

by
W. A. Klein

DIGITAL COMPUTER LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE 39, MASSACHUSETTS
JULY 1954

ACKNOWLEDGEMENTS

 frey and R_{0}. ${ }^{\circ}$ Meyex. S. L. Thompson contributed to the design of the acs D miltiply-adder. The contribution of the author was the reorganization of the material of the study; the filling in of certain details, such as the proof that no carry overlap accurs in the multiply-adders which employ partial carry operations; and the extension of the study, such as the development of the Class II multipliers and the extension of the development of the Class III multipliers by inclusion of a second variable, p.

ABSTRACT

The origin of this study of highmspeed multipliers, the results of which are recorded in this report, is discussed Chapter I. Two measures to be used in comparing arithmetic elements are also given here。 In Chapter II the lopical properties of the circuits envisioned for use in the realization of the multipliers are discussed; and symbols, vailues of time delays and equipe ment weights for the abstracted logical blocks are given. Certain drawing conventions, etc., are also listed. Chapter III gives a general framework within which all the multipliers presented can be discussed and results in a classification of them. This framework is illustrated with reference to the Class I multipliers. The purpose of Chapter IV is to catalogue the realizations of the Class I multipliers and to discuss their special features. Breakdowns of the equipment needed and estimates of the multiplication times are also piven in this chapter. An explanation of the operation of the Class II and Class III multipliers will be fcund in Chapters V and VI. Specific examples of multipliers of these two classes are also discussed here, and their equipment counts and multiplication times are quoted. Furthermore, a definition is chosen for the meaning of "an optimum multinlier", and that multiplier of those studied in Chapter VI which satisfies the definition is specified. A comparison of most of the multipliers presented in the report is made in Chapter VII, and the overall optimum multiplier when defined as in Chapter VI is found. In addition some consideration is given to adapting the miltipliers disuussed to handle negative numbers and to perform addition, subtraction and division.

TABLE OF CONTENTS

Abstract
Chapter I Introduction
Chapter II Logical Blocks and Conventions
Chapter III Classification of the Fultipliers and General Considerations
Chapter IV Realizations of Class I Multipliers
Chapter V The Class II Multipliers
Chapter VI The Class III Multipliers
Chapter VII Comparison of the Multipliers

The purpose of this report is to record and extend the results of a study of high-speed multipliers undertaken as a part of the design of a high speed, high reliability arithmetic element (a device for performing various arithmetic operations upon coded numbers). This problem was approached in the following manner:

All the available designs which appeared to possess the desired characteristics were to be considered in detail, and the "best" of these designs was to be chosen for the final system. (In the interest of restricting the number of the designs to be considered, two general statements can be made immediately: (1) High speed demands that only parallel systems to be considered. (2) If the basic circuits are to be required to distinguish only two states, then conservation of equipment and logical simplicity require that the system handle numbers in binary rather than decimal formo) As an aid to determining which was the "best" among the designs considered, two numerical measures were defined which would predict the speed and the relative reliability of any specific design. These are discussed in the two following sections.

1.1 A MEASURE OF SPEED: THE SINGLE ADDRESS INSTRUCTION TIME

The instructions proposed for the computer which would use this arith metic element can be broken down into three groups according to whether they require one, two or three memory cycles. ${ }^{\text { }}$ For example: (1) "Shift right n digits" (sr n) requires only one access to the memory, namely that to extract the instruction $s n_{3}$ and therefore requires only one memory cycle. (2) The "multiply" instruction requires two memoxy accessess One to extract the instruction and one to extract the number to be operated upon. (3) The left store" instruction requires three memory cycles: one to extract the instruction, a second cycle during which a parity check and a new parity count ${ }^{2}$ are being made, and a third during which the actual store operation takes place.

The instructions within each of these three groups can be classed accord ing to the length of time which the axithmetic element requires to pexform them: for instance, the instructions add, subtract, clear and add, and clear and subtract require approximately the same length of time for execution and hence are placed in the same class. The classes can be numbered consecutively from the first class of the first group to the last class of the third group.
I. A memory cycle must occur whenever a number or an instruction is extracted from or inserted into memory. A memory cycle requires a fixed amount of time.
2. Parity checks and parity counts are means for the computer to check the correct transfer of numbers to and from the memory, See...................................

The definition of the single address instruction time (SAIT), which is to serve as a measure of the speed of an axithmetic element, is then as follows:

$$
\operatorname{SAIT}=\sum_{i=1}^{m} P_{i}\left(M+O_{i}\right)+\sum_{i=n}^{m+n} P_{i}\left(2 M+0_{i}\right)+\sum_{i=m^{2}+n+1}^{m+n+p} P_{i}\left(3 M+0_{i}\right)
$$

where m is the number of classes in the group of instructions which require one mamory access.
n is the number of classes in the group of instructions which require two memory accesses.

0 is the number of classes in the group of instructions which require three memory accesses.
M is the memory cycle time. This is the minimum time which can elapse between the initiation of the extraction of successive words from the menory.
P_{i} is the fraction of the instructions in a typical program which fall in the class i. This fraction cannot be found by simply determining the frequency of occurrence of the instructions in the written program, but must take account of the possible repetition of certain sections of the program either as subprograms or as conditional subprograms.
0_{i} is the instruction overshoot time. It is the extra time, if any, required for the execution of any instruction of the class in question beyond the
end of the time required for the memory cycle or cycles.
1.2 A PEASURE OF RELIABIIITY: THE FEIGHTED EQJIPMENT COUNT

Computers are not 100% reliable because of sudden failures or gradual deterioration of their physical components. Therefore, a measure of reliability must relate to the physical components of the system.

The effects on the reliability of an axithmetic element due to gradual deterioration of the physical components can be greatily reduced with the aid of marginal checkingo ${ }^{3}$ Moreover, conservative use of the physical components tends to prevent their over rapid deterioration and further stops this effect from adversely affecting the reliablility.

The occurrence of sudden failures cannot be avoided, but their frequency can be decreased by careful choice of components and by minimizing the number of components most subject to failure (tubes, diodes) which are neceasary to construct the systern. Thus if it can be assumed that the systems whose reliabilities are to be compared are constructed with carefully chosen and conservatively used components, then an approximate relative measure of reliability can be obtained by taking an equipment count. In order to make such an equipment count, the various circuits used in the realization must be assigned weights, and then the count is simply the sum of the weights of all the circuits in the system.

[^0]The problem of weight assignment is one which requires careful exercise of engineering judgement. The weights assigned to the various circuits used to realize the multipliers. discussed in this report are given in Table II-I. 1. 3 THB DECISION TO CONCENTRATE ON A STUDY OF IJLITPLIERS

The SAIT for the first few of the arithmetic elements proposed was calculated using a memory cycle time to be expected from a magnetic core memory. It was found that the instruction overshoot time $\left(\mathrm{O}_{1}\right)$ was approximately zero for all except the classes containing the multiply and divide instructions (these classes consisted of single instructions). Therefore, the SAIT could be decreased only by the discovery of systems which lowered the overshoot time of the multiply and divide instructions while maintaining zero 0_{i} for the other instruction classes. Since P_{i} for the divide instrution is an order of magnitude smaller than P_{i} for the multiply instruction (0.01 as against 0.1 in the programs to be used with this computer), it was more important to minimize the overshoot time of the multiply instructions, even thowgh that of the divide instruction might thereby remain constant or even slightly increase.

The design of an arithmetic element thus resolved itself into a study of highospeed multipliers. The remainder of this report will deal with the results of this study, although mention will be made in Chapter VII of methods for cono verting the multipliers discussed into arithmetic elements.

The study began with the investigation of previously suggested and successfully operating high-speed multipliers. It then expanded to consider ideas for other multipliers. Since the time allowed for the study was limited, only multipliers which upon a cursory examination showed fair promise of being high speed and economical of equipment were investigated thoroughly. Thus the discussion to follow may suggest to the reader several schemes for the mechanization of multiplication which he will not find included here.

2.1 The logical blocks

The multiplier systems presented in this report were designed starting from certain basic blocks. If these basic blocks could actually be combined in any numbers and in any manner then systems design would be simplified. This is so because it would eliminate the problem of deciding how many, if any, "non-logical" blocks (such as isolating and amplifying circuits) should be used. Furthermore, the circuit delays could then be considered as proparties of the circuits themselves. We shall invoke this simplification by formally neglecting the loading effect of one circuit on another as well as the effect of cascading circuits of less than unity gain. However, we shall try not to suggest designs which demand the impossible or require an exessive number of "nonlogical" circuits to make good on this assumption.

The logical forms of the multipliers presented in this report are of course a result of the logical blocks available for their construction. These logical blocks are abstractions of forms of commonly known circuits, such as the 2lipeflop and the vacuum tube gate, which have been specially
developed by the laboratory for high speed and reliability. In the abstraction of the logical blocks from these circuits only the following properties are retained. First, the number and type of inputs and outputs: second, the logical relation of outputs to inputss and third, certain time delays. These properties, which are of importance to logical design, will be discussed below. Weights were also assigned to the various basic circuits in order to permit the equipment count mentioned in Chapter I. Some amplifim cation of the three properties which affect logical design is requireds There are two types of inputs and outpits or lines, namely level and pulse. The distinction is necessary because of the electrical characteristics of the lines ${ }^{2}$; and these characteristics require that only lines of the same type be interconnected, thus restricting the possible combin ations of the logical blocks. The circuitry feeding these lines from

1. The basic circuits whose use is envisioned in the realization of the multipliers presented here will be presented in the Circuit Applications Section of the proposed Military Reference Data Book. 2. The distinction is also necessary for logical reasons since the inform mation carried by level lines is in the form of the state of the whole line (voltage high or low), a state which can be determined at any point along the line and can be retained only by the use of some holding device.
within the blocks has been designed to possess these characteristics as a result of the conception of the multipliers as systems clocked by pulses of shor't duration ($0.1 \mu \mathrm{sec}$) and of very frequent occurrence. It happens that usually this requirement on the ability of the driver of an electrical line to handle frequent, short pulses is not compatible in circuit design with the requirement that a circust be able to maintain an output at a constant level. Therefore, it is best to design different circuits for the different tasks, and with this decision a need for distinction of line types arises.

The notation to be used for pulse and level. lines and their interconnections are shown in Figure II $-I(a)$ and (b). The interconnections indicated by (b) are simple electrical connections; the arrows are simply to indicate the type of line and the normal or logical direction of information flow. They do not imply the presence of crystal diodes. The logical arrangement of the blocks whose outputs are thus comnected that the flow of information opposite to the arrow will cause no exror in the system.

Specification of the logical relationship between inputs and outputs requires that a code to interpret the values of some electrical property
of the lines as a yes-no decision be specified. The electrical property chosen here is voltage; the logical entities used are the binary digits 0 and 1. The code is:

Level lines)relatively low voltage : 0
)relatively high voltage : 1
)absence of a positi ve voltage pulse
pulse lines)over a specific time interval : 0

The time delays retained are: (I) those which occur between establishment of a parificular condition on an input line and the resultant change in the outputs, and (2) those which must exist between input pulses to certain circuists in order that the proper effect upon the outputs is achieved. Any time delay of the first kind depends upon the number and kind of circuits which are comnected to the output in question. However, it will be assumed, as was mentioned above, that the interconnections of the circuits are achieved thru the use of isolating circuits so that these time delays can be assigned constant values.

The Iiteral symbols, logical block symbols, associated delays (defined below), and equipment weights for the various basic circuits are included. in Table IIri. The label on the block diagram is the key to the
logical relationship between the inputs and the outputs, which are given further labels when necessary. These logical relationships can be expressed in terms of voltapes (interpreted logically as in the above code) as follows: (1) The flip-flop block may be considered to have two sidess the "In side and the "O" side according to the labelled outputs. A pulse input to the M1" side ('set" input) raises the "I" side output and lowers that of the "O" side output. A pulse input to the "O" side ('clear' input) has the opposite effect. A pulse input on the center line ('complement' input) ree verses the states of the outputs. A flip-flop will be said to have the 'contents' 0 or 1 accordingly as the 0 or 1 output level is "high". The pulse input to the gate tube circuit will appear as an output pulse only if the level input is "high"。 (3) The output level from the diode "and" circuit will be "high" only if all input levels are "high". The output level from the diode "or" circuit is "low" only if all input levels are "low". (5) A pulse will appear on the output line from the diode pulse mixer circuit whenever a pulse appears on an input line. (6) The output level from an inverter circuit is "high" if the input is "Low" and vice-versa. (7) The delay line unit simply delays the input pulse。

The time delays for these circuits are defined as follows:
Two time delays are associated with the flip-flop circuit. The transition time, t, is defined as the time from the occurrence of the peak value of an input pulse till the slowest changing output level reaches a value which differs from its final value by 10% of the total change occurring. (When this value is reached, the level is established.) The flip-flop resolution time, $P_{\rho^{9}}$ is defined as the time which must be allowed between the occurrence of any two input pulses in order that the second pulse shall have its proper effect upon the outputs. (2) The delay of a gate tube circult, γ, is the time which elapses between the input pulse and the output pulse (when the input level is "high!). The input pulses must be separated by a resolution time $P g^{\circ}$ (3) The delay of the diode "and circuit, α_{2} is the time between the establishment of the input level and the establishment of the output level, when this level is changing. The time α is assumed to independent of the number of inputs. (4) The delay of the diode "or" circuit, ω, is defined exactly as was α_{0} (5) The delay of the pulse mixer circiit, μ, is that experienced by a pulse in passing thru the circuiti and is assumed independent of the number of inputs. A resolution time P_{m} is required between input pulses. (6) The delay of

The inverter circuit, i, is the time between the establishment of the input level and the establishment of the output level. (7) The delay of a delay line unit will be symbolized by δ 。 The unit possesses a resolution time ρ_{d}.

The values given for the delays of the "and" and "or" circuits in Table II-l are based on the assumption that the "and" circuit is designed so that a diode never assumes its high resistance value (reverses) when an input level is rising and that the "or" circuit is used so that a diode never reverses when an input level is falling. Thus the voltage waveforms at the outputs of these circuits follow the waveforms at the inputs (when logically they are supposed to) except for an inevitable, very small delay. The values of α and ω are also considered to include the delay which will be introduced when it is necessary to include cathode follower and buffer amnlifier circuits. The values assigned to these delays in Table II-l are debatable, but at the present time they appear reasonable. The value chosen for the delay of the pulse mixer is also question able, but some vairue must be assigned. The value given for γ is a conservative estimate. Since the estimates for the delays of these four circuits are so small, they will not be considered in estimating moltiplicas

Table II-I
Logical Blocks

CIRCUIT	LITERAL SYMBOL,	BLOCK SYMBOL	ASSOCIATED DELAYS (usec)	Equipment WEIGHT
flip-filop	PF		$\begin{array}{r} \tau=0.5 \\ P_{f}=0.2 \end{array}$	40
gate tube	GT	$-\frac{G 2}{Q} \rightarrow$	$\begin{aligned} \gamma & =0.04 \\ P_{g} & =0.5 \end{aligned}$	10
input diode "and" gate	${ }^{6} k$		$\alpha=0.02$	2k
input dilode "or" gate	${ }_{\text {or }}{ }_{k}$		$\omega=0.02$	2k
input diode pulse mixer	M_{k}		$\begin{aligned} \mu & =0.01 \\ P_{m} & =0.5 \end{aligned}$	k
inverter	I	\square	$C^{\prime}=0.1$	10
delay line unit	D	$\rightarrow D \rightarrow$	$\begin{array}{\|c\|} \delta=\text { delay } \\ P_{f}=\delta \text { or } 0.5 \\ \text { usec whichever is } \end{array}$	20
three input adder	$\frac{+3, s^{1}}{+3}$	$\begin{aligned} & \rightarrow+3 \rightarrow s^{1} \\ & \rightarrow c^{1} \\ & \rightarrow c_{1} \end{aligned}$	-	$\begin{aligned} & 58 \\ & \hline 48 \end{aligned}$
two input a.dder	$\frac{+2, s^{1}}{+2}$	$\begin{array}{r} +\sqrt{-1} \neq \mathrm{s}_{1} \\ -1+\mathrm{c}_{1} \end{array}$	-	32 22
Not present for	and +2 。			

tion times of nultipliers except when they occur in appreciable aggregates.

In addition to the basic circuits discussed above, three logical units composed of several of these circuits occur frequently enough to be assigned block symbols. These are two adder circuits and a step counter circuit. The first adder circuit is capable of summing three binary digits, presented to it coded as voltage levels. It is shown in Figure II-2. The "s" output is the coded right-hand digit of the binary sum, while the "c" output is the coded left-hand digit of the binary sum. The "s I_{11} and n^{I} outyuts are the inversions of the "s" and "c" outputs. The inputs are interchangeable, as would be expected, and hence require no labels. this circuit is known as the three input adder: the literal and block symbols for it and its equipment count are given in Table II-I. Three delays associated with this circuit are of importance. They are the delays from the establishment of an input level. to the establishment of: (1) the "c" output level, (2) the " $c^{l_{n}}$ output level and (3) the $"^{1}{ }^{1_{n}}$ output level. These delays can readily be expressed in terms of those already given for the basic circuits and are assigned no separte symbols.

The second of these composite circuits is a two input adder and is merely a simplification of the three input adder. It is shown in Figure

II-3; its literal symbol, bolek symbol and equipment weight are given in Table II-1.

The step counter circuit and its logical block symbol are shown in Figure II-L. A sten counter consisting of m flip-flops will provide an end-carry pulse on the kth addmone pulse, where k is any integer which satisfies $1 \leqslant k \leqslant 2^{m}$ and depends on the setting of the preset toggle switches. The equipment count cannot be fixed in general, but one of the two delays associated with the circuit is independent of the number of flipoflops. This is the time which must be allowed between the occurrence of the preset pulse and the first add-one pulse or between any two addone pulses. It mar be thought of as the step counter resolution time and clearly must be equal to the flip-flop transition time, τ. The delay between the occurrence of the $k^{\text {th }}$ addoone pulse and the resultant endcarry outrut pulse is $m \gamma$.

2.2 Conventions

Some conventions which have to do with the drawing of block diagrams are shown in Figure II-1. Pulse and level lines and their interconnections, show in parts (a) and (b) of this ficrure, heve already been discussed. The adoption of the convention of Figure II-1 (c) reduces the number of
lines and arrow-heads on many block diagrams and thereby gives them a neater appearance.

The letter "n" will be used thntuout the report for the maximum number of digits ("digit length") of the binary numbers to be multiplied. These numbers will always be considered to be of length n, zeros being inserted at the left end of the number when necessary. The digits will be numbered from 1 to n from left to right (most significant to least significantb). The binary numbers will be stored in flip-flop registers (a string of flip-flops) in this same order: that is, the leftmost flipflops in the registers as show in the block diagrams will contain the most significant digits. The flip-flops of all the registers will also be numbered from lefit to right.

LEVEL LINE

(a)

PULSE LINE

INTERCONNECTIONS
(b)

SENSED BY
THE SAME PULSE

FIG. II-1

FIG. II-2
THE THREE INPUT ADDER

FIG. II-3
THE TWO INPUT ADDER

FIG. II- 4
THE STEP COUNTER AND ITS BLOCK SYMBOL

Classification of the Multipliers and General Considerations

3.1 Introduction to the classes of multipliers

The concept of binary notation for real numbers and the rules for per. forming the various arithmetic operations upon binary numbers have been discussed in other reports of this laboratory. Therefore, understanding of the operation of binary multiplication will be assumed.

