Engineering Note E-561 Page 1 of 2

Digital Computer Laboratory
Massachusetts Institute of Technology
Cambridge, Massachusetts

SUBJECT: DIFFERENTIAL VIDEO PROBE

To: Test Equipment Committee
From: Hemry E, Zieman
Dates June 19, 1953

Abstract: The circuitry, use, and specifications for the differen=-
tial video probe are discussed. The probe permits the
viewing of small differential signals in the presence of
large common signals, A bandwidth of 5 cps to 9 mc at a
gain of 0.4 has been achieved for signals from O to L volts.

The differential video probe is an adapter for use with any
scope to permit the viewing of small voltage variations across com=
ponents which are not at any fixed potential. The circuit is shown
in B=-5422l, Essentially it consists of a simple differential ampli-
fier (V1) with a constant current load for the cathode resistor (V2).
This gives a high common mode rejection. R1l, R2, and R12 together
with filter capacitors C3 and CL form a voltage divider between O and
=450 v, which sets the bias on the grids of V1 and V2, The signal is
coupled to the amplifier through C1l and C2, and reappears at a termina-
ting resistor at the scope. Ll provides the necessary d-c coupling of
the probe chassis to the power supply ground, and yet isolates the
chassis from power supply ground at RF signals to permit the output
cable to be terminated and grounded at the scope.

In use the probe is placed conveniently near the circuit to
be analyzed to maintain short commecting leads which are fastened to
J1 and J2, A positive output occurs when J1 is driven positive., J3
is connected to a 93-ohm cable which is terminated (93-ohm termination)
at the scope. The power supply requirements are 35 ma at =450 v. DC,
and 1,8 amp at 6.3 v. AC at a d-c level of =150 v, Two means are
available to provide this filament supply level., If a power supply
jack is available which has no other equipment connected to its filae
ment transformer, the power plug of the probe may be connected to
this jack and S1 (on the probe) set to the "By-passed" position., If
the filament transformer is being shared with other equipment, the

Engineering Note E=561 Page 2 of 2

isolation transformer T-1 must be plugged into X1 and S1 set to the "in"
position, :

The gain of the probe is 0,4 for input voltages less than L

volts, SA=LBLLl=G shows the variation in gain and output voltage as a
function of input voltage for inputs up to 1l volts. The gain is also
a function of frequency, being flat at O.4 from 10 cps to 1 mc and down
3 db at 5 cps and 10 me, SA=U5Ll3=G shows the upper end of this fre-
quency response, The rise time has been measured at approximately .05
usec, The common mode gain (both inputs moving equally with respeci %o
ground) is 1%. The input impedance from J1 to J2 is .05 pfd in series
with 2 megohms shunted by 12 pf, The input impedance from either Jl1,

or J2, to ground is 0,1 ufd in series with 1 megohms shunted by 16 pf.

Signed
He o Zieman
HEZ/cs
cc: MIC Section Approved Z C' %
Vacuum Tubes Circuit R, L. Best, Section Leader
Section

Magnetic Memory Section

/
)
vellum copiess y s ed__/%/ﬂ 02{1// 3
D.J. Crawford N. H. Tay]ﬂ Group Leader

Nate Edwards
R, Crago IBM - via Kromer

Drawings attached:

B=5422);
SA=li8llly=G
SA=L5hh3=G

DrRPOT B2 R }
OUTFPUT (/1SOLAT/ION TRA /}';;/ ORMER SW/7CH) S R gl e /l u ?
70 93.02 ~J3 /N o
0 330 il o '
TERMIMATED g’ St 8/-PASSED | e ai.d
p o | ——— e o o - i ___‘/ Vi e =] . a 17';
LN E | V/'/,‘ 1 /N ‘I | < / 4 :
| e B Sl 1 B}
» | 4 / b e
:) ‘ —9 Cre et — — \ ol
J ' T i P CZ || ‘ire,/_ X ST H
1R \ [i I , | | |PASSED 7 o &
: l i e TR G e e | e i B
: s voare 3 soew
e ; | 59 BL ACK =/ !*4—*44/—?:}& B " .
e \/—' - P z; y . A / \ ‘ : bl hﬁ E - /7
3 B | e amnava
« & > I 3 & { i T // 2/
MEG O Y ore B i e h g -
A4 s 4 I Tl < L
2/ 7 % /) plop - 3
/ R 2 L (/SOLATION TRANSFORMER) -
o 7 /T\ C. / v 4 % (,/‘ ‘_
YT LR o >
‘ / W 7 i /L—; --‘:: <L »' /Y o il
- : Y S
=) o 4 ¥ E f e A & BN o B
S /¢ — 4. RL s 2 w. 7
2 m A e ’,‘/') % q v o i) & e
//‘[\\ 0 -» e 0 y 7.8 i
&) | R |
=
V=)4 \ i ’ DRAWING R PENC
‘ < ! ; ! oy T '7’,»4»\ A= F - ‘2
\ e 5
| ., I - < !
i Bt S M |
GRADED BY: DATE: THIS IS A GRADED DRAWING OF
S i ;9 HIGHEST GRADE APPROVED BELOW:
- “dire i GRADE I FOR REFERENCE ONLY
C < 0. E& A R A GRADE TI PRELIMINARY DESIGN
-8 A S e719-53 GRADE ILI FINAL DESIGN
o MASSACHUSETTS INSTITUTE OF TECHNOLOGY
< DIGITAL COMPUTER LABORATORY :
DEPT. OF ELECTRICAL ENGINEERING —D. I. C. PROJECT NO./» (‘._’f_j
(=) /1 i
v, - =\ 7/ -
% RCALE:", | a DR.)z o
° | ENg. €775/ | CK. (4 APPD. B" 5 4 2 2 4
- N S| M| N| - o ' IP P AR, WONIN (ecs s SN P 1 T e
o TIIPITLRIRIT TV T8 1FELelnn ' RLacke ')
an A}BAhff:E 195L g -,

NG PAPER

®

_

359-71

8 z e ===
= J— T
T < =i - TS
7 T4 o ma 2 e e =T I T : o M
. EE: J.U_- =t Wtw = - . rLTl\Mfo,.!I u
SRSl T - —
$ o - 1 - —
i v i i " t 5} - o e u
EESSES S AsEe _ : = ~
5 1 [i G B4 o - T c
+ { f d o
i =3 |]
1= T T A Y 8 1 <
! o, 2 Y | I
4 T 1 o =i 1 T E ¢
+ .M,MM"T. ¥ =TS T 7 - . P
= o 1 T o e : —
; : o e e et I = =t <
3 1= i i x = t t = - 3
T .'.l - J t - o
! e e =t = , =2
+ — - | - T } ! 2
T ! 1 5} t - e
e HH v
vy T 1 Il
4 P ESSSEs | SeE ﬂ %
e n ! | ! 1 1
] = R A 4 i T] T .] I
: I i o _ i i i I ;. e
% ¥ ! ’ Ll | E 1 15
® 41 I B | o z
= | I8 I | ¢
€3 | {4 | N
£ i _ _
uxw ; _ 1 = A <
8 < .
m.w g . ,_ ﬁ iy
S - %
3 % it =
WC m = e g e T =T = b7
252 o == = = mn
yV.Ea mEEI T =LTEs = ; T = === :
Kc..hm 8 = - e s 1 S e e e J
- e - —
ES £
-8] v
= 7
g
M
£
L
7

SA- Y5443 - G-I
-

i . aiakss

R

o

g5
03
Q
ma
W=
L -}
g
o D
gy
b @
38
.
@
=
-
=8
2=
n ¥
S

=

i

4 -

PR

Y

r 314

ol

-

i

1

T
RS anal

i

T

tad

{5
[SH-AFYYL -G

1

+t

T

1

T
2

PEERERBE

T
HH

T

4

+

oy

4 ?

1

.

Tt

-+

i

++

+

H

- T H-H

-

T

H

o

VoLTS

INPUT

44
I

T

1

8 gans e aus:

1

S

H [s o

MADE IN U.S. A

Engineering Note E-563 s Page 1 of 8

Digital Computer laboratory
‘Massachusette Institute of Technology
Cambridge, Massachusetts

SUBJECT: SPACLE1CATIONS FOR A ZERRITY JEMORY CORE

To; Jay W, Forrester
From: Invid R, Brown
Inte: June 30, 1953
1.0 GENERAL

These specifications are for a core to be used in a coincident-current.
megnetic.core memory with a two-to-one selection ratio.1'2'3 They are

besed upon the pulse response of the core when driven by specifled currente
pulse sequences, The current-pulse sequences simulate critical conditions
which will be eacounted by the core in actual use. A post-write disturbing
pulse is asaumed.u The current pulses which drive the core boiné measured
are carried by conductors which pass only once through the center of the
core, The pulse response of the core being measured is the voltage observed
across the terminals of a conductor passing only once through the center

of the core, so arranged that mutual couplipg due to leakage flux is zero.

1, Jay W. Forrester, "Digltal Information Storage in Three Dimeasions
Using Magnetic Cores," Jour, App, Phys., vol, 22, pp. 44-48; Jan., 1951.

2. William N, Papian, ®"A Coincident-Curront Magnetic Memory Cell for the &
Storage of Digitel Information,* Zroc, 1RE, vol. 40, pp. 475-478; Apr., 1952.

e Invid R. Brown and Ernst Albers~Schoenberg, “Ferrites Speed Dig%bal
Computers,® Blectronics, vol. 26, No. 4, pp. 146-149; April, 1953,

P. K. Zeltzer, Bffect of Curront Pulse Duration on the Pulse kesponse
of M.T.C, Memory Cores, Digital Computer leboratory Englneering llote
=533, March 10, 1953,

Engineering Note IL.563 oy

2,2 1The Current Pulse Seguencs (continued)

2,3

The basic pri is the reciprocél of the minimum time interval
between reterence time points of two consecutive pulses,

All pulses have the Qame duration, rise time, and fall time,
The peak currents of the pulses are releted to the parameter 1ln

as follows:;

Write Pulse : lp = + Im
Half-write Pulse l,=+1 ol 2
Read Pulse Ip = o Im
Half-read Pulse Ip = . xm/Z

The Pulse Hesponse

The pulse response is the voltage observed at the terminals of a
conductor passing through the core when the core is driven by a
read or half-read pulse, The voltage from a selected core is
the voltage ébserved when the core is driven by a read pulse; the
voltage from & half.selected core is the voltage obsérVad when
the core is driven by a half-read pulse, The response depends
upon the state of the core betore it is selected or hslf-selected;
In each case the voltage to be meassured is the instantanecus
voltage mes cured at a specified sempling time Tm. The voltages
of interest are:

rvi selected one, last disturbed by a helf.read pulee

\/ gelected zero, last disturbed by & half-read pulse

re
rvhl half-selected one, last disturbed by a half-read pulse
rvhz half-selected zero, last disturbed by a half-read pulce

Ew e

The current-pilse sequence for the determination of Vl is;
r

Write Pulse

. SamPl('ng Time
' T H l ">\

\UQ'ZU e L7

N Half-Read Pulses

Read Pulse
For :
'
Half -Write Samp\}ng Time
' Puise
L r‘l >\
U N e U s, S
—
Sl Pise n Hal§-Read Pulses Read Pulse

For thl:

Wrike Pulse

Sa\Mp\ivxﬂ Time
L 1 H l i
— - t
inEmE AR

n Half-Read Pulses

Reod Puise

Yor V. .
r hz

Hal-Wre .Samphnﬂ Time

LT U PﬁCD 15 . N>\ T

n Halg-Read Pulses

Read Pulse

“ngincering Note E-563

Typical responses are 1llustreted,

to “—"(—Tm ey

1‘7.\

=~ OV,

Term

Instenteneous Voltege

Switching Time

Pealing Time

Sempling Time

|+

Engineering Note M-563 wlbn

3,0 PHYSICAL SPCIFICATIONS

3.1 Dimensions

The core is to be a toroid with rectanguler cross sections,

B

< 0,080 to,ooz"—,-]

—{0.050+£0,00Z |

/2 //; oézs’ +0.0025"

Mns left by the molding operation will not project more then 0,001 in,
Eccentricity (distance between the centers) of the inside and

outside cylinders will not be more thean 0,001 in,

Ellipticity (difference between the mejor exis and the minor axis)

of the inside or outside cylinder will not be more than 0,001 in,

3.2 IFracture
The core will be placed between two parallel smooth surfaces

and withstend a total compressive force of 500 grams betore

fracture,

Engincering Note Il.563 -

. 4,0 LLECTRICAL SPiCIFICATIONS

4,1 Test Conditiong

4,11 The Current Pulse
Overshoot shall be less than 2 percent
Droop shall be less than 2 percent

P, =2,0%0,1us

d
; Tr = 0.2 t 0.02 us
Tf = 0,3 us
4,12 The Pulse Sequence
Besic prf shall be less than 2000 cps,

n = 8 (Except for determination of rvl when n = 8

and n = 64, GSee below,)

. 4,2 The Pulse Response

The core shall meet the specifications listed in the table below

when the core is in still air with an embient temperature of 21°C,

1m Tm Ts Tp er rvz rvhl rvhl'rvhz
amp e s s v nv nv nv
meX | mia | max | min | max max max max
0.900£0.009 | g,60| === | === | === |o.130| —= |o.4 0.2 0.1

0.820£0,008| 0,64 1.25 [0.55 | 0,700,095} 0,115 === | ==~

Uo740t00007 0.65 " mwee o 00070 - frsicdd 004 0.2- 001

1, When n is increased from 8 to 64, rvl shall not change more than 2 percent,

13

2, The peak amplitude of v, chall fell within the limits specified for ¥, .

Fagineering Note E.503 ' =B

4,2 The Pulse Regponse (continued)
At a temperature of bo° C, the core shall meet the specifications

1isted below. T 0,64 us,

PSR TL T .
lm rvl.
amp MR,
s). max |
0.820 % 0,008 0,105 0,125

N (
51 gne . :
David R, Brown

® DRB/ 3k

6673
Engineering Note E-2000-1 Page 1 of 82

Alr Traffic Control Project
Servomechanisme Laboratory
Massachusetts Institute of Technology
Cambridge, Massachusettis

SURJECT: INTRODUCTION TO CODING; PART I OF II PARTS

To 6673 Project
From; David K., lsrael
Date: September 29, 1949 Revised September 26, 1950
Pages 31, 42, 50, 67, 68, €9, 73.
latroduction

Tmis report is based ou a group of twelve lectures delivered
by W. , Welchman in the sgpring of 1949 as a part ofacorgs in Machd ne
Computation at the Massachusetts Institute of Technology. Thess lectures
wers given with the purpose of indicating the genaral nature of the sequences
of operatious used by high-speed digital computers in carrying out parti-
cular processes.

The accent in thia report is op simplieity rather than on pro-
fundity: the object is to enable the resder to attain familiarity with the
wss of the various computer orders, this being done by the considerati.n
of a nunber of simple codes rather than by a discuassion of general theoriss
st goding. Mathematical conslderations of srrors are not included aud
there is Little attempt to discuss the relative merits of different methods
of attack on a problem. The particular codeg that are presented serve
eimply as illustrative examples and 1t is not sugzested that these codes
represent the best methods of hendling the problems concerned.

in ordsr te discuss coding 1t ie necessary %o specify ths be-
bavior of the computer for which the codes are to be written, This reporw
g concerned with coding for Whirlwind I, a computer wioee coding charac-
terdistice ineclude the use of the bipary oumber system, a fixed binary point,
and s single address cods. It is felt, however, that this report will
provide a useful iotroduction %o coding for computers with different charac-

teristics.

énirlwind I uses parallel operation §n which all the digivs o &
punber are haedled simultansecusly rather than in sequence. It spems reason-
able to assume that an average speed af about 20 microseconde per opsration
will be achieved by %hies computeX Witn eerisl operation, & macbine witb
einilar characteriatics could be expectsd to achieve ar average speed of
vetween 20 and 500 microssconds per speration.

