
THE LINCOLN TX-2 COMPUTER

LINCOLN LABORATORY
MASSACHUSETTS INSTITUTE OF

TECHNOLOGY

PRESENTED AT:
THE WESTERN JOINT COMPUTER CONFERENCE
LOS ANGELES FEBRUARY 1957

THE RESEARCH REPORTED IN THIS DOCUMENT
WAS SUPPORTED JOINTLY BY THE ARMY; NAVY;
AND AIR FORCE UNDER CONTRACT WITH THE
MASSACHUSETTS INSTITUTE OF TECHNOLOGY+

y

THE LINCOLN TX-2 COMPUTER DEVELOPMENT*

Wesley A. Clark**
MIT Lincoln Laboratory

Lexington 73, Massachusetts

Introduction

The TX-2 is the newest member of a growing family of experimental computers

designed and constructed at the Lincoln Laboratory of MIT as part of the

Linsoln program for the study and development of large-scale digital com-

puter systems suitable for control in real time. Although in general

characteristics and design philosophy it owes a great deal to its pre-

decessors, Whirlwind I and the Memory Test Computer, the Lincoln TxX-2

incorporates several new developments in camponents and circuits, memories,

and logical organization. It is the purpose of this paper to summarize

these new features and to give some idea of the historical development and

general design objectives of the TX-2 program.

History
With the development by Lincoln and IBM engineers of the SAGE computer for
alr defense, real-time control computer systems had reached an impressive

level of size, sophistication, and complexity. The highly successful

64 x 64 coincident-current magnetic core memory array was in operation in
the Memory Test Computer which had given up its earlier 32 x 32 array to

Whirlwind. Vacuum tubes abounded in all directions. It was apparent that

*The research reported in this document was supported jointly by the Army,
Navy, and Air Force under contract with the Massachusetts Institute of
Technology.
**Staff Member, Lincoln Laboratory, Massachusetts Institute of Technology.

2

the further advances in system design which could be made by increasing
memory size, eliminating vacuum tubes wherever possible, and organizing
input-output buffering, control, and communications into more efficient
forms, would be well worthwhile.

The development of a 256 x 256 switch-driven magnetic core array was

begun and the Philco surface-barrier transistor made its appearance.

After some very promising bench experiments with flip-flops and logic
circuits, it became apparent that this transistor was potentially well-
suited to use in large-scale systems and warranted further study. Ac-

cordingly, plans were laid for a succession of experimental digital
systems of increasing size and complexity which would make possible
the development and evaluation of circuits using the surface-barrier

transistors, and which would lead to a computer of advanced design cap-

A double-rank shift register of 8 stages containing about 100 transistors

able of making efficient use of the 256 x 256 memory

was constructed and put on life-test in April 1955. It has since been

circulating a fixed pattern almost continuously with no known errors and

no natural transistor failures.

As the next step, it was decided to build a small high-speed error-detecting
multiplier and incorporate marginal checking and other system features. The

value of a multiplier as a preliminary model had been well demonstrated by

the 5-digit system built during Whirlwind's early development. The shift,
carry, count, and complement operations, under closely controlled timing

conditions, were felt to be representative of all of the operations in the

3

manipulative elements of the type of computer planned. Accordingly, an

8-bit system using 600 transistors was designed and completed in August 1955

and has been in nearly continuous operation since that time. Operating
margins are periodically checked, and in steady state operation, the multi-
plier's error-rate has been about one every two months or one error per

5 x 10 multiplications at 10? multiplications per second. Most of these
11

errors appear to have been caused by cracks in the printed wiring which open

intermittently.

During this period, a better idea of the general characteristics of the

projected computer began to develop and the engineers designing the 256 x 256

memory were encouraged to think in terms of a 36-bit word length. The notion
of a logically separate input-output processor was examined and rejected in
favor of a minimum buffering scheme in which data is transferred directly to
and from the central memory of the computer. The possibility of programming
these transfers by means of additional program sequences and associated

program counters, thus taking advantage of the extensive facilities of the

central machine itself for processing input-output data, was recognized.

It was realized that another development step was desirable before attempting
such an elaborate 36-bit system. The 8-bit multiplier had produced a certain
measure. of confidence and familiarity with circuits, packaging, and techniques
of logical design, but there remained the problems associated with communicat-

ing with memory units and input-output equipment operating at vacuum-tube

levels over relatively large distances from a central machine which operated
at transistor levels. It appeared that the memory development, which had now

entered the construction phase, would also benefit by a preliminary evaluation

4

of the 256 x 256 array and its switching, timing, and noise problems in an

operating computer of some kind, possibly with a reduced word length. It
was, therefore, decided to design and built next a simple machine - in fact,
the simplest reasonable machine - in order to bring about an early inter-
mediate closure of the various efforts within the program.

After some thought about the various possible minimal machines, a design was

completed in which the word length would be 18 bits - a graceful half of the

projected final form. We began to refer to this computer as the TX-O and to

the projected machine as the TX-2. Because the 256 x 256 memory array re-

quired 16 bits for complete addressing, the single-address instruction word

of the TX-O was left with 2 bits in which to encode instructions. The parti-
cular set of instructions chosen included three which required a memory

address (add, store, and conditional jump) and one which did not. In this
last instruction, the remaining 16 bits were used to control certain nec-

essary and useful primitive operations such as clearing and complementing the

accumulator, transferring words between registers, and turning on and off
input-output equipment.

The TX-0, equipped with a Flexowriter, a paper-tape reader, and a cathode-

ray tube display system was completed, except for the memory, in April 1956.

Twenty planes of the 256 x 256 memory array were installed the following

August and the TX-0, now containing about 3600 transistors and 400 vacuum

tubes, began to function as a complete computer. Since that time, it has

been used to run a variety of testing and demonstration programs, and a

symbolic address compiler and other utility programs have been constructed

5
and are currently in use.

Not only has the tx-O served the evaluational purposes for which it was

built, but it has also demonstrated an effectiveness as a usable computer

that is somewhat surprising in view of its simplicity. Its relatively
high speed of about 80,000 instructions per second and its 65,536-word

memory compensate in large measure for the limitations of its instruction

code and logical structure.

With the successful completion of the TX-0, the final steps in the devel-

opment were undertaken in packaging, circuit refinement, and logical design

of the TX-2. A great deal had been learned about the performance of the

transistors and memory, the types of logical circuits which are practical,

techniques of marginal checking, and the lesser system problems such as

color scheme selection and the proper location of pencil sharpeners. As

design work progressed, the TX-2 took form as a system of about 22,000

transistors and 600 vacuum tubes. It is an interesting fact that at each

step of the development since the shift register, the number of transistors

involved was about 6 times the number in the preceding step. This is graph-

ically shown in the accompanying figure. At the time of writing, approx-

imately 16 million transistor-hours have accumulated in the shift register,

multiplier, and TX-O. There have been two natural deaths and a dozen or so

violent ones, primarily due to contact shorting with clipleads and probes.

Design Objectives

In describing design objectives, it should be pointed out that speed of

operation was not the primary consideration to which all other attributes

were sacrificed. It would have been possible, at the expense of a few more

logic circuits, to increase the speed of multiplication, division, and

6

shift-type operations. Similarly, the operation of the index register system

could have been made more efficient at the cost of an additional small, fast

"memory. The principal objective was rather that of achieving a balance be-

tween the factors of speed, reliability, simplicity, flexibility and general

virtue.

A key aspect is that of expandability which, in an experimental computer in
an active environment, certainly ranks with the foregoing qualities in im-

portance. The address structure in the TX-2 permits an expansion of the

memory by about a factor of 4, partly to allow for new memory developments

such as the transistor-driven 64 x 64 array which was begun following the

completion of TX-O. New instructions and pieces of terminal equipment will
certainly be added during the course of future operation. Extra space and

spare plugs have been artfully distributed about in constructing the com-

puter frame. Finally, modwlar construction will permit a fairly easy

physical expansion when required.

The result of all this activity has been a computer of relatively large

capability. In addition to incorporating high-speed transistor circuits
and a large magnetic-core array, the Lincoln TX=2 has two major and dis-

tinguishing design characteristics:
1. 'The structure of the arithmetic element can be altered

under program control. Hach instruction specifies a

particular form of machine in which to operate, ranging

from a full 36-bit computer to four 9-bit computers with

many variations. Not only is such a scheme able to make

more efficient use of the memory in storing data of various

word lengths, but it also can be expected to result in

greater over-all machine speed because of the increased

7

parallelism of operation. @
Peak operating rates must then be referred to parti-
cular configurations. For addition and multiplication,
these peak rates are given in the fdllowing table:

PEAK OPERATING SPRNS OF TX-2

per second :Gn tte) Additions Multiplications
per second

36 150,000 80,000

18 300, 000 240 ,000

9 600 , 000 600 000

2. Instead of one instruction counter, the TX=2 has 32 such

counters which are assigned separately to different users

of the computer, who then compete for operating time from

instruction to instruction. A special part of the machine

selects a particular user based partly on a predetermined

priority schedule and partly on the current needs of that

user. This multiple-sequence operation, in which many es-

sentially independent instruction sequences interrupt and

interleave one another, is an extension of the breakpoint

operation found in DYSEAC of the National Bureau of Standards.

The value of these features will have to be assessed during the course of

future machine operation. The features themselves are discussed in more

detail in papers which follow.

8

LIST OF FIGURE CAPTIONS

Figure 1 Steps in the Development of the Lincoln TX-2

Figure 2 The Lincoln TX-O and TX-2 Computers - Foreground,
TX-O console; middle center, TX-O central computer
frame; right rear, partially completed TX-2 frame
showing plug-in unit construction; left rear, the
256 x 256 memory

B-69366S- {621
* C60-378

@

100, 000

10, 000

NUMBER OF
TRANSISTORS

1000

@

100

1956 1957

@ STEPS IN THE LINCOLN TX-2 DEVELOPMENT PROGRAM

36.- BIT TX-2

18- BIT TX-0

8- BIT
+ MULTIPLIER

SHIFT
REGISTER

JAN. APRIL JULY OCT. JAN. APRIL JULY OCT. JAN. APRIL JULY
1955

=ape

\
x

an.
:See

:
:
:

:

:

7
:

:
:
:

:
:

:

ay

HIN

{ees
:

:

A FUNCTIONAL DESCRIPTION OF THE LINCOLN TX-2 COMPUTER *

John M. Frankovich and H. Philip Peterson **
MIT Lincoln Laboratory

Lexington 73, Massachusetts

Introduction

TX-2 is a large scale digital computer designed and built at the MIT

Lincoln Laboratory utilizing new memory and circuit components and some

new logical design concepts. The computer will be applied as a research

tool in scientific computations, and in data-handling and real-time

problems. The design of the computer reflects not only the characteris-
tics of the components available, but also the nature of the intended

applications. This paper explains the functional and organizational
aspects of the computer which are important from the user's point of

view.

