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Abstract
This report presents a theoretical study of the transmission of infor-

mation in the case of discrete messages and noiseless systems, The study
begins with the definition of a unit of information (a selection between
two choices equally likely to be selected), and this is then used to deter-
mina the amount of information conveyed by the selection of one of an
arbitrary numhar of choices equally likely to be selected, Next, the average
amount of information per selection is computed in the case of messages con-
sisting of sequences of independent selections from an arbitrary nuwhar of
choices with arbitrary probabilities of their being selected, A recoding
procedure is also presented for improving the efficiency of transmission by
reducing, on the average, the number of selections (digits or pulses) re-
quired to transmit a message of given length and given statistical character,
The results obtained in the case of sequences of independent selections are
extended later to the general case of non-independent selections, Finally,
the optimum condition is determined for the transmission of information by
means of quantized pulses when the average power is fixed,



THE TRANSMISSION OF INFORMATION

Introduction

It is the opinion of many workers in the field of electrical communi-
cations that the communication art is today at a major turning point of its

The objective of almost all electrical communication systemsdevelopment.
has been, up to now, to eliminate distance in some form of human activity or
relationships between men. Telegraph, telephone and television are typical

We may add to these teletype, tele-examples of such communication systems.
control and telemetering. It is interesting to note that the names of all
these communication systems involve the prefix tele, meaning "at a distance".

Although, for obvious reasons, forms of communication over distances
much greater than the ranges of human senses and reach were first to receive
attention, the magnitude of the distance involved is not of primary impor-

Com-tance from a logical point of view in the concept of communication.
munication is basically any form of transmission of information, regardless
of the distance between the transmitter and the receiver. In a broader
sense, the field of communication includes any handling, combining, comparing
or employing of information, since such processes involve and are intimately
connected with the transmission of such information.

It is clear, then, that most human activities involve communication in
a broad sense, and, in particular, those activities which are considered of
higher intellectual type because they depend to a high degree on the process
of "thinking". Thinking itself, in fact, involves a natural communication
system of a complexity far beyond that conceivable for any man-made system.

The above considerations point clearly to a very wide field of useful
applications of the communication art which has hardly been touched as yet.
It is to be expected that each application should present problems of a
higher order of complexity than those encountered in the past. Consequently,
it is also to be expected that the solution of these problems should neces-
sitate the use of more powerful analytical tools and, particularly, should
require a more fundamental study of the process of transmission of informa-
tion. As a matter of fact, the first and most significant step in the
direction of such a study was made by Norbert Wiener (1) in connection with
the development of predictors for antiaircraft fire control. The statistical
nature of this problem led him to the realization that all communication
problems are fundamentally of a statistical nature, and must be handled
accordingly. He argued that the signal to be transmitted in a communication
system can never be considered as a known function of time, because if it
were a priori known it could not convey any new information and therefore
would not need to be transmitted. On the other hand, what can be known



& priori about a signal to be transmitted is its statistical character -
that is, for inetance, the probability distribution of its amplitude. In
addition, it is equally clear, that noise, which plays such an important
part in communication problems, can be described only in statistical terms.It follows that all communication problems are inherently statistical in
nature, and that disregarding this fact may lead to unexplainable inconsist-
encies in addition to precluding a deeper understanding of such problems,

The statistical theory of optimum prediction and filtering developed
by Wiener led further to the realization of the need for a basic and generalcriterion for judging the quality of communication systems. In fact, the
mean-square error criterion used by Wiener in this part of his work is dic-
tated by mathematical convenience rather than by physical considerations;
consequently it may not be useful in certain practical problems. The search
for a more appropriate criterion leads naturally to the question of what is
the operation that a communication system must perform, If we take as an
example a telegraph system, it might seem at first obvious that such a system
must reproduce at the output each and every letter of the input message in
the proper order, We may observe, however, that if one letter is received
incorrectly, the word containing it is still perfectly understandable in
most cases, and so, of course, is the whole message. Moreover, the message
would still be comprehensible if, for instance, all the vowels were elimi-
nated (which is what is done in written Hebrew). On the other hand, the
incorrect transmission of a digit in a number would wake the received mes-
sage incorrect,

It appears therefore that the transmission of the information conveyed
by a written message is what we wish to obtain and that this is not neces-
sarily equivalent to the transmission of all the letters contained in the
written message. More precisely, it appears that the different symbols,letters or figures contained in a written message do not contribute equally
to the transmission of information so much so, that some of them may be
completely unnecessary. Similar conclusions are reached by considering
other types of commnication systems, In particular, the recent work on
the Vocoder (2) and the clipping of speech waves (3) has provided consider-
able evidence in the same general direction,

The above considerations are relevant to another problem with which
communication engineers are becoming more and more concerned, namely, that
of bandwidth reduction, As a matter of fact, the Vocoder was developed
primarily for the purpose of reducing the bandwidth required for speech
transmission, It is clear that if different parts of a message are not
equally important, some saving in bandwidth might be possible by providing
transmission facilities which are proportional to the importance of these

different parts. The bandwidth problem, in turn, is intimately connected
with the noise-reduction problem. In fact, all the different types of
modulation developed for the purpose of noise and interference reduction
require a bandwidth wider than that required by amplitude modulation. This
method of paying for an improved signal-to-noise ratio with an increased
bandwidth appears to be the result of some fundamental limitation which,
however, the conventional approach to communication problems has failed to
clarify.

The above discussion of some of the problems confronting or likely to
confront the communication engineer indicates clearly the necessity of pro-
viding a measure for the u thing" which is to be transmitted and which has
been vaguely called "information", Such a measure will then permit a quan-
titative and more fundamental study of the process involved in the trans-
mission of information which, in turn, will lead eventually to the design
of better and more efficient communication devices, A considerable amount
of work in this direction has already been done independently by Norbert
Wiener (4) and Claude Shannon (5), The work of Wiener is particularly out-
standing because of its philosophical profoundness and its importance in
many branches of science other than communication engineering, Mention
should be made also of the pioneering work of Hartley (6) and of the more
recent work of Tuller (7).

This paper presents the work done by the author in the past year on
the transmission of discrete signals through a noiseless channel. Although
most of the results obtained have already been published by Wiener and
Shannon, it is felt that the method of approach used here is sufficiently
different to justify this redundant presentation.

I. Definition of the Unit of Information
In order to define, in an appropriate and useful manner, a unit of

information, we must first consider in some detail the nature of those
processes in our experience which are generally recognized as conveying
information. A very simple example of such processes is & yes-or-no answer
to some specific question. A slightly more involved process is the indica-
tion of one object in a group of N objects, and, in general, the selection
of one choice from a group of N specific choices. The word "specific" is
underlined because such a qualification appears to be essential to these
information-conveying processes, It means that the receiver is conscious
of all possible choices, as is, of course, the transmitter (that is, the
individual or the machine which is supplying the information). For instance,
saying "yes" or "no" to a person who has not asked a question obviously does
not convey any information. Similarly, the reception of a code number which
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is supposed to represent a particular message does not convey any informa-
tion unless there is available a code book containing all the messages with
the corresponding code numbers.

Considering next more complex processes, such as writing or speaking,
we observe that these processes consist of orderly sequences of selections
from a number of specific choices, namely, the letters of the alphabet or
the corresponding sounds, Furthermore, there are indications that the sig-
nals transmitted by the nervous system are of a discrete rather than of a
continuous nature, and might also be considered as sequences of selections.If this were the case, all information received through the senses could be
analyzed in terms of selections. The above discussion indicates that the
operation of selection forms the basis of a number of processes recognized
as conveying information, and that it is likely to be of fundamental impor-
tance in all such processes, We may expect, therefore, that a unit of
information, defined in terms of a selection, will provide a useful basis
for a quantitative study of communication systems.

Considering more closely this operation of selection, we observe that
different informational value is naturally attached to the selection of the
same choice, depending on how likely the receiver considered the selection
of that particular choice to be, For example, we would say that little
information is given by the selection of a choice which the receiver was
almost sure would be selected, It seem appropriate, therefore, in order to
avoid difficulty at this early stage, to use in our definition the particular
case of equally likely choices- that is, the case in which the receiver has
no reason to expect that one choice will be selected rather than any other.
In addition, our natural concept of information indicates that the informa-
tion conveyed by a selection increases with the number of choices from which
the selection is made, although the exact functional relation between these
two quantities is not immediately clear.

On the basis of the above considerations, it seems reasonable to define
as the unit of information the simplest possible selection, namely, the
selection between two equally likely choices, called, hereafter, the "ele-
mentary selection". For completeness, we must add to this definition the
postulate, consistent with our intuition, that N independent selections of
this type constitute N units of information. By independent selections we
mean, of course, selections which do not affect one another. We shall adopt
for this unit the convenient name of "bit" (from "binary digit"), suggested
by Shannon, We shall also refer to a selection between two choices (not
necessarily equally likely) as a "binary selection", and to a selection from
N choices, as an N-order selection. When the choices are, a priori, equally
likely, we shall refer to the selection as an "equally likely selection",

We can now proceed to develop ways of measuring the information content of
discrete messages in terms of the unit just defined. Most of this paper
will be devoted to the solution of this problem.

II. Selection from N Equally Likely Choices
Consider now the selection of one among a number, N, of equally likely

choices, In order to determine the amount of information corresponding to
such a selection, we must reduce this more complex operation to a series of
independent elementary selections, The required number of these elementary
selections will be, by definition, the measure in bits of the information
given by such an N-order selection.

Let us assume for the moment that N is a power of two. In addition
(just to make the operation of selection more physical), let us think of
the N choices as NW objects arranged in a row, as indicated in Figure l.

Binary
Number

These N objects are first divided in two equal groups, so that the object
to be selected is just as likely to be in one group as in the other, Then
the indication of the group containing the desired object is equivalent to
one elementary selection, and, therefore, to one bit. The next step con-
sists of dividing each group into two equal subgroups, so that the object
to be selected is again just as likely to be in either subgroup. Then one
additional elementary selection, that is a total of two elementary selec-
tions, will suffice to indicate the desired 'subgroup (of the possible four
subgroups). This process of successive subdivisions and corresponding ele-
mentary selections is carried out until the desired object is isolated from

0000

0011

0102

011 Fig. 1 Selection procedure for
end lst 3rd equally likely choices,3
Div. Div. Div.

1004

1015

1106

1117
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the others, Two subdivisions are required for N -4, three for N = 8, and,
in general, a number of subdivisions equal to in the case of an
N-order selection.

The same process can be carried out in a purely mathematical form by
assigning order numbers from 0 to N-1 to the N choices, The numbers are
then expressed in the binary system, as shown in Figure 1, the number of
binary digits (0 or 1) required being equal to log. These digits represent
an equal number of elementary selections and, moreover, correspond in order
to the successive divisions mentioned above, In conclusion, an N-order,
equally likely selection conveys an amount of information

Hy = loga (1)
The above result is strictly correct only if N is a power of two, in

which case Hy is an integer. If N is not a power of two, then the number of
elementary selections required to specify the desired choice will be equal
to the logarithm of either the next lower or the next higher power of two,
depending on the particular choice selected. Consider, for instance, the
case of N -3. The three choices, expressed as binary numbers, are then

00; 01;10
If the binary digits are read in order from left to right, it is clear

that the first two numbers require two binary selections - that is, two
digits, while the third number requires only the first digit, 1, in order to
be distinguished from the other two, In other words, the number of elemen-
tary selections required when N is not a power of two is equal to either one
of the two integers closest to log. It follows that the corresponding
amount of information must lie between these two limits, although the sig-
nificance of a non-integral value of H is not clear at this point. It will
be shown in the next section that Eq.(1) is still correct when N is not a
power of two, provided Ey is considered as an average value over a large lo log
number of selections,

ITI. Messages and Average Amount of Information
We have determined in the preceding section the amount of information

conveyed by 4 single selection from N equally likely choices. In general,
however, we have to deal with not one but long series of such selections,
which we call messages. This is the case, for instance, in the transmission
of written intelligence, Another example is provided by the communication
system known as pulse-code modulation, in which audio waves are sampled at
equal time intervals and then each sample is quantized, that is approximated
by the closest of a number N of amplitude levels.

Let us consider, then, 4 message consisting of a sequence of n succes-
sive N-order selections. We shall assume, at first, that these selections
are independent and equally likely. In this simpler case, all the different
sequences which can be formed equal in number to

(2)

are equally likely to occur. For instance, in the case of N 2 (the two
choices being represented by the numbers 0 and 1) and n -3, the possible
sequences would be 000, 001, 010, 100, 011, 101, 110, 111. The total number

of these sequences is 8 -8 and the probability of each sequence is 1/8.
In general, therefore, the ensemble of the possible sequences may be con-
sidered as forming a set of S equally likely choices, with the result that
the selection of any particular sequence yields an amount of information

+ H, = log,S n 1og,N. (3)

In words, n independent equally likely selections give n times as much
information as a single selection of the same type. This result is certainly
not surprising, since it is just a generalization of the postulate, stated
in Section II, which forms an integral part of the definition of information.

It is often more convenient, in dealing with long messages, to use a
quantity representing the average amount of information per N-order selection,
rather than the total information corresponding to the whole message. We

define this quantity in the most general case as the total information con-
veyed by a very long message divided by the number of selections in the
message, and we shall indicate it with the symbol Hy, where N is the order
of each selection. It is clear that when ali the selections in the message
are equally likely and independent and, in addition, N is a power of two,
the quantity H, is just equal to the information actually given by each
selection, that is

Hy
+ (4)

We shall show now that this equation is correct also when N is not a power
of two, in which case Hy has to be actually an average value taken over a
sufficiently long sequence of selections.

The number S of different and equally likely sequences which can be
formed with n independent and equally likely selections is still given by
Eq.(2), even when N is not a power of two. On the contrary, the number of
elementary selections required to specify any one particular sequence must

* The author is indebted to Mr. T. P. Cheatham, Jr. (of this Laboratory) for the
original idea on which is based both this proof and the corresponding recoding
procedure (see Section IV).

n

*
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be written now in the form

Bs log,8 (5)
where d is a number, smaller in magnitude than unity, which makes By an
integer and which depends on the particular sequence selected. The average
amount of information per N-order selection 1s then, by definition,

Since N is a constant and since the magnitude of d is smaller than unity
while n approaches infinity, this equation together with Eq.(2) yields

Hy log (7)
We shall consider now the more complex case in which the selections,

although still independent, are not equally likely. In this case, too, we
wish to compute the average amount of information per selection, For this
purpose, we consider again the ensemble of all the messages consisting of
n independent selections and we look for a way of indicating any one partic-
ular message by means of elementary selections, If we were to proceed as
before, and divide the ensemble of messages in two equal groups, the selec-
tion of the group containing the desired message would no longer be a
selection between equally likely choices, since the sequences themselves
are not equally likely. The proper procedure is now, of course, to maka
equal for each group not the number of messages in it but the probability
of its containing the desired message. Then the selection of the desired
group will be a selection between equally likely choices. This procedure
of division and selection is repeated over and over again until the desired
message has been separated from the others. The successive selections of
groups and subgroups will then form a sequence of independent elementary
selections.

One may observe, however, that it will not generally be possible to
form groups equally likely to contain the desired message, because shifting
any one of the messages from one group to the other will change, by finite
amounts, the probabilities corresponding to the two groups. On the other
hand, if the length of the messages is increased indefinitely, the accuracy
with which the probabilities of the two groups can be made equal becomes
better and better since the probability of each individual message approaches
zero. Even so, when the resulting subgroups include only a few messagesafter a large number of divisions, it may become impossible to keep the
probabilities of such subgroups as closely equal as desired unless we pro-
ceed from the beginning in an appropriate manner as indicated below. The
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messages are first arranged in order of their probabilities, which can be
easily computed if the probabilities of the choices are known. The divisions
in groups and subgroups are then made successively without changing the order
of the messages, as illustrated in Figure 2, In this manner, the smaller
subgroups will contain messages with equal or almost equal probabilities, so
that further subdivisions can be performed satisfactorily.

It is clear that when the above procedure is followed, the number of
binary selections required to separate any message from the others variese (6 )lim (log2s+ a)1

Probabilities of Groups Obtained
by Successive Divisions

II III IV v vi Recoded
Div. Div. Div. Div. Div. Message P(1) MessageDiv, P(1)B, (1)

00 0.49 0 0.49
0.49
0.51 01 0.14 100 0.42

0.14
0.14 10 101 0.420.14

0.28
0.25 02 0.07 1100 0.28

0,07
0,07 20 0.07 1101 0.28

0.14
0,09 ll 0,04 1110 0.16

0.04
0.05 12 0,02 11110 0,10

0.02
0.03 21 0.02 111110 0.12

0,02
0,01 22 0,01 111111 0.06

2.33(Beav.

Fig. 2 Recoding of messages consisting of 2 third-order
selections, for choice probabilities p(0) = 0.7, p(1) = 0.2,
p(2) s 0.1, H

3 2[0.7 log 0. 0.2 log 0.2 O.1 log 0.1)
1.157. 22

2H,

0.73For original code 3
log 3n

2

For new code = 0.993n
& av.
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from message to message. Messages with a high probability of being selected
require less binary selections than those with lower probabilities, This
fact is in agreement with the intuitive notion that the selection of a
little-probable message conveys more information than the selection of a
more-probable one. Certainly, the occurrence of an event which we know
& priori to have a 99 per cent probability 1s hardly surprising or, in our
terminology, yields very little information, while the occurrence of an
event which has a probability of only 1 per cent yields considerably more
information. More precisely, as shown below, if P(1) is the probability
of the 4th message, the number of binary selections required to indicate
this message will be an integer By (1) close to -log,P(1). In fact, P(1)is just the probability of the last subgroup obtained by successively
halving (approximately) the probability of the whole ensemble of messages
(which is unity) a number of times equal to By(1), so that P(1) = Bs(1)
By making the messages sufficiently long that is, the number n of N-order
selections sufficiently large - the integer B, (1) can be made to differ in
percentage from -log,P(1) by less than any desired amount. Hence, in this
limiting case, we can write

Ba(1) -log,P(1) . (8)
Let us consider now a sequence of M selections of messages,each message

consisting of n N-order selections (forming a sequence of nM selections).
By making the number M sufficiently large,we can be practically sure that
the message will appear in the sequence with a frequency as close to
P(1) as desired. Therefore the number of binary selections required on the
average to select one message, that is, "the mathematical expectation of
By", will be

E(Bg) P(1) By (1) (9)

The average amount of information per N-order selection is then, from
Eqs. (8) ana (9),

that is, the limit of the ratio of the number of binary selection required,
on the average, to select one message to the number of N-order selections
in the message.

Now let p(k) be the probability of the k choice (of the N), and ny.
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be the number of times the kth thchoice is selected in the message
(sequence of n selections), The probability of the 1°" message is

k=0
P(i) [p(k)} (11)n,(1)

The number of binary selections required to indicate this message can be
written as

> logep(k) (12)8(1) log2
[ p(k)] n,

(1)
k=0 k=0

with any degree of accuracy desired, In the limit when n approaches infinity
these binary selections become elementary selections, that is, binary selec-
tions between equally likely choices. We must now compute E(B, ) according
to Eq.(9). The number of sequences of selections, that is, messages, to
which correspond the same values of P(i) and Bg(1), is equal to the number
of different permutations of the choices selected in the ith sequence; that
is, to

n!

TT (i)!
k=0

It follows that the average value of B,(1) is given byth

E(Bs) >

(13)
Wl

x 2 n,log,p(k)
k=O

4

where the n, and p(k) are always positive and subject to the conditionslin - ( (10)lin 1) log 2P(1) s
1(B )

(14)>
k=O

p(k) (15)

-



The overall summation in Eq.(13) is made over all possible combinations of
integral positive values of the which satisfy Eq.(14).

In order to compute the values of E(Bg) we begin by expressing the
factorials in Eq.(13) by means of Stirling's formla (8)(9).

erm n@ e (16)
valid for large values of n. We obtain then

TT (p(k) ]
k=OTT

where

The variables Xx, = n,/n are always positive, smaller than unity and subject
to the constraint

N-1> (19)
k=0

It is convenient, at this point, to consider the function f(x) asa
continuous, rather than a discontinuous, function of the Xy, and to transform
the summation of Eq.(13) into an integral. We observe, in this regard, that
when ny, varies from zero to n,X, varies from zero to one. It follows that
to a unit increment of ny. (n, takes only integral values) corresponds an
increment of x, equal to 1/n. Therefore, when n approaches infinity, to the
unit increments of the correspond the differentials ax, = 1fn. In con-
clusion, the summation of Eq.(13) can be transformed (10) into an integral
and Eq.(10) then becomes

The integration is extended over the region of the hyperplane \efined by
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Eq.(19), in which all the x, are positive and smaller than one, It will be
noted that in Eq.(20) Xo is considered as a function of all the other x

N-1

x, (21)1
k=1

so as to limit the integration to the above-mentioned hyperplane.
To compute the integral appearing in Eq.(20), we observe first that the

integral of f(x) alone over the same region represents the summation of the
probabilities of all possible messages consisting of n selections, provided,
of course, that n is sufficiently large. Therefore, the integral of f(x)
must be equal to unity for all large values of n. On the other hand, as
shown in Appendix I, f(x) has a peak at a point which approaches = p(k)
when n approaches infinity. The height of this peak is proportional to
(n-1) /n®. It follows that when n approaches infinity, f(x) becomes a delta-
function, or unit impulse, located at x, = p(k). The integral of Eq.(20)
is, therefore, equal to the value for x, = p(k) of the rest of the integrand,
that is, of the summation. Eq.(20) yields finally

W1

nern k * ."k _ f(x) (17)
k=O

k=0

Hy = -2 p(k) logsp(k) , (22)f(x) = (3) (x) /2
(18) ked

which is then the average amount of information per N-order selection.
The conclusions which can be reached from the evaluation of the integral

in Eq.(20) extend far beyond Eq.(22). It is easy to see that if the function
11

x, logsp(k)
k=O

were any other finite function of the Xp» the limiting value of the integral
would still be equal to the value of the function for x p(k). In other
words, the expectation (or average value) of any function of the x, is equal
to the value of the function itself for x, p(k). From a physical point of
view, we can say that the ensemble of possible sequences of selections can
be divided in two groups. The first group consists of sequences for which
the frequencies X), of occurrence of the different choices differ from the
probabilities p(k) of the choices by less than amounts which approach zero
as 1//n when n approaches infinity. The total probability of the sequences
in this group approaches unity when n increases indefinitely, and therefore
the number of sequences in this group approaches

o (rp f(x)Hy - lim
k=0
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k=0

The second group consists of all other sequences, and its total probability
approaches zero when n approaches infinity.

