice ino memory cycies.
 FIght kinus are vne-ficmory-cycle inxtructiona. The zenie tnatruction aqs made a twp-memory-cycle instruction to raduce the murchet of cethode
followers repxirivi to driva the selection matrias.
 3 Fanch on sijht Wirny hastrectlean are very wimilse, oaly the corditions

 right sccanmiato fegister le negmaty, cesysoctvely. fit. "T-9 the right A

 ftor ie in an ladicatiag candition, the content- of tho tidrafet tegiothr are
 frogrami couoter is set to tio zuturg sa of the nowt inutruction tp ba exacubed.
 not bech net, the branch fiy-flop rozizian in e clayred coutition, ens the coaients of the yrogrann coustex ate not sttered.

 exatod which cauite the statuy wo the "rense termikul" to ba examinad. If
 DI-9. Consenuently, at cif-11 thu pragzera counter is trimsferres to the

 cargicted.

The Branch sat Tery iestruction (bs) exasest the A registez to be cleaped waconatitionaily the sorteot of the orosyam courter to be fianaffryed th the

 of misaus seta.

At DT-i tise fo feyistexiare ciearod. Thesiga bit sf edch arcumiculator ftizisters is examined. Tha accumalatox fegistar havingitz eigz bit eque! to one is complerivaten, and the sigh roateof fip-fiog is complomanted. At CT- 2 the eccumulator regifter a are both exuptemented egein: this make:

 Iof operation. The zentoriog opereition beyins at OT-T, ant is condtional on the statuk of the aign control nyy-nop of the reapective accumplatso regietout. It a sigu control Mip-fios is zert, the coricayoacing pecumbinior reginter is cormplemanied at OT-7. At OZ -8 the 3 inn bite of the accumalitor

 tulsad foltowed by the abift laff cefrucianiz at 0T-11. If tha branch finfoflop

La to an instcatiug cínution．the coutente of the grogram coupter are frame－ forred to the efght A reflater and the Hogram ecunter to cleared at OT－11 thme．At ET－t of the following mernosy cycie，the contents of the andreas regiater are placed in the program counter．At pe The the oign control filp－

 slearod at ぞTー6 traxe．
 the afor of the spefficd ladex reginter．At rT－9 the sigh bit of the apeci－ fied inkex register is examined．If it is equal to sero the bazach hip－fios is aet to an indicating coadition and the fight A register lo clazed．At PT－11 the contezty of the prograre counter ave tranzferrod to the xight A register， and the frogram counter is cleared．At If $\mathrm{T}-8$ of the following memory cycle， the coatents of the adirsou fegister x po placed in the yrogram counter，and the adiress regiater is cleared．The new conitnata of the program conater provice tha address of tac next instruction ts be executed．At FT－1 the cori－ plemant of the index latervai iz eransferzed to the addreas xegletor，and the contents of the specified jadex register are added to the contents of the eddres register at yT－2．The grace 3 of oddition lackuding the gropaja－
 fndex ragister afe reduceil by the value ejecifiel by the index interval．Hind－ －ver，if no index registex wera spectiled of if the sight accumulator fobich

the rount 1\% wis unejautituat biench. In chis caye contents of the inflex intervel are nuswingluaf.

The In, ut-isutut nlans containk five lustructions; and all fantruetionn Of the claod are Lndaxalle. These fratraction exe zownoiated with the execution of a benak-ixi or a bivak-iut cycle shen fic curiputer makes nersory
 cias it contingent ung the ingut-otiznt faterlock being in an off-ccnadition. If the 10 inturiorik io in acion-cpadition, the execution of the se instrastimes ere dulayai until the interlocistic cianred. The Lond A Alreso Conster. Read, aud Write initractions reçubt ond membry eycie, and the Select and select Drumir listeractiond requicesw mieriosy ciclen.

 The ToD in stosecti by the pause copdition. During the jauss comditiph, sensing
 indteating conrifion of tive lis brak previmuly in arugreas, the conputer zroceedy with the instruction. At \& T-2 the 10 adircss covater ia cleared, atid
 counter. The conterth of the zddreat regloter at this time indic ate the andrese In the Hiagretic-ccre menrozy frurz wich of to whica the firat word of tho
following lncut-outjut egenation wili be transferred.
The celect inetructionj3e) indisate \& the 2mput-2ut;ut unit, whor then
 10 unit is lifentifiod by the legt aix bits, 10 thromate 13, of the cperafion regioter. These ate the safro bite which are waed an the budex ieterval on other instructiona. Two mituincy cyclen are rectired for the execution Cf this iestruction, stace vith thic errangezerat the naniker of cathoide followers necesuary to difive the contrix ent raducod. The exacution of thits insirsetion la contingant on the 10 . interiock being in an off-condition. Tho iatarlack iz senued at cT-11. IF the Inkerlock is in an off-condifion, the PT-OT Aily-nlap is set to RT, and the coscetur ptocencs with tha instrueLish. If the foseriock is in an on-condtion, the YY-OT fiy-flon it tet to PI and the panme ajp-fogiv sef to the pause-condiliom, which censen the bronk request fing-nty to be seased at 2 zome rate. fruying the exacution of the Belect inctruetion, 2 denclect pulse in gererated at RT- 3 . Thim pulize
 putput unita. At PT-3 the conteate of the adireno reginter mre transferyed to the drah contrsl replater, which had bean cheared at rion. This transfer cabpeo no hamm and te permitted ts meke the Solect inntruetion consiokent
 This commend examines the $\mathrm{Se} \mathrm{Ch}_{\mathrm{F}} \mathrm{On}$ ratrits to dee which inpat- eutput wait hat bean selceted. Bo ereaut of thia uperation tha selection fip-flope assaciated with the seaired ing पi-output with sec fet to az indication cundition.

