
f ■

)))

L

LLLL

JJJ

J

J

J

J

J J

JJJ

SSSS

s s

s

sss

s

s s

SSSS

Wed 30-Apr-1986 12:51:25

Print request number 143

Station: $36

Name: L J Shustek

File Server; BEETHOVEN ($F2)

NFS Pathname:

F i1ename (s):

Print Server: LENNON ($0A)
Printer; LASER

Setup: LANDSCAPE
Priority: Standard

Copies: 1
Eject: 0

@@@@

@@@@@@@@

@@@@@@

@@@ @@@ @@@

@@@@@@@@>@@@

@@@ @@@

@@@ @@@

@@@@@@

@@

@@@@@@@

@@@ @@@®

@@@@

@@@@@@@

)))
/» this is 14.h »/

/♦

Fi leserver prototype - TRANSPORT

Modu1e "14.h"

This fi le contains the definitions of symbols and structures used
by cal lers and implementation modules of the Network Transport
(Level 4) routines. These routines implement XNS transport protocol
for both Arcnet and Token Ring network.

♦/

/*-

Transport Level status codes

These are the values for the "status" field of the L4 request
block, and indicate the condition of the connection and/or the
most recent request.

■*/

(Cdef i ne I4st uncon 0 /♦
#def i ne 14st _busy 1 /»
jCdef i ne I4st done 2 /»

#def i ne RBid 0x5242 /♦ 'RB' for rb->id field */

)))
/»■

Packet Header

This defines the format of incoming packets.
AH fields except the host source and destination addresses
(srchost and dsthost) and source and destination sockets
are private to the L4 routines.

Al l multibyte fields are stored MSB first.

»/

struct pkthdr { /♦ packet header: datalink + Nestar + XNS */

byte sys i d; /♦ Datapoint-administered system id ♦/
byte garbage; /» garbage count ♦/
by t e pktno; /* fragmentation packet number ♦/
byte maxpkt ; /* max pkt size (bits 7. .6), and

fragmentation fragment number (bit 5 . .1) */
word chksum; /♦ checksum (start of XNS packet) ♦/
word 1ength; /♦ length, starting from checksum »/
byte t met 1 ; /* transport control byte */
byte ptype; /» internet packet type (5 for SPP) */

1 word dstnw; /♦ destination network ♦/
uword dsthost[3] ; /♦ destination host PUBLIC VARIABLE */

uword dstskt; /» destination socket PUBLIC VARIABLE */

1 wo rd srcnw; /* source network ♦/
uword srchost[3] ; /» source host PUBLIC VARIABLE */
uword srcskt ; /♦ source socket PUBLIC VARIABLE */

byte conct1 ; /♦ connection control byte ♦/
byte dtype; /♦ datastream type ♦/
uword src i d; /♦ source connection id ♦/
uword dst i d; /♦ destination connection id */
uwo rd seqno; /♦ sequence number ♦/
uword ackno; /♦ acknowledge number */
uword

} ;

a 1 1 no; /* al location number */

)))
/»

Transport Level Request Block

This is the shared data structure which is used for parameters
and state information for a connection. It is al located by
the cal ler and passed to al l L4 routines which are connection-
spec i f i c .

The first part are public variables which are set or examined by
the cal ler, as indicated in the individual routine descriptions.

The second part is a copy of the packet header and is "semi-pub 1ic"
in that only the host source and destination addresses are to be
used by the cal ler; other fields are private to the implementation,

The third part contains private variables for use only by the
implementation routines.

•»/

struct Mrb {

/♦ Public part »/

uword i d;
St ruct Mrb ♦f1i nk;
st ruct 1 4rb ♦b1 ink;
addr user;

void (♦anr)();
int status;
addr rcvpt r;
word rev 1ength
word rev limit;
addr sndpt r;
word snd1ength
byte sndtype;
byte rcvtype;
uword wks;
boo 1ean arcnet;

id field 'RB' */
forward link field for queues and lists */
backward link field for queues and l ists */
arbitrary "user" field ♦/
Asynchronous Notification Routine */
one of the 14st_xxx values »/
receive buffer address ♦/
receive data length ♦/
receive buffer size */
send buffer address ♦/
send buffer length ♦/
send datastream type */
receive datastream type */
wel l-known socket to send on ♦/
is this an arcnet station? */

/* Semi-public part */

struct pkthdr ph; /♦ our transmit packet header ♦/

/* Private part */

short int
struct Mrb
short int
short int
addr
short int

short int
boo 1ean
boo 1ean
boo 1ean

) ;

state;
♦con 1i nk;
snd_count;
t i mer;
bufcursor;
bytes_left;

on_a_li St;
we_owe_ack;
send ack;

♦ internal state ♦/
♦ l ink field connection list ♦/
♦ count of send retries ♦/
♦ countdown for pkt wait timeout ♦/
♦ next position in the send or rev buffer ♦/
♦ # bytes left to send ♦/
rst_seq; /♦ sequence number of 1st pkt of outgoing msg ♦/
♦ we are on a waiting list ♦/
♦ we owe him an ack ♦/
♦ send an ack if 1-packet message ♦/

//.■■■'- . ■■.•i''::ii'i.''-'":'.fl'' '*' ■ ■■ •
- ' >i^'7.,.. ■ -■ •• _•.■

■;v • R'l; I.

vt, ,-'^v* ••••

•*: " ;/*ierid of® 14. h "rV^' ,..j''
■ jV-;'

•v)m; "if(, . »:

.« .4^®

--;-«' V ;. ':-.v'; ,i

v' '

:♦' -

.-■.., i!r^>

t

tf:

.»r

y'"r-vy

)))

L

LLLL

JJJ

J

J

J

J

I J

JJJ

ssss

s s

s

sss

s

s s

ssss

Wed 30-Apr-1986 12:51:06

Print request number 142

Station: $36

Name: L J Shustek

File Server: BEETHOVEN ($F2)

NFS Pathname:

F i 1ename (s):

Print Server: LENNON ($8A)
Printer: LASER

Setup: LANDSCAPE
Priority: Standard

Copies: 1
Eject: 0

@@@@

@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@

@@@ @@@@

@@@ @@@ @@@(3)

@@@ @@@ @@@@@@@@@

@@@@ @@@@@@@@@@ @@@@@@@@@

@@@ @@@@@@@@@@@ @@@

@@@@ @@@ @@@

@@@@@@ @@@

@@@@@@ @(§^@

)))
/♦ this is 14private.h ♦/

/♦

Fi leserver prototype - TRANSPORT

Module "14private.h"

This file contains private symbols and declarations for the transport
i mp1ementat i on.

/»

Macros

♦/

/» Make a trace table entry »/

/» Note that 14_trace cal ls provide two information fields, both of
which were original ly use for debugging. The current macro only
uses the first field and so is compatible with the trace routines
used in the rest of the server.

♦/

(Cdefine 1 4_t race (c , i 1 , i 2) {do_t race (c ,(1 word) (i 1));)

/» Hash a 6-byte station address into a connnection table index.

The argument is the address of the 6-byte XNS address.
The value of the macro is a number in the range 0..HASH_TABLE_SIZE
which is the index into "14_con_tab1e" of a chain of rbs
with open connections.

(The current hash function uses the low byte of the XNS address,
which is the Arcnet id and is hence optimmal for Arcnet. In the
usual case of one connection per pair of stations, there wi l l be
only one rb on the hash l ist.)

*/

#define HASH TABLE SIZE 256

i f i nte1

#define hash_addr(p)
#e 1 se

#define hash_addr(p)
*end i f

((p)[2] >>8)

(Cp)[2] & Oxff)

Miscel laneous symbols

)))
»/

^define MAX_SOCKETS 2 /» max # of wel l-known sockets we can listen on «/
^define NESTARSYSID

^define MAXWKS

^define MAX XNS PKT

2 /»

Oxf e /»

2999 /*

500 /*

)))
/*

T i meout va1ues

These are in "ticks" which correspond to the frequency at which the
12_timerint routine is cal led. Something l ike 200 mi l l iseconds seems right

Note that no timeout value should be less than 2, since the actual value
wil l vary between one less than the timeout and the timeout itself.

#def i ne T0_ AWAITMSG 25 / ♦ 5 sec: rev msg wait time. (Could be infinite.)

#def i ne T0__AWAIT_PKT 5 / ♦ 1 sec: intra-message data packet wait time ♦/

#def i ne TO AWAITACK 4 / ♦ .0 sec : ack wa it t i me ♦/

#def i ne T0_ XMIT_PKT 3 / *

/ ♦
.6 sec: transmit packet timeout */
(Implemented in Level 2; change it there!) ♦/

/Cdef i ne TO._PKT_DISCARD 2 / ♦
/ ♦

.4 sec:
(Shou1d

unclaimed packet discard time */
be minimal ; set higher for debug) */

/* Setting timeouts for maximum error recovery is a something of a black art.
One set of relationships that seems to make sense is:

TO_PKT_DISCARD < TO_XMIT_PKT < TO_AWAIT_ACK < TO_AWAIT_PKT

This ordering attempts to encourage the fol lowing behavior;

(1) Unclaimed received packets won't hang around long enough to
prevent a transmission because there are no receive buffers available.

(2) Receive timeouts won't occur unti l transmissions are unblocked.

(3) A lost data packet wil l cause the sending to timeout waiting for
the ack and thus retransmit before the receiver times out waiting for
the missing data packet.

*/

/*■

There are stil l some circumstances where error recovery wil l fai l ,
particularly near the beginning or end of a connection. Example: If the
final ACK for a connection seems to the transmitter to have been sent,
but the receiver didn't get it, the transmitter wi l l close the RB and
the repeated last message from the receiver wi l l be discarded. The
receiver wi l l then abort the connection. So it goes.

Note that having the Arcnet Level 2 retransmit if it gets TA without
TMA solves that particular problem, but not al l datalink hardware is as
good as Arcnet.

Maximum retry counts

■»/

fdefine SEND RETRIES /* number of message send retry attempts to

)))
make because the ACK wasn't leceived. »/

#define XMIT_RETRIES 1 /» number of packet send retry attempts to make
if Level 2 detects an error. ♦/

/* (Implemented in Level 2; change it there!) */

)))
/♦

Interne 1 14 states i n the rb->state field

*def i ne st idle 0 /♦ idle; no command in progress */

#def i ne st_connectg 1 /» starting a connect message (maybe on wa i t buf l ist) »/

#def i ne st sendi ng 2 /» sending a message (maybe on wa i tbuf list) ♦/

iCdef i ne st sendackr 3 /* sending an ack (ack_req) (maybe on wa i tbuf list) ♦/

def i ne st sendackc 4 / sending an ack (connected) (maybe on wa i tbuf 1 ist) */

*def i ne st sendackd 5 /» sending an ack (disconn) (maybe on wa i tbuf list) */

iCdef i ne st pktwai t 6 /» awaiting a message packet (maybe on wa i tpkt list) */

#def i ne st ackwai t 7 /♦ awaiting an ack (maybe on wa i tpkt list) */

#def i ne st connwa i t 8 /♦ awaiting a connection (on waitcon 1 i s t) ♦/

/*

XNS connection control bits

»/

jfdef i ne syspkt 0x80 /♦
#def i ne ackreq 0x40 /*

*def i ne at tn 0x20 /♦

*def i ne eom Ox 10 /»

)))
/»•

The format of ARC packets

■*/

struct arc_header { /* the arcnet packet header */

byte sid; /* arcnet source address ♦/
byte did; /» arcnet destination address */
byte counti; /♦ short packet data pointer, 0 if long packet ♦/
byte count2; /♦ long packet data pointer »/

/* Thence fol lows empty space. ♦/

/* Thence fol lows the data, bottom justified in the buffer to either
256 bytes (short packet), or 512 bytes (long packet). */

};

jCdefine MAXPKT LONG 0x40 /* bit in ph.maxpkt that says long packets are ok */

/♦

Far pointer declarations for Microsoft C on the PC

(For the 68k implementation, these are the same as any other pointers.)