The arrangements of digits for long-hand binary multiplication of n digit numbers is shown in the example of Fig. III-I for $n=5$. No digits need be carried when forming the partial products shown in this figure as in decimal multiplication, and hence the digits of these numbers can be completely specified as shown, ie., as products of two binary digits. The main divisions in the classification of the multipliers discussed in this report are based on the manner in which the digits of the partial products shown in this figure are grouped during an iterative summation process. These main classes of the multipliers are three in number. The multipliers of the first class utilize an obvious grouping of the digits of the partial products. The grouping used by the Class II multipliers is slightly more involved, while that of the Class III multipliers is the most complex. ${ }^{2}$

1. See Digital Computer Laboratory Report R-127, p.21, article Lo; or Report R-90.
2. Other groupings have been considered, but have not as yet led to any other worthwhile classes of multipliers.

3.2 The anatomy of the multipliers

In general, the problem of realizing any multiplier is three-fold:
First, an arrangenent of logical blocks must be made which will supply digit groups, one by one, to a multiply-adder. Second, this multiplywadder must be designed to sum properly ${ }^{3}$ the digits of the digit group supplied to it at a particular instant with the sum of the foregoing groups. Third, a circuit to control the operation of the entire system must be designed. The equipment for forming the digit groups, the multiply-adder, and the flip-flop registers which must be provided to store the multipliex, the multiplieand, the product and other mumbersmin short, that part of the multiplier which handles the numexical quantitiesowwill be known as the arithmetic section. The remainder of the multiplier will be called the control section.

The discussion in the following two sections will be illustrated by remarks which apply to a specific case. An introduction to this spacific case follows. An obvious way to group the digits of the parti.al products is simply to take the groups to be the partial products themselves. A simple order for summing these numbers is to sum the first partial product with the
3. By "sum properly" is meant addition with the two numbers shifted appropriately as in the description of the preceding paxagraph. The inclusion of the ability to shift is all that distinguishes a multiply-adder from an adder.
second partial product shifted one digit to the left (see Fige IIIel), then the result with the third partial product shifted two digits to the left, etc. The Class I multipliers proceed in the manner just described.
3.22 The arithmetic section

The problem of the design of the arithmetic section may be divided
into two design problems, as was indicated above. The multiply-adder will be considered first.
3.2.1.1 The multiply-adder

The general multiplyoadder must be provided with inputs which indicate the values of the digits of a particular one of the digit groups, and with other inputs which indicate the contents of the register (hereafter known as the accumulator register) used to store the sum of the preceding digit groupsesee Fig. III-2. It must also be provided with command pulse inputs which cause the multiplyadder to perform whatever operations are necessary in order to add the ith digit group to the contents of the accumulator register, and to store the result shifted appropriately. Some sort of shift is necessary with every multiplier discussed. (The appropriate shift in the case of the Class I multipliers is one digit to the right. This achieves the shifts described in the last paragraph of section 3.2 , since a one digit shift right of the result
of each summation is equivalent to a one digit shift left of all the digit groups which remain to be added in。) Such a set of operations will be said to corresnond to a step in the nultiplication procedure. Thus the number of steps required to complete the multiplication will also be the number of digit groups which must added together to form the product.

The operation or operations which any multiply-adder of those discussed in this report must perform to accomplish the addition mentioned in the preceding paragraph arise from two different logical procedures for binary summation. These are discussed in the following two sections.
3.2.1.1.1 The first method of binary summation

A possible breakdown of the operation of binary addition of two n-digit numbers is illustrated by an example in Figure III-3(a). The rule of binary addition which determines the partial sum (or sum) and the carry-row digits can be expressed as a table:

Table III-1

4. The contents of this table are symbolized by two operations of Boolean algebra. Thus the carry row digit corresponding to two digits A and B is symbolized by $A \cdot B$, while the partial sum digit is symbolized by $A \in B$. For example if $A=1, B=1$ then referring to the above Table $A \cdot B=1$ and $A \oplus B=0$. Boolean algebra is discussed, among other places, in The Design of Switching Circuits, S . H. Caldwell, Chapter III, to be published.

The operation of forming the first partial sum and the first carry row from the addend and the augend-mese names are implicitly defined in Figure II-3(a)mis called a partialoadd operation (symbolized by "a") while the subsequent, otherwise identical, operations are called partialmcarries (symbolized by "c") If n is the digit length of the original pair of num bers, then no more than n partial-carry operations need be performed before the partial sum becomes the sum.

If this method were used for every adition which must be performed during a multiplication, a great deal of time would be consuned in performing the partial carries. There axe at least two ways to remedy this difficulty. First, a realization can be achieved which will perform all the partialo carries in one operation. This operation is ordinarily known as a high-speed carry (symbolized by "c"). It is displayed in the following table and in. Iustrated by an e xample in Fig. III-4。

Table III-2

The High-Speed Carry Operation

1 st Carry Row $j \frac{\text { th }}{}$ diegit	1E Partial Sum $j \frac{\text { th }}{}$ digit	High-Speed Carry to j th digit	Sum $j \text { th digit }$	High-Speed Carry to $j-1 \text { 先 } \text { digit }$
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$
$\begin{aligned} & 1 \\ & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & 0 \\ & I \\ & I \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	$\frac{1}{1}$

It should be noted that when a highospeed carry operation is performed, information in the form of a binary digit (called the high-speed carry digit) is provided to the $j-1$ 으 digit column from the $j \frac{\text { th }}{\text { digit column; and that }}$ the highespeed carry digit put out depends upon the one received from the $j+1$ 䦗 column. Thus the operation must take place in a sequence from right to left. The propagation of this digit, whether it is coded as a pulse or a level, requires time and will affect the speed of any multiplier which uses this operation.

Second, the multiplication operation can be successfully realized even if only one partial carry operation is performed for the sumnation at the 1 th step. A series of partial carries or a highospeed carry must be performed at the
final step of such a procedure in order to obtain the product.
3.2.1.1.2 The second method of binary summation

Another possible approach to the problem of summation is to introduce an operation which will be called a predictor carry (symbolized by " $\overline{\mathrm{c}}$ ") 。 This operation acts upon the original addend and augend to produce a number which can be considered to be an altered addend. The operation essentially predicts where carries will occur and alters the addend so that the complete sum can be obtained by means of a partial add operation upon the augend and altered addend (the carry row produced by this operation is ignored). It is displayed in the following table, and a mumerical example is given in Fig. III-3(b).

Table III-3

Tl:e Predictor Carry Operation

Augend $j \stackrel{t h}{-d i g i t}$	Addend $j^{\text {th }}$ digit	Preldictor Carry to j th digit	Altered Addend $j^{\text {th }}$ digit	$\begin{aligned} & \text { Predictor Carry } \\ & \text { to } \\ & j-2 \text { st digit } \end{aligned}$
0	0	0	$\cdots 0$	0
0	0	1	1	0
0	1	0	1	0
0	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	1
1	0	1	1	1
1	1	0	1	1
1	1	1	0	1

Like the high-speed carry operation, the predictor carry operation must take place in a sequence from right to left. The propagation time for the digits will affect the speed of any multiplier which uses this operation.

The discussion of methods of binary addition has shown that the operations of addition initiated by the command inputs to the multiplyadder can be those of any one of three groups: $(a, c)(a, c)$ or ($\bar{c}, a)$. In the multiplication procedure, each of these groups must be followed by a shift operation (symbolized by "s") so that a set of operations making up a step can be either (a, c, s) ; (a, c, s) or ($\bar{c}, a, s)$.

A saving in the number of operations required for a step can be obtained by building a multiplyadder which combines two or more of the operations of the above sets to obtain such operations as "cs" (partial carry and shift combined), or "ac" (partial add and highospeed carry combined). In the case of the Class I multipliers, it will be noted that an entire digit group will be all zero's if the corresponding digit of B is zero (see Fig. III-1). Thus only the shift operation need be periormed at the step which adds in this digit group.

If the addition and shift are combined into just one operation, one might expect the speed of multiplication to be increased since each separate operation in a step requires that the control section supply a command pulse to the multiplyaadder. However, this is not necessarily so because of the time delays of the equipment which must be added; furthermore, speed is not the only characteristic being sought: the reliability is also of utnost importance. Therefore, multipliers using more than one operation per step are included in the study.

The multiply-adder for a Class I multiplier can be designed by first designing an elemental unit used for extension of the mitiply-adder to handle numbers of any digit length. This unit will be called a stage. The multiplyadder is built up of a string of these stages terminated at each end by special forms of themselves. A stage may handle digits from any number of digit columns, but usually it involves those of only one digit column. The steps in the design of the stages of the multiplywadders presented in this report are not given; only the final design is shown.

The multiply-adders for the Class II and Class III multipliers were developed from those designed for the Class I multipliers (see Chapters V and VI).

3.2.1.2 Formation of the digit groups

In the case of the first class of multipliers the problem of designing a system of logical blocks for forming the digit groups, i.e., the partial products, is comparatively simple. This is so since the k th partial product is either zero or A (see Fig. IIL-I) depending on whether $B_{i}=0$ or 1 (where $i \hat{=} n-k+1$), a fact which was pointed out in the preceding section. Thus the correct partial product will be added in if an add and shift group of comnand inputs to the multiply-adder are pulsed when $B_{i}=I_{9}$ otherwise, only the shift-input is pulsed. 5

The arrangement used to provide these pulses for all but two of the seventeen Class I multipliers studied is to store B in a shifting register (see Fig. IV-I), hereafter known as the B register, and to provide the nth flipoflop in this registex with "In and "O" gate tubes which are sensed by a pulse at each step. The outputs of these gate tubes are fed to the control of the multiplier which then sends them to the proper command inputs of the muitiply-adder. Of course the B register must be shifted after each step in order that the $(n-k+1) \frac{\text { st }}{}=i \frac{\text { th }}{}$ digit of B will be in the nth f inp-flop for the k th step. The shift gates of the B register and the two gates on the $n^{\text {th }}$ flip-flop of this register may be considered to be the system of

[^1]logical blocks necessary to form the k th digit group for this sub-class of the Class I multiplíers.

The two class I maltipliers which do not fall into the above sub-class utilize a similar but somewhat more complicated method for forming the $k \frac{\text { th }}{}$ partial product. They are similar to the multipliers of the first-discussed sub-class in that they require shift gates on the B register, but more complicated in that they use diode "and" circuits to aid in the formation. These multipliers are discussed in sections 4.4 and 4.14.

The equipment for forming the digit groups for the Class II and Class III rultipliers is more complex, and discussion of it is postponed to Chapters V and VI.
3.2.2 The control section

Any of the multipliers to be discussed is visualized as just a part of a. larger system, e.g., a computer. When the system requires that a multiplication be formed, it will supply the control section of the multiplier with a multiply-command pulse. When the multiplication is complete-i.e., when the output levels from the accunulator flip-flops have stabilized after the last command pulse-the control section must supply a multiplicationcomplete pulse to the system. Between the occurrence of these pulses, the control will perform its function of distributing the proper number and kinds of
command pulses to the arithmetic section. In order to control the number of commands which it supplies, the control section mast contain a step counter. As to the kinds of cormands to be suphlied, the sequence of these required by the arithmetic section is fixed except for the Class I multipliers. Here the control section requires information from the $n=$ th B register flipmflop in determining what sequence of operations is to be performed at a specific step. This situation is the direct result of the method chosen for forming the digit groups of the Class I multipliexs.

The control section must be designed carefully in order that it will add as little time to the operation of the muitiplier as possible and still not depend upon extremely precise time for its correct operation or require more equipment than is absolutely necessary.

The control sections used in the realizations to be presented are basically of two types, namely those which use a clock pulse generator to supply the command pulses (hereafter called the K type) and those which use a cire culating pulse to supinly them (hereafter called the C type). Multipliers which use control sections of the firstmentioned type must be synclironous, which here means a "fixed rate," that is, the command pulses are supplied at the
fixed rate of the clock pulses. Multipliers which use the circulating pulse type of control may operate synchronously or asynchronously.
3.2.3 Combinations of arithmetic and control section types

The axithmetic sections tobe introduced in later chapters may be typed according to the type of multiply-adder which they use. These multiplyadders utilize two ways of intiation the " a_{2} " "ac, " "s", etce, operationss (1) An initiating pulse is sent to every stage simultaneously, or (2) an initiating pulse is sent to the rightmost stage of the multiplymadder and propagates through the multiplymadder stage by stage. All the operations of each of the multiplymadders are initiated in oither one or the other of the above manners. Thus the multiply-adders and also the arithmetic sections fall into two types: Those whose operations are initiated in the first manner will be called the block type (B type), and the others the domino type (D type) from an anlogy with the knocking over of a row of dominos (the stage becomes a. domino in this analogy).

Either type of axithmetic section may be used with either type of control. A C type control used with A. B type arithmetic section uses delay units to establish the intervals between the commands, while a C type control
used with a. D type arithmetic section may use either delay units or the delay of cormand through the multiplymadder (with delay unjts added if necessary) to establish these intervals. A G type control is usually faster than a K type control when both are used with the same axithmetic section since the time intervals between its command pulses are not restricted by a. clock pulse period. For D type axithmetic sections, a C type control which uses delay units is usually faster than one which utilizes the delay through the miltiply-adder since time intervals between commands are less restricted in the first case than in the second.

It may, from the standpoint of speed of operation, be more desirable to use one rather than the other type of control with any specific axithmetic section. Further discussion of the choice of the control section for use with a. specific arithmetic section must be postponed to section 3.4.

3.3 The miltiplication time

The memory overlap time is measured from the instant the output levels of the A register have stabilized after reading the multiplicand into it from the memory (by means of the readmin pulse). Therefore, the time required for a multiplication should also be measured from this instant.

The multiplication time can be divided into three parts: (1) The time which elapses between the stabilization of the A register outputs and the occurrence of the first command pulse of the first step. This is the initial time. (2) The time required from the first command pulse of the first step to the first command pulse of the last step. The time required for a given step will be known as the step time; and, for the Class I multipliers, it may have any one of several values depending on the contents of the nth B register flip-flop when the step is to occur. (3) The time required for the stabilization of the accumulator flip-flop outputs from the first cormand pulse of the last step. This final time will include the time for a final carry operation if one is necessary.

In order to allow for the initial time and yet hold it to a minimum, the time between the read-in pulse and the multiply-command pulse must be as follows:

The C type controls presented for all the mutipliers send the first command pulse to the multiply-adder alnost immediately upon receiving the multiply-command pulse. Thus for C type controls the multiply-command must occur approximately τ plus the minimum allowable initial time, t_{i}, ming after the read-in pulse. Then the initial time $t_{i}=i_{i,}$ min.

The K type controls presented for all the multipliers send the first command pulse to the multiply-adder one clock pulse period (the letter T will be used throughout the report to denote the clock pulse period in microseconds) after receiving the multiply-command pulse (since this pulse is assumed assumed to be synchronized with the clock pulses. If $T \leqslant \chi^{\prime}+t_{i}$, mine then the read-in pulse can occur simultaneously with the multiply-cormand pulse. Then $t_{i}=T-\gamma_{0}$ Otherwise, the multiply-commend pulse must occur $r_{i}+t_{i, m i n}-T$ microseconds after the read-in pulse and $t_{i}=t_{i}$, min ${ }^{\circ}$ The definitions introduced above and in the next section are intended to provide a standard basis for and an aid to estimating the multiplication time. It should be emphasized that they do not change the fact that the values given in later chapters for multiplication times are merely estimates.

3.3.1 The step time

The time required for each step of the multiplication is fixed for the Class II and Class III multipliers, but varies according to the contents of the $n=$ th \quad register flipoflop (and in certain cases the other digits in the A and B registors) for the Class I multipliers. The following discussion applies primarily to the Class I multipliers, but is of use in determining the constant step times of the Class III and Class III multipliers.

The step time of the Class I multipliers varies because (I) the number and/or kind of operation to be performed at the step depends on the contents of the $n \frac{\text { th }}{-}$ B register flip-flop, and (2) the time to "perform" an operation depends upon the operation itself and the operation which is to follow it. This latter consideration leads to the fcllowing definitions. operation-pair: Any sequence of two operations which can occur in the functioning of a given arithnetic section.
timealapse: The time from the occurrence of the first operation of an operation-pair to the instant when the arithmetic section is prepared for the second operation of the pair. (Clearly every time-lapse is associated with a specific operation-pair. The time-lapse may also denend on the numerical contents of the various registcrs in the arithmetic section, as when a carry propagation occurs.)
maximum time-lapse: The largest value which the time-lapse required by a particular operation-pair can assume. (This time will be symbolized by the abbreviations for the operations of the pair separated by a colon, $e_{0} g_{0,}$ as cs_{0}) The maximum time-lapse differs from the particular time-lapses of a specific operation-pair for B type arithmetic sections because of the irregular times required for carry propagation. Since in this case there is no simple way to
indicate to the control what time-lapse is required when the operation-pair occurs, the maximum time-lapse must be allowed at its every occurrence. The determination of the maximum tine-lapses of D type arithmetic sections rem quires further discussion, which in turn requires the follawing definitions. perastage delay (σ): The delay experienced by a propagating command pulse is passing through a stage. (This delay may vary for any stage of a multiplyon adder according to the contents of the corresponding sections of the A and accumulator registers. Each permstape delay is of course associated with a particular commend.)
maximunestape time-lapse: For every stage of a D type arithmetic section there is a tirne which must be allowed between the instant at which the stage receives the puise of the first operation of a pair and the instant at which that stage is prepared for the second of the onerations. This can be called the stage time-lapse. The maximum stage time-lapse is the larpest of these values. (this time is dependent upon the particular operation-pair and will be symbolized by the abbreviations for the operations of the pair separated by a colon and eollowed by a subscript " $\mathrm{SH}_{\mathrm{g}} \mathrm{e}_{0} \mathrm{~g}_{\circ},(\mathrm{ascs})_{S^{\circ}}$)

The determination of the maximum time-lapse for 7 type axithmetic sections is made from the binary digit length, n, of the numbers multiplied (this determines the number of stages in the multiply-adder), the per-stage delay, and the marimum stage time-lapse. In paxticular, if the per-stare delays for the commands which occur in the operation of a particular D type miltiply=adder are independent of the numerical contents of the controlling registers, and moreover if they are equal, then the maximun time-lapses are equal to the minimum stage time-lapses for the respective operationmairs. This situation occurs for all of the D type axithmetic sections introduced in Chapter IV except one (see section 4.11.1).

The maximum time-lapse differs from particular time-lapses for specific command-pairs of D type axithmetic sections either because of variable carry propagation time or because the per-stage delay is dependent upon the numexical contents of the controlling registers. In the latter case an indication of the time-lapse required at a particular occurrence of the operation-pair is autonatically given to a C type control which uses the completion pulses (the command pulses as they appear from the finel stage of the multiply-adder) in place of the commands delayed by fixed delay units. This situation of variable per-stage delays axises for the multiply-adder mentioned above as being discussed in section 4.11.I. The step time is a sum of meximum time-lapses.

A given step with a Class I multiplier requires one of at most two possible operation sequences (corresponding to the fact that the contents of the nth B register Mip-flop is either 0 or 1. Thus there are at most Sour step times, and this number occurs oniy when each operation sequence can be followed either by itself or by the other sequence in the operation of the arithmetic section.

