

CHAPTER 1
INTRODUCTION TO THE POSITIONAL DEVICE INTERFACE

The Positional Device Interface (PDI) is software that enables
you to write applications that use a mouse, digitizing tablet,
touch screen, or other positional device. A positional device is
hardware that you use for input. 1Its main feature is the ability
to transmit information about location as input to the computer.
The PDI software operates with positional devices connected to
the Professional’s Communication Port or Printer Port.
Additionally, the software supports devices connected to ports
located on the DECtouch Touch Screen Monitor.
You can connect the following positional devices to the
Communication Port, the Printer Port, or a DECtouch port:

e GTCO Digi-Pad 5

e GTCO Micro Digi-Pad

e Summagraphics MM 961

e Summagraphics MM 1201

e Summagraphics SummaMouse

@ Microsoft Serial Mouse

@ Seiko DT-3100 Tablet

e Summagraphics Bit Pad One and Bit Pad Two

In addition, PDI supports the following devices only when they
are connected to ports located on the DECtouch monitor:

COMPONENTS OF THE PDI KIT

® Test the PDI

This application simply attaches a positional device, then
reads and displays data transmitted from that device.
Section 1.2.4 describes Test the PDI.

e PDI Sketchpad
The Sketchpad is a sample application that allows you to wuse
a positional device to draw simple pictures on the terminal
screen. Sketchpad has a crosshair cursor that you can move
across any of three screen areas: Command Menu, Drawing

Area, and Color Palette. Appendix B describes the Sketchpad
application.

1.1.3 The Positional Device Library (PDL)

The Positional Device Library (PDL) comes as a cluster library
with the operating system, or as an object module with the Tool
Kit. The library contains routines that call the PDI. These
routines enable you to write applications that use positional
devices.

You can call the library routines from the following Tool Kit
programming languages:

@ BASIC-PLUS-2

e FORTRAN-77

e PASCAL

e PDP-11 MACRO-11

For detailed, language-specific information, refer to the
appropriate language manual listed in the Preface.

1.2 USING THE PDI KIT

To get started using the kit, perform the steps outlined in the
following subsections.

SPECIFYING DEVICE IDENTIFICATION

2.2.4 Using Zero in the Device Identification
You can specify zero in different combinations of class,

subclass, and port. Table 2-4 shows how the PDI handles such
combinations.

Table 2-4: Combinations of Class, Subclass, and Port Using Zero

Class Subclass Port Result

c s P This combination precisely
locates a particular device on a
particular port.

€ S 0 The PDI performs the operation on
all devices matching the
class/subclass combination.

c 0 0 The PDI performs the operation on
all devices of the specified
class.

0 0 p The PDI performs the operation on

whatever device is connected to
the specified port.

0 0 0 For ATTPD, the PDI attaches all
connected devices. For REDRPT,
the PDI reads from the last
attached device that reported a
position. For REDEVN, the PDI
reads from the first device that
satisfies the request parameters.
For all other operations, the PDI
performs the operation on all
attached devices.

Specifying zero for the devid
parameter is equivalent to
omitting the parameter

altogether.
KEY
¢ = Valid class other than 0
s = Valid subclass other than 0
p = Valid port other than 0

2-9

HANDLING BUTTON DATA

2.3 HANDLING BUTTON DATA

A parameter on read operations allows you to obtain the status of
up to 16 buttons on a positional device. A button can be either
the kind of standard button you find on a mouse, or it <can be
some other switch-type mechanism. For example, with some bitpads
you can order an optional stylus whose point retracts when
depressed. This is considered a button.

The button status parameter is a one-word bit mask that reflects
the current button status. Each bit set indicates that the
corresponding button is down (switch closed). Each bit cleared
indicates that the corresponding button is up (switch open).

2.4 CALLING THE LIBRARY ROUTINES

Your program must always attach the positional device before
attempting to read data from it. Then, to read the input data
from the device, your program must call either the REDRPT or
REDEVN routine.

After all I/O operations with the device are complete, you can
detach the device either explicitly by calling the DETPD routine,
or implicitly by terminating your task. The operating system
automatically detaches a device upon terminating the task that
attached the device.