*/

#if microsoft
#define FARPTR far

1 se
iCdefine FARPTR

end i f

typedef char FARPTR »faraddr; /» long address of char */
typedef struct pkthdr FARPTR ♦farphaddr; /* long address of xns header */
typedef struct arc_header FARPTR »fararcaddr; /* long address of arc_header */

)))
/♦-

Private static variables for L4

•»/

short int sockets [MAX_SOCKETS] ; /♦ The

boolean 14_busy = FALSE; /♦ "We

short int src conid = 1; /♦ The

short int eph socket = MAX_WKS+1; /♦ The

word our addr[3]; /♦ Our

/♦

*/

/»

Variables which keep track of the RBs we know about.

The connection table (14_con_tab1e) is a hash table of pointers to RBs
that have open connections. The hash function is the macro hash_addr.
RBs are chained from the hash table entry by the link field "conl ink"
from the time the connection is established unti l it is broken.

♦/

struct 14rb *14 con table [HASH TABLE SIZE] ; /» connection hash table »/

/»

»/

The RB waiting lists are used only when the RB has an outstanding
command being processed by Level 4.

st ruct 14_1i st {
struct 14rb *head, ♦tai l)

waitbuf_l ist = {NIL, NIL)
waitpkt_l ist = (NIL, NIL)
waitcon list = {NIL, NIL)

/♦ RB 1ists. »/
/♦ Single threaded with ptrs to head and tai l ♦/

/♦ rbs waiting for a transmit buffer ♦/
/♦ rbs waiting for incoming packets ♦/
/♦ rbs waiting for incoming connection ♦/

/♦
Variables which control the disposition of the current incoming packet

♦/

farphaddr rcvbuf_xptr = NIL;
fararcaddr rcvbuf_aptr = NIL;
short int rcvbuf_timer = 0;
struct 14rb ♦rcvbuf rb = NIL;

/♦ pointer to XNS header part of received packet ♦/
/♦ pointer to arc header part of received packet ♦/
/♦ age of the received packet ♦/
/♦ the rb which owns the packet, if any ♦/

/♦

♦/

Variables which record that various interrupts are pending.

boolean intpending_rcv = FALSE
boolean intpending_xmit = FALSE
boolean intpending_timer = FALSE

/♦ receive interrupt pending ♦/
/♦ transmit buffer interrupt pending ♦/
/♦ timer interrrupt pending ♦/

fararcaddr intpending_bufp; /* argument for pending 12_ic:vintr() */
faraddr intpending_outbuf; /* argument for pending 12_gotbuf() »/

/♦ end of 14private.h ♦/

)))

L

LLLL

JJJ

J

J

J

J

I J

JJJ

ssss

s s

s

sss

s

s s

ssss

Wed 30-Apr-1986 12:51:34

Print request number 144

Station: $36

Name: L J Shustek

Fi le Server: BEETHOVEN {$F2)

NFS Pathname:

F i1ename (s):

Print Server: LENNON ($8A)
Printer: LASER

Setup: LANDSCAPE
Priority; Standard

Copies: 1
Eject: 0

@@@e

@@@@@@@@@

@@@ @@@@@@@@@@@

@@@ @@@@@

@@@@

@@@ @@@ @@@@@@@@@

@@@@ @@@@@@@@(§>(3*

@@@@

@@@ @@@

@@@@@@

@@@@ @@@ @@@

@(^@@@@ @@@

)))
/♦ this is Mcounts.h ♦/

/♦

Fi leserver prototype - TRANSPORT

Module "Mcounts.h"

This file contains the declarations of the event counters for Level 4.

If the symbol L4GL0BALS is defined, this al locates storage for the
counters. Otherwise it generates external references to the counters.

*/

#ifndef L4GL0BALS

#define counter(name) extern unsigned int name
#e 1 se

^define counter(name) unsigned int name = 0
*endi f

counter

counter

counter

counter

counter

counter

counter

counter

counter

counter

counter

counter

counter

counter

counter

count er

counter

counter

counter

counter

counter

counter

(14cnt
(Mcnt^
(14cnt
(Mcnt;
(14cnt
(Mcnt'
(Mcnt
(1 4cnt;
(Mcnt
(14cnt
(14cnt
(14cnt

(14cnt
(14cnt
(Mcnt
(14cnt
(14cnt
(14cnt

(14cnt
(14cnt
{14cnt
(14cnt

connect

openrcv

sendmsg

rcvmsg

sendpkt
rcvpkt

di scardfmt

di scardcon

di scardseq

di scardunx

d i scardrcv

badwks

_m_ret r i es
p_re tries
aborts

abort sends

abort revs

_l 2 i nt_r i
_1 2i nt_ta
_12 i nt_recon
_xmi 11 imeout
xmi tnoack

outgoing connections */
incoming connections */
messages sent */
messages received */
packets sent ♦/
packets received ♦/
bad format packets discarded */
bad connect packet discarded */
bad sequence packets discarded */
unexpected packets discarded */
rev packet timeout discard */
incoming connects on wrong wks */
send message retry attempts */
send packet retry attempts by Level 2 */
connections aborts ♦/
connection aborts due to send retries w/o ack */
connect

Leve 1 2

Leve 1 2

Leve 1 2

Leve 1 2

Leve 1 2

/» end of Mcounts.h */

)))

L JJJ SSSS

L J S S

L J S

L J SSS

L J S

L L J J S S

LLLLL JJJ SSSS

Wed 30-Apr-1986 12:49:56

Print request number 141

Station: $36

Name: L J Shustek

Fi le Server: BEETHOVEN ($F2)

NFS Pathname:

F i1ename (s):

Print Server: LENNON ($0A)
Printer: LASER

Setup; LANDSCAPE
Priority: Standard

Copies: 1
Eject: 0

@@@ @@@@ @e@ e@®®@@ @@@

&&& @®@ @®®®

@@@@@@ @@@ @@@ @@@ @@@@@@@@@

@@@ @@@@@@@@@@@ @@@@@@ @@@@ @@@@@@@@@@ @@@@@@@@@
@@@@@@@@@@@ @@@ @@@

@@@@ @@@@ @@@ @@@ @@@@ @@@ @@@
@@@ ®@@ @@@ @@@@@@ @@@

@@@@ @@@@®@®®®®@@®@@@@@@@@ @@@@@@ @@@@@@ @@@

)))
/♦ this is 14.c ♦/

/»

Fileserver prototype - TRANSPORT

Module "14.c"

NESTAR CONFIDENTIAL

This file contains the implementation of a simple but efficient
subset of the XNS Tranport Protocol designed for dedicated servers.
It's characteristics are:

♦ Sequenced Packet Protocol only
♦ Multiple simultaneous connections
♦ Supports Arcnet and Token Ring for datal ink level (L2)
♦ Half duplex transmission only on each connection
» Does not support system-packet connection
» Does not support gateway routing
» Does not support out-of-sequence packet processing
(Implies a server that does multiple receives)

♦ Supports selective socket listening, but not socket
demultiplexing. Any incoming connection can be returned
to any request.

Some of these restrictions might be removed without excessive effort,
but they do not affect operation of the server.

Note that the fact that packets are processed in the order in which
they are received both makes the implementation simpler and matches
the inabi l ity of the TI Token Ring chipset to provide out-of-sequence
packet processing.

»/

/♦

Change 1og

02/XX/85 L. Shustek

O2/XX/05 J . Wh i tne 1 1

10/29/85 L. Shustek

11/30/85 L. Shustek

1/23/86 L. Shustek

1/24/86 L. Shus t ek

1/28/86 L. Shustek

2/ 7/86 L. Shustek

2/13/86 L. Shustek

2/20/86 L. Shustek

2/22/86 L. Shus t ek

2/25/86 L. Shus tek

Initial design document.
Iterations and refinement of

Started coding, for toy fi les
Resume coding. Start debuggi
Resume debugging.
Fix assignment of saved buffe
Log incoming connects as uncl
Major change to incoming pack
to deal with delayed duplicat
Level 4 now keeps track of a1
Delay connect-message ack unt
been consumed, to avoid deadl
Add support for short-packet-
primari ly to be able to talk
For Intel processors, use an

of C to reverse XNS header wo
Al low zero-length messages.

design document,

erver.

ng.

r pointer for 14_gotbuf.
aimed packets unti l the openrcv
et processing and rb queuing
es of initial connections.

1 rbs with open connections,
il the incoming packet has
y embrace clogging buffers,
only connections,
to App1e]['s.
assembly routine instead
rds .

Required extra boolean in

)
3/19/86

4/10/86

4/15/86

)
L. Shustek

L. Shustek

L. Shustek

parmlist of 14_fi1 1pkt();
Up and running on the 68000 now; almost no changes!
Fix padding of packets to even number of bytes.
Al low connect with zero-length message.

Comment out the pktsize trace entry.
Crank down timeouts to reasonable production values.

)

■♦/

#inc1ude "exec.h"
^include "mon.h"
#inc1ude "14.h"
^include "14private.h'

/♦ Realtime exec symbols ♦/
/» Debugging monitor symbols ♦/
/» Public L4 symbols ♦/
/♦ Private L4 symbols and variables »/

#define L4GL0BALS
jfinclude "Mcounts.h" /» Al locate L4 counters ♦/

)))

On cal ling Level 4 Transport Routines

The publ ic Level 4 routines are as fol lows

14_1nit ()
14_term1nate ()
14_11sten (wks)
14_unl 1sten (wks)
14_connect (rb)
14_openrcv (rb)
14_sendmsg (rb)
14_rcvfnsg (rb)
14_cl1sconn (rb)
14 abort (rb)

Initialize 1 eve 1 4

Terminate level 4

Register a wel l-known socket
Unreglster a wel l-known socket
Establish an outgoing connection
Walt for an Incoming connection
Send a message

Receive a message
Disconnect the connection

Abort the connection

Most of the L4 routines are passed only a single argument, which is the
address of the cal lei—al located L4 Request Block (L4RB), Al l Input and
output parameters are exchanged Inside the L4RB. See the individual
routine descriptions for the detai ls of what 1s expected and returned.

The "status" field of the L4RB Is always valid, and indicates the state of
the connection and/or the previous command. The possible values are:

14st uncon

14st busy

14st done

There Is no connection established.

Either there never was one, or a previous connection
was terminated because of a cal l to 14_d1sconn,
14_abort, or an unrecoverable error.

A previous command Is stil l In progress. No cal ls tc
LeveM routines for this rb are valid except for
1 4 abort.

The previous command has completed successful ly.
The connection is sti l l established.

There is a class of routines which accomplish their task immediately and
status Is valid upon return. An example Is "14_11sten" which establ ished
a wel l-known socket to l isten on.

The other class of routines may not complete immediately, and depend on
subsequent hardware Interrupts. Those routines return "in progress"
status in the L4RB. When the Interrupt which completes the command
occurs, the status is changed to one of the other status values and the
cal ler's Asynchronous Notification Routine (ANR), whose address Is in the
L4RB, is cal led with the address of the L4RB as Its only parameter.

Note that the ANR Is cal led from the Interrupt environment, so It should
execute quickly and be extremely circumspect as to the use of global data
structures. You may need to disable Interrupts during non-ANR code which

^ch data structures to keeo ANR routines from executing. ^access such data structures to keep ANR routines from executing
routines may not cal l any L4 routines.

It is possible that a routine which usual ly cal ls an ANR may be able to
complete without waiting for an interrupt. In that case the ANR is cal led
directly from the routine which initiates the command, after which the
command routine wi l l return. Beware of subtle timing of the interrupt
which cal ls the ANR when writing the code which checks for completion of a
command. Aren't asynchronous systems fun?

The detailed descripion of the input/output parameters and behavior of
each routine is located at the entry point to the routine.

*/

)))

Notes on the implementation

Header notes

1. The fol lowing is the ful l Internet Header and a discussion of the
fields. Some of this information is in the silver book ("Internet Transport
Protocols", a Xerox System Integration Standard) and is rehashed here.
Other parts represent Nestar-specific fields and uses.

a. The header format, not included Arcnet or Token-ring datalink headers:

0 1 15

-4 1 sys i d := $FE garbage cnt

-2 1 packet number fragment number

0 1 Checksum

2 1 Length

4 1 Transport Control | Packet Type

6

8

1
+

1

Dest i nat i on

Network

10

1 2

1
+

1

Des t i nat i on

Host

14 1

16 1 Destination Socket

18

20

1
+

1

Source

Network

22

24

1

1

Source

Hos t

26 1

28 1 Source Socket

30 1
1

Level 4 header

(see below)

Network Layer

(Leve1 3)

+ <-

I
I

)))
i. Sysid - The Datapoint-administered system protocol identifier.

