NUMBER	AUTHOR	SUBJECT
E-126	BEST	SCOPE SYNCHRONIZER
E-143	PERLIS	NUMERICAL SOLUTION OF LINEAR INTEGRAL EQUATIONS
E-328	ROWLAND	PULSE TRANSFORMERS AND INTERSTAGE COUPLING IN WHIRLWIND I
E-329	ADAMS	TECHNIQUES FOR USING STANDARD AUTOMATIC SURROUTINES
E-402	HANSON	CIRCUITRY, RELAY TIMING, AND OPERATION OF WW1 TAPE OUTPUT EQUIPMENT
E-406	PAPIAN	PRELIMINARY TEST ON THE FOUR-CORE MAGNETIC-MEMORY ARRAY
E-409	FROST	RATIONAL SELECTION OF VACUUM TUBE TYPES FOR COMPUTER APPLICATIONS
E-413	EVERETT	SELECTION SYSTEMS FOR MAGNETIC CORE STORAGE
E-422	PAPIAN	RECTANGULAR-LOOP MAGNETIC CORE MATERIALS
E-449	EMERSON WERLIN	THE CADAC COMPUTER
E-451	JONES CALLAHAN	VARIATION OF TRANSISTOR COLLECTOR RESISTANCE WITH COLLECTOR VOLTAGE
E-454	BUCK	A NON-DESTRUCTIVE READ SYSTEM FOR MAGNETIC CORES
E-458-1	JEFFREY REED	THE USE OF BOOLEAN ALGEBRA IN LOGICAL DESIGN
E-458-2	JEFFREY REED	The use of boolean algebra in logical design
E-460	BUCK	THE FERROELECTRIC SWITCH
E-462	JEFFREY REED	DESIGN OF A DIGITAL COMPUTER BY BOOLEAN ALGEBRA
E-463	ECKL	INTRODUCTION TO THE THEORY OF SEMICONDUCTORS I, SOME REMARKS ON QUANTUM MECHANICS

LISTING OF ENGINEERING NOTES

NUMBER	AUTHOR	SUBJECT
E-464	BROWN	A SQUARENESS RATIO FOR COINCIDENT-CURRENT MEMORY CORES
E-468	ECKL	INTRODUCTION TO THE THEORY OF SEMICONDUCTIORS II, A BRIEF DISCUSSION OF STATISTICAL MECHANICS
E-472	MAYER	THE MIRROR: A PROPOSED SIMPLIFIED SYMBOL FOR MAGNETIC CIRCUITS
E-474	ECKL	INTRODUCTION TO THE THEORY OF SEMICONDUCTORS III, CONDUCTION IN METAL; THE FIELD-FREE CASE
E-475	BRIGGS	A MAGNETIC-CORE GATE AND ITS APPLICATION IN A STEPPING REGISTER
E-477	BUCK	MAGNETIC AND DIELECTRIC AMPLIFIERS
E-481	YOUNG	TOGGLE SWITCH INPUTS AND INDICATOR LIGHT OUTPUTS AS EXTERNAL UNITS
E-487	MAYER	NOTES ON THE LOGICAL DESIGN OF THE IBM 701 COMPUTER
E-488	GUDITZ	deltans in ceramic array \#1
E-491	MORRISON	HYSTERESIS LOOP CHARACTERISTICS OF MF-1118 FOR DIFFERENT TEMPERATURES
E-492	ECKL	INTRODUCTION TO THE THEORY OF SEMICONDUCTORS IV, QUANTUM STATES IN CRYSTALS. THE BOUND ELECTRON CASE.
E-494	NEVILLE	MODIFICATION OF THE DUMONT $304-\mathrm{H}$ OSCILLOSCOPE TO REDUCE DRIFT ENCOUNTERED IN WW1 DISPLAY
E-496	HUNT	INSTRUCTIONS AND SPECIFICATIONS FOR THE MANUFACTURE OF 3:1 AND 1:1, 0.1 MICROSECOND PULSE TRANSFORMERS ON FERRITE RING CORES.
E-498	O'BRIEN	AN ELECTRONIC HOLDING CIRCUIT
E-500	KATZ GUDITZ	SWITCH-CORE ANALYSIS I
E-512	BALTZER	A METHOD FOR ACCEPTANCE TESTING OF FERRITE CORE PRODUCTION LOTS
E-523	BOYD	CORE DRIVERS -- MODEL V AND MODEL VI

NUMBER	AUTHOR	SUBJECT
E-525	BOYD	NORMALIZED FLIP-FLOP CHART
E-526	BOYD	HIGH-SPEED (5965) FLIP-FLOP
E-529	BUCK	MATRIX DRIVING WITH UNIDIRECTIONAL PULSES
E-531	FINE	DRIVING CURRENT MARGINS ON MEMORY TEST SETUP I*
E-533	BALTZER	EFFECT OF CURRENT PULSE DURATION ON THE PULSE RESPONSE OF M.T.C.
E-540	OLSEN	AEMORY CORES
E-542	HOPKINS	TIMING DIAGRAMS FOR MTC CONTROL
E-543	BOYD	FINAL SPECIFICATIONS OF THE HIGH-SPEED FLIP-FLOP
E-547	REMIS	PROPOSED HIGH INPUT-IMPEDANCE TRIGGER CIRCUITRY FOR HIGH-SPEED
E-548	CHILDRESS	PRELIMINARY REPORT - TEMPERATURE EFFECTS IN MTC-TYPE FERRITE CORES
E-550	JONES	OPEN-CIRCUIT IMPEDANCE REPRESENTATION OF TRANSISTORS*
E-561	ZIEMAN	DIFFERENTIAL VIDEO PROBE
$E-563 ~$	BROWN	SPECIFTCATIONS FOR A FERRITE MEMORY CORE
E-2000-1 ISRAEL	INTRODUCTION TO CODING: PART I OF II PARTS	

Projゃct Whirlaind. Sorvomeohenigms Laboratory Nassechusotte Insitituto of Toohnology Cambridge, Kassaohusetts

SUBJECI: SCOPE SYNCERONIZER

To: 6345 Bngineers, Sylvania
Froms R. L. Best
Dete: July 21, 1948

Desoription

The Scope Synchroniser will take positive pulses of any pref betwoen 500 eyoleg and 6 megaoyoles, and divide these to any output frequency botween 500 oycles and 30 ke . The output pulse may be delayed over a 10 yseo renge, and symohronized with one of the input pulsen if desired, to produce a jitter-free output. Two input jacks are provided, one ior input prif's above 500 ko , and the other for input prifs bolow 500 kc .

When the input sync, seleotor is in position 2_{0}, the sigaal applied to input faok in fod to the Sirst multivibrator, whioh divides this frequancy to about 100 kc . The free running period of this multivibrator may be varied a mmil amount by the "first $\mathrm{M}_{0} \nabla_{0}$ " control. The output of this first multivibrator is fod to a sooond multivibrator, whose free running period is ooxtroiled by the "output frequenoy" control.

When the input syno. selector is in position 2, the signal applied to imput faok \#t is ied to the necond maltivibrator direotly. and power supply voltege is removed from the first multivibrator.

The output of the second mantivibrator triggers a single shot multivibrator, which puts out a gate, variable in length by the "delay" control from about $5=15 \mu 300$.

When the "output sync. selector" is in position 0 , "mooth delay is obtained. Whon this wwitoh is in position 1 , the signel applied to input 1 is also fod to this delsy olrcult in suoh a manner that the trailing edge of this gate is symohronous with one of the incoming pulses, the delay then being in stops equal to the time beo tween pulses. When this switoh is in porition 2, the signal applied to input 2 is used to sync. the delay.

The output cirouit is an RLC peakar, whioh puts out a positive pulse at the end of the variable longth gate. This pulse is a half sino wave of 5 pseo duration, variable in axplitude from 0 to 175 volts。

The input pulse should be at least 15 volts in anpiitude. One sorvenient method of using the unit is to foed the "100 ko syno. pulse" from a remtorer pulso gonerator into input 2 , and puc the "Snput syace selectori in position 2。 Ono mo olock pulses are fed into input 1, and the "output ayno. seleator" is put in position 1。 Thon the unit divides the 100 ko signal by some integer, which may be varied by ohanging the "output freq." oontrol, and the output pulse is syniohronous with a olook pulse, the delay being in steps of 1 miarow second. The "sync. gain" control varies the smplitude of the pulse fed to the multivibrator selooted by the "input sync. seleotor", but doec not vary the amplitude of the sync. pulses fed to the delay cirouit.

Circuit
Draving 3-39822 shows the oircuit of the Soope Synchronizer. Both multivibrators ero similar eqoept for the time constant of the erossover networks, the first multivibrator being the fegter. With the "input syace selector" on position 1_{0} the incoming pulsos aro applied to the oathode of the Pirst multivibrator through the "Bync. gain ${ }^{\prime \prime}$ potentiometer and a crystal dilode. These positive pulses are amplified by the conduoting tube, and appar. as positive puises on the plate of this tube. The ampliffed pulses are coupled throug the orossover oxpacitor to the opposite grid, so that the rising exponontial of the grid of the non-conduating tube has pulses superimposed on it. As this grid nears outwif, one of these pulses causes the multivibretor to flip . Whereupon the operation ia repeated with the other side. Thus the muitivibrator is synchronised with the applied pulses.

One plate of the Pirst miltivibrator is comneoted to each plate of the seoond multivibrator through small capacitors whioh differentiate the waveform of that plate of the first multivibrator. The alternately positive and negative plps whioh therefore appear on the plate of the off tube in the second multivibrator are passed through the oroasover cepaoitor to the grid of the on tube, which amplifies then. These amplified pips are large onough to overide the oppositely phased pips ooning direotly to this plate through the mall capsoitor from the plate of the first multivibrstor. The amplified pips are fed through the orossover eapacitor to the grid of the off tubes being superimposed upon this rising exponentiel. When this grid noars outoff, it is ono of these pips which causes the multivibretor to flip, synohroniging it. The operation is thon ropeated for the opposite side of the multivibrator. When the "input synce selsotor" is in position 2, the second multivibrator operates in a manner simslar to the preceding description of the ftrst multivibrator, the syno. pulses being applied to the cathode.

A small ospacitor is conneoted from one plate of the second multivibrator to a voltage divider, differentiating this vavalorm, and putting the result at a d-c potential of about 20 volts. Only the negative pip caused by this plate conducting is large onough to pass through the orystal conneoted to the normally on grid of the single shot or deley
multivibrator, and this pip flips this delay multivibrator. The "delay" control determines the length of the gate generated at the plate of this tube. The normally off plate conducts during the delay interval, and is connected to the output sync. seleotor through a. orystal diode and oapacitor. The pulses seleoted by the "output sync. selector" are fed to this plates, and to the exponentially rising grid of the off triode through the crossover capacitor. The and of the gate is therefore synchronous with the pulses selected by the "output syne. selector" switch. After the delay multivibrator hes returned to its original state, the crystal diode comeoted to the normally off plato passes no Ejnchronising pulses, since its cathode is at -150 volts, While its anode is at about fro volts.

The output circuit is an RLC peaker, operating on the positive gate generated by the normally on plate of the delay multivibrator. This gate is R-C coupled to a variable bias, varied by the "output amplitude" control, which determines how heavily the output tube conducts during the gate interval. At the end of the gate interval, the output triodes are sharply out off, and the resulting inductive voltage swing in the plate circuit is the output pulse. Negative voltage swings in the plate circuit are olipped by crystal diodes. Due to the method of coupling the gate to the weaker, variations in output frequency and delay effect the output amplitude. The output pulse is a $\frac{3}{2} \mu \mathrm{sec}$ half sine wave 。 that may be varied from zero to $f 175$ volts.

RLH/mpre

Approved

Drawing: 39822

Project Whirlwind

Servomeohantsme Laboratory
Massachusetts Institute of Technology
Cambridge, Messachusetto

SUBJECT: NUMERICAL SOLUTION OF LINEAR INTEGRAL EQUATIONS
To: Mathematics Group
From: Alan J. Perlis
Dates Soptamber 16, 1948

Introduction:

The purpose of this report is a survey of numerical methods for solving integral equations. Only linear integral equations of real variables will be considered. There are three important types of such equations:
(a) The Fredholm equations of the second kind

$$
\begin{array}{ll}
f(x)=y(x)+\lambda \int_{a}^{b} K(x, y) f(y) d y & \text { (non-homogeneous) } \\
f(x)=\lambda \int_{a}^{b} K(x, y) f(y) d y & \text { (homo geneous) }
\end{array}
$$

(b) The Volterra equation

$$
f(x)=g(x)+\int_{a}^{x} K(x, y) f(y) d y
$$

and
(c) The equation of the first kind

$$
g(x)=\int_{a}^{b} K(x ; y) f(y) d y
$$

In each of the above equations the function $f(x)$ is to be obtained from the given functions $g(x)$ and $K(x, y)$. Under quite general conditions (a), and (b) possess unique solutions whereas (c) will, in general, have many solutions except under certain restrictive constraints.

Thus far, at least by comparison, say, with linear algebraic equations and differential equations, little has been accomplished in

```
6345
```


doveloping numerical methods for solving integral equations. Tho superis
ority over dilferential equations in exprossing many physical probleme
has only recently bean axploited.

In general, it would be nicest to attack each equation by a mothod best suited to its own gtructuro. This puts a premium on analysis. The attitude taken here will be to develop quite general numerical netho ode which can most aasily be treated by a computer of the digital type.

On the same level of importance as the design of a solving method for an equation is an appreciation of the status of arrors in each stop of the problem. Besides the usual numerical round-off and truncation errors, all methods of solution introduce an important stability error caused by the lapse of a transcendental problem into a discrete one。 In general, the numerical methods show excellent stability (at least where unique solutions to the problem exist) due chisfly to the smoothing proporties of integration.

2. The In near Integral Equation of the First Kind

The equation to be considered is

$$
\begin{equation*}
f(x)=\int_{a}^{b} K(x, y) g(y) d y \tag{1}
\end{equation*}
$$

with the functions $f(x)$ and $K(x, y)$ given and $g(y)$ to be determined. Examples of this tyne of equation are:
and

$$
\begin{aligned}
& f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i y x} g(y) d y \quad \text { (The Fourier transform). } \\
& f(x)=\int_{0}^{\infty} e^{-x y} g(y) d y \quad \text { (The Laplace transform) }
\end{aligned}
$$

Often the solution $g(y)$ will not be unique; for, to the solution of (1) most be added solutions, if they exist, of

$$
0=\int_{a}^{b} K(x, y) g_{i}(y) d y \quad(i=1,2, \ldots)
$$

In both of the above mentioned examples definite inversion formulae of the type:

$$
g(y)=\int_{L} h(x, y) f(x) d x \quad(L, \text { a path in the } x \text { plane) }
$$

Field anslytic expressions for $g(y)$. In general, such inversion formulae do not exist. The integral equation does not always have solutions, since for a given $K(x, y) f(x)$ must possess certain properties dependent upon the kernel. If $K(x, y)$ is a polynomial in x, then $f(x)$ must be a polynomial in x. Likewise if $K(a, y)=0$ for all y and if the equation is satisfied for all y, then $f(a)=0$. The function $f(x)$ is not perfectly arbitrary, for if $K(x, y)$ is a polynomial in x, then $f(x)$ must be a polynomial. That is, wo must restrict $f(x)$ to a class of functions associated with $K(x, y)$. A theorem to this affect will be discussed later. In certain special cases an equation of the first kind con be reduced to one of the second. kind and here $f(x)$ can be highly arbitrary.

As regards the uniqueness of the solution $p(y)$, where $p(y)$ is constrained to be continuous, the following may be said. If the kernel, $K(x, y)$, is "definite", ie.

$$
\int_{a}^{b} \int_{a}^{b} K(x, y) w(x) w(y) d x d y>0
$$

for all continuous $w(x)$, then the equation

$$
\int_{a}^{b} K(x, y) w(y) d y=0
$$

has no continuous solution $w(y)$ except. $w(y)=0$. In narticular, if two continuous solutions $g_{1}(y)$ and $E_{p}(y)$ of the equation
extent, then, for $\mathbb{X}(x, y)$ definite, $g_{y}(y)=g_{2}(y)$; 1.0. the solution is unique in general a given $\mathbb{K}(x, y)$ will not ${ }^{2} b e$ definite but may bo mede so by the following artifice. Form:

$$
L(x, y)-\int_{a}^{b} K(x, t) K(y, t) d t
$$

Since $L(x, y)$ is symmetric its characteric values are reel. Purthomore, if $\phi_{h}(x)$ is a characteristic function,

$$
\phi_{n}(x)=\lambda_{n} \int_{a}^{b} L(x, y) \phi_{n}(y) d y
$$

From which it follows that $\lambda_{n} \geqslant 0$ since
and

$$
\int_{a}^{b} \phi_{n}^{2}(x) d x=\lambda_{n} \int_{a}^{b} \phi_{n}(x) d r \int_{a}^{b} L(x, y) \phi_{n}(y) d y
$$

$$
\begin{aligned}
& =\lambda_{n} \int_{a}^{b} \phi_{n}(x) d t \int_{a}^{b} \phi_{n}(y) d y \int_{a}^{b} k(x, t) k(y, t) d t \\
& =\lambda_{n} \int_{a}^{b}\left(\int_{a}^{b} k(x, t) \phi_{n}(t) d t\right)^{2} d t
\end{aligned}
$$

hence $\lambda_{n} \geqslant 0$. Indeed if the $\left\{\phi_{n}(x)\right\}$ form a complete set,

$$
\int_{a}^{b} K(x, t) \phi_{n}(x) d x \neq 0 \quad(n=1,2, \ldots)
$$

so that $\lambda_{n}>0$. Hence $L(x, y)$ is definite and the integral equation:

$$
u(x)=\int_{a}^{b} L(x, y) g(y) d y
$$

where

$$
u(x)=\int_{a}^{b} f(t) K(x, t) d t
$$

has a unique continuous solution. If the function $g(y)$ is restricted to be continuous $f(x)$ will usually be required to satisfy linear conditions of the form:

$$
\int_{a}^{b} w(x) f(x) d x=0, \int_{a}^{b} w(x) K(x, y) d x=0
$$

An analogy to linear algebraic equ-tione proves fruitful. The equation is analogous to the system:

$$
f_{x}=\sum_{y=1}^{n} K_{x, y} g_{y} \quad(x=1,2,3, \ldots, m)
$$

and can he obtained from the system in the limit as $m, n \rightarrow \infty$. The prop= erties of the system depend on the relation between m and n. Hence three cases can occur:

6345
(2) \quad ic $>$ implies the existence of relations of the form $\sum_{x=1}^{x=m} a_{x} k_{x, y}=0 \quad$ for andy
and then consistency will demand that in satisfy:

$$
\sum_{x=1}^{x=m} a_{x} f_{x}=0
$$

In the limit these relations may take several forms, an obvious one being:

$$
\int_{a}^{b} a(x) f(x) d x=0
$$

(2) $m=n$. A unique set of g_{y} exists and is given by:

$$
g_{y}=\sum_{x=1}^{x=m_{1}} a_{x} K_{x, y} \quad y=(1,2, \ldots, m)
$$

provided no relation

$$
\left.\sum_{x=1}^{x=m} a_{x} K_{x, y}=0 \quad \text { (all } y\right)
$$

is satisfied.
(3) $n<n$ yields an infinite number of sots of solutions but particular sets may be obtained by imposing ($n=m$) linear conditions on $\mathrm{E}_{\mathbf{y}}$.

Hence, in general, it is too much to expect that the solution will be unique. An important question, particularly in numerical calcurations, is the range in x over which $f(x)$ is given. Decreasing the range may well involve making $g(y)$ zero over is portion of the range to maintain uniqueness. In the particular case of the moment problem of $=\infty$ Stieltjes, $f(x)$ is defined only over an enumerable set of values $\left\{x_{i}\right\} \quad i=1$ and the side conditions induce a unique $g(y)$.

In general, then, if the conditions are satisfied which will make the solution unique we shall expect to obtain an expression of the form:

$$
g(y)=H_{K} f(y)
$$

where H_{K} may be built up of linear combinations of the type

$$
p(y) \frac{d^{n} f(y)}{d y}, f(y+\beta), \quad \int_{a}^{b} H(y, x) f(x) d x
$$

In two cases mentioned the inversion formula is of the highly desirable form:

$$
g(y)=\int_{L} H(y, x) f(x) d x
$$

Only rarely will this integral bo of the same typo as that do Sining $P(x)$. For a $g(y)$ may be discontinuous at some $y=J_{0^{\prime}}$ and still yield a continuous $f(x)$, hence the integral for $g(y)$ must be improper, that is $H(y, x)$ must be discontinuous or the 1 imit e be infinite.

In those cases where the equations of condition are not seise fed it will then not be possible to obtain an exact representation of $r(x)$ by an integral. But by analogy to the mothod of least squares, the problem of solving the integral equation is essentially equivalent to that of minimizing an integral, 10. a problem in the calculus of variations. The point being to obtain the best possible approximation to $f(x)$ in the least squares sense by an integral of the given type. Ag in the least squares procedure we may introduce a positive weight function $\mathrm{q}(\pi)$ which weights $f(x)$ according to some law. Thea if

$$
\int_{a}^{b} q(x) K(x, s) f(x) d x=\int_{a}^{b} q(x) K(x, s) d x \int_{a}^{b} K(x, y) g(y) d y
$$

or

$$
f(x)=\int_{a}^{b} k(x, y) g(y) d y
$$

$$
\phi(s)=\int_{a}^{b} L(s, y) g(y) d y
$$

where
and

$$
L(s, y)=\int_{a}^{0} K(x, s) K(x, y) q(x) d x
$$

$$
\phi(s)=\int_{a}^{b} g(x) k(x, s) f(x) d x
$$

If we assume that $k(x, y)$ is "perfect", ice

$$
\int_{a}^{b} k(x, y) u(y) d y=0
$$

implies, if $u(y)$ is continuous, that $u(y)=0$. The $L(s, y)$ is definite, and symmetric. Hence the solution is unique, but may not possess a continuous solution $g(y)$. This can be answered by ascertaining the existence or non-existence of a continuous function $g(y)$ which minimizes

$$
W=\int_{a}^{b} q(x)\left(f(x)-\int_{a}^{b} k(x, y) g(y) d y\right)^{2} d x
$$

over a set of values in x. This minimum may not always exist but W may be made as small as desired, and thus an approximate representation for $P(x)$ is obtained.

A rewarding way of examining the integral equation of the first kind is as an operator equation:

$$
f(x)=\int_{a}^{b} k(x, y) g(y) d y d s \quad f(s)=L_{k} g(s)
$$

and then the problem is to find L^{-1} is such that

$$
g(s)=L_{k}^{-1} f(s)
$$

and, in general, will not be unique. For numerical work the problem of uniqueness becomes largely an academic one, in any case. The interesting question here is under what general conditions can a solution be Round; how accurate will it bo; and is there a quite general, easily arithmebized. algorithm which will yield a reasonably accurate result. A general shoorem by Rateman proves useful.

