L JJJ SSSS
L J S )
L J S

L J SSS
L J S
L L J J S S
LLLLL JJJ SSSS

Wed 30-Apr-1986 12:51:25

Print request number 143

Station: $36

Name: L J Shustek
File Server: BEETHOVEN ($F2)
NFS Pathname:

Filename (s):

Print Server:

LENNON ($8A)

Printer: LASER
Setup: LANDSCAPE
Priority: Standard
Copies: 1
Eject: O
eepeee eee eecee eee eeeeEe eee eeee
eeeeee @ee eee eeee eee @ee eee eeee
eeee eee@ eee eee @ee ereereeee

PRe eeeEeEEeEFeee Q@ eReee@ @

e eeeee eee QPR CPRREPRRRVYEE @e@ @Eee
eeee eceree eerR eee eee eeere Gee eee
eee Qe eee eee eepeeee ee@

eereee eee



) )

/* this is 14.h */

/*
FEEXFEEBERREXER RS EREXXBTEXRF XK RS K X RN E X

Fileserver prototype - TRANSPORT

* *
* *
|| mmmmm e, ——— *
* *
* Module "14.h" *
* *
* *

IR R R R R R R R R R R R S R S R R R R 2 )

This file contains the definitions of symbols and structures used
by callers and implementation modules of the Network Transport
(Level 4) routines. These routines implement XNS transport protocol
for both Arcnet and Token Ring network.

*/
e e ——
Transport Level status codes

These are the values for the "status" field of the L4 request

block, and indicate the condition of the connection and/or the

most recent request.
---------------------------------------------------------------------------- */
#define 14st_uncon 0 /% unconnected ¥/
#define l4st_busy 1 /* connected, and command is in progress */
#define 14st_done 2 /* connected, and command executed ok */

#def ine RBid 0x5242 /* ‘RB’ for rb->id field */



g g

Packet Header

This defines the format of incoming packets.

All fields except the host source and destination addresses

(srchost and dsthost) and source and destination sockets

are private to the L4 routines.

All multibyte fields are stored MSB first.
———————————————————————————————————————————————————————————————————————————— */
struct pkthdr ( /* packet header: datalink + Nestar + XNS */

byte sysid; /* Datapoint-administered system id */

byte garbage; /* garbage count */

byte pktno; /* fragmentation packet number ¥/

byte maxpkt; /* max pkt size (bits 7..6), and

fragmentation fragment number (bit 5..1) */
word chksum; /* checksum (start of XNS packet) */

word length; /* length, starting from checksum */

byte trnctl; /* transport control byte */

byte ptype; /* internet packet type (5 for SPP) */

lword dstnw; /* destination network */

uword dsthost(3]; /* destination host PUBLIC VARIABLE */

uword dstskt; /* destination socket PUBLIC VARIABLE */

Iword . Srcnw; /*¥ source network */

uword srchost([3]; /* source host PUBLIC VARIABLE */

uword srcskt; /¥ source socket PUBLIC VARIABLE */

byte conctl; /* connection control byte ¥/

byte dtype; /* datastream type */

uword srcid; /* source connection id */

uword dstid; /* destination connection id */

uword seqno; /* sequence number */

uword ackno; /* acknowledge number */

uword allno; /* allocation number */

)i



Transport Leve! Request Block

This is the shared data structure which is used for parameters
and state information for a connection. It is allocated by
the caller and passed to all L4 routines which are connection-
specific.

The first part are public variables which are set or examined by
the caller, as indicated in the individual routine descriptions.

The second part is a copy of the packet header and is "semi-public”
in that only the host source and destination addresses are to be
used by the caller; other fields are private to the implementation.

The third part contains private variables for use only by the
implementation routines. )

---------------------------------------------------------------------------- x/
struct 14rb {

/¥ Public part */

uword id; /% id field ‘RB‘ */

struct 14rb *flink; /* forward link field for queues and lists */

struct 14rb *blink; /* backward link field for queues and lists ¥/

addr user; /* arbitrary "user" field */

void (*anr)(); /* Asynchronous Notification Routine */

int status; /* one of the 14st_xxx values */

addr rcvptr; /¥ receive buffer address */

word rcvliength; /* receive data length */

word rcvliimit; /* receive buffer size */

addr sndptr; /* send buffer address */

word sndlength; /* send buffer length #*/

byte sndtype; /* send datastream type */

byte rcvtype; /* receive datastream type */

uword wks; /¥ well-known socket to send on */

boolean arcnet; /* is this an arcnet station? */

/¥ Semi-public part */

struct pkthdr ph; /% our transmit packet header */

/% Private part */

short int state; /*¥ internal state */

struct 14rb *conlink; /* 1ink field connection list */

short int snd_count; /* count of send retries */

short int timer; /* countdown for pkt wait timeout */

addr bufcursor; /* next position in the send or rcv buffer */

short int bytes_left; /* # bytes left to send */

short int first_seq; /* sequence number of 1st pkt of outgoing msg */

boolean on_a_list; /* we are on a waiting list */

boolean we_owe_ack; /* we owe him an ack */

boolean send_ack; /* send an ack if 1-packet message */

)






L JJJ SSSS
L J S )
L J S

L J SSS
L J S
L L J J S S
LLLLL JJJ SSSS

wed 30-Apr-1986

Print request number

Station:
Name

File Server:
NFS Pathname:

Filename (s):

Print Server:

12:51:06

142

$36
L J Shustek

BEETHOVEN ($F2)

LENNON (3%8A)

Printer: LASER
Setup: LANDSCAPE
Priority: Standard
Copies: 1
Eject: O
eeeere 66 eeree @ee eeeeee eee eeee
eeeeee 606 0ee eeee eee eee@ eee eeee
@ Ceeee @ @ eee eee eee ceeeeRreee
PO ORREREEEEee
eee eeeee eee Cee ERFEREREERRE e eee
eeee o0eeee eeee Cee eee eeee @ee eee
eee eReEeee@ ee e eeeeee eee

eee eee

eeeeee eee

e



) )

/% this is l4private.h */

L EE 22222 S 2R 2R R 2R RS R EE RS2SRRSR R R R R 22

Fileserver prototype - TRANSPORT

* *
* *
* BERXREREERRERRERARRR KRB REERRR KR *
* *
* Module "l14private.h" *
x *
* *

EEXXXEXXRE XL RARIXEE XXX ETEFXERREXEREXETEEXE

This file contains private symbols and declarations for the transport
implementation.

/* Make a trace table entry */

/* Note that 14_trace calls provide two information fields, both of
which were originally use for debugging. The current macro only
uses the first field and so is compatible with the trace routines
used in the rest of the server.

*/

#define 14_trace(c,i1,i2) {do_trace(c,(lword)(i1));}

/* Hash a 6-byte station address into a connnection table index.

The argument is the address of the 6-byte XNS address.

The value of the macro is a number in the range 0..HASH_TABLE_SIZE
which is the index into "14_con_table"” of a chain of rbs

with open connections.

(The current hash function uses the low byte of the XNS address,
which is the Arcnet id and is hence optimmal for Arcnet. In the
usual case of one connection per pair of stations, there will be
only one rb on the hash list.)

*/

#define HASH_TABLE_ SIZE 256

#if intel

#define hash_addr(p) ((p)[2] >>8)
#else

#define hash_addr(p) ((p)[2] & Oxff)
#endif

Miscellaneous symbols



#def ine
#def ine
#def ine
#def ine

MAX_SOCKETS
NESTAR_SYSID
MAX_WKS
MAX_XNS_PKT

2
Oxfe
2999
508

/7%
/7%
/%
/¥

max # of well-known sockets we can
datapoint-assigned system id for nestar protocol

listen on */

the biggest well-known socket number */

the

largest xns packet #*/

*/



/¥ — e e e e e e e T e e e e m - ———
Timeout values
These are in “ticks" which correspond to the frequency at which the
12_timerint routine is called. Something like 200 milliseconds seems right.
Note that no timeout value should be less than 2, since the actual value
will vary between one less than the timeout and the timeout itself.
------------------------------------------------------------------------------ %/
#define TO_AWAIT_MSG 25 /* S5 sec: rcv msg wait time. (Could be infinite.) */
#define TO_AWAIT_PKT 5 /* 1 sec: intra-message data packet wait time */
#define TO_AWAIT_ACK 4 /* .8 sec: ack wait time */
#define TO_XMIT_PKT 3 /* .6 sec: transmit packet timeout */
/* (Implemented in Level 2; change it there!) */
#define TO_PKT_DISCARD 2 /* .4 sec: unclaimed packet discard time */

/* (Should be minimal; set higher for debug) */

/* Setting timeouts for maximum error recovery is a something of a black art.
One set of relationships that seems to make sense is:

TO_PKT_DISCARD < TO_XMIT_PKT < TO_AWAIT_ACK < TO_AWAIT_PKT
This ordering attempts to encourage the following behavior:

(1) Unclaimed received packets won’‘t hang around long enough to
prevent a transmission because there are no receive buffers available.

(2) Receive timeouts won‘t occur until transmissions are unblocked.

(3) A lost data packet will cause the sending to timeout waiting for
the ack and thus retransmit before the receiver times out waiting for
the missing data packet.

There are still some circumstances where error recovery will fail,
particularly near the beginning or end of a connection. Example: If the
final ACK for a connection seems to the transmitter to have been sent,
but the receiver didn’t get it, the transmitter will close the RB and

the repeated last message from the receiver will be discarded. The
receiver will then abort the connection. So it goes.

Note that having the Arcnet Level 2 retransmit if it gets TA without

TMA solves that particular problem, but not all datalink hardware is as
good as Arcnet.

#define SEND_RETRIES 2 /* number of message send retry attempts to



#def ine

)

XMIT_RETRIES

1

make because the ACK wasn’t received. */

/* number of packet send retry attempts to make
if Level 2 detects an error, */

/* (Implemented in Level 2; change it there!) */



p#def ine

#define
#def ine
#def ine
#def ine
#def ine

#def ine
#def ine

#def ine

#def ine
#define
#def ine
#define

Internal

st_idle

st_connectg
st_sending

st_sendackr
st_sendackc
st_sendackd

st_pktwait
st_ackwait

st_connwait

14 states in

~N O NHWN —~ o

o]

/*

/*
/%
/*
/%
/%

/¥
/%

/*

XNS connection control

syspkt 0x80
ackreq 0x40
attn 0x20
eom 0x10

/*
/%
/%
/%

idle; no command in progress */

starting a connect message (maybe

sending a message

sending an ack (ack_req)
sending an ack (connected)
sending an ack (disconn)

awaiting a message packet
awaiting an ack

awaiting a connection

bits

system packet (no data) */
ack request */

attn request */
end-of-message */

(maybe
(maybe
(maybe
(maybe

(maybe
(maybe

(on waitcon

oan
an
on
on
on

on
on

waitbuf list)
waitbuf 1ist)
waitbuf list)
waitbuf 1list)
waitbuf 1ist)
waitpkt list)
waitpkt list)
list) */

*/
*/
*/
*/
*/

%/
*/



/A e e
The format of ARC packets

----------------------------------------------------------------------------- */
struct arc_header { /* the arcnet packet header */

byte sid; /* arcnet source address */

byte did; /% arcnet destination address */

byte countt; /* short packet data pointer, 0 if long packet */

byte count2; /% long packet data pointer */

/* Thence follows empty space. */

/* Thence follows the data, bottom justified in the buffer to either

256 bytes (short packet), or 512 bytes (long packet). */

}s
#define MAXPKT_LONG 0x40 /¥ bit in ph.maxpkt that says long packets are ok */
/o~

