

I
I
I
I
I ..
I
I
I
I
I

•
I

I
I
I
I

I
I
I
I
I

•
I

003

PDP-11 C
Run-Time Library Reference Manual
Order Number: AA-NA45B-TC

November 1990

This manual describes the functions and macros in the PDP-11 C Run-lime Library.

Revision/Update Information: This is a revised manual.

Operating System and Version: Micro'RSX Version 4.3 or a higher version
RSTS/E Version 10.0 or a higher version
RSX-11M (mapped) Version 4.6 or a higher version
RSX-11M-PLUS Version 4.3 or a higher version
RT-11 Version 5.5 or a higher version
VMS Version 5.3 or a higher version

Software Version: PDP-11 C Version 1.1

digital equipment corporation
maynard, massachusetts

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corpora ·on.

Digital Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

Any software described in this document is furnished under a license and may be
used or copied only In accordance wrth the terms of such license. No responsibility is
assumed for th use or reliability of software or equipment that Is not supplied by Digital
Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause at DFARS 252227-7013.

C Digital Equipment Corpora ·on 1989, 1990.

All rights reserved.
Printed in U.S.A.

The Reader's Comments form at the end of this document requests your critical
evaluation to assist In preparing future documentation.

The following are trademarks of Digital Equipment Corporation: DEC,PD~RSTS,RSX,
RT-11, VAX, VAXcluster, VMS, and the Dig.ta.I logo.

This docunent is available on CDROM.

I ..
I
I
I
I
I ..
I
I
I
I
I

•
I

~
I
I
I
I
I ,.
I
I
I
I
I

•
I

Contents

Preface

Chapter 1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

1.13

1.14

PDP-11 C Standard Libraries

The <assert.h> Header FIie ..

The <Ctype.h> Header FIie

The <errno.h> Header FIie ..

The <float.h> and <llmlts.h> Header Flies ..

The <locale.h> Header FIie ..

The <math.h> Header FIie

The <Htjmp.h> Header FIie

The <slgnal.h> Header FIie ..

The <Stdarg.h> Header FIie

The <Stddef.h> Header FIie

The <Stdlo.h> Header FIie

The <Stdllb.h> Header FIie

The <Strlng.h> Header FIie

The <tlme.h> Header FIie

xvii

1-2

1-3

1-4

1-4

1-7

1-7

1--8

1--8

1-9

1-10

1-10

1-10

1-11

1-12

iii

Chapter 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

Chapter 3

3.1

3.2

iv

PDP-11 C Standard Input and Output

Streams and Flies
2. 1.1 Text and Binary Streams
2.1.2 Compatibility with VAX C

Streams and Operating Systems
2.2.1 ASX Operating System and Text Files
2.2.2 ASX File Attributes
2.2.3 ASX Operating System and Binary Files
2.2.4 ASTS/E Operating System and Stream Files
2.2.5 ASTS/E Operating System and Text Files
2.2.6 ASTS/E Operating System and Binary Files
2.2.7 AT-11 Operating System and Stream Files
2.2.8 AT-11 Operating System and Text Files
2.2.9 AT-11 Operating System and Binary Files

The <Stdlo.h► Header

Conversion Specifications
2.4.1 Converting Input Information
2.4.2 Converting Output Information

The /CP Taskbullder Switch

Input/Output Support Package

Reserving LUNs

Program Examples

Character-Handling Functions and Macros

Character-Testing Macros

Character Case-Mapping Functions and Macros

2-5 ~
2-5
2-6 I
2-6
2-7

I 2-8
2-9

2-10
2-10 I 2-10
2-11
2-11

I 2-11

2-11

2-12 I
2-12 .. 2-15

2-18

2-18 I
2-20

2-21 I
I

3-3

3--12 I
I

•
I

I
I
I
I
I
I'
I
I
I
I
I

•
I

Chapter 4

4.1

4.2

4.3

4.4

Chapter 5

5.1

5.2

5.3

5A

5.5

5.6

5.7

Chapter 6

Locallzatlon Functions and Macros

The lconv Type

The setlocale Function

The localeconv Function

Including Run-time Support for setlocale Function

General Utlllty Functions

String Conversion Functions

Pseudorandom Sequence Generation

Memory Management Functions
5.3.1 The calloc Function
5.3.2 The malloc Function
5.3.3 The realloc Function
5.3.4 The free Function
5.3.5 Program Example

Environmental Communication Functions
5.4.1 The abort and exit Functions
5.4.2 The getenv Function
5.4.3 The system Function

Search and Sort Functions

Integer Arithmetic Functions

Multlbyte Character and String Functions

Math Functions

4-2

4-2

5-4

5-7
5-8
5-8
5-9

5-10

5-10

5-10

V

Chapter 7

7.1

7.2

7.3

7A

7.5

7.6

7.7

7.B

7.!i

Chapter 8

8.1

8.2

Using PDP-11 C with Record Management Services

RMS Functions .

PDP-11 C and RMS Header Flies
7 .2.1 The <rms.h> Header
7 .2.2 The <rmsops.h> Header
7.2.3 The <fab.h>, <nam.h>, <rab.h>, and <Xab.h> Headers

7.2.3.1 Declaring and Initializing Control Blocks at Compile
lime

7.2.32 Declaring and Initializing Control Blocks at Compile
lime with Default Values

7.2.3.3 Setting Control Bock Fields
7.2.4 The <rmsdef.h> Header

Declarlng R'-'>11 Facllltles

Defining Pool Space

Calllng Operation Macros

Writing Completion Handlers

Using Get-Sp ce Routines
7.7.1 The RMS$GETGSA$ Routine
7.7.2 The RMS$SETGSA$ Macro
7.7.3 Receiving Parameters Passed by RO, R1 , and R2 During an

RMSGSA or RMS$SETGSA$ Macro

Using PDP-11 C to Write RMS Programs

RMS Example Program

Using PDP-11 C with FIie Control Services

Introduction to the FCS Extension Library

Declaring and lnltlallzlng the FIie Descriptor Block
8.2.1 The <fcs.h> Header File
82.2 Compile-lime Initialization of the FOB
8.2.3 Compile-lime Initialization of the Default Filename Block
8.2.4 Run-lime FOB Initialization and the File Storage Region

7-4
~

7~ I 7~
7~
7~ I
7-7

7-7 I 7~
7~

7-10 I
7-11

7-12 I
7-13 .. 7-13
7-14
7-14 I
7-14

7-15 I
7-16

I
8-5 I
~

I ~

8-7
8-7
8-8 •

I

~
I
I
I
I
I

" I
I
I
I
I

•
I

8.3

8.4

Chapter 9

9.1

9.2

9.3

9.4

9.5

Chapter 10

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

File Processing

FCS Example Program .

Operating System Services and System Directives

System Directives

RSX System Services

RT- 11 SYSLIB Routines

RSTS/E SYSUB Routines

Quallflcatlons on Using the Tit.E, EXIT, and ABORT Functions

Linkages Supported by PDP- 11 C

PDP- 11 C Linkage

FORTRAN Linkage

Pascal Linkage

RSX AST And SST Linkages

The RSX CSM Linkage

Linkages and Other Languages

Data Sharing with Fortran and BP2

Restrictions and Notes

8-9

8-9

S-1

9-2

9-2

s-4

s-5

10-2

10-3

10-4

10-6

10-7

10-7

1~

10-9

vii

Reference Section ~
1 PDP-11 C Standard Library Macros and FuncUons REF-1

abort • • • • • • • • • • • • •
abs

REF-2 I REF-3
a cos .. . REF-4
__ alrSO .. .
asctime

asin•.....•. • • • • • • • • • · · · · • · · • · · • • • • • • • •

REF--6

I RE~
REF-8

__ asr50 .. . REF-9
assert

atan ••••••••••••••••••••

REF-10 I REF-12
atan2 .. . REF-13
atexit .. .

atof •••••••••••••••••••••
atoi, atol .. .

REF-14

I REF-15
REF-17

b arch .. . REF-18
cabs .. .
caloc • •. • • • • • • • • •

REF-20 I REF-21
cei
clear err .. .
clock .. .

REF-22 .. REF-23
REF-24

cos REF-25

cosh ••••••••••••••••••••
cttme .. .
difftime

REF-26

I REF-27
REF-28

div .. . REF-29
exit
exp

REF-30 I REF-31
tabs REF-32
__ fbuf
fclose .. .

feat • • • • • • • • • · · · · · · · · · · · · · · · · · ·

REF-33

I REF-34
REF-35

terror .. . REF-36
fflush • • • • • • • • • • • • • • • · · · · · · · · ·
__ fger

REF-37 I REF-38
fgetc .. . REF-39
fgetpos
fgets .. .
__ fgnm, fgetname

REF-40 I REF-41
REF-42

floor • • • • • • . • • • • • • • • • • • • ·
__ flun
fmod ... • • • • • •

REF-44 • REF-45
REF-46

viii I

I
I
I
I

I
I
I
I
I

•
I

fopen . REF-47
fprintf . REF-60
fpute . REF-62
fputs . REF-63
tread ... REF-o4
__ free . REF-56
free . REF-67
freopen . REF-58
frexp ... RE~
fscanf . REF-61
fseek . REF-63
fsetpos . REF-65
ftell .. RE~
fwrite . REF-67
gate . REF-69
getehar . REF-70
getenv . REF-71
gets . REF-72
gmtime . REF-73
hypot . REF-74
isalnum . REF-75
isalpha . REF-76
isaseii . REF-TT
__ isehar . REF-78
iscntrl . REF-79
isdigit . RE~
isgraph . REF-81
islower . REF-82
isprint . REF-83
ispunct . REF-84
isspace . REF-85
isupper . REF-<16
isxdigit . REF-87
labs .. RE~
ldexp . REF-89
ldiv . REF--90
lo.::aleeonv . REF-91
localtime . REF-93
log, log10 . REF-95
longjmp . REF-96
__ lr50a . REF-98
malloc . REF-99
mblen .. REF-100
mbstowcs .. REF-102

ix

mbtowc .. .
memchr .. .
memcrnp

REF-104 ~ REF-106
REF-107

memcpy .. . REF-109
memmove .. .
memset .. .

REF-111 I REF-113
mktime REF-114
modf .. .
perror
pow

REF-115

I REF-116
REF-117

printf .. .
putc
putchar .. .

REF-119
REF-121 I REF-122

puts REF-123
qsort
raise .. .
rand .. .

REF-124 I REF-126
REF-127

realloc
remove .. .
rename .. .

REF-128
REF-130 I REF-131

rewind
scanf .. .
setbuf

REF-132 .. REF-133
REF-135

setjmp REF-137
se ocale .. .
setvbuf
signal .. .

REF-139

I REF-141
REF-143

sin .. . REF-145
sinh ... • • • • • • •
__ sleep, sleep

REF-146 I REF-147
sprintf • • • • • • • REF-148
sqrt

srand ••••••••••••••••••••
__ sr50a .. .

REF-150 I REF-151
REF-152

sscanf•.. • • • • • • • • • • • • • · • · • • • •
Streat .. .
strchr .. • • • • • • •

REF-153
REF-155 I REF-156

strcmp • • • • • • • • • • • • · • · • · REF-157
strcoll .. .
strcpy

REF-158 I REF-159
strcspn REF-160
strerror
strftime
str1en .. .

REF-162 • REF-165
REF-167

X I

I
I
I
I
I ,,
I
I
I
I
I

•
I

2

strncat .. REF-168
stmcmp ... REF-169
strncpy .. REF-171
strpbrk . REF-173
strrchr .. REF-174
strspn .. REF-175
strstr ... REF-1 n
strtod . R EF-178
strtok ... REF-180
strtol . REF-182
strtoul .. REF-184
strxfrm .. REF-186
system . REF-187
tan .. REF-189
tanh .. REF-190
time .. REF-191
tmpfile .. REF-192
tmpnam ... REF-193
toascii .. REF-195
tolower .. REF-196
_tolower ... REF-197
toupper ... REF-198
_toupper ... REF-199
__ tzset . REF-200
ungetc . REF-201
va_arg . REF-203
va_end .. REF-204
va_start . REF-205
vfprintf . REF-206
vprintf . REF-208
vsprintf . REF-210
wcstombs .. REF-212
wctomb . REF-214

FCS Extension Library Macros . REF-216
FCS$ASCPP . REF-217
FCS$ASLUN . REF-218
FCS$CLOSE$. REF-219
FCS$CTRL . REF-220
FCS$DELET$. REF-222
FCS$DLFNB . REF-223
FCS$ENTER . REF-224
FCS$EXPLG . REF-225
FCS$EXTND . REF-226

xi

xii

FCS$FDBDF$. REF-228
FCS$FIND . REF-229
FCS$FINIT$. REF-230
FCS$FLUSH .. REF-231
FCS$FSRSZ$. REF-232
FCS$GET . REF-233
FCSGETR . REF-235
FCSGETS . REF-237
FCS$GTDID . REF-239
FCS$GTDIR . REF-240
FCS$MARK . REF-242
FCS$MRKDL . REF-244
FCS$OFl0$X ... REF-245
FCS$OFNB$X . REF-247
FCS$OPEN$X . REF-249
FCS$OPNS$X ... REF-251
FCS$OPNT D . REF-253
FCS$OPNT$W . REF-255
FCS$PARSE . REF-257
FCS$POINT . REF-259
FCS$POSIT . REF-261
FCS$POSRC . REF-263
FCS$PPASC . REF-264
FCS$PRINT$. REF-265
FCS$PRSDI . REF-266
FCS$PRSDV . REF-268
FCS$PRSFN . REF-270
FCSPUT . REF-272
FCSPUTR .. REF-274
FCSPUTS . REF-276
FCS$RDFDR . REF-278
FCS$RDFFP . REF-279
FCS$RDFUI . REF-280
FCS$READ$. REF-281
FCS$REMOV . REF-283
FCS$RENAM . REF-284
FCS$RFOWN . REF-285
FCS$TRNCL . REF-286
FCS$WAIT$. REF-287
FCS$WDFDR . REF-289
FCS$WDFFP . REF-290
FCS$WDFUI . REF-291
FCS$WFOWN ... REF-292
FCS$WRITE$. REF-293

•• I
I
I
I
I
I
~

I
I
I
I
I

•
I

..
I
I
I
I
I
I ,,
I
I
I
I
I

•
I

FCS$XQIO . REF-295

3 RMS Extension Library Macros . REF-297
RMS$CLOSE . REF-298
RMS$CONNECT . REF-299
RMS$CREATE . REF--301
RMS$DELETE . REF--302
RMS$DISCONNECT . REF--304
RMS$DISPLAY . REF--306
RMS$ENTER . REF--307
RMS$ERASE . REF--308
RMS$EXTEND REF--310
RMS$FIND REF--311
RMS$FLUSH . REF--313
RMS$FREE . REF--315
RMS$GET . REF--316
RMS$NXTVOL REF--318
RMS$OPEN . REF--320
RMS$PARSE . REF--321
RMS$PUT . REF--322
RMS$READ . REF--324
RMS$RELEASE . REF--325
RMS$REMOVE . REF--326
RMS$RENAME REF--328
RMS$REWIND . REF--329
RMS$SEARCH .. REF--331
RMS$SPACE . REF--333
RMS$TRUNCATE REF--335
RMS$UPDATE . REF--337
RMS$WAfT . REF--339
RMS$WRfTE .. REF--341

Appendix A PDP-11 C and VAX C Compatlblllty Issues

Appendix B PDP-11 C Run-Time Modules and Entry Points

xiii

index •• I
Examples

2-1 Output of the Conversion Specifications 2-21 I
2-2 Using the Standard VO Functions 2-23

3-1 Character-testing Macros

3-2 Changing Characters to and from Uppercase Letters

3-11

I 3-13

5-1 Allocating and Deallocating Memory for Structures 5-.3

5-2 Searching the Environment for a String

~ 1 Checking the Variable errno .

5-fJ

I ~

6--2 Calculating and Verifying a Tangent Value 6-4

7-1 Receiving Parameters

7-2 External Data D clarations and Definitions

7-15 I 7-17

7-3 Main Program Section 7-19

7-4 Function to Initialize RMS Data Structures

7-5 Internal Functions

7-21 I 7-23

7-.3 Utility Function: Adding Records

7-7 Utility Function: Deleting Records

7-8 Utility Function: Typing the File

7-25 .. 7-27

7-28

7-fl Utility Function: Printing the File 7-30

7-10 Utility Function: Updating the File

7-11 Reserving a lun for Use by RMS

7-32 I 7-34

8-1 External Data Declarations and Definrtions 8-10

8--2 Main Program Section 8-11 I
Figures

8-1 PDP-11 C Integer Storage 8-6 I
10-1 Stack Usage Using C Linkage 10-3

10-2 Register 5 Usage Us,ng FORTRAN Linkage

10-3 Stack Usage Using Pascal Linkage

10-4 I 10-6

I

•
xiv I

~-I Tables

I
1-1

1-2

1-3

Standard Library Header Flies . 1-1

Sizes of Integral Types . 1-4

Characteristics of Floating Types . 1-5

I
1-4

1-5

1--o

Signal-Handling Conditions . 1-8

Variable Argument Macros . 1-9

Implementation-Defined Types and Macros . 1-10

I
1-7

1-8

String Functions. 1-11

Date and lime Functions . 1-13

2-1 1/0 Macros and Functions . 2-1

I
2-2

2-3

File Sizes . 2-8

RSX Attributes and Behavior . 2-8

2-4 Conversion Specifiers for Formatted Input . 2-13

I 2-5

2--o

Optional Conversion Modifiers . 2-14

Conversion Specifiers for Formatted Output . 2-16 ,. 2-7

2-8

3-1

Optional Conversion Modifiers for Formatted Output 2-17

Optional Conversion Flag Characters . 2-17

Character- and List-Handling Functions and Macros 3-1

3-2 Character Values . 3-3

I 4-1

4-2

PDP-11 C Character-Set and Collating Sequence Locales 4-4

PDP-11 C Monetary and Numeric Locales. 4-4

4-3 PDP-11 Clime Locales . 4-5

I 5-1

5-2

Summary of General Utility Functions . 5-1

Environment List . 5-8

&--1 Summary of Math Functions . &--1

I 7-1

7-2

PDP-11 C RMS Macros . 7-1

Common RMS Run-lime Processing Functions 7-5

7-3 Control Block Types . 7-8

I 7-4

7-5

PDP-11 C Symbols for Defining Pool Space . 7-11

PDP-11 C Data Structures and Headers . 7-15

8-1 PDP-11 C FCS Macros . 8-2

I 9-1

10-1

FIROB and XRB Data Structures . ~

Register Usage for PDP-11 C-Supported Linkages 10-2

B-1 • PDP-11 C Run-lime Entry Points. B-1

I xv

r--------~I

••
I
I
I
I
I ..
I
I
I
I
I

•
I

I
I
I
I

I
I
I
I
I

•
I

Preface

This manual provides reference information on the PDP-11 C Run-Time
Library functions and macros that provide input/output, character and
string manipulation, mathematical functionalities, error detection, file
creation, and system access. PDP-11 C was developed in compliance
with the Draft Proposed American National Standard for Information
Systems-Programming Language C.

Intended Audience

This manual is intended for both experienced and novice programmers
who need reference information on the functions and macros found in the
PDP-11 C Run-Time Library.

Document Structure

This manual describes the PDP-11 C Run-Time Library. It provides infor
mation about portability concerns between operating systems and categorical
descriptions of the functions and macros. This manual has ten chapters, a
reference section, and two appendixes. They are as follows:

• Chapter 1 provides an overview of the PDP-11 C Standard Libraries.

• Chapter 2 describes the PDP-11 C Standard I/O functions and macros.

• Chapter 3 describes the character-handling functions and macros.

• Chapter 4 describes the localization functions and macros.

• Chapter 5 describes string conversion, pseudorandom sequence genera
tion, memory management, environmental communication, search and
sort, integer arithmetic, and multibyte character and string functions.

xvii

• Chapt.er 6 describes the math functions .

• Chapt.er 7 d cribe how to use PDP-11 C programs with Record
Management Service (RMS).

• Chapt.er 8 de cribes how to use PDP-11 C with File Control Services
(FCS).

• Chapt.er 9 describ operating syst.ems services and syst.em directives.

• Chapt.er 10 describes how to use PDP-11 C with other PDP-11 lan
guag .

• The Reference Section describe alphabetically the functions and macr
contained in the PDP-11 C Run-Time Library.

• Appendix A describes compatibility i ue between the PDP-11 C and
VAX C language .

• Appendix B provides a description of the PDP-11 C modules and the
PDP run-time module used in this implementation.

Associated Documents

You may find the following documents useful when programming in the
PDP-11 C language:

• Guide to PDP-11 C-For programmers who need additional information
on using the PDP-11 C language.

• PDP-11 C Installation Guide-For syst.em programmers who install the
PDP-11 C software.

• The C Programming Language1-For those who need a more int.ensive
tutorial than that provided in the Guide to PDP-11 C.

PDP-11 C contains features and enhancements to the C language as
it is defined in The C Programming Language. Therefore, the Guide to
PDP-11 C should be used for a full description of PDP-11 C.

1 Bnan W. Kernighan and Deonia M. Ritchie, Tiu C Program.mi.n.g Lang,.u,,ge, eecond edition
ew Jersey: Prentice-Hall, 1988).

ewood Cliffa,

xvm

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I

" I
I
I
I
I

•
I

Conventions
Convention

!RETURN!

fCTRL.J)(!

Color

[)

sc-specifier ::=
auto
static
extern
register

[a I b]

Ll

boldface

italic

Meaning

The symbol I RETURN I represents a single stroke of the
RETURN key on a terminal.

The symbol fCTRUXL where letter X repr ents a
terminal control character, is generated by holding
down the CTRL key while pressing the key of the
specified terminal character.

Color is used to show user input. For online ver
sions, user input is shown in bold.

A vertical ellipsis indicates that not all of the text
of a program or program output is illustrated. Only
relevant material is shown in the example.

A horizontal ellipsis indicates that additional pa
rameters, options, or values can be entered. A
comma that precedes the ellipsis indicate that
successive items must be separated by commas.

Square brackets in function synopses and a few
other contexts indicate that a syntactic element ia
optional. Square brackets are not optional, however,
when used to delimit a directory name in a fil
specification or when used to delimit the dimensions
of a multidimensional array in PDP-11 C source
code.

In syntax definitions, items appearing on separate
lines are mutually exclusive alternatives.

Brackets surrounding two or more items separated
by a vertical bar (I) indicate a choice; you must
choose one of the two syntactic elements.

A delta symbol is used in some contexts to indicate
a single ASCII space character.

Boldface type identifies language keywords and the
names of PDP-11 C Run-Time Library functions.

Italics are used to identify variable names.

xix

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

'• I
I
I
I
I
I
f'
I
I
I
I
I

•
I

Chapter 1

PDP-11 C Standard Libraries

Th.is chapter describes the PDP-11 C Standard Library functions, which
includes those functions specified by the ANSI Standard, as well as some
extensions to the PDP-11 C language.

'lb use a library function, the PDP-11 C source program should use a
#include statement to include the appropriate header file that defines the
function. A header file contains a set of definitions or declarations of related
functions, types, and macros. 'lb include a header file, use the #include
preprocessor directive, which generally appears at the beginning of the
program in the following format:

#include <flle-name.h>

See the Guide to PDP- 11 C for more information on the #include directive.

The name of a header file is file-name.h. Table 1-1 lists and briefly describes
the PDP-11 C Standard Library header files.

NOTE

All PDP-11 C header files are source files.

Table 1-1: Standard Library Header Flies

Header File

assert.h

ctype.h

Purpose

Defines the assert macro that is used for diagnostics.

Defines the functions used for testing and mapping
characters.

(continued on next page)

PDP-11 C Standard Libraries 1-1

Table 1- 1 (Cont): Standard Library Header Ales

Header F il

errno.h

float.h

limits.b

locale.h

math.b

etjmp.h

ignal.h

stdarg.h

stddef.h

stdio.h

stdlib.h

string.h

time.h

Purpo

D fine the error-reporting macro .

D fines the macr that pand to various limits and
parameters.

Define the macro that pand to various limits and
parameters.

Define the function , macro , and one type u ed for
setting locale-dependent formatting and collating items.

Declare the functions and macro used for mathematical
computation .

Define the macro and declare the function for bypas ing
the normal function call mechanism.

Declar a type and the function and defines the macros
that report conditions during program execution.

Declares a type and define the macro used by a called
function while going through a list of argumen whose
numbers and types are not known.

Declares the type and defines macros for common
definitions.

Declare the types, macros, and functions for standard
input and output.

Declares the types and functions used by the general
utility functions.

Declare the type and the functions and defines the
macro used for manipulating arrays of characters.

Define the macros and declare the functions used for
time manipulation.

1.1 The <assert.h> Header File

The <assert.h> header file defines the macro a ert. The macro NDEBUG
may be defined as a macro name in the source file before the <assert.h> file
is included.

The as ert macro puts diagnostics into programs. If the argument given to
a ert evaluates to false (0), the error status of the failed call is written,
using the implementation-defined format, on the standard error file. Then,
the abort function is called.

1-2 PDP-11 C Standard Libraries

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I
f'
I
I
I
I
I

•
I

The format for the message output by the assert macro is:

aaaert error : expreaaion • <•xp>, in file
<file>, at line <line>

In this message, <exp> is the text of the argument to assert, <file> is the
value of the __ FILE __ preprocessing macro, and <line> is the value of the
__ LINE __ preprocessing macro.

1.2 The <Ctype.h> Header File

The <ctype.h> header file declares the functions and macros used for testing
and mapping characters. These functions and macros are divided into two
classes: character-testing and character case-mapping. See Table 3-1 for a
list of the functions and macros declared in the <ctype.h> header file .

Character-Testing Functions and Macros

Character-testing functions take an argument of type int. The input value
of the character-testing macro must be either the value defined as EOF or
a value between O and 255. If the value is outside that range, the value
returned by the character-testing macro is undefined.

Character-testing macros are defined by including #include <ctype.h> in
a source file . When the <ctype.h> header file is included, the macro form
of character-testing and mapping is used. 'lb call the function form of the
character-testing functions, include the header file and use the #undef
directive to undefine the macro form.

Although character-testing macros are available as functions, it is recom
mended that the macro versions be used because they execute much faster.
However, for the locale functions to work properly, the function form must
be used.

Character Case-Mapping Functions and Macros

Character case-mapping functions are defined by putting #include
<ctype.h> in a source file. The character mapping functions take an ar
gument of type int. The input value must be either the value defined as
EOF or a value between O and 255. If the value is outside that range,
the value returned for either the character-mapping function or macro is
undefined.

PDP-11 C Standard Libraries 1-3

1.3 The <errno.h> Header File

The <errno.h> header file declares the modifiable }value, errno. At program
start-up, errno is initialized to zero.

Many Standard Library functions deposit a nonzero value in errno when
an en-or occurs during the execution of the function . If a program deposits
a zero in errno before calling a Standard Library function, errno can be
checked after the function completes for a zero value to determine if the
function completed correctly. The }value errno contains a zero value if the
function has completed correctly; otherwise, it contains a nonzero value
indicating that an en-or has occurred.

The <errno.h> header file also defines a number of macros which define
values that may be placed into errno by Standard Library functions .

1.4 The <float.h> and <limits.h> Header Files

The <float.h> and <limits.h> header files define a number of macros that
expand to various limits and parameters. The size and a brief description of
each macro defined by <limits.h> are listed in Table 1-2.

Table 1-2: Sizes of Integral Types

Macro Size Purpose

CHAR_BIT 8 Number of bits for smallest object
that is not a bit-field.

CHAR_MAX +127 Maximum value of an object of
type char.

CHAR_MIN -128 Minimum value of an object of
type char.

INT_MAX +32767 Maximum value of an object of
type int.

INT_MIN -32768 Minimum value of an object of
type int.

LONG_MAX +2147483647 Maximum value of an object of
type long int.

(continued on next page)

1-4 PDP-11 C Standard Libraries

•• I
I
I
I
I
I

..
I
I
I
I

I

•• I
I
I
I
I
I
f'
I
I
I
I
I

•
I

Table 1-2 (Cont.): Sizes of Integral Types

Macro Size Purpo

LONG_MIN -2147483648 Minimum valu of an object of
type long int.

MB_LEN_MAX 1 Maximum number of byt.es in a
multibyte character.

SCHAR_MAX +127 Maximum value of an object of
type eign d char.

SCHAR_MIN -128 Minimum value of an object of
type ign d char.

SHRT_MAX +32767 Maximum value of an object of
type short int.

SHRT_MIN -32768 Minimum value of an object of
type short int.

UCHAR_MAX 255U Maximum value of an object of
type unsigned char.

UINT_MAX 65535U Maximum value of an object of
type unsigned int.

ULONG_MAX 4294967295U Maximum value of an object of
type unsigned long int.

USHRT_MAX 65535U Maximum value of an object of
type unsigned ehort int.

The characteristics of floating types describe a representation of floating
point numbers and values that provide information about floating-point
arithmetic. Table 1-3 lists the macros defined by the <float.h> header file,
as well as a brief description of each macro.

Table 1-3: Characteristics of Floating Types

Macro

DBL_DIG
FLT_DIG
LDBL_DIG

Characteristic

16
6
16

Purpose

Number of decimal digits.

(continued on next page)

PDP-11 C Standard libraries 1-S

Table 1-3 (Cont) : Characteristics of Floating Types

Macro

DBL_EPSILO
FLT_EPSILON
LDBL_EPSILON

DBL_MANT_DIG
FLT_MANT_DIG
LDBL_MANT_DIG

DBL_MAX
FLT_MAX
LDBL_MAX

DBL_MA)LEXP
FLT_MA)LEXP
LDBL_MA)LEXP

DBL_MA)Ll0_EXP
FLT_MA)Ll0_EXP
LDBL_MA)LlO_EXP

DBL_MIN
FLT_MIN
LDBL_MIN

CharacteriBtic

1.39E-17
6E--8
1.39E-17

56
24
56

1.7E38
1.7E38
1.7E38

127
127
127

38
38
38

2.94E-39
2.94E-39
2.94E-39

t Rounded to three significant digits.

1--6 PDP-11 C Standard Libraries

Purpose

The difference between 1.0
and the least value great.er
than 1.0 that is representable
in the given floating-point
type.t

umber of decimal digits.

The maximum representable
finit.e floating-point number.t

The maximum integer such
that FLT_RADIX raised
to that power min 1 is a
representable finit.e floating
point number.

The maximum integer such
that 10 raised to that power
is in the range of repre
sentable finit.e floating-point
numbers.

The minimum normal
ized positive floating-point
number.t

(continued on next page)

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,,
I
I
I
I
I

•
I

1.5

Table 1-3 (Cont.): Characteristics of Floating Types

Macro

DBL_MIN_EXP
FLT_MIN_EXP
LDBL_MIN_EXP

DBL_MIN_l0_EXP
FLT_MIN_l0_EXP
LDBL_MIN_l0_EXP

FLT_RADIX
FLT_ROUNDS

Characteristic

-127
-127
-127

-38
-38
-38

2
-1

The <locale.h> Header File

Purpo e

The minimum negative
integer such that FLT_
RADIX raised to that power
minus 1 is a normalized
floating-point number.

The minimum negative
integer such that 10 raised
to that power is in the range
of normalized floating-point
numbers.

Radix of exponent.
The rounding mode of
floating-point addition is
indeterminable.

The <locale.h> header file declares two functions, setlocale and localeconv,
and one type, struct lconv, and defines several macros used for setting the
character set, collating sequence, monetary format, decimal-point character,
and date and time formats . For more information, refer to Chapter 4.

1.6 The <math.h> Header File

The <math.h> header file declares the mathematical functions and the
macro HUGE_ VAL which is the largest representable double precision
value.

For each function, a domain error occurs if the input argument is outside
the domain of the mathematical function. The function returns a value of 0
and places the value of the macro EDOM in errno.

The value assigned to HUGE_ VAL is equal to the value assigned to the
macro DBL_MAX.

PDP-11 C Standard Libraries 1-7

A range error occurs if the result of the function cannot be represented as a
double value. The value of the macro HUGE_ VAL is returned and the value
of errno is set to the value of the macro ERANGE.

If there is an underflow error, the function returns zero and errno is set to
the value of the macro ERANGE.

See Table 6-1 for a listing of the functions declared by the <math.h> header
file.

1. 7 The <Setjmp.h> Header File

The <aetjmp.h> header file declares the type jmp_buf, the longjmp
function, and the etjmp macro which are used to bypass normal function
returns and allow an immediate return from a nested function call.

The type jmp_buf is declared as an array of int.

The etjmp macro save the current context of the function in a data area
of type jmp_buf and returns a value of zero. A call to etjmp can only
occur in the context of a test of if, switch, and loops, and then only in simple
relational expressions.

The longjmp function restores the con saved by the setjmp macro.
Control appears to transfer from the macro setjmp and returns a nonzero
value.

1.8 The <Signal.h> Header File

The <signal.h> header file declares the functions raise, signal, and
__ sleep, as well as the type and macros that handle various conditions that
may be reported during the execution of a program; these conditions are
referred to as signals. Table 1-4 lists the signal-handling macros and the
conditions associated with them.

Table 1-4: Slgnal-Handllng Conditions

Condition De cription

•• I
I
I
I
I
I

..
I
I
I
I

SIGABRT Abnormal termination, such as is initiated by the abort I
function.

(continued on next page)

1-8 PDP-11 C Standard Libraries
•

I

'• I
I
I
I
I
I ,.
I
I
I
I
I

•
I

1.9

Table 1-4 (Cont): Slgnal-Handllng Conditions

Condition

SIGFPE

SIGILL

SIGINT

SIGSEGV

SIGTERM

Action

SIG_DFL

SIG_IGN

Return Value

SIG_ERR

De cription

An erroneous arithmetic operation, such as zero divide or
an operation resulting in overflow.

Detection of an invalid function image, such as an illegal
instruction.

Receipt of an interactive attention signal.

An invalid access to storage.

A termination request sent to the program.

De cription

Default action to be taken.

Ignore the signal.

De cription

Indicates signal value cannot be honored.

The <Stdarg.h> Header File

The <stdarg.h> header file declares the type, functions, and macros that are
used for advancing through a list of arguments whose number and types
are not known at compile time. Table 1-5 lists and briefly describes these
macros. For more information, refer to the PDP-11 C Standard Library
Macros and Functions subsection in the Reference Section.

Table 1-5: Varlable Argument Macros

Macro

va_arg

va_end

va_start

Description

Returns the next item in the a ent list.

Finishes a function call using a variable argu
ment list.

Initializes a variable to the beginning of the
argument list .

Chapter 2 of the Guide to PDP-11 C provides an example on including the
<stdarg.h> header file in a parameter list.

PDP-11 C Standard Libraries 1-9

1.10 The <Stddef .h> Header File

The <stddef.h> header file contains a number of type and macro definitions,

•• I
many of which are implementation-defined. Table 1-<> lists the types and I
macros that are implementation-defined and the definitions assigned to
them by PDP-11 C.

Table 1-6: Implementation-Defined Types and Macros I
Type or Macro

NULL

offs tofl;type, member)
ptrdiff_t

size_t

wchar_t

1.11 The <Stdio.h> Header File

Definition

((void •)O)

((size_t) (& (((type •) NULL}->memher)))

Type int

Type unsigned int

Type unsigned char

The <stdio.ID header file declares three types and several macros and
functions that perform input and output. This includes writing to files,
reading from files , opening and closing files, and maneuvering in files . For
more information and a list of these types, functions, and macros, refer to
Chapter 2.

1.12 The <Stdlib.h> Header File

The <Stdlib.h> header file defines several macro and declares four general
utility types and several functions, including string conversion, memory
management, environmental communication, string and sorting utility, and
multi.byte character and string functions. For a list of these macros, types,
and functions, as well as more information, refer to Chapter 5.

1-10 PDP-11 C Standard Libraries

I
I
I ..
I
I
I
I
I

II
I

•• I
I
I
I
I
I ,.
I
I
I
I
I

•
I

1.13 The <String.h> Header File

The <string.h> header file declares several functions and one type, size_t. It
also defines one macro, NULL, for use as a null pointer constant. Table 1-7
lists and briefly describes the copy, comparison, search, concatenation, and
miscellaneous functions.

Table 1-7: String Functions

Copy

memcpy, memmove

rircpy,.trncpy

Comparison

memcmp

rircmp, .trncmp

•trrlrm

Search

memchr

rirchr,.trrchr

Description

Copies a specified number of bytes from one
object to another.

Copie all or part of one string into another.

Deecription

Compares two objects, byte by byte.

Compares two character strings and returns a
negative, zero, or positive integer indicating that
the values of the individual characters in the
first string are less than, equal to, or greater
than the values in the second string.

Compares two character strings using the
collating sequence of the current setting of the
LC_COLLATE portion of the locale.

Transforms one string into another string
according to the collating sequence established
by the setlocale function.

Description

Locates the first occurrence of the specified
byte within the initial length of the object to be
searched.

Returns, respectively, the address of the first
or last occurrence of a given character in a
null-terminated string.

(continued on next page)

PDP-11 C Standard Libraries 1-11

Table 1-7 (Cont): Strtng Functions

Search

rirpbrk

.trtok

Concatenation

.treat, .trncat

rirerror

strlen

D cription

Searches a string for a character in a specified
set of characters.

Searches a string for the occurrence of one of a
pecified se of characters.

Searche a string for the occurrence of a charac
ter that is not in a specified set of characters.

Locates the first occurrence of a equence of char
acters in one string that matche the sequence of
characters in another string.

Locate text tokens in a given string .

D cription

Concatenate one string to the end of another
string.

D cription

Sets a specified number of bytes in a given object
to a given value.

Maps an error number to an error message
string.

Returns the length of a string. The returned
length does not include the terminating NUL
character (\ 0).

For further information on the functions, refer to the Reference Section.

1.14 The <time.h> Header File

The <time.h> header file defines two macros, CLOCKS_PER_SEC, the
value returned by the clock function, and NULL. It also declares four types
and several functions for time manipulation.

The types are:

• clock_t and ti.me_t, arithmetic types representing time

• struct_tm, which holds the components of calendar time referred to as
broken-down time

1-12 PDP-11 C Standard Libraries

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,,
I
I
I
I
I

•
I

• size_t, the unsigned int result of the operator sizeof.

The functions manipulate calendar time, which represents the current date
according to the Gregorian calendar; local time, which represents calendar
time expressed for a specific time zone; and Daylight Saving Time, which
represents a temporary change for determining local time. Local time and
Daylight Saving Time are implementation-defined.

Table 1-8 lists and briefly describes the date and time functions. For more
information, refer to the PDP-11 C Standard Library Macros and Functions
subsection in the Reference Section.

Table 1--a: Date and Time Functions

Function

asctime

clock

ctime

difftime

gmtime

localtime

mktime

strftime

time

Description

Converts a broken-down time int.a a 26-<:haracter
string.

Determines the CPU time used since program
execution.

Converts a time in seconds to an ASCII string.

Computes the difference in seconds between two
specified times.

Converts a given calendar time into time ex
pressed as Coordinated Universal Time (UTC).

Converts a time expressed as numbers of seconds
into hours, minutes, and seconds.

Converts time into a calendar time value.

Gives the time for the current locale.

Returns the elapsed time since 00:00:00, January
1, 1970, in seconds.

PDP-11 C Standard Libraries 1-13

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,,
I
I
I
I
I
II
I

Chapter 2

PDP-11 C Standard Input and Output

This chapter describes the 1/0 capabilities of the PDP-11 C Standard
Libraries. Table 2-1 lists all the 1/0 functions and macros found in the
PDP-11 C Run-Time Library. These functions and macros are defined in
the <stdio.h> header file. For more detailed information, see the PDP-11
C Standard Library Macros and Functions subsection in the Reference
Section.

Table 2-1: VO Macros and Functions

Macro or Function

Macroe

BUFSIZ

EOF

_IOFBF, _IOLBF, _IONBF

L_tmpnam

FOPEN_MAX

FILENAME_MAX

Purpo e

Size of the buffer used by eetbuf function.

A value indicating end--0f-file.

Buffer mode used as third argument to
eetvbuf function.

Size of an array large enough to hold a
temporary file-name string generated by the
tmpnam function.

Maximum number of files that can be opened
simultaneously.

Maximum length for a file name.

(continued on next page)

PDP-11 C Standard Input and Output 2-1

Table 2-1 (Cont): 1/0 Macros and Functions

Macro or Function

Macroa

SEEK_SET, SEEK_CUR,
EEK_END

TMP_MAX

fopen

!reopen

tandard 1/0-Readiog from File

fgetc

fgete

fr--d

getc

cam
ungetc

Standard 1/0-Writing to Files

fprintf

fputc

2-2 PDP-11 C Standard Input and Output

Purpo e

Third argument t.o the fseek function.

Minimum number of unique file names
generated by the tmpnam function.

Clo a file by flushing any buffer associ
ated with the file control block, and freeing
the file control block and buffers previously
associated with the file pointer.

Opens a file and returns a pointer t.o the file
structure.

Substitutes the file, named by a file specifi
cation, for the open file addr sed by a file
pointer.

Returns a character from a specified file.

Reads a line from a specified file and stores
the characters in a string pointed t.o by an
argument.

Reads a specified number of items from a file.

Returns characters from a specified file.

Performs formatted input from a string.

Pushes back a character int.o an input stream
and leaves the stream positioned before the
character.

Performs formatted output to a specified file.

Writes a character to a specified file.

(continued on next page)

•• I
I
I
I
I
I

..
I
I
I
I
I

II
I

•• I
I
I
I
I
I ,,
I
I
I
I
I
II
I

Table 2-1 (Cont): 1/0 Macros and Functions

Macro or Function

Standard 1/0-Writing to Files

fwrite

putc

sprintf

Puzpo e

Writes a character string to a file without
copying the string's NUL terminator.

Writes a specified number of items to a file .

Writes a character to a specified file .

Performs formatted output to a string.

Standard 1/0-Maneuvering in Files

fgetpoe

fseek

fsetpos

ftell

rewind

Standard 1/0-Formatted Output

vfprintf

vprintf

vsprintf

Writes any buffered information to the
specified file.

Finds the current file position indicator for a
stream.

Positions the file to the specified offset in the
file.

Seta the current file position indicator of a
stream.

Returns the current offset to the specified
stream file.

Seta the current file position to the beginning
of the file.

Printa formatted output to a file based on an
argument list.

Printa formatted output to stdout based on an
argument list.

Prints formatted output to a string based on
an argument list.

(continued on next page)

PDP-11 C Standard Input and Output 2-3

Table 2-1 (Cont): O Macros and Functions

Macro or Function Pu.rpo

Standard 1/0-Additional

clearerr

f of

ferror

perror

remov

rename

tbuf

tvbuf

tm.pfil

tm.pnam.

Terminal 1/0-Reading from File.

getchar

get.

canf

2-4 PDP-11 C Standard Input and Output

and Macro

Resets the error and end-of-file indicators for
a file.

Tu a file to see if the end-of-file has been
reached.

Returns a nonzero integer if an error has
occurred while reading or writing a file.

Prints a line to the standard error stream
which consi ts of a user-pas ed string, colon,
or pace and the error me age text that
oorre ponds to the current value of the ernw
expression.

Cause a file to be deleted.

Giv a n w name to an existing file.

Associate a buffer with an input or output
file.

Associates a buffer with an input or output
file.

Create a temporary file that is opened for
update.

Creates a unique character string that can
be used in place of the file name argument in
other function calls.

Reads a single character from the standard
input (std.in).

Reads a line from the standard input (stdin).

Performs formatted input from the standard
input (stdin).

(oontinued on next page)

•• I
I
I
I
I
I

..
I
I
I
I
I

II
I

•• I
I
I
I
I
I ,.
I
I
I

2.1

Table 2-1 (Conl): 1/0 Macros and Functions

Macro or Function

Terminal 1/0-Writing to Files

printf

putchar

pute

Accessing File Information

_ _tbuf

_Jger

__ fgnm, fgetname

__ free

Streams and Files

Purpo e

Performs formatted output from the standard
output (stdout) of a stream.

Writes a single character to the standard
output (stdout) and returns the character.

Writes a character string to the standard
output (stdout) followed by a newline.

Returns current buffer length associated with
a file pointer.

Returns low-level error code that is associated
with a previously called file operation.

Returns a pointer to a file specification
associated with a file variable.

Returns the logical unit number associated
with a file pointer.

Returns the current record length aBSociated
with a file pointer.

The PDP-11 C language refers to the logical data path upon which standard
input/output occurs as a stream. A stream is a path from the program to
and from the data stored in a file. Two types of streams are used in PDP-11
C: text and binary.

I 2.1.1 Text and Binary Streams

I
II
I

The choice between text and binary streams is made when the user program
opens the file. Certain functions operate differently, depending on whether
they are used with text or binary streams.

PDP-11 C Standard Input and Output ~

A text stream is an ordered sequence of characters composed into lines that
allow a C program to create text files that are readable by other programs,
especially text editors. Each line consists of zero or more characters plus
a terminating newline character. A one-to-one correspondence between the
characters in the text stream and those in the file is not necessary.

A binary stream maps data one-to-one with the data in the file . Although
the newline character has meaning for binary streams, it must map to one
character in the file.

2.1.2 Compatibility with VAX C

VAX C does not distinguish between text and binary streams; however:

• All files created by PDP-11 C are read by VAX C with no conversion.

• Files created by VAX C are read as binary stream files by PDP-11
C with no conversion. However, text files created by VAX C must be
converted before they are read as text files on PDP-11 C.

For more information on PDP-11 C and VAX C compatibility, refer to
Appendix A.

2.2 Streams and Operating Systems

Mapping from a PDP-11 C stream to a file system is dependent on the
following:

• The operating system

• If the stream is text or binary

• If the file exists or is being created

• If the target of the stream is a physical device or a file on a supported
file system (FCS or RMS)

The following sections describe bow PDP-11 C maps text and binary streams
to the file types on each operating system.

2-6 PDP-11 C Standard Input and Output

•• I
I
I
I
I
I

..
I
I
I
I
I

II
I

•• I
I
I
I
I
I ,,
I
I
I
I
I

-
I

2.2.1 RSX Operating System and Text Files

On RSX operating systems, when a text stream is mapped to a file and the
file is being created, PDP-11 C creates a sequential file with variable-length
record format, implied carriage control record attributes, and no defined
maximum record length.

PDP-11 C scans the output data for a newline character when placing the
data to the output text file . All data up to but not including the newline
character is put in the file as a file record. All data after the newline
character becomes part of the next record. The newline character is never
part of the file, but it is represented implicitly by the end of each record in
the file .

When data is read from an external file, a record is read from the file and
a newline character is appended to that data. PDP-11 Chas a default
maximum line length of 512 characters including one for the newline
character. The PDP-11 C Standard Library places the first 511 characters
in the file buffer. Additional characters are placed at the beginning of the
file buffer where they form the characters of the next line in the text file.

The size of the internal buffer, and therefore line size, can be modified with
the setvbuf function. The modified buffer size determines the maximum
line length of the PDP-11 C program. If the buffer size is not modified by
setvbuf, an error occurs when the program attempts to read a record larger
than 611 bytes from a file.

Before an existing text file can be opened as a text stream, the file must be
sequential and the record format must be variable length. It is not possible
to open a relative or indexed file or a file with fixed-length records as a text
stream using the PDP-11 C Standard 1/0 library.

If the defined maximum record size or longest record length is greater than
511 bytes, PDP-11 C allocates an internal buffer size equal to the defined
size plus 1 byte for the newline character. If the defined maximum record
size is less than 511 bytes and is opened for reading, PDP-11 C allocates
storage space for the actual length of the record.

Table 2--2 shows the internal line size allocated when an existing file is
opened as previously discussed.

PDP-11 C Standard Input and Output 2-7

Table 2-2: Ale Sizes

Erlernal w File, Existing File,
Write Only Record Size1 Read Only

<511 bytes

>=511 byte

Un.lmown

Actual record size

Actual record size

512 byte

512 bytes

Actual record size

512 bytes

1 Defined by maximum record mu and larg st record I ngth.

2.2.2 RSX File Attributes

Although PDP-11 C Standard 1/0 allows a program to create a sequential
file with implicit carriage control, other record formats can be read and
written when an existing file is opened using standard input/output.

Table 2-3 shows how PDP-ll C interprets different RSX record types on
existing text streams.

Table 2-3: RSX Attributes and Behavior

Attribute

Explicit carriage control

FORTRAN input

2.-8 PDP-11 C Standard Input and Output

Behavior

Input: Check for the <CR> <l.F> sequence. If
found, remove from input string and replace with
newline character.

Output: Replace newline character with
<CR><LF> before output is performed.

If the control character is NUL, the record is not
modified further.

If the control character is 0, two newline char
acters are placed at the beginning of the record
and a <CR> is placed after it.

If the control character is 1, a <FF> is placed
before the record and a <CR> is placed after it.

If the control character is +, a <CR> is placed
aft.er the record.

(continued on next page)

•• I
I
I
I
I
I

..
I
I
I
I
I

II
I

•• I
I
I
I
I
I
f'

Table 2-3 (Cont): RSX Attributes and Behavior

Attribute

FORTRAN output

Variable record format with fixed
control area

Stream

Mapped t.o a device (must be
record-oriented device)

Behavior

If the control character is $, a newline character
is placed at the start of the record.

For all other characters, a newline character is
placed at the front of the record, and a <CR> is
placed after the record.

Inverse t.o input mapping takes place.

Concatenate the fixed area t.o the front of the
record. Thie is not supported by RMS or FCS.

Input: If the record does not end in <LF'>, <FF>,
or <VT>, a newline character is appended t.o the
record.

Output: Change the newline character to <LF>.

Input: Append the tenninat.or t.o the input
data. If the terminat.or was a <CR> or !CTRI./ZL

a newline character is appended. Termination
characters are device-dependent.

Output: Change newline characters t.o a
<CR><LF'> sequence.

I 2.2.3 RSX Operating System and Binary Flies

I
I
I
I

-
I

When creating a new binary stream file on the RSX operating system,
PDP-11 C creates a sequential file with a fixed record size of 512 bytes. The
file has no record attributes.

All data is moved to and from the file in 512-byte increments unless the
function setvbuf is used to change the internal buffer size or a device is
being opened. The buffer size for an open device is the record size of the
device.

The newline character is represented by a <LF> during output to all binary
files. During input all <LF> characters are interpreted as newline characters.

PDP-11 C can open any file as a binary stream.

Any user-accessible device may be opened as a binary file.

PDP-11 C Standard Input and Output 2-9

2.2.4

2.2.5

RSTS/E Operating System and Stream Files

PDP-11 C uses a RSTS/E-native stream file as the system file to map to C
streams.

RSTS/E Operating System and Text Flies

PDP-11 C create a RSTS/E-native stream file when it creates a text stream
file . ewline character are converted to <CR><LF> during output, and
<C'R><LF> is converted to a newline character during input.

Additional terminator characters are:

• <LF'><CR><NllL> Tran lated to a newline character

• <LF> Pas ed unmodified

• <l'F> Passed unmodified

• <ESC> Passed unmodified

• <VT> Passed unmodified

All null characters read from a RSTS/E-native file are ignored.

PDP-11 C opens a RSTS/E-native file when it opens an existing file as a text
stream or when it opens a text stream on a device. There is no restriction on
nonrecord-oriented devices. Additionally, all RMS files that can be read on
RSX systems as text files can be opened and read as text files on the RSTSIE
system.

•• I
I
I
I
I
I ..

2.2.6 RSTS/E Operating System and Binary Flies

I
I

PDP-11 C creates a RSTS/E-native file when it creates a binary stream file.
The newline character is represented by a <LF> character on output, and the I
<LF> character is converted to a newline character on input.

Besides supporting RSTS/E-native files as binary input files, PDP-11 C
allows all RMS files with sequential organization and fixed-length records to I
be opened as a binary stream. Refer to Section 2.2.3 for further information
on file behavior.

I
II

2-10 PDP-11 C Standard Input and Output I

•• I
I
I
I
I
I
f'
I
I
I
I
I

•
I

2.2.7 RT-11 Operating System and Stream Flies

The RT-11 operating system supports only one file format. Although RT-11
has object, stream, save image, and other file types, there is no way of
determining what the file type is by looking at the file or the data in it.

2.2.8 RT-11 Operating System and Text Flies

On the RT-11 operating system any file can be opened as a text stream.
PDP-11 C converts a <CR><LF> sequence to a newline character. All other
characters, except NULL, pass unmodified. ~ denotes the end of a text
file. All null characters are ignored.

2.2.9 RT-11 Operating System and Binary Files

All files can be opened as binary streams. PDP-11 C represents the
newline character as a <LF> in the file . The <LF> is interpreted as a newline
character during input. The end of the binary file is the physical end of the
file.

2.3 The <Stdio.h> Header

Table 2-1 lists the functions and macros which the <stdio.h> header file
declares. For detailed descriptions of the Standard I/0 functions, refer to
the PDP-11 C Standard Library Macros and Functions subsection in the
Reference Section.

The <stdio.h> header file declares two types:

FILE
fpos_t

The PDP-11 C FILE type is a type capable of recording the information
needed to control a stream. It is declared as an incomplete structure.
Because only pointers to the object of type FILE are used by Standard
Library I/0 Functions, it is not necessary to declare the full contents of the
FILE object. Access to key elements of this structure may be obtained by
the __ fgnm, fger, __ dun, __ tbu.f, and __ free functions.

The PDP-11 C fpos_t type consists of four 16-bit words capable of recording
the information needed to uniquely specify positions within a file .

PDP-11 C Standard Input and Output 2-11

2.4

2.4.1

The <stdio.h> header define std.err, stdin, and stdout, which point to the
FILE objects associated with the standard error stream, the standard input
stream, and the standard output stream, respectively.

Conversion Specifications

Several Standard 1/0 functions use conversion characters to specify data
formats for input and output. Consider the following example:

int X • 5;
FILE *out file;

fprintf(outfile, "Tb• an•w•r i• d.\n", x);

The decimal value of the variable x replace the conversion specification %d
in the string to be written to the file a sociated with the identifier outfile.

Converting Input Information

A format specification for the input of information can include three kinds of
items:

• White-space characters (spaces, tabs, and newlines), which match
optional white-space characters in the input field.

• Ordinary characters (not %), which must match the next nonwhite-space
character in the input.

•• I
I
I
I
I
I

..
I

• Conversion specifications, which govern the conversion of the characters

1 in an input field and their assignment to an object indicated by a
corresponding input pointer. Conversion specifications must begin with
the percent sign (%).

Each input pointer is an address expression indicating an object whose
type matches that of a corresponding conversion specification. Conversion
specifications form part of the format specification. The indicated object
is the target that receives the input value. There must be as many input
pointers as there are conversion specifications, and the addressed objects
must match the types of the conversion specifications.