The equation is:

$$
f(x)=\int_{a}^{b} K(x, y) g(y) d y .
$$

Either $K(x, y)$ is symmetric or it is symmetrized by the operation:

$$
\begin{aligned}
& u(s)=\int_{a}^{b} f(x) K(s, x) d x=\int_{a}^{b} K(s, x) d x \int_{a}^{b} K(x, y) g(y) d y \\
& u(s)=\int_{a}^{b} K(s, x) K(x, y) d x f_{a}^{b} g(y) d y=\int_{a}^{b} L(s, y) g(y) d y
\end{aligned}
$$

Henceforth $K(x, y)$ will be assumed to be symmetric. The theorem then is:
(1) If $K(x, y)$ has a complete set of characteristic functions, $\phi_{n}(x)$, satisfying

$$
\phi_{n}(x)=\lambda_{n} \int_{a}^{b} K(x, y) \phi_{n}(y) d y
$$

and
(ii) $f(x)$ can be expanded in an absolutely and uniformly con= vergent "Fourier" series

$$
f(x)=\sum_{n=0}^{\infty} C_{n} \phi_{n}(x)
$$

then there exists a $g(y)$ such that

$$
f(x)-\int_{a}^{b} K(x, y) g(y) d y /
$$

may be less than any arbitrary $\epsilon>0$. The proof of the theorem provides the algorithm for the solution.

Proof:
Define: $F(z, x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} 7^{2 n+1} L_{k}^{2 n+1} f(x) ; L_{k} f(x)=\int_{a}^{b} k(x, y) f(y) d y$
and

$$
H(z, x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} z^{2 n} L_{k}^{2 n} f(x)
$$

The series are abs convergent for finite x. For:
Le\%

$$
\begin{aligned}
& |f(x)|<\tilde{f} \\
& |k(x, y)|<\tilde{k}
\end{aligned}
$$

They imply

$$
\left|L_{k}^{n} f(x)\right|<(b-a)^{n} \tilde{f} \tilde{k}^{n}
$$

and so each series becomes less than the exponential series.
Pick an M and write:

$$
\begin{aligned}
& g(y)=2 \int_{0}^{m} F(y, z) d z \\
& \int_{a}^{b} K(x, y) g(y) d y=z \int_{a}^{b} K(x, y) d y \int_{0}^{M} F(y, z) d z \\
&=2 \int_{0}^{M} d z \int_{a}^{b} F(y, z) K(x, y) d y \\
& \text { Integration term by term yields } \\
& 2 \int_{a}^{b} K(x, y) F(y, z) d y=2 \sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+1}}{n!} L_{K}^{2 n+2} f(x) \\
&=-\frac{d}{d z} H(z, x)
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
\int_{a}^{b} K(x, y) g(y) d y & =-\int_{0}^{M} \frac{d}{d z} H(z, x) d z \\
& =f(x)-H(x, M)
\end{aligned}
$$

An expression for large M, of $H(x, M)$, is to be found.
Use:

$$
f(x)=\sum_{n=1}^{\infty} C_{n} \phi_{n}(x)
$$

Form: $\quad \int_{a}^{b} k(x, y) f(y) d y=\sum_{n=1}^{\infty} \frac{C_{n}}{\lambda_{n}} \phi_{n}(x) \quad$ which converges.
Also:

$$
L_{k}^{\imath} f(x)=\sum_{n=1}^{\infty} \frac{C_{n}}{\lambda_{n}^{2}} \phi_{n}(x) \quad(n=1,2, \cdots)
$$

So:

$$
H(x, z)=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{n!} L_{k}^{2 n} f(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{n!}\left(\sum_{n=1}^{\infty} \frac{C_{n}}{\lambda_{n}^{2 n}} \phi_{\pi}(x)\right)
$$

Now: $\sum_{n=m}^{\infty}\left|C_{n} \phi_{n}(x)\right|<\epsilon$
implies, for m large enough,

$$
\left.\sum_{n=m}^{\infty}\left|\frac{\sigma_{n}}{\lambda_{m}^{2 \pi}} \phi_{n}(x)\right|<\frac{\epsilon}{\mid \lambda_{m}^{2 n}} \right\rvert\,
$$

since $\lambda_{n+1}>\lambda_{n+2}$ (by formal ordering of the ofgenfunctions)
Hence:

$$
H(x, z)=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{n!}\left(\sum_{n=1}^{m} \frac{c_{n} \phi_{n}(x)}{\lambda_{n}^{2 n}}\right)+\delta
$$

where
So rearranging:

$$
H(x, z)=\sum_{n=1}^{m} c_{n} \phi_{n}(x) e^{-z^{2} / \lambda_{n}^{2}}+\delta
$$

Finally:

$$
H(x, z)=\sum_{n=1}^{\infty} c_{n} \phi_{n}(x) e^{-z^{2} / \lambda_{n}^{z}}
$$

so now

$$
\mid \sum_{n=p}^{\infty} c_{n} e^{-z^{2} / \lambda_{n}^{2} \phi_{n}(x)\left|<\left|\sum_{n=p}^{\infty} c_{n} \phi_{n}(x)\right|<\epsilon / 2\right.}
$$

and $\quad\left|\sum_{n=1}^{p} C_{n} e^{-M^{2} / \lambda_{n}^{2}} \phi_{n}(x)\right|$
Hence $\quad\left|\int_{a}^{b} K(x, y) g(y) d y-f(x)\right|<\epsilon$
and so the solution is

$$
g(y) \sim z \int_{0}^{M} F(y, z) d z
$$

If, in addition, $g(y)$ is constrained to remain finite over the entire range of integration, more can be said. It has been show that

$$
\left|\int_{a}^{b} k(x, y) g(y) d y-f(x)\right|<\epsilon
$$

but not that

$$
\lim _{\epsilon \rightarrow 0} g_{\epsilon}(y)=g(y)
$$

If, in adastion to the finiteness condition on $G(y)$ the "derived series" $\sum\left|\lambda_{n}{ }^{c} \tilde{\phi}_{n}\right|$ en convergent, $\tilde{\phi}_{n}=\left|\phi_{n}\right| \quad$ on (a, b) then there exists a $\mathbb{C}(y)$ defined by $g(y)=$? $\int_{0}^{\infty} F(y, z) d z^{m e x}$ such that

$$
f(x)=\int_{a}^{b} K(x, y) g(y) d y
$$

where $P(y, z)$ is defined by the series on page (7).
As an example of this method of solution, consider the equation:

$$
e^{-s^{2}}=\int_{0}^{\infty} g(t) \cos s t d t
$$

The solution is known to be $g(t)=\frac{1}{\sqrt{1}} e^{-t^{2} / 4}$

$$
\begin{aligned}
& \text { The function } F(t, x) \text { is formed: } \\
& \begin{aligned}
F(t, x) & =x \int_{0}^{\infty} e^{-s^{2}} \cos t d s-x^{3} \int_{0}^{\infty} \cos t s_{1} d s_{1} \int_{0}^{\infty} \cos s_{1} s_{2} d s_{2} \int_{0}^{\infty} e^{-s_{s}^{2}} \cos s_{3} s_{2} d s_{3} \\
& +\cdots \cdots \\
& =e^{-t^{2} / 4} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \frac{(\sqrt{\pi})^{2 n+1}}{2^{n+1}} x^{2 n+1} \\
g(t) & =2 \int_{0}^{\infty} e^{-t^{2} / 4}\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \frac{\sqrt{\pi})^{2 n+1}}{2^{n+1}} x^{2 n+1}\right) d x \\
& =\frac{1}{\sqrt{\pi}} e^{-t^{2} / 4} \int_{0}^{\infty} d\left(e^{-\pi / 2 x^{2}}\right) \\
& =\frac{1}{\sqrt{\pi}} e^{-t^{2} / 4}
\end{aligned}
\end{aligned}
$$

3. Solution in Toms of Orthogonal Functions:

The conditions for the existence of a solution of the equation of the finest kind may bo rather neatly stated in terns of orthogonal. functions. The treatment will be restricted to equations and functions satisfying the following conditions:
(1) The variable y is real on (a, b); the variable x is real on the same indite interval of definition (arb).
(ii) The functions $f(x), k(x, y)$ are real.
(111) The kernel $k(x, y)$ is bounded and integrable squared (L^{2}) in π and y; the function $f(x)$ is integrable squared $\left(L^{2}\right)$ in (a, b). Hence $g(y)$ is L^{2} in ($\left.A, b\right)$ 。

It will be convenient to soy that if

$$
\int_{a}^{b}(f(y)-g(y))^{2} d y=0
$$

Then $f(y)=g(y)$.
A set of real functions $\left\{\phi_{n}(x)\right\}$ are orthonormal I^{2} on (a, b) if they satisfy:

$$
\int_{a}^{b} \phi_{n}(x) \phi_{m}(x) d x=\int_{m n}, m, n=1,2,3, \cdots
$$

If the set is orthogonal and L^{2} on (a, b) it may be mede orthonormal. The set is said to be complete if no function $u(x)$ in L^{2} exists for which

$$
\int_{a}^{b} \psi_{n}(x) u(x) d x=0 \quad(a \| n)
$$

If the sot $\left\{\begin{array}{l}S, k) \\ j\end{array}\right\}$ not complete, it may be completed by adjoining to it a set $\left\{\phi_{n}^{\prime}(x)^{\prime}\right\}^{\prime \prime}\left(13^{\prime}\right)$ which is called the complementary set to $\left\{\phi_{n}(x)\right\}$.

$$
\sum_{n=1}^{\infty}\left(\int_{a}^{\infty} f(x) \phi_{n}(x) d x\right)^{2}=\sum_{n=1}^{\infty} f_{n}^{2} \leq \int_{a}^{b} f(x)^{2} d x
$$

If the set $\left\{\phi_{n}(x)\right\}$ is complete the equality holds. In addition, for a complete set, the relation

$$
\int_{a}^{b} f(x) g(x) d x=\sum_{n=1}^{\infty} f_{n} g_{n}
$$

Is valid. If not compete the equality holds if and only if

$$
\int_{a}^{b} g(x) \phi_{n}(x) d x=0 \quad n=1,2
$$

implies

$$
\int_{a}^{b} f(x) g(x) d x=0
$$

for all $g(x)$ on $L^{2}(a, b)$. This can be put another way. In order that $\boldsymbol{r}(x)$ be orthogonal to all $g(x)$ which satisfy the above, it is sufficient that $f(x)$ be orthogonal to the set $\left\{\phi_{n}^{\prime}(x)\right\}$ complementary to $\left\{\phi_{n}(x)\right\}$.

The fundamental RieszeFischer theorem states: if $\left\{f_{n}\right\}_{n=3}^{\infty}$ exists such that $\sum_{1}^{\infty} f_{n}^{2}<\infty$ then there exists and $f(x)$ in $L^{2}(a, b)$ much
that

$$
f_{n}=\int_{a}^{h} f(x) \phi_{n}(x) d x
$$

where

$$
\begin{array}{ll}
\int_{a}^{b} \phi_{n}(x) \phi_{n}(x) d x=0 & m \neq n=1,2, \\
\int_{a}^{n} \phi_{n}^{2}(x) d x<\infty & n=1,2, \ldots
\end{array}
$$

and if the set $\left\{\phi_{n}(x)\right\}$ is complete, $f(x)$ is unique except possibly for a set of measure zero.

One point which may now be made clear is that there functions for which the equation (1) has no solution. For if $f(x)$ L on some (a, b), then for some orthogonal set on (a, b);

$$
C_{n}=\int_{a}^{b} f(x)\left(H_{n}(x) d x=\int_{a}^{b} A_{n}(y) g(y) d y\right.
$$

where

$$
A_{n}(y)=\int_{a}^{b} k(x, y) \uplus_{n}(x) d x
$$

Then

$$
C_{n}^{2} \leq \int_{a}^{b} A_{n}^{2}(y) d y \int_{a}^{b} g(y)^{2} d y
$$

Let

$$
\int_{a}^{b} A_{n}^{2}(y) d y=a_{n}^{2}
$$

so that $\frac{C_{n}{ }^{2}}{a_{n}}$ be bounded is a necessary condition if $f(x)$ is to be a solution of (1): however it is not sufficient. Buts

$$
\sum_{n=1}^{N} a_{n}^{2}=\int_{a}^{b}\left[\sum_{n=1}^{N} A_{n}^{2}(y)\right] d y \leq \int_{a}^{b} \int_{a}^{b} K^{2}(x, y) d y d x
$$

6345

So that $\sum_{n}^{\infty} a_{n}^{2}$ is conroegent and fumbhemore demands only on the kevel. But there are series $\sum_{n=1}^{\infty} C_{n}{ }^{2}$ and $\sum_{n=1}^{\infty} a_{n}{ }^{2}$ which converge, and yet for which $\frac{C_{n}^{2}}{a_{n}^{2}}$ is unbounded. For example: $\frac{C_{n}^{2}}{a_{n}{ }^{2}}=n \quad$ and

$$
\sum_{n=1}^{\infty} a_{n}^{2}=\sum_{n=1}^{\infty} n a_{n}^{2}=\sum_{n=1}^{\infty} \frac{a_{n}^{\prime 2}}{n^{3}}
$$

It is possible to reduce the solution of the given equation to that of the following problem: Being given a denumerable set of constants \{c $\}$ and a sot of functions $\left\{A_{n}(y)\right\}$, to find a $g(y)$ which satisfies:

$$
C_{n}=\int_{a}^{b} A_{n}(y) g(y) d y \quad n=1,2
$$

The following may be said at once: If the $A_{n}(y)$ form an orthonormal set on (a, b) the necessary and sufficient condition for a solution. gey) is that

$$
\sum_{n=1}^{\infty} c_{n}^{2}<\infty
$$

then the solution is the limit, in the mean, of

$$
\sum_{n=1}^{N} c_{n} A_{n}(y)
$$

Naturally, if $\left\{A_{a}(y)\right\}$ be not closed there must be added, to the above, solutions of:

$$
\int_{a}^{b} A_{n}(y) g(y) d y=0
$$

If the $\left\{A_{n}(y)\right\}$ are not orthonormal, they may be made linearly Independent by suppressing those wis ch obey relations of the form:

$$
A_{n}(y)=\sum_{i=1}^{n-1} \gamma_{i}^{(n)} A_{i}(y)
$$

This creates similar equations among the c^{\prime} 's:

$$
C_{n}=\sum_{i=1}^{n-1} \gamma_{i}^{(n)} C_{i}
$$

The remaining equations are orthomormalized. Hence one gets series es of the form

$$
\sum_{n=1}^{\infty} b_{n}{ }^{2}=\sum_{n=1}^{\infty}\left(a_{1}^{(n)} c_{1}+\cdots a_{n}^{(1)} c_{n}\right)
$$

Which must converge sad the solution is the I mit fin the moan of

$$
\sum_{n=1}^{N} b_{n} B_{n}(y)
$$

whore $\left\{B_{\Sigma}(y)\right\}$ are the derived orthonormal aet. Conversely if this robs lem is solved, where the C_{n} are the Fourier coefficients of $f(x)$, the -quation is solved.

The solutions previously given demand knowledge of the charace teristic values and functions of the kernel or of the symmetrized delis nite kernel constructed from it.

It will now be show that solving the integral equation is equip Talent to that of maximizing a functional equation whose maximum value, if attained, is the solution. The conditions that the maximum be attain ed, then, are the conditions previously obtained which insure the solutions.

The functional $H(g)$ is defined as

$$
H[g]=\frac{\left(\int_{a}^{b} f(x) \tilde{g}(x) d x\right)^{2}}{\int_{a}^{b} \int_{a}^{b} L(x, y) \cdot \tilde{g}(x) \tilde{g}(y) d x d y}
$$

where $L(x, y)$ is the previously defined symmetrized kernel:

$$
L(x, y)=\int_{a}^{b} k(x, t) K(y, t) d t
$$

$f(x)$ is defined by:

$$
f(x)=\int_{a}^{b} K(x, y) g(y) d y
$$

and $g(x)$ is any $L^{2}(a, b)$ function. The denominator of $H[G]$ is bounded away from zero if $L(x, y)$ is "closed" or if $f(x)$ is orthogonal to each member of the complimentary set of eigen functions of $L(x, y)$. This will be assumed. Define now the "Fourier "coefficients:

$$
\begin{aligned}
& C_{i}=\int_{a}^{b} f(x) \phi_{i}(x) d x \\
& \tilde{g}_{i}=\int_{a}^{b} \tilde{g}(x) \phi_{a}(x) d x
\end{aligned}
$$

where the $\left\{\phi_{i}(x)\right\}$ are the characteristic functions of $L(x, y)$. Then $F(E)$ can be written as:

$$
H[g]=\frac{\left(\sum_{n=1}^{\infty} \tilde{g}_{n} f_{n}\right)^{2}}{\sum_{n=1}^{\infty} \frac{\tilde{g}_{n}^{2}}{\lambda_{n}}}
$$

6345

Now introduce the identity:

$$
\sum_{i=1}^{N} a_{i} \sum_{i=1}^{N} b_{i}^{N}=\left(\sum_{n=1}^{N} a_{i} b_{i}\right)^{2}+\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{\infty}\left(a_{i} b_{j}-a_{j} b_{i}\right)^{2}
$$

Now as $N \rightarrow \infty, 11 \sum_{n=1}^{\infty} a_{i}^{2}$ and $\sum_{n=1}^{\infty} b_{i}^{2}$ converge then $\sum_{n=1}^{\infty} a_{i} b_{1}$ converges and hence the series

$$
\sum_{i=1}^{\infty} \sum_{j=1}^{i}\left(a_{i} b_{j}-a_{j} b_{i}\right)^{2}
$$

converges. The substitution $a_{1}=\lambda_{1} c_{1}, b_{1}=\tilde{g}_{j} / \tilde{\lambda}_{i}$ yields, the inequality

$$
\sum_{i=1}^{N} \lambda_{i}^{2} C_{i}^{2} \geqslant \frac{\left(\sum_{i=1}^{N} \tilde{g}_{i} C_{i}\right)^{2}}{\sum_{i=1}^{N} \tilde{g}_{i}^{2} / \lambda_{i}^{2}}
$$

Now Let $\mathbb{N} \rightarrow \infty$; the right side approaches $H(g)$ and if the series converges $H(g)$ is bounded. Furthermore $\sum_{i=1}^{\infty} \tilde{g}_{j}^{2} / \lambda_{i}^{2}$ converges so that the identity can be written:

$$
H(g)=\sum_{i=1}^{\infty} \lambda_{i}^{2} c_{i}^{2}-\frac{\frac{1}{2}}{\left(\sum_{i=1}^{\infty} \tilde{g}_{y}^{2} \lambda_{i}^{2}\right)} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty}\left(\tilde{g}_{i} C_{j} \frac{\lambda_{j}}{\lambda_{i}}-\tilde{g}_{j} C_{i} \frac{\lambda_{i}}{\lambda_{j}}\right)^{2}
$$

Now put $g_{1}=\lambda_{1}^{2} C_{1}$. Hence for the function $g(x)$ possessing these Fourier coefficients $H\left(g_{j}\right)$ attains the maximum Hence if the series $\sum_{i=1}^{\infty} \lambda_{i}{ }^{2} C_{i}{ }^{2}$ converges and $\sum_{i=1}^{\infty} \lambda_{i}{ }^{4} C_{i}{ }^{2}$ converges, then there exists a $\hat{g}(x)$ whose Fourier coefficients are $\lambda{ }^{2}{ }_{4}$ and which maximizes the functional $\mathrm{H}(\mathrm{g})$: furthermore, this $\tilde{\xi}(x)$ satisfies the integral equation (1).

For manerical work, one would define ${\underset{g}{1}}=\lambda_{1}{ }^{2} C_{1}$ for $i \leq N$ and $\widetilde{g}_{f}=0$ for $1>N$. The N being selected as large as necessary for a good approximation. The method used for the variational procedure would be, perhaps the Trelftz variation of the Rayleigh Ritz method. But here again a knowledge of the characteristic values of $L(x, y)$ are necessary.
4. The Method of Steepest Descents

The equation to be solved 15:

$$
f(x)+\int_{a}^{b} K(x, y) g(y) d y=0
$$

We form $工(x, y)$:

$$
\begin{aligned}
\int_{a}^{b} f(x) K(x, y) d x & =\int_{a}^{b} K(x, y) d x \int_{a}^{b} K(x, t) g(t) d t \\
L(y, t) & =\int_{a}^{b} K(x, y) K(x, t) d x \\
u(y) & =\int_{a}^{b} L(y, t) g(t) d t=-v(y)
\end{aligned}
$$

So we wish to find a $g(t)$ such that

$$
\int_{a}^{b} L(y, t) g(t) d t+V(y)=0
$$

and the solution of this problem is the same as of (1).
The method of steepest descents can be used as an iterative method providing certain conditions are satisfied. It will be assumed that $L(\pi, y)$ is such that, for all $V(y)$ under consideration,:
(I) $\quad \int_{a}^{b} v(y) d y \int_{a}^{b} L(y, t) v(t) d t \geqslant m \int_{a}^{b} r^{2}(t) d t ; m>0$
(II) $\int_{a}^{b}\left\{\int_{a}^{b} L(y, t) V(t) d t\right\}^{2} d y \leq M \int_{a}^{b} V^{2}(y) d y ; M>0$.
(x) can be written as:

$$
\int_{a}^{b} d x\left(\int_{a}^{b} K(x, y) v(y) d y\right)^{2} \geqslant m \int_{a}^{b} v^{2}(t) d t
$$

Now if the characteristic functions of $L(y, t)$ form a closed set, an m can be found such that (I) holds true for all $v(y)$ which are $I^{2}(a, b)$. If the characteristic functions of $I(y, t)$ do not form a closed set, a net $\left\{\phi^{\prime}(y)\right\}$ is adjoined to yield the complete set $\{\Phi(y)\}=\{\phi(y)\}+\left\{\phi^{\prime}(y)\right\}$ Then for there to exist an m, must all $v(y)$ be orthogonal to the complementary set $\left\{p^{\prime}(y)\right\}$.