6673
Engineering Note B- 2000 =1 Page 2

In its present stage of development Whirlwind I is designed to
handle binary numbers of a 15 digit length. This report will not consider
the use of double-length (30 digit) numbers to increase the accuracy or the
use of scale factors to increase the range of the machine. These maters,
together with the control of input and output and certain special arrange-
ments to facilitate the use of subprograme, will be diszcussed in a later
report.

A computer program is defined as the sequence of operations by
which a computer carries out a particular process. A computer code is
the set of instructions which must be supplied the computer to enable it
to execute a prescribed program. Broadly speaking, the instructions fall
into two parts: the orders that tell the computer what operations %o carry
out, and the data upon which the computer is to perform these operatiomns.

The principal internal elements of Whirlwind I with which we
shall be concerned are the storage, the arithmetic, and the control ele-
wente. These three slements are connected by a commurication system called
the "bus®., The storage element is used to hold both orders and numerical
data, the arithmetic element carries out mathematical operations,and the
contro! element insures that the correct operations are carried out accord-
ing to the orders that are obtained in proper sequence from the storage.

Section I of this report contains s statement of the operational
sffecte of the computer orders. The reader need not look at this section
until 1t 18 referred to in the text but ehould proceed to Section IX. The
codes that will be described.in the text are bound ip a separate volume
ga that the reader may refer simultaneously to a particular code and to the
descriptions of the orders used in that code.

s le Y £4)

ingineering Note E-2000

TABLE OF CONPENTS . PART I

Section I:

Section II:

Fundamental Conceptg w-weccccccarmmaw.

A,
B
C.
D;
B

F.
G.

section .

P
§ -
Ge

Code I:
Code 11:
. Codes I1I
D

w >

<o

ion 1V:

W0
beatnsicplion oo e

o

Overflow
5 shifting

LeTO =

<3

Secvion V: Cod o8

- Codes V1

Codes 1X and %

Code &1:
E. Code XII:

A
B. Modificstion
o
D

section Vi

..... e

i~

Notation
An

T &

Registers:

codes V and V¥

addition -
bt ract ion

f

KExanple of

anple Analysls of a

Binary and Decimal Fumber Systems
Types and ldentification ~we-

Some Elementary Codes -—---r---=---=—-

Polynomiale

Evaluating
and 1IV;

I; Conditional

Binary Arithmetic and the Compuler....

= e 1T W 0 TR D 0D s M3 4 A% WT W Gd E ad A

and Roundoff-we—w..-

Codes of = More Complex Nature ----

"It[}‘uftulmr f
3l Orders = rsacsee
Cyclic Programs .

and

:;s.) .1‘-‘2

awd End-Arcund-Carry...

o = o e

Representation of Orders —---rewrcccmmca e e e m e o
Orders and Numberg-—-=caccccoccecoarena==.

= 2 we

Performing Diviglion ceae o
and Sub-Frogram Orders —---

luatrations of

Scale Yactorine and Overflovw —eae..

Finding the Greastest of

0

oding Notation and Procedurs

3L DAINE wase - 0 2

>oding Procedurs ...

P

t cf

e o e o o @ O o e e

R e 3 T e B B A s . G5 A e e o B

Fage

DI CTIDE 10N 0T DI BT B e o e cn it o e s i o e i i o o

Shifting. .

o s s o

-

Numhers. e

WO

w0

[

el el
Oy Oy U > O

i~

19

Section VII: Iterative Processes oo e

atW VS OIS

P - T 2 NI TR . -~ T 4 2"e a \
TABLY OF CONTENTS - I (continued,

e T B T TR B e A TR

. Iteration in the Computer cccemmccc e e

Code XIII: Summation of a Series —aeco e
Code XIV: Linear Simultaneous Equations . eaeccmcmeea—.
Roots of Equations by Newton's Method —ececcomcinenn

°

vaowr

°

Section VI1ll:Linear Interpolation end Finding the Square ROOt ~w-wcemwcw-

Section 1X:

A. Code XV: Linear Interpolation s—ceceecorcame e
B. Codes XVI and XVII: Find the Square RoOV - cmmccccnanaa-
Codes Yor Sorting

Jode XVIII:Rearrangement of s Set of Nubberd-ccocecccnce=
B. Cod: XIX: Sorting Sets of Numbarg weeeic—casmrmmmcwe—a~.

3 ¥

i

55

56

57

=
o

(e2]

58

(¥

6¢

872
o)

6673
Engineering Note E-2000 Pace
A, S D

Section I,

Degcription of Ordersg

cm

o

The operations which are described in this section are only those
operations that are needed for this report. The description of the
2ffecte of these operations is incomplete, containing only what is nesded
for the present purposes. '

For each order the following information is glven:

(1) Descriptive name for the order
(2) Binary code for the order

(3) The operation toc be performed
(4) The effect of the operaticn

-
2

Comments, where necessary

L

Trangfer operations

,
(L)
{2}
et
(3)

14)

P ey Py
a3
e

(Y]
—

(4)

P el et
"R I I o
N’ S’ S

Clear and add

1.0000

Clear AC and add %he contente of register x into 1%,
AC - contants of register x,

BE -~ cleared.

Clesr and subtract

10001

Clear AC and subtract the contents of reglster x from it,
AC - complement of the contents of register x

BR .. cleared,

Clear and add maznitude

101000 ,

Clear AL and add the absolute magnitude 0f the contents o1
register x into it .,

AC - positive absolute magnitude of the contents of register X,
BR - cleared,

Transfer to storage

01000

Trangfer ths contents of a0 to register x .

Reglister x containg the contenis of AC, the previous contents
of reglster x baving been cleared (lost) .

Trangfer address digits

01001 B
Transfer the right-hand 11 digita in AC %0 the address ssction
of the order in register x

The right-hand 11 digite in regieter x are the same ae the
right-hand 11 digite in AC; the reamaining digits of register x

haing undisturbed

gu X

nr x

mh X

T T o SR

6673
. Engineering Note E-2000-1

Arithmetic operations

(1)
(2)
(3)
(4)

(5)

(1)
(2)
(3)

(5)

P o
W Nt N N

PN TN PN PN

Add

10010

Add the contents of register x to whatever is in AC,

AC - the arithmetic sum of the previous contents of AC
and the contents of register x,

An alarm signal will be given and the computer will De
stopped if the magnitude of the sum (whether positive or
negative) is greater than or equal to one.

Subtract
10011

Subtract the contents of register x from whatever is already in AC,

AC - the arithmetic sum of the previous contents of AC and
the negative of the contents of register x,
The same provision for alarm and stop as in ad.

Multiply and round off

11000

Multiply the contents of register x by whatever is in AC and
round off the result to one register lengith.

AC - the left-band 15 digits of the product of the original
contente of AC with the contents of register x, round-off
having been performed {cne being added to the right-mosi
digit of AC if the sixteenth digit of the product was a one),
AR - cleared,

Multiply apnd nold full product

11001

Multiply the contents of register x by whatever is in AC but
do not round off,

AC - the left-most 15 digits of the 30 digit product, not
rounded-off, with the proper sign associated .

BR - the positive absclute value of the right~most 15 digits
of the 30 digit product, followed by a zero in BR1S.

After the left-hand section bas been stored, an sl 18 order
can bring the right-hand section from BR into AC with the
proper sign associated with 1t. 'The gl 15 must be performed
bvefore AC is clearsd, otharwiee the sign will be lost

Divide

11010

Divide the contents of AC by whatever ia in register x.

AC — +0 or =0 depending on whether the sign of the quotient
ig + Oor -,

HR - the positive absoluts value of the gquotient correct
16 figures (i.e., Lhere is no sign digit and all 16 digite
are significant to allow corract round-off to 15digits by
the subsaquent sl arder),

fter the dv opeiaciou the order sl_l5, which must bs Lhe
next urder; bringe the quotisnt into AC with the propar 8lgu
assoclated with it (see gl),

'f the dividend is greater than the divisor, so tnal the quotlent

=

6673

Engineering Note E-2000 -1 Page 7

dv x (5) -continued-
exceeds one, an alarm is given and the computer stopped. If
the quotient equals one, the error will be detected in the
subsequent sl order, for round off in the sl will cause an
overflow. This ie because the 16 digit quotient in BR will
congist entirely of ones if and only if the divisor and the
dividend are exactly equal.

Shifty operations

8l u (L) Shift left

(2) 11011

{3) Shift the contents of AC aud BR n places to the left,

{4) AC - the sign digit remains unchanged. All other digits in
AC and BR are shifted n placee to the left and the result is
roundasd-off, Digits shifted left out of AC 1 are lost,

ER - cleared.

‘5) As in sr the eign is sensed and remsmbered sc that the shift
and round-off can be performed using positive numbers. Digits
that are shifted left out of AC 1 are lost and no alam is
given; but an overflow caused by the round-off performed after
shifting is completed will give an alarm and stop the computer.
The order sl O will be correctly interpreted, ite only affect
being a rounduoff

8T O (1) Shift right

(2) 11100

(3) Shift the contents of AC and BR n places %o the right,

{4) AC ~ the formar contents of AC shifted n places to the right
and rounded-ofi
BR - gcleared.

{5) The ‘sign 18 sensed and remsmbered and the number in AC is

complemented if pegative so that the shift and round off
can be performed using positive numbers. The vacancies on
the left-hand end are fiiled with zeros. After the shift
and round-o0ff the coptents of AC are again complemented > I 8
the number was negative, The order sr U will be correctly
interpreted, its only effect being a round-off. When snd
only when the digits in AC 1 to AC 15 and in BR O are all
ones pricr tc the shift and round-off of an 8r 0 order, the
reund-off will cause an overflow which will give an alamm

and stop the computer.

Sgale factor gperation

Scale factor

11101

Shift the contents of AC aud BR to the left uatil the 11rst
non-zere digit ie in AC 1, and store the number of ahifte in
reglister x,

6673
. Engineering Note E-2000 Page 8

Scele factor operation

g X (4) AC - the previous content of AC and BR so scaled %thst s
‘cont .) magnitude is > 1/2 and<1,
BR -~ the remaining digits of the previous contents of BR
after the shif¢,
The address section of register x contains the number of
shifte made (the scale factor). If the magnitude of the
number in AC was already1/2 and <1, no shift is made
and zero is stored in register x. (If, the number in AC and
BR was identically zero, it remains zero and some indication
will be given, perhaps by storing the scale factor 33)
{65) The sign is sensed and remembered and the number in AC is
complemented if negative. After the scaling is completed,
AC is again complemented if the number was negative. Consis-
tent with other operations, the quantity in BR is always the
positive magnituds.
The number stored in the address section of register x is
a positive integer, as in the address section of an order,
The left-hand five digite of register x are undisturbved, as
in a td order,

. Change of program

sp x (1) Subprogram

(2) 01111

{1) Transfer the register address x % the program countver,

{4) Program countsr countains X,

(5) This operation does nci involve the arithmetic element The
program counter determines the address of the storage register
from which the next order is tc be taken. After each opera-
tion the contents of the program counter are ordinarily
increased by one. A subprogram order clears the program
counter and substitutes the storage register address prescribed
in the subprogram order itself. The next order is consequently
taken from this new regisfer address,

Condi tional progrem

01110

Transfer the reglster address x to the proeram counter if the
number in AC iwee & negutive sigp diglt,

(4) Frogram counter containg x if the oumoer in AC is negatlve
Nothing beppens if the number in AC 1s positive,

P e P
N
G’ T’ N

{(5) The minus sign is shown in brackete after the abb evistion
ep to avoid possible confusion It would be equally poesible
to have s similar order which would change the content of
the program counter if the number in AC is positive, and this
alternative order would be written cp(+),

6673
Engineering Note E- 2000~ _ Page

0

Sectlon 1I, Fundamental Concepts

L, Binary and Decimal Number Systems

1. A number in the decimal system is represented by a sel of
digite and a decimal point. The selection of these digits is restricted
to the values 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The value and the posi-
tion of each digit with respect to the decimal point specify a multiple
of a power of 10, the multiple being equal to the valve of the digit and
the power being determined by its position. For example:

b 2 1 0

4Weh . BOY = 4 x lﬂj +0x10 +2x10 + 5x10
-1 _ -2 -3
+38x10 +0x10 +9 x10

2. In a similar faehion & binary number is expreessad by & set
iigite and a binary pqint; in this case the digits are restricted to
being eithar O's or 1's., The position of each 1 with respect to the
binary point specifies a power of 2. For exarple:

X o 'j O " ‘L
1010.011 =1 x2 +0x2 +1x& t0xe +0O0x e
. 3
+1 x¢2 *] x@
3 1 -2 J
ar 2 +2 +2 + 2

In the binary system, then, the numbers are made up of powers of 25 iu
the decima)l system the numbers ars mada up of multiplse of powars of 10.

i, The conversion ¢f a number from oinary form &0 deulmel gggyw
may be performed by the direct (decimal ayetem) addition of the pecified
sowers of 2. Given the binary number 1010.011 the comversion procseds

as follows:

or 8 *+ =& .25 + .125
= 10.37%
4. The conversion of a number from decimal form Lo vinary {orm

d by successive extractions of the ‘P!DP” “(hi Vh‘“"

nay be accompllshe

o
[4 i 4
~'J{:,‘(r 3

‘ Engineering Note E- 2000
wers of 2 from the decimal form. Given the declmal number 10,375 this
verglon proceeds as follows: 2
The highest power of 2 in 10.375 is 23 or &;

10,375 - 8 = 2,375
1
The highest power of 2 in 2.375 18 2 or 2:

2~3f5 - 2= ,375

=

The highest power of 2 in 375 18 2 or .25:

-’)}V"t

eh = 125
And .12h ie @
! - .,‘.fv . 1 ‘g o s y
Hence 10,379 = 2" +2 +2 + 2 or 1010.11

5 A portion of a table of bipary-decimal equivalents is given

velow.
®
Decimal Binary | Decimal - Binary

1 1 h 20 10100
2 10 g 30 11110
- 11 ; 40 101000
Y 100 1 0 110010
5 101 | 50 111100
6 -11C .i 0 1000110
7 111 f g0 1010000
E 1000 90 1011010
1001 '; 10C 1100100
10 1010 g 500 111110100

. il 1000 1111101000

6. Two rather important facts should be noted with respect
to the binary and decimal representaticng of numbers:

(a) The representation of a number in the binary syetem will
require approximately 3 1/3 times as many digit positionse
g8 the representation of the number in the dacimal sysbtem.

(b) Multiplication of a binary number by a positive integral
power of 2, say € , 1s equivalent to ghifting the binary
point of the aumber k digits to the right; for maltipli-

. cation by negative integral powers of 2, say ek whers

6673

Engineering Note E- 2000 Poge 11

k is poeitive, the binary point is shifted k diglts %o the
left. Similar remarks are applicable to multiplication
by integral powers of 10 in the decimal system.

(It should te obvious that in the above-described shifting
the aignificant result is the relative shift between the
digits and the binary (or decimal) point. This relative
shift may be achieved with the digits held fixed and the
binary point moved, or with the binary point fixed and the
digits moved.)

f. The binary system of representation is particularly well suited
for a digital computer since the machine need only distinguish and store
two typee of digits, O's or 1/s, instead of the ten different digits of
the dacimel system. The development of computers along logical lines
gimilarly points to a "0 and 1% or "yes and no" system. Another desirable
feature of the binary system ies the relative ease encountered in performing
arithmetic operations upon dbinary numders.

8. Whirlwind I handlese only iunformatior in binary form -- all
numericel data le expreseed ae Linary numbers, all computer orders ars
coded in the blnary number system.

B. Heglsters: Types aud ldentification

L. The word regisier ie ueed to denote a physical means of
stering s set of binary digite. Each digit position within a regieter
le represented by a toggle switch, relay, flip-flop, or spot position
in an electrostatic atorage tubes, etc. The particular digit (either O or 1)
stored at any digit position is represented by ths phyeicel condition of
the corresponding switch, relay, flip-flop, or spot.