2.4.1 Using the PDL Global Entry Point

You can make any request to the library through the PDL global
entry point, rather than calling each routine individually. The
PDL entry point is similar to the CGL entry point wused to make
requests to the Core Graphics Library.

For some programs, it is advantageous to wuse the technique of
making requests through a single global entry point. For
clarity, you should always wuse wne technique or another--not
both--in the same program.

See Chapter 3, Section 3.7 for a detailed description of the PDL
entry point.

2-10

LINKING THE PROGRAM

You perform this step in order to link your program with a PDL
object module rather than a cluster library. Note that using a
cluster library ensures that your program will not need to be
relinked upon release of a new version of P/0OS. The operating
system always contains the most recent cluster libraries.

However, a drawback to using a cluster library is the 1loss of
performance due to mapping and unmapping of the cluster library.
By linking an object module directly into the application address
space, you avoid this performance loss.

To link the object module with the application, first modify the
build command file as described in Section 2.5.1, but do not add
"PDL" to the CLSTR option as described in that Section.

Next, modify the overlay descriptor file to include PDLOBJ.OBJ as
a segment in the application. Figure 2-9 shows a sample overlay
descriptor file for use with a BASIC-PLUS-2 program. The line
indicated by a (1) in the 1left margin shows the addition of
"LB:[1,5]PDLOBJ", surrounded by hyphens.

.ROOT BASIC2-RMSROT-USER,RMSALL
(1) USER: .FCTR SY:TEST-LB:[1,5]PDLOBJ-LIBR
LIBR: .FCTR LB:[1,5]PBFOTS/LB
@LB:[1,5]PBFIC1
@LB:[1,5]RMSRLX
.END

Figure 2-9: Sample Descriptor (.ODL) File

PAB resolves references to the object 1library by searching in
LB:[1,5] for PDLOBJ.OBJ.

2.6 RUNNING THE PROGRAM

In order to run your program successfully, vyou must load the
appropriate driver. If you have not yet done so, load a driver
as described in Section 1.2.2.

ATTPD--ATTACH POSITIONAL DEVICE

3.1 ATTPD--ATTACH POSITIONAL DEVICE

Attach your task to the currently connected positional device.

Format

CALL ATTPD (status [,devid])

Where:

status A two-word decimal integer array whose first word

receives

the

status return of the call. The received

value can be one of the following decimal integers:

IS.suC

IE.BAD

IE.ONP

IE.DAA

IE.DUN

IE.FHE

IE.TMO

(none)

(none)

(none)
(none)
(none)
(none)
(none)

+01

-01

-05

-08

-09

-59

=75

-510

-511

-520
-521
-522
-523
-524

Call completed successfully.

Invalid format for parameter block. See
MACRO-11 examples for correct format.

Invalid subfunction. You have not loaded
the PDI driver.

Device already attached by another task.
Other task must first detach.

Device not attachable. Communication
Port or Printer Port is currently busy.

Fatal hardware error while performing
operation. Often occurs when device is
not physically attached.

Timeout error. the DTM did not
acknowledge the request within two
seconds.

Attach failed due to device handler
error.

DECtouch driver not active.

Invalid devid parameter. See Tables 2-2
and 2-3.

devid The address of a two-word device identification number.
The default devid is 00. See Section 2.2 for details.

3-2

REDEVN--READ ON EVENT

3.9 REDEVN--READ ON EVENT

Read report when a specified event occurs.

Format

CALL REDEVN (status, xcoor, ycoor, button, [devid], [butmsk],
[tmo], [evtflg], [astadd], [xinc], [yinc])

Where:

status A one-word decimal integer that receives the status
return of the call. The received value can be one of the
following decimal integers:

Is.suc +01 Success, button changed state

(none) +02 Success, x increment satisfied

(none) +03 Success, y increment satisfied

(none) +04 Success, timeout occurred

IE.ABO -15 Request terminated. This value is

returned when you abort REDEVN by calling
the EVNCAN routine.

IE.BAD -01 Invalid format for parameter block. Use
the correct R5 calling format.

IE.DNA -07 Device not attached. You cannot read
input data from a device that is not
attached.

IE.FHE -59 Fatal hardware error while performing
operation. Often occurs when device is

not physically attached.

(none) -520 Invalid devid parameter. See Tables 2-2
(none) -521 and 2-3.