Far pointer declarations for Microsoft C on the PC
(For the 68k implementation, these are the same as any other pointers.)
————————————————————————————————————————————————————————————————————————————— */
#if microsoft
#define FARPTR far
#¥else
#define FARPTR
#endif
typedef char FARPTR *faraddr; /* long address of char */
typedef struct pkthdr FARPTR *farphaddr; /* long address of xns header */

typedef struct arc_header FARPTR *fararcaddr; /* long address of arc_header */



----------------------------------------------------------------------------- */
short int sockets [MAX_SOCKETS]; /% The array of valid sockets. */
boolean 14_busy = FALSE; /% “"We are in L4." Used to prevent ANR recursion.
short int src_conid = 1; /* The next source connnection id to use. */
short int eph_socket = MAX_WKS+1; /* The next ephemeral socket to use. */
word our_addr[3]; /* Our 48-bit network address. */
/%
Variables which keep track of the RBs we know about.
*/
/* The connection table (14_con_table) is a hash table of pointers to RBs
that have open connections. The hash function is the macro hash_addr.
RBs are chained from the hash table entry by the link field "conlink"
from the time the connection is established until it is broken.
*/
struct 14rb *14_con_table [HASH_TABLE_SIZE]; /* connection hash table */
/* The RB waiting lists are used only when the RB has an outstanding
command being processed by Level 4.
*/
struct 14_1list ( /* RB lists. */
struct 14rb *head, *tail } /* Single threaded with ptrs to head and tail */
waitbuf_list = (NIL, NIL), /* rbs waiting for a transmit buffer */
waitpkt_list = (NIL, NIL}, /* rbs waiting for incoming packets */
waitcon_list = (NIL, NIL}; /* rbs waiting for incoming connection */
/*
Variables which control the disposition of the current incoming packet.
*/
farphaddr rcvbuf_xptr = NIL; /* pointer to XNS header part of received packet */
fararcaddr rcvbuf_aptr = NIL; /* pointer to arc header part of received packet */
short int rcvbuf_timer = 03 /* age of the received packet */

;
struct 14rb *rcvbuf_rb NIL; /* the rb which owns the packet, if any */

/*
Variables which record that various interrupts are pending.
*/

FALSE; /* receive interrupt pending */
FALSE; /* transmit buffer interrupt pending */
FALSE; /* timer interrrupt pending */

boolean intpending_rcv
boolean intpending_xmit
boolean intpending_timer



) ,

fararcaddr intpending_bufp; /* argument for pending IZ_:Cvintr() */
faraddr intpending_outbuf; /* argument for pending 12_gotbuf() */

/* end of l4private.h */



L JJJ SSSS
L J S S
L J S
L J SSS
L J S
L L J J S S
LLLee JJJ SSSS
Wed 30-Apr-1986 12:51:34
Print request number 144
Station: $36
Name: L J Shustek
File Server: BEETHOVEN ($F2)
NFS Pathname:
Filename (s):
Print Server: LENNON ($8A)
Printer: LASER
Setup: LANDSCAPE
Priority: Standard
Copies: 1
Eject: O
@ @ @ @ @ eeeerRe®
@ @ @ ereereee
CeReEee 0@ eeee eee eeeree eee epee
opPeeee® eee eee ceee eeEe eee eee eeee
ee @ eee eee Qee [elalalelelaleleled
@@ CeReeeEEEeE@ eereee eee
QRe EEEEe eee@ eee [clelclelelelaleleialad eere eee@
eeee eerREEe PR e eee RPEe eee eee
eee ee e @e@ QREREEE Qee

eeee@ @ eeeeee eee



) )

/* this is l4counts.h */

/%
EEREXEEEXREREFEA R XA S ERREBEEBEERNEXBEEIEEES

Fileserver prototype - TRANSPORT

* *
* *
* SEXESEE XSRS EREX XXX EE SR EEREES *
* *
* Module "l14counts.h"” *
* *
* *

EEXEXEXEXB AR RRE XA XK LT LXK BN RER KKK EERS

This file contains the declarations of the event counters for Level 4.

If the symbol LAGLOBALS is defined, this allocates storage for the
counters. Otherwise it generates external references to the counters.

*/

#ifndef LA4AGLOBALS

#define counter(name) extern unsigned int name
#else

#define counter(name) unsigned int name = 0
#endif

counter (14cnt_connect
counter (l4cnt_openrcv
counter (14cnt_sendmsg
counter (14cnt_rcvmsg
counter (14cnt_sendpkt
counter (l4cnt_rcvpkt
counter (14cnt_discardfmt
counter (l4cnt_discardcon
counter (l4cnt_discardseq
counter (14cnt_discardunx
counter (l4cnt_discardrcv
counter (l4cnt_badwks
counter (l4cnt_m_retries
counter (l4cnt_p retries
counter (l4cnt_aborts
counter (14cnt_abortsends
counter (l4cnt_abortrcvs
counter (l4cnt_12int_ri
counter (14cnt_12int_ta
counter (l4cnt_l12int_recon
counter (l4cnt_xmittimeout
counter (l4cnt_xmitnoack

/* outgoing connections */

/* incoming connections */

/* messages sent ¥/

/* messages received */

/* packets sent */

/* packets received */

/* bad format packets discarded */

/* bad connect packet discarded */

/* bad sequence packets discarded */

/* unexpected packets discarded */

/% rcv packet timeout discard */

/* incoming connects on wrong wks */

/* send message retry attempts */

/* send packet retry attempts by Level 2 */
/* connections aborts */

/* connection aborts due to send retries w/o ack */
/* connection aborts due to rcv timeouts */
/* Level 2 receive unsigned interrupts */
/* Level 2 transmit interrupts */

/* Level 2 recon interrupts */

/* Level 2 transmit timeouts */

/% Level 2 transmit w/o ack (TA w/o0 TMA) */

© es ws ws ws et we WP i ws we s s e e ws

N o e et N Nt S Nl Nt N N N N N Nt Nt N S N N Nt

o ws we e ws w1

/* end of l4dcounts.h */



L JJJ S$SSS
L J S S
L J S
L J SSS
L J S
L L J J S S
LLeLe JJJ SSSS
Wed 30-Apr-1986 12:49:56
Print request number 141
Station: $36
Name: L J Shustek
File Server: BEETHOVEN ($F2)
NFS Pathname:
Filename (s):
Print Server: LENNON ($BA)
Printer: LASER
Setup: LANDSCAPE
Priority: Standard
Copies: 1
Eject: O
00eeee eee eeee eee eceeee eee eeee
eeeeee eee eee eeee 000 @@ eee eeee
@ @ @ eee eee eee eeeeRreere
P CAREEEEeEe @
eee eeeee eee EEe PREERERPERPR @Ee @@
@eee @EeeE@ eeee 00 6ee@ oere @ee @ee
eee @ eee eee eeeeee eee

eeeeee eee



) )

/¥ this is 14.c */

/*
L ZEE RS RS2 22 E S 2222 S S SRR SRR E R 2 2 2

Fileserver prototype - TRANSPORT
FEXERRBEEEEEEEEEREERERRRRAERRH X &

*

*

*

*

Module "14.c" *
*
*

IR R R R R RS RS XS 2 R RS E R R S S R R R R A R R R R 2 2 X

------------ NESTAR CONFIDENTIAL -=------—=--==-—-=

This file contains the implementation of a simple but efficient
subset of the XNS Tranport Protocol designed for dedicated servers.
It‘’s characteristics are:

Sequenced Packet Protocol only

Multiple simultaneous connections

Supports Arcnet and Token Ring for datalink level (L2)
Half duplex transmission only on each connection

Does not support system-packet connection

Does not support gateway routing

Does not support out-of-sequence packet processing
(Implies a server that does multiple receives)

* Supports selective socket listening, but not socket
demultiplexing. Any incoming connection can be returned
to any request.

L 2R 2 BE R IR AR J

Some of these restrictions might be removed without excessive effort,
but they do not affect operation of the server.

Note that the fact that packets are processed in the order in which
they are received both makes the implementation simpler and matches
the inability of the TI Token Ring chipset to provide out-of-sequence
packet processing.

*/

Change log

02/xx/85 L. Shustek Initial design document.
02/xx/85 J. Whitnell Iterations and refinement of design document.
10/29/85 L. Shustek Started coding, for toy fileserver.
11/30/85 L. Shustek Resume coding. Start debugging.
1/23/86 L. Shustek Resume debugging.
1/24/86 L. Shustek Fix assignment of saved buffer pointer for 14_gotbuf.
1/28/86 L. Shustek Log incoming connects as unclaimed packets until the openrcv.
2/ 7/86 L. Shustek Major change to incoming packet processing and rb queuing
to deal with delayed duplicates of initial connections.
Level 4 now keeps track of all rbs with open connections.
2/13/86 L. Shustek Delay connect-message ack until the incoming packet has
been consumed, to avoid deadly embrace clogging buffers.
2/20/86 L. Shustek Add support for short-packet-only connections,

primarily to be able to talk to Apple ][’s.

2/22/86 L. Shustek For Intel processors, use an assembly routine instead
of C to reverse XNS header words.

2/25/86 L. Shustek Allow zero-length messages. Required extra boolean in



)

3/19/86 L. Shustek

4/10/86 L. Shustek
4/15/86 L. Shustek

#include "exec.h"
#include "mon.h"
#include "14.h"
#include "l4private.h"

#define LA4GLOBALS
#include "l4counts.h"

)

parmlist of 14_fillpkt();

Up and running on the 68000 now; almost no changes!
Fix padding of packets to even number of bytes.
Allow connect with zero-length message.

Comment out the pktsize trace entry.

Crank down

/%
/%
/%
/%

/%

timeouts to reasonable production values.

Realtime exec symbols */

Debugging monitor symbols */

Public L4 symbols %/

Private L4 symbols and variables */

Allocate L4 counters */



AR R R R R A R R R L R L L R AR S R R

On calling Level 4 Transport Routines

X R R R R R R R R R R X R R R R R R R R R S R R R S R S S R R A S S R R R R S S S R R R X 2 4

The public Level 4 routines are as follows:

14_init () Initialize level 4

14_terminate () Terminate level 4

14_listen (wks) Register a well-known socket
14_untisten (wks) Unregister a well-known socket
t14_connect (rb) Establish an outgoing connection
14_openrcv (rb) wait for an incoming connection
14_sendmsg (rb) Send a message

14_rcvmsg (rb) Receive a message

14_disconn (rb) Disconnect the connection
14_abort (rb) Abort the connection

Most of the L4 routines are passed only a single argument, which is the
address of the caller—allocated L4 Request Block (L4RB). All input and
output parameters are exchanged inside the L4RB. See the individual
routine descriptions for the details of what is expected and returned.

The “"status" field of the L4RB is always valid, and indicates the state of

the connection and/or the previous command. The possible values are:
14st_uncon There is no connection established.
Either there never was one, or a previous connection
was terminated because of a call to 14_disconn,

14_abort, or an unrecoverable error.

14st_busy A previous command is still in progress. No calls to
Leveld4 routines for this rb are valid except for
14_abort.

14st_done The previous command has completed successfully.
The connection is still established.

There is a class of routines which accomplish their task immediately and
status is valid upon return. An example is "14_listen” which established
a well-known socket to listen on.

The other class of routines may not complete immediately, and depend on
subsequent hardware interrupts. Those routines return “in progress"”
status in the LARB. When the interrupt which completes the command
occurs, the status is changed to one of the other status values and the
caller’s Asynchronous Notification Routine (ANR), whose address is in the
L4RB, is called with the address of the L4RB as its only parameter.