2. The set of digits stored in a register 1 known as a word.

The nunbar of digits in a word is determined by the number of digit puéi~

tione in & register or the register length. The register lengih of Whirl
wind I is 16, hence all words are compossd of 16 binary digits.

3. The words which may be stored in the registers of the computer
are of two types:

(a) Numbers to be used by the arithmetic element.
(v) Orders to be uesd by the contrcl slement.

'he repressntationes of orders and numbers in the computer are dlscussac in
parte C and D of this section.

6673
Engineering Note E-2000 . Page 12

4., The registere within the computer are of two types: the
:ciagl-purpose registers and the storage registers. The special-purpose
sisters have been named in accordance with their operational usas =nd
are referred to by those names or abbreviations thereof; the term register
has been reserved, generally speaking, for use in referring to one of the
storage registers of the computer.

5. Three of the special-purpose registers have particular
importance in the arithmetic element of the machine. These are:

{a) the "A" register (abbreviation: AR)
(h) the "B" register {abbreviation: BR)
{e) the Accumulator (abbreviation: AC)

The 16 digit positione in the 4K starting at the left are denoted as ARO,
ARl, AR? ~-- AR1%. A similar notation ie uesd for designating digit
positions in the AC and the BR. Thie ie shown below for the AC.

i 16 Diglt Reglster Length —————oeeee o

- Tgc:lj qACll’ _LALLS]

[ACO [ACL | ac2[- - - -
The Digit Positions of the Accumulator

b. The ER is most conveniently thought of as the extensicn of
the AC. 1In this capacity it 1s used to hold the second half of a product
of two numbers or the quotient of a division. (In general ths multipli-
ua‘ioa of an m digit number by another m digit number produces a number

ith 2m digite.) The sffecte of the various orders upon the AC and BR
are described in Section 1. For the present purposes it will not be neces-
sary to consider the uses of the AR.

7. The storage registers of the computer are composed of spol
positions in electrostatic storage tubss. Each register (storage register)
ie identified by an address in the form of a binary number. ZEleven digit
anar numbera are used “for these addresses, permitting the identificetion
of { 2048 distinct reglsters, the addresces running from 0 to 2047,
Ihese QDhb registere comprise the internal electrostatic storage or memory
of the computer.

&, The computer identifies « regisier anly by its address,
hence in any discussion of coding it should be understood that the use
of the word reg ister implies an address.

6673
Engineering Note E-2000 -

Page 13

r

T. Representation of Numbers

1. When registers are used to hold numerical quantities for
| use in calculation the content of the first (left hand) digit poeition
indicates the sign of the number. A O indicates the storage of a
positive number, a 1 the storage of a negative number. In writing out
the contents of & register used to hold a number it is convenlent to use
an oblique stroke (/) to separate this sign digit from the remaining
15 numerical digits. g .

2. The representation of positive numbers is direct. If a
register.containe the digits

0/101100101000100
the number repressented ig the positive binary aumber
+ ,10110010100010C

whers, since the sign digit is O, the 1% numerical digits are obtained
directly from the right hand 1% digits in the regilster. The binary point

‘ ie placed at the left hand end. With this representation all positive
multiples of & f 215 from

-15 :)
27%7 = + ,000000000000001
-15
to 1 - 2 7 =+ .111111111111111

can be stored in a register.

5. The represeniation of negative numbere 1s not direct. If
a register contains the digits

1/100101000110110
the number renresented ie the negatlive binary number

.011010111001001

where, since the slgn diglt is 1, the LF uumertyAL digits are abtalned
by complementing { interchanzing O's and 1'e) each of the right hand 15
digits in the register. The binary point 1is agaiu placed at the left end.

6673
Engineering Note E- 2000 -1 Page 14

4, Thus when the sign digit ie 1 the numerical digits of =
ister must not be interpreted directly -- their complements wit! @
vinary point at the left hand end and preceded by a negative sign fowe
the desired (nefative) number. With this representation all negatlv
multiples of 215 from

I

i
m b
I

= 1/111111111111110

6 = AL & 7)

1/ 000000000000000
can be stored in & singls register.
5. Zero has two representations, nsmely:
)/ QOO00000000000G (this 18 called positive zero)
and 1/1111111111113121 (thie is called negative zerc)
6. The above discuesion should reveal that bscause of the cholce

2 the poeition of the binary point we are limited in storage t? numerical
< = -~ p
qwui?ﬂtit€ which are multiples of 2-10 lying hetwesn -=(1 2-15) ana

s Ty . 'w.a)

i A further discussgion of the use of binary numbers in the
computer ie included in Section IV, W& may remark here that it is possible
to use two registers to represent a 30 digit cumber {(two sign digite are

\ N p N : 1 . . 3)
naed), and it i@ possidble to deal with numnbere ouiside the range - (1 -2)

to + (1 = 2“13) by the use of scale factors. The description of these
technigues is left to a later report.

D. Hepreseniation of Orders

P

1. An order coneists of twe parts, of which the first specifies
Lhe o1 eration to ,gwaerfwrmen and ths =zecond the address of the register
with which the ﬂp(rn-ibn ig concerned. (Thare is an sxception in the cass
of the shift orders where the second part of the order does not speclty
an addrese but rather the extent of the shift This matter is further

discussed in Section 1IV.)

2, The first five (left hand) digits of an order delermine

the operation to bhe performed in accordance with the five-digit Dbinary

£ " NI
fiva digits, 27 or 12 diet inct opsrvatlons

dee {"’fi" en in Saction 1. With
can be specified. The remsining 11 digits of an order are regardsd as
forming & positive binary pamber with the binary point at the right Hand
't“»X.'u:‘. T i s numbaer thue speclifies one ol ¢ he 204% storsgs regleters.

6673
Epgineering Note E- 2000 -1 Page 15

%. In the representation of an order, an oblique stroke is
uped Lo separate the operation and address sections. An example o an
order would then be

5 2 }
10010/00011010001

Since 10010 is the ccde for the ad operation and 00011010001 is the
binary form of 209, the order ig ¢ ad 209,

E. QOrders and Numbers

1. The previous discussion of the use of registers for orders
and nundbers does not imply any permanent division of rsgisters into the
two types. A register which is used for an order in one program may be

used for a number in another program.

2. The two possible uses of s register may te shown pletorially:

r'!hl’*‘l'ﬁ;l
" wORDS |
re 3
{omw5' iwmw@j
vl! lﬂ
| OPERAT ION 3KCI ION/ADDRESS SECTION | 3b|GNfMAnm'1‘nm!
RSN S {

l i
| ’
¥

[Firet 5 digits / Last 11 digits) [Firer aipdt/ Last 15 digits |

1, It should bs moted thai we ahall be talking of two kinds of
numbers, Ths addresses of registers are positive integers and are repre-
gented by 11 digit binary pumbers with the Hinary point on the rignt;
these numbere occupying only ths 11 right hnd digit positions of a register
On ‘bw other handctnv numbers wg} ¢h are user in computation are multiples
of {~4. betwsen 2°2.1 and 1 - 2°°7. The representation of these numbers
ases all 10 cigit positions of = reglster, the left hand digit position-
neinz used to indicate the sign. In some cases it will bte convenient to
jesl with an address as a numerical quantity and perform arithmetic opera

hions on 1t Due to the fact that addresses ave positlive integers, when

an aidressg n is belng handled in the arithmatic slemeni Or dH2ing stored in
“ .15

& razipter, it should de refarred LG as {2 -

6673
Engineering Note E-2000-" Page 16

¥. Ceneral Operating Procedure

l. Ve are now ir a position to discuss the general operating
procedure of the computer. The control element containe a special cleven
digit counter known as the program counter. This program counter holds
the addrees of the register from which the next order is to be taken.

The control element then proceeds to carry out the order whose address
is in the program counter by performing the specified operatiom upon the
quantity at the specified addrees section of the order.

2. ¥or example, assume that register 973 contains the order
(in binary code) ca 85U, and that register 854 contains the quantity
.5334 (also iu binary form). Reference to the description of the opera-
tion "ca” in Section I shows that when the address 9{3 is placed in the
program counter, the control carries out the order stored in register
973 and proceeds to place the guantity .5394 into the AC.

3. YFollowing the completion of this order the number in the
program counter is changed, thus bringing into effect a new address and
s new order. JIn nommal operationm the number in the program counter is
increased by one after each operation, with the result that the orders
used are withdrawn from storage consecutively. Methods of changing the
saquence of orders are described in Section III.

G. Written Form of a Code

1. The written form of a code requires the use of two columns,
the first of which indicates the address of each register, and the second
which indicates the content of that register. When the content is an
arder the sscond column splits into two parts, the first part containing
the operation and the second the addreas; when the content of the reglaster
{g & number, the second column splits into the sign and the numerical
gquantity (with the conventlon of representation of parsgraphs D2 and D3
of this section).

2. Thue the entries in the code will be of the following two

’ " Quantity

types:
% Cage | Column One % Coluon Two
; I (Address) ' (Content) |
{; - "“‘.;..".'."fl‘v“.,f o e U T SR .TZZ.#;;'.“ macmm b ——— .'.l.'.. — .]
{ & Address | Operation / Address |
SRR, T B gl Tenerak B, ot
. Addrese | Sign / HNumerical
I
|
1

6673
. Engineering Note E-2000 Page 17

3. 4An example of (a) would be (all guantities in decimsl uncoded
for convenience):

1019 ca 346

which indicates that register 1019 contains the order "clear and add con-
tente of register (address) 34o¥,

4, An example of (b) would be:

1076 + 13149

which indicates that register 1076 contains the quantity + .13149.

6673
Enginsering Note E-2000 =i Page 18

Section II1. Some Elementary Codes

We are now prepared to examine a few simple codes. KExcspt in
tne case of Code I the actual codes themselves appeer in Part II of the
report. In accordance with & procedure to be demonstrated below the
reader should follow the order-to-order progress of the codes, referring
when necessary to the descriptions of the orders presented in Section I,
The reader should attempt to dstermine the effect of each order of the
codes, checking such a determination against the stated effects printed
with the codes in Part I1I.

For convenience the codes of this section deal with litersl
rather than binary numerical quantities, it being understood that these
quantities lie within the capacity of a register.

A. Code Is Sample Analysis of g Code
1 Code 1: 1 ©ca 14
2 mr 14
3 'mr" 11
G ts 15
5 ca 14
& nr 12
7 ad 13
8 ad 15
9 ts 156
10 end of code
1L a
12 b
13 @
14 X
18 = (blank register)

2. The reader mist sssume, unless otherwiee instructed, that the pro-
gram counter initially contalns the first address listed in the left or
address column of a code. In this case the first address is 1.

1t should be noted that we are in no way restricted to beginning codes
at address 1; however, we must use a group of consecutive registers for
our orders. We may store ordars in any group of consecutive registers
provided that we make- the appropriate changes in the address sections

of these orders. Hence we could just as well have used registers 256
through 271 for Code I, with corresponding changes in all the adlresses,

5. Tue eifsct of carrying out the order in reglaeter 1 1s Lo put the uo
tent of register 14, x, in the AC. Ths program counter thea increases
to read 2 and the order at that address is carried out. This order has
the effect of myltiplying the x in the AC by the content of register 14,
or x, leaving x° in the AC. The next order, 3, multiplies the content
of the AC, x°, by the content of register 11 or a, leaving a;? in the AC.
The pext order {(that at eddress 4) transfers ths §§§ to register 15.

6673

. Engineering Note E-2000~] Page 15
4, The results thus far cen be written as follows:
Addregs Orders Effects of the orders
1 ca 14 x in the AC \
2 mr 14 xz in the AC >
3 mr 1l ax2 in the AC
4 ts 15 gaxz in the AC
‘g.xz also in register 15

5. Before continuing several points must be stressed.

a) Transferring from one register to another (thess may either
be special-purpose or storage registers) does not alter the
content of the register from which the transfer was made.

In this connection special note should be made of the effect
>f the order at address 4 above.

| b) In transtferring a word into a register the transferred word
| ig not affected by the original content of that register.,
‘ {Hence the origival content of register 18 is of no conse-
| . quence.) In the same regard one must note the difference
between the operations ca and ad.

Ihe remaindar of Code I can be written out as below:

Address Orders Bifects of the Orders
ca 14 x in the AC
nr 1z bx in the AC
ad 13 (rx + ¢) in the AC
8 ad 15 (a‘xz + bx + ¢) in the AC
9 te 15 \(nz + bx + ¢) in register 16
fjaxz + bx + ¢) in the AC
10 the computer 1g ready for another cods.

7. The action of the code has been, then, to form (evaluate) the expression
ax“ + bx + ¢, where g, b, and ¢ are generally fixed congtants and x is
altersd by changing the content of register 14.

B. Code 11: Evsgluating Polynomialg

‘ 1. A similar order-by-ordsr snalysie may now be carried out for Coda 11
art Il The effect of the code is seea to be the same as that of

however Code II ig more econcmical of orders {(storage gpace) and

6673
Engineering Note E-2000 -1

Pege 20

hence takes less time for completion.

Z. The method used for forming the expression in Code II is quitz spplic-
53&6 to general polynomigl forming. Thus to form ax? + bxd + ex? + dax + 8,
the following order of processes should be used:

a = (a) add
(a) » x = (ax) miltiply
(ax) + b = (ax + b) add
(ax + D) > x= (a.x2 + bx) maltiply
(ax”° + x) + o= (ax2 + bx + ¢) etc.
(axz + bx + ao)x = (axs + bx2 + ¢x) '
(ax3 + bxz + ox) + 4= (ax8 + bx2 + ¢x + d) 3
(ax3~+ vx° + ox + d) - x= (ax4 + ox° * ex® + dx) :
4 3 2 :

ax *bx +tex +dx + e

f

: 3
aaxQ + bx + cxz + dx) + e

G, Codes]Il and I1V: Periorming Djvigion

1. It was previocusly mentioned (paragraph D1 of Section 11) that the
right hand eleven digits of an order are used %o gpecify an address wiih
ane important exception. This cccure in the use of the shift orders

(8r ~- or 8l --) where the address section specifies only the number of
places the digits are to be shifted to the right or left. In thie respect
ype must differentiate betwsen the mearing of the 15 in the order ca 10
and the order gl 15. ca 16 orders the clearing of the AC and the additicn
»f the contents of register 15 into i1%; 8l 15 orders the shifting left
by 15 places of the digits in the AC and the RR,

2. The BR ig actually an extension of the AC, and the quotient is left
there after a division has been performed, In a situation in which it
ig then desired to place the quotient of a division intc the AC the dv

order must be followed by an 8) 15 order.

Z. With the above remarks Codes II1 and IV should be exemined. 1t will

ha observed from an examination of these codes that when a divisicn iz
to be carried out the divisor should be formed first and stored. If the
dividend is then formed in the AC, the division can immediately be per-

formed by the dv order.

Codes V & VI; Conditional and Sub-Program Orders

< -
R, A -

=

N Up to this point we have gggumed that aftier the completion 3f each

srder the program counter is increased by 1, that ia - control receives

6673
Eng;neering Note E-2000=.

Pags 21

its next order from the next (storage) register. This is not completely
accurate, and when an order is completed one of three thinge may hsppen:

a) If the order was neither a sub-program order (sp) or &
conditional sub-program order cp(-) , the content of the
program counter is increased by 1 so that the next order
will be taken from the next address in storage. After the
address 2047, the program counter reverts to address 0 and

is ready to continue operation from there.

b) If the order was ep X, the address contained in the program
counter is changed to read x so that the next order will
be teken from register x.

It should be seen from this remark that after the completion of a code
the next order should be sp x whemx is the address of register con-
taining the first order of the next code. (This will be superflucus if
the two codes follow consecutively in the storage register). Codes I, II,
{11, and IV should be ended with sp crders.

¢) If the order was cp(=)x the content of the program counier
is changed to x if and only if the number in the AC is
negative, that ie-if the sign digit position of the AC
contains a 1 If the sign digit in the AC ie a O then
the program continues to the next order.

