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Abstract

This report presents a theoretical study of the transmission of infor-
mation in the case of discrete messages and noiseless systems, The study
begins with the definition of a unit of information (a selection between
two choices equally likely to be selected), and this is then used to deter-
mine the amount of information conveyed by the selection of one of an
arblitrary number of choices equally likely to be selected, Next, the average
amount of information per selection is computed in the case of messages con-
sisting of sequences of independent selections from an arbitrary number of
choices with arbitrary probabilities of theilr being selected., A recoding
procedure is also presented for improving the efficiency of transmission by
% reducing, on the average, the number of selections (digits or pulses) re-
quired to transmit a message of given length and given statistical character,
The results obtained in the case of sequences of independent selections are
extended later to the general case of non-independent selections, Finally,
the optimum condition is determined for the transmission of information by
means of quantized pulses when the average power is fixed,




THE TRANSMISSION OF INFORMATION

Introduction

It is the opinion of many workers in the fleld of electrical communi-
cations that the communication art 1s today at a major turning point of its
development. The obJjective of almost all electrical communication systems
has been, up to now, to eliminate distance 1n some form of human activity or
relationships between men. Telegraph, telephone and television are typlcal
examples of such communication systems. We may add to these teletype, tele-
control and telemetering. It is interesting to note that the names of all
these communication systems involve the prefix tele, meaning "at a distance”.

Although, for obvious reasons, forms of communication over distances
much greater than the ranges of human senses and reach were first to recelve
attention, the magnitude of the distance involved is not of primary impor-
tance from a logical point of view in the concept of communication. Com-
munication 1s basically any form of transmission of information, regardless
of the distance between the transmitter and the recelver. 1In a broader
sense, the field of communication includes any handling, combining, comparing
or employing of information, since such processes involve and are intimately
connected with the transmission of such information.

It is clear, then, that most human activities involve communication in
a broad sense, and, in particular, those activities which are considered of
higher intellectual type because they depend to a high degree on the process
of "thinking". Thinking itself, in fact, involves a natural communication
system of a complexity far beyond that conceivable for any man-made system.

The above considerations point clearly to a very wide fileld of useful
applications of the communication art which has hardly been touched as yet.
It is to be expected that each application should present problems of a
higher order of complexity than those encountered in the past. Consequently,
it 1s also to be expected that the solution of these problems should neces-
sitate the use of more powerful analytical tools and, particularly, should
require a more fundamental study of the process of transmission of informa-
tion. As a matter of fact, the first and most significant step in the
direction of such a study was made by Norbert Wiener (1) in connection with
the development of predictors for antiaircraft fire control. The statistical
nature of this problem led him to the realization that all communication
problems are fundamentally of a statlistical nature, and must be handled
accordingly. He argued that the signal to be transmitted in a communication
system can never be considered as a known function of time, because if it
were a priori known 1t could not convey any new information and therefore
would not need to be transmitted. On the other hand, what can be known




a priori about a signal to be transmitted is its statistical character —
that is, for instance, the probability distribution of its amplitude., In
addition, it is equally clear, that noise, which plays such an important
part in commnication problems, can be described only in statistical terms.
It follows that all communication problems are inherently statistical in
nature, and that disregarding this fact may lead to unexplainable inconsist-
encies in addition to precluding a deeper understanding of such problems,

The statistical theory of optimum prediction and filtering developed
by Wiener led further to the realization of the need for a basic and general
criterion for judging the quality of communication systems, In fact, the
mean-square error criterion used by Wiener in this part of his work is dic-
tated by mathematical convenience rather than by physical considerations;
consequently it may not be useful in certain practical problems, The search
for a more appropriate criterion leads naturally to the question of what is
the operation that a communication system must perform, If we take as an
example a telegraph system, it might seem at first obvious that such a system
mist reproduce at the output each and every letter of the input message in
the proper order. We may observe, however, that if one letter is received
incorrectly, the word containing it is still perfectly understandable in
most cases, and so, of course, is the whole message. Moreover, the message
would still be comprehensible if, for instance, all the vowels were elimi-
nated (which is what is done in written Hebrew). On the other hand, the
incorrect transmission of a digit in a number would make the received mes-
sage incorrect,

It appears therefore that the transmission of the information conveyed
by a written message is what we wish to obtain and that this is not neces-
sarily equivalent to the transmission of all the letters contained in the
written message. More precisely, it appears that the different symbols,
letters or figures contained in a written message do not contribute equally
to the transmission of information — so much so, that some of them may be
completely unnecessary. Similar conclusions are reached by considering
other types of communication systems, In particular, the recent work on
the Vocoder (2) and the clipping of speech waves (3) has provided consider-
able evidence in the same general direction.

The above considerations are relevant to another problem with which
communication engineers are becoming more and more concerned, namely, that
of bandwidth reduction. As a matter of fact, the Vocoder was developed
primarily for the purpose of reducing the bandwidth required for speech
transmission. It is clear that if different parts of a message are not
equally important, some saving in bandwidth might be possible by providing
transmission facilities which are proportional to the importance of these

different parts., The bandwidth problem, in turn, 1s intimately connected
with the noise-reduction problem. In fact, all the different types of
modulation developed for the purpose of noise and interference reduction
require a bandwidth wider than that required by amplitude modulation. This
method of paying for an improved signal-to-noise ratio with an increased
bandwidth appears to be the result of some fundamental limitation which,
however, the conventional approach to communication problems has failed to
clarify.

The above discussion of some of the problems confronting or likely to
confront the communication engineer indicates clearly the necessity of pro-
viding a measure for the "thing" which is to be transmitted and which has
been vaguely called "information". Such a measure will then permit a quan-
titative and more fundamental study of the process involved in the trans-
mission of information which, in turn, will lead eventually to the design
of better and more efficient communication devices. A considerable amount
of work in this direction has already been done independently by Norbert
Wiener (4) and Claude Shannon (5). The work of Wiener is particularly out-
standing because of its philosophical profoundness and its importance in
many branches of science other than communication engineering. Mention
should be made also of the pioneering work of Hartley (6) and of the more
recent work of Tuller (7).

This paper presents the work done by the author in the past year on
the transmission of discrete signals through a noiseless channel. Although
most of the results obtained have already been published by Wiener and
Shannon, it 1s felt that the method of approach used here is sufficiently
different to justify this redundant presentation.

I. Definition of the Unit of Information

In order to define, in an appropriate and useful manner, a unit of
information, we must first consider in some detail the nature of those
processes in our experience which are generally recognized as conveying
information. A very simple example of such processes 1s a yes-or-no answer
to some specific question. A slightly more involved process 1s the indica-
tion of one object in a group of N objects, and, in general, the selection
of one choice from a group of N specific choices., The word "specific' is
underlined because such a qualification appears to be essential to these
information-conveying processes. It means that the receiver 1s conscious
of all possible choices, as 1is, of course, the transmitter (that is, the
individual or the machine which is supplying the information). For instance,
saying "yes" or "no" to a person who has not asked a question obviously does
not convey any information. Similarly, the reception of a code number which




1s supposed to represent a particular message does not convey any informa-
tion unless there is available a code book containing all the messages vith
the corresponding code numbers,

Considering next more complex processes, such as writing or speaking,
we observe that these processes consist of orderly sequences of selections
from a number of specific choices, namely, the letters of the alphabet or
the corresponding sounds, Furthermore, there are indications that the sig-
nals transmitted by the nervous system are of a discrete rather than of a
continuous nature, and might also be considered as sequences of selections.
If this wvere the case, all information received through the senses could be
analyzed in terms of selections. The above discussion indicates that the
operation of selection forms the basis of a number of processes recognized
as conveying information, and that it is likely to be of fundamental impor-
tance in all such processes. We may expect, therefore, that a unit of
information, defined in terms of a selection, will provide a useful basis
for a quantitative study of communication systems.

Considering more closely this operation of selection, we observe that
different informational value is naturally attached to the selection of the
same choice, depending on how likely the receiver considered the selection
of that particular choice to be, For example, we would say that little
information 1s given by the selection of a choice which the receiver was
almost sure would be selected. It seem appropriate, therefore, in order to

avold difficulty at this early stage, to use in our definition the particular

case of equally likely choices — that is, the case in which the receiver has
no reason to expect that one choice will be selected rather than any other.
In addition, our natural concept of information indicates that the informa-
tion conveyed by a selection increases with the number of choices from which
the selectlon is made, although the exact functional relation between these
tvo quantities is not immediately clear,

On the basis of the above considerations, it seems reasonable to define
as the unit of information the simplest possible selection, namely, the
selection between two equally likely choices, called, hereaftér, the "ele-
mentary selection". For completeness, we must add to this definition the
postulate, consistent with our intuition, that N independent selections of
this type constitute N units of information. By independent selections we
mean, of course, selections which do not affect one another. We shall adopt
for this unit the convenient name of "bit" (from "binary digit"), suggested
by Shannon, We shall also refer to a selection between two choices (not
necessarily equally likely) as a "binary selection", and to a selection from
N choices, as an N-order selection. When the choices are, & priori, equally
likely, we shall refer to the selection as an "equally likely selection",

We can now proceed to develop ways of measuring the information content of
discrete messages in terms of the unit just defined, Most of this paper
will be devoted to the solution of this problem.

II. Selection from N Equally Likely Choices

Consider now the selection of one among & number, N, of equally likely
choices, In order to determine the amount of information corresponding to
such & selection, we must reduce this more complex operation to a series of
independent elementary selections, The required number of these elementary
selections will be, by definition, the measure in bits of the information
given by such an N-order selection.

Let us assume for the moment that N is a power of two. In addition
(just to make the operation of selection more physical), let us think of
the N choices as N objects arranged in a row, as indicated in Figure 1.

Binary
Number

Fig. 1 Selection procedure for
2nd 1st L >rd equally likely choices.,
Div. Div. Div.

These N objects are first divided in two equal groups, so that the object
to be selected is just as likely to be in one group as in the other. Then
the indication of the group containing the desired object is equivalent to
one elementary selection, and, therefore, to one bit. The next step con-
sists of dividing each group into two equal subgroups, so that the object
to be selected 1s again just as likely to be in either subgroup. Then one
additional elementary selection, that is a total of two elementary selec-
tions, will suffice to indicate the desired subgroup (of the possible four
subgroups). This process of successive subdivisions and corresponding ele-
mentary selections 1s carried out until the desired object is isolated from




the others., Two subdivisions are required for N = 4, three for N = 8, and,
in general, a number of subdivisions equal to logzl, in the case of an
N-order selection.

The same process can be carried out in a purely mathematical form by
assigning order numbers from O to N-1 to the N choices. The numbers are
then expressed in the binary system, as shown in Figure 1, the number of
binary digits (0 or 1) required being equal to logzﬂ. These digits represent
an equal number of elementary selections and, moreover, correspond in order
to the successive divisions mentioned above, In conclusion, an N-order,
equally likely selection conveys an amount of information

Hy = log N . (1)

The above result i1s strictly correct only if N is a power of two, in
which case Hl is an integer, If N is not a power of two, then the number of
elementary selections required to specify the desired choice will be equal
to the logarithm of either the next lower or the next higher power of two,
depending on the particular choice selected. Consider, for instance, the
case of N = 3., The three choices, expressed as binary numbers, are then

00; 01 ; 10 .

If the binary digits are read in order from left to right, it is clear
that the first two numbers require two binary selections — that is, two
digits, while the third number requires only the first digit, 1, in order to
be distinguished from the other two, In other words, the number of elemen-
tary selections required when N is not & power of two is equal to either one
of the two integers closest to 1032N. It follows that the corresponding
amount of information must lie between these two limits, although the sig-
nificance of a non-integral value of H is not clear at this point., It will
be shown in the next section that Eq.(1l) is still correct when N is not a
power of two, provided HN is considered as an average value over a large
number of selections,

III. Messages and Average Amount of Information

We have determined in the preceding section the amount of information
conveyed by a single selection from N equally likely choices., In general,
however, we have to deal with not one but long series of such selections,
wvhich we call messages. This i1s the case, for instance, in the transmission
of written intelligence. Another example is provided by the communication
system known as pulse-code modulation, in which audio waves are sampled at
equal time intervals and then each sample is quantized, that is approximated
by the closest of a number N of amplitude levels,

Let us consider, then, a message consisting of a sequence of n succes-
sive N-order selections. We shall assume, at first, that these selections
are independent and equally likely. In this simpler case, all the different
sequences which can be formed equal in number to

s = N, (2)

are equally likely to occur. For instance, in the case of N = 2 (the two
choices being represented by the numbers O and 1) and n = 3, the possible
sequences would be 000, 001, 010, 100, 011, 101, 110, 111. The total number
of these sequences is S = 8 and the probability of each sequence is 1/8.

In general, therefore, the ensemble of the possible sequences may be con-
sidered as forming a set of S equally likely choices, with the result that
the selection of any particular sequence ylelds an amount of information

Hg = log,8 = n log,N. (3)

In words, n independent equally likely selections give n times as much
information as a single selection of the same type. This result is certainly
not surprising, since it is just a generalization of the postulate, stated
in Section II, which forms an integral part of the definition of information.
It is often more convenient, in dealing with long messages, to use a
quantity representing the average amount of information per N-order selection,
rather than the total information corresponding to the whole message. We
define this quantity in the most general case as the total information con-
veyed by & very long message divided by the number of selections in the
message, and we shall indicate it with the symbol HN’ wvhere N is the order
of each selection., It is clear that when all the selections in the message
are equally likely and independent and, in addition, N is a power of two,
the quantity HN is just equal to the information actually given by each
selection, that 1s

Hy = % log,8 = 1032N . (%)

We shall show now that this equation is correct also when N is not a power
of two, in which case HK has to be actually an average value taken over a
sufficiently long sequence of selections.”

The number S of different and equally likely sequences which can be
formed with n independent and equally likely selections is still given by
Eq.(2), even when N is not a power of two. On the contrary, the number of
elementary selections required to specify any one particular sequence must

* The author is indebted to Mr. T. P. Cheatham, Jr. (of this Laboratory) for the

original idea on which is based both this proof and the corresponding recoding
procedure (see Section IV).




be written nov in the form messages are first arranged in order of their probabilities, which can be

easily computed if the probabilities of the cholces are known. The divisions

O T at, (5) in groups and subgroups are then made successively without changing the order
wvhere d is a number, smaller in magnitude than unity, which makes BS an of the messages, as 1llustrated in Figure 2, In this manner, the smaller
‘ integer and which depends on the particular sequence selected. The average subgroups will contain messages with equal or almost equal probabilities, so
| amount of informstion per N-order selection 1s then, by definition, that further subdivisions can be performed satisfactorily,
It 1s clear that when the above procedure is followed, the number of
Hn =3.11m l(10328 + d) (6) binary selections required to separate any message from the others varies
n -
n-e
‘ Probabilities of Groups Obtained
Since N is a constant and since the magnitude of d is smaller than unity I
by Successive Divisions
while n approaches infinity, this equation together with Eq.(2) ylelds
= ¢ I II IIT Iv A VI Recoded
Hy = log N . (7) Div. |Div. | Div. |Div. |Div. | Div. |Message | P(1) | Message P(i)Bg(i) {
| We shall consider now the more complex case in which the selections, 00 0.49 | o 0.49 ;
‘ although still independent, are not equally likely. In this case, too, we 0.49 ‘
wish to compute the average amount of information per selection, For this 0.51 01 0.1%4 100 0.42
purpose, we consider again the ensemble of all the messages consisting of 0.14
n independent selections and we look for a way of indicating any one partic- 0.14 10 0.1% | 101 0.42
ular message by means of elementary selections., If we were to proceed as 0.28
before, and divide the ensemble of messages in two equal groups, the selec- 0.23 02 0.07 1100 0.28
tion of the group containing the desired message would no longer be a 0.07
selection between equally likely choices, since the sequences themselves 0.07 20 0.07 1101 0.28
are not equally likely. The proper procedure is now, of course, to make 0.14
equal for each group not the number of messages in it but the probability 0.09 11 0.04 1110 0.16
of its containing the desired message. Then the selection of the desired 0.0k
group will be a selection between equally likely choices. This procedure -
0.05 12 0.02 | 11110 0.10
of division and selection is repeated over and over again until the desired 0.02 ¢
message has been separated from the others. The successive selections of ;
0.03 21 0.02 | 111110 0.12
groups and subgroups will then form a sequence of independent elementary 0.02 ¢ K
selections, 0.01
One may observe, however, that it will not generally be possible to 4 22 0.01 11l e
form groups equally likely to contain the desired message, because shifting (B ) - 2.33
any one of the messages from one group to the other will change, by finite ' Rt
amounts, the probabilities corresponding to the two groups. On the other At
Fig. 2 Recoding of messages consisting of 2 t —order
hand, if the length of the messages 1s increased indefinitely, the accuracy | selections, for choice probabilities p(0) = 0.7, p(1) = 0.2,
‘ with which the probabilities of the two groups can be made equal becomes - p(2) = 0.1, H3 = - [0.7 10g,0.7 + 0.2 10g,0.2 + 0.1 log, 0.1]
‘ better and better since the probabllity of each individual message approaches = 1.157. H
zero. Even so, when the resulting subgroups include only a few messages For original code n = -10%3 =0.73 ;
1 after a large number of divisions, it may become impossible to keep the 2
j j probabilities of such subgroups as closely equal as desired unless we pro- R n 2H5 - 0.993
o 1 ) o = 1—5— L . .
|l ceed from the beginning in an appropriate manner as indicated below., The %;av.
Al

e e




from message to message. Messages with a high probability of being selected
require less binary selections than those with lower probabilities, This
fact 1s in agreement with the intuitive notion that the selection of a
little-probable message conveys more information than the selection of a
more-probable one. Certainly, the occurrence of an event which we know

& priori to have a 99 per cent probability is hardly surprising or, in our
terminology, ylelds very little information, while the occurrence of an
event which has a probability of only 1 per cent Vields considerably more
information. More precisely, as shown below, if P(1) is the probability
of the 1th message, the number of binary selections required to indicate
this message will be an integer By(1) close to -logQP(i). In fact, P(1)

is just the probability of the last subgroup obtained by successively
halving (approximately) the probability of the whole ensemble of messa%es
(vhich 1s unity) a number of times equal to Bg(1), so that P(1) & o~ 8§ 1).
By making the messages sufficiently long — that is, the number n of N-order
selections sufficiently large — the integer Bs(i) can be made to differ in
percentage from -logzP(i) by less than any desired amount., Hence, in this
limiting case, we can write

Bg(1) = -log,P(1) . (8)

Let us consider now a sequence of M selections of messages, each message
consisting of n N-order selections (forming a sequence of nM selections).
By making the number M sufficiently large,we can be practically sure that
the 1th messagé will appear in the sequence with a frequency as close to
P(1) as desired. Therefore the number of binary selections required on the
average to select one message, that 1s, "the mathematical expectation of
BS"’ will be

S-1

E(Bg) = » P(1) Bg(1) . (9)
1=0

The average amount of information per N-order selection 1is then, from
Eqs. (8) and (9),

E(Bs) . S-1
= um- @) > R(1) 1egP(1) ,  (10)
ey 1=0

H

Bl
that 1is, the 1imit of the ratio of the number of binary selection required,
on the average, to select one message to the number of N-order selections
in the message.

Now let p(k) be the probability of the kP cholce (of the N), and n,

6=

h h

be the number of times the kt choice 1s selected in the 1t message
(sequence of n selections). The probability of the 1th message 1s

N-1
(1)
P(a) =[] (D)) % (11)
k=0

The number of binary selections required to indicate this message can be
written as

N-1 n (1) N-1
Bg(1) = —log, | | | [p(k)] == > o (1) logp(x)  (12)
k=0 k=0

with any degree of accuracy desired. In the limit when n approaches infinity
these binary selections become elementary selections, that 18, binary selec-
tions between equally likely choices. We must now compute E(Bs) according

to Eq.(9). The number of sequences of selections, that 1s, messages, to

which correspond the same values of P(1) and Bs(i), is equal to the number

of different permutations of the choices selected in the 1th sequence; that

18, to
ni

)

i n, (1)!

k=0

It follows that the average value of Bs(i) is given by

' N1 B
E(Bg) = - | | 2| | T T [p(x)]

nk: k=0
k=0
(13)
N-1
x Z n, log,p(k) ,
k=0

where the n, and p(k) are always positive and subject to the conditions

N—1
an=n ’ (14)

k=0

N-1
> plk) =1 . (15)

k=0

1
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The overall summation in Eq.(13) is made over all possible combinations of
integral positive values of the n, which satisfy Eq.(1%4).
In order to compute the values of E(Bs) we begin by expressing the
factorials in Eq.(13) by means of Stirling's formula (8)(9).
n! = /orn n® e™® (16)

valid for large values of n. We obtain then

' N1 n,
e || )]

k=0
T—T_nk'

k=0
.
g e T URm R ey,
1T v =0

k=0

where

-1 -1/2
TT =) T

k=0

(N-1)/2 [3=2 Xy
T W[RQ‘J}

X
k=0 - K

Y,

The variables X, = nk/n are always positive, smaller than unity and subject

to the constraint
N-1
k=0

It is convenient, at this point, to consider the function f(x) as a
continuous, rather than a‘discontinuous, function of the Xy and to transform
the summation of Eq.(13) into an integral. We observe, in this regard, that
when n, varies from zero to n,x, varies from zero to one, It follows that
to a unit increment of n, (nk takes only integral values) corresponds an
increment of xk equal to 1/n, Therefore, when n approaches infinity, to the
unit increments of the n, correspond the differentials dx, = 1/n. 1In con-
clusion, the summation of Eq.(13) can be transformed (10) into an integral
and Eq.(10) then becomes

N1
Hy = — lim [dxl fdxz fdx,_l £(x) Z x log,p(k) | (20)
k=0

n-oo

The integration 1s extended over the region of the hyperplane lefined by

§P-

Eq.(19), in which all the X, are positive and smaller than one, It will be

noted that in Eq.(20) x, 1s considered as a function of all the other x,.

