
MC88110
32-bit Microproce sor
Design Specification

evision 2.0

Motorola Confidential Proprietary
DONOTC0PY

SN 875"

CONFIDENTIAL INR>RMATION TRANSMrlTAL RECORD (Auacbmem •Aj

Pursuant to Non-Di1elosure Apeanem , a,o I Q o 52. r, D . Motorola Inc. 1ias uansmiued

the following confidential information. MC88110 Design Specif'IClli

By:
Motorola kcpieiemiiive

Title:

Date:

Motorola Confidential Proprietary - DO NOT COPY

This document contains infonnation on a new product. Specifications
and infonnation herein are subject to change without notice. Motorola
reserves the right to make changes to any products herein to improve
functioning or design. Motorola does not assume any liability arising
out of the application or use of any product or circuit described herein;
neither docs it convey any license under its patent rights nor the rights
of others.

TABLE of CONTFNI'S
Motorola Confidential Proprietary - DO NOT COPY

i j

3.8 Memory Management Unit. ... ••·•••·•····· •· 9 1
3.8.1 Address Translation Caches9 2
3.8.2 MMU Control .. •• •••••••• 9 6
3.8.3 Translation Descriptors •····•····························· .9 7
3.8.4 PATC Miss and Refill 10 0
3.8.5 Cache/MMU Fault Conditions .. 1 O 6
3.8.6 Probe transactions .. 1 0 7
3.8.7 Breakpoints on logical addresses ... 1 O 9
3.8.8 Cache and MMU Control Registers.............. ... 111

3.9 Bus Interface 1 2 7
3.9.1 Signal Description....................................... .. t 2 7
3.9.2 Packaglr1g _.. 1 3 4
3.9 .3 Bus Operation .. 3 5
3.9.4 Bus Timing Examples 1 41

A. - Appendix • . • . . •. .• •• • • • • • • • • • • • • • • • 1 6 3
A.1. - Exception Vactor Table•... .. .• . . . • . . . 6 3
A.2. - Control Registers ..•.......•......••.•..••. 1 6 4
A.3. - OJ)c:ode Assignments ..•.•.•.•• 1 6 7

Revision 2.0

Motorola Confidential Proprietary - DO NOT COPY TABLE of CONTENTS

Figure 2.1.1.2. -
Figure 2.1.3.4.a -
Figure 2.1.3.4.b -
Figure 2.2.1 -
Figure 2.2.2.2.2 -
Figure 2.2.4.1 -
Figure 2.2.5.1 -
Figure 2.2.5.2 -
Figure 3.1.a -
Figure 3.1.b -
Figure 3.2.4 -
Figure 3.2.6.2.1 -
Figure 3.3.1 -
Figure 3.3.2.1 -
Figure 3.3.3.1 -
Figure 3.3.4.3 -
Figure 3.4.1 -
Figure 3.4.3 -
Figure 3.4.4.a -
Figure 3.4.4.b -
Figure 3.4.4.c -
Figure 3.4.4.c -
Figure 3.4.4.d -
Figure 3.4.4.e -
Figure 3.4.4.f -
Figure 3.4.4.g -
Figure 3.4.4.h -
Figure 3.4.4.I -
Figure 3.4.4.1.2 -
Figure 3.5.1 -
Figure 3.6.4.1 -
Figure 3.6.6.2 -
Figure 3.7.1 -
Figure 3.7.2 -
Figure 3.7.2.1.a -
Figure 3.7.2.1.b -
Figure 3.8.1 -
Figure 3.8.1.1 -
Figure 3.8.1.2 -
Figure 3.8.3.1 -
Figure 3.8.3.2 -
Figure 3.8.3.3 -
Figure 3.8.3.4 -
Figure 3.8.4.1 -
Figure 3.8.4.1.1 -
Figure 3.8.4.1.2 -
Figure 3.8.7 -
Figure 3.8.8.a -
Figure 3.8.8.b -
Figure 3.8.8.c -
Figure 3.8.8.d -

Revision 2 .0

LIST of FIGURES

cmp Extension for String Operations .. 9
Byte Ordering Mode ... 1 5
Heterogeneous Byte Order Environment ... 1 6
Floating Point Data Formats .. 1 7
Memory Storage Alignment ... 2 o
Floating Point Compare Results .. 2 2
IEEE Exceptions ... 2 5
Floating Point Arithmetic Status and Control Registers 2 6
8811 0 Block Diagram .. 2 7
Master Instruction Pipeline ... 2 8
Processor Status Register ... 3 4
Load Store Unit Block Diagram ... 3 8
Floating Point Architecture .. 4 3
Floating Point Exception Cause Register ... 4 4
FPCR w/SLZ Control ... 4 8
Floating Point Divide Latency ... 5 2
3-D Image Rendering .. 5 3
Example Graphics Data Types ... 5 5
punpk.n .. 5 7
punpk.b .. 5 7
punpk.h .. 5 7
ppack.8 .. 5 8
ppack..1 & ...••.•••••••••••. 5 9
ppack.16 .. 5 9
ppac::l<.32 .. 6 0
ppa,d<.32.b ... 6 O
ppac:l<.32.h ... 6 1
Pm u 1 .. 6 2
Arbitrary Saturation Limits ... 6 5
3-D Graphics Transform .. 7 O
Exception Latency .. 7 4
NMl .. 7 6
Instruction Cache Organization ... 7 9
Data Cache Organization .. 8 1
Data Cache State Diagram ... •· .8 2
Data Cache C>peration .. •· •· •· •• • .. 8 3
Address Translation Block Diagram .. 9 1
Block A TC Entry••••••••• • •• •• • • • • •• • • •• •· •··············· ••••••• • • •••• 9 3
Page ATC Entry .. • • .9 4
Area Descriptor Format .. 9 8
Segment Descriptor Format .. 9 8
Page Descriptor Format • •• •• •9 9
Indirect Page Descriptor Format. ... 1 O O
Hardware Tablewalk .. 1 O 1
Page Descriptor lndlrection .. 1 O 2
Masked Protection lndirection .. 1 O 3
Breakpoint Register Entry .. 11 O
Instruction MMU/Cache/TIC Command Register 1 11
IMMU/ICache Control Register ... 11 2
Instruction MMU ATC Index Register .. 11 4
IMMU BATC Read/Write Port ... 1 1 s

iii

TABLE of CONTENTS

iv

Figure 3.8.8.e -
Figure 3.8.8.f -
Figure 3.8.8.g -
Figure 3.8.8.h -
Figure 3.8.8.i -
Figure 3.8.8.j -
Figure 3.9.1 -
Figure 3.9.4.1.1 -
Figure 3.9.4.1.2 -
Figure 3.9.4.1.3 -
Figure 3.9.4.1.4 -
Figure 3.9.4.1.5 -
Figure 3.9.4.1.6 -
Figure 3.9.4.1.7 -
Figure 3.9.4.1 .8 -
Figure 3.9.4.1.9 -
Figure 3.9.4.2.1 -
Figure 3.9.4.2.2 -
Figure 3.9.4.2.3 -
Figure 3.9.4.2.4 -
Figure 3.9.4.2.5 -
Figure 3.9.4.2.6 -
Figure 3.9.4.2.7 -
Figure 3.9.4.3.1 -
Figure 3.9.4.3.2 -
Figure 3.9.4.3.3 -
Figure 3.9.4.4.1 -
Figure 3.9.4.4.2 -
Figure 3.9.4.4.3 -
Figure A.3.a -
Figure A.3.b -
Figure A.3.c -
Figure A.3.d -
Figure A.3.e -

Motorola Colf/ilUttlial P pmt - D T 'OPY

1 nstruction Access Status Register • •· •· •··· • • •· • • .. •·· • •· .. • • • 1 1 7
Data MMU/Cache Command Register ... • • •••• 11 9
DMMU/DCache Control Register .. ••• •• 1 0
DMMU ATC Index Register... 2
DMMU BATC Read/Write Port .. 1 3
Data Access Status Register... •• 2 5
8811 o Pinout ..••••••••••••••••• 1 2 7
Fast Single Beat Reads 1 4 1
Fast Single Beat Writes.....................142
Single Beat Reads with Walts.. • 3
Single Beat Writes with Walts......... 4
Single Beat Reads with Data Bus Grant 5
Single Beat Writes with Data Bus Grant • •• .. •• •• .. • 1 6
Single Beat Read/Write/Read Sequences ••• • • 1 7
Non•pipelined xmem ..•...•.....•.•••••••••• 1 8
Invalidation vs. Read vs. Write • • • • •
Fastest Burst Transfers... • •••• 5 0
Burst Read with Waits/DBG· ... 1 5 1
Burst Write with Waits/DBG· 2
Burst Read in Half-Speed Mode 1 3
Non-pipelined Burst Transfers .. 1 4
PTA. Examl)les............................... t••··· .. .• ••••.. •••••• •• •• •• • • • • •• • • • • • •• • • • • • .1 5 5
Pipelined using DBB· Data Tenure Hand o ~ &
Non-Pipelined Error Termination ... • 5 7
Non•Pipelined TRTRY• Termination ... 1 ,) 8
Pipelined TRTRv• Termination .. 159
Non-Pipelined Snoop Hit ARTRve 1 6 0
Pipelined Snoop Hit ARTRY• 1 61
Open ?.,a Snoop Hit and Collision ARTRY· .. 1 6 2
Immediate Opcodes.......... 1 6 7
Control Register Access and SFU1 Opcodes .. 1 6 8
SFU2 Graphics ()pcodes 1 6 9
Branch, Bit Field, and Memory Opcodes .. 1 7 o
Triadic Operations Opcodes 1 71

Revision 2.0

-

Motorola Confidential Proprietary - DO NOT COPY TABLE of CONTENTS

Table 2.1.1.1.6 -
Table 2.1.1.3 -
Table 3.1.1.3 -
Table 3.3.2.2 -
Table 3.3.2.3 -
Table 3.3.3.1 -
Table 3.3.3.2.a -
Table 3.3.3.2.b -
Table 3.4.4.a -
Table 3.4.4.b -
Table 3.4.4.1.1 -
Table 3.5.a -
Table 3.5.b -
Table 3.5.c -
Table 3.5.d -
Table 3.5.e -
Table 3.5.f •
Table 3.8.2 •
Table 3.8.8.a -
Table 3.8.8.b -
Table 3.9.1 •
Table 3.9.3.7 •
Table A.1 -
Table A.2.1 -
Table A.2.2 •

Revision 2 .0

LIST of TABLES

Summary of 88000 Integer Arithmetic .. 8
bend Prediction .. 1 o
Simultaneous Instruction Issue ... 3 o
Floating Point Exceptions ... 4 s
Floating Point Exception Mapping4 6
SLZ Mode Actions .. 4 9
SLZ Mode Default Results ... 5 o
Recognized and Generated Values .. 5 o
ppack Field Size and Rotation ... 5 a
pcmp Results .. 6 1
8-bit Saturation Examples .. 6 4
SFUO Instruction Timing Summary ... 6 7
SFU1 Instruction Timing Summary ... 6 7
SFU2 Instruction Timing Summary ... 6 8
SFUO Flow Control Instruction Timing Summary 6 8
SFUO Memory Instruction Timing Summary .. 6 9
Control Register Instruction Timing Summary 6 9
MMU Address Translation Modes .. 9 6
Instruction BATC Block Size Selection ... 11 3
Data BA TC Block Size Selection .. 1 2 1
Pin Descriptions .. 1 3 3
Termination Cases .. 1 3 9
Exception Vector Table ... 1 63
SFUO Control Reglsters .. 1 6 4
SFU1 Control Reglsters .. 1 6 5

V

Motorola Confidential Proprietary - DO NOT COPY INTRODUCTION

a OOif 00@@ (IJJ ©if 0@00

This document specifies the extensions being made to the 88000 architecture in
general and the implementation details of the 88110 advanced RISC processor
specifically. Features not addressed herein can be assumed to be the same as those
defined for the 88100/200 microprocessor in the 88100 and 88200 User's Manuals. It
is assumed that the reader is familiar with those documents.

1.1. 88110 OVERVIEW
The 88110 is a second-generation Motorola 88000 family RISC microprocessor
incorporating new architectural and implementation features. The processor utilizes
a high level of integration and an advanced microarchitecture to deliver sustained
performance better than one instruction per clock. It is a complete stand-alone
microprocessor capable of performing all system and application level operations,
many of which previously required dedicated processors (e.g. graphics). Emphasis
has been placed on achieving a balanced design to maximize overall system
performance. Hardware multiprocessor features make the 88110 ideal for systems
employing multiple tightly coupled processors. Bus bandwidth is sufficient to
directly suppon 2 processors into DRAM memory. Larger numbers of processors can
be configured using external hardware to provide additional memory bus bandwidth.

1.2. 88110 FEATURES

•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Two instructions issued per clock
Multiple independent function units:
- Two 32-bit integer arithmetic and logical units
- One 32-bit bit-field unit
- Three 80-bit extended precision floating point units (add, multiply. divide)
- Two 64-bit 3-D graphics units (add, pack)
32, 32-bit general purpose registers and 32, 80-bit ex~ended . registers
8K Byte, 2-way set associative, physically addressed mstrucuon cache
8K Byte, 2-way set associative, physically addressed data cache
Dynamic reordering of loads and stores at runtime ..
64-bit pipelined external data bus with burst transfer capability
Hardware enforced data cache coherency (bus snooping) for multiproces~ors
Critical-word-first burst cache line fills with instruction and data streammg
32-entry branch target instruction cache and static branch prediction
40-entry instruction address translation cache
40-entry data address translation cache .
Page address translation - for demand paged vinu~l memory
Block address translation - for mapping large conuguous blocks of memory
Hardware or software address translation cache refill .
Logical Address Breakpoint registers for software debuggmg
JTAG boundary scan for in-system testability
TAB and PGA packaging

Revision 2.0

INfRODUCI10N
Mororola

2

tar• design capable o
The 88110 is a true "supct•o:~ linear instrucuon

I k from a convcn 1 .
per c oc . d execute two instrucuon
fetch, decode, issue, an . . · posed on t
type or alignment restncuons im
clock throughput.