General Structure of TX-2

TX-2 is a parallel binary computer with a 36-digit word length. The

internal memory is all random-access and will initially consist of

69,632 registers of parity checked magnetic-core memory and about 2h

additional toggle switch and flip-flop registers. About 150,000 in-
structions can be executed per second. Instructions are of the indexed

single-address type and a fixed point, signed fraction, one's complement

number system is used.

Several unusual ideas incorporated in the system organization reduce the

amount of information unnecessarily manipulated during program sequences.
* The research in this document was supported jointly by the Army, Navy,
- and Air Force under contract with the Massachusetts Institute of
Technology.

** Staff Members, Lincoln Laboratory, Massachusetts Institute of Technology

2.

Furthermore, the system organization facilitates the execution of several

operations simultaneously, thereby increasing the effective speed of the

computer.

The principle registers and information paths in the computer are illus-
trated schematically in Fig. 1. A,B,C,D,E,F,M and N are the 36-bit
flip-flop registers in the machine. M and N are memory buffer registers,
each of which has a parity flip-flop and associated circuitry which is
used to check the parity of memory words. P,Q, and X are 18-digit
registers; X also has a parity digit which is used to check the parity
of words in the X memory. Control flip-flops are not shown in Pig. 1.

Instructions are full memory words and are placed in the Control Element

during the instruction memory cycle. During the operand memory cycle, an

operand is usually transmitted between the Memory Element and some other

element--always through the xchange Element. The 36-digit configuration
of the memory is not, however, maintained throughout the computer during
operation timing. A programmer can, in effect, control several independ-

ent, shorter operand word length computers simultansously during the

execution of each instruction. This flexibility is realized by specify-
ing a particular system configuration with each instruction.

The computer communicates with the outside world through units in the

In-Out Elements, several of which can be similtaneminly operated. When-

ever an input or output information transfer can occur » Bignals to the

3.

Program Element from the In-Out Element automatically call into operation
the associated instruction sequence. This multiple-sequencing aspect of
the computer will not be described in this paper.

Memory Element

The availability of a large, fast, core memory for TX-2 permitted an

emphasis on the design of a machine with an all random-access memory

which could be as large as 262,144 words. 'The homogeneous aspect of so

large a memory system simplifies the programmer's coding problems and

permits continued high-speed operation regardless of the program location
in the internal memory.

:

The TX-2 Memory Element (see Fig. 2) s divided into four independently

operating memories, each containing up to 65,536 36-digit words. The

operating speed of TX-2 is determined by the cycle time for the

memories: the 65,536 word 8 Memory is expected to have a cycle time of
between six and seven microseconds; and the 4096 word T Memory, a cycle
time between five and six microseconds. Both memories are parity
checked.

Although the U Memory currently is not specified, it may contain a 4096

word core memory in the initial system. The V Memory consists of 8

flip-flop registers in the cental machine and 16 toggle switch registers
which cantain the program sequence executed whenever the START button on

the operator's console is pushed. The contents of the toggle switch

registers can be used as instructions or operands, but naturally cannot

be altered by a program. The six 36-bit registers A,B,C,D,E and F are

part of the V Memory but their contents can be used only as operands

during the execution of an instruction. The programmer has, in a

limited sense, a two address instruction machine when he refers to
these registers in load and store type instructions. The other two

flip-flop registers in the V Memory are a 60 cycle per second clock and

& random number register.

When an instruction calls for the storing of an operand in memory, the

operand memory cycle can be extended up to two microseconds. The exten-

sion occurs between the time that the memory register is read and the

time that it is rewritten. During this extension time the memory

register transfers in the central computer take place, the parity of

the word read from memory is checked, and the parity of the new memnry

word computed. Because the extended cycle is less than the two complete

cycles traditionally used for word-modifying instructions, an increase

in computing efficiency is realized.

The P Register in the Program Flement specifies the location of an

instruction in memory ang the N Register in the Control Element holds

the instruction after it has been read from memory. The two leftmost

digits of P select the memory system from which the instruction word

is to be obtained; the right 16 digits address the word within the

memory. Similarly, the Q Register locates the operand in one of the

memory systems, the operand being placed in M.

@ Control and, Indexing
An instruction word read into N has the structure shown in Fig. 3. The

first two digits of the word specify information to the In-Out Element,
and the four cf digits specify the computer configuration. The inter-
pretation of the and n digits is not discussed here.= The cf digits
will be discussed later.

The operation code for the instruction is specified by the six op

digits. On simple load and store type instructions these six digits
are further subdivided into two groups of three. The first group
determines the operation and the second specifies the register in the
central computer which is being loaded or whose contents are being
8tored °

The base address for the operand, formed by the 18 y digits, is usually
modified by the contents of the index register selected by the six J
digits. The index registers form a unique 64 register, parity checked

core memory which has a 1 microsecond access time. The contents of the

specified index register is read into the X register of the Program
Element via the paths indicated in Fig. 4. The base address and the
index are fed into a full adder circuit which produces the sum,

Y = y+ (j), im about 1 microsecond. The overall complexity of the

Program Element was reduced by having the adder produce both the sum,

Y, and the unmodified base address, y; either of these quantities can

be directed to the operand memory address register Q. Whenever the

6.

zeroth index register is chosen, the adder produces only the unmodified

base address. The effect is the same as having the index register con-

tain zero, so the programmer can avoid index modification altogether.

The instruction memory address register P normally is indexed by one as

each instruction is executed, but jump instructions may cause the output
of the index adder to be directed to P. The adder also provides a

communication path for index jump instructions from the X Memory to the

Memory Element by way of the Exchange Element.

Arithmetic Element

The registers and sufficient basic operations in the Arithmetic Element

to implement addition, multiplication, division, shift and various
logical operations are shown in Fig. 5. Operation timing for most of
the TX-2 instructions is also performed in the Arithmetic Element.

The design of the AE reflects the desire to attain high speed operation
for TX-2 even when long-time instructions are being performed in the AE.
The only instructions which require more than a memory cycle time for
execution are those which involve shifting. These are, for example,

multiply, divide, shift and normalize. For this reason the AE contains
@ sufficient number of storage registers to permit these instructions to
be carried out in the AE while the remainder of TX-2 is freed to perform
other instructions.

7.

The four registers in the AE can each communicate with the E Register in
the Fxchange and thus with the Memory Element. As mentioned

earlier, these registers are addressable as part of the V Memory Systen.
Therefore, programmers have access to the results in any register of an

AE computation.

:

4The AE registers, designated by A,B,C, and D, are described be ow

The A Register accumilates the results of all the arithmetic operations
except division for which it holds the remainder. It holds one of the

operands and accumulates the results of the three logical operations
(AND, INCLUSIVE OR, EXCLUSIVE OR) which, it should be noted, are bit-wise
operations. The information in the A Register can also be shifted (i.e.
multiplied by some positive or negative power of two) or cycled (i.e.
shifted, without preserving the special significance of the sign bit,
as in a closed ring).

The B Register serves as an extension of A during multiplication, cer-
tain shifts and cycles, and, in a sense, during division when the least
significant digits of the double-length divident are stored in B. The

resulting quotient then appears in B. Moreover, the information in B can

be shifted or cycled independently of A. In miltiplication, the

multiplier originally in A is transferred via parallel paths directly
into B (where the least signigicant digit then controls the operation).

The C Register stores the partial carries during arithmetic operations,
most important during multiplication as described later. Since these

8.

partial carries are actually bit-wise logical products AND, C is also
used to accumulate logical products.

The D Register holds the mi1tiplicands, divisors, addends and one of
the operands for the logical operations It also holds the numbers

which control the shifting and cycling of A and B, namely the number

of places, up to 62, and the direction, right or left. 'The facility of

D to count is used also in accumulating the results of the normalizing
of A and counting ONES in A.

Besides the above mentioned facilities, each of the AE registers can be

complemented, which allows subtractions to be done.

AE Circuits
There are four Add One circuits on D, so that different parts of A and B

can be controlled separately and simultaneously. For simplicity, just
one Add One circuit is shown in Fig. 5. These Add One circuits use the

simultaneous carry principle, permitting one count to occur every 0.4
microseconds. Each can count up to 127.

The logical Product circuit of A and D into C and the Sum Modulo 2

("exclusive or") circuit of A and D into A when used at the same time

are called a Partial Add. When the Complete Carry circuit is activated
after a Partial Add, the result is a full addition of D and A into A.
The Complete Carry circuit uses the high-speed carry principle anf takes

9.

about 1.5 microseconds for 36 bits.

The Partial Carry and Shift Right circuit is also known as "multiply
step" and was, we believe, first used on Whirlwind I. As used in mlti-
plication, this circuit obviates the need for a full addition for each

"one" in the multiplier. Carries are propagated only one stage during
each step except the last when a complete carry is executed. This
iterative process takes about 16 microseconds in the worst case for a

full 36-digit multiplication. The iterative process for division, on

the other hand, requires a complete addition at each step and

ly takes about 72 microseconds in the worst case.
consequent-

Two features of the AE control ought to be mentioned here. A 7-bit step

counter, like the Add One circuit on D, is used to control multiplication ;and division and to limit the shifting in normalizing and the cycling in
counting "ones". A flip-flop signifying overflow during addition and

division is also used to remember the sign of the product during milti-
plication and the sign of the quotient during division. If a division
overflow occurs the sign is replaced by the overflow state and the

quotient is lost.

Control of the Arithmetic Element is independent of the rest of the

machine, thus providing the time saving device of continuing to execute x
non AE instructions while AE is performing one of the longer shift
operations or a division.

10.

System Timing

In part the high speed of TX-2 is attained by overlapping the operation
of as many components as is logically possible without incorporating
large amounts of circuitry. The time consuming cyclic operations in an

indexed single-address computer are the instruction memory cycle, the

index memory cycle, the index addition time, the operand memory cycle,
and the operation timing. These cycles occur in the mentioned sequence

during the execution of ordinary instructions. Several asynchronous

"clocks" which use a 5 megacycle pulse source control the various cycles.
The instruction and operand memory cycles can be overlapped if they take

place in different memory systems.

The overlap of these cycle times for a sequence of load type instruct-
ions is illustrated in Fig. 6 (a). Here different instruction and

operand memories with roughly equal cycle times is assumed. If a

sequency of store type instruction are executed which require extended

memory cycles for the operand, then the situation shown in Fig. 6 (b)
results. Fig. 6 (c) shows the time used when both the instruction and

the operand are in the same memory.

"Peak" operating speed for the computer is attained only in Fig. 6 (a);
additional circuitry could improve Fig. 6 (b) and Fig. 6(c), but only at
considerable cost. It is interesting to note that if the computer is to
run at peak speeds, the address of the operand used by the current in-
struction must be available before the earliest moment. at which the

1.

next instruction memory cycle could begin. If the total accumlated
time from the beginning of an instruction memory cycle till the time

that the address of the operand is known is greater than the instruction

memory cycle time, then the computer can not run in the ideal manner

shown in Fig. 6 (a). This means that the access time of memories and

the index add time must be kept as short as possible.

Fig. 6 (a) depicts the timing of events when the In-Out Element causes a

change in program sequency by changing the contents of the P register.
The additional X Memory cycle which must be performed in doing this pro-
duces a timing situation similar to that of the X Memory load and store

type instructions.