The sequences of the first group are all equally probable and, there-
fore, the selection of one of them out of the group requires a number of
pinary selections equal to

logM = nH, . (24)

In other words, the sequences of the first group can be represented by means
of sequences of n Hy binary digits, that is Hy digits per N-order selection,
All the other sequences together, regardless of the way in which they are
represented, cannot increase by any finite amount, beyond Hy,» the number of
binary digits required on the average per N-order selection.

The expression for Hy obtained above indicates that Hy ean be considered
as the expectation of log, [1/p(k)]. In other words, we may say that the
selection of 4 particular choice k conveys an amount of information equal to
the logarithm-base-two of the reciprocal of its probability. This inter-
pretation is fundamental. It will be shown later to apply also to the
general case of non-independent selections, in which case p(k) will be
substituted by the conditional probability that the k choice will be selec-
ted, based on the knowledge of all preceding selections,

It is easy to see from Eq.(22) that Hy vanishes only when all but one
of the p(k) are equal to zero, in which case the one different from zero
must be equal to unity. In other words, Hy vanishes only when the choice
which will be selected is known a priori with unity probability. In this
instance, it is intuitively clear that no information is being transmitted.
On the other hand, Hy is a marinmm (as shown in Appendix I), when all the
p(k) are equal, that is, when there is no a priori knowledge at all about
the selections. Under these circumstances, Eq.(22) reduces to Eq.(7), since
p(k) = 1/n. The manner in which Hy varies with the probabilities of the
choices is illustrated in Figure 5, for the particular case of N = 2,

The amount of information conveyed by a message of given length was
defined above as the number of independent elementary (binary, equally likely)
selections required, on the average, to specify such a message, The notion
of a minimum number of binary selections required did not enter the defini-
tion. It should be intuitively clear, however, that the minimm number of
binary selections required, on the average, to specify a message is equal
to the average information conveyed, or, in other words, the number of
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04> Fig, 3 The amount of information per

1

0.1 0.2 0.3 0.4 0.5

v= TT ] (23)
np(k)

2

0.8

binary selection as a function of the
2 {pt0) logs plo) probability of either choice.

+ po} log20.2

P(0)

binary selections becomes a minimum when the selections are equally likely
and independent. To prove this identity, we observe that the amount of
information conveyed by a sequence of independent binary selections is a
maximum when the selections are equally likely. Conversely, therefore, it
is always possible to represent any sequence of m binary, not equally likely
selections with a number of elementary selections smaller, on the average,
than m, It follows that no binary representation of a message ean be ob-
tained with a number of selections smaller than the amount of information
conveyed. It is clear, of course, that all message representations, which
employ independent equally likely selections, require,on the average,the same
number of selections, It will be shown later that a larger number of
selections is required whenever non-independent selections are used.

It is appropriate to point out here that the mathematical form of
Eq.(22) suggests a very interesting analogy between information and entropy,
as expressed in statistical mechanics. In fact, Hy appears formally as the

th

entropy of a system whose possible states have probabilities p(k). Fora
physical interpretation of this analogy, the reader is referred to the work
of Norbert Wiener (Ref. 1).
IV. Codes and Code Efficiency

The preceding sections have been devoted to the definition of the unit
of information and to the computation of the average amount of information
per selection in the case of messages consisting of sequences of independent
N-order selections, It was pointed out in Section III that Hy represents
the minimum number of binary selections required, on the average, to perform
an N-order selection with given choice probabilities, Therefore, if we take
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the number of binary selections employed as a basis for comparing different
methods of conveying the same information, Hy represents a theoretical limit
corresponding to maximim efficiency.

The knowledge of such a theoretical limit is extremely important, but
perhaps even more important is the ability to approach this limit in practice.In our case, fortunately, the procedure followed in computing Hy (that is,the theoretical limit) indicates a convenient method for approaching thislimit in practice. Let us consider again all the sequences of n N-order
Selections (in which, however, n may be a small integer), and arrange them

of divisions required, on the average, that is, E(Bs), will be larger
than nH,. However, if we increase n, that is, the length of the sequences,
we find that E(B, )/n keeps decreasing and approaches Hy when n approaches
infinity. It must be kept in mind, in this regard, that E(B, )/n does not
decrease necessarily in a monotonic mannan, but may have an oscillatorybehavior as a function of n.* It follows that an increase of n may actually
produce an increase of E(B, )/n. For instance (as shown in Figure 4), in the
case of N 2, p(0) 0.7, p(1) = 0.3, the value of E(Bg)/n is 0,905 forn= 2, 0.909 for n -3, and 0,895 for n = 4, the limiting value being
H, = 0,882.

The above discussion indicates that, in transmitting a message consistingof a large number of selections, we should transmit the selections not indi-
vidually, but in sequences of n as units, the number n being as large as
permitted by practical considerations. The transmission of each of these
units is then performed by means of sequences of binary selections corres-
ponding in order to the successive divisions of the ensemble of all possible
sequences of n N-order selections, as indicated in Figures 2, 4, and 5. Itwill be noted that, although the sequences of binary selections are not equalin length, it is always possible to identify the end of any of them in a long
message. In fact, the first m selections of any sequence of length largerthan m are always different from any of the sequences consisting of exactly

just two. After each division, the groups containing the desired sequence

Original Recoded Origina] RecodedMessage P(4) Message P(1)B,(1) Message P(i) Message P(1)Bg (1)
00 0.49 0.49 0000 0.2400 oo 0.480
01 0,21 10 0,42 0001 0.1030 010 0.309
10 0.21 110 0.63 0010 0.1030 ollll 0.309

0,09 112 0.27 0100 0.1030 100 0.309
1000 10100,1030 0.412

E(Bg) 1,81 0011 0.0442 1011 0.1764E(B,)/2 0,905 0110 0.0441 11000 0.2205
7 0.975 1100 0.0447 11001 0.2205

0111
000 0.343 oo 0.686 0.0189 11101 0.0945

1011 0.0189 111100 0.1134ool 0.147 0,294
010 100

1101 0.0189 121101 0.11340.147 0.441 1110 0,0189 111110 0.1134100 0,147 101 0.441
oll l1ll 0.0081 121111 0.04860,063 1100 0.252
101 0,063 1101 0,252 E(B, ) = 3.5812
110 0.063 1110 0.252
111 0.027 1111 E(B,)/4 = 0.895

0.108 0.985

E(Bg) = 2.726 Fig. 4 Recoding of binary messages for
E(B, )/3 -0,909 n= 2, 3, 4, p(0) = 0.7, p(l) = 0.3,

-2 = 0.882,a= 0.972

in order of increasing probability. If we wish to separate any one partic-ular sequence from the others by means of successive division in almost
Original Recoded 1001 0.0441 11012 0.2205
Message P(1) Message P(1)B,(1) 1010 0.0441 11100 0.2205

equally probable groups, as discussed in the preceding section, the number

This fact was first pointed out to me by L. G. Kraft of this Laboratory.

Original Recoded
Message P(i) Original Recoded

Message P(1)B,(1) Message P(i) Message P(1)Ba (4)
00 0.81 0 0.81 0000 0.0550 0
01

0.6550
0,09 10 0,18 0001 0.0729 100 0.2187

10 0.09 110 0.27 0010 1010,0729 0.2187
11 0.01 111 0,03 0100 0,0729 110 0.2187

1000 0,0729 1110 0.2916E(B,) = 1,29 0011 0.0081 111100 0, 0486= 0.725 0110 0.0081 1111010 0.0567
1100 0.0081 1111011 0.0567

Original Recoded 0101 0,0082 1111100 0.0567
Message P(4) 1010Message P(1)B,(1) 0.0081 1111101 0.0567

1001 0.0082 1211110 0.0567000 0.729 0 0.729
001 0,081 100

0111 0.0009 111111100 0,00810.243 1011 0.0009 111111101 0.0081010 0,082 101 0,243
100 1101 0,0009 111111110 0.00810,081 111 0.243 1110011 0,009 11100 0,045

0,0009 1221111110 0,0090
1111 0,0001 1122211111 0.0010101 0,009 12101 0,045

110 0.009 11110 0.045 E(Bg) -1.9691
111 0,001 11111 0,001 q 0.95

B(Bs) -1.594 Fig. 5 Recoding of binary messages for
n -0,882 n= 2, 3, 4; p(0) -0.9, p(l) = 0.2, Hp= 0.468,

m selections. 1If it 1s desired to perform the transmission by means of N'-order selec-tions (N' being any integer), we can proceed in the same mannar as in the
1

case of binary selections, the only difference being that we must divide
successively the ensemble of all possible sequences in groups instead of
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will then be indicated by means of an N'-order selection.
The operation described above is, effectively, a change of code, that

is, we may say, of the conventional language in which the message is written.
Therefore this operation will be referred to as "message recoding", The
advantage resulting from this recoding is conveniently expressed in terms
of the code efficiency HN

that is, the ratio of the information transmitted on the average per selec-
tion, to the information which could be transmitted with an equally likely
selection of the same order. The efficiency of a binary code resulting from
the recoding of sequences of N-order selections can be computed most con-
veniently in the form

E(B) (26)

where n is the number of N-order selections used in the recoding operation.
Note that nHy is the average amount of information per sequence of n N-order
selections and E(Bg) represents the amount of information which could be
transmitted, on the average, by one of the sequences of hinary selections
in which the original sequences are recoded, if these hinary selections were
equally likely. If the new code is of N' order, we must substitute for
E(B, ) the product of logN' by the number of N'-order selections required,
on the average, to specify a sequence of n N-order selections,

A final remark must be made regarding the recoding operation. Since
the process of successive divisions of an ensemble of sequences into equally
probable groups cannot be carried out exactly, it is not clear at times
whether one sequence should be included in one group or in another. Of
course, we wish to perform all divisions in such a way as to obtain at the
end the most efficient code. Unfortunately, no general rule could be found
for determining at once how the divisions should be made in doubtful cases
in order to obtain maximm code efficiency. However, so long as the divi-
sions are made in a reasonable manner the resulting code efficiency will not
differ appreciably from its maxim value,

We have implicitly assumed in the foregoing discussion that we know
a priori the probabilities p(k) of the choices for a message still to be
transmitted. It seems appropriate at this point to discuss in some detail
this assumption, since the practical value of the results obtained above
depends entirely on its validity. When we state that the probability of a
particular choice has a value p(k) we mean that the frequency of occurrence
of that choice in a message originating from a given source is expected to
be close to p(k). The longer is the message, the closer we expect the
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frequency to approach p(k). It must be clear, however, that we have no
assurance that the frequency of occurrence will not differ considerably from
the probability even in the case of a very long message, although such a
situation is very unlikely to arise.

In practice, p(k) must be estimated experimentally following the reverse
process, that is, by inference from the measurement of the frequency in a
number of sample messages, If the frequencies in the sample messages are
reasonably alike, or, more precisely, if their values are scattered in the
manner which might be expected on the basis of the length of the messages
used, we may feel relatively safe in taking their average value as a good
estimate of the probability. In other words, we may expect that the fre-
quency in any other message originating from the same source will be reason-
ably close to the average value obtained. If this is the case, the source.
of such messages is said to have a stationary statistical character, We oan
conceive the case, however, in which the frequencies in the sample messages
available are so widely scattered that hardly any significance can be attrib-
uted to their average value, Such a result may mean that the source has not
& stationary statistical character, at least for practical purposes, in which
case the concept of probability loses any physical significance, Fortunately,
however, the sources of interest appear to have a stationary character for
any practical purpose, In addition, the estimates of the probabilities of
the choices do not need to be too close. It should be clear, in this respect,
that the fact that a code has been designed for a particular set of choice
probabilities does not mean that only messages with the same statistical
character can be transmitted, It means only that such a code will transmit
most efficiently, that is, with the smallest number of selections - messages
with the choice frequencies equal to the assumed probabilities. Moreover,
we can expect that the efficiency of transmission will not depend in a criti-
cal manner on the actual frequencies of the messages to be transmitted. A
proof that this is actually the case is given below.

Suppose that a code which is optimum for a set of choice probabilities
p'(k) 1s used to transmit messages with choice probabilities p(k). If we
consider again all possible sequences of n selections, the expression for
the number of binary selections required, on the average, to indicate one
particular sequence, E(BS), is still given by Eq.(13), where, however, the
p(k) which appear in the form log,p(k) should be changed into p'(k). It
follows that, in the limit when n approaches infinity, the number of binary
selections per N-order selection will approach, according to Eq.(22), the
value

1 = (25)og

By = - p(k) logsp' (k) . (27)
k=0
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It 1s clear from this equation that Hy varies rather slowly with any one of
the p'(k), unless the corresponding p(k) 1s close to zero or unity. Hy 1s,
of course, a minimim when p'(k) = p(k). The case of N 2 is illustrated in
Figure 6 for p(0) = 0.5 and p(0) = 0.7. We may conclude, therefore, that
the statistical characteristics assumed a priori can be rather different from
those of the messages actually transmitted, without the efficiency being
lowered too much,

Fig. 6 Behavior of Hy 28 a function of
p'(0) for binary messages.

0.6F H!N

Pto) logs pXo}#(I-py)oga(t-p')

2
0°

N
n

Ss

1

0.2 0.4 0.6 0.8
p'(o)

V. The Case of Non-Independent Selections

Thus far we have been considering only messages of a particularly
simple type, namely, messages consisting of sequences of independent selec-
tions, Obviously, the statistical character of most practical messages is
much more complex, Any particular selection depends generally on a number
of preceding selections, For instance, in a written message the probability
that a certain letter will be an "h" is highest when the preceding letter
is a "t", In a television signal the light intensity of a certain element
of a scanning line depends very strongly on the light intensities of the
corresponding elements in the preceding lines and in the preceding frames,
In fact, the light intensity is very likely to be almost uniform over wide
regions of the picture and to remain unchanged for several successive frames.

The simplifying assumption that any one selection is independent of the
preceding selections, although quite unrealistic, does not invalidate com-
pletely the results obtained in the preceding sections, but merely reduces
their significance to that of first approximations, Intuitively, the average
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amount of information conveyed by a sequence of given length is decreased
by the a priori knowledge of any correlation existing between successive
selections. Therefore, the value given by Eq.(22) will always be larger
than the correct value for the average amount of information per selection,
and the same is true of the code efficiency given by Eq.(25). Similarly,
any recoding operation performed in the manner discussed in Section IV will
result in a higher efficiency of transmission, but not so high as could be
obtained by taking into account the correlation between successive selections.

The procedure for computing the average amount of information per selec-
tion and for recoding messages is still essentially the same as that used in
Sections III and IV, even when the dependence of any selection on the pre-
ceding selections is taken into account. The only difference is that the
probability of a particular sequence will not be equal simply to the product
of the probabilities of the choices in it, since these are no longer inde-
pendent. We must still arrange all the possible sequences of given length
n in order of probability, and separate the desired sequence by successive
divisions of the ensemble of sequences in groups as equally probable as
possible, The number of divisions required, on the average, divided by the
number n of selections will approach Hy when n approaches infinity.

Let Pr(4) be the probability of the 4th sequence of n selections, and

H,(n) the average amount of information per sequence of n selections when
successive sequences are assumed to be independent, We have then

2.4
2.2

of O2.0

n 8H' a

6

4
2

0.8

Hg(n) =- > PA(t) log,Pa(t) . (28)
i=0

Let us consider next a sequence of n+l selections and let Pip (13k) be the

selections) is followed by the x choice (of the N). We have then

PA(t) Pag (tsk) logsP.(1) ytsk) > (29)
k=0 120

which, since
N-1

Puyy(tsk) = (30)
k=0

becomes

g (n+l) = Hy(n)-> > PA(4) Pay (43k) logs Pryg(tsk) (32)
k=0 1-0
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The increment of information resulting from the (n+1)*®
on the average, th

selection is then,

EH (mt) = P(A) Pap (tsk) logsPntl (43k) (32)
k=O i=0

Expressing now Hg (n) in terms of the : successive increments, we obtain
n

Hg(n) = 5 (m) (33) d

m=]

The final correct value of the average amount of information per selection
can then be written in the form

n

To proceed further in our analysis, we must distinguish between two
types of statistical character of practical importance. We shall say that
the output of a certain source is statistically uniform if each and any
selection depends in the same manner on the nth preceding selection, as seems
to be the case in a written message, We shall say that the output is peri-
odically discontinuous if it is possible to divide any output sequence in
sub-sequences of fixed and equal length, so that each and any selection Eq.(36) is valid only when the n and the (n+1) selections belong to the
depends in the same manner on the hn preceding selection of the arama sub- th
sequence but is independent of all selections of the preceding sub-sequences.
This is the case when messages transmitted in succession are similar in
character and equal in length but entirely unrelated to one another, as, for
example, in facsimile transmission, The above differentiation of statistical
character is not an exhaustive classification but only a characterization of
two special cases of practical interest in which different results are ob-
tained,

Considering now in more detail the increments of information Hy(n+1),
our intuition indicates that the average amount of information conveyed by
any additional selection can be, at most, equal to the value obtained when
the selection is independent of all preceding selections. Mathematically,it must be

Hy(nt1) € B(1) =-> 'p() log,p(k) (35)
k=0

A proof of this inequality is given in Appendix II. In addition, it is
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intuitively clear also that, in the case of uniform statistical character,
the average amount of information conveyed by the (nt) selection of a
sequence can be, at most, equal to the amount of information conveyed by the
nth selection, since the latter has less preceding selections on which to
depend. Mathematically, we expect that, for statistically uniform sequences,

Hy(n+1) < Hy(n) (6)
A proof of this inequality is given also in Appendix II. Eq.(36) is satis-
fied with the equal sign when the (nt1)*® selection, and therefore any fol-
lowing selection, depends only on the preceding selections.

Eq. (36) shows that the limit in Eq.(34) 18 approached in a monotonic
manner, In addition, we expect Hy (m) to approach monotonically a limit with
increasing m, since the dependence of any selection on the preceding selec-.

(1/n) > (m) (34) tions cannot extend, in practice, over an indefinitely large number of selec-
m=] tions. Suppose, for instance, that this dependence extends only over the

preceding selection, Then H,(m) becomes constant and equal to Hy, (2, )
when m is larger than n and Eq.(34) yields

Hy Hy(n,) (37)
This result is correct, of course, only in the case of statistically uniform
sequences,

In the case of a periodically discontinuous statistical character,
same sub-sequence, If this is not the case, the selection must be
the first selection of a sub-sequence, and therefore is independent of all
preceding selections, It follows that Hy, (m) is a periodic function of m with
period equal to the length n of the sub-sequences, and that the limit of
Eq.(34) is approached in an oscillatory mannar, If we compute this limit by
increasing n in steps equal to it is easily seen that Eq.(34) yields

By (1/o!)> Ey(m) (38)
m=]

& value larger than that given by Eq.(37), as was expected.
The recoding procedure in the case of messages consisting of non-inde-

pendent selections is still the same as in the case of independent selections,
The efficiency of transmission, still given by Eq.(25), increases (although not
necessarily monotonically), with the number of selections used as units in the
recoding process, and approaches unity when the number increases indefinitely.It is worth emphasizing that in the recoding process any sequence, even if
statistically uniform, 1s considered as periodically discontinuous. In fact,
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the groups of selections recoded as units are effectively sub-sequences
which are treated as though they were totally unrelated, It follows that,
if the recoding operation of a statistically uniform sequence is performed
on groups of Do selections, the efficiency of transmission after recoding
ean be at most equal to

(39)
m=]

In the case of statistically discontinuous sequences, it would seem
reasonable to make the number of selections in the recoding groups an
integral fraction or multiple of the length of the sub-sequences.

A final remark is in order regarding the fitting of the recoding pro-
cedure to the statistical character of the messages to be transmitted, It
may happen, as it does in the case of television signals, that the depend-
ence of any one selection on the nth preceding selection does not decrease
monotonically when m increases, but behaves in an oscillatory manner, In
this case, one should first reorder the selections before recoding, in such
a manner that selections which are closely related take positions close to
one another in the sequence, This idea of reordering the selections in the
sequence can be generalized as follows. Any type of transmission of informa-
tion ean be considered as the transmission, in succession, of patterns in
a two-dimensional or multi-dimensional space, time being one of the dimen-
sions, Then the problem of ordering selections in an appropriate manner
can be generalized to the problem of how best to scan these patterns. It
is clear, on the other hand, that such a scanning problem is also at the
root of the problem of reducing the bandwidth required by television signals.
The generalized scanning problem seems to be, therefore, of fundamental
practical, as well as theoretical, importance, However, no work can yet be
reported on this subject,
VI. Practical Considerations

The main purpose of this paper was to provide a logical basis for the
measurement of the rate of transmission of information. It has been shown
that an appropriate measure for the rate of transmission in the case of
sequences of selections can be provided by the minimum number of binary
selections required, on the average, to indicate one of the original selec-
tions, We were then led naturally to consider the problem of actually per-
forming the transmission of the original sequences by means of as few binary
or higher-order selections as possible, We did not consider, however, the
physical process corresponding to such selections - that 'is, their trans-
mission by electrical means,

_ 2h _

A convenient way of transmitting binary selections in a practical
communication system is by means of pulses with two possible levels, one and
zero, This is just the technique employed in pulse-code modulation. The
maximim rate at which information can be transmitted in this case is simply
equal to the number of pulses per second which can be handled by the elec-

Hy(n,) trical system - which we know to be proportional to the frequency band
available. However, as soon as we start dealing with electrical pulses
rather than logical operations like selections, an additional item must be
considered in the problem, namely, the power required for the transmission.
In the case of two-level pulses, the average power corresponding to the maxi-
mm rate of transmission of information is equal to one-half the pulse power,
since the zero and one levels are equally probable.