Table 2-4 describes the conversion specifiers for formatted input.

I

2-12 PDP-11 C Standard Input and Output

I
I

II
I

•• I
I
I
I
I
I ,.
I
I
I
I
I

-
I

Table 2-4: Conversion Specifiers for Formatted Input

Character Meaning

d Matches an optionally signed decimal integer. The corresponding
argument is a pointer to an int.

Matches an optionally signed integer whose format is that of an
integer constant. The corresponding argument is a pointer to an int.

o Matches an optionally signed octal integer. The corresponding
argument points to an unsigned int.

u Matches an optionally signed decimal integer. The corresponding
argument points to an unsigned int.

x, X Matches an optionally signed hexadecimal integer. The correspond
ing argument points to an unsigned int.

e, E, f, g, G Matches an optionally signed floating-point number. The correspond
ing argument points to a float.

s Matches a sequence of non-white space characters. The correspond
ing argument points to an array of type char large enough to hold
the input and a terminating NUL character.

[] Matches a sequence of characters (scanlist) from a set of characters
(scanset). The corresponding argument points to the initial char
of an array large enough to hold the sequence of characters. The
characters inside the brackets (scanlist) make up the scanset.
However, if the left bracket is followed by a circumflex ("), then the
scanset is all the characters that are not in the sca.nlist.

c Matches a sequence of characters specified by the field width. If
a field width is not given, then the width is 1. The corresponding
argument points to an array of type char large enough to hold the
input and a terminating NUL character.

p Matches a sequence of characters representing a pointer. The
corresponding argument points to a pointer to void.

n No conversion. The corresponding argument is a pointer to an int
into which is put the number of characters read from the input
stream.

Matches a percent sign.

Refer to Table 2-5 for optional conversion modifiers for formatted input.

PDP-11 C Standard Input and Output 2-13

Table 2-5: Optional Conversion Modifiers

Modifier

h

L

•
number

[...)

Remarks

Meaning

Short int ford, i, n.

Unsigned hort int for o, u. L

Long int ford, i, n.

Un igned long int for o, u, L

Double for e, f, g.

Long doubl fore, f, g.

Suppre s as ignment.

A number used as the maximum field width.

Expects a string that is not delimited by white-space characters.
The brackets enclo a set of characters (not a string). Ordinarily,
this set (or character class") is made up of the characters that
comprise the string field. Any character not in the set will
terminate the field. However, if the first Oeftmost) character is a
circumflex ("), then the set shows the characters that terminate
the field. The corresponding argument must point to an array of
characters.

• The modifier precede the conversion specification characters. For
example, when the modification character 1 is added to the conversion
specification character x, a long integer of the specified radix (lx) is
expected.

• The delimiters of the input field can be changed with the bracket ([])
conversion specification. Otherwise, an input field is defined as a string
of nonwhite-space characters. It extends either to the next white-space
character or until the field width, if specified, is exhausted. The function
reads across line and record boundaries, since the newline character is a
white-space character.

• A call to one of the input conversion functions resumes searching imme
diately after the last character processed by a previous call.

• If the assignmenfrsuppression character (*) appears in the format
specification, no assignment is made. The corresponding input field is
interpreted and then skipped.

2-14 PDP-11 C Standard Input and Output

•• I
I
I
I
I
I

..
I
I
I
I
I

II
I

•• I
I
I
I
I
I
f'
I
I
I
I
I

•
I

• The arguments must be pointers or other address-valued expressions,
since C permits only calls by value. 'lb read a number in decimal format
and assign its value ton, you must use the following form:

scanf("%d", &n)

not

scanf("%d", n)

• White space in a format specification matches optional white space in
the input field. Consider the following format specification:

field• %x

This format specification matches the following forms:

field• 5218
field•5218
field• 5218
field •5218

The format specification does not match the following:

file d•5218

2.4.2 Converting Output Information

The format specification string for the output of information may contain the
following kinds of items:

• Ordinary characters, which are simply copied to the output

• Conversion specifications, each of which causes the conversion of a
corresponding output source to a character string in a particular format

Table 2-6 describes the conversion specifiers for formatted output.

PDP-11 C Standard Input and Output 2-15

Table 2~: Conversion Specifiers for Fonnatted Output

Character M aning

d, i

0

u

x,X

f

e, E

g,G

C

s

p

n

Converts to signed decimal in the format [-]dddd. The precision
indicates the minimum number of digits to appear, with the default
being 1 digit. Converting a zero value with a precision zero yields no
characters.

Converts to unsigned octal in the format dddd.

Converts to unsigned decimal in the format dddd (giving a number in
the range O to 65,535).

Converts to unsigned hexadecimal in the format dddd (without a
leading Ox). An uppercase X causes the hexadecimal digits A-F to be
printed in uppercase. A lowercase :r. causes those digits to be printed
in lowercase.

Converts float or double to the format [-}ddd.d.d.d. The number of
digits is specified by the precision (the default is 6). The precision does
not determine the number of significant digits printed. If the precision
is O and the # flag 1s not given, no decimal point characters appear.

Converts float or double to the format [-]d.d.d.dtldd.. If no precision
is given, the default is 6. If the precision is O and the # flag is
not given, no decimal point characters appear. An E is printed if
the conversion character is an uppercase E. An e is printed if the
conversion character is a lowercase e.

Converts float or double to for e format. The format depends on the
value that is converted. If the exponent from the conversion is less
than --4 or greater than or equal to the precision, then thee format is
used. The fractional portion of the result has trailing zeros removed.
A decimal-point does not appear if it is not followed by a digit.

Outputs an unsigned char.

Writes characters from an array of characters until a NUL character
is encountered or until the number of characters indicated by the
precision specification is exhausted. If the precision specification is 0
or omitted, all characters up to a NUL are output.

The argument is a pointer to void. The pointer is printed as an octal
number of 7 digits, including a leading O character.

The argument points to an int where the number of output characters
is placed. No conversion is performed.

Writes out the percent symbol. o conversion is performed.

You can use the characters listed in Table 'lr-7 between the percent sign (%)
and the conversion character. These characters are optional; if specified,
they must occur between the percent sign (%) and the conversion specifier.

2--16 PDP-11 C Standard Input and Output

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,,
I
I
I
I
I

•
I

Table 2-7: Optional Conversion Modifiers for Formatted Output

Modifier Meaning

h Indicates that a following d, i, o, u, x, or X specification corre
sponds to a short int or UDBigned short int as appropriate.

1 Indicates that a following d, i, o, x, or X specification corresponds
to a long int or unsigned long int as appropriate. In PDP-11
C, all int values are short by default.

L Indicates that a following e, E, g, or G specification correspond
to a long double.

• (asterisk) Is used to indicate the field width specification, the precision
specification, or both. The field width or precision is given by an
int argument. The arguments must appear in the following order
preceding the argument to be converted: field width, precision, or
both. A negative field width argument is interpreted as a"-" flag
preceded by a positive field width. A negative precision argument
is interpreted as no argument given.

Refer to Table 2--8 for descriptions of optional flag characters.

Table 2-8: Optional Conversion Flag Characters

Flag Meaning

width

. (period)

precision.

- (hyphen)

+

Use this integer constant as the minimum field width. If the
converted output source is wider than this minimum, write it
out anyway. If the converted output source is narrower than the
minimum width, pad it to make up the field width. Pad with
spaces or with Os if the field width is specified with a leading O;
this does not mean that the width is an octal number. Padding is
normally on the left; on the right if a minus sign is used.

Separates the field width from precision.

Use this integer constant to designate the maximum number of
characters to print with an s format, or the number of fractional
digits with an e or f format.

Leib-justify the converted output source in its field. If no hyphen
is specified, the field is right-justified.

Indica~ that the number prints with a sign.

(continued on next page)

PDP-11 C Standard Input and Output 2-17

Table 2~ (Cont.): Optional Conversion Flag Characters

Flag

space

0

Meaning

A pace is inserted following the first character of a signed
conversion if there is no sign or if the conversion results in no
characters. If there is a space and"+ ign. the space is ignored.

Alternate form of conversion oi the result. For o conversion, it
force the first digit of the result to zero. For x and X conversion,
it place Ox or OX before a nonzero r ult. For e, E, f, g, and G
conversions, the r ult contains a decimal point even when there
are no digits following it. ormally, the only time a decimal point
appears is when a digit folio sit. For g and G conversions, any
trailing zero are not removed.

Leading Os are used to pad the field width for d, i, o, u, x, X.
e, E, f, g, and G conversions. Space padding is not normally
performed. The O flag is ignored if the O and hyphen (-) appear.
When a preasion is given for d, i, o, u, x, and X conversions, the
0 flag is ignored.

2.5 The /CP Taskbuilder Switch

On the RSX operating system, programs that use Standard 1/0 functions
must use the /CP task.builder switch when task.building. This is because the
memory management functions used by the Standard 1/0 run-time support
routines require that the task must be built using the /CP task.builder
switch. For further information, refer to the task.builder manual for the
appropriate operating system.

2.6 Input/Output Support Package

PDP-11 C provides support routines which use RMS, FCS, and Native 1/0
to access files when using PDP-11 C Standard 1/0 functions. All PDP-11 C
tasks that include any Standard 1/0 routines that do input or output include
support for Native 1/0. o user action is required to include this support.

The following table shows the 1/0 support, the operations supported, and the
operating system on which they are used:

~18 PDP-11 C Standard Input and Output

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,,
I
I
I
I
I

•
I

Operating
System Native 1/0 RMS FCS

RT All operations NIA NIA
RSX1 To devices To files To files

RSTS/E All operations To files NIA

1 File delebon and r naming are done using FCS or RMS on RSX.

The following two sections describe the use of RMS and FCS for file input
and output.

RMS for FIie Input/Output

The module $PRMXF must be explicitly included in the Task Builder .ODL
file when tasks are built that use RMS to access files through Standard 1/0
functions . Also, an appropriate RMS .ODL must be referenced to include the
proper RMS support. The following example shows how to build $PRMXF
and RMS into a task:

. ROOT OSER
OSER : . FCTR SY:TSTREN-LB: (1, l)CFPORSX/ LB : $PRMXF-RMSROT-LIBR, RMSALL
LIBR : . FCTR LB : (1, l) : CFPORSX/ LB
@LB : [l,l)RMSllS

. END

FCS for FIie Input/Output

The module $PFCXF must be explicitly included in the Task Builder .ODL
file when tasks are built that use FCS to access files through standard 1/0
functions. The following example shows how to build $PFCXF into a task:

. ROOT OSER
OSER: .FCTR SY: TSTRBN-LB : (1 , 1) CFPORSX/LB : $PFCXF-LIBR
LIBR : .FCTR LB : (1, 1) : CFPURSX/LB

.END

When including the FCS support package on an RSX system, the $PFCXF
module allocates enough FCS internal storage for three files requiring FCS
support to be opened concurrently. Should a program require more than
three FCS files to be opened, it will be necessary for the user to increase
the size of the $$FSR1 psect. This can be done when the task is linked.
For more information, see the RSX-llM/M-PLUS and Micro/RSX 1/0
Operations Reference Manual .

PDP-11 C Standard Input and Output 2-19

2. 7 Reserving LUNs

When the PDP-11 C Run-Time Library opens a file, it allocates one of the
LUNs available to it. By default, a maximum of eight files can be opened at
once, as indicated by the FOPE _MAX definition in the <stdio.h> header
file.

It is possible for a task to open more than eight files at once by patching the
symbol NLUNS to the desired value. ote that stdin uses one LUN, while
stdout and stderr share another. Therefore if you wanted to have 11 user
files at once, you need to patch the value 13 into NLUNS. Do this by using
the GBLPAT option of the RSX Task Builder or the SIPP utility on RT-11.

When a task is built, the task builder automatically assigns a number of
LUNs to the task. One L is required for every file that the program
has opened. The number of required LUNs is equal to the number of files
opened at one time plus an additional LUN if standard output is redirected.

The format of the PDP-11 C Run-Time Library module that defines which
LUNs are reserved is:

. TITLE $PRLON
$PRLON ::

. RD 0

. END
; Number of "r•••rv• word•"

The PRLUN global symbol is the start of the LUN reservation table. The
first word of the table is the number of words that follow in the table. No
LUNs are reserved by default and the length of the table is zero.

Reserve words appearing in the table make up the bit vector. A bit position
in the vector corresponds directly to a LUN number. For example, the first
reserve word holds bits corresponding to LUNs Oto 15, and the second
reserve word holds bits corresponding to LUNs 16 to 31. Because no LUNs
are reserved by default, there are no reserve words in the module.

PDP-11 C provides the user a way to reserve any LUN or LUNs by creating
a MACRO file to replace the default MACRO file included in the task. LUNs
are reserved at task build time. The following example shows how to reserve
LUNs 4, 5, and 8 in a MACRO program:

. TITLE $PRLON
$PRLON ::

. RD l

. RD 460

. END

;N••d only l r•••rv• word
; Set bite 4 , 5, and 8

2--20 PDP-11 C Standard Input and Output

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,,
I
I
I
I
I

•
I

The following example shows how to reserve LUNs 4, 5, and 8 in a PDP-11
C program:

#pragma module "$PRLtJN", "VOl.01"

conat abort $PRLtJN[2] -{
1,
0460

} ;

/* Number of r•••rv• worda */
/* R•••rv• LtJNa 4,5, and 8 */

Reference can be made to this module in the task's .ODL file, through the
Task Builder command line, or through the Linker command line.

2.8 Program Examples

Example 2-1 shows the printf function.

Example 2-1 : Output of the Conversion Specifications

/* Thia program u••• th• print! function to print th• *
* varioua converaion apecificationa and their effect on the *
* output. */

#include <atdio.h>

int main ()

double
char
long int
char

val
C

i

*•

- 123.3456•+3;
• 'C';
- -1500000000;
- "thomaaina";

/* Print the apecification code, a colon, two taba, and the *
*
*/

* formatted output value delimited by th• angle bracket
* character• (<>) .

printf ("''9. 4f:
printf ("''9f:
printf ("''9. Of:
printf(",,-9.0f:

print! ("''11. 6•:
printf ("''11•:
printf("''ll.Oe:
printf("\%-11.0e:

<%9. 4f>\n",
<%9f>\n",
<,9.0f>\n",
<%-9. Of>\n\n",

<%11. 6•>\n",
<,11•>\n",
<,11. Oe>\n",
<%-11. Oe>\n\n",

val);
val);
val};
val);

val);
val};
val};
val};

(continued on next page)

PDP-11 C Standard Input and Output 2-21

Example 2-1 (Cont.): Output of the Conversion Specifications

print!(" llg : < llg> \ n", val);
print!(" 9g: < 9g> \ n\n", val);

print!(" d : < d.>\n", c);
print!(" c : < c> \ n", c);
print!(" o : < o> \ n", c);
print!(" x : < x.> \ n \ n", c);

print!(" ld: < ld.>\n", i);
print!(" lu: < lu> \ n", i);
print!(" lx: < lx.> \ n \ n", i);

print!(" . : < •> \ n", •l ;
print!(" -9 . 6a : < -9 6•>\ n", •);
print!(" -* · *• : < -* • *•>\n" I 9, 5, •);
print!(" 6 . 0a : < 6 . 0a>\ n \ n", •);

The sample output from Example 2-1 is as follows:

$ RUN E
9.4!:
9f:
9.0f:
-9 . 0f:

ll.6e :
lle:
ll.0e:
-ll.0e:

llg:
9g :

d:
c :
o :
x :

ld:
lu:
lx:

.,
-9.6a:
-*.*•:
6.0a:

$

LB~
<123345.6000>
<123345 . 600000>
< 123346>
<123346 >

<l.233456-+05>
<l. 233456-+05>
< l.•+05>
<l.•+05 >

< 123345>
< 123345>

<67>
<C>
<103>
<43>

<-1500000000>
<2794967296>
<a697d100>

<tbomaain&>
<tbomaa >
<tboma >
< >

2-22 PDP-11 C Standard Input and Output

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,.
I
I
I
I
I

•
I

Example 2-2 shows the use of the fopen, ftell, sprintf, fputs, fseek, fgets,
and fclose functions.

Example 2-2: Using the Standard 1/0 Functions

/* Thi• program ••tabli•h•• a file pointer, writ•• lin•• from*
* a buffer to the file, move• the file pointer to the ••cond *
* record, copi•• the record to the buffer, and then print• *
* the buffer to the •creen . */

tinclude <•tdio.h>
tinclude <•tdlib.h>

int main ()
{

char
int
FILE

buffer[32];
i, po•;
*fptr;

fptr • fopen("data.dat",
if (fptr - NOLL)

/* Set file pointer
"w+");

{
perror("fopen");
exit (EXIT_FA:ILURE); /* Exit if fopen error

for (i•l; i<S; i++)
{

if (i - 2) /* Get po•ition of record 2
po•• ftell(fptr);

/* Print a line to the buffer
•printf(buffer, "t••t data line d\n", i);

/* Print buffer to the record
fput•(buffer, fptr);

/* Go to record number 2
if (f•••k(fptr, po•, 0) < 0)

{
perror("f•••k"); /* Exit on f•••k error
exit (EXIT_FA:ILURE);

/* Put record 2 in the buffer
if (fget•(buffer, 32, fptr) - NULL)

{
perror("fg•t•"); /* Exit on fg•t• error
exit(EXIT_FA:ILURE);

/* Print the buffer
printf("Data in record 2 i•: \•", buffer);
fclo•• (fptr); /* Clo•• the file

*/

*/

*I

*I

*/

*/

*I

*I

*/

*I

*/

PDP-11 C Standard Input and Output 2-23

The sample output to the terminal from Example 2-2 is:

$ R LE~
Data in record 2 ia : teat data line 2

The sample output to DATA.DAT from Example 2-2 is:

teat data line l
teat data line 2
teat data line 3
teat data line 4

2-24 PDP-11 C Standard Input and Output

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,,
I
I
I
I
I

•
I

Chapter 3

Character-Handling Functions and Macros

This chapter describes character-handling functions and macros. Table 3-1
lists and briefly describes all the character-handling functions and macros
contained in the PDP-11 C Run-Time Library. These functions and macros
are defined in the <ctype.h> header file . For more detailed information, see
the PDP-11 C Standard Library Macros and Functions subsection in the
Reference Section.

Character-handling functions are affected by the currently set locale. By
default, the C locale is set. See Chapter 4 for information on locales.

Table 3-1: Character- and List-Handling Functions and Macros

Function or Macro

Character-Testing

isalnum

isalpha

isascii1

__ ischar

Purpose

Returns a nonzero integer if its argument is an alphanu
meric character.

Returns a nonzero integer if its argument is an alpha
betic character. In PDP-11 C, isalpha is true only for
characters having isupper or islower true.

Returns a nonzero integer if its argument is any ASCil
character in the ASCII character set. This function is a
Digital extension added for VAX C compatibility.

Returns a nonzero integer if its argument is contained in
the current character set.

1Not defined when compiling /STANDARD=sANSI.

(continued on next page)

Character-Handling Functions and Macros 3-1

Table ~1 (Cont): Character- and List-Handling Functions and Macros

Function or Macro

Character-Testing

• cntrl

• digit

ugraph

• lower

uprint

upunct

space

uupper

i.ndigit

Purpo

Returns a non.zero integer if it.a argument is a delete
character or any nonprinting character for each of the
character sets supported by PDP-11 C.

Returns a non.zero integer if its argument is a decimal
digit character (0-9).

Returns a non.zero integer if its argument is any printing
character with the exception of the space character.

Returns a nonzero integer if its argument is a lowercase
alphabetic character.

Returns a non.zero integer if its argument is a printing
character.

Returns a nonzero integer if its argument is a punctua
tion character.

Returns a nonzero integer if its argument is white
space; that is, if it is a pace, tab (horizontal or vertical),
carriage-return, form-feed, or newline character.

Returns a non.zero integer if its argument is an uppercase
alphabetic character.

Returns a non.zero integer if its argument is a hexadeci
mal digit.

Character Case-Mapping

to cii1

tolower

_tolower1

toupper

_toupper1

Converts an 8-bit ASCII character to a 7-bit ASCII
character. This function is a Digital extension provided
for VAX C compatibility.

Converts uppercase characters to lowercase characters.

Converts uppercase characters to lowercase characters
for VAX C compatibility.

Converts lowercase characters to uppercase characters.

Converts lowercase characters to uppercase characters
for VAX C compatibility.

1Not defined when compiling ISTANDARD-...ANSI.

3--2 Character-Handling Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,.
I
I
I
I
I

•
I

3.1 Character-Testing Macros

In PDP-11 C, the macro version of a function is declared in the appropriate
header file if a macro version exists. If no macro version exists, the function
is used. The header also declares a prototype for the function and maps it to
the Run-Time Library (RTL) routine that implements the function.

If the macro exists, using #undef followed by the name of the macro ensures
that the function is used rather than the macro.

For all macros, a nonzero return value indicates true. A return value of 0
indicates false.

For each character-testing macro, Table 3-2 lists the decimal equivalents of
the character values which return true for each of the PDP-11 C supported
locales.

Table 3-2: Character Values

Function

isalnum

Locale

C

English

Danish

Digital Multinational

Finnish

French

German

Italian

Character Value.

48-57, 6~90,97-122

48-57, 6~90,97-122

48-57,6~90,97-122, 197-198,
201,216,220,229-230,233,248,
252

48-57, 6~90,97-122, 192-207,
209-221, 224-239,241-253

4~7, 6~90,97-122, 196-197,
214, 220, 228-229, 233,246,252

4~7. 6~90,97-122, 192,194,
198-203, 206-207, 212, 215,
217,219-220,224,226,230-235,
238-239,244,247, 249,251-252

4~7. 6~90, 97-122, 196,
214-215, 220, 228,~247,252

48-57,6~90,97-122192, 199-
201,204,210,217, 224,231-233,
236,242,249

(continued on next page)

Character-Handling Functions and Macros 3-3

Table 3-2 (Cont): Character Values

F unction Locale

orwegian

Portugue

Spanish

Swedish

• alpha C

English

Danish

Digital Multinational

Finnish

French

German

Italian

orwegian

3-4 Character-Handling Functions and Macros

••
Character ValuM I
48-57,65-90,97-122, 197-198, I 216, 229-230, 248

48-57, 65-74, 76-86, 88, 90,
97-106, 108-118, 120,122, 192-

I 195, 199,201-202,205,211,213,
218,224--227, 231, 233-234,237,
243-245, 250
48-57,65-90,97-122, 193,201, I 205,209,211,218,220,225,233,
237,241,243,250,252

48-57,65-90,97-122, 196--197, I 214, 22~229, 246

65-90,97-122

65-90,97-122 I 65-90, 97-122, 197-198, 201,
216,220,229-230,233, 248,252 .. 65-90, 97-122, 192-207, 209-
221,224-239,241-253

65-90, 97-122, 196--197, 214,
220, 2~229, 233,246,252

I 65-90, 97-122, 192,194, 198-
203, 206-207, 212, 215, 217,
219-220, 224,226, 23~235,
2~239,244,247, 249,251-252 I 65-90, 97-122, 196, 214--215,
220, 228,246-247, 252

65-90, 97-122, 192, 199-201, I 204,210,217,224, 231-233,236,
242,249
65-90, 97-122, 197-198, 216, I 229-230,248

(continued on next page)

I

•
I

•• I
I
I
I
I

I
I
I
I
I

•
I

Table 3-2 (Cont): Character Values

Function Locale Character Values

Portuguese 65-74, 76-86, 88, 90, 97-106,
1~118, 120,122, 192-195, 199,
201-202, 205,211,213,218,
224-227, 231, 233-234, 237,
243-245, 250

Spanish 65-90, 97-122, 193,201,205,
209, 211, 218, 220, 225, 233, 237,
241,243,250,252

Swedish 65-90, 97-122, 196-197, 214,
2~229, 246

isascii For all locales 0-127

__ ischar C 0-127

English 0-127

Danish 0-127

Digital Multinational 0-127. 132-151, 155-159, 161-
163, 165, 167-171, 176-179,
181-183, 185-189, 191-207,
209-221, 223-239,241-253

Finnish 0-127

French 0-127

German 0-127

Italian 0-127

Norwegian 0-127

Portuguese 0-127

Spanish 0-127

Swedish 0-127

iscntrl C 0-31, 127

English 0-31, 127

Danish 0-31, 127, 132-151, 156-159

Digital Multinational 0-31, 127, 132-151, 156-159

Finnish 0-31, 127, 132-151, 155-169

(continued on next page)

Character-Handling Functions and Macros 3-5

Table ~2 (Cont): Character Values •• I Function Local Character Valuee

French 0-31, 127, 132-151, 156-159

I German 0-31, 127, 132-151, 156-159

Italian 0-31, 127, 132-151, 156-159

orwegian 0-31, 127, 132-151, 156-159 I Portugue 0-31, 127, 132-151, 156-159

Spanish 0-31, 127, 132-151, 156-159

Swedish 0-31, 127, 132-151, 156-159 I ooigit C 48-57

English 48-57

I Danish 48-57

Digital Multinational 48-57

Finnish 48-57 I French 48-57

German 48-57 .. Italian 48-57

Norwegian 48-57

Portuguese 48-57

Spanish 48-57 I
Swedish 48-57

iegraph C 33--126

I English 33--126

Danish 33--126, 161-163, 165, 167-171,
176--179, 181-183, 186-187,

I 189-207, 2~221, 223-239,
241-253

Digital Multinational 33--126, 161-163, 165, 167-171,

I 176--179, 181-183, 186-187,
189-207, 2~221, 223-239,
241-253

(continued on next page) I

•
3--6 Character-Handling Functions and Macros I

I
I
I
I
I ,,
I
I
I
I
I

•
I

Table 3-2 (Cont.): Character Values

Function Locale Character Values

Finnish 33-126, 161-163, 165, 167-171,
176-179, 181-183, 185-187,
189-207,209-221, 223-239,
241-253

French 33-126, 161-163, 165, 167-171,
176-179, 181-183, 186-187,
189-207, 209-221, 223-239,
241-253

German 33-126, 161-163, 165, 167-171,
176-179, 181-183, 185-187,
189-207, 209-221, 223-239,
241-253

Italian 33-126, 161-163, 165, 167-171,
176-179, 181-183, 186-187,
189-207, 209-221, 223-239,
241-253

Norwegian 33-126, 161-163, 165, 167-171,
176-179, 181-183, 186-187,
189-207, 209-221, 223-239,
241-253

Portuguese 33-126, 161-163, 165, 167-171,
176-179, 181-183, 186-187,
189-207, 209-221, 223-239,
241-253

Spanish 33-126, 161-163, 165, 167-171,
176-179, 181-183, 186-187,
189-207, 209-221, 223-239,
241-253

Swedish 33-126, 161-163, 165, 167-171,
176-179, 181-183, 186-187,
189-207, 209-221, 223-239,
241-253

islower C 97-122

English 97-122

Danish 97-122,229-230,233,248,252

(continued on next page)

Character-Handling Functions and Macros 3-7

Table 3-2 (Cont): Character Values

Function

uprint

Locale

Digital Multinational

Finnish

French

Ckrman

Italian

orwegian

Portuguese

Spanish

Swedish

C

English

Danish

Digital Multinational

Finnish

French

3-8 Character-Handling Functions and Macros

Character Valuee ~
97-122, 224-239,241-253 I 97-122,228-229,233,246, 252

97-122, 224, 226, 230-235,
2~239,244,247, 249,251-252 I 97-122,228,246-247,252

97-122,224,231-233,236,242,
249 I 97-122,22~230,248

97-106, 108-118, 120, 122,224-
227,231,233-234,237, ~245, I 250

97-122,225,233, 237,241,243,
250,252

I 97-122,228-229,246

33-126 .. 32-126

33-126, 161-163, 165, 167-171,
176-179, 181-183, 185--187,
1~207, 2~221, 223-239,

I 241-253

33-126, 161-163, 165, 167-171,
176-179, 181-183, 185--187,

I 18~207, 2~221, 223-239,
241-253

33-126, 161-163, 165, 167-171,
176-179, 181-183, 185--187, I 18~207,2~221, 223-239,
241-253

33-126, 161-163, 165, 167-171,

I 176-179, 181-183, 185--187,
1~207, 2~221, 223-239,
241-253

(continued on next page) I

•
I

I
I
I
I
I
~
I
I
I
I
I

•
I

Table ~2 (Cont.): Character Values

Function

ispunct

Locale

German

Italian

Norwegian

Portuguese

Spanish

Swedish

C

English

Danish

Digital Multinational

Finnish

French

Character Valuee

33-126, 161-163, 165, 167-171,
176-179, 181-183, 1~187,
189-207, 209-221, 223-239,
241-253

33-126, 161-163, 165, 167-171,
176-179, 181-183, 1~187,
189-207, 209-221, 223-239,
241-253

33-126, 161-163, 165, 167-171,
176-179, 181-183, 1~187,
189-207, 209-221, 223-239,
241-253

33-126, 161-163, 165, 167-171,
176-179, 181-183, 1~187,
189-207, 209-221, 223-239,
241-253

33-126, 161-163, 165, 167-171,
176-179, 181-183, 1~187,
189-207, 209-221, 223-239,
241-253

33-126, 161-163, 165, 167-171,
176-179, 181-183, 1~187,
189-207, 209-221, 223-239,
241-253

33-47,58-64,91-96, 123-126

33-47,58-64, 91-96, 123-126

33-34,39-41,44-46, 58-59,63,
91,93, 123,125,161,183,191

33-34,39-41,44-46,58-59,63,
91,93, 123,125,161,183,191

33-34,39-41,44-46,58-59,63,
91,93, 123,125,161,183,191

33-34, 39-41, 44-46, 58-59, 63,
91,93, 123,125,161,183,191

(continued on next page)

Character-Handling Functions and Macros 3-9

Table 3-2 (Cont): Character Values

Function Locale

German

Italian

Norwegian

Portuguese

Spanish

Swedish

space C

English

Danish

Digital Multinational

Finnish

French

German

Italian

Norwegian

Portuguese

Spanish

Swedish

mipper C

English

Danish

Digital Multinational

Finnish

French

~10 Character-Handling Functions and Macros

I
Character Valuee ..
33-34, 39-41, 44--46, 58-59, 63,

I 91, 93,123,125,161,183,191

33-34, 39-41, 44--46, 58-59, 63,
91,93, 123,125,161,183,191

I 33-34,39-41,44--46, 58-59,63,
91,93, 123,125,161,183,191

33-34,39-41,44--46,58-59,63,

I 91,93, 123,125,161,183,191

33-34, 39-41, 44--46, 58-59, 63,
91,93, 123,125,161,183,191

33-34, 39-41, 44--46, 58-59, 63, I 91,93, 123,125,161,183,191

9-13,32

9-13,32 I 9-13,32

9-13,32 .. 9-13,32

9-13,32

9-13,32

I 9-13,32

9-13,32

9-13,32 I 9-13,32

9-13,32

~90 I 6~90

~90, 197-198,201,216,220

I ~90, 192-207,209-221

~90, 19&-197,214,220

~90, 192, 194, 198-203, I 206-207,212,215,217,219-220

(continued on next page)

•
I

I
I'
I
I
I
I
I
t9
I
I
I
I
I

•
I

Table 3-2 (Cont): Character Values

Function

isxcligit

Locale

German

Italian

Norwegian

Portuguese

Spanish

Swedish

For all character sets

Character Valuee

65-90, 196,214-215,220

65-90, 192, 199-201, 204, 210,
217

65-90, 197-198,216

65-74, 76-86, 88, 90, 192-195,
199,201-202,205, 211,213,218

65-90, 193, 201, 205, 209, 211,
218,220

65-90, 1~197,214

~7,65-70,97-102

Example 3-1 shows how to use the character-testing macros.

Example 3-1: Character-testing Macros

/* The following program u•e• the iaalpba, iadigit, and *
* iaapace macro• to count the number of occurrence• of *
* letter•, digit•, and white-apace character• entered through*
* the atandard input (atdin) . */

tinclude <ctype .b>
tinclude <atdio .b>
tinclude <atdlib . b>

int main ()
{

int c;
abort i - 0, j • O, k • O;
while ((c - getcbar()) l- EOF)

{
if (iulpba(c))

i++;
if (iadigit (c))

j++;
if (iaapace (c))

k++;

(continued on next page)

Character-Handling Functions and Macros 3-11

Example 3-1 (Cont.): Character-testing Macros

printf (" Number o f lettera :
printf ("Number of digi ta :
printf ("Number of apacea :

d \ n" , i) ;
d \ n", j);
d \ n ", k);

The sample input and output from Example 3-1 are as follows:

$ R i:. .i..z:..1.~

I v 35 n v tb atachea on Cbriatopher Stre t.~
@j
Number of lettera : 39
Number of digita : 2

umber of apacea : 9
$

3.2 Character Case-Mapping Functions and Macros

The character case-mapping functions and macros perform conversions on
characters. These functions include toascii, tolower, _tolower, toupper,
and _toupper. For more information on these functions, see the PDP-11 C
Standard Library Macros and Functions subsection in the Reference Section.

Example 3-2 shows how to use the toupper and tolower functions.

3-12 Character-Handling Functions and Macros

I
I
I
I

I
I
I
I
I

•
I

I
I'
I
I
I
I

I
I
I
I
I

•
I

Example ~2: Changing Characters to and from Uppercase Letters

/* Thia program uaes the function• toupper and tolower to *
* convert upperca•• to lowercase and lowercaae to uppercaae *
* using input from the standard input (atdin). */

#include <ctype.h>
#include <atdio.h>

int main()
{

char c, ch;

/* To uae EOF identifier

while ((c - getcbar()) I• EOF)
{

if (iaupper (c))
ch - tolower(c);

•l••
ch• toupper(c);

putchar (ch);

*/

Sample input and output from Example 3-2 are as follows:

$ RON EXAHPLE2 ~
LET'S GO TO THE a onewall INN. !CTRLIZ!
let'• go to the STONEWALL inn.
$

Character-Handling Functions and Macros 3-13

I ..
I
I
I
I
I ..
I
I
I
I
I

•
I

I
I'
I
I
I
I
I
t9
I
I
I
I
I

•
I

Chapter 4

Localization Functions and Macros

This chapter describes the localization functions and macros supported by
PDP-11 C. Localization means providing support for displaying data in
formats used by various countries, reflecting differences in language and
convention.

The header file for the localization is <locale.h>. The <locale.h> header file
declares one type and two functions. It also defines several macros used for
setting the character set, collating sequence, monetary format, decimal-point
character, and date and time formats .

PDP-11 C, through the appropriately formatted strftime function, supports
the following date formats:

• ISO format: 1990-11-22

• Customary Central European and British format: 22.11.90

• Customary United States format: 11/22/90

• Julian date: 90359

• Airline format 22NOV90

The following code fragment shows bow to place the current Julian date into
a character array named date.

finclude <time .h>
fdefine longest date length
fdefine julian_lengtb 6

11

char date[longest date length];
ti.me_t tO; - -

localization Functions and Macros 4-1

tO • ti.me(NULL);

atrfti.me(date, julian_length, "y j", loc.lti.me(,tO));

4.1 The lconv Type

4.2

The <locale.h> header file declares one type, lconv, which is defined as
follows:

atruct
(

char *d•ci.m&l_point; I* " " */
char *thouaanda _ ••P; /* "" */
char *grouping; I* */
char *int_ curr _ aymbol; /* "" */
char *currency_aymbol; /* */
char *mon_deci.m&l_point; /* */
char *mon_thouaanda_aep; /* */
char *mon_grouping; /* "" */
char *poaitive_aign; /* "" */
char *negative_aign; /* "" */
char int_frac_d.igita; I* CHAR MAX */
char frac_digita; /* CHAR MAX */
char p_ca_precedea; /* CHAR-MAX */
char p_a•p_by_apace; /* CHAR-MAX */
char n_ca_precedea; /* CHAR-MAX *I
char n_aep_by_apace; /* CHAR-MAX */
char p_aign_poan; /* CRAR=MAX *I
char n_aign_poan; /* CHAR MAX *I

lconv;

The setlocale Function

The setlocale function specifies the indicated character set, collating
sequence, monetary format, decimal-point character, and time and date
format in the run-time environment.

The setlocale function takes two arguments. The first argument specifies
the category. There are six possible values for this argument:

LC...,ALL

LC_COLLATE

Indicates all portions of the locale are affected.

Indicates only the collation sequence is affected.

4-2 Localization Functions and Macros

I ..
I
I
I
I
I ..
I
I
I
I
I

•
I

I
I
I
I
I
~
I
I
I
I
I

•
I

LC_CTYPE

LC_MONETARY

LC_NUMERIC

LC_TIME

Indicates only the character set is affected.

Indicates only the monetary formations are affected.

Indicates only the numeric formations are affected.

Indicates only the time is affected.

The second argument is a character string that specifies the character set
for the first argument.

If fewer locale names are supplied than called for by the first argument to
setlocale, or if a locale is not supported, the default locale for the class is
used. If more than five character set names are supplied, the additional
names are ignored. If none of the requested locales are supported by the
running task, the setlocale function will return NULL.

The following example uses the German collating sequence and the Digital
Multinational character set:

aetlocale(LC_ALL, "german,dec_mca")

'lb inquire about a locale, you can pass a null pointer as the second
argument to the setlocale function. The name of the current locale for the
class indicated by the first argument is returned. For example, if the first
argument is LC_ALL, the name of each locale is returned in the following
order:

• Collating sequence

• Character set

• Numeric format

• Monetary format

• Time

The following tables indicate the locales and locale types supported by
PDP-11 C.

• Table 4-1 lists the character-set and collating sequence locales.

• Table 4-2 lists the monetary and numeric format locales.

• Table 4-3 lists the time locales.

Localization Functions and Macros 4-3

Table 4-1 : PDP-11 C Character-Set and Collating Sequence Locales

Support Module
Character t Striog1 Name/RT-11 Globals

cs C •
Danish danish c$daty

Digital Multi.national dec_mc c$dmty

English english c$enty

Finnish fi.nnish c$fity

French french c$frty

German germ.an c$gety

Italian italian c$itty

Norwegian norwegian c$noty

Portuguese portuguese c$poty

Spanish spanish c$spty

Swedish swedish c$swty

1The stnng mu.st be typed exactly u indicated.
2The support module nam to be included for taakbuilder/ Global symbol for RT-11 Linker;
reqwred to incorporate locale support in the task.
1 C locale is the ASCII locale.
4No uaer action required. for default C support.

Table 4-2: PDP-11 C Monetary and Numeric Locales

Support Module
Economic Locale String1 Name/RT- 11 Globals

C C s

Austrian austrian c$aumf

Belgian Flemish belgian-flemish c$bemf

Belgian French belgian-frencb c$bemf

Danish danish c$damf

Finnish fi.nnish c$funf

1The string muat be typed ex.actly u indicated.
2The support module title to be included in ODL fil to incorporate locale support in the task.
3No uaer action required for default C support.

(continued on next page)

4-4 Localization Functions and Macros

I ..
I
I
I
I
I ..
I
I
I
I
I

•
I

I ,,
I
I
I
I
I ,.
I
I
I
I
I

•
I

Table 4-2 (Cont.): PDP-11 C Monetary and Numeric Locales

Support Module
Economic Locale String1 Name/RT-11 Global1

French french c$frmf

German german c$gemf

Iceland icelandic c$icm.f

Ireland irish c$irmf

Italian italian c$itmf

Netherlands nether lands c$nemf

Norwegian norwegian c$nomf

Portuguese portuguese c$pomf

Spanish spanish c$spmf

Swedish swedish c$swmf

Swiss German swiss-german c$sumf

Swiss French swiss-french c$sumf

United Kingdom united kingdom c$ukmf

USA usa c$usmf

1The string must be typed exactly as indicated.
2The support module title to be included in ODL file to incorporate locale support in the task.

Table 4-3: PDP-11 C Tlme Locales

Time Locale

C

Austrian

Belgian Flemish

Belgian French

Danish

Finnish

String1

C

austrian

belgian-flemish

belgian-french

danish

finnish

1The string must be typed exactly as indicated.

Support Module
Name/RT-11 Global2

8

c$autm

c$betm

c$betm

c$datm

c$fitm

2The support module title to be included in ODL file to incorporate locale support in the task.
3No user action required for default C support.

(continued on next page)

Localization Functions and Macros 4-5

Table 4-3 (Cont): PDP-11 C Time Locales

Support Module
Time Locale String1 Name/RT-11 Global'

French french c$frlm

German germ.an c$getm

Iceland icelandic c$ictm

Italian italian c$ittm

Netherlands nether lands c$netm

orwegian norwegian c$notm

Portuguese portuguese c$potm

Spanish spanish c$sptm

Swedish swedish c$swtm

Swiss German swiss-germ.an c$sutm

Swiss French swiss-french c$sutm

United Kingdom united kingdom c$uktm

1The stnng must be typed exactly aa indicated.
1The support module title to be included in ODL file to incorporate locale support in the task.

4.3 The localeconv Function

The localeconv function sets the appropriate values for formatting
monetary quantities as controlled by the current locale.

For a more detailed description of the localeconv function, refer to the
PDP-11 C Standard Library Macros and Functions subsection in the
Reference Section.

4.4 Including Run-time Support for setlocale Function

Support for the various locales is not automatically included in the user
task. In order to include this support, the user must, at taskbuild or link
time, name the modules required by the running task.

An example is a task that requires support for the German character types
and support for the French monetary and time locales. At taskbuild time,
you must refer directly to the three modules providing this support. The
module names are C$GETY for German character types, C$FRTM for the

4--6 Localization Functions and Macros

I ..
I
I
I
I
I

ea
I
I
I
I
I

•
I

I
I
I
I

I
I
I
I
I

•
I

French time locale, and C$FRMF for the French monetary locale. On RSX
or RSTS systems, you can reference these names in a taskbuild in the
following way:

>
TKB>
TKB>
TKB>
TI

~
rtak/cp-u rtak ~
:[1,l]CFPURSX/LB:C$GETY:C$FRMF:C$FRTM ~
: (1, l] CFPURSX/LB i RETURN l
~

Under RT-11, the global symbols C$GETY, C$FRTM, and C$FRMF will
be found in the previously named modules allowing the following LINK
command to include the needed locale support:

. L. c CA:l.1.uu/bo :.1..1.00 uar~ k,cfpu 1
Library ••arch? $GETY
Library ••arch? $FRTM
Library ••arch? C$FRMF
Library ••arch?

RT-11 LINK

Please observe that the stack and bottom settings given in the
RT-11 LINK example are the minimum required by a PDP-11 C
task which includes standard I/0.

In this way, you can specify the particular setlocale support required by a
task without including any locales that are not required (except perhaps the
default C locale).

A complete list of supported locales, and the module names associated with
those locales, may be found in Table 4-1, Table 4-2, and Table 4-3.

Localization Functions and Macros 4-7

I ..
I
I
I
I
I ._
I
I
I
I
I

•
I

I
I
I
I

I
I
I
I
I

•
I

Chapter 5

General Utility Functions

This chapter lists and briefly describes string conversion, memory
management, environment communication, search and sort, integer
arithmetic, pseudorandom sequence generation, and multibyte character and
string functions. Table 5-1 lists and describes the general utility functions
supported by PDP-11 C. These functions are defined in the <stdlib.h>
header file. For more detailed information, see the PDP-11 C Standard
Library Macros and Functions subsection in the Reference Section.

Table >-1: Summary of General Utlllty Functions

Function

String Conversion

atof

atoi

atol

strtod

strtol

strtoul

Purpose

Converts a string of ASCII characters to a number of
type double.
Converts a string of ASCII characters to the appropriate
int numeric value.

Converts a string of ASCII characters to the appropriate
long int numeric value.

Converts a string of ASCII characters to a number of
type double.
Converts a string of ASCII characters to the appropriate
long int numeric value.

Converts a string of ASCII characters to an unsigned
long int.

(continued on next page)

General Utility Functions 5-1

Table ~1 (Cont): Summary of General Utlllty Functions

Function Purpose

P eudorandom Sequence Generation

rand

srand

Returns pseudorandom numbers in the range Oto
RAND_MAX.

Provides a seed value for subsequent calls to rand.

Memory Management Functions

calloc

free

malloc

real.loc

Allocates an area of memory and initializes each element
to all bits zero.

Mak.es available for reallocation an area allocated by a
previous calloc. malloc, or realloc call.

Allocates an area of memory.

Changes the size of the area pointed to by the first
argument to the number of byt.es given by the second
argument.

Environmental Communication

abort

ate:rit

exit

getenv

system

Search and Sort

bsearch

qsort

5-2 General Utifity Functions

Causes the signal, SIGABRT, to be raised and terminates
the program if the signal is not handled.

Registers a function that will be called at program
termination.

Terminates the process from which it is called.

Searches the environment array for the current pro
cess and returns the value associated with a specined
environment.

Passes a given string to the host environment to be
executed by a command processor (useful on RSX systems
only.)

Performs a search for a specined object; on an array of
sorted objects.

Sorts an array of objects in place.

(continued on next page)

I
I
I
I
I ..
I
I
I
I
I

•
I

I
I
I
I
I ,.
I
I
I
I
I

•
I

5.1

Table ~1 (Cont.): Summary of General Utility Functions

Function

Integer Arithmetic

abs

div, ldiv

labs

Purpose

Returns the absolute value of an int.

Returns the quotient and remainder after the division of
its arguments.

Returns the absolute value of an integer as long int.

Mu.ltibyte Character and String

mblen, mbtowc

mbstowcs

wcstombs

wctomb

Determines the number of bytes in a multibyte character
pointed to by its character pointer argument.

Converts a sequence of multibyte characters using the
mbtowc function.

Converts a sequence of codes that correspond to multi
byte characters into a sequence of multibyte characters
and stores them in the array pointed to by the character
pointer argument.

Determines the number of bytes needed to represent a
multibyte character.

Converting Between ASCII and RAD50

__ alr50

__ asr50

__ lr50a

__ sr50a

Converts the first six characters of the input string to
an unsigned 32-bit integer corresponding to the radix-50
translation.

Converts the first three characters of the input string to
an unsigned 16-bit integer corresponding to the radix.SO
translation.

Converts an unsigned 32-bit radix-50 string to the
corresponding 6-character ASCII character string.

Converts an unsigned 16-bit rad.ix-50 string to the
corresponding 3-character ASCII character string.

String Conversion Functions

The string conversion functions convert strings to numeric values.
PDP-11 C supports the following string conversion functions: atof,
atoi, atol, strtod, strtol, and strtoul

General Utility Functions S-3

5.2 Pseudorandom Sequence Generation

The pseudorandom sequence generation functions generate numbers in
a sequence which appears random. PDP-11 C supports the following
pseudorandom sequence generation functions: rand and srand.

5.3 Memory Management Functions

The PDP-11 C memory management functions allocate memory space, free
previously allocated memory space, and change the size of a previously
allocated memory area. The following memory allocation functions are
supported by PDP-11 C: calloc, malloc, realloc, and free.

The order and contiguity of storage allocation is unspecified when successive
calls to the calloc, malloc, and realloc functions are made. If space can
be allocated, the pointer points to the lowest byte address of the allocated
space. If space cannot be allocated, a NULL pointer is returned. Each
pointer is aligned on an int boundary. PDP-11 C returns a NULL pointer
when a request is made for an allocation of memory space of O bytes .

The memory management functions that allocate memory space round the
requested memory size to a size that is divisible by 4 bytes. The function
call malloc (6) will actually return a pointer to an area of memory that is 8
bytes long.

On the RSX and RSTS/E operating systems and their derivatives, programs
must be linked using the /CP taskbuilder switch. For general information on
the taskbuilder switch, refer to the taskbuilder manual for the appropriate
operating system.

5.3.1 The calloc Function

The calloc function obtains blocks of memory space to satisfy the space
requirement of an array of n objects each the speci£ed size of each item. H
the request cannot be satisfied, NULL is returned. If the memory can be
allocated, calloc initializes the memory to all bits zero.

5.3.2 The malloc Function

I
I
I
I
I ..
I
I
I
I
I

The malloc function allocates memory space for an object whose size is •
specified. If the request cannot be satisfied, NULL is returned. The memory
allocated is not initialized.

S-4 General Utility Functions I

I
I
I
I
I ,.
I
I
I
I
I

I

5.3.3 The realloc Function

5.3.4

The realloc function changes the size of an object.

If the first argument to realloc is not a pointer returned by the previous
call to the calloc, malloc, or realloc functions, or if it points to memory
previously freed by the free function, a NULL pointer is returned. In the
latter case, realloc behaves the same as malloc.

If the request cannot be satisfied, NULL is returned. If the size of requested
memory is greater than the size of the original object, the object may be
moved, and the original object is no longer valid.

The free Function

In PDP-11 C the free function frees space previously allocated by the
calloc, malloc, or realloc functions.

If the argument to free is a NULL pointer or if it does not point to space
previously allocated by the calloc, malloc, or realloc functions, no action is
taken.

5.3.5 Program Example

Example 5-1 shows the use of the malloc, free, and calloc functions.

General Utility Functions S-5

Example 5-1 : Allocating and Deallocating Memory for Structures

/*

*
*
*
*

Thi• exuiple take• line• of input from the terminal until
it encounter• a CTRL/Z, it place• the •tring• into an
allocated buffer, copie• th• •tring• to memory allocated
for •tructure•, print• the line• back to the •creen, and
then deallocate• all memory u•ed for the •tructure•.

finclude <•tdlib.h>
finclude <•tdio.h>
fdefine MAX LINE LENGTH 80

•truct line _rec
{
•truct line rec *next;
char *data;
} ;

int m.ain ()
{

/* Declare the •tructure

/* Pointer to next line
/* A line from terminal

*
*
*
*
*/

*/

*I
*I

char *buffer;

•truct line rec

/* Define pointer• to */
/* •tructure (input lin••l */

*fir•t_line, *next_line, *la•t_line • NOLL;

buffer• m.alloc(MAX_LINE_LENGTB); /* buffer point• to memory */

if (buffer - 0) /* If error... */
{
perror("llllllloc");
ex.it (EXIT_FAILtJRE);
}

put•("Type text - terminate with CTRL/Z");
while (g•t•(buffer) I• NOLL) /* While not CTRL/Z ... */

{
/* Allocate for input line */

next_lin• • calloc(l, •izeof (•truct line_rec));

if (next line - NULL)
{ -
perror("calloc");
ex.it(EXIT_FllLtJRE);
}

next_line->cata • buffer;

if (lut line - NULL)
fir•t_lioe • next_line;

el•e

/* Put line in cata area

/* Re•et pointer•

la•t_lioe->next • next_line;

la•t_lin• • next_line;
/* Allocate •pace for the
/* next input line

buffer• m&lloc(MAX LINE_LENGTB);

*/

*I

*/
*/

(continued on next page)

5-6 General Utility Functions

I
I
I
I
I ..
I
I
I
I
I

•
I

I
I
I
I
I ,.
I

Example ~1 (Cont.): Allocatlng and Deallocatlng Memory for Structures

if (buffer - 0)
{
perror("malloc");
exit(EXIT_FAILORE);
)

free {buffer) ;
next_line • firat_line;

do

puta{next line->data);
free{next=line->data);
laat line• next line;
next-line• next-line->next;
free(laat_line);-
}

while (next_line I• NULL);
}

/* Laat buffer alway• unuaed */
/* Pointer to beginning */

/* Write line to screen
/* Deallocate a line

*/
*/

The sample input and output for Example 5-1 is as follows:

$ RUN EUl-lPLE ~
Type text - terminate with CTRL/Z

n ,ne~
in two~
C R

EXIT
line one
line two
$

I 5.4 Environmental Communication Functions

I
I
I

I

The environmental communication functions communicate with the host
environment to terminate a process, register a function to be called at
program termination, search the environment array for the current process
information, and pass a given string to the host environment to be executed
by the host environment's command interpreter.

General Utility Functions 5-7

I
5.4.1 The abort and exit Functions ..

The abort function causes abnormal termination of the program. It returns
the value EXIT_FAILURE to the operating system unless the signal I
SIGABRT is caught and the signal handler does not return. PDP-11 C
attempts to flush any buffers and closes any open standard input/output

5.4.2

files. ote that abort will never return to the function that called it.

The implementation-defined forms of successful and unsuccessful ter
mination for the exit function are the values EXIT_FAILURE and
EXIT_SUCCESS The exit function calls all functions registered by the
atexit function m the rever e order of their registration.

The exit function causes normal termination of the program and returns a
value to the operating system. PDP-11 C flushes any buffers and closes any
open standard input/output files .

The getenv Function

The getenv function searches an implementation-defined environment
list for a string that matches a string pointed to by the argument name.
The PDP-11 C environment list is provided by the host environment. The
PDP-11 C environment list for the getenv function is shown in Table &-2.

Table ~2: Environment List

Name

HOME

TERM

PATH

USER

OPSYS

Purpose

The user's login directory.

The type of terminal being used.

The default device and directory.

The name of the user who initiated the process.

The operating system the program is using.

The Example &-2 shows how to use the getenv function.

5-8 General Utility Functions

I
I
I
I ._
I
I
I
I
I

•
I

I ,.
I
I
I
I
I ,.
I

Example 5--2: Searching the Environment for a String

tinclude <atdlib.h>
tinclude <atdio.h>

int main ()
{
char *buff;

buff• getenv("HOME");
printf ("getenv (\"HOME\") ia \a\n",buff);

buff• getenv("TERM");
printf ("getenv (\"TERM\") ia a\n",buff);

buff• getenv("PATB");
printf ("getenv (\"PATH\") ia a\n",buff);

buff• getenv("OSER");
printf ("getenv (\"OSER\") ia \a\n",buff);

buff• getenv("OPSYS");
printf ("getenv (\"OPSYS\") ia a\n",buff);
}

The sample input and output for Example 5-2 is as follows:

$ n
getenv
getenv
getenv
getenv
getenv
$

• v !RETURN!
("HOME") ia [30, 41]
("TERM") ia VT2XX)
("PATH"} ia (30,41]
("OSER") ia (30,41]
("OPSYS") ia RSX-llM PLUS

I 5.4.3 The system Function

I
I
I

•
I

The system function returns 1 when called with a NULL argument in the
RSX execution environment, which indicates that the function is supported
on the RSX operating system. When the system function is called with a
nonnull argument, it passes the specified string to the current command line
interpreter, waits for the command to be executed, and returns the value
returned by the command.

Passing a command to a command line interpreter is not available on
RSTS/E and RT-11 operating systems. If the execution environment is
RSTS/E or RT-11, the system function always returns 0, indicating that
passing a command to a command line interpreter is available on these
operating systems .

General Utility Functions ~

I
5.5 Search and Sort Functions ..