The operation timing for an instruction is executed when the operand is
available from memory. Only the Arithmetic Element step counter instruc-
tions, multiply, divide, shift, etc., require an operating timing cycle
longer than a memory cycle. Since only the Arithmetic Klement is tied up

when these instructions occur, the Control Element permits any non-

Arithmetic Element instruction to be executed while the AE is busy.
Division takes up to 75 microseconds, so the programmer can write as

many as 14 non-AE instructions following a divide » @ll of which can be

executed before the division is completed.

Configuration
The design of a general purpose computer must necessarily reflect the

contradictory demands for both short and long word lengths, floating

2.

and fixed point arithmetic operations, and a multitude of logical and

decision instructions. The computer should be able to process informa-

tion at an optimum rate in a variety of problems without the need for

intricately coded programs. This ability should be achieved without

excessively complex and costly circuitry.

The full 36-digit word in TX-2 represents a reasonable length for operands

in some numerical computations, notably scientific and engineering com-

putations. Though floating point arithmetic operations are not included

in the instruction code, both they and mltiple-precision operations can

be easily synthesized by means of the existing instructions. The logical
instructions in the code facilitate operations on individual digits, but

also, a configuration which the programmer specifies anew with each

instruction permits him to perform arithmetic operations on operands

which are less than 36 digits long. When such is the case, several.

shorter operands can be manipulated simultaneously.

The four cf digits in an instruction word (see Figure 3) are decoded as

shown schematically in Figure 7. The contents of the selected one of 16

9-digit configuration words is placed in a flip-flop register whose out-

put levels determine a static configuration for the entire computer during

the execution of the instruction. The contents of the first twelve

registers are specified by a notation whose meaning will be clarified in

the following discussion.

13.

The full 36-digit word length is always maintained for instruction words >

but during operation\timing, every 36-digit register in the Memory, Ex-

change and Arithmetic Elements is considered broken into four 9-digit
quarters (numbered from 1 to 4, from right to left as in Fig. 8 (a).
While the instruction is being executed, these quarters are recombined

on the basis of the configuration.

Parallel register transfers are the usual means for moving information

about in the machine. The EE permutation digits select one of the four

permitations Pats » PY; Pye » shown in Figure 8 (b). 'The

chosen permutation effects the corresponding cross-communication paths
between the quarters of the E and M registers of the Exchange Element.

As operands are transmitted through the EE, the quarters of the work

follow the set of paths determined by the selected permutation. The

result is that the operand is shifted 9n places to the left as it moves

from M to E or 9n places to the right as it moves from E to M, n 0,1,
2 or 3. Thus the programmer can have any quarter of the AE communicate

we

> P

with any quarter of the ME.

This communication ability is focused more sharply by having the configura-
tion specify a system activity. All operation timing events in a given

quarter of the AE and EE and the quarter of the ME connected via the

selected permutation path in the EE are controlled by the activity
flip-flop on that quarter. If the activity flip-flop of a given
quarter is a one, as specified by the configuration, then the operation :

14. @
timing events of the instruction occur in that quarter. If the activity
flip-flop is a zero then nothing happens.

During the execution of arithmetic operations, the AE coupling bits
'further specify the connections of the lateral information paths between

quarters in the AE. Information flows laterally only through the shift
and the carry circuits, and the connection of these circuits alone deter-
mines the word length of the numerical quantities manipulated in the AE.

As shown in Fig. 9 (a), every quarter of the AE has coupling units at
each end which receive the shift ard carry information entering the

quarter. The general type of connections between several quarters is
shown in Fig. 9 (b). The digit length of operands during add and shift
operations is determined by the number of quarters coupled tegether. In

TX-2 from one to four quarters can be coupled together to permit arithme-

tic operations on 9, 18, 27, or 36 digit operands. The various combina-

tions of coupling unit connections actually chosen by the AE coupling are

symbolized in Fig. 9 (c). Since A-register, B-register and AB-register
shifts are permitted in the Arithmetic Element, the programmer can obtain

18, 36, 54 or 72 digit shifts. All the possible shift (and cycle) con-

figurations are shown in Fig. 9 (d).

Only those inputs to the coupling units which would yield useful arith-
metic element structures are realized by the AE coupling. It should be e

emphasized that the programmer can realize several arithmetic elements e
simultaneously. The coupling (36) gives only one 36-bit AE, 'but the

15.

coupling (18,18) gives two complete, independent 18-bit arithmetic
elements which are separately, but simultaneously controlled by the in-
struction being executed. Two arithmetic elements are again available
with the coupling (7,9) one 27 bits and the other 9 bits long, and the

(9,9,9,9) case gives four 9-bit arithmetic elements. The permtation
paths in the Exchange Element permit each arithmetic element to commnit-

cate with any quarter of a memory word and the activity flip-flops can

specify just which of the realized arithmetic elements will actually be

active and in active communication with the connected part of memory.

In Figure 10, several examples are given of the different configurations
which can be realized in TX-2. The most straightforward configuration has

one 36-digit arithmetic element and communicates directly with memory.

The notation, (4444 ,36) signifies the permutation (no shift) and the
form of the arithmetic element (one 36-digit). The underlining indicates
that the Whole system is active. Slightly more varied is the (

9,9,99) configuration which specifies four 9-digit arithmetic elements

communicating directly with memory, but with only two of them active.
The (ae 19959,9) configuration has the same arithmetic elements but
with the associated memories interchanged. The (,18,18) configura-
tion illustrates an 18-digit arithmetic element which uses the "other"
half of memory.

Ond of the 9 configurations digits is at the moment unused, but will prob-
ably be used to control the extension of the sign of numbers as they pass
through the EE on the way from the ME to the AE. The scheme presently

16.

under consideration would permit programmers to add, for example, a

9-digit memory operand to an 18-digit arithmetic element. This scheme

would permit closer packing of operands in memory and significantly in-
crease the speed of solving some real-time problems, where short data words
need to be extended so that higher precision can be maintained during
computations. The working details of the scheme have yet to be fixed.

The configuration memory from which the programmer chooses a configuration
for use with each instruction was shown in Fig. 4. fwelve of the con-
figuration memary registers are fixed circuitry whose contents cannot be

changed without changing the wiring of the computer. These configurations
are assumed to be ones which will be useful to most programmers. The
last four registers in the memory consist of the 36 digitsof the F
register. As will be seen the programmer can quite simply alter the con-
tents of this register and thereby obtain any of the (less than 29)
possible configurations.

Instruction Code

or the 64 possible operation codes, only 51 are currently decoded to de-
fine instructions. In Table I the effect of each instruction is described.
If several computers are defined by the configuration, then the effect
occurs in all of them simultaneously and independently. The notation used
in the definition of the operation is described in Table II.

17.

The instructions are grouped according to type. Load and store type
instructions simply effect an operand transfer between the selected

register and memory. The load complement instructions are variants
which load the ones complement into the specified registers. Exchange

simply interchanges the contents of A and the indicated memory register.
The insert instruction allows any set of bits in A, as specified by the

bits in B to be stored in memory. In the index memory load and store

instructions, the j bits select the index register involved so the

operand address is not modified.

All of the add and step counter instructions can also be classed as load

type instructions in so far as the operand memory cycle is concerned.

The multiply instruction forms the full product in the A and B registers.
Division is the inverse of m1tiplication, the double length dividend
in A and B being divided by the memory operand. 'The remainder is left
in A and the quotient in B. Normalize shifts the contents of A and B

left till the magnitude of the number in A is between one-half and one.

The number ofshifts to do this, the normalizing factor, is subtracted
from the memory operand in D. The shift and cycle instructions use the

memory operand, rather than the address section of the instruction, to

specify the number of places to shift. This is necessary since more

than 18 bits are required to specify all the possible shifts for the

(9,9,9,9) configuration. The count ones instruction adds the number of
bits in A which are ones to the memory operand in D. This provides a

simple means for determining bit density in areas of storage, since the

18.

one's count for several words can be accumulated in D.

The two replace add instructions, using the index memory, facilitate
instruction and index modification. Both require two memory cycle
times for execution.

Thw two in-out read instruction transmit information between the memory

and the selected in-out unit. The details of these and the in-out
select instruction are given in another paper.

Single bits in memory can be manipulated with the three bit-setting
instructions. The bit-sensing instruction facilitates the use of and the

variety of jump instructions available simplifies the coding of logical-
decision functions. The two index jump instructions permit indexed pro-

gram loops to refer successively in either the forwards or backwards

direction to operands in a data block. The unconditional jump instruction
uses the cf digits to specify whether the selected index register will be

used to remember the previous contents of P. These contents are always
transmitted to the E register whenever a jump occurs.

Arithmetic overflows can be caused by addition, subtraction and division
instructions. Such overflows as do occur are remembered in overflow

flip-flops in the arithmetic element. The overflow condition can be

detected by a jump instruction, or by the in-out element in a manner

described in another paper. If an overflow is anticipated, however, it
can be shifted into the A register by executing a normalize instruction.

19.

A normalize usually shifts AB left, but if an overflow exists AB is shifted
right one place, and the overflow placed in the most significant digit
position of A to the right of the sign digit. The memory operand is in-
creased by one in the D register, when this occurs, rather than decreased.

This interpretation of an overflow permits floating point operations to
be programmed quite simply in the arithmetic element. The in-out select
and operate instructions differ from all the others in the sense that
the y digits are used to specify different operations. In-out select
chooses the mode in which an in-out unit will run. The operate instruc-
tion will control individual useful commands, as for example, round-off.

Instruction Times

The average execution time for instructions depends upon whether one

memory or two different overlapped memories are used for instructions
and operands. In the latter case the average time is the longer of the
instruction memory ani operand memory cycle times, and in the first cause

the @nm of the two cycle times. It should be remembered that any instruc-
tion which involves storing an operand in memory has the normal operand

memory cycle time extended by from one to two microseconds. Instructions
which alter or transfer the contents of index memory registers, require
approximately two normal memory cycles even when instruction and operand

memnry cycles are overlapped.

Successive step counter instructions requirea time which depends upon the

length of the longest active arithmetic element. In the case of multiply,
divide and count ones this time is a function of the operand word length

20.

only, but the shift, cycle and normalize times depend upon the number of

places actually shifted. Divide requires about 2 microseconds per digit
and all other step counter instructions 0.4 microseconds per digit.
These shift times become significant only when they exceed the one or two

memory cycles already required. In the worst, 36-digit case about 75

microseconds is required for division and 19 microseconds for miltipli-
cation. A 72 place shift would take 32 microseconds. These are the

times required for these instructions vhen they are written in sequence.

If the operand word length is shorter, then these times become proportion-

ally less, down to the minimum memory times required.

Summary

The organization of TX-2 permits a programmer to pay considerable

attention to coding details and receive a worthwhile reward in the form

of increased efficiency of operation. The operating speed can be

doubled when instruction and operands are stored in different memories.