The value assigned to Nestar protocols is FE.
ii. Garbage cnt - The count of extra bytes that were added at the

end of the packet for data 1ink-dependent padding.
ii i. Packet number - A sequential packet number used for packets

fragmented by gateways.
iv. Fragment number - The fragment number within a packet, used for

packets fragmented by gateways.

a. Checksum - Checksum of level 3 packet. FFFF means not checksumed.
b. Length - Length of Internet packet including checksum.
c. Transport Control - For use by internetwork routers. Always 0 for clients.
d. Packet Type - Type of Level 4 packet being sent. Types include 5 for

Sequence Packet.
e. Network Addresses - A network address consists of three parts. The Host

Number is a unique in al l space and time 48 bit address for a station .
The Network Number designates which individual network of the Internetwork
the station is attached too. Socket number is a bidrectional structure

capable of sending and recieving packets at the same address. Certain
sockets are "wel l-known", which means they are known by other stations.

The Source Network Address is the address from which the packet originated,
The Destination Network Address is the address to which the packet must be
de 1. i vered.

0 1 15
+

30 1
+

32 1
+

34 1
+

36 1
+

38 1
+

40 1
+

42 1

Source Connection Id |
+

Destination Connection Id I
+

Sequence Number | Sequenced Packet
+ Protocol (Level 4)

Acknowledge Number |
+

Al location Number | I
+ < +

I
I Level 5 data I

f. The Conn Control consists of four bits (0 - 3) that control the
action of the protocol and four bits (4 - 7) that are unassigned and
should be 0. The System Packet bit (bit 0) indicates that this packet
contains no data and does not consume a sequence number. The Send
Acknowledgment bit (bit 1) indicates the receiver should send back
an acknowledgment. The Attention bit (bit 2) indicates that the
sender desires immediate notification that this packet arrived. Only
1 byte of data can be included in a packet with the Attention bit set.
The End Of Message bit (bit 3) indicates the boundry of a message.

g. The Datastream Type is a level 5 type passed in the level 4 header
h. The Connection Ids are unique Identifiers al located by each machine at

the beginning of a connection to uniquly identify the connection.
i. The Sequence Number counts packets sent during a connection. Each

direction has its own sequence number.
j. The Ackowledge Number specifies the sequence number of the first packet

which has not yet traveled in the reverse direction.
k. The Al location Number specifies the sequence number up to and including

which packets wi l l be accepted from the other end. Said another way,
one plus the difference between the A1 location Number and the
Acknowledge Number indicates the number of packets that may be
outstanding in the reverse direction.

)))
2. Migration. Migration is process of moving from the wel l-known socket
used to establ ish to connection to a temporary ephemeral socket number.
There are two things that migrate from a wel l-known socket to a ephemeral
socket: The socket number of the 14 doing the open_recv in the request
block and and the same socket number in the packet(s) coming in for that
connection. The open_receiver cannot do it unti l the connector is
informed that the change has taken place, in order to handle retries of
the connect request. Furthermore, the open_receiver must handle packets
on the wel l-known socket unti l the sender sends a packet on the ephmeral
socket the open_receiver has moved the connection to. So we see:

C e_wks -->0R
e_wks -->

< e_e
e_e >

So the connector must migrate the connection at the point an ack from the
receiver comes back with the ephemeral socket. And the open_receiver
cannot migrate until the connector sends a packet on the ephemeral socket.
So the proper place to do the migration for the connector is on the
reception of a packet with a non-we1 1-known socket. The open_receiver
needs to do it when a packet is received back from the connector on a
wel l-known socket. Note we can look at the two places of migration as the
open_receiver's idea of what to send to the other end (for the rb) and
what to receive from the other end (for the packet).

Our original IBMPC level 4 (CWP's) migrates the rb end when a packet comes
in for an rb in the state conn_accept_wait. It migrates the other end as
soon as open_recv receives a packet. Retries are apperantly not al lowed
on connection (i.e. they either get assigned to an open_recv or get
tossed).

An interesting question here is what about multiple open_receives on the
same socket. Once a packet matches up with an rb, how are retries of
that packet to match up with that rb and not some other rb doing an
open_recv? Obviously, matching of packet headers depends on the state the
rb is in. We may not want to al low multiple open_recvs on a single socket.

3. The distinction between the datal ink (arcnet) address from which
packets are received and the "source host" XNS address must be maintained
so that connection to stations through a gateway wi l l work. It's real ly
simple: al l the XNS processing is based on XNS addresses, but the arcnet
address used at the last minute is from the datal ink address field of the
RB.

4. Our level 4's always set the ack request bit of a connection. This
wi l l cause the open_receiver to generate a piggy-backed ack if a send_ms9
is done fol lowing the open_recveive or a system packet ack if a recvmsg
or ack_now (an optimization for cases where neither a send_msg or
recv_mesg is done soon) is done. Ack request is also set when EOM is set.

Internal Structure Notes

1. Request B1ocks

The repository for information about a connection is cal led a Request
Block (RB). In addition to the externally-visible "status" field which
gives completion information to the cal ler, there is an internal "state"
variable which indicates the internal phase of the process. Note there is
not necessari ly a value for "state" for each internal phase, but only
phases during which the processing for the rb might be suspended awaiting

)))
an Interrupt event.

2. The status of RBs

Al location and deal location of RBs is done by the cal ler. While an RB
has been passed to LeveM to execute a command the status variable value
is "14st_busy". Whenever LeveM is not executing, each RB in its care
(in the "14st_busy" state) is on one of fol lowing queues:

waitbuf_list RBs waiting for a free transmit buffer
waitpkt_list RBs connected and waiting for a packet to come in
waitcon_list RBs not yet connected and waiting for a connect

packet to a wel l-known socket.

These lists are doubly linked with a head and tail pointer. The double
linking is so that deletions from the middle of the waitpkt list when the
packet arrives is quick. Insertions are made at the tai l so that the RBs
are processed in FIFO order coming off the waitbuf l ist.

In addition, any RB which has a connection established is also registered
in the connection table. If the RB is waiting for an incoming packet,

the rb.state indicates what sort of packet it is waiting for, and the
the RB is on the waitpkt_list. The connection table is used to find the
RB when an appropriate packet arrives, but the waitpkt_list is used by the
timer interrupt to see if a timeout should be triggered because the RB has
been waiting too long.

3. Internal RB state

There is a single rb->state variable, plus some associated flags.
See the declarations in Mprivate.h for more information about the
states.

The sequence of state transitions is roughly as shown in the fol lowing
diagram. Note that an RB may remain in some of the states through
several interrupts in order to get it's job done (such as st_sending when
there are multiple packets to go out) or may skip a state entirely if it
is unnecessary (such as st_sendackd if there is no ack owed.)

st idle

14_connect
> st connectg > st ackwait > st idle

A I
I more to send |

(ret ry)

I
I

14_sendmsg V V I
> st sending > st ackwait > st_idle

14_openrcv
> st connwait > st idle

)))

14 rcvmsg

ackreq
& ! eom

■> st pktwai t
I

I
■> st sendackr

I connect ack
■> st sendackc •> st idle

-> st idle

14_di sconn
> st sendackd -> s t idle

4. The absence of pol ling

This implementation of Level4 is interrupt-driven and there is no pol ling
for events. In addition, the separate lists of RBs awaiting events are
designed to minimize searching for RBs so that it is efficient even with a
large number of active connections in progress. A hash table is used to
find the RB to which an incoming packet should be assigned, so that too
is fast.

5. Management of timeouts

In addition to timeouts for RBs on one of the waiting l ists, incoming and
outgoing packets may have to be timed out with the aid of interrupts from
a hardware timer. There are two general schemes that could be used:

a. Keep a time-ordered queue of timeout events. The soonest event on the
queue is at the head of the l ist, and the hardware timer is programmed to
interrupt at that time.

b. Each event contains a countdown timer word. The hardware timer is
programmed to interrupt periodical ly, at which time the countdown word for
each event is decremented. If a countdown word reaches zero, a timeout
has occurred.

The characteristic of timeouts as used by Level4 is that the initiation of
a timeout interval is a very frequent event (every time a packet is
expected, for example), but timeout intervals are long and the occurence
of a timeout is rare. Although the second scheme for handling timeouts
is a violation of the non-pol ling dictum, it is much more efficient
because it avoids insertion and deletion in an ordered l ist when timeout
intervals are establ ished and cancel led.

To reduce the overhead from the periodic interrupt, the period is chosen
as about 1/2 or 1/3 of the minimum timeout value. It can't be the minimum
timeout value because the interrupt is asynchronous, and specifying a
timeout of 1 means that it might go to zero in an arbritrari ly smal l time.
An interrupt period of about 200 msec seems right, and results in a
tolerable overhead (1 msec, say, out of 200 = 0.5%) .

6. The management of interrupts

The Level 4 interrupt routines which are described in the next section
must be delayed if Level 4 is currently active because they are part of
Level 4 and the same data structures (RBs, waiting l ists, etc.) are
manipulated. The global Level 4 flag "14_busy" is used as a semaphore to

))
delay the interrupt routine, and each synchronous routine checks for a
pending asynchronous interrupt request when turning off the flag.

The result is that hardware interrupts need not be disabled at any time
during the execution of Level 4, except briefly as the busy flag is turned
of f .

The fol lowing sketch represents how interrupts are delayed:

i nt errupt()

if busy
assert: not int_pending
int_pending = TRUE
return

busy = TRUE
.... proceess interrupt
busy = FALSE
ret urn

request routine()

assert: not busy

busy = TRUE
.... process request
busy = FALSE
whi le int_pending ♦

int_pending = FALSE *
i nterrupt()

return

Note that hardware interrupts which occur during the execution of
the instructions marked with a may be processed before an earl ier
pending interrupt. This out-of-sequence processing of interrupts does
not cause any problems in L4, but should be kept in mind.

)

♦/

)))
/»-

Level 2 packet routine definitions

♦/

/♦ The fol lowing routines are entries into Level 2, cal led by Level 4 ♦/

extern faraddr 12_getbuf();

/♦ Get an empty transmit buffer and return the address of it.
If there aren't any free buffers, return NIL and cal l the
routine 14_gotbuf as an interrupt routine when there is one. ♦/

extern 12_sendbuf (/» faraddr »/);

/• Send, or queue for sending, the transmit buffer whose
address is supplied. */

extern 12_rcvre1 ease (/♦ faraddr ♦/);

/♦ Release the received packet whose buffer address is suppl ied.
It was previously provided by a cal l to 14_rcvintr.
This could cause 14_rcvintr to be cal led if another packet is ready. ♦/

extern boolean 12_init (/* &our_addr ♦/);

/* Initialize Level 2, and return our address.

Return FALSE if initialization failed. ♦/

extern 12_terminate ();

/» Terminate Level 2. ♦/

/♦ The fol lowing routines are entries into Level 4, cal led by Level 2
interrupt routines. See the commentary at each routine for more
detai 1s.

14_gotbuf (faraddr); "Have empty buffer" interrupt routine.

14_rcvintr (faraddr); "Received packet" interrupt routine.

14_timerint (); "Timer tick" interrupt routine.

*/

)))
/»■

other external routines used

■*/

/»
Move "count" bytes from a1 to a2.

For Microsoft C on the 6088, both addresses are far (segmented), so
this is a different routine than moveC).
For Microtec C on the 68000, movel()is functional ly the same as move()
but separated so that the histogram identifies packet buffer moves
separately from other moves.

»/

extern movel (/» faraddr a1 , faraddr a2, int count »/);

/♦

14_trace (int event, infol , info2);

This is a macro which records the occurence of "event" with
optional information infol and info2. If this event is
associated with an rb, infol is the address of the rb.

assert (boolean e, ♦char string);

This is a macro which asserts that "e'
or else we panic stop and display the

had better be true,
'string".