3.3 .2 The measure for the speed of a multiplies

The fact that the multiplication time of a multiplier depends in certain cases upon the numbers to be multiplied makes it necessary to introduce this section in order to specify how to measure the speed of a multipliexs The multiplication time itself will be used when constant. Otherwise, the marimum and ninimum multiplication times will be Pound, and the average of these two values used as the measure. If we assume that a geso or a one has equal probability of occurrence in every digit position of the number B_{5} this average multiplication time will also be the most 71 kely multiplication time for most of the multipliess of this type.
3.3.2.1 Choice of type of control section for use with a specific
axithrotic section
The critemia for the choice of the contral sectron will be based solely on the speed with wich the resultant multiplier operates since alterations
in the control section can affect the equipment count for the whole multipliex only slifethy.

The clock pulses of a K type control may be used to initiate either each step or each of the commands of a step. (In cases where thexe is only one command pesstep the either or has no distinction associated with ite) In the first case, a I type control would be used only when the step times, if more than one, are all very nearly equal. In the second case, it would be used only when all maxdmum time-lapses are all very nearly equal and it is possible to arrange a. \mathbb{X} type control to supply the proper kinds of commends. ${ }^{6}$ It is more desirable to use K type controls in the second of the above manners 1 if there is a choice, for otherwiae dalay line units will be necessary to establish the intesvals between the commend pulses. The two cases ase the only ones in which \mathbb{X} type controls can congete with C type controls fos speed of operation. Even here, because of the effect of the control itself on the multiplication time, the C type control may be fasters. Thus is \&
6. It has been found possible to destign \mathbb{K} type controls which can aupply the proper kinds of comends when these are initiated separately by the clock pulses only when oither just one commind is trequired per stop or when at most two commends are required, the lagt of which is a shift or a comb bined carry and shift. These is no thick to the design in the rizet case, but in the second a special device is necessary. It is expleined in section 4.2 .3 .
a particuiar axithmetic section falls into either of the above cases, its multiplication time with both C and K type controls wi.12 be considered and that control. which gives the Iaster operation will be chosen; otheswise, C type controls will be uged.

Realizatsons of Class I Multipliers

4.1 Introduction

4.1.1 Outline of the multipliess to be discussed in this chantes

It is desirable to have a symbolism for naming the Class I multipliers which will also indicate something of their structure. The symbol for a given multiplier should at least indicate the typo of conm trol and the type of arithmetic section used. In addision, the operations performed by the multiply-adder when $\mathrm{B}_{\mathrm{i}}=1$. can be indscated by use of the symbols introduced in Chapter III, separating the separate operations by periods. For example, a.cs stands loz the operation partial add followed by a combined complete carry and shift. Finally, the different physical realizations which are presented for certain of the multiplyeadders are distinguished by numbating them. Thus, the second scheme for realizing the multiplies which utilises a clock pulse type of control and a block type of arithmetic aection which performs a combined partial add and completa caxyy followed by a shift when B_{1} \# 1 will bo geac.s $\mathrm{B2}$. This symbolisa will serve for the Class I multindiers and will be extended is lator chaptera to includs the Class II and Class III multipliers.

In the following outline of the clase' I multipliers to be discuased, the multipliers are fixst classified according to theix logicol propertios and then according to physical differences.
A. First method of aummation used

1. Pinal highospeed carry needod
\&. Two operations when $B_{i}=1$
Kaa.cs B1 ${ }^{\text {1. }}$
Coa.cs Bl
Kal.es B2
Cwasen B2
b. One operation when $B_{i}=1$

Yoacs B2
Eacs B2
2. No Iinsl highospeed carry needed
e. Three operations when $B_{4}=1$

CBoc. 3 B
b. Two operations when $B_{i}=1$
(i) Coas.c B
(ii) Caac. 8 Bl

Caacoì B2
Rag. 8 DI
Cracos D2
Koacos D3
c. One operation when $B_{i}=I$
(i) Coase B
(ii) Cacs BI

Eacs D^{2}
B. Socond method of summation ured
C Ceb.e.s B

1. This is the scheme used by the Whirlwind I computer.
2. This is the scheme chosen for the computer of whose deaign this study was a part.

Previous to the developnent of the systers used in this outilne fos naming the Class I multipliezs they were named difeerently. The correspondence between the old and the new texminology is given below.

01d	Pers
$2 \sec (W W I)$	Cabocs B1
∞	$\mathrm{Comacs} \mathrm{B2} 3{ }^{3 .}$
3 asc	E-2cs B1
2 ase	K-acs $\mathrm{B2}^{\text {2 }}$
2 C	Cwasgos B
2 2\% (with carxy Ilipailops)	C-asec B
3	Casees 31
21	C-aces B2
A 1	Tape. 10
A 2	Cose. 12
A5	Easces D3
228 (with dolay lines)	Caase B
3. 28	Cuacs B1
A slight alteration of the 3 as multipliar	Cuace B2
A as	Komeg D
2 a	Caisass B

The dd S a (and 2 z 2) multipliese are of Class III. These are discussed in Chapter VI.
3. The idea fos this Class I mitiplier came from one of the two realizations prosented for the old $S=2$ multiplies in the original study.

4.1.2 The storage registere

The axithmotic sections of the Class I multipliers each have at least three storage registers, namely the A, B and accumulator registers. The accumulator register was introduced in section 3.2.1.1, and the B register in section 3.2.1.2. In addition, some miltipliers have a " CN^{n} fegistar for carry storage. The A and B registera ase used to store the multiplicand and multiplies respectively and must therefore contain n flipoflops each. Consecutive sensing of the digits of the multiplier, required for formation of the digit groups for the Class I multipliers, is achieved by shifting it through the rightmost flipeflop of the B registers, às was mentioned in section 3.2.1.2. No provision is made to store the digits shifted off the end of the B register and hence the multipiler is lost during the multiplication.

It can be shown that the product of two n digit binary numbers can 2t most be $2 n$ binary digits in length. Thus the accumulator register, which is used to store this number, should contain in fliponops. Horevar, the B register may be used for the rightnost n flipoflops of the accumulator because of the following factss (1) After the the step of the multiplication, k partial products will have been summed, and the result will be a number of length $n+k$. (This is the general case when a new leftmost digit may be formed by a carry). The rightmost k digits of this number are digits of the final product, (cf. Fig. III-1) and therefore may be stored in a registere whose contents are not operated upon by the multiply-adder except for shift right operations. (2) The B register is a shifting register which nust shift at each stop of the multiplication.

The fact that the B register also serves as the right half of the accumplator registes means that fommally speaking, the associated shfift gates are part of the multiply-adder, as well as part of the equipment for forming the digit groups. It is assumed that the B register is shifted before or at the same time that the accumulator is shifted, for otherwise the leftmost digit of B would be lost.

The !ahifting register shown in Pigure IVol is used for the B register in all the Class I multipliers. Therefore, it is not redrawn for each multiplier.

Neither read-in nor read-out gates are show for any of the registers in the figures to follow since the result would be to needlessly complicate the diagrams. Neither are means whom for clearing the registers, although in the discussions to follow the registers are assumed to have been initially cleared.
4.1.3 A remark on the design of K type controls for Class I multipliers

If an arithmetic soction requires two comnands when $B_{i}=I_{\text {g }}$ the last of which is a shift or a combined carry and shift, then a K type control can be used to operate this axithmetic section if it is built to clear the nth nipflop of the B register whers the firgt comnand of the $B_{i}=1$ sequence is pere formed and then to again sense the contents of this flipoflop (which must now be 0). This wili certainly operate correctly as long as the second operation of the $B_{i}=1$ sequence is a shift. If instead it is a combined carry and shift then the control will perform a cs whenever the contents of the the flipollop of the B register is 0 , i。e., even if $B_{1}=0$. This scheme for control will still cause the arithmetic section to perform the multiplication correctly as is establishod
in section 4.2, In addition, a considerable equipment saving will be effected by eliminating the need for shift gates in the arithmetic section. 4.2 The Koa.cs BI and Coa.cs B1 multipliers maigs. IV-2, 3 and 4 4.2.1 The operation

The marimum time-lapses are found from Fig. IVol to be:

$a s c z$	2γ	$+\tau$
$\operatorname{css} 2$	γ	$+\tau$
cssc	2γ	$+\tau$
cssc	2γ	$+\tau$

These values are substentially the same and therefore C and K type controls will operate with about the same speeds. The block diagram of an appropriate K type control is shown in Fig. IV-2. The clock pulse input is assumed to be synchronized with the multiply command pulse. If this is not ao, then a synm chronizing circuit using two flipoflops must be inserted in the control block diagramg for otherwise, a clock pulse might occur at such a time after the multiply command to result in a degenerats output pulse from the first gate tube in the path of the clock pulses. This degenerate pulse might perform soms but not all of the functions required of it and hence produce an error.

The multiply cormand pulse causes clock pulses to be sent to sense the gates on the $n^{\text {th }}$ flipoflop of the B register. If this fliponlop holds a one then the clock pulse is sent to the partial add input of the multiply-adder, 4.

The Greek letter symbols uaed here are defined in section 2.1.
of the multiply-adder, and at the same time it clears the $n=$ th $\{1 p-f 10 p$ of the B register (see section 4.1.3). Thus the next clock pulse is sent to the partial carry and shift input of the multiply-adder, and at the same time it shifts the B register. If the nth B register flipaflop holds a zero, then the clock pulse is sent to the partial carry and shift line. Thus the required ahift of the accumulator (and the B register) is performed, while the additional partial carry has no harminl effect as is astablished below.

The Kaa.cs Bl multiplier requires n clock pulses to complete the multiplication, and therefore the step counter must be preset to produce and endcarry when it receives the $n^{\text {th }}$ addoone pulse. The endecarry pulse turns off the clock pulses and, after a delay to allow the completion of the last partial carry and shift operation, is sent to the highespeed carmy input of the multiply adder. After a further delay to allow the completion of the highespeed camy operation, the endecarry appears as the multiplication complete pulse.

The block diagran of an appropriate C type control is shom in Figure I.Vo3. This control also performs a combined partial carry and shift whenever the cono tents of the nth B register flipoflop is a zero and thus also saves the set of shifting gates in the multiplyaadder.

The a.cs Bl arithmetic section is shown in Fig. IVol. An illustration of the procedure of multiplication üsed by this multiplies is given in Fig. IV $=5$. Such a multiplier can be successfully mechanized if its multiplyoadder is provided with a register for storage of the carry row. This statement requires proti, as may be seen from the example of Fig. IVo5. For if the boxedoin zero in this figure were a one, then a second carry digit would have to be stored in
the next digit columa to the left after the third partial add operation. Thus a single register could not be uged for storage of the carry row, for this carry overlap would cause one carry digit to be lost. It is not intuitively obvious that such a situation can never arise. If it could, then at least two registers for storage of carry digits would be required in the realization of the $a_{0} c s B 1$ arithmetic section. The proof that this aituation can never occur followss

Lets 1. The flip-Mlops of the AR, AcR and CR (camy register) be numbered according to the digit column in which they fall (see Fig. IV-4).
2. A_{j} be the $j^{\text {th }}$ digit of A. (It will be stored in the j th RIDPALOp of AR.)
3. $A c_{j}(k)$ be the digit stored in the j th 1 inpoinop of AcR just prior to the kh operation of the multiplication procedure. 4. $C_{j}(k)$ be the digit stored in the f th Ilopenlop of CR juat prior to the k^{th} operation.

Suppose that in the number B (the multiplier), there is a sequence of digitss $1,(m \propto 1)$ zeros 1 (e.g. if $m=3$ than the sequence is 1001, if $m=1$ then the sequence is 11. Then, beginning with that step of the mulusplication corresponding to the rightmost dipit and assuming that k operations have preceded this step, the following operations are perfomed for the portion of the number B which is under consideration:
 5.

For the neaning of these Boolean al gebraic expressione see the Table III-1 Pootnote 3 on p. \qquad -

For the lept-
most lit $\left\{\begin{array}{l}{ }^{\text {"an }} \\ { }^{\text {"csin }}\end{array}\left\{\begin{array}{l}A c_{j}(k+m+2)=A c_{j}(k+m+1) A A_{j} \\ C_{j}(k+m+2)=A c_{j+1}(k+m+1) \cdot A_{j}+1\end{array}\right.\right.$
We are interested in the two digits which occupy the fth flip-flop of the carry register before and after the second partial add operation. Specifically, we would like to show that both of these digits cannot be unity. This is so if $C_{j}\left(k+m+2 \xi \cdot C_{j}(k+m+1)=0\right.$. Making use of the above relationships, it follows that

$$
C_{j}(k+m+2)=A C_{g+1}(k+m+1) \cdot A_{j+1} \cdot\left[C_{j}(k+m) \oplus A c_{j}(k+m)\right] A_{j}+1
$$

and

$$
C_{j}(k+m+1)=C_{j}(k+m) \cdot A C_{j}(k * m)
$$

Thus $C_{j}(k+5+2) \cdot C_{j}(k+m+\eta)=0$ as can be geen from the following table In which all possible combinations of the values of the $A c_{j}$ and C_{j} variables are displayed.

$C_{j}(k+m)$	$A c_{j}(k+m)$	$C_{j}(k+m+1)$	$C_{j}(k+m+2)$	$C_{j}(k+m+1) \cdot C_{j}(k+m+2)$
0	0	0	1	0
0	1	0	$A_{j}+1$	0
1	0	0	$A_{j}+1$	0
1	1	1	0	0

The end digit colunns are shown separately in Figure IV 4 because they differ from the general case. The the digit column does not reguire the carry mipo flop with its seven associated gates since the caryy-digit here is always zeroo For the same reason no high-speed carry line and associated gate on the accumulator flipoflop, the highogpeed carry gate are necessaxy. Gates must be added to perform the shift right function of those gates which would have been associated with a carxy Inipoflop.

The $A C_{1}$ flip-flop will always contain a zero before a partial add, since
this operation is always preceded by a shift (combined with a partial camry). Therefore, there cannot possibly be a carry generated by a partial add pulso and hence the associated gate and caxry flip-flop (which would have been C_{0}) are not necessary. Since the final highospeed carry operation is also preceded by a shift, which clears the $A c_{1}$ Mipmoflop, the highespeed carry gate can be eliminated from the first digit column and any carry arriving on the highospeed carry line from the second digit column or from C_{1} can be sent to set 1 in the $A c_{1}$ flip-flop. That there cannot be two carries arriving, one from C_{1} and one from the second digit column, is proved by the following argunent.

A carry can be present on the highospeed carry line from the second digit column after a highospeed carry command only if Ac_{2}, while a carry can arrive fron C_{1} only if that digit is unity. These two digits, $A c_{2}(k)$ and $C_{1}(k)$, are formed by a partial carry and shift operation from the previous contents of $A C_{1}$ and $C_{1}-A C_{1}(k-1)$ and $C_{1}(k-1)=$ according to the Boolean expressionsz ${ }^{6}$.

$$
\begin{aligned}
& C_{1}(k)=A c_{1}(k-1) \cdot C_{1}(k-1) \\
& A c_{2}(k)=A c_{1}(k-1) \oplus C_{1}(k-1)
\end{aligned}
$$

Thus both $A c_{2}(k)$ and $C_{1}(k)$ cannot be unity simultaneously and hence two carries cannot arrive at the set input of $A c_{1}$ simultaneouely. This argument can immediately be generalized to show that the highospeed carry rate of the j th digit will never receive two pulses dusing the execution of a highospeed carry operation. A similar argument applies to other multioliers which perform a highaspeed carry operation.
6.

See Table III-1 and footnote 3, po \qquad -

4.2 .2 Equipment count

Basic Circuit	Control Section			Totel Used $n=16$	
				T	C
FF	$31+\log _{2} n$	$31+\log _{2}(n-1)$	$4 n-1$	68	68
GT	$31+\log _{2} n$	$\geqslant 2+\log _{2}(\mathrm{n}-1)$	12x－8	189	190
M_{2}	0	2	$3 n-4$	44	46
D	2	3	0	2	3

Total Weighted Equipment Count $=\left\{\begin{array}{l}4738 \text { for K－a．es B1 } \\ 4772 \text { ior } C \propto a_{n} c s ~ B 1\end{array}\right.$
4.2 .3 Multiplication time

Let the multiply－comand pulse occur simultanacusly with the readein
pulse。 Thens

$$
\text { 1. } \begin{aligned}
t_{\max } & =n 2 T+\delta_{1}+\delta_{2}-\tau \\
t_{\min } & =n T+\delta_{1}+\delta_{2}-\tau
\end{aligned}
$$

2．I must be determined so that the multiplication process
can be stopped reliablys

B．Caaces BI（Control of Fig．IV®3）
Iet the multiply comman pulse occus τ seconds after the readoin pulse．
Then：

$$
\begin{aligned}
& \text { 1. } t_{\text {mass }}=n\left(2 \gamma+2 \mu+\delta_{1}+\delta_{2}\right)+\delta_{3} \\
& t_{\text {min }}=n\left(2 \gamma+2 \mu+\delta_{2}\right)+\delta_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \delta_{2}=4 \gamma+\tau-2 \gamma: \operatorname{Lat} \delta_{2}=0.6 \mu s e c \text { 。 (} 16 \mathrm{~m}=\mathrm{m} 9 \text {) } \\
& \delta_{3}-(n \propto 1)(\gamma+\mu)+\tau 8 \text { Let } \delta_{3}=1.3 \mu \text { sec. if } n=16 \\
& \text { 3. If } n=16 \text {, } t_{\text {ave }}=17.3 \text { usec. }
\end{aligned}
$$

4.3 The K-a.cs B2 and C-a.cs B2 mintipliers - Figs. IV-2, 3, and 6 o 4.3.2 The operation

The arithmetic section of a.cs B2 (omitting the B register) is shown in Fig. Iy-6. The partial add operation is performed in a standard manner except that any carry generated is passed through a delay line before being stored in the carry flipollop. This delay is to be of such a magnitude that its output will reach the carry flip-flop, pincroseconds after the arrival of. a puise generated by the "cs" which occurs after the partial add. Thus this "cs" will be performed on the carmy row before the carries from the immediately preseding partial add have been included. Since a shift intervenes before the storage of the carries generated by this partial add, they must be placed as show, $i_{0} e_{9}$, one digit column to the right of where they would otherwise have gone.

The reason for including the delay before carry storage is not evident here, since it would certainly be mich simpler to omit the delay and send any carries directily to the carmy flipoflop of the next digit column to the left. However, the delay is necessary if this multiplyoadder is to be used in the realization of certain of the Class III multipliers (namely those for which $p<q$, where p and q are defined in Chapeer VI). The correct operation of the miltiply-adder of Fig。IV-6 will be justified below, but the multiplication time (and thus necessarily the maximum time-lapses) will be figured from a multiply-adder which does not use these delay lines.