Further increases result by the sequencing of instructions so that

non-arithmetic-element instructions are executed concurrently with AE

step-counter instructions. And the ability to choose a configuration
with each instruction means not only that some instructions take less

time, but also that many of them can be eliminated from a program

altogether.

However, this versatility and efficiency is not accompanied by a

disastrous loss in simplicity. The system organization is such that

details can be easily ignored by the naive programmer, without the

1.

details having even subtly obtrusive effects. If all the digits in an

instruction word are zero except for the operation code and the base

address, then TX-2 appears as a simple single address 36-bit operand

word computer with a single, uniformly addressed 70,000 word memory.

If the j-bits are used, then the mmmhine is enlarged to become an

indexed single-address 36-bit operand word computer for which the

entire instruction code is meaningful. When the b and a bits are used,
then the programmer can control the manner in which several in-out units

running concurrently can cause program sequence changes. And by select-
ing various configurations the programmer can perform more operations

MAC

simi] taneously with each instruction.

The different facilities for indexing, memory overlap, instruction over-

lap, multiple-sequencing and configuration can be ignored or used as

the programmer desires. Ignoring them would seem to permit straight-
forward coding; using them actually permits much shorter and faster
codes for a given function. Each facility is easily represented by a

clear conceptual picture of what the facility permits, the only real

difficulty being the greater number of simultaneous actions possible
with each instruction. However, higher speeds and greater system

capacity are obtained by shorter cycle times, increased bit storage
and greater similtaneity of events. In TX-2 all three aspects are

emphasized.

22.
TABLE I

Type Mnemonic Code Operation Name

l da Load into A
1db Load into B

Load Load into E
lde Load into E
lde Load into F

sta A) Store A
stb B) Store B

stf F) Store F
Store

(Y)~A Exchange A
(A)>

ins (B)& (A) v (B) &() > Y Insert digits of A
stx (j)e y Store index

Add

(A) & (Y) v(c)~c} (and accumulate product)

Set bit sbz j Set j-th bit zero
sbc Set j-th bit comp]enent,

A
B

lde (Y Load into Cc
1dd Load into D

E

ica Load complement into A

ldx (y)3
1eb Load complement into B

Load into index

stc Y Store C
D) Store D

exa

add (A) + => Add
A Subtractsub (A) +

dma A Difference of magnitide
and A Logical and(A) (Y)-ori (A) v (Y) A Logical or - inclusive
ore Logical or - exclusive(Y) - A

> y Add index to memory(3)
(3) Add memory to index

sbo Set j-th bit one
i

0

23.
TABLE I (Continued)

Type Mnemonic Code Operation Name

mul (A) x (Y) > AB Multiply

coa (Y)+ no D Count ones in A

Y10}
Read and shift

In-out
Read without shift

@ one
jpp If any (A)>0 Jump if the contents of

then y> P any A is positive
jpn If any (A)<0 Jump if the contents of

any A is ngeative
jpz If any (A) = 0 Jump if the contents of

any A is zero
jpo If any (A) Jump if the contents of

Jump overflowed any A has overflowed

If (j)20, then (j)-cf+j, Jump if index positive
and decrease index

jan If (j)<0, then (j}cfoj, Jump if index negative
and increase index

If cf = 1,3, then (P)+1>j
jpu If cf = 0,1, then yor Jump unconditionallyIf cf = 2,3, then Y-

Misc. ios In-out select

div (AB) (Y)> Divide

sha A) (Y)> A Shift A
sab
shb B)

Shift AB together2
B Shift B

Step- cya (3 cye (Y) (AB
A Cycle A

cyb (B)
Count cab Cycle B together

B Cycle B

na
Normalize AB(AB) x 2

(y) - nf D

rds

- Y

dpe Jump if j-th bit of E isIf (E,) = 1, then y>P

yop

opr Operate

Notation

ARLE IT
oh.

Meantug

gpes into
contents of x
indexed memory address

magnitude of (x)
one's complement ef (x)
logical and operation
inclusive or operation
exclusive or operation
one's complement

number of shits to normalize

number of ones

j-th digit of register Y

(x)
y +(3)
()

(x)

+

REFERENCES

1. Forgie, J.W., "The Lincoln TX-2 In-Out System, Proc. Wstern
Joint Computer Conference (Feb. 1957).

25.

2. Op. Cit.

26.

LIST OF FIGURE CAPTIONS

For paper entitled: A FUNCTIONAL DESCRIPTION OF THE

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

LINCOLN TX-2 COMPUTER

TX-2 Bystem Schematic - Showing the principal
registers ard. transfer paths.
TX-2 Memory Element - Two address and two buffer
registers are used to permit simultaneous opera-
tion of any two of the four memories.

TX-2 Instruction Word Layout
TX-2 Program Element - Determining the instruction
and operand memory addresges, performing X Memory
operations.

TX-2 Arithmetic Element - Showing the circuits
and transfer paths for AE operations.

TX-2 Timing Schematic - Showing overlapped execution
of memory and operation cycles.
TX-2 Configuration Selection - The cf digits select
a configuration for the computer for use during the
execution of the instruction.
TX-2 Configuration - (a) Quartering, permtation
paths, and activity flip-flops. (b) The four
sets of permutation paths available, one of which
is used during the execution of an instruction.

TX-2 Arithmetic Element Coupling Units - (a) the
coupling units which receive information moving
laterally into the i-th quarter of the AE, 11,293,4.
(b) Coupling unit connections between a contiguous

p of quarters which realize a 9-bit (j*b), 18-bit

assume with associated operand word structure. (da) The
possible shift path arrangements Yealized with the con-
figurations.
Illustrative Examples of Different Configurations -

Areas of activity during execution of instruction
are shown shaded. Effects of AE coupling are shown
by juxtaposition.

ape

gro
or 36-bit (j=3) "arithmetic ele-

ment." The four forms the arithmetic element can

OPERAND

OPERAND ADDRESS

4

INSTRUCTION ADDRESS

S MEMORY T MEMORY MEMORY V MEMORYU

MEMORY ELEMENT

INSTRUCTION

BASE

ADDRESS

D P Q

x
ADDER

OPERAND F INDEX

NUMBERCONTROL
OPERAND XA

L ELEMENT MEMORY

ARETHMETIC
ELEMENT

IN-OUT

$7
16

30
C6

0-
37

7

EXCHANGEB

OPERAND

ELEMENT

OPERAND

[TO UNIT MODE

PROGRAM COUNTER NUMBER

PROGRAM ELEMENTELEMENT

BUFFERS

IN-OUT
UNITS

SEQUENCE
SELECTOR

SEQUENCE SELECTOR NUMBER
4

TX-2 SYSTEM SCHEMATIC

INSTRUCTION OPERAND

ADDRESSADDRESS

ME f x N

18 18P Q

t

EE y + (j)

X ADDER X PARITY

a y
N y

()

t BASE X18 P

ADDRESS

X MEMORY
INDEX NUMBER 64x 19

DECODER

CE

PROGRAM ELEMENT

IGE

SEQUENCE
SELECTCR
NUMBER

a

P)+|>P

s

B-
69

39
3

GC
60

-3
45

$-
16

73

TX-2 PROGRAM ELEMENT

Showing paths enabling index aiding and storing and loading

program counter from the index memory and the exchange element

DD ONE

LOGICAL
PRODUCT

(A) &(D) > C

SUM PARTIAL CARRY.
COMPLETEAND

SHIFT RIGHT CARRY
MODULO 2

(A)

E

CIRCUITS AND TRANSFER PATHS (GENERAL)
OF ANY TX-2 ARITHMETIC ELEMENT FORMS

B-
69

41
6

C6
0-
34

4
S-
16

75

a)
C6

O
-3
82

b)
CG

O
-3
83

c)
€<

60
-3
84

d)
CG

O
-3
85

16
26

16
27

16
28

16
29

69
36

v

a

X ADD

OPERAND *AEMORY CYCLE [orem MEMORY CYCLE
v

(a) CONSECUTIVE LOAD TYPE INSTRUCTIONS

INSTRUCTIONS AND OPERANDS IN DIFFERENT MEMORIES

(c) INSTRUCTION

y
inst. memory cycle

(b) CONSECUTIVE STORE TYPE INSTRUCTIONS

X MEMORY CYCLE CHANGE PROGRAM counreR

X ADD +

v
OPERAND MEMORY CYCLE

(a) CHANGE SEQUENCE

TX-2 TIMING SCHEMATIC

AND OPERAND IN SAME MEMORY

OPERAND MEMORY CYCLE

X ADD

OPERATION TIMING

Shuwing overlapped execution of memory and operation cycies

m

Fiat
INST.MEMORYCYCLE Y 4 INST MEMORY CYCLE

X MEMORY GYCLE

v
X MEMORY CYCLE

v
X ADD

:

OPERATION TIMINGOPERATION TIMING

4

INST. MEMORY CYCLE

Y

X MEMORY CYCLE

v
X MEMORY CYCLE

v
X ADD X ADD

EXTENDED OPERAND MEMORY CYCLE EXTENDED OPERAND MEMORY CYCLE.

t
OPERATION TIMINGOPERATION Tl MING

INST. MEMORY CYCLEINST* MEMORY CYCLE

y
X MEMORY CYCLE

v
X ADD X ADD

OPERAND MEMORY CYCLE
v

QPERATION TIMING

y

X MEMORY CYCLE

OPERAND MEMORY CYCLE

OPERATION TIMINGOPERATION TIMING

4 :

7

INST. MEMORY CYCLE

:

:

X MEMORY CYCLE :

:

:

7

4
:

:

INST.MEMORY CYCLE

:

Ow

NECN CHE

7

af

SELECTED CONFIGURATION
GATING REGISTER

a
2 4

B-
69

40
4-
)

C6
0-
34

6

>

FIXED (WIRED IN)
CONFIGURATIONS

SELECTOR

(16WORDS
BITS'EACH)

1

VARIABLE (FLIP-
FLOP) CONFIGURA-
TIONS

4 cf

CONFIGURATION DIGITS
IN INSTRUCTION WORD

TX-2 CONFIGURATION SELECTION

ag
ony

PO 36)

(PO 9,9,9,9
(PO .18, 18)

(P2 18, 18)

PO .9,9,9,9)
(Pl 9,9,9,9)

Fy

0)

3)

4)

5)

6) (P2 .9.9.9.9)

CONFIGURATION
he 8) (PO .27,9) MEMORY

(PL ? 27,9)
4,

:

12)
1

13) Fo

14)
3
F

C 69 367 4

SN-1678
C60-422

5M

ELEMENT ™
UM

PATHS

QUARTERS

TX-2 CONFIGURATION

QUARTERING 4

a

4 3 4 3 2
the

42

PO

E
MEMORY

a

VM M
P

M
E

PERMUTATION

EXCHANGE
ELEMENT BETWEEN

E MP2

a

ARITHMETIC
ELEMENT A

P 3
4

ACTIVITY é

FLIP-FLOPS
(a) (b)

a

FIG 4+

(a) QUARTERING PERMUTATION PATHS AND ACTIVITY FLIP FLOPS SHOWN ; d

(b) PATHS IN EXCHANGE ELEMENT «
q

C-69380 -

C 60 -374

ONE 36BITAE D

a i
STRUCTURE

(4) OPERAND WORD
STRUCTURE

END AROUND CARRY

ONE Q BIT AE C

:

SN-1G76 Nj

4 3 2
CARRY CIRCUITi

OPERAND WORD
S 26 SI8STRUCTURE

4 3 2

FOUR 9 BIT AE'S D

(9,9,9,9) C

4

1

CARRY COUPLING UNIT (36)
A

359
OPERAND WORD

SHIFT LEFT a .

