Digital Computer Laboratory
Massachusetts Institute of Technology
Cambridge, Massachusetts

SUBJECT: DIFFERENTIAL VIDEO PROBE

To: Test Equipment Committee
From: Hemry E. Zieman
Date: June 19, 1953

Abstract

The circuitry, use, and specifications for the differential video probe are discussed. The probe permits the viewing of small differential signals in the presence of large common signals. A bandwidth of 5 cps to 9 mc at a gain of 0.4 has been achieved for signals from 0 to 4 volts.

The differential video probe is an adapter for use with any scope to permit the viewing of small voltage variations across components which are not at any fixed potential. The circuit is shown in B-54224. Essentially it consists of a simple differential amplifier (VI) with a constant current load for the cathode resistor (V2). This gives a high common mode rejection. R1, R2, and R12 together with filter capacitors C3 and C4 form a voltage divider between 0 and -450 V . which sets the bias on the grids of V1 and V2. The signal is coupled to the amplifier through C1 and C2, and reappears at a terminating resistor at the scope. Ll provides the necessary d-c coupling of the probe chassis to the power supply ground, and yet isolates the chassis from power supply ground at RF signals to permit the output cable to be terminated and grounded at the scope.

In use the probe is placed conveniently near the circuit to be analyzed to maintain short connecting leads which are fastened to J1 and J2. A positive output occurs when J1 is driven positive. J3 is connected to a $93-0 \mathrm{hm}$ cable which is terminated ($93-0 \mathrm{hm}$ termination) at the scope. The power supply requirements are 35 ma at -450 v . DC, and 1.8 amp at 6.3 v . AC at a d-c level of -150 V . Two means are available to provide this filament supply level. If a power supply jack is available which has no other equipment connected to its filament transformer, the power plug of the probe may be connected to this jack and SI (on the probe) set to the "Byapassed" position. If the filament transformer is being shared with other equipment, the
isolation transformer Tهl must be plugged into XI and Sl set to the "in" position.

The gain of the probe is 0.4 for input voltages less than 4 volts. SA-4844h $=$ ghows the variation in gain and output voltage as a function of input voltage for inputs up to 14 volts. The gain is also a function of frequency, being flat at 0.4 from 10 cps to 1 mc and down 3 db at 5 cps and 10 mc . SAの $45443-\mathrm{G}$ shows the upper end of this frequency response. The rise time has been measured at approximately .05 $\mu s e c$. The common mode gain (both inputs moving equally with respeci to ground) is $10^{\circ 4}$. The input impedance from J1 to J 2 is $.05 \mu \mathrm{fd}$ in series with 2 megohms shunted by 12 pf . The input impedance from either J, or J2, to ground is $0.1 \mu f \mathrm{~d}$ in series with 1 megohms shunted by 16 pf 。

HEZ/cs
cc: MTC Section
Vacuum Tubes Circuit Section
Magnetic Memory Section
vellum copies:
D.J. Crawford

Nate Edwards
R. Crago \quad IBM - via Kromer

Drawings attached:
B-54224
SA-48444-G
$S A-45443 \sim G$

K○E Masancent inst

$5 A-45444-6$

Digital Computer Iaboratory Massachusetts Institute of Technology Cambridge, Massachusetts

To: Jay W. Forrester
From: David R. Brown
Date: June 30, 1953
1.0 GENMRAL

These specifications are for a core to be used in a coincident-current. magnetic.-core memory with a two-toone selection ratio. ${ }^{1,2,3}$ They are besed upon the pulse response of the core when driven by specified currentpulse sequences. The current-pulse sequences simulate critical conditions which will be encounted by the core in actual use. A postmrite disturbing pulse is assumed. ${ }^{4}$ The current pulses which drive the core boing measured are carried by conductors which pass only once through the center of the core. The pulse response of the core being measured is the voltage observed across the terminals of a conductor passing only once through the center of the core, so arranged that mutual coupling due to learage flux is zero.

1. Jay W. Forrester, Digital Information Storege in Three Dimensions Using Magnetic Cores,"Jour. App. Phys., vol. 22, pp. 44-48; Jan., 1951.
2. William N. Papian, "A Coincident-Curront Magnetic Momory Coll for the Storage of Digital Intormation," Proc. IRE, vol. 40, pp. 475-478; Apr. . 1952.
3. David R. Brown and Ernst Albers-Schoenberg. "Forritos Speed Digital Computers." Electronics, vol. 26, No. 4, pp. 146-149; April, 1953.
4. P.K. Baltzer, Effect of Curront Pulse Duration on the Pulse Response of Moq. Co Memory Cores, Digital Conputer Laboratory Engineering Hote K-533, Narch 10. 1953.

2.2 2ho Curront Pulse Sequence (continued)

The basic prif is the reciprocal of the minimum time interval between reference time points of two consecutive pulses. All pulses have the same duration, rise time, and fall time. The peak currents of the pulses are releted to the parameter I_{m} as follows:

Write Pulse	$I_{p}=+I_{m}$
Half-Write Pulse	$I_{p}=+I_{m} / 2$
Read Pulse	$I_{p}=-I_{m}$
Half-read Pulse	$I_{p}=-I_{m} / 2$

2.3 The Pulse Kesponse

The pulse response is the voltage observed at the terminals of a conductor passing through the core when the core is driven by a read or half-read pulse. The voltage from a selected core is the voltafe observod when the core is driven by a read pulse; the voltage from a halfoselected core is the voltage observed when the core is driven by a halfaread pulse. The response depends upon the state of the core before it is selected or helf-selected: In each case the voltage to be measured is the instantanecus voltage mea cured at a specified gempling time Tm. The voltageg of interest are:
$r_{1} \nabla_{1}$ selected one, lest disturbed by a helforead pulse V_{z} selected zero, lest disturbed by a half-read pulse V.hl half-selected one, last disturbed by a half-read pulse ${ }_{r} V_{h z}$ half-selected zero, last disturbed by a half-read pulise

The current-pllse sequence for the determination of r_{1} is:

For $r_{z}{ }_{z}$

For $r_{h l}$:

For r_{hz} :

L

$n>1$

Read Pulse
n Half-Read Pulses

Typical responses are illustrated.

Symbol
v
T
${ }^{T} p$
TI I

Term
Instantaneous Voltage
Switching Time
Peaking Time
Sampling: Time

3.0 PHYSICAL SPECI FICATIONS

3.1 Dimensions

The core is to be a toroid with rectenguler cross sections. -

Hing left by the molding opertition will not pruject more then 0.001 in. Eccentricity (distance between the centers) of the inside and outside cylinders will not be more then 0.001 in.

Ellipticity (difference between the major θ xis and the minor axis) of the inside or outside cylinder will not be more than 0.001 in.

3.2 Trecture

The core will be placed between two parallel smooth surfaces and withstend a total compressive force of 500 grams before fracture。

4.0 ELECTRICAL SPCIFICATIONS

4.1 Test Conditions

4.11 The Current Pulse

Overshoot shall be less than 2 percent
Droop shall be less than 2 percent

$$
\begin{aligned}
& T_{d}=2.0 \pm 0.1 \mu \mathrm{~s} \\
& T_{r}=0.2 \pm 0.02 \mu \mathrm{~s} \\
& T_{f}=0.3 \mu \mathrm{~s}
\end{aligned}
$$

4.12 The Pulse Sequence

Besic prf shall be less than 2000 cps .
$n=8$ (Except for determination of r_{1} when $n=8$ and $n=64$. See below.)

4. 2 The Pulse Response

The core shall meet the specificetions listed in the table below when the core is in still air with an emblent temperature of $21^{\circ} \mathrm{C}$.

$\begin{aligned} & I_{m} \\ & a \mathrm{mp} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{m}} \\ & \mathrm{~m}_{\mathrm{s}} \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{s}} \\ \mu_{\mathrm{s}} \\ \hline \end{gathered}$	$\begin{array}{r} \mathrm{T}_{\mathrm{p}} \\ \mu \mathrm{~s} \end{array}$		$\mathrm{r}_{1}{ }_{\nabla}^{1,2}$		$\begin{gathered} \boldsymbol{r}_{z} \\ \frac{\operatorname{m} \nabla}{\max x} \end{gathered}$		
		mex	min	max	min	max			
0.900 ± 0.009	0.60	---	---	---	0.130	--	0.4	0.2	0.1
0.820 ± 0.008	0.64	1.25	0.55	0.70	0.095	0.115	---	---	---
0.740 ± 0.007	0.65	---	---	---	0.070	---	0.4	0.2	0.1

1. When n is increased from 8 to 64, \boldsymbol{r}_{1} shall not change more than 2 percent. 2. The peak amplitude of $r^{\nabla_{1}}$ shall fell within the limits specified for $r_{1}{ }^{0}$.
4.2 The Pulse Response (continued)

At a temperature of $40^{\circ} \mathrm{C}$, the core shall meet the specifications listed below. Tm $0.64 \mu \mathrm{~s}$.

\mathbf{I}_{m} amp	${ }^{\text {F }}$	
	410	mat
0.820 ± 0.008	0.105	0.125

DRB/jk

Air Traffic Gontrol Project
Servomechani sms Laboratory
Massachusetts Institute of Technology
Cambridge, Massachusetts

SURJECT: INTRODUCIION TO CODING: PART I OF II PARTS

To: 6673 Project
From: David R. Israel
Date: September 29, 1949, Rovised September 26. 1950
Pager 31, 42, 50, 67, 68, 69, 73.

1atroduction

This regort is based on a group of twelve lectures delivered by W. Q. Welchman in the spriag of 1949 as a part of acsurse in Machtne Computation at the Massachusette Institute of Technology. These lectures wers given with the purpose of indicating the general aature of the sequences of operation used by high-speed digital computers io corrying out particulat processes.

The accent in this report is on simplicity father thas on profundty: the object is to anabie the reader to attain familiarity with the use of the various computer orcers, this befag done by the considesation of a number of simple sodee rathar then by a discusaion of general theorise of coding. Mathematical considerstions of arrore are not included and there is littie attampt to discuss the relative merits of different methods of attack on a problem. The particular codes that are presented serve simply an illustrative sramples and it is not suggested that these codes represent the best methods of hending the problems concerned.
in order to discuss coding it is necessary to spectiy the beharior of the computer for which the codes are to be written. This report is concerzed with coding for Whiriwind I, a computer whose codine cheracterlstics inciude the use of the binary number system, a fixed biary point, and a siogle address code. It is felt, however, that this report will propide a useful iatroduction to coding for compatere with different characteristres.

Whirlwiad I uses parallel operation fa which all the digits of a number areadied sfmataneously rather than in sequence. It seams reasonable to asoume that an avarage speed of about 20 microsecond per operation will be achicved by this complater. Kith serisi pperaifon, a rachine with sirula characteriatice coula be expectad to achiove an average npeed of between 200 and 500 meroseconde per operation.

In itg present stage of development Whirlwind I is designed to handie binary numbers of a 15 digit length. This report will not consider the use of double-length (30 digit) numbers to increase the accuracy or the use of scale factors to increase the range of the machine. These matiers, together with the control of input and output and certain special arrange ments to facilitate the use of subprograme, will be discussed in a later report.

A computer program is defined as the sequence of operations by which a computer carries out a particular process. A computer code is the set of instructions which must be supplied the computer to eneble it to execute a prescribed program. Broadly speaking, the instructions fall into two parts: the ordors that tell the computer what operations to carry out, and the deta upon which the computer is to perform these operations.

The principal internal elements of Whirlwind I with which we shall be conceraed are the storage, the arithmetic, and the control elements. These three lements are connected by a communication system called the "bus". The storage element is used to bold both orders and numerical. data, the arithmetic element carries out mathematical operations, and the control element insures that the correct operations are carried out according to the orders that are obtained in proper sequence from the storage.

Section I of this report contains a statement of the operational sfiecte of the computer orders. The reader need not look at this section until it is referred to in the text but ehould proceed to Section II. The codes that will be described. In the taxt are bound in a separate volume so that the reader mey rofer simultanootaly to a particular code and to the descriptions of the orders used in that code.
Page
Section I: Description of Order. 5
Section II: Fundemental Concepte 9
A. Binary and Decimal Humber Systems 9
B. Registers: Types and Identification 11
C. Representation of Numbers 13
D. Representation of Orders 14
w. Orders and Numbers- 15
F. General Operating jrocedure 16
G. Written Form of a Code 16
Section 11I: Some Elementary Codes 18
A. Code I: Sample malysis of a Code- 18
B. Code II Ewaluating Polymomials 19
C. Codes III and IV: Pexforming Divisioa 20
D. Coden V and VI; Condttional and Sub-Program Orders 20
Section IV: Binary Arithmetic and the Corputer 22
A. Addftion 22
B. Subtraction and Ind-Around-Carry 23
C. Overflow 26
D. Shifting and Roundoff $2^{\prime} 7$
E. Zero 28
Section V: Codes of a More Complex Nature 31
A. Codes VIX and Vidi: Further IJLustrations of Shifting- 31
B. Modification of Orders 3
C. Codes $1 X$ and $\%$: Cyolic programs 3.3
D. Code XI: Scale Factorine and Overflow 34
F. CodexiI: Finding the Greatest of a Set of Numbers 35
Section VI: Coding Notation and Procedura 37
A. Notation for Codine 3 ?
B. An Example of Coding Procedur* 42 42

TABLE OF CONTENTS - PARE I (continued)

Section VII: Iterative Processes \qquad 55
A. Iteration in the Computer \qquad

D. Roots of Equations by Newton" g Method 57

Section VIII: Linear Interpolation and Finding the Square Root $=-\infty-\infty=-\infty-\infty$
A. Code XV: Linear Interpolation $-\cdots-\infty-\infty$

Section 1X: Codes For Sorting \qquad 63
A. Code XYIfI: Rearrangement of s Set of Numbers................... 63
B. Cod. XIX: Sorting Sets of Numbers …....................................... 63

Section I．Description of Oxders

The operations which are described in this section are only those Dasic operations that are needed for this roport．The description of the effects of these operations is incomplete，containing only what is mesded for the present purposes．

For each order the following information is given：
（1）Descriptive aame for the order
（2）Biasxy code for the ordar
（3）The operation to be performed
（4）The effect of the operation
（5）Corments，where necessary

Trander oparationa

ca x（1）Clear and add
（2） 1,0000
（3）Claar AC and add the content：of register x into $1 t$.
（4）$A G$－contants of register x ．期－cleared．
ce x（1）Cleat and subtract
（2） 10001
（3）Clear AC and subtract the contants of register x from it．
（4）AC－complement of the contents of register x ． BR－cleared．
$\operatorname{cm} x$（1）Cibar and add maenitude
（2） 101000
（3）Clear Alf and add the absolute magnitude of the contents of register x into it．
（4）$A C-$ positive absolute magni bude of the contents of register $x_{\text {。 }}$ BR－cleared．
ts x（2）Trangfer to storage
（2） 01000
（3）Transfer the contents of AC to regibtex x ．
（4）Registor x containg the contents of AG，the prewious contents of register x baving been cleared（108t）．

切 x（1）Tranger address digits
（2） 01001
（3）Tranefer the right－hend 11 digits in $A C$ to the address section of the order in register x ．
（4）The fight－hand 11 digits in register x are the asole as the rightohand 21 digits in $A G_{\text {，the remaining digits of register } x ~}^{x}$ being undsturbed

Arl thmetic operations

mir * (1) Multiply and round off
(2) 11000
(3) Multiply the contonts of register x by whatever is in $A C$ and round off the result to one register langth.
(4) $A C$ = the left-hand 15 digits of the product of the original contents of AC with the contents of reghster π, round-off having been performed (one being added to the right-most digit of AC if the sixteenth digit of the product was a onel. BR - cleared.
mh π (1) Multiply and hold full product
(2) 12001
(3) Multiply the contents of register x by whatever is in $A C$ but do not round of 1 .
(4) $\mathrm{AC}=$ the $2 \mathrm{eft}-\mathrm{most} 15 \mathrm{digits}$ of the 30 digit product, not rounded-off, with the proper sigh associated. BR - the positive absolute walue of the rightmost i5 digite of the '30 digit product. followed by a wero in BRIS.
(5) After the leftehand section bas been stored, an sl 15 order can bring the $\times 1 g h t-h a n d$ section from $B R$ into $A C$ with the proper aign associated with it. The si 15 must be performed before AC is cleared, othowws the sign will be lost
dv x (1) Mride
(2) 11010
(3) Divide the contents of $A C$ by whetever is in register x.
(4) AC - +o or -0 बependixg on whether the sign of the quo tis ent is + or HR - the positive absoluts value of the quottent correct tc 16 ifgares (1.0 o, there is no sign digft and all 16 digits are significant to allow corract round off to 1.5 digitg by the subsequent sl arder).
(5) After the $d y$ operation the ordar 81 25 , which must bo the asxt order, bringe the quotient into AC whth the propes sign associated with in (see Bl). If the dividend is greater than the divisor, 80 that the quotient
(5) continued-
exceeds one, an alarm is given and the computer stopped. If the quotient equals one, the error will be detected in the gubsequent el order, for round off in the sl will cause an overflow. This is because the 16 digit quotiont in 3R will consist entirely of ones if and only if the divisor and the dividend are exactly equal.