2. lu particular regard tc {(c) above it must be mentioned that the sub- |
tractiovn of two equal numbers gives rise to the negative zero, that ls, |
2 zers with a negative sign digit. The mathematical aspects of this are |
iiscusesd in paragraph El of Section 1V, but for the present it is important

to realize that the negative zero is sufficient to cause the chaunge in

the program counter described in (¢).

%, Witk the above discussion Codee V and VI can be inspascted. These are
codee which arrange numbers in a certain order. For convenience in under-
standing these codes one sbould initially assume a relationship among the
numbers. That is, for Code V analyse the progress for a>b;, a = b, and
a<b A similar analysie shculd be carried out for the possible relation-
ships of a, b, and ¢ of Coda VI.

4., 'The analysis of Code V will reveal that the maximum 0f g and b is

placed in register 10, the minimum in regieter 11. If a3 the quantitiee
are kept as originally stored.

i
o’

5., The analysis of Code VI should indicate that a, b, and g are arranged
in degcending order in registers 26, 27, and 28,

L ovsey
] o WG

Engineering Note 1~

ary Arithmetic end the Computer

A more detailed investigation will now be made of the msunsr
which aritimetic opsrations using binary numbers are performed by the
computer., For convenience in representation we shall assume in
gection that the avallable register length is only 8, with a sign
and seven numericel digits. The binary point is assumed to Ve A
to the left of the seven numerical digite, permitiing the represen
of numbers in the range ”(1:2*71 t0 +(lm2’7)r For the purposes of dis
cussion we shall use two positive binary numbers:

2

x = +,011010C
and y = +.0011011

In accordance with the remarks in Section II concerning the representation
vf pumerical quantities within registers, we see that the reglster repre
sentatione of x and y are

x = 0/0110110
= (/0011011

a . o Ve iaad ¢ wATE T A
wiere, as was previously noted, the cblique siroke is used W separate

the sign digit from the numerical digits,

o A % ¥ 3 2 Y ¢ he
1., Addition in the binary systiem 1s performed with the uge of the

v. We note thgé yn the binary system]
of 1, O &dded to 1 or 1 added to O glves I

P

gives 0 with no carry Ip Tigures:

; liar principle of the earr
wided to 1 gives U with a car
with no carry 9 and 0 addsd wo

1 0 L
+] +1 +0 +Q
- - .

addition ot x and y 1f as follows, two Ccarry satages L8LDy

-3
@

x = .0110100 = 0/0110100
201101

\s
(
\

101411

B
B

J

,0011011 = Q/
[
]

0f0001111

A

x +y = 0/1001111

6673
. Engineering Note B-2000 =] Page 23

' 3. The simultanecus addition of more than two numbers need not
be considered since the computer sdde only in pairs.

4. With a register length of 8 the computer is not equipped %o handls
numbers greater in magnituds than 1«2‘7, hence arrangements must be mnade
to stop the process of addition if at any stage the computer findg itaelf
trying to add two positive numbers whose sum is greater than 1-2"', This
state of affairs would be indicated by a carry from the left hand numericel
digit to the sign digit position. For an example, an attempt to form
2x + 2y would be as follows:

2x = 0/1101000
+2y = 0/0110110
0/1011110
-
0/0111110
Y UL e Yo, 3 a earry into the sign digit position

This occurrsnce is called an overflow since the sum has over-
flowed and requires another pumericsl digit position. An alarm is
sounded by the computer when such an overflow occurs.

<||’ B, Subtrgction and End-Around-Carry

1. In accordance with the previous discussion of Section II the
representations of -x and -y in the computer are

-X

where +x

1/1001011 , =y = 1/1100100
0/0110100 , +y = (/0011011

i

[t might be noted here thet the negotive of a number is representad
in the computer by the complete complement of gll digits, including the
sign digit

2. Subtraction of & number ie performed by adding the negative of
the number. Thus the operation e-b is replaced by a + (-b). The eddition
sf two numbers of which either cr both are negative ie performed by a
process known as gnd-around-carry. The faect that this process gives the
correct result will first be illustrated by esamples and then proved.

3. 1n the end-around-carry process the sign digits are treated
exactly as if they were additional numerical digits, a carry from the left-
band numerical digit place being added in the sign diglt place, but a carry
from the sign digit place is taken around and added in at the other end
in %he right-hand numericsl digit place.

4. Expuples of end-sround Carry:
. Uaine the numbers x, y (x> y) the various cases that may arise
ir the sddition of two nuzbers are exemplified ae followss

{(a) BSHoth numbers positive: x * y

(b} Cpe number negative, sum positives X=y = X + (=¥,
(c; One number pegative, sum negative: = (x - y) =y + (=x)
(d) Both numbers negative: - (x + y) = (=x) * (-¥)

T O

The possibility of overflow in
which does not occur in thase
zer0 sum will be consids

The computer's
wnere an end-around-oarry
Case (a) x = 0/0110100
y = 0/0011011

0/0101111

S S

diOdOil]l

¥

of'ié 111

4
-+

-
5
o

ase (b)

X = ‘.""k,:’.l 100G
(-y) = 1/1100100
1/1010000

ST 150 -

1 /0011000

ant L&y

970011011
= L7100 104
1/1010
._.__M,._l.._u-__
1/100011(
L
1/110011(

b

GB73
Engineering Note E-2000

o

&
@
3"}
(&

It 1s easily verified that the value obtained for x - y 1s correct,
and the values of -(x - y) and -(x + y) are the complements of thoge
aelready found for x = y and x + y. '

5. To prove the validity of the end-around-carry procedure let z be any positivs
womber iess thst 1 which is represented by seven binary digits

immediately following the binary point. Denote by ¥ the complemen-

tary positive number formed by complementing each of the seven

digits of z. Then

0,1111111
1.0000000 - 0.000001

L

g+ 7

il

L i gV

This equation may be written in the form

R TRt OSSR vl IS SRS Rl |

he number 1 + Z, being grsater than cne, cannot be represented in
the computer, btut ite digite are precisely those used in the computer
tc represent the negative aumber -z, if the sign digit is included.

O, Let x and y be twe values of z, and take x2y~20, Assute
alsoc that (x + P<1 to avoid overflow. The cases b, ¢, d of para-
sreph 4 will be considered iu turn.

Cege (R)

The couputer's procedure in forming x + (=y/ with end-
sround-carry ie equivalent to three successive operaticns

(a) adding the mumber 1 + ¥ to x

(b} sasubtracting 10.0000000 = 2
P A
(c; eading 0.0000001 = 2
the last two operations belry equlvvalant to tha and-around-carry .
But from equation A for g =7y

sy=(l4+y)—-2+2

&4 C zey 2 xt (1 +F) =2+%2 cocnna= AR
This proves that the computer process produces the gorrect resulv
for ¥ ~ y provided that end-around-carry oceurs. This must be 82
hecause from B

={

6673
Enginsering Note E-2000 -1 Pege 26

from which 1t follows that the addition of x and 7 must produce a

1 in the sign digit place, which with the sign digit corresponding
fo -y must produce an end-arcund-carry.

Case (g)

Similarly the validity of the procedure for obtaining the
negative sum y + (=x) = - (x - y) 1s proved as follows. Equation A
applied to the positive number x - y gives

1+x-y=-(x-=y'}+2-2’v

2yt (1Y) apcamanniianas, —

The digits of tae positive number 1 + X = y are precisely the digits
that the computer ought to obtain in order to represent the negative
number =(x - y) and the digits of y + (1 + X) are those that the
computer actually does obtain, provided that there is no end around
carry., In this case end-around-carry cannot occur becsusge from

equation C
ytX=X-y3¢€1.
Lpge (4}

Congider finally the negative sum of two negative numbers
(=x) * (ay) =«(x*y). If x+ ys51 we have an ovverflow condition,
which will be discussed in section C below. If(x + y)<1l equation 4
gives '

a0 =7
]--@xxy::ﬂ(xwy)*f;ﬁ.‘-'?,

| i % AR
(.._x+‘-;..2)+(-y+J-9J‘=/'+.--

- e ”‘7
= (A+x)+ (L +y)-2+2

i

Thie shows that the computer will obtain the correct representation
of the negative number -(x + y) because an snd-around-carry is
produced by the two negative sign digits of -x and -y.

C. Qverflow.

1. It bas already been explained tnat, 1f ths computer I
trying to add two positive pumbers x, y whose sun x + 321, it
must detect the overflow and stop the computation, In formiug the
sumg X + (-y) and y + (-x) thare is no danger of obtaining & sum
whoge magnitude is 21, tut the computer, when trying to add twe nega-
tive nunberg (~x) and (~y), must guard against the possibility that
the negative sum =(x + y) may bel -1. When (ex) and (~y) are being
added, with the end-arcund-carry, the sign digite are both 1, wudl
their addition will leave a O in the elgn digit place. There oust
therefore be a carry from the lef t-hand numerical digits to glve the
1 in the sign digit place that will indicate thai the sun ig negativs.
The sbsence of this carry digit will indicate an overflow.

6673
Engineering Note E-200 -3

Page 27

: 2. To prove this we notice that when the computer adds (-x)
and (~y) an end-around-carry is immediately produced by the addition
of the sign digits. The sum formed by adding the numerical digits
ie therefore

Ly]
/

G L R L B SR

=1-2'°7+1- (x+y)
<1 if(x + 371

T+§7+2

3. The overflow control that the computer must provide when
it ie¢ adding two numbers is therefore as follows:

Both numbere positive: - Overflow signalled 1f carry
occurs into the sign digit pleace.

OUne number negative : = No action.

Both numbers unegative: - Overflow signalled if no carry

occurs into the sign digit place.
Do Sniftine and Houpdoff .

1. Multiplication and division will both be accomplished by
a combination of additions, shifts and complementing operations,
It wvill not be necessaty to specify the methods used in detail, but
it 1¢ important to stipulate that the actual operations of multipli-
cation and division will be carried out with positive numbers, any
necessary complementing being done at the beginning and end of the
process.

o Shift operatione alsc will be performed on pusitive numbers.
lhus if a negative number is to bLe shifted it is first complemented,
then the complement is shifted and finelly the result is complemented.

: 3. The operations of multiplication and shift right produce
digits in the 3B register and the content of ths accumu-
lator way be rounded off by adding in a one in the right-hand place
of the accumnlator 1f the left-hand digit in the 2 Trs-
gister 1e a one, (This round off ie optional in multiplication tut
will always be carried out in shifting right.)

4, The operations are s0 arranged that round-off is only
carried out on positive numbers. For example, in forming the rounded
yff product x ¢ (=y) the machine calculalee the full product xy of
the positive numbers X and y and rounds off this pesitive product
hefore complementing to obtain the rounded off value of -xy.

5. In & shift right of a positive number the vacated diglt
slaces at the left of the sccumulator are filled with zeros and,
after the round-off has taken place, the B register ia
cleared. (Clearing means making all digits zero.) Thus, if

6673

Page 28
Engineering Note E-2000Q =1

x = 0/0110100, the process of shifting right three places is as
follows, the £ 1indicates the beginning of the BR:

Initial value of x 0/0110100
First stage of shift 0/0000110/100
Round-off effect

Result 0/0000111

If ~x = 1/1001011 is to be rhifted right three places, the first

step 18 to complement, giviug x. The above procedure ie then carried
out, giving 0/0000111, which is complemented to give the result 1/1111000.
Thue

i 1/1001011
Compl ement 0/0110100
Shift right three places 0/0000110/100
Round-off effect 1
Shifted complrsment 0/0000111
Complement back 1/1111000

6, As an example of a casé in which round-off does not producs
the addition of a one 'n the right-hand place of the accumulator, con-
sider the procese of snifting x four places te the right, wiich ig as
follows: :

Inttial value of x)/0110100
Shift right four places)/0000011 /010C
dound-off elfect \ o)
Regult ; 070000011

For the negative num.er =x the procedure would be

=X 1/1001011
Complemsnt 0/0110100
Shift right four places 0/0000011 /0100
Round-off effect b
Complement back 1/1111100

= ;
Ho 49FQ .

1, In the alnve discugsion we have assumed O<x 1, Oy
(x = y, 0, We now consider wiat happens when x - y = 0, when y

and when x =y = 0.

\

2. In the computer the number zero has Iwo representations

(a) 0/0000200
and (b) 1/1111111

6673 Pags 29
Engineering Note E-200C-1 :

The sets of digits (a), (b) have the eame meaning. However,
as they look Aifferen’ on the computer it ig ressonable o refer #o
them e positive zero and negative zero.

3. It will often be convenient in a computation to use the
elgu diglt of some intermediate result to determine which of two
alternative cocurses the computer ghall follow. We must therefore
consider carefully whether a zero occurring during the course of s
computation will appear as a positive or a negative zerc,

4, It bas beon remarked that subtractions are replaced by
additions of complements, and that multiplicatione and divisions are
performed by a series of additions, complementings and shifts. Now
the sum of a number and ite complement, i.e., x + (=-x), appears on
the computer as the negative zero. For example

x = (f0L10100
=X =
0= xex = 1/1111111

(Note that iu the discuesiuu of case (b) in section B equation B

gives x + X =1 « 277 Af y = x, showing that the addition of x and x

glves no carry into the sign digit place, 80 that no end-around-

carry takes place.) In particular the reesult of adding a positive
‘ zero to a negative zerc is a negative zero.

2. The only other way in whick zerc can ariss by addition is
when two positive zeros or two negative ones are added together,
Thess can give

0 = 0/000000C
/0006000

(&
nin n

[

= 0+

@

(

aad

o
B

1/1111111
0= LAl
0/0000000
4

FL OB LRSS snd-around- carry
0=0%= 1/1111111 ;

[t appears therefore that a subtraction can only give rise %o a
poeitive zero when both numbers involved are zero. In fact, provided
x # O we can be sure that the result of the subtraction x - x will

be a negative zero.

6673 Pegs 30
Engineering Note E=20C0 -1 i
|
|

The occurence of positive and negative zeros in mltiplica«
tlon and division ie 5ot 0 important and will vai '
be discussed. It is perhsps worth remarking that a shift right lLeaves
a negative zero unchanged, because complementing occurs befors an
after the actual shift.

We have now examined what hapoens in the four cases of
addition when x - y = 0 and when x =y =), Consider now
Xx#0and y =0, It follows from the investigaticns of cases (a)
and (c¢) that, if y is represented by the positive zero, the addition
of y %0 a non zero number has no effect on that muaber. Algo, if
in the investigations of cases (b) and (d) in sect.on 7 we write

y = 0000000
¥y = 1111111

; w'?
y'#(l-*?):'-zr 2

it follows that the addition of negative zero to a noa zero number
lves net change that pamber,

6673
kngineering Note E=2000 =}

sSactlon V. Codes of a More Complex Nature

Ao

l. The round=off effecte of the sr order wer
parasgraph D of Section IV. A particular use of the sl
demonstrated. (Refer to qualitative discussion of the
Assume the original contents of the AC were:

0/000000000100000

with the AR cleared (filled with zeros). If the first

AC changes to:
0/ 000000000000000

where we have lost a 1 since any digite shifted out of

Page 31

Codes VII apd VIII: Further Illustratiops of Shifting

e 1llustrated in

order will now be

order in Section I.)

order is sl 10 the

AClL are lost.