4 3SHIFT RIGHT.
COUPLING UNITSCOUPLING UNITS TWO /8 BIT AES .D

(18,18) C

B A 1

L
+ 4

B 1

a

234

CARRY CIRCUITCARRY CKT ONE 27 BIT & D
L+ r

i
L

SHIFT A RIGHT (27,9) fA

:

:

:
:

:

:

: :een
:

A

S
OPERAND WORD
STRUCTURE

(b) (c)
: a

(a)Lth QUARTER COUPLING UNITS (c) TX-2 CONFIGURATION ARITHMETIC ELEMENTS

(b)COUPLING UNIT CONNECTIONS AND OPERAND WORD STRUCTURES
4 :

C-694 Il
C60-372
S~1677

FORM (A,B SHIFT PATHS) COMBINED (AB SHIFT PATHS)SEPARATE

(36)

(18.18)

(27,9)

(9,9,9,9)

TX-2 SHIFT PATH ARRANGEMENTS

Ag 4 A
| Aq A3 a

- Ba B3
a

B4 Bz Bo B Bo 8 By

A4 Az Aa t As

B4 B3 Bo BY

Ba B3 a Bo By

eek HE :

Az A2 A4 Az Ao A\

Bz Bo Ba Bz Bo By

ey
4

C60 372
S~1677

1

FORM SEPARATE (A,B SHIFT PATHS) COMBINED (AB SHIFT PATHS)

a

(36)

(18,18)

(27,9)

(9,9,99) <

TX-2 SHIFT PATH ARRANGEMENTS

A4 Az Ao

Ba B3 Bo By

Ag Az I A> A
|

B4 Bz BBo

AoA4 A3 Ao Ay Aq Az A

B4 B3 Bo By Bo Bz Bo B a

A4 1 Az i AoA4 Az Ao af t

B4 Bz Bo B Ba B3 B2 By

6 gh atk

AjAz Ao Ag Az A2

pol?

Bz Bo Bq B3 Be By

a

-
:

| | | | O | O 7d
(a) (PO,36) CONFIGURATION (b) (PO ,9,9,9,9) CONFIGURATION

SAX ;

\\
Oo} fo

| o ! O |

(c) (P2, 1818) CONFIGURATION (d) (P2, 99,9,9) CONFIGURATION

<>

8a $
ope TX-2 CONFIGURATIONSo°
vo es |_| AREAS OF ACTIVITY DURING EXECUTION OF INSTRUCTION-pvay

SHOWN SHADED. EFFECT OF AE COUPLINGSlOo-
PZ ILLUSTRATED BY JUXTAPOSITION OF QUARTERS.DOLGG

Qunny

6

4

LL
Y

3

AA

a
[

SO
SA

"o
e

a

THE LINCOLN TX-2 INPUT-OUTPUT SYSTEM
++James W. ForgieLincoln LaboratoryLexington 73, Massachusetts

Introduction

The Lincoln TX-2 Computer input-output system contains a

variety of input-output devices suitable for general research
and control applications. The design of the system has aimed
at connecting these devices in such a way that a number of
them may be operated concurrently. Since the computer is
experimental in nature, and changes in the complement of
input-output devices are anticipated, a modular scheme has
been utilized to facilitate expansion and modification.
The experimental nature of the computer also requires that
the input-output system provide a maximum of flexibility in
operating and programming for its input-output devices.

The input-output devices currently scheduled for connection
to TX-2 include magnetic tape units for auxiliary storage;
photoelectric paper tape readers for program input; a high-
speed printer, cathode-ray tube displays, and Flexowriters
for direct output; analog-to-digital conversion equipment;
* The research in this document was supported jointly bythe Army, Navy and Air Force under contract with theMassachusetts Institute of Technology.++ Staff Member, Lincoln Laboratory, Massachusetts Instituteof Technology. .

2.

data links with other computers; and miscellaneous special-
purpose equipment. This paper will not be concerned with
the details of these devices but will limit itself to a

discussion of the logical incorporation of them into the
system.

This paper, in describing the TX-2 input-output system,
occasionally makes reference to certain aspects of the
design of the remainder of the TX-2 computer. The author
assumes that the reader is familiar with the general char-
acteristics of the TX-2 computer as set forth in the paper
entitled A Functional Description of the Lincoln TX-2
Computer by John M. Frankovich and H. Philip Peterson ap- @
pearing in these proceedings.

:

+

i

The Multiple Sequence Program Technique.
Of the various organizational schemes which permit the
simultaneous operation of many devices, we have chosen the
"multiple sequence program technique" for incorporation in
TX-2. A multiple sequence computer is one having several
program (instruction) counters. By arranging to have the
program sequences associated with these program counters
time-share the hardware of the central computer, it is
possible to obtain a machine which behaves as if it were a

number of logically separate computers. We call these
logical computers sequences and therefore refer to TX-2 as a

3.

multiple-sequence computer. By associating each input-
output device with such a sequence, we effectively obtain an

input-output computer for each device.

Since the single physical computer in which these sequences
operate is capable of performing only one instruction at
a time, it is necessary to interleave the sequences if they
are to operate concurrently, This interleaving process can
take place aperiodically to suit the needs and under the con-
trol of the individual input-output devices which happen to
be operating. Of course, the number of sequences which can
operate concurrently and the complexity of the individual
sequences is limited by the peak and average data handling
rate of the central computer hardware.

In a multiple-sequence computer the main body of the com-
putation can be carried out in any sequence, but if maximum

efficiency of input-output operation is to be achieved, it
is necessary to confine the bulk of arithmetic Operation to
a few special sequences called main sequences which have no
associated input-output devices. The input-output sequences
may then be kept short with the result that a large number
can be operated concurrently,

Multiple Sequence Operation in TX-2
In TX-2 one-half of the index register memory has been made

4

available for storing program counters. Thus, a total of
32 sequences may be operated in the machine. (Actually an

additional sequence of special characteristics is obtained
by using index register number 0 as a program counter. This
special sequence will be discussed later). Some of these
sequences are associated with input-output devices. Others
perform functions, such as interpreting arithmetic overflows,
which are called into action by conditions arising within
the central computer. Finally, there are the main sequences
which are intended to carry out the bulk of the arithmetic
computations performed by the machine,

A priority scheme is used to determine which sequence will
control the computer at a given time. If more than one
sequence requires attention at a particular instant, control
of the machine will go to the one having the highest prior-
ity with the highest at the top. Asterisks mark sequences
which are not associated with any particular in-out device. .

At the top of the list is a special sequence (number 0)
which will be used to start any of the other sequences at
arbitrary addresses. The next two sequences interpret
alarms (under program control, of course). These three
sequences have the highest priorities since they must be

capable of interrupting the activities of other sequences.
The input-output devices follow, with high-speed, free-

:

running units at the tops, etc. The main sequences

5.

(we anticipate three) are at the botton of the list. The
priority of any sequence may be easily changed, but such
changes are not under program control. Priorities are
intended to remain fixed under normal operating conditions.
The list totals about 25 sequences leaving eight spaces
for future expansion.

Switching between sequences is under the control of both the
input-output devices (generalized to include alarms, etc.)
and the programmed instructions within the sequences.

Once a sequence is selected and its instructions are con- \

trolling the computer, further switching is under control of
the programmed instructions, Program control of sequence
switching is maintained through two bits called the break
and dismiss bits in each instruction. The break bit governs
changes to higher priority sequences. When the break bit
permits a change, and some higher-priority sequence requests
attention, a change will be made. The dismiss bit indicates
that the sequence has completed its operation (for the
moment, at least) and that lower-priority sequences may
therefore receive attention. The interpretation of the
break and dismiss bits will be discussed in more detail in
a later section,

6.

The TX-2 Input-Output Element
The TX-2 Input-Output Element is shown schematically in
Fig. 1. It consists of a number of input-output devices,
associated buffers, and a Sequence Selector. Each device
has enough control circuitry to permit it to. operate in
some selected mode once it has been placed in that mode by
signals from the central computer. Associated with each :

+

device is a buffer storage of appropriate size. This buffer
may be large or small to suit individual data rate require-
ments, but in general, the buffers to be used in TX-2 will
be the smallest possible. For the mostpart, buffering for
only one line of data from the device (e.g., 6 bits for
a paper tape reader) will be provided. Each input-output
device also has associated with it one stage of the Sequence
Selector. The Sequence Selector provides the control infor-
mation necessary for proper interleaving of the program
sequences. When it is desired to add a new input-output
device to the computer, the three logical packages: in-out
unit, buffer, and Sequence Selector stage, must be provided.

As shown in Fig. 1, data transfers between the input-output
element and the central computer go by way of the Exchange
Element. Fig. 1. indicates two-way paths between the E
Register and all in-out buffers. Actually, most devices
are either readers or recorders, but not both, and therefore
require one-way paths only. Naturally, only the necessary

7.

paths are provided. The drawing simply shows the most

general case.

Signals from the Sequence Selector connect the appropriate
buffer register to E for data transfer purposes. When a

sequence is selected (i.e., its program counter is supplying
instruction locations), the associated buffer is connected
to the E Register, and all other buffers are disconnected.
The occurrence of a read instruction will then effect a

transfer of information between the buffer and E. A partic-
ular buffer is thus accessible only to read instructions
occurring in the sequence associated with the buffer's in-out
unit.

Fig. 1 shows paths from the Sequence Selector to a coder
which proves an output called the program counter number.
These paths are used in the process of changing sequences
to be described in a later section,

Fig. 1 also shows paths for mode selection in the In-Out
Element. The utilization of these paths is described in the
next section under the operation of the ios instruction.

Input-Output Instructions
In addition to the break and dismiss bits on all instructions,
the programmer has three computer instructions for operating

8.

the input-output system. There are two read instructions
rdn and rds which effect data transfers between the in-out
devices and the central computer memory. The third instruc-
tion, ios, is used to select the mode of operation of the
in-out devices,

Both read instructions cause a word to be obtained from
memory. If the in-out device associated with the sequence
in which the read instruction occurs is in a reading (input)
mode, appropriate bits of the memory word are altered, and
the modified word is replaced in memory. If the in-out
device is in a recording (output) mode, appropriate bits
of the memory word are fed to the selected in-out buffer,
and the word is replaced in memory. Thus, the same read
instruction suffices for both input and output operations.
The distinction between rda and rds lies in the process of
assembling full memory words from short buffer words. An
rdn instruction will place the 6 bits from a tape reader in
the right 6 bits of a 36-bit memory word. The remaining 30
bits will be left unchanged. An rds instruction for the
same tape reader will place the 6 bits in a splayed pattern
(every sixth bit acrdss the memory word) and will shift the
entire word one place to the left before replacing it in
memory. Except for the shift, the other 30 bits remain un-
changed. A sequence of 6 rds instructions, one for each of
6 tape lines and all referring to the same memory address,

9.

will suffice to assemble a full 36 bit word.