The search and sort functions and macros search an array for a specified
object and sort an array of objects. PDP-11 C supports the following search I
and sort functions: b earch and qsort.

5.6 Integer Arithmetic Functions I
The integer arithmetic functions and macros return the absolute value of an
integer or long integer, and return the quotient and remainder of a division. I
PDP-11 C supports the following integer arithmetic functions: abs, div,
ldiv, and lab .

5.7 Multibyte Character and String Functions

The multibyte character and string functions and macros determine the
number of bytes in a multibyte character or the number of bytes needed to
represent the multibyte character. They also convert a sequence ofmultibyte
characters to a sequence of oorresponding code or convert a sequence of code
to corresponding multibyte characters. PDP-11 C supports the following
multibyte character and string functions: mblen, mbtowc, mbstowcs,
wcstombs, and wctomb. PDP-11 C also contains a set of functions that
allows you to copy buffers oontaming binary data. Note that PDP-11 C
multibyte characters are one byte long. For more detailed information on
the functions that access binary data, refer to the PDP-11 C Standard
Library Macros and Functions subsection in the Reference Section.

S-10 General Utility Functions

I

I
I
I
I
I

•
I

I
{'
I
I
I
I
I ,.
I
I
I
I
I

•
I

Chapter 6

Math Functions

This chapter summarizes all the math functions contained in the PDP-11 C
Run-Time Library. These functions, which are defined in the <math.h>
header file, are listed in Table 6-1. For more detailed information, refer to
the PDP-11 C Standard Library Macros and Functions subsection in the
Reference Section.

Table 6-1: Summary of Math Functions

Function

acos

asin

atan

atan2

ceil

cos

cosh

exp

fabs

Purpose

Returns a value in the range O to 1r, which is the arc
cosine of its radian argument.

Returns a value in the range -,r/2 to ,r/2, which is the arc
sine of its radian argument.

Returns a value in the range -1r/2 to 1r/2, which is the arc
tangent of its radian argument.

Returns a value in the range -1r to 1r, which is the arc
tangent of y/x, where y and x are the two arguments.

Returns the smallest integer that is greater than or equal
to its argument.

Returns the cosine of its radian argument.

Returns the hyperbolic cosine of its argument.

Returns the base e raised to the power of the argument.

Returns the absolute value of a floating-point value.

(continued on next page)

Math Functions &-1

Table ~1 (Cont): Summary of Math Functions

Function

floor

fmod

frerp

ldexp

log

loglO

modt

pow

• in

•inh
qrt

tan

tanh

Purpose

Returns the largest integer that ie lees than or equal to
its argument.

Computes the floating-point remainder of the first
argument divided by the second argument.

Breaks the argument into normalized fraction and to
integral powers of 2.

Returns a value that ie the first argument multiplied by
2 raised to the power of the second argument.

Returns the natural logarithm of the double argument.

Returns the baeelO logarithm of its argument.

Returns the signed fractional part of the first modf
argument and assigns the integral part, expressed ae a
double, to the object whose addreee ie specified by the
second argument.

Returns a value that ie the first argument raised to the
power of the second argument.

Returns the sine of its radian argument.

Returns the hyperbolic sine of its argument.

Returns the positive square root of its argument.

Returns the t.angent of its radian argument.

Returns the hyperbolic t.angent of its argument.

'lb help you detect run-time errors, the <errno.h> header file defines the
following two symbolic values that are returned by many (but not all) of the
math functions:

• EDOM indicates that an argument is inappropriate; that is, the
argument is not within the function's domain. The return value is 0.

• ERANGE indicates that a result is out of range; that is, the argument
is too large or too small to be represented by the machine. The return
value for overflow is the value of the macro HUGE_ VAL. An underflow
returns a value of 0. PDP-11 C sets the value of the expression errnc to
the value of the macro ERANGE.

The <errno.h> header file also defines the variable errnc. When using the
math functions, check the external variable errnc for either or both of these
values, and take the appropriate action if an error occurs.

6-2 Math Functions

I
..

I
I
I
I
I

..
I
I
I
I
I

•
I

I
I
I
I
I
..
I
I
I
I
I

I

In Example 6-1, the program example checks the variable errno for the
value EDOM, which indicates that a negative number was specified as input
to the function sqrt.

Example ~ 1 : Checking the Vari able errno

finclude <errno.b>
finclude <matb.b>
finclude <atdio.b>

int main()
(

double input, aquare_root;

printf("Enter a number: ");
acanf("%le", ~input);
errno • 0;
aquare_root • aqrt(input);

if (errno - EDOM)
perror("Input was negative");

else
printf("Square root of %e • %e\n",

input, ■quare_root);

Because the sqrt function returns a O when a negative number is passed,
always check the value of errno against the symbolic value of EDOM to
ensure that you do not get any unpredictable results.

To test for errors, set errno to zero before several operators and then test it
at the end to see if any operations failed. The variable errno is unchanged if
there are no errors.

Example 6-2 shows the functionality of the tan, sin, and cos functions.

Math Functions 6-3

Example 6-2: Calculatlng and Verifying a Tangent Value

/* Thia •X&JDPl• uaea two functiona --- mytan and main
* to calculate the tangent value of a number, and to cbeclt
* the calculation uaing the ain and coa functiona.

finclude <math.h>
finclude <atdio . b>

/* Include module•

/* Thia function ia used to calculate the tangent using th•
* sin and cos functions.

double mytan (x)
double x;
{

}

double y, yl, y2;

yl • ain (x);
y2 • coa (x);

if (y2 0)
y - 0;

elae
y • yl / y2;

return y;

int main()
{

double x;

*
*
*I

*/

*
*/

/* Print valuea : compare */
for (x•0.0; x<l.5; x +- 0 . 1)

printf("tan of 4 . lf • 6.2f\ t 6.2f\ n", x, mytan(x), tan(x));

The sample output from Example 6-2 is:

$ RUN -!PL.. ! RETURN I
tan of 0 . 0 • 0 . 00 0.00
tan of 0.1 • 0.10 0 . 10
tan of 0 . 2 • 0.20 0 . 20
tan of 0 . 3 • 0.31 0 . 31
tan of 0 . 4 • 0.42 0.42
tan of 0 . 5 • 0.55 0.55
tan of 0 . 6 • 0.68 0 . 68
tan of 0. 7 • 0.84 0.84
tan of 0.8 • 1.03 1.03
tan of 0.9 • 1.26 1.26
tan of 1 . 0 • 1.56 1.56
tan of 1.1 • 1.96 1.96
tan of 1.2 • 2.57 2.57
tan of 1.3 • 3.60 3.60
tan of 1.4 • 5.80 5.80
$

6-4 Math Functions

I ..
I
I
I
I
I ..
I
I
I
I
I

I

I
I
I
I
I ..
I
I
I
I
I

•
I

Chapter 7

Using PDP-11 C with Record Management
Services

This chapter describes how to use Record Management Services (RMS)
from PDP-11 C programs. Table 7-1 lists and briefly describes the PDP-11
C RMS operation macros. Each of these macros are described in the
RMS Extension Library Macros subsection in the Reference Section of
this manual. Knowledge of Macro-11 and RMS-11 is assumed. For more
information refer to the RSX-llM IM-PLUS RMS-11 Macro Programmer's
Guide. Note that RMS is not supported on the RT-11 operating system.

Table 7-1: PDP-11 C RMS Macros

Macros

RMS$CLOSE

RMS$CONNECT

RMS$CREATE

RMS$DELETE

RMS$DISCONNECT

RMS$DISPLAY
RMS$ENTER

Purpose

Closes an open file.

Connects a record stream to an open file
and initializes the stream cont.ext.

Great.es a new file and opens it for
processing.

Removes a record from a relative or
indexed file.

'Thrminat.es a stream and disconnects the
int.ernal resources it was using.

Writ.es values into control block fields.

Inserts a file name into a directory file.
This macro is not supported on RSTSIE.

(continued on next page)

Using PDP-11 C with Record Management Services 7-1

Table 7-1 (Cont): PDP-11 C RMS Macros

Macr08 Purpo e

RMS$ERASE Erases a file and delet.es it.a directory
entry.

RMS$EXTEND Extends the allocation for an open file.

RMS$FIND:
Sequential Access Transfers a record or part of a record

from a file to an 1/0 buffer.

Key Access Transfers a record or part of a record
from a sequential disk file, a relative
file, or an indexed file to an 1/0 buffer.

Record File Access (RFA)

RMS$FLUSH

RMS$FREE

RMS$GET:
Sequential Access

Key Access

Record Fi/.e Access (RFA)

RMS$NXTVOL

RMS$0PEN

RMS$PARSE

RMS$PUT:
Sequential Access

7-2 Using PDP-11 C with Record Management Services

'lransfers a record or part of a record
from a file to an 1/0 buffer.

Writes any unwritten buffers for a
stream.

Free a locked bucket for a stream.

'lransfers a record from a file to an 1/0
buffer and to a user buffer.

'lransfers a record from a sequential
disk file, a relative file, or an indexed file
to an 1/0 buffer and a user buffer.

'lransfers a reoord from a file to an 1/0
buffer and to a user buffer.

Advances the cont.ext for a stream to
the beginning of the next magnetic tape
volume. This macro is not supported on
RSTS/E.

Opens a file for processing by the calling
task.

Analyzes a file specification.

Transfers a record from a user buffer to
an 1/0 buffer and to a file.

(continued on next page)

I
I
I
I
I ..
I
I
I
I
I

•
I

I
I
I
I
I ..
I
I
I
I
I

I

Table 7-1 (Cont.): PDP-11 C RMS Macros

Macros Purpose

Key Access Transfers a record from a user buffer t.o
an I/O buffer and t.o a sequential disk
file, a relative file, or an indexed file.

RMS$READ:
Sequential and VBN Access1

RMS$RELEASE

RMS$REMOVE

RMS$RENAME

RMS$REWIND

RMS$SEARCH

RMS$SPACE

RMS$TRUNCATE

RMS$UPDATE

RMS$WAIT

RMS$WRITE:
Sequential and VBN Access 1

1Virtual Block Number

Introduction to RMS-11

Transfers blocks to an I/O buffer.

This macro is supplied for VMS compati
bility only.

Removes the directory entry for a file.
This macro is not supported on RSTS/E.

Changes the directory entry for a file.

Resets the context for a stream to the
beginning-of-file. This macro is not
supported on RSTSIE.

Scans a directory and returns a file
specification and identifiers in NAM
block fields .

Moves a magnetic tape backwards or
forwards. This macro is not supported
on RSTSIE.

Removes records from the latter part of
a sequential file.

Transfers a record from a user buffer
t.o a disk file, overwriting the existing
record.

Suspends processing until an outstand
ing asynchronous operation on the
stream is completed. This macro is not
supported on RSTSIE.

Writes blocks to a file.

PDP-11 C provides a set of Run-Time Library functions to perform 1/0.
Some of these functions perform in the same manner as 1/0 functions found
on C implementations running on UNIX systems.

Using PDP-11 C with Record Management Services 7-3

The PDP-11 C Run-Time Library routines use RMS or File Control Services
(FCS) to perform 1/0; however, RMS-11 may be accessed directly. This
chapter introduces the following RMS topics:

• RMS functions

• PDP-11 C RMS header files

• PDP-11 C and RMS

• RMS example program

This chapter briefly reviews the basic concepts and facilities of RMS and
shows examples of their application in PDP-11 C programming. Because
this is an overview, the chapter does not explain all RMS concepts and
features. For language-independent information concerning RMS, refer to
the RSX-JIM IM-PLUS RMS-11 Macro Programmer's Guide.

7 .1 RMS Functions

RMS provides a number of functions that create and manipulate files. These
functions use RMS data structures to define the characteristics of a file and
its records. The data structures thus are used as indirect arguments to the
function call.

The RMS data structures are grouped into four main categories, as follows:

• File access block (FAB)

Defines the file's characteristics, such as file organization and record
format.

• Record access block (RAB)

Defines the way in which records are processed, such as the record
access mode.

• Extended attribute block (XAB)

Various kinds of extended attribute blocks contain additional file
characteristics, such as the definition of keys in an indexed file.
Extended attribute blocks are optional.

• Name block (NAM)

Defines all or part of a file specification to be used when an incomplete
file specification is given in an OPEN or CREATE operation. Name
blocks are optional.

7-4 Using PDP-11 C with Record Management Services

I
I
I
I
I

..
I
I
I
I
I

•
I

I
I
I
I
I
..
I
I
I
I
I

I

RMS uses these data structures to perform file and record operations.
Table 7-2 lists some of the common functions.

Table 7-2: Common RMS Run-Time Processing Functions

Category

File
Processing

Record
Processing

Function

RMS$CREATE

RMS$0PEN

RMS$CLOSE

RMS$ERASE

RMS$CONNECT

RMS$GET

RMS$PUT

RMS$UPDATE

RMS$DELETE

RMS$REWIND

Description

Creates and opens a new file of any
organization.

Opens an existing file and initiates file
processing.

Terminates file processing and closes the
file.

Deletes a file.

Associates a file access block with a
record access block to establish a record
access stream; a call to this function
is required before any other record
processing function can be used.

Retrieves a record from a file .

Writes a new record to a file.

Rewrites an existing record to a file.

Deletes a record from a file.

Positions the record pointer to the first
record in the file.

RMS$DISCONNECT Disconnects a record access stream.

All RMS functions are directly accessible from PDP-11 C programs by the
FORTRAN calling mechanism. The syntax for any RMS function is:

:RMS$<operation>

or

ays$<operation> (Thi• format i• aupplied for VAX C compatibility)

These two symbols are defined in the <rmsops.h> header file.

In this syntax, <operation> corresponds to the name of the RMS function
(such as OPEN or CREATE).

The operations require arguments as described in the RSX-llM/M-PLUS
RMS-11 Macro Programmer's Guide. In general, the address of a FAB is
required, but there may be additional or optional arguments. The following
is a syntax example:

Using PDP-11 C with Record Management Services 7-5

RMSSCREATE (lab);

ote that these syntax descriptions do not show all the options available
when you invoke an RMS function. For a complete description of the
RMS calling sequence, refer to the RSX-llM /M-PLUS RMS-11 Macro
Programmer's Guide.

All RMS functions are declared as type void. They do not return a value.

7.2 PDP-11 C and RMS Header Files

The following section describes the nine header files supported by the
PDP-11 C RMS Extension Library. The PDP-11 C RMS Extension Library
header files functionally replace the RMS-11 macros used by MACR0-11
programmers. Before one of the PDP-11 C macros is used, the appropriate
header file must be included by using the #include preprocessing directive.
It is also possible to declare and initialize RMS data structures by using the
static or extern storage class explicitly at compile time.

7.2.1 The <rms.h> Header

The <rms.h> header file includes all of the PDP-11 C RMS header files
supplied by the PDP-11 C RMS Extension Library except the <rmSOrg.h>
and <rmspoo.h> files .

7.2.2 The <rmsops.h> Header

The <rmsops.h> provides functional prototyping of each RMS operation
routine. Additionally it defines the sys$<operation> names used by VAX C
to the RMS operation names used by PDP-11 C.

7.2.3 The <fab.h>, <nam.h>, <rab.h>, and <xab.h> Headers

Control blocks are defined as structures in the header files . Including the
header files <fab.h>, <rab.h>, <nam.h>, and <Xab.h> defines the control
blocks.

The <fab.h>, <nam.h>, <rab.h>, and <Xab.h> header files define RMS
data structures and struct definitions including bit mask and offsets. The
following examples define an offset and a bit mask:

ldefine FAB$B_B1D (00) / " 0$B1D */

7-6 Using PDP-11 C with Record Management Services

I
I
I
I
I

..
I
I
I
I
I

-
I

I
I
I
I
I ..
I
I
I
I
I

I

The offset into the FAB data structure of the BID field is defined as 0.

#define FAB$C_BLN (0120) r FB$BLN FAB Length (bytes) •t

The BLN bit mask of the FAB data structure is defined to have a constant
data field size of 0120.

Declaring and initializing control blocks with a combination of default values
and selected values can be done at compile time or at run time.

7.2.3.1 Declaring and lnltlallzlng Control Blocks at Complle Time

At compile time, space for the control blocks can be allocated, and they can
be initialized and declared at this time as well.

The following example shows how to allocate space for the control blocks
The second example shows how to declare and initialize the control blocks
manually. In both examples, <class> may be extern or static.

Example 1:

<class> struct
<class> struct
<class> struct
<class> struct
<class> struct
<class> struct
<class> struct
<class> struct

FAB fab;
s_RAB s_rab;
A-RAB a_rab;
NAM nam;
XABALL all;
XABDAT dat;
XEBEC key;
XABPRO pro;

/* declare a FAB */
/* declare a synchronous RAB*/
/* declare an asynchronous RAB*/
/* declare an NAM XAB */
/* declare an ALL XAB */
/* declare a DAT XAB */

/* declare a KEY XAB */
/* declare a PRO XAB */

Example 2:

<class> struct XABPRO proxa.b • {
XAB$C PRO, /* 0$COD field*/
XAB$C-PROLEN, /* 0$BLN field*/
,sumxab, /* 0$NXT field */
20, /* 0$PRG field*/
30, /* 0$PRJ field*/
255, /* 0$PRO field*/
} ;

7.2.3.2 Declarlng and lnltlallzlng Control Blocks at Complle Time with Default Values

1b declare and initialize a control block at compile time with default val
ues, define the symbol RMSx:xx$PROTOTYPE and include the appropriate
header file, where xxx describes the block type. The control block is initial
ized to default values and included in the task. The block is accessed by
using cc$rms_xxx, where _xxx is the structure to be defined.

Using PDP-11 C with Record Management Services 7-7

The following example shows how to declare and initialize the FAB with
default values and selected values prior to including the appropriate header
file:

/ * Declare• cc$rma fab * / #define RMS FAB$PROTOTYPE
#include <fab.b> / * Declare• cc$rma_fab aa default FAB */
#include <atring . b>

m&in ()
{

atruct FAB myfab;

cpy (,myfab , ,cc$rma fab , aizeof (myfab));
myfab . fab$b org • FAB$C REL ;
myfab . fab$b:lcb • 2; -
}

/ * Declarea atorage for FAB */

/ * Copiea default valuea * /
/ * Seta to relative org * /
/ * Uaea channel 2 */

Table 7-!J lists and describes the control block types, which may be defined
in trus manner.

Table 7-3: Control Block Types

Structure

FAB
NAM

RAB

Description

File access block

Name block

Record access block

Extended Attribute Blocks

XABALL
XABDAT
XABPRO
XABSUM

Area allocation

Date and ti.me

File protection

File summary block

7.2.3.3 Setting Control Block Fields

Data fields may be accessed directly and their contents may be changed by
using PDP-11 C language constructs. The following example shows how to
set the control block fields:

7-8 Using PDP-1 1 C with Record Management Services

I
I
I
I
I ..
I
I
I
I
I

I

I
I
I
I
I ..
I
I
I
I
I

I

7.2.4

fincluda <nns .h>

main ()
{

atruct FAB fabblk;
atruct S RAB rabblk;
atruct NAM namblk;
long alqval;
ahort razaav;

fabblk.fab$b bid• FAB$C BID;
fabblk.fab$1-nam • ,namblk;
fabblk.fab$l-alq • alqval;
fabblk.fab$w-fop I• FAB$M_RWC;
fabblk.fab$w-fop ,. FAB$M RWC;
alqval • fabblk . fab$1 alq;
if (rabblk . rab$w raz ::_ razaav)

{ -

alaa

/* Daclaraa a FAB */
/* Daclaraa a aynchronoua RAB*/
/* Daclaraa a NAM*/

/* Copy value from apacifiad field*/
/* Copy value from apacifiad field*/
/* Copy value from specified field*/
/* Sat bita in 1-byta or 1-word field*/
/* Claar bita in 1-byta or 1-word field*/
/* Copy from field to apecifiad location*/
/* Compare field value to apacifiad value*/
/* Coda ia executed if true

*I

/* Coda ia executed if falaa

*I
)

if (fabblk.fab$b dav, FAB$M TRM)/* Ara apacifiad bita in field aat? */
(- - /* Coda ia executed if true

*/

ala•
/* Coda ia executed if falaa

*I

The <rmsdef.h> Header

The <rmsdef.h> header file defines and declares the values defined by the
RMS-11 macro, $RMSTAT. This macro defines RMS-11 success and error
values. The following examples show bow the bit masks for error codes and
success codes are defined:

Error

fdafina RMS$_FLD

fdafina RMS$_CCR

(0xx)

(0177340)

/*Comment*/

/* Can't connect RAB*/

Using PDP-11 C with Record Management Services 7-9

The value is octal and enclosed in parentheses.

Success

fdefine RMS$SO_FLD

fdefine RMS$_ SUC

(Oxx)

(01)

7 .3 Declaring RMS-11 Facilities

/ * Com:nent */

/ * Operation •ucceeded */

The <rmsorg.h> header file contains the C language statements for including
support of the various operations on file organizations within the proper
PSECTs. The following example shows how to define the organization and
operation:

#define AMS$0AG$<org>$<operation>

In this syntax, $<org> is one of the following:

IDX Indexed file organization

DIR Direct file organization

REL Relative file organization

SEQ Sequential file organization

The $<operation> is one of the following:

CRE CREATE operation

DEL DELETE operation

FIN FIND operation

GET GET operation

PUT PUT operation

UPD UPDATE operation

The file organization and the operation must be defined before including the
<rmsorg.h> header file . The code for defining the RMS facilities is supported
by the RMSORG.C file . If you include the source code from this file in the C
program, the file organizations and operations you do not use can be deleted
or commented out.

The following example shows how to define a DELETE operation for an
indexed file, a GET operation for a relative file, and a FIND operation for a
sequential file:

7-10 Using PDP-11 C with Record Management Services

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

I
I
I
I
I ..
I
I
I
I
I

I

fdefine RMS$0RG$IDX$DEL /* Index file organization, DELETE operation*/

fdefine RMS$0RG$REL$GET / * Relative file organization, GET operation*/

fdefine RMS$0RG$SEQ$FIND /* Sequential file organization, FIND operation*/

finclude <rmaorg.h>

7 .4 Defining Pool Space

The <rmspoo.h> header file contains the C language statements for
allocating space for the various pools within the proper PSECTs. The code
for defining pool space is supported by the RMSPOO.C file.

Table 7-4 list the PDP-11 C equivalents of the RMS-11 macros for defining
pool space.

Table 7-4: PDP-11 C Symbols for Defining Pool Space

Symbol

RMSPBDB

RMSPBUF

RMSPFAB

RMSPIDX

RMS$P RAB

Purpose

Defines space for BDBs in BDB pool.

Defines space for 1/0 buffers in 1/0 buffer pool.

Defines space for FAB pool.

Defines space for IDX pool.

Defines space for RABs, for sequential and
relative files, and for block-accessed indexed files
in RAB pool.

RMSPRABC, RMSPRABK, Define space for key buffers in key buffer pool.
and RMSPRABX

Pool space must be defined before including the <rmspoo.h> header file. The
following is an example of defining pool space:

fdefine RMSPFAB

fdefine RMSPIDX

fdefine RMSPRAB

fdefine RMSPRABK

fdefine RMSPRABC

fdefine RMSPBUF

fdefine RMSPBDB

finclude <RMSPOO . H>

<fabcount>

<indexcount>

<rabcount>

<keysize>

<keychangea>

<bufcount>

<bdbcount>

Using PDP-11 C with Record Management Services 7-11

For further information, refer to the RSX-llM IM-PLUS RMS-11 Macro
Programmer's Guide.

7 .5 Calling Operation Macros

Each RMS operation macro has two equivalent macros in the PDP-11
C RMS Extension Library. They are RMS$ AME and sys$name, where

AME (or name) is the name of the operation macro called.

With the exception of RMS RE AME and RMS WAIT, all operation macros
take three arguments:

• The address of a FAB or RAB

• The address of an error handler for the operation

• The address of a success handler for the operation

The error and success handlers are optional. If the handlers are not desired,
simply omit them or pass -1 to indicate that no handler is used.

The RMS RE AME macro takes a fourth argument: the address of a FAB
for the new file specification. The first argument is the address of a FAB for
the old file specification.

The RMS WAIT macro takes only one argument: the address of the RAB for
the operation.

The following example shows bow to call operation macros:

fincluck <fah.h>
fincluck <rah.b>
finclude <rmaop•.h>

•truct FAB
•truct FAB
•truct s RAB

•bort
void
void

onefah;
anotberfah;
arah;
bdbcount;
errb();
•ucch ();

RMS$CREATE (,onefah) ;
RMS$0PEN (,anotberfab,errb,•ucch);
RMS$RENAME (,onefab, (void(*) ())-1, void (*) ())-1,,anotberfah);
RMS$WAI'? (,arab);

7-12 Using PDP-11 C with Record Management Services

J
I
I
I
I
I
I

..
I
I
I
I
I

I

I
I
I
I
I
..
I
I
I
I
I

•
I

7 .6 Writing Completion Handlers

Completion handlers are routines that may be called at the completion of
an RMS operation. They may be specified to be invoked upon successful
completion of the operation, unsuccessful completion of the operation, or
both. The completion handlers may be written in either Macro-11 or C. If
the routine is written in C, the fortran calling sequence must be specified
in the function declaration of the completion routine. When the completion
handler is called, the four arguments to the function are:

l. The address of the RAB or FAB

2. The address of the error handler

3. The address of the success handler

4. The address of the new FAB if RMS$RENAME is called

The following ex.ample shows how to write a completion routine:

tinclud• <atdio . h>
finclud• <fab.b>

tpragma linkage fortran rmacmp

void rm•cmp (atruct FAB *fab,
void (*perrb) () ,
void (*paucb) (),
atruct FAB *newfab)

/* Error addr••• */
/* succ••• addr••• *I

printf ("The RMS STV field ia d\n", fab->fab$w_atv);

}

7.7 Using Get-Space Routines

The following sections explain how to use the get-space routines. The
PDP-11 C jacket routine, C$RHLP, calls the specified user-provided
get-space routine.
The first section describes the RMS$GETGSA$ routine, which returns
the address of the getspace function. The second section describes the
RMS$SETGSA$ function, which places the address of the argument's
function into the PDP-11 C OTS work area. The third section describes the
parameter passing, which would normally be passed by RO, Rl, and R2 in a
standard RMS call to a user-defined get-space routine.

For additional information, refer to the RSX-llM/M-PLUS RMS-11 Macro

Programmer's Guide.

Using PDP-11 C with Record Management Services 7-13

7.7.1 The RMS$GETGSA$ Routine

The RMS GETGSA$ routine returns the address of the getspace function
that is placed in the PDP-11 C OTS work area by RMS SETGSA Consider
the following example:

#include <rmaopa . b>

abort (*getspace) () ;

getapace • RHS$GETGSA$;

The difference between RMS GETGSA$ and a direct call to the MACR0-11
GETGSA macro is that GETGSA returns the address of the jacket routine

C RHLP; RMS GETGSA$ returns the address of the getspace function
placed in the O'rS work area by the RMS$SETGSA$ macro.

7.7.2 The RMS$SETGSA$ Macro

The RMS$SETGSA$ macro places the address of the argument's function
into the PDP-11 C OTS work area, making that routine the one used by
RMS-11 to get additional space. The following example shows how to use
the RMS SETGSA$ macro:

finclude <rmaopa . b>

abort getapace();
abort (*pGetapace) ();

pGetapace • getapace;
RMS$SETGSA$ (pGetapace)

7.7.3 Receiving Parameters Passed by RO, R1, and R2 During an
RMSGSA or RMS$SETGSA$ Macro

The PDP-11 C jacket routine, C RHLP, calls the ge~space routine specified
by either an RMSGSA or RMS$SETGSA$ call. When the routine is called,
it passes the three parameters, which are normally passed by RO, Rl, and
R2 during the RMS$GETGSA$ call, to a user-defined ge~space routine. The
ge~space routine must return a pointer to a short. If the space allocation is
successful, the address of the first allocated word should be returned. If the
space allocation fails, a zero should be returned. Example 7-1 shows how to
receive the parameters passed by RO, Rl, and R2 and how to use a ge~space
routine which allows RMS to use the PDP-11 C malloc and free functions
to get and release space.

7-14 Using PDP-11 C with Record Management Services

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

-

~-I
I
I
I
I 7.8

I ..
I
I
I
I
I

•
I

Example 7-1: Receiving Parameters

{

extern short getepace (
int *pool_epace,
int block size,
int reltiaied)

if (released)
{
free((void *) released);
return (short*) TRUE;
)

/*Address of pool free apace list*/
/*Size of requested block*/
/*Address of first word released*/

/*Releasing memory?*/

/*Yee, call free*/
/*Indicates eucceaa*/

return (short*) malloc (block_eize);/*No, call malloc*/

Using PDP-11 C to Write RMS Programs

PDP-11 C supplies a number of headers that describe the RMS data
structures and status codes. Table 7-5 lists the structure tags, which are
defined by the header files, the header files, and a description .

Table 7--5: PDP-11 C Data Structures and Headers

Structure Tag

FAB

A_RAB(asynchronous)
S_RAB(synchronous)

NAM
XABALL
XABDAT
XEBEC
XABPRO
XABSUM

Header File

fab.h

rab.h, rabl.h
rab.h, rabl.h

nam.h

xab.h
xab.h
xab.h
xab.h
xab.h

Description

Defines the file access block structure.

Defines the record access block struc
ture.

Defines the name block structure.

Defines all the extended attribute
block structures.

These header files define all the RMS data structures as structure tag
names. However, they perform no allocation or initialization of the
structures; these modules describe only a template for the structures. 'lb
use the structures, you must create storage for them and initialize all the
structure members as required by RMS-11. Note that these header files are
part of PDP-11 C RMS-11 RMS Extension Library .

Using PDP-11 C with Record Management Services 7-15

RMS can be used in programs which use PDP-11 C Standard Library
l/0 functions; however, you must reserve the ones used in accessing RMS
directly. Refer to Section 2.7 for information on reserving LlJNs.

7.9 RMS Example Program

The example program in this section uses RMS functions to maintain
a simple employee file The file is an indexed file with two keys: social
security number and last name. The fields in the record are character
strings defined in a structure with the tag record.

The records have the carriage-return attribute. Individual fields in each
record are padded with blanks for two reasons. First, key fields must be
padded in some way; RMS does not understand PDP-11 C strings with the
trailing NUL character. Second, the choice of blank padding as opposed to
NUL padding allows the file to be printed or typed without conversion.

The program does not perform range or bounds checlcing. Only the error
checking that shows the mapping of PDP-11 C to RMS is performed. Any
other errors are considered to be fatal .

The program is divided into the following sections:

• External data declarations and definitions

• Main program section

• Function to initialize the RMS data structures

• Internal functions to open the file, display HELP information, pad the
records, and process fatal errors

• Utility functions

ADD

DELETE

TYPE

PRINT

UPDATE

The complete (by section) example program follows. Notes on each section
are keyed to the numbers at the left of the listing. Example 7-2 shows the
external data declarations and definitions.

7-16 Using PDP-11 C wrth Record Management Services

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

I
I
I
I
I ..
I
I
I
I
I

I

For information on linking and compiling a PDP-11 C program, refer to the
Guide to PDP-11 C.

Example 7-2: External Data Declarations and Definitions

/* Thia segment of RMSEXP . C contain• external data
* definitiona .

0 fdefine RMS FAB$PROTOTYPE
fdefine RMS-RAB$PROTOTYPE
fdefine RMS=KEY$PROTOTYPE

*
*/

/* Indicate use of Indexed file organization operation• * /
fdefine RMS$0RG$IDX$CRE
fdefine RMS$0RG$IDX$DEL
fdefine RMS$0RG$IDX$FIN
fdefine RMS$0RG$IDX$GET
fdefine RMS$0RG$IDX$PUT
fdefine RMS$0RG$IDX$UPD

finclude <rmadef.h>
@ finclude <rmaorg . h>

finclude <rma . b>
finclude <•tring . h>
finclude <atdio . b>
finclude <atdlib . b>

0 #define DEFAULT FILE NAME " .dat"

#define RECORD SIZE (aizeof record)
#define SIZE SSN 15
#define SIZE LNAME 25
#define SIZE FNAME 25
#define SIZE COMMENTS 15
#define KEY_SIZE \
(SIZE_SSN > SIZE_LNAME? SIZE SSN: SIZE_LNAME)

FAB fab;
S RAB rab;

0 atatic atruct
static atruct
static atruct XEBEC primary_key,alternate_key;

0 static atruct
{

char
char

aan[SIZE SSN], last name[SIZE LNAME];
firat name [SIZE FNAME], -
commenta[SIZE_COMMENTS];

record;

(continued on next page)

Using PDP-11 C with Record Management Services 7-17

Example 7-2 (Cont.) : External Data Declarations and Definitions

0 atatic char reaponae(BUFSIZ],*filename;

@ atatic int rma_atatua;

(l) atatic void initialize
atatic void open_fil•
atatic void add employ••
atatic void delete_enrployee
atatic void liat employ•••
atatic void type-employ•••
atatic void update_enrploy••
atatic void type option•
atatic void error ex.it

Key to Example 7-2:

(char *) ;
(void);
(void);
(void);
(void);
(void);
(void);
(void);
(char *);

0 The default FAB, RAB, and KEY data structures are brought into the
task by defining them before including the <rms.h> header file. The
RMS ORG$IDX :ax symbols are defined before <rmsorg.h>.

@ The <rms.h> header file defines the RMS data structures. The <rm
sorg.h> header file defines the RMS support that is needed. <stdio.h>,
<string.h>, and <stlib.h> header files contain the definitions for
Standard 1/0, string functions, and common use functions.

€) Preprocessor variables and macros are defined. A default file RMS
Extension .DAT is defined.

The sizes of the fields in the record are also defined. Some (such as
the social security number field) are given a constant length. Others
(such as the record size) are defined as macros; the size of the field is
determined with the sizeof operator. PDP-11 C evaluates constant
expressions, such as KEY_SIZE, at compile time. No special code is
necessary to calculate this value.

e Static storage for the RMS data structures is declared. The file access
block, record access block, and extended attribute block types are defined
by the <rms.h> header file. One extended attribute block is defined for
the primary key and one is defined for the alternate key.

0 The records in the file are defined by using a structure with four fields of
character arrays.

0 The BUFSIZ constant defines the size of the array that will be used to
buffer input from the terminal. The filename variable is defined as a
pointer to type char.

7-18 Using PDP-11 C with Record Management Services

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

I
I
I
I
I ..
I
I
I
I
I

I

@ The variable rms_status is used to receive RMS return status infor
mation. After each RMS function call, the status of the operation is
obtained from the STS field of the FAB or RAB. This status is used to
check for specific errors, end-of-file, or successful program execution.

0 The functional prototypes are defined for the functions used in the ap
plications. After the prototypes are defined, PDP-11 C checks to ensure
that the function calls are made with the correct type of parameters.

The main function, shown in Example 7-3, controls the general flow of the
program.

Example 7-3: Main Program Section

/* This segment of RMSEXP . C contains the main function
* and controls the flow of the program.

*
*/

0 main (short argc, char **argv)
(

@ if (argc < l I I argc > 2)

0
0
0

0

printf("\nRMSEXP - incorrect number of arguments\n");
else

{
printf("\nRMSEXP - Personnel Database\\ Manipulation Example\n");

filename• (argc •• 2? *++argv: "personnel.dat");
initialize{filename);
open_ file() ;

for(;;)
{

printf("\\Enter option (A,D,E,L,T,O)or \\? for help : \n");
gets(response);
if (response[O] - 'E')

break;
printf("\n\n");

switch(response[O])
{

case 'A': add_employee();
break;

case 'D': delete employee();
- break;

(continued on next page)

Using PDP-11 C with Record Management Services 7-19

Example 7-3 (Cont.): Main Program Section

caae 'L': liat _employ•••() ;
break;

ca•• , T': type_employ•••();
break;

ca•• 'O': update_employee();
break;

default: printf("RMSEXP - \
Unknown Operation.\n");

ca•• '?' : ca•• '\0' :
type_optiona ();

0 aya$cloa•(~fab);
rma_atatua • fab.fab$w_ata;

0 if (rma atatua ,_ RMS$SO SOC)
- error_exit("$CLOSE");

Key to Example 7-3:

0 The main function is entered with two parameters: the first is the
number of arguments used to call the program; the second is a pointer to
the argument list.

@ This statement checks that you used the correct number of arguments
when invoking the program.

0 If a file name is included in the command line to execute the program,
that file name is used. If no file name is specified, then the file name is
PERSONNEL.DAT.

0 The file access block, record access block, and extended attribute blocks
are initialized by calling initialize.

0 The file is opened by calling open_file.

0 The program displays a menu.

8 A switch statement and a set of case statements control the function to
be called, determined by the response from the terminal.

0 The program ends when "E" is entered in response to the menu. At that
time, the RMS sy close function closes the employee file .

7-20 Using PDP-11 C with Record Management Services

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

I
I
I
I
I ..
I
I
I
I
I

I

0

0 The rms_status variable is checked for a return status of RMS$SU_SUC.
If the file is not closed successfully, then the error-handling function
terminates the program.

Example 7-4 shows the function that initializes the RMS data structures.
Refer to the RMS documentation for more information about the file access
block, record access block, and extended attribute block structure members.

Example 7-4: Function to lnltlallze RMS Data Structures

/* Thia segment of RMSEXP.C contains the function that
* initializes the RMS data structures . */

static void initialize(char *fn)
{

fab • cc$rma fab; /* Initialize FAB */
fab . fab$b_bks-• 4;
fab . fab$1 dna • DEFAULT FILE NAME;
fab . fab$b=dns • aizeof DEFAOLT_FILE_NAME -1;
fab . fab$b fac • FAB$M_DEL I FAB$M_GET I FAB$M_PUT FAB$M_UPD;
fab . fab$1-fna • fn;
fab.fab$b=fns • strlen(fn);
fab . fab$w mrs • RECORD SIZE ;
fab.fab$b-org • FAB$C IDX;
fab.fab$b=rfm • FAB$C=FIX;
fab . fab$b sbr • FAB$M NIL;
fab . fab$1-xab • (char-*) ,primary_key;
fab.fab$b=lcb • 7; /* Use LON 7 */

memcpy(,rab, ,cc$rma_rab, sizeof rab) ; /* Initialize RAB */

rab.rab$l_fab • ,fab;

primary_key • cc$rms_xabkey;

primary key.xab$b dtp • XAB$C STG;
primary=k•y.xab$b=flg • O; -

/* Initialize Primary *

primary_key.xab$w_pos0 •
primary key . xab$b ref•
primary=key.xab$b=siz0 •
primary key . xab$1 nxt •
primary=key.xab$l=knm •

* key XAB

record.ssn - (char*) ,record;
O· ,
SIZE_SSN;
(char*) ,alternate key;
"Employee Social Security Number

*I

";

(continued on next page)

Using PDP-11 C with Record Management Services 7-21

Example 7-4 (Cont.): FunctJon to Initialize RMS Data Structures

0 alternate key - cc$rma xabkey; /* Initialize Alternate*
- - * !Cey XAB */

alternate_key.xab$b_dtp - XAB$C_STG;

0 alternate key.xab$b flg - XAB$H DUP I XAB$H CHG;
alternat•=key.xab$wyo■ O • recoid.la■t_name-- (cbar *) ,record;
alternate key.xab$b ref• l;
alternat•=k•y.xab$b=•iz0 • SIZE_LNAHE;

f) alternate_key.xab$l_knm • "Employee Laat Name ";
)

Key to Example 7-4:

0 The prototype cc rms_fab initializes the file access block with default
values. Some members have no default values; they must be initialized.
Such members include the filename string address and size. Other
members can be initialized to override the default values.

~ The prototype cc$rms_rab initializes the record access block with the
default values. In this case, the only member that must be initialized is
the rah l_fab member, which associates a file access block with a record
access block.

€) The prototype cc$rms_xabkey initializes an extended attribute block for
one key of an indexed file.

0 The position of the key is specified by subtracting the offset of the
member from the base of the structure.

0 A separate extended attribute block is initialized for the alternate key.

0 This statement specifies that more than one alternate key can contain
the same value (XAB$M_DUP), and that the value of the alternate key
can be changed (XAB$M_CHG).

8 The key-name member is padded with blanks because it is a fixed-length,
32-character field.

Example 7-5 shows the internal functions for the program.

7-22 Using PDP-11 C with Record Management Services

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ..
I
I
I
I
I

I

Example 7-5: Internal Functions

/* This segment of RMSEXP.C contains the functions that
* control the data manipulation of the program.

static void open file()
{ -

sya$open(&fab);

0 rms statu• • fab.fab$w sts;
if (rms_statua I• RMS$SU_SUC)

{
if (rms_statu• - RMS$_FNF)

{
aya$create(&fab);
rm• statua • fab . fab$w eta;
if (rms_atatua I• RMS$SU_SUC)

error_exit("$0PEN");

printf("[Created new data file .]\n");
}

elae
error_exit("$0PEN~);

@ sys$connect (&rab);
rms statua • rab.rab$w sts;
if (rms atatua I• RMS$SU SUC)

error_exit("$CONNECT");

€) atatic void type_option• (void)
{

printf("Enter one of the following:\n\n");
printf("A Add an employee . \n");
printf("D Delete an employee specified by SSN . \n");
printf("E Exit this program . \n");

*
*I

printf("L Liat employee(•) by ascending SSN to a file.\n");

printf ("T

printf("U
printf("?

Type employee(•) by aacending laat name on terminal.\n");

Update employee apecified by SSN.\n\n");
Type thia text.\n");

(continued on next page)

Using PDP-11 C with Record Management Services 7-23

Example 7-5 (Cont.): Internal Functions

0 atatic pad_record ()
{

int i;

for(i • atrlen(record.aan); i < SIZE_SSN; i++)
record.aan[i] •' ';

for(i • atrlen(record.laat name); i < SIZE LNAME; i++)
record.laat name[i] • ,-,; -

for(i • atrlen(record.firat_name); i < SIZE_FNAME; i++)
record.firat name[i] •' ';

for(i • atrlen(~ecord.commenta);i < SIZE_COMMENTS; i++)
record.commenta[i) •' ';

/* Tbia aubroutin• ia the fatal error handling routine. */

0 atatic void error_exit (char *operation)
{

printf("RMSEXP - file • failed (a)\n",
operation, filename);

exit(rma_atatua);

Key to Example 7-5:

0 The open_file function uses the RMS sy open function to open the file.
If the file is not found, the RMS sys$create function is used to create
the file, giving the address of the file access block as an argument. The
status information is obtained from the fab w_sts field of the FAB.

@ The RMS sys$connect function associates the record access block with
the file access block.

0 The type_options function, called from the main function, prints help
information. Once the help information is displayed, control returns to
the main function, which processes the response that is typed at the
terminal.

0 For each field in the record, the pa<l.record function fills the remaining
b~s in the field with blanks.

0 This function handles fatal errors. It prints the name of the function
that caused the error, returns a PDP-11 error code (if appropriate), and
exits the program.

7-24 Using PDP-11 C with Record Management Services

•• I
I
I
I
I
I

..
I
I
I
I
I

I

I
I
I
I
I ..
I
I
I
I
I

I

Example 7-6 shows the function that adds a record to the file. This function
is called when "a" or "A" is entered in response to the menu.

Example 7--o: Utility Function: Adding Records

/* Thia segment of RMSEXP.C contains the function that
* adds a record to the file .

static void add_employee(void)

0 { do

printf("(ADD) Enter Social Security Number ");

get a (response) ;

while(strlen(responae) - 0);

atrncpy(record . aan,reaponae,SIZE_SSN);

do

printf ("\n (ADD)

geta(reaponae);

Enter Last Na.me");

while(atrlen(reaponae) - 0);

atrncpy(record.last_name,response,SIZE_LNAME);

do

printf ("\n (ADD)

gets(response);

Enter First Name");

while(strlen(response) - 0);

atrncpy(record.first_name,response,SIZE_FNAME);

do

printf("n\\(ADD)

gets(response);

Enter Comments");

while(strlen(responae) - 0);

atrncpy(record.commenta,reaponae,SIZE_COMHENTS);

pad_ record() ;

rab.rab$b rac •
rab.rab$l-rbf •
rab.rab$w:raz •

RAB$C_KEY;
(char*) ,record;
RECORD_SIZE;

*
*/

(continued on next page)

Using PDP-11 C with Record Management Services 7-25

Example 7-6 (Cont.): Utlllty Function: Adding Records

8 sys$put(,r&b);
rma_atatua • r&b.r&b$w_sta;

0 if (nns atatua I• RMS$SO soc,, rma atatua !•
- RMS$_OOP)

error exit("$POT");
•l•• -

if (nns atatu• - RMS$SO SOC)
printf("\n[Record added aucceaafully.]\n");

•l••
printf("\nRMSEXP - Existing employ•• with same SSN, not added.\n");

Key to Example 7-6:

0 A series of do loops controls the input of information. For each field in
the record, a prompt is displayed. The response is buffered, and the field
is copied to the structure.

f) When all fields have been entered, the pad_record function pads each
field with blanks.

0 Three members in the record access block are initialized before the
record is written. The record access member (rab$b_rac) is initialized
for keyed access. The record buff er and size members (rab$l_rbf and
rab$w_rsz) are initialized with the address and size of the record to be
written.

8 The RMS sys$put function writes the record to the file.

0 The rms_status variable is checked. If the return status is normal, or
if the record has a duplicate key value and duplicates are allowed, the
function prints a message stating that the record was added to the file.
Any other return value is treated as a fatal error, causing error_exit to
be called.

Example 7-7 shows the function that deletes records. This function is called
when "d" or "D" is entered in response to the menu.

7-26 Using PDP-11 C with Record Management Services

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ..
I
I
I
I
I

I

0

0

8

0

0

Example 7-7: Utlllty Function: Deleting Records

/* Thia segment of RMSEXP.C contains the function that
* deletes a record from the file.

static void delete employee(void)
{ -

inti;
do

printf("\n(DELETE) Enter Social Security Number
get• (response);
i - atrlen(responae);

while (i - 0);

while(i < srzE_SSN)
responae[i++J - ' ';

rab.rab$b_krf -
rab.rab$1 kbf -
rab.rab$b-kaz -
rab.rab$b:rac •

aya$find(,rab);

O· I

response;
SIZE SSN;
RAB$C_KEY;

rma_statua - rab.rab$w_sts;

if (rms status l• RMS$SO SOC,, rma status I• PMS$_RNF)
error_exit("$FrND"); -

else
if (rlU status-• RMS$ RNF)

*
*/

");

printf("\nRMSEXP - specified employee does not exiat.\n");

else

aya$delete(,rab);
rma_atatus • rab.rab$w_ats;
if (rma status I• RMS$SU SOC)

error exit("$DELETE");
printf("\n");

Key to Example 7-7:

0 A do loop prompts the user to type a social security number at the
terminal and places the response in the response buffer.

f) The social security number is padded with blanks.

0 Some members in the record access block must be initialized before the
program can locate the record. Here, the key of reference (0 specifies
the primary key), the location and size of the search string (this is the
address of the response buffer and its size), and the type of record access
(in this case, keyed access) are given.

Using PDP-11 C with Record Management Services 7-XT

0 The RMS sys$find function locates the record specified by the social
security number entered from the terminal.

0 The program checks the rms_status variable for the values RMS$SU_SUC
and RMS$_RNF (record not found). A message is displayed if the record
cannot be found. Any other error is a fatal error.

0 The RMS sys$delete function deletes the record. The status returned
in rah w _sts is only checked for success.

The type_employees function in Example 7-8 displays the employee file at
the terminal. This function is called from the main function when •t" or "T"
is entered in response to the menu.

Example 7--8: Utility Function: Typing the File

/* Thia ••gment of RMSEXP.C contain• th• function that
* diaplaya a aingl• record at th• terminal.

void type_employ•••(void)
{

*
*/

0 int number_employ•••;

@ rab.rab$b_krf • l;

€) aya$rewind(,rab);
rma_atatua • rab.rab$w_ata;
if (rma atatua I• RMS$SO SOC)

error_exit("$R.EWIND");

0 printf("\n\nEmploy••• (Sorted by Laat Name)\n\n");

0

0

printf("Laat Name Firat Name SSN \
Commenta\n");

printf("--------- ---------- ---------\
--------\n\n");

rab . rab$b rac •
rab . rab$1-ubf •
rab . rab$w=u•z •

RAB$C SEQ;
(char-*) ,record;

R.ECORD_Sl:ZE;

for(number employ•••• O; ; number employ•••++)
{ - -

aya$get (Hab);
rma atatua • rab.ral:>$w ata;
if (rma_atatua I• RMS$SO_SOC ,, nu atatua I• RMS$_EOF)

error exit("$GET");
•l•• -

if (rma atatu• - RMS$_EOF)
break;

(continued on next page)

7-28 Using PDP-11 C with Record Management Services

•• I
I
I
I
I
I ..
I
I
I
I
I

I

•• I
I
I
I
I
I ..
I
I
I
I
I
19
I

Example 7-a (Cont.): Utlllty Function: Typing the Ale

printf("%.*s%.*s%.*s%.*s\n",
SIZE LNAME, record.last name,
SIZE-FNAME, record.first name,
SIZE=SSN, record.ssn, -
SIZE_COMMENTS, record . comments);

f) if (number employees)
printf(~\nTotal number of employees• %d.\n", number_employees);

else
printf("[Data file is empty .]\n");

Key to Example 7-8:

0 A running total of the number of records in the file is kept in the
number_employees variablt.

@ The key of reference is changed to the alternate key, so that the employ
ees are displayed in alphabetical order by last name.

€) The file is positioned to the beginning of the first record according to
the new key of reference, and the status of the sys$rewind function is
checked for success.

0 A heading is displayed.

0 Sequential record access is specified, and the location and size of the
record is given.

0 A for loop controls the following operations:

• Incrementing the number_employees counter

• Locating a record and placing it in the record structure, using the
RMS sys$get function

• Checking the status of the RMS sys$get function

• Displaying the record at the terminal

8 This if statement checks for records in the file. The result is a display of
the number of records or a message indicating that the file is empty.

Example 7-9 shows the function that prints the file on the printer. This
function is called by the main function when "p" or "P" is entered in response
to the menu.

Using PDP-11 C with Record Management Services 7-29

0

f)

0

0

0

0

Example 7-9: Utlllty Function: Printing the FIie

/* Thia ••gment of RHSEXP.C contain• th• function that
* output• th• file to a liat file.

atatic void liat_employeea(void)
{

int number_employ•••;
FILE *fp;

fp • fopen{"peraonnel.lia", "w");
if (fp - NULL)

{
perror("RHSEXP - failed opening liating file");

ex.it(EXIT_FAI:LORE);

ra.b.ra.b$b_krf • 0;

aya$rewind(,ra.b);
rma atatua • ra.b.ra.b$w ata;
if (rma_atatua I• RMS$SO_SOC)

error_exit("$REWIND");

fprintf(fp,"\n\nEmploy••• (Sorted by SSN)\n\n");

fprintf(fp,"Laat Name
Commenta\n");

Firat Name SSN \

fprintf(fp,"--------
--------\n\n");

---------\

ra.b.ra.b$b rac •
ra.b.ra.b$1-ubf •
ra.b.ra.b$w=u•z •

RAB$C SEQ;
(cbar-•),record;
RECORD_SIZE;

for(number employ•••• 0; ; number employ•••++)
{ - -

rma atatua • rab.ra.b$w ata;
if (rma atatua I• RH5$SO soc,,

rma -•tatua I• RMS$ EOF)
erroi exit("$GET");-

•l•• -
if (rma atatua - RHS$_EOF)

break;

fprintf(fp, " ·*• .*• .*a\.*a",
SIZE LNAME,record.laat name,
SIZE-FNAME,record.firat name,
SIZE-SSN,record.aan, -
SIZE=COMMENTS,record.commenta);

*
*I

(continued on next page)

7-30 Using PDP-11 C with Record Management Services

•• I
I
I
I
I
I ..
I
I
I
I
I

I

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

Example 7-9 (Cont.): Utlllty Function: Printing the FIie

8 if (number employees)
fprintf(fp, "\nTotal number of employees - %d.\n", number_employees);

else
fprintf(fp,"\n[Data file is empty.]\n");

fclose(fp);
printf("[Listing file\\ ""personnel.lis\\"" created .)\n");

Key to Example 7-9:

0 This function creates a sequential file and outputs it as a text file. The
file is created by using the Standard I/O Run-Time Library function
fopen, which associates the file with the file pointer, fp .

@ The key of reference for the indexed file is the primary key.

€» The sys$rewind function positions the file at the first record. The
status is checked for success.

0 A heading is written to the sequential file by using the Standard I/O
function fprintf .

0 The record access, user buffer address, and user buff er size members
of the record access block are initialized for keyed access to the record
located in the record structure.

0 A for loop controls the following operations:

• Initializing the running total and then incrementing the total at
each iteration of the loop

• Locating the records and placing them in the record structure with
the RMS sys$get function, one record at a time

• Checking the rms_status information for success and end-of-file

• Writing the record to the sequential file

8 The number_employees counter is checked. If it is 0, a message is
printed indicating that the file is empty. If it is not 0, the total is printed
at the bottom of the listing.

Example 7-10 shows the function that updates the file. This function is
called by the main function when "u" or "U" is entered in response to the
menu.

Using PDP-11 C with Record Management Services 7-31

Example 7- 10: Utility Function: Updating the FIie

/* Thi• ••gment of RMSEXP.C contain• the function that
* update• the file.

atatic void update_employee(void)
{

int i;

*
*/

0 do

0

0

0

printf("{OPDATE) Enter Social Security Number");

g•t•(reaponae);
i • atrlen(reaponae);

wbil• (i 0);

while(i < SIZE SSN)
reaponae[i++] •' ';

ra.b.r&b$b_ltrf •
ra.b.r&b$1 ltbf •
rab.rab$b-ltaz •
ra.b.rab$b-rac •
ra.b.r&b$l-ubf •
ra.b.r&b$w:uaz •

•y•$get(,ra.b);

O;
,reapon••;
SIZE_SSN;
RAB$C_1CEY;
(char*) ,record;
RECORD_SIZE;

rma atatua • ra.b.ra.b$w ata;
if (rm.a atatua !• RMS$SU SOC,, nu atatu• !• RMS$_RNF)

error_exit("$GET"); -

•l••
if (rm.a atatua - RMS$ RNF)

printf("\nRMSEXP - ipecified employ•• do•• not exiat.\n");

•l••
{

printf{"\nEnter the new data or~ to leave\
data unmodified.\n\n");

printf{"\nLaat Nama:");
geta(reaponae);
if (atrlen(reaponae))

atrncpy(record.laat_name, reaponae,
SIZE_LNAME);

printf("Firat Name:");
geta(reaponae);
if (atrlen(reaponae))

atrncpy(record.firat name, reaponae,
SIZE_FNAME);-

printf("Commenta:");
geta(reaponae);
if (atrlen(reaponae))

atrncpy(record.commenta, reaponae, SIZE_COMMENTS);

(continued on next page)

7-32 Using PDP-11 C with Record Management Services

•• I
I
I
I
I
I ..
I
I
I
I
I

I

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

Example 7-10 (Cont.): Utlllty Function: Updating the Ale

0 pad_record ();

@ aya$update(&rab);
rma status• rab.rab$w ats;
if (rma status I• RMS$SO SOC)

erro;_exit("$UPDATE");

printf("\n[Record baa been successfully updated.J\n");

Key to Example 7-10:

0 A do loop prompts for the social security number and places the response
in the response buffer.

@ The response is padded with blanks, so that it will correspond to the
field in the file.