N—1
xo=1‘Z"k 5 (21)
k=1

so as to limit the integration to the above-mentioned hyperplane.

To compute the integral appearing in Eq.(20), we observe first that the
integral of f(x) alone over the same region represents the summation of the
probabilities of all possible messages consisting of n selections, provided,
of course, that n is sufficiently large., Therefore, the integral of f(x)
rust be equal to unity for all large values of n. On the other hand, as
shown in Appendix I, f(x) has a peak at a point which approaches X, = plk) .
vhen n approaches infinity. The height of this peak is proportional to
(N—l)/nz. It follows that when n approaches infinity, f(x) becomes a delta-
function, or unit impulse, located at x, = p(k). The integral of Eq.(20)

is, therefore, equal to the value for X = p(k) of the rest of the integrand,

that 1s, of the summation. Eq.(20) yields finally

N-1
Hy = -kZO p(k) logyp(k) |, (22)

which 1s then the average amount of information per N-order selection.

The conclusions which can be reached from the evaluation of the integral
in Eq.(20) extend far beyond Eq.(22). It is easy to see that if the function

N-1

Z x, log,p(k)

k=0

were any other finite function of the Xy the limiting value of the integral
would still be equal to the value of the function for x, = p(k). In other
words, the expectation (or average value) of any function of the x, 18 equal
to the value of the function itself for X, = p(k). From a physical point of
view, we can say that the ensemble of possible sequences of selections can
be divided in two groups. The first group consists of sequences for which
the frequenciles Xy of occurrence of the different choices differ from the
probabilities p(k) of the choices by less than amounts which approach zero
as 1//n when n approaches infinity. The total probability of the sequences
in this group approaches unity when n I1ncreases indefinitely, and therefore
the number of sequences in this group approaches

-13%-




N—1
-np(k nH
e T S (23)
k=0

The second group consists of all other sequences, and its total probability
approaches zero when n approaches infinity,

The sequences of the first group are all equally probable and, there-
fore, the selection of one of them out of the group requires s number of
binary selections equal to

log M = nHy . (2%)

In other words, the sequences of the first group can be represented by means
of sequences of n HN binary digits, that is HN digits per N-order selection.
All the other sequences together, regardless of the way in which they are
represented, cannot increase by any finite amount, beyond HN’ the number of
binary digits required on the average per N-order selection.

The expression for HN obtained above indicates that HN can be considered
as the expectation of log, [1/p(k)]. In other words, we may say that the
selection of a particular choice k conveys an amount of information equal to
the logarithm-base-two of the reciprocal of its probability. This inter-
pretation is fundamental. It will be shown later to apply also to the
general case of non-independent selections, in which case p(k) will be
substituted by the conditional probability that the kth choice will be selec-
ted, based on the knowledge of all preceding selections,

It is easy to see from Eq.(22) that HN vanishes only when all but one
of the p(k) are equal to zero, in which case the one different from zero
must be equal to unity. In other words, HN vanishes only when the choice
vhich will be selected i1s known & priori with unity probability. In this
instance, it 1s intuiltively clear that no information is being transmitted.
On the other hand, HN is a maximum (as shown in Appendix I), when all the
p(k) are equal, that is, when there is no a priori knowledge at all about
the selections. Under these circumstances, Eq.(22) reduces to Eq.(7), since
p(k) = 1/n. The manner in which HN varies with the probabilities of the
choices is illustrated in Figure 3, for the particular case of N = 2,

The amount of information conveyed by a message of given length was
defined above as the number of independent elementary (binary, equally likely)
selections required, on the average, to specify such a message, The notion
of a minimum number of binary selections required did not enter the defini-
tion. It should be intuitively clear, however, that the minimum number of
binary selections required, on the average, to specify a message is equal
to the average information conveyed, or, in other words, the number of
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binary selections becomes a minimum when the selections are equally likely
and independent, To prove this identity, we observe that the amount of
information conveyed by a sequence of independent binary selections is a
maximum when the selections are equally likely., Conversely, therefore, it
is always possible to represent any sequence of m binary, not equally likely
selections with &a number of elementary selections smaller, on the average,
than m, It follows that no binary representation of a message can be ob-
tained with a number of selections smaller than the amount of information
conveyed, It 1is clear, of course, that all message representations, which
employ independent equally likely selections,require,on the average,the same
number of selections, It will be shown later that a larger number of
selections is required whenever non-independent selections are used.

It is appropriate to point out here that the mathematical form of
Eq.(22) suggests a very interesting analogy between information and entropy,
as expressed in statistical mechanics. In fact, HN appears formally as the

" entropy of a system whose possible states have probabilities p(k). For a

physical interpretation of this analogy, the reader is referred to the work
of Norbert Wiener (Ref., 1).

IV, Codes and Code Efficiency

The preceding sections have been devoted to the definition of the unit
of information and to the computation of the average amount of information
per selection in the case of messages consisting of sequences of independent
N-order selections, It was pointed out in Section III that HN represents
the minimum number of binary selections required, on the average, to perform
an N-order selection with given choice probabilities, Therefore, 1f we take
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the number of binary selections employed as a basis for comparing different
methods of conveying the same information, Hy represents a theoretical limit
corresponding to maximum efficiency.

The knowledge of such a theoretical limit is extremely important, but

perhaps even more important is the ability to approach this limit in practice,
In our case, fortunately, the procedure followed in computing HN (that is,
the theoretical 1limit) indicates a convenient method for approaching this
limit in practice. Let us consider again all the sequences of n N-order
selections (in which, hovever, n may be a small integer), and arrange them
in order of increasing probability. If we wish to separate any one partic-
ular sequence from the others by means of successive division in almost
equally probable groups, as discussed in the preceding section, the number
of divisions required, on the average, that is, E(Bs), willl be larger

than nHN. Hovever, if we increase n, that is, the length of the sequences,
we find that E(Bs)/n keeps decreasing and approaches HN when n approaches
infinity. It must be kept in mind, in this regard, that E(Bs )/n does not
decrease necessarily in a monotonic manner, but may have an oscillatory
behavior as a function of n.* It follows that an increase of n may actually
produce an increase of E(BS)/n. For instance (as shown in Figure 4), in the
case of N = 2, p(0) = 0.7, p(1) = 0.3, the value of E(BS)/n is 0,905 for
D=2, 0,909 for n = 3, and 0.895 for n = 4, the limiting value being

32 = 0,882,

The above discussion indicates that, in transmitting a message consisting
of a large number of selections, we should transmit the selections not indi-
vidually, but in sequences of n as units, the number n being as large as
permitted by practical considerations., The transmission of each of these
units is then performed by means of sequences of binary selections corres-
ponding in order to the successive divisions of the ensemble of all possible
sequences of n N-order selections, as indicated in Figures 2, 4, and 5., It
w1ill be noted that, although the sequences of binary selections are not equal
in length, it is always possible to identify the end of any of them in a long
message., In fact, the first m selections of any sequence of length larger
than m are always different from any of the sequences consisting of exactly
m selections,

If 1t is desired to perform the transmission by means of N'-order selec-
tions (N' being any integer), we can proceed in the same manner as in the
case of binary selections, the only difference being that we must divide
Successively the ensemble of all possible sequences in N' groups instead of
Just two., After each division, the groups containing the desired sequence

This fact was first pointed out to me by L. G. Kraft of this Laboratory.

<1E.

Original Recoded Original Recoded
Message |P(1) |Message P(i)BS(i) Message | P(1) |Message P(i)Bs(i)
00 0.49 |o 0.49 0000 |0.2%00 | 00 0.480
01 0.21 |10 0.42 0001 |0.1030 | 010 0.309
10 0.21 |110 0.63 0010  |0.1030 | 011 0.309
11 0.09 |111 0.27 0100 |0.1030 | 100 0.309
1000  [0.1030 | 1010 0.412
E(Bg) = 1.81 0011  |o0.04%1 |1011 0.1764
E(Bg)/2 = 0.905 0110  [0.0441 |11000 0.2205
1 = 0,375 1100  [0.0441 | 11001 0.2205
0101 |0.0%41 |11010 0.2205
=t it 1001  |0.o0441 |11011 0.2205
Message |[P(1) |Message P(i)Bs(i) 1010 0.04%41 | 11100 0.2205
; 0111  |0.0189 |11101 0.0945
a0 119,343 (0o Becke 1011 [0.0189 (111100 | 0.1134
O0L_. -fGuLhT [ 01 gead 1101  [0.0189 111101 | 0.113
010 0.147 | 100 0.441 1110  [0.0189 [111110 0.11%4
100 0.147 1101 0.441 1111 [0.0081 [111111 0.0486
011 0.063 | 1100 0.252
101 0.063 [1101 0.252 E(BS) = 3,5812
110 0.063 | 1110 0.252 E(Bg)/4 = 0.895
111 0.027 |1111 0.108 n = 0.985
E(BS) = 2.726 Fig. 4 Recoding of binary messages for
E(Bg)/3 = 0.909 n=2,3 4 p(0) =0.7, p(1) = 0.3,
n = 0.972 H2 = 0,882,
Original Recoded Original Recoded
Message | P(1) | Message P(i)Bs(i) Message | P(1) [Message P(i)BS(l)
00 0.81 |0 0.81 0000 [0.0550 |0 0.6550
01 0.09 |10 0.18 0001 [0.0729 |100 0.2187
10 0.09 | 110 0.27 0010 [0.0729 |101 0.2187
11 0.01 | 111 0.03 0100 [0.0729 |110 0.2187
1000 [0.0729 (1110 0.2916
E(Bg) = 1.29 0011 {0.0081 |111100 0.0486
1 = 0.725 0110 {0.0081 |1111010 0.0567
1100 |0.0081 |1111011 0.0567
TP P 0101 [0.0081 [1111100 0.0567
Message | P(1) | Message P(i)Bs(i) 1010 |0,0081 |1111101 0.0567
1001 [0.0081 |1111110 0.0567
90 0.729 | 0 0.729 0111 [0.0009 [111111100 | 0.0081
001 0.081 | 100 0.243 1011 [0.0009 |111111101 | 0.0081
010 0.081 | 101 0.243 1101 [0.0009 (111111110 | 0.0081
100 0.081 | 111 0.243 1110 [0.0009 |1111111110| 0.0090
011 0.009 | 11100 0.045 1111 [0.0001 |1111111111] 0.0010
101 0.009 | 11101 0.045
110 0.009 | 11110 0,045 E(Bs) = 1.9691
111 0.001 | 11111 0.001 n = 0.95
E(BS) = 1,594 Fig. 5 Recoding of binary messages for
n= 0.882 n=2,3, )"; P(o) = 0.9, P(l) = 0.1:52‘ 0.468.
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vill then be indicated by means of an N'-order selection.

The operation described above 1is, effectively, a change of code, that
is, we may say, of the conventional language in which the message 1s written.
Therefore this operation will be referred to as "message recoding". The
advantage resulting from this recoding is conveniently expressed in terms

of the code efficiency H
N

N = TogN (25)
that i1s, the ratio of the information transmitted on the average per selec-
tion, to the information which could be transmitted with an equally likely
selection of the same order. The efficiency of a binary code resulting from

the recoding of sequences of N-order selections can be computed most con-
veniently in the form

n= E-(-E—s-)- s (26)

where n 1s the number of N-order selections used in the recoding operation.
Note that nHN is the average amount of information per sequence of n N-order
selections and E(BS) represents the amount of information which could be
transmitted, on the average, by one of the sequences of binary selections

in which the original sequences are recoded, i1f these binary selections were
equally likely. If the new code is of N' order, we must substitute for
E(BS) the product of logQN' by the number of N'-order selections required,
on the average, to specify a sequence of n N-order selections,.

A final remark must be made regarding the recoding operation, Since
the process of successive divisions of an ensemble of sequences into equally
probable groups cannot be carried out exactly, it i1s not clear at times
whether one sequence should be included in one group or in another., Of
course, we wish to perform all divisions in such a way as to obtain at the
end the most efficlent code. Unfortunately, no general rule could be found
for determining at once how the divisions should be made in doubtful cases
in order to obtain maximum code efficiency. However, so long as the divi-
sions are made in a reasonable manner the resulting code efficiency will not
differ appreciably from its maximum value.

We have implicitly assumed in the foregoing discussion that we know
a priori the probabilities p(k) of the choices for a message still to be
transmitted. It seems appropriate at this point to discuss in some detail
this assumption, since the practical value of the results obtained above
depends entirely on its validity. When we state that the probability of a
particular choice has a value p(k) we mean that the frequency of occurrence
of that choice in a message originating from a given source 1s expected to
be close to p(k). The longer is the message, the closer we expect the
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frequency to approach p(k). It must be clear, however, that we have no
assurance that the frequency of occurrence will not differ considerably from
the probability even in the case of a very long message, although such a
situation is very unlikely to arise,

In practice,p(k) must be estimated experimentally following the reverse
process, that is, by inference from the measurement of the frequency in a
number of sample messages, If the frequenclies in the sample messages are
reasonably alike, or, more precisely, if their values are scattered in the
manner which might be expected on the basis of the length of the messages
used, we may feel relatively safe in taking their average value as a good
estimate of the probability. In other words, we may expect that the fre-
quency in any other message originating from the same source will be reason-
ably close to the average value obtalned. If this is the case, the source -
of such messages 1s saild to have a stationary statistical character. We can
conceive the case, however, in which the frequencies in the sample messages
avallable are so widely scattered that hardly any significance can be attrib-
uted to thelr average value. Such a result may mean that the source has not
a stationary statistical character, at least for practical purposes, in which
case the concept of probability loses any physical significance. Fortunately,
however, the sources of interest appear to have a stationary character for
any practical purpose., In addition, the estimates of the probabilities of
the choices do not need to be too close. It should be clear, in this respect,
that the fact that a code has been designed for a particular set of choice
probabilities does not mean that only messages with the same statistical
character can be transmitted, It means only that such a code will transmit
most efficlently, that is, with the smallest number of selections — messages
with the choice frequencies equal to the assumed probabilities. Moreover,
we can expect that the efficiency of transmission will not depend in a criti-
cal manner on the actual frequencies of the messages to be transmitted. A
proof that this 1s actually the case 1s given below.

Suppose that a code which i1s optimum for a set of choice probabilities
p'(k) 1s used to transmit messages with choice probabilities p(k). If we
consider again all possible sequences of n selections, the expression for
the number of binary selections required, on the average, to indicate one
particular sequence, E(Bé), is still given by Eq.(13), where, however, the
p(k) which appear in the form logzp(k) should be changed into p'(k). It
follows that, in the limit when n approaches infinity, the number of binary
selections per N-order selection will approach, according to Eq.(22), the
value

N1
Hy = —-j{: p(k) log2p'(k) 3 (27)
k=0
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It is clear from this equation that Hﬁ varies rather slowly with any one of
the p'(k), unless the corresponding p(k) 1s close to zero or unity. Hy 1s,

of course, a minimum when p'(k) = p(k). The case of N = 2 is illustrated in
Figure 6 for p(0) = 0.5 and p(0) = 0.7. We may conclude, therefore, that

the statistical characteristics assumed a priori can be rather different from
those of the messages actually transmitted, without the efficiency being
lowered too much,

2.4
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V. The Case of Non-Independent Selections

Thus far we have been considering only messages of a particularly
simple type, namely, messages consisting of sequences of independent selec-
tions. Obviously, the statistical character of most practical messages 1is
much more complex. Any particular selection depends generally on & number
of preceding selections. For instance, in a written message the probability
that a certain letter will be an "h" 1s highest when the preceding letter
is a "t". 1In a television signal the light intensity of a certain element
of a scanning line depends very strongly on the light intensities of the
corresponding elements in the preceding lines and in the preceding frames,
In fact, the light intensity is very likely to be almost uniform over wide
regions of the picture and to remain unchanged for several successive frames.

The simplifying assumption that any one selection is independent of the
pPreceding selections, although quite unrealistic, does not invalidate com-
Pletely the results obtained in the preceding sections, but merely reduces
their significance to that of first approximations. Intuitively, the average
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amount of information conveyed by a sequence of given length is decreased
by the & priori knowledge of any correlation existing between successive
selections. Therefore, the value given by Eq.(22) will always be larger
than the correct value for the average amount of information per selection,
and the same 1s true of the code efficiency given by Eq.(25). Similarly,
any recoding operation performed in the manner discussed in Section IV will
result in a higher efficiency of transmission, but not so high as could be
obtained by taking into account the correlation between successive selections,

The procedure for computing the average amount of information per selec-
tion and for recoding messages 1s still essentially the same as that used in
Sections III and IV, even when the dependence of any selection on the pre-
ceding selections 1is taken into account. The only difference 1s that the
probability of a particular sequence will not be equal simply to the product
of the probabilities of the choices in it, since these are no longer inde-
pendent, We must still arrange all the possible sequences of given length
n in order of probability, and separate the desired sequence by successive
divisions of the ensemble of sequences in groups as equally probable as
possible., The number of divisions required, on the average, divided by the
number n of selections will approach HN when n approaches infinity.

Let Pn(i) be the probability of the 1th sequence of n selections, and
Hs(n) the average amount of information per sequence of n selections when
successive sequences are assumed to be independent., We have then

i |

Hg(n) = — > P.(1) logPy(1) . (28)
1=0

Let us consider next a sequence of n+l selections and let Pn+1(1;k) be the
conditional probabllity that the 1th sequence (of the S = N? sequences of n

selections) is followed by the k™ choice (of the N). We have then
N1 N4
Hg(n+1) =-§ § P (1) P ,(1;k) log,P (1) P ,(15%) |, (29)
k=0 1=0
which, since
N—1
E Ponilsteh m 3 5 (30)
k=0
becomes
F~1 Nl
Hs(n+1) = Hs(n) - g Pn(i) Pn+1(1;k) log, Pn+1(1;k) -
k=0 1=
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The increment of information resulting from the (n+1)th selection is then,

on the average,

T |
Hy(n+l) = —Z Z P (1) P, ,(15k) logP,, 1 (15k) . (32)
k=0 1=0

Expressing now Hs(n) in terms of the successive increments, we obtain

n
Hg(n) = Z:HN(m) : (33)
M=

The final correct value of the average amount of information per selection
can then be written in the form

n
Hy = 1im (1/n) ZHN(m) A (34)
o m=1

To proceed further in our analysis, we must distinguish between two
types of statistical character of practical importance. We shall say that
the output of a certain source is statistically uniform if each and any
selection depends in the same manner on the mth preceding selection, as seems
to be the case in a written message. We shall say that the output is peri-
odically discontinuous if it is possible to divide any output sequence in
sub-sequences of fixed and equal length, so that each and any selection
depends in the same manner on the mth preceding selection of the same sub-
sequence but 1s independent of all selections of the preceding sub-sequences,
This is the case when messages transmitted in succession are similar in
character and equal in length but entirely unrelated to one another, as, for
example, in facsimile transmission. The above differentiation of statistical
character is not an exhaustive classification but only a characterization of
two special cases of practical interest in which different results are ob-
tained.