The Eelect Dramio hastructich iv aimitar to the select instructiza. H is u*ed to eclect a perticula f drum ifeic huspciated with the dersm systes: of the XD-1. The Giatinction betweon belecting drums ard infut-cutpric Cevicez othet then drums became necessary when the total ampher of addres ses roquired sy the $I C$ units excesaded 64. The axecution of thle taifiruction in
 tents of the adresa regiater bra tzanferred tathe diam contrit regiztoy
 etarting eadresm of the betected Arum field. This commandiz also executed
 coutents of the index inferval are tyanifizred te the dran seloction rogister loctied In the Drum Yrames. The necesuary conditiong for the execution of a brewt-in of brealर- 2 ut top fation will be providied by the circuits of the Solection Control ILlemient.

The Write inatruction (wr) providics the mecessaryconditions to effect the transfer of information from the magatic-tore mentiry at tas comyatic to the selected output cait. The execotion of the ingtructien is coatimgeat of
 Ita on-coodition, and the IS word countsx is deared. At PY-2 the contents of the aidrees. reginter are iranaferzed to the 10 woxd counter, wind tire 10 reginter is sfenved. The 10 weri eounter now indieties tho number of korde
 the dotater tte equal to xero, the to pord caunter statua tip-fiop is eet to
 vancing the 10 ucrd caunter regulves 16×0.035 or 0.56 microsecolide. Since the setiling time of the atatus fip- ilop is 0.3 macrocecoeds, a tiatial trive of
 condition, and the index feterval bit are seneed for the interlevva mode.

The exacution of the nead fatrmetion (ra) ia very struliar to that gif the - yise fastraction. The enly differance in the twe tastrwations being that in this Instruction the read thip-fop, fo set to an indicating cosdition at $; \mathbf{T}-6$
 speration is jerformed by circuiti of the Salection Controf Eiferient.

䤀SETALSS

The Reset qasa contahe theee instructions. All of theoc fostructions deal with the index Fegister syecified by the indax indicatoz, bilitito of the mperallon register. The instructions wre not indexible, All tf the inatruc tloee in this clase reguire one memory cycle to complete.

The Reaet Inex Dlegister matruction (rla) attd the pecifien index regioter to the value indicated by the adidese part of the ria tnstruciion. At i $\mathrm{T}-\mathrm{A}$ the shecifind index register 18 clemred. At PT-G the contenty of ciat addrean Feglater are tranaserred to the apecifiod fadex regiter.

Tha Reset index Fegistex from the Right Accumatator itstruction (rix) sets sha sapedicell kadex register to the yaliz fridieated by the contents of the right accumalater register. In the exacution of thin instraction the contents of the right accumutator register art first franaferced to the adirest fagister

 3ageruction.

In cho A, id thdar liegitte: Aratruction falat the content on the wyeci-

 fight A register ia cicared, and at $5 x-5$ the monified contents of the adireds
 epecilied by the contenis inf tho addreat register is the zum of che addrext specifled by the ale instructicn and the evatents of the yerecilied index regiotent If no index pegister is mifeifiea. then tho figinsi ccatonte of the Rdirties reginter are transtezrad wnmodifiad to tho fight A register.

CNAEEIC DIAGAAMG

A. Miscellanects Eizse Progiant stop 04.10 .01

 * Eixtract

 luad 音 Kogitater

 Cperate

 - Clear \& subtrace viordCometer 04.10.08

 - Shift Laft \& Kound

 44.10.02

 04.20 .03

 04.10 .04
 04.10 .65
E. Ase Ctises
Clear t A0C 04.10 .24

- stat
$04.10,16$
Tuin \& Add

44. 10.27
Clear s scutract
04.10 .25
*5ujt=ct
04.10 .12
awin \& zubtrack

* Cifzr a Ada sfagriudes
And D Eegiater to AEC
04.16.18
04.10 .28
04,10.13
C. Nultigly Clizas
* sultibly
Twin \& Aultizhy
* Divide
Twin \& livice
04.10 .32
04.10 .33
04.10 .34
04.10 .35
D. bureflas's
stere
04.16 .45
Left store
Sisizte Etsro
04.10 .49
64.10 .50
* Store Addregs
- A.Ad oee
04.13 .51
04.10 .54
Excinatige
04.10 .56
* Depoait
04.10 .52
E. Shift Cizaz
*Sniat Left
04.10 .64
- Exift Ftykt
04.10 .65
Shitt Accunzelater I Zeft jbift Accuminlatior a hight S.eft Kleasent Shift Ritht
04.10 .65
04.10 .70
04.10 .79
* The traffic diagrarm indicated with an antctisk are eaclosed io this report.