Shift operations

B1 4
s1 24
(1) Shift left
(2) 11011
(3) Shift the contents of $A C$ and $B R$ a places to the left.
(4) AC - the siga digit remaine unchanged. All other digita in $A C$ and 8 R are shifted a places to the left and the result is rounded-off. Digite shifted left out of AC I are lost. BR - clared.
(5) As in 3 the sign is $80 n s e d$ and remmbered so that the ahift and round-off can be performed using positive numbers. Digits that are shifted left out of AC 1 are lost and no alarm is given, but an overflow cansed by the round-of performed after shifting is completed will give an alarm and stop the computer. The order si 0 will be correctly interpreted. its only affect betag a round-off.
(1) Shift right
(2) 11100
(3) Shift the contente of AC and aplaces to the right.
(4) $A C$ - the foms content, of $A C$ shifted n places to the right and rounded-ofs. BR - eleared.
(5) The sign is sensed and remembered and the aumber in AC is complamented if negative so that the shift and round of can be performed using positive numbers. The vacancies on the loft-hand and are filled with zeros. After the ahfft and round-off the contente of $A C$ are again complemented if the number was nagative. The order or 0 will be correctly interpreted, its only effect boing a round-off. When and only when the digits in $A C 1$ to $A C 15$ and in $B R O$ are all ones prior to the hift and round-off of an 880 order, the round-off will cause an overflow which will give an aiatm and stop the computer:

Scal factor ogaration

sf x (1) Scale factor
(2) 11.101
(3) Shift the contents of Af and $B R$ to the left until the first non-zero digit is in $A C I$, and store the number of shifte in register x.

- Scele factor operation

Change of program

ap * (1) Subprogras
(2) 01111
(3) Transfer the registex adress x to the program counter.
(4) Program cowatar contains x 。
(5) This operation does not involve the arithmetic olement. The program counter determines the addrass of the storage registes from which the next order 18 to be taken. After each operatlon the contents of the program counter are ordinaxily 1ncreased by one. A subprogram order clears the program counter and substitutes the storage register address prescribed in the subprogram order itself. The next order is consequently taken from this new register address.
cp(-)x (i) Conditional progren
(2) 01110
(3) Transfer the register address x to the progrem counter if the number in $A C$ hes n nogutive sign digita
(4) Froitan gountar contains x if the mumoer in AC is negative Nothing bappeas if the number in AC is positivo.
(5) The minus sign is shown in brackets after the abb eviation cp to avoid possible confugion. It would be equally possible to have a sfmilar order which would change the content of the program counter if the number in $A C$ is positive, and this altemative order would be written cp (t).

Section II. Fundemental Concepts

A. Binary and Decimal Number Systems

1. A number in the decimal system is represented by a set of digits and a decimal point. The selection of these digits is restricted to the values $0,1,2,3,4,5,6,7,8$, and 9 . The value and the position of each digit with respect to the decimal point specify a multiple of a power of 10 , the multiple being equal to the value of the digit and the power boing determined by its position. For example:

$$
\begin{aligned}
4025.809 & =4 \times 10^{3}+0 \times 10^{2}+2 \times 10^{1}+5 \times 10^{0} \\
& +8 \times 10^{-1}+0 \times 10^{-2}+9 \times 10^{-3}
\end{aligned}
$$

2. In a similar faitona binary nunber is axpressed by a et of digits and a binary point: in this case the digits are restricted to being eithar $0^{\prime \prime} s$ or $1^{\prime \prime} s^{\circ}$. The position of each 1 with respect to the binary point specifies a power of 2. For example:

$$
\begin{aligned}
& 1010.011=1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}+0 \times 2^{-1} \\
&+1 \times 2^{-2}+1 \times 2^{-3} \\
& \text { or } \quad 2^{3}+2^{1}+2^{-2}+2^{-3}
\end{aligned}
$$

In the binary system, then the numbers are made up of powere of 2 ; 1 n the decimal systen the numbere are made up of multiples of powere of 20.
3. The conversion of a number from binary form to decimal form may be performed by the direct (decimal aystem) addition of the epecified powers of 2. Given the binary number 1010.011 the conversion proceeds as follows:

$$
\begin{aligned}
1010.011 & =2^{3}+2^{1}+2^{-2}+2^{-3} \\
& =8+2+1 / 4+1 / 8 \\
\text { or } & 8+2+.25+.125 \\
& =10.375
\end{aligned}
$$

4. The converaion of a number from dectmal form to binary form may be accomplished by successive extractions of the proper (htghest)
parers of 2 from the decimal form, Given the decimal number 10.375 this conversion proceeds as follows:

The highest power of 2 in 10.375 is 2^{3} or 8 :
$10.375-8=2.375$
The highest power of $2 \ln 2.375182^{2}$ or 2 :

$$
2.375=2=.375
$$

The highest power of 2 in .375 is 2^{-2} or 25
$.375-.25=.125$
And .125 in 2^{-3}
Hence $10.375=2^{3}+2^{1}+2^{-2}+2^{-3}$ or 1010.11
5. A portion of a table of binary-decimal equivalents is given below.

Decimal
1
2
\square
3
$5 \quad 202$
110
111
2000
1001
1010

Decimal

20	10100
30	11110
40	101000
50	120010
60	111100
70	1000110
80	1020000
90	1021010
100	1100100
500	111110100
1000	1211101000

6. Two rather important fact ohould be noted with respect to the binary and decimal representations of number:
(a) The representation of a number in the binary system will require approximately $31 / 3$ times as any digit positions s. the representation of the number in the decimal systam.
(b) Multiplication of a binary number by a positive integral power of 2_{0} sey 2^{k}. 18 equivelent to shifting the binary point of the number k digite to the ridety for multiplication by negative integral powern of 2 . say 2^{-k} where
k is positive, the binery point is ahifted k digits to the loft. Similar remarks are applicable to multiplication by 1 nt egral powers of 10 in the decimal system.
(It should be obvious that in the above-described shifting the aignificant reault is the relative shift between the digits and the binary (or decimal) point. This relative shift may be achieved with the digits held fixed and the binary point moved or with the binary point fixed and the digits moved.)
7. The binary system of representation is particularly well suited for a digttal computer since the machine need only distinguish and store two types of digits. $0^{\prime \prime} \mathrm{g}$ or $\mathrm{l}^{\prime \prime} \mathrm{s}_{\text {s }}$ ingtead of the ten different digits of the decimal syatem. The development of computers along logical lines almilarly points to a "O and $2^{\prime \prime}$ or "yes and no" system. Another desirable feature of the binary system is the relative ease encountered in performing arithmetic operations upon binary numbers.
8. Whirlwind I handee oniy faformation in binary form - - all numerical data is expressed ae blnary numbers. all computer orders are coded in the binary number syitsm.
B. Regieters: Typer and Identification
9. The word register is used to denote a physical means of storing a set of binary digita. Each digit position within a register ie reprepented by s toggle switch, relay, ilip-ilop, or pot position in an electrostatic atorage tubes, etc. The particular digit (aither 0 or) stored at any digit position is represented by the phyeical coadition of the corresponding awitch, relay, filp-flop, or spot.
10. The set of digits stored in a register le known as a word. The number of dipits in a word is determined by the number of digit positions in a regiater or the register leagth. The register length of whirl wind I is 16 , hence all words are composed of 16 binary digits.
11. The words which may be atored in the registers of the computer are of two types:
(a) Numbers to be used by the axithmetic elenent.
(b) Orders to be used by the control alment.

The representations of orders and numbers in the computer are discuesed in parts C and D of this section.
4. The registere within the computer are of two types: the geecial-purpose repisters and the storage registers. The special-purpose Fegiaters have been named in accordance with their operational uees exd are referred to by those names or abbreviations chereof: the term register has been reserved, generally speaking, for use in referring to one of the storage registers of the computer.
5. Three of the special-puxpoge registers have particular importance in the arithmetic element of the machine. These are:
(a) the "A" register (abbreviation: AR)
(b) the " B^{n} regiater (abbraviation: BR)
(c) the Accumulator (abbreviation: AC)

The 16 digst postitions the the stiarting at the laft are denoted'as ARO, ARI. AR2 ARE 5. A similar notation is used for desfenating dight positions in the $A C$ and the $B R$. This is shown below for the $A C$.

The Digit Positions of the Accumulator
6. The BR is most conveniently thought of as the extension of the AC. In this capacity it is used to bold the second half of a product of two numbers or tho quotient of a division. (In general the multiplication of an \underline{m} digit number by anothor m digit number producen a number With 2_{m} digtte.) The offects of the various orders upon the AC and BR are described in Section I. For the present purposes it will not be necessary to consider the uses of the AR
T. The storage registers of the comptior are composed of spot pasitions in electrostatic storage tubes. Fach register (storage register) is identified by an address in the form of a binary number. kieven digit binary numbers are used for these addresses, permitting the sdentificetion of 2^{11} or 2048 distinct registers. the addresees funning from 0 to 2047. These 2048 registers comprise the internal electrostatic storage or memory of the computer.
8. The computer identifter a regtstar only by the address. hence in any discussion of coding it should be underatood that the use of the word register implies an address.

C. Representation of Numbers

1. When registers are used to hold numerical quantities for use in calculation the content of the firgt (left hand) digit position indicates the sign of the number. $A \underline{O}$ indicates the storage of a positive number, $a \geq$ the storage of a negative number. In writing out the contents of a register used to hold a number it is convenient to use an oblique stroke (/) to separate this sign digit from the remaining 15 numerical digits.
2. The representation of positive numbers is direct. If a regiater contains the digits

0/101100101000100
the number represented is the positive binary number
$+.101100101000100$
where, since the sign digit is 0 , the 15 numerical digits are obtained directly from the right hand 15 digita in the regieter. The binary point is placed at the left hand end. with this representation all positive multiples of $2-15$ from

$$
\begin{aligned}
+2^{-15} & =+.00000000000001 \\
501-2^{-15} & =+.111111111111111
\end{aligned}
$$

can be atored in a register.
3. The ropresentation of negative numbers is not direct. If a regiater contatis the digits

$$
1 / 100101000110110
$$

the number represented is the negative binary number
-.011010111001001
where, since the sipx difit is l_{0} the 15 mumerical digits are obtained by complementing (interchanging $0^{\prime \prime} s$ and $I^{\prime} \mathrm{s}$) ach of the right hand 15 digits in the regigter. The binary point is again placel at the left and.
4. Thus when the sign digit is 1 the numericel digits of a regibter must not be interpreted directly - o their complements with the binary point at the left hand end and preceded by a negative sign foxs the desired (negative) number. With this representation all negative multiples of 2^{-15} from
$-2^{-15}=1 / 111111111111110$
to $-\left(1-2^{-15}\right)=1 / 000000000000000$
cau be atored in a single register.
5. Zero has two representations, asmely:
$0 / 000000000000000$ (this is called positive zero)
and $1 / 111111111111111$ (the 18 callod negative zero)
6. The above discuesbon should reveal that because of the choice of the poation of the binary point we are imited in atorage to numerical. quantities which are multiples of 2^{-15} lying between $-\left(1-2^{-15}\right)$ and $+\left(1-2^{-15}\right)$ 。
7. A furcher discussion of the une of binary sumbers tu the computer is included in Section SV. We may remark here that it is pasable to use two regtaters to represent a 30 dtght number (two gign digtte are used). axd it in posaible to deal with numbere outside the range $=\left(1-2^{-15}\right)$ to $+\left(1-2^{-15}\right)$ by the use of scale factors. The descripiton of these techniques is left to a later report.
D. Kepreaentation of Orders

1. An order conelats of two parts. of which the first spectifies the operation to performed and the second the address of the register with which the operetion is concerned. (Thare is an exception in the cese of the ehift ordere where the eecond part of the order does not specify su address but rather the oxtent of the Binft. Thiematter is further discussed in Section IV.)
2. The first five (left band) digits of an order determine the operation to be performed ta accordence with the five digit binary codes given in Section I. With itve digitwo 2^{5} or 32 distinct operations can be epectfled. The remaining 11 diptits of an order are regarded as foming a positive binary pumber with the binary point at the fight hand ond. Thie number thus spectifee one of the 2048 storsge registers.
3. In the representation of an order, an oblique stroke is ueed to sepsrate the operation and address sections. An example of an order would then be

10010/00011010001

Since 10010 is the code for the ad operation and 00011010001 is the binary form of 209, the order is ad 209.

E. Orders and Numbers

1. The previous discussion of the use of registers for orders and numbers does not imply any permanent division of registers into the two types. A register which is used for an order in one prokrem may be used for a mumber in another program.
2. The two possible uses of a register may be showi pictorially:

3. It should be noted thet we ail be talking of two kinde of numbers. The addresses of registers are positive integers aud are repre sented by 11 digit binary numbers with the jinary poirt on the right. these numbers occupying only the 11 right humd digit positions of a register On the ather hand the numbers which are usen. In computation are multiples of 6 - $^{\prime}$ tenteor $2^{-15}=1$ and $1-2^{-15}$. The repleseatation of these numbexs. มี*B all 16 cigit positions of s regiater, the left hand digit position being used to indicate the sign. In some cases it will be conveniant to deal with an address as a numerical quantity and perform atithmetic operations on th. Due to the fact that addresses are positive integers, when an sldress n is belng handiod in the arithastic slement or belng stored in a register, tt ghould be referred so an in 42^{-15} 。

F. Goneral Operating Procedure

1. We are now in a position to discuss the generel operating procedure of the computer. The control element contains a special eleven digit counter known as the program counter. This program counter holds the address of the register from which the next order is to be taken. The control element then procseds to carry out the order whose address is in the program counter by performing the specified operation upon the quantity at the specified address section of the order.
2. For example, ssame that registor 973 contains the order (In binary code) ca 854^{2} and that register g54 contains the quantity .5394 (also in binary form). Reference to the description of the operation "ca" in Section I shows that wen the address 973 is placed in the program counter, the control cexries out the order stored in register 973 and proceeds to place the quantity .5394 into the AC.
3. Following the completion of this order the number tn the program counter is changed, thus bringing into effect a new address and a new order. In nosmal operation the number in the program counter is incressed by one after each operation with the result that the orders used are withdrawn from storepe consecutively. Methods of changlap the sequence of orders are described in Section IXI.
G. Written Foxm of a Code
4. The writton form of e code requires the use of two columas. the first of which indicates the addrese of sach registar, and the second which indicates the conteat of that register. When the content is an order the sacond column gplits lato two parts. the firgt part containing the operation and the second the addreas: when the cantent of the register Is a number, the second column splits into the sign and the numerical guantity (with the conwantion of representation of paragraphs D2 and D3 of this section)。
5. Thug the entries in the code will be of the following two types:

Case	Columa One (Address)	Column Two (Conteast)
6.	Address	Operatton / Addreses
b	Addrese	

3. An example of (a) would be (all quantities in decimel uncoded form for convenience):

$$
1019 \text { cs } 346
$$

which indicates that regigter 1019 contains the order "clear and add cond tents of register (address) 346°.
4. An example of (b) would be:

$$
1076+.13149
$$

Which indicater ofat register 1076 contains the quantity +.13149 .

Section III. Some Elementary Codes

We are now prepared to examine a few simple codes. Exospt in the case of Code I the actual codes themselves appear in Paxt II of the report. In accordance with a procedure to be dewonstrated below the reader should follow the order \rightarrow tomorder progress of the codes, referring when necessary to the descriptions of the orders presented in Section I. The reader should attempt to datermine the effect of sach order of the codes, checking such a determination against the stated effects printed with the codes in Part II.

For convenience the codes of this section deal with literel rather than binary numerical quantitisa, it being understood that these quantities lie within the capacity of a register.