(none) -522

(none) -523

(none) -524

xcoor The x-coordinate value word, an integer value whose
possible values depend on the current input device area
and on the report mode (absolute, relative, or device
physical, see Section 3.11.12). By default, the possible
values of xcoor are between 0 and 4095, inclusive.

REDRPT--READ POSITIONAL REPORT

3.10 REDRPT--READ POSITIONAL REPORT

Read input data from the positional device.

Format

CALL REDRPT (status, xcoor, ycoor, button [,devid])

Where:

status

Xcoor

ycoor

button

A two-word decimal integer array whose first word
receives the status return of the call. The received
value can be one of the following decimal integers:

IS.SuC +01 Call completed successfully.

IE.BAD -01 Invalid format for parameter block. Use
the correct R5 calling format.

IE.DNA -07 Device not attached. You cannot read
input data from a device that is not
attached.

IE.FHE -59 Fatal hardware error while performing
operation. Often occurs when device is

not physically attached.

(none) =520 Invalid devid parameter. See Tables 2-2
(none) -521 and 2-3.

(none) -522

(none) =523

(none) -524

The x-coordinate value word, an integer value whose
possible values depend on the current input device area
and on the report mode (absolute, relative, or device
physical, see Section 3.11.12). By default, the possible
values of xcoor are between 0 and 4095, inclusive.

The y-coordinate value word, an integer value whose
possible values depend on the current input device area
and on the report mode (absolute, relative, or device
physical, see Section 3.11.12). By default, the possible
values of ycoor are between 0 and 4095, inclusive.

The button status, a one-word bit mask identifying up to
16 button states. For each bit, 0 is button up (switch
open), and 1 is button down (switch closed).

SETCHR--SET DEVICE CHARACTERISTICS

3.11.4 SETCHR IDA--Set Input Device Area
Characteristic Number: 3

Data Value: 4-word Integer Array
Description

This characteristic is device-independent.

The IDA characteristic sets the values of the X- and
y-coordinates for the input device area.

To invoke IDA, you must have set the report mode of the target
device or device group to absolute mode (see the description of
the RPMOD characteristic).

In a SETCHR call with the IDA characteristic, you specify the
minimum and maximum values for both the x- and y-coordinates.
The PDI does not maintain a 1:1 aspect ratio of the input device
area. (See Section 3.11.5.)

NOTE
This characteristic affects the X- and
y-coordinate values returned by any read

operation.

Table 3-7 shows the values for the data parameter in the SETCHR
call with the IDA characteristic.

SETCHR--SET DEVICE CHARACTERISTICS

3.11.6 SETCHR LNCHR--Set Serial Line Characteriétics
Characteristic Number: 66

Data Value: 4-wWord Integer Array

Description

This characteristic 1is device-specific. You must specify a
unique device ID in the devid parameter of the call.

The LNCHR characteristic modifies the transmission line
characteristics between a positional device and the port to which
it is connected. Serial line characteristics 1include character
length, number of stop bits per character, and parity type.

After issuing the SETCHR call with this characteristic, the PDI
first attempts to notify the device of the line change, and then
it sets the port to the correct serial mode.

You can set the line characteristics for serial ports only. The
serial ports are DECtouch ports 4 and 5, and the Professional’s
Communication and Printer ports, both port number 2.

Table 3-9 shows the values for the data parameter in the SETCHR
call with the LNCHR characteristic.

Table 3-9: Data Values for LNCHR Characteristic (Serial Only)

Word Line Possible Vvalues
Characteristic
0 Bits per character Integer between 5 and 9

(decimal), inclusive.
Default is 8.

1 Number of stop bits 0 = 1.0 stop bit
1 = 1.5 stop bits (default)
2 = 2.0 stop bits
2 Parity enable 0 = disable (default)
1 = enable
3 Parity type 0 = even
1 = odd

SETCHR--SET DEVICE CHARACTERISTICS

3.11.7 SETCHR ORIG--Set Device Origin

Characteristic Number: 5

Data Value: 1-wWword Integer

Description

This characteristic is device-independent.

The ORIG characteristic specifies which corner of the physical

device space corresponds to the coordinate origin. The device
origin affects both relative and absolute coordinates.

NOTE
This characteristic affects the X- and
y-coordinate values returned by any read

operation.