The distinction between rdn and rds could be obtained from
mode information in the in-out device, but the inclusion of
both instructions in the order code allows the programmer
to interchange the two types freely to suit his needs. The
rdn instruction makes use of the permutation aspect of TX-2
configuration control and is therefore particularly conven-
ient for dealing with alphanumeric Flexowriter characters.
Configuration is not applicable to the rds instruction.

The ios instruction serves to put a particular in-out device
into a desired mode of operation. The j-bits of the
instruction word, normally the index register number, in
this case specify the unit number of the in-out device.
This number is the same as the program counter number for
the associated sequence although the correspondence is not
one of necessity. The y-bits of the instruction word specify
the mode of operation in which the unit is to be placed,
Two of the y-bits are sent directly to the gth Sequence
Selector stage and serve to control the sequence independent
of the mode of its associated in-out device. These two bits
allow ios instructions to arbitrarily dismiss or request
attention for any sequence in the machine. By means of
these instructions one sequence can start or stop all others
in the machine. A third y-bit determines whether the mode

10. @
Of the in-out device is to change as a result of the.
instruction. If it is to change, the remaining 15 bits
specify the new mode. An ios instruction occurring in any

sequence can thus start or stop any sequence and/or change
the mode of its in-out device.

Ye

A further property of the ios instruction is that it leaves
in the E Register a map of the state of the specified in-out
control prior to any changes resulting from the instruction
itself. ios instructions may therefore be used to sense the
state of the in-out system without altering it in any way.

The Process of Sequence Changing and Sequence Sebector Operation, e
At some point just before the completion of the instruction
memory cycle in TX-2, the Control must decide whether the
next instruction would be taken from the current sequence
or from some new sequence. The information on which this
decision must be based comes from the break and dismiss
bits of the current instruction word and from the Sequence
Selector. Fig. 2 shows a detailed drawing of one stage of
the Sequence Selector. All stages except the highest-
priority one are identical. The lowest-priority stage
returns the final three control signals to the Control
Element.

ll.
Each Sequence Selector stage retains two pieces of information
concerning its associated sequence. One flip-flop (SS j.1)
remembers whether or not the sequence is selected
(i.e., whether or not it is receiving attention). The prio-
rity signal (labelled no higher priority sequence requests
attention) passes from higher to lower priority stages until
it encounters a stage which requests but is not receiving

- attention. Such a stage is said to have priority at the
moment, and its output to the program-counter-number coder
prepares the number of the new program counter in anticipation
of a sequence change.

The process of changing sequences involves storing the program
counter for the old sequence and obtaining the counter for
the new. Actually, to speed up the overall process, the new

program counter is obtained first, so that it may be used
while the old is being stored. Using the paths shown in
Fig. 1, the new program counter number is placed in the
j-bits of the N Register. The new program counter is then
obtained from the X Memory and interchanged with the old
program counter contents which have been in the P Register.!
'The K Register, which has been holding the old program
counter number since the last sequence change, is now

interchanged with the j-bits, and the old counter is stored
at the proper X Memory location The state of the Sequence
Selector is changed to conform to the change of sequence by

12.

sending a Select New Sequence command from Control. This
command clears the ss j.2 flip-flop in the old-sequence
stage and sets the ss j.2 flip-flop to a one in the new-

2
sequence stage.

interpretation of the Break Bit
The break bit of an instruction word is utilized by the
programmer to indicate whether or not a change to a higher

_

priority sequence may occur at the completion of the instruc-
tion. The fact that a programmer permits a break does not
mean that the sequence has completed its current task but
merely that no harm will be done if a change to some higher-
priority sequence is made. Breaks should be permitted at.

every opportunity if a number of in-out devices are operating.
The sort of situation in which a break cannot be permitted
occurs when the E Register is left containing information
which the program requires at a later step. If a change
occurred in this case, the E Register contents would be
destroyed and consequently lost to the program.

When a break is permitted by the current instruction, a

sequence change will actually take place only if some higher-
priority sequence requests attention. A signal from the
Sequence Selector to Control provides this information
(Fig. 2). When a break type of sequence change is made, the
SS j.1 flip-flop in the Sequence Selector remains unchanged.

13.

As a result the sequence which was abandoned in favor of.

some higher-priority one continues to request attention,

Interpretation of the Dismiss Bit
The dismiss bit is used by the programmer to indicate that
the current sequence has completed its task. To provide.
synchronization in the in-out system, dismiss bits must be

programmed between attention requests from the in-out devices.
In this case the dismiss in-operation guarantees that the
computer will wait for the next signal from the in-out
device before proceeding with the associated program
sequence.

The -dismiss bit is also used to accomplish the halt
function in TX-2. The halted state of a mul tipl e-sequence
computer results when all sequences have been dismissed and
all in-out units turned off. The priority signal from the
Sequence Selector to Control provides the information as to
whether or not any sequence in the machine requests attention,
When none request attention, the Control stops all activity
in the machine as soon as a dismiss bit appears on an
instruction in the current sequence, Activity is resumed
in the machine as soon as some in-out device or push button
requests attention.

14,

The sequence change which results from a dismiss bit is
identical with that resulting from a break except that a

dismiss current sequence command accompanies the select new

sequence command from Control to the Sequence Selector
(Fig. 2).

Starting a Multiple-Sequence Computer.

In a single sequence computer the starting process involves
resetting the program counter to some arbitrary value and

starting the control. In a multiple-sequence computer the

program counter for a particular sequence must be reset and

the sequence started. In TX-2 a special sequence (number 0)
having the highest priority is used to facilitate starting.
This sequence has the special feature that its program
counter always starts at an initial memory location specified
by a set of toggle switches. Attention for the sequence is
requested by pushing a button on the console. By executing
a short program stored in the toggle-switch registers of the
V Memory, this sequence can start (or stop) any other sequence
in the machine. The starting process for an arbitrary
sequence involves resetting its program counter by means of
an ldx (load index register) instruction, and starting its
sequence with an ios instruction.

15.

The Use of the Arithmetic Element in Multiple-Sequence Operation
While efficient operation requires that the bulk of arithmetic
operations be carried out in a main sequence, the arithmetic
element in TX-2 is available to all sequences, Since once a

change has been made to a higher-priority sequence, control
cannot return to a lower-priority sequence, until the higher-
priority one has been dismissed, a simple rule allows the
arithmetic element to be used in any sequence without con-
fusion. If whenever a higher-priority sequence requires the
arithmetic element it stores the contents of any registers
it will need (A, B, C, D, or F) and reloads them before
dismissing, all lower priority sequences will find the
registers as they left them, This storing and loading
operation requires time and therefore lowers the total
handling capacity, but the flexibility obtained may well be
worth the loss in capacity.

A special problem results from the step-counter class of
arithmetic element instructions. These instructions can

require many microseconds to complete, and while TX-2 is
designed to-allow in-out and program element instructions to
take place while the arithmetic element is busy, the case
can arise in which an arithmetic element instruction (load,
store, etc.) appears before the AE is finished with a step-
counter class instruction. In this case the machine normally
waits in an inactive state until the operation is complete,

16.

but since there is a chance that some higher-priority
sequence may request attention in the interim and have
instructions which can be carried out, provision is made to

keep trying changes to higher-priority sequences as they
request attention. The machine thus waits in an inactive
state only when no higher-priority sequences have instruc-
tions which can be performed. This provision allows the

programmer to ignore the arithmetic element in considerations
of peak and average rate calculations when he desires to

operate a maximum number of in-out devices.

Conclusions
Multiple sequence operation of input-output devices as
realized in TX-2 has a number of significant characteristics.
Among them are:

l. A number of in-out devices may be operated con-
currently with a minimum of buffering storage.

2. Machine time is efficiently utilized since no

time need be lost waiting for input-output
devices to complete their operation. Other
machine activity may proceed meanwhile.

3. Each input-output device may be treated separately
for programming purposes. Efficiency of operation
is obtained automatically when several separately-
programmed devices are operated concurrently.
Average and peak rate limitations must, of course,
be considered,

17.

A maximum of flexibility in programming for
input-output devices is obtained. The full
power of the central machine may be used by.
each input-output sequence if desired. Routines
for each device may be as long or as short as
the particular situation requires.
The modular organization of the input-output
equipment permits simple additions and modifi-
cations to the complement of in-out devices.
The organization of buffering storage allows
the amount and kind of such storage to be tailored
to the needs of the individual devices and the
data-handling requirements to be met by the system.
The multiple-sequence program technique appears
to be particularly well suited to the operation
of a large number of relatively slow input-output
devices of varying characteristics as opposed to

4,

5.

6.

To

a smaller number of high-speed devices.

18.

TABLE I
TX-2 Sequence Assiqnments in the Order of Their Priority

* Start Over (special index register number 0 sequence)
+ In-out alarms
* arithmetic alarms (overflows, etc.)
Magnetic Tape units (several sequences)

High-speed printer
Analog-to-digital converter
Photoelectric paper tape readers (several sequences)
Light Pen (photoelectric pick-up device)
Display (several sequences)
MTC (Memory Test Computer) e
TX-0

Digital-to-analog converter
Paper tape punch
Flexowriters (several sequences)

* Main sequences (three)

* Indicates that the sequence has no input-output device.

19.

-FOOTNOTES

The P Register is shown in Fig. 4 of the
previously mentioned paper by Frankovitch and

1.

Peterson, page of these proceedings.

The relative timing of the central computer
actions during the change process is shown in
Fig. 6D of the paper by Frankovitch and Peterson,

2.

page of these proceedings.

20.