0 Some of the members in the record access block are initialized for the
operation. The primary key is specified as the key of reference, the
location and size of the key value are given, keyed access is specified,
and the location and size of the record are given.

0 The RMS sys$get function locates the record and places it in the
record structure. The function checks the rms_status value for
RMS$_NORMAL and RMS$_RNF (record not found). If the record is
not found, a message is displayed. If the record is found, the program
prints instructions for updating the record.

0 For each field (except the social security number, which cannot be
changed), the program displays the current value for that field. If you
press the RETURN key, the record is placed in the record structure
unchanged. If you make a change to the record, the new information is
placed in the record structure.

0 The fields in the record are padded with blanks.

8 The RMS sys$upd.ate function rewrites the record. The program then
checks that the update operation was successful. Any error causes the
program to call the fatal error-handling routine.

Using PDP-11 C with Record Management Services 7-33

Example 7-11 shows how to reserve a Jun.

Example 7-11: Reserving a lun for Use by RMS

0 conat abort $PRLtJ'N[2] • {1,0200}; /* r•••rv• lun 7 */

Key to Example 7-11:

0 This code programs PDP-11 C Standard I/O to reserve lun 8 for use by
RMS because RMS must use a lun to access the file.

7-34 Using PDP-11 C with Record Management Services

•• I
I
I
I
I
I ..
I
I
I
I
I .,
I

•• I
I
I
I
I
I
..
I
I
I
I
I

•
I

Chapter 8

Using PDP-11 C with File Control Services

This chapter describes how to use File Control Services (FCS) with PDP-11
C programs. The reader is assumed to have a working knowledge of
MACR0--11 and wishes to access FCS in a similar fashion through the
PDP-11 C FCS Extension Library using PDP-11 C language constructs.
Refer to the RSX-JIM-PLUS and Micro/ RSX I IO Operations Reference
Manual for more detailed information. The following topics are described in
this chapter:

• Compile-time initialization of the File Descriptor Block (FDB) and
Default Filename Block (DFB)

• The FCS header files
• Run-time initialization of the FDB and file storage region (FSR)

• File processing

• File control routines

• Command-line processing

Table ~1 lists the macros supported by the PDP-11 CFCS Extension
Library. Each of these macros are described in the FCS Extension Library
Macros subsection in the Reference Section of this manual.

Using PDP-11 C with File Control Services ~1

Table 8-1: PDP-11 CFCS Macros

Macro Purpo e

Compile-Time FDB Declaration and Initialization

FCS$FDBDF$

Run-Ti.me FDB Initialization

FCS$FSRSZ$

Run-Ti.me FSR Initialization

FCS$FINIT$

File ProceHing

FCS$CLOSE$

FCS$DELET$

FCSGET

FCSGETR

FCSGETS

FCS$OFID x

FCS$OFNB$x

FCS$OPEN$x

FCS$OP S$x

FCS$OPNT$D

FCS$OPNT$W

FCSPUT

8-2 Using PDP-11 C with Rle Control Services

Allocates space in the program for the FDB.

Establishes the size of the FSR.

Initializes coding to set up the FSR.

Terminates file processing.

Removes a named file from the associated
volume directory.

Reads logical data records from a file .

Reads fixed-length records from a file in random
mode.

Reads records from a file in sequential mode.

Opens an existing file by using file identification
information in the FNB.

Opens a file by using file name information in
the FNB.

Opens and prepares a file for processing. The
x is the alphabetic suffix indicating the type of
operation to be performed on the file.

Opens and prepares a file for processing and
allows shared access to that file.

Creates and opens a temporary file for process
ing.

Creates and opens a temporary file for processing
data.

Writes logical data records to a file.

(continued on next page)

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I
..
I
I
I
I
I

•
I

Table 8-1 (Cont): PDP-11 CFCS Macros

Macro

File Processing

FCSPUTR

FCSPUTS

FCS$READ$

FCS$WAIT$

FCS$WRITE$

File Control Routines

FCS$ASCPP and FCS$PPASC

FCS$ASLUN

FCS$CTRL

FCS$DLFNB

FCS$ENTER

FCS$EXPLG

FCS$EXTND

FCS$FIND

FCS$FLUSH

FCS$GTDID and FCS$GTDIR

FCS$MARK

FCS$MRKDL

FCS$PARSE

Purpose

Writ.es fixed-length records to a file in random
mode.

Writ.es records t.o a file in sequential mode.

Reade virtual data blocks from a file.

Suspends program execution until a requeet.ed
block l/0 operation is completed.

Writ.es virtual data blocks t.o a file.

Converts a direct.ory string from ASCII to binary
or from binary t.o ASCII.

Assigns a logical unit number (LUN) to a spec
ified device and unit and returns the device
information t.o a specified FDB filename block.

Performs device-specific control functions.

Deletes a file by FNB.

Inserts an entry by file name int.o a direct.ory.

Expands a logical name and returns a point.er t.o
the task that points t.o the expanded string.

Extends either contiguous or noncontiguous files.

Locat.ee a direct.ory entry by file name and lists it
in the file identification field (N.FID) in both the
MFD and UFD.

Writ.es the block buffer to the file being writt.en
in record mode.

Inserts directory information in a specified file
name block (FNB).

Pointe t.o a byte or record within a specified file.

Marke a t.emporary file for deletion.

Performs any necessary logical expansion and
parses the resultant string.

(continued on next page)

Using PDP-11 C with File Control Services 8-3

Table ~1 (Cont.): PDP-11 CFCS Macros

Macro

F ile Control Routines

FCS$POINT, FCS$POSIT, and
FCS$POSRC

FCS$PRINT$

FCS$PRSDI

FCS$PRSDV

FCS$PRSFN

FCS$REMOV

FCS$RE AM

FCS$RDFDR

FCS$RDFFP

FCS$RDFUI

FCS$RFOWN

FCS$TRNCL

FCS$WDFDR

FCS$WDFFP

8-4 Using PDP-11 C with Fl e Control SeMces

Purpose

Points to a byte or record within a specified file.

Queues a file for printing on a specified device.

Same as $PARSE but performs only those
operations associated with requisite directory
identification information.

Same as $PARSE but performs only those
operations associated with requisite device and
unit information.

Same as PARSE but performs only operations
associated with requisite file name, file type, and
file version information.

Deletes an entry from a directory by file name.

Changes the name of a file in its associated
directory.

Reads and writes directory string descriptors.

Reads and writes the default file protection word
in a location in the program section of the FSR.

Reads and writes the default UIC maintained
program section.

Reads the contents of the file owner word in the
program section.

Truncates a file to the logical end of the file,
deallocates any space beyond that point, and
closes the file.

Reads and writes directory string descriptors.

Reads and writes the default file protection word
in a location in the program section of the FSR.

(continued on next page)

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I 8.1

I
..
I
I
I
I
I

•
I

Table 8-1 (Cont): PDP-11 C FCS Macros

Macro

File Control Routines

FCS$WDFUI

FCS$WFOWN

FCS$XQIO

Purpose

Reads and writes the default UIC maintained
program section.

Initializes the file owner word in the program
section.

Executes a specified QIO$ function and waits for
its completion.

For more information about these macros, refer to the RSX-llM-PLUS
Operations Manual and Micro/RSX I/O Operations Manual.

Introduction to the FCS Extension Library

The PDP-11 CFCS Extension Library provides an access to FCS which
is similar to accessing FCS from MACR0-11. The FCS extension library
supports file control functions.

PDP-11 C provides three FCS header files:

• The <fcs.h> header file provides functional prototyping for each routine
and declares a number of macros for accessing FCS with PDP-11 C.

• The <fcsfhb.h> header file defines the file header block.

• The <fcsiff.h> header file defines the index file format.

Two word quantities, such as the BKVB field of the FDB, are interpreted
by FCS as shown Figure 8--1, which is opposite from how PDP-11 C stores
integers of type long:

Using PDP-11 C with File Control Services 8-5

Figure ~1: PDP-11 C Integer Storage

Addrs N High Order Bits

Addrs N+2 Low Order Bits

NU-2126A-RA

Two word fields are defined by the <fcs.h> header file as two, short, fields
such as fcsfbkvb and fcsfbkvb2. When placing the values in these
fields, the high-order bits must be placed in the first word, fcsfbkvb; the
low-order bits must be placed in the second word, fcsfbkvb2.

However, the two MACROs that use long arguments, FCS$READ and
FCS$WRITE$, accept long integers as stored by PDP-11 C and convert
them to the format expected by FCS before sending them to FCS.

For additional information on MACR0-11 and FCS, refer to the
RSX-11M-PLUS and Micro/RSX 1/0 Operations Reference Manual.

FCS can be used in programs which use PDP-11 C Standard Library
I/O functions; however, you must reserve the ones used in accessing FCS
directly. Refer to Section 2.7 for information on reserving LUNs.

8.2 Declaring and Initializing the File Descriptor Block

•• I
I
I
I
I
I

..
I

Before you perform FCS I/O operations, you must declare and initialize I
an FDB for each file. To declare the FDB, use the FCS$FDBDF$ macro or
explicitly declare an fcs$fdb object. To initialize an FDB, explicitly initialize

1 an fcs$fdb object during its declaration, directly access and change the data
structures through run-time FDB initialization, or use the file processing
macros.

8.2.1 The <fcs.h> Header File

The <fcs.h> header file includes a compile-time FDB declaration macro but
does not include a compile-time initialization macro. However, the FDB
can be declared manually by using the static or extern storage class and
initialized at compile time, as shown in Section 8.2.2.

8-6 Using PDP-11 C with File Control Services

I
I

•
I

•• I
I
I
I
I

I
I
I
I
I
II
I

8.2.2

8.2.3

The <lcs.h> header file defines the following fcs$fdb structure:

• File attribute section of the FDB

• Record access section of the FDB

• Block access section of the FDB

• File-open section of the FDB

• Block buffer section of the FDB

You must use the #include <lcs.h> statement to use any of the functions
defined by the <fcs.h> header file.

Values used by FCS are defined in the <fcs.h> header file in the following
manner:

#define FCSFRTYP (00000) r Equivalent to MACR0-11 definition of F.RTYPE •1

Compile-Time Initialization of the FDB

Manual declaration and compile-time initialization of the FDB are done by
defining the fcs$fdb structure. The fcs$fdb structure functionally replaces
the FDAT$A, FDRC$A, FDBK$A, FDOP$A, and FDBF$A FCS macros. The
following example shows how to define the fcs$fdb structure (<class> may be
either static or extern):

<class> fcs$fdb myfdb • {

FCSRF:IX
FCSRFOCR,
1.33,
4,
3,

0,
};

/* F.RTYP field*/
/* F.RATT field*/
/* F.RS:IZ field*/
/* F.H:IBJC field*/
/* F.EFBIC field*/

/* F.FNB field*/

For further information, refer to the RSX-llM-PLUS and Micro/RSX l/O
Operations Reference Manual.

Compile-Time Initialization of the Default Filename Block

Compile-time initialization of the DFB is done by defining the fcs$fnb
structure.

Using PDP-11 C with File Control Services 8-7

The following example shows how the DFB is initialized at compile time
(<class> may be either static or extern):

<claaa> fca$fnb myfnb • (
O,
o,
0,
'M'fF' _RAD50,
'I:LE' RAD50,

-RAD50,
'TXT' -RAD50,
3,
FCSNBVER,
0,
0,
0,
0,
'SY',
0,
} ;

/* N.FID field*/

/* N.FNAM field*/
/* N.FNAM field*/
/* N.FNAM field*/
/* N.FTYP field*/
/* N.FVER field*/
/* N.STAT field*/
/* N.NEXT field*/
/* N.DID field*/

/* N.DVNM field*/
/* N.O'NIT field*/

8.2.4 Run-Time FOB Initialization and the File Storage Region

Run-time initialization of the FOB and the FSR is done by using C language
constructs directly to access and change the data structures. Run-time
initialization functionally replaces the FDAT$R, FDRC$R, FDBK$R,
FDOP$R, and FDBF R FCS macros. Consider the following examples:

finclude <fca.h>
FCS$FDBDF$(auto, myfdb)

myfdb.fcafrtyp • FCSRFIX;
myfdb.fcafraiz • 132;
myfdb.fcaffacc • FCSFAWRT I FCSFASHR;

The FCS$FDBDF macro takes two arguments which correspond to the
arguments of the MACR0-11 FDBDF$ macro: the C storage class used to
define the FDB, and the name of the FOB.

finclude <fca.h>
FCS$FSRSZ$(2,1024)

The FCS$FSRSZ$ macro takes two arguments which correspond to the
arguments of the MACR0-11 FSRSZ macro. PDP-11 C generates the
correct PSECT and control transfer; therefore, the PSECT of the FSRSZ
macro argument is not necessary.

To initialize the file storage region, include the following statements:

finclude <fca. h>

FCS$FINIT$

8-8 Using PDP-11 C with File Control Services

•• I
I
I
I
I
I

..
I
I
I
I
I

II
I

•• I
I
I
I
I
I ,,
I
I
I
I
I

-
I

The FCS$FINIT$ macro has no arguments.

8.3 File Processing
Each PDP-11 CFCS Extension Library routine takes the parameters passed
to it and forwards them to the corresponding FCS routine. Each of them
returns a value of 1 if the operation is successful and O if it is not, as defined

in the <fcs.h> header file .

Some of these routines allow user-defined error routines to be specified. If
user-defined error routines are specified, the user must ensure that the error
routine does not alter the carry-bit of the Processor Status Word (PSW).
If the carry-bit is changed, it must be changed back to its original status;
otherwise, an improper return value may result.

Some FCS file control routines use the carry-bit to indicate that they
completed successfully; others do not. For those routines that use the
carry-bit to indicate success, the equivalent PDP-11 C routine returns the
value TRUE (1) if the operation completed successfully and the value FALSE
(0) if the operation did not complete successfully. For those routines that do
not use the carry-bit to indicate success, the equivalent PDP-11 C routine is
declared as a function returning void or no value. For further information on
the FCS file control routines, see the RSX-llM-PLUS and the Micro/RSX
I IO Operations Reference Manual.

8.4 FCS Example Program

The example program in this section uses FCS functions to copy a file. The
program is divided into two sections:

• External data declarations and definitions

• Main program section

Using PDP-11 C with File Control Services ~

Example S-1: External Data Declarations and Definitions

/* Thia aegment of CRCOPB.C contain• external data definitiona. */

tpragma liat title "CRCOPB"

0 finclude "fca.b"
finclude <atdio.h>
finclude <atdli.b.h>

@ conat abort $PRLO'N[2] • {1,030};

fdefine INLO'N 3
fdefine OOTLO'N 4

€) FCS$FSRSZ$ (2, 1024)
0 FCS$FDBDF$ (ah.tic, fdbin)

FCS$FDBDF$(atatic,fdbout)

Key to Example 8-1:

/* Card reader copy routine

/* reaerve luna 3 and 4 */

*I

0 The <fcs.h> header file defines the FCS data structures. The <stdio.h>
header file defines functions used for Standard 1/0 and the <stdlib.h>
header file defines the exit function.

@ The LUNs which access FCS are reserved. This prevents PDP-11 C
from trying to use them.

€) FCS FSRSZ$ defines the size of the FSR.

0 This line and the next line define the input and output FBDs. They
state the storage class where the FOB resides. The macros define the
FDB's as structures which allows easy access to the various fields.

The main function, shown in Example 8-2, controls the general flow of the
program.

S--10 Using PDP-11 C with File Control Services

•• I
I
I
I
I
I ..
I
I
I
I
I

-
I

•• I
I
I
I
I
I ..
I
I
I
I
I

I

Example 8-2: Main Program Section

/* This segment ot CRCOPB.C contains the main function and. •
• controls the flow ot the program •/

0 int main ()
{
short rl;
char •r2;
char recbutf80];

@ struct desc
short length;
char •patring;
);

€) static struct desc
{ o, o,

0, 0,
o, 0);

0 static struct desc
{ o, o,

o, o,
0, 0);

otdsptf3] •
/• Device descriptor
/• Directory descriptor
/* Filename descriptor

itdsptf3] •
/* Device descriptor
/* Directory descriptor
/* Filename descriptor

0 static char onamf] • "OUTPUT.DAT";
static char inamf] • "INPUT.DAT";

*/
*/
*I

0 FCSSFINITS; /• Init tile storage region•/

@ itdsptf2].pstring • inam;
itdsptf2].length • sizeot inam;

0 FCSSOPENSR {,!dbin, INLUN, {short*) i!dspt, {short) -1, recbu!,
sizeo! recbu!, {void {*) ()) -1);

0

i! (tdbin.!caS!Serr - FCSSISSSUC)
(

tdbout.!csStSrtyp • FCSSRSVAR;
tdbout.!csStSratt • FCSSFDSCR;
o!dsptf2].pstring • onam;
o!dsptf2].length • sizeo! onam;

/* Runtime initialization

FCSSOPENSW {,tdbout, OUTLUN, (short*) o!dspt, (ahort) -1, recbut,
sizeo! recbut, (void (*) ()) -1);

it (!dbout.tcsStSerr •• FCSSISSSOC)
I
!or {;;)

•/

{ /• Note - ORBD ia all set up • /

CD FCSGET(Hdbin, (char*) -1, -1, (void(*)()) -1);
it {!dbin.tcsS!Serr !• FCSSISSSOC)

break;
rl • tdbin.!csStSnrbd;

r2 • recbut + rl;
while {*(--r2) - ' ')

it (! (--rl))
break;

/• rl • size ot record read */

/* r2 • address o! last b~e + l */
/* Strip trailing blanks */

/• At this point, rl contains the stripped size o! the
• record to be written. I! the card is blank,
• a zero length record is written.
*/

(continued on next page)

Using PDP-11 C with File Control Services 8-11

Example 8--2 (Cont.): Main Program Section

~ FCSSPUT$ (,fdbouc, (char •) -l, rl, (void (•) ()) - l) ;
if (fdbouc . fcsSfSe r r !• FCSSISSSOC)

CD

else

break ;

if (fdbouC . fcsSfSerr !• FCSSISSSUC)
princf ("FCS error d occurred during wrice\n • , fdbouc.fcsSf $err) ;

else if (fdbin.fcsSfSerr !• FCSSIESEOF)

else

princf ("FCS e r ror d occurred during read n • , fdbin.fcsSfSerr) ;

FCSSCLOSES (Udbouc, (void (•) ()) - l) ;
if (fdbouc . fcs$fSe r r !• FCSSISSSOC)

p r incf (" FCS error~ occurred during close of OUTPOT . DAT\n •,
fdbouc.fcsSfSerr);

princf ("FCS error d occurred during open of OUTPUT . DAT n •,
fdbouc.fcsS!Serr);

FCSSCI.OSES(Udbin, (void (•) ()) -l);
if (fdbin . fcsSfSerr !• FCSSISSSUC)

princf ("FCS error d occurred during close of INPUT . DAT n •,
fdbin . fcsSfSerr);

princf ("FCS e r ror \'d occurred during open of INPUT . DAT n•,
fdbin . fcsSfSerr);

exic(EXIT_SUCCESS) ;
)

Key to Example 8-2:

0 Tb.is begins the main function and the declarations of local storage. It
uses automatic storage for the record buffer.

f) Defines a structure type for a data-set descriptor.

€) Tb.is is the output file data-set descriptor. It is defined as a structure
and placed in static storage.

0 Tb.is is the input file data-set descriptor. It is defined as a structure and
placed in static storage.

0 The output and input filenames are placed in static storage.

0 A call to FCS$FINIT$ initializes the file storage region.

8 Tb.is initializes the input file data-set descriptor.

0 A call to FCS$OPEN$R opens the input file for read.

0 These statements initialize the output FDB and the output file data
descriptor.

a!) The FCS$OPEN$W macro is used to open the output file for write.

8-12 Using PDP-11 C with File Control Services

•• I
I
I
I
I
I

..
I
I
I
I
I

II
I

•• I
I
I
I
I
I

••
I
I
I
I
I

-
I

CD The main processing loop begins by obtaining a record using the
FCSGET macro.

C9 If a record was successfully obtained, the size of the record read is
obtained from the NRBD field of the FDB. It scans backwards through
the record which is in recbuf to determine the size of of the record
without any trailing space characters.

G) With the size of the output record determined, the FCSPUT macro is
used to output the record. It then loops to get the next record.

«, This looks into the ERR field of the FDB to see if there is an error. If
there is an error, an appropriated message is displayed on the terminal.

C0 This checks for the end-of-file.

CD The FCS$CLOSE$ macro closes the output file.

Using PDP-11 C with File Control Services 8-13

j

•• I
I
I
I
I
I

••
I
I
I
I
I

II
I

..
I
I
I
I
I
I ,,
I
I
I
I
I

•
I

Chapter 9

Operating System Services and System
Directives

This chapter describes operating system services and header files for the
operating systems supported by PDP-11 C: RSX-11/M-PLUS, RT-11, and
RSTS/E.

9.1 System Directives

The process that occurs when a task requests the Executive to perform an
indicated operation is called a system directive. These directives control the
execution and interaction of tasks and are issued as calls to subroutines
contained in the system object module library.

System directives enable tasks to perform the following functions:

• Obtain task and system information

• Measure time intervals

• Perform I/0 functions

• Spawn other tasks

• Communicate and synchronize with other tasks

• Manipulate a task's logical and virtual address space

• Suspend and resume execution

• Exit

For more detailed information, refer to the RSX-11M IM-Plus Executive
R.eference Manual, RT-11 Programmer's R.eference Manual, and the RSTS IE
System Directives Manual .

Operating System Services and System Directives 9-1

9.2 RSX System Services

The <rSXSyS.h> header file defines the interface to RSX Executive Directives.
PDP-11 C supports the directive names listed for FORTRAN in the
RSX-llM IM-Plus Executive Reference Manual. Parameters are called by
reference. 'lb pass a null parameter, use -1 as the parameter.

The following example shows how to use the <rsxsys.h> header file:

finclude <ra:uya.h>

extern void P (char 'kpfilena.me, abort filena.me_lengtb)

char
char
abort
abort
abort
ahort

*pna.me;
exp name (48];
exp=aize - aizeof exp_name;
exp length;
idaw;
raxfandf - 010000;

/* Pointer to name of file*/
/* Space for expanded name*/
/* Size of expanded name apace*/
/* Space for returned aize */
/* Directive atatua word*/
/* Argument to PRSFCS */

/* Expand the file name*/

PRSFCS((ahort *) -1, (abort*) -1, (ahort *) -1,
(abort *) pfilename, ,filena.me_lengtb, (abort *) exp_na.me,
,exp aize, ,exp length, (abort*) -1,
(abort *) -1, (abort *) -1, (abort *) -1,
,raxfandf, ,idaw);

if (idaw - 1)

elae
pna.me - exp_na.me;

pname - pfilena.me;
exp_lengtb - filename_lengtb;
)

/* Oae expanded name*/

/* Oae what you have*/

9.3 RT-11 SYSLIB Routines

PDP-11 C supports the SYSLIB routines documented in the RT-11
Programmer's Reference Manual. The <rtsys.h> header file defines the
PDP-11 C interface to the RT-11 SYSLIB functions and subroutines. These
are available when PDP-11 C programs are linked with the RT-11 linker.

The interface used to call SYSLIB routines is the FORTRAN subroutine
linkage. All parameters are passed by reference (see the example at the end
of this section). To pass a NULL parameter via the FORTRAN subroutine
linkage, use (voul. *) -1 as the address of the parameter. For example:

aome function (a, b, (void *) -1, d) ;

9-2 Operating System Services and System Directives

I
I
I
I
I
~

I
I
I
I
I

•
I

I
I
I
I
I ,,
I
I
I
I
I

•
I

Certain RT-11 library routines are unique to FORTRAN IV They reside
in FORLIB. 'I\velve of them are special cases since they once resided in
SYSLIB until FORTRAN IV/RT-11 V2.8. The following twelve routines are
documented in the RT-11 Programmers's Reference Manual although they
are FORTRAN-dependent and are not supported by PDP-11 C.

• GETSTR---The <stdlib.h> function fscanf provides similar capabilities.

• IASIGN-Not supported.

• ICDFN-Not supported.

• IFETCH-The <rtsys.h> function RT$FETCH, described below, provides
similar capabilities.

• IFREEC-Please refer to Chapter 2 for information on reserving LUNs.

• IGETC-Please refer to Chapter 2 for information on reserving LUNs.

• IGETSP-The <stdlib.h> functions calloc and malloc provide similar
capabilities.

• ILUN-Not supported.

• INTSET-Not supported.

• IQSET-Not supported.

• PUTSTR---The <stdlib.h> function printf provides similar capabilities.

• SECNDS-Not supported.

PDP-11 C provides the function RT$FETCH to fetch device handlers. You
can declare this function in the following way:

extern abort RT$FETCH (abort * _ addr, abort * _ dnam) ;

This function simply issues a .FETCH directive. The parameters are
described in the RT-11 Programmer's Reference Manual . The function
returns a value of 1 for success, or a value of zero for failure.

The following example shows how to use the <rtsys.h> header file:

/ * Determine if the device ia a random ace••• device*/

#include <rtaya.b>
#include <errno.b>

abort a fun (abort *daac _block)

short device_block[4] ;
short status;

/* Device atatua block*/

status • IDSTAT (,deac_block[O], device_block); /* Get device info*/
if (statua)

return -1; /* Handler not found
in monitor tablea */

Operating System Services and System Directives 9-3

if (device_block[OJ , 91<(15))

return l ;
elae

return O;

9.4 RSTS/E SYSLIB Routines

/ * Ia it a random
access device?*/

/ * Yea */

/ * No */

The <rStsys.h> header file defines the interface to the RSTS/E General
Monitor Directives and supported RSX and RT-11 Emulator Directives. The
first list shows the RSX Emulator Directives supported under RSTS/E; the
second list shows the RT-11 Emulator Directives supported by RSTS/E.

RSX Emulator Directives

ASLUN-Assign LUN
ATRG-Attach region
CRAW-Create address window
CRRG-Create region
DTRG-Detach region
ELAW-Eliminate address window
EXIT-Task exit
EXST-Exit with status
EX'ITSK-Extend task
GETLUN-Get LUN information
GETMCR----Get MCR command line
GETPAR----Get partition parameters
GETIIM-Get time parameters
GE'ITSK-Get task parameters
MAP-Map address window
QIO--Queue 1/0 request
WTQIO-Queue 1/0 request and wait
SUSPND--Suspend
UNMAP-Unmap address window
WFSNE-Wait for significant event
WAITFR-Wait for single event flag

RT-11 Emulator Directives

CHAIN-Chain to another program
CLOSEC-Terminate activity
GTIM-Return current time
GTJB-Return job information
GTLIN-Return line of input

9-4 Operating System Services and System Directives

•• I
I
I
I
I
I
~

I
I
I
I
I

•
I

I
I
I
I
I

" I
I
I
I
I

•
I

LOOKUP-Lookup associate channel with device
PRINT-Print output string to console
PURGE-Deactivate channel
RCTRLO-Reset the console (CTRUO)
SCCA-Provide CTRUC intercept

Table 9-1 shows the functions, macro definitions, and structure definitions
that assist in accessing the FIRQB and XRB data structures. The functions
RSTS$FmQB and RSTS$XRB take no arguments and return no values.

Table 9-1: FIRQB and XRB Data Structures

Use FIRQB

Address defini- RSTS$FIRQB
tion macro
Structure defini- FIRWB
tion
Clear structure void RSTS$CLRFQB(void)
function

XRB

RSTS$XRB

XRB

void RSTS$CLRXRB(void)

Refer to the RSTS IE System Directives Manual for more information.

9.5 Qualifications on Using the TIME, EXIT, and ABORT
Functions

When you reference the functions time, exit, or abort, you must take
in consideration which system you are using and if there are conflicting
symbols assigned to these functions . The following chart shows which
symbols reference conflicting headers:

External Symbol

time
exit

exit
abort

Conflicting H-ders

<time.h> and <rtsys.h>

<stdlib.h> and <rstsys.h>

<stdlib.h> and <rexsys.h>

<stdlib.h> and <I'8%8ys.h>

'lb resolve these conflicts, simply include the appropriate system interface
header file (<rtsys.h>, <rstsys.h>, or <rsxsys.h>) prior to including the
conflicting standard header file <time.h> or <stdlib.h>). If you do not

Operating System Services and System Directives 9-5

need access to the SYSLIB versions of these functions, no further action is
necessary.

If you need access to the SYSLIB version of these functions, you must
specify the SYSLIB symbol in up~r case (TIME, EXIT, or ABORT), and you
must explicitly include SYSLIB in your link before the PDP-11 C Run-Time
Library. When you want to use both the PDP-11 C standard RTL symbol
and the corresponding SYSLIB symbol, specify the PDP-11 C symbol in
lower case (time, exit, abort). The following example illustrates this:

/* HYFILE . C */
finclude <rtaya.h>
finclude <time . b>
int ma.in (void)
(

char
time_t
TIME
time

time_atring[8];
ainc• 1970;
(time-atri.ng): /* Call the RT--11 SYSL:IB TIME() function*/
(,aince_l970); /* Call the POP--11 C time() function*/

As described previously, if you wish to use the TIME symbol in the RT-11
SYSLIB, you must explicitly include SYSLIB in a fashion similar to the
following:

R LIN!C
FOO-FOO,SY:SYSL:IB,CC:CEISRT/B:3000/M:3000

If you want to use the EXIT or ABORT symbols in the RSX SYSLIB or
use the EXIT symbol in the RSTS/E SYSLIB, you must explicitly include
SYSLIB in your link before PDP-11 C RTL in a fashion similar to the
following:

OSER:
L:IBR:

.ROOT OSER

.FCTR FOO-L:IBR

.FCTR LB:[l,l]SYSL:IB/LB-LB:[l,l]CEISRSX/LB

.END

9--6 Operating System Services and System Directives

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

I
I
I
I
I ,.
I
I
I
I
I

•
I

Chapter 10

Linkages Supported by PDP-11 C

This chapter describes the linkages supported by PDP-11 C, as well as the
register and stack usage during procedure calls.

The term linkage defines the exact internal calling mechanism used for
function calls. A function may be assigned a linkage using the #pragma
linkage directive. PDP-11 C supports the following linkages:

• PDP-11 C

• PDP-11 FORTRAN-77

• PDP-11 Pascal

• RSXAST

• RSXSST

• RSXCSM

For more information on the #pragma linkage directive, refer to the Guick
to PDP-11 C.
The following sections show the details of the internal calling mechanisms
including stack and register usage of the six linkages. Table 10-1
summarizes the register usage for the linkages supported by PDP-11 C.

The following sections describe the actions both the calling and the called
function must take to use each linkage. This information is important if
either the calling or called function is written in a language other than
PDP-11 C. The PDP-11 C compiler will always take the correct action for

each linkage.

Linkages Supported by PDP-11 C 10-1

Table 1 ~ 1 : Register Usage for PDP-11 C-Supported Linkages

Linkage

C

FORTRAN

Pascal

RSX SST

RSXAST

RSXCSM

Called-Function Actions Calling-Function Actions

Saves registers used by the Removes parameters after return.
called function with the excep-
tion of Rl and Fl.

None. Removes parameters aft.er it
returns. Saves registers before
call. Restores registers after call

Saves registers. Removes None.
parameters before return.
Cannot be used with variable
argwnents.

Saves and restores used regis- Not callable.
ters. Removes trap-dependant
parameters before returning.
Returns by executing an RTI

Saves and restores used regis- Not callable.
ters. Removes trap-dependant
parameters before return-
ing. Returns by executing an
ASTX$ directive.

Same as C linkage, but allows Removes parameters after return.
C function to be placed in a
supervisor-mode library.

10.1 PDP-11 C Linkage

When a function is called by the C linkage, it receives the argument block
shown in Figure 10-1. The values of all registers used by the function, with
the exception of Rl and Fl, must be saved before their use and restored
before the function returns.

The calling function must create the argument block shown in Figure 10-1
and save the values of Rl and Fl, but need not save the values of any other
registers.

The return value is on the top of the stack when the call returns. For
example, if a short int is being returned, the word at the top of the stack
contains the return value. If a struct is being returned, the top of the stack
will contain enough space to hold the structure being returned. The calling
function should move the return value to an appropriate location and then
remove the parameters from the stack.

10-2 Linkages Supported by PDP-11 C

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

I
I
I
I

I
I
I
I
I

•
I

Parameters are referenced by way of the Stack Pointer (SP); registers RO
through R5 can be used by the called function for other purposes. Functions
that are declared with the C linkage can receive a variable number of
parameters because the function's first parameter is the one closest to the
top of the stack.
Functions that use the PDP-11 C Standard Library variable arguments
(<stdarg.h>), and functions whose address is used, must be declared with C

linkage.

Figure 10-1: Stack Usage Using C Linkage

SP-+ Return Address

Return Value

P1

P2

Pn

10.2 FORTRAN Linkage

First Parameter

Last Parameter

NU-2127A-RA

The FORTRAN linkage uses general register R5 to identify the parameters
passed to a function. See Figure 10-2 for the detail of this mechanism.

It is unnecessary for a function that is called by FORTRAN linkage to save
any registers that it uses. Return values are located as follows:

• RO, 1-word value

• RO, Rl, 2-word values

• RO, Rl, R2, R3, 4-word values

It is impossible to return larger values by using the FORTRAN linkage •

Linkages Supported by PDP-11 C 10-3

When a function is called by the FORTRAN linkage, the calling function
must set the R5 parameter list as shown in Figure 10-2 and save any
registers it needs to preserve across the call. R5 cannot be used for other
purposes because it is reserved as an argument pointer.

PDP-11 C uses a jacket routine to call the FORTRAN function rather than
calling a FORTRAN linkage function directly. The overhead of the jacket
routine makes calling a FORTRAN linkage function from C less efficient
than calling a C or Pascal linkage function.

The advantage of using the FORTRAN linkage is that a function declared
with the FORTRAN linkage may not have the restrictions that a function
declared with the C or Pascal linkage has because its parameters are
referenced by way of R5 and not the top of the stack. For example,
a function placed in a nondefault cluster library cannot reference its
parameters by way of the top of the stack; therefore, a routine that is to be
placed in a nondefault cluster library must be declared with the FORTRAN
linkage. For more information on nondefault cluster libraries, see the
appropriate task builder reference manual.

Figure 1 ~2: Register 5 Usage Using FORTRAN Linkage

RS-+ I Parameter
Counter

P1

P2

Pn

10.3 Pascal Linkage

SP --+ I Return Address I
Return values are in 1he general
registers RO through R3.

NU-2128A-RA

When using the Pascal linkage to call a function, the calling function must
create the argument block shown in Figure 10-1. It is not necessary for the
calling function to save any of the registers. The return value is on the top
of the stack when the call is returned. The calling function does not have to
clear the stack because it is done by the called function.

10--4 Linkages Supported by PDP-11 C

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

I
I
I
I
I ,.
I
I
I
I
I

•
I

A function called using the Pascal linkage receives the argument block
shown in Figure 1Ch3. The values of any registers used, including Rl and
Fl, must be saved prior to their use and restored with the values at the end
of the call. Before returning, a function declared using the Pascal linkage
removes the parameters from the top of the stack.

Pascal linkage cannot pass a variable number of arguments to a function;
however, it can efficiently remove parameters from the stack rather than
force the calling function to remove them. If the same function is called from
several different locations, the code to remove the parameters appears only
once in the called function. However, using C linkage, the code to remove
the parameters appears after every call site.

Figure 10--3: Stack Usage Using Pascal Linkage

SP-+ Return Address

Pn

P2

P1

Return Value

NU-2129A-RA

10.4 RSX AST And SST Linkages

The RSX AST and RSX SST linkage allow the programmer to write an AST
or SST trap handler in PDP-11 C. This functionality should only be used by
those programmers with a solid knowledge of trap handlers. Before writing
any trap handlers in PDP-11 C, please read the appropriate operating
system manuals carefully.

Functions with these linkages may be declared or have their addresses
taken. Any other use of these functions will be flagged as an error by the
compiler. Furthermore, all functions declared to have linkage RSX AST or
RSX SST must be of type void and their parameters must be of size int.

Linkages Supported by PDP-11 C 10-5

The PDP-11 C functions which are declared with the AST and SST linkages
have an additional restriction placed on them. PDP-11 C does not support
calling PDP-11 C library functions from a trap handling function. While it
may be possible to call certain library functions, others can not be called.
Since it is very difficult to determine which functions are safe, PDP-11 C
does not support any of these calls.

RSX AST Linkage

The RSX AST linkage is used to declare a function to be an RSX AST trap
handler. A function is declared as an RSX AST linkage function in the
following manner:

fpragma linkage rax aat <name>
void <name> (int <efmw>, int <pa>, int <pc>, int <daw> [, ...]);

A RSX AST linkage function has a minimum of four parameters. The
first parameter is the event-flag mask word. The second parameter is
the Processor Status Word. The third parameter 1s the PC. The fourth
parameter is the Directive Status Word. Any other parameters are specific
to the type of AST the function is expected to handle. For more information
see the RSX-llM IM-PLUS and Micro/ RSX Executive Reference Manual .

When an RSX AST linkage function executes a return, any parameters
following the <dsw:> will be automatically removed from the stack, and an
ASTX$S directive will be executed.

RSX SST Linkage

The RSX SST linkage is used to declare a function to be an RSX SST trap
handler. A function is declared as an RSX SST linkage function in the
following manner:

fpragma linkage rax aat <name>
void <na.me> (int <pa>, int <pc> [, ...]);

A RSX SST linkage function has a minimum of two parameters. The first
parameter is the Processor Status Word. The second parameter is the
PC. Any other parameters are specific to the type of SST the function is
expected to handle. For more information see the RSX-JIM IM-PLUS and
Micro/ RSX Executive Reference Manual.

When an RSX SST linkage function executes a return, any parameters
following the <pe> will be automatically removed from the stack, and an RTI
will be executed.

1~ Linkages Supported by PDP-11 C

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

I
I
I
I
I ,.
I
I
I
I
I

•
I

10.5 The RSX CSM Linkage

The RSX CSM linkage allows the programmer to place a C function in a
supervisor-mode resident library. Because the default C linkage places its
parameters on the top of the stack, functions which use the C linkage can
not be placed in a supervisor-mode resident library. By using the CSM
linkage, the compiler adjusts its parameter references to account for the four
words of overhead created when the function is placed in a supervisor-mode
library.

Placing a PDP-11 C function in a supervisor-mode library is an advanced
programming practice. This should only be attempted by those programmers
who have created supervisor-mode libraries in the past. Of special note, only
those functions declared with an RSX CSM linkage should be included in
the symbol table of the resident library. All other global symbols, especially
PDP-11 COTS routines included in the library, must be globally excluded
from the symbol table when the library is built.

The syntax of an RSX CSM function is identical to those with the default
C linkage. It is simply necessary to use the #pragma linkage rsx_csm
directive before the function is declared.

It is not possible to invoke a function which is declared to take this linkage.
Functions with this linkage may be declared or have their addresses taken.
Any other use of these functions will be flagged as an error by the compiler.

10.6 Linkages and Other Languages

Any C function may be assigned the C, FORTRAN, or PASCAL linkages
following the guidelines discussed in the previous sections. A linkage
may be assigned to a function declared within a module or to an external
function called by the function in the module. When a linkage is assigned
to a function, all calls to that function must declare the function using the
same linkage.

Not all PDP-11 programming languages are able to assign specific linkages
to functions written or called in the language being used. For example,
an application written in FORTRAN-77 can only be called using the
FORTRAN linkage and can only call other functions that use the FORTRAN
linkage. The FORTRAN linkage is used by the following PDP-11 languages:
FORTRAN-77, BASIC-PLUS-2, and COBOL-81. The Pascal linkage is
used by PDP-11 Pascal. See Section 10.8 for other restrictions .

Linkages Supported by PDP-11 C 10-7

PDP-11 C can call or be called from other languages because it allows
the use of different linkages. When C functions are called from another
language, the C program must define those functions to use the linkage
required by that language. A PDP-11 C program calling a function
written in another language must assign the proper linkage to the external
definition of that function. Consider the following examples:

/*A fortran application calla CFONCT, a function written in C.*/

tpragma linkage fortran CFONCT

<ct ype> CFONCT ([<parama>])

<body of function>

/*A program written in C calla FORFON, a function written in FORTRAN.*/

tpragma linkage fortran FORFON

extern <type> FORFON (<para.ma>) ;

10.7 Data Sharing with Fortran and BP2

In addition to sharing data through passed parameter values, you can allow
a subprogram written in PDP-11 C to access data declared in either a
Fortran common area or a BP2 mapped region.

The two examples in this section show the declaration of Fortran and BP2
external data. Both examples contains a 16-bit integer, a 32-bit integer, and
a single precision floating point variable.

If the PDP-11 C subprogram wishes to access the declared FORTRAN or
BP2 external variables, it must use the #pragma psect directive. The
#pragma psect directive provides the mapping into the FORTRAN or BP2
common data area and should be declared with the same psect attributes as
the FORTRAN or BP2 data area. You can determine the psect attributes of
the data area from a map file produced by the linker.

The C declarations shown in each example give PDP-11 C a mapping into
the data area. Any modifications to these variables within the PDP-11
C subprogram or the FORTRAN or BP2 subprogram can be seen by both
subprograms.

The following example shows the declaration of a Fortran data area .

10-8 Linkages Supported by PDP-11 C

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

I
I
I
I

I
I
I
I
I

•
I

F77 data area

:rNTEGER*2 ICOUNT
INTEGER* 4 LCOUNT
REAL*4 RTYPE

COMMON /BLOCKl/ICOUNT,LCOUNT,RTYPE

C data area

tpragma paect atatic rw BLOCKl rel,d,gbl,rw,ovr
static ahort icount;
static long lcount;
atatic float rtype;
tpragma paect atatic_rw

The following example shows the declaration of a BP2 mapped region.

BP2 data area

COMMON (BLOCKl) word ICOUNT, long LCOUNT, aingle RTYPE

C data area

tpragma paect atatic rw BLOCKl rel,d,gbl,rw,ovr
static ahort icount;
static long lcount;
static float rtype;
tpragma paect atatic_rw

10.8 Restrictions and Notes

The following list notes and explains the existing exceptions to using
PDP-11 C with other languages:

• Only the parameter-passing mechanisms are supported.

Certain language features may not work when called either directly or
indirectly from PDP-11 C. The reason is twofold: initializations required
for those features are not done by PDP-11 C, or the language feature
may attempt to use memory already allocated by PDP-11 C.

• Users should not change the contents of the C OTS work area (PSECT
$$C).

• When PDP-11 C is called from other languages, whether directly or
indirectly, many of the Standard Library functions will not work for the
previously mentioned reasons.

Linkages Supported by PDP-11 C 10-9

• If a call to the routine C$INIT is made before the first invocation of a C
function and the routine C$FINI is called after the last invocation to a
C function, some Standard Library functions may work. The routines
C$INIT and C$FINI perform a number of initializations and clean-up
routines for the Standard Library functions.

• In general, when mixing C with another high-level language such as
FORTRAN-77 or BASIC-PLUS-2, the main program must be in the
other high-level language.

• PDP-11 C parameters are always passed and received by value.

'lb pass a variable to a routine which expects to receive a parameter
by reference, pass the variable's address using the C "&" operator. For
example, FORTRAN passes and receives parameters by reference. 'lb
pass an integer variable "foo" to a FORTRAN routine from a C routine,
the C routine must use "&foo" which is the address of the variable, not
"foo", the variable itself.

'lb pass an integer parameter from a FORTRAN routine to a C routine,
the C routine receives the address of the parameter not the parameter
itself. The parameter should be declared by the C function as a pointer
to an int (int ~oo). The "*" operator is used to access the actual value
(~oo).

• Complex parameters

When calling between languages, use only integer and floating-point
parameters. Use other data types only after careful investigation,
because not all languages support all C types.

• Other high level languages may have their own restrictions that prevent
them from calling or being called by PDP-11 C.

10-10 Linkages Supported by PDP-11 C

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

I

••
I
I
I
I
I
fl

I
I
I
I
I

•
I

I

••
I

I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I

I
I
I
I
I

•
I

Reference Section

This reference section describes the functions and macros contained in the
PDP-11 C Run-Time Library. For each function and macro, you will find
an overview, the function or macro format, descriptions of the arguments, a
detailed description of the function or macro if more information is needed
beyond what is given in the overview section, and return values.

The Reference Section is divided into three parts:

1. PDP-11 C Standard Library Macros and Functions

2. FCS Extension Library Macros

3. RMS Extension Library Macros

Within each of these parts, the functions and macros appear in alphabetical
order.

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,.
I
I
I
I
I

•
I

1 PDP-11 C Standard Library Macros and Functions

REF-1

abort

abort

Format

The abort function causes the program to terminate immediately.

#Include <Stdllb.h>

void abort (void);

Arguments

one.

Description

The abort function raises the SIGABRT signal and returns the
EXIT_FAILURE completion code to the operating system. PDP-11 C
attempts to flush or close any open output streams.

Return Values

None.

REF-2 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
1·
I ..
I
I
I
I
I

•
I

abs

Format

The abs function returns the absolute value of an integer.

#include <Stdlib.h>

Int abs ~nt x);

Arguments

X

Is an integer expression .

Return Values

Returns the absolute value of x.

abs

PDP-11 C Run-Time Library Functions and Macros REF--3

acos

acos

Format

The acos function returns a value in the range O to 1r, which is the arc
cosine of its argument.

#include <math.h>

double acos (double x);

Arguments

X
Is the cosine of the angle.

Description

When I x I > 1, the value of acos(x) is 0, and the acos function sets errno to
EDOM.

Return Values

Returns the arc cosine of x in radians.

REF--4 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

alr50

alr50

Format

The __ alr50 function converts the first six characters of the input string to
an unsigned 32-bit integer corresponding to the radix-50 translation.

#include <Stdlib.h>

short Int __ alr50 (char * __ ascii_string, unsigned long Int
*___rad50 _string);

Arguments

__ sscll_ string
Is a pointer to a six-character ASCII string to convert. The string does not
have to be a NUL terminated string.

__ radSO_strlng
Is a pointer to an unsigned long integer to receive the converted radix-50
string.

Return Values

Non-zero value

Zero value

Indicates success.

Indicates an error has occurred.

PDP-11 C Run-Time Library Functions and Macros REF-5

asctime

asctime

The asctime function converts a broken-down time (see the localtime
function for more information) into a 26-character string in the following
form:

Format

sun Sep 16 01:03:52 1984\n\0

Each field has a constant width.

#include <time.h>

char *asctlme (canst struct tm "timeptr);

Arguments

tlmeptr
Is a pointer to a structure of type tm, which contains the broken-down time.

Description

The tm structure is defined in the <time.h> header file as follows:

atruct tm

int tm aec, /* aeconda after the minute o, 60] *I
tm=min, /* minute• after the hour 0, 59] *I
tm hour, /* hour• aince midnight o, 23] *I
tm=mday, /* day of the month l, 31] */
tm_mon, /* month• aince January o, 11] */
tm_year, /* year• aince 1900 o,] *I
tm_wday, /* day• aince Sunday 0, 6] *I
tm_yday, /* day• aince January l 0,365] *I
tm_iadat; /* Daylight Saving Time Flag -- (-1, l] *I

/* -1 info. not available *I
/* 0 D.S.T. IS-NOT in effect *I
I* l D.S.T. IS in effect *I

REF--6 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

'• I
I
I
I
I
I
..
I
I
I
I
I

•
I

asctime

The asctime function converts the contents pointed to by timeptr into a
26-character string, as shown in the previous example, and returns a pointer
to the string. Subsequent calls to asctime or ctime point to the same static
string, which is overwritten by each call.

Return Values

X Indicates a pointer to the string.

PDP-11 C Run-lime Library Functions and Macros REF-7

asin

asin

Format

The asin function returns a value in the range -'Tr/2 to 1r/2, which is the arc
sine of its argument.

#include <math.h>

double asin (double x);

Description

When Ix I > 1, the value of asin(x) is 0, and the asin function sets errno to
EDOM.

Return Values

Returns the arc sine of x in radians.

REF-8 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I
..
I
I
I
I
I

•
I

asr50

asr50

Format

The __ asr50 function converts the first three characters of the input string
to an unsigned 16-bit integer corresponding to the radix-50 translation.

#include <Stdlib.h>

short int asrSO (char * __ ascii_string, unsigned short int
*__rad50_ string);

Arguments

__ asc/1_ string
Is a pointer to a three-character ASCII string to convert. The string does
not have to be NUL terminated.

__ radSO_strlng
Is a pointer to an unsigned short integer to receive the converted radix-50
string.

Return Values

Non-zero value

Zero value

Indicates success.

Indicates an error has occurred.

PDP-11 C Run-lime Library Functions and Macros REF-9

assert

assert

The assert macro puts diagnostics into programs.

Format

#include <assert.h>

void assert ~nt expression);

Arguments

expression
Is an expression that has type int.

Description

When the assert macro is executed, if expression is false (that is, it
evaluates to 0), the assert macro writes information about the particular
call that failed. This information is written on the standard error file in
an implementation-defined format and includes the following: the text of
the argument, the name of the source file, and the source line number. The
latter are respectively the values of the preprocessing functions __ FILE __
and __ LINE __ . Then, the assert macro calls the abort function.

The assert macro writes a message in the following form:

assert error.expression= in file (filename), at 6ne nnn.

where expression is the string equivalent of the expression in the user's code.

If expression is true (that is, evaluates to nonzero), the assert function has
no effect.

Compiling with the command qualifier /DEFINE=NDEBUG or with the
preprocessor directive #define NDEBUG ahead of the #include <assert.h>
statement causes the assert function to have no effect.

REF-10 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I
..
I
I
I
I
I

•
I

assert

The assert function is implemented as a macro, not as a function. If you
use #undef to remove the macro definition, the behavior is undefined.

Return Values

None.

PDP-11 C Run-lime Library Functions and Macros REF-11

atan

atan

Format

The atan function returns a value in the range ...Jtr/2 to 1r/2, which is the arc
tangent of its argument.

#include <math.h>

double atan {double x);

Arguments

X

Is the tangent of the angle.

Return Values

Returns the arc tangent of x in radians.

REF-12 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I
..
I
I
I
I
I

•
I

atan2

Format

atan2

The atan.2 function returns a value in the range ~ to 1r. The returned value
is the arc tangent of y/x, where y and x are the two arguments.

#Include <math.h>

double atan2 (double y, double x);

Arguments

y
Is an expression of type double.

X
Is an expression of type double.

Return Values

Returns the arc tangent of y/x in radians.

PDP-11 C Run-Time Library Functions and Macros REF-13

atexit

atexit

Format

The atexit function registers a function that will be called at normal pro
gram termination.

#Include <Stdlib.h>

Int atexlt (void ("tune) (void));

Arguments

func
Is a pointer to the function to be registered.

Description

Up to 32 functions can be registered. When a registered function is called,
it is called without arguments. When the program exits, the registered
functions are called in the reverse order from which they were registered.

Return Values

0

Nonzero

Indicates that the registration has succeeded.

Indicates registration failed.

REF-14 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I
..
I
I
I
I
I

•
I

atof

Format

atof

The atof function converts a given string to a double number.

This function recognizes an optional sequence of "white-space" characters
(as defined by isspace in <ctype.h>), then an optional plus or minus sign,
then a sequence of digits optionally containing a single decimal point, then
an optional letter (e or E) followed by an optionally signed integer. The first
unrecognized character ends the conversion.

The string is interpreted by the same rules that are used to interpret
floating constants. See also strtod.

#include <Stdlib.h>

double atof (const char *nptr);

Arguments

nptr
Is a pointer to the character string to be converted to a double-precision

number.

Description
The function call atof(str) is equal to strtod(str,(char ..)0), arithmetic

exceptions notwithstanding.
• If the correct value causes an overflow, HUGE_ VAL is returned and

errno is set to ERANGE.
• If the correct value causes an underflow, 0 is returned and ernw set to

ERANGE.

See also strtod .

PDP-11 C Run-Time Library Functions and Macros REF-15

atof

Return Values

n Indicates the converted value.

RE~16 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

atoi, atol

atoi, atol

Format

The atoi and atol functions convert strings of ASCII characters to the
appropriate numeric values.

#include <Stdlib.h>

int atol (const char *nptr);

long int atol (const char *nptr);

Arguments

nptr
Is a pointer to the character string to be converted to int (atoi) or long
(atol).

Description

The atoi and atol functions account for overflows resulting from the
conversion. Truncation from long to int can take place upon assignment
or by an explicit cast (arithmetic exceptions notwithstanding). The function
call atol (str) is equal to strtol (str, (cb.ar♦ *)O, 10). Similarly, the function
call atoi (str) is equivalent to (int) strtol (str, (char**)O, 10).

See also strtol.

Return Values

n Indicates the converted value.

PDP-11 C Run-Time Library Functions and Macros REF-17

bsearch

bsearch

Format

The bsearch function performs a binary search. It searches an array of
sorted objects for a specified object.

#include <Stdlib.h>

void *bsearch (const void •key, const void •base, size_t
nmemb, size_t size, int tcompar) (const void •,
const void •;;;

Arguments

key
Is a pointer to the object to be sought in the array. This pointer should be of
type pointer-to-object and cast to type pointer-to-void.

base
Is a pointer to the initial member of the array. This pointer should be of
type pointer-to-object and cast to type pointer-to-void.

nmemb
Is the number of objects in the array.

size
Is the size of an object in bytes.

compar
Is a pointer to the comparison function.

REF-18 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I

••
I
I
I
I
I

•
I

bsearch

Description

The array must first be sorted in increasing order according to the specined
comparison function pointed to by compar.

Two arguments are passed to the comparison function pointed to by compar.
The two arguments point to the objects being compared. Depending on
whether the first argument is less than, equal to, or greater than the second
argument, the comparison function returns an integer less than, equal to, or
greater than 0.

It is not necessary for the comparison function (compar) to compare every
byte in the array. Therefore, the objects in the array can contain arbitrary
data in addition to the data being compared.