If pulses with N rather than two levels equally spaced in voltage are
used, the maximum rate of transmission is equal to logoN times the number of
pulses per second which can be handled by the system, The average power
required becomes, in this case,

(40)

where Wo is the power corresponding to the lowest (non-zero) voltage level.
The theoretical limit stated above for the rate of transmission of

information certainly has practical significance when the limiting factors
in the physical problem are the frequency band available and the number of
pulse levels permitted by technical and economical considerations, It is
to be noted, in this regard, that the effect of noise is here taken into
account, to a first approximation, by setting a lower limit to the voltage
difference between pulse levels, and therefore to Woe For a detailed dis-
cussion of the effect of noise, the reader is referred to the work of
Shannon (5).

Eq. (40) shows, on the other hand, that the average power increases
approximately as N°, while the rate of transmission is proportional only to
logoN. It follows that, if no limitation is placed on the frequency hand
employed, the smallest value of N should be used - that is, two. This value
has, in addition, the very important practical advantage that the receiver
is not required to measure a pulse, but only to detect the existence or the
lack of a pulse. It might happen, on the other hand, that the frequency
band and the average power are the limiting factors, while any reasonable
number of pulse levels can be allowed. This case represents quite a dif-
ferent problem from those considered above, and the maximum rate of trans-
mission of information is no longer obtained by waking the pulse levels
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(that is, the choices) equally probable, as one might think at first. For
example, more than one unit of information per pulse can be transmitted with
an average power W W/2s by using pulses with three levels not equally
probable, It seems worth while, therefore, to determine the maximum amount

of information which can be transmitted per pulse, for a given average power

W, a minimm level power Wo» and an unlimited number of pulse levels equally
spaced in voltage.

Let, therefore, p(0) be the probability of occurrence of the zero level
(no pulse), and p(k) the probability of the x") jevel. The amount of infor-
mation per pulse is given by

H=- 2 p(k) logsp(k) (41)

and the average power by oo

W=W, > ple) ee, (42)
k=0

We wish to maximize H with respect to the p(k), subject to the condition
expressed by Eq.(42) and, of course, the usual condition

> p(k) (43)
k=0

The maximization procedure is carried out in Appendix III, and yields

Hnax, W (2(2} ) + log 3 (44)

Bik} (45)

The values of p(1)/p(0) and p(0) are plotted in Figure 7 as functions
of W/W, The value of EH is plotted as a function of the same variable
in Figure 8. The latter curve shows, for instance, that the maximum amount
of information per pulse for WeW is 1.14, that is, 14 per cent higher
than the value obtained by using two equally probable levels.

The procedure for approaching in practice the theoretical limit obtained
above by appropriate recoding of the messages is very similar to that dis-
cussed in Section IV. It differs only in that the ensemble of all sequences
of given length must now be divided in groups with probabilities p(0), p(1)...
p(k)..., instead of in equally probable groups, The number of pulse levels
to be used in practice (it should be infinite in theory) must be selected
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on a compromise basis, and the values of the p(k) must then be readjusted,
accordingly to make

1
p(k) = 2 .

k=0

In addition to the effect of limitations on the average power, another
important practical consideration has been neglected in the preceding sec-
tions, All the types of recoding procedures suggested, for approaching in
practice the theoretical limits derived above, require the use of devices
capable of storing the information for a certain length of time in both the
transmitter and the receiver. Such storage devices are needed to stretch
or compress the time scale according to the probability of the group of
original selections being recoded for transmission.

Satisfactory storage units are not yet available. In addition, even
were they available, their use would undoubtedly add considerably to the
complexity of communication systems, On the other hand, any substantial
increase of transmission efficiency is fundamentally based on time stretch-
ing. In fact, since the logarithm of the probability of the choice or
sequence of choices selected is a measure of the information conveyed by
the selection (see p. 14), 1the time rate at which information is conveyed
in actual signals may vary considerably with time, Even so, a communication

log
2

max,

:
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system must be able to handle at any time the peak rate which may be present
in the signal, It follows that any system not employing storage devices to
stretch or compress the time scale is bound to have an efficiency lower than
the ratio of the average rate to the peak rate at which information is fed
to it, It 1s worth mentioning in this connection that in certain types of
communications, such as telegraph and television, the input and output sig-
nals do not have inherently fixed time scales, This is the same as saying
that such forms of communication inherently incorporate storage devices,
In the case of the telegraph, the written messages at the input and at the
output are effectively storage devices, In the case of television, the
image to be televised and the cathode-ray tube perform the same function,

Although no reduction of frequency band for a given noise level can
be obtained without storage devices, appropriate coding may lead to some
reduction of average power. This reduction can be obtained by assigning
sequences of pulses requiring the smallest energy to the most probable
messages, and vice versa, In the particular case of pulse-code modulation,
for instance, this can be done as follows. We arrange all digit combinations
in order of increasing amount of energy required and the sampling levels in
order of decreasing probability. We assign then the digit combinations to
the sampling levels in the resulting order. Such a coding method requires,
however, more flexible coding and decoding units than those used in present-
day systems,

Before concluding this section, it should be made clear that the
improvement of transmission efficiency discussed above and the resulting
possible reduction of bandwidth requirements for a given signal power have
little to do with the bandwidth reduction obtained by means of the Vocoder
or other similar schemes, The Vocoder (2), for instance, does not improve
the efficiency of transmission, but achieves a reduction in bandwidth by
eliminating that part of the speech signal which is not strictly necessary
for the mere understanding of the words spoken, Obviously, the recoding
of messages according to their statistical character and the elimination
of unnecessary information represent fundamentally different but equally
important contributions to the solution of the bandwidth-reduction problem,

Appendix I
Maximization of f(x)

In determining the values of the x for which f(x), as given in Eq.(18),is a maximum, it is more convenient to operate on the function

g(x) = In f(x) (I-1)

whose maxima and minima at non-singular points coincide with. those of f(x)
The x, are the variables in the maximization process, but are subject to the
constraint

=1 (I-2)

Using Lagrange's method, we equate to zero the partial derivatives, with
respect to the x of the function

N-1
o(x)+ > (1-3)

k=0
x

where is a constant to be determined later. We obtain then N equations
of the form

niin p, - (1+ In x) ] - (I-4)

It is clear that when n approaches infinity these equations can be satis-
fied simultaneously only when X= Pys in which case Eq.(I-2) is also satis-
fied, In addition, the function f(x) is neither discontinuous nor a minimum
at the point X, = Pys 80 that the existence of a maximum at this point does
not require any further mathematical proof.

Maximization of H,,

The function Hy, given by Eq.(22) must be maximized with respect to the
p(k) which are, of course, subject to the constraint

N--1> p(k) = 1 (1-5)
k=0

Following the same method as above, we obtain N equations of the form

{1 + In p(k)] + 7 0, (1-6)H + S vlk)
:

3
3 p(k) k=0

This set of equations can be satisfied only if all the p(k) are equal.
Again it is clear that Hy is neither discontinuous nor a minimum when all
the p(k) are equal, and therefore 1t must be a maximum,
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Appendix II
Proof That Hy Hy(1)

We wish to show, first s that the increment of the amount of informa-
tion

Hy (n+1) = >> P(1) Papi (13k) log, Pip1(13k) (II-1)
k=0 1=0

is a maximum when P (43k) = p(k), the probability of the choice, that
is, when the additional selection is independent of all preceding selections,
Mathematically, we rust maximize the function Hy (n+1) with respect to the

Pat) Payg (tsk) = p(t), (II-2)
i=0

and
N--1> Pap(tsk) = (II-3)
k=0

Following Lagrange's method, we equate to zero the derivates with
respect to the Ppp(43k) of the function

Hy (n+1) + > Soy (13k) + Uy P (1) Pay1(45k) (II-4)
i=0 k=0

where the Ly and Hy are constants to be determined later, We obtain then,
for each pair of values of i and k, an equation of the form j

P(t) [1 + 1n Pig1(43k)] Ay -HyPn(i) = (II-5)
The solution of the yori equations of this type, together with Eqs. (II-2)
and (II-3), 1s clearly

Ay = PL(4) (II-6)

My = In = In p(k). (II-7)

Therefore, the increment of information H, is @ maximum for Paez (Ask) = p(k),
since this is the only point at which a maximum can exist and a maximum mst
exist at some point, This result ean also be stated in the form

Hy(nt+1) < Hy(1) > (1I-8)
where N1

Hy(1) - >, p(k) log,p(k) (11-9)
k=O

is the average amount of information per selection, that is, the average
increment of information, when each selection is independent of all preced-
ing selections,

Proof That Hy(nt1) < Hy (n)
Let us consider a sequence of n selections as consisting of a first

selection followed by a sequence of selections, Let J) be the
conditional probability that the selection of the nth choice is followed by
the selection of the jue sequence from the yo-l possible sequences of
selections, Let also Pi} (bs Jsk) be the conditional probability that the

choice is selected after the nth choice and the jth sequence, We shall
still indicate with p(k) the probability of the k choice and, similarly,
with p(h) the probability of the nth choice. Using these new symbols,
Eq.(II-1) becomes

yori variables Pap (ask), subject to the conditions

th
th

Hy(nt1) =

1 mi127 pt) Py(ns 4) Pyyy (hs isk) Log yh, 53k) (II-20)2°mt
h=0 jz0 k=0

n
We wish to show that, for a statistically uniform sequence, Hy (n+1) isa
maximim when P (Bs 53k) is independent of h. Mathematically, we mst again
maximize the function Hy (n+1) with respect to the yotl variables Papp (hs isk),
subject to the conditions

(1I-11)
k=O

and
N-1

(TT-22)
h=0

h) P> pl (n3§) (h, jsk) ml n(j3k)(13k)

where P-i(3) is the probability of the jt sequence of selections, and

after the jhe sequence, These two probabilities must, in turn, satisfy the
condition

choice will be selectedP is the conditional probability that the kth
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(11-13)
j=0

which, however, does not concern us, since it does not involve directly the

Pip 53k). It must be clear, on the other hand, that the are kept
constant in the maximization process, In other words, the dependence of the

(n+1) selection on the preceding selection is fixed in this case, while
in the case discussed previously it was allowed to vary. In addition, since
we are dealing with a statistically uniform sequence, the (n+1) selection
depends on the n-1 preceding selections in the same manner as the nth selec-
tion depends on its n-1 preceding, that is,on all the preceding selections.

Proceeding in the same manner as in the proof that Hy (n+1) < Hy(1),
we find that, for given P(3sk), the P (Bs53k) make Hy (n+1) a maximum

when they are independent of h, that 1s, of the first selection of the
sequence, Mathematically speaking, the maximum occurs when P (0s 53k)

It follows that Eq.(II-10) yields, with the help of Eq.(II-11),
Hy(n+1)trax, *

j=0 k=0

This result can also be stated in the form

Hy (n+) < Hy (2) . (II-15)

It must be clear that, in the case of non-statistically uniform sequences,
P (53k) may be an entirely different function than that representing the
dependence of the n selection on the first selections of the sequence,
since, for instance, the (n+)* selection can be entirely independent of
the preceding selections while the nth selection is not. It follows, in this
latter case, that Eq.(II-14) is not valid, and Hy(a+) can be as large as

Hy(1).
Appendix III

We wish to maximize the average amount of information per pulse, H, for
@ given average power and an unlimited number of pulse levels equally spaced
in voltage. Mathematically, this amounts to maximizing the function given
by Eq.(41), subject to the conditions imposed by Eqs.(42) and (43). Follow-
ing Lagrange's method, as in Appendices I and II, we obtain an infinite set
of equations of the form

-32-

1+ in p(k) (III-1)N+

where } and are indeterminate constants, The first of these constants, 4,
can be eliminated by subtracting the equation with k=0 from all the other
equations of the set, which take then the form

In p(k) - in p(0) (r11-2)
The remaining constant, is then eliminated by subtracting k times
Eq.(III-2) - with k=0 - from the other equations of the same set. We obtain
in this manner a set of equations of the form

[an p(k) - 1m p(o)] - k [1m p(1) - 1m p(0)] 0 (III-3)
It follows that

P (5) P

th 2

th

2

.2

Eqs.(42) and (43) can now be written in the forms

ana

n+1
(III-4)p(x)

[Pes
"

mil p(0) p(0)

2

p(0) p(1) k (III-5)
(II-14)ye 1 kel p(0)1

P (3) Pn(isk) log2

a 1 (III-6)p(0)

The values of p(1)/p(0) are plotted in Figure 7 as functions of WMM From
these values, the p(k) are immediately obtained by means of Eq.(III-4).

The maximum value of the average amount of information EH can now be
obtained without difficulty by substituting for the p(k) in Eq.(41) the
values determined above. We have then, after appropriate manipulation of
the equation,

:

th

Hnax, =~ p(0) log logsp(0)p(k) +
p(0) 2 p(0)

fee log2 P= logop(0) - p(0) > 2

k=1 p(0) p(0)

= log log2 p(1)
p(0)

33



Using now Eq.(III-5), we obtain finally

The value of H,,, is plotted in Figure 8 as a function of WMG» using the
values of p(1)/p(0) and p(0) given in Figure 7.
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CHAPTER I. INTRODUCTION

Monostrophic codes, binary codes in which only one

bit changes from count to count, are commonly found in

apvlications where elimination cf ambiguities during tran-

sition from one count to the next is desired.
The most common monostrophic code is the Gray ccde.

Figure I.1 is an example of a 4 bit Gray code with the

normally employed binomially weighted (277, - - -, 8,4,2,1)
binary and decimal equivalents.

DECIMAL BINARY
BINOMIAL

10 I
11 I
12 I I O
13 I
14 I
15 I

G R A y8 4 2 1

1
2 I I I
3 I I I
4 I I
5 I T I I I
6 I I I
7 I I I
8 II
9 I III I I I

I I I
TI

I I I I
I I
I

Fig. Iel
Digital logic engineers undoubtedly have unknewingly

vsed the Gray code or other ronostrophic codes as 2 tocl
for sivrlification and/or sequential switching
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synthesis. The Karnaugh Map, which will be used as a tool

in this caper, is such an application. Figure I.2 is an

example of a 4 variable Karnavgh Map in which there is a

change in only one variable between adjacent comrartments.

AB
cD oo Or II 10

00

TI
Io

4 VARIABLE KARNAUGH NAP

Fig. 1.2
Other cormon applications of monostrophic codes

are fourd in analog - digital and digital - analog con-

versicn devices.
Although the Gray code is nothing new it is diffi-

cult to find references which comprehensively discuss

ronostrophic codes, particularly those which are not

Gray. Therefore, by means of this paper, this author is

attempting to present a compilation of information per-

taining to monostrophic codes, the sources being found in

texts, trade publications, manufacturers! product bulletins

and avplicetions notes, and that information which, bec.uuse

ef the mearer quantities found in the aforementioned scurces,
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has been self-generated. The succeeding cha;yters will
discuss, with respect to monostrorhic codes, the

following torics:
(1) Synthesis of monostrophic codes.

(2) Conversion between monostrophic and rolystrophic
codes.

(3) Generating monostrophic codes using electronic
and switching logic elements (counters).

Preceeding the above mentioned topics terms used in
this paper will be defined.
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CHArTER II, GENERAL

In order to be precise, this author has attempted

to emnloy in this rarer terms that have commonly acce;yted

definitions in the digital field. In so doing many small

have arisen that might lead to confusion if
used in this parer without defining the terms herein.

Therefore, I will commit the ccmmon sin of "defining

definitions" before proceeding with the substance of this

paper.
The Gray code many times is considered to be any

monostrenhic code. On the other hand, the terms Gray

code and reflected code are cften used synonymeusly.

Fer the purpose of further discussion let us clear up

this disrarity with the following definitions because,

clearly, not all mcnostrophic codes are reflected codes.

GRAY CODE: Normally the Gray code is considered to

be specific n bit courting sequence of 2" counts having

the churucteristics of teing non-weighted, mcnostrophic

and reflected (see definition of reflected codes below),

and represents a srecific ordered numbering system cf 2"

counts. In Chapter I an example of a 4 bit Gray code wes

'the specific counting sequence may be expluined as

fellows: the counting sequence for the leust significant
pit is 0110 repeated 2"/4 times, with the more significant

given.

bits going through the sume sequence at half the rate as



the next less significant bit, and the most significant
bit going throuch only half the 0110 sequences as shown

in Fige Ii.l °

n-3 GRAY DECIMAL

000 000
oot 1

Ort 010 2

010 Ort 3
= IIo 4

III Iol 5

I IOI IIo 6

0 I00 III 7

BINOMIAL
BINARY

Fig. II.1
PSRUDO-GRAY CODE AND NORMLIZING: By complementing

and/or vermuting sits of a Gray code, other ironostrophic
ecdes can be formed which satisfy all the required con-
ditions for being a Gray code except the binomial binary
equivalent and, part of the time, the counting sequence.
In the example of Fig 11,8 ABCD is a Gray code with its
binomial binary equivalent of WXYZ. EFGH is not Gray,
but by complementing E and permuting E and F we have

converted it to a Gray code. This conversion process
will hereafter be called normalizing, and a monostrophic

code that can be normalized to a Gray code will be called
a pseudo-Gray code,
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GRaY BINARY DECILALANORMAL BINOMIAL
GRAY

=4 ABCD EFGH WXYZ
0000 I000 0000 0ooo! TOOL 1IOII 2I01O 3oo10 oroo 4OIII 5OIOT OIIO 60000 7I000 8IOOT 9OIII IOIO 10IIIO OIIO IOII 11IOIO 12IOIT IIII 13TOOT 141000 II00 15

AzF, B= E,C2G, Deu
Fig. Il. z

000I
OIOT

I00IoI

aprendix I contains an exhibit cf all combinations
of and all permutations for a 4 it Gray
code with a table of é cf countine seqvences.
4 4 bit Gray code was used in appendix I se of its
ability tc be used directly most often and, at the same

time, make the rcint
CODES: For a ecde tc be reflected it

rust re;resent a numbering syster cf a radix r, and by

complementins a certein bit (same bit for all courts and

usuclly the rest significent bit) will yield the r-1's
ecmrlement of the criginal covnt. In Figure II.3a a 5

bit reflective code is n rerresenting a Radix 8

REFIECTI

numbering system. Notice that the reflected ccde is not
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POLYSTROPHIC # 7's COMP

1 6
0I 2 5
I I 3 4

I I I 4 3
I I 5 2
I 6 1
I

GRAY # 7's COWP

7
I 1 6

II 2 5
3 4

I I 4 3
III 5 2

I 6 1
I 7

be

Fig. I1.3
monostrcerhic. In the ecde is ronostrerhie and

also rat By complementing the rost significant bit in
either reflected code cf the i's complement

(r=8) is the result. The ronestrophic und ;clystro hic

reflected ecdes were shown to clearly pcint out that Gray

and reflected are not synonymcus, but simply that the

Gray code (but not all monostrophic codes} is a reflected
code.

CYCLIC: The Gray eode is also culled « cyclic code.
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The Modern Dictionary of Electronics put cut by Howard

Sams defines a cyclic code as "any binary code that

changes only one bit when going from one number to the

number immediately following". This, in effect, 1s syn-
cnymovs with monostrophic. This author has found that
usage of the word cyclic in the digital industry means

different things to different people. Some people in-
terpret cyclic as returning upon itself by the same rath
or synonymously with reflective rather than as a mono-

strophic characteristic. Therefore, for the sake of being
precise, I will avoid the use of the term cyclic.

VONOSTROFHIC CLOSURE: If the transition between the

first and last counts of a counting sequence requires only
one bit to change we have a monostrophic closure. The

Gray code and pseudo-Gray codes pcesess this characteristic,
but pesession of this characteristic is nct required for a

eode to be moncstrophic.
FULL COUNT: A full count, as used in this paper,

signifies a counting n bit sejuence to which all of the

" counts have an assigned numerical value. We can see

that a full count usually goes hand-in-hand with a num-

bering system having a radix of 2" . A full counting
sequence may be made monostrophic and/or reflected with
cr without monostrophic closure.

FORESHORTENED COUNT: When all 2" combinations are

net used to form a counting sequence we have a foreshcrtened



9

count. « foreshortened counting seuvence may be mace

monostrorhic, but to be reflective and/or close mono-

strephicelly the counting sequence must contain an even
number of counts.
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CHAPTER III. MONOSTRO!HIC CODE SYNTHESIS

This charter will discuss the synthesis of Gray,

rseudo-Gray and other full and foreshortened count mono-

strophic codes, and will demonstrate the use of Karnaugh

hans and rath diagrams as synthesis tools.
GRaY CODE: Because the Karnaugh Maps and path

diagrams utilize the Gray code, the synthesis of the Gray

code must be described independently. In effect, the

definition of the Gray code given in Chapter II, describes
the synthesis of the Gray code. For ann bit code

starting with the least significant bit, form the sequence

0110 2"/4 times. The next significant bit's sequence is
the same but at h the rate, etc., until we set to the

most sienificant bit which roes only half the

0110 sequence, the first half of ths sequence being O's

and the last half being l's. This synthesis precess,
shorn for a 4 bit ccde in yields a monostrorhic

code which moenostrcrhically cleses. If the fcllowing
additional characteristics are present we have synthesized

a reflected code which is Gray;
1. all 2" counts represent a count of a numbering

system.
, «all bits non-asserted (all O's) re: resents zero.