The "ca", intervening before the storage of the carries, alters the orders of sumation of casry digits from that which would have occured in the a.cs BI multiplier, but the final product can still be correct. This is so because the only chance for an incorrect product lies in the possibility that a carry digit will be lost. This migit occur in either of two wayss The first and most serious
is the possibility of a pulse arriving from a delay line unit at a carry flip－Mop which already holds a m1月，thus causing carry overlap．

It can be seen with the aid of Figs．IV $=6$ and IVm that carry overlap
in digit column j is impossible if and only if

$$
\left[A_{j} \cdot A C_{j}(k)\right] \cdot\left[C_{j}(k+1) \cdot\left\{A C_{j}(k+1) \oplus C_{j}(k+1)\right\}\right]=0{ }^{7}
$$

This simplifies to
$\left[A_{j} \cdot A c_{j}(k)\right] \cdot\left[C_{j}(k+1) \cdot A c_{j}(k+1)\right]=0$
Again from Figs．IV－6 and 7，$A c_{j}(k+1)=A c_{j}(k) \otimes A_{j}$ ．Therefore the original relation is satisfied for every possible conbination of digits

The other way in which a carry digit might be lost is that the set and clear sides of a carry flipoflop may receive puises＂simultaneously＂（logically speaking）．Examples can be found in which this situation will occur，but from the above proof it follows that the contents of the carry flipoflop will always be 0 before the amival of the two pulses．Thus if the fipeflop circuit will always complement in this situation，no camries will be lost．However，if the pulses arrive in an adverse order or in the right order but sepasated by less than P_{f} peec．（which could occur if the delay \int were not long enough or if it proved desirable to decrease \mathcal{J} in the interests of faster operation）it is obvious that the flipoflop circuit will not complement．This situation can be avoided entirely by an alteration of the multiply－adder as shown in Fig．IV－8． It will be noted that this requires more equipment．Decision between the two forms of the multiply－adder depends on the physical situation and mast include consideration of many diverse factors such as the period of the circuit used 7．See Table III－1 and footnote 3，P。 \qquad。
for a clock pulse generator (if a K type control is to be used), the stability of delay lines, etc., as opposed to the susceptibility of gate tube circuits to intermittent errors, etc.

It should be noted that the delay in a control section before a c pulse would have to be great enough to allow any possible carries from a partial add which may occur before the final cs to pass thru the delay lines and to set up the carry flipoilop outputs.

The maximum time-lapses for the aces B2 axithnetic section of Fig. IV 6 modified as discussed above are found to bes

sscs	$2 \gamma+\tau+\alpha+\omega$
$c s s a$	τ
csscs	$\tau+\tau+\alpha+\omega$
cssc	τ

These values are approsimately the same and therefore C and K type controls will operate with about the same speeds. The control sections of Figs. IVe2 and 3, designed for the a.cs BI multiplier and discussed in the preceding section, are applicable here.
4.3.2 Equipment count

Basic Circuit	Control Section Wumber Used o n digits Ardthmetic section			Total Used$n=16$	
	Σ	C		K	C
FF	E $1+\log _{2} n$	E1 $1+\log _{2}(n-1)$	4 n	69	69
GI	2 $2+\log _{2} n$	$52+\log _{2}(n-1)$	8 n	133	134
82	0	0	40	64	64
OR_{2}	0	0	2 n	32	32
HH_{2}	0	2	$\mathrm{n}-1$	15	17
D	2	3	0	2	3

Total Weighted Equipment Count $=\left\{\begin{array}{l}4544 \text { for Koascs B2 } \\ 1578 \\ \text { for Coascs B2 }\end{array}\right.$

4.3.3 Multiplication time

A. K-2.cs B2 (Control of Fig. IV-2)

Let the multiply command pulse occur simultaneously with the read-in pulse. Then:

$$
\begin{aligned}
& \text { 1. tave }=(3 / 2) n T+\delta_{1}+\delta_{2}-\tau \\
& \text { 2. T must be determined so that the multiplication process can }
\end{aligned}
$$ be stopped reliably.

$$
\text { B. Caa:cs } 82 \text { (Control of Fig. IV-3) }
$$

Let the multiply command pulse occur $t+a+\omega$ sec. after the read-in pulse Then
4.4 The Koacs B multiplier - Fig. IV-9

4.4.1 The operation

The maximum time-lapses for the ass BI arithmetic section are found from Fig. IV -9 to bes

$$
\begin{aligned}
& \text { 1. } t_{\max }=n\left(2 i+2 \mu+\delta_{2}+\delta_{2}\right)+\delta_{3} \\
& t_{\min }=n\left(2 \gamma+2 \mu+\delta_{2}\right)+\delta_{3} \\
& \text { 2. } \int_{1}^{2} 2 \pi+\tau+\alpha+\omega: \quad \text { Later } 2=0.6 \mu s e c .
\end{aligned}
$$

$$
\begin{aligned}
& \int 3^{2}(n-1) \delta+\tau \quad \int 3^{=}=1.1 \text { нeec。 }(n=16) \\
& \text { 3. If } n=26 \text {, } t_{\text {ave }} \text { 27.jusec. }
\end{aligned}
$$

$$
\begin{aligned}
& T \geq 68+\text { es Let } T=.75 \text { sec. }(16 \Sigma n \geqslant 9) \\
& \delta_{1}-\mathrm{casc}=\tau: \quad \operatorname{Let} \delta_{1}=0.5 \text { sec. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3. If } n=16 \text {, } t_{\text {ave }} \approx 29.1 \text { user. }
\end{aligned}
$$

These maximum timenlapses are all essentially the same axcept those for acsic and cssc. The clock pulse period of a kotype control may be chosen disregarding these latter, longer time-lapses gince only one of then can occur during a multiplication and then only at the end of the operation. Therefore, they can be taken care of by a delay line after the clock pulse 1low has been stopped. Hence either a K or a Cotype control can be used. A Cotype control offers vesy littie possiblity of increasing the speed of operation over that of a Ketype control here since it will be found below that the value of the clock pulse period need not be increased to ensure reliable stopping of the maltiplication process. Hense only a Kerype control will be considered.

This multiplier realization is somewhat different from the others to be considered. The difference lies in the use of levels as well as pulses from control. Change of the control levels effectively changes the inter connection of logical blocks within the maltiplyoadder. This different type of control makes the sensing gates of the nth digit section of the B regigter unnecessary, but they must be replaced by the diode " and ${ }^{m}$ and "O~" circuits shown in Fig. IVa9.

It will be noted that no separate shift pulse is used, but that the "acs" pulse is used with the effect of a "cs" in place of it. The "acal input is made to perform a "cs" simply by effectively disconnecting the A register inip-11ops from the adders by means of the B_{1} level.

The highospeed carry which must be performed to complete the formation of the product is accomplished by another interchange of connections within the multiplyoadder, again achieved by the change of two control levelss the lowering of the multiply level and the raising of the highespeed carry level. Before the c line can be pulsed to record the final product, sufficient time must be allowed for the carry levels to propagate thru the
multiplyoadder, The maximum time-lapse (csse) occurs when a level must travel the entire length of the multiply-adder. Knouledge of the elensed time in this case is necessary for the determination of δ_{1} in the control section.

If the separate "acs" and "acs + c^{n} lines were not used than an additional pulse mixer would be necessary in each digit column.
4.4.2 Equiment count

$\begin{aligned} & \text { Basic } \\ & \text { Circuit } \end{aligned}$	Number Used - n digits Control Section	Arithmetic Section	$\begin{gathered} \text { Total Used } \\ n=16 \end{gathered}$
FF	$\geq 1+\log _{2} n$	$4 n-1$	68
GT	$\geq 1+\log _{2} n$	$6 n-5$	94
	0	$n-1$	15
d_{2}	1	$6 \mathrm{n}-4$	93
OR_{2}	0	$3(n-2)$	52
D	2	0	2

Total Weighted Equipment Count $=5150$

4.4:3 Multiplication time

Let the multiply conmand pulse occur simltaneously with the read-in
pulse. Thens

1. $t_{\text {max }}=t_{\min }=n T+\delta_{1}+\delta_{2}+5 \gamma-\tau(16 \geq n \geq 9)$
2. T must be chosen so that the flow of clock pulses will be
reliably stopped, and so that sufficient time wjll be allowed for the maximum time-lapses. In this case it is the latter requirement which determines T_{8}

$$
\begin{aligned}
& T z \gamma+\tau+21+5 \alpha+4 \omega \text { Let } T=0.85 \mu \text { sec } \\
& \delta_{1} z 4 \gamma+\tau+2 i+(2 n-1)(\alpha+\omega)=5 \gamma: \operatorname{Let} \delta_{1}=1.3 \mu \text { sec if } n=16 \\
& \int_{2} z \gamma+\tau \quad: \operatorname{Let} \delta_{2}=0.55 \mu \mathrm{sec} \\
& \text { 3. If } n=16, t_{\text {ave }} \approx 15.2 \text { usec. }
\end{aligned}
$$

4.5 The Koacs B2 multiplier - Fig. IV-10
4.5.1 The operation

The maximum time-lapses are found from Fig. IV-10 to bes

acs:acs	$\gamma+\tau+\alpha+\omega$
$a c s s c s$	$2 \zeta+\tau+\alpha+\omega$
$\operatorname{css} a c s$	$\tau+\alpha+\omega$
$\operatorname{css} c s$	$\gamma+\tau+\alpha+\omega$
acss c	$2 \gamma+\tau$
$\operatorname{css} c$	$\gamma+\tau$

A K type control is included in Fig. IV-10. The delay unit D_{3} in this contral allows the multiplication proc̣ess to be stopped at the proper step tiithout increasing the clock pulse period, T. Since it is not necessary to make T larger than is necessary for the maximum time-lapses and since these latter are very nearly equal, a C type control will not be considered.

The multiplier is quite straightforward in its onerationg there are no unusual details which require discussion.
4.5 .2 Equipment count

Basic Gircuit	Number Used - n digits		Total Used $\mathrm{n}=16$
	Control Section	Arithmetic Sectios	
FF	${ }_{1}+\log _{2}(n-1)$	$4 n-1$	68
GT	$\geq 1+\log _{2}(n-1)$	10n-6	154
82	0	$4(\mathrm{n} \times 1)$	60
OR_{2}	0	$2(n-1)$	30
M_{2}	0	$3 n-2$	46
D	2	0	2

Total Weighted Equipment Count $=\underline{4752}$

4.5.3 Multiplication time

Let the multiply command pulse occur simultaneously with the readoin pulse. Then

$$
\begin{aligned}
& \text { 1. } t_{\max }=t_{\min }=n T+\delta_{1}+\delta_{2}-\tau \\
& \text { 2. } T \geqq 2 \gamma+\tau+\alpha+w_{8} \text { Let } T=0.6 \mu s e c \text {. } \\
& \delta_{1} \geq T+2 \gamma+\tau-5 \gamma: \operatorname{Let} \delta_{1}=1.1 \mu \sec \left(26 \geq{ }_{n} \geq 9\right) \\
& \int_{2} \geq(n-1) \gamma+\tau: \quad \operatorname{Let} \delta_{2}=1,1 \text { user if } n=16 \\
& \left\{5 \gamma+\delta_{3} z \mathrm{I}\right. \\
& 58+\delta_{3}+r \geq 22 \\
& \operatorname{Let} \delta_{3}=\frac{\delta_{M+0} \mathcal{N}^{2}}{2}-\frac{2 T-5 \gamma-\tau+T-5 \gamma}{2}=0.45 \text { fec } \\
& \text { 3. If } n=16, t_{\text {ave }} 17.3 \mu \text { mem } \\
& 406 \text { The Cai.c.a B multiplier - Figs. IV-l1 and IV-12 } \\
& \text { 4.6.2 The operation }
\end{aligned}
$$

The maximum time-lapses are:

$2: c$	$2 \gamma+\tau$
$\mathrm{c}: 8$	$(n-1) \gamma+\tau$
18 a	τ
$3: 8$	$\gamma+\tau$

There is a significant difference between the maximum time -lapse values if. n has any reasonable value. Therefore a C type control is dictated. The control to be used is shown in Fig. IV 11.

The gate on the "1" side of the control ilipeflop is used to supply the multiplication complete pulse in place of using a delayed ond-carry since in half the cases this will save $\int_{1}+\int_{2}$ pec.

The arithmetic section (omitting the B register) is wow n in Fig. IV-12. This realization operates in a straightforward manner. It might be mentioned, though, that the shift pulse need not operate on the carry register since the preceding highespeed carry operation will always leave this register cleared.

4.6.2 Equipment count

Basic Circuit	Number Used $-n$ digits		Total Used
	Control Section	Arithmetic Section	16
	$\geqq 1+\log _{2}(n-1)$	$4 n-1$	68
BT	$\geqq 2+\log _{2}(n-1)$	$8 n-4$	130
M_{2}	2	$3 n-4$	46
D	3	0	3

Total Weighted Equipment Count $=\underline{\underline{2} 72}$
4.6 .3 Multiplication time

Let the multiply command pulse occur $\tau \mu s e c$. after the readoin pulse.
Then

$$
\begin{aligned}
& \text { 1. } t_{\max }=n\left(2 \gamma+2 k+\delta_{1}+\delta_{2}+\delta_{3}\right) \\
& t_{\text {min }}=n\left(2 \gamma+2 \mu+\delta_{3}\right) \\
& \text { 2. } \int_{1}{ }^{Z} \text { sc }=2 \gamma+\tau z \quad \operatorname{Let} \delta_{1}=0.6 \mu \text { sec. } \\
& \int 2^{2} \mathrm{css}=(n-1) \gamma+\tau ; \text { Let } \int_{2}=1,1 \mu s e c \text { if } n=16 \\
& \int_{3}^{2} 28+\tau \quad: \operatorname{Lat} \delta_{3}=0.6 \text { user. }(16 \geqslant n \geq 9) \\
& \text { 3. If } n=16 \text {, } t_{\text {ave }} 24.8 \mu \text { sec. } \\
& \text { 4.7 The Coas.e B multiplier - Figs. IV }-14 \text { and IV- } 15 \\
& 4.7 .1 \text { The operation }
\end{aligned}
$$

The maximum time-lapses ares

assoc	$2 \gamma+\tau$
csas	$(n-1) \gamma+\tau$
css	$n \gamma+\tau$
spas	$\mu+\tau$
sss	$\beta+\gamma+\tau$

The significant differences between these maximum \&ime-lapses forces the use of a C type control.

The operation of the control shown in Fig. IV- 24 is very similar to that of the control discussed in section 4.6 .1 . The only change is that required to supply the commands in proper sequence.

An alternate mixed " KC typo" control is show in Fig. IV -13. The
major disedvantage of this type of cont.ol is that to obtain a naximum speed when using it, close timing between the reset pulse to the control flipeflop and the next clock pulse is required.

The arithmetic section of C-as.e B (omitting the B register) is vhown in Fig. IV-15. Since whenever $B_{i}=1$ a shift operation (combined with : partial add) is performed before the \underline{c} operation, the carries generated $b y$ this operation must be added into the accumulator flip-flop shown rather tian into the next one to the left, as in the ordinary case.

Whenever a shift occurs, a "c" has preceded it and cleared the carry register. Therefore, the "g" operation need not act upon the carry register.

A Plipoflop is not needed for carry storage in digit column number one since the $A c_{1}$ flipoflop can be used for this purpose. Any highospeed carry pulse can also be sent directiy to this flipeflop without danger of carry overlap. This follows from the known fact that the product of two numbers of n and p digits respectively cannot exceed $n+p$ digits, and from the fact that p shifts have been performed before the " c " which forms the product of $A \cdot\left[B_{n} \in(p-1) \cdots B_{n}\right]$ is performed.

4.7 .2 Equipment count

Basic Circuit	Number Used 0 n digits		Total Used $n=16$
	Control Section	Arithmetic Section	
FF	$\geq 1+\log _{2}(n-1)$	$4 n-1$	68
GT	$\geq 2+\log _{2}(n-1)$	$10 n-2$	164
M_{2}	2	$2 \mathrm{n}+1$	35
D	3	0	3

Total Weighted Equipment Count $=4522$

4.7.3 Rultiplication time

Let the multiply cormand pulse occur $\mu s e c$, after the readoin pulse. Thens
2. $t_{\max }=n\left(2 \gamma+2 \mu+f_{1}+S_{2}\right.$
2. $\int_{1}^{t} 2 \gamma+\tau=\operatorname{tat}\left(2 \gamma+2 \mu+\int_{1}=0,6\right.$ неес。
$2(n-2) \gamma+\tau: \operatorname{Let}_{2}=1.1 \mu s e c$ if $n=16$
$d_{3} 2 \gamma+\tau \quad 8 \quad \operatorname{Let} \int_{3}=0.6 \mu s e c(16 z n 39)$
3. If $n=16$, $t_{\text {ave }}$ © 20 usec.
4.8 The Caac.a Bl multiplier - Figs. IV-16 and 17
4.8.2 The operation

The maximum time-lapses ares

AC type control is necessary for maximum speed. A possible control is shown in Fig. IV -16. It is very similar to the control of Fig. IV-Ih (discussed in section 407.1) except for the additional delay in the $B_{1}=1$ input line. This delay is necessary since ace is longer than sss.

The arithmetic section (omitting the B register) is mow in Fig. IV-27. Its operation is straightforward 。
4.8 .2 Equipment count

Total Weighted Equipment Count $=3868$

4.8 .3 Multiplication time

Let the multiply command pulse occur t $+\alpha+w \mu s e c$. after the
read-in pulse. Then

$$
\begin{aligned}
& \text { 1. } t_{\max }=n\left(2 r+2 x+\int_{1}+\delta_{2}+\delta_{3}\right) \\
& t_{\text {min }}=n\left(2 \%+2 \mu+\int_{2}\right) \\
& \text { 2. } f 1 \geq \gamma+\tau \quad: \operatorname{Let} f_{1}=0.55 \text { user. } \\
& \delta 2^{2} 2 \gamma+\tau \quad: \operatorname{Let} \int_{2}=0.6 \mu \sec (16 \geq n \geqslant 9) \\
& \int 3 z y+\tau+1+(n-1)(\alpha+w)+\alpha=2 \gamma-d_{2} \text { Let } \int_{3}=0.3 \text { user } \\
& \text { if } n=16
\end{aligned}
$$

4.9 The Case .s B2 multiplier a Figs. IV -16 and 18

4.9.1 The operation

The maximum time -lapses, obtained from Fig. IVol8 are:

acts	$n y+\tau+\delta$
sac	τ
sss	$\gamma+\tau$

A C type control is necessary; a possible one is show in Fig. IV-16.
Note that the D_{3} delay line unit is not needed when this control is used for the 0 -ac. 3 B2 mitiplier.

The arithmetic section (omitting the B register) is shown in Fig. IV. 18 . This arithmetic section is identical to that of the K-a.c.e B multiplier (Fig. IV-1.2) except that here each carry flip- 10 p (except C_{0}) with its associated gate tube has been replaced by a delay line. This chenge permits the highospeed carry tobe performed without the need of alseparate "c" pulse. More important, it results in a considerable reduction in the equipment count. However, this change will not allow a very great decrease in the multiplication time of Coac.s B2 over that of Coa.c.s B since the flip-flop transition time, τ, must still elapse before the carry pulses can emerge from the delay lines. (Therefore $f=\tau_{0}$)

The C_{0} flipoflop cannot be replaced by a single delay unit for a rather complicated reason. The argument is as follows. It is easy to find an example of multiplication for which $A c_{1}=1$ and $A_{1}=1$ at a particular time。 Suppose an "ac" operation is now performed. A carry digit to column 0 will then be generated, and if the caxry flip-flop has been replaced by a delay \int_{0}, whose output goes to the set input of Ac_{1}, then \int_{0} mast equal \int_{2} of Fig. IV 16 sinces (1) the carry must not be permitted to destroy the content of $A c_{1}$ until this content has been shifted to $A c_{2}$, and (2) the carry must arrive soon enough to permit the Rlipoflop to stabilize before the shift pulse occurs. On the other hand suppose that $A_{2}=0$ and $A c_{1}-1$ and that a carry comes into the firat digit colurn fmicroseconds after the "ac" pulse. Again a carry to digit column zero will be generated, but now this carry must experience a delay \int_{0} $\int_{1} / 2$ for the same two reasons as before. Since the delay thru a delay line unit is Just one specific value, the C_{0} flipaflop cannot be replaced by a single delay line unito However, it can be roplaced by two dolay units, a gate tube and a two input pulse mixers as shown in Fig. IV-19. That this circuit will operate correctly can be checked by considering all the cases which can occur. These are outlined as follows.
I. $A C_{2}=0$
A. The next pulse is on the shift line.
B. The next pulse is on the "ac" line.