Table 3-10 shows the possible values for the data parameter in
the SETCHR call with the ORIG characteristic.

Table 3-10: Data Values for ORIG Characteristic

Data Value (Decimal) Origin

0 Bottom left

1 Top left (default)
2 Top right

3 Bottom right

Status Returns

+1 Success.
-500 One or more data values are out of range.
-520 Invalid devid parameter. See Table 2-2.

WRTDEV--WRITE RAW DATA TO DEVICE

3.13 WRTDEV--WRITE RAW DATA TO DEVICE

Write data directly to a device without interpretation.

Format

CALL WRTDEV (status, len, buff, devid)

Where:

status A two-word decimal integer array whose first word

receives the status return of the call. The received
value can be one of the following decimal integers:

Is.suc +01 Call completed successfully.
IE.BAD -01 Invalid format for parameter block.
IE.DNA -07 Device not attached.
IE.FHE -59 Fatal hardware error on device.
(none) -520 Invalid devid parameter. See Tables 2-2
(none) -521 and 2-3.
(none) -522
(none) -523
(none) -524
len A one-word integer value specifying the number of

characters to write to the device. This is the length of
the data buffer in bytes.

buff A one-word integer containing the address of a buffer to
be transmitted to the device.

devid The address of a two-word device identification number.
The default devid is 00. See Section 2.2 for details.

Description

This routine writes raw data to a positional device. The device
identification parameter must describe a single unique device.
The buff parameter is a data buffer whose length is determined by
the value of the len parameter.

You normally use WRTDEV to tranmit data to an intelligent device,

such as a graphics tablet. An intelligent device is one that can
process a string of data.

3-46

FORTRAN-77

c Overlay Descriptor Language file, MOUSE.ODL:

C = r e mm e e e e e e e m e e e e e e e - = ——
c .ROOT MOUSE-RMSROT-LIBR,RMSALL

c LIBR: .FCTR LB:[1,5]PROF77/LB

c @LB:[1,5]PROF77

c @LB:[1,5]RMSRLX

c .END

C ——

To run this program at DCL level:

c

Cc

c $ INSTALL [ZZSYS]CGLFPU
C S INSTALL [ZZSYS]PROF77
c $ INSTALL LB:[1,5]PDL

c
C

program mouse

This program uses a positional device to draw on

the screen. The program loops indefinitely until aborted

or until it encounters a positional device error.

The graphics are generated using the CORE Graphics Library (CGL).

0o 0Oa0o0anan

include "lb:[1,5]CGL.FTN’
This instruction provides the file CGL.FTN
that declares a set of integer constants
corresponding to the names of the CGL instructions.

Declare variables for use as parameters in PDL calls:

noOooononan

INTEGER*2 status,xint,yint,button

(9}

Declare variables for use as parameters in CGL calls:

(o IN®]

REAL xreal,yreal

(@]

Declare flag variable to control looping:
LOGICAL flag

Initialize CGL core and invoke new frame:

aQ

call CGL(GIC) !INITIALIZE_CORE
call CGL(GNF) !NEW_FRAME

Guarantees that the graphics system is in
a start state with default parameters
established, and clears the screen.

0O n0o0a0an

4-2

PASCAL

initialize_core;
new_£frame;

{ Guarantees that the graphics system is in }
{ a start state with default parameters }
{ established, and clears the screen. }

{ Map the positional device coordinates to the }
{ screen and allow for the aspect ratio }

set_window(0.00, 4095.00, 0.00, 4095.00%0.625);

Specifies the edges of the window and resets }
the current position to the origin of the }
window. Note that we specified REAL constants }
for parameters. }

e N Rann W

set_origin(1);

{ Define our cursor symbol. Note that the CGLDEFS.PAS }
{ procedure declaration of SET_MARKER_SYMBOL requires
{ a CHAR value as the second parameter, NOT an integer. }

——

set_marker_symbol(2, '0’);
set_writing_mode(2);

Specifies one of five standard symbols or

a user-defined symbol as the current marker
symbol, and specifies the exact manner in

which CGL draws output primitives on the screen.