3. Revresented numbering system counts yrorressively
from 0 to

KARNaAUGH }aPS: any Karnaugh Wap is a tuble cf all
pessible ccmbinations of ann bit hinary werd so arranged



-_____OTTIO

Zero

2°/4 = 4 times.

sequence changing at half the
rate as next less signifigantbit.
sequence changing at half the
rate as next less signifigantbit

MSB: first half of sequence O's,
last half I's.
= 0000, & counts progressively
to 2%-1 = 1546

Reflected (dependent on lS Gray bith.

Fig. III.1
that there is cnly cne bit change when going from any

compartment to un adjacent or "mirrored" compartment.

For maximum utility the map is arranged so that ap : roxi-
mately half the variables (usually the more significant
bits) are on the herizontal mergin and the remaining vari-
ables (usually the lesser bits) are on the

11

BINOMIAL
DECINAL GRAY BINARY

0 0000 0000
1 ooo! Oooo!
2 Ooo rd oorzo

ooro oo
4 oroo3 I I
6 OIOTl ne 4I I I 0 III5

4 oro0oIi8

10 Toro9

11 Tort!
12 Toro
13 0
14
15 I9000 I I I
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vertical margin, e.f., a 22x95 or 2°x2" configuration

represents the 32 combinations of a 5 variable (bit)
word.

In crder that there be cnly cne bit chanse between

adjacent and "mirrored" compartments a reflected mono-

strophic code is used on the margins. In fact, the

ecunting sequences cf a Gray code are used on the mergins.

FiglII.€ shows 3 variations of a 5 variable Karnaugh Map.

Any path through a Karnaugh Nap describes a mono-

strophic gode.
fATH DIAGRAM: all the possible paths through a

Karneugh Map are difficvlt to see because one may jump

to "mirrored" compartments, rarticularly if there are more

than 4 variables (bits). To solve this problem the path

diagram may be employed. The path diagram's use also

simplifies the inccrporation cf code requirements during

synthesis. This point will become evident in subsequent

chapters.
Basically, the path diagram fcr ann bit code is

formed by equally spacing n points in a circular pattern.
The roints are then numbered, starting with the n bit

Gray ccded zero, and progressing around the circle with

the Gray code counting sequence. Then all those points

are connected which differ by only one variable. For an

n bit code each point will radiate n lines. The rattern

generated is symmetric aiding in drawing a path diagrar.
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ABC
DE\ OOO OOI OII OIO IIO III IOI I00

00

Or

II
Io

BC
DEN 00 01 II 10

00

OL

ITI

IO

BCG
oo OI II {10

00

OL

II
Io

DE

A a
AB

DE oo OI II I0
000

oor
OIL

OI0

IIo
IIt
IOI
100

3 VsaRIaTIONS OF A 5S VaRIABLE KaRNAUGH MAP

Fig. III.e
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Anvyaththrourhthepathdiazramwhichdoesrotretrace
itselfordcesnotgothrourhthesamepointtwiceisa

distinctmonostrophiccode.«aputhclosure,naturally,
indicatesamcnostrophicclosure.Fig,isanexamrle

ofa5bitvathdiagram.

T0OOO00000
IOOOLOOOOL

TOOITOOOLL
OOOIO TOOIO

OOIIO IOIIO
IOIIIMVIOOIIL »

IOIOIOOoIOL

IoI0000100

TITOOOII00

TIIOIOLIOL

IIIILOIIII
OIIIO

OIOIO
IIOIIOIOII

II00OoI000

Fig.III.3

TIOOLOIOOL

PSEUDO-GRAYCODES:Thes*nthesisof«pseudc-Gray

ecdeistrivialsince,bdefinitionitisonly.particular
ofecmplemertsandpermutationsofannbit

Grayccde.'heabilitytoreccgnizethatamonostrcrhic

codeisapseudo-Grayccdebecomesimportantwhencne



WXYZ

0000I000

LINE OF SYMMETRY

Fig. III.4
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TOOL O00T

TOIT

OOIO

TIOO OLOO

Z IIOOOOIIIIOOOOIIPSEUDO -

x TOOLLOOTIOOIIOOLGRAY
I OOOOIIIIIII IOOOO
W

NORVALIZED
I OOOOIIIIIIIIOOOO
W OOOOOOOOIIIIIIIIGRAY
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counting and conversions which are to be discussed
in following chapters.

Nevertheless, a look at the Karnaugh in sendix
I will show thut, for a 4 bit ecde which is Gray or psevdo-

Gray there exists a symmetry which may te described as the

vresence of mirror imares (ignoring direction arrows) in
all rars atcut either the vertical or horizont«l center
lines of the maps. sa similar symmetry will be ;resent in
a Gray code of any number of bits.

On a path diagram a Gray or vseudo-Gray code will
result in a symmetrical pattern abcut a line dividing the

circle in half. FigdJII.4 deronstrates this fcr a 4 bit
pseudo-Gray code.

OTHER FULI COUNT HIC There are rany
aths throveh a Karnaveh Mep or path diacram which use all
2" combinations available in an n bit code that cannot be

nermalized to a Gray code or de not close onc strc : hically.
shows examples of such 4 bit codes. There codes

have no general direct aprlication, but are renticned only
to insure knowledge of their eresence. «a ossible emyloy-
ment of such a code is in cry: torraphic systens. «also,

they may te encountered vhen one considers the sequence cf
enly certain bits in code we will do furtner slong.

The most

common use of n bit foreshortened ccuntine scaqvences, beth
COUNT Hic Cop :

and is to t
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B
cD oo Or II 10 A B re D

00

I I
I I I I

II
To

7

Cannot be normal-
{zed, closes mono-
strophically.

I I
II

I II I

ae

cD 00 OI II 10 A B

00 a I I

tI H

OL I I
I I I

Io I I
Cannot be normal-
ized, does not
close monostro-
phically.

I I
I I I

De

Fig. III.5



systems of radices of less than 2", For example, it
takes ten of the sixteen possible combinations of a 4

bit ecde to represent the ten dirits of a decimal num-

bering system.
s previously mentioned, one may take advantage

of the unused combinations to simplify decoding and

conversion, or they may be used as error detection and/cr
correction. Other uses of the unused combinations are

possible such as reduction of power supply current and/or

regulation requirements. Discussion in subsequent charters
will make more clear advantareous use of unused combinations
in foreshortened counts.

Synthesis of foreshcrtened count monostrorhic codes

is easily accomplished by the use cf Marnaveh Vans and

path diacrams just as in all full count codes.

The observations made for full count codes hold true for
foreshortened counts with the fcllowing excertions:

a) all 2" combinations are not used.

b) Monostrophic closure is nct possible if the
number of counts is odd.

REFLECTED MONOSTROPHIC CODES: In general, a reflected
full or foreshortened monostrophic code must be synthesized
as vreviously discussed, observing the symmetry rule on

Karnaugh Naps or rath diagrams if used.

If the bit which reflectivity devends (usually
the most sienifieant bit) will not change except between

18
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the lower and u er halves of the counting sequence and

upon closure (O for the first half and 1 for the last
half of counting sequence, or vice versa), synthesis of

the reflected monostrophic code can be simplified. Only
the bits exclusive of the one upon which reflectivity
derends must be considered. The countin= sequence of
these bits mst have one-half the counts of the total
counting sequence, be monostrcphic, but does not have

to close monostrophically. In effect, the ccunting se-

quence of these Lits counts up during the first half of

the sequence and down during the last half of the sequence,
retracing its sath to "zero".
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CHAPTER IV. MONOSTROPHIC-: OLYSTRO!HIC
CODE CONVERSION

Monostro: hic codes are unweighted codes and there-
fore, are difficult to manipulate arithmetically. Con-

sequently, conversions between monostrozphic and poly-
strophic codes, the suoject of this chapter, are cften
required.

The use of hardware-oriented examples interspersed
with academic discussion will be the general approach of
this chapter. The exemples will show electrovic logic
and switching logic, both employing commonly accexted

symbols which are explained in Appendix II.
Ring sum or Exclusive Or functions arpear rereatedly

in this chapter. Arcpendix III contains a discussion of
this funtion.

PARALLEL CONVERSIUN OF GRAY TO BINOMIAL BINARY: The

relutionship bctween these two codes may best be described
as fcllows: The most significant bits of both codes are

equul, and the lesser significant bits of the binomial
binary ccae are equal to the ring sum (Exclusive Or) of
the corresponding Gray code bit and all the mcre signifi-
cant Gray code bits. Fig. IV.1 diagramatically shows this.

An unvigorous methcd of preving the relationshin
shown in r'ig. IV.1 is to sclve the for a 4

bit Gray te a 4 bit "incmial binary code conversion. this
is dene in Fig. IV.2. Once this is acecrplished it can be
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BINOMIAL Wea, by inspectionGRAY BINARY
ABCD WXYZ0000 AB
Oool Ooo! CD oO OI II I0
OOII QOorr 00
OI1OOIITI OLOI or
OIOTI OILOOIII II
IIOO IoooIOOT Io

IOIOIIIO IOItL __I01O ITI00O X=AB+ABIIOIIOOTI IIIO =A@B
IIII

I

I

AB
CD 00 OI II

AB
cD 00 OI II Io

00

OI

II
IO

I I
I I

I I
I

I I
I

I I
I I

00

OL

II

Y=(AB+AB) C+(AB+AB)C Z=S13(A,2,C,D)
=A@BOC zA®BOCOD

Fig. IV.e

intuitively seen that the relaticnshin holds for n bits.
To imslement Fig. IV.1 vith electronic logic each

ring sum symbol can be revlaced by an *xclusive-vr rodule,
or a ecrbination of and-Or, Nand cr Nor gates as s-own in
Fig. IV.3.
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XOY XOY XOYxx

X x
XOY

y Y
AND-OR GATES NOR GATES NAND GATES

EXCLUSIVE OR LOGIC

Fig. IV.5
Switching logic can ce used tc convert Gray tc bincrial

binary with one transfer set associated with the most sieni-
ficant Gray bit and tro transfer sets for each lesser signi-
ficant Gray >it. Fie. IV.4 demonstrates this conver: ion.

Remembering that the ring sum of a number of vuriables
is the syrmetrie function socd of the variables, and the

comrlement of the ring sum cf a number of variables is the

symmetric function S of the variatles, it would seemeven
that a retric switching circvit with aprrorriate vick-
off points might furnish all the logic required for 2 Gray
to binomial binary conversicn. Fig. IV.5 shovs a folaed
symmetric switching circuit which functions as a Gray to
binomial binary conv-rter, and is the same circuit shovn

in Fig. IV.4, laid out differently to clearly demonstrute

A

the symmetric switching circuit relationshin.
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B Bn-1 n-2 By
Gn-1

Gn-1+
By

6 Gn-2 1

G G G Gn-1 n-2 1
COM G Gn-2 1

G Gn-2 1

GRAY TO BINOMIAL BINARY

Fige IVe4

LARALLEL CONVERSION OF S#UDO-GRAY TU BINARY: By use

of the methods of converion described for Gray to binomial

binary codes and by effecting normalization of the inrut

variables, pseudo Gray ccdes may eusily be converted to

binomial binary.
FARALLEL CONVERSION OF OFHER FULL COUNT MONOSTROPHIC

CODES: Generally, for parallel conversion cf
other than Gray or pseudc-Gray codes to weighted codes are

not enccuntered. If the requirement does arise, "brute

force" techniques can be employed to accomplish such con-

version, but the complexity of such conversions will be

much more than for the Gray and pseudo Gray to binomial

binary.
PARALLEL CONVERSION OF FORESHONTENED fONOSTROrHIC CQDES:

There are many reasons fcr the use of foreshortened ccdes,

the most cbvious of which is the enecding of « numbering

system whose radix is not an integer power of two. Other
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Gn-1 \ +Gn-e \

\ G

COM

Pigg Bag
By

GRAY TO BINOMIAL BINARY
FOLDED SYMMETRIC CIRCUIT

Fig. IV.5
reascns are ability for error detection and/cr correction,
ease of ecnversion to a weighted coce, etc..

In selecting a foreshertened monostrcphic coce more

than the minimum number of bits may be used tc enccae a

nurbering system in order to satisfy all the requirements

imposed on the codins system. In general, the higher the

mimber of bits used tc encoce a numbering system (above

the minimum rewired), the easier it is to ecnvert (or

decode) and more difficult to transmit.
The monostrophic ccde vsed tc represent a numbering

n-2

system which must be ccnverted to anuther vinary code is
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=
a

aE
oS

usvally selected so thut conversion is simplified. bor

example, a monostrophic ccding cf a decimal num 1 ering
system that rust be converted to the lementing
excess-3 code (XS3) wovld be simplest to ccnvert if
counts 3 throvegh 12 of the Gray code were used to represert
Q threugh 9 of the excess-3 decimal code. Such a selection
wold result in a ccde being reflective, that closes

moncstrophically, and following the sray to binomi«1

binary conversion rules. Fig. IV.6 shows this. ihe same

philosophy appliec to the NbG Lecimal system wovld result

iwONO-

0 0010 0011
1 0110 0100
r 0111 0101 Conversicn tc YS 3
3 0101 0110 follows sane rules
4 0100 0111 as Gray to bincmial
5 1100 1000 binary.
6 1101 1001
7 1111 1010
8 1110 1011
9 1010 1100

Fig. IV.6
in ecunts 0-9 cf the Gray code tc represent 0-9 cf the
NEC Decimal system simplifying ccnversion, but the mono-

strorhic code lacks reflectivity and monostrc;hic closure,
thereby being a coor choice.

Fig. IV.7 shows a mcnostrophic coding cf a 421 binary
ecded deciral numbering system. again, the

eode is reflective and clcses mcnostrorhically, and fcllows
the simple Gray to binomial binary conversion rules.



MONO-
DECIMAL STROPHIC 2421

0000
0001ooll
0010
0110
1110
1010
1011
1001
1000

Figs IV.7
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BINARY

0000
oool
0010
0011
0100
1011
1100
1101
1110
1111

Conversion to 2421
BC Decimal follows
same rules as Grayto binomial binary.

1

3
4
5
6
7
8
9

Occasionally the duo-decimal (Radix"12) numbering

system rears its ugly head in such applications of distance

measuring systems and monetary systems. A self-comple-
menting 4 bit code that could be used to represent such

a code is the excess-2 (XS2) code. Fig. IV.8 shows the

XS2 code and a monostrophic equivalent which is reflective,
closes monostrephically and follows the Gray to binomial

binary conversion rules.
MONO-

DECIMAL STROFrHIC XS2

0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1011

Fig. IV.8

0010ooll
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101

0011
1
2

Conversion to XS2
follows same rules
as Gray to binomial
binary.

3
4
5
6
7
8
9

A weighted 4 bit code for a binary coded duo-decimal

numbering system is the 4421 code. Fig. IV.9 shows this

1
11
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code with a monostrophic equivalent which 1s reflective,
closes monostrophically, and follows the Gray to binomial
binary conversion rules.

MONO-
DECINAL STROFHIC 4421

0000 0000
1 0001 0001
2 0011 0010
3 0010 O011
4 0110 0100
5 0111 0101
6 1111 1010
7 1110 1011
8 1010 1000
9 1011 1001

10 1001 1110
11 1000 1111

Fig. IV.9

Conversion to 4421
binary coded duo-
decimal follaws same
rules as Gray to
binomial binary.

DATEX CODE:* a foreshortened monostrophic code that
is frequently encountered is the Datex code shown in
Fig. IV.10. It is a 10 count, 4 bit monostrophic code

which is reflective and closes monostrophically.
DECIMAL DATEX

Fig. IV. 10

0001
oo1l
0010
0110
0100
1100
1110
1010
1011
1001

1
2
3
4
5
6
7
8
9

Notice that the 0000 and 1111 combinations are not
used enabling partial error detection and reducing power

supply regulation and power requirements.
4
Datex Corp., 1307 S. Myrtle Ave., Monrovia, Calif.
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If more than one decade is employed in the counting

sequence, the decimal counting sequence is also mono-

strophic in nature, i.e., only one decimal digit changes

at a time, resvlting in a decimal counting sequence as

follows: O throvgh 9, 19 through 10, 20 through 29,

39 through 30, ete. Therefore when converting to any

decimal code, starting with the next to the most signifi-
cant digit and working to the least significant digit the

nine's complement must be sensed if the next more signifi-
cant digit is odd. The most significant digit is always

assumed to have a zero (which is even) preceeding it so

it never needs to be nine's complemented.

In order to convert to a decimal code we can, in effect,
say that the Datex code is a 5 bit code as shown in

Fig. IV.11, the Esy bit indicating whether the next more

significant digit is odd or even (1 = odd, 0 even).
DATEX DECIMAL
ABCD
ooo1
OOll 8
0010 2 7
0110 3 6
0100 4 5
1100 5 4
1110 6 310107 2
1011 110019 0

FigeIV.1l

8

The easiest method of conversion (or decoding) to

another binary coded decimal system is to use conversion
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( or decoding) logic for Fig. IV.10, and use the Ey, bit
to reverse the sense of the A bit by the conversion (or

decoding) logic as shown in Fig. IV.12. This technique
can be used for conversion (or decoding) any multi-
decade reflective coding system whose coded numbering

system is similar in nature to the Datex code. The

OUTPUT >) _

out
Conversion or Decoding Logic

Eout

6

1 0 1 0 1 1
A B 6

Ein Ein

Fige ive 12

logic required for the conversion technique in Fig. IV.12
is shown in Fig. IV.13 for the 8421, 2421 and XS3 binary
coded decimal systems.

SWITCH-TAIL RING CCUNTER CODE: another foreshortened

monostrorhie code often employed is a code easily gen-

erated in a switch-tail ring counter (shift register)
described in the next chapter. The number of counts in
such an n bit code is 2n counts, and decoding each of the
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421JKDATEXABG 8 2421 XS 3
DECIMAL H P QR s

0000 0000I 00 I I1 10 I 02
3 I 00OI00 I I4 IO0I05
6 I IOII I II 07 I I IOIo 0I I8
9

84 2)
AB 161 1cE 90

° AB o o1 41
CD

®
10

eo 0
or

10

AD+BCH=AD T=

AB 0 o1 41 10 AB Ot
cD

10

0
dfe} | Of

1 o
10 rot 10

Fig. IV.13
(Cont'd next page)
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mo XS3

Paa Q=A(BtC) R=A(B+C) SPE yt=(A@BeceD)
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n combinations to one of 2n lines requires sensing of

only two of the n bits. Fig-IV.14 demenstrates the

switch-tail code for a 5 bit unweighted decimal code,
SWITCH-TaAILABCDE DECIMAL REw'D LOGIC

00000 AE
Oooo! 1 DE
OoOorirtrl 2 Gp

3 Bo
OITIItI 4

5 AE
6 DE

IIIOO 7 cD
TrI000 8 BC
Toooo 9 AB

Fig. IV.14
Notice that the bits sensed for each count are the two

adjacent bits that differ except for all O's and all I's
in which case the two end bits are sensed. This holds

true for any number of bits.
IN-REGISTER PARALLEL CONVERSION: Quite often it is

desired to convert in parallel the contents of a register
containing a monostrophic code to a polystrophic code,

with the result of the conversion placed in the same

register. This can be done by loading the register,
through the necessary conversion logic, into the same

register.
The logic required can be the same conversion logic

as deseribed earlier in this chapter, but in most cases

it may simrlified. This is true because the state of



WXYZ Aq By Cy Dy W, X, Y & Z are the contents
of flipflops A, B, C & D

0 0 0iT
0 0 Tf 0

OrOToroo

I I 00

Iooo I

00 foo
|

joo

1 jor

11 yt

.10
| |

}10 10

PFBIA FFC=L@B FFD=A@BOC

Fig. Iv.15
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9000 0 0 0 0 prior to conversion,

Ooro 0C I iI are contentsA B
B, C&DI

D&
I I

respectively after conversion.

IOOO Logic terms required to com-I I
plement tt incorrect" bits?I I

IToro 0 A,=W FFA requires no cor-
rection.II

o of tt 10AB O1 11 10 AB
cD oOo Of 11 Id AB

FFDFFA FFB FFC
> CONVERT

iR

GRAY

W x



each bit only needs correction, not generation, Fig.
IV.15 demonstrates the correction approach to a 4 bit
Gray to binomial binary in-register parallel conversion

by complementing the "incorrect" bits. To expand to n

bits, additional similar stages can be added on the

least significant end of the 4 bit register shown in
Fig. IV.15.

If the flipflops of the register have no complement

inputs (or if pulsing both inputs simultaneously does

not complement the flipflops) they must be appropriately
set or reset to correct the "incorrect" bits. Fig. IV.16
demonstrates this approach for the same code conversion
as shown in Fig. IV.15. Again FFA requires no correction
as A

SERIAL CONVERSION OF GRAY TO BINOMIAL BINARY: If a

Gray coded number is being transmitted serially (bit by

bit) with the most significant bit leading, serial con-

version to binomial binary is possible upon receipt of

each bit. The conversion is accomplished using the two

rules:
1) The most significant Gray bit is identical

to the most significant binomial binary bit.
2) If a bit is a 1 after conversion the bit

following it is complemented,

Fig. IV.17 demonstrates the conversion.