A. Code 1: Sample Analysis of a Code

1. Code I: 1 a 14

2 mr 14
3 me 11
4 ts 15
5 ca 14
6 mx 12
7 ad 13
8 ad 15
9 \& 15
10 end of code
11 a
12 b
13
14 *
15 - (blank register)
2. The reader must assume, unless otherwise instructed, that the prom gram counter initially contains the first address listed in the left or address column of a code. In thif case the first address is 1.
It should be noted that we are in no way restricted to beginning codes at adress 1 : however, we must use a group of consecutive registers for our orders. We may store ordsre in any group of consecutive registers provided that we make the appropriate changes in the address sections of these orders. Hence we could just a.s well have used registers 256 through 271 for Code I. with correspondine changes in all the addressec.
3. The affect of garrying out the ordef in regiater is is to put the wat tent of register 14, x_{0} in the $A C$, The program counter then increases to read 2 and the order at that address is carried out. This ordar has the effect of multiplying the x in the $A C$ by the content of register 14 , or x, leaving $\frac{x^{2}}{}$ in the $A C$. The next order, 3 , multiplies the content of the $A C, x^{2}$, by the content of register 11 or a, leaving ax in the $A C$. The next ordor (thet at eddress 4) tranefers the ax2 to register 15

6673
Engineering Note E-2000-1.
Page 12
8. The results thus far can be written as follows:

Address	Orders	Refects of the opders
2	ca 14	π in the AC
2	$m \mathrm{mr} 14$	z^{2} in the $A C$
3	mr 11	$0 x^{2}$ in the AC
4	ts 15	$\left\{\begin{array}{l} a x^{2} \text { in the } A C \\ a x^{2} \text { also in register } 15 \end{array}\right.$

5. Before continuing several points must be stressed.
a) Transferring from one register to another (thess may elther be special-purpose or storage registers) does not alter the content of the register from which the transfer was made. In this connection special note should be made of the effect of the order at address 4 above.
b) In transferring a word into a regiater the transferred word is not affected by the origimal content of that register. (Hence the original content of register 15 is of no consequence.) In the same regard one must note the difference between the operations ca and ad.
6. The remaindar of Code I can be written out as below:

Addres B Ordar:
$5 \quad$ © 14
6 ar 12
7 ad 13
8 ad 15
9 t\& 15

Effects of the Orders
x in the AC
bx in the AC
$(0 x+c)$ in the $A C$
$\left(a x^{2}+b x+c\right)$ an the $A C$
$\left(6 x^{2}+b x+c\right)$ in register 15 $\left(a x^{2}+b x+0\right)$ in the $A C$

10
the somputer is ready for another code.

7 . The action of the code has beans thens to form (evaluate) the expression $a x^{2}+b x+c$, where a, b, and p are generally fixed congtants and x is altered by changing the content of register 14.

B_{3} Code If Evellating Polynomials

1. A similat order-bymordar analysie may now be carried out for Code il In Part If. The effect of the code is seen to be the same as that of Code I, however Code II is more economical of arders (storage space) ard

6673
Engineering Note E-2000 ~1
hence takes less time for completion.
2. The method used for forming the expression in Code II is quits epplic. able to general polynomial forming. Thus to form $a x^{4}+b x^{3}+a x^{2}+d x+e$, the following order of processes should be used:

$$
\begin{array}{rlrl}
a & =(a) & & \text { add } \\
(a) \cdot x & =(a x) & & \text { multiply } \\
(a x)+b & =(a x+b) & & \text { add } \\
(a x+b) \cdot x & =\left(a x^{2}+b x\right) & & \text { maltiply } \\
\left(a x^{2}+b x\right)+c=\left(a x^{2}+b x+c\right) & & \text { etc. } \\
\left(a x^{2}+b x+a\right) x & =\left(a x^{3}+b x^{2}+c x\right) & \vdots \\
\left(a x^{3}+b x^{2}+c x\right)+d=\left(a x^{3}+b x^{2}+c x+d\right) & \vdots \\
\left(a x^{3}+b x^{2}+c x+d\right) 10 x=\left(a x^{4}+b x^{3}+c x^{2}+d x\right) & \vdots \\
\left(a x^{4}+b x^{3}+c x^{2}+d x\right)+a=a x^{4}+b x^{3}+c x^{2}+d x+e & \vdots
\end{array}
$$

Q. Codesill and IV Performing Division

1. It was previously mentioned (paragraph DI of Section II) that the right hand eleven digits of an order are used to spectiy an address with ope important exception. This occure in the use of the shift orders (sr - - or sl - -) where the address section specifies only the number of places the digits are to be shifted to the right or laft. In this respect one must differentiate between the meantag of the 15 in the order ces 15 and the order sl. 15 . ca 15 orders the cleardng of the AC and the addition of the contents of register 15 into 1t: s 15 orders the shifting left by 25 places of the digits in the $A C$ and the BR .
2. The $B R$ is actually an extension of the $A C$, and the quotient is left thers ofter a division has besn performad. In a situation in which it is then desited to plece the quotient of a division into the $A C$ the dv order must be followed by an shl 15 order.
3. With the sbove remarks Codes III and IV should be exemined. It will be observed from an examination of these codes that when a division ia to be carried out the divisor should be formed first and stored. If the dividend is then formed in the $A C$, the division can immediately be performed by the dy order.

Ds Coder V VI: Conditional and Sub-Program orders

1. Up to this point we have sssumed that ofter the completion of each order the progfam comnter is incressed by 1.8 that 1 - control receives
its next order from the next (storage) register. This is not complotely accurate, and when an order is completed one of three things may heppon:
a) If the order was neither a gub-program order (ap) or a conditional sub-program order cp(c) , the content of the program counter is increased by 1 so that the next order will be taken from the next address in storage. After the address 2047, the program counter reverts to address 0 and is ready to continus operation from there.
b) If the order was sp $x_{\text {, }}$ the address contained in the program counter is changed to read x so that the next ordor will be teken from register x.

It should be seen from this remark that after the completion of a code the next order should be sp x whes x is the address of register containing the first order of the next code. (This will be superfluous if the two codes follow consecutively in the storage register). Codes I, II, III, and IV should be ended with sp orders.
c) If the order was $\mathrm{cp}(-) \mathrm{x}$ the content of the program counter is changed to x if and only if the number in the $A C$ is aegative, that igoif the sign digit position of the $A C$ contains a 1 . If the sign digit in the $A C$ is a 0 then the program continues to the next order.
2. In particular regard to (c) above it must be mentioned that the suberaction of two equal numbers giver rive to the aggative zero, that is, a zery with a negative sign digit. The mathematical aspects of this are discusesd in paragraph il of Section IV, but for the present it is important to realize that the negative zero is sufficiont to cause the charge in the progran counter described in (c)
3. With the above discussion Codos V and VI can be inspected. These are codes witch arrange numbers in a certain order. For convenience is understanding these codes one should inttially assume a relationship among the numberis. That is, for Code V analyse the progress fox $a>b_{s} a=b_{2}$ and $a<b$. A similar analysis should be carried out for the possible relationships of $a_{3} b$, and c of Code VI
4. The analyais of Code ∇ will reveal that the maximum of and b is placed in register 10 , the minimum in register il. If $a=b$ the quantitise are kept as originally stored.
5. The analysis of Code VI should indicate that as b, and \underline{x} are arranged in descending order in registers 26,27 , and 28.

Section IV. Binary Arithmotic and the Computer

A more detailed investigation will now be made of the momer in which arithmetic operations using binary mubers are performed by the computes. For convenience in representation we ghall assume in this section that the available register length is only 8, with a sign digit and seven numerical digits. The binary point is assumed to be immeditely to the left of the seven numeripal digits, permitting the representation of numbers in the range $-\left(1-2^{-7}\right)$ to $+\left(1-2^{-7}\right)$. For the purposes of difm cussion we shall use two positive binary numbers:

$$
\begin{aligned}
x & =+.0110100 \\
\text { and } y & =+.0011011
\end{aligned}
$$

In accordance with the rexarks in Section II concerning the regresentation of numerical quantitiea within registers, we see that the register repre sentations of x and y ars:

$$
\begin{aligned}
& x=0 / 0110110 \\
& y=0 / 0011011
\end{aligned}
$$

Whare, as was previously noted, the oblique stroke io uged to separate the 81 gn digit from the numarical digits.

A. Adation

1. Addition In the binary system is performed whth the use of the Iaullier principle of the carpy. We note thus 30 the blnary systam 1 added to 1 gives 0 with a earry of 180 guded to 1 or 1 added to 0 gives 1 wth po carrys and 0 added to 0 gives 0 with no carry In figurgs:

(casyy)
2. The addition of x and y is as follows, two cerxy stages besiag mscessary.

$$
\begin{aligned}
& x=.0110100= 0 / 0110100 \\
& y=.0011011= \frac{0 / 0011011}{0 / 0101111} \\
& \frac{1}{0 / 0001111} \\
& x+y=\frac{1}{0 / 1001111}
\end{aligned}
$$

3. The simultansous addition of more than two numbers nesd not be considered aince the computer adds oniy in pairs.
4. With a register length of 8 the computer is not equippsi to homale numbers greater in magnitude then $1=2^{-7}$, bence arrangements must be made to stop the process of addition if at any stage tho computer find itiself trying to add two positive numbers whose sum is greater than $1-2^{-7}$ 。 Thf a state of affairs would be indicated by a carry from the left hand numerical digit to the sign digit position. For an examples an attempt to form $2 x+2 y$ would be as follows:

$$
\begin{array}{r}
2 x=\frac{0 / 2101000}{+2 y=} \frac{0 / 0120110}{0 / 2011110} \\
\\
\frac{1}{0 / 0111110}
\end{array}
$$

a carry into the sign digit position
This occurrence is called an overflot since the sum hes over flowed and requires another numericel digit position. An alarm is sounded by the computer when such an overflow occurs.

Be Subtraction and Find-Around-Carxy

1. In accordance with the previous discussion of Section II the representetrons of $-x$ and $=y$ in the computer are

$$
-x=1 / 1001011, \quad-y=1 / 1100100
$$

where $t_{x}=0 / 0110100, t y^{=}=0 / 0011011$
It might be noted here thet tho negrtive of a mumber is represented In the computer by the complete complement of sid digits, including the sign digit
2. Subtraction of a number it pariormed by adding the negative of the number. Thus the operation a is replaced by $a+(-b)$. The addition of two numbers of which either or both are angative ife performed by a process known as end-around-oarey. The fact that thise process gives the correct result will first bs illustrated by asamples and then proved.
3. In the mad-around-carry process the sign digits are treated exactiy as if they were additional numerical digite, a oarry from the lafthand numerical digit place bsiag added in the sign digit place, but a carry from the sign digit place is taken around and added in at tho other ond in the right-hand numerical digit place.

4. Examplos of ond-around-arxy:

Using the numbers $x, y(x) y$) the vertous cases that may arise is the sdditiox of two numbers are exmplified as followa
(B) Soth numbere positve: $x \neq y$
(b) One muber negative, sum positives $x=y=x+(0 . y)$
(c) One number negative, sum negativs $=(x-y)=y+(-x)$
(d) Both numbers negative: $\infty(x+y)=(-x) \neq(-y)$

The possibility of overflow in the addition of negative numbers, which does not occur in these examples, and the possibility of a sero sum will be considered later.

The computer" s procedure in these four cases is as followss where an ond-around-oarry is indicatod by (1),
Case (a)

$$
\begin{aligned}
x= & 0 / 0110100 \\
y= & \frac{0 / 0011011}{0 / 0101111} \\
& \frac{0 / 0001111}{1} \\
x+y= & \frac{1}{0 / 1001111}
\end{aligned}
$$

Gnse (b)

$$
\begin{aligned}
& x=\frac{0 / 0110100}{(-y)}=\frac{1 / 1100100}{1 / 1010000} \\
& \frac{1 / 1}{1 / 0011000} \\
& x-y=\frac{110011000}{0 / 0011001}
\end{aligned}
$$

Case (c)

$$
\begin{aligned}
& y=\frac{0 / 0011011}{-x}=\frac{1 / 1001011}{1 / 1010000} \\
& \frac{1 / 11}{1 / 1000110} \\
& y-x=\frac{1}{1 / 1100110}
\end{aligned}
$$

Case (d)

$$
\begin{aligned}
& -x=1 / 1001011 \\
& -y=\frac{1 / 2100100}{0 / 0101121} \\
& \frac{(1) 1}{1 / 0101110} \\
& \frac{1 / 01011}{1 / 0102100} \\
& \frac{1 / 2}{1 / 0101000} \\
& \frac{1}{10000} \\
& =(x+y)=1 / 0110000
\end{aligned}
$$

It is easily verified that the velue obtained for $x-y$ is correct, and the values of $-(x-y)$ and $-(x+y)$ ars the complements of those already found for $x=y$ and $x+y$ 。
5. To prove the validity of the end-around-carry procedure let z be any positive muber less thet 1 which is represented by seven binary digits imediately following the binary point. Denote by \bar{z} the complementary positive number formed by complementing each of the seven digits of 2 . Then

$$
\begin{aligned}
z+z & =0.1111111 \\
& =1.0000000-0.000001 \\
& =1-2^{-7}
\end{aligned}
$$

This equation may be written in the form

$$
z+(1+z)=2-2^{-7}=\ldots-A
$$

The number $1+\bar{z}$, being greater than one, cannot be represented in the computer, but its digits are precisely those used in the computer to reprecent the negative number $-z$, if the sipa digit is included.
6.

Let x and y be two values of z_{2} and take $x>y>0$. Asbume also that $(x+y)<1$ to avoid overflow. The cases $b_{2} c_{2} d$ of parsgraph 4 will be considered in turn.

Cero (b)
The computer"s procedure in forming $x+(-y)$ with end-around-carry is equivalent to three successive operations

> (a) adding the nuaber $1+\bar{y}$ to x
> (b) subtracting $10.0000000=2$
> (c) euding $0.0000001=2^{-7}$
the last two operations being equivalent to the and-axound-carry. But from equation A for $z=y$

80

$$
\begin{aligned}
& -y=(1+\bar{y})-2+2^{-7} \\
& x=\bar{y}=x+(1+\bar{y})-2+2^{-7}
\end{aligned}
$$

This proves that the computer process produces the correct result for x - y provided that end-around-carry occurs. This mast be ou because from B

$$
x+\bar{y}=(x-y)+1-2^{-7} \geq 1 \text { if } x>y_{8}
$$

from which it follows that the addition of x and \vec{y} mast produce a 1 in the sign digit place, which with the sign digit corresponding to $-y$ mast produce an end-around-cariry.

Case (c)

Similarly the validity of the procedure for obtaining the negative sum $y+(-x)=-(x-y)$ is proved as follows. Equation A applied to the positive number $x=8$ gives

$$
\begin{aligned}
1+\overline{x-y} & =-(x-y)+2-\overline{x^{-7}} \\
& =y=x+2-2^{-7} \\
& =y+(1+\bar{x})-z^{-7}
\end{aligned}
$$

The digits of tae positive number $1+\overline{x=} \bar{y}$ are precisely the digits that the computer ought to obtain in order to represent the negative number $-(x-y)$ and the digits of $y+(1+\bar{x})$ are those that the computer actually does obtain, provided that there is no end around carry. In this cass sid-around-carry cannot occur because from equation C

$$
y+\bar{x}=\overline{x-y}<1 .
$$

Case (d)
Consfar finally the negative sum of two negative numbers $(-x)+(-y)=-(x+y)$. If $x+y$, 1 we have an overflow condition, which will be discussed in section C below. If $(x+y)<1$ equation A gives

$$
\begin{aligned}
1+\overline{x+y} & =-(x+y)+2-2^{-7} \\
& =\left(-x+2-2^{-7}\right)+\left(-y+2-2^{-7}\right)=2+2^{-7} \\
& =(1+\bar{x})+(1+\bar{y})=2+2^{-7}
\end{aligned}
$$

This shows that the computer will obtain the correct representaition of the negative number $-(x+y)$ because an ond-around-carry is produced by the two negative sign digits of ous and $-y$.