Apply the Schwartz inequality, now, to (II) and obtain:

$$
\begin{aligned}
\int_{a}^{b} d t\left|\int_{a}^{b} R(y, t) v(y) d y\right|^{2} & \leq \int_{a}^{b} d t \int_{a}^{b}|L(y, t)|^{2} d y \int_{a}^{b} r(y)^{2} d y \\
& \leq \int_{a}^{b} v^{2}(y) d y \int_{a}^{b} \int_{a}^{b}(L(y, t))^{2} d y d t \\
& \leq M \int_{a}^{b} v^{2}(y) d y
\end{aligned}
$$

So (II) follows if the kernel $\dot{L}(y, t)$ is $\dot{L}^{2}(a, b)$. As in tho care oi g gigs braid equations the functional $W(g)$, defined by

$$
W(g)=1 / 2 \int_{a}^{b} g(y) d y \int_{a}^{b} L(y, t) g(t) d t+\int_{a}^{b} r(y) g(y) d y
$$

is considered. Squaring

$$
\int_{a}^{b} g(y) d y \int_{a}^{b} L(y, t) g(t) d t+\int_{a}^{b} v(y) g(y) d y .
$$

yields the inequality:

$$
\left\{2 \int_{a}^{b} g(y) d y \int_{a}^{b} L(y, t) g(t) d t\right\} W(g)+\left\{\int_{a}^{b} v(y) g(y) d y\right\}^{2} \geqslant 0
$$

Schwartz 's inequality applied to the second integral and condition (i) appleed to the first give:

$$
2 m\left(\int_{a}^{b} g^{2}(y) d y\right) W(g)+\int_{a}^{b} g^{2}(y) d y \int_{a}^{b} r^{2}(y) d y \geqslant 0
$$

Hence: $\quad W(g) \geqslant-\frac{1}{m} \int_{a}^{b} V^{2}(y) d y$
and $W(g)$ has finite lower bound independent of $g(y)$.
Now, to improve and approximation, $\mathrm{g}^{(v)}(y)$, we consider the functional:

$$
W\left(g^{(v+1)}\right)=W\left(g^{(v)}+Y W(y)\right)
$$

where $Y_{\text {, a }}$ a real number, and $w(y)$, a function, are to be determined.

Tทอมร

$$
\begin{aligned}
& W\left(g^{(v+1)}\right)=1 / 2 \int_{a}^{b}\left(g^{(v)}(y)+Y w^{(v)}(y)\right) d y \int_{a}^{b} L(y, t)\left[g^{(v)}(t)+Y w^{(v)}(t)\right] d t \\
&+\int_{a}^{b} r(y)\left\{g^{(v)}(y)+\gamma w^{(v)}(y)\right\} d y
\end{aligned}
$$

$$
\begin{aligned}
W\left(g^{(v+1)}\right)= & W\left(g^{(v)}\right)+Y\left\{1 / 2 \int_{a}^{b} W^{(v)}(y) d y \int_{a}^{b} L(y, t) g^{(v)}(t) d t\right. \\
& \left.+\int_{a}^{b} v(y) W^{(v)}(y) d y\right\}+Y^{2} \int_{a}^{b} W^{(v)}(y) d y \int_{a}^{b} L(y, t) W^{(v)}(t) d t
\end{aligned}
$$

or, haling an obviously convenient notation:

$$
W\left(g^{(v+1)}\right)=W\left(g^{(v)}\right)+Y W_{1}\left(g^{(v)}, w^{(v)}\right)+Y^{2} W_{2}\left(W^{(v)}\right)
$$

Then, completing the square in Y :

$$
\begin{aligned}
& \begin{aligned}
W\left(g^{(v+1)}\right)=W\left(g^{(v)}\right)+ & W_{2}\left(w^{(v)}\right)\left\{\left(Y+1 / 2 \frac{W_{1}\left(g^{(v)}, w^{(v)}\right)}{W_{2}\left(w^{(v)}\right)}\right)^{2}\right. \\
& \left.-1 / 4\left(\frac{W_{1}\left(g^{(v)}, w^{(v)}\right)}{W_{2}\left(w^{(v)}\right)}\right)^{2}\right\}
\end{aligned}
\end{aligned}
$$

$$
Y=-1 / 2 \frac{W_{1}\left(g^{(v)}, w^{(v)}\right)}{W_{2}\left(w^{(v)}\right)}
$$

In agreement with the result obtained in in near algebraic systems whore the correction vector $\boldsymbol{w}^{\bar{r}}$ is taken along the gradient of a functional w and turns out to be the residue, the function $w(v)$ is taken as:

$$
w^{(v)}(y)=\int_{a}^{b} L(y, t) g^{(v)}(t) d t+v(y) .
$$

Hone, the next approximation 1.s:

$$
\begin{aligned}
& g^{(v+1)}(y)= g^{(v)}(y)+Y w^{(v)}(y) \\
&= g^{(v)}(y)- \\
& \int_{a}^{(v)}(y) \int_{a}^{b}\left(w^{(v)}(y)\right)^{2} d y \\
& \int_{a}^{b}(y, t) w^{(v)}(y) w^{(v)}(t) d y d t
\end{aligned}
$$

6345
Engineering Toto E-2 23

Furthermore the decrease in the functional 1 1:8

$$
W\left(g^{(v)}\right)-W\left(g^{(v+1)}\right)=\frac{\left(\int_{a}^{b} w^{(v)}(y) d y\right)^{2}}{2 \int_{a}^{b} w^{(v)}(y) d y \int_{a}^{b} L(y, t) a^{(v)}(t) d t}
$$

Hence the sequence $\left\{W^{\prime}(v)\right\}$ is monotonic decreasing and it has a finite lower bound. Therefore the sequence converges to a unique limit. It follow that

$$
\lim _{v \rightarrow \infty}\left(W\left(g^{(v)}\right)-W\left(g^{(v+1)}\right)\right)=0
$$

and the denominator satisfies (II) so that the equation yields the result

$$
\operatorname{limi}_{v \rightarrow \infty} \int_{a}^{b}\left(w^{(v)}(y)\right)^{2} d y=0
$$

The sequence if ${ }^{(\nabla)}(y)$ converges to the null function.
Hence: $\quad \int_{a}^{b} L(y, t)\left[g^{(v)}(t)-g^{(v+1)}(t)\right] d t=0$
But, by (i) and by the © schwartz inequality:

$$
\begin{aligned}
\left(\int _ { a } ^ { b } \left(g^{(v)}(y)\right.\right. & \left.\left.-g^{(v+1)}(y)\right)^{2} d y\right)\left[\int_{a}^{b}\left(\int_{a}^{b} L(y, t)\left(g^{(v)}(t)-g^{(v+p)}(t)\right)^{2} d y\right]\right. \\
& \geqslant\left(\int_{a}^{b}\left(g^{(v)}(y)-g^{(v+p)}(y)\right) d y \int_{a}^{b} L(y, t)\left(g^{(v)}(t)-g^{(v+p}(t)\right) d t\right)^{2} \\
& \geqslant m^{2}\left(\int_{a}^{b}\left[g^{(v)}(y)-g^{(v+p)}(y)\right]^{2} d y\right)^{2}
\end{aligned}
$$

Hance:

$$
\left|\int_{a}^{b} L(y, t)\left(g^{(v)}(t)-g^{(v+p)}(t)\right) d t\right| \geqslant m\left|\int_{a}^{b}\left(g^{(v)}(y)-g^{(v+p)}(y)\right) d y\right|
$$

Therefore the sequence, $f^{(\nabla)}(y)$, converges to a limit function $g(y)$.

6345

How if the traneformation is assumed to bo bounded foe satisfies:

$$
\int_{a}^{b} L(t, t) g(t) d t|\leq k| g(t) \mid
$$

Then the "triangle" inequality gives:

$$
\begin{array}{r}
\int_{a}^{b}|(y, t) g(t) d t+v(y)| \leq\left|\int_{a}^{b} L(y, t) g^{(v)}(t)+w(y)\right| \\
\left.+\mid \int_{a}^{b}(y)^{2}\right)\left(g(t) d t-g^{(v)}(t)\right) d t \mid
\end{array}
$$

and, in the 1 imit, as $\nabla \rightarrow \rightarrow 00$, it is seen that the limit function $g(t)$ satisfies the given equation. for

$$
\left|\int_{a}^{b} L(y, t) g(t) d t+v(y)\right| \leqslant\left|w^{(v)}(y)\right|+K\left|g(t)-g^{(v)}(t)\right|
$$

5. A Method of Beck Substitution:

The method of back substitution can be applied to the study of integral equations of the first kind:

$$
f(x)=\int_{a}^{b} L(x, y) g(y) d y
$$

where $I(x, y)$ satisfies the condition of the previous section. An itoras tron algorithm,

$$
g^{(v+1)}(y)=g^{(v)}(y)+\gamma\left(\int_{a}^{b} L(y, x) g^{(v)}(x) d x-f(y)\right)
$$

can be easily obtained, for

$$
\int_{a}^{b} L(x, y)\left[\left(g(y)-g^{(v)}(y)\right)+g^{(\prime)}(y)\right] d y=f(x)
$$

Hence:

$$
g(y)-g^{(v)}(y)=-\int P(y, x) d x
$$

where the integral operator $P(y, x) \phi(x) d x$ is the operator (if it exists) that has the property

$$
\int_{a}^{b} p(4, x) d x\left(\int_{a}^{b} L(x, y) p(y) d y\right)=p(y)
$$

for a $p(y)$ in $L^{2}(a, b)$. In general, such an operator does not exist; and in every case of interest is not known; for this is equivalent to having solved tho problem. Then replace the operator by a real scalar operator, v, and $f^{(v+1)}(y)$ is defined by

$$
g^{(v+1)}(y)=g^{(v)}(y)+\gamma\left[\int_{a}^{b} L(y, x) g^{(v)}(x) d x-f(y)\right]
$$

This equation is analogous to that obtained in the method of steepest descent; however, in this case γ, being a real constant, does not vary from one iteration to the next\%. This reduces the rate of con= vergence but lessens considerably the number of calculations involved. Furthermore, with the kernel satisfying conditions I and II a γ can always be chosen such that the iteration method converges, $1 . e$.

$$
\lim _{v \rightarrow \infty}\left(g^{(v+1)}(y)-g^{(v)}(y)\right)=0
$$

for almost all y on (a, b). To prove this select

$$
g^{(0)}(y)=-\gamma f(y)
$$

Then, using an obvious operator formalism,

$$
g^{\prime \prime \prime}(y)=\gamma(E+\gamma L) f(y)-\gamma f(y)
$$

Hence:

$$
g^{(\gamma)}(y)=\gamma(E+\gamma L)^{\nu} f(y)-(E+\gamma L)^{\gamma-1} f(y) \ldots . \gamma-\gamma(y)_{\nu}
$$

so that

$$
g^{(v+1)}(\eta)-g^{(v)}(y)=\gamma(E+\gamma L)^{\nu+1} f(y) .
$$

Then it is necessary and sufficient for convergence of the iteration process that

$$
\lim _{v \rightarrow \infty}(E+\gamma L)^{v+1}=[0]
$$

where $[0]$ is the mull operator.
Since all of the functions $g^{(v)}(y), v=0,2,2, \ldots 0$ are L^{2}
(a, b), it is sufficient to consider a function $\phi_{1}(y)$ satisfying

$$
\phi_{i}(x)=\lambda_{i} \int_{a}^{b} L(x, y) \phi(y) d y
$$

Hence $\lim _{V \rightarrow \infty}\left(\mathbb{x}+i_{L}\right)^{v} \phi_{i}(y)=1 \mathrm{~m} \cdot\left(1+\frac{\gamma}{\lambda_{a}}\right)^{\nabla} \phi_{1}(y)$
Since both λ_{μ} and r are real it is necessary and sufficient that of satisfy:

$$
0<-\gamma / \lambda_{i}<1
$$

Furthermore from the nature of $L(x, y)$ it follows that, since all λ_{1} are positive, Y must be negative. Let the λ_{i} be so ordered that

$$
\lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \cdots \lambda_{n} \leq \lambda_{n+1} .
$$

Then, convergence is insured if $0<-\gamma<\lambda_{1}$. The conditions on $L(x, y)$ insure that $\lambda_{1}>0$.

An obvious estimate for $\lambda_{\text {min 。 }}=\lambda_{1}$ is obtained by considering the defining equation

$$
\phi_{1}(x)=\lambda_{1} \int_{a}^{b} L(x, y) \phi_{1}(y) d y
$$

6345

Then:

$$
\int_{a}^{b} \phi_{i}(x)^{2} d x=\lambda_{1} \int_{a}^{b} \phi_{1}(x) d x \int_{a}^{b} L(x, y) \phi_{1}(y) d y
$$

By Schwartz ' inequality:

$$
\int_{a}^{b} \phi_{i}(x)^{2} d t \leqslant \lambda_{1}\left(\int_{a}^{b} \int_{a}^{b}|L(x ; y)|^{2} d y d x\right)^{1 / 2} \int_{a}^{b} \phi_{1}^{2}(x) d x
$$

or, using an accepted notation:

$$
\lambda_{1} \geqslant \frac{1}{\|L(x, y)\|}
$$

Hence a possible γ is

$$
-\frac{1}{2 \| L}(x, y) \|
$$

Furthermore, even if $L(x, y)$ is not "closed" but is "definite", the above estimate will insure convergence.

6. Solution by Quadratures

A rather obvious approach is to reduce the integral equation to a set of linear algebraic equations, those solution will presumably give an approximation to the function $g(y)$. This may be dons in eng of several ways.

Firstly, the integral may be approximated over some set of values
$\left\{y_{i}\right\}_{n=1}^{i=\eta}$ by a suitable quadrature formulated. As an example, use may be made of the Gauss quadrature formula. The range (a, b) is transformed to ($-1,1$) and the integral is approximated by:

$$
\int_{-1}^{1} K(x, y) g(y) d y=\sum_{i=1}^{n} \alpha_{i}^{(n)} K\left(x, y_{i}\right) g\left(y_{i}\right)
$$

where the values $\alpha_{i}{ }^{(n)}$ are real constants which depend on the number of points chosen. The sot of values $\left\{y_{1}\right\}_{\{=1}^{2}$ are the n solutions of $P_{n}(y)=0$, where $P_{n}(y)$ is the $n^{\text {th }}$ Legendre polynomial. These zeroes are real, die tinct, and lie in the range $(-1,1)$. They have been tabulated for fairly large values of n. By this double choice of weight factors and ordinates the integral, evaluated by n points, is exact if the functions integrated are polynomials of degree $2 n$ o I or less. Tor small n this is a decided. improvement over the Lagrangian interpolation polynomial. The given fundion $f(x)$ is then evaluated at the set of points $\left\{x_{1}\right\}_{1=1}^{=n}$ with each $x_{1}=y_{1}$ $i=1,2, \ldots, n$ and the system of equations:

$$
f\left(x_{j}\right)=\sum_{i=1}^{n} \alpha_{i}^{(n)} K\left(x_{j}, y_{i}\right) g\left(y_{i}\right) \quad j=1,2, \ldots, n
$$

is solved for $g\left(y_{1}\right)(1=1,2, \ldots, n)$ the answer being obtained as a set of values $\left\{g\left(y_{1}\right)\right\}^{i=n}$. The integral equation may be used to afford
 Is istle point in debating over uniqueness of solution. Obviously this method may well give a solution to the algebraic porblem where there is none to the integral equation. However, if no relation of the form

$$
\sum_{i=1}^{n} P_{i} k\left(x_{j}, y_{i}\right)=0 \quad\left(\text { all } x_{j}\right)
$$

is satisfied, this method should give a reasonable approximation commensurate with the number of points used. In actuality if the ranges in x and y are different, a et of linear equations with a singular matrix will be obtained providing the intervals in x and y are different.

In addition to the method mentioned ay of the iterative gchemes for solving almultanoous equations moy be used to advantage.

However the importent fnctor of solution strbility mast be kopt 1n mind. The roduction to a system of aigebraic equations involves one approximate quadrature and the remaining calculations are algebraic. An iterative scheme like the pteepest descent or back-substitution methods involves repeated integrations each of which is approximate but osgential ly no solution of a set of linear oquations.

It is a matter of extreme complexity to make a precien "error" analysis when an integral equation is solved by numerical mothods; however, the need for such an analysis is pressing. Of course once a solution is obtained the error is immediately calculable from the equation itself. An a priori estimation of error, io. of the needed fineness of the in= tegration scheme, or of the degree of approximating polynomisia, however, Is usually a problem of the spme order of magnitude as the solution of the given equation. Since iteration methods tend to forestall the un= Iimited accruoing, of round-off and truncation errors which occur in each calculation, it appears that an iterative method would ghow more stability.

The functions can be maintained as tables of functional values for given ordinates or as tables of coefficiente of intervolation noly= nomials, in which case presumably the quadratures can be performed exactly except for round=off error. Certainly, the case of the kernel, a function two variables, if 100 points were required, 10^{4} values need be etored, whereas an interpolntion nolynomial of 99 dogree would require ns much stornge for its co-eificients.
7. Tho Method of Fourier Integrals

Wo wish to oberin a numerical solution to an integral equation of the typo

$$
f(x)=\int_{-\infty}^{\infty} k(x, y) g(y) d y
$$

This method will be limited to those particular cases where $k(x, y)$ is of the typo $k(x-y), k(x+y)$ or $k(x y)$. By a simple variable transformation each of these can be transformed into $k(x-y)$. So we wish to solve

$$
f(x)=\int_{-\infty}^{\infty} K(x-y) g(y) d y
$$

Formally we can obtain a solution in the following way. Formally:

$$
\begin{aligned}
F(u) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{i u x} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i u x} d x \int_{\infty}^{\infty} k(x-y) g(y) d y \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} g(y) d y \int_{-\infty}^{\infty} k(x-y) e^{i u x} d x
\end{aligned}
$$

let $x=t+y$ and obtain

Therefore:

$$
\begin{aligned}
F(u) & =\frac{1}{\sqrt{2 \pi}} \int_{\infty}^{\infty} g(y) d y \int_{-\infty}^{\infty} K(t) e^{i n(t+y)} d t \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} g(y) d y e^{i y u} \int_{-\infty}^{\infty} k(t) e^{i n t} d t
\end{aligned}
$$

$$
F(u)=\sqrt{2 \pi} G(u) K(u)
$$

where $G(u)$ and $K(u)$ are the Fourier transforms respectively, of $g(y)$ and $k(t)$ 。

Finally wo obtain:

$$
G(u)=\frac{1}{\sqrt{2 \pi}} \frac{F(u)}{K(u)}
$$

and our desired result is

$$
g(y)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{F(u)}{K(u)} e^{-i y u} d u
$$

The result is purely formal. The convergence of the immoper integrals and the validity of interchange of integration orders must bs investigated. Tho following theorem, however, will be of use in many numerical problems. 10. 3.5 :

Theorem: If: (1) $f(x) \& L^{2}(-\infty, \infty)$
(11) $K(x) \& l^{2}(-\infty, \infty)$

Then if and only if
(iii) $\frac{F(u)}{K(u)} \varepsilon \quad l^{2}(-\infty, \infty)$
is $\quad g(y) \& L^{2}(-\infty, \infty)$
We are specifically interested in a numerical solution when the given function $f(x)$ has certain properties:
(1) It is defined, either through lack of complete information or forconvenience, at but a finite number of points.
(11) These points, except perhaps for an assumed constant value at ∞, are distributed over a finite portion of the real axis.
(iii) It will usually be the case that the values tabulated over the set af points $\left\{x_{i}\right\}$ will not be $f\left(x_{1}\right)$ but $f\left(x_{i}\right)+\epsilon\left(x_{i}\right)$ or even more likely $f\left(x_{1}\right)+\epsilon(x)$, where $\epsilon(x)$ is an error function. That is, the simplest case is where the error at en y point is functionally defined by

$$
G\left(x_{j}\right)=\epsilon(j)
$$

Usually, through having interpolated by one means of another to obtain each $f\left(x_{f}\right)$, the error at any point x_{j}, will depend on all point e, i. θ_{0} $e=\epsilon\left(x_{j}^{3}\right)$.

Naturally wo are going to assume that a unique solution to the equation exists. And, due to the incompleteness with which $f(x)$ is given, we must erect to get at best an approximation to $g(y)$.

The Numerical Solution

$$
\begin{aligned}
\text { (a) } F(u) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{i u x} d x \\
\sqrt{2 \pi F}(u) & =\int_{-x_{0}}^{x_{0}} f(x) e^{i u x} d x+I\left(x_{0}, u\right)
\end{aligned}
$$

The cutoff at $x= \pm x_{0}$ in the integration interval and the subsequent dropping of $I\left(x_{0}, u\right)$ is equivalent to folding the trans fum $\mathbb{F}(\mathrm{u})$ against the transform of the unit stop function:

$$
\begin{gathered}
m(x)= \begin{cases}0 & , x>x_{0} \\
1 & -x_{0} \leqslant x_{0} \leqslant x_{0} \\
0 & x<-x_{0}\end{cases} \\
\text { 1. ©., } \int_{-\infty}^{\infty} F(t) \sin \frac{x_{0}(t)}{x_{0}}(u-b) d t 0 \text { The precise effect this hos on }
\end{gathered}
$$

the solution is difficult to estimate. Hence we have here a first 110 mitation. It is necessary that a finite \bar{I}_{0} exist such that $I\left(x_{0} y^{2}\right)$ will be sufficiently small 。 Since $F(u)$ exists this would appear trivial, but if $f(x)$ is a tabulated function or an experimentally measured quancity, knowledge out to π_{0}, at least, is required. It is possible then then that the range of definition of $f(x)$ may be so limited that $I\left(x_{0}, u\right)$ will be of such a size as to a render a good solution impossible. This difficulty will be discussed later. For the moment we will assume $I\left(x_{0}, u\right)$ so be sufficiently small.

The evaluation of the transforms requires that there be available tables of sines and cosines or that they may be conveniently manifacture in the machine during the process of solution. We assume sots of trigonometric functions will be available.

Further, on the x scale, we assume, since this will usually be most convenient, the values of $f(x)$ to be spaced equidistantly; then lot

$$
e^{i x \mu} \rightarrow e^{2 \pi i h \omega} \quad ; h=0,1,2, \ldots h_{m 2 x}
$$

and let $x_{0} \rightarrow h_{\text {max }}$. Then $h=\frac{h_{\max } X}{x_{0}}$.