1. a carry into the 1 st digit column from the "ag" pulse.
a. $A_{1}=1$
b. $A_{1}=0$
2. no carry into the 1 㰯 digit column from the "ac" pulse.
a. $A_{2}=1$
b. $A_{2}=0$
II. $A C_{2}=1$
A. The next pulse is on the shift line.
B. The next pulse is on the "ac" line.
3. a carry into the $1^{\text {at }}$ digit column from the "ag" pulse
a. $A_{2}=1$
b. $A_{2}=0$
4. no carry into the $1^{\text {st }}$ digit column from the "ag"pulse.
a. $A_{2}=2$
b. $A_{2}=0$

If the operation of the circuit in Fig. IV-19 is checked in each one of these cases it will be found that the correct result must occur in every case except case II. 1. a. However, it can easily be established from the given initial condition that the accumulator register contains all zeros that this case can never occur. The argument followe.

Case II . 1. a.can arise from the "ac" pulae only if the configuration of the Ac and A digits in the Pirst two columns peevicus to the pulse im as followss

A	C	1
$A C$	2	1
A	2	1

cs digit column
s. flip

The inftial configuration of Ac is alwayss

S	1	2
$A C$	0	0

configuration of A cannot be changed dusing the multipily operation and therefore since we wish to end up with an A configuration of \begin{tabular}{|l|l|l|}
\hline 6 \& 1 \& 2

\hlineA \& 1 \& 1

\hline

 This must also be the initial configuration. Now consider what can happen within the multiplies as the multiply operation begins. A shift could oscurs, but this is of no interest since it will not change $A C_{y}$ or $A c_{2}$. Suppose then that an "ace pulse occurs. The result will be s

\hline 9 \& 1 \& 2

\hline Ac \& 1 \& 1

\hline
\end{tabular}

At least one shift muet intervene before another macm pulse can occur. After one shifts | 8 | e | 1 |
| :--- | :--- | :--- |
| | 20 | |
| Ac | 0 | 1 |

This is not case II. 1. a. Another shift would
return us to the initial situation, so assume that an "ac" pulse is now perPormed:

	$\sqrt[6]{2}$	2
$A c$	0	0

	2	2
$A c$	2	0

Agatm
this is not case II. 1. a. Another shift would retum us to the fnmediately preceding aituation, and wo the only chence for case II. I_{0}. to asise mmet cone from another "ac" operation being performed at this time. Thens

T	1	2				
$A c$	0	1	and $C_{0}=1$. After one mhifts	F	2	2
:---	:---	:---				
$A c$	2	0				

have entered a cycle in which Case II. 2. as will never occur.
4.9 .2 Equipment count

Basic Circuit	Number Used on digits		Total Used $n \oplus 16$
	Contra Section	Axithnetic Section	
PF	$-1+\log _{2}(\mathrm{n}-1)$	$3 \mathrm{n}+1$	54
OT	$-2+\log _{2}(n-1)$	$7 n+1$	119
M_{2}	2	$n=1$	27
D	2	$n-1$	17

Total Weighted Equipmemt Count = 372h

4.9 .3 Multriplication time

Let the multiply-conmand pulse occur τ microseconds after the read-in putse, Thens

```
1. From aection 4.8 .3 with \(\delta_{3}=0\) :
\[
t_{\text {ave }}=n\left(2 \gamma+2 \mu+1 / 2 \delta_{2}^{3}+\delta_{2}\right)
\]
\[
\text { 2. } \int \geq \tau \quad: \text { Lat } \int=0.5 \text { usec }
\]
\[
\int_{2} \sum_{n}+\tau+D \quad ; \operatorname{Let} \delta_{1}=1.65 \mu \mathrm{sec} \text { if } n=16
\]
\[
\int_{2}>2 \pi+\tau \quad: \operatorname{Let}_{2} \int_{2}=0.6 \text { मese }\left(16 氵_{n} 39\right)
\]
\[
\text { 3. If } n \oplus 16 \text {, } t_{\text {ave }} \equiv 2404 \text { usec }
\]
\[
4.10 \frac{\text { The K-ac.s } \mathrm{DI} \text { and Coacos DI multipliers on Figg. IV-20, } 21 \text { and } 22}{4020_{0} 1 \text { The operation }}
\]
```

The maximum stage time-lapses are found from Fig. IV-22 to bes

$(\mathrm{acss})_{S}$	$\gamma+\tau$
$(\mathrm{asac})_{S}$	$2 \gamma+\tau+\alpha$
$(\mathrm{sas})_{S}$	$2 \gamma+\tau$

Also from Fig. IV-22, the peratage delays ares

	σ
$a c$	δ
σ	$\sigma+\mu$

Since the perestage delays are very neariy squal and the maximum stage time-lapses are essentially equal, the maximum itme-lapses are very nearly equal and therefore both \mathbb{K} and C types controls must be considered. A \mathbb{K} type control is shown in Fig. IV-20 and a C type in Fig. IV-21.

The amithmetic section (ontting the B register) is show in Fig. IV-22. The operation is straightforward.
4.10 .2 Equipment count

Total Weighted Equipment Count $=\left\{\begin{array}{l}\frac{L 082}{402 \text { Sacs D1 }} \\ \frac{1126}{} \text { for Coac.s D1 }\end{array}\right.$

4.20.3. Multiplication time

A. Races DI (Control of Rigor IV-20)

Let the multiply command pulse occur simultaneously with the readoin pulse:

$$
\text { 3. } \begin{aligned}
t_{\max } & =2 n T+d=\tau \\
t_{\min } & =n T+\int=\tau
\end{aligned}
$$

2. T must be determined so that the multiplication process will be stopped reliably.

$$
\begin{aligned}
& \int z_{n \gamma}+(n-1) \mu+\tau=4 \% \text { : Let } \int=1.05 \mu \sec \text {, if } n=16 \\
& \text { 3. If } \mathrm{n}=16 \text {, } \text { save }^{2}=18.5 \text { fec. }
\end{aligned}
$$

B. Conc. 3 DI (Control of Fig. IV -21)

Let the multiply command pulse oecus $\tau+a \mu \boxminus e c$, after the readaln pulse. Then

$$
\begin{aligned}
& \text { i. } t_{\max }=n\left(2 z+2 \mu+f_{2}+\delta_{2}\right)+3 y+\int_{3}(16 \geq n \geq 9)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2. } \int_{1} \text { ac }=8+\tau \text { s Let } \int_{1}=0.55 \text { мвec. } \\
& \int 2: 4 \gamma+\tau \quad \text { Let } \int 2=0.7 \mu \text { aec. } \quad(26 \geq n \leqslant 9) \\
& \int_{3} \sum_{n} \gamma+(n-1) \mu+\tau-4 \gamma_{s} \operatorname{Lat} \delta_{3}=1.05 \mu \text { sec if } n=16
\end{aligned}
$$

3. If $n=16, t_{\text {ave }}$ © 18.4 Hoes.

Since the two controls give nearly equal multiplication times, let us choose the \mathbb{K} type in order to avoid the critically located delay In e units of the C type. 4.21 The Canc. 5 D2 multiplier ar Pigs. IV -23 and 24
4.11.1. The operation

An inspection of the arithmetic section shown in Fig. IV $2 h^{4}$ shows that perestage delay for the "ac" command has no fixed value, but may be either 8 or 28 . This indicates that the C type control which uses the completion pulse from the arithmetic section (instead of outputs from delay lines) may provide the fastest operation. The value of fave for the two C type controls of Figs. IV -16 and IV-23 are calculated below. The maximum stage time-lapses and the per-stage delays will be needed

$(\mathrm{ac} s)_{S}$	$\gamma+\tau$
$(\mathrm{as})_{S}$	$2 \gamma+\tau$
$(\mathrm{azs})_{S}$	$2 \gamma+\tau$

If the C type control of Fig. IV-16 is used, then from the expressions developed in section 4.8.3:

$$
t_{\text {ave }}=n\left(28+2 \mu+\frac{\delta_{2}+\delta_{3}}{2}+\delta_{2}\right)
$$

It romains to be determined whether or not the \int_{3} delay is necessary. The maximum time-lapses are

$$
\begin{aligned}
& \operatorname{acs}=n\left({ }^{\sigma} \text { ac max }\right)+\tau(n \infty 1)_{S}^{\sigma}=(n+1) \gamma+\tau \\
& s a c=2 \delta+\tau \\
& s=2 \gamma+\tau
\end{aligned}
$$

Since s: a sic, \int_{3} *. The other delay line values ares

$$
\begin{aligned}
& \int_{1} \geqslant(n+1) 8+\tau: \operatorname{Lat} \int_{2}=1.2 \text { usec. if } n=16 \\
& \int_{2}=2 \gamma+5 \quad \text { Lot } \int_{2}=0,6 \mu \text { sc. }(16 \geqslant n \geqslant 9)
\end{aligned}
$$

Then $t_{\text {ave }} 20.7 \mu$ sec when $n=16$.
If the control of Fig IV -23 is used, then n must satisfy:

$$
\begin{aligned}
& \text { minimum total delay of the "ac" pulse } \geq(8-a c)_{S} \text { and }(s-a)_{S} \\
& n \% \geqslant 2 \tau+\tau \\
& n \geq 2+\frac{\tau}{\delta} \\
& n \geq 15
\end{aligned}
$$

If n<15, then the "ac" pulse must be delayed an additional amount before emerging from the multiplyaader.

Let \int_{ac} denote the delay experienced by the "ac" pulse in passing thru the arithmetic section and \int_{S} denote the delay experienced by the "S" pulse. Then

$$
\begin{gathered}
t_{\max }=\left(2 \gamma+2 \mu+\delta_{a c} \max +\delta_{S}\right) n \\
t_{\text {min }}=\left(2 \gamma+2 \mu+\delta_{S}\right) n \\
\int_{\text {ace }}=2 \gamma n \\
\delta_{S}-\gamma(n-1)
\end{gathered}
$$

Every time that an "ac" pulse occurs in the multiplication procedure the value of fac is likely to be different. The maximum value of fac is $2 \% n$, while the minimum is $\gamma \mathrm{n}$. If we first take the average of the extremes of the multiplication time when B is all $\mathrm{one}^{\prime} \mathrm{s}$, and then average this with the multiplication time when B is all aero's (which does not depend on (ac) the result 18 8

$$
\begin{aligned}
& t_{\text {ave }} \text { ave }=\left(2 \gamma+2 \mu+\delta_{3}+\frac{\int_{a c} \operatorname{zan}+d_{\text {ac min }}}{4}\right) n \\
& -\left(2 \div n-1+\frac{2 n+n}{4}\right) \gamma n+2 \mu n \\
& \text { - (} \left.7_{4}^{7} n+1\right) 8 n+2 \mu n \\
& \text { If } \mathrm{n} \text { - } 16 \text {, then } \\
& \text { ↔. ave, ave } \simeq 18.8 \mu s e c .
\end{aligned}
$$

Although this figure may not have the sare significance as the $t_{\text {ave }}$ for the control of Fig. IV-16, namely the multiplication time most likaly to occur, it is approximately (if not exactiy) what this figure would be for the control of Fig. IV-23. At any rate this latter control is most likely slightiy iaster than the first, and if not then the overall improvement in speed which would be due to using the first rather than the second would certainly be insignificant.

The arithmetic section (Fig. IV-2h) is simple in its logical construction and nothing further need be said of 1ts operation.
4.11.2 Equipment count

Basic Cireuit	Number Used - n dipits		Total Used n -16
	Control Section	Arithmetic Section	
FF	$21+\log _{2}(n-1)$	$3 n+1$	54
GT	\% $2+\log _{2}(n-1)$	10n	166
M_{2}	2	2	18

Total Weighted Equipment Count 3856

4.11 .3 Multiplication time

If the multiply conmand pulse cccurs of microseconds after the readoin pulse, then the value calculated in section 4.11 .1 can be used, namely 28.8 jsec. 422 The Koacos D3 and C-ac.s D3 multipliers - Figs. IV-20, 21, and 25 4.12 .1 The operation

The maximum stage time-lapses are found from Fige IV 25 to bes

$(\mathrm{aczs})_{S}$	$\%+\tau$
$(\mathrm{szac})_{S}$	$2 \% * \tau+a 2 \omega$
$(\mathrm{ss})_{S}$	$2 \%+\tau$

Also Irom Fig. IV-25, the perestage delays ares

	σ
$a c$	γ
α	$z+\mu$

Since the permatage delays are very nearly equal and the maximm stage time-lapses are essentially equal, the multiplication times provided by \mathbb{K} and C type controls (Figs. IV -20 and 21) must be calculated and compared before a choice can be made.

The arithnetic section (Fig. IV-25) is different frem any other D type section of the Class I multipliess in that two digite are handled simultan eously, i,e.g a stage consists of two digit columns. This requires a rather involved arrangement of gates, although the logical design of this circuit is entirely straightforward when Boolean techniques are used.
4.12.2 Equipment count

Baric Circuit			gits	Total Used n $\quad 16$	
	Control Section		Arthmetic Section		
			$33+1$		
FF	$1+10 \mathrm{~g}_{2} \mathrm{n}$			54	
GT	$2+\log _{2} n$		$8 \mathrm{n}-2$	131	
OR_{2}	0		$5 n-3$	77	
${ }^{2} 3$	0		$2(n-1)$	30	
${ }^{6} 2$	0		$3 n=2$	46	
M_{2}	0	2	$n / 2+1$	9	21
D	1	3	0	1	3

Total Weighted Equipment Count $=\frac{1,280 \text { for Kascos D3 }}{1,224}$ for Coacos D3
4.12.3 Multiplication time
A. Toacis D3 (Contral of Fig. IV m 20)

Ist the multiply conmand pulse occur simultaneourly with the readein pulse. Thens
x. $t_{\text {ave }}=3 / 2 n T+\delta o \tau$
2. I must be determined so that the multipilication process will bo stopped reliably.

$$
\begin{aligned}
& \int 2(n / 2-1)(x+\mu)+\tau-38: \operatorname{Let} f={ }_{0} 75 \text { esec. is } n=16 \\
& \text { 3. If } n=16, t_{\text {ave }} \approx 18.1 \text { usec }
\end{aligned}
$$

B. Caaces D3 (Control of Fig. IV-21)

Let the multiply command pulse occur $\tau+2 \omega+\alpha$ after tha read-in
pulse. Thens

$$
\begin{aligned}
& \text { I. tave }=n\left(2 \gamma+2 \mu=2 / 2 \delta_{3}+\delta_{2}\right)+3 \gamma+\int_{3}\left(16 Z_{n}\right. \text { \% 9) } \\
& \text { 2. } \int_{1}^{2} \text { acss } \quad \gamma+\tau: \operatorname{Let} \delta_{1}=.55 \text { нeec. } \\
& \int_{2} \geq 4 \gamma+\tau: \quad \text { Let } \delta_{2}=.7 \mu s e c .(16 \geq n \geq 9) \\
& \int_{3}^{2}(n / 2-1)(6+\mu)+\tau-3 \gamma_{8} \text { Let } f_{3}=.75 \mu s e c \text { is } n-16
\end{aligned}
$$

3. If $n=16$, t ave 18.1 usec.
4.13 The Coasc B moltiplier: Figs. IV 26 and IV-27
4.13.1 The operation

The maximum time-lapses are deduced from Fig. IV-27 to bes

ascisec	$(n+\eta) \xi+\delta+\mu+\tau$
ascse	$n \gamma+\delta+\mu+\tau$
sesce	$\mu+\tau$
sse	$\mu+\gamma+\tau$

In addition, it is found that the delay, should equal the flipoflop tranaistion time, τ_{0}. Since the maximum timelapaes differ by a coneider= able anount, a C type control will allow the faster operation. A control which can be used with this arithmetic section is shown in Fig. IVo26.

It should be noted that the arithmetic section for this multiplier (Fig. IV-27) is the same as that for the Casoo B multiplier (Fig. IV-14) with all the carry flipoflops and their associated gate tubes replaced by dalay lines. This same device wes used to obtein the Coac. $B 2$ multiplier from the Caa.E.s B rmitiplier. As there, the new multiplior will operato silghtly faster than the original one and a conaiderable amount of equipment will be eaved.
4.13 .2 Equipment count

$\begin{gathered} \text { Basic } \\ \text { Circuit } \\ \hline \end{gathered}$	Number U8ed - n digite		Total Used$n=16$
	Control Section	Arithmatic Section	
FF	$\cdots 1 \leftrightarrow \log _{2}(n-1)$	$3 n$	53
Or	$32+\log _{2}(\mathrm{n}-1)$	$9 n-1$	149
M_{2}	2	$2 n \cdot 1$	33
D	2	n	18

4.13 .3 Multiplication time

Let the multiply command pulse occur r microssconds after the readoin pulse. Thens

$$
\begin{aligned}
& \text { 2. } t_{\max }=n\left(2 \%+2 \mu+\delta_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3. If } n \text { a } 16 \text {, }{ }_{2 v e}=20 \text { 上sec., }
\end{aligned}
$$

4.I4 The Cages BI multiplier: Figs. IV-28 and 29
4.IL.I The operation

The maximum time-lapses are found from Fig. IV-29 to be as follows (provided that the control used initiates the shift of the B register sinnuttancously with the anift command to the multiply-adder).

acssacs	$\tau+\tau+n(\alpha+\omega)+2 i$
Ecs88	cot $+\mathrm{n}(\mathrm{c}+\infty 3)+\alpha+21^{7}$
ssacs	*
888	$\left.\tau+\tau+21+2(\alpha+\alpha)^{2}\right)$

The fact that the maximum timelapses for two cormand-pairs which begin with a ahift command differ gignificantly shows that a C type control would be speedier than a K type. However, the very fact that it is these two comnand pairs whose time lapses differ requires an extre flip-flop and two extre gate tubes for the C type control to take advantage of the shorter time required by the shift, shift cormandopair. The necessary arrangementis shown in Fig. IVe28.

The arithmetic section of this mitiplier 5 s somewhat ginflar to that of the Kacs Bl multiplier (Fig. IV-9) in that it requires a level from the nth flipoflop of the \bar{B} register in order to effectively change the interconnections within the multiplyaadder. The result of this interchange is to convert the "acs" command input into an " g^{n} input. The two gate tubes on the nh B register This is based on the assumption that it takes just about as long for a fall in the carry level to propagate thru the multiplywadder as it does for a rise to propagate thru.
flipaflop are again exchanged for the diode "and" circuits of Fig. IV-29 as part of the digit forming equipment.