C. Qverilov.

1. It has already been explatned that, if the computer is trying to add two positive numbers x, y whose sum $(x+j \geqslant 1$, it must dotect the overflow and stop the computation. In formag the sums $x+(-y)$ and $y+(-x)$ thare is no danger of obtaining a sum whose magnitude $1 s \geqslant 1$, brit the computer, when trying to add two negam tive numbers (-x) and (-y) , must guard against the possibility that the negative sum $-(x+y)$ may bes $=1$. When $(-x)$ and $(-y)$ are belag added, with the end-around-carry, the sign digite are both l_{8} and their adition will leave a 0 in the elgn digit place. There mast therefore be a carry from the left-hand aumerical digits to give the If the sign digit place that will indicate that the sum is negative. The absence of this carry digit will indicato an overflow.
2. To prove this we notice that when the computer adds ($-x$) and ($-y$) an end-around-carry is immediately produced by the addition of the sign digits. The sum fomed by adding the numerical digits is therefore

$$
\begin{aligned}
\bar{x}+\bar{y}+2^{-7} & =\left(1-2^{-7}-x\right)+\left(1-2^{-7}-y\right)+2^{-7} \\
& =1-2^{-7}+1-(x+y) \\
& <1 \text { if }(x+y) \geqslant 1
\end{aligned}
$$

3. The overfiow control that the computer mast provide when it is adding two numbers is therefore as follows:

> Both numbers positive: - Overflow sienalled if carry occurs into the sign digit place.
> One number negative : = No action.
> Both numbers nefative: - Overfiow signalled if no carryoccurs into the sign digit place。
> D. Shifticig and Houndoff

1. Multiplication and division will both be accomplished by a combination of additions, shifts and complementing operations. It wll not be necessaty to specify the methode used in detail, but it is important to stipulate that the actual operations of multiplication and division will be carried out with positive numbers, any necessary complementing being done at the beginning and and of the process.
2. Shift operatione also will be performed on positive numbers. Thue if a negative number is to be shifted it is first complemented, then the complement is shifted and finally the result is complemested.
3. The operations of maltiplication and shift right produce digite in the 3 register and the content of tho accumulator may be rounded off by adding in a one in the right-hand place of the accumilator if the left-hand digit in the isme gister is a one. (This round off is optional in multiplication tut will always be carried out in shifting right.)
4. The oparations are so arranged that round off is only carried out on positive numbers. For example, in formine the rounded off product x. ($-y$) the machine calculates the full product $x y$ of the positive numbers x and y and rounds off this positive product before complementing to obtain the rounded off walue of $-x y$.
5. In a shfft right of a positive number the vacated dicit places at the left of the accumatar are filled with zeros and, after the round-off has taker place, the syafster is clearba. (Clearing means making all digits zero.) Thus, if

Thgineering Note E-2n:0 - 1
$x=0,0110100$, the process of shifting right three places is as follows. the τ indicates the begianing of the $\mathrm{BR}_{\text {。 }}$

```
Initial value of z 0/0110100
First stage of shift
Round-off effect
Result
0/0000110/100
\(\frac{1}{0 / 0000111}\)
```

If $\sim x=1 / 1001011$ is to be ahifted right three places, the first step is to complement, givilg x. The above procedure is then carried out, giving $0 / 0000111$, which is complemented to give the result $1 / 2111000$. There
$-2 \quad 1 / 2001011$
Complement
Shift right three places Round-off offect Shifted complament Complement back

0/0110100
0/0000110[100
1
0/0000111
1/1111000
6. As an exgmpls of a case in which round-off does not produce the addition of a one in the right-mand place of the accumulator, consider the procese of saffting x four places to the right, which is as follows:

Inttial value of x
Shift right four places Round-off fiffect Result

0/0110100
$0 / 0000011 / 0100$
$0 / 0000012$

For the negative numer m_{x} the procedure would be
Complement
Shift rigit four places
Round off effect
Complement back
$1 / 1001011$
$0 / 0110100$
$0 / 0000011 / 0100$
$1 / 1111100$

Fi Geres

1. In the alizve discussion we have assumed $0<x<1,0<y<18$ $(x=y) ; 0$, We now consider what happens when $x-y=0$, when $y=0$ and when $x=y=0$.
2. In the computer the number zero has two representations

$$
\begin{aligned}
\text { (a.) } & 0 / 0000000 \\
\text { and (b) } & 1 / 1111111
\end{aligned}
$$

She sets of digits (a), (b) have the same meaning. However, as they look difforemt on the computer it is reasonable to rofer to them as positive zero and negative zero.
3. It will often convenient in a computation to use the algu digit of some intermedate result to determine which of two alternative courses the computer shall follow. We must therefore considar carefuliy whether a zero occurring during the course of a computation will appear as a positive or a negative zero.
4. It bas been remarked that subtractions are replaced by additions of complements, and that multiplications and divisions are performex by a series of additions, complementings and shifts. Now the sun of a number and its complement, i.e., $x+(-x)$, appears on the computer as the negative zero. For example

$$
\begin{aligned}
x & =0 / 0110100 \\
-x & =1 / 1002021 \\
0 \Rightarrow x-x & =1 / 2111111
\end{aligned}
$$

(Nate that in the digcussion of case (b) in section A equation B gives $x+\bar{x}=1-2^{-7}$ if $y=x$, showing that the addition of x and \bar{x} eives no carry into the 81 gn digit place, so that no end-aroundbarry takes place.) In particular the result of adding a positive zero to a negative zero is a negative zero.
5. The only other way in which zero can arise by addition is when two pesitive zeros or two negative ones are added together. These can give

$$
\begin{aligned}
0 & =0 / 0000000 \\
0 & =0 / 0000000 \\
0=0+0 & =0 / 0000000
\end{aligned}
$$

and

$$
\begin{aligned}
& 0=\frac{1 / 1111111}{1 / 111111} \\
& 0 / 0000000 \\
& 0=0+0=\frac{(121111111}{1 / 1111111} \quad \text { ond-around-carry }
\end{aligned}
$$

It appeare therefore that a subtraction can only give rise to a positive zero when both mumbers involved are zero. In fact, provided $x \neq 0$ we can be sure that the result of the subtraction $\pi=x$ wll be a negative zero.

The occurence of positive and negative zeros in multiplica blon and divigion if rot fo imyortant and will wit be discussed. It is perhaps worth romarizing that a shfft right Lesves a. negative zero unchanged, bocause complementing occurs before and after the actual shift。

We have now examined what happens in the four cases of eddition when $x-y=0$ and when $x=y=0$. Consider now $x \neq 0$ and $y=0$. It followe from the investigaticns of cases (a) and (c) that, if y is represented by the positive zero, the addition of y to a non zero number has no effect on that miaber. Also, if In the investigation of cases (b) and (d) in sect on \bar{B} we write

$$
\begin{aligned}
& y=.0000000 \\
& \frac{y}{y}=.1111111 \\
& y+(1+\bar{y})=2=2^{-7}
\end{aligned}
$$

It $10110 w s$ that the addition of negative zero to a noa zero number does not change that mamber.

Section V_{2} Codes of a More Compler Nature

A. Codes VII and VIII: Further Illustrations of Shifting

1. The round-off effects of the $s \underline{r}$ order were illustrated in paragraph D of Section IV. A particular use of the sl order will now be demonstrated. (Refer to qualitative discussion of the order in Section Io) Assume the original contents of the $A C$ were:

$0 / 000000000100000$

with the BR cleared (filled with zeros). If the first order is $\$ 1.10$ the AC changes to:

$0 / 000000000000000$

where wa have lost a 1 since any digite shifted out of acl are lost。 (Note: because the BR was originally cleared we have no roundmoff at AC15.) If we now follow with a 8110 order we are left in the $A C$ with:
$0 / 000000000000000$
It is inportant to note that a $9 \mathbf{O} 0$ or $\mathbf{1} \mathbf{O}$ order on the original contents of the AC waild pot produce this resuit. but rather
$0 / 000000000100000$

- Code VII, it will be nated. counts from 0 to 31×2^{-15} in stepg of 2^{-15}, each count appearing in register 25 . After 31×2^{-15} is reached the court begins agsin at 0

3. Code VIII also perform this cycle count but does so using fewer ordert and storage repisters. This code emoloys the shifting scheme show in (2) above so that when the csunt reaches 32×2.15 (0/000000000100000) the si, 10 and sr 10 ordere clear the $A C$.

B. Modification of Orders

1. To facilitate the coding of more complex problems it becomes destrable to make use of several operations and modifications that may be performed unon oxders. These overations and modifications are possible because of the fact that in the machine the orders have the same ohysical characteristics (26 difit binary numbers) as the numerical quantities. (Orders and numbers ap ear different when witten on baper due to the oblaue stroke used to senarate the two garts of ach.)
2. Suppose that the order under consideration is ce. 183. This is represented in a register as

10000/00010110131

where 10000 is the binary coded form of $C A$ and 00010110111 is the binary equivalent of 183. The result of adding $+2-15$. represented by $0 / 00000000000000$. to ca 183 gives (neglecting the oblique strokes)

$$
\begin{aligned}
(\text { ea 183) } & =1000000010110111 \\
+\left(+2^{-15}\right) & =\frac{0000000000000001}{1000000010111000} \\
& =10000 / 00010111000 \text { of ca } 184
\end{aligned}
$$

Xhus the addition of 2^{-15} hes inersased the address section of the order by 1 without affecting the operation. The coding of this modification of the address nection would be as followa, if it is aseumed that regiator 205 contafned the order ca 283 and register 958 contained $+2^{-15}$.

```
ca }20
ad 958
ts .o- (to where the modified order is destred)
```

It is sastiy seen that an axtension of the above method will permit the rodification of addrese asctions of orders by othar values than 1.
3. As an other example of operations with orders consider the affect of the followiag sequance of oxdere:
ca 350
84194
where regietar 350 containg the order ca 184 ($10000 / 00020111000$) and registar 194 contains ca 183 (10000/00010110111):

Ca 350 puta suto the AO 1000000010211000
su 194 add $=\left(\mathrm{ca}\right.$ 283) or $\frac{0111111101001000}{1111111111110000}$
carry
$\frac{1}{0000000000000001}$ or $+2^{-15}$
4. In general the subtraction of two orders conteining the same operetion sections regults only in the difference of the address sections of those orders multiplied by 2^{-15}. In viow of the remarks in to of soce tion IV, if both orders are equal the result of the above operation is a negative sero.
5. The above mentioned operations and modifications of orders are used extensively in coding and will be illustrated in the codes which follow.

C. Codes IX and X: Cyclic Programs

1. One of the desirable aspects of Whirlwind I is the feature of modifications and operations which the computer can perform upon its orders. When this feature is coupled with the use of the co (∞) order the machine is able to perform cyclic programs in which the same orders or slight modifications thereof are used over and over.
2. The use of cyclic programs permitis a good deal of saving in computer storage space, this being illustrated in a comparison of Codes IX and X. In these coden due to the large number of storage registers involved literal coefficienta along with numbers are used for address designations. An A is used to refer to the registers containing orders whereas $\underset{B}{ }$ is used for numerical data registers.
3. Code IX ovaluaten a polynomial in a lineax fachion using the process indicated in Section III paragraph B2. The code uses $2 x+3$ orders. Code X al eo eveluates a polynomial using a cycle to repsat the sinilar sequence of orders. This necessary sequence in Code X_{0} orders A3 through 46 , have their address sections changed to permit haadling the various a coelficients. The subtraction of two orders is used to give the necessary $+o r=$ quantity to permit regeneration of the cycle. Code X uses 15 orders and thus if $n \cong 6$ Code IX would be used. for $a>6$ Code x would be more economical.
4. It should be aoted that a cyclic code always requires a longer operating time (more orders are carried out) than a linear code due to the modification of orders during the cycles: in sither type of code, however. the amount of useful arithmetic operation carried out is the same.
5. A particular advantage of tha cyclic code in such a problem as polynomial evaluation is what might be termed the elteration possibility. By this term wo refer to the ease by which a code is altered to extend ite range of operation, whether it be the change of the degree of the polyromial formed or the extent of an iteration. In our axample if the degrese of the polynomial were increased from the value a Code ix would require ouly the change in the addrees section of order A1: in both codes the same aumber of additional constants must be added.
6. A primary requirement of a cyclic code is that it be self. resetting. By this one means that if the address sections of orders are modified in the progress of a program these addresses must be restored. to their initial values before the program is used afain. This resetting can be done either as the progran begins or as the program is completed. Code X is reset at the beginning of the program with orders Al and A2.

D. Code XI: Scale Factoring and Overflow

1. Because of the restricted range of numerical quantities with which the computer can work $\left[-\left(1-2^{-15}\right)\right.$ to $\left.+\left(1-2^{-15}\right)\right]$ wo are feced with two requirements:
(a) Most numerical quantities before they can be introduced into the computer will have to be scale factored, that iss, multiplied by an appropriate number to bring them into the computer range.
(b) Particular care must be takers in a computer program to ensure that ao overflow occure as the result of arithmatic oparations.
2. Code XI illustrates a simple exapie of addition in which the necessary acale factoring has beon done before the quantities are inserted into the computer atorage and in which the progran is desigaed to prevent overflow. The problen is to add the $\underline{\underline{n}}$ anglos $\theta_{2} \theta_{2} \theta_{3} \cdots \theta_{n}{ }^{0}$ where each argle is expressed in radian measure and each has a value such

3. Due to the stated range of θ_{1} we are agsured that $\frac{\theta_{1}}{4 \pi}$
(for $1=1,2$ mem 2) 118 within the accepied computer range and it is these values which are stored in registere 16 through $15+n_{\text {. Despite }}$ the initial scale factorine of those angios wo forseo that the totel sum of these scale factored angles may excesd the computer range uniese we add the $\frac{C}{4 \pi}$ is and cast out all multiplas of $I / 2$, these corresponding to multiples of $2 n$ in the A's.
4. The procedure used in thit code is to cast out a $1 / 2$ each tine it appease in the aumathou by the une of a 31 order followed by a gr 1 order. These sl and Er orders keap the sumation below $1 / 2$ at all times, and since all the remaining angular quantities to be added are less than $1 / 2$ as a recult of the scale factoring. Wo will not get as overflow.
5. The repeated sumations and use of the gI and crio orders augcested the use of a cyclic code. The determinstion of the ond of the sumation is made by a subtraction of orders, the cycle ending when the difference of the two orders produces $+2-15$. The final result of the sumanation appears in register $17+n$.
6. The reset of the addrese sections is carried out by orders 2. 2, 3, 4, and 5.
7. It is important to remark upon the previouely mentioned point that shifting digits is similar to multiplication by powers of 2. Reference to the description of the orders in Section I should indicate an important difference between the shifting and multiplication orders as regards round-off considerations.

s. Code XII: Finding the Greatest of A Set of Numberis

1. Code XII provides another illustration of the manner by which the computer can change its own control instructions during the course of a program.
2. The numbers $1^{\prime \prime}$ ' $2^{\prime \prime}$-mme n^{n} ell of which axe positive and
 finds the greatest of these aumbers. say. M^{0} and stores it in B4. If two or more equal numbers are greater than all the other numbers of the set. the progran stores the first of these in B4.
3. The program depends on changing the addrese aections of the orders A2.1 and AZ. 2 in such a manner that for the successive values 2. 3. $4 \cdots-\infty$ of m_{0} the number in is compared with the number that has already been found to be the greatest of " $20 \times 2 \times m=y^{\circ} \mathrm{m}=0^{\circ}$ This number will be called the temporasy maximum.
4. The procedure of the computer is sindlex to that of a man ruaning his eye down a set of xumbers. The man would remenber the firat number unidl he reaches a greater number, which he would thon remomber until he reachos a atill greater number, and so on. In fact the man come pares each number in turn with the greatest of the numbers that ho has previously examined. In Code XII the computer does the same thing except that it reraembers the address at which a number is stored rathar than the number itself.
5. The contral part of the code is contained in Sections $A A^{2}, A 3$. and. A4. The first section A. reset the orders which may bave been altered
during a previous application of the program. Section 45 deteamines is all the numbers have been doalt with. If not the computer returns to $A 2^{\circ}$ if all numbers have been dealt with, section 16 puts the maximum number into B4.
6. The eight operations of sections $A l$ and $A 6$ are used only once in a program; the eight operations of A2, A4, and A5 are used only once for each of the numbers $x_{2}, x_{3} \cdots x_{n}$. The 2 operations of A3 only occur when the number being examined is greater than all numbers previously examined. The total number of operations lies between $8 n$ and $10 \mathrm{n}-2$. Assuming an average speed of 20 microseconds per operation and taking $n=1000$, the time required to find the greatest set of 1000 numbers by this method is bstween 160 and 200 milliseconds.