We have:

$$
\sqrt{2 \pi} F(u)=\int_{h_{\max }}^{h_{\max }}[f(x)]_{x \rightarrow n}^{x_{0}} e^{2 \pi i h w} \frac{x_{0}}{h_{\max }} d h+I\left(h_{\max }, w\right)
$$

We can always make $d h=1$. Using, in effect the Euler-MacLaurin summation formula:

Similarly, for the kernel,

$$
\sqrt{2 \pi} F(u) \underset{u \rightarrow w}{\approx} \frac{x_{0}}{h_{\max }} \sum_{-h_{\text {max }}}^{h_{\max }}[f(x)]_{x \rightarrow h} e^{2 \pi i h w}
$$

$$
\sqrt{2 \pi} K(u)_{u \rightarrow w^{\infty}} \simeq \frac{x_{0}}{h_{\max }} \sum_{h_{\max }}^{h_{\max }}[k(x)]_{x \rightarrow h} e^{\imath \pi i h u s}
$$

For the quotient:

$$
\frac{\sum_{-h_{\max }}^{h_{a 2 x}}[f(x)]_{x \rightarrow h} e^{2 \pi i h w}}{\sum_{-h_{\max }}^{h_{\max }}[k(x)]_{x \rightarrow h} e^{2 \pi i h w}}=B_{j}: j=0,1,2, \ldots \frac{w_{\max }}{\Delta w}
$$

$$
\text { which is to } \sum_{\text {represent }} \frac{F(w)}{K(w)} \text { at } \frac{w_{\text {max }}}{\Delta w} \text { values of } w \text { corresponding to } w \text {. }
$$ That means that for $0 \leqslant v \leq v_{\text {max }} u$ runs over $0 \leqq u \subseteq \frac{2 \pi h_{\text {max }}}{X_{0}} W_{\text {max }}$ Neat we form:

$$
\begin{aligned}
g(y) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} G(u) e^{-i y u} d u=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \frac{F(u)}{K(u)} e^{-i y u} d u \\
2 \pi g(y)= & \int_{-u_{\max }}^{u_{\max }} \frac{F(u)}{K(u)} e^{-i y u} d u+J\left(u_{\max }, y\right)
\end{aligned}
$$

The Eulermaclaurin integration scheme gives:

$$
2 \pi g(y)_{y \rightarrow z}=\frac{u_{\max }}{m_{\max }} \sum_{m=-u_{\max }}^{m=+u_{m 2 x}}\left[\frac{F(u)}{k(u)}\right]_{u \rightarrow m} e^{-2 \pi i m z} \Delta m
$$

and again let $\Delta m=1$. The variable rages are as follows:

$$
\text { (i) } x: 0 \text { to } x_{0}
$$

$$
\text { (ii) } h: \quad 0 \text { to } H\left(=h_{\max }\right) ; \Delta h=1
$$

$$
\text { (is) w: } 0 \text { to } W\left(=v_{\max }\right) \quad(\text { say } 0.250 \text { of a cycle })
$$

hence from H values of the integrand, we get

$$
\frac{W}{\Delta W} \text { values of } F(u)
$$

$$
\text { (iv) u: } 0 \text { to } \frac{2 \pi 1+w}{X_{0}}
$$

of the $\frac{W}{\Delta w}$ values of $\left[\frac{F(u)}{K(u)}\right]_{u \rightarrow w}$ wo may use all, or an equidistant subset in evaluating $g(y)$.

6345
Hgenesiring Notes $8-243$

Hone while (iv) holds,
(v) ज: 0 to M in M jumps; $\Delta m=1$ 。
a vol. $\frac{W}{\Delta W}=M ; 1 \operatorname{an}$ integer.

$$
\text { (} v 1 \text {) } z: \quad 0 \text { to } z\left(=z_{\max }\right)
$$

hence from M values of $\left[\frac{F(u)}{K(u)}\right]_{u \rightarrow w}$ wo obtain
z/ Δ z values of gey) y \quad oz
for which:
(vii) y: 0 to $\frac{2 \pi M z}{2 \pi H W} x_{0}=\frac{M Z}{H W} x_{0}$.

Having obtained $g(y)$, the problem is essentially solved.
More may be said about the actual evaluation of the transforms. We cal always choose our zero on the x axis so as to maintain the follow ing symmetry:

$$
F(u)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{x_{0}}\{[f(x)+f(-x)] \cos u x+i[f(x)-f(-x)] \sin u x\} d x
$$

and likewise for $K(u)$. Roth $F(u)$ and $K(u)$ are evaluated over the same seta of points. And

$$
G(u)=\frac{1}{\sqrt{2 \pi}} \frac{F_{\cos }(u)+i F_{\sin }(u)}{K_{\cos }(u)+i K_{\sin }(w)}=\frac{1}{\sqrt{1 \pi}} \frac{\left(F_{c}+i F_{s}\right)\left(K_{c}-i K_{s}\right)}{K_{c}{ }^{2}(u)+K_{s}{ }^{2}(u)}
$$

Since we integrate over $(-\infty, \infty)$ all odd terms vanish. Hence wo must furnish:

$$
\begin{aligned}
& \text { (1) } K_{c}^{2}(u)+K_{s}^{2}(u) \\
& \text { (ii) } F_{c} K_{c} \\
& \text { (iii) }-F_{s} K_{s}
\end{aligned}
$$

and
$g(y)$ over the range 0 to $y_{m a r}$ will be the (cosine + sine) transform of $G(u)$, while being the (costae - sine) transform of $G(u)$ over $\boldsymbol{y}_{\max }$ to 0 .

Gut-off errors: In general, is is very dircicult to asaess the oxror in the solution of this problem。 The why they arise is at once evident 'though their accumalative affect on the solution 15 dtfo ficult to determine. The orrors are the usual ones in a numericel conculation. We may list then here. They are:
(i) The function $f(x)$, ofthor through axpodioncy, of in lact, is incomoletely dolined en, as mentionod befors, will never, excopt poseibly for a constant value, be given over the entire range (∞, ∞).
(1i) In addition, aach value, $f\left(x_{1}\right)$ will be contaninatod by errors. These will be, at least, truncation errors.
(iii) The inpluito integrals must always, unless they can be svaluated oxactly by some analytic procedure, be cut ofs at some finite value. This is equivalent, as mentioned before, to tho folding of the precise transform against the stop function $\frac{\sin u x_{0}}{u x_{0}}$ if x_{0} is the cut-off value. This means that the frequency spectrum of $f(x)$ is warpod by this factor. What is more important, though, the warping cannot be removed form $g(y)$ by any unfolding.

However, we can nake some assumtions about $f(x)$ for large X and develop an error pormule for the cut-off. We observe that we have two cut-ofs integrals to eveluate:
(a)

$$
\begin{aligned}
& \int_{x_{0}}^{\infty} f(-x) e^{-i u x} d x \\
& \int_{x_{0}}^{\infty} f(x) e^{i u x} d x
\end{aligned}
$$

As $x \rightarrow \infty$, these orrors $\rightarrow 0$; and the high irequency combonents of $P(u)$ should be largely transformed at any reasonably large x_{0} and amilare ly for the cutmoff error in the evaluation of $X(u)$

The intepration scheme

The evaluation of $P(u)$ and $G(u)$ is to be done numerically and in those cases where it cennot easily be eveluated analytically $K(u)$ will be also so treated.

Since we are evaluating speciel tyoes of integrels, i.e. Fourier transforms, it is best that we use an integration scheme wich allows us to make most use of the duplicative pronerties of sines and cosines.

To make best use of tho computer 's I limited etorage capacity vo mast use a process that forms the integration components Prom a minimum storage $118 t$ of sines and cosines. Fur the moment we will. stand pat on the EulasMectaurin integration scheme using equidistantly spaced points. It is:

$$
\int_{1}^{n} f(t) d t=\frac{1}{2}[f(1)+f(n)]+\sum_{n=2}^{n-1} f(n)-\int_{1}^{n} f^{\prime}(t) S_{1}(t) d t
$$

where

$$
S_{1}(t)=-\frac{1}{2} \sum_{n=1}^{\infty} \frac{\sin 2 \pi n t}{2 n \pi}
$$

We are to evaluate an integral of the form:

$$
\int_{0}^{x_{0}} f(x) e^{i u x} d x=\frac{W_{0}}{H} \int_{0}^{H} f(H) e^{2 \pi i h w} d h
$$

where $H=x_{0}=h_{\text {max }}$
The sum formula yields:

$$
\begin{aligned}
\int_{0}^{H+} f(h) e^{2 \pi h \omega} d h= & \frac{1}{2}\left[f(0)+f(H) e^{2 \pi i H \omega}\right] \\
& +\sum_{n=1}^{H-1} f(\pi) e^{2 \pi i \pi \omega}-\int_{0}^{H} \frac{d}{d h}\left(f(h) e^{2 \pi i h \omega}\right) S_{1}(h) d h
\end{aligned}
$$

An analysis of the error term is desirable for it develops certain facts about the relation of the h and w intervals. Naturally as the number of intervals $\rightarrow \infty$, the function $S(h) \rightarrow 0$. The functional relation ship hetween the error and the interval length resides, of course in $\mathrm{s}(\mathrm{h})$. We will assume that $|\mathrm{f}(\mathrm{h})|<\mathrm{M}, \mathrm{M}$ a finite constant, over (O, H). This is not unreasonable. We consider the error for $W=0$;

$$
\begin{aligned}
E(0, H) & =M \int_{0}^{H}\left(\sum_{1}^{\infty} \frac{1}{2 n \pi} \sin 2 n \pi h\right) d n \\
& =M \int_{0}^{H}(n-1 / 2-[n]) d n=0
\end{aligned}
$$

($[\mathrm{h}]$ is the last integer in $(0,1),(1,2), \ldots$ otc $)$
For $W=W, M=$ integer

$$
E(M, H)=\sum_{n=1}^{\infty}\left(\frac{1}{2 n \pi}\right) \frac{M}{2 \pi i m} \int_{0}^{H} e^{2 \pi i m h} \sin 2 \pi n h d h=\frac{M H}{4 m^{2} \pi}
$$

2π hor

For the error to bo zero, except at $W=0$, it 18 necessary that e be orthogonal to

$\sin 2 n \pi h$
$2 n \pi$
over $(0, H)$. This it cannot be.
Hence if would appear that, since $\begin{gathered}\text { it }\end{gathered}=0$ is a value wo. use, we should though the peak about $W=1$ is narrow, limit W to lie certainly in the range $0 \leq W \leq C<I$, to minimize the error. This of course is a cone sequence of the fact that we ere fortunate to be dealing with periodic functions, $e^{2 \pi i h w, ~ s u p e r-i m p o s e d ~ u v o n, ~ a s ~ w e ~ h a v o ~ a s s u m e d, ~ a ~ f u n c t i o n ~}$ containing practically no frequencies above some finite cutoff point. This concludes the analytic discussion of the errors exclusive of those occurring from rounded, truncation, or in the function $f(x)$ itself. These latter can probebly be treated statistically and this may actually be done later.

Convergence Factors

Before going on to the more numerical treatment we must menion some important considerations concerning convergence. We assume that $P(u)$ and $K(u)$ exist and are finite. Hence $F(u)$ must have a higher order zero at infinity than $K(u)$ to insure convergence of

$$
g(y)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{F(u)}{K(u)} e^{-i y u} d u
$$

But it is precisely those features which we lack in any anroximate solution which make this extremely difficult to achieve. Every error that occurs in the procedure has the effect of adding into $F(u)$, Fourier components which extend the rape in u on which $F(u)$ maintains appreciable value. It is only through a sacrifice in "resolution" of f is) that we will be able to obtain a convergent numerical solution. Nevertheless, admitting the necessity, and even justice, of such a res solution depletion we can obtain solutions which are quite good. The extent of this "smudging out" of $g(y)$ will depend, then, on the nature of $g(y)$, the extent of definition of $f(x)$, and, of course, the accuracy we maintain in the numerical computations. A detailed example will be shown later where the function $g(y)$ is a sum of δ - functions. Even though its transform does not converge we are able to obtain a partial. Dy resolved solution; indeed in this worst possible case we do obtain a resolution as fine as desirable by merely extracting an increasing numb bor of values of $f(x)$ and refining our integration scheme, accordingly. Hence to obtain a $g(y)$, we must usually expect to be forced to introduce a convergence factor. A convenient one, since up to constant amplitude and hall width factors it transforms into itself, is $e^{-a x^{2}}$. Another is $\sin ^{2} a x$ and still a third is $x^{2} e^{-a x^{2}}$. As in the formation of $(a x)^{2}$
the first transforms $\mathcal{F}(u), K(u)$, che "folding fur eton" or convergence factor gives us a solution at the expense of resolution. For, since we cannot calculate

$$
g(y)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{F(u)}{K(u)} e^{-i y u} d u
$$

We introduce the factor TIu) and get:

$$
\begin{aligned}
g^{*}(y) & =\frac{1}{L \pi} \int_{-\infty}^{\infty} \frac{f(u)}{K(u)} T(u) e^{-i y u} d u \\
& =\int_{\infty}^{\infty} g(y-s) t(s) d s
\end{aligned}
$$

In short, our solution is "folded against" the transform of Thu). The step function yields a $e^{*}(y)$ which has oocillations of decreasing amos 21 tudes and obscures much of the result. The function ea nu transforms
into $e^{-1 / 4 a^{s^{2}}}$, up to an amplitude factor. This means thant the greater the value is in at which $\frac{F(u)}{K(u)}$ remains well behaved, the narrower will be the spread by which each point will bo weighted in the $g^{*}(y)$. This is almost poetic in its justice. For in just this way does the incomplete definition of $\dot{(}(x)$ affect the result.
A. Brocipic example

Consider the Laplace integral equation

$$
f(q)=\int_{0}^{\infty} e^{-\xi \eta} g(\eta) d \eta
$$

The transformation
yields
or

$$
\begin{aligned}
& \eta=e^{-y}, \xi=e^{x} \\
& e^{x} f\left(e^{x}\right)=\int_{-\infty}^{\infty} e^{-e^{(x-y)} e^{x-y} g\left(e^{-y}\right) d y}
\end{aligned}
$$

We form

$$
\begin{aligned}
& F(u)=\frac{1}{\sqrt{2} \pi} \int_{-\infty}^{\infty} e^{x} \tilde{f}(x) d^{i x u} d x \\
& K(u)=\frac{1}{\sqrt{2 \pi}} \int_{\infty}^{\infty} e^{-e^{t}} e^{t} e^{i u t} d t
\end{aligned}
$$

and choir quotient to give:

$$
\tilde{g}(y)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{F(u)}{K(u)} e^{-i y u} d u
$$

With this kernel, $\mathrm{K}(\mathrm{u})$ can be ovalusted analytically and is oactly soon to bo the Euler integral for $\frac{1}{\sqrt{i n}} \Gamma(1+i u)_{0} \quad$ Likemso a necessary and sufficient condition for the behavior of $f(x)$ for large $x(1 . \theta, x)$ can be stated. With respect to the two cut off integrals it is as follows: The cut off integrals are:

$$
\begin{equation*}
\int_{x_{0}}^{\infty} e^{-x} \tilde{f}(-x) e^{-i u x} d x \tag{a}
\end{equation*}
$$

(b)

$$
\int_{x_{0}}^{\infty} e^{x \tilde{f}(x)} e^{i u x} d x
$$

Then for convergence, it is both necessary and sufficient that, for (a), for large $x, f(-x)$, be $0\left(e^{n x}\right), n<1$ or $f(x)$ be $O(-n x), n<1$; and that for (b), for large $x_{0} P(x)$ be $O\left(0^{n x}\right): n<-1$. For both these cases an error formula can be dimply obtained by a single integration by parts. They are:

$$
(a)
$$

(a)

:

$$
\left|\int_{x_{0}}^{\infty} e^{-x} O\left(e^{n x}\right) e^{-i u x} d x\right| \leq\left|\frac{1}{n-1} O\left(e^{(n-1) x_{0}}\right)\right|
$$

$$
+\frac{|u|}{|n-1|}\left|\int_{x_{0}}^{\infty} 0\left(e^{(n-1) x_{0}}\right) e^{-i u x} d x\right|
$$

$$
\left|\int_{x_{0}}^{\infty} e^{-x} O\left(e^{n x}\right) e^{-i u x} d x\right| \leq \frac{O\left(e^{(n-1) x_{0}}\right)}{|n-1|-|u|}
$$

and (b) yields similarly:

$$
\left|\int_{x_{0}}^{\infty} e^{x} f(x) e^{i u x} d x\right| \leqslant \frac{0 e^{(n+1) x_{0}}}{|n+1|-|u|}
$$

A more specific result holds for the cutoff in forming $K(u)$.
We observe that these two formulas yield an exact expression for the error in the two cutoofl"s. They are:

$$
\int_{x_{0}}^{\infty} e^{-e^{t}} e^{t} e^{i t u} d t=-\Gamma_{\ln x_{0}}(1+i u)+\Gamma(1+i u)
$$

and

$$
\int_{-\infty}^{-x_{0}} e^{-e^{t}} e^{t} e^{i t u} d t=-\Gamma_{e_{0} \frac{1}{x_{0}}}(1+i u)
$$

complete gama function of x with integration 1 imit j.

6345

Engineering Totes So 243

$$
\begin{aligned}
& \text { Having formod the quotient } \frac{E(u)}{\Gamma(1+i u)} \text { wo obsempe that: } \\
& |\Gamma(1+i u)|=\frac{\sqrt{\pi}}{|u|} \frac{1}{|\sinh \pi u|}
\end{aligned}
$$

so that $K(u)$ diminishes quite rapidly. Assuming that a convergence factor is necessary let us introduce oman ans. Our choice or "an is governed by the behaviour of $\frac{f(u)}{K(u)}$ as us increases. The necessary existence of undamped Fourier terms in $T(u)$ implies that for soma value of u, the quotient will begin to grow without bound. We select an "a" such that $\frac{F(u)}{K(u)} e^{-a u t}$ will be ossentielly zero for all
u beyond this critical value. Hence we have:

$$
\begin{aligned}
\tilde{g}^{*}(y) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{F(n)}{P(1+i n)} e^{-a u^{2}} e^{-i u y} d u \\
& =\frac{1}{\sqrt{2} a} \int_{-\infty}^{\infty} \tilde{g}(y-t) e^{-(t / 2 a)^{2}} d t
\end{aligned}
$$

and we seas at once the way in which a small "a" (i, o, a large critical "u") yields a good ${ }^{\prime \prime}(y)$. Here then is the crux of the resolution problem. It is all bound un in the constant "a". The size of "a" will then depend upon just how well we can damp out the "noise" in the svalum action of $f(u)$. That it can be made to be as near zero as we wish is a consequence of the uniqueness of the solution.

Q. The Eredhotrinteasel Eouptyon of the Second Kind:

2. The Existonce Theoram:

The equation to be considered. 1 s:

$$
w(x)=g(x)+\lambda \int_{a}^{b} K(x, t) w(t) d t .
$$

The functions $w(x), f(x)$, and (x, t) aro assumed to be roaj functions of the real variables $x_{g} y$. As in the preceeding sectiom, if $X(x, t)$ is not symmetrical it may be made to yield a symatric kernol。 The above equation may be written in symbolic form:

$$
w(x)=g(x)+\lambda T w(x) .
$$

or

$$
\begin{equation*}
g(x)=(E-\lambda T) \omega(x) \tag{*}
\end{equation*}
$$

where A is the idemtity operator and T is the integral operator. $O b=$ viously the equation is solved if $(\mathbb{I}-\lambda \mathbb{T})^{-1}$ can bo obtained. In general. it will be shows that such an inverse exists, subject to certain conds. tions, as an infinite series in powers of $T(i, \theta$. as sums of iterated in= tegrals).

Left maltiplication of both sides of (*) by $\left.(\mathbb{T}-\lambda)^{3}\right)^{3}$ (the tramso pose) yeilds

$$
\begin{equation*}
u(x)=(E-\lambda L) g(x) \tag{*}
\end{equation*}
$$

where L is a symmetric integral operator and hence has only real eigenvalues. The equation to be consldered then is either ($*$ () or ((t). For theee equations the following existence theorem is fundenentel:

If the known functions $g(x)$ and $K(x, t)$ are integrable squared over (a, b), then is $w(x)$ integrable squered over (a, b). Furthermore if λ is such that the homogeneous equation

$$
\phi(x)=\lambda T \phi(x)
$$

has only the solution $\phi(x)=0$, then there exists a unique solution $w(x)$. If, however, the homogeneous equatio: has m independant solutions then there exists a $w(x)$ if and only if $g(x)$ is orthogonal to each of the m solutions of

$$
\psi(x)=\lambda T^{\prime} \psi(x)
$$

The solution $w(x)$ is not unique for there can be adjoined to it any linear combinetion of the m solutions of the homogeneous equation.

2. The Simple Iteration Procedure

We Sorm, from:

$$
u(x)=f(x)+\lambda \int_{a}^{b} L(x, t) u(t) d t
$$

the iteration procedure:

$$
u^{(n)}(x)=f(x)+\lambda T u^{(n-1)}(x)
$$

then

$$
\begin{array}{r}
u_{p}^{(n)}(x)=f(x)+\lambda T f(x)+\lambda^{2} T^{2} f(x)+\ldots \\
\therefore \ldots+\lambda^{n-1} T^{n-1} f(x)+R_{n}
\end{array}
$$

Ware

$$
R_{n}=\lambda^{n} T^{n} u_{0}(x)
$$

Lev $\left|u_{0}(x)\right| \leqslant U_{0}$ then

$$
\left\|R_{n}\right\| \leq\left|\lambda^{n}\|\cup \mid\| T^{n} \|\right.
$$

a necessary and sufficient condition for convergence is that $\sum_{n \rightarrow \infty} \|_{n} R_{n}=0$ so the:

$$
\left.\lim _{n \rightarrow \infty}\left|\lambda^{n}\right|| |\right|^{n} \mid \rightarrow 0
$$

a sufficient condition is, of course,

$$
|\lambda| \| T \mid<1
$$

or:

$$
|\lambda|\|L\|<1
$$

We define the worm of I by the following equations:

$$
\|L\|=\left(\int_{a}^{b} \int_{a}^{b}|L(x, y)|^{2} d x d y\right)^{1 / 2}
$$

and

$$
\int_{a}^{b} L(x, y) u(y) d y=T u(y)
$$

We define:

$$
\frac{\|T u(x)\|}{\|u(x)\|} \leqslant\|T\| \text { io. the least number for which the }
$$

inequality is true. It follows that

$$
\|T u\|^{2} \leq\|L\|^{2}\|u(x)\|^{2}
$$

from the Schwartz inequality. Hence:

$$
\|T\| \leqslant\|L\|
$$

Furthermore

$$
\left\|T^{k} u(x)\right\| \leq\|T\|\left\|T^{k-1} u(x)\right\| .
$$

Hence, if

$$
S_{n}=1+\sum_{n=1}^{\infty} \Gamma^{n}
$$

we have

$$
\left\|S_{n}\right\| \leq 1+\|T\|+\left\|T^{2}\right\|+
$$

The solution so obtained is unique. A major problem, then, is how to moles use of an iterative process when, says $\|\lambda L\| \geqslant 1$.