55
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AB 99 of 11 10AB ot 11 10 AB 90 o1 11 10
cD cD cD

0 O

d
10 O ®

00

o>

10 :10

FFBget=AB FC set=(A®B)C FFD, 942 (A@BOC)D

AB 00 01 11 10 AB 00 01 11 10 AB 90 01 11 10
cD CGD cD

FEBreset AP FFC,ese%(A®B) C FFD,eset(A®BOC)D

®

O O
O O

O o

0o oo (eye)

fo} 01 o1Oo
ti 11

10 10 10Q

FRA FFB FFC H!FD

CONVERT

Fig. IV.16



Direction of shift is to theleft with the most significantbit leading. When bit just toleft of vertical line is 1 the
bit just to the right of the
vertical line is complemented.

or
OIL

OIIO
OTLIOL

OITIOIL

OTIOTIIO

BINARY
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GRAY

0 IOIIOI
OIIOI

complement

complement
IOI
OL*___ complementI
4complement
4-Conversion occurs

BINOMIaL as Gray coded number
crosses this line,

SERIAL GRaY TO BINOVYIAL BINARY CONVERS ION

Fig. IV.17
SERIAL

BINOW IAL
BINARY
OUT

0 1 1
FF1 FF2

SERIAL

q GRAY IN

READ-IN/SHIFT PULSE

CLEAR PULSE
(PRIOR TO STaRT
OF CONVERS IQN)

d CONVERT PULSE
SERIAL GRAY TO BINOMIAL BINARY CONVERTER

Fig. IV.18



SERIAL
BINOMIAL
BINARY
OUTPUT

CONVERT PULSE (lust lag
leading edge of each Graybit.)ALTERNATE 4

OUTPUT
(see text) g

~

SERIAL GRAY INPUT

SERIAL GRAY TO BINOWIAL BINARY CONVERTER

Fig. IV.19

Fig. IV.18 is the diagram of a typical serial Gray

to binomial binary converter using electronic logic.
After the converter is cleared the Gray bits are shifted

in, one by one, with a conversion following each shift.
A tro bit delay results in this conversicn

In Fig. IV.19, an apparently simpler serial converter

4s shown in which there is only slightly more thn a one

bit delay. Because of the one-and-a-fraction of a bit
delay, timing becomes more difficult. If desired, the

ecnversion delay may be reduced if the output is taken

directly from the Exclusive Or output, but sainpling mist

be accomplished cnly during the non-transient veriod cf
the ecrverter, i.e., after the new Gray bit is oresent at

358
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the inzut but befcre the convert pulse. (The convert

pulse can be delayed until slightly befcre the next inout
bit to allow rore sampling time if output is tuken from

the output of the Exclusive Or gate.)
SERIAL CUNVERSION OF OTHER ONOSTRe CODES:

Serial, bit by bit, conversion of codes other than those
that follow the rules fcr Gray to binomial binary con-

version is usually not possible in the true sense of the

word, serial. If such codes are received for conversion
in serial form, they are usually shifted into a register
and converted in ;arallel when the whole binary coded

number is in the resister using parallel conv-rsion
techniques.

POLYSTRO;IIIC TO MONOSIROHIC CODE CONVERSION: In

order for the discussion of ecnversion to be considered

nearly ccmmlete, conversion frem polystrophic to monco-

strevhic codes must be considered. If the reverse pro-

cess of each ecnversion crevicusly mentioned was discussed
in as wuch detail, considerable redundancy of thought
would be involved. Therefore, the discussion of this
toric will be brief.

any conversion which, vhen going fror monostrcphic

to a vclystrophic code, follows the Gray to binomial

binary conversion rules, cen be uccomplishec in the

reverse direction by the following rule: The rionestronhic

39
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code equivalent of a binary coded number is the bit-by-
bit Exclusive Or of the number with itself shifted cne
bit (to the richt or left) ignoring the least significant
bit of the result (See Fig. IV.20). It is obvicus

1001101 <-# tc be converted to ronostrophic equiv.
1001101 shifted one bit
1OLO1I1 Bit by bit Exclusive Or

*_-LSB, ignore
1101011 «Result, monostrophic equiv.

Fig. IV.20
that the most significant bit is the same in either code,
and the lesser significant bits of the monostrephic equiv-
alent are the Exclusive Ors of adjacent bits cf the binary
coded number. farallel conversicn, therefore, can be accom-

plished as shown in Fig. IV.21.
Serial conversion, following the same rules requires

the number to arrive for conversion in serial form with
the most significant bit leading. 'The .-revicus bit (un-
converted) must be stored and Exclusive Ored «ith the
arriving cit (a gero is assumed to be stored in the one

bit memory prior to arrival of the most significant bit).
The output of the Exclusive Or is the serial converted

output. Fig. IV.c: shows a serial rolystrophic-Nonostrcphic
converter with a flip-flop to store the outrut (could be

entrance bit to a shift register). The storare flip-flop
rust have a clear inrut shown, and it must be cleared
(set to 0) vrior to start of ccnversion.

Conversicn between ccdes that dc ne t have the
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n-1 n-2

Fig. IV.21

Gray-binomial binary relationship is usually not required
but, if encountered, must be accomplished by brute force
parallel conversion techniques.

CONVERTED
OUTPUT

OUTPUT
FE

@1

CLEAR

1
INiUT

0

CONVERT PULSE

Fig. IV.22



CHarTER V. GENERATION OF MONOSTROPHIC CODES

The most developed method of monostrothic code

is the use of electro-mechanicul and electro-
optical-mechanical sensing of sermented, multiple track,
rotatable discs in shaft angle encoding systems. lhe
advantuge of monostrowhic ecdes in such ap;lications is
the ability to sample the readout "on the fly" without

fear of ambiguity. Since this method is well known and

already well documented this author will concentrate on

generation of monostrophic codes by other than the disc

technique, iee., monostrorhic code counters by electronic
logic and sequential switching techniqves.

PHILOSO HY OF FULSE COUNTING DIRECILY IN » MONO-

STROPHIC CODE: Because only one bit changes between

adjacent counts in any monostrorhic ecde, one carnot take

advantage of carries as in, for instance, an electronic
binomial binary ccunter when counting in a monostrcphic

node. Wor can the state of the next less significant bit
be denended urcn tc fvrnish the proper levels to the com-

plement input gute of a bit as in an electronic binomial

binary counter. 'therefor., the state of the complete

binary number must be employed to furnish, threugh logic,
gating levels to the complement input pulse gate (or set

and reset nulse sates} of the storage element of each bit
(bistable flip-flops). This is analfous to the

42



anticipated carry anproach used with other binary counters
to enanle faster counting. Also, it is the approach that
must usually be taken for any type of sequential switching
(relay) counters. Fig. V.1 demonstrates this approach for
a 3 bit Gray code counter.

N BIT GRAY CODE COUNTER: The previous section des-

cribed a 3 bit Gray code counter. In this section ann

bit Gray code counter and required counting logic will be

denonstrated. A method for easily reversing the counting

sequence will also be shown. The importance of the Ex-
clusive Or function will again appear.

If the method for determining the counting logic
described in the previous section is used tc determine the

counting logic for a 2, 3, 4 and 5 bit Gray code counter,
the information shown in Fig. V.2 is obtained after sim-

plification. Notice that the state of every bit influences

the logic levels associated with the complement pulse gate
of each bit as previously stated at the beginning of this
chapter.

Another set of relationships evident in Fig. V.@ and

explained below can be used to simplify the determination

of the logical expressions required for each bit of ann

bit Gray code counter.
1. The least significant bit's term for an up counter

is the complement of the ring sum of all bits.

43
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COUNT
SEQ

PREVIOUS COUNT BIT OF PREVIOUSUP DOWN COUNT COMPLEMENTEDABC A B C UP DOWN

HH
HH

O
O
O
O

DOWN

TO COUNTING LOGIC AND LOAD

1
FFA FFB FFC

COUNT™
PULSE

ABC+ABC ABC+ABC ABC+ABC+
ABC+ABC

-(a@B)C =(A®B)C
=( A@BOC )

COUNTING LOGIC*™

A A B B C

*Output of counting logic shown for Up Counter

Fig. Vel

ABC
0 A C

I I C B
I I B CI I I I II C A

I I I I A C
I I I C BI I UP I I I B C
I I C A



UP DOWN

5 Bit
DIRECTION

A B C D E
OF COUNT

UP (A®B) CDE (A@B)CDE (A@BOC)DE (A®BeCED)E (A@BOCEDEE)
5 Bit

DOWN (A®B)CDE (A@B)CDE (A@BOC)DE (A®BOCOD)E (A@BOCODEE)

UP (A®B)CD A@®B)CD A@BOC)D AOBOCOD)
4 Bit

DOWN (A®@B)CD (A®B)CD (A@Bec)D (A®BOCeD)

UP (A@B)C (A®B)C (A@BOC)
3 Bit

DOWN (A®B)C (A®B)C (A®BOC)

UP (A@B) A®B
2 Bit

DOWN (A@B) (A®B)

>OOGOCDOOHHHHHHH HH ive]
bd a

-2 Bit
3 Bit

4 Bit

Fig.
V.2
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2. The term for any bit of an up counter other than

the most significant bit is the complement of the ring
sum of all the terms excluding the lesser significant bits
Anded with the next less significant bit and the and of

the complement of all lesser significant bits.
3. The term for the most significant bit is ring

sum of the most and next most significant bits Anded with
the And of the complement of all lesser significant bits.

4. For ann bit down counter the logic terms are the

same except all of the ring sum portion of the up counter

logic terms are complemented.

From the above relationships a set of rules are self-
evident for determining the complement pulse gate logic
terms for all bits of an n bit Gray ccde counter. As an

example, for a seven bit Gray ccde up counter in which the

bits are labelled a,x,C,D,E,F, and G, A being the most

significant bit and G the least significant bit, the

seven terms are as follows: a; (A®B) CDEFG

B; (ABB) CDEFG

C3; (A®BRC) DEFG

D; ( APBOCED EFG

E; (A®BROSDEE)FG

F;
G3 ( )

( ) G

Complementing the ring sum portion of each term yields
the logic terms for a down counter.
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By complementing any bit in a ring sum term the ring
sum term is complemented. This leads us to a simple method

of reversing the count in ann bit Gray code counter re-

sulting in an up-down counter. Notice that the most and

next most significant bits appear in all ring sum portions
of all terms. Simply by providing a means of reversing
the sense of either (not both) of these bits at will, a

method of reversing the direction of count is provided.
Fig. V.3 shows ann bit up-down Gray code counter em-

bodying all thoughts of this section.
N BIT PSEUDO-GRAY CCDE COUNTER: Remembering that

a pseudo-Gray code is only a combination of complemented

and/or permuted bits it is easily seen that the Gray code

counter discussion of the rrevious section aprlies if,
in addition, the counting logic inputs are properly com-

miemented and permuted (normalized) so that the proper

counting sequence occurs. Therefore no more discussion of
pseudo~Gray code counters will be pursued.

OTHER MONOSTROFHIC CODE COUNTERS: The method shown

in Fig. V.1 for determinine the logic terms required for
the complement pulse gate enabling levels can be used for
any full or foreshortened monostrophic (polystroyhic for
that matter) code counting sequence. For example, the 4

bit (4 bits per decade) Datex described in the last chapter
is considered. See Fig. V.4.



TO LOAD AND COUNTING LOGIC

To count in only one direction eliminate ® circuit
to which A, A, UP and UP are connected and connect A and A
as follows: A to 1 and A to(2)for up counter,

A to 2 and A to for down counter.
N BIT GRAY CODE COUNTER

Fig. v.35
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DATEX PREVIOUS COUNT
_

SE
_

UP DOWN
AB D ABCD/ABCOD
00 or TOOT jYOOTIL
OoTI OOOI
0I OOoOITIO7;IIOOTIoo TIOOIlIOIL SO

ITornr IOIO IOOI

UP AB 00 01 11 10
CD

Tal m e
or Y
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10

FFA=(A@B)C

AB 90 o1 11 10

eo

or o ®
" 1T O ®
10

FFC=(C@D)A+(BOC)A

BIT OF PREVIOUS
COUNT COMPLEMENTED
UP DOWN

A
Cc. D
D B
B

A
A

B
B D
D
C A

AB 90 01 11 10

or
A o

UL

FFB=ABC+ABD

on o o

10

FFD®ACD+ABD

Therefore, reversing sense of
the A bit by counting logic reverses direction of count.pendent upon the A bit.

COUNTING LOGIC FOR DATEX COUNTER

Fig. V.4
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Usually when the Datex code is used there is more

than one decade in which case the D..tex counting sequence
of each decade other than the most significant decade does

not rass directly from 0 to (27-2) and (27-1) to O. In-
stead, each decade counts to the end of a sequence (zero
or nine), the next more significant decade steps one count,
then the first decade counts to the other end of its se-

quence (nine or zero). <Any decade counts up when the next
more significant decade is even, and down when the next
more significant decade is odd. There is a similarity in
this counting sequence with thet of a Gray code, and the

techniques employed to make use of this characteristic in
Gray code ccunters (described in next section) can be used

to control the direction of count in each decade of a Datex

code ccunter.
CASCADING GRAY CODE COUNTERS: An examination of ann

bit Gray code reveals that if the n bits are divided into
two groups, say 1 bits and m bits where l+m = n, an inter-
esting characteristic emerges. Look at the 4 bit code in
Fig. V.5 that has been divided into two @ bit groups.
The group including C and D counts up, then dcwn, then ur

and then down. The direction of count is dependent upon

AB being even or odd; up when AB is even, down when AB is
odd. This relationship holds for any n bit Gray ccde

ecunter regardless vhere the division is. «also, if the
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A BCD code is divided into more than two
0000
0110010 any two udjacent groups. This
110

0 11 1fdown characteristic of Gray codes allows
oda 0101

0
10 1 1fdown large Gray ccde counter (and to

odd{1001L1000 cascade decades of the Datex decade

Fig. Ve5 counters mentioned in the rrevious
section).

groups the relationship holds for000
even

0100 one to cascade many smaller up-down

Gray code ccunters with slightly
even 1110 modified counting logic to make one

To go directly from the first count to the 2 th
count or vice versa of a m bit counter the most signi-
ficant bit is the one that is complemented. If the logic
term for the most significant bit is modified so that this
change is not possible, and a (m+l)th logic term is devel-

oped in the ecunting logic to gate the counting pulse to

the next more significant group when the first group has

reached the "end" we have solved part of the :roblem.

The other part of the problem is already solved in that

the logic term of the next more significant group's least

significant bit indicates whether that group is odd or

even (the ring sum of any number of bits is Soaa of those

bits and the complement of the ring sum is Seven)). There-

fore, the logic term of the next more significant group's
leust significant bit can also be used to tell the next



lesser significant group which direction to count (an inout
to the up-down control logic described earlier in this
chapter). For the Datex decade this is not true. Extra

logic is therefore required to determine if a decade is
even or odd. Hence the desired action is as follows:
When a group is counting up (next more significant group

is even), the counting logic creverts the transition from

the highest count to zero (the first count) but instead

steps the next more significant rroup by one, changing it
from even to odd .which reverses the direction of count in
the first group. Fig. V.6 demonstrates this method of

cascading Gray code counters to make one larger cne.

SWITCH TaIL RING COUNTER: The switch tail ring
counter mentioned in the last chapter is simply a shift
register whose most significant bit's transposed output

igs fed to the input of the least significant bit when

shifting left (counting up), and the transposed output

of the least significant bit is fed to the input of the

most significant bit when shifting right (counting down).

Hence, when counting up the of the most sig-
nificant bit is shifted into the least significant bit
and, when eccuntine down the complement of the least sig-
nificant bit is shifted into the most significant bit.
For an n bit counter, a foreshortened monostrephic counting

sequence of 2n counts is generated. Fig. V.7 shows the

counting sequence for a 5 bit switch tail counting sequence.

52



TO LOAD AND COUNTING LOGIC

LS Bit of More 0 1 0 1 )MS Bit of Lesser
Signifigant FPN) FFA, Signifigant

(m)*Group

a
» all
'Lesser
' Signi-.figant'Bits of

Comp of
Same as

Fig. Ved

- Group,

4
Eve

Oddgy

Nethod of cascading Gray code counters into one
larger counter. Only differences and additions to Gray
code counter shown in Fig. V.3 are shown. The differences
and additions affect only the two bits ad to the
division (point of caseading) of groups & m).

acent

Fig. V.6



Notice that for four counts only 2 bits
same as for a Gray ccde, and is in fuct
For eight counts, four bits are required, only one more

than for a Gray code with the same numb er of counts.

For ten counts, five bits are required,
than for a foreshortened monostrophic code that follows
the Gray to binomial binary conversion
counts many more bits are required than

monostrovhic codes. Since only 2 bits
per each of the 2n combinations as discussed in the previcus

chapter, a switch tail ring counter may be preferuble from

an economy standpoint if decoding (rather than ecnversion)
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are required, the

a 2 bit Gray code.

only one more

rules. Above ten
for more compact

must be sampled

is required and the total count is not mcre than about ten.
ABCODE00000ooo 01

down 000 11
! ool1li1i1
up a11110111001100010000

Fig. V.7
SIMULVANEUUS GENERATION UF MONOSTROPHIC &rOLY-

STROFHIC CODES: Many times when generating a monostrozhic

code count, it is desirable to have a polystrophic binary
code count generated simultaneously with the monostro; 1 ic
code.
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Immediately, one may feel that the easiest and cheapest
way to accomplish this is to count in one code with con-
version logic for the other code connected to the output
of the counter ylelding both codes. Because methods of

counting in binomial binary and conversion from binomial

binary to Gray codes are so well known and simple, this
might be the tendency. Where "on the fly" sampling of the

monostrophic code is required this apvroach is not satis-
factory because the ambiguities during transition from

one count to the next in the binomial binary counter's
outrut are transferred through the conversion logic re-

sulting in ambiguities during transition of the monostrophic
code. Therefore, if conversion logic on the output of the
counter is to be used to generate both codes in parallel
the counter must count monostrophically, with conversion
to the binomial binary code. This approach yields a mono-

strophic code with no ambisuities, with the simultaneous

generation of the binomial binary code.

CONTINUOUS CONVERSION OF BINOMIAL BINARY TO GRAY: If
the monostrophic code is Gray or pseudo-Gray and the poly-
strophic code is binomial binary the continuous conversion
method shown in Fig. V.8 and described in the following
discussion is arplicabie.

A relutionship between corresponding bits (except most

significant bits which are always equal) of binomial binary
and Gray codes is that, in the up counting sequence of both



codes, when a bit changes from 0 to 1 in the binomial
binary code the corresponding bit of the Gray code is
complemented. A 1 to 0 transition of any binomial binary
bit does not affect the Gray code. The opposite is true
if the counting sequence of both codes is down. "this

rel tionship can be used to enable the transitions of
bits in an n bit binomial binary counter to modify the

corresponding bits of an (n-1) bit register which
contains the lesser significant bits of the Gray code (or
pseudo--Gray code if the output sensing pattern is com-

plemented and/or permuted) count. Fig.V.8 demonstrates

this approach. Using some manufacturers electronic logic
modules this apcroach is the cheapest way to generate Gray
(or pseudo-Gray) codes.

In sequential switching schemes using relay flip-flops
to generate Gray (or pseudo-Gray) code counting sequences
this approach is a good one because of the reduction of

relay contacts (paid for by doubling the number of relays).
Fig. V.9 shows an all relay n bit binomial binary counter

with continuous conversion to ann bit Gray code.
N BIT DECODERS FOR COUNTING LOGIC: Most electronic

logic manufacturers include in their preduct lines <, 5

and occasionally 4 bit decoders. These decoders usually
have as inputs two lines per bit (the logical value of the

bit and the ccmplement) and 2" ovtput lines, of which only

56
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GRAY CODE

1

for 1MSB nel
poth G
codes

1
Bn By Count

BINOMIAL BINARY COUNTER
Pulse

Connect complement input of each Graybit (less MSB) to the 1 output of the cor-
responding binary bit for up counting se-
quence and the 0 output for down counting
sequence. If flip-flops require a pulse
instead of O-1 level change pulse generators
must be added as shown.

CONTINUOUS CONVERTER
BINOMIAL BINARY TO GRAY

Fig. V.8
one may be selected at one time. Euch ovtrut line is
usually labelled with the decimal ejuivalent cf the n bit
binomial binary number which, as an input, selects that
line. If ann bit decoder is connected to the outeut of
ann bit flip-flop register, the proper outyut lines can

be ured into n pulse gates, each one associated with the

complement input of each flip-flop in the register. By

pulsing the pulse gates the contents of the register goes

through a counting sequence dependent upen the pattern of
Oring the decoder output lines. For a monostrophic ccunting

sequence, each decoder cutput line will be asscciated with
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in Bibliography
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only one vulse agate. This is not true for a polystrorphic
counting sequence.

This approach is, in effect, the method used in binary
counters that operate on the principle of "anticipated
carry" with the accompanying advantages of equal settling
time of the counting logic for all counts and faster propo-
gation of logic levels from the output of the register to
the pulse gates enabling faster counting. (Note that the

counting logic shown in Fig. V.3 requires rropogation of
a level change through the cascaded ring sum logic of all
n bits when either of the two most significant bits cr the
direction of count is comrlemented. )

In an up-down Gray counter, or when many small counters
are cascaded into one larse counter (requiring the ecntrol
of directicn cf covnt in each small counter), the carry to
the next most significant group and the inhibiticn of the
"return to zero" in each group is more easily implemented

using the decoder counting logic technique under discussion
in this section. Fig. V.10 shows a 6 bit Gray counter
comprising two 3 bit counters, each using a 5 bit decoder
as part of the counting logic. a comparison with Fig. V.3
and Fig. V.6 shows that this approach for an up-down
counter made up cof smaller counters is simpler.

To determine the Oring pattern of the decoder outputs,
write cut the counting sequence and, beside each count,
write the decimal equivalent of the binomial binary



TO COUNTING LOGIC AND LOAD

UP DOWN TWO 3 BIT GRAY CODE COUNTERS CASCADED
USING 3 BIT DECODERS AS COUNTING LOGIC

09

Fige
V.10
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interpretation of the count. As previously explained in

this apter, the contents cf the counter determines which

pit is comolemented on the next count. The decimal numbers

associxted with the counts rreceeding the complement ing

of a bit in a counting sequence correspond to the lines
that must be Ored into that bit's complement pulse gate.