 Cycle tef
 Cyele Accumalintaf Leeft

04.10 .74
04.10 .72
04.10 .76
F. Drarch Clogs

- Branch et midex 04.10.80

Fture
64.10 .81

- Eranch an Minus

Branciz on Leff Minus
Branch on älghr disuz
04.16 .92

04, 10, 82
0.5 .10 .83

* Srancai un zesp
04.15 .84
C. Toput-Cusput Cinas

Loud Li AdAreas Counter
solect
Read
04.10 .96
05.10 .96

- Wrifo
04.10 .10
- Select Syuma
0.1.10.11
04.10 .57

4. Reset Class

- Hesel index Legiatoz 04.10.12
\$0 wot hadex Registar frima
Kight Accumalath:s
04.10 .13
* Add madex hegister

1. Th 7 Prggremimere' Lefextence Mancal pevised by C. E. Waluton Cetrber 15, 1953, "Cenfidential"
 July 1. 1953, "मृe atricted"
2. H-14 Keal Time Clisck Syitem for the ANTFSQ-T by C. F. Eaccazi and Y. H. Thomias HiJacleasified!
3. 2heas - Tha mbtraction kdeandig Syatemi by G. C. Stierhof Traclasnified
4. , Fegest of Completice Axticle 1 Tazk 1 (6) Apyli 27,

 Coufldential"
5. Sajptemgent No. 1 te TA-7 C. I. Walmea, Lecember 22 1933

During the past two months, the Instruction Control group has carried out an extensive testing program which has included engineering design testing of the 18 pluggable unit types used in Instruction Control, and the preliminary testing and successful operation of one Module (C) used in the Instruction Control Frame. Members of the Instruction Control group and others have Celt that a resume of our findings would be of interest to other groups whose chedule is not as advanced as ours. It was felt that a listing of the problems we encountered and the possible explanation and solution, if any, for these would be of great value to all concerned. Therefore, this report is written from a conatructif rather than a critical standpoint. In reading of the various problem is mentioned hero, one should not lose sight of the overall picture, which we feel to be very encourage.

This report will consist of listing the various circuit, component, mechanical and wiring problems encountered at various periods during the testing which has been completed to date. It is realized that many of the facts and theories presented may be common knowledge. In order that nothing of importance be missed, it is meant to be as comphrensive as possible in the short space allotted.

The Instruction Control group would like to acknowledge the efforts of many others who have helped make the testing program a success.

The A Flip Flop Circuit

The A flip-flop is the only type used in the instruction frame. Five plugga bile unit types containing this circuit were design tested. In addition o ferule C, which consists mainly of a 16 position ring, was operated succedrilly, Extensive
data, including marginal checking, was taken on the circuit during both types of testing. In general, the A flip-flop performed quite satisfactorily. All circuits were found to complement with a standard input pulse whose minimum amplitude ranged between 10 aidd 15 v . Several flip-flops were found to have an output whose upper level was +14 v . This is undesirable in most circuit application. A rough check indicated that the probable cause of this bias buildup was due to high forward resistance in the +10 v catcher diodes in the flip flop circuit. The upper level of the grid of the cathode follower in the flip-flop was found to be +12 v , rather than +10.5 .

Marginal checking data on the A flip-flop was taken at a 200 KC P. R.F. A comparison of this data with marginal checking data taken at a 2 mc P. R.F., showed narrower margins at the high frequency. The decision to marginal check at the lower frequency was made in order to find possible unbalances in a flip-flop circuit which would tend to make it favor one state. This condition could be detected more readily at the lower P. R. F.

Mention should be made of the spurious pulse obtained on the output of the "off" side of a flip-flop when the "on" side is hit by consecutive pulses. This may approach 16 v in magnitude with 40 v input to flip-flop and is 0.2 microsecond pulse. It seemed possible, in synchronizing flip-flop logical applications present in the instruction frame, that a gate tube could be triggered at an improper time by this spurious pulse appearing on the gate tube supperessor grid. A pluggable unit having an flip-flop with a gate on the "O" side was pulsed consecutively with the "l" side "on," and at the same time the control grid of the gate tube was hit by the
same pulse. With a 40 volt pulse applied, a 16 volt pulse appeared on the gate tube suppressor grid. The output of the gate tube showed only one volt of noise operating under this condition. It would appear that there is no reason to suspect that a gate tube could be pulsed under these conditions.

In all other respects, the A flip-flop appears to operate satisfactorily in accordance with specifications.

The A Gate Circuit
The A gate tube is used extensively in the instruction frame. Considerable pluggable unit testing data and module test data was taken on this particular circuit. In most respects, data obtained on the gate tube was quite satisfactoryi In some circuits it was possible to get as much as 43 volts out with a 40 volt pulse input and 100 ohms output termination. Since this output pulse was larger than the specified amplitude, further investigation was carried on. Several tests were run on the gate circuit driving one innit of load and an output termination of 100 ohms. In mone of these tests was it possible to get 40 volts out with 40 in , the average being on the order of 32 to 34 volts. Several gate tube suppressors in the instruction frame are conditioned directly from APCF circuits. It was feared that the high upper level of the APCF on the gate tube suppressor might result in excessive amplitude in the output pulse from the gate circuit. The bias buildap through A flip-flop and PCF stage can reach +18 v at the upper level. Data was taken on a gate tube driven by a flip-flop through an APCF and compared with data obtained on a gate tube driven by a flip-flop through a conventional cathode follower. The results showed that the higher level on the suppressor grid caused a maximum
increased pulse amplitude from the gate circuit of $\mathbf{3}$ volts.
Several gate circuits were checked for outputs with the suppressor held at -15 volts, and standard 40 volt pulses on the control grid. In no case werremore than 2-3 volts of noise discernible on the output.