• • t of multiple concurrent The design consis s f . t r
• which share a common set o r • •

~~~:ention is fully interlocked . and res~l e 
different ex~cution unidts mday_ ;;,"•~~n:i°' p~ogt m 
are automatically rcor ere ID 

i elines are not exposed to the ~rogram_ f n~tructions which needlessly waste. instruction d 
assures object code compatibility with past an 

All integer, logical, bit-field, and graphic fu 
single clock cycle. Operands for these rune, 
32-word general purpose register file (GRF) 
support a sustained execution rate of two m 1 

In the 88110, floating point operations r 
operations. There arc three independent. 
units· one for multiplication, one for addm n, 
poin; multiply and add function unns arc I II 
can be issued to each unit on every clock 
with all other function units on the chip 
floating point operations can be issued 
restriction. An extended register file has 
floating point operands. The extended reg, t r 
precision (single, double, or double-extended . 
support a continuous throughput of two floaun 

The 88110 also implements a set of graphic I tr 
3-D images. Graphics instructions perform oper..i.l i n 
64-bit operands in parallel. There arc two n en 
execution units; one for pixel addition, subtract1 n, nd 
pixel packing, unpacking, and rotation. Both unit 
clock. Pixel multiplication is performed 
concurrently with pixel addition and packing 

0 

r nd nng of 
hhin their 

raph1cs 
ther for 

single 
an run 

unit on a The instruction cache delivers two instructions per to th data cache 
hit and streams instructions directly from the bus to the lU on a mt hit. Cache 
can accept or deliver a 64-bit operand to the register file every clo on transaction 
misses are serviced by filling the missed cache hne with a bu! 1 bu Data cache 
which begins with the address of the missed data (or instrucuon transactions 
coherency is maintained among multiple processors by snoopmg all bus ooping 
for potential conflicts. 88110 caches employ a separate t of cache tags for sn 
so that it does not interfere with normal processor cache accesses. 

bus interface Load and store instruction buffers preceding the data cache and the issue into 
unit help hide memory latencies on cache misses. Store instructio~s ca~omputation. 
the store buffers even before store data is available from a prev•o~s the buffers 
Load instructions can bypass store ins ructions which arc stalled an 

Revision 2.0 



Motorola Confidential Proprietary - DO NOT COPY INIRODUCTION 

awaiting data. Potential memory hazards due to this dynamic reordering of loads and 
stores is prevented by hardware interlocks. The adverse effects of long memory 
latency can be further avoided by explicitly scheduling data into the cache ahead of 
when it will be needed using the "touch" instruction provided for that purpose. 

The 88110 implements a precise exception model to simplify and accelerate exception 
handling. Although instructions finish out of program sequence, the machine will 
automatically empty all internal pipelines and back up to the precise machine state 
that existed when the faulting instruction issued. 

Revision 2.0 
3 



Motorola Confidential Proprietary - DO NOT COPY 88000 ARCHITECTURE 

This section should be thought of as an addendum to the "MC88100 RISC 
Microprocessor User's Manual." It describes changes and extensions to the base 
88000 architecture as specified in that manual. Features specified herein are to be 
considered permanent changes to the architecture and will be used as the basis of all 
future implementations of the 88000, beginning with the 88110. 

The Architecture is defined to be: "the instruction set and programming model 
visible to user mode assembly language programs." The architecture defines the 
lowest common denominator for all 88000 processors, i.e. the minimum set of features 
which must be present in any implementation in order for that implementation to 
qualify as member of the 88000 family. Intentionally excluded from the definition of 
a re hlte c ture. are supervisor mode instructions, internal machine registers. the 
exception handling model, caches, and memory management facilities. These are 
not considered part of the base architecture and are subject to change from 
processor to processor. 

An Implementation is a specific embodiment of the architecture, e.g., the 88100 and 
88110 are implementations of the 88000 architecture. An implementation of the 
architecture can be done in hardware, software, or a combination of both, but all 
implementations must support all architectural features as a minimum. If a 
hardware implementation chooses to implement an architectural feature in software, 
it must do so in a way which is not functionally apparent to user mode programs in 
any way other than performance. 

An Implementation Dependent User Mode Feature is a new class of features 
introduced with the 88110. Such features are visible directly to user mode code but 
are NOT considered part of the 88000 architecture. It was recognized that some 
performance features need to be directly accessible to user mode code but these 
features may be too implementation specific or subject to change on the next 
generation to include in the base architecture. Therefore, a distinction is drawn 
between architecture and implementation dependent user mode features as a 
warning to confine the use of such features to library routines which can be unique 
for each implementation. Their existence should not be exposed to general pu~ose 
compilers or used in object code which must be portable across multiple 
implementations. Implementation dependent user mode features will be clearly 
identified as such in this document. 

The 88000 is designed around the concept of Special Function Un_its (SF~'s). A special 
function unit is an independent design module with reserved mstrucuon opcodes . and 
a defined control mechanism which allows it to share resources and commumcate 
efficiently with the main processor. Typically, an _imple°'!entati~n will construct an 
SFU as one or more independently pipelined execution umt~ which run concur~e~dy 
with other SFU's and sharing the common set of registers and the ex1strng 
instruction interlock facilities (scoreboard). There are 8 SFU's defined. SFUO 
implements the "base architecture" and is present in all implementations. Other 
SFU's are optional and may or may not be included in a given implementation. 

Revision 2.0 
5 



88<XX> ARCHITECTURE Mor r 

6 

Each SFU bas its own arcbitcctun: In the 
point operations. Since an. SFU. other tha 
operations arc not strictly a component of th 
point operations arc becoming mere I i 
if not most, future implementation of the 
hardware. To preserve so l arc 
implementation which docs pro adc OJl1 

by the 88100 User's manual In order to 1 

floating point arclairtcrure and hcnc fonh r 
in the base architecture, cxclu cl for 11 

As the 88000 architecture cvol er time 
architecture which arc not present 1n culicr u 
arc added, we will strive to provide "uscr•code 
uninterrupted growth path for our ustomcrs b 
backward compatibility• so that the 88000 h 1 
to grow with the technology 

This section specifics extensions and modification 
the SFUl architecture. These will be embodied 
implementations. The extensions provide add111 r 

the architecture. The modifications have been 
extensions; the modifications arc minor and in 

incompatibility with the 88100. 

88000 
88110 

xibihty 
to racihta· 

mo l case wall 

·y 

Uhlf 

1ional11_ l 

d 

,r hitcctur, I 
u Lode 

Revision 2.0 



Motorola Confidential Proprietary - DO NOT COPY 88000 ARCHITECTURE 

2.1. BASE ARCHITECTURE 

2.1.1. BASE ARCHITECTURE EXTENSIONS 

Features specified in this section are all completely upward compatible extensions to 
the original 88000 architecture and should not exhibit any incompatibility with 
88100 programs. 

2.1.1.1 New Arithmetic Instructions 

The following instructions, or instruction extensions, are added to the 88000 base 
architecture: 

2.1.1.1.1 Signed Integer Multiply 

The original 88000 architecture provided unsigned 32x32~ 32 bit multiply in both 16-
bit immediate and triadic register addressing forms. An unsigned multiply is 
sufficient for address arithmetic but a signed multiply is more useful for general 
integer arithmetic. Therefore, a signed 32x32=> 32 bit multiply is added to the 
architecture. 

muls rD,rS1,rS2 
The signed 32-bit value in register rS 1 is multiplied by the signed 32-bit value 
in rS2. If the product cannot be represented as a signed 32-bit result, an 
overflow exception is taken and no result is written into rD. 

2.1.1.1.2 Unsigned Integer Multiply Mnemonic 

The official 88100 mnemonic mu I will be changed to mu I u to be consistent with the 
convention that unsigned operations (those which do not generate overflow 
exceptions) end in u, e.g. add u, sub u, div u. The mu I mnemonic will continue to 
exist as a synonym (alias) of mu I u for some period of time so that code generators 
need not change overnight. 

2.1.1.1.3 Unsigned Integer Multiply Double 

To funher facilitate high precision integer arithmetic a 32x32=> 64 bit un_signed 
multiply is added to the architecture. This instruction simplifies general mteger 
arithmetic because the result is guaranteed to fit in the destination. 

mulu.d rD,rS 1,rS2 
The 32-bit unsigned value in register rS 1 is multiplied by the 32-bit unsigned 
value in rS2 and the 64-bit unsigned product is placed in register rD:rD+ 1. 

Revision 2.0 7 



88CXX> ARCHITECTURE 

2.1 .1.1.4 Signed Integer Divide Mnemonic 

The official 88100 mnemonic d Iv will be 
mnemonic for signed integer multiply The 
synonym (alias) of divs for some period of 11 

change instantaneously. 

2.1.1.1.s Unsigned Integer Divide Double 

As a complement to newly provided 64-bit tc 
divide is also defined. 

divu.d rD.rS1,rS2 

ni 

that 

ltipl 

The unsigned 64-bit value in register rS r 1 is div1,i 
value in rS2 and the 64-bit unsigned quotient I c m 
the divisor in rS2 is equal to zero then no result 1s wnu n 
Divide-by-Zero exception 1s taken. 

2.1.1.1.6 Integer Arithmetic Summary 

The following table summarizes the 88000 r arithmetic p l, 1 

Unsi 1ned Sianed t -Arithmetic 
Addressing 
Result Size 

Carry-out 

Immediate Triadic Immediate Triadic 

Add and Sub 
Multiply 

Divide * 

32 64 32 64 32 64 32 
y N y N y N y N y N y N y N ., ., ., 

" ♦ 
t 
YIN 
• 

✓ ., ., ., 
✓ ♦ + 
✓ ♦ ., 

" 
Exists in original architecture 
New architectural extension 
May generate overflow 
Generates/docs not generate carry 
May generate divide-by-zero 

64 -y N 

Table 2.1.1.1.6 • Summary of 88000 Integer Arithmetic 

2.1.1.2 String Processing Operations 

1C 

n l 

11 un i n 

Two new conditions are evaluated by the 88000 compare (c m p ) instruction in order 
to improve string handling. In addition to the result bits currently returned, it will 
also return an "any byte equal" and an "any half-word equal" bit (and their 
complements). This facilitates rapid searching of long strings for a given character. 

8 Revision 2 .0 



Motorola Confidential Proprietary - DO NOT COPY 88000 ARCHITECTURE 

cmp rD.rS1.rS2 
cmp rD.rS1.IMM16 

The data contained in rS1 is compared with the data in rS or the zero-
extended 16-bit immediate and returns a bit string of evatated results into rD. 
The format of the returned bit string is shown below: 

31 30 211 211 27 26 25 2' 23 22 21 20 111 111 17 18 15 14 13 12 11 10 g 8 7 6 5 4 3 2 1 O 

I I I I I I I I I I I I I IO 1 ° I 
n~ I n~ I h~ I I~ I g~ I 1! I n~ I 
~ ~ ~ ~ It ~ eq 

~ Undefined - reserved for future use D Newly Defined 

nh: 
he: 
nb: 
be: 
ha: 
lo: 
Is: 

no half-word equal 
any half-word equal 
no byte equal 
any byte equal 
unsigned greater than or equal 
unsigned less than 
unsigned less than or equal 

hi: 
ge: 
It: 
le: 
gt: 
ne: 
eq: 

unsigned greater than 
signed greater than or equal 
signed less than 
signed less than or equal 
signed greater than 
not equal 
equal 

Figure 2.1.1.2. cmp Extension for String Operations 

2.1.1.3 Branch Prediction 

Static branch prediction is the assignment of a preferred direction for branch 
instructions (i.e . taken or not taken) at compile time. The compiler may use 
programmer or profiler supplied data to predict whether or not a branch is likely to 
be taken. Static branch prediction was not defined for the 88100 but is defined for 
use in future pans. This is not a change from the 88100 instruction set but is simply 
a convention which the compiler can use to optimize branch performance 
consistently across all implementations. 

The 88000 has three conditional branch instructions; branch on bit clear - b b O, 
branch on bit set - b b 1 . and branch conditional - b c n d . The instructions b b O and 
b b 1 arc primarily used in conjunction with the integer and floating point compare 
instructions. The compare instructions place a bit string which is the result of a 
variety of comparisons made on the source operands. The bit string returned has bits 
for both the true and complement of each comparison. e.g. both equal and not equal. 
Therefore. when used in concert with the compare instruction, b b O and b b 1 are 
functionally redundant. This redundancy can be exploited to allow the compiler to 
indicate to the machine which way the branch is likely to go. By convention, a b b 0 
is interpreted as a suggestion that the branch is not likely to be taken while a b b 1 
suggests that the branch will most likely be taken 1 • 

Static branch prediction convention has also been added to the bcn d instruction. 
b c n d compares the data in the source register to zero. The sign bit and zero bit of 

1 Stalislic:a show that mo.a condHlonal branches are taken • roughly 70% of lhe':"· Most existi~g 88100 com~il~rs 
generate bb1 branches more lrequtnll)' than bbO'a. Thus 111 1mp1emenlat~ which employs static branch pred1dion 
lhoulcl get better than 50% p,edk:llon on existing 88100 code without recompiling. 

Revision 2.0 
9 



88000 ARCHITECTURE 
Mow la 

Ill p 

• d a five bit fi 1 
the comparison arc used _to in ex Tbe table 
is a 1 then the branch ,s taken 

the instruction ficl .. d_: ------=~~-::::"::t":;i;;Ti;-""T _____ 7 bend o code b!ts 

rS1 25 24 23 22 21 

:0 0 0 0 

*o 0 1 1 
• 

>0 0 0 0 
cO 0 1 1 

>=0 0 0 0 
:<0 0 1 1 

Table 2.11.3 • bend Prediction 

By convention, if bit 21 is a one (I) in 
predicted to be taken. Thus, 
greater-than-equal-zero condiuons 1ndi t 
Specifying the equal-zero, than -
indicate that the branch will not likely 

2.1.1.4 Signed Immediate Mode 

The 88000 architecture previously defined 
values. This mode of operation will contm 
added which allows immcdiates to be , n 
selectable only from supervisor mode I 
instructions is the same as previously defm 

2.1.1.4.1 Signed Immediate Addressing 

In signed-immediate mode, the immediate o t 
extended to a 32-bit value before being added I 

2.1.1.4.2 Signed Constants 

IO 

In signed-immediate mode, the immediate con 1ant for 
operations arc sign extended to 32-bits before being u d 
extension is performed on add, sub, cmp and div instruct i n 
not performed on unsigned integer arithmcuc add u . u bu d 1 

operations (and, mask , xor, and or), or bounds check (tbnd 
instructions is the same in both signed and un1igned-immcd1i1 1 

as previously defined in the 88100. 

COPY 

bit 
in 

I 

de as 
IS 

all 

in tr • lll n , sign 

int r ritbmctic 

1 
, rand . Sig_n 

s, xtcnsion 15 

u mu I u tog,cal 
pcration of these 
c and the same 

Revtsion 2.0 



Motorola Confidential Proprietary - DO NOT COPY 88000 ARCHITECTURE 

2.1.2. BASE ARCHITECTURE CLARIFICATIONS 

2.1.2.1 Integer Multiply and Divide with SFU1 Disabled 

In the 88100. execution of integer multiply (mul) or divide (div,divu) instructions 
while SFUl is disabled causes a Floating Point Unimplemented exception to be taken. 
These instructions are changed to be independent of SFUI statusl, i.e .• they should 
not generate a Floating Point Unimplemented exception when SFUI is disabled. 

2.1.2.2 ro as a Destination Register 

In the 88100. instructions which specified rO as a destination register performed the 
indicated operation but did not modify any registers. Any side-effect. such as 
generating an exception, performing a memory cycle. or updating a status flag, 
occurred normally but the result was discarded. This definition is changed slightly: 
it will continue to be true that the register file will not be modified, however, the 
occurrence of side-effects is now defined to be implementation dependent. It is no 
longer guaranteed that all expected side-effects will occur; for example, a Id r0,r2,r3 
may not actually cause a memory reference or an add .co r0,rl,r2 may not affect the 
carry flag or generate an overflow. 

2.1.2.3 NOP's 

The 88000 instruction set architecture is designed so that NOP (No OPeration) 
instructions are never required in the instruction stream. However, should the need 
for a NOP arise under some special circumstance. three instructions are 
recommended: 

I) bcn d ItO,rO.x - a conditional branch which will not be taken and is predicted 
not to be taken. This is a non-serializing NOP which will never have a data 
dependency. will never generate an exception, and is likely to be fast in most 
implementations. Since it is an untaken branch it is also not likely to have 
adverse affect on branch acceleration hardware - such as requiring an entry 
in a branch cache. 

2) add rX,rX,rO - a non-serializing NOP; rX can be chosen to either ~orce or avoid 
a data dependency. rX may be specified as rO; add rO,rO.rO 1s guaranteed 
never to have any user visible side-effects but may experience a data 
dependency in some implementations. 

3) t b 1 O,rO.X . a serializing NOP; will force all instructions currently in 
execution to complete before issuing. 

2.1.2.4 Operating Modes 

The 88100 defined several "operating modes" which were selectable from supervisor 
mode by control bits in the Processor Status Register (PSR). The PSR itself is not an 

1 The intent 01 1 hia chan e la 10 make integer multiply and divide an olficial part of the base architecture-. II is desired 
that t~e operation of g base architecture instructions not be a

1
ffected h' b~ croo~r~~at~pl!:~~m~~!:~~n mi~i~fy

nd::J 
operation such as disabling a apecial function unit. lmplemental ons w 1c • 
divide In software rather than hardware, should do so by taking the SFUO Unimplemented Opcode exception. 

Revision 2.0 11 



88000 ARCHITECTURE 

architectural feature since 1t 1s not visible 
the operating modes controlled by 1t or 
user mode code visibility or as component 

(led features). 

The features controlled by the 88100 PSR 
architectural features. Also. a new mOl 
architecture. In most cases the euct mech 
not defined architecturally but 1s 11 ' 

2.1.2.4.1 user/Supervisor Mode 

When the machine is in u mode: 
be executed. Any attempt to eiecute 
result in a Privilege Violation eiceptio • 
all instructions - user and pnvilegcd • 
to enter supervisor mode from user n 
exception, or eitemal interrupt while 
supervisor mode. The mechanism us 
implementation dependent the 881 
instruction). 

2.1.2.4.2 Byte Ordering 

The 88000 native memory .1 • r , 
the _most significant byte of multibyte 
architectures have selected a Littl .£ 
points to the least significant byte of mu 
coexi_st with such systems. the 88100 p 1 

permitted the 88100 to access Uttle-Endian 

In order to improve suppon for dyn 
su_ppon a wider range of bus sizes, th 
will_ be changed. This change will allo 
easily access Little-Endian data ba c 
h~terogen~ous . tightl~-couplccl systems, and 
t•ttle-1:-ndian mstruct1on sets. The new d 

peraung Modes found in the Architecture 

2.1.2.4.3 Signed Immediate Mode 

The new signed immediate od • • 
operation of this mode i m e •~ also con ,der d an 
Extensions. s explained an l pre 10 

2.1.2.4.4 Misaligned Access Exception Mode 

In most cases this ty of e • 
architecture would d~ ;cepuon would not be cons, e 
directly in hardware or 1~ e result. and an implemeo 

e an excepuoo and synthesize the 

12 

D • OPY 

set 

as 
the 

IS 

nd to 
r r 11ode 

n 
more 

of 
of 
on 

• the t ctural, 1.c. • . 
ld either do it 

an oftwarc. But 

Revision 2 .0 



Motorola Confidential Proprietary - DO NOT COPY 88000 ARCHITECTURE 

th~ misaligned acces~es . is a special case because there is no one correct result 
su1!able . for . all apphcauons. Therefore, the flexibility to choose the appropriate 
acuon 1s given to the system by architecturally guaranteeing that misaligned 
accesses can always be forced to cause an exception. Thus all 88000's will provide a 
mi~alig~ed acces_s exceptio~ mode. . In ~his mode, any memory access to a location 
which . 1s not ahgned on. Its respect1v~ size boundary will cause a Misaligned Access 
exception. Implementations may wish to allow this mode to be disabled under 
supervisor program control - in which case a misaligned access will simply ignore 
the appropriate number of lsb's required to align the access. 

2.1.2.5 Code, Address, and Data Modification 

There are three general categories of code and data modification which can cause 
difficulties in highly parallel implementations: 

l) Instruction stream modification (self-modifying code) 
2) Code relocation 
3) Logical address aliasing 

Cenain restrictions are placed on these operations to simplify construction of future 
machines. 

2.1.2.5.1 Self-modifying Code 

In highly parallel machines, multiple instructions may be in various stages of 
internal pipelines, prefetch queues, and caches. Thus, modification of an impending 
instruction in memory may not be seen at all places of interest by the processor. 
This means that the time interval over which code modification will be effective 
cannot be guaranteed. 

Therefore, altering the currently executing instruction stream from user mode is not 
supported architecturally. It cannot be assumed that programs which do this will 
work correctly on any current or future implementation of the 88000. 

However, implementations must have mechanisms, possibly available only through 
supervisor mode routines, which can guarantee the effectiveness of "code 
modification" as described in the following section on code relocation. 

2.1.2.5.2 Code Relocatlon 

Code relocation, e.g. movement by a garbage collector, can have the same difficulty 
as modifying the instruction stream. Therefore, c<?de. reloc~tion is also _not 
architecturally supported from user mode. However, It is arch1tect~rally required 
that all implementations provide some mechanism to allow code relocation. 

As a minimum code modification and relocation must be supported by a trap to a 
supervisor routine. The trap itself is architecturally defined to sync~ronize the 
machine and empty all internal pipelines. The supervisor mode ro_u!me sho?ld 
perform the requested modification or relocation and then take any . add1t1onal acuon 
required to bring instruction caches into coherenc_e. The s~perv1sor wou~d then 
return to the user program which must, once agam, synchromze the machrne and 

Revision 2.0 13 



NOT COPY 

r r location is 

two logical 
one logical 
t hed under 

10n will be 
·tern which 
the specific 

or provide a 
uarantee that 

MODIFIC TIONS 

true ons 

d Ins r uctlons 

ve bee 1 made to the 88000 
or Some of the modifications 

wever, such changes have been 
1 ures and therefore should not 

tionality has been removed from 

of un caled l d a arc eliminated from the 
funcuonally redundant with the ad d u 
opcode space for instruction set extensions. 

1s retained because its functionality is not 

hminated from the 88000 architecture2• The triadic 
provides all necessary functionality with 

: coon have also been removed to recover opcode 

ng the 88110). Since 
m nation lhOl.ed cau•• 

Revision 2 .0 



Motorola Confidential Proprietary - DO NOT COPY 88000 ARCIIlTECTURE 

2.1.3.3 Illegal Opcodes 

In the 88100, some unimplemented opcodes and opcode fields were not detected and 
did not cause a Unimplemented Opcode exception. This makes it difficult to use these 
opcode fields as the architecture is extended because the new functionality cannot be 
emulated on older implementations. Therefore, an architectural requirement is 
imposed on future implementations that all unimplemented major (1<31 :26>) and 
minor (1<15:5>) opcode fields as well as all unused register specifier fields (1<25:21>, 
1<20: 16>, and 1<4:0> ), must cause an exception. Unimplemented SFUO opcodes will cause 
the Unimplemented Opcode exception and unimplemented SFU 1-7 minor opcodes will 
cause the respective SFU exception. 

2.1.3.4 Byte Ordering Mode 

Two modes of addressing, Big-Endian (the native mode) and Little-Endian, are 
supported 1. The two modes of operation are illustrated below: 

ld.b $01<>0 
ld.b $0105 

ld.b $010A 
ld.b $010F 

ld.h $0114 

ld.h $011A 

Id $0120 / 

ld.d $0128 

Registers 

Little-Endian Mode 

Big-Endian Memory 
0 1 2 3 

S00000000 

lffffFFFC 

Registers 

ld.b $0100 
ld.b $0105 

ld.b $01DA 
ld.b $010F 

ld.h $0114 

ld.h $011A 

ld.d $0128 

Big-Endian Mode 

Figure 2.1.3.4.a • Byte Ordering Mode 

Although not shown in the diagram, quad-word transfers into the extended register 
file (described later) are also supported in both modes. Bytes are swapped in a 
manner analogous to that shown for doubles. 

Instruction addressing is always Big-Endian regardless of the byte ordering mode .. 

• as found in memory but the order of bytes within 
In the 88100, byte ordering allered the a~ress at whl:: 8 ~~• :~~~rew 88000's an address will point to the same byte In 
a data Item was not affected. This deflmtion Is chang ltanhl n d 18 Item 18 swapped between registers and memory. 
memory regardless of the mode but the order of bytes w n a 8 

Revision 2.0 15 



88000 ARCHITECTURE 
Motor 

An example of using the byte ordering 
shown below: 

Uttle 
Endlan 

m • a,. • 

• 

n 

Utt..end n 
Mode 

Figure 2.1.3.4.b - Heterogeneous Byte Order Envlro 

In this figure four devices arc shown connected 
memory which is organized in Big-Endian 
processors, one a Big-Endian 88000 and the oth r 
Since the 88000 is the same byte gender as mcm 
bus. The Little-Endian processor however, bcang 
the bus by reversing its bytes left to right so t t proce 
memory byte zero. This byte reversing connection to th 
data placed into memory from the disk, which have t, ! 

Endian system, would be legible to the Little-Endian proc 
knowledge of the internal structure of the data; therefore i 

correctly "unswap" bytes into a Big-Endian memory • it 
into memory in the order they were written to it.) 

, COPY 

u mcnt is 

t 

ssor. 
the 

Below each processor is shown some data as it might appear in internal n. 1s!ers. 
The example shows the Little-Endian processor storing a 32-bit integer (01 34S67J to 
memory at address 4. The byte reversal ends up storing data ard in memo1 
~s se_en by ~e 88000 in Big-Endian addrcuing mode. However, • . the 88000. 1 • plac:d 
m Lmle-Endaan mode, a byte-swap concction is applied to the mtegcr as at as r~ 
into the register. Also illustrated is the storage of a character stnng z'':_ nouc: 

16 

here, however, than no byte swapping is performed and data 1s read the same ID bot 
modes. 

Revision 2 .0 



Motorola Confidential Proprietary - DO NOT COPY 88000 ARCHITECTURE 

2.2. FLOATING POINT ARCHITECTURE EXTENSIONS 
Extensions to the floating point (SFUI) architecture, as originally defined by the 
88100, are described in this section. All extensions are upward compatible with the 
88100. The two major extensions are: 1) support for IEEE extended precision floating 
point data, and 2) addition of a new extended register file to provide more register 
namespace for floating point data. 

2.2.1. FLOATING POINT DAT A TYPES 

Architecturally the 88000 supports four IEEE standard 754 floating point data formats; 
single precision. double precision, double-extended precision, and quad precision. 
The formats are shown in the figure below: 

1 8 23 
Single I S I Exp I Fraction I (l•1 normal, l•O denorm) 

1 11 52 
Double! SI Exp Fraction I (L=1 normal, L=O denorm) 

1 15 1 63 
Dbl-Extended I s I Exp IL! Fraction 

1 15 1 111 
Quad! SI Exp IL! Fraction 

S: sign bit 
L: leading bit 

Figure 2.2.1 • Floating Point Data Formats 

If an implementation of the 88000 provides floating point support, it must implement 
(possibly in software) one of the following combinations of formats: 

1. single 
2. single and double 
3. single, double, and double-extended 
4. single, double, and quad 

The IEEE floating point specification recommends. that. a given implementatio? not 
support an IEEE extended precisibn format which 1s smaller than the highest 
precision format supported. Thus, either double-extended or quad form~t may. be 
supported in a given implementation • but not both. The 88000 SFUl mstructions 
encode double-extended and quad precision the same. The memory ~o!"1at of doubl~
extendeds and quads is also the same so that a double-extended prec1S1on P~?cessor 1~ 

forward compatible with a quad precision processor. T?erefore, _the term extended 
in this document will be used as a generic term refernng to either double-extended 
or quad format. 

Revision 2.0 17 



88000 ARCHITECTURE 

2.2.1 .1 Unnormalized E 

IEEE single and d 
left of radii poa 
However. e1tendc 
either 1 or O. 1b 
0.1101 21 

unnormalized. 
the fact the un 
requires that r 
ind i stinguisbabl 

The 88000 noati 
unnormalized sour 
operation. The 
88000 will 

2.2.2. EXTENDED REG IS 

A 32 entry e1ten e 
general purpose r 
file can bold 
extended 

Extended register 
no register modi I t 
setting a status bil 
depending upon th 

Data can be moved 
files with the mo v 1 1 

the general register 
files. If it is ncce 
should be done tbro 

2.2.2.2 Moving Data To and Fro 

18 

The functionality of the 
allow transfer of data 
store source operand 
taken from the general 

2.2.2.2 .1 Loads 

Data can be loaded directly r 
immediate or triadic form of 



Motorola Confidential Proprietary - DO NOT COPY 88000 ARCHITECTURE 

and extended register loads can be the same. The assembler will detect that an 
extended register is being used as the destination register and generate the 
appropriate opcode. 

ld.t xrD,rS1,rS2 
ld.t xrD,rS1[rS2J 
ld.t xrD,rS 1,116 

.t = {blank} (single), .d (double), .x (extended) 
scale factor = 4x, 8x, and 16x respectively 

A register load performs a memory fetch of the appropriate number of words 
required to transfer the data type specified by the ".t" field into extended register 
xrD. General registers rS1 and rS2 (or 116), are used to compute the memory address. 
One word is transferred for a single, two words for a double, and 4 words for extended. 

Data transfers arc required to be aligned on their size boundary in memory else a 
Misaligned Reference exception is taken (if enabled). If the Misaligned Reference 
exception is disabled, the least significant bits of the address are ignored, i.e., the 
reference is performed to the next lower address boundary which is size aligned. 

Data is stored in the register file as a memory image, i.e. no data type conversion, 
exponent conversion, or reserved operand checking is performed on the load and 
store operation. 

When loading singles or doubles into an extended register, the value given to unused 
bits is not defined. It is considered a programming error if data is loaded (or moved) 
into an extended register as one type and used in a subsequent calculation as a 
different type. Misuse of data in this manner is not guaranteed to operate the same 
on all implementations. All data should be explicitly convened to the desired format 
before use. Explicit conversion docs not have an associated performance penally 
since all floating point instructions suppon full mixed mode operations. 

2.2.2.2.2 Stores 

Data can be stored from the extended register file directly to memory using either the 
immediate or triadic register form of the st instruction by simply specifying an 
extended register as the destination . 

st.t xrD,rS1,rS2 
st.t xrD,rS 1[rS2] 
st.t xrD,rS 1,l16 

. t = {blank) (single), .d (double), .x (extended) 
scale factor = 4x, 8x, and 16x respectively 

A store takes the data in extended register xrD and transfers it to memory. General 
registers rS 1 and rS2 (or 116), are used to compute the memory address. The 
appropriate number of words are transferred to handle the data type as specified in 
the ".t" field. 

Data transfers are required to be aligned on their size boundary . in . memory else a 
Misaligned Ref crencc exception is taken if enabled. If the M1sal.1gned Reference 
exception is disabled, the least significant bits of . the address are ignored and the 
reference is performed to the next lower evenly ahgned boundary. 

Single precision values are stored in memory on word bo_u?daries. Double precision 
values arc stored on even word boundaries. Extended prec1s1on values (both 80 and 

Revision 2 .0 19 



88000 ARCIDTECTURE Motorola 

20 

uad word boundaries 
128-bit) are stored on si-bit double-euendcd 
stored in memory. filled in the quad 
justified and ze~o I ad pn:ci ion will be 
implementations usang qu 
extended format. 

MSb 

0 0 1 2 
4 
8 

12 
16 
20 lsbmsb f 
24 e 1&b msb f 
28 f 
32 • 36 
40 
44 
48 

60 f 
64 

I I - - - - - - - - -
Figure 2.2.2.2.2 • Memory 

2.2.2.3 Extended Register FIie Modified 

3 

- - - -
Storage Allg m 

Some programs may not perform any floaung 
there is no need for the operating system to 
on a context switch. Therefore, a bit (XMOD I mamt in I l 
whether or not a process bas modified an extend d reg, l r. 
may interrogate this bit on a context switch t whe1hc il 
the extended registers. Any instruction which spccahes the · I 
set this bit and it will remain set until explicitly cleared by 

Sb 

D 'OT COPY 

E 

data is 
d left 
future 

double-

Flaa 

grams 
1 ters 
icate 
stem 
store 
will 

Revision 2.0 



Motorola Confidential Proprietary - DO NOT COPY 88000 ARCHITECTURE 

2.2.3. FLOATING POINT DATA IN THE GENERAL REGISTERS 

The following restrictions are imposed on floating point operands (or any operands 
with greater precision than a single word) in the general register filel: 

2.2.3.1 Double-Word 

When double precision is specified in a general register, then the double register 
rS 1:rS 1+1 or rD:rD+l is used. The 88000 architecture allows double-word (double 
precision) data to be stored in any arbitrary general register pair without restriction 
on alignment. All implementations will continue to provide this flexibility but some 
implementations may perform better when double-words are aligned in even 
numbered register pairs, e.g. r4:r5, rather than r5:r6. Therefore, to get maximum 
performance out of double-precision data in the general registers, it is strongly 
recommended that new software and compilers allocate double-word data into even 
numbered register pairs. 

2.2.3.2 Quad-Word 

Extended precision is not supported as a data type in the general registers. No 
floating point operations, mov's, loads, or stores are provided for extended precision 
(quad-words) in the general registers. 

2.2.4. FLOATING POINT OPERATIONS 

The arithmetic operations are basically the same as those provided by the 88100 but 
extended, in an upward compatible fashion, to also operate out of the extended 
register file. The mnemonics for general register and extended register operations 
can be the same. The assembler will detect that an extended register is being used 
and generate the appropriate opcode. Mixed register file operands in the same 
instruction are not provided in general but can occur in some instances 
(float~ integer conversion, data movement, and comparisons). 

2.2.4.1 SFU1 Instructions 

The following floating point instructions are defined (the .t extension used here is a 
generic type specifier suffix; it would actually be a three letter extension specifying 
the type of the destination and both source operands, e.g .• t = .ssd, ,xds, •·· etc.): 

1) fmul.t xrD,xrS.,xrS2 
fmul.t rD,rS 1,rS2 . 
Multiplies the floating point value in xrS 1 (r$ 1) by the floatmg point value in 
xrS 2 (rS2) and places the floating point product in xrD (rD). 

1 of he eniJ register file. However, some implementations may 
Floating point operands continue lo be auppotlecl oul I gen fie Therefore to assure smooth transition to 

f
p

111
rovlde baller performance when the ~~!anhalda ar

I1
e 

I
1
1
n Ihepolnet~~~ ~ ~(located In ihe extended registers whenever 

ure generation parts II la recommenv.,.. I oa ng 
possible. 

Revision 2 .0 
21 



88000 ARCHITECTURE 
Motorola 

22 

2) fcvt.t xrD,xrS2 
fcvt.t rD,rS2 
Converts the floating point value an uS 
the source type specifier to the preca , , 
specifier and places the result in xrD 
performing an fad d rD.rO,rS2 using 
but the sign of the source operand • 

3) fadd.t xrD,xrS 1,xrS2 
fadd.t rD,rS 1,rS2 
Adds the floating point value m u 
(rS2) and places the floating point 

4) fsub.t xrD,xrSi.xrS2 
fsub.t rD,rS1,rS2 
Subtracts the floating point value 1 

in xrS1 (rS1) and places 

5) fcmp.t rD,xrS.,xrS2 
fcmp.t rD,rS1,rS1 
Compares the floating potnl 
in xrS1 (rS1) and place 
shown in the figure bclo . 
the operation perf onncd 
generate the arilhmeti 
subtraction. No exception 
unordered (any NaN un 
operand is a signalling 
a trap is taken if enabled 

Undefined. r8SefVed for future use 

un: 
leg: 
eq: 
ne: 
gt: 
le: 

unordered. PrW10Usly -nc- (not CO'Tmmllhl1~\ 
less than, equal or greater than Prw 

It: 
ge: 
ou: 

equal 
not equal or unordered 
greater than 
less than or equal 
less than 
greater than or equal 
unordered or out d range 

Figure 2.2.4.1 • Floating Point Compare Res 

'OT COPY 

mode, 

1 alue 

ue 

if 

d 

RtYision 2 .0 



Motorola Confidential Proprietary - DO NOT COPY 88000 ARCHITECTURE 

6) fcmpu.t rD.xrS1.xrS2 
fcmpu.t rD.rSi.rS2 
Compares the floating point value in xrS2 (rS2) with the floating point value 
in xrS 1 (rS 1) and places a result string in general register rD just as f cm p 
does. Unlike fcmp, however. fcmpu signals an invalid exception in the 
FPSR if either operand is unordered (NaN). A trap will be taken if enabled by 
EFINV in the FPCR. 

7) mov xrD,xrS2 
mov.t xrD.rS2 .t = {blank) (single). or .d (double) 
mov.t rD.xrS2 .t = {blank) (single), or .d (double) 
The data in the source register is moved to the destination register. The ". t" 
suffix specifies the size of the operand to be moved. When data movement is 
within the extended register file, the entire register is moved regardless of 
the size specification. For double precision operands in the general registers, 
two consecutive registers are used (rD:rD+l or rS2:rS2+1). When single or 
double data is moved from the general register file to the extended register 
file, the value of unused bits is not defined, i.e, they are implementation 
dependent. No reserved operand checks are performed for mo v. 

8) flt.t xrD,rS2 
flt.t rD,rS2 
Convens the 32-bit signed integer value in general register rS2 into a 
floating point value of type .t and stores the result in register xrD (rD). 

9) int,t rD,xrS2 
int.t rD,rS2 
Convens the floating point value of type .t in xrS2 (rS2) into a 32-bit signed 
integer and stores the result in general register rD. The rounding mode 
specified in the Floating Point Control Register is used to perform the 
conversion. 

10) nint.t rD,xrS2 
nint.t rD,rS2 
Convens the floating point value of type .t in xrS2 (rS2) into a 32-bit signed 
integer and stores the result in general register rD. The IEEE 754 "round to 
nearest" rounding mode is used to perform the conversion. 

11) trnc.t rD,xrS2 
trnc.t rD,rS2 . . . 
Convens the floating point value of type .t in xrS2 (rS2) mto a 32-bit signed 
integer and stores the result in general register rD. T~e IEEE 754 "round to 
zero" rounding mode is used to perform the conversion. 

12) fdiv.t xrD,xrS 1,xrS2 
fdiv.t rD,rSi,rS2 . . 
Divides the floating point value in xrS1 (rS1) by the floatmg pomt 
xrS 2 (rS2) and places the floating point quotient in xrD (rD). 

value in 

Revision 2 .0 23 



13) fsqrt.t xrD,irS2 
fsqrt.t rD,rS2 
Takes the square of tl 
floating point result a xrD 

2.2.4.2 Mixed-Mode operations 

All arithmetic operation 
operation to specify th 
All 27 permutations o 
debiasing, reserved ope 
part of each aritbme( 

Mixed mode operatton 
with a single round• 
accuracy result auam 

2.2.4.3 Data Type Conversion 

The mixed mode o r t 
from one lEEE no tin 
either as the final o 
explicitly for the purp 

When carried out 
instruction should be 
because IEEE additio 
in all rounding mo 
and +O - +O = -O w/ 

nt 
a 

r. 

11 2.0 



Motorola Confidential Proprietary - DO NOT COPY 88000 ARCHITECTURE 

2.2.5. FLOATING POINT EXCEPTIONS 

2.2.5.1 Floating Point Exception Model 

The 88000 floating point architecture is defined by the IEEE 754 Standard for Binary 
Floating Point Arithmetic. That standard specifies 5 different exceptions 1 which 
must be signaled to the user program. The 88000 floating point architecture defines 
two registers for interfacing to user programs: the Floating Point Status Register 
(FPSR) is used to signal IEEE exceptions to the user; and the Floating Point Control 
Register (FPCR) allows the user to enable or disable the trap for each of the IEEE 
exceptions. Conceptually the operation is as shown in the following diagram: 

88000 FP Architecture ________ .,..,.,,.___ --------,. ""' I I 
I ...£!!§!!. 1-

lnYalid } 
AFINV 

Results of I AFOVZ - +by 0 

- AFUNF I - Undertlow EEE 
Operations AFOVF - 0Yer11ow Exceptions 

I AFINX 1- Inexact .___ 

I FPCR 
I 

I EFINV 
"").. 

I - >-EFOV. -- Trap 

I ~ EFl.N r =i.J I -
EFOVF - >-
EFINX - )-

I ----- I 
ala 

I I 

'- ,....,...._ __..A.,, -...- .,....I 
"v""" 

......,... 

Implementation Interface User 

Figure 2.2.5.1 - IEEE Exceptions 

The results of arithmetic operations map to IEEE exceptions which are repo_rted to the 
user in the FPSR. If an exception is generated and the user has disabled the 
associated trap in the FPCR then a default numeric result is returned to the user as 
specified in the standard. 

1 o • t f ceplions An IEEE exception is the 
"Excepllona• In the IEEE sense should not be confused with ~ 11 ma rue ,on ex ~ Signally involves reporting 
occurrence cl an IEEE specllied event which must be reported (s19naled) to the user prog • 
status flags viable to the user program and optionally trapping to a user trap handler. 

Revision 2.0 
25 



88000 ARCHITECfURE 

2.2.s.2 floating point Artthmetlc Status end control 

The Floating Point Status Register (FPSR 
are the registers used to commun1c 
implementation. As such. they are de 1 

and should be functionally identical rn 
located in SFUl conuol registers re • 
or initialized using the fl d er. rs t c r, 
supervisor mode. 

All status bits in the FPSR reg• tcr 
once set arc cleared only by wriu 
registers is shown in the ,gure 

Floating Point Status and 

~ Undelinad • reserv 

26 

AFINX: 
AfOVF: 
AFUNF: 
m)Vl:. 
AFINV: 

XMO()· Extended RMl'tl-

RM: 

Figure 2.2.5.2 • F oatlng P 

'OT COPY 

(FPCR) 
88000 

r ,tecturc 
I t 

r or 

and 
two 



Motorola Confidential Proprietary - DO NOT COPY 88110 IMPLEMENTATION 

This section covers the implementation details of the 88110. 

3.1. OVERVIEW AND BLOCK DIAGRAM 

JTAG 

Instruction Branch 
Sequencer Cache 

Addr 
.t: 

32 
C 
:::, 

~ 
lmmedlales 

,: 
CD Snoop 

64 :s 
Ill IVMJ 
~ 

IXI 

Data Load/ 

Cache Store Units 

Unit 
(Genoral (Extended 

Aogi&W ALU Regiotw 

Ale) Ale) 

WriteBack Susses 

Figure 3.1.a - 88110 Block Diagram 

The instruction sequencer is the heart of the 88110. It provides centralized control 
over data flow among execution units and the register files. The sequencer 
implements the master instruction pipeline, enforces data interlocks, dispatches 
(issues) instructions to available execution units, directs data from the register files 
onto and off of the busses, and maintains a state history so it can back the machine 
up in the event of an exception. 

Revision 2.0 
27 



88110 IMPLEMENTATION 

l·nstruction pipeline 15 a The master 
below: 

28 

FetchO 
···••••••••• 
Fetch1 

Fetch2 
••••••••••• F .. ch3 

Figure 3.1.b • M 

Two instructions arc decoded and 
clock. The pipeline stages arc lull 
will automatically stall instruction 1 

two instructions arc issued on each 

When an instruction i u • the re 1 

on the source operand buuca. h 
then reads data off the appropriate 
have sufficient bandwidth to sustain 
instructions per clock. 

Execution units are each indcpcn n 
controlled pipelines. When an cxecu 
places the result data onto a writeback 
writeback busses and store it into th 
instruction is waiting for this data, ,1 1 

into the appropriate function unit( ) 
issue on the next clock without w11ting 
and read out back again. 

There arc two writeback bussca availa I 
execution units have different pipeline l 
instructions to be completing in a given 
arbitrate for an available slot on a wrn 
granted to single cycle execution unit 
cycle instructions are always guaranteed riteback 
units (floating point units and load/store unit ) r , r t 
Pipelined execution units which arc denied writeback 
their internal pipeline stages and accept new 1n1tructi 
are full. 

The sequencer attempts to issue a pair of I t on 
issued to the execution units in strict program sequence 
an "issue pair" cannot issue, then neither instruction 10 the 
first instruction in the pair issues but the second cannot. th 

COPY 

• own 

nt 
WO 

nits 

ance 
aages 

arc 
n in 

the 
ction 

Rt ' &on 2.0 



Motorola Confidential Proprietary - DO NOT COPY 88110 IMPLEMENTATION 

is moved into the vacated first instruction issue position and a new one is fetched 
from the instruction cache to replace it. If both instructions in the pair issue, then 
two new instructions are fetched from the instruction cache. 

On an instruction cache hit, a pair of instructions are fetched and returned to the 
instruction unit on each clock - regardless of their address alignment. Thus, there 
are no instruction address alignment restrictions imposed on dual instruction issue to 
avoid pipeline interruptions, and no NOP instructions are required in the code stream 
to fill empty issue slots. On an instruction cache miss, if the miss is caused by the 
fetch of the first instruction in an issue pair, then a minimum (ideal memory) three 
clock latency is incurred which produces six instruction bubbles. If the miss is to 
the second instruction in an issue pair (pair straddles a cache line), then a 4 clock 
latency producing seven instruction bubbles is incurred. 

3.1.1. INSTRUCTION SEQUENCING 

The sequencer attempts to issue a pair of instructions on each clock. In order for an 
instruction to issue, the sequencer must determine that the required source data is 
available, that no other instruction still in execution targets the same destination 
register, and that an appropriate execution unit is available. 

3.1.1.1 Source Data Hazards 

If an instruction attempts to use a source operand which has not yet finished being 
computed by a previous instruction, a data dependency or "data hazard" is said to 
exist. The 88110 resolves data hazards by blocking issue of the dependent instruction 
until all its source operands are available. A register "scoreboard" is used to keep 
track of operand availability. Conceptually, the scoreboard is a bit-vector with one 
bit associated with each register in the register files. Whenever an instruction 
issues, the scoreboard bit associated with its destination register is set thus marking 
the register "busy." When that instruction finishes execution and writes back its 
result, the scoreboard bit is cleared thus making the register and the data being 
written to it "available" for use. A necessary condition for any instruction to issue is 
that the scoreboard bits for all its source registers must be clear. If they are not, it 
means that one or more of its source operands is not yet available and instruction 
issue is suspended until the scoreboard bits for those registers are cleared by the 
instruction(s) which are computing the operands. 

3.1.1.2 Destination Register Hazards 

Since the 88110 allows instructions to complete out of order, there is a potential for 
an instruction's result to be overwritten by an instruction which issued earlier but 
completed later. To preclude this possibility, t~e s~oreboard _bit. of the destination 
register is also checked as a condition of instruction issue. This msures that updates 
to any given register are always completed in the order specified by the program and 
thus no data is ever incorrectly overwritten. 

Revision 2.0 29 



88110 IMPLEMENTATION Motorola Co,r/ukfllial Proprietary - DO NOT C PY 

3.1.1.3 Execution Unit Hazards 

30 

The third condition for instruction issue is that the required execution uni be 
available to begin execution of the instruction. The sequencer monitors all execu 10n 
unit availability and suspends instruction issue in the event of a conflict 
execution unit may be unavailable for one of several reasons: 

1) A multicycle non-pipelined unit can have only one instrucuon m exec uti n 
at a time. Such a unit goes busy when an instruction issues to it and 11 

accept another instruction until the previous one finishes. (The divide u 
the only such unit on the 88110.) 

2) An execution unit which can take more clocks to execute than the number 
pipeline stages available in the unit can go busy when all its pipeline bu 
fill up. Such units cannot accept another instruction until an an 1ruct >'l 

completes and frees up a buffer. (The load/store unit is the only such unll ) O 

the 88110.) 
3) Some execution units (all except the Integer Unit) can accept only J 

instruction per clock. Issuing two instructions to these units on the 
clock is prohibited. The following table enumerates instruction paar. 
cannot issue simultaneously due to this execution unit conflict 

Integer 

Flow Control 

Memory 

Floating Point 

Graphics 

,... 
+ z 

N 
arithmetic 

logical 
bit field 
multiply 

divide 
branch 

load 
store 

multiply 
add/sub/cmp 

divide 
multiply 

add & sub 
packing 

(.) ~.g ; .g 0 
·.:;. .9- Cl) :ga, E ns c. (1) >. E -:2 - Q) .s:::. :: ~. . 
£. ~ .9? 0. 0 

i~ :::, >.c.C .c 
·- "C C: Ens~~~ g-- • - '3 ·s; as -~ o- o.9 ns o ·- E ~.c .e- .e- .e- 0) Q C> - .rl - Cl) 

Can be issued simultaneously 

Cannot be issued slmuhaneously 

Table 3. 1. 1.3 • Simultaneous Instruction Issue 

Revision 2 .0 



Motorola Confidential Proprietary - DO NOT COPY 88110 IMPLEMENTATION 

~ NOTES: 1) Integer arith~etic instruc!ions which affect the carry flag (add , sub, 
~d du. _or s ~bu with .co or .c10 suffix) will prevent issue of any other 
mstrucuon m the same clock when they are issued as the first instruction 
in an issue pair. 
2! Floating Point add/sub/cmp includes fadd, fsub, fcmp, fcvt, flt, int, 
01nt, and trnc. 
3) The Id a instructions have the same restrictions as Id. 
4) Any instruction in the delay slot of a bsr .n which specifies rO or rl as a 
destination, will not issue in the same clock as the bsr. 
5) All instructions which cause the machine to serialize (x me m, t b 0, t b 1, 
tend, rte, Ider, xcr, stcr, fldcr, her, and fstcr), will not issue in the 
same clock with any other instruction, 
6) If the serialize bit in the PSR is set, then simultaneous instruction issue 
is disabled and at most only one instruction issues per clock. 

3.1.1.4 Instruction Flow Control 

Flow control operations (branches) are expensive to execute because they disrupt 
normal flow in the instruction pipeline. A change in program flow creates bubbles 
in the pipeline due to the time required to fetch the new target instruction stream. 
In typical code, with 4 or S sequential instructions between branches, the machine 
could waste up to 25% of its execution bandwidth waiting on branch latency. 

The 88000 architecture has an optional branch delay slot after each branch 
ins truction so that the compiler can try to schedule useful work into at least one of 
the bubbles. However, the high instruction issuing bandwidth of the 88110 can 
produce up to three bubbles for each branch. Thus a single architectural delay slot 
is insufficient to hide all branch latencies. 

To minimize instruction bubbles caused by branch latency, the 88110 accelerates 
fetching the new target instruction stream by employing a branch Target 
Instruction Cache (TIC). The TIC is automatically filled the first time the target of a 
taken branch is fetched from the instruction cache. The next time the branch 
instruction is fetched, its target instructions are also fetched from the TIC thus 
allowing instruction flow to proceed unimpeded. 

The 88110 implements a branch reservation station and static branch prediction to 
allow branches to issue as early as possible. The reservation station allows a branch 
instruction to issue even before its source operand is ready. With the branch issued 
and out of the way. instruction issue can continue while the branch operand is being 
computed and the condition is being evaluated. Static branch prediction is used to 
determine which instruction stream is executed while the branch is being resolved. 
When the branch operand becomes available it is forwarded to the ~ranch unit_ and 
the condition is evaluated. Branch instructions whose source data 1s not available 
and must issue to the reservation station are said to be "predicted." Predicted 
branches which later tum out to have followed the wrong path, are said to be 
"mispredicted." Branch instructions which issue with source data already available 
are "unpredicted." Instructions issued under a predicted branch are said to b~ . issued 
"conditionally." The 881 to will automatically back out the effect of cond1uonally 
executed instructions issued under a mispredicted branch. 

Revision 2.0 31 



Motorola Confidential Proprietary - DO NOT COPY SFUO IMPLEMENTATION 

3.2. SFU0 (BASE PROCESSOR) IMPLEMENTATION 

3.2.1. ro AS A DESTINATION REGISTER 

In the 8~110, using rO as a destination register works as it did in the 88100 except for 
the special case of Id rO,rSi,rS2. In all other cases, instruction side effects, such as 
setting the carry flag or causing an exception, occur as if the destination register 
were a register other than rO. Id rO is defined as a "touch" operation (described 
later) which has special characteristics in this regard. 

3.2.2. CODE, ADDRESS, AND DATA MODIFICATION 

3.2.2.1. Self-Modifying Code 

Although not supported transparently from user mode, it is possible to run self
modifying code on the '110. To alter the executing instruction stream the user must 
perform a trap to a supervisor program which will clear the instruction pipelines, 
make the requested code change, assure all caches are coherent, and return to the 
user program. Any attempt to directly alter the instruction stream from the user 
program is considered a programming error and the results are unpredictable. 

3.2.2.2. Code Relocation 

Code relocation is supported in the same manner as self-modifying code described in 
the previous paragraph. 

3.2.2.3. Logical Address Aliasing 

Logical Address aliasing is fully supported on the 88110 with no associated 
performance penalty. 

3.2.3. DOUBLE-WORD ALIGNMENT IN THE GENERAL REGISTERS 

As suggested in the floating point architecture section, not all implementations will 
support misaligned double-word operands in the general register f~le at full 
performance. The 88110, in fact, will implement misaligned doubles m software. 
Any SFUO instruction which specifies an odd numb.ered regist~r for . a d_ouble-~ord 
operand will cause a Unimplemented Opcode excepuon. Floaun~ pomt mstruct1~ns 
wi 11 cause an SFU 1 Floating Point Unimplemented exception and graphics 
instructions will cause an SFU2 exception. 

Software handlers will be provided to emulate the SFUO and SFUl instructions which 
use misaligned double operands. However, these handlers ar~ P.rovided _only to 
insure code compatibility with existing applications. A~phcauons . which use 
misaligned double-word operands extensively should be recompiled to realize the full 

Revision 2.0 
33 



SFUOIMPLEMENTATION Motorola Confuuralial Proprietary - DO NOT COPY 

performance potential of the 88110. Some 88000 compilers already enforce even 
register alignment; those which do not, should begin doing so immediately. 

3.2.4. PROCESSOR STATUS REGISTER 

The PSR is not directly visible from user mode code and is therefore not an 
architectural feature. However, ccnain features. required by the ucbitccture arc 
controlled by the PSR. (The PSR is provided as a central repository for controlling 
many of these features anticipating that the PSR will be maintained by the oper mg 
system as a pan of each process's state which is saved and restored on con t 
switches.) The format chosen for the PSR is upward compatible with that used on the 
88100. Extensions to the 88100 PSR arc highlighted in gray in the diagram below 

Processor Status Register (PSR) ,.. ·•·.• , 

1 

34 

31 30 211 28 27 29 25 24 23 22 21 20 19 11 17 11 11 14 13 12 11 10 9 I 1 I • 4 

IIIIWJI-
SFUO 

WJ Undefined - reserved for future use D Newly Def·nad 

Mode: 

BO: 

SER: 

C: 

SGN: 

SAM: 