Because the bsearch function is declared as type "pointer-to-void", the
returned value must be cast or assigned into a specified pointer-to-object
type .

Return Values

X

NULL

Indicates a pointer t.o the matching member of
the array.

Indicates that the key cannot be found in the
array.

PDP-11 C Run-lime Library Functions and Macros REF-19

cabs •• I
cabs I

The cabs function computes the Euclidean distance between two points as
the square root of their respective squares. The cabs function returns the I
following:

Format

sqrt(x•x + y•y)

This function is provided for compatibility with VAX C and is only available
if compiled with the /NOSTANDARD switch.

#include <math.h>

double cabs (cabs_t z);

Arguments

z
Is a structure of type cabs_t.

Description

The type cabs_t is defined in the standard include module math.h as
follows:

typedef struct {dotble x,y;} cabs_t;

Return Values

Returns the square root of the sum of the squared arguments x and y .

REF-20 PDP-11 C Run-lime Library Functions and Macros

I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I

••
I
I
I
I
I

-
I

calloc
The calloc function allocates and clears an area of memory.

Format

#include <Stdlib.h>

void •calloc (size_t number, slze_t size);

Arguments

number
Specifies the number of items to be allocated •

size
Is the size of each item.

Description

The calloc function initializes the items to Os.

See also malloc and realloc.

calloc

Return Values

NULL
Indicates an inability to allocate the space.

Indicates the address of the first byte.
X

PDP-11 C Run-lime Library Functions and Macros RI

ceil

ceil

Format

The cell function returns (as a double) the smallest integer that is greater
than or equal to its argument.

#include <math.h>

double cell (double x);

Description

The cell function computes the smallest integer value that is not less than
x.

Return Values

Returns the smallest integer value, not less than x, expressed as a double.

REF-22 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I

••
I
I
I
I
I

-
I

•• I
I
I
I
I
I

••
I
I
I
I
I

-
I

clearerr

clearerr

The clearerr function resets the error and end-of-file indications for a file,
so that ferror and feof no longer return a nonzero value.

Format

#include <Stdio.h>

void clearerr (FILE *file_ptr);

Arguments

flle_ptr
Points to a file.

Description

The clearerr function clears the end-of-file and error indicators for the file
pointed to by the file pointer.

Return Values

None.

PDP-11 C Run-Time Library Functions and Macros REF-23

clock

clock

Format

The clock function determines the elapsed processor time used since the
beginning of the program execution.

#include <fime.h>

clock_t clock (void);

Description

The value returned by the clock function must be divided by the value of
the macro CLOCKS_PER_SEC, as defined in the <time.h> header file, to
obtain the time in seconds.

Return Values

n

-1

Indicates the processor time used.

Indicates that the processor time used is not
available.

REF--24 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

••
I
I
I
I
I

-
I

•• I
I
I
I
I
I

••
I
I
I
I
I

-
I

cos

Format

The cos function returns the cosine of its radian argument.

#include <math.h>

double cos {double x);

Arguments

X

x is an object of type double .

Return Values

Returns the cosine value of x.

cos

PDP-11 C Run-Time Library Functions and Macros REF-25

cosh

cosh

Format

The cosh function returns the hyperbolic cosine of its argument.

#include <math.h>

double cosh (double x);

Arguments

X

x is an object of type double.

Return Values

Returns the hyperbolic cosine value of x.

REF-26 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I

••
I
I
I
I
I

-
I

•• I
I
I
I
I
I

••
I
I
I
I
I

-
I

ctime

Format

ctime

The ctime function converts a time in seconds, since 00:00:00 January 1,
1970, to an ASCII string in the form generated by the asctime function.

#Include <time.h>

char *ctime (const time_t *bintim);

Arguments

blntlm
Is a pointer to the time value to be converted.

Description

Successive calls to ctime overwrite any previous time values. The type
time_t is defined in the <lime.h> header file as follows:

typedef long int time_t

Return Values

Pointer Points to the 26-character ASCII string.

PDP-11 C Run-Time Library Functions and Macros REF-27

difftime

difftime

Format

The difftime function computes the difference in seconds between the two
times specified by the timeO and timel arguments.

#include <fime.h>

double dlfftime (time_t time1, time_t timeO);

Arguments

tlme1
Is of type time_t, which is defined in the <time.h> header file .

tlmeO
Is of type time_t, which is defined in the <time.h> header file.

Description

The difftime function subtracts timel from timeO to compute the difference
between two calendar times.

Return Values

n Indicates the difference in seoonds expressed as
a double.

REF-28 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

••
I
I
I
I
I

-
I

'• I
I
I
I
I
I

••
I
I
I
I
I

-
I

div

Format

div

The div function returns the quotient and the remainder after the division
of its arguments.

#Include <Stdlib.h>

div t div ~nt numer, Int denom);

Arguments

numer
Is a numerator of type int.

denom
Is a denominator of type int.

Description

The type div_t is defined in the standard include module <stdlib.h> header
file as follows:

typedef atruct
{

}

Return Values

int quot
int rem;

div_t;

Returns a structure of type div _t which contains the quotient and remainder
of numer/denom.

PDP-11 C Run-lime Library Functions and Macros REF-29

exit

exit

Format

The exit function terminates the program.

#include <Stdlib.h>

void exit ~nt status);

Arguments

status
The argument is passed to the operating system when the program exits .
EXIT_SUCCESS and EXIT_FAILURE are defined in the <stdlib.h> header
file as values for success and failure.

Description

The exit function terminates the program and returns the value in status to
the operating system. It also calls functions registered with atexit, flushes
and closes streams, and deletes tmpfile files.

Return Values

None.

REF-30 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I

••
I
I
I
I
I

-
I

•• I
I
I
I
I
I

••
I
I
I
I
I

-
I

exp

Format

exp

The exp function returns the base e raised to the power of the argument.

#include <math.h>

double exp (double x);

Description

If an overflow occurs, the exp function returns the largest possible floating
point value and sets errno to ERANGE. The constant HUGE_ VAL in the
<math.h> header file is defined to be the largest possible floating-point
value.

Return Values

Returns the exponential value of the argument. If an overflow occurs, exp
returns the largest possible floating-point value.

PDP-11 C Run-Time Library Functions and Macros RE~1

tabs

fabs

Format

The fabs function returns the absolute value of a floating-point value.

#Include <math.h>

double fabs (double x);

Description

The fabs function computes the absolute value of a floating-point value .

Return Values

Returns the absolute value of the argument.

REF-32 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I

••
I
I
I
I
I

--
1

•• I
I
I
I
I
I

••
I
I
I
I
I

-
I

fbuf

fbuf

The __ fbuf function returns the current buffer length associated with a file
pointer.

Format

#include <Stdio.h>

long int __ fbuf (FILE *file_ptr);

Arguments

flle_ptr
Is a file pointer.

Description

The __ fbuf function retrieves the current buffer length that has been
associated with a previously allocated file pointer.

Return Values

Nonzero value

Zero value

Indicates success.

Indicates an error has occurred

PDP-11 C Run-lime Library Functions and Macros REF-33

fclose

fclose

Format

The fclose function closes a file by flushing any buffers associated with the
file control block and freeing the file control block and buffers previously
associated with the file pointer.

#include <Stdio.h>

int fclose (FILE "file_ptr);

Arguments

flle_ptr
Is a pointer to the file to be closed.

Description

When a program terminates normally, the fclose function is called
automatically for all open files .

Return Values

0

EOF

Indicates success.

Indicates that the buffered data cannot be writ
ten to the file, or the file control block is not
associated with an open file. EOF is a prepnr
cessor constant defined in the <stdio.h> header
file.

REF-34 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I

••
I
I
I
I
I

-
I

•• I
I
I
I
I
I

••
I
I
I
I
I

-
I

feof

feof

The feof function tests a file to see if the end-of-file has been reached.

Format

#include <Stdio.h>

int feof (FILE *file_ptr);

Arguments

flle_ptr
Is a file pointer .

Return Values

Nonzero integer

0

Indicates that end-of-file has been reached.

Indicates that end-of-file has not been reached.

PDP-11 C Run-lime Library Functions and Macros REF-35

ferror

terror

Format

The ferror function returns a nonzero integer if an error occurs during a
read or write operation.

#include <Stdio.h>

int terror (FILE *file_ptr);

Arguments

flle_ptr
Is a file pointer.

Description

A call to the ferror function continues to return this indication until the file
is closed or until the clearerr function is called.

Return Values

Nonzero integer

0

Indicates that an error has occurred.

Indicates success.

REF-36 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I

••
I
I
I
I
I

-
I

•• I
I
I
I
I
I

••
I
I
I
I
I

-
I

fflush

fflush

The fflush function writes out any buffered information for the specified file.

Format

#Include <Stdio.h>

Int fflush (FILE "file_ptr);

Arguments

flle_ptr
Is a file pointer .

Description

If the file_ptr is NULL, all files open for output are flushed.

Return Values

0

EOF

Indicat.es that the operation is successful.

Indicat.es that an error occurred in writing
out the data. (EOF is a preprocessor constant
defined in the <stdio.h> header file.)

PDP-11 C Run-lime Library Functions and Macros REF--37

__ fger

_fger

Format

The __ fger function returns the low level error code that is associated with
a previously called file operation.

#include <Stdio.h>

long int __ fger (FILE "file_ptr);

Arguments

flle_ptr
Is a file pointer.

Description

The __ fger function returns the underlying file system's error code that was
associated with a previously called file operation.

Return Values

Returns the underlying file system's error code.

REF-38 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

••
I
I
I
I

I

•• I
I
I
I
I
I

••
I
I
I
I
I

--
1

fgetc

fgetc

The fgetc function returns a character from a specified file.

Format

#include <Stdio.h>

int fgetc (FILE *file_ptr);

Arguments

flle_ptr
Is a pointer to the file to be accessed .

Description

The fgetc function gets the next character pointed to by the file pointer from
the input stream and advances the file indicator for that file.

Return Values

EOF

X

Indicates end-of-file or error. (EOF is a prepro
cessor constant defined in the <stdio.h> header
file.)

Indicates the character returned.

PDP-11 C Run-lime Library Functions and Macros REF-39

fgetpos

fgetpos

The fgetpos function stores the file position indicator.

Format

#include <Stdio.h>

int fgetpos (FILE •str, fpos_t •pos);

Arguments

str
Is the stream whose file position indicator value is desired.

pos
Is the location where the file position indicator for str is stored.

Description

The fgetpos function finds the current value of the file position indicator for
a stream and stores it in a variable of type fpos_t pointed to by pos.

Return Values

0

Non.zero

Indicates success.

Indicates failure. A positive value is stored in
errno.

REF-40 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

••
I
I
I
I
I

--
1

•• I
I
I
I
I
I

••
I
I
I
I
I

--
1

fgets

Format

fgets

The fgets function reads a line from a specified file, up to a specified max
imum number of characters or up to and including the newline character
or end of file, whichever comes first. The function stores the string in the
str argument. The fgets function terminates the line with a NUL (\ 0)
character.

#include <stdio.h>

char *fgets (char *str, int maxchar, FILE *file_ptr);

Arguments

str
Is the address where the fetched string will be stored.

maxchar
Specifies one character greater than the maximum number of characters to
fetch.

flle_ptr
Is a file pointer.

Return Values

X

NULL

Indicates the address of the first character in the
line.

Indicates the end-of-file or an error. NULL is
defined in the <stdio.h> header file to be the
NULL pointer value.

PDP-11 C Run-lime Library Functions and Macros REF-41

__ fgnm, fgetname

__ fgnm, fgetname

Format

The __ fgmn or fgetname function returns a pointer to a file specification
associated with a file variable.

#include <Stdio.h>

char* fgetname (FILE *pfile, char • buffer, ...);

or

char* __ fgnm (FILE *pfile, char • buffer, ...);

Arguments

pflle_ptr
Is a pointer to a file which has been previously opened.

buffer
Is a pointer to a character string that is large enough to hold the file
specification.

Represents an optional additional argument for VAX C compatibility.
PDP-11 C ignores this argument.

Description

The __ fgnm or fgetname function places the file specification at the
address given in buff er and returns the address of the buffer. The buffer
should be an array large enough to contain a fully qualified file specification.
When an error occurs, fgetname or __ fgnm returns 0.

REF--42 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

••
I
I
I
I

I

•• I
I
I
I
I
I

••
I
I
I
I
I ,.
I

__ fgnm, fgetname

The function name, fgetname, is provided for compatibility with VAX C, but
the name is not compatible with the ANSI Standard. Therefore, the function
is not provided when compiling /STANDARD=ANSI.

The function __ fgnm is ANSI compatible and is defined when the compile
time switch /STANDARD=ANSI is used.

Return Values

X

NULL

Indicates the character string returned for the
file specified.

Indicates that an error has occurred.

PDP-11 C Run-lime Library Functions and Macros REF-43

floor

floor

Format

The floor function returns the largest integer that is less than or equal to
its argument.

#include <math.h>

double floor (double x);

Arguments

X

Is a real value.

Description

The floor function returns a double which represents the largest integer
that is less than or equal to the number given as the argument to the
function.

Return Values

Returns the largest integer that is less than or equal to its argument.

REF-44 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I

••
I
I
I
I

I

•• I
I
I
I
I
I

••
I
I
I
I
I ,.
I

flun

flun

Format

The __ flun function returns the logical unit number associated with a file
pointer.

#include <stdio.h>

int flun (FILE *file_ptr);

Arguments

flle_ptr
Is a file pointer.

Description

The __ flun function retrieves the logical unit number (LUN) from a previous
allocated file pointer and returns this value to the requesting routine.

Return Values

:.~ro value

1-255
Indicates that an error has occurred.

Indicates success.

PDP-11 C Run-lime Library Functions and Macros REF-45

fmod

fmod

The fmod function computes a floating-point remainder.

Format

#include <math.h>

double fmod (double x, double y);

Arguments

X

Is a real value.

y
Is a real value.

Description

The fmod function computes the floating-point remainder of the first
argument to fmod divided by the second. If y is 0, the fmod function
returns O and sets errno to EDOM.

Return Values

l[Indicates value f, which has the same sign as x,
such that x == i * y + ffor some integer i, where
the magnitude off is less th.an the magnitude of
y.

REF-46 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I

••
I
I
I
I

I

•• I
I
I
I
I
I

••
I
I
I
I
I ,.
I

fopen

fopen

The fopen function opens a file.

Format

#Include <stdio.h>

FILE *fopen (const char *file_spec, canst char *a_mode);

Arguments

flle_spec
Is a character string containing a valid file specification .

s_mode
Is one of the following character strings:

• "r" opens text file for read

• "w" opens text file for write

• "a" appends to a text file

• "rb" opens binary file for read

• "wb" opens a binary file for write

• "ab" appends to a binary file

• "r+" opens a text file for update

• "w+" writes a text file for update

• "a+" appends to a text file

• "r+b" or "rb+" opens a binary file for update

• "w+b" or "wb+" writes binary file for update

• "a+b" or "ab+" appends to binary file

PDP-11 C Run-Time Library Functions and Macros REF-47

fopen

The access modes have the following effects:

• "r" opens an existing file for reading.

• "w" creates a new file and opens 1t for writing. On RSX systems, if
the file already exists, a new file is created with the same name and a
higher version number.

• "a" opens the file for append access. An existing file is positioned at
end-of-file, and its data written to the end-of-file. If the file does not
exist, it will be created.

NOTE

The setvbuf function should be used to set the buffer size to a
multiple of 512 when opening an existing file for append if any
record that is to be written to the file bas a size of 512 bytes
or greater.

The update access modes allow a file to be opened for both reading and
writing. When used with existing files, "r+" and "a+" differ only in the initial
positioning within the file. The modes are as follows:

• "r+" opens an existing file for read update access. It is opened for
reading, positioned first at beginning-of-file, but writing is also allowed.

• "w+" opens a new file for write update access.
• "a+" opens a file for append update access. The file is first positioned at

end-of-file (writing). If the file does not exist, the PDP-11 C Run-Time
library creates it.

• "b" is binary access mode. No conversion of carriage control information
is attempted.

Description

When the mode string contains"+" or "b", the file opens in binary mode;
otherwise, it opens in text mode. For example, "a+" mode opens a file for
append/binary mode even if the file would otherwise be treated as a text file •

REF-48 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I

••
I
I
I
I
I . ,
I
-

•• I
I
I
I
I
I

••
I
I
I
I

I

fopen

Though update mode allows both reading and writing to the same stream,
there are certain restrictions. Output may not be directly followed by input
without an intervening call to the fflush function or to the file positioning
functions fseelti fsetpos, or rewind. Input may not be directly followed by
output without an intervening call to a file positioning function, unless the
input operation encounters end-of-file.

The file control block may be freed with the fclose function or by default on
normal program termination.

Up to FOPEN_MAX :files may be opened simultaneously.

See also freopen.

Return Values

File pointer

NULL

Points to an object of type FILE which identifies
the open file to other Standard Library functions.

Indicates an error. The constant NULL is de
fined in the <stdio.h> header file to be the NULL
pointer value. The function returns NULL to
signal the following errors: file protection viola
tions, attempts to open a nonexistent file for read
access, and failure to open the specified file.

PDP-11 C Run-Time Library Functions and Macros REF-49

fprintf

fprintf

The fprintf function performs formatted output to a specified file.

Format

#include <Stdio.h>

int fprintf (FILE *fi/e_ptr, const char *formaLspec, •••);

Arguments

flle_ptr
Is a pointer to the file to which you direct output.

tormat_spec
Contains characters to be written literally to the output or converted as
specified in the argument.

Are optional expressions whose resultant types correspond to conversion
specifications given in the format specification. If no conversion specifica
tions are given, the output sources may be omitted; otherwise, the function
calls must have exactly as many optional expressions as there are conversion
specifications, and the conversion specifications must match the types of
the optional expressions. Conversion specifications are matched to optional
expressions in simple left-to-right order. Refer to the Section 2.4.2 for more

information.

REF-50 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I

••
I
I
I
I
I .,
I

•• I
I
I
I
I
I

••
I
I
I
I

I

Description

An example of a conversion specification follows:

finclude <stdio . h>
int main()
{

int temp• 4, temp2 • 17;

fprintf(stdout, "The answers are %d, and %d.", temp, temp2);

fprintf

Sample output (to the file stdout) from the previous example is as follows:

The answers are 4 and 17.

Return Values

Negative number Indicates an error has occurred.
Number of characters transmitted Indicates success.

PDP-11 C Run-lime Library Functions and Macros REF-51

fputc

fputc

The fputc function writes a single character to a specified file.

Format

#Include <stdio.h>

int tputc ~nt character, ALE *file_ptr);

Arguments

character
Is an expression of type int.

flle_ptr
Is a pointer to the file where the character is written.

Description

The fputc function writes a single character to a file and returns the char
acter. The file pointer is left positioned after the character. In PDP-11 C,
putc and fputc are functionally equivalent.

See also putc.

Return Values

EOF

Character

Indicat.es that an output error has occurred.
EOF is defined in the <stdio.h> header file.

Indicat.es success.

REF-52 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

••
I
I
I
I
I

•1
I

•• I
I
I
I
I
I

••
I
I
I
I
I
1•
I

fputs

Format

fputs

The fputs function writes a character string to a file without writing the
string's NUL terminator (\0).

#include <Stdio.h>

int fputs (const char *str, FILE *file_ptr);

Arguments

str
Is a pointer to a character string.

flle_ptr
Is a file pointer.

Return Values

EOF

Number of characters written
Indicat.es an error has occurred.

Indicat.es success.

PDP-11 C Run-lime Library Functions and Macros REF-53

fread

fread

Format

The fread function reads a specified number of items from the file.

#Include <Sfdio.h>

size t tread (void *ptr, size_t size_of_item, size_t
number_items, FILE *file_ptr);

Arguments

ptr
Is a pointer t.o the location, within memory, where the information being
read will be placed.

size_ of_/tem
Is the size of the items being read, in bytes.

number_ltems
Is the number of items to be read.

flle_ptr
Is a pointer t.o the file from which the items are to be read.

Description

The type size_t is defined in the <stdio.h> header file . The reading begins
at the current location in the file. The items read are placed in st.orage
beginning at the location given by the first argument. You must also specify
the size of an item in bytes.

REF-54 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I

••
I
I
I
I
I

•1
I

'• I
I
I
I
I
I

••
I
I
I
I
I
1•
I

Return Values

n

0

Indicates the number of items read.

Indicates the end-of-file or an error.

tread

PDP-11 C Run-lime Library Functions and Macros RE~S

free • I
t~c I

The __ free function returns the current record length associated with a file I
pointer.

Format

#include <Stdio.h>

long int __ free (FlLE ,.file_ptr);

Arguments

flle_ptr
Is a file pointer.

Description

The __ free function retrieves the current record length that has been
associated with a previously allocated file pointer.

Return Values

Zero value

Nonzero value
Indicates that an error has occurred.

Indicates succ.ess.

REF-56 PDP-11 C Run-Time Library Functions and Macros

I
I
I

••
I
I
I
I
I

•1
I

•• I
I
I
I
I
I

••
I
I
I
I
I
1•
I

free

Format

free

The free function releases for relocation the area allocated by a previous
calloc, malloc, or realloc call.

#Include <Stdlib.h>

void free (void *ptr);

Arguments

ptr
Is an address returned by a previous call to malloc, calloc, or realloc.

Description

The contents of the deallocated area should not be used by the user program
after it has been freed.

Return Values

None.

PDP-11 C Run-lime Library Functions and Macros REF-57

freopen

freopen

Format

The freopen function substitutes the file, named by a file specification, for
the open file addressed by a file pointer. The latter file is closed.

#include <stdio.h>

FILE *freopen (const char *file_spec, const char *a_mode,
FILE *file_ptr);

Arguments

flle_spec
Is a pointer to a string that contains a valid file specification. After the
function call, the given file pointer is associated with this file.

a_mode
Is an access mode indicator. See fopen for additional information on the
access mode indicator.

flle_ptr
Is a file pointer which points to a previously opened file.

Description

The freopen function closes the file pointed to by file_ptr and opens the file
named by file_spec . Use the freopen function to associate stdin, stdout, or
stderr with a file.

REF-58 PDP-11 C Run-Time Library Functions and Macros

• I
I
I
I

I

••
I
I
I
I
I

•1
I

•• I
I
I
I
I
I
f'
I
I
I
I
I

•
I

Return Values

File pointer

NULL

freopen

Indicates success.

Indicates that an error has occUJTed. The con
stant NULL is defined in the <stdio.h> header
file to be the NULL pointer value.

PDP-11 C Run-Time Library Functions and Macros RE~9

frexp

frexp

Format

The frexp function converts a floating point number into a normalized
fraction and an integral power of 2.

#Include <math.h>

double frexp (double value, int ,.eptr);

Arguments

value
Is an expression of type double.

eptr
Is a pointer to an int, to which frexp returns the exponent.

Description

The expression given for value is broken into a normalized function which
is returned as the return value of the function, and an integral power of 2
which is placed in the int pointed to by eptr.

Return Values

The mantissa of value with a magnitude less than 1.

REF--60 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

..
I
I
I
I
I
I ,.
I
I
I
I
I

•
I

fscanf

fscanf

The fscanf function performs formatted input from a specified file.

Format

#Include <stdio.h>

Int fscanf {FILE *file_ptr, const char *format_spec, ...);

Arguments

flle_ptr
Is a pointer to the file that provides input text.

tormat_spec
Contains characters to be taken literally from the input or converted and
placed in memory at the specified .. . argument. For more information on
conversion characters, refer to Chapter 2.

Are optional expressions whose resultant types correspond to conversion
specifications given in the format specification. If no conversion specifica
tions are given, you can omit the input pointers; otherwise, the function
calls must have exactly as many input pointers as there are conversion
specifications, and the conversion specifications must match the types of the
input pointers. Conversion specifications are matched to input sources in
simple left-to-right order.

PDP-11 C Run-nme Library Functions and Macros REF--61

fscanf

Description

An example of a conversion specification follows:

finclude <atdio.h>
main ()
{

int temp, temp2;

fac:anf(atdin, "d d", ~temp, ~temp2);
printf("Th• anawer• are d, and \d . ", temp, temp2);

NOTE

A common programming error is to omit the ampersand(&) of
&temp in line 4 of the program. If the ampersand is omitted, the
address is not passed.

Consider a file, designated by stdin, with the following contents:

4 17

Sample input from the previous example is as follows:

$ RUN EXAMPLE.~
The anawer• are 4, and 17.

Return Values

X

EOF

Indicat.es the number of successfully matched
and assigned input it.ems.

Indicat.es that the end-of-file has been encoun
t.ered before any conversions. EOF is a prepro
cessor constant defined in the <stdio.h> header
file.

REF-62 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

..
I
I
I
I
I
I ,.
I
I
I
I
I

•
I

fseek

fseek

The fseek function positions the file to the specified byte offset in the file.

Format

#include <Stdio.h>

int fseek (FILE "file_ptr, long int offset, int direction);

Arguments

f/le_ptr
Is a file pointer.

offset
Is the offset specified in bytes.

direction
Is an integer indicating whether the offset is measured forward from the
current read or write address (SEEK_CUR), forward from the beginning of
the file (SEEK_SET), or backwards from the end-of-file (SEEK_END).

Description

The fseek function sets the file position of the stream specified by file_ptr.

For binary streams, if the direction is SEEK_SET, the position is measured
in bytes from the beginning of the file . If the direction is SEEK_CUR, the
position is measured from the current position in the file.

For text streams, the offset should either be zero or a value returned by an
earlier call to ftell. In all cases, direction shall be SEEK_SET.

PDP-11 C does not support the direction value of SEEK_END .

A successful call to fseek clears the end-of-file and undoes any effects of the
ungetc function.

PDP-11 C Run-lime Library Functions and Macros REF-63

fseek

Return Values

0

EOF

Indicates successful seeks.

Indicates improper seeks. EOF is a preprocessor
constant defined in the <stdio.h> header file.

REF-64 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

I
I
I
I
I ,.
I
I
I
I
I

•
I

fsetpos

fsetpos

Format

The fsetpos function sets the current file position indicator. The position
must be specified by using a value returned by the fgetpos function.

#Include <Stdio.h>

Int fsetpos (FILE *file_ptr, coilst fpos_t *pos);

Arguments

flle_ptr
Is a pointer to a file .

pos
Is a pointer to the file position indicator value obtained from a previous call
to the fgetpos function.

Return Values

Zero value

Nonzero value

Indicates success. A successful call clears the
end-of-file and undoes any effects of the ungetc
function.

Indicates an error has occurred.

PDP-11 C Run-lime Library Functions and Macros REF-65

ftell

ftell

The ftell function returns the current byte offset to the specified stream.

Format

#include <Stdio.h>

long int ftell (FILE ~file_ptr);

Arguments

flle_ptr
Is a file pointer.

Description

The ftell function returns the current position in the stream pointed to by
file_ptr.

For a binary stream, the value returned is the number of bytes from the
beginning of the file.

For a text stream, the value returned is information which is only usable by
the fseek function for returning the file to the current position.

Return Values

EOF
X

Indicates an error has occurred.

Current value of the position indicator.

REF-S6 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

I
I
I
I
I ,.
I
I
I
I
I

•
I

fwrite

Format

The fwrite function writes a specified number of items to a file.

#Include <Stdio.h>

size t fwrite (canst void .. ptr, size_t size, size_t nmemb,}
FILE .. file_ptr;

fwrite

Arguments

ptr
Is a pointer to the memory location from which information is being written.

size
Is the size of the items being written, in bytes.

nmemb
Is the number of items being written.

flle_ptr
Is a file pointer that indicates the file to which the items are being written.

Description

If the file is a record-mode file, fwrite outputs at least nmemb records, each
of length size.

The type size_t is defined in the <stdio.h> header file.

PDP-11 C Run-Time Library Functions and Macros REF-67

fwrite

Return Values

][Indicates the number of items written. The
number of records written depends upon the
maximum record size of the file.

REF-68 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

I
I
I
I
I
fl
I
I
I
I
I

•
I

getc

getc

The getc function returns a character from a specified file.

Format

#include <Stdio.h>

int getc (FILE *file_ptr);

Arguments

flle_ptr
Is a pointer to the file to be accessed.

Description

The getc function gets the next character pointed to by the file pointer from
the input stream and advances the file indicator for that file.

Return Values

X

EOF

Indicates the next character as an int from the
specified file.

Indicates the end-of-file or an error. (EOF is a
preprocessor constant defined in the <stdio.h>
header file.)

PDP-11 C Run-lime Library Functions and Macros REF-69

getchar

getchar

Format

The getchar function reads a single character from the standard input
(std.in).

#include <Stdio.h>

int getchar (void);

Description

The getchar function works the same as the fgetc function. It is equivalent
to an fgetc (stdin).

Return Values

EOF

][

Indicates the end-of-file or an error. (EOF is a
preprocessor constant defined in the <stdio.h>
header file.)

Indicates the next character as an int from
stdin.

REF-70 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

~-I
I
I
I
I

I
I
I
I
I

•
I

getenv

getenv

Format

The getenv function searches the environment array for the current process
and returns the value associated with a specified environment name.

#include <Stdlib.h>

char *getenv (const char "name);

Arguments

name
Can be one of the following values:

• "HOME"-The default directory (RSTS/E and RSX).

• "TERM"-The type of terminal being used (RSTS/E and RSX).

• "PATH''-The default device and directory (RSTS/E and RSX).

• "USER"-The UIC of the user who initiated the process (RSTS/E and
RSX).

• "OPSYS"-The name of the operating system (all operating systems).

If the argument to getenv does not match any of the environment strings,
the return value is NULL. If "TERM" is used as the argument and standard
1/0 is not being used, the return value is a pointer to a NULL string.

Return Values

X

NULL

Indicates a translated symbol.

Indicates that the translation failed.

PDP-11 C Run-lime Library Functions and Macros REF-71

gets

gets

Format

The gets function reads a line from the standard input stream (stdin).

#include <Stdio.h>

char *gets (char *s);

Arguments

s
Pointer to the array to which the characters are read.

Description

The gets function reads characters from the standard input stream into the
array pointed to bys until end-of-file or a new character is encountered. The
newline character is discarded and a NUL character is written immediately
after the last character read into the array.

Return Values

NULL Indicat.es that end-of-file was encount.ered and
no charact.ers were read, or that an error has
OCCUITed.

A point.er to s.

RE~72 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,,
I
I
I
I
I

•
I

gmtime

gmtime

Format

The gmtime function converts a given calendar time into a broken-down
time, expressed as Coordinated Universal Time (UTC).

#include <time.h>

struct tm *gmtime (const time_t *timer);

Arguments

timer
Is a pointer to an object of type time_t, which contains the calendar time.

Description

The gmtime function returns a pointer to a structure of type tm which
contains the time expressed as UTC. The current time zone must be set by
using the __ tzset function; otherwise, gmtime returns a NULL pointer.

See also __ tzset.

PDP-11 C Run-lime Library Functions and Macros REF-73

hypot

hypot

Format

The hypot function returns the square root of the sum of the squared
arguments.

#Include <math.h>

double hypot (double x, double y);

Arguments

X
Is a real value.

y
Is a real value.

Description

The hypot function returns the following:

sqrt(x*x + y·y)

This function is provided for compatibility with VAX Candis only available
if compiled with the /NOSTANDARD switch.

Return Values

Returns the square root of the sum of the squared arguments of x and y .

REF-74 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

~-I
I
I
I
I
I
fl
I
I
I
I
I

•
I

isalnum

isalnum

Format

The isalnum function is used to determine if a character is an alphanumeric
in the current locale.

WARNING

This function is affected by the current locale setting.

#Include <ctype.h>

Int lsalnum ~nt c);

Arguments

C
Is an expression of type int.

Description

The isalnum function returns a nonzero integer if its argument is an
alphanumeric character; otherwise, it returns 0. Refer to Chapter 3 for more
information.

Return Values

Returns a nonzero integer if its argument is an alphanumeric character;
otherwise, returns a zero.

PDP-11 C Run-lime Library Functions and Macros REF-75

isalpha

isalpha

Format

The isalpha function is used to determine if a character is an alphabetic
character in the current locale.

WARNING

This function is affected by the current locale setting.

#include <Ctype.h>

Int isalpha ~nt c);

Arguments

C
Is an expression of type int.

Description

The isalpha function returns a nonzero integer if its argument is an
alphabetic character; otherwise, it returns 0. In PDP-11 C, isalpha is true
only for characters having isupper or islower true. Refer to Chapter 3 for
more information.

Return Values

Returns a nonzero integer if its argument is an alphabetic character;
otherwise, returns a zero.

REF-76 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

I
I
I
I
I ,.
I
I
I
I
I

•
I

isascii

Format

The isascii macro is used to determine if a character is ASCII.

#include <Ctype.h>

Int isascil ~nt c);

isascii

Arguments

C
Is an expression of type int.

Description

The isascii macro returns a nonzero integer if its argument is any ASCII
character; otherwise, it returns 0. This macro is provided for compatibility
with VAX C and is only available when compiled with the /NOSTANDARD
switch. Refer to Chapter 3 for more information.

Return Values

Returns a nonzero integer if its argument is any ASCII character; otherwise,
returns a zero.

PDP-11 C Run-lime Library Functions and Macros REF-n

ischar

ischar

Format

The __ ischar function returns a nonzero integer if its argument is contained
in the current character set. Refer to Chapter 3 for more information.

#include <ctype.h>

Int ischar ~nt c);

Arguments

C

Is an expression of type int.

Return Values

Returns a nonzero integer if its argument is contained in the current
character set; otherwise, returns a zero.

Rl:F-78 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

I
I
I
I
I ,,
I
I
I
I
I

•
I

iscntrl

Format

iscntrl

The iscntrl function returns a nonzero integer if its argument is a delete
character or any nonprinting character for each of the character sets sup
ported by PDP-11 C; otherwise, it returns 0. Refer to Chapter 3 for more
information.

WARNING

This function is affected by the current locale setting.

#Include <ctype.h>

int iscntrl (int c);

Arguments

C

Is an expression of type int.

Return Values

Returns a nonzero integer if its argument is a delete character or any
nonprinting character; otherwise, returns a zero.

PDP-11 C Run-lime Library Functions and Macros REF-79

isdigit

isdigit

Format

The isdigit function returns a nonzero integer if its argument is a decimal
digit character (0-9); otherwise, it returns 0. Refer to Chapter 3 for more
information.

#include <ctype.h>

int isdigit ~nt c);

Arguments

C

Is an expression of type int.

Return Values

Returns a nonzero integer if its argument is a decimal digit character;
otherwise, returns a zero.

REF-80 PDP-11 C Run-Time Library Functions and Macros

J
I
I
I
I
I
I

..
I
I
I
I
I

•
I

I
I
I
I
I ,.
I
I
I
I
I

•
I

isgraph

isgraph

Format

The isgraph function returns a nonzero integer if its argument is any print
ing character except 040 (SP); otherwise, it returns 0. Refer to Chapter 3 for
more information.

WARNING

This function is affected by the current locale setting.

#include <Ctype.h>

int isgraph ~nt c);

Arguments

C

Is an expression of type int.

Description

Graphic ASCII characters are those with octal codes greater than or equal
to 041 (!) and less than or equal to 0176 (?). They make up the set of
characters you can print, except the space.

Return Values

Returns a nonzero integer if its character is any printing character except
space; otherwise, it returns a zero .

PDP-11 C Run-lime Library Functions and Macros REF-81

islower

islower

Format

The islower function returns a nonzero integer if its argument is a lower
case alphabetic character; otherwise, it returns 0. Refer to Chapter 3 for
more information.

WARNING

This function is affected by the current locale setting.

#include <ctype.h>

int !slower ~nt c);

Arguments

C

Is an expression of type int.

Return Values

Returns a nonzero integer if its argument is a lowercase alphabetic
character; otherwise returns a zero.

REF-82 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,.
I
I
I
I
I

•
I

isprint

Format

isprint

The isprint function returns a nonzero integer if its argument is a print
ing character including space, 040 (SP); otherwise, it returns 0. Refer to
Chapter 3 for more information.

WARNING

This function is affected by the current locale setting.

#include <ctype.h>

int isprint ~nt c);

Arguments

C

Is an expression of type int.

Return Values

Returns a nonzero integer if its argument is a printing character; otherwise,
returns a zero.

PDP-11 C Run-lime Library Functions and Macros REF-83

ispunct

ispunct

Format

The ispunct function returns a nonzero integer if its argument is a punctu
ation character, that is, if it is a printing character that is nonalphanumeric
and not the space character; otherwise, it returns 0. Refer to Chapter 3 for
more information.

WARNING

This function is affected by the current locale setting.

#include <ctype.h>

int ispunct ~nt c);

Arguments

C

Is an expression of type int.

Return Values

Returns a nonzero integer if its argument is a punctuation character,
otherwise, returns a zero.

REF-84 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I
..
I
I
I
I
I

•
I

isspace

isspace

Format

The isspace function returns a nonzero integer if its argument is white
space; that is, if it is a space, tab (horizontal or vertical), carriage-return,
form-feed, or newline character; otherwise, it returns 0. Refer to Chapter 3
for a list of additional characters that are in the Digital Multinational and
ISO Latin-1 sets.

WARNING

This function is affected by the current locale setting.

#include <Ctype.h>

int lsspace ~nt c);

Arguments

C

Is an expression of type int.

Return Values

Returns a nonzero integer if its argument is white space; otherwise, returns
a zero.

PDP-11 C Run-Time Library Functions and Macros REF--85

isupper

isupper

Format

The isupper function returns a nonzero integer if its argument is an
uppercase alphabetic character; otherwise, it returns 0. Refer to Chapter 3
for more information.

WARNING

This function is affected by the current locale setting.

#include <ctype.h>

Int isupper ~nt c);

Arguments

C

Is an expression of type int.

Return Values

Returns a nonzero integer if its argument is an uppercase alphabetic
character; otherwise, returns a zero.

REF-86 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I
..
I
I
I
I
I

•
I

isxdigit

isxdigit

Format

The isxdigit function returns a nonzero integer if its argument is a hexadec
imal digit (0 to 9, A to F, or a to f) . Refer to Chapter 3 for more information.

#include <Ctype.h>

int isxdigit (int c);

Arguments

C
Is an expression of type int.

Return Values

Returns a nonzero integer if its argument is a hexadecimal digit; otherwise,
returns a zero.

PDP-11 C Run-lime Library Functions and Macros REF-87

labs

labs

The labs function returns the absolute value of a long int.

Format

#Include <Stdlib.h>

long Int labs (long int x);

Arguments

X
Is a long int.

Return Values

Returns the absolute value of an integer as a long int.

REF-88 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

ldexp

Format

ldexp

The ldexp function returns its first argument multiplied by 2 raised to the
power of its second argument; that is, x(2ezp).

#include <math.h>

double ldexp (double x, int exp);

Arguments

X

Is a base value of type double that is to be multiplied by 2ezp.

exp
Is the integer exponent value to which 2 is raised.

Description

If there is a range error, the function sets errno to ERAN GE and returns the
constant HUGE_ VAL. (HUGE_ VAL is defined in the <math.h> header file to
be the largest possible value of the appropriate sign.)

Return Values

0

X

Indicates that underflow has occurred.

z(2up)

PDP-11 C Run-lime Library Functions and Macros REF-89

ldiv

ldiv

Format

The ldiv function returns the quotient and the remainder after the division
of its arguments.

#include <Stdlib.h>

ldiv t ldiv ~ong int numer, long int denom);

Arguments

numer
Is a numerator of type long int.

denom
Is a denominator of type long int.

Description

The type div_t is defined in the standard include module <stdlib.h> header
file as follows:

typedef atruct LDIV T

Return Values

{ -

}

long int quot
long int rem;

ldiv_t;

Returns the quotient and remainder.

REF-90 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I
..
I
I
I
I
I

•
I

localeconv

localeconv

Format

The localeconv function obtains the appropriate values for formatting
numeric quantities as controlled by the current locale.

#include <locale.h>

struct lconv *localeconv(void);

Description

The localconv function returns a pointer to an object of type struct lconv
which contains the values for the currently set locale. The lconv structure
has the following members:

char *decimal_point

char *thousands_sep

char *grouping

char *int_curr_symbol

char *currency_symbol

char *mon_decimal_point

char *mon_thousands_sep

char *mon_grouping

char *positive_sign

Character used for formatting nonmonetary
quantities.

Separates groups of digits before the decimal
point in formatted nonmonetary quantities.

A string indicating the size of each group of
digits in formatted nonmonetary quantities.

International currency symbol for the current
locale.

Local currency symbol for the current locale.

Character used for formatting monetary quanti
ties.

Separates groups of digits before the decimal
point in formatted monetary amounts.

A string indicating the size of each group of
digits in formatted monetary amounts.

A string indicating a positive formatted mone
tary amount .

PDP-11 C Run-Time Library Functions and Macros REF-91

localeconv

char •negative_sign

char int_frac_digits

char frac_digits

char p_cs_precedes

char p_sep_by_space

char n_cs_precedes

charn_sep_by_space

char p_sign_posn

char n_sign_posn

Return Values

A string indicating a negative formatted mone
tary amount.

The number of fractional digits displayed in an
internationally formatted monetary amount.

The number of fractional digits displayed in a
formatted monetary amount.

Is set to 1 if currency_symbol comes before the
value for a positive formatted monetary quantity
or to O if it comes after it.

Is set to 1 if currency_symbol is separated from
the value of a positive formatted monetary
quantity by a space or to O if it is not.

Is set to 1 if currency_symhol comes before the
value of a negative formatted monetary amount
or to O if it comes after it.

Is set to 1 if currency_symbol is separated by
a space from the value of a negative formatted
monetary amount or to O if it is not.

Indicates the position of positive_sign for a
positive formatted monetary amount.

Indicates the position of negative_sign for a
negative formatted monetary amount.

Returns the pointer to the lconv object, filled in for the currently set locale.

REF-92 PDP- 11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I
..
I
I
I
I
I

•
I

localtime

localtime

Format

The localtime function converts a time (expressed as the number of seconds
elapsed since 00:00:00 January 1, 1970) into hours, minutes, seconds, and so
on, expressed as local time.

#include <fime.h>

struct tm *localtime (const tlme_t "bintim);

Arguments

blntlm
Is a pointer to the time in seconds relative to 00:00:00 January 1, 1970. This
time can be generated by the time function, or you can supply a time.

Description

The type tm is defined in the <lime.h> header file as follows:

typedef atruct tm
{

int tm_sec, /* seconds after the minute 0, 60] *I
tm min, /* minutes after the hour 0, 59] *I
tm-hour, /* houra since midnight 0, 23] *I
tm=mday, /* day of th• month 1, 31] */
tm_mon, /* months since January 0, 11] *I
tm_year, /* years since 1900 0,] *I
tm_wday, /* days since Sunday 0, 6] */
tm_yday, /* days since January 1 [0,365] */
tm_iadst; /* Daylight Saving Time Flag -- [-1, 1] */

/* -1 info. not available */
/* 0 O.S.T. rs-NOT in effect *I
I* 1 O.S.T. rs in effect *I

tm_t;

I*

Successive calls to the localtime function overwrite the structure.

PDP-11 C Run-lime Library Functions and Macros REF-93

localtime

Return Values

Pointer Indicates a pointer t.o the time structure.

REF-94 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

~~----------------

•• I
I
I
I
I
I ..
I
I
I

I

•
I

log, log10

log, log10

Format

The log and logl0 functions return the logarithm of their arguments.

#Include <math.h>

double log (double x);

double log10 (double x);

Description

The log and loglO functions return the logarithm of their arguments.
During error conditions, errno is set to EDOM if x is negative; ermo is set to
ERANGE if x is zero.

Return Values

log

loglO

Natural (base-e) logarithm. of x

Base-10 logarithm of x.

PDP-11 C Run-lime Library Functions and Macros REF-95

longjmp

longjmp

Format

The longjmp function provides a way to transfer control from a nested
series of function invocations back to a predefined point without returning
normally; that is, not by a series of return statements. The longjmp
function restores the context of the environment buffer.

Please note that using longjmp calls across non-C functions may cause
unpredictable results.

#include <Setjmp.h>

void longjmp omp_buf env, int val);

Arguments

env
Represents the environment buffer and must be an array of integers
long enough to hold the register context of the calling function. The type
jmp_buf is defined by a typedef found in the <setjmp.h> header file. The
contents of the general-purpose registers, including the program counter
(PC), are stored in the buffer.

val
Is passed from longjmp to setjmp, and then becomes the subsequent return
value of the setjmp call. If value is passed as 0, it is converted to 1.

Description

When the setjmp function is called to save a context, it returns the value
0. If the longjmp function is then called naming the same environment
as a previous call to setjmp, control returns to the setjmp call as if it had
returned normally a seoond time. The return value of setjmp in this second
return is the value you supply in the longjmp call.

REF-96 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I

I

•
I

•• I
I
I
I
I
I
..
I
I
I
I
I

•
I

longjmp

WARNING

You may invoke the longjmp function from a signal handler that
has been established for any signal supported by the PDP-11 C
Run-Time Library, subject to the following nesting restrictions:

• The longjmp function will not work if invoked from nested
signal handlers. When invoked from a signal handler that
has been entered as a result of an exception generated in
another signal handler, the result of the longjmp function is
undefined.

• Do not invoke the setjmp function from a signal handler
unless the associated longjmp is to be issued before the
handling of that signal is completed.

See also setjmp .

Return Values

0

Nonzero value

First call, first return.

Indicates a later call to the longjmp function
using the same values.

PDP-11 C Run-lime Library Functions and Macros REF-97

lr50a

lr50a

Format

The __ lr50a function converts an unsigned 32-bit radix-50 string to the
corresponding 6-character ASCII character string.

#include <Sfdlib.h>

short int lrSOa (unsigned long int "__rad50, char
"__ascii_string);

Arguments

__ rad50
Is a pointer to an unsigned 32-bit radix-SO string to be converted to ASCII.

__ a sell_ string
Is a pointer to a string to hold the converted six-character ASCII string.

Description

When __ lr50a converts the radix-50 string to the ASCII character string,
the string will not be NUL terminated.

Return Values

D The number of characters translated.

REF--98 PDP-11 C Run-Time library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

'• I
I
I
I
I
I ..
I
I
I
I
I

•
I

malloc

malloc

The malloc function allocates an area of memory.

Format

#include <Stdlib.h>

void *malloc (size_t size);

Arguments

size
Specifies the total number of bytes to be allocated .

Description

The malloc function allocates a contiguous area of memory whose size in
bytes is supplied as an argument. The space is not initialized. The number
of bytes is rounded to the next highest number evenly divisible by 4.

See also calloc.

Return Values

NULL

X

Indicates that it is unable to allocate enough
memory.

The address of the first byte, which is aligned on
a word boundary.

PDP-11 C Run-lime Library Functions and Macros REF-99

mblen

mblen

Format

The mblen function determines the number of bytes in the multibyte
character pointed to by its character pointer argument.

#include <Stdlib.h>

Int mblen (const char "s, size_t n);

Arguments

s
Is a character pointer.

n
Specifies the maximum number of bytes in the multibyte character that will
be examined.

Description

The mblen function determines the number of bytes that make up the
multibyte character pointed to by *s ifs is not a NULL pointer.

See also mbtowc.

Return Values

X The number of characters that make up the
next multibyte character in the multibyte string
pointed to by s. The argument s cannot be a
NULL pointer.

REF-100 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I
..
I
I
I
I
I

•
I

- 1

Nonzero

mblen

Indicates the next character is not a valid multi
byte character.

Indicates s is a NULL pointer, and the multi
byte characters have state-dependent encoding;
otherwise, 0 is returned.

PDP-11 C Run-lime Library Functions and Macros REF-101

mbstowcs

mbstowcs

Format

The mbstowcs function copies a sequence of characters from the string
pointed to bys and stores them in the array pointed to by pwcs .

#include <stdlib.h>

size t mbstowcs (wchar_t "'pwcs, const char "'s, size_t n);

Arguments

pwcs
Points to an array where the multibyte characters pointed to by s will be
stored.

s
Points to an array of characters which are to be copied.

n
Specifies the maximum number of bytes in the multibyte character pointed
to bys.

Description

The mbstowcs function returns the number of copied array elements. This
does not include a terminating O code.

The sequence of characters pointed to by the character pointer argument is
stored in the array pointed to by pwcs.

The size_t type is an unsigned int type defined in the <stddef.h> header
file. The wchar_t type is an integral type representing distinct codes for all
members of the largest extended character set specified by the supported
locales. ,

See also wcstombs.

REF-102 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

mbstowcs

Return Values

Returns the number of copied array elements .

PDP-11 C Run-lime Library Functions and Macros R~103

mbtowc

mbtowc

Format

The mbtowc function copies the character pointed to by its character
pointer argument into pwc.

#include <Stdlib.h>

int mbtowc (wchar_t *pwc, const char *s, size_t n);

Arguments

pwc
Is a pointer to an object.

s
Is a character pointer.

n
Specifies the maximum number of bytes expected in the multibyte character
pointed to bys.

Description

The mbtowc function determines the number of characters in the multibyte
strings that make up the next multibyte character. The arguments cannot
be a NULL pointer. The next multibyte character is converted to a wide
character value; the value is placed in *pwc if pwc is not a NULL pointer.

The size_t type is an unsigned int type defined in the <stddef.h> header
file. The wchar_t type is an integral type representing distinct codes for all
members of the largest extended character set specified by the supported
locales. It is defined in the <stddef.h> header file.

See also mblen.

REF-104 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I '
I
..
I
I
I
I
I

•
I

Return Values

X

-1

Nonzero

mbtowc

The number of characters pointed to by •s that
make up the next multibyte character.

Indicates the next or remaining characters are
invalid multibyte characters.

Indicates s is a NULL pointer, and the multi
byte characters have state-dependent encoding;
otherwise, 0 is returned.

PDP-11 C Run-lime Library Functions and Macros REF--105

memchr

memchr

Format

The memchr function locates the first occurrence of the specified byte
within the initial size bytes of a given object pointed to by s1 .

#include <String.h>

void *memchr (const void *s1, int c, size_t size);

Arguments

s1
Is a pointer to the object to be searched.

C

Is the byte value to be located.

size
Is the length of the object to be searched.

Description

Unlike the strchr function, the memchr function does not stop when it
encounters a NUL character.

Return Values

Pointer

NULL

Is a pointer to the first occurrence of the charac
ter.

The character does not occur in the identified
object string,

REF-106 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I
..
I
I
I
I
I

•
I

memcmp

memcmp

Format

The memcmp function compares two objects byte by byte. The compare
operation starts with the first byte in each object. It returns an integer less
than, equal to, or greater than 0, depending on whether the lexical value
of the first object is less than, equal to, or greater than that of the second
object.

#include <String.h>

int memcmp (const void *s1, const void *s2, size_t n);

Arguments

s1
Is a pointer to the first object.

s2
Is a pointer to the second object.

n
Is the maximum number of characters to compare.

Description

The memcmp function uses native character comparison. The sign of the
value returned is determined by the sign of the difference between the
values of the first pair of unlike bytes in the objects being compared. Unlike
the strcmp function, the memcmp function does not stop when a NUL
character is encountered.

See also strcmp .

PDP-11 C Run-Time Library Functions and Macros REF-107

memcmp

Return Values

0

Indicates the object pointed to by s1 is less than
the object pointed to by s2.

Indicates the object pointed to by s1 is equal to
the object pointed to by s2.

Indicates the object pointed to by s1 is greater
than the object pointed to by s2.

REF-108 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

memcpy

memcpy

Format

The memcpy function copies a specified number of bytes from one object to
another.

#include <String.h>

void *memcpy (void *s1, canst void *s2, size_t n);

Arguments

s1
Is a pointer to the first object.

s2
Is a pointer to the second object.

n
Is the number of characters pointed to by s2.

Description

The memcpy function copies n bytes from s2 to s1 . It does not check for the
overflow of the receiving memory area (s1). Unlike the strcpy function, the
memcpy function does not stop when a NUL character is encountered. The
objects should not overlap.

See also memmove and strcpy.

PDP-11 C Run-lime Library Functions and Macros REF-109

memcpy

Return Values

Indicates the value of sl.

REF-110 PDP-11 C Run-Time library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I
..
I
I
I
I
I

•
I

memmove

memmove

Format

The memmove function copies a specified number of bytes from one object
to another, as if it first copied them into a temporary array of characters
that does not overlap the objects pointed to by s1 and s2, and then copied
from the temporary array into the object pointed to by s1 .

#include <String.h>

void *memmove (void "s1, canst void "s2, size_t n);

Arguments

s1
Is a pointer to the first object.

s2
Is a pointer to the second object.

n
Is the number of characters to copy.

Description

The memmove function copies the specified number of bytes from one object
to another.

The objects pointed to by s1 and the object pointed to by s2 may overlap.

PDP-11 C Run-lime Library Functions and Macros REF-111

memmove

Return Values

Returns the value of sl.

REF-112 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

memset

memset

Format

The memset function sets a specified number of bytes in a given object to a
given value.

#include <String.h>

void *memset (void *s, Int c, size_t n);

Arguments

s
Is a pointer to the object.

C
Is the value to be placed in each byte of s. It is converted to an unsigned
char before it is copied.

n
Is the number of characters ins to be set to c.

Description

The memset function returns the value of s.

Return Values

Returns the value of s.

PDP-11 C Run-Time Library Functions and Macros REF-113

mktime

mktime

Format

The mktime function converts the broken-down time in the structure
pointed to by timeptr into a calendar time value.

#include <fime.h>

time t mktime (struct tm *timeptr);

Arguments

tlmeptr
Pointer to a structure of type tm, which contains the broken-down time.
The tm structure is defined in the <lime.h> header file. See the localtime
function for more information.

Return Values

-1

Values other than -1

Indicates the calendar time cannot be
represented.

Returns the specified calendar time.

REF-114 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I
..
I
I
I
I
I

•
I

modf

Format

modf

The modf function returns the fractional part of the argument value with
the same sign as the argument value and assigns the integral part, ex
pressed as an object of type double, to the object whose address is specified
by the second argument.

#include <math.h>

double modf (double value, double ~;ptr);

Arguments

value
Must be an expression of type double.

lptr
Is a pointer to an expression of type double where the integral part of the
result is stored.

Return Values

Returns the positive fractional part of the argument value.

PDP-11 C Run-lime Library Functions and Macros REF-115

perror

perror

Format

The perror function writes a short error message to sttkrr describing the
last error encountered during a call to the PDP-11 C Run-Time Library from
a C program.

#include <stdio.h>

void perror (const char ·str);

Arguments

str
Typically contains the name of the program that incurred the error.