The B Pulse Amplifier
The B Alse Amplifier was also thoroughly teated under both pluggable unit and frame operation. Test data showed this circuit to perform entirely according to specifications.

Due to lack of confidence in the A pulse amplifier at the time the layout of the instruction frame was prepared, B pulse amplifiers are used in all pulse amplifier applications in the frame. This means that in many circuits, B pulse amplifiers are driving lighter loads than they were designed for. In cases where the B pulse amplifier is lightly loaded, the intention is to theminate the output of the
 B pulse amplifier with a low value to prevent exceeding unity gain at a 40 volt pulse input. Recently the point was raised, that by so doing one might shift the gain curve of the B pulse amplifier enough to prevent getting nnity gain with a 20 volt input pulse. Test data was run on a B pulse amplifier driving a single A gate tube unit of toad. The B pulse amplifier was opegated first at 200 KC driving the single load unit. Forty volts were applied to the input of the B pulse amplifier and a sampling of terminating resistors indicated that 40 ohms would give 40 volts out at thistinput. Readings were taken at 30 volts and 20 volts input and the 40 ohms output termination. With 30 and 20 volts in, 35 and 22 out were obtained, respectively. The same sampling of readings was then taken at both 1

40,30 , and 20 volts in gave 38,33 and 21 volts out, respectively. The sampling of data taken would seem to indicate that the B pulse amplifier is only slightly frequency sensitive, and that unity gain is not lost at the lower amplitude pulse, with the output terminated in a sufficiently low value to prevent more than unity gain at the higher amplitudes. The circuit should be satisfactory for driving a single unit of load. Of course, one would recommend that an A pulse amplifier be used for such an application.

Pulsed "OR" Circuits

Pulsed "or" circuits are used extensively in the instruction control frame.
In all applications they are used directly at the inputs of A flip-flops or B pulse amplifiers and are located next to the unit of load driven by them. Data taken on pulsed "or's" during pluggable unit testing indicate that the average drop in the pulse amplitude acrosssa diode would be $2-3$ volts. It was noted that the diode can widen the pulse which posses through it by as much as 0.04 microseconds. In other words a 0.1 microsecond pulse applied to the imput to a puised "or" could become a 0.14 microsecond pulse on the output. When this output of the pulsed "or" passed through the B pulse amplifier, it was driving, it was again narrowed to a 0.1 microsecond pulse, presumably by the B pulse amplifier transformer. At any rate, the combined "or" and B pulse amplifier circuit gives a pulse output well within specifications.

Investigation of the spreading of the pulse through the "or" diode indicated that excessive open wire on the pluggable unit tester contributed no small amount to the pulse widening; but was not the full story.

The "yankdown" circuit at the output of the puised "or" circuit fell under "yanle-down"
suspicion. This consists of a series choke, resistor combination to aid the recovery of the output pulse. It was decided to experimentally change these values and note the effect on the output pulse. Trial and error showed that a decrease of the resistor value or an increase in the inductance of the "yankdown" circuit would give a pulse width from the "or" circuit which was within specifications. The simplest change would be to decrease the resistance to an optimum value, which would probably be about half of its present value. Since the pulse spreading caused no particular problems in the instruction frame, it was decided that no component changes woild be made in existing circuits at the present time.

Register Driver Model A

The A register driver is used to drive many instruction pulse lines to gate circuits and to clear flip-flops in the instruction frame. Pluggable unit test data were taken on the circuit, which exists in two pluggable unit types. In addition, the circuit was used to drive pulses into the gate tubes of the time pulse distributor in module C, during testing. No particular difficulty was encountered, and testing data shows the circuit to be satisfactory. In one instance, it was noted that the output pulse of an ARD driving 16 gate tubes was not quite recovering. This was an isolated case and no explanation has yet been uncovered.

Register Driver Model B

This circuit is used to complement flop-flops and drive instruction pulses, in one instance at 2 mc . The BRD is always driven by a BPA. In all
applications, the combination of the BPA and BRD must be considered a package circuit. This means that the circuit is to be checked by measuring the input to the BPA and the output of the BRD. This was not known by the persons doing the pluggable unit testing in the instruction frame, and as a result unsatisfactory data was obtained on the circuit. The BRD was used to complement 16 flip-flops in module C. Operation of the circuit in the module testing was unsatisfactory. Part of the difficulty was due to the master oscillator circuit located in module C. This circuit was puttingoout an undesirably low output pulse to drive the BPA section of the BRD package. Operation was switched to a Burroughs unit test oscillator. Data was taken with 20,30 and 40 volt pulse inputs to the BPA's driving the BRD's. Outputs from the BRD's were satisfactory at a P. R. F. of 200 KC , but outputs were too low at 2 mc . Experimentation indicated that changing the component values of the terminating network at the secondary of the BRD input transformer improved the PRF response of the circuit considerably. See Table 1.