Considering now in more detail the increments of information HN(n+1),
our intuition indicates that the average amount of information conveyed by
any additional selection can be, at most, equal to the value obtained when

the selection is independent of all preceding selections. Mathematically,
it must be

N-1
Hy(n+1) < Hy(1) = —gp(k) logp(k) . (35)

A proof of this inequality is given in Appendix II. In addition, it is
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intuitively clear also that, in the case of uniform statistical character,
the average amount of information conveyed by the (n+1)th selection of a
sequence can be, at most, equal to the amount of information conveyed by the
nth selection, since the latter has less preceding selections on which to
depend. Mathematically, we expect that, for statistically uniform sequences,

Hy(n+l) < Hy(n) . (36)

A proof of this inequality is given also in Appendix II., Eq.(36) is satis-
fied with the equal sign when the (n+1)th selection, and therefore any fol-
lowving selection, depends only on the n—1 preceding selections,

Eq. (36) shows that the 1limit in Eq.(34) is approached in a monotonic
manner, In addition, we expect HN(m) to approach monotonically a limit with
increasing m, since the dependence of any selection on the preceding selec-.
tions cannot extend, in practice, over an indefinitely large number of selec-
tions, Suppose, for instance, that this dependence extends only over the
n -1 preceding selection. Then HN(m) becomes constant and equal to HN(no)
when m 1s larger than n_, and Eq.(3%) yields

HN = HN(nO) - (37)

This result is correct, of course, only in the case of statistically uniform
sequences,

In the case of a periodically discontinuous statistical character,
Eq.(36) is valid only when the nth and the (n+1)th selections belong to the
same sub-sequence. If this is not the case, the (n+1)'® selection must be
the first selection of a sub-sequence, and therefore is independent of all
preceding selections. It follows that Hy(m) 1s a periodic function of m with
period equal to the length né of the sub-sequences, and that the limit of
Eq.(3%4) is approached in an oscillatory manner, If we compute this limit by
increasing n in steps equal to né, it 1s easily seen that Eq.(34) yields

nl

0
Hy = (1/n)) > Hy(m) (38)

m=1

a value larger than that given by Eq.(37), as was expected.

The recoding procedure in the case of messages consisting of non-inde-
pendent selections 1s still the same as in the case of independent selections.
The efficlency of transmission, still given by Eq.(25), increases (although not
necessarily monotonically), with the number of selections used as units in the
recoding process, and approaches unity when the number increases indefinitely.
It is worth emphasizing that in the recoding process any sequence, even if
statistically uniform, is considered as periodically discontinuous. In fact,
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the groups of selections recoded as units are effectively sub-sequences

vhich are treated as though they were totally unrelated. It follows that,
if the recoding operation of a statistically uniform sequence 1s performed
on groups of ng selections, the efficiency of transmission after recoding

can be at most equal to

g s (e AL

Z°: EN(m) (39)
m=1

In the case of statistically discontinuous sequences, it would seem
reasonable to make the number of selections in the recoding groups an
integral fraction or multiple of the length of the sub-sequences,

A final remark 1s in order regarding the fitting of the recoding pro-
cedure to the statistical character of the messages to be transmitted., It
may happen, as it does in the case of television signals, that the depend-
ence of any one selection on the mth preceding selection does not decrease
monotonically when m lncreases, but behaves in an oscillatory manner, In
this case, one should first reorder the selections before recoding, in such
a manner that selections which are closely related take positions close to
one another in the sequence. This idea of reordering the selections in the
sequence can be generalized as follows. Any type of transmission of informa-
tion can be considered as the transmission, in succession, of patterns in
a two-dimensional or multi-dimensional space, time being one of the dimen-
sions, Then the problem of ordering selections in an appropriate manner
can be generalized to the problem of how best to scan these patterns. It
is clear, on the other hand, that such a scanning problem 1s also at the
root of the problem of reducing the bandwidth required by television signals.
The generalized scanning problem seems to be, therefore, of fundamental
practical, as vell as theoretical, importance., However, no work can yet be
reported on this subject,

VI. Practical Considerations

The main purpose of this paper was to provide a logical basis for the
measurement of the rate of transmission of information. It has been shown
that an appropriate measure for the rate of transmission in the case of
sequences of selections can be provided by the minimum number of binary
selectlons required, on the average, to indicate one of the original selec-
tions., We were then led naturally to consider the problem of actually per-
forming the transmission of the original sequences by means of as few binary
or higher-order selections as possible. We did not consider, however, the
physical process corresponding to such selections — that 'is, their trans-
mission by electrical means,

-2l

A convenient way of transmitting binary selections in a practical
communication system is by means of pulses with two possible levels, one and
zero, This is just the technique employed in pulse-code modulation. The
maximum rate at which information can be transmitted in this case is simply
equal to the number of pulses per second which can be handled by the elec-
trical system — which we know to be proportional to the frequency band
avallable., However, as soon as we start dealing with electrical pulses
rather than loglcal operations like selections, an additional item must be
considered in the problem, namely, the power required for the transmission.
In the case of two-level pulses, the average power corresponding to the maxi-
mum rate of transmission of information 1s equal to one-half the pulse power,
since the zero and one levels are equally probable,

If pulses with N rather than two levels equally spaced in voltage are ’
used, the maximum rate of transmission is equal to log2N times the number of
pulses per second which can be handled by the system. The average power
required becomes, in this case,

ws(;‘-’-)Nz_i EorT (%0)
k=0

where Wo is the power corresponding to the lowest (non-zero) voltage level,

The theoretical limit stated above for the rate of transmission of
information certainly has practical significance when the limiting factors
in the physical problem are the frequency band available and the number of
pulse levels permitted by technical and economical considerations., It is
to be noted, in this regard, that the effect of noise i1s here taken into
account, to a first approximation, by setting a lower 1limit to the voltage
difference between pulse levels, and therefore to Wo. For a detalled dis-
cussion of the effect of noise, the reader is referred to the work of
Shannon (5).

Eq.(40) shows, on the other hand, that the average power increases
approximately as N2, while the rate of transmission is proportional only to
logzN. It follows that, if no limitation is placed on the frequency band
employed, the smallest value of N should be used — that is, two, This value
has, in addition, the very important practical advantage that the receiver
is not required to measure a pulse, but only to detect the existence or the
lack of a pulse. It might happen, on the other hand, that the frequency
band and the average power are the limiting factors, while any reasonable
number of pulse levels can be allowed. This case represents quite a dif-
ferent problem from those considered above, and the maximum rate of trans-
mission of information is no longer obtained by making the pulse levels
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(that 1s, the choices) equally probable, as one might think at first. For
example, more than one unit of information per pulse can be transmitted with
an average power W = W°/2, by using pulses with three levels not equally
probable, It seems worth while, therefore, to determine the maximum amount
of information which can be transmitted per pulse, for a glven average power
W, a minimum level power W , and an unlimited number of pulse levels equally
spaced in voltage.

Let, therefore, p(0) be the probability of occurrence of the zero level
(no pulse), and p(k) the probability of the kP level. The amount of infor-
mation per pulse is given by

B 25 Loggpl) (41)
and the average power by =
W= W, g p(k) ¥2 . (42)
k=0

We wish to maximize H with respect to the p(k), subject to the condition
expressed by Eq.(%42) and, of course, the usual condition

E

Zp(k) = AE 0T (43)

k=0

The maximization procedure is carried out in Appendix III, and yields

Hpax, = = %; [1032 (%{%—}) & logzp(O)] ; (44)
2() . (g%})kg . (45)

The values of p(1)/p(0) and p(0) are plotted in Figure 7 as functions

of W/Wo. The value of Hmax. is plotted as a function of the same variable
in Figure 8. The latter curve shows, for instance, that the maximum amount
of information per pulse for W=wo/2 is 1.1%, that is, 14 per cent higher
than the value obtained by using two equally probable levels.

The procedure for approaching in practice the theoretical 1limit obtained
above by appropriate recoding of the messages is very similar to that dis-
cussed in Section IV. It differs only in that the ensemble of all sequences
of given length must now be divided in groups with probabilities p(0), p(1)...
p(k)..., instead of in equally probable groups. The number of pulse levels
to be used in practice (it should be infinite in theory) must be selected
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on a compromise basis, and the values of the p(k) must then be readjusted,
accordingly to make

N-1

ZE: p(k) =1 .

k=0

In addition to the effect of limitations on the average power, another
important practical consideration has been neglected in the preceding sec-
tions. All the types of recoding procedures suggested, for approaching in
practice the theoretical limits derived above, require the use of devices
capable of storing the information for a certain length of time in both the
transmitter and the receiver. Such storage devices are needed to stretch
or compress the time scale according to the probability of the group of
original selections being recoded for transmission.

Satisfactory storage units are not yet available. In addition, even
were they available, their use would undoubtedly add considerably to the
complexity of communication systems., On the other hand, any substantial
increase of transmission efficiency is fundamentally based on time stretch-
ing. In fact, since the logarithm of the probability of the choice or
sequence of choices selected 1s a measure of the information conveyed by
the selection (see p., 14), the time rate at which information 1s conveyed
in actual signals may vary considerably with time., Even so, a communication




system must be able to handle at any time the peak rate which may be present
in the signal, It follows that any system not employing storage devices to
stretch or compress the time scale is bound to have an efficiency lower than
the ratio of the average rate to the peak rate at which information is fed
to it, It is worth mentioning in this connection that in certain types of
communications, such as telegraph and television, the input and output sig-
nals do not have inherently fixed time scales. This is the same as saying
that such forms of communication inherently incorporate storage devices,
In the case of the telegraph, the written messages at the input and at the
output are effectively storage devices. In the case of television, the
image to be televised and the cathode-ray tube perform the same function,
Although no reduction of frequency band for a given noise level can
be obtained without storage devices, appropriate coding may lead to some
reduction of average power. This reduction can be obtained by assigning
sequences of pulses requiring the smallest energy to the most probable
messages, and vice versa. In the particular case of pulse-code modulation,

for instance, this can be done as follows., We arrange all digit combinations

in order of increasing amount of energy required and the sampling levels in
order of decreasing probabllity. We assign then the digit combinations to
the sampling levels in the resulting order. Such a coding method requires,
however, more flexible coding and decoding units than those used in present-
day systems,

Before concluding this section, it should be made clear that the
improvement of transmission efficiency discussed above and the resulting
possible reduction of bandwidth requirements for a given signal power have
little to do with the bandwidth reduction obtained by means of the Vocoder
or other similar schemes. The Vocoder (2), for instance, does not improve
the efficiency of transmission, but achleves a reduction in bandwidth by
eliminating that part of the speech signal which is not strictly necessary
for the mere understanding of the words spoken. Obviously, the recoding
of messages according to their statistical character and the elimination
of unnecessary information represent fundamentally different but equally
important contributions to the solution of the bandwidth-reduction problem,

Appendix I

Maximization of f(x)

In determining the values of the x, for which f(x), as given in Eq.(18),
is a maximum, it 1s more convenient to operate on the function

9(x) = 1n f(x) (=1}

whose maxima and minima at non-singular points coincide with those of f(x).

The x, are the variables in the maximization process, but are subject to the
constraint
N-1
x =1 . (1-2)
k=0

Using Lagrange's method, we equate to zero the partial derivatives, with
respect to the Xy of the function

N-1
olx) + A > x (1-3)
k=0

where A 1s a constant to be determined later., We obtain then N equations
of the form

n[lnpk—(1+1nxk)]—-2—,1§+x=o : (1-4)

It 1is clear that when n approaches infinity these equations can be satis-
fied simultaneously only when X, = Py in which case Eq.(I-2) is also satis-
fied. In addition, the function f(x) is neither discontinuous nor a minimum
at the polint X, = P, 80 that the existence of a maximum at this point does
not require any further mathematical proof.
Maximization of HN
The function HN given by Eq.(22) must be maximized with respect to the
p(k) which are, of course, subject to the constraint

N—-1

Db i ple) il i (1-5)

k=0

Following the same method as above, we obtain N equations of the form
N-1
—5——HN+)\§ p(k) | = — 2 [1+ 1n p(k)]+ 2 = O. (1-6)
ap(k) k=0

This set of equations can be satisfied only if all the p(k) are equal.
Again it 1s clear that HN is neither discontinuous nor a minimum when all
the p(k) are equal, and therefore it must be a maximum,
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Appendix II

Proof That HN(n+1)-S HN(l)

We wish to show, first,.that the Ilncrement of the amount of informa-
tion
N1 N1

HN(n+1) = —ZE:: ZE: Pn(i) Pn+l(1;k) log, Pn+1(i;k) (11-1)
k=0 1=0

1s & maximum when P, ,(1;k) = p(k), the probability of the kP choice, that
is, when the additional selection is independent of all preceding selections,
Mathematically, we nrust maximize the function HN(n+1) with respect to the
N1 variables Pn+l(1;k), subject to the conditions

|
> pa(1) P (15K) = p(x), (11-2)
1=0
and
N—-1
P SN RS (11-3)
k=0

Following Lagrange's method, we equate to zero the derivates with
respect to the Pn+1(1;k) of the function

PR
HN(n+l) + zg:: 25:1*1 Pn*l(i;k) + g Pn(i) Pn+1(i;k) (11-%)
1=0 k=0 "

where the xi and By are constants to be determined later., We obtain then,
for each pailr of values of i1 and k, an equation of the form i

F (1) [1+ 1n Pn+1(1;k)]-—x1-ukpn(1) e 0) oy (11-5)

The solution of the Nn+1 equations of this type, together with Egs,(II-2)
and (II-3), is clearly

Ky = EL(L) (11-6)
by = 1o P ,(1;k) = In p(k) . (11-7)

Therefore, the increment of information Hy 1s & maximum for Pn+1(1;k) = p(k),
since this is the only point at which a maximum can exist and a maximum must

exist at some point, This result can also be stated in the form

HN(n+1)-S HN(l) 2 (11-8)

where N—-1
Hy(1) = -:EZ: p(k) log,p(k) (11-9)

k=0

is the average amount of information per selection, that is, the average
increment of information, when each selection 1s independent of all preced-
ing selections,

Proof That HN(n+1)~< Hy(n)

Let us consider a sequence of n selections as consisting of a first
selection followed by a sequence of n—1 selections. Let Pn(h;j) be the
conditional probability that the selection of the hth cholice is followed by
the selection of the jth sequence from the Nn_l possible sequences of n—1
selections, Let also Pn*l(h,j;k) be the conditional probebility that the
kth cholce 1s selected after the hth cholce and the jth sequence, We shall
still indicate with p(k) the probability of the kth choice and, similarly,
with p(h) the probability of the hth choice. Using these new symbols,

Eq.(II-1) becomes
Hy(nt+l) =

1 il pa

= j;—: jS—j j;_:p(h) P (03} B (B, 5k) log P (b, S5k} . (11-20)
h=0 j=0 k=0

We wish to show that, for a statistically uniform sequence, HN(n+1) is a
maximum when Pn+1(h,j;k) 1s independent of h, Mathematically, we rust again
maximize the function HN(n+1) with respect to the N1 vartables Pn+l(h,j;k),
subject to the conditions

N-1
> P, isk) =

e Bk (11-11)
k=0
and
N—-1
> p(b) By(h;3) g (b, 55k) = By o (3) Bo(35Kk) (11-12)
h=0

where Pn_l(j) 1s the probability of the jth sequence of n—1 selections, and

P (js;k) 1s the conditional probability that the k'P cholce will be selected
after the jth sequence, These two probabilities must, in turn, satisfy the
condition '

shy.




ZE:: P_4(3) P (35k) = p(k) , (11-13)
j=0

which, however, does not concern us, since it does not involve directly the
Pn+1(h,j;k). It must be clear, on the other hand, that the Pn(j;k) are kept
constant in the maximization process, In other words, the dependence of the
(n+1)th selection on the n—1 preceding selection is fixed in this case, while
in the case discussed previously it was allowed to vary. In addition, since
we are dealing with a statistically uniform sequence, the (n+1)t selection
depends on the n—1 preceding selections in the same manner as the nth selec-
tion depends on its n—1 preceding, that is,on all the preceding selections,
Proceeding in the same manner as in the proof that HN(n+1) £ HN(l),
we find that, for given Pn(j;k), the Pn+1(h,j;k) make HN(n+l) a maximum
when they are independent of h, that 1s, of the first selection of the
sequence, Mathematically speaking, the maximum occurs when Pn+l(h,j;k) =
Pn(j;k). It follows that Eq.(II-10) yields, with the help of Eq.(II-11),

HN(n*l)max. -
il g . | ' (11-14)
- g g P._1(3) P (35k) logyP (k) = Hy(n)
j=0 k=0
This result can also be stated in the form ’
Hy(n+1) < Hy(n) . (11-15)

Tt must be clear that, in the case of non-statistically uniform sequences,
Pn(j;k) may be an egﬁirely different function than that representing the
dependence of the n selection on the first n—1 selections of the sequence,
since, for instance, the (n+1)th selection can be entirely independent of

the preceding selections while the nth selection is not., It follows, in this
latter case, that Eq.(II-14) 1is not valid, and HN(n+1) can be as large as
Hy(1).

Appendix IIT

We wish to maximize the average amount of information per pulse, H, for
a given average power and an unlimited number of pulse levels equally spaced
in voltage. Mathematically, this amounts to maximizing the function given
by Eq.(41), subject to the conditions imposed by Egs.(42) and (43). Follow-
ing Lagrange's method, as in Appendices I and II, we obtain an infinite set
of equations of the form

-32-

1+Inplk) = ¥ En (1II-1)

where )\ and I are indeterminate constants. The first of these constants, A,
can be eliminated by subtracting the equation with k=0 from all the other
equations of the set, which take then the form

1n p(k) — 1n p(0) = k°» . (I1I-2)

The remaining constant, K , is then eliminated by subtracting k2 times
Eq.(III-2) — with k=0 — from the other equations of the same set. We obtain
in this manner a set of equations of the form

[1n p(k) — 1n p(0)] — ¥° [1n p(1) — 1n p(0)] = © (I1I-3)
It follows that

p(k) _ [Eill:]kz s (I11-4)
p(0) p(0)
Eqs.(42) and (43) can now be written in the forms

i ke 2

k
(0) K° 21—11] . S (111-5)

: Eé; [p(0) Yo
and

= 2

r(0) ;5:: iﬂ%ﬁ}k =1 . (111-6)
O

The values of p(1)/p(0) are plotted in Figure 7 as functions of W/W . From
these values, the p(k) are immediately obtained by means of Eq.(III-4),

The maximum value of the average amount of information H can now be
obtained without difficulty by substituting for the p(k) in Eq.(41) the
values determined above. We have then, after appropriate manipulation of
the equation,

B ., =- p(0) { } [ ——-l + log p(Oi
k=
5 p(1)]*°
= = (11I-7)
log,p(0) — p(0) - [p( J 082{;(0J

o0

— log,p(0) — p(0) x° [p(l ] log, 1) |
kwl p(

p(0)




Using now Eq.(III-5), we obtain finally

B = —[%’ro- log, %&% + logzp(O)J " (111-8)

The value of H _ 1s plotted in Figure 8 as a function of w/wo, using the
values of p(1)/p(0) and p(0) given in Figure 7.
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CHAPTER I. INTRODUCTION
Monostrophic codes, binary codes in which only one
bit changes from count to couvnt, are commonly found in
apvlications where elimination of ambiguities during tran-
sition from one count to the next 1s desired.
The most common monostrovhic ccde is the Gray ccde.

Figure I.1 is an example of a 4 bit Gray code with the

normally employed binomially weighted (2% - - -, 8,4,2,1)
binary a«nd decimal equivalents.
DEGINAL BINARY
BINONIAL |
8421 GRAY
0 0000 0000
1 000I 0001
2 00IO 0011
3 0011 00IO0
) 0TI 00 0T IO
5 0TIO0TI TTI
6 0IIO 0IO0TI
7 0TI 0100
8 T000 II00
9 I00TI ITI0I
10 I0IO0 ITIII
13 I0TII ITIIO
12 TTO0O0 T0TIO0
13 IIO0I 10 IT
14 T T IB 1001
15 ITETT 1000
Fig. I.1

Digital logic engineers undoubtedly have unkncwingly
vsed the Gray code or other monostrophic codes as 2 tocl

for lo~ic sinrlification and/or sequential switching



l

synthesis. The Karnaugh Nap, which will be used as a tool
in this vaper, is such an application. Figure I.2 is an
example of a 4 variable Karnaugh Map in which there is a
change in only one varlable between ad jacent comrartments.

AB
cD oo 0I II 1O

00

oI

I1

I0

4 VARIABLE KARNAUGH NAP

Fig. 1.2

Other cormon arplications of monostrophic codes
are found in analog - digital and digital - analog con-
version devices.

4lthough the Gray code is nothing new it 1is diffi-
cult to find references which comprehensively discuss
ronostrophic codes, particularly those which are not
Gray. Therefore, by means of this paper, this author is
attempting to present a compllation of information per-
taining to monostrophic codes, the scurces being found in

texts, trade publications, manufacturers!' product bulletins
snd anplicctions notes, and that information which, becuuse

cf the mearer quantities found in the aforementioned scurces,
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has been self-penerated. The succeeding charters will
discuss, with respect to monostrorhic codes, the
following torilcs:

(1) Synthesis of monostrophic codes.

(2) Conversion between monostrophic and rolystrophic
codes.

(3) Generating monostrophic codes using electronic
and switching logic elements (counters),

Preceeding the above mentioned topics terms used in

this paper will be defined.




CHAYTER II, GENERAL

In order to be precise, this author has attempted
to emnloy in this parer terms that have commonly accerpted
definitions in the digital field. In so doing many small
dis-arities have arisen that might lead to confusion if
used in this parer without defining the terms herein.
Therefore, I will cormit the ccrmon sin of "defining
definitions" befcre proceeding with the substance of this
parere.

The Gray code many times 1is considered to be any
menostronhic code. On the other hand, the terms Gray
code and reflected code are often used synonymously.

Fer the nurpose of further discussion let us clear ur
this disvarity with the followine definitions because,
clearly, not all menostrophiec codes are reflected codes.