SFUO: 

MXM: 

lnO: 

SFrz: 

Ill/: 

0-usermode 
1 - supervisor mode 
O • big endian Byte Order 
1 • little endian Byte Order 
0 -concurrent instruction execution 
1 • SeRial Instruction execution 
O • no carry out of add/addu/sublsubu.co (or .cio) 
1 • Carry ~ut of add/addu/sublsubu.co (or .cio) 
O • lmmed!"te offsets and constants are unsigned 
1 - Immediate offsets and constants are SiGNad 2'1 complement. 
O • concurrent memory instruction execution 
1 • SeRialize Memory instructions 
0000000 • SFU7-SFU1 enabled 
1111111 • SFU7-SFU1 disabled 
O • Misaligned access eXception Mode enabled 
1 • Misaligned access eXception Mode disabled 
O • external interrupt enabled 
1 • external INterrupt Disabled 
0 - shadowing enabled 
1 • Shadow registers Frozen 

Undefined 1 - reserved for future use 

Figure 3.2.4 • Processor Status Register 

I I I I 
I I I 

MXM S rz 
I D 

r::::n~m!'.~er~t, control regiller bill labeled "Undefined • r9MIWd few luture .,... should be tl'Nled In the 

1 ) When the conlrol regiat• is read undelined bits ii 
future machil'lltl the value of an undefined bit ahowd • appear • • zero. However, lo iflllUt9 cori.,allbDy with 
lest only thole bill • need1 lo ... never be depeoded ~ by IOft..,.. Sdtwa,e should explclty 
2) The machine wil ignore any ~ wri11en 
undellned bils ahowd always be 181 10 zero. lo 811 undefined bil. Howewr, once again tor lutu,. cori.,aalblllty ulle, 

Rtvision 2 .0 



Motorola Confidential Proprietary - DO NOT COPY SFU0 IMPLEMENTATION 

The PSR is accessed as SFU0 control register 1 (crl) using the Ider xcr or stcr 
instructions from supervisor mode only. Any change to the PSR via stc

0

r or xcr will 
take af~ect prior to the ~ext i~struction. A program change to the carry bit in the 
PSR will be_ seen. by an. immediately following Ider. Any attempt by user mode code 
to access this register will result in an Privilege Violation Exception. 

3.2.4.1. Operating Modes 

Supervisor/user mode. byte-order mode. signed-immediate mode, and misaligned 
access exception mode are all implemented in the 88110 as described in the 
architecture section. These modes are each controlled by single bit enables in the 
PSR. The operation of the two serial execution modes. however, are unique to 
particulu implementations; their operation in the 88110 is described in this section. 

3.2.4.1. 1. Serial Instruction Execution Mode 

The 88110 normally has multiple instructions in execution at any point in time and 
these instructions may complete out of program order. This concurrency and out of 
order execution is usually of no functional consequence to the program because the 
machine has full hardware facilities to correctly reorder the results into program 
order. If it is necessary, or convenient. to force instructions to issue and complete in 
the exact order specified by the program, the 881 JO can be forced to do so by setting 
the SER bit in the PSR. When this bit is set, the machine will be forced to completely 
"serialize" before each new instruction is issued. In this mode, the inherent 
concurrency in the machine is lost. and a commensurate reduction of performance 
will be experienced. 

3.2.4.1.2. Serial Memory Reference Mode 

The 88110 data memory unit has a series of instruction buffers which hold memory 
instructions that are either waiting for data from a previous computation or waiting 
for access to the cache. Load instructions in these buffers are sometimes allowed to 
run ahead of store instructions which actually issued earlier. The hardware 
prevents this reordering when it would violate the logical intent of the program but 
otherwise load and store instructions may execute - and cause bus transactions - out 
of program order. Nonnally this has no functional impact on the program,_ but there 
are some instances where it is not permissible. For example. some 1/0 device control 
registers must be accessed in the exact sequence specified by the program. The 
881 10 has no way of detecting this situation dynamically. Therefore, a mode is 
provided which allows the program (operating system)_ to force mem~ry references 
to be completed in strict program sequence. The mode is enabled and disabled by the 
SRM bit in the PSR so that it can be maintained as part of the process state. 

Whenever a Id or st instruction is executed with the SRM bit set, the machine will 
completely serialize (as described previously) before it is issued. This ensures that all 
load and store transactions on the bus will run in strict program sequence. 

Revision 2.0 35 



SFU0 IMPLEMENTATION 
Motorola Conjuulllial Proprittary - DO NOT COPY 

3.2.4.2. Carry Flag 

The ca out from base architecture add and subtnct instructions which spc if a 
.co or .r:ro extension must be held in the processor for ~sc by 

5
su~~:=~t ~ : and 

subtract instructions which specify the .cl or .clo cxten.11on. A be 
must be considered a pan of the processor state and ats value mu l pr 
across context switches. The 88110 bolds the carry flag in the PSR 1 :g wnh d t r 
process specific state information so that it may quickly be a cd an r tor 
context switches. 

The carry flag is not sticky, i.e., any instruction which spccatacs .co ~ • 
or clear it depending on the carry out of the opcntion. It • " ocbfied o 
occurrence of an add.co, sub.co, addu.co, subu.co , add.cio ub.cio , add 
or s ubu .ci o instruction and is used as the carry-in to t~ add.cl uh.cl 11d 1 

s u bu.ci, add.do, sub.cio, addu.clo, and subu.clo anstrucuo No othe 
mode instructions look at or modify this bit. 

3.2.4.3. SFU Dlsable 

One disable bit for each of the seven SFU's (SFUl -7: SFUO n· l 
allocated in the PSR. The 88110 implements only two of these bit 
for its two function units (SFUl and SFU2). The remaining S 
hardwired to a "one." SFUl and SFU2 arc automatically disabled ,) 
reset. Any attempt to execute an SFU instruction for an SFU that di 
in an exception being taken through the corresponding SFU 

3.2.4.4. External Interrupt Enable 

The 881 lO's maskablc external interrupt will be ignored while the lnD bit ID the l 
is set. The lnD bit is automatically set to disable interrupt when any c uon 
occurs and must be explicitly cleared by supervisor mode code to enable int rupt . 
This bit docs not affect the operation of the non-mask ble interrupt (NMI) 

3.2.4.5. Shadowing Frozen 

The 88110 implements a precise exception model. On an exception, the bardw re 
backs the machine up to its state at the point of the exception and save . 1c 
instruction pointer (XIP) of the excepting instruction and corresponding t c 
Processor Status Register (PSR) in a set of shadow registers (the EIP and EPSR) I he 
exception also causes the SFrz bit in the new PSR to be set, which freezes the shadow 
registers until the exception handler can save them off to memory. If any cxccpuon 
occurs while the SFrz bit is set, the processor will take the Unrecoverable Error 
exception. Once the shadows arc safely saved away in memory, the exception bandier 
can tum off SFrz, thus allowing another exception to be bandied. 

3.2.5. SFU0 CONTROL REGISTERS 

36 

Each SFU bas it own control register space of 64 registers which arc accessible using 
the Id c r , s tc r and x c r instructions. All SFU0 control rcgistcn (cr0-cr63) arc 

Revision 2 0 



Motorola Confidential Proprietary - DO NOT COPY SFUO IMPLEMENTATION 

accessible only from supervisor mode - any attempt to access them from user mode 
will result in a Privilege Violation exception. 

All control registers accesses via Ider, xcr, or stcr serialize the machine, i.e. all 
instructions in execution are forced to complete before the control register access is 
performed. 

All 64 control registers are not completely implemented. Reading an unimplemented 
control register causes either an Unimplemented Opcode or a Privilege Violation 
exception. Unused bits within an implemented register are always read as zeros and 
writing to them has no affect. However, unused bits should always be written as 
zeros to assure compatibility with future implementations which use might these 
bits. 

The control register assignment is shown in the table in Appendix A.2. 

3.2.6. SFU0 EXECUTION UNITS 

3.2.6.1. Integer Unit 

The integer unit (INTU) in the 88110 is composed of three subunits - two identical 
arithmetic/logic units (ALU's) and one bit-field unit (BFU). Each subunit has a one 
clock execution phase and can process instructions at a throughput rate of one 
instruction per clock. Since the maximum issue rate of the machine is 2 instructions 
per clock and there are two ALU's, an integer arithmetic instruction is never delayed 
due to integer ALU unavailability; it is said to have a "blockage" of zero clocks. 

Bit-field instructions may issue to the BFU from either the first or second instruction 
issue slot but since there is only a single BFU only one bit-field instruction can issue 
per clock. i.e .. the BFU has a blockage of one clock. 

Instructions executed by the ALU's include: and, mask, xor, or, addu, subu, add, 
sub, and cm p. Instructions executed by the BFU include: cir, set, ext, extu, mak, 
rot, ffl, and ff0. 

3.2.6.2. Load/Store Unit 

3.2.6.2.1. Overview and Block Diagram 

The 88110 load/store unit (LD/ST) handles all the traffic between the on-chip data 
cache and the register files. The load/store unit is implemented as an independent 
execution unit so that stalls in the memory pipeline do not cause the master 
instruction pipeline to stall (unless of course there is a_ data depend~ncy). The unit is 
fully pipelined so that memory instructions of any size may be issued on back-to-
back cycles. 

There is a 64-bit wide data path between the cache and load/~tore unit and ~ full 80-
bit wide data path between the load/store unit and the reg1ste! files. Smgle-~?rd 
and double-word data require one clock to access the cache whale extended prec1s1on 
floating point numbers require two clocks. All data transfers between the load/store 

Revision 2.0 37 



SFUO IMPLEMENTATION 

unit and the register files occur in 
do not stall instruction issue. 
operation is shown below: 

Motorola ConJid,""4l 

a single clock cycle; 
A conceptual block 

Sequencer Register File 

~ ~ 
Issue, I 

Store 

Load/ _L ' ' Data 
1 .___ 

Store • • 
• • - ... , ..... Lca:1 

Unit 
Id_. 

I Data 
I 

, NrBSS,, 

M« Data 

DMU (Cache/MMU) 
~------

BIU (Bus Interface) 

- DO 

Figure 3.2.6.2.1 • Load Store Unit Bloek Diagram 

The load/store unit bas a series of load address buff crs d r 
address/data buffers (light shading) each set of which opera· 
queues. The store buffers allow store instructions to 1s 
available from a previous computation, i.e., scoreboard ho d 
register do not delay the issue of stores. The sequencer forw rd data din 
the store data buffer as soon as it becomes av ilablc. The load bul f r llo 
additional loads to be issued while a previous load is stalled wa. in for data 
cache or bus. Loads arc allowed to bypass stores which uc stall an the 
waiting for data. Memory hazards arc prevented by companng lo addrc 
addresses and disallowing loads to run ahead of stores for which there 1 
match. 

3.2. 7 .2.1.1 Load/Store Instruction Issue 

OPY 

nded 
unit 

When a load or store instruction is encountered, the sequencer first check the 
scoreboard to dctennioe if the address operands arc available and, for a load only, 
makes sure there is no destination register conflict. It then checks the load/store 
unit to verify that there is an available instruction buffer. If so, the instruction is 
issued to the appropriate load or store queue. 

38 

If there are no prior instructions waiting in the respective instruction queue and 
the cache is not busy servicing a prior request, then the load or store address falls 

Rtvision 2 .0 



Motorola Confidential Proprietary - DO NOT COPY SFUO IMPLEMENTATION 

through the queue directly to the MMU and cache. If the cache is busy or if there 
are already instructions pending in the buffers then the new instruction is issued to 
the queue. 

3.2.7.2.1.2 Load/Store Run Time Re-Ordering 

The load/store unit always runs loads in program order with respect to other loads 
and stores in order with respect to other stores, but does allow loads to run out of 
order with respect to stores. In the event that a store is stalled in the store buffers 
waiting for data from a previous computation, subsequent load instructions are 
allowed to bypass them and get access to the cache. This allows run time overlapping 
of tight loops; loads from the top of a loop can pass stores from the previous loop 
iteration which are still waiting for a computation to complete. 

In order to guarantee correct program functioning, the only restriction that must be 
imposed on load/store re-ordering is that a load which is allowed to run out of order 
cannot access the same memory location as any store it is allowed to bypass. To 
enforce this, the load/store unit compares the low order bits of each load's address 
with all store instructions waiting in the store buffers. If a match is detected, the 
load's access to the cache is delayed until the aliased store completes. 

3.2.7.2.1.3 Cache Access 

Once load and store instructions have been issued to a buffer in the load/store unit, 
the sequencer is free to continue issuing other instructions. The load/store unit 
then executes these buffered instructions as the cache and memory become 
available. When both load and store buffers have instructions queued up, the load 
store unit gives first priority to stores then loads. 

3.2.7.2.1.4 Load/Store Instruction Timing 

A load instruction which hits the data cache has a latency of 2 clocks. This means 
that an instruction with a data dependency on the load will experience a delay of 2 
clocks with respect to the earliest it could have executed had it not had the data 
dependency. The latency for a load which misses the cache, assuming zero wait state 
memory references, is four clocks. 

3.2. 7.2.1.5 Serlallzatlon of Memory References 

Correct operation of some 1/0 device control registers require that memory cycles to 
them run in the exact order specified by the program. Two alternatives ar~ provi~ed 
for forcing this strict ordering: 1) the trap not taken (tb 1 O,rO,vector) mstrucuon 
will cause the machine to completely serialize, i.e, all pending_ instru~tion_s will be 
allowed to complete and store buffers emptied before the next mstrucuon 1s allowed 
to execute, and 2) setting the 1/0 Serialization (SRM) bit in the PSR will cause all load 
and store instructions to serialize the machine before they issue. 

Revision 2.0 39 



Ii 

SFUO IMPLEMENTATION Motorola Colf/llulltitJl Proprietary - DO NO COPY 

3.2. 7 .2.1.6 Store-through 

An option is provided on the triadic register form of s~ores called 
The store-through option serves two basic purposes: fia:5t, it ~rovades . 
force data through the cache into memory on a per 1nstrucuon b&! • , which 
useful in cases such as writing to a display screen (frame buffer : and ,,.. .. ,. ,nn" 

provides a way to prevent the torage of cenain data w~ich the r • ram 
not be reused, from replacing a potentially more useful hoc an 
only avoids the wasted time of moving a line out and back m 
the hit rate of subsequent loads to those lines. 

When specified, this option unconditionally causes the store to 
cache directly into memory. If a store-through bits the cache o 11 

the cache is updated but the line is not marked diny unless it 1s air 
store-through misses the cache then no line is allocated in the 
line copyback is forced, no new line is brought into the each 
replaced, and no data is written into the cache. The accc 
through to memory, bypassing the cache completely 

Store through is specified by a . wt (for Write-Through) on any u, 
of the st instruction. All operand sizes and both register files are u 

st.wt.t rD,rS 1,rS2 
st.wt.t rD,rS 1[rS2J 
st.wt.t xrD,rS1erS2 
st.wt.t xrD,rS1[rS2J 

3.2.7.2.1.7 Touch Load 

.t = .b (byte), .h (half), (blank ) word . 

.t = .b (byte), .h (half), (blank) wonh, 

.t = (blank} (single), .d (double) or 

.t = (blank) (single), .d (double), or . x 

A new feature is implemented in the 88110 to allow data to be scheduled int 
cache under program control. Normally, data is brought into the 1c automati 
on demand, i.e. when it is needed. This can lead to instruction el\.ecut ,on tall d 

to 
be 

he 
h. 
he 

dependencies on data which must come all the way from mam memory ln r ,an 
cases, however, it can be predicted, well in advance, which data as goang to be · c d 
by the program. By requesting data be brought into the cache ahead of u actual u , 
the latency of the memory system can be overlapped with useful work and stall due 
to long latency cache misses can be minimized. The touch load , provided for 1h1 
purpose. A touch is specified by a word load to rO: 

40 

Id rO,rS1 ,rS2 
Id rO,rS1[rS2] 

If th~ cache line c~ntaining the data specified by the effective address of the 
load 1_s not alre_ad! 1n . the . cache (valid). then it is brought into the cache 
replacmg an cx1stmg hne 1f necessary. No user visible machine state is 
modified and no exceptions (e.g. MMU or bus error) arc recognized. 

A_ t~uc~ load is_ simi~ar in most respects to other loads but has a couple of imponant 
d1stmctions. Farst, It never generates an exception and therefore the machine need 
~ever _recover from it. This means that touch need not block retirement of 
m~trucuons . from the history buffer like a normal load can. Second, although it may 
bnng data mto the cache, it docs not write a result into the register files. Thus, loads 

Revision 2 .0 



Motorola Confidential Proprietary - DO NOT COPY SFUO IMPLEMENTATION 

executed under a touch need not run in program sequence with the touch operation, 
and can be allowed access to the cache while waiting on the touch's line fill to begin. 

Past and future implementations which do not support this feature remain 
compatible because this instruction does not affect the user program visible state. 
Therefore, whether it actually performs the memory reference or not is irrelevant to 
the functionality of the program - although it may indeed affect its performance. 

Revision 2 .0 
41 



Motorola Confidential Proprietary - DO NOT COPY SFUI IMPLEMENTATION 

3.3. SFU1 (FLOATING POINT) IMPLEMENTATION 

3.3.1. IEEE CONFORMANCE 

Some features of the IEEE 754 specifi cation are important func tionally but occur 
rarely in practice, e.g. NaN's, invalid operations, denormalized numbers, etc. Since 
precise compliance with the specification in many of these cases is difficult to 
achieve in hardware, the 88110 implements these features in a software envelope 
wrapped around the hardware. The relative frequency with which these conditions 
occur is so low that this does not introduce a significant performance penalty. 

The SFUl design provides for the hardware/software partitioning of functionality by 
taking an SFUl exception whenever one of the IEEE spec features which is not 
implemented in hardware is encountered. The hardware reports the cause of the 
exception in the Floating Point Exception Cause Register (FPECR) so that the software 
can take the appropriate action. When the SFUI exception cause dictates that an IEEE 
exception should be signaled, the software envelope maps the status reported in the 
FPECR to the correct IEEE exception and signals it to user code through the FPSR. If 
the software sees that the trap corresponding to the signaled IEEE exception is 
enabled in the FPCR it will vector to the User Trap Handler. If the trap is disabled, 
then the software envelope will place the correct IEEE default result in the 
destination register and return to the user program. When the cause of the SFUI 
exception is an unimplemented feature, like square-root or denormalized operand, 
then the software envelope will perform the operation, put the result in the 
destination register, and return to the user program without the user ever being 
aware that the operation was actually performed in a software routine. The process 
is illustrated pictorially in the following figure: 

88110 Hardware 

FPECR 

FlOV 
R.t,,MP 
FPRV 
RU> 
FDVZ IEEE 

Floating RN 
FOVF Point FIN)( 

Fundion + 
Units SFU1 EJICllllJOn 

R 
E R 
s E IEEE u s 

Result User L ~ u 
T L Program dancnn T 

88000 Floating Point Architecture 

Figure 3.3.1 - Floating Point Architecture 

Revision 2.0 43 



SFUl IMPLEMENTATION 

3.3.2. IEEE EXCEPTIONS 

The 88110 implements the IEEE c1ccption 
as described above. When the hardware de 
SFUl exception using the SFUl eiccpuo 
the exception in the Floating Point Exec t1 
envelope then analyzes the operands 
appropriate IEEE exceptions to the u 
architecture section). Operands and r 
enumerated in a table later in this section 

3.3.2.1. Floating Point Exception Cause Register 

The FPECR is an internal control register u 
and a user invisible software envelope 
entire IEEE spec in hardware would have 
not considered a component of the 
implementation which employs a register 11 c l he • >J \. R 
not visible to user mode code. The 8 110 1 , 
point control register O (fcrO) which 1s 

fl d er. her, and fstcr instructions. n 
cause a Floating-Point Privilege Violation 

The FPECR used by the 88110 is identical with 
not all flags arc set in precisely the same 
format is shown in the next figure. 

n I 

Floating Point Exception Cause Rcgi.st r 

~ Undefined • reserved for future use 

FIOV: 
FUNIMP: 
FPRV: 
FROP: 

Fk>ating.Point to Integer Conversion Ovefflow 
Fbating.Point Unimplemented lnstrudion 
Fk>ating.Point Privilege V10lation 
Fk>ating-Point Reserved Operand 

FOVZ: 
RJt-E 
FOVF 
FINX 

Po I'll 01 
Po ,tU 
Pont Overflow 

at,ng Point lnex 

OPY 

1pc 
an 
of 

arc 
l 

lhc 
,re 

ro 

Figure 3.3.2.1 • Floatlng Point Exception cause Register 

1 

44 

Throughout lhia documenl reterenc:es .,. made 
Floaling Point Ovettlow exception Actually all ~FU ~Iona IUCh • Ille F1o1111ng Pdnl Unln~ excapt1on ot 
the exception ia rec:orded In lhe ROllllng Point :v~ "II» throuF ht SFU1 exception WdOI' and I • cause of 
documentallon, each FPECR cause wil be .__ c ... Aegille, fo, pu,poeee oC conven.enc:e In the 
FUNIMP bil set i\ the FPECR la raened to =~ a aepa,a •~Ion; lo, eumple. M 8FU e.cepllon w' h the 

I • -• Poinl \JI~ axcaption 

Revision 2 .0 



Motorola Confidential Proprietary - DO NOT COPY SFUI IMPLEMENTATION 

3.3.2.2. Exception Causes 

The following table shows the conditions which will generate an SFU exception and 
cause bits in the FPECR to be set. 

FUNIMP FR0P FOVF FUNF FDVZ 
fmul SFU1 off NaN, invalid, Overflow Underflow 

denorm or unnorm 
fadd SFU1 off NaN, invalid, Overflow Underflow 

denorm, or unnorm 
fsub SFU1 off NaN, invalid, Overflow Underflow 

denorm, or unnorm 
fcvt SFU1 off NaN, invalid, Overflow Underflow 

denorm, or unnorm 
temp SFU1 off NaN, invalid, 

denorm or unnorm 
fcmpu SFU1 off NaN, invalid, 

denorm or unnorm 
flt SFU1 off 

Int SFU1 off NaN, invalid, 
denorm, or unnorm 

nlnt SFU1 off NaN, invalid, 
denorm, or unnorm 

trnc SFU1 off NaN, invalid, 
denorm, or unnorm 

fdlv SFU1 off NaN, invalid, Overflow Underflow rS2.o 
denorm, or unnorm 

fsart Always 

Table 3.3.2.2 - Floating Point Exceptions 

Definitions of the terms and acronyms used in the above table: 

FINX FIOV 
Inexact 

Inexact 

Inexact 

Inexact 

Inexact 

Inexact rS2<-231, 
rS2> 231 -1 

Inexact rS2<-231, 
rS2> ~ 1-1 

Inexact rS2<-231, 
rS2> ~ 1-1 

Inexact 

FUNIMP: Floating Point Unimplemented. This FPECR bit is set whenever an SFUI 
class opcode which is not implemented in hardware (e.g. fsqrt) is executed. 
If a FUNIMP is signaled then the values of all other exception cause flags in 
the FPECR are undefined. 

FRO P: Floating Point Reserved Operand. This FPECR bit is set whenever either of 
the source operands is a "reserved operand" or the operation being performed 
on the given operand is invalid according to the IEEE specification. A 
reserved operand is any NaN (signalling or quiet), a denormalized number, or 
an extended precision unnormalized number. Invalid operations include the 
following operations on infinity: 

a) magnitude subtraction of infinities, such as (+<») + (-oo), 
b) 0 x oo, 

c) oo / oo, and 
d) 0/0 

FOVF : Floating Point Overflow. This FPECR bit is set whenever the rounded result 
of the operation is too large to be represented as a finite number in the 
destination format (sgl, dbl, or ext). 

Revision 2.0 45 



SFUl IMPLEMENTATION 
Mororola Col'f/llUlllial Propriet 

F U N F : Floating Point Underflow. This FPECR bit is set 
result of the operation is too small to be represented 
number in the destination format. Any time the 
generate a denormalized result, it will instead set FU 
exception. 

F D V Z : Floating Point Divide by Zero. 
denominator (rS2) operand of an f div instn1ction is 
is a non-zero finite normalized number FDVZ is 
(rS 1) is also zero. 

F IN X: Floating Point Inexact. This FPECR bit 1s 

result of a floating point arithmetic operation 
conversion causes a loss of accuracy FINX can occur 
either F0VF or FUNF. 

F I O V : Floating Point to Integer conversion Overflow 
whenever source operand of a floating poant to 
nint, trnc) is too large to be represented as a , o 

F PR V: Floating Point Privilege Violation. This FPECR bit 1 

fxcr, or an fstcr which attempts to access floating p 
fcrO - fcr61 from user mode. 

3.3.2.3. Exception Mapping 

~hen the hardware sets a bit in the FPECR it also generates an 
mvokes the software envelope (except in the special case of FI 
The software envelope maps the FPECR status flags to the IEEE 
flags (AFxxx) in the FPSR according to the following table: 

FPECR 
FIOV ~ 
FR0P ~ 

FDVZ ~ 
FUNF ~ 
R>VF ~ 
FINX ~ 

FOVF && FINX ~ 
FUNF && FINX ::) 

FPSR 
AFINV 
AFINV only if cause of FR0P was: 

Af'DVZ 
AFUNF only if ENUNF is enabled 
AR>VF 
AFINX 
AFOVF and AANX 
AFUNF and AFINX 

Table 3.3.2.3 • Floating Point Exception Mapping 

DO COPY 

r undcd 
1alizcd 
t to 
SFUl 

f the 
er 
uh 

R 1t I ct 
i nt, 

ontrol 

In cases not explicitly called out in this table f< • software envelope will simpl th • or example FROP due to quiet NaN, the 

46 

AFxxx exceptions to the user Y rct~m e correct_ l~EE ~suit and not signal any 
envelope (even if it's alre d. Any tame an AFxxx bit ~s set ID the FPSR by the software 
FPCR, then a branch is 

1
a:_ y set), Uand the corrcspondmg EFxxx trap is enabled in the 

en to a scr Trap Handler. If the EFxxx trap is disabled, the 

Rtvlllon 2.0 



Motorola Confidential Proprietary - DO NOT COPY SFUl IMPLEMENTATION 

software envelope will place the specified IEEE 754 default result in the destination 
register and return to the user program leaving the AFxxx bit set in the FPSR. 

3.3.2.4. Floating Point Infinity Arithmetic 

In the 88100, infinity arithmetic was performed in software. An infinity was always 
treated as a reserved operand, i.e., a Floating Point Reserved Operand exception 
(FROP) was generated if either source operand was an infinity. The 88110 performs 
infinity arithmetic in hardware. The correct IEEE result is generated for all valid 
operations on infinity. FROP is asserted only if the operation being performed is 
invalid according to the IEEE specification. In any case where a new infinity would 
be produced, the 88110 will generate an Floating Point Overflow (FOVF) exception. 

Invalid operations on infinity are: 

a ) magnitude subtraction of infinities, such as ( +oo) + (-oo), 
b ) 0 x 00 , for all combinations of signs of zero and infinity, 
c ) oo / oo, for all combinations of signs of infinities. 

3.3.2.5. Floating Point Inexact 

The FPCR and the FPSR arc simply software registers, i.e. user code loads the FPCR and 
the software envelope reads the FPCR and updates the FPSR. These registers have no 
direct affect on the hardware. There is one exception to this - Floating Point Inexact 
(FINX). If the floating point unit signals an inexact condition, the hardware will 
check the Floating Point Inexact Enable (EFINX) bit in the FPCR. If it is disabled, the 
processor will not generate an SFUl exception but does set the AFINX bit in the FPSR. 
If EFINX is enabled, then the FINX bit in the FPECR and the AFINX bit in the FPSR are 
both set and the processor takes the SFU 1 exception. 

3.3.2.6. Floating Point to Integer Conversion Overflow 

In the 88100, if the operand being converted to an integer has an exponent greater 
than or equal to 30 then a Floating Point Integer Conversion Overflow exception is 
taken. In the 88110, the conversion range is extended. Only if the operand being 
converted will not fit in a signed 32-bit integer is a Floating Point Integer 
Conversion Overflow exception taken. 

3.3.2.7. Unnormalized Extended Precision Numbers 

The 88100 did not support IEEE double-extended numbers and therefore. did not need 
to deal with unnormalized operands. The 88110 handles _unnormalized extended 
precision numbers in the software envelope rather than m hardware. If an 
unnormalized operand is encountered, the machine will take a Fl~ating Po~nt 
Reserved Operand exception (FROP in FPECR). The softwa~e envelope. w1~l norm~hze 
the number, perform the operation, and return the result _m_ the destmat~on register 
as if the hardware had performed the operation. The ongmal unnonnahzed source 
operand remains unnormalized. 

Revision 2.0 
47 



SFUI IMPLEMENTATION Motorola C olf/ldelltlal 

3.3.3. TIME-CRITICAL FP. OPERATIONS (SLZ MODE) 

1HIS IS AN lfr1PlEMEN1A1l0N DEPENDEN1 SE ;j R 
be supponed in the same manner on future 88 UO implementat• n • 

The 88110 depends on a software envelope to full implement Lh 

specification - overflows. underflows, NaN • and denormali J 
SFUI exceptions which invoke a software routine to deliver l • 

To accelerate time critical operations and make them more ~ 
provides a mode of operation which avoid 1nvokin1 the 
attempts to deliver "sensible". if not strictly IEEE correct u 1 
this mode. denormalized numben. quiet NANs. and IEEE anv • 1d 
as legitimate, returning default results rather than cau mg f • 
this mode is enabled, the hardware assumes the job norm 11 
software envelope. 

SLZ mode operation is provided individually 
global mode covering all arithmetic exceptions activate 
set the appropriate SLZ bit in the FPCR. ·1 1 g SLZ bu 
corresponding SFUI exceptions and deliver def u I result 
not disabled by a SLZ bit in the FPCR, the SFU 1 e ccption 1 

FPECR indicate the cause of the exception The value of any 
FPSR which is under the influence of SLZ mode undefinca 

The Floating Point Privilege Violation (FPR ) exception, 
Unimplemented (FUNlMP) exception arc never blocked by n 
trap enable bits (except EFINX) in the FPCR have no effect on 

3.3.3.1. SLZ Mode Control 

SLZ mode is activated by three bits which have been added to the I 
the FPCR with SU control bits is shown below: 

• DO T COPY 

l de nu n ll to 

pomt 
ause 

r suit. 
10 

and 
In 

u •ted 

mt 

K. Th I • Ul 

Floating Point Control Register (FPCR 

48 

31 30 211 28 27 28 25 24 23 22 21 20 It 11 17 11 11 1' 1J 12 11 10 I I 7 I Ii • 3 2 I 0 

__ ,W4 -11111 
Jz l JoVF I eF!v\ It I EJ1Nx 

SLZUN= FM EFDVZ EFOVf 

Undefined • reserved for future use D Newly Def ned 

SLZOVF: 
SLZUNF: 
SLZ: 

Flush result to correctly signed Infinity on overflow 
Au~h result to corredly signed zero on underflow 
Deliver default resuhs for all operations as descri>ed 1r1 the sect10ns below, 

Figure 3.3.3.1 • FPCR w/SLZ Control 

Three bits are provided to selectively activate SLZ mode O ration 
default results for floating point overflow (only). SLZUNF ':ocs the s~Oic!' ~::::: 

Rivi1io11 2 .0 



Motorola Confidential Proprietary • DO NOT COPY SFUI IMPLEMENTATION 

point underflow. SLZ is a global enable which causes default results to be delivered 
for all exceptional conditions (except FPRV and FUNIMP) as described in the section 
on default results below. A summary of the action taken for different settings of the 
FPCR trap enable (ENxxx) and SLZ mode control (SLZxxx) bits is shown in the table 
below. 

Exceptional Signal Take S/W H/W f-VW S/W 
Condition FPCR IEEE SFU1 Delivers Delivers Delivers Traps to 

Exists Exception Exception IEEE IEEE Default User 
(Fxxx in FPECR) SLZxxx ENxxx in FPSR Vector Result Result Result Handler 

0 X X " 1 0 0 ✓ ✓ ✓ 
1 0 1 ✓ ✓ ✓ 

1 1 X ✓ 

Table 3.3.3.1 - SLZ Mode Actions 

3.3.3.2. SLZ Mode Default Results 

In SLZ mode, if the SFUI exception corresponding to a given FPECR flag is disabled by 
a SLZxxx bit in the FPCR, then a default result is written to the destination register. 
The default result returned is a function of the source operands and the operation 
being performed. The following table shows the conditions under which default 
results are generated. The next table shows the formats of the source operands 
which may cause default results to be generated and the formats of the default results 
generated by the 88110. 

Revision 2.0 49 



SFUl IMPLEMENTATION 

Condition 
FPECR 

FIOV 

FROP 

FOVZ 

FUNF 
FOVF 
FINX 

FINX&&FIOV 
FOVF && FINX 
FUNF && FINX 

Source 
O erand s 

± real 

±Si nati NaN 
±Quiet NaN 

± UnnormaMzec:I 
± Denormalized 

lnvaid 
...,_ Qxoo oo/oo 

±0 I ±0 
±real /±0 
±reals 
±reals 

All 
All 
All 
All 

Motorola Colf/idtl&lial 

NIA 
NIA 

Unordered 
Unordered 
Unordered 
Unordered 

NIA 

NIA 
NIA 
NIA 
NIA N'A 
NIA nexac1 result 
NIA 
NIA 
NIA 

± For conversion to integer, the sign of the result is the same 
subtraction the result is conectly signed except for qNaN' w 
division the result is correctly signed, i.e., the exclusive-Of 

Table 3.3.3.2.a • SLZ Mode Dtlault Result 

DO COPY 

Recognized Values Generated 'Values 

50 

Number Sign Exponent Leading Fraction Sign Expon nl L 1(:llrig 

Larae+ lnteaer NIA NIA NIA NIA 0 t,.t,A NIA 
Larae - lnteaer NIA NIA NIA N;A 1 NA MfA 

+O 0 00 ... 0 0 000. 0 0 00 0 0 
-0 1 00 ... 0 0 000. 0 1 00 0 0 
,too 0 11 ... 1 X 000. 0 0 11 1 0 
,00 1 11 ... 1 X 000 . 0 1 11 . ._ 1 0 

..nNaN t 0 11 .. . 1 X 1yy .v 0 11 1 1 
-QNaNt 1 11 ... 1 X 1vv -- Y 1 11 1 1 
+sNaNt 0 11 . .. 1 X Ovv . . v NIA NIA NfA 
-sNaNt 1 11. .. 1 X Ovv ... v NIA NIA NIA 

+real 0 zz ... z 1 xu ... x 0 zz z 1 
-real 1 zz ... z 1 xxx ... x 1 zz .z 1 

+ denorm 0 00 ... 0 X YYY ... V NIA NIA N 1 A 
-denorm 1 00 ... 0 X vvv ... v NIA NIA N1A 
+ unnorm 0 zz ... z 0 vvv ... v NIA NIA NIA 
- unnorm 1 zz ... z 0 yyy ... v NIA NIA N1A 

• . . 
The leadmg bit IS only meaningful for extended precision . 

t q~aN. in an l~EE quiet (non-signalling) NaN. A Universal qNaN es generated in all 
sitUations calling for a NaN result. sNaN is an IEEE signalling NaN and is never 
generated by the 88110 in SLZ mode. 

x Doni Care, i.e. either o or 1. 
Y Don't Care, but yy ... y is not all O's. 
z Don't Care, but zz .. .z is not al O's or all 1·a. 

Table 3.3.3.2.b • Recognized and Generated Values 

Fr ICtlon 
,oc .0 
1ll nO 
00(1 .• 0 
1000 0 
ooa .o 
000 0 
11 0 .,o 
110 0 

NtA 
NA 

ux X 

XXX .X 

NIA 
NtA 
NIA 
NIA 

Rtvision 2 .0 



Motorola Confidential Proprietary - DO NOT COPY SFUl IMPLEMENTATION 

3.3.3.3. SLZ Mode Rounding 

In SLZ mode, all rounding is performed in the current rounding mode as specified in 
the FPCR. In the case of overflow, rounding is performed in IEEE round-to-nearest 
mode regardless of the current rounding mode, i.e., the default results are always 
infinity (rather than the largest finite number called for by the IEEE spec in some 
rounding cases). Int, nint, and trnc round as specified by the instruction itself. 

3.3.3.4. SLZ Mode Compare 

In SLZ mode, both f cm p u and f cm p generate the correct IEEE results in all 
comparisons between normalized and ordered operands, i.e.: 

a ) -oa < -real < ±0 < +real < +-, 
b ) +O = +O = -0 = -0, 
C) +oo = +-, and -- = -oa 

If any of the operands are unnormalized, denonnalized, or unordered (NaN) then 
fc mp will set the unordered result bits (un, ne, ou, ob, ue, ug, ule, ul, uge) and clear 
all others (leg, eq, gt, le, It, ge, ib, in, lg) - FROP is not set, no SFUl exception is 
generated, and invalid (AFINV) is not signaled. However, fcmp.LL will set FROP and 
take the SFU 1 exception to a software envelope in these cases. The software envelope 
will detennine if the operands were unordered or not normalized. If they were not 
normalized it will normalize them and perform the comparison, returning the 
correct result to the program. If they were unordered it will signal invalid (AFINV) 
in the FPSR; if the invalid trap is disabled by the FPCR (EFINV=0), then it will return 
the result string with the unordered bits set and the others cleared; otherwise 
(EFINV=l) it will trap to the user bandier. 

3.3.3.5. SLZ Mode Handling of Denormalized Numbers 

Whenever the result computed in SLZ mode underflows, the result returned is a 
correctly signed zero. When a denormalized number is detected as a source operand, 
a universal quiet NaN is returned for floating point results or zero for conversion to 
integer. Thus, the 88110 flushes denormalized results to zero but does not flush 
denormalized source operands to zero. Since the 88110 will never itself produce a 
denormalized result in SLZ mode, it should not need to deal with them as source 
operands unless they were contained in an original input data set. 

The extended precision case of exponent=O, leading=l, is considered denormalized and 
will cause a qNaN to be returned. The 88110 will never generate this number. 

Revision 2 .0 51 



SFUl IMPLEMENTATION Motorola 

3.3.4. SFU1 EXECUTIO UNITS 

3.3.4.1 . Floating Point Add Unit 

The floating point adder (FPADD) is a three 
accepting one single, double, or extended 
requiring 3 clocks to complete execution. 1 e 
instructions executed by the floatin& poanl 
trnc, and flt. 

3.3.4.2. Multlpller 

The multiplier unit (MUL) is also a t r c 
accepting one single. double, or extended 
latency of 3 clocks. The multiplier i h • 
graphics operations. The instructions execul 1 
include f mu I, mu I u . mu I u. d mula, and pm u I . 

3.3.4.3. Floating Point Divider Unit 

The floating point divide unit (DIV) 1s 
produced arc exact IEEE results with no 
executed by the floating point divide umt 

ifidtlllial 

The performance of the divide unit is d cnt on the 
operands. Latency for each of the cases as sho rn in the 
divide unit is not pipelined. it cannot accepl another d1 1 

finishes with the one in progress. Thus. it bu a blockage c u I t 

Instruction Latenc 
divs, divu 19 

divu.d 30 
fdiv.sss 13-14 
fdiv.ddd 23-24 
fdiv.xxx 26-27 

Figure 3.3.4.3 • Floatlng Point Divide Latency 

3.3.4.4. Square Root 

COPY 

hie of 
and 
fhc 

. r int. 

of 
a 
d 

un t 

!he 8~ l10 ~oes not implement square root in hardware. Executing the fs qr t 
m~trucuon w!ll cause a Floating Point Unimplemented exception. A software bandier 
will be provided to emulate the square root operation u specified in the architecture. 

52 
Revision 2 .0 



Motorola Confidential Proprietary - DO NOT COPY SFU2 IMPLEMENTATION 

3.4. SFU2 (GRAPHICS) IMPLEMENTATION 
THIS IS AN IMPLEMENT .4!ION DEPENDENT USrn MODE FEATURE. Do not depend on this 
feature to be supported m the same manner on future 88000 implementations. 

In the. 88110, ~FU2 is dedicated t~ a set of operations for accelerating 3-D graphics 
rendermg algorithms. The graphics extensions are considered an implementation 
dependent feature as opposed to a fundamental architectural feature so that we retain 
the freedom necessary to track the rapidly evolving graphics technology. 

3.4.1. GRAPHICS OVERVIEW 

The graphics task is to convert an image, stored as an abstract representation of 
primitive shapes, and render that image as a realistic scene on a computer display. 
The graphics problem is to do it with dispatch. The process of rendering realistic 
animated 3-D images in real time is computationally intensive. The process has five 
major steps: l) viewpoint transformation, 2} lighting, 3) shading, 4) image 
processing, and 5) display. 

Object_.., 
Models 

Viewing Shading & 
Windowing 

Transforms - Image -
& Display 

& Lighting Processing 

Figure 3.4.1 • 3-D Image Rendering 

Frame 
- Buffer & .. 

CRT 

l) Viewpoint transformation. An image is typica11y represented as a group of 
complex polygons specified by vertex coordinates, normal vectors, surface 
properties, and color values. The vertices and normals must undergo a series of 
mathematical transformations (matrix multiplications} to orient the objects in space 
relative to the viewer, scale them to the right size, adjust for perspective 
foreshortening, and clip to the desired display volume. Coordinates are almost 
exclusively maintained and manipulated as floating point numbers. 

2) Lighting. Ambient, diffuse, and specular lighting models can be applied to the 
image using ray tracing or other lighting algorithms. Surface detail polygons may 
be added to simulate texture. Color and lighting information is resolved to an RGB 
triple at each polygon vertex which specifies the component intensities of the three 
additive primary colors, red, green, and blue. Normally these are fixed point values. 

3) Shading. The image must be clipped, projected into 2 dimensions, and mapped 
from image coordinate space to display coordinates. It is flattened, or decomposed, 
into simple triangles or scan aligned trapezoids. Shading algori~hms are applied to 
make polygon facets appear solid, to smooth polygonally approximated surfaces! and 
to conven polygons to an array of pixels suitable for display on a raster ~can display 
device. Color values are interpolated from venex normals by averagmg surface 
normals of adjacent polygon facets. Then, either linear intensity (Gouraud) or 
normal-vector (Phong) interpolation is performed to get polygon boundary colors. 
Color slope for each scan line crossing the polygon is computed and used to . calculate 
the color of each pixel on the scan line internal to the polygon. As pixels are 

Reviston 2.0 53 



SFU21MPLEMENTATION Motorola o 

computed. Z-buffer depth information is applied to remove had n 
aliasing corrections may also be applied to remove discrete p· cl 
errors which cause object edges to appear Jagged 

4) Image Processing. It is both convenient and 
objects in a scene separately. For e11mplc. if 
efficient to simply re-render that object than the enu 
algorithms. capable of smoothly blending multiple images. 
this. Such algorithms arc also capable of accur I rend 
transparency. Compositing algorithms utihzc a founh c 
which is appended to the three (ROB) color chan of cac 
percentage of a pixel covered by an object I a • t 
foreground and background object can be by 
composite color. 

5) Display. Once the image bas been created an arr 
transferred to and from the display system' r . . buffer 
governing windowing system. Fut bitblt c Bit B: r ,n c:r 
line drawing. etc., arc required to get ,mag Ja played qui 
placed into the frame buffer, specialized d1 pl ystem h r 
the frame buffer using pixel data to modulate the anten it 
and blue electron guns to form the image on tt .crccn 

The exceptional floating point performance o 
viewpoint transformation and lighting calculat10· 
flexible data manipulation instructions and high dat 
efficient coding of the bitblt and other algorithm r. 
system performance. The shading, raster convcf" 10n, and 111 

DO T COPY 

Anti
mpling 

dual 
re 

ng 
isb 
cct 
), 

the 
a 
a 

of the problem, however, arc very compute 1ntcns1ve and r u, 
beyond that found in most conventional r 1 r I r r to hi 
performance. The graphics extensions in the 88110 arc t r 
perf~rmancc on these phases of the rendering process. Primiu op r II n •re 
provided to perform arithmetic operations for shading, z-buffcrin , and comp i ing 
on multiple values in a single instruction. 

3.4.2. GRAPHICS REGISTERS 

All graphics o~rands arc located in the general register file No • , I reg1 te or 
tempor~ry reg1s!e~~ arc needed. Thus the graphics operation provide the same 
generalized flex1b1hty as the other instructions in the architecture 

3.4.3. GRAPHICS DAT A FORMATS 

54 

Graphics data tends to be_ packed . tightly in memory to reduce torage requirements 
and reduce memory ~and';t'1dth ~u1rcments. The 88110 reads gr phics data in 64-bit 
quanta. The graphics mstrucuons then allow individual fields within the 64-bit 
words to ~ _p~ocesscd in parallel - avoiding the need to pull them apan and operate 
00 them mdmdually • Some examples of the more common graphics data formats 
supported by the 88110 arc illustrated below: 

Revision 2 .0 



Motorola Confidential Proprietary - DO NOT COPY 

11 

..... 4-blla 

)RIGIBI iRjGiB! jRjGiBI iRiGiB 
~ 

Pixel 
11 ►~ 

[a R-2...-G BJ a R G B 

Pixel 

• ... 1&-blla 

I int frac I int frac int frac int frac 

"' '¥ 
_, 

Number 

32-blta 

blnt I • . .. --· • ~frat;' 

Number 

;J int frac 

('xi> 1 ::trac Ji exp frac 

Number 

SFU2 IMPLEMENTATION 

64-bits 

12-bit Dithered 
Color Pixels 

32-bitTrue 
Color Pixels 

I 16-bit Fixed-Point 
Numbers (8.8) 

I 32-bit Fixed-Point 
Numbers (8.24) 

32-bit Floating Pt. 
2-Values 

Figure 3.4.3 • Example Graphics Data Types 

32-bit 8/8/8/8 aRGB true color pixels, 32-bit (8.24) fixed point intensity values, 32-bit 
floating point z-buffers, and 8-bit grayscale pixels are expected to be the most 
heavily used graphics data types. 

3.4.4. GRAPHICS INSTRUCTION SET 

An overriding goal in the design of the graphics assist hardware in the 8 8110 is 
architectural compatibility with the rest of the machine. The RISC philosophy has 
been adhered to - most (all but pixel multiplication) graphics operations are single 
cycle. Operands are in the general registers and data movement to and from memory 
relics on the base architecture's load/store instructions. Like other instructions in 
the machine, graphics instructions issue two at a time. They can be intermixed 
freely with other integer and floating point instructions with no restrictions on 
instruction alignment. Instruction pipelines are not exposed to the programmer - no 
NOP's are required to schedule pipeline delay slots. Data hazards are detected and 
interlocked by the same hardware scoreboard mechanism used for all other 
instructions. Special "modes" and dedicated special purpose registers which decrease 
chip efficiency, increase loop setup time, and generally increase algorithm overhead 
have been completely avoided. 

Revision 2 .0 55 



SFU2 IMPLEMENTATION 
Motorola Con/flufllim Propritt,ary - DO NOT COPY 

The 

1) 
2) 
3) 
4) 
5) 
6) 
7) 

8) 
9) 

8 8110 graphics instructions arc summarized here: 

padd.t drD ,drS 1,drS2 ;pixel addition 

padds.x.t drD,drS t ,drS2 ;pixel add and saturate 

psub.t drD,drS1,drS2 ;pixel subtraction 

psubs.x.t drD,drS t ,drS2 ;pixel subtract and saturate 

punpk.t drD,drS t ,drS2 ;pixel unpack 

ppack.r.t drD,drS t ,drS2 ;pixel truncate, inscn, & pack 

prot drD,drS 1,drS2 ;pixel rotate left 

p rot drD,drS t ,<05> 
pcmp rD,drS t ,drS2 ;z-comparc 

pmul drD,rS 1,rS2 ;pixel multiply 

where rD is a single-word general register and drD is a double word gener I 
register (drD = rD:rD+ 1 (rD must be even)). Similarly for source registers 

padd.t drD,drS,,drS, ,t = ,b <byte). ,b <halQ, {blank} Cwordl 

Fields of size t in drS 1 arc added to the equivalent fields in drS and the uhmg 
fields placed in drD. Addition is carried out modulo 21

• 1 overflow (and 
underflow) wrap around within the fields. 

padds,x,t drD,drS,,drS, ,I - ,u. ,us, or .I ,t = ,b Cbyte), ,h {haJQ, {blank} cword) 

Fields of size t in drS 1 arc added to the equivalent fields in drS ulting 
fields placed in drD. Addition is carried out using unsigned, 1 _ , or ma u 
saturation arithmetic as specified by . s (. U , .S, . u S) (Saturauon arithmc 1 1 

described in a subsection below.) 

psub,t drD,dr$1 .... ,d ... rS...,2'-----•t-...,;;;;=_.,.b...10>.w.YJAtc~>1a.., .&.1•b1L-1,{111ba111LLO&...,..J{u.bwll111D111k.i.)...:{uw11o;u;rd1Ul 

Fields of size t in drS1 arc subtracted from the equivalent fields m drS 1 and tbe 
resulting fields placed in drD. Subtraction is carried out modulo 2t, 1 c-, o crflow 
(and underflow) wrap around within the fields. 

psuhs,1,t drD,drSi,drS, ,I = ,g, ,YI, or ,1 .t = ,b (byte), ,h QMIQ, {blaok} Cword) 

Fields_ of size t in drS1 arc subtracted from the equivalent fields m drS1 and the 
resulung fields placed 1·0 drD S b • • • • • eel . . . . • u traction 11 earned out using unsigned, sign , 
or mixed saturation antbmeuc as specified by ... ( u s us) (S t' · h • • . •• • , • , • atura 100 
ant metic 1s descnbcd in a subsection below.) 

56 Rtvidon 2.0 



Motorola Confidential Proprietary - DO NOT COPY SFU2 IMPLEMENTATION 

pun pk, t drD,rS J ____ .,.,t ... =__...n__,< ... o ... ib ... b....,le,...}L&., __.,..,.b....u.Cb,.,.y~te:,1.1), .... oi.ur...__.,.h-_<uh ... au..JOi..r: 

Fields of size t in rS1 are placed into fields of size 2t with zero fill and 
concatenated to form a 64-bit result which is placed in drD. 

The following diagrams illustrate the operation of pun pk: 

◄ 4 .. 

a a Ro 

Figure 3.4.4.a - punpk.n 

j l 
00 . ·•!§ I 00 Ro 

Figure 3.4.4.b - punpk.b 

+--16~ 

rS1 

0000 drD 

Figure 3.4.4.c - punpk.h 

Revision 2 .0 57 



I l 

SFU2 IMPLEMENTATION DO 

ppag;k,r,t drD.drS 1JIIS2 

58 

Fields of size t from drS2 arc truncated to t•r/64 bill and 
resulting r bits replace the r most significant bill of drS 1 bul 
actually modified). The resulting value is rotated lO the leh 
in drD. The following table shows I.be truncated field width 
combinations of field size t and rotation sazc r. 

PPACK r 
8 16 32 

8 X X 4 
t 16 X 4 8 

32 4 8 16 
x = undefined operation 

Tabla 3.4.4.a • ppack Field Size and Rotation 

The following pictures illustrate lbe salient operations 
operation, which is performed repeatedly in buildin& up 
containing multiple pixels. Note lbat initi I, intermediate 

d 
drS1 1 

r bit 
r the 

precisely the same. drS2 would normally be lbc same d r D t 
result. 

For shading, intermediate intensity values arc normally 
numbers. The position of the radix point is simply a matter 
to think about the numbers; the distinction 1s made here 11· I 
the number of msb's which would be picked off and p nt 

Using ppack.8 to build 16-bit 4/4/4 ROB pixels from 4 28 bil •~ed point 
intensity values: 

◄ • ..-.---2s---• 

drSa 

AD Ro Go Bo A, R, G, 8, 

drO 

Figure 3.4.4.c - ppack.8 

COPY 

Revision 2 .0 



Motorola Confidential Proprietary - DO NOT COPY SFU2 IMPLEMENTATION 

Using ppack.16 to build 32-bit 8/8/8/8 ARGB pixels from 8.24 bit fixed-point 
intensity values: 

+- 8 __ .,.,. ___ 24 __ __,. 

Figure 3.4.4.d - ppack.16 

Using ppack.16 to build 8-bit pseudocolor pixels from 8.24 bit fixed-point 
intensity values: 

Revision 2 .0 

+- 8 -----24 -----+ 

L-:..,1S;.;::··;..;:· '·'..l.... __ __;,,;_·P..::.e ___ ..J-...;.P:,.;.:..:.......----·P_1 __ __. drS2 

drS, 

······· ······ 1/7777 
P3 j P, j Ps 1·-)tAJ4¥.k4 -• B1 • :! drD 

Figure 3.4.4.e - ppack.16 

59 



SFU2 IMPLEMENTATION Motorola Co,vldelllial 

60 

Using ppack.32 to build 64-bit 16/16/16/16 AROB p11cl. 
point intensity values: 

4-16-...... t--16__. 

Go. .Go 

Figure 3.4.4.f - ppack.32 

Using ppack.32.b to build 16-bit 4/4/4 RGB pi1el from 
intensity values. This can also be used to conven 32 bit 
4/4/4/4 pixels. 

Figure 3.4.4.g • ppack.32.b 

COPY 

m d-

8 

Revision 2 .0 



Motorola Confidential Proprietary - DO NOT COPY SFU2 IMPLEMENTATION 

Using ppack.32.h to build 32-bit 8/8/8/8 ARGB pixels from 8.8 bit fixed-point 
intensity values: 

Figure 3.4.4.h - ppack.32.h 

prot d rD.drS 1..IS.i 
prot drD,drS 1,<06> <06> or rS, = 0,4, s, 12, ,,,,,, 56,60 

The value in drS 1 is rotated to the left by the number of bits specified in register 
rS2 or by the immediate value <06> and the result is placed in drD. In this 
implementation, the rotation count is restricted to be an even multiple of 4 bits 
between O and 60 bits. Any odd multiple of 4-bits is simply truncated to the next 
lower even multiple of 4-bits. Any count greater than 60 bits is truncated to be 
less than or equal to 60 bits. 

pcmp rD,drS1Jl!S..i 

Two fields of 32-bits each in drS1 are compared to the corresponding fields in 
d rS2 using unsigned arithmetic. An 8-bit result string is returned in rD. The 
format of the result in rD is as follows: 

rD[3:0]: 
rO[4): 
rO[5): 
rO[6): 
rO[7): 
rO[8): 
rO[9]: 
rD[lO]: 
rD[ll]: 
rO[31:12): 

Revision 2 .0 

0 
(drS1[63:32) ~ drS2[63:32]) && (drS1[31:0] ~ drS2[31:0]) 
(drS1[63:32) < drS2[63:32]) && (drS1[31:0] < drS2[31:0]) 
(drS1[63:32] ~ drS2[63:32]) && (drS1[31:0] < drS2[31:0]) 
(drS1[63:32] < drS2[63:32]) && (drS1[31:0] ~ drS2[31:0]) 

!rD[4) 
!rD[5) 
!rD[6) 
!rD[7] 
0 

Table 3.4.4.b - pcmp Results 

61 



SFU2 IMPLEMENTATION Motorola Co1'/fdtlllial Pr DO OT COPY 

pmuJ drD,rS1JlIS.l 

62 

The 32-bit value in rS I is multiplied by the 64- bit 
significant bits of the product arc ?laced in dr~ 
Any bits lost as a result of trun~t!D8 the r 
with no indication of loss of 11gn1ficaoce 

to " 

The pmul instruction is intended to be u-.cd ID cone n 
k • • The figure below illu rates illu u pp a c mstrucuons. . 

used to multiply each of the 8-bll color "'hannels ID a 
constant. 

t 
C 
:, 
Q, 

pun pk. b dr , r 
p■u dr2, 
ppack. 32. dr , 

00 00 

00 00 

Figure 3.4.4.1 • pmul 

X 

00 

least 

The example starts out with a pixel in register 1. First the pixel is unpacked into 
double-register dr2 which puts each color channel into a 16-bit field padded with 
zeros to the left. This is then multiplied by the 8-bit constant m r4 using pm u I_ The 
entire content of register dr2 is multiplied by the entire content of r4 just a. if they 
were each a single number. However. since only 8-bit quantities arc actually 
present in the multiplicand and multiplier. the zero padding prevents overflo~ 
between fields in the product. The result is as if 4 individual 8x8= 16 bit 
multiplications had been performed. The ppack inatruction can then be used_ to 
pick off the. 8 most significant bit of each product and pack them back into paxel 
foi:mat. It_ 1~ perhaps easiest to visualize this operation as four 8-bit integers each 
bemg mult1phcd by a single 8-bit fraction. yielding an intermediate result of four 

Rtvtston 2 .0 



Motorola Confidential Proprietary - DO NOT COPY SFU2 IMPLEMENTATION 

16-bit (8.8) fixed point numbers. which are each truncated to their integer 
components. 

3.4.4.1 Saturation 

When adding and subtracting fields there is the possibility that the result will 
overflow (or underflow) the destination field size. For example, adding a 75% 
intensity value to a 50% intensity value would lose the most significant bits and alias 
to 25% intensity. This could produce an unacceptable visual anomaly in the resultant 
image. More appropriate for arithmetic on color intensity values would be for the 
addition to clamp. or "saturate," at the maximum intensity representable by the field. 
For the above example, saturation arithmetic would give a 100% intensity result 
which would be much more visually acceptable than the 25% result. 

The mathematics of many graphics algorithms naturally preclude the possibility of 
overflow and therefore do not require saturation arithmetic. Other algorithms 
depend on the wrap-around nature of modulo arithmetic and they require non
saturating arithmetic. Still other algorithms perform intermediate calculations 
which may overflow but the final operation does not - thus some of the calculations 
need to be performed with modulo arithmetic and some with saturation arithmetic. 
To handle all these varied situations, the 88110 provides four fonns of addition and 
subtraction. The most frequently used form, is simple addition without saturation. 
Then three forms of saturating addition are provided to handle the various data 
representations: I) unsigned ± unsigned = unsigned, 2) signed ± signed = signed, and 
3) unsigned ± signed = unsigned. The three forms of saturating addition are needed 
because overflow detection and maximum field value is different in all three cases. 
The binary arithmetic performed in the saturating forms is identical to the 
arithmetic performed in the non-saturating form. The only difference is that 
detection of overflow (or underflow) in the saturating forms causes the maximum (or 
minimum) field value to be substituted for the result in the saturating field(s). 

3.4.4.1.1 Saturation Arithmetic 

Unsigned ± unsigned = unsigned: saturation is indicated if there is a carry (or b?rrow 
in the case of subtraction) out of the most significant bit of the sum. The maximum 
field value is 2l- t and is substituted if an addition carries out. The minimum field 
value is O and is substituted if a subtraction borrows. 

Unsigned ± signed = unsigned: saturation is indicated if the msb's of the two source 
fields are different and the msb of the signed field is the same as the msb of the sum; 

• t 
for a+b=s, saturation=((at.i 11. f>t.i) & l(bt-i" St.i»• The maximum field value _is 2 -1 and 
is substituted if addition of a positive number or su~tractio~ of .a. negative num?er 
saturates. The minimum field value is O and is substituted if addmon of a negative 
number or subtraction of a positive number saturates. 

Signed ± signed = signed: saturation is indicated if the carry into the msb of the sum 
is different than the carry out of the msb of the sum. The max field value is 2(t- l) - 1 