Description
The perror function writes out its argument (a user-supplied prefix to the
error message), followed by a colon, followed by the message itself, followed
by a new line. The format of the message is:

atring: error maaaage

If a NULL is passed as the value, only the text of the error message is
printed; the string is not printed.

Return Values

None.

REF-116 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

pow

Format

pow

The pow function returns the first argument raised to the power of the
second argument.

#include <math.h>

double pow (double base, double exp);

Arguments

base
Is an expression of type double that is to be raised to a power.

exp
Is the exponent to which the power base is to be raised.

Description

Under the following conditions, errno is set to EDOM and zero is returned:

• If both arguments are 0.

• If base is 0 and exp is less than or equal to 0.

• If base is negative and exp is not an integer.

If a range error occurs, errno is set to ERANGE, and the result is set to
HUGE_ VAL or zero.

The constant HUGE_ VAL is defined in the <math.h> header file to be the
largest representable double value .

PDP-11 C Run-lime Library Functions and Macros REF-117

pow

Return Values

X
The first argument raised to the power of the
second argument.

REF-118 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

printf

Format

printf

The printf function performs formatted output to the standard output
stream (stdout).

#include <Stdio.h>

Int printf (const char *format, ...);

Arguments

format
Contains characters to be written literally to the output or converted as
specified in the ellipsis arguments.

Represents optional expressions whose resultant types correspond to
conversion specifications given in the format specification. H no conversion
specifications are given, the optional expression may be omitted; otherwise,
the function call must have exactly as many optional expression as there
are conversion specifications, and the conversion specifications must match
the types of the optional expression. Conversion specifications are matched
to output sources in left-to-right order. Refer to Chapter 2 for detailed
information on conversion specifications.

Description

The following is an example of a conversion specification:

finclude <atdio.h>
int main()
{

int temp• 4, temp2 • 17;

printf("The answers are Id, and %d.", temp, temp2);

PDP-11 C Run-Time Library Functions and Macros REF-119

printf

Sample output from the previous example is as follows:

$ EXAMPLE I RETURN I
The answers a.re 4, and 17.

Return Values

X

-1

Indicates the number of characters written.

Indicates an error has occUITed.

REF-120 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I
..
I
I

putc

putc

The putc function writes a single character to a specified file.

Format

#Include <Stdio.h>

int putc ~nt character, FILE *file_ptr);

Arguments

character
Is an expression of type int .

flle_ptr
Is a file pointer to the file in which the character is written.

Description

The putc function writes a single character to a file and returns the
character. The file pointer is positioned after the character. In PDP-11 C,
the fputc function and putc function are functionally equivalent. See also
fputc.

Return Values

EOF

Character

lndicat.es that an output error has occurred.
EOF is defined in the <stdio.h> header file.

Indicat.es success.

PDP-11 C Run-lime Library Functions and Macros REF-121

putchar

putchar

Format

The putchar function writes a single character to the standard output
(std.cut) stream and returns the character.

#include <Stdio.h>

Int putchar ~nt character);

Arguments

character
Is an expression of type int.

Description

The putchar function is identical to the fputc function (c, std.cut). See also
fputc.

Return Values

EOF

Character

Indicates that an output error has occurred.
EOF is defined in the <stdio.h> header file.

Indicates success.

REF-122 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

puts

Format

puts

The puts function writes a character string to the standard output stream
(stdout) , followed by a newline appended to the output.

#include <Stdio.h>

Int puts (const char *str);

Arguments

str
Is a pointer to a character string to be written to stdout .

Description

The puts function does not copy the terminating NUL character to the
output stream.

Return Values

EOF
Number of characters written

Indicates an error has occurred.

Indicates success.

PDP-11 C Run-lime Library Functions and Macros REF-123

qsort

qsort

Format

The qsort function sorts an array of objects in place.

#include <Stdlib.h>

void qsort (void *base, size_t nmemb, size_t size, int (*compar)
(const void *x,const void *y));

Arguments

base
Is a pointer to the initial member of the array. The pointer should be of type
pointer-to-element and cast to type pointer-to-void.

nmemb
Is the number of objects in the array.

size
Is the size of an object in bytes.

compar
Is a pointer to the compare function.

X
Is an argument to the compare function.

y
Is an argument to the compare function.

REF-124 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I

••
I
I
I
I
I

•
I

qsort

Description

Two arguments are passed to the comparison function pointed to by compar.
The two arguments point to the objects being compared. Depending on
whether the first argument is less than, equal to, or greater than the second
argument, the comparison function returns an integer less than, equal to, or
greater than 0.

The comparison function compar need not compare every byte, so arbitrary
data may be contained in the objects in addition to the values being
compared.

The output order of two objects that compare as equal is unpredictable.

The qsort function must allocate one temporary having the size of a single
element. If the qsort function is unable to allocate this temporary, it will
place the value ENOMEM in errno and leave the array unsorted .

Return Values

Returns no values.

PDP-11 C Run-Time Library Functions and Macros REF-125

raise

raise

Format

The raise function generates a specified software signal. Generating a
signal causes the action established by the signal function to be taken.

#include <signal.h>

int raise (lnt sig);

Arguments

slg
Identifies the signal to be generated.

Return Values

0

Non.zero

Indicates success.

Indicates failure.

RE~126 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I

••
I
I
I
I
I

•
I

rand

Format

rand

The rand function returns pseudorandom numbers in the range O to
RAND_MAX (216-1). The RAND_MAX macro is defined by the standard
library header, stdlib.h>.

#include <Stdlib.h>

int rand (void);

Return Values

Returns a pseudorandom integer.

PDP-11 C Run-lime Library Functions and Macros REF-127

realloc

realloc

Format

The realloc function changes the size of the area pointed to by the first
argument to the number of bytes given by the second argument.

#include <Stdlib.h>

void •realloc (void *ptr, size_t size);

Arguments

ptr
Points to an area allocated by malloc, calloc, or realloc, or is NULL.

size
Specifies the new size of the allocated area.

Description

If ptr is the NULL pointer constant, the behavior of the realloc function is
equivalent to that of the malloc function.

The contents of the area are unchanged up to the lesser of the old and new
sizes. If the size is zero, realloc behaves similarly to the function free.

Aft.er a call to realloc, the storage area pointed to by ptr may be undefined
unless realloc returns NULL.

REF-128 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I

••
I
I
I
I
I

•
I

Return Values

X

NULL

realloc

lndicat.es the address of the area because the
area may have to be moved to a new address in
order to reallocat.e enough space. If the area was
moved, the space previously occupied is freed.

lndicat.es an inability to reallocat.e the space (for
example, if there is not enough room).

PDP-11 C Run-Time Library Functions and Macros RE~129

remove

remove

The remove function deletes a file .

Format

#Include <Stdio.h>

int remove (const char .. file_spec);

Arguments

flle_spec
Is a pointer to the string that contains a file specification.

Description

The remove function deletes the file pointed to by file_spec .

Return Values

0

Nonzero value

Indicates success.

Indicates failure.

RE~130 PDP-11 C Run-lime Library Functions and Macros

••
I

' I
••

I
I
I
I
I

•
I

•• I
I
I
I
I
I

••
I
I
I
I
I

•
I

rename

rename

Format

The rename function gives a new name to an existing file .

#Include <Stdio.h>

int rename (const char *old_file_spec,)
const char *new_file_spec;

Arguments

old_flle_spec
Is a pointer to a string that is the existing name of the file to be renamed.

new_flle_spec
Is a pointer to a string that is the new name to be given to the file.

Description

If you try to rename a file that is currently open, the rename will fail . You
cannot rename a file from one physical device to another. Both the old and
new file specifications must reside on the same device.

Return Values

0

Nonzero value

Indicat.es success.

Indicat.es failure.

PDP-11 C Run-Time Library Functions and Macros REF--131

rewind

rewind

The rewind function sets the file to its beginning.

Format

#include <Stdio.h>

void rewind (FILE "file_ptr);

Arguments

tlle_ptr
Is a file pointer.

Description

The rewind function is equivalent to fseek (file_ptr, OL, SEEK_SET). You
can use the rewind function with either record or stream files .

Return Values

Returns no values.

REF-132 PDP-11 C Run-Time Library Functions and Macros

••
I
I
I

I
I
I

•
I

•• I
I
I
I
I
I
..
I
I
I
I
I

I

scanf

Format

scanf

The scanf function performs formatted input from the standard input
stream (std.in) .

#include <stdio.h>

int scant (const char *format_spec, ...);

Arguments

format_spec
Uses conversion characters to specify how input is to be converted and
placed in memory using subsequent arguments as pointers to the objects
receiving the input. For a list of conversion characters, refer to Chapter 2.

Represents optional arguments that are pointers to the objects receiving
the converted input according to the conversion specifications given in the
format specification. If no conversion specifications are given, you may omit
these input pointers; otherwise, the function call must have exactly as many
input pointers as there are conversion specifications, and the conversion
specifications must match the types of the input pointers. Conversion
specifications are matched to input pointers in simple left-to-right order.

Description

An example of a conversion specification is as follows:

PDP-11 C Run-Time Library Functions and Macros REF-133

scant

tinclude <atdio.b>
int main()
{

int temp, temp2;

acanf(" d \d", ,temp, ,temp2);
printf ("Tb• an•••r• are d, and \d . ", temp, temp2);

NOTE

A common programming error is to omit the ampersand (&) of
&temp in line 4 of the program. If the ampersand is omitted, the
address is not passed.

Sample input and output from the previous example is as follows:

$ RUN EXAHPLE ~
4 1 7 ! RETURN !
Tb• an•••r• are 4, and 17 .

Return Values

l[

EOF

Indicates the number of successfully matched
and assigned input items.

Indicates end-of-file is encountered. EOF is a
preprocessor constant defined in the <Btdio.h>
header file.

REF--134 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

I

•• I
I
I
I
I
I

••
I
I
I
I
I

I

setbuf

setbuf

The setbuf function associates a buffer with an input or output file.

Format

#include <Stdio.h>

void setbuf (FILE *file_ptr, char *but);

Arguments

flle_ptr
Is a pointer to a file.

buf
Is a pointer to an array. The buffer must be large enough to hold an entire
input or output record. This is equivalent to the setvbuf call
setvbuf(file_ptr, buf, _IOFBF, BUFSIZ).

If buf is NULL, 1/0 operations to that file will be unbuffered. This is
equivalent to the setvbuf call setvbuf(file_ptr, NULL, _IONBF, 0). _IONBF
is defined in the <stdio.h> header file.

Description

You can use the setbuf function after a file is opened, but you must use it
before any input or output operations are performed.

A common error is to allocate buffer space as an "automatic" variable in a
code block and then fail to close the file in the same block.

A buffer is normally obtained by calling malloc. For more information, see
the malloc function.

See also setvbuf.

PDP-11 C Run-lime Library Functions and Macros REF-135

setbuf

Return Values

Returns no values.

REF-136 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

••
I
I
I
I
I .,
I

•• I
I
I
I
I
I

••
I
I
I
I
I

I

setjmp

setjmp

Format

The setjmp maCi"o is used in transferring control from a nested series of
function invocations back to a predefined point without returning normally.
It does not use a series of return statements. The setjmp macro saves the
context of the calling function in an environment buffer.

Please note that using longjmp calls across non-C functions may cause
unpredictable results.

#include <Setjmp.h>

int setjmp (jmp_buf env);

Arguments

env
Represents the environment buffer and must be an array of integers
long enough to hold the register context of the calling function. The type
jmp_buf is defined by a typedef found in the <setjmp.h> header file. The
contents of the general-purpose registers, including the program counter
(PC), are stored in the buffer.

Description

When the setjmp macro is called to save a context, it returns the value 0.
If the longjmp function is then called naming the same environment as
the call to the setjmp macro, control returns to the setjmp call as if it had
returned normally a second time. The return value of setjmp in this second
return is the value supplied by you in the longjmp call and is nonzero.

PDP-11 C Run-lime Library Functions and Macros REF-137

setjmp

Return Values

0

Value supplied by user in the
longjmp call.

First call, first return.

Second call, second return.

RE~138 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

••
I
I
I
I
I .,
I

•• I
I
I
I
I
I

••
I
I
I
I
I

I

setlocale

set locale

Format

The setlocale function sets the indicated character set, collating sequence,
monetary format, decimal-point character, and time and date format in the
Run-Time environment.

#Include <locale.h>

char *setlocale ~nt category, const char *locale);

Arguments

category
The following macros, which are defined in <locale.h>, may be specified by
the category argument:

• LC_ALL specifies the program's entire locale.

• LC_COLLATE affects the behavior of the strcoll and strxfrm functions .

• LC_CTYPE affects the behavior of the character and multibyte handling
functions.

• LC_MONETARY selects the monetary formatting as returned by the
localeconv function.

• LC_NUMERIC selects the decimal-point character for formatted I/O,
string conversion functions, and non.monetary formatting information.

• LC_TIME sets the format of the time given by the strftime function.

locale
A value of "C" for locale sets the minimal C translation environment. 'lb
specify the implementation-defined native environment, which is identical
to the "C" local, locale is given the value "" or one or more of the supported
character sets.

PDP-11 C Run-lime Library Functions and Macros RE~139

setlocale

Description

The setlocale function returns a pointer to the string associated with the
category argument for the new locale if the call is successful; otherwise, a
NULL pointer is returned and the program's locale is not changed.

A subsequent call with the string value and its associated category restores
part of the program's locale. The string returned by setlocale should not
be modified; it may be overwritten by subsequent calls to the setlocale
function. For more information, refer to Chapter 4.

Return Values

Pointer to a string

NULL pointer

Indicates success.

Indicates an unsuccessful call.

REF-140 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I

••
I
I
I
I
I

I

•• I
I
I
I
I
I

••
I
I
I
I
I ,.
I

setvbuf

setvbuf

The setvbuf function associates a buffer with an input or output file.

Format

#include <Stdio.h>

int setvbuf (FILE •fi!e_ptr, char •buf, int mode, size_t size);

Arguments

flle_ptr
Is a pointer to a file .

buf
Is a pointer to an array. If either _IOFBF or _IOLBF is specified as a value
for mode, I/0 operations use the array pointed to by buf. The buffer must be
large enough to hold an entire input or output record.

If buf is NULL, I/0 operations use a buffer automatically allocated by
the PDP-11 C Run-Time Library. If _IONBF is specified for mode, I/0
operations are completely unbuffered and the pointer in buf is ignored.

mode
Is a value that determines how the file will be buffered.

The following values for mode are defined in <stdio.h> header file:

• _IOFBF causes I/0 to be fully buffered, if possible. Can be used for I/0
requests made to files.

• _IOLBF causes output to be line buffered, if possible. The buffer is
flushed when a newline character is written, when the buffer is full, or
when input is requested. Can be used for I/0 requests made to files.

• _IONBF causes I/0 to be completely unbuffered, if possible, and buf and
size to be ignored. Can only be used for I/0 requests to and from your
terminal.

PDP-11 C Run-Time Library Functions and Macros REF-141

setvbuf

size
Is the number of bytes in the array pointed to by buf. The constant BUFSIZ
in <stdio.h> is recommended as an adequate buffer size.

For binary files: when using _IOFBF for the buffering mode, the si.ze
argument must be in multiples of 512 bytes, and the si.ze must be at least
512 bytes.

Description

You can use the setvbuf function after a file is opened but you must use it
before any input or output operations are performed.

A common source of error is to allocate buffer space as an "automatic"
variable in a code block and then to fail to close the file in the same block.

A buffer is normally obtained by calling malloc. For more information, see
the malloc function.

See also setbuf.

Return Values

Nonzero value

0

Indicates an invalid value is given for type or
size.

Indicates success.

REF--142 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

••
I
I
I
I
I .,
I

•• I
I
I
I
I
I

••
I
I
I
I
I ,.
I

signal

signal

The signal function allows the user to specify how a signal is to be handled.

Format

#include <signal.h>

void ~signal ~nt sig, void (*tune) (int)JJ(int);

Arguments

slg
Is the number or macro associated with a signal. The sig argument is
usually one of the macros defined in the <signal.h> header file.

tune
Is either the action to be taken when the signal is raised or the address of a
function needed to handle the signal.

If func is the constant SIG_DFL, the action for the given signal is reset to
the default action, that is, the termination of the receiving process. If the
argument is SIG_IGN, the signal is ignored. Not all signals can be ignored.

If func is neither SIG_DFL nor SIG_IGN, it specifies the address of a
signal-handling function. When the signal is raised, the addressed function
is called with sig as its argument. When the addressed function returns, the
interrupted process continues at the point of interruption. (This is called
"catching a signal." Signals are reset to SIG_DFL after they have been
caught.) SIG_DFL and SIG_IGN are defined in the <signal.h> header file.

Description

You must call the signal function each time you want to catch a signal.

PDP-11 C Run-lime Library Functions and Macros REF-143

signal

Return Values

X

SIG_ERR

Indicates the address of the function previously
(or initially) established to handle the signal

Indicates that the sig argument is out of range.
The variable errno is set to EINVAL. SIG_ERR
is defined in the <signal.h> header file, and
EINVAL is defined in the <errno.h> header file.

REF-144 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

••
I
I
I
I
I .,
I

•• I
I
I
I
I
I

••
I
I
I
I
I ,.
I

sin

Format

The sin function returns the sine of its radian argument.

#include <math.h>

double sin (double x);

sin

Return Values

Returns the sine value of x .

PDP-11 C Run-lime Library Functions and Macros R~145

sinh

sinh

Format

The sinh function returns the hyperbolic sine of its argument.

#include <math.h>

double sinh (double x);

Arguments

X

x is the hyperbolic sine of the angle.

Description

The value of sinh(x), if it causes an overflow, is a double value with the
largest possible magnitude and the appropriate sign. An overflow condition
causes errno to be set to the value ERANGE.

Return Values

Returns the hyperbolic sine value.

REF-146 PDP-11 C Run-Time library Functions and Macros

•• I
I
I
I
I
I

••
I
I
I
I
I .,
I

~ __ sleep, sleep

I __ sleep, sleep

I
I
I

Format

The __ sleep or sleep function suspends execution for a specified time
interval.

#include <signal.h>

unsigned long int __ sleep (unsigned long int *itime);

or I unsigned long int sleep (unsigned long int *itime);

"' Arguments
/time

I
I
I
I
I

•
I

Is an unsigned long integer which is in units of seconds.

Description

The sleep function causes the calling process to be suspended for itime
seconds. The actual time can be up to one second less than itime due
to granularity in system timekeeping. The entry point name sleep is
VAX C compatible and is defined only when the compile-time switch of
/NOSTANDARD is used.

The __ sleep function is the same routine as the sleep function and can be
used regardless of the value of the /NOSTANDARD switch.

Return Values

Value passed into the function .

PDP-11 C Run-lime Library Functions and Macros REF-147

sprintf

sprintf

The spri.ntf function performs formatted output to a string in memory.

Format

#include <Sfdio.h>

int sprintf {char "str, const char "format_spec, ...);

Arguments

str
Is the address of the string that receives the formatted output .

format_ spec
Contains characters to be written literally to the output or converted as
specified by the ellipsis arguments.

Are optional expressions whose resultant types correspond to conversion
specifications given in the format specification. If no conversion specifica
tions are given, you may omit the output sources; otherwise, the function
calls must have exactly as many output sources as there are conversion
specifications, and the conversion specifications must match the types of the
output sources. Conversion specifications are matched to output sources in
left-to-right order. For more information, refer to Chapter 2.

Description

An example of a conversion specification is as follows:

REF-148 PDP-11 C Run-lime Library Functions and Macros

I
I
I
I
I

..
I
I
I
I

•
I

I
I
I
I
I ,,
I
I
I
I
I

•
I

finclude <stdio.h>
int main()
{

int temp• 4, temp2 • 17;
char string[80];

sprintf(string, "The answers are %d, and %d.", temp, temp2);

sprintf

Sample output (to the string designated by string) from the previous
example is as follows:

The answers are 4, and 17.

Return Values

Returns the number of characters written to the array, not including the
terminating NUL character.

PDP-11 C Run-lime Library Functions and Macros REF-149

sqrt

sqrt

Format

The sqrt function returns the square root of its argument.

#include <math.h>

double sqrt {double x);

Description

The argument and the returned value are both objects of type double. The
returned value will always be the positive square root. If x is negative, the
function sets errno to EDOM and returns zero. EDOM is defined in the
<errno.h> header file.

Return Values

Returns the value of the square root.

RE~150 PDP-11 C Run-Time Library Functions and Macros

I
I
I
I
I

..
I
I
I
I
I

•
I

I
I

srand

srand

The srand function sets the seed for a new sequence of pseudorandom
numbers returned by subsequent calls to the rand function.

I Format

#include <Stdlib.h>

I
I
ft

I
I
I
I
I

•
I

void srand (unsigned int seed);

Arguments

seed
Starting point for new number from which a particular sequence of
pseudorandom numbers is generated.

Description
The random number generator is reinitialized by calling the srand function
with the value 1, or it can be set to a specific point by calling srand with

any other number.

See also rand.

Return Values

None.

PDP-11 C Run-Time Library Functions and Macros REF-151

sr50a

sr50a

Format

The __ sr50a function converts an unsigned 16-bit radix-50 string to the
corresponding 3-character ASCII character string.

#include <Stdlib.h>

void __ sr50a (unsigned short int __ rad50, char
~-ascii_ string);

Arguments

__ rad50
Is an unsigned 16-bit radix-50 string to be converted to ASCII.

__ ascl/_strlng
Is a pointer to a string to hold the converted three-character ASCII string.

Description

When __ sr50a converts the radix-50 string to the ASCII character string,
the string will not be NUL terminated. Three characters will always be
returned. This function is undefined for inputs above 63999, as such inputs
are invalid radix-50 strings.

Return Values

None.

REF-152 PDP-11 C Run-Time Library Functions and Macros

I
I
I
I
I ..
I
I
I
I
I

•
I

I
I
I
I
I
ft
I
I
I
I
I

•
I

sscanf

Format

sscanf

The sscanf function performs formatted input from a character string in
memory.

#include <Stdio.h>

int sscanf (const char ,.str, const char .. ,ormaLspec, ...);

Arguments

str
Is the address of the character string that provides the input text to sscanf.

format_ spec
Contains characters to be taken literally from the input or converted and
placed in memory at the specified .. . argument.

Are optional expressions whose resultant types correspond to conversion
specifications given in the format specification. If no conversion specifica
tions are given, you can omit the input pointers; otherwise, the function
calls must have exactly as many input pointers as there are conversion
specifications, and the conversion specifications must match the types of
the input_ptrs. Conversion specifications are matched to input sources in
left-to-right order. For more information, refer to Chapter 2.

PDP-11 C Run-Time Library Functions and Macros REF--153

sscanf

Description

An example of a conversion specification is as follows:

finclude <atdio.b.>

int main ()
{

int temp, temp2;
char *aatring - "4 17";

aacanf(aatring, "%d %d", ,temp, ,temp2);

printf("Tb• anawera are %d, and %d . \n", temp, temp2);

4 17

Sample output from the previous example is as follows:

$ R "N EX.. -!PLE I RETURN I
Tb• anawera are 4, &nd 17.

Return Values

X

EOF

Indicates the number of successfully matched
and assigned input items.

Indicates that the end-of-file (or the end of the
string) was encountered. EOF is a preprocessor
constant defined in the <stdio.h> header file.

REF-154 PDP-11 C Run-lime Library Functions and Macros

I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I
ti
I
I
I
I
I

•
I

strcat

strcat

The strcat function concatenates one string to the end of the other.

Format

#include <String.h>

char *strcat (char *s 1, const char *s2);

Arguments

s1
Is a pointer to a string to which characters are appended.

s2
Is a pointer to a string from which the characters are appended to the string
pointed to by s1.

s1, s2
Must be NUL-terminated character strings.

Description

The address of the first argument, s1, is assumed to point to a space large
enough to hold the concatenated result. See also strncat.

Return Values

X Indicates the address of the first argument, sl.

PDP-11 C Run-lime library Functions and Macros RE~155

strchr

strchr

Format

The strchr function returns the address of the first occurrence of c, con
verted to char, in a NUL-terminated string.

#include <String.h>

char *strchr (const char "s, int c);

Arguments

s
Is a pointer to a NUL-terminated character string.

C

Is an expression of type int converted to a character.

Description

See also strrchr.

Return Values

I

NULL pointer

Indicates the address of the first occurrence of
the specified character.

Indicates that the character does not occur in the
string.

REF-156 PDP-11 C Run-Time Library Functions and Macros

I
I
I
I
I ..
I
I
I
I
I

•
I

~-I
strcmp

I strcmp

I
I
I

I
I
I
I
I

•
I

Format

The strcmp function compares two character strings and returns a negative
integer, 0, or a positive integer, indicating that the value of the first string is
less than, equal to, or greater than the value of the second string.

#include <String.h>

int strcmp (canst char *s1, const char *s2);

Arguments

s1, s2
Are pointers to character strings.

Description

The comparison continues up to and including a NUL character in one of the
strings; comparisons are terminated after the NUL is encountered.

See also strncmp.

Return Values

>0

=0

<0

Indicates sl > s2.

Indicates sl = s2.

Indicates sl < s2.

PDP-11 C Run-Time Library Functions and Macros REF-157

strcoll

strcoll

Format

The strcoll function compares the string pointed to by s1 to the string
pointed to by s2.

#include <String.h>

int strcoll (canst char *s 1, const char *s2);

Arguments

s1, s2
Are pointers to character strings.

Description

The interpretation of the two strings by the strcoll function is dependent on
the current locale.

See also setlocale.

Return Values

>0

=0

<0

Indicates sl > s2.

Indicates sl = s2.

Indicates sl < s2.

REF-1S8 PDP-11 C Run-Time Library Functions and Macros

I
I
I
I
I ..
I
I
I
I
I

•
I

~-I
strcpy

I strcpy

I
I
I

I
I
I
I
I

•
I

Format

The strcpy function copies the NUL-terminated string pointed to by s2 into
a string beginning at s1.

#Include <String.h>

char •strcpy (char *s1, const char *s2);

Arguments

s1, s2
Are pointers to character strings.

Description

The strcpy function copies the string pointed to by s2 into the array pointed
to by s1, stopping after copying a NUL character from s2. The strings
pointed to by s1 and s2 may not overlap.

See also strncmp.

Return Values

X Indicat.es the address of sl.

PDP-11 C Run-lime Library Functions and Macros REF-159

strcspn

strcspn

Format

The strcspn function computes the maximum initial segment of the string
pointed to by s1 containing none of the characters in the string pointed to by
s2.

#include <string.h>

size_t strcspn (const char •s1, const char •s2);

Arguments

s1
Is a pointer to a character string. If the argument string is a NULL string,
0 is returned.

s2
Is a pointer to a character string containing the characters for which the
function searches.

Description

The strcspn function scans the characters in string s1, stops when it
encounters a character found in s2, and returns the length of the string's
segment formed up to but not including the character found in s2.

See also strspn and strpbrk.

REF-160 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

~-I
I
I
I
I
I

" I
I
I
I
I

•
I

Return Values

X

strcspn

Indicates the length of the initial segment of the
string.

PDP-11 C Run-lime Library Functions and Macros REF-161

strerror

strerror

Format

The strerror function maps the error number in its argument to an error
message string.

#include <String.h>

char *strerror (int errnum);

Arguments

effnum
Is the error number to be mapped to an error message string.

Description

The following are the messages that the strerror function returns:

errnum String

0 Not an error

1 Not owner

2 No such file or directory

3 No such process

4 Interrupted system call

5 I/O error

6 No such device or address

7 Arg list too long

8 Exec format erro

9 Bad file number

REF-162 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

I ,.
I
I

I
I
I
I
I

•
I

errnum

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

all others

strerror

String

No children

No more processes

Not enough core

Permission denied

Bad address

Block device required

Mount device busy

File exists

Cross-device link

No such device

Not a directory

Is a directory

Invalid argument

File table overflow

Too many open files

Not a typewriter

Text file busy

File too large

No space left on device

Illegal seek

Read-only file system

Too many links

Broken pipe

Math argument

Math result too large

I/O operation would block channel

Invalid error value

PDP-11 C Run-Time Library Functions and Macros REF-163

strerror

Return Values

l[
Indicates a pointer t.o a buffer that contains the
appropriate error message. Do not modify this
buffer in your programs. Moreover, calls t.o the
strerror function may overwrite this buffer with
a new message.

REF-164 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

~I
strftime

I strftime

I
I
I
I

" I
I
I
I
I

•
I

Format

The strftime function gives the time to the LC_TIME category of the
current locale. The appropriate characters are determined by the LC_TIME
category of the current locale and by the values pointed to by timeptr.

#include <fime.h>

slze_t strftlme (char *s, size_t maxsize, const char *format,
const struct tm *timeptr);

Arguments

s
Pointer to an array of characters where the result string is put.

maxslze
Maximum number of characters placed into the location pointed to bys.

format
String of O or more conversion characters (see table below).

tlmeptr
Structure containing broken down time.

Description

The following list describes the characters used in the format string to
determine the behavior of the conversion specifier:

%a

%A

Locale's abbreviated weekday name.

Locale's full weekday name.

PDP-11 C Run-Time Library Functions and Macros REF--165

strftime

%b

%B

%c

%d

%H

%I

%j

%m

%M

%P

%S

%U

%w

%W

%x

%X

%y

%Y

%Z

Locale's abbreviated month name.

Locale's full month name.

Locale's appropriate date and time.

Day of month as a decimal number (01-31).

Hour (24-hour clock) as a decimal number (00-23).

Hour (12-hour clock) as a decimal number (01-12.)

Day of year as a decimal number (001-366).

Month as a decimal number (01-12).

Minute as a decimal number (00-59).

Locale's equivalent of AM/PM format of a 12-hour clock.

Second as a decimal number (00-61).

Week number of the year (first Sunday as first day of week 1) as a
decimal number (00-53).

Weekday as a decimal number (00-06) (Sunday is 00).

Week number of the year (first Monday as first day of week 1) as
a decimal number (00-53).

Locale's appropriate date representation.

Locale's appropriate time representation.

Year without century as a decimal number (00-99).

Year with century as a decimal number.

Time zone name or abbreviation. No characters if the time zone is
indeterminable.

Replaced by "%".

If the conversion specifier is not listed in the table, the behavior is undefined.

Return Values

X

0

The number of characters in the array pointed to
bys.

Indicates the contents of the array are
indeterminate.

REF-166 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

~I
strlen

I strlen

I
I
I
I
f'

I
I
I
I
I

•
I

Format

The strlen function returns the length of a string of characters. The re
turned length does not include the terminating NUL character (\ 0). The
type size_t is defined in the <stddef.h> and <string.h> header files.

#include <String.h>

size t strlen (const char *str);

Arguments

str
Is a pointer to the character string.

Return Values

X Indicates the length of the string.

PDP-11 C Run-Time Library Functions and Macros REF-167

strncat

strncat

The strncat function concatenates one string to the end of another.

Format

#include <string.h>

char •strncat (char *s1, const char *s2, size_t maxchar);

Arguments

s1, s2
Must be NUL-terminated character strings that may not overlap .

msxchsr
Specifies the number of characters to concatenate from s2, unless the
strncat first encounters a NUL terminator in s2. If maxchar is O or
negative, no characters are copied from s2.

Description

If strncat reaches the specined maximum, it sets the next byte in s1 to the
character (0), NUL. The address of the first argument, s1, is assumed to
point to an array large enough to hold the concatenated result.

See also strcat.

Return Values

X Indicates the address of the first argument, sl.

REF--168 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

~I
strncmp

I strncmp

I
I
I
I
fl
I
I
I
I
I

•
I

Format

The strncmp function compares not more than n elements of the two
character strings and returns a negative integer, 0, or a positive integer,
indicating that the value of the first string is less than, equal to, or greater
than the value of the second string.

#include <String.h>

int strncmp (canst char •s1, const char •s2, size_t n);

Arguments

s1, s2
Are pointers to character strings.

n
Specifies a maximum number of characters (beginning with the first) to
compare in both s1 and s2. If n is 0, no comparison is performed and 0 is
returned (the strings are considered equal).

Description

The comparison is terminated when a NUL is encountered in one of the
strings or when the first n characters of the strings have been compared.

See also strcmp.

PDP-11 C Run-Time Library Functions and Macros REF--169

strncmp

Return Values

Indicates the prefix length of n in the string
pointed to by sl is less than the prefix length of
n in the string pointed to by s2.

Indicates sl = s2.

Indicates sl > s2.

REF--170 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

~I
strncpy

I strncpy

I
I
I
I

" I
I
I
I
I

•
I

The strncpy function copies all or part of a string.

Format

#include <String.h>

char *strncpy (char *s1, const char *s2, size_t n);

Arguments

s1, s2
Are pointers to character strings.

n
Specifies the maximum number of characters to copy from s2 to s1.

Description

The function strncpy copies no more than n characters from s2 to s1,
up to and including the NUL terminator of s2. If s2 contains less than n
characters, s1 is padded with NUL characters. If s2 contains greater than or
equal to n characters, the first n characters of s2 are copied to s1.

NOTE

The argument s1 is not necessarily terminated by a NUL
character.

See also strcpy.

PDP-11 C Run-Time Library Functions and Macros REF-171

strncpy

Return Values

l[Indicates the address of s1 .

REF-172 PDP-11 C Run-Time Library Functions and Macros

•' I
I
I
I
I
I ..
I
I
I
I
I

•
I

'• I
strpbrk

I strpbrk

I
I
I
I

" I
I
I
I
I

•
I

Format

The strpbrk function searches a string for the occurrence of one of a speci
fied set of characters.

#Include <String.h>

char *strpbrk (con st char *str, con st char *charset);

Arguments

str
Is a pointer to a character string. If the argument string is a NULL string,
NULL is returned.

charset
Is a pointer to a character string containing the characters for which the
function searches.

Description

The strpbrk function scans the characters in the string, stops when it
encounters a character found in charset, and returns a pointer to the first
character instr found in charset.

Return Values

X

NULL pointer

Indicates the address of the first character in the
string that is in the set.

Indicates that no character is in the set.

PDP-11 C Run-Time Library Functions and Macros REF-173

strrchr

strrchr

Format

The strrchr function returns the address of the last occurrence of c, con
verted to char, in a NUL-tenninated string.

#include <String.h>

char *strrchr (const char *s, int c);

Arguments

s
Is a pointer to a NUL-terminated character string.

C
Is the character for which strrchr searches.

Description

See also strchr.

Return Values

X

NULL

Indicates the address of the last occurrence of
the specified character.

Indicates that the character does not occur in the
string.

REF-174 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I
fl
I
I
I
I
I

•
I

strspn

Format

strspn

The strspn function sequentially searches a string for the first occurrence of
a character that is not in a specified set of characters.

#include <String.h>

size_t strspn (const char "s1, const char "s2);

Arguments

s1
Is a pointer to a character string. If the argument string is a NULL string,
0 is returned.

s2
Is a pointer to a character string containing the set of characters for which
the function searches.

Description

The strspn function scans the characters in the string s1 stopping when it
encounters a character not found in s2. It then returns the length of sl's
initial segment formed by characters found in s2.

If the characters in the character strings pointed to by s1 and s2 match,
strspn returns the length of s1; otherwise, it returns 0.

See also strcspn and strpbrk.

PDP-11 C Run-lime Library Functions and Macros RE~175

strspn

Return Values

][

0

Indicat.es the length of the mat.ching prefix of the
segment.

Indicat.es no characters mat.ch.

REF-176 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
·I
..

I
I
I
I
I

•
I

•• I
I
I
I
I
I ,,
I
I
I
I
I

•
I

strstr

Format

strstr

The strstr function locates the first occurrence in the string pointed to by s1
of the sequence of characters in the string pointed to by s2.

#include <Sfring.h>

char *strstr (const char *s1, const char *s2);

Arguments

s1
Is the address of the character string the strstr function searches.

s2
Is the address of the character string for which the strstr function searches.

Return Values

NULL

X

Indicates that the string was not found.

A pointer to the located string within sl.

PDP-11 C Run-Time Library Functions and Macros REF-1n

strtod

strtod

The strtod function converts a given string to an object of type double.

Format

#include <stdlib.h>

double strtod (const char *nptr, char ,.,.endptr);

Arguments

nptr
Is a pointer to the character string to be converted.

endptr
Is the address of an object that stores the address of the first unrecognized
character that terminates the scan. If endptr is a NULL pointer, the address
of the first unrecognized character is not retained.

Description

The strtod function recognizes an optional sequence of white-space
characters (as defined by isspace in <ctype.h>), then an optional plus or
minus sign, then a sequence of digits optionally containing a single decimal
point, then an optional letter (e or E) followed by an optionally signed
integer. The first unrecognized character ends the conversion.

The string is interpreted by the same rules that are used to interpret
floating constants.

The strtod function returns the converted value. Overflows are accounted
for as follows:

• If the correct value causes an overflow, HUGE_ VAL (with a plus or
minus sign according to the sign of the value) is returned and ermo is
set to ERANGE. HUGE_ VAL is defined in the <math.h> header file, and
ERANGE is defined in the <errno.h> header file.

REF--178 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I

•
I

•• I
I
I
I
I
I
f'
I
I
I
I
I

•
I

strtod

• If the correct value causes an underflow, 0 is returned and errno is set to
ERANGE.

If the string starts with an unrecognized character, no conversion is
performed, **endptr is set to nptr (unless nptr is NULL), and O is returned.

See also atof.

Return Values

X

0

Is the converted value, if any.

Indicat.es that no conversion was made.

PDP-11 C Run-Time Library Functions and Macros REF-179

strtok

strtok

Format

The strtok function locates text tokens in a given string. The text tokens
are delimited by one or more characters from a separator string that you
specify. The function keeps track of its position in the string between calls
and, as successive calls are made, the function works through the string,
identifying the text token following the one identified by the previous call.

#Include <String.h>

char *strtok (char •s1, canst char •s2);

Arguments

s1
Is a pointer to a string containing O or more text tokens.

s2
Is a pointer to a separator string consisting of one or more characters. The
separator string may differ from call to call.

Description

The first call to the strtok function returns a pointer to the initial character
in the first token and writes a NUL character into s1 immediately following
the returned token. Each subsequent call (with the value of the first
argument NULL) returns a pointer to a subsequent token in the string
originally pointed to by s1. When no tokens remain in the string, the strtok
function returns a NULL pointer.

Tokens in s1 are delimited by NUL characters inserted into s1 by the strtok
function; therefore, s1 cannot be a const object. The strtok function is
nonreentrant because it must use a static global variable to maintain the
starting address within s1 of subsequent calls to strtok with a NULL first
argument.

REF-180 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

'• I
I
I
I
I
I
~
I
I
I
I

Return Values

X

NULL pointer

strtok

Specifies a pointer to the first character of a
token.

Indicates that no token was found.

PDP-11 C Run-Time Library Functions and Macros REF-181

strtol

strtol

The strtol function converts a string to an object of type long.

Format

#Include <Sfdlib.h>

long Int strtol (const char *nptr, char **endptr, Int base);

Arguments

nptr
Is a pointer to the character string to be converted to a long.

endptr
Is the address of an object that stores a pointer to a pointer to the first
unrecognized character encountered in the conversion process (that is, the
character that follows the last character in the string being converted). If
endptr is a NULL pointer, the address of the first unrecognized character is
not retained.

base
Is the value, 2 through 36, to use as the base for the conversion. Leading Os
after the optional sign are ignored, and Ox or OX is ignored if the base is 16.

If the base is 0, the sequence of characters is interpreted by the same rules
used to interpret an integer constant: after the optional sign, a leading
0 indicates octal conversion, a leading Ox or OX indicates hexadecimal
conversion, and any other combination of leading characters indicates
decimal conversion.

RE~182 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,.
I
I
I
I
I

•
I

strtol

Description

The strtol function recognizes strings in various formats, depending on the
value of the base. This function ignores any leading white-space characters
(as defined by isspace in <ctype.h>) in the given string. It recognizes an
optional plus or minus sign, then a sequence of digits or letters that may
represent an integer constant according to the value of the base. The first
unrecognized character ends the conversion.

Truncation from long to int can take place after assignment or by an
explicit cast (arithmetic exceptions notwithstanding). The function call atol
(str) is equivalent to strtol (str, (char4'*)0, 10).

See also atoi and atol.

Return Values

X

LONG_MAX or LONG_MIN

0

Indicates the converted value.

Indicates the correct value will cause an overflow
(according to the sign of the value). ernw is set
to ERANGE. LONG_MAX and LONG_MIN are
defined in the <limits.h> header file.

Indicates that the string starts with an unrecog
nized character. The argument **endptr is set to
nptr.

PDP-11 C Run-Time Library Functions and Macros REF-183

strtoul

strtoul

Format

The strtoul function converts a string to an unsigned long integer.

#include <Stdlib.h>

unsigned long int strtoul (canst char *nptr, char **endptr,)
int base ;

Arguments

nptr
Is a pointer to the character string to be converted to an unsigned long.

endptr
Is the address of an object that stores a pointer to a pointer to the first
unrecognized character encountered in the conversion process (that is, the
character that follows the last character in the string being converted). If
endptr is a NULL pointer, the address of the first unrecognized character is
not retained.

base

•• I
I
I
I
I
I

..
I
I

Is the value, 2 through 36, to use as the base for the conversion. Leading Os
after the optional sign are ignored, and Ox or OX is ignored if the a"P is 16. I
If the base is v, the sequence of characters is interpreted by the same rules
used to interpret an integer constant: after the optional sign, a leading I
0 indicates octal conversion, a leading Ox or OX indicates hexadecimal
conversion, and any other combination of leading characters indicates
decimal conversion.

REF-184 PDP-11 C Run-lime Library Functions and Macros

I

•
I

•• I
I
I
I
I
I
~
I
I
I
I
I

•
I

Return Values

X

0

ULONG_MAX

strtoul

Indicates the converted value.

Indicates that no conversion was performed.

Indicates that an overflow occU1Ted, and
the value of ERANGE is stored in er771,o.
ULONG_MAX is defined in the <limits.h> header
file.

PDP-11 C Run-Time Library Functions and Macros REF--185

strxfrm

strxfrm

Format

The l:jtrxfxm function transforms the string pointed to by s2 according to
the collating sequence established by the setlocale function and places the
transformed string into an array pointed to by s1.

#include <String.h>

size_t strxfrm (char "s1, const char "s2, size_t n);

Arguments

s1
Is the location for the placement of the transformed string.

s2
Is the location of the string to be transformed.

n
Is the maximum number of transformed characters to be placed in sl.

Return Values

Less than n

nor more

Returns the length of the transformed string.

Indicates the contents of the array pointed t.o by
sl are indeterminate.

REF-186 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,,
I
I
I
I
I

•
I

system

system

Format

The system function passes a given string to the host environment to be
executed by a command processor.

NOTE

Passing commands to the host environment and the command line
processor is only available on the RSX Operating System.

#include <Stdlib.h>

int system (const char *string);

Arguments

string
Is a pointer to the string to be executed.

Description

The system function spawns the default command language interpreter
and executes the command specified by string. The system function waits
for the command to complete before returning the exit status as the return
value of the function.

On the RSX operating system, if the system function is called with a NULL
pointer, a nonzero value is returned indicating that passing a command line
to the command line interpreter is available.

On the RT-11 and RSTS/E operating systems, if the system function is
called with a NULL pointer, a zero is returned indicating that passing a
command line to the command line interpreter is not available .

PDP-11 C Run-Time Library Functions and Macros REF-187

system

Return Values

string is NULL:

Nonzero value

0

string is not NULL:

Nonzero

0

Indicates passing a command line to a command
line interpreter is available (RSX operating
system only).

Indicates passing a command line to a command
line interpreter is available (RT-11 and RSTS/E
operating systems).

Value passed by operating system (RSX operat,.
ing system only).

Value not passed by operating system (RT-11
and RSTS/E operating systems.)

REF-188 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,,
I
I
I
I
I

•
I

tan

Format

tan

The tan function returns a double value that is the tangent of its radian
argument.

#include <math.h>

double tan (double x);

Arguments

X

x is the tangent of the angle.

Description

The value of tan(x) at its "singular points" (... -37r/2,-1r/2,1r/2 ...) is the
largest possible double value, and errno is set to ERANGE. ERANGE is
defined in <errno.h> header file.

Return Values

Returns the tangent value of x.

PDP-11 C Run-lime Library Functions and Macros REF-189

tanh

tanh

Format

The tanh function returns a double value that is the hyperbolic tangent of
its double argument.

#include <math.h>

double tanh (double x);

Arguments

X

x is the hyperbolic tangent of the angle.

Return Values

Returns the hyperbolic tangent value of x.

REF-190 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,,
I
I
I
I
I

•
I

time

Format

time

The time function returns the time elapsed since 00:00:00, January 1, 1970,
in seconds.

#include <fime.h>

time_t time (time_t .. timer);

Arguments

timer
Is either NULL or a pointer to the place where the returned time is also
stored.

Return Values

X

-1
Specifies current calendar time.

Indicates an error has occurred.

PDP-11 C Run-lime Library Functions and Macros REF-191

tmpfile

tmpfile

Format

The tmpfile function creates a temporary binary file that is opened for
update.

#include <Stdio.h>

FILE *tmpfile (void);

Description

The file is created in mode "wb+".

When using the RSX operating system with FCS file 1/0, the file is deleted if
the task exits abnormally, or if the abort function is called. If the task exits
abnormally and RMS is being used, the file may become a "lost" file.

When using the RSTS/E operating system, a RSTS/E temporary file is
created and will be deleted at logout.

When using the RT-11 operating system, a file named CTEMPC.TMP is
created. The file is deleted when it is closed. If the program terminates
abnormally, the file may not be deleted.

Return Values

X

NULL

Indicates the address of a FILE object associated
with the file (defined in the <stdio.h> header
file).

Indicates that there is an error.

REF-192 PDP-11 C Run-lime Library Functions and Macros

•' I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,,
I
I
I
I
I

•
I

tmpnam

tmpnam

Format

The tmpnam function creates a character string that you can use in place
of the filename argument in other function calls.

#include <Stdio.h>

char *tmpnam (char *name);

Description

PDP-11 C generates names in the following form:

CC<system dependent><l letter> . TMP

The names are always generated beginning with capital "CC" and ending
with ".TMP." The <1 letter> field contains the final letter before the file
extension. This letter varies each time the tmpnam function is called
starting with an "A" the first call, a "B" the second call, and so on to "Z". The
cycle repeats itself after the letter "Z".

The <system dependent> field generates a unique set of characters
depending on the operating system. Each operating system uses a different
method of identifying processes as follows:

• RSX Opera ting System

The field is six characters long and is the name of the task running
(with dots removed).

• RSTS Operating System

The field is two characters long and is the job number of the task
running.

• RT-11 Operating System

The field is two characters long and is the job number of the task
running.

PDP-11 C Run-lime Library Functions and Macros REF-193

tmpnam

Arguments

name
Is a pointer to a character string to receive a name to use in place of
filename arguments in other functions. If name is NULL, an internal
storage area is used. Successive calls to tmpnam cause the function to
overwrite the contents of the string.

Return Values

name A pointer to the filename.

REF--194 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
toascii

I toascii

I
I
I
I ,,
I
I
I
I
I

•
I

Format

The toascii macro converts its argument, an 8-bit ASCII character, to a
7-bit ASCII character.

#include <ctype.h>

int toascii (char character);

Arguments

character
Is an expression of type char.

Description

This macro is provided for VAX C compatibility and is only available when
compiled using the /NOSTANDARD switch.

Return Values

X Specifies a 7-bit ASCII character.

PDP-11 C Run-lime Library Functions and Macros REF-195

tolower

tolower

Format

The tolower function converts its argument, an uppercase character, to
lowercase. If the argument is not an uppercase character, it is returned
unchanged.

WARNING

This function is affected by the current locale setting.

#include <Ctype.h>

int tolower ~nt character);

Arguments

character
Is an expression of type int.

Return Values

Returns a lowercase character.

REF-196 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,,
I
I
I
I
I

•
I

tolower

tolower

Format

The _tolower macro converts its argument, an uppercase character, to
lowercase. If the argument is not an uppercase character, it is returned
unchanged.

WARNING

This macro is affected by the current locale setting.

#include <ctype.h>

int to lower ~nt character);

Arguments

character
Is an expression of type int.

Description

This macro is provided for VAX C compatibility and is only available when
compiled using the /NOSTANDARD switch.

Return Values

Returns a lowercase character.

PDP-11 C Run-lime Library Functions and Macros REF-197

toupper

toupper

Format

The toupper function converts its argument, a lowercase character, to
uppercase. If the argument is not a lowercase character, it is returned
unchanged.

WARNING

Th.is function is affected by the current locale setting.

#include <Ctype.h>

int toupper ~nt character);

Arguments

character
Is an express;on of type int.

Return Values

Returns an uppercase character.

REF-198 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I

I
I
I
I
I

•
I

_toupper

_toupper

Format

The _toupper macro converts its argument, a lowercase character, to
uppercase. If the argument is not a lowercase character, it is returned
unchanged.

WARNING

This macro is affected by the current locale setting.

#include <ctype.h>

int toupper ~nt character);

Arguments

character
Is an expression of type int.

Description

This macro is provided for VAX C compatibility and is only available when
compiled using the /NOSTANDARD switch.

Return Values

Returns an uppercase character.

PDP-11 C Run-lime Library Functions and Macros REF-199

tzset

tzset

Format

The __ tzset function sets the system time zone and daylight time variables.
If the time zone is not set, gmtime does not work. See also gm.time and
localtime.

#include <time.h>

void __ tzset ~nt zone, int daylight};

Arguments

zone
A positive integer represents the number of hours West of the UTC zone,
and a negative integer represents the number of hours East of the UTC
zone.

daylight
Represents daylight time. If daylight is false, the return value of tm_isdst of
struct tm from the localtime function is set to O; otherwise, it is set to 1.

The following two examples show how to set the time zone to Eastern
Standard Time and to Eastern Daylight Time:

tzset (5, 0);

tzset (5, 1);

Return Values

Returns no values.

/ * current time zone set to Eastern Standard Time
which is five hours west of GMT.*/

/ * current time zone set to Eastern Daylight Time. */

RE~200 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I
~
I
I
I
I
I

•
I

ungetc

ungetc

Format

The ungetc function pushes back a character into the input stream and
leaves the stream positioned before the character.

#Include <Stdio.h>

Int ungetc (int c, FILE *file_ptr);

Arguments

C

Specifies the character to be pushed back onto the stream pointed to by
stream.

flle_ptr
Is a file pointer.

Description

When the ungetc function is used, the character is "pushed back" onto the
file and is returned by the next getc call.

One push-back is guaranteed, even if there has been no previous activity
on the file. The fseek, fsetpos, and rewind functions erase all memory of
pushed-back characters. The pushed-back character is not written to the
underlying file. The EOF character may not be pushed back.

PDP-11 C Run-Time Library Functions and Macros REF-201

ungetc

Return Values

X

EOF
Indicates the push-back character.

Indicates it cannot push the character back.

RE~202 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I
..
I
I
I
I
I

•
I

va_arg

va_arg

The va_arg macro returns the values of successive arguments in turn.

Format

#include <Stdarg.h>

type va_arg (va_list ap, type);

Arguments

ap
Is an object of type va_list used to traverse the argument list. The user
must always declare and use the argument ap, which is the same as the
parameter initialized by the va_start macro. For further information, refer
to the va_start macro.

type
Is a type name specified so that ap will be assigned a pointer to an object
having the type type . If there is no next argument or the type of the next
argument is not compatible with type, the behavior is undefined.

Description

The va_arg macro expands to a value having the type of the next called
argument. Subsequent calls to va_arg modify ap so that the values of
successive arguments are returned in succession.

Return Values

The next argument in a variable-length argument list .

PDP-11 C Run-Time Library Functions and Macros REF-203

va end

va end
The va_end macro sets its argument to NULL.

Format

#include <Stdarg.h>

void va end (va_list ap);

Arguments

ap
Is the object used to traverse the variable-length argument list. You must
always declare and use the argument ap.

Description

If the va_end macro is not called before the return or there is no corre
sponding call to the va_start macro, the behavior is undefined.

Return Values

None.

REF-204 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,,
I
I
I
I
I

•
I

va start

va start

Format

The va_start macro is used to initialize a variable to the beginning of the
variable argument list.

#include <stdarg.h>

void va_start (va_list ap, parmN) ;

Arguments

ap
Is an object pointer. You must always declare and use the argument ap.

parmN
Is the identifier of the rightmost fixed argument in the variable argument
list of the function definition.

Description

The pointer ap is initialized to point to the first optional argument that
follows parmN in the argument list.

Return Values

None.

PDP-11 C Run-lime Library Functions and Macros REF-205

vfprintf

vfprintf

Format

The vfprintf function prints formatted output based on an argument list.

#Include <Stdio.h>

#include <stdarg.h>

Int vfprintf (FILE *file_ptr, const char *format, va_list arg);

Arguments

flle_ptr
Is a pointer to a file.

format
Contains characters to be written literally to the output or converted as
specified.

arg
Is a list of expressions whose resultant types correspond to the conversion
specifications given in the format specifications.

Description

The vfprintf function is the same as the fprintf function, except it is called
with an argument list that has been initialized by the va_start macro (and
possibly subsequent va_arg calls) instead of being called with a variable
number of arguments. It does not invoke the va_end macro. Refer to the
va_arg macro for further information.

See also vprintf and vsprintf.

REF-206 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I
~
I
I
I
I
I

•
I

Return Values

X

Negative value.

vfprintf

Indicat:es the number of transmitted characters.

Indicat:es an output error.

PDP-11 C Run-lime Library Functions and Macros REF-207

vprintf

vprintf

Format

The vprintf function prints formatted output based on an argument list.

#include <stdio.h>

#include <Stdarg.h>

int vprintf (const char •format, va_list arg);

Arguments

format
Contains characters to be written literally to the output or converted as
specified.

arg
Is a list of expressions whose resultant types correspond to the conversion
specifications given in the format specifications.

Description

The vprintf function is the same as the printf function, except it is called
with an argument list that has been initialized by the va_start macro (and
possibly subsequent va_arg calls) instead of being called with a variable
number of arguments. For further information, refer to the va_arg and
va_start macros.

See also vfprintf and vsprintf.

RE~208 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,.
I
I
I
I
I

•
I

Return Values

X

Negative value.

vprintf

Indicates the number of transmitted characters.

Indicates an output error.

PDP-11 C Run-lime Library Functions and Macros REF-209

vsprintf

vsprintf

Format

The vsprintf function prints formatted output based on an argument list.

#include <stdio.h>

#include <Stdarg.h>

int vsprintf (char *str, const char *format, va_list arg);

Arguments

str
Is a pointer to a string.

format
Contains characters to be written literally to the output or converted as
specified.

arg
Is a list of expressions whose resultant types correspond to the conversion
specifications given in the format specifications.