{Note because the BR was originally cleared we have nc¢ round-off at
4015,) If we now follow with a 8l 10 order we are left in the AC with
)y OO
Iz i tant te that a sr U or sl O order on the oripginal contents
{ not produce this result, but rather
)) 10
.
. - ¢ 4 3
; e VL] bl oted, nts from to Gl x 2. il
2 . > AR it R0
210 emeh count arine in register 15, After 31 x 2 is
int Des) =1 R .
Vi1l 80 perform8 %this cle coun 1t does 80 using
ver orders and storage registers fhis de emoloys anfﬁshifzing scheme
e : ot o 3 PPy S
hown in (1) above so that when the count reaches 32 x 2 °* (0/00(0001.00000)
the 81 10 and gr 10 orders clear the ACo
}. Modificatlon of Urders
'o facilitate oding of ¢ comnlex problems 1t becomes
| & rahle to make use of several operations nodifications that may
D¢ sriormed orders., These overations and modifications are ssible
hecause of the faet that in the machine the orders have the same cnysical
aracteristice (1€ disit binary numbers) as the m merical aquantities
ywders snd numbers snoear different when written on vaper due to the
3ligue atrok 18 ¢& re the two narts af aach)

6673
Engineering Note E-2000 -1 Fage 3

o

. 2. Suppose that the order under consideration is ce 183. Thie
iz represented in a reglster as

10000/00020110111

where 10000 is the binary coded form of cs and 00010110111 is the binary

equivalent of 183, The result of adding + 2-19, represented by 0/000000000000001,

to ca 183 gives (neglecting the oblique strokes) -
(ca 183) = 1000000010110111
+ ("2’15) = 0000000000000001

. A ot R e

1000000010111000

= 10000/00010111000 or Eﬁilﬁﬁ
i & S 8,
Phus the addition of 2 " haws increased the sddress section of the order
by 1 without affecting the operation. Ths coding of this modification
of the address secticn would be as follows, if it is sesumed that reglatesr

it o -15
205 contained the order ca 18% and register 958 containad + 2 2,
cH F.“J’f‘
ad 958
8 -~ (to where the modifisd order is desirsd)

{t lg sasily seen that an extension of the above method will permit ths
modification of addrese ssctions of orders Yy othar values than 1.

3. As an oiher sxample of operstions with ordsrs consider the
affect of the followlng sequence of orders:

ca 350
su 194

wnere registsr 350 contalne the order ca 184 (10000/00010111000) and regzister
194 containe ca 183 (10000/00010110211):

ca 350 puts into the AC 1000000010111000

su 194 adds -=(ca 183} or

».»aff'y M ey N —— Py | :“

~

i N R o PaTaTalal S
0000000000000001 Qr ¥ &

6673
Engineering Yote E.2000 -1 Page 33

¥ .In general the subtraction of two orders contelning the same
opergtion sections results only in the difference of the addrees zeciicns
of those orders multiplied by 2-15. In view of the remarks in E of Soc-
tlon IV, if both orders are equal the result of the above operation is a
negative zero,

5. The above mentioned operatione and modifications of crders
are used extensively in coding and will be illustrated in the codes which
follow.

C. Codes IX and X: Cyclic Programs

1. One of the desirable aspects of Whirlwind I is the feature of
modifications and operations which the computer can perform upon its orders.
When this feature 1s coupled with the use of the cp (-) order the machine
is able to perform cyclic programs in which the same orders or slight modi-
fications thereof are used over and over.

2. The use of cyclic programs permite a good deal of saving in
computer storage space, this being illustrated in a comparison of Codes IX
end X. In these codes due toc the large number of storage registers involved
literal coefficients along with numbers are used for address designations.
An A 1s used to refer to the registers containing orders whereas B is used
for numerical data registers.

3. Code IX evaluates a polynomial in a linear fashion using
the process indicated in Section 11l paragraph B2, The code uses 2n + 3
orders. Code X also evaluates a polynomial using a cycle to repsat the
sinilar sequence of orders. This necessary sequence in Code X, orders
A3 through A6, have their address sections changed to permit handling
the various a coefficients. The subtraction of two orders ie used to give
the necessary + or - quantity to permit regeneration of the cycle. Code X
uses 15 orders and thus if n € 6 Code IX would be used, for n=+6 Code X
would be more economical.

4, It should be noted that a cyclic code always requires a longer
operating time (more orders are carried out) than a linear code due to
the modification of orders during the cycle; in either type of code, however,
the amount of useful arithmetic operation carried out is the same.

5. A particular advantage of the cyclic code in such a problem
as polynomial evaluation is what might be termed the elteration possibility.
By thie term we refer to the sase by which a code is altered to extend its
range of operation, whether it be the change of the degree of the polynomial
formed or the extent of an iteration. In cur example 1f the degree of the
polynomial were increased from the value n, Code IX would require only
the change in the address esection of order Al; im both codes the same numbgr
of additional constants mus! be added.

6673
Engineering Note E-2000 =1 Page 34

6. A primary requirement of a cyclic code is that it be self-
regsetting. By this one means that if the address sections of orders
are modified in the progress of a program these addresses must be restored
to their initial values before the program is used again. This resetting
can be done elther as the program begins or as the program is completed.
Code X is reset at the beginning of the program with orders Al and A2.

D. Code XI: Scale Factoring and Overflow

1. Because of the restricted range of numericel quantities with

which the computer can work [}-(1 - 2715) to + (1 ~ 2’1%8 we are faced
with two requirements:

{a) Most pumerical quantities before they can be introduced
into the computer will have to be scale-factored, that is,
multiplied by an appropriate number to bring them into the
computer ranga,

(b) Particular care wust be taken in a computer program to ensure
that no overflow occurs ae the result of arithmetic operations.

2. Code XI illustrates a simple example of addition in which
the necessary scale factoring has been done before the quantitiee are
inserted into the computer storege and in which the program is designed

to prevent overflow., The problem is to add ths n angles 619 92” 63 e %n 0

where each angle is expressed in radian measure and each hae a value such
th&t-’ a"‘ég {na' forigla 29 3“““ .

i
&
3., Due to the stated range of 910 ve are assured that 2
Yy

(for £ = 1, 2 ==== n) lies within the accepted computer range and it is
these values which ars stored in registers 16 through 15 + n. Despite
the initial scale factoring of these angles wa forsee thet tie totel sum of

e
these scale factored angles may exceed the computer range unless we add the ey ‘s

and cast out all multiples of 1/2, these corrssponding to multiples of 2w
in the €'s.

4. The procedure used in this code le to cael oub-a 1/2 each
time it appears in the summation by the use of a gl 1 order followed by a
sr 1 order. These sl and sr orders keep the summation bslow 1/2 at all
times, and since all the remaining angular quantities to be added are less
than 1/2 as a result of the scale factoring, we will not get an overflow.

0673
Engineering Note E-2000-1 Page 35

H. The repeated summations and use of the gl 1 and sr 1 orders
suzgested the use of a cyclic code. The determinstion of the end of the
sumation is made by e subtraction of orders, the cycle ending when the
difference of the two orders produces + 2-15, The final result of the
summation appears in register 17 + n.

6. The reset of the addrese sections is carried out by orders
1, g, 3 u. and 5.

7. It is important to remark upon the previously mentioned
peint that shifting digits is similar to multiplication by powers of 2.
Reference to the description of the orders in Section I should indicate
an important difference between the shifting and multiplication orders
as regards round-off considerations.

E. Code £11: Finding the Greatest of A Set of Numbers

1. Code XII provides another illustration of the manner by which
the computer can change its own control instructions during the course of
a program.

€, The numbers qs Qe wmm= Xp, all of which ars positive and

lees than 1, are storsd in consecutive registsre Cl, (2, «--- Cn, The code
finds the greatest of these numbers, say, ., and stores it in B4, If

two orf more equal numbers ars greater than all the otber numbers of the set,
the program stores the first of these in Bl.

3. The prdgram depends on cbanging the address ssctions of
the orders A2.1 and A2.2 in such a manner that for the succeseive values
2, 3, 4 === n of m, the number « 4is compared with the number that hae

already besn found to be the greatest of Xy s iy memme Jol S This number
will be called the temporary maximum.

\

4, The procedure of the computer is similar to that ol a mas
running his eye down a set of numbers. The maa would remember the first
nunber until he reaches a greater number, which he would then remsmber
ant 4] he reaches & still greater number, and 8o on. In fact ths man cob-
pares each number in turn with the greatest of the numbers that he has
previously examined. In Code XII the computer does the same thing axcept
that it resembers the address at which s number is stored rather than the

nunber itseelf.

5. The central part of the code is contained in Sections A2, AJ, .
and Ak, The first s=ction, Al, resets the ordera which may bhave been altered

6673
Engineering Note E-2000 —~L Page 36

during a previous application of the program. Section AS determinez i7
ell the numbers have been dealt with. If not the computer returne to AZ;
ir al%u numbers have been dealt with, section A6 puts the maximum number
into B4,

6. The eight operations of sections Al and A6 are used only once
in a program; the eight operations of A2, A4, and A5 are used only once
for each of the numbers X5 x3 o xn, The 2 operations of Aj only occur

vhen the number being examined is greater than all numbers previously
examined. The total number of operations lies between &n and 10n - 2.
Assuming an average speed of 20 microseconds per operation and taking
n = 1000, the time required to find the greatest set of 1000 numbers by
thie method is between 160 and 200 milliseconds.

6673

Engineering Note E-2000-1 ' Page 37
Section VI, Coding Notation and Procedure

4. HNotatlon for Coding

1. A program is a sequence of operation by which the computer
carries out a particular process. The code for a program is the set of
instructions that must be put into the computer’s storage to enable it to
carry out the program. Thus a code is essentially a statement of the initial
content of the registers that are to be involved in the program, tbat is, the
con;ent immediately before the program starts. These registers are of two
kinds:

(a) Action registers, from which the computer contrcl obtains its
instructions.

(b) Data registers, which are used to store other information
thet may be needed during the program.

(This distinction applies only to the way in which registers are selected
for use in & particular program. Any register in the computer's storage can
be assigned for use either as an action register or as a data register.)

2. 'The content of registers of both kinds may be changed during
the program. For example, s particular data register may contain an order
which may be transferred to an action register as the result of a comparison
operation. The coder who ie drawing up a code will have to keep track of
the content of all the registers at all stages of the program, but the com-
puter must be given the initial content, so the code must show the initial
content only. (A distinction is drewn here between the code itself and any
explanatory notes that may accompany a write up of the code.) In many cases
part or all of the initial content of a register may be immaterisl becsuse
the content is going to be supplied during the course of the program befors
that register is used. In writing out a code a dash is used to indicate
tbis state of affairs. (Note the distinction between "ca--" and “ca zero®.)

3. 1In Section Il it was explained that in discuseing coding the
use of the word regigter implied an address. When we refer to the register
containing a particular number or order we are usually, if not always,
thinking of the address of the register though for the sake of brevity of
lenguage we do not mention the word gddress. Similarly when we talk about
the content of a register, we are thinking of the register as identified by
an address. This is reflected in the following gbbreviations which are

commonly useds

RC--~ = (addrese of) Register Containing----

CR-—~ = Content of Register (whose address is --)

6673 »
Engineering Note E-2000 -j Page 38

_ 4, The addresses that will actually be used when & code is put
into the computer are mot usually known when the code is being drawn u@,
80 symbols are uged to denote the actual addreeses. To obtaln a convioce,
vritten record of a code it is best to represent the addresses of tha action
end data registers by a set of consecutive serial numbers. This will be

called the gerisl notation.

5. It would be natural to start these serial numbers at i, and
for the present this should be done. However, it may be decided to allot
some of the registers of the computer to the storage of certain universal
constants, and in particular registers with addresses 1 to 15 may Dbe allotted
to powers of 2, so that forn=1,2;, ... 15

CRn= 2~(16—n)

If this is done the serial numbers will have to be chosen so tbat they do
not contain numbers that are addresses of registers allotted to special
purposes. At the end of the action registers of a code a serial number
should be reserved for an sp order that will switch the computer to its next
job.

6. 1o what follows a standard notation ie described wbich makes
1t sasier to follow the execution of the program. This standard notation
is also more convenient than the serial notation for use when a code is
being prepared.

7. A flow diggras is a seriees of statements of what the computer
nas to do at various stages in the program. These statemenis are writlen
in boxes acd the boxes are joined by lines of flow which show bow the com-
puter passes from one stageé of the program %o another. When the procedurs
of the computer after a particular stage depends on a cp(-) order, ths state-
ment in the corresponding boex is 80 worded that the lines of flow emerging
from the box can be labelled "yes" and "no". When a code has Leen completely
worked out the main object of the flow diagram is %o make the main structure
of the program clear. During the process of working out a code the flow
diagram,; by separating the program into stages, makes it easy to introduce

alterastions ae coding proceeds.

8. In the process of solving a problem the first tentative step
1s to divide the program into a few main stages and to draw a flow diagram
whose Doxes will contain broad statements of what the computer must do. These
pain stages are denoted by Al, A2, A3, ... Each of these stages 18 then
further analysed and, if necessary, is divided intc substages, represented
by boxes in a more detailed flow diagram, The substages into vgiah Al is
gubdivided are demoted by Al.l, Al.2, A1.3, ..., and similarly for 52? A2, -,

If nscessary, some of these substagee are further subdivided into Al 1.1, Al 1o
A2.1.1, A2.1.2, ..., ®tc. Only experience will show how much subdivision

asoy

ts desirable, dut it should be remembered that the two main objectives are

to make the structure of the program clear
alterations as coding procesds.

and to make it easy to fntroduce

6673
‘ Engineering Note E-2000 -i - Page 29

9. It 1s often desirable to introduce more subdivisions in the
working stage than will e used in the finel write up of the soluticon. When
& problem has been completely coded and the code ig written cut in serial
form the serial numbers representing the action registers which correspond
%0 the various boxes of the flow diagram sbould be written in the boxes.

10. An exception to the notation indicated above may be made im
the case of auxiliary subprograms that are not to be written out in the
solution. These subprograms can be denoted by Aa, Ab, ..., and their stages |
and substages by symbols such as Aa 5.2.

11. The action registers contain the program orders. In the standard
notation they are grouped into blocke corresponding to the stages into which
the progrem is divided in the flow diagram. The addressss of the registers
that contain the successive program orders that are required for stage A3.2
will be denoted by A3.2.1l, A3.2.2, A3.2.3,, which will be called inde~
nupberg. Ae was explained we shall refer to "the register A3.2.2", although
strictly speaking the index number A3.2.2 represente the address of a regis-
ter. No confusion will be cauped if we refer to the order in reglster A3.2.2
simply as "the order A3.2.2".

12. A system of index numbers ie also needed for data registers,
tut coding problems differ sc much in their nature and complexity that it
. gseme undesirable to lay down rigorous rules for the representation of the
addresess of data registers. [t seems reasonable to suggest that only the
letters B and C should be used, and that any further subdivisions into Dlocke
of regigters of different types that may be necessary should be achieved by
& notation similar to that used for action registers. In simple problems
it may be desirable, at any rate at the working stage, %o introduce nec sub-
divisions but merely to allot temporary index numbers, Bl, B2, B3, ... %o
sach data register as the need for it arises. We shall refer to regiesters
grouped under the letters B and C as B-clase and C-class registers. Action
registers may be called A-class registers. In subprograms denoted by ha,
Ab, ..., the data registers should be denoted by Ba, Bb, ..., and Ca, Cb,

14. One subdivision that will often be daeirable is as followas
B-clags regi r

Data that will differ in diiferent applications of the
program, possibly further subddivided into

Bl. Input and cutput data.
B2, Data derived for use during the program.

G-clane regiaters

P xed data used for all applicatione of the program,
poeaibly further subdivided into

Cl. Universgal constantes stored in fixed registers.
2. Other ¢onstantis.

6673

Engineering Note E-2000-1 Page 40

14. Other subdivisions that may sometimes be desirable are

(a)

and

(b)

and

The distinction between)

(1) Data or registers used in some other program that is
on the computer at the same time.

(2) Data or registers that are used only in this particular

program.
The distinction betwsen
(1) Data registers whose addregses oceur in the address

sections of action registers in their initial state
at the beginuning of the program.