Section VI. Coding Notation and Procedure

A. Jotation for Coding

1. A program is a sequence of operation by which the computer carries out a particular process. The code for a program is the set of instructions that must be put into the computeris storage to enable it to carry out the program. Thus a code is essentially a statement of the initial content of the registers that are to be invoived in the program, tbat is, the content immediately before the program starts. These registers are of two kinds:
(a) Action registerg, from which the computer control obtains its instructions.
(b) Data registers, which are used to store other information that may be needed during the program.
(This distinction applies only to the way in which registers are selected for use in a particular program. Any register in the computer"s storage can bs assigned for use aither an an action register or as data register:)
2. The content of registers of both kinds may be changad during the program. For example, a particular data register may contain an ordar which may be transferred to an action register as the result of a comparison operation. The coder who is drawing up a code will have to keep track of the content of all the registers at all stages of the program, but the computer must be given the initial content, so the code must show the initial content only. (A distinction is dram bere between the code itself and any explanatory notes that may accompany a witte up of the code。) In many cases part or all of the initial content of a register may be immaterial because the content is going to be suppliod during the course of the program before that register is used. In writing out a code adash is used to indicate this stats of affairs. (Note the distinction botween "ca-m" and "ca zero*。)
3. In Section II it was explained that in discussing coding the use of the word register implied an address. Whan we refer to the register containing a particular muber or order wo are usualiy, if not always. thinking of the address of the register though for the sake of brevity of language we do not mention the word addresg. Sinilarly when we talk about the content of a register, we are thinking of the register as identified by an address. This is reflected in the following sbbrepiations which are commony ussd:

$$
\begin{aligned}
& \text { RC }=\text { (address of) Register Containing---- } \\
& \text { CR-m }=\text { Content of Register (whose address is --) }
\end{aligned}
$$

4. The addresses that will actually be used when \& code is put into the computer are not usually knows when the code is being drewn up, so symbols are used to dsnote the actual addresses. To obtain a conutoe, whitten record of a code it is best to represent the addresses of the action and data registers by a set of consecutive serial aumbers. This whil be called the serial notation.
5. It would be naturai to start these serial numbers at b, and for the present this should be done. However, it may be decided to allot some of the registers of the computer to the storage of certain universal constants, and in particular registers with addresses 1 to 15 may bs sllotted to powers of 2 , so that for $a=1,2, \ldots 15$

$$
C R n=2^{-(16 \sim n)}
$$

If this is done the serial numbers will have to be chosen so that they do not contaln numbers that are addresses of registers allotted to epecial purposes. At the end of the action registers of a code a serial number should be reserved for an sp order that will switch the computer to its next job.
6. In what follows a standard notation is described which makes it easier to follow the execution of the program. This standard notation is also more conventent than the serial notation for use whon a code is belng prepared.
7. A flou diagram is a series of statements of what the oomputer has to do at various atages in the program. These statemonts are wititen in boxse and the boxes are joined by lines of flow whith show how the com. puter passes from on stage of the program to another. When the procedure of the computer after a particular btage depends on a cp $(-)$ order, the statement in the corresponding box is so worded that the lines of flow smerging from the box can be labelled "yes" and "no". When a code has been completely worked out the main object of the flow diagram is to make the main structure of the program clear. During the process of working out a code the flow diagram, by separatiag the program into stagos, makes it easy to introduce alterations as coding procesds.
8. In the process of solvag a problen the first tantative step 18 to divide the program into a few main stages and to draw a flow diagram whose boxea will oontain broad statements of what the computer must do. These main stages are denoted by $A 1, A 2_{3} A 3_{3} \ldots$. Fach of these stages is thon further analysed and, if necessary, is divided into substages, represented by boxes in a more detalled flow diagram. The gubstages into which Al is subdivided are denoted by $A 1,1, A 1,2, A 1,3, \ldots$ and similarly for $A 2, A 3, \ldots$ If nscessary, some of these substages are further subdivided into Al i 1. . Al. 1. 2, $\ldots .$. A2.1.1, A2 $1.2, \ldots .0$, tc. Only experience will show how much subdivision is desirable, but it should be remembered that the two main objectives are to aake the structure of the program olsar and to make it easy to introduce alterations as coding procesds.
9. It is often desirable to introduce more subdivisions in the working stage than will be used in the finel write up of the solution. When a problem has been completely coded and the code is written out in serial form the serial numbers representing the action registers which correspond. to the various boxes of the flew diagram sbould be written in the boxes.
10. An axception to the notation indscated above may be made in the case of auxiliary subprograms that are not to be written out in the solution. These gubprograms can be denoted by $\mathrm{Aa}_{, ~}^{\mathrm{Ab}}, \ldots, \ldots$ and their stages and substages by symbols such as Aa 5.2 .
11. The action registers contain the program orders. In the standard notation they are grouped into blocks corresponding to the stages into which the progrem is divided in the flow diagram. The addresses of the registers that contain the suacessive program orders that are required for stage A3.2 will be denoted by $A 3.2 .1, A 3.2 .2, A 3.2 .3, \ldots \ldots$, whit ch will be called inder numbers. As was explained we shall refor to "the register $A 3.2 .2^{\prime \prime}$ 。 although strictly peaking the index number A3.2.2 represemts the address of a regism ter. No confusion will be caused if wa refer to the order in register A3.2.2 simply as "the order A3.2.2".
12. A bystem of index numbers is also needed for data registers. brit coding probloms differ moch in their oature and complexity that it esems undesirable to lay down rigorous rules for the representation of the adreses of data registars. It seems reasonable to suggest that oaly the isters B and C should be used, and that any furthor subdifisions into blocke of regieters of different types that may be necessary should be achieved by a notation similar to that ued for action registers. In simple problens it may be desirable, at any rate at the working stage, to introduce no sub divisione but merely to allot temporary index numbers, $B 1, \mathrm{H}_{\mathrm{a}}, 83, \ldots$ to sach data register as the need for th arises. We shall refer to registers grouped under the lettors B and C as B-clase and $C_{-c l a s s ~ r e g i s t e r s . ~ A c t i o n ~}^{c}$ registers may be called A-cless registere. In subprograms denoted by Aa, Ab, \ldots, the data registers should be donoted by $\mathrm{Ba}, \mathrm{Bb}, \ldots$, and $\mathrm{Ca}, \mathrm{Cb}, \ldots$
13. One subdivision that will often be dosixeble is as follows:

R-akass registers

Data that will differ in different applicetions of the program, possibly furthor subdivided into

B1. Input and output data.
B2. Data dorived for use duriag the program.
Coclana rogiaters
ryxed data used for ali applications of the program, posaibly further subdivided into
Cl. Universal constanta stors in fixed fegistoro.

C2. Othar constants.
14. Other subdivisions that may sometimes be desirable are
(a) The distinction between
(1) Data or registers used in some other program that is on the computer at the same time
and
(2) Data or registers that are used only in this particular program
(b) The distinction between
(1) Date registers whose addresses occur in the adaress sections of action registers in their initial state at the beginaing of the program.
and
(2) Those mose addresses are derived during the progrem (as happens in the case of registers containing tabu lated values of a function)
15. The form for writing out a code has been described. In the standard notation the addresses will be indicated by the index mumbers of the action and data registers. For action registers the explanatory notes, which are to be given in a separate column gn the right, contain statements of the following types:
(a) The content of $A G, B R$ or soms storage replster resulting from the order in question. ror a cycle the explanatory notes should refer to what happons when the cycle is being performed for the mith time. For a subcyele in a cycle the explanatory notes should refer to what happens when the subcycle is being performed for the k-th time as part of the m-th performance of the cycle.
(b) References to the origin of
(1) the address section of an order (11) the operation section of an order (111) the numerical quantity contained in a data register

When any one of these is changed during the prograve
(c) References to sp or ep $(-$) orders that cause the control of the computer to jump to the order in question.
16. In the tabulation of the initial content of data registers explanatory notes should be added on the right in the aase of any register whose content is changed during the progrem showing the various successive contents of the register and the orders from which they are derived.
17. The write-up of a program should include orders to cover any restoration that may be necessary to ensure that at the end of a particular application all registers are correctly set up for another application. (The need for such restoration orders at the end of a program will usually be avoided either by the insertion of suitable orders at the beginning or by including in the input data that is supposed to be supplied before the program atarts the conteat of the registers that have to be dealt witho)
18. The write-up of a code should include statementis of
(a) The position in storage of input and output data.
(b) The total number of registers used.
(c) The total number of operations to be performed.
(Note that in calculating the total number of operations to be performed allowance must be made for the number of times that the computer has to go through any cyole that may occur in the program. In many cases it will not be pasaible to state a dofintte number, but only maximum and minimum numbers.)
19. The general fiom of the tabulation of a code and the index numbers used to represent the addresses of action and data registers have been discussed. In the standard notation, when an entry in the tabulation of the code represents an order, the second part of the second column contains the index number of the register to which that order applies. During the early stages of work on a problem, or for explanation of a code on a blackboard, it may often be more convenient to indicate in this place the content of the register referred to, rather than the index of thet replster. For this purpose the symbol RC, will be used. Thus if Bi? contains 2^{-15} we mey write

$$
\text { ad RC } 2^{-15}
$$

Instead of ad BI7.
20. In the standard notation the code itself is distinguishad from the explanatory notes. The code shows only the inital content of the action and data registers, any indication of changes in content during the course 0 : the program being confined to the explanetary notes. In the working notation the symbol $R C$, when it is used in the address section of a program order, indicates the (address of the) register whose content at that particular stage of the program is a certain quantity, although the initial content of that register may have been something else. In fact, this working notation allows explanatory matter to get into the columne which in the standard notation are strictly reserved for the code itself.

B. Example of Coding Procedure

1. This section starts wh th provisional analysis of a problem leading to a first attempt to write out a code. This first attempt is then criticized and a number of improvements are mede before the code is written out in a finished form.
2. We axe given a set of in tabulated values of $f(x)$ for the values $x_{1}, x_{2}, \ldots x_{n}$ of the variable $x_{\text {. The }}$ differences between successive tabular values of x are all equal to a positive constant h, so

Further

$$
\begin{aligned}
& x_{1}=x_{1}+(1-1) h_{0} \\
& -1<x_{1}<x_{n}<1 .
\end{aligned}
$$

3. It is supposed that during the course of computation two numbers a and b are derived by the computer, and a subprogram is wanted to find $\int_{a^{\prime}}^{b} f(x) d x$, using the trapezoidal rule which gives the formula

$$
\int_{a}^{b} f(x) d x=h\left[\frac{1}{2} f(a)+f(a+h)+f(a+2 h)+\ldots+f(b=h)+\frac{1}{2} f(b)\right]
$$

4. We can presume that a and in are known to be within the range convered by the tabular values x_{1}, x_{2}, ... x_{n} and further thet $(b-a) \frac{1}{2} 2,89$ that there is at least one term inside the bracket of the formula in addition to $\frac{2}{2} f(a)$ and $\frac{1}{2} f(b)$. We are also told that $\left|f\left(x_{1}\right)\right|<\frac{1}{a}$ for all x_{1}, so thera in do danger of overfiow if we simply add the tarms $\frac{1}{2} f(a), f(a+h), \ldots$, $\frac{1}{2} f(b)$, since the total number of tarme to bedded together is lass than 쓰.
5. We shall actually calculate the integral from the tabulat value nearest to a to the tabular value nearest to b, neglecting the errors thereoy introduced at the ends of the range of integration. We shall not distingulsh bstween thes values and the exact values of a and b as derived by the computer.
6. We will first lay down a stralghtforward mathod of dealing with the problom, roprosenting the mathod by a flow diagram and allocating blocke of A-class registers to the successive stages of the flow diagram. We shall then write down a code stage by stage, allocating B-class registers as the need for them arises. In this problem it is not necessary to subdivide the B-class registers into groups and thers is no need to introduce a C-ciass. We shall need n consecutive B-class registers for $f\left(x_{1}\right), f\left(x_{2}\right) \ldots, f\left(x_{n}\right)$, but we can add them at the end of the list of B-class registers required for other purposes. The allocation of Beclass registers, which is built up during the process of codings is show in paragraph 15.
7.

A. 1
A. 2

23

A 4
A. 5
A. 5

8. Stage One Suppase we have (2-15 RC fix) etored in E 1 。 (This number may not be fixed until the program in getually put on the machine.) Then since the successive tabulatad values of $f(x)$ are storad in consecutive registers we have the equation
$\operatorname{RC} f(a)-\operatorname{RC} f\left(x_{1}\right)=\frac{a-x_{1}}{b}$
where the right-hand side must be rounded off to the nearest intager. This gives

$$
z^{-15} R C f(a)=2^{-15} R C f\left(x_{1}\right)+\frac{2^{-15}}{h}\left(a-x_{1}\right) .
$$

We shall have to make sure that the camputer in callulating $\frac{2^{* 15}}{\text { b }}$ (a-x) produces the correct round off, but we shall leave ihis point for the prasent. It will be discussed in paragraph 19 and 20. We store as $\frac{2^{-15}}{h}$ and $\frac{2^{-15} x_{2}}{h}$ in $B 2, B 3$ and $B 4$ and procesd as f01!ows:

$$
\begin{aligned}
& \text { A } 1.1 \text { ca } \mathrm{RC} \text { a } \\
& 2 \operatorname{mx} \operatorname{HC} \frac{\mathrm{z}^{-15}}{\mathrm{~h}} \\
& 3 \text { su RC } \frac{e^{-15} x}{h} \\
& 4 \text { ad BI } \\
& 5 \text { td A 3.1 } \\
& 6 \text { ad RC } 2^{-15} \\
& 7 \text { td A } 4.2
\end{aligned}
$$

9. Stage Two.

$$
\begin{aligned}
& \text { A } 2.1 \text { ca RC'b } \\
& 2 \operatorname{mrg} \operatorname{RC} \frac{2^{-15}}{h} \\
& 3 \text { su RC } \frac{2^{-15} x_{1}}{\mathrm{~h}} \\
& 4 \text { ad B } 1 \\
& 5 \text { ad A 3.2 } \\
& \mathrm{AC}: \mathrm{b} \\
& \text { A.C: } \frac{2^{-15} b}{h} \\
& A C: \frac{2^{-15}}{h}\left(b-x_{h}\right) \\
& A: 2^{-15} R C f(b) \\
& \text { A 3.2:al RC } f(b)
\end{aligned}
$$

10. Stage Thres.

$$
\begin{aligned}
& \text { A } 3.1 \text { ca RC } \mathrm{f}(\mathrm{a}) \\
& 2 \text { ad } R C f(b) \\
& 3 \text { 3 } 1 \\
& 4 \text { \&8 B? } \\
& \text { Iritially cam } \\
& \text { Digilis from A } 1.5 \\
& A A_{0} f(a) \\
& \text { Initilally adm- } \\
& \text { Digita from A } 2.5 \\
& \mathrm{~s} i: f(\mathrm{a})+\mathrm{f}(\mathrm{~b}) \\
& A C: \frac{1}{2} f(a)+\frac{1}{2} f(b)
\end{aligned}
$$

11. Stage Four: In the cyclic process we want to add f(a+h), $f(a+2 h)$.o. successively, so we need an order cq $R C f(a+m b)$ or alternatively ad $R C f(a+m h)$, whose digits will bo facreaseck one in bach cycle 。 We want to end the cyclic process after $f(b-h)$ has ten added, when we shall. have obtained the required sum

$$
\sum=f(a+h)+f(a+2 h)+\ldots+f(b-h)
$$

This suggests that wo should do the increasing after the addition and use ad RC $f(b)$, which is in. A 3.2 , for the comparison which will end the cycles. Consequently we use ad RC C $f(a+m a)$ in preference to ca RC $f(a+m h)$ an the order whose digits are to be increased. At the beginning of the first - - in this have been introduced for lin is purpose. The successive partial sums \sum and the final sum \sum are put in B 8, whose initial content must be zero in the following code the descriptions refer to what happens during cycle m_{i} the cycle during which $f(a+n h)$ is added to the partial sum $\sum_{m} m_{m}$ to five \sum_{m} (In the first cycle \sum_{-1} s the initial content of $B 8$, within zero.
12. Stage Pour
A. 4.1 ca is 8
2. ad $R C f(a+m h)$
3 48 B8
4 CA A 4.2
5 ad RC 2^{-25}
6 td A 4.2
7 Ca A 3. ${ }^{7}$
8 au A 4.2
9 Cp A 5.1
10 sp A 4.1
40: \sum_{m-1}^{∞}
initially ad -
Pirgt digits from A. 1.7. giving
ad $R C f(a+h)$
Digit changed by A 4.6
sc: \sum_{m}
B 8: \sum_{m}
soiad PC[f(a+mh)]
$A C: a d \quad R C i[a+(m+1) b]$
A $4.2: a d$ Ref $[a+(m+1) h]$
$A C$ ad $R C I(b)$
Content of A 4.2 was changed by A 4.6 ,
and 18 now ad $R G f[a+(a+1) h]$.
$A C: 2^{-15}[b-a-(m+1) h]^{[}$
Content of $\mathrm{AC}>0$ until last cycle
when $a+(m+1) n=b$ and -zero pear:
in $A C^{\circ}$.
Another cycle until $\sum 18$ obtained.
13. Stage Five.

$$
\begin{array}{cc}
A 5.1 \text { Ca B } 7 & A C: \frac{1}{2} f(a)+\frac{2}{2} f(b) \\
2 \text { ad RC } & A C: \frac{1}{2} f(a)+\frac{1}{2} f(b)+\sum \\
3 \text { mr RC b } & A C: \int_{a}^{b} f(x) d x \\
4 \text { CB B9 } & \text { B } 9: \int_{a}^{b} f(x) d x
\end{array}
$$

14. Stage Six. For this final stage we look through the ts and the ed orders and find that the content of registers A 3.1, \& 3.2, \& $4.2, B \%_{2}$ B 8, B 9 have been altered during the program. Of these the only one that needs to be reset is B 8, which must be reset to zero. For this
$\begin{array}{rlll}\mathrm{A} 6.1 & \mathrm{Ca} & \mathrm{RC} \text { zero } \\ 2 & \text { ta } & \mathrm{B} & 8\end{array}$
AC:zero
B 8yero
15. Allocation of B-class Registers.