Note that the ANR is called from the interrupt environment, so it should
execute quickly and be extremely circumspect as to the use of global data
structures. VYou may need to disable interrupts during non-ANR code which



access such data structures to keep ANR routines from executing. )NR
routines may not call any L4 routines.

It is possible that a routine which usually calls an ANR may be able to
complete without waiting for an interrupt. In that case the ANR is called
directly from the routine which initiates the command, after which the
command routine will return. Beware of subtle timing of the interrupt
which calls the ANR when writing the code which checks for completion of a
command. Aren‘t asynchronous systems fun?

The detailed descripion of the input/output parameters and behavior of
each routine is located at the entry point to the routine.

*/



) )

VA A A2 2 2 A2 2 R R A R R R S R R R R R A2 R 2 2 2 2 A 222 22 2 2 2 A A A R R R R R R AR R R RS AR 2 A A R 2

Notes on the implementation

A S E 2 X R R R R R R R R A R R R R R R R R R R R R R R R R R R A R R R R S R S R R R A

Header notes

1. The following is the full Internet Header and a discussion of the

fields. Some of this information is in the silver book ("Internet Transport
Protocols", a Xerox System Integration Standard) and is rehashed here.

Other parts represent Nestar-specific fields and uses.

a. The header format, not included Arcnet or Token-ring datalink headers:

01 15
e — o +
-4 | sysid = $FE garbage cnt |
o m e T +
-2 | packet number fragment number |
domm e o e +
B + mmmm—m +
o] | Checksum | |
A + |
2 | Length | |
o e + |
4 | Transport Control | Packet Type | |
gy $mmmmmm e +
6 | Destination |
+-=-=- Network ————t
8 | J
- +
10 | Destination |
o Host -
12| |
PO _———
14 | | Network Layer
R e g + (Level 3)
16 | Destination Socket
e +
18 | Source |
- Network -———+
20 | |
e — +
22 | Source |
Host -4
24 | | |
+-—— ————t |
26 | | |
e + |
28 | Source Socket | |
e e 4 <mmmmmmmm e +
30 | Level 4 header |

| (see below) i



Qaoocw

]

) )

Sysid - The Datapoint-administered system protocol identifier.
The value assigned to Nestar protocols is FE.

i. Garbage cnt - The count of extra bytes that were added at the

end of the packet for datalink-dependent padding.

ii. Packet number - A sequential packet number used for packets

fragmented by gateways.
Fragment number - The fragment number within a packet, used for
packets fragmented by gateways.

Checksum ~ Checksum of level 3 packet. FFFF means not checksumed.

Length - Length of Internet packet including checksum.

Transport Control - For use by internetwork routers. Always 0 for clients.
Packet Type - Type of Level 4 packet being sent. Types include 5 for
Sequence Packet.

Network Addresses - A network address consists of three parts. The Host
Number is a unique in all space and time 48 bit address for a station .
The Network Number designates which individual network of the Internetwork
the station is attached too. Socket number is a bidrectional structure
capable of sending and recieving packets at the same address. Certain
sockets are "well-known", which means they are known by other stations.

The Source Network Address is the address from which the packet originated.
The Destination Network Address is the address to which the packet must be
delivered.

01 15
o — b 4+ Cmmmmmmm e — +

30 | Conn Control | Datastream Type | |
e e e + |

32 | Source Connection Id |
e e + |

34 | Destination Connection 1d | |
e +

36 | Sequence Number | Sequenced Packet
it hebe et + Protocol (Level 4)

38 | Acknowledge Number
e +

40 | Allocation Number |
e D +

42 | |
| Level 5 data |

The Conn Control consists of four bits (0 - 3) that control the

action of the protocol and four bits (4 - 7) that are unassigned and
should be 0. The System Packet bit (bit 0) indicates that this packet
contains no data and does not consume a sequence number. The Send
Acknowledgment bit (bit 1) indicates the receiver should send back

an acknowledgment. The Attention bit (bit 2) indicates that the
sender desires immediate notification that this packet arrived. Only
1 byte of data can be included in a packet with the Attention bit set.
The End Of Message bit (bit 3) indicates the boundry of a message.

The Datastream Type is a level 5 type passed in the level 4 header

The Connection lds are unique Identifiers allocated by each machine at
the beginning of a connection to uniquly identify the connection.

The Sequence Number counts packets sent during a connection. Each
direction has its own sequence number.

The Ackowledge Number specifies the sequence number of the first packet
which has not yet traveled in the reverse direction.

The Allocation Number specifies the sequence number up to and including
which packets will be accepted from the other end. Said another way,
one plus the difference between the Allocation Number and the
Acknowledge Number indicates the number of packets that may be
outstanding in the reverse direction.



) )

2. Migration. Migration is process of moving from the well-known socket
used to establish to connection to a temporary ephemeral socket number.
There are two things that migrate from a well-known socket to a ephemeral
socket: The socket number of the 14 doing the open_recv in the request
block and and the same socket number in the packet(s) coming in for that
connection. The open_receiver cannot do it until the connector is
informed that the change has taken place, in order to handle retries of
the connect request. Furthermore, the open_receiver must handle packets
on the well-known socket until the sender sends a packet on the ephmeral
socket the open_receiver has moved the connection to. So we see:

C--- e_wks -—->0R
-—- e_wks -->
<--- e_e ----
---- e_e -—->

So the connector must migrate the connection at the point an ack from the
receiver comes back with the ephemeral socket. And the open_receiver
cannot migrate until the connector sends a packet on the ephemeral socket.
So the proper place to do the migration for the connector is on the
reception of a packet with a non-well-known socket. The open_receiver
needs to do it when a packet is received back from the connector on a
well~known socket. Note we can look at the two places of migration as the
open_receiver’s idea of what to send to the other end (for the rb) and
what to receive from the other end (for the packet).

Our original IBMPC level 4 (CWP’'s) migrates the rb end when a packet comes
in for an rb in the state conn_accept_wait. It migrates the other end as
soon as open_recv receives a packet. Retries are apperantly not allowed
on connection (i.e. they either get assigned to an open_recv or get
tossed).

An interesting question here is what about muitiple open_receives on the
same socket. Once a packet matches up with an rb, how are retries of
that packet to match up with that rb and not some other rb doing an
open_recv? Obviously, matching of packet headers depends on the state the
rb is in. We may not want to allow multiple open_recvs on a single socket.

3. The distinction between the datalink (arcnet) address from which
packets are received and the "source host" XNS address must be maintained
so that connection to stations through a gateway will work. It’s really
simple: all the XNS processing is based on XNS addresses, but the arcnet
address used at the last minute is from the datalink address field of the
RB.

4. Our level 4's always set the ack request bit of a connection., This
will cause the open_receiver to generate a piggy-backed ack if a send_msg
is done following the open recveive or a system packet ack if a recv_msg
or ack_now (an optimization for cases where neither a send_msg or
recv_mesg is done soon) is done. Ack request ijs also set when EOM is set.

Internal Structure Notes

1. Request Blocks

The repository for information about a connection is called a Request
Block (RB). In addition to the externally-visible "status" field which
gives completion information to the caller, there is an internal “state"
variable which indicates the internal phase of the process. Note there is
not necessarily a value for "state" for each internal phase, but only
phases during which the processing for the rb might be suspended awaiting



) )

an interrupt event.

2. The status of RBs

Allocation and deallocation of RBs is done by the caller. While an RB
has been passed to Leveld4 to execute a command the status variable value
is "14st_busy". Whenever Level4 is not executing, each RB in its care
(in the "14st_busy" state) is on one of following queues:

waitbuf_ 1list RBs waiting for a free transmit buffer
waitpkt_list RBs connected and waiting for a packet to come in
waitcon_list RBs not yet connected and waiting for a connect

packet to a well-known socket.

These lists are doubly linked with a head and tail pointer. The double
linking is so that deletions from the middle of the waitpkt list when the
packet arrives is quick. Insertions are made at the tail so that the RBs
are processed in FIFO order coming off the waitbuf list.

In addition, any RB which has a connection established is also registered
in the connection table. If the RB is waiting for an incoming packet,

the rb.state indicates what sort of packet it is waiting for, and the

the RB is on the waitpkt_list. The connection table is used to find the
RB when an appropriate packet arrives, but the waitpkt_list is used by the
timer interrupt to see if a timeout should be triggered because the RB has
been waiting too long.

3. Internal RB state

There is a single rb->state variable, plus some associated flags.
See the declarations in l4private.h for more information about the
states.

The sequence of state transitions is roughly as shown in the following
diagram. Note that an RB may remain in some of the states through
several interrupts in order to get it’s job done (such as st_sending when
there are multiple packets to go out) or may skip a state entirely if it
is unnecessary (such as st_sendackd if there is no ack owed.)

st_idle

14_connect
————————————————— > st_connectg -----------> st_ackwait -----> st_idle

| |
| |
| |
| |<==——=-—=mm -
| |
I [

14_sendmsg \" \") |
_________________ > st_sending ----------> st_ackwait ------> st_idle




) )

[ |
| ackreq [
14_rcvmsg v & !eom
_________________ > st_pktwait ------------> st_sendackr
| | connect ack
} --------------- > st_sendackc -—---- > st_idle
| eom
_______________________________________ > st_idle
14_disconn
----------------- > st_sendackd ~------------------—--—-——-—-—--—---> st _idle

4. The absence of polling

This implementation of Leveld4 is interrupt-driven and there is no polling
for events. In addition, the separate lists of RBs awaiting events are
designed to minimize searching for RBs so that it is efficient even with a
large number of active connections in progress. A hash table is used to
find the RB to which an incoming packet should be assigned, so that too

is fast.

S. Management of timeouts

In addition to timeouts for RBs on one of the waiting lists, incoming and
outgoing packets may have to be timed out with the aid of interrupts from
a hardware timer. There are two general schemes that could be used:

a. Keep a time-ordered queue of timeout events. The soonest event on the
queue is at the head of the list, and the hardware timer is programmed to
interrupt at that time.

b. Each event contains a countdown timer word. The hardware timer is
programmed to interrupt periodically, at which time the countdown word for
each event is decremented. If a countdown word reaches zero, a timeout

has occurred.

The characteristic of timeouts as used by Leveld4 is that the initiation of
a timeout interval is a very freguent event (every time a packet is
expected, for example), but timeout intervals are long and the occurence
of a timeout is rare. Although the second scheme for handling timeouts
is a violation of the non-polling dictum, it is much more efficient
because it avoids insertion and deletion in an ordered list when timeout
intervals are established and cancelled.

To reduce the overhead from the periodic interrupt, the period is chosen

as about 1/2 or 1/3 of the minimum timeout value. It can‘t be the minimum
timeout value because the interrupt is asynchronous, and specifying a
timeout of 1 means that it might go to zero in an arbritrarily small time.

An interrupt period of about 200 msec seems right, and results in a
tolerable overhead (1 msec, say, out of 200 = 0.5%).

6. The management of interrupts

The Level 4 interrupt routines which are described in the next section
must be delayed if Level 4 is currently active because they are part of
Level 4 and the same data structures (RBs, waiting lists, etc.) are
manipulated. The global Level 4 flag "14_busy"” is used as a semaphore to



) )

delay the interrupt routine, and each synchronous routine checks for a
pending asynchronous interrupt request when turning off the flag.