and is substituted if the sum does not carry out. The minimum field value is -2<t- l) 

and is substituted if the sum does carry out. 

Revision 2 .0 63 



I 

SFU2 IMPLEMENTATION Motorc>la , c T COPY 

The following table gives some c1amples for 

sl s2 oadd.b 01dd1.u.b Dldd~.'i.b I 1H1dd.u, b 
00 00 00 00 00 , II 

00 55 55 55 .S ss 
00 7F 7F 7F 7F 7F 
00 80 80 80 80 00 
00 AA AA AA M ,00 
00 FF FF FF ff 00 

55 00 55 55 I 5S ss 
55 55 AA AA 7P _AA 
55 7F 04 04 ... ~ 
55 80 D5 D5 ~ 00 
55 AA FF FF l·r 00 

M 54 55 FF 54 FF 
1r- 7.F 00 7F 7F 7F 

7F 55 04 D,.i 7F 04 
7F 7F FE R:: 7 1: ll~ 

00 7F 80 FF _ff 1-T-
7F AA 29 FF '.9 29 

7E 
7F FF 7E fF _7E 
80 00 80 80 ) 80 

DS 
80 55 D5 D5 D 
80 7F FF FF F-t :FF 80 80 00 FF ,·:o 00 ,) 

80 AA 2A fT ,0 2A 80 FF 7F FF 0 7F -AA 00 AA AA .AA -AA 55 FF FF FF FF AA 7F 29 FF 29 FE -AA 80 2A FF 80 2A -AA AA 54 FF 80 S4 AA FF A9 FF A9 - _A9 FF 00 FF FF FF FF FF 55 54 FF 54 ff FF 7F 7E FF 7E .FF FF 80 7F FF 80 7F -FF AA A9 FF A9 9 FF FF fE FF FE FE 

Table 3.4.4.1.1 · 8-blt Saturation Examples 

3.4.4.1.2 Arbitrary Saturation Limits 

Notice that saturation occurs only at the maximum and minimum field values It is 
sometimes dcsinble to be able to set ubitruy saturation limits. That i1, it may ~ 
necessary to keep a result within a cenaio range which is smaller than the norm:

0 field range. The saturating forms of addition and subtraction provided by the 88ped 1 can be used to synthesize this operation. If one has a result that needs to be clam 

64 Revision 2 .0 



Motorola Confidential Proprietary - DO NOT COPY SFU2 IMPLEMENTATION 

to stay below a certain saturation level the following operation will produce the 
desired result. First. using padds.u, add the difference between the saturation limit 
and the maximum field value, then, using psubs.u, subtract that difference back out. 
If the result being clamped was already below the upper saturation limit then this 
operation is a NOP and the result is unchanged. If, however, the value being clamped 
was above the saturation limit then the first add would have saturated at the 
maximum field value and the subtract would have set the result to the saturation limit 
value. The analogous operation can be performed at the other end to clamp the value 
above a certain lower saturation level. The operation is illustrated in the following 
figure. .-- Max Field Value 

I 
+A 

& ·A 

Sa 
Upper _,.......,.. ~>a 
turation l Q) 

B' g, 
Level f A -~ !IS a: 

:Ji! 
j .!l! 

J 
u. 

Lower A A' 
s atura~on -

Level 

Min Field Value 

Figure 3.4.4.1.2 - Arbitrary Saturation Limits 

In this example A was within the saturation limits and therefore retains it original 
value (A=A') but B becomes clamped to the upper saturation limit 
( B:itB '= UpperSaturationLevel). 

3.4.5. GRAPHICS EXECUTION UNITS 

There are two independent graphics units in the 88110; an adder and a pixel 
packing/unpacking unit. 

3.4.5.1 Graphics Add Unit 

The graphics adder is a dual 32-bit adder with controllable carry chains_ on e~ch 8-?it 
boundary. Arithmetic is carried out using either modulo or sa~uratwn a_n thmetic. 
Saturation arithmetic is performed by substituting the appropnate maximum 0

~ 
minimum value for any field which overflows or underflows. Overflow an 
underflow detection and maximum and minimum field values are dependent on 
whether the operands are signed or unsigned. 

Instructions executed by the graphics adder include padd, padds, psub, psubs, and) 
pcmp. All forms of addition and subtraction (padd, psub, padds, psubs, pcmp 
execute in a single clock. 

Revision 2.0 
65 



SFU2 IMPLEMENTATION No 

3.4.5.2 Graphics Packing/Unpacking Unit 

The pixel packing/unpacking unit 
unpacking, and shifting pixel or fi1ed-r<unt d.1l 

within 64-bit operands in parallel. The k • 
it is computed by truncating multiple 1 

fields tightly together, insening them anto 
result into proper position for the next ate ll r -
also perform the invene operation of u 1 J 

properly placing them into a 64-bit r 
Rotation to the left by any multiple of 4 b • 
individual instruction and as pan of the an 
the graphics packing unit include pp a ck . p u n p 
units execute instructions 1n a single H 
identical and each can only accept one 
Thus each graphics unit bu a blockage 

3.4.6. GRAPHICS CODE EXAMPLE 

The following code illustrates the use of th 
snip is the inner loop of a Gounud shading 
aRGB pixels on each iteration. Each , 
generating a new pixel every three clock . or 

The 

66 

loop 
padd 
st.d 
ppack.16 
add 
padd 
sub 
ppack.16 
padd 
ppack.16 
padd 
ppack.16 
bend 

end 

AR,AR,~ 
PoP1,rO,PPTR 
PoP1,PoP ,AR 
PPTR, PPTR, 8 
GB,GB,AGB 
N,N,2 
PoP1,PoP1,GB 
AR,AR,~ 
PoP1, PoP1, AR 
GB,GB,AGB 
PoP1,PoP1,GB 
neO,N,loop 

; d 

; de::r 
accumu te ,. , n 

;add &l • a an 
;accumuldte a d 
; add AGreen to Gre 
:accumulate Green 
:done? 

following pipeline diagram shows the execution of the thts 

0 1 2 3 4 5 6 
loop 1- 1 padd AR AR DAR 
OOlC 1-1-1 st. d POPl RO PPTR 
0020 1-1 ppack. 16 POPl POP 1 AR 0024 1-1 add PPTR PPTR 8 
0028 1- 1 padd GB GB 0GB 
002C 1-1 sub N N 2 
0030 1-1 ppack.16 POPl POPl GB 0034 1-1 padd AR AR DAR 
0038 1-1 ppack.16 POPl POPl AR 003C 1-1 padd GB GB DGB 0040 1-1 ppack.16 POPl POPl GB 0044 1-1 bend neO N loop 

I p. 

T COPY 

packing, 
bit-fields 

I data as 
tang bil

l ung the 

an 
ted by 
raphics 
r not 

r clock. 

r 

r 

Rtvision 2 .0 



Motorola Confidential Proprietary - DO NOT COPY INSTRUCTION TIMING 

3.5. INSTRUCTION TIMING SUMMARY 
The following is a summary of instruction execution timing parameters. The clock 
counts presented here are the latency1 and blockage2 induced by an instruction 
assuming it issues as the first instruction in an issue pair. These clock counts do not 
represent the average execution time of an instruction since the machine attempts to 
execute two instructions on every clock. For more details see the Appendix on 
Detailed Instruction Timing. 

SFUO Function Latency Blockage 
Unit 

and,or ,xor,mask INTU (ALU) 1 0 
clr,ext,extu, INTU (BAJJ 1 1 

ff0,ff1 ,mak,rot,set 
add,addu, INTU (ALU) 1 0 

sub,subu,cmp 
add.car,addu.car INTU (ALU) 1 1 
sub.car,subu.car 

muls,mulu,mulu.d MUL 3 1 
dlvs,dlvu DIV 19 19 

dlvu.d DIV 30 30 

Table 3.5.a • SFUO Instruction Timing Summary 

Size 

SFU1 32 64 80 Function Latency Blockage 

.s .d .x Unit 
fadd,fsub • • • FPADD 3 1 

fcmp • • • FPADD 3 1 

fmul • • • MUL 3 1 

mov g +-+ x • • N/A 1 1 

mov x +-X • N/A 1 1 

• trap NIA N/A mov g +-+ x 
fdiv • DIV 13-14 13-14 

fdiv • DIV 23-24 23-24 

fdiv • DIV 26-27 26-27 

fsqrt • • • trap NIA N/A 

Table 3.5.b . SFU1 Instruction Timing Summary 

1 h nd slot of an issue pair, would be delayed 
~ency la the number ot clocks which a data dependent lnslRJ~lon inh~ ~dependency on the first instruction. 
with respect lo the earliest II could poulbly have issued had 11 not 

2 Id be delayed if ii used the same function Blockage la the number of clockl the sec:ond Instruction In an Issue pair wou 
unit as the first instruclion. 

Revision 2 .0 67 



INSTRUCTION TIMING Motorola Colf/fdtlllial DO 'OT COPY 

sFU2 Function Latency Blockage 
Unit 

padd_,_psub PADD 1 , 
padds,psubs PADD 1 , 

pcmp PADD 1 1 
ppack PPACK 1 , 
punJ>k PPACK 1 1 

~rot PPACK 1 1 
pmul MUL 3 1 

Table 3.5.c - SFU2 Instruction Timing Summ ry 

Flow Not I ken 
Control Position In Taken 

Issue Pair 
1 • t 2nd ) TIC HU TIC Miss 

jmp, jsr • NIA N'A I ~ • N,A N, 2 
jmp.n, jsr .n • N/A NA 2 • N/A N,, A 1 

br, bsr • 1 1 1 -• 0 0 2 
br.n, bsr.n • 0 -0 2 • -0 1 1 

bbO, bb1, bend • -1 1 3 • -0 0 2 bbO.n, bb1 .n, bcnd.n • 0 -0 2 • - -0 1 1 

Traps (clocks) (CIOCk S) (clock 
tbO, tb1, tend • • Seriai ze+1 N1A SenallZ N 

tbnd • • 1 -NIA Serialize~ 
rte • • -N/A NIA Serialize 3 

Table 3.5.d . 
SFUO Flow Control Instruction Timing Summary 

1 
Bubbles are the II.Imber of oppo,tunllies lo iuue 

111 
lnaruction whic:tl -- milMd - • ,..,. of the btanch 

68 

Re-vision 2.0 



Motorola Confidential Proprietary - DO NOT COPY INSTRUCTION TIMING 

Transfer Size 

Memory 8/16 32 64 80 Latency (clocks) Blockage 
.b,.h .d .x Cache Hit Mlss1 (clocks) 

Id • • • 2 4 1 

• 3 5 1 
st • • • • 1 1 1 

xmem • • N/A Serialize+7 SeriaUze+7 

Table 3.5.e - SFUO Memory Instruction Timing Summary 

Control Function Latency2 Blockage2 
Unit 

Ider. stcr. xcr SFUO Serialize+2 Serialize+2 
fldcr, fstcr. fxcr SFU1 Serialize+2 Serialize+2 

Table 3.5.f - Control Register Instruction Timing Summary 

l Best cue mlu, I.e. parked on the bul, no copyback for cache one rep1acement, and zero wail state memory. 

2 Side •Hecta ol writing to a control reglater, such as causing a cache flush, may add 10 these times. 
2 

Revision 2.0 
69 



INSTRUCTION TIMING 

3.5.1. EXECUTION EXAMPLE 

70 

The following example demonstrates I c 
a highly computational, floatin8 poar .1 • 
transformation involving matrix multipl c.al1 

multiplied by matrix K , the trm1form and 

[X',Y".Z',H'] = ( Y ] 

• Loop Unrolled Once 
• 32 Floating Point Multiplications, 2 
• 80 Instructions in 41 Clocks ~ I 
• @SO MHz ~ 2.4 Mpts/scc, 68 Double 

01234567890123456 '7 9 l 
1-1-1-1 fall.dti 'r2 ZO KR 
1-1-1 ld.d n IPIR Y10C 

1-1-1-1 fail.dti Tl 11> N:13 
1-1-1 ld.d Z1 Il'ffl 2HlX 

1-1-1-1 ta1.cttt m n; n 
1-1-1-1 faal.ctti Tl Ill AlO 

1-1-t-t ld.d IQ tm INJ( 
-1-1-1 fail..ctti T4 'lO All 

1-1-1- fad:i.ctti 'r2 'r2 Tl 
1-1-1-t faal.ctti Tl 1D A1.2 

1-1-1-1 faal.cttt t5 II> All 
1-1-1-1 fad:i.ltii Tl n N 
1-1-1-1 faal.ltii T4 XO A20 

1-1-1-1 fad:i.ltii '11) '11) '12 
1-1-1-1 faal.ltii 'r2 YO A2 

1-1-1-1 !af.ltii Tl Tl t5 
1-1-1-1 fail.ltii TS Z0 A22 

1-1-1 at.d '11) '1'Pl'R XNJC 

1-1-1-1 fail.d:ti T6 Ill 1423 
1-1-1-1 !ai.d:ti T4 N '12 
1-1-1-1 fail .d:ti T2 llD U1 

1-1-1-, t.li.ci:ti n n TJ 
1-1-1-1 fiml.d:ti '11> 10 All 

1-1-1- f.ed:i.d:ti TS TS 11 
1-1-1-1- flail.d:ti T6 zo Al2 

1-1- a.d n 1PDt llOC 
1-1-1-1 flail.d:ti Tl HD All 

1-1-1-t f.ed:i.d:ti tO ff) 

1-1 adcl IP1R I1'rR 1, 
1-1-1-t fadcl.dti N N 
1-1-1-1-1 ld.d Ill IPIR lOOI 

1-1-1-1-1 fadcl.d:ld 11 Tli 
1-1 adcl mt> 1PDlO 

1-1 adcl 1PDl 1PDl 1, 
1-1-1 at.d fl m. DOI 

1-1-t-t &111.cttt 'r2 IQ MX) 
1-1 81D NNZ 

1-1-1-1 fall..dtf Tl n 1101 
1-1-1 ld.d YO IP!R 'l1IJI 

1-1-1-1 liul.~ Tl Z1 KJ2 
1-1-1 ld.d ZO 1fflt 2MJC 

1-1-1-1 liul.~ T4 . ,m 
l-t-1 ld.d II> IP!'R 110C 

Figure 3.5.1 . 
3-D Graphic• Tranlform 

~or COPY 

1hty on 
a 3D

rtex, is 
K) 

Revision 2 .0 



Motorola Confidential Proprietary • DO NOT COPY EXCEPTIONS 

3.6. EXCEPTIONS 
88110 exceptions are generated as a result of unusual circumstances resulting from 
execution of an instruction or occurrence of some asynchronous external event. 
There are four things which cause exceptions in the 8811 O: 

1. External interrupts. 
2. Cenain memory access conditions such as page faults and bus errors. 
3. Internal errors such as an attempt to execute an unimplemented opcode or 

arithmetic overflow. 
4. Trap instructions. 

The handling of exceptions is transparent to user mode code and therefore the 
manner in which they are handled is not specified by the architecture. However, 
the architecture does specify a "vectored trap" mechanism which is invoked by the 
trap instructions tbO, tbl, tbnd, and tend. The 88110 utilizes this same mechanism 
to handle all types of exceptions. When a user mode instruction experiences an 
exceptional condition, the machine is placed into supervisor mode and control is 
transferred to a software exception handler routine located at some offset within a 
memory based vector table. Each exception generated in the machine transfers 
control to a different address in the vector table. When the exception has been dealt 
with, the handler can resume execution of the user program without its knowledge 
that such an event ever occurred. 

The 88110 implements a precise exception model. This means that a) when an 
exception occurs, neither the faulting instruction or any instructions logically 
following it in the code stream will appear to have been executed, and b) the precise 
location (address) of the faulting instruction will be known to the exception handler. 
This precise exception model can simplify and speed up exception processing because 
software does not have to manually save the machine's internal pipeline states, 
unwind the pipelines, and cleanly terminate the faulting instruction stream; nor 
does it have to reverse the process to resume execution of the faulting stream. 

3.6.1. ILLEGAL OPCODE EXCEPTIONS 

The 88110 completely decodes all instruction opcode fields and register specifier 
fields. All undefined SFU0 instructions will cause an Unimplemented Opcode 
exception and all SFU 1-7 instructions will cause the corresponding SFUx exception. 

3.6.2. VECTORED EXCEPTIONS 

When an exception is recognized, control is transferred to instructions located in. the 
exception vector table. The vector table is located in memory at the address specified 
by the Vector Base Register - an SFUO control register (er~). The vector table is a 4k 
byte table which allocates two instructions for each exception. The l~wer 1~8 vectors 
are reserved for hardware use and are not accessible from us~r trap m~t~ctwns. An 
attempt to specify vector 0-127 from a trap instruction will uncondiuonally cause 
Privilege Violation exception to be taken. The upper 384 vectors_ are a~located for 
software traps. Each two word vector contains the first two ms_truc!wns of ~n 
exception handler. The assignment of exceptions to vector table entnes is shown n 
Appendix A. I. 

Revision 2 .0 71 



t 

EXCFPTIONS 
Motorola Confid.elllial Proprietary • DO NOT COPY 

3.6.3. EXCEPTION PROCESSING 

3.6.3.1 Exception Recognition 

An exception is recognized when the faulting instruction and all instructions 
logically preceding it have completed execution. When this occurs, the following 

action is taken. 

1. 

2. 
3. 

4. 
s. 
6. 

7. 
8. 

9. 

The logical address of the excc~ting in~tru~ti~n _is saved in the Exception 
Instruction Pointer (EIP) along with a bit 10d1caung whether the instruction 
was in the delay slot of a branch. . 
The PSR is saved in the Exception Processor Status Register (EPSR). 
The excepting instruction and all instructions logically succeeding it are 
aborted. All user visible effects of these instructions arc undone. The 
appearance is as if the excepting instruction bad never executed, i e , the 
destination register, status flags, etc. arc all returned to their state pnor to 
issue of the excepting instruction. 
External interrupts are disabled (lnD). 
All special function units arc disabled (SFUD). 
Subsequent exceptions are directed to the error vector by setting the SFr bit 
in the PSR. 
The machine is placed into Supervisor Mode. 
The vector address is computed by concatenating the Vector Base Register 
(SFU0 control register cr7) with 8 times the vector number The table of 
vector assignments is shown above. 
Execution is resumed at the instruction found at the vector address. 

3.6.3.2 Exception Handling 

Exception handling is a software process. Oenerally, an exception bandier will first 
save the machine state, including all user visible registcn (ORF, XRF, FPSR, and 
FPCR) and any other registers necessary to restart the user program, such as the EIP 
and EPSR. Once the machine state has been safely stored in memory, the exception 
bandier may re-enable exceptions (SFrz=0) and interrupts (lnD=O > 

It is not always necessary for an exception handler to save the entire state of the 
machi~e. If the exception _service required is simple and the system can tolerate 
exe~uuon of the bandier with interrupts disabled, then the handler may elect to 
avoid th_e overhe_ad ~f saving and restoring processor state from memory by 
guarantee10g that 1l will not generate any additional ~xccptions. 

72 

To s~mplify a_nd speed up handling of exceptions, five control registers, accessible 
on!y 10 supervisor mode: are provided. These can be used to hold the supervisor stack 
po•?ter or other operatmg system specific data. At exception time, general purpose 
registers can be exchanged (using xcr) with these registers to minimize the amount 
of memory traffic needed by fast trap handlers. The registers may also be used as 
scratch storage by fast exc t· h di • • • cp 100 an ers to avoid savmg general registers to 
memory. 

Revision 2 .0 



Motorola Confidential Proprietary - DO NOT COPY EXCEPTIONS 

3.6.3.3 Exception Recovery 

When the exception handler bas finished serv1cmg the exception. it will restore the 
processor image which was saved in memory at the time of the exception. It will 
then execute an rte (return from exception) instruction. rte is the mechanism 
provided by both the 88100 and 88110 for termination of exception routines. rte first 
serializes the machine to guarantee that all exception handler instructions complete 
before returning control back to the user program. It then sets the machine into the 
mode (user or supervisor) it was in at the time of the exception, restores the 
executing instruction pointer (XIP) from the EIP, restores the PSR from the EPSR, 
fetches the instruction at the EIP. and then resumes execution. 

3.6.4. PRECISE EXCEPTION MODEL IMPLEMENTATION 

In order to achieve maximum performance. many things go on inside the 88110 in a 
sequence different than that specified by the executing program. Instructions 
execute in parallel. complete out of order, and some are even executed speculatively 
in anticipation of the instruction stream going in a cenain direction. The hardware 
is careful to insure that this out of order operation never has an effect different than 
that specified by the program. This requirement is most difficult to assure in the 
event of an exception which occurs after instructions logically following the 
faulting instruction have already completed. At the time of an exception the 
machine state becomes visible to other processes and therefore must be in its correct 
architecturally specified condition. The 88110 takes care of this in hardware by 
automatically backing the machine up to the instruction which caused the exception 
and is therefore said to implement a "precise" exception model. The mechanism used 
to back the machine up in the event of an exception is the same mechanism used to 
recover from mispredicted branches. 

To recover from an exception. a "history buffer" is used. This buffer is a FIFO queue 
which records relevant machine state at the time of each instruction issue. 
Instructions arc placed on the head of the queue when they are i_ssued and_ pe~colate 
to the tail of the queue while they are in execution. Instructions. remam m !he 
queue until they complete execution so that in the event of an excepuon t?e mac~me 
state necessary to recover the architectural state is available. As mstrucuons 
com~lete execution they are released (retired) from the queue and the buffer st0rage 
reclaimed for new instructions entering the queue. 

An exception is generated at any time during instruction execution and i~ re~orded 
in the history buffer when the instruction finishes execution. The excepuon is not 
recognized until the faulting instruction reaches the tail of the history queue. . When 
the exception is recognized, the queue is reversed and machine is reSt0red to its state 
~t the time the instruction issued. Machine state is restored at a con5tant rate of two 
10structions per clock. 

To correctly restore the architectural state the history buffer muSt record ~e value 
of the destination prior to instruction exec~tion. The destination of a st0re, oweve~ 
is in memory and it is not practical from a performance standpoint, to alwaybs reda 
mem befi . ' • • d" t I to store buffers ut 0 

ory ore wnting it Therefore stores issue 1mme ia e Y . ' 'thout 
not update_ memory untii all previo~s instructions b~ve completed execuuon wi 
exception, 1.c. the store has reached the tail of the history buffer. 

Revision 2 .0 73 



EXCFPTIONS Motorola 

The history buffer bas enough stongc to bold 16 instructions 
event of a long latency instruction. it is 1bl (if a data 
first) that more than IS instructions could c before t 
history buffer. If so. instruction issue bait until I.be I n _ 
is blocking retirement. finishes. There arc two kinda r i 
potentially cause the history buffer to fill up; divide In 1 

instructions which miss the cache. 

Two mechanisms arc provided to help the pr rammer av 
stalls on memory operations: store-through and touch load 
used to avoid unnecessarily dinying cache line and thus r d 
copybacks which increase load miss latency he touch lo 
load latency by priming the cache and thus in ing the h1 
b) allow subsequent loads to finish more qu1ckl by ·1 11 

parallel with the touch's line fill. and c) d hi 1 

loading data into the cache (touch never 
not block retirement of subsequent instructi 

3.6.4.1 Exception Timing 

D 

The following diagram illustrates the signi 1 111 • ents 1n c p. n pr 

.,_ A) Exceptin 

Equal to Serialization Time 

OT COPY 

In the 
t occur 
up the 

which 
ch can 
ad/store 

induced 
n be 
y of 
crage 
loads, 
he in 
when 
docs 

Time to Finish Excepting Instruction ._ B) All Prev1ou. n ctions Co plete 

74 

,._ C) Exception R•:tOOQ ition 

Exception Reoovery Tine 

Transfer of Control 
,._ D) State Restored 

,._ E) Exception Hander Runs 

::i 
:f 
Cl) 

Figure 3.6.4.1 • Exception Latency 

A) At time "A" an instructio h' h • • 
B) At time "B" the . n .w ic _1s dcsuncd to generate an exception issues. 

implying that all e~cepun~ instruction has reached the tail of the history queue 
mstruct1ons preceding ·1 • h od fi • h d execution without . 1 ID t e c e stream have 1ms e 
generaung any exceptions. 

Revision 2 .0 



Motorola Confidential Propri~tary - DO NOT COPY EXCEPTIONS 

C) By time "C" the excepting instruction has completed execution the exception 
is "recognized". and exception processing begins. If at ~his point the 
instruction had not generated an exception it would have been retired. 

D) ~Y ti~c "!'" the stat_c of the m~chin_c prior to the issue of the excepting 
mstrucuon 1s restored, 1.c., the machme 1s restored to its state at time A-e. 

E) At time "E" the PSR and instruction pointer of the executing process have 
been saved and control has been transferred to the exception handler 
routine . 

At time "A" the excepting instruction issues and begins execution. During A-B 
previously issued instructions arc finishing execution the interval A-B is 
equivalent to the time required to serialize the machine (described below). B-C is the 
time required for the machine to complete execution of the excepting instruction. 
Frequently B-C will be zero because most instructions finish execution before they 
reach the tail of the queue. At time "C" the exception is recognized and during C-D 
the machine state is being restored. This time will depend on the number of 
instructions which have issued since the excepting instruction issued. At a maximum 
this could be 15 additional instructions and since state is restored at a rate of 2 
instructions per clock this phase could require a maximum of 8 clocks. At time D all 
state has been restored and during interval D-E the machine is saving context 
information in the exception control registers (EIP and EPSR), computing the address 
of the exception handler, disabling interrupts, placing the machine in supervisor 
mode, and fetching the first instructions of the exception handler from the vector 
table. D-E will require 2 clocks plus the time required to fetch the target 
instructions. 

3.6.5. SERIALIZATION 

The 88110 has multiple function units each of which may be executing different 
instructions at the same time. This concurrency is normally transparent to the 
program, but in some special circumstances (e.g. debugging, 1/0 c?ntrol, 
multiprocessor synchronization, etc) it may be necessary to force the machu~e to 
"serialize." Serialization in the 8811 0 means that instruction issue is halted until all 
instructions currently in progress have completed execution, i.e., . all internal 
pipeline stages and instruction buffers have emptied, all outstandmg memory 
transactions are complete, and the machine is completely synchronized. There are 
several ways to cause the 88110 to serialize: 

1) An attempt to issue an xmem tbo tbl tend, Ider, stcr, xcr, fldcr, fSlcr,_ or 
• ' ' • ~ h • t uon her instruction will cause the machine to serialize bc,ore t e ms rue 

issues. Traps, even if not taken, cause serialization (this is the architecturally 
sanctioned method for forcing serialization from a user mode pro~ram). 

2) Issue of a Id or st instruction when the SRM bit is set in the PSR ~ill cause lhe 
machine to serialize. This provides a mechanism for forcmg memory 
transactions to run in strict program order. . r 

3 ) When the SER bit in the PSR is set, the machine will seriahze on eve Y 
instruction which is issued. 

Revision 2 .0 
75 



EXCEPilONS 

3.6.5.1 Serialization Latency 

The time required to serialize tbe mach 
currently in progress to complete 
instructions in progress and tbe memory 
absolute upper bound on this time be '1 

control of the '110. A wont cue nan 
buff er is blocked by a cache mill load 
pending. including 4 more load misses 
one extended precision floating pomt 
This is not a very likely situation but . 

3.6.6. INTERRUPTS 

The 88110 provides 2 external 11 1 I 
maskable. Each interrupt bu an unique 

3.6.6.1 Maskable Interrupt (INT*) 

The maskable interrupt is level sensitive 
is software maskable by the lnD bit m the 
to disable INT interrupts on recognition of 
of lower priority than both the non-mukabl 

3.6.6.2 Non-Maskable Interrupt (NMI*) 

C 

The other external interrupts is a non-ma mterrupt 
masked b~ software . with an interrupt disable If the 
handler with shadowing disabled the NMI vector will 
Vector. 

NMI is transition sensitive (active low) and software 
b~ the 88110, NMI must transition to inact.vc and be r 

will be taken. The following diagram illustrates this operation: 

OT COPY 

ructions 
n on the 

to put an 
ot under 

I history 
t" ons arc 

•pyback, 
·ucuons. 

r limit 

r DOD· 

It 
arc 

is 

Req red Transition 

NMI* 
1=-------.JL 

• 'WZVZzzzzzzwzza 'WA 

First NMI vector taken Second NMI vector taken 

Figure 3.6.6.2 • NMI 

76 

Revision 2 .0 



Motorola Confidential Proprietary - DO NOT COPY EXCEPTIONS 

3.6.6.3 Interrupt Latency 

When an external interrupt is detected it is immediately assigned to the instruction at 
the tail of the history buffer, i.e., at point B in the exception latency diagram above. 
Thus, interrupt latency is measured as the interval B-E. The instruction at the tail of 
the queue is always allowed to complete execution before the interrupt is recognized. 

Actual system level interrupt latency can be worse than just interval B-E. If the 
instruction to which the interrupt gets assigned also generates an exception, then 
the exception is given priority and is recognized first. If minimal interrupt latency 
is an imponant system parameter then exception handlers should save the machine 
context and re-enable interrupts as rapidly as possible so that the pending interrupt 
receives service quickly. 

The allocation of the interrupt to the instruction at the tail of the history buff er 
minimizes interrupt response time. However, it does have one potentially confusing 
property. If a load instruction causes an interrupt, that interrupt might be assigned 
to an instruction which actually issued earlier. Thus when the machine is backed up, 
the instruction which caused the interrupt will appear to not yet have executed. If 
necessary this can be avoided by preceding an instruction which is destined to 
produce an interrupt by a trap-not-taken instruction to first serialize the machine. 

Revision 2.0 



Motorola Confidential Proprietary - DO NOT COPY 
CACHFS 

3.7. CACHES 

3.7.1. INSTRUCTION CACHE 

The 88110 instruction cache is an 8Kbyte 2-way set assoc1auve cache. Cache 
organization is 128 sets, 2 lines per set, and 8 words per line. Cache lines are aligned 
on even 8-word boundaries in memory, thus a cache line will never cross a page 
boundary. Cache line fill begins with the missed instruction. The cache delivers the 
missed instruction and all subsequent instructions to the instruction unit as soon as 
they arc received from the bus. New lines are allocated into empty cache lines if any 
are available. A pseudorandom replacement algorithm is used to select a line when 
no empty lines are available. The cache uses physical address tags; this obviates the 
need to flush the instruction cache on a process switch. Instruction cache 
coherency is maintained by software, supponed by a fast hardware invalidation 
capability. 

A block diagram of the instruction cache organization is shown in the figure below. 

,_1 ---
128 Sets I 
fr-1 

Banko add 

Bank 1 add 

ress tag O 

ress tag 1 

• • • 

~ 
-

I 
_J 

valid 

valid 

word O word 1 word2 

word o word 1 word2 

◄ 

word3 

word3 

• 
• • 

word 4 

word4 

8 words/line 

word5 

word5 

Figure 3.7.1 - Instruction Cache Organization 

3.7.1.1 Instruction Cache Operation 

word 6 word7 

word 6 word7 

► 

-

On an instruction fetch, bits <PA 11 -PAs> of the instruction's physical address. (which 
are the same as logical address bits <LA11 : LA 5>) index into the cache to retrieve ~he 
tags and data for one line from each of the two banks. While the lines are b~mg 
fetched, the 20 most significant bits of the logical address are translated to a phySica~ 
address by the instruction address translation cache (ATC). The . tags fromp ] 0 t 
accessed lines are then compared against translated physical address bits <PA3 i - . 12> 
f l h • • cache hit If r~m the ATC. If the tag from either line compares equa t en 11 is a • 
neither tag matches it is a cache miss. 

Hit : If a tag match to the physical address is found and the matched ent~ is va:id~ 
lhen it is a cache hit. On a hit three physical address bits <PA4:PA2> are _use to se ehc 
on d b ' h d Both instrucuons from t e e ou le-word from the cache line whose tag mate e •. . . When the 
accessed double-word are immediately transferred to the mstrucuon umt.. . . a 
ace • dd l'gnment restncuon, 1.e. ess 1s within the cache line there is no a ress a 1 dd r even 
double-word is retrieved regardless of whether the address is to . an ~ 0 ly that 
instruction word. If the address accesses the last word in a cache hne 1 en on 
one word is retrieved. 

Revision 2 .0 79 



CAOIFS 

80 

M i1,: on a cache miss, the physical 
BIU with a request to retrieve the t 
cache miss, the Bus Interface Unit (Bl 
BIU arbitrates for the bus and 1nuiates 
cache line is then selected to receive 
The selection algorithm gives fint 
candidate lines in the selected set 
random for replacement . The 
containing the missed instruction (Cnt1 
double-word(s) in the line then 
beginning of the line (wrap around). 
are written into the cache and also del I c 
unit. As subsequent instructions are r 
are forwarded (streamed) to the instruct, 
delivered to the instruction unit, exe ut 
parallel with the remaining line fill I 
the instruction which caused tbc mass or 
instruction unit, then the line as marke 
is taken. If no bus error is encountered th 

3. 7.1.2 Instruction Cache Coherency 

The instruction cache is physically addr 
across multiple process contexts. How 
provide~ to maintain coherency between 
mstrucuon cache and main memory. Tb 
page replacement, which could cause 
software must force coherency 

~ supe_rvisor mode controlled mechanism , pro I ded t 
anstruct1on cache. The invalidation is tnggercd by wn an 
~om~an~ to the Instruction MMU/CacbefflC Comm rtd R 
anval~dat1_on operation requires 2 clocks plu th. tame 
machme imposed by the stcr to write the command to lhe 

A rore selec~ve ~echanism is also provided which allow an 
cac e to be m~ahdated. This mechanism is invoked b • 
address of the hne to be invalidated into an add y I 
a "invala'date IC h 1· .. rcss contro re 

ac e ane command to the ICMD On . two clocks plus serialization time. . cc agam 

OT COPY 

1 -cm to the 
uhaneous data 

The 
t A 
e bus. 
e two 
ted at 

e-word 

·ruction 
·hey too 

uon is 
eds in 
tch of 
to the 

ceptioo 

oherent 
port is 
een the 
memory 

1 J data, 

entire 
Cache" 

The 
ze the 

n ular hne in the 
r· ing the physical 

1 tc and then writing 
c opcrauon requires 

Revision 2.0 



Motorola Confidential Proprietary - DO NOT COPY 
CACHF.S 

3.7.2. DATA CACHE 

The 88110 data cache is a 8Kbyte 2-way set associative cache. Cache organization is 
128 sets, 2 lines per set, and 8 words per line. Cache lines are aligned on even 8-word 
boundaries in memory, thus a cache line will never cross a page boundary. Cache 
line fill begins on the missed data word. The missed word is transferred (forwarded) 
to the load store unit as soon as it is received from the bus. Subsequently received 
data is also transferred (streamed) to the load/store unit if it is needed. The cache 
supports both a write-through (w/write-no-allocate) and a write-back (w/write
allocate) policy, selectable on a page-by-page basis. Newly referenced data is 
allocated into an empty cache line when one is available and a pseudorandom 
selection algorithm is used to replace a line when no empty lines are available. 
Cache coherency is automatically maintained by hardware bus snooping. Cache tags 
are dual poned to prevent snooping traffic on the bus from interfering with 
processor operation and degrading performance. Cache tags hold physical addresses 
of cache entries and therefore the cache does not require flushing and invalidation 
on a process switch. 

128 Sets • • 
fr • 

Banko address tag O wordO word 1 word2 word3 word4 word5 word6 word 7 

Bank 1 address tag 1 state wordO word 1 word2 word3 word4 word5 word 6 word 7 

◄ Swords/line ► 

Figure 3.7.2 - Data Cache Organization 

3.7.2. 1. Data Cache Operation 

The cache is a three state design. Two bits are included in each cache line to 
maintain the state information for that line. The status bits keep track of whether or 
not the line is valid and whether or not it is has been modified relative to memory· 
The state transition diagram for the write-back mode of the cache is shown ~~low and 
described in the following paragraphs. All internal cache state transitions ar~ 
visible on the external pins of the part to allow construction of coherent extema 
secondary caches. 

Revision 2 .0 

fi 



Motorola 

---►~ P'0C8Ssor Induced Trana.liOn 
- _. Bus (snoop) Induced Tri.NI· on 

.Im with Intent to Mocify 

Figure 3.7.2.1.a - Data Cache State Olag 

On a load or store operation. bits <PA11 P > 
one line from each cache bank. While the 
cache, the most significant 20 bits of lhe 
to a physical memory address by lhe data Add~ 
from both accessed lines are then compared 
<PA31:PA11>. If the tag from either selected rn mp 
If neither tag matches it is a cache miss. In the event o 
cache miss, the BIU gives priority to the anstruction cache 

The following figure is a flowchan showing the conceptu l 
Cache operations are described in more detail in the pan ph 

82 

DO NOT COPY 

--

to select 
from the 

r \ranslatcd 
The tags 

ddress bits 
cache bit. 

1 nstruction 
11 miss first. 

n the cache. 
h totlow 

Revision 2 .O 



Motorola Confidential Proprietary - DO NOT COPY 

Invalid 
(avallable) 

Revision 2 .0 

Fl 3 7 2 1 b Data cache Operation gure . . . . • 

83 



CACllFS 

3.7.2.2. Data Cache Read 

Read Hit: data is simply read from 1 

address bits <PA.:PA,> arc used to , n 
cache line and the double-word is transfcrre 
the data cache on a read bit is 1 clock 

Read Min: A line in the cache 1s c 
from memory. The line replacement 
line is valid-modified (diny 1, then it 1s nt 
written out (flushed) to memory When l 
selected line was not modified 1n the I t 
missed data is sent to the BlU along with 
The BIU arbitrates for the bus and initiate 
another processor on the bus recognize• th 
copy of the data in bis cache, be will 
signal the BIU will abon the transaction 

84 

will acquire the bus and update memory th 
re-arbitrate for the bus and retry the abo e 
with the aligned double-word contain" 
followed by the remaining double-word 
double-word(s) at the beginning of the 11 1 

received from the bus it is written to the 
which. stores the data in the register 11 
execution. As the remaining data in the mi 
written into the cache and forwarded to the 
cache remains busy and not accessible to t 
complete. If a bus error is encountered on th 
the missed word, then a Data Access 11 • 1 

other word_ in the line transfer then the fctc cd 
bus error 1s encountered, the line is marked 

3.7.2.2.1 . Line Replacement 

On a cache miss, a line must be selected to hold the new 
~rom memory. The address of the missed data • used to 
~omd each bank. •~ one of the lines is empt) mvalid) then 

t e ata. If both hoes arc full or cm b 
used to select f h . pty, t en a pscudoran 

one o t c two hoes The alg "th l toggles the selection b • f • on m cmp oy 
ias rom one bank to the other on each 

J NOT COPY 

ur Physical 
the selected 

time of 

l I be fetched 
the selected 

II Bil ) to be 
mplc1 , or if the 

1 I of the 
ache line. 

r quest If 
modified 

of the retry 
,opmg CPU 

I will then 
n • begins 

ord first), 
1 by the 

d word is 
tore unit 

resume 
. it is 

The 
sfer is 

ccess to 
on any 

If no 

will be fetched 
, lines - one 

I ted to receive 
ion algorithm is 

bu counter which 

Rt vision 2 .O 



Motorola Confidential Proprietary - DO NOT COPY CACHES 

3.7.2.3. Data Cache Write 

The cache operates in either write-though or write-back mode determined on a pag _ 
by-page basis by a bit . in the ad~re~s trans!ation cache entry. If two logical pag;s 
map to the same physical page It 1s considered a programming error for them to 
specify different cache write policies. 

3.7.2.3.1. Write-back Mode 

In write-back mode, write operations do not necessarily update memory. For this 
reason write-back mode is the preferred mode of operation when it is necessary to 
minimize bus bandwidth utilization, e.g. multiprocessor systems without secondary 
caches. Using write-back on a 7/2 bus (7 clocks to first data, 2 clocks per data 
transfer thereafter) will reduce bus utilization by roughly 20%. 

Write Hit to Modified Lint: Data is simply written to the cache with no state 
transition. 

Write Hit to Unmodified Lint: Data is written into the cache and the line is 
marked modified. Also, if the ATC indicates that the address is "global", then an 
invalidation bus transaction is performed. The invalidation transaction notifies 
other caches on the bus that any local copy they may currently have is no longer 
valid. The invalidation cycle is similar to a write cycle but data is not actually written 
and therefore normal write cycle bus latency is avoided. 

Write Miu: A cache line is first selected to receive data from memory. The 
selection algorithm gives first priority to invalid lines. If neither of the two 
candidate lines in the selected set are invalid, then one of the lines is selected at 
random for replacement. If the selected line is valid-modified, then the dirty line is 
sent to the Bus Interface Unit (BIU) to be written out (pushed) to memory. If _the 
selected line is not modified or when the diny line flush is complete, the _Physical 
address of the missed data is sent to the BIU along with a request to retneve .the 
missed cache line. The BIU arbitrates for the bus and initiates an 8-word read-w11h-
intent-to-modify burst transfer. This special read-with-intent-to-modify cycle is like 
a normal read cycle but has the side effect of broadcasting to other caches on the bus 
that the line being fetched will be modified and they must invalidate any local copy 
of the line they may have. If another processor on the bus recognize~ the addr,7ss as 
globa!, and has a modified copy of the data in his cache then he _will assert sn~op 
retry• Upon receipt of the retry signal the BIU will abon the lme fill transaction 
and relinquish the bus. The snooping CPU will acquire the bus and update memory 
with his copy of the line. The BIU will then re-arbitrate for the bus and _r~try the 
aboned line fill. The transfer begins with the aligned double-word contammg t~e 

• d d( ) • h l'ne then (1f masse data, followed by the remaining double-wor s 10 t e 1 ' 

necessary) by the double-word(s) at the beginning of the line. (wrap. around). ts 
data in the missed line is received from the bus, it is written directly mto_ the ca~ e. 
If a bus error is encountered on the dirty line flush or the line fill operauo~, a . ata 
:",ccess Exception is taken. Once the line fill is complete the new st0r~ data_ is 7tt:~; 
into the cache and the line is marked valid and modified. At this pomt, 
mach' h 1· n is allowed to resume. me as stalled waiting for the store to complete, execu 10 

Revision 2 .O 



3.7 .2.3.2. Write-through Mode 

In write-through mode, store opcrau 
mode is used when external memory an J 

This mode of operation is normally I 
secondary SRAM cache. 

Write Hit: Data is written to both the 
transition occurs. The write cycle signal 
bus which has a copy of the line containing 
of the line. If the write cycle e1pcnencc1 

Write Miss: Data is written to memory 
and no state transition occurs. The wnte 

3.7 .2.4. Store-through Accesses 

Store-through may be optionally specified 
Store-through operates in precisely the r 1 m 

Write Hit: Data is written to both the 
modified it remains modified, and if u w 
memory and cache arc necessarily cohe L. 
experiences a bus error, the cache is still upd 

Write Miss: Data is written to memory onl - n 
no data is written to the cache. The write "' le 

3.7.2.5. Cache Inhibited Accesses 

tin i 
rforme l 

If the cache access is to a page which bas the cache inhibit 
following action is taken 1: 

Read Hit to Modified Line: The modified line I flushed 
and invalidated. New data • ad d. ti 1s re •rec y from memory but no 

i l 

Read Hit to Unmodified Line: The line is anvalidatcd. 
but not placed in the cache. Data i 

Read Miss: Data is read from memory but not placed m the 
line is not affected. cache. 

• D) NOT COPY 

rite-through 
I s agree. 

n external 

h state 
on the 

his copy 
cd 

-allocate), 
lidate" 

t store. 

he and 

in the ATC, the 

memory 
cache. 

r d from memory 

The status of the 

Write Hit to Modified Line· Tb . . 
memory and invalidated N d. . e modified lane is flushed , copied-back) to 
cache . • cw ata 15 read directly from memory but not placed in thc 

Write Hit to Unmodii/ied L' 
into th ine: Data is written th gb to memory but not put e cache. The line is invalidated. rou 

1 
The _exact operation ol cadle-inhbit 
consistent whh the luncUonaJ intent 4::: = I may vary from one ~ lo anoctier Sewral mechanism• ar• 

nhbited .,.,,...... and lhe dlOk:le la lmplemenl•lon dlplndenl 

86 
Rtvision 2 .O 



Motorola Confidential Proprietary - DO NOT COPY CACHES 

Write Miss: Data is written through to memory but no data is placed in the cache. 
The status of the line is not affected. 

3.7.2.6. xmem Accesses 

x me m is a multiprocessor synchronization instruction which exchanges a general 
register with a memory location in an indivisible read-write transaction. It is 
normally used to implement semaphores or resource locks in multiprocessor systems 
and therefore its action must always be reflected through to memory, i.e., its memory 
cycles cannot be filtered by the cache. 

Miss: Both read and write cycles bypass the cache an go straight to memory. No 
cache transactions occur. 

Hit on Modifitd Line: The diny line is flushed to memory and invalidated, then 
the x me m read and write cycles bypass the cache. 

Hit on unmodified Line: The line is invalidated and once again the read and write 
cycles bypass the cache. 

3. 7 .2.6.1. Spin Locks 

x me m is often used to implement a resource lock. The lock must be maintained in 
global memory so that it is visible to all processors. Processors may repeatedly or 
even continuously poll the lock for a chance to get access to the resource. To reduce 
bus traffic in this situation, it is recommended that processors poll the lock by 
performing regular load operations which will operate out of the cache. When the 
previous owner of the lock releases it in memory, snooping will ensure th~t the 
cached copy of the lock is invalidated and the new value of the lock will be 
recognized by the pol ling processor. When the lock becomes available it can then go 
for ownership using the atomic reference provided by x me m • 

3.7.2.7. Snooping 

The 88110 uses a retry protocol to insure that, at all times, only one cache in !he 
sySlem has a modified copy of a given cache line. The protocol allows 0ther cac es 
on the bus to have local copies which are all consistent. Whenever a proce~~or 
writes data, the protocol notifies other processors that their copy of the me 
containing the data is now stale and must be invalidated. 

Snooping is performed by watching externally initiated bus transaction_s and 
comp • 1 h If a global address 1s seen 

. anng a I global addresses to the internal cac e tag_s. te inde endently 
which matches one of the cache tags it is a snoop hit. Two separa . p llel 
accessible copies of the tags arc m~intained to allow snooping to occur •: para in 
with processor cache accesses. Processor access to the cache is interrupte on Y 
the event of a snoop hit as described below. 

S • s or asserts "snoop 
noop Hit on Read to Modifitd Lint: The snoopmg p~o~~ ~- rocessor will 

retry" to the processor which initiated the transfer. The amua mg p 

Revision 2 .O 
87 



CACHES Motorola C 'I , 111ial Pr n t DO NOT COPY 

The snoopmg abon the transaction and release tbe ~us. 
and writes his modified copy _of :e ~ne 
initiating CPU will then reaquire e us 

to memory and mark 
and r • the abon d 

Snoop Hit on Rtad to Unmo '11/itd Li••: No 

Snoop Hit on Rtad-with-i11te •t•to-■odi/1 to 
sequence is perfonned as in the c!sc ~( a 
snooping processors copy of th~ hne 11 marked 

Snoop Hit on Rtad-with- latHt•to-•odl/1 
entry is invalidated. 

uon 1 II 

Modlfl•d L, nt 
hit on read , .1 

1n alid 

to U•■odif, 

Snoop Hit on Writt to Unm ~di/itd Liae.· h hit 11 
the hit is on a panial line wS1tc (byte, half-w rd, word, 
entire line in the cache is invalidated. 

Snoop Hit on Write to Mod{fitd Lia,: 
to-modify. 

Snoop Miss: No action taken. 

me noop hi n 

bus 
The 

same retry 
line, but the 

I.in . The hit 

3.7.2.8. Data Cache Flushing and Invalidation 

88 

The data cache is a physically addressed cache and i ull 
maintain coherency with other caches in the stem and 
software does not normally have to enforce data ache 
circumstances, such as rearranging the vinual memory map, n 
flush and possibly invalidate the data cache. 

r '. 
nooped to 

herefore, 
But in some 
necessary to 

A supervisor mode controlled mechanism is provided to either inv lid t or flush the 
data cache. Both operations are triggered by writing the appropri t mmand !o the 
Data MMU/Cache Command Register (DCMD1 The mvalidation 

I 
r 10n requires 2 

clocks plus the time required to serialize the machine imposed by the tcr to write to 
the command to the DCMD. Tile flush operation causes all diny lme m the cache to 
be transferred out to memory. The flush can take the number o clocks required to 
serialize the machine plus 130 clocks plus up to 256 cache line burst-write memory 
transactions. The cache is corasidercd busy during the entire flush operation 

A more selective mechanism is also provided which allows any panicular line in the 
each~ to be flushed or invalidated. This mechanism is invoked by irsl writing the 
physical address of the line to be invalidated into an address control register and 
then writing a "flush DCache line" or "invalidate DCache line" command 10 the DCMD. 
!nval_ida~ion requires_ two clocks plus serialization time (no copyback occurs on 
mvahdauon). Flushmg will require serialization time plus 2 clocks plus possibly a 
burst-write memory transaction to copyback the cache line if it is diny. 

Revision 2 .O 



Motorola Confidential Proprietary - DO NOT COPY CACHFS 

3.7.3. TARGET INSTRUCTION CACHE 

The 881_ 10 im~lement~ a . bra~ch target instruction cache (TIC) for eliminating 
bubbl~s . m the mstrucu'?n papehne on flow control changes. The cache is a fully
assocaauve 32-entry logacally addressed cache. Each entry in the cache holds the 
first two instructions of a branch target instruction stream and a 30-bit logical 
address tag. Whenever a branch instruction is encountered, the branch cache is 
accessed using the address of the branch itself in parallel with decode of the 
instruction. This allows the branch cache to be accessed before the target address of 
the branch has been computed - a full clock before the target stream could be 
fetched from the instruction cache. The cache is accessed by comparing the logical 
address of the branch to the tag in all 32 entries simultaneously. If a match is found, 
it is a TIC hit and the two target instructions are sent to the instruction unit. If the 
branch eventually turns out not to be taken, the instructions are discarded; the entry 
in the TIC is not invalidated. If no address match is found, it is a TIC miss. In this 
case, if the branch turns out to be taken, a new entry is allocated in the TIC. When 
the first two instructions of the target stream are finally fetched from the 
instruction cache they are placed in the newly allocated TIC entry and the entry is 
marked "valid." If there were no empty (invalid) entries in the TIC to accept the new 
entry then one of the valid entries is chosen for replacement using a FIFO 
replacement policy. If the branch turns out to not be taken no entry is allocated in 
the TIC. 

Unlike the instruction and data caches, the branch target cache is logically 
addressed. Therefore, it must be invalidated on all context switches. A mechanism is 
provided to flash invalidate the TIC. It is activated by writing a command to the 
Instruction MMU/Cache/fIC Command Register (ICMD). The invalidation operation 
requires two clocks plus the time required to serialize the machine imposed by the 
stcr command to load the ICMD. 

Revision 2 .0 
89 



Motorola Confidential Proprietary - DO NOT COPY 
MMU 

3.8 MEMORY MANAGEMENT UNIT -
The 8811 o implements separate instruction and data memory mana t . 

· ( /S • . gemen units 
Each unit. ~rov1des two 40 Byte User uperv1sor) logical address spaces and enforce~ 
access pnvileges. on ~loc_k and page levels for bo_th ?f these spaces. Used and 
modified status 1s mamtamed for each page to assist implementation of a demand~ 
paged virtual memory system. The 8~ 110 memory mapping tables are upward 
compatible with the 88200. A block diagram of the address translation is shown 
below: 

12 

Instruction Unit Load/Store Un it 
User/Supervisor User/Supervisor Logical 

Address 

Logical Block 

20 12 
logical Brock BATC } { BATC 

Phy ical Block B B Physical Block 

1---Log_i_ca_l P-ag_e _______ P....:..._A_ T._C_ -----11} 

32 32

{ 1--P--=-A- T _C_---+-_Lo-gi-ca-1 P-ag-e--1
1 

Phys cal Page Physical Page 

~~: --~- ~-:• 20 Write Protect j 
ATC Miss 

!Cache 
Cl) 

i 
I-

!Cache 
Hit/Miss 

20 

Gbl Gbl ATC Miss 

L._ ___ _____ 

Cl 

Bus 
1 

Interface.,.__ __ 
uo, 
U1, 
Gbl 

DCache 

DCache 
Hit/Miss 

X 
Q) 
"O 
C: 

Figure 3.8.1 . Address Translation Block Diagram 

Revision 2 .0 



MMU Motorola Co,rjide111ial P opri I DO NOT COPY 

3.8.1 ADDRESS TRANSLATION CACHES 

A set of memory mapping tables, normally maintained by the operaung system, are 
kept in main memory. The tables describe the mapping of logacal program addresses 
(virtual addresses) to physical memory addresses. These tables arc almost always a 
multilevel hierarchy to minimize their size. If every logical to physical address 
translation required resolving by walking memory based tables the performance of 
the machine would be unacceptable. To avoid this overhead. the 88 10 implements 
on-chip address translation caches which hold the results of recent lr versals of the 
memory based tables. On each memory reference, the logical addr • , looked up in 
the address translation caches in parallel with the data caches , r c. 1cckcd for the 
data. If the data (or instruction) itself is not found in the dat aches then the 
address translation cache delivers the physical address to the bu mtcrfacc unit. In 
the infrequent event of data not being in the cache and the C not having the 
requisite logical to physical mapping, a hardware state machine 1s mvoked to walk 
the appropriate memory based tables and get the logical to phy ,cal address mapping. 
It then stores the mapping in the ATC and sends it to the BIU to mplete the memory 
reference. 

Each ATC implements a fully associative lookup On every r nm the logical 
address is compared against all entries in the appropriate A TC in tru1;tton or data). 
If the upper bits of the logical address match the logical address an one of the ATC 
entries (hit), that entry is used to map the logical program addrc. to the physical 
memory address which is sent to the bus. 

The 88110 uses separate Address Translation Caches (ATC's) for mappmg Blocks and 
Pages of memory. The Block Address Translation Cache (BATC) 1 used to map large 
areas 0 ~ system and user memory without usurping a large number of ATC entries. 
Block s1_ze can vary from 512K to 64Mbytes. The Page Address Translation Cache 
(PATC) is used for mapping pages of 4Kbytcs each. Separate sets of ATCs (both BATC 
and PATC)_ are used for Qiapping instructions and data to eliminate any delay caused 
by contenuon or arbitration. 

Tt~ PATC entries arc automatically filled on a miss by a hardware state machine 
:Or~~~rew~~;C th;.11 mc~ory. page tables maintained by the operating system. A 

I I b 
option is also supponed. The BATC entries arc always managed 

comp ete y y software. 

3.8.1.1 Block ATC 

92 

The BATC contains eight 32 b't • 
physical address map in - 1 entnes. ~ch cnt?' contains a logical address tag, a 
entries arc loaded by p set~~ some :ontrol mfonnat1on, and protection data. These 
Write Port A size i~g up t c BATC Index Register and writing to the BATC 
16M, 32M, 64M) r:as~lt used to det~nnine the block size (512k. IM. 2M, 4M, 8M, 
MMU/Cache Control Register BA~~ etnes and is set via the Instruction (or D~ta) 
BATC and the Data BATC . • h e. onnat of the BATC entry for both the Instrucuon 

is s own m the figure below. 

Rt11ision 2 .0 



Motorola Confulential Proprlttary - DO NOT COPY MMU 

U1 UO 

Block A TC Entry 

31 30 211 21 'Z7 22 21 211 11 11 17 11 11 14 13 12 11 10 II 8 78543210 

LBA PBA S G 
wr 

I~ I ; 
Cl V t 

Read and Written v the IR Ed 

LBA 

PBA 

uo.u1 

s 

wr 

G 

CI 

Figure 3.8.1.1 • Block ATC Entry 

Logical Block Address - This field contains the logical address (tag) 
that 1s matched against the logical address of a memory access. If an 
address match 1s found (including the supervisor mode bit S), and 
the valid (V, bit is set. then the logical address is mapped to the 
physical dd 1 • specified in the PBA field. 

Physical Block Address - If the logical address hits on this entry, the 
6 13 (de ndmg on block size) most significant bits of the logical 
addrcs r placed by the bits in this field to fonn the translated 
physical addr • . 

User P. • tributes 0,1 These bits arc not used by the MMU but are 
user definable from software. They arc presented on external pins 
during bu transactions mapped by this entry. They are loaded into 
the BA TC entry via the xIR (Instruction or Data Index Register) at 
the time t Block ATC write. 

Superv; or Mode Bit This bit is compared to the supervisor mod_e . 
which 1s an ff ect for the memory access being translated. _If this bll 
matches the supervisor mode. and the LBA matches t~e logical 
address. and this entry is valid (V= 1). then this entry 1s used to map 
the logical address to the physical address specified in the PBA field. 

Writetbrough - If this bit is set. then cache memory updates m~ppe~ 
~y this entry arc performed using a writethrough polic_y. If ~is bll 
1s clear then cache memory updates arc performed usmg a wnte
back policy. (note: if the Cl bit is set, this bit has no effect.) 

Global - If this bit is set. then memory mapped by this ent~ is g!obal 
memory. The state of this bit is reflected on an external pm dunng 
the bus cycle and can be used by other CPU's on the bus to enable or 
disable snooping on this address. 

Cache Inhibit - If this bit is set, then data in the bloc_k mappe~oub~ to 
this entry is not cached. All accesses to this block will go_ 

th 
th/ 

memory and no data is read from. written to. or allocated 
1
~' cbed 

cache. If this bit is clear then data mapped by this entry 
18 

ca 
normally. 

Revision 2 .O 
93 



MMU 

WP 

V 

Write Protect - If this bit 
write protected. . . ~nte 
excepti n. If this bn 1s cle r 
be written. 

Valid - If this bit is l, then th· 
logical address matches the LB , 
the address. 

0 NOT COPY 

uu entry is 
1 access 

entry can 

d if the 
u l translate 

3.8.1.2 Page ATC 

The PATC contains 32. 64-bi~ entries t~at 
protection information for lo acal-to-pby I I 
PATC entry for both the In truction PAT 
below. 

ontrol, and 
mat of the 

• the figure 

I 

94 

Page 

63 82 11 10 59 58 57 Iii 511 1M U 52 11 :r3 32 

PA TC upper-word 
0 I I 

I 
LPA 