—— o —— —

{ Attach the positional device: }

ATTACH_POSITIONAL_DEVICE(status);
if (status <> 1) then goto 900;
flag := false;

Now read coordinates of positional device and convert }
to real values. Note that we do not care what device }
we get the input from, so we have omitted the devid }
from the parameter list. }

e Rane Wane Wans

while true do
begin
READ_POSITIONAL_REPORT(status, xint, yint, button);
if (status <> 1) then goto 900;
yreal := yint;
xreal := xint;
if (flag = true)
then marker_rel_2(0, 0);
flag := false;

4-6

BASIC-PLUS-2

! GBLDEF = WCSLUN:22 ; directory searches for OLDF:
! ; and NEWFIL routines and

! ; callable print services

] .

° ’

! GBLDEF = GSLUN:17 ; for Core Graphics Library

! GBLDEF = GS$EFN:3 ;i for Core Graphics Library

! GBLDEF = PDS$LUN:23 ; PDL device I/0

! GBLDEF = PDSEFN:2 ;i PDL I/0 event flag

! /7

! .ROOT BASIC2-RMSROT-USER,RMSALL
! USER: .FCTR SY:MOUSE-LIBR

! LIBR: .FCTR LB:[1,5]PBFOTS/LB

! @LB:[1,5]PBFICS

! @LB:[1,5]RMSRLX

! .END

! $ INSTALL [ZZSYS]CGLFPU
! $ INSTALL LB:[1,5)PDL

! $ RUN MOUSE
]
!

D o i i ettt i e o, i G S S o S, . 1 e e o et e
This program uses a positional device to draw on
the screen. The program loops indefinitely until
aborted or encountering a positional device error.

The graphics are generated using the CORE Graphics
Library (CGL).

!

!

1

!

[}

1

!

! The next instruction provides the file CGL.B2S

! that declares a set of integer constants

! corresponding to the names of the CGL instructions.
1
[}
1
1
|}

include ’1b:[1,5]CGL.B2S’

Declarations of integer variables used with the PDL
routines:

Declare integer &
xint, ! X-coordinate returned &
yint, ! y-coordinate returned &
bint, ! button status returned &
libstatus ! PDL routine status word

]
! Declarations of real variables used with the CGL
! routines:

4-8

100

110

120

130

140

150

BASIC-PLUS-2

1

Declare real
xreal, ! x-coordinate
yreal ! y-coordinate

We use the real variables to convert the integer

]
1
1
]
!
! Clear the screen

]

call CGL by ref (initialize_core)

call CGL by ref (new_£frame)

1

Guarantees that the graphics system is in
a start state with default parameters
established, and clears the screen.

Map the positional device coordinates to the
screen and allow for the aspect ratio.

1
!
]
1
]
!
1
1
call CGL by ref (set_window,0,4095.,0,4095.*.625)
!

! Specifies the edges of the window and resets

! the current position to the origin of the window.
1

! Set window origin to top-left to match
! positional device.
1

1

]

]

]

!

call CGL by ref (set_origin,l)

! Specifies which corner of the viewport

! corresponds to the origin of the window.
! Define our cursor symbol.

call CGL by ref (set_marker_symbol,2%,0%)
call CGL by ref (set_writing_mode,2%)

!
! Specifies one of five standard symbols or
! user-defined symbol as the current marker
! symbol, and specifies the exact manner in
! which CGL draws output primitives on the
! screen.

!

!

]

Attach the positional device.
call ATTPD by ref (libstatus)
if libstatus <> 1 then goto 900

4-9

coordinates, because CGL requires the real values.

o]

BASIC-PLUS-2

160 £ = 0%
300 !
! Loop Begins here.
]
! Read coordinates of positional device and convert
! to real values. Notice that we do not care what
! device we get input from, so we have ommited the
! devid from the parameter list.
!
call REDRPT by ref (libstatus,xint,yint,bint)
310 if libstatus <> 1 then 900
320 xreal=xint
yreal=yint
330 if £f% = 1% then call CGL by ref (marker_rel_2,0,0)
£ = 0%
350 !
! If button pressed, draw a line.
]
if bint = 1% then call CGL by ref (set_writing_mode,4%)
call CGL by ref (set_writing_mode,4%)
call CGL by ref (line_abs_2,xreal,yreal)
call CGL by ref (set_writing_mode,2%)
goto 300
360 !
1
! Specifies the exact manner in which CGL
! draws the output primitives on the screen,
! changes the current position to the
! specified position and draws a connecting
! line.
]
! If button not pressed, echo the cursor.
1
if bint = 0% then call CGL by ref (marker_abs_2,xreal,yreal)
£ = 1%
!
! Changes the current position to the
! specified position and draws a marker.
1
390 goto 300
900 !
! Process error
1
print "Positional device error: ";libstatus
999 END