The result is that hardware interrupts need not be disabled at any time

during the execution of Level! 4, except briefly as the busy flag is turned

off.
The following sketch represents how interrupts are delayed:
interrupt()

if busy
assert: not int_pending
int_pending = TRUE
return

busy = TRUE

.... proceess interrupt ....

busy = FALSE

return

request routine()

assert: not busy
busy = TRUE

.... process request ....

busy = FALSE

while int_pending *
int_pending = FALSE *

interrupt()
return

Note that hardware interrupts which occur during the execution of

the instructions marked with a ‘*’ may be processed before an earlier
pending interrupt. This out-of-sequence processing of interrupts does
not cause any problems in L4, but should be kept in mind.

*/



Level 2 packet routine definitions

/* The following routines are entries into Level 2, called by Level 4 */

extern faraddr 12_getbuf();
/* Get an empty transmit buffer and return the address ofit.
If there aren’t any free buffers, return NIL and call the
routine 14_gotbuf as an interrupt routine when there is one. */
extern 12_sendbuf ( /* faraddr */ );
/* Send, or queue for sending, the transmit buffer whose
address is supplied. */
extern 12_rcvrelease ( /* faraddr */ );
/* Release the received packet whose buffer address is supplied.
It was previously provided by a call to 14_rcvintr.
This could cause 14_rcvintr to be called if another packet is ready. */
extern boolean 12_init ( /% &our_addr */ );
/* Initialize Level 2, and return our address.
Return FALSE if initjalization failed. */
extern 12 _terminate ();

/* Terminate Level 2. */

/* The following routines are entries into Level 4, called by Level 2

interrupt routines. See the commentary at each routine for more
details.
14_gotbuf (faraddr); "Have empty buffer” interrupt routine.
14_rcvintr (faraddr); "Received packet"” interrupt routine.
14_timerint (); "Timer tick" interrupt routine.

*/



Other external routines used

Move "count"” bytes from al to a2.
For Microsoft C on the B088, both addresses are far (segmented), so
this is a different routine than move().
For Microtec C on the 68000, movel()is functionally the same as move()
but separated so that the histogram identifies packet buffer moves
separately from other moves.

*/

extern move! ( /* faraddr al, faraddr a2, int count */ );

/*

14_trace ( int event, infol, info2 );
This is a macro which records the occurence of "event" with

optional information infol and info2. If this event is
associated with an rb, infol is the address of the rb.

assert (boolean e, *char string);

This is a macro which asserts that "e" had better be true,
or else we panic stop and display the "string”.

*/



boolean 14_init ()

Initialize Level! 4 Transport
Return TRUE if it succeeds.

_____________________________________________________________________________ */
boolean 14_init ()
{
short int i;
for (i=0; i < MAX_SOCKETS; ++i) /* initialize all well-known sockets */

sockets[i] = -1
for (i=0; i < HASH_TABLE_SIZE; ++1i) /% initialize the connection hash table */
14_con_table[i] = NIL;

/¥ The following intialization is necessary only if level 4 is
restarted, since these globals are compiler-initialized to
the correct value.

Event counters are expected to be zeroed by someone else.
*/

14_busy = FALSE;

waitbuf_list.head = waitbuf_list.tail = NIL;
waitpkt_list.head = waitpkt_list.tail = NIL;
waitcon_list.head = waitcon_list.tail = NIL;

rcvbuf_xptr = NIL; rcvbuf_rb = NIL;
rcvbuf_timer = 03
intpending_rcv = intpending_xmit = intpending_timer = FALSE;

/*# Initialize level 2 and return ¥/

return 12_init ( our_addr };

)

14_terminate ()

Terminate Level 4 Transport

14_terminate ()

{
12_terminate ( ); /*¥ just terminate level 2 */

}



14_1isten (wks)
short int wks;

Allow incoming connections on the specified well-known socket.
Return immediately without executing an ANR.

If no more listen sockets are available, generate an internal error.

14_1listen (wks)
short int wks;
{ short int i;

for (i=0; i < MAX_SOCKETS; ++1i) /* see if is already being listened on */
assert (sockets[i] !'= wks,"14_listen 1"); /* error if so */

for (i=0; i < MAX_SOCKETS; ++i) { /* find a free socket slot */

if (sockets|[i] == -1) (
sockets[i] = wks; /* and use it */
return;)
assert (FALSE,"14 listen 2"); /* no free listen socket sltots */

14_unlisten (wks)
short int wks;

Disallow incoming connections on the specified well-known socket.
Return immediately without executing the ANR.

14_unlisten (wks)
short int wks;
{ short int i;

for (i=0; i < MAX_SOCKETS; ++i) (

if (sockets[i] == wks) { /* if the socket matches, */
sockets[i] = -1; /* mark it free */
)

)



14_connect (&14rb)

Start a connection to a remote station by sending an initial message.

Inputs are the following 14rb fields:

ph.dsthost
ph.dstskt
sndptr
sndlength
sndtype
status
arcnet

anr

the 6-byte destination station address

the 2-byte destination well-known socket

a pointer to the connect message to send

the length of the connect message

the 1-byte type of the connect message

l4st_uncon to indicate this is an unused rb

TRUE if this is an arcnet station, FALSE for token
the function to call when the connect is complete

A1l other rb fields must be zeroed!

Output is the status field of the 14rb, as follows:

status

== l4st_uncon The connection failed.
status =

14st_done The connection succeeded and the 1link
is established.

Until the command is complete the status field will be 14st_busy.
The ANR routine whose address is in the 14rb will be called when
the status is changed to one of the above.

14_connect (rb)
register struct 14rb *rb;

{

short int hash_index; /* index into connection hash table */

14_trace(tr_l4connect,rb,
eph_socket); /* log the connect call */

ring

++14cnt_connect; /* count it as an outgoing connection */

++14cnt_sendmsg; /*¥ count it as a message */

assert (rb->id == RBid, "14_connect 0");

assert (rb->status == 14st_uncon,"14_connect 1");
assert (!14_busy,"14_connect 2");

assert (rb->sndlength>=0, “14_connect 3");

14_busy = TRUE; /* 14 is busy */

rb->status = 14st_busy; /* command is in progress on this rb */

rb->state = st_idle; /* force idle state */

/* Link this rb into the connection hash table */

hash_index = hash_addr(rb->ph.dsthost);

rb~>conlink = 14_con_table [hash_index]; /*¥ add it at the head */

14_con_table [hash_index] = rb;



)

/* initialize the packet header */

/¥ start sending */

14_initph(rb)

rb->send_ack = FALSE; /* no special ack with eom */
rb->ph.dtype = rb->sndtype; /* copy datastream type */

rb->ph.dstid = 0; /% destination id is unknown */
rb->ph.maxpkt = MAXPKT_LONG; /% offer long packet support */
rb->first_seq = 0; /* save our starting sequence number */
rb->snd_count = 0; /* no message retries yet */
rb->bufcursor = rb~>sndptr; /* initialize cursor to start of buffer */
rb->ph.allno = rb->ph.seqno + 100; /* arbitrary large allocation number */
rb->bytes_left = rb->sndlength; /* amount to send */

rb->state = st_connectg; /* put us in the connecting state */
14_dosend(rb, 12_getbuf()); /* process send until blocked */

14_exit(); /* turn off 14_busy flag and process pending interrupts */
}



14_openrcv (&14rb)

wait for an incoming connection for any well-known socket
we are listening to.

Inputs are the following 14rb fields:

anr
status

routine to call when a message is incoming
14st_uncon

All other rb fields must be zero.

when a connection has been received and an ack sent, the ANR
routine will be called. When that occurs, 14_rcvmsg
should be called to supply a buffer for the message.

Qutputs are the following rb fields:

status = l4st_done
ph.dsthost = the 6-byte host address of the other station
----------------------------------------------------------------------------- */
14_openrcv (rb)
register struct 14rb *rb;
{
14_trace(tr_l4openrcv,rb,0); /* log the call to openrcv */
assert (rb->id == RBid, "14_openrcv 0");
assert (rb->status == l4st_uncon ,"14_openrcv 1)
assert (!14_busy,"14_openrcv 2");
assert (rb->state == st_idle, "14_openrcv 3");
14 _busy = TRUE; /*¥ 14 is busy */
rb->status = 14st_busy; /*¥ command is in progress on this rb */
if (rcvbuf_xptr /* if there is a valid packet waiting */
88 rcvbuf_rb == NIL /* and not assigned to anyone */
8&& rcvbuf_xptr->dstskt < MAX_WKS){ /* and it is a new connection */
rcvbuf_rb = rb; /* grab the packet */
14_newconn(rb); /% then process it now */
)
else { /* There isn’t an incoming connection available.
Put us on the list for incoming connections and return. */

rb->state = st_connwait; /* awaiting a connection */
14_addlist(rb, &waitcon_list);
}

14_exit(); /* turn off 14_busy flag and process pending interrupts */

}



14_sendmsg (&14rb)

Send a message on an existing open connection.

Inputs are the following l4rb fields:

sndptr = a pointer to the message to send

sndlength = the length of the message

sndtype = the 1-byte type of the message

status = 14st_done to indicate this is idle open connection
anr = function to call when the send is complete

All other rb fields must be unchanged.

Output is the status field of the 14rb, as follows:

status == l4st_uncon The send failed and the connection is closed.
status == 14st_done The send succeeded and the connection is still
open.

Until the command is complete the status field will be 14st_busy.
The ANR routine whose address is in the 14rb will be called when
the status is changed to one of the above.

----------------------------------------------------------------------------- */
14_sendmsg (rb)
register struct 14rb *rb;
{ .
14_trace(tr_l4sendmsg,rb,
rb->ph.segno); /* log the call to sendmsg */
++l4cnt_sendmsg; /* count it */
assert (rb->id == RBid, "14_sendmsg 0");
assert (rb->status == 14st_done,"14_sendmsg 1");
assert (!14_busy,"14_sendmsg 2");
assert (rb->state == st_idle, "14_sendmsg 3");
assert (rb->sndlength>=0, “14_sendmsg 4%)
14_busy = TRUE; /* 14 is busy ¥/
rb->status = 14st_busy; /* command is in progress on this rb */
if (rcvbuf_rb == rb) /* if we own a packet, discard it */
++14cnt_discardunx; /* count discard of unexpected packet */
14_trace(tr_l4adiscardunx,rb,
rcvbuf_xptr->seqno); /* log it */
12_rcvrelease (rcvbuf_aptr);/* discard the packet */
rcvbuf_xptr = NIL; rcvbuf_rb = NIL;
}
/* start sending */
rb->ph.dtype = rb->sndtype; /* datastream type */
rb->snd_count = 0; /* no message retries yet */
rb->first_seq = rb->ph.seqno; /* save starting sequence number ¥/
rb->bufcursor = rb->sndptr; /* initialize cursor to start of buffer */

rb->ph.allno = rb->ph.seqno + 100; /* arbitrary large allocation number */



) )

rb->bytes_left = rb->sndlength; /* amount to send */
rb->state = st_sending; /* put us in the sending state */
14_dosend(rb, 12_getbuf()); /* process send until blocked */

14_exit(); /* turn off 14_busy flag and process pending interrupts */
)



14_rcvmsg (&14rb)

Receive a message aon an existing open connection.

Inputs are the following l4rb fields:

rcvptr = a pointer to the message buffer

rcvlimit = the size of the message buffer

status = 14st_done to indicate this is idle open connection
anr = function to call when the send is complete

All other rb fields must be unchanged.

Output is the status field of the 14rb, as follows:

status == 14st_uncon The receive failed and the connection is closed.
status == 14st_done The receive succeeded and the connection is still
open.