CAPTIONS FOR FIGURES

Fig. 1 - Block Diagram of TX-2 In-Out Element

Fig. 2 - Block Diagram of TX-2 Sequence Selector Stage

C- 69382
C6O- 373
S-1717

TO
PROGRAM COUNTER
NUMBER, CODER

CURRENT
STAGE #] MAY BE

DISMISSED
FROM

NO HIGHER-

REQUESTS
ATTENTION

0
SS}

SELECT
NEW

ATTENTION REQUESTED
FOR SEQUENCE #)

10s INSTRUCTION

SEQUENCE #) SELECTEDIN-OUT CONTROL #) (to |N-OUT BUFFER #})

TX-2 SEQUENCE SELECTOR STAGE

b
t$

SEQUENCE SELECTOR SEQUENCE

OR

NEXT TO NEXT LOWER-A CHANGE

HIGHER TO SOME a

PRIORITY
STAGE INV OR HIGHER PRI PRIORITY STAGE

ORITY SE AND ULTIMATELY

REQUESTED FROM LOWEST -QUENCE IS TO CONTROL

PRIORITY STAGE
4 H

PRIORITY SOR
SEQUENCE

4

a

OR

OR

rs

TO SEQUENCE FROMALL CONTROL
ATTENTION BUFFER DISMISSSTAGES

DISMISS SEQUENCE #; REQUESTED SERVICED CURRENT
SEQUENCE

t

C-69383
c60~-371
S-I7IG

EXCHANGE
ELEMENT

IN- ELEMENT

PRIORITY DECREASES

IN-OUT UNITS
AND CONTROLS

PROGRAM
COUNTER
NUMBER
(INDEX
MEMORYCODER

PROGRAM
ELEMENT

TO X
MEMORY

ADDRESS)

CONTROL ELEMENT
0 b nSS Ss SEQUENCE SELECTOR SS

a b nTOU IOU IOU N
REGISTER

a bIOB IOB IN-OUT BUFFERS IOB 7

n

OR

* DECODER

TX-2 IN-QUT ELEMENT

IN-OUT UNIT
#) TO MODE y
(10s INSTRUCTION)

t$
a

4

& is sl s
b

SET
d

A SHORT ACCESS TIME MEMORY
USING TWO CORES PER BIT*

Richard L. Best**

A single computer can do the work of two or more separate computers if it can

operate simultaneously several programs and pieces of input-output equipment.ts®

The single computer needs only enough index registers and program counters to

schedule and control its operations. Live flip-flop registers could be used,

but their expense would limit the number of such registers.

A ferrite-core memory with a capacity of sixty-four 19-bit words, an access

time of 0.8 sec, and a cycle time of 4 usec has been developed at Lincoln

Laboratory. The ferrite cores are 47 mils 0.D., 27 mils I.D., and 12 mils

thick.

Access time is the minimum.delay between setting the address register and

strobing, while cycle time is the time between successive strobes with a

repetitive READ-WRITE cycle. The short access time allows frequent refer-

ence to the memory without reducing machine speed. In the Lincoln TX-2

computer for which this memory is designed, the speed is mainly limited by

the 6.5-usec cycle time of the 65,536-word memory that stores the bulk of

the machine information.3

OPERATING PRINCIPLE

The operating path on the hysteresis loop of the ferrite core material used

is shown in Fig. 1. The READ time is much shorter than the WRITE time because

of the much greater current used for the READ operation.

*The research reported in this document was supported jointly by the Arny,
Navy, and Air Force under contract with the Massachusetts Institute of
Technology.
**Staff Member, Lincoln Laboratory, Massachusetts Institute of Technology.

2

The winding configuration of the single plane unit is shown in Fig. 2. The

vertical lines are the "word" lines and the others are "digit" lines. A word @
is selected externally by a switch which connects the upper end of the selected

word line (e.g.,) to the -3 volt supply and leaves the others (W, X, 2)

floating, The READ driver applies a negative current pulse of amplitude

1/3 I to the common word line junction at the bottom. This current, repre-
sented by the waveforms of Fig. 3 flows through all the cores on the selected

word line (Y). For example, cores A and B are the cores for a given word bit.
Normally, only one of these cores could be left in the SEI condition by the

previous WRITE operation in that register so that only one of thenis switched

to the CLEAR state and thus generates a voltage pulse that appears at the

terminals of the digit line. The digit line, however, links one of the cores

(A or B) in the same direction as the word line, and the other core in the

opposite direction. Thus, the polarity of the pulse appearing at the terminals

of the digit line indicates which core was switched, and whether a ONE or a

ZERO was read.

A direct current or amplitude 1/3 I always flows in the digit line, as shown

in Fig. 3. It is small enough so that it has negligible effect during READ

time; one core sees 4I and the other The polarity of a given digit
current is controlled by the buffer register flip-flop associated with that

digit. During WRITE, a current of plus a/3I is sent down the selected word

line, The digit current of 1/31 adds to the WRITE current in one core and

subtracts from it in the other, so that one core has a current of I and the

other a current of 1/3I. Thus, the current ratio used during WRITE is 3:1

with a disturb current (current in unselected cores) of no more than 1/3I.

®
The WRITE current is 108 ma-turns and the switching time is 2 the

READ current (depending on the polarity of the digit current) is either 4

3

or 4-2/3 times this with a switching time of 0.3 usecs. Since each of the

two windings makes four turns on each core through which it passes, the digit
current is only 8 ma, the write driver output current 18 ma, and the read

driver output current 117 ma. Fig. 4 shows the complete memory plane (4-1/4"

x 6-1/4") and Fig. 5 shows a portion of it enlarged.

MODES OF OPERATION

There are three modes of operation of the X memory: (1) READ-WRITE,

(2) READ, and (3) CLEAR-WRITE. READ-WRITE has been described above. The

READ operation, used when the contents of two registers are needed quickly,

performs the necessary function of clearing both cores in each bit before

writing. When the computer returns to WRITE in registers that have had a

READ cycle only, the CLEAR-WRITE cycle is used. CLEAR-WRITE is the same as

READ-WRITE except that the strobe pulse is eliminated. Actually, a WRITE

cycle alone would be sufficient, but the CLEAR-WRITE cycle was added as an

aid to program trouble-shooting, since if a WRITE operation should follow a

previous WRITE operation on the same register, some bits would have both

cores set. A subsequent READ would clear both cores, their outputs would

subtract in the digit winding, and the response of the sense amplifier would

be unpredictable.

The block diagram is shown in Fig. 6. The particular method of word selec-

tion used is determined partially by the computer's use of the outputs of the

32decoder in the exchange and in-out elements.+ Two write drivers are used

and the output of the first level selection determines which one is used.

SELECTION CIRCUITS

One channel of the selection circuit is shown in Fig. 7. The decoder uses

5eway emitter follower AND gates (QI-5) which drive parallel inverters (Q6

and Q7). The collector load of these transistors is such as to provide ah

overdrive of base current into Q8 or Q9 during both selection and deselection.

When neither read nor write driver is active, the word lines are free to

float between 0 and -10 volts. Only one of the first level selection tran-

sistors (QLO or Qil) will be saturated, so base current flows only into

either Q8 or Q9. The read driver generates a negative pulse so that the

large read current (117 ma) flows in the normal direction in the 2N123's.

The write current flows in the reverse direction, but it is only 18 ma, and

doesn't require a very high reversd . It would have been more economical

of transistors to decode in two steps, but access time is at a premium here,
so that' the faster circuit was used.

READ=-WRITE DRIVERS

The read driver shown in Fig. 8 consists of three SBI transistors in series

(because of the voltage needed) driving a 6197 to saturation. The back

voltage presented by the cores to this driver is constant because, as men-

tioned before, it always switches one of the two cores in each pair. The

5:1 transformer holds the tube load to a low value.

The write driver (Fig, 9) is very simple - the current in the 1640-ohm

resistor is switched into the memory load during WRITE by saturating Q2

which cuts off Ql. Since the selection circuits are returned to -3 volts,
the output terminal of this circuit is always below ground.

DIGIT CIRCUITS

The digit driver (Fig. 10) is connected directly to the corresponding flip-
flop in the buffer register. One of the two transistors is always saturated

5

so that current flows in the digit winding and in a direction determined by

the flip-flop. The terminals of the digit winding are connected to input stage

(Ql and Q2) of the sense amplifier shown in Fig. 11 which responds to the

voltage difference between the inputs. The open eiroult READ signal on the

digit winding is a 1/4 microsecond positive or negative 1/2 volt pulse.

The sense amplifier loads the winding to reduce the pulse to about half
this amplitude. A saturation signal is fed to the gates Q3 and Q5 so that

the strobe pulse forces the flip-flop to the correct position. If the

signal on the free end of the digit winding is positive the flip-flop is
left in the same state; if it is negative the flip-flop is complemented.

HARDWARE

Figs. 4 and 5 show the complete memory plane (4 1/4 x 6 1/4 inches) and an

enlarged portion of it. The cores are mounted in slots on a lucite plate;
the wires pass through openings made by the intersection of milled slots on

one side of the plate with similar slots on the other side milled at right

angles to the first. Each winding makes 4 turns per core, and is sewed

through the cores in pairs.

Fig. 12 shows the memory plane mounted in position among the plug-in
circuits. The wires fanning out from the left side of the plane go to

the word selection circuits. The address register isn't shown. The

twisted pairs fanning out from the top and bottom of the plane go to plug-
in units each of which contains a digit driver and sense amplifier. The

buffer register is to the right of the plane, and the two right-most

columns contain logic circuitry necessary when this memory is incorporated

in the TX-2 computer.

6

CONCLUSION

A short access time ferrite=core memory will be used to store index

registers and program counters so that the Lincoln TX-2 computer will be

able to operate simultaneously several program sequences and input-putput

devices. Two cores per bit and external word selection allow a 3:1

current ratio during WRITE and a large overdrive during READ to greatly
reduce READ time.

REFERENCES

1. "Functional Description of the Lincoln TX-2 Computer", J. M.

Frankovich, Proceedings of the Western Joint Computer Conference,

February 1957. @

2. "The Lincoln TX-2 Input-Output System", J. W. Forgie, Proceedings of

the Western Joint Computer Conference, February 1957.

3. "Part I, the TX-O Memory", J. L. Mitchell, Proceedings of the Eastern

Joinjt Computer Conference, December 1956.
+

fy

a

SET

-51 -41 -31 -21 1 +1

HYSTERESIS
LOOP SHOWING

OPERATING
PATH

@.3NO
oO \

oSav fg /

CLEAR

WRITE
READ

A-69363
C6o- 34
SN-1682
CGO-420

TO WORD SELECTION SWITCH

N

W X Z

DIGIT "J

Q DIGIT "ke

DIGIT "u" A

x

DIGIT "K

TO READ AND WRITE DRIVERS

WINDING CONFIGURATION, INDEX MEMORY

A-69364
C60- 348
S ~1692

t NET CU

TIME, SEC. 0 2 3

2

READ

IN CORE "B"

2

TIMING DIAGRAM, INDEX MEMORY

4

CURRENT IN

REGISTER WRITE

3 :

4

IN CORE A" 3

4I-
31

NET
CURRENT 3

3

a

4hyhf +htyht,ty
ral

:

ié
:

:

3
:

SHEET
:

8
SASSERSSASASENS

Ne 44 H §aeWe4A 4'i4

a

4

>

4

1

4 4

3-47247 -1
C 60-363
CGO- 395
S -1693

ADDRESS REGISTER

AMPLIFIERS

WRITE READ WRITE

2 DRIVER A DRIVER DRIVER B

1

5

ist LEVEL
a) =

SELECTIGN TO
EXCHANGE

DECODER AND
|N-OUT

ELEMENTS
2nd LEVEL32
SELECTION

WORD
SELECTION
SWITCH

I

DIGIT 32 32

at DRIVERS
19 :

:

BUFFER
9

MEMORY
REGISTER PLANE

19
SENSE

BLOCK DIAGRAM, X MEMORY

C- 69406-!
C60-369
CGO -398
S -1685

a

FIRST LEVEL SELECTION
(DRIVEN BY
INVERTER

LIKE Q6 AND
Q7 BELOW)

3V
QIO Ql

2NI23

SECOND LEVEL SELECTION
+ 10V

= TO MEMORY
QS -10V.SBT

BITS DECODER WORD SELECTION SWITCH
i

39000 :

-3V k

SBT
7

SBT _ _ SBT
Q2

INPUTS SBT! 470

Q8 Q9
"ADD- 00033FROM

CNI23 ONI23Q3RESS' MEDSBT
REG [OmH

Q4
5I5OOD 560NrSBT

O
TO EXCHANGE AND IN-OUT ELEMENTS

REGISTER SELECTION CIRCUIT, X MEMORY am P

ahh a

7

B-69407 -|
C60-366
§ -1696

+10V
47

0.00INPUT
(-3VLEVEL
READS)

o TEST POINT

@ 7 TO MEMORY

O4I50V
{

-15V

A

MMFD er om,

:

MFD Q
SBT

Q2 :

SBT 5 1

:

4

Q3 HD2121
SBT 6197

:

TK : :
:

:

5OO

READ DRIVER, X MEMORY Bug.