If the counting sequence is reflective the counting

sequence may be reversed by reversing the sense by the

decoder of the most significant bit. When sroups of small

counters are cascaded into one larger counter the decimal

equivalent of the binomial binary interpretation of the

last count in the sequence is the one that enables the

carry (and inhibits the "return to zero" by not being

assceiated with «ny complement pulse gate of that group).
When cascading x groups of m bit counters into one

xm bit counter (xm=n) rather than using an n bit counter

like that in Fig. V.3, the prercgation time of the loric
is derendent upon x rather than n, hence the xycssibiity
of a faster counter.
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CHAPTER VI. CONCLUSION

Most likely, while studying the foregoing. the

imaginative reader has already thought of varied appli-
cations for monostrophic codes. Generally monostrophic

Yon-codes have applications not only where asynchronous

the-fly" sampling is required, but also where continuous

monitoring of the continually changing code to detect a

value (or values) is required. In both cases, if a poly-
strophic code were used, precautions against ambiguities
would need to be taken which adds complexity to the system.

Gray or pseudo-Gray codes are the easiest of the full
count monostrophic codes to generate and/or convert. Of the

foreshortened codes, those which follow the Gray to binomial

binary conversion rules are the easiest to handle.
Where conversion between a monostrophic code and

another specified binary coded numbering system is required,
judicious selection (if both codes are not already speci-
fied) of the monostrophic code will result in simpler ccn-

version logic, particularly if Gray to binomial binary
conversion rules apply. This was shown in the examples of

Chapter IV.
The pulse counting techniques shown in Chapter V

(except for the continuous converter) have a characteristic
which is highly desirable in many applications; equal time

delay between any count and the new count after the ccunt

pulse (assuming equal logical delays in all flir-flons).
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This is not so with polystrophic code counters that de-

pend upon carry propogation. Also, the use of parallel
counting logic, e. g., n bit decoders, to increase the
maximum counting rate is simpler for a monostrophic code

counter than with a polystrophic code counter because
each output line is associated with only one complement

(or set and reset) gate of the monostrophic code counter.
Besides the usual mechanical (and sometimes electronic)

analog to digital conversion processes using monostrophic
codes, there are many other potential applications of these
codes which cannot be appreciated unless one has a "feel"
for them. The overall objective of this paper is to pre-e

sent to the reader a better insight of monostrophic codes
based on my study of them to enable him to better evaluate
possible new applications employing them.



APPENDIX I
4BIT PSHUDO-GRAY CODES

The following pares contain all combinations of
complemented bits and permtations of the two most sig-
nificant bits of the 4 bit Gray Code. They are grcuped
so that each group has the same counting sequence as

shown on the accompanying Karnaugh Maps. 'the top group
of each page has the reverse counting sequence as the
bottom group on the page.

The least significant two bits' permutations are not
included because, in analyzing or normalizing a ;seudo-
Gray code, the bits are arranged sc that the least sig-
nificant bit is considered the bit that is ccm + lemented

most often in the counting, sesvence, the bit with the
next fastest rate of change is considered the next to the

least significant vit, etc. The two most significant bits
are bcth corplerented the same number of times in a counting
sequence, hence their arrangement is arbitrary, and only
their -ermutations are included in this appendix.
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APPENDIX II
LEGEND OF SYMBOLS USED IN THIS PAPER

@ aes
B-
A-

aes

Exclusive Or; Shown with two variable
input, and with two variable withA

complements input.

A

RE-
SET COMP SET

Flip-flop; Assumed to have logical delay
enabling simultaneous read-in and

sampling of output. Shown with Set,
Reset and Complement inputs. An

abbreviated method of showing a Re-
set input (Clear input) is an arrow

at lower left-hand corner of flip-flop.

(AB...N) And Gate : -(A+B+...+N) [Or gate

AB...N Nor Gate : (A+B+..e4N) Nand gate

Inverter Diode

OUTPUT

FF

A

A



Normally open switch or relay contacts
associated with switch or relay A.

Normally closed switch or relay contacts
associated with switch or relay A.

Assertion
d Optional Term m Karnaugh Maps

Non-Assertion left blank

Relay Winding

Logic Level Line

Pulsed Line

A

A
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APPENDIX III
EXCLUSIVE OR/RING SUM

The Exclusive Or function, also called the ring sum

and commonly signified by the sign ® (and occasionally

by ), is an important logic function when working with

generation and conversion of monostrophic codes. This
function also appears in binary adders. In fact, the

ring sum of two variables is often called the sum modulo

two, because the ring sum of two variables satisfies the

logic requirements of a half adder as shown.

1

RING SUM HALF aDDER
TRUTH
TABLE

X Y XOY

0 0 O

10 1

1

1L 1

1 01 1

The following postulates and theorems will enable

one to relate ring sum functions to binary logic operations.*
POSTULATES

1) 0@0=0

2) 1010
3) 0@1=10021

THEOREMS

1) X@1=x

2) X01"X

*samuel H. Caldwell, Switching Circuits and Logical Design,
p. 667.
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3) X@X=0

4) Xe@x=1

X for odd number of terms
5) X@X®. . @X=

0 for even number of terms

6) Xe@Y=vex=xXYexy=(X+Y) (X+Y)
7) (XOY)®Z=X0(YZ)=X@Yoz
8) XY@XZ=X(Y@z)

9) (X@Y)=(Y@X) (X+) =(XY+XY)
Theorems 6) and 7) give the clue to the manipulation

of more than two variables. For example, let us expand
the ring sum of four variables, A®BOCOD.

by theorem 7

A®BOCOD=(AGBOC) OD

by theorem 6

=(A®B@C)D (A@BeC)D

by theorem 7

= [(aeB)ec]D+[(aeB) ec] p

by theorem 6

= [(aB+AB)C+(aB+AB)c] D +|(aB+AB)G+(aB+AB) D

by theorems 6 and 9

= (48+4B)C+(aB+AB) c] D +[(aB+AB)G+(aB+AB) c] D
=ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD

Notice that the expanded term is the symmetric
function ,g4eB,C,D). It can be shown that the ring sum

of n variables is the symmetric function SgqglA,B,---,N)
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and the complement of the ring sum of n variables is
Seven(AsB,---,N). Because the ring sum of more than two

variables is difficult to recognize on a Karnaugh Map,

the relationship of ring sum functions to symmetric
functions 1s probably the easiest way to recognize ring
sum functions of more than two variables.
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CHAPTER I. INTRODUCTION

Nonostrophic codes, binary codes in which only one

bit changes from count to covnt, are commonly found in

avolications where elimination of ambiguities during tran-

sition from one count to the next is desired.
The most common monostrophic ecde is the Gray ccde.

Figure I.1 is an example of a 4 bit Gray code with the

normally employed binomially weighted (grt - - -, 8,4,2,1)
binary and decimal equivalents.

BINARYDECIMAL
BINOMIAL

10 I
il I I I
12 I
13 I T
14 I I I
15

GRAY8421
1 I I
2 I I I
3 I I I
4 I I I
5 I I I I
6 I I T I
7 I
8 I I
9 I T I

I I I I
I I I 0

00I

Fig.
Digital logic engineers undoubtedly have unknowingly

vsed the Gray code or other monostrophic codes as 4 tocl
for le~ic simplification and/or sequential switching
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synthesis. The Karnaugh hap, which will be used as a tool
in this caper, is such an application. Figure T.2 is an

example of a 4 variable Karnavgh Map in which there is a

change in only one variable between adjacent comrartments.

AB
cD oo OL II 10

00

Ol

II
Io

4 VARIABLE KARNAUGH IAP

Fig. I.e
Other common applications of monostrophic codes

are found in analog - digital and digital - analog con-

versicn devices.
Although the Gray code is nothing new it is aiffi-

cult to find references which comprehensively discuss

ronostrophic codes, particularly those which are rot

Gray. Therefore, by means of this paper, this author is
attempting to present a compilation of information per-

taining to monostrophic codes, the sources being found in

texts, trade publications, manufacturers! product bulletins

and notes, and that information which, becuuse

cf the meager quantities found in the aforementioned scurces,
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has been self-generated. The succeeding chayters will
discuss, with respect to monostrorhic codes, the

following torics:
(1) Synthesis of monostrophic codes.

(2) Conversion between monostrophic and rolystrophic
codes.

(3) Generating monostrophic codes using electronic
and switching logic elements (counters).

Preceeding the above mentioned topics terms used in
this paper will be defined.
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CHAiTER II, SEN=RaL

In order to he vrecise, this author has attempted

to employ in this rarer terms that have commonly acceyted

definitions in the digital field. In so doing many small

have arisen that might lead to confusion if
used in this parer without defining the terms herein.

Therefore, I will commit the ccmmon sin of "defining
definitions" befcre proceeding with the substance of this

paper.
The Gray code many times is considered to be any

menostrenhic code. On the other hand, the terms Gray

code and reflected code are often used synonyrncusly.

Fer the Se of further discussion let us clear ur.

this disrarity with the following definitions because,

clearly, not all mcnostrophic codes are reflected codes.

GRAY CODE: Normally the Gray code is considered to

be specific n bit courting sequence of 2" counts having

the churucteristics of teing non-weirhted, mcnostrophic

and reflected (see definition of reflected coces below),

and represents a specific ordered numbering system cf 22

counts. In Chapter I an example of a 4 bit Gray code was

piven. the specific counting sequence may be ex;lained as

follows: the counting sequence for the leust significant
bit is 0110 reveated times, with the more significunt

bits going through the sume sequence at half the rate as



5

the next less significant bit, and the most significant
bit ecing threuch only half the 0110 sequences as shown

in Fig.
BINOMIAL DECIMALn=3 GRAY BINARY

0 00

I
I

00 0

I 1

I0 2I I
3I II
4I I
5I I I

I0I 6I I
I I I

Fig. II.1
PSECDO-GRAY CODE aND NORY:LIZING: By complementing

for permuting tits of a Gray code, other rronostrophic
ecdes can be formed which satisfy all the required con-
ditions for being a Gray code except the binomial binary
equivalent and, part of the time, the counting sequence.
In the example of Fig; aBCD is a Gray code with its
binomial binary equivalent of WXYZ EFGH is not Gray,
but by complementing E and permuting E and F we have

converted it to a Gray code. This conversion process

and

will hereafter be called normalizing, and a monostrophic
code that can be normalized to a Gray code will be called
a pseudo-Gray, code.
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GRaYBINARYDECILAL ANORMALBINOWIAL
GRAY

=4ABCDEFGHWXYZ
0000I00000000

IOOI1

OIOT9

IOIOIIIOII0012
IIII13

IIIO14
1000II00IIII15

BBE,CsG,D=H
Fig.II.2

OooOT2 TO IITord Io1o3
00104

5 IIIIIo 00 IOI6
00007

IToo10008

10
TIio11

A

aprendixIcontainsanexhibitcfallcombinations
ofcomelerentsandallpermutationsfora4citGray
codewithatableofccmparisconsofcountingseqvences.
sx4bitGraycodewasusedinaprendixIbecuseofits
abilitytcteuseddirectlymostoftenand,atthesame

time,makethercint
CODES:Forecdetebereflectedit

rustre;resentanumberingsystercfaradixr,andby
lementineaerteinbit(sameritferallcourtsand

vsucllytherestsignificentbit)willyieldther-1's
ecnrlementofthecriginalcovnt.InFigureII.3aa&

bitreflectiveecdeisshcvnrerresentingaRadix8

REIECTS

beringsystem.Noticethatthereflectedccdeisnot



POLYSTROPHIC # 7's COMP

000 7
I 1 6

0 I 2 5
I I 3 4

I I I 4 3
I I 5 2
I I 6 1

7 0

Ge

GRAY 7's COMP

000 7
6

II 5
I 4

a I 3
I I 2
IT 1
Too

be

Fig. Ii.3
monostrcrhic. In FigelI.3b the ecde is ronostrerhic and

alse Grav. By complementing the most significant bit in

either reflected code cf the r-1's com, lement

(r=8) is the result. The ronestrozhic and ;clystro hic

reflected ccdes were shown to clearly voint ovt that Gray

and reflected are not synonymus, but simply that the

Gray code (but not all monostrophic codes) is a reflected
ecde.

CYCLIC: The Gray ecde is also lie « cyclic code.



The Modern Dictionary of Electronics put cut by Howard

Sams defines a cyclic code as "any binary code that

changes only one bit when going from one number to the
number imrediately following". This, in effect, is syn-

cnymous with monostrophic. This author has found that
usage of the word cyclic in the digital industry means

different things to different people. Some people in-
terpret cyclic as returning upon itself by the same path
or synonymously with reflective rather than as a mono-

strophic characteristic. Therefore, for the sake of being
precise, I will avoid the use of the term cyclic.

VWONOSTROFHIC CLOSURE: If the transition between the

first and last counts of a counting sequence requires only
one bit to change we have a monostrophic closure. The

Gray code and pseudo-Gray codes pcsess this characteristic,
but vesession of this characteristic is nct required for a

ecde to be moncstrophic.
FULL COUNT: A full count, as used in this parer,

signifies a counting n bit sejuence to which all of the

2" counts have an assigned numerical valve. we can see

that a full count usually goes hand-in-hand with a num-

bering system having a radix of 2" . A full counting

sequence muy be made monostrophic and/or reflected with
cr without monostrophie closure.

FORESHORTENED COUNT: When all 2" combinations are

net used to form a counting sequence we have a foreshortened
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count. «a foreshortened counting seuvence may be mace

monostrorhic, but to bs reflective and/or close mono-

strcphically the counting sequence must contain an even
number of counts.
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CHAPTER III. MONOSTRO!HIC CODE SYNTHESIS

This charter will discuss the synthesis of Gray,

osevdeo-Gray and other fvll and foreshortened count mono-

strophic codes, and will demonstrate the use of Karnaugh

bars and rath diagrams as synthesis tools.
GRaY CODE: Because the Karnaugh Maps and path

diagrams utilize the Gray code, the synthesis of the Gray

code must be described independently. In effect, the

definition of the Gray code given in Chapter II, describes

the synthesis of the Gray code. For ann bit code

starting with the least significant bit, form the sequence

0110 27/4 times. The next significant bit's sequence is
the same but at h 1f the rate, etc., until we ret to the

most sienificant bit which soes throurh only half the

0110 sequence, the first half of ths sequence being O's

and the last half being l's. This synthesis prccess,
shorn for a 4 bit ecde in Fig yields a monostrorhic

code «hich ronostrcphically closes. If the fcllowing
additional characteristics are present we have synthesized

a reflected code which is Gray:
1. all 2@ counts represent a count of a numbering

system.
, all bits non-asserted (all O's) re,resents zero.

3. Revresented numbering system counts progressively
from 0 to 1.

KaRNaUGH PaPS: any Karnaugh vap is a table cf all
pessible ecmbinations of an n bit inary werd so arranged
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BINOMIAL
DECIMAL GRAY BINARY

0 0000 0000
1 ooo! ooo?!
2 oortl ooro
3 ootro Ooo
4 OI1O or0o0
6 ne 4I TI II05

7 oroo

10 Toro9
8

11 Tort!
12 ITOI0 ITIoo
13
14 TIIO
15 I000 IIItI

Lisp OIIO sequence 2"/4 = 4 times.

OIIO sequence changing at half the
rate as next less signifigantbit.

=oTTO sequence changing at half the
rate as next less signifigantbit

MSB: first half of sequence O's,
last half I's.

Zero = 0000, & counts progressively
to 2%-1 = 1546

Reflected (dependent on N.S Gray bit)

Fig. III.1
that there is cnly cne bit change when going from any

compartment to n adjacent or "mirrored" compartment.

For maximum utility the map is arranged so that ap: roxi-
mately half the variables (usually the more significant
bits) are on the herizcntal rein and the reraining vuri-
ables (usually the lesser sienificunt bits) are on the



vertical margin, @.f., a 22x25 or 23x2" configuration
represents the 32 combinations of a 5 variable (bit)
word.

In crder that there be cnly cne bit chanre between

adjacent and "mirrored" compartments a reflected mono-

strophic code is used on the margins. In fact, the

ecunting sequences cf a Gray code are used on the mergins.
shows 3 variztions of a 5 variable Karnaugh Map.

any path through a Karnaugh ivap describes a mono-

strophic gode.
EATH DIAGRAM: «11 the possible paths through a

Karnavgh Map are diffict lt to see because one may jump

to "mirrored" compartments, rarticularly if there are more

than 4 variables (bits). Tc solve this problem the path

diagram may be employed. The path diagram's use also

simplifies the inccrporation cf code requirements during

synthesis. This point will beccme evident in subsequent

chapters.
Basically, the path diagram fcr ann bit code is

formed by equally spacing n points ina circular pattern.
The points are then numbered, starting with the n bit
Gray ccded zero, and progressing around the circle with

the Gray code counting sequence. Then all those points
are ecnnected which differ by cnly one variable. For an

n bit code each point will radiate n lines. The rattern

generated is symmetric aiding in drawing 4 path

12
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ABC
DEN 000 OOI OII 010 IIO III IOI 00
00

Ol
IT
Io

BC
DE 00 OI II I0

00

Or

ITI

nae)

BC
oo Or II 10

00

Ol

Il
IO

DE

A

AB
DE oo «(COL II I0
000

oor

010

IIo
Itt
Tor

I0O

3 VaRIaTIONS OF A 5 VARIABLE KaRNAUGH MAP

Fig. IiI.e
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Anyaththrourhthepathdiarramwhichdoesrotretrace
itselfordcesnotgothrouchthesamepointtwiceisa

distinctmonostrophiccode.puthclosure,naturally,
indicatesamonostrephicclosure.Fig,UI.5isanexamrle

ofa5bitpathdiagram.

I00OO00000
IOOOL00001

10010700010

IOIIOOOIIO

IOIIIAIOOTII

IOIOLOOoIOL

IOIOOoor00

IIIOOOII00

ILIOLOIIOL

TIIIOOIIIO

TIoTOAYOIOIO
IIOIIOloll

IIOOIOIOOI
II0000I000

Fig.III.3
PSEUDO-GRAYCODES:Thesnthesisof«pseude-Gray

ecdeistrivialsince,bdefinitionitisonly.particular
ofecmplemertsandpermutationsofannbit

Grayccde.'heabilitytoreccgnizethatamonostrcrhic

codeisapseudo-Graycecdebecomesimpertantwhencne



WXYZ

I000 0000

LINE OF SYMMETRY

Fig. III.4
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TOOL

TOIL

IOIO OOIO

OTII

TIOO OLOO

PSEUDO - I OOOOIIIIIIIIOOOO
K IOOIIOOIIOOIIOOIGRAY

Z IIOOOOIIIIOOOOII

W

NORVALIZED % OOITIIOCOOLLIIICO
GRAY W OOOOOOOOIIIIIIII
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iders counting and conversions which are to be discussed
in following chapters.

Nevertheless, a look at the Karnaugh at'aps in a cendix
I will show thut, for a 4 pit ecde which is Gray cr psevdo-

Gray there exists a symmetry which may te described as the

-resence of mirror imares (ignoring direction arrows) in
all Yr either the vertical or horizontal center
lines of the maps. «a similar symmetry will be ;resent in
a Gray code of any number of bits.

On a path diagram a Gray or pseudo-Gray code will
result in a symmetrical pattern abcvt a line dividing the

circle in half. FigdJII.4 deronstrates this fcr a 4 bit
pseudo-Gray code.

OTHER FULI. COUNT INOS CODES: There are many

-aths through a Karnaveh Mep or path diarram vhich use all
2" combinations available in an n bit code that cannot be

nermalized to a Gray code or de not close moncstre: hically.
FiglIL.5 shows examples of such 4 bit codes. These codes

have no general direct aprlication, but are renticned only
to insure knowledge of their zresence. sx ossible emjploy-

ment of such a code is in cry:torraphic systems. «150,

they may te encountered when one considers the seqvence cf
enly certain bits in code as we will do furtiasr long.

FORBES: ORVENED COUNT hr NOSTRO HIC The most

comron use of n bit foreshortened ecuntine sequences, beth

monostrenkic und ivstrovhic, is to re resent nurpering
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B
cD oo OI II 10 A B D00
00

I I
I I I IIII0II

j
+

Cannot be normal-
4zed, closes mono-
strophically.

I I

I I
I 00IIo

cD 00 OI II 10 A B

00 I I
or
II
I0

I II I I

I I
Cannot be normal-
ized, does not
close monostro-
phically.

II
I I I
I I I I
I I

De

Fig.
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systems of radices of less than 2". For example, it
takes ten of the sixteen possible combinations of a 4

bit code to renresent the ten dirits of a decimal num-

bering system.
previously mentioned, one may take advantare

of the unused combinations to simplify decoding and

conversion, cor they may be used as error detection and/cr
correction. Other uses of the unused combinations are

possible such as reduction cf power supply current and/or
regulation requirements. Discussion in subsequent charters
will make more clear advantareous use of unused combinations
in foreshortened counts.

Synthesis of fcreshortened count monostrephic codes

is easily accomplished by the use of Karnaveh rans and

path diacrams just as in 11 full count monostrcrhic codes.
The observations made for full count codes hold true for
foreshortened counts with the fcllowing excertions:

a) all 2" combinations are not used.

b) Monostrovhic closure is nct possible if the
number of counts is odd.

REFLECTED MONOSTROPHIC CODES: In general, a reflected
full or foreshortenea monostrophic code must be synthesized
as oreviously discussed, observing the symmetry rule on

Karnaugh Maps or rath diagrams if used.