B 12^{-15} RC $f\left(x_{1}\right)$
2 a
$3 \frac{\frac{2^{-15}}{h}}{3^{-15} x_{1}}$
$5 \quad 2^{-15}$
6. b
$7 \quad \frac{1}{2} f(a)+\frac{1}{2} f(b)$
8 Ind tially zero
Then $\sum_{1}, \sum_{2^{8}} \ldots$ to final \sum
$9 \int_{a}^{b} f(x) d x$
10 h
11 zero.
$B 12$ to $\mathrm{B} 21+\mathrm{n}$. $\mathrm{f}\left(\mathrm{x}_{1}\right)$ to $\mathrm{f}\left(\mathrm{x}_{\mathrm{in}}\right)$
16. We IIrst look at the B-class registers for chances of combinam tlons and sae that we can put $B 7=B 9$ saving a register. (A)tarnatives of this type will involve renubering the date registers bsfore the fingl write up.)
17. Secondly, it appears that after obtaining $\frac{1}{2} f(a)+\frac{1}{2} f(b)$ in $A C$ by order A 3.3 we could use A 3.4 to transfer to B 8 1nistead of ${ }^{2}$ B 7 This would mean that during the cyclic stage the content of 38 wovld ban $\sum_{m}+\frac{1}{2}[f(a)+f(b)]$ instead of \sum_{m} The inftiel content of $B 8$ need no Longer be $29 \mathrm{TO}_{8}$ so stage stix can be dropped, and one order can be saved in stage five. 87 is no longer needed, but we were already proposing. हo combine this ragister with B 9. However, there is no loager any objection to combindag B 8 with B 9. Formerly the restoration of B 8 to zero in A 6.2 prevented this combination.
18. It is worth pointing out that is general it will be better To do any restoration work at the beginaing of a subprogram rather that at the and, because this allows the Bmalass registers which have to be rastored in a particular aubprogram to be used for other purposes in other parts of the whole program.
19. Another saving can be made by improving the techaique for finding $f(a), f(a+h)$, etcs, in the tabulation of $f(x)$ It will nearly always be the case that when a function $f(x)$ is tabulatad for equidistant values of x over a range including $x=0$, one of the tabulated pelues af $f(x)$ will be $f(0)$. If this is the case, and if $f(0)$ is stored in the register whose number is k, than $f(a)$ will be in the register whose number
$i s k+\frac{a}{b}$, whether a is positive or negative. Even if the range of
abulation does not include zero (as would happen if both x and x_{n} were Jo) we can assign a number k which wold be the number of the register containgng $f(0)$ if the range of tabulation were extanded to include zero, although in this case the register whose number is k would not actualiy be used to contain a tabular ontry. With this assumption ws can stor

$$
2^{-15} \mathrm{RC} f(0) \text { in } 11 \text { and obtain }
$$

R fif $f(a)$ by the aquation

$$
R C^{\prime} f(a) \propto R C f(0)=\frac{a}{h}
$$

instead of

$$
R C f(a)=R C f\left(x_{1}\right)=\frac{a-1}{h}
$$

This gaves orders A 2.3 and A 2.3 as well as B \& as it is no longer neceasary to store

$$
\frac{2^{-15} x_{1}}{b}
$$

20. Return for a moment to consider the round off referred to $1 \times \mathrm{paxagraph} 8$. As bas just been adid the rarage of tabulation will nearly el ways be such that for some integral. value of λ

$$
x_{1}+\lambda_{1}=0
$$

This means that $\frac{x^{2}}{h^{2}}$ an integer so that the value of $\frac{2^{-15} x}{l a}$ that is stored in B 4 is the exact vaiue of this quantity. If a is not a tabular velue the number $\frac{a}{h} 18$ not an integer and the order A. 1.2 produces a rowadeoff to

$$
2^{-15} \text { (nearest integer to } \frac{a}{h} \text {) }
$$

In this case tharefore the ordars A 1.3 A 1.4 do laad to the register containing the galue of $f(x)$ for the tabular value nearest to a Bowevers if $\frac{\pi}{h}$ is not an integer; the combination of the round=ofi in $\frac{2^{-15} x_{2}}{h}$ and $\frac{2^{-1.5}}{h}$ may laad to the wrong Talue of $\frac{2^{-15}\left(a \cdots x_{1}\right)}{h}$ Pox example, if $\frac{x^{2}}{h}=11.6$, $\frac{a}{h}=14.4, \frac{a-x_{1}}{h}=2.8$, the correct roundmofi for $\frac{2^{-15}\left(a-x_{1}\right)}{h}$ would be $\left.(3)^{2}\right)^{-15}$, but the computer would obtain (a) 2^{-15}. This error is callsed by scaling down $\frac{a}{b}$ and $\frac{x}{b}$ before the subtraction. The exror could be minimized as follows Suppose p is the integer such that $2^{-(p-1)} \leqslant n<2^{-(p-2)}$. We could then gake the computer calculats

$$
\frac{2^{-p}}{h_{1}} a=\frac{2^{-p}}{h_{1}} x_{1}
$$

Without danger of overflow, and could then shift right $15=p$ places to abtain $2^{-15}\left(a-x_{2}\right)$. Shis would Involve storing $\frac{2^{-p}}{h}$ and $\frac{2^{2 p} x_{j}}{h}$ ingtead of $\frac{2^{-15}}{h}$ and 2^{-15} and vould add one order to the progrem. Howevers as has been said
above, $\frac{\mathrm{X}_{1}}{\mathrm{~h}}$ will nearly always be an integer so that this complication will be unnecessary.
21. It would be possible to save the order A 1.6 by altering stage four so that the order ad $\mathrm{KC} f(a+m h)$ has its digits increased before it is used, going through the cycle once more to add $f(b)$, and correcting this by calculeting $\frac{1}{2} f(a)-\frac{1}{2} f(b)$ in stage three. This, however, whole saving one order, would involve the additional operations of the extra passage through the cycle, which in almost all cases would more than counter= balance the saving.
22. A very desirable place to effect a saving of orders is within a frequently repeated cycle. The saving of a single order in the construction of a cycle actually results in a multiple saving of operations due to the repeated use of the cycle. Although the saving of one order in a cycle which is traversed n times appears first as a saving of one storage register, it manifests itself as a saving of n operations with the corresponding economy in time. Examining the end of stage four we notice that the sp order is the one which is used to produce a repetition of the cycle whereas the $\mathrm{cp}(-)$ order comes into use only when the cycle is to be discontinued. We can eliminate the sp order by changing $A 4.7$ to read cs $A 3.2$, A 4.8 to read ad A 4.2 , and A 4.9 to read $\mathrm{cp}(\infty)$ A 401 . The effect of these changes would be to produce the necessary negative quantity in the $A 6$ to cause recycling by the $\mathrm{cp}(-)$ order. Actually, however, the negative quantity produced is $-\mathrm{b} \$ \mathrm{a} \$(\mathrm{~m} \$ 1) \mathrm{h}$ which will produce recycling until $f(b)$ itself has been added. Before further consideration of this difficulty (see paragraph 21) let us notice that order A 4.8 can also be deleted if we now change $A 4.7$ to read su A3.2.
23. In paragraph 22 we have described the changes necessary to produce a saving of two orders in the cycle, yet this saving also produces the superfluous calculation of $f(b)$. We can eliminate the difficulty by changing A 4.7 to read su KC $f(b-h)$. The determination of $R C f(b-h)$ can be made by the addition of the following two orders to stage two:

$$
\begin{array}{llll}
A 2.6 & \text { su } & \mathrm{HC} & 2^{-15} \\
A 2.7 & \text { td } & \text { td } B 8
\end{array}
$$

Note that B 8 was available for use (see paragraph 17). Thus although two orders have been added to stage two, we have eliminated two orders in stage four and thus have made a saving in any repeated use of the cycle。
24. Making use of all these improvements the code is written out again in standard form. The Boclass registers have been renumbered。 The use of the KC symbol in the program orders has been dropped, but the explanatory notes have been retained. The code is written in serial notation on page 57.
 regtaters, of which 9 belong io a cycle which i a performed $\frac{b-a}{h} 2$ vines Thit gives a total of 42 th storage registeris and $134 \frac{9(b-e)}{\mathrm{h}}$ operations The final form of the code uges 35 th storage register and $11+\frac{9(b-b)}{b}$ operations, a seving of 7 resistars and $2+\frac{b=a}{h}$ operati ng

26. STANDARD KO'ATION

> A.1 ce 25 2 ar 3 Ba 3 ad 82 4 td 5 ad 2 5 ad 6 td A 4.2

A 2.2 \& B6
8.39 32
$\therefore \mathrm{Ac}$ BI
4 td A3. 1
5 au 34
6 td 38

gd--(digith from A1.4)
3 31 3
4 ts 97
A. 4.1 4a B7

2 sdi-

ACs e
$A C_{8} \frac{2^{-15}}{h}$
Acs $2^{-1 /} \mathrm{RCL} f(a)$
A3.2:ad RC $f(a)$
AG: ad. H0 $f(a+h)$
A4. 2: a: $\mathrm{RC} f(\mathrm{a}+\mathrm{h})$
Al: $\quad b$
$A G: \frac{2^{-15} b}{i 2}$
Ab: $2^{-15} R C f(b)$
ARS. 1: A: R RC $\mathrm{f}(\mathrm{b})$
ACE OA RG f(r..h)
B8: $\quad 2^{-15}$ RC $f(b-h)$
$A C ; \quad f(b)$
$A C_{0} \quad f(a)+f(b)$
$A C: \frac{1}{2} f(a)+f(b)$
B7: N *
staxt of cycla, (ch(-) in A4.8)
$\mathrm{AC}=\frac{1}{2} f(\mathrm{a})+\frac{1}{2} f(\mathrm{~b})+\sum_{\infty-10}$!
dfgits from Al. 6 and $A 4.6$
$A \rho: \quad \frac{1}{2} f(a)+\frac{2}{2} f(b)+\sum$

$$
3 \text { te } \quad 37
$$

$$
\begin{array}{rl}
A 4.4 & \mathrm{ca} \\
5 & A .2 \\
5 & \text { ad } \\
6 & \mathrm{td} \\
& A 4.2 \\
7 & \text { su } \\
& B B \\
8 & \mathrm{cp}(-) \\
& A 4.1
\end{array}
$$

A 5.1 ea B?

2 mr B3

$$
\begin{array}{lll}
3 & \text { EB }
\end{array}
$$

$$
A C: \frac{1}{2} f(a)+\frac{1}{2} f(b)+\sum
$$

$$
A C: \int_{a}^{b} f(x) d x
$$

$$
\text { B7: } \int_{a}^{b} f(x) d x
$$

$$
\begin{aligned}
& \text { AC: ad RC } f(a+m h) \\
& A G: \quad \text { ad } \quad \text { RC } \quad \mathrm{f}(\mathrm{at}(\mathrm{~m}+1) \mathrm{n}) \\
& A C: \quad 2^{-15} R C(a+(m+1) h-(b-b)\}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { B1 } & 2^{-15} \text { RC } \pm(0) \\
2 & \frac{2^{-15}}{1}
\end{array}
$$

$$
\begin{array}{ll}
3 & k \\
4 & 2^{-15} \\
5 & a \\
6 & b \\
7 & A .3 .4 \text { gives } 1 / 2 f(a)+1 / 2 f(b) \\
& A 4.3 \text { gives } 1 / 2 f(a)+1 / 2 f(b)+\sum_{10} \\
& \\
& \text { A. } 5.3 \operatorname{gives} \int_{a} f(x) d x
\end{array}
$$

$$
\text { B ad. AZ. } 7 \text { gives ad } \mathrm{BC} f(b-h)
$$

$$
9 \quad f\left(\pi_{1}\right)
$$

$$
10 \quad f\left(x_{2}\right)
$$

$$
\theta+x \quad f\left(x_{u}\right)
$$

6673
Fingineering Note E-2000-2
27. FLOW DIAGRAM (STANDARD NOTATION)
A. 1
A. 2

A 3

A. 4

A 5

6673
Fingineering Nots $\mathrm{E}-2000 \mathrm{~m}$

SERIAI NOTATI ON

A

1	aя	33	12	td	18	21.	80	32
2	mr	30	13	ca	-	22	td	18
3	ad	29	14.	ad	-	23	su.	14
4	td	14	15	Er	1	24	cp	17
5	ad	32	26	t_{8}	35	25	ca	35
6.	td.	18	17	ca	35	26	mr	31
7	ca	34	18	ad	$=$	27	ts	35
8	ms	30	19	ts	35	28	(sp)	
9	ad	29	20	ca	18			
10	td	13						
11	84	32						

B
$292^{-15} \mathrm{RC} f(0) \quad 33$ \&
$30 \frac{2^{-15}}{h}$

31 n
35 - -
3? $\quad 2^{-15}$
$36 \quad-$
$37 \quad f\left(x_{1}\right)$
34 b
$36+n f\left(x_{a}\right)$

Number of pperations $11+\frac{8(b-a)}{b}$
Iaput A, b in registers 33 and 34
Output $\int_{a}^{b} f(x) d x$ in register 35.

Suction TII. Iterative Processes

A. Iteration in the Computer

1. The mathematical process of iteration is available to the computer by the use of cyclic programs. In the general application of cyclic programs the decision to end the repetition of the cycle is mede as the result of the comparison of a fixed quantity and a quantity derived during the course of the program; in iterative schemes the end of the cycle may either be determined in such a fashion or, when necessary, by a comparison of two quantities derived by the program. The former case is illustrated in Code XIII, the latter in Codes XIV and XV.

B. Code XIII: Summation of a Series

1. Consider the series

$$
a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{m} x^{m}+\ldots
$$

and assume that

Let

$$
\left|a_{0}\right|<1,|x| \leqslant 1,\left|\frac{a_{m}}{a_{m-1}}\right| \leqslant 1 \text { for } m=1,2,30 \ldots
$$

$$
\frac{a_{m}}{a_{m-1}}=x_{m} \cdot a_{m} x^{m}=c_{m} \quad \text { and } \sum_{m}=c_{0}+c_{1}+c_{2}+\ldots+c_{m}
$$

Suppose that p is the first integer for which $\left|a_{p}\right| \leq 2^{-14}$. The object of the program is to -obtain the sums $\sum_{1^{\circ}} \sum_{2^{\circ}} \sum_{3^{0}}^{p} \|_{n}$ successively stopping the summation process as soon es the magnitude of the last term added, $\left|a_{n} x^{n}\right|=\left|\begin{array}{l}c_{n} \\ n\end{array}\right|$ is less than or equal to 2^{-14}. The sum \sum_{n} so obtained is the required approximation to the sum of the series.
2. Since $\left|a_{p} x^{p}\right|<\left|a_{p}\right| \leq 2^{-14}$, the summation process is bound

3. The central section of the program is a 4 in which c_{m} is
obtained from c_{m-1} by the equation

$$
c_{m}=x_{m}^{c} c_{m-1}^{x}
$$

and adde c_{n} to $\sum_{n=1}$ to somm \sum_{m} both c_{m} and \sum_{m} sxe stored sor further use. Section A3 arranges that another tem of the series will be adied and section $A 5$ test g whether the magnitude of the last term added is less than or equal to $2-14$. These three sections A3, A4, and a5 form a cycle. The first two sections Al and A2 make preparations for the first round of the cycle.

C. Code XIV: Linear Simultaneous Equations

1. An iteration achera can be applied to the solution of linear simultaneous equations. In Code XIV this acheme is illustrated in the solution of two innear equations in two unkeowns:

$$
\begin{aligned}
& x_{1}+a_{1} x_{2}=b_{2} \\
& a_{2} x_{2}+x_{2}=b_{2}
\end{aligned}
$$

2. If we denote the order of the approximation by superscriptso

$$
\text { where } \mathrm{I}_{1}^{(\mathrm{m}+1)} \text { is the }(m+1) \text { et approximation to } \mathrm{I}_{1}
$$

$$
\text { and } x_{1}^{(m)} \text { is the th epproximation to } x_{1}
$$

then the fieration formulas are giver by

$$
\begin{aligned}
& x_{1}^{(m+1)}=b_{1}-a_{2} x^{(m)} \\
& x_{2}^{(m+1)}=b_{2}-a_{2} x_{1}^{(m+1)}
\end{aligned}
$$

3. To svoid overfiow we ghall asoume that

$$
\begin{gathered}
0 \leqslant a_{1} \leqslant b_{1} \leq 1 \\
\text { and } 0 \leqslant a_{2} \leqslant b_{2} \leq 1
\end{gathered}
$$

frow which it followe by induct ion that ataxting with $x_{1}^{(1)}=x_{2}^{(1)}=0$ o we shall have

$$
\begin{aligned}
& 0 \leqslant x_{1}^{(\text {m })}<1 \\
& 0 \leqq x_{2}^{(m)}<1
\end{aligned}
$$

for all 3.
4. The code which is presented is arranged to and the axprosk
 or lese than 2^{-10}.
5. The coefficients $a_{1}, a_{2}, b_{1}, b_{2}$ should be regarded as input data, which will be different for each application of the program but must always satisfy the inequalitiss given above. Unfortunately this problem is somewhat unrealistic, because simultaneous linear equations in two variables would not be dealt with by this method, while sets of linear equations in many variables involve scal factor probleme which do not ardse in this oxample。
D. Roots of Equations by Nowton' 8 Mothod

1. An iteration scheme ie also sqpilicable to solutions of roots of equat fons using Newt on ${ }^{7}$ s Method. The formula in Newton's Method for finding a root of an quation $f(x)=0$ is

$$
x_{n+1}=x_{0}=\frac{f\left(x_{n}\right)}{f\left(x_{n}\right)}
$$

where x_{n} if the $A^{\text {th }}$ approximation, and f_{0} indicates $\frac{d f\left(x_{n}\right)}{d \pi}$
2. For example to flad the quare root of a sumber a we set $f(x)=x^{2}$ a and the formula for successive approximation to the positive root of the equation $x^{2}-a=0$ is

$$
x_{n+1} \equiv x_{n}+1 / 2 \quad\left(\frac{a}{x_{n}}=x_{n}\right)
$$

3. Due to possible overflow the above equation is not used in an actual quare rooting program. The use of Newton ${ }^{9}$ mathod in obtaining the equare root of a number in dealt with in more detail in Section V1II.