Until the command is complete the status field will be 14st_busy.
The ANR routine whose address is in the 14rb will be called when
the status is changed to one of the above.

wWhen status == 14st_done, the following additional fields will have been set:
rcviength == the actual length of the received message
rcvtype == the type of the received message
_____________________________________________________________________________ */
14_rcvmsg (rb)
register struct 14rb *rb;
{
14_trace(tr_l4rcvmsg,rb,
rb->ph.ackno); /* log the call to rcvmsg */
++l4cnt_rcvmsg; /* count it */
assert (rb->id == RBid, "“l14_rcvmsg 0");
assert (rb->status == l4st_done,"14_rcvmsg 1");
assert (!14_busy,"14_rcvmsg 2");
assert (rb->state == st_idle, “14_rcvmsg 3");
assert (rb->rcvptr, "14_rcvmsg 4");
14_busy = TRUE; /* 14 is busy */
rb->status = 14st_busy; /* command is in progress on this rb */
rb->bufcursor = rb->rcvptr; /* start the buffer pointer */
rb->rcvtength = 0; /* start the cumulative length */
if (rcvbuf_rb == rb) ( /* There is already a packet of data assigned to us. */
14_processpkt (rb); /% use it */
}

else { /* there is no packet yet */



rb->state st_pktwait; )

rb->timer = TO_AWAIT_MSG;
14_addlist (rb, &waitpkt_list); /* wait for the initial packet */
)

/* Note that if there was an initial packet but we disarded it because it
smelled funny, we will be on the waitpkt_1list with the TO_AWAIT_PKT

timeout instead of the TO_AWAIT_MSG timeout. Not perfect, but so what.
*/

14 exit(); /* turn off 14_busy flag and process pending interrupts */
)



14_abort (&14rb)
Abort the current connection.

This is for external callers.

14_abort (rb)

register struct 14rb *rb;

pending interrupts ¥/

{
assert (rb->id == RBid, "14_abort 0");
14_busy = TRUE;
14_doabort(rb);
14_exit(); /* turn off 14_busy flag and process
)
2 T T et

14_doabort (&14rb)
Abort the current connection.

This is for internal callers.

14_doabort (rb)

register struct 14rb *rb;

(
14_trace(tr_l4abort, rb, 0); /* make a log
++14cnt_aborts; /% count it */
14_removecon (rb); /*%* remove it f

14_purgelist (rb, &waitbuf_list); /* purge from
14_purgelist (rb, &waitpkt_list); /* purge from
14 _purgelist (rb, &waitcon_list); /* purge from

assert (!rb->on_a_list, "14_abort 1");
rb->status = 14st_uncon; /* unconnected
rb->state = st_idle; /* and idle */
if (rcvbuf_rb == rb) { /* if we own t
12_rcvrelease (rcvbuf_aptr); /* discard it
rcvbuf_xptr = NIL; rcvbuf_rb = NIL;
)

entry ¥/

rom the connection
any lists it is on
any lists it is on
any lists it is on

*/

table */
*/
*/
*/

he current incoming packet,

*/



14_disconn (&14rb)

Disconnect the current connection.

----------------------------------------------------------------------------- */
14_disconn (rb)
register struct 14rb *rb;
{
14_trace(tr_l4disconn,rb,
rb->ph.srcskt); /* log the 14_disconn call #*/
assert (rb->id == RBid, “14_disconn 0");
assert (rb->status == 14st_done,"14_disconn 1");
assert (!14_busy,"14_disconn 2");
assert (rb->state == st_idle, "14_disconn 3");
assert (!rb->on_a_list, "14_disconn 4"); /* we should be on no lists */
if (rcvbuf_rb == rb) ( /% if we own a packet, discard it ¥/
++14cnt_discardunx; /* count discard of unexpected packet */
14_trace(tr_ld4discardunx,rb,
rcvbuf_xptr->seqno); /* log it */
12_rcvrelease (rcvbuf_aptr);/* discard the packet */
rcvbuf _xptr = NIL; rcvbuf_rb = NIL;
}
14_busy = TRUE; /*¥ 14 is busy */
rb->status = 14st_busy; /* command is in progress on this rb */
if (rb->we_owe_ack) ( /* we owe him an ack first */
rb->state = st_sendackd; /* “we are sending an ack for disconnect™
assert (rb->bytes_left == 0, "14_disconn 6");
14_dosend(rb, 12_getbuf()); /* try to send it ¥/
}
else { /* we can disconnect right now */
rb->status = l14st_uncon; /* we are unconnected */
rb->state = st_idle; /* and idle */
14_removecon (rb); /* remove it from the connection table */
14_trace(tr_l4adisconned,rb,
rb->ph.srcskt); /% log the "disconnnected" anr call */
(*rb->anr)(rb); /* call the "disconnected"” ANR ¥/
)

14_exit(); /* turn off 14 _busy flag and process pending interrupts */

}



14_exit ()
Exit from a public Level 4 routine.

Check for any pending interrupts that were postponed.

14_exit ()
(
14_busy = FALSE;

/* We must loop until all the pending flags are off because
processing a delayed interrupt sets 14_busy and a interrupt
which occurs at that time would itself become pending and
not be caught if we had already looked at that flag and
found it false. (Thanks, Jerry!)

*/

while (intpending_rcv || intpending_xmit || intpending_timer) (

/* Note that because we do these checks while interrupts are enabled
and the 14_busy flag is off, there is a small chance that an
interrupt can occur right now and be processed out of order.

But there is no harm in that, so we don‘t spend the time to disabtle.

*/

if (intpending_rcv) ( /% pending receive interrupt */
intpending_rcv = FALSE;
14_rcvintr (intpending_bufp);
}

if (intpending_xmit) ¢ /* pending transmit interrupt */
intpending_xmit = FALSE;
14_gotbuf (intpending_outbuf);
}

if (intpending_timer) ( /* pending timer interrupt */

intpending_timer = FALSE;
14_timerint();
)

) /* while %/



14_newconn (&14rb)

The current packet is an incoming connect that can be assigned to
this RB, whose last call was to 14_openrcv.

Record the connection data, assign an ephemeral socket and conid,
and note a special ack to be sent if it is a one-packet message.
Also record whether the "long packets ok" bit is set in the header.

Remember that although the ackreq bit is usually set with eom, we don’t
honor it so that the ack will piggyback on the next message. The "special
connect ack" is an ack sent because of an ackreq with eom if it is the
first message of a connection and it is a single-packet message. If it is
a multi-packet connect, the first packet will have the ackreq bit but not
the eom bit set, and thus generate the ack from 14_processpkt, and so we
cancel the request for the special ack.

Note too that we do not send the special ack until the 14_rcvmsg call has
released this packet. This is important to avoid a deadly embrace with
two stations who are connecting to each other almost simultaneously. What
happens is that both stations have their incoming buffers clogged with
initial connect packets but are trying to send each other the ack which
will allow them to be processed and unclogged.

14_newconn (rb)

register struct l4rb *rb;

short int hash_index;
++14cnt_openrcv; /* count an incoming connection */

hash_index = hash_addr(rcvbuf_xptr->srchost); /* add this rb to the end of the */
rb->conlink = 14_con_table [hash_index]; /* connection table */
14_con_table [hash_index] = rb;

14_initph(rb); /* initialize our packet header for sending */
rb->ph.dsthost[0] rcvbuf_xptr->srchost[0]; /* copy his address */
rb->ph.dsthost|[ 1] rcvbuf_xptr->srchost[1];

rb->ph.dsthost[2] rcvbuf_xptr->srchost([2];

W

rb->ph.dstid = rcvbuf_xptr->srcid; /* incoming src id is our dst id */
rb->ph.dstskt = rcvbuf_xptr->srcskt; /* incoming src skt is our dst skt */
rb->rcvtype = rcvbuf_xptr->dtype; /* preview the datastream type */

rb->ph.maxpkt rcvbuf_xptr->maxpkt; /* copy MAXPKT_LONG bit */

rb->status = 14st_done; /* we are done with the openrcv */
rb->state = st_idle; /* and are now idle */
rb->send_ack = TRUE; /* flag to send ack with eom */
14 trace(tr l4connectrcvd,rb,

- ~  rb->ph.srcskt); /* log the "connect rcvd" anr call */
(*rb->anr)(rb); /* call the "openrcv" ANR */

}



14_dosend (&l14rb, outbuffer)

The rb is currently in one of the following sending phases:
st_connectg: sending the first packet of an intial connect message
st_sending: sending packets of a message

st_sendackr: sending an ack because we got a packet with the
ack-request bit on and the end-of-message bit off.

st_sendackc: sending an ack because the only (or last) packet of an
incoming connection has arrived.

st_sendackd: sending an ack because of an 14_disconn call.

The parameter "outbuffer" is the address of a packet buffer if one is
available, or NIL if there are none at the moment.

This is called for the initial attempt at sending, and by the interrupt

routine which discovers a new transmit buffer if this rb was on the
wait-for-buffer list.

14_dosend (rb, outbuffer)

register struct 14rb *rb;
faraddr outbuffer; /* address of the arc-format packet buffer */

(
/* Wait for a buffer if we weren’t given one. */
if (!outbuffer) { /* if we didn‘t get a buffer */
14_addlist (rb, &waitbuf_list); /* put us on the 1ist for xmit buffers */

return;

}

/* We now have a buffer to send with. */

switch (rb->state) (

case st_connectg: /* Send the initial packet of a connect message */
14_fillpkt (rb, outbuffer,
/% ackreq */ TRUE, /* syspkt */ FALSE); /* send with ack request */
goto ackwait; /* and wait for the ack */
case st_sending: /* Send, or continue sending, a message */

assert (rb->bytes_left>=0, "14_dosend 1");

do ( /* send as much as we can ¥/
14_fillpkt (rb, outbuffer,



/¥ ackreq */ FALSE,
} while (rb->bytes_left>0

if (rb->bytes_left == 0) (
ackwait:

rb->state = st_ackwait;
assert (rcvbuf_rb != rb,

rb->timer = TO_AWAIT_ACK;

14_addlist (rb, Bwaitpkt_list);

)
else {

/* remain

)

break;

case st_sendackr:

14 _fillpkt(rb, outbuffer,

/% ackreq */ FALSE, /¥% syspkt
rb->state = st_pktwait;
rb->timer = TO_AWAIT_PKT;
14_addlist (rb, &waitpkt_list);
break;

case st_sendackd: /* sending an ack
14_fillpkt(rb, outbuffer,

/* ackreq */ FALSE, /% syspkt
rb->status = 14st_uncon;
rb->state = st_idle;
14_removecon (rb);
14_trace(tr_l4disconned,rb,

rb->ph.srcskt);
(*rb->anr)(rb);
break;

case st_sendackc: /* sending an ack
14 fillpkt (rb, outbuffer,
/* ackreq */ FALSE, /* syspkt
rb->status = 14st_done;
rb->state = st_idle;
rb->send_ack = FALSE;
14_trace(tr_l4rcvanr,rb,
rb->ph.srcskt);
(*rb->anr)(rb);
break;

default: assert (FALSE,
} /% switch */

} /* 14_dosend */

/* syspkt */ FALSE);
88

/%

/* sending a requested ack

"14_dosend 4");

)

/* fill packet and queue

(outbuffer = 12 getbuf()) );

last packet was queued */

/* or first packet of connect was sent */

/* await ack */
"14_dosend 2");
/* If he sends while we are sending,
should probably be removed after debugging.