If the bit uvcn which reflectivity depends (usually
the most sienificant bit) will not change except between



the lower and halves of the counting sequence and

upon closure (C for the first half and 1 for the last
half of counting sequence, or vice versa), synthesis of
the reflected monostrorhic code can be simplified. Only
the bits exclvsive of the one upon which reflectivity
derends must be considered. The countine sequence of
these bits mst have one-half the counts of the total
counting sequence, be monostrophic, but does not have

to close monostrcophically. In effect, the ccunting se-

quence of these Lits counts up during the first half of
the sequence and down durins the last half of the sequence,
retracing its rath to "zero".

19



CHAPTER IV. MONOSTROPHIC-i OLYSTRO}!HIC
CODE CONVERSION

Mcnostrohic codes are unweighted codes and there-
fore, are difficult to manipulate arithmetically. Con-

sequently, conversions between monostrophie and poly-
strophic codes, the subject of this chapter, are cften
required.

The use of hardware-oriented examples interspersed
with academic discussion will be the general arproach of
this chapter. The exemples will show electroric logic
and switching logic, both employing commonly accerted
symbols which are explained in Appendix II.

Ring sum or Exclusive Or functions arpear rereatedly
in this chapter. Acpendix III contains a discussion of
this funtion.

PARALLEL CONVERSION oF GRAY TO BINOMIAL BINARY: The

relutionship between these two codes may best be described
as fcllows: The most significant bits of both ccdes ure

equul, and the lesser significunt bits of the binomial
binary ccde are equal to the ring sum (Exclusive Or) of
the corresponding Gray code bit and all the mcre signifi-
cant Gray code bits. Fig. IV.1 diagramatically shows this.

An unvigorous methcd of prceving the relstionshinv
shown in Fig. IV.1 is to sclve the relxtionship for a 4

bit Gray tc a 4 bit "inomial binary code conversion. This
is dene in Fig. IV.2. Once this is acecrplished it can be

20
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ABCD WXYZ00060 AB
OOO! CD oO OI II IoOOII 0010OorO 00
OIroO 0100OIITI OIOTI or
OIOTI OIIOOIITI II
IIOO IOOTI Io

IoroIIIO IOIIIOIO IIoo X=AB+ABIOITIIOOTI IIIO =AOBI000 IIII
AB AB

CD 00 OI II I0 CD oO OI II I0
00

OI

II
IO

Y=(AB+AB) C+(AB+AB)C ZS1,3(A,B,C,D)
SA@BOC zAOBOCOD

Fig. IV.e

intuitively seen that the relationshir holds for n bits.
To Fig. IV.1 vith electronic logic each

ring sum symbol can be rerlaced by an rodule,
or a corbination of and-Or, Nand cr lior gates as s-own in
Fig. IV.3.

22
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X e
XOY FX e XOY

Y Y

xx
XOYx

x

xxx
4 MOY. Y

AND-OR GATES NOR GATES NAND GATES

EXCLUSIVE OR LOGIC

Fig. IV.3
Switching logic can ce used te convert Gray to bincmial

binary with one transfer set associated with the most sieni-
ficant Gray bit and tro transfer sets for each lesser signi-
ficant Gray oit. Fig. IV.4 demonstrates this ccnversion.

Remembering that the ring sum of a number of variables
is the syrmetric function of the variables, and the

complement of the ring sum cf a number of variables is the
ocd

symmetric function S of the variatles, it would seemeven
that a sy retric switching circvit with vick
off points might furnish all the logic required for e Gray

to binomial binary conversion. Fig. IV.5 shovs a folded

symmetric switching circuit which functions as a Gray to

binomial binary conv: rter, and is the sume circuit shown

in Fig. IV.4, laid ovt differently to clearly demonstrate

the symmetric switching circuit relationshio.
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By ; By
Gn-1+ Gy

Gna
B, Bn- By

B Bn-1 n-2
n-2

GG Gn-1 n-2 1

Gn-1G GCOM
1

G G1

GRAY TO BINOMIAL BINARY

Fig. IVe4

VARALLEL CONVERSION OF +S2UDO-GRAY TU BINARY: By use

of the methods of conversion described for Gray to binomial

binary codes and by effecting normalization of the inrut

variables, pseudo Gray codes may eusily be converted to

binomial binary.
FARALLEL CONVERSION OF OTHER FULL COUNT MONOSTROFHIC

CODES: Generally, reyirements for parallel conversion of

other than Gray or pseudo-Gray codes to weighted codes are

not enccuntered. If the requirement does arise, "brute

force" techniques can be employed to accomplish such con-

version, but the complexity of such conversions will be

much more than for the Gray and pseudo Gray to binomial

binary.
TARALLEL CONVERSION OF FORESHONTENED ONOSTROrHIC CODES:

There are many rezsons fcr the use of foreshortened codes,

the most cbvious of which is the enecding of numbering

system whose radix is not an integer power of two. other



COM

4 Pn-eg B

By

GRAY TO BINARY
FOLDED SYMMETRIC CIRCUIT

Fig. IV.5
reasons are ability for errer detection and/cr correction,
ease of ccnversion to a weighted coce, etc..

In selecting a foreshertened monostrcphic coce more

than the minimum number of bits may be used tc enccde a

numbering system in order to satisfy all the requirements

imposed on the coding system. In general, the higher the

mimber of bits used tc encoce a numbering system (above

the minimum rewired), the easier it is to ccnvert (or

decode) and more difficult to transnit.
The monostrophic ccde vsed tc : represent a numbering

system vhich must be ccnverted to another vtinary ccde is

25
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usvally selected so that conversion is simplified. tor
example, a monostrophic ccding of a decimal num! ering
system that must be converted to the self-com: lementing
excess-3 code (XS3) would be simplest to ccnvert if
counts 3 through 12 of the Gray code were used to represert

9 of the excess-3 decimal code. Such a selection
would result in a ecde being reflective, that closes

moncstrcephically, and following the sray to binomiz1

binary conversion rules. Fig. IV.6 shows this. ihe sume

philosophy a to the NBG Lecimal syster wovld result

ONO

0 0010 O011
1 0110 0100
2 0111 0101 Conversion tc vo 3
3 0101 0110 follows sane rules
4 0100 o1ll as Gray to bincmial
5 1100 1000 binary.
6 1101 1001
7 1111 1010
8 1110 1011
9 1010 1100

Fig. IV.6

XSS

Soke

in ccunts 0-9 cf the Gray code tc represent O-9 cf the
NEC Decimal system simplifying ccnversion, but the mono-

strorhic code lacks reflectivity and monostro;hic closure,
thereby being a voor choice.

Fig. IV.7 shows a mcnostrophic coding cf a e421 binary
ecded deciral numbering system. again, the monostrerhic

code is reflective and closes menostrorhically, and fcllcws
the simple Gray to binomial binary conversion rules.



MONO-
DECIMAL STROPHIC 2421

0000
0001ooll
0010
0110
1110
1010
1011
1001
1000

Fig. IV.7
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BINARY

0000
0001
0010ooll
0100
1011
1100
1101
1110
1111

Conversion to 2421
BC Decimal follows
same rules as Grayto binomial binary.

1
2
3
4
5
6
7
8
9

Occasionally the duo-decimal (Radix"12) numbering

system rears its ugly head in such applications of distance

measuring systems and monetary systems. A self-comple-
menting 4 bit code that could be used to represent such

a code is the excess-2 (XS2) code. Fig. IV.8 shows the

XS2 code and a monostrophic equivalent which is reflective,
closes monostrophically and follows the Gray to binomial

binary conversion rules.
MONO-

DECIMAL STROrHIC XS2
oo1l
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1011

Fig. IV.8

0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101

1
2

Conversion to XS2
follows same rules
as Gray to binomial
binary.

3
4
5
6
7
8
9

10

A weighted 4 bit code for a binary coded duo-decimal

numbering system is the 4421 code. Fig. IV.9 shows this

11
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code with a monostrophic equivalent which is reflective,
closes monostrophically, and follows the Gray to binomial

binary conversion rules.
MONO-

DEC IVAL STRO FHIC 4421
0000 0000

1 0001 0001
2 0011 0010
3 0010 0011
4 0110 0100
5 0111 0101
6 1111 1010
7 1110 1011
8 1010 1000
9 1011 1001

10 1001 1110
11 1000 1111

Fig. IV.9

Conversion to 4421
binary coded duo-
decimal follaws same
rules as Gray to
binomial binary.

DATEX CODE:* a foreshortened monostrophic code that
is frequently encountered is the Datex code shown in
Fig. IV.10. It is a 10 count, 4 bit monostrophic code

which is reflective and closes monostrophically.
DECIMAL DATEX

Fig. IV. 10

0001
0011
0010
0110
0100
1100
1110
1010
1011
1001

1
2
3
4
5
6

8
9

Notice that the 0000 and 1111 combinations are not

used enabling partial error detection and reducing power

supply regulation and power requirements.
Datex Corp., 1307 S. Myrtle Ave., Monrovia, Calif.
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If more than one decade is employed in the counting

sequence, the decimal counting sequence is also mono-

strophic in nature, i.e., only one decimal digit changes

at a time, resvliting in a decimal ccunting sequence as

follows: 0 through 9, 19 through 10, 20 through 29,

39 through 30, etc. Therefore when converting to any

decimal code, starting with the next to the most signifi-
cant digit and working to the least significant digit the

nine's complement must be sensed if the next more signifi-
cant digit is odd. The most significant digit is always
assumed to have a zero (which is even) preceeding it so

it never needs to be nine's complemented.

In order to convert to a decimal code we can, in effect,
say that the Datex code is a 5 bit code as shown in

Fig. IV.11, the Bey bit indicating whether the next more

significant digit is odd or even (1 = odd, 0 even).
DaTEX DECIMaL
ABCD E..=0 &;,=1
0001
oo1l 8
0010
0110
0100
1100
1110
1010

72
63
54

5 4
6 3

27
1011
1001

18
9 0

Fig.IV.11
The easiest method of conversion (or decoding) to

another binary coded decimal system is to use conversicn
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or decoding) logic for Fig. IV.10, and use the E;, bit
to reverse the sense of the A bit by the conversion (or

decoding) logic as shown in Fig. IV.12. This technique
can be used for conversion (or decoding) any multi-
decade reflective coding system whose coded numbering

system is similar in nature to the Datex code. The

OUTPUT >) _

out
Conversion or Decoding Logic

90 1 O

out

6

A B C D

Ein Ein

Fig. IV.12

logic required for the conversion technique in Fig. IV.12

is shown in Fig. IV.13 for the 8421, 2421 and XS3 binary
coded decimal systems.

SWITCH-TAIL RING CCUNTER CODE: Another foreshortened

monostrorhic code often employed is a code easily gen-

erated in a switch-tail ring counter (shift register)
described in the next chapter. The number of counts in

such an n bit code is 2n counts, and decoding each of the
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DATEX 8421 2421 XS 3
DECIMAL A cD HIJK L MN 0 P QR

Ooo Ol 0000 0000 I 000 0I I1 Io I 02
3 orzo

I00 I I4 I0I05
6 I II I II 0 I 07 I I IOI I8
9 IOOTL Tool IIit IIOO

8421
AB

cD 0 01 AB of 11 10
cD

o1 Of

1

10 10

H=AD I=AD+BC

ABAB
CD

dfo) | o1

1
Ol O10

J=cD

Fig. IV.13
(Cont'd next page)
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AB g9 of 11 10

cD
20 D
o1 OO |

11

10

LaA

XS3
AB

Pe
00 o
o1

1 o 4

10

oN 90

vo 0
o1

410

oft 1 10

D
o

w
M=a(B+C)+ABC

AB oo
cD

o1

0 10

o1 ®

10

Q=A(BtC)
Ll
el
e

10 Ga
N=A(C+D)+ACD

R=A (B+)

10

11 10

Oe
@ 9 IO
0 ®
® ®

cD
AB 90 o1 10 AB

cD

O=Eout=(ASBOCED

AB go o1cD
O oo

a1

10

@
01 O ®

Ono)
@ ®

AB 90 of 11 10

10

StE,yt=(A@BeceD)

se

Fig.
IV.13
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2n combinations to one of 2n lines requires sensing of

only two of the n bits. Fig-«IV.14 demonstrates the

switch-tail code for a 5 bit unweighted decimal code,
SWITCH-TaILABCDE DECINAL REQ'D LOGIC

00000 AEB
1 DE
2 GD
3 BC
4 KBIIIII 5 AEIIIIO 6 DE

IIIOO 7 cD
II000 8 BC
I0000 9 AB

Fig. IV.14
Notice that the bits sensed for each count are the two

adjacent bits that differ except for all O's and all I's
in which case the two end bits are sensed. This holds

true for any number of bits.
IN-REGISTER PARALLEL CONVERSION: Quite often it is

desired to convert in parallel the contents of a register
containing a monostrophic code to a polystrophic code,

with the result of the conversion placed in the same

register. This can be done by loading the register,
through the necessary conversion logic, into the same

registere
The logic required can be the same conversion logic

as described earlier in this chapter, but in most cases

it may simrlified. This is true because the state of
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of flipflops A, B, &D
0000 0 0 0 0 prior to conversion.
OoOotT 60 oOoTF

o 0 I 0

Oi! respectively after conversion.
OILOT II0

o

IIitl Io I 0IIIO

III0Iooo III

| 1 joo
|

[oo

or jet |
jor

1 j

.10
| |

10 ;
10

FFBIA FFC=AOB FFD=A@BOC

0 E 0 0 1
FFA FFB FFC FFD

ON, CONVERT

®

Fig. IVe15

Ay By Cj Dy W, X, Y & Z are the contents

OoOorzroO contentsA B & D are
B, &DOIrO 0 I 0 1

I 0 0 00 Logic terms required to com-TIodr I 0 OT plement incorrect bits?

I o1o II 0
I I A, FFA requires no cor-

rection.

AB 01 10 oo oo 01 1AB AB
CD CD cD 10

1 1

ChanR

W Z
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each bit only needs correction, not generation. Fig.
IV.15 demonstrates the correction approach to a 4 bit
Gray to binomial binary in-register parallel conversion
by complementing the "incorrect" bits. To expand ton
bits, additional similar stages can be added on the
least significant end of the 4 bit register shown in
Fig. IV.15.

If the flipflops of the register have no complement

inputs (or if pulsing both inputs simultaneously does

not complement the flipflops) they must be appropriately
set or reset to correct the "incorrect" bits. Fig. IV.16
demonstrates this approach for the same code conversion
as shown in Fig. IV.15. Again FFA requires no correction
as A,=W.

SERIAL CONVERSION OF GRAY TO BINOMIAL BINARY: If a

Gray coded number is being transmitted serially (bit by

bit) with the most significant bit leading, serial con-

version to binomial binary is possible upon receipt of
each bit. The conversion is accomplished using the two

rules:
1) The most significant Gray bit is identical

to the most significant binomial binary bit.
2) If a bit is a 1 after conversion the bit

following it is complemented,

Fig. IV.17 demonstrates the conversion,



FFBreset

FFC set™ (A®B)C

AB 00 01
cD
fete)

01

11

10

reset (AGB) C

Fige IV.16

10

AB 09 01 11

2 (A@B@C)D

AB 90 01 11cD
00

o1

1
10

10

10

FFD eset = (AGBOC)Dr
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AB o1 11 10 AB 90 o1 10
cD cD cD
00 00

O

d O
10 m! ao 10

FFBget=AB
AB oo O1 11 10

cD
oo

fe}

O
10 o

FFCAB

FFA

CONVERT

B@
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GRAY

Direction of shift is to the 0 IOIIOI

left of vertical line is 1 the OII IIOIpit just to the richt of the t__ complementvertical line is complemented. OIIO] IOI
OILOI/OL

complementOIIOII I4___ complementOIIOIIO

OTOTIOL

left with the most significantbit leading. When bit just to - complement

4- Conversion occurs
BINOMIAL as Gray coded number
BINARY crosses this line,

SERIAL GRaY TO BINOWIAL BINARY CONVERSION

Fige IV.17
SERIAL

BINOW IAL
BINARY
OUT

0 1 fo 1
FF1 FF2

q SERIaL

REaD-IN/

GRAY IN

SHIFT PULSE

CLEAR PULSE
(PRIOR TO START
OF CONVERS QN)

CONVERT PULSE
SERIAL GRAY TO BINOMIAL BINARY CONVERTER

Fig. IV.18
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SERIAL
BINOMIAL
BINARY
OUTPUT

FF

CONVERT PULSE (liust lag
ALTERNATE leading edge of each Gray4

OUTPUT bit.)
(see text)

SERIAL GRAY INPUT

SERIAL GRAY TO BINOMIAL BINARY CONVERTER

Fig. IV.19

Fig. IV.18 is the diagram of a typical serial Gray

to binomial binary converter using electronic logic.
After the converter is cleared the Gray bits are shifted

in, cne by one, with a conversion following each shift.
A tro bit delay results in this conversicn an~roach.

In Fig. IV.19, an apparently simpler serial converter

4s shown in which there is only slightly more a one

pit delay. Because of the one-and-a-fraction of a bit
delay, timing becomes more difficult. If desired, the

conversion delay may be reduced if the output is taken

directly from the Exclusive Or outrut, but sapling mist

be accomplished cnly during the non-transient neriod cf
the ecrverter, i.e., after the new Gray Dit is present ut



the inzut but before the convert pulse. (The convert
pulse can be delayed until slightly befcre the next
bit to allow rore samrling time if output is tuken from
the output of the Exclusive Or gate.)

SERIAL CONVERSION OF OTHER -ONOSTRO}HIC CODES:

and corverted in parallel vhen the whole binary coded

number

In
order for the discvssion of ccnversion to be considered

nearly ecnplete, cenversion from polystrophic to monc-

strovhic codes must be considered. If the reverse pro-

cess of each ccnversion previously mentionea was discussed
in as much detail, considerable redundancy of thought
would be involved. Therefore, the discussion of this
toric will be kert brief.

any conversion which, when going fror a monostrcphic
to a pelystrophic code, follows the Gray to binomial

binary conversion rules, can be in the

reverse direction by the following rule: The monestrephic

39

Serial, bit by bit, conversion of codes other than those
that fo llow the rules fcr Gray to binomial binary con-

version is usually not possible in the true sense of the

word, serial. If such ccdes are received for convers ion
in ser ial form, they are usually shifted into a regist er

is in the resister using parallel conv-rsion
techniqUBS e

POLYSTROFEIC To MONOSTROHIC CODE CONVERSION:
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code equivalent of a binary coded nurber is the bit-by-
bit Sxclusive Or of the number with itself shifted cne

bit (to the rirht or left) ignoring the least significant
bit of the result (See Fig. IV.20). It is obvious

LO01101 <-# tc be converted to monostrophic equiv.
10011014-# shifted one bit

110120111 Bit by bit Exclusive Or
*--LSB, ignore

1101011 «<---Result, monostrophic equiv.

Pig. IV.20
that the most significant bit is the same in either code,
and the lesser significant bits of the monostrephic equiv-
alent are the Exclusive Ors of adjacent bits cf the binary
ecded number. farallel conversicn, therefore, can be accom-

plished as shown in Fig. IV.2l.
Serial conversion, following the same rules requires

the number to arrive for conversion in serial form with
the most significant bit leading. 'The : :revicus bit (un-
converted) must be stored and Exclusive Ored «ith the

arriving (a gero is assumed to be stored in the one

bit memory prior to arrival of the most significant bit).
The output of the Exclusive Or is the serial converted

output. Fig. IV.2 shows a serial Polystrophic-Monostrcphic
converter with a flip-flop to store the output (could be

entrance bit to a shift register). The storage flip-flop
must have a clear inrut shown, and it must be cleared
(set to 0) prior to start of ccnversion.

Conversion between ecdes that dc net have the
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n-1 "n-2

Bn-1 B Bn-2 1

Fig. IV.21

Gray-binomial binary relationship is usually not required
but, if encountered, must be accomplished by brute force
parallel conversion techniques.

CONVERTED
OUTPUT

1
OUTPUT

STG: .AGH
CLEAR

INE UT

«CONVERT PULSE

Fig. IV.22
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CHatTER V. GENERATION OF MONOSTROPHIC CODES

The most developed method of monostropvhic code

is the use of electro-mechanicul and electro-

optical-mechanical sensine of serpmented, multiple track,
rotatable discs in shaft angle encoding systems. 'the

advantuge of monostroyvhic ccdes in such apylications is
the ability to sample the readout "on the fly" without

fear of ambiguity. Since this method is well known and

already well documented this author will concentrate on

generation of monostrophic codes by other than the disc

technique, iee., monostrophic code counters by electronic

logic and sequential switching techniques.
PHILOSO!HY OF FULSE COUNTING DIRECILY IN MONO-

STROPHIC CODE: Because only one bit changes between

adjacent counts in any monostro;hic code, one carnot take

advantage of carries as in, for instance, an electronic
binomial binary ccunter when counting in a monostrcphic

sode. hor can the state of the next less significant bit
be denended urcn to furnish the proper levels to the com-

paement input gate of a bit as in an electronic binomial

binary counter. 'thereforws the state of the complete

binary number must be employed to furnish, thrceugh logic,
gating levels to the complement input pulse gate (or set

and reset pulse sates} of the storage element of each bit
(bistable flip-flops). This aprroach is to the
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anticipated carry approach used with other binary counters

to enanle faster counting. Also, it is the approach that
must usually be taken for any type of sequential switching
(relay) counters. Fig. V.1 demonstrates this approach for
a 3 bit Gray code counter.