♦/

)))
/♦

boolean 14_init ()

Initialize Level 4 Transport
Return TRUE if it succeeds.

boolean 14_init ()

{
short i nt i;

for (i=0; i < MAX_SOCKETS; ++i) /* initialize al l wel l-known sockets ♦/
sockets[i] = - 1;

for (i=0; i < HASH_TABLE_SIZE; ++i) /♦ initialize the connection hash table ♦/
14_con_tab1e[i] = NIL;

/♦ The fol lowing intia 1 ization is necessary only if level 4 is
restarted, since these globals are compi lei—initialized to
the correct value.

Event counters are expected to be zeroed by someone else.
♦/

14_busy = FALSE;
waitbuf_l ist.head = waitbuf_list.tai 1 = NIL;
waitpkt_list.head = waitpkt_list.tai 1 = NIL
waitcon_list.head = waitcon_list.tai 1 = NIL;
rcvbuf_xptr = NIL; rcvbuf_rb = NIL;
rcvbuf_timer = 0;
intpending_rcv = intpending_xmit = intpending_timer = FALSE;

/♦ Initialize level 2 and return »/

return 12_init (our_addr);
)

/♦

14_terminate ()

Terminate Level 4 Transport

*/

14_terminate ()

{
12_terminate (); /* just terminate level 2 ♦/
)

)))
/♦

14_1i sten (wks)

short int wks;

Al low incoming connections on the specified wel l-known socket.
Return immediately without executing an ANR.

If no more listen sockets are available, generate an internal error.

♦/

14_1i sten (wks)

short int wks;

{ short int i ;

for (i=0; i < MAX_SOCKETS; ++i) /♦ see if is already being l istened on »/
assert (sockets(i] != wks 14_1isten 1"); /* error if so */

for (i=0; i < MAX_SOCKETS; ++i) { /♦ find a free socket slot */
if (socketslil == -1) {

sockets[i) = wks; /♦ and use it */
return;)

)
assert (FALSE 14_1isten 2"); /* no free l isten socket slots »/
)

/♦

14_unlisten (wks)

short int wks;

Disal low incoming connections on the specified wel l-known socket.
Return immediately without executing the ANR.

»/

14_unl isten (wks)

short int wks;

{ short int i;

for (i=0; i < MAX_SOCKETS; ++i) {
if (socketsMl == wks) (/* if the socket matches, »/

socketsiil = -1; /* mark it free */
)

)

}

)))
/♦

14_connect (&14rb)

Start a connection to a remote station by sending an initial message.

Inputs are the fol lowing 14rb fields:

ph.dsthost = the 6-byte destination station address
ph.dstskt = the 2-byte destination wel l-known socket
sndptr = a pointer to the connect message to send
sndlength = the length of the connect message

sndtype = the 1-byte type of the connect message
status = 14st_uncon to indicate this is an unused rb
arcnet = TRUE if this is an arcnet station, FALSE for token ring

anr = the function to cal l when the connect is complete

Al l other rb fields must be zeroed!

Output is the status field of the 14rb, as fol lows:

status == 14st_uncon The connection failed.
status == 14st_done The connection succeeded and the l ink

is establi shed.

Unti l the command is complete the status field wil l be 14st_busy.
The ANR routine whose address is in the 14rb wi l l be cal led when

the status is changed to one of the above.

14_connect (rb)

register struct 14rb ♦rb;

{
short int hash_index; /♦ index into connection hash table ♦/

14_t race(t r_14connect,rb,
eph_socket); /♦ log the connect cal l ♦/

++14cnt_connect; /♦ count it as an outgoing connection ♦/
++14cnt_sendmsg; /♦ count it as a message ♦/

assert (rb->id == RBid, "14_connect 0");
assert (rb->status == 14st_uncon,"14_connect 1");
assert (! 14_busy,"14_connect 2");
assert (rb->snd1ength>=0, "14_connect 3");

Mbusy = TRUE; /♦ 14 is busy ♦/
rb->status = 14st busy; /♦ command is in progress on this rb ♦/

rb->state = st_idle; /♦ force idle state ♦/

/♦ Link this rb into the connection hash table ♦/

hash_index = hash_addr(rb->ph.dsthost);
rb->conl ink = 14_con_table [hash_index]; /♦ add it at the head ♦/
14 con table (hash index] = rb;

)
/♦ start sending ♦/

14_i n i tph(rb);
rb->send_ack = FALSE;
rb->ph.dtype = rb->sndtype;
rb->ph.dstid = 0;
rb->ph.maxpkt = MAXPKT_LONG;
rb->first_seq = 0;
rb->snd_count = 0;
rb->bufcursor = rb->sndptr;
rb->ph.al 1no = rb->ph.seqno + 100;
rb->bytes_left = rb->snd1ength;
rb->state = st_connectg;
M dosend(rb, 12 getbuf());

))
♦ initialize the packet header ♦/
♦ no special ack with eom ♦/
♦ copy datastream type ♦/
♦ destination id is unknown */
♦ offer long packet support »/
♦ save our starting sequence number */
♦ no message retries yet ♦/
♦ initialize cursor to start of buffer */
♦ arbitrary large al location number »/
» amount to send ♦/
♦ put us in the connecting state */
♦ process send unti l blocked */

14_exit(); /* turn off 14_busy flag and process pending interrupts */
)

)))
/♦

14_openrcv (iMrb)

Wait for an incoming connection for any wel l-known socket
we are listening to.

Inputs are the fol lowing Mrb fields;

anr = routine to cal l when a message is incoming
status = 14st_uncon

Al l other rb fields must be zero.

When a connection has been received and an ack sent, the ANR

routine wi l l be cal led. When that occurs, 14_rcvmsg
should be cal led to supply a buffer for the message.

Outputs are the fol lowing rb fields:

status = 14st_done
ph.dsthost = the 6-byte host address of the other station

♦/

14_openrcv (rb)

register struct Mrb ♦rb;

{
14_trace(tr_l4openrcv,rb,0); /♦ log the cal l to openrcv ♦/

assert (rb->id == RBid, "M openrcv 0");
assert (rb->status == 14st_uncon ,"14_openrcv 1");
assert (! 14_busy,"14_openrcv 2");
assert {rb->state == st idle, "14_openrcv 3");

Mbusy = TRUE; /♦ 14 is busy ♦/
rb->status = 14st_busy; /♦ command is in progress on this rb ♦/

if (rcvbuf xptr /♦ if there is a valid packet waiting ♦/
&& rcvbuf~rb == NIL /♦ and not assigned to anyone ♦/
&& rcvbuf_xpti—>dstskt < MAX_WKS){ /♦ and it is a new connection ♦/

rcvbuf_rb = rb; /♦ grab the packet ♦/
14_newconn(rb); /♦ then process it now ♦/
)

else { /♦ There isn't an incoming connection avai lable.
Put us on the l ist for incoming connections and return. ♦/

rb->state = st_connwait; /♦ awaiting a connection ♦/
14_add1 ist(rb, &waitcon_list);
)

14_exit(); /♦ turn off Mbusy flag and process pending interrupts ♦/
)

)))
/♦

14_sendmsg (&Mrb)

Send a message on an existing open connection.

Inputs are the fol lowing 14rb fields:

sndptr = a pointer to the message to send
sndlength = the length of the message
sndtype = the 1-byte type of the message
status = 14st_done to indicate this is idle open connection
anr = function to cal l when the send is complete

Al l other rb fields must be unchanged.

Output is the status field of the 14rb, as fol lows:

status == 14st_uncon The send failed and the connection is closed,
status == 14st_done The send succeeded and the connection is sti l l

open.

Until the command is complete the status field wi l l be 14st_busy.
The ANR routine whose address is in the 14rb wil l be cal led when

the status is changed to one of the above.

*/

I4_sendmsg (rb)

register struct 14rb ♦rb;

{
14_t race(t r_l4sendmsg,rb,

rb->ph.seqno); /♦ log the cal l to sendmsg ♦/
++14cnt_sendmsg; /♦ count it ♦/

assert (rb->id == RBid, "14_sendmsg 0");
assert (rb->status == 14st_done,"14_sendmsg 1");
assert (! 14_busy,"14_sendmsg 2");
assert (rb->state == st_idle, "14_sendmsg 3");
assert (rb->sndIength>=0, "14_sendmsg 4");

Mbusy = TRUE; /♦ 14 is busy ♦/
rb->status = 14st_busy; /♦ command is in progress on this rb ♦/

if (rcvbuf_rb == rb) (/♦ if we own a packet, discard it ♦/
++14cnt discardunx; /♦ count discard of unexpected packet ♦/
14_t race(t r_l4d i scardunx,rb,

rcvbuf_xptr->seqno); /♦ log it ♦/
12_rcvre1 ease (rcvbuf_aptr);/♦ discard the packet */
rcvbuf_xptr = NIL; rcvbuf_rb = NIL;
)

/♦ start sending ♦/

rb->ph.dtype = rb->sndtype; /♦ datastream type ♦/
rb->snd_count = 0; /* no message retries yet ♦/
rb->first_seq = rb->ph.seqno; /♦ save starting sequence number ♦/
rb->bufcursor = rb->sndptr; /♦ initial ize cursor to start of buffer ♦/
rb->ph.al lno = rb->ph.seqno + 100; /♦ arbitrary large al location number ♦/

)))
rb->bytes_left = rb->snd1ength; /♦ amount to send ♦/
rb->state = st_sendin9; /♦ put us in the sending state */
14_dosend(rb, 12_getbuf()); /* process send until blocked »/

14_exit(); /» turn off 14_busy flag and process pending interrupts */
)

)))
/♦

14_rcvmsg (8il4rb)

Receive a message on an existing open connection.

Inputs are the fol lowing Mrb fields:

rcvptr = a pointer to the message buffer
rcvlimit = the size of the message buffer

status = 14st_done to indicate this is idle open connection
anr = function to cal l when the send is complete

Al l other rb fields must be unchanged.

Output is the status field of the Mrb, as fol lows:

status == 14st_uncon The receive failed and the connection is closed,
status == 14st_done The receive succeeded and the connection is stil l

open.

Until the command is complete the status field wil l be 14st_busy.
The ANR routine whose address is in the Mrb wil l be cal led when
the status is changed to one of the above.

When status == Mst_done, the fol lowing additional fields wi l l have been set:

rcvlength == the actual length of the received message
rcvtype == the type of the received message

M_rcvmsg (rb)

register struct Mrb ♦rb;

{
14_t race(t r_l4rcvmsg,rb,

rb->ph.ackno); /♦ log the cal l to rcvmsg ♦/
++14cnt_rcvmsg; /♦ count it ♦/

assert (rb->id == RBid, "M_rcvmsg 0");
assert (rb->status == Mst_done,"14_rcvmsg 1");
assert (! 14_busy,"Mrcvmsg 2");
assert (rb->state == st_idle, "M_rcvmsg 3");
assert (rb->rcvptr, " M_rcvmsg 4");

M_busy = TRUE; /♦ M is busy ♦/
rb->status = Mstbusy; /♦ command is in progress on this rb ♦/

rb->bufcursor = rb->rcvptr; /♦ start the buffer pointer ♦/
rb->rcvlength = 0; /♦ start the cumulative length ♦/

if (rcvbuf rb == rb) { /♦ There is already a packet of data assigned to us. ♦/
M_processpkt (rb); /♦ use it ♦/
}

else { /* there is no packet yet ♦/

■♦/

)))— + ^ — e^ r*L'4'ujQ^4' «rb->state = st_pktwait;
rb->timer = T0_AWA1T_MSG;
14_addlist (rb, &waitpkt_Hst); /» wait for the initial packet */
)

/* Note that if there was an initial packet but we disarded it because it
sme11ed funny, we wil l be on the waitpkt_list with the TO_AWAIT_PKT
timeout instead of the TO_AWAIT_MSG timeout. Not perfect, but so what.

*/

14_exit(); /* turn off 14_busy flag and process pending interrupts »/
)

)))
/»

M_abort (8.14rb)

Abort the current connection.