(2) Those whose addresses are derived during the program

(as bappene in the case of registers containing tabu- -

lated values of s function)

15. The form for writing out a code has been descridbed. In the
standard notation the addresses will bs indicated by the index numbers of
the action and data registers. For action registers the explanatory notes,
which are to be given in a separate column on the right, contailn statements
of the following types:

(a)

(v)

{c)

The content of AC, BK or some storage resister resulting
from the order in question. For a cycle the explanatdry
notes should refer to what happsns when the cycle is
being performed for the mth time. For s subecycle in a
cycle the explanatory notes should refer to wioat happensg
when the subcycle is being performed for the k-th time
as part of the m-th performance of the cycle.

References to the origin of

(1) the address section of an order
(i1) the operation section of an order
(411) the numerical quantity contained in a data register

when any ocne of these is changed during the program.

References to sp or cp(-) orders that causs the control
of the computer to jump to the order in question.

6673 " Page 41
Engireering Note E-2000-1 :

: 16, In the tabulation of the initial content of data registers .
explanatory notes should be added on the right in the case of any register
whose content is changed during the program showing the various successive
contents of the register and the orders from which they are derived.

17. The write-up of a program should include orders to cover any
restoration that may be necessary to ensure that at the end of a particuler
spplication all registers are correctly set up for another application.
(The need for such restoration orders at the end of a program will usually
be avoided either by the insertion of suitable orders at the beginning or
by including in the input data that is supposed to be supplied before the
program starts the content of the registers that have to be dealt with.)

18. The write-up of a code should include statements of;

(a) The position in storage of imput and output data.
(v) The total pumber of registers used.
(¢) The total number of operatione to be performed.

(Note that in calculating the total number of operations to be performed
allowance must be made for the pumber of times that the computer has to go
through any cyele that may occur in the program. In many cases it will not

be possible to state a definite number, but only maximum and minimum pumbsre.)

19. The general form of the tabulation of a code and the index
nusbers used to represent the addresses of actlon and data registers have
been discussed. In the standard notation, when aun entry in the tabulation
of the code represents an order, the second part of the gsecond column
contains the index mumber of the register to which that order applies.
During the early stages of work on a problem, or for explanation of a code
on a blackboard, it may often be more convenient to indicate in this place
the content of the register referred to, rather than the index of that
rafésterﬁ For this purpose the symbol RC, will be used. Thus if Bl7 containe
27*Y we mey write

ad RC 2‘15

instead of ad Bl7.

20. In the standard notation the cods itself 1s distinguished
from the explanatory notes, The code shows only the inital content of the
action and data registers, any indication of changes in content during the

course 0. the program being confined to the explanatory notes. In the working

notation the symbol RC, when it is used in the addreess section of a program
order, indicates the (address of the) register whose content at that par-
ticular stage of the program is a certain quantity, slthough the initial
content of that register may have been somathing else.

notation allows explanatory matter to get into the columne which in the
standard notation are strictly reserved for the code itsell.

In fact, this working

6673
Engineering Note E-2000-1 Pege 42

B: B of Co P dure

1. This section starts with a provisional analyeis of & problem
leading to a first attempt to write out a code. This first attempf is then
criticized and a number of improvements are mede before the code is written
out in a finished form.

2- We are given a set of n tabulated values of f(x) for the values
xl, xz, . xn of the variable x. The differences between successive tabular

values of x are all equal to a positive constant h, 80

= R oL B
X =X (1-1) h.

LYe p
1 x1<xn<l

3. It is supposed that during the course of computation two anumbers
a and U are derived by the computer, and a subprogram ie wanted to find

Further

b s
(; (x) dx, using the trapezoidal rule which gives the formula

b e =3
£ (x) ax=n|3 £ (a) + £lavn) + av2h) + ... + £(ben) += £(b)
a’ L.~ J

4, We can presume that g and b are known to be within the range

convered by the tabular velues X,, X., -c. X_ and further that (b-a)®2h; s0
that there is at least one term *nui a tha bgacket of the formula in addition

to g f(a) and ‘% f(b). We are also told that lf(xi)l{‘ i for all X5 80 there
is 00 danger of overflow if we simply add the termse % Fiad, Tla). ol

%f(b), since the total number of terms to be added tcgether is less than n.

5., We shall ectually calculate the integral from the tabular value
neareet to g to the tabular value nearest to b, neglecting the errors
thereoy introduced at tne ends of the range of intesration, We sball not
distinguish bstween these values and the exact values of a and b as derived
by the computer.

5. We will first lay down a straightforward method of dealing with
the problem, representing the method by a flow diagram and allocating blocks
of A-class registers tc the successive stages of the flow dlegram. We shall
then write down a code stege by stage, allocating B-class registers as the
need for them arises. In this problem it is not necessary to subdivide the
B-class registers into groups and there is no need to introduce a C-class,
We shall need n consecutive B-class registers for f(x.), f(x)) «.. , r(xn),
but we can add them at the end of the list of B-class regist@rs required for
other purposes. The allocation of B-class registers, which is built up
during the process of coding, is shown in paragraph 15.

6673

Engineering Note E-2000-1 Page 43
7.
Al Find RC f(a)
A2 ‘f??“._‘_i"'L‘.S"Z'
43 obtain%; f(a)‘:-imtl\»)‘]
arise T i s i SR T AR
A4 itutain a f(aab) (z(acen) S f(ath)

er LJ = ' Pi IS, oo 2as
!dava we)btainad the final value / Ziven
;hy 2n when asmb = [=h? %

s - e . gt ..,.*....‘.. —

v

l
€
]
| |
l
]
%
]

no; yes
s v e .
o lL i
A S :bhtatn) * o f(a) + ,"? f(h)
i - (& i
ixulv.p‘y by h, !
!
AL o S e
A D aPrepara .>x xext appliCuntuu f p*cp“ami

o ; I R .
B. Stage Une. Suppose we have o RC fix,) stored in £ 1.

(This nunber may not be fixed until the program ie a%tuallv put on the
machine.) Then since the successive tabulatad valusas of f(x) are stored in
consecutive ragisters we have the equation

e
5

RC f(a) - RC f(x,) =

where the right-hand side must be rounded off to the nearest integer, This
gives
=15
o715 BC f(a) = 218 5o £(x) + E— (ax)).

§ =

.f)’ ¥ -
We shall have to make sure that the computer in calrulating ’x”‘ (a—xl)
produces the correct round off, but we shall leave :his point for the
prasent. It will be discussed in paragraphs 19 and 20. We store a,

2"15 3’1bxl
b and h in B2, B3 and B4 and procesd as follows:

6673

' Engineering Note E-2000-..

| 9.

10.

A-X1

Stage Two.

A 2.1

0y

tn

ca

nr

su

ad
td

ad

ny

ad

td

Stage Three.

A 3.1

ca

ad

ar

RC f{a)

RC £(b)

AC: a

Ang- - (a,nxl)

h

AC:ZHS

A 3.ls5ca RC f(a)

The need for these twou orders

RC f(e)

Page 44

ariges In stages four

A 4.2;:at RC f(a + h)

-1

acs2™1% ae £(b)

A 3.2:al RC f£(b)

Iritially ca--
Digits from A 1.5

AG:T(a)

Initially ad--
Digits from A 2.5
aisf(a) + £(b)

Rocil ¢ 3
\ o o =
ACso f(a) 5 £(b)

6673
Engineering Note E-2000~1 Page 486

11, Stage Four:. In the cyclic process we want to add f(ath),
f(at2h) ... successively, so we need an order ca RC f(a + mh), or alterna-
tively ad RC f(a + mh), whose digits will be increaged omne in sach cycle.
We want to end the eyclic process after f(b-h) has Leen added, when we ehall
have obtained the required sum

?= f(a+h) + fla+2n) + ...+ f(d-h)

This suggests that we should do the increasing after the addition and uge

ad RC f(b), which is iv A 3.2, for the comparison which will end the cycles.
Consequently we use ad RC f(a + mh) in preference to ca RC f(a + mh) as
the order whose digits ars to be increassd. At the beginning of the first
-~~1a this order must be ad RC f(a + h), and the orders AZ.6 and A 1.7

have been introduced for tnis purpose. The successive partial sums 5 and

the final sumz are put in B 8, whose initial content must be zero. In the
following code the descripticns refer to what bappens during cycle m, the
cycle during which f(a + uh) is added to the partial sum ¥ . %o give ¥
(In the first cycle ?:‘-al ‘s the initial content of B 8, wvhiBh s zero.

m

12, $Stage FYour

A4l ca b8 ' ACs
m-1
2 ad RC f(a + mh) injftially ad --
Firet digits from A 1.7, =iviag
ad RC £ta ¥ h)
Mgits changed by A 4.6

AC: §
~m
3 4. B8 ’ B 8; ym
4 ca b 4.2 AGiad RC|1(a + mb)|
~18 i I
8 ad; RC2 AC:ad RC f|at (m + l)n_&
6 td A 4.2 A 4.2:ad RC f {a. + (m + 1)n|
7 ca A 3.2 AC:ad RC f(b) '
8 su A 4.2 Content of A 4.2 was_changsd by 4 4.6,
and 1i,\n9v ad RC fq a+ (m+ 1)31,
AC:27" { b-a-(@*1)hy
content of AC> (0 until last cycle
when a +.(m + 1)h = b and -zerc appears
in AGC, \
N .
9 cp A 5.l Another cycle until ; 1s obtained.

10 sp A 4.l

6673
Engineering Note E-2000 ' Page 46

]

13. Stage Five.

AS.l ca B7 Acé f(a) £(b)
B ke p S 7
2 ad RC AC:= f(e) + f(b) +)
2 2 &
b,
3 mr RC h AC: {f(x)dx
a
b,
4 ts BY B 9; | f(x)ax
a

14. Stgge Six. ¥Yor this final stage we look througn the ts and the td
orders and find that the content of registers A 3.1, # 3.2, 4 4.2, B 7
B8, EY have been altered during the program. Of these the only cne that
neads to be reset ig B 8, which must be reset to zero. For thisg

A 6,1 ca RC zero AC: zoro
2 ¢8 B8 B B:zaro

15. Allocation of B-clags Reglsters.

§& By BTG £(x,)
e a
15
| i
~15
2 X
4 sndivaadh
n
5 ?-15
o) b

7 % f{a) + -;- 1(b)

8 Initially zero
<y - . ‘:'«.1
Then) 1,; ps ooc %0 final)

b,
9 fi(x)dx
a
.10 h
. B ZOTO .
Bl2 to B ll+n. !(x\; to f{xn}

6673
Enginesring Note E-2000 «|

Page 47

-

16, We first look at the B-class registers for chances of combina

tions and see that we can put B 7 = B 9, saving & register. (Alitorrntives
of this type will involve renumbering the dats registers bsfore “hs Tinal
write up.)

17. Secondly, it sppears that after obtaining L f(a) + L £(v) in

* AC by order A 3.3 we could use A 3.4 to transfer to B 8 ifistead of“in B 7
This would mean that during the cyclic stage the content »f B 8 would be

|

\

|

\

|

by N P ; ‘ |
Lo + 5 [g(a) + f(bj] ingtead Qf‘Ej - The initial content of B 8 nead no |
B |

]

|

|

\

|

|

longer be zero, so stage six can be dropped, and one order can be saved in
stage five. B 7 is no longer needed, but we were already proposing to
combine this register with B 9, However, thare is no loager any objection
to combining B 8 with B 9, Formerly the restoration of B 8 to zero in A 5.2
prevented this combinatiocn.

18. It ia worth pointing cut that in general it will be better
tc do any restoration work at the beginping of a subprogram rathar than
at the end, because this allows the B-class registers which have to be
restored in & particular subprogram to be used for otber purposes in other
parts of the whole program,

19. Anothar saving can be made by improving the technlque 1or
finding f(a), f{ath), etc., in the tabulation of f(x). It will nearl)
always be the case that when a function T(x) is tabulated for eguidistant
values of x over a range including x = 0, one of the tabulated values ot
f{x) will be £(0). If this ie the case, and if £(0) ie stored in the
register whoge number is k, then f{a) will be in the register whoge rumber

is k + g , whether a ig positive or negative. FEven 1f the raoge of
tabulation does not include zero (as would happsn if both and x were 0/

we capn assign a number k which would be the number of the regie%aruxunﬁa*ni“y
£{0) if the range of tabulation were extended te include zevo, although in
this case the reglster whose number is k would not actually be used to contal
a tabular entry. With this assumption we can store

5718 pe £(0) in B 1 and obtain

RC f(a) by the squation

’ " LY _ﬂ.
RC'f(a) - RC £(0) -

ingtead of

.

RC f{a) - RC f(xl) by ek

Thie saves orders A 1,3 and A 2.3 as well as B 4, as it 1s no longer nec-
essary to store

6673
. Engineering Note B-2000=: . Page 48

20. Return for s moment to consider the round-off referred to
in paragreph 8. As has just been said the range of tabulation will nsarly
=lways be such that for some integral value of

xl +N1 = 0
_ ﬁ 2:1::3x
This means that 3 18 en integer so that the value of — o - that ieg stored

in B 4 {8 the exact value of this quantity. If a ig not a tabular value

the number ﬁ 18 not an integer and the order A 1.2 produces a round-off o

-15 ,
2 X (nearest integer to %)

In this case therefdre the orders A 1.3, A 1.4 do lead to the registex
containing the value of f(x) for the tabular value nearest %o a. However,

=15
xL 2 x
13 o i8 not an integer, the combination of the round-ofi in T‘k‘w*" and
4 ¥ 1
: SR, \
?,)__;_, 2 (a-x,) X,
Eooulh mav Tead ‘to the wH ‘ o f e " .. » <k = :
ho Ay lsad to the wrong value of . For example, 11 L) ote
a=x 2 (ac‘-x } s &
‘ ? =.14.4, ’;i”‘]"" = 2,8, the correct round-off 1tor “—-*.;'-'*’* =~ would be (;,")2’-?_1"\

g e‘lb b
tut the computer would c;btainia}z . 'This errmor is caused by scaling down

% and ;lbetu-_;m the subtraction. The error could be minimized as follows

Suppose p is the integer such that 2
the computer calculats

”(pp‘l).:; E.{z-—(pmd_) We could then make

- B A

A T |

without danger of overflow, and could then ehdft right 15-p places t» obialb

] v’)"p " 15
I 2 P i - Yo '
£we (a=%x.)» Phis would involve storing =~ and —-—= ingiead oI . ant
i, SEORY h h

14

=10

o fa,‘

“.,-,t.',. il and sould udﬂ oua Qrder o the }'.T‘Jé{lelux,
) é

However, as has been sald

6673 :
Engineering Note E=2000-1 Page L9

Xl :
. above, B will nearly always be an integer so that this complication will
" be unnecessary. :

21, It would be possible to save the order A 1.6 by sltering
stage four so thet the order ad kC f(atmh) has its digits increased before
it is used, going through the_cycle once more to add f(b), and correcting

this by calculeting % f(a) - % f(b) in stage three. This, however, whole

saving one order, would involve the additional operations of the extra
passage through the cycle, which in almost all cases would more than counter=-
balance the saving.

22, A very desirable place to effect a saving of orders is
within a frequently repeated cycle. The saving of a single order in the
construction of a cycle actually results in a multiple saving of operstions
due to the repeated use of the cycle. Although the saving of one order
in a cycle which is traversed n times appears first as a saving of one
storage register, it manifests itself as a saving of n operations with the
corresponding economy in time. Examining the end of stage four we notice
that the sp order is the one which is used to produce a repetition of the
cycle whereas the cp(-) order comes into use only when the cycle is to be
discontinued, W%e can eliminaete the sp order by changing 4 4.7 to read cs A 3.2,
A 4,8 to read ad A 4.2, and A 4,9 to read’'cp(=) A 4.1. The effect of these
changes would be to produce the necessary negative quantity in the A6 to
cause recycling by the cp(-) order. /ctually, however, the negative

. vantity produced is =b 4 a 4 (m + 1)h which will produce recycling until
2(b) itself has been added, Before further consideration of this difficulty

(see paragraph 21) let us notice that order A 4.8 can also be deleted if
we now change A 4.7 to read su A3.2.