N BIT GRAY CODE COUNTER: The previous section des-

cribed a 3 bit Gray code counter. In this section ann

bit Gray code counter and required counting logic will be

denonstrated. A method for easily reversing the counting

sequence will also be shown. The importance of the Ex-

clusive Or function will again appear.
If the method for determining the counting logic

described in the previous section is used tc determine the

counting logic for a 2, 3, 4 and 5 bit Gray code counter,
the information shown in Fig. V.2 is obtained after sin-

plification. Notice that the state of every bit influences

the lcgic levels associated with the complement pulse gate
of each bit as previously stated at the beginning of this
chapter.

Another set of relationships evident in Fig. V.2 and

explained below can be used to simplify the determination

of the logical expressions required for each bit of ann

bit Gray code counter.
1. The least significant bit's term for an up counter

is the complement of the ring sum of all bits.
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COUNT PREVIOUS COUNT BIT OF PREVIOUS
UP DOWN COUNT COMPLEMENTED

A B C A B C UP DOWN

I I DOWN

TO COUNTING LOGIC AND LOAD

0 1
FFA FFB FFC

PULSE

ABC+ABC ABC+ABC ABC+ABC+
ABC+ABG

=(a@B)C =(A@B)C
=( A®BO@C )

COUNTING LOGIC™

A A B B C C

*Qutput of counting logic shown for Up Counter

Fig. Vel

SEQ
A B

I 0 I A C
I I C B

I I B
I I I I C A
I I I I A CI I I I I0I BI I I UP I I I B C

I IT C A

COUNT



S°
A
ST
A

UP DOWN

5 Bit
DIRECTION

A B D E
OF COUNT

UP (A®B) CDE (A®B) CDE (A@BOC)DE (a@BeCeD)E (A®BOCeDEE)
5 Bit

DOWN (A®B) CDE (A@B)CDE (A@BOC)DE (AOBOCOD)E (A®BOCODOE)

UP (A®B)CD A®B)CD A®BOC)D A®BOC@D)
4 Bit __

DOWN (A®B) CD (A@B) CD (A@BeC)D (A®BOCOD)

UP (A®B)C (A@B)C (A@BOC)
3 Bit

DOWN (A@B)C (A@B)C (A@B@C)

UP (A@B)
2 Bit

DOWN (A@B) (A@B)

HHH HHHHHHHHHHHHHOOCOOOOOOO oooocooo >DOOOOOOOOOOHH

-2 Bit
3 Bit

-4 Bit

A®B
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2. The term for any bit of an up counter other than

the most significant bit is the complement of the ring
sum of all the terms excluding the lesser significant bits
Anded with the next less significant bit and the and of
the complement of all lesser significant bits.

3. The term for the most significant bit is ring
sum of the most and next most significant bits Anded with
the And of the complement of all lesser significant bits.

4. For ann bit down counter the logic terms are the

same except all of the ring sum portion of the up counter

logic terms are complemented.

From the above relationships a set of rules are self-
evident for determining the complement pulse gate logic
terms for all bits of an n bit Gray code counter. As an

example, for a seven bit Gray ccde up counter in which the

bits are labelled 4,5,C,D,E,F, and G, A being the most

significant bit and G the least significant bit, the

seven terms are as follows: A; (A@B) CDEFG

B; (AB) CDEFC

C3; (A®ESC)DEFG

D3;

E; (A®BROBDEE) FG

F; (A@BOCEDGEGE)G

G; ( ADBECBDSHBFHG )

Complementing the ring sum portion of each term yields
the logic terms for a down counter.
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By complementing any bit in a ring sum term the ring
sum term is complemented. This leads us to a simple method

of reversing the count in ann bit Gray code counter re-

sulting in an up-down counter. Notice that the most and

next most significant bits appear in all ring sum portions
of all terms. Simply by providing a means of reversing
the sense of either (not both) of these bits at will, a

method of reversing the direction of count is provided.
Fig. V.3 shows ann bit up-down Gray code counter em-

bodying all thoughts of this section.
N BIT PSEUDO-GRAY CODE COUNTER: Remembering that

a pseudo-Gray code is only a combination of complemented

and/or permuted bits it is easily seen that the Gray code

counter discussion of the previous section aprlies if,
in addition, the counting logic inputs are properly com-

plemented and permuted (normalized) so that the proper

counting sequence occurs. Therefore no more discussion of

pseudo~Gray code counters will be pursued.
OTHER MONOSTROPHIC CODE COUNTERS: The method shown

in Fig. V.1 for determining the logic terms required for
the complement pulse gate enabling levels can be used for
any full or foreshortened monostrophic (polystrorhic for
that matter) code counting sequence. For example, the 4

bit (4 bits per decade) Datex described in the last chapter
is considered. See Fig. V.4.



TO LOAD AND COUNTING LOGIC

A

A

To count in only one direction eliminate ® circuit
to which A, A, UP and UP are connected and connect A and A
as follows: A to 1 and A to 2 for up counter,

A to 2 and A to for down counter.
N BIT GRAY CODE COUNTER

Fig. V.3

48

FFN
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DATEX PREVIOUS COUNT BIT OF PREVIOUS

UP AB oo Of 11 10 AB 90 01 11 10

Ai 0) AL

10 10 0
FFA=(A®B)C FFB=ABC+ABD

o o
1 O/@ 1: [CTD o
10 10 al
FFC=(COD)A+(B@C)A FFD=ACD+4ABD

UPAB CD ABCOD U PAB D
DOWN COUNT COMPLEMENTED

DOWN

ooo gl AT oI0 I I
D0 0ooro D BI IoI a

B0orco AII0TIOO AI Io0 IIIroO BI ale)
B D

IOIT D C
III

IOOT ATOIIIOOOTL C

CD CD
fore]

or or

AB 1 11AB 00 O1 11 10 00 10
CDM cD
oo

OL on

DOWN Datex is a reflected code with reflectivity de-
pendent upon the A bit. Therefore, reversing sense of
the A bit by counting logic reverses direction of count.

COUNTING LOGIC FOR ONE-DECADE DATEX COUNTER

Fig. V.4



Usually when the Datex code is used there is more

than one decade in which case the D..tex counting sequence
of each decade other than the most significant decade does
not pass directly from 0 to (27-1) and (27-1) to 0. In-
stead, each decade counts to the end of a sequence (zero
or nine), the next more significant decade steps one count,
then the first decade counts to the other end of its se-

quence (nine or zero). Any decade counts up when the next
more significant decade is even, and down when the next
more significant decade is odd. There is a similarity in
this counting sequence with thet of a Gray code, and the

techniques employed to make use of this characteristic in
Gray code ccunters (described in next section) can be used
to control the direction of count in each decade of a Datex
code counter.

CASCADING GRAY CODE COUNTERS: An examination of ann
bit Gray code reveals that if the n bits are divided into
two groups, say 1 bits and m bits where l+m = n, an inter-
esting characteristic emerges. Look at the 4 bit code in
Fig. V.5 that has been divided into two 2 bit groups.
The group including C and D counts up, then dewn, then up

and then down. The direction of count is dependent upon

AB being even or odd; up when AB is even, down when AB is
odd. This relationship holds for any n bit Gray code

ecunter regardless where the division is. also, if the
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A B C D code is divided into more than two

groups the relationship holds for
even 0110010 any two udjacent groups. This

11
0 11 1fdown characteristic of Gray codes allows

even 1111
1 110 modified counting logic to make one

0 0101 ifdowm large Gray ccde counter (and to
odd {1001

1 000 cascade decades of the Datex decade

Fig. counters mentioned in the rrevious
section).

odd 0100 one to cascade many smaller up-down

Gray code counters with slightly110

To go directly from the first count to the 2

count or vice versa of a m bit counter the most signi-
ficant bit is the one that is complemented. If the logic
term for the most significant bit is modified so that this
change is not possible, and a (m+rl)th logic term is devel-

oped in the ccunting logic to gate the counting pulse to

the next more significant grovp when the first grovp has

reached the "end" we have solved part of the yroblem.

The other part of the problem is already solved in that

the logic term of the next more significant group's least

significant bit indicates whether that group is odd or

even (the ring sum of any number of bits is Soaa Of those

bits and the complement of the ring sum is Seven)). There-

fore, the logic term of the next more significant group's

thm

least significant bit can also be used to tell the next



lesser significant group which direction to count (an inout

to the up-down control logic described earlier in this
chapter). For the Datex decade this is not true. Extra

logic is therefore required to determine if a decade is
even or odd. Hence the desired action is as follows:
When a group is counting up (next more significant group

is even), the counting logic creverts the transition from

the highest count to zero (the first count) but instead

steps the next more significant rroup by one, changing it
from even to odd which reverses the direction of count in
the first group. Fig. V.6 demonstrates this method of

cascading Gray code counters to make one larger one.

SWITCH RING COUNTER: The switch tail ring
counter mentioned in the last chapter is simply a shift
register whose most significant bit's transposed output

ig fed tc the input of the least significant bit when

shifting left (counting up), and the transposed output

of the least significant bit is fed to the input of the

most significant bit when shifting right (counting down).

Hence, when counting up the ccmolement of the most sig-
nificant bit is shifted into the least significant bit

and, when ccuntine down the complement of the least sig-
nificant bit is shifted into the most significant bit.
For ann bit counter, a foreshortened monostrophic counting

sequence of 2n counts is generated. Fig. V.7 shows the

counting sequence for a 5 bit switch tail counting sequence.
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LS Bit of More0O 1 1MS Bit of Lesser

.figant Fig. V.3
, Bits of

Evem

Wethod of cascading Gray code counters into one
larger counter. Only differences and additions to Gray
code counter shown in Fig. V.3 are shown. The differences

Fig. V.6

53

Signifigant FEN») FFA) Signifigant
GroupGroup, (m)

Comp ofall
'Lesser Same as
' Signie t

Group

Fin)

Od
"hn Fin)

env to tne
division (point of caseading) of groups & m).



54

Notice that for four counts only 2 bits are required, the

same as for a Gray ccde, and is in fact a 2 bit Gray code.

For eight counts, four bits are required, only one more

than for a Gray code with the same number of counts.
For ten counts, five bits are required, only one more

than for a foreshortened monostrophic code that follows
the Gray to binomial binary conversion rules. Above ten

counts many more bits are required than for more compact

monostrophic codes. Since only 2 bits must be sampled

per each of the 2n combinations as discussed in the previcus

chapter, a switch tail ring counter may be preferable from

an economy standroint if decoding (rather than ecnversion)
is required and the total count is not mcre than about ten.

A B D E

1
down 11

1 1 1
1 1 1 1

up 11 1 1 1
1 1 1 1
1 1 1
1 1
1

Fig. V.7
SIMULVYANEUUS GENERATION OF MONOSTROPHIC &- FOLY-=

STROFHIC CODES: Many times when generating a monostrozhic

code count, it is desirable to have a polystrophic binary
code count generated simultaneously with the monostro;hic

code.
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Immediately, one may feel that the easiest and cheapest
way to accomplish this is to count in one code with con-
version logic for the other code connected to the output
of the counter ylelding both codes. Because methods of

counting in binomial binary and conversion from binomial

binary to Gray codes are so well known and simple, this
might be the tendency. Where "on the fly" sampling of the

monostrophic code is required this apvroach is not satis-
factory because the ambiguities during transition from

one count to the next in the binomial binary counter's
output are transferred through the conversion logic re-

sulting in ambiguities during transition of the monostrophic
code. Therefore, if conversion logic on the output of the
counter is to be used to generate both codes in parallel
the counter must count monostrophically, with conversion
to the binomial binary code. This approach yields a mono-

strophic code with no ambisuities, with the simultaneous

generation of the binomial binary code.

CONTINUOUS CONVERSION OF BINOMIAL BINARY TO GRaY: If
the monostrophic code is Gray or pseudo~Gray and the poly-
strophic code is binomial binary the continuous conversion
method shown in Fig. V.8 and described in the following
discussion is arplicable.

A relutionship between corresponding bits (except most

significant bits which are always equal) of binomial binary
and Gray codes is that, in the up counting sequence of both
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codes, when a bit changes from 0 to 1 in the binomial
binary code the corresponding bit of the Gray code is
complemented. A 1 to 0 transition of any binomial binary
bit does not affect the Gray code. The opposite is true
if the counting sequence of both codes is down. 'this
rel tionship can be used to enable the transitions of
bits in ann bit binomial binary counter to modify the

corresponding bits of an (n-1) bit register which
contains the lesser significant bits of the Gray code (or
pseudo--Gray code if the output sensing pattern is com-

plemented and/or permuted) count. Fig.V.8 demonstrates

this appreach. Using some ranufacturers electronic logic
modules this apvroach is the cheapest way to generate Gray
(or pseudo-Gray) codes.

In sequential switching schemes using relay flip-flops
to generate Gray (or pseudo-Gray) code counting sequences
this approach is a good one because of the reduction of

relay contacts (paid for by doubling the number of relays).
Fig. V.9 shows an all relay n bit binomial binary counter
with continuous conversion to ann bit Gray code.

N BIT DECODERS FOR COUNTING LOGIC: Most electronic
logic manufacturers include in their product lines &, 5

and occasionally 4 bit decoders. These decoders usually
have as inputs two lines per bit (the logical value of the

bit and the ccmplement) and 2" output lines, of which only
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GRAY CODE
4 t

0 1

1 fo 1
By -- By Count

BINOMIAL BINARY COUNTER

for 1NSB Goa G

both PTs
codes

n 0

Pulse

Connect complement input of each Graybit (less NSB) to the 1 output of the cor-
responding binary bit for up counting se-
quence and the 0 output for down counting
sequence. If flip-flops require a pulse
instead of 0-1 level change pulse generators
must be added as shown.

CONTINUOUS CONVERTER
BINOMIAL BINARY TO GRAY

Fig. V.8
one may be selected at one time. Euch ovtrut line is
usually labelled with the decimal ejuivalent cf the n bit
binomial binary number which, as an input, selects that
line. If ann bit decoder is connected to the outrut of
ann bit flip-flop register, the proper outyut lines can

be ured into n pulse gates, each one associated with the

complement input of each flip-flop in the register. By

pulsing the pulse gates the contents of the register goes

through a counting sequence dependent upcn the pattern of
Oring the decoder output lines. For a monostrophic counting

sequence, each decoder output line will be asscciated with
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only one pulse gate. This is not true for a polystrophic
counting sequence.

This approach is, in effect, the method used in binary
counters that operate on the principle of "anticipated
carry" with the accompanying advantages of equal settling
time of the counting logic for all counts and faster propo-
gation of logic levels from the output of the register to
the pulse gates enabling faster counting. (Note that the
counting logic shown in Fig. V.3 requires rropogation of
a level change through the cascaded ring sum logic of all
n bits when either of the two most significant bits cr the
direction of count is comrlemented. )

In an up-down Gray counter, or when many small counters
are cascaded into one larse counter (requiring the control
of direction cf count in each small counter), the carry to
the next most significant group and the inhibiticn of the
"peturn to zero" in each group is more easily implemented

using the decoder counting logic technique under discussion
in this section. Fig. V.10 shows a 6 bit Gray counter
comprising two 3 bit counters, each using a 3 bit decoder
as part of the counting logic. aA comparison with Fig. V.3
and Fig. V.6 shows that this approach for an up-down
counter made up of smaller counters is simpler.

To determine the Oring pattern cf the decoder outputs,
write cut the counting sequence and, beside each count,
write the decimal equivalent of the -tinomial binary
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TWO 3 BIT GRAY CODE COUNTERS CASCADED
USING 3 BIT DECODERS AS COUNTING LOGIC
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interpretation of the count. As previously explained in

this c: apter, the contents cf the counter determines which

bit is comolemented on the next court. lhe decimal numbers

associated with the counts rreceeding the complementing

of a bit in a counting sequence correspond to the lines
that must be Ored into that bit's complement pulse gate.

If the counting sequence is reflective the counting

sequence may be reversed by reversing the sense by the

decoder cf the most significant bit. When groups of small

counters are cascaded into one larger counter the decimal

equivalent of the binomial binary interpretation of the

last count in the sequence is the one that enables the

carry (and inhibits the "return to zero" by not being
asscciated with any complement pulse gate of that group).

aWhen cascading x groups of m bit counters into one

xm bit counter (xm=n) rather than using an n bit counter

like that in Fig. V.3, the prorogation time of the logic
is derendent upon x rather than n, hence the ressibility
of a faster counter.
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CHAPTER VI. CONCLUSION

Nost likely, while studying the foregoing, the

imaginative reader has already thought of varied appli-
cations for monostrophic codes. Generally monostrophic

Non-codes have applications not only where asynchronous

the-fly" sampling is required, but also where continuous

monitoring of the continually changing code to detect a

value (or values) is required. In both cases, if a poly-
strophie code were used, precautions against ambiguities
would need to be taken which adds complexity to the system.

Gray or pseudo-Gray codes are the easiest of the full
count monostrophic codes to generate and/or convert. Of the

foreshortened codes, those which follow the Gray to binomial

binary conversion rules are the easiest to handle.
Where conversion between a monostrophic code and

another specified binary coded numbering system is required,
judicious selection (if both codes are not already speci-
fied) of the monostrophic code will result in simpler ccn-

version logic, particularly if Gray to binomial binary
conversion rules apply. This was shown in the examples of

Chapter IV.
The pulse counting techniques shown in Chapter V

(except for the continuous converter) have a characteristic
which is highly desirable in many applications; equal time

delay between any count and the new count after the count

pulse (assuming equal logical delays in all flip-flops).
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This is not so with polystrophic code counters that de-
pend upon carry propogation. Also, the use of parallel
counting logic, e. g., n bit decoders, to increase the
maximum counting rate is simpler for a monostrophic code

counter than with a polystrophic code counter because
each output line is associated with only one complement
(or set and reset) gate of the monostrophic code counter.

Besides the usual mechanical (and sometimes electronic)
analog to digital conversion processes using monostrophic
codes, there are many other potential applications of these
codes which cannot be appreciated unless one has a "feel"
for them. The overall objective of this paper is to pre-
sent to the reader a better insight of monostrophic codes
based on my study of them to enable him to better evaluate
possible new applications employing them.



APPENDIX I
4BIT PSHUDO-GRAY CODES

The following paces contain all combinations of
complemented bits and permtations of the two most sig-
nificant bits of the 4 bit Gray Code. They are grcuped
so that each group has the same counting sequence as

shown on the acccmpanying Karnaugh Maps. 'The top group
of each page has the reverse counting sequence as the
bottom group on the page.

The least significant two bits'permutations are not

included because, in analyzing or normalizing a ;seudo-
Gray code, the bits are arranged sc that the least sig-
nificant bit is considered the bit that is ccm lemented

most often in the counting seavence, the bit with the

next fastest rate of change is considered the next to the

least significant vit, etc. The two most significant bits
are bcth corplemented the same number of times in a counting
sequence, hence their arrangement is arbitrary, and only
their -ermutations are included in this appendix.
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APPENDIX II
LEGEND OF SYMBOLS USED IN THIS PAPER

A

@ [aes
B-
A-

Exclusive Or; Shown with two variable

complements input.
input, and with two variable with

AOB

RE-
SET COMP SET

Flip-flops;

sampling of output.
Reset and Complement inputs.

Assumed to have logical delay
enabling simultaneous read-in and

Shown with Set,

OUTPUT

FF

An

abbreviated method of showing a Re-
set input (Clear input) is an arrow

at lower left-hand corner of flip-flop.

AH
B-

N-

N N-

(AB...N) And Gate (A+B+e..+N) Or gate

A A

AB...N Nor Gate (A+B+.ee+N) Nand gate

Inverter Diode



II-2

Normally open switch or relay contacts
-A associated with switch or relay A.

Normally closed switch or relay contactsA associated with switch or relay A.

Assertion
o Optional Term mn Karnaugh Maps

Non-Assertion left biank

Relay Winding

Logic Level Line

Pulsed Line
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APPENDIX III
EXCLUSIVE OR/RING SUM

The Exclusive Or function, also called the ring sum

and commonly signified by the sign ® (and occasionally
by ), is an important logic function when working with

generation and conversion of monostrophic codes. This
function also appears in binary adders. In fact, the

ring sum of two variables is often called the sum modulo

two, because the ring sum of two variables satisfies the

logic requirements of a half adder as shown.

0

1

RING SUM HALF s»DDER
TRUTH
TABLE

The following postulates and theorems will enable

one to relate ring sum functions to binary logic operations."
POSTULATES

1) 00020

2) 10120

3)
THEOREMS

1) X@1=x

2) X01"X

"samuel H. Caldwell, Switching Circuits and Logical Design,
pe 667.

IIT-1

XY XOY

00ol 110 111

Y\ 0 1

o

1 0
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3) X@X=0

4)
x for odd number of terms

5) X@xX®. . .@X=
0 for even number of terms

6) X@Y=Yex=xvexy=(X+Y) (X+)
7) (X®Y)0Z=X@(YOZ) =XoYoz

8) XY@XZ=X(Y@z)

9) (X@)=(Y@X) =xv+X=(X+Y) (X+)=(Xy+XY)
Theorems 6) and 7) give the clue to the manipulation

of more than two variables. For example, let us expand
the ring sum of four variables, A®B®COD.

by theorem 7

A®BOCOD=( A@BOC) OD

by theorem 6

=(A®BOC)D (A@BOC)D

by theorem 7

= [(aeB)ec]D+[(aeB) ec] p
by theorem 6

= [(AB+AB)G+(aB+AB)c] D +|(aB+AB)C+(aB+AB) c] D

by theorems 6 and 9

= (4B+AB)C+(aB+AB) D +[(aB+AB)C+(aB+AB) c D

=ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD

Notice that the expanded term is the symmetric
function Sagi4.B,C,D). It can be shown that the ring sum

of n variables is the symmetric function SpgglA,B,---,N)



and the complement of the ring sum of n variables is
Seven(A»Bs---,N). Because the ring sum of more than two

variables is difficult to recognize on a Karnaugh Map,

the relationship of ring sum functions to symmetric
functions is probably the easiest way to recognize ring
sum functions of more than two variables.
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