This is for external cal lers.

14_abort (rb)

register struct 14rb ♦rb;

{
assert (rb->id == RBid, "14_abort 0");

14_busy = TRUE;
14 doabort(rb);
14_exit(); /♦ turn off 14_busy flag and process pending interrupts ♦/

/♦

14_doabort (&14rb)

Abort the current connection.

This is for internal cal lers.

•♦/

14_doabort (rb)

register struct 14rb ♦rb;

14_trace(tr_l4abort, rb, 0);
++14cnt aborts;

rb->status = 14st_uncon;
rb->state = st_idle;

if {rcvbuf_rb == rb) (
12 rcvrelease (rcvbuf aptr);

/♦ make a log entry ♦/
/♦ count it ♦/

14_removecon (rb);
14_purgel ist (rb, Siwai tbuf _l i st) ;
14_purgel ist (rb , 8<wai tpkt_l i st) ;
14_purgel ist (rb, &waitcon_l ist);
assert (!rb->on a l ist, "14 abort 1");

/♦ remove it from the connection table ♦/
/♦ purge from any lists it is on ♦/
/♦ purge from any l ists it is on ♦/
/♦ purge from any l ists it is on ♦/

/♦ unconnected ♦/
/♦ and idle ♦/

/♦ if we own the current incoming packet, ♦/
/♦ discard it ♦/

}
rcvbuf xptr = NIL; rcvbuf_rb - NIL;

)))
/»

14_disconn (&14rb)

Disconnect the current connection.

»/

14_disconn (rb)

register struct 14rb ♦rb;

{
14_t race(t r_l4d i sconn,rb,

rb->ph.srcskt); /♦ log the 14_disconn cal l ♦/

assert (rb->id == RBid, "14_disconn 0");
assert (rb->status == 14st_done 14_disconn 1") ;
assert (! 14_busy 14_disconn 2");
assert {rb->state == st_idle, "M disconn 3");

assert (!rb->on_a_list, "14_disconn 4"); /♦ we should be on no lists ♦/

if (rcvbuf_rb == rb) { /♦ if we own a packet, discard it ♦/
++14cnt_discardunx; /♦ count discard of unexpected packet ♦/
I4_t race(t r_l4di scardunx,rb,

rcvbuf_xptr->seqno); /♦ log it ♦/
12_rcvre1 ease (rcvbuf_aptr);/♦ discard the packet ♦/
rcvbuf xptr = NIL; rcvbuf_rb = NIL;
)

Mbusy = TRUE; /♦ 14 is busy ♦/
rb->status = 14st_busy; /♦ command is in progress on this rb ♦/

if (rb->we_owe_ack) { /♦ we owe him an ack first ♦/

rb->state = st_sendackd; /♦ "we are sending an ack for disconnect" ♦/
assert (rb->bytes_left == 0, "14_disconn 6");
14_dosend(rb, 12_getbuf()); /♦ try to send it ♦/
}

else { /♦ we can disconnect right now ♦/

rb->status = 14st_uncon; /♦ we are unconnected */
rb->state = st_idle; /♦ and idle ♦/
14 removecon (rb); /♦ remove it from the connection table ♦/
14_t race(tr_14disconned,rb,

rb->ph.srcskt); /♦ log the "disconnnected" anr cal l ♦/
(♦rb->anr)(rb); /♦ cal l the "disconnected" ANR ♦/
)

14_exit(); /♦ turn off 14_busy flag and process pending interrupts */
)

)))
/*■

14_e X i t ()

Exit from a public Level 4 routine.

Check for any pending interrupts that were postponed.

*/

I4_ex it ()

{

I4_busy = FALSE;

/* We must loop unti l al l the pending flags are off because
processing a delayed interrupt sets 14_busy and a interrupt
which occurs at that time would itself become pending and
not be caught if we had already looked at that flag and
found it false. (Thanks, Jerry!)

»/

whi le (intpending_rcv | | intpending_xmit | | intpending_timer) {

/♦ Note that because we do these checks whi le interrupts are enabled
and the 14_busy flag is off, there is a smal l chance that an
interrupt can occur right now and be processed out of order.
But there is no harm in that, so we don't spend the time to disable

*/

if (intpending_rcv) { /» pending receive interrupt */
intpending_rcv = FALSE;
14_rcvintr (intpending_bufp);
)

if (intpending_xmit) { /* pending transmit interrupt */
intpending_xmit = FALSE;
14_gotbuf (intpending_outbuf);
}

if (intpending_timer) { /♦ pending timer interrupt */
intpending_timer = FALSE;
14_t i mer i nt();
)

) /♦ wh i1e */

)))
/*

14 newconn (&Mrb)

The current packet is an incoming connect that can be assigned to
this RB, whose last cal l was to 14_openrcv.

Record the connection data, assign an ephemeral socket and conid,
and note a special ack to be sent if it is a one-packet message.
Also record whether the "long packets ok" bit is set in the header.

Remember that although the ackreq bit is usual ly set with eom, we don't
honor it so that the ack wil l piggyback on the next message. The "special
connect ack" is an ack sent because of an ackreq with eom if it is the
first message of a connection and it is a single-packet message. If it is
a multi-packet connect, the first packet wil l have the ackreq bit but not
the eom bit set, and thus generate the ack from 14_processpkt, and so we
cancel the request for the special ack.

released this packet,
two stations who

happens is that both stations
initial connect packets

ack unti l the 14 rcvmsg cal l hasNote too that we do not send the special _
This is important to avoid a deadly embrace with

are connecting to each other almost simultaneously. What
I their incoming buffers clogged with

to send each other the ack whichbut

have

are trying
w 1 1 1 al low them to be processed and unclogged

■*/

14_newconn (r.b)

register struct 14rb »rb;

{
short int hash_index;

++14cnt_openrcv; /♦ count an incoming connection */

hash index = hash_addr(rcvbuf_xptr->srchost); /* add this rb to the end of the */
rb->conl ink = 14_con_table (hash_index) ; /♦ connection table */
14_con_table [hash_index] = rb;

14 initph(rb); /* initial ize our packet header for sending ♦/
rb->ph.dsthost[0]
rb->ph.dsthost[1]
rb->ph.dsthosti2]
rb->ph.dstid =
rb->ph.dstskt =
rb->rcvtype =
rb->ph.maxpkt =

rcvbuf_xptr->srchost[0]
rcvbuf_xptr->srchost[1]
rcvbuf_xpt r->srchost[2]
rcvbuf_xptr->srcid; /*
rcvbuf xptr->srcskt; /*

/* copy his address */

incoming src id is our dst id ♦/
incoming src skt is our dst skt */

rcvbuf xptr->dtype; /* preview the datastream type ♦/
rcvbuf xpti—>maxpkt; /* copy MAXPKT LONG bit */

rb->status = 14st_done;
rb->state = st idle;
rb->send_ack = TRUE;
14_t race(t r_l4connect rcvd,rb,

rb->ph.srcskt);
(*rb->anr)(rb);
)

/* we are done with the openrcv */
/* and are now idle */
/» flag to send ack with eom ♦/

/» log the "connect rcvd" anr cal l ♦/
/* cal l the "openrcv" ANR »/

)))
/»

14_dosend C&Mrb, outbuffer)

The rb is currently in one of the fol lowing sending phases:

st_connectg: sending the first packet of an intial connect message

st_sending: sending packets of a message

st_sendackr: sending an ack because we got a packet with the
ack-request bit on and the end-of-message bit off.

st_sendackc: sending an ack because the only (or last) packet of an
incoming connection has arrived.

st_sendackd: sending an ack because of an 14_disconn cal l.

The parameter "outbuffer" is the address of a packet buffer if one is
avai lable, or NIL if there are none at the moment.

This is cal led for the initial attempt at sending, and by the interrupt
routine which discovers a new transmit buffer if this rb was on the
wait-for-buffer list.

14_dosend (rb, outbuffer)

register struct 14rb ♦rb;
faraddr outbuffer; /» address of the arc-format packet buffer */

/♦ Wait for a buffer if we weren't given one. */

if (loutbuffer) (/♦ if we didn't get a buffer »/
14_addlist (rb, &waitbuf_list); /* put us on the list for xmit buffers »/
return;
)

/* We now have a buffer to send with. »/

switch (rb->state) {

case st_connectg: /» Send the initial packet of a connect message */

14_fi l lpkt (rb, outbuffer,
/* ackreq */ TRUE, /♦ syspkt */ FALSE); /» send with ack request */

goto ackwait; /* and wait for the ack */

case st_sending: /* Send, or continue sending, a message ♦/

assert (rb->bytes_left>=0, "14_dosend 1");

do (/* send as much as we can */
14 fil lpkt (rb, outbuffer.

)))
/♦ ackreq »/ FALSE, /♦ syspkt »/ FALSE); /* fil l packet and queue it for transmit »/

} whi le (rb->bytes_left>0 && (outbuffer = 12_getbuf()));

if (rb->bytes_left == 0) { /♦ last packet was queued ♦/

ackwait: /» or first packet of connect was sent »/
rb->state = st_ackwait; /» await ack ♦/
assert (rcvbuf_rb != rb, "14_dosend 2"); /» we better not own a packet »/
/♦ If he sends while we are sending, we could own a packet. This assertion
should probably be removed after debugging. */
rb->timer = TO_AWAIT_ACK;
14_addlist (rb, &waitpkt_l ist); /* put us on the packet-wait l ist ♦/
)

else { /♦ must wait for more buffers ♦/
14_addl ist (rb, 8.wa i tbuf_l i st) ; /* put us on the l ist for xmit buffers */
/* remain in the sending state ♦/
)

break;

case st_sendackr: /» sending a requested ack in the middle of a message ♦/

14_fi1 1pkt(rb, outbuffer,
/* ackreq */ FALSE, /♦ syspkt »/ TRUE); /♦ send the ack ♦/

rb->state = st_pktwait; /* go back to wait for more packets ♦/
rb->timer = TO_AWAIT_PKT;
14_addl ist (rb, 8.wa i tpkt_l i st) ;
break;

case st_sendackd: /♦ sending an ack because we are disconnecting */

14_fi1 1pkt(rb, outbuffer,
/» ackreq »/ FALSE, /♦ syspkt »/ TRUE); /* send it ♦/

rb->status = 14st_uncon; /♦ we are unconnected */
rb->state = st_idle; /* and idle */
14 removecon (rb); /♦ remove it from the connection table */
14_t race(tr_14disconned,rb,

rb->ph.srcskt); /* log the "disconnnected" anr cal l ♦/
(♦rb->anr)(rb); /* cal l the "disconnected" ANR */
break;

case st_sendackc: /* sending an ack because of an incoming connect */

14_fil lpkt (rb, outbuffer,
/* ackreq */ FALSE, /* syspkt */ TRUE); /* send an ack */

rb->status = 14st_done; /* now receive is done */
rb->state = st_idle; /* and we are idle */
rb->send_ack = FALSE; /* no more special ack with eom ♦/
14_t race(t r_l4rcvanr,rb,

rb->ph.srcskt); /* log rcvmsg done »/
(»rb->anr)(rb); /* cal l his ANR routine */
break; •

default; assert (FALSE, "14_dosend 4"); /* wrong state in cal l to dosend */

) /* switch */

} /* 14 dosend */

)))
/♦

M i n i tph (rb)

Initialize the transmit packet header.

This is cal led both in preparation for an outgoing connection
and when an incoming connection arrives.

14_initph (rb)

register struct Mrb ♦rb;

{
rb->ph.sysid = NESTAR_SYSID;
rb->ph.chksum = Oxffff;
rb->ph.ptype = 5;
rb->ph.srcid = src_conid++;
rb->ph.srcskt = eph_socket++

/» Nestar's protocol id */
/♦ checksum = -1 means "no checksum" ♦/
/* SPP = sequenced packet protocol */
/* use up the next source connection id */
/♦ use up the next ephemeral socket */

if (eph_socket > MAX_WKS+1000) eph_socket = MAX_WKS+1;
rb->ph.seqno =0;
rb->ph.ackno = 0;
rb->ph.srchostt0J = our_addr[0];
rb->ph.srchost(11 = our_addr[l];
rb->ph.srchost[2] = our_addrl2] ;
)

/♦ start sending sequence number 0 */
/* expect to receive seq. number 0 */

/* move our source address ♦/

)))
/♦

I4_processpkt (&14rb)

Process an incoming packet whose XNS header is at rcvpkt_xptr.