~~~anaa~D~~•~• u~~ u ~ 
SAJ

3 2 1 0 IIIII0 9 I 7 I · •1
PA TC lower-word I

t • 1 1 rta 1 16 Pm PA
1

1
I I J I J I PFA

u G V

~ Undefined - reserved for future use □

LPA

S/U

Figure 3.8.1.2 • Pag ATC Entry

Logical Page Address - This field contains the lo i 1 d r that is
to be mapped to a physical address by this A TC 1 • LP A is used
as a tag which is matched against the logical addr u f ubscq~ent
memory references. If an address match is found hi t 1hen this
entry is used to translate the logical ddress to a pbysi_cal ad~ress as
specified in the PFA. The 12 least significant bit of the logical
address are not translated but arc instead passed directly to the
caches and bus interface unit. This results in a page size of 4K bytes.

Supervisor/User Bit - The supervisor mode in eff cct ior the memory
address being translated aclS like a 33,, bit of logical address. If the
supervisor mode matches the SIU. and the LPA matches the logical
address, and this entry is valid, then this entry is used to translate
~e logical address to a physical address as specified in the PFA. Thus
if the SIU bit is a one, the entry will map only supervisor mode
accesses. If the bit is a zero. the entry will map only user mode accesses.

Revision 2-0

Motorola Confidential Proprietary - DO NOT COPY MMU

PFA

UO,Ul

wr

G

CI

M

WP

V

Revision 2 .0

Page Frame Address - This field contains the upper 20 bits of the
physical address that the logical address is being mapped to. On a
memory access, if the upper 20 bits of the logical address match the
LPA and access privileges arc not violated, then the 20 most
significant bits of the logical address arc replaced by the PFA before
being used by the caches and bus interface unit.

User Page Attribute 0, I - These bits are not used by the MMU but are
user definable via the page descriptors or by a PATC Control register
write (using the xlR). They are presented on external pins during
the bus transaction.

Writcthrough - If this bit is set then cache memory updates are
performed using a writethrough policy. If this bit is clear then
cache memory updates arc performed using a copyback policy.
(note: if the CI bit is set, this bit has no effect.)

Global - If this bit is set, then memory mapped by this entry is global
memory The state of this bit is reflected on an external pin during
the bus cycle and can be used by other CPU's on the bus to enable or
disable snooping on this address.

Cache Inhibit - If this bit is set, then data in the page mapped by this
entry is not cached. All accesses to this page will go through to
memory and no data is read from, written to, or allocated in, the
cache. If this bit is clear then data mapped by this entry is cached
normally .

Modified - If this bit is set then a page mapped by this entry . has
been modified. If this bit is clear then a page mapped by this entry
has not been modified. (NOTE: If this bit was clear. p~~i~us to ~
access which causes it to be set, then a tablewalk 1s m1uated which
performs an indivisible read-modify-write cycle to update the page
descriptor in memory.)

Write Protect - If this bit is set, then memory mapped by this entry is
write protected. Any write access to this page will cause a. data access
exception. If this bit is clear then memory mapped by this entry can
be written.

Valid - If this bit is set then this entry is currently valid and if thf
logical address matches ;he LPA, this entry it will be used to trans ate
the address.

95

MMU Motorola DO NOT COPY

3.8.2 MMU CONTROL

The implementation of the MMU's allow the 0
arranging a suitable memory management t
any given time the MMU can be in one of u
translation. PATC only translation. and full B
described in the table and paragnpbs belo

um 0exibility for

Translation
Mode

Identity

BATC
Only

PATC Only

MMU
Enable bit in

ICTLor
DCTL

0

1

1

1

To Activate
Translation
Enable (TE)
in User or
Supr. Area

Pointer

Va d BATC
with

Address
Match

Don't Care Don' Care

0 yes

0 no

1 no

Sour
Ace

Protec on
Inform t on

BA C

Area Po· r

PAC
(or Tab , I

---.-----1-----+-----l Descn o_rs
Full PATC
and BATC

1 1 yes or no
BATC
PATC

(or Tab ewa
Descn tors

Table 3.8.2 - MMU Address Tranalatlon Modes

r stem. At
BATC only
modes arc

Mapping

1 :1

BATC

1 :1

PATC
(or Tablewalk
Descri tors

BATC&
PATC

(or Tablewalk
Descri tors

3.8.2.1 Identity Translations

In the Identity Translat" d
translation i e th • •on mo e the MMU does not perform logical address
memory ; ddr;~s e ~f cal program address is mapped directly (I I) to the physical
appropriate User· or Se ac~ess and protection information is retrieved from the
access. To enable t::errasor. Arca Poi~ter Register and applied to the ~emory
Instruction MMU/Cache dentuy . translation mode, the MMU enable bit an the
(DCTL)) must be cleared~ontrol Reg,stcr (ICTL) (or Data MMU/Cache Control Register

3.8.2.2 BATC Exclusive Translatlons

In the BATC Translation mode the
Add~e~s Translation Cache excl~sivel MMU . maps logical address through the Block
exphc1tly manage system y. Th!s . mode allows the operating system to

96

privileges. BATC Translati:.en;:~e ~; s~cafymg block level mappings and acce~s
activated by clearing the translation enable bit

Revision 2 .0

Motorola Confidential Proprietary - DO NOT COPY MMU

in the xSAP or xU:"P (x=lnstr. or_ Data), and settin~ the MMU enable bit in the ICTL (or
DCTL). . When acuv ated, ~y lo~1cal address matchmg a valid BATC entry is mapped to
the physical address specified m the entry and the corresponding access protection
bits are applied to the memory reference.