Table 1

P. R.F.	Input to BPA	Output of BRD	Terminating Network	Load on BRD
200 KC	-. 20	25	$\mathrm{L}=33 \mathrm{uh}, \mathrm{R}=560 \Omega$	33 ohms
2 MC	20	16	$\mathrm{L}=33 \mathrm{uh}, \mathrm{R}=560 \Omega$	33 ohms
200 KC	20	28 or	$\begin{gathered} \mathrm{L}=33 \mathrm{uh}, \mathrm{R}=100 \Omega \\ \mathrm{~L}=8.2 \mathrm{uh}, \mathrm{R}=560 \Omega \end{gathered}$	33 ohms
2 MC	20	25 or	$\begin{aligned} & \mathrm{L}=33 \mathrm{uh}, R=100 \Omega \\ & \mathrm{~L}=8.2 \mathrm{uh}, \mathrm{R}=560 \Omega \end{aligned}$	33 ohnes

Three types of conventional cathode follower circuits are used in $B C F, C C F$,
the instruction frame. These are ${ }^{\prime}$ 'G ry and F CF. The BCF is used exclusively to drive the suppressor grids of gate tubes. Test data wee taken using a decode precision capacitor to simulate wiring and gate tube input capacitance loads. AT best these capacitances could only be estimated. However, in all cases it is felt that the simulated loads were on the pessimistic side. All BCF circuits were able to drive the specified loadsassigned in the proper switching time. A flipTHEM
flop output to switch the CF's was obtained from a test flip-flop. Further testa were run on the actual conditioning of gate tube suppressor grids by BCF's. In one instance, a gate tube suppressor was conditioned by one BCF triode while the gate was being pulsed. In another instance, two gate tribes being pulsed simultaneously were conditioned by two BCF triodes in parallel. Both tests were successful, but a unique effect was noted on the output of the BCF's. A positive spike appeared on the trailing edge of the upper level of the BCF output when driving a gate with the control grid of the gate being pulsed. When only one suppressor was being driven by one triode, the magnitude of the positive spike was only on the order of three volts. However, in the case of two parallel triodes, driving two suppressor grids and the two control grids pulsed simultaneously, the spike approached 10 voltsin magnitude. An experiment was conducted, and it was fairly well determined that this effect was due to feedblack, from the plate to suppressor grid in the gate circuit, of current to the cathode
follower due to interelectrode capacitive coupling. This effect was not noted on the input bevel of the BCF. The general consensus of opinion seemed to establish that this feedback could cause no forseeable difficulties in circuit applications.

All diode circuit driving cathode followers were tested with Thevinin equivalent diode loads and estimated capacitance loads. Carbon resistors were used to simulate the equivalent diode circuit resistance with "and" and "or" current being supplied by a D-C power supply.

In general, FCF's were used to drive diode "or" circuits in the instruction matrix. The worst combination of "or" current and capacitance siriven by each \mathbf{F} CF was simulated and data taken. All F CF circuits were able to drive their specified load in the proper switching time.

In a few applications C CF's were used to drive diode "and" circuits in the frame, but all matrices are now driven by A PCF's. The few C CF's tested were loaded with simulated diode "and" current and capacitance loads. It did not seem that the cathode circuits of the cathode followers were accepting as much "and" current as design criteráa would lead one to believe and still fall in the proper time. Fortunately, the circuits used were sufficiently overdesigned to allow circuit specifications to be met. No reason for the pporer than expected fall time of the C CF has yet been established. It is known that some "hot" 5965's have been placed in the prototype pluggable units used in testing. It may be possible that these tubes are being used in C CF circuits and as a result are not being driven far enough into the cutoff region, allowing
too much tube current to flow into the cathode resistor. This could reduce the "and" current which could be accepted. Poor cutoff characteristics in the " 5965 " triodes could produce the same effect.

The "5965" cathode follower in test was a very stable circuit. The +150 volts marginal checking could always be lowered to +50 volts or less before any effect was noted on CF output. Below 50 volts the circuit had difficulty in reaching the +10 volt upper level.

A large number of $\mathbf{- 3 0}$ volt protector diodes have failed during circuit operation. The exact cause has not been definitely established, but there are theories which seem to merit mentioning.

One possibility, which will be mentioned in more detail under components, is that some undetected low back resistance diodes are in the pluggable units.

The upper limit on the steady-state forward current that should be passed through $a^{\prime \prime} y^{\prime \prime}$ diode is 16 ma . At present, when several cathode follower: model ${ }_{h}^{5}$ are paralleled, only one diode is used to clamp the output to -30 v . This diode may be required toppass from $20-30 \mathrm{ma}$ to clamp to $\mathbf{- 3 0}$ volts depending on the model and number of cathode followers in parellel. Thereis some question as to how long a "protector" diode of this sort would be required to pass the 20-30 ma. If no case occurs where a diode is required to clamp for more than one second, then the present design is satisfactory since a " y " diode is rated to pass 100 ma for a second or less. Under present test conditions, the +150 v was turned off inadvertantly in a few instances for several minutes and as a result some protecwere found
tion diodes with nearly zero back resistance. It is umesirable to parallet protector
diodes -whin realty were back revistaneor It is undesirable to parallel protector diodes, since this also parallels the back resistances. This effective lower back resistance would defeat the original purpose, since more current would flow through the lower resistance. This would also increase the load on the driving circuit.

Power Cathode Follower Model A

the
The A PCF is used primarily in $\lambda^{i n s t r u c t i o n ~ c o n t r o l ~ a s ~ a ~ m a t r i x ~}$
driver with one microsecond switching time. Test data obtained shows the bias binld-up
buildup in the upper level of this circuit to be higher than anticipated. A typical value would be +18 out for +12 in. This undesirable in at least two respects.