If the sequence number is not right, discard it.
If it's ok, use the data.

If it's the end of the message, cal l the ANR.

This is cal led from 14_rcvmsg without us on any waiting list,
and from the interrupt routine 14_rcvintr with us on the pktwait_list.
We return on the pktwait_list if we must wait for more packets for this
message.

♦/

14_processpkt (rb)

St ruct 14rb ♦rb;

{
short int length;
int conctl ; /♦ connection control byte of the packet ♦/

conctl = rcvbuf_xpti—>conctl ; /♦ remember the control byte ♦/

if (conctl & syspkt /♦ if not a data packet ♦/
1 I rcvbuf_xpti—>seqno != rb->ph.ackno) { /♦ or wrong packet number ♦/

++14cnt_discardseq; /♦ count discard ♦/
14_trace(tr_l4discarddat,rb, /♦ whi le waiting for data packets ♦/

rcvbuf_xpti—>seqno); /♦ log it ♦/
12_rcvre1 ease {rcvbuf_aptr); /♦ discard the packet ♦/
rcvbuf_xptr = NIL; rcvbuf_rb = NIL;
}

else { /♦ we can use this packet ♦/

14_trace{tr_14pktused,rb,rcvbuf_xptr);/♦ log the use of the packet ♦/
++rb->ph.ackno; /♦ accept the sequence number ♦/

if (rb->rcvptr == rb->bufcursor) /♦ if it's the first packet of a msg ♦/
rb->rcvtype = rcvbuf_xptr->dtype; /♦ record the type ♦/

length = rcvbuf_xptr->1ength - 42; /♦ length of user data ♦/
assert (rb->rev 1ength + length <= rb->rcvI imit,

"14_emptypkt 1"); /♦ receive buffer is too smal l ♦/
movel (/* move the data ♦/

(faraddr) rcvbuf_xptr + sizeof(struet pkthdr) , /♦ from ♦/
(faraddr) (rb->bufcursor), /♦ to ♦/
1ength);

rb->bufcursor += length; /♦ step to the next position in the buffer ♦/
rb->rcv 1 ength ■♦•= length;
rb->we_owe_ack = TRUE; /♦ we now owe an ack ♦/

12_rcvre1 ease (rcvbuf_aptr); /♦ release the packet ♦/
rcvbuf_xptr = NIL; rcvbuf_rb = NIL;

if (conctl & eom) { /♦ if end of message ♦/

if (rb->on_a_liSt) /♦ if we were on pktwait_list ♦/
14_removeTiSt (rb. &waitpkt_list) ; /♦ we shouldn't be any more ♦/

if (rb->send ack) { /♦ if we must send special ack ♦/

)
rb->state = st_sendackc;
14_dosend(rb, 12_getbuf());
)

else {

rb->status = 14st_done;
rb->state = st_idle;
rb->send_ack = FALSE;
14_t race(t r_14rcvanr,rb,

rb->ph.srcskt);
(»rb->anr)(rb);

)

)
* switch to sending connect ack */

* send the ack ♦/

* no special ack to send */
* so receive is done */

* and we are idle */

* no more special ack with eom */

* log rcvmsg done ♦/
* cal l his ANR routine ♦/

)

) /» eom */

else if (conctl & ackreq) { /* ackreq and not end of message »/
rb->state = st_sendackr; /♦ switch to sending ack */
/* Remove the fol lowing statement if you want the last packet of a

multi-packet connection message to generate an ack. */
rb->send_ack = FALSE; /♦ don't need to send special ack ♦/

/* We must temporarily be taken off the packet-wait list because if there
are no transmit buffers we wi l l go on the buffei—wait list instead.
Fear not, 14_dosend wil l put us back on the packet-wait l ist. */

if (rb->on_a_list) 14_remove1ist (rb, &waitpkt_list);
14_dosend(rb, 12_getbuf()); /* send the ack */
)

else {
rb->state = st_pktwait;
rb->timer = TO_AWAIT_PKT;
if (!rb->on_a_list) 14_add1ist(rb,
)

/*

/*

ne i ther

so wait

ackreq nor eom ♦/
for more message packets */

8.wa i tpk t l ist);

} /♦ we can use this packet */

)))
/♦

I4_rcvintr (bufptr) Process receive interrupts.

This is cal led as an interrupt routine when a packet has been received.
The input parameter "bufptr" points to the arcnet-formatted packet.
We expect that other interrupts from the network device and timer are
di sab 1ed.

We cal l 12_rcvre1 ease (bufptr) when the received packet can be discarded.
It could be cal led from this interrupt routine, or later from the timer
interrupt routine or non-interrupt code. We expect no other cal ls to
this interrupt routine unti l the packet is released.

Note that this routine might also be cal led when 12_rcvre1 ease() is
cal led by anyone else and there is another incoming packet pending.
If it is cal led from within L4, then the 14_busy flag wil l be on and
the "interrupt" wil l be postponed. That it why code such as
"12_rcvre1 ease(bufptr); bufptr = NIL;" doesn't cause a buffer pointer
to the new packet to be destroyed. In other words, L4 doesn't cal l itself
recursively as far as incoming packets are concerned.

This routine does the fol lowing:

1. Decode arcnet format and setup the global pointer "rcvbuf_xptr" to
point to the XNS packet embedded within.

2. Check tha.t it is a valid XNS packet. Discard it if it is not.

3. Search the list of RBs waiting for packets, looking for one which
can be given the packet. There are two cases:

a. The packet is a new connection, and the RB is waiting for a
connection. Cal l the ANR routine.

b. The packet is part of an existing connection, and the socket
and connection ids match. If there is a buffer, move the data.

If there is no buffer yet, attach the packet and wait.

4. If no el igible RB is found, setup a timer so that the packet is
discarded if no RB claims it in a short time.

Remember that we are running as an handler from the hardware interrupt
routine, so be discreet! Make no cal ls to library routines.
Even "assert" cal ls that wil l print a message might be dangerous, but
we al low ourselves that because if the assertion fai ls the system should
be crashed anyway.

ARCNET note: The only parts of Level 4 which know about the format of
Arcnet packets are the beginning of 14_rcvintr() and al l of 14_fi 1 1pkt().

14_rcvintr (bufptr)

fararcaddr bufptr; /♦ pointer to the packet buffer that just arrived ♦/

{
int length; /* number of data bytes, including XNS header */
i nt i ;

.*/

)))
int conctl ; /♦ connection control byte for the packet »/

struct 14rb ♦rb; /* for looking for the rb to assign a packet to */

If (14_busy) {

/♦ We must postpone this Interrupt because 14 Is already busy ♦/

assert (!1ntpendlng_rcv, "14_rcv1nt 0");
14_trace(tr_l4rcv1ntpost,0,bufptr); /♦ log the postponed Interrupt */
1ntpend1ng_rcv = TRUE;
1ntpend1ng_bufp = bufptr; /♦ save the buffer pointer ♦/
return;
)

assert (! 1ntpend1ng_rcv, "14_rcv1nt 1");

14_busy = TRUE;

/♦ Process the Incoming packet Interrupt */

assert (rcvbuf_xptr == NIL, "I4_rcv1ntr 2");

/♦ Decode short vs. long packet formats and setup packet variables.
Only this smal l part of 14_rcv1ntr Is dependent on Arcnet packet
format.

*/

rcvbuf_t1mer = 0; /* turn off receive packet timeout */
If (bufptr->count1) { /♦ short packet format ♦/

length = 256 - bufptr->count1;
rcvbuf_xptr = (farphaddr) ((faraddr) bufptr + bufptr->count1);
}

else { /* long packet format »/
length = 512 - bufpti—>count2;
rcvbuf_xptr = (farphaddr) ((faraddr) bufptr + bufptr->count2);
)

rcvbuf_aptr = bufptr; /♦ remmber the start of the whole arc packet */

/* From here down we are Independent of the format of Arcnet packets. */

14_trace(tr_14rcv1ntr,length,bufptr); /* log the Interrupt */
++14cnt_rcvpkt; /♦ count It */

/* Reverse some of the XNS fields If we are running on an (ugh) Intel
processor. We only reverse the fields that we do arithmetic on;
others that are simply compared (srcid, dstid, dsthost, etc.)
are left as Is.

Whatever fields are reversed here for Incoming packets must also be
reversed In 14_f11 1pkt() for outgoing packets.

»/

#1f Intel
finnnnf* now cal l an assemb 1 y-1 anguage routine that does them al l at once

14 revxns word (Sircvbuf xptr-> 1 ength) ;

)))
1 4_revxns_word { 8.rcvbuf _xpt i—>dstskt)
14_revxns_word (&rcvbuf_xptr->srcskt)
14_revxns_word (&rcvbuf_xpti—>seqno);
1 4_revxns_word (8.rcvbuf _xpt i—>ackno) ;
14_revxns_word (&rcvbuf_xpti—>al Ino) ;

12 reverse xns (rcvbuf xptr);
jCend i f

/♦ Check to see if it is a wel l-formed XNS packet.
Discard it if not ♦/

if {
length 8. 1 /♦ packet size is odd ♦/

I I length < 46 /♦ datal ink packet too smal l */

I I rcvbuf_xptr->sysid != NESTAR_SYSID /♦ not Nestar packet type */

I I rcvbuf_xptr->1ength < length-9 /♦ XNS packet too smal l ♦/
/» The maximum discrepancy is 9: 4 from fields not counted by XNS.

2 from rounding up odd sizes, and 3 from disal lowed arcnet sizes. */

I I rcvbuf_xptr->1ength > MAX_XNS_PKT /♦ XNS packet too large ♦/

I I rcvbuf_xptr->ptype != 5 /♦ not XNS type SPP = sequence packet protocol */

/♦ Should we also check destination the host address? */

) { /♦ bad packet! */
++14cnt_discardfmt; /* count a discard ♦/
I4_trace(tr_l4discardfmt,0,bufptr); /♦ log a discard due to bad format */
goto release;

)

if (rcvbuf_xpti—>dstskt < MAX_WKS) { /♦ what kind of socket is it for? */

/»»»♦♦♦♦*♦» It is a new incoming connection.

if (rcvbuf_xptr->seqno != 0 /♦ seqno and ackno must be zero ♦/
I I rcvbuf_xptr->ackno 1=0) {

++14cnt_discardcon; /♦ count bad connect ♦/
14_t race(tr_14discardcon,bufptr,

rcvbuf_xptr->seqno); /* log it */
goto release;) /* discard it »/

if (rcvbuf_xptr->conct1 & syspkt) { /* system packet connect !?! ♦/
++14cnt discardcon; /* count bad connect ♦/
14_t race(tr_14sysconnect,bufptr,

rcvbuf_xptr->conct1); /* log it ♦/
goto release; discard it */
}

for (i=0; i < MAX_SOCKETS; ++i) /♦ check against WKS's we want */
if {rcvbuf_xpti—>dstskt == sockets[i]) goto good connect;

14_t race(tr_14badwks,bufptr,
rcvbuf_xptr->srcskt); /♦ log the discard wks connect */

++14cnt_badwks;
goto release; /* discard if no wks match */

good connect:

)))
/» Check that this connect packet is not a delayed duplicate

for a connection already established.
*f

rb = 14_con_table [hash_addr(rcvbuf_xpti—>srchost)]; /♦ hash into connection table ♦/
whi1e {rb) {

* same ephemeral socket? */
» same source conid? »/

» yes: discard due to bad sequence ♦/
* duplicate connect »/
* log it */

if (rb->ph.dstskt == rcvbuf_xptr->srcskt
&& rb->ph.dstid == rcvbuf_xpti—>srcid) (

++14cnt_d i scardseq;
14_t race{t r_l4di scarddup,rb,

rcvbuf_xptr->seqno);
goto release;

)
rb = rb->conlink; /♦ next rb in this hash list ♦/
} /♦ while ♦/

/♦ Take the first rb off the waiting-foi—connections list, if any.
Someday we may wish to make selective assignments of connections
to RBs based on the we 1 1-known-socket and the list would be

searched for an appropriate match.
♦/

if (rb = waitcon_liSt.head) { /♦ somebody is waiting ♦/
1 4_remove 1 i st (rb , 8.wa i tcon_l i st) ;
assert (rb->state == st_connwait, "14_rcvintr 3");
rcvbuf_rb = rb; /* grab the packet */
14_newconn(rb); /♦ process the connect packet */
)

goto set_timer; /♦ wait for an openrcv or rcvmsg */

) /♦ new connection */

else { /♦ socket test for new connection ♦/

It is for a existing connection,

Search the list of rbs waiting for packets to see if
it matches anyone.