GRAY CODE: Normally the Gray code is considered to

be = svecific n bit counting sequence of 2" counts having
the chur.cteristics of being non-weiphted, mcnostrophic
and reflected (see definition of reflected coaes below) ,
and represents a srecific ordered numbering system of 2n
counts. In Chapter I an example of a 4 bit Gray code wes
given. 7The specific counting sequence may be explalined as
follows: the counting sequence for the leust cignificant
bit is 0110 repeated £ /4 times, with the more significunt

bits going through the sume seaquence at half the rate as

SN N R IE SR EE AE BN EN E EE S E D W EE by e




the next lesc significant bit, and the most significant
bit gecing throuch only half the 0110 sequences as shown

in Fig. II.1.

nc3 GRAY B%&%L DECIMAL
0 000 000 0
I 001 001 !
I 0II 0IO0 2
o _ 0IO 0I1I 3
0 — I1I0 100 4
b III i el 5
1 I0I IIO0 6
0 100 III v
Fig. II.1

PSEUDO-GRAY CODE 4ND NORVLLIZING: By complementing

and/or permuting »its of a Gray code, other mcnostrovhic
codes can be formed which satisfy all the required con-
ditions for being a Gray code except the binémial binary
equivalent and, part of the time, the counting sequence.
In the example of Fig, II.8 ABCD is a Gray code with its
binomial binary equivalent of WXYZ. EFGH is not Gray,
but by complementing E and permuting E and F we have
converted it to a Gray code. This conversion process

will hereafter be called normalizing, and a monostrophic

code that can be normalized to a Gray code will be called

a pseudo-Gray code.




ANORMAL BINONIAL ,
GRAY GRAY SINARY DECILAL
n=4 ABCD EFGH WXYZ
0000 I000 0000 0
0001 I001I 0001 1
001ITI I0OII 00IO 2
0010 I0IO 001ITI 3
0IIO 00IO 0IO0O 4
0III 00TII 0OIO0I 5
0IO0TI 000TI 0OIIO 6
0IO0O 0000 0IITI 7
II00 0IO0O I000O0 8
ITIO0I 0IO0I I00TI 9
ITII 0III I0OIO 10
IIIO 0IIO I0TII 11
I01IO0 ITIO II100 iz
I01ITI IIII II0T1I 13
I0O0I II101I IIIO 14
I1000 II00 IIII 15
A=F,B=E ¢C=G6, D=H
Fig. 1I.2

Asrrendix I contuins an exhibit cf all combinations
of comrlerents and all permutztions for a 4 uvit Gray
code with a tabtle of ccmparisons cf counting seguences.
A 4 bit Gray code was used in appendix I beccuse of its
ability tc be used directly most often and, at the same
time, make the roint cleur.

REFLECTIVE CODES: Tor a cocde tc be reflected it

rust re;yresent a numbering syster cf a radix r, and by
comrlementins a certzin bit (same ©tit for all counts and
vsuully the rost significent bit) will yield the r-1's
ccrrlement of the criginal covnt. In Figure II.3a a 3
bit reflective code is shovn rerresenting a Radix 8

mrbering system. Notice that the reflected ccde is not



POLYSTROPHIC # 7's COMP
00O 0] 7
001 1 6
0IO 2 5
0ITI 3 4
III 4 3
ITIO S5 2
101 6 1
I0O0 7 0

ae
GRAY # 7's CONP
000 0 7
001 1 6
0II 2 5
0IO 3 4
IT1O0 4 3
L 1 X 5 2
I01 6 1
100 7 0

be

Fig. II.3

monostrcrhic. In FigelIe3b the ccde is mwonostrerhie and
alsc Crav. By complementing the most significant bit in
either reflected code of Figelled, the r-1's complenent
(r=8) is the resuvlt. The monostrophic and pelystro hic
reflected codes viere shown to clearly pcint out that Gray
and reflected are not syncnymcus, but simply that the
Gray code (but not all monostrophic codes) 1s a reflected
code.

CYCLIC: The Gray code is alse culled o cyclilc code.
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The Nodern Dictionary of Electronics put cut by Howard

Sams defines a cyclic code as "any binary code that
changes only one bit when going from one number to the
number immediately following". Thils, in effect, 1is syn-
cnymovs with monostrophic. This author has found that
usage of the word cyeclic in the digital industry means
different things to different people. Some people in-
terpret cyclic as returning upon 1itself by the same path
or synonymously with reflective rather than as a mono-
strophic characteristic. Therefore, for the sake of being
precise, I will avoid the use of the term cyclic.

VONOSTROFHIC CLOSURE: If the transition between the

first and last counts of a counting sequence requires only
one bit to change we have a monostrophic closure. The
Gray code and pseudo-Gray codes pcsess this characteristic,
but posession of this characteristic 1s nct required for a
code to be moncstrophic,

FULI, COUNT: A full count, as used in this parer,

signifies a counting n bit se-uence to which all of the
ol counts have an assigned numerical value. Ve can see
that = full count usually goes hand-in-hand with a num-
bering system having a radix of 2n ., A full counting
sequence muy be made monostrophic and/or reflected with
cr without monostrophic closure.

FORESHORTENED COUNT: When all 2" combinations are

not used to form a counting sequence we have a foreshortened



count. .4 foreshortened counting seuvence may be mace
monostrorhic, but tc be reflective and/or close mono-
strecphically the counting secuence must contain an even

number of counts.
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CHAPTER III. NONOSTROVHIC CODE SYNTHESIS
This charter will discuss the synthesis of Gray,
rsevdo-Gray and other full and foreshortened count mono-
strophic codes, and will demonstrate the use of Karnaugh
lars and rath diagrams as synthesls tools.

GRAY CODE: Because the Karnaugh Maps and puth

diagrams uvtilize the Gray code, the synthesis of the Gray
code must be described indeprendently. In effect, the
definition of the Gray code given in Charter II, descrilbes
the synthesis of the Gray code. For an n bit code
starting with the leact significant bit, form the sequence
0110 2n/4 times. The next significant bilt's sequence 1is
the same but at h 1f the rate, etc., until we get to the
most sienificant bit which poes throurh only half the

0110 sequence, the first half of the sequence being O's
and the last half beine 1's. This swnthesis prccess,
shovn for a 4 bit ccde in FigJIl.l, ylelds a monostrorhiec
code vrich menostrcrhically cleses. If the fcllowing
additional characteristics are rresent we have synthesized
a reflected code which is Gray:

1. 4l1l1 2P counts represent a count of a numbering
systemnm,

2, all bits non-asserted (all O's) re;resents zero.

3. Renresented numbering system counts yrogressively
from 0 to 28-1,

KARNAUGH FaPS: Any Karnaugh Kap is a table cof all

pcssible combinations of an n bit hinary werd sco arranged

10



. BINOMIAL
DECINAL GRAY BINARY
0 0000O 000O
i 0001 0O0O0TI
e 00 ITI 0O0IO
3 0010 00TITI
4 0OITIO 0IO0O0
5 0 I11 0O0IOI
6 0IO0OI OIIO n =4
7 0IO0O0 0IITI
} © T1I 00 T 000
9 ITIO0Il I001
10 5 A A i § IoTIO
v A ITTIO I10I11
12 I0IO0 ITO0O
13 IOII ITOI
14 IoOO0TI ITIIO
15 I000O0 ITIII
)
T 1 t——LSB: 0IIO sequence 2°/4 = 4 times.

O0IIO

L——0II0

MSB:

zero

sequence changing at half the
rate as next less signifigant
bit.

sequence changing at half the
rate as next less signifigant
bit

first half of sequence O's,
last half I's.

= 0000, & counts progressively
to 2P-1 = 1579

Reflected (dependent on LS Gray bith

Fig. III.1

that there is cnly cne bit change when going from any

compartment to un adjacent or "mirrored" compartment.

" o .
For maximum utility the map is arranpged so that ap:roxi-

mately half the variables (usually the more significant

o;ts) are ocn the horizontzl maregin and the remaining vari-

ables (usually the lesser sienificunt bits) are on the

11
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vertical margin, e.g., a 22x2% or 25x22 configuration
represents the 32 combinations of a 5 variable (bit)
word.

In crder that there be cnly cne bit chance between
adjecent and "mirrored" compartments a reflected mono-
strorhic code is used on the margins. In fact, the
ccunting sequences cf a Gray code are used on the murgins.
FigdII.2 shows 3 variztions of a 5 variable Karnaugh Map.

Any path through a Karnaugh Fap describes a mono-
strophic gode.

FATH DIAGRAM: 411 the possible paths through a

Karnaugh lap are difficvlt to see because one may Jjump

to "mirrored" compartments, particularly 1f there are rore
than 4 variables (bits). Tc solve this problem the path
diagram may be employed. The path diagram's use also
simplifies the incorporation cf code requirements during
synthesis. This point will beccme evident in subsequent
chapters.

Bagically, the path diagram fcr an n bit code is
formed by equally spacing n points in a circular pattern.
‘he rcints are then numbered, starting with the n bit
Gray ccded zero, and rrogressing around the circle with
the Gray code cocunting sequence. Then all those points
are ccnrected which differ by conly one variable. For an

n bit code each point will radiate n lines. The rattern

generated is symmetric aiding in drawing a path diagram.
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cornsiders counting and conversions which are to be diccussed
in following chapters.

Nevertheless, a look at the Karnaugh iaps in 4 cendix
I will show that, for a 4 bit ccde which is Gray or pseuvdo-
Gray there exists a symmetry which may te described as the
rresence of mirror imares (ignoring direction arrows) in
all rars about elther the vertical or horizontal center
lines of the maps. 4 similaer symmetry will be jresent in
a Gray code of any number of bits.

On a path diagram a Gray or pseudo-Gray code will
result in a symmetrical pattern abcut a line dividing the
circle in half. FigdII .4 deronstrates this fcr a 4 bit
psevdo-Gray code.

OTHER FULI. COUNT IONOSTROIHIC CODES: There sre many

naths through a Karnaugh Mep or pathh diacram which use all
o™ combinations available in an n bit code that cannot be
nermalized to a Gray code or de not close moncstrc:hicallye.
FisII1 .5 shows examples of such 4 bit codes. These codes
have no czeneral direct aprlication, but are mentioned only
to insure knowledge of their ctresence. =« ‘0Ossible employ-
ment of such a code is in cry:tosraphic systems. also,
they may te encountered when onc considers the segquence of
cnly cartain bits in & code as we will do further along.

FORESI.ORTENED COUNT MONOSTRO:HIC CODEZ: The most

common use of n bit foreshortened ccuntineg sequences, bcth

monostrcohic and ~clvstrophic, 1s to reiresent numbering
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systems of radices of less than e, For examnle, it
takes ten of the sixteen possible combinations of a 4
bit code to represent the ten digsits of a decimal num-
bering system,

18 previously mentioned, one may take advantage
of the unused combinaticns to simplify decoding and
conversion, cr they may be used as error detection and/cr
correction. Other uses of the unused combinations are
nossible such as reduction of power supply current and/or
regulation requirements. Discussion in subsequent charters
will make more clear advantaseous use of unused combinations
in foreshortened counts.

Synthesis of foreshortened count monostroprhic codes
is easily accomplished by the use of Karnavgh FFups and
path diacrams just as in 211 full count monostrcrhic codes.
The observations made for full count codes hold true for
foreshortened covnts with the fcllowing excertions:

a) 41l 2" combinations are not used.

b) lNonostrophile closure is nct possible if the
number of counts is odd.

REFLECTED MONOSTROPHIC CODES: In general, a reflected

full or foreshortened monostrophic code must be synthesized
as previously discussed, observing the symretry rule on
Karnaugh Maps or path diagrams if used.

If the bit uccn which reflectivity devends (usually

the most significant bit) will not change except between




19

the lower and up-er halves of the counting sequence =nd
upon closure (O for the first half and 1 for the last
half of counting sequence, or vice versa), synthesis of
the reflected monostrorhic code can be simplified. Only
the bits execlusive of the one upon which reflectivity
derends must be considered. The countin- sequence of
these bits must have one-half the counts of the total
counting sequence, be monostrophic, but does not have

to close monostrcphically. In effect, the cocunting se-
quence of these Lits counts up during the first half of
the sequence and down during the last half of the sequence,

retracing its path to "zero'.
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CHAPTER IV. NONOSTROPHIC-!OLYSTROTHIC
CODE CONVERSION

Monostrorhic codes are unwelghted codes and there-
fore, are difficult to manipulate arithmetically. Con-
sequently, conversicns between monostrorhic and poly-
strorhic codes, the subject of this chapter, are cften
required.

The vuse of hardware-oriented examples interspersed
with academic discussion will be the general approach of
this chapter. The exzmples will show electroric logic
and switching logle, both employing commonly accerted
symbols which are explained in Appendix II,

Ring sum or Exclusive Or functions arpear rereatedly
in this chapter. Avpendix III contains a discussion of
this funtion.

FARSLLEL CONVERSION OF GRAY TO EINOMIAL BINARY: The

reletionshir bctween these two codes may best be described
as fcllows: The most significant blts of both ccdes aure
equual, and the lesser significunt bits of the binomial
binary ccde are equal to the ring sum (Exclusive Or) of
the corresponding Gray code bit and all the mcre signifi-
cant Gray code bits. Fig. IV.1l diagramatically shows this.
An unvigorous methcd of rrcving the relationship
shovn in Fig. IV.1l is to sclve the relautionship for a 4
bit Gray tc a 4 bit “inomial binary code conversion. This

is dene in Fig. IV.2. Once this 1s accemplished it can be
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BINOMIAL W=A, by inspection
R BINARY ’
ABCD WXYZ
0000 0000 AB
000TI 000TI CD 00 O0I II IO
00TITI 00IO
00IO 00II 00 I I
0O0ITIO 0IO0O0
OIITI 0IO0TI oI I I
0IO0TI 0OIIO
0IO0O 0III II I I
IIO0O0 I000
IIO0TI I00TI I0 I I
i A il I0IO
ITIIO I0OII _
I0IO IIO0O0 X=AB+AB
I0OITI IIO0I
I00TI IIIO =A®B
I0O00 ITII
AB AB
¢CD 00 O0I II IO CD 00 O0I II IO
00 I I 00 I I
oI I E oI | I I
II | 1 I II I I
I0 | 1 I I0 | I I
Y=(AB+AB) C+(AB+AB)C Z=Sy z(A,B,C,D)
=A®BOC =AOBOCOHD

Figo IV.E

intuitively seen that the relationshir holds for n bits.
To im-lement Fig. IV.1l with electronic logic each
ring sum symbol can be rerlaced by an Fxclusive-Or mrodule,

or combination of and-0Or, Nand cor Nor gates as sown in

W

Fig. IV.3.

a2
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EXCLUSIVE OR LOGIC
Flg. IV.3
Switching logic can be used tc convert Gray tc bincmizl
binary with one transfer set associated with the most sieni-
ficant Gray bit and tvo transfer sets for each lesser signi-

ficant Gray bit. Fie. IV.4 demonstrates this ccnver:sion.

Remembering that the ring sum of a number of varlables

is the syrmetric function S ;3 of the variables, and the

oc
complement of the ring sum cf a number of vuriables 1s the

symmetric function S of the variubles, it wvould seem

even
that a sy retric switching circuit with aprrorriate vick-
off points might furnish all the logic required for a Gruy
to binomial binary conversion. Fige. IVeS shaw s a folded
symmetric switching circuit vwhich functions as a Gray to
binomial binary conv-rter, and is the sume circuit shown
in Fig. IV.4, laid out differently to clearly demonstrute

the symmetric switching circuit relationship.

23




24

En 9 Bn—l{ .En_g El
G —4

&+ Gn-l e [ ?"2 1% Eaaka —Z}QE |

- n—__ n-1-—1- n-2 —1— _ 1+
G Gn1 T Gne T Gy
_______ -2 4

Gn_l . Gn_2 ::. Gl—"—

B « Bp-1¢ Bph- By
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Fig. IV.4

FARALLEL CONVERSION OF FSEUDO-GRAY TG BINARY: By use

of the methods of conver:cion described for Gray to binomial
binary codes and by effecting normalization of the inrut
variables, pseudo Gray cocdes may easlly be convertea to

binomial binary.

FARALLEL CONVERSION OF OFHER FULL COUNT MONOSTROPHIC

CODES: Generazlly, rejuirements for parallel conversion of

other than Gray or pseudc-Gray codes to weighted ccdes are
not enccuntered. If the requirement does arise, "brute
force" techniques can be employed to accomplish such con-
version, but the complexity of such conversions will be
much more than for the Gray and pseudo Gray to binomial

binary.
FARALLEL CONVERSION OF FORESHORTENED IMONOSTROrHIC CQDES:

There are many reasons for the use of foreshortened ccdes,
the most obvious of which is the enccding of « rumbering

system whose radix is not an integer power of two. Other
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COM

Pne o Pn-14 ¢ Bn-2¢ o

By Bp.1 By.o

GRAY TO BINONIAL BINARY
FOLDED SYMVETRIC CIRCUIT

Flge IV.5
reascns are ability for errcr detection and/cr correction,
ease of ccnversion to a weighted coce, etc..

In selecting a foreshcrtened monostrcphic coce rore
than the minimum number of bits may be used tc enccde a
nurberine svstem in order to satisfy all the requirements
imposed on the codine system. In general, the higher the
mmber of bits used tc encoce a numbering system (above
the minimum re-uired), the essier it is to ccnvert (or
decode) and more difficult to transmit.

The monostrophic ccde vsed tc represent a numbering,

system vhich must be converted to another vinary ccde 1is



usually selected so thut conversion 1is simplified. lor

example, a mcnostrophic ccding of a decimal numbering
system that must be converted to the self-comi;:lementing
excess-3 code (XS3) would be simplest to ccnvert if

counts 3 through 12 of the Gray code vere uvsed to represert
0 thrcugh 9 of the excess-3 decimal code. Such a selection
would result in a4 ccde being reflective, that closes
moncstrophically, and following the Gray to binomicl

binary conversion rules. Fig. IV.6 shows this. '‘he sume

philoscrhy appliec to the NbC Declmal system would result

HONO -
DECINAL SYK. rHIC XS3
o 0010 0011
1 0110 0100
2 0111 0101 Conversicon tco Y83
3 0101 0110 follows same rules
4 0100 0111 as Gray to bincmial
5 1100 1000 binary.
6 1101 1001
7 1111 1010
8 1110 1011
9 101C 1100
Fig. IV.6

in ccunts 0-9 of the Gray code tc represent 0-9 cf the
NEC Decimal system simplifying ccnversion, but the mono-
strorhic ccde lacks reflectivity and monostrcirhic closure,
thereby being a nocor choice.

Fig. IV.7 shows a mcnostrophic coding cf a 2421 binary
coded deciral numbering system. again, the monostrcphic
code is reflective and closes monostrorhically, and fcllcws

the simnle Gray to binomial binary conversion rules.
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MONO- BINARY
DECIVMAL STROFPHIC 2421
6] 0000 0000
1 0001 0001 Conversion to 2421
2 0011 0010 BC Decimal follows
3 0010 0011 same rules as Gray
4 0110 0100 tc binomial binary.
5 1110 1011
6 1010 1100
7 1011 1101
8 1001 1110
9 1000 1311l
Figo IV.7

Occasionally the duo-decimal (Radix®12) numbering

system rears its ugly head in such applications of distance

measuring systems and monetary systems. A self-comple-

menting 4 bit code that could be used to represent such

a code is the excess-2 (XS2) code.

Fig. IV.8 shows the

XS2 code and a monostrorhie equivalent which is reflectilve,

closes monostrophically and follows the Gray to binomial

binary conversion rules.

MONO-
DECIMAL STROrHIC XS2
0 0011 0010
1 0010 0011
2 0110 0100
3 0111 0101
4 0101 0110
S 0100 0111
6 1100 1000
7 1101 1001
8 1111 1010
9 1110 1011
10 1010 1100
11 1011 1101

Fig. IV.8

Conversion to XS2
follows same rules
as Gray to binomial
binary.

A weilchted 4 bit code for a binary coded dvo-decimal

numbering system 1is the 44Z1 code.

Fig. IV.9 shows this




code with a monostrophic equivalent which 1s reflective,

closes monostrophically, and follows the Gray to binomial

binary conversion rules.

MONO-
DECIVAL STROFHIC 4421
0 0000 0000
1 0001 0001
2 0011 0010
3 0010 0011
4 0110 0100
5 0111 0101
6 1111 1010
7 1110 1011
8 1010 1000
9 1011 1001
10 1001 1110
11 1000 1111

Fig. IV.9

Conversion to 4421
binary coded duo-
decimal follows same
rules as Gray to
binomial binary.

DATEX CODE:* A foreshortened monostrophic code that

is frequently encountered is the Datex code shown in

Fig. IV.10, It is a 10 count, 4 bit monostrophic code

which is reflective and closes monostrophically.