MICROSOFT SERIAL MOUSE

A.4 MICROSOFT SERIAL MOUSE

The Microsoft Serial Mouse is a mechanical positional device that
detects a change in position by the movement of a metal ball over
a hard surface. The mouse enclosure contains sensors that read
the motion of the ball, and send this information to an on-board
processor that digitizes the information. Once digitized, the
information passes to the host computer.

The Microsoft Serial Mouse needs no modifications; it connects
directly to the Professional’s Communication Port. Note,
however, that to connect the mouse to the Professional’s Printer
Port, you must connect pins 4 and 20 of the mouse to pin 5 (DTR)
of the Printer Port.

You can ignore the instructions that Microsoft provides for using
their mouse with the MS-DOS and PC-DOS operating systems.

For ordering information, contact:

Microsoft Corporation
10700 Northup Way
P.0. Box 97200
Bellevue, Washington 98009
(800) 426-9400

A.5 DECTOUCH (VRTS1-A)

The DECtouch (VRTS1-A) color monitor is a positional device whose
main feature 1is a touch-sensitive screen. The screen uses
resistive membrane technology, which provides extremely high
resolution for individual touch points.

In addition to the touch screen, DECtouch also provides two
parallel ports and two RS232 serial ports. To the parallel ports
you can connect either Atari(c)-compatible joysticks or the
DIGITAL LM200 Quadrature Mouse. To the two serial ports you can
connect any of the supported serial devices.

The joystick and Quadrature Mouse require no modification.

For ordering information, contact your local DIGITAL sales office
or sales representative. For detailed information on using,
installing, or programming with the DECtouch monitor, refer to
the DECtouch documents listed in the Preface.

SEIKO DT-3100 TABLET

A.6 SEIKO DT-3100 TABLET

The Seiko Tablet DT-3100 is a very high resolution tablet. Due
to this high resolution capability, the device is ideal for use
with Oriental character sets.

Figure A-1 shows how to connect the Seiko tablet to the
Communication or Printer ports.

Communication
or Printer Port Seiko Tablet
ground (AA) 1 1 ground
send data (BA) 2 3 receive data
receive data (BB) 3 2 send data
—— 4 request to send
—— 5 clear to send
signal ground (AB) 7 7 signal ground

—— 6 data set ready

L— 20 data terminal ready

Figure A-1: Wiring for the Seiko Tablet

The connecting cable must be male to female. The male end
connects to the Seiko Tablet. The female end connects to the
Professional.

For ordering information, contact:

Seiko Instruments (USA), Inc.
19 Crosby Drive
Bedford, MA 01730
Tel: (617) 275-4092

o

THE SCREEN

For various effects, you can select items from either the Command
Menu or the Palette, as described in Sections B.2 and B.3.

B.2 THE COMMAND MENU

When you move your positional device into the menu area, the
corresponding box "lights." Pressing the device button (or
depressing the stylus) selects the function. Sketchpad confirms
a selection by sounding the keyboard bell.

Only one function can be active at any time, except for the
following:

@ FILL can be active in combination with other functions.

® You can select CANCEL at any time.

Table B-1 describes each of the commands available from the
Command Menu.

Table B-1: Sketchpad Commands from Command Menu

Command Description

Exit Terminates program execution and returns to the
Main Menu.

Clear Refreshes the screen, sets the current pen to 6,
and sets Fill to OFF.

Line Allows you to draw a straight line by marking its
end points. When you are at the first point you
want to select, press the device button. Then mark
the second point in the same fashion. Sketchpad
draws the line dynamically as you move to the
second point. To terminate line mode, press the
device button twice while on the second point; or,
you could select the Cancel command.