Description

The vsprintf function is the same as the sprintf function, except it is called
with an argument list that has been initialized by the va_start macro (and
possibly subsequent va_arg calls) instead of being called with a variable
number of arguments. For further information, refer to the va_arg and
va_start macros.

REF-210 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I
..
I
I
I
I
I

•
I

Return Values

X

Negative value.

vsprintf

Indicat.es the number of charact.ers written to the
array, excluding the terminating NUL charact.er.

Indicat.es an output error.

PDP-11 C Run-lime Library Functions and Macros REF--211

wcstombs

wcstombs

Format

The wcstombs function converts a sequence of codes corresponding to
multibyte characters into a sequence of multibyte characters and stores
them in the array pointed to by the character pointer argument.

#include <Stdlib.h>

size_t wcstombs (char *s, const wchar_t *pwcs, slze_t n);

Arguments

s
Is a character pointer argument.

pwcs
Points to the array of multibyte characters corresponding to a sequence of
codes converted by the wcstombs function.

n
Specifies the number of stored characters.

Description

The wcstombs function returns the number of modified bytes. This does
not include a terminating NUL character. If the code does not match a valid
multibyte character, wcstombs returns (size_t}-1.

The multibyte characters produced by the conversion of codes pointed to by
pwcs beginning in the initial shift state are stored in the array pointed to
by the character pointer argument.

REF-212 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,,
I
I
I
I
I

•
I

Return Values

(size_t)-1

X

wcstombs

Indicates the code does not match a valid multi
byte character.

Indicates the number of modified bytes excluding
the terminating NUL character.

PDP-11 C Run-lime Library Functions and Macros REF-213

wctomb

wctomb

Format

The wctomb function determines the number of bytes needed to represent
the multibyte character whose code value equals wchar.

#include <Stdlib.h>

Int wctomb (char *s, wchar_t wchar);

Arguments

s
Points to the array of multibyte character representation corresponding to
the code whose value is wchar.

wchar
Is the value of the code needed to represent the multibyte character pointed
to bys.

Description

The wctomb function returns a nonzero or O value if the character pointer
argument is a NULL pointer.

If the character pointer argument is not a NULL pointer, the return value is
either the number of bytes in the multibyte character corresponding to the
value of wchar, or a -1 if it does not correspond to wchar.

REF-214 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I
..
I
I
I
I
I

•
I

Return Values

0 or nonzero value

Value ofwchar

-1

wctomb

lndicat.es the charact.er point.er argument is a
NULL pointer.

lndicat.es the charact.er point.er argument is not
a NULL pointer.

Indicat.es the charact.er pointer argument is not a
NULL pointer and the value does not correspond
to wchar.

PDP-11 C Run-Time Library Functions and Macros REF-215

•• I
2 FCS Extension Library Macros I

I
I
I
I ..
I
I
I
I
I

•
REF-216 I

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

FCS$ASCPP

FCS$ASCPP

Format

The FCS$ASCPP function converts a directory string from ASCil to its
equivalent binary UIC.

#include <fcs.h>

short FCS$ASCPP (char *dds, short *uic)

Arguments

dds
Specifies a pointer to the directory string descriptor.

ulc
Specifies a pointer to the word location to which the binary UIC is to be
returned.

Description

The FCS$ASCPP function converts the directory string contained in dds to
its equivalent binary UIC.

Return Values

1

0

Indicat.es success.

Indicat.es failure.

PDP-11 C Run-lime Library Functions and Macros REF--217

FCS$ASLUN

FCS$ASLUN

Format

The FCS$ASLUN function assigns a logical unit number (LUN) to a spec
ified device and unit and returns the device information to a specified FDB
and filename block.

#include <fcs.h>

short FCS$ASLUN (lcs$fdb *fdb, fcs$fnb *fnb)

Arguments

fdb
Specifies a pointer to the the desired FDB.

fnb
Specifies a pointer to the filename block.

Description

The FCS$ASLUN function returns to the specified filename block and the
specified FDB, information identical to that returned by the device and unit
logic of the FCS$PARSE function.

Return Values

1

0

Indicates success.

Indicates failure.

REF-218 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,,
I
I
I
I
I

•
I

FCS$CLOSE$

FCS$CLOSE$

The FCS$CLOSE$ function terminates file processing in an orderly manner.

Format

#include <fCS.h>

short FCS$CLOSE$ (fcs$fdb *fdb, void (*err)())

Arguments

fdb
Specifies a pointer to the associated FOB.

err
Specifies a pointer to the optional, user-coded, error-handling routine.

Description

The FCS$CLOSE$ function terminates file processing in an orderly manner.
If an error condition is detected during the FCS$CLOSE$ operation, the
user-specified, error-handling routine is called.

Return Values

1

0

Indicates success.

Indicates failure.

PDP-11 C Run-lime Library Functions and Macros REF-219

FCS$CTRL

FCS$CTRL

Format

The FCS$CTRL function performs device-specific control functions.

#include <fcs.h>

short FCS$CTRL (f cs$fdb *fdb, short function, short blocks,

short O)

Arguments

fdb
Specifies a pointer to the associated FOB.

function
Specifies the function code.

blocks
If the function is FCSFFSPC, this specifies the number of blocks to be
spaced forward or backward; otherwise, it must be zero.

0
Last argument is always 0.

Description

The FCS$CTRL function performs device-specific control functions, such as:

• Rewind a magnetic tape volume set.

• Position to the logical end of a magnetic tape volume set.

• Space forward or backward n blocks on a magnetic tape.

• Rewind a file on a magnetic tape or terminal (record-oriented device) •

REF-220 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

FCS$CTRL

• Clear the terminal end-of-file.

Return Values

1

0

Indicates success.

Indicates failure.

PDP-11 C Run-Time Library Functions and Macros REF-221

FCS$DELET$

FCS$DELET$

Format

The FCS$DELET$ function removes a named file from the associated
volume directory and deallocates the space occupied by the file.

#include <fcs.h>

short FCS$DELET$ (fcs$fdb "fdb, void ("err)())

Arguments

fdb
Specifies a pointer to the associated FDB.

e"
Specifies the address of the optional, user-coded, error-handling routine.

Description

The FCS$DELET$ function causes the directory information for the file
associated with the specified FDB to be deleted from the appropriate User
File Directory (UFD). The space occupied by the file is then deallocated and
returned for reallocation to the pool of available storage on the volume.

Return Values

1

0

Indicates success.

Indicates failure.

RE~222 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I
..
I
I
I
I
I

•
I

FCS$DLFNB

FCS$DLFNB
The FCS$DLFNB function deletes a file by filename block.

Format

#include <fcs.h>

short FCS$DLFNB (fcs$fdb "'fdb)

Arguments

fdb
Specifies a pointer to the associated FDB.

Description

The FCS$DLFNB function assumes that the filename block is completely
filled; when called, it closes the file if necessary, and then deletes the file.

Return Values

1

0

Indicates success.

Indicates failure.

PDP-11 C Run-lime Library Functions and Macros REF-223

FCS$ENTER

FCS$ENTER
The FCS$ENTER function inserts an entry by file name into a directory.

Format

#include <fcs.h>

short FCS$ENTER (1cs$fdb *fdb, fcs$fnb *fnb)

Arguments

fdb
Specifies a pointer to the desired FDB.

fnb
Specifies a pointer to the filename block.

Description

The FCS$ENTER function inserts an entry by file name into a directory.

Return Values

1

0

Indicates success.

Indicates failure.

REF-224 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

FCS$EXPLG

FCS$EXPLG

Format

The FCS$EXPLG function expands a logical name and returns a pointer to
the task that points to the expanded string.

#include <fcs.h>

short FC5$EXPLG (int "'*dsd)

Arguments

dsd
Specifies a pointer to the data set descriptor of the string to be expanded.

Description

The FCS$EXPLG function expands the string into the same buffer that
the FCS$PARSE function uses for input files; therefore, caution is advised
in using this function. In addition, the call accepts only logical names that
expand into a correct FCS file specification.

Return Values

1

0

Indicates success.

Indicates failure.

PDP-11 C Run-lime Library Functions and Macros REF-225

FCS$EXTND

FCS$EXTND

Format

The FCS$EXTND function extends either contiguous or noncontiguous files.
The file to be extended can be either open or closed.

#include <fCS.h>

short FCS$EXTND (fcs$fdb *fdb, short extnd_size, short ecb)

Arguments

fdb
Specifies a pointer to the associated FDB.

extnd_slze
Specifies a numeric value specifying the number of blocks to be added to the
file.

ecb
Specifies the extension control bits, as appropriate.

Description

The FCS$EXTND function disables file truncation. Explicitly calls the
FCS$TRNCL function to truncate a file after calling the FCS$EXTND
function.

REF-226 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I

••
I
I
I
I
I

-
I

Return Values

1

0

Indicates success.

Indicates failure.

FCS$EXTND

PDP-11 C Run-lime Library Functions and Macros REF-227

FCS$FDBDF$

FCS$FDBDF$

The FCS$FDBDF$ macro allocates space in the program for an FDB.

Format

#include <fcs.h>

short FCS$FDBDF$ (class, name)

Arguments

class
Specifies the storage class used in allocating the storage for the FDB that is
being declared.

name
Specifies the name of the FDB that is being declared.

Description

The FCS$FDBDF$ macro must be specified in the program once for each
input or output file that the program simultaneously opens during execution.

Return Values

None.

RE~228 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

••
I
I
I
I
I

-
I

•• I
I
I
I
I
I

••
I
I
I
I
I

-
I

FCS$FIND

FCS$FIND

Format

The FCS$FIND function locates a directory entry by file name and lists it
in the file identification field in both the Master File Directory (MFD) and
User File Directory (UFD).

#include <fCS.h>

FCS$FIND (fcs$fdb *fdb, fcs$fnb *fnb)

Arguments

fdb
Specifies a pointer to the desired FOB.

fnb
Specifies a pointer to the filename block.

Description

The FCS$FIND function searches the directory file specified in the filename
block. The file is searched for an entry that matches the specified file name,
file type, and file version number.

Return Values

1

0

Indicates success.

Indicates failure.

PDP-11 C Run-lime Library Functions and Macros REF-229

FCS$FINIT$

FCS$FINIT$

Format

The FCS$FINIT$ function initializes coding to set up the FSR.

#Include <fcs.h>

FCS$FINIT$

Arguments

None.

Description

In the case of a program that is written so that it can be restarted, it
is necessary to issue the FCS$FINIT$ function call in the program's
initialization code because such a program performs all its initialization at
run time, rather than at assembly time.

Return Values

None.

REF-230 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

••
I
I
I
I
I

-
I

•• I
I
I
I
I
I

••
I
I
I
I
I

-
I

FCS$FLUSH

FCS$FLUSH

Format

The FCS$FLUSH function writes the block buffer to the file being written
in record mode.

#include <fcs.h>

short FCS$FLUSH (fcs$fdb *fdb)

Arguments

fdb
Specifies a pointer to the associated FDB.

Description

The FCS$FLUSH function writes file attributes each time it is called. It
should be used whenever data needs to be immediately written to a file.

Closing the file also guarantees that the block buffer is flushed and that the
file attributes are written back to the file header.

Return Values

1

0
Indicates success.

Indicates failure.

PDP-11 C Run-lime Library Functions and Macros R~231

FCS$FSRSZ$

FCS$FSRSZ$

The FCS$FSRSZ$ function establishes the size of the FSR.

Format

#include <fcs.h>

FCS$FSRSZ$ ~nt fbufs, int bufsiz)

Arguments

fbufs
Specifies the number of files to be opened.

bufslz
Specifies the total block buffer pool space (in bytes) needed to support the
maximum number of files that can be opened simultaneously.

Description

The FCS$FSRSZ$ function does not generate executable code; it merely
allocates space for a block-buffer pool.

Return Values

None.

REF-232 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

••
I
I
I
I
I

-
I

I
I
I
I
I ,.
I
I
I
I
I

I

FCSGET

FCSGET

Format

The FCSGET function reads logical data records from a file.

#include <fcs.h>

short FCSGET (1cs$fdb "'fdb, char "'urba, short urbs,}
void ("'err)()

Arguments

fdb
Specifies a pointer to the associated FDB.

urba
Specifies a pointer to the record buffer.

urbs
Specifies the numeric value that defines the size (in bytes) of the record
buffer.

err
Specifies the address of the optional, user-coded, error-handling routine.

Description

The FCSGET function reads logical records from a file.

PDP-11 C Run-Time Library Functions and Macros REF-233

FCSGET

Return Values

1

0

Indicates success.

Indicates failure.

REF-234 PDP-11 C Run-Time Library Functions and Macros

~
I
I
I
I
I ..
I
I
I
I
I

I

I
I
I
I
I

" I
I
I
I
I

•
I

FCSGETR

FCSGETR

Format

The FCSGETR function reads fixed-length records from a file in random
mode.

#include <fCS.h>

short FCSGETR (fcs$fdb *fdb, char *urba, short urbs,)
short /rcnm, short hrcnm, void (*err)()

Arguments

fdb
Specifies a pointer to the associated FDB.

urba
Specifies a pointer to the record buffer.

urbs
Specifies the numeric value that defines the size (in bytes) of the record
buffer.

lrcnm
Specifies the low-order 16 bits of the number of the record to be read.

hrcnm
Specifies the high-order 15 bits of the number of the record to be read.

err
Specifies the address of the optional, user-coded, error-handling routine.

PDP-11 C Run-lime Library Functions and Macros REF-235

FCSGETR

Description

By definition, issuing the FCSGETR function requires familiarity with
the structure of the file to be read and that the number of the record to be
read is precisely specified.

Return Values

1

0

Indicates success.

Indicates failure.

REF-236 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I

I
I
I
I
I

•
I

FCSGETS

FCSGETS

Format

The FCSGETS function reads records from a file in sequential mode.

#include <fcs.h>

short FCSGETS (fcs$fdb *fdb, char *urba, short urbs,}
void (*err)()

Arguments

fdb
Specifies a pointer to the associated FDB.

urbs
Specifies a pointer to the record buffer.

urbs
Specifies the numeric value that defines the size (in bytes) of the record
buffer.

e"
Specifies the address of the optional, user-coded, error-handling routine.

Description

The FCSGETS function is specifically for use in an overlaid environment
in which the amount of memory available to the program is limited and files
are to be read in strictly sequential mode.

PDP-11 C Run-lime Library Functions and Macros REF-237

FCSGETS

Return Values

1

0

Indicat.es success.

Indicat.es failure.

REF-238 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

I
I
I
I

I
I
I
I
I

•
I

FCS$GTDID

FCS$GTDID

Format

The FCS$GTDID function inserts directory information into a specified
filename block.

#include <fCS.h>

short FCS$GTDID (1cs$fdb *fdb, fcs$fnb *fnb)

Arguments

fdb
Specifies a pointer to the associated FDB.

fnb
Specifies a pointer to the filename block into which the directory information
is to be placed.

Description

The FCS$GTDID function uses the binary value found in the default UIC
word as the desired UFD, unlike the FCS$GTDffi function, which allows
the specification of the directory string.

Return Values

1

0

Indicates success.

Indicates failure.

PDP-11 C Run-Time Library Functions and Macros REF--239

FCS$GTDIR

FCS$GTDIR

Format

The FCS$GTDffi function inserts directory information from a directory
string descriptor into a specified filename block.

#include <fcs.h>

short FCS$GTDIR (fcs$fdb *fdb, fcs$fnb *fnb, int *dsd)

Arguments

fdb
Specifies a pointer to the associated FDB.

fnb
Specifies a pointer to the filename block into which the directory information
is to be placed.

dsd
Specifies a pointer to the 2-word directory string descriptor.

Description

The FCS$GTDffi function returns the directory ID to the 3 words of the
specified filename block, preserving information in offset locations N.FNAM,
N.FYTP, N.FVER, N.DVNM, and N.UNIT of the filename block, but clearing
the rest of the filename block.

REF-240 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I
t'
I
I
I
I
I

•
I

Return Values

1

0

Indicat.es success.

Indicat.es failure.

FCS$GTDIR

PDP-11 C Run-Time Library Functions and Macros REF-241

FCS$MARK

FCS$MARK

Format

The FCS$MARK function points to a byte or record within a specified file.

#include <fcs.h>

short FCS$MARK (fcs$fdb "fdb, short "highbits, short "lowbits,
short "bytenum)

Arguments

fdb
Specifies a pointer to the associated FDB.

hlghblts
Specifies a pointer to the location to store the high-order bits of the virtual
block number.

lowblts
Specifies a pointer to the location to store the low-order bits of the virtual
block number.

bytenum
Specifies a pointer to the location to store the number of the next byte
within the virtual block.

Description

The FCS$MARK function saves current position information of a file for
later use. By saving the current position information of a file, the file can be
closed and later reopened to the same position. The FCS$MARK function
also allows records to be altered within a file .

REF-242 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
FCS$MARK

I Return Values

None.

I
I
I
I ,.
I
I
I
I
I

•
I PDP-11 C Run-lime Library Functions and Macros REF-243

FCS$MRKDL

FCS$MRKDL

The FCS$MRKDL function marks a temporary file for deletion.

Format

#include <fcs.h>

short FCS$MRKDL (fcs$fdb *fdb)

Arguments

fdb
Specifies a pointer to the associated FDB.

Description

The FCS$MRKDL function is called prior to closing a temporary file; the
file is deleted when it is closed.

NOTE

If the file contains sensitive information, it should be cleared
before closing, or the disk should be reformatted to destroy the
information.

Return Values

1

0

Indicates success.

Indicates failure.

REF-244 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

I
I
I
I
I ,.
I
I
I
I
I

•
I

FCS$OFID$x

FCS$OFID$x

Format

The FCS$OFID$x fnnctions open an existing file by using file identification
information in the filename block.

#include <fcs.h>

short FCS$0F1D$x (fcs$fdb *fdb, short Jun, short *dspt,)
short race, char *urba, short urbs,
void (*err)()

Arguments

fdb
Specifies a pointer to the associated FOB.

Jun
Specifies the LUN associated with the desired file.

dspt
Specifies a pointer to the data-set descriptor.

race
Specifies record access byte.

urba
Specifies a pointer to the record buffer.

urbs
Specifies the numeric value that defines the size (in bytes) of the record
buffer.

e"
Specifies the address of the optional, user-coded, error-handling routine .

PDP-11 C Run-lime Library Functions and Macros REF-245

FCS$OFID$x

Description

The FCS$OFID$x functions open a file by using information stored in the
file identification field of the filename block in the FDB (not in the default
filename block). The suffixes (x) have the following meanings:

Suffix

A

M
R

u
w

Return Values

1

0

Append (add) data to the end of an existing file.

Modify an existing file without changing its length.

Read an existing file.

Update an existing file and extend its length, if necessary.

Write (create) a new file.

Indicates success.

Indicates failure.

REF-246 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

I
I
I
I
I ,.
I
I
I
I
I

•
I

FCS$OFNB$x

FCS$OFNB$x

Format

The FCS$OFNB$x functions open a file by using file name information in
the filename block.

#include <fcs.h>

short FCS$OFNB$x (fcs$fdb *fdb, short Jun, short *dspt,}
short race, char *urba, short urbs,
void (*err)()

Arguments

fdb
Specifies a pointer to the associated FDB.

lun
Specifies the LUN associated with the desired file .

dspt
Specifies a pointer to the data-set descriptor.

race
Specifies record access byte.

urba
Specifies a pointer to the record buffer.

urbs
Specifies the numeric value that defines the size (in bytes) of the record
buffer.

err
Specifies the address of the optional, user-coded, error-handling routine .

PDP-11 C Run-lime Library Functions and Macros REF-247

FCS$OFNB$x

Description

The FCS$OFNB$x functions differ from the FCS$OFID$x functions in two
respects: they can be issued to create a new file, and they can be issued to
open a file by filename block. The suffixes (x) have the following meanings:

Suffix

A

M
R

u
w

Return Values

1

0

Meaning

Append (add) data to the end of an existing file.

Modify an existing file without changing its length.

Read an existing file.

Update an existing file and extend its length, if necessary.

Write (create) a new file.

Indicates success.

Indicates failure.

REF-248 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,,
I
I
I
I
I

•
I

FCS$OPEN$x

FCS$OPEN$x

Format

The FCS$0PEN$x functions are generalized open routines for specifying
file access.

#include <fcs.h>

short FCS$0PEN$x (fcs$fdb *fdb, short Jun, short *dspt,)

short race, char *urba, short urbs,
void (*err)()

Arguments

fdb

Specifies a pointer to the associated FDB.

Jun

Specifies the LUN associated with the desired :.ile.

dspt

Specifies a pointer to the data-set descriptor.

race
Specifies record access byte.

urba
Specifies a pointer to the record buffer.

urbs

Specifies the numeric value that defines the size (in bytes) of the record
buffer.

err

Specifies the address of the optional, user-coded, error-handling routine.

PDP-11 C Run-lime Library Functions and Macros RE~249

FCS$OPEN$x

Description

The FCS$0 PEN$x functions are used to open a file. The suffixes (x) have
the following meanings:

Suffix

A

M
R

u
w

Return Values

1

0

Meaning

Append (add) data t.o the end of an existing file.

Modify an existing file without changing its length.
Read an existing file.

Update an existing file and extend its length, if necessary.
Write (create) a new file.

Indicates success.

Indicates failure.

RE~250 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

I
I
I
I
I
fl
I
I
I
I
I

•
I

FCS$OPNS$x

FCS$OPNS$x

Format

The FCS$OPNS$x functions open and prepare a file for processing and
allow shared access to that file.

#include <fcs.h>

short FCS$OPNS$x (1cs$fdb *fdb, short Jun, short *dspt,)
short race, char *urba, short urbs,
void (*err)()

Arguments

fdb
Specifies a pointer to the associated FDB.

Jun
Specifies the LUN associated with the desired file.

dspt
Specifies a pointer to the data-set descriptor.

race
Specifies record access byte.

urba
Specifies a pointer to the record buffer.

urbs
Specifies the numeric value that defines the size (in bytes) of the record
buffer.

err
Specifies the address of the optional, user-coded, error-handling routine.

PDP-11 C Run-lime Library Functions and Macros REF-251

FCS$OPNS$x

Description

The suffixes (x) have the following meanings:

Sufm

A

M

R

u
w

Return Values

1

0

Meaning

Append (add) data t.o the end of an existing file.

Modify an existing file without changing its length.

Read an existing file.

Update an existing file and extend its length, if necessary.

Write (create) a new file.

Indicates success.

Indicates failure.

REF-252 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,,
I
I
I
I
I

•
I

FCS$OPNT$D

FCS$0PNT$D

Format

The FCS$OPNT$D function creates and opens a temporary file. The
presumption in issuing the FCS$OPNT$D function is that the created file
is to be used only once.

#include <fcs.h>

short FCS$OPNT$D (fcs$fdb "'fdb, short fun, short "'dspt, short
race, char "'urba, short urbs, void ("'err)())

Arguments

fdb
Specifies a pointer to the associated FOB.

Jun
Specifies the LUN associated with the desired file.

dspt
Specifies a pointer to the data-set descriptor.

race
Specifies record access byte.

urba
Specifies a pointer to the record buffer.

urbs
Specifies the numeric value that defines the size (in bytes) of the record
buffer.

err
Specifies the address of the optional, user-coded, error-handling routine.

PDP-11 C Run-lime Library Functions and Macros REF-253

FCS$0PNT$D

Description

The FCS$OPNT$D function creates and opens a temporary file. This file
cannot be opened by another program. When the file is closed, it is deleted;
its space is returned to the pool of available storage for reallocation.

NOTE

If the FCS$OPNT$D function is used for a temporary file
containing sensitive information, it is recommended that you
zero the file before closing it, or reformat the disk to destroy
the sensitive information. (Although a temporary file is deleted
after use, the information physically remains on the volume
until written over with another file, and it could be analyzed by
unauthorized users.)

Return Values

1

0

Indicates success.

Indicates failure.

REF-254 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

I
I
I
I
I

" I
I
I
I
I

•
I

FCS$OPNT$W

FCS$OPNT$W

Format

The FCS$OPNT$W function creates and opens a temporary file for process
ing data.

#include <fcs.h>

short FCS$OPNT$W (fcs$fdb *fdb, short Jun, short *dspt,)
short race, char *urba, short urbs,
void (*err)()

Arguments

fdb
Specifies a pointer to the associated FDB.

lun
Specifies the LUN associated with the desired file.

dspt
Specifies a pointer to the data-set descriptor.

race
Specifies record access byte.

urba
Specifies a pointer to the record buffer.

urbs
Specifies the numeric value that defines the size (in bytes) of the record
buffer.

err
Specifies the address of the optional, user-coded, error-handling routine.

PDP-11 C Run-lime Library Functions and Macros REF-255

FCS$OPNT$W

Description
The FCS$0PNT$W function creates and opens a temporary file for some
special purpose of limited duration. If a temporary file is to be used only
once, it is best created through the FCS$0PNT$D function described above.

Return Values

1

0

Indicates success.

Indicates failure.

REF-256 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
1.
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,,
I
I
I
I
I

•
I

FCS$PARSE

FCS$PARSE

Format

The FCS$PARSE function performs any necessary logical expansion and
parses the resultant string.

#include <fcs.h>

short FCS$PARSE (fcs$fdb "fdb, fcs$fnb "fnb, short "dsd,
fcs$fnb "fnb)

Arguments

fdb
Specifies a pointer to the associated FDB.

fnb
Specifies a pointer to the filename block to be filled in.

dsd
Specifies a pointer to the desired data-set descriptor.

fnb
Specifies a pointer to the default filename block.

Description

The FCS$PARSE function first zeros the filename block and then stores the
filename information into the filename block.

PDP-11 C Run-lime Library Functions and Macros REF-257

FCS$PARSE

Return Values

1

0

Indicates success.

Indicates failure.

REF-258 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,,
I
I
I
I
I

•
I

FCS$POINT

FCS$POINT

Format

The FCS$POINT function points to a byte or record within a specified £le.

#include <fcs.h>

short FCS$POINT (fcs$fdb *fdb, short highbits, short lowbits,
short bytenum)

Arguments

fdb
Specifies a pointer to the associated FDB.

hlghblts
Specifies the high-order bits of the virtual block number.

lowblts
Specifies the low-order bits of the virtual block number.

bytenum
Specifies the number of the next byte within the virtual block.

Description

The FCS$POINT function positions a file pointer to a specified byte in a
specified virtual block. Use of this function is restricted to files accessed
with the FCSGET and FCSPUT functions.

PDP-11 C Run-lime Library Functions and Macros REF--259

FCS$POINT

Return Values

1

0

Indicates success.

Indicates failure .

REF-260 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,.
I
I
I
I
I

•
I

FCS$POSIT

FCS$POSIT

Format

The FCS$POSIT function returns specified record position information.

#include <fcs.h>

short FCS$POSIT (Tcs$fdb *fdb, short *highbits, short *Jowbits,
short *bytenum)

Arguments

fdb
Specifies a pointer to the associated FDB.

hlghblts
Specifies a pointer to the location to store the high-order bits of the virtual
block number.

lowblts
Specifies a pointer to the location to store the low-order bits of the virtual
block number.

bytenum
Specifies a pointer to the location to store the number of the next byte
within the virtual block.

Description

The FCS$POSIT function calculates the virtual block number and the
byte number locating the beginning of a specified record. Unlike the
FCS$POSRC function, which sets up the position information of the file to
the specified record, FCS$POSIT calculates the positional information of a
specified record, so that a FCS$POINT operation can be performed.

PDP-11 C Run-lime Library Functions and Macros REF--261

FCS$POSIT

Return Values

1

0

Indicates success.

Indicates failure.

REF--262 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I

" I
I
I
I
I

•
I

FCS$POSRC

FCS$POSRC

Format

The FCS$POSRC function sets up the position information for a file to a
specified fixed-length record within a file .

#include <fcs.h>

short FCS$POSRC (fcs$fdb *fdb)

Arguments

fdb
Specifies a pointer to the associated FDB.

Description

The FCS$POSRC function sets up the position information for a file to a
specified fixed-length record within a file. This function is used to perform
random access FCSPUT operations in locate mode.

Return Values

1

0

Indicates success.

Indicates failure.

PDP-11 C Run-lime Library Functions and Macros RE~263

FCS$PPASC

FCS$PPASC
The FCS$PPASC function converts a binary UIC directory string to ASCII.

Format

#include <fcs.h>

void FCS$PPASC (char **name, short uic, short control)

Arguments

""name
Specifies the address of a storage area holding the ASCII string .

ulc
Contains the UIC.

control
Contains the control code.

Description

The FCS$PPASC function converts a binary UIC to its corresponding ASCII
directory string.

Return Values

None.

REF-264 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

I
I
I
I
I ,,
I
I
I
I
I

•
I

FCS$PRINT$

FCS$PRINT$

The FCS$PRINT$ function queues a file for printing on a specined device.

Format

#include <fcs.h>

short FCS$PRINT$ (fcs$fdb *fdb, void (*err)())

Arguments

fdb
Specifies a pointer to the associated FDB.

e"
Specifies the address of the optional, user-coded, error-handling routine.

Description

The FCS$PRINT$ function queues a file for printing on a specified device.
The device must be a unit record, carriage-controlled device, such as a line
printer or terminal. The default device is a line printer (LP).

Return Values

1

0

Indicates success.

Indicates failure.

PDP-11 C Run-lime Library Functions and Macros REF-265

FCS$PRSDI

FCS$PRSDI

Format

The FCS$PRSDI function is similar to FCS$PARSE but performs only
those operations associated with requisite directory identification informa
tion.

#include <fcs.h>

short FCS$PRSDI (1cs$fdb *fdb, fcs$fnb "lnb, short *dsd,
f cs$f nb *fnb)

Arguments

fdb
Specifies a pointer to the desired FOB.

fnb
Specifies a pointer to the desired filename block.

dsd
Specifies a pointer to the desired data-set descriptor.

fnb
Specifies a pointer to the desired default filename block.

Description

The FCS$PRSDI function performs a FCS$PARSE operation on the
directory identification information field in the specified data-set descriptor
or default filename block. The FCS$PRSDI function does not perform any
logical name expansion.

REF--266 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

..
I
I
I
I
I
I ,.
I
I
I
I
I

•
I

Return Values

1

0
Indicat.es success.

Indicat.es failure.

FCS$PRSDI

PDP-11 C Run-lime Library Functions and Macros REF--267

FCS$PRSDV

FCS$PRSDV

Format

The FCS$PRSDV function works the same as FCS$PARSE but performs
only those operations associated with requisite device and unit information.

#include <fcs.h>

short FCS$PRSDV (fcs$fdb *fdb, fcs$fnb *fnb, short *dsd,
fcs$fnb *fnb)

Arguments

fdb
Specifies a pointer to the desired FDB.

fnb
Specifies a pointer to the desired filename block.

dsd
Specifies a pointer to the desired data-set descriptor.

fnb
Specifies a pointer to the desired default filename block.

Description

The FCS$PRSDV function zeros the filename block, calls the FCS$PARSE
routine to operate on the device and unit fields in the specified data-set
descriptor or default filename block, and assigns the LUN contained in the
offset location of the specified FDB.

REF-268 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,.
I
I
I
I
I

•
I·

Return Values

1

0

Indicates success.

Indicates failure.

FCS$PRSDV

PDP-11 C Run-Time library Functions and Macros REF-269

FCS$PRSFN

FCS$PRSFN

Format

The FCS$PRSFN function works the same as FCS$PARSE but performs
only operations associated with requisite file name, file type, and file version
information.

#include <fcs.h>

short FCS$PRSFN (1cs$fdb *fdb, fcs$f nb *fnb, short *dsd,
fcs$fnb *fnb)

Arguments

fdb
Specifies a pointer to the desired FDB.

fnb
Specifies a pointer to the desired filename block.

dsd
Specifies a pointer to the desired data-set descriptor.

fnb
Specifies a pointer to the desired default filename block.

Description

The FCS$PRSFN function performs a FCS$PARSE operation on the file
name, file type, and file version information fields in the specified data-set
descriptor or default filename block. It does not perform any logical name
expansion.

RE~270 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,.
I
I
I
I
I

•
I

Return Values

1

0

Indicates success.

Indicates failure.

FCS$PRSFN

PDP-11 C Run-lime Library Functions and Macros REF--271

FCSPUT

FCSPUT

Format

The FCSPUT function writes logical data records to a file.

#include <fcs.h>

short FCSPUT (1cs$fdb *fdb, char *urba, short urbs,)
void (*err)()

Arguments

fdb
Specifies a pointer to the associated FDB.

urba
Specifies a pointer to the record buffer.

urbs
Specifies the numeric value that defines the size (in bytes) of the record
buffer.

e"
Specifies the address of the optional, user-coded, error-handling routine.

Description

If the FCSPUT function is operating in random access mode, the number
of the record to be written is maintained by FCS in the offset location of
the associated FOB. This value increases by one after each FCSPUT or
FCSPUTR operation to point to the next sequential record position .

RE~272 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,,
I
I
I
I
I

•
I

Return Values

1

0

Indicates success.

Indicates failure.

FCSPUT

PDP-11 C Run-lime Library Functions and Macros REF-273

FCSPUTR

FCSPUTR

Format

The FCSPUTR function writes fixed-length records to a file in random
mode.

#include <fcs.h>

short FCSPUTR (fcs$fdb *tdb, char *urba, short urbs, short
lrcnm, short hrcnm, void (*err)())

Arguments

fdb
Specifies a pointer to the associated FOB.

urba
Specifies a pointer to the record buffer.

urbs
Specifies the numeric value that defines the size (in bytes) of the record
buffer.

lrcnm
Specifies the low-order 16 bits of the number of the record to be read.

hrcnm
Specifies the high-order 15 bits of the number of the record to be read.

e"
Specifies the address of the optional, user-coded, error-handling routine.

REF-274 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,.
I
I
I
I
I

•
I

FCSPUTR

Description

The FCS$PU'l'$R function differs from the FCSPUT function in that it
allows the specification of the desired record number.

Return Values

1

0

Indicates success.

Indicates failure.

PDP-11 C Run-lime Library Functions and Macros REF-275

FCSPUTS

FCSPUTS

Format

The FCSPUTS function writes records to a file in sequential mode.

#include <fcs.h>

short FCSPUTS (1cs$fdb •tdb, char •urba, short urbs,)
void terr)()

Arguments

fdb
Specifies a pointer to the associated FDB.

urba
Specifies a pointer to the record buffer.

urbs
Specifies the numeric value that defines the size (in bytes) of the record
buffer.

e"
Specifies the address of the optional, user-coded, error-handling routine.

Description

The FCSPUTS function is specifically for use in an overlaid environment
in which the amount of memory available to the program is limited and files
are to be written in sequential mode.

REF-276 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

-

•• I
I
I
I
I
I ,.
I
I
I
I
I

•
I

Return Values

1

0

Indicates success.

Indicates failure.

FCSPUTS

PDP-11 C Run-lime Library Functions and Macros REF-277

FCS$RDFDR

FCS$RDFDR
The FCS$RDFDR function reads a directory string descriptor.

Format

#include <fcs.h>

void FCS$RDFDR (short *size, char **pdds)

Arguments

size
Specifies a location to store the size (in bytes) of the default directory string .

pdds
Specifies a location to store the default directory string.

Description

The FCS$RDFDR function reads the default directory string descriptor
words previously written by the FCS$WDFDR function.

Return Values

None.

RE~278 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,,
I
I
I
I
I

•
I

FCS$RDFFP

FCS$RDFFP

Format

The FCS$RDFFP function reads the default file protection word in a
location in the program section of the FSR.

#include <fCS.h>

void FCS$RDFFP (short *uic)

Arguments

ulc
Is a pointer to a location to store the default protection word.

Description

FCS uses the default file protection to establish the default file protection
values for the new file. The FCS$RDFFP function allows the user to read
the current default file protection word.

Return Values

None.

PDP-11 C Run-lime Library Functions and Macros REF-279

FCS$RDFUI

FCS$RDFUI

The FCS$RDFUI function reads the default UIC.

Format

#include <fcs.h>

void FCS$RDFUI (short *uic)

Arguments

ulc
Specifies a pointer to a location to store the binary-encoded default UIC.

Description

The FCS$RDFUI function reads the default UIC. Unlike the default
directory string descriptor that describes an ASCII string, the default UIC is
maintained as a binary value.

Return Values

None.

REF-280 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,.
I
I
I
I
I

•
I

FCS$READ$

FCS$READ$

Format

The FCS$READ$ function reads virtual data blocks from a file.

#include <fcs.h>

short FCS$READ$ (1cs$fdb *fdb, char *bkda, short bkds,}
long *bkvd, short bkef, short "bkst,
void {*bkdn)(}, void (*err)()

Arguments

fdb
Specifies a pointer to the associated FOB.

bkds
Specifies a pointer to the 1/0 block buffer.

bkds
Specifies the size (in bytes) of the virtual block to be written.

bkvb
Specifies a pointer to a 2-word block containing the number of the virtual
block to be written.

bkef
Specifies the event flag number used in synchronizing block 1/0 operations.

bkst
Specifies a pointer to the IOSB.

bkdn
Specifies the entry point address of an AST service routine .

PDP-11 C Run-lime Library Functions and Macros RE~281

FCS$READ$

err
Specifies the address of the optional, user-coded, error-handling routine.

Description

The FCS$READ$ function is issued to read a virtual block of data to a
block-oriented device, for example, magnetic tape or disk.

Return Values

1

0

Indicates success.

Indicates failure.

REF-282 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,,
I
I
I
I
I

•
I

FCS$REMOV

FCS$REMOV

The FCS$REMOV function deletes an entry from a directory by file name.

Format

#include <fcs.h>

short FCS$REMOV (fcs$fdb *fdb, fcs$fnb *fnb)

Arguments

fdb
Specifies a pointer to the desired FDB.

fnb
Specifies a pointer to the filename block.

Description

The FCS$REMOV function deletes only a specified directory entry; it does
not delete the associated file.

Return Values

1

0

Indicates success.

Indicates failure.

PDP-11 C Run-lime Library Functions and Macros REr--283

FCS$RENAM

FCS$RENAM

Format

The FCS$RENAM function changes the name of a file in its associated
directory.

#include <fcs.h>

short FCS$RENAM (1cs$fdb "oldfdb, fcs$fdb "newfdb)

Arguments

oldfdb
Specifies a pointer to the FDB associated with the file with the original
name.

newfdb
Specifies a pointer to the FDB containing the desired file name information,
LUN assignment, and the event flag.

Description

If the renamed file is open when the FCS$RENAM is called, that file is
closed before the renaming operation is attempted.

Return Values

1

0

Indicates success.

Indicates failure.

REF-284 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,.
I
I
I
I
I

•
I

FCS$RFOWN

FCS$RFOWN

Format

The FCS$RFOWN function reads the contents of the file owner word in the
program section.

#include <fcs.h>

short FCS$RFOWN (short "tow)

Arguments

tow
Specifies a pointer to a location to store the file owner word.

Description

The FCS$RFOWN function reads the contents of the file owner word.

Return Values

None.

PDP-11 C Run-lime Library Functions and Macros REF-285

FCS$TRNCL

FCS$TRNCL

Format

The FCS$TRNCL function truncates a file to the logical end of the file,
deallocates any space beyond that point, and closes the file.

#include <fcs.h>

short FCS$TRNCL (Tcs$fdb *tdb)

Arguments

fdb
Specifies a pointer to the associated FDB.

Description

The FCS$TRNCL function truncates a file to the logical end of the file. The
file must have been opened with both write and extend privileges; otherwise,
the truncation will fail .

Return Values

1

0

Indicates success.

Indicates failure.

REF-286 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,,
I
I
I
I
I

•
I

FCS$WAIT$

FCS$WAIT$

Format

The FCS$WAIT$ function suspends program execution until a requested
block input/output transfer is completed.

#include <fcs.h>

short FCS$WAIT$ (1cs$fdb *fdb, short bkef, short *bkst,)
void (*err)()

Arguments

fdb
Specifies a pointer to the associated FOB.

bkef
Specifies the event flag number to be used for synchronizing block 1/0
operations.

bkst
Specifies a pointer to the IOSB.

err
Specifies the address of the optional, user-coded, error-handling routine.

Description

The FCS$WAIT$ function, which is issued only with FCS$READ$ and
FCS$WRITE$ operations, suspends program execution until the
requested block 1/0 transfer is completed. This function may be used to
synchronize a block I/0 operation that depends on the successful completion
of a previous block 1/0 transfer .

PDP-11 C Run-lime Library Functions and Macros REF-287

FCS$WAIT$

Return Values

1

0

Indicates success.

Indicates failure.

REF-288 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,,
I
I
I
I
I

•
I

FCS$WDFDR

FCS$WDFDR

Format

The FCS$WDFDR function writes directory string descriptors in program
section $$FSR2.

#include <fcs.h>

void FCS$WDFDR (short size, char *pdds)

Arguments

size
Specifies the size (in bytes) of the default directory string.

pdds
Specifies a pointer to the default directory string.

Description

The FCS$WDFDR function creates the default directory string descriptor
words read by the FCS$RDFDR function.

Return Values

None.

PDP-11 C Run-lime Library Functions and Macros REF-289

FCS$WDFFP

FCS$WDFFP

Format

The FCS$WDFFP function writes a new default file protection word into
the program section $$FSR2.

#include <fcs.h>

void FCS$WDFFP (short uic)

Arguments

ulc
Specifies the new default protection word to be written.

Description

FCS uses the default file protection word only when a file is created to
establish the default file protection values for the new file.

Return Values

None.

REF-290 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,.
I
I
I
I
I
II
I

FCS$WDFUI

FCS$WDFUI

Format

The FCS$WDFUI function writes the default UIC to a program section in
the FSR.

#include <fcs.h>

void FCS$WDFUI (short uic)

Arguments

u/c
Specifies the binary-encoded default UIC.

Description

The FCS$WDFUI function writes a new default UIC. Unlike the default
directory string descriptor that describes an ASCII string, the default UIC
is maintained as a binary value. Unless the default UIC is changed through
the FCS$WDFUI function, the default UIC always corresponds to the UIC
under which the task is running.

Return Values

None.

PDP-11 C Run-lime Library Functions and Macros REF-291

FCS$WFOWN

FCS$WFOWN

Format

The FCS$WFOWN function initializes the file owner word in the program
section $$FSR2.

#include <fcs.h>

void FCS$WFOWN (short tow)

Arguments

tow
Contains the file owner word to be written.

Description

The FCS$WFOWN function initializes the file owner word (UIC).

Return Values

None.

REF-292 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
FCS$WRITE$

I FCS$WRITE$

I
I
I
I ,.
I
I
I
I
I
II
I

Format

The FCS$WRITE$ function writes virtual data blocks to a file.

#include <fcs.h>

short FCS$WRITE$ (fcs$fdb "fdb, char "bkda, short bkds,)
long "bkvd, short bkef, short "bkst,
void {"bkdn)(), void ("err)()

Arguments

fdb
Specifies a pointer to the associated FDB.

bkda
Specifies a pointer to the 1/0 block buffer.

bkds
Specifies the size (in bytes) of the virtual block to be written.

bkvb
Specifies a pointer to a 2-word block containing the number of the virtual
block to be written.

bkef
Specifies the event flag number used in synchronizing block 1/0 operations.

bkst
Specifies a pointer to the I0SB.

bkdn
Specifies the entry point address of an AST service routine.

PDP-11 C Run-lime Library Functions and Macros REF-293

FCS$WRITE$

e"
Specifies a pointer to the optional, user-coded, error-handling routine.

Description

The FCS$WRITE$ function is issued to write a virtual block of data to a
block-oriented device, for example, magnetic tape or disk.

Return Values

1

0

Indicates success.

Indicates failure.

REF-294 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

•• I
I
I
I
I
I ,.
I
I
I
I
I
II
I

FCS$XQIO

FCS$XQIO

Format

The FCS$XQIO function executes a specified QIO$ function and waits for
its completion.

#include <fcs.h>

short FCS$XQIO (1cs$fdb *pfdb, short function, short nparams,
short *paramlist)

Arguments

pfdb
Specifies a pointer to the desired FDB.

function
Specifies the desired function code.

npsrams
Specifies the number of optional parameters, if any.

psrsmllst
Specifies a pointer to the beginning address of the list of optional directive
parameters.

Description

The FCS$XQIO function executes a specified Q10$ function and waits for
its completion.

PDP-11 C Run-lime Library Functions and Macros REF-295

FCS$XQIO

Return Values

None.

REF-296 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I 3 RMS Extension Library Macros

I
I
I
I
~
I
I
I
I
I

-
I REF-297

RMS$CLOSE

RMS$CLOSE
The RMS$CLOSE function closes an open file.

Format

#include <rmsops.h>

void RMS$CLOSE (struct FAB *pfab, ...);

Arguments

pfab
Specifies a pointer to the associated FAB.

Specifies the following optional addresses:

pe"
Specifies the address of the optional, user-coded, error-handling routine.

psucc
Specifies the address of the optional, user-coded, success-handling routine.

Description

The RMS$CLOSE macro closes an open file.

Return Values

None.

REF-298 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

..
I
I
I
I
I
I ,.
I
I
I
I
I

-
I

RMS$CONNECT

RMS$CONNECT

Format

The RMS$CONNECT function connects a record stream to an open file and
initializes the stream context.

#include <rmsops.h>

#pragma linkage fortran RMS$CONNECT

void RMS$CONNECT (struct S_RAB *prab, ...);

Arguments

prab
Specifies a pointer to the associated RAB.

Specifies the following optional addresses:

perr
Specifies the address of the optional, user-coded, error-handling routine.

psucc
Specifies the address of the optional, user-coded, success-handling routine.

Description

The RMS$CONNECT macro connects a record stream to an open file and
initializes the stream context.

PDP-11 C Run-lime Library Functions and Macros REF-299

RMS$CONNECT J
I

Return Values I
None.

I
I
I
I ..
I
I
I
I
I

•
REF-300 PDP-11 C Run-lime Library Functions and Macros I

•• I
I
I
I
I

I
I
I
I
I

•
I

RMS$CREATE

RMS$CREATE

The RMS$CREATE function creates a new file and opens it for processing.

Format

#include <rmsops.h>

#pragma linkage fortran RMS$CREATE

void RMS$CREATE (struct FAB f)fab, ...);

Arguments

ptab
Specifies a pointer to the associated FAB.

Specifies the following optional addresses:

perr
Specifies the address of the optional, user-coded, error-handling routine.

psucc
Specifies the address of the optional, user-coded, success-handling routine.

Description

The RMS$CREATE function creates a new file and opens it for processing.

Return Values

None .

PDP-11 C Run-lime Library Functions and Macros REF-301

RMS$D ELETE

RMS$DELETE

Format

The RMS$DELETE function removes a record from a relative or indexed
file.

#include <rmsops.h>

#pragma linkage fortran RMS$DELETE

void RMS$DELETE (struct S_RAB *prab, ...);

Arguments

prab
Specifies a pointer to the associated RAB.

Specifies the following optional addresses:

pe"
Specifies the address of the optional, user-coded, error-handling routine.

psucc
Specifies the address of the optional, user-coded, success-handling routine.

Description

The RMS$DELETE function removes a record from a relative or indexed
file. The target of the DELETE operation is the current record. The current
record must be locked. It was automatically locked when the current-record
context was set, but you must not have unlocked it with a FREE operation .

REF-302 PDP-11 C Run-lime Library Functions and Macros

I
I
I
I
I ..
I
I
I
I
I

•
I

~-I
RMS$D ELETE

I Return Values

None.

I
I
I
I

"' I
I
I
I
I

•
I PDP-11 C Run-lime Library Functions and Macros REF-303

RMS$DISCONNECT

RMS$DISCONNECT

Format

The RMS$DISCONNECT function terminates a stream and disconnects
the internal resources it was using.

#include <rmsops.h>

#pragma linkage fortran RMS$DISCONNECT

void RMS$DISCONNECT (struct S_RAB 'prab, ...);

Arguments

prab
Specifies a pointer to the associated RAB.

Specifies the following optional addresses:

pe"
Specifies the address of the optional, user-coded, error-handling routine.

psucc
Specifies the address of the optional, user-coded, success-handling routine.

Description

The RMS$DISCONNECT macro terminates a stream and disconnects the
internal resources it was using. You cannot re-establish the same stream
context by reconnecting the stream with the CONNECT operation .

RE~04 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

~-I
RMS$DISCONNECT

I Return Values

None.

I
I
I
I
t'
I
I
I
I
I

•
I PDP-11 C Run-lime Library Functions and Macros REF--305

RMS$DISPLAY

RMS$DISPLAY

The RMS$DISPLAY function Writes values into control block fields.

Format

#include <rmsops.h>

#pragma linkage fortran RMS$DISPLAY

void RMS$DISPLAY (struct FAB *pfab, ...);

Arguments

ptab
Specifies a pointer to the associated FAB.

Specifies the following optional addresses:

pe"
Specifies the address of the optional, user-coded, error-handling routine.

psucc
Specifies the address of the optional, user-coded, success-handling routine.

Description

The RMS$DISPLAY writes values into control block fields. The DISPLAY
operation does not alter the file in any way.

Return Values

None.

REF-306 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

I
I
I
I
I
fl
I
I
I
I
I

•
I

RMS$ENTER

RMS$ENTER

Format

The RMS$ENTER function inserts a file name into a directory file . This
macro is not supported on RSTS/E.

#include <rmsops.h>

#pragma linkage fortran RMS$ENTER

void RMS$ENTER (struct FAB *pfab, ...);

Arguments

pfab
Specifies a pointer to the associated FAB.

Specifies the following optional addresses:

pe"
Specifies the address of the optional, user-coded, error-handling routine.

psucc
Specifies the address of the optional, user-coded, success-handling routine.

Description

The RMS$ENTER function inserts a file into a directory file.

Return Values

None .

PDP-11 C Run-lime Library Functions and Macros REF-307

RMS$ERASE

RMS$ERASE

The RMS$ERASE function erases a file and deletes its directory entry.

Format

#include <rmsops.h>

#pragma linkage fortran RMS$ERASE

void RMS$ERASE (struct FAB "'pfab, . . .);

Arguments

pfab
Specifies a pointer to the associated FAB.

Specifies the following optional addresses:

pell
Specifies the address of the optional, user-coded, error-handling routine.

psucc
Specifies the address of the optional, user-coded, success-handling routine.

Description

The RM:S$ERASE function erases a file and deletes its directory entry.
Erasing a file, marks the file for deletion, but does not necessarily erase the
file immediately. The file is erased when it has no accessing programs. The
allocation for the file is released for use in other files.

REF-308 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

~-I
RMS$ERASE

I Return Values

None.

I
I
I
I

" I
I
I
I
I

•
I PDP-11 C Run-lime Library Functions and Macros REF-309

RMS$EXTEND

RMS$EXTEND

The RMS$EXTEND function extends the allocation for an open file.

Format

#include <rmsops.h>

#pragma linkage fortran RMS$EXTEND

void RMS$EXTEND (struct FAB ~tab, ...);

Arguments

pfab
Specifies a pointer to the associated FAB.

Specifies the following optional addresses:

pe"
Specifies the address of the optional, user-coded, error-handling routine.

psucc
Specifies the address of the optional, user-coded, success-handling routine.

Description

The RMS$EXTEND function extends the allocation for an open file.

Return Values

None.

REF-310 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

I
I
I
I

I
I
I
I
I

•
I

RMS$FIND

RMS$FIND

Format

The RMS$FIND function with sequential or record file access transfers a
record or part of a record from a file to an 1/0 buffer. The RMS$FIND func
tion with key access transfers a record or part of a record from a sequential
disk file, a relative file, or an indexed file to an 1/0 buffer.

#include <rmsops.h>

#pragma linkage fortran RMS$FIND

void RMS$FIND (struct S_RAB *prab, ...);

Arguments

prab
Specifies a pointer to the associated RAB.

Specifies the following optional addresses:

perr
Specifies the address of the optional, user-coded, error-handling routine.

psucc
Specifies the address of the optional, user-coded, success-handling routine.

Description

The RMS$FIND function with sequential or record file access transfers
a record or part of a record from a file to an 1/0 buffer. The RMS$FIND
function with key access transfers a record or part of a record from a
sequential disk file, a relative file, or an indexed file to an 1/0 buffer .

PDP-11 C Run-Time Library Functions and Macros REF-311

RMS$FIND •• I
Return Values I

None.

I
I
I
I ..
I
I
I
I
I

•
REF--312 PDP-11 C Run-Time Library Functions and Macros I

~-I
RMS$FLUSH

I RMS$FLUSH

I
I
I

I
I
I
I
I

•
I

The RMS$FLUSH function writes any unwritten buffers for a stream.

Format

#include <rmsops.h>

#pragma linkage fortran RMS$FLUSH

void RMS$FLUSH (struct S_RAB *prab, ...);

Arguments

prab
Specifies a pointer to the associated RAB.

Specifies the following optional addresses:

perr
Specifies the address of the optional, user-coded error-handling routine.

psucc
Specifies the address of the optional, user-coded success-handling routine.

Description

The RMS$FLUSH function writes any unwritten buffers for a stream.
The FLUSH operation does not affect stream context, except that the
current-record context is undefined for a following TRUNCATE or UPDATE
operation .

PDP-11 C Run-lime Library Functions and Macros REF-313

RMS$FLUSH •• I
Return Values I

None.

I
I
I
I ..
I
I
I
I
I

•
REF-314 PDP-11 C Run-Time Library Functions and Macros I

~-I
I
I
I
I
I
ft
I
I
I
I
I

•
I

RMS$FREE

RMS$FREE

The RMS$FREE function frees a locked bucket for a stream.

Format

#include <rmsops.h>

#pragma linkage fortran RMS$FREE

void RMS$FREE (struct S_RAB "'prab, ...);

Arguments

prab
Specifies a pointer to the associated RAB.

Specifies the following optional addresses:

perr
Specifies the address of the optional, user-coded, error-handling routine.

psucc
Specifies the address of the optional, user-coded, success-handling routine.

Description

The RMS$FREE function frees a locked bucket for a stream.

Return Values

None .

PDP-11 C Run-lime Library Functions and Macros REF-315

RMS$GET

RMS$GET

Format

The RMS$GET function with sequential or record file access transfers
a record from a file to an 1/0 buffer and a user buffer. The RMS$GET
function with key access transfers a record from a sequential disk file, a
relative file, or an indexed file to an 1/0 buffer and a user buffer.

#include <rmsops.h>

#pragma linkage fortran RMS$GET

void RMS$GET (struct S_RAB *prab, ...);

Arguments

prab
Specifies a pointer to the associated RAB.

Specifies the following optional addresses:

perr
Specifies the address of the optional, user-coded, error-handling routine.

psucc
Specifies the address of the optional, user-coded, success-handling routine.