Let $\|\lambda L(x, y)\|$ be bounded. Then an algebraic procedure cars bs adjoined to the 1 aeration procedure to provide a solution when $\| A L(x, y) i \geqslant 1$. It in always possible to find a set of functions A $A(x)_{p}$ $B_{i}(x)$ such that:

08

$$
\left\|L(x, y)-\sum_{i=1}^{N} A_{A}(x) B_{i}(y)\right\|<1
$$

$$
L(x, y)=\sum_{i=1}^{N} A_{\lambda}(x) B_{\lambda}(y)+M(x, y)
$$

where \mathbb{M} is chosen so that $\|M(x, y)\|<1$. Hence $M(x, y)$ has an inverse, J, consisting of convergent infinite series of integral operators. Then:

$$
u(x)=J f(x)+\sum_{i=1}^{N}\left(J A_{i}(x)\right) \int_{a}^{b} B_{i}(y) u(y) d y ;
$$

$$
\left(B_{j}(x), u(x)\right)=\left(B_{j}(x), J f(x)\right)+\sum_{i=1}^{N}\left(B_{j}(x), J A_{i}(x)\right)\left(B_{i}(y), u(y)\right) ;
$$

$\left(B_{j}(x), u(x)\right)=\int_{a}^{b} B_{j}(x) u(x) d x$
The solution this set of linear equations for $\left(B_{j}(x), G(x)\right.$) when sub stituted in the equation for $u(x)$ yields the desired solution $u(x)$. This method, in essence, can be regarded as a double iteration scheme, if the algebraic equations are so solved.
9. The Method of Steepest Descent

The @quation

$$
f(x)=g(x)+\lambda \int_{a}^{b} k(x, y) f(y) d y
$$

in operator form is

$$
(E-\lambda T) f(x)=g(x)
$$

and T will be assumed to be a positive operators Then, it follows that the inequalities

$$
0<m \int_{a}^{b} f(x)^{2} d x \leq \int_{a}^{b} f(x) d x \int_{a}^{b} K(x, y) f(y) d y \leq M \int_{a}^{0} f(x)^{2} d x
$$

are satisfied, the first from the positive nature of the operator, the second from the bounded nature of the operator and Schwarts"s inequality.

The functional $w(f)$ is defined by

$$
W(f)=1 / 2 \int_{a}^{b}\left\{f(x)^{2}-\lambda f(x) \int_{a}^{b} k(x, y) f(y) d y\right\} d x+\int_{a}^{b} f(x) g(x) d x
$$

Squaring the expression

$$
\int_{a}^{b}\left\{f^{2}(x)-\lambda f(x) \int_{a}^{0} k(x, y) f(y) d y\right\} d x+\int_{a}^{b} f(x) g(x) d x
$$

Fields the inequality

$$
2\left(\int_{a}^{b}\left\{f^{2}(x)-\lambda f(x) \int_{a}^{b} K(x, y) f(y) d y\right\} d x\right) W(f)+\left(\int_{a}^{b} f(x) g(x) d x\right)^{2} \geqslant 0
$$

from which foll.oves

$$
2 m\left(\int_{a}^{b} f^{2}(x) d x\right) w(f)+\int_{a}^{b} f^{2}(x) d x \int_{a}^{b} g^{2}(x) d x \geqslant 0
$$

Therefore $w(f)$ has a indite lower bound, independent of $f(x)$, given by

$$
W(f) \geqslant-\frac{\int_{a}^{b} g^{2}(x) d x}{m}
$$

If $f^{(\nabla)}(x)$ is an approximation, then on improvement, $f^{(\nabla+1)}(x)$ is obtained by considering

$$
W\left(f^{(v+1)}\right)=W\left(f^{(v)}(x)+\alpha \pi^{(v)}(x)\right)
$$

where α_{8} a real number, and $r^{(v)}(x)$ are to be determined, Then

$$
\begin{aligned}
& W\left(f^{(v+1)}\right)=W\left(f^{(v)}\right)+\alpha \frac{1}{2} \int_{a}^{b}\left\{n^{(v)}(x) f^{(v)}(x)-\lambda \mu^{(v)}(x) \int_{a}^{b} k(x, y) f^{(v)}(y) d y\right\} d x \\
& +\alpha \int_{a}^{b} g(x) \pi^{(v)}(x) d x+\alpha^{2} \int_{a}^{b}\left\{n^{(v)}(x)^{2}-\lambda \pi^{(v)}(x) \int_{a}^{b} k(x, y) n^{(v)}(y) d y\right\} d x
\end{aligned}
$$

ox, in shorter notations

$$
W\left(f^{(v+1)}\right)=W\left(f^{(v)}+\alpha \Theta_{1}+\alpha^{2} \Theta_{2}\right.
$$

Completing the squaw in of :

$$
W\left(f^{(v+1)}\right)-W\left(f^{(v)}\right)=\Theta_{2}\left(\alpha+1 / 2 \frac{\left(\omega_{1}\right.}{\left(\omega_{2}\right.}\right)^{2}-1 / 4\left(\frac{\left(\theta_{1}\right)}{\Theta_{2}}\right)^{2}
$$

vf) decreases most rapidly whom

$$
\alpha=-1 / 2 \frac{\Theta_{1}}{\left(\omega_{3}\right.}
$$

as before, the function $f^{(\gamma)}(x)$ is taken as the residue, i. 0.

$$
\pi^{(x)}(x)=f^{(y)}(x)-\lambda \int_{a}^{b} K(x, y) f^{(n)}(y) d y-g(x)
$$

The next approximation is

$$
f^{(v+1)}(x)=f^{(v)}(x)+\alpha \Gamma^{(v)}(x)
$$

and this is the iteration algorithm. The sequence, $\left\{w\left(f^{(v)}(x)\right)\right\}$, being monotonic decreasing, has a finite lower bound and so converges to a unique limit, from which it follows that

$$
\lim _{v \rightarrow \infty}\left[w\left(f^{(v+1)}\right)-w\left(f^{(v)}\right)\right]=0
$$

which by a previous inequality implies

$$
\lim _{v \rightarrow \infty} \int_{a}^{b} \pi^{(v)}(x)^{2} d x=0
$$

from which it follows that $\left\{f^{(v)}(x)\right\}$ converges to the solution $f(x)$, almost everywhere.
10. The Method of Back-Substisutions

The equation to be considered. is:

$$
f(x)=g(x)+\lambda \int_{a}^{b} K(x, y) f(y) d y
$$

The operator in question may be made "definite by reduction to:

$$
\begin{aligned}
f(y)=[g(y) & \left.+\lambda \int_{a}^{b} k(x, y) g(x) d x\right] \\
& +\lambda^{2} \int_{a}^{b} k(x, y) d x \int_{a}^{b} K(x, y) f(y) d y
\end{aligned}
$$

08

$$
f(y)=u(y)+\lambda^{2} \int_{a}^{b} L(x, y) f(x) d x
$$

The iteration scheme is:

$$
f^{(0)}(y)=-\alpha, g(y)
$$

and

$$
f^{(v+1)}(y)=f^{(v)}(y)+\alpha \pi^{(v)}(y)
$$

where

$$
\Omega^{(v)}(y)=f^{(v)}(y)-\lambda \int_{a}^{b} L(x, y) f^{(v)}(x) d x-g(y)
$$

and α is to be chosen so that $\lim _{V \rightarrow \infty}\left|r^{(\nabla)}(y)\right|=0$
Then:

$$
\begin{aligned}
\Pi^{(v+1)}(y) & =f^{(v+1)}(y)-\lambda \int_{a}^{b} L(x, y) f^{(v+1)}(x) d x-g(y) \\
& =f^{(v)}(y)+\alpha \Omega^{(v)}(y)-\lambda \int_{a}^{b} L(x, y)\left[f^{(v)}(x)+\alpha R^{(v)}(x)\right] d x \\
& -g(y)
\end{aligned}
$$

and

$$
n^{(0+1)}(y)=n^{(v)}(y)+\alpha R^{(v)}(y)-\lambda \alpha \int_{a}^{b} L(x, y) R^{(v)}(x) d x
$$

or, in operator notation:

$$
n^{(v+1)}(y)=\left(E+\alpha(E-\lambda i) n^{(v)}(y)\right)
$$

Since the operators are bounded and compute this becomes:

$$
R^{(v+1)}(y)=[E+\alpha(F-\lambda T)]^{v} R^{(\prime \prime}(y)
$$

and α must now be chosen so that $\lim _{v \rightarrow \infty} m^{(v+1)}(y)=0$. Since the functions considered are $L^{2}\left(a_{8} b\right)$ and IT is a bounded "positive" operator, it will be assumed. that

$$
0<m \int_{a}^{b} f^{2}(x) d y \leqslant \int_{a}^{b} f(x) d x \int_{a}^{b} b(x, y) f(y) d y \leqslant M \int_{a}^{b} f^{2}(x) d x
$$

STr any $f(x)$ in $I^{2}(a, b)$. From the above it follows that

$$
\left\|n^{(v+1)}(\eta)\right\| \leq\|E+\alpha(\varepsilon-\lambda T)\|^{\nu}\left\|\pi^{(1)}(\eta)\right\|
$$

rance $\lim _{b \rightarrow \infty}\left\|r^{(\nabla+1)}(y)\right\|=0$
If and only if

$$
\|E+\alpha(E-\lambda T)\|<1
$$

05

$$
\int_{a}^{b} f^{2}(x) d x+\alpha \int_{a}^{b} f^{2}(x) d x-\alpha \lambda \int_{a}^{b} f(x) d x \int_{a}^{b} L(x, y) f(y) d y<\int_{a}^{b} f^{2}(x) d x
$$

Then,

$$
|1+\alpha-\alpha \lambda m|<1
$$

yields a relation for α. At this point it might be mentioned the the convergence criterion is the same as for Newton ${ }^{\prime \prime}$ method, with $\alpha=\gamma$ Hance, subject to this change in sign, the two methods converge or di= verge together. This method also fails, then for $\lambda=\lambda_{i}$, a charade teristic value of the homogeneous equation. Newton ${ }^{3}$ s method wills in general, however, converge more rapidly.

12. The Solution by Natron's Method

The equation

$$
f(x)=g(x)+\lambda \int_{a}^{b} K(x, t) f(t) d t
$$

can be represented in operator format

$$
(E-\lambda T) f(x)=g(x)
$$

defined on the interval (a, b), where is the identity operator and I is a positive integral operator. in operator $(E-\lambda T)^{-1}$ exists and in the case of $\|\lambda K(x, j)\|<I$ is ropresntable as an infinite series in iterated integrals operating on $g(x)$. Newton's method may be employed to obtain $(\mathbb{E}=\lambda T)^{-1}$, in those cases where $\|\lambda X(x, t)\| \geqslant 1$.

By analogy to the Newton algorithm for obtaining reciprocals of numbers, the equation

$$
p^{(v+1)}=p^{(v)}\left[2 E-(E-\lambda T) p^{(v)}\right]
$$

is formed where the operator $p^{(v)}$ is such that

$$
\lim _{v \rightarrow \infty} p(v)=(E-\lambda T)^{-1}
$$

$$
v \rightarrow \infty
$$

Considerations of commutativity may pe, ignored is $f^{(0)}=\gamma$, a scalar. Then p°, and hence, by induction, $p(v=1,2, \ldots)$ commute with the integral operator λT. This is quite obviousivpa sufficient, and oven convenient, but not necessary constraint on $p^{(v)}(v=0,1,2, \ldots)$ 。 By applying the recurrence relation it is seen that

$$
E-(E \cdot \lambda T) p^{(\nu)}=\left(E-(E-\lambda T) p^{(0)}\right)^{2}
$$

Hence

$$
\lim _{v \rightarrow \infty} p^{(v)}=(E-\lambda T)^{-1}
$$

if and only if

$$
\lim _{v \rightarrow \infty}\left\|E-(E-\lambda T) p^{(0)}\right\|^{2^{v}}=0
$$

A sufficient condition that this be so is that

$$
\left\|E-(E-\lambda T) p^{(0)}\right\|<1
$$

6345
Enginecring Notos 1\% 143
By a proper chotce of $p^{(0)}=\gamma$ thie can always be arranged. Hence Newton's wothod wil. always yield a solusion by a vrely iterative scheme (provid= 1mg of course the operator T is bounded, which will be ascumed st all. (tines) Obviously if $\lambda=\lambda_{i}$ is a characteristic value of the equation, the inequality above is not satisfied. Likewise such a λ violatse a necessary condifipn, i.e. that all characteristic values of the operator $Z=(T-\lambda T) p^{(0)}$ ile outiside the unit circle in the corplex plane for with a $\lambda=\lambda_{1}$ the operator has a characteristic value on the uait circlo.
12. Solution by Aporoxinato Quadrature

The $\mathbb{F r o d b o l i n}$ equation

$$
f(x)=g(x)+\lambda \int_{0}^{b} K(x, y) f(y) d y
$$

nay be regarded (and was so treated originally by Fradhola) aa the limiting case of z simultaneous linear algebraic equations

$$
f\left(x_{j}\right)=g\left(x_{i}\right)+\left(\lambda / w_{j} \sum_{i=1}^{n} k\left(x_{i}, y_{j} \mid f\left(y_{j}\right) \quad i=1,2, \ldots, n\right.\right.
$$

as $n \rightarrow \infty$. If λ is not a characteristic value of the homogeneous equa= tron, the above, for in large enough, may be assumed to yeld a solution
 Since a. solution can only be obtained. for a finite number of points, in any case, when numerical methods are employed the above appears to be an attractive way to dispose of the Predhoim equation by reducing the trans cendental to an algebraic problem.

The above equation represents a solution at "n" distinct points equidistantly spaced. However, it involves the most primitive quadrature method. A linear quadrature scheme which best approximates the integral is desired. One method is to approximate the functions involved by in terpolation polynomials, and prevail upon an exact integration to give the algebraic system. Lagrangian or orthogonal polynomials are most commonly employed. Another method involves the use of non equidistantly spaced points and the concept of Gaussian mechanical quadrature. Firstly the interval (a, b) is mapped into $(-2,1)$. The integral is approximated

$$
\int_{-1}^{1} K(x, y) f(y) d y=\sum_{j=1}^{n} d_{j}^{(n)} K\left(x, y_{j}^{(n)}\right) f\left(y_{j}^{(n)}\right)
$$

with a given fired n_{0} The $\alpha_{j}{ }^{(n)}$ are weights which vary with j and each n_{0} The points $y(n), j=1,2, j$.on are the n real, distinct, zeroes of the nth Legendre polynomial and lie in $(-1,1)$. Tables of the $y y^{2}$) are available for $n \leqslant 10$ and, in time, will be no doubt available for larger n_{0} Such a quadrature yields on exact evaluation of the integral if the in $=$ tengrand is a polynomial of degree $2 a-1$ by the use of only in points.

The method may be generalized to treat any interval providing the points and weights are chosen to depend upon that polynomial orthogoral over (a, b) with respect to a unit weight function. The morenore thogonal functions may be used providing the proper weight functions are introduced. For example, on $(-1,1)$ the Tchebicher polynomials may be used if the integral is written as:

$$
\int_{-1}^{1} \frac{\left[K(x, y) f(y) \sqrt{1-y^{2}}\right] d y}{\sqrt{1-y^{2}}}=\sum_{i=1}^{n} \beta_{i}^{(n)} K\left(x, y_{i}^{(n)}\right) f\left(y_{i}^{(n)}\right) \sqrt{1-y_{i}^{(n) 2}}
$$

Here the $\beta^{(n)}$ are identical for a.11 1 and a given n_{s} though the $y_{f}^{(n)}$ are not equidistantly spaced being the n zeroes of the tchebicher polynomial $T_{n}(y)$. Likewise use may be made of the Laguerre polynomials over ($0, \infty$) with weight function $e^{-r / 2}$ and Hermite polynomials over $(-\infty, \infty)$ with weight $e^{-x} \frac{\pi}{3} / 2$ 。

Bioliography

T．Aherons，＂Antennae，An Introduction to Thesr Theory＂，Oxforce， 260 pp ． （1946）．

耳．Bateman，＂On definite functions，＂Mess．Matho，Y̌7，91－95（1908）．
H．Bateman，＂A formula for the solving function of a certain integzal equation of the second kind＂，Mess．Matho，37，179－186（1908）．

H．Bateman，＂Notes on Integral Equations＂，Mess．Matho，38，8＝13，70－75， （2909）

H．Bateman，＂The Theory of Intogr： 1 Equations，＂Proc。Lond．Math。Soc。 4， $90-115$（1907）。

H．Bateman，＂On tha Inversion of a Definite Integral，＂Proc．Iond．Math． Soc． $4.461=498$ ，（1907）．

P．D．Crout，＂An Application of Polynomial Approximation to the Solution of Integral Equations Arising in Physical Problams＂，Jour．Math． Phys．19，34－92（1940）．

J．B．Diaz and Alexander Weinstein，＂Schwarz Inequality and Methods of
 （1947）．

S．Picard，＂Sur un Theoreme general relatif aux equations integrales de iremiere espece at sw quelques problemes de Physique mathematique，＂ Rend．Circ．Math．Palermo，29，79＝97（1910）．

E．Hellinger and O ．Toeplitz，＂Integral gleichungen und Gleichungen mit unendil chirelen Unbekannten＂，Ency1．Math。Wiss． 2 （3），1335－2597 （1927）．

Maurice Janet，＂Rquations integrales et applications a certains problemes de la physique methomatieque＂，Mem．Sci．Mathi，101－102， 150 pp． （1941）．

W．V．Lovitt，＂Linear Integral Equations＂McGyraismill，（1924），
E．J．Mystrom＂Uber die Praktische Aublosung von Integral gleichongen mit Arrivendungen auf Randwertaufgaben＂，Acta．Matho 54，185－204 （1930）．

G．Prasad，＂On the numerical solution of integral equations，＂Proc．Edin． Math．Soc．42，46－59（1924）．
A．Reiz，＂On the Numerical Solution of Certein types of Integral Equations＂ Arkifo for Math．29A， 21 （1943）．

Qrhard Schmidt，＂Zur Theorie der linearen und nicht Innearen integrel glaichangsn，＂Math。Aan。63，64，（1907）．

M。J。Soula，＂Litquation Integrale de Premiere Bispece a Limites et Les Fonctions Pormotables a Limitos Tixes，＂Mem。Sci。Matho，80， 63 pp 。（1936）。

Go Temple，＂The General Theory of Relaxation Methods Applied to Linear Systems＂Proc．Roy Soc．Lond．169A，476－500（1939）．

E．C．Tichmarsh，＂Theory of Fourier Integrels＂，Oxford（1937）．
E．T．Whittaker，＂On the Numerical Solution of Integral Bquatione＂ troc．Roy．Soc．Lond．94A，367－383（1918）．

Signod：

Approved： $\frac{\text { Phidicgrandeam }}{\text { Philip Frankin }}$

6345
Higineering Note $\mathbb{E m} 328$

Page 1 of 11

Project Whirlwind Servomschandeme Laboratory
Massachusetts Institute of Technology Cambridge, Massachusetts

SUBJECT: PULSE TRANSFORMERS AND INTGRSTAGE COUPLIEG IN WHIRLWIND I
To: Systems Group, Storage Th be Group
From: C. A, Rowland
Data: January 31, 1950

Abstract:
Pulse transformers are useful for coupling between pulse circuits of a system because they permit a saving in the mum bor and size of the tubes required.

A one-tomone inverter transformer is useful for coupling between adjacent stages, and a step adown stop-up arrangement is useful for coupling remote stages. Crystal diodes are use fol in coupling circuits for damping, isolating, and clamping purcoses; the application of crystal diodes is particularly helpful in point-tomultipoint and multipoint-tommultipoiat coupling. Unless fractional microsecond pulses (order $0.1 \mu \mathrm{sec}$) are at a very low impedance level, these pulses will normally feed loads that are predominately capacitive. When relatively large amplitudes and small delays take precedence over pulse shape, it is best to replace the load resistor of the transformer with an inductance; the inductance is normally neces. cary to produce overshoot on the pulse and thereby permit the use of a crystal diode to damp out oscillations. Such circuits have handled $0.1 \mu_{\text {sec }}$ pulses at repetition frequencies as high as 3 megacycles without appreciable variation in pulse amplitude as a function of repetition frequency.

There is a good possibility that the present Whirlwind transformers designed for $0.1 \mu \mathrm{sec}$ pulses could be improved upon; this is particularly true when the transformers drive on RLC load instead of a predominately resistive load. It is believed that non-metallic magnetic materials (ferrites) might prove to be better than metallic materials for cores of transformers designed for $0.1 \mu \mathrm{sec}$ pulses.

A. Introduction

Information in Whaluind I is transmitted in the form of uni lateral pulses. The polarity of a pulse is reversed every time it passes

6345
Emgineering Note Em 328 Page 2
through a vacuum-tube amplifier. If capacitive coupling is usod between stages, every other stage must be normally on. The use of normallymon stages is undesirable for two reasons: (1) since pulses are present less than half the time, the power consumption is greater than with normally off stages, (2) small noise pulses and pulse overshcot are amplified. The use of inverter pulse transformers with the proper turns ratio for interstage coupling permits all pulse amplifiers to be cut off during the absence of pulses. This nethod of coupling is used extensively in WWI allowing the use of smaller tube types and providing noise reduction throughout the system.

B. The Transformer Vg_{g} the Cathode Follower

Whas a buffer ampifier is required to drive a low-impedance source, there may be a question of using a cathode follower instead of a conventional amplifier and a stepmown transformer. The gain of a cathode follower having a load resístor R 18:

The gain of an amplifier using a pulee transformer with a turns ratio of $\mathrm{N}: 1$ is

$$
\frac{M \mu R}{r_{p}+M_{2} R}
$$

The gain of the ampilfier exceeds the gain of the cathode follower if $\mathbb{N}\left[r_{p}+(\mu+1)\right]>x_{p}+N^{2} R_{\text {, or }}$ the gain of an amplifier exceeds the gain of a cathode follower if $\mathrm{Fe}(\mu+1)$. A catrode follower has a lower input capacitance and a lower outout impedance than an amplifier so that pulses with faster rise times may be handled; however, in most cases the desired Fise times and greater amplitudes can be attained with buffer amplifiers and pulse transformers.

Interstage coupling can be classed into four groups (1) point toopoint coupling, (2) multipoint-to point coupling, (3) point-tomultipoint coupling, (4) multipoint-to-multipoint coupling. The coupling of short pulses (1 usec or less) is accomplished in the comruter by using pulse transfozmers of the required ratios and by the use of crystal diodes for mixing and 1solation purposes.

Five transformers have been desinned for use in Whirlwind circults. The design specifications for these transformers are included in the standards books for Project Whirlwind. Pulse transformers with turns ratios of $1: 1,3: 1$, and $5: 1$ have been designed for $0.1 \mu s e c$ half-sine
wave pulses. A pulse transformer with a turas ratio of $5: 2$ has been designed for e trapezoidal pulse with a rise time of 0.1 microsecond and a duration of $1 / 2$ microsecond. A threewinding pulse transformer has been designed for blockiag oscillators. Recort R-l22 contains valuable information on the thoory and design of low-power pulse trangm formers. A large portion of Volume 5 of the Radiation Lab. Series is devoted to the theory and design of pulse transformers.

C. Point-tompoint Coupling

Point=tompoint coupling may be from a pulse amplifier to an adjacent stare or from a pulse amplifier to a remote stape. A onemtoone inverter is used to couple adjacent stages, and a stop-down stop-up arrangement is used to couplo remote stages.