/* we better not own a packet */
we could own a packet. This assertion
*/

/* put us on the packet-wait list */

/* must wait for more buffers */
14_addlist (rb, &waitbuf_list);
in the sending state */

/* put us on the list for xmit buffers */

in the middle of a message */

¥/ TRUE); /* send the ack */
/* go back to wait for more packets */

because we are disconnecting */

#/ TRUE); /* send it */

/* we are unconnected */

/* and idle */

/* remove it from the connection table */
/* log the "disconnnected” anr call */

/* call the "disconnected" ANR */

because of an incoming connect */

*/ TRUE);
/* now receive
/* and we are
/* no more special

/* send an ack */
is done ¥/
idle */
ack with eom */

/* l1og rcvmsg done */
/* call his ANR routine */

/* wrong state in call to dosend */

it for transmit */



14_initph (rb)

Initialize the transmit packet header.

This is called both in preparation for an outgoing connection
and when an incoming connection arrives.

----------------------------------------------------------------------------- */
14_initph (rb)
register struct 14rb *rb;
{
rb->ph.sysid = NESTAR_SYSID; /* Nestar’s protocol id */
rb->ph.chksum = Oxffff; /* checksum = -1 means "no checksum" ¥/
rb->ph.ptype = 5; /* SPP = sequenced packet protocol */
rb->ph.srcid = src_conid++; /* use up the next source connection id */
rb->ph.srcskt = eph_socket++; /* use up the next ephemeral socket */
if (eph_socket > MAX_WKS+1000) eph_socket = MAX_WKS+1;
rb->ph.segno = 0; /* start sending sequence number 0 */
rb->ph.ackno = 0; /* expect to receive seq. number 0 */

rb->ph.srchost (0]
rb->ph.srchost( 1]
rb->ph.srchost([2]
}

our_addr([0];
our_addr[1];
our_adadr|2];

/* move our source address */



14_processpkt (&14rb)
Process an incoming packet whose XNS header is at rcvpkt_xptr.

1f the sequence number is not right, discard it.
If it‘s ok, use the data.
If it’s the end of the message, call the ANR.

This is called from 14_rcvmsg without us on any waiting list,

and from the interrupt routine 14_rcvintr with us on the pktwait_1list.
We return on the pktwait_list if we must wait for more packets for this
message.

————————————————————————————————————————————————————————————————————————————— */
14_processpkt (rb)
struct 14rb *rb;
short int tength;
int conctl; /* connection control! byte of the packet */
conctl = rcvbuf_xptr->conctl; /* remember the control byte */
if ( conctl & syspkt /*¥ if not a data packet */
|| rcvbuf_xptr->segno != rb->ph.ackno) ( /* or wrong packet number */
++14cnt_discardseq; /* count discard */
14_trace(tr_l4discarddat,rb, /*¥ while waiting for data packets */
rcvbuf_xptr->seqgno); /% log it */
12_rcvrelease (rcvbuf_aptr); /* discard the packet */

rcvbuf_xptr = NIL; rcvbuf_rb = NIL;
}

else { /* we can use this packet */

I4_trace(tr_l4pktused,rb,rcvbuf_xptr);/* log the use of the packet */
++rb->ph.ackno; /* accept the sequence number */

if (rb->rcvptr == rb->bufcursor) /* if it’s the first packet of a msg */
rb->rcvtype = rcvbuf_xptr->dtype; /* record the type */

length = rcvbuf_xptr->length - 42; /*%* length of user data */
assert (rb->rcvliength + length <= rb->rcviimit,
"14 emptypkt 1"); /* receive buffer is too small */
movel (~ /% move the data */
(faraddr) rcvbuf_xptr + sizeof(struct pkthdr), /*¥ from */
(faraddr) (rb->bufcursor), /* to */
length);
rb->bufcursor += length; /* step to the next position in the buffer #*/
rb->rcviength += length;
rb->we_owe_ack = TRUE; /* we now owe an ack */
12_rcvrelease (rcvbuf_aptr); /* release the packet */

rcvbuf_xptr = NIL; rcvbuf_rb = NIL;
if (conctl & eom) ( /* if end of message */

if (rb->on_a_list) /* if we were on pktwait_list */
14_removelist (rb, &waitpkt_list); /* we shouldn’t be any more */

if (rb->send_ack) { /* if we must send special ack */



rb->state = st_sendackc; /* switch to sending connect ack %/
14_dosend(rb, 12_getbuf()); /* send the ack */
)

else ( /* no special ack to send */
rb->status = 14st_done; /* so receive is done */
rb->state = st_idle; /¥ and we are idle */
rb->send_ack = FALSE; /* no more special ack with eom */
14_trace(tr_l4rcvanr,rb,

rb->ph.srcskt); /* log rcvmsg done */

(*rb->anr)(rb); /* call his ANR routine */
)

) /7% eom ¥/

else if (conctl & ackreq) ( /* ackreq and not end of message */
rb->state = st_sendackr; /* switch to sending ack */

/* Remove the following statement if you want the last packet of a
multi-packet connection message to generate an ack. %/

rb->send_ack = FALSE; /*%* don’‘t need to send special ack */

/* We must temporarily be taken off the packet-wait list because if there
are no transmit buffers we will go on the buffer-wait Jist instead.
Fear not, 14_dosend will put us back on the packet-wait list. */

if (rb->on_a_list) 14_removelist (rb, &waitpkt_list);

14_dosend(rb, 12_getbuf()); /* send the ack */
)
else ( /* neither ackreq nor eom */
rb->state = st _pktwait; /% so wait for more message packets */

rb->timer = TO_AWAIT_PKT;
if (!'rb->on_a_list) 14_addlist(rb, 8waitpkt_list);
}

)} /% we can use this packet */



14_rcvintr (bufptr) Process receive interrupts.

This is called as an interrupt routine when a packet has been received.
The input parameter "bufptr"” points to the arcnet-formatted packet.

We expect that other interrupts from the network device and timer are
disabled.

we call 12_rcvrelease (bufptr) when the received packet can be discarded.
It could be called from this interrupt routine, or later from the timer
interrupt routine or non-interrupt code. We expect no other calls to
this interrupt routine until the packet is released.

Note that this routine might also be called when 12 _rcvrelease() is
called by anyone else and there is another incoming packet pending.

If it is called from within L4, then the 14_busy flag will be on and
the “interrupt” will be postponed. That it why code such as
“12_rcvrelease(bufptr); bufptr = NIL;" doesn’t cause a buffer pointer

to the new packet to be destroyed. In other words, L4 doesn’‘t call itself

recursively as far as incoming packets are concerned.

This routine does the following:

1. Decode arcnet format and setup the global pointer "rcvbuf_xptr" to
point to the XNS packet embedded within,

2. Check that it is a valid XNS packet. Discard it if it is not.

3. Search the list of RBs waiting for packets, looking for one which
can be given the packet. There are two cases:

a. The packet is a new connection, and the RB is waiting for a
connection. Call the ANR routine.

b. The packet is part of an existing connection, and the socket
and connection ids match. If there is a buffer, move the data.
If there is no buffer yet, attach the packet and wait.

4. If no eligible RB is found, setup a timer so that the packet is
discarded if no RB claims it in a short time.

Remember that we are running as an handler from the hardware interrupt
routine, so be discreet! Make no calls to library routines.

Even "assert" calls that will print a message might be dangerous, but

we allow ourselves that because if the assertion fails the system should
be crashed anyway.

ARCNET note: The only parts of Level 4 which know about the format of
Arcnet packets are the beginning of 14_rcvintr() and all of 14_fillpkt().

14_rcvintr (bufptr)
fararcaddr bufptr; /* pointer to the packet buffer that just arrived */

(
int length; /* number of data bytes, including XNS header */
int i;



)

int conctl; /* connection control byte for the packet */
struct 14rb *rb; /*% for looking for the rb to assign a packet to */
if (14_busy) (

/* We must postpone this interrupt because 14 is already busy */

assert (!intpending_rcv, "14_rcvint 0");
14_trace(tr_l4rcvintpost,0,bufptr); /* log the postponed interrupt */
intpending_rcv = TRUE;

intpending_bufp = bufptr; /* save the buffer pointer */

return;

)

assert (!intpending_rcv, "14_rcvint 1");

14_busy = TRUE;

/* Process the incoming packet interrupt */

assert (rcvbuf_xptr == NIL, "14_rcvintr 2");

/*

*/

Decode short vs. long packet formats and setup packet variables.
Only this small part of 14_rcvintr is dependent on Arcnet packet
format.

rcvbuf_timer = 0; /* turn off receive packet timeout */
if (bufptr->countt) ( /* short packet format */

length = 256 - bufptr->countl;
rcvbuf_xptr = (farphaddr) ((faraddr) bufptr + bufptr->countil);

else { /* long packet format */

length = 512 - bufptr->count2;
rcvbuf_xptr = (farphaddr) ((faraddr) bufptr + bufptr->count2);
)

rcvbuf_aptr = bufptr; /* remmber the start of the whole arc packet */

/*-—--- From here down we are independent of the format of Arcnet packets. ----%/
l4_trace(tr_l4rcvintr,length,bufptr); /* log the interrupt */
++l4cnt_rcvpkt; /* count it */

/* Reverse some of the XNS fields if we are running aon an (ugh) Intel
processor. We only reverse the fields that we do arithmetic on;
others that are simply compared (srcid, dstid, dsthost, etc.)
are left as is.

Whatever fields are reversed here for incoming packets must also be
reversed in 14_fillpkt() for outgoing packets.

*/

#if intel
/¥*x%%* We now call an assembly-language routine that does them all at once

14_revxns_word (&rcvbuf_xptr->length);:



714_revxns_word (&rcvbuf_xptr->dstskt);
14_revxns_word (&rcvbuf_xptr->srcskt);
14_revxns_word (&rcvbuf_xptr->seqno);
14_revxns_word (&rcvbuf_xptr->ackno);
14_revxns_word (&rcvbuf_xptr->alino);

I Y] -
12_reverse_xns (rcvbuf_xptr);

#endif

/% Check to see if it is a well-formed XNS packet.
Discard it if not */

i length & 1t /% packet size is odd */
|1 1ength < 46 /* datalink packet too small */
Il rcvbuf_xptr->sysid != NESTAR_SYSID /* not Nestar packet type */
I rcvbuf_xptr->length < length-9 /% XNS packet too small */
/% The maximum discrepancy is 9: 4 from fields not counted by XNS,
2 from rounding up odd sizes, and 3 from disallowed arcnet sizes. ¥/
|| rcvbuf_xptr->length > MAX_XNS_PKT /* XNS packet too large */
I rcvbuf_xptr->ptype != 5 /* not XNS type SPP = sequence packet protocol */
/* Should we also check destination the host address? */
) { /* bad packet! */

++14cnt_discardfmt; /* count a discard */
l14_trace(tr_lA4discardfmt,0,bufptr); /%* log a discard due to bad format */
goto release;

)
if (rcvbuf_xptr—>dstskt < MAX_WKS) { /* what kind of socket is it for? */

/****x%x%%%x [t is a new incoming connection. EEEEEEEEREESE)

if (rcvbuf_xptr->seqno != 0 /* seqno and ackno must be zero */
|| rcvbuf_xptr->ackno !'= 0)
++14cnt_discardcon; /¥ count bad connect */
14_trace(tr_l4discardcon,bufptr,
rcvbuf_xptr->seqno); /* log it */
goto release;) /*¥ discard it */
if (rcvbuf xptr->conctl & syspkt) { /*¥ system packet connect !?7! */
++14cnt_discardcon; /* count bad connect */
14_trace(tr_l4sysconnect,bufptr,
rcvbuf_xptr->conctl); /* log it */
goto release; /% discard it */
for (i=0; i < MAX_SOCKETS; ++i) /* check against WKS’s we want */
if (rcvbuf_xptr->dstskt == sockets[i]l) goto good_connect;
14 trace(tr l4badwks,bufptr,
- rcvbuf_xptr->srcskt); /* log the discard wks connect */
++14cnt badwks;
goto release; /* discard if no wks match */

good_connect:



/* Check that this connect packet is not a delayed duplicate
for a connection already established.