DECINAL D

ATEX

OCOJOUBUNDHO

Fig. IV,

0001
0011
0010
0110
0100
1100
1110
1010
1011
1001

10

Notice that the 0000 and 1111 combinations are not

used enabling partial error detection and reducing power

surply regulation and power requirements.

wDatex Corp., 1307 S. Nyrtle Ave., lMonrovia, Calif.
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If more than one decade is employed in the counting
sequence, the decimal counting sequence is also mono-
strophic in nature, i.e., only one decimal digit changes
at a time, resulting in a decimal counting sequence as
follows: O through 9, 19 through 10, 20 through 29,

39 through 30, ete. Therefore when converting to any
decimal code, starting with the next to the most signifi-
cant digit and working to the least significant digit the
nine's complement must be sensed if the next more signifi-
cant digit 1is odd. The most significant digit 1s always
assumed to have a zero (which is even) preceeding 1t so

it never needs to be nine's complemented.

Tn order to convert to a decimal code we can, in effect,
say that the Datex code 1is a 5 bit code as shown in
Fig. IV.1l1, the Ein bit indicating whether the next more
significant digit is odd or even (1 = odd, O = even).

DATEX DLCIMAL
ABCD .. =0 E
0001 ‘*8*'
0011
0010
0110
0100
1100
1110
1010
1011
1001

OHZ\')C)J!#UTCDQ(DLD%
=

OO UGN

Fige.IV.1ll
The easiest method of conversion (or decoding) to

another binary coded decimal system is to use conversicn



( or decoding) logie for Fig. IV.1l0, and use the E; bit
to reverse the sense of the A bit by the conversion (or
decoding) logic as shown in Fig. IV.12, This technique
can be used for conversion (or decoding) any multi-
decade reflective coding system whose coded numbering

system 1is similar in nature to the Datex code. The

/r OUTPUT \\ -

| Eout

Conversion or Decoding Logic

'Eout

Ein Ein

Fig., IV.12

logic required for the conversion technique in Fig. IV.12

is shown in Fig. IV.13 for the 8421, 2421 and XS3 blnary

coded decimal systems,

SWITCH-TAIL RING COUNTER CODE: Another foreshortened

monostrorhic code often employed 1s a code easily gen-
erated in a switch-tail ring counter (shift register)
described in the next chapter. The number of counts in

such an n bit code is 2n counts, and decoding each of the

30
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2n combinations to one of 2n lines requires sensing of
only two of the n bits, Fig.IV.14 demcnstrates the
switch-tail code for a 5 bit unweighted decimal code.

SVWITCH-TAIL

A BCDE DECINAL REQ'D LOGIC
00000 0 AE
O00O0T1I 1 DE
0O00TITI 2 CD
0O0ITITI 3 BC
OIITII P AB
ITITII 5 AE
IIIIO 6 DE
ITIO0O 7 cD
ITOO0O 8 BC
ITIOoOOOGO 9 4B
Fige IV.14

Notice that the bits sensed for each count are the two
ad jacent bits that differ except for all O's and all I's
in which case the two end bits are sensed. This holds
true for any number of bits.

IN-REGISTER PARALLEL CONVERSION: Quite often 1t is

desired to convert in parallel the contents of a register
containing a monostrophic code to a polystrophic code,
with the result of the conversion placed in the same
register. This can be done by loading the register,
through the necessary conversion logic, into the same
register.

The logic required can be the same conversion logic

as deseribed earlier in this chapter, but in most cases

it may simrlified. This is true because the state of
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WXYZ Ay By C Dy W, X, Y & Z are the contents
I of flipflops A, B, C & D
000 O O O O prior to conversion.
0001 0 0 0 I
l 0c0II 0 0 I O
ooI1o ©0 0 I I Ayy By, C7 & D; are contents
0OITO0O 0 I 0 O ob’r1¥pridps AL B, C & D
' 0I1Ir oI o1 respectively after conversion.
0101 0 I I O
0IO0O 0o I I I
l 1100 I O O O Logic terms required to com-
I101I I O O I plement "incorrect" bits:
111l I 0 I O
l IIIO I 0 I I
IoIiIo I I O O A=W FFA requires no cor-
IOII I I o 1 rection.
l I0O01I I I I ©
I 00O I I I I
AB AB AB
l cd 00O 01 11 10 cD 00 01 11 10 cD 00 Of i1 10
0o | |1 oo | | |00 | |
l o1 | || Jot | | |o1 I l
l 11 HENEL | | |11 | l
10 | || |o | | |10 i l
I FFBZA FFC=A®B FFDz=A®B®C
' 0 1]| o 1i| [o :h (0 1]
FFA FFB FFC FFD
l ‘ Y N CONVERT
CLZ4R
| ® ®
GRAY
I W W . W 0. . ..
! ) )
I W X Y Z
l Fig. IV.15
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each bit only needs correction, not generation, Fig.
IV,15 demonstrates the correction approach to a 4 bit
Gray to binomial binary in-register parallel conversion
by complementing the "incorrect" bits. To expand to n
bits, additional similar stages can be added on the
least significant end of the 4 bit register shown in
Fig. IV.15.

If the flipflops of the register have no complement
inputs (or if pulsing both inputs simultaneously does
not complement the flipflops) they must be appropriately
set or reset to correct the "incorrect" bits. Fig. IV.16
demonstrates this approach for the same code conversion
as shown in Fig. IV.15. Again FFA requires no correction
as A=W,

SERIAL CONVERSION OF GRAY TO BINOMIAL BINARY: If a

Gray coded number is being transmitted serially (bit by
bit) with the most significant bit leading, serial con-
version to binomial binary is possible upon receipt of
each bit. The conversion is accomplished using the two
rules:

1) The most significant Gray bit is identical
to the most significant binomial binary bit.

2) If a bit is a 1 after conversion the bit
following it is complemented,

Fig. IV.1l7 demonstrates the conversion,
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GRAY
‘0I01IIO0T
Direction of shift 1s to the ol|I0TII0I
left with the most significant OI{0IIOI
bit lesding. When bit just to complement
left of vertical line is 1 the OII|IIOI
bit just to the risht of the complement
vertical line is complemented., OII0|IOI
OIIOI|O0I
t _ complement
OIIOII|I
Q————complement
OIIOIIO
\__“r__/i—Conversion occurs
BINONMIAL &as Gray coded number
BINARY crosses this line,

SERIAL GRaY TO BINONIAL BINARY CONVEREION

Fige IV.17
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Fig, IV.18 is the diagram of a typical serial Gray
to binomial binary converter using electronic logic.
ifter the converter is clearec the Gray bits are shifted
in, one by one, with a conversion following each shift,
4 tvo bit delay results in this conversien anmroach.

In Fig. IV.19, an apparently simpler serial converter
1s shown in which there is only slightly more th.n a one
bit delay. Because of the one-and-a-fraction of a bit
delay, timing becomes wore difficult. If desired, the
ccnversion delay may be reduced if the output 1is taken
directly from the Exclusive Or outyrut, but sampling must
be accomplished cnly during the non-transient neriod cf

the cerverter, i.e., after the new Gray bit is present st

38



39

the In:ut but befcre the convert pulse. (The convert
rulse can be delayed until slightly before the next innut
bit to allow rore samyling time if output 1is tuken from
the output of the Exclusive Or gate,)

SERIAL CONVERSION OF OTHER ONOSTRUIHIC CODES:

Serial, bit by bit, conversicn of codes other than those
that follow the rules fcr Gray to binomial binary con-
version 1s usually not possible in the true sense of the
word, serial. If such codes are received for conversion
in serial form, they are usually shiftecd intc a register
and converted in jarallel vhen the whole binary coded
number 1is 1n the recister using parallel conv-rsion
techniques.

POLYSTROFUIC TO NONOSTROUHIC CODE CONVEREION: In

order for the discussion of ccnversion to be considered
nearly ccmrlete, conversion frem polystronhic to monc-
strovhic codes must be considered. If the reverse pro-
cess of each ccnversion rreviously mentioned was discussed
in as much detail, considerable redundancy of thought
would be involved., Therefore, the discussion of this
terie will be kert brief.

any conversion which, when going fronr 2 monostrcphic
to a pclystrophic code, follows the Gray to binomial
birary conversion rules, can be accomplishec in the

reverse direction by the following rule: The moncstrerhic
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code equivalent of a binary coded nurber i1s the bit-by-
bit Exclusive Or of the nmimber with itself shifted cne
bit (to the rirht or left) ignorine the least significant
bit of the result (See Fig. IVe20)., It 1s obviocus
1001101 «—# tc be converted to monostrophic equiv,
1001101 < shifted one bit
11010111 Bit by bit Exclusive Or

& _1SB, ignore
1101011 «—Result, monostrophic equiv.

Fig. IV.20

that the most significant bit is the same in elther code,
and the lesser significant bits of the monostrophic equiv-
alent are the Zxclusive Ors of adjacent bits cf the binury
coded number, Iarallel conversicn, therefore, can be accom-
plished as showvn in Fig. IV.Z21.

Serial conversion, following the same rules requires
the nuvmber to arrive for conversicn in serial form vith
the most significant bit leading. The :revicus bit (un-
converted) nmust be stored and Exclusive O1cd with the
arriving vit (a gero is assumed to be stored in the one
bit memory prior to arrival of the most significant bit).
The output of the Exclusive Or is the serial converted
output. Fig. IV.2: shows a serial rFolystrophic-lkonostrcphic
converter with a flip-flop to store the outrut (could be
entrance bit to a shift register). The storage flip-flop
rmist have a clear inrut shown, and it rust be cleared
(set to 0) »rior to start of conversion.

Conversicn between ccdes that dec net have the
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Fig. IV.21
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Gray-binomial binary relationship is usually not required

but, if encountered, must be accomplished by brute force

parallel conversion techniquese.
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CHAFTER V. GENERATION OF HONOSTROPHIC CODES

The most developed method of monostrovhic code
cener=tion is the use of electro-mechanicul and electro-
optical-mechanical sensins of seemented, multiple track,
rotatable discs in shaft anele encoding systems. The
advantuge of monostronhic ccdes in such applications is
the ability to sample the readout "on the fly" without
fear of ambipuity. Since this method is well known and
already well documented this author will concentrzte on
generaticn of monostrophic codes by other than the disc
technique, i.e., monostrorhic code counters by electronic
logic and sequential switching techniques.

PHILOSOLHY OF FULSE COUNTING DIRECILY IN » NONO-

STROPHIC CODE: Because only one bit changes between

ad jacent counts in any monostrorhic ccde, one carnot take
advantage of carries as in, for instance, &an electronic
binorial binary ccunter when counting in a monostrophic
~ode. Nor can the state of the next less significant bit
be depended urcn te frrnish the prorer levels to the com-
piement inrut gate of a bit as in «n electronic binomial
binary counter. Therefor., the state of the complete
binary number must be employed to furnish, thrcugh logic,
cating levels to the ccomplement input pulse gate (or set
and reset pulse gates) of the storage element of each bit

(bistable flip-flops). This aprroach is analfous to the
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anticipated carry avproach used with other binary counters
to enanle faster counting. Also, it 1s the approach that
must usually be taken for any type of sequential switching
(relay) counters. Fig. V.1l demonstrates this approach for

a 3 bit Gray code counter.

N BIT GRAY CODE COUNTER: The previous section des-

cribed a 3 bit Gray code counter. In this section an n
bit Gray code counter and required counting logic will be
denonstrated. A method for easily reversing the counting
sequence will also be shown. The impcrtance of the Ex-
clusive Or function will again aprear.

If the method for determining the counting logic
described in the previous section is used tc determine the
counting logic for a 2, 3, 4 and 5 bit Gray code counter,
the information shown in Fig. V.2 is obtained after sim-
plification. Notice that the state of every bit influences
the lecgic levels associated with the complement rulse gate
of each bit as previously stated at the begimning of this
chapter.

inother set of relationships evident in Fig. V.2 and
explained below can be used to simplify the determination
of the logical expressions required for each bit of an n
bit Gray code counter.

1. The least significant bit's term for an up counter

is the complement of the ring sum of all bits.
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2. The term for any bit of an up counter other than
the most significant bit is the complement of the ring
sum of all the terms excluding the lesser significant bits
Anded with the next less significant bit and the aAnd of
the complement of all lesser significant bits.

3. The term for the most significant bit is ring
sum of the most and next most significant bits Anded with
the And of the complement of all lesser significant bits.

4, Tor an n bit down counter the logic terms are the
same except all of the ring sum portion of the up counter
logic terms are complemented.

From the above relationships a set of rules are self-
evident for determining the complement pulse gate logic
terms for all bits of an n bit Gray code counter. As an
example, for a seven bit Gray ccde up counter in which the
bits are labelled 4,5,C,D,E,F, and G, A beilng the most
significant bit and G the least significant bit, the
seven terms are as follows: a3 (&BPB) CDEFG

B; (u®B) CDEFG
c; (a®BBC)DEFG
D; (a®BBCED) EFG
E; (AGBBOEDEE)FG
F; (ADBECEDEESF )G
G; (ADBECEDIBIFDBG)

Complementing the ring sum portion of each term ylelds

the logic terms for a down counter.

46



47

By complementing any bit in a ring sum term the ring
sum term is complemented. This leads us to a simple method
of reversing the count in an n bit Gray code counter re-
sulting in an up-down counter. Notice that the most and
next most significant bits appear in all ring sum portions
of all terms. Simply by providing a means of reversing
the sense of either (not both) of these bits at will, a
method of reversing the direction of count is provided.
Fig. V.3 shows an n bit up-down Gray code counter em-
bodying all thoughts of this section.

N BIT PSEUDO-GRAY CUDE COUNTER: Remembering that

a pseudo-Gray code is only a combination of complemented
and/or permuted bits it is easily seen that the Gray code
counter discussion of the rrevious section aprlies if,

in addition, the counting logic inputs are properly com-
rlemented and permuted (normalized) so that the rroper
counting sequence occurs. Therefore no more discussion of
pseudo~Gray code counters will be pursued.

OTHER NONOSTROFHIC CODE COUNTERS: The method shown

in Fig. V.1 for determinine the logic terms required for
the complement pulse gate enabling levels can be used for
any full or foreshortened monostrophic (polystrorhic for |
that matter) code counting sequence. For example, the 4
bit (4 bits per decade) Datex described in the last chapter

is considered. See Fig. V.4,
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TO LOAD AND COUNTING LOGIC
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To count in only one direction eliminate ® circuit
to which A, A, UP and UP are connected and connect A and A
as follows: A to(l) and A to(2) for up counter,
A to and A to for down counter.

N BIT GRAY CODE COUNTER

Fig, V.3
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DOWN Datex 1s a reflected code with reflectivity de-
pendent upon the A bit. Therefore, reversing sense of
the A bit by counting logic reverses direction of count.

COUNTING LOGIC FOR ONE-DECADE DATEX COUNTER

Fig. V.4




Usually when the Datex code is used there is more

than one decade in which case the D.tex counting sequence
of each decade other than the most significant decade does
not rass directly from O to (2n-1) and (2n-1) to 0, In-
stead, each decade counts to the end of a sequence (zero

or nine), the next more significant decade steps one count,
then the first decade counts to the other end of its se-
quence (nine or zero). Any decade counts up when the next
more significant decade is even, and down when the next
more significant decade is odd. There is a similarity in
this counting sequence with that of a Gray code, and the
techniques employed to make use of this characteristic in
Gray code ccunters (described in next section) can be used
to control the direction of count in each decade of a Datex
code ccunter.

CASCADING GRAY CODE COUNTERS: An examination of an n

bit Gray code reveals that if the n bits are divided into
two groups, say 1 bits and m bits where 1l+m = n, an inter-

esting characteristic emerges. Look at the 4 blt code in
Fig. V.5 that has been divided into two 2 bit groups.

The group including C and D counts up, then dcwn, then ur
and then down. The direction of count is dependent uron
AB being even or odd; up when AB is even, down when AB is
odd. This relationship holds for any n bit Gray code

ccunter regardless where the division is. also, if the
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'wo . code is divided into more than two
0 0
000 1lup groups the relationship holds for
even| O 0 1 1
L0 0 10 any two «djacent groups. This
r0 110
0 11 1}down characteristic of Gray codes allows
odd Lo 101
0100 one to cascade many smaller up-down
rT100
110 1lup Gray code ccunters with slightly
even| 1 111
Ll 110 modified counting logic to make one
rT O 10
10 1 11down large Gray ccde counter (and to
odd{ 100 1 :
L1 0 0O cascade decades of the Datex decade
Fig. V.5 counters mentioned in the rrevious

section).

To go directly from the first count to the 2" th
count or vice versa of a m bit counter the most signi-
£icant bit is the one that is complemented. If the logic
term for the most significant bit is modified so that this
change is not possible, and a (m+1l)th logic term is devel-
oped in the ccunting logic to gate the counting pulse to
the next more significant group when the first group has
reached the "end" we have solved part of the rroblem.

The other part of the rroblem is already solved in that
the logic term of the next more significant group's least
significant bit indicates whether that group is odd or
even (the ring sum of any number of bits is %pdd)or those
bits and the complement of the ring sum is Seven9° There-
fore, the logic term of the next more significant group's

least significant bit can also be used to tell the next



lesser significant group which direction to count (an inout
to the up-down control logic described earlier in this
chapter). For the Datex decade thls 1s not true. Extra
logic is therefore required to determine 1f a decade 1is
even or odd. Hence the desired action is as follows:

When a group is counting up (next more significant group
is even), the counting logic rreverts the transition from
the hichest count to zero (the first count) but instead
steps the next more significunt rroup by one, changing it
from even to odd which reverses the direction of count in
the first group. Fig. V.6 demonstrates this method of
cascading Gray code counters to make one larger cne.

SWITCH T+IL RING COUNTER: The switch tail ring

counter mentioned in the last chapter is simply a shift
register whose most significant bit's transposed output
ig fed to the input of the least significant bit when
shifting left (counting up), and the transposed output

of the least significant bit is fed to the input of the
most significant bit when shifting right (counting down).
Hence, when counting up the ccmolement of the most sig-
nificsant bit is shifted into the least significant bit
and, when ccuntinc down the comolement of the least sig-
nificant bit is shifted into the most significunt bit.
For an n bit counter, a foreshortened monostrocphic counting
sequence of 2n counts 1s generated. Fig. V.7 shows the

counting sequence for a 5 bit switch tail counting sequence.
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Notice that for four counts only 2 bits are required, the
same as for a Gray ccde, and is in fuct a 2 bit Gray code.
For eicht counts, four bits are required, only one more
than for a Gray code with the same number of counts.

For ten counts, five bits are required, only one mecre

than for a foreshortened monostrophic code that follows
the Gray to binomial binary conversion rules. Above ten
counts many more bits are required than for more compact
monostrophic codes. Since only 2 bits must be sampled

per each of the 2n combinations as discussed in the previocus
chapter, a switch tail ring counter may be preferable from
an economy standroint if decoding (rather than ccenversion)

is required and the total count is not mcre than about ten.

down

up
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Fig. V.7

SIMULTaNEUUS GENERATION OF MONOSTROPHIC & FOLY=

STROFHIC CODES: Many times when generating a monostrorhic

code count, it is desirable to have a polystrophic binary
code count generated simultaneously with the monostrojliic

code.



Immediately, one may feel thazt the easiest and cheapest
way to accomplish this 1s to count in one code with con-
version logic for the other code connected to the outrut
of the counter ylelding both codes. Because methods of
counting in binomial binary and conversion from binomial
binary to Gray codes are so well known and simple, this
might be the tendency. Where "on the fly" sampling of the
monostrophic code is required this apvoroach is not satis-
factory because the ambiguities during transition from
one count to the next in the binomial binary counter's
outrut are transferred through the conversion logic re-
sulting in ambiguities during transition of the monostrophic
code. Therefore, if conversion logic on the output of the
counter is to be used to generate both codes in parallel
the counter must count monostrophically, with conversion
to the binomial binary code. This approach yields a mono-
strophic code with no ambisuities, with the simultaneous
generation of the binomial binary code.

CONTINUOUS CONVERSION OF BINOMIAL BINARY T0 GRa¥Y: If

the monostrophic code is Gray or pseudo-Gray and the poly-
strophic code 1is binomial binary the continuous ccnversion
method shown in Fig. V.8 and described in the following
discussion is arplicable.

4 relutionship between corresponding bits (except most
significant bits which are always equal) of binomial binary

and Gray codes is that, in the up counting sequence of both
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codes, when a bit changes from O to 1 in the binomial
binary ccde the corresponding bit of the Gray code 1is
complemented. A 1 to O transition of any binomial binary
bit does not affect the Gray code. The opposite 1s true
if the counting sequence of both codes 1s down. <his

rel tionship can be used to enable the transitions of
bits in an n bit binomial binary counter to modifyy the
corresponding bits of an (n-1) bit register which
contains the lesser significant bits of the Gray code (or
pseudo--Gray code if the output sensing pattern is com-
plemented and/or permuted) count. Fig.V.8 demonstrates
this apprcach. Using some manufacturers electronic logie
modules this aprroach is the cheapest way to generate Gray
(or pseudo-Gray) codes.