1. One-to-One Inverter

The 6-193-6 (Whirluind Spec.) transformer was designed for 0.1 mincrosecond puises and has a turns ratio of 1:1. This transformes is usod to reverse the polarity of pulses that are coupl od from a gate tube to a buffer amplifier or from one buffer amplifier to another in the manner indicated in Figure 1. The 6-193.-6 transformer was originally designed to work into a resistive load of 1000 ohms; a 1000 -ohm load gives the best transient regponse for this pulse transformer when it is driven from a current source. Because of the stray capacitances in the circuit it is impossible to present a resistive losd to the pulse transformer without sacrificing a large portion of the pulse amplitude. The circuit in Figure 1 is the most satisfactory arrasement for coupling betreen two pulse amplifiers, assuming the pulse amplifiers are nomally cut off. The transformer works into a parallel Rimicc combination that beheves something like an R-L-C peaker that is underdamped for the first half-cycle of oscillation and critically damped for the second halficycle. The leakage inductance of the transformer and the capacitances of the transformex and the circuit combine to produce ringing on the trailing edge of the pulse. If the value of the tailmeversing inductance L is too large the ringing will not swing below the voltage axis and it can not be damped out by the resistance R. If the value of I is too small, the duration and amplitude of the pulse are decreased. A guitable value for I can be doterminod rapidiy by experimental methods. The value of the inductance I depends on the transformer, the pulse duration and the stray capacitances of the circuit: a small value of I is required for large shunt capacitance. The shunt capacitance C_{8} and C_{p} usually total between 30 to $40 \mu \mu$ in Whirlwind circuits; if the total ${ }^{p}$ shunt capaci tance exclusive of the transformer capacitance is between 30 to $40 \mu \mathrm{LI}$ and the pulse duration is near 0.1 minicroseconds a 50 -microhenry in ductance is sitisfactory for use with the $6-293-6$ transformer. The value
of R is important if the circuit is to handle pulses at a high repetition rate. The value of R should be chosen to give critical domping. When R is too small the circuit is overdamped, and when R is too large the circuit is underdamped. For most whiriwind circuits in which a one-tomone transformer is used, a resistance of 470 ohns is suitable for R. (The forvard resistance of the gernamium crystal diodes is about 100 mohms,) The circuit of Figure 1 wi. 11 work for 0.1 -wicroseconds pulses at a repetition rate of well over 2 megacycles without appreciable prf sensitivity.

Since most of the Whirlwind circuits that require a onemo-one inverter have nearly the same shunt capacitance, it seems that it ought to be possible to design a transformer with a lower magnetizing induca tance so that a tail-reversing inductance is unnecessary. If the namber of turns on the transformer are reduced, the magnetizing inductance, leakage inductance, and transformer capacitance are reduced. Fulse transformers with fewer turns were tried in an attempt to eliminete the necessity for the tall-reversing inductance. However, the results were unsatisfactory; it seems that if the number of turns on the transformer was reduced so that no tail-reversing inductance was required the pulse amplitude was less than with the 6-193-6 transformer and a tail-reversing inductance. The reason for this is not understood. One explanation could be the non-linearity of the magnetizing inductance of a transformer wound on a laminated cone. The effective permeability of an iron core varies with induction and time. The permeability of a core increases as the time for short pulses because the initial eddy currents in the core are large and tend to prevent the magnetizing flux from being uniformly distributed in the core.

2. Stepmown Step=Up

In some cases one pulse amplifier is required to drive another amplifier at a remote point. A low-impedance line is ugaally necossary in connecting remote points to prevent excessive distortion, attenuations and delay of the rulses. A sjep-down transformer may be used to drive the low-impedance inne; if the amplitude of the pulse on the line is not large enough to drive the second stoge, a stepupp transformer may be useful at the receiving ond. This method of interstage coupliag Is similar to using a $1: 1$ trensformer between stages that arennot remotely connected; a tail-reversing inductance and a damping diode are usuaily required. The 6 -193-7 transformer is designed for
 useful Tor step-down step-up purposes if the impedance of the transmis= tion jine is around 100 -ohmes. Again, when pulses with fast rige times (0.05 microsecond) are used it is practically impossible to terminate the 30 -ohm line or the transformers with resistive loads without sacrim fictug considerable amplitude because of the inrut capacttance of the
succeeding stage. As in the case of the $1: 2$ inverter it is usually best to leave the transformer as well as the transmission line unterm minated. The step-down step-up arrangement shown in Figure 2 is usorul
 $6 Y 6$ etc.) connected by a length of RG 62U transmission line. (The characteristic impedance of RG 620 line is 93 ohms. The delay of RG 62U is approximately l-microsecond per 1000 feet.) The zes of the tail-reversing inductance and the damping resistor are about the same a.s for the $1: 1$ transformer; they can be determined best and most rapidly by experimentel methods. Since the line is unterminated, reflections do occur; however, if the delay of the transmission line is less than a quarter of the delay of the pulse those reflections are damped out (beceuse of losses in the transformer) before the overshoot of the pulse is completed and do not cause any difficulty. If the input capacitance to the succeeding atage is small a trensformer with a high turns ratio might be useful at the receiving end; however, in most cases in Whirlwind, an increase in the turns ratio of the second transformer increases the rise and fall time of the circuit so that there is little or no gain in the rulse amplituade.

3. Effect of Transformers on Pulse Shape

Many of the circuits in the Whirlwind computer are lesigned. for $0.1-\mathrm{mic}$ crosecond half-sineowave pulses. If the pulse duration is too long, the circuits do not have sufficient time to recover for high speed operaition; if the pulse duration is too short, unnecessarily large tubes are required to deliver the required pulse amplitudes. The shape, amplitude, and delay of pulses is affected by the pulse transformer and their associated circuits. Usually a pulse amplifier is biased a few volts begond cutoff to prevent small noise signals from beine amplified; since the amplifier is biased beyond cutoff the offective duration of the input pulse is decreased. If the pulse duration is to remain unchanged the plate circuitry must act to broaden the pulse: the leakage inductance of the transformer, the shant capacitances in the plate circuit, and the tail reversing inductance affect the shape and amplitudes of the pulses out of a pulse amplifier. Because most of the stages are biased beyond cutoff and because the circuitry affects the shape of the pulses, output pulse shape becomes reasonably independent of the invut pulse shape after passing through four or five similar pulse amplifiers. The analysis in Engineering Note E- 138 indicates some of the effects of pulse transformers on the shape and amplitude of the pulses. In order to make any reasonably simple analysis of these pulses circuits a number of assumptions have to be made; the analysis in E-238 does not account for non-linearities in the control grid to plate trensfer characteristics, the magnetizing inductance of the transformer, or the input impedance to the second tube. The analysis was primarily for a 1:1 inverter used in the manner indicated in Figure 1; however, the behavior for stop-down step-up arrangements is nearly the same. The

Figinearing Wote R-328 Page 6
equivalent circuit of the plate circuit was simplified as shown ia Figure 3.
L_{1} - leakage inductance of transformer
C_{1} - output capacitance of first stage
C_{2} - input capecitance of second stage plus shunt capacitance of the pulse transformer
I_{2} - tail reversing indactance in parallel with magnetizing inductance of pulse transformer

If L_{2} is neglectod and an impulse of current is supplied across C_{1} the expression for e2 1s:

$$
\begin{aligned}
c_{2} & =\frac{1}{c_{1}+c_{2}} \quad(1-\cos (t) \\
& =\frac{c_{1}+c_{2}}{L_{1} c_{1} c_{2}}
\end{aligned}
$$

It is argued thit the effective duration of the in ut pulse is always appreicably less that the duration of the output culse so thet the idea of an impulce is usable。 The expression indicates that L_{f} does not influence the amplitude of the pulse but thit it does influence the frequency of oscillation in the output. It also indicates that the oscillations will not swing below the voltage axis if L_{2} is infinite. If the effect of L_{2} is considered in the circuit of Figure 3 for an impulse of current, the expression for en becomes more complex and is rather meaningless in algebraic form. However, the addition of L_{1} results in the two superimposed oscilletions of different frequencies so that

$$
\theta_{2}=A(\cos \omega t-\cos \beta t),
$$

where A, w and β are constants determined by the circuit paraneters. From Em 138 and experimental evidence it is known that the pulse duration can be lengthened by increasing either the leakage inductance of the transformer, or the shunt capacitance across the transformer, or both: in any case, an increase in pulse duration by the circuitry results in a nore triangular pulse shape and/or a decrease in pulse amplitude and an increase in delay time through the circuit. The analysis in E-138 indicates that the leakage inductance of the pulse transformer affects the pulse amplitude much less than the shunt capacitence. The leakage inductance of the transformer is increased and the interwinding

6345
Fngineering Mote Em328

$$
\text { Pago } 7
$$

capacitance decreased if the spacing between the windings is increased; when the shunt capacitance is decreased the amplitude of the ringing Increases and a larger tail reversing inductance may be used. Thus the pulse duration can be increased somewhat without a serious loss in amm plitude; however, the pulse shape becomes more triangular and the delay is increased. The 6-193-6 and 6-193-7 trangformers in Whirlwind circuits usualiy result in a decresse in pulse width from the standard
 whether the transformer should be designed to provide greater pulse widhs; the amplitude of the pulse at its final destination is usually the deciding factor that must be considered, assuming the time delay is not too great.

The point-to-point coupling in Whirlwind circuits is primarily a matter of attaining moderate Q^{\prime} s and high L-C ratios. Normally higher Q^{\prime} s for tranaformer can be attained by using cores of magnetic materials; however, as the pulse duration is decreased the effective premeability of a core must be sacrificed in order to keep the eddy circuit losses at the same order of magnitude as the copper losses (ideally core losses should equal copper losses for highest Q 's). In general, pulse trana formers have been designed to drive resistive loads; in these cases, eddymeurrent losses were not so important as long as they were small in comparison to the power dissipated in the load resistor. The leakage inductance and shunt capacitance of a transformer increase with the number of turns; in order to attain a minimum transformer capacitance and leakage inductance a high permeabilitv core is desired to reduce the number of turns required for a desixed magnetizing inductance. Experiments. with the airecore pulse transformers in Whirlwind circuits has siow that these transformers are comparable in performance to the 6-193-6 and 6a193-7 transformers. Although a greater number of turns are required for the air-core transformers so that the leakage inductance and interwinding capacitance are increased, the performance of air-cored transformers is nearly as good as the ones with Hipersil cores because (1) the leakage inductance does not seriously affect the pulse amplitudes unless the grid of the succeeding stages is driven positive (2) the shunt capactance of air-cored transformer is not necessarily as great as the ones with Hipersil cores (3) the core losses with Hipersil cores are not negligible. The effective shunt capacitance of transformers with Hipersil cores is affected by the winding-to-core capacitance and. the core-to-ground capacitance 0.8 woll as the interwinding capacitence. If air-cored transformers work nearly as well as those with Hipersil cores it may be possible to design transformers with powdered iron cores that work just as well, if not better. Non-metallic magnetic materials (Ferrozcubss, Ferramics) have been developed that have effective resistivities as good as powdered iron cores and greater effective permeabilities then powdered iron cores; these materials are being produced in small quantities by North American Phillips Co. and General Coramice a Steatite Co. The new magnetic materials may make possible better trans. former designs for ehort pulses and relatively large capacitive loads.

C. Multipoint-to Point Coupling

Mulitpointoto -point coupling is similar to point-to-point coupling; however, cryotal diodes are useful to mix the signals from the various sources at the receiving point. The circuit of Figure 4 shows how several signals may be mixed at a common point. The mixing diodes prevent a gilgnal on one line from feeding back on to adjacent lines, and also, these diodes prevent the amplitude of the pulse on one line from being affected by the loading effort of the adjacent ines and the magnetizing inductances of the adjacent transformers.

D. Point-to-Multipoint Coupling

Point-tomultipoint coupling is accomplished by driving a low-impedance line with a buffer amplifier and tapping the line at the desired receiving points as is indicated in Tigure 5. The input imm pedance of the receiving points should be high compared to the characterigtic impedance of the line so that the pulse amplitude at each receiving point is nearly the same. Generally speaking, stepoup transformers cannot be used at the receiving points because the increased load on the transmission line results in excessive attenuation.

Since the clamping circuits at the receiving points will clanm to any pulse overshoots, it is important that the overshoot of the pulse should be emall. The magnetizing inductance should be large to reduce the overshoot; however, the leakage inductance and capacitances should be small to prevent excessive attemation and distortion of the pulse. The turns ratio of the pulse transformer should be chosen so that the amplitude of the pulse on the inne is a maximum; if the pulso gmplifier has innear characteristics, the roltage gain is a maximum if $\mathrm{N}^{2} \mathrm{Z}_{0}=r_{\mathrm{p}}$.

$$
\text { where } \begin{aligned}
\mathbb{N} & =\text { turns ratio of transformer } \\
Z_{0} & =\text { lins impedance } \\
r_{p} & =\text { plate resistance of tube }
\end{aligned}
$$

An increase in turns ratio increages the resistive load that apcears in the plate circuit while decreasing the effect of capacitance on the line side of the transformer. If the turns ratio is too large the R-C tive constant is increased to the point where the rise time of the cir= cuit is exceseive and possibly there is a loss in pulse amplitude; if the turns ratio is too small the low impedance in the plate circuit results in a lose of pulse amplitude. A turns ratio of 3.1 ss about optimun for a transformer driving a 90 -ohm load whth 0.1 -microsecond pulses irom tubes having an outout capacitance of $10-15$ micromicrofarad; the 6-1.93-7 transformer was designed for 0.1 -microsecond pulses and has a turns ratio of $3: 1$. Since the pulse amplifier driving the lines is usually blased below cutoff, the plate circuit must broaden the pulse 11 the pulse duration is to remain close to the standard width; the best method of increasing the pulse width without seriously affecting the pulse amplitude is to increase the turns ratio of the transformer.

For some ceses in point-tomultipoint coupling an amplifier is required to drive a low impedance line in two directions; this is desirable on long lines feeding several points, in order to prevent oxcessive attenuation on the line. If a $90-0 \mathrm{hm}$ Ine is driven at its midpoint a 5 s 1 treasformer is more desirable than a 3:1 transformer. Tha 6 m $193-8$ transformer has a turns ratio of 5:1 and is designed for 0.1 mi crosecond pulses. Tho higher turns ratio helps to compensato for the decreaso in pulse width resulting from the amplifier being biased below cut off. An increase in the rise time of the outrut pulse makes termination problems on the line simpler.

The 6 -193-10 transformer is designed for trapedzoidal pulses with a rise time of 0.1 -microsecond and a duration of 0.5 microsecond : this transformer has a $5: 1$ turns ratio and is designed to drive impecance of from 50 to 90 ohms. The magnetizing inductance of this transformer mast be large enough to preserve the flat portion of the pulse and to prevent excessive orershoot; the leakage inductance and shunt capacitance of the transformer must be small enough to oreserve the $0.1-m i c r o-$ second rise time of the pulse.

If the overshoot of puises passing through a transformer is gmall the recovery time is necossarily large because a transformer cannot pass a d-c component; this means that the voltage beseline will gradualiy shift an amount equal to the dic component of a chain of pulses at a high repetition rate so that the effective amplitude of the pulse is rem duced. Since comouter circuits mut handle pulses over a wide range ai repetition frequencies, any form of prf sensitivity is undesirable。 There are two possible methods of roducing pri sensitivity resulting from the averaging effect of the transformer: (2) the magnetizing in ductance may be increesed so that there is no appreciable shift in the base line for the longest chain of pulses at the highest repetition frequency to be used. This method of reducing prf sensitivity will work well if the chains of pulses are not too long, and if there is sufficient recovery time between the chains of pulses. (2 j A diode may be used in the manner indicated in Figare 6. The action of the diode in this circuit is analagous to the action of the diode in a clamping circuit for capacitively coupling unilateral pulses; the capacitor in a clamping circuit discharges slowly during a pulse and rechargos rapldiy after the pulse has onded.

In the circuit of Figure 6 current builds un comparitively slow in the transformer winding whil plate current flows but decays rapidyy after plate current ceeses and the pulse overshoots. In other words the time constant is $\mathrm{L} / \mathrm{R}: \mathrm{I}: \mathrm{is}$ equal to the load plus the forward resistance of the diode duriag the pulse and to the back resistance plus the load during the pulse overshoot. The overshoot of the transformer is large with the diode but since the back resistance of the diode is large compared to the inne impedence this overshoot does not appear on
the line. The 6a193-7 transformer used in the manner indicated by Pigure 6 can handle 0.1 microsecond pulses at a repetition rate as high as 3 megacycles without appreciablo prf sensitivity. The principal disad. vantage of the circuit of Figure 6 is the loss in amplitude acroas the forward resistance of the diode. The D359 diode has an exceptionally 10w forward resistance (about 30 mohm) and a high carrent carrying capacity (500 ma peak). If a transformer is used to drive a 90 -ohm line and the forward resistance of the diode is 30 -ohms there is a 25% loss in amplitude. If pulse amplitude is of prime importance, the voltage drop across the diode may not be tolerable; however, if a chain of high pre pulses are desired with very little prf sensitivity (in test equipment for example) the circuit of Figure 6 is very useful.

E. Muitipoint-to-Multipoint Counling

Multipoint-tommitionint coupling is illustrated by Figure 7: multipoint-to-multipoint coupling is eimlar to point-tomultipoint coupling except that the driving amplifiers have to be isolated from the inne to prevent excessive attenuation. Each line driver must be capable of driving a line in two directions. The inne drivers are isolated from the inne when not in use by crystal diodes used in the manner indict ted by Figure 5. The recoiving amplifiers are coupled to the line in the manner indicated by Figure 4 .

F. Conclusion

If a coupling transformer is designed to drive a load that behaves nearly like a pure resistance, the design procedures in report Rol22 are directly appicable. The core meterial of the trensformer is, of course, a very important factor to consider in design. A core material should be chosen that has the highest effective incremental permeability for the pulses the transformer is required to pass. It is costly to wind transformers on stacked cores and continuously wound cores; for this reason Mu metal and Permelloys may not be chosen as core materials even though these materials may bave a somewhat higher effective permeability than materials that are manufactured into twopien cores. In any case, better pulse transformers can be designed for resistive loads if core materials with higher effective incremental permeabilitios become available.

The design of transformers to drive capacitive loads is not readily anoarent from revort R-122, al though the general concopts do apply. Actually, not too much thought has been given to the design of puise transformers for capacitive loads. If the transformer driving a capacitive load is required to pass a trapezoidel pulse with fidelty, the transformer circuit will have to have a low Q, and the design of the transformer will be very similar to the design of transformers for resistive loads. Section 3.43 of Rel22 discusses a wide-band transformer

6345
Fngineering Note R-328 Page 11
circuit that is useful for capacitive loads. In the point-mompoint coupling for Whirlwind circuits pulse amplitude, pulse delay, and recovers time take precedence over pulse shane: these compiling circuits are essentially peaking circuits so that high Q 's and high L/C ration are desired.

With improved magnetic materials for high frequencies, it seems likely that better transformers can be designed for coupling circults that are essentially parking circuits.

Signed:

-

Approved:

CAR: sat

$$
\text { Drawings: } \begin{array}{r}
\text { A- } 35261 \\
\text { A- } 35262 \\
\text { A- } 35263 \\
\text { A }-35264
\end{array}
$$

FIG. 1
COUPLING ARRANGEMENT BETWEEN ADJACENT STAGES.

FIG. 2

FIG. 3
SIMPLIFIED EQUIVALENT CIRCUIT FOR TRANSFORMER COUPLING

FIG. 4
MULTIPOINT TO POINT COUPLING

FIG. 5
POINT TO MULTIPOINT COUPLING

FIG. 6
THE USE OF AN ISOLATING DIODE FOR TRANSFORMER COUPLING

FIG. 7
MULTIPOINT TO MULTIPOINT COUPLING

Project Whirlwind
Servomechand sma Laboratory Massachusatts Institute of Trechnology
Gambridge, Massachusetta

SUBJECT: TECHALOUES FOR USING STANDARD AUTOMATIC SUBROUTINES
To: Mathematics Group
From: C.W. Adams
Date; February 10, 1950
Abstract: Standard automatic subroutines are programs for the evaluation of frequentily needed functions or for the performance of routine computational chores. Such subroutines, which are intunded. primarily for use as a part of a larger main program, will be kept on permanent file in the slow-speed memory of a computer and will be inserted into high-speed memory along with any program of which they are to be a part. A subroutine, if it is to be referred to from several different parts of a main program, must be prepared for each use by the insertion of new addresses into some if its orders.

In the present note, various preparation techniques are discussed. Most promisiag is a deferred preparation, in which the only preparatory order needed in the main program is a transfer of control order, all of the necessary changes in the subroutine being performed by orders in the subroutine.

In the Whirlwind computer the address of the register next after the register containing a transfer of control is stored automatically in the A register by the transfer of control (gp) ordar. This register, next after the one containing the so order, is a prearranged location characteristic of one and only one sporder, and as such this register and the ones following it can be used to store any addresses which must be available to the subroutine in making the necessary preparations. That is, the correct return address and the addresses of registers which are to contain all necessary extra addresses can all be deduced within the subroutine with no assistance from the main program.

Introduction

The simplest computer imaginable would need to have only a few basic abilities \cdots in fact, the ability to (1) sense and (2) complement a selected binary digit would be sufficient. Unfortunately, many repeated
applications of these basic operations would be required to perform a single complete addition aince the addition of each pair of digits and each carry would have to be ordered separately; so the progrem for any sizable problem would be unwieldy at best. In designing a computer, therefore, one builds a control and an arithmetic element of at least enough complexity to be able to perform nany of the elementary arithmetic operations in response to single orders in the program. The number of elementary operations so built in may influence the speed, effective memory capacity and convenience in use of the computer, but it in no way limits the capability of the machine. For just as addition can be prom grammed using only a single-digit sense-and-complement order, any of the more complicated numerical operations can be programmed using the simplar built-in operations.

The Whirlwind computer has built into it the abilitios to add, subtract, multiply, divide, find magnitude, and point off (find the characteristic of the $\log _{2} x$ for any given x), using numbers within the prescribed range. Other operations, such as the evaluation of $\sqrt{x}, \log x, e^{x}$, sin x, etc., are not built in. The line between included and excluded operations is drawn, as it is in all such cases, by a compromise based on such considerations as the flexibility, convenience, speed, economy of construction, simplicity, and ease of maintenanes desired; these considerations hinge in turn on the intended purpose of the machine. The decision is made less difficult by the comparative ease with which the non-automatized operations can be synthesized from the elementary ones and made to seem almost automatic.

Purpose

The intention of this report is to combine and bring up to date under one cover the pertinent information on the means of accomplishing programmed automatization of the non-elementary but nonetheless common numerical operations. In the present report, a working knowledge of coding for the Whirlwind computer is presupposed. The Appendix contains a summary guide to coding and a brief but exact description of the Whirlwind order code as of January 1950.