When the A P CF output is at +18 and drives an "and" circuit with at least one input at -30 v , there will be approximately 48 volts across the "down" diode.

When the A PGF drives an "and " circuit whose output is caught at +10 volts there will be a delay, which has been measured at about . 05 microseconds, between the time the output of the A PCF starts to fall and the time the diode "and" circuit starts to fall. This is due to the fact that the output of the "and" circuit will not begin to fall until its input reaches +10 . This delay would accumulate where more than one level of PCF's is used in tandem with "and" circuits. In等
Ale instruction matrix-a time allowance of .05 microseconds had been made for
such delay. However, two levels of A PCF's are used in tandem here making it possible to lose a total of 0.1 microsecond in delay from this source. It is believed
that the eircmits are sufficiently overdesigned to compensate for this unexpected delay, and that it will not create any timing problems in these applications.

Due to a lack of information on the A PCF circuit when the instruction frame logic was laid out, two circuit applications whose switching time was 0.5 microseconds had been set up utilizing the A PCF circuit. Testing revealed that the A PCF circuit would not satisfactorily follow a 2 mc switching rate. The output fails to reach its upper, and lower level and resembles a sawtooth wave. Modifications will be made in these two cases, and the A PCF will be replaced by a different circuit.

Master Oscillator Model A
A 33 volt pulse is presently being obtained from the cathode circuit of the oscillator tube via a $1: I$ transformer. However, the secondary of the transformer is biased at -30 volts and a small additional bias is developed resulting in a pulse whose lower tevel is $\% \mathbf{y}-32$ volts. When this puise is applied to the output BPA's the grid of the BPA's are only brought to positive +1 volts, instead of a minimum of +5 volts. This results in a low output from the BPA's which drive the oscillator puises to other circuits. An investigation of the circuit is being carried out by the basic circuits group.

A Pulse Generators
An attempt was made to obtain pluggableunnit test data on the APG circuit.
A square wave generator opesitigg at 20 cps was fed into a relay inverter which APG
switched a relay in ite plate circuit. An was driven from a pair of normally open contacts on the relay.

However, an attempt to monitor the output of the pulse generator on the test scope fatled. The pulse was not sufficiently clear to take any data on it.

The output of the puise generator was fed into the complement input of a flip-flop, and the blinker neons fndicated that the flip-flop complemented properly. This indicates only that the pulse generator was producing a pulse, and not that it was operating within specifications.

Some reasonable test procedure will have to be set up for this circuit; before it is determined whether or not is is satisfactory.

Relay Inverter

A few of these circuits were tested. It was only necessary that they switch a relay. All circuits were approved on this basis. These circuits will draw about 0.5 ma of current from the driving source.

Companents

With the exception of tubes, all component failures recorded during the pluggable unit and module testing program were "y" diodes. The high failure rate which was meurred may be the result of a combination of factors, or may be rooted in one of number of theories which have been suggested. These are probably worth mentioning here.
compreheinsive

1. Testing procedures may not be emphsensive enough.
2. Shelf life from the time of testing until the actual placement In pluggable units may cause deterioration. $D 19$
3. Stip soldering of coprds may canse excessive heating of the diodes and resulting deterioration.
4. Circuit operation combined with poor power regulation and shutdown may have placed undue strain on the diodes, during the testing period.

In all fairness, it must be noted that all these failures occurred in the first few prototype models. In these first few units one would expect inexperience in testing and dip soldering as well as in actual circuit testing procedures. The factors which contributed to the diode failures may not be preseat by this time. However, sufficient low back resistance and high forward resistance diodes were detected in these first few models to cause considerable alarm concerning this component.

It is difficult to check diodes properly once they are on the cards in the pluggable unit. At best, only a rough check can be made. By this time, procedures probably have been set up to test diodes on the card between the time 1 that cards are dipped and placed in the piuggable units.

Tubes
A few tube failures occurred during the testing program. In some cases uncertainty exists as to the cause, but it is believed that most fallures were a result of improper testing procedures on the part of those testing the pluggable units. Two cases can be traced to defective tubes, for certain, In one 5965, the getter was shorting out the control grids. One 1782 A was found to be d-c O.K. when checked D-C wise, but failed puisewise.

The 1782 A tube fits very tightly in its socket and must be rocked when removed. In one case, the tube base was cracked as a result of such removal. On
six other tubes, keyways were cracked and broken off as a result of removing them from the socket, This would indicate that the tube bases are too fragile, or that handling techniques were not gentle enough in these instances. Wiring

Most of the trouble shooting done during the testing period of pluggable units and the module led ultimately to wiring errors. This was to be expected on the prototype pluggable units and module, since many of the personnel concerned were inexperienced and techniques were still undergoing refinement. This was borne tout by the noticeable decrease in wiring errors in later units.

The types of wire used in the pluggable units and module seemed satisfactory with the exception of the microdot wire now in prototype module C. The insulation of this wire was found to have low abrasive resistance and improved microdot will appear in forthcoming modules.

In on isolated instance filaments in module C were found to be shorted to chassis. Investigation showed that this was occurring in one of the pluggable units. The unit was removed and the filament wire checked. When the filament wire was moved from touching the pluggable unit chassis, the short disappearod. However, no visible break could be found in the insulation of the wire.