Scegion VIII．Linear Interpolation and Finding the Squere Root

A．Code XV：Linear Interpolation

2．Let us assume that values of $f(x)$ ，for $x=k \cdot 2^{-6}$ ．where $k=0,1,2,3,-\infty 2^{6}$ are stored in 65 consecutive registers．The addresses of these 65 registers are given by the axpression $\underline{K}+\mathrm{K}_{0}$ in which K is the address of the regiater containing $f(0)$ ．The interval
betreen the tabulated values of x_{0} which chall be designated as g_{o} is 2^{-6} 。 It is assumed that $|f(h k)|<1$ for all the k and further that if $k_{2}=k_{1}+1_{0}$ then $\left|f\left(h k_{2}\right)-f\left(h k_{1}\right)\right|<1$ ．

2．The problem is to obtain $f(x)$ for any value of x in the range $0 \leqslant x<1$ ．The value of x is originally stored in Bl and $f(x)$ is to be put in B2．

3．It is first necessary to find two consecutive values k_{2} and k_{2} such that

$$
h k_{1} \leqslant x<h k_{2}, k_{2}=k_{2}+1
$$

Then if $x-h k{ }_{1}=$ wh we shall have $0 \leq m<1$ and the required value of $f(x)$ is given by

$$
f(x)=f\left(b k_{1}\right)+m\left\{f\left(h k_{2}\right)-f\left(h k_{1}\right)\right\}
$$

4．If the positive number x were brought into the AC by the order ca $B l_{\text {＂the }}$ tign digit would be O_{0} the naxt six digite would determine k_{1} 。 and the remaining nine digits would determine $\mathrm{m}_{\text {。 }}$ ．To be more precises the number obtained from x by replacing all the right hand nine digite by zeros would be hk_{1} ，while the number obtained from x by replacing the first six digits after the sign digit by zeros would be mh．

5．For example，the positive number ． 001101101100000 is represented in the computer by 0／001101101100000．Since x lies between .001101 and .001110 we have

$$
h k_{1}=.001101
$$

eri $m h=x-h k=000000101100000$. These two numbers are representea
Sa the AC by
$0 / 001101000000000$
and $0 / 000000101100000$
It follows therefore that the order ca RCx followed by gl 6 would put the interpolation ratio m in the $A C$.
6. In Code XV m is first shifted into the BR by the order mh RC 2^{-9} and is brought into the $A C$ at a latar stage by the order s] i5. It should be noticed that the order mh RC 2^{-9} which has the effect of shifting the content of AC nine spaces to the right, cannot be replaced by the order gr 9, since this latter oxder would give a round-off and clear the BR so that the interpolation ratio m would be lost.
B. Codes XVI and XVII: Finding the Square Root

1. The arithmetic operations of addition subtraction divieion. and multiplication are wired into the computex and are executed by single orders: however, other mathematical processes which may be used frequently in a particular computer application are available only in the form of codes. It appears likely that the determination of square roots is a process which will be needed quite often, and it is rather probable that some of the storage registers of a computer would permanently contain the orders for a square root code. The economy of orders and aaving in operating time assume particular importance under such conditions. Although the square root can be determined using Newton ${ }^{\circ}$ s Formula as given in D of Section VII, a slight variation of the formule gives a shorter code this beine, Code XVI. The square root is determined using a series axpansion in Code XVIII.
2. The object of Codes XVI and XVIII is to find $\frac{\sqrt{a}}{2}$ when $0<a<1$. We find $\frac{\sqrt{a}}{2}$ rather than \sqrt{a} in order to avoid the danger of ovarfiow when a is nearly equal to 1. Both of the codes employ the scale factor operation to find the number of places. n_{0} which a must be shifted to the left in the AC so that the first non-zero digit of a is put in AC1. This emounts to expressing a in the form

$$
a=2^{-n} \cdot b \text { where } 1 / 2 \leqq b<1
$$

which gives

$$
\frac{\sqrt{a}}{2}=2^{-n / 2} \frac{\sqrt{b}}{2}
$$

3. The scale factoring process shortens the program by reducing the number of approximations that are required to obtain the desired accum racy, but it al so introduces the difficulty of dealing with the two cases which arise when in is odd or even. The difficulty is handed as follows:

$$
\text { Let } \frac{n}{2}=m+k
$$

where A is an integer and $k=0$ or $1 / 2$. Then

$$
\frac{\sqrt{a}}{2}=2^{-m} \times 2^{-k} \times \frac{\sqrt{b}}{2}
$$

where the factor 2^{-k} is 1 or $\frac{1}{\sqrt{2}}$. The codes will actually calculate $\frac{\sqrt{b}}{2 q}$, where $q=\frac{1}{\sqrt{2}}$ in code XVI and $q=2^{3 / 4}$ in code XVII. The value $\frac{\sqrt{a}}{2}$ will therefore be calculated from the product

$$
\frac{\sqrt{a}}{2}=2^{m m} * 2^{-k} q \times \frac{\sqrt{b}}{2 q}
$$

In order to obtain the required factor $2^{-k} q_{s}$ which takes the values q and $\frac{9}{\sqrt{2}}$ for $k=0$ and $k=1 / 2$, we evaluate the expression

$$
q+(1-\sqrt{2}) \text { ka } \sqrt{2}
$$

which is equal to q when $k=0$ and equal to $\frac{9}{\sqrt{2}}$ when $k=1 / 2$.
4. Code XVI uses the Newton method of successive approximations to the positive root of the equation

$$
f(x)=x^{2}-\frac{b}{8}=0
$$

starting with $x_{0}=\sqrt{\frac{1}{8}}=\frac{\sqrt{2}}{4}$ as the first approximation. The formula for successive approximation a is

$$
x_{1+1}=x_{1}-\frac{f\left(x_{1}\right)}{f^{0}\left(x_{1}\right)}=\frac{1}{2}\left(x_{1}+\frac{b}{8 x_{1}}\right)
$$

The errar in x_{3} is less than 2^{-15} in the worst case when $b=\frac{1}{2}$, so then code uses three iterations, given by the formulae

$$
\begin{aligned}
& x_{1}=\frac{1}{2}\left(x_{0}+\frac{b}{8 x_{0}}\right)=\frac{\sqrt{2}}{8}+\frac{\sqrt{2}}{2}\left(\frac{b}{4}\right) \\
& 2 x_{2}=x_{1}+\frac{b}{8 x_{1}} \\
& 2 x_{3}=x_{2}+\frac{b}{8 x_{2}}
\end{aligned}
$$

The value of $2 x_{3}$ obtained from the third step is the required epproximation to $\frac{\sqrt{b}}{2 a}$, when $a=\frac{1}{\sqrt{2}}$.
5. In order to obtain the expression

$$
q+(2-\sqrt{2}) k q \sqrt{2}
$$

for the final st op stors $q=\frac{1}{\sqrt{2}}$ and $(1-\sqrt{2}) d \sqrt{2}=1-\sqrt{2}$.
Before the progran starte the value of a de put in Bl. At the end of the program the value of $\frac{\sqrt{a}}{2}$ is in 35 .

It might appear more natural to use the approximation formulae for the positive root of the equation $x^{2}-\frac{b}{4}=0$. The oquation $x^{2}-\frac{b}{8}=0$ is used to avoid a danger of overflow during the ardthmetic operations involved in the successive approximations.
6. Code XVII uses a series expansion in powers of y, where

$$
y=\frac{b-\frac{\sqrt{2}}{2}}{b+\frac{\sqrt{2} 2}{2}} \quad \text { or } \quad \frac{1+y}{1-y}=b \sqrt{2}
$$

The object of introducing y is to obtain a series involving only overs powers. We have

$$
\begin{aligned}
& \sqrt{b \sqrt{2}}=\frac{1+y}{1-y}=(1+y)\left(1-y^{2}\right)^{-\frac{1}{2}} \\
& 2^{\frac{1}{4}} \sqrt{b}=(1+y)\left(1+\frac{y^{2}}{2}+\frac{3 y^{4}}{6}+\frac{5 y^{6}}{6}+\ldots\right)
\end{aligned}
$$

For $\frac{1}{2} \leqslant b<1$ we have -0.1715 y <0.1715 for the extreme values of y the value of $\frac{5 y^{6}}{6}$ is about 2×10^{-5}. We therefore take

$$
\begin{aligned}
2^{-\frac{1}{4}} \sqrt{b} & =(x+y)\left(\frac{\sqrt{2}}{2}+\frac{y^{2} \sqrt{2}}{4}+\frac{3 y^{4} \sqrt{2}}{16}\right. \\
& =(1+y) f\left(y^{2}\right)
\end{aligned}
$$

7. Code XVII determines $\frac{\sqrt{b}}{2 q}$. where $q=2^{-\frac{3}{4}}$. Ia order to obtain the expression

$$
q+(1-\sqrt{2}) \mathrm{kq}^{2} \sqrt{2}
$$

$$
-\frac{3}{4}, \sqrt{0}, \sqrt{0}-\frac{2}{4}
$$

for the final stop wore $q=2^{4}$ and $(1-\sqrt{2}) q \sqrt{2}=2^{4}(1-\sqrt{2})$. Before the program starts the value of a is put in Bl. At the end of the program $\frac{\sqrt{a}}{2}$ is in $B 4$.
8. Code XVI uses 38 storage registers and 29 operations. not counting the final sp order. Thus at 20 microseconds per operation the evaluation of the square root would take 580 microseconds. Code XVII uses 36 storage registers and 28 operations, requiring 560 microseconds.

Sociton IX Codosfor Soxting

A. Codo XVIII. Rearrangement of a Sot of Numbers in Ascending Order

1. As in Code XII the numbers $x_{2}, x_{2}, \ldots x_{n}$ are stored. In consecutive registers C1, C2, o...Ca. The problem is to rearrange the x^{8} in ascending order. In the final arrangement equal numbers appear together, but not necessarily in their original order.
2. The program takes each register C_{1} in turns starting with $k=1$, finds the least number in the registers ${ }^{C_{k}}{ }_{k}$ to $C_{n s}$ and intecohangen this least number with the number in C_{k}. To simplify the explanatory notes it is assumed that after each interchange the numbers are renemed, go that at every stage of the prograra the number in Cm is called x_{m}
3. The greater part of Code XII is used in section A2 of this code with the modifications needed to find the least number father than the greatest one. In the explanatory notes the number m refers to the cycle that is performed inside section A2. This oycle is not shoma on the flow diagram.

B. Code XhX: Sorting Sets of Numbers

1. It is supposed that m sets of numbers $\left(x_{1}, y_{1}, z_{2} \ldots,\right)_{8}$
 a program is required that will enable the computer to deal with the se sets in the order of ascending x_{i}, rearranging the associated $y_{j_{1}}, z_{1}$, etcos in accordance with the final order of the x_{1} 。
2. The method of Code XVIII could be extended to provide for the rearrangement of the numbers y_{i}, E_{i} etcos in accordance with the rearranged x_{f}, but the process of interchanging the positions of the setis of num bers in storage would be lexgthy. It seems preferable to avold the actual interchange of the numbers by dealing with the addresses at whi oh the numbers can be found
3. As in Codes XII or XVLII wo shall aspume that the numbers $x_{1}, x_{2}, \ldots . x_{n}$ are stored in registers C1, C2, Gn, however in this code there will be no need to assume that these registers are consecutive. We assume that y_{i} is stored in the ragister whose address is $u+C_{i}$ b
 value for all i. The computer, having found the address of the registar containing any π_{i}, can easily find the regieters containing the associated y_{i}, z_{i}, \ldots by adding the numbers $u_{0} \nabla_{n} \ldots \ldots$ 。
4. The code uses a set of consecutive registers $c(c+1)$. $c(c+2) \ldots(c+n)$ to contain the addresses $C l_{0} C 2_{0} \ldots . . C n$. The address contained in register $C(c+t)$ will be denoted by $C_{P_{t}}$, and the number x_{1} stored at this address will be denoted by $x^{(t)}$. To be more exact, the quantity in $c(c+t)$ is $2^{-1.5} \pi C_{P_{t}}$.
5. When the propran starte the repisters $C(c+1), C(c+2)$, $C(c+n)$ contain the addresses $C 1, C 2, \ldots .0$ in in some order. The effect of the program is to rearrange the contant of these registers so that the sumbers x_{1} obtained successively from the addresses $c(c+1), ~ C(c+2)$, $\mathrm{C}(\mathrm{c}+\mathrm{n})$ will be in ascending order. This is achleved by dealing in turn With the registers $c(c+t)$ for $t=2 ; 3 \ldots$ a. For each t the content of the registere $C(c+i \ldots m)$, where $m=1,2,3, \ldots \ldots$ are examined $\mathrm{f} n$ turn and noved to $C(c+t-m+1)$ until a register is reached which contains an address giving an x_{i} that ie less then or equal to the x_{i} that wes given by the address that was in $C(c+t)$. The addrass that was then in $C(c+t)$ is then put into the last of the registers pieviously examined. To stop the process a quantity g_{0} known to be less than all the x_{1}, is put in $C(0)$, and $Z^{-15} x(0)$ is put in $G(c+0)$.
6. The content of the register $c(c+t)$ may bo changed several times durine the course of a program. In the explanatory notes $C_{p_{t}}$ is taken 10 mean the address contained in $C(c+t)$ at the atage at which the orders take effect.
```
6673
Eng&nsering Note N-2000 -s
    Air Traific Control Project
    Servomechanimms Luaboratory
Massachusetts Instj.bute of Technology
    Cambrydge, Massackusetts
SUBJECT: INTRODUCTION TO CODING, PART II
Toy 6673 Project
From: David &% Igrael
Date: Septamber 29, 1949
```

Ais Traific Control. Project
Servomechani ams Laboratory
Cambridge, Massactusetts

```
SUBJECT: INTRODUCTION TO CODING PART II
To: 6673 Project
From: David \(\mathrm{R}_{\mathrm{o}}\) Israel
Date: Septamber 29, 1949
```


Code I

Code II

Ordere

- ca 14
mr 14
3 mx 11
4 \$8 15
5 ca 14
6 mr 12
7 ad 13
8 ad 15
9 te 15
10 and of code
11 a
12 b
136
14π
15 -.

Effects of Orders
$A C: \pi$
AC: x^{x}
AC: $a x^{2}$
register 15: $e x^{2}$
AC: x
$A C 8 \quad b x$
$A C: b x+c$
$A C: a x^{2}+b x+c$
registar $158 a x^{2}+b x+0$

Ordors
1 ea 8
2 mr 11
3 ad 9
4 mr 11
5 ad 10
6 \&s 12
7 end of code
a
3 b
10 c
$11 x$
12 ..