Standard Automatic Subroutinas

Programs that are commonly used as part of a larger progran are called subroutines. Because the subroutines described in this report will be so arranged that they seem to be built in, these subroutines are called automatic. Only one or at most a few of the many possible variants of the subroutines for each function will be kept permanently available (in the case of sin x, for example, different routines would be provided at least for (i) x in revolutions, (2) x in radians, (3) x in radians times some scale factor.) Such subroutines will then be called standard
automatic subroutines for the evaluation of the given functions. In this note, techniques for preparing to use the subroutines are discussed at length.

Standard automatic subroutines will be kept on permanent file on the slow-speed film storase of the Whirlwind computer and exch will be inserted into high-speed storage along with any program in which the particular subroutine is needed. Some indication of the necessary subroutines and of the addresses of the storage registers to be occupied by each subroutine will be given as part of each main program. That is, in writing each program, the programmer will be able to select for use in his program any of the standard automatic subroutines end he will be able to designate the storaje registers in which each of the selected subroutines is to be stored, subject only to the condition that his assignments are compatible with the lensth of each subroutine so that there are enough consecutive storage registers available for each of the subroutines.

According to the present plans for Whirlwind I, all of the standard automatic subroutines will have been written, converted to binary form, and stored in some order on one (or more if necessary) roll of film called a library film. Jach subroutine will have been written under the assumption that it is to be stored beginning at register \#1024. All the necessary constants, except possibly some universal constants like $1 / 2$, will be included as a part of the subroutine, stored in registers inmediately following the last order of the subroutine. The purpose of writing each subroutine starting at register 3.024 is to permit easy discrimination by the computer between those orders whose address sections refer to other parts of the subroutine and those orders whose addresses are irrelevant or refer to something else (such as a number of shifts, an address of an external device, or an address of some universal constant, all of which would normally be less than 1024).

The actual insertion of a program into the computer will probably be done with the aid of three preliminary routines, all of which will presumably be stored at the beginning of the library film and will be put into the high-speed storage of the computer by means of the ri operation. The main program to be nerformed will have been typed out in some normal fashion on an automatic typewriter which at the same time prepares a perforated tape. (Flexowriter equipment will be used for this purpose.) Fach character (i.e., each of the 50 keys and controls on the typewriter) has a six-digit binary representation on the tape and this binary-coded information can be translated in the computer to the proper binary form and stored in the proper registers by means of a suitable conversion pros $\mathrm{ram}_{\text {. }}$ The typewritten form of each new prosrem will also have, probably at the end, some indication of the subroutines needed and the addresses assigned to each. 'The conversion routine, the first of the three preliminary
routines, will then turn this information, properly translated, over to the second preliminary routine, a library selection routine, which will select the desired subroutines from the library film. The third subroutine (the adaptation routine) will take sach subroutine and change the addresses es necessary to adapt the subroutine to its assigned place in storage. These preliminary routines will be discussed in a subsequent note.

A library of subroutines is actually being built up, starting with the common function evaluations, most of which have already been prepared in preliminary form and published (cf. E-170, C-70, Cm77 for . θ^{x} and $\log x, \sin x$ and $\cos x$, and \sqrt{x} respectively). A note which will contain refised and "final" forms of these and other subroutines is also forthcoming.

Classification of Subroutines

Standard automatic subroutines can be classified according to the amount of information which must be exchanged between the subroutine and the main progrem each time the subroutine is used. Obviously, every subroutine must be supplied with the proper return address .- the storage address of the next order in the main program to which control is to be returned at the completion of the subrourine. Aside from the return address, many subroutines such as those for the evaluation of $x, \log x$, $\theta^{x}, \sin x$, etc., need only to be given the value of x and need only to supply the value of the desired function. Since the quantity x and the resulting function of x will in most cases occupy only a single register each, the simplest procedure, apparently, is for the main program to put the quantity x into the Accumulator (AC) just before transferring control to the subroutine and for the subroutine to put the resulting function of x into AC just before returning control to the main program. Thus in this case no storage address, other than the return address, needs to be exchanged. Subroutines of this type, requiring the exchange of no addresses, will be said to be zero-address subroutines.

Some subroutines require the exchange of some number other than the quantity x and the result. For example, the quantity x or its result may be double-length --i.e., require two registers to accomnodate it because of its magnitude or its precision or both. (Frequently, however, a two-resister result such as a number and a scale factor will be obtained from a zero-address subroutine since the result can easily be stored with the number in $A C$ and the scale factor in some predetermined register, chosen once and for all.) or, as another example, a subroutine intended to shift the contents of $A C$ and $B R$ left without roundoff must be supplied with the number of shifts to be performed. In such cases it is necessary for the main program to supply an address, over and above the return address, to
the subroutine -- that address being either the address at which some necessary quantity will be found or at which some result is to be stored. Subroutines of this type, requiring that one address be exchenged, will be called one-address subroutines.

Similarly, other subroutines require the exchange of two, three or more orders. Thus, finding a quotient plus a remainder requires two addresses, one at which the divisor is stored and one at which the remainder is to be stored, with the dividend being put into AC and the quotient appearing in AC. The double-length arithmetic operations (addition, subtraction, multiplication, division) senerally require three addresses, one for each of two operands and one for the result, since the three quantities involved are each double-length and cannot be stored in AC. In the case of double-lensth numbers, three pairs of addresses, six in all, are actually required, but it is assumed that the two halves of a double length number are stored in consecutive registers so that the second address of a pair can always be deduced from the first address and is not therefore a separate piece of information. As before, the number of addresses, exclusive of the return address, characterize the subroutine so that the quotient-and-remainder prodram is two-address while the double length operations are threeaddress subroutines.

Automatization of Zero-Address Subroutines

Fundamentally a subroutine is a set of orders which is used in several different parts of a main program but which is only to be put in one place in storage. The problem of automatizing the subroutine is just the problem of how to permit the subroutine to be effectively inserted into the main program by unconditional transfers of control from the main program to the subroutine and back again. By definition, the zero-address subroutines require the exchange of no address except the return address.

Suppose, for example, that the programmer has requested that a subroutine for the calculation of the square root of a number be stored starting in register 938. Suppose further that, at the completion of the main prosram order stored in register 619, the quantity x is in $A C$ and that the square root of x is wanted. Then the order stored in register 620 misht be ep 938 which would transfer control to the start of the square root subroutine. At the end of the square root subroutine is another sp order, which in this case should be sp 621, to return control to the proper point in the main program. This address 621 , the return address, must be supplied from somewhere. It obviously cannot be simply written in once and for ally for the subroutine will probably be referred to from several different places in the main program and the return address will differ in each case.

6345

One way to supply tha return eddress would be to store the return address, which is known in each case, in some predetermined register. Then in the miain prosram, before the $3 p 938$ order, one could clear and. add that address and transfer it, using the td operetion, to the register containing the sp order at the end of the subroutine. This procedure requires at least two extra orders and one extra register of constant storage for each place ir which the subroutine is to be inserted into the program. In addition it presupposes anticipation by the programmer who must be sure that the ca and td sequence is ingerted in the main program before the quantity x is formed in $A C$, it being assumed that x is to be in $A C$ when control is transferred to the subroutine.

Reg. Content

This anticipated preparation of the return address is possible in almost any computer. But in Whirlwind I, the addition of one simple feature to the $B P$ operation and the addition of one new operation, ta, hes removed the need for the clumsy procedure just described. The function of these two orders is as follows:

```
sp x Trangfer control unconditionally to register x Agsuming
    that the sp x order is stored in register }y\mathrm{ , store the
    quantity }\overline{y+1}\mathrm{ (which is obtained from the program counter
    before control is transferred) in the last ll digit posi-
    tions of AR.
tax - Transfer the last ll digits from AR to the last ll digit
    positions of register }x\mathrm{ , leaving the first }5\mathrm{ digits
    unchanged.
```

Thus in the example of the previous parayraph, the return address 621 would be stored in AR, without affecting the contents of AC, by the $8 p 938$ order which was stored in register 6?0. Then the first order in the subroutine would be a ta order which would transfer the retuma address to the last order, the $8 p$ order, at the end of the subroutine. The intervening orders of the subroutine would determine the square root of the number in $A C$ and leave the result in AC. In this way the red tape involved in using the zero-address subroutines is reduced to practically nothing. The square root of the nuaber is found by simply inserting the order sp 938 into the program whenever the square root of the contents of AC is wanted. Using the zero-address subroutines requires no more thousht or effart than using a single operation built into the computer.

DEFTERRISD PREPARATION TOR
A ZERO-ADDRESS SUBROUTIFE

A one-address subroutine can be automatized in much the some way es a zero-address subroutine. The only difference is, of course, that some storace address in addition to the return address must be made available to the subroutine from the main program. Consider, for example, the subroutine for shifting left without rounding off. It is assumed that the number to be shifted is in $A C$ and $B R$ whon control is transferred to the subroutine and that the shifted result is to be left in $A C$ and $B R$ at the end of the subroutine.

The subroutine itself could be
Reg. Content
718) te 751 \}store content of AC
719) s1 25 store content of BR
720) te 752
721) ca 751 shift and store the
$\left.\begin{array}{ll}722) & \text { sl } \\ 723 \text {) } t s \\ 751\end{array}\right\}$ original content of AC
724) ca 752 ghift content of $B R$
725) mh $753+\mathrm{n}\}$
726) ad 751 \} add in shifted content of $A C$
727) sp... 3 return of control
751)
752) --
753) $2-15$
$753+n) 2^{n-15}$
767) 2^{-1}

BXAMPLZ: A SUB-ROUTINE TO SHIET LWFT WITHOUT ROUNDOFF

Actually, such a subroutine would be valid only for n in the rainge $0 \leq n \leq 14$ and consequently the standard automatic subroutine might well be slightly more complicated and more general. The subroutine just fiven is, however, gatisfactory as an example of various preparation techniques.

The most obvious technique is anticipated preparation of the extre address, using deferred prenaration of the return address. In the erample given, the number of shifts, n, must be inserted in the 8 in order in resister 722 and the address 753^{+n} must be inserted in the mh 753^{4} n order in register 725 . Note that although two different addresses are needed, one may readily be deduced from the other and consequently the subroutine is classed as a onemaddress subroutine. The return address must be inserted in register 727, but this can be handled as in the zeroaddress technique. The result is

ANTICIPATED PRWPARATION ON A ONE-ADDRISS SUBROUTINE

A second technique is the use of a deferred preparation of the extra address as well as of the return eddress. This cen be accomplished by storing the extra address in some prearranged location so that the preparation orders can be put into the subroutine, thereby obviating the duplication of the preparation orders in the main program. It is not aatisfactory to simply decide that the address should be stored in some one register, such as in 690 as it was in the example; for since the address will presumably be different each time the subroutine is used, the main program would still be required to transfer the address to some given location such as 690. (Although in the case at hand, in which the quantity n is needed in two different orders, some economy of orders could indeed be made by letting the main program put only the first addrass into the subroutine and letting orders in the subroutine form the second address from the first.)

In the deferred praparation technique to be described, the extra address is stored in a location so chosen that each reference to the subroutine from the main program designates uniquely its own prearranged location. Thus far in this discussion, the return address has been the address of the register next after the register which contains the transfer of control (the sp order). However, this register, next after the one containing the gp order, is a prearranged locetion characteristic of one and only one transfer of control point, and as such this register could be used to store the necessary extra address. The correct return address would then be the address of the register second after the transfer of control point.

[^0]
Automatization of Severnl--Address Subroutines

The generalization to several addresses of the preparatory techniques just described for one-address subroutines is almost trivial and iftile peed be said. The anticipated preparation works in exactly the aeme fashion except that more than one address must be stored. in constant storage and must then be transferred by orders in the main program to the subroutine. The deferred preparation is likewise almost unchanged; the several addresses are simply stored as dumny orders in consecutive registers imediately following the sp order in the main nrogram, and the return address is simply the address of the register pext after all of the several dummy orders.

History of the Discontinued "iutomatic Subprogram" Operatione

One of the most important set of three-address subroutines for a computer with comparatively short register length is the double-length operation subroutines. Some time ago (cf. M-111, pps. 8-10, detod October: 6, 1947) It was proposed that a set of five special operations be incorporated into the deeign of the whirlwind computer primarily to facilitate work with double-length numbers. The first of these operetions, designated by As, would (1) transfer the contents of $A C$ bodily into $B E$, and (2) transfex the as order itself into AC. Three of the operations were logically identical; these operations, designated by ax ay, az, would (1) transfer the ax (or ay or az) order itself inta $A \bar{B}$, ($\overline{2}$) transfer the return address from the program counter to register 2047, and (3) transfer control unconditionally to some preselected … i.e., wired in .-. storage address, three different addresses being selected, one by ax, one by ay, one by az. A fifth operation, logically almost equivalent to the present ta operation but designated by ro, nermitted the contentr of $A R$ to be read into AC.

The intended function of these operations is best Lllustrated by an example. Supoose a double-length addition subroutine is to be usod and that the augend is stored in registers 618 and 619 , the addend in registers 712 and 713, and the sum is to be stored in registers 832 and 833. Then the preparatory orders would be

> as 618
> as 712
> ax 832

The first order would put the address 618 into $A C$; the second arder would shift the address 618 into $B R$ and put the address 712 into $A C_{0}$ the third order would put the address 832 into $A R$, would transfer control to a preselected position (x), and would store the return address in register 2047. Then the subroutine for double-lensth addition, stored besinning in register x_{p}, would proceed to unstack the various addresses stored in $A C, A B$ and $B R$ and supply them where needed in the subroutine, would deduce from the Given addresses the second address of each pair (e.g., $619=618+1$), would transfer the return address from register 2047 to the return of control (gp order) at the end of the subroutine, and would then perform the double-length addition.

The so-called "automatic subprosram" operations were eliminated from the thirlwind I order code (cf. Wi-235, May 6, 2949). The reason for mentioning them here is threefold. First, these operations were referred to in a number of notes on programming techniques written in 1948 and it seems adrisable to take cognizance of them for the benefit of anyone who has already or may yet encounter references to them in the literature of project Whirlwind. Second, these operations point out at least one way in which special operations can be built into the machine to facilitate particular applications. Third, the method used is fundamentally a good one and provides a standard for comparison with other techniques. The reason that the automatic subprogram operations were dropped was simply that their value did not justify their existence when compared to the possible value of other special built-in operation. It should be noticed that there would be almost no gain, in fact less than none in some cases, in usins the automatic subprogram operations in preparin, for zero- or one-address subroutines because (2) only three locations (x, y and g) and consequently only three different subroutines can be used and (2) the use of the arithmetic element in storing addresses is obviated by the fact that in many cases the numbers themselves can be stored in AC even more effectively than their addresses.

There are several criteria by which a programing technfque should be evaluated. The most invortant of these criteria can be summed up in the form of four questions.
(1) I_{8} the technfque easy to learn and to ase?
(2) Does the technique reduce coding and manual preparation time?
(3) Does the technique reduce the storage capacity needed to solve the problem?
(4) Does the technique reduce the computins time needed to solve the problem?

In svaluating the three nethods discussed in this renort, one might prem pare a table of comments on their relative merits. Of course, the use of epecial orders is not a technique of any practical importance in the Whirlwind or any other computer at.present, since the orders do not exist; but it is well to keep the possibility in mind. It should also be noted that deferred preparation of a return address is only possible in a comm puter such as Whirlwind having the appropriate orders (gp and ta) in its code. But deferred preparation of extra addresses is possible In any digital computer, even if the order code requires use of anticipated preparation of the return address, for once the return address is available to the subroutine, the addresses of registers containing the extra addresses are also available.

EVALUATIUN OF PRWPALISTON TECFNIQUZS

criterion	anticipated preparation	deferred preparation	use of special "automatic subprogram" orders
ease in learning and applying	quite easy to learn since no special technique of coding is needed: cumbersome in use	requires special knowledge, but once learned is easy to use	requires some special knowledge, but once learned. is probably the easiest to use. Lacks generality since it cannot bo applied to many subroutines.
reduction in coding and man ual preparation time reduction in required stor ase capacity	wasteful and cumbersome	quite efficient since only the essential addresses need be inserted (including the address of the desired subroutine)	most efficient for doublelength numbers, since the address of commonly used subroutines does not need to be epecified by the main program. but has no advantage over deferred preparation in many applicetions
reduciion in the required computing time (actually, use of subroutines necessarily increases computines time compared to not using subroutines at all)	uses two orders to prepare the return address, which is poor; uses two orders to prepare each digtinct extra address. which is good.	uses one order to prepare the return address, which is good: uses four orders to prepare each distinct extra address, which is poor.	uses two orders to prepare the return address, which is poor; uses two, plus (to get an address out of $B R$), orders to prepare each distinct extre address, which is fair.

Conclusions

The deferred preparation technique will be used in comection with all standard automatic subroutines for Whirlwind I. By this method, only one order is needed to bring about the evaluation of a common function, and only one extra register is needed for each extra address which is to be supplied.

Use of the various preparation techniques is shown in the following example, where the program is not an example of efficient coding but merely illustrates the thoughtless, brute force way in which resulte can be obtained.

Required to evaluate $\left(e^{x} \sin y-e^{y} \sin x\right) 2^{8}$
where it in known that $0>x>-1$

$$
\begin{aligned}
& 0>y>-1 \\
& 2^{-8}>e^{x} \sin y-e^{y} \sin x>-2^{g}
\end{aligned}
$$

Suppose the following subroutines are available:
Evaluation of e^{x} for $-1<x \leqslant 0$, first order atored in register A
Evaluation of $\sin x$ for $-1<x<1$, first order stored in register B
Double-length subtraction, first order stored in register C
A subroutine to take a double-length number, shift it left n times and put it back in the same pair of registers, first order stored in register D

Other registers are assigned as followes
register X contains x
register \mathbb{X} contains y
registers $T 2, T 2$, stc, are consecutive registers available for
temporary storage
The program then is: (asterisks indicate use of a standard gubroutine)
$\left.\begin{array}{l}\left.\text { - } \begin{array}{ll}\text { ea } & X \\ \text { ts } & \text { A } \\ \text { ca } & Y \\ \text { ep } & B\end{array}\right\} \text { find and store } e^{x}\end{array}\right\}$ find $\sin y$

6345

Thus it is seen that such operations as the evaluation of e^{x} or $\sin x$ and subtracting or shifting double-length numbers can be procrammed almost as easily as if they were built in to the computer, using deferred preparation of standard automatic subroutines.

Approved
 CWA/lfu/aec

Attached: A Short Guide to Coding

6345

Praject Whirlwind
Sorvomechanisma laboratory
Maxse chusetts Inatitute of Technology
Camioridge 39, Nassachusette

SUBJECT: EQUIFMCIII

To:
6345 Ingineers
Troms
d. S. Hanson

Date: Apred 102 2951
Abstrwet: Selfaexpianatory relay timing diagrams accompaniad by abrief doscription of relay operatinc cycles and alreutity probloms encowstered cover essential detels of operation of W| Tripa Output Equipment for various output mocies. A new eype of trming diagrem is introduced.

6345

Engineering Note $E=402$

TABIE OF CONTENTS

Section PAGE
I Praliminary Gabling of Unite and Switeh Settinga.oo o - 3
18 Woras Only" Mode of Operation 4
มม Relay Counter Presetting Feeture for wordoComplement. ${ }^{\infty}$ Mode of Operation 6
IV Effect of Maltiple "Blank Preset" Signals on Relay Counter Satting 7
v Word-Compiementm Mode of Operetion 7
VI Tape Unit MStart-Stopm, Punched Tape Feedouts and Dalay Control Rolay Functions 8
VII Speciad Gircuit Provisions 9
V2. I Power Requiremente, Recomended Fuse Ratings, and Circuit Conditions for Marginal Operations 10
I8
Summery 10

2. Praifinicy Cabinu of Units and Switch Sotting

The reiay cobinet is instrined in rack TC- 13 In Whit Tost Control. A 3ocomarctor cable comects the various indicator lamy circuite to the gae tube relay reglater on the reiay panel to accomplish data transfer irom whl to the Tape Output Equipment. A 33 -comductor eable commectia tbe relay panel with the Remote Contriod Unit which is iocatea on a tebie in the Test Control Room aidong with the tape units.

The reader, printer, punch and Remote Control Unit are cabled in acoordance with attached print A-36835; cabling is reiativedy aimple and $1002-\mathrm{proof}$, Ince receptecles with corresponding letter and unit designae tions are meroly gonnected with cables provided.

The wrious suritches contained in the reacer, printer, and punch enable the unita to be used interchangeabiy in any of the tape preparationo tape checkinf, and WII input sy $\begin{gathered}\text { teme without wiring changes. In orcier to }\end{gathered}$ oparate these units as WWi Tape Outpat Equipments, witches must be set as follows.
A. Printer:

1. Keer MOnm0few awitch at the left aide of the printer keyboard in the "of ${ }^{\text {m }}$ position until system is ready to be used.
2. Throw "Insert" switch toward the rear of the machine.
3. Almays keep a sheet of paper in machine to protect piaten from direct contact with type bari
B. Reader:
4. Set ${ }^{m} 0 \mathrm{n}=0 \mathrm{~S}^{m}$ switch (above able receptacles) to ${ }^{m} \mathrm{FFF}^{m}$ 。
5. Sô "Marginal Chack = Normal" switch to "NOMMAL".
6. Sot NTormal Stop - Fead Complementan switoh to MRKAD COMPLEMENIS".
7. Set WNormal - Ciutch Control Jumped" svitch to "MORMAL".
8. Plaos slotted metal shim under tape hold=down olamp so that aprocket teeth alear ende of siot. Be sure tape holdedown ajamp is properiy ecured.
G. Punghs
9. Set MOnOPX" awitch to MON".
10. Set right-hand switch to MNORMAL is reproduction of feedout trolea is not deaired.
11. Set Marglnaj Check - Normalm switch to MNORMAL".

Preferabiy, system power shcuid be turned on by means of the on=ofs switch at the left side of the printer, othervise the printer keyboard is deprived of the mechanical interlook which prevents the keys from being accidently depressed while the system is not in use。. If this bappens 8 a number of type bars may fly up in a tangle and fam the machine when tho
power \& turpod or at the punch.
Finelly press the whems puah button on the Remote Conitror Panel, and then preas the wStartw button on the printer. The former cleare
 previcus oporations, and the latter maises the 'tope units and printer operative, as described in Section VI, pege 8. The system mey then be manualiy atoprec at any time by pressing the "gtop" button on tho priater. To shat down the tape output equipment, orerate the power on=offw switch on the printer.