4.14.2 Equipment count

Total Weighted Equipment Count $=3924$
4.14.3 Multiplication time

Let the multiply command pulas occur $\tau+(n+1)(\alpha+\omega)+2 i+\alpha$ after the readdin pulse. Then

$$
\begin{aligned}
& \text { 1. } t_{\max }=\left(2 \gamma+2 \mu+\int_{1}\right)(n-1)+\int 3+(n / 2) \%+(n+1)(c+\infty)+21^{8} \\
& t_{\text {min }}=\left(3 \%+2 \mu+\int_{2}\right)(n-1)+3+(n+1)(a+m)+21 \\
& \text { 2. } \int 1_{2}\left(\gamma+\tau+2 i+n(\alpha+\omega)+a-2: \text { Let } \int_{1}=1.0 \text { sec. if } n=16\right.
\end{aligned}
$$

$$
\begin{aligned}
& 3=d_{1}+t-8 \quad=\operatorname{Lot} \int_{3}=1.5 \text { fec. ir } n=16
\end{aligned}
$$

3. If $n=16$, t ave $16_{0} 2$ sec.
4.15 The Tace B2 multiplier: Figs. IV 30 and 31
L. 15.1 The operation

The maximum tireolapses are found from Fig. IV-31 to be:

8. This value occurs when $B=10101 \ldots \ldots$ and n is oven.

A C Fype control mast be used for optimum speed because of the algnificant differences in these values. The control of Pig. IV-30 will take advantage of the shorter maximum time-lapses.

The arithmetic section for this multiplier is identical to that for the Coaes Bl multiplier except that shift gates have been added. This addition means that the multiplyeadder no longer needs an add level from control not the associated diode "and" gates. The result of this change is to dacrease the multiplication time at the expense of increasing the equipment count.
4.25 .2 Equipment count

$\begin{aligned} & \text { Basic } \\ & \text { Circuit } \end{aligned}$	Number Used - n digits		Total Used $n=16$
	Control Section	Arithmetic Section	
PF	$81+\log _{2}(n-1)$	3 n	53
01	\% $2+\log _{2}(n-1)$	$6 n+2$	104
+3,50	0	$n-1$	15
+2,50	0	1	1
H_{2}	2	$2 n+1$	35
D	2	0	2

Total Weighted Equipment Count $=4172$

4.15 .3 Multiplication time

Let the multiply command pulse occur $\tau+n(\alpha+\infty)+21+2 \alpha+\infty$
after the readoin pulse. Thens

$$
\text { 3. If } n=16, t_{\text {ave }}=2409 \text { usec. }
$$

$$
(16 \geq n 99)
$$

$$
\begin{aligned}
& \text { 1. } t_{\text {max }}=n\left(2 \pi+2 \mu+\delta_{1}+\delta_{2}\right)+(n+1)(\alpha+c t) 21 \\
& t_{\min }-n\left(2 \pi+2 \mu+\int_{2}+(n+1)(a+\omega)+21\right.
\end{aligned}
$$

$$
\begin{aligned}
& \int_{2}>2 \pi+T \\
& 8 \text { Late }=0.6 \mu s e c \text {. }
\end{aligned}
$$

4016 The Keacs D moltipliers Figs. IVw32 and 33

4.16.1 The operation

The maximum stage timeolapses and the perastage delays are found
from Pig. IV-33 to bes

$(\mathrm{acssacs})_{S}$	$2 \%+\tau+2 \mu+\alpha+20$
$(\mathrm{acss})_{S}$	$2 \%+\tau+2 \mu$
$(\operatorname{sacs})_{\mathrm{S}}$	$2 \delta+\tau+2 \mu+\alpha+\omega$
$(\mathrm{sz})_{\mathrm{S}}$	$28+\tau 2 \mu$

	σ
acs	$r+\mu$
s	$8+\mu$

Since the per-stage delays are equal and the maximum stage time-lapses are essentially equal, either a C or a K type control can be used. However, since the \mathbb{K} type control of Fig. IVe32 allows the clock pulse period to be chosen without regard to rellable stopping of the multiplication, a C type control does not appear to be of sufficient promise to be considered. The arithmetic section (Fig。IVe33) is straightiorward in its design and its operation.
4.26.2 Equipment Count

BasicCircuit	Humber used - n digits		Total Used $n \cdot 16$
	Control Section	Arithmetic Section	
FF	$\geq 1+\log _{2}(\mathrm{n}-2)$	3n	53
Gr	\% $1+\log _{2}(\mathrm{n}-2)$	$10 a-3$	162
8_{2}	0	40	64
CR_{2}	0	8	16
${ }^{4}$	0	$2 n * 1$	34.
M_{3}	0	$2 \mathrm{n}-1$	32
M_{2}	0	$n+4$	20
D	2	0	2

Total Weighted Equipment Count - 4347

4.16.3 Multiplication time

Let the multiply command pulse occur simultaneously with the reading pulse. Then

$$
\text { 2. } t_{\max }=t_{\min }=t_{\text {ave }}-n T * d_{1}+48-\tau(16 \& n \geqslant 9)
$$

4017 The Cee.ana multipliers Figs. IV 17 and 34
4.17.1 The operation

The neximun time-lapses are found from Fig. IV -Sh to bes

Since there is a significant difference in these values, the C type control of Fig. IV -11 should be used.

The arithmetic section (Fig. IV o34) was designed Prom Table III-3, Po through the use of Boolean techniques. The control of the two gate tubes feeding the er line ineach dight colum is such that both can pass a pulse at a particular step of the multiplication.

9
A fullolength carry is possibles loges when A - 101011 and Bin. 10 Since a 888 : however, both axe so mall that this point is trivial.

4.17.2 Equipment Count

Total Weighted Equipment Count $=3684$

4.17.3 Multiplication time

Let the multiply command pulse occurs it $\alpha \notin \infty$ microseconds after the readoin pulse. aThens

$$
\begin{aligned}
& \text { 1. } t_{\max }=n\left(28+2 \mu+\left(1+d_{2}+d_{3}\right)\right. \\
& t_{\text {min }}=n\left(2 \%+2 \mu+\delta_{3}\right) \\
& \text { 2. } \int_{1}^{\min }(n-2) \%+\rho \% \text { Let }=0.8 \text { sec. if n = } 16 \\
& \int_{2}^{8} 8+\tau \quad=\text { Let } 2=0.55 \mu s e c \text { 。 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3. } t_{\text {ave }} \approx 22 \text { user. }
\end{aligned}
$$

FIG: $\mathbb{Z}-1$
THE B REGISTER
FOR THE CLASS I MULTIPLIERS

FIG.IV-2
THE CONTROL
FOR THE K-a.cs BI AND K-a.cs B2 MULTIPLIERS

FIG. IV-3
CONTROL FOR C-a.cs BI AND C-a.cs B2
c-56164

FIG.IZ-4
THE a.cs BI MULTIPLY -ADDER WITH AR a AcR

An Illustration of the Procedure used by the a_{0} cs BI Multiply-Adder Fig. IV - 5

FIG.IV-7

HANDLING OF CARRIES IN THE a.cs Bz
MULTIPLY - ADDER

FIG.IV-8
AN ALTERATION IN THE ac.s B2 MULTIPLY-ADDER (ONLY THE ALTERED PORTION IS INDICATED)
A-56193

[^2]FIG. IV-II
CONTROL FOR C-a.c.s B AND C- c̄a.s B

C-56207

FIG. IV-12
THE a.c.s B MULTIPLY-ADDER WITH AR \& AcR

$B_{i}=1$

* preset to end-carry on
nth ADD-ONE PULSE

FIG. IV-13
A MIXED K-C TYPE CONTROL FOR as.c B

FIG. ID-14
CONTROL FỌR C-as.c B

THE as. ㄷ B MULTIPLY-ADDER WITH AR \& AcR

* OMIT WHEN USED FOR THE
C-a¢.S BZ MULTIPLIER
** PRESET TO END-CARRY ON
THE n- IST ADD-ONE PULSE

FIG. IV -16
c-56165

FIG. IV-17
THE ac.s B1 MULTIPLY - ADDER WITH AR \& AcR

THE ac.s B2 MULTIPLY-ADDER WITH AR \& AcR

FIG. IV-19
AN ALTERNATIVE FOR THE FIRST DIGIT COLUMN OF ac.s B2

* PRESET TO END-CARRY

ON nth ADD-ONE PULSE

$$
F / G . \pi-20
$$

CONTROL FOR K-ac.s DI AND K-ac.s D3

FIG. IV-2I
CONTROL FOR C-ac.s DI AND C-cc.s D3

* PRESET TO END-CARRY ON
$n-1$ ST ADD-ONE PULSE

FIG.IV-23

FIG IV -25
THE a\&.s D3 MULTIPLY - ADDER WITH AR a AcR

A-5 6245
FIG. IV-26
THE CONTROL FOR C - asc B

B-56243

THE ASC B MULTIPLY-ADDER WITH AR \& ACR

A-5622 4

SUFFLIED BY MAIN CONTROL AT $\angle E A S T$ U U SEC BEFCRE THE
MULTIPLY COMMAND PULSE.
FIG. IV-28
CONTROL FOR G-acs BI

THE acs BI MULTIPLY-ADDER WITH AR \& AcR

FIG IV-30
THE CONTROL FOR THE C-acs B2 MULTIPLIER

FIG IV-31
THE acs B2 MULTIPLY - ADDER WITH AR AND AcR


```
* PRESET TO END-CARRY ON
```

FIG. IV-32
쯦 CONTROL FOR K-acs D

B-5624I

FIG IV -33
THE acs D MULTIPLY - ADDER WITH AR AND AcR

Drawings required for Chapter IV

$$
\begin{aligned}
& \text { 1. A } 56157 \\
& \text { 2. A }=56158 \\
& \text { 3. } A=56592 \\
& \text { 4. C-56264 } \\
& \text { 5. Typed } \\
& \text { 6. B }=56163 \\
& \text { 7. } \therefore 56200 \\
& \text { 8. } A=56193 \\
& \text { 9. C }-56180 \\
& \text { 10. C C } 47013 \\
& \text { 11. } A=56593 \\
& \text { 12. C-56207 } \\
& \text { 13. A } 56591 \\
& \text { 14. A-56611 } \\
& \text { 15. } B-56228 \\
& \text { 16. } \mathrm{A}=56613 \\
& \text { 17. C-56165 } \\
& \text { 18. B }-56252 \\
& \text { 19. A-56192 } \\
& \text { 20. A }-56223 \\
& \text { 21. } A=56229 \\
& \text { 22. C-56322 } \\
& \text { 23. A } 56612 \\
& \text { 24. C-56272 } \\
& \text { 25. C-56233 } \\
& \text { 26. A }=5624.5 \\
& \text { 27. } B-56243 \\
& \text { 28. A } 56224 \\
& \text { 29. A }=56244 \\
& \text { 30. A } 56222 \\
& \text { 31. B-56242 } \\
& \text { 32. A } 56221 \\
& \text { 33. } B=56214 \\
& \text { 34. C }-56233
\end{aligned}
$$

Chapter V

The Class II Pulttipliess

5.1 Introduction

Consider the possibility of using the aum of q partial products as the ith digit group and summing these groups in the same order as the partial products were aumned by the Cless I multipliers. The multipliers which proceed in this manner will be called the Clase II multipliers as Long as q 1; if $q=1$ then the Class I multipliers are obteined. Thus the Class II multipliers are a direct generalization of the class I multipliers. The process of adding in one digit group will be termed a step in the multiplication. Thus I_{q} steps will be required to complete the multiplication, where I_{q} is the integer aatiarying $n / q+1 I_{q}=n / q$.

The problem of forming the $i^{\text {th }}$ digit group (temed a qoorder partial product) is more complicated than it was for the Clasa I multipliera. In fact if $q=n$ then the entire problem of performing the multiplication becomes one of designing the equipnent to form the digit proup. However, the design presented below for this equipment requires a oremendous number of diodes (and hence of isolating and amplifying circuits) when $q=n$ if n has a value such as 16. It will also be found, however, that the multiplication time decreases as q increases. Therefore, some compromise is desirable in choosing the value of q. Whatever compromise is chosen, variatione are possible according to the method ueed for summing the otgit groups, i.e., according to the specific multiplysader used. Many of the multiplyoadders developed for the Class I multipliers can be used in the realization of Class II multipliers with the main alteration that the shift right performod at each stop must be for q digits instead of one digit. This alteration may or may not require added equipment.

5.2 Realization of the Class II multipliers

5.2.1 The arithmetic section

The interconnections of the blocks which constitute a general asithmetic section are shom in Pig. Vel. A discussion of the various blocks in this figure is given belowe

5.2.1.1 Forming the digit groups

A generel deseription of the method used for forming the digit groups follows. The first digit group is the sum of the firgt of partial products which in turn is the product of the rightmost of digits of the multiplier (B in Fig. III-I) with the multiplicand (A in Figo III-1). This number will be at most $n+q$ digita in length. It can be found by ilsat devising a circuit which wiliz fom all of the $2^{q}-2$ possible products of a Q digit number with the n digits of A (omitting the zero product). Such a circuit will be called a product generator. These $2^{9}-1$ products can then be supplied to an electronic suitch controlled by the xightmost q digits of B, i.e $e_{0,}$ the outputs of the xightmost q ilip-ilops of the B register, which will select the correct product. This latter circuit will be called a proo duct selector. In order to form the next digit group, it is only necessary to shift the contents of the B register q digits to the right $s 0$ that the product selector will be controlled by the next group of q digits of B. Thus the equigment for forming the digit groups consists of the product generators the product selector and a set of shift gates used with B register. The interconnections of the flipaflops of the B register with these gates are shown in Fig. V-2. With the arrangement shown it is possible to shift the contents of the B register q digits to the right with a single pulse. It should be noticed that n is assumed divisible by q in this If.gure. The gituation when n is not divisible by will be discussed in section 5.2 .1 .3 .

The product generator is to aupply the $2^{q}-1$ products of axy q digit number with the n digits of $A_{\text {. }}$ Therefore it must have inguts from each of the n flipwflops of the A register, and it must supply $2^{q}-1$ groups 01 at most $\mathrm{n}+\mathrm{q}$ lines per group (one line per digit) as outputse The circuits designed to perform the desired function is shown in general form in Figure Ve3. It utilizes the fact that $2^{k s}$ times a binary mumber is that number shifted k digits to the leit, with zeros inserted in the k rightmost digits. No output lines are nrovided for digits which must be zere. The equations at the bottom of the Ifgura indicate how the circuit would be extended. The adder chains which occur in this product generator will require some sort of isolating circuits in the carry lines between the adders. The delay in the propagation of the carry level thru the chain must be considered when finding the opeed of the multipliex. Fusthernore, the output of one set of adders may be used to drive othes adders. For example, if $q=2$, then the 3 . 1 inesn will be used in forming 7A. Additional lsolating circuits will be needed here, and the magnitude of the additional delay must not be neglected.

The product relector to be used is a simple combination of dioda mandm and "Or" ciscuitss it is illustrated in Figo Vol by an example for which q. 2 。 A getseral circuit is dicficult to draw because it is desirable to onit lines and associated diodes which mest alway tranemit a aero, but it is mimple to derive a product selector for any value of q from the basic plan presented in this figure. Certain multiply-adders require the inverses of as well as the direct digit inputs. Inverterse must be added at the outputs of the product selector in these cases.

5.2.1.2 The multiplyoadder:

The multiply-adders developed for the Clase I multipliers can be adapted for use here. All multiply-adders will require $n+q$ digit columns with varying degrees of simplification possible in the and sections. The extra q digit colums may be considered as added to the left end of the multiply-adder to accomodate new digit columns numbered $0,-1, \ldots,-(q=1)$ e

It is highly desirable that the multiply-adders be altered so that a q digit instead of a single digit shift right is performed by any command pulas which requires 2 shift。 Beaides requiring changes in the internal connections of the multiply-adders, this alteration may also require additional equipment in each digit colum, as the case of aces Bl for example. Furthermore, the q digit shift will require that cirtain multiply-adders be extended to the right. Specifically, multiplyøaddere which do not perform a complete addttion but perform only a single partial carry at each step mut be extended $(q \propto 1)\left(I_{q} \propto 1\right)$ digit coluinns to the right, while those which shift before the addition $i s$ complete eogog asoe B must be extended by q digit columns. In any case, these added multiplyoaddar stages require less equipment than a "nomal" stage. The extension of the multiplyゅadder must be accompamied by an extenaion of the accumulator register.

In additicn to a possible effect on the equipment count of the change to a q digit shift, a change in the multiplication time may result. In particular, the necessary change of comnections within the D type multiplys adders may increase a maximum stage time-lapse slightiy, which may in tum affect the multiplication time.

It will be possible to elirainate some equipment from certain of the multiplyaadders which required extra separate shift inputs when ueed in the Class I multipliers, e.go, acs B2. These extra inputs were required because of the way in which these multipliers formed the digit groups and are not necessary when the multiplyaadders are used in Class II multipliers.

5.2 .1 .3 Use of the B register to store part of the product

If we allow the multiplier to be lost during the multiplication then a number of flipoflops and gate tubes can be saved by using the B register to store part of the product. In order that it be possible to send the outputs of the rightmost q digit columns of the $n+q$ digit column multiply-adder directly to the B register, several conditions must be satisfied. First the leftmost section of the B register must contain q flip-flops. If n is not divisible by q then q_{q} en $f l i p-f l o p s$ must be added to this section to fulfill this condition. The other conditions which must be satisfied ares (1) The multiply-adder used performs a complete addition at each step and does not shift beiore completing this addition. The B register is shifted before or at the ame time that the q completed digits of the product arrive at the B register from the multiply-adder. This condition is necessary in order that the contents of the first section of the B register are not lost.

If the Last two conditions of the preceding paragraph are not satisfied, then various alterations must be made. If the first condition is not satisficd oither because the multiplyaadder performs only a partial carry at each step, or because the multiply-adder shifts before completing the addio tion, then, as was remarked in the preceding section, the multiply-adder and the accumulator must be extended to the xipht. The q rightmost outputs of the extended multiplyadders may be sent directily to the B register provided that the second condition is met thus still saving some flip-flops. It becomes impossible to aatisfy the second condition if acs D is the multiplyaadder to be used; In this case the q digits begin arriving at the leftmost section of the B register before the acs command pulse has finished propagating thru the multiply-adder and hence before the B register can be shifted (since the digit group which controls the action of the propageting command pulse is eelected by the contents of the rightmost section of the B register). In this case a
buffer section consisting of q flipoflops and q gate tube pairs must be inm serted before the B register ${ }^{2}$. This requires that the shift of the B register be delayed after the arrival of the q digits from the multiply adder at the buffer section for approximately τ microseconds.