In sequential switching schemes using relay flip-flops
to generate Gray (or pseudo-Gray) code counting sequences
this approach is a good one because of the reduction of
relay contacts (paid for by doubling the number of relays).
Fig. V.9 shows an all relay n bit binomial binary counter
with continuous conversion to an n bit Gray code.

N BIT DECODERS FOR COUNTING LOGIC: lMost electronic

logic manufacturers include in their product lines 2, 3
and occasionally 4 bit decoders. These decoders usually
have as inputs two lines per bit (the logical value of the

bit and the ccmplement) and 2" output lines, of which only
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Connect complement input of each Gray
bit (less NMSB) to the 1 output of the cor-
responding binary bit for up counting se-
quence and the O output for down counting
sequence, If flip-flops require a pulse
instead of 0-1 level change pulse generators
must be added as shown.

CONTINUOUS CONVERTER
BINOMIAL BINARY TO GRAY

Fig. V.8
one may be selected at cne time. Euch ouvtrut line is
usually latelled with the decimal ejjuivalent of the n bit
binomial binary number which, as an input, selects that
line. If an n bit decoder is connected to the cutput of
an n bit flip-flop register, the proper output lines can
be ured into n pulse gates, each one associlated with the
complement input of each flip-flop in the register. By
pulsing the pulse gates the contents of the register goes
through a counting sequence dependent upcn the pattern of
Orine the decoder output lines. For a monostrophic counting

sequence, each decoder ocutput line will be asscclated with
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only one pulse esate. This 1s not true for a polystrorhiec
counting sequence.

This approach is, in effect, the method used in binary
counters that operate on the principle of "anticipated
carry" with the accompanying advantages of egual settling
time of the counting logic for all counts and faster propo-
gation of logic levels from the output of the register to
the pulse gates enabling faster counting. (Note that the
counting logic shown in Fig. V.3 requires rropogation of
a level change through the cascaded ring sum logic of all
n bits when either of the two most significant bits cr the
direction of count is comrlemented.)

In an up-down Gray counter, or when many small counters
are cascaded into one larce counter (requiring the ccntrol
of directicn cf covnt in each small counter), the carry to
the next most significunt group and the inhibiticn of the
"return to zero" in each group is more easily implemented
using the decoder counting logic technique under aiscussicn
in this section. Fig. V.10 shows a 6 bit Gray counter
comprising two 3 bit counters, each using a 3 bit decoder
as part of the counting logic. 4 comparison with Fig. V.3
and Fig. V.6 shows that this approach for an up-down |
counter made up of smaller counters is simpler.

To determine the Oring vattern of the decoder outputs,
wvrite cut the counting sequence and, beside each count,

write the decimal equivalent of the tinomial binary
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interpretation of the count. As previously explained in
this ¢’ apter, the contents of the counter determinecs which
bit is complemented on the next count. The decimal numbers
associsted with the counts rreceeding the complementing
of a bit in a countinge sequence correspond to the lines
that must be Ored into that bit's complement pulse gate.
If the counting sequence is reflective the counting
sesuence may be reversed by reversing the sense by the
decoder of the most significant bit. When groups of small
counters are cascaded into one larger counter the decimal
equivalent of the binomial tinary interpretation of the
last count in the sequence is the one that enables the
carry (and inhibits the "return to zero" by not being
asscciated with any complement pulse gate of that group).
When cascading x groups of m bit counters into on-=
xm bit cocunter (xm=n) rather than using an n bit counter
l1ike that in Fig. V.3, the procpcgation time of the logic
is derendent upon x rather than n, hence the pcssibility

of a faster counter.,



CHAPTER VI. CONCLUSION

Nost 1likely, while studying the foregoing, the
imaginative reader has already thought of varied appli-
cations for monostrophic codes. Generally monostrophic
codes have applications not only where asynchronous "on-
the-f1y" sampling is required, but also where continuous
monitoring of the continually changing code to detect a
value (or values) is required. In both cases, 1f a poly-
strophic code were used, precauvtions against ambiguities
would need to be taken which adds complexity to the system.

Gray or pseudo-Gray codes are the easiest of the full
count monostrophic codes to generate and/or convert. Of the
foreshortened codes, those which follow the Gray to blnomial
binary conversion rules are the easiest to handle.

Where conversion between a monostrophic code and
another specified'binary coded numbering system is required,
judicious selection (if both codes are not already speci-
fied) of the monostrophic code will result in simpler ccn-
version logic, particularly if Gray to binomial binary
conversion rules apply. This was shown in the examples of
Chapter IV,

The pulse counting techniques shown in Chapter V
(except for the continuous converter) have a characteristic
which is highly desirable in many applications; equal time
delay between any count and the new count after the count

pulse (assuming equal logical delays in all flip-flops)e.



This is not so with polystrophic code counters that de-
pend upon carry propogation., Also, the use of parallel
counting logic, e. g., n bit decoders, to increase the
maximum counting rate is simpler for a monostrophic code
counter than with a polystrophic code counter because
each outrut line is associated with only one complement
(or set and reset) gate of the monostrophic code counter.
Besides the usual mechanical (and sometimes electronic)
analog to dlgital conversion processes using monostrophic
codes, there are many other potential applications of these
codes which cannot be appreciated unless one has a "feel"
for them. The overall objective of this paper is to pre-
sent to the reader a better insight of monostrophic codes
based on my study of them to enable him to better evaluate

possible new applications employing them,
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APPENDIX I
4BIT PSEUDO-GRAY CODES

The folilowing paces contain all combinations of
complemented bits and permutations of the two most sig-
nificant bits of the 4 bit Greay Code. They are grcuped
so that each group has the same counting sequence as
shown on the accompanying Karnaugh lMaps. The top group
of each page has the reverse counting sequence as the
bottom group on the page.

The least significant two bits!' permutations are not
included because, in anzlyzing or normalizing a 1.seudo-
Gray code, the bits are arranged sc that the least sipg-
nificant bit is considered the bit that is comrlemented
most often in the counting secuvence, the bit with the
next fastest rate of change is considered the next to the
least significant bit, etc. The two most significant bits
are both conplerented the same number of times iIn a counting
sequence, hence their arrangement is arbitrary, and only

their rermutations are included in this arpendix.
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APPENDIX II

LEGEND OF SYMBOLS USED IN THIS PAPER

Exclusive Or; Shown with two variable

A—
input, and with two variable with
P }|aeB
complements input,
B._.
A—
A—.
| @ }aes
B_
B__.
| OUTPUT | Flip-flop; Assumed to have loglcal delay
1
FF enabling simultaneous read-in and
| [ | sampling of output. Shown with Set,
RE

SET COMP SET

Reset and Complement inputs. An
abbreviated method of showing a Re-
set input (Clear input) 1is an arrow

at lower left-hand corner of flip-flop.

(AB...N)

And Gate : - (A+B+...+N) |Or gate

(AB...N)

Nor Gate : (A+B4+.+++#N) |Nand gate

Inverter

——N— Diode
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|

Normally open switch or relay contacts

assoclated with switch or relay A.

Normally closed switch or relay contacts

associated with switch or relay A.

.k

Assertion
Optional Term n Karnaugh Maps

Non-Assertion left blank

Relay Winding

Logic Level Line

Pulsed Line




APPENDIX III
EXCLUSIVE OR/RING SUM

The Exclusive Or function, also called the ring sum
and commonly signified by the sign @ (and occasionally
by ¥), is an important logic function when working with
generation and conversion of monostrophic codes. This
function also appears in binary adders. In fact, the
ring sum of two variables is often called the sum modulo
two, because the ring sum of two variables satisfies the

logic requirements of a half adder as shown,

XX XeY X
Y 0 ) 3

0o 0
g 1 1 0 0 ;!
10 1
A | 0 1 1 0
RING SUM HALF ADDER

TRUTH

TABLE

The following postulates and theorems will enable

one to relate ring sum functions to binary logic operations.,

POSTULATES
1) 000=0
2) 161=0

3) 081=160=1

THEORENS
1) Xe1=X
2) X@1=X

%samuel H. Caldwell, Switching Circuits and Logical Design,
p. 667.

3*
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3) XeX=0
4) XeX=1

X for odd number of terms
5) XeXe. . .OX=
0O for even number of terms

6) XOY=YOX=XYOXY=(X+Y) (X+Y)
7)  (X0Y)0Z=X®(Y0Z)=XeYoZ
8) XY®XZ=X(Y®Z)

9) (XoY)=(Y0X) =XY+X¥=(X+Y) (X+Y) =(XY+XY)

Theorems 6) and 7) give the clue to the manipulation
of more than two variables. For example, let us expand
the ring sum of four variables, A®B®COD,

by theorem 7

by theorem 6

=(A®B®C)D (A6B®C)D

by theorem 7

= [(ae®B)ec]D+[(28B)6c]D

by theorem 6

= [(AB+AB)C+(AB+AB)C] D+[(AB+AB)C+(4B+AB) C| D
by theorems 6 and 9
= KA§+AB)E+(AB+AB)¢]B-+EAB+KE)6+(A§+KB)C]D
=ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+AECD
Notice that the expanded term is the symmetric
function Su’a(A,B,C,D). It can be shown that the ring sum ‘

of n variables 1s the symmetric function Sggqq(4,B,---,N)

' A®B®CO®D=(AOBEC) 6D




and the complement of the ring sum of n variables 1is
Seven(AsBy==--,N). Because the ring sum of more than two
variables is difficult to recognize on a Karnaugh Map,
the relationship of ring sum functions to symmetric
functions 1s probably the easiest way to recognize ring

sum functions of more than two varilables,.

]
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CHAPTER I.

INTRODUCTION

Monostrophic codes, binary codes in which only one

bit changes from count to covnt, are commonly found in

povlications where elimination of ambiguities during tran-

sition from one count to the next is desired.

The most common monostrovhic ccde is the Gray ccde.

Figure I.1 is an example of a

4 bit Gray code with the

n-1

normally employed binomially weighted (277, - - -, 8,4,2,1)
binary «nd decimal equivalents.
DECINAL BINaRY

BINOMIAL A

8421 bl
0] 0000 00O00O
1 0001 0O0O0TI
e 00IO 0O01ITI
) 00TITI 00IO
4 0OIO0OO OITIO
5 0 I01% OIITI
6 OITIO 0OTIO0OTI
7 g 11 1 0TOoO
8 I 00O IIO0O0
9 I00TI ITOTI
10 I0OIO I 1 I1
11 IOTTI 1110
12 ITO0O IO0OIO
13 I 161 IO0OTI
14 ITIIO I0O0TI
15 ITITI I0O0O

Fig. I.1
Digital logic engineers undoubtedly have unkncwingly

vsed the Gray code or other monostrophic codes as 2 tocl

for lo~ic simrlification and/or sequential switching
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synthesis. The Karnaugh lNap, which will be used as a tool
in this vaper, 1is such an application. Figure I.2 is an
example of a 4 variable Karnaugh Map in which there is a
change in only one variable between ad jacent comrartments.

AB
CD o0 0I TII IO

00

oI

I1

I0

4 VARIABLE KARNAUGH NAP

Fig. I.2

Other cormon aprlications of monostrophic codes
are fcund in analog - digital and diglital - analog con-
version devices.

Although the Gray code is nothing new it is diffi-
cult to find references which comprehensively discuss
ronostrophic codes, particularly those which are rot
Gray. Therefore, by means of this paper, this author 1is
attempting to present a compilation of information per-
taining to monostrophic codes, the sources being found in

texts, trade publications, manufacturers' product bulletins
2nd anplicctions notes, and that information which, becuuse

cf the mearer quantities found in the aforementioned scurces,



has been self-generated. The succeeding charters will
discuss, with respect to monostrorhic codes, the
following torics:

(1) Synthesis of monostrophic codes.

(2) Conversion between monostrophic and rolystrophic
codes.

(3) Generating monostrophic codes using electronic
and switching logic elements (counters).

Preceeding the above mentioned topics terms used 1n

this paper will be defined.
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CHAYTER II, GENERaL

In order to bte nrecise, this author has attempted
to emnloy in this rarer terms that have commonly accejted
definitions in the digital field. In so dolng many small
dis-arities have arisen that might lead to confusion if
used in this parer without defining the terms herein.
Therefore, I will cormmit the ccmmon sin of "defining
definitions" befcre proceeding with the substance of this
parper.

The Gray code many times 1is considered to be any
menostrenhic code. On the other hand, the terms Gray
code and reflected code are often used synonyrmously.

Fer the nurpose of further discucsion let us clear uyp
this disrarity with the follewing definitions because,
¢learly, not all menostrophie codes are reflected codes.

GRAY CODE: Normally the Gray code 1s considered to
be = srecific n bit counting sequence of 2" counts having
the chur.cteristics of teing non-weilrhted, mcnostrophic
and reflected (see definition of reflected coaues below),
and represents a srecific ordered numbering system of 2B
counts. 1In Chapter I an example of a 4 bit Gray code wes
ociven. f“he specific counting sequence may be expluined as
follows: the counting sequence for the leust significant
bit is 0110 repeatedzn/4 times, with the more significunt
he rate as

bits going through the sume sequence at half ©
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the next less significunt vit, and the most significant
bilt ccing throuch only half the 0110 sequences as shown

in Fi{lo IIsd s

ns-3 GRAY ngﬁég DECIMAL
0 000 000 0
I 00T 001 1
I 011 0IO0 2
o _ 0IO 0II 3
0 — I1I0 100 4
T III 101 5
1 IO0I I1IO0 6
0 100 III 7
Fig. II.1

PSEUDO-GRAY CODE 4ND NORV.LIZING: By complementing

and/or permuting *its of a Gray code, other ronostrovhic
ccdes can be formed which satisfy all the required con-
ditions for being a Gray code except the binéemial binary
equivalent and, part of the time, the counting sequence.
In the example of Fig, 1I1.8 ABCD is a Gray code with its
binomial binary equivalent of WXYZ. EFGH is not Gray,
but by complementing E and permuting E and F we have
converted it to a Gray code. This conversion process

will hereafter be called normalizing, and a monostrophic

code that can be normalized to a Gray code will be called

a pseudo-Gray code.
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POLYSTROPHIC # 7's CONP
00O 0] 7
001 1 6
01O 2 5
0ITI 3 4
ITI 4 3
IIO 5 2
I01I 6 1
I10GO0 7 0

ae
GRAY # 7's CONP
00O 0 7
001 1 6
0I1I 2 5
0IO %) 4
IT1O0 4 3
IT1X 5 2
I01I 6 L
100 7 0

be

Fig. II.3

monostrcrhic. In FigelXe3b the ccde is rwonostrcrhic and
also Crav. By complementing the most significant bit in
either reflected code of Figelle3, the r-1's complenent
(r=8) is the result. The monostrophic and pelystro-hic
reflected codes viere shown to clearly pcint out that Gray
and reflected are not synonymcus, but simply that the
Gray code (but not all monostrophic codes) is a reflected

ccde.

CYCLIC: The Gray code is alsc culled ¢ cycllc code.




The Nodern Dictionary of Electronics put cut by Howard

Sams defines a cyclic code as "any binary code that
changes only one bit when going from one number to the
number immediately following". This, in effect, 1s syn-
cnymovs with monostrophic. This author has found that
usage of the word cyeclic in the digital industry means
different things to different people. Some people in-
terpret cyclic as returning upon 1tself by the same rath
or synonymously with reflective rather than as a mono-
strophic characteristic. Therefore, for the sake of being
precise, I will avoid the use of the term cyclic.

VONOSTROFHIC CLOSURE: If the transition between the

first and last counts of a counting sequence requires only
one bit to change we have a monostrophic closure. The
Gray code and pseudo-Gray codes pcsess this characteristic,
but posession of this characteristic 1s nct required for a
cocde to be moncstrophic.

FULI, COUNT: A full count, as used in this parer,

signifies a counting n bit se- uence to which all of the
o' sounts have an assigned numerical value. Ve can see
that = full count usually goes hand-in-hand with a num-
bering system having a radix of 2% . A full counting
sequence may be made monostrophice and/or reflected with
cr without monostrophic closure.

FORESHORTENED COUNT: When all 2" combinations are

not used to form a counting sequence we have a foreshortened



count. . foreshortened counting seuuence may be mace

monostrorhic, but tc be reflective and/or close mrono-
strcphlcally the counting seacuence must contain an even

number of counts.
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CHAPTER III. MNONOSTRO{HIC CODE SYNTHESIS
This charter will discuss the synthesis of Gray,
rsevdo-Gray and other full and foreshortened count mono-
strophic codes, and will demonstrate the use of Karnaugh
lars and rath diagrams as synthesls tools.

GRAY CODE: Because the Karnaugh Maps and puth

diagrams uvtilize the Gray code, the synthesis of the Gray
code must be described inderendently. In effect, the
definition of the Gray code given in Chapter II, describes
the synthesis of the Gray code. For an n bit code
starting with the least significant bit, form the sequence
0110 2%/4 times. The next significant bit's sequence is
the same but at h-1f the rate, etc., untll we pet to the
most sienificant bit which goes throurh only half the

0110 sequence, the first half of the sequence being O's
and the last half beine 1's. This svnthesls prccess,
shovn for a 4 bit ccde in FigdIIl.l, ylelds a monostrorhie
code vhich monostrcrhically cleses. If the fcllowing
additional chuaracteristics are present we have synthesized
a reflected code which is Gray:

1. all 2P counts represent a count of a numbering
system.

©. 411 bits non-asserted (all O's) re; resents zero.

3. Revrecented numbering system counts rrogressively
from 0 to 2B-1,

KARNAUGH FaPS: aAny Karnaugh kap is a table cof all

pcssible combinations of an n bit hinary word so arranged




y BINOMIAL
DECINAL GRAY BINARY
0 0000O 0000
p ! 0001 00O0TI
2 00 ITI 0O0IO
) 001I0O0 OO0TITI
4 0ITIO 0IO0O0
5 OITTI 0101
6 0101 OIIO n=4
7 0I 0O 0ITII
) 8 T1ICO TOOO
9 ITOI I0o001I
10 31111 IoIO
11 ITIO L1011
12 I0IO0 IIO0O0
13 IOITI 1I01
14 IoO0I ITIIO
15 LG 00 ITIII
3 4\
? ﬂ T-——LSB: 0IIO sequence 2°/4 = 4 times.
0II0 sequence changing at half the
rate as next less signifigant
bit.
| 0II0 sequence changing at half the
rate as next less signifigant
bit
MSB: first half of sequence O's,
last half I'se.
Zero = 0000, & counts progressively
to 2M-1 = 1539
Reflected (dependent on LS Gray bith
Fig. IIl.1

that there is cnly cne bit change when going from any

compartment to un adjacent or "mirrored" compartment.

For maximum utility the map is arranged so that ap: roxi-

mately half the variables (usually the more significant

bits) are on the herizontzl merein and the remaining vari-

ables (usually the lesser sienificunt bits) are on the

11
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vertical margin, e.g., a 22x23 or 25x22 configuration
represents the 32 combinations of a § variable (bit)
word.

In crder that there be cnly cne bit chance between
adjacent and "mirrored" compartments a reflected mono-
strorhic code is used on the margins. In fact, the
ccunting sequences cf a Gray code are used on the murgins.
FiglII.2 shows 3 variztions of a & variable Karnaugh Mape.

Any path through a Karnaugh kap describes a mono-
strophic gode.

FATH DIAGRaNM: 4l1l the possible paths through a

Karnaugh liap are difficrlt to see because one may Jjump

to "mirrored" compartments, rarticularly 1f there are more
than 4 variables (bits). Tc solve this problem the path
diagram may be employed. The path diagram's use also
simplifies the inccrporatiocn cf code requirements dvring
synthesis. This point will beccme evident in subsequent
chapters.

Basicully, the path diagram fcr an n bit code is
formed by equally spacing n points in a circular pattern.
‘he rcints are then numbered, starting with the n bit
Gray ccded zero, and rrogressing around the circle with
the Gray code cocunting sequence. Then all those points
are conrected which differ by cnly one variable. For an

n bit code each point will radiate n lines. The rattern

generated is symmetric aiding in drawing a path diagram,

12
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3 VARIATIONS OF A 5 VARIABLE KARNAUGH NAP

Fig. III.2
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WXYZ

I000

0000

LINE OF

SYNMETRY

PSEUDO -

GRAY

II0000IIIIOOO0II
OOOOIIIIIIIIOO00
TOOIIOOIIOOIIOOI
O0000000TIIITIIIIT

NORVALIZED

ERNM[EXKN

GRAY

OIIOOIIOOIIOOIIO
OOIIIIOCO0IIIIOO
OOOOIIIITITIITIOOO0
OOO00OO0OIIITIIIII

Fig.

II1.4
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cornsiders countling and conversions which are to be discussed
in following chapters.

Nevertheless, a look at the Karnaugh laps in a4 pendix
I will show thut, for a 4 bit ccde which is Gray or pseuvdo-
Gray there exists a symmetry which may te described as the
rresence of mirror imares (ignoring direction arrows) in
all rars about elther the vertical or horizontal center
lines of the maps. 4 similar symmetry will be jiresent in
a Gray code of any number of bits.