*/
rb = 14_con_table [hash_addr(rcvbuf_xptr->srchost)]; /* hash into connection table */
while (rb) (

if (rb->ph.dstskt == rcvbuf_xptr->srcskt /* same ephemeral socket? */

&& rb->ph.dstid == rcvbuf_xptr->srcid) ( /* same source conid? */
++14cnt_discardseq; /* yes: discard due to bad sequence %/
l4_trace(tr~l4discarddup.rb. /% duplicate connect */

rcvbuf_xptr->seqno); /* log it */
goto release;
)
rb = rb->conlink; /* next rb in this hash list */

) /% while */

/* Take the first rb off the waiting-for-connections list, if any.
Someday we may wish to make selective assignments of connections
to RBs based on the well-known-socket and the list would be
searched for an appropriate match.

*/

if (rb = waitcon_list.head) { /* somebody is waiting */
14_removelist(rb, &waitcon_list);
assert (rb->state == st_connwait, "14_rcvintr 3"});
rcvbuf_rb = rb; /* grab the packet */
14_newconn(rb); /* process the connect packet */
}

goto set_timer; /* wait for an openrcv or rcvmsg */

} /7* new connection */

else { /* socket test for new connection */

JExskkrkrsrbker [t 5 for a existing connection., ¥**ksxkkkrkkkxix

Search the list of rbs waiting for packets to see if
it matches anyone.

*/
rb = 14_con_table [hash_addr(rcvbuf_xptr->srchost)]; /* hash into connection table */
while (rb) /* there is an rb in this hash list */

if (rb->ph.srcskt == rcvbuf_xptr->dstskt /* if the packet is right socket */
&8 rb->ph.srcid == rcvbuf_xptr->dstid) { /* and right conid */

/¥ The packet belongs to this rb., --------- */
rcvbuf_rb = rb; /% assign us the packet */
conct) = rcvbuf_xptr->conctl; /* remember the control byte */

if (rb->state == st_ackwait) (

/* We have been waiting for an ack for one of two cases:

1. An outgoing message was completely sent.



)

2. The first packet of a multiple-packet connect
message was sent.
*/
if (rcvbuf_xptr->ackno == rb->ph.seqno) { /* we got the ack */
14_removelist (rb, &waitpkt_list); /* not waiting any more */
if (rb->ph.dstskt < MAX_WKS) { /* have we migrated yet? */

rb->ph.dstid = /%
rcvbuf_xptr->srcid; /*
rb->ph.dstskt =
rcvbuf_xptr->srcskt; /*
rb->ph.maxpkt =
rcvbuf_xptr->maxpkt; /*
)
if (conctl & syspkt) { /%
12_rcvrelease (rcvbuf_aptr); /%

as follows:
id

*/
is our dst

no: do so,
incoming src id */
incoming src skt is our dst skt */

If off,
long packets */

copy MAXPKT_LONG bit. we

shouldn‘t send

if it is a system packet */
discard it now */

/* We discard early so that the rcv buffer isn‘t tied up during a send */

rcvbuf_xptr = NIL; rcvbuf_rb = NIL;
if (rb—>bytes_left == 0) [4 /* the outgoing message is done */
14_trace(tr_t4xmitanr,rb,
rb->ph.srcskt); /* log the "xmit done" */
rb->status = 14st_done; /* the sendmsg is done */
rb->state = st_idle;
(*rb->anr)(rb); /* call his ANR routine */
else { /* muitiple packet connect */
rb->state = st_sending; /* continue sending */
14_dosend (rb, 12_getbuf());
)
if (conctl & syspkt) ( /* if it was a system packet */
goto rti;) /* then we’'re done ——- it’s discarded */
if (rcvbuf_xptr->segno == rb->ph.ackno) ( /* if it’s data and right seq */
/* 1t is also the first data pkt of an incoming message */
goto set_timer; /* leave the packet there - wait for a rcvmsg */
} /* we got the ack */
++14cnt_discardseq; /* discard due to bad sequence */

14_trace(tr_l4discardack,rb,
rcvbuf_xptr->seqno);
goto release;

}

/*

/* ackwait */

else if (rb->state == st_pktwait) {

/¥ We have been waiting for a data

Note that logic similar to this is

14 _processpkt (rb); /* process
goto rti;

} /7% pktwait */

the packet and release

/* while waiting for ack */
log

it */

packet for a message.
in

14_rcvmsg. */

it */



) )

else goto set_timer; /* leave packet assigned tor a later rcvmsg */

/* We used to discard an "unexpected" packet here if it is a system packet
or we are in one of the sending states. That doesn’t work, though,
because if we are slow compared to the sender he could have sent us the
packet before we get back to the idle or pktwait state. So now we leave
the packet assigned. If it is truly unexpected, it will be timed out.
We might still be able to discard unexpected system packets early, but it’'s
too hard to think about and will almost never happen, so forget it. *¥/

} /% if packet belongs to this rb */

rb = rb->conlink; /* next rb in this hash list */
} /% while rb %/
} /% if existing connection */

/% At this point either nobody owns up to wanting the packet,
or the RB who owns it didn’t do a rcvmsg yet.
Set the timer and give somebody a while
to claim it before it is discarded.

It can be claimed in any of the following ways:

a. By a fresh RB doing an openrcv call.

b. By a connected RB doing a rcvmsg call.

¢c. By a connected RB doing some other operation while not
expecting a packet, and discovering that it owns the
incoming packet. It will discard it then, rather than

waiting for it to timeout. <--- 77 CHECK THIS.........
*x/
set_timer:
ld_trace(tr_l4unclaimed,rcvbuf_rb,bufptr); /* log an unclaimed packet */
rcvbuf_timer = TO_PKT_DISCARD; /* setup countdown timer */
goto rti; /% and exit without discarding the packet */

/¥ Release the packet because it has been used or rejected.

Note that we don‘t free it as early as we might.
In particular, we schedule the ack for a message first.
There’s no reason for this; we could do better but it would
probably have minimal effect.

*/

release:

rcvbuf_xptr = NIL; rcvbuf_rb = NIL;
12_rcvrelease (bufptr); /* discard the packet */

/* Return from the interrupt */

rti:
Id_trace(tr_l4rcvintdone,0,bufptr); /* 1og the interrupt done */
14_busy = FALSE;
return;

}



14_gotbuf (outbuffer) Process "got a free buffer" interrupt.
This routine is called by a Level 2 interrupt routine to asynchronously
supply an empty transmit buffer. The circumstances are as follows:

1. A previous call to 12 _getbuf returned NIL, indicating that
there were no free transmit buffers at the time.

2. The current interrupt has freed the transmit buffer whose
address is “"outbuffer".

14_gotbuf (outbuffer)

faraddr outbuffer; /* the buffer that was just freed */
{
struct 14rb *rb;
if (14_busy) (
/* We must postpone this interrupt because 14 is already busy */

assert(!intpending_xmit,"14_gotbuf 1");
/* BUG? We may have to queue multiple transmit buffers! */

I4_tréce(tr_l4gotbufpost,0,outbuffer); /* log the got_buffer interrupt postponed */

intpending_outbuf = outbuffer; /* save the buffer pointer %/
intpending_xmit = TRUE;

return;

)

14_busy = TRUE;

assert (!intpending_xmit, "14_gotbuf 2");

/* Process the available buffer interrupt */

rb = waitbuf_list.head; /* somebody should be waiting for it */
assert (rb != NIL, "14_gotbuf 3");

14 _trace(tr_l4agotbuf,0,outbuffer); /* log the got buffer interrupt processed */
l4:removelist (rb, &waitbuf_list): /* remove him from the list */

14_dosend (rb, outbuffer); /* let him send */

14_busy = FALSE;
)



14_timerint ()

Level 4 timer interrupt routine.

This routine is called periodically to process various timeouts.
All the timeout values in the global definition section are in
units which correspond to the frequency with which this routine is

called. To keep efficiency high the frequency should be low --
something Yike 4 or 5 per second.

14_timerint()

{

struct 14rb #*rb; /* for walking list of waiting rb’s */
if (14_busy) {
/* We must postpone this interrupt because 14 is already busy */
intpending_timer = TRUE;

return;

/*%* We used to:
assert (!intpending_timer, "14_timerint 1");
but when debugging with breakpoints or single-step the timer
can overrun, so don’t check. It doesn’t hurt, anyway.
*/

14 _busy = TRUE;

/* Possible timeout for incoming packet awaiting processing */

if (rcvbuf_xptr 88 rcvbuf_timer > 0) ( /* there is a receive packet timer running */

if (--rcvbuf_timer == 0) { /* timer ran out */
14_trace(tr_l4pkttimeout,0,rcvbuf_aptr); /* log the packet timeout */
++14cnt_discardrcv; /* count it */
12_rcvrelease (rcvbuf_aptr); /* discard the packet */
rcvbuf_xptr = NIL; rcvbuf_rb = NIL;
}
)

/* Possible timeout for RBs awaiting incoming packets */

for /* look at each rb waiting for packets */

(rb = waitpkt_list.head; rb != NIL; rb = rb->flink) (
assert (rb->timer > 0, "14_timerint 3");
if (--rb->timer == 0) ( /* timeout awaiting packet */

14_removelist (rb, &waitpkt_list); /* remove from waiting list */



) )
if (rb->state == st_ackwait) {

/* Timeout awaiting ack: resend the message */

if (++rb->snd_count > SEND_RETRIES) {

14_doabort(rb); /* too many message retries: abort the connection #*/
++14cnt_abortsends; /* count it */
(*rb->anr)(rb); /* and call the ANR */
)

else ( /* start up a retry of the previous message */
++14cnt_m_retries; /* count the message retry */
14_trace(tr_l4retry,rb,

rb->ph.srcskt); /% log it */
rb->bufcursor = rb->sndptr; /* initialize cursor to start of buffer */
rb->ph.seqno = rb->first_seq; /* reset outgoing sequence number */
rb->ph.allno = rb->ph.seqno + 100; /* arbitrary large allocation number */
rb->bytes_left = rb->sndlength; /* amount to send */
if (rb->ph.dstskt < MAX_WKS) /* we we didn’t migrate yet */
rb->state = st_connectg; /*¥ then back to initial connect */

else rb->state = st_sending; /* otherwise the sending state */
14_dosend(rb, 12_getbuf()); /* process send until blocked */
)

)

else {

/* Timeout awaiting non-ack message packet: abort the connection */

assert (rb->state == st_pktwait, "14_timerint 4");
14_trace(tr_l4rcvtimeout,rb,

rb->ph.srcskt); /* log the rcv timeout */
++14cnt_abortrcvs; /¥ count it */
14_doabort(rb);
(*rb->anr)(rb); /% call ANR ¥/
}

break; /*¥ if we found one timeout, don‘t look for others
because the 1list has changed. Catch them the next time.
*/
} /7% timeout found */

} /7% for rb */

14_busy = FALSE;
)



14_filipkt (&14rb, &buffer, ackrequest, systempkt)

Fill the transmit packet buffer with data from the message and
queue the packet for transmission.

Input: "buffer" points to the beginning of the arcnet-format packet,
that is, the 1-byte SID field.