5.2.2 The control section

There will be just one step time for any Class II multiplier. Hence a \mathbb{K} type control whose clock pulses initiate the steps or a C type control will give approximately the same speeds of operation, as discussed in section 3.2.3.1. Experience with the design of the controls presented in Chapter IV shows that as long as the clock pulse pemiod required is great enough to ensure that the flow of clack pulses will be stopped ree liabl, then the \mathbb{X} type control will usually be preferable. K type controls were chosen for the examples of Class II moltipliers presented in section 5.4. 5.3 The multiplication time

The time for the formation of the digit groups and delays in the multiplymadder will determine the inftial time((see section 3.3). The time for the formation of the digit groups will be measured from the instent whea the outputs from the A repister flip-flops stabiliza after the readoin pulse to the time when all the outputs from the product selector have stab lised. This time must be considered in two parts: (1) A time which need be allowed only at the beginning of the multiplication and which will be known as the initial formation time (IFT). This is the time until the stabilization of the outputs from the product generator. (2) A time which elapses between a shift pulse to the B register until the stabilization of the outputs from the product selector and which must be allowed for at each step of the multiplication.

It may be permissible to overlap intervals taking advantage of flipoflop dalays and thus elfminate the need for a buffes section. However, the safe solution is chosen here.

This will be known as the final formation tine (FFT). ${ }^{2}$ The multiplyoadder time delay which must be added to the total digit group formation time to obtain the initial time is easily estimated in each particular case.

The estimetion of the step time is aimple when no buffer section is required. It is then only a matter of choosing the greater of two sumss the sum of the appropriate maximum time-lapses or the sum of the final formetion time with the delay which may be necessary between the occurrence of the first command pjlse of the step and the time when the 8 register shift can be commanded. This delay will be temed the digit grown hold time (DGHM). It is zero for all B type multiplyoadders except $\bar{c}_{\circ} \Omega_{0} s$ B for which it is equal to ल̄ぇ, and nonozero for all D type multhply-adders (fir these pres sented in Chapter IV, it is assentially the propagate time of tha first cormand pulse of a step). If a buffer section is required, then the estimas tion of the step time is complicated by the need for alloring the stabilizae tion of the buffer section flipoflops before commanding the B register shift.

The ingredients of the final time (see section 3.3) car be readiny estimated in each specific case.
5.4 Some Class II moltipliers

Only the faster of the Class II multipliers which can se developed Irom the multipiyoadders of Chapter IV will be discussed here. As an aid in discovering which multi.ply-adders to use in the construction of such meltio pliers, a comparison of their step times when $n=16$ and $q=2$ was made and is shown in Table Vol. This table indicates that either acs B2 or acos D3 would be a good choice in order to obtain a fast Class II multiplier.
2 These times for the special case $q=2$ and $n=16$ are found from Figs. Vas and 4 to bes

$$
\begin{aligned}
& \operatorname{IFT}=16(a+) * 1=0.74 \mu \text { sec. } \\
& \text { FFT }=\tau+2 a+=0.6 \mu \mathrm{sec} .
\end{aligned}
$$

inverters are not necessary on the outputs of the product selector. If they are necessarys then

$$
\mathrm{FFT}=0.7 \mu \mathrm{sec}
$$

If a multiplier is built using ac. $8 D 3$ with $q=2$ and $a K$ type control. as shown in Fig. Vo5 withs

$$
\begin{aligned}
& T=\mathrm{ac} s+s t a c=1.2 \mu s e c \\
& =\frac{\mathrm{acs}}{}=0.55 \mu \mathrm{sec} \\
& 2=\mathrm{acs}+2+\tau-3 \% \approx 1.0 \mu \mathrm{sec} .
\end{aligned}
$$

then, assuming that the readoin pulse occurs (ITL) - T $\mu s e c . b e f o r e ~ t h e ~$ maltiply-command pulse, the multiplication time if $n=16$ iss
$t=$ initial time + (no. of steps - 1) (step time) + final time
t $0.74+0.7+0.06+(8-1)(1.2)+1.0=10.9$ usec.
The equipmant count is found to be 5730, taking into account the fact that several diode level. gates can be onitted in the $A c_{-1,}, A c_{0}$ section of the multiplyoadder (aince the $A c_{\text {g }}$ fliponlop must always hold a zero after the shift cormand).

A multiplier using a alight modification of acs $B 2$ and with values of n and q of 16 and 2 is shown in Figs. IVO6 and 7. The multiplication tirne of the moltiplier when $T=0.7 \mu s e c ., d_{1}=0.5 \mu s e c$, and $2=1.4 \mu s e c$. is approximately 8,4 μ sec. The equipment count is 7320.

The multiplication time of Class II multipliers using either acs 82 or acs $D 3$ could be improved beyond the values quoted above by using a greater value of $q ;$ however, the equipment count, which is already larger in both cases than any encountered in Chapter $I V_{5}$ is thereby increased rapidly while the multiplication time decreases slowly。 Furthernore, the Class III multipliers give better results than c an be oxpected from the Class II multipliers with any velue of 9 。
$(n=16, q=2)$

Multiply Adder	Sum of Max. time lapses for onemstep ($\mu s{ }^{\circ} \mathrm{C}$)	$\begin{gathered} \mathrm{DCHP}+\mathrm{FFT} \\ (\mu \mathrm{sec} .) \end{gathered}$	Step Time (μ еес.)
a.cs Bl	$0.6+0.55$	$0+0.6$	$1.35{ }^{\text {\% }}$
a cs B2	$0.6+0.5$	$0+0.6$	1.1 \%
acs B1	0.86	$0+0.7$	0.86 \%
acs B2	0.6	$0+0.7$	0.7 \%
\%ocos B	$0.6+1.1+0.5$	$0+0.6$	2.1
as.e B]	$0.6+1.1$	$0+0.7$	2.7
ac.s BI	$0.55+2.26$	$0+0.7$	1.81
ac. 8 B2	$1.65+0.5$	$0+0.6$	2.15
ac.a DI	$0.55+0.65 \% \%$	$0.6+0.7$	1.3
ac.s D2	-	$1.16+0.7$	\$1.86
aces D3	$0.55+0.65$	$0.28+0.7$	1.2
asc B	1.6	$0+0.7$	1.6
acs B1	2.34	$0 .+0.6$	1.34
acs I	0.66	$0.6+0.7$	1.3
	$0.8 \div 0.55+0.55$	$0.8+0.7$	1.9

* It must be remembered that these arithmetic sections require a final carry operation.
\$5t Increased maximum time-lapses must be used because of the two digit shift.

$$
\begin{aligned}
& \text { 1. } A=47064 \\
& \text { 2. } A=57303 \\
& \text { 3. } D=57278 \\
& \text { 4. } B=57304 \\
& \text { 5. } A=57431 \\
& \text { 6. } A=57430 \\
& \text { 7. } D=47066
\end{aligned}
$$

FIG. V-I
ARITHMETIC SECTION OF CLASS II MULTIPLIERS

FIG. $\mathbb{Z}-2$

THE B-REGISTER FOR CLASS II MULTIPLIERS

THE PRODUCT SELECTOR CIRCUIT FOR $q=2$
ac COMPLETION

SHIFT BR PULSE

* preset to end-carry on

Iqth ADD-ONE PULSE

FIG. - 5
CONTROL FOR $K-a c . s$ D3, q

FIG. $\nabla-6$
CONTROL FOR K-acs B2, q

FIG. V-7
ARITHMETIC SECTION FOR acs $\mathrm{B} 2, \mathrm{q}=2$ AND $\mathrm{n}=16$ (OMITTING BR)

6.1 Introduction

Instead of forming and sumning the quorder partial products one by one as in the Class I and Class II multipliers, the folloring procedure is possible: The qoorder partial products may be imagined to be divided length wise into goups of p digits each, as illustrated in the example of Fig. VI-l. The way in which the digit groups are chosen is indicated in this exampie, and these groups are formed and summed in the order indicated by the numbers associated with them. If $q=1$ then the q-order partial products are in general $n+q$ digits in length, and there will be I digit groups, where I is the integer wich satisfies $(n+q) / p+1>I B(n+q) / p$. If $q=1$ then I is found from $n / p+1>I$ In n. A realization of this method can be achieved with the use of adaptations of the previously developed procuct generator, product selector and acs BI multiply-adder circuits. Other multiply-adiers of Chapter IV can be adapted for use in a Class III multiplier, but the ones developed from the acs Bl type are particularly adaptable to the case where $p>q$, as will be seen later. Furthernore, the acs BI has a relatively amall per digit column equipment count.

The Cless III multipliers may be denoted by the type of control and multiply-adier used followed by the values of p and q. Thus Kacs $B 3, p=2$, $\mathrm{q}=3$, or more briefly Kacs $\mathrm{B3}, 2 \times 3$.
6.2 The reelization of Class III multipliers
6.2.1 The arithmetic section

The general amrangement of the blocks making up the arithmetic section of a Class III moltiplier is shom in Fig. VIe2. The most striking difference beween this block diagram and that Por the arithmetic section of

The Class II multipliers (Fig. V-I) is that more than one product selector is used, Each product selector will be associated with a particular quorder partial product and will supply p digits of that product in forming a digit group. The number of q-order partial products is I_{q}, which is the integer which satisifies $n / q+1>I_{q} \geqslant n / q$. If the product selectors are controlled by the B register as shown, then the first product selector will supply digits of the I th q-order partial product, etc. It will be noted that the B registers must not be shifted during the multiplication and hence there will be no possibility of using it to store part of the product. fiowever, in the formation of the digit groups it will be found necessary to shtit the A register. It will further be found that we can use the A register for storage of part of the procuct (as is indicated by the p pairs of lines joining the multiply adder to the A register) if we are willing to lose the multiplicand during the multiplication.

A single pulse at each will be needed by the multiply-adder since we are going to consider only multiplyoadders developed from acs Bl. This step pulse will also be used to shipt the A register and to advance the product generater (see section 6.2.1.1). In one form of multiply-adder devaloped from acs $\mathrm{Bl}_{\text {, }}$, 2. final carsy pulse is required at the end of the multiplication.

Fig. VI-3(b) shows an example of Fig. VI-2 for the particular case of $n=6, p=3, q=2$. The labels on the A register Ilipmilops correspond to the digits which they hold at the beginning of the multiplication. By the end of the process these digits have been shifted into the product generator (and thereby lost) and replaced by the rightmost in digits of the product. The six gate tubes between the two sections of the A register serve both as part of the equipmênt for forning the digit groups and as the multiplyaader,
but are placed as shom for symuetry.
Certain of the Ievel Iines in Fig. VI-3(b) are labelled with the digits which they will carry when the product selectors are supplying the digits of the the group. The position and source of each digit in relation to the long-hand scheme for binary mitiplication is indicated in Fig. VI-3(s). The outputs of the product selectors are changed from the digits of one group to the digits of the next digit group by the step pulse. The step pulse is also needed by the multiplymadder in order to add the digit groups with the contents of the accumulator.

6.2.1.1 Fomation of the digit groups

The product generator for the Class III multipliers is similar to that used by the Class II moltipliers since they both utilize a k digit anipt left in order to multiply a binaxy number by 2^{k}. The Class III product generator is more complicated, however, because it must produce p digits of each quorder partial product at a time and it must supply these successively the same set of Iines. It is found that the circuit shown in Fig. VI-L wiul operate correctily. The details of the "De (for "controlled delay") unit of. this Iigure is shown in Fig. VI-5. When there is only one output from \& D_{c} unit it is understood to come from the "I" side of the Rlipoflop. These units are supplied with a pulse just before the inputs to the product generator circuit are changed with the purpose of retaining certain digits which will be needed in the formation of the next digit group.

The product generator circuit requires as inputs one lovel from each of the rightmost p digit sections of the A register. Proper operation requires that the A register be shifted p digits at a time. This may be thought of as "sensing" p digits of A at a time.

The shipt of the A register changes the inputs to the product generatore
circuit. Since the flip-flop outputs do not change immediately after the shift pulse, this pulse can also be sent to the D_{c} units and the carry units. The step pulse can be used for this purpose, and its occurrence advances the outputs of the product generator so that the product selectors can select the next digit group.

Each product selector will receive $2^{q}-1$ groups of p lines each and will put out p lines. The product selector circuits are all identical to or degenerate cases ${ }^{2}$ of the one shom in Fig. VI-6. The circuit operates exactily like that used by the Class II multipliers.

6.2.1.2 The multiply-adder

The details of the summation procedure and two multiplymadder which have been devised for its realization will now be described. This description will proceed thrv three cases: $p=q, p<q$ and $p>q$ discussed in terms of the specific examples $p=q=2 ; p=1, q=2 ;$ and $p=3, q=2$ with $n=16$ throughout. A multiplyoadder for a multiplier with any values of p and q can be designed using one of these examples as a model.
$p=q$
The example of Pig 。VI- $?^{2}$, where $p=q=2$ and $n=16$ wil1 serve as a besis Por this discussion. Figo VI-7(a) is meant to represent the arrangement of the 2 -order partial products. The digits, represented by the smallest boxes, are divided into sub-groups of $p=2$ digits each by the heavier

1. Only the product selector associated with the leftmost section of the B register can be degenerate, and this occurs when n is not divisible by q, i.e., when some of the digits of the leftmost group of q digits of B are always zero。
2. The multiplier based on this multiply-adder wes previously known as the " 2 by 2^{m};multiplier.

1ines. Fig. VI-7(b) shows the arrangement of blocks for a possible multiplyadder and the accumilator, The two lines from each product selector are assumed to supply the two digits of each subegroup in the same left-torright oxder as the two digits possess in Fig. VI-7(2). The flipollops of the solid string of $16 D_{c}$ units constitute the left hale of the accumalator. The flip flop of the remaining D_{c} unit is used for storage of carries.

We shall discuss the logical operation of this scheme by considering what happens to the first pair of digits put out by the first product selector the outline of this sub-group is emphasized in Fig. VI-F(a). Since the contents of the accumulator and carry flipmilops before the first step pulse are 211 zero ${ }^{\circ} \mathrm{B}$, there can be no carries into the lestmost pair of adders, and hence the digits under consideration will be stored unchanged in the leftmogt pair of flipoflops of the accumulator by the firgt step pulse. At the second step pulse, the complete aum of these digits with (I) the second pair of digits put out by the second product selector and with (2) any camry from adder number five added in will be stosed in the nexi pair of accumulator nlip-nlops. We shall now see where the carry which was added in originated and that it was added into the correct digit colurns This carry was generated from the sum of (1) the flust pair of digits put out by the second product selector with (2) the second pair of digits put out by the third product selector and (3) any camy entering from thesaventh adder. A check of Fig. VI-? (a) will show that this carry wes added into the proper digit column. Similarly the carry outputs of the seventh, ninth, etc. adders may be checked for their origin and proper inclusion in the surn. The casry output from the third adder is sumed with the second pair of digits put out by the first product selector, which is a correct procedure according to Fig. VI-7(a). The carry
output of the first adder will be stored by the second step pulse, and will then proceed to add with the rightmost digit of the third pair of digits put out by the first product selector. Thus all the carries are correctly handled, and the aocumilator flipoflops and the carry flipoilop, considered as the leftmost digit after the contents of the accumulator, contain the leftmost $n \neq 1$ digits of the complete sum of the first two digit groups.

The third step pulse will now cause the sum of our oxipinal pair of digits, which have been altered by summation and which are now stored in the second pair of IIp-flops, and with (2) the third pair of digits put out by the third product selector (which is as it should be according to Pig. VIe7(a) and with any (2) incoming carry, to be stored in the third pair of accumulator nlip-flops. Again all the camies can be checked and again it will be found that the accumalator flip-flops plus the carry flip-Ilop contain the leftmost $n+1$ digits of the sum of the first three digit groups. Thus after the eighth step nulse, the sum of the whole column of digite situated above ous original pair of digits, taking account of all carries armiving from the digits to the right, has been formed and the result stored in the eithth pair of accumulator fliponops, $i_{0} e_{0}$, the zightmost pair. Upon the nort step pulse, these digits will be shifted off the end of the register and sent to the A register, which is also being shifted $p=2$ digits at a time by each step pulse. The sumation of the columns to the wight of the one just considered can be similarly treced. It is found that each step pulse beginning with the second one transiers a pair of digits to the A register.

There are $I=$ q pairs of digits to be put out by each product selector. After the ninth stepping pulse, the continued repetition of the above argument shows that the leftmost $n+1$ digits of the sum of the nine digit groups are stored in the accumulator and carry flip-flops. But these include all of the nonazero dieits of the 2-order partial products and hence the left-most $n \neq 1$ digits of the final product must be those stored. Since the final product cannot exceed $2 n$ digits in length, the $n+1^{\text {st }}$ digit must be zero, $i_{0} e_{0}$, the
contents of the caxry flipeflop must be zero. The rightmost. n digits of the product will be in the A register.

The method of sumnation discussed above and illustrated in Fig. VI-7 requires a chain of 16 adders. This is undesirable if utmost speed of operas tion is desired and indicated that an effort should be made to modify the multiply-adder. Furthermore, the modification used provides a stepping-stone to multiplyadders which can be used by the multipliers for which $p<q$ and $p>q$ 。 It is a fairly simple modification of the system just discussed, but requires the addition of a considerable amount of equipment. However, it does break down the chain of 16 adders into 7 chains of two adders each. The modification is that the ceary outputs of the third, fifth, etc. adders instead of being sent to the neat adder to the left are sent to control gate tubes which in turn read into carry Inipoflops upon the occurrence of the step pulse, i.e.es D_{c} type units pulsed by the step pulse. This system is illustrated in Fig. VIw 8 (which does not show the complete multiplyaadder) and justified below.

The effect of introducing the carry storage is simply to delay the inclusion of these carries into the sumation process by one step. This one step delay necessitates that the carry flip-nlop outputs be retumed one paix. of adders to the right of the position to which the carry would otheruise have been sent. The leftmost pair of adders can be eliminated since there will never be a carry input to these and hence they will always transmit the output Of the first product selected or unchanged. After the $I=9$ th stepping pulse, all the digits of the partial products will bave been added ing however, some digits may remain in the carry flipwilops. (It may be noted that after any step pulse the digits stored in the accumulator flipoflops will not necessarily be the leftmost $n+1$ digits of the sum of several groups of digits of the quorder partial products because of the carry storage.) This necessitates a
final carry operation which is simply a highospeed carry. The blocks and the control pulse for this operation are not shown in Fig. VI~8, but are included in the drawing of Fig. VI-9.

The two schemes which have been discussed may be distinguished as the acs B3, 2×2 and the acs $B 4,2 \times 2$ multiply-adders respectively. $\mathrm{p}<\mathrm{a}$

The example of Fig. VI-10, where $p=1, q=2$ and $n=16$, is used to illustrate this case ${ }^{3}$. Fig. VI-10(a) represents the arrangement of the q-order partial products. The digits and the subogroups are in this case identical. Fig. VI-lO(b) shows the arrangement of blocks for the major portion of the multiply-adder and for the accumulator. The multiplyadder used here is taken directily from the second type discussed in the $p=q$ case and can be designated as acs BL, 1×2. The flipoflops of the solid string of $16 \mathrm{D}_{\mathrm{c}}$ units constitute the accumulator, while the Elipoflops of the remaining D_{c} units are for carry storafe.

The oniy blocks omitted from Fig. VI=10(b) are those necessary for the final carry operation. Thus the operation of the circuit for the $I=18$ step pulses which preceed the final campy cen be checked thru using this figure in a manner similar to that used above in the $p=q=2$ case. The blocks Por the final carry operation are included in the more detailed FIg。VI-II.

$p \geqslant q$

The example of Fig. VI-12, where $p=3, q=2$ and $n=26$, is used to illustrate this case. As before Fig。VI-12(a) represents the arrangement of the qoorder partial procucts, which are shown divided into subegroups of three digits each. Fig. VI-l2(b) shows the errangement of blocks for the multiplyoadder and the accumulator, omitting those necessary for the final carry operation. This multiply-adder may be designated acs Bh, 3×2.