The wiring of module C inldstrated that using microdot wire between points 8 to 12 inches apart seems unmecessary. In these cases; nearly as much yellow wire is used in tying in the onds of the coax as would be used in jumpering the points together with open wire.

In module C wiring, it was noted that in terminating signal wires the wire is always sent to the terminating resistor on the board before being sent to the last unit of load. In many places, wiring could be shortened by 3 to 4 inches and made somewhat neater if the signal pin of the last load unit were connected and then fumpered to the terminating resistor. Mechanical Features

By far, the larger portion of mechanical failures occurred because of fanuref of the male plugs in pluggable unit bases to moke proper contact with the opposite member in pluggable unit testers and in module C. In many instances, pluggable units which made contact in one female base would not make contact in another. This would evidently be due to a buildup of tolerances on the part of both male and female. These failures occurred in the prototype pluggable unit models. Since then the pins have been redesigned, and it is hoped that failure from this cause will be eliminated. No data is yet available on the redesigned bases.

In some instances pluggable units bases did not float properly in the pluggable unit frame. As far as is known, this has occurred in only the first few prototype units, whose frames may not be entirely within specifications. It is felt that this difficulty should be eliminated in forthcoming units.

In prototype module C, pluggable units could not be put into the module without considerable force being applied. In some cases where units were forced in, wires were torn off card edges in the pluggable units. It becanne necessary to renove the "ladders" from the module in order to facilitate entrance of the unit
into the module. Module C has been operated throughout without these "ladders," whose main purpose is to hold the pluggable units firmly in position. This particular difficulty has been under investigation by the mechanical design group.

On the filament busses in module C it was noted that the male connector of the wires leading to the buss seems to fall out too easily. The male connector on the end of the lead in wire has no room for expansion and as a result is being compressed to some extent. Perhaps this difficulty could be overcome by use of the edge comector principle where expansion is provided for.

The stamping of plaggable unit type numbers on each unit and of pluggable unitllocations on the back of each modnle would facilitate testing and help eliminate the possibility of placing a wrong type of unit in the wrong module locea tion. No permanent identification procedure was used on module C or its prototype units.

During testing it was found that the handles on the plaggable unit camo shafts work loose and fall off quite easily. This is due to failure of the set screw to remain tight against the flat part of the shaft.

It is felt that the soldering lugs used on the card assemblies in the prototype units are to fragile. During troubleshooting, several lugs were broken off by only a small amount of bending. Once a lug is brokez off it cannot be replaced with the card atill in the pluggable umit. The card must be removed from the units and an attempt made to remove the remaining portion of the lug from the card. This can oniy be accompliched with great difficulty, if at all. Quite often the result is a broken card.

The instruction control group invites comments, corrections and questions concerning any of the material found in this report.
H. G. Hickey

1. The $\mathbf{- 3 0}$ breaker on module C and the +150 marginal check breaker for G, HI were tripping every five minutes. An ammeter was placed in series with the +150 (3 amp) breaker and read only 1 amp . The ammeter did not climb just before the breaker tripped, so we assumed that the breaker was defective and it was replaced. The $\mathbf{- 3 0}(3 \mathrm{amp})$ breaker still kept tripping. An ammeter in series with the breaker read 1.3 amps and the reading started to climb just before the breaker tripped. The breaker was assumed to be all right and the trouble was traced to PU-GD. The plates on 5965 (tube 1 and GD) were glowing red. The unit was pulled and the plate decoupling resistors were sliced in half although they still must have been making contact. The excessive current was traced to a $\mathbf{- 3 0}$ clamping diode in the cathode with only 3K back resistance.
2. While tracking down the trouble in (1) above, it was found that the BCF's in P. U. type 6013 had $\mathbf{- 3 0}$ clamping diodes. Since these CF's drive only gates, clamping diodes are not needed. We checked the prototype and saw that the - 30 lead had been clipped on that unit, but the engineering change did not get through to the production units. The engineering change has now been sent in.
3. Grid resistors in register drivers which work at 2 meps are being changed from 10 ohms $1 / 2$ w to 1000 ohms $1 / 2$ w to limit grid current.
4. FJ (3rd group) and FS (1st group) filaments not lighted. Tapered pins do not seem to be making contact with the filament bus.

$$
-2
$$

5. PU - ET will not plug in.
6. PU - GG Tube 6 looked gassy and was replaced.
7. The TPD was changed from an 8 microsecond to a 6 microsecond ring. Timing is very tight in many instances and impossible in others. Part of memory selection will have to be done in the program element instead of the instruction control frame. Cable delays and transformer delays may dictate other changes in the logical design as well as in a few pluggable unit types.
8. Time level zero and time level one are being interchanged. The "Break" flip-flop is cleared on TP-11 supposedly. However, because of delays, etc., the pulse does not get to the flip-flop until much after TP-11. Therefore, the "Break" flip-flop has not settled down by zero time. Now if you are in a Pause and Break condition and then change to a Pause and No Break, you do not want TP-0 to get through and start up the ring. However, as mentioned above, the Break flip-flop does not settle down by zero time. So the machine will be stopped in the future in TP-1 by which time the Break flipflop will definately have settled down.

> A. H.