3.8.2.3 PATC/Tablewalk Excluslve Translations

The PATC/fablewalk Translation mode provides logical address translation and access
protection through the PATC (on a bit) or through a descriptor fetched from memory
based mapping tables by a tablewalk (on a PATC miss). To enable this mode, all
entries in the BATC must be invalid, the translation enable bit in the xSAP or xUAP
(x=lnstr. or Data) must be set, and the MMU enable bit in the ICTL (or DCTL) must be
set.

3.8.2.4 Full (BATC/PATC/Tablewalk) Address Translations

In the Full Address Translation mode, logical address translation and access
protection is provided through the BA TC, PATC, or a memory based descriptor fetched
by a tablewalk. To enable this mode. the translation enable bit in the xSAP or xUAP
(x=Instr. or Data) must be set, and the MMU enable bit in the ICTL (or DCTL) must be
set.

If a match occurs in the PATC and BATC the BATC entry is used to map the access.
Multiple matching entries within the PATC or within the BATC are considered a
programming error and unexpected results may occur.

3.8.3 TRANSLATION DESCRIPTORS

The memory based address translation tables are defined and accessed via address
translation descriptors. A descriptor has three basic components: l) an address
which is either a pointer to the next lower level in the table hierarchy or, at the
very end of the chain, the physical memory address of the page being m~pped, 2) ~
set of access privilege rights to all pages below this level of the table hierarchy' an
3) possibly some status bits for maintaining state information for the page.

The 88110 defines four types of descriptors for use with the hac<lware tablewal~
mechanism which are compatible with those used by the 88200. At the very tofp ~I
the t bl h" • Th d • tors are the root O a a e 1erarchy are area descnptors. . ese . escnp . Four descriptors,
memory based mapping tables and are kept m registers on chap. . data are
~n~ ~ach for user code, user data. supervisor code, . and s~pervis;;ch segment

amtamed. The area descriptors point to segment tab_les m mem rybl Each page
ta:le contains 1024 segment descriptors which each pomt to page tath es. describe the
ta le contains 1024 page descriptors. Each page descriptor mayh en ge descriptor.
actual mapping and state for a page or point (indirection) to anol er pa

3.a.3.1 Area D 1 escr ptors
The DUAP registers contain the base
addr/srsea

0
dfescriptors in the ISAP, DSAP, IUAP and b. They also enable

the segment tables and the area control its.

Revisio,a 2 .0
97

MMU

PA TCtrablcwalk address translation
define the state of the U 1, UO pins
format is shown below.

Area

313021121272121 k 2' 22

Segment Table Bue Mdt

WJ Undefined - r858Md tor future use

Figure 3.8.3.1 • Aru

Ul,UO:
wr:
G:
CI:
1E:

Addrcs Translation
Writcthrougb
Global Access
Cache Inhibit
PATCtrablewalk

3.8.3.2 Segment Descriptors

r

Each segment descriptor contains the base d
sc~men~ dcs~riptor contains segment I cl
which 1s log1cally ORcd with the information
descriptor format is shown below.

Format

□

Form

Ul It

p
ti ii

oth r

Segment De criptor Forma

DO NOT COPY

r attribute bits
area descriptor

ddiuon. each
information,
he segment

31 30 211 28 27 2S 25 24 23 22 2 1 20 11 11 11 1 Ii 1 4 tJIJI 8781 4!12 1 -J

98

I
Page Table Base Address

SP Cl
~ Undefined. reserved tor future use

~~:::::::::::::====================~-
wr:
SP:
G:
CI:
WP:
V:

Figure 3•8•3•2 • Segment Descriptor Format

Writcthrougb
Supervisor Protection
Global Access
Cache Inhibit
Write Protect
Valid Bit

Revision 2 .O

Motorola Confidential Proprietary - DO NOT COPY MMU

3.s.3.3 Page Descriptors

Each Page Descriptor contains the address of a physical page frame into which the
logical page address is . mapped: In ~dditi~n, ca_ch descriptor contains page-level
protection and control mformauon, which 1s logically ORed with the area and
segment infonnation to form the protection and control for a particular page. The
page descriptor format is shown below.

Page Descriptor Format

31 30 211 21 27 26 ~ 3 22 21 20 19 11 17 18 111 14

Page Frame Address
lX> SP Cl u ITT

~ Undefined • reserved for future use D Newly Defined
.. ' ·.•.•.•: .<•.···········•❖:•.·.•.• .•.••...•.• ;:,;:;v,•:'>: •::;:::::,:::.~.::::•:•:,-.:;y· u:,:;n::·:":•:;••·•••''~;/'

Figure 3.8.3.3 - Page Descriptor Format

Ul: User Page Attribute
U0: User Page Attribute
wr: Wri teth rough
SP: Supervisor Protection
G: Global Access
CI: Cache Inhibit
M: Modified
U: Used
WP: Write Protect
DI': Descriptor Type

00 - Invalid descriptor
01 - Valid Page descriptor
10 - Masked Protection Indirection descriptor
11 - Indirection descriptor

Revision 2 .O
99

MMU Motor

3.8.3.4 Indirect Page Descriptors

If the DT field in a page descriptor as equal t l I or 10, ll n
a pointer to the actual page descriptor Such pointer i
Descriptor and its format is shown in the 11 I 1: urc.

Indirect Page

I
Page~ Addr

□

Figure 3.8.3.4 • Indirect Page De1ertptor Format

PDA: Final Page Descriptor Addrc.
DT: Descriptor Type

00 - Invalid descriptor
01 - Valid Page descriptor
10 - Masked Protection Indirection de npt r
11 - Indirection descriptor

3.8.4 PATC MISS AND REFILL

3•8•4•1 Hardware ATC Fill (hardware tablewalk)

,ptor is actually
m Indirect Page

When an PATC miss h 88 • FIFO 1 "th occurs, t e 110 selects a PATC entry for replacement usmg a
the a/on : and then performs a two level tablewalk to get the page descriptor for

re erenc address. The figure below illustrates the hardware tablewalk sequence.

100
Revision 2 .O

Motorola Confidential Proprietary - DO NOT COPY

Supervtaor/UMr
& Instr/Data

Area Pointers
Instruction User AP

Instruction Supervisor AP
Data User AP

Data Supervisor AP

20

30

Logical Address
31 22 21

ment No.

10

Segment Table
ment Descri tor O

Segment Descriptor N

Page Table
Page Descriptor 0

30

20

Page Frame Address

MMU

12

Page Offset

Page Descriptor Address (Indirection) Physical Address

Figure 3.8.4.1 • Hardware Tablewalk

Revision 2 .O
101

MMU Motorola

The tablewalk begins at the segment table base address un
instruction/data/user/supervisor Area Descriptor. The egmen1 l
the 10 most significant bits, <31 :22> of the loaical addr
descriptor. The Page Table Base Addre s from the seame t de
the next 10 lesser significant bits, <21:12>, to find the final pa
most significant bits of the missed logical address I loaded
PA TC entry selected for replacement, and the 20-bit P
page descriptor and logical inclusive OR f all protectto
segment, and page descriptors is loaded into the lower half
described earlier).

3.8.4.1.1 Indirection

DO NOT COPY

the appropriate
1s indexed by

et the segment
o . 1s indexed by
cnptor. The 20

I (LPA) of the
ddress from the
nd m the area,

entry (format

It is sometimes desirable for muhiple pages t ommon page
descriptor. For example, in a vinual memory ystem ultiple logical
address to a single page, it is more efficient to mam1ain t o used/modified
state bits by sharing one page descriptor than it i 10 in multiple page
descriptors to the same page which would II t- ve to b b the page-out
software to control replacement. This 1s supponcd in the t o indirection
modes set ~n the Descriptor Type (DT) field o : t, • paa d r I r. I f the accessed
page descriptor has the indirection mode ct (DT 11 tt n rd r uses this
descriptor as the address to the actual page nptor A the Indirection
functionality is given in the figure below

Area Pointer Register

Area Descriptor ©
$egmentTable

Segment Desc. ©
PageTable

Pg Desc. Adct. 11

(D

©

Ar~ ~tors index into segment table
usmg logical address bits 31 _ 22_ PageOesc. 01

~ment_ descll)tors index into page table
ustng logical address bits 21 - 12.

Figure 3•8•4•1•1 • Page Descriptor Indirection

3.8.4.1.2 Masked Protection Indirection

The 8 811 0 also provides
88110 allows multiple a masked protection indirection mode. In this mode, the
h pages to be ma d b • tor owever, under variable protecf . ppc . t rough a common page descrip •
marked ~s write protected (R~:~s. Wnh this capability, a single page could be
(Read/Wnte) to another. Only) to one access and not write protected

102

Revision 2 .O

la Confidential Propri~tary • DO NOT COPY Motoro MMU

In this case, if the page descriptor has the masked protection indirection
mode set (DT=l0), then hardware uses the descriptor as the address to the actual page
descriptor. Howcv r the protection for the page is the combined protection of the
corresponding arc. nd segment descriptors only. The figure below gives an
example of the m l d protection indirection mode (where access A has Read/Write
permission and accc 11 & C have Read Only permission.).

Area Pointer Register
ACCESS A

Area Desc. 0

ment Table

e Table

Observe protection of Area and
Segment descriptors
(Accumulated WP=0, READ/WRITE)

/
. Addr. 1 Valid Page descriptor

Segment Table

Area Descriptor

/
01

Page Table

Obseive protection of final page descriptor
(Aooumulated WP=1, READ ONLY)

Area Pointer Register ACCESSB,C

Figure 3.8.4.1.2 . Masked Protection Indirection

3.8.4.1.3 Page Used/Modified Status

If is marked unmodified,
a memory write operation hits in the PATC ~d th~ entry

O
must be updated to

~~n the PATC entry and the associated _Pag~ d~scnptor 1
:

1
~e~ni<lates a tablewalk, l_ike

t~ ect the new state of the page. In this s1tuat1on the 8. d bit in the corresponding
at for a. PATC mass, as performed to update the modafie d d'fied) update.

page descnptor. This operation is referred to as a UM (Use {Mo 1

3
•8•4• 1-4 Sharing Page Tables

. the same physical
Iatddis not uncommon in multiprocessor systems for proces~ors m ·t is necessary that

rcss s f t blcs In this case 1 s in pace to share a common set o page a • 11 rocessors see page
~e page descriptors be kept in a consistent state s~ th.at ~ ~ase of UM update. If
t e same state. Inconsistent page descriptors can anse 18 ~ scriptor simultaneously,
wo processors were to read an unused/unmodified pagel ed by a update by the

one co Id , . ed/ d'fied fol owe u 1mmcd1ately set the state to us mo 1

Revision 2 .0
103

MMU

second processor marting it _u d/un!"o i 1

would be lost. To prevent tha nuau . 1

modified bits in the page des nptor

UM update fint initiates a normal table
descriptor is required, lhcn tablcwalk
modify-write operation which t the u
write operation OR if the modified bit •
88110's UM update operation, the· ha th

<ScgDcscRcad> <PagcDcl Re

where the bus transaction 1n br c () 1

3.8.4.1.5 Paged Page Tablas

The entire set of page tables ceded for
physical address space need not
page table is not currently in cm . 1h
in the segment descriptor po1nt1ng to tba
subsequent tablcwalk cncountenng the 1

instruction) access fault. The stem
Instruction) Access Fault Statu:i. ter
segment descriptor (Segment Fault)
brought into memory.

3.8.4.1.6 Hardware Tablewalk Timing

The following arc the approximate um an
Tablcwalk cases:

Case I - w~thout Indirection; no U,M upJ
Case 2 - w!thout Indirection; with U.M
Case 3 • w!lh lnd~rection; no U,M update _
Case 4 - with lndarcction; with U,M update

DO NOT COPY

I of lhc page
to lhc used and

bit in lhc Page
locked) read-

• on if it is a
nptor. The

p onto lhe
an I ate that a

valid" bit
1 invalid." A

data (or
tne Data (or

an invalid
uld then be

3.8.4.2 Software ATC FIii (software tablewalk)

While the hardware tablcwalt · ATC
refill mechanism available th m;c:fibanism pro~idcd by the 1h fastest
operating systems Tb~ e e IDcd m pp1ng t blc may u blc for some

104

software ATC fill ~o give co!
8

: 10 tbe~_f?rc provide an c 1 1 t rnccbanism for
P etc flc11b1hty to the stem de i n r.

Software tablewalks are supponed
in lhe following way :

I.
2.
3.
4.
5.

An ef~cient mechanism for t in
The missed vinuat add . rapp g to soft AR on an
The ATC entry number ~!s .:! supplied _in a ~gistcr for
The upper word in the PATC rcpl~ 11 provided in th
A mechanism is provided f, entry is preloaded (Logical Page

or software to load an A TC entry

mi .
cc .

Index Register.
Address & Sf(]).

Revision 2 .0

Motorola Confidential Proprietary - DO NOT COPY MMU

1) Software tablewalk is e~abled by setting a bit in the Instruction MMU/Cache or
Data MMU/Cache c~ntrol registers (l~L or DCTL). When this bit is set, an ATC miss
will trap through either the Instruction MMU or Data MMU ATC Miss vectors which
are provided solely for software tablewalk. Since these vectors are reserved
exclusively for software tablewalk, it will not be necessary to search through status
registers to determine the cause of the exception.

2) On an Instruction or Data ATC Miss exception, the virtual address of the faulting
reference is stored in the Instruction Access or Data Access Logical Address register
(ILAR or OLAR).

3) On an ATC miss, the index of the entry to be replaced is automatically deposited in
the Instruction MMU or Data MMU ATC Index register (IIR or DIR). Thus, all that is
required is for software to write to the appropriate write pon - there is no need to
compute a replacement entry and setup the Index Register.

4) The upper-word in the PATC entry is automatically preloaded when an ATC Miss
occurs. That is, the Logical Page Address and Supervisor/User Status is loaded into
the upper-word of the P ATC entry to be replaced. Thus, all that is required is for
software to write to the lower word in the PATC.

5) Software may load any ATC entry by writing the desired ATC data into the
appropriate ATC Write Port register (IPPU, IPPL, DPPU, or DPPL). (See section on
Loading and Storing a PATC Entry.)

3.8.4.2.1 Loading and Storing a PATC Entry

The loading and storing of a PATC Entry is a ordered, three-step (less for updates
following an ATC Miss) sequence.

To write (or stcr) a new PATC entry the following steps m.Y.S1. occur in order:

1. Place number of next PATC entry to be replaced into PATC index field in the
IIR or DIR. (optional if following an ATC Miss)

2. Perform a write (stcr) into the upper-word of the PATC entry using the xPPU
control rcgister.(opttonal if following an ATC Miss)

3 P d f th PATC entry using the xPPL • erform a write (stcr) into the lower-woli o e
control register.

To read (or Ider) a PATC entry the following steps ID.llS1 occur in °rder:

1.
2.

3.

. TC • d fl Id in the IIR or DIR. Place number of PATC entry to be read mto PA 10 ex ie . th PPL
Perform a load (Ider) from the lower-word of the PATC entry usmg e x
control register. • th PPU
Perform a load (Ider) from the upper-word of the PATC entry usmg e x
control register.

T • the logical address and 0 suppon software tablewalk, when an A TC miss occurS, H It will reside in
supervisor/user bit is preloaded into the P~TC upper-word bu f[' store it into the
th1s buffer until a write lower instruction ~s executed to actu~ ~e contents of this
:ATC. However, upon detecting an ATC Miss, software. can/ :e; status) by simply

uffer (i.e. the missed logical address and supervisor u

Revision 2 .O
105

l

MMU

executing a Id c r from the xPPU control r a
guaranteed until a Ider from the xPPL ontrol
occurs.)

DO NOT COPY

J this buff er are
or another miss

3.8.5 CACHE/MMU FAULT CONDITIONS

The following sections describe the faults or error onditio lh m arise during a
Code or Data Cache/MMU access.

3.8.5.1 Bus Error

If a bus error occurs during any code or data , the (Bf
DSR). The physical address where the bus enor occurred 1
Access Physical Address Register (IPAR) (or Data c 1 1

DPAR). {Note: This bit is not set if a bus enor occun durm
generated tablewalk.) A Code or Data .,. ..,,..,. .,., 1i n i th n

I in the ISR (or
an the Instruction

dress Register -
t I alk or a probe

I d

3.8.5.2 MMU Faults

106

If during the course of a normal address tran lauon , n invalid segment
or page descriptor, tablewalk bus error, supervisor v1olat10 write protect
violation is detected the MMU Fault (F) bit is set m the ISR (or DSR) Code or D~a
Access Exception is then generated. The following sections , be each of these m more detail.

3.8.5.2.1 Invalid Segment and Page Descriptors

If an invalid segment or page descriptor is encountered dunng a normal <
00

?·
probe) tablewait, the search is aboned and the physical address of the invahd
segment or page descriptor is placed in the Instruction Access Physical Address
RegiS

t
er (IPAR) (or DPAR for Data MMU accesses). To distinguish between an invalid

segment or page descriptor fault and the other MMU faults, system software would
need to perform an MMU probe of the faulting logical address (Sec section 4.6.6·2 Probe Error Conditions).

3.8.5.2.2 Tablewalk Bus Error

If a bus err~r occurs during a normal (non-probe) tablewalk, the search is aborted
~d

th
e phy~•cal address where the bus error occurred is placed in the Instruction

d_cc~ss .P:ysical Address Register (IPAR) (or DPAR for Data MMU accesses). To 1

}tmguis between the other MMU faults and the tablcwalk bus error syS
t
em

!~c!:~re 4 :~u~d pneebed to perform . ~n MMU probe of the faulting logical add;ess (See • • • ro Error Cond1t1ons).

Revision 2 ,0

Motorola Confidential Proprietary - DO NOT COPY MMU

3.8.5.2.3 Supervisor and Write Protection Vlolatlons

Unlike the above MMU faults, if a supervisor protection violation or a write
protection violation (FOR DATA MMU ACCESSES ONLY) occurs during a normal (non
probe) tablewalk, the table search is NOT aboned. Instead the tablewalk is allowed to
continue until the end of the tablewalk at which time the MMU fault bit (F) is set and
a code (or data) access exception is generated. The physical address of the page
descriptor is placed in the Instruction Access Physical Address Register (IPAR) (or
DPAR for Data MMU accesses). To distinguish supervisor violation errors and write
violation errors, system software would also need to perform an MMU probe of the
faulting logical address. It would then compare the resulting status information (SP
and WP bits) with the environment conditions of the access (See section on Probe
Error Conditions).

3.8.5.3 Cache Copyback Errors (Data Cache Only)

If a copyback error occurs during a data copyback initiated by a cache miss
transaction, then the (CP) bit is set in the DSR. The physical address where the
copyback error occurred is placed in the DPAR. A Data Access Exception is then
generated.

3.8.5.4 Cache Write Allocate Bus Error (Data Cache Only)

If a bus error occurs during a line read operation of a write cache miss
implementing the write allocation policy, then the (WA) bit is set in the DSR. The
physical address where the allocate bus error occurred is placed in the DPAR. A Data
Access Exception is then generated.

3.8.6 PROBE TRANSACTIONS

Probe transactions are provided by the 88110 to load descriptors into the PA: TC, rel~ad
current PATC entries with more recent status, and to accumulat~ status 1.n~orm~~o:
for a logical-to-physical address translation. Probes are useful m detenm?mg ~ k
local (exclusive) page has been modified so that any cached data may be wntten _ac

1 to memory when a task terminates. Probes are also useful to obtain the physica
address that is mapped from a cenain logical address.

3.8.6.1 Probe lmplementatlon

Th • MMU Probes and Data MMU
e 88110 is capable of performing both Instruction . 1 truction MMU

Probes. The following outlines only the process !0r dper!orm~~~tl;n th:s same manner
probe, however, a Data MMU probe can be achieve m e
except using Data MMU Control Registers.

• system initializes the
Before performing a probe transaction, th~ ope;at/:~cal address it wishes to
Instruction System Address Register (ISAR) w•th t\ gCommand Register (ICMD).
probe. It then writes a probe command to the Instruc 100 ddress and probe supervisor
There are two types of probe commands:. probe Uuse~A;C and PATC for the logical
address. Both commands search the Instruction MM

107
Revision 2.0

MMU

address in the ISAR, however, tbc acf
the control settings of the MMU. The d1f

Case 1: If the MMU is disabled via the

Both BATC and PATC entri e are scar he .
translation status is written into lhc I l
corresponding physical addreaa I wrat c
Address Register (IPAR). If a match as n t
and BH bits of lhc xSR. The value m the P
xSR arc undcfmcd. The table walk ia no I

Case 2: If the MMU is enabled and a muc .1n

Upon completing the search, translation
Status Register (ISR) and the correspond
Instruction Access Physical Address Reg
probe status and how it is presented in t,
Registers).

Case 3: If the MMU is enabled, a matching 8
tablcwalks are enabled (via TEN bit in

Upon completing lhc search, a new PATC cnt
is reloaded) and a tablcwalk is performed t he
Pointer Register (ISAP) or the Inatruction U r 11
done even if there is a matching PATC cnt p
recent translation status for that entry Durio t ,
information is accumulated from the area me I and
reloaded) into the PATC entry. The accu~ulatcd 1/
the IS~ and the corresponding physical address i wnuen
erro~ 1s _encountered while tablewalking for a matchin P T
be mvahdated. If a probe error occurs wh,I tablcwalk 11
address then a new PA TC entry is not created.

Case
4

: If the MMU is enabled, a matching BATC cnuy I noc p

• DO NOT COPY

depending upon
bed below.

an either, then
(ISR) and the
css Physical

I d via the PH
tatus bits in the

n truction Access
ucn into the

r 'nformation on
MMU Control

nd hardware

m t han PATC entry
pcrvisor Arca

J P) This is
t 111ing the most

nd protection
d loaded (or

J O written into
R If a probe
that entry will

non-matching

nt. and hardware tablewalks are disabled (software tablewalk cue)

If a match is found in the PATC th . . u·oo
Access Status • • co translauon status 1s wntt r in to the Instruc.
the Instruc i Register (IS~) and the corresponding physical acJ<Jrc is written in!o
either it • t ~~- Acc;ss. Physical Address Register (IPAR). If a match is not found 10
as th~ 0~:/~~~:: _via.

th
c PH and BH bits of the xSR. The value in lhc xPAR as w~ll

either case. bns ID
thc xSR arc undefined. The table walk I not performed an

3.8.6.2 Probe Error Conditions

The major difference bctw
translation errors is that robe ccn probe errors and normal (non-probe) add~ess
The following describes e~ch 0 t~:rs ncv_cr cause a Code _(or Data) A~ccss Exccpuon.

e possible probe enors 10 more detail.

108

Revision 2 .O

MMU

Motorola Confidtnlial Prof
DO NOi COPY

3.8.6,2.1 Invalid Segmen or Page De1crlptor1

If an invalid segment r page j criptor 1s encountered during a probe generated
tablewalk, the search i borted and the ISR (or DSR for Data MMU probes) is updated
to reflect a segment de riptor invalid (SI 1) or a page descriptor invalid (PI=l). The
physical address of t l mvalid segment or page descriptor is placed in the
Instruction Access Phy i I Address Register (IPAR) (or OPAR for Data MMU probes).

3.8.6.2.2 Tablewalk eus Error

If a bus error occur during a probe generated tablewalk, the search is aborted and
the ISR (or DSR) 1 updated to reflect a table walk bus error (TBE= 1). The physical
address where the t blewalk bus error occurred is placed in the IPAR (or DPAR).

3.8.7 BREAKPOINTS ON LOGICAL ADDRESSES

The 88110 offers a new and significant debugging feature for the 88000 family. The
88 ! IO Instruction and Data MMU will each contain two logical breakpoint registers

which are available for system debugging support.

BrcakpoinlS are enabled by setting the BPEN (breakpoint enable) bit in th~ xCTL. The
breakpomt registers are loaded in th• same manner as tb• PATC entne_s, except m

th
". case, breakpoint registers 0,1 are mapped as PATC entries 32,33 (via the Index

RegtSt~r). As with the PATC, to write (or stcr) a new breakpoint reg1Ster entry
th

e

followmg steps mus r occur in order:

Place the number of the Breakpoint entry to be replaced (32,33 for breakpoint
registcn 0,1, respectively) into the PATC/Brcakpoint index field of the UR or 1.

DIR. Perform a write (s ter) into the upper-word of the Breakpoint entry using
th

e

xPPU control register. Perform a writ• (stcr) into the lower-word of the Breakpoint entry using
th

e
2.

3.
xPPL control register.

To read (or Ider) a breakpoint register entry the following steps m.ui1 occur in °
rd

er:
. b d (32 33 for breakpoint

1.

2.

3.

Place the number of the Breakpoint entry to e rea ' th UR
registers O, I , n:specti vely) into the PATCJBreakpoint index field of e or
DIR. d of the Breakpoint entry using the
Perform a load (Ider) from the lower-wor
xPPL control register. • th d Of the Breakpoint entry usmg e

Perform a load (Ider) from the upper-wor
xPPU control register.

The breakpoint register entry (upper and lower words)
the P ATC entry and is presented in the figure below·

is defined differently than

109

Revision 2.0

MMU Motorola Cot,/idllllial • DO NOT COPY

Breakpoint Register Entry

511 57 51 155 M 63 62 II 60 41 41 '7 .. 4I 4'I • 4I 41 e • a '7 • a M s., 12

32-bl u,g1ca1 are~ Addr8II] :

1: 31 30 29 29 27 29 25 2, 23 22 21 20 1, 1, " .. ,. ,. ,, ,. ,, ,o • • 7 • 5 , 3 2 1 o

:i::11111 1111

I I I I I lower-word f I I I
ru~ ~~

V ruM RYtM

~ Undefined - reserved for future use

Figure 3.8.7 • Breakpoint Register Entry

The 32-bit logical breakpoint address is accessed
register.

the up1 r-

The supervisor/user(SU). read/write(RW) criter and valid b• 1

each breakpoint register is set via the le er word
Therefore. either breakpoint register can be sel to break upon
to a supervisor or user space. In addition. lhe uperv1sor1u
for each breakpoint register can also be ma ked break on
masks (SUM and RWM) arc also set via the lower word of •

In addition to the supervisor/user and read/write m , four
breaking on variable address ranges. These four address m
lower word of the breakpoint register and can be defined
follows:

MB3 MB1

t 1e breakpoint

or enable) for
point entry.

or write access
11 1 d/write field

m ination). These
p int register.

s exist for
set via the
a break as

if (MBO,MB1,MB2,MB3 = 0) - Break on byte addresses (bit 31 0)
if (MBO=l)&&(MB1,MB2.MB3 = 0) - Break on half-word addres (bits 31-1)
if (MBO,MB1=l)&&(MB2,MB3 = 0) - Break on word addresses (bits 31-2)
if (MBO,MB1,MB2=1)&&(MB3 = 0) - Break on double-word addr cs (bits 3 l-3)
if (MBO,MB1,MB2,MB3=1) - Break on quad-word addresses (bits 31-4)

All 32 bit~ of each breakpoint register can be written, however, breakpoint match~s
are a function of the _granu_larity of each access compared. That is, a word access will
only be compared with bits 31-2 of the breakpoint register to determine a match.
where as, a byte access will compare all 32 bits. This scheme holds true for byte,
half-word, word, double word, and quad-word accesses.

Finally' ~hen ~e lo~cal address of the access (load or store on the data side or f~tch
on

th
e mstru~tion side) matches the address in the breakpoint register, breakpoints

are enabled (via the BPEN bit in the xCTL), and all other conditions are met (such as
~ddr~ss • range, a~cess . granularity, read/write, supervisor/user. register valid) the
Rre~ pomtAECxception bu (BPE) is set in the Instruction (or Data) Access Status

eg1ster. ode or Data Access Exccpu· . th
on 1s en generated.

110
Revision 2 .0

Motorola Confidential Proprietary - DO NOT COPY MMU

3.8.8 CACHE AND MMU CONTROL REGISTERS

The following Control . Registers. are dedicated for use . by the on-chip caches and
memory man_agement umts. As with _the oth_er control registers !n the 88110, they are
accessible via the stcr and Ider instructions. However. unhke the other control
registers in the 88110. the Cache and MMU Control registers do not support the x c r
(exchange control register) operation.

Instruction MMU/CacheUIC Command Bc1ister CICMD}

The Instruction MMU/CachefflC Command register controls Cache flushing,
Cache and ATC invalidation, and MMU probing. A stcr (write) to the Command
Register initiates the specified action. The 5 least significant bits (4-0) of the data
written to lhe ICMD register contain the command code. Reading the ICMD will
return all zero's. The following commands are defined:

Instruction MMU/Cache/TIC Command Register (ICMD)

31 30 211 28 27 21 25 24 23 22 21 20 11 11 17 18 15 14 13 12 11 10 I 8 7 6 5 4 3 2 1 O

~ Undefined • Reserved for Future Use D Newly Defined

Figure 3.8.8.a . Instruction MMU/Cache/TIC Command Register

,Cwk
00000 -
00001 -
00010 -
00011 -
00100 -
00101 -
00110 -
00111 -
01000 -
01001 -
01010 -
01011 -
01 lxx
lxxxx -

Command
No Operation
Reserved
Invalidate TIC Cache
Invalidate ICache and TIC Cache
Invalidate ICache Line
Reserved
Reserved
Reserved
MMU Probe Supervisor
MMU Probe User .
Invalidate All Supervisor AT~ Entnes
Invalidate All User ATC Entncs
Reserved
Reserved

Instruction MMU/Cache Conttol Resister llCTLl

, .. :&::::;.:::: :::trl
I

Command Code

. h Instruction Cache, Branch
This register controls the operating mo~es 0 ~ t ~e mask bits to specify the
Target Cache, and the Instruction MMU. mcludmg
BATC Block Size (512k to 64M).

Revision 2 .0
111

MMU

112

fitld

CFN

BEN

CSM

BSM

MEN

Motorola Colf/idelllial. Proprietary - DO NOT COPY

Instruction MMU/Cacbe Control Register (ICTL)

Figure 3.8.8.b • IMMU/ICache Control Regl ter

Description

Instruction Cache Enable/Disable. When disabled
fetches pass directly to the bus interface unit and th
accessed or updated. On reset the Instruction Cache

TIC cache Enable/Disable. When disabled, no i
fetched from the TIC cache and it i not accessed or
the Branch Target Cache is disabled

Instruction Cache SRAM test mode This fcatu
rapid testing of the cache and I not intended
use. When enabled, normal ICache operation 1

Instruction fetches bypw the ICache and o dir
interface. The ICachc data, tag, and status arc n
writeable directly as memory locations bcginnin
specified in the Instruction System Address Regi t r
reset the ICache is NOT in SRAM test mode. Th I
explicitly set up prior to putting the ICacbe in SR

not

On reset

bus
.md

address
On

be

TIC cache SRAM test mode. When enabled, nonn I
I

rauon is
suspended. This feature is specifically ror rapid the TIC
and is not intended for general program use. fetches
bypass the TIC and go directly to the ICachc. T , and
stat~s _arc now readable and writeable directly locations
begmmng at the base address specified in the i n S) stem
~ddress Register (ISAR). SRAM mode control I enc o that
either the ICache or TIC may be in SRAM mode bu n t both On reset
th~ TIC is N_O'I' in SRAM mode. The ISAR should be c ph itly set up
pnor to putting the TIC in SRAM mode.

lnStroc~ion MMU Enable/Disable. When this bit 1s enabled Address
tr_anslauons can occur via the BATC/PATC or Tablewalks If this bit is
disabled then all logical addresses arc presented a the physical
~ddress (Identity Translation) and the access/protecuon information
~sis

1
:!f:d.from

th
e ISAP or IUAP. On reset the Instruction MMU is

Revision 2-0

Motorola Confidential Proprietary - DO NOT COPY
MMU

1EN

FRZO

FRZl

PREN

BPEN

M6:0

Instruction MMU Hardware Tablewalk Enable/Disable. When
enabled (the default case). a hardware tablewalk is performed when
a A TC miss occurs. When disabled, a trap to the Instruction MMU ATC
Miss vector occurs on an A TC miss.

Instruction Cache Freeze Bank O Enable/Disable. When enabled all
of the first lines (line 0) of each bank in the Instruction cache are
locked.

Instruction Cache Freeze Bank 1 Enable/Disable. When enabled all
of the second lines (line 1) of each bank in the Instruction cache are
locked.

Branch Prediction Enable. When disabled, the branch reservation
station is disabled and a branch with a data dependency will stall
instruction issue. When enabled, branches with data dependencies
issue to the branch reservation station and conditional instruction
issue occurs in the direction specified by the branch opcode. On
reset, branch prediction is disabled.

Breakpoint Enable. When disabled, the breakpoint registers will not
cause a code access fault upon detecting a matching logical address.
disabled When enabled. the breakpoint registers will cause a code
access fault upon detecting a matching logical address provided the
matching register is valid. On reset, breakpoints are disabled.

Instruction MMU BATC block size selection bits. The block sizes
mapped by the BATC arc programmable according to the following
table :

Instruction BATC Size Mask Bits Block
Ms Ms M4 M3 M2 M1 Mo Size
1 1 1 1 1 1 1 64MB
0 1 1 1 1 1 1 32MB
0 0 1 1 1 1 1 16MB
0 0 0 1 1 1 1 8MB
0 0 0 0 1 1 1 4MB
0 0 0 0 0 1 1 2MB
0 0 0 0 0 0 1 1MB

0 0 0 0 0 0 0 512KB
An'j__ Other Combination undefined

Table Instruction BA TC Block Size Selection 3.8.8.a •

Instruction Syucm Addreu Register CISAR}
• an SRAM test mode The • b can be placed m . • d 1·1 is mstruction cache or branch target cac e . When JD this mo e

under control of the MMU/Cacbc Control Register.
1

·cal address space. The
mapped as a contiguous block of memory into. tbe h og~ase address of the cache
Instruction System Address Register (ISAR) contains t e

Revision 2 .0
1 I 3

MMU

while it is in SRAM
memory When the IC
the base address, folio
direction of mcreasing 1

target instruction O of e. 1 •

ISAR, followed by ms ru l
0

1 of all entries, fol • d
addresses.

This register 1s also
Invalidation on

The Instruction Superv1 r
register It is wntten
control/protection informat, r
of this register 1s the

The Instruction User Arca
written with the area
information for instrucuon
same as previously sho .

Instruction MMU ATC lndg Re&i,@r {IIR)

The Instruction MMU A TC Index R , t
specifies which BATC entry 1s to be I
Write Pon as well as which PATC cnt
Page ATC Write Pons. It can also
to be loaded (where Break ant Re
= index of 33). The UR also contain
this register is given below

Instruction MMU ATC Ind

31 30 211 29 27 21 211 2' 2J 22 21 20 11 11 17 I

I .

uo
~ Undefined - reserved for future use

Figure 3.8.8.c • Instruction MMU ATC Index Register

114

T COPY

r l ache

ntrol
and
mat

It
TC
t C

II 0

J
\

TC Index

Motorola Coll/ldtttllal P 'P IMU

BATC Ind
PATC/Bk In

Instruction MMt

When a writ performed wilh abe In uuction MMU Block ATC
Read/Wriae Pon daaa . loaded mto a lnstrucaion BA TC enuy Likew1 . when
a read (Ider I r onned with the lnstrucaion MMU Block ATC Read/Wriae Pon,
lhc data 1s r m a Instruction BA TC enlry The , Ill BATC entry to be
loaded 1s md1c 11 d by lhe lnsarucuon MMU ATC Index Regisaer (IIR). The Block
size mask bia l v r able from 512K 10 64M) arc fixed for all eigha BA TC cnlracs and
sea via the IC r The User Block Attribuae bias specified by lhe UR arc also used 10

load the BATC I ntry The User Block Auribule bia. arc only accessible via the IIR.
A description of ahc IBP rcgisaer is shown in lhe figure below.

Instruction MMU Block ATC Read/Write Port (IBP)
'r----------------------------------,"

31 30 211 211 27 29 J 24 23 22 21 20 It 18 17 te 11 14 1' 12 11 10 t I 7

[
1143210

mul

V
WP
CI
G
wr
s
PBA

LBA

Revision 2.0

r I I I I I I

LBA PBA J I ~ I JI
WT Cl V

D Ignored depending on BATC size.

Figure 3.8.8.d • IMMU BATC Read/Write Port

Description

Valid Bit
Write Protection
Cache Inhibit
Global
Writethrough memory update policy
Supervisor/User Address Space
Physical Block Address. Use:

a) bits (18-6) for 512K Blocks
b) bits (18-7) for lM Blocks
c) bits (18-8) for 2M Blocks
d) bits (18-9) for 4M Blocks
e) bits (18-10) for 8M Blocks
f) bits (18-11) for 16M Blocks
g) bits (18-12) for 32M Blocks
h) bits (18-13) for 64M Blocks

Logical Block Address. Use:
a) bits (31-19) for 512K Blocks

115

MMU Mou,• ,fidtlllial

LBA Logical Block Address. L •
a) bits (31 19) for 5
b) bits (31·20) for
c) bits (31.11 for
d) bils (31 -.. 2
e) bits (31 - I for
f) bits (31•24 f
g) bits (31·25) r
h) bits (31·26) ror

Instruction MMU Paec ATC Read/Write Pon • Upper UPPL;J

When a write (ster) is performed with
Port - Upper, the data is temporaril . b
most significant word of Instruction P
is NOT loaded into the the most i
corresponding PA TC read/write pon
Storing a PATC Entry

When a read (Ider) is
Port - Upper (IPPU), the data 1s
Instruction PATC entry or Brc.
purpose register. However m this
Page ATC Read/Write Pon . r
on Loading and Storing a P ATC nt

The sp_ecific PATC entry (or Brcakp • t
Instrucuon MMU ATC Index Register (IIR
as the most significant (upper) word of t .
previously described .