The rotary control awitch (S I) on the reley panel muat be get to correspond to the desired typs of WWI data outcut, as shown in the tobulation MDIGIT CONAECIONS TO SWITCH obtained for each of the oight switch positions:

TABLE I

Switch

Position

Scuree of WWI Date Output to Gas Tubs Rogister

A Accunulator (digits 10 through 25) and Progrem Registor (digit 9)
B Filp-Flop Storage Register \#2 (digits 10 through 15) and Program Regiater (digit 9)

C Mipollop Storege Register H2 (digits 9 through 15)
D Program Counter (digits 8 through 24)
E Control Switch (oiggits 0 through 4) and Accumuletor (digits 0 ana 2)

F Acoumalator (digita 2 through 8)
G Accumulator (digits 9 through 15)

II. Words Onisw Mode of Operation

A detailed anslysis of Tape Output Equipment operation is accom plished with the aid of speciad timing diagrams devolopeo $1 y$ the writer and introouced here for the first time. The timing diagrams not only show the timing of every relay, contact, anc electromechenical component in the syatem, but flow paths (cause and effect) as well. To aid in an understanding of these ajagrems, a short list of symbols and their interpretaticns are ahown at the bottom of each sheet. Entries in the ieft hand column inciude all rajay coilas ralay contacts, cam driven contacts, onc tape unit iectro-machonicad componenta, whother or not they are utilized in a particular mode of operation.

In the Words Only" tape output moce, the printer recorda a char
acter for each and every alxodigit＂word＂placed in the output regiater by WWI． Switches on the remote control panel are set to＂PRINIER ON＂，＂PUNCH ON＂，＂FRIMI EVERY CHARACTER＂，and MLOCK CONTROL，WWI INPUT＂，and are deaigneted on Drawing $\mathrm{R}-35929$ by $\mathrm{SB}_{8} \mathrm{~S}_{7} \mathrm{~S}_{8}$ and S 5 respoctively．

Roferring now to relay timing diagram $D=37308$ ，an operating cycle is inmodiately initiated by 0.1 milerosecond $\mathrm{mPrintm}_{\text {guise }}$ from WWI which appears at ossentially the same instant that a word read into the output register causes the associated indicator－lamp circuits to drive positive the grids of the correaponaing $2 D 21^{\circ} \mathrm{s}$ in the gas tube register．Both of these effects are indicated on the timing eiagram at 0 me

The＂Print＂pulaes，stretched to approximately 4 microseconds by the blocking oscidator circuit of Vels fires＂Print＂thyratron $V_{0} 2$ and onergizes＂Print＂relay $K \rightarrow]^{2}$ At 6 ms，wom contact Kolo2 transfers the＂Completion Signal＂circuit from
 in Kol via＂bm contact K－2 $]_{\text {，}}$ and convenientiy shorts out and decionizes the ${ }^{n}$ Print＂thyratron at the same time。 As＂an contact Kodo closes，plate voltage now appiled to the rejay register fires only those ges tubes with positive control grids，and energizes the corresponding repister relays，（K－12 for example，which In turn cioses man contacts $K=1205$ and K． 2207 at 20 ms ）．Ciosing of remaining ＂a＂contact．Kalob ensrgizes the reader clutch megnet，and after a $32-m s$ clutch mechanism delay，the reader cam ahaft begins its rotation at 42 ms ．

Closing of the WD－C Common＂contect in the reader at 48 ms energizes the ＂translator＂relays and punch selector magnets through register reley＂a＂contacts on the Reader Readout and Punch Readout buses respectively，and also energizes＂L－C Common ${ }^{m}$ relay $\mathrm{K}-2$ directly．For example，with registar relay $\mathrm{K}-12$ closed，trans－ Lator reiay $\mathrm{K}-102$ is energized through＂a＂contact $\mathrm{X}-12-5$ on the Reader Readout Bus， and punch seiector magnet K－202 is energized through＂an contect K－12－7．The tape punch now performs an automatic 740 ms olectromechanicai cycle of rotating the cam－sbafi，actuating the selected punch mechanisms to punch the cesired holes． de－energizing the ciutch magnet，and advancing the tape for the next cycle．

At 55 ms ．＂bm contact K－2 2 opena and breaks the seadein circuit of＂an contact Kojol3，dewenergizing＂Yrint＂relay K－1。At $57 \mathrm{~ms}_{9}$＂g＂contact K－2－5 cioses to maintain plate voltage on the relay register when＂a＂contact K－ $\mathcal{L} \sim 5$ subsequently opens．

At $60 \mathrm{ma}_{\varepsilon}$ closing of the reader＂A－C Common＂contact energizes the desired printer solenoid through＂a＂and＂b＂contacts on the translator rejay benk，and the printer then types the corresponding character．

At 66 ms ，as mentioned above，＂a＂contact＇K_{0} I－5 opens，（relay register plate voltage is atill maintained by＂a＂contact K $2=10$ ），and＂a＂contact Kolo6 dee energizes the reader ciutch megnet．Closing of＂C＂contect K－1－2 at 68 ms issues no＂Completion＂signal at this premature time because＂b＂．contact K－2－8 is atilj open．Likewise，closing of the reader Feedout contact at 95 ms and its opening at 218 ma has no effect，since this contact is not used for the＂Words Only＂mode。

At 105 ms ，opening of the＂A－C Common＂contact dewenergizes the printer solenoid， and at 106 ms ，opening of the＂DCC Common＂contact docenergizes the transiator ralays （ $\mathrm{K}-202$ ），the punch selector magnets $(\mathrm{K}=202)$ ，and＂D C Common＂relay K－2．

At 237 ms ，opening of＂a＂contact $K-2-5$ now removes plate voltage from thel relay register（deeenergizing $K-12$ ），closing of＂b＂contact $K=2-6$ sets up the＂Compietion＂ aignal circuit whereupon closing of＂b＂contact $K-12-2$ in the relay register at 147
ms places +90 volts on the "Complation" algnal line to terminal 12 and impresses a positive 120 ovoit puise on the control grid of a 2 D2i puise generator (ref. Lrawing Re33486) whose output is a 0 , 1-mierosecond "Comfietion" puise. This fuise signals WWI to clear the storage register, read into it the next word, and send a 0.2 miorosecond "Print" puise to the Tape Output Equipment to start the next cycie.

III. Relay Counter Fresetting Feature for "Word-Compiement" Mode of Operation

Operation of individual tape units is identical to that of the "Words Oniy" mode, but in addition a scadeof-two reiay counter is needed to permit the printer to type a character corresponding to the particuiar 6 -digit "Word" in the gas tube relay register during punching of the word in paper tape, and then to keep the printer inc operative during the next cycie while the complement is being punched.

In empioying a relay counter, it is possibie to have the counter in the wrong position at the start of a train of data beceuse of some previous usage, an unexpected awitching transient, or some manifuiation of tape equipment, so that it is necessary to arrange for some method of presetting this counter immediateiy before recording "Word-Complement" data. Accordingly, at least one six ${ }^{\text {" }}$ zero" "Blenk" signal (meaningless to the printer) must be provided by WII as the "Blank Presetn signal. Since more than one "Biank" signei may be needed for other WWI functions, the reiay counter has bsen arranged so that it remains in the position preset by the first "Blank" aignai regardless of the number of similar "Blank" signails foilowing.

Since operation of the tape units is essentiolly the same in ajl modes, a descrip tion of timing relations in the reiay counter wili be considered sufficient for the "Ford=Complement" mode. For this mode, switch 56 is set to "Words and Compiementa"。

Referring now to the "Blank" Signel Preset timing diagram (drawing De37301) a all four counter relays ($K=4$ through $K o{ }^{7}$) and "Blank Preset" relay Ko8 are initialis uneaergized. As before, the preset cycie is initiated by a WWI "Print" signal which fires "Print" thyratron $V-2$, and energizes "Print" relay $K=1$ at $t=0$ ms. Cloaing in of KoI energizes "D-C Common" relay K-2 eno reacier ciutch magnet Ko107, and deo ionizes "Print" thyratron V-2. Again curing the reader mechanical cycle, "D-C Common" contact SoiO2 closes at 42 ms and energizes "D-C Common" relay K-2, which deenergizes ${ }^{n} P_{\text {rint" }}$ rejay $\mathrm{K}-2$ and the reader ciutch magnet. Note that in this mode, there is no meaningfui data yet present in the relay register beceuse an ajiazero "Blank Preset" stored in the WWI output register has kept ail seven control grids of the gas tube register (V-3 through V-9) biased to -35 voits, and therefore appiscation of piate voitage to the gas tube register at 50 ms fails to energize any of the register rejays (Koll through K-16). Hence no aignal gets through translator reiays and selectior magnets to actuate the tape funch or printer.

Leparture from a reguiar mode of operation now occurs at 88 ms when ciosing of reacier "Feedout" contect Soj01 energizes "Switan" yelsy Ko4 of the relay counter through switch $56-2$ which wes set in the WordoCompiement" positicn. At 92 ms , "a" contact $K=4=3$ cioses and energizes "Count" rejay K-5 through "b" contact $K=602$, and the relay then seals in through "a" contact K 509 .

Reopening of "Peedout" contact SolOL at 110 ms deeenergizes "Switch" reiay Koh, opening "a" contact $K=403$. This now has no effect on "Count" rejay K-5 since it is sealed in through its own contact. However, closing of "b" contact K-4-1 energizes "Interlock Pulse" reiay K $=7$ through "a" contact K $05-3$ and the preset cycie is complated with the closing of "b" contact $K \propto 2=8$ and issuance of a "Completion" signal。 The equipment is now ready to runch and print the nex' meaningfui character from Wil which
will be word, punch the foilowing complement oniy, and then repeat the cycie as long as WWI contimas to furnish words and compioments. Relay action for this operation will be briefly discussed uncer Section V, page of .

IV. Effect of Multiple MBlank Proset" Signais on Reday Countor Setting

Consider now that a second "Blank Preset" signei is furnished by wwI instead of a "Nord", as shown on timing diagram Do37301. Relsys Koi, Ko2, and the reader perform the same functions as before, with the exception that "a" contect K -5.6 is now closed at 185 ms and $i 15$ voits acc is appiled to mBlank or Preset ${ }^{n}$ rejsy K-8: As the reader cycie continues, "Feedout" cam contact SolOl closes at 220 ms and energizea "Switch" resay K-4 as before, except that "b contact K-L-d opening at 222 ms now deoenergizes "Interiock Pulse" reiay K-\%.

At this point it is important to note that the purpose of "Interiock Pulse" relay Ko7 is to deprive "Count Interlock" reday K-6 of any voitage before "Blank or Preset" relay Ko8 cen drop out. This is just about accomplished, but bearese of the fast dropoout time of $K-8$, an occasional lams puise cioes tickie "Count Interiock" relay K-6 at 231 ma. At no time has this critical timing point given rise to operational errors either in extensive tests reouired for this report or during normal operation with WWI, aince marginal variation of voltages oniy contributes to a faster dropocut of "Interiock Pulse" reiay K-7 and complete disappearance of this very short puise. The puise would have to be of at least 5 ms duration before a dropoot of "Count" relay K-5 and the resuitant tripping of the selay counter to the opposite state would be effected.

To contimue with the remainder of this second "Blank" signal cycie, opening of reader "Feedout" cam contact S-101 at 242 ms deenergizes "Switch" relay Kola, closing "b" contact K " 401 at 248 ms and restoring ail relays of the counter to their original preset positions as established by the first "Blank or Preset" signal. Reclosing of "b" contact $K-2=8$ at 264 ms ("D $\circ C$ Common" rejay $K \circ 2$ heving been previousiy deaenergized at 232 ms by orening of the reader "D C Common" contact) then initiates the "Compie: tion" signed to WWI, aignifying that the Tape Output Equipment has compieted a cycie and is awaiting another "Blank" signal or a "Word".

V. WWord-Compiement ${ }^{\text {n }}$ Hode of Operation

Referring now to timing diagram Do37303, which is a continuation of L-37301 in regards to the ejapsed time scele, relay and tape unit timing in this mode is identiceil to that of the "Words Oniy" mode described in Section II, page 4 , as far as 492 ms , except that now the relay counter is now part of the eysten by reason of the switch settings on the Remote Controi unit. Tape punch and printer cycies are initiated in the normai manner at 446 and 457 ma.

At 492 ms , closing of "Feodout" cam contact S-101 now is permitted to energise "Count Interiock" reiay K-6 via "a" contact Ko7-9 and mb" contact K $-8-7$, the iattor being, ciosed because "Blank" signals needed to energize "Biank or Preset" rejay K=8 are now absent.

As a resuit, "b" contact Ko6s2 opens at 497 ms, unseals and de-energizes "Count" relay K-5. Meanwhile "Count Interjock" relay Ko6 seals in at 499 ms through "a" con. tact स 6-10 to keep roiay Ko5 isolated from energizing voitage present whije "all cone tact K-4-3 is ciosed. "Interiock Puise" relay Ko7, which had dropped out at 494 ms 。
and＂a＂contact $K-5.3$ which opened at 507 ms （as described in Section II）now prevent ＂b＂contact Koloil from deenergizing＂Interlock Puise＂rolay K－7 at 520 ma ．All relays in the counter are deoenergized，the counter is now in the＂Complement＂position，and the cycie is completed in the uøual menner．

Upon receipt of a＂Completion＂signel，WWI piaces the＂Compiement＂in the ges tube register and issues another＂Print＂aignal at 543 ms ．The resuiting rejay and tape unit operations are again the seme as before，except that＂s＂contect K－5－6 is now open and the printer receives no Li5－voit $A=C$ signai through the Translator Releys （Kol02 for example），hence no character is typed．The tare punch selector magnets are energized at 593 ms in accordance with relay register＂an contacts to punch the ＂Complement＂。

The closing of reader＂Feedout＂cam contact SwiCI at 639 ma energizes＂Switch＂ relay K -4 ，and the closing of＂a＂contact $K-4-3$ at 64,3 ms energizes＂Count＂relay K－6 vis＂b＂contact $K=6-2$ ，and the latter seals in at 650 ms through＂a＂contact K－509。 Reclosing of＂b＂contact Kohol after＂Feedout＂cam contact Sol0 opens energizes ＂Interiock Pulse＂relay Kc\％，the relay counter once again attains the＂Word＂position， the cycle is compieted at 690 ms ，and the system is ready for the next Mord＂。

VI．Tape Unit＂Start－Stop＂Punched Tape Feedout，and Lelay Control Reley Functions

A．＂Start－Stop＂

Pressing of the＂Start＂button（S－109 on the reader or S－301 on the printer）is necessary in readying the tape output ecuipment for operation with WWI after turning on the power．Its effect on the delay control circuits are as follows：pressing of the＂Start＂button first opens a＂b＂contact to disconnect the reeder ciutch magnet and then closes an＂a＂contact which energizes Clutch Control rejay Kol08．A＂b＂ contact on this rejay opens the reader ciutch magnet circuit at a second point，and then an＂a＂contact energizes the pickup coil of Delay Control relay Koj09．A＂c＂ contact of K－109 first compietes the circuit to the＂buak＂coil of this seme relay， then an＂al contact in the ciutch magnet circuit cioses，and finaliy K－j09 seads in through a second＂all contact and a 4000 －ohm resistor RoL06．

At this point（with the＂Start＂button still held down）both Koj08 and Kol 209 are ciosed，and there are stijl two breaks in the reader ciutch magnet circuit：one is the＂b＂contact on K－108 and the other is the＂b＂contact on the＂Start＂switich。 Release of the＂Start＂button first opens the＂a＂contect and de－energizes Clutch Control relay $\mathbb{K}-208$ which in turn cioses the＂b＂contact in the reacier cjutch megnet efrcuit．Finally，closing of the＂Start＂button＂b＂contact completes the circuit to the ciutch magnet．Only then can＂a＂contact K－l－6 of the＂Print＂relay energize the clutch magnet，trip the clutch end atart the cam contact mechanism of the tape reader， hence the necessity of pressing the＂Start＂button after turning on the power．

B．Punchod－Tape Feedout

In the tape punch，punched tape must travel from the perforating mechanism a distance of three or four inches to the point at which it energes from the tear－0．if guide，so that after completing an outfut tape，the＂Feedout＂button on the tape punch is pressed to feed out about six inches of blank tape，after which the tape cenn be torn off．Obviously，of the＂Feedout＂button is not used，three or four inches of data bearing tape will be ieft inside the tape punch when the tape is torn off．

A posaibility now arises where aomeone might press the "Feedoutm button assuming that the computer has inished reading out data, and spoil the tape. To avoid this condition, the "Feedout" button is rendered electricaliy inoperative by means of the WUnlockolock Control; WWI Input" awitch when the latter is in the "OCK CONYROL, WWI INFUT" position. The "Clear" pushbutton on the Remote Control box is likewise rendered inefiective by the same awitch, since it is also possible to spoil the preparetion of an output tape by inadvertently preasing the "Clear" pushbution.

D. Delay Control Rejay Function

The printer must frequently execute tabular movements of the carriage, carriage returns, shifts for capitais or symbols, and other functions which would cause it to fail behind control signals from the tape reader, so that obviously some kind of delay must be provided to make the reader pause while the printer compietes a function. This ia accompished by contacts in the printer which first deoenergize the reader clutch magnet and then energize "Clutch Controi" roiay Kol08 which in turn opens a mb" cono tact in the ciutch magnet circuit. The reader cam shaft rotates to the point at which the ciutch automatically disengeges and stops. The clutch magnet is not able to trip the ciutch untid the printer completes its function

Energizing of "Ciutch Control" reiay K-108 maintains voltage on the pickup coil of "Delay Controin relay K-109 during the delay period when ace is flowing through one of the printer machine function soienoids that actuate the keyboard. This current flow creates voltage drop across the buck coil rectifler SRoj00 and its rectifled output causes "Lelay Control" relay Kol09 to drop out and open the reader clutch magnet circuit. By this time $K-108$ has had time to close and maintain the open circ cuit.

Completion of a machine function closes the delay contacts, deenergizes "Clutch Control" relay Kul08 which then energizes Delay Control relay Kol09. An "a" contact on K-109 then completes the clutch magnet circuit, whereupon the ciutch is tripped and the reader atarts out on the next cycle.

VII. Special Circuit Provisions

In preliminary operationai tests on the breadboard version of the tape output equipment, considerabie difficulty arose from excessive transients put out on both the acc and dac power lines with amplitudes in the order of 100 volts or more and of fre quencies in the megacycle region. RoF filters provided in the printer for the centrio fugaliyocontrolled governor motor were insufficient for WHI standerds so additional filtering consiating of $L=8$ and $C=39$ was provided in the $125=v o l t A=C$ power line at the point of entry into the relay cabinet.

In turning on the power to the tope output equipment, the possibility of orig inating a spurious "Completion" signad is eiliminated by means of an $R=C$ network cano siating of $R-6 \%, R=68$, and $C-26$ connected in the 390 and -30 volt i ines immediatedy after the aingie-stage lic filters. Condenser C -26 limits the rate of rise of voltage on the "Compietion" algnad dine to approximately 2.4×10^{4} voits per second, which is sufficiently dow enough so that the puise generator sees no more than approxdmately 0.8 voit at the instant the 90 voits is turned on, and cen therefore produce no 0.1. microsecond "Completion" signal to interfere with other WFI operations. Note that this RoC network may be rendered ineffective if power to the Tape Output Equipment is turned on and off by means of the lever switch on the rack power control units since it is ontirely possible that the 90 may appear before the -30 , in which case a spurious "Comcletion" aignal would result.

Large ampifude reiay switching transients are ediminated from the pl50 ine by means of a twoostage filter contsining lo4, Lo5, and C-29 through C-31. Any remaining transient effects are less than WWI specifications of 1.5 voits permisaibie maxinum.

VIII. Power Recuirements, Recommended Fuse Ratings, and Circuit Conditions for Marginal Operation

The foliowing tabuiation shows the maximum $a=c$ and $d-c$ current inputs to the Tape Output Equicment during the various indicated modes of operation at rated nominal voitage, the fuse capacities required, and voitages resuiting in marginal operation.

TABLE II

Suppiy \qquad	$\begin{gathered} \text { Terminal } \\ \mathrm{No}_{\text {o }} \\ \hline \end{gathered}$	Max MiLliamps. OneoHole Six-Hole	Recommended 3AG Fuse Sjzez - acratade : -	Minimum Voitage for Marginal Operation
-150	E2-8	0.20 .3	$1 / 2$	(Note 2)
-30	E2-6	0.1 0.1	1/2	-1 (Noto 3)
- 25	E2-4	$25 \quad 15$	1/2	-21 (Note 4)
490	E2-3	0.1001	1/2	8.40
8150	E2-7	21.140	1	-115
115 AC	∞	(2.3 emperes)	3 (Note 2)	95

Note J. Lifttedfuse "SjooBlon Cat。No. 313003, 250 voits or equivalent; all others Cat.No. 322500 (1/2 amp.) or Cat. No. 312001 (1 ampo) or equivalent.

Note 2. Margin expressed in terms of minimum voltage on terminals El-l through Ei-B necessary to fire relay register ges tubes. These voltages range from $\sigma 170$ to 8187 volts.

Note 3. Equipment operates astisfactorily with almost negigibie bias at this point, but disconnecting lead stops operation instantly.
Note 40 Reader shaft stops at 10 wolts; all relay register gas tubes firs at -3 volts.

IX. Summary

The Tape Output System has operated dependabiy over a period of several nonths, except for usuad difficuities oncountered in the tepe units, such as a) stailing and scorching of driving motors in tape punch and reader because of incorrect fusing end insufficient dubrication reaching the shaft bearings, b) bad arcing and burining of reader "DaC Common" cem contact, c) stajifing or jamming of carriage raturn mechanism in printer, or d) printer governoromotor inorerative because of faulty governor contacts.

The possibility of Tape Output System faicure as a resuit of sticking of yelay
c
434.5

Engineering Note $2=402$
Page 12
armatures can be eliminated by careful check of all plug in Type o relays for imco correct residual end heel apiece gap setting a. For the residual screw setting a gap 01.0 .0 .5 mil (measured between the armature and the abutting end of the relay core by means of feeler gauge) is recommended. For the heedopisce gap (measured by feeler gage between the hinged end of the armature and the abutting and of the bal piece of relay "frame" with the armature held closed) a clearance of 1.0 \&. 0.5 nil is also recommended.

Approved by

Jj: 38
ce: " 2. Daccett
S. Dod

Fo Irish
Bo Rich
Co Vat

Drawing attached:
P. 35927

A 36835
237308
D 373 C :
D. 37305

TAPE OUTPUT SYSTEM CABLING BETWEEN READER, PRINTER, PUNCH, AND REMOTE CONTṘOL UNIT.
 voltace on this oncuit tremimal E-1-18 on jones athion -zov. oline present at all otwen twie.
note e. symbol (- - - ofnotes instant at mion funco penfonates papen tafe.
armoolien:

On OR-

Beonicomire
$T T^{-1}$ onerons inarou orn nownoan sucrow

nin

[^0]: DENERRED FRhPMRATION OI
 A ONH-ADDRESS SUBROU'TINE