Description

The RMS$GET function with sequential or record file access transfers a
record from a file to an 1/0 buffer and to a user buff er. The RMS$GET
function with key access transfers a record from a sequential disk file, a
relative file, or an indexed file to an 1/0 buffer and to a user buffer .

REF-316 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

..
I

RMS$GET

I Return Values

None.

I
I
I
I
f'
I
I
I
I
I

•
I PDP-11 C Run-lime Library Functions and Macros REF-317

RMS$NXTVOL

RMS$NXTVOL

Format

The RMS$NXTVOL function advances the context for a stream to the
beginning of the next magnetic tape volume. This macro is not supported on
RSTE/E.

#include <rmsops.h>

#pragma linkage fortran RMS$NXTVOL

void RMS$NXTVOL (struct $_RAB ,.prab, ...);

Arguments

prab
Specifies a pointer to the associated RAB.

Specifies the following optional addresses:

pe"
Specifies the address of the optional, user-coded, error-handling routine.

psucc
Specifies the address of the optional, user-coded, success-handling routine.

Description

The RMS$NXTVOL function advances the context for a stream to the
beginning of the next magnetic tape volume. This macro is not supported on
RSTS/E.

REF--318 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

~-I
RMS$NXTVOL

I Return Values

None.

I
I
I
I
fl

I
I
I
I
I

•
I PDP-11 C Run-Time Library Functions and Macros REF-319

RMS$OPEN

RMS$OPEN

The RMS$OPEN function opens a file for processing by the calling task.

Format

#include <rmsops.h>

#pragma linkage fortran RMS$OPEN

void RMS$OPEN (struct FAB ~pfab, ...);

Arguments

pfab
Specifies a pointer to the associated FAB.

Specifies the following optional addresses:

perr
Specifies the address of the optional, user-coded, error-handling routine.

psucc
Specifies the address of the optional, user-coded, success-handling routine.

Description

The RMS$0PEN function opens a file for processing by the calling task.

Return Values

None.

REF-320 PDP-11 C Run-nme Library Functions and Macros

J
I
I
I
I
I
I ..
I
I
I
I
I

•
I

~-I
I
I
I
I
I
fl
I
I
I
I
I

•
I

RMS$PARSE

The RMS$PARSE function analyzes a file specification.

Format

#include <rmsops.h>

#pragma linkage fortran RMS$PARSE

void RMS$PARSE (struct FAB ~tab, ...);

Arguments

ptab
Specifies a pointer to the associated FAB.

Specifies the following optional addresses:

perr

RMS$PARSE

Specifies the address of the optional, user-coded, error-handling routine.

psucc
Specifies the address of the optional, user-coded, success-handling routine.

Description

The RMS$PARSE function analyzes a file specification.

Return Values

None .

PDP-11 C Run-lime Library Functions and Macros REF-321

RMS$PUT

RMS$PUT

Format

The RMS$PUT function with sequential access transfers a record from a
user buffer to an 1/0 buffer and to a file. The RMS$PUT function with
key access transfers a record from a user buffer to an 1/0 buffer and to a
sequential disk file, a relative file, or an indexed file.

#include <rmsops.h>

#pragma linkage fortran RMS$PUT

void RMS$PUT (struct S_RAB *prab, ...);

Arguments

prab
Specifies a pointer to the associated RAB.

Specifies the following optional addresses:

pe"
Specifies the address of the optional, user-coded, error-handling routine.

psucc
Specifies the address of the optional, user-coded, success-handling routine.

Description

The RMS$PUT function with sequential access transfers a record from a
user buffer to an 1/0 buffer and to a file. The RMS$PUT function with
key access transfers a record from a user buffer to an 1/0 buffer and to a
sequential disk file, a relative file, or an indexed file.

REF-322 PDP-11 C Run-lime Library Functions and Macros

J
I
I
I
I
I
I ..
I
I
I
1·

I

•
I

~-I
RMS$PUT

I Return Values

None.

I
I
I
I ,.
I
I
I
I
I

•
I PDP-11 C Run-lime Library Functions and Macros REF-323

RMS$READ

RMS$READ

The RMS$READ function transfers blocks to an 1/0 buffer.

Format

#Include <rmsops.h>

#pragma linkage fortran RMS$READ

void RMS$READ (struct S_RAB *prab, ...);

Arguments

prab
Specifies a pointer to the associated RAB.

Specifies the following optional addresses:

perr
Specifies the address of the optional, user-coded, error-handling routine.

psucc
Specifies the address of the optional, user-coded, success-handling routine.

Description

The RMS$READ function transfers blocks to an I/0 buffer.

Return Values

None.

REF-324 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

~I
I
I
I
I
I ,.
I
I
I
I
I

•
I

RMS$RELEASE

RMS$RELEASE

Format

The RMS$RELEASE function is supplied for VMS compatibility only; it has
no effect.

#include <rmsops.h>

#pragma linkage fortran RMS$RELEASE

void RMS$RELEASE (struct FAB *pfab, ...);

Arguments

pfab
Specifies a pointer to the associated FAB.

Specifies the following optional addresses:

pe"
Specifies the address of the optional, user-coded, error-handling routine.

psucc
Specifies the address of the optional, user-coded, success-handling routine.

Return Values

None.

PDP-11 C Run-lime Library Functions and Macros REF-325

RMS$REMOVE

RMS$REMOVE

Format

The RMS$REMOVE function removes the directory entry for a file. This
macro is not supported on RSTS/E.

#include <rmsops.h>

#pragma linkage fortran RMS$REMOVE

void RMS$REMOVE (struct FAB pfab, ...);

Arguments

pfab
Specifies a pointer to the associated FAB.

Specifies the following optional addresses:

perr
Specifies the address of the optional, user-coded, error-handling routine.

psucc
Specifies the address of the optional, user-coded, success-handling routine.

Description

The RMS$REMOVE function removes the directory entry for a file. This
macro is not supported on RSTS/E.

REF--326 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

~-I RMS$REMOVE

I Return Values

None.

I
I
I
I

" I
I
I
I
I

•
I PDP-11 C Run-Time Library Functions and Macros REF-327

RMS$RENAME

RMS$RENAME

Format

The RMS$RENAME function changes the directory entry for a file .

#include <rmsops.h>

#pragma linkage fortran RMS$RENAME

void $RMREN (struct FAB "pfab1, void ("perr) (), void ("psucc)
(), struct FAB "pfab2);

Arguments

pfab1
Specifies a pointer to the FAB for the operation.

pell
Specifies the address of the optional, user-coded, error-handling routine.

psucc
Specifies the address of the optional, user-coded, success-handling routine.

pfab2
Specifies a pointer to the FAB that holds the new file specification.

Description

The RMS$RENAME function changes the directory entry for a file.

Return Values

None.

REF-328 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

~I
I
I
I
I
I

" I
I
I
I
I

•
I

RMS$REWIND

RMS$REWIND

Format

The RMS$REWIND function resets the context for a stream to the
beginning-of-file. This macro is not supported on RSTS/E.

#include <rmsops.h>

#pragma linkage fortran RMS$REWIND

void RMS$REWIND (struct S_RAB *prab, ...);

Arguments

prab
Specifies a pointer to the associated RAB.

Specifies the following optional addresses:

pe"
Specifies the address of the optional, user-coded, error-handling routine.

psucc
Specifies the address of the optional, user-coded, success-handling routine.

Description

The RMS$REWIND function resets the context for a stream to the
beginning-of-file. This macro is not supported on RSTS/E.

PDP-11 C Run-lime Library Functions and Macros RE~29

RMS$REWIND

Return Values

None.

REF-330 PDP-11 C Run-lime Library Functions and Macros

J
I
I
I
I
I
I ..
I
I
I
I
I

•
I .

~I
I
I
I
I
I
fl
I
I
I
I
I

•
I

RMS$S EARCH

RMS$S EARCH

Format

The RMS$SEARCH function scans a directory, returns a file specification,
and identifies in NAM block fields.

#include <rmsops.h>

#pragrna linkage fortran RMS$SEARCH

void RMS$SEARCH (struct FAB *pfab, ...);

Arguments

pfab
Specifies a pointer to the associated FAB.

Specifies the following optional addresses:

pe"
Specifies the address of the optional, user-coded, error-handling routine.

psucc
Specifies the address of the optional, user-coded, success-handling routine.

Description

The RMS$SEARCH function scans a directory, returns a file specification,
and identifies in NAM blocks.

PDP-11 C Run-lime Library Functions and Macros REF-331

RMS$SEARCH

Return Values

None.

REF-332 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

I
I
I
I
I ,.
I
I
I
I
I

•
I

RMS$SPACE

RMS$SPACE

Format

The RMS$SPACE function moves a magnetic tape backward or forwards.
This macro is not supported on RSTS/E.

#include <rmsops.h>

#pragma linkage fortran RMS$SPACE

void RMS$SPACE (struct S_RAB *prab, ...);

Arguments

prsb
Specifies a pointer to the associated RAB.

Specifies the following optional addresses:

perr
Specifies the address of the optional, user-coded, error-handling routine.

psucc
Specifies the address of the optional, user-coded, success-handling routine.

Description

The RMS$SPACE function moves a magnetic tape backwards or forwards.
This macro is not supported on RSTS/E.

PDP-11 C Run-Time Library Functions and Macros REF-333

RMS$SPACE

Return Values

None.

REF--334 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

---------------- -

~I
I
I
I
I
I ,,
I
I
I
I
I

•
I

RMS$TRUNCATE

RMS$TRUNCATE

Format

The RMS$TRUNCATE function removes records from the latter part of a
sequential file.

#include <rmsops.h>

#pragma linkage fortran RMS$TRUNCATE

void RMS$TRUNCATE (struct S_RAB 'prab, ...);

Arguments

prab
Specifies a pointer to the associated RAB.

Specifies the following optional addresses:

perr
Specifies the address of the optional, user-coded, error-handling routine.

psucc
Specifies the address of the optional, user-coded, success-handling routine.

Description

The RMS$TRUNCATE function removes records from the latter part of a
sequential file.

PDP-11 C Run-lime Library Functions and Macros REF-335

RMS$TRUNCATE

Return Values

None.

REF-336 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I
~

I
I
I
I
I

•
I

~I
RMS$UPDATE

I RMS$UPDATE

I
I
I
I ,,
I
I
I
I
I

•
I

Format

The RMS$UPDATE function transfers a record from a user buffer to a disk
file, overwriting the existing record.

#include <rmsops.h>

#pragma linkage fortran RMS$UPDATE

void RMS$UPDATE (struct S_RAB ~rab, ...);

Arguments

prab
Specifies a pointer to the associated RAB.

Specifies the following optional addresses:

perr
Specifies the address of the optional, user-coded, error-handling routine.

psucc
Specifies the address of the optional, user-coded, success-handling routine.

Description

The RMS$UPDATE function transfers a record from a user buffer to a disk
file, overwriting the existing record.

PDP-11 C Run-lime Library Functions and Macros REF-337

RMS$UPDATE

Return Values

None.

REF-338 PDP-11 C Run-lime Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

I
I
I
I
I ,,
I
I
I
I
I

•
I

RMS$WAIT

RMS$WAIT

Format

The RMS$WAIT function suspends processing until an outstanding asyn
chronous operation on the stream is completed. This macro is not supported
on RSTS/E.

#include <rmsops.h>

#pragma linkage fortran RMS$WAIT

void RMS$WAIT (struct RAB *prab, ...);

Arguments

prab
Specifies a pointer to the associated RAB.

Specifies the following optional addresses:

perr
Specifies the address of the optional, user-coded, error-handling routine.

psucc
Specifies the address of the optional, user-coded, success-handling routine.

Description

The RMS$WAIT function suspends processing until an outstanding
asynchronous operation on the stream is completed. This macro is not
supported on RSTS/E .

PDP-11 C Run-Time Library Functions and Macros REF-339

RMS$WAIT

Return Values

None.

REF-340 PDP-11 C Run-Time Library Functions and Macros

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

~I
I
I
I
I
I
fl
I
I
I
I
I

•
I

RMS$WRITE

The RMS$WRITE function writes blocks to file.

Format

#include <rmsops.h>

#pragma linkage fortran RMS$V/RITE

void RMS$WRITE (struct RAB *prab, ...);

Arguments

prab
Specifies a pointer to the associated RAB.

Specifies the following optional addresses:

perr

RMS$WRITE

Specifies the address of the optional, user-coded, error-handling routine.

psucc
Specifies the address of the optional, user-coded, success-handling routine.

Description

The RMS$WRITE function writes blocks to a file.

Return Values

None .

PDP-11 C Run-lime Library Functions and Macros REF-341

I
I
I
I
I ..
I
I
I
I
I

•
I

~I
I
I
I
I
I ,.
I
I
I
I
I

•
I

•• I
I
I
I
I
I · ..
I
I
I
I
I

•
I

I
I
I
I
I ,.
I
I
I
I
I

•
I

Appendix A

PDP-11 C and VAX C Compatibility Issues

Because of architectural differences between the PDP-11 and the VAX-11
systems and because the PDP-11 does not support all of the features of
VAX C, some incompatibilities exist between the two implementations. This
appendix describes the major differences between PDP-11 C and VAX C, as
summarized in the following list:

1. Errors in program structure are handled differently by PDP-11 C than
by VAX C. The following is a list of these differences:

• If the user attempts to reference a parameter that is a redeclaration
of one of the function's formal parameters, PDP-11 C issues an error
message; VAX C issues a warning message.

• If a numeric constant contains an illegal character or is otherwise
invalid, PDP-11 C issues an error message; VAX C issues a warning
message and ignores the illegal characters.

2. PDP-11 C does not support 8 and 9 as octal constant digits. An error is
issued if an invalid octal constant is specified.

3. If defined, the logical name C$INCLUDE specifies the directory where
PDP-11 C is to search for header files which are included by using the
#include preprocessing directive. In a VMS compilation environment,
the logical name may specify a search list.

4. If the specified header file cannot be found in the device/directory
searched, PDP-11 C attempts to translate the user-defined logical
name C$INCLUDE in the VMS and RSX-llM-PLUS compilation
environments. In the VMS compilation environments, C$INCLUDE may
specify a search list.

5. The module name and ident of PDP-11 C's #module preprocessing
directive are limited to no more than six alphanumeric characters, space,
dollar sign ($), or dot (.). Additional characters are ignored.

PDP-11 C and VAX C Compatibility Issues A-1

6. In PDP-11 C, preprocessor directives may begin anywhere on a line;
however, VAX C requires preprocessor directives to begin with the #
character as the first character of the line.

7. PDP-11 C defines CC$gfloat as 0, indicating that the G-£1.oat format is
not being used for double objects; VAX C expands the CC$gfloat macro
to 1 if the /G_FLOAT qualifier is asserted, 0 if not asserted.

8. PDP-11 C does not use the RMS file type RMS STREAM_LF as its
external representation for binary and text streams.

9. PDP-11 C expands the macro L_tmpnam to the integer constant 13;
VAX C expands it to a value of 255.

10. PDP-11 C does not provide the optional file attribute arguments for the
fopen function.

11. PDP-11 C prints a pointer as an unsigned octal integer when the
fprintf function is used with the conversion character "p".

12. PDP-11 C does not define all existing RMS masks and fields that are
defined in VAX C.

13. In the header files that define RMS structures, the l_ convention used by
VAX C for naming structure members that are pointers was retained for
compatibility with the VAX C definitions for those items; however, the
item is a 16-bit quantity rather than a 32-bit quantity.

14. The RAB data structure on the PDP-11 is two different sizes, one for
synchronous RABs and one for asychronous RABs. The structure tags,
SRAB and ARAB respectively, are used to identify these two different
data structures. The existing code for VAX C compiled by PDP-11 C
will have undefined structures for each RAB structure; therefore, when
porting source code from VAX C to PDP-11 C, you need to determine
which type of RAB is desired and to change the RAB to ARAB or SRAB
as needed.

15. The RMS functions available through PDP-11 C do not return a value.

16. PDP-11 C adds the keyword [NOJMACHINE to the /SHOW switch
rather than having a separate /[NOJMACIIlNE switch.

17. PDP-11 C supports the following command-line switches, which are not
supported by VAX C:

• CACHE

• CODE

• COMMAND

• ENVIRONMENT

• ERROR_LIMIT

A-2 PDP-11 C and VAX C Compatibility Issues

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

..
I
I
I
I
I
I
~
I
I
I
I
I

•
I

• INTEGER_SIZE

• MACRO

• MEMORY

• MODULE

• TERMINAL

• WORK_FILE_SIZE

18. PDP-11 C does not support the following VAX C command-line
switches:

• ANALYSIS_DATA

• CROSS_REFERENCE
• DEBUG

• DIAGNOSTICS

• G_FLOAT

• LIBRARY

• [NOJMACIIlNE

• PARALLEL

• PRECISION

• PREPROCESS_ONLY

• STANDARD=[NOJPORTABLE

19. In PDP-11 C, objects may be declared to be of type long double but not
of type long float. In VAX C, objects may be declared to be of type long
float but not of type long double.

20. For compatibility with VAX C, the following functions are defined in the
supplied standard header files. They are defined only when compiling
with the /NOSTANDARD switch.

• These functions are defined for VAX C compatibility. Each function
is described in PDP-11 C Standard Library Macros and Functions of
the Reference Section.

cabs
fgetname
hypot
isascii
sleep
toascii
_tolower
_toupper

PDP-11 C and VAX C Compatibility Issues A-3

• The type cabs_t and structure type CABS_T are defined as follows:

typedef struct CABS_'.!' {double _x, ___y;} cabs_t;

• These macros are defined for VAX C compatibility:

NSIGNALS

OPEN_MAX

PATH_MAX

SEEK_EOF

STRINGS_MATCH

CL!\....TCK

A-4 PDP-11 C and VAX C Compatibility Issues

Number of signals

Number of files that can be simultaneously
opened (ANSI equivalent is FOPEN_MAX)

Size of maxi.mum path name (ANSI equivalent is
FILENAME_MAX)

Equivalent to ANSI SEEK._END

Value returned by standard library functions
when strings match

Equivalent to ANSI CLOCKS_PER_SEC

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

I
I
I
I
I ,,
I
1-
1
I
I

•
I

Appendix B

PDP-11 C Run-Time Modules and Entry Points

This appendix summarizes the modules and entry points in the PDP-11 C
Run-Time System. Table B-1 lists the entry points and the modules in the
library and describes their function.

Table B-1: PDP-11 C Run-Time Entry Points

Entry Point

abort

abs

acos

__ alr50

asctime

asin

__ asr50

atan

atan2

Module

C$ABRT

C$ABS

C$ACOS

C$ASL5

C$ASTM

C$ASIN

C$ASR5

C$ATAN

C$ATN2

Description

Aborts the cUITent process.

Integer absolute value math
library function.

Arc cosine math library function.

Converts first six characters in
the input string to an unsigned
32-bit integer corresponding to the
radix-50 translation.

Converts broken-down time into a
character string.

Arc sine math library function.

Converts the first three characters
of the input string to an unsigned
16-bit integer corresponding to the
radix-50 translation.

Arc tangent math library function.

Arc tangent math library function.

(continued on next page)

PDP-11 C Run-Time Modules and Entry Points B-1

Table B-1 (Cont): PDP-11 C Run-Time Entry Points

Entry Point Module Description

atexit C$ATEX Registers functions to be called
without arguments at program
termination.

atof C$ATOF Converts ASCII to floating-point
binary.

atoi C$ATOI Converts ASCII to integer binary.

atol C$ATOL Converts long ASCII to binary.

bsearch C$BSCH Binary search routine.

cabs C$CABS Returns the square root of two
squared arguments.

calloc C$CLLC Allocates and clears storage.

cc$rms_fab C$RMS_PROTOTYPES File access block prototype.

cc$rms_nam C$RMS_PROTOTYPES Block naming prototype.

cc$rms_rab C$RMS_PROTOTYPES Access-block recording prototype.

cc$rms_xaball C$RMS_PROTOTYPES Allocation control extended at-
tribute block prototype.

cc$rms_xabdat C$RMS_PROTOTYPES Date and time extended attribute
block prototype.

cc$rms_xabfhc C$RMS_PROTOTYPES File header characteristics ex-
tended attribute block prototype.

cc$rms_xabkey C$RMS_PROTOTYPES Indexed file key extended attribute
block prototype.

cc$rms_xabpro C$RMS_PROTOTYPES File protection extended attribute
block.

cc$rms_xabrdt C$RMS_PROTOTYPES Revision date and time extended
attribute block prototype.

cc$rms_xabsum C$RMS_PROTOTYPES Summary extended attribute block
prototype.

cc$rms_xabtrm C$RMS_PROTOTYPES Terminal characteristics of the ex-
tended attribute block prototype.

ceil C$CEIL Ceiling math library function.

clearerr $PCLEA Clears end-of-file error.

(continued on next page)

8-2 PDP-11 C Run-lime Modules and Entry Points

•• I
I
I
I
I
I

..
I
I
I
I
I

•
I

I
I
I
I
I ,,
I
I
I
I
I

•
I

Table B-1 (Cont.): PDP-11 C Run-Time Entry Points

Entry Point Module Description

clock C$CLCK Determines CPU time.

cos C$COS Cosine math library function.

cosh C$COSH Hyperbolic cosine math library
function.

cti.me C$CTIM Converts time to an ASCil string.

difftime C$DFI'M Computes the difference between
two times.

div C$DIV Computes the quotient and re-
mainder.

exit C$EXIT Closes files and exits.

exp C$EXP Base-e exponentiation math
function.

fabs C$FABS Absolute math function.

__ fbuf C$FGBF Returns the current buffer length
associated with a file pointer.

fclose $PCLOS Closes a file.

feof $PEOF Tests the end-of-file indicator.

ferror $PERRO Tests the error indicator.

fflush $PFLUS Flushes a file buffer.

__ fger C$FGER Returns the low level error code
that is associated with a previ-
ously called file operation.

fgetc $PFGTC Gets a character from a file.

fgetname C$FGNM Returns a pointer to a file spec-
ification associated with a file
variable.

fgetpos C$PGETP Stores the current value of the file
position indicator for the stream
pointed to by stream.

fgets $PFGTS Gets a string from a file.

(continued on next page)

PDP-11 C Run-Time Modules and Entry Points B-3

Table B-1 (Cont.): PDP-11 C Run-Time Entry Points

Entry Point Module Description

__ fgnm C$FGNM Returns a pointer t.o a file spec-
ification associated with a file
variable.

floor C$FLOR Returns the largest integer that is
less than or equal t.o its argument.

_ _Jlun C$FGLN Returns the logical unit number
associated with a file pointer.

fmod C$FMOD Computes the floating-point
remainder of X/Y.

fopen $POPE Opens a file by file pointer.

fprintf $PFPRI Formats a string t.o a file.

fputc $PFPI'C Writes a character t.o a file.

fputs $PFPI'S Writes a string t.o a file.

fread $PREAD Reads from a file.

__ free C$FGRC Returns the current record length
associated with a file pointer.

free C$FREE Deallocates storage.

freopen $PREOP Closes and reopens a file.

frexp C$FRXP Extract fraction exponent math
function.

fscanf $PFSCA Scans input from a file.

fseek $PSEEK Positions t.o an offset in a file.

fsetpos $PSETP Sets file position indicat.or.

ftell $PI'ELL Returns current offset in a file.

fwrite $PWRIT Writes to a file.

getc $GETC Gets a character from standard
input.

getchar C$GTCR Reads a character from standard
input.

getenv C$GENV Returns the value of the environ-
ment.

(continued on next page)

8-4 PDP-11 C Run-lime Modules and Entry Points

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

I
I
I
I
I ,,
I
I
I
I
I

•
I

Table B-1 (Cont.): PDP-11 C Run-Time Entry Points

Entry Point

gets

gm.time

hypot

__ ischar

labs

ldexp

ldiv

localeconv

localtime

log

loglO

longjmp

__ lr50

malloc

mblen

mbstowcs

mbtowc

Module

$PGETS

C$GMTM

C$HYPT

C$ISCH

C$LABS

C$LDXP

C$LDIV

C$LCON

C$LCTM

C$LOG

C$LG10

C$LGJP

C$L5TA

C$MLLC

C$MBLN

C$MBCS

C$MBWC

Description

Gets a string from standard input.

Converts calendar time into
broken-down time.

Euclidean distance math library
function.

Returns a nonzero integer if its
argument is contained in the
current character set.

Returns the absolute value of an
integer as long integer.

Power of 2 math library function.

Computes long integer quotient
and remainder.

Sets components of an object with
type struct lconv.

Places time in a time structure.

Logarithm base-e math library
function.

Logarithm base-10 math library
function.

Returns to a setjmp entry point.

Converts an unsigned 32-bit rad.ix-
50 string to the corresponding
6-character ASCII character
string.

Allocates memory.

Determines the number of bytes in
multibyte character.

Converts the multibyte characters
to a sequence of corresponding
codes.

Determines the number of bytes in
multibyte character.

(continued on next page)

PDP-11 C Run-Time Modules and Entry Points B-5

Table B-1 (Cont): PDP-11 C Run-Time Entry Points

Entry Point Module Description

memchr C$MCHR Locates the first occurrence of a
character.

memcmp C$MCMP Compares the lexical values of two
arrays.

memcpy C$MCPY Moves characters from one array
to another.

memmove C$MMOV Moves characters from one array
to another.

memset C$MSET Put.s a given character in n bytes
ofan array.

mktime C$MKTM Converts the broken-down time
into calendar time.

modf C$MODF Extract the fraction and the
integer math function.

perror $PPERR Prints an error message.

pow C$POW Raise to a power math library
function.

printf $PPRIN Formats a string to standard
output.

puts $PPUTS Writes a string to standard output.

qsort C$QSRT Sorts an array of data objects.

raise C$RASE Generates a signal.

rand C$RAND Computes a random number.

realloc C$RLLC Changes the size of an area of
storage.

remove $PREMO Deletes a file.

rename $PRENA Renames a file.

rewind $PREWI Returns to the beginning of the
file.

scanf $PSCAN Formats input from the standard
input.

setbuf C$PSETB Associates buffer with 1/0 file.

(continued on next page)

8-6 PDP-11 C Run-lime Modules and Entry Points

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

~- Table B-1 (Cont.): PDP-11 C Run-Time Entry Points

I Entry Point Module Description

I
setlocale C$SLOC Selects the part of the program's

locale as specified by category
and locale.

setvbuf $PSETV Establishes 1/0 buffering for a file.

I signal C$SIGL Sets a signal.

sin C$SIN Sine math library function.

I
sinh C$SINH Hyperbolic sine math library

function.

sleep C$SLEP Suspends execution for a specified
time interval.

I __ sleep C$SLEP Suspends execution for a specified
time interval.

sprintf C$SPRR Formats a string to a memory

I buffer.

sqrt C$SQRT Square root math library function.

~
srand C$SRND Reinitializes the random number

generator.

__ sr50a C$S5TA Converts an unsigned 16-bit radix-
50 string to the corresponding

I 3-character ASCII character
string.

sscanf C$SSCR Formats the input from memory.

I strcat C$SCAT Concatenates two strings.

strchr C$SCHR Searches for a character in a
string.

I strcmp C$SCMP Compares two strings.

strcoll C$SCOL Compares two strings.

strcpy C$SCPY Moves a string to another string.

I strcspn C$SCSP Searches a string for a character.

strerror C$SERR Translates an error message code.

strftime C$SFTM Converts time and date format to

I a user-defined format.

(continued on next page)

•
I PDP-11 C Run-Time Modules and Entry Points B-7

Table B-1 (Cont): PDP-11 C Run-Time Entry Points

Entry Point Module

strlen C$SLEN

strncat C$SNCA

strncmp C$SNCM

strncpy C$SNCP

strpbrk C$SPBK

strrchr C$SRCH

strspn C$SSPN

strstr C$SSTR

strtod C$STOD

strtok C$STOK

strtol C$STOL

strtoul C$STUL

str:a:f:tm C$SXFR

system C$SYTM

tan C$TAN

tanh C$TANH

time C$TIME

tmpfile $PTMPF

tmpnam C$PTMPN

tolower C$TLWR

toupper C$TUPR

8-8 PDP-11 C Run-Time Modules and Entry Points

Description

Determines the length of a string.

Concatenates two strings.

Compares two strings.

Moves one string to another.

Searches a string for a character.

Searches a string for a character.

Searches a string for a character.

Locates the first occurrence of
a sequence of characters from
one string pointed to by another
string.

Converts a string to a double
precision number.

Locates text tokens in a given
string.

Converts a character string into a
long integer value.

Converts a character string into
an unsigned value.

Transforms a string and places the
results into an array.

Passes a string to a command
processor for execution.

Tangent math library function.

Hyperbolic tangent math library
function.

Gets the epoch time.

Creates a temporary file.

Generates a temporary file name.

Converts uppercase to lowercase.

Converts lowercase to uppercase.

(continued on next page)

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

I
I
I
I
I ,.
I
I
I
I
I

•
I

Table B-1 (Cont.): PDP-11 C Run-Time Entry Points

Entry Point Module Description

__ tzset C$TZSE Sets time variables.

ungetc C$PUNGE Pushes a character back into the
stream.

vfprintf C$PVFPR Prints formatted output.

vprintf $PVPRI Prints formatted output.

vsprintf C$VSPR Prints formatted output.

westombs C$WCSB Converts the sequence of codes
corresponding to multibyte charac-
ters into multibyte characters.

wetomb C$WCMB Determines the number of bytes
needed to represent multibyte
character.

PDP-11 C Run-lime Modules and Entry Points B-9

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

..
I
I
I
I
I

I
I
I
I
I

•
I

__ alr50 function, REF- 5
__ asr50 function, REF- 9
__ fbuf function, REF-33
__ fger function, REF-38
__ fgnm function, REF-42
__ flun function, REF-45
__ free function, REF- 56
__ lschar function, REF- 78
__ lr50a function, REF- 98
__ sleep function, REF- 147
__ srSOa function, REF- 152
_ tolower macro, REF- 197
_toupper macro, REF- 199

A
abort function, 5-8, REF- 2
abort function , 9-6
abs function, REF-3
acos function, REF-4
asctlme function, REF--6
asln function , REF-8
assert macro, REF- 10
asserth header file, 1- 2
atan function, REF- 12
atan2 function, REF- 13
atexit function, REF- 14
atof function, REF- 15
atol function, REF- 17
atol function, REF- 17

8
Binary stream, 2--5
bsearch function, REF- 18

C
C$RHLP routine, 7- 13
cabs function, REF- 20
calloc function, 5-4, REF- 21
calloc function, 5-4
cell function, REF- 22
Character case-mapping

functions, 3-1
macros, 3-1

Index

Character case-mapping functions , 1-3, 3-12 to 3-13
__ alr50, REF--5
__ asr50, REF- 9
__ lr50a, REF-98
program example, 3-12
__ srSOa, REF- 152
strtoul, REF- 184
tolower, REF- 196
toupper, REF- 198

Character case-mapping macros, 1-3
toascil, REF- 195
_tolower, REF- 197
_toupper, REF- 199

Character-testing
functions, 3-1
macros, 3-1

Character-testing functions, 1-3, 3-3 to 3-12
lsalnum, REF- 75
__ lschar, REF- 78
lscntrl, REF- 79
isdigit, REF-80
lsgraph, REF-81
islower, REF-82
isprint, REF-83
ispunct, REF-84
isspace, REF-85

lndex-1

Character-testing functions (Cont.)
lsupper, REF-as
lsxdlgft, RE~7
program example, 3-11

Character-testing macros, 1-3, 3-3
lsascll, REF-n

clearerr function, REF-23
C linkage, 10-2
clock function, REF-24
$CLOSE

RMS function, 7-5
Completion handlers, for RMS, 7-13
$CONNECT

RMS function, 7-5
Control block

declaring at compile time, 7-7
declaring with default values, 7-7
setting fields, 7-8
types of, 7-8

Conversion flags
output, table of characters, 2-17

Conversion modifiers
input, table of characters, 2-13
output, table of characters, 2-17

Conversion specifications
for VO functions, 2-12 to 2-18
output, table of characters, 2-15

Conversion specif1ers
input, table of characters, 2-12

cos function, REF-25
cosh function , REF-26
/CP, S-4
$CREATE

RMS function, 7-5
ctlrne function, REF-27
ctype.h header file, 1-3, 3-1

D
Data sharing

BP2, 10-8
Fortran, 10-8

Data structures
RMS, 7-4

definition modules, 7-15
initialized prototypes, 7-15

Date and Time functions, REF-165
Definition modules

for RMS structures, 7-15
$DELETE

RMS function, 7-5

lndex-2

DFB, initialization at compile-time, 8-7
dlfftlme function, REF-28
$DISCONNECT

RMS function, 7-6
div function, REF-29

E
EDOM return value, 6-2
Entry points

to PDP-11 C Run-nme Lbrary, B--1 to B--9
Environment

list for getenv, 5-8
Environmental communication functions, ~7
ERANGE return value, 6-2
$ERASE

RMS function, 7-6
ermo.h header file, 1-4, 6-2
ermo variable, 6-2
Error-Handling functions

abon, REF-2
exit, REF-30
perror, REF-116
strerror, REF-162

exit function, 5-8, REF-30
•xft function, ~5
exp function, REF-31

F
FAB

definition module, 7-15
RMS data structure, 7-4

fab.h header file, 7-6
tabs function, REF-32
fclose function, RE~
fcs.h header file, 8-6, 8-6
FCS Extension Library, 8-6
fcsfhb.h header file, 8-5
FCS file prooessing, 8-9
FCS for file input/output, 2-19
FCS functions

FCS$ASCPP, REF-217
FCS$ASLUN, REF-218
FCS$CLOSE$, REF-219
FCS$CTRL, REF-220
FCS$DELET$, REF-222
FCS$DLFNB, REF-223
FCS$ENTER, REF-224
FCS$EXPLG, REF-225
FCS$EXTND, REF-226

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

~- FCS functions (Cont.)

I FCS$FDBDF$, REF-228
FCS$FIND, REF-229
FCS$FINIT$, REF-230
FCS$FLUSH, REF-231

I FCS$FSRSZ$, REF-232
FCSGET, REF-233
FCSGETR, REF-235
FCSGETS, REF-237

I
FCS$GTDID, REF-239
FCS$GTDIR, REF-240
FCS$MARK, REF-242
FCS$MRKDL, REF-244

I
FCS$OFID$x, REF-245
FCS$OFNB$x, REF-247
FCS$OPEN$x, REF-249
FCS$OPNS$x, REF-251

I
FCS$OPNT$D, REF-253
FCS$OPNT$W, REF-255
FCS$PARSE, REF-257
FCS$POINT, REF-259

I
FCS$POSIT, REF-261
FCS$POSRC, REF-263
FCS$PPASC, REF-264 ,, FCS$PRINT$, REF-265
FCS$PRSDI, REF-266
FCS$PRSDV, REF-268
FCS$PRSFN, REF-270
FCSPUT, REF-272

I
FCSPUTR, REF-274
FCSPUTS, REF-276
FCS$RDFDR, REF-278
FCS$RDFFP, REF-279

I
FCS$RDFUI, REF-280
FCS$READ$, REF-281
FCS$REMOV, REF-283
FCS$RENAM, REF-284
FCS$RFOWN, REF-285

I FCS$TRNCL, REF-286
FCS$WAIT$, REF-287
FCS$WDFDR, REF-289
FCS$WDFFP, REF-290

I FCS$WDFUI , REF-291
FCS$WFOWN, REF-292
FCS$WRITE$, REF-293
FCS$XQIO, REF-295

I FCS header files
fcs.h, 8-5, 8--6
fcsfhb.h, S-5
fcsiff.h , 8-5

• fcsill.h header file, 8-5

I

FCS macros, S-1 to S-9
FDB, declaring and initializing, 8--6
FDB, initialization at compile-time, S-7
teof function, REF-35
terror function, REF-36
ttlush function , REF-37
tgetc function, REF-39
fgetname function , REF-42
tgetpos function, REF-40
fgets function, REF-41
File Control Services(FCS)

example program, S-9
File Descriptor Block, 8--6
float.h header file , 1-4

macros found in, 1- 5
floor function, REF-44
fmod function, REF-46
topen function , REF-47
FORTRAN linkage, 10-3
fprlntf function , REF-50
tputc function, REF-52
tputs function, REF-53
tread function, REF-54
trff function , 5-4, REF-57
trN function, ~5
treopen function, REF-58
trexp function, REF-60
tscanf function , REF-61
tseek function, REF-63
tsetpos function, REF-65
ftell function, REF-66
Functions

character case-mapping , 3-12
character-testing, 3-3
entry points of, B-1
environmental communication, ~7
integer arithmetic, ~ 1 O
localization, 4-1
math summary, 6-1
memory management, 5-4
multibyte character and string, ~10
pseudorandom sequence, 5-4
RMS, 7-4
search and sort, ~ 1 O
standard 1/0 , 2-1
string conversion, ~
utility, ~1

fwrlt• function, REF-67

lndex-3

G
$GET

RMS function, 7-5
getc function, RE~9
getchar function, REF-70
getenv function, 5-8, REF-71
gets function, REF-72
Get-space routine, 7-13

RMSGSA, 7-14
RMS$SETGSA$, 7-13, 7-14

gmtlrne function, REF-73

H
Header files, 1-1

assert.h, 1-2
ctype.h, 1-3, 3-1
ermo.h, 1-4, ~2
fab.h, 7-f;
fcs.h, 8-5, 8-6
fcsfhb.h, 8-5
fcsiff.h, 8-5
float.h, 1-4
limits.h, 1-4
local.h, 4-1
locale.h, 1-7
math.h, 1-7
nam.h, 7-6
rab.h, 7-6
rms.h, 7-6
rmsdef.h, 7-9
rmsops.h, 7-6
rmsorg .h, 7-1 O
rmspoo.h, 7-11
rstsys.h, 9-4
rsxsys.h, ~2
rtsys.h, ~2
setjmp.h, 1-8
signal.h, 1-8
stda,g.h, 1-9
stddef.h, 1-10
stdio.h, 1-10, 2-1, 2-11
stdlib.h, 1-10
sbing.h, 1-11
time.h, 1-12
xab.h, 7-6

hypot function, REF-74

lndex-4

VO support routines, 2-18
FCS, 2-19
RMS, 2-19

#Inch.let. modules
for RMS data structures, 7-15

Initializing RMS data structures, 7-f;
Input and output (VO)

conversion specifications, 2-12 to 2-18
lsalnc.m function, REF-75
lsalpha function, REF-76
lsascll macro, REF-TT
lscntrl function, REF-79
lsdlglt function, REF-80
lsgraph function, REF-81
!slower function, REF-82
lsprlnt function, REF-83
lspunct function, REF-84
lsspace function, REF-85
!supper function, REF-86
lsxdlglt function, REF-87

L
labs function, REF-88
lconv type, 4-2
ldexp function, REF-89
ldlv function, REF-90
limits.h header file, 1-4

macros found in, 1-4
Linkages

FORTRAN, 10-3
Pascal, 10-4
PDP-11 C, 1~2
RSXAST, 1~
RSXCSM, 1~7
RSXSST, 1~
using other languages, 1 ~7

List-handling macros
va_arg , REF-203
ve_end, REF-204
ve_start , REF-205

local.h header file, 4-1
locale.h header file, 1-7
loceleconv function, REF-91
loceleconv function, 4-f',
Locales

character-set, 4-3
collating sequence, 4-3
monetary, 4-4

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

I
I
I
I
I

" I
I
I
I
I

•
I

Locales (Cont.)
numeric, 4--4
time, 4-5

Localization, 4-1
Localization macros, 4-2

LC_ALL, 4-2
LC_COLLATE, 4-2
LC_CTYPE, 4-2
LC_MONETARY, 4-2
LC_NUMERIC, 4-2
LC_TIME, 4-2

localtlm• function, REF-93
log function, REF-95
log10 function, REF-95
longjmp function , REF-96, REF-137
LUNs, 2-20

M
Macros

character case-mapping, 3-12
character-testing, 3-3
FCS, S-1
localization, 4-1
RMS, 7-1
RMS operation, 7-12

malloe function , 5-4, REF-99
malloe function, 5-4
Mapping binary streams to file types, 2--6

RSTS/E operating system, 2-10
RSX operating system, 2- 9
RT-11 operating system, 2-11

Mapping text streams to file types, 2--6
RSTS/E operating system, 2- 10
RSX operation system, 2-7
RT-11 operating system, 2-11

math.h header file, 1-7, 6-1
Math functions, 6-1 to 6-4

abs, REF-3
acos, REF-4
asln, REF-8
atan, REF-12
atan2, REF-13
cabs, REF-20
cell , REF-22
cos, REF-25
cosh, REF-26
div, REF-29
enno values, 6-1
exp, REF-31
tabs, REF-32

Math functions (Cont.)
floor, REF-44
trexp, REF--60
hypot , REF-74
labs, REF-88
ldexp, REF-89
ldlv, REF-90
log, REF-95
log10, REF-95
modf, REF-115
pow, REF-117
rand, REF-127
sin, REF-145
slnh, REF-146
sqrt, REF-150
srand, REF-151
tan, REF-189
tanh, REF-190

mblen function, REF-100
mbstowcs function, REF-102
mbtowc function, REF-104
memchr function, REF-106
memcmp function, REF-107
memcpy function , REF-109
memmove function , REF-111
Memory allocation functions, 5-4

calloc, REF-21
frM , REF-57
malloe, REF-99
program example, 5-5
realloc, REF-128

memset function , REF-113
mktlm• function, REF-114
modf function, REF-115

N
NAM

RMS data structure, 7-4
nam.h header file, 7--6

0
$OPEN

RMS function, 7-5
Operating Systems

RSTS/E binary files, 2-10
RSTS/E stream files, 2-10
RSTS/E text files, 2-10
RSX binary files, 2-9
RSX text flies, 2-7

lndex-5

Operating Systems (Cont.)
RT-11 binary files, 2-11
RT-11 stream files, 2-11
RT-11 text files, 2-11

p
Pascal linkage, 10--4
PDP-11 C

restrictions and notes, 1 ~
PDP-11 CNAX C oompati:>ility, A-1 to A-4
perror function, REF-116
Pool space, defining, 7-11
pow function , REF-117
prlntf function, REF-119
$PUT

RMS function, 7-5
putc function , REF-121
putchar function, REF-122
puts function, REF-123

Q
qsort function, REF-124

R
RAB

RMS data structure, 7-4
rab.h header file , 7~
raise function, REF-126
rand function, 5-4, REF-127
realloc function, 5-4, REF-128
realloc function, 5-6
Record Management Services (RMS), 7~ to 7~4

data structures, 7-4
example program, 7-16
extended attribute blocks, 7-4
file access blocks, 7-4
functions, 7-4
name blocks, 7-4
record access blocks, 7-4
return status values, 7~

remove function, REF-130
rename function, REF-131
Reserving LUNs, 2-20
Return status value

RMS, 7~
rewkld function, REF-132
$REWIND

RMS function, 7-5

lndex-6

RMS$CLOSE function, REF-298
RMS$CLOSE function, 7-5
RMS$CONNECT function, REF-299
RMS$CONNECT function, 7-5
RMS$CREATE function, REF-301
RMS$CREATE function, 7-5
RMS$DELETE function, REF-302
RMSSDELETE function, 7-:-6
RMS$DISCONNECT function, REF-304
RMS$DISCONNECT function, 7-5
RMS$DISPLAY function, REF-306
RMS$ENTER function, REF-307
RMSSERASE function , REF-308
RMS$ERASE function, 7-5
RMSSEXTEND function, REF-310
RMS$FIND function, REF-311
RMS$FLUSH function, REF-313
RMS$FREE function, REF-315
RMSSGET function, REF-316
RMS$GET function, 7-5
RMS$GETGSA$ routine, 7-14
RMSGSA macro, 7-14
RMS$OPEN function , REF-320
RMS$OPEN function, 7-5
RMS$PARSE function, REF-321
RMSSPUT function , REF-322
RMS$PUT function, 7-5
RMS$READ function, REF-324
RMSSRELEASE function, REF~25
RMSSREMOVE function, REF-326
RMS$RENAME function , REF-328
RMS$RENAME macro, 7-12
RMS$REWIND function, REF-329
RMSSREWIND function, 7-5
RMS$SEARCH function, REF-331
RMS$SETGSA$ macro, 7-14
RMS$SPACE function , REF-333
RMS$UPDATE function, REF-337
RMS$WArT function , REF-339
RMS$WAIT macro, 7-12
RMS$WRrTE function, REF-341
rms.h header file , 7~
RMS$NXTVOL function, REF-318
rmsdef.h header file , 7-9
RMS facilities, declaring each, 7-10
RMS file organization, 7-10
RMS tor file input/output, 2-19
RMS functions

RMS$CLOSE, REF-298
RMS$CONNECT, REF-299, REF-307
RMS$CREATE, REF-301

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

I
I
I
I

I
I
I
I
I

•
I

RMS functions (Cont.}
RMS$DELETE, REF-302
RMS$DISCONNECT, REF-304
RMS$DISPLAY, REF-306
RMS$ERASE, REF-308
RMS$EXTEND, REF-310
RMS$FIND, REF-311
RMS$FLUSH, REF-313
RMS$FREE, REF-315
RMS$GET, REF-316
RMS$NXTVOL, REF-318
RMS$OPEN, REF-320
RMS$PARSE, REF-321
RMS$PUT, REF-322
RMS$READ, REF-324
RMS$RELEASE, REF-325
RMS$REMOVE, REF-326
RMS$RENAME, REF-328
RMS$REWIND, REF-329
RMS$SEARCH, REF-331
RMS$SPACE, REF-333
RMS$TRUNCATE, REF-335
RMS$UPDATE, REF-337
RMS$WAIT, REF-339
RMS$WRITE, REF-341

RMS header files, 7-6
fab.h, 7-6
nam.h, 7-6
rab.h, 7-6
rms.h, 7--6
rmsdef.h, 7-9
rmsops.h, 7-6
rmsorg.h, 7-10
rmspoo.h, 7-11
xab.h, 7--6

RMS Macro
RMS$SETGSA$, 7-14

rmsops.h header file, 7-6
rmsorg.h header file, 7-10
rmspoo.h header file, 7-11
RMS programs, using C to write, 7-15
RMS prototype data structures

examples using, 7-21
RMS$TRUNCATE function, REF--335
RSTS/E SYSLIB routines, 9-4
rstsys.h header file, 9-4
RSX AST linkage, 1 0-5
RSX CSM linkage, 10-7
RSX SST linkage, 10-5
rsxsys.h header file, ~2
RSX system services, ~2

RT-11 SYSLIB routines, ~2
rtsys.h header file, ~2

s
scant function, REF-133
setbuf function , REF-135
setjmp.h header file, 1-8
setJmp macro, REF-137
setlocale

run-time support, 4-6
setlocale function, 4-2, REF-139
setvbuf function, REF-135, REF-141
signal function, REF-143
signal.h header file, 1-8

macros found in, 1-8
Signal-Handling functions

longJmp, REF-96
raise, REF-126
signal, REF-143

Signal-Handling macros
setJmp, REF-137

sin function, REF-145
slnh function, REF-146
sleep function , REF-147
sprlntf function, REF-148
sqrt function, REF-150
srand function, 5--4, REF-151
sscant function, REF-153
Standard UO

using, 2-23
Standard UO functions

clearerr, REF-23
__ fbuf, REF-33
tclOM, REF-34
teof, REF-35
terror, REF-36
fflush, REF-37
__ tg•r. REF-38
tg•tc, REF-39
tgetnam•, REF-42
tg•tpos, REF-40
t~ts, REF-41
__ tgnm, REF-42
__ flun, REF-45
tC>fM" , REF-47
fprlntf, REF-50
fputc, REF-52
fputs, REF-53
tread, REF-54
__ fr.c, REF-56

lndex-7

Standard VO functions (Cont.)

freopen, REF-58
fseanf, RE~1
fseek, REF-63
hell, RE~
functions and macros, 2-1
fwrlte, RE~7
getc, RE~9
program example, 2-23
putc, REF-121
rewind, REF-132
setbuf, REF-135
__ sleep, REF-147
sleep, REF-147
sprlntf, REF-148
sscanf, REF-153
taskbuilder switch , 2-18
trnpflle, REF-192
tmpnam , REF-193
ungetc, REF-201

stdarg.h header file , 1-9
macros found in, 1-9

stddef.h header file, 1-10
macros found in, 1-10

stdio.h header file , 1-10, 2-11
stdlib.h header file, 1-10, 5--1
street function, REF-155
strchr function, REF-156
strcrnp function, REF-157
strcoll function, REF-158
strcpy function, REF-159
strcspn function , REF-160
strerror function, REF-162
strftlme function, REF-165
string.h header file, 1-11
String functions, REF-158, REF-177, REF-186
String-handling conversion, 5--3
String-Handling functions

atof, REF-15
atol, REF-17
atol, REF-17
memchr, REF-106
memcmp, REF-107
memcpy, REF-109
memmove, REF-111
strcat, REF-155
strchr, REF-156
strcmp, REF-157
strcpy, REF-159
strcspn, REF-160
strlen, REF-167

lndex--8

String-Handling functions (Cont.) •• strncat, REF-168 I stmcmp, REF-169
stmcpy, REF-171
strpbrk, REF-173

I strrclv, REF-174
strspn, REF-175
strtol, REF-182

strlen function, REF-167

I stmcat function , REF-168
stmcmp function, REF-169
strncpy function, REF-171
strpbtk function, REF-173

I strrchr function, REF-174
strspn function, REF-175
strstr function, REF-177
strtod function, REF-178
strtok function, REF-180 I strtol function, REF-182
strtoul function, REF-184
strxfrm function, REF-186
system function, 5-9, REF-187 I System directives, S-1
System functions

asctlme, RE~ .. ass.rt, REF-10
atexlt , REF-14
~rch, REF-18
clock, REF-24
ctlme, REF-27 I dttftlme, REF-28
fmod, REF-46
getenv, REF-71
gmtlme, REF-73

I localtbne, REF-93
memset, REF-113
mktlme, REF-114
qsort, REF-124

I remove, REF-130
rename, REF-131
setvbuf, REF-135, REF-141
strtod, REF-178

I strtok, REF-180
system, REF-187
time, REF-191
vfprlntf, REF-206

I vprlntf, REF-208
vsprlntf, REF-21 0

System service header files
rstsys.h, 9-4 • rsxsys.h, S-2

I

I
I
I
I

I
I
I
I
I

•
I

System service header files (Cont.)
rtsys.h, ~2

T
tan function, REF-189
tanh function, REF-190
Taskbuilder switch, 2-18, 5-4
Terminal VO

program example, 2-21, 2-23
Terminal VO functions

getchar, REF-70
gets, REF-72
prlntf, REF-119
putchar, REF-122
puts, REF-123
scant, REF-133

Text stream, 2-5
tlrM function , REF-191
time.h header file, 1-12
tim. function, 9-5
Time function

__ tzset, REF-200
tmpflle function, REF-192
tmpnern function, REF-193
toescll macro, REF-195
tolo-r function, REF-196
toupper function, REF-198
__ tzset function, REF-200

u
ungetc function, REF-201

V
VAX C compatibility, 2--6
va_arg macro, REF-203
va_end macro, REF-204
va_start macro, REF-205
vfprlntf function, REF-206
vprlntf function, REF-208
vsprlntf function, REF-21 0

w
wcstombs function, REF-212
wctomb function, REF-214

X
XAB

RMS data structure, 7-4
xab.h header file, 7--6

lndex-9

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

I
I
I
I
I

" I
I
I
I
I

•
I

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040
before placing your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using
a 1200- or 2400-baud modem. If you need assistance using the Electronic Store,

call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

Int.ernational

Int.ernal1

Call
BOO-DIGITAL

809-754-7575

800-267-6215

Contact
Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA0212
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

USASSB Order Processing - WMO/E15
or
U.S. Area Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 014 73

1For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

I'

I

•• I
I
I
I
I
I ..
I
I
I
I
I

I

•
I·
-

I
I
I
I

I
I
I
I
I

•
I

Reader's Comments PDP-11 C
Run-Time Library Reference Manual

AA-NA45B-TC

Please use this postage-paid form to comment on this manual. If you require a written
reply to a software problem and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to :find topic) D
Page layout (easy to find information) D

I would like to see more/lees

What I like beet about this manual is

What I like least about this manual is

I found the following errors in this manual:
Page Description

Good

D
D
D
D
D
D
D
D

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.
Name/l'itle _________________ Dept .

Fair

D
D
D
D
D
D
D
D

Company _____________________ Date

Mailing Address

Phone

Poor

D
D
D
D
D
D
D
D

Do Not Tear - Fold Here and Tape - - - - - - - - - - - - - - - - - -

BUSINESS REPLY MAIL
FIRST CLASS PERMrT NO. 33 MAYNARD MASS.

POSTAGE WIU. BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
CORPORATE USER PUBLICATIONS
PKO3-1/D30
129 PARKER STREET
MAYNARD, MA 01754-9975

11111 II II I II , I ii ii I I I ii II II ii 11 I ii I I I 11 1 I I I ii I II II ii

Do Not 'lur - Fold Here and Tape - - - - - - - - - - - -

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNllED STATES

------- -

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

I
I
I
I
I
fl
I
I
I
I
I

•
I

Reader's Comments PDP-11 C
Run-Time Library Reference Manual

AA-NA45B-TC

Please use this post.age-paid form to comment on this manual. H you require a written
reply to a software problem and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:
Page Description

Good

□

□
□

□
□

□
□

□

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.
Name/l'itle _________________ Dept .

Company

Mailing Address

Phone

Fair Poor

□ □
□ □

□ □
□ □
□ □
□ □
□ □

□ □

Date

Do Not Tear - Fold Here and Tape - - - - - - - - - - - - - - - - - -

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE Will. BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
CORPORATE USER PUBLICATIONS

PKO3-1/030
129 PARKER STREET
MAYNARD, MA 01754-9975

Do Not Tear - Fold Here and Tape - - - - - - - - - - - -

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

------- -

•• I
I
I
I
I
I ..
I
I
I
I
I

•
I

•• I
I
I
I
I

I
I
I
I
I

•
I

DECLIT AA PDPll NA45B

PDP-11 C run-time library
reference manual

l oECLIT AA PDP11 NA4SB

PDP-11 C run-time library

--

reference manual

-- ~

SHREWSBURY LIBRARY
Digital Equipment Corporation

333 South Street SHR1-3 / G18
Shrewsbury, MA 01545

(DTN) 237-3271

l

SHREWSBURY LIBRARY
DIGITAL EQUIPMENT CORPORATION

SHR13/G18 •
DTN 237-3400

Printed in U.S.A.

I
I ;~
I

I

•
I