1nstruction MMu Puc ATC Re,ad/Write Pon - tower CIPPI,)

116

When a write (ster) is performed with lhe In truction
Port • Lower, the data is loaded into t , I I ni 1

~~~~ ;~~l ~:
0
:.;akpoint entry). (Note at th1 umc th 

L d• d S . have been set up prcv10 1) 1 no , 
oa mg an tonng a PATC Entry.) 

When a read (Ider) is performed "th . 
Port - Lower (IPPL) the d _wi the Instruction \.1 
Instruction PATC ent 

O 
ata IS ~ad from the lea t 

read (I dcr) of the In7.ru ( / B~akpomt entry I Thi 1 : 1 n 
(See section on Loading ~d•o; . MU Page ATC Read/Wm· 

tonng a PA TC Entry. l 
The specific PATC cot . 
Instruction MMU ATC ~c~o~ 8~akpomt entry) to be loaded 
as t?e least significant (lowc )cgistcr (IIR). The format of th 
previously described . r word of the PATC entry or 

DO NOT COPY 

C Read/Write 
ding into the 

r ) The data 
• t rmcd for the 
n Loading and 

T Read/Write 
m word of an 

1m the general 
Ir I ruction MMU 
11 1 (See section 

h atcd by the 
1s the same 

01nt entry) as 

TC Read/Write 
f a Instruction 

he upper PA TC 
( Sec section on 

ATC Read/Write 
,nt word of the 

ould precede the 
rt Upper (JPPU). 

i indicated by tbe 
r gistcr is the same 

Breakpoint entry) as 

Revision 2 .O 



Motorola Co,rfidential Proprietary - DO NOT COPY MMU 

Instruction Access Status Reeister CISR} 

Th~ lnstructi.on Access ~tatus Register is a read/write control register. This 
reg1ste~ prov1~es Instrucuon MMU probe results (address translation status) and 
fault mformauon for Code Access Exceptions including Instruction Breakpoint 
Exceptions. This register must be cleared by software after any exceptions. 

Instruction Access Status Register (ISR) 

Figure 3.8.8.e • Instruction Access Status Register 

.EW.d Description 

BE Bus Error - Indicates that a bus error occurred. 

F MMU Fault - Indicates that a fault occurred during the course of a 
normal (non-probe) address translation. MMU faults include: invalid 
segment descriptor, invalid page descriptor, tablewalk bus error, 
supervisor violation, and write protect violation. 

BPE Breakpoint Exception occurred - The Logical Address where the 
break occurred is located in the Instruction Access Logical Address 
Register (ILAR). 

S/U Supervisor/User Status - Indicates the supervisor/user status of the 
instruction access in error. 

Wf Writethrough - (NOTE: The WT bit is not used for Instruction Accesses 
but is provided as an indicator to reflect content of descriptors.) 
1 = Data at the probed address is cached with the writethrough 
memory update policy. 
0 = Data at the probed address is cached with the copyback memory 
update policy. 

SP Supervisor Privilege -
1 = Probed address can only be accessed in the supervisor mode. 

G 

Revision 2 .0 

0 = Probed address can be accessed in the user or supervisor mode. 

Global -
1 = One or more of the descriptors for the 
global. 
0 = None of the descriptors for the probed 

probed address are marked 

address are marked global. 

117 



MMU 

Cl 

M 

WP 

BH 

Cache lob bll • 
l=Dua It 

o = Dall at 

Modified • 
provided .1 

1 = Dua 
respect to me 
o = Dua at th 

Write Protection • 
I = Probed dr 
O = Probed d 

BATC Hit 
( = Probed "1'1nrr,-.. 

tablewalk 
0 = Probed 
table walk . 

PH PATC Hit· 

Pl 

SI 

1BE 

I = Probed addrc 
0 = Probed 

Page Descriptor Invalid - In i 
was encountered during r 

Segment D ri l r lnvali 
descriptor was encountered 

Probe Tablewalk Bus Error 
encountered during a Probe r 

DO NOT COPY 

but is 
) 

1ory or with 

hit or 

descriptor 

ment 
blewalk. 

lnstruction Acr:m Logical Mctmv Bcducr CU.AA> 

The Instruction Access Logical Address 
In the case where an instruction ATC m1 
disabled (via the ICTL), this register contain 
the logical address of Instruction (code) 

l 

Ur 
log 

XC 

I register. contro 
tablewalks are 

lains It also con 

Instruction Access Physical A44r:re Beaner CJPARl 

Tb~ Inst~~•• A~ss Physical Add,... Rcgi11cr " 1 re1dlwri1~ coa!'.:ic) access 

118 

I register. 
ThtS register con1a1ns the Physical address wbcn, lbe Inmu uon . ( (scg,nenl 
exception ?C••rred or tbc physical address of the llblcwalk deacnp•:• exceplio• 
or page) in error. The MC88110 updates this re i1ter whenever a occurs on an instruction access. 

• • 11 2.0 Revisio 



Motorola Confidential Proprietary - DO NOT COPY MMU 

.Data MMU[Cache Command Bceister CPCMD} 

The Data MMU/Cache Command register controls cache flushing, cache and ATC 
invalidation, and MMU probing. A stcr (write) to the Command Register initiates 
the specified action. The S least significant bits (4-0) of the value written to the 
DCMD register contain the command code. Reading the DCMD will return all 
zero's. The following commands are defined: 

Data MMU/Cache Command Register (DCMD) 

31 30 29 28 27 28 25 24 23 22 21 20 II 11 17 II 111 1• 13 12 11 10 I 8 7 6 5 4 3 

Command Code 

~ Undefined - Reserved for Future Use 
,,,. ,,:,:,:\ ••,•,•,•,❖,•,•·g·•·~~~'~ '~':~~:.~.❖:•:':::<'''':i''W'i" "''?''"'''',:;:❖'❖•:❖•:•:}: 

Figure 3.8.8.f - Data MMU/Cache Command Register 

Cwk 
00000 -
00001 -
00010 -
00011 -
00100 -
00101 -
00110 -
00111 -
01000 -
01001 -
01010 -
01011 -
011 xx -
lxxxx -

Command 
No Operation 
Reserved 
Flush DCache (copyback) 
Invalidate DCache 
Flush DCache Line (copyback) 
Invalidate DCache Line 
Reserved 
Reserved 
MMU Probe Supervisor 
MMU Probe User . 
Invalidate All Supervisor A TC Entnes 
Invalidate All User ATC Entries 
Reserved 
Reserved 

Data MMU/Qata Cache Control Rceister CPCIL> 
. Cache It also controls the 

This ~egister controls the operating m_odes _of the Dat\ bits •10 specify the BATC 
operaung modes of the Data MMU, mcludmg the mas 
Block Size (512k to 64M) 

119 

Revision 2 .0 



MMU 

120 

DO NOT COPY 

~ Undefined • reserved for futu,. use 

Figure 3.8.8.g • DMMU DCac 

EWil Description 

cm Data Cache Enable/Disable. . 
directly to the bus interf , un 1 

reset the DCacbe 1s disabled 

SEN Data Cache Snooping 

CSM 

MEN 

Data Cache SRAM test mode 
testing of the DCache and · · ' 
When enabled, normal DCac 
Stores bypass the DCICbe ,, : 
DCacbe data, tag. and stat 
as memory locations bcgmn. 
Data System Address Regiller ( l 
SRAM mode. The DSAR I 
DCache in SRAM mode. 

Data MMU Enable/Disable 
translations can occur via the 
disabled then all logical addr 
address (Identity Translation 
is taken from the DSAP or DU 

1EN Data MMU Hardware Tablcwalk 
default case). a hardware table 
OCCUTS. When disabled, a trap t 
on an ATC miss. 

FRZ0 Data Cache Freeze Bank O Enablc/D 
fiTSt lines (line 0) of each bank m 

Control R g 

FRZI 
Data Cache Freeze Bank 1 Enable/Di able When 
second lines (line 1) of each bank 1n the Dat. 

r 

' 

On 

r rapid 
r m use. 
J and 

The 
directly 
an the 

~OT an 
uuang the 

bit is 
I 

ation 
bled 

ed I of the 
I d 

all of the 
c r , 1ekcd 

BPEN 
Breakpoint Enable. When disabled, the brcakp. mt r I ter will not 
cause a code access fault upon deacctina a matchm I calacca:

5

~re:=~lt 
When enabl~. the breakpoint registers will cau 
u~n de~cctm~ a matching logical address provided t e matebing 
register 1s vahd. On reset, breakpoints are disabled. 

CEN 

Revision 2 .O 



Motorola Confidential Proprietary - DO NOT COPY MMU 

~orcc Write-through. Forces all stores to write-through the cache 
mdcpcndcnt of the page status or store-through instruction option, 
but docs not affect normal operation of the WT• pin. 

M6:0 Data MMU BATC block size selection bits. The block sizes mapped by 
the BATC are programmable according to the following table: 

Data BATC Size Mask Bits Block 
Ms Ms M4 M3 M2 M1 Mo Size 
1 1 1 1 1 1 1 64MB 
0 1 1 1 1 1 1 32MB 
0 0 1 1 1 1 1 16MB 
0 0 0 1 1 1 1 8MB 
0 0 0 0 1 1 1 4MB 
0 0 0 0 0 1 1 2MB 
0 0 0 0 0 0 1 1MB 
0 0 0 0 0 0 0 512KB 

Any Other Combination undefined 

Table 3.8.8.b - Data BATC Block Size Selection 

Data System Address Register <DSAR> 

The data cache can also be placed in an SRAM mode under control of the 
MMU/Cache Control Register. The function of this register and the mapping of 
the data cache into logical address space is the same as for the instruction cache. 

This register is also written by software to pass logical addresses for DCache Flush 
(w/ Copyback) on Line Granularity, DCache Invalidation on Line Granularity, and 
Data MMU probes. 

Data Supervisor Area Pointer Register CDSAPl 

!he Data Supervisor Area Pointer Register is a read/write MMU control register. It 
!s written with the area pointer segment table address and _contr~l/prot~ction 
mformation for data supervisor address space. The format of this register 1s the 
same as previously described for the area descriptor. 

Data User Area Pointer Register CDUAP> 

The Data User Area Pointer Register is a read/write MMU control regiSter. It. is 
written with the area pointer segment table address and control/protection 
information for data user address space. The fonnat of this register is the same as 
previously described for the area descriptor. 

121 
Revision 2 .0 



MMU Motorola Collfidelllial Proprietary - DO NOT COPY 

Data MMU ATC Index Rc&i,stcr {DIR} 

The Data MMU ATC Index Register is a read/write MMU control register. It 
specifies which Data BATC entry is to be loaded with the contents of the Block ATC 
Write Port as well as which Data PATC cntJy is to be loaded with the contents of the 
Page ATC Write Port. It can also specify which data breakpoint register is to be 
loaded (where Breakpoint Register O = index of 32 and Breakpoint Register 1 = 
index of 33). The DIR also contains the User Attribute bits. A field description of 
this register is given below. 

Data MMU ATC Index Register (DIR) 
,.:··:: :~··,·:·······:·· ~ ···;: '·'.~\5 2~ 23 22 21 20,. 11 11 17 11 16 14 13 12 11 10 I 

a 7 1543210 J • i I~ 
u~ I 

uo 
PATCJBreakpoint Index 

BATC Index 

i, 
ti 
ft. ~ Undefined • reserved for future use 
~ ..... , ........ , ......................... :,:u, .. « .... »., ... ,: ..... m ...... >:❖ .. •:w .. .:c.•.•.• .. •.-.• ... , ....... ··· ,,. · , ,. 

Figure 3.8.8.h - DMMU ATC Index Register 

fulil 

BATC Index 
PA TC/Bkpt Index 

Ul,UO 

Description 

Next BATC Entry to be replaced. 
Next PATC Entry to be replaced (0-31). 
(Note: Entry 32 specifics Breakpoint Register 0 

Entry 33 specifies Breakpoint Register 1) 
User Block Attribute bits. 

Data MMV Block ATC Read/Write Port {Pim 

122 

When a w?te (stcr) _is performed with the Data MMU Block ATC Read/Write Poi:t, 
the data is . loaded mto a Data BATC entry. Likewise. when a read (1 d c r) is 
performed with the Data MMU Block ATC Read/Write Port the data is read from a 
Data BA TC entrr • The specific BATC entry to be loaded is i~dicated by the Data MMV 
ATCfi Index Regist~r (DIR). The Block size mask bits (variable from 512K to 64M) 
~~e ixed. for all eight BATC entries and set via the DCTL. The User Block Attribute 
its. specifi~d by the DIR ar~ also used to load the BATC entry. The User Blo~k 

Ahttnbut~ bits are only accessible via the DIR. A description of the DBP register is 
s own m the figure below. 

Revision 2 ,0 



Motorola Confidential Proprietary - DO NOT COPY MMU 

,•.• •,,• •,, ,•,,·,•,• ,•,•,•··••,• .. •• .... •••••••••••••••••••• .... ,.,,',,·o<~, ••,•,•,•,•,,•,•,•,•,~··············• ..... •,•··· .... • ... ··"···"" •• .-•• 

Ei.tld 

V 
WP 
CI 
G 
wr 
s 
PBA 

LBA 

Data MMU p 

Figure 3·8·8·1 • DMMU BATC Read/Write Port 

Description 

Valid Bit 
Write Protection 
Cache Inhibit 
Global 
W ritet~rough memory update policy 
Supervisor/User Address Space 
Physical Block Address. Use: 
a) bits (18-6) for 512K Blocks 

b) bits (18-7) for lM Blocks 
c) bits (18-8) for 2M Blocks 
d) bits (18-9) for 4M Blocks 
e) bits (18-10) for SM Blocks 
t) bits (18-11) for 16M Blocks 
g) bits (18-12) for 32M Blocks 
h) bits (18-13) for 64M Blocks 

Logical Block Address. Use: 
a) bits (31-19) for 512K Blocks 
b) bits (31-20) for IM Blocks 
c) bits (31-21) for 2M Blocks 
d) bits (31-22) for 4M Blocks 
e) bits (31-23) for SM Blocks 
t) bits (31-24) for 16M Blocks 
g) bits (31-25) for 32M Blocks 
h) bits (31-26) for 64M Blocks 

ae;e ATC Read/Write Port - Upper tDPPlli 

~hen a write (stcr) is perfonned with the Data MMU Page ATC Read/Writ~ Po!' • 
/Per (DPPU), the data is temporarily buffered in preparation for loadmg into 
~ e most significant word of a Data PATC entry (or Breakpoint entry). The data is 

OT loaded into the the most significant word until a stcr is performed for the 
corr~sponding PA TC read/write port . lower (DPPL). (See section on Loading and 

Stonng a PATC Entry.) 

When a read (Ider) is performed with the Data MMU Page ATC Read/Write Port • 
Upper (DPPU), the data is read from the most significant word of a Data PATC entry 
(or Breakpoint entry) and transferred into the general purpose register. 

123 
Revision 2 .0 



MMU 

However in this case, 
Lower (DPPL) must prt 
PATC Entry.) 

The specific PATC entry or r 
Data MMU ATC Index Register (DIR 
most significant (upper word o 
previously described 

Data MMV Pap Alt BMd'W-i&c Paa - Lower CQPPIJ 

When a write (ster) 1s per 
Lower (DPPL), the data 
entry (or Breakpoint entry 
which should have been 
Loading and Storing a P 

When a read Oder) is performed , 
Lower (DPPL), the data 1s read Ir m 1 
entry (or Breakpoint entry Thi 
Data MMU Page ATC Read/Write Por 
Storing a PATC Entry 

The specific PATC entry (or Br· 
~M!,J ATC Index Register (IIR). 
s1gn1ficant (lower) word of the 
described. 

Data Accw StJha Rc&imt ©SBl 

The . Data Access Status Register 1s 
provides. Data MMU probe result 
~i~nnat~on for Data Access Exception 

is register must also be cleared by sof 

Ir 
u ,n I 

d 

• DO NOT COPY 

Read/Write Pon. 
! ng and Storing a 

indicated by the 
r I the same as the 

r kpoint entry) as 

Read/Write Pon -
of a Data PATC 
per PATC word, 
(Sec section on 

Read/Write Pon -
the Data PA TC 

(Ider) of the 
on Loading and 

atcd by the Data 
me as the least 

r ) as previously 

This register 
tus) and fa ult 
oint Exceptions. 

Revision 2 .O 



► 

Motorola Confidtntial Propri~tary - DO NOT COPY MMU 

Data Access Status Register (DSR) 

Undefined - reserved for future use :t 
, ❖'. ~•.: .•,", ·:•:-:,:,:,:-:-:,:❖:•>:-:❖ ,.,:.;,._ '•,❖-❖:❖"❖ : ❖: •". H:/:?, 

Figure 3.8.8.J • Data Acceu Status Register 

EW.d Description 

BE Bus Err Indicates that a bus error occurred or that a cache flush 
was unsuc ssful. 

F MMU ault Indicates that a fault occurred during the course of a 

WA 

CP 

BPE 

R/W 

S/U 

wr 

SP 

Reviston 2 .O 

nonnal non probe) address translation. MMU faults include: 
invalid egment descriptor, invalid page descriptor, tablewalk bus 
error, supervisor violation, and write protect violation. 

Write Allocate Bus Error - Indicates that a bus error occurred during 
the line read operation of a write cache miss implementing the Write 
Allocat1011 policy. 

Copyback Error - Indicates that an error occurred during a cache 
copyback initiated by a normal replacement of a dirty cache entry. 

Breakpoint Exception occurred - The Logical Address where the . 
break occurred is located in the Data Access Logical Address RegiSler 
(OLAR) 

Read/Write Status - Indicates the read/write status of the data access 
in error. 

Supervisor/User Status - Indicates the supervisor/user status of 
th

e 
data access in error. 

Writetbrough • 
1 = Data at the probed address is cached with the writetbrough 
memory update policy. . k memo 
0 = Data at the probed address is cached with the copybac ry 
update policy. 

Supervisor Privilege -
1 = Probed address can onl be accessed in the superviso~ mode. 
O = Probed address can be >:.ccesscd in the user or supervisor mode. 

125 



MMU 

G 

CI 

M 

WP 

BH 

PH 

PI 

SI 

1BE 

Motorola Co,ifidlntial Proprietary - DO NOT COPY 

Global -
t = One or more of the descriptors for the probed address arc marked 
global. 
o = None of the descriptors for the probed address arc marked global. 

Cache Inhibit -
1 = Data at the probed address cannot be cached. 
0 = Data at the probed address can be cached. 

Modified -
1 = Data at the probed address has been modified m memory or with 
respect to memory (cached data). 
0 = Data at the probed address has not been modified. 

Write Protection • 
1 = Probed address is write protected. 
0 = Probed address can be read or written. 

BATC Hit -
1 = Probed address resulted in a BA TC hit instead of a PA TC hit or 
tablewalk. 

0 = Probed address was found in the PATC or was generated by a 
tablcwalk. 

PATC Hit -
1 = Probed address resulted in a PA TC hit. 
0 = Probed address was not found in the PA TC. 

Page Descriptor Invalid - Indicates that an invalid page descriptor 
was encountered during a Probe generated tablcwalk. 

Segment Descriptor Invalid - Indicates that an invalid segment 
descriptor was encountered during a Probe generated tablcwalk. 

Probe Tablewalk Bus Error - Indicates that an bus error was 
encountered during a Probe generated tablewalk. 

Data Access Logical Address Rceistcr CQLAR.} 

Thhe Data Access Logical Address Register is a read/write control register. In thc case w ere a data ATC miss DCTL) 
this register contains th occ~rs and hardware tablcwalks arc disabled (via the 

1
~ 

access exceptions. e logical address. It also contains the logical address of Da 

Data Access Physical Add 
-- ress Beeistcr CDPAJU 

Th~ Data Access Physical Add . . . This 
register contains the Ph • 1 ress Register 1s a read/write control register. or 
the physical address of Y:~ca ;~dress where the Data access exception occurred The 
MC88 I IO updates this regi t ta h ewalk descriptor (segment or page) in error. 

s er w enever a bus exception occurs on a data access. 

126 

Revision 2 .O 



Motorola Confidential Proprietary • DO NOT COPY BUS 

3.9 BUS INTERFACE -
3.9.1 SIGNAL DESCRIPTION 

The following section describes the input and output signals of the 881 IO in their 
functional groups. Each signal is explained in a brief paragraph with reference to 
other sections that contain more detail about the signal and the related operations. 
The 88110 signals are shown below grouped by function. 

Transfer 
Attribute 
Signals 

Arbitration 
Signals 

Revision 2 .0 

-
◄ 

-

--
◄ 

-
◄ ----
-

◄--

1' Transfer Start 
Data 64 1 v Transfer Acknowledge 

1 

~ 1 Transfer Error Ack. 

Address 32 Transfer Retry v 1 
Pre-Transfer Ack. 

Transfer Size 1 
2 Address Acknowledge 

Transfer Burst 

® 
1 

Address Retry - 1 
Transfer Code 3 1 

Lock 
- 1 Global Read/Write 

·- 1 1 ....; 

User Pa~e Attr. Invalidate -

2 MC88110 1 -
Cache Inhibit Memory Cycle -

- 1 1 
Write-Through Snooo Status -

1 2 -
Bus Request 1 -

3 Bus Grant BurstSpeed/Cache Line ; 1 
Addr Bus Busy - 1 1 -

Data Bus Grant 
1 

JTAG Bus 
5 -

~ 

Data Bus Busy - 1 Debug 
1 ....; 

Phase Lock 1 
lnterruots 

2-
Clock 1 Reset 

1 ..; 
26 26 

192 ~ins 
_i..-

+5 

Figure 3.9.1 • 881 1 o Plnout 

Transfer 
Control 
Signals 

} 

Snoop 
Control 
Signals 

} 
Processor 
Status 

} Test 

} Interrupts 

127 



BUS 

Mnemonic Pins Acll 

053 - Do 64 H 

TSIZ1-o 2 H gh 

TBST* 1 low 

3 High 

128 

Data Tr 

0 

ncz 
oo 
00 
0 0 
01 
100 
10· 
11 0 
11 1 

D ' NOT COPY 

transfer. 
danes are 

1eterm ne 
ould 
ry system 

oncdes 

• • D 2 0 Rcv1s10 • 



!,foJQro/a Confldt 1 

c,· 

WT· 
Lo 

1 Low 

1 Low 

1 Low 

TEA• 1 Low 

TRTAY• 1 Low 

f?.evfsion 2.0 

Cl b,r In !he ATC entry being 
Cl• setted ro Indicate 
chtd The timing tor this 

p ' 
"•nt transaction is "writing 

e (It the acceu is cache 
if the MMU page is marlced 

• is the resutt ol a store-through 
na/ coincides with addresses. 

Transfer Control Signals 

10 

Input 

Input 

Input 

Input 

·Trari'i,er Starr: 
The 88110 aserts this signal to indicate !hat a transaction has 
begun and the driven address is valid. This signal is asserted 
for one cycle and then negated. This signal is an output while 
the 88110 Is address bus master. Snooping BB110's use this 
si nal as an in I to ualil valid addresses. 

Pre-Transfer Acknowledge•: 
The memory system asserts PTA• lo indicate that the initial (or 
only) TA• assertion of transaction .max follow on the next rising 
clock edge. The window between rs• asserted and PTA• 
asserted a/lows loads/stores (data cache hits only) to continue 
to access the data cache even though a bus transaction is in 
progress. Simple memory implementations may ground this 
in ut and disable cache/bus decou fin . 

Transfer Acknowledge•: 
When the 88110 is the bus master, this signal is asserted by 
the current slave on every clock that new data is valid during a 
bus read operation, or accepted during a bus write operation. 
Reference section on transfer termination for a more detailed 
descri lion. 

Transfer Error Acknowledge•; 
TEA* is asserted by the slave to indicate a bus error has 
occurred. 

Transfer Retry*: 
TRTRY" is asserted by the slave to request that the 
transaction be terminated and re-initiated. 

129 



BUS 

Mnemonic Pins Active 
AACK* 1 Low 

INV* 1 Low 

MC* 1 Low 

GBL* 1 Low 

ARTRY* Low 

130 

' • DO NOT COPY 

Dir ctlon 
Input 

bus master 
asserted, the 

negates Address Bus 
ng with the rising 

m ttr's assertion of 

110 may immediately 
dress bus, and then 

Snoop Control Signals 

LO 

Output 

VO 

Input 

t the current 
I r coherency 

l wrth addresses. 

c:tual data transfer 
, transaction). The 
dress timing. 

o data transferred) 

ent to modify 

Global•: 
Address bus masters assert th pin 10 ndicate that the 
lransacton in progress is marked •gobar by the M~~-
When the q,u is not address bus master, the global pm is an 
lf1>Ut. When the global pin asserted, a q,u will en~ 
snooping on the CUIT8nl address The ttm•ng of this signal 
coincides wrth addresses 

AddrHa Retry• : 
When ARTRY- is asserted, the address bus master . 
terminates the transaction and will re-initiate the transact~n al 
a later time. The address bus master qualifies AAmV- with 
MCI<~, or the rising clock edge immediately following the. 
assert10n of MCI(• (MC~ must remain asserted), or TA or 
TRTRV-. before terminating the transaction. 

When ARTRY- is asserted a bystander 88110 removes ~s bus 
request, ignores bus grant: and suppresses any su~equent 
bus request. All potential masters (as well as the retried V
master) wiU be bbcked from requesting the bus until ARTA 
has been n ated. 

Revision 2.0 



Motorola Con/idtntial Proprietary - DO NOT COPY BUS 

Mnemonic Pi ns Active Direction Name and Descrlotlon 

SSTAT*1-o 1 Low Output Snoop St1tu1• 
Indicates status of snooping CPU. SSTA T' 1 may be tied 
directly to ARTRY* to generate snoop and collision retries. 

~1-0 ~ 
z z No Collision, No Snoop Hit 
Z A Snoop Hit Shared 
A Z Pipeline Collision 
A A Snoop Hit Modnied 

Z • High Impedance , A-asserted 

Arbitration Signals 

BR* 1 Low Output Bua Raquaat•: 
The 8811 O asserts this signal when it requests bus ownership 
and continues to assert it until it has received a qualnied bus 
grant coo· asserted AND ABB• neaated). 

BG* 1 Low Input Bus Grant": 
This signal is used by the external bus arbiter to grant bus 
ownership to the 8811 O in response to a bus request. The 
881 1 O (and other bus masters) must qualfy this bus grant with 
a non-busy Address bus (ABB* negated} before assuming 
address bus ownership. The external arbiter may •park" the 
'11 O on the bus by asserting Bus Grant after Bus Request has 
been neqated. 

ABB* 1 Low VO Address Bus Busy*: 
This signal is asserted by the current Address master. 
Potential address masters use this inout to aualnv Bus Grant. 

DBG* 1 Low Input Data Bus Grant*: 
The memory system asserts DBG• to grant data bus ownership 
to the 88110. DBG* asserted is qualnied with D88* negated 
before data bus ownershio is assumed. 

DBB* 1 Low VO Data Bus Busy*: 
This signal is an output when the 88110 is the data bus master 
and as an input when the 8811 O is asserting or has asserted 
TS*. DBB* is sampled by the CPU to qualfy DBG* before 
assuming data bus ownership. When the qualifi~ data bus 
grant is received, DBB* is asserted for the duration of the data 

transfer. 

131 

Revision 2.0 



BUS 

PSTAT2-o 3 

CL 1 

NMI* 1 low 

INT* low 

AST* 1 low 

0 

' 

.DO NOT COPY 

IS II the pin is 
•speedmode 

dock 
• ed high 

rate. The 
. , onrsnot 

gnaJ itself 
,, be used 

• re·. A11-AS) 
ion or Data 

w th addresses. 

Interrupt Signals 

Input 

Input 

Input Reaet•: 
Asserting AST- fon:.a the 8811 o to cease current operalio:; 
N~ing AST- begins executon at lhe RESET vector 1ocati 
With all the caches MMU'a and br nts disabled. 

Revision 2.0 



BUS 

Motorola Conjidlnua 

Name and Descrl tlon 
Mnemonic Pin 

Clock Signals 

CLK 1 ed by the 88110 as the internal 

lgnal indicates that the internal PLL 
10 the inCOml CLK. 

Test Pins 

TRST* 0 
JlAO THt RHel° : Ion of thi 1ignal causes asynchronous initialization of 

emal JT AG TAP c:ontroller. This signal conforms to the 
. 1 149 1 $1andard Test Access Port and Boundary-Scan 

TMS 

r rtec:tur• • 

H I Input 
Jl AG THI Modi Se Itel: 

MS 
dlc:Oded t,v th• internal JTAG TAP controller to 

d t ngullh th• primary operations of the test support circuitry. 
h ignal conforms to the ·IEEE 1149.1 Standard Test 

• Port and Bounda 
-Scan Architecture: 

TCK 1 Input JT AO THl Clock: Th signal clocb the internal boundary scan test support 
drcuilry Thil signal c:onforms to the "IEEE 1149.1 Standard 

TOI 

Test Access Port and Bounda -Scan Arch~ecture." 

~ ·gh Input 
JT AG T11tData Input: The value present on this pin is clocked into the selected JTAG 

test tnst,uction or data register on the rising edge of TCK. This 
signal conforms to th• •IEEE 1149.1 Standard Test Access 

TOO 

Port and Bounda -Scan ArcMecture." 

1 High Output 
JTAG T11t Data Output: Th• oontents ol the selected internal instruction or data test 

register are shifted out onto this pin on the falling edge of TCK. 
This signal conforms to th• "IEEE 1149.1 Standard Test 

OBUG• 

Access Port and Bounda -Scan Architecture." 

1 Low Input Debug•: When assel1ed this signal disables all caches, MMU's and 

brea ints. 

Power Supply Pins 

+SV Power 
26 

GND 26 
G r ound 

Total Pins 
192 

Table 3.9.1 • 
Pin oescrlptlons 

133 

Revision 2 .0 



BUS 

3.9.2 PACKAGING 

134 

The 88110 is a high pcrrorm 
88110 will be packaged u n 
high pin count devices to 
inductances. Production 
spacing. The tape used 
laminate gang bonded to t . p 
topped with silicon epoxy 1 
pans may be assembled on 1 

Cooling could be accomp . hcd 
which goes through the Lr 
chip would be attached to th 
ambient operating temperature 
between the chip and the 1 

operating frequency 

The 88110 will also be ofrer d in 2 
package with epoxy attached h I sank rn 

D NOT COPY 

The 
gang allows 

l low lead 
15 mil lead 

c i ve/copper) 
l d and glob 

Packaged 

h maximum 
9 C/Watt 

1lil) at full 

(PGA) 

Revision 2.0 



3.9.3 eus OPE 

opcrauon 
levels u 
transfer 
supporte 
can be 
response 
less) the 

3.9.3.1 Arbltr 

The 88110 
ABB•) 
directly 
implicit 
every dat I n . u 
granting dat u 

Arbitration 
(BR•). 
The arbit 
logic can 
(BG•o ) 
guarantee 

When the 881 to 
for the rb' a llrlll< 
assened with 
and becomes tt 
receiving 88110 .a qu h i 

dnve th 
address is valid 

The ub· 
subseq ller ~ay 
th uent mternal 

e CPU to bee grant ome n 
t 

• even if a bu 
ransacti • 

BUS 

The address bus is 
yncbronous with all 

c pcrate at Tl'L logic 
multiple master burst 

and f aimess may be 
me • The address bus 
of pipelined or split

r full or one-half (or 

rbit ation signals (BR*, BG*. 
1 ntial bus masters arbitrate 

, and t B Data bus request is 
bn rm II terminated (sec ARTRY*), 

n I t the transaction by 

• 1 r (or masters) asserts Bus Request 
performed by external arbitration logic. 

1 han a single bus clock. The arbitration 
I ich provides a single prioritized output 
. • o N) asserted. The arbitration logic must 

specified timing window. 

at its Bus Request pin (BR*) and waits 
(BO scrted). The 88110 qualifies BG• 

ss• negated). The 88110 then asserts ABB• 
h · 88110 removes its Bus Request (BR*) after 

r nt (BG•, Once address bus mastership is established the 
into the address bus and asserts TS* indicating that the 

I< r the 88110 on the bus by continuing to assert BG*. A 
r quest will bypass the arbitration sequence and will cause 

er elect The 88110 will padt when it receives a qualified bus 
quest was not as erted. OBB* will always negate after the 

The data bus cannot be p,rl<ed. even if oeG* is continually 

asserte:.n as complete. 

The 88110 · • hold bus arbt1r•t~• uniquely for each trans ction. The BB! 10 d~ _not aut~aiaucally 
tenure. ownership rn order 10 perform certain 1ransac11ons w11h1n a 51ngle bus 
multiple Howev_er, the arbiter may sctcctlvely park the ~8110 in order to for(:e 
(LK •) t transacuons within , tenure. For cxaatPle, the art"ter can • use • the lock_ pin 
indiv· • 

0 
group the read and write portions of an XMEM operaunn ••

10 

a 

51

ngle 
read •::e ~s tenure. In addtion, the 88110 continues to assert BR' between 

th

e 

wnte ponions of a tocked seqeuence. 

135 

Revision 2 .0 



BUS 
Motorola Coll/uu111ial Prop i l ry - DO NOT COPY 

Note that the arbitration cycle provides a "dead" cycle which cases the bus master 
turnaround on the address bus. Also note that no turnaround is necessary when 
parked on the bus, thus saving one clock for parked transactions 

3.9.3.2 Handshaking 

After becoming the address bus master, the CPU initiates a transaction by assening 
the Transfer Stan (TS•) signal. The CPU is then ready to transfer the data 
corresponding to the address, size, and direction indicated by the Address (A3 l-AO), 
the size (TBST, TSIZl-0) and the Read/Write (R/W•, INV•, MC·) pins. The CPU will 
initiate either a read, write, or invalidate transaction. 

Reads and writes are either single beat transfers (64 bits or I s ) or 4-beat burst
transfers of 2 words per beat (8 words total). Burst reads begin with the address of 
the critical double-word. Burst writes for copybacks due to cache line replacement 
also begin with the address of the critical double-word. Burst writes for snoop hit 
copybacks begin with the address of the double-word containing the hit address. 
Burst writes for cache line flushes begin with the first double-word in the line. 

Invalidates are address-only transfers with no data exchange, although write data is 
driven by the CPU. Invalidates are treated as single beat writes for handshaking purposes. 

Data tr~sfer begins when the CPU becomes data bus master. While asserting TS*, tbe 
CP~ begms sampling Data Bus Grant (DBG•) and Data Bus Busy (DBB*). When the CPU 
recei~es a qualified data bus grant (DBG• asscned, DBB• negated) the CPU will assert 
DB_B • a

nd 
_data transfer may begin. The CPU will not drive write data onto the bus 

u~til. It receives the qualified DBG•, nor will it recognize TA•, TEA•, or TRTRY*. Non
pipehned memory systems can simply ground DBG•'s for all CPU's as both address and 
data bus hand-off will be controlled by ABB•. 

r~e slav;hrespo
nd

s with an acknowledgement as it completes the transfer of the firSt 
au~ ~ slave assens Transfer Acknowledge (TA•) to indicate that data is valid on 

a rea or at data has been accepted on a write. 

For burst transfers the I . t ·1 the 
burst is comp! t ' Th s ave muSt contmue to sink or supply data with TA• u~ 1 h 
double-word a:d;~ss e d s!ave must provide the data for burst reads starting with t ~ 
around to the b • ~s nven by the master. The 88110 will increment (and wra~ 
A3) after each eginnm~ of the cache line if necessary) the double-word address (A -

assen1on of TA• ( • r . Th lave may temporarily interrupt the st b non-p_1pe med operation only). e s burst 
(WAIT state). ream Y negatmg TA• on any double-word of the 

3.9.3.3 Burst Speed 

Some systems will want to ak . b t 
cannot afford the exp t fe advantage of the 881 IO's high level of integrauon u 

• ense o a ve h" h f e an operatmg mode is provided h. ry ig speed memory system. There or • te 
at one-half the CPU I kw ich allows the data transfer and handshake to opera d 

"d bl c oc rate I h" ease consi era Y thus simpli'fy· h • n t 1s mode timing requirements are 1
ng t e design d • • · rf e 

an allowmg a less expensive mte ac · 

136 

• • D 2 0 Rev1s10 • 



Motorola Confidential Proprietary - DO NOT COPY 
BUS 

The operating mode is determined statically when the 88110 is coming out of reset. 
The CacheLine/BurstSpeed pin is used to select the burst transfer rate ( full CPU clock 
or half CPU clock) during reset. 

If the BurstSpeed pin was initialized in the half-speed mode, the CPU effectively 
inserts a WAIT state after each TA* asserted during a burst transfer. This forces a 
WAIT state following each data beat and relieves the memory system from a full clock 
speed handshake. Immediately following each WAIT cycle, the sampling of TA• and 
data resumes with one clock resolution. Burst speed has no effect on single beat 
transfers. 

3.9.3.4 Data Cache/Bus Decoupling 

In some cases the data cache can continue to service load/store requests (ATC 
hits/data cache hits only) while bus operations are taking place. The memory system 
can create a decoupling window by giving the CPU early notice of the first TA• via 
the PTA• signal. When TS* is asserted, decoupled load/stores may proceed on any 
clock following the negation of PT A*. PT A* must be asserted at least one clock before 
the first TA* of a transaction to insure proper operation. Once asserted, this signal 
must remain asserted for the duration of the transaction. Memory systems not taking 
advantage of decoupling may simply hold this signal asserted. Tablewalks, 
copybacks, flushes, and XMEM transactions are not eligible for decoupling and the 
PT A* signal is ignored during these transactions. 

3.9.3.5 Pipelined Addresses 

The minimum address cycle time for any given transaction is 2 clocks. Whenever the 
number of data transfer clocks exceeds the minimum number of address cloc~s, t~e 
potential for pipelining exists. By asserting the Address Acknowledge (AACK ) f1~• 
the slave can signal the CPU that it no longer needs the current address. AACK is 

recognized on the rising edge clock following the assertion of TS*. 

After receiving an AACK*, the address bus is freed up and another maSter. may 
initiate a transaction. (A single 88110 will not pipeline out a second address unpi ~he 
data transfer for the previous one is complete.) It is possible to run an out-o -or e~ 
protocol on a multi-master bus by using DBG*, however, data must always be retume 
to a given 88110 in the order it was requested. 

If AACK• is received by a parked address master (BG* asserted), the CPU negatels Ak
88

0
: 

ti n will start on the next c oc , and releases the address bus, unless a new transac O •11 bypass the 
a locked read is in progress. A subsequent internal bus requeSt wi 
arbitration sequence and will cause the CPU to become maSter-elect. 

t (BG* negated), the CPU will 
If AACK* is received by an unparked address mas er t obtain address bus 
release the address bus (negate ABB*) and allow another maSter 0 

ownership. 

l • lined bus the memory system can 
When implementing a multi-master, 1-leve pi~e DBB* ' The memory system must 
rely on 881 IO's to control data bus hand-off via d' • The memory system may 
ensure that no more than two transactions are out~tan lnlcK• until DBB* is negated. 
do this by grounding all DBG*'s and never assertmg 

137 
Revision 2 .0 



BUS Motorola Co,vilhn1ial Proprietary - DO NOT COPY 

The pipelined master assens TS• to indicate that address is valid and then waits for 
the current data transfer to complete before it assumes full bus ownership and 
transfers its own data. 

Multi-level pipelined busses or split response busscs must take responsibility for data 
hand-off via DBG•. 

3.9.3.6 Snoops/Collisions and Address Retry 

When a snooping CPU bits on a modified entry. the CPU will assen the SSTAT•1 
signal. SSTAT•1 output may be directly or indirectly coupled to each CPU's ARTRY• 
input. A qualified ARTRY• is one which is assened coincident with, or 1 clock 
immediately following initial assenion of AACK • (AACK• must remain assened). If 
AACK* is not assened ARTRY is qualified with the initial asscnion of TA• or TRTRY•. 
Upon receiving a qualified ARTRY•, the current address bus master terminates the 
transaction, releases the address bus, and re-initiates the transaction The memory 
system must ensure that for global accesses the initial TA• is coincident with or is 
canceled after ARTRY• has been assened and qualified. Transferring the first 
double-word to the cpu before the arrival of a qualified ARTR y• may result in stale 
data being read or good data being overwritten. The snoop response time for the 
88110 is fixed. SSTAT•1-o is valid the second rising clock edge after the external 
address has been sampled (TS• assened and clock rise). 

138 

The snooping CPU (with a snoop hit on a modified entry) will assen its bus requeSt 
coincidentally with SSTAT•1• SSTAT•1 (and consequently the ARTRY• pin) is negated 
after the snooping CPU sees ABB• negated. 

~hen ARTRY• is assened, other potential masters wiJI remove their bus requests and 
ignore an~ bus g~ants. Their bus requests (including the bus request of the original 
ma

st
er) will remam blocked until ARTRY• is negated. This blocking protocol all~ws th

e snooper who asserted the ARTRY• a window of opponunity to receive 
unconteS

t
ed ownership of the bus. The size of this window can be controlled by the 

memory system via the AACK• signal. 

The SSTAT• s· · al • al 1· · 
• • • 

1 
ign is so assened by the CPU to prevent pipelined address col moos. 

The posSibihty of collision exists after a master's address has been pipelined (AAC!'• asserted) but before the d t r (me 
add b h a a trans.er has completed Accesses to the same 
unti;es:iie Yda~; et;anm}ste~s could cause coherency failu;es since the tag is not loaded 

s,er is complete. 

To prevent coherency failu h C h for 
collision detection Tb" 1 r:, . eac PU maintains a pipelined address late . 
response to a l~bal is ate is loaded by the CPU when it receives an AACK* 10 
(code addresses g are data fddress and is cleared when the data transfer is complete 
global line address never_ ~~ded). If another master initiates an access to the same 
transfer will assen' A~i~~.me_ collision occurs. The CPU with the pending_ da~: 
CPU has loaded its ta s Si via SSTAT•1, deferring the offending master u_nt_il_ t d 
transaction which might ~ • d?cel snoop copybacks are not global. the re-miuate 
a collision. •mme iate Y follow a snoop copyback will not be flagged as 

The rules for assenion and n . 
the case of a snoop hit. egatlon of collision ARTRY• apply as described above in 

The collision retry can be thought of as a superset of the 

Revision 2.0 



Motorola Confidential Proprietary - DO NOT COPY BUS 

snoop retry protocol. The collision latch is really another snoop tag that forces an 
address retry on all hits, clean or dirty. 

3.9.3.7 Termination 

This section explains the bus transfer termination for the 88110. The possible 
termination cases are defined in the following table: 

DBB* TA* TEA* 
A A N 
A X A 
A X N 
A X N 

A = 
N = 
X = 

TRTRY* 
N 
X 

A 
X 

Asserted 
Negated 
Don't Care 

ARTRY* 
N 
X 

N 
A 

AACK* Termination 
X Normal 
X Error 
X Transfer Retry 

A, A1 Address Retry 

A, = One clock (rising edge) following assertion 

Table 3.9.3.7 - Termination Cases 

TA*: TEA*, and TRTRY* are ignored by the processor until the clock edge following a 
quahfied data bus grant. After a transfer has been terminated, TA*, TEA*, and 
TRTRY* are again ignored. For both the pipelined and non-pipelined cases, the 
master elect as well as all other competitors for the bus will ignore bus error and 
retry terminations. For the pipelined case, where the master elect has its address on 
the address bus, the master elect will acquire control of the bus after the abnormal 
termination is completed. 

For termination purposes, ARTRY* is sampled starting with the nsmg clock edge 
following TS* asserted and ending with the rising clock edge following AACK* 
asserted (AACK* must be held asserted for 2 clocks if ARTRY* is 1 clock late w.r.t. 
AACK*.) All ARTRY* assertions outside this window not terminate a transaction but 
will invoke the bus request blocking protocol. ARTRY* asserted after the first data 
beat will not result in transaction retry. 

3.9.3.7.1 Normal Transfer Acknowledge 

TA* is asserted by the responding slave to complete the data transfer. TEA* and 
TRTRY* remain negated during the transfer. 

3.9.3.7.2 Terminate with Bus Error 

TEA* is asserted by the responding slave to terminate the transaction with an error. 
At this point the master will release ownership of the data bus. Address. b~s 
ownership is released only if the CPU is not master-elect (the driv~n . address. is m 
step with the returning data). If the error is signalled before or comcident w_il

h th
e 

first data beat of a burst, the cache line will be loaded as invalid and the cpu wd~ t~e 
an exception. For cache line fills, fetches/loads maybe satisfied as the cache hne is 

139 
Revision 2.0 



BUS 

being filled 
loaded mvalid 

3.9.3. 7 .3 Terminate with 

TRTRY· IS 

to retry A 
transfer I 
transaction and I n 
and the bu IDlerf 

3.9.3.7.4 Terminate wit 

A quah ied AR R • 
ownership If AR K 
cancelled and D88 
during d I bus 
will rc-mitaate l , 

140 

Rerr 

- D NOT COPY 

line is 

indication 
1 l burst 

r 1, the 
anvalid, 

bus 
1 nure is 

occurs 
master 

Revision 2-0 



Motorola Confidential Proprietary - DO NOT COPY 

3.9.4 BUS TIMING EXAMPLES 

3.9.4.1 Single Beat Transfers 

3.9.4.1.1 Fastest Slngle Beat Reads 

A31-5 ----G;Xx cp,A X CfUA. )>----

A4-0 c::x===x : : :> 
TC2-0 ----~ c111a XL...!!!mde!!!LJ-) ~~-
ABB" ~ .... ________ .... 1 

RIWWWW 
GBL* 
MC" 
INV* 

TS* ~ 

V' • .• .. ·:·. ::-: :: .... ::. 

• II 
A A 

" • 
AACK* ~~~~~~===========~~~~~~ ARTRY* 

D63-0----'l 
DBB" 

TA* &WW i\ 
TEA* 

TRTRY" 

Revision 2 .0 

ffilP mm 
WWW \iiil 

M 
M 

Mi 

Figure 3.9.4.1.1 - Fast Slngle Beat Reads 

BUS 

141 



81,; 

3 g .1 2 Fa11111 

Figure 3.9.4 1 2 • F 

COPY 

-I 

• II 2.0 Rtvuio 

a. 



Motorola Confidential Proprietary - DO NOT COPY 

3.9.4.1.3 Single Beat Reads with Walts 

A31-5 ~~==~~====Ct=::•~., 
M-0 .:::....:::..~~;;~=:::::•::::::::::··:··:·=·::::: i,~j.' 

TC2-o~-"°'<-.!ooc1e!!!!.__.~.....!!!dlla~-->':-:tr--'r/"~~i 
ABB* 

rwr 
GBL* 
MC* 
INV* 

TS* 

AACK* ~~~~~~====!~~=====!~~~~!! ARTRY* 

063-0 -: ---'-400 •. (E)J;i;;);: ....... : .... :· --
DBB* \ r-1. 1 

TA* IIIIIIIIIIIEillllla,--""\__..,--~\..JIBlllllll&illl 
TEA* 

TRTRY* 

DBG"ll'iffll M1 

Figure 3.9.4.1.3 • Single Beat Reads with Walts 

Revision 2.0 

BUS 

143 



BUS 

3.9.4.1.4 Slngle Beat w ri 

144 

A31 
M -0 

C 

ABB• 

TS• 

AACl'I:• ~ ---,.--,----,,,---,c=::.-:.~::J 
ARTR' • 

063-o 
DBS• 

TA• •••-,._.c.:::..-=.-::,-.--L_._r -----_ ---_ ---
TEA• r--~r--- ~--.,----!:~";;;;~ TRTRY• ;::::::==.-.- ~=::::,-- ~ 

DBG•-IL.Jl ______ ==========i 
BR· 7. 
BG• 

Figure 3.9.4.1.4 • Single Bea 

D I NOT COPY 

Revision 2.0 



Motorola Confltuntial Proprietary - DO NOT COPY BUS 

3.9.4.1.5 Slngle Beat Reads with Data Bua Grant 

I I I 4 I I 7 I I 10 ti ti 13 14 15 te 17 ti 19 20 .~t . • 22 ·\~ -: • 24 

A31-5 
M-0 

TC2-0---L~cllla!!!.._ L._~ooc11!!!__~)~--:-
ABB• 

RIW 
GBL" 
MC• 
INV• 

TS• 

AACK• ■_!!!!!:=::!!~=====!!~~~! ARTRV-

063-0 
DBB• 

---~@>----- -G}>--- -
\_/ '-I" 

DBG• ----~L..J-r-"-,\....jB!IIIIEIIIIIIIIIIII 

Figure 3.9.4.1.5 - Slngle Beat Reads with Data Bus Grant 

Revision 2.0 
145 



BUS 

3.9.4.1.6 Slngll But Wrlte1 

146 

A31-5 -~:~-;~~;f~~~~;~~~== M-0 r-

TC2-0 ---1~~.J_....J·--~!-- .r-_,::_..::==
ABB• 

:,~~~~==~~~c======~~~~ MC• ■ ._r-■■■t::::~::::~::::::::::~~===-=5., INV-

TS• 

MCK• !.:.===~===~~=::=!.:::::::~==~ ARTRY• -

063-0 ---, 
DBB• ------. 

TA• ----------llr'i 

TEA• ;::i~~~~f~~~~~~~==~~~ TRTRY• 

DBG• r-.,,,--... __ ,._-_-_-:_-----,._,c:======:l 

Figure 3.1.4.1.6 - Slnglt Beat 
• Ith Oat Bu 

- D NOT COPY 

n 

Re-vision 2 .O 



Motorola Confidential Proprietary - DO NOT COPY 

3.9.4.1.7 Single Beat Read/Write/Read Sequences 

z 

A31-5 -
A4-0 --

TC2-0-
ABB* 

R/W' i 
GBL* 
MC* FHP 

AACK* M&W:# 
ARTRY* 

D63-o........,~~ -< 
OBB* -.,., .. -..,.:;·--.;,_: - ........ 

::f:;' 

TA• €%&#%¥·+=~ 
TEA• fW:ffe.Wf..%,:mf 

TRTRY* $/:WMMf.<N 

4 . 7 a ••• t • 10 : fr. 12 .J# 1• 

;:=::==:::~~~~=:::.r----""'""u:e~immwm1...;!:!!!!..!l!WmwL,.!:1!!!.~ 
~==~x::===::::>>---< >++-

dala x code > c1a1a k--

'-----1 

S!ffi 
ttiifJ 

™ 
€iiii 
ml 
mw 

i 

\%iiifdW 

\'#f:.1f.M1 
\WM 

~. 

Mtmf .... · 
~ · 

.•.:·-· · ·. 

WMi$1 

a,m,.,,§:fr.M•s" 
W•ir-W 
WAfif#Mt 

\ ~ .. 

····•··--·•···· 
-•~ .. -

• .. :-,.·:· _.. ·::}::<:-· 

a_DBG* llfETIB!ffll:i❖:::J-····L_...Jmm~::::§.:l.-:~~-=::-11.-_.JfMm]-,~-L-.J..tm::t~-wrumru@wMi#;,;::f:~-f~~»~;;::@~-""~•-=f~-•~:¼t~1-~>.':=filfi!:.::::~;;z-:~;~¥t~-:~~•:--:::::i:l;::~.,.,:--::.·>:::;:;.::>.:.i::.~f::i:l;;~;1:::e;:;:,::;;~~*""·-*:=-:·.,.,·.,,·•:,,,••.,,;····~·.,,'.F""._""•,,,.<;.;.=,.,,.•=@ 

~ k-x-,,,,,,,,,::!?-:'.i,,:\ .• . tW-1 

-:·2:·· 

····::.· 

Fl 3 9 4 1 7 Slngle Beat Read/Write/Read Sequences gure . . . . • 

Revision 2 .0 

BUS 

147 



BUS Motorola 

3.9.4.1.8 Non-plpellned xmem 

A31-5 ---< 
M-0 

TC2-0 ---1. 

ABB* 

rwr 
GBL* 
MC• 
INV
LK* 

- - - -
Ts• 

AACK• 
ARTRY* 

063-0 
DBB• ------,, 

TA• 
TEA• 

TRTRY* 

a_DBG'" 

a_BW 
a_BG• 

,,1 

Figure 3.9.4.1.8 • Non-pipelined xmem 

148 

• DO NOT COPY 

Revillon 2.0 



Motorola Confidential Proprietary - DO NOT COPY BUS 

3.9.4.1.9 lnvalldatlon v1. Read vs. Write 

A31-5 
A4-0 

TC2-0 

ABB• 

rwr 
GBL* 
MC* 
INV* 

rs· 
AACK'- R WWW 

ARTRY* 

063-0 OUI 

08B* 

TA* -TEA* 
TRTRY* 

a DBG* 
b =DBG* f::1¾-@~AJM,:~§¥#%W4W@.i§N@ 4 

a_BR* '--' ,.._ ___ _,/ 

BG - - ----, ,---~-a_ * \-1· . 

b_BR* 
b_BG* 

9 Invalidation vs. Read vs. Write Figure 3.9.4.1. -

149 

Revision 2 .0 



BUS Motorola 

3.9.4.2 Burst Mode Transfers 

3.9.4.2.1 Fastest Burst Tran■fera 

150 

AACK• 
ARTRY• 

063-0 h h h h •••-

D88• ------. 
--i. _____ ___,r--\.._ ____ -'"-~-----r 

DBG* 

BR* 
BG• 

Figure 3•9•4•2-1 • Fastest Burat Transtera 

DO NOT COPY 

Rtvision 2 .O 



Motorola Co,ifidlntial Proprleuuy • DO NOT COPY 

3.9.4.2.2 Burst Read with Waltl/DBG· 

A31•5 
M-0 

ABB• 
rwr .-----,--------------
GBL· 
MC• 
INV-

TS• 

AACK• 
ARTRY• 

063-0 
DBB• _J 

TA• \_J \.....J7 C 
TEA* --TRTRY•lliiiiiii.--------i■ 
OBG•-------

figure 3.9.4.2.2 . eurst Read with Walts/DBG* 

Revision 2.0 

BUS 

151 



BUS Motorola Conjltulllial Proprle1 

3.9.4.2.3 Burst Write with Walts/DBG" 

152 

A31-5 - --~=:==~===:=:~==::::::=::: M-0 ---,_ __ __, _____ ,._ __ , __ 
ABB• 

RNr 
GBL• 
MC• 
INV• 

TS• ~r------------

AACK• !!!!~c========::J!!! 
ARTRY* 

063-0 -_.·:: :::: :~•~..x~-~-.J..J•!!:..X!•!) 
DBB· 

TA* 
TEA* 

TRTRY* 

DBG•----. 

BR• 
BG• 

Figure 3.9.4.2.3 • Burst Write with Waltl/DBG• 

• DO NOT COPY 

Revision 2 .O 



Motorola Confultntial roprlttary DO NOT COPY 

3.9.4.2.4 Burst Read In Half-Speed Mode 

A31·S 
M-0 

Aee· --'\ 

RNr 
GBL• 
MC• 
INV• 

rs· 
AACK• 

ARTRY• 

063-0 
oee· 

TA• 
TEA• TRTRY• _____ ...1 ,,__--,;::;;,--.... _..-,_.-,m 

DBG•---"""\...._J'i-aiilllZal~=m:;;;aiiii31B 

BR• 
BG• 

Figure 3.9.4.2.4 . Burst Read In Half-Speed Mode 

Revision 2.0 

BUS 

153 



BUS 1111al - D NOT COPY 

3.9.4.2.5 Non-pipelined Burst Tran1t1ra 

A31-5 
M-0 
ABB• 

RNr 
GBe 
MC• 
IN'r 

rs· 
AACK• 

ARTRY• 

063-0 Ill 1111 

oas· 

TA• -TEA• 
TRTRY• 

a DBG• 
b DBG• 
c_ooo· 

a_BR• 
a_BG• 

b_BR• 
b_BG* 

c_BR* 
c_BG• 

.... and~ 11.-,.d. 

Figure 3.9.4.2.5 • Non-plpellnect Burst Transfers 

154 
Rt vision 2 .0 



Motorola Confidential Proprietary - DO NOT COPY 

3.9.4.2.6 Pre-Transfer Acknowledge 

A31-5 ---\.-----~;,;.;...----~----1 
A4-o - - ~,,__ .... _-_-_-_-_-_-_-_-_-..,.v .... -_;r.__-.... -_-_--:_.")r .. ~-, 
ABB*~ 

rwr _ __ ... 
GBL* 
MC* 
INV'&;M 

rs·~ 
MCK• 

ARTRV-

063-o ----:------"'"\..-A.._; 
DBB• 

TA* 
TEA• 

TRTRY* 
PTA•---- -----. "------------.J 

a_DBG* &au tWW 
b_DBG• @#@:¾.fi'f&Wlt 

a_BR* 
a_BG* 
b_BR• 
b_BG* 

L._j 

&\ t&N t¥8%W1Mti¾W¥¥i. 

Figure 3.9.4.2.6 - PTA* Examples 

Revision 2.0 

BUS 

155 



BUS Motorola D "JOT COPY 

3.9.4.2.7 Plpellnld using oee• Data Tenure Hand-oft 

A31-5 
M-0 

ABB" 

rwr 
GBL" 
MC" 
INV• 

rs· 
MCK" 

ARTRY• 

063-0 

DBB" 

a DBG" 
b DBG" 
c_DBG• 

TA" ... 
TEA• 

TRTRY• 

a_BR• 
a_BG• 
b_BR• 
b_BG• 

c_BR• 
c_BG• 

Figure 3.9.4.2.7 - Plpellned using DBB• Data Tenure Hand-off 

156 
RtYi1ion 2 .0 



Motorola Confidential Proprietary - DO NOT COPY 

3.9.4.3 Termination Cycles 

3.9.4.3.1 Non-Plpellned Error Termination 

I I 4 I I 7 I t 10 11 12 13 14 

RNr ·.::~;;;;;;~~~~~~~~~~=-GBL* 
MC• 
INV* 
rs· -

D~-0-----r~~~y~-_YJ~_7__r-----"(~)c_,~r_.-...,-x....,-_b7 
oaa· 

TA• -••r--r1, 
TEA• I 

TRTRV-

a DBG• 
b_DBG• 

a_BR• 
a_BG• 
b_BR• 
b_BG• 

Revision 2.0 

Figure 3.9.4.3.1 • Non-Plpellned Error Termination 

BUS 

157 



BUS Motorola Colf/liultllal Pr pritl • DO NOT COPY 

3.9.4.3.2 Non-Pipelined TRTRY• Termination 

158 

A31-s :=>-~~~t=. =J_=_=_=-~~t=r..=:,_t.=:,C M-0 . 
ABB* ~~--~' \'--------' 

Rm* 
GBL* 
MC• 
INV* 
TS* 

063-o ---- - - -----l.G........,__, 
088* ~,------.,__ _____ J 

TA• 
TEA* 

TRTRY• 

a_DBG• 

\ ---
a_BR• \__J,-----,-- - ~---------
a_BG· ~-~---.L.Jr--------

Figure 3.9.4.3.2 • Non-Plpellned TRTRY" Termination 

Revision 2 .O 



Motorola Colf/idtnu I P oprlttary • DO NOT COPY 

3.9.4.3.3 Plpellned TRTRY· Termination 

) ,~- ---.__ ___ __, 

rwr ,---,y--------------..-----
GBL· .__:_-:.,"J_r:_:_:_:_:_-:_-:i-;.i;.i;.-:,:..:_:_:..:..:..:..:..:_-:,-:.-:.-:.-:_:..-:_:..:_:_:..-:__-
MC* 
INV-

TS* ~.-----,L-1 

AACK* 
ARTRY* 

063-o 
DBB* ---

TA* 
TEA• 

TRTRY* t 

a_DBG• 
b_DBG• 

a_BR• 
a_BG• 

b_BR• 
b_BG• 

\ l!IIIA 

\ 

' 

LI 

" 
q1118 f'7 .. -

·cp,A r 
Ill 

Ill 

Figure 3.9.4.3.3 - Plpellned TRTRY• Termination 

Revision 2.0 

BUS 

159 



BUS 
Motorola Co,rfftUlllial P • DO NOT COPY 

3.9.4.4 Snoop Hit Transfers 

3.9.4.4.1 Non-Pipelined Snoop Hit ARTRY• 

~1-5 
A4-0 
ABB* 

rwr 
GBL* 
MC* 
INV* 

TS* 

AACK* 
ARTRY* 

t 1• • llad ID 

M and 
SSTAT1* • (lpllDNIJ,1 

TATl'd 
!lad 

063-0 TA'mull 

DBB* ID qlllllJ 

TA• 
TEA* 

TRTRY* 

a DBG* 
b DBG* 
c_DBG* 

a_BR• 
a_BG* 

b_BR* 
b_BG* 
c_BR* 
c_BG• 

Figure 3.9.4.4.1 • Non-Pipelined Snoop Hit ARTR • 

160 Revision 2.0 



Motorola Confidential Proprlttary - DO NOT COPY 

3.9.4.4.2 Plpellned Snoop Hit ARTRY* 

A31•5 --{_qiuA) 

A4-0 - -~: _-_ """'· ~ 
ABB• 

AACK• 
ARTRY• 

SSTATr 

1 
\ 
\ 

t:::::1 
c-:::::3 
c::::l 
l :: :, J 

-➔ MWM@ 

fFJiD 
MWW@I 

\ __.bfcpuA 

BUS 

@XS & MW 
iW4#§% M@¾t/l 

M$%@j 

t®WI 

063-0 -----lJ"'~.!llnlX.JlnU.J"'~ 1nr------\...!/!l!~A.!!!!!!.A..~ 

oaa· "'----.,-"----~ \ 0"'\\..:-· -;..._'----~c 

Figure 3.9.4.4.2 - Pipelined Snoop Hit ARTRY* 

161 

Revision 2.0 



162 

Motorola nli I P 

3.9.4.4.3 Open Plpellne Snoop Hit Ind Co1ll1lon ARTRY· 

111••· •• 
~ --, 

A31-5---< 
A4-0 -~ 
ABB* 

R/W* 
GBL* 
MC* 
INV* 

TS* ~ 

• ·O NOT COPY 

AACK* ~~~~-~-L---1::::l __ _c_:i_ _ _j~==l--L= = :::i 
ARTRY*=---- r-- - --------- r---------

SSTAT1* ---
SSTATO* 