♦/

rb = 14_con_table (hash_addr(rcvbuf_xpt i—>srchost)l; /* hash into connection table »/

whi le (rb) (/* there is an rb in this hash list ♦/

if (rb->ph.srcskt == rcvbuf_xptr->dstskt /» if the packet is right socket ♦/
&& rb->ph.srcid == rcvbuf_xptr->dstid) { /♦ and right conid ♦/

/* The packet belongs to this rb. */

rcvbuf_rb = rb; /♦ assign us the packet */
conctl = rcvbuf_xpti—>conctl; /♦ remember the control byte */

if (rb->state == st_ackwait) {

/* We have been waiting for an ack for one of two cases:

1. An outgoing message was completely sent.

))
2. The first packet of a multiple-packet connect

message was sent.

)
»/

if (rcvbuf_xpti—>ackno == rb->ph.seqno) {

14_remove1iSt (rb, &waitpkt l ist);

/» we got the ack ♦/

/♦ not waiting any more ♦/

if (rb->ph.dstskt < MAX_WKS) {
rb->ph.dstid =

rcvbuf_xpt r->srcid;
rb->ph.dstskt =

rcvbuf_xptr->srcskt;
rb->ph.maxpkt =

rcvbuf xptr->maxpkt;

)

/♦ have we migrated yet? ♦/
/♦ no; do so, as fol lows: ♦/
/♦ incoming src id is our dst id ♦/

/* incoming src skt is our dst skt »/

/♦ copy MAXPKT_LONG bit. If off, we
shouldn't send long packets */

if (conctl & syspkt) {
12_rcvre1 ease (rcvbuf aptr);

/♦ if it is a system packet */
/* discard it now »/

/♦ We discard early so that the rev buffer isn't tied up during a send ♦/
rcvbuf_xptr = NIL; rcvbuf_rb = NIL;
}

if (rb->bytes_left == 0) {
14_t race(t r_l4xmi tanr,rb,

rb->ph.srcskt);
rb->status = 14st_done;
rb->state = st_idle;
(♦rb->anr)(rb);
)

else {
rb->state = st_sending;
14_dosend (rb, 12_getbuf())
}

if (conctl & syspkt) {
goto rt i;)

/* the outgoing message is done */

/♦ log the "xmit done" */
/» the sendmsg is done ♦/

/♦ cal l his ANR routine */

/* multiple packet connect ♦/
/* continue sending */

/♦ if it was a system packet ♦/
/» then we're done -- it's discarded */

if (rcvbuf_xptr->seqno == rb->ph.ackno) (/♦ if it's data and right seq */
/♦ It is also the first data pkt of an incoming message */

}

goto set_timer;
)

/♦ we got the ack ♦/

+ +14cnt_d i scardseq;
14_t race(t r_l4d iscardack,rb,

rcvbuf_xpti—>seqno);
goto release;

) /♦ ackwai t ♦/

/♦ leave the packet there - wait for a rcvmsg */

/♦ discard due to bad sequence */
/♦ whi le waiting for ack ♦/
/» 1og it »/

else if (rb->state == st_pktwait) {

/* We have been waiting for a data packet for a message.
Note that logic similar to this is in 14 rcvmsg. */

14_processpkt (rb);

goto rt i;

) /♦ pktwait */

/* process the packet and release it ♦/

)))
else goto set timer; /♦ leave packet assigned tor a later rcvmsg */

/♦ We used to discard an "unexpected" packet here if it is a system packet
or we are in one of the sending states. That doesn't work, though,

because if we are slow compared to the sender he could have sent us the
packet before we get back to the idle or pktwait state. So now we leave
the packet assigned. If it is truly unexpected, it wil l be timed out.
We might stil l be able to discard unexpected system packets early, but it
too hard to think about and wil l almost never happen, so forget it. */

) /♦ if packet belongs to this rb */

rb = rb->conlink; /♦ next rb in this hash list »/
) /♦ while rb */

) /♦ if existing connection »/

/» At this point either nobody owns up to wanting the packet,
or the RB who owns it didn't do a rcvmsg yet.
Set the timer and give somebody a whi le
to claim it before it is discarded.

It can be claimed in any of the fol lowing ways:

a. By a fresh RB doing an openrcv cal l.
b. By a connected RB doing a rcvmsg cal l.
c. By a connected RB doing some other operation while not

expecting a packet, and discovering that it owns the
incoming packet. It wi l l discard it then, rather than
waiting for it to timeout. < ?? CHECK THIS

♦/

set timer;

14 trace(tr_l4unc1 aimed,rcvbuf_rb,bufptr); /» log an unclaimed packet ♦/
rcvbuf_timer = TO_PKT_DISCARD; /» setup countdown timer »/
goto rti; !* and exit without discarding the packet ♦/

/» Release the packet because it has been used or rejected.

Note that we don't free it as early as we might.
In particular, we schedule the ack for a message first.
There's no reason for this; we could do better but it would
probably have minimal effect.

»/

re 1 ease:

rcvbuf_xptr = NIL; rcvbuf_rb = NIL;
12 rcvrelease (bufptr); /♦ discard the packet *!

/* Return from the interrupt */

rt i

I4_trace{tr_14rcvintdone,0,bufptr); /* log the interrupt done */
14_busy = FALSE;
return;

}

)))
/♦

14_gotbuf (outbuffer) Process "got a free buffer" interrupt.

This routine is cal led by a Level 2 interrupt routine to asynchronously
supply an empty transmit buffer. The circumstances are as fol lows:

1. A previous cal l to 12_getbuf returned NIL, indicating that
there were no free transmit buffers at the time.

2. The current interrupt has freed the transmit buffer whose
address is "outbuffer".

■*/

14_gotbuf(outbuffer)

faraddr outbuffer; /* the buffer that was just freed */
{
struct 14rb *rb;

if (14_busy) {

/* We must postpone this interrupt because 14 is already busy ♦/

assertC!i ntpend i ng_xmi t,"14_gotbuf 1");
/» BUG? We may have to queue multiple transmit buffers! ♦/

14_trace(tr_l4gotbufpost,0,outbuffer); /* log the got_buffer interrupt postponed */
intpending_outbuf = outbuffer; /♦ save the buffer pointer ♦/
intpending_xmit = TRUE;
return;
)

14_busy = TRUE;

assert (I intpending_xmit, "14_gotbuf 2");

/♦ Process the avai lable buffer interrupt »/

rb = waitbuf_1 ist.head; /* somebody should be waiting for it */
assert (rb != NIL, "14 gotbuf 3")
14_trace(t r_l4gotbuf,0,outbuffer)
14 removelist (rb, &waitbuf l ist)

/* log the got_buffer interrupt processed */
/♦ remove him from the l ist ♦/

14_dosend (rb, outbuffer); /* let him send ♦/

14_busy = FALSE;
)

)))
/»■

I4_t imerint ()

Level 4 timer interrupt routine.

This routine is cal led periodical ly to process various timeouts.
Al l the timeout values in the global definition section are in
units which correspond to the frequency with which this routine is
cal led. To keep efficiency high the frequency should be low --
something like 4 or 5 per second.

14_t i mer i nt()

{
struct 14rb ♦rb; /♦ for walking list of waiting rb's ♦/

if (14_busy) {

/* We must postpone this interrupt because 14 is already busy */

intpending_timer = TRUE;
return;
)

/♦ We used to:
assert (!intpending_timer, "14_timerint 1");

but when debugging with breakpoints or single-step the timer
can overrun, so don't check. It doesn't hurt, anyway.

*/

■*/

14 busy = TRUE;

/* Possible timeout for incoming packet awaiting processing */

if (rcvbuf_xptr && rcvbuf timer >0) { /* there is a receive packet timer running */

if (--rcvbuf_timer == 0) { /* timer ran out ♦/
14_trace(tr_l4pkttimeout,0,rcvbuf_aptr) ; /* log the packet timeout ♦/
++14cnt_discardrcv; /♦ count it »/
12_rcvre1 ease (rcvbuf_aptr); /* discard the packet */
rcvbuf_xptr = NIL; rcvbuf_rb = NIL;

)
)

/* Possible timeout for RBs awaiting incoming packets */

for /» look at each rb waiting for packets ♦/
{rb = waitpkt_liSt.head; rb != NIL; rb = rb->fl ink) {

assert (rb->timer > 0, "14_timerint 3");
if (--rb->timer == 0) { /♦ timeout awaiting packet »/

14 removel ist (rb, &waitpkt list); /♦ remove from waiting list */

))
if (rb->state == st ackwait) {

)
'* Timeout awaiting ack: resend the message */

if (++rb->snd_count > SEND_RETRIES) {
14_doabort(rb); /» too many message retries: abort the connection »/
++14cnt_abortsends; /♦ count it »/
(»rb->anr)(rb); /♦ and cal l the ANR ♦/
)

evious message */
count the message retry */

else { /♦ start up a retry of the
++14cnt_m_ret ri es;
14_t race(t r_l4retry,rb,

rb->ph.srcskt);
rb->bufcursor = rb->sndptr;
rb->ph.seqno = rb->first_seq;
rb->ph.al lno = rb->ph.seqno + 100
rb->bytes_left = rb->snd1ength;
if (rb->ph.dstskt < MAXWKS)

rb->state = st_connectg;
else rb->state = st_sending;
14_dosend(rb, 12_getbuf());
)

)

1og it */

initialize cursor to start of buffer ♦/
reset outgoing sequence number »/
/♦ arbitrary large al location number ♦/
amount to send ♦/
we we didn't migrate yet ♦/
then back to initial connect ♦/
otherwise the sending state */
process send until blocked */

e 1 se (

/♦ Timeout awaiting non-ack message packet: abort the connection */

assert (rb->state == st_pktwait
14_t race(t r_l4rcvt i meout,rb,

rb->ph.srcskt);
+ +14cnt_abort revs;
14_doabort(rb);
(»rb->anr)(rb);

)

"14_t i mer i nt 4");

/* log the rev timeout */
/♦ count it */

/♦ ca1 1 ANR »/

break; /* if we found one timeout, don't look for others
because the list has changed. Catch them the next time.

♦/
) /♦ timeout found ♦/

) /» for rb ♦/

14_busy = FALSE;
}

)))
/*■

14_fil 1pkt (&14rb, &buffer, ackrequest, systempkt)

Fi l l the transmit packet buffer with data from the message and
queue the packet for transmission.

Input: "buffer" points to the beginning of the arcnet-format packet,
that is, the 1-byte SID field.

"ackrequest" is TRUE if we should request an ack even if this
isn't the last packet of the message. This is used to demand
an ack after the first packet of a multiple-packet initial
connect message.

"systempkt" is TRUE if we are sending a system packet ack with
no data. Note that this is different from a zero-length
data packet.

rb->bytes_left is the number of bytes left to send in this message.

rb->bufcursor is the pointer to the data to send.

If this is the last packet of the message, set the ack-request and eom bits on,

Al l packets are currently formatted as if they were RIM buffer arcnet
packets, including the empty space. For token ring, empty space can be
omitted if both sides agree; only this routine would need to change
for transmission, and 14_rcvintr() for reception.

ARCNET note: The only parts of Level 4 which know about the format of
Arcnet packets are the beginning of 14 rcvintr() and al l of 14 fi l lpkt().