3 Again the Rlipoflops of the solid string of 16 D units constitute the

 The multiolier based on the multiply-adder discussed here was previously known as "s = 2 ".accumulator, while the flipaflops of the remaining D_{c} units are for carry storage. The operation of the circuit for the $I=6$ step pulses which precede the final caryy can be checked thru using this figure in a manner similar to that used in the $p=q$ case.

It must be noticed that adders are cascaded vertically, that is several adders occur in the same digit column in the multiplyaadder given for this case. Since diode adders can hendle this situation with less complication of control pulses and equipment, it was stated in the inret paragraph of this chapter that multiply-adders developed from acs BI are more adaptable to the case where p>q. An alternative to the form of the acs Bl, multiply-adder used in Fig. VIel2, but which is not as good as this arrangement, is as followss The three input adder and controlled delay groups could be arranged in a diagonal proceeding from the upper right corner to the lower lest corner. In the specific example given here, this would involve a caxxy propogate thru 21 three input adders instead of a maximum of three in the preferred arrangement. Mention of this alternative is made for the sake of completeness.

The blocks for the final carry operation are included in the block diagram of Pige VIul3. The A register has been included in this figure to clarify the connection between it and the multiply-adder.

In each of the foregoing examples a multiply-adder was introduced which required a pimal carry operation. Nothing wes aaid in these examples to assure that the systems presented would perform this final carry without expor. An error would reoult if the pulee mirers in these multriplyradders and hence the complement inputs to certain accumulator flipeflops could receive two pulses separated by less than the resolution time of the Rlipaflop.

It can be shown that if $q>1$ these cextain accumulator flipeflops will receive at most one complement pulise during the final carry operation and therefore no error can occur. This demonstration makes use of the fact that the two leftmost digits of the $n * q$ digit product of any n digit binary number with any q digit binary number cannot both be unity.

6.2.1.3 Use of the A register to store part of the product

The A register must be asranged in I_{p} Eroups, where $n / p+I>I_{p} \geqslant n / p$, of p flip-ilops each as indicated in Fig. VI-13. If the outputs of the rightmost p adders of the multiply-adder (which provide $\%$ digits of the completed product) are sent directly to the leftmost group of the A register flip-11ops by the step pulse (assuming that this group contains p flipeflops extra flipaflops and gate tubes are added when necessary), then an A register will be pilied with digits of the Iinal product after the I_{p} th step pulse. Since the number of step pulses I is $\geqslant I_{p}$, a number equal to $I-I_{p}$ of buffer sections consisting of p controlled delay units each must be included between the outputs of the rightmost p adders and the leftmost group of A register flipoflops in order that no digits of the product be lost. 6.2.2 The control section

The acs BL multiply=adders described above require only one pulae per step, and, since it will be necessaxy to allow the same time for each step, a clocked type control can be used for optimum speed. A possible control is shown in Fig. VI-I4。

6.3 The multiplication time

A general expression can be developed for the multiplication time of the Koacs Bly, $p x q$ multipliers. This expression iss
the K-acs $\mathrm{Bl}_{\mathrm{l}} \mathrm{p} \times \mathrm{q}$ multipliers. This expression is:
$t \Delta t_{\text {max }}=t_{\min }=(2 n-p I+1) \gamma+\tau+\left\{\begin{array}{l}I[\gamma+\gamma+(p+1)(\alpha+\omega)+(q+1)(\alpha+\omega+i)](p+12 q+1) \\ I[\gamma+\tau+(p+1)(2 \alpha+2 \omega+i)+\alpha+\omega+i](p+1<q>1) \\ I(\gamma+\tau+\alpha+\omega)\end{array}\right.$
where $(n * q) / p+1>I \&(n+q) / p$ as before.
The clock pulse period must equal the step time. The step time is evident as the coefficient of I in the above expression and includes the full time for the fosmation of the digit groups since this must be allowed at each step. When developing the above expression the values of the delays in the control section of Fig. VI-IL4 are assumed to bes

$$
\begin{aligned}
& \delta_{1}=\tau+\left(I-I_{\mathrm{sc}}\right) r \text { where } 1+\log _{2} I>I_{\mathrm{sc}} Z \log _{2} I \\
& \delta_{2}=(2 \mathrm{n}-\mathrm{pI}) \delta+\tau
\end{aligned}
$$

6.4 The equipment count

A general expression for the equipment count can be found. Some of the facts used in the derivation follows The number of product selectors is I_{q} 。 The multiplyeadder contains $I_{q}-1$ chains of p three input adders each, and two gate tubes and a flipoflop are associated with each chain. The A register combined with the flipoflops necessary to store the outputs of the product selectors and the subsequent adder chains (exclusive of the caxry flipeflops) number $\mathrm{pI}+\mathrm{q}\left(I_{\mathrm{q}}-1\right)$. If $\mathrm{pI}+\mathrm{q}\left(\mathrm{I}_{\mathrm{q}}-1\right)-2 \mathrm{n}>0$, then this number of flipflops will be fed directiy from the leftmost outputs of the first product selector and must contain zerois upon the completion of the multiplication operation. The gensaral expression, making use of the equipment weights assigned in Chapter II, iss
$E=p\left[30 I_{p}+(b+6) \mathrm{n}-\mathrm{b} * \mathrm{c}\right]+(\mathrm{c}+110) I_{q}+50 I_{\mathrm{gc}}+102 n=2 c=20$ if $q=1$ and $I_{q} \sum_{3}$, or
$E=\left\{\begin{array}{l}p\left[6\left(3+I_{q}+I_{q}+2^{n} \propto q I q\right) 2^{q}+50 I+(b-6) I_{q}-b+c+d-48\right] \\ +q\left[2\left(I_{q}-1\right)\left(1-2^{2}-q I q\right) 2^{q}+(c+60) I_{q}-2 c+e-60\right] \\ +\left(I / 2 a+2 n 2^{n}-q I q\right) 2^{q}+70 I_{q}+50 I_{s c}+58 n-a+c+10\end{array}\right.$
if $q>1$ and $I_{q} Z_{3}$ and where if $\quad\left\{\begin{array}{l}q>2, a=130 \\ q=2, a=60\end{array}\right.$

$$
\begin{aligned}
& p>q 3 b=48, c=10, d=0, e=10 \\
& p \$ q 3 b=58, c=0, d=10, \theta=0
\end{aligned}
$$

and the intergers $I_{p}, I_{9} I_{q}$ and $I_{a c}$ satisfy

$$
\begin{aligned}
& n / p+1>I_{p} \geq n / p \\
& (n+q) / p+I>I \geq(n+q) / p \\
& n / q+1>I_{q}>n / q \\
& 1+\log _{2} I>I_{8 c}>\log _{2} I
\end{aligned}
$$

It will be noticed that all possible cases are not covered by the above expressions, but it 13 felt that all practical cases will satisfy the restrice tions given, namely I_{Q} By 3
6.5 An optimum multiplies

There is no advantage to having a multiplier operate with a sales multiplication time than that required to reduce the instruction overshoot time, O_{1} (introduced in section 1.2), to zero. Thus if the multiplication time which just reduces O_{1} to zero is specified and if n, the digit length of the numbers to be handled, is also specified, then the Kacs $B 4, p$ x q multiplier which has a minimum equipment count while giving a multiplication time less than or equal to the specified value may be considered to be the
optimum multiplier of this class. The equations to be handled in finding the values of p and q for this optimum multiplier are extremely awkward for two reasons: first they are not contimuous, and second they are transcendental because of the 2^{q} terms in the equipment count expression. The first difficulty can be removed by replacing the integers $I_{,} I_{Q}$ etc. by their lower bounds and then letting p and q vary continuously. A curve can then be drawn in the $p-q$ plane for any specified multiplication time using the new continuous time expression and the values for the time delays given in Table II-l. Furthermore, it will be found that the multiplication time increases as p decreases then q is constent, or as q increases when p is constant. Thus a set of points having integral coefficients can be determined on the paq plane such that the multiplication time associated with each point is either less than or near (it may be slightly greater) the specified velue. Substituting the time delay values from Chapter II into the new continuous equipment count expression which holds when $q>1$, it is found that the count given by this expression increases when p is increased and q is held constant and viceoversa. Thus only a few of those points of the above mentioned set which are nearest the origin need be singled out for more detailed attention since the equipment counts for the remainder will be too large. Other points for $q=1$ can easily be found and included in this group. The "exact" multiplication time for each point of this group should now be calculated, since some of these values may exceed the specified value and thus be eliminated. The exact equipment count for the remaining points can then be calculated and the multiplier with the minimum count discovered. In this way the second of the above mentioned difficulties, namely the solution of transcendental equations, is avoided.

Pertinent facts concerning the optimum miltiplier when $n=16$ and $t \leq 6.5 \mu \mathrm{sec} .$, the value which will be specified for the multiplication time required for zero O_{1} when a magnetic core memory is used, ares

$$
\begin{aligned}
& p=2, q=1 \\
& t=6.3 \mu \mathrm{sec} . \\
& E=579 \mathrm{~L} \\
& T=0.58 \text { usec. or clock } \text { Irequency }=1.72 \mathrm{mc}
\end{aligned}
$$

It should be emphasized that this is merely the optimum Kacs $\mathrm{Bl}_{\mathrm{l}} \mathrm{p}$ q multiplies.

6.6 Two Other Class III multipliers

The $K=a g s B_{4} p \times q$ multiplier having minimum equipment count when t $\$ 10 \mu \mathrm{sec}$, and $n=16$ was determined, along with the consequent values of t and E, in order to have a Class III multiplier to be compared with the previously developed multipliers in this time interval. The pertinent values are $p=3, q=2, t=8.9 \mu s e c$ and $E=5330$. The clock frequency recqured for the stated miltiplication time is 894 kilocycles per second.

The Koacs $B 4, p \times q$ multiplier with the least equipment count when $n=16$ can be determined. For this multiplier $p=1, q=2, t=19.8 \mu s e c ., \mathrm{E}=1,32 L_{4}$ and the clock frequency required is 1.0 megacycle per second.

FIG. VI-I

FIG. II -2

(b)

FURTHER DETAIL OF CLASS III MULTIPLICATION

FIG. ZI- 5
THE CONTROLLED DELAY UNIT

FIG. VI-6
A SELECTOR SWITCH FOR THE CLASS III MULTIPLIERS

FROM PRODUCT SELECTOR:

FIG. II -7
(b)

THE aç B3, 2×2 MULTIPLY-ADDER WITH ACR $(n=16)$

FIG. III-8
THE MAIN PART OF THE açs B4, 2×2 MULTIPLY-ADDER WITH AcR ($n=16$)

THE acs B4, 2×2 MULTIPLY - ADDER WITH AcR

(a)

FIG. III-10
THE MAIN PART OF THE acs B4, 1×2 MULTIPLY-ADDER WITH ACR ($n=16$)

THE acs B4, 1×2 MULTIPLY-ADDER WITH ACR

NOTE:
-- : THESE LINES ARE PRESENT WHEN $j=8$ ONLY

THE GCS B4, 3×2 MULTIPLY-ADDER WITH ACR AND AR

$$
(n=16)
$$

Chapter VII

Comparison of the Multipliers

7.1 An optimum multipliex

The equipment counts and average multiplication times of the multipliers which have been discussed are presented in Table VII-I, and a come parison of the multipliers on the basis of these two measures is greatly facilitated by the scatter plot of Fig. VII-1 (the points of which are mumbered to correspond with the entries in Table VII-I). The aid to a comparison furnished by the scatter plot is increased by circling the points corresponding to those multipliers for which $t_{\max }=t_{\min }=t_{\text {ave }} A$ dotted line is drawn on the figure at the estimated value of the maximum multiplication time which gives an instruction overshoot time of zero when a magnetic core memory is uged, thus pointing up the optimum multiplier as dee fined in gection 6.5. It is seen, the, that the optimum Class III multiplier is also the optimum multiplier of all those studied.

It is worthwhile to emphasize here the rather obvious fact that the multiplication time and the equipnent count depend partily upon the time delays and the equipment weights for the circuits which realize the logical blocks. This study aimed at minimizing these two measures thru rearrangement of the logical blocks only.

It is interesting to consider other possibilities for the definition of how to specify an optimum multiplier. Clearly the definition of optimum for a multiplier could be formally broadened so that time is variables and with each value of tine a specific, minimal equipment count multipiler (of a closed class) would be associated as optima. Then a specification of a time, wignto ficant for some reason, would automatically designate the associated optimal multipliets as the optimum. For instance for a value of $t=10 \mu s e c$. Fige VIIel

Table VII-I
Summary of the Multipliers

${ }^{2} t_{\text {max }}=t_{\text {min }} t_{\text {ave }}$ for these multipliers.
shows that multiplier 15, namely Kacs D (formerly Aas), would be an optimal multiplier. Or this scheme could be applied with equipment count as the variable if there was some maximum value of equipment count to use in find ind the optimum multiplier. If there is no significant value of either of the measures to fasten upon in defining an optimum, then perhaps it would be best to minimize timeequipment count procuct, timeeequipment count sum (probably with weighting coefficients), or some other combination of the two measures. The combination to be used might be chosen, for instance, simply because it is the easiest to work with in finding an optimum multio plier from Cless III as there sems to be no other criterion.

7.2 On a general background to the multipliers studied

The different schemes for the mechanization of multiplication are ine numerable; this report attempted to present in organized fashion only a Sew of them. This organization can be visualized as show in Fig. VII-2; The development of all the multipliers discussed here was based upon the fact that one way to find the product of two numbers is to sum the digits of the partial products. There are undoubtedly many other ways of finding products: for example, a halving and doubling procedure can be used. ${ }^{2}$

The particular multipliers which could be developed upon the above mentioned basis of sumning the digits of the partial products of course were dependent upon the logical blocks available and also upon the method used for discovering how to interconnect these blocks to achieve certain logically deo fined aims. For instance the multipliers could have been destoned using the method presented by D.A.Huffman in his MTT doctoral thesis "The Design of Sequential Switching Circuits". An unusual feature of this method is that 1 Such a situation might result if the device were to occupe a limited space and if equipment count could at least roughly be related to space requiree ments.
logical blocks for storage, such as flipmilops or controlled delay units, are not necessary but can be derived from more elementary units.

7.3 A multiplier as the nucleus of an arithmetic element

The measures of multiplication time and equipment count are useful in comparing the multipliers only if the one finally chosen is to be used only to multiply. However, if it is to operate as part of a general purpose comm puter then, since equipment must be conserved, it is important that part of the equipment used to multiply also be used to add, subtract and divide. Varying amounts of additional equipment will be needed to convert the different multio pliers introduced into such arithmetic elements, A count of this equipment plus the original equipment count, and the SAIT introduced in section 1.1 could be used for comparing the arithmetic elementa resulting from the various multipliers.

AIthough beyond the scope of this report, a brief consideration of the steps which must be teken to convert the various multipliers into arithmetic elements and of the concomitant equipment needs is given in the next three sections. No consideration is given to the times required for the added operao tions however.

7.3.1 Adaptation of the multipliers for addition

If one of the numbers to be sumned is placed in the eccumulator and the other in the A register, then many of the Class I multipliers need only the addition of a control to supply the proper commands to form the sum. The Class I multipliers which combine a shift right with a command necessary to form the sum required, in addition to a control, gate tubes so that a shift left can be per ${ }^{2}$ See Table 13.4 and the accompanying text on page 204 of Synthesis of Electronic Computing and Control Circuits by the staff of the Harvard Computation Laboratory, Harvard University Press, 1951.
formed as the last command of the sumation sequence. Since a separate shift left conmand is oiten required in an arithmetic element these gate tubes may not be "excess" equipment, i.e., equipment used only for summations. The foregoing remarks apply also th the Class II multipliers with the one alteration that the shift left must be for q digits instead of one digit. In addi= tion, the rightmost q digit columns of the B register must be initially set to $0^{\cdots} 01$.

If for the Class III multipliers for which p 害 q the rightmost p digits of the A register are set to 0.0.01: then one of the numbers to be sumped can be placed in the B register., and the digits of this number will appear on appros priate lines fran the product selectors. However, if $p \& q$ considerable additional equipment in the form of flipmilops, three input adders, etc, will ne needed, since one of the numbers to be summed can no longer be placed in the B register. This is so because the product selectors no longer provide a sufficient numbers of Iines to fumish the entire contents of B to the (insurficient numbers of) adders. The extra Mipoflops will be used to Pill in the "gaps" in the carry register: the number to be summed can then be stored in this register. The extra adders will be used to make up a "complete string" with those already present. Level "and" gates and "or" gates mill also be necessary in order to allow the effective interchange of connections which will be necessary within the device whenever it is to be converted to an adder. Furthermore, efther the A register os the B register must be cleared initially.

For either of the above cases of the relative values of p and q the other number to be summed can be placed in the accumulator register and then shifted p di.gits to the left.
(An extra set of shift gates is therefore required as well as an extension of the accurmulator to the left by a few flipoflops and the addition of a few three input adders.) The sum will then be formed by pulsing the step line.

7.3.2 Sign handling and adaptation for subtraction

No mention has been made of designing the multipliers to handle negative numbers; but since the magnitude of the procuct of taso numbers is independent of their signs, any maltiplier that will handle positive numbers can be converted to hanole both positive and negative numbers by the addition of: (1) fliponlops for storage of the signs, and (2) a very simple control circuit using the outputs of the sign storage flip-flops to determine the sign of the product.

A somewhat more complex control must be added if the multiplier is generalized to a device able to sum both positive and negative numbers by making use of l's (or "9's") complements. ${ }^{3}$ Such a device can be made to subtract simply by inverting the one's and zero's and the sign of the number to be subtracted and then proceeding as in additions.

7.3.3 Adaptation for division and other operations

Once the arithmetic element is able to subtract, the main alteration necessary in order that it be able to divide is the addition of a divide control unit. The ability to perform other operations may also be required of the arithmetic element such as the shift left already mentioned above and the "mask" or "surnomoduloutwo" operation (a partial add wi thout carry storage).

See Digital Computer Laboratory Report R-127, Vol. I, section 4.12.

A conclusion can be dram from sections 7.3.1 thru 7.3.3 that all the multipliers with the exception of those of Class III for which $p<q$ are roughly comparable from the standpoint of the equipment to be added when used as the nucleus of an arithmetic element.
7.4 Logical complexity and its effect upon serviceability

It has been suggested that the realizations of the Class III multipliers would be more difficult to service than those of the Class I and Class II multipliers because the former are logically more corplex than the latter. The authors feel that the Iogical complexity of the Class III multipliers is not sufficiently greater than thet of the other two classes to cause more than a negligible increase in the difficulty of servicing provided the groups of three input adders and controlled delay units in the multiply-adder of such a multiplier are treated as units, e.ge, each group or esch member of each group could constitute a single plug-in unit.

[^0]: 3. The truth of this statement has been established by experience with the Whirlwind I computer. See Digital Computer Laboratory Engineering Note E-536。
[^1]: 5 If the multiply-adder does not otherwise perform a separ ates simple shift operation, then it must usually be provided with the ability to do so. The exceptions are the multipliers which perform a "cs" operation.

[^2]: * preset to end-carryon $n-1$ SI ADD-ONE PULSE.