23, In paragraph 22 we have described the changes necessary to
produce a saving of two orders in the cycle, yet this saving also produces
the superfluous calculation of f(b). We can eliminate the difficulty by
changing A 4.7 to read su KC f(b<=h), The determination of RC f(b~h) can
be made by the addition of the following two orders to stage two:

42,6 su ko213
A 2.7 td td B8

Note that B 8 was available for use (see paragraph 17). Thus although
two orders have been added to stage two, we have eliminated two orders
in stege four and thus have made a saving in any repeated use of the cycle,

24, Making use of all these improvements the code is written
out again in standerd form, The B-class registers have been renumbered,
The use of the kC symbol in the program orders has been dropped, but the
explanatory notes have been retained, The code is written in serial

notation on page 57,

ot

54

nd
a
.“’
(B4
J
e

(& e
"
- &
8 LE ¢
Y
)
[
i
'
$
|
i
(
(L AN

a e L
SuL8l

\
nd i
.l
“ 4
v
n
11
]!
i
¥
P&
{2
[£
a/ y
.)
la 1
"
)X cle

{

{
1
T

’ - > 2 f 1
=1 3B £ y { 1 A

‘ i £ ~ y
& <
b
mr B3 (x)dx
2
.
4 £ 3 g X)ax
_‘ " e f
1 L\l
Plyves | 1 <
A §) {) /

N OL

foud d
= Ozw®

oY

3

mr
ad
td
ad
td
ca
mr
ad
td
su

tngineering Nots E=20

4
Ll

29
14

18
34
29
13
32

SERL

O 030D ea N

SHHLJLJHy;JH

'&L.

(“

[, NOTATION

td

ad
BT
is
ca
ad
ts
ca

(]

O3 23 D)

gar i

o

o
Leo)

ey

BU 32
td 18
su 14
»,."p 1 7

a 3O
nr 3l
te 35

(sp)
f£(x,)

Numbex

Iaput a,

"“)I;)\."

1

i

(X

vf gperations 1l

J

O ‘ ﬁ‘._f.‘.pl) by h ©

i el
Obtain f(a) + ;

‘ﬂ;dky;

Ny
S—

; L.
dave we obtained

| a*h = b-mn?
no

b

gib=a/
r.l

#

regiaters 33 and 44

Ax in register 35.

T
I
!
v

‘I' ?f} :
m

where > = f(a+h) + f(a+2h)
m .

final value

Find RC f(a), RC f(b) and obtain 3 f(a)

-~
L

+ ... + (b

6673 .
Engineering Note E-2000-: Pago 55

Section VII., Iterative Processes

A. Iteration in the Computer

1. The mathematical process of iteration 1s available %o the
computer by the use of cyclic programe. In the general application of
cyclic programs the decision to end the repetition of the cycle is mads
a8 the result of the comparison of a fixed quantity and a quantitiy derived
during the course of the program; in iterative schemes the end of the cycle
may either be determined in such & faeshion or, when necessary, by & com-
parison of two quantities derived by the program. The former case is
{llustrated in Code XIII, the latter in Codes XIV and XV.

B. Code XIIl: Summation of a Series

1. Consider the series

and assume that

a ‘1. xl(lo l é_ 1 fOI’ m= 19 ag 39 o
0 i a
m-1
% m % * -
SO = Z_, = + + oo + &
" a 5 =T &% “n e ik T Bt m
Me

2 m
‘a +ax+ + ... * S JP
a ax+ ax ax

| o -1l
Suppose that p is the first integer for which ja € 27", The object of

the program is to-obtain the sums Zl’ Z;, f}, oiv Zn successively,

stopping the summation process as soon as the magnitude of the last term

-1k
added, |a x*| = |c [, is less than or equal to 2 . . The sum Z 80
n n n

obtained is the required approximation to the sum of the series.
a

2. Since Fxp <
P P

to stop when n € p. We therefore need only store the ratios rlg ree r5 soo rpe

1 2@11)49 the summation process is bound ‘

3, The central section of the program ie Al in which e is

obtained from cm-l by the equation

¢ =re¢ x
o R m-1

Ll e
'0637:»
Engineering Note E-2000=1 Page 56

e

— S %)
and adde ¢_ ¢ to form -« Both nd <. re stored for further
mozm,], Lm 0 cmad 5 520 #50 ¢

nee. Section A3 arranges that another term of the series will be adied
and section A5 tests whether the megnitude of the last te™m added is less
than or equal to 2-14%, Thege three sections A3, AY, and a5 form-a cycls.
The first two sections Al and A2 make preparations for the first round of
the cycle.

C. Code XIV: Linear Simultaneous Equations

1. An iteration scheme can be applied to the solution of linear
simultaneous equations. In Code XIV this scheme is illustrated in the
solution of two linear equations in two unknowns:

X *ax =Db
i L 12 1

ax +x =¢
21 e <

2, 1f we denote the order of the approximation by superscripts,

- 4

(nrtl .
where xl ¢ is the (m + 1)et approximation to xl

(m)

and xl 18 the m2 approximation to x_,
A

then the iteration formulas ars given by

x(m"'l) e x(m)

i 1 12
x(m*l) e x(m*l)
2 = W

3, To avoid overflow we shall assume vhat
o0& £ p £
&1 bl 1

and 0% g &b <£ 1

e 2
. (1) (1)
from which it follows by induction that starting with 1‘1 = 12 = 0,
we #hall have (m)

0& <. 1
~
0 < x;m il

for all m.

Ll
6673

Engineering Note E-2000 -1 Pege 57

%Y. The code which is presented is arranged t¢ end the axr~
o)
mebing process when both xim+1) - ;;h and ém+;)° §P) are equal to
; e e !

or lese than 2’10°

5. The coefficients aig aé, bl, b _ should be regarded as inpub
&

data, which will be different for each epplication of the program but must
always satisfy the inequalities given above. Unfortunately this problem

is somewhat unrealistic, because simultaneous linear equations in two
veriablee would not be dealt with by this method, while sets of linear
equations in many variables involve scale factor probleme which do not arise
in this example.

D, Roote of Equations by Newton's Method

L. An iteration scheme ie¢ alec spplicable to solutioas of roots
of equations ueing Newton's Method. The formula in Newton's Method for
finding a root of an equation f(x) = 0 is

fixn)
X = TX = o
n+l 0 ;
fix)
]
where xr ¢ the n approximationy and f' indicates _—Efuh
" X

€. For exampls to find the square root of a number a we sel
4 4 : : ,
f(x) = ¥ = a and the formula for succeseive approximations to ths positive
2 :
root of the equation x - a = 0 is

X

n*l 1 / x

n
n

3, Due to possible overflow, the above equat ion 1e not used

in an actual square rooting program. The use of Newton's methed ix .
obtaining the square root of e number is dealt with in more Adetail in
Section V1II,

0673 .
Engineerinz Note E-2000 - Pagse 53

Secgeion VIII, Linear Interpolation and Finding the Square Root

L, Code XV: Linear Interpolation

1. Let us sasume that values of f(x), for x =k » 2 , where

k=0, 1, 2, 3, === 2, are stored in 65 consecutive registers. The
addresses of these 65 registers are given by the expression K + k, in
which K is the address of the register containing £f(0). The interval

between the tabulated values of x, which shall be designated as h, is 2
It ie assumed that |f(hk‘ <. 1 for all the k and further that if k_ =k + 1,

.
then |f(hk2) & f(hkl)' - %

2. The problem is to obtain f(x) for any value of x in the
range 0 £ x £1. The value of x ie originally stored in Bl and f(x) is
to be put in B2.

3, It is first necessary to find two consecutive values k and
k2 such that

hk £ : y k = -
1 xéhka ka k]. 1

Then if x - hkl = ph we shall have 0 € m €1 aod the required value of

f(x) is given by
)
f(x) = f(bk) + n ihf(hke) - f(hkl);

4, If the poeitive number x were brought into the AC by the
order ca Bl, the eign digit would be O, the next six digite would determine
kl. and the remaining nine digits would determine m. To be more precise,

the number obtained from x by replacing all the right hand nine digite
by zeros would be hkl, while the number obtained from x by replacing the

first six digits after the sign digit by zeros would be mh,

5. For example, the positive number »001101101100000 is
represented in the computer by 0/001101101100000, Since x lies between
-001101 and .001110 we have

hkl = ,001101

6673

Engineering Note E-2000 -l Page 5%
enmh = X = hkl = ,000000101100000. These two numbers are reprecentcd
in the AC by

0/001101000000000

and 0/000000101100000

It followse therefore that the order ca RCx followed by gl 6 would put
the interpolation ratio m in the AC.

©. In Code XV m is first shifted into the BR by the order

mh RO 2-9 and is brought into the AC at a later stage by the order gl_igc

It should be noticed that the order mh RC 2 e , which has the effect of

shifting the content of AC nine spaces to the right, cannot be replaced
by the order sr 9, since this latter order would give a round-of f and
clear the BR so that the interpolation ratic m would be lost.

B. Codes AVI1 and XVII; Finding the Square Root

1. The arithmetic operations of sddition, subiraction, divieion,
and multiplication are wired intc the computer and are executed by single
orders; however, other mathematical orocesses which may be used frequently
in a particular computer application are available only in the form of
codes. It appears likely that the determination of square roots is a
process which will be needed quite often, and it is rather probable that
some of the storage registers of a computer would permanently contain the
orders for a square root code. The economy of orders and saving in
operating time assume particular importance under such conditions. Although
the square root can be determined using Newton'’s Formula as given in D of
Section VII, a elight variation of the formula gives a shorter code, this
being Code XVI. The square root is determined using a series expansion
in Code XVIII,

2. The object of Codes XVI and XVIII ie to Tind JL&- when

0L aLl. We find fl_%. rather than Ya in order to aveid thu danger

of overflow when a is nearly equal to 1. Both of the codes employ the

scale factor operaxion to find the number of places, n, which a must be
shifted to the left in the AC so that the first non-gero digit “of ais

put in ACl. This emounte to expressing a in the form

a=2 " .0b where 1/2& 1 L1

which gives X el
Va -nf2 \[y
= 2 hotll. L 18

2 2

6673
Engineering Note E-.2000 =]

0 Page 6C

3. The scale factoring procees shortens the program by reducing
the number of approximations that are required to obtain the desirec accu-
racy, but it also introduces the difficulty of dealing with the two cases
which arise when n is odd or even. The difficulty is hancled as follows:

Let §=m+k

where m is an integer and k = 0 or 1/2. Then

-‘(_%‘- =2‘m12"kx—-\r£-.

. -k
where the factor 2 is 1 or -:-l:" . The codes will actuslly calculate

V2

\ ¥ . 'h
’f,j—- s where g = ‘-\{"%:’ in code XVI and q = 25! in code XVII, The value

ign- will thersfore be calculated from ths product

a -m_ -k (v
v£2-=2 % 2 qx\"&1

ke :
in order to obtain the required factor 2 q, which takes the values q and

w8 for k = 0 and k = 1/2, we svaluate the sxpression

—
Ve

a+ (1 - V2 xq V2,

which 18 equal to q when k = O and equal to J.-;%-» when k = 1/2,

4. Code XVI uses the Newton method of successive approximations
to the positive root of the aquation

f(x) =x"-Y=0
2
starting with x = \" :1~ = \‘(? as the first approximaticn. The formula
0 8 N
for successive approximations 1is

f‘(‘xi)

==

o em— _...;!:1;1 L i
2 1 ‘

141 - M f"(xt‘)

6673
. Engineering Note E-2000 -

Paga 61

i o

The error in x3 is less than 2= in the woret case when b =

n,ﬁe--
o

code uses three iterations, given by the formulae

-]:(x'*'b)-r \r—(b)
2 o

1

2
212=H+.§;;

2x_ = x_+ b,
3 e 8x_

£

The value of 2x_ obtained from ths third step is the required approximation
‘ -

toM. vheneu_:l-_n
2q >
5. 1n oi‘der to obtain the expression

‘ g+ (1- V2)kq V2

for the final step we stors g r\F],:._j and (1 .. \ 2)a \[“2 A NTERL
. fg
Befors the program starte the valus of & is put in Bl. At the

end of the program the value of ,‘L,,?— ie ia B5.

it might appear more natural to use the approximat ion formulae
2

2 o P
for the positive root of the equation x - %= 0. The squation x - o= 0

is used to avoid a danger of overflow during the arithmetic operations
involved in the successive approximations.

6. Code XVII uges & series expansion in powers of y, where

“j"‘é
b e "ﬂ"" 1 } § \r:.,.'zr_-
"“mm—gj w ,__Ll_y =b\ 2
b* g

| 6673
‘ Engineering Note E-2000 =i

i
]
]
L
o2
o3

The object of introducing y is to obtain a series involving only even
powers. We have

=

2= LE2 =ena-sH72
% 2 4 6
2 Vo =(1+y){1+§§”*%+5‘%’*“°>

For 32; € p <1 we have - 0.1715% y € 0.1715 so for the extreme values of

g _F
y the value of .’2%. is about 2 x 10 ? . We therefore taks

W NE A Ve
2 Vb = (1 + y){ i sl L g + 3121‘?.“:
= (1 +y) £(y°)
7. GCode XVIXI determipes L/;E » Where q = & « dn order to
. obtain the exprassion -

g+l - V 2)kq \1)2
- =d
for the final step we store q = 2 and (1 - va 2)q¥ 2=2 (1 - \f 2).
Before the program starte the value of a is put in Bl. At the end of the

program. -‘-[—:?-5 is in Bl

8. Code XV1 uses 38 storage registers and 2J operations, not
counting the final sp order. Thus at 20 microseconds per operation the
svaluation of the square root would taks 580 microseconds. Code XVII uses
36 storage registers and 28 operations, requiring 560 microseconds.

6673
‘ Engineering Note E=2000+1 Page 63

dgction IX, Codeg for Sorting
A. Code XVIII: Regrrangement of a Set of Numbers in Ascending Order

1, As in Code XII the numbers Xyy Xgp coe Xy &TO stored in

consecutive registers Cl, C2, Ca. The problem is to rearrange the
x's in ascending order. In the final arrangement equal numbers appear
together, but not neceesarily in their original order.

2. The program takes each register C. in turn, starting with
k =1, finds the lesst number in the registers Ck to Cn, and interchenges
this least number with the number in Ckv To simplify the explanatory
notes it is assumed that after each interchange the numbers sre reremed,
80 that at every stage of the program the number in Cm is called X

3. The greater part of Code XIJ] is used in section A2 of this
code with the modifications needed to find the least number :ather than
the greatest ons. In the explanatory notes the number m refers to the
cycle that is performed inside section A2. This cycle is not shown on

the flow diagram.
@ B. GCode XIX; Sorting Sets of Numbers

1. It is supposed that p sets of numbers (Xy, ¥, 2, s
(xgg yzg zzrnﬁ), cocn (xn» yn» znpfct are stored in the ma%hina and that
& program is required that will enable the computer to deal with these
sets in the order of ascending X, 5 rearranging the associated Yis Zys

etc., ir accordance with the final order of the X, o

2. The method of Code XVI1l could be extended to provide for the
rearrangement of the numbers Iys Zyo etc., in accordance with the rearranged
X, ; but the process of 1nterchaneih€ the positions of the sets of num-
b%rs in storesge would be lengthy. I% seems preferable io avoid the
actual interchange of the numbers by dealing with the addresses at which
the numbers can be found

3. As in Codes XII or XVIIl we shall assume that the numbers
- X are stored in registers C1, C2, Un, however in thie

T, X wdis
code there will be no peed to assume that these registeres are gongecutive.
We assume that A ig stored in the register whose addreses is u + Ci”

/);f—:_
QOf 5
Englneering Note E-2000 Paze

1s stored in the register v + Ci* etc., where u, v, ..., have the same

velue for all i. The computer, having found the address of th
conteining any xﬁg can easlly find the regiesters containing th

Y.» 2,9 «oo. Dy adding the numbers u, v,

L. The code uses a set of consecutive registers C(c + 1),
Clec +2), C(c + n) to contain the addresses Cl, C2, Cn. The

address contained in register C{c + t) will be denoted by CP » and the
7 t
number x, stored at thie address will be denoted by x‘t) To be mure

exact, the quantity in C{c + ¢) is P)‘xlxb o

t

e nen the program starte the registers Cle = 1), Clc + 2),
u/ contain the addressasg (1, C2, .. Cn in some order. The effect
f the program is to rearrange the content of these registers so that the
ushers ’*1 obtained successively fr he addresses C{c +1), Cle+ 2), ..
n) wil e in ascending order. hieg § achieved by dealing in turn

with the registers Cle + ¢) for t = 2, 3 a, For esach { the content

f the regleters Clc + ¢t ~ m), where m =1, 2, 3, ..,. are examined in
turn and moved to Cle + ¢t = m + 1, until a register is reached which con-

tains an addrees giving an x. that is iless than or equal to the Zi.y that

i i
waa cive v the addreas that was in Clig + ¢ he address that was then
in Clc +:t) 48 then put Into the last of the reglsters previously examined.