•*/

14_fi l lpkt (rb, buffer, ackrequest, systempkt)

struct 14rb ♦rb;
fararcaddr buffer;
boolean ackrequest, systempkt;

{ short int bytes_to_do; /♦ bytes to send, including xns header ♦/
short int buf_offset; /♦ where in RIM buffer to start the data ♦/
farphaddr xnshdr; /♦ pointer to XNS header in the buffer ♦/
boolean longpktok; /♦ are long packets ok? ♦/

longpktok = rb->ph.maxpkt & MAXPKT_LONG; /♦ long packets ok? ♦/

/♦ Fi l l in the arcnet destination address from the fifth byte
of the XNS destination host address. The arcnet source
address is suppl ied by the hardware.

♦/

buffer->did = ♦((addr) rb->ph.dsthost + 5); /♦ (works for Moto OR Intel !) ♦/

rb->we owe ack = FALSE; /♦ we wil l be sending an implicit ack ♦/

)))
bytes_to_do = sizeof(struct pkthdr); /♦ size of xns header ♦/
if (!systempkt) bytes_to_do += rb->bytes_left; /♦ plus data, maybe ♦/

/♦ Setup various Arcnet packet formats depending on the size
of the header + data to be sent.

♦/

if (bytes_to_do <= 252) {

/♦ Case 1: This is the last packet of the message and is a short
packet or is a system-packet ack. ♦/

if (systempkt) {
rb->ph.conct1 = syspkt; /♦ system-packet ack ♦/
rb->ph.dtype = 0; /♦ zero packet type for sniffer neatness ♦/
)

e 1 se {
rb->ph.conct1 = ackreq + eom; /* ack request and end-of-message ♦/
)

buf_offset = 256 - bytes_to_do; /♦ start of data in pkt buffer */
if (buf_offset & 1) { /» can't be odd */

--buf_offset;
rb->ph.garbage = 1;

)
else rb->ph.garbage = 0;

buffer->count1 = buf_offset; /♦ short continuation ptr »/
rb->ph.1ength = bytes_to_do - 4;
movel ((faraddr) (&rb->ph), /♦ from ♦/

(faraddr) buffer + buf_offset, /♦ to */
sizeof(struet pkthdr)); /♦ move the xns header »/

if (Isystempkt && rb->bytes_left) { /♦ move the data, if any */
movel ((faraddr) (rb->bufcursor), /♦ from ♦/

(faraddr) buffer + buf_offset + sizeof(struet pkthdr), /♦ to */
rb->bytes_left); /* length ♦/

rb->bytes_left = 0;
}

}

else if (bytes_to_do <= 500 && longpktok) {

/♦ Case 2: This is the last packet of the message, and is long, and
we are al lowed to send long packets, so do so. */

rb->ph.conct1 = ackreq + eom; /♦ ack request and end-of-message »/
buffei—>countl = 0; /♦ flag indication long packet */

if (bytes_to_do < 258) { /♦ 253. .257 must be sent as 258 ♦/
rb->ph.garbage = 258 - bytes_to_do; /* number of pad bytes ♦/
buf_offset = 254; /* start of data in pkt buffer */

}
else { /» 258..508 */

buf_offset = 512 - bytes_to_do; /♦ start of data in pkt buffer */
if (bufoffset & 1) (/* can't be odd »/

--buf_offset;
rb->ph.garbage = 1;

)
else rb->ph.garbage = 0;
)

))
buffei—>count2 = buf_offset;
rb->ph.1ength - bytes_to_do - 4;
movel ((faraddr) (8.rb->ph),

(faraddr) buffer + buf_offset
sizeof(struct pkthdr));

movel ((faraddr) (rb->bufcursor)
(faraddr) buffer + buf_offset
rb->bytes_lef t);

rb->bytes_left = 0;
}

/♦ long continuation ptr ♦/

/♦ from »/
/» to */

/♦ move the xns header ♦/
/* from ♦/

- sizeof(struct pkthdr), /» to ♦/
/» move the data */

)

else if (longpktok) {

/* Case 3: This is not the last packet of the message, and we are
al lowed to send long packets, so send a long packet. ♦/

bytes_to_do = 500 - sizeof(struct pkthdr); /♦ # of data bytes to send */
flag indicating long packet */
long continuation ptr for max pkt »/

sendfu1 1

buffer->count1 = 0; /*
buffei—>count2 = 4; /♦
rb->ph.1ength = 508-4;
bufoffset = 4;

if (ackrequest)
rb->ph.conct1 = ackreq; /*

else rb->ph.conct1 = 0; /♦
rb->ph.garbage = 0; /»
movel ((faraddr) (&rb->ph), /*

(faraddr) buffer + buf_offset,
sizeof(struet pkthdr)); /* move the xns header ♦/

movel ((faraddr) (rb->bufcursor), /* from */
(faraddr) buffer + buf_offset +
bytes_to_do); /♦

rb->bytes_left -= bytes_to_do; /*
rb->bufcursor += bytes_to_do; /♦
}

force an ack request ♦

sizeof(struet pkthdr),

/
otherwise no connection control

no pad bytes ♦/
from */

/* to »/

/* to */
move the data ♦/
decrement count by amount sent ♦/
increment pointer to data by amount

bits * /

sent */

else (

/* Case 4: This is not the last packet of the message, but we are
not al lowed to send long packets, so send short. */

bytes_to_do = 252 - sizeof(struet pkthdr); /* » of data bytes to send »/
buffer->count1 = 4; /♦ short continuation pointer for max pkt */
rb->ph.1ength = 252-4;
buf_offset = 4;
goto sendfu1 1 ;

}

/» Reverse some of the XNS fields if we are running on an (ugh) Intel
processor. We only reverse the fields that we do arithmetic on;
others that are simply compared (srcid, dstid, dsthost, etc.)
are left as is.

Whatever fields are reversed here for outgoing packets must also be
reversed in 14_rcvintr() for incoming packets.

♦/

#i f i nte1

/♦»♦♦»♦ We now cal l an assemb1y-1anguage routine that does them al l at once
xnshdr = (farphaddr) ((faraddr) buffer + buf_offset);
14 revxns word (&xnshdi—>length);

)

««««««*/

#end i f

1 4_revxns_word (8<xnshdi—>dstskt);
14_revxns_word (&xnshdr->srcskt);
1 4_revxns_word {8<xnshdi—>seqno)
14_revxns_word (&xnshdr->ackno)
14_revxns_word (&xnshdi—>al lno)

12 reverse xns ((faraddr) buffer + buf offset);

))

/♦ Queue the packet for transmission and return. ♦/

12_sendbuf(buffer); /♦ send the buffer we just fil led »/
++14cnt_sendpkt; /* count it ♦/
14_trace(tr_l4pktsent,rb,buffer); /♦ log it »/

.14_trace(tr_l4pktsize,xnshdr->1ength,xnshdi—>seqno); /♦ log the size and seqno ♦/
if (!(rb->ph.conct1 & syspkt)) /♦ if it's not a system packet »/

++rb->ph.seqno; /* then increment the packet sequence number for next time ♦/
)

)))
/» ■»/

14 addlist (rb, list)

/♦ Add an rb to end of one of the waiting lists.

We add to the end so that the "waitbuf" list wi l l work like a
FIFO queue. For the other lists it doesn't matter.

»/

struct Mrb ♦rb;
struct 14 list ♦l ist;

/♦ the rb to add ♦/
/♦ the list to add it to ♦/

/♦■ ♦/

assert (!rb->on a list, "14 addl ist 1"); /♦ better not be on a list already! ♦/

rb->flink = NIL;
rb->bl ink = list->tail ;
if (list->tail)

1ist->tai 1->f1 ink = rb;
list->tai l = rb;
if (! 1ist->head) list->head = rb;

no forward l ink ♦/
back link is to previous tai l ♦/
if there was a previous tai l ♦/

it points to us ♦/
we are now the tai 1 ♦/
if we are the head too ♦/

rb->on_a_list = TRUE;
)

/♦• ■♦/

14 removelist (rb, list)

/♦ Remove an rb from one of the waiting l ists. ♦/

struct Mrb ♦rb; /♦ the rb to add ♦/
struct 14 l ist ♦l ist; /♦ the l ist to add it to ♦/

/♦■

{

•♦/

assert (rb->on a list, "14_remove1ist 1");

if (rb == list->head)
l ist->head = rb->fl ink;

else rb->b1ink->f1ink = rb->flink;

if (rb == l ist->tai l)
list->tai l = rb->bl ink;

else rb->f1 ink->blink = rb->blink;

rb->fl ink = NIL;
rb->b1 ink = NIL;

/♦ if we are the head ♦/
/♦ then the new head is our next ♦/
/♦ otherwise make our previous point to our next ♦/

/♦ if we are the tai l ♦/
/♦ then the new tail is our previous ♦/
/♦ otherwise make our next point to our prevoius ♦/

/♦ for neatness only ♦/
/♦ for neatness only ♦/

rb->on_a_l ist = FALSE;
)

)))
/*- -♦/

14_purgelist (srb, list)

/♦ Purge an rb from a list if it is there ♦/

struct 14rb »srb; /♦ the rb to purge */
struct 14 list »l ist; /* the list it might be on ♦/

•/

{
struct 14rb ♦rb;

for /♦ search the list for the rb ♦/
(rb = list->head; rb != NIL; rb = rb->flink) {

if (rb == srb) (
14_remove1ist(rb, l ist);
break;)

) /♦ for ♦/
}

/♦- ■♦/

14 removecon (srb)

/♦ Remove an rb from the connection hash table.

This is cal led from places that terminate the connection:

♦/

14_doabort
14_d i sconn
14 dosend

struct 14rb ♦srb;

for aborts
for disconnects when no ack is due
for disconnects when an ack was due

/♦ the rb to remove ♦/

.♦/

short int hash_index;
register struct 14rb ♦rb, ♦prevrb;

hash_index = hash_addr(srb->ph.dsthost);

if (14_con_tab1e [hash_indexj == srb) (
14_con_table (hash_indexl = srb->con1ink;
return;
}

prevrb = 14_con_table [hash_index];
while (rb = prevrb->con1ink) {

if (rb == srb) {
prevrb->con1 ink = rb->conlink;
return;
)

prevrb = rb;

/♦ hash the address into an index ♦/

/♦ the 99% case: it is the head ♦/
/♦ so remove it ♦/
/♦ and return ♦/

/♦ otherwise search the l ist ♦/

/♦ found ♦/
/♦ unl ink it ♦/

) • /♦ whiIe */

assert (FALSE,"14_removecon 1"); /* rb not found in connect table */

)

)))
#i f inte1

/» */

14_revxns_word (ptr)

/♦ Reverse the word whose address is in the long pointer "ptr".
This is used for reversing msb-first fields in the XNS header
if we are unfortunate enough to be executing on an Intel processor.

The reversal is done in place in the Arcnet RIM buffer, hence
the long pointer.

»/

faraddr ptr; /♦ a long pointer to a character */

/♦ ♦/

{ byte temp;

temp = 'ptr;
♦pt r = ♦(pt r+1) ;
♦(pt r+1) = temp;

)

/Cendif /♦ intel */

)))

Remaining notes and questions

2. Should routines that complete immediately set the ending status and
not cal l the ANR routine? What about the case where the status changes

from busy to complete after returning but before the cal ler tests the
status? In that case the ANR routine wi l l be cal led gratuitously if
the cal ler notices the status instead of waiting for the ANR. The
easy solution is to recommend that the cal ler ALWAYS wait for the ANR
before checking the status.

6. To add arcnet/token ring simultaneous support, we need to:

a. Pass and receive the rb->arcnet boolean to the Level 2 routines.

b. Generalize 14_gotbuf() so that it searches for the first rb
waiting for the appropriate kind of buffer rather than just
using the first rb on the list. Or, better, have two waiting
lists for empty buffers.

c. Add a new 14_fi l lpkt routine for token ring, and modify the first
part of 14_rcvintr.

d. Write the token ring Level 2 packet routines.

7. Need to add broadcast support for both incoming and outgoing
connect i ons.

8. Add 14_acknow() function?

*/

/♦ end of 14 . c * /