"ackrequest" is TRUE if we should request an ack even if this
isn‘t the last packet of the message. This is used to demand
an ack after the first packet of a multiple-packet initial
connect message.

“systempkt" is TRUE if we are sending a system packet ack with
no data. Note that this is different from a zero-length
data packet.

rb->bytes_left 1is the number of bytes left to send in this message.

rb->bufcursor 1is the pointer to the data to send.

If this is the last packet of the message, set the ack-request and eom bits on.

Al)l packets are currently formatted as if they were RIM buffer arcnet
packets, including the empty space. For token ring, empty space can be
omitted if both sides agree; only this routine would need to change
for transmission, and 14_rcvintr() for reception.

ARCNET note: The only parts of Level 4 which know about the format of
Arcnet packets are the beginning of 14_rcvintr() and all of 14_fillpkt().

14_filipkt (rb, buffer, ackrequest, systempkt)

struct 14rb *rb;
fararcaddr buffer;
boolean ackrequest, systempkt;

{ short int bytes_to_do; /* bytes to send, including xns header */
short int buf_offset; /* where in RIM buffer to start the data */
farphaddr xnshdr; /% pointer to XNS header in the buffer */
boolean longpktok; /* are long packets ok? */

langpktok = rb->ph.maxpkt & MAXPKT_LONG; /* long packets ok? */

/* Fill in the arcnet destination address from the fifth byte
of the XNS destination host address. The arcnet source
address is supplied by the hardware.

*/

buffer->did = *( (addr) rb->ph.dsthost + 5 ); /* (works for Moto OR Intel!) */

rb->we_owe_ack = FALSE; /* we will be sending an implicit ack */



) )

bytes_to_do = sizeof(struct pkthdr); /* size of xns header */
if (!systempkt) bytes_to_do += rb->bytes_left; /* plus data, maybe */

/¥ Setup various Arcnet packet formats depending on the size
of the header + data to be sent.
*/

if (bytes_to_do <= 252) (

/* Case 1: This is the last packet of the message and is a short
packet or is a system-packet ack. */

if (systempkt) (
rb->ph.conctl = syspkt; /* system-packet ack */

rb->ph.dtype = 0; /* zero packet type for sniffer neatness */
}

else (
rb->ph.conctl = ackreq + eom; /* ack request and end-of-message */
)

buf_offset = 256 - bytes_to_do; /* start of data in pkt buffer */

if (buf_offset & 1) ( /* can’'t be odd */

--buf_offset;
rb->ph.garbage = 1;

else rb->ph.garbage = 0;

buffer->countl = buf_offset; /* short continuation ptr */
rb->ph.length = bytes_to_do - 4;
movel ( (faraddr) (&rb->ph), /% from */
(faraddr) buffer + buf_offset, /* to */
sizeof(struct pkthdr)); /* move the xns header */
if (!'systempkt 8& rb->bytes_left) { /* move the data, if any */
move!l ( (faraddr) (rb->bufcursor), /* from */
(faraddr) buffer + buf_offset + sizeof(struct pkthdr), /* to */
rb->bytes_left); /* length */
rb->bytes_left = 0;
}

else if (bytes_to_do <= 508 8&& 1longpktok) (

/% Case 2: This is the last packet of the message, and is long, and
we are allowed to send long packets, so do so. */

rb->ph.conct! = ackreq + eom; /* ack request and end-of-message */
buffer->countl = 0; /¥ flag indication long packet */
if (bytes_to_do < 258) { /* 253..257 must be sent as 258 */
rb->ph.garbage = 258 - bytes_to_do; /* number of pad bytes */
buf_offset = 254; /* start of data in pkt buffer */
)
else { /% 258..508 */
buf_offset = 512 - bytes_to_do; /* start of data in pkt buffer */
if (buf_offset & 1) ( /* can’t be odd */

--buf_offset;
rb->ph.garbage = 1;

)
else rb->ph.garbage = 0;
)



) ¢

buffer->count2 = buf_offset; /* long continuation ptr */
rb->ph.length = bytes_to_do - 4;
movel ( (faraddr) (&rb->ph), /% from */

(faraddr) buffer + buf_offset, /* to */

sizeof(struct pkthdr)); /* move the xns header */

movel ( (faraddr) (rb->bufcursor), /% from */
(faraddr) buffer + buf_offset + sizeof(struct pkthdr), /* to */
rb->bytes_left); /% move the data */
rb->bytes_left = 0;
}

else if (longpktok) (

/* Case 3: This is not the last packet of the message, and we are
allowed to send long packets, so send a long packet. #%/

bytes_to_do = 508 - sizeof(struct pkthdr); /* # of data bytes to send */
buffer->countl = 0 /% flag indicating long packet #*/
buffer->count2 = 4 /* long continuation ptr for max pkt */
rb->ph.length = S0
buf_offset = 4;

sendfull:
if (ackrequest)

H
B
8-4;

rb->ph.conctl = ackreq; /* force an ack request */
else rb->ph.conctl = 0; /% otherwise no connection control bits */
rb->ph.garbage = 0; /* no pad bytes ¥/
movel ( (faraddr) (&rb->ph), /* from */

(faraddr) buffer + buf_offset, /* to */

sizeof(struct pkthdr)); /* move the xns header */

movel ( (faraddr) (rb->bufcursor), /* from */
(faraddr) buffer + buf_offset + sizeof(struct pkthdr), /* to */

bytes_to_do); /* move the data */
rb->bytes_left -= bytes_to_do; /* decrement count by amount sent */
rb->bufcursor += bytes_to_do; /* increment pointer to data by amount sent */
)
else (

/* Case 4: This is not the last packet of the message, but we are
not allowed to send long packets, so send short. */

bytes_to_do = 252 - sizeof(struct pkthdr); /* # of data bytes to send */
buffer->countl = 4; /* short continuation pointer for max pkt */
rb->ph.length = 252-4;

buf_offset = 4;

goto sendfull;

}

/% Reverse some of the XNS fields if we are running on an (ugh) Intel
processor. We only reverse the fields that we do arithmetic on;
others that are simply compared (srcid, dstid, dsthost, etc.)
are left as is.

Whatever fields are reversed here for outgoing packets must also be
reversed in l4_rcvintr() for incoming packets.
*/

#if intel

/*s*+x%% We now call an assembly-language routine that does them all at once
xnshdr = (farphaddr) ( (faraddr) buffer + buf_offset);
14_revxns_word (&xnshdr->length);



) )

14_revxns_word (&xnshdr->dstskt);

14_revxns_word (&xnshdr->srcskt);

14_revxns_word (&xnshdr->seqno);

14_revxns_word (&xnshdr->ackno);

14_revxns_word (&xnshdr->allino);
3T Y

12_reverse_xns ( (faraddr) buffer + buf_offset);

#endif
/* Queue the packet for transmission and return., */
12_sendbuf (buffer); /% send the buffer we just filled */
++14cnt_sendpkt; /¥ count it */

14_trace(tr_l4pktsent,rb,buffer); /* log it */
/‘...ld_trace(tr_ldpktsize,xnshdr—>length,xnshdr—>seqno); /* log the size and seqno */
if (!'(rb->ph.conctl & syspkt)) /* if it’s not a system packet */

++rb->ph.seqno; /* then increment the packet sequence number for next time */
)



14_addlist (rb, 1ist)

/%* Add an rb to end of one of the waiting lists.

We add to the end so that the "waitbuf" list will work like a
FIFO queue. For the other lists it doesn’t matter.

*/
struct 14rb *rb; /* the rb to add */
struct 14_list *list; /* the list to add it to */
/¥ m e e e e e T S S S S C TS TS m e * /
{
assert (!rb->on_a_list, "14_addlist 1) /% better not be on a list already! */
rb->flink = NIL; /* no forward link ¥/
rb->blink = list->tail; /* back link is to previous tail */
if (list->tail) /% if there was a previous tail */
list->tail->flink = rb; /* it points to us */
list->tail = rb; /*%* we are now the tail */

if ('1ist->head) list->head = rb; /*%* if we are the head too */

rb->on_a_1list = TRUE;

14_removelist (rb, list)

/* Remove an rb from one of the waiting lists. */

struct 14rb *rb; /* the rb to add */
struct 14_list *list; /% the list to add it to */
2 et ittt */
(
assert (rb->on_a_list, "14_removelist 1"};
if (rb == list->head) /* if we are the head */
list->head = rb->flink; /* then the new head is our next */
else rb->blink=->flink = rb->flink; /* otherwise make our previous point to our next */
if (rb == list->tail) /* if we are the tail */
list->tail = rb->blink; /* then the new tail is our previous */
else rb->flink=->blink = rb->blink; /* otherwise make our next point to our prevoius */
rb->flink = NIL; /* for neatness only ¥/
rb->blink = NILj; /* for neatness only */

rb->on_a_ltist = FALSE;
}



14_purgelist (srb, list)
/% Purge an rb from a list if it is there */

struct 14rb *srb; /* the rb to purge */
struct 14_1list *list; /% the list it might be on */

struct 14rb *rb;

for /* search the list for the rb */
(rb = list->head; rb != NIL; rb = rb->flink) (
if (rb == srb) (
14_removelist(rb, list);
break;)
)} /% for */
)
T e i */

14_removecon (srb)

/* Remove an rb from the connection hash table.
This is called from places that terminate the connection:

14 _doabort for aborts

14_disconn for disconnects when no ack is due
14_dosend for disconnects when an ack was due
*/
struct 14rb #*srb; /* the rb to remove */
J F m m e oo */
(

short int hash_index;
register struct 14rb *rb, *prevrb;

hash_index = hash~addr(srb->ph.dsthost); /* hash the address into an index */
if (14 con table [hash_index] == srb) ( /* the 99% case: it is the head */
14 con table [hash index] = srb->conlink; /* so remove it */
re?urn? - /* and return ¥/
}
prevrb = 14_con_table [hash_index]; /*¥ otherwise search the list */
while (rb = prevrb->conlink) {
if (rb == srb) { /* found */
prevrb->conlink = rb->conlink; /¥ unlink it */
return;
)

prevrb = rb;



) ),

}: /% while */
assert (FALSE,"14_removecon 1"); /* rb not found in connect table #*/

)



) )

#if intel

14_revxns_word ( ptr )

/* Reverse the word whose address is in the long pointer “ptr".
This is used for reversing msb-first fields in the XNS header
if we are unfortunate enough to be executing on an Intel processor.

The reversal is done in place in the Arcnet RIM buffer, hence
the long pointer.

*/

faraddr ptr; /* a long pointer to a character #*/

( byte temp;

temp = *ptr;

*ptr = *(ptr+1);

*(ptr+1) = temp;
}

#endif /* intel */



2. Should routines that complete immediately set the ending status and
not call the ANR routine? What about the case where the status changes
from busy to complete after returning but before the caller tests the
status? In that case the ANR routine will be called gratuitously if
the caller notices the status instead of waiting for the ANR. The

easy solution is to recommend that the caller ALWAYS wait for the ANR
before checking the status.

6. To add arcnet/token ring simultaneous support, we need to:
a. Pass and receive the rb->arcnet boolean to the Level 2 routines.
b. Generalize 14_gotbuf() so that it searches for the first rb
waiting for the appropriate kind of buffer rather than just
using the first rb on the list. Or, better, have two waiting
lists for empty buffers.

c. Add a new 14_fillpkt routine for token ring, and modify the first
part of 14_rcvintr.

d. Write the token ring Level 2 packet routines.
7. Need to add broadcast support for both incoming and outgoing
connections.

8. Add 14_acknow() function?

/* end of 14.c */