Page 65

- nineering Note $\$-2000-\hat{1}$

Code 3 II

Oxaere
2 ce 2 ?
2 mr 19
3 ad. 28
4 45 20
5 ce. 14
6 mr 19
7 ad 15
8 mr 19
9 ad 16
10 do 20

118115

12 tB 20and of code
14 A
25 D
16 c
17 d
18 e
19 x
20 …

Effecto of Orders
$A C: d$
$A C: d x$
$A C: d x+e$
register $20: d x+0$
$A C: a$
AC: ex
$A C_{8} \quad a x+b$
AC\& $a x^{2}+b x$
$A C: 8 x^{2}+b x+c$
$\mathrm{AR}: \frac{2 x^{2}+b x+c}{d x+a}$
$A C: \frac{a x^{2}+b x+C}{d x+e}$
register $20: \frac{a x^{2}+b x+c}{d x+\theta}$
$1181 \quad 15$
$12 \quad 416$
13 end of code
$14 x$
$15 y$
26 ...m
Orders

1. Ce 14

2 mr 14
$\begin{array}{lll}3 & 4 & 16\end{array}$
4. ca 15
$5 \operatorname{mx} 15$
6 ad 26
7 ts 16
3 ca 14
9 mr 15
10 dv 26

16 "

Code IV

Gffocts of Or365
$A C_{:}: \pi$
$A C: z^{2}$
register $16: x^{2}$
$A C: y$
$A C \cdot y^{2}$
AC: $x^{2}+y^{2}$
register $16: x^{2}+y^{2}$
$A C . X$
AC $x y$
$\operatorname{BR}=\frac{x y}{x^{2}+y^{2}}$
AC: $\frac{x y}{x^{2}+y^{2}}$
regtater $16 \frac{x y}{x^{2}+y^{2}}$

6673
Kngineering Note Em2000－1

Code

V

Orders
1 ca 21
2 ४s 12

3 su 10
4 op（－）9
5 ca 10
6 \＄8 11
7 ca 12
8 七8 10
9 sp next job

Effects of Orders（b，e）
$A C: b$
$\left\{\begin{array}{l}\text { AC：b } \\ \text { register 12：b }\end{array}\right.$
$A C: \quad b m a$（positive）
go to order at 5
AC：\＆
register 11：a
$A C: b$
register 10：b
$\left\{\begin{array}{l}(b \text { is in register 10，} \\ \text { a is in register 11）}\end{array}\right.$

Efects of Oyderg（or a ）

$A C: b$
$\left\{\begin{array}{l}\text { Ac：b } \\ \text { register 12：b }\end{array}\right.$
$A C: b-a$（negative）
go to order at 9

10 a
11 b
（Analysed only for $c>b>a$ ）

Orders
1 ca 27
2 \＆ 29

3 su 26
$4 \operatorname{cp}(-) 9$
5 ca 26
6 is 27
7 ca 29
8 ts 26
9 са 28
10 ts 29

11 su 26
$12 \mathrm{cp}(-0) 17$
ca 26
24 ts 28
15
ca 29

Effects of Orders
$A C: b$
\｛AC：b
\｛register 29：b
$A C$ ：b－a（positive）
go to order at 5
AC：a
register 27：a
$A C$ ：b
regiater 26：b
$A C: E$
fAC：C
\｛register 29： C
$A G: a-b$（positive）
go to order at 13
$A C: b$

Coder VI

Orders
$16 \quad t s 26$
17 ca 28
28 七日 29

19 su 27
20 op（－）25
21 ca 27
$22 \quad$ t， $8 \quad 28$
23 ca 29
34 ts 27
25 sp next job
26 a
27 b
28 c
$29=-$

Iffects of Orders register 26：c
$A C: b$
$\left\{\begin{array}{l}\text { AC：b } \\ \text { register 29：b }\end{array}\right.$
A．cs boa（positive）
go to order at 21
$A C_{\text {：}}$ a
register 28：a
$A C: b$
register 27：b
ragister 28：b
$A C: 9$

Page 68

Code VII

$$
\begin{aligned}
& \text { Effects of Orders } \\
& \text { (End cycle) }
\end{aligned}
$$

Orders Effects of Orders (lIst cycle) \qquad

AC: 0
AC: $2^{-1.5}$
$A C:=30 \times 2^{-15}$
$4 \operatorname{cp}(-) 6 \quad$ go to order at 6
5 sp 9
6 ad 14
$7 \quad 48 \quad 15$

8 sp 2
9 ca 12
10 云客 15

12 gp है
$\mathrm{AC}: 2^{-15}$
$\left\{\begin{array}{l}A C_{8} 2^{-15} \\ \text { register }\end{array}\right.$
15: 2^{-15}
go to order at 2
go ho order au R
$A C: 0$
$\left\{\begin{array}{l}\text { AC: } 0 \\ \text { register } \\ \text { 15: }\end{array}\right.$
go to order ai?
(begin again)

Ii +0
$13 \quad 2^{-15}$
1431×2^{-15}
$15=$

Code VIII

Orders

1 ce 7
2 ad 8
3 si 10
$4 \quad 8 x \quad 10$
5 te 9

6822

Effects of Orders (lat gycle)

Effects of Orders (Ind cycle)

Effects of Orders (Bend cycle)

AC: 0
$A C: 2^{-I 5}$
$A C: z^{-5}$
AC: 2^{-15}
$\int A C: 2^{-15}$
$\left\{\right.$ register 9: 2^{-15}
go to order at 2
$A C \& 2 \times 2^{-15}$
$A C \& 2 \times 2^{-5}$
$A C \& 2 \times 8^{-15}$
$\begin{cases}A C: 2 \times 2^{-15}\end{cases}$
$\left\{\begin{array}{l}\text { AC: } 2 \times 2^{-15} \\ \text { register 9: } 2 \times 2^{-15}\end{array}\right.$
go to order at a' $^{\prime}$

AC. 32×2^{-15} ${ }^{*} \mathrm{AC}_{\mathrm{C}} \mathrm{O}$ $A C: 0$
$\left\{\begin{array}{l}A C: 0\end{array}\right.$
go to order at 2 (begin again)

6673

Code IX

Orders
$A .1 \mathrm{ca} B n+3$
$2 \mathrm{mr} B$
$3 \mathrm{ad} B(n-1)+3$
$4 \operatorname{ar} B 1$
5 ad $B(n-2)+3$
$6 \operatorname{mr} B 1$

Effects of Orders

Stores
$A C_{B} a_{n}$
AC: $a_{n} x$
$A C: a_{n} x+a_{n-1}$
AC: $a_{n} x^{2}+a_{n-1} x$
AC: $a_{n} x^{2}+a_{n-1} x^{+} a_{n-2}$
AC: $a_{n} x^{3}+a_{n-1} x^{2}+a_{a-2} x$

$$
\begin{array}{cc}
B 1 & x \\
2 & = \\
3 & a_{0} \\
4 & a_{1} \\
5 & a_{n}
\end{array}
$$

$2 n+1$ ad $B 3$
$2 n+2 \quad t-82$
$A G: a_{n} x^{a}+a_{n-1} x^{n-1}+\ldots .+a_{0}$
$n+3 a_{n}$
$B 2: a_{n} x^{n}+a_{n-1} x^{n=1}+000+a_{0}$
sp next job

Orders

$\operatorname{cp}(-)$ a 23
$\operatorname{sp} A$: ca A 1
14 gu B 1
15 td A 5
16 sp next job

Effects of Orders (hst cycle)

Code X

Effects of Orders
Storage

B 12^{-15}
$2 x$
$A C: a_{n} x+a_{a=1} \quad i^{3} \cdots$
$A C \cdot a_{n} x^{2}+a_{n-2} x \quad 4$ sd B4
AC: $a_{n} x^{2}+a_{n-1} x+a_{n-2}$
BB: $a_{n} x^{2}+a_{n-2} x+a_{n-2}$
$A C$. $A d B \quad n \geqslant 3$
$A C: A d B a+2$
$\begin{cases}A C: & \text { ad } B \\ A+2 \\ A 5 ; & \text { ad } B \\ n+2\end{cases}$
$A C: n^{2}+2-4$
go to $A 3$

Orde：

1 ca 19 tm
2 \＆d 6
3 ca $16 \neq n$
4 数 $27+\mathrm{p}$

5 ca 17 亿n

6 ad $-\infty$（see 2 and 12）

7 al 1
8 871
9 \＆ $617+n$

10 ca 6

11 ad 18＋n
12 td 6
23 8u 20＋n
$14 \operatorname{cp}(-) 5$
15 8p next job
$160_{1} / 4 \pi$
$\begin{array}{ll}17 & \theta_{2} / 4 \pi\end{array}$
。
$151 n \quad \theta_{n} / 4 \pi$
$16 \frac{1}{9} 2+0$
17in－
$184 n \quad 2^{-15}$
$29 \div n$ ad 16
$20 \div \mathrm{m}$ ad 15 m

Effects of Orders
AC ad 16
register 6：ad 16
$A C:+0$
register $17 * n:+0$

$$
A C: \sum_{i=0}^{m=1} e_{i} / 4 \pi \quad \min , 3 \ldots
$$

AC：$\sum_{i=0}^{m} e_{i} / 4 \pi$
AC．$\sum_{i=0}^{m} \theta_{i} / 4 \pi, \operatorname{mos} \frac{1}{2}$
register $27+\sum_{i=0}^{m} \theta_{1} / 4 \pi, \bmod \frac{1}{\alpha}$
$A C$ ad $15+(m-1)$

AC ad $15{ }^{\circ} \mathrm{m}$
（AC）ad 15ta
\｛replster 6：ad 15 tm
AC．$m \sim n$
If $\mathrm{m} \leqslant \mathrm{m}_{8}$ go beck to 5
If $m>n$ ，have fintshed

Genersi Procedure
Reset ordors which
may have been
changed in a pre－
vious use of the
code．
$\sum_{i=0}^{m o r m s} \bmod 1$

Qraers

Al al Be B2
2 \& A . 2
3 ad BI
4 id A2. 1

A2. 1 Ca ...
2 งะ …
$3 \operatorname{cp}(-) A 4.1$

A3.1 da A2.1 CaCm
2 td A2.2

A4. 1 Ca A2. 1
2 ad B1 ca $C(m+1)$
3 td A2.1

A5. 1 8u B3
$(n+1-n) \times 2^{-15}$
$2 \mathrm{cp}(-) \mathrm{A} 2.1$
A 6.1 ca A 2.2 - C_{M}
2 td A6:3
3 ca -
x_{M} See A6.2
aa Gm

Goneral Frocelure
Prepare to corpare
x_{2} with x_{1}

4 ts B4
x_{m} See Al. 4, A4, 3

Accumplator Contionts

6673
Zugineering Note E-2000-1

Code XIII

$$
a_{0}=c_{0}=\sum_{0}
$$

A2.1 Ca A1. 1

2 ad $B 5$
3 td A4.2
A. 12 Ca B2
2 345 -

$$
\begin{array}{ll}
m p & B 1 \\
t_{0} & B 2
\end{array}
$$

5 ad B3
6 te t_{3}
45. $1 \mathrm{Cm} \quad \mathrm{BL}$

$$
c_{m}^{c_{m}}=2^{-14}
$$

$$
3 \text { cp(}- \text {)naxt job }
$$

$$
4 \text { gp A.3.1 }
$$

Page 72

Data Storace for Codo

${ }^{C} p \quad{ }_{p}$

6673
Tingineering Notes E-2000-1
$\begin{array}{rrrl}A 1 & 1 & 38 & B \\ 2 & 10 \\ 3 & 4 & B & 1 \\ 3 & 4 & B & 2\end{array}$
AR.1 Ga B
2 ar B 5
3 ad B ?
4 sur BI
5 te B 3
A3.1 ad B 1.
2. \% B B 1

A4.1 $m=B 6$
2 Ret Bg
3 au $B 2$
44884
$\begin{array}{rrrr}A .5 .1 & \text { ad } & B & 2 \\ 2 & 48 & 8 & 2\end{array}$
A. $6.1 \mathrm{~cm} B 3$

2 au B 9
$3 \mathrm{cp}(-) A 7.1$
4 gp A2.1
AT. 10 cm $B \quad$ a
2 Bu B 9
$3 \mathrm{cp}(-) \mathbf{4} \mathbf{8 . g}_{0}$
4 sp A2. 1
AB. 2 ep next job

$$
0
$$

$$
x_{2}^{m} \text { See Al. } 3,45.2
$$

$$
-\varepsilon_{1} x_{2}^{m}
$$

$$
b_{1}-a_{2} x_{2}^{(m)}=x_{1}^{(m+1)}
$$

$$
x_{1}^{(m+1)}, x_{1}^{(m)} \text { See A1, 2,AB,2 }
$$

$$
x_{2}^{(m+1)}
$$

$$
=a_{2} x_{2}^{(m+1)}
$$

$$
b_{2}-a_{2} x_{1}^{(m+1)}=x_{2}^{(m+1)}
$$

$$
x_{2}^{(m+1)}-x_{2}^{(m)} \text { S } \in \varepsilon
$$

$$
x_{2}^{(m+1)}
$$

$$
\left|x_{1}^{(m+1)}-x_{1}^{(m)}\right|
$$

$$
\left|x_{1}^{(m \neq 1)}-x_{1}^{(m)}\right|-2^{-10}
$$

$$
\begin{aligned}
& \left|x_{2}^{(m+1)}-x_{2}^{(m)}\right| \\
& \left|x_{2}^{(m+1)}-x_{2}^{(m)}\right|-2^{-10}
\end{aligned}
$$

Put 0 in $B 2, B 2$

$$
\text { Store } x_{2}^{(m+1)} \text { for }
$$

the next cycle.

$$
\text { Is }\left|x_{1}^{m+1}-x_{1}^{m}\right|>2^{-10}
$$

Is $\left|x_{2}^{(m+1)}-x_{2}^{(m)}\right|>2^{-10}$
yes

sp next job

B1 Used for $x_{1}^{(m)}$, See A3.2, A1.2 B 5 - ${ }_{1}$
B $2 \ldots$ Used for $x_{2}^{(a)}$ See A5.2, AL. 3 B 6 - a_{2}
($3-{\text { Used for } x_{1}^{(m+1)}}_{(m)} x_{1}^{(m)}$ See $A 2.5$
$B 7 \quad 0_{2}$
B \& . Wed for $x_{2}^{(m+1)}-x_{2}^{(m)}$: See A4.4

6673
Engineering Note E-2000-1

Code XVI

Noter Data storage on following page.

Data Storage for Code XYI
E2. a
B2. ... Used for $n \times 2^{-15}$
B3. -- " " $\frac{b}{4}$

> c1 $\frac{\sqrt{2}}{8}$
> $C 2 \frac{\sqrt{2}}{2}=q$

B4. $-\cdots \quad \begin{array}{lll}\text { " } & \text { " } & x_{1} \\ & \text { " } & \\ & & \\ x_{2}\end{array}$
B5. … $\begin{array}{ll}\| & 2 x_{2} \\ & \| \\ & \| \frac{\sqrt{a}}{2}\end{array}=\frac{\sqrt{b}}{2 q}$

C3 $\frac{1}{2}$
C4 $1 \ldots \sqrt{2}=(1-\sqrt{2}) q \sqrt{2}$

6673
A. 1 Ca Bl
A.2.1 sr 1

2 ad Cl
3 ts 83
4 sur. C2
5 dy B3
6 8! 15
7 is B4
AB. 1 ar B4
2 \%8 B3

A4.1 nr C3

2 ad Cl

3 mr 33

4 ad G2
5 dB 33
A5.1 mr BA
2 ad B3
3 级 B4
Ab. 1 CA 92
$2 \mathrm{mh} \quad \mathrm{C4}$

3 td A8.1

A7.1 81. 2.5
2 mr 65
3 ad C6
A8.1 ar $-\cdots$
$(1-\sqrt{2}) \mathrm{kq} \sqrt{2}$
$2^{-k} q$
y $f\left(y^{2}\right)$ See AZ. 6
$(1+y) f\left(y^{2}\right)=\frac{\sqrt{b}}{2 q}$ Sens 84.5
Obtain and store
$\frac{3 y^{2} \sqrt{2}}{16}$
$3 y^{2} \frac{\sqrt{2}}{16}+\frac{\sqrt{2}}{4}$
$\frac{3 y^{4} \sqrt{2}}{16}+\frac{y^{2} \sqrt{2}}{4}$ See A.3.2
$f\left(y^{2}\right)$
$x \times 2^{-15}$
AC contains $\mathrm{m}_{\mathrm{n}} \times 2^{-15} \mathrm{k}$
BR
$\frac{\sqrt{b}}{2 q}=(1+y) f\left(y^{2}\right)$

Put m in address section
of 81 order $A 8.1$ and
obtain k in $B R$

Obtain and stare $\frac{\sqrt{a}}{?}$

Obtain and store $f\left(y^{2}\right)$

2 mr BY
3 dB B4

A9.1 sp --
Data Storage on following page

6673
Engineering Note E-2000-2

Data Storage fox Codo XVII

B1 a
B2 - Usod for n $\pi 2^{-15}$
B3 .. " $\quad \begin{array}{lll}\text { " } & \frac{b}{2}+\frac{\sqrt{2}}{4} \\ \text { " } & y^{2} \\ \text { " } & & \\ & & f\left(y^{2}\right)\end{array}$

* * $\frac{\sqrt{a}}{2}$
c) $\frac{\sqrt{2}}{4}$

C2 $\frac{\sqrt{2}}{2}$
$63 \frac{3 \sqrt{2}}{16}$
c4 ${ }^{\frac{1}{2}} 2^{-\frac{1}{4}}(1-\sqrt{2})=(1-\sqrt{2}) q y^{2}$
C6 $2^{-\frac{3}{4}}=q$

6673

Code XVIIII

Data Storage for Code XVIII

```
31 2-15
2 cs Cl
cscn
4 -. Used for }\mp@subsup{x}{k}{
5 ... " n ce Ck
C1 *
CR }\mp@subsup{x}{2}{
```

(The numbers in Cl to Cn are renamed after each cycle)

CD x_{n}
Data Storage for Code XIX
$B 1-\quad\left(2^{-15}=O p_{t}\right)$
B2 $\cdots x^{(t)}$
B3 $\quad 2^{-15}$
$B 4$ ce $c(c+2)$
B5 ca $C(c+a)$
$\mathrm{c}(\mathrm{o}) \mathrm{a} \quad(<$ all x$)$
C1. C2, Cn
$C(c+o)$

$$
x_{1}, x_{2}, \ldots x_{D}
$$

$c(c+1), c(c+2), \ldots(c(c+a)$. $2^{-15} \times c(0)$
$c(c+1), c(c+2), \ldots \ldots d(c+a), \quad 2^{-15} \times c_{p}$

Code XIX

6673
Engineering Note Fim 2000-1
signed $\frac{\text { MaindR Fia? }}{\text { Darid Ro Israel }}$

Approved - $\frac{\text { W.Gonden Col Gordon Welchman }}{\text { W(Gamem }}$

DRI: Ifu, aec