THE COMMAND MENU

Command

Description

Circle

Box

Print

Text

Select

Allows you draw a circle by marking its center
point, then marking the outside point of the the
circle’s radius. Begin the circle by selecting a
center point and pressing the device button. Then
mark the outside point of the radius in the same
fashion. Sketchpad draws the circle dynamically as
you move to the second point.

Allows you draw a box by marking one corner, then
a diagonally opposite corner. Begin the box by
selecting a corner point and pressing the device
button. Then mark a point that you want to appear
as the diagonally opposite corner of the box.
Sketchpad draws the box dynamically as you move to
the second point.

Dumps the image from the drawing surface to the
printer connected to the Professional. The printer
must be able to print graphic images (refer to the
documentation that comes with your printer). The
background does not appear in the printed copy,
and all objects appear black. Neither the Command
Menu nor the Palette are printed.

Allows you to enter text from the keyboard. Once
you have selected this command, mark a point on
the drawing surface by moving your positional
device to that point and pressing the button. Then
you can enter text from the keyboard. To exit from
the Text command you press the CTRL key and then
the Z key on the keyboard.

Allows you to select a point that defines a fill
area when the Fill command is set to ON. If the
Box, Circle, or Line commands are not in effect,
Sketchpad fills areas to the selected point as you
move your positional device over the drawing
surface with the button depressed.

device subclass
A value indicating a specific device in a device class.

driver
See device driver.

input device area .
The area from which a positional device is able to transmit
valid input.

positional device
Hardware used for input. The main feature of a positional
device is its ability to transmit information about location
to the computer.

Positional Device Interface (PDI)
Software that enables you to write applications that use a
mouse, digitizing tablet, touch screen, or other positional
device.

Positional Device Library (PDL)
A set of routines supplied with the PDI kit that perform
operations for positional devices. PDL is the name of the
library’s global entry point.

Sketchpad
A sample application that allows you to use a positional
device to draw simple pictures on the terminal screen.

task
The fundamental executable program unit.

task builder
A tool (sometimes called a linker) that converts an object
module into a task image by relocating code and data and
resolving external references.

task image
A file that contains a loadable task in the form of absolute
binary instructions and data.

INDEX

your program, 2-13
FORTRAN-77

sample program, 4-1
GBLDEF option

modifying in
Get Device Coordinates

positional device routine,
Get Device Name (GETNAM)

positional device routine,
GTCO

Micro Digi-Pad, A-3

.CMD file, 2-11
(GETDVC)
3-7

3-8

Identification
see device
IE.ABO
status,
IE.BAD
status,
IE.DAA
status,
IE.DNA
status,
IE.DUN
status,
IE.FHE
status,
IE.ONP
status,
IE.TMO
status, 3-2, 3-5
Input device area
aspect ratio, 2-2
definition, 2-1
shape, 2-1
Summagraphics MM961,
Interface
see Positional Device Interface
IS.SuC
status, 3-2, 3-4, 3-5, 3-6, 3-7,
3-8, 3-9, 3-11, 3-14, 3-18,
3-20, 3-43, 3-46

3-14
3-2, 3-5,

3-2

2-2

Joysticks
Atari(c)-compatible, A-4

Kit component
applications, 1-2
1

device drivers, 1-2

Languages
used with kit,
Library routines
calling, 2-10ff
Linking programs
description, 2-11
Loading
device drivers, 2-13
Logical Unit Number
PDSLUN, 2-11
LUN
See Logical Unit Number

1-3

MACRO-11
sample program,
Mapping
device coordinate units,
Micro Digi-Pad
GTCO, A-3
Microsoft
mouse,
MM 1201
Summagraphics, A-2
MM 961 |
Summagraphics, A-2
Mouse
Microsoft,

4-11

2-1

A-4

A-4 3

Object module
linking with, 2-13
vs. cluster library, 2-13
Overlay Descriptor Language File
See Descriptor File

P/0S
versions, 2-12

Parameter |
button status, 2-10

passing mechanism, 3-1
PASCAL

sample program, 4-4 !
PDI

see Positional Device Interface
PDI Library

description,
PDLOBJ.OBJ

in .ODL file,
Performance

improvement in,
Ports

Communication,

1-3

2-13

2-13

A-1

Index-2

	102748479-18-05-01-acc
	102748479-05-018-acc
	18 1
	18 2
	18 3
	18 4
	18 5