June 11, 1954

1. With all "1" being read into the operation register the +90 line has the following noise:
J. Beesley suggests that all future PCF's have their +90 decoupled and that we just hang a 1 uf capacitor on the line.
2. PU - CD tubes 1 and 2 have $1 K$ resistors in the grid circuit. These are hit
ARD's it at 2 mcpe. The output voltage was the same with the 1 K resistor $2 s$ with the previous 10 ohm resistor. However, the grid current was cut from 14 ma to 5 ma.
3. PU - FC tubes 4 and 5 have 470 ohm resistors in the grid. This is a BRD hit
ble at 2 meps. The input transformer has a 100 ohm resistor on the primary to cut down the drive since the output of the BRD is lightly loaded. Without the 100 ohm input terminating resistor and with the 10 ohm grid resistor the grid curreat per tube was 6.5 ma . With the 100 ohm resistor and 10 ohm resistor the grid current per tube was 3.5 ma. With the 100 ohm resistor and 470 ohm reaistor the grid current per tube was 2.8 ma.
4. Tubea 7, 8 and 9 in PU - HC were not Iighted. The filament pins on the pluggable unit looked burnt and scorched. There was no apparent reason for this. After the pins were cleaned, the filaments lighted up.
5. PU - ET could be plugged in after the terminal board mounting bracket was moved.
6. PU - CF tube 9 was not Hghted at 2 pom. After Jiggling the tube, the filamente IIghted.
7. PU - CX tube 9 (aame as 6)
8. ON FJ (3rd gromp) and $F \$$ (Iet group) of tubes the wire inside the tapered pin is not malding contact with the taper pin. Yesterday it was reported erroneously that the pins were not malking contact with the filament bua.
9. PU - DL card 9, the +10 catcher ailode was found open and replaced.
10. PU - DL card 9 , the signal diode $H 2$ had 1.5 K back reaistance and was replaced.
11. PU - CD tube 1 was not Itghted at 5 p.m. See 6.
A. H.

HSSTRUCTION CONTROL DAILY LOG

June 14, 1954

1. One per cent resistors in the power cathode follower circuits have been opening up and one has changed value. In particular, the 47 K and 51 K resiators in paraltel in the plate circuit of the difference amplifier have been opening up. The 68 K resistor which is also part of this paraltel group has not gone bad. A 300 K resistor in one unit has changed walue to 1 megacycie. The three reaistors in parallel should be 18 K . Here are readings that were taken yesterday on some pluggable units that were bad. The last three were fresh from stock and measured just to make sure that defective components were not getting into the pluggable units. 6010 - type

-2.

Fresh From Stock

| 6010-type | $\times 221$ | Card 4-18K |
| :---: | :---: | :---: | Card $10-18 \mathrm{~K}$

We have at times lost just the +150 , the +90 or the $\mathbf{- 3 0 0}$ supply. Tests and catculations indicate that loss of any of these supplies should not cause resistors to fail. A few times we have run the machine without air-conditionIng and then turned it on suddenly. There is some chance that this might be causing the damage. The actual cause has not been verified yet.
2. Yeaterday in item 10 it was mentioned that a signal diode was replaced. The symptoms leading to its discovery should be mentioned as they are of interest. A number was set into the step counter to indicate the number of desired shifts and a ahift instruction was carried out over and over. The add "one" pulses to the step counter were observed to see if the order was being performed properly. If we aet 8 in the step counter and watched the scope, we would see 8 "add one" pulses for a second or so, but then we could see a decaying action and only "1" add one pulse would be seen. The trouble was traced to a bad diode. The point being made is that in actual machine operation the shift order would actually have been performed correctly once or more since it took time for the error to occur. Yet if many orders aaing the step counter were performed in the same program, it is conceivable that eventually errors would have occurred. This may be of interest to diagnostic programmers and maintenance people.

1. A 6010 pluggable unit that has never worked was finally debugged today after about 12 engineering man hours. The symptoms were: one side of A FF always stuck in the $+\mathbf{1 0}$ condition; the other side switching from $\mathbf{- 3 0}$ to +10 but returning to $\mathbf{- 3 0}$ before the next pulse came along. The trouble was that pins 2 and 3 (grid - cathode) of the cathode follower in the +10 output side of the fip-flop were soldered together inadivertently.
2. On PU - 6001×1 a pulse transformer on card 7 (of a gate tube) was bad. The resistance measurements seemed to indicate that nothing should be wrong. The primary measured about 3 ohms, the secondary 1 ohm and secondary to primary are open circuit. When the transformer was replaced the circuit worked. With the original transformer a pulse was developed In the primary, but even with the secondary unsoldered from the card there was no output. The transformer is being sent to the components people as are all other components that seem to be bad.
3. It has been ascertained that leads in tapered pins that have been crimped by hand can be pulled loose without too much trouble. Leads in tapered pins that have been crimped on a machine are impossible to pull loose. Unfortunately, quite a few leads on Instruction Control seem to have been crimped by hand, if not all of them. This is probably why we have been having trouble with them. All future leads are being eximped by machine.
A. H.

[^0]: J. L. Mitchell, author of Part I, and K. H. Olsen author of Part II, are with Massachusetts Institute of Technology, Lincoln Laboratory, Cambridge, Mass.

 The research in this paper was supported jointly by the Army, Navy, and Air Force under contract with the Massachusetts Institute of Technology.

[^1]: * This work was supported jointly by the U. S. Army, Navy, and Air Force under contract with Mass. Inst. Tech.
 \dagger Lincoln Lab., M.I.T., Lexington, Mass.