On a path diagram a Gray or pseudo-Gray code will
result in a symmetrical pattern abcut a line dividing the
circle in half. FiglIl .4 deronstrates this fecr a 4 bit
psevdo-Gray code.

OTHER FULI. COUNT IFONOS1TRCFHIC CODES: There are many

~aths through a Karnavgh Mesp or path diacram vhich use all
o™ combinations available in an n bit code that cannot be
noermalized to a Gray code or dc not close moncstrc:hicallye
Fi=IIL .5 shows examples of such 4 bit codes. These codes
have no ceneral direct aprlication, but are mentiocned only
to insure knowledge of their gresence. =u ~0Ossible employ-
ment of such a code is in cry:tosraphic systems. also,
they may te encountered vwhen onc considers the sequence cof
cnly cartain bits in a code as we will do furtasr zlong.

FORESI.ORTENED COUNT KMONOSTRO:HIC CODES: The most

common use of n bit foreshortened ccuntine sequences, bcth

monostrecnhic and ~clvstrophic, is to reiresent numbering
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systems of radices of less than 2%, For examnle, it
takes ten of the sixteen possible combinations of a 4
bit ccde to represent the ten digits of a decimal num-
bering system,

1s previously mentioned, one may take advantage
of the uvnused combinaticns to simplify decoding and
conversion, or they may be used as error detection and/cr
correction., Other uses of the unused combinations are
possible such as reduction of power supply current and/or
regulation requirements. Discussion in subsequent charters
will make more clear advantaceous use of unused combinations
in foreshortened counts.

Synthesis of feoreshortened count mecnostroprhic codes
is easily accomplished by the use of Karnavgh Iups and
path diacrams just as in 2ll full count monostrcrhic codes.
The observations made for full count codes hold true for
foreshortened couvnts with the fcllowing excertions:

a) 4ll 2B combinations are not used.

b) DMNonostrophic closure is nct possible if the
number of counts is odd.

REFLECTED MONOSTROPHIC CQDES: 1In general, a reflected

full or foreshortened monostrophic code must be synthesized
as ovreviously discussed, observine the symretry rule on
Karnaugh laps or path dlagrams if used.

If the bit uzcn which reflectivity devends (usually

the most sienif lcant bit) will not change except between

18



the lower and uprer halves of the counting sequence und

upon closure (C for the first half and 1 for the last

half of counting sequence, or vice versa), synthesis of
the reflected monostrorhic code can be simplified. Only
the bits exclvsive of the one upon which reflectivity
derends must be considered. The countinc sequence of

these bits must have one-half the counts of the total
counting sequence, be monostrophic, but does not have

to close monostrcphically. In effect, the cocunting se-
quence of these Lits counts up during the first half of

the sequence and down during the last half of the sequence,

retracing its path to "zero'.



CHAPTER IV. MONOSTROPHIC-!OLYSTROFHIC
CODE CONVERSION

Monostrorhic codes are unweighted codes and there-
fore, are difficult to manipulate arithmetically. Con-
sequently, conversions between mecnostrorhic and poly-
stroprhic codes, the subject of this chapter, are cften
required.

The use of hardware-oriented examples interspersed
with academic discussion will be the general arproach of
this chapter. The exzmples will show electroric logic
and switching logle, both employing commonly accerted
symbols which are explained in Appendix II.

Ring sum or Exclusive Or functions arpear rereatedly
in this chapter. Avpendix III contains a discussion of
this funtion.

FARALLEL CONVERSION OF GRAY TO EINOMIAL BINARY: The

relctionship bectween these two codes may best be described
as fcllows: The most significant bits of both cocdes are
equul, and the lesser significunt bits of the binomial
binary ccde are equal to the ring sum (Exclusive Or) of
the corresponding Gray code bit and all the mcre signifi-
cant Gray cocde bits. Fige. IV.1l diagramatically shows this.
An unvigorous methcd of rroving the relationship
shovn in Fig., IV,1 is to soclve the relztionship for a 4
bit Gray te a 4 bit “inomial binary code conversion. This

is dene in Fig. IV.2. Once this 1is acccomrplished 1t can be

20
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BINOMIAL W=A, by inspection
Gk BINARY ’
A BCD WXYZ
0000 AB
000TI 000TI cCD 00 OI II IO
00ITI 001IO
001IO 00II 00 I I
0IIO 0IO0O0
OTIITI 0IO0I 0I I I
0OIO0OTI 0OIIO
0IO0O0 0III II I I
IIO0O0 I000
IIO01I I0O0TI I0 I I
IITII I0IO
IIIO I0OII _
I0OIO IIO0O0 X=AB+AB
I0OII ITIO0I
I0O0TI IIIO =A®B
I000 ITII
AB AB
CD 00 O0I II IO CD 00 O0I II IO
00 I I 00 I I
oI ; | I oI I I
II | 1 I II I I
e | 1 T I0 | I I
Y=(AB+AB) C+(AB+AB) T Z=S1 3(A,B,C,D)
=A®BOC =AOBOCOD

Fig. Ij\jgg

intuitively seen that the relationshin holds for n bits.

ring
or a

Fig.

To imolement Fig.

IV.1l vith electronic logic each

sum symbol can be rerlaced by an Fxclusive-Or mrodule,

combination of and-Or, Nand cr Nor gates as s own in

IV.3.

22
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AND=-OR GATES NOR GATES NAND GATES

7
]
17 1]
CY Q9

EXCLUSIVE OR LOGIC
Fige. IV,3

Switching logic can te used tc convert Gray tc bincmial
binary with one transfer set associated with the most siegni-
ficant Gray bit and tvo transfer sets for each lesser signi-
ficant Gray pit. Fig. IV.4 demonstrates this ccnversion,

Remembering that the ring sum of a number of variables
is the syrmetric function S ;45 of the variables, and the
complement of the ring sum cf a number of variables 1s the

symmetric function S of the variutles, it would seem

even
that a sy retric switching circuit with aprrorriate pick-
off points might furnish all the logic required for a Gray
to binomial binary conversion. Fig. IVe5 shavs a folded
symmetric switching circuit vhich functions as a Gray to
binomial binary conv:rter, and is the same circult shown
in Fig. IV.4, laid out differently to clearly demonstrute

the symmetric switching circuit relationship.



Bn g n-1 Bh-o 1
On-1 1+ B 1 iy
G T Gp_q R o [
o n | n-1—p— n-2 —1— , 1+
Gn:: Gn_l =1 Gn_z -1 Gl_—'
_______ 1 4
o, Gp-o 4 G,
Bp ¢ Bn-ﬂ Bh- B ¢

GRAY TC BINOMIAL BINARY
Fig. IV.4

FARALLEL CONVERSION OF FSEUDCO-GRAY TG BINARY: By use

of the methods of conver:ion described for Gray to binomial
binary codes and by effecting normalization of the inrut
variables, pseudo Gray codes may easlly be converted to

binomial binary.

FARALLEL CONVERSION OF OTHER FULL COUNT MONOSTROPHIC

CODES: Generally, rejuirements for parallel conversion of

other than Gray or pseudo-Gray codes to weighted ccdes are
not enccuntered. If the requirement does arise, "brute
force" techniques can be employed to accomplish such con-
version, but the complexity of such conversions will be
much rmore than for the Gray and pseudo Gray to binomial

binary.
FARALLEL CONVERSION OF FORESHORTENED MONOSTROrHIC CODES:

There are many rezsons for the use of foreshortened ccdes,
the most obvious of which is the enccding of « numbering

system whose radix is not an integer power of two., {Other




COM

GRAY TO BINONIAL BINARY
FOLDED SYMMNETRIC CIRCUIT

Fige IV.5

reascns are ability for errcr detection and/cr correction,
ease of conversion to a weighted coce, etc..

In selecting a foreshcrtened monostrcphic coce more
than the minimum number of bits may be used tc enccde a
numbering svstem in order to satisfy all the requirements
imposed on the codirg system. In general, the higher the
mmber of bits used tc encoce a numbering system (above
the minimum required), the easier it is to ccnvert (or
decode) and more difficult to transmit.

The monostrophic ccde uvsed tc represent a numbering

system vhich must be converted to another vinary ccde is

25



usvally selected so that conversion 1s simplified. Yor
example, a mcnostrorhliec ccding of a decimal numiering
system that must be converted to the self-complementing
excess-3 code (XS3) would be simplest to ccnvert if

counts 3 through 12 of the Gray code vere used to represert
0 thrcough 9 of the excess-3 decimal code. Such a selection
would result in a4 ccde being reflective, that closes
moncstrephically, and following the Gray to binomicl

binary conversicn rules. Fig. IV.6 shows this. '‘ihe szme

philoscrhy appliec to the NbBC Decimal system wouvld result

HONO -
DECINAL STRurHIC XS8S3
0o 0010 0011
1 0110 0100
2 0111 0101 Conversicn tce Y3
3 0101 0110 follows same rules
4 0100 0111 as Gray to bincmial
5 1100 1000 binary.
6 1101 1001
7 1111 1010
8 1110 1011
9 101C 1100
Fig. IV.6

in ccunts 0-9 of the Gray code tc represent 0-9 cf the
NEC Decimal system simplifying ccnversion, but the mono-
strorhic code lacks reflectivity and monostrcrhic closure,
thereby being a voor choice.

Fig. IV.7 shows a mcnostrophic coding cf a 2421 binary
coded deciral numbering system. again, the monostrophic
code is reflective and closes monostrorhically, and follews

the simnle Gray to binomial binary conversion rules.



MONO-  BINARY
DECIVAL STROPHIC 2421
0

0000 0000
i 8 0001 0001 Conversion to 2421
& 0011 0010 BC Decimal follows
3 0010 0011 same rules as Gray
4 0110 0100 to binomial binarye.
5 1110 1011
6 1010 1100
7 1011 1101
8 1001 1110
9 1000 1111

Fige IV.7

Occasionally the dvo-decimal (Radix®12) numbering
system rears its ugly head in such applications of distance
measuring systems and monetary systems. A self-comple-
menting 4 bit code that could be used to represent such
a code is the excess-2 (XS2) code. Fig. IV.8 shows the
XS82 code and a monostrophic equivalent which is reflective,
closes monostrophically and follows the Gray to binomial
binary conversion rules.

MONO-
DECIMaL STROrHIC XS2

0 0011 0010

1 0010 0011

2 0110 0100

3 0111 0101 Conversion to XS2
4 0101 0110 follows same rules
5 0100 0111 as Gray to binomial
6 1100 1000 ©binary.

7 1101 1001

8 1111 1010

9 1110 1011

10 1010 1100
11 1011 1101

Fig. IV.8

A weilchted 4 bit code for a binary coded dvo-decimal

numbering system is the 4421 code. Fig. IV.9 shows this

27



code with a monostrophic equivalent which 1s reflective,

closes monostrophically, and follows the Gray to binomial

binary conversion rules.

MONO-
DECIVAL STROFHIC 4421
0 0000 0000
1 0001 0001
2 0011 0010
3 0010 0011
4 0110 0100
B 0111 0101
6 1111 1010
7 1110 1011
8 1010 1000
9 1011 1001
10 1001 1110
11 1000 1111
Fig. IV.9

Conversion to 4421
binary coded duo-
decimal follaws same
rules as Gray to
binomial binary.

DATEX CODE:® A foreshortened monostrophic code that

is frequently encountered is the Datex code shown in

Fig. IV.10, It is a 10 count, 4 bit monostrophic code

which is reflective and closes monostrophically.

DECINMAL DATEX

OCOJOOPBUNDHO

Fig. IV.

0001
0011
0010
0110
0100
1100
1110
1010
1011
1001

10

Notice that the 0000 and 1111 combinations are not

used enabling partial error detectlon and reducing power

surply regulation and power requirements.

wDatex Corp., 1307 S. Myrtle Ave., lMonrovia, Calif.



If more than one decade is employed in the counting
sequence, the decimal counting sequence 1s also mono-
strophic in nature, i.e., only one decimal digit changes
at a time, resvlting in a decimal counting sequence as
follows: O through 9, 19 through 10, 20 through 29,

39 through 30, etec. Therefore when converting to any
decimal code, starting with the next to the most signifi-
cant digit and working to the least significant digit the
nine's complement must be sensed if the next more signifi-
cant digit is odd. <The most significant digit is always
assumed to have a zero (which 1s even) preceeding it so

it never needs to be nine's complemented.

In order to convert to a decimal code we can, in effect,
say that the Datex code is a 5 bit code as shown in
Pig. IV.1ll, the Ein bit indicating whether the next more
significant digit 1s odd or even (1 = odd, O = even).,

DATEX DECIMAL

ABCD E, =0 E; =1
0001 5 8

0011
0010
0110
0100
1100
1110
1010
1011
1001

OCOIO U dWNH
OHMDUBUTOI®

Fige.IV.1l1l
The easiest method of conversion (or decoding) to

another binary coded decimal system is to use conversicn



( or decoding) logic for Fig. IV.10, and use the E; bit
to reverse the sense of the A bit by the conversion (or
decoding) logic as shown in Fig. IV.12. This technique
can be used for conversion (or decoding) any multi-
decade reflective coding system whose coded numbering

system is similar in nature to the Datex code. The

/' OUTPUT ‘\ .

-——OEout

Conversion or Decoding Logilc

'Eout

I

Ein Ein

Fig. IV.12

logic required for the conversion technique in Fig. IV.12

is shown in Fig., IV.13 for the 8421, 2421 and XS3 blnary

coded decimal systems,

SWITCH-TAIL RING COUNTER CODE: Another foreshortened

monostrorhic code often employed 1s a code easlly gen-
erated in a switeh-tail ring counter (shift register)
described in the next chapter. The number of counts in

such an n bit code is 2n counts, and decoding each of the
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DATEX

DECIMAL A B CD

HOHOHOHOHO
HOOHHOOHHO
OHHHHOOOOH
OCO0OO0OO0OOHHHHH

OHOHOHOHOH
OCOHHOHOOHH
OCO0OO0OOHOHHHH
OO0OO0COOHHHHH

OHOHOHOHOH
OOHHOOHHOO
COoOO0OO0OHHHHOO
QOO0OO0OO0OO0OO0OOHH

HHOOOOOOHH
OHHHOOHHHO
COOHHHHOOO
OCO0OQOCOOHHHHH

OrANIWO™-0m

8 4 2 1

O

AB 0o o1

CD

% 1 ¢

o1

11

AD+BC

10
I=

®

AB 1 o111
e 00 © °

© |0

o1

H=AD

10

100

1"
O[

¢ D

@)

Do @

CD

AB 00 of
o @

o1t

11

10

D

¢

d

o1

10

K=Eout=(A6BOCOD)

J=CD

Fig. IV.13
(Cont'd next page)
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2n combinations to one of 2n lines requires sensing of
only two of the n bits, Fig.IV,14 demcnstrates the

switch-tail code for a 5 bit unweighted decimal code.

SWITCH-TAIL

A BCDE DECINAL REQ'D LOGIC
00000 0 AE
00001 1 DE
0001ITI 2 CD
O0ITITI 3 BC
OIITII 4 B
IIIII 5 AE
IIIIO 6 DE
IIIO0O 7 cD
II0O00 8 BC
I0oO0O0O 9 AB

Fige IV.14
Notice that the bits sensed for each count are the two
ad jacent bits that differ except for all O's and all I's
in which case the two end bits are sensed. This holds
true for any number of bits.

IN-REGISTER PARALLEL CONVERSION: Quite often 1t 1is

desired to convert in parallel the contents of a register
containing a monostrophic code to a polystrophic code,
with the result of the conversion placed in the same
register. This can be done by loading the register,
through the necessary conversion logic, into the same
registere.

The logic required can be the same conversion logic

as desgeribed earlier in this chapter, but in most cases

it may simrlifieds This is true because the state of
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WXYZ Ay By Cq Dy W, X, Y & Z are the contents
of flipflops A, B, C & D
0000 0 O 0 O prior to conversion.
00O0TI 0O 0 0 I
00ITI 0O 0 I O
ooIo © 0 I I Ay, B1, Gy & Dy are contents
0IIO0 0 I 0 O of ' r1tpriops AT B, C & D
0III o0 I o1 respectively after conversion.
0IO0TI 0 I I O
0IO0O o I I I
II00 I O O O Logic terms required to com-
II10I I O O I plement "incorrect" bits:
ITIII I 0 I O
ITITIO I 0o I I
Iorlo I I O O Aq=W FFA requires no cor-
IOITI I I 0 1 rection.
IoO0I I I I O
I 00O I I I 1
AB AB AB
oD 00 01 11 10 cD o0 Ot 11 19 cD 00O O1 11 10
00 | |1 Joo | | |00 |
o1 | 1] ot | | ot |
1 Ly vt | ] {1t I ‘
10 | || o | | |10 I |
FFBZA FI'C=A®B FFD=A®B®C
0 1| o }1: 0 1]| [© 1]
FFA FFB FFC FFD
‘ T\ N o\ CONVERT
CL=aR
® ®
GRAY
N\ N\ N\, [ REab-IN
{ i i )
w X Y Z
Fig. IV.1l5
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each bit only needs correction, not generation., Fig.
IV,15 demonstrates the correction approach to a 4 bit
Gray to binomial binary in-register parallel conversion
by complementing the "incorrect" bits. To expand to n
bits, additional similar stages can be added on the
least significant end of the 4 bit register shown in
Fig. IV.15.

If the flipflops of the register have no complement
inputs (or if pulsing both inputs simultaneously does
not complement the flipflops) they must be appropriately
set or reset to correct the "incorrect" bits. Fig. IV.16
demonstrates this approach for the same code conversion
as shown in Fig. IV,15. Again FFA requires no correction
as A=W,

SERIAL CONVERSION OF GRAY TO BINOMIAL BINARY: If a

Gray coded number is being transmitted serially (bit by
bit) with the most significant bit leading, serial con-
version to binomial binary is possible upon receipt of
each bit. The conversion is accomplished using the two
rules:

1) The most significant Gray bit is identical
to the most significant binomial binary bit.

2) If a bit 1s a 1 after conversion the bit
following it is complemented,

Fig. IV,17 demonstrates the conversion,
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Fig. IV.18 is the diagram of a typical serial Gray
to binomial binary converter using electronic logic.
After the converter is cleared the Gray bits are shifted
in, one by one, with a conversion following each shift,
4 tvo bit delay results in this conversicn anwroach.

In Fig. IV.19, an apparently simpler serial converter
is shown in which there is only slightly more thun a one
bit delay. DBecause of the one-and-a-fracticn of a bit
delay, timing becomes more difficult. If desired, the
cocnversion delay nay be reduced if the output 1s taken
directly from the Exclusive Or output, but sampling must
be accomplished cnly during the non-transient period cf

the ccrverter, i.e., after the new Gray bit 1s present at
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the in:ut but before the convert pulse. (The convert
rulse can be delayed until slightly befcre the next innut
bit to allow more samyling time if output is tuken from
the output of the Exclusive Or gate.)

SERIAL CONVERSION OF OTHER ONOSTRC}HIC CODES:

Serial, bit by bit, conversicn of codes other than those
that follow the rules fcr Gray to binomial binary con-
version 1s usually not possible in the true sense of the
word, serial. If such codes are received for conversion
in serial form, they are usually shifted into a register
and corverted in jparallel vhen the whole binary coded
number is 1n the recister vusing parallel conv-rsion
techniques.

POLYSTROFHIC TC MONOSTRO:HIC CODE CONVERSION: 1In

order for the discussion of ccnversion to be ccnsidered
nearly ccnmrlete, conversion from polystronhic to monc-
strorvhic codes must be considered. If the reverse pro-
cess of each ccnversion previously mentioned was discussed
in as wuch detail, considerable redundancy of thought
would be involved. Therefore, the discussion of this
teric will be kert brief.

iny conversion which, when going fror 2 monostrcphic
to a pclystrophic code, follows the Gray to binomial
birnary conversion rules, can be accomplishec in the

reverse direction by the following rule: The moncstrephic
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code equivalent of a binary coded nurber is the bit-by-
bit Exclusive Or of the mmmber with itself shifted cne
bit (to the rirht or left) ignorine the least significant
bit of the result (See Fig., IV.20). It 1s obvious
1001101 «—# tc be converted to monostrophic equiv.
100110]1 «—/ shifted one bit
11010111 Bit by bit Exclusive Or

&t _1SB, ignore
1101011 «—Result, monostrophic equiv.

Fige IV.20

that the most significant bit is the same in either code,
and the lesser significant bits of the monostrcphic equiv-
alent are the Exclusive OUrs of adjacent bits cf the binary
ccded number, ltarallel conversicn, therefore, can be accom-
plished as shown in Fig. IV.Z21.