~~~ ----'G. ..r-=-=--=--=-=-;_~_~x. -1,1~ .:.J~~aJ-~_~!i-~2~~3~i~~~~==:9~:E 
TA* TEA•~~-~r=iiiiiiiiiiar====~~=====:::::::=:;:=====~ TRTRv•= _ _.

a_DBG• ---
b DBG* ------ --
c_DBG* - -------==~~~ ~======

a_BR* 7._J--
a_BG*
bBR• ----
b=BG• -----.:=--..J,-- ~---------------·-
c_BR*
c_BG•

Figure 3.9.4.4.3 • Open Pipe S d Coll i

Revision 2-0

Motorola Confidential Proprietary - DO NOT COPY APPENDIX - VECTOR TABLE

A.1. - EXCEPTION VECTOR TABLE

Number
0
1
2
3
4
5
6
7
8
9

10
1 1
12
13

14-113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

128-511

Revision 2.0

Address
Vector Base + Exception Definition

$00 Reset
$08 Maskable Interrupt
$10 Instruction Access
$18 Data Access
$20 Misaligned Address
$28 Unimplemented OI)code
$30 Privilege Violation
$38 Bounds Check Violation
$40 Integer Divide-by-zero
$48 Integer Overflow
$50 Unrecoverable Error
$58 Nonmaskable Interrupt *
$60 Data MMU ATC Miss *
$68 Instruction MMU ATC Miss *

Reserved
$390 SFU1 - Floating Point Exception
$398 Reserved
$3A0 SFU2 - Graphics Unimplemented Opcode
$3A8 Reserved
$3B0 SFU3 - Unimplemented Opcode
$3B8 Reserved
$3C0 SFU4 - Unimplemented Opcode
$3C8 Reserved
$3D0 SFU5 - Unimplemented Opcode
$3D8 Reserved
$3E0 SFU6 - Unimplemented Opcode
$3E8 Reserved
$3F0 SFU? - Unimplemented Opcode
$3F8 Reserved

Reserved - User Tra_Q Vectors
* Not present m 881 00

Table A.1 - Exception Vector Table

163

APPENDIX - CONTROL REGISTERS Motorola Confi nt. I Proprietary - DO NOT COPY

A.2. - CONTROL REGISTERS

Number Acronym Re2ister Name Figure

crO PIO Processor Identification
cr1 PSR Processor Status Register 3.2.4

cr2 EPSR Exception Processor Status Register
cr3 Unimplemented

cr4 EIP Exception Instruction Ponter

cr5-cr6 Unimplemented

cr7 VBR Vector Base Register
c8-cr15 Ummplemented

cr16 SRO Storage Register O
cr17 SR1 Storage Register 1
cr18 SR2 Storage Register 2
cr19 SR3 Storage Register 3
cr2O SR4 Storage Register 4

cr21-cr24 Ummplemented
cr25 ICMD Instruction MMU/CachD TIC Command 3 8.8.a
cr26 ICTL Instruction MMU, C che Control 3 8.8.b
cr27 ISAR Instruction System Address -

cr28 ISAP Instruction MMU Supervisor Area Pointer 3.8.3.1

cr29 IUAP Instruction MMU User Aren Pointe 3 8.3.1
cr3O IIR Instruction MMU ATC I dex Reg:ster 3.8.8.c
cr31 IBP Instruction MMU BATC R W Port 3.8.8.d
cr32 IPPU Instruction MMU PATC RW Port - Upper 3.8.1.2
cr33 IPPL Instruction MMU PATC RiW Port - Lowe I

3.8.1.2
cr34 ISR Instruction Access S a s Reg1s:er 3.8.8.e
cr35 ILAR Instruction Access Log,cal Addr ss
cr36 IPAR Instruction Access Physical Address

cr37-cr39 Ummplemented
cr4O DCMD Data MMU/Cache Command 3.8.8.f
cr41 DCTL Data MMU,Cacne Control 3.8.8.g
cr42 DSAR Data System Address
cr43 DSAP Data MMU Supervisor Area Pointer 3.8.3.1
cr44 DUAP Data MMU User Area Po nter 3.8.3. 1

cr45 DIR Data MMU ATC Index Reg,ster 3.8.8.h
cr46 DBP Data MMU BATC R'W Port 3.8.8.i
cr47 DPPU Data MMU PATC R/W Port- Upper 3.8.1 .2
cr48 DPPL Data MMU PATC RIW Port- Lower 3.8.1.2_
cr49 DSR Data Access Status Reg·ster 3.8.8.j
cr5O OLAR Data Access logrcai Address
cr51 DPAR Data Access Phys cal Address cr52-cr63 Unimplemented -

~

Table A.2.1 SFUO Control Registers

164 Revision 2 .O

- -
I 1 I

~ I -,
L__ -
1--
L__

- I - I -
-
-1 -. - - -

' - -...
- - - - -
' - - -; ,_ . - --; - - -
' - - - -s

L_ - - - -,
' - - --·
I C - -.
L_ - - -·
L_ - - - --
~ - - -- - - 1 - .J· -
I-- - i--

f' .a,_ .- ,1 -
L...__ - .__ - -
~ - - - - - . -

- "- - - I . r -
~ '·

L - L........... ~n ,,
-

--~
'-- -

_.__
-,-

L_ ----
,;

-
--"-

- '
r

i..,__
-

I

-
~

'I I
'1~

-' r· •

- •'

-

1

-
- 'l ·tu

r 1 >)

-

- .) -r ' I

-
~ - I-... - \ ;,e ---~ - .,.

• - :r. - - -
L.-..... -_ - -
- - -1--

I
~

- - -I

. - -1-- - ~

-;-
- - - ' i. "> -- -

~ -
'-- - -
L......__ - - - - ·~-. ..

~

I
-- I --

,,,,

7
,

(-
~ - - -

- I l
-; r

--
L......__
~

'-- -
~

~

L..,._ -

-
) -

--- - -

~

-
r--L_

~ - I f

• I

-
'I -

I '

-

L
L_

- - - -~~t

1--
t

C

-,' ·=
-

- 1 ., ,~
--

- I
-
_ 1

.

Motorola Confidential Proprietary - DO NOT COPY APPENDIX - CONTROL REGISTERS

Number Acronym Re2ister Name Figure

fcrO FPECR Floating Point Exception Cause Register 3.3.2.1
fcr1-fcr61 Unimplemented

fcr62 FPSR Floating Point Status Register 2.2.5.2
fcr63 FPCR Floating Point Control Register 2.2.5.2

Table A.2.2 • SFU1 Control Registers

165

Revision 2.0

Motorola Confld~ntial Proprietary - DO NOT COPY

A.3. - OPCODE ASSIGNMENTS
Highlighted in gray are differences from the 88100.

31 28 27 2625

ld.d (x) 0 0 0 0 0 0
Id (x) 0 0 Q O O 1
ld.u (g) 0 0 0 0 1 b
Id (g) 0 0 0 1 TY
st (g) 0 0 1 0 TY
st.d (x) 0 0 1 1 0 0
st (x) 0 0 l 1 0 1
at.x (x) 0 0 l 1 1 0
ld.x (x) 0 0 1 1 1 1
and 0 1 0 0 0 U

mask 0 1 0 0 1 U
xor 0 1 0 1 0 U
or 0 1 0 1 1 U

addu 011000
subu 0 1 1 0 0 1
dlvu 0 1 1 0 1 0
mulu

add

sub

div

cmp

011011
011100
011101
011110
011111

.u :

.s:

.d:

D
D
D

D

D

D
D
D
D
D

D

D

D

D

D

D

D
D

D

D

D

21 20

.x:
(x):
(g):

b:

unsigned
single-word
double-word
quad-word
extended register file
general register file

U:

S1
Sl
S1
Sl
Sl
S1
Sl
S1.
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl

1615

APPENDIX - OPCODES

SJM11.6:. :.-·.· .. -·
SJM!l6
S~6i
sThMi6. •. -

-.SIM1l6{);;;
•.. :. :s.:JMi6; :::::::::

:s~e.%:ii:it:!i:
-·-· S~p i: ,

SJM11EL ;.. •
IlYMI.6
1M.fl.6
Il-Ml.6
JM.116
ThMl..6
1M.fl.6
ThMl.6

TY:

o - half-word, 1 - byte

lower, upper
double-word, single-word, half-word, byte . .

. 1 d nding on 1mmed1ate mode
SIM-116: 16-bit unsigned or signed va ue epe

IM-116: 16-bit unsigned value

Figure A.3.a - Immediate Opcodes

167
Revision 2.0

0

APPENDIX - OPCODES Motorola

Ider

ster

xer

flder

fster

fxer

fmul

fevt

flt (➔g)

flt (➔x)

fadd

fsub

temp

fempu

mov➔g

mov➔x

Int

nlnt

trnc

fdlv

fsqrt

168

31 2625

100000 D 0 u u
1 0 0 0 0 0 0 0 0 0 0
100000 D

1 0 0 0 0 0 D

1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 D

31 2625 21 20

100001 D
100001 D
100001 D
100001
100001 D
100001 D
100001
100001
100001
100001
100001
100001 D
100001
100001

100001

CRS: Source Contr I Re I t r
CRD: Destination C ntr l Re j c

R: 0 • source operand an
Tl: Source 1 azc •
T2: Source 2 SIZC

T2*: Source 2 size.
T2t: if R=I thca • 2
'ID: Destination IZC Q . l

➔g: destination operand •0
➔x: d • cstanatioo opcran n

F lgure A.3.b • Control Register c

r O NOT COPY

0

0 0

::>4 0

S2

S2
S2
S2
S2
S2
S2
S2
S2
S2

► F
11 - unused

. 11 - unused
1 m unused

'
1 J • unused

Ind SFU1 OpcOdel

RevisiOII 2 .O

Motorola Confidential Proprlttary - DO NOT COPY APPENDIX - OPCODES

31 26 25 21 20 1615 11 10 9 8 7 6 5 4 2 1 0

pmul 1 0 0) .. 0 D Sl
padd 1 0 0 Q l 0 D Sl 0 0 l O O O O O O T .LS2.
padds 1 0 0 0 1 0 D S1 o o 1 o o o o I s T · · > < s2
psub 1 0 0 0 1 0 D S1 0 0 1 1 0 0 0 0 0 T . S2
psubs 1 0 0 0 1 0 D S1 0 0 1 1 0 0 0 I S To •· S2
pcmp , 0 0 0 1 0 D Sl
ppack . 1 0 0 f 0 D S1 J -

punpk

prot

prot

100010 D S1
100010 D $1

100010 D Sl 0 1 1 l 1 0 .d .d O O ·• b •••• : S2*

T: 4-bit (valid only for pun pk)
8-bit
16-bit

00=
01 =
10 =
11 =
Note:

32-bit
Not all types make sense on alJ instructions. T~pes other than
those specified in the text cause an SFU2 exception.

R: 0000= rotate 64-bit register pair left 0 (or 64) bits.
0001= rotate left 4 bits.
0010= rotate left 8 bits.
rrrr= rotate left (rrrr x 4) bits.
Note: only rotations of 8,16, and 32 are meaningful for ppack and

only in limited combinations with T.

S2*: The nibble-wise (4-bit) rotate count is specified in bits <5:2> of rS2.
Other bits (<31:6>,<1:0>) are ignored but should be set to zero to assure
future compatibility.

S: 00: padd, non-saturating . .
o 1: unsigned ± unsigned = ~ns1gned satu_rauon
1 0: unsigned ± signed = unsigned ~aturauon
11: signed ± signed = signed saturation

Figure A.3.c - SFU2 Graphics Opcodes

169

Revision 2.0

APPENDIX - OPCODF.S Motorola Co,r/llUlllial P •ti - DO NOT COPY

170

br

bsr

bbO

bb1

bend

31 27 2625

31 27 26 25 21 20

BS Sl
BS s
M5 Sl

31 2625 21 20

cir 1 1 1 1 0 0 D Sl
set 111100
ext 1 1 1 1 0 0
extu 1 1 1 1 0 0
mak 1 1 1 1 0 0
rot 111100

D

D

D

D

D

31 2625 21 20

tbO 1 1 1 1 0 0 BS
tb1 1 1 1 1 0 0
tend 1 1 1 1 0 0

BS
M5

31 2625 21 20

xmem 1 1 1 1 0 1 D
ld.u 1 1 1 1 0 1 D
Id

st

Ida [] 1 1 1 1 0 F

N: execute next

D26: 26-bit sign extended
D16: 16-bit sign extended
BS: bit number
WS: bit field width
05: bit field offset

MS: condition match field
VEX::9: vector number
U:
T:

access user space
0 - normal store,

D

D

D

1 - store-through the cache

D26
D26

16 15

.u

Figure A.3.d . Branch, Bit Field, and Memory Opcodes

OS

0

, t- dest.

b)tC

Rtvi. ,on 2.0

0

0

0

0

0

pa

Motorola Confidential Proprietary - DO NOT COPY

and

xor

or

31

1
1

1

1 1
1 1
1 1

2625 21 20

1 0 1 D Sl
1 0 1 D Sl
1 0 1 D Sl

APPENDIX - OPCODES

1615 1110 9 54 0

0 1 0 0 0 cooooo S2
0 1 0 1 0 C 0 0 0 0 0 S2
0 1 0 1 1 C 0 0 0 0 0 S2

31 2625 21 20 1615 10 9 8 7 54 0

addu

subu

dlvu

mulu

muts

add

sub

div:$

cmp

cir

set

ext

extu
mak

rot

jmp

jsr

ff1

ffO

tbnd

rte

tbnd

1 1 1 1 0 1 D Sl OllOOOioOOO S2
1 1 1 1 0 1 D Sl OllOOlioOOO S2
1 1 1 1 0 1 D Sl 0110100 ::1. 000 S2
1 1 1 1 0 1 D Sl O 1 1 0 1 1 0 id! 0 0 0 S2
111101 D .•. ·.·::1,;:,s1J}:::::::: i:III1Ji1rrt::::fii:!!Im!11}rtru Io:: IrJ:::::ri I!io!i :•:•:•:•:•:•: : :
111101 D Sl OlllOOioOOO S2
1 1
1 1
1 1

31

1 1

1 1
1 1
1 1
1 1
1 1

31

1 1
1 1

31

1 1

1 1
1 1
1 1
1 1

1 1 0 1 D Sl OlllOlioOOO S2
1 1 0 1 D S1 01111100000 S2
1 1 0 1 D S1 01111100000 S2

2625 2120 1615 54 0

1 1 0 1 D Sl 1 0000000000 S2
1 1 0 1 D Sl 1 0001000000 S2
1 1 0 1 D Sl 10010000000 S2

1 1 0 1 D Sl 10011000000 S2

1 1 0 1 D Sl 1 0100000000 S2

1 1 0 1 D Sl 10101000000 S2
2625 1615 1110 9 54 0

1 1 0 1 000000000 0 1 1 0 0 0 N 0 0 0 0 0 S2

1 1 0 1 0000000000 1 1 0 0 1 N 0 0 0 0 0 S2

2625 21 20 1615 54 0

1 1 0 1 D 0 0 0 0 0 11101000000 S2

1 1 0 1 D 0 0 0 0 0 11101100000 S2

1 1 0 1 0 0 0 0 0 Sl 1 1 111000000 S2

1 1 0 1 0000000000 1 1 11110000000000

1 1 1 0 0 0 0 0 0 Sl

C:
i:
o:

complement second operand

use carry-in
set carry-out

d
N:

IM116

single, double
execute next

Figure A.3.e - Triadic Operations Opcodes

171
Revision 2.0