+10V

MEMORY

16
89 WRITE DRIVER, X MEMORY

-,7
69

38
C6

0-
35

5

5
+30V

0.001 MFD16400.

TO :

3.6K :

Q2. INPUT :

(-3V LEVEL WRITES) .2NI23
Q |

2NI23
5IK

lOV -40V

FROM
MEMORY
BUFFER
REGISTER
FLIP-FLOP

2

+10V

B-69405
C60- 365C60-397S-1697

@
+{OV

33K

DIGIT DRIVER, X MEMORY

0.001
MFD

7

+
MEMORY

|

| DIGIT
| WINDING |

Qi Q2

4702

33000 $ 33000

30V

B-69394-!C60-364
CGO-396
S -1698

FROM
DIGIT

SBT

WINDING

+10V

59KZ 47MMFD

2K

-10

Q4

+10V
Q2
SBT

IBO
MMFD +lOV

Q3

2K

STROBE
INPUT2.4K SBT 2.4K

(NEG. PULSE)
5. IK

Q5
SBTIK SBT

tt

TO BUFFER REGISTER FLIP-FLOP

SENSE AMPLIFIER, X MEMORY

Rai
mee

4,

AW
py

w
e
4

nt

+

4

44
w
evip

1 t

4

w
y

N
aty

«
+

w
d

a

Yar

Aatay

:4
at

1.

TX-2 CIRCUITRY*
Kenneth H. Olsen'Lincoln LaboratoryLexington 73, Massachusetts

Circuit Configurations
Only two basic circuits are needed to perform most of the
logical operations in the TX-2 computer; a saturated tran-
sistor inverter and a saturated emitter follower. To the
logical designer who works with them, these circuits can
be considered as simple switches which are either open or
closed,

The schematic diagram of an emitter follower and the symbol
used by the logical designers is shown in Figure 1. With
a negative input, the output is "shorted" to the -3 volt
supply as through a switch, When several of these emitter
followers are combined in parallel, as in Figure 2, any one
of them will clamp the output to -3V. We have then an OR
circuit for negative signals and an AND circuit for positive
Signals. The transistor inverter is shown in Figure 3 with
its logic symbol. Basic AND, OR circuits result from the
connection of these simple switches in series or parallel,
+

The research in this document was supported jointly bythe Army, Navy, and Air Force under contract with theMassachusetts Institute of Technology.++ Staff Member, Lincoln Laboratory, MassachusettsInstitute of Technology

2.

as in Figures 4 and 5. More complex networks like the TX-2
carry circuit use these elements arranged in series=parallel
as shown in Figure 6.

In Figure 3 the resistor Ry is chosen so that under the worst
combinations of stated component and power supply variations,
the drop across the transistor will be less than 200 milli-
volts during the "on condition". Ro biases the transistor
base positive during the off condition to provic greater
tolerance to noise, IL and signal variations. Capacitance
C was selected to remove all of the minority carriers from
the base when the transistor is being turned off. The
effect of C on a test circuit driven by a fast step is shown
in Figure 7. Note that the delay due to hole storage is
only a few millimicroseconds.

We run the circuits under saturated conditions to achieve
stability and a wide tolerance to parameters without the
needs for clamp diodes. Unlike vacuum tubes which always
need an appreciable voltage across them for operation, a

transistor requires practically no voltage across it. In
spite of the delay in turning off saturated transistors,
these circuits are faster than most vacuum tube circuits.
Faster circuit speed is not due to the fact that the tran-
sistors are faster than vacuum tubes, but because they
operate at much lower voltage levels. A vacuum tube takes

3.

a signal of several volts to turn it from fully "on" to
fully "*off"; a transistor takes less than one volt.

Flip-Flop
On the basis of previous experience, we decided that the
advantages of having one standard flip-flop were worth some

complication in TX-2 circuitry. The circuit diagram of the
flip-flop package in Figure 8 is basically an Eccles-Jordan
trigger circuit with a three-transistor amplifier on each
output. The input amplifiers isolate the pulse input
circuits and give high input impedance. The amplifiers give
enough delay to allow the flip-flop to be set at the same
time that it is being sensed. Figure 9 shows the waveforms
of this flip-flop package when complemented at a 10 megapulse
rate. The rise and fall times, about 25 millimicroseconds;
are faster than one normally sees in a single inverter that
pulls to ground and an emitter follower that pulls to -3
volts. Figure 10 is a plot of the pulse amplitude necessary
to complement the flip-flop at various frequencies. Note
the independence of trigger sensitivity to pulse repetition
rat... This circuit will operate at a 10 megapulse rate,
twice the maximum rate at which it will be used in TX-2.

The TX-2 circuits reproduced most often were designed with a
minimum number of components to achieve economies in manu-
facture and maintenance. The design of less frequently

4.

reproduced circuits made liberal use of components - even

redundancy to achieve long life and broad tolerance to

component variations. The goal was system simplicity and

high performance with a lower total number of components
than might otherwise be possible. For example, the number
of flip-flops in the TX-2 is small compared to the gates
which transfer information from one group of flip-flops
to another; so the flip-flops were allowed to be relatively
complicated but the TX-2 transfer gates were made very
simple. A transfer gate is in fact only a Single inverter.
The emitter is connected to the output of the flip-flop
being read and the collector is connected to the input of
the flip-flop being set. The output impedance of the flip-
flop is so low that, when the output is at the ground level,
a pulse on the base of the transfer gate shorts the input
of the other flip-flop to ground and sets its condition.

Marginal Checking
We planned, of course, to incorporate marginal checking
in the design of these circuits so that, under a process
of regularly scheduled maintenance, deteriorating components
could be located before they caused failure in the system.
We also found it practical to use the technique during the
design of the circuits to locate the design center of the
various parameters and to indicate the tolerance of circuit
performance of these parameters. A further application of

on

marginal checking has been found in other systems during
shakedown and initial operation to pin point noise and

other system faults not serious enough to cause failure and

therefore very difficult to isolate by other means.

The operating condition of the inverters is indicated by
varying the +10 Volt bias. In the flip-flop schematic
in Figure 8, the inverters were divided into two groups
for marginal checking, and the two leads labelled MCA

and MCB were varied one at a time for most critical checking
of the circuit. The following curves show the locus of
failure points for various parameters as a function of
the marginal checking voltage. Figure 11 shows the tolerance
to tau, a measure of hole storage and Figure 12 shows the
tolerance to P, the current gain. Operating margins for
supply voltages, temperature, and pulse amplitude are

:

:

shown in Figures 13 through 16, 2 ett
:

Packaging
The number of types of plug-in units was kept small for ease
of production and to keep the number of spares to a minimum,

:

The circuits are built on dip soldered etched boards and the :

components are hand soldered to solid turret lugs. The
boards are mounted in steel shells shown in Figure 17 to
keep the boards from flexing. The male and female contacts
are machined and gold plated. The sockets are hand wired and

6.

soldered in panels as in Figure 18.

Conclusion
The result of these design considerations is a 5 megapulse
control and arithmetic element which will take less than
40 square feet of space and dissipate less than 800 watts
of power. The simplicity of the circuits has encouraged
a degree of logical sophistication which would not have
been chanced before.

7.

TX-2 CIRCUITRY

Figure Emitter Follower
2 Parallel Emitter Follower
3 Inverter
4 Parallel Inverters
5 Series Inverters
6 TX-2 Carry Circuits
7 Turn-Off Time

8 TX=2 Flip-Flop
9 Flip-Flop Waveforms

10 Trigger Sensitivity
ll Tau Margins
12 Beta Margins.
13 -10 Volt Supply Margins
14 -3 Volt Supply Margins
15 Temperature Margins
16 Pulse Margins
17 TX-2 Plug-in Unit

a

18 TX-2 Back Panel

OUTPUT

+10

AS :

OUT

INPUT

-3-3

+10

@ @ e @ OUT

e @

3

c60-361

+10 GND

R

OUTR

INPUT

OUTPUF

R
C

3

10

3

GND

OUT

10

GND

OUT

GND

CARRY FROM FROM
PREVIOUS DIGIT ACCUMULATOR

FROM
FLIP

DIGIT

CARRY
_oc

- FLOP
CARRY TO

NEXT

é

O- +10V

0
OUTPUT

.18 MEG3
INPUT

INPUT SOOO

C.

-3
OUTPUT WITH C

+

Tg= TURN-OFF TIME

T2
-3V

-3
OUTPUT WITHOUT C

TURN OFF TIME

wc A (+10v)

OUTPUT
(UNLOADED)

OUTPUT
LOADED WITH

(1OO MMFD, 1000.)

TRIGGER
PULSES
(10 MCS)

0 100 200 300 400 500 600
mSEC

20

MC
VOLTS

SIDE

-20
20 40 60 80

"O°" SIDE t

20

MC
VOLTS

O

-20
"I" SIDE B=20

lO 20 30
"O" SIDE B

20

OPERATING
MC POINT

VOLTS

-20

2.0 3.0 4.0 5.0

-3 VOLT SUPPLY MARGINS

/3

3-62-1675

20

NORMAL
OPERATING

POINT

M
AR

GI
N
AL
- C

HE
CK

VO
LT
AG

E

10

-10

OUTPUT FROM -10 VOLT SUPPLY
-14-5 76 -7 -6 ~9

20

10

MC
VOLTS

10

-20
40

° CENTIGRADE
6020 80

TEMPERATURE MARGINS

3-62-1674

20

> 10F
<

NORMAL
OPERATING

4 POINT

a
<xs
-10 _

<
:

As

20
2 3 4 5 6 7

"PULSE AMPLITUDE (volts)

/6

ACKNOWLEDGMENT

We are indebted to Mr. Frank P. Hazel for his assistance
in editing; to Mrs. Barbara Clark, Miss Carole Olson, Miss

Elaine Tonra, Miss Ruth McDonald and Miss June Karlson for
their typing of the manuscripts; and to Miss Alice Griffin
and her associates for the preparation of the many figures.