» 8top the process a quantity q, known to be less than all the XKy is

¥
YUY 11 { 3;?0 S04 2‘65}:3\,0] i¢ '["t‘:ri in Cilg |
0. ‘'he content of tl reglster Clc + ¢) may be changed several
times 4 ii ng the course of NTOSTA 1 tneE ~_"r," anaLory 10Le8 } ‘15
t
taxen Lo mean & address contained in Clc t) at the stage at which “he

-

P
*
¥

L3

rom

[

-

AxX
8LOY
5
DX
DX %
p
3
atal

"

o
®

v
a

fects
R
)
A
A
A
=4

e

]

Enginearing Note B-200 Page 67
‘.
Codan V
Ordars Effects of Orders (b a) | Effects of Ordsrs (0% a
1 ¢call AC: b | AC: b
2 %812 (AC: D " (AC: b
iregister 12: b iregister 12;: b
3 sul0 AC: b~p (positive) | AC: b-a (negative)
4 op(-)9 go to order at 5 | g0 %o order at 9
S oal0 AC: a |
el register 11: a i
7 ca l2 AC: b |
8 ts 10 register 10: b A
9 sp next Jjob g(b is in regieter 10, | (fa ie in register 10,
{ & 18 in register 11) { b is in register 11)
10 =&
11
(Analysed only for c »b >a) Code VI
Qrders Effects of Orders Orders Effects of Orders
1 ca 27 AC: b 16 ts 26 register 26: ¢
2 te 29 fac: v | 17 oa 28 AC: b
‘register 29: b y ve 29 AC: b
3 eu 26 AC; b-a (positive) {regisﬁer 29;: b
4 cp(-)9 g0 %o order at 5 19 su 27 AC: b-a (positive)
5 ca 26 AC: a 70 op(-~)256 go to order at 21
6 te 27 register 27: a 21 ca 27 AC: a
7 ca 29 AC: D 22 tg 28 register 28: a
8 ts 26 rogister 2G; D n3 ca 29 AC: b
ca 28 . AC: ¢ 24 te 27 register 27: b
10 te 29 (AC: ¢ 25 sp next job
Yregister 29: ¢ g3
11 su 26 . AGC: o-b(positive) I
12 ep(-)1? go to order at 13 ;8 :
‘.3’ ca 26 AC; b 90
14 ts 28 register 28: b

15 ca 29 AC; ©

le,

o\

&N

y o4
@a Ul
Y A
Q
e

AC

CoTryY

|
|
.”'-z’é‘irzae:fi‘:l;?; Note E~-2000 Page 63

Code 1X

e

Orders Effects of Orders Stors,

]

A ca B n+3 AC: &

=)

AC: a x

~1)+ . +
ad B (n-1)+3 AC: ax*ta .

ar B 1 AC;axz*a X

=

)

o N
=]
x|
to
—

S S
&
=Y
o
'
B
2V
+
1

Os - S . A i 1
AC:s . a an.:l & -

o
3

=)
(=)

[} ~
AC: X T a X *+a X 2
pel S n-1 o

- D=1 = + n+3 &‘1
ont] d B2 AC: & X 8. % + , a Y
B 0 il 0
n n-1
ont2 te B « B2 X ota X T ceess * 2
I N1l 0
<ntd3 sp next job
Code X
Orders Bffecteg of Orders Biffects of Orders Storage
~flst cycle) —..(2nd cycle)
5
Al -ea B a¥d AC: a B 1 P
n
e ta B3 B3 5 x
& a,
Lo 3 .13 Cs x + a A
i a B 5 a, ») X n-~1
G o X 4 R4
4 or B2 AC; a X / Al auxq 8,1 d sl
~ v C ¥ + b 4 + pe F
s et Mt B K M ki sl n--2 0 a,
te B3: / B3: x‘: x+ a v &
® e B3 B3: au an:l 3 & | 0= 2 1
/ / 3
/ o f,.
7 adAsd AC: ad B ntd / AC: ad B n*3
8 suBl AC: ad B n+2 / AC: ad B p+2
9 ts AS (AC:; ad B n*t3 / (AC: ad B n+2
i,\!:; ad B n*3d/ 265: ad B n+2
e B4 AG: n+d3=4 AC: n+2-4 p
4 /' 4 ~
13 “pi) A .3- & n+f aL
. L) A .: Fiay; to AJ & L AN Ag
.n}- Lta H J
1 gu 2)
15+ tad A

16 sp next job

d
ca

ts

ca

ad

8l
8r

!QA

164n,
174n

17%n

O

2000

.~(gee 2 and 12)

Q. _/4n

‘n/

ad 16

ad 19*n

i~

g XTI

0
WS A

B

1Y

AC: ad 16

reglister 6: ad 16

AC: %0

register 1

AC: e

register 174m;

AC: ad 15 +

AC; ad 15m
AC: ad 15%n
regigter 6

AC: m-n

If mSp, &

1f. m >n,

{

hack

fectg of Orders

7¥n; +0

{m-1)

m=e, 3,

%7 p e

0, /4n, med

it 1}

o)
.

have finished

changed i
vious

use

have ©

|

|

|

|
.

{
]
8 st

]
v
1 Is m$ n?
ey

o hast 0]

o]
|
i

Increase m Dby

»
(46]
3

Bl

Hhs Ca ~
. 19 -
S cpl~jA4 .1

v At‘ Py
. Ad .1 a A2 .1
#4 K;l

AL)
A o

f’;f 4 CS .:u(l,) '3
td AD . X
S 8
% ts 4
Dptg Storage for Lode
N
B]
b |
wil 4
1) 4

M

(e T
C{‘:«l‘."é‘] av C 8N 8 ¢

é
Ko R
S, B e

B=q
L]
~

lw See Al .4, A4.3

x (max of x o X s)
P ; lig o W=l
oee Al ,25 A3.2

—eeee
|
4
i

ca Cm

| lto su

Change

ca C(m+l)

(m*1-n) x 2~

su

See AD.2

*M

i X5 X,
|

(Infitially m = 2) |

¢
S 505
Biee

VR
yesl

. S

' Change order

Cm _
|

orager

)
aat
S8t 91
{
P
X |
R4

Az2.2| |
B
|
3 I
0. A

%o ca C{m+l)

> n?
€ 8
i
the eregtes
& b 4
4 X

31 |
1
9 b

'l i
-
-
[
—
at
11 a

-

g8 o > -
b 4
£ R e - =
™ 4 7]
< D 2 -
o
3
Vi
= —
+
..
T

i~
= o))
o

oS

3

o

¥

)

O

w

¢

s

-

s

¢

% 2 St
ps i
'] N RS T
: » B 2 I {
(T, SOESEe P RS o

[4b)
e

‘&.2 . L <8 B

\

1
Obtain and store f

N N

o =]

:‘_ +

o o

~ m
™ o =1
= ,_Y—‘ B

:i

) A1 .
- Al See Al .2 h-‘AS) &

"‘z.s] ad o 1 %
i f
s P 1
{(m+1) s R L st
A] sk a,%, : éﬂbnal,‘n and store g
(0 _(m¥l) (m+] | (m¥1) (m)
v . s L =8,X. = X | X - X
e 21 e B i 2
(m+l) ML 2 ool |
Lt < . See Al . 3,AD.2|
‘ |
\

Store x_ for

¥
) i)
: | ;
ol ' | the next cycle

' T]
(¢ =g\ | g i
t (m+¥], (m "i o { | |
3! z ‘4\.1 == xl « { t Ay
| J S 1SN
,!Jv-a,)i‘/‘_,l |
2 o
sp A2.] | L
: | (m*l) {m, ‘ | (m*) _{(m)j
A7 m B 4 P S8 s il Is |x, - X, |
i ’ | S g \
- | {m+1) (m) S X .
sl D 4 X = X - ’
\

: P\= ’Ascl] | PEPESESES ;
4 sp A2.1 |

1 'yt
AN sp next job | 8p next Jol
(m) :
i Usaed 101 o2 »"a8e AS “, Al Y, F Ai,]‘
l 4
: (@) :
2 ed for x,'"/ See AD.2,Al.3) o

hs

3

&

A2 .1

o0

o

AS.1

AD .1

i
ML '.
Note:

3 Y ,
LILE e E-2000
O A s
vOGCe AV
R .
£ r a
F

-
) = Jad

8T 2

s B3

mr Ce (9
X

See Al .4

ar 1

S o]

iv B4
sl 15 ~—~= See A2,3
ad K X 9o "

te

8] X,

5) § B See A3.6
8l 8x., s

! 23 : Sae A3t
| ¥ o % ?)‘“ 3 £y
11 2

-1F
C& 13 n-x:2 See Al .Z

nh C3 AC containe m x 2
RR " K

mnr (4

ad e e 4

oYy

gp

vata rage on folluwing page.

i= " .
R 1 3 I
|)
Ir, - P

{

i

|

i

rDh‘cain and siore
> o

L |
| R———

¥

0Obtain and store !
| P }
2%, and X, |
{ &% [“!

iPut m in addrese

i

| gaction of sr order

¥

:' A7.2 and obtain
i

Ik in BR

| -

[Obtain 2%

9

3t -A

| S - I - —

R
-
{ e ra A at
0btain =5 ar 4
‘[“
!
! 2h | L

BS

r'aze
- N4

Used for »

"

»

=
v

6673

’ Engineering Note E-2000=

AL ca

4%

ad
ts

o

au

dv

(&1

=

ts

A .1 mr

po ad
3 mr
9 aa
o] te

2 ad
3 1

3 ta

AT) 8l

e or
A8 .1 8r

A9.,1 sp

Bl
B2

=

a
AC contains b

B2 conteins n x

W o’ v ic’

Wi
FS

o B
y f({y)

(1+y) 25 =

-15
X i

AC contains m x 2

"

BR -

k

(1 - \f;) KQ'J'T

2"“4 ‘ g_x
-m,~K Best
- Bs- Jam - e, i S |
§~ e
a8 XN
2

Data Storsge on following page

~15

See AZ.6

s sasts

¢ i
¥ 2
L Sea A4.5
2q

-] =
o]

Ses A6

Seae AD .2

3

Pt:‘,,:“'.\ ((

i ik Eh Lt -._‘
J:).:é.,l.]\ aY .[‘l store 3

VS e =3 n et AREEE

4 AL e

IO" in and store y
| Dta and sto:x '_,:‘___j

e

{
|

{
prm e e |
10btain and g'?;o ey

. ———— s o
i

B

| 2 e i
{Ubnain and store r(_y‘) I

]

|

|
W b P RN Ay
,Jht.gin and store i

e e sy

{Put m in address section

of sr order A8.1 and

obtairn k in HR

joRvln.% & S Sl
:‘{Ohtaiu DRqE
ekaior T

!
SESEISNEE 2O
k‘rbta‘ln and store [j;
i PRSI, .« SO

| To next job

o1 N -

e
2
3
4
6
7
8
9

o I S I XY D

-

O @w

B2
8BS
sp A5.2
(44-] -
ad —-
wp(-)A2.6
ca A2.1
tad A2
ca A2.1
ad Bl
td A2.1
su B3
cpl-)A2 .1
ta A2.2
td A4.3
td A4.6
(o R—
ts B4
ca —-
tg =~
ca B4
ts -
ca. BS
td A2.2
td 44,1
td A4.4
ad Bl
ts BS
td A2.1
gu B3
epl-)A2.1

cg Cl
wxm See AD.7,A2 .8
(min X -) iz

See A5°2s A2.5
¢e RC x

m
¢s RC xm See A2.3
¢e RC xm*l

-18

(m*l-n) x 2°

RC (m: 3 5l
ad RC (min X xn)
xk See AD.3
min xk i xn See A3.c
See AS.4
See A3.3
ce Ck See Al.2,A5.6

cs C(kt+l)

(k+l) - n

Lﬁl:ﬁﬁL“.mmwh"LHH_“NN-,M_W

PRI s

B R e e e]

Find which of the
registers Ck to Cn
contains the least
number,

(k tekes ths values
1,2, .. ; n - 1)

|
{
|
|
ﬁ
|

!
|

b
Prepare to transfer

the least number
7

gaver e G J‘
Interchange the luasn
number with the
number in Ck

{Prepare to dGAJi
with the next
| value of k.

S s A i o

5
_
§

o SO N R

{lak*l'n?‘_”

e —

. 0o |
B « - 1]

S—

15
-y R i
e cs Cl

3 c8 Cn

Used for x

3| X
X
2
'he nunbers in
Cl to Cn are
renamed after
each cycle)
o] X
n

v ;u 1 !

Data Svorage for Code XIX

..‘L - X
By 2

Ry ca Cle + 2)

» ‘, J
1 2
ll’.

' 'V)

[

Core
6673

.‘i‘ngi neering Note E-2000 «]

Al.l ceo B4

2 = 510.1
A2.1 ca -~

2 is Bl

3 téd A2.4

4 ca —

5 ts B2

AZ.1 ca A2 .1

A4,1 td A6 .2
2 8u B3
3 td AS .1
4 td A6 .1
AB.1l ca -
2 td AS . &
2 ca --
: . 4 su B2
5 cp(-)a8.1

2 ts -~

A7.1 ca AS.)

sp A4.l
AB.1 ca AG.2
25t A8 .4
3 ca Bl
4 ts8 -~
A9.1 ¢ A2,1
2ioad fIBS
ALYl ta < A2l

‘l’k 2 gu BS
3 cp(=)a2.l

(t-m) {t).
x - X

Code XiIX

.La Clot2)
2"15 x Cpt See AlO.l
(t)

X See A2.3

ca C(o+t)

ca C(ett-m+l)
See A3.1, A4.2
ca C(c+t-m)

=15 :
2 x Uptm

(t-m) "
x

See A4 3
m

=15

2 x Cpy See A4 .4

See A4.]

ca C(ott-m)

ts C{ctt-m+l)

-, 5
15 See A2.2

x Cp
' see A8.2

ca C{ctt)
ca C{c+t+l)

See Al.2,A9.2
{(t+l-n) x 2“’l5

..r
o]

(13
[
o

‘Prepare to set't = 2f

&

2

Store addrsss Cpt l

contained in C(ct+t),
also number x‘
contained in Cpt

L

[brepare to set m = 1

lSet to new m I

(t-m)

pEraeaans. it

Obtain x
at address ino
C(e+t-m) .

= {,'.
Is x(t m)., xAt)_,

{_HJ ;_
B _
H

r;l‘ranefer éddreqs in
Clctt-m) to
C(cHt-mtl)

Flma

Prepare to add one |
to m J

R T DL
Put address Gp in
| C(c+t-m+l) _MW_WMJ

l*“’““"*

Lafepare tJ”;hB-éﬁgnig"1

e ..o B -.-_--.1(-—-.

|

i
'

'

{\

ety)

[Set to new t

Is new t>n?

e O

PLLE
L

END

no

Approved

RI¢11 1,88C