Serial conversion, following the same rules requires
the number to arrive for conversicn in serial form vith
the most significant bit leading. The 'revicus bit (un-
converted) nmust be stored and Exclusive Orcd with the
arriving 0it (a gero is assumed to be stored in the one
bit memory prior to arrival of the most significant bit).
The output of the Exclusive Or 1is the serial converted
output. Fig. IV.2¢ shows a serial Folystrophic-Konostrcphic
converter with a flip-flop to store the outrut (could be
entrance bit to a shift register). The storage flip-flop
rmist have a clear inrut shown, and it rust be cleared
(set to 0) prior to start of cocnversion.

Conversicn between ccdes that de nct have the



Fig. IV.21
Gray-binomial binary relationship is usually not required
but, if encountered, must be accomplished by brute force
parallel conversion techniques,

CONVERTED
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CHAFTER V. GENERATION OF 1ONOSTROPHIC CODES

The most developed method of monostrovhic code
sener-tion is the use of electro-mechanicul and electro-
optical-mechaniczl sensins of seemented, multiple track,
rotatable discs in shaft angle encoding systems. The
advantuge of monostrophic ccdes in such aprlications is
the ability to sample the readout "on the fly" without
fear of ambipuity. Since this method 1is well known and
already well documented this author will concentrzte on
ceneration of monostrophic codes by other then the disc
technique, i.e., monostrophic code counters by electronic
logic and sequential switching techniquese.

PHILOSOLHY OF FULSE COUNTING DIRECILY IN » KONO-

STROPHIC CODE: Because only one bit changes between

adjacent counts in any monostrorhic code, one carnot take
advantage of carries as in, for instance, &an electronic
binorial binary cocunter when counting in a monostrophic
~ode. Nor can the state of the next less significant bit
be depended urcn to furnish the prorer levels to the com-
piement input gate of a bit as in an electronic binomial
binary counter. <Therefor., the state of the complete
binary number must be employed to furnish, thrcugh logic,
gating levels to the complement input pulse gate (or set
and reset pulse gates) of the steorage element of each bit

(bistable flip-flops)e. This aprrocach is analpous to the
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anticipated carry approach used with other binary counters
to enanle faster counting. Also, it 1s the approach that
must usually be taken for any type of sequential switching
(relay) counters. Fig. V.1l demonstrates this approach for
a 3 bit Gray code counter.

N BIT GRAY CODE COUNTER: The previous section des-

cribed a 3 bit Gray code counter. In this section an n
bit Gray code counter and required counting logic will be
denonstrated. A method for easily reversing the counting
sequence will also be shown. The impcrtance of the Ex-
clusive Or function will again appear.

If the method for determining the counting logic
described in the previous section is used tc determine the
counting logic for a 2, 3, 4 and 5 bit Gray code counter,
the information shown in Fig. V.2 1s obtained after sim-
plification. Notice that the state of every bit influences
the logic levels associated with the complement pulse gate
of each bit as previously stated at the begimning of this
chapter.

Another set of relationships evident in Fig. V.2 and
explained below can be used to simplify the determination
of the logical expressions required for each bit of an n
bit Gray code counter.

1. The least significant bit's term for an up counter

is the ccmplement of the ring sum of all bits.
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2. The term for any bit of an up counter other than
the most significant bit is the complement of the ring
sum of all the terms excluding the lesser significant bits
Anded with the next less significant bit and the And of
the complement of all lesser significant bits.

3. The term for the most significant bit 1s ring
sum of the most and next most significant bits Anded with
the And of the complement of all lesser significant bits.

4, For an n bit down counter the logic terms are the
same except all of the ring sum portion of the up counter
logic terms are complemented.

From the above relationships a set of rules are self-
evident for determining the complement pulse gate logic
terms for all bits of an n bit Gray code counter. As an
example, for a seven bit Gray ccde up counter in which the
bits are labelled &,5,C,D,E,F, and G, A being the most
significant bit and G the least significant bit, the
seven terms are as follows: a3 (4PB) CDEFG

B; (4BB) CDEFC
C; (a®BBC)DEFG
D; (a®BBCED) EFG
E; (ACBBOEDEE)FG
F; (ADBBCEDEESFE )G
G; (ADBECHDIHBIDG)

Complementing the ring sum portion of each term ylelds

the logic terms for a down counter.
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By complementing any bit in a ring sum term the ring
sum term 1s complemented. This leads us to a simple method
of reversing the count in an n bit Gray code counter re-
sulting in an up-down counter. Notice that the most and
next most significant bits appear in all ring sum portions
of all terms. Simply by providing a means of reversing
the sense of either (not both) of these bits at will, a
method of reversing the direction of count is provided.
Fig. V.3 shows an n bit up-down Gray code counter em-
bodying all thoughts of this section.

N BIT PSEUDO-GRAY CUDE COUNTER: Remembering that

a pseudo-Gray code is only a combination of complemented
and/or permuted bits it is easily seen that the Gray code
counter discussion of the rrevious section aprlies 1if,

in addition, the counting logic inputs are properly com-
rlemented and permuted (normalized) so that the proper
counting sequence occurs. Therefore no more discussion of
pseudo~Gray code counters will be pursued.

OTHER NMONOSTROFHIC CODE COUNTERS: The method shown

in Fig. V.1 for determining the logic terms required for
the complement pulse gate enabling levels can be used for
any full or foreshortened mocnostrophic (polystrorhic for
that matter) code counting sequence. For example, the 4
bit (4 bits per decade) Datex described in the last chapter

is considered. See Fig. V.4.
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Therefore, reversing sense of
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Usually when the Datex code is used there is more
than one decade in which case the D.tex counting sequence
of each decade other than the most significant decade does
not prass directly from O to (2n-l) and (2°-1) to 0. In-
stead, each decade counts to the end of a sequence (zero
or nine), the next more significant decade steps one count,
then the first decade counts to the other end of its se-
quence (nine or zero). Any decade counts up when the next
more significant decade is even, and down when the next
more significant decade is odd. There is a similarity in
this counting sequence with thut of a Gray code, and the
techniques employed to make use of this characteristic in
Gray code ccunters (deseribed in next section) can be used
to control the direction of count in each decade of a Datex
code ccunter.

CASCADING GRAY CODE COUNTERS: An examination of ann

bit Gray code reveals that if the n bits are divided into
two groups, say 1l bits and m bits where 1+m = n, an inter-

esting characteristic emerges. Look at the 4 bit code in
Fig. V.5 that has been divided into two 2 bit groups.

The group including C and D counts up, then dcwn, then up
and then down. The direction of count is dependent upon
AB being even or odd; up when AB 1s even, down when AB is
odd. This relationship holds for any n bit Gray code

ccunter recardless vhere the division is. 4also, if the
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,A-LQ—D' i code is divided into more than two
0 0
00O 1lup groups the relationship holds for
even| O 0 11
L0 0O 10 any two u«djacent groups. This
r0 110
11 lfdown characteristic of Gray codes allows
odd|{ 0101
LO 1 00 one to cascade many smaller up-down
rT100
110 1llup Gray code ccunters with slightly
even| 1 111
Ll 110 modified counting loglic to make one
rT 010
10 1 1tdown large Gray ccde counter (and to
odd | 100 1
L1 00O cascade decades of the Datex decade
Fig. V.5 counters mentioned in the rrevious

section).

To go directly from the first count to the 2™th
count or vice versa of a m bit counter the most signi-
£icant bit is the one that is complemented. If the logic
term for the most significant bit is modified so that this
change is not possible, and a (m+l)th logic term is devel-
oped in the ccunting logic to gate the counting pulse to
the next more significant group when the first grouvp has
reached the "end" we have solved part of the rroblem.

The other part of the problem is already solved in that

the logic term of the next more significant group's least
significant bit indicates whether that group is odd or |
even (the ring sum of any number of bits is %pdd)or those
bits and the complement of the ring sum is S@ve )e There-

fore, the logic term of the next more significant group's

leust significant bit can also be used to tell the next




lesser significant group which direction to count (an inout
to the up-down control logic described earlier in this
chapter). For the Datex decade thils 1s not true. Extra
logic is therefore required to determine if a decade is
even or odd. Hence the desired action is as follows:

When a group is counting up (next more significant group
is even), the counting logic rreverts the transition from
the highest count to zero (the first count) but instead
steps the next more significant rroup by one, changing it
from even to odd  which reverses the direction of count in
the first group. Fig. V.6 demonstrates this method of
cascading Gray code counters to make one larger cne.

SWITCH T4IL RING COUNTER: The switch tail ring

counter mentioned in the last chapter is simply a shift
register whose most significant bit's transposed output
ig fed to the input of the least significant bit when
shifting left (counting up), and the transposed output

of the least significant bit is fed to the input of the
most significant bit when shifting right (counting down).
Hence, when counting up the ccmlement of the most sig-
nificant bit is shifted into the least significant bit
and, vwhen ccuntine down the comnlement of the least sig-
nificant bit is shifted into the most significant bit.
For an n bit counter, a foreshortened monostrecphic counting
sequence of 2n counts is generated. Fig. V.7 shows the

counting sequence for a 5 bit switch tail counting sequence.
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Notice that for four counts only 2 bits are required, the
same as for a Gray ccde, and is in fuct a 2 bit Gray code.
For eight counts, four bits are required, only one more
than for a Gray code with the same number of counts.

For ten counts, five bits are required, only one more

than for a foreshortened monostrophic code that follows
the Gray to binomial binary conversion rules. Above ten
counts many more bits are required than for more compact
monostrophic codes. Since only 2 bits must be sampled

per each of the 2n combinations as discussed in the previocus
chapter, a switch tall ring counter may be preferable from
an economy standroint if decoding (rather than conversion)

is required and the total count is not mecre than about ten.

down

up

e
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CQORHHHKFOOOIQ
QOO HHHKEKFOOQOIUY
OOOOKrHHKFF O

Fig. V.7

SIMULTANEUUS GENERATION OF MONOSTROPHIC &- FOLY=

STROFHIC CODES: Many times when generating a monostrorhic

code count, it is desirable to have a polystrophic binary

code count generated simultaneously with the monostrophic

code.



Immediately, one may feel thzt the easiest and cheapest
way to accomplish this 1s to count in one code with con-
version logic for the other code connected to the output
of the counter ylelding both codes. Because methods of
counting in binomial binary and conversion from binomial
binary to Gray codes are so well known and simple, this
micht be the tendency. Where "on the fly" sampling of the
monostrophic code is required this apvrroach is not satis-
factory because the ambiguities during transition from
one count to the next in the binomial binary counter's
outrut are transferred through the conversion logic re-
sulting in ambiguities during transition of the monostrophie
code. Therefore, if conversion logic on the output of the
counter is to be used to generate both codes in parallel
the counter must count monostrophically, with conversion
to the binomial binary code. This approach yields a mono-
strophic code with no ambiguities, with the simultaneous
generation of the binomial binary code.

CONTINUOUS CONVERSION OF BINOMIAL BINARY TO GRaY: If

the monostrophic code is Gray or pseudo-Gray and the poly-
strophic code 1s binomial binary the continuous conversion
method shown in Fig. V.8 and described in the following
discussion is arplicable.

4 relutionship between corresponding bits (except most
significant bits which are always equal) of binomial binary

and Gray codes is that, in the up counting sequence of both



56

codes, when a bit changes from O to 1 in the binomial
binary cocde the corresponding bilt of the Gray code is
complemented. A 1 to O transition of any binomial binary
bit does not affect the Gray code. The opposite 1s true
if the counting sequence of both codes is down. <his

rel tionship can be used to enable the transitions of
bits in an n bit binomial binary counter to modify the
corresponding bits of an (n-1) bit register which
contains the lesser significunt bits of the Gray code (or
pseudo--Gray code if the output sensing pattern is com-
plemented and/or permuted) count. Fig.V.8 demonstrates
this apprcach. Usling some manufacturers electroniec logiec
modules this apwroach is the cheapest way to generate Gray
(or pseudo-Gray) codes.

In sequential switching schemes using relay flip-flops
to generate Gray (or pseudo-Gray) code counting sequences
this approach is a good one because of the reduction of
relay contacts (paid for by doubling the number of relays).
Fig. V.9 shows an all relay n bit binomial binary counter
with continuous conversion to an n bit Gray code.

N BIT DECODERS FOR COUNTING LOGIC: Most electronic

logic manufacturers include in their procduct lines 2, 3
and occasionally 4 bit decoders. These decoders usually
have as inputs two lines per bit (the logical value of the

bit and the complement) and o output lines, of which only
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Connect complement input of each Gray
bit (less NSB) to the 1 output of the cor-
responding binary bit for up counting se-
quence and the O output for down counting
sequence, If flip-flops require a pulse
instead of 0-1 level change pulse generators
must be added as shown,

CONTINUOUS CONVERTER
BINOMIAL BINARY TO GRAY

Fig. V.8
one may be selected at cne time. Euch ouvtrut line is
usually latelled with the decimal ejuivalent of the n bit
binomial binary number which, as an input, selects that
line. If an n bit decoder is connected to the cutput of
an n bit flip-flop register, the rroper outrut lines can
be ured into n pulse gates, each one assoclated with the
complement input of each flip-flop in the register. By
pulsing the pulse gates the contents of the register goes
through a counting sequence dependent upcn the pattern of
For a monostrophic counting

Oring the decoder output lines.

sequence, each decoder output line will be asscciated with
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only one pulse sate. This 1s not true for a polystrorhiec
counting sequence.

This approach is, in effect, the method used in binary
counters that operate on the principle of "anticipated
carry" with the accompanying advantages of egual settling
time of the counting logic for all counts and faster propo-
gation of logic levels from the output of the register to
the pulse gates enabling faster counting. (Note that the
counting logic shown in Fig. V.3 requires rropogation of
a level change through the cascaded ring sum logic of all
n bits when either of the two most significant bits cr the
direction of count is comrlemented.)

In an up-down Gray counter, or when many small counters
are cascaded into one larse counter (requiring the control
of directicn of count in each small counter), the carry to
the next most significunt group and the inhibiticn of the
"return to zero" in each group is more easily implemented
using the decoder counting logic technique under aiscussicn
in this section. Fig. V.10 shows a 6 bit Gray counter
comprising two 3 bit counters, each using a 3 bit deccder
as part of the counting logic. A comparison with Fig. V.3
and Fig. V.6 shows that this approach for an up-down
counter made up of smaller counters is simpler.

To determine the Oring pattern of the decoder outputs,
write cut the counting sequence and, beside each count,

write the decimal equivalent of the tinomial binary
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interpretation of the count. As previously explained in
this c’apter, the contents of the counter determinecs which
bit is comolemented on the next court. %The decimal numbers
associated with the counts rreceeding the complementing
of a bit in a counting sequence correspond to the lines
that must be Ored into that bit's complement pulse gate.
If the counting sequence is reflective the counting
sequence may be reversed by reversing the sense by the
decoder of the most significant bit. When groups of small
counters are cascaded into one larger counter the decimal
equivalent of the binomial binary interpretation of the
last count in the sequence is the one that enables the
carry (and inhibits the "return to zero" by not being
asscciated with any complement pulse gate of that group) .
wWhen cascading x groups of m bit counters into on=
xm bit counter (xm=n) rather than using an n bit counter
like that in Fig. V.3, the prcrcgation time of the logic
is derendent urpon x rather than n, hence the pcssibility

of a faster counter.



CHAPTER VI. CONCLUSION
Nost likely, while studying the foregoing, the
imaginative reader has already thought of varied appli-
cations for monostrophic codes. Generally monostrophic

"on_

codes have applications not only where asynchronous
the-f1y" sampling is required, but also where continuous
monitoring of the continually changing code to detect a
value (or values) is required. In both cases, i1f a poly-
strophic code were used, precautions against ambiguities
would need to be taken which adds complexity to the system.

Gray or pseudo-Gray codes are the easlest of the full
count monostrophic codes to generate and/or convert. Of the
foreshortened codes, those which follow the Gray to blnomial
binary conversion rules are the easiest to handle.

Where conversion between a monostrophic code and
another specified-binary coded numbering system is required,
judicious selection (if both codes are not already speci-
fied) of the monostrophic code will result in simpler ccn-
version logic, particularly if Gray to binomial binary
conversion rules apply. This was shown in the examples of
Chapter IV,

The pulse counting techniques shown in Chapter V
(except for the continuous converter) have a characteristic
which is highly desirable in many applications; equal time

delay between any count and the new count after the count

pulse (assuming equal logical delays in all flip-flops).
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This is not so with polystrophic code counters that de-
pend upon carry propogation., Also, the use of parallel
counting logic, e. g., n bit decoders, to increase the
maximum counting rate is simpler for a monostrophic code
counter than with a polystrophic code counter because
each outprut line is associated with only one complement
(or set and reset) gate of the monostrophic code counter.
Besides the usual mechanical (and sometimes electronic)
analog to digital conversion processes using monostrophic
codes, there are many other potential applications of these
codes which cannot be appreciated unless one has a "feel"
for them, The overall objective of this paper is to pre-
sent to the reader a better insight of monostrophic codes
based on my study of them to enable him to better evaluate

possible new applications employing them,
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APPENDIX I
4BIT PSEUDO-GRAY CODES

The following paces contain all combinations of
complemented bits and permutations of the two most sig-
nificant bits of the 4 bit Gray Code. They are grcuped
so that each group has the same counting sequence as
shown on the accompanying Karnaugh lMaps. ‘The top group
of each page has the reverse counting sequence as the
bottom group on the page.

The least significant two bits' permutations are not
included because, in analyzing or normalizing a 1 seudo-
Gray code, the bits are arranged sc that the least sig-
nificant bit is considered the bit that is comrlemented
most often in the counting seauvence, the bit with the
next fastest rate of change is considered the next to the
least significant bit, etc. The two most slignificant bits
are both conplerented the same number of times in a counting
sequence, hence their arrangement is arbitrary, and only

their rermutations are included in this arpendix.
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APPENDIX II

LEGEND OF SYMBOLS USED IN THIS PAPER

Exclusive Or; Shown with two variable

SET CONMP SET

A
input, and with two variable with
P |-aeB
complements input.
B—t
y
A—.
| & Ffaes
B__
B_
| OUTPUT | Flip-flop; Assumed to have logical delay
o 1
FF enabling simultaneous read-in and
| | | sampling of output. Shown with Set,
RE-

Reset and Complement inputs. An
abbreviated method of showing a Re-
set input (Clear input) 1s an arrow

at lower left-hand corner of flip-flop.

(AB...N)

And Gate : (A+B+...+N) |Or gate

(AB...N)

Nor Gate : (A+B+seos#N) [Nand gate

Inverter —N— Diode




;

Normally open switeh or relay contacts

assocliated with switch or relay A.

Normally closed switch or relay contacts

associated with switch or relay A.

.

Assertion
Optional Term n Karnaugh Maps

Non-Assertion left blank

Relay Winding

Logic Level Line

Pulsed Line
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APPENDIX III
EXCLUSIVE OR/RING SUM

The Exclusive Or function, also called the ring sum
and commonly signified by the sign & (and occasionally
by ¥), 1s an important logic function when working with
generation and conversion of monostrophic codes. This
function also appears in binary adders. In fact, the
ring sum of two variables is often called the sum modulo
two, because the ring sum of two varlables satisfies the

logic requirements of a half adder as shown.

XY oY X
¥y 0 1

0o 0
01 1 0 0 1
10 h

) e | 0 1 X 0
RING SUM HALF ADDER

TRUTH

TABLE

The following postulates and theorems will enable

one to relate ring sum functions to binary logic operations.*

POSTULATES
1) 000=0
2) 161=0

3) 0861l=160=1

THEOREMS
1) X#1=X
2) Xe1=X

*Samuel H. Caldwell, Switching Circuits an
p. 667.

III-1



III-2

3) XexX=0
4) Xex=1

X for odd number of terms
5) Xexeé. . .0X=

0 for even number of terms
6) XOYSY®X=XYOXY=(X+Y) (X+Y)
7) (XOY)0Z=X0(Y®Z)=XeYoZ
8) XY®exz=X(Yez)

9) T(XOY)=(Y6X) =XY+X¥=(X+Y) (X+¥) =(XY+XY)

Theorems 6) and 7) give the clue to the manipulation
of more than two variables. For example, let us expand
the ring sum of four variables, A®B®COD.

by theorem 7

A®BOCOD=(AGBOC)BD

by theorem 6

=(A®BOC)D (A6B&C)D

by theorem 7

= [(a@B)oc]D+[(a8B)@C] D

by theorem 6

= [(AB+AB)C+(4B+AB)C] D +[(aB+AB)T+(aB+AB) C| D

by theorems 6 and 9 |

= KAE+EB)5+(AB+AB)G]B-+BAB+KE)E+(A§+KB)C]D

=ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+AECD

Notice that the expanded term is the symmetric
function aj,S%A’B’C’D)' It can be shown that the ring sum

of n variables 1s the symmetriec function Sg4q(A,B,---,N)



and the complement of the ring sum of n variables is
Seven(AsBs===,N). Because the ring sum of more than two
variables 1is difficult to recognize on a Karnaugh Map,
the relationship of ring sum functions to symmetriec
functions 1s probably the easlest way to recognize ring

sum functions of more than two varlables,
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